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Abstract

The structure of evaporating black holes

by

Joseph Caulfield Schindler

A detailed model is constructed for the spacetime of an evaporating black hole.

This model is used to analyze some persistent questions about black hole space-

times in general, and to discuss the mechanism of Hawking radiation. The self-

consistency of the model is studied and used to illuminate some general principles

in semiclassical gravity. Along the way, a unified analysis is provided for the class

of “strongly spherically symmetric” spacetimes, and a method for constructing a

broad class of explicit Penrose diagrams is obtained.
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Chapter 1

Introduction

Black holes are common astrophysical objects, characterized by their strong

gravitational field and extreme density. Recently, their existence has been con-

firmed by increasingly direct observations [3, 4]. But despite their being common

from an observational perspective, a number of surprisingly basic theoretical and

practical questions about black holes remain open to debate. For instance:

• What is the proper definition of “black hole” within general relativity?

• How should we model the spacetime structure of an evolving black hole?

• In such a model, where is the physically meaningful “horizon”?

• What happens inside a black hole? Is there any strange physics at the

horizon? Can the process of black hole evaporation be understood locally?

Does evaporation lead to a loss of information? And more ...

These and related questions often have textbook answers based on oversim-

plified considerations — namely, based on analysis of the Schwarzschild space-

time, which represents a static and eternal black hole with unperturbed spherical
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symmetry and a central singularity. But when more complicated dynamics are

accounted for, the standard explanations break down.

For instance, if a black hole is in theory allowed to accrete additional mass,

then the globally defined “event horizon” (a black hole’s most popular “horizon”)

has a location determined by events in the far future, and cannot be physically

meaningful. Alternately, if spherical symmetry is perturbed (say by an orbit-

ing accretion disk), then the location of the locally defined “apparent horizon”

becomes ambiguous and impossible to asses. And if gravitational physics is as-

sumed to be regulated by a Planck scale curvature cutoff, the global structure of

a black hole spacetime can be drastically changed. Even the inclusion of charge

and spin is enough to disrupt some of the more fragile common arguments.

Even more pernicious is the necessity of including the Hawking radiation [5]

and its gravitational backreaction. This presents a difficult problem, since the

phenomenon is fundamentally a quantum effect in curved spacetime. One point

of view is that a full resolution can only emerge in quantum gravity, and that

attempts to fully describe the evaporation in a semiclassical treatment are doomed.

It’s possible that this is true, but nonetheless, almost all discussions of black hole

evaporation rely in some way on assumptions about a classical spacetime. Many

such discussions rely on oversimplified spacetime models, which, similar to the

other cases listed above, can lead to misconceptions about basic concepts.

The main point of this thesis is to analyze a more detailed, and more self-

consistent, model of an evaporating black hole than has previously been consid-

ered. A major tool in this analysis (and indeed in almost every analysis of black

hole structure) is a type of “causal” spacetime diagram called a “Penrose dia-

gram.” Along the way, a method for generating such diagrams is described, which

greatly increases the class of explicitly known Penrose diagrams. Once the tools
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are developed and the model is defined, these diagrams are used to undertake a

broad discussion of the physics of evaporating black holes.

The text consists of two main chapters, each based on a published article. The

second chapter, “Algorithms for the explicit computation of Penrose diagrams,”

is based on Reference [1], which was published in 2018. The third chapter, “Un-

derstanding black hole evaporation using explicitly computed Penrose diagrams,”

is based on Reference [2], which is currently in review for publication.

The first of these two articles provides an introduction to the fundamental

concepts and methods applied in the second. Specifically, a broad class of space-

times is constructed which includes a class of evaporating black hole models, and

an elementary analysis of this class of spacetimes is undetaken. Penrose diagrams

are defined in general at a basic level, and then constructed explicitly for the class

of spacetimes under consideration.

The second article provides an introduction to the problem of modeling black

hole evaporation, and constructs a set of explicit models and diagrams using the

methods described earlier. The new models and diagrams are then used to analyze

the physics of black hole evaporation.

Due to the comprehensive and self-contained nature of these articles, back-

ground material and conclusions are provided within each chapter.

In addition to the contents of this thesis, my doctoral research has touched on

some related issues, including:

• Structure of rotating nonsingular (“regular”) black holes.

• Spacelike propagation and energy condition violations in quantum fields.

• Local field visualizations of quantum scalar fields.

• New foundations for differential geometry using geometric algebra.

Publications related to these topics are expected to be forthcoming shortly.
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Chapter 2

Algorithms for the explicit

computation of Penrose diagrams

This chapter is based on the article “Algorithms for the explicit computation

of Penrose diagrams” by Joseph Schindler and Anthony Aguirre [1].

Abstract

An algorithm is given for explicitly computing Penrose diagrams for spacetimes

of the form ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2. The resulting diagram coor-

dinates are shown to extend the metric continuously and nondegenerately across

an arbitrary number of horizons. The method is extended to include piecewise

approximations to dynamically evolving spacetimes using a standard hypersurface

junction procedure. Examples generated by an implementation of the algorithm

are shown for standard and new cases. In the appendix, this algorithm is com-

pared to existing methods.
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2.1 Introduction

Visualizing the causal structure of curved spacetime is among the basic tasks

of relativistic physics. A useful tool in this pursuit, the technique now known

as Penrose diagram analysis, in which finite coordinate diagrams of conformally

transformed spacetimes are used to visualize global structure, was first introduced

by Penrose in 1964 [6, 7]. The same technique was soon implemented by Carter

[8], who was first to provide such diagrams in a recognizably modern form. An

important systematic analysis was later given by Walker in 1970 [9]. The signif-

icance of these techniques as a tool to study asympototic infinities in spacetime

was quickly recognized [10].

It is surprising, given the importance of Penrose diagrams, that one rarely

sees a “real” one. They are almost always hand-drawn — in fact, it is rare even

to find a computer-generated Penrose diagram of Minkowski space. There are

some exceptions to this rule, including a number of especially nice diagrams due

to Hamilton [11], and some others from Griffiths and Podolskỳ [12]. However, no

general method for the numerical computation of diagrams across a broad and

interesting class of metrics has been given. To do so is the goal of this article.

An algorithm will be given for constructing and numerically generating Penrose

diagrams for spacetimes in two classes:

(A) Maximally extended completions of spacetimes which locally have the form

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2. (We refer to these spacetimes as stro-

ngly spherically symmetric (SSS), see section 2.4).

(B) Piecewise-SSS spacetimes with null-shell junctions. These are constructed by

joining pieces of spacetimes of class (A) across null shells of matter. These

may have an arbitrary finite number of shells and piecewise regions.
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This is achieved by adopting a global contour integral definition of the tortoise

coordinate (see section 2.5), and making a careful choice of the function that

squishes the local double-null coordinates (see sections 2.4 and 2.5) into the global

coordinate patch. The result is a global double-null patch of “Penrose” coordinates

(see section 2.2) in which the metric is continuous and non-degenerate at the

horizons.

The new techniques we describe are similar in most respects to those used by

Carter, Walker, and others. Our technique differs, however, by achieving simul-

taneous global coordinates for an arbitrary number of blocks across an arbitrary

number of horizons, being numerically computable with weak restrictions on the

metric function f(r), and yielding diagrams whose lines of constant radius take on

an intuitive shape. For a detailed comparison of the new and existing methods,

see 2.9.

There are a few reasons why Penrose diagrams have continued to be hand-

drawn in the computer age, which is to say, why this algorithm has not been

given sooner. Most importantly, the outline and qualitative appearance of Penrose

diagrams for SSS spacetimes can be determined by the block diagram method of

Walker [9]. When the diagram is being constructed primarily for analysis at

infinity, the interior structure is irrelevant, and so the qualitative block diagram

method is sufficient. Moreover, most known Penrose diagrams represent either

vacuum spacetimes, or spacetimes with a homogeneous distribution of matter,

making interior analysis rather dull. In contrast to these historical precedents, we

wish to study diagrams for spacetimes which have nontrivial matter distributions,

and which are dynamically evolving in nontrivial ways. The detailed interior

appearance of such diagrams is not obvious from the standard qualitative analysis.

In particular, a major motivation for this endeavor is the desire to produce a
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detailed Penrose diagram for the process of black hole formation and evaporation,

such that the distribution and flow of matter can be clearly and explicitly tracked.

Fortunately, since class (B) above includes piecewise approximations to many

interesting dynamically evolving geometries (e.g. Vaidya metric [12], forming and

evaporating Hayward black hole [13], and stellar-collapse black hole models), the

algorithms presented in this article will make that goal accessible.

An outline of the article is as follows.

Sections 2.2-2.4 serve two purposes. First, to review the well-known theory

of Penrose diagrams in general and as applied to strongly spherically symmetric

spacetimes. And second, to establish a clear and modern formalism in which to

state the results of later sections. We hope that this formalism helps distill the

key features of standard Penrose diagram analysis, and that these sections might

be used as a pedagogical introduction to the subject for students with a strong

background in differential geometry.

Sections 2.5-2.6 present new techniques for the practical construction of Pen-

rose diagrams, while Section 2.7 describes an implementation of these techniques,

and gives examples generated by the implementation. 2.9 gives a detailed com-

parison between existing methods and the new methods.

Some of the appendices may be of general interest. Readers interested in the

symmetry of manifolds may enjoy 2.11, which shows how spherical symmetry

about a particular rotation axis can be defined, even when the symmetry axis

is not itself a part of the manifold. 2.10 describes a useful unit convention for

tensor components in relativity. And 2.13 collects a variety of useful geometric

information about SSS spacetimes, including discussions of their trapped surfaces,

physical singularities, and energy condition violations. The other appendices cover

details particular to the text.
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For those wishing to quickly see the practical algorithms we employ, the most

direct route is to read section 2.5.4 followed by 2.6.2. The examples in figures

2.15 – 2.18, and the comparison to other methods in 2.9, should also be consulted.

Additionally, scanning figure 2.2 will help clarify the SSS spacetime terminology.

This quick path through the paper is mostly, but not entirely, self-contained.

2.2 Penrose diagrams in two and more dimen-

sions

We begin by reviewing the general theory of Penrose diagrams, and establishing

a formalism commensurate with standard practices.

In general, the term “Penrose diagram” refers to a broad class of spacetime

diagrams from which the causal structure of a spacetime can be easily read off. In

particular, a Penrose diagram should make evident (i) the lightcone structure, and

(ii) the causal structure of conformal infinity (defined below). This is typically

achieved by covering a two-dimensional slice of a spacetime with a finite patch

of double-null coordinates. Although most authors need not bother to have a

rigorous definition of Penrose diagram in mind, it is possible to give a precise

definition which is in line with typical use. We do so now for the case of two

dimensions, and then discuss the generalization to higher dimensions.

2.2.1 Rigorous definition in two dimensions

Consider a two dimensional spacetime M , and an open set U ⊂ M . Let

ϕ : U → R2 be a chart on M , with coordinates ϕ(p) = (u, v) for p ∈ U . Let

U denote the closure of U , and let ϕ(U) denote the image of U in R2. Then ϕ
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Figure 2.1: (Color online). Penrose diagrams for flat spacetimes in (a) two and
(b) four dimensions. See text at the end of section 2.2.2 for details.

may be called a Penrose chart if it satisfies three conditions: (I) U = M ; (II)

there exists a compact V ⊂ R2 such that ϕ(U) ⊂ V ; (III) in coordinates (u, v)

the metric takes the form ds2 = − g(u, v) du dv, such that g(u, v) > 0 and ∂u, ∂v

are both future-directed. When ϕ is a Penrose chart the coordinates (u, v) may

be called Penrose coordinates, and the boundary of the closure of ϕ(U) is called

the conformal boundary of M . Any plot of M in Penrose coordinates is called a

Penrose diagram.

Condition (I) ensures1 that the diagram includes all ofM , while allowing some

points to be left out to avoid technical difficulties (such as polar coordinate singu-

larities) associated with attempting to cover all of M in a single chart. Condition

(II) ensures that the coordinate patch is finite, which allows the entirety of M to

be represented in a finite diagram, and allows analysis of the conformal boundary.
1Sometimes M has a periodic structure, in which case this condition can be weakened. Sup-

pose M consists of a periodic arrangement of regions isometric to N . Then it suffices to require
of a Penrose chart only that (I’) U = N , so long as we specify how the regions N are connected.
This information is, of course, equivalent to knowing the global causal structure. Standard ex-
amples of the periodic case are the maximally extended Reissner-Nordstrom and Kerr (on axis)
spacetimes [10].
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And condition (III) ensures that the Penrose coordinates are double-null, making

it trivial to identify lightcones and causal cones in the coordinates. Indeed, for any

parameterized null curve u̇v̇ = 0, which implies that the curve follows lines of con-

stant u or v (where dot represents a derivative with respect to curve parameter).

This determines the lightcone at each point. The causal interior of the lightcone

may then be determined by the condition u̇v̇ > 0 for timelike curves. Because of

these restrictions on the lightcones, a Penrose diagram is typically plotted with

x-axis (v−u) and y-axis (v+u). In such a case the lightcone is formed by rays at

45◦ angles to the axes, with the top wedge being the future causal cone and the

bottom wedge being the past causal cone (see Figure 2.1).

The conformal boundary B of M under ϕ, as defined above, plays a key role

in understanding global causal structure because it allows the analysis of causal

structure at “infinity”. The existence of a nonempty B under a Penrose chart ϕ

is guaranteed by condition (II) above. In general, points b ∈ B may be one of

several types: (i) b may represent points at “infinity”; (ii) if M is incomplete at

a curvature singularity, b may represent the singularity; (iii) if M is incomplete

without curvature singularity, b may represent a boundary where “missing” parts

ofM are simply left out. When working in more dimensions (see below), there is an

additional possibility that (iv) b represents a coordinate boundary of the projection

(e.g. r = 0). In practice it is usually easy to distinguish between the various

possibilities, and to identify the boundary set I ⊂ B representing infinity. This

set I is called conformal infinity. Our definition of conformal boundary is similar

to that originally set forth by Penrose [7]. The more common definition in terms of

terminal indecomposable sets [14] is more general but less easily applicable when

a Penrose chart exists.

In two dimensions, the Penrose chart ϕ describes a conformal isometry of U
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into a subset of Minkowski space, when the coordinate space is equipped with

metric ds2 = − du dv. This allows the geometry of the boundary to be studied

in the conformal Minkowski space, and is the reason for the term “conformal”

boundary. Since conformal isometries preserve causal structure, studying I in the

conformal space determines the causal structure at infinity in M . Determining

this structure is one of the main goals of constructing a Penrose diagram for M .

Practically speaking, the effort of constructing the Penrose diagram comes in

two parts: (i) obtaining local double null coordinates; and (ii) manipulating the

local patches to achieve a global double null coordinate system in which the metric

is well-behaved (in the sense of condition (III)). Once (ii) has been achieved, it

is trivial to (if necessary) squish and flip the global coordinates so as to attain

Penrose coordinates. In sections 2.4 - 2.5 we will show for a certain class of

spacetimes that (i) is trivial, and describe a method for resolving (ii). This method

results immediately in Penrose coordinates.

2.2.2 Generalization to higher dimensions

How does this definition extend to higher dimesions? In the case of spherical

symmetry, the theory goes through nearly unchanged. In this section, let M have

D = 2 + n spacetime dimensions.

When spherical symmetry is present, a Penrose chart should be defined anal-

ogously to the two dimensional case, with the modification that for p ∈ U ,

ϕ(p) = (u, v,Ω) with ds2 = − g(u, v) du dv + r(u, v)2 dΩ2. Here Ω represents a

collection of angular coordinates, and dΩ2 the metric of an n-sphere. The diagram

is then constructed by defining the projective Penrose chart ϕ̃ by ϕ̃(p) = (u, v) and

the projective metric ds̃2 = − g(u, v) du dv. In this way, one essentially creates
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a Penrose diagram of the two dimensional spacetime transverse to the angular

directions. Each point on the diagram represents a sphere of areal radius r(u, v).

It is important not to discard the radial information, as only by retaining the

function r(u, v) can the geometry at each point of the diagram be specified.

But even in case of spherical symmetry, the theory is slightly modified. The

interpretation of the conformal space is no longer strict, since the coordinate

Minkowski space is only conformal to ds̃2 after projection into two dimensions.

The projection into two dimensions also has the effect that the appearance of light-

cones in the diagram is qualitatively altered. Null curves in D dimensions obey

u̇v̇ = g(u, v)−1 r2 Ω̇2 ≥ 0, while timelike curves obey u̇v̇ > g(u, v)−1 r2 Ω̇2 ≥ 0. Th-

us, two-dimensional null curves in the confomal Minkowski space now represent

only the radial null curves in M , while D-dimensional null curves with angular

momentum in M appear timelike in the conformal space. The D-dimensional

lightcones of M , therefore, fill the interior of the two-dimensional causal cones in

the conformal space. Despite these several modifications to the interpretation of

the conformal space, the conformal method for studying infinity remains useful,

and the name conformal boundary is retained.

For most of our purposes it will be convenient to deal with spherically sym-

metric shells and particles constrained to move in the (u, v) plane. It is therefore

useful to identify the radial lightcones, defined by u̇v̇ = 0, which are the effective

lightcones for such objects. The D-dimensional radial lightcones are equivalent to

the two-dimensional conformal lightcones. Radial causal cones can be defined sim-

ilarly. This concludes the extension from two dimensions to spherical symmetry

in D dimensions.

In some cases the spherically symmetric formalism can be generalized further.

Let A be a two-dimensional Lorentzian manifold with line element dA2, and let
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h(a)2 be a positive real scalar function on A. Let B be an n-dimensional homoge-

neous Riemannian manifold with line element dB2. If there exist such an A and

B for which a dense open submanifold U ⊂M is isometric to the product A×B

with metric ds2 = dA2 + h(a)2 dB2, then a formalism directly analogous to that

for spherical symmetry can be used (although if B is not compact, condition (II)

should be modified to apply only to the projective chart ϕ̃, and one should be

careful in interpretation). This includes cases of planar, hyperbolic, and spherical

symmetry, among others. The above condition implies that M has at least n

spacelike Killing vector fields, and is essentially equivalent to the condition that

M can be acted on by an n-dimensional group of spacelike isometries.

When M lacks sufficient symmetry for analogous methods to be applied, by

having nontrivial geometry in more than two dimensions, one must resort to piec-

ing together the structure by observing various two-dimensional projections. This

case is less common due to its complexity, and the theory of projection diagrams

due to Chruściel et. al.should be consulted [15].

Figure 2.1 illustrates the basic features of a Penrose diagram in two and four

dimensions using the simple case of flat spacetime. In this example, the two-

dimensional spacetime is defined by ds2 = −dt2 + dr2 on the coordinate patch

r ∈ (0,∞) and t ∈ (−∞,∞), while the four-dimensional spacetime is defined

by ds2 = −dt2 + dr2 + r2 dΩ2 on the same coordinate patch. In both cases, the

Penrose coordinates are given by u = π−1 tan−1 (t− r) and v = π−1 tan−1 (t+ r).

The resulting metrics are

ds2 = −π2 sec2(πu) sec2(πv) du dv
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and

ds2 = −π2 sec2(πu) sec2(πv) du dv + r2 dΩ2,

where, in four dimensions, the areal radius at each point is given by r = r(u, v) =

(tan πv − tan πu)/2. Note that the two-dimensional example, which is half of a

two-dimensional Minkowski space, is incomplete at r = 0 by construction so as to

more closely parallel the four-dimensional case.

2.3 A note about units

A detailed review of our unit conventions and their justification is given in 2.10.

In short: all coordinates, parameters, tensor components, and lengths appearing

in the article are unitless. Proper units are restored by establishing an overall

length scale, which can be propagated through all quantities. For details, please

see the appendix.

To make the convention as clear as possible, consider the example

ds2 = −(1−R/r) dt2 + (1−R/r)−1 dr2 + r2 dΩ2 . (2.1)

The radius r, the coordinates (t, r,Ω), the parameter R, the one-forms (dt, dr, dΩ),

and the line element ds2 should all be regarded as unitless. To relate this to a

physical metric, one would establish an overall length scale l. Then the physical

coordinates (lt, lr, lΩ) and physical line element ds̄2 = l2ds2 would all have units

of length, and other quantities would inherit units as appropriate.
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2.4 Strongly spherically symmetric spacetimes

and their maximal extensions

The class of spacetimes with metric of the form

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2 (2.2)

(where dΩ2 signifies the metric on a unit n-sphere) is of great historical and

practical significance: common examples include the Schwarzschild, Reissner-

Nordstrom, de Sitter, Anti de Sitter, and Minkowski solutions of GR, among

numerous others. Strangely, given their ubiquity, this class of spacetimes lacks a

standard name. We introduce some new terminology, and review some properties

of these spaces, below.

In particular, we will see that every spacetime which locally has the metric

(2.2) can be isometrically embedded into a spacetime of a larger class, which we

will call the “strongly spherically symmetric” (SSS) spacetimes. In this section

we develop a detailed geometrical description of such spacetimes.

Historically, our “strongly spherically symmetric” spacetimes have sometimes

been called “static spherically symmetric” [16]. But when f(r) ≤ 0 they are not

static (do not have a timelike Killing vector field), so the term is not apt. The

new name seems more fitting: the symmetry is “strong” in the sense that, in

addition to the spherical symmetries, there exists a Killing vector field normal to

the angular directions, which allows the metric components to be expressed as

functions of the radius only.

15



Figure 2.2: Illustration of the anatomy of SSS spacetimes. (a) The classification
of points is given in section 2.4.3. (b) The definition of blocks and horizons is given
in section 2.4.4. In this image the vertex point is omitted to clarify that four
disconnected horizons are present. (c,d) Block diagrams are discussed in section
2.4.6. In these two block diagrams conformal boundary points which are not inM
are dotted (which is not our standard convention). The extended Schwarzschild
solution has metric function f(r) = 1 − R/r, and has no axis points since the
singularity at r = 0 is excluded from the spacetime. In de Sitter space, with
metric function f(r) = 1 − (r/l)2, every point at r = 0 is an axis point. In all
cases, radii are measured by defining orbits of a rotation group, as discussed in
section 2.4.1.
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2.4.1 Spacetimes with spherical symmetry about a fixed

origin

To properly describe strong spherical symmetry requires the concept of spher-

ical symmetry about a fixed origin. Since manifolds need not contain their sym-

metry axes, this requires a little bit of finagling. In 2.11 it is shown that for

any spherically symmetric spacetime M , one can specify the origin of spherical

symmetry by selecting a particular algebra σ of Killing vector fields satisfying

certain assumptions. This choice determines spherical orbits of a rotation group;

the curvature of these orbits is used to define the radius at each point.

Once the “origin of symmetry” has been fixed by choosing σ, the areal radius

r = rσ(p) is an intrinsic property of each point p ∈ M , independent of coordi-

nate system. M is foliated by spheres (lying tangent to σ) with intrinsic metric

ds2 = rσ(p)2 dΩ2, except on the axis of symmetry where rσ(p) = 0 by definition.

Everywhere except on the axis, there is a local coordinate system respecting this

foliation, in terms of which the metric is (2.35).

In our treatment of strong spherical symmetry, we will assume that M is

spherically symmetric, and that the origin of symmetry has been fixed by selecting

a particular σ. This ensures that local SSS patches all have symmetry about the

same origin.

2.4.2 Coordinate naming conventions

Up to now, our convention has been to denote Penrose coordinates by (u, v).

Hereafter, Penrose coordinates will usually be denoted by (ũ, ṽ), while coordinates

(u, v) will be reserved for the usual local double-null coordinates with metric (2.7)

below. Coordinates (t, r) refer of course to standard Schwarzschild-like coordinates
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with metric (2.2). And coordinates (w, r) will denote the Eddington-Finklestein

(EF) coordinates with the metric (2.3) below, such that the EF time w may be

either advanced or retarded depending on a parameter ε = ±1 and a choice of

time-orientation. In either case, the vector field ∂w is locally equivalent (up to a

global normalization) to ∂t wherever the latter is defined. For reasons that will

become clear below, we will define strong spherical symmetry in terms of the EF

coordinate system (w, r), and its associated Killing vector field ∂w.

At times it is convenient to refer ambiguously to one of the double-null co-

ordinates (u, v), without specifying which one. When this is necessary we will

utilize the placeholders (x, y), where it is understood that either (x, y) ≡ (u, v) or

(y, x) ≡ (u, v). The same placeholder convention extends to (ũ, ṽ).

2.4.3 Spacetimes with strong spherical symmetry

SupposeM is a spacetime of dimension D = 2+n, and thatM is n-spherically

symmetric with axis fixed by σ (see section 2.4.1). Then M will be said to have

strong spherical symmetry (about axis σ) with metric function f(r) if every open

set U ⊂M has an open subset V ⊂ U isometric to2

ds2 = −f(r) dw2 − 2ε dw dr + r2 dΩ2 (ε = ±1) , (2.3)

in coordinates (w, r,Ω), such that r(p) = rσ(p) and σ lies tangent to Ω. Those

last bits ensure that all points have a strong spherical symmetry about the same

origin. In practice we always define σ in terms of this metric, so these technicalities

become trivial. Assumptions on the function f(r) are given below, near the end
2Here and later we abuse terminology by omitting the full statement “isometric to an open

subset of RD on which the metric ds2 is defined”, which should be obvious from context. This
is equivalent to saying there exists a coordinate patch onM in which the metric takes this form.
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of this section.

The definition implies that the set

X = {p ∈M | p has a neighborhood isometric to (2.3)} (2.4)

is open and dense in M . Using the Eddington-Finkelstein (EF) form (2.3) of the

metric allows X to contain points where f(r) = 0, and implies that M is locally

isometric to ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2 at points in X where f(r) 6= 0.

The spherical symmetry is called “strong” due to the presence of a Killing

vector field normal to the angular directions, which allows the metric components

to be expressed as functions of the radius only. Indeed, by definition, the metric

is independent of coordinate w, and so ∂w is a local Killing vector field. It is easily

seen from the metric that ∂w is null wherever f(r) = 0, and that ∂w is always

normal to the angular directions.

In general, SSS spacetimes can contain four distinct types of points:

1. points not in X at which r = 0 (axis points)

2. points in X at which f(r) 6= 0 (block points)

3. points in X at which f(r) = 0 (horizon points)

4. points not in X at which r 6= 0 (horizon vertices)

The reason for these names will become clear later. The isometry associated with

flow along ∂w preserves this classification, and has the horizon vertices as fixed

points. Moreover, every point inX has a neighborhood where ∂w is an everywhere-

nonzero Killing vector field tangent to lines of constant radius. For an illustration

of the different types of points, see figure 2.2.
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It is now appropriate to explain the need for fixing the symmetry axis. Without

doing so, the presence of additional symmetries can make it impossible to geomet-

rically distinguish points in M . Take, for example, the de Sitter spacetime, with

metric function f(r) = 1 − (r/l)2. Since de Sitter is homogeneous, every point

is geometrically indistinguishable. In particular, every point may be described as

lying on a cosmological horizon. From the point of view where we consider de

Sitter an SSS spacetime, the additional freedom to choose the origin of symmetry

is superfluous (though by no means unimportant). By fixing the origin, we allow

points and regions to be classified as above. Additionally, fixing the origin allows

us to refer to the radius of a point without reference to any particular system of

coordinates.

We typically describe a particular strongly spherically symmetric spacetime

by specifying its metric function f(r) on the interval r ∈ (0,∞). For simplicity,

we assume that f(r) always has the following properties: (I) f(r) is continuous

and once differentiable; (II) f(r) has a finite number N of zeroes; (III) f(r) is

analytic at its zeroes; (IV) all zeroes of f(r) are isolated and simple (linear); and

(V) lim r→0 f(r) 6= 0.

The assumption that f(r) is analytic at its zeroes allows the use of a concise

contour integral definition of the tortoise coordinate (see section 2.5.1); since f(r)

need not be analytic globally, the assumption is fairly weak. Note that f(0) need

not be defined. And moreover, the assumption that f(r) does not approach zero

in the r → 0 limit is not strictly necessary; it conveniently avoids the treatment

of certain edge cases, but can be relaxed with no serious consequences.

It is useful to define a consistent notation for critical values of the radius, in

order to partition the radial coordinate into intervals separated by horizon radii.

The endpoints of these intervals occur at r = 0, at the N horizon locations where
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f(r) = 0, and at r =∞. We therefore let r0 = 0, denote the zeroes of f(r) by ri for

i = 1, 2, . . . , N , and let rN+1 =∞. Then the radius values rj, for j = 0, 1, . . . , N ,

partition the radial coordinate into intervals Ij = (rj, rj+1), and in each interval

Ij the sign of f(r) is constant. In this context we reserve the subscript i to refer

only to the zeroes of f(r), while expressions with subscript j additionally include

r0 and rN+1.

In what follows, a parameter kj will control coordinate transformations in

the vicinity of each critical value rj of the radius. Near each zero ri of f(r)

it must have a particular value, equal to the slope of f(r) at ri, in order for the

metric to extend continuously across the corresponding horizon. Where no horizon

matching is needed, however, it may be set to zero, yielding a simplified coordinate

transformation. In accordance with these requirements, we define k0 = 0 at r0 = 0,

ki = f ′(ri) at the N zeroes of f(r), and kN+1 = 0 at rN+1 = ∞. This ensures

matching at all horizons, while providing the simplest possible transformations

near r = 0 and r =∞, where no matching is needed.

Specifying the metric function determines the local structure ofM , by insisting

that (2.3) holds for the fixed function f(r). Some ambiguity remains in the global

structure. We will see in section 2.4.6 below that in fact such an M might be any

subset of a maximally extended M ′ corresponding to f(r). This is the class of

spacetimes intended by (A) in section 2.1.

For the remainder of this section, letM denote a strongly spherically symmet-

ric spacetime with metric function f(r).
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2.4.4 Horizons and blocks

It is useful to think of M as being partitioned into “blocks” separated by

“horizons”.

First let us mention the horizons. A connected hypersurface consisting of

horizon points in M , on which r = const and f(r) = 0, is called a horizon. Cor-

respondingly, the values ri where f(r) = 0 may be called horizon radii. Every

horizon is a null hypersurface, being normal to the (locally) null vector ∂w. More-

over, horizons are always Killing horizons, and often trapping horizons (see [17, 18]

for definitions). The Killing horizon property is immediate, since the Killing vec-

tor field ∂w is null at a horizon. The trapping property we will return to shortly.

Now let us move on to the blocks.

A block is a region of M , consisting of a connected set of block points, which

corresponds to a single interval Ij over which the metric function is nonzero. Each

block can be covered by the metric (2.2) defined on a coordinate patch r ∈ Ij and

t ∈ (−∞,∞). Note that this metric may approach a coordinate singularity at

the boundaries of the patch. There is a one-to-one correspondence between the

intervals Ij and the types of blocks in M . However, M may contain many blocks

of the same type, each corresponding to the same interval Ij. We will often label

blocks by their corresponding interval, which indicates their type.

To construct Penrose coordinates for a single block is straightforward. To

begin, choose an arbitrary point a ∈ Ij. Define the tortoise coordinate r∗ and

tortoise function F (r) by

r∗ = F (r) =
∫ r

a

dr′

f(r′) . (2.5)

The tortoise function obeys dF/dr = f(r)−1, and is monotonic over Ij since f(r)
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Figure 2.3: (Color online). Penrose diagrams for some individual blocks of an
SSS spacetime with f(r) = 1 − 1/r. We have employed the methods of secion
2.4.4, with integration points a1 = 0.5 and a2 = 1.5, integration constants c0 =
c1 = 0, and squishing functions ũ0(u) = −ũ1(u) = −π−1 tan−1(u) and ṽ0(v) =
ṽ1(v) = π−1 tan−1(v), in regions corresponding to the intervals I0 = (0, 1) and
I1 = (1,∞). Lines of constant areal radius r = const (teal) are depicted in
the diagram at intervals dr = 0.1, and the radius at any diagram point can
be determined numerically by (2.10). Heavy black lines denote the conformal
boundary of each block. The causal shapes are triangle for I0 and diamond for I1,
and the block I0 is a trapped region containing future-trapped surfaces. Each block
is bordered on one side by two horizons (and a horizon vertex) at r = 1. Although
the blocks can in principle be joined continuously at the matching horizon, this
individual-block method doesn’t give a way to do so.
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is continuous and nonzero there. Thus F (r) is invertible on Ij, and we denote

the inverse function by r = F−1(r∗). The arbitrary choice of a ∈ Ij amounts

to an arbitrary additive constant in F (r), which we later absorb into a choice of

double null coordinates. The range of r∗ depends on the behavior of f(r) near the

endpoints of Ij; the value becomes infinite in magnitude near each simple zero of

f(r).

Next a set of double null coordinates for the block, with a parameter c ∈ R

absorbing the tortoise function’s free additive constant, is defined by

u = t− r∗ + c , v = t+ r∗ − c , (2.6)

in terms of which the metric becomes

ds2 = −f(r) du dv + r2 dΩ2 , (2.7)

with r = F−1 ((v − u)/2 + c).

Finally, one chooses two invertible monotonic functions ũ(u) and ṽ(v), called

the squishing functions, each with domain R and finite range, such that

f(r) du
dũ

dv

dṽ
> 0 for (r ∈ Ij), (2.8)

and such that ∂ũ and ∂ṽ are both future directed.

The resulting metric reads

ds2 = −f(r)du
dũ

dv

dṽ
dũ dṽ + r2 dΩ2 , (2.9)
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where

r = r(ũ, ṽ) = F−1
(
v(ṽ)− u(ũ)

2 + c

)
, (2.10)

and (ũ, ṽ,Ω) are Penrose coordinates for the block.

Any block bounded by simple zeroes of f(r) admits the full range of coordinates

u ∈ (−∞,∞) and v ∈ (−∞,∞), and therefore covers a diamond in the Penrose

diagram. Blocks admitting a smaller range of (u, v) lie inside this diamond (when

the same squishing functions are used).

The freedom involved in obtaining Penrose coordinates according to the above

process is less than it may at first seem. First of all, note that the squishing

functions should be chosen for simplicity and convenience. Once some squishing

functions have been chosen, there is always the possibility to rescale by mono-

tonic increasing functions in the u and v direction. This basically amounts to a

freedom to mess up a nice-looking block, without making any structurally mean-

ingful changes. Therefore let us focus on the choice of r∗, u, v. As seen already,

the tortoise function F (r) implicitly contains an arbitrary constant, which was

absorbed into u, v by the free constant c. In light of this fact and the free-

doms to translate u, v, t without disturbing the metric, one is tempted to write

(u − u0) = (t − t0) − (r∗ − c) and (v − v0) = (t − t0) + (r∗ − c). These may be

rearranged, however, to yield u = (t− t′0)− (r∗ − c′) and v = (t− t′0) + (r∗ − c′).

But translations of t, being isometries of the block which preserve the range of t

values (since t ∈ (−∞,∞) ), are entirely nonphysical and have no effect on the

appearance of Penrose diagrams. The equations (2.6) are therefore sufficiently

general to exhibit all relevant freedoms in the process. Like with the squishing

functions, changing the parameter c does not cause any important changes to the

diagram; it simply alters the appearance, and may be chosen for convenience. Al-
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though c is free in each block individually, we will see in section 2.5 that in order

to construct global Penrose coordinates for many blocks, the values of c in each

block must be carefully coordinated, and only a global additive constant remains.

Having now constructed Penrose coordinates for each block, let us use them

to investigate the properties of these blocks more deeply.

The appearance of a block in the diagram is largely determined by the limits

of the function F (r) on the interval Ij. In general, each block is bounded by

conformal boundaries corresponding to rj and rj+1. When |F (rj)| is finite, the

block fails to fill its diamond near rj, and the corresponding boundary is either

timelike or spacelike. When |F (rj)| is infinite, the block fills a corner of the

diamond, and the corresponding conformal boundary is null: it consists of two

null horizons joined at a vertex (see figure 2.4). This makes sense, since whenever

rj is a horizon radius, the line of constant rj is necessarily null, and the value

|F (rj)| is necessarily infinite.

As determined by the above-stated dependence on F (r), each block has a

causal shape corresponding to its shape in the Penrose diagram. There are three

possibilities; we denote them “diamond”, “triangle”, and “slug”. When the con-

formal boundaries at rj and rj+1 both are null, the shape is diamond. When one is

null and the other either timelike or spacelike, the shape is triangle. When either

both are timelike, or both are spacelike, the shape is slug. All blocks except the

first and last necessarily have a diamond shape, and slugs are only possible when

f(r) has no zeroes. A block’s causal shape is an intrinsic property of the type of

block; it is the same in any Penrose diagram of the block, and for all blocks cor-

responding to the same Ij. Indeed, the tortoise function alone determines causal

shape. The orientation of a block in the diagram, however, depends on the sign

of f(r) in the block, and on the block’s time-orientation.
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Figure 2.4: The conformal boundary of a block corresponding to interval
Ij = (rj, rj+1) can be decomposed into boundaries corresponding to rj and rj+1.
Additionally, there are two points (empty circles) on the boundary which do not
correspond to any point in M , and do not have a well defined radius. Each illus-
tration above shows an “interior” block, which is bounded by horizon radii (zeroes
of f(r)) on both sides. For such a block, the pieces of the boundary associated
with rj and rj+1 each correspond to two horizons (bold lines) joined at a horizon
vertex (solid circles). All interior blocks have four classes of incomplete radial null
geodesics (gray arrows), each exiting the block through a different horizon. These
classes can be classified as past or future directed and normal to ∂u (↖) or ∂v
(↗).

Every non-slug block, on its own, is extendible (geodesically incomplete with-

out singularity) at its horizons. Indeed, to each horizon radius bounding Ij are

associated two classes of incomplete null geodesics: either future-directed and

past-directed, or left-going and right-going. These correspond to null rays exit-

ing the two horizons making up the block’s conformal boundary at that radius.

It follows that each block bounded by two horizon radii (these are necessarily

diamonds) has four such classes of incomplete null geodesics, while each block

bounded by one horizon radius (these may be triangles or diamonds) has two

such classes. Counting classes of extendible null geodesics suggests how many

neighbors a block can have.

We now return to the question of trapping. In 2.13, it is shown that a sphere of

constant (r, t) is a trapped surface if and only if f(r) < 0. It follows that within a
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block with f(r) < 0, every point intersects a trapped surface. In light of this fact,

blocks on which f(r) < 0 may sometimes be referred to as trapped blocks, and a

union of trapped blocks is a trapped region (more generally, trapped regions are

open sets on which every point intersects a trapped surface [19]). Trapped regions

are important: an appealingly pragmatic definition of nonsingular black hole is

“a future-trapped region terminating in a region of extreme density”. There are

various technical notions describing the horizon associated with a trapped region.

Suffice it to say that under certain conditions, the boundary of the trapped region

can be called a trapping horizon and/or apparent horizon [18].

Figure 2.3 exhibits Penrose diagrams for some individual blocks of an SSS

spacetime with f(r) = 1 − 1/r. Note that there remains a freedom to invert

the blocks by (ũ, ṽ) → (−ũ,−ṽ), since no physical criteria has been given to

establish a time-orientation. Parameters for the diagram construction are given

in the caption.

Figure 2.4 illustrates the conformal boundary structure of blocks bounded by

two horizon radii.

2.4.5 Ingoing/outgoing regions, Kruskal quad-blocks, and

horizon vertices

Having observed that M is built from blocks, the next step is to see how these

blocks can be joined together. There are two useful constructions that make this

clear: Eddington-Finklestein (EF) regions, and Kruskal “quad-block” regions. As

this section will demonstrate, each of these units highlights an important aspect

of how blocks may be joined. In particular, the EF regions show how a chain of

blocks can be linked to cover the entire range of radii. Meanwhile, the Kruskal
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“quad-block” regions show how four blocks can be joined at a horizon radius by

four horizons and a vertex. These constructions demonstrate that each block

admits either zero, two, or four neighbors. These regions can be visualized using

the block diagrams (see section 2.4.6) of figure 2.6.

First, we introduce the Eddington-Finklestein regions (figure 2.6a). A full

Eddington-Finklestein region (EF region) is a subset of M which has the metric

(2.3) everywhere on a coordinate patch r ∈ (0,∞) and w ∈ (−∞,∞). Note

that there is no coordinate singularity in this patch. When an EF region is time-

oriented such that −∂r is future (past) directed, it is called an ingoing EF region

(outgoing EF region). EF regions are the smallest regions ofM containing a point

at every radius, and thereby are the smallest regions exhibiting the global function

f(r). They contain one of each type of block for M , with the blocks joined natu-

rally across the horizons. The connectivity of the blocks is exactly the connectivity

of the intervals Ij. Nonetheless, EF regions are, in general, extendible.

Every block of M can be isometrically embedded into two distinct EF regions,

corresponding to the choice ε = ±1 in (2.3), by using the transformation w = t∓r∗

(see section 2.4.4 for definition of r∗) to obtain the coordinates (w, r) from the

(t, r) in (2.2). The difference between these two regions is that different sets of

incomplete null geodesics are extended. These two instances exhaust the block’s

extendible null geodesics, indicating that each block naturally has two neighbors

for each horizon-radius bounding Ij. Within a given EF region, half of these

possible neighbors are realized.

Next we will introduce the Kruskal quad-blocks (figure 2.6b). The classic

example of this structure is the Kruskal diagram for extended Schwarzschild

spacetime, with metric function f(r) = 1 − 1/r. In this case the Kruskal co-

ordinates are usually constructed by defining (u, v) using the tortoise function
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Figure 2.5: (Color online). Penrose diagram for the classic Kruskal extension
of a Schwarzschild black hole, with metric function f(r) = 1 − 1/r, and tortoise
function F̂ (r) = r+ln |r−1|, according to the methods of section 2.4.5. Panel (a)
shows lines of constant radius (teal) with spacing dr = 0.1. Interior black lines in
(a) represent the horizons and vertex at r = 1. Panel (b) shows a global Killing
vector field which is locally ∂w (also locally ∂t, see section 2.4.2), pushed forward
into Penrose coordinates. In (b), the depicted unit vectors (arrows) must be
multiplied by a scale factor (arrow norm color scale) to obtain the components of
the Killing vector field. Note that the Killing vector field lies everywhere tangent
to lines of constant radius. Apparent reflection symmetry within blocks in the
Kruskal method is related to a curious identity: the function tan−1(ex) − π/4
is odd. Since the Schwarzschild metric function has just one zero, the extended
Schwarzschild spacetime has only one quad-block. Other SSS spacetimes may
have many such regions, in which case the Kruskal extension method does not
achieve a global coordinate system for all blocks simultaneously.
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F̂ (r) = r + ln |r − 1|. Exponential transformations are then applied to (u, v) to

attain the Kruskal coordinates, and the resulting metric is shown to be nonde-

generate at the horizons. Because this tortoise function is defined analytically, it

is easy to miss its key property: that F̂ (r) − ln |r − 1| → 1 as r → 1 from both

the left and right. This did not have to be the case, as different constants could

be added on either side of the discontinuity at r = 1 without messing up the

derivative. This would be quite unnatural to do when F̂ (r) is defined analytically,

but is perfectly natural when it is defined by a definite integral (e.g. equation

(2.5) above, which would in this case be applied on each side of r = 1). The limit

obtained by subtracting out the logarithmic infinity may take any value (a global

constant is allowed), but if the left and right limits were different, the metric

would be undefined at the horizons.

The issues associated with defining a well-matched tortoise function are de-

scribed in detail in section 2.5.1 below. In the present case, it suffices to take

a simple generalization of the above observations: to construct a Kruskal quad-

block centered at ri in the general case, a tortoise function F̂ (r) must be defined

spanning both intervals Ii−1 and Ii, such that limr→ri(F̂ (r) − 1
ki

ln |r − ri|) = c,

where ki = f ′(ri), for some c ∈ R. This function exists and is unique due to our

assumptions (section 2.4.3) on f(r), and the indeterminate form |f(r)| e−kiF̂ (r) is

analytic at r = ri with the limit |ki| e−kic (see section 2.5.1). The desired definition

may now proceed.

A Kruskal quad-block region is centered on a horizon vertex at r = ri where

f(ri) = 0. It contains two types of blocks, corresponding to Ii−1 and Ii, and the

tortoise function must be defined as in the preceding paragraph above. A Kruskal

quad-block centered at ri has the metric ds2 = 4 k−2
i |f(r)| e−kiF̂ (r) dûdv̂+r2 dΩ2, in

coordinates (û, v̂,Ω), where |ûv̂| = ekiF̂ (r). The metric is defined on a coordinate
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patch min < ûv̂ < max, where the max and min values depend on f(r) and ri.

The patch is always nonempty and includes ûv̂ = 0. The point û = v̂ = 0 is a

horizon vertex; it has no neighborhood isometric to (2.3) because if it did there

would be a smooth everywhere-nonzero vector field tangent to lines of constant

radius in that neighborhood. The rest of ûv̂ = 0 consists of horizon points at

r = ri. In case of the traditional Kruskal region with f(r) = 1−R/r and F̂ (r) =

r + R ln |r/R − 1|, one immediately obtains 4 k−2
i |f(r)| e−kiF̂ (r) = 4R3r−1e−r/R,

which is the usual form of the prefactor in the traditional Kruskal metric.

Each quadrant of the Kruskal region is isometric to a single block of M . To

make this evident, take the transformations û = ±e−kiu/2 and v̂ = ±ekiv/2, fol-

lowed by u = t − F̂ (r) and v = t + F̂ (r), yielding the usual block metric (2.2).

Since every open set in the Kruskal region contains an open patch of an individual

quadrant, this also proves that the region has strong spherical symmetry. In these

coordinates the action of the Killing vector field ∂w looks similar to a boost, and

has the vertex as a fixed point. Penrose coordinates for the Kruskal region can be

obtained by applying arbitrary squishing functions. Figure 2.5 shows a Penrose

diagram for one Kruskal region.

Having exhibited the EF and Kruskal regions, the possible arrangements of

joined blocks should be qualitatively clear. These arrangements are shown in

figure 2.6. Figure 2.6a and 2.6b show the EF and Kruskal quad-block building

blocks. Figure 2.6c shows how these can be combined to form larger structures.

In figure 2.6c, each block is a part of two EF regions, and one or two quad-block

regions.
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Figure 2.6: Block diagrams for an SSS spacetime with metric function
f(r) = 1− 2r2/(1 + r3). The metric function has two zeroes. Shown are (a)
an ingoing EF region, (b) a “quad-block” region, and (c) a piece of a maximal
extension. Bold lines indicate conformal boundaries where r = 0 or r =∞. Thin
lines represent horizons at r = 1 and r ≈ 1.62. Each block is labelled according
to its interval Ij.

2.4.6 Block diagrams and maximal extension

Since we already know how each individual block looks in a Penrose diagram,

and we now know how the blocks can be connected, it makes sense to draw a

schematic block diagram of M . In such a diagram each block is drawn with the

appropriate causal shape and orientation, and connected blocks are drawn sharing

the relevant horizon. In this way, the global causal structure and topology of M

can be accurately presented without need for a global Penrose diagram. Examples

of block diagrams are given in figure 2.6.

Although a block diagram shares the qualitative appearance of its correspond-

ing Penrose diagram, it lacks a global coordinate system. This has no effect on

its usefulness as a tool for studying the global causal structure and topology. It

does, however, stop us from accurately identifying the lines of constant radius,

or plotting scalar functions of spacetime (e.g. the local density or local WEC in-

equality violation) on the digaram. For detailed analysis of dynamically evolving

33



piecewise-SSS spacetimes, we need these more advanced tools at our disposal.

To wrap up discussion of the global structure of SSS spacetimes, let us in-

troduce the concept of maximal extension. Technically speaking, a (connected)

manifold M ′ is maximally extended if it can’t be isometrically embedded into a

proper subset of another (connected) manifold M ′′ of the same number of dimen-

sions [10]. In practice, it is often true that a spacetime is maximally extended

when all geodesics are either complete or approach a physical singularity. In the

context of SSS spacetimes, what we usually mean is that the block diagram for

M leaves no open horizons. Block diagrams allow maximal extensions of SSS

spacetimes to be described pictorially.

For any metric function f(r), there is a maximally extended M ′ with the

metric function f(r) everywhere. The structure of such an an M ′ depends on the

number N of zeroes of the metric function. For N = 0 every block is already

maximally extended on its own. For N = 1, the maximal extension is unique and

consists of a single quad-block region. For N = 2, maximal extensions may have

a finite or infinite number of blocks, with a simple periodic structure similar to

that seen in figure 2.6c. A finite number of blocks is possible (but only in the

case f(0)<0) because of a topological ambiguity: torus-like boundary conditions

can be allowed so long as closed timelike curves are avoided. Therefore maximal

extensions in the case N = 2 are not always unique, but do always have a unique

simply-connected cover. For N > 2, maximal extensions are constructed from

an infinite chain of quad-block regions, and are not easily represented in a two

dimensional block diagram. These necessarily have an infinite number of blocks,

and suffer a similar topological ambiguity as the N = 2 case. When analyzing

maximal extensions in the case N > 2, it is easiest to represent spacetime by a

lattice of horizon vertices, rather than by a set of blocks. However, that method
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is pursued no further here.

2.4.7 Boundary points with undefined radius

Points where t → ±∞ on the conformal boundary of an SSS spacetime have

a slight defect: their radius can’t be well defined. This is obvious, since the same

t → ±∞ boundary point can be approached along lines of constant radius for

a continuum of r values. For this reason, it is best to think of these points as

representing an entire continuum of boundary points, each corresponding to a

unique radius. Nonetheless, this continuum is represented in Penrose diagrams by

a single point. Figure 2.7 highlights these defective points in two examples.

The undefined radius points impose a fundamental, but minor, limitation on

the possibility of constructing global Penrose coordinates for SSS spacetimes: in

any Penrose diagram of an SSS spacetime, each undefined radius point on the con-

formal boundary has a neighborhood in which the metric may be discontinuous

(continuity occurs as a special case but not in general). The affected neighbor-

hoods may be made arbitrarily small by choice of how the diagram is constructed.

The red patches in figure 2.7 are meant to schematically represent the affected

neighborhoods.

Since the neighborhoods where the metric is discontinuous can be made ar-

bitrarily small, the problem imposed by these points is inconsequential. For any

subset of M , or any worldline contained in M , the neighborhoods in which the

metric is discontinuous can be “moved far enough out to infinity” so as not to

effect the physical problem. In our construction of Penrose coordinates in section

2.5, a parameter s0 will directly control the size of the affected neighborhoods,

such that the neighborhoods become arbitrarily small as s0 →∞.
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(a) (b)

Figure 2.7: (Color online). Conformal boundary points where t → ±∞ are
highlighted in red. At each highlighted boundary point, no radius can be defined.
Panel (a) shows a maximally extended region with N = 2 horizon radii, and panel
(b) shows an EF region withN = 4 horizon radii. In panel (b), horizon vertices are
dotted (solid black circles) and labeled by radius. Due to a fundamental limitation,
the metric will be discontinuous in some (arbitrarily small) neighborhood of the
undefined radius points, in any Penrose diagram of an SSS spacetime. See section
2.4.7.

Fundamentally, the issue is caused by the fact that a single undefined radius

point on the conformal boundary may correspond to many different horizon radius

values, in many different blocks, at the same time. The technical problem with

this may be understood by observing the point between r2 and r4 on the bottom

edge of figure 2.7b. Heuristically speaking, the metric will only be continuous at

this point if the same coordinate transformation is applied on both sides. But on

either side individually, a transformation must be carefully selected to make the

metric continuous at the appropriate horizon (supposing more blocks are added to

continue the region through the relevant horizons). Using the same transformation

on both sides is, in general, incompatible with choosing the correct transformation

on both sides. But since one only needs to be picky about transformations in a

small neighborhood of the horizons, the problem can be pushed out into the corner.

The issue of undefined radius points is of a fundamental nature, and is not an

artifact of any particular method for constructing diagrams. When there are more

than two horizon radii (i.e. N > 2 zeroes of f(r)), the problem cannot be avoided.
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On the other hand, in cases where N = 0 or N = 1, there are not enough horizon

radii to force a discontinuity in the metric. In the case N = 2 there are enough

horizons to cause a problem, but the discontinuity can be removed by a special

choice of transformations. However, the procedure to do so is rather unnatural.

Instead, in the method of section 2.5 we will leave the discontinuities, in order to

use more natural transformations, and to keep the treatment unified.

2.4.8 True Penrose diagrams

We have seen that M can be partitioned into blocks, each with a well-defined

causal shape. Moreover, we have seen how these blocks can be joined together

across horizons in a regular way, and collections of blocks can be represented in

a schematic block diagram. Lacking, so far, is a method for joining an arbitrary

number of blocks, explicitly, in double-null coordinates.

This goal can be achieved in two key steps:

1. taking a global contour integral definition of the tortoise function; and

2. using a particular form of the squishing functions for each block.

Applying these steps results immediately in Penrose coordinates for M , in which

the metric extends continuously and nondegenerately across all horizons. This

will be the subject of section 2.5.
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Figure 2.8: The contour Cr,ε used to define the global tortoise function. The
contour avoids each pole of f(r)−1 using a semicircle of radius ε in the upper half
plane.

2.5 Explicitly computing Penrose diagrams for

SSS spacetimes

This section provides the recipe for explicitly constructing Penrose coordinates

for SSS spacetimes. First, a global tortoise function is defined using a contour

integral. Then a useful choice of the squishing function for each block is defined.

Finally, the algorithm for generating Penrose coordinates is stated in full, and the

resulting metric is shown to be nondegenerate.

We continue to assume that f(r) satisfies the criteria laid out at the end of

section 2.4.3. In particular f(r) has simple zeroes at r = ri (for i = 1, 2, . . . , N)

such that f ′(ri) 6= 0, and f(r) is analytic at each of its zeroes. We denote r0 = 0

and rN+1 =∞, and the intervals Ij = (rj, rj + 1) are defined for j = 0, 1, . . . , N .

The parameters kj are defined by k0 = kN+1 = 0 where no matching is needed,

and by ki = f ′(ri) at the horizons.

2.5.1 Global tortoise function

A tortoise function is by definition an antiderivative of f(r)−1. This leaves

an arbitrary integration constant in each block. These must be coordinated such

that, when the logarithmic infinities at the zeroes of f(r) are subtracted out, what
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Figure 2.9: (Color online). Functions used to construct the Penrose diagram for
an SSS spacetime with metric function f(r) = 1−2.5 r2/(1+r3). Panel (a) shows
the metric function f(r). Zeroes of f(r) (vertical gray lines), which define horizon
radii, are located at r1 ≈ 0.758 and r2 ≈ 2.313. Tangent lines (gray) to f(r) at
its zeroes have slopes k1 ≈ −1.44 and k2 ≈ 0.34 respectively. Panel (b) shows
the corresponding global tortoise function F (r), as defined by section 2.5.1. Note
that near the “stronger” horizon with greater |ki|, the logarithmic infinity of F (r)
appears “tighter”. Panel (c) shows the pre-squishing function h(s), as defined in
section 2.5.2, corresponding to the interior interval I1 = (r1, r2) (light green), with
the linear window parameter set to s0 = 5. The exponential growth parameters are
k+ = k2 ≥ 0 and k− = k1 ≤ 0, as appropriate for this interval. Note that positive
(negative) values of s are associated with the positive (negative) parameter k+
(k−), and that the linear segment where h(s) = s connects once-differentiably to
the exponential tails.

remains is continuous. We adopt a definition for such a global function which is

both analytically useful and numerically approximable. The only free parameter

in this definition is a global additive constant, which has been absorbed into the

definitions of (u, v).

Let Cr,ε denote a contour in the complex plane which begins at z = ε, ends at

z = r, and follows the real axis except for avoiding zeroes of f(r) using semicircles

of radius ε in the upper half plane. Since f(r) is assumed analytic at its zeroes,

f(z) is well-defined on the contour for sufficiently small ε. This contour is depicted

in figure 2.8.

The global tortoise coordinate r∗ and global tortoise function F (r) are defined
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by

r∗ = F (r) = Re lim
ε→0

∫
Cr,ε

dz′

f(z′) . (2.11)

Clearly this definition obeys the defining relation F ′(r) = f(r)−1. Within each

interval Ij the tortoise function is monotonic and invertible, and we denote the

inverse functions by r = F−1
j (r∗). The semi-circular contours each contribute the

purely imaginary value iπ/ki in the small ε limit. Thus F (ri + ε′) ≈ F (ri− ε′) for

sufficiently small ε′.

It follows from the above considerations that (2.11) is approximated by

F (r) =
∫ r

ε

dr′

f(r′) (r ∈ I0) (2.12)

F (r) ≈ F (rj − ε) +
∫ r

rj+ε

dr′

f(r′) (r ∈ Ij) (j > 0) (2.13)

with a small parameter ε > 0. This form can be computed on a dense spacing of

points by numerical integration. The forward and inverse functions can then both

be approximated by linear interpolation. For improved numerical precision, it

may be best to implement these formulae by integrating from some less extremal

point in the interval, and matching boundary terms with additive constants. An

example of the global tortoise function thus defined is given in figure 2.9.

By assumption, f(r) is analytic and linear at each of its zeroes. This fact,

in tandem with the definition (2.11), gives the global tortoise function two key

properties. Most importantly, the expression

|f(r)| e−kiF (r) (2.14)

is analytic and strictly positive in a neighborhood of r = ri. This fact is essential
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Figure 2.10: (Color online). Properties of the global tortoise function F (r), for
the same metric function f(r) = 1 − 2.5 r2/(1 + r3) shown in figure 2.9 above.
(a) When the appropriate logarithmic infinities are subtracted out, a continuous
function remains. (b) The function |f(r)| e−kiF (r), which appears in the Penrose
coordinate metric (2.23), is continuous and analytic at r = ri. See section 2.5.1
for details.

for establishing that the metric is nondegenerate and continuous at the horizons;

we will find that (2.14) appears explicitly in the Penrose coordinate metric (2.23).

And secondly, the expression

F (r)− 1
ki

ln |r − ri| (2.15)

is analytic in a neighborhood of r = ri. This result is of mainly conceptual impor-

tance, and relates closely to the first. These two properties can be understood by

simple heuristic arguments in the real domain, and are also proved more rigorously

in 2.12; they are demonstrated by example in figure 2.10.

Having defined the global tortoise function and determined its properties, the

transformation to global Penrose coordinates can be undertaken.
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2.5.2 Double-null and Penrose coordinates

The global tortoise function makes it possible to define Penrose coordinates

(ũ, ṽ) in which the metric is non-degenerate at the horizons. But to do so still

requires that the coordinates be defined just right.

The approach given here differs in philosophy from the more well-known Krus-

kal method. There, the blocks are joined first and then all jointly squished. Here,

instead, each block is squished individually, and the squished blocks are placed

next to each other. This type of technique was pioneered by Carter [8]. The

transformation in each block relies on an exquisite balance between arctangent

compression and exponential expansion; when done right, a seemingly miraculous

cancellation at the block boundaries renders the metric continuous.

First, the transformation to double-null block coordinates (u, v) proceeds in

the standard way, utilizing the global tortoise function. In particular,

u = t− F (r) + c , v = t+ F (r)− c . (2.16)

The global parameter c ∈ R absorbs the global integration constant left in the

tortoise function, and must be the same in every block. For the same reasons

explained in section 2.4.4, the definition of (u, v) should have only the parameter

c, and cannot be made more general by including other parameters.

The transformation from block to Penrose coordinates is then defined by

tan π (ũ− c̃u) = εu h(u/2) , tan π (ṽ − c̃v) = −εv h(−v/2) . (2.17)

The constants c̃u ∈ R and c̃v ∈ R locate the center of the block. The constants

42



εu = ±1 and εv = ±1 determine the block’s orientation, and must obey

εu εv = sgn(f). (2.18)

The function h must be chosen carefully in each block, and is defined below. For

notational purposes, h will be written as h(s), with s a generic argument of no

physical significance. The function h(s) is referred to as the pre-squishing function,

since it is applied to block coordinates before arctangent squishing functions are

applied.

All that remains is to define the function h(s) in each block. There is some

amount of freedom in this definition, as discussed in more detail below. We take

the definition

h(s) = hs0
k+,k−(s) =


−s0 +Hk−(s+ s0), s < −s0

s, |s| ≤ s0

s0 +Hk+(s− s0), s > s0

, (2.19)

where

Hk(s) =


(eks − 1)/k k 6= 0

s k = 0
, (2.20)

with s0 ≥ 0 a parameter of the diagram construction, and with k+ ∈ R and

k− ∈ R parameters determined by the metric function in the block. In particular,

for a block on radius interval Ij = (rj, rj+1), the parameters are

k− = min(kj, kj+1), k+ = max(kj, kj+1), (2.21)

where k0 = kN+1 = 0 at r0 = 0 and rN+1 = ∞, and ki = f ′(ri) at horizons (see
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second half of section 2.4.3). Since by this prescription k− ≤ 0 ≤ k+, it is always

true that h(s) is continuous, differentiable, monotonic increasing, and unbounded

as |s| → ∞. Figure 2.9c shows an example of h(s) for a particular block.

The parameters k± control the exponential behavior at the tails of h(s). This

behavior is essential to obtaining a continuous metric at the horizons. The setup

is such that near each horizon radius ri, the corresponding slope ki controls the

exponential transformation. Near r = 0 and r =∞ there is no need to match the

metric; recalling that, by definition, k0 = 0 at r0 = 0 and kN+1 = 0 at r =∞ (end

of section 2.4.3), one can see that h(s) remains linear at these locations. Although

the definitions ensure that h(s) is everywhere continuous and once-differentiable,

large values of |k±| cause a rapid exponential turn-on that appears similar to (but

is not) a kink in the first derivative.

Whereas k± control the form of the exponential regions of h(s), the parameter

s0 ≥ 0 controls the location of the exponential regions in the diagram. As s0 →∞,

the exponential turn-ons are pushed arbitrarily far up against the horizons and into

the corners of the diagram. As discussed in section 2.4.7, as |t| → ∞ there must

always be a neighborhood where the metric may be mismatched. The parameter

s0 controls the size of these neighborhoods: the metric is never discontinuous

unless both |u/2| > s0 and |v/2| > s0. We typically choose s0 such that the

exponential regions are visible but not overwhelming in the diagram.

There is some amount of freedom to choose an h(s). Only the monotonicity

and asymptotic behavior at s → ±∞ are absolutely essential. But choosing the

function poorly can lead to difficult calculations and very ugly diagrams. The

choice above is based on several additional criteria: (i) the function is continuous

and once differentiable; (ii) lines of constant radius in the resulting diagram look

natural; (iii) the function has a closed-form inverse; (iv) metric calculations are
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Figure 2.11: Illustration of the setup for joining neighboring blocks in the
Penrose coordinates. See section 2.5.3. In the case depicted here, x ≡ u and
y ≡ v, so that the blocks are joined on a line of constant ṽ. The bold boundary
indicates horizons at the joining radius r = ri.

relatively simple; and (v) issues near the points |t| → ∞ are minimized.

Thus have the Penrose coordinates been constructed. The resulting metric is

given in section 2.5.4. It remains only to show how the blocks should be matched

up such that the Penrose metric is continuous and non-degenerate at horizons.

2.5.3 Joining blocks in Penrose coordinates

Two blocks can be joined along a horizon at r = ri if and only if the two

blocks correspond to Ii−1 and Ii. Let two such blocks be denoted BA and BB,

respectively. The necessary parameter constraints for matching are determined

by simple considerations. The setup is depicted in figure 2.11.

In order that the blocks be squarely aligned, it is necessary that either c̃Bu = c̃Au

or c̃Bv = c̃Av . For the horizons to intersect, the pair which is not equal must obey

|c̃By − c̃Ay | = 1 (where y represents either u or v). We can therefore say that the

blocks are shifted in the coordinate y, and aligned in the other coordinate x. The

matched horizon then traces out a line of constant ỹ in the diagram. In order

that the orientation of this horizon be preserved, it is necessary that εBx = εAx .

But since the metric function switches sign in subsequent intervals, one obtains
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the further requirement εBu εBv = −εAu εAv . This implies that εBy = −εAy along the

shifted coordinate. The only remaining parameter freedom is the sign of the above

translation. In order to avoid introducing a time-orientation, this can be handled

by simply stating that the matched horizons must be at an equal radius. This

condition can be easily checked.

These requirements may be summarized as follows. Let BA and BB be blocks

corresponding to Ii−1 and Ii. The two blocks may be joined either along a line

of constant ũ, or along a line of constant ṽ. In order to treat both cases simulta-

neously, fix the symbols (x, y) to mean either (u, v) or (v, u) (see section 2.4.2).

The blocks will be joined along a line of constant ỹ. Then the blocks are properly

matched at r = ri if:

(i) c̃Ax = c̃Bx and εAx = εBx ;

(ii) εAy = −εBy ;

(iii) |c̃Ay − c̃By | = 1 ;

(iv) both intersecting horizons have the same radius r = ri .

For a fixed orientation of BA, this yields exactly two ways to attach BB, corre-

sponding to the choice of (x, y). In 2.12, it will be shown that these conditions

suffice to ensure non-degeneracy of the metric.

2.5.4 Enumeration of the algorithm

All the ingredients are in place. In this section, we concisely summarize and

enumerate the algorithm that has been presented for generating global Penrose

coordinates (ũ, ṽ) for an SSS spacetime with metric function f(r).
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Suppose M is an SSS spacetime with metric locally of the form

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2 . (2.22)

Assume the metric function f(r) is once-differentiable, has a finite number N of

zeroes on the interval r ∈ (0,∞), and that lim r→0 f(r) 6= 0. Further, assume that

f(r) is analytic at each of its zeroes, although it may not be analytic globally, and

that each zero is isolated and simple (linear).

The zeroes of f(r) are denoted ri for i = 1, 2, . . . , N , and at each zero there is

a slope ki = f ′(ri) 6= 0. Additionally, denote r0 = 0 and rN+1 = ∞, along with

k0 = kN+1 = 0. Then the radius values rj, for j = 0, 1, . . . , N , partition the radial

coordinate into intervals Ij = (rj, rj+1), and in each interval Ij the sign of f(r)

is constant. Note that unlike ki at the zeroes of f(r), the values k0 and kN+1 do

not correspond to slopes, but are zero by fiat. This is because at r0 and rN+1, no

horizon matching is needed.

First one must choose several global parameters associated with choices in the

diagram construction. These control the appearance of the diagram. Additionally,

the tortoise function F (r), which determines the transformation into double null

coordinates, must be defined globally in the correct way.

(i) Choose the global parameters c ∈ R and s0 ≥ 0.

(ii) Define the global tortoise function F (r) by (2.11) as approximated by

(2.12–2.13).

The parameter c absorbs an integration constant in the tortoise function and

acts as a translation in the double null block coordinates. The parameter s0

determines the location of exponential turn-ons in the piecewise function h(s)

47



below. Increasing s0 pushes certain details into the corners of each block.

A block is specified by its interval Ij = (rj, rj+1). For each block in the

diagram, appropriate block parameters must be chosen for the transformation to

Penrose coordinates. For each block:

(iii) Let k− = min(kj, kj+1) ≤ 0.

Let k+ = max(kj, kj+1) ≥ 0.

(Recall that ki = f ′(ri) for 1 ≤ i ≤ N and k0 = kN+1 = 0).

(iv) Choose block parameters c̃u, c̃v ∈ R and εu, εv ∈ ±1.

Ensure these are chosen such that εu εv = sgn(f).

These control the location and orientation of a block.

Having set the parameters in each block, the transformation to double null co-

ordinates (u, v), then to Penrose coordinates (ũ, ṽ), can be defined. For each block:

(v) Let h(s) = hs0
k+,k−(s) as defined by (2.19).

(vi) Let u = t− F (r) + c.

Let v = t+ F (r)− c.

(vii) Let tan π (ũ− c̃u) = εu h(u/2).

Let tan π (ṽ − c̃v) = −εv h(−v/2).

The coordinates (ũ, ṽ) are now Penrose coordinates for each block by the defini-

tion of section 2.2. In order to ensure that the Penrose coordinates are global,

parameters in each block must be compared.

(viii) Check that all adjacent blocks are properly matched according to the cri-

teria listed at the end of section 2.5.3.
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These conditions ensure that all blocks overlap only on the appropriate horizons,

and that relative block orientations are correct.

The resulting metric in Penrose coordinates (ũ, ṽ) is implicitly defined in terms

of (u, v) and r by

ds2 = −
(

4π2

e−kc

)
|f(r)|
ekF (r) Gu(u, k) Gv(v, k) dũ dṽ + r2 dΩ2 (2.23)

where we have introduced a free parameter k ∈ R, and

Gu(u, k) = e−ku/2
1 + h(u/2)2

h′(u/2) , (2.24)

Gv(v, k) = ekv/2
1 + h(−v/2)2

h′(−v/2) . (2.25)

The areal radius is given in each block by

r = r(ũ, ṽ) = F−1
j

(
v(ṽ)− u(ũ)

2 + c

)
. (2.26)

The metric (2.23) is independent of the free parameter k, which cancels out entirely

when Gu and Gv are substituted back into the metric. Thus (2.23) holds for every

k ∈ R. The purpose of introducing artificial dependence on k is to make it easy to

evaluate limits at each r → rj by setting k = kj. This trick works on both sides

of every ri (i.e. approaching ri from blocks on Ii or Ii+1), due to the piecewise

definition of h(s) in each block. Note that with the appropriate substitution for

k, the explicit function of radius appearing in the metric is equivalent to (2.14).

In the above form, all metric coefficients of −dũdṽ and of dΩ2 are explicitly

non-negative everywhere, and explicitly positive at all block points. In can be

shown that these coefficients are also positive at horizon and horizon vertex points.
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In 2.12 it is shown that this metric is continuous and nonzero everywhere, except

along the polar coordinate singularity at r = 0, and except possibly in arbitrarily

small corners of the diagram where |u/2| > s0, |v/2| > s0, and |t| → ∞ (as

discussed in section 2.4.7). Thus, the metric extends continuously and without

degeneracy across all horizons and horizon vertices.

This form of the metric depends upon the Penrose coordinates only implicitly,

through its dependence on (u, v) and r. This leaves the freedom to translate and

flip blocks in the Penrose coordinates without a meaningful disturbance of the

metric. Once the diagram is set and the blocks are matched, arbitrary mono-

tonic functions ũ′(ũ) and ṽ′(ṽ) can be applied without compromising the Penrose

coordinates; this usually just makes the diagram look worse, but is necessary in

section 2.6.

2.6 Extension to piecewise-SSS spacetimes with

null-shell junctions

In the astrophysical universe, spacetime is not strongly spherically symmetric –

it is constantly, dynamically, evolving. Fortunately, many dynamical phenomena

can be approximately modeled by spacetimes which are piecewise-SSS. Basic ex-

amples include stellar radiation, stellar collapse to a black hole, and the emission

of Hawking radiation from a black hole.

The class of spacetimes treated in this section, which we refer to as piecewise-

SSS spacetimes with null-shell junctions, is defined by having a finite number of

SSS components, each joined together along null junction hypersurfaces. The

junction hypersurfaces correspond to thin null shells of matter. These junctions
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Figure 2.12: (Color online). Illustration of a radial null slice in SSS spacetime.
The hypersurface Σ (black) lies on a surface of constant w = w0. The vector na
(red) is both normal and tangent to Σ, while the vector Na (red) is transverse to
Σ.

may have either the geometry of a single null shell (figure 2.13b), or of two null

shells colliding at a corner (figure 2.13a). The full metric and other tensors are

defined distributionally on the piecewise spacetime.

In this section we state the procedure necessary to construct piecewise-SSS

spacetimes, making use of the Penrose coordinates previously identified. This

immediately yields Penrose coordinates for the piecewise spacetime. First, we

present the procedure for shell and corner junctions under the minimal require-

ment that junction shells have well-defined intrinsic geometry. Then, we determine

the matter content of junction shells and discuss the conservation of energy.

This section is largely informed by the classic exposition of Barrabès and

Israel [20], which is the standard reference for the analysis of thin shells and

piecewise-defined spacetimes.
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2.6.1 Geometry of a radial null slice in SSS spacetime

Consider an EF patch of an SSS spacetime, covered by the coordinates and

metric (2.3). As usual, ε = ±1 is the parameter appearing in the EF metric.

Assume, without loss of generality, that ∂w is future-directed. (This is general

because w → −w with ε → −ε is an isometry of the EF patch.) With this

convention, it follows that

ε = 1 ⇐⇒ ∂r future-directed, (2.27)

ε = −1 ⇐⇒ ∂r past-directed, (2.28)

and that (ε ∂r) is always future-directed. This convention applies throughout

section 2.6.

With this setup, a radial null slice Σ of the patch is defined as a hypersurface of

constant w = w0, as depicted in figure 2.12. Such a hypersurface is parameterized

by the coordinates xi = (r,Ω), and obtains the induced metric

ds2 = r2 dΩ2 (2.29)

in the coordinate basis.

A normal vector na and transverse null vector Na to Σ can be defined (in the

abstract index notation for spacetime tensors) by

na = ε (∂r)a , Na = (∂w)a − 1
2 ε f(r) (∂r)a , (2.30)

such that nana = NaN
a = 0 and naN

a = −1. Note that na and Na are both

future-directed. As usual for a null hypersurface, the normal vector is tangent to
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Σ, and is a degenerate vector of TpΣ in the induced metric. This implies, as usual,

that Σ has a geometrical dimension D− 2 one less than its topological dimension

D − 1.

Before moving on, it worth noting that the normal and transverse vectors to Σ

are eigenvectors of the stress tensor on the EF patch. At block points in the patch,

the stress tensor T ab = (1/8π)Ga
b is given in an ortho-normalized Schwarzschild

coordinate basis by (2.62) of the appendix. This stress tensor has two degenerate

eigenspaces. Using this fact, one can note without calculation that, at block

points,

T ab n
b = −ρ na, T abN

b = −ρNa , (2.31)

since both na and Na lie entirely in the (∂t, ∂r) plane. Direct calculation in the

EF coordinates reveals that these same eigenvalue relations hold also at horizon

points, and thus everywhere throughout the EF patch.

2.6.2 Algorithm for implementing corner and shell junc-

tions

Four SSS (or piecewise-SSS) spacetimes can be joined together at a corner,

which represents a pair of colliding null shells. The basic restriction for such

a junction is that every point have a well-defined radius, so that the induced

metric on the junction hypersurfaces is well-defined. Here we present a method for

attaining a junction under this minimal condition. Later, more detailed conditions

for energy conservation are given. For the sake of simplicity, in this treatment the

corner junction point is always located at a block point. Although it is possible

to locate the corner junction at a horizon or vertex point, to do so requires a

separate treatment. Keep in mind that, despite the similarity in their schematic
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Figure 2.13: (Color online). Schematic depiction of corner and shell junctions.
(a) The collision of two null shells at a corner point separates four SSS regions at
a piecewise junction. In each of the four regions, the metric function f(r) may
be different. The corner point (black circle) has a well-defined radius, r = r0,
called the “corner radius”. Note that, despite the similar schematic appearance, a
corner point is not the same thing as a horizon vertex. (b) A null shell separates
a past region (−) from a future region (+) at a piecewise junction. The shell
junction is a special case of the more general corner junction. (c) Illustration of
the procedure for creating properly matched junctions. Coordinates in the target
region are denoted (U, V ), and each input region has its own Penrose coordinate
system (ũ, ṽ). The appropriate subset of each input region is mapped into the
target space by null transformations U(ũ) and V (ṽ). These mappings must be
self-consistent, such that every point on the junction hypersurfaces (dashed lines)
has a well-defined radius. Compare to figure 2.18 for an implemented example.

illustrations, a corner junction point is not the same thing as a horizon vertex.

Once the algorithm for corner junctions is established, the procedure for shell

junctions follows as a special case.

Consider four SSS (or piecewise-SSS) regions, labelled A,B,C,D, and called

the input regions, to be combined into a piecewise unit. Let each input region have

Penrose coordinates (ũ, ṽ,Ω). The input regions will be mapped into a target space

representing the joint spacetime, as in figure 2.13. The coordinates of the target

space we call (U, V,Ω). For each input region, the transformations U(ũ) and V (ṽ)

into the target space must be specified.

The procedure by which the input regions are joined can be stated simply: each

input region must be sliced along null junction surfaces in the u and v directions,
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then stretched and shifted in the u and v directions such that the radii at junction

surfaces are all matched up. This procedure is illustrated schematically in figure

2.13c. A precise formulation of the procedure is as follows.

First, one must choose null slices in each input region to act as the junction

hypersurfaces. This amounts to choosing values ũ0 and ṽ0 in each (the values

in each region may be distinct). Junction slices are then located at ũ = ũ0 and

ṽ = ṽ0, with the corner point located at the intersection (ũ0, ṽ0). The values must

be chosen consistently, such that the corner points for each input region have the

same radius r0 = r(ũ0, ṽ0). We call this shared radius the corner radius.

With the junction hypersurfaces consistently defined in the input regions, one

is free to define an arbitrary radial parameterization of the junction hypersurfaces

in target coordinates. This is done by specifying two arbitrary monotonic func-

tions U0(r) and V0(r). Each input region will be mapped into the target region so

that the radii match these functions on the junction surfaces. The corner point

will therefore attain the coordinates (U0(r0), V0(r0)) in target coordinates.

Having achieved this setup, the transformation of each input region into target

space coordinates is given by

U(ũ) = U0

(
r(ũ, ṽ0)

)
, V (ṽ) = V0

(
r(ũ0, ṽ)

)
. (2.32)

When junction slices cover less than the entire domain of ũ, ṽ values, the above

transformations may be extended by an arbitrary monotonic extrapolation. The

transformations ensure that the radii r(U, V0(r0)) and r(U0(r0), V ) are well-defined

regardless of the region of evaluation. Moreover, a simple chain rule calculation

leveraging the results of sections 2.5.1 and 2.5.2 reveals that when the input regions

are SSS, the junction slice radii r(ũ, ṽ0) and r(ũ0, ṽ) are monotonic functions. This
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implies that whenever U0(r) and V0(r) are monotonic, the target-space metric

components for each input region are regular and nonzero. This ensures that

the transformations (2.32) will yield Penrose coordinates for the joint spacetime.

Furthermore, it follows from the chain rule that r(U, V0(r0)) and r(U0(r0), V ) are

monotonic functions in the target coordinates. Thus even when the input regions

are themselves piecewise-SSS, the above procedure yields Penrose coordinates in

the target space.

The full metric of the joint spacetime is defined piecewise in terms of the in-

put region target-space metrics; it can be written distributionally using Heaviside

Θ-functions. The arrangement is depicted in figure 2.13a. With this setup, the

induced metric on the junction hypersurfaces is ds2 = r2 dΩ2. Since the radii at

these hypersurfaces has been properly matched, the geometry of the joint space-

time is well-defined and non-degenerate. The coordinates (U, V,Ω) are Penrose

coordinates, and our theory of corner junctions is complete.

A shell junction can be regarded as a special case of the corner junction, in

which two pairs of the input spacetimes are identical. In such a case, all the

above considerations remain valid. Additionally, for a shell, radius matching in

either the U or V direction becomes trivial (depending on the direction of the

shell), so that one of the transformations in (2.32) can be replaced by U(ũ) = ũ

or V (ṽ) = ṽ, or some other monotonic function, if desired.

This procedure achieves our goal of constructing a composite spacetime under

the minimal junction condition.
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2.6.3 Matter content at shell junctions

In order to analyze the matter content at a shell junction generated by the

above algorithm, it is easiest to work in local EF coordinates of the type set up

in section 2.6.1, rather than in the Penrose coordinates of the previous section.

Suppose we focus on a local patch M0, which is separated into a past region

M− and future region M+ by the null junction hypersurface Σ, with the metric

functions f±(r) in the two regions. Each of M± can be expressed in terms of EF

coordinates, with metric of the form (2.3), such that Σ lies on a line of w = const

in each region, and such that ε+ = ε−. It is therefore possible to choose a joint

coordinate system (w, r,Ω) on M0, such that Σ is defined by the level set Φ =

w = 0, and such that the metric is (2.3) with metric function f(r) = f±(r) in

the appropriate regions. In accordance with section 2.6.1 and the requirements of

[20], the metric parameter ε = ±1 indicates the future-/past- directedness of ∂r,

the normal and transverse vectors na and Na are future-directed, and the level

set function Φ = w increases toward the future.

In order to conveniently express the stress tensor, let us define the mass

function m(r) by f(r) = 1 − 2m(r)/r, and define the mass jump [m(r)] =

m+(r) − m−(r). Note that no restriction on m(r) is implied — it is simply a

useful way to write the metric function. Then, in the joint EF coordinate sys-

tem described above, the stress tensor associated with the junction shell may be

read off from [20, (s. II, IV)]. In the abstract index notation for spacetime ten-

sors (as opposed to the notation convention of [20], which uses latin indices for

hypersurface coordinates), it reads

T abΣ = σ nanb δ(w), σ = (−ε) [m(r)]
4πr2 , (2.33)
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where na = ε (∂r)a is both normal and tangent to the shell, the metric parameter

ε = ±1 indicates an outgoing (+) or ingoing (−) shell (see sec 2.6.1), and δ(w) is

the Dirac δ-distribution.

The coefficient σ may be thought of as the surface energy density of the shell,

up to an arbitrary normalization factor associated with the null vector na. A more

physical quantity is the surface energy density relative to an observer with future-

directed timelike tangent vector ta, which is given by σt = (nata)2 σ. Evidently the

sign of σ is physically meaningful: timelike observers measure a positive energy

density if and only if σ > 0. Indeed, one can show that when σ < 0 the null, weak,

and dominant energy conditions are violated, and the energy flux vector (relative

to a future-directed timelike observer) is past-directed null. It is therefore sensible

to say that shells with σ < 0 have negative mass, while shells with σ > 0 have

positive mass. The sign of σ is a local property, and in principle (in physically

unusual cases) a single shell may have positive and negative mass at different

points.

For the junction of two patches of Schwarzschild spacetime, the mass jump

is a constant value ∆m; the positive mass shell scenarios (σ > 0) for this case

are depicted schematically in figure 2.14. If the inequalities in the figure were

reversed, the junction would yield a shell with negative mass.

2.6.4 Energy conservation at shell and corner junctions

Local conservation of energy and momentum in General Relativity is expressed

by the relation ∇a T
ab = 0. For any smooth metric, the contracted Bianchi

identities provide ∇aG
ab = 0, ensuring energy conservation by way of Einstein’s

equation. When the metric is not differentiable, the standard derivation of the
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Schwarzschild Junction: Positive Mass Shell Scenarios

Figure 2.14: (Color online). Illustration of the possible scenarios for joining two
Schwarzschild spacetimes across a positive-mass shell (i.e. a shell with σ > 0, see
section 2.6.3). The junction shell Σ (dashed black line) separates the joint space-
time into future (red fill, labelled “+”) and past (light-blue fill, labelled “−”)
regions. The parameter ε = ±1 is determined by the future-/past- directedness
of ∂r, while the normal vector na = ε (∂r)a (not shown) is always future-directed.
As expected, an infalling (outgoing) positive-mass shell necessarily increases (de-
creases) the mass m+ of the future region. This change is reflected by a shift in
the horizons (gray lines) at r = 2m in each region.
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Bianchi identities does not hold up. So the question remains: for the piecewise

case, does local energy conservation hold everywhere as a distributional identity?

For the case of shell junctions, it has been shown by Barrabès and Israel

[20, (eqns. A10 - A13)] that ∇aG
ab = 0 does indeed hold as a distributional iden-

tity. It is therefore true that, without any further constraints, the joint spacetime

produced by our junction algorithm is automatically energy conserving at all shell

junctions. In context of our junction algorithm, every junction is locally a shell

junction except at the corner points (U0(r0), V0(r0)) in the target coordinates. So

the only remaining question is that of energy conservation at the corner points.

At corner points, the question of energy conservation is slightly more compli-

cated, but there is nonetheless a well-established theory [20, 21, 22, 23]. In order

that conservation hold at a corner point with radius r0, the metric functions of the

four input regions must satisfy the DTR (Dray - ’t Hooft - Redmount) relation

[23]

fA(r0) fB(r0) = fC(r0) fD(r0) , (2.34)

with the region labels defined by figure 2.13a. This formula encodes a relativis-

tic version of conservation of mass in the shell collision. Note that when shell

junctions are regarded as a special case of corner junctions, the DTR relation is

satisfied trivially. It is well known that the DTR relation is necessary for energy to

be conserved, and general consensus of the standard treatments of shell collision

(cited above) suggests that the relation is also sufficient. However, the authors are

not aware of an explicit proof that the distributional equation ∇aG
ab = 0 holds

at corner points when DTR is satisfied.
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2.7 Implementation and examples

The methods described in this article have been implemented in a package

called xhorizon for Python 2.7. Source code for the implementation is available

from the authors.

Examples generated by the implementation are given in figures 2.15–2.18 (lo-

cated after the end of the text but before the appendix). Figure 2.15 depicts

example diagrams for SSS spacetimes. Figure 2.16 shows a detailed zoom view

of a particular diagram. Figure 2.17 helps elucidate generic features of the dia-

grams resulting from these methods. And figure 2.18 gives example diagrams for

piecewise-SSS spacetimes resulting from null shell junctions.

Features of the examples and implementation are described in captions of the

example figures, since they are best understood in context of the results. Just a

few further comments are in order here.

The first comment regards the SSS diagrams. Comparison between the ex-

tended Schwarzschild diagram in figure 2.15b and the Reissner-Nordstrom (R-N)

diagram in figure 2.15d is immediately striking: for all lines of constant radius on

the length scale of the outer horizon radius, the two diagrams are nearly identical.

They differ only at length scales on the order of the R-N inner horizon radius.

The R-N diagram appears, in fact, as a Schwarzschild diagram with the r = 0

singularity “rigidly pulled up” to become timelike. This is consistent with the

generic effects of “bunching” and “repelling” described in figure 2.17. Due to the

large value of |ki| at the inner horizon, the upper square (between green bunches)

of the R-N diagram is almost all located at the inner horizon radius plus or minus

“epsilon”, while all reasonably spaced lines of constant radius are bunched at the

edges. When the R-N spacetime becomes highly charged (nearly extremal), as in
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figure 2.15c, these effects are mitigated.

The second regards energy conservation in the piecewise-SSS diagrams. No-

tably, there is no obviously visible difference between the energy conserving junc-

tion in figure 2.18a–b and the energy non-conserving junction in figure 2.18c–d.

The DTR relation must be independently verified. Moreover, energy conserva-

tion by the DTR relation is not always intuitive; even in the energy conserving

Schwarzschild example of figure 2.18a–b, the total incoming and outgoing shell

masses do not add up in the naive way. Heuristically, this is because the DTR

formula must take gravitational potential energy into account [23].

For more general remarks, see the captions of figures 2.15–2.18.

2.8 Concluding remarks

We have given a complete analysis of the theory of Penrose diagrams as applied

to strongly spherically symmetric spacetimes and their piecewise-SSS cousins.

Having set down the rules, these methods may be used to analyze causal struc-

ture in a broad class of spacetimes. In a forthcoming publication, these methods

will be applied to the case of a black hole which forms from stellar collapse and

subsequently evaporates by emitting Hawking radiation.
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Figure 2.15: (Color online). Example SSS diagrams generated by an implemen-
tation of the methods described in this article. For each diagram, lines of constant
radius are given at various length scales. For parameters and line spacing scales
see diagram annotations. All these diagrams utilize the global diagram constants
c = 0 and s0 = 10 (see section 2.5). (a) Minkowski spacetime. (b) Schwarzschild
black hole. (c) Highly charged (nearly extremal) Reissner-Nordstrom black hole.
(d) Reissner-Nordstrom black hole with small charge. (e) de Sitter spacetime. (f)
Anti de Sitter spacetime.
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(a) Lines of r∗ = const (b) Undefined radius point

(c) Inner horizon vertex (d) Outer horizon vertex

Figure 2.16: (Color online). Diagram and detail views of the same Reissner-
Nordstrom spacetime from figure 2.15d above. Evenly spaced lines of constant
tortoise coordinate r∗ = const (orange color scale) provide a different perspective
from the previously shown lines of constant radius. Each of the panels (b,c,d)
provides a zoom view of the corresponding labeled box in (a). A periodic con-
tinuation of the central region is shown in faded color in panel (a), but in full
color in the zoom panel (c). Some curves in the detail views may appear to have
discontinuities or numerical precision jumps, but this is not the case. In fact, all
the visible curves are once-differentiable, numerically accurate, and numerically
well-resolved. Apparent kinks and discontinuities are due to turn-on of expo-
nential behavior in the piecewise function h(s) (see section 2.5.2); these turn-ons
occur when |u/2| > s0 and when |v/2| > s0. Near the inner horizon in panel (c),
all reasonably spaced lines of r∗ = const in the exponential region are squished
against the horizons and into the corner, due to the large magnitude of the slope
ki = f ′(ri) at the inner horizon radius. [Caption continued on next page...]
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Figure 2.16: [...Caption continued from previous page.] More gradual deforma-
tions near the outer horizon in panel (d) correspond to a less extreme value of the
slope. Near the undefined radius point in panel (b), the Penrose coordinate metric
is discontinuous across the horizon within the diamond defined by |u/2| > s0 and
|v/2| > s0 (see section 2.4.7). Changing the parameter s0 moves the location of
the exponential turn-ons. As s0 → ∞, these features are pushed arbitrarily far
against the horizons and into the corners.
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(a) Lines of constant tortoise coordinate (b) Lines of constant radius

(c) Lines of constant tortoise coordinate (d) Lines of constant radius

Figure 2.17: (Color online). Generic features of these diagrams can be under-
stood by inspecting the relationship between lines of constant radius r and lines
of constant tortoise coordinate r∗ = F (r). In this example, all four panels cor-
respond to an EF patch of a Reissner Nordstrom spacetime, with parameters as
given in panel (a). Panels (a) and (b) respectively show lines of constant r∗ and r
in the diagram. Panels (c) and (d) depict the same lines against graphs of F (r).
The interval boundaries in (b,d) occur wherever either f(r) = 0 or F (r)− c = 0,
and there are six equally spaced lines of constant radius in each interval (except
in the last interval where dr = 0.1 as r → ∞). Observing panel (a) highlights
some features which are generic to the method: the line F (r) − c = 0 always
runs straight through the middle of each block, and the lines of r∗ − c = const
have a regular and predictable spacing in the diagram. These may be used as
a regularly spaced reference for sketching block boundaries and lines of constant
radius. Comparing to the graph of F (r) in panel (c), one observes that within
each interval, most radius values lie in a small range of r∗ values, with most of
the range of r∗ lying arbitrarily close to a horizon. [Caption continued on next
page...]
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Figure 2.17: [...Caption continued from previous page.] This property is generic
when horizons are present, and leads to a “bunching up” of lines of constant
radius, since sampled values of radius generally lie in a small interval of r∗. This
bunching is visible in panels (b,d), where lines of constant radius are evenly spaced
within each individual interval, but remain bunched in the diagram nonetheless.
Less carefully sampled radius values will generally be even more bunched than
these, and bunching is stronger near horizons with large |ki|. Horizons with large
|ki| thereby “repel” lines of r = const and take up a large effective space in
the diagram. Changing the parameter c moves all bundles simultaneously while
maintaining relative positions. Note also the location of the block boundary at
r = 0 (top left boundary). Since F (0) = 0 always, when c = 0 this boundary will
be a straight line at F (r)− c = 0. In the present case c > 0, and the boundary is
pushed out to the left of vertical.
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Figure 2.18: (Color online). Example piecewise-SSS diagrams generated by an
implementation of the methods described in this article. Diagram constants set
to c = 0 and s0 = 10. In each row, left and right panels show the same exam-
ple with different features. Left panels show conformal boundaries (gray lines),
horizons (gray lines), and junction hypersurfaces (black dashed lines). Right pan-
els show lines of constant radius (color scale). Each line of constant radius is
continuous at all junctions, and obtains an unusual wiggly appearance from the
junction matching transformations. Panels (a,b) show four SSS regions joined at
an energy-conserving corner junction. Panels (c,d) are similar to (a,b), but with
DTR violated (energy not conserved). Panels (e,f) show a Schwarzschild black
hole forming from shell collapse in Minkowski space.
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2.9 Appendix: Comparison to existing methods

The method described in this article generalizes and unifies techniques from

various sources. In order to provide the proper context, we conduct here a brief

review of the methods historically used to create similar diagrams.

The problem of generating causal diagrams for SSS spacetimes has previously

been tackled in two fundamental ways: the method of block diagrams and the

method of global Penrose coordinates. The block diagram method provides ex-

plicit global Penrose coordinates only when the metric function has one or zero

horizon radii (locations where f(r) = 0). When many horizons are present, the

block diagram method allows qualitative analysis by the identification of over-

lapping blocks in neighboring quad-block regions (see section 2.4), but does not

define a self-consistent system of global coordinates in the area of overlap.

The more well known of the two methods is that of block diagrams, in which

the causal structure of spacetime is pieced together from quad-block units. This

method was first applied to the special case of Schwarzschild spacetime by Krus-

kal [24]. Maximally extended Schwarzschild spacetime, with its one horizon ra-

dius, consists of a single quad-block, and so in this case global Penrose coor-

dinates were also achieved. Kruskal’s method was then generalized by Walker

to the method of block diagrams [9]. In Walker’s treatment, quad-blocks could

be constructed so long as the metric function took a special form, with the tor-

toise function defined by an indefinite integral (although definite integrals were

implemented to generate the tortoise function within individual blocks). Later,

however, Brill and Hayward [25] used a definite integral formulation to extend

Walker’s method to the case of an arbitrary metric function, in a manner equiv-

alent to the results of section 2.4.5. In this way, the question of constructing
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arbitrary block diagrams (but not Penrose diagrams) for SSS spacetimes has long

since been settled.

The less well known set of methods is that in which global Penrose coordi-

nates are explicitly constructed. The most important progress in this direction

was made by Carter [8], who found global Penrose coordinates for special cases

with two horizons. Although Carter’s method relied on the ability to determine

the tortoise function by an indefinite integral, and assumed the existence of exactly

two horizons, it is in fact easily generalizable, and was the most important contri-

bution to the present methods. In fact, when the indefinite integral form of the

tortoise function is known, Carter’s two-horizon method is essentially equivalent

to the method of section 2.5, but with the substitution hs0
k+,k−(s) = e2k+s− e−2k−s

in every block. The original Carter method does have several drawbacks. One is

that the exponential form of h(s) yields very strange-looking lines of constant ra-

dius (see figure 2.19). Additionally, applied to a case with more than two horizons,

this method would suffer from major problems near the undefined radius points

(see section 2.4.7), and need to be modified. The results of section 2.5 can be

thought of as a generalization of the methods of Carter; the key new additions are

the introduction of the global tortoise function and the new form of the function

hs0
k+,k−(s). These additions allow the method to be extended to an arbitrary met-

ric function with an arbitrary number of horizons, while simultaneously rendering

the diagram more readable.

In order to understand the advantages of the present method, it is useful to

compare the known methods for constructing Penrose diagrams in the case of

two horizons. Such a comparison is depicted in figure 2.19. Once the tortoise

function F (r) is set and the double-null coordinates (u, v) are defined in each

block, there are several known methods of obtaining the diagram coordinates.
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Figure 2.19: (Color online). An EF region for a Reissner-Nordstrom black
hole, generated according to four different methods. In order to emphasize the
effects of each transformation, lines of constant tortoise coordinate r∗, rather than
constant radius, are shown. (a) The algorithm of section 2.5, with s0 = 10. (b)
The method described by Carter in 1966 [8]. (c) A method which is adapted from
the Kruskal method to allow two horizons. (d) A method due to Hamilton [11]. In
all cases the preliminary transformation to double null coordinates (u, v) utilizes
the constant c = 0.
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First, of course, there is the method of section 2.5. Second, there is the original

method of Carter [8]. Both have been described above. A third method has been

used by Hamilton [11]; this method could potentially also be generalized, but is

less theoretically appealing than Carter’s method. Finally, it is possible to define

a two-horizon extension of the Kruskal method such that the diagram matches the

standard Kruskal diagram outside of some inner limit; this two-horizon Kruskal-

like method cannot be extended to more horizons, however, and so although it

is shown for comparison, we omit its exact formulation. In figure 2.19, diagrams

featuring lines of constant tortoise coordinate r∗ are shown for each of these four

methods. Showing the tortoise coordinate instead of radius isolates the effect of

the different coordinates systems, eliminating distortion due to F (r).

2.10 Appendix: Unit conventions

A major goal of the techniques described in this article is to realize Penrose

diagrams of physically relevant spacetimes. As such, we must clarify the status of

units in these calculations. First of all, note that we utilize standard conventions

for geometrized units, such that G = c = 1, in accordance with [26, (Appendix

F)]. The tricky issue of units in the coordinates, metric components, and Penrose

diagrams is discussed below.

In GR the units of the line element are necessarily [ds2] = [length]2. Units for

other geometric quantities depend on a choice of convention. Among the possible

conventions, there is a unique simplest choice: all metric components gµν should be

unitless, while all coordinates carry units of length. This convention has several

benefits. All components of a tensor have the same units. The components

of an even-rank tensor have the same units as its scalar contractions. And for
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any given tensor, the covariant, contravariant, and mixed varieties all have the

same units. In particular the Ricci curvature components and Ricci scalar obey

[Rµ
ν ] = [Rµν ] = [Rµν ] = [R] = [length]−2, and after conversion to SI units

by T̄µν = (c4/G)Tµν = (c4/8πG)Gµν all components of the stress-energy tensor

have units [T̄µν ] = [energy] [length]−(D−1) (where D is the number of spacetime

dimensions). There are other standard unit conventions in which these need not

hold. For example in the standard Euclidean spherical coordinates (r̄, θ, φ) where

[r̄] = [length] and [θ] = [φ] = [1], the components Tµν do not even all have the

same units.

We achieve this simplest convention while maintaining notational simplic-

ity by factoring out and suppressing a universal length scale. Let the physi-

cal line element ds̄2 = ḡµν dx̄
µdx̄ν have any arbitrary unit convention such that

[ds̄2] = [length]2. Let l be an arbitrary length scale. It is always possible to nondi-

mensionalize the coordinates and metric components to obtain ds̄2 = l2 ds2 with

ds2 = gµν dx
µ dxν , where [ds2] = [gµν ] = [dxµ] = [xµ] = [1]. Then the physical line

element can always be expressed as ds̄2 = gµν d(lxµ) d(lxν) in terms of the unitful

coordinates (lxµ) and the unitless metric. This form of the physical line element

satisfies the desired convention.

We will always write the unitless line element ds2 in the unitless coordinates

xµ as a shorthand for the true line element ds̄2 = l2 ds2 = gµν d(lxµ) d(lxν) in

the unitful coordinates (lxµ), never making the arbitrary length scale explicit.

Note that derivatives ∂lxµ = l−1 ∂xµ pick up an extra factor of the length scale

when calculating in the shorthand. By keeping track of these and similar factors,

one can easily relate geometric quantities in the unitful geometry to those in the

unitless geometry.

Additionally, all parameters in the metric components are by convention unit-
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less. Any physical, unitful, parameters must be obtained by studying the resultant

geometry of the physical metric ds̄2.

Consider the demonstrative example of three dimensional Euclidean flat space

in spherical coordinates. We write this geometry in the unitless shorthand coor-

dinates (r, θ, φ), with line element ds2 = dr2 + r2 (dθ2 + sin2 θ dφ2). This serves as

shorthand for the the unitful coordinates x̄µ = (lr, lθ, lφ), and the unitful metric

ds̄2 = d(lr)2+(lr/l)2 (d(lθ)2+sin2(lθ/l) d(lφ)2), with lθ ∈ (0, πl) and lφ ∈ (0, 2πl).

Moreover, to see how parameters in the metric correspond to physical param-

eters, consider for example the Schwarzschild metric ds2 = −(1−R/r) dt2 + (1−

R/r)−1 dr2 + r2 dΩ2, as expressed here in the unitless shorthand coordinates. The

parameter R is unitless. By inspection of the geometry ds̄2, one finds that the

physical Schwarzschild radius is R̄ = Rl, and the physical Schwarzschild mass in

SI units is M̄ = Rlc2/2G.

The Penrose diagrams we construct are for the unitless metric ds2. The Penrose

coordinates are unitless, and in all examples no absolute length scale appears in the

metric components. Consequently, the appearance of the Penrose diagrams never

depends on the arbitrary length scale factor. To return to units, one simply notes

that if (u, v) are Penrose coordinates for ds2, then (lu, lv) are Penrose coordinates

for ds̄2 = l2ds2. Once the length scale l is set, all lengths are defined in units, and

other geometrical quantities must be calculated in units as described above.
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2.11 Appendix: Spherical symmetry with a fixed

origin

To properly describe SSS spacetimes requires the concept of spherical symme-

try about a fixed origin. Since manifolds need not contain their symmetry axes,

this requires a bit of extra work.

To set the stage, let us recall some facts about the symmetry of psuedo-

Riemannian manifolds (i.e. metric manifolds of arbitrary signature). Such a

D-dimensional manifold M usually has a continuous (Lie) group G of isometries.

Continuous isometries are generated by flow along Killing vector fields, which sat-

isfy ∇(akb) = 0. The set of Killing vector fields, under the Lie bracket operation,

form a Lie algebra equivalent to that of G. The maximum number of independent

Killing vector fields (maximum dimension of G) is always D (D + 1)/2. Spaces

saturating this maximum are maximally symmetric, have constant curvature, and

are homogenous and isotropic, at least locally [27]. In particular the k-sphere

Sk, with metric induced from Euclidean space, is a maximally symmetric space

of positive curvature. The isometry group of Sk−1 is the orthogonal group O(k),

defined as the Lie group of real orthogonal k×k matrices. The corresponding Lie

algebra so(k), defined as the real algebra of real antisymmetric k × k matrices,

has dimension k (k − 1)/2. It is by analogy with this symmetry algebra that we

define spherical symmetry in spacetime.

Let M be a spacetime of dimension D. M is called n-spherically symmetric

if (i) the Lie algebra of Killing vector fields of M has a spacelike subalgebra σ

isomorphic to so(n + 1), such that (ii) the local dimension of σ as a subspace of

TpM is either 0 or n at each point p ∈ M . In general there may be many such

subalgebras σ, each corresponding to a different symmetry axis. Therefore we will
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call a choice of one specific σ a choice of the origin of spherical symmetry, and the

pair (M,σ) an n-spherically symmetric spacetime with fixed origin (but we will

abuse notation and simply refer to M , with σ implied).

Now suppose M is n-spherically symmetric with origin fixed by σ. Points

where the local dimension of σ is 0 are fixed points of the spherical symmetry; we

call the set of all such points the axis Aσ. The axis may be empty or nonempty.

When nonempty, it is typically a D− (n+ 1) dimensional submanifold of M . The

complement of the axis we shall denote Bσ. By assumption, σ has local dimension

n on Bσ. Thus by Frobenius’s theorem [28], Bσ is foliated by n-dimensional

integral submanifolds of σ corresponding to isometric flows along σ. Each point

p ∈ Bσ is contained in exactly one such submanifold, called its orbit and denoted

Orbσ(p).

We wish to show that each of these orbits has the intrinsic geometry of a

sphere (its intrinsic geometry being induced by the metric on M). We do so by

determining Killing vectors of the orbits. Each Killing flow generates an isometry

ofM , which in turn induces an isometry on the invariant subspace Orbσ(p). Since

additionally σ is tangent to the orbits, σ̄ = σ
∣∣∣Orbσ(p)

is an algebra of Killing vector

fields on the orbit, and the vector field commutators of σ are preserved by the

restriction. One could imagine, however, that when restricted to the orbit, σ may

no longer have the same number of independent generators (i.e. if two linearly

independent fields, when restricted, became linearly dependent). This possibility

is mostly (i.e. for n 6= 3) ruled out by the group theoretic considerations of

[29]. A more concise proof follows from the algebraic approach, as follows. The

restriction σ → σ̄, being both linear and commutator-preserving, defines a Lie

algebra homomorphism. The kernel of the homomorphism must be an ideal.

But since simple Lie algebras have no nontrivial proper ideals, and since our
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assumption on the local dimension of σ implies that dim σ̄ ≥ n, simplicity of σ

implies that dim σ̄ = dim σ. Thus, dim σ̄ = n(n + 1)/2 whenever so(n + 1) is

simple, leaving only the cases n = 1 and n = 3 [30]. The same dimensionality

holds for the case n = 1, since in that case n(n+ 1)/2 = n already. Let us assume

the case n = 3 causes no problems.

The above reasoning shows that σ restricts to a spacelike n(n + 1)/2 dimen-

sional algebra of Killing vector fields on the n-dimensional orbits, so it follows

that each orbit is a maximally symmetric Riemannian manifold with symmetry

algebra isomorphic to so(n + 1). This implies that each orbit must be locally

isometric to the sphere Sn with metric ds2 = (rOrb)2 dΩ2. It is therefore justified

to define the areal radius (relative to σ) at each point p ∈ Bσ by rσ(p) = rOrbσ(p).

Correspondingly, for points p ∈ Aσ on the symmetry axis we define rσ(p) = 0. In

this way the areal radius is defined for all points in M .

At every point not on the symmetry axis, there exists a local coordinate system

exhibiting the foliation by spheres. Let p ∈ Bσ ⊂M . Then p has a neighborhood

with coordinates (aλ,Ωk), in which the metric reads

ds2 = hµν(aλ) daµ daν + r(aλ)2 dΩ2 , (2.35)

where hµν(aλ) is a (D − n)-dimensional Lorentzian metric depending only on aλ,

the coordinates Ωk parameterize a σ-orbit for fixed aλ, and r(aλ) is the areal

radius of such an orbit. For each point q with coordinates (aλ,Ωk) in this patch,

r(aλ) = rσ(q). That such a coordinate system exists can be shown by construction

of surface-orthogonal geodesic coordinates [31]; another proof is given by [32, (s.

13-5)].

Let it be emphasized: once an origin of spherical symmetry is fixed by choosing
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σ, the areal radius r = rσ(p) is an intrinsic property of each point p ∈ M ,

independent of coordinate system. M is foliated by spheres (lying tangent to σ)

with intrinsic metric ds2 = rσ(p)2 dΩ2, except on the axis of symmetry where

rσ(p) = 0 by definition. Everywhere except on the axis, there is a local coordinate

system respecting this foliation, in terms of which the metric is (2.35).

2.12 Appendix: Proof of regularity at the hori-

zons

Here we prove that the Penrose-coordinate metric coefficients are continuous

and nonzero at all horizons and horizon vertices in Penrose diagrams obtained by

the methods of section 2.5. The only exception is that the metric is sometimes

discontinuous at horizon points in a small neighborhood near |t| → ∞, in non-

vertex corners of the diagram, as described in section 2.4.7. Before proceeding,

properties of the global tortoise function of section 2.5 are proved, and some useful

identities are developed.

Properties of the Global Tortoise Function

The identities (2.14) and (2.15) are proved by showing that for each zero ri of

f(r) there exists a cut punctured disk Dcut about the origin in the complex plane,

and a function D(z) analytic at z = 0, such that for z = x on the real axis in

Dcut,

F (ri + x) = k−1
i ln |x|+D(x) . (2.36)

It follows that the complex function F (ri + z) − k−1
i ln |z| = D(z) is analytic at

z = 0, which, as seen below, quickly implies the desired results.
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The proof of (2.36) runs as follows. Denote F (r) = ReFc(r), where Fc(r) is

the defining integral in (2.11) with the real part sign removed. Evaluation of the

semicircular contours in the small ε limit shows that ImFc(r) = π
∑N
i=1 k

−1
i Θ(r−

ri). By assumption, f(ri + z) is complex analytic at z = 0 with f(ri) = 0 and

f ′(ri) = ki. Power series arguments show that there exists a Dcut (as above) on

which

f(ri + z) = ki z (1 + A(z)) , (2.37)

with A(z) analytic at z = 0 and A(0) = 0, and on which f(ri + z)−1 is analytic

with analytic antiderivative

F̃ (ri + z) = k−1
i log(z) +B(z) + C , (2.38)

where B(z) is also analytic at z = 0. Fc(ri+z), which can be written as a constant

plus an integral contained inDcut, analytically extends to the antiderivative F̃ (ri+

z) for a suitable constant. Comparing imaginary parts in Fc(ri + z) = F̃ (ri + z)

for z = x on the real axis shows that B(z) + C = D(z) + iπ(k−1
1 + . . . + k−1

i )

with ImD(x) = 0. Thus F (ri + x) = ReFc(ri + x) = k−1
i ln |x| + ReD(x) =

k−1
i ln |x|+D(x).

From (2.36), property (2.15) follows directly. Then, using (2.36) and (2.37),

one finds

|f(ri + z)| e−kiF (ri+z) = |ki|(1 + A(z)) e−kiD(z) . (2.39)

Near z = 0, we define this formula by its right hand side, which is analytic and

positive at z = 0, and obtain the property (2.14) by restricting to the real axis.

This yields the limit |f(ri)| e−kiF (ri) = |ki| e−kiD(0) at z = 0.
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Useful identities

Here we collect some useful identities for the functions h(s) and Hk(s), and the

coordinate transformations ũ(u) and ṽ(v), of section 2.5.2. The identities below

include some inverse functions, which are useful for determining radii of points in

the diagram, and some derivative identities, which are useful for analysis of the

metric.

First of all, there are the inverse functions

Hk
−1(s) =


1
k

ln(1 + ks) k 6= 0

s k = 0
, (2.40)

(hs0
k+,k−)−1(s) =


−s0 +Hk−

−1(s+ s0), s < −s0

s, |s| ≤ s0

s0 +Hk+
−1(s− s0), s > s0

, (2.41)

which must be used to determine radii of points in the diagram.

Meanwhile, the derivatives we want are

Hk
′(s) =


eks k 6= 0

1 k = 0
, (2.42)

(hs0
k+,k−)′(s) =


Hk−

′(s+ s0), s < −s0

1, |s| ≤ s0

Hk+
′(s− s0), s > s0

. (2.43)

From the derivatives one observes that Hk
′(s) = 1 + kHk(s).

Now denote h(s) = hs0
k+,k−(s). Due to the piecewise nature of this function, it
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is useful to also define the piecewise constant

κ(s) ≡


k−, s < −s0

0, |s| ≤ s0

k+, s > s0

. (2.44)

In this notation (and suppressing the argument), one can write the simple expres-

sions

κh(s) = −1 + |κ| s0 + e−|κ|s0 eκs , (2.45)

h′(s) = e−|κ|s0 eκs , (2.46)

h′(s) = 1− |κ| s0 + κh(s) . (2.47)

Let x̃(x) be a joint notation for ũ(u) and ṽ(v). For both u and v, the trans-

formation from block to Penrose coordinates has the general form

tan π (x̃− c̃) = a h(bx) , (2.48)

for real constants a, b, c, where h(s) is monotonic increasing. It follows that x̃(x)

is monotonic and invertible, and the derivative is

dx

dx̃
=
(
π

ab

)(1 + a2 h(bx)2

h′(bx)

)
. (2.49)

Applying (2.46) and (2.47) with (2.48) and (2.49), one obtains

dx

dx̃
=
(
π

ab

)(
e−|κ|s0

e−κbx

)
1 + cot2 π(x̃− c̃)

[κ a−1 + (1− |κ|s0) cotπ(x̃− c̃)] 2 (2.50)

with κ = κ(bx), wherever x̃− c̃ 6= 0 (and again, x represents either u or v).
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All necessary identities are now in hand.

Proof of regularity

We shall demonstrate that, in the Penrose coordinates (ũ, ṽ), the metric coef-

ficients are continuous and nonzero in the coordinate basis at horizons and hori-

zon vertices, except possibly in arbitrarily small corners of the diagram where

|u/2| > s0, |v/2| > s0, and |t| → ∞. The proof proceeds by direct calculation of

the metric components in a neighborhood of horizon points.

As usual (see section 2.4.2), suppose that (x, y) is a shorthand representing

either (u, v) or (v, u). Begin with metric coefficients written in the form (2.23).

In order to evaluate the metric at r = ri, one sets the free parameter k = ki. The

function (2.14), which carries the explicit radial dependence, was already shown to

be analytic (and thus continuous) and positive at ri. All that is left is to evaluate

the functions Gx(x, k) and Gy(y, k) in the appropriate limits. The details run as

follows.

In light of (2.50), the metric coefficients (2.24-2.25) in each block can be rewrit-

ten

Gu(u, k) =
(
e−|κu|s0

e(k−κu)u/2

)
1 + cot2 π(ũ− c̃u)

[κu + εu (1− |κu|s0) cotπ(ũ− c̃u)] 2 , (2.51)

Gv(v, k) =
(

e−|κv |s0

e−(k−κv)v/2

)
1 + cot2 π(ṽ − c̃v)

[κv + εv (1− |κv|s0) cotπ(ṽ − c̃v)] 2 , (2.52)

where κu = κ(u/2) and κv = κ(−v/2), utilizing the notation (2.44).

Now suppose there are multiple blocks, all matched to their neighbors ac-

cording to the prescription of section 2.5.3. Further, suppose without loss of
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generality that one of the blocks has the parameters c̃u = c̃v = 0. Since all blocks

must have been shifted by integer values of ∆c̃, it follows from the periodicity

cot(x+ π) = cot x that in every block the metric coefficients are

Gu(u, k) =
(
e−|κu|s0

e(k−κu)u/2

)
1 + cot2 πũ

[κu + εu (1− |κu|s0) cotπũ ] 2 , (2.53)

Gv(v, k) =
(

e−|κv |s0

e−(k−κv)v/2

)
1 + cot2 πṽ

[κv + εv (1− |κv|s0) cotπṽ ] 2 . (2.54)

All metric dependence on the shift parameters has been eliminated.

It remains to implement the limit r → ri. In any block bordering a horizon

radius r = ri, it is easy to see from their definitions that the coordinate limits

have a standard pattern, depending on the sign of ki = f ′(ri). Suppose that

sgn(ki) = ±1. Then in any block bordering ri, one finds F (r) → ∓∞ and

u → ±∞ and v → ∓∞. As a result, one finds the important result that as

r → ri, either κ(u/2) = ki, or κ(−v/2) = ki, or both. By using the free parameter

k = ki, the limiting value can now be evaluated.

Suppose that two blocks BA and BB are joined along a line of constant ỹ, as

in section 2.5.3. In both blocks, |y| → ∞ near the horizon, and the limits of the

preceding paragraph are such that κy = ki. Then letting k = ki, one finds

Gy(y, ki) =
(
e−|ki|s0

) 1 + cot2 πỹ

[ki + εy (1− |ki|s0) cotπỹ ] 2 , (2.55)

which obtains the limit

Gy(y, ki) = k−2
i e−|ki| s0 (2.56)

when r = ri, since cot2 πy = 0 there. The limit (2.56) is independent of block
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parameters, and thus automatically equal in both blocks, ensuring that Gy(y, ki)

is positive and continuous across the horizon.

Meanwhile, at horizon points, the coordinate x parameterizing the horizon

remains finite. On the horizon, the corresponding metric factor becomes

Gx(x, ki) =
(

e−|ki|s0

e±(ki−κx)x/2

)
1 + cot2 πx̃

[κx + εx (1− |κx|s0) cotπx̃ ] 2 , (2.57)

where ± corresponds to x = u and x = v respectively. This expression holds

on both sides of the horizon, in both blocks BA and BB, and is strictly positive.

Since the matching conditions ensure that εAx = εBx , the function (2.57) is equal

on both sides of the horizon for all x such that x̃A(x) = x̃B(x) (which also implies

κAx = κBx ). Near horizon vertices, where all transformations h(s) have the same

exponential factor, and in the bulk of blocks, where h(s) = s, this matching

is guaranteed. However, when both |u/2| > s0 and |v/2| > s0 near |t| → ∞,

then h(s) may be different in the neighboring blocks for the relevant direction,

yielding a discontinuity. By choosing s0 large, the neighborhood affected by this is

exception may be made arbitrarily small. Thus at all horizon points, except near

|t| → ∞, the function Gx(x, ki) is positive and continuous across the horizon. At

a horizon vertex point, the limit (2.56) applies to both x and y, for all surrounding

blocks, and the metric is, again, continuous.

To summarize, utilizing (2.55) and (2.57), the metric in a neighborhood of any

horizon point or vertex point at r = ri can be written

ds2 = −
(

4π2

e−kic

)
|f(r)|
ekiF (r) Gy(y, ki) Gx(x, ki) dũ dṽ + r2 dΩ2 . (2.58)

Every factor in the coefficient of −dũdṽ has by been shown to be positive and
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continuous as a function of (x̃, ỹ) in this neighborhood, except in arbitrarily small

neighborhoods where |t| → ∞. Thus, except for the polar coordinate singularity

at r = 0, and except for the above-noted |t| → ∞ exception, the global metric is

continuous and strictly positive everywhere. Our goal of obtaining non-degenerate

continuous global Penrose coordinates extending across an arbitrary number of

horizons has been achieved.

Given the analyticity of the radial dependence in the metric (see (2.14)), one

might hope to give a coordinate system which extends the full metric analyti-

cally across horizons. Indeed, this is possible by simply choosing a suitable h(s).

However, a trade-off has to be made. If analyticity at the horizons is retained,

either differentiability of the interior metric, simplicity of h(s), or simplicity of

the diagram appearance must be sacrificed. An example of the latter case may be

seen in figure 2.19(b). Since there is no physically motivated benefit to retaining

analyticity, we give it up.

2.13 Appendix: More properties of SSS space-

times

For convenience, we collect here some geometrical formulae for a four-dimen-

sional SSS spacetime. Let the metric function be written

f(r) = 1− 2m(r)
r

. (2.59)

We imply no restriction whatsoever on the function m(r). This is simply a very

useful way to write the metric function. It is only sometimes appropriate to

interpret m(r) as the total mass inside radius r. Useful derived quantities include
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the shell mass

µ(r) = m′(r) (2.60)

(see (2.63) and below) which determines the Einstein tensor, and the function

η(r) =
(

2m(r)
r
− 4m′(r)

3 + rm′′(r)
3

)
, (2.61)

which controls the Weyl tensor.

Orthonormal basis

We define an orthonormal basis êa in each block. Where f(r) > 0 define

ê0 =
√
f(r)−1 ∂t and ê1 =

√
f(r) ∂r. Where f(r) < 0 define ê0 =

√
−f(r) ∂r and

ê1 =
√
−f(r)−1 ∂t. And, everywhere, define ê2 = r−1 ∂θ and ê3 = (r sin θ)−1 ∂φ.

In this construction ê0 is always timelike. Both ê0 and ê1 can be continuously

extended across horizons, which is why the Einstein tensor in this basis (below)

will have no discontinuities associated with the piecewise definition. However

the basis cannot be continuously extended, as the extensions of ê0 and ê1 would

coincide at the horizon. Despite this shortcoming, we often choose to work in this

basis for its conceptual and calculational simplicity.

Curvature components in coordinate bases

These quantities were computed with help from the Mathematica package

RGTC [33]. Sign conventions for the curvature tensors are equivalent to those

found in Wald [26].

In the (t, r, θ, φ) coordinate basis, the nonzero Christoffel symbols are Γtrt =

Γttr = −Γrrr = f ′

2f and Γrtt = f ′f
2 and Γrθθ = (sin θ)−2 Γrφφ = −rf and Γθrθ = Γθθr =
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Γφrφ = Γφφr = 1
r
and Γθφφ = − sin θ cos θ and Γφθφ = Γφφθ = cot θ.

The Riemann tensor has the symmetries Rabcd = −Rabdc = −Rbacd = Rbadc and

Rabcd = Rcdab and Rabcd+Racdb+Radbc = 0 [12]. Using the symmetries, all nonzero

components of Rabcd are generated in the coordinate basis by Rtrtr = f ′′

2 and

RtΩtΩ = rff ′

2 and RrΩrΩ = − rf ′

2f and Rθφθφ = r2 sin2 θ (1−f), where Raθbθ = RaΩbΩ

and Raφbφ = (sin2 θ)(RaΩbΩ).

The Weyl tensor has the same symmetries as the Riemann tensor above. Using

the symmetries, all nonzero components of Cabcd are generated in the coordinate

basis by Ctrtr = − η
r2 and CtΩtΩ = ηf

2 and CrΩrΩ = − η
2f and Cθφθφ = η r2 sin2 θ,

where Caθbθ = CaΩbΩ and Caφbφ = (sin2 θ)(CaΩbΩ).

For calculations involving null curves and surfaces, it is often useful to also

know the covariant derivative in null coordinate systems.

In double null coordinates with metric ds2 = −f(r) dudv + r2 dΩ2, the rele-

vant Christoffel symbols can be evaluated by the chain rule on r and f(r). The

nonzero components are Γuuu = −Γvvv = −f ′

2 and Γuθθ = −Γvθθ = (sin θ)−2 Γuφφ =

−(sin θ)−2 Γvφφ = r and Γθuθ = Γθθu = Γφuφ = Γφφu = − f
2r and Γθvθ = Γθθv = Γφvφ =

Γφφv = f
2r and Γθφφ = − sin θ cos θ and Γφθφ = Γφφθ = cot θ.

Meanwhile, in the EF coordinate basis (with metric (2.3)), the nonzero Chris-

toffel symbols are, by direct computation, Γrrw = Γrwr = −Γwww = f ′

2ε and Γwθθ =

(sin θ)−2 Γwφφ = r
ε
and Γrww = f ′f

2 and Γrθθ = (sin θ)−2 Γrφφ = −rf and Γθrθ = Γθθr =

Γφrφ = Γφφr = 1
r
and Γθφφ = − sin θ cos θ and Γφθφ = Γφφθ = cot θ.
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Matter content, curvature scalars, and energy conditions

The Einstein tensor in the orthonormal basis êa (defined above) is given by

Ga
b = 8π



−ρ 0 0 0

0 p1 0 0

0 0 p2 0

0 0 0 p3


= 8π



−ρ 0 0 0

0 −ρ 0 0

0 0 pΩ 0

0 0 0 pΩ


, (2.62)

where

ρ = µ/4πr2 pΩ = −µ′/8πr . (2.63)

Thus, µ = m′(r) may always be interpreted as proportional to the mass of a thin

shell at radius r. When µ is constant, density diffuses naturally as 1/r2, and there

is no transverse pressure.

The curvature scalars are

K0 ≡ R = 16π (ρ− pΩ) (2.64)

K1 ≡ RabR
ab = 128π2 (ρ2 + p2

Ω) (2.65)

K2 ≡ CabcdC
abcd = 12 η2/r4 (2.66)

K3 ≡ RabcdR
abcd = K2 + 2K1 − (1/3)K2

0 . (2.67)

The basis êa diagonalizes Ga
b, with one timelike and three spacelike eigenvec-

tors. The corresponding eigenvalues are the negative of the density −ρ (timelike)

and the principal pressures pi (spacelike). It is well known that in this case, the

classical energy conditions take on simple forms [10]. In particular, the null energy

condition amounts to ρ + pi ≥ 0. For us, ρ + p1 = 0 always, and the remaining
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NEC constraint is equivalent to 2µ ≥ rµ′. The weak energy condition amounts to

the NEC plus the constraint ρ ≥ 0, which for us becomes µ ≥ 0. The flux energy

condition of [34] amounts to ρ2− p2
i ≥ 0 in the diagonalized case. Again, the SSS

case trivially saturates ρ2 − p2
1 = 0, and the remaining constraint is equivalent to

4µ2 ≥ r2µ′ 2.

Trapped surfaces

A closed spacelike surface S is called future trapped (past trapped) if its mean

curvature vector Ha ≡ − θ+ (k−)a − θ− (k+)a is everywhere future-directed time-

like (past-directed timelike) on S [19]. In this expression, the k± are future-

directed null vectors, each orthogonal to S, normalized by (k+)a(k−)a = −1. The

θ± are the corresponding future null expansions; they can be defined by

θ± ≡ − γAB(k±)µ eνA∇ν e
µ
B,

where eµA is a basis on the tangent space TpS of S, and γAB is the inverse of the

induced spatial metric on S.

In an SSS spacetime, the sphere (t, r, θ, φ) = (t0, r0, θ, φ), contained within a

block Ij, is a closed trapped surface if and only if f(r0) < 0. This is proved by

direct calculation of the mean curvature vector of the sphere at SSS block points.

It is simplest to work in double-null block coordinates (u, v, θ, φ), in terms of

which the metric is (2.7). Since S is a surface of constant coordinates, its tangent

space is spanned by the coordinate basis eµθ = δµθ and eµφ = δµφ , and the induced

metric γAB has line element ds2 = r2
0 dθ2 + r2

0 sin2 θ dφ2. A pair of mutually

normalized null vectors orthogonal to S is given by (k+)µ = (|f |/2)−1/2 δµv and

(k−)µ = sgn(f) (|f |/2)−1/2 δµu . With this setup, the expansions simplify to θ± =
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−(k±)µ
(
γθθeνθ∇νe

µ
θ + γφφeνφ∇νe

µ
φ

)
= −(k±)µ

(
γθθ Γµθθ + γφφ Γµφφ

)
. Thus we obtain

θ+ = sgn(f)
√

2|f |/r2
0 and θ− = −

√
2|f |/r2

0. The mean curvature Ha is timelike if

and only if sgn(θ+) = sgn(θ−) 6= 0, which implies that S is trapped if and only if

f(r0) < 0. Additionally, it is always true that θ− ≤ 0. Thus when S is trapped,

S is future-trapped (past-trapped) if and only if k± as defined above are both

future-directed (past-directed). This completes the proof of the desired result.

Cartesian coordinates near the origin

In a neighborhood of r = 0 (contained in I0), one can naively make the trans-

formation from (t, r, θ, φ) into the cartesian coordinates (t, ~x), according to the

standard spherical coordinate transformation, such that r2 = ~x · ~x. The metric

becomes

ds2 = −f(r) dt2 + d~x 2 +
(

2m(r)
r3 f(r)

)
(~x · d~x)2 (2.68)

which can be used to study the limit as r → 0, as seen below.

Singularity

The metric may be either singular or nonsingular at the origin. If m(r) has a

Laurent series expansion about r = 0 then the following are equivalent:

1. M is called nonsingular at the origin;

2. m(r) = ∑∞
k=0 ck r

k+3 as r → 0;

3. f(r) = 1 +O(r2) as r → 0;

4. Curvature scalars K0, K1, K2, K3 all finite at origin;

5. Cartesian metric has a finite limit as r → 0;
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6. M contains the r = 0 axis as a set of points, and is geodesically complete

there

(i.e. all geodesics terminating there can be extended);

Proof. By definition (i) ↔ (ii), and trivially (ii) ↔ (iii). Direct calculation shows

(ii) ↔ (iv) and (ii) ↔ (v). Then (v) → (vi) and (vi) → (iv) by existence of normal

neighborhoods [35], assuming sufficient differentiability.

Evidently if an SSS spacetime is nonsingular at the origin, then f(0) = 1, the

axis r = 0 is a timelike curve, and to quadratic order the dominant behavior as

r → 0 is either flat, de Sitter, or Anti de Sitter.
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Chapter 3

Understanding black hole

evaporation using explicitly

computed Penrose diagrams

This chapter is based on the article “Understanding black hole evaporation us-

ing explicitly computed Penrose diagrams” by Joseph Schindler, Anthony Aguirre,

and Amita Kuttner [2].

Abstract

Rigorously computed Penrose diagrams are plotted for a semiclassical model

of black hole formation and evaporation, in which black holes form by the accre-

tion of infalling spherical shells of matter and subsequently evaporate by emitting

spherical shells of Hawking radiation. The method allows arbitrary interior solu-

tions of the form ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2, including singular and

nonsingular models. Matter dynamics are visualized by explicitly plotting proper
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densities and pressures in the diagrams, as well as by tracking the location of

trapped surfaces and energy condition violations. The most illustrative model

accurately approximates the standard time evolution for black hole thermal evap-

oration; its time dependence and causal structure are analyzed by inspection of the

rigorous diagram. The resulting insights contradict some common intuitions and

assumptions, and we point out some examples in the literature with assumptions

that do not hold up in our more detailed model. Based on the new diagrams, we

argue for an improved understanding of the Hawking radiation process, propose

an improved definition of “black hole” in the presence of evaporation, and suggest

some implications regarding information preservation and unitarity.

3.1 Introduction

The discovery that black holes (BHs) theoretically evaporate [5, 36, 37, 38] in

apparently thermal radiation has raised a number of fundamental questions over

the years, chief among them the issue of how to reconcile such evaporation with

unitary evolution that preserves information, and how to reconcile descriptions of

a BH by an infalling observer with those of an exterior observer.

We contend that a full understanding of these issues can greatly benefit from

a more detailed understanding of the spacetime structure of an evaporating black

hole. Accordingly, in this work we provide a well-defined class of spacetimes rep-

resenting a semiclassical model of BH formation and evaporation, and construct

explicitly computed Penrose diagrams for these models using the formalism re-

cently developed in [1].

Our model corresponds to spherical BHs which form by accreting infalling

spherical null shells of matter, and evaporate by emitting spherical null shells of
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Hawking radiation from near the horizon (notably, the emission location is fixed

by energy conservation considerations). Interior metrics including both singular

and nonsingular centers are within the scope of our methods. In the most de-

tailed version of the model, continuous time evolution for both the accretion and

evaporation processes is approximated by the use of many shells.

The basic structure of the model is motivated by its similarity to renormalized

stress tensors usually associated with the evaporation process [39]. It is quite

similar in spirit to the models first presented by Hiscock [40, 41] and Hayward [42],

and our more sophisticated diagrams may be roughly thought of as numerically

calculated versions of the diagram that Hayward originally sketched (although his

and our models do differ slightly). By plotting Penrose diagrams for this model

in a way that accurately represents both the global and local causal structure of

the exact four-dimensional geometry, we are able to attain a more detailed view

of the structure of an evaporating BH metric than was previously possible.

Many aspects of the “true” spacetime for an evaporating BH remain unknown.

There are many proposals for the BH end state [43, 44, 45], and questions have

been raised about in what regimes evaporation dominates the dynamics [46], and

about the general applicability of classical spacetimes in describing quantum ef-

fects. Nonetheless, BH evaporation appears to be a phenomenon which probably

can occur, and for now seems likely to dominate if the environment is sufficiently

cold. If so, one expects evaporation from astrophysical masses down to near the

Planck scale, at which point semiclassical arguments fail and many alternatives

seem plausible.

But while the physical relevance of BH evaporation may be up for debate, its

importance in the literature certainly is not — its study has spawned some famous

questions [37, 47, 48], and reasoning about these questions almost invariably draws
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on assumptions about classical spacetime diagrams.

Our intention here is to investigate a simple, concrete model, which hopefully

captures most generic aspects of an evaporating BH spacetime, and for which

explicit Penrose diagrams can be attained. At least away from the singularity (or

away from the nonsingular Planck-density core), our spacetimes should provide

a reasonably advanced model of epochs where the dynamics is dominated by

accretion or thermal evaporation.

We use the new diagrams to address, within the context of our model, some

persistent questions about BH spacetimes:

• Can a BH form in a finite time as viewed by a distant observer? (Answer:

Yes.)

• Of the many types of horizon associated with BH spacetimes (event, ap-

parent, trapping, Killing, etc.), which has physical meaning in terms of the

BH boundary? (Answer: The invariant apparent horizon defined by [49],

which is the boundary of a distinguished subset of the trapped region of space-

time, and which here basically coincides with r = 2m with a time-dependent

mass.1)

• What is the causal structure of the apparent horizon? (Answer: The (outer)

apparent horizon is timelike during evaporation, and spacelike during accre-

tion.)

• Within the context of a purely classical model, does it make sense to think

of Hawking radiation as being emitted from a certain location? And if so,
1We call this just the “apparent”, or in certain contexts “trapping”, horizon, although its

definition is slightly different than the traditional apparent or trapping horizons (see later sec-
tions and appendix). Its intersection with spatial hypersurfaces is an apparent horizon in the
traditional sense, and it acts as the boundary of the physically important part of the trapped
region, so the terminology is sufficiently unambiguous.
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where? (Answer: Yes, from just outside the apparent horizon, which during

evaporation is a timelike surface.)

• In evaporating nonsingular (“regular”) BH models, in terms of causal struc-

ture: Where exactly are the regions of high density and pressure, where

are energy conditions violated, and where are the inner and outer horizons

relative to the core? (Answer: See diagrams.)

• Is it possible to escape the trapped region if the BH is evaporating? (Answer:

Yes, but it requires very good timing. Falling too far past the apparent hori-

zon ensures your destruction in the singularity or (in nonsingular models)

core.)

At least within our model, these questions (as well as others we consider) have

clear, unambiguous answers.

We also apply these diagrams to the analysis of some broader questions: What

is the proper definition of a BH? What is the correct interpretation of the Hawking

radiation mechanism? Can self-consistent models of BH evaporation be achieved

within semiclassical gravity? Is information preserved during BH evolution? The

discussion of these and other questions is taken up in the later sections of the

paper.

The traditional spacetime diagram for an evaporating BH is depicted in Fig. 3.1.

It is essentially the outline of a Schwarzschild BH (formed by collapse) attached

to Minkowski space in an unspecified way. There are a few reasons to be wary of

this diagram, and to think it may benefit from a more formal treatment.

First, the traditional diagram is ambiguous about what spacetime it is meant

to represent — it does not correspond to any particular model of BH evolution.

The mechanism of evaporation is left unspecified, and the nature of point B (where
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Figure 3.1: (Color online). Conventional Penrose diagram of an evaporating
black hole. The hole forms via the infall of null dust (red arrow) and forms an
event horizon (black dotted). At some point the black hole evaporates, leaving
Minkowski space. Such a diagram usually does not represent any spacetime —
the mechanism of evaporation is left ambiguous, and the nature of point B is
totally unclear. In the obvious classical-spacetime interpretations of this diagram,
however, point B must be considered a naked singularity that creates a Cauchy
horizon H (red dotted), raising questions about the applicability of this diagram
for analyzing potentially unitary BH evaporation. Below, we attempt to eliminate
these ambiguities by constructing Penrose diagrams for well-defined spacetime
models of BH evolution.
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all physics of the evaporation process is hidden) is totally unclear. Since a sketch

like this inherently captures no more information than the assumptions put into

creating it, it is difficult to learn anything from such a diagram.

Second, any reasonable translation of the traditional diagram to a classical

spacetime has a naked singularity and corresponding Cauchy horizon; this can

be shown both in simple examples and on general grounds.2 This appears to

have been noticed at least by Hawking [36] and Birrell and Davies [51] from the

beginning, but is forgotten in most modern discussions. In particular, many dis-

cussions of the information preservation problem (see for instance [47] for a highly

referenced example) make essential use of supposed Cauchy surfaces within this

diagram, including surfaces on both sides of the evaporation event. But if the

spacetime underlying the diagram has a naked singularity and is not globally

hyperbolic, no such Cauchy surfaces can be assumed to exist. Because of this hid-

den assumption of unpredictability, the usefulness of such a diagram in analyzing

possibly unitary BH evaporation must be called into question.

Recognizing these shortcomings, and that evaporation may profoundly change

the character of the BH spacetime diagram, a number of studies have suggested

improved diagrams that more easily allow an interpretation in which information

is preserved [42, 52, 53, 54, 55, 56, 57, 58, 44, 43, 59]. These form a useful

background for investigating BH evaporation and related issues, and we build

most directly on the work of Hayward [42], who has provided the most minimal

and generic model.
2In the simplest rigorous interpretation of the standard diagram, where the BH is annihilated

by an incoming spherical null shell (for example as in Fig. 3.2a), a point must be excised
from the final Minkowski space for gluing to be topologically allowed near B, which creates a
Cauchy horizon. The general argument relies on theorems of Geroch [50] — since the domain
of dependence of a surface is globally hyperbolic, the assumption that the region beyond H
is determined by S1 contradicts continuity of the past and future volumes within a globally
hyperbolic space.
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By extending this type of model to a form in which explicit Penrose diagrams

can be attained, we explore the structure of these improved models while resolving

the ambiguity and hidden assumptions inherent to hand drawn diagrams. The

new diagrams (Figs. 3.4–3.7) are simultaneously both Penrose diagrams and ex-

act coordinate diagrams, allowing a detailed picture of the exact geometry. A

discussion of the diagram formalism, and an explanation of some key aspects of

interpreting the new diagrams, is provided in Section IV.

3.2 Shell model of black hole formation and evap-

oration

We model the process of black hole formation and evaporation according to

the following assumptions:

(i) The black hole is non-rotating and spherically symmetric.

(ii) The process is quasistatic, allowing dynamical evolution to be modeled by

a sequence of equilibrium BH solutions joined across null shells of matter

(such null shells may represent either truly light-like radiation, or highly

accelerated timelike matter).

(iii) The equilibrium black hole solutions locally have the form ds2 = −f(r) dt2 +

f(r)−1 dr2 + r2 dΩ2.

(iv) Stellar collapse and mass accretion is modeled by a sequence of ingoing

spherical null matter shells, incident from infinity.

(v) Hawking radiation is modeled by pairs of spherical null matter shells. Each

pair consists of an outgoing positive-mass shell and ingoing negative-mass
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shell. Each pair nucleates at a fixed radial distance lev outside the apparent

horizon, with both shells propagating toward the future. Nucleation points

violate the DTR relation (an equation related to energy conservation, see

appendix), but the amount of violation is arbitrarily small in the lev → 0

limit. If lev ≈ lpl, tiny DTR violations may be considered small quantum

fluctuations. In this sense, in our semiclassical model, energy conservation

forces Hawking radiation to be emitted from just outside the horizon.

This model is a slightly generalized discrete approximation to that proposed orig-

inally by Hayward [42], and the evaporation mechanism agrees, heuristically, with

the classic calculation by Davies, Fulling, and Unruh of the stress tensor for a

quantum scalar field in the presence of a static BH [39]. We construct spacetimes

applying this model, and their corresponding Penrose diagrams, by the methods

of [1]. It is assumed that physically realistic models are achieved by first taking

the limit lev → lpl at each shell of Hawking radiation, then taking the continuous

(many-shell) limit.

The simplest example of this approach, in which formation and evaporation

each occur in a single burst, is depicted schematically in Fig. 3.2 for both singular

and nonsingular interior cases; the exact diagrams will be given later. More

realistic models are obtained by using an arbitrarily large number of shells and

piecewise regions to approximate the desired smooth dynamics.
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Figure 3.2: (Color online). Schematic illustration of Penrose diagrams for the
shell model in simple cases. (a) The simplest singular case: a Schwarzschild black
hole forms by collapse of a spherical null shell, and evaporates by emitting a single
burst of Hawking radiation, which nucleates at a radius rev = rhor+lev just outside
the apparent horizon at rhor = 2m. (b) The simplest nonsingular case: a Hayward
black hole (see below) forms and evaporates in the same way.

3.3 Matter Content of Shell Models with Schw-

arzschild or Hayward Interior

A benefit of explicit diagrams is that matter dynamics during the formation

and evaporation processes can be quantitatively tracked. We are concerned with

four quantities:

(i) The proper density and pressures of the bulk (equilibrium) spacetime, de-

fined (up to a sign) as eigenvalues of Gµ
ν/(8π). For metrics of form (3.1)

these include a density ρ, a transverse pressure pt = −ρ, and an angular pres-

sure pΩ. Also useful is the mass functionm(r) defined by f(r) = 1−2m(r)/r.

(ii) The location of trapped surfaces in the bulk spacetime, as characterized by

the trapped spheres region (see appendix). Trapped spheres occur where
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f(r) < 0 in the metric (3.1), and the trapped spheres region is bounded by

trapping/apparent horizons where f(r) = 0 (see appendix).

(iii) The location and magnitude of energy condition (EC) violations in both

the bulk spacetime and on the null shells, quantified by the EC violation

functions χnec, χwec, and χfec (see appendix).

(iv) The local surface density σ of null shells, which is proportional to the mass

jump [m(r)] across the shell (see appendix). The proportionality is positive

(negative) for a shell which is radially ingoing (outgoing) towards the future.

A detailed general analysis of the matter content for models of the present type

is given in the appendix.

Our setup allows for a variety of models of the black hole interior; any metric

of the “strongly spherically symmetric” form

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2 (3.1)

is allowed. Metrics of this type can be either singular or nonsingular at r = 0 (for

definition and properties see appendix). Nonsingular models have the advantage

that all matter is made explicit in the stress tensor, whereas singular solutions

contain a matter contribution hidden in the singularity. Although classical the-

orems do predict singularity formation in gravitational collapse [60], nonsingular

solutions are thought to arise in effective semiclassical approximations if quantum

gravitational effects regulate curvature at the Planck scale. Nonsingular solutions

often violate classical energy conditions, but since quantum field theories are well

known to do the same, this is not a major defect [61].
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Figure 3.3: (Color online). Matter content of the Hayward spacetime. Den-
sity and pressure are maximized at r = 0, with maximum density ρ0 = 3

8πl2 =
m/

(
4
3πr

3
core

)
. The FEC violation function χfec (see appendix) shows non-

negligible violations occur near the core surface; NEC and WEC are violated
at negative-mass shells in the dynamic model, but not here in the bulk. The plot
shows a small BH, but is mostly parameter-independent: increasing m pushes
the horizons at r− ≈ l (dashed) left and at r+ ≈ 2m (off scale) right, with no
other effects. Spheres are trapped surfaces for all r− < r < r+, which we call the
trapped spheres region.

A number of common metrics are of the form (3.1), including

Minkowski f(r) = 1,

de Sitter f(r) = 1− r2/L2,

Anti de Sitter f(r) = 1 + r2/L2,

Schwarzschild f(r) = 1− 2m/r,

Reissner-Nordstrom f(r) = 1− 2m/r +Q2/r2,

Hayward f(r) = 1− 2mr2/(r3 + 2ml2),

among others. We limit for now our consideration to two simple cases: Schwarz-

schild (singular) and Hayward (nonsingular) interiors.

We take the Schwarzschild metric to model BHs containing a singularity. As

is well known, the matter content is trivial: the spacetime contains a vacuum

everywhere outside the singularity at r = 0. Trapped spheres occur in the interval
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0 < r < 2m, with a horizon located at r = 2m. For two Schwarzschild solutions of

mass parameter m± = m±∆m/2 joined at a null shell, the mass jump [m(r)] =

∆m is a constant, and ingoing (outgoing) positive-mass shells increase (decrease)

mass toward the future. There are no EC violations.

Black holes with nonsingular interior we model by the Hayward metric, with

f(r) = 1− 2mr2

r3 + 2ml2 . (3.2)

Density, pressures, and energy condition violations associated with this metric are

shown in Fig. 3.3.

This metric has parameters l and m; l determines the proper density measured

at the core and defines the length scale on which curvature is regulated by quan-

tum gravitational effects, while m determines the black hole mass measured by

a distant observer. In our models, l is held fixed at a small value, while only m

varies across shells. Physically, one assumes that l ≈ lpl, and that 2m� l except

in the final moments of evaporation.

When 2m� l, a radial slice of Hayward spacetime is split into three intervals

by horizons at
r− ≈ l (inner horizon),

r+ ≈ 2m (outer horizon),

with trapped spheres occuring in the interval

r− < r < r+ (trapped spheres region).

The matter distribution describes an extremely dense (Planck scale density)
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core of length scale

rcore = (2ml2)1/3, (3.3)

which (except in the final moments of evaporation) obeys l � rcore � 2m. It is

thus useful to think of the following regions:

r � rcore, Quantum Gravity Core,

r ≈ rcore, Core Surface,

r � rcore, Nearly Schwarzschild Vacuum.

The core contains a homogeneous distribution of extreme density and pressure

(Ricci curvature ∼ l−2), with metric closely approximating de Sitter. Far away

from the core, the metric closely approximates the traditional Schwarzschild vac-

uum (Ricci curvature vanishes like (r/rcore)−6). The core surface is characterized

by a rapid change in density and pressure accompanied by EC violations. It is sat-

isfying that the core extends outside the inner trapping horizon: despite the lack

of a singularity, trapped matter is doomed to quantum gravity decomposition.

When Hayward regions of mass parameter m± = m±∆m/2 are joined across

a null shell junction, the resulting mass jump is

[m(r)] = ∆m

(
r3

2|∆m|l2
)2

(
r3

2|∆m|l2 + m
|∆m|

)2
− 1

, (3.4)

which develops monotonically from zero at r = 0 to ∆m at r →∞ for small

∆m/m. Far from r = 0, this closely approximates the Schwarzschild case, with a

constant mass jump ∆m. Near r = 0, the shell mass gradually approaches zero

over lengths of order (2|∆m|l2)1/3, as the shell is absorbed into (or generated by)

the quantum gravity region.
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It is often convenient to describe spacetimes of the form (3.1) in double-null

Eddington-Finklestein coordinates (u, v) defined by

du = dt− f(r)−1 dr,

dv = dt+ f(r)−1 dr.
(3.5)

An integration constant in each coordinate acts as an unphysical overall time

translation. For asymptotically flat cases, the coordinate v runs along past null

infinity (at constant u = −∞), while u runs along future null infinity (at constant

v =∞).

How generic is the Hayward metric for describing nonsingular BHs? If we

restrict to the form (3.1), very generic: assuming the topology of a stellar-collapse

BH, so that r → 0 is included in the spacetime, the asymptotic behaviors as

r → 0 and r →∞ are fixed by physical considerations (nonsingularity, monotonic

density, approximately Schwarzschild), so the only freedom in f(r) involves the

transition to vacuum at the core surface. Since details of the mass profile at the

core surface have no important effect on causal structure (no additional horizons

are introduced without a drastic change), the exact form of f(r) is not important.

On the other hand, there does exists a freedom to generalize (3.1) by including a

redshift factor α(r) such that

ds2 = −α(r)2f(r) dt2 + f(r)−1 dr2 + r2 dΩ2, (3.6)

while maintaining the same qualitative picture. Including this redshift factor

leaves the proper density unchanged, but alters the curvature scalars and proper

pressures, in addition to modifying proper times measured by fixed-radius ob-

servers. The possibility of including a redshift factor seems physically admissible
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(so long as care is taken to make sure it introduces no undesirable effects), and

is worth further consideration; one interesting application of this approach was

given recently in [62]. While we do not include the metric (3.6) in our full analysis

(it is outside the scope of our algorithm for generating Penrose diagrams), we do

not expect the omission to have a major effect on the resulting diagrams, since

the redshift factor does not significantly alter the causal structure.

In what follows, the matter content that has been described throughout this

section will be plotted in spacetime diagrams to visualize the flow of matter during

BH formation and evaporation.

3.4 Diagram formalism

The new diagrams presented here (Figs. 3.4–3.7), which are constructed using

the methods developed in [1], may look somewhat strange to those used to only

outlines and sketches. A few comments are in order.

The diagrams are obtained by directly finding a global, compact, double-null

coordinate system for the spacetime — in this sense they are not just Penrose

diagrams, but also exact spacetime coordinate diagrams.3 This allows all aspects

of the exact four-dimensional geometry to be captured in the diagram, including

both the global and local (interior) causal structure. No conformal information is
3The usefulness of the direct coordinate approach to causal diagrams was always made clear

by Carter [63, 64] and others (e.g. [65]), but is not always made explicit in modern treat-
ments, which sometimes put more emphasis on conformal mappings following Penrose’s original
method [66, 67]. But the conformal transformation aspect of Penrose diagrams is actually
slightly misleading in four dimensions, since it is common to construct diagrams for spacetimes
which are neither conformally flat nor conformally related to anything interesting (see [68]). It
is only the two-dimensional diagram plane (normal to the symmetry directions) which is neces-
sarily conformally flat. The coordinate diagram approach is more in the spirit of Carter than
Penrose, and it would be justified to alternately call these Penrose-Carter diagrams, but that
name is longer and less traditional. For more details about the theory of these diagrams, see [1].
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thrown away. Each point in the diagram represents a spherical symmetry surface,

and, because of the symmetry, it makes sense to discuss the exact Riemann cur-

vature (as well as anything derived from it, like proper densities and pressures)

and exact geometry at any point of the diagram. We make use of this to precisely

plot the matter content, trapped surfaces, and other features within the diagram.

That these coordinate diagrams simultaneously act as Penrose diagrams, correctly

portraying the causal structure in the usual way, is ensured within our formal-

ism [1].

Given any spacetime, there exists the freedom to deform it by arbitrary con-

formal transformations without disrupting the causal structure. Consequently,

there is sometimes assumed to be a corresponding freedom to conformally dis-

tort Penrose diagrams. But while it is true that conformal deformations preserve

causal structure of the diagram, such deformations do not preserve the geometry

of the spacetime which is supposed to be represented. Since we are interested

in exactly representing the full spacetime geometry (and not merely conformally

related spacetimes), arbitrary conformal distortions to the diagram cannot be

allowed.

Despite this restriction, there remains a large amount of freedom to distort

the diagram by change of coordinates. In particular, any change of coordinates

which acts conformally on the metric4 yields another valid diagram. In practice,

this freedom amounts to separately deforming the U and V coordinates (which

are some null coordinates defining the diagram) by any monotonic functions.

While the freedom to deform Penrose diagrams is well known, it is not widely

recognized just how different a set of valid deformations can make a diagram ap-
4That is, when restricted to the two-dimensional diagram plane (see footnote 3) it alters the

metric only by an explicit conformal factor. This preserves the causal structure of the coordinate
system [1].

108



pear. We will see in Fig. 3.5 that three causally equivalent diagrams paint what,

at first glance, appear to be three very different pictures of the same spacetime.

The key point in reconciling the apparent difference is that in any single diagram,

some features are squished beyond recognition. This is unavoidable, since evapo-

rating BH spacetimes contain a number of length/time scales (Planck scale, hori-

zon scale, formation timescale, evaporation timescale, and in nonsingular models:

core scale) which can be drastically different.

For instance, in any model where the BH has a macroscopic mass, the Planck

scale, horizon scale, and evaporation timescale (and in nonsingular models, the

core size) are all extremely different. Any individual diagram will only clearly

represent one of these scales at a time (the rest being squished into points lines and

edges). Gaining a clear understanding of the complete causal structure therefore

requires the use of multiple diagrams. By carefully inspecting and comparing a

few, the full story can be pieced together.

While allowing more general (non-coordinate) conformal transformations in

the diagram plane would, in a strictly pointwise-causal-structure sense, allow more

scales to be depicted simultaneously by ignoring distance information, it would

also (as discussed above) destroy the exact representation of the four-dimensional

geometry which is essential to our analysis. This implies a lesson about sketching

diagrams: If one wishes to accurately depict details of the internal structure,

the class of allowed diagram deformations may be more restricted than naively

assumed.

For more details on how these diagrams are constructed, a more general formal-

ism for the analysis of Penrose diagrams (including, for example, a strict definition

of what a Penrose diagram is), and further discussion of the relation between Pen-
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rose diagrams and conformal transformations, consult [1]5.

3.5 Diagrams for simple models

Explicitly computed diagrams are shown in Fig. 3.4 for the simple models

depicted schematically in Fig. 3.2. The parameters were chosen to emphasize

certain qualitative aspects, but are not particularly realistic (see Fig. 3.5 for an

improved model). The simple models capture most qualitative features of the

more detailed diagrams, and several features in particular are worth noting.

Immediately apparent is the similar location of the Schwarzschild singularity

and the Hayward core surface (this coincidence is generic, see [1]); the two sur-

faces almost exactly coincide. The intersection of the singularity with timelike

r = 0 corresponds to the point B in Fig. 3.1, about which questions were raised

in the introduction. From a technical perspective, this point creates a Cauchy

horizon in Fig. 3.4a since topological matching conditions require that B be ex-

cised from the final Minkowski space. It is probably more physical, however, to

examine the nature of point B by looking at the corresponding point in Fig. 3.4b.

Clearly, a surface like S2 of Fig. 3.1, terminating at the point corresponding to

B, is not a Cauchy surface in the regularized spacetime. At least to the extent

that the singularity cuts off an unknown semiclassical spacetime, this shows on

physical grounds that B should be considered a naked singularity. This picture

is likely generic to nonsingular extensions of the Schwarzschild solution, as the

causal structure of the core does not depend on details of the metric. While the

spacetime of Fig. 3.4b is globally hyperbolic, the above analysis has an important
5The methods of [1] have been implemented in a software module xhorizon for Python,

which is under development by the authors and available under a free open source license at
https://github.com/jcschindler01/xhorizon.
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Figure 3.4: (Color online). Penrose diagrams for (a) singular and (b) nonsin-
gular black holes which form by accreting a single shell of infalling matter and
evaporate by emitting a single blast of Hawking radiation (see Fig. 3.2 for an
illustrative schematic). Parameters are chosen to illustrate qualitative features,
but the time evolution and relative length scales are not realistic (see Fig. 3.5
for improved model). Positive-mass (accretion and outgoing Hawking radiation,
gray dashed) and negative-mass (ingoing Hawking radiation, gray dotted) shells
separate the spacetime into piecewise regions, with Hawking radiation nucleat-
ing at a tiny radial distance lev outside the horizon of the region to its past. In
diagrams with many shells, shell masses are indicated by grayscale darkness (dark-
ness proportional to 1 + 2 ∆m/M). The curvature cutoff length scale l (which has
physical significance only in Hayward regions) is held fixed across all regions, while
the mass parameter m (which in every region determines the gravitational mass
measured by a distant observer) varies. [Caption continued on next page...]
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Figure 3.4: [...Caption continued from previous page.] The total mass M is the
maximum value of m in any region, and locally m is visualized by the linewidth
of the conformal boundary at r = ∞ in each region (linewidth proportional to
1 + 2m/M). Tick marks (gray) along r =∞ mark off equal increments of proper
time for an infinitely distant observer at constant radius (i.e. constant increments
of du and dv along null infinity). The trapped spheres region (black dot-hatch fill),
bounded by horizons (black) where f(r) = 0, contains closed trapped spheres.
Background coloring is determined by the local proper density ρ (orange color
scale) scaled by the maximum density ρ0 = 3/(8πl2). The Hayward core is clearly
visible as a dark orange region in the density plot, and the core surface almost
exactly corresponds to the singularity location in the Schwarzschild case. Notably,
distant observers near future null infinity begin to observe Hawking radiation
at the same moment they see the infalling accretion shell fall through its own
horizon. Lines of constant radius are shown at small (dr = l/2, teal) and large
(dr = 2M/2, magenta) length scales; even where they appear bundled or strongly
kinked, they do in fact remain continuous. One strange-looking feature of this
diagram is the appearance of a set of wiggly kinks and a few stray tick marks to
the future (measured along future infinity) of the final evaporation shell, before
the very stretched out area; this is an artifact of the unrealistic parameters, and
in more realistic models these kinks and tick marks all coincide with the final
shell. Coordinates V and U defining the axes are basically arbitrary null global
coordinates, defined further in [1]. The same visualization scheme described here
is used in all examples below.
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consequence: the spacetime of Fig. 3.4a is not.

A natural question to ask about an evaporating BH is whether it’s possible

to escape after falling through the apparent horizon. Formally, do there exist

timelike curves intersecting the trapped region but avoiding the core or singularity?

According to our shell model, the answer is yes, as is evident from Fig. 3.4. Indeed,

as seen even more clearly in Fig. 3.5, during evaporation the apparent horizon

forms a timelike surface of decreasing radius, despite being locally null within each

piecewise region. For an observer who barely crosses the horizon, it’s possible to

wait for the horizon to “evaporate past,” allowing an escape. Nonetheless, all

timelike observers in the trapped region are radially infalling, and will eventually

be doomed to destruction in the core if the black hole is long-lived relative to their

ability to accelerate.

Tick marks along null infinity in Fig. 3.4 represent constant intervals du =

const and dv = const along future and past null infinity respectively. Aside from

specifying equal increments of proper time for distant observers, these ticks are

useful for analyzing particle creation by the spacetime in quantum field theoretic

computations. In the standard analysis, in and out vacuum modes are associated

with the u and v coordinates, and the thermal Hawking flux is associated with

an infinite phase buildup found by comparing dv increments to traced-back du

increments at past null infinity [36]. Noting that the tick marks have an additive

opacity (so that darker marks actually show many superimposed ticks), it’s clear

that some approximation to the usual phase buildup effect is present in both

Fig. 3.4 and the subsequent examples.

While the simple single-burst models capture many aspects of the more re-

alistic diagrams, they also differ in certain respects. Most importantly, realistic

models have four very different length scales, corresponding to lpl, rcore, M , and
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the BH lifetime τev (where l and lev are both on the lpl scale). As a consequence,

more realistic diagrams tend to have very sharply kinked features, and features can

be clearly portrayed only for one length scale at a time, with other features rele-

gated to lines, bundles, and corners. Another difference between Fig. 3.4 and more

advanced models is quite noticeable: as also described in the caption, the separa-

tion (measured along future infinity) between kinks in the lines r = const and the

final evaporation shell is an artifact of the unrealistic parameters of Fig. 3.4. In

Fig. 3.5 and other realistic models, all diagram features associated with the final

step of evaporation coincide with the final shell.

3.6 Diagrams for a nonsingular model with more

realistic time evolution

A more detailed model is attained by approximating continuous time evolution

with a large number of shells and piecewise regions. A diagram of this type,

constructed based on a Hayward interior of fixed curvature cutoff length scale l, is

presented in Fig. 3.5. Its parameters, justification, and implications are discussed

below. While we have chosen here to work with a nonsingular model, all the

diagrams can be translated to the Schwarzschild case by simply replacing the core

surface with a singularity and ignoring the interior region (see [1] for why this is

valid).

The desired time evolution is specified by a pair of mass functions mu(u)

and mv(v) describing the mass as a function time measured by distant observers

at future and past null infinity, respectively. The mass functions are mutually
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Figure 3.5: (Color online). Penrose diagrams for a nonsingular Hayward black
hole which forms gradually then evaporates by slowly emitting thermal radiation
with a standard time dependence (see (3.8-3.10)). The visualization scheme and
associated legend are the same as in Fig. 3.4. As discussed in Section IV, these
diagrams accurately capture both global and local (interior) structure, since they
are constructed by directly finding a compact global double-null coordinate sys-
tem for the spacetime. Although the three diagrams depicted in (a,b,c) appear
vastly different, they all are derived from exactly the same spacetime — they have
strictly the same causal structure, and are related by conformal transformations
in the UV plane. [Caption continued on next page...]
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Figure 3.5: [...Caption continued from previous page.] These “conformal” trans-
formations are induced by coordinate transformations, so no geometric informa-
tion is lost, see Section IV. While the conformal freedom in Penrose diagrams is
well known, it is not widely recognized how drastically different these transforma-
tions can make the spacetime appear, or that no single diagram will clearly depict
the various widely different timescales of BH evolution (formation, evaporation,
Planck scale) simultaneously. Inevitably, in any diagram, some features will be
squished beyond recognition; hence the need to compare multiple diagrams to gain
a full understanding of the spacetime. Here, different transformations are used
to highlight features (a) during accretion, (b) during evaporation, and (c) near
the end of evaporation. In comparing the causal structure between them, note
that some lines appearing null are only nearly null, and that some features are
hidden by being very squished. For example in (a), the entire evaporation pro-
cess (which includes important timelike features visible in (b,c)) is squished into
a tiny, seemingly null, line. Similarly, parts of the high density region (orange)
in (b), and all of the high density region in (c), are squished and hidden behind
the future part of the nearly null segment of r = 0. The important qualitative
features of these diagrams are summarized in Section VIII. Parameters were cho-
sen to be as realistic as numerically allowed, providing a strong hierarchy of the
formation, evaporation, and interior length/time scales (an overall scale factor is
irrelevant). Since the BH length scales are so small compared to the evaporation
rate, lines r = const at 2M (magenta) and smaller length scales are very close
together and each appear as a single bundle; an additional set of r = const lines
has been added with spacing dr = τev/20 (faint purple) to display larger scales.
Although some lines of constant radius may seem discontinuous, they are in fact
just strongly kinked; their continuity can be confirmed by gradually adjusting the
parameters from less extreme values. For example, faint purple lines approaching
the evaporating horizon in (a) do not disappear, but closely hug the horizon in a
bundle until reappearing in the far future region. The opacity of the tick mark
near the moment of evaporation in (a) shows that many tick marks have piled
up there; this is the phase pileup usually associated with Hawking radiation in
particle creation calculations. The same phase pileup can be observed in (b,c); in
all cases one expects interesting results wherever the dv ticks are very mismatched
with traced-back du ticks. Panels (d,e) confirm that the numerically generated
dynamics closely approximate the desired behavior.
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independent outside the requirement

mu(−∞) = mv(∞) = M, (3.7)

where M represents the total maximum mass of the BH.

The function mv(v) defines dynamics for the process of BH formation and

accretion. The correct form is determined by astrophysical processes, and is of

little interest to us here. As a rough estimate, we assume the BH accretes half its

total mass in an initial burst at v = 0, then accretes the remainder linearly until

a time v = τf when it is fully formed:

mv(v) =


0, v < 0,

M (1
2 + 1

2
v
τf

), 0 < v < τf ,

M, τf < v.

(3.8)

Inspection of the diagrams reveals that during accretion, the outer horizon where

f(r) = 0 is spacelike.

The function mu(u), meanwhile, defines the dynamics for BH evaporation. It

is chosen to respect the thermal evaporation rate

dm

du
∝ −m−2 (3.9)

arising from blackbody radiation calculations in a Schwarzschild spacetime [69].
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In particular, we choose

mu(u) =


M, u < 0,

M
(
1− u

τev

)1/3
, 0 < u < τev,

0, τev < u.

(3.10)

The location of u = 0 is set by the requirement that Hawking pairs nucleate just

outside the horizon; a distant observer sees evaporation begin at the same moment

they see the infalling shells fall through their own horizon. Once evaporation

begins, the horizon is timelike.

While more realistic than the single-shell case, this is still only a toy model,

meant to capture the commonly considered, highly idealized, case where an ini-

tially large spherical BH evaporates entirely by emitting blackbody radiation. The

true spacetime of an evaporating BH is expected to differ in many ways, including

corrections to the time dependence due to temperature-dependent emission effects

and due to deviations from the Schwarzschild metric, as well as more intractable

differences (like the necessity of including charge and rotation). Moreover, it seems

likely that once an evaporating BH approaches the Planck scale its dynamics may

be greatly modified. But in the absence of a widely accepted model for the BH

end state, continuing Schwarzschild blackbody evaporation until the BH’s disap-

pearance seems like a conservative option. In any case, regardless of these details,

this model should help attain an accurate qualitative picture of any BH emitting

roughly thermal Hawking radiation during part of its lifespan.

Choosing a sequence of shells approximating the ideal accretion dynamics is

trivial, but approximating the evaporation dynamics is slightly more involved. We

consider the shell approximation successful if bothmu(u) andmv(v) are reasonably
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well approximated, with all evaporation shells nucleating at a fixed radial distance

lev outside the apparent (outer) horizon r+ of the region to its past (a basic

assumption of our shell model). During evaporation, each shell nucleation point

is defined by its coordinates (u, v, r) and (u′, v′, r′) in the past and future regions

containing it. Any two of (u, v, r) determine the third, and the radii r = r′

measured on each side must be equal. Regions between evaporation shells are

characterized by their mass m and duration (du, dv) measured by observers at

future and past null infinity. A suitable sequence of shell parameters is specified

as follows. As a first estimate, we sample values at equal intervals of u ∈ (0, τev)

from the continuous dynamics

m(u) = M
(
1− u/τev

)1/3
,

r(u) = 2m(u) + lev,

v(u) = u+ 2FS
(
r(u),m(u)

)
,

where FS(r,m) = r + 2m ln
∣∣∣ r2m − 1

∣∣∣ is a tortoise function [1] for a mass m

Schwarzschild metric, yielding a sequence (mi, ui, vi) of mass parameters and shell

coordinates. The parameters thus obtained would be exact for a continuously

evolving Schwarzschild spacetime, but are not quite consistent with our discretized

(and possibly non-Schwarzchild) model; this is corrected by adjusting the ui values

to ensure that nucleation points lie exactly lev outside the outer apparent horizon.

This process determines the discrete dynamics up to an overall time translation.

One might expect that the small adjustment of ui always leads to a valid approx-

imation of the ideal dynamics, but in practice the method can break down if the

BH mass and lifetime are not mutually consistent.6 Whether the approximation
6Page has shown based on quantum and thermodynamic analysis that for an evaporating
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was successful can be checked empirically; Figs. 3.5d–3.5e demonstrate that the

desired continuous dynamics was correctly attained for the spacetime of Fig. 3.5.

Three different diagrams are needed to visualize different aspects of the space-

time in Fig. 3.5, due to the presence of vastly different timescales in the problem.

Each panel corresponds to a different (conformally related) coordinate transfor-

mation in the UV plane, depicting the process as “viewed” from one of three

different times. (The exact form of the coordinate transformations is determined

by which region is used as the “seed” for a chain of shell matching transforma-

tions.) Together, they paint an intuitive picture. Early observers see the BH

accrete mass, forming a BH with a long-lived nearly null horizon, behind which

lies the dense core (space between the horizon and core exists but is squished

away in this diagram). Intermediate-time observers looking far into the past see

the outer surface of accretion shells shrouded by a horizon, with sparse Hawking

radiation to their past and a final evaporation blast in their future. And late

time observers simply see Hawking radiation emitted from a timelike horizon.

The detail view of Fig. 3.6 emphasizes observers near the horizon at early times,

and shows clearly the horizon transitioning from spacelike to timelike as accretion

gives way to evaporation.

In the following section, we will see that a similar model can be extended to

include cosmological models with nonzero background curvature.

Schwarschild BH one expects (
τev

tpl

)
= A

(
M

mpl

)3
,

where A ∼ 1000 is a unitless constant determined by physical considerations [69]. (The precise
value of A depends on various factors since the proportionality constant in the evaporation rate
is, in less idealized cases, temperature dependent.) Our model seems to work well unless the
nominal evaporation time is much shorter than dictated by this relation, with the Planck scale
set by lev (in geometric units lev = lpl = tpl = mpl). Since our model is purely geometric, the
reason this relation must be enforced is not trivial.
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Figure 3.6: (Color online). Detail view of horizon and core dynamics during
formation and the early stages of evaporation, for a spacetime similar to Fig.
3.5 but with somewhat less realistic parameters (in the sense that the mass and
lifetime are not mutually consistent). Although the parameters are less realistic,
the features depicted are qualitatively accurate. Details like these are not visible
in more quantitatively accurate diagrams, where the extreme hierarchy of length
and time scales prevents accretion and evaporation features from being depicted
simultaneously. Compare to the region where accretion shells meet the core in Fig.
3.5a. Note that the apparently teal region is in fact a bundle of closely spaced
lines of constant radius just outside the core.
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Figure 3.7: (Color online). Penrose diagrams for single-burst shell models with
(a) negative and (b) positive background curvature, with metrics (3.11) corre-
sponding to the Hay-AdS and Hay-dS BH spacetimes. Parameters were chosen
for maximum visibility of qualitative features. Density color scale here depicts
ρ − ρbg, with constant background density ρbg = ±3/(8πL2) (positive for dS).
In (b), an additional set of lines r = const (faint purple) have been added with
spacing dr = L/2 to depict larger length scales. Note that, in addition to BH
trapping, the dS case includes cosmological trapped regions having nothing to do
with the BH. Tick marks no longer correspond to proper time, but still represent
equal increments of du and dv. Notably, inspecting the tick marks shows that the
phase pileup typically associated with Hawking radiation is still present in the u
and v coordinates, even without the assumption of asymptotic flatness.
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3.7 Diagrams including background curvature

While many discussions of BH evaporation assume, for simplicity, an asymp-

totically flat exterior, it is also interesting to consider BHs evaporating in alter-

native cosmologies. We therefore provide, in this section, Penrose diagrams for

nonsingular BHs evaporating within asymptotically de Sitter (dS) and Anti de

Sitter (AdS) spacetimes. Let us suppose, for both dS and AdS cases, that the

background curvature is characterized by a length scale L such that l� 2m� L

(l and m being parameters of a Hayward metric, see above). That is, the black

hole is small compared to background curvature length scales.

A nonsingular BH in a background of constant curvature may be described by

(3.1) with

f(r) = 1− 2mr2

2ml2 + r3 ±
r2

L2 , (3.11)

which we refer to as the Hay-AdS (+) and Hay-dS (−) metrics. By fixing l

and L while varying m across shells, we can construct single-burst forming and

evaporating black hole models analogous to the flat space version of Fig. 3.4b.

The results are depicted in Fig. 3.7.7

Having constructed single-burst models, the question arises of how to properly

add continuous time dependence. Assuming 2m � L, the spacetime is nearly

asymptotically flat on length scales much smaller than L, and there is a class of

observers, similar to distant Schwarzschild observers, for whom 2m � robs � L

and f(r) ≈ 1. It seems reasonable to assume that these nearly-asymptotically-

flat observers should measure the usual thermal dependence, in which case the
7Maximally extending BH metrics in a dS background generically leads to an infinite chain of

BHs and asymptotic infinities. To avoid this issue we modify the Hay-dS spacetime to transition
to pure dS space far away from the BH. The transition occurs inside the cosmological horizon
on the side of dS with no BH, and has no important effects.
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earlier prescription in terms of mu(u) and mv(v) carries over unmodified. For a

cosmologically-sized BH, however, how the detailed structure would look is less

clear.

3.8 What is a black hole?

The causal structure encoded in these diagrams invites us to revisit a subtle

question: What is a black hole? A number of authors, most famously Hawk-

ing [70], have already argued that the traditional global definitions (e.g. in terms

of an event horizon) are not useful when evaporation is taken into account — and

we will make a more detailed case for this proposition below. While the natural

context for defining black holes is quantum gravity, to the extent that BHs have

a semiclassical spacetime description, a general relativistic definition should be

possible. To motivate an improved definition, let us review some of the features

of the spacetime of Fig. 3.5:

(i) The spacetime has no event horizon, and is globally hyperbolic.

(ii) A distant external observer sees collapsing matter fall through its own ap-

parent horizon in a finite amount of (the observer’s) proper time. At the

same moment the observer sees this crossing occur and the apparent horizon

form, they begin to receive Hawking radiation (compare Figs. 3.4b, 3.5a, 3.6).

In general, distant observers see Hawking radiation if and only if they are

looking back at the apparent horizon.

(iii) Hawking radiation is emitted from a timelike surface (Fig. 3.5c). The emis-

sion surface is just barely outside the apparent horizon, which itself is also

a timelike surface in the continuous limit (Fig. 3.5c).
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(iv) The part of the diagram intuitively considered “part of the BH” consists of

the trapped region and core. The trapped region is “trapped” in the sense

that all future-directed curves are radially ingoing. The core is an ultradense

quantum gravity plasma.

(v) During evaporation, the outer boundary of the trapped region is a timelike

apparent horizon (Fig. 3.5c). During formation, a spacelike portion of the

apparent horizon occurs inside the infalling matter (Fig. 3.6). External ob-

servers previous to the emission of any Hawking radiation see the apparent

horizon as a nearly null surface in the future (Fig. 3.5a); in order to receive

Hawking radiation, such observers must go “around the corner” to where the

horizon appears timelike.

(vi) Some trapped observers, who have just barely fallen in, can escape the BH

without intercepting the core by accelerating out of the trapped region during

evaporation. Others, who have fallen too far in already, are doomed to

destruction in the core. This “region of no escape” is quantified by the past

domain of dependence of the core (the location of which can be inferred from

Fig. 3.5b). The core surface is spacelike, while the boundary of the doomed

region is null.

(vii) The inner boundary of the trapped region (the inner horizon) lies entirely

within the core; it is timelike during accretion and spacelike during evapora-

tion (Fig. 3.6). In the final moments of evaporation, the inner horizon, core

surface, and outer horizon all come together.

(viii) The core maintains a constant Planck scale density. As the BH mass changes

over time, the core, which for large BHs is significantly larger than Planck
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scale in radius, adjusts in size to accommodate the total mass.

(ix) The proper time experienced at r = 0 within the core (to the extent that

it corresponds to the classical value) is of the same order of magnitude as

the BH lifetime experienced by distant observers. However, this could po-

tentially be modified by altering the Hayward metric to include a redshift

factor (see discussion surrounding (3.6)).

(x) Time evolution starting from initial data in the distant past and proceed-

ing through the process of BH formation, accretion, and evaporation down

to the Planck scale (including the emission of the majority of the Hawking

radiation) can be described by a continuous family of Cauchy surfaces en-

tirely to the past of the (quantum gravity) core (this is seen most clearly in

Fig. 3.5c), on which semiclassical physics should apply. Evolution beyond

the final moment of evaporation, when the BH disappears entirely, involves

evolving Cauchy surfaces through the core, and requires a quantum gravita-

tional description.

Inspired by the above observations, we propose a definition which depends on

only local quantities and is consistent with all common black hole models: A black

hole is a future-trapped region surrounding and feeding into an ultra-dense core.8

Both the core and trapped region should be considered a part of the BH; one

might propose to call this a core and shroud definition. Insofar as a singularity

acts as a placeholder for a dense point mass, this definition includes both singular

and nonsingular models.
8The phrase “feeding into” signifies that the inner future boundary of the trapped region

lies on or within the core, and the phrase “surrounding” implies that the core lies within future
light-sheets [71] of the relevant closed trapped surfaces. Recall also that the trapped region is
“trapped” in the sense of trapped surfaces, not of “no escape.”
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This definition departs from tradition, by focusing on the trapped region and

trapping (also called apparent, see appendix for definitions) horizon, rather than

the region of “no escape to infinity” and corresponding event horizon. The tra-

ditional “event horizon” definition has several disadvantages. Most importantly,

the location of an event horizon (which is typically defined as the boundary of

the past of future infinity) is determined by the entire future history of the BH,

and cannot be determined by any local data. Thus, even when it is clear that a

“BH-like object” locally exists, the presence or absence of a BH by the traditional

definition depends strongly on the BH end state (for example whether the BH later

accretes additional mass, and whether the final dynamics are dominated by evap-

oration, remnant outcomes [43], mass inflation instability [45], or a bounce [44]).

In contrast, the location of a core and trapped region can be determined by local

data in a finite time.

Moreover, even without invoking nonsingular models, it’s not clear that rotat-

ing or charged BHs form an event horizon at all when evaporation is taken into

account. For example, the naive translation of Fig. 3.1 to a Reissner-Nordstrom

metric leads to a naked singularity with no event horizon (such a diagram looks

similar to Fig. 3.2b, see, e.g., [72, 73]). One possible rebuttal, that BHs should dis-

charge and spin down before evaporating, is not very convincing, since spacelike-

ness of the Schwarzschild singularity is unstable to even continuously small pertur-

bations of the charge and rotation parameters. If nonsingular models are adopted,

then charged and (presumably, see [74]) rotating BHs have the same basic causal

structure as the Hayward metric, and, as in Fig. 3.5, would exhibit no event hori-

zon in our simple model. General nonsingular solutions should be expected to

have a causal structure which is stable under perturbations of the rotation and

charge, and to alleviate the pathologies of the interior Kerr-Newman metrics.
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In the new definition, some conceivable BHs (which may or may not actu-

ally exist in nature), like the Schwarzschild BH of Fig. 3.4a, have an event hori-

zon, while others do not. In the simplest case with an event horizon, where a

Schwarzschild BH forms quickly then slowly evaporates without disturbance, the

null event horizon is just barely inside the timelike trapping horizon (this fact

can be inferred from Figs. 3.4–3.5, and checked numerically); the horizons nearly

coincide. In other cases, for example if the BH forms, evaporates for some amount

of time, then later accretes more mass, the event horizon and trapping horizon

can be widely separated.

In any case, at least in our semiclassical model, energy conservation by the

DTR relation forces Hawking radiation to be emitted from just outside locations

where f(r) = 0 (in the Schwarzschild metric, r = 2m), so that Hawking radiation

emission is directly tied to the boundary of the trapped spheres region. The

boundary of the trapped spheres region is also the trapping/apparent horizon

(see appendix), so the radiation can be thought of as emanating from the trapping

horizon.

In any semiclassical model like our shell model, therefore, the Hawking radia-

tion emission points must not be tied to the event horizon if they are to conserve

energy. For instance, in the second case above, where a Schwarzschild BH forms,

evaporates for some amount of time, then later accretes more mass, the early

Hawking radiation would be emitted from far inside the event horizon. Such radia-

tion would not make it to infinity, but could still be observable to distant observers

for an arbitrarily long time before the second accretion event takes place. This

observation provides further evidence that the trapping horizon is a more physical

candidate than the event horizon to describe the BH boundary, motivating the

new definition.
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As discussed in the appendix, our trapped spheres region is the spherically

symmetric special case of the more general “trapping nucleus,” which is a special

essential subset of the trapped region. The boundary of the trapping nucleus

is, in general, the trapping/apparent horizon. It was previously argued from a

trapped surfaces perspective (see appendix and [49]) that the trapping nucleus

and its boundary provide the most reasonable definition for a BH and its horizon.

The above observation about energy conservation in our shell model acts as a

physically independent check supporting this hypothesis, making it likely that

in similar but not-spherically-symmetric semiclassical models, Hawking radiation

emission would need to come from just outside the trapping nucleus to conserve

energy. Also, the nucleus is likely easier for an observer to identify than the full

trapped region, since the nucleus consists of relatively trivial trapped surfaces and

its boundary is marginally trapped.

While the nonsingular BH of Fig. 3.5 does not have an event horizon or region

of no escape, the past domain of dependence of the core, which might be called the

“doom region,” plays a similar role. Any observer crossing into the doom region

will inescapably be crushed into the ultra dense quantum gravity core before

being emitted in the Hawking radiation. Notice that the boundary of the doom

region in Fig. 3.4b almost exactly coincides with the event horizon in Fig. 3.4a,

a phenomenon that holds generally when a Schwarzschild metric is replaced by

Hayward. In this context, the singularity theorems show that doom regions are

generic: matter which collapses through its own trapping horizon will inevitably

continue collapsing until quantum gravitational effects kick in, forming a core and

associated doom region.

By focusing on the properties of a BH as an actual compact object that can

form and exist at a finite time, the new definition allows a broader and more
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useful class of objects to be called BHs, like evaporating charged, rotating, and

nonsingular metrics, BH-like objects which later bounce or form a remnant, and

collapsed stars whose exact metric and eventual end state is unknown. In turn,

this allows the study of when certain pathologies of BH metrics, like singularities,

event horizons, and Cauchy horizons, do and do not arise. Defining BHs (which we

fundamentally know to exist only as compact astrophysical objects) by insisting on

their worst pathologies is one reason that questions of unitarity and information

preservation during evaporation have remained unresolved.

3.9 Towards a self-consistent evaporation model

Significant attention has been given recently to the question of self-consistent

BH evaporation models (related examples include [75, 76, 77, 78, 79]). Typically

the idea is to postulate an evaporating BH spacetime, treat it as a fixed back-

ground for a quantum field theory, and show that a renormalized stress tensor

for the field theory matches the background curvature — or at least find some

evidence that the field theory and background are compatible. It is our hope that

the present diagrams, especially Fig. 3.5, can help inform this effort.

In particular, for example, the model presented here suggests an improvement

to the recent interesting calculation by Frolov and Zelnikov, who have studied the

quantum radiation from an evaporating modified Hayward metric [78, 79]. They

found, in addition to the Hawking radiation, an unwanted burst of radiation

emanating from the inner horizon. Moreover, the burst was found to be at least

partially mitigated by certain changes to the metric. Our model suggests even

further changes to the metric. Specifically, time-dependence in this study was

included only by virtue of a function m(v) depending on the time parameter at
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past null infinity, which was assumed to have the usual thermal-evaporation time

dependence. This has two drawbacks. First, it is observers at future null infinity,

receiving the Hawking radiation, who should measure the correct thermal time

dependence — not those in the past. That is, it is m(u), not m(v), that should be

thermal during evaporation. And second, using only m(v) implicitly assumes that

evaporation occurs by absorption of negative mass shells incident from infinity,

when they should rather be incident from near the horizon. A more physical

metric would include a more complicated time dependence, depending on both

u and v simultaneously. The proposed change is drastic enough to hope that,

coupled with an expeditious choice of redshift function, it could help the model

approach self-consistency.

Related to the study of self-consistent models, and to the unwanted energy

outburst discussed above, is the phenomenon of mass inflation, in which large

amounts of gravitational energy are converted into mass by the collision of null

shell perturbations in a BH [45].

The cause of mass inflation can be understood as follows. Consider the shell

collision depicted in Fig. 3.8. Two spherical null shells, each of mass ∆m, collide,

with initial and final Schwarzschild masses m and M respectively. If the collision

occurs outside the BH horizon, where future-directed shells come in a radially-

ingoing/radially-outgoing pair, then the requirement that all shells have positive

mass ensures that |M −m| < ∆m. This makes sense since an ingoing (outgoing)

positive-mass shell will increase (decrease) the mass of a Schwarzschild region to

its future, so that the shell masses roughly cancel out in the final state. But if

the collision occurs inside the black hole, both incident shells are radially ingoing:

they both contribute positively to the final mass. Working out the associated

constraints shows that in this case, even when all shell masses are positive, the
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Figure 3.8: Two spherical null shells colliding in a spherically symmetric space-
time. Gray lettering indicates the standard labelling of each region in DTR cal-
culations (see appendix). Black lettering describes an example: Two shells, each
of mass ∆m, collide, in an initial Schwarzschild spacetime of mass mB = m.
Assuming A,B,C,D are all Schwarzschild spacetimes, the masses mC and mD

are fixed by shell junction conditions, with signs determined by whether each
shell is radially ingoing (+) or outgoing (−) towards the future. The final mass
mA = M is determined by the DTR relation. Assuming all shells (both initial
and final states) have a positive mass, mass inflation can occur only if both shells
are radially ingoing — for instance, inside the trapped region of a BH. Otherwise,
restricting to positive-mass shells ensures that |M −m| ≤ ∆m.

final mass M can be arbitrarily large. When both incident shells are ingoing and

the collision occurs near f(r) = 0 (i.e. near a horizon), application of the DTR

relation (see appendix) shows that even very small incident masses will lead to an

unbounded increase in M : this allows the mass inflation.

There is an open question of whether mass inflation at the inner horizon creates

an instability which significantly alters the dynamics or interior metric [80]. Our

model suggests a few more remarks on this topic.

First, the mass inflation instability is often associated with a part of the inner

horizon, the “outgoing” inner horizon [80], which does not actually exist in evap-

orating BH spacetimes like ours or Hayward’s. This outgoing horizon, which acts

as the Cauchy horizon in simple collapse models, is the part of the inner horizon

approached by right-directed (in the standard diagram, see Fig. 1 of [81]) null

rays in an eternal charged or nonsingular BH metric. (These rays are technically

ingoing despite the nomenclature.) This part of the horizon exists in the eternal
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metric, but is cut off by an incoming negative-mass shell in our Fig. 3.2b, and

cut off by the smooth evaporation process in Hayward’s model. The evaporating

models also have no Cauchy horizon for the same reason. While it is not impossi-

ble for a right-going shell in our model to approach the inner horizon, such shells

typically emanate directly from an earlier part of the same inner horizon, and do

not intersect the “outgoing” part of the horizon as usually assumed.

This is not an argument that mass inflation does not occur. But it does lead

to a delicate situation. It is common to study mass inflation within the causal

structure of an eternal BH spacetime where the outgoing inner horizon exists (for

a clear example see [82]). But if an evaporating spacetime is assumed, some of the

assumptions underlying these calculations may break down. On the other hand,

it has previously been argued both that mass inflation does not depend on the

long term future [80], and that evaporation should fail to prevent mass inflation

once corrections to the Schwarzschild evaporation rate are taken into account [82],

possibly circumventing the issue we are raising. However since both still make the

assumption described, the resolution may or may not be definitive.

Second, if curvature is assumed to be regulated by a Planck scale density

cutoff, then in nonsingular models with sufficiently low charge and rotation (like

the Hayward metric), the entirety of the inner horizon is hidden far within the

quantum-gravity-dominated core. Any calculations based on semiclassical physics

near the inner horizon must therefore be called into question in these cases. Fur-

ther, if the result of mass inflation is meant to be the development of an extreme

density at the inner horizon [81], it is not clear that any such higher density could

be reached. This disrupts the interpretation of mass inflation in static nonsin-

gular cases (as in, e.g. [82]). On the other hand, it is possible that rotating and

charged nonsingular BHs have an inner horizon extending outside the core [74],
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so the issue still must be dealt with unless there is a sufficient mechanism for

discharge/spin-down.

3.10 Possible implications for the physics of black

hole evaporation

The questions we feel it natural to ask about BH evaporation can change

drastically depending on what spacetime diagrams are used. In the traditional

diagram, for example, it’s natural to ask: Is there a unitary transformation con-

necting the quantum states at future and past null infinity? But in the nonsingular

evaporation diagrams presented above, which have been constructed to be globally

hyperbolic, it’s almost obvious that such a transformation ought to exist between

any two Cauchy surfaces not intersecting the ultra-dense quantum gravity region

(where it doesn’t seem safe to assume known physics applies). These new dia-

grams, on the other hand, raise a different fundamental question: What is the

nature of the negative-mass shells?

A global, phenomenological, and ultimately unfulfilling answer to the latter

question already exists. As shown most clearly by Davies, Fulling, and Un-

ruh (DFU), quantum field theories yield an ingoing negative energy flux in a

renormalized stress tensor near the horizon when a BH is present [39]. Clearly,

the presence of this ingoing negative flux (and of our ingoing negative-mass shells)

is a phenomenon of quantum field theory in curved spacetime. But the calculation

is global. Can this phenomenon be understood as a local process? How should

the negative flux be interpreted physically?

Suppose we answer these questions with a bold but simple interpretation: that
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the negative-mass shells represent normal matter propagating out from the core

on non-future-directed (i.e. past-directed or spacelike) trajectories.9

With a little justification, this seems like a reasonable claim. It is well known

that quantum field theories (QFTs) violate, by small amounts, the classical en-

ergy conditions, including energy conditions intended to prevent the non-causal

transfer of energy [61]. The fact that these theories violate the energy conditions

is closely tied to the faster-than-causal spreading of relativistic wavepackets in the

one-particle sector of QFT [83, 84]. In this sense, energy condition violations are

related to a small amplitude for QFT particles to propagate, or in a probability

interpretation “tunnel,” faster than light. For there to be a non-negligible proba-

bility of escape from the core by this process, wavepackets must spread beyond the

trapping radius, so that escaping field modes have wavelength on the order of the

BH size. As the BH gets smaller, the amount of non-causal propagation needed to

escape is reduced, and the process becomes more probable, so evaporation speeds

up. Normally the non-causal propagation is overwhelmed by much more likely

causal propagation, but a BH makes escape by causal propagation impossible.10

In case of the DFU stress tensor, energy conditions are violated due to an

ingoing flux of negative mass into the horizon, which, in this picture, would cor-

respond to a non-future-directed transfer of energy out from the BH core. While

it’s not unusual for QFTs to violate energy conditions, what’s unusual about BH
9A classical connection between negative mass and non-future-directed propagation is fos-

tered by calculating the energy flux vector Fµ = −Tµν tν relative to a timelike observer for a
uniform dust of density ρ with velocity uµ and stress tensor Tµν = ρ uµuν . Both ρ < 0 and
u2 > 0 lead to non-future-directed energy flux.

10It must be noted that using any language of “particles” (or even “quanta”) is extremely
dangerous in this context, due to the many well-known ambiguities surrounding QFT particles
in curved spacetime [51]. The field picture must be given conceptual priority. If not taken too
literally, however, particle language can sometimes provide a useful heuristic. When we use
the particle terminology here, it is mainly to make connection with standard language of the
literature.
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evaporation, in this picture, is that non-future-directed propagation dominates

the dynamics. (In Fig. 3.5, this refers to matter being carried out on the nega-

tive mass shells, instead of emerging through the future boundary of the core.)

The fundamental question, then, is shifted to one that more directly implicates

the paradoxical nature of BH evaporation: Why does matter escape from the core

exclusively, or at least primarily, on non-causal trajectories?

The answer to this question might be more straightforward than it seems. As

discussed already, even under normal circumstances QFTs violate energy condi-

tions in ways that may allow energy to locally propagate on non-causal trajec-

tories. If the lightcone of some matter is blocked by a strong space-and-time-

dependent potential barrier, can causal propagation be significantly depressed? If

so, could the small energy-condition-violating flux add up to a significant transfer

of mass outside the lightcone? And does the BH core metric (specifically, the

rapidly changing metric where the extremely dense core meets the future post-

evaporation vacuum, see Fig. 3.5) act as such a barrier when coupled to a quantum

field? (Alternately,11 could this process be a phenomenon of quantum gravity?)

These questions have not yet, to the authors’ knowledge, been addressed; they
11In the semiclassical model we are suggesting, 〈Tµν〉 corresponds to a scenario where matter

exits the core on spacelike trajectories, as opposed to propagating directly through the future
boundary of the core. One way to make sense of this may come from quantum gravity. Consider,
heuristically, a path integral formulation for the complete quantum gravitational system, and
consider some tunnelling calculation where a nonsingular BH tunnels into an evaporated state
at a later time. What paths (in some quantum gravity configuration space) contribute to this
process? There are some paths where matter in the core propagates timelike while the metric
remains static — these paths correspond to a purely classical evolution, but don’t contribute
to the tunneling process, because they only contribute to an “eternal BH” configuration of the
metric. That is, paths with timelike matter propagation in the core correspond to classical
scenarios where matter sits in the core forever, not situations where matter leaves the core and
the BH evaporates. Among paths where the metric looks like an evaporating BH, it’s possible
that paths with spacelike propagation are less suppressed than other off-shell contributions, for
example less suppressed than configurations that drastically violate Einstein’s equation. If this
were the case, one could think of quantum gravity as creating a quantum correlation between
BH evaporation in the metric, and spacelike propagation in the matter fields.
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should be.

This line of reasoning is open to an obvious criticism: The presence of a

Hawking flux depends (in curved-spacetime quantum field theory calculations)

only on the presence of the horizon, and therefore cannot depend on physics in

the core. This is an important observation, but, although it may seem so at first

glance, it is not especially damning to the interpretation. Actually, the only details

of core physics relevant to this discussion are two assumptions already implicit in

singular BH models: that once an apparent horizon forms, gravitational collapse

to a singularity (core) is inevitable; and that future-directed propagation out of

the singularity (core) is not allowed. Moreover, if BH evaporation is truly unitary,

the matter emitted in Hawking radiation should be, in some sense, “the same”

matter that formed the BH in the first place. This point is almost always neglected

in discussions of particle creation by a horizon.

The key to reconciling the fact that the Hawking flux depends only on the

presence of the horizon, and the fact that matter emitted in Hawking radiation

should come from the core, is self-consistency between the background spacetime

and the quantum field theoretic stress tensor. This is closely tied to the question

of why BH horizons supposedly evaporate, while Rindler horizons (for accelerating

observers in flat space) do not.

In the Rindler vacuum, the renormalized semiclassical stress tensor 〈Tµν〉 bears

no resemblance whatsoever to the Einstein tensor of the flat background met-

ric [85]; it should not, therefore, be regarded as a solution of the joint matter-

gravitational field equations. But in BH evaporation, the renormalized stress ten-

sor for the in-vacuum closely resembles the Einstein tensor of our shell model.12

12Statements like these are ambiguous when there is ambiguity in the stress tensor renormal-
ization scheme. For the present qualitative purposes, suppose the field equations aren’t satisfied
unless some reasonable renormalization scheme is shown to produce a stress tensor equivalent
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One can imagine an iterative process, where the background spacetime is per-

turbed to approach the renormalized QFT stress tensor at each step, converging

on a self-consistent model of an evaporating BH spacetime coupled to the mat-

ter field. Starting such a process from a non-evaporating BH spacetime in the

usual in-vacuum, one obviously expects the horizon to start evaporating during

the iterations due to the ingoing negative flux. But there is no reason to think

that this should be the only effect, or that an initially vacuum region of spacetime

should be empty when the process converges. (Note that “initially” here refers to

iterations, not to time.) Presumably, assuming some usual in-vacuum state, the

presence of the BH horizon is not only sufficient to predict Hawking-like radiation,

but it is also sufficient to predict the existence of a core which forms and then

evaporates.

How does this observation apply to Rindler horizons in Minkowski space, and

cosmological horizons in de Sitter? Let’s look closer at the analogy. First of all,

from a non-technical standpoint, it makes no sense for either of those horizons

to generically emit radiation,13 since both of the spacetimes are homogeneous —

every point in de Sitter spacetime lies on a cosmological horizon. More techni-

cally, the emission or not of radiation, and the evaporation or not of the horizon,

to the metric.
13This is separate from, but often confused with, the question of radiation experienced by an

accelerating particle detector. Particle detector calculations (see [51] for review) like the famous
results of Unruh [86] and Gibbons and Hawking [87] do not deal with objective radiation existing
in the spacetime and quantum state, but rather with the coupling a of a local detector to a
quantum field. This conceptual distinction was made very clear, for example, by Padmanabhan
and Singh [88]. The excitations of such a detector should be attributed to a combination of two
effects: the difference between the global quantum state (perhaps a global “vacuum”) and an
observer’s local inertial vacuum (that is, some state with no particles in modes defined by an
observer’s local inertial frame); and the observer’s acceleration relative to that frame. Davies and
others have suggested a useful paradigm: that the detection of particles due to acceleration be
thought of as a form of “vacuum friction” [89, 90]. The relation of particle detector calculations
to thermal emission by a horizon is evident only in special cases, where constant acceleration or
a particular choice of positive frequency modes creates a useful analogy.
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depends on the quantum state. This is obvious, but there is a key point miss-

ing from standard discussions of this issue. States where the renormalized stress

tensor is highly mismatched from the background Einstein tensor are probably

never realized, since they are not likely to be solutions of the joint matter-gravity

field equations (whatever that means in quantum gravity). Yes, there are states

where Rindler, cosmological, or other Killing horizons emit radiation. But they

are not solutions of the joint equations of motion unless an iterative process is

performed to match the background metric with the stress tensor. Perhaps these

states converge to BH solutions, perhaps to something else, or perhaps they don’t

converge at all. Either way, in the special case of Rindler, cosmological, etc. hori-

zons, the first iteration step is likely to drastically change the qualitative picture

and call the horizon interpretation into question. In contrast, iteration towards

self-consistency in the BH case reinforces the qualitative picture of a BH evapo-

rating while emitting Hawking radiation. The BH case, unlike the other cases,

appears to admit a self-consistent picture of an evaporating horizon.

It seems likely that, starting from an evaporating nonsingular spacetime like

Fig. 3.5, the iterative process described above has at least a pretty good chance

to converge to something reasonable, given the qualitative similarity between the

DFU stress tensor and the stress tensor for our shell model. It’s not clear that

the same can be said for the more traditional spacetime where shell collapse re-

sults in an eternal Schwarzschild BH. Would the iteration process ever provide the

drastic change in causal structure needed to account for the BH disappearance at

the end of evaporation? If not, then performing QFT calculations in a singular

non-evaporating background, while useful for gaining general intuition, is useless

for obtaining a complete description of the BH evaporation process. To get le-

gitimate candidates for a self-consistent description, QFT should be performed in
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spacetimes like Fig. 3.5. Various efforts are making interesting progress in this

direction, especially [78, 79], as discussed in previous sections. Moreover, a similar

criticism can be applied to some of the firewall arguments: quantum firewall states

calculated in a vacuum spacetime are not self-consistent.

There is one more key point which has not been addressed, relating to the fact

that the matter in Hawking radiation should be “the same” matter that fell in,

and, consequently, relating to self-consistency of the semiclassical BH solutions.

In all standard calculations, the matter which falls in to form the BH, and the

matter in which the Hawking radiation is present, are regarded as separate matter

fields. This is implicit when the background metric is assumed, in which case the

infalling matter field is non-dynamical. A more conceptually accurate treatment

would treat infalling matter as a true quantum field, with this being the only

matter field in the problem. Then the true quantum in-state is not an in-vacuum,

but a collapsing-star state. One still expects to find the Hawking radiation, but its

source and backreaction effect would, presumably, be less mysterious. It may be

the case that the standard calculation is appropriately regarded as a perturbation

in this scenario. But the consequences of resolving this oversimplification have

never been adequately settled.

Setting aside the discussion of its validity, assuming the non-future-directed-

trajectory interpretation we have here espoused would lead to the following nar-

rative of BH evolution: A star collapses beyond its Schwarzschild limit, forming

a trapped region. Once the trapped region is formed, continued collapse is in-

evitable until quantum gravity takes over the dynamics, at which point a tiny

core of Planck scale density is formed. The future boundary of the core acts, by

some currently unknown mechanism associated with the core’s extreme density,

as a local space-and-time-dependent potential barrier, suppressing causal propa-
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gation of matter out of the core, and forcing matter propagation to be dominated

by non-causal paths exiting the core through its spacelike outer surface. Thus,

having effectively no other option, matter from the core slowly leaks (or “tunnels”)

out on these non-causal paths, gradually depositing the BH mass at infinity in the

form of a Hawking flux. Matter falls in, gets decomposed in the fires of quantum

gravity, and, retaining unitarity, eventually comes back out. In terms of relativis-

tic causal structure, in this picture there is no profound difference between a BH

and other objects; black holes are unusual only in that much of their interior is

empty and contains trapped surfaces, in that their matter is confined to a tiny

volume where quantum gravity dominates, and for their low luminosity-to-mass

ratio. In this picture, black holes are not that weird.

We are not the first to propose a picture like the one presented throughout this

section. As far back as the original discovery of the Hawking effect, similar ideas

were invoked in [38], and by various comments of [36, 37] (though the particulars

there are rather hazy, especially regarding different types of energy), as well as

many others. It has not previously, however, been taken seriously as a semi-local

physical description in the context of self-consistent evaporating nonsingular mod-

els. These models have the advantage that matter tunneling out has somewhere

to come from, with an energy-conserving backreaction.

Whether the above is a useful or accurate story is undecided. It does, at least,

seem qualitatively aligned with both the DFU stress tensor and the tunneling

picture of Parikh and Wilczek [91] (the key step of which is a tunneling event in

which some internal matter crosses the horizon), as well as with [36, 37, 38] as

previously noted, and doesn’t seem to raise any major philosophical issues. In any

case, the most appealing aspect of this description is surely its simplicity.
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3.11 Concluding Remarks

Spacetime diagrams invariably have a profound influence on our thinking about

relativistic systems, and especially black holes (BHs). The goal of this article

is to disrupt an unfortunate status quo: the use of diagrams not tied to any

particular spacetime model. Ambiguous hand-drawn diagrams (most perniciously

those attempting to depict BH formation and evaporation in a single picture)

too often reflect the biases of the artist, and result in misleading intuitions — for

example that Hawking radiation emanates from (just outside) a null event horizon,

or that external observers take an infinite proper time to see infalling matter fall

in. False intuitions like these can lead to incorrect or circular reasoning about

subtle questions. To clarify these issues, we have argued for the use of well-defined

models in which verifiable claims can be made. Our “shell model,” as it has been

dubbed above, presents an attempt at a simple and minimal concrete model for

BH formation and evaporation, which seems to capture most generic aspects of

the problem, and for which Penrose diagrams can be explicitly obtained. Based

on the results, we have argued for an improved definition of the term “black hole,”

and proposed a more straightforward interpretation of the mechanism of Hawking

radiation. While we make no claim of the absolute veracity of our shell model, we

do hope it brings to light some new questions about the BH evaporation process,

and stimulates a more concrete and physically grounded discussion.
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3.12 Appendix: Matter content of Shell Models:

General Case

Numerically computing Penrose diagrams allows the distribution and flow of

matter to be quantitatively visualized in the diagram, assuming Einstein’s equa-

tion Gµν = 8πTµν . There are two contributions to the matter content: matter

associated with the shells, and matter associated with the quasistatic equilibrium

solutions.

3.12.1 Quasistatic Contribution

First we consider the matter associated with the equilibrium solutions. For

our purposes, all such solutions take a metric of the form

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2 , (3.12)

where f(r) is an arbitrary function called the metric function. Metrics of this

type can be either singular or nonsingular at the origin. A number of equivalent

conditions for singularity are given by [1, app. E]; here it suffices to say that

the metric is nonsingular whenever f(r) = 1 + O(r2) as r → 0, a condition

which implies finiteness of curvature scalars, geodesic completeness, and existence

of a Cartesian metric, in a neighborhood of the origin [1]. Although classical

theorems predict singularity formation in gravitational collapse [60], nonsingular

solutions are thought to arise in effective semiclassical approximations if quantum

gravitational effects regulate curvature at the Planck scale. Our method applies

to both singular and nonsingular models; nonsingular models have the advantage

that all matter is made explicit in the stress tensor, whereas singular solutions
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contain a matter contribution hidden in the singularity.

Curvature. A detailed anaylsis of the matter content for metrics of the form

(3.12) was carried out in [1]. The following is a summary of those results. To

expedite the analysis, it is best to define a mass function m(r) by

f(r) = 1− 2m(r)/r, (3.13)

and define an orthonormal basis êa by

ê0 =


√
f(r)−1 ∂t , f(r) > 0,√
−f(r) ∂r , f(r) < 0,

ê1 =


√
−f(r) ∂r , f(r) > 0,√
f(r)−1 ∂t , f(r) < 0,

ê2 = r−1 ∂θ,

ê3 = (r sin θ)−1 ∂φ .

(3.14)

In this basis ê0 is always timelike. Both ê0 and ê1 can be continuously extended

across the horizons where f(r) = 0, but the full basis cannot, since the extensions

of ê0 and ê1 would coincide at the horizon. In this êa basis, the Einstein tensor is

diagonalized, with components

Ga
b = 8π diag(−ρ,−ρ, pΩ, pΩ), (3.15)

where

ρ = m′(r)
4πr2 , pΩ = −m

′′(r)
8πr . (3.16)
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Physically, this amounts to a proper density ρ, a transverse pressure pt = −ρ, and

an angular pressure pΩ. The common curvature scalars follow, as

K0 ≡ R = 16π (ρ− pΩ),

K1 ≡ RabR
ab = 128π2 (ρ2 + p2

Ω),

K2 ≡ CabcdC
abcd = 12 η2/r4,

K3 ≡ RabcdR
abcd = K2 + 2K1 − (1/3)K2

0 ,

(3.17)

with η = 2m(r)/r − 4m′(r)/3 + rm′′(r)/3. Contributions to the curvature from

a singularity, if one exists, are included in K2, and f(r) ≡ 1 if and only if K1 =

K2 = 0 everywhere. A complete specification of the Riemann and Weyl curvature

components, in addition to Christoffel symbols, may be found in [1].

Energy conditions. Nonsingular black hole solutions often violate classical en-

ergy conditions—this is one way to evade the singularity theorems [60]. One

approach to this situation is to take both the nonsingular metric and its energy

condition violations seriously, assuming they provide useful insight about the phys-

ical mechanism of evaporation. Although classically unorthodox, this approach is

appealing since quantum field theories are already well known to predict energy

condition violations [61]. Regardless of one’s view on this matter, it is useful to

keep track of where and by how much energy conditions are violated in a given

solution. We concern ourselves here with the null (NEC), weak (WEC), and flux

(FEC) energy conditions, defined by [61]

(NEC) Gab k
akb ≥ 0 for all null ka,

(WEC) Gab t
atb ≥ 0 for all timelike ta,

(FEC) −Ga
b t
b causal for all timelike ta.

(3.18)
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The WEC ensures timelike observers measure locally positive mass density, with

the NEC as its null limit; the FEC ensures no timelike observer measures a space-

like energy flux. Given the diagonalized Einstein tensor (3.15), these reduce to

the simple inequalities [61]

(NEC) ρ+ pΩ ≥ 0,

(WEC) NEC plus ρ ≥ 0,

(FEC) ρ2 − p2
Ω ≥ 0.

(3.19)

The degree to which these conditions are violated is quantified by the functions

χnec = −min(ρ+ pΩ, 0),

χwec = −min(ρ, 0),

χfec = −min(ρ2 − p2
Ω, 0),

(3.20)

called the energy condition violation functions. These functions are the obvious ex-

tensions of the above inequalities, but their physical status as quantifiers requires

some clarification. They are justified as follows. Consider observers associated

with a null velocity ka and a normalized timelike velocity ta, and the flux vector

F a = −Ga
b t
b relative to tb (note that the FEC is equivalent to −FaF a ≥ 0). One

then finds that

Gab k
akb = ((k2)2 + (k3)2) (ρ+ pΩ),

Gab t
atb = ((t2)2 + (t3)2) (ρ+ pΩ) + ρ,

−FaF a = ((t2)2 + (t3)2) (ρ2 − p2
Ω) + ρ2.

(3.21)

Thus, for a given observer, the functions χnec and χwec quantify the amount of

measured negative mass density, and the function χfec quantifies the spacelike-ness

146



of the energy flux. Interestingly, when ρ > 0, only observers with large angular

momentum will observe strong energy condition violations. This quantification

scheme is in line with the standard definitions for semiclassical energy conditions

[61], which usually amount to enforcing a small positive bound on our energy

condition violation functions.

Trapped surfaces, horizons. An important characteristic of black hole space-

times is the existence of closed trapped surfaces (see [92] for a useful review); their

existence is associated with the trademark “inevitability” of black hole collapse.

Naively, in applying the theory of trapped surfaces to study black holes, one ba-

sically wants to identify the region containing trapped surfaces and determine its

boundary. The boundary of the trapped region in spacetime is sometimes called

a “trapping horizon,” while the boundary of the region of trapped surfaces con-

tained entirely within a spatial slice is often called an “apparent horizon.” These

naive definitions capture the right essential spirit, but fall somewhat short at a

technical level, mainly due to the possibility of strangely shaped trapped surfaces

and the associated issue of “clairvoyance” [92]. Fortunately, an illuminating and

thorough discussion of these issues, and their application to black hole spacetimes,

has been carried out by Bengtsson and Senovilla [49]. They have determined that

the trapped region, which is unreasonably global due to clairvoyance, contains an

essential and physically relevant subregion called “the core of the trapped region,”

which we refer to here as the trapping nucleus (to distinguish it from the entirely

unrelated “matter core” in the Hayward metric). The trapping nucleus is defined

as a minimal region which, if removed from the spacetime, eliminates all trapped

surfaces. That is, any trapped surfaces in spacetime can be blamed on the nucleus,

even if they extend outside it. This definition is especially vindicated by the fact
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that the boundary of the trapping nucleus is a unique (modulo some technical-

ities, see [49]) surface in spacetime foliated by traditional apparent horizons. It

is on this trapping nucleus that we focus our attention in defining the black hole

horizon: we shall refer to the boundary of the trapping nucleus interchangeably as

the trapping horizon or apparent horizon, depending on context. Intersecting this

horizon with a spatial surface yields an apparent horizon in the traditional sense.

Bengtsson and Senovilla have argued that the trapping nucleus and its boundary

provide the best trapped-surfaces definition of a black hole and horizon.

Trapped spheres. Following [49], an arbitrary spherically symmetric spacetime

can be expressed in the Eddington-Finklestein form

ds2 = −e2β (1− 2m/r) dv2 + 2eβ dv dr + r2 dΩ2, (3.22)

where m = m(v, r) and β = β(v, r). Expressed this way, the trapping nucleus

(see above) is the set r < 2m and its boundary is r = 2m. In our shell model,

these correspond to the set f(r) < 0 and its boundary f(r) = 0. This nucleus is

precisely the region in which spheres about the origin of spherical symmetry are

trapped [1, 49]. To avoid unfamiliar terminology, we refer to this region (which

is both the trapping nucleus and the set of points where the sphere (t0, r0,Ω) is

a closed trapped surface) in the main text as the trapped spheres region. If there

were no spherical symmetry, we would instead simply focus on the more general

trapping nucleus for equivalent purposes.

Trapping and horizons: summary. The trapped region surrounding a black

hole has an indispensable interior subset called the trapping nucleus, whose bound-

ary is the apparent (also called trapping) horizon. In our shell model, the trapping
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nucleus exactly coincides with the trapped spheres region f(r) < 0, so that the

apparent horizon is exactly at f(r) = 0. For metrics with a nearly-Schwarzschild

exterior of massm0, this implies the apparent horizon is almost exactly at r = 2m0.

3.12.2 Shell Contribution

The junction hypersurface connecting two properly matched piecewise-defined

regions of spacetime in general corresponds to a thin shell of matter. This is

described technically by a distributional contribution to the stress tensor of the

joint spacetime. For the purposes of this article, we consider shells arising from the

junction of spacetimes of the form (3.12) along radial null hypersurfaces (excluding

the horizon-matching case where f(r) = 0 everywhere). The stress tensor for this

setup was calculated in [1] by application of the null shell formalism of Barrabes

and Israel [93]. The result is most concisely described using local Eddington-

Finklestein coordinates in a neighborhood of the junction shell, defined as follows.

Consider a local patch M0 of the joint spacetime, which is separated into a past

regionM− and future regionM+ by the null junction hypersurface Σ, with metric

functions f±(r) in the two regions. As shown in [1], it is possible to choose a joint

coordinate system (w, r,Ω) on M0, such that the shell Σ is defined by the level

set w = 0, and such that the metric is

ds2 = −f(r) dw2 − 2ε dw dr + r2 dΩ2, (3.23)

where the parameter

ε =


−1 if ∂r is past-directed,

+1 if ∂r is future-directed,
(3.24)
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is a constant indicating whether the shell Σ is ingoing (ε = −1) or outgoing

(ε = +1) towards the future, and the metric function

f(r) =


f−(r), w < 0,

f+(r), w > 0,
(3.25)

is defined piecewise on M±. Let

nµ = ε (∂r)µ (3.26)

be a future-directed null vector both normal to and tangential to Σ, let the mass

functions m±(r) be defined according to (3.13), and define the mass jump [m(r)]

by

[m(r)] = m+(r)−m−(r). (3.27)

With this setup, the distributional component of the stress tensor on the shell

obtains the simple expression

T µνΣ = σ nµnν δ(w), (3.28)

where

σ = (−ε) [m(r)]
4πr2 . (3.29)

The coefficient σ may be thought of as the surface energy density of the shell,

up to an arbitrary normalization factor associated with the null vector na. The

sign of σ is physically meaningful: timelike observers measure a positive energy

density at the shell if and only if σ > 0. It is therefore sensible to say that shells

with σ < 0 have negative mass, while shells with σ > 0 have positive mass. The
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sign of σ is a local property, and in principle (in physically unusual cases) a single

shell may have positive and negative mass at different points.

Energy conditions. The shell stress tensor (3.28) is easily analyzed in terms

of the energy conditions (3.18) above. For an arbitrary causal vector ua such that

uau
a ≤ 0,

Tµνu
µuν = σ (−nνuν)2 δ(w),

−T µνuν = σ (−nνuν) nµ δ(w).
(3.30)

Thus the WEC and NEC are violated if and only if σ < 0. Since the flux vector

F µ = −T µνuν is always null, the FEC is not particularly meaningful in this con-

text. It is worth noting, however, that if uµ is future-directed (implying nµuµ ≤ 0),

then F µ is future-directed if and only if σ > 0. These considerations support the

above notion that σ > 0 corresponds to normal matter, while σ < 0 corresponds

to exotic matter.

3.12.3 Energy Conservation and DTR

Local energy conservation, of the form ∇µT
µν = 0, is automatically guar-

anteed at points where the metric is smooth, and along properly matched shell

junctions [93]. At points where shells collide, for example at Hawking radiation

nucleation points in the above model, energy conservation must be independently

verified by checking an equality called the DTR (Dray-’t Hooft-Redmount) re-

lation [93]. In case of two radial null shells colliding at radius r0, separating

spacetime into four regions (each of the form (3.12)) labeled A,C,B,D clockwise

from noon (see Fig. 3.8), the DTR relation reads [1]

fA(r0)fB(r0)− fC(r0)fD(r0) = 0. (3.31)
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To quantify violations of energy conservation, we therefore define the DTR viola-

tion function

χdtr = |fA(r0)fB(r0)− fC(r0)fD(r0)|, (3.32)

so that energy conservation is equivalent to χdtr = 0.

Applied to the Hawking radiation nucleation points, at which fB(r) = fC(r) =

fD(r), this yields

χdtr = |fA(r0)− fB(r0)| |fB(r0)|. (3.33)

Assuming that the shells carry a finite amount of mass, and that the nucleation

radius r0 is a finite radial distance lev outside the horizon where fB(r) = 0, it

follows that both terms above are finite, so

χdtr > 0, (3.34)

and energy conservation is violated at nucleation points.

Although the DTR relation is not satisfied at the Hawking radiation nucleation

points, the violation is arbitrarily small in the physically relevant limits of the

model. In particular, in the limit lev → 0 in which nucleation points approach the

horizon radius, the factor |fB(r0)| → 0 while the other remains finite, so that

χdtr → 0. (3.35)

Physically, it is likely that this limit should be taken only down to the Planck

scale, so that lev ≈ lpl, in which case one would interpret the violation of energy

conservation to represent a small quantum fluctuation. Since energy conservation

is restored in the physically relevant limits of the model, the model remains a
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useful approximation to physically realistic spacetimes.
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