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Outline

* Introduction and context

» HEA potential benefits
 HEA Compositions

« Characterization studies

« Upcoming irradiation studies

* Brief intro to nanofiber work
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High-power targetry (HPT) overview and challenges
Neutrino HPT R&D Materials Exploratory Map

Next generation multi-MW accelerators expect BB
proton fluence and power density to increase =~ 10X
over previous facilities

(d maged)
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« Target survivability concerns have led several
facilities to limit beam power
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| e Failed in service @ Completed service life @ Future experiments
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« Radiation damage and thermal shock are the
primary material challenges (RIGHT)

Thermal Shock Severity (p/cm?/pulse)

5.E+12
1E+20 1E+21 1E+22 1E+23

* Novel materials offer promising optlons to mitigate Radiation Damage Severity (p/cm?)
these effects

— High-entropy alloys (HEAs) as beam
windows

— Electrospun nanofibers as secondary
particle production targets

upstream end

2t Fermilab
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Radiation damage and thermal shock effects

Veid Vacancy type
Vacancy dislocation loop

Substitutional
impunity atom

Radiation damage: Edge diskocation
« Displacement of atoms from lattice sites ‘
« Transmutation: interstitials and vacancies + gas

o Amophous
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* Fracture toughness reduction oA NIy
- Lattice expansion/bulk swelling _ /29'3335%0333330330\\0

* Thermal conductivity reduction Interstifal impurity atom
» Thermal expansion coefficient Do¥ Intaremat ujom

Material effects:

Interstirial type

Precipiate of dislocation loop

impunity atoms

Beam window properties: mitigate radiation damage/thermal shock
— Resistance to radiation damage effects (embrittlement, swelling)
— High thermal diffusivity (cooling) and specific heat (minimize AT)
— Low coefficient of thermal expansion
— Good (high T) strength/ductility to survive beam pulse stresses
— Low density to minimize beam energy loss and scattering

2= Fermilab
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High entropy alloys (HEAS)

 Alloy with 3+ principal elements

» Near equi-atomic compositions

* Primarily a solid-solution matrix with distorted
crystal lattice (atomic size difference)

» Large composition space (adjustment of
atomic ratios) (Miracle & Senkov, 2016)

10000 g

Many HEAs exhibit:

« Good ductility and high-
temperature strength

« High strength to density ratio
(specific strength)

« Fatigue, fracture, corrosion,
_ oxidation resistance

19 100 1000 10000 Oh et al., Nat Comm. 10, 2090 (2019)
Density | kg-m™® Youssef et al., Materials Research
Letters, 95-99 (2015)

1000 [pemmsmmmmmmsnmmsdespesinoc cpsae ol

100 |

Strength | MPa
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HEA radiation damage resistance

HEAs: beneficial properties to combat damage
» Sluggish atom diffusion
— Due to distortion & size mismatch
— Reduced segregation and defect clustering
— Increased in-cascade recombination
* Phase stability — reduce grain coarsening and
void swelling

Void swelling shown to be less pronounced in more
compositionally complex alloys upon heavy-ion irradiation (3-MeV

Reduced defect segregation/clustering + increased Ni* ions to 5 x 106 cm-2 at 773 K), Lu et al., Nature Com., 2016
recombination:

~6.7%

 Minimizes void formation & swelling (right, top) = g '™ ‘st Sweling of
« Reduces bulk swelling effects (right, bottom) £ ol complex
. = alloys under
* Increasing # of elements — greater effects (vs. & ion irradiation,
pure materials/traditional alloys) g | i;'ﬂrﬁfé"’
. - - ' ' ? ol e e g | Mcvc Materialia 119
Phonon scattering/migration energies s Weacr “03% <k l 2016)
NiFe NiCoFe
o Samples NiCoFeCrMn * .
3¢ Fermilab
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HEA compositions for study

CALPHAD simulations to select compositions with:
« Broad range of single-phase BCC structure
— Increased ductility and machinability e
— Strengthening through B2 precipitates : Jj“
— Lower temperature for Laves phase formation )
* High C, to reduce AT — lessen thermal shock

Periodic Table of the Elements
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2 generations of compositions

4 Gen. 1 HEA compositions
« Varying number of alloying elements:
— CrMnV: Equimolar with single BCC phase
— CrMnTiV: Ti as impurity getter
— AICrMnTiV: Al to stabilize BCC phase
— AICoCrMnTiV: Co for B2 precipitates
« HIP at 1200 °C for 4 hr following arc-melt

 Homogenized at 1200 °C for 48 hr

HEA samples sealed in quartz under vacuum
before heat treatment (UW-Madison)

Sectioned arc-melted
ingots (UW-Madison)

8 5/6/2024

8 Gen. 2 compositions from Sophisticated
Alloys to study effects of relative concentration
* 5 AICoCrMnTiV compositions to study:
— Varied Ti concentration as impurity getter
— Varied Co concentration to promote secondary
B2 phase
* Increased Al content without Cr for BCC
phase stability
« Absence of Co: Al as B2 phase enhancer

* 4 hr HIP under Argon

— 1200 °C, 100 MPa
 Vacuum Anneal

— 1200 °C for 4 hrs

— Cool to 650 °C

— Soak for 36 hr

— Force cool to < 55 °C in Ar

Gen. 2 plate from
Sophisticated Alloys

2= Fermilab



Initial pre- and post-irradiation characterization

Pre-irradiation studies Post-irradiation comparison

* Elemental composition .

— Homogeneity and impurity segregation .
» Grain structure and orientation .
— Grain size distribution .
— Orientation impact on mechanical properties
» Crystal lattice structure and spacing .

— BCC composition with B2 precipitates?
Mechanical properties

— Hardness and elastic modulus .
— Yield/tensile strength

— Fatigue life

Specific heat capacity

— Higher to minimize AT during a pulse
Coefficient of thermal expansion

— Minimize to lessen thermal shock effects

i ]
£

9 5/6/2024

Wisconsin lon Beam Laboratory (IBL) Gen. 1 HEAs for irradiation

Ti64: baseline performance

Elemental Segregation

Grain coarsening

Crystal lattice expansion

— Phase stability

Defect production & dislocation formation
— Void formation

— Bulk swelling

Hardening and embrittlement

, '
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Pre-characterization
SEM/nanoindentation specimen preparation
« Sectioning with TechCut 4x low-speed saw

« Grinding and polishing using Metprep3 system

« Optical microscopy inspection with Keyence
VHX-7000 microscope HEA 2.6, 20X

* Preliminary grain size measurements:
— 150 — 500 um

,0.2549_(|)Omm
HEA 2.6, 100X

2= Fermilab
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EDS: homogeneity & impurities

V Kal Cr Kol

Energy Dispersive X-ray
Spectroscopy (EDS) % |
 RIGHT: High degree of homogeneity &
observed LR
- BELOW: Ti working well as impurity [
getter

Ti Karl

o Co Kal S Ti Ka1
S Kal o N Kal,2

250pm 250pm

i R AlICoCrMnTiV Compositions

2= Fermilab
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Indentation studies

Gen. 1 studies completed

 Significant hardness increase with
increased complexity

« Mitigated by heat treatment
» Signs of ductility

« Stiffer than Ti-64, less than
Beryllium

Gen. 2 studies ongoing

12 5/6/2024

Hardness (GPa)
©

——CrMnV
——CrMnTiV
——AICTMnTiV
——AICoCrMnTiV
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Contact Depth (nm)

Vicker’s Hardness (Hv) | Modulus of Elasticity (GPa)

CrMnV
CrMnTiV
AICrMnTiV
AlCoCrMnTiV
Ti64

N. Crnkovich, UW-Madison

390.58
499.80
453.06
608.19
339

186.93
222.06
163.36
177.29
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Recent/upcoming ion irradiations

Argon ion irradiation

13

IRRSUD beamline at the GANIL facility, Caen

France by UW-Madison collaborators

3BAr10+ 1 MeV/A

Damage: 0.1, 0.3, and 0.4 DPA at

550° C (= 1/3 melting point — defect mobility)

Study defect formation, void formation/stability
lon irradiation: Fast/inexpensive for screening

36 MeV Ar: damage rate

DPA/s
0.000020¢
— Arin 2.1
— Arin 2.8
0.000015 A in Ti-64
0.000010-
5.x107%
0 1 5 * Z(um)

5/6/2024

Vanadium ion irradiation

lon Beam Lab at UW-Madison with 4.5 MeV V?#*
ARC-DPA calculations:

— ~ 10 min. (peak) — 40 min. (surf.) for 1 DPA
Damage levels of 1, 5, and 10 DPA at 550° C and
~ 200° C (estimated peak damage and service
temperature of HEA beam window)

Ti-64 for baseline comparison

4.5 MeV V: damage rate

DPA/s
0.0025
—Vin21
0.0020 — Vin28
—VinTi-64
0.0015
0.0010
0.0005
05 1.0 15 2.0
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Future prototypic irradiations

dump

BNL BLIP facility 160 MeV proton irradiation
* Lower damage levels compared to LE-ions (long times)
* Mimics transmutation/gas production

* Increased penetration depth allows for studying , AN o
irradiation effects on bulk properties Some 2nd gen. HEAs to be tested at CERN’s

160 VeV protons: damage rate HiRadMat facility with 440 GeV protons in 2025
DPA/s « Allows for single-shot pulses to test thermal
2.5x107" . shock susceptibility (below: iridium target)
9 x107  —Hin 238

— Hin Ti-64

1.5x1077

1.x107" ji

5x1078

Increased beam
energies result in
activated specimens
» Hot-cell work for
characterization

2= Fermilab
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Ohmic flow ' Convective flow

- s

— Tungsten nanofibers under investigation
 Irradiation experiments show good resistance to
damage/thermal shock (density dependent)

to solid

NanOfI ber ta rgetry StUd Ies gcl:?:vevleratlon ; z:cpelferatlon =
In-house electrospinner at FNAL Flat | ‘ A
« Electrohydrodynamic production of nanoscale fiber mats KT TN Cloltlector
— Zirconia nanofiber production in place \ | Pee
1 Transition liquid

Taylor cone

— CERN’s HiRadMat facility (thermal shock) / /
— In-situ ion irradiation & TEM at the Argonne National Laboratory — S 0 \30""
IVEM facility (defects and lattice expansion) Flow direction 9 @ @ @
Photo: Reidar
Hahn, FNAL

Inherent resistance to radiation damage/thermal shock
« Radiation tolerance
— Nanopolycrystalline grain structure — absorb defects
« Thermal shock
— Discrete at microscale
— Reduced temperature gradient (only along fiber)
— Good heat dissipation in gas (high surface area/porosity) S —
Zirconia nanofibers produced at Fermllab
— Absorb/dampen stress waves (a) Bulk nanofiber mat
(Bid har et al., PRAB, 24, 2021 ) (b) Single nanofibers revealing polycrystalline grains
2& Fermilab
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Summary

« Novel materials studies for high-power accelerator windows (HEAs) and particle production
targets (nanofibers)

« HEA compositions tailored to mitigate radiation damage and thermal shock susceptibility
» Characterization studies ongoing for two generations of HEAs
 lon irradiation experiments to determine radiation resistance and property alterations

» Electrospun nanofibers found to have

2= Fermilab
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Bonus slides
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PIE techniques

Material property Technique Probe depth
Elementalichemical composition ="crgy-Dispersive X-Ray nms Probe
P Spectroscopy (EDS/EDX) Material property Technique depth
e . Differential Scannin
Crystallographic grain Electron Backscatter Diffraction . Specific heat capacity Calorimetry (DSC) 9 ~1 mm
structure/orientation (EBSD) y
Atomic spacing, lattice defects ~ Transmission Electron Microscopy _ 1-5um Coeﬁ’lCI‘ent of thermal Dilatometer 1-5mm
and spacing (TEM) expansion
Napocrystalllne el Jisilus Transmission Kikuchi Diffraction Elastic modulu.s, Yield .
grain microstructural : <1-5um strength, Tensile strength,  Tensile Tester ~1 mm
haracterizati (TKD/t-EBSD)
characterization Elongation
Atomic structure, lattice Grazing Incidence X-Ray . . . .
parameters Diffraction (GIXRD) ums Ij'atllgue life and endurance Fatigue tester (conventional or _ 1 mm
limit mesoscale)
NEIEES, ZEBS (e TS aauensentten i = L Thermal diffusivity/conductivity Laser Flash Analyzer (LFA) ~1mm
High damage rate (surface) Damage (bulk)

2= Fermilab
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Pre- and post-characterization

Microstructural studies to be paired with ion Material property Technique Probe depth

irradiation experiments (shallow penetration) Energy-Dispersive X-Ray

Elemental/chemical composition Spectroscopy (EDS/EDX) nms
« EDS/EBSD studies of pristine Gen. 2
: : : Crystallographic grain Electron Backscatter Diffraction
HEAS OﬂgOlng at Fermllab Mate”al structure/orientation (EBSD) e
Science Lab
] Atomic spacing, lattice defects ~ Transmission Electron Microscopy <1-5um
« TEM work scheduled for April at UW- and spacing (V=)
Madison Materials SCience Lab Nanocrystalline and ultra-fine T ission Kikuchi Diffracti
grain microstructural ('I[;rI;)S/TIIESI;ISOS) fuchi Difiraction 4 _ 5 ym
« Nanoindentation at Fermilab Target s
Svystems Department Materials Lab Atomic structure, lattice Grazing Incidence X-Ray
y P
parameters Diffraction (GIXRD) 1
Hardness, Elastic modulus Nanoindentation nms - ums
3¢ Fermilab
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HEA compositions for study

Element Time to LLW/yrs Element Time to LLW/yrs Element Time to LLW/yrs
C 99 A" 54 Zn 1.1x10°
N 9.4 % 10* Cr 40 Y 21
0] 1.1x10% Mn 86 Zr > 106
Fe 59 Nb 2.9x%10°
[aL 157) LCo 184] Mo 8.7 x 10°
Si 58 Ni 6.6 x 10° Ta 41
|Ti 10| Cu 13 x10? w 23

P.J. Barron, A.W. Carruthers and J.W. Fellowes et al.,
Scripta Materialia 176 (2020) 12-16

21 5/6/2024

M. Gilbert, T. Eade, T. Rey, R. Vale, C. Bachmann, U.
Fischer, N. Taylor, Nuclear Fus. 59 (7) (2019) 076015

2= Fermilab



CALPHAD: HEA Design Refinement

« Systematic compositional space search using high-throughput CALPHAD simulations
« > 8,500 compositions for optimization of (N. Crnkovich, UW-Madison)

B2 phase region
Onset of embrittling secondary phases
Density, specific heat, CTE

« > 120,000 compositions were explored (G. Arora, FNAL) 04 1 — fi@Laves C14) 500
New stable single-phase BCC alloys founds

Compositional search space (at%)

L0 14

0.8

— fi@B2)
0.64+— fl@Bcc) 5.25 1

— fl@L10_TiAl)

i == fi@Liquid)

0.0 — ] -t

0 500 1000 1500 2000 0 500 1000 1500 2000
Temp (C) Temp (C)

-- --m-

Min 10
Max 30 5 15 35 30
Step 4 1 2 3 Bal

N. Crnkovich, UW-Madison

22 5/6/2024

Min
Max 20 5 20 50 50 50
Step 2 1 2 3 3 Bal

G. Arora, FNAL
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Mechanical properties/DFT simulations

23
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300
'E m DFT mExperiment
] 250
@ 200
-
S 150
£
«w 100
[=s]
g 50
=)
>
0
,\\;\%"’ A’b"’ Ny 1
y «\x Q% QN
'\.\,Q) QY oD %@ @Qo;,
%% @ (}") N
of oXd &>
< N
NG \e

DFT (G. Arora, FNAL)
Measurements (N. Crnkovich, UW-Madison)
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CALPHAD/DFT simulations

 FNAL NuMI beam line case, based on CALPHAD-predicted properties
120 GeV protons - 1 MW
10 ps pulse @ 0.75 Hz repetition
« 3 cm diameter window, edge held at 300 K

300 800

—=—Be

—1

700 | |———Ti64

X
250 | ' |
600
— o
- Toyg =670 °C
500
o o
< 150 < 400
300 T,,=171°C
100 avg

50

X (Cm) t (!‘3) % 1(]6
N. Crnkovich, UW-Madison

2= Fermilab
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Initial In-Beam Tests

V2* jon irradiation 50/100 DPA at 500 °C

at Wisconsin lon Beam Laboratory

Samples 5 and 6 50 dpa g

Two HEAs being preared for
irradiation with a mask

» PIE is ongoing

- What are the
dominant
irradiation effects?

-  Effects visible at
low DPA?

TEM BF image of the
irradiated cross-section

25 5/6/2024

UNIVERSITY OF WISCONSIN-MADISON High-Radiation to Materials

@ College of Engineering —) HiRadMat

Thermal shock test at CERN’s HiRadMat
facility (2022)

+ HEA samples
included in HRMT-
60 RaDIATE
experiment

+ Exposed to single-
shot 7 x 102 proton
beam (g ~0.25 mm)

* Detailed PIE
planned at UKAEA-
MRF

HEA samples images after beam pulse

2= Fermilab
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Facilities / beams

Irradiation condition
— High damage rate (surface)

— Damage (bulk, E > 22.5 MeV)

Helium implantation / diffusion
study

Prototypic ("high” energy)

5/6/2024

Host . Beam Penetration depth (um)
Facility Beam energy i -
Laboratory Intensity 2.1 2.8 Ti-64
BLIP - proton 120-200 MeV 50-165puA | mm:24.1-58.1| 27.3-65.7 34.1-82.8
He:22.4-1870 | 24.8-2110 31.2-2650
BNL V:10.3-222.0 | 11.56-250.1 13.5-308.5
BLIP - HI 2-28 MeV/A Ar:9.9-262.9 | 11.2-296.1 13.0-364.7
Kr:11.5-172.4 | 12.9-380.0 15.1-238.2
Xe:12.7-141.2 | 14.3-159.0 16.7-195.2
MCA40 - proton 2.7-38 MeV pAto10’sofpa] 36.3-3120 40.7 -3500 50.9-4410
He:22.4-456 24.8-516 31.2-647
V:1.9-5.7 2.2-6.4 2.5-7.3
University of MC40 - HI 8-50 MeV Ar:2.2-6.8 2.4-7.6 2.8-8.7
Birmingham Kr:1.9-5.4 2.1-6.1 2.4-6.9
Xe:1.4-4.8 1.5-5.4 1.8-6.2
Dynamitron - proton 3 MeV 1mA 41.8 46.8 58.6
Hyperion - proton 2.6 MeV 30 mA 34 38 47
mm:
ISAC - prot 13 -500 MeV Upto 100 0.55-292.5 0.69-365.9
TRIUMF proton Ptol00pA | o 0 Hess
p:7.6-131 8.5-147 10.5-184
Wolverine - proton/HI 1-9 MeV, (6 MeV for p) 500 nA He:1.8-26.8 2.0-29.8 2.4-375
University of V:0.4-2.1 0.5-2.3 0.6-2.6
Michigan - p:<41.8 <46.8 <58.6
MIBL Maize - proton/HI Up to 4.5 MeV, (3 MeV for p) Upto1pA He:<9.6 <10.6 <133
V:i<l.4 <15 <1.8
Blue-HI 20 -400 keV (800 keV for 2+) | Up to 10’s of pA| He: 0.1-0.9, 1.5 |He: 0.1-1.0, 1.6 [ He: 0.1-1.2, 2.0
J-PARC TEF-T- proton 400 MeV 0.6 mA mm: 182 206 258
University of WIBL_HI 1.7 Mev/ Upto 100 uA He:11.1 12.3 15.4
. . - .7 MeV/q pto '
Wisconsin Vi1.5 1.6 1.9
University of He:0.9-8.2 1.0-9.0 1.2-11.3
Y HIT-HI 0.4 -4 MeV Upto~1pA N
Tokyo V:0.2-1.3 0.2-1.4 0.2-1.6
Kyoto DUET (dual beam)-Hi 1-5.1 Mev 1WAl mA He:1.8-11.4 2.0-12.5 2.4-15.8
University uEtidualbeam)- Tt e pAlm V:0.4-15 05-1.7 0.6-1.9
Ar:5.2 6.0 6.8
GANIL IRRSUD - HI Up to 1 MeV/A Upto 3 pAe Kr: 6.7 7.5 8.5
Xe: 7.9 8.9 10.1
2& Fermilab



EDS totals: 2.1B - 2.8

2.1B 22 23 24 215 2.6 2.7 2.8

A specit. 9% diff. | O™ Specif. % iff. [ Specif. % it |G Specit. % diff.[™® Specif. % i, |9 specit. % diff. | U™ Specif. % ifr. [ Specit. % diff
0 0 0 0 0

Al 99 100 -09%| 11.7 10.0 16.8%| 187 16.0 16.8%| 180 16.0 12.5%| 224 20.0 122%| 140 120 16.7%| 206 18.0 14.5%| 223 20.0 11.7%

Element|

Ti 1.1 10 84% | 43 40 6.4% | 11 1.0 13.7%| 1.2 1.0 17.2%| 21 20 6.7% | 21 20 48% | 22 20 92% | 20 20 1.9%

\ 364 340 7.0% | 345 340 15% | 267 260 25% | 243 240 12% | 498 500 -03%| 50.7 50.0 1.4% | 496 50.0 -0.7%| 495 50.0 -1.0%

Cr 265 250 61% | 271 270 04% | 263 250 13% | 251 250 0.4% 6.1 6.0 1.3%

Mn 221 260 -152%| 184 210 -122%| 26.2 30.0 -12.8%| 274 30.0 -8.6%| 245 270 -92%| 242 270 -104%| 276 30.0 -81%| 241 26.0 -7.2%

Co 4.1 40 15% | 4.0 40 0.0% | 20 20 15% | 4.0 40 02% | 11 1.0 55% | 29 30 -21% 2.0 20 0.6%

Total | 100.0 100.0 0.0% [ 100.0 100.0 0.0% | 100.0 100.0 0.0% | 100.0 100.0 0.0% | 100.0 100.0 0.0% | 100.0 100.0 0.0% | 100.0 100.0 0.0% | 100.0 100.0 0.0%

» Atomic concentrations compared to casting specifications
« 20kV, 11 nA

» Above table: spectra fit to specified elements only: Al, Co, Cr, Mn, Ti, V
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SEM/EDS: 2.6 V Kai Cr Ka -
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SEM/EDS: 2.6 - impurities >

CKal_2

250pm

N Kal_2

HFW det mode mag®E WD tilt curr HV
1.04mm ETD SE 200x 99mm 0.0° 11nA 20.00 kV
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2.1B: Crack V Ka Cr Kat
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2.1B: Crack
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