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ABSTRACT 

We calculate the distribution of secondary particles C in processes A + B- C + 

anything at very high energies when (1) particle C has transverse momentum pT far in 

excess of 1 GeV/c, (2) the basic reaction mechanism is presumed to be a deep- 

inelastic electromagnetic process, and (3) particles A, B and C are either lepton (Q), 

photon (y), or hadron (h). We find that such distribution functions possess a scaling 

behavior, as governed by dimensional analysis. Furthermore, the typical behavior 

even for A, B and C all hadrons, is a power law decrease in yield with increasing 

pT, implying measurable yields at NAL of hadrons, leptons, and photons produced 

in 400 GeV pp collisions even when the observed secondary-particle pT exceeds 

8 GeV/c. There are similar implications for particle yields from e’ - e- colliding- 

beam experiments and for hadron yields in deep-inelastic electroproduction (or 

neutrino processes). Among the processes discussed in some detail are QQ - h, 
, 
‘* YY” h, Qh- h, yh -h, yh- Q, as well as hh- 8, hh- y , hh- W, and W- h, 

where W is the conjectured weak-interaction intermediate boson. The basis of the 

calculation is an extension of the parton model. -The new ingredient necessary to 

calculate the processes of interest is the inclusive probability for finding a hadron 

emerging from a parton struck in a deep-inelastic collision. This probability is 

taken to have a form similar to that generally presumed for finding a parton in an 

energetic hadron. We study the dependence of our conclusions on the validity of the 
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parton model, and conclude that they follow mainly from kinematics, duality argu- 

ments a la Bloom and Gilman, and the crucial assumption that multiplicities in 

such reactions grow slowly with energy. The picture we obtain generalizes the 

concept of deep-inelastic process, and predicts the existence of “multiple cores” 

in such reactions. We speculate on the possibility of strong, non-electromagnetic 

deep-inelastic processes. If such exist, our predictions of particle yields for 

hh - h could be up to 4 orders of magnitude too low, and for yh- h and hh - y 

up to 2 orders of magnitude too low. 

P 
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1. Introduction 

It is often said that the fundamental reason for building particle accelerators 

of increasingly higher energy is to probe matter at increasingly small distances. 
1 

However, what is said is often not what is done. The connection between longi- 

tudinal momentum and longitudinal distances is, if anything, the opposite; as the 

energy increases the important longitudinal distances increase. 
2 The connection 

between transverse momentum and transverse distances, indeed, is likely to be 

that given by the Heisenberg uncertainty relations. Nevertheless, the extensively 

studied two-body and quasi-two-body processes are dominated by impact parameters 

of order 1 fermi, independent of incident energy. Distributions of secondary par- 

ticles in strong interactions are dominated by low pT 5 0.5 GeV corresponding 

again to the same distances - 1 F, of the order of the physical extension of the 

particles. Indeed, these distributions fall so precipitously with increasing pT, 

with empirical fits typically of the form exp( - a p,) or exp( - b p;) , that one is not 

sure whether there will be measurable production of very high pT ( > 5 GeV) par- 

ticles in strong interaction processes. 

On the other hand, high-energy tests of pure quantum electrodynamics do ex- 

hibit a sensitivity to small distances, and more recently deep inelastic electropro- 

duction experiments and high-energy neutrino processes have opened up a new class 

of processes which indeed appear to be sensitive-to small transverse distances. It 

is the purpose of this paper to explore as systematically as possible the implica- 

tions of this class of processes in hadron-hadron and other kinds of collisions. Spec- 

ifically, we examine inclusive processes initiated by high-energy hadron, photon, or 

lepton projectiles in which the observed particle has large transverse momentum, i. e. , 

greater than several GeV. If the exponential transverse momentum dependence 
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associated with pure hadronic interactions remains valid for somewhat larger 

values of transverse momentum, then the differential cross sections will decrease 

sufficiently so that electromagnetic interactions could become important. In 

fact, we find that the known deep-inelastic electromagnetic mechanism is suf- 

ficient to provide a population of the high pT region of phase space which falls off 

(at sufficiently high energy) roughly as a power, not as an exponential of pT. 

In order to estimate the contribution to inclusive processes from an electro- 

magnetic effect, we use an extension of the parton model3 where the basic process 

is the electromagnetic interaction between the constituent partons. While the 

parton model is, to be sure, of dubious quality, we believe that most of our quali- 

tative conclusions follow (within, say, a factor 10 accuracy) from two general 

considerations. These are, firstly, the overall kinematics; and secondly, the 

presumption that the mean multiplicity for these high-p?. processes grows slowly 

with increasing incident energy, final p 
II and pT; say, more slowly than a power 

of these variables. This will be discussed in more detail in Section IV and in the 

conclusion of the paper. 

To compare with the extrapolations of the hadronic reactions, we consider as 

an example the inclusive process A + B -+ C + anything where A, B, and C are 

hadrons. The graphs in Figure 1 compare our parton model calculation of the dif- 

ferential cross-section to observe particle C at-90’ in the c. m. system with a . 

conservative extrapolation4 (du/dp$ N e 
-6PT 

) of the purely hadronic background 

for an N. A. L. condition of s = 800 Ge 3. In particular, the comparison shows 

that in the neighborhood of pT M 5 GeV there should be an abrupt flattening of the 

slope of the observed cross-section. For smaller angles this could occur at an 

even smaller value of pT. 
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Of course, the extrapolation in pT of the form exp(-6pT) to such large 

values could be quite erroneous. On the other hand, the electromagnetic process 

must be present and thus our results based on electromagnetic contributions may 

be viewed as a lower bound on the real cross-sections at large pT. 

It may even be that the electromagnetic contribution to such a process is 

never dominant. Such a case exists in the model of Wu and Yang’ which describes 

elastic proton-proton scattering data reasonably well. In the Wu-Yang model, 

partons interact strongly with each other via a current-current coupling, such as 

would arise from exchange of a J = 1 “gluon”. If such an analogy to the vector 

electromagnetic interaction should hold true for the inelastic case, 6 then because 

of the slow fall-off with respect to q2 of the electromagnetic structure function a 

similar weak dependence would be expected for the analogous large momentum 

transfer hadronic reaction. In this case we would expect similar distributions to 

the examples given here, but increased in order of magnitude by a factor of 5 lo4 

since the factor of o2 would be absent. This emphasizes our point of view that the 

purely electromagnetic processes provide only lower limits to the real differential 

cross-sections. 

However, while the interpretation of inelastic electron scattering supports 

the fact that the photon-parton couplings exist, only vague speculations can be 

made regarding the pure strong parton vertices. We will thus confine ourselves 

to only those processes where the scattering vertices occur through photon emission 

or absorption and thus expect only a lower limit on the possible size of these 

processes. 

In any case, this lower limit shows a reasonable magnitude for the expected 

large transverse momentum cross-section, indicating that study of these processes 
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is not only of considerable theoretical interest but also definitely within the 

realm of experimental feasibility. 

The main body of this paper is divided into four sections. In Section II we 

introduce the parton model used in the calculations and generalize the notion of 

deep inelastic processes to encompass a wide class of scattering processes. Our 

parton model is specified by two differential probabilities: the first, called F(x), 

describes the constitution of an energetic hadron as an ensemble of partons and a 

second, G(x), describes the decay of a parton isolated in phase space into a system 

of hadrons. The existence and properties of G are motivated on the basis of our 

experience with hadron-hadron processes. Two forms for G are proposed which 

should bracket the true function which will be measured in colliding beam experiments. 

In Section III we sketch the calculations of the inclusive differential cross- 

set tions of interest. We find that they can be written in a universal form consisting 

of two factors, 47rcu2/p: characteristic of single photon exchange and a form factor 

l g(- ;, -i). The numerous calculations are organized into several subsections 

according to the presence of hadrons in the initial or final states. We make detailed 

numerical estimates of these form factors and present the results in numerous 

graphs. In a final subsection we consider weak processes, including the production 

of the W boson, which might be observable in hadron-hadron collisions. 

In Section IV we discuss in more detail the physics underlying our assumptions 

concerning the function G. Invoking two familiar sum rules and a generalization of 

an argument due to Bloom and Gilman,‘we motivate our guesses for the functional 

form of G which were used in the numerical estimates. We finally consider the 

sensitivity of our predictions to the possible failure of these various speculative ideas. 

In Section V we summarize our conclusions and major experimental predictions. 

Details underlying the calculations contained in Sections II-IV are contained in 

four lengthy appendices. 
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II. Definition and Properties of Deep Inelastic Processes from the Parton Viewpoint 

In the parton model an energetic physical particle is viewed at any instant as 

composed of a collection of pointlike constituents, the partons. They are the 

quanta of Ho, where Ho is the kinetic energy portion of the hamiltonian. For our 

purposes, a physical photon or physical lepton is predominantly composed of one 

parton, the bare photon or bare lepton, with perturbation theory sufficient.to obtain 

the corrections. The parton composition of hadrons is certainly more complex. 

From the observed behavior of hadron collisions , i. e. the approximate dx/x 

dependence of the inclusive differential cross-section, the probability of finding 

a hadronic parton in some region of momentum-space is presumed to be roughly 

constant per unit of log p,, and rapidly decreasing as pT increases. 

In a collision process the parton distributions of target and projectile are 

modified by their interaction. In quantum electrodynamics, the coulomb inter- 

action between charged partons predominates at high energy. Also possible is 

low momentum transfer exchange of partons in those regions of phase space where 

the parton distributions of target and projectile overlap. 

In hadron processes, Feynman3 views this latter mechanism as the pre- 

dominant interaction in ordinary collisions. On the other hand, we shall define 

deep inelastic processes as those relatively rare processes where at least one 

parton is produced in the final state a large distance in momentum-space from 

all initial-state target or projectile partons. In particular, this requires such a 

final parton to have high pT, since for small pT longitudinal phase-space is 

generally well-populated with partons. Because deep inelastic processes are rare, 

it is reasonable to assume that one elementary process involving a very small 
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number of initial-state partons is responsible for production of high pT partons 

in the final state. Division of one parton into two high-p?. partons is not possible 

if the partons are light or massless (as we shall assume) except as a highly 

virtual intermediate state. Therefore, the simplest elementary process is high-pT 

parton-parton scattering, and the simplest coupling8the point Yukawa coupling of 

Figure 2. This celebrated diagram is to be taken here with point vertices, and 

only when the exchanged pT is large and the net amplitude small. 

It will prove convenient to catalog these possible elementary processes on 

the basis of the types of partons (bare leptons, bare photons, hadronic par-tons) 

present in a particular diagram. The possible diagrams are shown in Figure 3. 

In each case the vertices and propagators are taken as pointlike. Processes (a) 

and (b) are pure quantum electrodynamics of leptons and photons in lowest order. 

Process (c) exists to the extent that the parton model is a correct (or at least 

kinematically adequate) description of deep inelastic elec troproduc tion. Existence 

of (d) is assured from the existence of (c). Process (e), partoncompton scat- 

tering, requires the concept of a highly virtual hadronic parton, but 

otherwise no unknown couplings. Thus, while less compelling than (a)-(d), its 

existence is at least plausible. Processes (f) and (g) require strong pointlike 

trilinear couplings of partons to each other. These are presumably the unre- 

normalized vertices and may possibly be ~0 -1 - = 0. These elementary processes have no 

or one power of e rather than two for the others. They would, if present, be 

expected to dominate various high pT processes. 

We have little evidence on which hadronic partons exist (indeed, whether the 

concept is correct). We feel it is relatively futile at this stage to speculate wildly 

about the nature of strong parton-parton interactions. Therefore, we consider mainly 

the elementary electromagnetic processes (a)-(e). The results we obtain, as 
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mentioned earlier, should be regarded only as rough lower bounds, especially 

for those processes for which one can identify possible mechanisms of the type 

(0 and (g). 

After defining the fundamental scattering event in the infinite momentum 

frame as the interaction between the constituent partons, the calculation requires 

two additional elements. These are the connections between the initial physical 

state and the parton system, and, after the interaction, the return of the parton 

system to the observed final physical state. 

The first is the probability that a hadron of type a is a collection of partons, 

one of which,with fraction x of the total momentum, interacts with a photon. 

This probability is given by (Fai(x)/efx) for the ith parton of charge ei. The function 

Fai(x) depends in general on both the type of parton and hadron. For inelastic 

electron scattering where the hadron is a proton, it was shown by Feynman “lo that 

summing over all partons gives 

’ Fpi (X) = ‘We) (x) 
i 

(11.1) 

where x = Q2/2mv. 

The second element is the determination of the probability of finding a hadron 

of a certain four momentum in the final state, given the configuration of partons 

produced by the deep-inelastic process. Here we make the following guesses, 

motivated by the reciprocal analogy to the nature of the first element: 

. 

1. If a deep-inelastic parton of high-pT has four-momentum pP (p’: M O), then 

any member of the final system of hadrons of high pT has four-momentum p’ x xp P P 
; 

in other words, there is a limited pT exchange between the parton and such observed 

hadrons. 
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2. The differential probability, dPic, of finding a hadron c associated 

with the produced parton i and having fraction x of the parton longitudinal momen- 

tum is 

dPic = $ Gic(x) (11.2) 

This probability is independent of the rest of the environment; e.g., the incident 

energy, incident particles, or other partons. 

These guesses, which we expect the reader to find somewhat arbitrary, are 

motivated in Section IV, where, in addition, many properties of the function G 

are derived. 

Two of these properties which are useful in suggesting a definite functional 

form for G are the following sum rules: 

1. Integrating Gic(x)/x over allx counts the contribution of the hadrons of 

type c repeatedly Ei c times over and thus, 
3 

1 

s 
dx Gic(x) y = ii. 

mC’EO 
1,c ' 

(11.3) 

where 6 i 
, 
c is the mean multiplicity of particle type c of mass mc emerging from 

parent parton of type i and energy Eo. 

2. Conservation of energy in the parton decay into hadrons requires 

Gic(x) dx = 1 (11.4) 

independent of i (the type of parton). 

The latter sum rule suggests the approximation that Gic is independent of i, 

the type of parton. Further, since in our calculations we allow any hadron to be 
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observed, we define 

c Gic(X) = Gi (x) = G(x) . 
C 

(11.5) 

Intuitively we expect G(x) to be similar to the longitudinal momentum distributions 

in purely hadronic inclusive reactions in which a leading particle is observed. 

For example, the longitudinal momentum distribution G(x)/x of the observed proton in 

P + P +P + anything is essentially flat for a large range inx. Further, we show 

in Section 4 that a power law behavior in (l-x) is expected for G(x) when x is in 

the vicinity of unity. This is qualitatively the same kind of functional dependence 

as vW2 and so, in the absence of any more precise knowledge, we will take G(x) 

proportional to vW2 with the constant of proportionality chosen to satisfy (II.4). 

This approximation should be sufficient for the kind of order of magnitude esti- 

mations of interest here. 

We test the sensitivity of our calculations to the explicit choice of the function 

G(X) by considering a second possibility of the form G(x) = 2 (1-x)which is also 

commensurate with our intuition, the sum rules and the power law nature of G(x) 

near the endpoint x = 1. In the numerical estimates here this choice can yield 

nearly an order of magnitude larger values for our expected cross-sections and 

thus gives an estimation of the sensitivity of our results to G(x). 

We will see in Sections III and IV that if one accepts our parton model, the 

function G(x) can be directly related to the colliding beam experiments and to ’ 

elec troproduc tion of hadrons. The data which will soon be available will eliminate 

our uncertainty concerning the character of G(x). 

To give experimental support for the existence of the function G(x) as well as to 

test for the presence of strong parton-parton interactions, it is important to search 
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for other experimental consequences of deep-inelastic processes. We briefly 

digress to discuss what general characteristics they would probably have. Con- 

sider proton-proton scattering in the center-of-mass frame under CERN ISR con- 

dit ions. In phase-space a typical initial-state parton distribution is shown in 

Fig. 4a. Suppose the partons with longitudinal momenta -9 and +16 suffer a deep- 

inelastic scatter through 90’ in their center-of-mass, producing intermediate 

state (b) in Fig. 4. This state may further evolve through final-state interactions 

which predominantly would not be expected to also be deep-inelastic. At the very 

minimum, the isolated high-p?, partons will communicate with the wee partons by 

cascade emission of partons. If only low pT mechanisms are involved in the 

cascade, the resultant parton-four-momenta (approximately null) will be propor- 

tional to the parent parton four momentum, The result is Fig. 4c. The hadron 

distribution would also be similar to Fig. 4c, and the loci of all phase-points in 

momentum space of secondary hadrons in such an event would lie along three 

straight lines with perhaps a dispersion ApT of order 0.3 GeV. This is, in 

cosmic-ray parlance, the phenomenon of “multiple cores. ” Measurements of 

the total energy of the cores and their angles determine the center-of-mass 

energy of the parton-parton system and also the center-of-mass scattering angle. 

Such information would shed much light on the nature of the most basic elements 

of strong interaction dynamics, despite the factthat the parton charge, spin, 

etc., are not directly observed. 
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III. Cross-Sections for the Various Processes 

A. Kinematics 

In the limit of high energy and high transverse momentum, we assume that 

we may neglect all hadron masses, parton masses, and parton or hadron trans- 

verse-momentum exchange in the structure factors F and G, as discussed in 

Section II. Thus no intrinsic dimensions remain and all cross-sections we discuss 

will exhibit a scaling behavior. It behooves us to introduce scaling variables in 

terms of which the cross-section formulae are concisely written. With the notation 

of Figure 5, we choose 

(111.1) 

which satisfy 

In the laboratory frame (b at rest) 

&, - 
a 

and thus xl is the customary longitudinal fraction. In any collinear frame 

(IILB) 

(111.3) 

(III.4) 
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where p T is the transverse momentum of the produced particle c. Also (for 

any co11 inear frame) 

(111.5) 

where 8 is the angle between za and g c. 

From dimensional analysis, and in accord with our specific calculations, we 

write for the laboratory differential cross-section for the inclusive process 

a + b- c + anything 

, ’ . 

or 

nE S-=-E 
’ d3pc 

do 

=P%Y 

(III.Ga) 

(III.Gb) 

Tabulation of &~(q, x2) then determines the value of the cross-sections at 

all incident energies, secondary energies, and angles. We consider these pro- 

cesses a + b q c + anything in turn for the generic cases of a, b, and c either ’ 

y, lepton (e or ,u) or hadron. The 18 such cases are classified according to four 

categories discussed in subsections B through E. A few comments regarding weak- 

interaction processes are reserved for subsection F. To guide the reader through 

the maze of processes, cross-section formulae, and curves&o come, the fol- 

lowing table of contents outlines which high-pT processes are discussed in detail: 
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Subsection. B: no hadrons in initial or final states: 

(i) We write down F(xl, x3) for the processes yy- QT, yQ - yQ, QQ - QQ. 

(ii) We show that Compton-scattering of an electron at high pT is feasible 

and interesting in high-energy e- - e* storage ring experiments. 

Subsection C: no hadrons in the initial state; hadron in the final state: 

(i) e’e- - h (+ anything) via one-photon exchange. 

00 YY - h via parton-antiparton pair production; remotely possible to 

measure in e- - e* storage rings. 

(iii) e y - e + anything, or ey - h + anything; this is deep-inelastic electro- 

production from a photon target 
11 

; again it is possibly measurable in e- - e’ 

storage rings. 

Subsection D: one and only one hadron in the initial state: 

(i) Hadron distributions in deep-inelastic elec troproduc tion. 

(ii) Hadron distributions in deep-inelastic Compton scattering. 

(iii) yh * ,u + anything; the virtual muon flux in the incident photon state 

Coulomb-scatters deep-inelastically from the target. 

Subsection E: two hadrons in the initial state: 

(i) hh - Q (+ anything); this is the experiment of Christensen $ &J2, as 

interpreted by Drell and Yan. 
13 

(ii) hh - y ; this is similar to (i) but with the parton-antiparton pair anni- 

hilating into two photons. 

(iii) bh + h via deep-inelastic photon exchange. 
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Subsection F: weak processes and W-production: 

(i) Total cross-section for hh - W + anything via Drell-Yan13 parton- 

antiparton annihilation mechanism. 

(ii) Decay of W into hadrons and leptons. 

B. No Hadrons in the Initial or Final State 

This class includes well-known tests of pure quantum electrodynamics; 

the dominant reactions are 

Y+Y -lr+-J (III.7) 

y+Q -"y+Q (III. 8) 

Q+Q-- Q+Q (111.9) 

c 
y + y - y + anything (III.16) 

Reaction (IILlO) is not very interesting, being dominated by routine radiative 

corrections to (111.7). For future convenience we record g(ab - c) for reactions 

(111.7), (I&8), and (llI.9) in our scaling variables xl, x2: 

@(QT -Y) = gtyy--Q) = by2(1-2~~~)~(x~+~-l) 

HyQ - y) = 8 x&l f x12,6(x1 + x2 -1) 

.g(eF - e) = $ x12(1+xj2)6 (xl+ x2-l) 

(Coulomb diagram) 

g(eZ -p) = + $<(l -2xlx2)6(xl+x2-1) 

(annihilation diagram) 

(111.11) 

(mi2) 

(III.13) 

(IIL14) 

(III.15) 
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Reactions (III.7) and (III.9) are prominent channels in e+e- colliding beam 

experiments and need no discussion here. Reaction (III.8) is of interest in high 

energy e+e- or e-e- colliding beam experiments as a test of the electron propa- 

gator in the timelike region (e.g. production of e* resonances). The quantum 

electrodynamic cross-section for ye elastic scattering through angles greater 

than 45’ in the center-of-mass frame is 

2.5 x 10m31cm2 u 
Ye st@V) 

2 
(III.16) 

Upon taking s = (10 GeV)2 and a probability of 4% that an electron contain a suf- 

ficiently energetic Weizsacker-Williams virtual photon to initiate the process, 

this still gives a cross-section of order 10 
-34 cm2; perhaps within the limits of 

feasibility. 

For later convenience we also record the result of folding (III.12) over the 

equivalent-photon spectrum14e(dk/k) Al- $ +3 C$ _ k ‘1 carried by an electron. The 

single photon spectrum for process (111.12) then has the form 

SF ee (e)y-y+... = E &l-u+$[.Sye-ye~; ‘x2) + (X,d x2)/ 

(111.17) 

= +-x2+; x$ -[1-(&j +$g]+P1-x2) ’ 

2c! E 
where E = eff 

‘3;- 1% yg- is the probability of finding a virtual photon in the electron, 

typically N 0.04. m:ation (III.17) is plotted in Figure 6 for E = 0.04. 
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C. No hadrons in the initial state; hadron in the final state 

This class of reactions includes 

Q +a - h + anything (via single photon exchange) 

Y’Y --) h + anything 

Q ‘Y - h + anything 

(IIL18) 

(III.19) 

(III.20) 

They are all of interest, and we discuss then in turn. Process (III.18), 

illustrated in Figure 7, is of great importance in the current e 
+ -e- colliding beam 

experiments. We may compute the cross-section in our simple model 
15 by con- 

voluting the point cross-section for production of a parton-antiparton pair (qs) with 

the probability dPia for production of a hadron of type a possessing four-momentum 

qP in dx from a parton i of four-momentum pP. As discussed in Section II, this 

differential probability is assumed to be given by 

dPia = + Gia(x) (111.21) 

independent of the rest of the environment in the reaction. In the center-of-mass 

frame, the point cross-section is 

dc 
FiTi 

= z$ (1 + cos2q (111.22) 

Therefore the cross-section for process (111.18) for production of a hadron of type 

a and momentum p is 
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d”a 
pd0p = $1 -I cos2B) c e; Gia ?$I 

i S 

and where ei is the charge of the ith parton (or antiparton) type, assumed here 

to be spin 3. In general, for the purposes of estimating yields we shall in this 

paper 

a) sum over hadron channels a 

b) assume the only charged partons have quark quantum numbers 

c) assume c Gia(x) is independent of the parent parton type i. 
a 

As discussed in Sections II and IV, this third assumption is made more 

plausible by the observation that, independent of i, 

c .l 
a 0 

dxGia(x) = 1 

Thus we hereafter put 

(III.23) 

(111.24) 

C GiatX) ~ G(x) 
a (III.2 5) 

Equation (111.23) can easily be cast in the standard form (III.6), with the form 

factor g given by 

22 - 
“1 x2 

(111.26) 

(Cer= 4/3; the sum is over q and c) 
i 
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In order to continue, a form is needed for G(x). As mentioned in Section II, 

and as will be further discussed in Section IV, we have the conditions 

1 

s g G(x) = ?i = mean multiplicity of jet 
m/E x 

1 

/ dx G(x) = 1 
0 

(III.2 7) 

G(x) - (1-x)’ x=1 

where p is related to the form factors Fi for exclusive processes in such a way 

that p probably lies in the range 1 to 3. We therefore choose as extreme cases 

with 

G(x) = 2(1-x) (III.2 8) 

G(x) = 6.84F(x) (III.2 9) 

F(x) = 0.56 (l-~)~ i- 2.2 (Lx)~ - 2.6 (l-~)~ (III.30) 

an empirical fit to the electroproduction data. 
16 

With these choices gQm- h(xl, x2) is plotted in Figure8 and Figure 9. In 

addition, we plot, in Figure 10 and Figure 11, p(dc/dQ dp)cm at Bcm = 90’ for 

center-of-mass energies of 5 and 8 GeV, along with the background of low pT 

secondaries computed in Appendix D. This background is estimated according 

to p-dominance; the hadron production expected from p” -p” collisions is multi- 

plied by (250) -2 and folded into the Weizsacker-Williams virtual photon spectrum 

as in (III.35). 
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The process y + y - h + anything, (III.19), is measurable in principle in 

colliding-beam experiments at high energies via the collision of the virtual photons 

carried by the leptons. As shown in Figure 12, parton-antiparton pair production, 

Y+Y - q + q, provides a mechanism for producing hadrons of high pT . To 

compute the production cross-section consequent from the mechanism of Figure 

12, we observe that for the lepton processes 

(III.32) 

Therefore, from (111.23) and (III.25) 

(111.33) 

(z et = 4/9\ 
i 

or in terms of the form-factor 

gtx~~x~)yy-h = 8 (III.34) 

g is plotted in Figures 13 and 14, along with a modified form in Figures 15 and 16 

suitable for colliding-beam experiments, obtained by folding (III.34) over the 

spectrum of equivalent photons, as described in Appendix A. 

(III.35) 
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E2 M is again the probability of finding photons in the leptons and 

is set equal to 1.6 X 10 -3 in Fig. 15 and 16. The cross section for the high-p?, 

process (e* e-- e* e-h + . . . ) typically is - lo-2 to 10 -3 as largeas the 

corresponding lepton annihilation process. Therefore it appears that the prospects 

for measuring this channel, e, g. , in high-energy e-e- collisions, are rather remote 

but not unthinkable. 

The third process (III. 20) is deep-melastic scattering of a lepton from the 

vector hadron states coupled to a real photon. I1 It can be estimated in terms of 

the process Q + p” - h + anything, as discussed below in Subsection D. One must 

remember that the meson electromagnetic vertices may not fall as rapidly with 

increasing Q2 as nucleon electromagnetic vertices. Then by the Drell-Yan l7 or 

Bloom-Gilman’ argument (Section IV), the structure function F(x) may not fall 

as rapidly near x = 1 as v W2 does for the nucleons. In other words, for meson 

targets F(x) may look more like 2 (1 -x) and less like v W20 But in any case this 

mechanism is 0 ( a4) and thus the net yield for this process is not much better 

than for the deep-inelastic v process (III. 19). 
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D. One and only one hadron in the initial state 

The initial states of interest here include yp, pp, ep, and up, although the 

latter is outside the scope of these considerations. Our results, however, are 

readily adaptable to that case as well. The generic inclusive processes are 

Q +h-, Q + anything (III.36) 

Q +-he h + anything (111.37) 

Q t-h- y + anything (III.38) 

y-r-h-, y + anything (111.39) 

y+h+ h -t= anything (IIL40) 

y’h- Q + anything (111.41) 

Process (IIL36) is the original deep-inelastic channel of electroproduction and 

needs no elaboration here. lo We only record g(xl,x2) in order to provide a 

simple basis for comparison with other secondary distributions 

T2 2 “2 
*(+%)Qh+,Q = 6 ‘-“1 t1 ‘xl )Ftq) l 

(111.42) 

It is plotted in Figure 17, using Eq. (III.30) for F (F= vW2). 

The distribution of secondary hadrons in electroproduction, channel (111.37), 

is of considerable current interest. The model we use here asserts that the hadron’ 

distribution in this reaction will be closely related to that found in the very high 

energy colliding-beam processes. The mechanism is illustrated in Figure 18. In 

terms of the G(x) defined in the previous section, the distribution of longitudinal 

momentum p of produced energetic hadrons of type a in the laboratory frame is 

given by 
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doa 47m2 - 
dQ2dv dp Q4v 

Fi t~v) ~~‘ia (~,I ) (III.43) 

where the sum is over produced parton types i, and Fi is the contribution to vW2 

from partons of type i. The rest of the variables are defined as in reference 10. 

Upon summing over a and assuming as before that c Gia = G independent of i, 
a 

we find simply that the distribution of energetic hadrons has the same functional 

dependence as in colliding beam experiments: 18 

dN 
dp 

= ;G(f) elec troproduc tion 

(III.44) 
dN -= 
dp $ G?f) colliding beams 

S 

Again, small zT relative to the direction of the virtual photon for the 

emerging hadrons has been assumed; this is discussed more in Section IV. We 

record st+ %)Qh- h below and plot it in Figures 19 and 20: 

ga(Ty X2)Qhe h = 2 3 
i J 

a3# (l+ y2)Fi 
(1-Y) 

. 

(III.45) 

( @- = c ga) 
a 

Turning now to process (111.38), Qh e y , it appears to be useful, at best, 
19 

as a way of testing quantum electrodynamics by wide-angle bremsstralilung ; 

i. e. Compton scattering of the Coulomb field of the hadron by the incoming lepton. 

We shall not discuss this rather familiar process further. 
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Process (III.39) has been already discussed in the literature from the parton 

point of view. 
9 

It is related, for the quark distribution-functions assumed in this 

paper, to electroproduction by the simple formula (laboratory variables) 

= 0.3 
Pa- EcJ2 

E E 
a c 

In terms of $J 
Yh-+Y’ 

we have 

@+ %),h-.. y = ik ~(l-X1)(l +q, c “2 
i 

e: Fi\lr) . 
-“I 

(IlI.46) 

(III.47) 

The sum over the Fi weighted in a different way from the sum for vW2 

requires a model for the parton distributions which is elaborated in Appendix B D 

We plot .qyh -rh y in Figure 21 using the form-factors Fi described in Appendix A. 
Y 

We emphasize that the elementary process for deep inelastic Compton scattering 

involves exchange of a very virtual parton [Figure 3e]. We must therefore con- 

sider this calculation less reliable than the corresponding calculation for electro- 

production. 
21 

The discussion of the hadron channel (III.40) in deep-inelastic Compton scat- 

tering directly parallels that for electroproducti_on; Eq. (III.44) remains true and 
4 

’ (111.43), appropriately modified using (ItI.46), survives as well. As usual we 

record ,gfor this case and plot it in Figures 22 and 23 for the two assumed forms 

for G(x). 

~(xlyx,)y,- h= &f1 my “1 dy 2(l+y2) x eFFi 
i 

(III.48) 
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One may question whether, in addition to the O(02) process we have con- 

sidered (shown in Figure 24a) there exists an O(o) process (shown in Figure 24b) 

which is associated with an elementary deep-inelastic process involving a strong 

parton vertex (as in Figure 3f). If the lower strong parton vertex exists, then 

copious numbers of high-pT secondaries might result. If the final unobserved 

parton at the lower vertex (Figure 24b) is a J = l* gluon, then the distribution 

function (III.48) multiplied by a factor 5 100 may roughly represent the expected 

distribution. 

We now consider process (111.41), electromagnetic pair-production, which 

is a well-known test of quantum electrodynamics. But another aspect of this 

process, perhaps useful at electron accelerators, emerges at very high energies. 

This is to consider the virtual muons in the y-rays as an effective muon beam. 

One percent of the time there is a virtual muon in a high energy y-ray, while 

typically only < 10 -4 real muons per y can be obtained by converting photons in 

a target. By looking at secondary muons at very high pT, one might observe deep- 

inelastic muon-nucleon scattering with a flux N 100 times greater than otherwise 

obtainable. The flux of virtual muons of given charge per incident photon is 

approximately represented by the formula 

x = E /E 
I-1 Y 

When this distribution is folded against the deep-inelastic formula (111.42), we 

(III.49) 

find for the secondary distribution of muons of given charge: 
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(111.50) 

This is plotted in Figure 25. 

E. Two hadrons in the initial state 

The final three processes are all relevant to experiments at the CERN 

intersecting storage rings as well as to measurements of single-particle distri- 

butions at NAL. They are 

h + h - B + anything (III.51) 

h+h- y -t= anything (111.52) 

h + h - h + anything (111.53) 

Process (IIL51) has been measured by Christensen et alt2and calculated in 

the parton model by Drell and I.3 Yan and many others 20 . We here consider the 

Drell-Yan model, where the process goes only via parton-antiparton annihilation, 

as shown in Figure 26. The function g is in our notation given by 

“1 “2 
dyYO-Y)b-2Y+Y)] c ’ F -t--j Fbi (l-y’ j, e2 alY 

i 

(III.54) 

where the sum over i goes over all parton (and antiparton) types. For protons 

incident and for the quark distributions we have been using (described in Appendix 

B ), ZKMea is plotted in Figure 27. 

Process (IIL52) describes production of yy pairs via parton-antiparton 

annihilation, as in Figure 28. The elementary deep-inelastic process [Figure 3d] 

involves strong parton exchange and is therefore on less firm ground than the 
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previous process, being in the same category as inelastic Compton scattering 

and deep-inelastic hadron production in yy 21 collisions. Given this caveat, the 

computation follows that of (III.54), and the answer is 

(111.55) 

Equation (111.55) is plotted in Figure 29 for the quark-model choices of structure- 

functions described in Appendix B. 

In this reaction, one may again question whether a process of lower order 

in (I might play the dominant role. The elementary deep inelastic parton process 

is the same [Figure 3f] as in the yh- h process discussed in the previous section; 

we illustrate the mechanism in Figure 30. Again, if the unobserved high-b 

parton is a gluon, the photon yield may be estimated by multiplying ghh 
-“Y 

as given in (III.55) by a factor $, 100. This mechanism is, of course, even more 
/ 

speculative than that of Figure 28. 

The final reaction (III.53) of hadron production is of special interest. Photon 

exchange (Figure 31a) between the incident hadrons (or partons therein) is a sure 

mechanism for populating the high-pT region, and the contribution is readily 

calculated from our assumptions. The result is 

Coulomb= 1 
~(5, x2)fi- h 2 

s 
(IIL56) 

This contribution is plotted in Figures 32 and 33 for the quark-model choices of 

form factors F and G discussed in Appendix B. The Drell-Yan parton-anti- 

parton annihilation mechanism [Figure 31b] provides an additional contribution 
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Annihilation = 1 
gc+ x2)hh-- h 

dyldy2 2 
2 --?j- Xl Y2PY2) [1-2y,P-Y2)) 

y1 

X 

(III.57) 

It is plotted in Figures 34 and 35. One sees that it is generally small enough 

compared to the Coulomb contribution that it may be ignored. 

In addition to these O((r2) mechanisms there are elementary deep-inelastic 

parton processes involving possible strong parton vertices which may conceivably 

be present and give contributions of O(a) or O(1). The O(1) contribution associated 

with J = 1 gluon-exchange is the most serious possibility and was discussed pre- 

viously in the introduction. Should the mechanism exist, one multiplies ghh rrg h 

as defined in (III.56) by a factor 5 104. If the mechanism exists, one should 

observe at the CERN ISR secondary hadrons with pT in excess of 8 GeV. 

. F. Weak-interaction processes 

Before leaving this section, it is appropriate to mention the role of weak 

interactions in these considerations. Given the conventional local or intermediate- 

vector-boson current-current couplings, it follows 22 that particle-production via 

virtual-W-exchange processes (or even the direct Fermi couplings) will be much 

smaller than electromagnetic processes because (GJ2)2 << 4n ac 2 -4 for pT 

pT << 100 GeV. However, this is not the case for processes involving production 

of the Wf3 In the process h + h - W + anything, calculated via the Drell-Yan 

parton-antiparton annihilation mechanism one finds 
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1 
(T = 745 

(111.58) 

where c is a sum over parton-antiparton pairs i, -it with the quantum numbers 
i 

of the W. This cross-section is - 4 x 10 -33 2 cm fors>>m 2 w and is plotted 

for the wave-functions we use in Figure 36. The decay branching ratios are, in 

the parton model, l/3 for ev, ,uF, and hadrons. The hadron distribution in the 

rest-frame of the W should be very similar to that for eSe- annihilation, Eq. 

(III.23) or (111.24), with appropriate isotopic-spin modifications. The transverse- 

momentum distribution of the decay leptons is spectacular; it is the same as for a 

W at rest: 

dN 3 -=- 
2 ” 

d$ mW 4~; 
l- -2- 

‘* “W 

(111.59) 

Single-W production in other processes we have discussed requires knowledge of 

the electromagnetic vertex of the W and will not be considered here. 

Neutrino-induced processes, as is well known, share such similar features 

with electroproduction (because of CVC) that we need not dwell on them here. 
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IV. The Relation between the Intermediate Parton State and the Final Hadron State; 

Properties of G(x) 

A basic ingredient in our calculations is the parton model as practised in 

the interpretation of deep inelastic electroproduction. This approach gives a 

description of the initial hadronic system of colliding particles in terms of con- 

stituent partons summarized by the structure function F(x) = vW2(x). We have 

attempted in a similar fashion to relate the intermediate parton system existing 

after the deep inelastic interaction to the final system of produced particles as 

summarized by our use of the function G(x). 

In this section we critically discuss this latter step; in particular, the degree 

of plausibility of the assumptions, the conditions necessary for their validity, and 

the consequences to our predictions if the assumptions fail. 

Given the assumptions leading to G(x) as approximately correct, a great deal 

may be inferred about its properties using the sum rules (II.3) and (11.4). Further- 

more, a generalization of the connection between inclusive and exclusive processes 

as discussed by Drell and Yan, 17 Feynman, 3 Bloom and Gilman, 7 and others 

may be derived. 

To begin let us look again at the configuration of partons in phase space 

immediately after the deep inelastic interaction-for the generic processes of a) 

e’e-- hadrons , b) ep - e + hadrons, and c) pp - hadrons, as shown in Figure 37. 

The collision is depicted in the overall center-of-mass system with the beam axis 

along the z direction and the deep inelastic parton-parton collision defining the 

x-z plane. 
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Our problem is to guess which final state hadron configurations have the 

largest overlap with the post-reaction parton configurations, The most signi- 

ficant consideration in this regard is that a parton which has been given a large 

pT by the interaction (“active partonn) has a large subenergy when combined 

with any other parton in the configuration. It is generally assumed in the parton 

model that the condition of large subenergy of two partons implies little or no 

correlation or interaction between them, i. e. the evolution of a parton which is 

distantly removed in phase space from the rest of the partons should be inde- 

pendent of them. Supposing that this is indeed the case, the problem is reduced 

to following the evolution of each active parton. 

To this end we recognize that deep inelastic reactions are relatively rare in 

hadron physics, and thus, the subsequent evolution of a parton should be dominated 

by a succession of the usual small pT “ordinary” reactions. This condition 

means no large subenergies will be created in the cascading division of the active 

parton into other partons. The resulting parton configurations in Figure 37 then 

have evolved into those shown in Figure 38, consisting of several jets of partons 

with tails pointing back to the origin in momentum space. The parton configuration 

resulting from an ordinary hadron-hadron collision (Figure 39) is also a pair of 

such jets. Feynman conjectures 24 that for such a configuration, the resulting 

hadron distribution will be similar to the parton distribution. Applied to our case, 

this conjecture implies that the distributions of final hadrons will also be as shown 

in Figure 38. 

The eventual disposition of the possible fractional charge carried by the 

active parton is related to the manner in which the tail connects up with the other 

partons at the origin. 
25 

At this point the relative subenergy between the relevant 
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partons will be small and there will be considerable interaction with the tails of 

the other jets present in the final state. Thus, it is not inconsistent that the 

parton jet have fractional charge and the associated hadron jet integral charge. 

These qualitative considerations lead us to three essential assumptions 

which motivate the existence of the function G(x). 

1. The dynamics of the high pI, component of the state factors out from that 

of the rest of the environment. 

2. The < pT > in the parton cascade (e. g. the width of the band of phase 

points in Figure 38) is the usual 300 MeV/c characteristic of the dominant hadron 

reactions. 

3. The parton multiplicity and momentum distribution in each jet are, 

respectively log p and dp/p. 

These assumptions allow us to infer further properties of G(x) which we now 

elucidate. 

We first consider the sum rules (11.3) and (II.4) 

$Gic (x) = iiic = Gic(0)log E. + const. 

* min 

and 

1 

f 
dx Gic(x) = cc, Zcgc = 1 

0 

(IV.1) 

(IV.2) 

where l c is the fraction of the total energy E. of the jet carried by hadrons of 

type c. We derive these relations in Appendix C. However, to make them more 

familiar, we may take the basic definition of G(x) = Z cGic(~), as used in 
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Sections II and III, to be the longitudinal momentum distribution, in the laboratory 

frame, for hadrons produced in process (b), the deep inelastic electroproduction 

process. Because, as viewed in the laboratory frame, the active parton i has 

absorbed all the energy v of the virtual photon, the function G(y) is just propor- 

tional to the inclusive distribution function as customarily defined for projectile 

fragments. In that case the two sum rules (IV.l) and (IV.2) are the well-known 
26 

ones expressing probability conservation and energy conservation, 
27 

respectively. 

The factorization property (the first of the three essential assumptions) tells 

us that the laboratory distribution of hadrons in deep inelastic electroproduction 

is essentially the same as the colliding beam process (a). Provided p,, >> pT for 

the fast hadrons in the deep inelastic electroproduction process (b), then the 

colliding beam distribution function for fast secondary hadrons is easily related to 

that of deep inelastic elec troproduction by 

e+e-+h+ 11x11 ep -) e + h + “x” 
(IV.3) 

where dN/dp is the mean number of hadrons produced in momentum interval dp per 

collision,and v for process (b) is set equal to 4 Js for process (a). 

The sum rules (IV.1) and (IV.2) are extremely useful in both normalizing the 

function G(x) as well as for inferring the behavior of G(x) near the origin. 

Assuming no more than a logarithmic rise of multiplicity with increasing v in 

deep inelastic electroproduction implies that G(xmin) is bounded as 
27 

x-x min w const/v (a result familiar from hadronic processes). The finiteness 
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of G(x) near x M 0, used with the energy conservation sum rule (IV.2), then 

provides a reliable normalization for G(x). 

Finally, we note that it is possible to relate the inclusive distribution 

functions near x M 1 to the elastic electromagnetic form factors in a manner 

similar to the connections between inelastic and elastic form factors discussed 

17 by Drell and Yan and Bloom and Gilman, 
7 

and many others. This 

argument is most easily carried out for the colliding beam process e’e--- r + **x”. 

As the r energy approaches its maximum energy Eo, the missing mass m of the 

unobserved system decreases until at E. it is just the mass of a single r. In 

terms of the energy E of the observed pion, we have that 

(IV.4) 

When m < 2 GeV we may expect to see resonant behavior in the pion distribution 

function G(x) corresponding to the two body channels such as n A, r w , np , and 

atx=l, 7r7r. We assume that whatever the dynamics responsible for the inclusive 

’ distribution, it extrapolates smoothly into this “resonance” region. Then, 

provided the interaction radius is 5 1 F, the number of angular momentum channels 

available to the recoiling system when rns 2 GeV is bounded. We now decompose 

the multiparticle amplitudes which build G(x) into this finite number of angular 

momentum channels, a finite fraction of which are resonant. The amplitudes in 

the resonant channels should be enhanced by a finite factor given roughly by the 

Breit-Wigner resonance formula. Consequently, the contribution of the resonances 

should be a finite fraction of the total contribution to G(x) in the resonance region 

i. e. 
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1 

/ 
hwd - sum of resonances 2 

m2 
2r W;) 

Y2 0 

where - means !fof the same order of magnitude, independent of Eofl. If 

FT (s2) - (s~)-~, then as found by Drell and Yan, and developed by Bloom and 

Gilman, (IV.5) implies that G(x) N (l-x) 2p-1 . It is almost unthinkable that Fn 

(IV.5) 

be smaller than the nucleon form factor. Thus, ps 2. It is even more unthink- 

able that F, > 0 as q2 - 00. Therefore, p > 0 and more probably p 1 1. For 

p = 2,G(x) has all the qualitative features of the famous electroproduction 

structure function vW2, and this motivates our choice of the “minimum” 

G(x) = 6.84 vW2(x) in Section III. The llmaximumll G(x) we take to be 2( I -x) , 

corresponding to Fr (q2) - q -2 asq2 --r.m, and consider it unlikely that G(x) is 

larger than this for large y. Thus these two choices for G(x) could provide 

reasonable upper and lower bounds to the true situation. 

We are now in a position to return to the three assumptions we posed 

earlier in this section and ask what consequences follow if they were not true. 

1. If flfactorization!’ were false, there would be considerable interaction 

between partons of large subenergy and Feynman’s picture of the dynamics would 

have to be abandoned. The most incisive experimental test of ‘lfactorizationf’ is 

the comparison of secondary hadron distributions in ese- colliding beam processes 

(at very high energies) with the hadron distributions in deep inelastic electro- 

production as given by (IV.3). They should be very similar. 

2. If the longitudinal momentum distribution is held fixed and < pT > is 

allowed to grow, the pT distributions calculated in Section III would broaden even 
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further. Thus our choice of low < pT > is the most conservative we could make. 

The cleanest experimental test of this assumption is to measure < pT > as a 

function of p,, and v in electroproduction processes, especially for energetic 

secondaries. 

3. The assumption of low multiplicity is crucial for the calculations of Section III. 

We believe it unlikely that the hadron multiplicity ii at photon energy v in deep 

inelastic electroproduction is smaller than that for photoproduction at the same v . 

But n might be larger, and the sum rules make it clear that in such a case G(x) 

increases for small y, and decreases for large y, possibly becoming, for infinite 

energy, zero execpt at y z 0. Such a situation, 28 of c curse, would drastically 

reduce the yield of high pT particles from what we have estimated. While we 

cannot rule this out, we find such a possibility somewhat unattractive, because 

this would mean a very small yield of high-momentum particles in the colliding 

beam process. However, the power law fall-off of electromagnetic form factors 

and their successful integration into the electroprcduction scaling function by 

Bloom and Gilman strongly suggest a large yield of high-momentum particles in 

the colliding beam process. Again, the measurement of hadron distributions in 

electroproduction, v-processes, and colliding beam experiments will provide clear 

answers as well as well-defined input functions for the calculations of hadron- 

hadron processes. 

We hope that this discussion makes our use of the functions G(x) more plausible. 

We have also attempted to demonstrate that our estimates actually depend rather 

weakly on the details of the parton model, but rely mostly upon kinematics and 

the crucial assumption that multiplicities in the deep inelastic processes grow 
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slowly with increasing energy and pT (more slowly than a power). This latter 

assumption, while perhaps the most popular option around at present, is anything 

but compelling. However, it is susceptible to test, and if wrong, opens up a 

very new and most interesting kind of dynamics itself. 
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V. Conclusion 

We list here some of the more salient features and results as obtained from 

our analysis. 

(1) Particle Production Rates 

For inclusive processes initiated by hadrons, photons or leptons and where 

a final hadron is observed with large transverse momentum we expect several 

orders of magnitude increase in cross-section over what might be expected from 

an extrapolation of existing data with the extrapolating form exp(-6pT). This 

means that for both the ISR and NAL machines there will be high transverse 

momentum particles sufficiently copious to warrant a systematic study of high 

transverse momentum processes. 

Typical cross-sections deduced here vary roughly as a power law in pT 

rather than as an exponential in pT. In particular, Figure 1 shows the expected 

cross-sections for NAL with a beam energy of 400 GeV. 

These cross-sections, which are of order a2, are based on the assumption 

that the scattering at high pT is the result of an electromagnetic interaction. 

Based on our experience with the deep inelastic electron scattering we expect these 

results to yield the correct order of magnitude in a model independent manner, and 

thereby to provide a reliable lower bound to the-expected cross sections. 

The explicit numerical results given here in the various graphs are obtained 

using a parton constituent model of hadrons which also yields relations among the 

many different processes listed in Section III. Within this model our main quan- 

titative uncertainty is in the relation between the intermediate constituent parton 

system and the final observed hadron system. This uncertainty can be eliminated 
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when data becomes available on the spectrum of final hadrons in either deep 

inelastic electron scattering or colliding beam experiments. 

(2) Scaling Behavior 

Since all masses are neglected in our calculations it is natural that the cross- 

sections at large energy and high pT have a scaling property which is given ex- 

plicitly by (III.6a) and (III.Gb). This property is independent of details of our constituent 

model. Except for the factor pk4, characteristic of single photon exchange, we 

expect that the cross-sections will depend on two scaling variables xl and x2 as 

defined by (IlI.1,2). This is in contrast to the observed behavior at smaller values 

of pT (< 1 GeV/ c) where the pT distribution is roughly independent of p 
II 

and s. 

The parton constituent model further predicts that the charge ratios for 

final hadrons in Section 1II.E) should be similar to the charge ratios for final 

hadrons in processes initiated by leptons or photons as in Sections (II1.C) and (1II.D). 

(3) Cores and Multiple Cores 

In Section IV we have described the decay evolution of an active parton and 

motivated the existence of a function G(x) which gives the probability of decay of 

the intermediate parton into the final observed hadron. This function is proposed 

to depend only on the ratio x of hadron to parent parton energies and further 

assumes that the emerging hadron is confined to have only small pT with respect 

to the active parton direction. Thus in electroproduction of hadrons, the longi- 
n 

tudinal momentum distribution should depend only on v independent of Q’ (to the 

extent that the parent parton distribution has only a weak dependence on w). The 

final hadrons are therefore expected to emerge in a core-like distribution along 

the virtual photon direction. 
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This kind of behavior is expected also in colliding beam processes as well 

as in hadron-hadron collisions where the subsequent hadron distributions should 

collect into multiple core-like distributions as discussed in more detail in 

Set tion IV. This kind of distribution is in sharp contrast to a statistical model 

in which the distributions are essentially uniform. 

(4) Similarity of Hadron Distributions in ep and ese- Processes 

The existence of the function G(x) suggests an equality between the number 

distribution of the final observed hadrons in the processes e + p - h + anything 

and e+ + e- - h + anything. Corroboration of this result is fundamental to the 

arguments given here and behooves prompt experimental verification or rejection. 
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APPENDIX A 

Derivations of Cross-section Formulae 

We will derive here the differential cross sections for the processes dis- 

cussed in the text. This material is obtained most efficiently by considering the 

simple quantum electrodynamic processes first and building the hadronic cross 

sections from these parts. Furthermore, after starting the calculations by quoting 

certain familiar formulas for quantum electrodynamic processes written in terms 

of conventional variables such as scattering angle, we will convert to the scaling 

variables xl and x2 and use these almost exclusively from then on. 

Consider 

Q+if-+Q+‘x’ (annihilation) 

for which the differential cross section in the center of mass reads, 

da a2 -=- 
dEdS-J 16E2 

(l + cos2 0)6(E- Eo) (A4 

where E. is the energy of one of the incident leptons. In order to identify 

5+7 - a(xl, x2) for this process , we should write (A.1) in the form of Eq. (11.6a). 

Changing variables, 

2 
E dci =- ‘ITa 

2 
dpll dpT 16E3 

(1 + cos20)d(E- Eo) (A.2’) 

where 

pT = Esin8 , pII = EcosB 
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Recalling that the center of mass expressions for xl and x2 read, 

x1 = 3 g (l+cosO) ) 
0 

x2 =8 $(I-cos@ 
0 

we can easily rewrite (A.2) in the form, 

and identify 

gQ+T -Q(xp$ = 3 x~x~o-~x1x2~~~~+~-~~ 

(-. ) 

The corresponding formula for the processes 

Y+ Y d Q+ ‘X’ Q-l-l-- yf ‘X’ 

is simply obtained from this result by recalling their differential cross section 

So, if we multiply (A.5) by 

we obtain the LF$,x~) for these processes, 

gy+ y-Q Pp,> = $I x&+1-2yp(~+3-1) 

(A.31 

(A.4) 

(A.51 

(A-7) 
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The differential cross section for the scattering 

Q +T -Q + 'X' (scattering channel) 

reads, 

which can be rewritten by the same manipulations as above as 

E do = - 2 
4ncz2 g 

4 
dplIdpT ‘T 

QJ-Q(yy 
(sea. ) 

%-Q(v2 ) = Q x;(l++ 6(3f x2-l) 

(sea. ) 

Finally, the differential cross section for Compton scattering 

y + Q -L y + "X" 

is given by the familiar Klein-Nishina formula 

da 27r(r2 -= -- 
dt S 

Since the scaling variables are 

(A-8) 

(A-9) 

(A.lO) 

(A.ll) 

it is particularly simple to rewrite (A.10) in our standard form, 
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d 
YQ--Y 

@y y2, = 4 yLj(l+ x12,6(x1 + x2-l) 

The differential cross section for observing the recoil Zepton in Compton 

scattering 

y+Q-Q+ ‘X’ 

is obtained from (A.12) by interchanging the labels 1 and 2. So, 

gyQ- Q (yg = 3 x2x12(1 +x&xl +x2-l) 

(A.12) 

(A.13) 

With these results we can go on to progressively more complicated pro- 

cesses involving hadrons. We begin with the colliding beam reaction, 
I I 

Q+T - h +‘x’ 

which is visualized in Figure 7 . The differential cross section is given by the 

product of the differential cross section for the parton event (Q +Td - y - qq) with 

the probability that a hadron of type 71 11 emerge from a parton of type 1f i*?. As c 

discussed in the text, this probability is assumed to have the form 

dPic = Gic(x) $ (A .14) 

where x is the ratio between the 4 momentum of hadron c, p 
C’ 

and the 4 momentum 

of parton i, pi. The cross section for Q +?! - h is then 
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dx + ++;(l-2v2)o&l + ;X2-l)Gic(x) 7 (A.15) 

where the careted variables refer to the parton event. Since the ?2 integral is 

trivial, we are left with a function of ;I1 and x. However, to arrive at our con- 

ventional form for the differential cross section we really want to treat xl and 

x2 as independent variables. This change of variables is easily done by recalling 

the definitions (11.1) : 

2 
+ = - “,I;; , 

(F- PJ2 
“1=- 

(P+32 ’ 

Treating all the four-vectors as lightlike 

that, 

;r2=- 
(P - Pi)2 

(P + F;)2 

(P -PJ2 
xz=- 

(P + 32 

(A.16) 

we easily read off from these relations 

$LL, 
xi +x2 

g/L, 
3+x2 

x = “1+x2 (A.17) 

Finally, substituting this change of variables into (A.15), we find after some 

algebra, 

(A.18) 
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From (A.5) and (A.7) we see that the form factor for the process 

is obtained from (A.18) by multiplication with 

e2 ’ 

iGi 

so, 

= e2 @i +x2)2 

i “rx2 

g yy-h(q’X2) = ~ Z ‘z ‘x2 
i (x1 + x.2) 

2 (r2+X22)Gic(X1+X2) (A.19) 

Now we turn to deep inelastic electron scattering 

Q+h-Q+‘X’ 
k 

shown in Figure 40 . The cross section for this reaction is obtained in the parton 

model by multiplying the cross section for scattering of a lepton off a pointlike 

parton times the probability that parton i of longitudinal fraction x appears in 

hadron a, 

dPai = 4 Fai 6) $ (A.20) 
e. 1 

And if we observe only the outgoing lepton we must sum over the constituents i and 

integrate over x, 

do = c & & i$~ + $.$s(ft, +ft,-l)c$+ Fai (x) -dx 
i ““152 

X (A.21) 



I 
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Of course c Fai(x) is just the structure function “W2 for hadron of type a. 
i 

We will, for the sake of consistent notation, denote it 

Fat@ = c Fai (9 
i 

To convert (A.21) to our conventional form we must find the relation between x, 

i and xl, x2. Using (11.1) 

ii: =- (XP -p’)2 
1 (xP+ p)2 ’ 

;(2 = _ (P-PY2 

txp +P) 
2 

x1 = - tp - PY2 

(p+P)2 ’ 
“2 = _ (P-PY2 

P + P)2 

(A.22) 

(A.23) 

We read-off from these relations that, 

f; 1 = “1, 
52 

X=5 (A.24) 

Furthermore, the square of the center of mass energy for the parton event, $, 

is related to the overall s by, 

^s = (XP + p)2 x2 zxs=-s 
l--i 

Inserting (A.24) and (A.25) into our expression for do, we have 

(A.25) 

(A.26) 



-49- 

We obtain the form factor for deep inelastic Compton scattering 

by the now familiar trick of noticing that this reaction is related to deep inelastic 

lepton scattering via the multiplicative factor, 

We have 

A2 
“2 2 Ae. = 

tq12 e2 

x/- “1 i 
(A.27) 

(A.2 8) 

Now consider the cross section for observing the recoil hadron in deep 

inelastic electron scattering, 

Q +h-h+‘X’ 

The process is visualized and its kinematics defined in Figure 18 . We use three 

ingredients in order to obtain the differential cross section: the cross section for 

lepton parton scattering, the probability that a parton of longitudinal fraction x 

exists in the incident hadron, and the probability that hadron c emerges from the 

final state interaction with longitudinal fraction 2 (measured relative to parton 

Pi’). so, 

da =c 47r02 A2 -2 A A 
4 “1 (1-1-x, )w$+x$-l)d;zl~ (A.29) 

i 
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We are faced now with the usual exercise of changing from the variables x and 

E to the more meaningful pair 3, x2. Writing the definitions, 

x1 = - Pa- Pc12 
xz=- 

@ - PJ2 
Pa’ P)2 ’ Pa + P)2 

Fur thermore, 

pi = xPa , PC = xp; 

(A.30) 

(A.31) 

So, (A.30) can be simplified, 

i = 

‘pa’ P’ 

Pa’P ’ 
;I. = 1 P-P’ 

2 XFp 

(A.32) 
Pa’ Pi 

x++---, x2 =;gg 
a 

Momentum conservation reads, 

p -p’ = p; -pi 

which will allow us to identify relations among several of the scaling variables. 

In particular, 

^x =- 
(Pf -Pi)2 (x Pa- pi’)2 Pa. p; 

2 
(Pi + P)2 

= - 
(xPa+pf = v 
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Inserting this into the invariant expression for xl, and recalling the delta function 

in (A.29), we can solve for x, 

x1 “I 2=-z- 
$ 1-S 

(A.33) 

If we now use momentum conservation to eliminate p! from the equation for x2, 1 

we have 

P* (xPa- P’) 

x2 =I Pa.p 
xi = 3;(x-x;;2) = - 

( ) 
;;X 

1-i l 

So, we can obtain x, 

x= 
x2(1 -5, 

xl$ 

Eliminating x and 2 in (A.29) in favor of the pair xl, x2, we have now, 

where we have renamed +yt o conform with the notation in the text. 

The form factor for the hadron distribution in deep inelastic Compton 

scattering 

y+h-h-t%’ 

(A.34) 

(A.35) 

(A.36) 

is obtained from (A.36) by multiplication with the factor 
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2 "1 (1+y2)ez Fai (A.37) 

We now turn to processes involving two hadrons in the initial state. First 

there is lepton production - 

h+h-Q-t ‘X’ 

whose kinematics are defined in Figure 26. By our usual reasoning the cross 

section is the probability that parton i with longitudinal fraction yi exists in 

hadron a, times the probability that an anti-parton f with longitudinal fraction yT 

exists in hadron b, times the cross section for the parton event. Finally, a sum 

over the types of partons i must be done giving 

FiatYl) 
do=& - 

i e. y1 1 

9 E4”g (1-2f%2)“4 + x2-1)dxldz2 1 
(A.38) 

X 
Fbi (53 ) 

y2 dy2 

Using the invariant expressions for the scaling variables, 

tYzpb- P) 
2 2 

, ; =- 
(YIP,- P) 

tY2’b + YIPa) 
2 

ty, pb + YIPa) 
2 

(A.39) 

“r=- 
cpb- PJ2 (Pa- P)2 

(Pa + pb)2 ’ 
xz=- 

tPa + pb,2 
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and the fact that 5 + k2 = 1, we easily read off from these relations, 

“1 “2 
y1= 7 , Y2 = - 

“r 
1-S$ ’ 

fii = YlY2S 

Now (A.38) can be written in terms of the experimentally meaningful variables 

ga+p(Xl,%) = 3 C “1 52 

i 
YO-Y)[~-~Y(~-Y)]$ Fait?) Fbr \E)dY 

e. 1 

(A.40) 

(A.41) 

where we have renamed the dummy variable + to conform with the notation of the 

text. 

The cross section 

h+h-y + ‘x’ 

is obtained from (A.41) by multiplying with 

e2-L = em 2 1 
i AA 

TX2 
1 Y(l-Y) 

(A.42) 

Parton annihilation processes also provide a potentially important mechanism 

for the production of the W boson, 

h+h-*W+‘x’ 
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Using a slight modification of the argument preceding (A.38), we have the 

production cross set tion, 

Far (Y,) 
u = c-l, -+ F!Ayl bixw($] ; 

ie.e-r J 
dy2 

1 IW 

(A.43) 

where (T- (s) 
llW 

is the production cross section for W’s in the annihilation of two 

partons having appropriate quantum numbers. An elementary calculation gives, 

aiTw(^B) = 2*92,6(&m&) 

(A.44) 

^s = YlY2S 

where m w is the mass of the W, gw is the bare coupling of the W to the weak 

parton current. We have made the natural assumptions here that the hadronic 

partons couple to the W just as the leptons do 

gk/mf = G/J2 

and, for the simplicity of our numerical estimates, the Cabibbo angle can be set 

to zero. Then, (A.43) can be simplified to 

u = &‘rGx{$ -$ + Fai(y)FbTw 
i i “i W 

Next there is the production of hadrons of large transverse momentum in 

hadron-hadron collisions 

h+h-+h+ ‘X’ (scattering channel) 

(A.45) 
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which is drawn in Figure 31% By the now familiar reasoning we can write the 

differential cross section 

da =c v,-jx - Fa i (Xi) 
i j j xi 

Gic (X) 
(A.46) 

X -dX 
X 

where the scaling variables are defined by 

= XP = XP Pj j b’ Pi i a’ = xpf 

The variables f and x may be replaced in favor of xl and 3 without difficulty. 

If we write out the definitions 

,2 
, s = _ (‘impi) 

(Pi + Pj)2 

$=- 

cpb- pc) 
2 

tPa + ‘b) 
2’ x2=- 

tPa + pb> 
2 

we can identify the relations 

and solve for x., 
J 

(A.47) 

(A.48) 

(A.49) 

xZxi 
“j = xxi- 3 (A.50) 
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Finally, the ^s for the parton event is related to the overall hadron-hadron s by, 

^s = (pi + Pj)2 = (XiPa + XjPb)2 = xx s i j xx i-x1 
(A.51) 

It is now straightforward to write (A.46) in terms of xl, x2, x, and xi. We obtain 

where we have renamed the dummy integration variables in the usual way and 

included the exchange term coming from u-channel photon exchange. Interference 

between t-channel and u-channel exchange amplitudes are neglected. At most 

they increase the cross-section by less than a factor of 2 at 90’ in the center of 

mass. 

Hadrons at large transverse momentum can also be produced through the 

annihilation channel shown in Figure 31b. The derivation of the cross section for 

this process is similar to the one just done, but since it is numerically much 

smaller we just quote the result, 

Fa-h (3’x2)= 
%2 

c - 
e2 Yl j 3 

(am. 1 ij 2yl 
~2(1-~2),1-2~2(1-~2fl7 J&i (g)Fb~ 

i (A.53) 

Another class of processes considered in the text is the colliding electron- 

electron beam reactions. Simplest of all is 

e+e-+y+-‘X’ 
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which will provide a test of pure QED. The kinematics for the reaction are 

defined in Figure 41. We will evaluate the high energy limit of this cross section 

using the Weizsacker-Williams technique which states that the probability for the 

initial electron of energy E to have a photon of energy w around it is 

(A.54) 

So, the differential cross section of interest is the product of this probability 

times the cross section for Compton scattering off the electron of momentum pb, 

da = E 

where 

(A.55) 

E 
E = ?log $ ( ) e 

and the careted quantities and the form fat tor fl refer to the Compton process. 

The differential cross section also receives a oontribution from the possibility 

that the photon of momentum p, emerged from the other electron. This contribution 

differs from (A.55) only by the interchange xl z$ x2 and will be added into the final 

expression. Now we must rewrite (A.559 in terms of variables which refer to the 

external particles. Since the Weizsacker-Williams photon is approximately 

parallel to the incident electron, 

k = up, (0 I u 5 1) 
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and so, 

-ii = (k + Pbj2 = @Pa + pbJ2 = us 

(‘b-‘c) 
2 

= 2, g = _ or-PcJ2 

(k+pb)2 ul’ 2 4 +Pbj2 
=x2 

(A.56) 

So, the differential cross section for the process of interest can be written, 

Inserting the explicit form factor for Compton scattering, we have the form 

factor for e + e - y , 

exf l-(- 
[ 

x2 

l-5 
)+$(I -y] [l-xl+:x.g . 

(A-58) 

Hadrons at large transverse momentum can also be produced in e-e colliding 

beams via the reaction diagrammed in Figure 42. In this case, the Weizsacker- 

Williams photon converts into a vector meson which then acts as the target for 

deep inelastic electron scattering by the electron of momentum pb. The deri- 

vation of the form factor for this process parallels the derivation of (A.34) and 

we obtain 
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where the form factors on the right hand side are given by (A.36), multiplied 

by the probability that the Weizsacker-Williams photon is a vector meson (N &)* 

There is also the possibibility that hadrons are produced in a process 

involving two Weizsacker-Williams photons shown in Figure 43. In fact, this 

reaction proves to be somewhat more probable than (A.59). The reasoning which 

resulted in (A.57) may be applied here, and it is a simple exercise to find the 

differential cross section, 

e = f$$ •~e+yy-h(XI’~) 
(A.6 0) 

“1 x2 
9 

ee--Yy 
,,(qJg = E2 ’ e $(l-u+~u2)(1-v+~v2) %y-h(--,v) 

where 3 
YY”h 

is given in (A.19). 
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APPENDIX B 

Parton Distribution Functions 

The processes considered in the text which involve parton-antiparton 

annihilation cannot be calculated explicitly until some assumptions are made con- 

cerning the distribution of types of partons in the hadron. We will assume here 

that a hadron in the infinite momentum frame can be viewed as consisting of 

valence quarks plus a neutral sea of q -4 pairs plus, possibly, additional neutral 
29 

gluons . This means that we can write, 

VW:!(X) = C(x) + V(x) (B.1) 

where C(x) describes the distribution of the quarks in the sea and V(x) describes 

the valence quarks. Furthermore, it will prove convenient to separate zW2 into 

two other terms, one due to partons and the other due to antipartons, 

~W,(X) = P(x) + F(x) (B.2) 

If we also assume that the sea of q-4 pairs consists of an equal mixture of bare 

quarks of all types we have for the proton 

P(x) = 8 C(x) + V(x) 

P(x) = + C(x) 

The model used in the text and described in reference 29 predicts 

C(x) = 0.30 (l-x) 7/2 

V(x) = 1.1 Jx(1 -x)3 

which roughly fits the electroproduction data. 

(J3.4) 
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Now let us ask for the distribution functions for partons of various types 

within a proton. We denote P 
P’ 

Pn, and PA as the distribution functions for p- 

quarks, n-quarks, and h-quarks, respectively. Then, recalling that each quark 

contributes to the distribution functions through the square of its charge, we can 

write 

Pp(x) = c&2 C(x) + 2d(#)2V(x) 

P,(x) = ~(6)~ C(x) + d(+)2 V(x) 

(B-5) 

P,(x) = c($)2c(x) 

The fact that the same constant c appears in each equation reflects our assumption 

that the sea is an equal mixture of quarks of all types. The constants c and d are 

determined from the requirement 

and we find 

In summary, 

P = Pp+Pn+PA=&c(x) +v(x) 

c = 2, d=l 

P = g,+pv 
P 

pn 
= $+$v 

l- PA = BP 

03.6) 

(B-7) 

(B-8) 
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(B.9) 

A similar exercise gives the antiparton distribution functions, 

With these preliminaries complete it is a simple exercise to write the form 

factors for processes involving parton-antipartcn annihilation in terms of C(x) 

and V(x). Let us choose the reaction h + h - 1 + r!x” as an example, 

c -!- F .(z ) F -(z2) = -!- 
i e2 Cl 1 cr (%I2 P (z)P-(z ) + 1 

PlP2 2 Jyz1) p;; (z.9 + 
i (5) 

+ (same terms with arguments interchanged) 

= (;)2;gF(z1) + TV) 9 (z,) (B.10) 

+ 32($F tzl) + $ vtzl)j gH (z,) + s2 $ F tz,) F (z,) + . . . 

= (gqz,, + $yz1))P(z2) + ’ l l 

= Q ( F (zl) P(z2) + wz+ z7 (z2)) 

Other processes involving similar sums are computed in the same way, We simply 

collect the results here and leave the verifications to the reader, 
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1. y+ h --c y+ "x" c ef Fai(zl) = ~~ (zl) + 11 

i 
E wq 

2. h + h- y+ “x1’ C FaitZl) Fbj (‘2) = '(Zl)( tY7i ’ (Z2) 'E V(Z2)) 
i 

+ P(z2)(+ F (21) + E vq) (B.11) 

3 h+h-Q+“x” . c -LF (z)F-(z) =; i e2 ai 1 bi 2 (F qw2) + pq I5 Pa)) 
i 

4 h+h-cW+“x” . (‘2) = ~ (‘fi(‘l)P(Zz) ’ Pi) 

1 lW 
W 

For those processes involving a hadron in the final state the form factors 

involve the additional structure function Gia(x). As remarked in the text our 

cross sections include the summation over the types of observed hadrons and so 

involve only the sum 2 cGic(~). We also argued on the basis of sum rules and our 

ignorance of the precise mechanism governing final state interactions, that it is 

not unreasonable to let this sum be independent of pa&n type i, 

’ c Gic(X) = G(X) (B.12) 

Accepting this, we can calculate the form factor for h + h - h (annihilation channel), 

e2 
C 4 Fai(Z1) sj (Z2) Gjc(z3) = 
ijc e. 

C 4 Fait?) Fbi (Z2) 
i e 1 i 

=- 2” (Wl)~(z2) + W2)~(zI))2 [(tJ2 + tiJ2 + ti)2]W3J 

= 2 pc”l, W,) + Pi) W3) 

(B.13) 
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where we used Eq. (C.10). The remaining sums involving final state interactions 

are computed similarly. We list the results for the reader’s convenience, 

5. Q f Q - h + “x” c 
ic 

ef Gic(zl) = $ WI) 

6. y'y- h -I- “x” C ‘4 GictZ1) = 
ic 

$ WI) 
(B.14) 

7. yi- h +h + “x” c eFFai (il)Gic(z2) = (tF(Zl) + g7 v(zl)) G(zg) 
ic 

e.2 
8 . h + h-a-h + “x” C 4 J&i (Zl)Fbi tZ2)GjctZ3) = ‘jP(ZljF(Z2) +F(zl)p(z~))G(zQ) a 

ijc ei 

In all these applications the incident and target hadrons have been chosen to 

be protons simply because this is the experimentally simplest possibility. The 

results of this Appendix, of course, depend upon this choice. The reader may, 

for instance, consider r* + p - h and calculate the cross section for this process 

along the same lines as discussed here. A more detailed study of this type may 

very well be worthwhile since the results are sensitive to the charges of the 

valence partons making up the various hadrons. 
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APPENDIX C 

Sum Rules 

Here we derive the sum rules (11.3) and (II.4) discussed in the text. 

Consider first the case ef -I- e-- hadrons or y + y -c hadrons. We write the 

fully differential cross-section for producing nl hadrons of type 1, n2 hadrons 

of type 2, etc. ) 

da = F(prs)(dpll . .- dpl, 
1 
)(dp21. . . dp 

2%’ 
. . . tdpal. . . dpan ) 

a 

da = F(p) ‘dp] W.1) 

where F(prs) is symmetric in s for fixed hadron type r. The phase-space element 

dp may stand for d3p or some larger element (such as d 1~ I ). The partial cross- 

section cT (nl. . . na) is obtained by integration over all of phase-space after division 

by the combinatorial factor Fr+!%!. . .n,!] 

u (nl. . . na) = WP) 
nl! n2!. . . na! PPI (C-2) 

The partial single-particle distribution function ~(nl...na)‘~(nl...na) is 
r 

obtained by summing over all the available phase space when p,l is held fixed. The 

combinatorial factor (n,-l)! is evidently required instead of nr! Thus, 

da 
x(nl”‘na) = 

np?) bd 
nl!n2!...na! dp,l (C-3) 

$+q. = nro(nl.. .na) 
r 

(C-4) 
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Hence, upon summation over nl.. . na to obtain 

single particle distribution function, it follows 

hadrons of type 1 is, 

c n... n nl”(nl* * ’ na) 1 a 

c 
nl . . .n a”(nl’ ’ ’ na) 

the total cross-section and the 

that the mean multiplicity for 

(C.5) 

F.6) 

which is the first sum-rule. 

The second sum-rule is obtained by starting with, 

n r 

Eda = kz 
r=l s=l 

ErsF(prs) [dp] 

for fixed nl. . . na, and fixed (total) energy E released to the hadrons. Integrating 

to obtain the total cross-section gives, using the symmetry possessed by F(prs), ’ 

F@rs) [dp] @lEll + 32 E22 + ’ ’ l + naEal) y! . . . na! 

E =dp21 + . . . +Ealg 
21 dp21 al 

dpal 

= E do (nl.. . na) dpr . 
r dpr 

(C-7) 

Summation over final channels nl.. . na yields the energy conservation sum-rule 

(11.4). The same argument evidently can be made with a component of E 

replacing E. 
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Application to electroproduction and deep-inelastic Compton scattering 

is straightforward. For electroproduction the same argument holds for the 

laboratory hadron distributions, where E is replaced by v + m 
P’ 

in the standard 

notation. 

To apply the sum-rules to the function G(x) involving an initial parton, we 

need only invoke longitudinal momentum conservation in the interaction coupling 

the virtual parton to the final physical hadrons. The argument then follows as in 

the other cases provided the momentum of the parton is sufficiently high. 
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APPENDIX D 

Estimation of Background 

In this appendix we estimate hadron backgrounds coming from ordinary hadron re- 

actions. There exists a wide variety of fits to hadronic diffractionpeaks for pT 6 1 GeV/c. 

These include exponentials, exp(- ap,), gaussians, exp(- bpt), and combinations, 

e%t- ‘pT -dpt). For typical values of the parameters a-d the simple expon- 

ential is many orders of magnitude larger than the gaussian fits for pT 2 3 GeV/c. 

We will be conservative and estimate our background in h + h - h c tfanything” 

reactions with, 

E du = ce 
-6 PT 

dp; dp,, 
(D-1) 

although all of the present fits may fail miserably when extrapolated to large values 

Of PT’ 

In order to determine the constant appearing in (D.1) we recall the expression 

for the mean multiplicity in inclusive hadronic reactions obtained in Appendix C, 

ii(S) u tot, inel . (s) = da 

tD.2) 

= &Pns 

However, in proton-proton collisions 



-69- 

utot, , inel. ts) x 3o mbo 
(D-3) 

G(S) = l.lQns + const. 

so the constant of interest is crudely, 

c = l.6.103 (D.4) 

This result then gives the background curve noted in Figure 1. 

We can also write the background in terms of a structure function 

E da = 4na2 

dp; dp,, 
- .gpJy-Omd (xpp) 4 
PT 

(D.5) 

We identify from (D.1) and (D.4), 

background 
g&..,,h cy2s) 

4 -6PT - 64553 
= - 4;a2 ‘Te 

= 2.3010~ x x.,2<s2 e 03.6) 

The diffractive background present in colliding beam processes can be 

estimated by imagining the two virtual photons of Figure 43 converting to two 

rho mesons which scatter strongly from each other. According to (A.60) the 

structure function for this process is simply, 
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where E = 0.04 and we have estimated the probability that a photon is a rho 

meson to be (zjo -) and have approximated the secondary distribution for pp 

scattering by the secondary distribution of proton-proton scattering. (D.7) then 

leads to the background curve plotted in Figures 10 and 11. 
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Secondary particle distributions as calculated in the parton model 

and compared to diffractive backgrounds for typical NAL conditions. 

Pointlike Yukawa coupling between partons. 
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A momentum space visualization of hadron-hadron deep inelastic 
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Kinematics for inclusive processes. 
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$(%,x2) for the process Q + h - h + anything; G(x) = 6.84 vW2 (x) 

S(xl, x2) for the process y + h - y + anything 

/7(x., , XJ for the process y + h - h + anything; G(x) = 2 (l-x) 
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Fig. 23 - ,$(q, x2) for the process y c h - h -t anything; G(x) = 6.84 vW2(x) 

Fig. 24 - (a) Mechanism for deep inelastic Compton scattering 

(b) Possible O(o) mechanism for y+ h - h + anything 

Fig. 25 - g(xl, x2) for the Bethe-Heitler process y + h - p + anything 

Fig. 26 - Drell-Yan mechanism for the process h + h - Q -f anything 

Fig. 27 - g(xl, x2) for the process h + h - Q + anything 

Fig. 28 - 

Fig. 29 - 

Fig. 30 - 

Fig. 31 - 
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Fig. 34 - 

Fig. 35 - 
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Fig. 38 - 

Mechanism for the process h + h - y + anything 

g(xl, x2) for the process h + h - y+ anything 

Possible O(o) mechanism for the process h + h - y + anything 

(a) Photon exchange mechanism for the process h + h - h + anything 

(b) Annihilation mechanism for the process h + h - h + anything 

Coulomb contribution to X(xl, x2) for the process h + h - h + anything; 

G(x) = 20-x) 

Coulomb contribution to eg(xl, x2) for the process h + h - h + anything; 

G(x) = 6.84 vW2(x) 

Annihilation contribution to ,?g(x,, x2) for the process h + h - h + anything; 

G(x) = 20-x) 

Annihilation contribution to S+, x2) for the process h + h - h + anything; 

G(x) = 6.84 vW2 (x) 

Total cross-section for W production in Drell-Yan parton-antiparton 

annihilation model 

Configuration of partons in phase space immediately after deep inelastic 

interaction for (a) e’e-- hadrons, (b) ep - e + hadrons, (c) pp - hadrons. 

Configuration of partons in phase space long after deep inelastic inter- 

action for (a) e+e-- hadrons, (b) ep - e + hadrons, (c) pp - hadrons. 
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Fig. 39 - Configuration of partons in phase space after an ordinary hadron- 

hadron collision. 

Fig. 40 - Mechanism for the process Q + h - Q + anything 

Fig. 41 - Mechanism for the process e + e - y + (e + e) 

Fig. 42 - Virtual photon acting as a target for deep inelastic scattering in 

colliding beam process 

Fig. 43 - Two photon mechanism which can produce hadrons at high pT in 

colliding beam processes. 
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