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Abstract

Gravitational waves offer a powerful tool to test the nature of gravity in the
strong-field regime, where deviations from Einstein’s General Relativity may
emerge. Black hole mergers, in particular, are ideal laboratories for such tests,
as their dynamics and emitted radiation encode detailed information about the
underlying gravitational theory.

This thesis explores two complementary avenues for probing gravity with black
hole binaries. The first part focuses on black hole solutions in scalar–tensor
theories, which extend General Relativity by adding an extra scalar field. In
this context, “no-hair” theorems usually forbid black holes from carrying scalar
charge, but existing results cover only special cases. We generalize these theo-
rems, proving that in the most general shift-symmetric scalar-tensor theory, sta-
tionary black holes cannot possess scalar charge — even in higher-dimensional
spacetimes. We also identify situations where this result can be circumvented,
such as when the scalar field evolves linearly in time or couples to specific cur-
vature invariants. These exceptions are phenomenologically relevant, as they
can lead to distinctive gravitational wave signatures like dipolar radiation, po-
tentially detectable by current and future detectors.

The second part of the thesis employs the black hole perturbation theory frame-
work to study how subtle changes in BH properties affect their quasinormal
mode spectrum—the characteristic “ringing” observed in the post-merger grav-
itational wave signal. We analyze scenarios where the black hole mass changes
over time, such as the nonlinear self-absorption of gravitational radiation, find-
ing shifts in quasinormal frequencies, possible instabilities, and non-zero tidal
responses. We also develop a parametrized framework to describe generic small
deviations from GR in the Teukolsky equation. We demonstrate how this ap-
proach can be applied to a broad range of physical scenarios.

We finally assess the impact of incomplete ringdown modeling on parameter
estimation for the space-based detector LISA, by incorporating multiple fun-
damental, overtone, and quadratic modes.

In summary, the work refines theoretical constraints on black hole properties,
highlights specific scenarios and conditions where deviations from GR could be
observable, and outlines approaches that may help connect theoretical predic-
tions with future GW measurements.
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Acronyms

• ADM: Arnowitt-Deser-Misner;

• BH: black hole;

• BHPT: black hole perturbation theory;

• CDM: cold dark matter;

• CH: cosmological horizon;

• DHOST: degenerate-higher-order-scalar-tensor;

• EH: event horizon;

• EFT: effective field theory;

• FIM: Fisher information matrix;

• FJBD: Fierz-Jordan-Brans-Dicke;

• GB: Gauss-Bonnet;

• GR: General Relativity;

• GW: gravitational wave;

• HDG: Higher-Derivative Gravity;

• LISA: Laser Interferometer Space Antenna

• IR: infrared;

• PTA: pulsar timing arrays;

• PSD: power-spectral density;

• QNM: quasinormal mode;

• SET: stress-energy tensor;

• SMBH: supermassive black hole;

• SMBHB: supermassive black hole binary;

• SNR: signal-to-noise ratio;
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• TDI: time domain interferometry;

• TT: transverse-traceless;

• UV: ultraviolet;

• WKB: Wentzel-Kramers-Brillouin;
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Notation and conventions

In the first part of this thesis, i.e. Chapter 1 and 2 (and Appendix A), we will work in
natural units c = ℏ = 1, while in the remaining chapters we will adopt geometric units
c = G = 1. Moreover, in the whole thesis, we will adopt the mostly plus signature of
the metric, (−,+,+, . . . ). We will use Greek indices µ, ν, α, . . . for the tensor components
on d dimensional spacetime, lowercase Latin indices i, j, k, . . . (from the middle of the
alphabet) for the d−1 components corresponding to spatial coordinates only, and lowercase
Latin indices a, b, c, . . . (from the beginning of the alphabet) to label the components
associated to angular coordinates. Notice that we will always consider a four-dimensional
spacetime, with the exception of Chapter 2 and Appendix A. We will also use Latin indices
i, j, k, . . . for components of multi-valued quantities that are not spacetime tensors, such as
coefficients in the recurrence relations in Chapter 4 and 5, or parameters of astrophysical
sources in Chapter 6. A slightly different convention for indices is adopted though in
Appendix A.1. We will finally also employ the boldface for indicating abstract vectors in
Chapter 6 .
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Part I

Black hole uniqueness and its
breakdown
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Chapter 1

Gravitation, black holes and
gravitational waves

1.1 General Relativity and black holes

Among the fundamental interactions in nature, gravity remains the most elusive. The
uniqueness of gravity is two-fold. On the one hand, unlike other elementary forces, it is
universal, meaning that it is sourced by energy itself, rather than a specific charge. On
the other hand, gravity is unique for its extreme weakness, set by the Planck scale, which
renders it exceptionally hard to probe its nature in a quantum regime. The universality
of gravity is well captured by the geometrical description introduced in 1915 by Einstein
with the theory of General Relativity (GR) [1], in which the spacetime and its energy
content are dynamically intertwined. In this picture, gravity emerges as the curvature of
spacetime. This concept can be quantified from the definition of a metric tensor gµν . The
curvature is then encoded in the Riemann tensor, defined as [2, 3]

Rρσµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (1.1)

where we introduced the Levi-Civita connection

Γρµν =
1

2
gρλ
(
∂µgνλ + ∂νgµλ − ∂λgµν

)
. (1.2)

In a classical field theory perspective, the dynamics of gravity is described by an action for
the metric tensor S

[
gµν
]

[4]. The simplest local and diffeomorphism-invariant kinetic term
that can be constructed from the metric and its derivatives is the Ricci scalar, R = gµνRµν ,
where Rµν = Rρµρν is the Ricci tensor [5]. The action takes the form [2, 3]

SEH =
M2

Pl

2

∫
d4x

√−g (R− 2Λc) , (1.3)

where we introduced the Planck mass MPl = (8πG)−1/2. The object Λc is called cosmo-
logical constant. As we will see in the following section, this term can be related with the
large-scale dynamics of the universe.

Eq. (1.3) is known as Einstein-Hilbert action, and turns out to be also the only possible
local and diffeomorphism-invariant action in four spacetime dimensions, if one requires that
the metric tensor be the only dynamical field and that the equations of motion be second-
order. This result is an implication of the more general Lovelock’s theorem in arbitrary
spacetime dimension [5].
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The matter content of spacetime can be included in this picture with a separate contri-
bution, encoded in an action Smatter

[
gµν ,Ψm

]
, where Ψm is a generic matter field. Thus,

the total action has the form [2, 3]

Stot = SEH
[
gµν
]
+ Smatter

[
gµν , ψ

]
, (1.4)

The equation of motion, or Einstein Equation, obtained from the variation of Eq. (1.4),
reads

Gµν + Λcgµν =
Tµν
M2

Pl

, (1.5)

where we introduced the Einstein tensor Gµν = Rµν−Rgµν/2, and the stress-energy tensor
(SET)

Tµν =
2√−g

δSmatter

δgµν
. (1.6)

The Bianchi identity, holding for the left-hand side of the Einstein Equation, implies

∇µT
µν = 0 . (1.7)

Notice that, on a flat background described by the Minkowski metric ηµν , this definition of
SET, for a matter field ψ described by the Lagrangian density L(ψ, ∂µψ), reduces to the
canonical field theory definition 1 [7].

Tµν =
∂L

∂(∂µψ)
∂νψ − δµνL . (1.8)

The predictions of GR in the weak field regime, where its effect can be expressed in the
form of perturbative corrections to Newtonian gravity, have been widely confirmed by
experimental tests performed in the solar system [8], such as Shapiro time delay [9], the
anomalous perihelion precession of Mercury [10], or light deflection [11, 12]. However,
the most crucial implications of GR manifest in the strong-field regime, around so called
compact objects. While the physics of extremely compact stars, such as neutron stars,
is dramatically affected by the strong-field behavior of the gravitational interaction [13,
14], the most intriguing consequence of GR regards the existence of ultra-compact vacuum
solutions of Einstein Equation, namely black holes (BHs) [15–17]. Although these solutions
describe vacuum spacetimes, it is still possible to associate a well-defined notion of total
mass to them, for example via the Arnowitt-Deser-Misner (ADM) mass definition [18],
which captures the gravitational energy content as measured by an observer at spatial
infinity.

BHs are mainly characterized by the presence of an event horizon (EH), a null hyper-
surface that delineates the boundary of causal influence, beyond which events cannot affect
an outside observer [19–21]. Moreover, Hawking showed in 1974 that the BH EH produces
thermal radiation at an equilibrium temperature related to the BH mass [22, 23]. The
emission of radiation by the EH is responsible for a process known as evaporation, which
causes the progressive shrinking of BHs on extremely large time scales.

In GR, BHs are also typically characterized by the presence of curvature singularities,
i.e. points of spacetime in which the solution is not defined [19, 24, 25]. The presence

1Notice that this holds if the Lagrangian density only depends on the field and on its first derivatives.
Moreover, unlike the covariant definition of Eq. (1.6), this SET is not automatically symmetric. It can,
however, be symmetrized with the Belifante-Rosenfeld procedure [6], i.e. with the redefinition Tµν →
Tµν + ∂λS

λµ
ν . The tensor Sλµν is symmetric in the indices λµ, so that the redefined tensor satisfies

∂µT
µ
ν = 0.
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of singularities is interpreted as a theoretical limit of GR, which should in principle be
completed in the ultraviolet (UV) regime by a more general theory that is able to resolve
the small-scale structure of BH interior [26–28].

The simplest BH realization in GR is given by the Schwarzschild solution, which is also
the only nontrivial vacuum static solution to Einstein equation. The line element can be
expressed in spherical polar coordinates (t, r, θ, ϕ) as

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1

dr2 + r2
(
dθ2 + sin θ2dϕ2

)
. (1.9)

In more detail, the radial coordinate r is called the areal radius, and it is defined in such
a way that a spherical surface with r = const has area A(r) = 4πr2. The characteristic
scale rs is the so-called Schwarzschild radius, representing the location of the EH, and
can be expressed in terms of the ADM mass M of the BH as rs = 2GM . The point
at r = 0 is the aforementioned curvature singularity. This can be seen, by looking at
the curvature invariant RµνρσRµνρσ = 12r2s/r

6, which is divergent at r → 0, indicating a
genuine singularity of the spacetime.

On the other hand, the most general BH solution in GR represents a stationary rotat-
ing object, with dimensionless angular momentum a, and carrying an electric charge Q.
This solution is known as Kerr-Newmann BH [29], and is described, in Boyer-Lindquist
coordinates, by the line element

ds2 =−
(
1− rsr

Σ

)
dt2 − 2a

(
rsr −Q2

)
sin2 θ

Σ
dt dϕ+Σ

(
dr2

∆
+ dθ2

)

+

(
(r2 + a2)2 − a2∆sin2 θ

)
sin2 θ

Σ
dϕ2 ,

(1.10)

with

ρ2 = r2 + a2 cos2 θ,

∆ = r2 − rsr + a2 +Q2 .
(1.11)

In this case, the BH has two different horizons, given by the roots of the function ∆,
while the singularity is not a point anymore, but rather a ring of points, given by r = 0,
θ = π/2. The form of Eq (3.114) highlights a key feature of BHs in GR: they are completely
characterized by a maximal set of three parameters: mass, spin, and electric charge. This
statement is also known as no-hair conjecture [30–33], and we are going to discuss it in
more detail in the next chapter.

The existence of BHs in our universe has been largely demonstrated in different as-
trophysical scenarios, and with various astrophysical techniques [34–40], as we will discuss
in more detail in the last section of this chapter. In particular, we know that they can
emerge in the astrophysical context as the final evolutionary stage of massive stars, after
a process of gravitational collapse [41–43]. Furthermore, we know that supermassive BHs
(SMBHs), with millions or even billions of solar masses, exist at the center of galaxies, al-
though their formation and evolution is still not fully understood [44, 45]. In astrophysical
contexts, BHs are expected to be essentially uncharged, since any significant net electric
charge would be rapidly neutralized by the surrounding plasma and interstellar medium
through accretion of oppositely charged particles [46]. On the other hand, astrophysical
BHs are generally (highly) spinning [47, 48]. Hence, it is believed that astrophysical BHs
are described by the Kerr metric, obtained from Eq. (3.114), with Q = 0. This conjecture
is also known as "Kerr hypothesis" [30–33].
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1.2 Going beyond: effective field theories and new degrees of
freedom

As already discussed, GR provides a successful description of the gravitational interaction
in the universe [8]. However, it suffers of some limitations that is worth addressing here.
First of all, the aforementioned curvature singularities signal the incompleteness of the
theory in the UV [19, 25, 49]. This is also connected to the problem of reconciling GR
with quantum mechanics. Indeed, if one tries to deal with the metric tensor as a quantum
field, for instance expanding it perturbatively around a flat background, one finds that
the quantum fluctuations possess nonlinear interactions that lead to UV divergences that
cannot be cured with the inclusion of a finite amount of counterterms in the action [50–52].
In other words, gravity is not renormalizable. This should be contrasted with the case of
the Standard Model of particle physics, which describes the other three fundamental inter-
actions in nature, which is a renormalizable theory 2 [59]. Different unified theories have
been proposed as UV-completions of GR, such as string theory [60], asymptotically safe
quantum gravity [61], loop quantum gravity [62], or Hořava-Lifshitz gravity [63]. Another
well-known theoretical problem plaguing GR is the so-called information loss paradox [64,
65]. In the process of evaporation of a BH through the Hawking mechanism, the emitted
radiation is thermal and carries no information. When the BH eventually disappears, the
whole amount of information that entered the EH during the BH history disappears with
it. This is in conflict with the unitary evolution required by quantum mechanics, that
should preserve the initial information.

In addition to the issues related to the UV side, GR also appears to be partially in-
complete in the infrared (IR), namely at very large scales. In fact, the dynamics of large
gravitating systems such as galaxies, galaxy clusters, or even the universe in its entirety
appear to require additional theoretical ingredients to be explained. The main observa-
tional anomalies in the universe, such as the behavior of galaxy rotation curves [66, 67], the
growth of cosmic structures [68, 69], the spectrum of the cosmic microwave background [70,
71], and the late-time accelerated expansion of the universe [72, 73] are addressed in the
standard model of cosmology with the inclusion of non-relativistic or "cold" dark matter
(CDM), and dark energy in the form of a cosmological constant Λc [71, 74]. This picture is
usually called ΛCDM, for intuitive reasons. However, the ΛCDM model is also affected by
some theoretical issues, in particular the so-called cosmological constant problem [75–77].
The experimentally measured value of the energy density of the cosmological constant is
ρΛ ≃ 10−122M4

Pl. On the other hand, if one wants to interpret the cosmological constant
as energy of the vacuum, it is possible to estimate its value by summing the contribution of
all modes with momentum k and mass mi up to a high energy cutoff scale ΛUV ≫ mi [77].
Namely

ρvac =

∫
d3k

(2π)3
1

2

√
k2 +m2

i ≃
Λ4
UV

16π2
. (1.12)

It is not hard to notice that natural choices for the cutoff ΛUV, coming from known high-
energy physics, produce an enormous discrepancy between the theoretical prediction and
the observed value of the cosmological constant. In particular, setting the cutoff at the
Planck scale results in a discrepancy of about 120 orders of magnitude. Even choosing lower
energy scales associated with the Standard Model, such as the electroweak symmetry break-
ing scale, still leads to an extremely large mismatch. Such inconsistency represents one of

2Notice that renormalizability does not guarantee, in principle, that the theory is the ultimate descrip-
tion of nature. In fact, there are still theoretical puzzles related to the Standard Model of particle physics,
such as the neutrino masses [53–55] or the hierarchy problem [56–58].
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the most striking fine-tuning problems in modern physics. Reconciling the theoretical vac-
uum energy with the measured value would require an extreme and unnatural cancellation
between different contributions in the action, rendering the result highly unstable under
quantum corrections.

In addition to this theoretical tension, recent observational results reported by the
DESI collaboration [78], suggest possible deviations from the cosmic expansion predicted
by the ΛCDM model.

All these problems in the standard model of cosmology suggest that something impor-
tant is missing in our description of the universe dynamics and the nature of gravity at
very large scales.

In summary, although GR provides a good description of gravitating systems at in-
termediate scales, there are several theoretical and observational reasons to explore pos-
sible generalizations. This can be practically done relaxing the assumptions of the four-
dimensional Lovelock’s theorem [5], i.e. considering a higher spacetime dimensionality,
breaking some symmetries (such as local Lorentz invariance) or locality, including other
fundamental fields, or allowing for higher-order equations of motion. Let us focus for a
moment on this last possibility.

Adopting the picture of GR as the low-energy limit of some unknown UV-complete the-
ory of gravitation, one can complement the Einstein-Hilbert action with additional terms,
which are higher-order in the curvature. In other words, one can construct an Effective
Field Theory (EFT) of gravity [79]. The top-down construction of an EFT describing the
dynamics of some light degree of freedom φL is generally performed integrating out UV
physics mediated by some heavy field φH. This procedure can be schematically expressed
in the path-integral formulation as follows [79]

eiSEFT[φL] ≡
∫

DφH e
iSUV[φL,φH] . (1.13)

The resulting action has the general structure

SEFT [φL] =

∫
dx4

∑

i

ci
Oi [φL]

Λdi−4
UV

, (1.14)

where ΛUV is a typical cutoff energy scale, and di > 4 is the energy dimension of the local
operator Oi, and ci are constant coefficients that depend on the UV physics.

However, since the high-energy completion of GR is unknown, we practically want to
proceed the other way round, i.e. following a bottom-up construction. This means writing
down the most general IR action, given a set of basic assumptions. The coefficients of
the EFT operators, in this scheme, are not known a priori, while they can in principle be
determined from experiments. The main ingredients to construct the EFT of gravity in this
way are relevant degrees of freedom, the symmetries of the IR theory, and the expansion
and power-counting scheme.

In particular, if one requires that the EFT of gravity is diffeomorphism-invariant, and
describes no dynamical degree of freedom but the metric tensor, one obtains the following
action [80, 81]

SEFT =
M2

Pl

2

∫
d4x

√−g
(
R+

L(6)

Λ4
UV

+
L(8)

Λ6
UV

+ . . .

)
, (1.15)

where L(i) include terms with i derivatives. Notice that some terms, among the different
possible operators at a given order in the derivative expansion, do not affect the vacuum

9



GR solutions and can then be omitted in the EFT. In particular, at four-derivative order,
the possible curvature invariants are [80, 81]

L(4) = α1G + α2R
µνρσR̃µνρσ + α3R

µνRµν + α4R
2 , (1.16)

where we defined the Gauss-Bonnet (GB) invariant

G = RµνρσRµνρσ − 4RµνRµν +R2 , (1.17)

and the dual Riemann tensor

R̃µνρσ =
1

4
εµν

αβ ερσ
γδ Rαβγδ , (1.18)

with εµναβ being the Levi-Civita tensor.
The first two invariants, multiplying the coefficients α1 and α2, are topological terms,

meaning that their contribution to the equation of motion is trivial [3, 5]. The remain-
ing terms, vanish on a Ricci-flat background, and hence do not provide any perturbative
correction to GR BH solutions [80, 81]. For this reason, the higher-derivative corrections
to GR that we are considering start from the sixth order in derivatives. Moreover, the
number of independent operators at a given order can be further reduced using different
kind of tensor identities. In practice, in the end, one is only left with pure-Riemann terms.
At sixth order in the derivative expansion one only has the two independent terms [80, 81]

L(6) = λevR
ρσ
µν R

δγ
ρσ R

µν
δγ + λoddR

ρσ
µν R

δγ
ρσ R̃

µν
δγ , (1.19)

where λodd and λeven are dimensionless couplings. The second term is clearly parity-
violating.

Moving to the successive order, we have

L(8) = ϵ1C2 + ϵ2C̃2 + ϵ3CC , (1.20)

where we defined the invariants

C = RµνρσR
µνρσ , C̃ = RµνρσR̃

µνρσ . (1.21)

The term multiplying the coefficient ϵ3 is parity-violating, while the other two are parity
preserving. Notice that the dimensionless coupling λodd,even and ϵ1,2,3 can in principle be
constrained requiring causality and unitarity [82–84].

The equation of motion for the metric tensor in this EFT are clearly higher than second
order. As it is widely known, this kind of theory is generally affected by the presence of
unstable modes, the so-called ghosts [85, 86]. This also happens when we introduce the
higher-derivative corrections described above, but such unstable modes only appear at
energy scales which are outside the range of validity of the EFT [80].

On the other hand, these higher-derivative operators provide corrections to the GR
BH solutions [81], that can in principle become relevant at the horizon scale, and conse-
quently produce interesting phenomenological consequences, particularly in the context of
BH perturbations [87, 88]. We will return to this in Chapter II and 5.

In the model described so far, that we will call Higher-Derivative Gravity (HDG) from
now on, the only dynamical degree of freedom, within the regime of validity of the EFT,
is the metric tensor [80, 81]. However, in the low-energy limit of some UV completions
of GR like string theory, other fields are generally present [60]. These fields are typically
scalars or pseudo-scalars. This motivates the study of more general extensions of GR in
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Figure 1.1: Different directions in which GR can be extended. Every direction corresponds to relaxing one
of the hypothesis of the four-dimensional Lovelock’s theorem.

which at least one scalar degree of freedom is included. Furthermore, scalar-tensor (ST)
theories of gravity have had a huge historical relevance in cosmology for they allow for
self-accelarating solutions and can then provide a dynamical explanation for dark energy,
in contrast with the cosmological constant approach [89–91]. For all the reasons above,
ST theories are probably the most popular and most widely investigated class of modified
gravity.

In the next chapter, we are going to expand on ST theories and the possibility of having
detectable deviations from GR in BH solutions.

To conclude this section, we mention that several other ways exist, to construct a
theory of gravity beyond GR. Other kind of degrees of freedom can be included in the
gravitational sector, still preserving the symmetries of GR (Proca theory [92], bimetric
gravity [93]). On the other hand, other examples of theories, in which different underlying
assumptions are relaxed, are Lorentz-violating theories (Hořava-Lifshitz [63] and Einstein-
Aether gravity [94]), massive gravity (where the graviton acquires a mass term) [95], non-
local theories [96], or theories including extra spacetime dimensions [97–100]. All these
possibilities are synthesized in the cartoon of Fig. 1.1.

In the next section, which is going to conclude the first chapter, we are going to provide
an overview of the most relevant observational channel for testing BH physics, and in a
wider perspective, gravity: gravitational waves (GWs).

1.3 Gravitational waves

As already discussed, BHs, in addition to being intriguing mathematical solutions and the-
oretical puzzles, are also astrophysical objects that populate our universe [101]. Today we
are able to probe them with a variety of accurate observational techniques [8, 102]. Among
these, the most powerful and informative channel is arguably given by GWs [40, 103]. When
two compact objects find themselves in a binary system, the gravitational binding energy
is progressively radiated away in the form of propagating ripples of spacetime curvature.
This process leads to the final coalescence of the two bodies. The corresponding signal
can be roughly divided in three stages: inspiral, merger and ringdown (Fig. 1.2) [104]. The
last stage, corresponding to the post-merger emission of gravitational radiation, will be
the main focus of this thesis, and we are going to dedicate the whole Chapter II to its
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Figure 1.2: Three stages of a typical GW signal.

mathematical description. On the other hand, we provide here an euristic overview of the
fundamental concepts in GW physics, in order to frame the discussion in the upcoming
chapters within a broader perspective.

The spacetime of a propagating GW can be described as some perturbation on top of
a background [105–110]. For simplicity, let us consider the background to be given by the
flat Minkowsky metric: i.e. gµν = ηµν+ϵ hµν+O

(
ϵ2
)
, with ϵ≪ 1. At linear order in ϵ, the

Einstein Equation can be cast into the form of a wave equation for hµν , with propagation
speed equal to the speed of light. The propagation speed could, in principle, be different
in an alternative theory of gravity.

Due to the diffeomorphism invariance of GR, the metric perturbation can be redefined
with the gauge transformation [7, 107]

hµν → hµν −
(
∂µξν + ∂νξµ

)
. (1.22)

where ξµ is an infinitesimal vector field.
The most appropriate choice, for a plane GW propagating in vacuum, in GR, is the

so called transverse-traceless (TT) gauge. Choosing as propagation direction the z axis of
the cartesian coordinate system (t, x, y, z), one can express the metric perturbation as

hTT
µν (t, z) =




0 0 0 0
0 h+(t− z) h×(t− z) 0
0 h×(t− z) −h+(t− z) 0
0 0 0 0


 , (1.23)

where the dependence on t, z is of the form exp(−2πif(t − z)), for a given oscillation
frequency f . The two degrees of freedom h+ and h× represent the physical polarization
states of the massless graviton. Beyond Einstein’s gravity, in the most general theoretical
setup, up to four additional polarization states can appear, i.e. two scalar ("breathing"
and longitudinal), and two vector modes [111].

On the other hand, the amplitude of the GW is set by the properties of the source [112–
115]. During the inspiral of a binary system of compact objects with comparable masses
m1 and m2, observed at distance d, this reads

hµν ∝ µv2

d
(1 + . . . ) , (1.24)
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where µ = m1m2/(m1 + m2) is the reduced mass of the system and v is the orbital
velocity in units of the speed of light. The dots represent higher-order Post-Newtonian
corrections [115], i.e. contribution from higher powers of v.

The observable effect of a GW is described by the strain, defined as the fractional
change in proper distance between freely falling test masses [116]. As a GW passes through
a detector, it stretches and compresses space, causing variations in the separation between
suspended mirrors [117, 118]. The specific pattern of stretching and squeezing depends on
the polarization of the wave; in GR these amount to the aforementioned plus and cross
modes. In practice, detectors are affected by various sources of contamination, and any real
measurement is a combination of signal and noise [118]. The detector’s noise amplitude as
a function of frequency is called sensitivity curve of the instrument, and it indicates how
sensitive it is across its operational bandwidth [119]. We refer the reader to Chapter 6 for
more quantitative definitions of signal, noise and detector sensitivity curve.

Due to the intrinsic non-linearity of GR, not only do GW represent the dynamical
geometric response of a spacetime to an evolving energy content. They also constitute a
source of energy themselves, that can back-react on the spacetime background [106–110].
One might expect that the energy of a GW can be quantified through the definition of a
SET, in the same fashion as that of any other dynamical field. However, the application of
this concept to gravitational radiation is rather subtle. In an euristic way, one can derive
a SET starting from the Einstein-Hilbert action, expanded around flat spacetime up to
quadratic order in ϵ. In the TT gauge, this reads

S = −M
2
Plϵ

2

8

∫
d4x ∂αh

TT
µν η

αβ ∂βh
TTµν +O

(
ϵ3
)
. (1.25)

We will from now on omit the book-keeping parameter ϵ.
Using the canonical definition of Eq. (1.8), one gets

TGW,flat
αβ ∼ M2

Pl

4
∂αh

TT
µν ∂βh

TT,µν . (1.26)

This definition, while being nice and simple, cannot be rigorously applied to a curved
spacetime. In fact, in GR, the effects of the gravitational field can always be made to
vanish locally by an appropriate choice of coordinates, and so, an actual SET for the
gravitational field cannot be strictly defined. This is because, if a quantity is a tensor and
non-vanishing in one frame, it must remain non-vanishing in all other coordinate systems
related by a regular diffeomorfism. This issue can be overcome, with the definition of a
non-local, effective SET for GWs. It turns out [109, 110] that this object is given by

TGW
αβ =

M2
Pl

4
⟨∂αhTT

µν ∂βh
TT,µν⟩ , (1.27)

where the bracket ⟨·⟩ has to be conceived as an averaging over spacetime scales that are
much larger than the GW wavelenght f−1 and much smaller than the global spacetime
curvature radius. Notice that, modulo this averaging operation, Eq. (1.27) appears the
same as Eq. (1.26). This definition of SET allows to practically compute fluxes of GWs,
and, in particular, the radiated power ĖGW. In the case of two inspiraling compact objects
introduced above, one has [112, 120]

ĖGW =
32

5

(
G2m1m2

d2

)2

v2 + . . . , (1.28)
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At leading order, the energy loss due to gravitational radiation is balanced by the decay of
the orbital energy, i.e., Ėorb = −ĖGW. This allows one to relate the time evolution of the
GW frequency to the emitted power, providing an expression for ḟ(f). The presence of
other radiation channels in modified theories of gravity, would obviously lead to a different
frequency evolution law. For instance, in a ST theory of gravity, in which compact objects
possess in general scalar charges, scalar radiation is also emitted during the inspiral. In
contrast with GWs, the leading multipole order in scalar radiation is the dipole, which
would dominate over the quadrupole, especially at early stages 3 [8, 121]. The power
emitted through this channel reads

Ėdip =
G

3

(
Geffm1m2

d2

)2 (
q(1)s − q(2)s

)2
, (1.29)

where we introduced the dimensionless scalar charges q(1,2)s , and the effective gravitational
constant Geff = G

(
1 + q

(1)
s q

(2)
s

)
. Another effect of this kind occurs in models including

extra spacetime dimensions, such as brane-world scenarios, where GWs can leak into the
bulk [122, 123]. All these kinds of effect modify the binary’s orbital decay rate, resulting
in a potentially observable imprint in the GW phase evolution.

The first indirect evidence of GWs came through the observation of a very peculiar class
of astrophysical objects: pulsars. A pulsar is a rapidly rotating neutron star that emits
narrow beams of electromagnetic radiation, acting as an extremely precise cosmic clock due
to the regularity of its pulses [124, 125]. The study of the Hulse-Taylor pulsar, discovered
in 1975 [126], showed that the evolution of its orbital period matches the predictions
from GR due to the emission of GWs [127, 128]. In particular, the matching to the
GR prediction leaves little room for additional channels of energy loss, such as dipolar
gravitational radiation that could arise if neutron stars carried an effective scalar charge.
The absence of any measurable excess in the Hulse–Taylor data has therefore been used to
set stringent upper limits on possible scalar charges of neutron stars, and more generally
on any new gravitational degrees of freedom that could be radiated in binary systems [129].
Observations of other relativistic binaries, such as PSR J1738+0333, PSR J0737–3039A/B,
and PSR J0348+0432, further tightened these constraints, showing that any deviation
from the GR prediction for the orbital decay rate must be smaller than a few parts in a
thousand [130–133].

In 2015, a GW signal, GW150914, was directly detected for the first time, and ushered
in the era of GW astronomy [40]. Since this first detection, the number of observed GW
events has grown considerably [134–136]. At the present time, a large catalog of binary BH
mergers, as well as binary neutron star and BH–neutron star mergers has been collected.
So far, all GW detections have been performed by the LIGO and Virgo collaborations,
using three ground-based interferometers located in Livingston and Hanford (USA), and
Cascina (Italy). The network, also including KAGRA [137, 138], the Japanese under-
ground detector in Kamioka, is currently performing the fourth observing run. Data from
these detectors have already placed tight constraints on several classes of modified gravity
theories. For instance, the near-simultaneous detection of GW170817 and its electromag-
netic counterpart ruled out a wide range of models predicting anomalous GW propagation
speeds [139]. Furthermore, tests based on the absence of dipole radiation, consistency of
the waveform phase, and polarization content have so far found no significant deviations

3The dipole term depends on the squared difference of the scalar charges, so the regime in which it
dominates over the quadrupole depends on the specific system. In a mass-symmetric system this effect is
absent.

14



Figure 1.3: Sensitivity curves of the main GW detectors as a function of frequency. Image taken from [144].

from GR [140, 141]. Nonetheless, there still remains room for exploring beyond-GR sig-
natures, particularly in the non-linear and strong-field regime. As detectors improve and
the catalog of events grows, increasingly stringent and model-independent tests of gravity
will become possible. Moreover, these future GW detection are going to be crucial not
only in the fundamental physics perspective, but also for astrophysical purposes, such as
understanding BH populations, their formation channels, and the evolution of compact
binaries.

Looking ahead, third-generation ground-based detectors – such as the Einstein Tele-
scope [142] and Cosmic Explorer [143] – are under development, aiming to achieve sen-
sitivities approximately 100 times greater than those of the current facilities. All the
aforementioned current and upcoming detectors are sensitive in the 1 − 104Hz frequency
band, corresponding to GW signals emitted by coalescing stellar-mass BHs and neutron
stars.

To explore the physics of massive and SMBHs, a new class of GW detectors is under
development: space-based interferometers. Unlike ground-based observatories, these de-
tectors will operate in space, allowing them to access lower frequency bands —ranging from
10−5Hz to 10−1Hz— which are ideal for observing the inspiral and merger of SMBH bi-
naries (SMBHB), and extreme mass-ratio inspirals. Among the most prominent missions,
the Laser Interferometer Space Antenna (LISA) [145] —a joint ESA-NASA project— is
planned for launch in the mid-2030s and will consist of three spacecrafts in heliocentric
orbit, forming a triangular constellation with arm lengths of 2.5 million kilometers. Thanks
to its unprecedented sensitivity, LISA will be the optimal target for detailed analyses of
the ringdown signal. We will dedicate Chapter 6 to this discussion. Other proposed mis-
sions include TianQin [146] and Taiji [147], led by China and scheduled for launch in
the early 2030s, which will use a similar triangular configuration in Earth orbit, and DE-
CIGO [148], a Japanese mission concept designed to bridge the frequency gap between
LISA and ground-based detectors, targeting the decihertz range.

At the IR end of the GW frequency spectrum, Pulsar Timing Arrays (PTAs) are de-
signed to probe nanohertz GWs, which are produced by extremely massive and slowly
evolving systems such as SMBH binaries (with masses up to 109M⊙) [149–151]. PTAs do
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not rely on laser interferometry; instead, they monitor millisecond pulsars—highly stable
astrophysical clocks—spread across the sky. GWs travelling through the galaxy induce
correlated fluctuations in the times of arrival of pulses from these objects. By precisely
measuring these timing residuals across a large array of pulsars over many years, PTAs are
sensitive to long-wavelength GW signals. Several international collaborations are currently
active in this domain, including NANOGrav (North America) [152], EPTA (Europe) [153],
PPTA (Parkes, Australia) [154], and the Indian PTA [155], now joined under the Inter-
national Pulsar Timing Array (IPTA) [156]. In 2023, multiple PTAs reported compelling
evidence of a stochastic background consistent with GWs emitted by a large population
of SMBHBs 4 [161–166].The sensitivity curve of some representative detectors among the
ones mentioned above, are represented in Fig. 1.3, together with the signal of different
astrophysical sources on different mass scales.

We finally briefly mention that, at the opposite end of the spectrum, high-frequency
GWs, typically in the MHz to GHz range, are hypothesized to originate from exotic high-
energy physics phenomena. Their detection would require novel experimental approaches
such as microwave cavity detectors and superconducting circuits [167, 168].

This overview of various GW detectors concludes the introductory chapter of the thesis.
In the next chapter, we will explore ST theories of gravity in greater detail and discuss
the possibility of BH solutions endowed with scalar charges. As mentioned previously, this
scenario has fundamental implications for GW tests of gravity. Subsequently, beginning
with Chapter II, we will delve into the physics of BH ringdown.

4Other possible explanations, involving more exotic scenarios related to early universe physics have
been proposed. See for instance [157–160].
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Chapter 2

No-hair theorems and their
circumvention

2.1 Introduction

Scalar-tensor theories of gravity are the simplest and oldest extension of GR. In their
basic form, they date back to the pioneering work by Fierz [169], Jordan [170], Brans
and Dicke [171], who suggested supplementing the tensor gravitons of GR with a scalar
degree of freedom conformally coupled to matter. This Fierz-Jordan-Brans-Dicke (FJBD)
theory, and generalizations of it in which the conformal coupling to matter is expanded to
nonlinear orders [121, 172], have been for decades the paradigmatic extensions of GR when
performing experimental tests in the Solar System [102] and binary pulsars [173]. This has
resulted in very tight bounds on these theories [8].

The observational evidence for a dark sector in cosmology [71, 72, 74, 174] and the
direct detection of GWs by LIGO and Virgo [40] have spurred a resurgence of interest in
scalar-tensor theories. It was realized that FJBD-like theories are not the most general
ghost-free theories allowing for a scalar degree of freedom in addition to the tensor ones.
Indeed, FJBD-like theories are just a special case of more general EFTs, where all possible
scalar-tensor operators are organized in a derivative expansion. Higher derivative operators
typically provide subleading corrections on a given solution at low energies, however there
are cases where they can be as important as the ones with fewer derivatives, within the
domain of validity of the low energy expansion. This property can be made robust by
the presence of exact or approximate symmetries, which determine different sets of power-
counting rules for the coupling constants in the effective Lagrangian, even in the absence
of an explicit UV completion [175–177]. The simplest realization of these effective theories
belongs to the Horndeski class [178], described by the following action1

S =
M2

Pl

2

∫
d4x

√−g
{
K(ψ,X)−G3(ψ,X)2ψ +G4(ψ,X)R (2.1)

+G4X(ψ,X)
[
(2ψ)2 −

(
∇µ∇νψ

)2]
+G5(ψ,X)Gµν∇µ∇νψ

−G5X(ψ,X)
6

[
(2ψ)3 − 3 (2ψ)

(
∇µ∇νψ

)2
+ 2

(
∇µ∇νψ

)3]}
+ Smatter[gµν ,Ψm]

where g, ∇, R and Gµν and MPl are the metric determinant, Levi-Civita connection,
Ricci scalar, Einstein tensor and reduced Planck mass; K, G3, G4, and G5 are arbitrary

1In Eq. (2.1) we are not explicit about the energy scales associated with the derivative operators, which
are absorbed in the definitions of K and Gi; we will restore them later on when needed.
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functions of X ≡ −∇µψ∇µψ/2 and the scalar field ψ; GiX ≡ ∂Gi/∂X, 2 ≡ ∇µ∇µ,(
∇µ∇νψ

)2 ≡ ∇µ∇νψ∇ν∇µψ and
(
∇µ∇νψ

)3 ≡ ∇µ∇ρψ∇ρ∇νψ∇ν∇µψ; and Ψm are the
matter fields. The class of theories given by Eq. (2.1) can be further generalized to the
beyond Horndeski [179, 180] and degenerate-higher-order-scalar-tensor (DHOST) theo-
ries [181–186] (see [187] for a review). The latter is defined as the most general class of
scalar-tensor theories with no propagating ghost degrees of freedom, although only a subset
of those can be considered as “robust” EFTs [176, 177, 188].

The coincident detection of GWs and gamma rays from the neutron star merger GW170817 [189],
as well as the requirement that GWs do not decay into dark energy [190, 191] and that
the scalar mode be nonlinearly stable [192], have already placed very strong constraints on
DHOST, under the assumption that the theory provides a dark energy like phenomenology
on cosmological scales. With this assumption, the only theories still viable are described
by the action [193]

S =

∫
d4x

√−g
[
M2

Pl

2
ΦR+K(ψ,X) +

3Φ2
X

2Φ
∇µψ∇µρψ∇ρνψ∇νψ

]

+ Smatter[gµν ,Ψm] ,

(2.2)

where Φ and K are functions of ψ and X (with ΦX ≡ ∂Φ/∂X). With a conformal
transformation from the “Jordan frame” to the “Einstein frame”, i.e. gµν → Φ−1 gµν , the
action can be rewritten (redefining the function K) as the “K-essence” action

S =

∫
d4x

√−g
[
M2

Pl

2
R+K(ψ,X)

]
+ Smatter

[
gµν

Φ(ψ,X)
,Ψm

]
. (2.3)

The conformal coupling to matter Φ(ψ,X) can potentially be tested with observations
of neutron stars (in isolation [172] or in binaries [194, 195]). The kinetic function K(ψ,X)
also has important consequences for the dynamics of matter systems. For instance, spe-
cific kinetic functions can give rise to self-accelerated solutions in cosmology [196], or to
nonlinear screening mechanisms that “hide” the deviations from GR on local scales (at
least in quasistatic situations [197–200]). However, the cleanest probes of the kinetic term
K(ψ,X) are provided by vacuum systems (e.g. BHs), since for those the effect of the con-
formal coupling function Φ(ψ,X) vanishes. This is particularly interesting in light of the
several BH binary systems detected by LIGO and Virgo [136].

The deviations of the GW signal (and more generally of the geometry) of BHs in scalar-
tensor theories from their GR counterparts is parametrized in terms of scalar hairs (also
referred to as sensitivities [201, 202] or scalar charges [121, 172]). These parameters model
the effective coupling between BHs and the scalar graviton in these theories, and are there-
fore absent in GR. In fact, these charges can also be thought of as quantifying violations of
the no-hair theorem [16, 32, 203, 204] and of the strong equivalence principle [102], which
are satisfied in GR but not necessarily in more general gravitational theories.

A more quantitative definition of scalar charge can be derived in a point-particle (or
worldline) EFT [205–207] perspective. As discussed in Chapter 1, an EFT is typically
constructed by integrating out UV degrees of freedom, thereby capturing the relevant
long-distance physics. In our astrophysical context, the key idea is that, at sufficiently
large distances, the detailed internal structure of a compact object can be integrated out,
allowing it to be modeled as an effective point particle of mass mpp traveling along a
worldline. In the following, we will only consider the case of a non-spinning compact
object. The inclusion of spin in this picture can be found in [208, 209].
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The point-particle action, at lowest order, can be expressed as the Nambu-Goto ac-
tion [210, 211]

Spp = −mpp

∫
dτ

√
−gµν

dxµ

dτ

dxν

dτ
, (2.4)

where τ is an affine parameter along the particle’s worldline, and xµ(τ) denotes the space-
time position of the particle as a function of τ . The variation of the point-particle action
with respect to x(τ), yields the well-known geodesic equation

dxρ

dτ
∇ρ

(
dxµ

dτ

)
= 0 . (2.5)

As a simple instance, which should better clarify this approach, we sketch how the
Schwarzschild metric can be reconstructed in this framework. We will consider in the
following that no matter field is present, i.e. we will forget about the action Smatter. By
expanding the spacetime metric around flat spacetime in the usual way, and solving the
Einstein Equation perturbatively, at linear order and in the point-particle’s rest frame, one
has

Gµν

[
h(1)µν

]
= −8πGmpp δ

t
µδ
t
νδ

(3)
D (x⃗) . (2.6)

Choosing the harmonic gauge ∂ρ∂σhρσ = 1
22h

α
α, and considering the static limit, i.e.

2 ≃ ∇2, one has
∇2h(1)µν = −4πGmpp

(
2δtµδ

t
ν + ηµν

)
δ
(3)
D (x⃗) , (2.7)

which is solved by

h(1)µν =
2Gmpp

r̃
δµν , (2.8)

where r̃ indicates a harmonic radial coordinate. The full metric gµν = ηµν + ϵh
(1)
µν +O(ϵ2)

can be matched to the Schwarzschild one in harmonic coordinates, given more in general
by the condition ∂µ

(√−g̃ g̃µν
)
= 0. In the limit rs ≪ r̃, one has

g(Sch)µν = ηµν +
rs
r̃
δµν +O

(
rs
r̃

)2

. (2.9)

This can clearly be matched to the point-particle result with the identification M = mpp.
In a ST theory, the mass of a compact object can in general depend on the scalar field,

so one has to replace mpp → mpp(ψ). Hence, the total action has the general form

Stot = I −
∫

dτ

√
−gµν

dxµ

dτ

dxν

dτ
mpp(ψ) , (2.10)

where I represents the action of a ST theory in the bulk. Varying Stot with respect to the
metric tensor and the scalar field, one obtains a system of coupled equations of motion
that can be solved perturbatively around flat spacetime and constant background scalar
field ψ∞. In the rest frame of the compact object and in harmonic coordinates, on gets

g̃µν = ηµν +
2Gmpp(ψ∞)

r̃
δµν +O

(
r̃−2
)
,

ψ = ψ∞ −
Gm′

pp(ψ∞)

r̃
+O

(
r̃−2
)
.

(2.11)
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These expressions can be matched with the large-distance behavior of a stationary solution,
representing a compact object in a ST theory of gravity. Using the same system of harmonic
coordinates, one has, at leading order,

g̃µν = ηµν +
2GM

r̃
δµν +O

(
r̃−2
)
,

ψ = ψ∞ +
QS
r̃

+O
(
r̃−2
)
,

(2.12)

where M is the ADM mass of the compact object, and QS is the scalar charge, related
to the dimensionless one introduced in the previous chapter as QS =Mqs. The matching
between the two results leads to the identification

mpp(ψ∞) =M ,

m′
pp(ψ∞) = −QS .

(2.13)

Thus the scalar charge of a compact object, appears as a measure of the dependence of
its gravitational mass on the background scalar field. Notice that this definition of scalar
charge holds in the Einstein frame. In the presence of matter, such as in the case of neutron
stars, it is generally useful to introduce a Jordan-frame counterpart of the scalar charge,
called sensitivity "s", defined as

s =
∂ lnMJ

∂ lnΦ
, (2.14)

where MJ is the Jordan-frame mass of the object. Since we are interested in vacuum
solutions, from now on we are going to employ the definition of scalar charge QS .

The appearance of scalar hairs, quantified by a non-vanishing QS , is, however, not a
general feature of ST theories of gravity. In FJBD-like theories, with or without a scalar
field mass, no-hair theorems exist and dictate that BH solutions must match the GR ones
if one assumes asymptotically flat boundary conditions [212].2 This theorem also applies to
BHs in K-essence, under the same asymptotically flat boundary conditions and provided
that the kinetic function satisfies suitable “stability” conditions [214].

BH hairs, however, generically appear, even in K-essence and FJBD-like theories, if
the scalar field grows with time far from the BH [215–218], as would be expected if one
were to match to a cosmological solution on large scales. Moreover, if one does not require
the scalar field to provide an effective dark energy phenomenology, the aforementioned
bounds on the DHOST class (coming from gravitational-wave propagation, the decay of
GWs into the scalar mode, and the nonlinear stability of the latter) are no more applicable.
No-hair theorems exist for subsets of the DHOST class in spherical symmetry [219], but
they rely on shift symmetry and on the assumption that the free functions appearing in the
DHOST action are analytic. Therefore, not only are scalar charges generically expected
for DHOST theories that break shift symmetry in vacuum, but these theorems also do not
apply to actions including interactions between the scalar field and the GB invariant [220,
221] (which corresponds to a nonanalytic G5 ∝ ln |X| [222, 223]). These couplings are
known to produce BH charges that can be even nonperturbatively large (BH scalarization)
in both the spherical [224, 225] and rotating [226, 227] case.

In this chapter, we generalize existing no-hair theorems in the context of scalar-tensor
gravity and review the situations where these theorems can be violated. In more detail, in
Sec. 2.2, we provide the proof of a no-hair theorem for stationary asymptotically flat BHs,
holding for any shift-symmetric scalar-tensor theory (including Horndeski and DHOST). In
Sec. 2.3, we show that this result can be generalized to an arbitrary number d of spacetime

2Note that introducing a matter content, one can derive also no-hair theorems for stars [213].
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dimensions, under suitable assumptions on the topology of the horizon. In Sec. 2.4, we
provide examples which violate the no-hair theorems, explaining which assumptions of
our proof are violated. We also compute the scalar charge associated with a linear time
dependence of the scalar field, under suitable regularity conditions at the EH. Finally, in
Sec. 2.5, we further comment on possible extensions of the existing theorems dropping the
shift-symmetry assumption.

2.2 No-hair theorem for rotating BHs

In this section, we prove a no-hair theorem for rotating BHs in four spacetime dimensions,
which we generalize to arbitrary spacetime dimensions in Sec. 2.3. In particular, we show
that asymptotically flat, axisymmetric and stationary BHs in shift-symmetric scalar-tensor
theories cannot develop a term ∝ 1/r in the scalar profile at large distances. This is
equivalent to saying that BHs cannot have a scalar charge [121, 172].

The fundamental assumptions that we make are the following:

(i) the metric is circular; i.e. it has two commuting Killing vectors associated respectively
to the invariance under shifts in the time coordinate t (stationarity) and in the
azimuthal angle ϕ (axisymmetry), and it is invariant under the reflection isometry
{t→ −t, ϕ→ −ϕ};

(ii) the spacetime is asymptotically flat, reducing at large radii to the Minkowski metric
ηµν , plus subleading corrections hµν ∼ O(1/r);

(iii) The action and the field equations for the scalar field ψ are invariant under shifts
ψ → ψ + c, with c a constant;

(iv) if a nontrivial solution for the scalar field exists, it has the same symmetries as the
spacetime, i.e., it does not depend on the coordinates associated with the Killing
vectors of the metric;

(v) the squared norm JµJµ of the conserved Noether current Jµ associated with the shift
symmetry ψ → ψ + c is regular at the horizon;

(vi) the current Jµ reduces asymptotically to that of a free massless scalar field, i.e. Jµ =
−∂µψ at large distances.

Note that the latter condition is expected to hold in any standard effective theory for a
scalar coupled to gravity, where derivative interactions computed on the background are
more suppressed by powers of 1/r at large distances.3 To be concrete, we will sometimes

3In particular, it holds for the Horndeski Lagrangian (2.1) and more in general for the DHOST class [181–
186].
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t = t1

t = t0
r = rH

r = rout

Figure 2.1: Schematic representation of the boundary ∂M ap-
pearing in Eq. (2.17).

refer below to the explicit Horndeski action in Eq. (2.1), with shift current Jµ given by

Jµ =−∇µψ
{
KX −G3X□ψ +G4XR+G4XX

[
(□ψ)2 − (∇α∇βψ)

2
]

+G5XG
αβ∇α∇βψ −G5XX

[
(□ψ)3 − 3□ψ (∇α∇βψ)

2 + 2(∇α∇βψ)
3
]}

− ∂νX
{
− gµν G3X + 2G4XX(□ψ gµν −∇µ∇νψ) +G5XGµν

− 1

2
G5XX

[
gµν(□ψ)

2 − gµν(∇α∇βψ)
2 − 2□ψ∇µ∇νψ

+ 2∇µ∇σψ∇σ∇νψ
]}

+ 2G4XRµσ∇σψ

+G5X(−□ψRµσ∇σψ +Rα β
ν µ∇α∇βψ∇νψ +R β

α ∇αψ∇µ∇βψ) .

(2.15)

However, our result is more general, as it relies only on assumptions (i)-(vi), and does
not depend on the explicit form of the (shift-symmetric) scalar action. We will discuss in
Sec. 2.4.1 the possibility of relaxing some of the assumptions above.

Let us start by noting that, thanks to the shift symmetry, the scalar’s equations of
motion can be expressed, in absence of matter, in the form of a (covariant) conservation
law,

∇µJµ = 0 , (2.16)

where ∇µ is the covariant derivative. Integrating Eq. (2.16) over the spacetime outside the
horizon and using Stokes’ theorem, one gets

∮

∂M
dΣµ g

µν Jν = 0 , (2.17)

where ∂M is the three-dimensional boundary of the BH exterior region and dΣµ is the
element of the hypersurface ∂M. Introducing a radial coordinate r constant on the horizon
(r = rH) - which can be done without loss of generality if we assume that the horizon has
the topology of a sphere [228] - and a time coordinate t, the boundary ∂M includes four
contributions: two with fixed radius (r = rH or r = rout → ∞) and variable t ∈ [t0, t1]
(with t0 and t1 two constants), and two with t = t0 or t = t1 and r ∈ [rH, rout]. See Fig. 2.1
for a sketch of the domain of integration.

Let us focus first on the horizon contribution to the boundary integral in Eq. (2.17).
The Cotton-Darboux theorem [229, 230] ensures that it is always possible to recast the
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metric of a three-manifold into diagonal form via a local coordinate transformation. In
particular, in d = 4 dimensions, under the assumptions of stationarity and axisymmetry,
we can always choose coordinates such that the line element for the exterior geometry takes
the Weyl-Papapetrou form [31, 231]:

ds2 = −P dt2 + 2Qdt dϕ+H dϕ2 +W
(
dρ2 + dz2

)
, (2.18)

where the only off diagonal component of the metric is gtϕ = Q. As a result, dΣt = dΣϕ =
dΣt = dΣϕ = 0 on the horizon hypersurface r = rH. In addition, using the assumptions
(iii)-(iv), one can show in general that Jt = Jϕ = 0, and thus also J t = Jϕ = 0, everywhere,
and in particular at the horizon. This can be checked explicitly for the Horndeski current in
Eq. (2.15), while a general proof holding for any theory that satisfies the above requirements
can be found in Appendix A.1. Thus, we can write

dΣµ g
µν Jν = dΣig

ijJj (2.19)

as an inner product in a three-dimensional space.
Using Eq. (2.18), one obtains, more explicitly,

(dΣi g
ij Jj)

2 =W−2
(
dΣρJρ + dΣzJz

)2

≤W−2
(
dΣ2

ρ + dΣ2
z

) (
J2
ρ + J2

z

)
=

= (Ji g
ij Jj) (dΣk g

kl dΣl) ,

(2.20)

where we have used the Cauchy-Schwarz inequality. From the regularity of Ji gij Jj , which
follows from the assumption (v) and the fact that Jt = Jϕ = 0, and from the vanishing of
dΣk g

kl dΣl at r = rH by definition of null hypersurface, it follows that the right-hand side
of Eq. (2.20) vanishes at the horizon. As a consequence, the left-hand side of Eq. (2.20)
must vanish as well. This proves that in d = 4 there is no flux at the horizon contributing
to the integral in Eq. (2.17).4

Let us now focus on the constant-time boundaries of the region in Fig. 2.1. On the
hypersurfaces t = t0, or t = t1, one has dΣµ ∝ δtµ [231]. Therefore, since Jt = Jϕ = 0,
dΣµ g

µν Jν = 0 at both t = t0 and t = t1.5

We are therefore left only with the boundary contribution at large radii. Choosing the
boundary to be at r = rout → ∞, the flux reads

∮

∂M
dΣµ g

µν Jν =

∫

{r→∞}
dΣr g

rr Jr . (2.21)

At large distances, we can express the scalar profile as ψ =
∑

ℓ ψℓ(r)Pℓ(cos θ), where Pℓ
are the Legendre polynomials and ψℓ (because of asymptotic flatness) go at leading order
as6

ψℓ ∼
aℓ
rℓ+1

, (2.22)

4The vanishing of this contribution can also be proven, in d = 4 dimensions and for Horndeski theories,
by assuming that the surface gravity of the horizon is constant and the scalar field is regular [232, 233].

5It is actually not necessary that Jt and Jϕ vanish. It is enough that they are independent of t and
ϕ, as required by stationarity and axisymmetry. In fact, dΣµ points in opposite directions at t = t0 and
t = t1; thus, for Jt and Jϕ independent of t and ϕ, the fluxes at the time boundaries are guaranteed to
cancel each other.

6We are using here the assumption that the scalar equations of motion reduce, at large distances from
the BH, to those of a free scalar field, and we are disregarding the other independent solution with falloff
∼ rℓ.
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for constant aℓ. In particular, the coefficient a0 of the monopole term with ℓ = 0 is related
to the scalar charge, or "hair", QS via a0 = QSM , where M is the BH mass [195, 199,
234]. Let us now use assumption (vi) and write [121, 173]

Jr ∼ −∂rψ (2.23)

at large distances from the BH. Furthermore, from assumption (ii) we have grr = 1 +
O(1/r). Computing the integral (2.21) using spherical polar coordinates one gets

∫

{r→∞}
dΣr g

rr Jr = lim
r→∞

r2
∫

dt dΩS2 Jr = (t1 − t0) 4πMQS = 0 , (2.24)

which implies QS = 0.
Hence, we have shown that under the assumptions (i)-(vi) above, the scalar charge is

always zero in four dimensions. This result is independent of the particular form of the
(shit-symmetric) scalar action and can be generalized to arbitrary dimensions, as we will
discuss in the next section. In this sense, it is a generalization of the no-hair theorem of
Ref. [219] - which applies to non-rotating BHs in shift-symmetric scalar-tensor theories - as
well as of the theorem of Refs. [214, 231, 235] - which applies to rotating BHs, but which
holds only in theories with at most single derivatives acting on the scalar field. However,
our result is weaker because it rules out only the monopole scalar hair, but does not exclude
the possibility of nonvanishing subleading multipole terms in the scalar profile.

2.3 Generalization to higher dimensions

We will now generalize the results of the previous section to arbitrary spacetime dimensions
d > 4. The landscape of vacuum solutions in higher-dimensional GR is richer than in four
dimensions. In d > 4 there exist black objects with extended horizons, such as black strings
and black p-branes, as well as solutions presenting horizons with nontrivial topology, such
as black rings. See, e.g., Ref. [236] for a review. For simplicity, we will focus here on
spacetimes with horizons that have the topology of a sphere, and restrict our analysis
to the class of Myers-Perry BHs (with single or multiple spins) [236, 237], leaving the
generalization to different types of solutions for future work.

The fundamental assumptions will be the same as in the previous section, properly
generalized. In particular, we will assume that (i) the metric has n+1 commuting Killing
vectors given by ∂t and ∂ϕa , for a = 1, . . . , n, with n ≤ d − 2, and is invariant under the
symmetry transformation {t → −t, ϕ1 → −ϕ1, . . . , ϕn → −ϕn}. In addition, we require
(ii) asymptotic flatness, with subleading corrections scaling now as 1/rd−3 for hµν and ψ.
The assumptions (iii)-(vi) of Sec. 2.2 are instead unchanged, with the only obvious remark
that (iv) should be now understood to apply to all n+ 1 Killing vectors of the metric.

Note that Eqs. (2.16) and (2.17) (where now ∂M is the generalization of the boundary
hypersurface in Fig. 2.1 to higher dimensions) hold in any spacetime dimension. There-
fore, the first part of the argument is identical up to Eq. (2.17). Let us thus reconsider the
different contributions to the flux in Eq. (2.17). First, notice that the contribution from
the boundaries at fixed t0 and t1 vanishes for the same reason discussed above. Regarding
the boundary at r = rH , one can define the null directed surface element dΣµ orthogonal
to the horizon, where dΣt = dΣϕa = 0 because of (i). Hence Eq. (2.19) also remains true.
However, showing that gij is positive-definite requires slightly adjusted considerations, be-
cause one cannot generically guarantee that gij can be put in diagonal form. We shall thus
proceed as follows. First, from the positivity of the spatial line element dl2 = gijdx

idxj ,
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where latin indices here denote the n− 1 spatial coordinates, it follows that gij with lower
spatial indices is positive-definite everywhere in the BH exterior. Furthermore, one can
choose the coordinates in such a way that the only off diagonal terms in the metric tensor
are those that mix time with the angles ϕa associated with the spin direction(s). In refer-
ence to this, see e.g. the explicit form of the Myers–Perry line element in Appendix A.2.
Hence, the metric can be expressed as

(
gµν
)
=

(
gtt uj
ui γij

)
, (2.25)

where the only nonvanishing components of the vector u are those corresponding to the
coordinates ϕi, and where γ is a positive-definite (d − 1) × (d − 1) matrix, defined as
γij = gij . Note that the spatial indices of the metric blocks are raised/lowered as

ui = γijuj , γikγ
kj = δji . (2.26)

Using the inversion rule for a block matrix, we get the spatial part of the inverse metric as

gij = γij +
γik uk ul γ

lj

gtt − uk γkl ul
. (2.27)

From the symmetries of the BH solution, it follows that γ−1 is block diagonal and does not
mix the ϕa directions with the other spatial coordinates. Therefore, dΣiγik uk = Ji γ

ik uk =
0. Furthermore, dΣt = dΣϕa = Jt = Jϕa = 0 (see Appendix A.1). Hence, in analogy with
the d = 4 case, we have

dΣα g
αβ Jβ = dΣi γ

ij Jj . (2.28)

At this point, since γ−1 is positive definite, we can safely apply the Cauchy–Schwarz
inequality

(dΣi γ
ij Jj)

2 ≤ (Ji γ
ij Jj) (dΣk γ

kl dΣl) . (2.29)

From the regularity of JµJµ at the horizon [assumption (v)] and Jt = Jϕa = 0, the right-
hand side of Eq. (2.29) is zero, as dΣ is null and has therefore vanishing norm at the
horizon.7 This shows that the contribution to the integral (2.17) from this boundary is
zero, just like in the d = 4 case.

At large distances, we can decompose the scalar field as ψ =
∑

L ψ̃L(r)YL(θ), where YL
are hyperspherical harmonics, θ is a shorthand for the angles on the (d − 2)-dimensional
hypersphere (see, e.g., Ref. [238]), and ψL scale at leading order as

ψ̃L ∼ aL
rL+d−3

, (2.30)

for constant aL. The scalar charge can be defined via a0 = QS µ, where µ is the d-
dimensional mass parameter defined in Appendix A.2, which reduces to 2GM in four
dimensions.

Computing the flux at spatial infinity yields

∫

{r→∞}
dΣr g

rr Jr = lim
r→∞

rd−2

∫
dtdΩSd−2 grr Jr

= (t1 − t0)
8π

(d− 2)
MQS = 0 ,

(2.31)

which generalizes (2.24) to higher dimensions.
7Actually, one needs to apply the argument slightly away from the horizon, and a limit must be taken.
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2.4 Evading the no-hair theorem

In this section, we study how the no-hair theorem formulated in Sec. 2.2 is affected if we
drop some of its underlying assumptions. We will consider in particular two cases: a linear
time dependence in the scalar profile, and a coupling to the Gauss–Bonnet operator, which
violate the conditions (iv) and (v) respectively. We will also mention the possibility that
assumption (i) is violated.

2.4.1 Introducing a linear time dependence

Let us start by relaxing the condition (iv). It is in general not strictly necessary for
the scalar field solution ψ to have the same symmetries as the background metric: one
can in fact allow for a linear dependence in t and/or ϕa while keeping the isometries of
the spacetime unchanged. In practice, this happens because the shift symmetry ensures
that the stress energy tensor depends on ψ only through its derivatives. Said differently,
although time translations and/or rotations in ϕa are spontaneously broken, it is possible
to find, for each broken generator, a “diagonal” combination with a suitable shift in ψ that
is unbroken on the background solution.

It has been shown in [239] that a linear time dependence in the scalar profile is actually
not allowed around stationary asymptotically flat BHs in the context of K-essence. How-
ever, the proof assumes a field ψ that is backreacting on the metric through its SET, while
it is possible to find counterexamples to this statement in the test field limit. The simplest
and most notable example of this is given by Jacobson’s solution [215] (see also [216]),
where the scalar field carries a linear dependence on time. More general examples of
such “stealth” solutions beyond K-essence have been later found also in the context of
e.g. Schwarzschild-(A)dS BHs [240–244] and Lorentz-violating gravity [245].

Given these preliminary considerations, let us consider a scalar profile of the form8

ψ = S(r, θ) + E t , (2.32)

where we have included a linear dependence on time, and where we have denoted generically
with θ the angles that do not correspond to Killing directions. Note that at large r, S
admits the multipole expansion given by Eq. (2.30).

Let us start again from Eq. (2.17). The contributions to the integral from the fluxes
through the hypersurfaces at t = t0 and t = t1 cancel out for the same reason as in
the previous sections. A crucial difference is instead arising from the contribution at the
horizon. To understand why, let us focus on the inequality in Eq. (2.29). In Sec. 2.3 it was
crucial that Jt = Jϕa = 0 to be able to use the assumption (v) and conclude that JigijJi is
finite at the horizon. This is no longer true now, as a profile of the form in Eq. (2.32) will in
general induce a nonzero Jt, allowing JigijJi to be singular at r = rH without invalidating
the regularity of JµJµ.

An example of this is given by Ref. [215]. That solution is valid in the limit in which
the scalar field backreaction on the geometry is neglected; i.e. it is an exact solution of the
Klein–Gordon equation 2ψ = 0 on a Schwarzschild background. It reads explicitly

ψ(t, r) = QS

[
t

rs
+ ln

(
1− rs

r

)]
, (2.33)

where rs = 2GM denotes the Schwarzschild EH radius. The conserved shift-symmetry
current in this case is simply Jµ = ∂µψ. The squared norm JµJµ is thus just the standard

8For simplicity, we considered only a linear term in t. Adding linear terms in the angles ϕa would not
formally change our conclusions.
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kinetic term ∂µψ∂
µψ, which is regular at r = rs, as can easily be verified using Eq. (2.33).

However, computing the left-hand side of Eq. (2.29) explicitly, we see that it does not
vanish at r = rs. In fact, ∫

r=rs

dΣr g
rr Jr = −4π rsQS , (2.34)

which is nonzero, as a result of the linear time dependence in Eq. (2.33). Furthermore, the
surface integral at rout → ∞ yields a contribution equal in magnitude but with opposite
sign. Therefore, Stokes’ theorem is trivially satisfied and cannot be used to constrain the
scalar charge QS . There are cases in which one can also have nontrivial contributions
from the linear time dependence at r = rout. To see this, let us study the asymptotic
behavior of the current at large radii, keeping in mind the asymptotic expansion of the
metric introduced in assumption (ii). The kinetic term now reads

X = −1

2

[
− E2 + (∂rS)

2 +
(∂θS)

2

r2
+ hαβ∂αψ ∂βψ

]
=

= −1

2

[
−E2 + hαβ∂αψ ∂βψ +O

(
1

r2d−4

)]
,

(2.35)

and its derivative is given by

∂rX = −1

2
∂r

[
−(1− htt)E2 +O

(
1

r2d−4

)]
= −E

2

2
∂rh

tt +O
(

1

r2d−3

)
. (2.36)

Regardless of its full expression, the metric component htt at large distances must yield
the Newtonian potential in d-dimensions, i.e.,

∂rh
tt ∼ O

( 1

rd−2

)
. (2.37)

It is thus clear that another important difference with the time-independent case [c.f. Eq. (2.23)]
is showing up at large radii: the gradient of the kinetic term now yields an additional con-
tribution of the same order as the gradient of the scalar field. Note that this effect can
arise if the theory includes a cubic Galileon interaction. In the case of (2.15), the current
is given asymptotically by

Jr = −∂rS (KX +O(1/rd−1))− ∂rX (G3X +O(1/rd−1)) +O(1/rd+1) . (2.38)

The Stokes’ theorem then yields
∮

∂M
dΣµ g

µν Jν = 0 =

∫

r=rH

dΣr g
rr Jr +

∫

{r→∞}
dΣr g

rr Jr =

=

∫

r=rH

dΣr g
rr Jr −

∫

{r→∞}
dΣr

(
∂rS KX + ∂rX G3X

)
.

(2.39)

Let us now specialize to d = 4 dimensions and assume

KX → 1 , G3X → g3 , (2.40)

at large distances, as expected from asymptotic flatness [246], where g3 is the coupling
associated with the cubic Galileon interaction. Then, Eq. (2.39) provides one with a
general expression for the scalar charge,

QS = g3E
2 − 2

M

∫

r=rH

dΣr g
rr Jr . (2.41)
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Depending on the specific model, this constraint can be verified trivially (as in the case of
Jacobson’s solution), or it can yield nontrivial relations between the scalar charge and the
scalar time gradient E. In particular, this second possibility can give rise to hairy solutions
in the presence of cubic Galileon interactions, if the horizon contribution vanishes.

2.4.2 Coupling to GB

It is well known that a linear coupling of the scalar field ψ to the GB invariant G, defined
in Eq. (1.17) can source a nontrivial hair around spherically symmetric BH solutions in
d = 4, while preserving the shift symmetry [222]. In this case, the assumption that is
violated is (v). In fact, the squared norm JµJµ of the shift-symmetry current diverges
at the horizon. This is however not an issue since Jµ is not a diffeomorphism-invariant
current in the presence of the Gauss–Bonnet term, and therefore JµJµ is not a physical
scalar quantity [247].

The same conclusion is expected to hold for rotating solutions. Note that the divergence
of JµJµ at the horizon prevents one from claiming that the right-hand side of Eq. (2.20)
is zero at r = rH, invalidating our no-hair theorem of Sec. 2.2.

2.4.3 Deviations from circularity

We conclude this section with an additional cautionary note. The first assumption that we
made was circularity, i.e. we required that besides possessing two Killing vectors, the metric
is also reflection symmetric. The existence of physically meaningful noncircular stationary,
asymptotically flat rotating BHs seems to be excluded for a wide class of theories [248].
In an EFT context, Ref. [249] showed that BH solutions must be circular if they reduce to
GR solutions in a proper limit (in other words, if there are no separate branches).

In principle, however, in theories beyond GR one should not take circularity for granted [250].
Evidence for deviations from circularity is found numerically by Ref. [218] in cubic Galileon
gravity. Other cases can be found for instance in DHOST theories [251, 252]. These so-
lutions involve a stealth time dependence of the scalar field, which does not show up in
the Einstein equations. Furthermore, separate branches of solutions could exist in the
presence of a coupling between the scalar and a curvature invariant like the GB term. (We
will discuss this case in more detail in Sec. 2.5.)

In summary, while examples of hairy BHs that violate our assumption (i) do exist, they
also seem to violate our assumptions (iv) or (v).

2.5 No-hair theorem for quasi-K-essence theory

In this section, we review the no-hair theorem of Ref. [214], which shows that in K-essence
theories the scalar field must be trivial and generalize it to generic spacetime dimensions
d. For simplicity, we again restrict the analysis to the class of Myers-Perry BHs, with
single or multiple spins. We stress that the proof is stronger than the one discussed so
far, in the sense that it rules out not only a nonvanishing scalar charge at infinity, but
also a nontrivial scalar profile. It is, however, less general, as it applies only to K-essence
theories, i.e. ones with first-order derivative self-interactions. In more general theories,
the presence of higher derivative operators may invalidate the proof, as it will become
clear later on. Nevertheless, we will show that if the higher derivative operators provide
perturbative corrections to the K-essence action, the proof can be generalized (with some
subtle caveats). We will discuss this aspect at the end of the section.
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Let us start from the action9

S =
M2

Pl

2

∫
ddx

√−g
[
R+K(ψ,X)

]
, (2.42)

where X ≡ −1
2∇µψ∇µψ. Let us assume that there may exist a stationary BH solution

with nontrivial scalar profile, sharing the same symmetries as the geometry. The scalar
equations of motion are

∇α

(
KX ∂

αψ
)
+Kψ = 0 . (2.43)

Now, let us multiply Eq. (2.43) by ψ and integrate it over the volume of the BH exterior
region M. Then, integrating by parts and using Stokes’ theorem, we obtain

∫

M
ddx

√−g
(
KX ∂αψ∂

αψ − ψKψ

)
=

∫

∂M
dΣα V

α (2.44)

where we have introduced the vector

V α ≡ KX ψ ∂
αψ . (2.45)

Let us focus first on the right-hand side of Eq. (2.44). The treatment of the surface terms
is analogous to our previous discussion in Sec. 2.2: the flux at the horizon is zero because
of the vanishing of dΣαdΣα and the regularity of VαV α at r = rH; the contributions from
the integral over the time boundaries cancel out because Vα is time independent; the flux
across the hypersurface r = rout → ∞ is zero because we are considering asymptotically
flat solutions and hence ψ → 0 at large radii. As a result, the right-hand side of Eq. (2.44)
vanishes.

Let us then focus on the terms on the left-hand side of Eq. (2.44). For a ψ solution
that has the same symmetries as the geometry, we can write ∂αψ∂αψ = ∂iψ g

ij∂jψ, which
is positive definite outside the horizon [see the discussion around Eqs. (2.25)–(2.27)]. Fur-
thermore, the energy-momentum tensor of the scalar field is Tµν = KX∂µψ∂νψ + Kgµν .
Assuming the null energy condition, i.e. nµTµνnν ≥ 0 for any null vector nµ [253, 254],
one obtains KX ≥ 0, which means that the term KX ∂αψ∂

αψ in Eq. (2.44) is positive
(semi)definite. Then, unless ψKψ in Eq. (2.44) is also positive (semi)definite,10 the left-
hand side of Eq. (2.44) can vanish only if ψ is the trivial solution [214].

Now, starting from this result, let us add a cubic Galileon term to the Lagrangian:

∆L√−g = −M
3
Pl

Λ3
G3(ψ,X)□ψ , (2.46)

Note that in Eq. (2.1) the energy scales MPl and Λ are absorbed in the definition of G3,
while we show them explicitly here. With this definition, G3 has the dimensions of an
energy squared, like X and K.

The dynamics of the system is associated with a characteristic scale, set by the mass
of the BH, M . Let us therefore rescale the coordinates as xµ → xµM2

Pl/M . The scalar
equation of motion then reads

∇α

(
KX ∂

αψ
)
+
( M

M2
Pl

)2
Kψ = ε

[
∇α

(
G3X□ψ ∂

αψ + G3X ∂
αX
)
+
( M

M2
Pl

)2
G3ψ□ψ

]
.

(2.47)

9As opposed to the previous sections, we relax here the assumption of shift symmetry, allowing K to
be a function of both X and ψ.

10Note that, for K = X − V (ψ), requiring ψKψ = −ψVψ to be positive semidefinite is equivalent to
having a potential V that is unbounded from below.
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where we defined the dimensionless parameter

ε ≡ M5
Pl

M2Λ3
. (2.48)

By requiring that the Galileon strong coupling scale Λ is relevant for the cosmological
dynamics, one gets Λ3 ∼ MPlH

2, with H the Hubble parameter.11 Then, the parameter
ε becomes the ratio of the Hubble and BH radii. This is of course a huge number for
astrophysical BHs. Therefore, considering Galileon-like interactions in the scalar sector
with a cutoff scale producing a non-negligible dynamics on cosmological scales, we can
expect highly nonperturbative corrections to the K-essence solution ψ = 0.

However, one may consider the same interaction with a cutoff Λ large enough to make
ε ≪ 1 [188]. In this case, we will have small perturbative corrections to the K-essence
scalar solution; i.e. we can write

ψ =
∞∑

n=1

εnψ(n) . (2.49)

Plugging this ansatz into Eq. (2.47), at O(ε) one obtains

∇α

(
KX(ψ = 0) ∂αψ(1)

)
= 0 , (2.50)

while the backreaction of the scalar field onto the metric through the Einstein equations
is subleading. From this equation, one can conclude that ψ(1) = 0. The procedure can be
carried out iteratively for successive orders in ε. In more detail, at O(εn) one has

∇α

(
KX(ψ =0) ∂αψ(n)

)
+ C(ψ(1), . . . , ψ(n−1)) = 0 , (2.51)

where the corrections C vanish, as lower order corrections are zero.
Therefore, we can conclude that adding the Galileon term (2.46) in the action does not

spoil the no-hair theorem proven for K-essence, as long as the coupling is perturbative.
This holds straightforwardly also for the higher order Galileon interactions in the action
(2.1).

The situation is different if we introduce, e.g., a coupling of the form

∆L√−g = α f(ψ)I (2.52)

where I is a curvature invariant. The only invariants which can be relevant are the Ricci
and the mth order Euler density, where m = d/2, d being the dimension of the manifold.
The former is zero on the trivial K-essence solution, and therefore it can induce deviations
from that solution only at order α2. However, the latter is generally nonzero, even in
vacuum, and can yield nontrivial contributions to the perturbative calculation. In d = 4,
the m = 2 Euler density is the Gauss–Bonnet invariant G. In the following we will focus
for simplicity on the case I = G in d = 4, but the argument in a generic higher dimensional
manifold would be completely analogous.

The contribution to the scalar equation is

δ

δψ

(
∆L√−g

)
= αGBfψ G . (2.53)

11This can be found heuristically by equating the kinetic and Galileon energies, and estimating the
derivatives with the Hubble rate ∂ ∼ H.
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One can rescale the coordinates as done earlier, and define the dimensionless parameter
α̃ = αGB(M

2
Pl/M)2. Carrying out the perturbative expansion with this parameter, one can

see that the contribution to the equation of motion can be O(α̃) if fψ = ∂f/∂ψ = O(α̃0).
This is the case for shift-symmetric and dilatonic scalar-Gauss–Bonnet coupling functions,
i.e.,

fShift-Symm ∼ ψ , fDilatonic ∼ eψ . (2.54)

In these cases, one finds perturbative corrections to the K-essence solution ψ = 0 at all
orders. For instance, at first order, one has

∇α

(
KX(ψ = 0) ∂αψ(1)

)
= −G . (2.55)

This result is not surprising, as these coupling functions do not admit GR solutions, and
the formation of a scalar hair is already evident at the perturbative level.

There are, however, examples of coupling functions f(ψ) admitting GR solutions, along-
side “scalarized” ones [226, 227, 255, 256]. Consider for instance BHs in scalar-GB gravity,
with f(ψ) = ψ2 and a canonical kinetic term K(X) = X. The scalar field obeys the
Klein-Gordon equation (

2+m2
eff

)
ψ = 0 , (2.56)

with the effective mass m2
eff = 2αGB G. The trivial GR configuration ψ = 0 is clearly

a solution, but nontrivial solutions can also exist. In fact, G > 0 for the Schwarzschild
solution and G < 0 for the Kerr one (at large spins). Therefore, depending on the sign of
αGB, the effective mass can become tachyonic, in which case the GR solution is unstable.
The instability’s endpoint is a scalarized nontrivial solution.

This solution is missed by our perturbative argument, which formally does apply to a
theory with f(ψ) = ψ2 and K(X) = X (predicting incorrectly that scalarized solutions
should not exist). The reason is that the scalarized solution is a nonperturbative correc-
tion of the GR one, i.e. it lives on a different branch of solutions. For this reason, our
perturbative proof, which assumes a small deviation from the K-essence solution, does not
apply.

Another important caveat is that BHs can dynamically evolve away from the GR con-
figuration (even in the presence of no-hair theorems). This is the case for instance for
a nontachyonic mass term (produced by a quadratic coupling to the Gauss–Bonnet in-
variant, or simply by a scalar potential). For rotating BHs, a mass term can give rise to
superradiant instabilities, i.e. highly spinning GR solutions which, while allowed by no-hair
theorems, may be unstable to superradiance [150, 257–260].

2.6 Conclusions

We proved a no-hair theorem for stationary, asymptotically flat BHs in shift-symmetric
scalar-tensor theories. The theorem prevents the BHs from developing a scalar charge,
defined as the coefficient of the 1/r falloff at large distances in the scalar profile. The proof
is based on six fundamental assumptions and holds for general shift-symmetric theories,
including Horndeski and DHOST theories as particular examples.12 Our result extends
the no-hair theorem of Ref. [219] to rotating BHs , as well as the results of Refs. [214, 231,
235], which apply only to theories with at most single derivatives acting on the scalar field.

12In the simplest case of a massless, noninteracting scalar field, note that the theorem is consistent with
the symmetry arguments of [261, 262].
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Under the assumption that the higher-derivative operators in the theory provide only
perturbative corrections to the solution, we showed, following [214], that there exists a
stronger version of the theorem forbidding not only the scalar charge, but any nontrivial
scalar profile.

Moreover, we discussed loopholes to the theorem, revisiting, in the context of rotating
BHs, some known results in the literature. In particular, we discussed the case of a scalar
field with linear dependence in time, and a coupling to the GB operator.

In addition, we showed how our no-hair theorem can be extended to higher spacetime
dimensions in the class of Myers-Perry BHs with one or multiple spins. In this context,
it would be interesting to study to what extent the theorem applies also to rotating BHs
with nontrivial topologies, which exist in d > 4 [236]. We leave this research direction for
future work.

We conclude the discussion with a few remarks about the phenomenological implica-
tions of this result. Our theorem, unlike those of Refs. [214, 219, 231, 235], does not exclude
possible subleading falloff terms in the scalar profile, unless we assume perturbative cou-
plings. However, the absence of a scalar charge automatically proves that no deviations
from GR are to be expected in the GW fluxes at leading (i.e., dipole) order [263].

Furthermore, given the structure of Eq. (2.41), it would be interesting to find models
of hairy BHs with linear time growth yielding a vanishing horizon term. In this case, the
scalar charge would be independent of the geometry, and it would allow one to constrain
the coupling g3, assuming a growth rate for the scalar field at infinity comparable to the
Hubble rate.

32



Part II

Testing gravity through black hole
oscillations
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Chapter 3

Black hole perturbation theory

3.1 Introduction

The second part of the present work will be mainly devoted to the study of the BH
ringdown, namely the final stage of the GW signal emitted by a binary system of coalescing
BHs. As the name suggests, the remnant BH, rings for a short time after the merger, as
it settles down to an equilibrium configuration [264–269]. More specifically, the duration
of this process scales inversely with the mass of the BH.

The ringdown signal is particularly suited for a certain class of tests of gravity. In
particular, its sensitivity to the background BH spacetime geometry renders it the best
tool to perform tests of the no-hair conjecture discussed in the previous chapter, or, more
generally, to probe the spacetime geometry close to EH [270].

In a technical perspective, the physics of the ringdown can be well understood within
the framework of BH perturbation theory (BHPT) [271–276], that we are going to introduce
in this chapter. In a nutshell, BHPT provides relatively simple equations that can usually
be solved in the frequency domain as eigenvalue problems. The general solution appears
as an infinite sum of quasinormal modes (QNMs), that are shaped as damped sinusoids in
the time domain [264, 265, 277]. This scheme has already been proven to provide a solid
analytical procedure and yield accurate predictions [40, 103, 278–280]. At the same time,
the ringdown can also be simulated numerically, both with full-fledged numerical relativity
(NR) simulations or integrating in the time domain the equations of BHPT [281–284].
Some physical problems related to the BH ringdown require, in fact, a critical comparison
between these two kinds of analysis 1

The spectrum of the ringdown in the frequency domain is quite rich already at the linear
level of BHPT [286]. Since QNMs are characterized by different damping times, in practice,
we are only able to detect a subset of them, namely those that are longer-lived. In principle,
the detection of shorter lived modes, i.e. overtone modes, could be possible with future
observations, if one considers the signal close enough to the start of the ringdown, usually
defined at the peak of GW luminosity [287–289]. However, despite exhibiting a higher
signal-to-noise (SNR) ratio, the early part of the ringdown signal is expected to contain
contributions beyond linear perturbation theory [289–292]. Some important results have
already been obtained in the context of second-order BHPT and quadratic QNMs [293–
297]. However, the relevance of these contributions, as well as the proper initial time of
the perturbative regime, is not yet fully understood. A particularly intriguing higher-order
effect is the evolution of the BH mass due to gravitational radiation absorption. The

1See, for instance, the question of QNM spectral (in)stability [285], that we will not cover here.
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impact of this phenomenon on the QNM spectrum has been explored in [298–300], but its
full implications are still under debate.

At late times, the ringdown signal is expected to be dominated by a non-QNM, power
law contribution [301–305]. This effect is usually called late-time tail. While in the past this
tails was deemed irrelevant for observational purposes, recent work showed that they can
be enhanced by several orders of magnitude in eccentric systems [305, 306]. Thus, having
access to high-SNR detections raises the question of the detectability of these terms and
the importance of including them in the data analysis templates.

Moreover, as discussed in Chapter 1 and 2, some theories of gravity beyond GR, such
as HDG or some specific theories within ST gravity, predict BH solutions that are different
from those predicted by GR [81, 222–224, 256]. Although deviations from GR are already
tightly constrained [103], it possible, in principle, that their detection will be possible with
future GW observations [307, 308]. For this reason, it is crucial to understand how BHPT
equations get modified beyond GR.

Finally, in addition to a detailed discussion on the ringdown, we will also briefly address
the tidal response of BHs. While the tidal response of a compact object is typically relevant
in the inspiral phase, rather than during the post-merger relaxation process [309], both
problems involve solving linearized perturbation equations around a background space-
time [310–312], and thus share important structural similarities. In particular, the tidal
response of a BH can be computed from the static limit of BHPT master equations [238].
Remarkably, in GR, stationary and asymptotically flat BHs have vanishing tidal deforma-
bility [238, 313, 314], while introducing dynamical or environmental effects, or considering
a more general theory of gravitation could result in a nontrivial tidal response [300, 315,
316]. In conclusion, the study of tidal deformations, provides complementary insights into
the near-horizon geometry and the fundamental nature of compact objects [317].

In the next chapters, we are going to directly address some of the aforementioned open
problems. In Chapter 4, based on [300], we are going to discuss the impact of a dynamical
BH mass evolution on the QNM spectrum and on the tidal response. In Chapter 5,
based on [318], we are going to describe a parametrized framework for studying QNMs of
rotating BHs beyond GR. Finally, in Chapter 6, based on [319], we will address the more
observation-related problem of systematic biases in the ringdown analysis. However, before
turning to these applications, we shall first, in this chapter, collect the mathematical tools
for the description of BH perturbations. We will start in Sec. 3.2 with the derivation of
the linear perturbation equations in spherical symmetry, the well-known Regge-Wheeler
and Zerilli equations. We will then describe their solutions in Sec. 3.3 and the nonlinear
corrections in Sec. 3.4. Then, we will outline the generalization to a rotating background
case (Teukolsky equation) in Sec. 3.5, and discuss how perturbation equations can be
modified in alternative theories of gravity in Sec. 3.6. Finally, we will review the application
of BHPT to the computation of tidal response of BHs in Sec. 3.7. From this chapter on,
we will adopt the more convenient choice of geometric units c = G = 1, instead of the
natural units (c= ℏ = 1) employed in Chapter 1 and 2.

3.2 Regge-Wheeler and Zerilli equations

Let us consider a spherically symmetric metric gBµν and perturb it. Due to the symmetry
of the system, it is convenient to work in a frame of spherical polar coordinates (t, r, θ, ϕ).
In particular, we will now specialize to the only vacuum static solution in GR, i.e. the
Schwarzschild metric.
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htt htr htθ htφ

∗ hrr hrθ hrφ

∗ ∗ hθθ hθφ

∗ ∗ ∗ hφφ

Figure 3.1: Transformation properties of the metric perturba-
tions under rotations around the origin. The red components
transform as scalars, the purple ones as vectors, whereas the
blue block transforms as a rank-2 tensor. The ∗ symbol indi-
cates symmetric components.

Schematically, the perturbation procedure can be represented as

gBµν → gBµν + ϵhµν +O
(
ϵ2
)
, (3.1)

with ϵ being a dimensionless book-keeping parameter that we consider to be ≪ 1. Let
us now restrict our analysis to the first perturbative order and have a closer look at the
geometry of the perturbation. Our purpose is to separate the dependence on the different
coordinates within hµν(t, r, θ, ϕ). First of all, let us consider the two-dimensional manifold,
defined by t = const, r = const. When performing a rotation of the frame around the
origin, the components of hµν have different transformation properties. In particular, the
components htt, htr, hrr transform as scalars, (htθ, htϕ) and (htθ, htϕ) transform as vectors,
while the remaining block transforms as a rank-2 tensor on the Euclidian two-sphere [271–
274]. This structure is depicted in Fig 3.1. In light of this geometrical properties, we can
expand the metric components accordingly, introducing an orthonormal basis of generalized
spherical harmonics. In practice, one has [271]

hµν =
∑

ℓm

hℓmµν , (3.2)

where ℓ and m are the two angular momentum "quantum" numbers. Note that for a
gravitational perturbation ℓ ≥ 2, as the lowest-order term in a multipolar expansion is given
by the quadrupole [7, 310]. Let us now consider in more detail the different components.
A scalar mode can only have the structure ∼ Yℓm(θ, ϕ), while a vector can be generally
decomposed in two different modes behaving like [271]

vaP ∼ ∂aYℓm(θ, ϕ) ,

vaA ∼ εb
a∂bYℓm(θ, ϕ) ,

(3.3)

where we introduced the Levi-Civita tensor on the two-dimensional Euclidian sphere ε.
Moreover, a generic tensor mode can be decomposed into a basis given by [271]

tabP ∼ ∇a∇bYℓm(θ, ϕ) ,

tabS ∼ γabYℓm(θ, ϕ) ,

tabA ∼ 1

2

(
εc

atcbP + εc
btcaP

)
,

(3.4)

where γij is the metric on the two-sphere divided by r2.
The terms described above can be further classified according with their transformation

properties under a parity transformation, namely θ → π − θ , ϕ → ϕ + π [271, 272]. The
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scalar modes, along with vaP , tabP and tabS , pick a factor (−1)ℓ, and are called polar, or even.
In contrast, vaA and tabA pick a factor (−1)ℓ+1, and are called axial, or odd. In spherical
symmetry, the two classes of perturbations do not interact with the each other, and it is
therefore possible to separate hℓmµν in two independent sectors, namely [271]

hℓmµν = hℓm ,odd
µν + hℓm ,even

µν . (3.5)

The most general form for the axial part reads

hℓm ,odd
µν =



0 0 − h0
sin θ

∂ϕ h0 sin θ ∂θ

0 0 − h1
sin θ

∂ϕ h1 sin θ ∂θ

∗ ∗ h2

(
1

sin θ
∂θ∂ϕ −

cos θ

sin2 θ
∂ϕ

)
1
2h2

(
1

sin θ
∂θ∂ϕ − sin θ ∂θ∂θ + cos θ ∂θ

)

∗ ∗ ∗ −h2(t, r)
(
sin θ ∂θ∂ϕ − cos θ ∂ϕ

)




× Yℓm(θ, ϕ) ,

(3.6)

while the most general expression for the polar part is

hℓm ,even
µν =



(
1− rs

r

)
H0 H1 H0 ∂θ H0 ∂ϕ

H1

(
1− rs

r

)−1

H2 H1 ∂θ H1 ∂ϕ

∗ ∗ r2 (k +G∂θ∂θ) r2G

(
∂θ∂ϕ −

cos θ

sin θ
∂ϕ

)

∗ ∗ ∗ r2
(
k sin2 θ +G

(
∂ϕ∂ϕ + sin θ cos θ∂θ

))




× Yℓm(θ, ϕ) ,

(3.7)

where the symbol ∗ indicates symmetric components. Notice that the degrees of freedom
appearing in the metric perturbations depend on (t, r), although we did not explicitly indi-
cate this, in order to keep the notation compact. For the same reason, we also suppressed
the subscripts ℓm.

The expressions above can be further simplified by exploiting the gauge freedom enjoyed
by metric perturbations. In more detail, performing an infinitesimal diffeomorphism xµ →
xµ + ξµ, the metric perturbation transforms as [106–108, 271]

hµν → hµν −
(
∇µξν +∇νξµ

)
, (3.8)

where ∇µ indicates covariant differentiation. The vector ξµ can also be split in an axial
and a polar part, which read

ξodd
µ =

(
0, 0, ξV

1

sin θ
∂ϕ, − sin θ ξV ∂θ

)
Yℓm(θ, ϕ) ,

ξeven
µ =

(
−
(
1− rs

r

)
ξ0 ,

(
1− rs

r

)−1

ξ1 , ξS ∂θ, ξS
1

sin2 θ
∂ϕ

)
Yℓm(θ, ϕ) .

(3.9)

With an appropriate choice of the degrees of freedom ξ0, ξ1, ξS and ξV , it is possible
to construct a physically equivalent metric perturbation displaying a smaller number of
degrees of freedom. A possible gauge choice, results in h2(t, r) = H0(t, r) = k(t, r) =
G(t, r) = 0 2.

2Note that this is slightly different from the Regge-Wheeler gauge, in which the degree of freedom H1

is eliminated, while k is kept. The two choices are anyway completely equivalent.
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Expanding the Einstein-Hilbert action at quadratic order in the perturbations, with
the gauge choice described above, one obtains a quadratic action for the remaining degrees
of freedom, that can be split in an axial and a polar part [320]. Schematically, we have

Squad = Sodd[h0, h1] + Seven[H0, H1, H2,H1] . (3.10)

Both terms in Eq. (3.10), due to the orthonormality of our polar decomposition, can be
expressed in the form

Si =
1

16π

∑

ℓ,m

∑

ℓ′,m′

∫
dΩYℓm(θ, ϕ)Y

∗
ℓ′m′(θ, ϕ) ℓ(ℓ+ 1)Sℓℓ′i =

1

16π

∑

ℓ

ℓ(ℓ+ 1)Sℓi , (3.11)

where we introduced the reduced actions Sℓi , which in spherical symmetry encode all the
relevant dynamics. In the second passage we used the orthonormality condition for spher-
ical harmonics and the fact that, due to spherical symmetry, there is no dependence on m
in the reduced action. For the axial sector one has

Sℓodd[h0, h1] =
∫

dt dr

[
(h′0)

2 + ḣ21 + 2ḣ1

(
2h0
r

− h′0

)

+
h20

r2
(
1− rs

r

)
(
ℓ(ℓ+ 1)− 2rs

r

)
+ h21

(
2− ℓ(ℓ+ 1)

r2

)(
1− rs

r

)]
.

(3.12)

The two degrees of freedom appearing in the reduced action are redundant, and this can
be viewed through the introduction of an auxiliary degree of freedom σ. The action can
be re-expressed as

Sℓodd[h0, h1] =
∫

dtdr

[
(ℓ(ℓ+ 1)− 2)h20
r2
(
1− rs

r

) − (ℓ(ℓ+ 1)− 2)
(
1− rs

r

)
h21

r2

−σ
2

r2
+

2σ

r

(
2h0
r2

+ ḣ1 − h′0

)]
.

(3.13)

Varying Eq. (3.13) with respect to h0(t, r) and h1(t, r), one obtains two constraints that
allow to integrate them out. Namely

h0 = −
(
1− rs

r

)
σ + rσ′

ℓ(ℓ+ 1)− 2
,

h1 = −
(
1− rs

r

)−1 rσ̇

ℓ(ℓ+ 1)− 2
.

(3.14)

With the redefinition σ̃ = σ/
√
ℓ(ℓ+ 1)/2− 1, one has

Sℓodd[σ̃] =
1

2

∫
dtdr

[
˙̃σ2(

1− rs
r

) −
(
1− rs

r

)
(σ̃′)2 − VRW(r)σ̃2

]
, (3.15)

where we defined the Regge-Wheeler potential

VRW(r) =
ℓ(ℓ+ 1)

r2
− rs
r3
. (3.16)

Finally, varying Eq. (3.13) with respect to σ̃, one gets the Regge-Wheeler equation [271]
(
− ∂2

∂t2
+

∂2

∂r2∗
−
(
1− rs

r

)
VRW(r)

)
σ̃(t, r) = 0 . (3.17)

39



The coordinate r∗ =
∫
dr (1− rs/r)

−1 is usually called tortoise coordinate, and sends the
location of the EH to −∞.

A similar procedure can be applied to the polar sector. Upon integration by parts, the
reduced action can be expressed as

Sℓeven[h0, h1] =
∫

dt dr

[
H2

1 +
H2

2

ℓ(1 + ℓ)
+

2
(
1− rs

2r

)
H0H1

r
−

2r
(
1− 3rs

2r

)
H2H1

r2

+
2
(
1− rs

r

)
H2

1

r2
− H2

(
(2 + ℓ(ℓ+ 1))H0 +

rs
2 H

′
0

)

ℓ(1 + ℓ)
−

2r
(
1− 3rs

4r

)
H0H

′
2

ℓ(1 + ℓ)

+
2
(
1− rs

r

)
H1H

′
2

r2
+ 2

(
1− rs

r

)
H0H′

1 +
2
(
1− rs

r

)
H2H′

1

r2

+ 2H1

(
2rH ′

2

ℓ(1 + ℓ)
− Ḣ1

)
+ Ḣ2

1

]
.

(3.18)

As it is evident, the function H1(t, r) only appears algebraically, and can be therefore easily
integrated out through the constraint

H1 = − 2r

ℓ(ℓ+ 1)
Ḣ2 + Ḣ1 . (3.19)

It is also convenient to redefine the function H1(t, r) as

H1 =
r

ℓ(ℓ+ 1)
H2 +A . (3.20)

The reduced action now reads

Sℓeven[h0, h1] =
∫

dt dr

[
− (ℓ(ℓ+ 1)− 2) (1− rs

r )H
2
2

ℓ2 (1 + ℓ)2
+

2(1− rs
r )A2

r2

−
[
2(ℓ(ℓ+ 1)− 2)− (ℓ(ℓ+ 1)− 4) rsr

]
H2A

ℓ (1 + ℓ) r
+

4r Ḣ2 Ȧ
ℓ(1 + ℓ)

+H0

(
−r
[
(ℓ(ℓ+ 1)− 2) r + 3rs

]
H2 + ℓ(1 + ℓ)

[
(2r − rs)A+ 2r(r − rs)A′]

ℓ (1 + ℓ) r2

)]
.

(3.21)

The function H0 is now a Lagrangian multiplier, that yields the constraint

H2 =
2 ℓ(1 + ℓ)

((
1− rs

2r

) A
r +

(
1− rs

r

)
A′
)

ℓ(ℓ+ 1)− 2 + 3rs
r

. (3.22)

The resulting reduced action only includes the degree of freedom A(t, r). Moreover, one
can introduce the field redefinition

A =
1√
2

(√
ℓ(ℓ+ 1)

(
1− rs

r

)

ℓ(ℓ+ 1)− 2 + 3rs
r

)−1

Ã . (3.23)

The final action reads

Sℓeven[Ã] =
1

2

∫
dtdr




˙̃A2

(
1− rs

r

) −
(
1− rs

r

)
(Ã′)2 − VZ(r)Ã2


 , (3.24)
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Figure 3.2: Potentials V (+) (continuous line) and V (−) (dashed line), for ℓ = 2, 3, 4. Notice that, with
increasing ℓ, the difference between the two potential decreases.

where we introduced the Zerilli potential

VZ =
2 (ℓ(ℓ+ 1)− 2)2 (ℓ(ℓ+ 1) + 1)

3 r2
(
ℓ(ℓ+ 1)− 2 + 3rs

r

)2 +
(ℓ− 1)(ℓ+ 2)

3 r2
+
rs
r3
. (3.25)

Notice that in the eikonal limit, meaning ℓ→ ∞, the Regge-Wheeler and Zerilli potentials
become the same, namely VRW, VZ → ℓ2/r2.

The variation of Eq. (3.24) leads to the Zerilli equation [272]
(
− ∂2

∂t2
+

∂2

∂r2∗
−
(
1− rs

r

)
VZ(r)

)
Ã(t, r) = 0 . (3.26)

The Regge-Wheeler and Zerilli equations are separable in time and radial coordinate.
The time-dependent part, has the general harmonic behavior ∼ exp(−iωt). Hence, the
two equations can be rewritten in the Schrödinger form

(
− d2

dr2∗
+ V (±)

)
Ψ(±) = ω2Ψ(±) , (3.27)

where Ψ(+) = σ̃, Ψ(−) = Ã, and V (±) = (1 − rs/r)VRW,Z. The two potentials are repre-
sented in Fig. 3.2 for different values of ℓ.

While the dynamics of the two sectors in spherical symmetry is independent, the master
equations are connected by a very peculiar duality [230, 321].

In fact, the potentials V (±) can be derived by a single superpotential W given by

W = −(ℓ− 1) ℓ (ℓ+ 1) (ℓ+ 2)

6 rs
−

3 rs

(
1− rs

r

)

r2
(
ℓ(ℓ+ 1)− 2 +

3rs
r

) . (3.28)
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The transformation that generates the axial and polar potentials is given by

V (±) =W 2 ± dWS

dr∗
+ κ (3.29)

with the constant

κ = −(ℓ− 1)2 (ℓ+ 2)2 ℓ2 (ℓ+ 1)2

36 r2s
. (3.30)

This intriguing property of the Regge-Wheeler and Zerilli equation is usually referred to
as Chandrasekhar symmetry [321]. The corresponding potentials can be formally viewed
as "partners" in the language of supersymmetric quantum mechanics [322–324]. In prac-
tice, this means that introducing two Hamiltonians H(±) defined as the left-hand side of
Eq. (3.27), one can express them as

H(+) = A†A+ κ , H(−) = AA† + κ , (3.31)

with the operators

A = − d2

dr2∗
+W A† =

d2

dr2∗
+W . (3.32)

The main consequence of Chandrasekhar symmetry, is that the two Eqs. (3.27), while being
different, have the same eigenvalue spectrum. It is important to stress, that this property
is rather delicate and only holds for vacuum GR in four spacetime dimensions, while even
slight deformations of one of the two potential can generally break it.

In a different, but equivalent perspective, the Chandrasekhar symmetry can be viewed
as a property of the two wave-functions Ψ(+) and Ψ(−), rather than a symmetry of the
potentials. In GR, the wave-functions are, in fact, related by a special class of Darboux
transformations [325–327]. In more detail, one has

Ψ(+) =

(
d

dr∗
+ F(r∗)

)
Ψ(−) , (3.33)

with

F(r∗) =

d

dr∗

(
V (+) + V (−)

)

2
(
V (+) − V (−)

) . (3.34)

This relation reflects the fact that axial and polar perturbations carry the same dynamical
information, highlighting a sort of redundancy in the description of gravitational pertur-
bations on static backgrounds.

We conclude this section mentioning that the equations for scalar and axial/polar
electromagnetic perturbations on the Schwarzschild background can be easily derived from
the Klein-Gordon and Maxwell equations. The result can be cast in the same form of
Eq. (3.17) and (3.26) just replacing the potential with

Vscalar =
ℓ(ℓ+ 1)

r2
+
rs
r3
,

Ve.m,axial = Ve.m,polar =
ℓ(ℓ+ 1)

r2
.

(3.35)

Notice that all the potentials become the same in the eikonal limit.
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3.3 Quasinormal modes

In this section, we discuss the solutions to the Regge-Wheeler and Zerilli equations. Just
like for the well-known Schrödinger equation with a potential well, the boundary conditions
that one imposes, select a discrete (infinite) set of eigenvalues. In a compact system, like
an oscillating string, or an infinite potential well in quantum mechanics, the eigenfunctions
corresponding to this discrete spectrum are called normal modes, and are purely oscillat-
ing. However, consider now the Schrödinger equation in three spatial dimensions with a
potential well localized in a finite region around one point, and falling off to zero far way
from it. In this case, one can look for a different class of solutions, that behave like outgo-
ing spherical waves far away from the well. In the language of quantum mechanics, these
states are typically known as quasistationary [328]. The eigenvalues of the system in this
case are typically complex due to the complexity of the boundary condition at infinity. The
imaginary part is related to the inverse of the lifetime of the state. Moreover, the spectrum
is not even strictly discrete, but rather quasidiscrete, as it presents broadened energy levels
with a width that is related to the imaginary part of the eigenvalues. In other words, the
eigenfunctions of quasistationary states behave as damped sinusoids in the time domain,
and as Lorentzian functions in the frequency (or energy) domain. This case is similar to
the BH perturbations described by Eq. (3.27), with two main differences. The first is that
the BH perturbation dissipates not only infinitely far away but also into the BH horizon.
The second difference regards the nature of the potential. In fact, the Regge-Wheeler and
Zerilli potentials appear as barriers located around the light-ring (∼ 3rs), and decaying
away from it. This kind of configuration clearly does not admit bound or quasibound
states, but rather waves that are scattered off the potential and propagate both towards
infinity and into the BH horizon.

This picture can be naturally translated into the following set of boundary conditions

Ψ(t, r∗) ∼ e−iω(t−r∗) for r∗ → +∞
Ψ(t, r∗) ∼ e−iω(t+r∗) for r∗ → −∞ .

(3.36)

However, when dealing with a real initial value problem, this kind of analysis in Fourier
space presents some issues. First of all, the selected resonant modes do not form a complete
set, and the corresponding wave-functions are unbound both at the horizon and at spatial
infinity. Secondly, the set the boundary conditions of Eq. (3.36) doeas not allow to dermine
a unique solution [301, 329].

3.3.1 The Green’s function approach

To try to solve the aforementioned problems, and to gain deeper insight into the physical
interpretation of QNMs, let us inspect the Regge-Wheeler/Zerilli equation from a slightly
different perspective. As we already discussed, the two master equations have the general
form (

− ∂2

∂t2
+

∂2

∂r2∗
+ V (r∗)

)
Ψ(t, r∗) = 0 . (3.37)

Let us introduce the Laplace transform of Ψ(t, r∗), defined as

Ψ̂(s, r∗) =
∫ ∞

0
dt e−stΨ(t, r∗) . (3.38)

It is possible to show [329] that Ψ(t, r∗) is bounded everywhere if it has a compact support.
This guarantees that the Laplace transform exists and is analytic in the complex half-plane
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given by ℜ(s) > 0. Applying the transform to Eq. (3.37), we get
(
∂2

∂r2∗
− s2 − V (r∗)

)
Ψ̂(s, r∗) = J (s, r∗) , (3.39)

with the source term

J (t, r∗) = −
(
sΨ(t, r∗) +

∂Ψ(t, r∗)
∂t

)∣∣∣∣∣
t=0

, (3.40)

explicitly depending on the initial data. A general solution of Eq. (3.39) can be written in
terms of the Green’s function Ĝ(s, r∗, r′∗) as

Ψ̂(s, r∗) =
∫ ∞

−∞
dr′∗ Ĝ(s, r∗, r

′
∗)J (s, r∗) . (3.41)

The Green’s function can be constructed as

Ĝ(s, r∗, r′∗) =
1

W(s)

(
Θ(r∗ − r′∗)Ψ̂1(s, r

′
∗)Ψ̂2(s, r∗) + Θ(r′∗ − r∗)Ψ̂1(s, r∗)Ψ̂2(s, r

′
∗)
)
,

(3.42)
where Ψ̂1,2(s, r∗) are two linearly independent solutions of the homogeneous equation,
and Θ is the Heaviside step-function. In more detail, it is convenient to choose the two
independent solutions to the homeogeneous equation such that

Ψ̂1 ∼ e−sr∗ for r∗ → +∞
Ψ̂2 ∼ e+sr∗ for r∗ → −∞ .

(3.43)

On the opposite boundaries we have

Ψ̂1 ∼ a11(s)e
sr∗ + a12(s)e

−sr∗ for r∗ → −∞
Ψ̂2 ∼ a21(s)e

sr∗ + a22(s)e
−sr∗ for r∗ → +∞ .

(3.44)

Moreover, we defined the Wronskian

W(s) = Ψ̂1(s, r∗)
∂Ψ̂2(s, r∗)

∂r∗
− Ψ̂2(s, r∗)

∂Ψ̂1

∂r∗
(s, r∗) , (3.45)

which is conserved, i.e. independent of r∗. For this reason, we compute it at r∗ → ±∞
and the result must be the same. We obtain

W(s) = −2sa12(s) = −2sa21(s) , (3.46)

which yields a12(s) = a21(s).
Taking the non-homogeneous solution given by Eq. (3.41) and inverting the Laplace

transform, one gets

Ψ(t, r∗) =
∫ c+i∞

c−i∞

ds

2πi

∫ ∞

−∞
dr′∗ e

stG(s, r∗, r′∗)J (s, r′∗) , (3.47)

where c is an infinitesimal positive displacement, chosen in such a way that it is larger
than the real part of all singularities. Given the non-trivial structure of the integrand in
the complex plane, one should choose an appropriate contour Γ to perform the integration.
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Figure 3.3: Pictorial representation of the inte-
gration contour Γ in the complex s plane (blue
curve). The poles of the Green’s function are
represented as red crosses, while the branch-cut
along the negative real axis is represented with
the purple shaded line.

The integration contour is euristically depicted in Fig. 3.3. We note that a set of simple
poles – corresponding to the roots of the Wronskian – are present in the left-half plane,
while a branch-cut is running from the origin to Im(s) → −∞. The contour is chosen in
such a way to enclose the singularities and avoid the branch-cut, being then closed into
two quarters of circle at infinite distance from the origin.

Let us focus for a moment on the contribution to the integral coming from the poles.
Observe that W (s) = 0 precisely when the two independent solutions Ψ̂1 and Ψ̂2 become
linearly dependent — that is, when Ψ̂1 ∝ Ψ̂2. In this case, the full solution satisfies
purely outgoing boundary conditions at spatial infinity and purely ingoing at the horizon
simultaneously. By definition, these values of s correspond to the QNMs of the system.

Furthermore, if the potential in the wave equation is real, the QNM spectrum is sym-
metric under complex conjugation: that is, if Ψ̂(sQNM, r∗) is a QNM solution, then its
complex conjugate Ψ̂(s∗QNM, r∗) is also a valid solution of the same equation.

In order to simplify our treatment, let us assume that the source term J (s, r∗) has
compact support, namely that r∗ ∈

[
rin∗ , r

out
∗
]
, and let us study the solution for r∗ > rout∗ .

Then the time-domain solution reads

Ψ(t, r∗) =
1

2πi

∫ c+i∞

c−i∞
ds est

C2(s)

W(s)
Ψ̂1(s, r∗) , (3.48)

with

C2(s) =

∫ rout∗

rin∗

dr′∗ Ψ̂2(s, r
′
∗)J (s, r′∗) . (3.49)

In the proximity of a zero sn, the Wronskian can be expanded as

W(s) = W ′(sn)(s− sn) +O(s− sn)
2 . (3.50)
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Plugging this expression into Eq. (3.48), and applying the residue theorem, one obtains

Ψ(t, r∗) =
∑

n

esnt
C2(sn)

W ′(sn)
Ψ̂1(sn, r∗) . (3.51)

Let us now perform the complex rotation s = −iω, in order to connect this last result with
the more widely employed Fourier transform language. The QNM part of the time domain
signal can be expressed as

Ψ(t, r∗) = −
∫ +∞

−∞
dr′∗

[
∂

∂t
G(t, r∗, r′∗)Ψ(t = 0, r∗) +G(t, r∗, r′∗)

∂Ψ

∂t
(t = 0, r∗)

]
. (3.52)

Furthermore, we can assume that the initial data have a support far away from the BH,
i.e. rin∗ ≫ rs. In this approximation, the time-domain Green’s function reads

G(t, r∗, r′∗) ≃ Re

(∑

n

Bne
−iωn(t−r∗−r′∗)

)
. (3.53)

The constant Bn is called QNM excitation factor and reads

Bn ≡ −
(
ω

d

dω
a21(−iω)

)−1

a22(−iω) |ω=ωn . (3.54)

It is worth noticing that the amplitude of a QNM is roughly given by the product of an
excitation factor, that can be fully predicted in the framework of BHPT, and an initial
data term. The latter contribution, unlike the excitation factor, is not only dependent on
the geometry of the BH spacetime, but carries information about the process that caused
the BH ringing. In a merger of compact objects leading to the formation of a ringing BH,
the initial data depend on the physical properties of the progenitors. As we will discuss in
Chapter 6, in a binary BH merger, the relative contribution from different QNMs to the
ringdown signal is strongly affected by the masses and spins of the two merging bodies.
As BHPT is not able to fully determine the amplitude of linear QNMs, one has typically
to resort to numerical simulations.

Besides the contribution from the poles of the Green’s function, one also has to consider
the contribution coming from the branch-cut and from the arcs at infinity. It can be shown
that the former yields a power-law tail in the time-domain signal [301, 329]. In particular,
the tail signal goes as ∼ t−2ℓ−3 for an observer at t → ∞ and fixed r∗, while it falls off
as ∼ (t − r∗)−ℓ−2 when observed at future null infinity, i.e. when t → ∞ at fixed t/r∗.
This result can be derived analytically, and is in good agreement with the time-domain
numerical integration of the Regge-Wheeler and Zerilli equations. In particular, this part
of the ringdown signal dominates after QNM have faded away. The presence of a power-law
tail appears to be related to the back-scattering of waves off the potential at large distance
by the compact object. On the other hand, it seems to be completely independent of
the existence of a horizon, and is absent for potentials that decay exponentially at large
distance.

Finally, the last contribution to the ringdown time-domain signal, deriving from the
arcs at infinity in the left half-complex s plane, is related to the high-frequency components
of the initial perturbation, which propagate without "seeing" the potential barrier.

The discussion above clarifies the meaning of non-completeness of the QNMs, as they
only reconstruct a part of the full ringdown signal. However, after the merger, in the
regime in which BHPT theory is valid, and for a parametrically large time interval, QNMs
dominate the signal and constitute a sufficient approximation of the full solution.
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3.3.2 WKB approximation and other methods

To conclude this section, we provide a short introduction to the practical computation
of QNMs. To this purpose, we start showing an analytical procedure, due to Schutz
and Will [277], which is inspired by the well-known Wentzel-Kramers-Brillouin (WKB)
approximation in quantum mechanics [330–332]. Let us express Eq. (3.27) in a slightly
different form, namely (

d2

dr2∗
+Q(r∗)

)
Ψ(r∗) = 0 , (3.55)

where we consider a generic perturbation sector ± and removed the superscripts from the
potential and the wave-function. We also defined Q(r∗) ≡ ω2 − V (r∗).

The general idea is that Eq. (3.55) can be solved in a limit of slowly-varying potential.
It is instructive to factor out a term ℓ2 from Q(r∗), as Q(r∗) = ℓ2Q̃(r∗). In this way,
Eq. (3.55) takes the schematic form

ℓ−2Ψ′′ + Q̃Ψ = 0 . (3.56)

Notice that if we consider the large ℓ limit, corresponding to the geometric optics regime,
we are dealing with a singular perturbation theory problem, in the sense that the order
of the differential equation we are solving changes in the limit in which the expansion
parameter ℓ−1 → 0.

Consider now the following ansatz for the wave-function

Ψ(x∗) = A(r∗) exp


 i

ϵ

∞∑

i

ϵiS(r∗)(i)


 , (3.57)

introducing the book-keeping parameter ϵ. Notice this should not be confused with the
expansion parameters controlling the order of metric perturbations. Plugging this ansatz
into the differential equation we get

1

ℓ2ϵ2
(S′

0)
2 +

2

ℓ2ϵ
(S′

1S
′
0 + S′′

0 ) + · · ·+ Q̃ = 0 , (3.58)

where the dots represent higher-order terms in the double expansion (ℓ−1, ϵ). At this point
we can identify ℓ−1 = ϵ and compare similar terms. At leading order, we get the eikonal
equation

(S′
0)

2 + Q̃ = 0 , (3.59)

which is solved by S0 ∼ exp

(
±i
∫
dr′∗

√
Q̃(r′∗)

)
. At the successive order, we have instead

the so-called transport equation
2S′

0S
′
1 + S′′

0 = 0 , (3.60)

solved by S1 = −(1/4) lnQ(r∗), modulo an integration constant. Putting everything to-
gether, one gets the leading order WKB solution

Ψ ∼ Q−1/4 exp

(
±i
∫

dr∗
√
Q(r∗)

)
. (3.61)

Let us now split the domain of r∗ in three regions I, II, III (Fig. 3.4), divided by the
matching points r−∗ and r+∗ . In the two external regions I and III, the wave-function is
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Figure 3.4: Three regions of the domain of the Schrödinger potential. Region I and III represent the regime
in which the WKB solution holds.

described by the WKB solution of Eq. (3.61), choosing the appropriate QNM boundary
conditions

ΨI ≃ Q(r∗)−1/4 exp

(
±i
∫ r∗

r−∗

dr′∗
√
Q(r′∗)

)

ΨIII ≃ Q(r∗)−1/4 exp

(
±i
∫ r+∗

r∗

dr′∗
√
Q(r′∗)

)
.

(3.62)

In the intermediate region II, if the turning points are closely spaced, i.e. (−Q(r∗))max ≪
|Q(±∞)|, we can use the following quadratic approximation for the potential

Q(x) = Q0 +
1

2
Q′′

0(r∗ − r̄∗)2 +O(r∗ − r̄∗)3 , (3.63)

where r̄∗ corresponds to the location of the potential minimum, and Q0 ≡ Q(r̄∗) < 0,
Q′′

0 ≡ d2Q/dr2∗ |r̄∗ > 0.
Eq. (3.55) can be cast in the more convenient form


 d2

dy2
+

(
ν +

1

2
− y2

4

)
Ψ(y) = 0 , (3.64)

where we introduced

y ≡ (2Q′′
0)

1/4eiπ/4(r∗ − r̄∗) , ν +
1

2
≡ − iQ0√

2Q′′
0

. (3.65)

Eq. (3.65), also known as Weber equation [333], admits the general analytic solution Ψ(y) =
ApDν(y)+BpD−ν−1(iy), where Ap andBp are constant coefficients andDν(y) is a parabolic
cylinder function. The solution has the following asymptotic expansion for r ≫ r+∗

Ψ(r∗) ≃Bpe−3πi(ν+1)/4(2Q′′
0)

−(ν+1)/4(r∗ − r̄∗)−ν−1 exp

(
i

2

√
Q′′
o

2
(r∗ − r̄∗)2

)

+

(
Ap +Bp

√
2e−πiν

Γ(ν + 1)

)
eπiν/4(2Q′′

0)
ν/4(r∗ − r̄∗)ν×

× exp

(
− i

2

√
Q′′
o

2
(r∗ − r̄∗)2

)
,

(3.66)
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Figure 3.5: QNM spectrum of the Schwarzschild BH in the complex ω plane. Different colors indicate
different values of ℓ. Moving upwards, for the same ℓ, the different points represent the eigenvalues for
increasing overtone number, from n = 0, to n = 8. Notice how the increase in ℓ produces an increase in
the oscillation frequency, while the increase in the overtone number produces a stronger damping.

while for r ≪ r−∗ one has

Ψ(r∗) ≃Ape−3πiν/4(2Q′′
0)
ν/4(r∗ − r̄∗)ν exp

(
− i

2

√
Q′′
o

2
(r∗ − r̄∗)2

)

+

(
Bp − iAp

√
2e−πiν

Γ(−ν)

)
eπi(ν+1)/4(2Q′′

0)
−(ν+1)/4(r∗ − r̄∗)−ν−1×

× exp

(
i

2

√
Q′′
o

2
(r∗ − r̄∗)2

)
,

(3.67)

where Γ(x) is the Euler Gamma function. Imposing that these asymptotic expansions
match with the WKB solutions in region I and III, one gets the conditions Bp = 0 and
Γ(−ν) = ∞. In particular, the latter condition implies that ν = n, with n being a positive
integer. Together with Eq. (3.65), this constraint leads to a sort of Bohr-Sommerfeld
quantization condition, namely

Q0√
2Q′′

0

= i

(
n+

1

2

)
. (3.68)

Since the left-hand side of Eq. (3.68) depends on the frequency, the relation can be inverted
to obtain the discrete QNM spectrum. At leading order, for Schwarzschild, the spectrum
reads

rs ωnℓ ≃
2√
3 3

[(
ℓ+

1

2

)
− i

(
n+

1

2

)]
. (3.69)

This procedure can be carried on to higher accuracy [334, 335]. Notice that the real
part of the QNM frequency grows linearly with the multipole order, while the imaginary
part becomes more and more negative as we increase the integer n. This corresponds to
an increasingly severe suppression in the time domain. The integer n is generally called
overtone number.
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It is important to stress that the result of Eq. (3.69) is more accurate for large ℓ, due
to the connection between WKB expansion and the geometric optics regime.

In summary, the WKB/eikonal approximation, being fully analytical, allows for a nice
visualization of the dependence of the QNM frequencies on the different parameters. How-
ever, several more accurate semi-analytical and numerical methods have been developed
for the computation of the QNM spectrum. Some examples are inverted potential meth-
ods [336, 337], direct integration [338, 339], spectral and pseudo-spectral methods [340–
342], and continued-fraction (Leaver) method [286]. In this work, we extensively employed
the last one, due to the high degree of accuracy that it yields. We are going to describe it
in more detail in the next two chapters.

The spectrum of the Schwarzschild BH is represented in Fig. 3.5. The different colors
represent different values of ℓ, while the overtone number increases moving upwards. The
core features discussed in the WKB approximation, i.e. imaginary parts decreasing with
the overtone number and real parts increasing with the multipole order, are evident. Notice
also the mirror symmetry relating frequencies with positive and negative real part.

3.4 Nonlinear perturbation theory

Before finally delving into the generalization of the BHPT framework to rotating back-
grounds, we provide an euristic overview of BHPT and QNMs beyond linear order.

Let us first consider quadratic order in the metric perturbation, i.e.

gBµν → gBµν + ϵh(1)µν + ϵ2h(2)µν +O
(
ϵ3
)
. (3.70)

The Einstein equation at linear order in perturbations reads schematically [271–274]

G(1)
µν

[
h(1)µν

]
= 0 . (3.71)

Notice that the linearization of the Einstein equation is equivalent to the expansion of
the Einstein-Hilbert action up to quadratic order, that we previously employed for the
derivation of Regge-Wheeler and Zerilli equations.

On the other hand, the expansion of Einstein equation to quadratic order has the
schematic structure [343–346]

G(1)
µν

[
h(2)µν

]
= −G(2)

µν

[
h(1)µν , h

(1)
µν

]
. (3.72)

Notice that the operator on the left-hand side is the same as the one appearing at the linear
order, while now we have a source term that is quadratic in the linear metric perturbation.

In practice, the procedure for deriving the quadratic master perturbation equations
closely tracks the approach used to obtain the Regge-Wheeler and Zerilli equations. One
starts by fixing a convenient gauge at both linear and quadratic order, so that redundant
degrees of freedom disappear. Then, in the same fashion, two second-order master scalar
variables, denoted Ψ

(2)
(±), can be defined for the the odd and even-parity sector [344, 345].

The equations governing Ψ
(2)
(±) are finally solved with the usual QNM boundary condi-

tions. These solutions can subsequently be translated back into the metric perturbations
in the physical TT gauge, where one can compute the observable GW amplitude at null
infinity [346].

The resulting equations for the second-order master fields take the form [344, 345]:
[
− d2

dr2∗
+
(
V (±) − ω2

)]
Ψ

(2)
(±) = S(2)

± . (3.73)
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As expected, the left-hand side is precisely the Regge-Wheeler/Zerilli operator, while the
right-hand side features a source term S(2)

± , which is quadratic in the first-order perturba-
tions. The fact that the perturbation equation at quadratic order, unlike the ones at linear
order, are not homogeneous has an important consequence. The amplitude of linear modes,
as we discussed in the previous section is roughly given by a product of an excitation factor,
which can be fully predicted within BHPT, and a initial data-dependent part. In contrast,
the amplitude of quadratic QNMs can in principle be completely reconstructed from the
amplitudes of linear modes. We briefly mention that a technical complication is met when
working in the standard gauge and imposing QNM boundary conditions at quadratic order.
In fact, one finds that the source term is divergent at the boundaries [294, 295]. However,
the divergence is not physical and can be cured by an appropriate field redefinition of the
master variables [294, 347]. With this choice, the ratio of quadratic to linear amplitudes R
can be computed, for instance whith the aforementioned continued-fraction method [286].
Typically, the loudest quadratic QNM, excited in a binary BH merger, is given by the
coupling of the linear mode ℓ = 2, n = 0 (with positive real part) with itself. The ratio is
R ≃ 0.154 e−0.068i.

The quadratic QNM frequencies are trivially related to the ones of linear modes [347].
Consider the quadratic coupling of the two linear modes (ℓ1, n1) and (ℓ2, n2). This combi-
nation can source the quadratic frequencies

ω(2) = ω
(1)
ℓ1n1

+ ω
(1)
ℓ2n2

, or ω(2) = ω
(1)
ℓ1n1

− (ω
(1)
ℓ2n2

)∗. (3.74)

This structure arises because the physical metric perturbations are real, but they are
mathematically constructed as the real part of a complexified field.

The negative-sign case in the frequency combination above can equivalently be inter-
preted as arising from the coupling of a linear mode with a mirror mode.

As we discussed in the Chapter 1, GWs can back-react on the background, producing
a dynamical evolution of the spacetime [106–110]. This process also happens during the
ringdown, and in particular, part of the waves produced close to light-ring are falling into
the BH horizon, increasing its energy content [348–351]. Indeed, while this effect is highly
subleading during the inspiral, it could be relevant at the ringdown stage [298, 352].

Let us for simplicity consider the simple case of a monochromatic scalar wave ψ im-
pinging on a static BH of mass M . Close to the horizon, one has [259]

ψ ∼ AHe
−iωv Yℓm(θ, ϕ) , (3.75)

where v is the null Eddington-Finkelstein horizon-penetrating coordinate defined as t+ r∗.
The time-like Killing vector fields tµ, generates the conserved current [259]

Jµ = −Tµνtν , (3.76)

where Tab is the SET of the scalar field. The flux of energy through the horizon produces
the mass variation [259, 298]

M ′(v) = −
∫

Horizon
dΩ tµJ

µ =
ω2

8π
|AH|2e2vIm(ω) . (3.77)

The mass derivative is then quadratic in the perturbation. The same procedure can be
generalized to more modes and to different perturbation fields.
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The effect of this evolution of the BH background on the spectrum of gravitational
perturbations, appears then at the third BHPT order, and is two-fold. On the one hand,
it can modify the QNM spectrum adiabatically. In the language of quantum mechanics,
this means that the energy levels are slightly deformed without any mixing. This typically
happens if the background evolution time-scale is much larger than the one of the ringdown
dynamics. On the other hand, GW back-reaction can also alter the mode content of
the ringdown. This process is known as absorption-induced mode excitation and can be
understood as follows. In the new background spacetime, the original seed mode of the
BH with mass M is no longer a pure QNM of the BH with mass M + δM . Instead, it
decomposes into a superposition of modes belonging to the spectrum of the new BH. As
a consequence, additional modes are excited. In the next chapter, we will focus on the
first effect, namely on an adiabatic deformation of the QNM spectrum due to a smooth
evolution of the BH mass. Moreover, in Chapter 6, we will perform a detailed analysis of
the BH ringdown waveform, also including quadratic QNMs.

3.5 The Teukolsky equation

In the previous section, we described how the gravitational perturbation equations can be
derived on a static background. However, real astrophysical BHs are in general spinning [47,
48]. For this reason, in order to have an accurate description of real ringdown signals, it
is crucial to generalize the technology developed so far to the case of a more general
stationary spacetime. In this section, we will schematically address the procedure for
deriving the master equation for gravitational perturbations on a rotating BH background.
Such equation is generally known as Teukolsky equation [276], and its derivation requires a
different and more complicated strategy. We are going to summarize here the main steps.
However, readers primarily interested in the final form of the Teukolsky equation can skip
the derivation, and proceed directly to Eq. (3.96).

The metric of a stationary rotating BH, i.e. the Kerr metric [16], is given by Eq. (3.114),
with Q = 0. Remarkably, due to the complexity of the Kerr metric, if one tries to proceed
in analogy to the scheme adopted in spherical symmetry, they will not succeed in deriving
decoupled master equations for the propagating degrees of freedom. Nevertheless, a way
out of this problem was found in [353] by Newman and Penrose. The technology that
they introduced is indeed the well-known Newmann-Penrose (NP) formalism. The basic
idea, is to project the curvature tensors onto a tetrad basis, and to perturb its elements,
rather then the components of the metric. In more detail, in the NP formalism, one has to
consider a null tetrad, composed of two null real vectors nµ and lµ and a complex one mµ

with its complex conjugate m̄µ. These vectors must satisfy the orthogonality properties

lµlµ = nµnµ = mµmµ = m̄µm̄µ = 0 ,

lµnµ = −mµm̄µ = −1 ,

lµmµ = lµm̄µ = nµmµ = nµm̄µ = 0 .

(3.78)

A possible choice is the Kinnersley tetrad [354], given by

µµ =
1

∆

(
r2 + a2, ∆, 0, a

)
, (3.79)

nµ =
1

2ρ2

(
r2 + a2, −∆, 0, a

)
, (3.80)

mµ =
1√
2

1

r + ia cos θ

(
ia sin θ, 0, 1,

i

sin θ

)
. (3.81)
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The Kerr metric can be expressed using the Kinnersley tetrad as

gµν = mµm̄ν +mνm̄µ − nµlν − nν lµ . (3.82)

For a given scalar field ψ, we will use the following notation for the derivatives projected
on the elements of null basis:

Dψ = ∇µψ l
µ , ∆ψ = ∇µψ n

µ

δψ = ∇µψm
µ , δ∗ψ = ∇µm̄

µ .
(3.83)

Let us now introduce the Weyl tensor, corresponding to the traceless part of the Riemann
tensor and sharing the same symmetries:

Cµνρσ = Rµνρσ −
1

2

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+

1

6
Rgµ[ρgσ]ν . (3.84)

Projecting the Weyl tensor onto the null tetrad defined above, one can define the NP
scalars

Ψ0 = Cµνρσ l
µmν lρmσ , (3.85)

Ψ1 = Cµνρσ l
µnν lρmσ , (3.86)

Ψ2 =
1

2
Cµνρσ l

µnν (lρnσ +mρm̄σ) , (3.87)

Ψ3 = Cµνρσ n
µlν nρm̄σ , (3.88)

Ψ4 = Cµνρσ n
µm̄ν nρm̄σ . (3.89)

In GR, the complex scalar Ψ4 (or equivalently Ψ0, that is proportional to Ψ∗
4 in the radiation

zone) encodes the two graviton degrees of freedom. To illustrate this fact, let us consider
a GW propagating on a flat background, along the z axis of a cartesian coordinate frame
(t, x, y, z). As discussed in the first chapter, in the TT gauge, the metric perturbation has
only four non-vanishing components, that are hTT

xx = −hTT
yy = h+, and hTT

xy = hTT
yx = h×.

Moreover, one has

R0i0j = −1

2
ḧTT
ij . (3.90)

Projecting the components of the Riemann on the null tetrad, one gets

Ψ0 = −1

2
(ḧ+ + iḧ×) ,

Ψ4 = −1

2
(ḧ+ − iḧ×) .

(3.91)

Similarly to what we did with the Weyl tensor, other complex scalars can be defined from
the Ricci tensor, i.e.

Φ00 = −1

2
Rµν l

µlν ,

Φ01 = −1

2
Rµν l

µmν ,

Φ02 = −1

2
Rµνm

µmν ,

Φ11 = −1

4
Rµν (l

µnν +mµm̄ν) ,

Φ12 = −1

2
Rµν n

µmν ,

Φ22 = −1

2
Rµν n

µnν .

(3.92)
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Notice that all the quantities above are vanishing on a Ricci-flat spacetime, such as sta-
tionary BHs in GR.

Finally, one can define the twelve spin coefficients

κ = ∇ν l
µmν lµ,

π = −∇νn
µ m̄ν lµ,

ε =
1

2

(
∇ν l

µ nν lµ −∇νm
µ m̄ν lµ

)
,

ρ = ∇ν l
µmν m̄µ,

λ = −∇νn
µ m̄ν m̄µ,

α =
1

2

(
∇ν l

µ nν m̄µ −∇νm
µ m̄ν m̄µ

)
,

σ = ∇ν l
µmνmµ,

µ = −∇νn
µ m̄νmµ,

β =
1

2

(
∇ν l

µ nνmµ −∇νm
µ m̄νmµ

)
,

ν = −∇νn
µ m̄ν nµ,

γ =
1

2

(
∇ν l

µ nν nµ −∇νm
µ m̄ν nµ

)
,

τ = ∇ν l
µmν nµ .

(3.93)

Notice that some of the Greek letters here employed for the definition of the spin coeffi-
cients, have already been associated to different quantities. However, within this section,
there will be no ambiguity.

Now that we are in possess of the basic elements of NP formalism, we can study the
perturbation of the metric. In this perspective, as already anticipated, the perturbations
are absorbed by the elements of the tetrad. We will express the perturbed vector as, for
instance, l(0)µ + l

(1)
µ , where the superscript (0) indicates the background quantity, whereas

the superscript (1) labels the perturbation. All the NP scalar quantities can be perturbed
accordingly. The unperturbed tetrad elements correspond to the Kinnersley tetrad, for
which one has

Ψ
(0)
0 = Ψ

(0)
1 = Ψ

(0)
3 = Ψ

(0)
4 = 0 . (3.94)

Since Ψ
(0),(1)
i are Lorentz scalars, they are invariant under diffeomorphisms. Furthermore,

if we consider an infinitesimal coordinate transformation xµ → xµ + ξµ, we have Ψ
(1)
i →

Ψ
(1)
i − ξµ∂µΨ

(0)
i . Hence, for i = 0, 1, 3, 4 the perturbations Ψ

(1)
i are gauge-invariant.

Applying this machinery to the different components of the Einstein equation in vac-
uum, and after several nontrivial manipulations, on ends up with the two decoupled equa-
tions

[(D − 3ε+ ε∗ − 4ρ− ρ∗)(∆ − 4γ + µ)

− (δ + π∗ − α∗ − 3β − 4τ)(δ∗ + π − 4α)− 3Ψ
(0)
2 ]Ψ

(1)
0 = 0 ,

[∆ + 3γ − γ∗ + 4µ+ µ∗)(D + 4ε− ρ)

− (δ∗ − τ∗ + β∗ + 3α+ 4π)(δ − τ + 4β)− 3Ψ
(0)
2 ]Ψ

(1)
4 = 0 .

(3.95)
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The two Eqs. (3.95) can be expressed in a unified form, introducing a spin parameter s 3.

(
(r2 + a2)2∆− a2 sin2 θ

) ∂2Ψ̃(1)

∂t2

+
2arsr

∆

∂2Ψ̃(1)

∂t ∂ϕ
+

(
a2

∆
− 1

sin2 θ

)
∂2Ψ̃(1)

∂ϕ2
−∆−s ∂

∂r

(
∆s+1∂Ψ̃

(1)

∂r

)

− 1

sin θ

∂

∂θ

(
sin θ

∂Ψ̃(1)

∂θ

)
− 2s

(
a(2r − rs)

2∆
+ i

cos θ

sin2 θ

)
∂Ψ̃(1)

∂ϕ

− 2s

(
rs(r2 − a2)

2∆
− r − ia cos θ

)
∂Ψ̃(1)

∂t
+ (s2 cot2 θ − s)Ψ̃(1) = 0 .

(3.96)

Eq. (3.96) can be expressed in a compact form as

T
[
Ψ̃(1)

]
= 0 , (3.97)

introducing the Teukolsky operator T . Choosing s = −2, the expression describes the
dynamics of Ψ

(1)
4 , which is related to the master variable Ψ̃(1) through Ψ̃(1) = (1 −

ia cos θ)4Ψ
(1)
4 . On the other hand, with the choice s = +2, the equation describes the

dynamics of Ψ̃(1) = Ψ
(1)
0 . Remarkably, also scalar and electromagnetic perturbations are

described by Eq. (3.96), with, respectively s = 0,±1.
Now that we have a single master equation for perturbations on the Kerr background,

we proceed with the usual separation of variables. The master function can be expanded
as

Ψ̃(s)(t, r, θ, ϕ) =

∫ +∞

−∞
dω
∑

ℓm

R
(s)
ℓm(r, ω)S

(s)
ℓm e

imϕ−iωt . (3.98)

The radial part reads

∆−s d
dr

[
∆s+1

(
R

(s)
ℓm

)′]
+ VTR

(s)
ℓm = 0 , (3.99)

with the effective Teukolsky potential

VT = 2is
dK
dr

− λℓm +
1

∆

(
K2 − isK

d∆
dr

)
, (3.100)

and where we defined the quantities

∆ = r2 − rsr + a2 , K = (r2 + a2)ω − am , (3.101)

λℓm = Bℓm + a2ω2 − 2amω . (3.102)

It is worth mentioning that the zeros of the function ∆ determine the location of the BH
inner and outer horizons, given by

r± = rs



1±

√
1− 4a2

r2s

2


 . (3.103)

3Again, this should not be confused with the complex variable of the Laplace transform, introduced
previously. Within this section, there is no conflict of the two meanings.
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The term Bℓm is the separation constant. Unlike the static case, this number does not
have a closed analytic form and must be determined numerically.

On the other hand, the angular part reads

d
dy

[
(1− y2)

(
S
(s)
ℓm

)′]

+

[
a2ω2y2 − 2saωy +Bℓm + s− (m+ sy)2

1− y2

]
S
(s)
ℓm = 0 ,

(3.104)

where y = cos θ.
The angular functions that solve Eq. (3.104) are called spin-weighted spheroidal har-

monics. In practice for obtaining the QNMs of a rotating BH, on has to solve two coupled
Schrödinger-like equations, for the two sets of eigenvalues {ωℓmn, Bℓmn}.

The QNM spectrum of the Kerr BH shares the same basic features of the Schwarzschild
one, with some extra subtleties. First of all, the dependence on the magnetic number m is
nontrivial. The aforementioned mirror symmetry of QNMs in the Kerr case reads

ωℓmn = −ω∗
ℓ−mn . (3.105)

In the literature, the modes are generally classified as prograde if m and Re(ω) have the
same sign, and retrograde in the opposite case.

Besides breaking the degeneracy in m, the spin has also the effect of reducing the
imaginary part of the QNMs, up to the extremal case in which Im(ω) → 0.

Finally, the discussion on quadratic BHPT is conceptually similar to the static case,
although it requires more technical effort [343]. Consider the perturbation of the NP scalar
up to quadratic order

Ψ4 = ϵΨ
(1)
4 + ϵ2Ψ

(2)
4 +O(ϵ3) . (3.106)

The quadratic master equation takes the form

T
[
Ψ̃(2)

]
= S4

[
h(1)µν , h

(1)
µν

]
, (3.107)

where Ψ̃(2) = (1− ia cos θ)4Ψ
(2)
4 and S4 is an involved function of the linear metric pertur-

bation. The computation of the source term requires that we know the form of the metric
perturbation at linear order. In other words, we need to extract the information on h

(1)
µν

from the projected quantity Ψ
(1)
4 . This process is called metric reconstruction [355]. The

procedure can be carried out through the derivation of a scalar Herz potential that allows
to compute the components of the metric perturbation by performing derivative of it along
the tetrad directions. Remarkably, this approach yields metric perturbation components
in the radiation gauge, so that they are directly related to physically observable quantities.

Finally, with the same logic as in the static case, the quadratic QNM frequencies are
fully determined from the linear ones as

ω(2) = ω
(1)
ℓ1m1,n1

+ ω
(1)
ℓ2,m2n2

, or ω(2) = ω
(1)
ℓ1m1n1

− (ω
(1)
ℓ2m2n2

)∗, (3.108)

while the ratio of the quadratic to linear QNM amplitudes can also be estimated within
the BHPT framework, as it is done in the static case.
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3.6 Black hole perturbations beyond General Relativity

In Chapter 1, we motivated the importance of exploring deviations from Einstein’s GR both
at a formal and phenomenological level. In this chapter, we derived the main technical
tool to model the ringdown of a real astrophysical BH, namely the Teukolsky equation.
Hence, the most natural step forward now, is to try to understand how the perturbation
dynamics of BHs is affected if we include (small) modifications of the underlying theory
of gravity. In particular, one might wonder whether the nice properties of the Teukolsky
equation, such as decoupling of the different degrees of freedom, and separability of radial
and angular dependence, can still be recovered beyond GR, given, at least, some reasonable
conditions. A seminal work in this context was presented in 2023 [356], and we are going to
summarize here the main general findings thereof. Subsequently, we are going to provide a
more specific instance of modified Teukolsky equation in a precise modified gravity theory.

Let us start considering the most general modified gravity action

S
[
gµν , ψ, ϑ

]
= SEH

[
gµν
]
+ SbEH

[
gµν , ϑ

]
+ Sfield

[
gµν , ϑ

]
+ Smatter

[
gµν ,Ψm

]
, (3.109)

where ϑ is a new dynamical degree of freedom. The part Sfield includes the minimally
coupled terms between ϑ and the metric tensor (kinetic term, and auto-interactions), while
the beyond-EH action SbEH represents the non-minimal couplings. This second term, as
discussed in Chapter 1, typically appears as a collection of irrelevant operators of an EFT,
and comes with one or more dimensionful couplings. Finally, Ψm represents a generic
matter field belonging to the standard model of particle physics. From now on, we are
going to forget about this last contribution, as we will focus on vacuum solutions.

We are now going to design a slightly different perturbation scheme, motivated by the
reasonable assumption that the coupling that drives the deviation from GR is small in
comparison to the size of the BH. This effect can be naturally expressed by means of a
dimensionless parameter ζ, being the ratio of the characteristic energy scale of the gravity
modification and the BH mass. Then, a NP scalar such as Ψ4 can be expanded as

Ψ4 = ζΨ
(1,0)
4 + ϵΨ

(0,1)
4 + ζϵΨ

(1,1)
4 +O

(
ζ2, ϵ2

)
, (3.110)

where the superscript (m,n) indicates terms at O(ζn, ϵm). In the following, we will use
both this notation, and the more compact (n), only indicating the order of the expansion
in ϵ. It turns out that NP scalars that govern the GW dynamics, namely Ψ0 and Ψ4

are generally vanishing at background level, even for known BH spacetime solutions in
alternative gravity theories. However, this need not hold for the other scalars Ψ1, Ψ2 and
Ψ3. In particular, spacetimes can be classified according with the number of vanishing NP
scalars. This grouping is known as Petrov classification [357]. The spacetime types are

Type I : Ψ0 = Ψ4 = 0 ,

Type II : Ψ0 = Ψ1 = Ψ4 = 0 ,

Type D : Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 ,

Type III : Ψ0 = Ψ1 = Ψ2 = Ψ4 = 0 ,

Type N : Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0 ,

Type O : Ψ0 = Ψ1 = Ψ2 = Ψ3 = Ψ4 = 0 .

(3.111)

In GR, all stationary BHs belong to the Petrov type D. As we will see, some BH solution
beyond GR are still in this category. However, if one drops the stationarity assumption,
one can find examples of non-type D BHs also in GR. For instance, the Vaidya spacetime,
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representing an accreting or radiating BH, which will be crucial for the discussion in the
next chapter, belongs to the Petrov type II. The type O, for which all components of the
Weyl tensor vanish, includes flat (Minkowski) and conformally flat (de-Sitter and anti-de
Sitter) spacetimes. On the opposite end, one finds the type I, in which only two NP scalars
are vanishing. For this reason, spacetimes of Petrov type I are also called algebraically
general.

The first class of BHs beyond GR that is analyzed in [356], is given by Petrov type
D spacetime, that are, however, not Ricci-flat, i.e. their Ricci tensor is Rµν ∼ O (ζ). In
this case, the equations for the different Ψi can still be decoupled, but the final Teukolsky
equation has, in general, the form

T
[
Ψ̃(1)

]
= SMT . (3.112)

The source term SMT, which is different for Ψ(1)
0 and Ψ

(1)
4 , arises because the NP quantities

Φij , with i, j = 0, 1, 2, are now non-vanishing. Notice that this fact also affects the form of
the Teukolsky operator on the left hand-side. This can be viewed by expanding Eq. (3.112)
according with the perturbation scheme of Eq. (3.110), i.e.

T (0,0)Ψ̃(1,1) + T (1,0)Ψ̃(0,1) = S(1,1)
MT . (3.113)

Eq. (3.113), can be further generalized to the case in which the background is algebraically
general. In, particular, if one assumes that the background can be expressed as a pertur-
bation of a Petrov type D spacetime, it can be shown that it is still possible to obtain
decoupled equation for Ψ(1)

0 and Ψ
(1)
4 . The form of the modified Teukolsky equation in this

case will have additional terms on the left-hand side in the form D(0,1)Ψ
(1,0)
i , where D(0,1)

is some differential operator of the order of the metric perturbation. In particular, at O(ζ),
the equation for Ψ

(1)
0 will involve the NP scalar Ψ

(1,0)
0 and Ψ

(1,0)
1 , while the equation for

Ψ
(1)
4 will involve Ψ

(1,0)
4 and Ψ

(1,0)
3 . We refer the reader to [356] for further details.

After this quite abstract discussion, it is useful to provide one specific example of
modified Teukolsky equation. An interesting case, is again provided by HDG, that we
introduced in the first chapter. The line element of rotating BHs in HDG can be expressed
as the Kerr one plus some corrections, in the form [81]

ds2 =−
(
1− rsr

Σ
−H1

)
dt2 − (1 +H2)

2arsr sin
2 θ

Σ
dtdϕ+ (1 +H3)Σ

(
dr2

∆
+ dθ2

)

+ (1 +H4)

(
(r2 + a2)2 − a2∆sin2 θ

)
sin2 θ

Σ
dϕ2 ,

(3.114)

where the functions Hi, which should not be confused with the polar metric perturba-
tion components on a static background, can be defined as series expansions in the spin
parameter a as

Hi =
∞∑

n=0

an
n∑

p=0

kmax(n)∑

k=0

H
(n,p,k)
i

(
M

r

)k
(cos θ)p . (3.115)

The coefficients H(n,p,k)
i can then be perturbatively expanded in the dimensionless pa-

rameter ζ. This kind of spacetime is, in general, non-Ricci-flat and algebraically general,
although the deviation from a Petrov type D can be treated as perturbative. In this frame-
work, the modified Teukolsky equation for the different NP quantities can be decoupled
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by means of a metric reconstruction procedure. In particular, at linear order in ζ, the
metric reconstruction can be just performed for a metric perturbation in GR. Finally, the
equations can be separated using the decomposition of Eq. (3.98). At leading order in ζ,
the angular equation is unaffected, while the radial part can be expressed in the nice form

∆−s d
dr

[
∆s+1

(
R

(s)
ℓm

)′]
+ (VT + ζ δV )R

(s)
ℓm = 0 . (3.116)

For s = −2, the correction to the Teukolsky potential can be reduced to

δV −2 =
A−2

r2
+A0 +A1r +A2r

2 , (3.117)

with the coefficients

Ak =

nmax∑

n=0

anAk,n . (3.118)

In Chapter II, we will consider this example of modified Teukolsky equation, as the main
physical application for a parametrized framework for the computation of QNMs of rotating
BHs beyond Kerr.

3.7 Tidal response

In this chapter so far, we discussed the general framework of BHPT, focusing on the
application to the study of the BH ringdown. In this final section, we introduce a different
deployment of BHPT, i.e. the response of a compact object to an external slowly varying
tidal field. To do so, let us start with the classical Newtonian description of the problem.
Consider an astrophysical object, of density ρ(x⃗), and radius R, embedded in an external
gravitational potential Uext, generated by a companion body, and satisfying in the object’s
neighborhood the Laplace equation

∇2Uext = 0 . (3.119)

The tidal field at multipole order ℓ is given by

EL = −
∂⟨L⟩Uext

(ℓ− 2)!
, (3.120)

where we introduced the multi-index L ≡ i1i2 . . . iℓ, with every index i ranging over spatial
coordinates, and the brackets ⟨ ⟩ indicating the symmetrized traceless part. The mass
multipole of the compact object is, in general, defined as

IL ≡
∫

d3x ρ(x⃗)x⟨L⟩ , (3.121)

For instance, in the quadrupole case, one has

Qij =

∫
d3x ρ(x⃗)

(
xixj − 1

3
δijr2

)
. (3.122)

The tidal field can be connected to the mass multipole at linear order as

IL = − (l − 2)!

(2l − 1)!!
klR

2l+1EL , (3.123)
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where kℓ is a proportionality factor called linear static Love number [311, 317, 358–360].
The Love number quantifies the tidal deformability of an astrophysical object, and can be
interpreted as the gravitational analogous of the linear polarizability of a dielectric medium
in electrostatics [210]. In general, if we allow for a mild time dependence in the external
field EL, the induced quadrupole, and the tidal response, will also be time-dependent. This
effect can be taken into account in the frequency domain with the more general definition
of dynamical Love number [208, 314, 361]. While static Love numbers are purely real,
dynamical Love number possess in general an imaginary part, which represents dissipative
effects appearing at next-to-leading order in a small-frequency expansion. Schematically
one gets

IL ∝ (kℓ + iωνℓ + . . . )EL (3.124)

where νℓ is usually called dissipation number. In the following, we are going to focus only
on the static response.

The total gravitational field U(x⃗) outside the object is given by

U(x⃗) = −M
r

−
∑

ℓ≥2

1

(ℓ− 1)ℓ

[
1 + kℓ

(
R

r

)2ℓ+1
]
ELrL , (3.125)

with M =
∫
d3x ρ(x⃗) being the total mass of the object. Notice that, we can expand the

contraction ELrL as ∼∑ℓ EℓrℓYℓ0(θ, ϕ), introducing the tidal moment Eℓ. This Newtonian
picture can be generalized to a consistent relativistic treatment in terms of metric compo-
nents. This allows the computation of the tidal deformation of vacuum spacetimes, such
as BHs. Moreover, while in the Newtonian case the tidal deformability is purely polar, in
a relativistic context, one typically also has axial tidal perturbations. In an asymptotically
mass-centered Cartesian coordinate frame, at large distance from a compact object, the
relevant metric components read [310, 362]

gtt = −1 +
2M

r
−
∑

ℓ≥2

[
2

ℓ(ℓ− 1)
rℓEℓ −

2

rℓ+1

√
4π

2ℓ+ 1
Mℓ + . . .

]
Yℓ0(θ, ϕ),

gtϕ =
∑

ℓ≥2

[
2

3ℓ(ℓ− 1)
rℓ+1Bℓ +

2

rℓ

√
4π

2ℓ+ 1
Sℓℓ + . . .

]
sin θ

∂

∂θ
Yℓ0(θ, ϕ),

(3.126)

where the dots indicate the contribution from the lower multipoles. We introduced the
polar (or-electric-type) and axial (or magnetic-type) tidal moments Eℓ and Bℓ, and the
mass and mass-current multipole moments Mℓ and Sℓ respectively. The polar and axial
Love numbers can be defined as the ratios of the leading growing and decaying parts in
Eq. (3.126), i.e.

kEℓ = −ℓ(ℓ− 1)R−2ℓ−1

√
4π

2ℓ+ 1

Mℓ

Eℓ
,

kBℓ = −3ℓ(ℓ− 1)

(ℓ+ 1)
R−2ℓ−1

√
4π

2ℓ+ 1

Sℓ
Bℓ
.

(3.127)

In the case of a Schwarzschild BH, the tidal Love numbers can be read off from the
static limit, i.e. ω → 0, of Eq. (3.27). Remarkably, in this regime, Eq. (3.27) can be
solved analytically in terms of Hypergeometric functions. The eigenfunctions Ψ(±) at large
distance from the horizon read

Ψ(±) ∼
(
r

rs

)ℓ+1

1 +O

(
rs
r

)
+ k̃

(±)
ℓ

(
r

rs

)−2ℓ−1
(
1 +O

(
rs
r

))
 , (3.128)
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where the dimensionless factors k̃(±)
ℓ can be matched to the polar and axial Love numbers

defined previously (with R = rs) as

k̃
(+/−)
ℓ =

(ℓ+ 1)(ℓ+ 2)

ℓ(ℓ− 1)
k
E/B
ℓ . (3.129)

Imposing that the solution be regular at the BH EH, one finds that k̃(+)
ℓ = k̃

(−)
ℓ = 0, for

every value of ℓ. This result can also be shown to hold at quadratic order in BHPT [363–
365]. Moreover, not only static BHs, but all stationary, asymptotically-flat BHs in four-
dimensional GR appear to have vanishing static Love numbers [238, 312, 313, 358, 363,
366–369]. On the other hand, this general finding need not hold if one considers nontrivial
asymptotics [370], or more general theories of gravity [371, 372]. Physically, this means that
asymptotically flat BHs in four-dimensional GR do not develop any static tidal deformation
under an external field, unlike other compact bodies, such as neutron stars. In the absence
of a deep explanation for this fact, in an EFT perspective, this would appear as a fine-tuning
problem, similarly to the cosmological constant one [373]. However, recent theoretical
progress suggests that this phenomenon is not accidental, but stems from an underlying
hidden "Love" symmetry, often characterized as an SL(2,R) × U(1) or Schrödinger-type
algebra acting on the near-horizon region [261, 262, 374–377].

The computation of static Love numbers outlined above, while being practical and
conceptually straightforward, strongly relies on the choice of an appropriate coordinate
frame. As a result, it has been argued that Love numbers introduced in this way are
not well defined [366, 378]. To address this issue, it is useful to employ a complementary
approach, which is manifestly gauge invariant: the point-particle EFT that we already
introduced in Chapter 2. In this framework, finite-size effects, such as tidal deformability,
appear as higher-dimensional operators localized on the worldline. This idea is represented
with the diagram of Fig. 3.6.

In order to introduce interaction terms on the worldline, it is though convenient to
express the point-particle action of Eq. (2.4) in the Polyakov form [379]

Spp =
1

2

∫
dτ e

(
e−2dx

µ

dτ

dxν

dτ
gµν −m2

pp

)
(3.130)

where we introduced the einbein e(τ), that can be integrated out to obtain again Eq. (2.4),
through the equation of motion

e = m−1
pp

√
−gµν

dxµ

dτ

dxν

dτ
. (3.131)

To couple the compact object with an external gravitational field, one can write down
the total action, given by the sum of the point-particle action, the gravity action in the
bulk, and the interaction operators on the worldline, i.e. Stot = Spp + Sbulk + Sint. The
second term is simply given by the Einstein-Hilbert action, that can be expanded up to
quadratic order in the metric perturbations. The last contribution can be expanded as

Sint =

∞∑

ℓ=2

1

2ℓ!

∫
dτ e

[
λEℓ
(
∂⟨a1 · · · ∂aℓ−2

E
(2)
aℓ−1aℓ⟩

)2

+
1

2
λBℓ
(
∂⟨a1 · · · ∂aℓ−2

B
(2)
aℓ−1aℓ⟩ |b

)2
]
,

(3.132)

where we introduced the electric and magnetic parts of the Weyl tensor respectively as

E
(2)
ij ≡ Ctitj , B

(2)
ij|l ≡ Ctijl , (3.133)
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Figure 3.6: Diagrammatic representation of the worldline EFT
approach. A generic external field, represented with the wavy
line, interacts with the point particle’s worldline (represented
with the vertical line) and the response can read off at infinity.

and the dimensional couplings λE,Bℓ . The equation of motion for the linear static metric per-
turbation, obtained by the variation of Stot, can be expressed as a set of non-homogeneous
Laplace equations for the different components, where the source term is given by the vari-
ation of Sint. Hence, it is useful to expand the metric perturbation as h(1)µν = h̄µν + δhµν ,
where h̄µν is the homogeneous solution, and δhµν is the correction sourced by the inter-
actions on the worldline. In the harmonic gauge, the only nontrivial contribution to the
electric-type tidal response comes from the htt component. The full solution reads [238]

htt = h̄tt + δhtt ∼ rℓYℓm(θ, ϕ)


1 +

(−1)ℓ2ℓ−3

√
πΓ
(
1
2 − ℓ

)λEℓ r−2ℓ−1


 . (3.134)

The point-particle EFT coupling can then be matched to the electric-type tidal Love num-
ber as [238]

λEℓ = (−1)ℓ

√
πΓ
(
1
2 − ℓ

)

2ℓ−3
r2ℓ+1
s kEℓ . (3.135)

On the other hand, the only components of the metric perturbations that contribute to
the magnetic-type tidal response are hti. Applying a similar reasoning, one ends up with
the matching condition [238]

λBℓ = (−1)ℓ
ℓ

ℓ+ 1

√
πΓ
(
1
2 − ℓ

)

2ℓ−4
r2ℓ+1
s kBℓ . (3.136)

In the next chapter, we are going to revisit the computation of static Love numbers intro-
duced here, both in the framework of BH perturbation equations and in the point-particle
EFT perspective, specializing to the case of a dynamical spacetime.

This section about tidal response concludes our general overview of BHPT.
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Chapter 4

Perturbation of a dynamical
spacetime

4.1 Introduction

As we discussed in the previous chapter, the emission of GWs produced during the ringdown
is generally modelled as perturbations on top of a stationary BH background metric, with-
out accounting for possible evolution of the BH mass. However, realistic BHs are generally
non-stationary, as they can dynamically evolve due to the interplay with the surround-
ing environment. Modelling a dynamical BH background is then crucial for investigating
diverse physical scenarios.

Astrophysical BHs are often surrounded by accretion disks, which lead to an increase
in the BH mass [380, 381]. It is also known that BHs slowly evaporate through the
Hawking mechanism [22, 382, 383]. The timescale of this process grows with the mass of
the evaporating BH, hence its effect is likely irrelevant for stellar-origin and SMBHs, while
it could in principle play a role in the dynamics of primordial ones. Another process that
is capable of removing mass from a BH is given by superradiant instabilities driven by
massive boson fields [384, 385]. The unstable production of such particles can in fact be
triggered around a BH at the expense of its energy and angular momentum. This effect
is related to the very well-known Penrose process [386], and it requires the presence of an
ergoregion.

Note that while allowing the extraction of mass/energy from a stationary BH, Hawking
evaporation and the Penrose process still satisfy the laws of BH thermodynamics [387, 388].
Moreover, one can consider more exotic scenarios, like accretion of a phantom matter field
(i.e., a field violating the dominant energy condition, where BHs can actually lose mass
while accreting [389, 390]. Finally, the BH mass is expected to evolve during the ringdown
phase also due to the absorption of ringdown GWs themselves [391, 392]. This absorption
of GWs is also expected to impact the inspiral dynamics in binary systems in the form of
tidal heating [350, 393–397].

Furthermore, as discussed in the last section of the previous chapter, in the inspiral
phase, the GW signal is affected by the tidal response of the binary objects. The con-
servative part of the response is generally quantified in terms of tidal Love numbers [317,
359, 360]. Static tidal Love numbers are zero for stationary, asymptotically-flat BHs in
four-dimensional GR [238, 312, 358, 363, 366–369, 398], while they can be be non-vanishing
if one considers nontrivial asymptotics, environmental effects, or more general theories of
gravity [370–372].

A simple model of spherical, uncharged, dynamical BH spacetimes is provided by the
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Vaidya metric (see [399, 400] for a detailed introduction).1 This model, while relatively
simple, provides an effective description of the processes mentioned above, allowing for an
estimate of their impact on the astrophysical observables, e.g. the GW signals. A formal
discussion of the perturbative dynamics of the Vaidya background can be found in [404–
406]. Studies of QNMs for the Vaidya metric have already been carried out in the time
domain with a fully numerical approach in [391, 407–411].

In this work, we perform instead a semi-analytic calculation in the frequency domain
based on the continued-fraction method (also known as Leaver’s method) [286], which is
the most accurate technique for computing QNM frequencies, and is capable of handling
overtones. Our approach relies on the assumption that the rate of change of the mass is
constant. In this way, a proper choice of the coordinates allows to factor out the time
dependence in a conformal factor and perform Fourier transforms, as it is usually done in
standard BH perturbation theory. In this framework, we also discuss the tidal response of
a dynamical BH, arguing that non-vanishing corrections to the Love numbers appear, as
a result of the nontrivial mass evolution.

The paper is organized as follows. In section 4.2, we describe the mathematical prop-
erties of the Vaidya solution and its conformal structure in the case in which the mass
derivative is constant. In section 4.3, we derive the perturbation equations for scalar, elec-
tromagnetic and (axial) gravitational fields on such background. In section 4.4, we estimate
the QNMs analytically in the eikonal limit, and numerically using Leaver’s continued-
fraction method. Finally, in section 4.5, we discuss the tidal response of the Vaidya BH. In
particular, we will perform the matching with the point-particle effective theory, and show
how a small mass derivative provides nontrivial perturbative corrections to the vanishing
Schwarzschild Love number couplings.

4.2 The causal structure of the Vaidya black hole

The Vaidya solution describes a (non-empty) spherically symmetric BH spacetime with
dynamical mass. A compact way to write its line element is by taking the Schwarzschild
line element in ingoing/outgoing Eddington–Finkelstein coordinates (w, r, θ, ϕ) and by pro-
moting the Schwarzschild mass parameter to be a function of the null coordinate w. The
latter can either be the advanced time, w = t+ r∗, or the retarded time, w = t− r∗, where
r∗ is the Schwarzschild tortoise coordinate and t the standard Schwarzschild time.

Concretely, the Vaidya metric takes the form

ds2 = −
(
1− 2M(w)

r

)
dw2 + 2s dw dr + r2dΩ2

S2 , (4.1)

with s being the sign of the derivative of the mass function M(w), s ≡ sign[M ′(w)], and
with dΩ2

S2 = dθ2 + sin2 θ dϕ2. In the following, we will assume M(w) to be a monotonic
function of w, in such a way that M ′(w) has definite sign.

The metric (4.1) describes an absorbing BH by taking M ′(w) > 0 with w = t + r∗
(ingoing Vaidya), while it describes an emitting BH if M ′(w) < 0 with w = t−r∗ (outgoing
Vaidya).

The Vaidya BH metric (4.1) solves the non-vacuum Einstein equations

Rµν −
1

2
Rgµν = 8πTµν , (4.2)

1The electrically charged generalization was first introduced in [401], while rotating Vaidya solutions
have been proposed in [402, 403].
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where Rµν and R are the Ricci tensor and Ricci scalar, respectively, while Tµν is the SET

Tµν =
|M ′(w)|
4πr2

∂µw∂νw . (4.3)

The latter describes a pure radiation field (e.g., photons or gravitons) in the geometrical
optics limit.

The Vaidya BH presents a nontrivial causal structure, related to its departure from
stationarity [400, 412, 413]. Unlike in the static case, the apparent horizon (AH), defined
as the hypersurface of vanishing expansion, i.e. the boundary at which a congruence of
null geodesics starts focusing into a trapped region, does not coincide with the EH. For a
null congruence of geodesic curves, the outgoing null expansion Θoutgoing coincides with the
fractional variation of the cross-sectional area Σ of the null congruence itself, with respect
to an affine parameter l:

Θoutgoing =
1

Σ

δΣ

δl
. (4.4)

In our case, this simply reads [412]:

Θoutgoing =
1

r

(
1− 2M(w)

r

)
. (4.5)

The condition Θoutgoing = 0 therefore provides the location of the apparent horizon, namely
rAH = 2M(w).

The global EH, instead, cannot be defined locally. However, for a constant rate of
increasing/decreasing mass, i.e. M(w) =M0 +M ′ (w−w0), with M ′ = const, its location
can be computed quite easily.

To do so, it is convenient to move to a different coordinate frame, in which the causal
structure becomes completely manifest and, at the same time, the equations for the per-
turbations take a simpler form, as we will discuss in the next section.

Consider first the transformation



w → W ≡

∫
dw

2M(w) ,

r → x ≡ r
2M(w) ,

(4.6)

which rescales both the radial coordinate and the null time. We can then trade the rescaled
null time with a timelike coordinate defined as T =W − s x∗,2 where

x∗ =
∫

dx

f(x)
(4.7)

is a generalized tortoise coordinate with

f(x) = 1− 1

x
− 4|M ′|x . (4.8)

In these coordinates, the Vaidya metric gµν , defined in (4.1), becomes conformal to a static
metric g̃µν , i.e.,

gµν = 4M(w)2g̃µν , (4.9)

and the line element reads

ds2 = 4M(w)2
[
−f(x)dT 2 +

1

f(x)
dx2 + x2dΩ2

S2

]
. (4.10)

2The time coordinate should not be confused with the trace of the SET, which we will denote below,
when needed, with Tλλ.
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The location of the EH is now evident in this diagonal form of the metric from the condition
gxx = 0, which corresponds, in physical coordinates, to

rEH = 2M(w)

(
1−

√
1− 16|M ′|
8|M ′|

)
= 2M(w)

(
1 + 4|M ′|+O(M ′2)

)
, (4.11)

where in the second line we have expanded for small values of the mass derivative M ′ and
kept terms only up to linear order. Note that the EH always lies outside the AH.

Notice also that the condition gxx = 0 yields at the same time an external “cosmological
horizon” (CH), far away from rEH and located at

rCH = 2M(w)

(
1 +

√
1− 16|M ′|
8|M ′|

)
. (4.12)

This is formally similar to the CH present in Schwarzschild-de Sitter spacetime, with the
mass derivative playing the role of a positive cosmological constant.

The choice of considering a constant rate of change of the BH mass, which we will
adopt in the following, is physically relevant e.g. for accreting BHs (in which case the mass
derivative is approximately given by the Eddington rate on timescales much longer than the
ringdown). For BHs whose mass changes due to their own ringdown, the mass derivative
can also be considered approximately constant on scales shorter than the ringdown decay
time, and order corrections depending on the higher time derivatives of the mass can in
principle also be included perturbatively.

Finally, note that the condition for the simultaneous existence of the two horizons of
Eqs. (4.11) and (4.12) is |M ′| < 1/16. We will restrict to this case hereafter. This choice is
again motivated by the physical assumption that the mass evolution is a subleading effect
in the perturbation dynamics.

4.3 Perturbation equations

In this section, we derive the equations of motion for massless scalar, electromagnetic
and (axial) gravitational perturbations of the Vaidya spacetime. Thanks to the spheri-
cal symmetry of the background geometry (4.1), it will be convenient to adopt spherical
coordinates and decompose the field perturbations in spherical harmonics. We will work
under the simplifying assumption that the mass rate M ′ is constant. This will allow us to
relate the M ′ = const Vaidya metric to a static one through a conformal transformation.
As a byproduct, the equations for the perturbations will be time independent in the new
coordinates, as we will show explicitly. This fact will allow us to study the solutions in the
frequency domain, mirroring the familiar case of perturbations around stationary BHs.

4.3.1 Generalities and scalar case

As an illustrative example, let us start by considering the case of a test massless scalar
field. The dynamics is captured by the Klein–Gordon equation

2Φ = 0 , (4.13)

where we have defined the d’Alembert operator 2 = gµν∇µ∇ν , indicating with ∇ the
covariant derivatives.
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Under a general conformal transformation of the metric, gµν = A2g̃µν , a generic field
φ transforms as

φ = Aχφ̃ , (4.14)

with χ being the conformal weight. Choosing χ = −1 for the scalar field Φ, one obtains [3]

2Φ =

(
2̃− R̃

6

)
Φ̃ = 0, (4.15)

For the Vaidya metric (4.1), the Ricci scalar R is proportional to the trace of the SET,
which is a pure radiation field, and it therefore vanishes, R = 0. However, it is nonzero
for the conformal metric g̃ in (4.9), which corresponds to choosing A = 2M(w) and yields
R̃ = 24|M ′|/x. Introducing the decomposition

Φ̃(T, x, θ, ϕ) =
∑

ℓm

∫
dΩ

2π
e−iΩT

u(x)

x
Yℓm(θ, ϕ) , (4.16)

the scalar equation reduces to
[
d2

dx2∗
+Ω2 − f(x)

(
ℓ(ℓ+ 1)

x2
+

1

x3

)]
u(x) = 0 , (4.17)

where we used the tortoise coordinate x∗ defined in Eq. (4.7). Note that, for ease of no-
tation, we dropped from u(x) the dependence on the spherical harmonic quantum number
ℓ.

4.3.2 Electromagnetic perturbations

Electromagnetic perturbations are described by the Maxwell equations

gαµ∇αFµν = 0 , (4.18)

where Fµν is the field strength, satisfying ∇[αFµν] = 0. Unlike the Klein–Gordon equation,
the Maxwell equations (4.18) are invariant under conformal transformations, thanks to the
scale invariance of electromagnetism in four spacetime dimensions (as it can be explicitly
verified by choosing conformal weight χ = 0). Therefore, we can directly consider the
equations on the stationary geometry g̃µν , with the four-potential Aµ transforming trivially
as Aµ = Ãµ. Separating the field in axial (odd) and polar (even) parts according to their
transformation rules under parity, which acts in polar coordinates as θ → π−θ, ϕ→ ϕ+π,
we shall write

Aµ dx
µ =

(
A(polar)
µ +A(axial)

µ

)
dxµ

=e−iΩT
[
h(x)Yℓm dT + e(x)Yℓm dx

+
(
a(x)εa

b ∂bYℓm + k(x) ∂aYℓm

)
dxa

]
,

(4.19)

with ε being the Levi-Civita symbol on the two-dimensional Euclidian sphere. In addition,
we will make the gauge choice k(x) = 0.

The Maxwell equation ∇µFµϕ = 0 immediately yields the equation of motion of the
odd electromagnetic degree of freedom:

[
d2

dx2∗
+Ω2 − f(x)

ℓ(ℓ+ 1)

x2

]
a(x) = 0 . (4.20)
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On the other hand, from ∇µFµθ = 0, we obtain

h(x) =
i

Ω
f(x)

d

dx

(
f(x) e(x)

)
. (4.21)

Substituting this into ∇µFµx = 0,
and introducing the variable q(x) = f(x)e(x), one gets the equation for the electro-

magnetic polar degree of freedom:
[
d2

dx2∗
+Ω2 − f(x)

ℓ(ℓ+ 1)

x2

]
q(x) = 0 . (4.22)

Note that the equation is identical to the one in Eq. (4.20) for the axial mode. This means
in particular that the two sectors are isospectral, i.e. they share the same set of QNMs.
This result is in fact more general than the case of constant M ′, which we focused on here.
We will explicitly verify this in Appendix B.1 for arbitrary choices of M(w), where we also
discuss the connection with electric-magnetic duality.

4.3.3 Gravitational perturbations

Analogously to the electromagnetic case, we perform a similar split in axial and polar
components for gravitational perturbations. This will ensure that the dynamics of the two
sectors is decoupled at the level of the linearized Einstein equations. Note that, thanks
to the structure of the SET of Eq. (4.3), the perturbations of the radiation field couple
only to the polar gravitational perturbations, and do not affect the dynamics of the axial
gravitational sector. In fact, since Tµν ∝ ∂µw∂νw, its fluctuations δTµν can only transform
evenly under parity. Hence, for simplicity, we will focus below on the axial gravitational
sector only, and leave the analysis of the polar perturbations for a future study.

To obtain the master equation for the axial modes, one can proceed similarly to the
derivation of the Regge–Wheeler equation for odd perturbations of Schwarzschild BHs. In
the following, we will work in the “Einstein frame” [414], i.e. we will consider the equations
of motion for the conformal metric g̃µν . We will show in Appendix B.1 that this approach
is completely equivalent to the derivation of the Regge–Wheeler equation in the Jordan
frame, i.e. in terms of the Vaidya metric gµν , satisfying the usual Einstein equations. In
the following expressions, we will use the notation s = sign(M ′), M ′ and |M ′| to stress
the distinction between situations where the mass derivative appears with its sign or in
absolute value.

The equations of motion for the conformal metric g̃ read [3]

R̃µν − 2∇µ∇ν lnA − g̃µν 2 lnA + 2∇µ lnA∇ν lnA − 2g̃µν∇α lnA∇α lnA = 8πTµν ,
(4.23)

where A = 2M(w) and where the SET is

Tµνdx
µdxν =

|M ′|
4πx2

[
dT 2 +

2s

f(x)
dTdx+

dx2

f(x)2

]
, (4.24)

with the logarithmic gradient of the conformal factor reducing to

∇µ lnAdxµ = 2|M ′|
(
dT +

s

f(x)
dx

)
. (4.25)
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Let us consider now a perturbation of the metric in the Einstein frame, i.e. let us write
g̃ + h̃, and split the perturbation in axial and polar sectors as h̃ = h̃(ax) + h̃(pol). Since
h̃(ax) and h̃(pol) are decoupled at linear order, it is consistent to set h̃(pol) to zero and focus
only on h̃(ax).

In the (T, x, θ, ϕ) coordinates and in the Regge–Wheeler gauge [271], we shall write

h̃(ax)
µν =

∑

ℓm

∫
dΩ

2π




0 0 −h0(x)
sin θ ∂ϕ sin θ h0(x) ∂θ

0 0 −h1(x)
sin θ ∂ϕ sin θ h1(x) ∂θ

Sym Sym 0 0
Sym Sym 0 0


 e−iΩTYℓm(θ, ϕ) . (4.26)

The three nontrivial components of the linearized Einstein equations are:

f(x)

x

[
h′′0(x) + iΩh′1(x)

]
+

2iΩ

x

[
f(x) + 2|M ′|x

]
h1(x)

+
4|M ′|
x

h′0(x)−
[
ℓ(ℓ+ 1)

x2
− 2

x3

]
h0(x) = 0 ,

(4.27)

h′0(x)−
2

x
h0(x) + s

[
iΩ− f(x)

ℓ(ℓ+ 1)− 2

(4|M ′| − iΩ)x2

]
h1(x) = 0 , (4.28)

f(x)2x2h′1(x) + sf(x)h1(x) + (iΩ− 4M ′)h0(x) = 0 . (4.29)

From the last equation, we can isolate h0(x) and substitute it in the second one. Then,
after introducing the master variable Q(x), defined as h1(x) = F (x)Q(x), with

F (x) = − x
5
4

f(x)
3
4

exp




arctan

(
8|M ′|−1√
16|M ′|−1

)

2
√
16|M ′| − 1


 , (4.30)

we find the following equation for Q(x):
[
d2

dx2∗
+ Ω̃2 − f(x)

(
ℓ(ℓ+ 1)

x2
− 3

x3

)]
Q(x) = 0 , (4.31)

with the shifted frequency Ω̃ = Ω+2iM ′ (note that here the mass derivative must be taken
with its positive or negative sign).

4.3.4 Master equation

In summary, one can write the equations for all kinds of perturbations (scalars, vectors
and axial tensors) as a single master equation for a suitable master variable R(x):

[
d2

dx2∗
+ Ω̃2 − f(x)

(
ℓ(ℓ+ 1)

x2
+

σ

x3

)]
R(x) = 0 , (4.32)

where Ω̃ = Ω in the scalar and electromagnetic case, and Ω̃ = Ω+2iM ′ in the axial gravi-
tational case. The spin parameter σ reads respectively 1, 0,−3 for scalar, electromagnetic
and axial gravitational perturbations. Unlike in the static case (M ′ = 0), the potential

V (x) = f(x)

(
ℓ(ℓ+ 1)

x2
+

σ

x3

)
(4.33)
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Figure 4.1: Gravitational potential
(σ = −3) for ℓ = 2. Note that a non-
vanishing mass derivative M ′ shifts
the EH outwards, while causing the
appearance of an external CH.

vanishes in two points, namely at the EH and at the CH, see Fig. 4.1 for an example.
Note that the main point of our approach is the time-independent form of Eq. (4.32),

which can be solved as a boundary value problem in the frequency domain, as we will
discuss in the following. In [391, 407–411], time-domain methods have been instead used
to solve the wave equation with time-dependent potential (see Appendix B.1 for the ex-
pression of the perturbation equations in Eddington–Finkelstein coordinates), given initial
conditions and a functional form for the mass evolution function M(w). In most of those
works, the time-evolution is performed in double null coordinates u, v, θ, ϕ, where u and v
are the retarded and advanced time that we already defined, starting from initial conditions
given by a Gaussian wave packet. This procedure allows for a generic time evolution for
the mass, but the extraction of the QNM frequencies from the time domain signal can only
be performed for the dominant mode, and is generally less accurate than in our frequency
domain approach. In the next section, we present the computation of the QNMs in the
frequency domain from Eq. (4.32), showing that the full spectrum of frequencies can be
obtained in this framework.

4.4 Quasi-Normal Modes

4.4.1 Eikonal approximation

We start here by deriving the Vaidya QNM frequencies in the geometrical optics limit—also
known as eikonal limit—while a full numerical computation of the spectrum by means of
the continued-fraction method will be presented later on in Sec. 4.4.2. Besides providing a
first approximation for the spectrum, the eikonal limit can shed light on the correspondence
between the frequencies and the parameters of the unstable photon geodesics at the light-
ring. For stationary BHs in GR, it was found [415–417] that the real part of the eikonal
QNMs corresponds to multiples of the orbital frequency, while the imaginary part is related
to the Lyapunov exponent, which characterizes the instability timescale of the orbit. It
is interesting to check whether there are examples of non-stationary BHs for which such
correspondence can be recovered.

The potential in Eq. (4.33), in the eikonal limit ℓ≫ 1, reads

V (x) =
(
1− 1

x
− 4|M ′|x

) ℓ2
x2

+O(ℓ0) . (4.34)
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It has two stationary points, a global maximum and a global minimum. The latter is
located outside the CH. The former corresponds to the light-ring, which is shifted with
respect to the Schwarzschild one. Let us consider a small linear evolution of the mass
function, namely M ′ → ϵM ′, where ϵ is a (positive) book-keeping parameter, which we
will take to be small enough such that ϵM ′w ≪ M0. The location of the light-ring rlr, at
linear order in ϵ, evolves in time as

rlr = 3M(w)
[
1 + 3|M ′|ϵ+O(ϵ2)

]
=

= 3M0

[
1 + 3

(
1 + s

w − w0

M0

)
|M ′|ϵ+O(ϵ2)

]
.

(4.35)

This radius can also be obtained from the geodesics equation for photons [418–422]. As
already mentioned, the metric g̃µν of Eq. (4.10),

which is conformally related to the Vaidya metric, is static and admits the stationarity
Killing vector ξ = ∂T .

The equation for null geodesics is the same for both gµν and g̃µν , and reads

0 = g̃µνk
µkν = −

(
1− 1

x
− 4|M ′|x

)
dT

dl
+

1

1− 1
x − 4|M ′|x

dx

dl
+ x2

dϕ

dl
, (4.36)

with l being an affine parameter and kµ a null vector.
One can then use the conserved quantities associated with the Killing vector ξ and the

axial Killing vector κ = ∂ϕ,

E = −ξT ,
L = κϕ ,

(4.37)

to obtain the equation
dx

dl
= E − Veff(x) . (4.38)

The effective potential matches the one appearing in Eq. (4.34):

Veff(x) =
(
1− 1

x
− 4|M ′|x

)L2

x2
. (4.39)

This fact shows that the eikonal correspondence between QNMs and null geodesics, which
holds for stationary BHs in GR, is recovered in the linear evolution limit of spherically
symmetric dynamical BHs described by the Vaidya geometry.

The quasi-normal frequencies can then be estimated analytically in the eikonal approx-
imation (see Sec. 3.3.2 of the previous chapter). In more detail, we have

Ω̃ER =

√
V (xM )

ℓ2

(
ℓ+

1

2

)
+O(ℓ−1),

Ω̃EI = − dx

dx∗

√
V ′′(x)
2V (x)

∣∣∣∣∣∣
xM

(
n+

1

2

)
+O(ℓ−1) ,

(4.40)

where Ω̃ER and Ω̃ER are the real and imaginary part of the QNM frequencies computed in
the eikonal limit and xM is the position of the maximum of the potential.

71



Considering again a small mass derivative, we have, at leading order,

Ω̃ER =
2√
3

(
ℓ+

1

2

)[
1

3
− 3|M ′| ϵ+O(ϵ2)

]
,

Ω̃EI = − 2√
3

(
n+

1

2

)[
1

3
− 4|M ′| ϵ+O(ϵ2)

]
.

(4.41)

These expressions can be directly related to the aforementioned parameters of the unstable
circular photon orbit [415–417].

4.4.2 Numerical analysis

In order to find the full frequency spectrum, we solve Eq. (4.32) using Leaver’s continued-
fraction method. The procedure that we adopt for the Vaidya BH is similar to the
Schwarzschild-de Sitter case, in which a study of QNMs with the same approach has
been carried out in e.g. [423–425]. This method follows from the more general Frobenius
procedure for second-order linear differential equations, which allows for finding solutions
in terms of infinite power series. Two of the four singular points of the wave equation (4.32)
(the other two being x = 0,∞) correspond to the positive zeros of the function f(x), the
first being the EH xH , and the second being the CH xC ∼ 1/|M ′|. The QNMs can be
defined as solutions to the wave equation that are purely ingoing at the EH and purely
outgoing at the CH. We can impose these boundary conditions in terms of the tortoise
coordinate

x∗ =
∫

dx

f(x)
=

1

4|M ′|(xC − xH)

[
xH ln(x− xH)− xC ln(x− xC)

]
. (4.42)

They read

R(x∗)
x→xC−−−−→ eiΩ̃x∗ ,

R(x∗)
x→xH−−−−→ e−iΩ̃x∗ .

(4.43)

Note that we can safely impose these outgoing/ingoing conditions at the horizons in
terms of the frequency Ω̃, as the latter is related to Ω by a shift in the imaginary part,
which only affects the amplitude of the mode.

The solution to Eq. (4.32), subject to the boundary conditions (4.43) can then be
expressed as the product of a diverging function at the horizons, and a convergent infinite
power series in the interval (xH , xC). We can therefore use the ansatz

R(x) = (x− xC)
ρ η xC (x− xH)

ρ η xH S(x) , (4.44)

where we defined ρ = −iΩ and η = 1
4|M ′|(xC−xH) , and where S(x) is the Frobenius series

S(x) =

∞∑

n=0

an

(
x− xH
x

)n
. (4.45)

Inserting this ansatz into the master equation, one obtains the following five-term recur-
rence relation among the coefficients an

αn an+1 + βn an + γn an−1 + δn an−2 + ζn an−3 = 0 . (4.46)
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Figure 4.2: QNM rescaled frequencies in the complex plane. The fundamental modes are presented with
round points, while the first overtones with diamond-shaped symbols. The small black numbers inside the
plot indicate the angular momentum number ℓ, which we vary within the interval ℓ ∈ [2, 5]. The color
code indicates the modulus of the mass derivative. The upper panel represents the frequencies Ω̃ in the
master equation Eq. (4.32): at this level there is no difference between the increasing and decreasing mass
cases. The lower panels represent instead the frequencies Ω̄ which are shifted according with the conformal
weight of the gravitational perturbation field: here the spectrum is instead different in the cases in which
the mass is increasing (left panel) or decreasing (right panel). Note that for large M ′ in the lower-left
panel the frequencies approach the unstable regime.

The explicit expressions for these coefficients, which are quite lengthy, are presented
in Appendix B.2. This five-term relation can be reduced numerically through Gaussian
elimination in two steps.

One first define the new coefficients as

α′
n = αn ,

β′n = βn −
α′
n−1

δ′n−1

ζn ,

γ′n = γn −
β′n−1

δ′n−1

ζn ,

δ′n = δn −
γ′n−1

δ′n−1

ζn .

(4.47)
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The same procedure can be repeated to obtain the three-term relation

α′′
n an+1 + β′′n an + γ′′n an−1 = 0 . (4.48)

At this point, one can define the n-th ladder operator from the (n+ 1)-th one, as

An =
γ′′n

β′′n − α′′
nAn+1

. (4.49)

Finally, the spectrum is obtained by finding the zeros of the Leaver function

FLeaver(Ω̃, ϵ) = A1 −
β′′0
α′′
0

= 0 . (4.50)

The frequencies obtained in this way from the spectrum of the master variable in
(4.32) do not represent the physical spectrum. To obtain the physical spectrum, two
effects must be taken into account. First, the physical perturbations are related to the
master variable by a factor (2M(w))χ, where χ is the conformal weight of the fields. This
effect introduces a shift in the frequencies Ω̃. Second, because we performed a Fourier
transform in the dimensionless time variable T , the frequencies must be rescaled by an
overall time-dependent factor. This second effect will be discussed in more detail in the
next subsection.

In the rescaled coordinates, and ignoring all factors depending on x (which affect the
amplitude and not the frequency), the time-dependent mass reads

M(w)χ ∼ e2χM
′T . (4.51)

The physical fields will then oscillate with frequency

Ω∗ ≡ Ω+ 2iχM ′ , (4.52)

where Ω = Ω̃ for scalar and electromagnetic perturbations and Ω = Ω̃− 2iM ′ for gravita-
tional axial perturbations. Again, this is a purely imaginary shift, so it does not affect the
boundary conditions of Eq. (4.43). The rescaled frequencies of the axial metric perturba-
tions (χ = 2), which represent the physical gravitational perturbations (in the axial sector),
then oscillate with frequency Ω̃ + 2iM ′. The overall shift of the gravitational spectrum in
the complex plane is represented in Fig 4.2. The fundamental modes are represented with
round points, while the first overtones are indicated with diamond-shaped points. The
color-code represents the absolute value of the mass-derivative. The upper panel shows
the frequency spectrum Ω̃, i.e. before the shift 2iχM ′ is introduced. This spectrum does
not depend on the sign of the mass derivative. The lower panels show instead the spectrum
Ω∗, which differs when the mass increases or decreases.

4.4.3 Small rate limit and unstable regimes

For small values of the mass derivative the quasi-normal frequencies can be approximated
as

Ωnℓ ≃ Ω
(0)
nℓ + δΩnℓ ϵ , (4.53)

with Ω
(0)
nℓ being the Schwarzschild QNMs and δΩnℓ being a constant complex coefficients.

This can be viewed as a Taylor expansion of the frequencies around ϵ = 0, namely

Ω(ϵ) = Ω(0) +
∂Ω

∂ϵ

∣∣∣∣
ϵ=0

ϵ+O(ϵ2) . (4.54)
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Figure 4.3: Relative error between the linear coef-
ficients δΩ computed numerically with the Leaver
method (upper panel) and those computed analyti-
cally with the eikonal approximation (lower panel).
It can be observed that, as expected, the eikonal ap-
proximation becomes better as ℓ increases.

The first order correction can be obtained from a linear fit of the numerical results, and
can also be estimated analytically in the eikonal limit from Eq. (4.40).

One can see from Fig. 4.3 that the agreement between the numerical δΩ and the one
computed with Eq. (4.40) gets better and better as ℓ increases, exactly as expected.

On the other hand, for high enough values of |M ′|, the imaginary part of the quasi-
normal frequencies can change sign due to the shift 2iχM ′, leading to the onset of an
instability. The sign of the conformal weight χ determines whether this unstable regime
can be developed in the increasing or decreasing mass case. Gravitational perturbations can
grow unstable for M ′ > 0. Indeed, it is evident from Fig. 4.2 that the rescaled frequencies
approach the limit of vanishing imaginary part for positive enough M ′. On the other
hand, scalar perturbations transform with conformal weight χ = −1, and therefore they
can become unstable for negative enough values of M ′. Electromagnetic perturbations are
instead always stable.

As previously stated, we are only interested in the range |M ′| < 1/16 for the mass
derivative. However, values of M ′ in this range can produce instabilities. In particular,
the instability threshold for the fundamental ℓ = 2 gravitational mode is M ′

Tr ≃ 0.0420,
while for the fundamental ℓ = 0 scalar mode is M ′

Tr ≃ −0.0436. The stability properties
for different perturbations are summarized in Table 4.1.

4.4.4 Time-domain waveforms

In the following analysis we will just consider the small mass derivative case, in order to
avoid possible instabilities. As already anticipated, in addition to including the shift in the
imaginary part, in order to obtain the physical spectrum, we also have to account for the
fact that the physical frequencies present an intrinsic time dependence determined by the
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M ′ > 0 M ′ < 0

Scalar ✗ ✓

Electromagnetic ✗ ✗

Gravitational axial ✓ ✗

Table 4.1: Possibility of developing an instabil-
ity for different kind of perturbations in the two
cases in which the BH mass is increasing and de-
creasing. The symbol ✓ signals that the quasi-
normal frequencies can have an instability for a
large enough |M ′|. On the other hand, the sym-
bol ✗ indicates that this is never the case.

evolution of the mass.
The appearance of a time-depending factor in the physical frequencies can be seen from

extracting the time evolution of the signal at x→ xC . One has

ψCH(T, x) = e−iΩT (x− xC)
−iΩηxC = e

−iΩ
∫

dw
2M(w) e−iΩx∗(xC)(x− xC)

−iΩηxC

= e
−iΩ

∫
dw

2M(w) (x− xC)
−iΩxC(η−η) = e−i

∫
ω(w)dw ,

(4.55)

where in the last line we defined the w-dependent frequency ω(w). The same computation
can be carried out close to the EH:

ψEH(T, x) =e−iΩT (x− xH)
−iΩηxH

= e−i
∫
ω(w)dw(x− xH)

−2iΩηxH

= e−i
∫
ω(w)dw e2iΩηxH ln(2M(w))(r − rH)

−2iΩηxH

= e−i(1−4ηxHM
′)
∫
ω(w)dw(r − rH)

−2iΩηxH ,

(4.56)

where we used the relation
∫

dw

2M(w)
=

1

2M ′ ln(2M(w)) , (4.57)

which is valid in the M ′ = const case.
Note that if we introduce again the small parameter ϵ≪ 1, the w-dependent frequency

at the horizon gets an order ϵ overall correction with respect to the one measured at the
outer horizon. In fact, one has

η xHM
′ϵ =M ′ϵ+O(ϵ2) . (4.58)

To summarize, two separate effects modify the QNM frequencies as a consequence of the
BH mass evolution. The first is a ‘static’ effect appearing already at the level of the rescaled
coordinates, which displaces the QNMs with respect to the Schwarzschild positions on the
complex plane. The second is the time-dependent scaling of the physical frequency with
the mass:

ω(w) =
Ω

2M(w)
. (4.59)

At this point, one can reconstruct the physical observable signal, which we show in Fig. 4.4.
Notice that the deviation from the static background signal is more evident in the

increasing mass case, because the damping of the real part of the rescaled frequency in the
complex plane adds up to the suppression of the physical frequency according to Eq. (4.59).
On the other hand, the two effects are competing in the decreasing mass case, canceling
out at the beginning, before the time-dependent enhancement starts prevailing.
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Figure 4.4: Signal evolution at the
CH at leading order in ϵ, for differ-
ent mass derivative values

4.5 Tidal response

In the first part of the work, we have discussed the QNM spectrum of a Vaidya BH,
assuming that the BH mass evolves at a constant rate. Here, we study a different type of
effect, namely the tidal deformability of the BH induced by an external perturbation.

In a relativistic context, the conservative tidal response of a compact object is parametrized
in terms of a set of coefficients, which are often referred to as Love numbers. It is well
known that, as opposed to neutron stars or other types of self-gravitating compact sources,
asymptotically-flat BHs in GR have vanishing static Love numbers [312, 363, 366, 367]. In
the following, we wish to study how this result gets modified for a BH with varying mass,
in the particular case of the Vaidya geometry (4.1).

4.5.1 Love numbers

Our starting point is the master equation (4.32). We will work under the assumption
that |M ′| = const ≪ 1: in other words, we will treat terms proportional to M ′ as small
corrections to the Schwarzschild solution. To see how the Vaidya corrections affect the
unperturbed Schwarzschild result, it will be enough to keep terms only up to linear order
in M ′. We will thus drop everywhere terms that are O(M ′2) or higher.

As opposed to the computation of the QNMs in Sec. 4.4, we are interested here in
a different boundary-value problem. In particular, we want to understand how the BH
responds when acted upon by an external static perturbation. We will thus start by
setting Ω̃ to zero in (4.32).3 Note that, as opposed to the case of an asymptotically-flat
Schwarzschild spacetime with M ′ = 0 [238, 312, 358, 366, 367], Eq. (4.32) has a different
singularity structure. This results in a change in the form of the falloff of the solutions
at the asymptotic boundary. In particular, at large values of x, R(x) will not be a simple
polynomial. In order to extract the response, we will thus first solve the equation in a
region that is sufficiently far from the CH, where the standard xℓ and x−ℓ−1 falloffs hold.
Then, we will perform a matching with the point-particle effective theory (see Sec. 4.5.2),
where the response coefficients are defined in a way that is independent of the coordinates.

3In reality, one might want to set to zero the frequency Ω∗ of the physical perturbation (see Eq. (4.52)).
However, since Ω̃ only enters quadratically in the master equation (4.32) and we are interested in the linear
order in M ′, whichever frequency is set to zero among Ω∗, Ω̃ or Ω is totally immaterial, as this will affect
the result only at order O(M ′2).
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Concretely, let us start by recalling the expression of the function f(x), and of its
derivative, appearing in Eq. (4.32):

f(x) = 4ϵ|M ′|xC
(
1− xH

x

)(
1− x

xC

)
,

f ′(x) =
4ϵ|M ′|xHxC

x2

(
1− x2

xH xC

)
,

(4.60)

where ϵ is again a book-keeping parameter to emphasize that we are taking |M ′| small.
In order to neglect corrections from the singular point at xC , we will focus on the region
xH ≤ x ≪ √

xH xC ≪ xC . This defines a “near zone” where both terms x/xC and
x2/(xH xC) in (4.60) are small, and can thus be neglected.4 Introducing the variable
z ≡ x/xH , in the near-zone approximation Eq. (4.32) then reduces to

4xCxHϵ|M ′|
[(

1− 1

z

)
R′′(z) +

1

z2
R′(z)

]
−
[
ℓ(ℓ+ 1)xH

z2
+
σ

z3

]
R(z) = 0 . (4.61)

Note that (4.61) recovers the usual master equation on Schwarzschild spacetime for ϵ→ 0,
as z → x, xH → 1 and 4ϵ|M ′|xC → 1. It is worth emphasizing that, even though xC no
longer appears as a singular point of (4.61), information about M ′ is still contained in xH .

Eq. (4.61) can be recast in a more convenient form by employing the following change
of variable and field redefinition:

z → y ≡ 1

z
,

R(y) → p(y) ≡ y−λR(y) ,
(4.62)

with

λ =

√
ℓ(ℓ+ 1)xH +

1

4
− 1

2
= ℓ+ 4

ℓ(ℓ+ 1)

2ℓ+ 1
|M ′| ϵ+O(ϵ2) . (4.63)

With this transformation, one recovers the canonical form of the hypergeometric equa-
tion [426, 427], i.e.,

y(1− y)p′′(y) + [c− (a+ b+ 1)y]p′(y)− ab p(y) = 0 , (4.64)

with a = λ + 1 −
√
1− σ, b = λ + 1 +

√
1− σ and c = 2λ + 2. This equation has two

linearly independent solutions, which can be expressed as

p1(y) = 2F1 (a, b; c; y) ,

p2(y) = y1−c2F1 (a− c+ 1, b− c+ 1; 2− c; y) .
(4.65)

Both p1 and p2 exhibit a logarithmic divergence at the horizon z = 1. To obtain the
physical solution that is regular at the BH horizon, we take the linear combination5

p(y) =
Γ(2− c)

Γ(a− c+ 1)Γ(b− c+ 1)
p1(y)−

Γ(a+ b)

Γ(a)Γ(b)
p2(y). (4.66)

4We stress that, despite the name, the near zone covers a wide region, and is not restricted to values of
x close to xH .

5Note that the master variables might not be directly observables. To impose the correct boundary
condition at the horizon, one should require that physical observable quantities are regular at xH . This
can be done by looking for instance at scalar quantities constructed with the master variable solutions.
See e.g. [238, 261].
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Expanding for z ≫ 1, one obtains

R(z) ∼ zλ+1
[
1 + k z−2λ+1

]
, (4.67)

up to an overall constant which corresponds to the amplitude of the external probe tidal
field. The relative coefficient k is

k =
Γ(2− c)Γ(a)Γ(b)

Γ(a− c+ 1)Γ(b− c+ 1)Γ(a+ b)
= (a+ b− 1)

Γ(a)2Γ(b)2

Γ(a+ b)2
sin(πa) sin(πb)

π sin(π(a+ b))
, (4.68)

and is related to the tidal Love numbers of the BH, as we will see more explicitly below.
Note that k vanishes for M ′ = 0, which is consistent with the result that Schwarzschild
BHs have vanishing static tidal response.

Let us focus for a moment on the growing term in Eq. (4.67). Transforming back to
physical coordinates, it reads

zλ+1 =

(
r

2M0

)ℓ+1

(1 + δtf(w, r)) , (4.69)

where

δtf(w, r) ≡ −(ℓ+ 1)

[(
4 + s

w − w0

2M0

)
− 4ℓ

2ℓ+ 1
ln

(
r

2M0

)]
|M ′| ϵ+O(ϵ2) . (4.70)

The function δtf is a correction to the asymptotic profile of the tidal field induced by the
adiabatic evolution of the BH. Note that δtf is a sum of two terms, a piece that is linear in
the null coordinate and a logarithmic term, which both vanish in the |M ′| → 0 limit.

Plugging the values of a and b for σ = 1, 0,−3 in (4.68), we obtain the response
coefficients for the various spins, perturbatively in the mass derivative, i.e.,

k = k(0) + k(1)ϵ+ . . . , (4.71)

where k(0) = 0 [238, 312, 358, 363, 366, 367], and the leading-order corrections to the
Schwarzschild result for different spins read

k
(1)
scalar =

ℓ3(ℓ+ 1)

2(2ℓ+ 1)2
Γ(ℓ)4

Γ(2ℓ)2
|M ′| ,

k(1)e.m. =
ℓ(ℓ+ 1)3

2(2ℓ+ 1)2
Γ(ℓ)4

Γ(2ℓ)2
|M ′| ,

k
(1)
grav. axial =

ℓ(ℓ+ 2)2(ℓ+ 1)3

2(2ℓ+ 1)2(ℓ− 1)2
Γ(ℓ)4

Γ(2ℓ)2
|M ′| ,

(4.72)

where we used the trigonometric identities and the property of the Euler’s gamma function,
Γ(ℓ+ 1) = ℓΓ(ℓ).

Note that, at linear order in the mass derivative, the Love numbers are constant, while
radial running and time evolution appear at quadratic order.

In summary, at large distances from the BH horizon, but still restricting to the near-
zone regime defined above, the solution to the static equation for a perturbation of spin σ
is

Rσ(w, r) ∼
(

r

2M0

)ℓ+1
[
1 + δtf(w, r) +O

(
2M0

r

)

+ kσ

(
r

2M0

)−(2ℓ+1)
(
1 +O

(
2M0

r

))]
,

(4.73)

where kσ can be read off from Eq. (4.72).
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4.5.2 Point-particle EFT

In order to gain insight on the physical meaning of the coefficients kσ computed above, we
will now resort to the point-particle EFT [206, 428] (see [207, 429–431] for some reviews).
The EFT has the advantage that it defines the induced response in a way that is coordinate
independent and more directly related to observable quantities. We will thus introduce the
Love numbers as coupling constants of operators localized on the point particle’s worldline
in the EFT, and compute them by matching with the full solution (4.73). Again, we will
work perturbatively in M ′, i.e. we will treat the Vaidya solution as a small correction to
the leading Schwarzschild geometry. We will discuss in detail the scalar-field case, and
report the result for spin-1 and spin-2 Love numbers at the end.

Indicating with Xµ a generic set of spacetime coordinates, the point-particle EFT,
including finite-size operators, has the following form:

SEFT = Sbulk + Sscalar + Spp + Sint , (4.74)

where Sbulk is the gravitational bulk action given by

Sbulk =
1

16π

∫
d4X

√−g gµν
(
Rµν − Tµν

)
, (4.75)

including the Vaidya SET, Sscalar captures the scalar dynamics in the bulk geometry,

Sscalar = −1

2

∫
d4X

√−g gµν∂µΦ∂νΦ , (4.76)

Spp describes the motion of the point particle, which to leading-order in the small-M ′

expansion is simply the worldline’s Nambu–Goto action on flat space,

Spp = −M0

∫
dτ , (4.77)

where τ parametrizes the worldline, and Sint describes finite-size effects i.e., schematically,

Sint =

∫
dτ e

∞∑

ℓ=1

µℓ
2ℓ!

(
P ν1(µ1 · · ·P

νℓ
µℓ)T

∇ν1 · · · ∇νℓΦ
)2

(4.78)

where P νµ projects onto the point-particle rest frame, e is an einbein enforcing reparametriza-
tion invariance of the worldline, and (· · · )T denotes the symmetrized traceless component
of the enclosed indices (see Refs. [206, 238, 358, 428] for details). The couplings µℓ in
Sint represent the Love numbers, which we want to match with the kσ coefficients derived
above. Note that the EFT action (4.74) contains Vaidya corrections; however, as we shall
see below, it will be enough for the matching to solve the equations to leading order,
effectively setting M ′ to zero.

Let us start by expanding the scalar Φ as Φ = Φtidal + Φresp, where Φtidal represents
the external tidal field, which solves the free bulk equation of motion 2Φtidal = 0, while
Φresp encodes the response that we want to compute and which solves the inhomogeneous
equation

2Φresp =(−1)ℓ+1µℓ
ℓ!
∇ρ1 · · · ∇ρℓ

(
δ
(3)
D

(
X −X(τ)

)

× P (µ1
ρ1 · · ·Pµℓ)Tρℓ

P ν1(µ1 · · ·P
νℓ
µℓ)T

∇ν1 · · · ∇νℓΦtidal

)
.

(4.79)

The idea is to solve (4.79) perturbatively in M ′. Concretely, we shall expand each com-
ponent in powers of ϵ as Φtidal = Φ

(0)
tidal + ϵΦ

(1)
tidal + . . . , Φresp = Φ

(0)
resp + ϵΦ

(1)
resp + . . . , and
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similarly for the Love number couplings, µℓ = µ
(0)
ℓ + ϵµ

(1)
ℓ + . . . , and the covariant deriva-

tives. However, since we already know that the induced static response of Schwarzschild
BHs is zero in GR [238, 312, 358, 363, 366, 367], we can set Φ

(0)
resp = 0 = µ

(0)
ℓ , and just

focus on linear quantities in ϵ. The vanishing of µ(0)ℓ implies that, at linear order in ϵ, we
can replace Φtidal on the right-hand side of (4.79) with Φ

(0)
tidal and replace the covariant

derivatives with simple derivatives in Minkowski space. The zeroth-order tidal field can be
written, in cartesian coordinates, as

Φ
(0)
tidal = ca1...aℓX

a1 . . . Xaℓ , (4.80)

or, equivalently, in spherical harmonics as CℓrℓYℓm(θ, ϕ) with some overall ℓ-dependent
amplitude coefficient [238]. Similarly, since Φ

(0)
resp = 0, on the left-hand side of (4.79),

we can replace Φresp with Φ
(1)
resp and the covariant d’Alembert operator with the Laplace

operator in flat space. All in all, the response field equation boils down to

∇⃗2Φ(1)
resp = J , (4.81)

with the source term on the right-hand side given, in the rest frame of the point particle,
by

J = µℓ(−1)ℓ+1 ca1...aℓ∂(a1 . . . ∂aℓ)T δ
(3)
D (X⃗) . (4.82)

Eq. (4.81) can be solved in Fourier space. From the Green’s function of the Laplace
operator in flat space, G(p⃗) = −|p⃗|−2, one obtains [238]

Φ̃(1)
resp(p⃗) = µℓ(−i)ℓ ca1...aℓ

p(a1 . . . paℓ)T
|p⃗|2 . (4.83)

Finally, from the inverse Fourier transform,

Φ(1)
resp = µℓ(−i)ℓ

∫
d3p⃗

(2π)3
eip⃗·X⃗ca1...aℓ

p(a1 . . . paℓ)T
|p⃗|2

= µℓK ca1···aℓX
a1 · · ·Xaℓ

(
|X⃗|2
4

)− 1
2
−ℓ

,

(4.84)

with the prefactor

K =
(−1)ℓ

2ℓ+3
√
πΓ
(
1
2 − ℓ

) . (4.85)

By comparing the EFT solution Φ
(1)
resp with the full solution Φ = R(x)Yℓm(θ, ϕ)/x where

R(x) can be read off from (4.73), to linear order in ϵ, we can express the EFT Love number
coefficients µℓ in terms of k(1)scalar in (4.72). The result is

µ
(1)
ℓ =

(−1)ℓ
√
π

2ℓ−2
Γ

(
1

2
− ℓ

)
(2M0)

2ℓ+1 k
(1)
scalar . (4.86)

A similar procedure can be followed in the case of electromagnetic and gravitational
axial perturbations. To describe electromagnetic response, one has to introduce in the bulk
the electromagnetic action

Sem = −1

4

∫
d4x

√−gFµνFµν . (4.87)
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The metric is expanded in perturbations as

gµν = g(B)
µν + hµν + . . . , (4.88)

where g(B)
µν is the Minkowski flat metric plus perturbative corrections inM ′. The interacting

part of the action can be constructed as

Sint =

∫
dτ e

∑

ℓ

[
µEℓ
2ℓ!

(
P ν1(µ1 · · ·P

νℓ
µℓ)T

∇ν1 · · · ∇νℓ−1
Eνℓ

)2

+
µBℓ
4ℓ!

(
P ν1(µ1 · · ·P

νℓ
µℓ)T

P βα∇ν1 · · · ∇νℓ−1
Bνℓβ

)2

+
µCBℓ
4ℓ!

(
P ν1(µ1 · · ·P

νℓ
µℓ)T

P βα∇ν1 · · · ∇νℓ−2
B

(2)
νℓ−1νℓ|β

)2
]
,

(4.89)

where the sum over ℓ starts from ℓ = 1 for the first two terms and from ℓ = 2 for the
last one. The objects Eµ, Bµν e B(2)

µνβ are related to the electric and magnetic fields, and
the magnetic part of the Weyl tensor, respectively. In the rest frame of the point particle,
their only nonzero components, at leading order in the flat-space limit, are

Ei = −∂iAt ,
Bij = ∂iAj − ∂jAi ,

B
(2)
ij|k = C0ijk ,

(4.90)

where Aµ is the electromagnetic potential and Cµναβ is the Weyl tensor. This is all that
we will need on the EFT side.

As already discussed for the scalar case, one can split the field Aµ and hµν in a tidal
part and a response part, and then expand both to linear order in ϵ. Since the zeroth-order
response is vanishing, one obtains an inhomogeneous equation for the linear correction in
the form (4.81), with a source term involving derivative computed on a flat background.
The relevant equations for linear electromagnetic and gravitational response can be found
in [238, 377]. To perform the matching, we shall use the t-component of the four-potential,
the angular components of Bij and the components Ctrij of the Weyl tensor. The latter
can be directly related to the Regge–Wheeler master variable ψ defined as auxiliary field
in Appendix B.1.3 in the static limit.

The result of the matching is:

µ
E,(1)
ℓ =

(−1)ℓ+1ℓ
√
π

2ℓ−1(ℓ+ 1)
Γ

(
1

2
− ℓ

)
(2M0)

2ℓ+1 k(1)e.m. ,

µ
B,(1)
ℓ =

(−1)ℓℓ
√
π

2ℓ−1(ℓ+ 1)
Γ

(
1

2
− ℓ

)
(2M0)

2ℓ+1 k(1)e.m. ,

µ
CB ,(1)
ℓ =

(−1)ℓ+1ℓ(ℓ− 1)√
π(ℓ+ 1)(ℓ+ 2)2ℓ+1

Γ

(
1

2
− ℓ

)
(2M0)

2ℓ+1 k(1)grav .

(4.91)

The relations in Eq.(4.85) and Eq.(4.91) are analogous to the ones that hold for the
Schwarzschild BH. However, this computation demonstrates the robustness of the result of
the previous section, namely that the Vaidya BH, unlike Schwarzschild, exhibits a nontrivial
tidal response, quantified by the Love numbers presented in Eqs (4.72).
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4.6 Conclusions

In this work, we studied perturbations of Vaidya BHs. In the first part, we revisited the
computation of the QNMs. Unlike previous works in the same context [391, 407–411], our
analysis was carried out in the frequency domain, under the assumption of a constant rate
of change M ′ of the BH mass.

In this framework, we computed the QNM spectrum both analytically in the eikonal ap-
proximation, and with a numerical approach based on Leaver’s continued-fraction method.
One main advantage of our approach is that, with respect to previous results in the litera-
ture, it allowed us to compute the frequencies with higher accuracy. In addition, it provides
a more transparent understanding of the physical effects associated with the dynamical BH
mass, including the stability properties of the solution.

On the other hand, the fact that the (null) time evolution of the physical frequencies
inversely tracks the dynamical BH mass, which was found numerically in [408], is naturally
recovered in our formalism, through the scaling of the physical frequencies ω ∝ M(w)−1,
as discussed in Sec. 4.4.4.

In the second part, we studied tidal effects on Vaidya BHs. As opposed to the QNM
analysis, we worked here under the assumption that M ′ is small (in addition to being
constant), and we computed explicitly the tidal Love numbers to linear order in M ′. Our
result shows that dynamical effects due to a time-dependent mass of the Vaidya BH induce
non-vanishing tidal response. This should be contrasted with the case of Schwarzschild
BHs, whose Love numbers are exactly zero in GR.
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Chapter 5

Parametrized deviations from GR

5.1 Introduction

The procedure known as BH spectroscopy, i.e., the identification of the different QNMs
of which the signal is composed in the ringdown [432–434], has been applied to tens of
events [103, 435, 436]. The detection of two modes simultaneously, despite being contro-
versial for the first three observing runs [278, 280, 437–443], is expected to be effective for
the current O4a run and future ones.

Detecting a second mode is a crucial ingredient for tests of GR. As already discussed in
the previous chapters, due to no-hair theorems, the QNM spectrum of a Kerr BH depends
uniquely on its mass and spin. If only one mode is detected, this can always be fitted to
a QNM frequency of a Kerr BH with a certain mass and angular momentum. However,
the measurement of any additional modes provides a consistency test of the Kerr QNM
spectrum and hence would allow us to spot deviations from GR. This clear identification
of possible beyond-GR effects makes BH spectroscopy one of the most promising ways to
test GR.

Currently, ringdown tests employ blind deviations from GR in the frequencies [436],
or agnostic deviations constructed assuming small-coupling and slow-spin parametriza-
tion [444–446]. On the other hand, theory-specific tests are limited to a handful of
cases [447]. This is because the computation of QNMs for rotating solutions beyond-GR
is incomplete. The main difficulties arise from: absence of analytic background solution,
non-separability of the perturbation equations, additional fields coupled to the metric, dif-
ferent boundary conditions [434]. It turns out that for a vast class of theories, the first
problem can be solved performing a double simultaneous expansion in the spin and in the
coupling constant of the theory [81, 448–451]. Then, one can choose whether to study
perturbations giving priority to slow-spin or small coupling. The former has the advantage
of being possible for metric perturbations, for which couplings between different fields are
tractable, at the cost of not being able to predict precisely QNMs at high spins (which are
relevant for astrophysical purposes) [452–458].

On the other hand, by assuming small-coupling for the perturbations, one can work out
a modified Teukolsky equation, which is, in principle, reliable at any spin [88, 356, 459].
The disadvantage comes from the construction itself of the Teukolsky equation, which is
based on curvature perturbations, and once one has some perturbations of perturbations,
as in the case outlined here, metric reconstruction becomes necessary. This feature strongly
hinders one from going beyond the first order in the coupling expansion.

The necessity of having reliable QNMs at high spins and the fact that observations seem
to narrow down the size of deviations from GR, make the modified Teukolsky framework
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preferable for the study of QNMs beyond GR. The scope of this chapter is to develop a
general formalism for the quick computation of QNMs in theories which have a perturbative
departure from GR. The framework is based on an assumption similar to one developed in
spherical symmetry [460–463]. The advantage of this formalism is that it can be used also
for the inverse problem, i.e., if a modification to GR is detected, one wants to be able to
reconstruct the potential, the metric, or even the action from which the deviation originated
from [462, 464, 465]. In general, this framework opens the path to the development of a
theory-informed description of QNM agnostic deviations.

The structure of the chapter is as follows: we first introduce the modified Teukolsky
equation and the formalism in section 5.2; then we show how to numerically compute the
coefficients with the continued fraction method and their regime of validity in section 5.3;
the formalism has already a few notable applications, which we use as a check for our
computations in section 5.4; finally, we outline our conclusions in section 5.5. We assume
that the background, unmodified metric is a Kerr BH of mass M = 1/2 and spin a. It is
worth noting that due to the choice of units, the spin parameter a ranges between 0 and
1/2.

5.2 Parametrized formalism

5.2.1 The linear coefficients

Let us start from the radial and angular Teukolsky equation for a spin s field, given
respectively by Eq. (3.99) and Eq. (3.104). We now assume that for a modified theory of
gravity whose modifications are small with respect to GR the equation governing radial
perturbations is the Teukolsky radial equation plus a correction to the potential linear in
the coupling constants

1

∆sR(r)

d
dr

[
∆s+1R′(r)

]
+ V (r) + ∆V (r) = 0 , (5.1)

and we assume that the modification is expanded in powers of r

∆V (r) =
1

∆

4∑

k=−K
α(k)

(
r

r+

)k
, (5.2)

where K is the most negative coefficient of the power series and α(k) are dimensionful coef-
ficients we assume to be small. This assumption is justified by the recent developments in
obtaining modified Teukolsky equations by assuming small coupling corrections to GR [88,
356, 459].

On the other hand, we can also assume that the angular equation remains unchanged.
This is due to the fact that the spheroidal harmonics are a complete basis of the 2-sphere
angular variables, and it can be shown that if one forces an angular expansion of the
Weyl scalars in spin-weighted spheroidal harmonics, all the mixing terms would enter at
second order in the coupling constants [88, 466]. Nevertheless, a modification on the QNM
frequencies will induce a modification to the separation constant Bℓm, hence, we also need
to include equation (3.104) in our analysis.

If we assume the couplings to be small 1, we are allowed to perform a Taylor expansion
1We will provide a more quantitative comment about this assumption in Sec. 5.3.4. For now just

consider these adimensional parameters to be small enough to allow a linearization of the eigenvalues ωnℓm
and Bℓm.
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of QNMs and separation constants around their GR values [460, 461]. Hence, we can write

ωnℓm ≃ ω0
nℓm +

∑

k

d
(k)
ω,nℓmα

(k) ,

Bℓm(aω) ≃ B0
ℓm(aω) +

∑

k

d
(k)
B,ℓmα

(k) .
(5.3)

In the following steps, we omit the indices s, n, ℓ,m, a, ω for clarity. The linear coefficients
dω and dB can be identified as the derivatives of ω and B with respect to the single coupling
α. To compute them, we perform the following steps. In the GR limit, one finds ω and
Bℓm as simultaneous roots of two functions constructed from the radial and the angular
equation

Lr [ω,Bℓm] = 0 , Lθ [ω,Bℓm] = 0 . (5.4)

The exact form of these functions depends on the chosen numerical method. For non-zero
modifications, we can perform a Taylor expansion of the two functions around α = 0

Lj
∣∣
GR + α

dLj
dα

∣∣∣∣
GR

+O(α)2 = 0 , (5.5)

where j = [r, θ] and we evaluate the derivative around their GR value ω = ω0, B = B0,
α = 0. By requiring that equations (5.5) is satisfied at each order in α, and expanding the
derivative by chain rule, we obtain

∂Lr
∂α

+
∂Lr
∂ω

dω +
∂Lr
∂B

dB

∣∣∣∣
GR

= 0 ,

∂Lθ
∂ω

dω +
∂Lθ
∂B

dB

∣∣∣∣
GR

= 0 ,

(5.6)

where we identified dω and dB from their definition in equation (5.3). By solving the
conditions above for dω and dB, we get

dω = −∂Lr
∂α

∂Lθ
∂B

(
∂Lr
∂ω

∂Lθ
∂B

− ∂Lr
∂B

∂Lθ
∂ω

)−1
∣∣∣∣∣
GR

,

dB =
∂Lr
∂α

∂Lθ
∂ω

(
∂Lr
∂ω

∂Lθ
∂B

− ∂Lr
∂B

∂Lθ
∂ω

)−1
∣∣∣∣∣
GR

.

(5.7)

In section 5.3 we show how to numerically define the functions Lj with Leaver’s continued
fraction method.

5.2.2 Maximum number of independent coefficients

In reference [467], Kimura realised that in the case of spherically symmetric perturbations,
there is always an ambiguity in defining the modified potential, upon a free reparametriza-
tion of the field. The same reasoning can be applied to the Teukolsky equation as well. If
we perform the following transformation in equation (5.1)

R(r) →
[
1 + εX(r)

]
R(r) + ε∆Y (r)R′(r) , (5.8)

assuming that ε≪ 1, then the equation that R(r) solves is

1

∆sR

d
dr

[
∆s+1R′

]
+ V +∆V +∆V +∆W

R′

R
= 0 . (5.9)
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By imposing ∆W = 0 we uniquely obtain the free function X(r) as

X(r) = c+
s

2
∆′Y − 1

2
∆Y ′ , (5.10)

which yields the "ambiguous" potential in the form

∆V = ε∆

[
Y ′



(
s2 − 1

) (
∆′)2

2∆
+ 2s− 2V − 1




+ Y

(
s(s+ 1)∆′

∆
− V ′ − V∆′

∆

)
− 1

2
∆Y (3) − 3∆′Y ′′

2

]
.

(5.11)

Now, upon suitable choice of the function Y , we can express ∆V in the r basis. It turns
out that the ansatz Y = Yj = yj(r+/r)

j yields

∆V =
εyj
∆

5∑

k=−3

rk+A
(k)
j

(
r

r+

)k−j
, (5.12)

which implies that j ≥ 1 since the maximum power of r in V is r4, and the full expression
of A(k)

j can be found in appendix B.3. In general, one can take a linear combination of the
free functions Yj and still get a potential that is equivalent to the starting one. Each term
of this linear combination contains the free parameter yj , which can be used to set to 0
one of the terms α(k) in equation (5.2). This reasoning allows us to fix the negative limit
in the power expansion to be K = 3.

It is possible that by choosing a different ansatz for Y one could further reduce the
number of coefficients in the equation. In fact, for the case of study of HDG that we treat
in another publication [468] the number of independent coefficients reduces to four (being
k = [−2, 0, 1, 2]) — see also [87]. Although we could not prove this is a general feature of
arbitrary modifications of the Teukolsky equation, we suspect that it was possible in that
case thanks to the expansion in the spin assumed for every coefficient. Indeed, we believe
that the ansatz for Y that would reduce the potential to the lowest number of terms would
be, perhaps, a rational function involving powers of a and r. To date, we could not find
such reduction.

5.3 Computation of the coefficients: the continued fraction
method

5.3.1 Continued fractions for the Teukolsky equation

We start here by recalling the Leaver method to compute the frequencies and the separation
constant for a Kerr spacetime. The first step to find a continued fraction expansion is to
assume an ansatz for the wavefunctions. Let us start from the radial equation, where we
assume the following ansatz [286]

R(r) = f−iσ−s(r − r−)p−1−2seqr
N∑

n=0

Rnf
n , (5.13)

where r± are the zeros of ∆,
f =

r − r+
r − r−

, (5.14)
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and we defined p = q = iω and

σ = σGR ≡ r+(ω − ωc)

r+ − r−
, ωc =

am

r+
, (5.15)

r± =
1

2
(1± β) , β =

√
1− 4a2 . (5.16)

With these definitions, the equation (3.99) takes the form

N∑

n=0

Rn

(
αrn−1

f
+ βrn + γrn+1f

)
fn = 0 , (5.17)

where the coefficients are

αrn =(n+ 1) (n+ 1− s− 2iσ) (5.18)

βrn =2n(2iσ + p+ qβ − 1)− 2n2 − 1− s−Bℓm

+ q
(
a2q + β + s

)
− 2iσ(p+ βq + iω − 1)

− p(βq + q + s− 1) (5.19)
γrn = (n− p− iω) (n+ s− p− 2iσ + iω) . (5.20)

The equation is satisfied when each term proportional to a power of f vanishes

βr0R0 + αr0R1 = 0 , (5.21)
γrnRn−1 + βrnRn + αrnRn+1 = 0 for n ≥ 1 . (5.22)

The path for the angular equation is similar. We define an ansatz to be finite at the regular
singular points y = ±1 [286]

S(y) = (1 + y)k1(1− y)k2eaωy
N∑

n=0

Sn(1 + y)n , (5.23)

where k1 = |m− s|/2 and k2 = |m+ s|/2. We can obtain a similar recurrence relation by
inserting this ansatz into equation (3.104), which, with an analogous reshuffling, reads

βθ0S0 + αθ0S1 = 0 , (5.24)

γθnSn−1 + βθnSn + αθnSn+1 = 0 for n ≥ 1 , (5.25)

where the coefficients are

αθn = − 2(n+ 1) (n+ 1 + 2k1) , (5.26)

βθn =n(n− 1) + 2n(k1 + k2 + 1− 2aω)

− 2aω(2k1 + s+ 1) + (k1 + k2)(k1 + k2 + 1)

− a2ω2 − s(s+ 1)−Bℓm , (5.27)

γθn =2aω(n+ k1 + k2 + s) . (5.28)

To invert the relation we can define the ladder operators which have the following
property Rn+1 = −λrnRn and Sn+1 = −λθnSn as (the superscript r/θ is omitted for clarity)

λn =
γn+1

βn+1 − αn+1λn+1
. (5.29)
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By initializing λN according to the Nollert expansion (explained in detail in appendix B.4),
the equations one needs to solve simultaneously to obtain the eigenfrequency ω and the
separation constant Bℓm are

Lr = λr1α
r
0 − βr0 = 0 , (5.30)

Lθ = λθ1α
θ
0 − βθ0 = 0 , (5.31)

which are nothing but (5.21) and (5.24).

5.3.2 Continued fraction beyond Teukolsky

We now turn our attention to the modified Teukolsky equation. It is always possible to
bring equation (5.2) into the following form2

∆V (r) =
A(0)

∆
+

A(1)

r+(r − r−)
+

1

r2+

2∑

k=0

α̃(k)

(
r

r+

)k

+
1

∆

K∑

k=1

α(−k)
(
r+
r

)k
,

(5.32)

where A(0), A(1) and α̃(k) are constants that can be obtained from the constants α(k)

appearing in equation (5.2), as explained in appendix B.6. First of all, we notice that the
terms multiplied by 1/∆ modify the behaviour of the equation at the horizon. In order
to take into account of these additional terms, we need to modify the definition of the
exponent σ appearing in the ansatz (5.13). By requesting that the solution is regular at
the horizon, we must replace the value of σ into

σ =
is

2
+

√√√√
(
σGR − is

2

)2

+
1

β2

4∑

k=−K
α(k) , (5.33)

where we took the positive sign of the square root in order to obtain the correct GR limit.
See Appendix B.5 for the derivation of the proper boundary conditions for the beyond-
Teukolsky case.

On the other hand, the terms α̃(1) and α̃(2) modify the behaviour at infinity of the
equation. This leads to a modification of the values of p and q into

q = ±
√
− α̃

(2)

r4+
− ω2 , (5.34)

p = −r+α̃
(1) + α̃(2) − 2r4+

(
qs− isω − ω2

)

2qr4+
, (5.35)

where the sign of q is chosen such that Re(q) > 0. This asymptotic behaviour is the reason
why we truncate the series in equation (5.2) at k = 4. By repeating the steps done for the
GR case, we obtain a modified version of equation (5.17)

N∑

n=0

Rn

[
αbg
n−1

f
+ βbg

n + γbg
n+1f

+
1

β2
(1− f)2

f

K∑

k=1

α(−k)
(

1− f

1− ηf

)k ]
fn = 0 ,

(5.36)

2In section 5.2.2 we showed that K = 3, but the following analysis works, in principle, for any value of
K, hence we keep it unspecified.
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where η = r−/r+ and

αbg
n =αrn −

1

β2

K∑

k=1

α(−k) , (5.37)

βbg
n =βrn − 2 (σGR − σ) (σGR + σ − ω) ,

− 2
A(0)

β2
+
A(1)

r+β
+
α̃(0)

r2+
(5.38)

γbg
n = γrn + 2i (σGR − σ) (s+ iω)

− 1

β2

K∑

k=1

α(−k) − A(1)

r+β
, (5.39)

and we used the fact that

∆ = β2
f

(1− f)2
, r − r− =

β

1− f
. (5.40)

If we fix a single modification k, we can get rid of the rational behaviour in f by multiplying
the equation by (1− ηf)k, obtaining the following expression

N∑

n=0

Rn

[(
αbg
n−1

f
+ βbg

n + γbg
n+1f

)
(1− ηf)k

+
α(−k)

β2
(1− f)k+2

f

]
fn = 0 .

(5.41)

We can figure out the coefficient relation (equivalent to that of equation (5.22)), which at
a given n takes the form

k+1∑

j=−1

(
γ̃n,j−1 + β̃n,j + α̃n,j+1

)
Rn−j = 0 . (5.42)

The coefficients appearing in the relation are given by

α̃n,j = (−η)j
(
k

j

)
αbg
n−j + (−1)j

(
k + 2

j

)
α(−k)

β2
, (5.43)

β̃n,j = (−η)j
(
k

j

)
βbg
n−j , (5.44)

γ̃n,j = (−η)j
(
k

j

)
γbg
n−j . (5.45)

We notice that, from the definition of the binomial, α̃n,j is non-vanishing for 0 ≤ j ≤ k+2,
while β̃n,j and γ̃n,j are non-zero for 0 ≤ j ≤ k. Now that we have a k+3 terms relation, we
can perform a Gaussian elimination to reduce it to a three-terms relation (details can be
found in the appendix of [462]). Once the three-terms relation is found, one can re-initialize
the ladder operator λrn and obtain the modified frequency and separation constant from
equations (5.30)–(5.31).

91



5.3.3 Numerical computation of the coefficients

In the previous two sections we explained how to obtain the functions Lr (ω,B, α) and
Lθ (ω,B). To compute the coefficients dω and dB as given in equation (5.7), we evaluate
the derivatives numerically with a 4-points centered stencil. For each pair of coefficients,
we initialize the ladder operators λN to some arbitrary low integer N , and then increase
it by one until the simultaneous relative change in dω and dB is smaller than a given
tolerance (which we chose to be 10−7). We computed numerically all the coefficients for
the following values s = −2, n = [0, 2], ℓ = [2, 4], m = [−ℓ, ℓ], k = [−3, 4] in a uniform
grid in a = [0, 0.495] with spacing ∆a = 0.005. The full list of coefficients is available in a
public git folder [469].

In figure 5.1 we show the results from this computation for the real and imaginary parts
of the d(k)ω coefficients for s = −2, n = 0, ℓ = 2, m = [−2, 2] for values of k = [−3, 4] and
of the spin a comprised between 0 and 0.45, as well as the real and the imaginary part of
d
(k)
B for the same n, ℓ,m and k = [−1, 2].

To directly apply our formalism to further studies, e.g., ringdown analysis of nonlinear
computations or data analysis, we also provide a python code and a jupyter notebook
with some examples [469]. It allows one to compute the QNMs and the separation constants
as function of n, ℓ,m, a and α(k) and can thus, in principle, be efficiently integrated in
commonly used code infrastructure. The code also allows one to access some of the earlier
results for the parametrized QNM framework for modifications to the Regge-Wheeler and
Zerilli potentials, for which coefficients beyond the fundamental mode have been computed
in reference [462]. The GR values for the QNMs have been taken from reference [433, 470].
For more details about how the code is structured and how it can be used, we refer to the
provided tutorial.

In principle, one should be able to compare the coefficients for a = 0 with those
computed in [460, 462]. However, we stress that for a = 0, equation (5.1) reduces to the
non-spinning limit of the Bardeen-Press equation [471], whereas the formalism of [460, 462]
was developed for the Regge-Wheeler and the Zerilli equation. The transformation between
the Bardeen-Press potential and the Regge-Wheeler/Zerilli potentials was obtained by
Chandrasekhar [321], but generalizing this to the case of the modified potential with generic
α(k) couplings is non-trivial.

5.3.4 Linearized regime of validity

The framework we developed is motivated by the assumption that any modification of
gravity produces only slight deviations from GR in astrophysical observables. In this
section, we expand on the regime of validity of the formalism, by providing a quantitative
assessment of the accuracy of such approach. It is worth noting that we can only asses the
error made by restricting to linear corrections to the frequencies, as defined in equation (5.3)
and not taking into account higher-order corrections to the potential, which are beyond
the scope of this work.

First of all, we give a heuristic motivation on the maximum size of the coefficients, by
requesting that the perturbation equation is not strongly modified at the boundaries of our
dominion and that ω ≃ O(1). At r → ∞, we have seen from equations (5.34) and (5.35)
that the only coefficients modifying the asymptotic structure of the potential are α(3) and
α(4). With some simple algebra, we can infer

α(3) ≲ 1 , α(4) ≲ 1 . (5.46)

On the other hand, the modifications in the potential affect the near-horizon expansion as
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Figure 5.1: In the top panel we show the real and the imaginary part of dω for n = 0, ℓ = 2, m = [−2, 2],
k = [−3, 4] and values of the spin from a = 0 to a = 0.45, and each point is on a step of ∆a = 0.005.
The inset focuses around the coefficients with k = [−3, 0]. In the bottom panel we show the real and
the imaginary part of dB for n = 0, ℓ = 2, m = [−2, 2], k = [−1, 2] and same values of the spin. The
inset focuses around the coefficients with m ≤ 0 and k = [−1, 0]. In both plots the black dot signals the
coefficient value for a = 0.
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Figure 5.2: We plot the threshold values α(k)
∗ against the spin for different values of k. With α

(k)
∗ , we

identify the limit value of a coupling at which an error of 1% the a linear and a nonlinear approximation is
obtained. The plot uses as nonlinear estimates the full continued fraction results. The error is evaluated for
the n = 0, ℓ = m = 2 mode and different values of k and of the spin a. The black dashed lines correspond
to the estimate (5.47)

in equation (5.33). The condition is such that the sum of coefficients must behave as

∑

k

α(k) ≲

∣∣∣∣∣2β
2σGR

(
σGR − is

2

)∣∣∣∣∣ . (5.47)

It is worth noting that when the superradiant condition ω = ωc is activated, one has σGR =
0, and we expect that the formalism is valid only if the sum of the α(k) is approximately 0.

In general, however, each power of k affects in a different way the effective potential.
In order to have a more quantitative estimate of the allowed regime of validity, we perform
two separate analysis. First, we compare the QNM frequencies computed with the lin-
ear approximation against those obtained with a full continued-fraction method discussed
above. We estimated the error on the frequencies as

∆ω ≡
√(

∆ωR
ωR

)2

+

(
∆ωI
ωI

)2

, (5.48)

where ωR,I are respectively the real and imaginary parts of the QNM. We computed the
error for several real positive and negative values of the couplings α(k) and extracted the
threshold values α(k)

∗ at which the error reaches 1%. The results are represented in figure 5.2
for the mode n = 0, ℓ = m = 2, for selected values of the spins between a = 0 and a = 0.45
and for k = [−2, 4].

It can be seen that there is a complicated dependence of the thresholds on the type
of modification we introduce in the potential. However, a main qualitative feature can be
read off, i.e. that, for any modification, the threshold tends to get smaller for higher spins.
The physical interpretation of that, is that, for a given beyond-GR effect in the modified
Teukolsky equation, rotation tends to exacerbate the deviation of the linear approximation
with respect to the true values of the QNMs. Bearing this caveat in mind, we will still
show in the next section that the linear approximation provides very good results in a
couple of known models of perturbation of rotating BHs with deviations from Kerr, also
for high spin.

Since the computation of QNMs with the continued fraction method is not immediate
nor straightforward to implement, we want to provide a quick estimate for the errors of
the single-k contributions. In this respect, we compute the diagonal quadratic corrections,
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Figure 5.3: Relative difference for the real part (solid line) and imaginary part (dashed line) of the funda-
mental ℓ = m = 2 mode for a massive scalar perturbation computed with the linear approximation against
the nonlinear results of [259].

as explained in appendix B.7. We checked the estimate α(k)
∗ by computing the error ∆ω

assuming that the nonlinear frequencies are obtained including quadratic coefficients. By
a qualitative comparison, the quadratic estimate works well to capture the error except
for k = 3, and partially for k = 4. Even though it is not as precise as the full nonlinear
comparison, the quadratic coefficients can be used as a quick way to understand what
threshold value to take for the couplings.

Lastly, we want to stress that the thresholds that we provided in this section, are
referred to the contribution of a single modification. Hence, it could be that, depending on
the values of the coefficients, the combination of multiple k would need larger or smaller
threshold values. This means that for a theory-specific case, the bounds on α(k) might
differ from what we inferred in this section, and need to be addressed case-by-case.

5.4 Applications

5.4.1 Massive scalar perturbations

The first example that we provide to test our formalism is for the computation of the
QNMs of a massive scalar field, a case extensively studied in the literature [150, 258, 259].
The radial and angular perturbation equations for a massive scalar field (s = 0) with mass
µ are

d
dr
[
∆R′(r)

]
+

(
K2

∆
− λℓm − µ2r2

)
R(r) = 0 , (5.49)

d
dy

[(
1− y2

)
S′(y)

]

+

[
a2
(
ω2 − µ2

)
y2 +Bℓm − m2

1− y2

]
S(y) = 0 . (5.50)

First of all, we bring the angular equation into the form of equation (3.104) by transforming
ω → ω + µ2

2ω . Then, by assuming µ ≪ 1, the radial equation is automatically brought in
the form of (5.1), with the only non-zero α(k) being

α(1) = µ2ar+

(
a− m

ω0

)
, α(3) = µ2r3+ , (5.51)
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Figure 5.4: Difference between the real (solid lines) and imaginary (dashed lines) part of the Dudley-Finley
QNMs computed either with the linear perturbative approach or the full continued fraction method. We
show results for n = 0 (left panels), n = 1 (central panels) and n = 2 (right panels), ℓ = 2, m = [−2, 2]
(bottom to top panels) for different values of the spin and of the electric charge. Note that the three curves
have different endpoints, as for a given Q the maximum value of a is amax = 1

2

√
1− 4Q2

where ω0 is the unperturbed Kerr frequency. The effect of the mass on the frequency at
linear order in µ2 is given by

ωL = ω0 +
µ2

2ω0
+ d(1)α

(1) + d(3)α
(3) . (5.52)

In figure 5.3 we show the difference ∆ω = |ωL − ωNL| between the linear results in (5.52)
and the nonlinear QNMs ωNL computed in [259] for ℓ = m = 2 modes.

5.4.2 The Dudley-Finley equation

As a second example, we would like to test our formalism against gravitational perturbation
of a Kerr-Newman (KN) BH in the limit of small charge, since the QNMs for a generic
electric charge Q have been computed numerically in [472] and fits are available in [447].
Unfortunately, the KN perturbation equation is not explicitly separable, not even in the
limit of small charge [473] in which at least electromagnetic and gravitational perturbations
decouple. One could apply the algorithm of [88, 356, 459] to obtain a modified Teukolsky
operator for the KN solution, but it goes beyond the scopes of this work. For the sake of
testing the method, we can restrict ourselves to the Dudley-Finley (DF) equation, a proxy
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equation for the perturbations of the Kerr-Newman metric [474–476]. The DF equation is
obtained by taking equation (3.99) and performing the following substitution

∆ → ∆+Q2 . (5.53)

We can then rescale the equation into the form (5.1) by assuming that Q ≪ 1/2 and by
defining a new spin parameter

ā = a+
Q2

2a
, (5.54)

such that ā2 ≃ a2+Q2. Retaining only the terms quadratic in Q, we can see that the only
non-zero α(k) terms that contribute to the equation (5.2) are

α(0) = Q2

[
is

2ā
(m− 2āω̄0)− (m− āω̄0)

2

]
, (5.55)

α(1) = Q2r+

[
ω̄0
m− āω0

ā
− is

ā
(m− 2āω̄0)

]
, (5.56)

α(2) = −Q2r2+ω̄
2
0 , (5.57)

where ω̄0 is the Kerr frequency evaluated at spin ā. The DF linear frequencies at spin a
are obtained by

ωL = ω̄0 +

2∑

k=0

α(k)d(k) . (5.58)

In Figure 5.4 we show the real and imaginary part of the absolute difference ∆ω = |ωL −
ωNL| between the linear results in (5.58) and the nonlinear QNMs ωNL computed via the
Leaver method in [476], for various spins and different values of the electric charge. We
make the comparison with ℓ = 2 modes, with all values of m = [−2, 2], for the fundamental
and first two overtones. The plot clearly shows that the discrepancy between the linearized
QNMs and the full nonlinear results scales with the charge, and the approximation remains
valid for all the different values of (n, ℓ,m) surveyed.

Finally, we comment on the fact that the errors grow for small values of the spin. This
is due to the fact that in order to bring the equation in the form of (5.1), we performed
the transformation (5.54), which brings a term 1/a to the denominator when m ̸= 0. In
other words, this transformation is valid as long as |Q| ≪ |a|. Nevertheless, the smallness
of the universal coefficients d(k) is such that the combination in frequency (5.58) is finite
and faithful to the nonlinear value.

5.4.3 Higher-Derivative Gravity

Now we want to check the prediction of QNMs in HDG using the parametrized method
against the results presented in [87]. In a companion paper [468], focused on the analysis
of QNMs in HDG, it is shown how to reduce the radial perturbation equation to the form
of equation (5.1), with the only non-vanishing values of α(k) being k = kHD = [−2, 0, 1, 2]

∆V ± = λ
∑

k∈kHD

α
(k)
±

(
r

r+

)k
, (5.59)

where the ± refers to the polarization of the perturbation and we collected out λ, the
normalized coupling constant of the theory.3 From this, we can compute the frequencies

3cfr. equation (30) of [468], for which α(k) = A(k)rk+, and the coupling constant has been previously
factorized out. Here we use λ to refer to the coupling constant, to avoid misunderstanding with the αq

used in [468].
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Figure 5.5: Real and imaginary part of the absolute difference between the QNM shifts computed with the
eigenvalue perturbation method of [87] and the ones computed with the parametrized formalism for the ±
polarizations of even cubic modes and the + polarization of the odd cubic mode

deviations, normalized by the coupling constant λ

δω =
ωHDG − ωKerr

λ
=

∑

k∈kHDG

α
(k)
± d(k) , (5.60)

for each parity, and each realization of the theory. In particular, the parity-preserving
operators in HDG, produce QNM shifts with definite parity, i.e. axial and polar. However,
the isospectrality between the two sectors is broken. On the other hand, parity-violating
operators produce QNM shifts with two different polarizations, that do not have a definite
parity. These shifts are equal and opposite [87]. In figure 5.5, we compare our results
against the computation of δω presented in [87], based on the eigenvalue perturbation
method [459, 477]. We truncate the analysis at spin a = 0.35, since the results for the
comparison are only available up to this value. The plot shows remarkable agreement
between the corrections computed with two different methods, strengthening the validity
of the parametrized formalism. In figure 5.5 we limited to show QNM shifts produced by
cubic operators in HDG, for the fundamental ℓ = m = 2 mode. We indicate polar and
axial, ℓ = m = 2 QNM shifts with δω±

even, and the two polarizations of parity-violating
corrections with δω±

odd. Notice that, since δω−
odd = −δω+

odd, we only represent δω+
odd. More

details on the definition of these modes can be found in [87] and in the companion paper
where an extensive study of QNMs of rotating BHs in HDG is carried out [468].

5.5 Conclusions

In this chapter we have shown how to connect small deviations parametrized by powers of
the radial coordinate r in the Teukolsky equation to small deviations in the eigenfrequen-
cies and in the separation constants of modified Kerr BHs. We proved that for each value
of n, ℓ,m there are up to nine independent coefficients in the radial parametrization, but
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for specific cases they could be less. We presented a robust method to compute the coeffi-
cients that control the linear corrections to the QNM frequencies and separation constants
through a generalization of Leaver’s continued fractions, and used it to compute them for
n = [0, 2], ℓ = [2, 4], m = [−ℓ, ℓ] and k = [−3, 4] in a range of spins between 0 and 0.495.4

These results are available online in a public git repository [469], together with a python
code and a jupyter notebook to compute the QNMs and separation constants. There
we also provide a tutorial demonstrating how to use the code, which can in principle be
applied to compute QNMs with arbitrary n, l, m, k and angular momentum besides those
we computed explicitly here.

We checked the quality of the predictions against three cases known in the literature:
perturbations of a massive scalar field around Kerr, the Dudley-Finley equation and the
QNMs of BHs in HDG. For all the three cases the frequencies predicted by the formalism
show great agreement with respect to the results in the literature.

These coefficients will be particularly useful for the computation of QNMs of rotating
BHs in alternative theories of gravity for which a modified Teukolsky equation is obtained,
in the spirit of the method developed in [88, 356, 459]. So far, this method has been
successfully applied to HDG [87], but other theories like scalar-GB gravity and dynamical-
Chern-Simons gravity [478] are good candidates for this computation. In order to study
those cases, it would be interesting to generalize our parametrized formalism by including
couplings between the Teukolsky equation and a scalar field, analogous to the analysis
of [461] in the case of static BHs.

The modified Teukolsky approach of [88, 356, 459] is currently limited by the fact that
metric reconstruction is only available for GR, meaning that it is not yet possible to extend
the method beyond first order in the coupling. For this reason, we did not explore further
the quadratic coefficients as it was done in the non-rotating case [461, 462], and we limited
the computation of the diagonal ones just to have a quick estimate of the error of the
method itself.

Let us also remark that a different approach to study beyond-GR QNMs based on
spectral methods has recently been introduced and successfully demonstrated for a wide
range of spins in Refs. [341, 342, 479–481]. These methods have the advantage of being
more flexible, but on the other hand, they have a much higher computational complexity
and cost than the standard perturbative approaches. In this regard, the results of our
method applied to specific theories may be useful to validate the spectral approaches.

The most intriguing open problem from our analysis is whether one can find a better
way to exploit the potential ambiguity, as done in section 5.2.2. With the choice we made,
we could reduce the number of independent coefficients α(k) to 8. For the case of HDG
we have been able to numerically reduce the number of free coefficients to just 4 [468].
One may wonder whether HDG has a special structure of the equations, or if there is
a fundamental transformation of the potential that could diminish the number of free
parameters.

Such discussion is relevant especially if one wants to use this formalism in a theory-
agnostic setup, e.g., to perform ringdown tests of GR or the inverse problem. Since the
coefficients d(k) have a spin dependence, it would be interesting to map them to Par-
Spec [444]. Another useful mapping would be with the WKB deviation coefficients, as
done in [464]. Finally, in the upcoming analysis, it would be interesting to compare the
detectability of beyond-Teukolsky effects against that of second order QNMs [291, 297,
352].

4We recall that in our conventions extremality corresponds to a = 1/2
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Chapter 6

Systematic bias in the ringdown
analysis of massive black holes

6.1 Introduction

In Chapter II, we provided a broad overview of the framework of BHPT. Let us briefly
recall here a couple of relevant aspects.

As we discussed, linear superpositions of QNMs provide a valid description of the
ringdown at intermediate times after the merger, while at later times, the GW signal is
instead dominated by a non-oscillatory power-law tail [304, 305, 482]. On the other hand, at
earlier times close to the merger, nonlinear effects determine the signal behavior [290, 483].
The QNM-dominated stage of the ringdown is also affected by (small) contributions beyond
linear perturbation theory, such as quadratic QNMs [291–297, 352, 484–488]. Moreover,
third-order effects in perturbation theory, such as the dynamical evolution of the BH mass
and the ensuing modification of the spectrum, have also been discussed in the recent
literature [298–300], as well as in Chapter 4.

Observation of the BH ringdown allows the extraction of crucial physical information,
related to the astrophysical properties of the source and to fundamental physics [489–
491]. We anticipated in Chapter 1, that thanks to the improvements in ground-based GW
detectors and upcoming space-based detectors, we are likely to be able to detect many GW
events with a high SNR [137, 142, 143, 145–147, 492, 493].

In particular, LISA [145, 492] is expected to observe anywhere from a few to thousands
of massive BH binaries per year (depending on the astrophysical model) [494–499]. Many
of these events could have SNRs ≳ 100 in the ringdown phase [297, 500], enabling pre-
cise parameter estimation with statistical uncertainties far smaller than those achievable
with the current LIGO-Virgo-KAGRA network. The reduction in statistical errors can
potentially expose systematic biases induced by waveform mismodeling of the GW signal.

Such mismodeling can arise because of unaccounted effects from the astrophysical envi-
ronment or new physics [501] (see also Chapter 5), but also from inaccurate or incomplete
modeling of known dynamics or truncation in perturbation methods [502–515].

In this work, we focus on the accuracy of ringdown waveforms, which is needed to
perform BH spectroscopy [267, 516, 517] and tests of GR [268, 518–520]. Specifically, we
analyze the systematic biases induced by capping the number of modes in the ringdown
waveform template. Indeed, given an observed ringdown GW signal in LISA, it is not
obvious a priori how many modes one should include in the template: too many modes can
lead to overfitting issues, while including too few will bias parameter estimation. Starting
with a template containing a maximal set of modes Nmax, which we take as our fiducial (or
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“true”) waveform, we compare it to approximate templates, including only the first N <
Nmax highest-SNR modes. As will be discussed in Sec. 6.3, we use fits of numerical relativity
(NR) simulations for 11 linear modes and 2 quadratic modes, for a total of Nmax = 13
modes. We estimate systematic errors using the linear signal approximation [104, 503, 521],
comparing them with the statistical errors obtained from the Fisher approximation [522].
We determine the minimum number of modes Nmin required for the estimation of unbiased
parameters and explore how this threshold varies for different systems. We compute Nmin

in two equivalent ways, by checking if the following criteria are satisfied: (i) systematic
errors are smaller than the statistical errors, (ii) the mismatch is below an SNR-dependent
threshold. Since we work in the frequency domain, we introduce a high-frequency cutoff
to avoid windowing artifacts, such as spectral leakage and mode contamination. Thus, our
Nmin is a window-insensitive lower bound (underestimate) of the number of modes needed
for accurate parameter estimation.

The work is organized as follows. In Sec. 6.2 we describe the details of our ringdown
model. In Sec. 6.3 we provide an overview of the formalism used to assess waveform in-
accuracy. Finally, in Sec. 6.4 we present and discuss our results. The appendices contain
robustness checks of our calculations and further dependencies of the results on the bi-
nary parameters. In Appendix C.1 we explicitly check the validity of the linear signal
approximation introduced in Sec. 6.2. In Appendix C.2 we discuss the issue of the starting
time. In Appendix C.3 we study the dependence of Nmin on the individual spins, mass
ratio, inclination and angular position of the source. In Appendix C.4, we compare our
findings, obtained with a single high-frequency cutoff for all modes, with a different ap-
proach, in which a phenomenological mode-dependent tapering in the frequency domain is
introduced. We also validate the frequency domain predictions by comparing the results
with that for a time domain model.

6.2 The ringdown model

6.2.1 Time and frequency-domain models

The ringdown signal in the time domain can be modeled as an infinite sum of damped
sinusoids. Specifically, we write the GW strain in time domain for t > t0 (where t0 is the
starting time of the ringdown) as

h+ − ih× =
M

dL

∑

ℓmn

[
Aℓmne

−iωℓmn(t−t0)e−(t−t0)/τℓmn

+A′
ℓmne

iωℓ−mn(t−t0)e−(t−t0)/τℓ−mn
]
−2Yℓm(ι, φ) (6.1)

where M is the remnant BH mass in the detector frame, dL is the luminosity distance to
the source, ωℓmn and −1/τℓmn are the real and imaginary parts of the QNM frequency, and
(ι, φ) are the angular coordinates of the direction of propagation as seen from the remnant
BH, with −2Yℓm the spin-weighted spherical harmonics. Note that for a given set of (ℓmn),
there are two mode contributions Aℓmn and A′

ℓmn: this is because for any given QNM
with frequency ωℓmn and damping time τℓmn, there exists a “mirror mode” also solving the
equations of motion, which corresponds to the second term in Eq. (6.1) [268, 470]. Finally,
for this study, we set the starting time to t0 = 20M after the luminosity peak. For further
details on the choice of the starting time, see App. C.2

We will further assume, as common in the literature [523, 524], that the amplitude of
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the mirror modes is given by
A′
ℓmn = (−1)ℓA∗

ℓ−mn, (6.2)

where ∗ denotes complex conjugation. This property follows from equatorial symme-
try [279, 294], i.e. from neglecting orbital precession in the merger waveform.

In the following, we define the Fourier transform of a time series1 u(t) as

ũ(f) =

∫ +∞

−∞
dt u(t)e2πift . (6.3)

Furthermore, to compute the Fourier transform, following [104, 470], we continuously
extend the ringdown for t < t0 by symmetrically mirroring the waveform across t = t0.
More precisely, we replace e−(t−t0)/τ → e(t−t0)/τ for t < t0, and divide the amplitude
by

√
2 to avoid double-counting. By ensuring continuity of the signal in t = t0, this

approach improves the behavior of the Fourier transform at high frequencies, preventing
the introduction of spurious Fourier components. This procedure gives:

h̃+,×(f) = eiωt0i
1∓1
2

M√
2dL

×
∑

ℓmn

AℓmnY
+,×
ℓm

τℓmn

(
L+
ℓmn ± L−

ℓmn

)
, (6.4)

where we separate the complex amplitudes in a modulus and a phase, Aℓmn = Aℓmne
iΦℓmn ,

and we defined the angular functions

Y +,×
ℓm = −2Yℓm(ι, 0)± (−1)ℓ −2Yℓ−m(ι, 0) . (6.5)

The Lorentzian functions read

L±
ℓmn =

e±i(mφ+Φℓmn)

τ−2
ℓmn + (2πf ∓ ωℓmn)2

. (6.6)

Given two times series u(t) and v(t), we define the matched filter inner product as

(
u | v

)
≡ 4Re

[∫ ∞

0
df

ũ(f)ṽ∗(f)
Sn(f)

]
. (6.7)

In Eq. (6.7), Sn(f) is the (one-sided) noise power-spectral density (PSD) of the detector
given in [145].

The signal measured by the detector also depends on the response of LISA to the in-
coming GW, which is encoded in the time-dependent LISA transfer function [525, 526].
For typical sources observed by LISA, the ringdown lasts from minutes to hours, which
is negligible compared to the timescale of LISA’s motion, thereby making the stationary
approximation sufficient for our work. In the stationary approximation, the LISA config-
uration is effectively described by two detectors [525, 527], which we will label by I, II.
The LISA response is then characterized by the antenna response functions (for each GW
polarization) of the two detectors, which are given by [525, 527]

F II
+,× (θ, ϕ, ψ) = F I

+,×
(
θ, ϕ− π/4, ψ

)
. (6.8)

1When the time domain data is real, the Fourier components satisfy the relation ũ(f) = ũ∗(−f).
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The antenna response functions depend on the sky position of the source, determined by
the angles θ and ϕ, and a polarization angle ψ, and their expressions read [528]

F+ (θ, ϕ, ψ) =

√
3

4

(
1 + cos2 θ

)
cos 2ψ cos 2ϕ ,

−
√
3

2
cos θ sin 2ψ sin 2ϕ

F× (θ, ϕ, ψ) =

√
3

4

(
1 + cos2 θ

)
sin 2ψ cos 2ϕ

+

√
3

2
cos θ cos 2ψ sin 2ϕ .

(6.9)

The signal measured in a single detector is then given by

h̃(f)I/II = F
I/II
+ h̃+(f) + F

I/II
× h̃×(f) . (6.10)

For the rest of the chapter, to avoid cluttering, we will drop the tilde indicating the Fourier
transform.

6.2.2 Validity regime of the QNM model

To assess the number of modes needed to ensure waveform accuracy, it is important to
account for the validity regime of the frequency-domain QNM model given by Eq. (6.4).
The time-domain damped-sinusoid QNM model given by Eq. (6.1) is only accurate at
intermediate times after the merger, because early times are dominated by the prompt
response and late times by nonlinear tails [270, 301, 305, 529–531]. In general, to isolate
the regime where the QNM model is valid, one needs to apply a window function W (t) to
the time-domain signal that removes the early and late time contributions. As a result,
the frequency-domain response corresponds to a convolution of Eq. (6.1) with the Fourier
transform of the window W (f).

The bandwidth of W (f) is roughly given by ∆f ∼ 1/∆t, with ∆t being the transition
time of the window, characterizing how fast the latter rises or drops. A very sharp transition
with small ∆t would thus result in a large frequency spread of the signal response, leading
to spectral leakage. In addition, if the window is discontinuous in its p-th derivative, the
high-frequency fall-off goes as 1/fp+1 (see Appendix C.4 for details). Thus, the smoothness
of the window is crucial when trying to mitigate spectral leakage.

Since the choice of window is not unique, in Fig. 6.1 we consider a typical ringdown
system and compare the frequency-domain waveforms obtained with the standard Heavi-
side window and with the mirroring technique adopted in our work. Since the Heaviside
filter and the mirroring produce a discontinuity at t = t0 respectively in the strain and
in its first derivative, the corresponding frequency falloffs are 1/f and 1/f2. We find that
with the Heaviside window, there is significant spectral leakage from the 220 mode, which
contaminates the peaks of the higher harmonics, such as the 330 and 550 modes shown in
Fig. 6.1. With the mirroring, the 330 mode is much less contaminated, due to suppressed
spectral leakage from the 220. However, due to its smaller amplitude, the 550 is still sig-
nificantly contaminated. More in general, depending on the choice of window function,
spectral leakage can contaminate the frequency-domain description of the sub-dominant
higher frequency modes.

In practice, to deal with spectral leakage, we use a high-frequency cutoff that ensures
that our model is not sensitive to the choice of window. The price that we pay is the loss
of information from some sub-dominant higher modes that are potentially contaminated
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Figure 6.1: Characteristic strain of three QNMs in the ringdown of a BBH with remnant mass M =
1.44 × 106M⊙ and dimensionless spin a = 0.66, observed at redshift z = 0.1. The modes h220, h330,
and h550 are shown in light blue, pink, and purple, respectively. Solid and dot-dashed lines indicate
the mirroring technique (hmirr

ℓmn) and a Heaviside time window (hΘ
ℓmn), applied before taking the Fourier

transform. The black dashed line represents the LISA strain sensitivity curve, while the thick grey vertical
dashed line marks indicates the PhenomA fcut. Observe that there is significant spectral leakage from the
dominant h220 mode into higher-frequency regions above fcut.

by spectral leakage from the dominant ones. We adopt the PhenomA [532] high-frequency
cutoff for the frequency-domain model, given by

fcut =

∑2
i=0 ciη

i

π(m1 +m2)
, (6.11)

where ci are numerical coefficients given in [532], and we introduced the symmetric mass
ratio η = m1m2/(m1 + m2)

2. In Fig. 6.1, we see that for ω220/(2π) < f < fcut, the
frequency-domain model is not sensitive to the choice of window. For f > fcut on the other
hand, the frequency-domain model becomes window-dependent. This cutoff is particularly
important for high-mass sources with M ≳ 108M⊙, as the QNM high-frequency tails
will match the low-frequency behavior of the LISA sensitivity curve. Note that fcut is
effectively set by the 220 mode, as it dominates the spectral leakage. Specifically, the model
is truncated where the 220 mode begins to exhibit windowing artifacts in the frequency
domain. While each individual mode is valid within approximately ∼ 1/τℓmn of its peak,
a common cutoff must be applied across all modes, since the model (and the data) are
constructed as sums over them.

To mitigate spectral leakage in a more systematic way, one could optimally tune the
transition width ∆t for a C∞ window (such as the Planck-taper [533]). This approach
is discussed in Appendix C.4. However, our practical approach with the frequency cutoff
still allows us to obtain results that are insensitive to the choice of window. Thus, in
our work, we essentially estimate a window-insensitive lower bound for the number of
modes Nmin needed for model accuracy. In Appendix C.4, we show results computed
from a phenomenological implementation of a tapered frequency-domain ringdown model
that captures features of an optimal window function. We find that the results for Nmin

obtained with the frequency cutoff of the mirrored frequency-domain response are indeed
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generically smaller than those obtained with the phenomenological optimal taper. This
confirms that our results for Nmin presented in the main text should be regarded as lower
bounds, independent of the choice of window. We have further validated our results by
comparing them to those obtained with an analysis of the mismatch in the time domain,
for a specific point of the parameter space (M, z) (c.f. Appendix C.4).

6.2.3 Modes

In our work, we use the frequency domain waveform of Eq. (6.4) with the 13 modes
listed in Table 6.2.3 as the “true” ringdown signal. These modes can be classified according
to the following three criteria:

• Order in perturbation theory. We consider both linear and quadratic modes.
Linear modes can be labeled with the angular and overtone numbers ℓmn. We choose
to label quadratic modes by (ℓ1m1n1)× (ℓ2m2n2), where ℓi and mi are the angular
numbers of the linear modes that source them. We will only consider quadratic
modes with angular number given by ℓ = ℓ1+ ℓ2 and m = m1+m2. The frequencies
and damping timescales of quadratic modes are given by ωℓmn = ωℓ1m1n1 + ωℓ2m2n2

and τ−1
ℓmn = τ−1

ℓ1m1n1
+ τ−1

ℓ2m2n2
.

• Overtone number. We only consider modes with n = 0 (fundamental modes) or
n = 1 (overtone modes).

• (Counter) rotation. As shown in Eq. (6.1), given a certain triplet (ℓmn), there
are two modes in the waveform with either positive or negative real frequency. We
will refer as “prograde” to the modes with Sign(ω) = Sign(m), and as “retrograde”
to those satisfying the opposite condition Sign(ω) = −Sign(m). Thus, each ℓmn
harmonic contains both a prograde and a retrograde mode.

Due to the homogeneity of the linear Teukolsky equation, the complex amplitudes of
linear modes, unlike the frequencies, depend on the binary configuration before the merger.
Therefore, they cannot be predicted by perturbation theory for a merger of comparable
mass objects, although they can be extracted from NR simulations [484, 530, 534, 535].
We compute the true values of the amplitudes Aℓmn and phases Φℓmn of the linear modes
as functions of the masses m1,m2 and spins a1, a2 of the progenitors using the fits of [530]
to NR simulations. To account for a starting time of the ringdown later than the lumi-
nosity peak, we multiply all complex amplitudes given in [530] by a suppression factor
e−iωℓmnt0e−t0/τℓmn , which corresponds to evolving the model of Eq. (6.1) for a time t0.

On the other hand, given the amplitude of linear modes, the amplitudes of quadratic
modes can be computed in perturbation theory [293–296, 487, 488, 536]. We use the fits
from NR simulations of [488] to obtain the spin-dependent amplitude of the quadratic
modes that we include in our model. Notice that our assumption of equatorial symmetry
implies that the ratio of quadratic to linear mode amplitudes is a single number independent
of the initial conditions [294, 488].

The frequencies and damping times ωℓmn and τℓmn are obtained by interpolating nu-
merical values computed with the continued-fraction method [268, 286, 470]. However, as
we will explain in the next section, for our analysis we need derivatives of the template
with respect to its parameters, which requires computing the derivatives of the QNMs fre-
quencies with respect to the remnant spin. Only for this purpose, we resort to the analytic
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fits described in [470], instead of the more accurate interpolation. Those analytic fits are
given by

ωℓmn = f1 + f2(1− χrem)
f3 ;

Qℓmn = q1 + q2(1− χrem)
q3 ;

τℓmn =
2Qℓmn
ωℓmn

,

(6.12)

where χrem is the remnant spin, and {f1, f2, q1, q2, q3} are given in [470]. The mass and spin
of the remnant, entering Eqs. (6.12) and (6.4), are computed with the phenomenological
formulae of [537, 538].

6.3 Assessing waveform inaccuracy

We will now provide an overview of the general approach for assessing the impact of
waveform inaccuracies in GW parameter estimation using the linear signal and Fisher
approximations, based on [104, 503, 521, 539], and introduce the relevant notation and
definitions.

Following [503], we assume that there exists a template hGR(θ; t) with parameters θ
which, when evaluated at the true parameters θ = θtr, can accurately describe the GW
signal. Geometrically, in the absence of noise, this simply means that the GW signal lies
on the template manifold spanned by hGR [503, 513, 521]. When using a less accurate
template, denoted as hAP, even in the absence of noise, we would find that the best-fit
parameters θibf do not match the true parameters θitr, where θi are the parameters common
to both hGR and hAP.

The errors induced by such waveform inaccuracies are a type of systematic error. Uncer-
tainties in parameter estimation induced by detector noise are instead a type of statistical
error. A waveform template is accurate when the systematic errors are smaller than the
statistical errors.

In the following, for completeness, we review the derivation for the different errors,
along with the waveform accuracy criteria. We set the GW data in a given detector to be
d(t) = hGR(θtr; t) + n(t), where n(t) is the detector noise. For stationary and Gaussian
noise, the likelihood p(d|θ) corresponding to the approximate template hAP is then given
by

log p
(
d | θ

)
= −1

2

(
d− hAP(θ) | d− hAP(θ)

)
, (6.13)

For the parameters common to both hAP and hGR, let θibf be the best-fit parameters
of hAP that maximize the log-likelihood given by Eq. (6.13). We introduce the total error
due to both waveform inaccuracy and detector noise as ∆θi = θibf − θitr. In the frequency
domain, Gaussian and stationary noise is uncorrelated across frequencies [539], i.e.,

⟨n(f)n∗(f ′)⟩ = 1

2
Sn(f)δD(f − f ′) , (6.14)

where δD is the Dirac delta function and Sn is the PSD. The symbol ⟨ · ⟩ indicates the
ensemble average over all possible noise realizations. For Gaussian and stationary noise,
note that Eq. (6.14) also implies the completeness relation given by

⟨
(
u|n
) (
n|v
)
⟩ =

(
u|v
)
, (6.15)
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for two frequency-domain signals u(f) and v(f). Given that stationary noise is uncorrelated
across frequencies, we choose to work in the frequency domain to compute ∆θi.

In general, computing ∆θi requires an exploration of the likelihood surface around the
maximum likelihood point. For high-dimensional parameter spaces, this typically requires
stochastic methods such as Markov Chain Monte Carlo or nested sampling. However,
when the SNR is large, and for small waveform modeling errors, one can simplify the
computation of ∆θi by using a combination of the Fisher approximation and the linear
signal approximation.

We introduce the optimal SNR of the approximate template hAP as

ρ =
√(

hAP | hAP

)
. (6.16)

When ρ ≫ 1, we can take advantage of the Fisher (or Laplace) approximation [522, 540].
For the parameters that are common to hAP and hGR, the likelihood region around θbf is
well described by a Gaussian distribution, and one can expand the template hAP in terms
of δθi = θi − θibf up to leading order. Explicitly, the likelihood then reads

p(d|θ) ≈ N exp

[
−1

2
Γijδθ

iδθj
]
, (6.17)

where Γij is the Fisher Information Matrix (FIM), defined by

Γij ≡
(
∂ihAP | ∂jhAP

)
|θ=θbf

, (6.18)

where we used the notation ∂i = ∂/∂θi. The normalization factor is given by N =√
det Γ/(2π).
The estimation of θibf requires maximizing Eq. (6.13), which amounts to solving2

(
∂jhAP(θbf) | d− hAP(θbf)

)
= 0 , (6.19)

where we have d(f) = hGR(θtr; f) + n(f). When the difference between hGR and hAP is
small, we can also linearize hAP in ∆θi, proceeding as in the linearization in δθi. By Taylor
expanding hAP around θibf to linear order in ∆θi, inserting it into the waveform difference
d− hAP(θbf), and solving for ∆θi, we obtain

∆θi = ∆(n)θi +∆(Sys)θi,

∆(n)θi =
(
Γ−1

)ij (
∂jhAP | n

) ∣∣∣
θi=θitr

,

∆(Sys)θi =
(
Γ−1

)ij (
∂jhAP | hGR − hAP

) ∣∣∣
θi=θitr

.

(6.20)

In Eq. (6.20), we have used the fact that in the linear signal approximation, the gradients
of the waveform are identical at both θibf and θitr, which also implies that Γij is the same
when evaluated at θibf or θitr. The systematic error due to waveform inaccuracy is given
by ∆(Sys)θi. Meanwhile, ∆(n)θi captures the bias due to a specific noise realization. When
averaged over all realizations, the one-point function ⟨∆(n)θi⟩ vanishes. In other words,
averaging over all noise realizations is equivalent to setting the noise realization to zero [541,

2Geometrically, the difference between the data and template is normal to the tangent subspace at the
maximum-likelihood point [503, 513].
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542]. However, the two-point function ⟨∆(n)θi∆(n)θj⟩ will not vanish, and, as we show
below, quantifies the ensemble averaged statistical error. We have that

⟨∆(n)θi∆(n)θj⟩ =

= ⟨
(
Γ−1

)ik (
Γ−1

)jl (
∂khAP | n

) (
n | ∂lhAP

)
⟩ |θ=θtr =

=
(
Γ−1

)ij
|θ=θtr ,

(6.21)

where, in the second step, we exploited the completeness relation of Eq. (6.15) and the defi-
nition of FIM. The statistical error is quantified through ∆(St)θi ≡

√
⟨(∆(n)θi)2⟩, resulting

in [104, 539, 540]

∆(St)θi =

√(
Γ−1

)ii
. (6.22)

We define the waveform template hAP to be accurate when

|∆(Sys)θi| < ∆(St)θi, (6.23)

and likewise hAP is inaccurate when the inequality in Eq. (6.23) is violated. In our work,
we use Eq. (6.23) as a criterion to determine the minimum number of ringdown modes
needed to ensure accurate parameter estimation.

Another way to quantify the accuracy of the waveform template hAP, relative to hGR,
is through the match, which is given by

M = max
tc,ϕc

(hAP|hGR)√
(hAP|hAP)(hGR|hGR)

. (6.24)

The match represents the normalized scalar product between the two templates, maximized
over a relative time shift tc and phase shift ϕc. A value of M close to one indicates that
the templates almost perfectly overlap. Note that one needs to align the templates by
maximization over ϕc and tc so that any mismatch is entirely attributed to waveform
inaccuracy and not to template misalignment.

Requiring Eq. (6.23) for all θi translates to [513, 543]

1−M <
D

2ρ2
, (6.25)

where 1 − M is the mismatch, D is the number of parameters of the model hAP, and
ρ is the optimal SNR. In the mismatch criterion given by Eq. (6.25), we have neglected
the contribution from the fitting factor, which makes the criterion conservative [104, 513,
521, 543–545]. In other words, when Eq. (6.25) is satisfied, the approximate waveform is
sufficiently accurate.

Following [546], we now discuss how to perform the maximization over ϕc and tc and
compute M. Attributing the time and phase shift to the template hAP, i.e. defining
ĥAP = e−iϕc+2πiftchAP, the inner product to be maximized is

(hGR|ĥAP) = 4Re

[
eiϕc

∫ ∞

0

hGR h
∗
AP

Sn(f)
e−2πiftcdf

]
. (6.26)

We then define G̃(f) = hGR · h∗AP/Sn(f), so that

(hGR|ĥAP ) = 4Re[eiϕcG(tc)], (6.27)
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Figure 6.2: QNMs ordered by
SNR from the loudest (up) to
the quietest (down). We take 3
representative values of spin and
mass ratio, fixing the primary
mass to 106M⊙, the luminosity
distance to 5Gpc, and the an-
gles to θ = ψ = ι = π/3, ϕ =
0. The odd-m modes are high-
lighted in blue. Note their ab-
sence in a mass-symmetric sys-
tem, and their increasing rele-
vance as we take a small q. Fur-
ther observe that they tend to
climb the ranking as we consider
more spinning systems.

where we used the definition of the inverse Fourier transform. The maximization of
(hGR|ĥAP ) over ϕc is carried out by simply taking the modulus of the complex quantity
G(tc). The match then reduces to

M = C ·max
tc

|G(tc)|, (6.28)

with the proportionality constant being C = 4/
√

(hGR|hGR)(hAP|hAP). To maximize the
quantity in Eq. (6.28) we employed the minimize_scalar function from scipy, using the
‘bounded’ method. This approach performs a minimization within specified bounds using
Brent’s algorithm, which does not require derivatives evaluation.

We end this section with a summary of the main points governing how we assess
waveform accuracy:

• We use the Fisher and linear signal approximations to estimate the systematic error
and statistical error when using the approximate template hAP. We then quantify the
waveform to be accurate when Eq. (6.23) is satisfied for every parameter in hAP.

• We also independently quantify the waveform accuracy using the mismatch criterion
given by Eq. (6.25), which is valid for small mismatches and large SNR. Doing so allows
us to further validate the use of Eq. (6.23), because the computation of the mismatch
does not explicitly use the linear signal approximation.

• Given the approximations made, our use of the waveform accuracy criteria (described
by Eq. (6.23) and Eq. (6.25)) is conservative.
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Figure 6.3: Comparison of statistical and sys-
tematic error for mass and spin, as a function
of the number of modes N for an approximate
template h

(N)
AP . The selected system has pri-

mary progenitor mass 106M⊙ and mass ratio
q = 0.5 and it is located at a luminosity dis-
tance of 10Gpc. The angles are fixed to the val-
ues θ = ψ = ι = π/3 and ϕ = 0. The true value
of the parameters is represented with the red
dashed line, while the offset of the round points
is given by the systematic error. Finally, the er-
ror bars represent the statistical error. The or-
ange and blue arrows indicate respectively the
points in which quadratic and linear retrograde
modes are included. Observe that the inclusion
of more modes tends to tame the systematic er-
ror.

6.4 Results

Equipped with the formalism described in the previous sections, we now present the results
of our work.

In the context of the ringdown, we will consider hGR to be the template given by
Eq. (6.4) including all the 13 modes from the set described in Sec. 6.2.3. On the other
hand, we will consider a family of approximate templates h(N)

AP including a number N < 13
of modes. Recall that the set of parameters {θi} of hGR includes all the amplitudes and the
phases of the N modes, the logarithm of the remnant mass logM , the spin of the remnant
BH χrem, and the four angles θ, ϕ, ψ and ι, while we restrict ourselves to the case in which
φ = 0, amounting to D = 2(N + 3) free parameters. Notice that we do not include the
luminosity distance dL in the Fisher matrix, as it is completely degenerate with the mode
amplitudes. Specifically, only the effective amplitudes Aeff

ℓmn = Aℓmn/dℓ are measurable.
Rather than working with Aeff

ℓmn, we choose to fix dℓ to its true value, in order to keep the
amplitudes O(1). For the same reason, we do not include the angle φ, which has no impact
on the observables besides shifting the mode phases ϕℓmn. In practice, we set φ = 0 for all
systems.

In order to study the dependence of the errors on the number of modes N , we adopt the
SNR of single-mode template as a criterion for ordering the QNMs. The SNR of each mode,
and the resulting hierarchy of the modes, are strongly dependent on the mass ratio and
the spin. For instance, highly mass-symmetric systems result in faint odd-ℓ modes, while
high spins can affect the spectrum in different ways, e.g. enhancing the contribution from
retrograde modes. Additionally, the angles, in particular ι, can influence the luminosity of
the QNMs.

In Fig. 6.2, we schematically show the dependence of the QNMs on the mass ratio
and spin. Crucially, we note that the overtone modes, described by the fits of [530], tend
to become louder and dominate the spectrum when we consider systems with large spin
and small mass ratio. We attribute this behavior to the extrapolation of the amplitude
values to very early time, where the fitted amplitude is still unstable. Hence, in order
to get physically robust results, one should carefully choose the ringdown starting time,
which could in principle vary for different systems. In our work, we adopt t0 = 20M as a
conservative choice for systems with non-spinning progenitors, motivated by a comparison
with NR waveforms that we describe in more detail in Appendix C.2.
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Figure 6.4: Minimum number of modes Nmin, represented by the color code, as a function of primary mass
and redshift. The mass ratio and the progenitor spins have been fixed to q = 0.5 and a1 = a2 = 0, while
we have averaged over sky localization. Observe that at low redshift z < 1 and for M/M⊙ ∼ O

(
106−7

)
,

we need Nmin ∈ [8, 10]. Further note that the contours track the behavior of the SNR, given the PSD of
LISA.

Given the ordering procedure described above, we proceed to compute the system-
atic errors ∆(Sys)θi and statistical errors ∆(St)θi, as described in Sec. 6.33. In order to
compute ∆(Sys)θi and ∆(St)θi, we incorporate Gaussian priors for the parameters of hAP,
following [506, 539, 540]. Specifically, we implement these priors by shifting the FIM by
a diagonal matrix εij , namely Γij → Γij + εij . Concretely, one can show that εii = 1/σ2i ,
where σi is the standard deviation of the Gaussian prior for parameter θi. A more in-
formative prior on θi corresponds to a larger εii. Due to the large dimensionality of our
FIMs, the inclusion of these terms can also be interpreted as a way of conditioning them
for inversion. In practice, we use a prior εii = 0.01 for amplitudes and phases of the modes,
and εii = 0.1 for the logarithms of mass and spin. This choice corresponds to a Gaussian
prior with a width σi = 10 for amplitudes and phases and σi = 3.16 for logarithm of the
mass and spin. Amplitudes and phases are typically ∼ O(1) or less, the spin ranges in the
interval [0, 1), and the error on the mass scales with the mass itself, hence, these priors
are uninformative and do not affect the results. For the angles, we set εθθ = ειι = 0.1 and
εϕϕ = εψψ = 0.025. This corresponds to covering the whole celestial sphere and all the
possible values of inclination and polarization angle.

In Fig. 6.3, we show the systematic and statistical errors for mass and spin, computed
with Eqs. (6.20) and (6.22). We fixed the primary progenitor mass to 106M⊙, the mass
ratio q to 0.5 and the spins to a1 = a2 = 0. The angles are fixed to θ = ψ = ι = π/3 and
ϕ = 0 and the luminosity distance to 10Gpc. The systematic error can be understood as
the difference between the best-fit values, depicted by the blue circles, and the true values,
represented by red dashed lines. The statistical error is presented as the blue vertical error
bars for each setup. We show both quantities as functions of the number of modes included
in the approximate template.

When a large number of modes are included, one can clearly observe that the system-
atic bias is mitigated. To understand the trend of the systematic bias with N , we first
discuss the behavior of the statistical error with increasing N . Here, there are, in fact, two
competing effects at play – one due to the increasing dimensionality and another due to the

3We also note here that while the formalism in Sec. 6.3 is presented for a single detector, we apply it for
the LISA detector network described in Sec. 6.2. We do so by summing over the relevant inner products
to obtain the network statistical and systematic errors (see Appendix A of [547]).

112



increasing SNR. Adding new modes increases the dimensionality of the parameter space,
which contributes to an increase in the statistical error. At the same time, the increase in
SNR with increasing N has the opposite effect. Overall, the increase in dimensionality is
the dominant contribution when N is large, owing to a decreasing SNR contribution from
the higher modes.

We now turn to the behavior of the systematic error as a function of N . The early
trend for N < 3 is oscillatory. In Appendix C.1, we show that this behavior for small
N corresponds to the non-perturbative regime, where the linear signal expansion is not
valid, owing to the large dephasing between hGR and h

(N)
AP . As we include more modes,

specifically when N > 3, we see a clear trend of decreasing systematic error with increasing
N . Moreover, when N > 3, we observe that the systematic bias is negligible, as the true
values are contained within the statistical errors.

Given the behavior of the systematic and statistical errors with N for a specific system,
we now move on to discuss what is the minimum number of modesNmin needed for unbiased
parameter estimation across parameter space. We independently compute Nmin using the
two criteria of Eq. (6.23) and Eq. (6.25). Given the non-trivial behavior of both the
systematic and statistical errors with N , we implement the following scheme to ensure
that our estimate of Nmin is robust. We start with h

(1)
AP, which includes only the loudest

220 mode and evaluate the criterion given by Eq. (6.23). If the criterion is already satisfied,
we estimate Nmin = 1. However, to ensure that this estimate is robust, we add the next
two modes, and check whether the criterion is still satisfied. If instead the criterion is not
satisfied for h(1)AP, we move on to N = 2 modes, and repeat the above steps until we find
the h(N)

AP that satisfies the criterion.
We first focus on the dependence of Nmin on mass M and redshift z, by fixing the

spins to a1 = a2 = 0, and the mass ratio to q = 0.5. We show the dependence on a1, a2,
and q in Appendix C.3. To compute Nmin as a function of (M, z), we average over several
configurations of sky localization, polarization and inclination angles. In practice, we
generate a large number of random configurations 4 of (θ, ϕ, ψ, ι) and compute the Monte
Carlo-averaged Nmin in both cases. Afterwards, we smooth out the sampling fluctuations
n the data with a moving average algorithm in two dimensions.

The final result is then rounded to the closest integer.
In the left panel of Fig. 6.4, we show the resulting Nmin obtained using Eq. (6.23)

(within the linear-signal approximation for the systematic and statistical errors). The
dependence of Nmin on the mass and redshift tracks the SNR behavior, controlled by the
LISA PSD. At small redshifts z < 1 and for masses M/M⊙ ∼ O(106−7), i.e. in the most
sensitive part of the LISA frequency band, a number of modes in the range Nmin ∈ [8, 10]
will be needed to ensure an unbiased estimate of the parameters. At higher redshift, we
find that there is a wide region of parameter space where Nmin ∈ [3, 6] is required. For a
given mass, increasing the redshift results in a fainter signal, for which fewer modes are
required. Similarly, for either very high or low mass, even at low redshift, Nmin decreases.
We checked that if we impose Eq. (6.23) only for the intrinsic parameters (mass, spin,
amplitudes and phases), rather than for all parameters (intrinsic and extrinsic), the value
of Nmin is essentially unchanged. In the right panel of Fig. 6.4, we show Nmin as obtained
using the mismatch criterion given by Eq. (6.25). We find strong agreement between the
results obtained using the two criteria. The main reason for this, as discussed in Sec. 6.2,
is that when Eq. (6.23) is satisfied for every parameter, then Eq. (6.25) is also satisfied.
The main difference between the two criteria is that the linear signal approximation is

4The number of configurations is chosen so that the error on the Monte Carlo average is under control,
typically δNmin ≪ 1.
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explicitly used in Eq. (6.23), while it is used implicitly in Eq. (6.25). Specifically, we did
not use the linear signal approximation in computing M, which results in slightly different
estimates for Nmin in different parts of the parameter space. Overall, we observe that in
most of the parameter space, the mismatch criterion results in a slightly lower estimate of
Nmin.

6.5 Conclusions

In this work, we carried out an analysis of the systematic bias due to an incomplete descrip-
tion of the GW ringdown signal, as observed by LISA. We employed a frequency-domain
waveform template with a maximal set of 13 modes including linear QNMs–considering
both fundamental modes and overtones–and two quadratic QNMs. We ranked the QNMs
by their single-mode SNR, and superimposed them to construct approximate ringdown
templates of increasing accuracy.

Our main result, represented in the waterfall plot of Fig. 6.4, is the minimum number
of modes Nmin required for unbiased parameter estimation. As discussed in Sec. 6.3,
due to the high-frequency cutoff introduced in our frequency-domain model to mitigate
spectral leakage from the dominant mode, the estimate for Nmin should be interpreted as a
lower bound that is insensitive to the choice of time window, used to isolate the ringdown
stage. We determined Nmin based on two equivalent waveform accuracy criteria: a direct
comparison of systematic and statistical errors within the linear-signal approximation,
and, separately, via the mismatch criterion given by Eq. (6.25) (with both methods in
excellent agreement). Our findings highlight the importance of carefully selecting the
waveform template across the LISA parameter space. For sources at redshifts around
z ∼ 2–6, corresponding to the peak in the merger rate of massive BH binary formation
and coalescence models [492], we find that a minimum of 3–6 modes are needed to avoid
systematic biases. For massive BH binary sources at low redshifts of z < 1, as many as 10
modes may be required to ensure unbiased parameter estimation.

While our work provides a robust and conservative estimate of the minimum number
of QNMs required for controlling systematics, there are some limitations that should be
acknowledged. First, we assume that the true GR signal is a pure linear superposition of
QNMs, as given by the waveform in Eq. (6.1). This representation is valid only within an
intermediate time window, as it excludes the prompt response at early times and the power-
law tails at late times. Although our high-frequency cutoff mitigates spectral leakage due
to the windowing, a full Bayesian time-domain analysis is an important future direction
to further assess the robustness of our results. Second, while there is general agreement
across different mode extraction algorithms for the fundamental modes, we observed some
discrepancies in the overtone amplitudes predicted by different fits [530, 534, 548, 549] for
certain combinations of source parameters. This could be a source of systematic errors per
se, especially for systems with loud overtones.

We would also like to emphasize that, while the use of the low-frequency approxima-
tion — compared to the full LISA response — may have a limited effect on the results,
the omission of Time Delay Interferometry (TDI) can have a larger impact. This is par-
ticularly relevant for low-mass sources, whose ringdown phase may be shorter than the
light travel time across the LISA arms. In general, the TDI response overlaps signals from
different times, mixing pre-merger, merger and ringdown components. In order to isolate
the ringdown phase and mitigate this issue, the analysis could be started at times later
than approximately 68 s 5 after the luminosity peak. However, this delay can span the

5This corresponds to the light travel time for a second-generation TDI configuration.

114



entire ringdown duration for some low-mass sources. Therefore, new methods for analyz-
ing ringdown signals are needed to account for complex detector responses, such as that of
LISA.
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Part III

Summary and outlook
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The rapidly evolving landscape of GW astronomy will provide unprecedented opportu-
nities to test gravity in the inspiral, merger and ringdown regimes [40, 103, 135, 136, 139,
141, 435, 436]. The next decades will see a synergy between ground-based, space-based,
and pulsar-timing experiments, enabling multiband observations of BH binaries across an
extraordinary mass range [137, 142, 143, 145–151, 491, 550, 551]. The laws governing
the Universe — that we try to access through GWs — are shaped both by the funda-
mental nature of gravity and by the astrophysical properties of source populations. These
two aspects are often deeply intertwined, and progress in understanding one is synergistic
with advances in the other. Hence, accurate theoretical modeling of GW phenomenol-
ogy is essential to disentangle fundamental physics from astrophysical effects and to avoid
systematic biases in data analysis. In this context, this thesis has been devoted to the
theoretical investigation of multiple aspects of GW–based tests of gravity.

In Chapter 1, based on [552], we considered a wide class of theories beyond GR, which
include an additional scalar degree of freedom: ST theories. Within this class, some impor-
tant no-hair theorems, already existing in the literature [214, 219, 231, 235], narrow down
the possibility of having BH solutions that differ from GR. However, these theorems do not
cover the most general case, as they assume either a restricted subset of ST theories, or
static BHs. We partially filled the gap in Chapter 2, demonstrating that in the most gen-
eral shift-symmetric ST theory, stationary BHs cannot support any scalar charge, defined
as the 1/r term in the far-field scalar profile. This result can be extended to d-dimensional
Myers-Perry BHs (with d > 4).

The proof is based on six core assumptions; relaxing some of them leads to well-known
loopholes in the theorem. In particular, we revisited solutions admitting scalar charge, such
as those where the scalar field has linear time dependence, or where the action includes
a coupling to the GB invariant. Moreover, even beyond the shift-symmetric case, we
showed that if higher-derivative couplings in the action are treated perturbatively, then
the existence of scalar hair can still be excluded. Again, non-trivial solutions may arise if
the scalar field couples non-minimally to curvature invariants like the GB term.

These theoretical considerations have important phenomenological implications. The
presence of scalar charge implies the emission of dipolar scalar radiation during the inspiral
phase of a BH binary, leading to deviations from GR in the GW signal [8, 121]. Although
our no-hair theorem significantly limits such effects, the known loopholes motivate focused
investigations. For instance, let us consider the case of theories in which the scalar is
coupled to the GB invariant through a dimensional coupling λ. In most of the models
of this kind, the scalarized branch of BH solutions, while exhibiting a maximum possible
value of the ratio of the BH mass and λ, it extends continuously to infinitely small values
of this ratio. This means that the best constraints on λ in this scenario come from BHs
with small mass [256]. Hence, binaries in the stellar-mass regime expected to be observed
by GW detectors such as LIGO-Virgo-Kagra, Einstein Telescope, and Cosmic Explorer,
are viable targets for exploring scalarization. In addition, it has recently been shown, that
it is possible, with the inclusion of higher-curvature terms, to construct models of BH
scalarization in a finite mass window [553]. In this scenario, scalarization could occur only
for SMBHs, leaving stellar-mass objects unaffected. This motivates other tests with LISA
and PTAs [554].

The second part of the thesis is devoted to BHPT, which provides a complementary
avenue for testing gravity. Unlike inspiral-based tests, which are sensitive primarily to
long-range interactions, BHPT can probe the full spacetime geometry and is therefore
sensitive to a broader class of deviations from GR. Our analysis of the ringdown is twofold.
On the one hand, we explored the impact of GR effects beyond linear BHPT. On the other
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hand, we also investigate possible beyond GR effects.
In Chapter 4, based on [300], we focus on the impact of a time-dependent BH mass on

the QNM spectrum. Such mass evolution may result from GW self-absorption during the
ringdown phase, or from environmental effects such as astrophysical accretion. To model
this scenario, we adopted the Vaidya metric — a well-known solution of the Einstein equa-
tions that describes an absorbing or radiating BH. The novelty of our approach, compared
to previous studies, lies in performing a frequency-domain analysis under the assumption
of a constant mass accretion or radiation rate.

We found that the QNM frequencies at a fixed time slice exhibit characteristic shifts
relative to the Schwarzschild spectrum, approximately linear in the time derivative of the
BH mass. Both the real and imaginary parts of the QNM frequencies tend to decrease with
an increase in the absolute value of the accretion/radiation rate. Furthermore, our formal-
ism recovers the adiabatic time evolution of QNMs, with frequencies scaling as ∝M(w)−1

— a behavior that was previously observed in fully numerical time-domain studies [409,
410].

We also identify linear instabilities in scalar and axial gravitational perturbations in,
respectively, the radiating and absorbing cases, if the mass evolution rate exceeds a critical
threshold. Additionally, within the same framework, we analyze the tidal response of
the Vaidya BH in the static limit of the perturbation equations. We find that the linear
static tidal Love numbers acquire perturbative corrections due to the time dependence of
the mass, in contrast to the vanishing Love numbers of stationary BHs in GR. Finally,
we show how these results can be consistently interpreted within the point-particle EFT
framework.

In Chapter 5, based on [318], we developed a new and widely-applicable method for
the computation of beyond-GR corrections to the Kerr QNM spectrum. In more detail,
we showed how small deviations in the Teukolsky potential, parametrized by powers of the
radial coordinate r, translate into linear corrections to the QNM frequencies and separation
constants of perturbed Kerr BHs. The linear coefficients of these corrections were computed
with a generalized continued-fraction method.

The validity of our predictions was confirmed by comparing with known results for
massive scalar perturbations on a Kerr background, the Dudley–Finley equation, and BHs
in HDG. This last application, which has been more extensively analyzed in the compan-
ion paper [468], represents an important step towards the exploration of the BH ringdown
spectrum in modified theories of gravity. The parametrized framework we developed, can
in principle be extended to include a larger class of modified gravity theories that admit
a perturbed Teukolsky equation, with more coupled degrees of freedom, such as Einstein-
scalar-GB or dynamical Chern–Simons gravity [457, 478]. As another possible future di-
rection, it would be interesting to map our formalism to a data-analysis framework, such
as ParSpec [444], in order to provide a connection between the theoretical quantification
of beyond GR effects and experimental tests thereof.

Finally, in Chapter 6, based on [319], we addressed the problem of theoretical biases
due to inaccurate ringdown waveform description in parameter estimation. In particu-
lar, we focused on the space-based detector LISA. We used a frequency-domain template
incorporating up to 13 QNMs, including both fundamental and overtone modes, along
with two quadratic QNMs. Modes were ranked by their single-mode SNR, and combined
progressively to build increasingly accurate templates. Employing two different criteria –
in excellent agreement – we found that 3–6 modes are necessary for unbiased parameter
estimation at redshifts z ∼ 2− 6, where LISA is expected to observe the peak of massive
BH merger rates. For lower-redshift systems (z < 1), up to 10 modes might be needed. In
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the future, it will be important to validate our findings with a full Bayesian time-domain
analysis.
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Appendix A

Circularity symmetry and higher
dimensions

A.1 Conserved current and circular spacetimes

We claimed in Sec. 2.2 that the components Jt and Jϕ of the Noether current Jµ, associated
with the shift symmetry in the scalar action, are zero in our setup. Although not obvious,
due to the presence in Jµ of possible higher derivative operators involving the curvature,
it is not hard to show that this is in fact the case as long as the conditions (i) and (iv) are
fulfilled.

We can express the shift-symmetry current in full generality as

Jµ = Fµν ∇νψ , (A.1)

where the tensor Fµν is a function of ψ, gµν and their derivatives. The idea of the proof,
which we formalize better in the following, consists simply in showing that, given ∇tψ =
∇ϕψ = 0, it is not possible to construct (using only the building blocks ψ, g and ∇) any
nontrivial Fµν with an odd number of indices r or θ if the spacetime has the isometries in
(i).1

Consider an open subset U of a four-dimensional spacetime, which has a continuous
isometry group associated with two commuting Killing vectors, labeled as ξ(a)µ , where
a = 1, 2. We define surface of transitivity [557] a privileged two-dimensional hypersurface,
which is everywhere tangent to the Killing vectors. A spacetime is circular if it has a
set of Killing vectors and it admits hypersurfaces of conjugate dimension 2, which are
everywhere orthogonal to their transitivity surfaces (orthogonal transitivity condition).
For a stationary circular BH, we have the Killing vectors ξ(a) = ∂t , ∂ϕ. We can then define
the surfaces of transitivity with the coordinates i = r, θ and choose the coordinates in such
a way that the components of the metric gia = grt , grϕ , gθt , gθϕ vanish.

We then need a further step. Let us define ζ(i) to be a set of independent vectors
orthogonal to the transitivity surface. A tensor T is said to be invertible at a point if all
the quantities

T
ν1, ... νq

µ1, ... µp ξµ1(a1) . . . ξ
µp
(ap)

ζ(i1)ν1 . . . ζ
(iq)
νq (A.2)

are zero for odd p.
It can be showed [249] that the circularity of the subset U implies the invertibility of the

Riemann and Ricci tensors on it. Furthermore, it can also be proven that the invertibility
property of a tensor is preserved when one takes its covariant derivative.

1A similar construction can be found, e.g., in Refs. [555, 556].
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Now consider Eq. (A.1). Given ∇tψ = ∇ϕψ = 0 and the symmetries of the Riemann
tensor, it is easy to check that the only way of having a nonvanishing Jt is to have nonzero
tensors constructed from R and covariant derivatives of R and ψ, with an odd number of
indices running over (r, θ). In other words, we should be able to construct a noninvertible
Fµν on U . However, this cannot happen, thanks to the invertibility of the building blocks.

The same can be shown for Jϕ. Hence, as long as the condition (iv) is verified, the only
nonvanishing components of the current are Jr and Jθ.

Note that the situation is different if we drop the assumption (iv) and allow the scalar
field to linearly depend on time. In this case, it is easy to verify that a non-vanishing Jt is
not incompatible with circularity anymore.

The same considerations can be extended to higher dimensions for the class of BHs
discussed in Sec. 2.3.

A.2 Myers-Perry BHs in d-dimensions

The generalization of the Kerr metric in d > 4 dimensions for a BH rotating in a single
plane is given by the Myers–Perry line element [237] (see Ref. [236] for a review),

ds2 =− dt2 +
µ

rd−5Σ
(dt− a sin2 θ dϕ)2 +

Σ

∆
dr2

+Σdθ2 + (r2 + a2) sin2 θ dϕ2 + r2 cos2 θ dΩ2
d−4 .

(A.3)

Besides the angles θ and ϕ defined in the usual way, we have d − 4 additional angles in
dΩ2

d−4. The functions appearing in the metric are generalizations of the well-known Kerr
ones,

Σ ≡ r2 + a2 cos2 θ , ∆ ≡ r2 + a2 − µ

rd−5
, (A.4)

with the mass and spin parameters being

M ≡ (d− 2)Ωd−2

16πG
µ , J ≡ 2M

d− 2
a . (A.5)

In d > 4, rotation around more independent planes is allowed. In the most general case,
the number of planes can be up to N = (d−1)/2. The metric is different for odd and even
d. In particular, we have for odd d:

ds2 =− dt2 + (r2 + a2i )(dµ
2
i + µ2i dϕi) +

µr2

ΠF
(dt− ai µ

2
i dϕi)

2

+
ΠF

(Π− µr2)
dr2 ,

(A.6)

where i = 1, . . . , N , ai is the spin associated to the i-th rotation plane and µi the corre-
sponding direction cosine. Summation over i is assumed and µ2i = 1.

For even d we have instead,

ds2 =− dt2 + r2dα2 + (r2 + a2i )(dµ
2
i + µ2i dϕi) +

µr2

ΠF
(dt− ai µ

2
i dϕi)

2

+
ΠF

(Π− µr2)
dr2 .

(A.7)

where the functions Π and F are defined as

Π(r) =

N∏

I

(r2 + a2i ) ,

F (r, µi) = 1− a2iµ
2
i

r2 + a2i
,

(A.8)
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and µ2i + α2 = 1.
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Appendix B

Perturbation equations and the
continued-fraction method

B.1 Perturbation equation in Eddington-Finkelstein coordi-
nates

In the following, we derive the equations for perturbations of various spin in the Jordan
frame and in the Eddington–Finkelstein coordinates. We will mainly work at the level of
the action, and show that the result recovers the equations obtained in the main text, after
transforming into rescaled coordinates. For the sake of the presentation, we just illustrate
the decreasing mass case (where w is the retarded time), as the increasing mass case is
completely analogous.

B.1.1 Scalars and photons

The dynamics of scalar perturbations obeys the Klein–Gordon equation

∂µ
(√−g gµν∂νΦ

)
= 0 . (B.1)

The scalar field can be expanded as

Φ(w, r, θ, ϕ) =
∑

ℓ,m

f(w, r)

r
Yℓm(θ, ϕ) . (B.2)

With this ansatz, on the Vaidya background
Eq. (B.1) reads:

(
1− 2M(w)

r

)
∂2f(w, r)

∂r2
− 2

∂2f(w, r)

∂w∂r
+

2M(w)

r2
∂f(w, r)

∂r

−
(
ℓ(ℓ+ 1)

r2
+

2M(w)

r3

)
f(w, r) = 0 .

(B.3)

Note that this equation is equivalent to the one derived in the Einstein frame in
Sec. 4.3.1. In fact, the master variable of Eq. (B.2) implicitly introduces a conformal
factor (2M(w))−1 encoded in the term r−1. This corresponds to the conformal weight
χ = −1 that we choose for the scalar field in the main text.

Electromagnetic perturbations are described by the Maxwell action

SEM[A, g] = −1

4

∫
d4x

√−g FµνFµν , (B.4)
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with the field strength Fµν = ∂[µAν]. The four-potential in the coordinates (w, r, θ, ϕ) can
be decomposed with the ansatz

A = A(polar) +A(axial) =




h(w, r)Yℓm
e(w, r)Yℓm

a(w, r)εi
j ∂jYℓm + k(w, r) ∂iYℓm


 . (B.5)

Note that the ℓ,m dependence has been left implicit in the functions h, e, k and a. Adopting
the gauge choice k(w, r) = 0, and after integrating out the angular part, one obtains the
reduced action

Sred =

∫
dw drL[a, h, e ] , (B.6)

with

L[a, h, e ] = ℓ(ℓ+ 1)

2

[
− ℓ(ℓ+ 1)

a2

r2
+ 2∂ua∂ra−

(
1− 2M(w)

r

)
∂ra

2

−
(
1− 2M(w)

r

)
e2 +

r2 (∂rh− ∂ue)
2

ℓ(ℓ+ 1)
+ 2e h

]
=

=L[a] + L[h, e] ,

(B.7)

where we defined the Lagrangians L[a] and L[h, e] describing the axial degree of freedom
a, and the polar modes (h, e), respectively.

Varying L[a] with respect to a, one gets the equation of motion
(
1− 2M(w)

r

)
∂2a(w, r)

∂r2
−2

∂2a(w, r)

∂w∂r
+

2M(w)

r2
∂a(w, r)

∂r

− ℓ(ℓ+ 1)

r2
a(w, r) = 0 .

(B.8)

Instead, L[h, e] can be conveniently rewritten, introducing an auxiliary field q, as

L[h, e, q] =ℓ(ℓ+ 1)

2

[
− ℓ(ℓ+ 1)q2

2r2
+ q (∂rh− ∂we) + 2eh

+

(
2M(w)

r
− 1

)
e2

]
.

(B.9)

It is straightforward to check that (B.9) is equivalent to L[h, e] upon using the q’s equation
of motion,

q(w, r) =
r2

ℓ(ℓ+ 1)

(
∂r h(w, r)− ∂ue(w, r)

)
. (B.10)

The introduction of the field q is convenient because it makes it easier to integrate out
the fields e and h from (B.9). Computing the equations of motion of e and h, and plugging
the solutions back into (B.9), one finds the following action for the single degree of freedom
q:

L[q] =− ℓ(ℓ+ 1)

2

[
ℓ(ℓ+ 1)

q2

r2
+

(
1− 2M(w)

r

)
∂rq

2 − 2∂wq∂rq

]
, (B.11)
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yielding the equation of motion
(
1− 2M(w)

r

)
∂2q(w, r)

∂r2
− 2

∂2q(w, r)

∂w∂r
+

2M(w)

r2
∂f(w, r)

∂r

− ℓ(ℓ+ 1)

r2
q(w, r) = 0 .

(B.12)

Note that this has the same for as Eq. (B.8). This fact, which is responsible for isospectral-
ity of the even and odd electromagnetic modes, is a consequence of the electric-magnetic
duality, as we will now explicitly show, mirroring exactly the Schwarzschild case [238].

Notice also that, like in the scalar case, we are implicitly introducing a conformal factor
through the master variable of Eq. (B.10). The conformal weight is related to the power
of r that appears in the definition on q(w, r). Indeed, q ∼ (2M(w))h, and, since F ∼ ∂q
we have the implicit transformation law for the field strength F → F . This corresponds
to the choice of χ = 0 that we made in the Einstein frame in Sec. 4.3.2.

B.1.2 Electric-magnetic duality

The two electromagnetic degrees of freedom a(w, r) and q(w, r) can be joined in the SO(2)
doublet

ξ(w, r) =

(
a(w, r)
q(w, r)

)
, (B.13)

whose dynamics is described by the action

S[ξ] =− ℓ(ℓ+ 1)

2

∫
dw dr

[
ℓ(ℓ+ 1)

r2
ξT ξ +

(
1− 2M(w)

r

)
∂rξ

T ∂rξ

+ 2 ∂uξ
T ∂rξ

]
.

(B.14)

The Maxwell equations can be written concisely using differential forms as

dF = 0 , d ⋆ F = 0 , (B.15)

where ⋆ represents the Hodge dual operation. This form makes it evident that the equations
are symmetric under F ↔ ⋆F , which is the well-known electric-magnetic duality.

The components of the field strength can be computed explicitly from the four-potential
in Eq. (4.19)

Fwr = −ℓ(ℓ+ 1)

2r2
q Yℓm

Fwa = ∂wa εa
b ∂bYℓm −

[(
1− 2M(w)

r

)
∂rq − ∂wq

]
∂aYℓm

Fra = ∂ra εa
b ∂bYℓm − ∂rq, ∂aYℓm

Fab = −ℓ(ℓ+ 1)

2
εab a Yℓm ,

(B.16)

where the indices a, b run over the angular coordinates. One can compute the dual compo-
nents ⋆Fαβ = 1

2ϵαβµνF
µν and verify that they yield precisely the same expressions, upon

exchanging a↔ q.
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B.1.3 Regge–Wheeler equation

The gravitational perturbations, like the electromagnetic ones, can be decomposed into
axial and polar sectors [271]. Such decomposition is useful as the spherical symmetry of
the Vaidya geometry ensures that the two sectors are decoupled at the level of the linearized
dynamics. In the following, we will focus on the axial sector only.

The axial metric perturbations can be expressed, in the coordinates (w, r, θ, ϕ), and in
the Regge–Wheeler gauge [271], as

h(axial)
µν =

∑

ℓm




0 0 − h0
sin θ ∂ϕ sin θ h0 ∂θ

0 0 − h1
sin θ ∂ϕ sin θ h1 ∂θ

Sym Sym 0 0
Sym Sym 0 0


Yℓm(θ, ϕ) , (B.17)

where h0 and h1 are functions of w and r. The dynamics of the odd fields can be obtained
from the action

Sgrav =
M2

Pl
2

∫
d4x

√−g
(
R− T λλ

)
, (B.18)

where T λλ is the trace of the SET of Eq. (4.3)), sourcing the Vaidya geometry.
Expanding (B.18) to quadratic order in the fields, and integrating over the solid angle,

one finds an action for h0 and h1 which is again more conveniently rewritten in terms of
an auxiliary field ψ as

S
(2)
axial = − ℓ(ℓ+ 1)M2

Pl
2

∫
dw drL[h0, h1, ψ] , (B.19)

where

L[h0, h1, ψ] =
r2ψ2

2
+ ψ

(
−2h0 + r(∂rh0 − ∂wh1)

)

+
(ℓ+ 2)(ℓ− 1)

r2

[(
1− 2M(w)

r

)
h21
2

− h0h1

]
,

(B.20)

where the auxiliary field ψ is expressed in terms of h0 and h1 via the relation

ψ(w, r) = 2h0(w, r) + r
(
∂wh1(w, r)− ∂rh0(w, r)

)
. (B.21)

Integrating out h0 and h1 from (B.20), one finally finds a quadratic action for the single
degree of freedom ψ:

L[ψ] = −
(
1− 2M(w)

r

)
∂rψ

2

2
+ ∂rψ∂wψ −

(
ℓ(ℓ+ 1)

r2
− 6M(w)

r3

)
ψ2

2
, (B.22)

which yields the equation of motion
(
1− 2M(w)

r

)
∂2ψ(w, r)

∂r2
−2

∂2ψ(w, r)

∂w∂r
+

2M(w)

r2
∂ψ(w, r)

∂r

−
(
ℓ(ℓ+ 1)

r2
− 6M(w)

r3

)
ψ(w, r) = 0 ,

(B.23)

representing the generalization of the Regge–Wheeler equation to Vaidya BHs.
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B.1.4 Master equation and spectrum

All in all, we can write down a single master equation (holding for both the increasing and
decreasing mass cases) for massless scalar, (polar and axial) electromagnetic and (axial)
gravitational perturbations on a Vaidya background in Eddington–Finkelstein coordinates
[391, 409, 558]:

(
1− 2M(w)

r

)
∂2ψ(w, r)

∂r2
+2s

∂2ψ(w, r)

∂u∂r
+

2M(w)

r2
∂ψ(w, r)

∂r
+

−
(
ℓ(ℓ+ 1)

r2
+

2σM(w)

r3

)
ψ(w, r) = 0 ,

(B.24)

where σ = 1, 0,−3 holds respectively for scalar, (polar and axial) electromagnetic and axial
gravitational perturbations.

Consider now the change of coordinates introduced in Eq. (4.6). The derivatives trans-
form as

∂

∂r
→ 1

2M(w)

∂

∂x

∂

∂w
→ 1

2M(w)

∂

∂W
− x

M ′(w)
M(w)

∂

∂x

∂2

∂r2
→ 1

4M(w)2
∂2

∂x2

∂2

∂r∂w
→ 1

4M(w)2
∂2

∂W∂x
− M ′(w)

2M(w)2
∂

∂x
− x

M ′(w)
2M(w)2

∂2

∂x2

(B.25)

Note that the term ∂M(w)/∂x is vanishing (from the inverse Jacobian of the coordinate
transformation). Approximating the mass evolution with a linear growth in the null time,
we get that,

modulo an overall factor, Eq. (B.24) becomes independent of u:
(
x− 1− 4|M ′|x2

)

x

∂2ψ(W,x)

∂x2
+2s

∂2ψ(W,x)

∂U∂x
+

(
1− 4|M ′|x2

)

x2
∂ψ(W,x)

∂x

−
(
ℓ(ℓ+ 1)

x2
+

σ

x3

)
ψ(W,x) = 0 .

(B.26)

Given the time-independent form of Eq. (B.26), we can further change coordinate from
W to T =W − s x∗, and obtain

∂

∂x
→ − s

f(x)

∂

∂T
+

∂

∂x

∂

∂W
→ ∂

∂T
∂2

∂x2
→ 1

f(x)2
∂2

∂T 2
− 2s

f(x)

∂2

∂T∂x
+ s

f ′(x)
f(x)2

∂

∂T
+

∂2

∂x2

∂2

∂W∂x
→ − s

f(x)

∂2

∂T 2
+

∂2

∂T∂x
.

(B.27)

Finally, we can use separation of variables in x and T by writing the usual Fourier
ψ(T, x) = exp (−iΩψT )Ψ(x). Introducing again the generalized tortoise coordinate, we
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get the very simple master equation
[
d2

dx2∗
+
(
Ω2
ψ − V (x)

)]
Ψ(x∗) = 0 , (B.28)

with
V (x) = f(x)

(
ℓ(ℓ+ 1)

x2
+

σ

x3

)
. (B.29)

Note that this equation recovers Eq. (4.32), upon identifying Ω̃ = Ωψ. From the
discussion of Sec. 4.3.3, in the gravitational case, we thus expect the following relation
between the frequencies:

Ωψ = Ω+ 2iM ′ . (B.30)

This relation can be understood as follows.
The master variable of Eq. (B.21) has the same spectrum of the component of the

metric perturbations in the Jordan frame hµν . On the other hand, the derivation of
Eq. (4.32) was performed in the Einstein frame, namely in terms of the metric perturbation
h̃ ∼ h/(2M(w))2. However, one also has to account for an extra 2M(w) factor relating the
off-diagonal metric perturbation components htj , where t is a “physical” time coordinate
and j = θ, ϕ, with the components hTj , where T is the rescaled time coordinate, i.e.,

htj = (2M(w))−1 hTj = 2M(w) h̃Tj . (B.31)

As we discussed in the main text, a factor 2M(w) provides the shift 2iM ′ (see Eq. (4.52))
and hence this relation yields exactly the expected connection between the two spectra.

B.2 Coefficients of the five-term recurrence relation

In this appendix, we report the full expressions for the coefficients of the initial five-
term recurrence relation introduced in the continued-fraction method for the perturbation
equations of the Vaidya spacetime. As an example, we show explicitly the decreasing mass
case, corresponding to the outgoing Vaidya metric, but the increasing mass case works
analogously:

αn =− (n+ 1)
(
16
∣∣M ′∣∣− 1

)
[
2
∣∣M ′∣∣

[
8
∣∣M ′∣∣ (−16(n+ 1)

∣∣M ′∣∣

+n
(
3− 2

√
1− 16 |M ′|

)
−2
√
1− 16 |M ′|+ 4ρ+ 3

)

+n
(√

1− 16 |M ′| − 1
)
+ 2ρ

(
3
√
1− 16 |M ′| − 5

)

+
√
1− 16 |M ′| − 1

]
+ ρ

(
−
√
1− 16 |M ′|

)
+ ρ

]
,

(B.32)
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βn =2
∣∣M ′∣∣

[
− 4

∣∣M ′∣∣
(
16
∣∣M ′∣∣

(
−2ℓ(ℓ+ 1)

(√
1− 16 |M ′| − 2

)

+16
(
6n2 + 3n+ σ

) ∣∣M ′∣∣+ (5n(2n+ 1) + σ)
√

1− 16 |M ′|

−2(5n(2n+ 2ρ+ 1) + 2ρ+ σ)
)
+ ℓ(ℓ+ 1)

(
6
√
1− 16 |M ′| − 8

)

−
√

1− 16 |M ′|(3n(6n+ 16ρ+ 3) + 8ρ+ σ) + 22n2 + n(84ρ+ 11)

+4ρ(4ρ+ 3) + σ

)
+ ℓ(ℓ+ 1)

(√
1− 16 |M ′| − 1

)

−
(
2n2 + 20nρ+ n+ 2ρ(6ρ+ 1)

)√
1− 16 |M ′|

+ 2n2 + 24nρ+ n+ 2ρ(10ρ+ 1)

]
+ ρ(n+ 2ρ)

(√
1− 16 |M ′| − 1

)
,

(B.33)

γn =2
∣∣M ′∣∣

[
4
∣∣M ′∣∣

(
8
∣∣M ′∣∣

(
2ℓ(ℓ+ 1)

(
5− 3

√
1− 16 |M ′|

)

+16(13(n− 1)n+ 5σ)
∣∣M ′∣∣+ 4(4(n− 1)n+ σ)

√
1− 16 |M ′|

+n(−33n− 32ρ+ 33) + 20ρ− 9σ
)
+ ℓ(ℓ+ 1)

(
7
√
1− 16 |M ′| − 9

)

−2
√

1− 16 |M ′|(2n(3n+ 7ρ− 3)− 9ρ+ σ)

+2
(
20nρ+ 7(n− 1)n+ 4ρ2 − 13ρ+ σ

))

−
(√

1− 16 |M ′| − 1
) (
ℓ(ℓ+ 1)− n(n+ 6ρ− 1)− 4(ρ− 1)ρ

)
]
,

(B.34)

δn =8
∣∣M ′∣∣2

[
8
∣∣M ′∣∣

[
2ℓ(ℓ+ 1)

(√
1− 16 |M ′| − 1

)

−16(3n(2n− 5) + 4σ + 6)
∣∣M ′∣∣− 2(n(2n− 5) + σ)

√
1− 16 |M ′|

−4
√
1− 16 |M ′|+ n(10n+ 8ρ− 25)− 12ρ+ 6σ + 10

]

−
(√

1− 16 |M ′| − 1
) (
ℓ(ℓ+ 1) + n(−2n− 4ρ+ 5) + 6ρ− σ − 2

)
]
,

(B.35)

ζn = 64ϵ3(16ϵ+ 1)((n− 4)n+ σ + 3). (B.36)

B.3 Ambiguity of the potential modifications

Here we list the explicit form of the coefficients of equation (5.12) when one transforms
the radial Teukolsky function as (5.8). These values hold for s = −2:

135



A
(−3)
j =

a6

2
j(j + 1)(j + 2) , A

(−2)
j = −3a4

2
j(j + 1)2 , (B.37)

A
(−1)
j =

a4

2
j
[
3j(j + 1)− 4B + 4m2 − 8iω + 10

]
+ 4ia3jm (B.38)

+
3

2
a2j

(
j2 + j − 1

)
, (B.39)

A
(0)
j = a3(2j − 1)

[
aω(ω − 4i)− 2m(ω + 2i)

]

− a2
[
3j3 − j

(
4B − 2m2 + 4iω − 1

)
+B + 2

]
(B.40)

− 4iajm− 1

2
j
(
j2 − 4

)
, (B.41)

A
(1)
j =2a4(j − 1)ω2 +

1

2
a2
[
3j2(j − 1) + 4B + 2ω(ω − 16i) + 8 (B.42)

+ j
(
−8B + 4m2 − 4ω(ω − 8i) + 2

) ]

+ 2am
[
2j(ω + 3i)− ω − 2i

]
(B.43)

+
1

2
j
[
3(j − 1)j − 4B − 11

]
+B + 2 , (B.44)

A
(2)
j = a2ω

[
ω − 16i(j − 1)

]
− 2a(2j − 1)m(ω + 2i) (B.45)

+
1

2
j(−3(j − 2)j + 8B − 24iω + 13)− 3(B − 4iω + 2) , (B.46)

A
(3)
j =2a2(2j − 3)ω2 +

1

2
(j − 1)

[
(j − 2)j − 4(B + 2)

]
+ 4i(5j − 6)ω , (B.47)

A
(4)
j =2ω

[
2(ω + 3i)− j(ω + 4i)

]
, A

(5)
j = 2(j − 2)ω2 . (B.48)

B.4 Nollert’s improvements of continued fraction

The procedure to numerically solve Teukolsky equation through Leaver’s method requires
in practice an initialization for the radial ladder operator λrn. Such quantity can be ex-
panded for large initialization number N as

λrN =
J∑

j=0

CjN
−j/2 +O (N)−(J+1)/2 . (B.49)

One can initialize the ladder operator just retaining the first term C0 = −1. However,
this approximation requires in general a very high initial value for N (which means long
computational time) and appears to be insufficient for frequencies with large imaginary
part (namely higher overtones). In [559], it was shown that adding further corrections
to the initial λrN improves the accuracy of the method, also allowing to capture higher
overtones. The (k + 3)-terms recurrence relation of equation (5.42) for n = N can be
expressed as

k+1∑

j=−1

MN,j RN−j = 0 , (B.50)

where we defined
MN,j ≡ γ̃N,j−1 + β̃N,j + α̃N,j+1 . (B.51)
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Dividing it by RN−k−1 and using the definition of ladder operator λrN = −aN+1/aN one
obtains the equation

k+1∑

j=−1

(−1)jMN,j

k+2∏

i=j+1

λrN−i = 0 . (B.52)

Plugging the definition (B.49) into the above formula, one can solve for the coefficients
order by order. By the definition of γ̃N,j , β̃N,j and α̃N,j , they scale with N as

α̃N,j = N2 + α̃1N + α̃0 (B.53)

β̃N,j = −2N2 + β̃1N + β̃0 (B.54)

γ̃N,j = N2 + γ̃1N + γ̃0 (B.55)

If we fix C0 = −1, then the other coefficients up to J = 5 can be written as

C1 = ±
√
−α̃1 − β̃1 − γ̃1 , (B.56)

C2 = α̃1 +
β̃1
2

− 1

4
, (B.57)

C3 =
C2
2

2C1
− C2

4C1
− α̃0 + β̃0 + γ̃0

2C1
− 1 + 2α̃1

4
C1 , (B.58)

C4 = α̃0 −
4α̃1 − 8β̃0 + 1

16
− 1 + 4α̃1

4
C2 −

C3

2C1
, (B.59)

C5 =
2α̃1 + 3

4C1
C2
2 − 8α̃0 + 4α̃1 + 3

16
C1 −

C2
3

2C1

− 4α̃1 + 3

16C1
C2 + C3

(
C2

2C2
1

− α̃1 − 1

)
+

(
C2

C1
− 3

4C1

)
C4 ,

and the sign of C1 is chosen such that Re (C1) > 0.
We can do the same expansion for the angular part, by expanding

λθN =

J∑

j=0

DjN
−j/2 +O (N)−(J+1)/2 . (B.60)

From equations (5.26)–(5.28) we can schematically say that

αθN = −2N2 + α1N + α0 (B.61)

βθN = N2 + β1N + β0 (B.62)

γθN = γ1N + γ0 (B.63)

By solving perturbatively in 1/N the relation (5.29), we obtain the following expression
for the coefficients Dj up to J = 4

D0 =0 (B.64)
D1 = γ1 (B.65)
D2 = γ0 − γ1 (1 + β1 + 2γ1) (B.66)

D3 = γ21(α1 − 2)− γ1(1 + β0 + β1)−D2(β1 + 4γ1 + 2)

D4 =α0γ
2
1 +

2D2
2 (β1 + 3γ1 + 2)

γ1
+D2 (β0 + β1 + 2γ1 + 1)

+D3

(
2D2

γ1
− β1 − 4γ1 − 2

)
(B.67)
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B.5 Derivation of the appropriate boundary conditions

The correct implementation of the continued fraction method requires that the ansatz that
one assumes properly encodes the behavior of the solution close to the singular points of
the equation. We will now show how such ansätze are properly derived in the beyond-
Teukolsky case.

Following [276], it is convenient to introduce the new master field

Y (r) = ∆
s
2

(
r2 + a2

) 1
2
R(r) , (B.68)

and the tortoise coordinate r∗ defined by

dr∗
dr

=
r2 + a2

∆
, (B.69)

Note that this tortoise coordinate has the asymptotic behavior

r∗
r→∞−−−→ r ,

r∗
r→r+−−−→ r+

β
ln(r − r+) .

(B.70)

This choice allows to rewrite the modified Teukolsky equation in a form in which the first
derivative of the master variable does not appear.

For r → ∞ it reads

d2

dr2∗
Y+



(
ω2 +

α̃(2)

r4∗

)
+

(
2isω +

α̃(1)

r3∗
− α̃(2)

r4∗

)
r−1


Y = 0 . (B.71)

According with the boundary conditions for QNMs, we choose the outgoing solution, which
reads Y ∼ rp−seqr∗ , where the parameter p and q are the ones introduced in Eq. (5.34)
and (5.35).

On the other hand, as r → r+, the modified Teukolsky equation reads

d2

dr2∗
Y + r−2

+



(
k+ − is

β

2

)2

+
4∑

−K
α(k)


Y = 0 , (B.72)

where k+ = r+ω − am = βσGR. In this case, we want the solution to be purely ingoing,
so we have

Y ∼ exp


− ir∗

r+

√√√√
(
k+ − is

β

2

)2

+

4∑

−K
α(k)


 ∼ (r − r+)

−iσ− is
2 , (B.73)

where σ is defined in Eq. (5.33).
Considering the factor relating the master fields Y and R, we obtain

R
r→∞−−−→ eiqrrp−2s−1 ,

R
r→r+−−−→ (r − r+)

−iσ−s .
(B.74)

One can then easily verify that the ansatz of Eq. (5.13), with the generalized definitions
of σ, p and q, correctly encodes the behavior of the solution R(r) at the boundaries.

138



B.6 Splitting of the potential

In this section of the appendix we show how to transform the potential (5.2) into the
potential (5.32). We start by splitting equation (5.2) into

∆V (r) =
1

∆

4∑

k=−K
α(k)

(
r

r+

)k

=
1

∆

4∑

k=0

α(k)

(
r

r+

)k
+

1

∆

K∑

k=1

α(−k)
(
r+
r

)k
(B.75)

For k ≥ 1, the first generic term in k of the sum can be rewritten as

α(k)

∆

(
r

r+

)k
=
α(k)

∆

(
rk − rk+
rk+

+ 1

)

= α(k)


 1

∆
+

1

r+(r − r−)

k−1∑

j=0

(
r

r+

)j

 (B.76)

For k ≥ 2 we can further simplify this term as

α(k)

∆

(
r

r+

)k
= α(k)


 1

∆
+

1

r+(r − r−)
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j=0
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rj+



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
 1

∆
+

1

r+(r − r−)
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r−
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1
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(
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∆
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1
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(
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+

1
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j=0

(
r
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)j k−2∑

n=j

(
r−
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)n

 (B.77)

where we obtained the last line by expanding the series and collecting the terms in r to
the same power. Summing over all the non-negative values of k yields

1

∆

4∑

k=0

α(k)

(
r

r+

)k
=

1

∆

4∑

k=0

α(k) +
1

r+(r − r−)

4∑

k=1

α(k)
k−1∑

j=0

(
r−
r+

)j
(B.78)

+
1

r2+

2∑

k=0

(
r

r+

)k 2∑

j=k

α(j+2)
j∑

n=0

(
r−
r+

)n
(B.79)

Now, we can perform a mapping between the coefficients α(k) of equation (5.2) and the
coefficients A(0), A(1) and α̃(k) introduced in equations (5.32). From a direct comparison
we have

A(0) =
4∑

k=0

α(k) (B.80)

A(1) =
4∑

k=1

α(k)
k−1∑

j=0

(
r−
r+

)j
(B.81)

α̃(k) =
2∑

j=k

α(j+2)
j∑

n=0

(
r−
r+

)n
(B.82)
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B.7 Diagonal quadratic coefficients

We show here how to compute the quadratic diagonal coefficients, defined from the next-
to-leading-order expansion

ω ≃ ω0 +
∑

k

d(k)ω α(k) +
1

2
e(k)ω α(k)2 ,

B ≃ B0 +
∑

k

d
(k)
B α(k) +

1

2
e
(k)
B α(k)2 .

(B.83)

By extending the Taylor expansion (5.5) to the second order in α, we obtain

Lj
∣∣
GR + α

dLj
dα

∣∣∣∣
GR

+
α2

2

d2Lj
dα2

∣∣∣∣∣
GR

+O(α)3 = 0 . (B.84)

By expanding with the chain rule the total derivative d2Lj/dα2|GR, one can read off the
quadratic coefficients as

eω =

(
∂Lr
∂B

∂Lθ
∂ω

− ∂Lr
∂ω

∂Lθ
∂B

)−1
[
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∂B

+ 2dω
∂2Lr
∂α∂ω

∂Lθ
∂B
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∂ω2
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(B.85)
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Appendix C

Systematic biases: validation tests
and further exploration of the
parameter space

C.1 Reliability of the linear signal regime

In Sec. 6.3, we used the linear signal approximation to estimate both, statistical and
systematic errors. For an accurate estimation of the statistical error, the validity of the
linear signal approximation coincides with the validity of the Fisher approximation [540].
Typically, when the SNR is large, considering linear deviations in the template around
the maximum likelihood is equivalent to approximating the likelihood surface around the
maximum as Gaussian.

We also used the linear signal approximation to estimate ∆(Sys)θi, which is the system-
atic error caused by the waveform inaccuracy.

Essentially, we made the approximation that the difference between hAP(θbf ; f) and
hAP(θtr; f) is linear in ∆(Sys)θi. The validity criteria of the linear signal approximation for
estimating statistical errors (as given in [540]) does not apply for estimating systematic
errors (which are induced by waveform inaccuracy). A fundamental reason for this is
that the systematic error is independent of the SNR, which can be seen from the fact
that ∆(Sys)θi given Eq. (6.20) is SNR scale invariant. The SNR scale invariance of the
systematic error holds even beyond the linear signal approximation because Eq. (6.19)
is SNR scale invariant, making the estimation of θibf (which is a solution to Eq. (6.19))
also SNR scale invariant. The validity of the linear signal approximation for computing
the systematic error is essentially tied to the magnitude of difference between the two
waveform templates. When the difference between hGR and hAP is “large”, we expect that
the simple linear approximation should not hold.

To further quantify the validity regime of the linear signal approximation, we obtain the
explicit dependence of ∆θi on the template difference by considering linear changes between
hGR and hAP. Following [503, 513], we first express hGR(θtr; f) = AGR(θtr; f) exp

[
iΨGR(θtr; f)

]

and hAP(θtr; f) = AAP(θtr; f) exp
[
iΨAP(θtr; f)

]
, where recall that hAP is only evaluated

at the parameters common with hGR. Introducing ∆A(θtr; f) ≈ AGR(θtr; f)−AAP(θtr; f),
and likewise ∆Ψ(θtr; f) ≈ ΨGR(θtr; f)−ΨAP(θtr; f), the systematic error ∆(Sys)θi simpli-
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Figure C.1: Relative waveform error (blue
dots) and the maximum dephasing (or-
ange dots) between hAP and the fiducial
template, as a function of the number of
modes. The system has primary mass
5×106M⊙ and is located at luminosity dis-
tance 5Gpc, with fixed θ = ψ = ι = π/3
and ϕ = 0. Nmin = 7 is shown with the
vertical dashed line. Observe that with
increasing N , the dephasing and relative
waveform errors decrease appreciably, al-
lowing for the use of the linear signal ap-
proximation in estimating Nmin.

fies to

∆(Sys)θa ≈
(
Γ−1

)ab (
[∆A+ iAAP∆Ψ] eiΨAP

∣∣∣∂bhAP

)

︸ ︷︷ ︸
θa=θatr

. (C.1)

Since ∆(Sys)θa scales linearly with both ∆A and ∆Ψ, neglecting O((∆(Sys)θa)2) is formally
equivalent to neglecting O((∆Ψ)2), O((∆A)2), and O((∆Ψ)(∆A)) terms. Thus, the linear
regime is determined by ∆Ψ ≪ 1 and ∆A ≪ AAP (or ∆A ≪ AGR). For instance, when
∆Ψ ≳ 1, we expect significant dephasing between the two templates, resulting in large
biases and a breakdown of the linear signal approximation. The amplitude corrections are
small when the relative waveform error (δh|δh)/ρ2 is small, where δh = hGR−hAP. Indeed,
when the relative waveform error is small and the SNR ratio of hGR and hAP is close to 1,
we also have that [104, 508, 513, 521] (δh|δh)/(2ρ2) ≈ (1−M). In the mismatch criterion
given by Eq. (6.25), we essentially neglect relative waveform and relative SNR errors, and
work in the limit of the match being close to 1. Thus, by checking when (δh|δh)/ρ2,
we validate the linear signal approximation, which is explicitly used in Eq. (6.20), and
implicitly used in Eq. (6.25).

In Fig. C.1, using the fiducial ringdown template described by Eq. (6.4), we illus-
trate the dependence of the maximum dephasing ∆Ψmax and the relative waveform error
(δh|δh)/ρ2 on the number of modes N . We consider the same system as the one in Fig. 6.3,
where we fixed θ = ψ = ι = π/3 and ϕ = 0. Recall that we estimated the minimum number
of modes for this system to be Nmin = 7. As expected, with increasing N , both ∆Ψmax

and (δh|δh)/ρ2 decrease, implying that the absolute and relative errors are increasingly
negligible when more modes are included.

We see that when N < 3, although relative waveform errors are at the percent level,
the maximum dephasing is close to 1, suggesting that the linear signal approximation is
not valid. Recall that one of the features that we observed in Fig. 6.3 was the oscillatory
behavior of ∆(Sys)θi with increasing N for N < 3. Such an oscillatory behavior is tied to
the breakdown of the linear signal approximation. We can see this through the oscillatory
exp(i∆Ψ) dependence in ∆(Sys)θi (when one does not further linearize ∆(Sys)θi in ∆Ψ).
As N increases to 3 ≤ N < 6, we observe that ∆Ψmax drops to O(10−1), and we enter
the regime where the linear signal approximation is valid. Crucially, for N ≥ 6, ∆Ψmax

is O(10−2), ensuring that the linear signal approximation is indeed valid in estimating
the minimum number of modes, and that our estimate of Nmin = 7 is robust. While we
demonstrated this validity for a particular system in Fig. C.1, the arguments apply across
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(a) SXS:BBH:0303 with non-rotating BHs and q=0.1. (b) SXS:BBH:0257 with a1 = a2 = 0.85 and q = 0.5.

Figure C.2: Comparison of multipoles drawn from NR simulations with multipoles obtained from Eq. (C.2).

parameter space. The agreement between our estimate of Nmin based on the (explicit lin-
ear signal approximation) criteria in Eq. (6.23) and the (implicit linear signal approxima-
tion) criteria in Eq. (6.25) further strengthens the robustness and self-consistency obtained
within the linear signal approximation.

C.2 Comparison with NR waveforms

When fitting numerical simulations using a superposition of QNMs, the analysis typically
begins at progressively later times until the linear regime associated with a particular
QNM emerges within the nonlinear numerical solution [530, 534, 549]; see, however, [535]
for a different perspective. Thus, one natural approach to assess the presence of a QNM
consists in observing a stable amplitude for a given time duration. This generally occurs at
intermediate times, with the exception of the dominant mode 220. Once the amplitude is
stable, its value is extracted and extrapolated to tpeak, with tpeak the time of the luminosity
peak of the (2, 2) mode. Therefore, highly damped QNMs, such as the overtones, present
fitted amplitudes much larger than actually present in the numerical solution. This means
that if one were to compute the SNR of the individual QNMs close to t = tpeak, the SNR
of the overtones would be larger than for the fundamental tones.

As explained in Sec. 6.3, to prevent this effect and, more generally, back-extrapolation
from corrupting our analysis, we choose the ringdown starting time t = t0 by comparing
the ringdown model in Eq. (6.4) (with the fits in [488, 530]) directly with NR simula-
tions. In particular, we require that, for each (ℓ,m), the difference between the amplitude
obtained from the fits and that extracted from the simulation to be smaller than a pre-
scribed tolerance. We select two sources from the catalog of the SXS collaboration [560],
SXS:BBH:0303 and SXS:BHB:0257, which correspond to (a1 = a2 = 0, q = 0.1) and
(a1 = a2 = 0.85, q = 0.5) respectively. To compare the amplitudes, we first decompose the
NR signal into its multipole (ℓ,m) components and then compare them with hFitℓm , obtained
from the fitted amplitudes after summing over the overtone number, i.e.

hFitℓm =
ℓ′=ℓ∑

ℓ′=−ℓ
µℓℓ′m′n′hℓ′m′n′δmm′ , (C.2)

where µℓℓ′m′n′ are the spherical-spheroidal mixing coefficients [561, 562]. Note that in
this expression, the linear perturbation framework is respected and only the modes that
fulfill m′ = m are considered. To give some context, modes with m′ ̸= m (known as
‘recoil’ modes) are present in several NR waveforms due to extrapolation at null infinity.
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Figure C.3: Dependence of Nmin on the cosine of the angles θ and ι, for three values of the mass ratio
of the progenitors q and a1 = a2 = 0. The primary BH mass and the luminosity distance have been
fixed respectively to 5 × 106M⊙ and 5Mpc. Nmin is represented by the color code. Observe that the
color pattern is symmetric with respect to cos θ = 0, while the corresponding symmetry about cos ι = 0 is
slightly broken. Observe also that some patterns present in the right panel disappear in the middle one,
to appear again in the mass-symmetric case (left panels). This is the consequence of the competing effects
at play when the progenitor mass ratio changes, namely (de)excitation of odd-m modes against changes
in the global SNR.

If, instead, one extracts the numerical waveforms with the Cauchy-characteristic extraction
technique in the superrest (BMS) frame [548, 563, 564], these recoil modes vanish.

The amplitude residuals and the two waveforms are shown in Fig. C.2. Note that
at early times, the overtones from the fitted model dominate the signal, while matching
the NR waveform as the time increases. Considering two different sets of parameters, we
decide to set the starting time of the ringdown to t0 = 20M as a compromise between the
residuals and the loss of SNR in both cases.

C.3 The impact of spins, mass ratio and angles on Nmin

In this Appendix, we comment more extensively on the dependence of Nmin on the other
parameters, which we briefly discussed in the main text. We restrict the discussion to
binary systems with fixed primary BH mass of 5 × 106M⊙ at luminosity distance dL =
5Mpc.

In Fig. C.3, we show the dependence of Nmin on the angles ι and θ, fixing the pro-
genitors spins to a1 = a2 = 0 and q = 0.1, 0.5, 1. First, we notice that the patterns
are completely symmetric around cos θ = 0, whereas there is a slight symmetry break-
ing in the two hemispheres defined by cos ι = 0. This is indeed what we expect, as two
configurations with opposite sky localization with respect to the horizon are completely
equivalent, while the corresponding symmetry in the BH frame is broken by the direction
of the spin. Furthermore, it can be observed that the case with q = 0.5 represents an
optimal configuration, where more modes are needed on average, compared to the other
two cases. This happens because, as we decrease the mass ratio starting from q = 1, the
QNM spectrum becomes richer, as odd-m modes are switched on. On the other hand, as
we go to smaller mass ratios while keeping the primary mass fixed, the size of the region in
which Nmin < 5 increases again. This happens because we are decreasing the total SNR of
the event, although many modes are excited. For q = 0.1 there are still, however, marginal
regions in which Nmin > 6.

In Fig. C.4, we show the dependence of Nmin on the spin (upper panel) and mass ratio
(lower panel) of the progenitors, for a system with primary mass m1 = 5 × 106M⊙ and
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Figure C.4: Dependence of Nmin on progenitor
spins and mass ratio. The primary BH mass
and the luminosity distance have been fixed re-
spectively to 5 × 106M⊙ and 10Gpc, while the
angles have been fixed to θ = ψ = ι = π/3,
ϕ = 0. The jumps correspond to crossing of two
or more modes in the single-mode SNR ordering.

luminosity distance dL = 10Gpc. The angles are fixed to θ = ψ = ι = π/3, ϕ = 0, and
we consider equal spins. The discontinuous behavior that can be observed in both panels
reflects the evolution of the modes ordering. In particular, the sudden jumps correspond
to the exchange of two or more modes in the SNR ranking.

We do not observe a clear trend of Nmin in any of the two cases. Overall, the impact of
spin and mass ratio is mainly on the ordering of the modes, and only changes Nmin of ±1
mode, a smaller fluctuation with respect to the variability introduced by the orientation
angles and shown in Fig. C.3. For very loud sources requiring a large Nmin, variations due
to spin and mass ratio become larger but remain mostly subdominant compared to those
from sky location and inclination.

C.4 A mode-dependent exponential tapering in the frequency
domain

In Sec. 6.2 we discussed and motivated our choice for the high-frequency cutoff. In this
appendix, we briefly present a different possible approach. In order to better mitigate the
spectral leakage due to mirroring, we modify the frequency-domain templates with the
replacement Λ+,×

ℓmn → Λ̃+,×
ℓmn, introducing the functions

Λ̃+
ℓmn =

2L+
ℓmn

exp
(

2πf
ωℓmn

− 1
)
+ 1

+
2L−

ℓmn

exp
(

2πf
ωℓmn

+ 1
)
+ 1

Λ̃×
ℓmn =

2L+
ℓmn

exp
(

2πf
ωℓmn

− 1
)
+ 1

− 2L−
ℓmn

exp
(

2πf
ωℓmn

− 1
)
+ 1

.

(C.3)

Recall that for f ≫ ωℓmn, f ≫ 1/τlmn, the high frequency tails due to mirroring scale
as

Λ+
ℓmn ∼ τ−1

ℓmnf
−2 , Λ×

ℓmn ∼ ωℓmnτ
−1
ℓmnf

−3. (C.4)
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Figure C.5: Comparison between the functions
Λ+
ℓmn (continuous lines) and Λ̃+

ℓmn (dot-dashed
lines) for the 220 mode. The exponentially ta-
pered functions recover the behavior of the stan-
dard combinations of Lorentzian combinations,
while introducing a sharper cutoff at higher fre-
quencies.

On the other hand, the phenomenologically tapered functions scale as

Λ̃+
ℓmn ∼ e−2πf/ωℓmn

τℓmnf2
, Λ̃×

ℓmn ∼ ωℓmne
−2πf/ωℓmn

τℓmnf3
. (C.5)

Thus, our phenomenological tapering mimics a faster than exponential fall-off (due to
1/f2 and 1/f3 for the + and × polarizations respectively). This approach is conceptually
similar to the frequency-domain tapering of IMR waveforms [565–567].

The comparison of these exponentially tapered functions and the standard combina-
tions of Lorentzian functions is shown in Fig. C.5 for the 220 mode and a BH mass of
106M⊙.

Our tapering can be motivated by constructing a time-domain Planck window [533]
for each mode. With a Planck window WPlanck(t), the high frequency fall-off is at most
exponential, which can be sketched out in the following way. The Fourier transform of a
C∞ window function W (t) with compact support, upon integration by parts p times, can
be expressed as W (f) = W (p)(f)/(i2πf)p, where W (p)(f) is the Fourier transform of the
p-th derivative of W (t). Since every derivative exists due to W (t) being C∞ and W (t) has
compact support, we have that |W (f)| ≤ A/fp, suggesting that W (f) decays faster than
every polynomial in frequency. In other words, |W (f)| can at most have an exponential
fall-off. This implies that the C∞ Planck window will satisfy |WPlanck(f)| ≤ A exp(−Bf),
where B ∼ ∆t with ∆t being the characteristic transition time of the window . With
our phenomenological tapering, for each mode, the corresponding mode-dependent Planck
window would then have an exponential fall-off Bℓmn ∼ 1/ωℓmn. However, by tuning the
mode-dependent transition time ∆tℓmn, in practice, one can get a faster exponential fall-off
with a mode-dependent Planck window.

As a corollary, we can also obtain the frequency fall-off when W (t) is discontinuous in
its p-th derivative at t = t0. The Fourier transform W (p)(f), without loss of generality,
will contain a term

W (p)(f) ⊃
∫ ∞

t0

g(t) exp−i2πft, (C.6)

where g(t) is C∞ and has compact support. Upon integrating by parts, we have that

W (p)(f) ⊃ g(t0)
e−i2πft0

i2πf

[
1 +O(f−1)

]
, (C.7)

which is also equivalent to Taylor expanding g(t). Given that W (f) = W (p)(f)/(i2πf)p,
to leading order for the frequency fall-off, we simply have that |W (f)| ∼ 1/fp+1. For
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Figure C.6: Mismatch obtained with three dif-
ferent approaches as a function of the number
of modes. The remnant mass and spin of the
system are respectively 2.66× 107M⊙ and 0.60,
while the angles have been fixed to θ = 3π/4,
ϕ = ψ = 0, ι = π/3 and φ = π. The dashed
lines correspond to the threshold given by the
right-hand side of Eq. (6.25). The blue, red and
purple curves show the mismatch obtained re-
spectively with the phenomenological tapering
of Eq. (C.3), with the time-domain approach
described in Sec. 6.3, and with the single high-
frequency cutoff from PhenomA.

the commonly used Heaviside window for ringdown analysis, this means that the spectral
leakage fall-off is only 1/f . Instead, we use a frequency domain ringdown model obtained
from mirroring [104, 470] at t = t0. Although mirroring is not identical to a window
function multiplying the damped sinusoid, due to the mirrored waveform being C0 at
t = t0, it mimics the use of a C0 window, and thus leads to a 1/f2 fall-off (cf. Eq. (6.4)).
Note, however, that Λ×

ℓmn scales as 1/f3 instead of 1/f2 as is the case for Λ+
ℓmn. This is

due to the fact that Λ×
ℓmn is an anti-symmetric combination which makes the leading 1/f2

term cancel out, leaving the next-to-leading 1/f3 scaling.
A major caveat of using the phenomenological tapering is that one cannot simply

construct a time-domain window W (ℓmn)(t) for each mode. This is because W (ℓmn)(t)
would also convolve with modes (ℓ′,m′, n′) ̸= (ℓ,m, n), which are not included in our
phenomenologically tapered frequency-domain model. However, we checked that results
obtained with our phenomenologically tapered frequency-domain model agree well with a
pure time-domain analysis.

To enable the comparison, we generate the waveform in the time domain as described
by Eq. (6.1), including the low-frequency approximation for the LISA response. In order
to compute the inner product of two strains in the time domain, one needs to compute
the two-point correlation function C(t′ − t) from the frequency-domain noise PSD, and
combine it with the two strain series as described, for example, in Ref. [568].

For a source with remnant mass and spin of 2.66× 107M⊙ and 0.60 respectively, and
angles θ = 3π/4, ϕ = ψ = 0, ι = π/3 and φ = π, we apply the mismatch criterion given
by Eq. (6.25) with the two methods (time and frequency domain). We show the result in
Fig. C.6. The mismatch 1−M is shown by solid lines, while its threshold (right-hand side
of Eq. (6.25)) is shown by dashed lines. The comparison is presented for different models,
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Figure C.7: Nmin obtained with the criterion
of Eq. (6.23) and using the tapered functions in
(C.3) as a function of primary mass and redshift.
While the qualitative behavior is similar to the
one in Fig. 6.4, it is evident how Nmin is boosted
to higher values with this approach.
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namely: the time domain (TD) mismatch in red; the frequency domain mismatch with a
common single cutoff in purple; and the frequency domain mismatch with optimal tapering
in blue. With the cutoff mismatch, two modes are sufficient for a correct estimation of the
parameters, while seven modes are needed with the optimal taper. For the time-domain
mismatch, four modes are sufficient to fulfill this requirement. We can therefore conclude
that with the single cutoff, we can conservatively estimate the minimum number of modes
needed for unbiased parameter estimation with damped-sinusoids waveforms.
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