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1
I N T R O D U C T I O N

1.1 T H E E A R LY U N I V E R S E

The true nature of the Universe at its birth is a highly speculative matter. Extrapolating
from our current knowledge of the Universe, we can deduce temperature and energy
density were very large at the time of its birth. It is believed there was a time when the
Universe had infinite density and negligible radius, a time known as the Big Bang, and
when the laws of physics as we know them broke down. This is often referred to as the
initial singularity.

Presumably, at very early times, all four fundamental forces were unified at the
Planck scale, at about 1019 GeV, with gravity decoupling earlier from the other forces,
resulting in the so-called Grand Unification epoch, at around 1015 GeV. This hypoth-
esis is motivated by the unification of the running coupling constants of strong and
electroweak forces when extrapolated to high energies.

The GUT scale is typically also associated with a period of inflation: it has been
suggested that the Universe underwent an extremely rapid exponential expansion,
during which its volume grew hugely, probably at least for about 60 e-folds, the time
in which an exponentially growing quantity increases by a factor of e. Inflation was
supposedly driven by an unknown inflaton fieldφ and left a cold and diluted Universe
at its end. However, the inflaton must have decayed at the end of inflation into hot
radiation, thus “reheating” the Universe and restoring the hot conditions of the Big
Bang. At this point the Universe was a primordial soup of elementary particles.

At these high energies, however, all particles of the Standard Model were massless.
Only after the electroweak phase transition, which broke the SU(2) × U(1)Y into
U(1)em, did particles receive their masses through the Higgs mechanism. In the
Standard Model framework, the electroweak phase transition is actually a smooth
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I N T R O D U C T I O N

crossover, which took place at a temperature of Tc ∼150 GeV, 2×10−11 s after the Big
Bang. It has also been suggested that baryogenesis might have occurred at the same
time as the electroweak symmetry breaking.

At this point all the four forces were distinct, but the Universe was still too hot for
the formation of hadrons from quarks. The quark epoch lasted between 10−12 s and
10−6 s after the Big Bang.

With the expansion and cooling of the Universe, the QCD phase transition took
place at a temperature of Tc ∼ 150 MeV, 20µs after the Big Bang. Below this scale, QCD
is strongly coupled, while above it quarks and gluons are asymptotically free, forming
the quark-gluon plasma (QGP). At the transition, quark energies decreased and quarks
went from being free to confined into colorless bound states. Quarks and gluons
formed baryons and mesons. The lightest baryons are the nucleons: the proton and
the neutron, while the lightest mesons are the pions: π±,π0. Baryons are fermions,
while mesons are bosons.

Before the Universe was one second old, photons were energetic enough to separate
protons and neutrons in formed nuclei, with nuclear binding energies being of the
order of 1 MeV. This means the Universe was composed of a sea of elementary parti-
cles interacting with each other. When the temperature reached the binding energy of
light elements ∼ 2 MeV, primordial nucleosynthesis started.

The Universe, however, was still opaque. Photons needed to wait until about
378˙000 years later to be able to travel freely without being scattered from electrons.
The last scattering surface constitutes the Cosmic Microwave Background Radiation.

For the first ∼ 105 years after the Big Bang, the Universe was dominated by radiation
(photons and neutrinos) in energy density. Eventually matter became dominant as the
energy density of radiation evolves as a−4 and that of matter as a−3. Matter-radiation
equality occurred and the Universe became matter dominated. It is argued that dark
matter now dominates the energy density of the Universe.

In this thesis, we will use the (−,+,+,+) convention for the Minkowski metric. In
chapter 2 we will work with curved spacetime, in the Friedmann-Robertson-Walker
metric

ds2 =−dt2 +a2(t)

[
dr2

1−κr2
+ r2(dθ2 + sin2θdφ2)

]
, (1)

where r,θ and φ are spherical coordinates, a(t) is the scale factor which relates
physical and comoving distances

dphys = a(t) dcom, (2)

and κ is unitless and represents the curvature. For a Universe that is open, infinite and
negatively-curved k < 0, open, infinite and flat k= 0 or closed, finite and positively-
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1.1. The early Universe

Event Time Temperature

Inflation ? ?
Electroweak Phase Transition 2×10−11 s 150 GeV
QCD Phase Transition 2×10−5 s 150 MeV
Neutrino Decoupling 1 s 1 MeV
Electron-Positron Annihilation 10 s 0.5 MeV
Big Bang Nucleosyntesis 10 min 100 keV
Matter-Radiation Equality 6×104 yr 0.8 eV
Recombination 2-4×105 yr 0.3 eV
CMB decoupling 4×105 yr 0.2 eV
Reionization 1-4×105 yr 2-7 meV
Present 13.7×109 yr 0.2 meV

Table 1: Short history of the early Universe. The values are to be taken as orders of
magnitude, rather than accurate estimates.

curved k > 0. In this metric we can find an analytic solution to Einstein’s equations

Gµν+gµνΛ= 8πTµν (3)

where

Gµν = Rµν−
1

2
Rgµν

is the Einstein tensor with Ricci curvature tensor Rµν and Ricci scalar R,Λ the cosmo-
logical constant and Tµν the stress-energy tensor.

The solutions to eq. (3) are obtained with the assumption that the energy tensor be
isotropic and homogeneous, and they are the Friedmann equations:( ȧ

a

)2

=
4πG

3
ρ−

k

a2
+
Λ

3
(4)

ä

a
= −

4πG

3
(ρ+3p)+

Λ

3
(5)

where ρ is the energy density and p the pressure. The first equation is obtained
from the 00-component of Einstein’s equations, and the second one from their trace.
The dependence of the scale factor on time changes according to the content of the
Universe, more precisely,

a(t) =

(
3H0

2

)2/3

t2/3 matter- dominated (6)

a(t) = (2H0)
1/2 t1/2. radiation-dominated (7)
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I N T R O D U C T I O N

where H = ȧ/a is the Hubble parameter and the 0-subscript indicates the current
value of a quantity varying in time.

1.2 T H E S T R U C T U R E O F T H I S T H E S I S

In this thesis we examine three different processes of high-energy particle physics. We
will present them in the same order as they occurred in the early Universe, see the first
three entries in table 1. In chapter 2, a model for inflation is presented, in which the
auxiliary curvaton field is assumed to possess a U(1) hypercharge. The consequences
of this are explored and the viable regions of phase space determined.
Then, in chapter 3, a mechanism of net baryon-number production is investigated.
In the Minimal Standard Model, there exists a process intrinsic to the nature of the
electroweak theory, sphaleron transition, which naturally violates baryon-number
conservation. The characteristics of the transition are studied, and parameters such as
critical temperature, Higgs field expectation value and sphaleron rate are determined.
In chapter 4, we approach the QCD phase transition by studying the quark-gluon
plasma existing in the symmetric phase. This same plasma can be recreated in high-
momentum particle collisions in accelerators, and can be probed thanks to the emitted
particle jets which traverse it and lose energy. In the appendix, the research papers
associated with this thesis are attached.
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2
I N F L AT I O N W I T H A C H A R G E D C U RVAT O N

2.1 I N FL AT I O N

The inflationary paradigm was originally introduced in 1981 by Guth [1] to solve three
problems of Standard Cosmology: the flatness and the horizon problems as well as
the issue of unwanted relics.

T H E FL AT N E S S P R O B L E M . The first of Friedmann equations, eq. (4), can be
rewritten as

H2 =
ρ

3M2
Pl

−
k

a2
, (8)

whereMPl =
√

 hc/8πG is the Planck mass, and then in terms of the critical energy
densityΩ≡ ρ/ρc, with ρcr = 3m2

PlH
2, to obtain

Ωk ≡Ω−1 =
k

a2H2
. (9)

As the Universe is nearly flat (k = 0, ρ ≈ ρcr), Ω is approximatively 1. From recent
measurements [2], we know thatΩk ∼ 0.07. From eq. (9) it follows that, if a increases
andH is basically constant,Ωk has been increasing all the time. If nowΩ is so close to
1, it must have wandered away from an early-Universe value even closer to the critical
value. The fine tuning of the primordialH (below Planck scale) should be as accurate
as 10−55 [1].

Inflation solves this problem in that the great acceleration ä > 0 would have in-
creased ȧ hugely, thus eliminating any deviation from flatness. After inflation, ȧ
decreased from the inflation value, makingΩk grow.
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I N FL AT I O N W I T H A C H A R G E D C U R VAT O N

T H E H O R I Z O N P R O B L E M . The cosmic microwave background radiation is homo-
geneous and isotropic to a level of one part in 10−5 in temperature perturbations, still
it consists of patches which cannot have been in causal contact with each other.

The solution may come from inflation, during which the formerly connected regions
of space moved far away from each other, in our horizon and beyond it. If we calculate
the maximum distance any particle could have ever travelled, the comoving horizon
distance (scaled with a(t)), we get the conformal time

η(t0) =

∫ t0

0

dt

a(t)
, (10)

where we have omitted cwhich is 1 by convention. Comparing the size of the horizon
today and at Planck time, we get a factor of 1026, which means the Universe today has
about 1078 regions which were causally disconnected at Planck time. If we express
eq. (10) in terms of the scale factor a,

η(a0) =

∫a0

0

d lna

aH
, (11)

we get the explicit dependence of η on the comoving Hubble radius H −1 = 1/aH.
This gives the maximum distance between two causally-connected points.

For the Universe to be so homogeneous, regions of space now far from each other
must have been once in causal contact. This means the comoving Hubble radius was
once bigger and then decreased in size. As H was nearly constant while awas growing,
the only way for this to happen is to have ä > 0, a period of accelerated expansion:
inflation.

T H E U N WA N T E D R E L I C S . The early Universe underwent a series of symmetry-
breaking transitions, which should have resulted in plenty of topological defects
formed at the boundaries between the old and the new phases. In particular, it has
been estimated [3] that the number density of magnetic monopoles should be as
high as the one of protons and neutrons. However, these have not been observed,
and, moreover, their huge mass would have prevented the Universe from expand-
ing. The inflationary model solves this puzzle by diluting the monopoles during the
exponentially accelerated expansion.

2.1.1 The inflationary model

Inflation was a period of time in the early Universe characterized by a rapid expansion,
during which the scale factor was accelerating

ä > 0, (12)

6



2.1. Inflation

or, in terms of Hubble length

0 < ä=
d

dt
(ȧ) =

d

dt
(aH). (13)

While the Universe is accelerating, the comoving Hubble length H −1 = 1/aHwas de-
creasing with time, therefore making the observable Universe smaller during inflation.

By imposing ä/a > 0 in the second Friedmann equation (5), we get

ρ+3P < 0 (14)

which implies P < 0, as the energy density is always positive. In order to have inflation,
there must be a field driving it. Fields with negative pressure are scalar fields, and the
one driving inflation is called the inflaton. Solving eq. (5) for the conditions of eqs. (12)
and (14), we obtain the solution for the scale factor

a(t) ∼ eHt, (15)

which is indeed exponentially growing with time.
The huge expansion virtually cooled down the temperature to zero. When inflation

ended, the Universe is reheated to high temperature and the hot Big Bang could take
place.

2.1.2 Inflation ends

In the first theories of inflation, which were supposed to occur in the context of a
GUT phase transition, bubbles of the broken phase form, bringing regions of space
from a false vacuum to the true vacuum, as shown in the first of fig. 1. The transition
happens through tunneling. Then the bubbles would grow, collide and release the
energy produced in wall collisions (latent heat). However, as the Universe is expanding
exponentially, the bubbles would never collide, consequently not filling the whole
Universe with the new phase. In this way inflation would continue forever.

The need for a different kind of potential brought the development of a different
method for symmetry breaking, through higher-order corrections to the potential, the
Coleman-Weinberg corrections [8], which are of the form

∆V =
3g4

64π2
φ4 ln

φ

〈φ〉
(16)

where g is the coupling constant, φ is the field generating the potential and 〈φ〉 its
vev. The potential now depends on the temperature of the Universe, as shown in fig. 1.

7



I N FL AT I O N W I T H A C H A R G E D C U R VAT O N

Figure 1: Different types of potential assumed to drive inflation. In the left-hand figure,
the classical symmetry-breaking potential for GUT inflation. In the right-
hand figure, the potential is modified to be temperature-dependent and
allow the inflation to end (Coleman-Weinberg potential). From [4].

At high temperatures, the true vacuum and the symmetric phase coincide. When
the temperature decreases, a second vacuum forms at a field value, where the gauge
symmetry is broken. The second vacuum is a true vacuum and the field starts to slowly
roll towards it from the symmetric false vacuum. In this scenario inflation ends when
the field has reached the true vacuum.

2.1.3 Curvature perturbations

Perturbations in the energy density of the early Universe (T ∼ 1 MeV) are called pri-
mordial perturbations, and provide the initial conditions for the subsequent evolution
and structure formation. A powerful tool to study primordial perturbations is the
separate-universe approximation. This is based on the assumption that the Universe
be isotropic and smooth on a comoving distance scale k−1. In this way, the Universe
evolves at each point as an unperturbed universe, providing the background upon
which perturbations evolve.

Consequently, we can define a quantity q as being composed by a component
smoothed over a sphere and perturbations to the average value

q(r,x,t) = q(t)+δq(r,x,t), (17)

where r is the comoving radius of the sphere and (x,t) the coordinates of the center of
the sphere.

8



2.1. Inflation

Now let us examine the correlation between the different Fourier components of
δqk. If there is no correlation between such components, the probability distribution
of δq(x) is Gaussian. If there exists correlation, it is seen in the probability distribution
as skewness, and the perturbation is said to be non- Gaussian.

Non-Gaussianity is a measure of inflaton interactions (determined by its 3-point
functions and higher). The non-Gaussianity parameter fNL is defined in terms of the
(gauge-invariant) comoving curvature perturbations as

R=RG+
3

5
fNLR

2
G (18)

A simple model of primordial non-Gaussianity is local non-Gaussianity defined by a
Taylor expansion of the curvature perturbation around the Gaussian part RG.

The root mean square of the density perturbation δρ(r,x) evaluated at horizon
entry does not depend on the smoothing scale. This means that density perturbations
are scale invariant. Small deviations from invariance constitute are characterized by
the spectral index n(k), defined by

n−1≡ d lnPζ(k)

d lnk
, (19)

with Pζ(k) the spectrum of the curvature perturbation.

The curvature perturbation ζ is defined through

a(x,t)≡ a(t)eζ(x,t), (20)

where a(x,t) is a locally-defined scale factor, while a(t) is the background one.

If a cosmological quantity is a unique function of its energy density, it satisfies the
so-called adiabatic condition. Departures from the adiabatic condition are called
isocurvature density perturbations, and defined as

Sc = δc−
3

4
δr (21)

SB = δB−
3

4
δr (22)

Sν = δν−
3

4
δr, (23)

where the δi ≡ δρi/ρi are the energy density contrasts, the subscripts c,B,ν mean
respectively dark matter, baryons, neutrinos and ρr = ρνργ is the energy density of
radiation.

9



I N FL AT I O N W I T H A C H A R G E D C U R VAT O N

2.1.4 Curvaton model

In the standard inflaton scenario, curvature perturbations originate during inflation,
from the quantum fluctuations of the slowly-rolling inflaton field. As cosmological
scales leave the horizon, quantum fluctuations are converted to classical gaussian
perturbations with an almost flat spectrum, generating immediately the curvature
perturbation which is constant until the approach of horizon entry.

The assumption that the inflaton produced all of the curvature perturbations is,
however, very restricting on the possible models of inflation allowed [5]. In the cur-
vaton paradigm, instead, there is a secondary field, the curvaton σ, which produces
curvature perturbations, while the inflatonφ drives the expansion. The curvaton is
light and subdominant during inflation and gains an isocurvature perturbation. The
curvaton starts oscillating during a radiation-dominated era and continues for many
Hubble times. After inflation has ended, the energy density of the curvaton grows
relative to the background radiation. When the curvaton decays, its isocurvature per-
turbation is converted to an adiabatic perturbation that can seed the structure in the
Universe. The decay of the curvaton happens through parametric resonance, which
leads to a period of non-linear dynamics. This is the time at which non-Gaussianity is
supposed to be generated.

Even though the curvaton is subdominant during inflation, as its energy density
evolves as a−3

ρσ ≈m2σ(t)2 ≈ 0.74
m1/2σ2

∗
t3/2

, (24)

wherem is the curvaton mass and the subscript ∗ denotes values at the end of inflation.
Radiation energy density decreases proportional to a−4

ργ =
3M2

PlH
2
∗

a4
=

3M2
Pl

4t2
, (25)

the relative fraction of curvaton energy density r(t)

r(t)≡ 3ρσ(t)

3ρσ(t)+4ργ(t)
(26)

grows with time like

a∝ t1/2 (27)

for a radiation-dominated Universe, see eq. (7), and its energy density contribution
(and curvature perturbation) becomes dominant. The 3- and 4-factors in eq. (26)
are weighting factors according to the evolution of the curvaton (a−3) and radiation

10



2.2. Electrically charged curvaton

(a−4), respectively. Eventually, the curvaton decays into Standard Model particles
which have the equation of state of radiation, at which point the perturbations in the
curvaton become adiabatic. Assuming that this happens instantaneously at time tdec,
the amplitude of the curvature perturbation is given by [5]

ζ≈ r(tdec)

3

δρσ

ρσ
. (28)

This needs to agree with the observed amplitude ζ' 10−5. In the standard curvaton
model, in which eq. (24) remains valid until the decay time, this becomes

ζ≈ r(tdec)

3

2

σ∗
δσ∗ ≈

H∗r(tdec)

3πσ∗
. (29)

With the same assumption, the non-Gaussianity of the perturbations is given by

fNL ≈
5

4rdec
. (30)

Before cosmological scales enter the horizon, the curvaton decays and it is assumed
that the produced curvature perturbation remains constant. Quantum fluctuations
during inflation are converted into curvature perturbations after curvaton decay [6].
Curvature perturbations are important because they are believed to have seeded the
formation of structures in the Universe.

2.2 E L E C T R I C A L LY C H A R G E D C U R VAT O N

Models of inflation are based on quantum field theory, although generally they de-
scribe particles that are not present in the Standard Model of particle physics. However,
in order for reheating to take place after inflation, the inflaton needs to couple with
some SM field. Therefore it is desirable to link inflationary physics with the Standard
Model.

We investigated the possibility of a curvaton charged under a Standard Model gauge
group. In addition to the aforementioned argument, there is also the advantage of
knowing the couplings of the interaction. This model has therefore fewer parameters
compared to other curvaton models. We chose to investigate a U(1) weak hyper-
charged curvaton, because of the more straightforward physics involved, as well as
the potentially interesting curvaton– photon interactions and subsequent curvaton
contribution to curvature perturbation.

11



I N FL AT I O N W I T H A C H A R G E D C U R VAT O N

The inflaton fieldφ is not coupled to the curvaton, and has a quartic potential. The
Lagrangian density for the theory is

L =
1

2
∂µφ ∂

µφ+
1

4
λφφ

4 −
1

4
FµνFµν

−m2σ†σ−λ(σ†σ)2 +(Dµσ)
†(Dµσ) (31)

whereDµ = ∂µ− ieAµ and Fµν = ∂µAν−∂νAµ.

2.2.1 Constraints on the effective potential

The large value of the curvaton gauge coupling e gives rise to Coleman- Weinberg
corrections to the potential, which can have a substantial impact on the parameter
space of the model [7]. Assuming that the one-loop corrections are dominated by the
gauge coupling e, the effective potential is [8]

Veff(σ) =m
2|σ|2 +

3e4

64π2
|σ|4 ln

(
|σ|2

µ2

)
, (32)

where the self-coupling constant λ has been absorbed into the definition of the renor-
malisation scale µ. Therefore, the free parameters arem and µ.

The shape of this potential is shown in fig. 2. For small µ, the U(1) symmetric
vacuum σ = 0 is the only minimum. At larger µ, a second minimum with σ 6= 0
appears, and when µ is large enough, this symmetry-breaking minimum becomes the
true vacuum.

σ

V
e
ff

increasing µ−→

σ/H∗

Veff

Figure 2: The effective potential Veff(|σ|) of the curvaton field. The dashed line shows
the quadratic tree-level potential, and the three solid lines show the effective
potential for increasing µ, from left to right.
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Figure 3: Allowed region (shaded) for a viable curvaton model satisfying conditions
1–3 in the text. Note that these conditions only guarantee the existence of a
curvaton, but not that the generated perturbations are compatible with ob-
servations. Also shown are the maximum σ∗ for various constant µ; vacuum
instability rules out large µ and smallm. The parameter space is indepen-
dent of H∗. This is because H∗ only determines the subdominance of the
curvaton during inflation, which is naturally satisfied provided the other
conditions are met. Figure from Paper I.

In order for σ to act as a curvaton field, the effective potential has to satisfy certain
conditions:

1. Vacuum stability: The symmetric vacuum σ = 0 has to be the true vacuum,
otherwise the Universe would tunnel into the vacuum with σ 6= 0, which would
break the U(1) symmetry spontaneously and make the photon massive.

2. Shallow potential: In order to gain a nearly scale-invariant spectrum of per-
turbations during inflation, the curvaton field has to be light compared to the
Hubble rateH∗. This means that its effective massmeff, defined as

m2
eff ≡ V ′′eff(σ∗) (33)

13
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has to be less than the Hubble rateH∗ during inflation. In addition, the curvaton
should be subdominant compared with the inflaton potential because otherwise
it would be an inflaton. This means that the effective potential has to satisfy

Veff(σ∗) � 3M2
PlH

2
∗. (34)

Both of these conditions, eq. (33) and eq. (34), restrict the height of the effective
potential, and also the maximum value of the curvaton field σ∗.

3. Linearity: The curvaton has to evolve linearly both during and after inflation.
During inflation, we have to make sure that the effective mass (eq. (33)) is light
over the whole range of field values present in the observable Universe.

After inflation, we require that the potential is dominated by the mass term
m2|σ|2, so

m2 � | 3e4

64π2
σ2
∗ ln

(
σ2
∗
µ2

)
|. (35)

This implies that the curvaton has the equation of state of matter after inflation,
making it easy to study the dynamics. The condition also guarantees that if a
metastable second minimum exists, the field is on the left side of the barrier and
starts to oscillate around the symmetric minimum.

The effect of these constraints is shown in fig. 3. The regions are highly non-trivial,
both on the value of σ∗, and on the mass of the field. The combination of these
constraints favors large curvaton massm& 10−2H∗, relatively (but not unnaturally)
low field values σ∗ . O(100)H∗, and µ . O(100)H∗. The maximum σ∗ for various
constant values of µ is also shown, to demonstrate that larger values of σ∗ are only
possible for larger values of µ.

2.2.2 Evolution of the curvaton

During inflation, the inflaton dominates the energy density, but its perturbations are
assumed to be negligible. The curvaton field is light (compared to the Hubble rate
H∗), and therefore it develops a nearly scale-invariant spectrum of fluctuations, in
the same way as the inflaton. After inflation, it is assumed that the inflaton reheats to
produce a thermal bath, which becomes the dominant form of energy in the Universe.

As the Universe expands, H decreases, and whenH.m, the curvaton begins to
oscillate in its potential. From the relevant part of the Lagrangian

Lσ = |(i∂µ−eAµ)σ|
2 −

1

2
m2σ†σ, (36)
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2.2. Electrically charged curvaton

the Euler-Lagrange equation for the field σ is

�σ−
∂V(σ)

∂σ†
= 0. (37)

In curved spacetime, the d’Alembertian has the form

�σ=
1√
−g
Dµ (
√
−ggµνDνσ)

Using the FRW metric in eq. (1),
√
−g =

√
−detgµν = a3, and the temporal gauge

A0 = 0 we obtain

�σ=−σ̈−3Hσ̇+
ie(∂iAi)σ

a2
−
e2A2σ

a2
,

where the dot represents time derivative. By ignoring gradient terms, the equation of
motion (eq. (37)) becomes

σ̈+3Hσ̇−

(
ie∂iAi
a2

−
e2A2

a2
−

1

2
m2

)
σ= 0. (38)

The latter is exactly solvable only with non-perturbative methods. For a perturbative

approach, we argue that the linear approximation

σ̈+3Hσ̇+
1

2
m2σ= 0 (39)

holds, as

ie∂iAi
a2

�m2 and
e2A2

a2
�m2,

assumingAµ is in the vacuum state during inflation. As we want to solve the equation
for σ as a function of time, we insert H = 1/2t for the radiation-dominated case
into eq. (39), which eventually becomes

2tσ̈+3tσ̇+m2σ= 0. (40)

This is the Bessel’s equation, with solution

σ(t) =
a

t1/4
J1/4

(
mt√

2

)
+
b

t1/4
Y1/4

(
mt√

2

)
(41)
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where Jν and Yν are Bessel’s functions of the first and second kind, respectively. In
order to find the constants a and b for the initial condition σ(0) = σ∗ we expand
Bessel’s functions around x=mt/

√
2 = 0:

Jn(x) = xn
[

2−n

Γ(n+1)
−

2−n−2x2

(n+1)Γ(n+1)
+ . . .

]
Yn(x) = xn

[
−

2−n cos(nπ)Γ(−n)

π
+

2−n−2 cos(nπ)Γ(−n)x2

πn+π
+ . . .

]
+ x−n

[
−

2nΓ(n)

π
+

2n−2Γ(n)x2

π−nπ
+ . . .

]
.

For n= 1/4, and inserting the above into eq. (41) we obtain for a and b

a =
23/8σ∗
m1/4

Γ
(5

4

)
b = 0,

which give

σ(t) =
23/8σ∗
(mt)1/4

Γ
(5

4

)
J1/4

(
mt√

2

)
. (42)

20 40 60 80 100

-15
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10

15

mt

σ/H∗

Figure 4: Evolution of a curvaton as a function of time, in curved and expanding
spacetime, according to eq. (45), and ignoring all interactions, non-linear
terms and backreaction.
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2.3. Evolution of the curvaton after inflation

A S Y M P T O T I C A P P R O X I M AT I O N F O R T H E C U R VAT O N S O L U T I O N . We can make
use of the asymptotic form of Jn for x� |α2 −1/4 |

Jn(x) =

√
2

πx
cos
(
x−

απ

2
−
π

4

)
, (43)

which, in this case (α= 1/4, x=mt/
√

2), becomes

J1/4

(
mt√

2

)
=

23/4

π1/2(mt)1/2
cos

(
mt√

2
−

3

8
π

)
. (44)

Finally we obtain for the solution of the curvaton

σ(t) =
29/8σ∗

π1/2(mt)3/4
Γ
(5

4

)
cos

(√
2mt

2
−

3

8
π

)
(45)

≈ σ∗
(mt)3/4

cos
(
mt−

3π

8

)
,

which is shown in fig. 4.

2.3 E V O L U T I O N O F T H E C U R VAT O N A F T E R I N FL AT I O N

After the end of inflation, the curvaton is a homogeneous condensate which oscillates
in its potential according to eq. (45). Its evolution depends on interactions with other
fields, which cause it to decay into curvaton particles.

- Interaction with a
thermal bath of photons

T �m

T �m σ decays too quickly

late decay

- Decay through
parametric resonance

linear

nonlinear
curvaton leftovers

thermal bath

T �m

T �m

Figure 5: Schematic view of the possible curvaton evolution after inflation.

By curvaton particles, we mean any curvaton field modes with non-zero momen-
tum, and for simplicity we assume that they have a thermal spectrum, so that their
behaviour is completely parameterised by their number density and temperature.
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The U(1) charge of the curvaton field does not allow a direct Yukawa coupling to
Standard Model fermions, but we assume that there is some indirect decay channel,
through non-renormalizable interactions or some beyond-the-Standard- Model fields.
This allows the curvaton to decay perturbatively into fermions at a slow rate Γ which
we treat as a free parameter. At earlier times the curvaton’s interactions are dominated
by its U(1) gauge coupling, which has two effects: it allows the curvaton condensate to
decay non-perturbatively to photons through a parametric resonance; and thermal
photons (if present) interact with the curvaton condensate, turning it into curvaton
particles.

These processes affect the behaviour and energy density of the curvaton field (and
therefore the curvature perturbation ζ) through eq. (29). The curvature perturbation
becomes adiabatic when the curvaton either decays or obtains full (chemical and
kinetic) thermal equilibrium with the dominant background. To obtain a sufficiently
high amplitude of perturbations, it is usually necessary for the curvature perturbation
ζ to become adiabatic at very late times. Note that the mechanism of decay can also
affect the non-Gaussianity of the model.

From fig. 3 we can see that σ∗ . 100H∗. Together with eq. (29), this implies that in
order to generate the observed amplitude of perturbations the energy fraction in the
curvaton field rdec must be less than 10−2. Therefore we can safely assume that the
curvaton’s contribution to the energy density is subdominant and the background
energy density scales like radiation. We find that field values well below the Hubble
rate are unnatural, and set a lower limit σ∗ > 0.1H∗.

2.3.1 Interactions with the thermal bath

Because the curvaton-photon coupling e is relatively large, the interaction of the
curvaton with a thermal bath of photons is significant. The curvaton forms a homoge-
neous condensate which produces curvaton particles when interacting with photons,
with rate

Γth ≈ 0.03e2T , (46)

where the factor was obtained numerically in [9] and T is the temperature of the
thermal bath. This interaction, however, does not cause the curvaton particles to
decay. The non-perturbative decay of curvatons into photons through parametric
resonance is prevented, because this requires a condensate. The subsequent evolution
of the curvaton particles depends on the energy scale of both particles and photons.

If the temperature is low (T �m), then the produced particles are non-relativistic
and the equation of state is unchanged compared to that of the oscillating condensate,
and may decay at a later time.
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2.3. Evolution of the curvaton after inflation

If the temperature is high enough (T �m), the produced curvaton particles are
ultrarelativistic and have the equation of state of radiation. In this case, the evolution
depends on whether both chemical and kinetic equilibrium are reached. The thermal
bath is produced at the end of inflation by the decaying inflaton field, with temper-
ature T ' 0.5

√
MPlH. However, the decay of the inflaton occurs instantaneously

and destroys the curvaton condensate. Moreover, the curvaton reaches chemical
equilibrium very quickly, before it can produce significant curvature perturbation ζ.

Thus, in order to have a viable model we must impose the requirement that there be
almost no photons in the thermal background after inflation. This could occur either
(i) if the inflaton decays to a hidden sector, sufficiently decoupled from the Standard
Model, or (ii) if the inflaton is blocked from decaying until a sufficiently late time. In
the latter case, we require the inflaton to oscillate in a φ4 potential in order for r to
grow sufficiently.

2.3.2 Non-perturbative decay of the curvaton

Provided there is no interaction with the thermal bath, the first interaction of the curva-
ton is non-perturbative production of photons through parametric resonance [10–12].
This is particularly important because of the large photon-curvaton coupling.

E V O L U T I O N O F T H E G AU G E FI E L D. We examine the theory for the vector poten-
tialAµ

LA = (Dµσ)
† (Dµσ)−

1

4e
FµνFµν (47)

The Euler-Lagrange equations in curved spacetime take the form

∂ν

(
∂(
√
−gL )

∂(∂νAµ)

)
−
∂(
√
−gL )

∂Aµ
= 0 (48)

from which we get the equation of motion for the gauge fieldA(t)

Ä(t, k)+HȦ(t, k)+∇(∇·A(t, k))−∇2A(t, k)+2e2(σ†σ)A(t, k) = 0 (49)

by making use of the temporal gaugeA0 = 0. In our case, only the transverse compo-
nent is physical, that is

ÄTk(t)+HȦ
T
k(t)+

(
k2

a2
+2e2(σ†σ)

)
ATk(t) = 0. (50)
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In order to find the resonance parameters, we need to get rid of the friction term
HȦTk(t), which is accomplished by rescaling the fieldAk(t) with

Bk(t) = a
1/2(t)Ak(t). (51)

Substituting for σ using eq. (45) gives a Mathieu equation with time-dependent
parameters,

B
′′
(z,k)+(Σk(z)+2q(z) cos 2z) B(z,k) = 0 (52)

Figure 6: Instability chart of the Mathieu equation. Shaded regions show the stable
bands; white regions show resonance bands with exponentially growing
solutions. The solid line shows Σ = 2q. For k = 0, the solution moves
towards the origin following this line very closely. The starting position and
speed at which it moves depend on m and σ∗. Modes with k > 0 follow a
similar evolution, but along a shallower line. Thus, modes with higher k
spend less time in the instability bands, leading to a weaker resonance.
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Figure 7: Amplification factor α as a function of z for k= 0, σ∗ = 8H∗ andm= 0.1H∗
(black, upper curve),m= 0.7H∗ (grey, lower curve). The dashed line shows
the nonlinearity condition (eq. (55)). Form= 0.1H∗ a huge amplification is
seen and the resonance is clearly nonlinear. Form= 0.7H∗, the amplification
is much less dramatic and the evolution is expected to remain linear.

where z=mt and coefficients:

q(z) ≈ e2σ2
∗

m2z3/2

Σk(z) ≈
k2

2mH∗z
+

3

16z2
+2q(z).

M AT H I E U ’ S E Q U AT I O N . Depending on the parameters Σ and q, the solutions of
the Mathieu equation are either oscillatory or exponentially growing. The growing
solutions correspond to rapid, resonant energy transfer from the curvaton to the U(1)
gauge field. The parameter values for which this happens form instability bands, as
shown in fig. 6. In our case, both parameters q(z) and Σk(z) decrease with time, so
that if they are initially large, they move through instability bands, until they leave
the last instability band when q≈ 1, and the resonance ends. The trajectory for k= 0
modes is shown in fig. 6. Both the speed at which the solution moves to small values
of the parameters, and the initial value depend onm and σ∗. The trajectory for modes
with k > 0 is shallower, and thus modes with large k do not spend enough time in the
instability bands to produce a resonance.

In order to estimate the amount of energy transferred from the curvaton fields, we
solve eq. (52) numerically, finding the amplification factor α(z) =Ai(z, k)/Ai(0, k).
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This is shown in fig. 7 as a function of the time variable z for two sets of parameters. If
the amplification factor becomes large, then backreaction can no longer be ignored.
We estimate that this happens when

e2〈A2〉
a(t)2

≈m2. (53)

To approximate this, we assume that modes with k. kres ≈
√
emσ∗ are all amplified

by a factor α, and we find

e2〈A2〉
a(t)2

≈ e2

8π2

(
α2 −1

) k2
res

H∗t
, (54)

so that the resonance is non-linear if

α(z)2 & 103 z

σ∗/H∗
+1. (55)

In many cases, only a reasonably modest amplification factor α is required in order
for the resonance to become non-linear. If the initial value q∗ ≈ (eσ∗/m)2/2 of
the resonance parameter q is large, the parameters q and Σ move slowly through
a large number of resonance bands. Therefore the amplification factor α becomes
exponentially large, and we expect that the dynamics becomes non-linear. In this case
a full numerical study is necessary to determine the dynamics. If, on the other hand,
q∗ ∼ 1, then the system moves quickly through the resonance bands, and we do not
expect significant non-linear effects. fig. 8 shows this initial value of the resonance
parameter.

The value of z when the resonance either ends or becomes non-linear is
zres . 1000. It has been shown that for a non-linear resonance, non-relativistic cur-
vaton particles are likely to remain after the resonance has completed [14]. As a very
simple estimate we assume that a fraction f= 0.5 of the condensate’s energy density is
transformed to relativistic photons, and half remains as either condensate or non- rel-
ativistic curvaton particles. This assumption allows us to use the standard expression
(eq. (29)) for the curvature perturbation. However, simulations in a scalar model [14]
show that the fraction f is actually highly dependent on the curvaton field value, and
this dependence modifies the predicted curvature perturbation significantly. For fully
reliable predictions, a non- linear field theory calculation is therefore required.

The fraction of the original curvaton which does not decay resonantly can both
interact with the newly-produced thermal bath and decay perturbatively to fermions.
The final ζ will include contributions from each process. However, the contribu-
tion to the curvature perturbation generated during resonant decay is negligible,
ζres ∼ 10−14, with respect to the observed value of 10−5.
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Figure 8: Initial resonance parameter q∗ in the allowed parameter space (shaded). The
parameter is largest for large σ∗, smallm. A stronger, non-linear resonance
is expected for larger q∗.

2.3.3 Subsequent evolution

After the parametric resonance, we are left with a thermal bath of photons and cur-
vaton condensate leftovers. The resulting picture is similar to the one described in
section 2.3.1, where the temperature determines the evolution of the system. The
temperature is given by

T ' 0.4 ρ
1/4
th ≈ 0.4 f1/4 (mtres)

1/8
√
σ∗/t (56)

and, using eq. (46), the effective rate of thermal interactions is

Γth(t> tres) = 0.011 e2 f1/4 (mtres)
1/8
√
σ∗/t. (57)

If T � m, then the condensate decays into non-relativistic curvaton particles.
Because the energy density ρσ is still proportional to 1/a3, this does not affect the
curvature perturbation ζ. Therefore, it is determined by the perturbative decay, which
takes place at tpert ∼ 1/Γ , where Γ is the perturbative decay rate. The curvature
perturbation ζ is then given by eq. (29), using r(tpert).
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If T �m, the thermalized curvatons are ultrarelativistic and the evolution depends
on whether chemical equilibrium is reached. This is determined by
tchem = 1/Γchem, which should be compared to both the timescale of the expansion
(1/H) and the time until the relativistic curvaton freezes out again (tfreeze). In the case
that chemical equilibrium occurs, the curvature perturbation ζ becomes adiabatic,
and therefore its final value is determined by the curvaton energy fraction at the time
of equilibration rth. This is found to be ζth ∼ 10−13, again far below the observed value
of 10−5. Thus, if the curvaton reaches chemical equilibrium with the thermal bath,
then the contribution to ζ is negligible.

If, on the other hand, the curvaton does not reach chemical equilibrium, it will
eventually become non-relativistic again. The ultra-relativistic period reduces the
amplitude of the curvature perturbation ζ. In order to obtain the observed amplitude,
the perturbative decay must then be delayed compared with the non- relativistic case.
The calculation of ζ follows exactly the same procedure as for the non- relativistic case.
The only difference is that a somewhat smaller Γ will be required to obtain sufficient
ζ. However, the curvaton must decay before Big Bang Nucleosynthesis (BBN), which
means that extremely small values of Γ are not allowed.

2.4 R E S U LT S

We explore the parameter space numerically, focusing on the observables ζ (curvature
perturbation), fNL (non-Gaussianity) and n (CMB spectral index) in turn.

2.4.1 Curvature perturbation

In general, the predicted amplitude (eq. (28)) of the curvature perturbation ζ depends
on the perturbative decay rate Γ , because it sets the value of tdec. Where possible, we
fix Γ in order to obtain ζ = 10−5, however there is a constraint on Γ . The curvaton
must decay before BBN, which means that extremely small values of Γ are not allowed.
This restricts the lowH∗, lowm region of parameter space, because [Paper I]

r∝
(
σ∗
H∗

)2(
H∗
MPl

)2(m
Γ

)1/2
. (58)

Thus low m and low H∗ give low r. For H∗ . 108 GeV the requirement ζ = 10−5

means that there is no available parameter space left. For 108 GeV.H∗ . 109 GeV,
the parameter space is reduced (fig. 9). For H∗ & 109 GeV, there is no effect on the
parameter space.
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2.4. Results

Figure 9: Allowed region for a viable curvaton model which produces ζ= 10−5. For
H∗ & 3×109, the requirement is satisfied in the entire parameter space (all
three shades of grey). The size of the allowed region reduces asH∗ reduces.
For H∗ = 109 GeV, the allowed region comprises of the two darkest grey
regions; forH∗ = 2×108 GeV it is only the dark grey region. ForH∗ . 108 GeV
there is no allowed parameter space.

2.4.2 Non-Gaussianity

By ignoring the effects of parametric resonance, the value we obtained for fNL & 130
would rule out the model (Planck [15] restricts fNL of any type to be less than 33).
However, because the parametric resonance modifies the predictions significantly,
numerical lattice simulations are necessary in order to know the fate of this model.

2.4.3 Spectral index

Another observable parameter that could be used to constrain the model is the spectral
index n. Unlike ζ and fNL, this depends on the specific model of inflation, and
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therefore the results are less generally applicable. Assuming the simple monomial
potential

V(φ) = λφφ
4, (59)

the spectral index for the curvature perturbation is

n = 1−2εinf +2ηcurv

' 1−
2

N
+

2m2

3H2
∗

. (60)

The current observational limits are (Planck + WMAP) n= 0.9603±0.0073 [16]. For
N= 50 andN= 60 e-foldings, n is within the WMAP limits providedm. 0.2H∗. This
would rule out the largem region of the parameter space.

2.4.4 Cosmic strings

An additional interesting physical effect could occur because the curvaton field effec-
tively has a non-zero value within any Hubble volume, therefore breaking the Standard
Model U(1) symmetry spontaneously. For topological reasons there will be curves in
space where the curvaton field vanishes, in very much the same way as in a cosmic
string. At the end of inflation, the curvaton fields starts to oscillate, and these strings
dissolve, but because the field value is zero at the string locations, they can potentially
influence the curvature perturbation on cosmological scales. Furthermore, just like
ordinary cosmic strings, these strings carry one quantum of magnetic fluxΦ0 = 2π/e,
which can also have an effect on the reheating dynamics locally.
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3
B A RY O N - N U M B E R V I O L AT I O N AT T H E E L E C T R O W E A K
C R O S S O V E R

Baryon and lepton numbers are classically conserved quantities, but the chiral nature
of weak interactions gives rise to the anomalous violation of baryon and lepton num-
ber currents at the quantum level. In practice, however, the processes violating B- and
L-numbers are suppressed below a temperature scale of Tc ∼ 100 GeV, thus making B
and L effectively conserved in the present Universe. Above this critical temperature,
which also corresponds to the electroweak scale, sphaleron processes are responsible
for baryon number transitions.

3.1 E L E C T R O W E A K B A R Y O G E N E S I S

The idea that baryogenesis might have taken place at the electroweak phase transition
was suggested for the first time in 1985 by Kuzmin, Rubakov and Shaposhnikov [17].
However, any successful model of baryogenesis has to fulfill the necessary Sakharov’s
conditions of B and L non conservation, C and CP violation as well as departure from
equilibrium. In the Standard Model, the first requirement is satisfied by the Adler-Bell-
Jackiw anomaly, which expresses the fact that, in gauge theories, gauge invariance
implies axial vector current non-conservation

∂µJ
µ5 =−

e2

16π2
εαβµνFαβFµν, (61)

where Jµ5 is the axial vector current, e the gauge coupling, and Fij the gauge field
strength tensor. C has been found to be violated in weak interactions [18]. Also CP
is violated in the Standard Model in the decays of neutral kaons and in the Cabibbo-
Kobayashi-Maskawa matrix. Departure from equilibrium occurs when the rate Γ of
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Figure 10: The order of the electroweak phase transition shown in terms of the Higgs
mass [22]. The phase transition is first order up to mH ∼ 70 GeV, where it
becomes second order. For higher values of the Higgs mass, the transition
is a crossover.

the process is smaller than the Hubble rateH. In particular, if the electroweak phase
transition is first order, bubbles of the new phase nucleate and expand at a substantial
fraction of the speed of light [19]. However, Kajantie et al. [20] have shown the order of
the transition to be dependent on the value of the Higgs mass (figs. 10, 11), being a
crossover formH = 125 GeV. This can be overcome by a minimal modification of the
Standard Model that would make the transition first order.

3.2 W E A K I N T E R A C T I O N S

The theory of weak interactions is chiral: it couples differently with right- and left-
handed fermions. This is evident from the electroweak Lagrangian

L = iψLγ
µDµψL + iψRγ

µD ′µψR−
1

4
GµνG

µν−
1

4
FaµνF

aµν

+ (Dµφ)
†(Dµφ) + µ2φ†φ−λ(φ†φ)2 +LY , (62)
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Figure 11: The susceptibility χ(T) = g2
3V〈(φ†φ− 〈φ†φ〉)2〉 of the scalar field φ as a

function of temperature, at mH = 60 GeV (above) and 120 GeV (below)
[20, 21]. Every curve represents a set of simulations with the same lattice
volume. In the 60 GeV plot, there is a first-order phase transition, while in
the 120 GeV plot, there is a sharp but smooth crossover.

withψ fermions,Gµν the U(1) field strength, Faµν the SU(2) field strength,φ the Higgs
boson, and LY Yukawa interactions between the fermions and the Higgs field. The
covariant derivatives for the SU(2) and U(1) symmetries are, respectively,

Dµ = ∂µ+ ig
τa

2
Aaµ+ ig

′Y

2
Bµ

D ′µ = ∂µ+ ig
′Y

2
Bµ
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and the left- and right-handed components of the spinor fields,

ψL ≡
1−γ5

2
ψ ψR ≡

1+γ5

2
ψ,

include the Dirac matrix γ5.
Classically, the baryon number current

J
µ
B =

nG∑
q=1

q̄ γµq, (63)

withnG the number of quark generations, is conserved. However, this symmetry need
not to be exact as it arises from a global symmetry and not a local one. Indeed, baryon
and lepton number conservation is violated at the quantum level, by the Adler-Bell-
Jackiw anomaly [23, 24]. The latter is also referred to as the triangle anomaly, as it is
produced by triangle graphs of internal fermion loops connected to two vector fields
and one axial vector field. Indeed, if we associate the SU(2) or the U(1) gauge bosons
at the two vertices of a triangle diagram and a global current corresponding to baryon
or lepton numbers at the third vertex, then sum over all the fermions in the standard
model will give us non-conserved current

∂µJ
µ
B =

nG
64π2

εµνρσ
(
g2 Faµν F

a
ρσ+g

′2 Gµν Gρσ
)

(64)

in terms of Faµν andGµν, the field strengths for the SU(2) and U(1) gauge fields, respec-
tively,

Faµν = ∂µA
a
ν−∂νA

a
µ−gε

abcAbµA
c
ν

Gµν = ∂µBν−∂νBµ.

The lepton number current is the same as eq. (64). So, given that the number of
generations of quarks nG,q and leptons nG,l are the same, B−L is conserved.

3.3 VA C U U M S T R U C T U R E

The theory of anomalies is intimately tied to the physics associated with instantons,
which are topologically nontrivial classical solutions of the SU(2) Yang-Mills theory in
four dimensions [25]. ‘t Hooft showed [26] that these solutions give non vanishing
contributions to the tunneling amplitudes between nontrivial vacua, leading to baryon
and lepton number violation in vector-axial theories. The tunneling cross-section,
however, contains an exponential factor of

exp

(
−16 π2

g2

)
= exp

(
−4π 137 sin2θW

)
≈ 10−170 (65)
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which makes this phenomenon practically unobservable.

Each topological vacuum is labeled by a winding number arising from the
anomaly. As the U(1) theory does not possess a set of infinite nontrivial vacua unlike
the SU(2), we can write the anomaly equation (64) simply as

∂µJ
µ
B =

nG
64π2

εµνρσ g2 Faµν F
a
ρσ ≡ nG ∂µJ

µ
CS, (66)

from which we obtain the Chern-Simons current JµCS

J
µ
CS =

g2

64π2
εµναβ Tr

(
AνFαβ+ i

g

3
AνAαAβ

)
. (67)

The integral of the non-Abelian chiral anomaly is an integer, the Chern-Simons num-
ber

NCS =

∫
d3x j0CS =−

g2

64π

∫
d3x εijkTr

(
AiFjk+ i

g

3
AiAjAk

)
, (68)

representing the topological winding numbers corresponding to the infinite set of
“pure gauge” degenerate vacua of the electroweak sector of the Standard Model. The
question of baryon and lepton number violation in the Standard Model therefore
becomes a question of whether dynamics allow transitions from one vacuum to
another.

At zero temperature transitions occur via instantons [27], and the rate is negligible
even on cosmological scales, see eq. (65). The Standard Model Higgs field acquires a
vacuum expectation value 〈|φ|〉= v/

√
2, with v= 246 GeV.

However, at finite temperatures T > 100 GeV, thermal fluctuations can lead to spon-
taneous transitions by surmounting the potential barrier with a diffusion rate (the
so-called sphaleron rate) of

Γsphaleron(T) = lim
V ,t→∞ 〈[NCS(t)−NCS(0)]2〉

Vt
. (69)

Each transition from one vacuum to the adjacent one produces [17, 28]

nG · [NCS(t)−NCS(0)] = B(t)−B(0) = Li(t)−Li(0), (70)

thus a change in the Chern-Simons number by one unit creates three baryons and
three leptons. The Higgs vev is 〈|φ|〉 ≈ 0, and there is a “symmetry breaking” transition
between the symmetric and broken phases.
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Figure 12: Vacuum structure of the pure-gauge electroweak theory. The energy of
gauge field configurations is displayed as a function of Chern-Simons num-
ber [30]. For the theory with baryons, see fig. 13.

3.4 S P H A L E R O N R AT E A N D B A R Y O G E N E S I S

At high temperatures the transitions can occur because the temperature is high enough
to allow for thermal fluctuations [17]. The sphaleron rate can be estimated in the
broken-phase regime as

Γsphaleron = κ ·exp

(
−∆F

T

)
, (71)

where κ is a prefactor and the rest is the Boltzmann factor, with F as the free energy.In[8]:= Plot@Abs@0.1*xD *Sin@Pi*xD *Sin@Pi*xD + H0.15*xL * H0.15*xL,
8x, -3, 3<, Ticks ® 8Automatic, None<, AxesLabel ® 8Ncs, "E"<,
LabelStyle ® Directive@Bold, MediumD, PlotStyle ® 8Red, Thick<D
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Figure 13: Vacuum structure of the electroweak theory in the presence of baryons.
When you add baryons, the energy E (as a function of Chern-Simons num-
berNCS) becomes very slightly parabolic, with a minimum at 0, reflecting
the cost of having too many baryons. Therefore, at high temperatures, B
averages to zero in the absence of chemical potential. Here the parabolic
shape is exaggerated.
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3.5. Non-perturbative methods

Klinkhamer and Manton [32] found an approximation for the free energy of the
sphaleron

Fsphaleron =
4πv

g
F0
(
λ/g2

)
(72)

where the factor F0 ranges between 1.566 and 2.722 and v is the vacuum expectation
value, with a characteristic energy of 4πv/g≈ 5 TeV. The size of the sphaleron is 1/gv.
The Chern-Simons number of the sphaleron is half integer, that is, the sphaleron is in
the middle of two vacua with integer-valued baryon numbers.

The change in free energy∆F, occurring when moving between two non- equivalent
baryon number configurations, is also determined by the baryon chemical potential
µB and particle numberNB, which result in an extra factor of

∆NBµB+∆NLµL
T

. (73)

By imposing equal baryon- and lepton-number densities and [33]

∆NB =∆NL =±nG/2,

we get the relation between the sphaleron rate and the rate of baryon number violation

dNB
dt

=−n2
G

3

2

µB
T
Γsph, (74)

which yields

1

NB

dNB
dt

=−κ
(
λ/g2

)
1100 g7v exp

[
4πv

g
F0
(
λ/g2

)]
(75)

where κ is a factor, which needs to be calculated numerically [34–36]. The temperature
range where this formula is valid is T = 16−480 GeV, the electroweak energy scale.

3.5 N O N - P E R T U R B AT I V E M E T H O D S

The temperatures at which baryon number violation takes place through sphaleron
processes cannot be observed in nature, nor reproduced in experiments such as the
LHC. Moreover, perturbative methods for the sphaleron decay remain well defined
in the broken phase, but, at temperatures near the electroweak transition, infrared
divergences occur and cannot be tamed. The electroweak theory is addressed with
perturbative methods down to the modes with momenta k 6 g2T , which are non-
perturbative, and we need to make use of lattice techniques [37].

33



B A R Y O N - N U M B E R V I O L AT I O N AT T H E E L E C T R O W E A K C R O S S O V E R

In our study, we used two plausible values for the Higgs mass, 115 GeV and 160 GeV
(Paper II). Along with the discovery of the Higgs boson at CERN in 2012, we com-
plemented our previous work for the found Higgs mass of mH = 125 GeV (Paper
III).

3.5.1 Dimensional reduction

The full four-dimensional Standard Model with chirally coupled fermions is too cum-
bersome to simulate on the lattice. However, for static thermodynamics we can use
the fact that the weak coupling constant is small, and apply perturbation theory only
to modes which can be reliably treated with perturbative methods: that is, to modes
with momentum k > g2T . This procedure is called dimensional reduction, because it
results in a three-dimensional effective theory for the soft (g2T ) modes. The effective
theory is purely bosonic, and it fully includes the essential non-perturbative physics.
The detailed description how this is performed can be found in ref. [31, 38, 39]; for
earlier and related work, see [40–45].

The perturbative derivation of the effective theory is based on the hierarchy be-
tween the hard (k >

∼ πT ), electric (k ∼ gT ) and magnetic (k ∼ g2T/π) scales of a Eu-
clidean finite-temperature path integral. In the first stage we integrate over the hard
scales, obtaining an effective theory of scales k <

∼ gT . Because of the definition of the
Matsubara frequencies as in eq. (114), all fermionic modes and non-static (k0 6= 0)
bosonic modes are of order πT . Thus, the effective theory is purely bosonic and
three dimensional. Concretely, the actual “integration” is done by writing down a
general renormalizable effective theory and matching the perturbatively- computed
two-, three- and four-point functions in both the effective theory and in the original
four-dimensional theory, thus fixing the parameters of the effective theory.

The effective theory can be further simplified by integrating over scales gT , which
gives us the three-dimensional SU(2) gauge theory coupled to the Higgs field.

The three-dimensional, effective Lagrangian reads

Leff =
1

4
FaijF

a
ij+(Diφ)

†(Diφ)+m
2
3φ
†φ+λ3(φ

†φ)2, (76)

with parameters

m2
3 =

( 3

16
g2 +

1

2
λ
)
T 2 −µ2

g2
3 = g2T (77)

λ3 = λT ,
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Figure 14: The values of x (left) and y (right) formH = 115 and 160 GeV in the temper-
ature range of the electroweak crossover. Figure taken from Paper II.

which depend on temperature and the parameters of the Standard Model; the full
expressions are given in ref. [31]. The U(1) field is omitted because its effect on the
transition is numerically small [20].

The coupling constants of the theory are g2
3, m2

3 and λ3 of eq. (77), however it
is customary to use dimensionless quantities x and y and express the set of the
parameters of the effective theory as

g2
3, x=

λ3

g2
3

, y=
m2

3

g4
3

. (78)

Here the dimensionful parameter g2
3 sets the scale and the physics is completely

determined by the values of x and y. The values of x and y depend on the Higgs
mass; in fig. 14 their values are shown formH = 115 GeV andmH = 160 GeV. The other
significant Standard Model parameters which influence the values of x and y are:

GF = 1.16639×10−5 Fermi coupling

mZ = 91.1876 GeV Z boson mass

mW = 80.425 GeV W boson mass

mt = 174.3 GeV top mass

α(mW) = 0.1187 strong coupling constant.
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Now we can express the Boltzmann factor for a sphaleron configuration of eq. (71)
in terms of the SU(2) gauge field and Higgs field in the broken phase [17] as

exp

(
−Fsphaleron

T

)
= exp

(
−

∫β
0
dτ

∫
d3xLeff (A

a
i (x),φ(x))

)
, (79)

with effective Lagrangian given by eq. (76).

3.5.2 Lattice-continuum relations

After building the continuum 3D theory from the 4D fundamental one, we have to put
it on the lattice. The common lattice discretization of the action is [46]

SLat = βG
∑
x

∑
ij

(
1−

1

2
Tr [Pij]

)
−βH

∑
x

∑
i

1

2
Tr
[
φ†(x)Ui(x)φ(x+ î)

]
+

+
∑
x

1

2
Tr
[
φ†(x)φ(x)

]
+βR

∑
x

[1

2
Tr
[
φ†(x)φ(x)

]
−1
]2

, (80)

which is constructed only with gauge-invariant terms. HereUi(x) is the SU(2) gauge
link variable, Pij is the standard ij-plane plaquette constructed from the link variables,
and the lattice Higgs field is naively scaled from the continuum field with

1

8
βGβH(φ

†φ)lat =
(φ†φ)cont

g2
3

.

The parameters βG, βH and βR are related to the parameters g2
3a, x and y by

βG =
4

g2
3a

, (81)

x =
1

4
λ3aβG =

βRβG
β2
H

, (82)

y =
β2
G

8

(
1

βH
−3−

2xβH
βG

)
+

3ΣβG
32π

(1+4x)+
1

16π2

×
[(51

16
+9x−12x2

)(
ln

3βG
2

+ζ

)
+5.0+5.2x

]
. (83)

Here Σ= 3.1759115 and ζ= 0.08849 and the other numerical constants appearing
in eq. (83) are specific for the SU(2) + Higgs model and are computed in [47].

The continuum limit is taken using equations (81)–(83) by letting βG→∞ while
keeping x, y and g2

3 constant. The counterterms in eq. (83) remove the linear and
logarithmic divergences in the lattice spacing a.
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3.5. Non-perturbative methods

The gauge invariant Higgs field expectation value 〈φ†φ〉 has linear and logarithmic
UV divergences. Subtracting the divergences from the lattice expectation value, we
obtain the continuum quantity 〈φ†φ〉 as [46] using

〈φ†φ〉cont
g2

3
=

1

8
βGβH

(
〈φ†φ〉lat−

Σ

πβH

)
−

3

(4π)2

(
log

3βGg
2
3

2g2
3

+ζ+
1

4
Σ2 −δ

)
+ O

(
1

βG

)
, (84)

where ζ+ 1
4Σ

2 −δ≈ 0.6678.

3.5.3 Real-time evolution

The effective theory in eq. (76) is well understood and has been very successfully used
in studies of static thermodynamical quantities of hot electroweak physics. As such,
it does not describe dynamical phenomena, which include sphaleron transitions. It
is possible to take the theory in eq. (76) and use the classical equations of motion
to describe the time evolution of the fields, as was done in the early studies of the
sphaleron rate [48–50]. However, it has been shown that the classical theory contains
divergent UV contributions to the gauge field dynamics, and the results are cut-off de-
pendent [51, 52]. Hence, technically the infrared gauge field dynamics of the classical
theory do not exist. The physical origin of the problem is that the Landau damping of
the transverse gauge fields in the classical theory is UV divergent, and the theory does
not have a physical continuum limit.

These problems can be improved by studying classical theory with hard thermal
loop (HTL) effects included [53]. This leads to complicated and expensive numer-
ical implementations [54, 55]. However, as first demonstrated by Bödeker [56], the
physical damping makes the dynamics of the infrared gauge field modes (modes with
k<
∼g

2T ) to be fully overdamped. Then, at leading order in 1/ ln(1/g) the evolution
of these modes is described with simple Langevin dynamics (in A0 = 0 gauge, and
identifyingH/T = S, the action of eq. (76)) [57]:

∂tAi =−σ−1
el

∂H

∂Ai
+ξai , (85)

where σel is the non-Abelian “color” conductivity,

σ−1
el =

3γ

m2
D

, (86)

γ =
2g2T

4π

(
ln
mD

γ
+3.041

)
, (87)
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and the Debye massm2
D = (11/6)g2T 2 in the Standard Model. ξ is a random Gaussian

noise with
〈ξai (x,t)ξbj (x ′,t ′)〉= 2σelTδijδ

abδ(x−x ′)δ(t− t ′). (88)

The Higgs field has parametrically much less damping. Hence, it can also be evolved
with a Langevin equation, but with a much faster rate of evolution. To this accuracy
we can take it to be infinitely fast in comparison with the gauge field evolution [29].
Iterating eq. (87), we can solve for γ= 0.66361688 g2T .

In principle the Langevin evolution is straightforward to implement on the lat-
tice. However, it is unnecessarily slow: we can substitute it with any dissipative
update, as long as the relation between the evolution rates is known. Thus, it is much
more efficient to use random-order heat-bath update algorithm for the SU(2) gauge
fields [58, 59]. At leading order in small a, n full heat-bath update sweeps through the
lattice correspond to the real-time step [59]

∆t=
1

4
σela

2n . (89)

The Higgs field is updated with a mixture of heat bath and overrelaxation much more
frequently than the gauge field [59].

3.6 M E A S U R I N G T H E S P H A L E R O N R AT E

The evolution of the Chern-Simons number NCS over a time interval (t0,t) can be
defined using lattice electric and magnetic fields:

δNCS(t)≡NCS(t)−NCS(t0) =
g2

8π2

∫ t
t0

dt ′
∫
d3xEai B

a
i . (90)

Unfortunately the topology on the lattice is not well defined, and using naive lattice
scale E and B fields the right-hand side of eq. (90) contains ultraviolet noise. This
gives unphysical diffusion not connected with the sphaleron rate. The method of
calibrated cooling [48, 50], offers a way out of the problem. It is based on the fact
that at small enough lattice spacing sphalerons are large in lattice units, with a domi-
nant length scale of order 1/(g2T). By applying a pre-determined amount of cooling
(Langevin evolution without the noise) to the lattice gauge fields, the ultraviolet noise
is eliminated, without compromising the long-distance topology of the configuration.
At this point it is possible to evaluate the integral in eq. (90) with only small errors.
Cumulative residual errors are eliminated by periodically cooling all the way down
to a vacuum configuration and correcting for deviation from integer values of δNCS

between two vacua. This is schematically described in fig. 15. By adjusting the cooling
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Figure 15: Measurement of the Chern-Simons number evolution [50]. The solid cir-
cles show the configurations generated by the real-time evolution using
the Langevin/heat-bath method. At fixed intervals, the configurations are
cooled by the same amount in order to construct a cooled trajectory, where
the UV noise is almost completely eliminated, allowing to calculate δNCS

from eq. (90). The cooling from vacuum to vacuum works as a test for resid-
ual errors: δNCS must then be close to an integer, the deviations from which
are subtracted, thus avoiding the accumulation of errors.

parameters so that these deviations from integers always remain much smaller than
unity, we also ensure that the cooling is sufficient to keep the measurement topologi-
cal.

Cooling the original gauge fields close to the vacuum is computationally very ex-
pensive. The procedure is dramatically accelerated by “blocking”, that is reducing
the lattice gauge fields by a factor of two after the UV noise has been sufficiently
eliminated; this is repeated a couple of times until a minimum lattice size (6 in our
case) has been reached. The remainder of the cooling then proceeds 25 times faster, 23

because the lattice is smaller and 22 because we can use a∆t step size which is larger
in physical units [50].

3.6.1 Sphaleron rate in the symmetric phase

We calculated the sphaleron rate using two different, and complementary, methods.
We started at high temperatures, above the cross-over, and went through the whole
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crossover range into the “broken phase” by uniformly decreasing the temperature.
At high temperatures we use standard canonical Monte Carlo sampling. As the po-
tential barrier between consecutive Chern-Simons numbers is low, the probability
distribution over Chern-Simons number is approximately flat. As the temperature is
decreased, the sphaleron rate becomes exponentially suppressed and the canonical
real-time method is too inefficient to resolve the slow rate. At this point we began
using multicanonical simulations.

As an example, the evolution of the Chern-Simons number atmH = 115 GeV and
with T = 152 GeV (symmetric phase), 145 GeV (cross-over region) and 140 GeV (broken
phase) is shown in fig. 16. In the symmetric phase the transitions are unsuppressed
and it is straightforward to measure the diffusion rate. Around the cross-over temper-
ature the probability distribution of∆NCS becomes peaked around integer values and
the transitions between these values become rapidly more suppressed. Finally, deep
in the broken phase the rate goes down until we are not able to measure it with the
real-time evolution method.

3.6.2 Sphaleron rate in the broken phase: multicanonical method

At low temperatures where the sphaleron rate is strongly suppressed, this can be mea-
sured using a multicanonical method similar to the one used in [50]. The calculation
consists of two stages:

i) the measurement of the potential barrier (probabilistic suppression) between

two integer vacua,

ii) the calculation of the rate of the tunneling through the top of the potential

barrier.

The measurement of the potential barrier is the multicanonical stage of the compu-
tation. As is usually done in a multicanonical context, instead of sampling configura-
tions with the canonical weight

Pcan(U,φ)∝ e−S(U,φ), (91)

we compensate for the strong suppression by adding a carefully-chosen weight func-
tion W(NCS), which is a function of the order parameter, in this case the Chern-
Simons number. The configurations {U,φ} are now sampled with the probability
density

Pmuca(U,φ) ∝ e−S(U,φ)+W(NCS[U]). (92)
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Figure 16:NCS from a heat-bath trajectory (left), and the resulting probability distri-
bution (right), folded into the interval [0, 1], atmH = 115 GeV and T = 152
(top), 145 (middle) and 140 GeV (bottom). At high temperature, in the
symmetric phase, the sphaleron transitions are unsuppressed, whereas at
low T the transitions are so strongly suppressed that they do not occur in
canonical simulations.
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Figure 17: A heat-bath trajectory forNCS, again formH = 115 GeV and T = 140 but
now with multicanonical simulations (left), and the corresponding multi-
canonical probability distribution Pmuca (right).

Defining the physical (canonical) probability distribution of the Chern-Simons num-
ber

pcan(N
′
CS) =

∫
dU dφPcan[U,φ] δ(N ′CS −NCS[U]), (93)

it is clear that the corresponding multicanonical distribution is

pmuca(NCS) = pcan(NCS) e
W(NCS). (94)

Thus, the probability suppression in multicanonical simulations vanishes if we
chooseW(N) =− lnpcan(N)+ const. This is not a particularly useful result because
we do not know the canonical distribution a priori; indeed, that is the quantity we set
out to compute with the multicanonical method.

However, it is possible to calculate a good enough approximation forW by using
an automatic iterative “self-learning” procedure, as in [59]. Essentially, during the
learning stage the weight function is continuously modified in order to maximize the
flatness of the total distribution of the Chern-Simons number. When the iteration has
sufficiently converged, the resulting weight functionW is then used in a production
run.

The physical (canonical) Chern-Simons probability distribution is now obtained
from the measured multicanonical distribution using eq. (94). An example of the
multicanonical evolution and the resulting probability distribution is shown in fig. 17,
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Figure 18: The physical distribution Pcan (left), after reweighting the result in fig. 17
with the multicanonical weight function (right).

formH = 115 GeV and T = 140 GeV; the same parameters as the lowest temperature
in fig. 16. Here the “evolution” cannot be interpreted as a physical evolution in real
time. As we can observe, the distribution of the Chern-Simons number is now almost
flat. The resulting canonical (physical) probability distribution is shown in fig. 18,
together with the weight functionW(NCS) used.

We obtain an estimate for the physical expectation value for a general observableA
from multicanonical simulation from

〈A〉=
∑
iAie

−Wi∑
i e

−Wi
, (95)

where the sums go over the configurations {U,φ}i obtained from the simulation and
on which the measurements are performed,Wi =W(NCS[{U}i]) andAi =A({U,φ}i).

The multicanonical probabilistic weight is implemented as an accept/reject step as
follows:

i) start with configurationA, with weight functionWA;
ii) perform one heat-bath sweep through the lattice, producing provisional new

configuration B;
iii) measureNCS(B) as described above, obtainingWB.
iv) the new configuration is accepted with probability

paccept(A→B) = {
1 ifWA 6WB

eWB−WA ifWA >WB.
(96)
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If the update is rejected, we start again at point i) with configurationA. The accep-
tance rate was around 50% at the lowest temperatures used, and increased at higher
temperatures.

Obviously, the measured value ofNCS depends on the amount of cooling applied
before the measurement. Thus, the obtained probability distribution p(NCS) is also
cooling dependent. However, this is completely cancelled by the dynamical rate
measurement described in section 3.6.3, so that the final rate is independent of the
amount of cooling. Nevertheless, the right amount of cooling must be judiciously
chosen for efficiency: insufficient cooling gives too noisy observables, whereas too
much cooling takes one too far “downhill” from the original configuration towards the
vacuum.

3.6.3 Sphaleron rate in the broken phase: dynamical prefactor

The multicanonical procedure described above gave us the probability distribution of
the Chern-Simons number in the broken phase. We can now measure the tunneling
rate following refs. [50, 59]:

1. Let us assume that we have carried out the multicanonical simulations and
obtained the canonical (physical) probability distribution of the Chern-Simons
number pphys(NCS).

2. We choose a narrow interval 1/2−ε/2 6NCS 6 1/2+ε/2 around the point
that separates the vacuum NCS = 0 from the vacuum NCS = 1. The relative
probability of finding a configuration here is

P(|NCS −1/2| ε/2) =

∫ 1/2+ε/2

1/2−ε/2
dN pphys(N). (97)

This is where we need multicanonical methods, as the probability of being on
top of the barrier is extremely small, and to get a reliable estimate would take an
impractically long time with canonical sampling.

3. Let us now take a random configuration from the canonical distribution but
with the constraint 1/2−ε/2 6 NCS 6 1/2+ε/2; i.e. near the top of the po-
tential barrier. Starting from this configuration, we now generate two real-time
trajectories using the heat-bath dynamics, as described in section 3.6.1. The
trajectories are evolved until the Chern-Simons number falls near a vacuum
value. Interpreting one of the trajectories as evolving backwards in time, we
can glue the trajectories together at the starting point and obtain a vacuum-to-
vacuum trajectory. The trajectory can either return to the starting vacuum or
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Figure 19: Two real-time trajectories starting from the same configuration. The final
and initial configuration can either be the same (left) or different (right). The
trajectories cross the central value of our order parameterNCS = 1/2 several
times, a fact we compensate for through the dynamical prefactor eq. (98).

be a genuine tunneling trajectory, see fig. 19. Only the latter-type trajectories
contribute to the sphaleron rate.

4. We can obtain the tunneling rate by measuring |∆NCS/∆t| from the trajectories
at the moment they cross the value NCS = 1/2. Here ∆t is the time interval
between successive measurements, and ∆NCS the change in Chern-Simons
number. This characterizes the probability flux thorough the top of the barrier.
We obtain the physical time difference from the relation between the heat-bath
“time” and physical time, eq. (89).

5. If the tunneling trajectories would go straight across the top, the ingredients
above would be sufficient to calculate the total rate. However, typically the
trajectories “random walk” near the top of the barrier and can cross the value
NCS = 1/2 several times. Because the trajectories were chosen starting from a
set of configurations near the top of the barrier, this leads to overcounting: the
evolution could be started at any point theNCS = 1/2 limit is crossed. This can
be compensated by calculating a dynamical prefactor

d =
1

Ntraj

∑
traj

δtunnel

# crossings
, (98)
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where the sum goes over the ensemble of trajectories, Ntraj is the number of
trajectories, δtunnel is 0 if the trajectory does not lead to a change of the vacuum
and 1 if it does, and (# crossings) is the number of times the trajectory crosses
NCS = 1/2.

With these ingredients, the sphaleron rate now becomes

Γ =
P(|NCS −1/2| ε/2)

ε
〈|∆NCS

∆t
|〉d. (99)

We note that the result is independent of ε as long as ε� 1. It is also independent of
the frequency∆twith which the Chern-Simons number is measured. Equation (99)
has a well-defined continuum limit [Paper II].
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Figure 20: The Higgs field expectation value for mH = 115 GeV (left) and 160 GeV
(right). Squares are for βG = 9, volume (L/a)3 = 323. FormH = 115 GeV we
have performed the continuum limit extrapolation at selected temperatures
using a range of lattice spacings βG = 4/(g2

3a) = 6 . . . 12 and extrapolating
linearly to continuum. We observe that the βG = 9 result deviates less than
8% from the continuum limit in the range of temperatures studied. The
lines are to guide the eye.

3.7 R E S U LT S

We concentrate on two physically significant observables, the sphaleron rate and
the Higgs field expectation value as functions of temperature atmH = 115 GeV and
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mH = 160 GeV. For both quantities we check for the finite volume and finite lattice
spacing effects. Finally we implement the calculations for the Higgs mass
mH = 125 GeV.

3.7.1 The Higgs field v(T)

The gauge invariant Higgs condensate 〈φ†φ〉 is a direct probe of the phase transition
or cross-over. At high temperatures it is close to zero, and at low temperatures it
acquires an expectation value which grows as the temperature decreases. Because
of the additive renormalisation, eq. (84), the symmetric-phase value can become
negative. The results obtained at βG = 9, lattice size 323, are shown in fig. 20 for
mH = 115 GeV and 160 GeV. Note that 〈φ2〉 is in units of g2T 2, and goes to infinity as
temperature goes to zero.

At high temperature in the symmetric phase, 〈φ†φ〉 is close, but not quite equal,
to zero. As the temperature is lowered, we enter the cross-over region where 〈φ†φ〉
grows rapidly. At smaller Higgs masses (mH <

∼ 72 GeV), this rapid growth becomes a
discontinuous jump, indicating a first-order transition, see fig. 11, [20]. Below the
cross-over region, 〈φ†φ〉/(g2T 2) settles to an almost linear increase.

We then performed control simulations for mH = 115 GeV in order to check the
validity of our results for the continuum limit (a→ 0) and the infinite- volume limit
(V→∞). We measuredφ†φ at selected temperature values while varying the lattice
spacing by more than a factor of two (βG = 6 . . . 16). The results are shown in fig. 22.
In this case we can reliably take the continuum limit by linear extrapolation. We
observe that when 〈φ†φ〉 is small, the cut-off effects are very small, and at the lowest
temperatures studied T ≈ 130 GeV the βG = 9 result deviates from the continuum
limit by less than 8%. The physical volume was kept fixed, at Lg2

3 ≈ 14. We have
checked that this is a large-enough volume so that the residual finite-volume effect is
unobservable within our statistical accuracy.

3.7.2 The sphaleron rate Γsph(T)

The sphaleron rate Γ/T 4 for Higgs masses 115 GeV and 160 GeV is shown in fig. 21,
using βG = 9 data. As expected, at high temperature in the symmetric phase, the rate
becomes insensitive to the temperature apart from the trivial scaling. In this region
the standard “canonical” real-time evolution is sufficient. As we proceed into the
cross-over region there is a rather sharp turnover, with a drop of 10−3 over 5 GeV. In
this region, both the canonical and multicanonical methods were used, and they agree
very convincingly. Deeper in the broken phase, the decrease in the rate flattens out
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somewhat to a clean exponential drop-off, and, using the multicanonical approach,
we were able to follow the rate over 10 orders of magnitude. For comparison, we have
included the extrapolation from [60], expected to be valid deep in the broken phase.
We see that the slope is correct, but that the central value of the rate is off by about
an order of magnitude; or equivalently that the temperature axis is shifted by about
2 GeV for a Higgs mass of 115 GeV and about 5 GeV in the 160 GeV case. The data are
shown for βG = 9, where the majority of our simulations were done.
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Figure 21: The sphaleron rate for mH = 115 GeV (left) and 160 GeV (right) at
βG = 9. The shaded band is the theoretical estimate (plus error ranges
extrapolated from lattice results in [50]) for the broken phase and the hori-
zontal lines for the symmetric phase, as calculated in [60]. At high tempera-
tures, the canonical and multicanonical results agree within errors.

Sphalerons are extended objects, and thus it is necessary to check the finite volume
effects. Using a constant lattice spacing βG = 9 and lattice sizes L/a = 16–54 we
observed no systematic finite-size dependence within our statistical accuracy. Thus,
we can be confident thatL= 32, a≈ 14/g2

3 is sufficiently large at all temperatures. This
result is in agreement with ref. [61], where the volume dependence of the sphaleron
rate became negligible at L>

∼5/g2
3 in pure SU(2) gauge theory.

As we did with the Higgs field expectation value, we investigated the dependence
of the sphaleron rate on the lattice spacing. We chose a set of six temperatures
in the interval 130-155 GeV and measured the rate at βG = 4/(g2

3a) = 6–16, while
keeping the physical volume approximately constant: L≈ 3.5βG = 14/g2

3. The lattice
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spacings and volumes are shown in table 2, and the resulting sphaleron rates are
shown in fig. 23.

In the symmetric phase the lattice-spacing dependence is very mild. Deep in the
broken phase the rate appears to decrease as a is decreased. This can be understood
in the light of the increasing Higgs field expectation value at smaller a, see fig. 22.
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Figure 22: Left: the Higgs field calculated formH = 115 GeV and several temperatures,
with decreasing lattice spacing a, but keeping the volume constant, accord-
ing to table 2. The black line is the continuum extrapolation. Right: an
example of the continuum extrapolation at a single value of the temperature
T = 143 GeV.

However, deep in the broken phase (T <
∼145 GeV) and for the smallest lattice spac-

ings (βG > 14) our multicanonical order parameter, cooled NCS (fig. 15), becomes
ineffective and we are not able to obtain a sufficiently accurate measurement of the
rate for the proper continuum limit. This is due to the increased noise in the measure-
ment at smaller lattice spacings: when the amplitude of the noise is of order unity,
a large fraction of the configurations with (measured) NCS near half-integer value
are actually some distance from the top of the tunneling barrier. Thus, only a small
fraction of these configurations will lead to tunneling trajectories.

The amount of noise can be reduced by applying more cooling before the measure-
ment ofNCS. However, cooling evolves the configuration towards one of the vacua
(integer NCS), and with too much cooling the measured order parameter does not
track the true Chern-Simons number well enough for effective update. We emphasize
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a (1/g2
3) βG L L/βG

0.67 6 20 3.3
0.5 8 28 3.5
0.44 9 32 3.56
0.4 10 36 3.6
0.29 14 48 3.4
0.25 16 56 3.5

Table 2: Lattice values for the continuum limit. a is the lattice spacing, βG is defined
in eq. (81), L is the size of our volume. From the ratio L/βG we notice that
we keep the physical proportions constant, while we diminish the size of the
lattice spacing a.

that despite these issues the multicanonical method remains exact in the limit of
infinite statistics; it is only the efficiency of the method which suffers.

Because of this issue, our statistics at small lattice spacing is severely restricted
and we cannot obtain a reliable continuum limit. Thus, our final answer remains the
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Figure 23: Left: the sphaleron rate calculated for mH = 115 GeV and with different
lattice spacings a while keeping the physical volume constant. Right: an
example of the rate at T = 143 GeV as a function of the lattice spacing. Here
the continuum limit has been extrapolated by assuming that the dominant
error of logΓ is linear in a. However, if we extrapolate Γ itself linearly in a,
the result is compatible with vanishing rate in the continuum limit.
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βG = 9 result, where we have most of the data. However, what the data indicates is
that the true continuum limit is probably a factor of 2–3 below the βG = 9 result deep
in the broken phase, which very likely makes the agreement with ref. [60] in fig. 21
better.

3.7.3 Results for the physical Higgs mass

Recently, we have determined the sphaleron rate Γ/T 4 and the expectation value
for the Higgs field 〈φ2〉 for the Higgs mass mH = 125 GeV. Figure 24 a) shows the
Higgs field expectation value as a function of temperature. Again we start from the
“symmetric phase” with canonical Monte Carlo simulations and lower the temperature
to reach the “broken phase”, where we switch to multicanonical simulations. We can
see the Higgs field assuming a non-zero value when approaching the broken phase,
and the transition between the two methods occurring smoothly.

The sphaleron rate as a function of temperature is shown in the lower plot of fig. 24.
Here again we perform the simulations with canonical Monte Carlo at high temper-
atures and continue with multicanonical methods when reaching the cold broken
phase. The sphaleron rate changes from its asymptotic value to become exponentially
suppressed at very low temperatures. The canonical and multicanonical methods are
in good agreement. The theoretical curves, used to compare our results, were obtained
separately for the broken and symmetric phases, through perturbative calculations or
by extrapolation from lattice simulations in [60].

3.8 L E P T O G E N E S I S

In baryogenesis via leptogenesis [62, 63], a lepton asymmetry is assumed to originate
from some separate process, represented here by a time-dependent source fi(t) which
may or may not be active at the electroweak scale. Sphaleron transitions equilibrate the
system, so that the lepton asymmetry is transformed into net Li and B. Following [60],
the equations controlling this equilibration read

Ḃ(t) = −γ(t)

[
B(t)+η(t)

nG∑
i=0

Li(t)

]
, (100)

L̇i(t) = −
γ(t)

nG

[
B(t)+η(t)

nG∑
i=0

Li(t)

]
+ fi(t), (101)

51



140 150 160 170 180 190
Temperature (GeV)

0

0.2

0.4

0.6

0.8

1

H
ig

g
s 

fi
el

d
 <

Φ
2
>

/T
2

multicanonical

perturbative

canonical

140 150 160 170 180 190
Temperature (GeV)

10
-14

10
-12

10
-10

10
-8

10
-6

S
p
h
al

er
o
n
 r

at
e 

Γ
/T

4
  
(l

o
g
)

multicanonical

canonical

Figure 24: Top: The Higgs expectation value 〈φ2〉 for the Higgs mass of 125 GeV as a
function of temperature. The high-temperature canonical and low- temper-
ature multicanonical results match beautifully in the transition region. Bot-
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in the low- temperature phase (bottom, wide band), both from [60].
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where

T = T(t),

γ(t) = γ(Γsph(T),v(T)),

η(t) = η(v(T))

nG = 3. (102)

Here v(T) is the expectation value of the Higgs field, taken to be v(T)'
√
〈φ†φ〉.

As the sphaleron rate is well-known in the symmetric phase, we focus our interest
on the cross-over region, to investigate the efficiency of lepton-to-baryon number
conversion through the newly-calculated sphaleron rate. In order to enhance the
effect of the sphaleron rate suppression at cross-over temperatures, we study the
leptogenesis eqs. (100)–(101) in two limiting cases: one where the lepton-number
source fi(t) was shut off well before the start of the cross- over, and one where we let
the source active throughout.

We took nG = 3 and assumed that all lepton species are equivalent Li = L,
i= 1, 2, 3,

∑
iLi = 3L. The initial baryon and lepton numbers vanishL(t0) =B(t0) = 0.

The source for the lepton number is therefore taken to be operational between
T = 200 GeV and T = Tcut−off,

fi(t) = f(t) =
f0

2

(
1− tanh

[
Tcut−off −T

2 GeV

])
, (103)

Since the equations are linear, the normalization of f0 is arbitrary. This leaves only the
source shut-off temperature Tcut−off as a free parameter, which we varied from 170 to
130 GeV, before and after the cross-over, respectively.

The full expressions for γ(t) and η(t) in eqs. (100)– (101) are [60]

γ(t) =n2
Gρ

(
v(T)

T

)[
1−χ

(
v(T)

T

)]
Γsph(T)

T 3
, η(t) =

χ
(
v(T)
T

)
1−χ

(
v(T)
T

) , (104)

where T = T(t). The functions are defined as

ρ(x) =
3 [65+136nG+44n2

G+(117+72nG)x
2]

2nG
[

30+62nG+20n2
G+(54+33nG)x2

] , (105)

χ(x) =
4 [5+12nG+4n2

G+(9+6nG)x
2]

65+136nG+44n2
G+(117+72nG)x2

. (106)
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We calculated the evolution of lepton and baryon number from temperature
200 GeV down to 130 GeV. Using that to a good approximation in the early Universe
T ∝ 1/a, with a(t) the scale factor, we have that

d

dt
=−HT

d

dT
, (107)

whereH is the Hubble rate, given by the (radiation-dominated) Friedman equation1

H2 =
π2g∗T 4

90M2
pl

, g∗ = 106.75, Mpl = 2.43×1018 GeV. (108)

Over the range of temperatures used here,H= (8.8−3.7)×10−14.
Once the source is turned off, and in the limit that L and B evolve much faster than

v and η, we can write the equations in terms of Y =B+3ηL

d lnY

d lnT
=
γ(T)

H(T)
(1+η(t)) , (109)

so that Y = 0 is enforced unless γ/H is too small. Hence if the sphaleron rate is fast
enough, we expect

−
B(T)

3L(T)η(T)
' 1. (110)

We say that the system is in “equilibrium” when this relation is obeyed. We note that
η (v(T)/T = 0) = 0.549... and η (v(T)/T = ∞) = 0.48.

The evolution ofB andL in time is shown in fig. 25. Starting from zero at T = 200 GeV,
the introduction of the source leads to a growing L and, through
sphaleron processes, growing B. This continues until the source is switched off;
in the examples shown here Tcut−off = 170 GeV and Tcut−off = 130 GeV. For the early
cut-off, both B and L level off to some asymptotic value. But even without switching
off the lepton source, at a temperature around 143 GeV the sphaleron rate becomes
inefficient, and the baryon number levels off. Lepton number is still sourced, but
no longer having B as a sink, the growth of L becomes steeper. Tfreeze−out = 143 GeV
corresponds to γ(t)/H' 10, and v(T)/T ' 0.5.

What is perhaps more surprising is the ratio in eq. (110) when there is no source.
Because the v(t) increases through the transition, the equilibrium value η(t) also
changes (see inset in fig. 26). A large enough sphaleron rate relative to the Hubble
rate would adjust B relative to L to accommodate this evolving “equilibrium”, but as is

1 We ignored the effect of g∗ changing slightly as the top quark begins acquiring its mass.
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3.8. Leptogenesis

140160180200
Temperature (GeV)

-0.1

-0.05

0

0.05

0.1

B, L

B

L

Source shut-off, T = 170 GeV

Source shut-off, T = 130 GeV

Figure 25: The evolution of baryon numberB (red) and lepton number L (black) in the
presence of a lepton number source, turned on at T = 200 GeV. The source
is turned off at T = 170 GeV and 130 GeV respectively (blue dashed lines).
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Figure 26: The evolution of the ratio (eq. (110)), with the source turned off at
T = 170 GeV (green) and 130 GeV (blue). Inserted: the evolution of the
quantity η(t).
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clear from fig. 26, this does not happen. η(t) just decreases and so the ratio becomes
larger than 1. As a consequence, the asymptotic B and L obey

B(x=∞)' η(Tfreeze−out)3L(Tfreeze−out) = 1.06×3L(Tfreeze−out)η(x=∞). (111)

Figures 25 and 26 are based on themH = 115 GeV data. We did a similar calculation
for themH = 160 GeV rate, giving the same picture but with Tfreeze−out = 175 GeV.
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4
J E T Q U E N C H I N G

The collision of high-energy partons produces jets of elementary particles and a hot
and dense medium comparable to early Universe conditions. Jets have been observed
at RHIC in proton-proton, deuteron-gold, and gold-gold collisions. The scattered
quarks and gluons undergo large energy loss as they traverse the matter formed in the
collision. This energy loss is called jet quenching. Jet quenching gives us a new way to
probe the properties of the matter – the quark-gluon plasma – formed in these violent
collisions.

4.1 H I G H - T E M P E R AT U R E Q C D

Deconfinement occurs at high pressures (e.g. neutron stars) or at high temperatures,
producing the quark-gluon plasma (QGP), fig. 27. The presence of a phase transition
is suggested by the increase in energy density, and subsequently in degrees of freedom,
of strongly-coupled matter, at increasing temperatures. The critical temperature and
the order of the transition depend very much on the quark content of the theory, as
shown in fig. 28. For three families of massive quarks, the transition temperature is
estimated to be [66]

Tc ≈ 155 MeV, (112)

with critical energy density ε≈ 1.95 GeV/ fm−3, with respect to that of normal nuclear
matter of ε≈ 0.15 GeV/ fm−3, see fig. 29. This critical temperature corresponds to a
crossover.

Below the QCD scaleΛQCD ∼ 200 MeV, quarks are confined and the theory highly
non-perturbative. In the quark-gluon plasma, significantly above the transition tem-
perature, asymptotic freedom makes the strong coupling constant smaller, αs� 1.
The system can then be treated perturbatively, see fig. 30.
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Figure 27: Phases of strongly-interacting matter, as a function of temperature and
density [65]

To find an order parameter for the transition, we recall that above the critical
temperature chiral symmetry is restored. The QCD Lagrangian is

L = q̄i(iγµDµ−mq)q
i−

1

4
FaµνF

µν
a (113)

where

Dµ = ∂µ+ igAµa
λa

2
Faµν = ∂µA

a
ν−∂νA

a
µ−gfabcA

b
µA

c
ν,

with coupling constant g, quarks qi belonging to the SU(3) fundamental representa-
tion, gluon fields Aaµ belonging to the adjoint one, and the 8 Gell-Mann
3×3-matrices λa, generators of the SU(3) in fundamental representation, satisfying
[λa,λb] = ifabcλ

c. For massless quarks, the Lagrangian is invariant under global chiral
transformations. The quark mass term in eq. (113) breaks explicitly the chiral symme-
try. In particular, one can take the quark condensate 〈q̄q〉 as an order parameter of
the QCD transition:

〈q̄q〉 ≈ 0 T > Tc quark−gluon plasma

〈q̄q〉 6= 0 T < Tc hadron gas.
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4.2. The effective theory

Figure 28: Order of the QCD phase transition is dependent on the quark masses [64].

The production of the quark-gluon plasma in heavy-ion collisions was first sug-
gested in 1974 at the Bear Mountain workshop [67], and discovered at RHIC in
2005 [68]. The quark-gluon plasma forms in heavy-ion collisions when the energy den-
sity reaches values of the order of ∼ 2 GeV/ fm−3, then decouples and hadronizes at a
time
∼ 10 fm/c after the collision. There is therefore no direct way of observing the quark-
gluon plasma, it must be probed with external sources. These are for example parti-
cles with high transverse momentum p⊥, traveling through and interacting with the
plasma. Jets forming at collision are the perfect probe. RHIC discovered that jets are
quenched when traversing the plasma, that is they lose energy through gluon radia-
tion. The scattering processes occurring while the hard probe traverses the medium
are perturbative in nature [69].

4.2 T H E E FF E C T I V E T H E O R Y

The properties of the quark-gluon plasma are described at the microscopic level by
QCD at finite temperature, and by relativistic hydrodynamics at the macroscopic level.
Indeed QGP behaves like a perfect fluid, with small ratio of viscosity over entropy
density η/s due to the large number of degrees of freedom of the deconfined phase.
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Figure 29: States of matter in heavy-ion collisions shown in terms of energy density as
a function of time [70].

In finite-temperature field theory, configurations evolve in imaginary time
τ = −it, with 0 6 τ 6 β, where β = 1/T . This allows to use ordinary quantum
field theory with a Euclidean metric. In momentum space, continuous frequencies
are substituted by discrete ones, the Matsubara frequencies for bosonic and fermionic
fields

kboson
0 =

2πn

β

kfermion
0 =

(2n+1)π

β
(114)

with n∈Z.
We impose periodic conditions for bosonic fields

φ(1/T , x̄) =φ(0, x̄). (115)

For fermion fields, the boundary conditions are antiperiodic.
Finite-temperature perturbation theory can be used only for small coupling con-

stant values, αs . 0.1, T � Tc, which is the case we want to approximate to our
deconfined QGP. With large coupling constant, there are large O(g) corrections, which
come from classical non-abelian plasma effects.
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4.3. Wilson line

At high temperatures, QCD has three scales: the ultrasoft ∼ g2T/π, the soft ∼ gT ,
and the hard modes ∼ πT . It has been shown [40, 41] that it is possible to study the
hard and soft modes separately. As hard modes behave perturbatively well [71, 72],
they can be integrated out and we are left with a three-dimensional effective theory,
EQCD, the electrostatic QCD, describing the soft scale, see fig. 30.

Figure 30: QCD dimensional reduction (illustration from [73]).

Large corrections are expected also for real-time quantities, some of which (collision
kernel C(q⊥), momentum broadening coefficient q̂) have been calculated in the
EQCD framework [74]. For other real-time quantities though, a dimensionally-reduced
theory has not been fully developed yet, and other effective theories need to be used.

4.3 W I L S O N L I N E

The propagation of a sufficiently high-energy excitation through the medium can be
described in terms of a null Wilson line, and the transverse-momentum exchange with
the medium is related to the falloff with distance of a parallel pair of such lines [75, 76].
Specifically, the probability per length to exchange transverse momentum ∆p⊥ is
given by

(2π)2dΓ

d2∆p⊥ dt
≡C(p⊥) , C(p⊥) =

∫
d2x⊥e

ip⊥·x⊥C(x⊥) . (116)

C(x⊥) is determined by a Wilson loop with two null segments of length l and two
transverse spatial components of length x⊥:

C(x⊥) = lim
l→∞−

1

`
ln TrWl×x⊥ ,

Wl×x⊥ = 〈U(0,0,0);(l,0,l)U(l,0,l);(l,x⊥,l)U(l,x⊥,l);(0,x⊥,0)U(0,x⊥,0);(0,0,0)〉 , (117)

whereUxµ;yµ are straight Wilson lines from xµ to yµ, and the three entries are the time,
transverse coordinate, and longitudinal coordinate. The Wilson loop is to be evaluated
in the density matrix describing the collision, which is presumably a thermal density
matrix. Knowledge of C(p⊥), or equivalently C(x⊥), is a key input into models of
medium-induced jet energy loss and jet modification [76, 77].
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Figure 31: A long, thin rectangular Wilson loop stretching along the light-cone coordi-
nate x+, with a small transverse extension x⊥ [74].

The jet quenching parameter

q̂=
〈p2
⊥〉
l

(118)

can be evaluated in terms of the collision kernelC(p⊥) of eq. (116)

q̂=

∫
d2p⊥
(2π)2

p2
⊥ C(p⊥). (119)

The leading order perturbative form ofC(p⊥) is fully known [78], and for momen-
tum transfers of order of the temperature or higher p⊥ & T , the corrections to the
leading order result are suppressed by O(g2). For a soft momentum transfer p⊥ ∼ gT ,
however, the introduction of a soft scale forces one to use resummed perturbation
theory, and the next-to-leading order correction arises already at the O(g)-relative
order, making the physics of soft momentum transfers significantly more complicated.

However, Caron-Huot has shown [74] that for soft momentum transfers, to NLO,
the Wilson loopWl×x⊥ above can be replaced by a Wilson loop in the much simpler
theory of EQCD, that is, QCD dimensionally reduced to three Euclidean dimensions,
with theA0 field converted into an adjoint scalar fieldΦ, where, roughly speaking,

g3dΦ= iA0 and g2
3d ∼ g

2T .

Specifically, we have

W`×x⊥→ Ũ(0,0);(0,l)U(0,l);(x⊥,l)Ũ(x⊥,l);(x⊥,0)U(x⊥,0);(0,0) . (120)

There is now no time coordinate, only the transverse and z coordinates. The com-
plication is that the Wilson lines which replace the null lines in the 4D version ofW
are modified, still containing the descendant of the A0 field, which enters into the
definition of Ũ:

Ũ(0,0);(0,l) = Pexp

∫ l
0
dz Ta(iA

a
z +gΦ

a) . (121)
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4.4. Statement of the problem

The representation matrices Ta should be in the same representation as the propa-
gating particle, which we will label R (fundamental or adjoint representation). The
relative phase – Az enters with an i and Φ does not – is because Φ is a Euclidean
continuation ofA0 and the i factor is absorbed in the Wick rotation. The overall sign
is reversed in Ũ(x⊥,l);(x⊥,0). We will call this modified Wilson line the null Wilson line
of EQCD.

Perturbation theory fails near the QCD crossover because the theory is genuinely
strongly coupled there. It is, however, possible that the failure of perturbation theory at
a few times the crossover temperature arises because the 3D theory is strongly coupled,
while the short-distance physics involved in dimensional reduction is not [72]. In this
case, a non-perturbative treatment of the 3D theory may still give useful information
about QCD at the highest temperatures achieved in heavy ion collisions. If true, then
the non-perturbative nature in the interaction of a jet parton with the medium is
captured by the EQCD value of C(p⊥), which can be measured on the lattice. With
this motivation, there has been an upswing in interest, recently, in studying the Wilson
loop andC(x⊥) in EQCD on the lattice [79]. The relation between continuum thermal
QCD and continuum EQCD is known to high perturbative order [72, 80–82], and the
matching of the action, and some operators, between continuum and lattice EQCD
is known to order g2

3da [83]. But the Wilson line in eq. (121) is a new operator and
its lattice implementation has not been studied beyond the tree level. In practice it
is challenging to make lattice studies quantitatively reliable without a calculation of
the O(g2

3da) renormalization of the null Wilson line operator. This is true even if the
lattice spacing is taken to be very small, if one is simultaneously interested inC(x⊥)
at short distances. Indeed, the first efforts to numerically determine the C(p⊥) by
Panero, Rummukainen, and Schäfer [79] show how it is challenging to make contact
with perturbation theory at p⊥ � gT , corresponding to small spatial separations.
Therefore a study of O(a) corrections to the null Wilson line operator are essential to
the success of this program.

4.4 S TAT E M E N T O F T H E P R O B L E M

4.4.1 Lattice and continuum action

EQCD is the theory of a three-dimensional SU(N) gauge fieldAi with field strength
Fij ≡ FijaTa, together with an adjoint scalar Φ ≡ ΦaTa (with Ta the fundamental
representation group generators normalized such that TrTaTb = δab/2). Writing
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the path integral as
∫

D[A,Φ]exp(−SEQCD), the most general super-renormalizable
action in the continuum is

SEQCD,c =

∫
d3x

(
1

2g2
3d

TrFijFij+ TrDiΦDiΦ+m2
D

TrΦ2 +λ1(TrΦ2)2 +λ2 TrΦ4

)
,

(122)

where we have not shown the counterterm which subtracts UV divergences from
the TrΦ2 term. The three-dimensional theory corresponds to the dimensionally-
reduced four-dimensional QCD along a matching curve, specifying the values of the
parameters of EQCD as a function of four-dimensional parameters: g,T ,N and the
number and masses of quark speciesNf andmi. Explicit expressions can be found in
eqs. (5.2)-(5.5) of [84]. The quark mass dependence is discussed in [85].

It is customary to introduce dimensionless versions of the mass and scalar coupling
terms, by defining1

y≡
m2

D
[µMS = g

2
3d]

g4
3d

, x1 =
λ1

g2
3d

, x2 =
λ2

g2
3d

. (123)

The corresponding lattice theory, with lattice spacing a, is defined in terms of the
link matricesUi(x) =Ux;x+aî and the lattice scalar fieldΦL . The lattice action is

SEQCD,L =
2N

Zgg
2
3da

∑
x,ij

(
1−

1

N
Tr x,ij

)
(124)

+2ZΦ
∑
x,i

Tr
(
Φ2

L
(x)−ΦL(x)Ui(x)ΦL(x+aî)U

†
i(x)

)
+
∑
x

Z4

[
(x1+δx1)TrΦ4

L
+(x2+δx2)

(
TrΦ2

L

)2
]
+Z2(y+δy)TrΦ2

L
,

x,ij ≡ Ui(x)Uj(x+aî)U
†
i(x+aĵ)U

†
j (x) , (125)

and the lattice implementation of Ũ is

Ũ(0,0);(0,na) =

n−1∏
m=0

exp
(
ZTaRΦ

a
L
(maẑ)

)
Uz,R(maẑ) , (126)

for a Wilson line in the R representation. Note that there is no factor of i in exp(ZΦL),
which is not a unitary matrix.

1 For SU(2) or SU(3), the TrΦ4 and (TrΦ2)2 terms are not independent, as TrΦ4 = (TrΦ2)2/2 for these
groups. In these cases one of the scalar terms can be eliminated in favor of the other.
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4.4. Statement of the problem

Figure 32: Diagrams giving rise to the leading-order contribution toC(x⊥). Two Wil-
son lines (solid) are shown with the exchange between lines of anA field
(wiggly) or aΦ field (dashed).

The value of the scalar field wave function normalizationZΦ is actually a free choice
in implementing the lattice theory, corresponding to the normalization choice for
the lattice scalar field. We focus on the combinations Zg, Z2/ZΦ, Z2/ZΦ, and Z4/Z

2
Φ,

which are invariant under this normalization freedom. At tree level we would have

Zg = 1

Z2

ZΦ
= g2

3da=
Z4

Z2
Φ

Z2

ZΦ
= g4

3da
2.

The coefficients Zg, Z2/ZΦ, Z4/Z
2
Φ, δx1,2 and δy are already known. Our goal is to

determine the remaining unknown parameter Z2/ZΦ, which controls the renormal-
ization of the null Wilson line of EQCD.

4.4.2 Sensitivity of Wilson loop to renormalization

Since we are interested in the l-dependence of TrW when l is large, we can ignore
contributions from the ends and corners of the Wilson loop and focus on correlations
between the long edges. We are also only interested in the x⊥-dependence ofC(x⊥),
since any x⊥-independent piece does not enter in C(p⊥). Therefore we need only
consider diagrams with at least one line connecting the null Wilson lines. At lowest
order there are two, involving the exchange of anAz or aΦ line, as illustrated in fig. 32.
Because theAz fields attach with factors of i,−iwhile theΦ fields attach with factors
of 1,−1, the contributions are of opposite sign. In the continuum they are

CLO(x⊥) =

∫∞
−∞dz〈Az(x⊥,z)Az(0)−g2

3dΦ(x⊥,z)Φ(0)〉

⇒ C(p⊥)

CR
=
g2

3d

p2
⊥
−

g2
3d

p2
⊥+m

2
D

, (127)
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while on the lattice we find (defining, as usualUi(x)≈ (1+ iaAi(x+aî/2)))

CLO(x⊥) =
1

a

∑
n

〈a2Az(x⊥,na)Az(0)−Z2Φ(x⊥,na)Φ(0)〉

⇒ C(p⊥)

CR
=
Zgg

2

p̃2
⊥

−
Z2/aZΦ
p̃2
⊥+m

2
D

. (128)

Here p̃2
x ≡ sin2(pxa/2)/(a/2)2 is the lattice momentum and CR is the quadratic

Casimir in the representation R of the Wilson loop.
The important feature of eq. (127) is that the two terms approximately cancel at

large p⊥, up to subleadingm2
D
/p4
⊥ corrections. The presence of the lattice propagator

in eq. (128) does not change this cancellation. Of course this cancellation does not
persist at higher loop order, but because the theory is super-renormalizable, each
loop order gives weaker large-p⊥ behavior. Indeed, at NLO the large p⊥ behavior is
O(g4

3d/p
3
⊥) [74].

The problem is that the renormalization of Z – which is not taken into account in a
lattice calculation – will spoil the cancellation in eq. (128), giving rise to uncanceled
1/p2

⊥ large-p⊥ behavior. Therefore the short-distance or large-p⊥ behavior is espe-
cially sensitive to errors in the Wilson line renormalization constant Z. The need to
renormalize the Wilson line operator increases at small separation, scaling as the in-
verse separation of the Wilson lines in lattice units. For instance, if the Wilson lines are
separated byN lattice spacings in the transverse direction, the O(a) corrections are
O(1/N), no matter how small the lattice spacing may be. Finding the O(a) correction
to Zwill improve this behavior to 1/N2, an important correction for realistic values
N ∼ 5.

4.5 C A L C U L AT I O N S T R AT E G Y

The matching calculation consists of computing C(p⊥)/CR at NLO within contin-
uum and lattice EQCD, and fixing the coefficients of the lattice theory such that the
calculations agree to all orders in g3d and λi and up to the desired order in a, here
O(a). As usual, once the coefficients are fixed at one order, the infrared behavior is
automatically the same at the next order, since the infrared behaviors of the theories
coincide by construction. Then it is the difference in the ultraviolet region of any loops
which must be calculated. As usual, such behavior can be understood in terms of a
renormalization of the parameters of the theory appearing in diagrams of lower order.

Again we only need diagrams with at least one line running between the null Wilson
lines. There are a number of NLO diagrams, see fig. 33. Fortunately, both propagators
in diagramsA and Bmust be infrared (since they connect spatially well-separated
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4.6. Result

A B C D E F G

H I J K L M N

O P Q R S T U

Figure 33: Diagrams needed at next-to-leading order. Solid lines are the Wilson lines,
wiggly lines areA fields, dashed lines areΦ fields, blobs are self-energies.
Each diagram implicitly also represents the same diagram reflected right-
left or top-bottom.

Wilson lines), so they do not contribute to UV renormalization. In Feynman gauge
(which we will use throughout), diagrams E, H, andO are zero. Diagrams J,L,Q,S
have no continuum analog; they arise because Uz = exp(iaAz) and exp(ZΦ) are
nonlinear in Az and Φ. But the form of the lattice Wilson line, eq. (126), does not
contain anything which would introduce mixedAz,Φ vertices on the Wilson line, so
there are no mixed-field analogs of diagramsH,J,L,O,Q,S.

Since only the UV behavior of diagrams is relevant, we can ignoremD and treat the
propagators to be

〈AzAz(p)〉=
Zgg

2
3d

p̃2
, 〈ΦLΦL(p)〉=

aZ−1
Φ

p̃2
. (129)

In this case, for soft momenta p⊥� 1/a running between the Wilson lines, we extract
all 1/p2

⊥ contributions, and choose the value of Z2/ZΦ such that they cancel, as they
do in the continuum according to eq. (127).

4.6 R E S U LT

We have found the 1-loop renormalization factor which should be included in the
lattice implementation of the EQCD null Wilson line. Specifically, given the definition
of the lattice action found in eq. (124) and of the Wilson line operator in eq. (126),
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the ratio of the normalization of the lattice scalar fieldΦL appearing in the Wilson line
to its normalization in the action is

Z2

ZΦa
= 1+

g2
3daCA

4

(
4

3

Σ

4π
−16

ξ

4π

)
, (130)

where the constants appearing here are are

Σ

4πa
≡
∫π/a
−π/a

d3p

(2π)3

1

p̃2
,

ξa

4π
≡
∫π/a
−π/a

d3p

(2π)3

1

(p̃2)2
−

∫∞
−∞

d3p

(2π)3

1

(p2)2
, (131)

numerically ξ= 0.152859324966101 and Σ= 3.17591153562522. This constitutes our
main result.

Using this renormalization in the Wilson line will facilitate faster and more accurate
lattice calculations of the infrared contribution to q̂ and C(p⊥). In particular, it
eliminates the last source of error (except for δy ) which obstructs a quick and accurate
continuum extrapolation in the lattice determination ofC(x⊥).
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