

New Journal of Physics

The open access journal at the forefront of physics

Deutsche Physikalische Gesellschaft

IOP Institute of Physics

Published in partnership with: Deutsche Physikalische Gesellschaft and the Institute of Physics

OPEN ACCESS

RECEIVED
29 April 2022

ACCEPTED FOR PUBLICATION
30 May 2022

PUBLISHED
14 June 2022

CORRIGENDUM

Corrigendum: Benchmarking high fidelity single-shot readout of semiconductor qubits (2019 *New J. Phys.* **21** 063011)

D Keith , S K Gorman, L Kranz, Y He, J G Keizer, M A Broome¹ and M Y Simmons*

Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

* Author to whom any correspondence should be addressed.

¹ Current address: Department of Physics, University of Warwick, Coventry CV4 7AL, UK.

E-mail: michelle.simmons@unsw.edu.au

Keywords: spin qubit, electron spin, qubit readout, benchmarking, fidelity

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

There was a typo in the original presentation of equation (14) used to show the state-to-charge conversion visibility $V_{\text{STC}}(t)$ as a function of the readout time t . The correct form of equation (14) is:

$$V_{\text{STC}}(t) = \frac{T_1(t_{\text{OUT}}^0 - t_{\text{OUT}}^1)}{T_{\text{OUT}}^2} \left(e^{-\frac{t}{t_{\text{OUT}}^0}} - e^{-\left(\frac{1}{T_1} + \frac{1}{t_{\text{OUT}}^1}\right)t} \right), \quad (1)$$

where T_1 is the qubit excited state relaxation time, t_{OUT}^0 and t_{OUT}^1 are tunnel out times to the reservoir of the respective $|0\rangle$ and $|1\rangle$ qubit states, and $T_{\text{OUT}}^2 = T_1(t_{\text{OUT}}^0 - t_{\text{OUT}}^1) + t_{\text{OUT}}^0 t_{\text{OUT}}^1$ for compactness.

The results of the study are unaffected as subsequent derivations and analysis originally used the correct form of this equation despite the typo.

ORCID iDs

D Keith <https://orcid.org/0000-0001-7990-3189>

M Y Simmons <https://orcid.org/0000-0002-6422-5888>