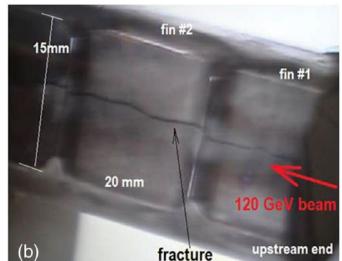


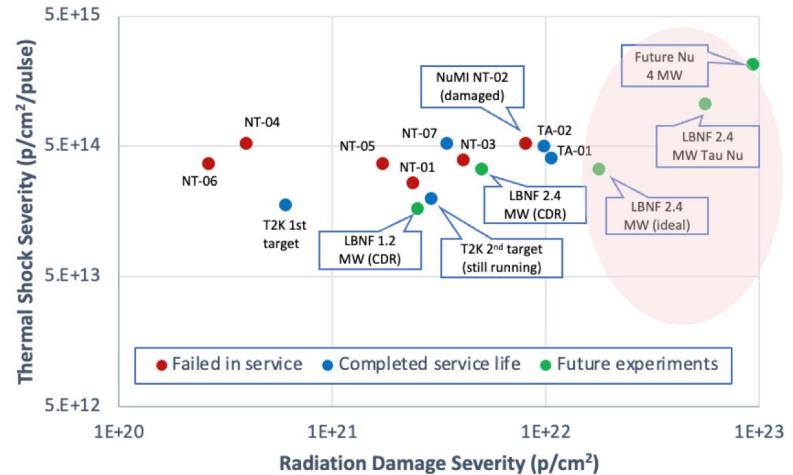
Novel Materials R&D for Next-Generation Accelerator Target Facilities

Abe Burleigh
AccelApp '24
20 March 2024

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.


Outline

- Introduction and context
- HEA potential benefits
- HEA Compositions
- Characterization studies
- Upcoming irradiation studies
- Brief intro to nanofiber work


High-power targetry (HPT) overview and challenges

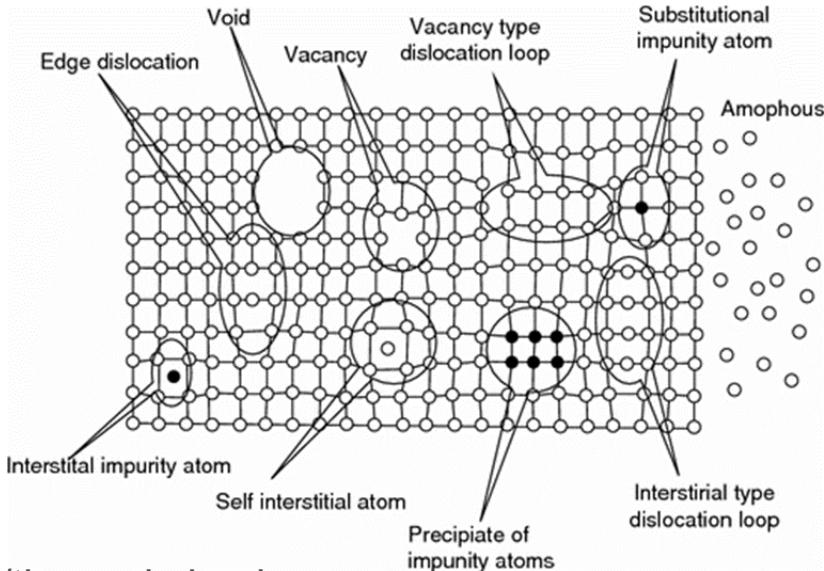
Next generation multi-MW accelerators expect proton fluence and power density to increase $\approx 10X$ over previous facilities

- Target survivability concerns have led several facilities to limit beam power
- Radiation damage and thermal shock are the primary material challenges (RIGHT)
- Novel materials offer promising options to mitigate these effects
 - High-entropy alloys (HEAs) as beam windows
 - Electrospun nanofibers as secondary particle production targets

Neutrino HPT R&D Materials Exploratory Map

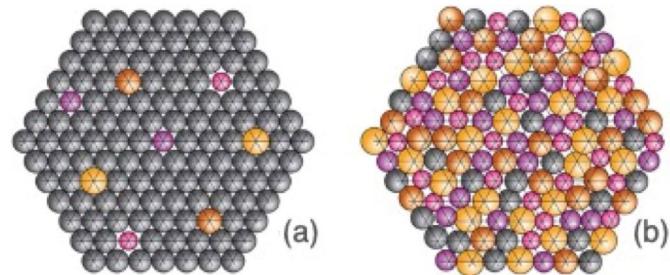
Radiation damage and thermal shock effects

Radiation damage:


- Displacement of atoms from lattice sites
- Transmutation: interstitials and vacancies + gas

Material effects:

- Hardening/embrittlement
- Fracture toughness reduction
- Lattice expansion/bulk swelling
- Thermal conductivity reduction
- Thermal expansion coefficient


Beam window properties: mitigate radiation damage/thermal shock

- Resistance to radiation damage effects (embrittlement, swelling)
- High thermal diffusivity (cooling) and specific heat (minimize ΔT)
- Low coefficient of thermal expansion
- Good (high T) strength/ductility to survive beam pulse stresses
- Low density to minimize beam energy loss and scattering

High entropy alloys (HEAs)

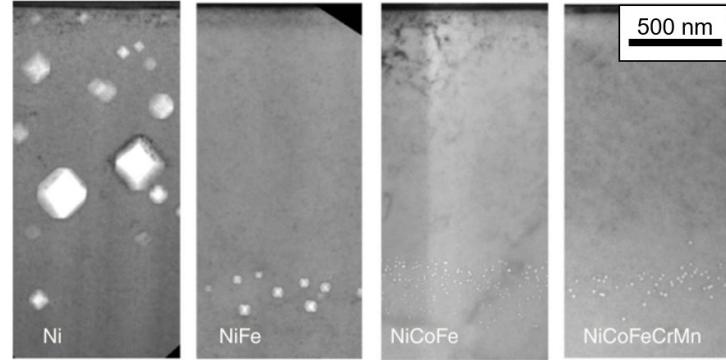
- Alloy with 3+ principal elements
- Near equi-atomic compositions
- Primarily a solid-solution matrix with distorted crystal lattice (atomic size difference)
- Large composition space (adjustment of atomic ratios)

(a) Conventional alloy, (b) High-entropy alloy
(Miracle & Senkov, 2016)

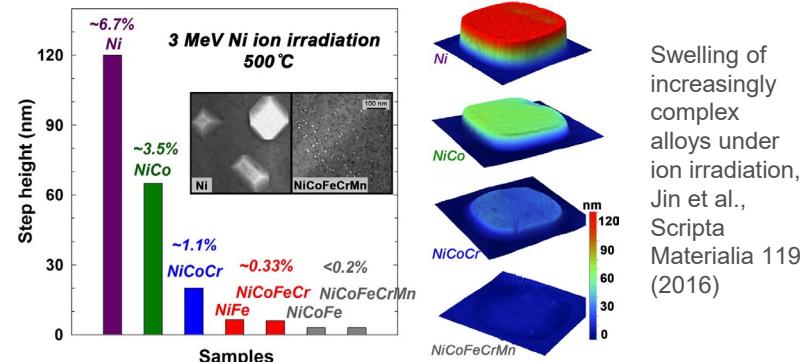
Oh et al., Nat Comm. 10, 2090 (2019)
Youssef et al., Materials Research Letters, 95-99 (2015)

Many HEAs exhibit:

- Good ductility and high-temperature strength
- High strength to density ratio (specific strength)
- Fatigue, fracture, corrosion, oxidation resistance

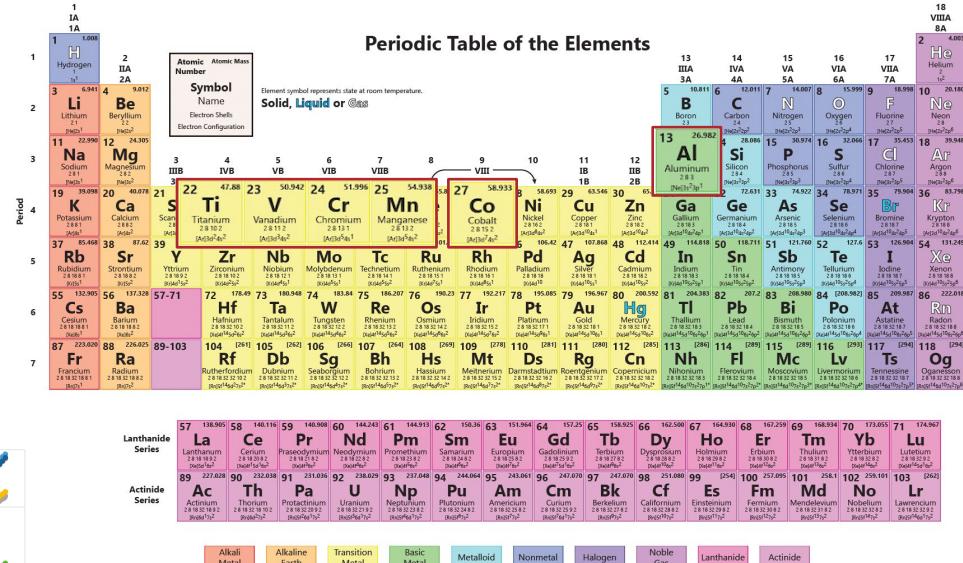
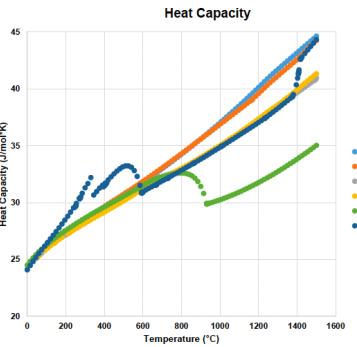
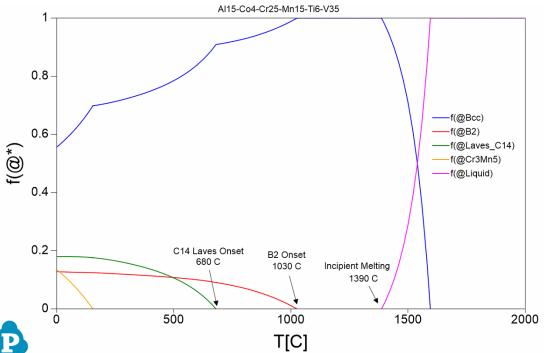

HEA radiation damage resistance

HEAs: beneficial properties to combat damage


- Sluggish atom diffusion
 - Due to distortion & size mismatch
 - Reduced segregation and defect clustering
 - Increased in-cascade recombination
- Phase stability → reduce grain coarsening and void swelling

Reduced defect segregation/clustering + increased recombination:

- Minimizes void formation & swelling (right, top)
- Reduces bulk swelling effects (right, bottom)
- Increasing # of elements → greater effects (vs. pure materials/traditional alloys)
- Phonon scattering/migration energies




Void swelling shown to be less pronounced in more compositionally complex alloys upon heavy-ion irradiation (3-MeV Ni⁺ ions to 5×10^{16} cm⁻² at 773 K), Lu et al., Nature Com., 2016

HEA compositions for study

CALPHAD simulations to select compositions with:

- Broad range of single-phase BCC structure
 - Increased ductility and machinability
 - Strengthening through B2 precipitates
 - Lower temperature for Laves phase formation
- High C_p to reduce ΔT → lessen thermal shock
- Low Z elements to reduce density
 - Decreased energy deposition and scattering
 - Minimize beam loss in window

2 generations of compositions

4 Gen. 1 HEA compositions

- Varying number of alloying elements:
 - CrMnV: Equimolar with single BCC phase
 - CrMnTiV: Ti as impurity getter
 - AlCrMnTiV: Al to stabilize BCC phase
 - AlCoCrMnTiV: Co for B2 precipitates
- HIP at 1200 °C for 4 hr following arc-melt
- Homogenized at 1200 °C for 48 hr

Sectioned arc-melted ingots (UW-Madison)

HEA samples sealed in quartz under vacuum before heat treatment (UW-Madison)

8 Gen. 2 compositions from Sophisticated Alloys to study effects of relative concentration

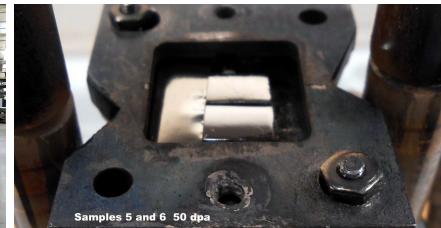
- 5 AlCoCrMnTiV compositions to study:
 - Varied Ti concentration as impurity getter
 - Varied Co concentration to promote secondary B2 phase
- Increased Al content without Cr for BCC phase stability
- Absence of Co: Al as B2 phase enhancer

Gen. 2 plate from Sophisticated Alloys

- 4 hr HIP under Argon
 - 1200 °C, 100 MPa
- Vacuum Anneal
 - 1200 °C for 4 hrs
 - Cool to 650 °C
 - Soak for 36 hr
 - Force cool to < 55 °C in Ar

Initial pre- and post-irradiation characterization

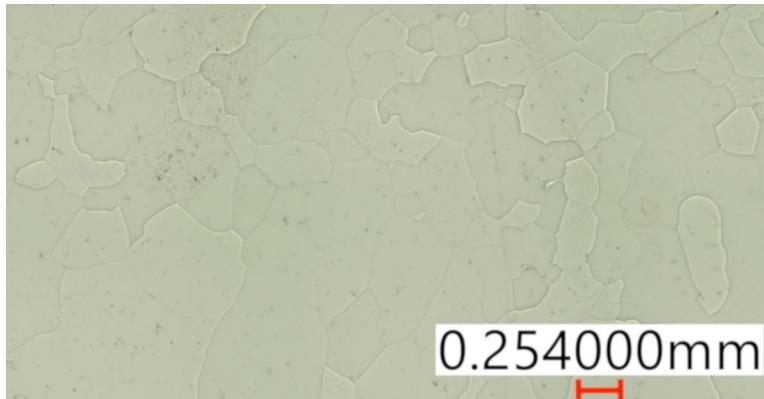
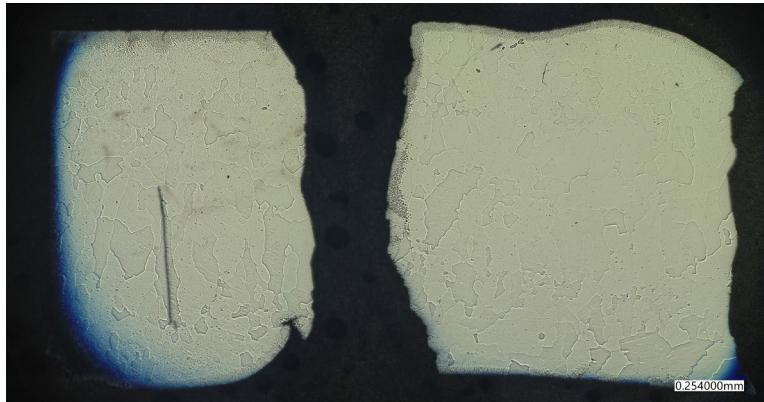
Pre-irradiation studies


- Elemental composition
 - Homogeneity and impurity segregation
- Grain structure and orientation
 - Grain size distribution
 - Orientation impact on mechanical properties
- Crystal lattice structure and spacing
 - BCC composition with B2 precipitates?
- Mechanical properties
 - Hardness and elastic modulus
 - Yield/tensile strength
 - Fatigue life
- Specific heat capacity
 - Higher to minimize ΔT during a pulse
- Coefficient of thermal expansion
 - Minimize to lessen thermal shock effects

Post-irradiation comparison

- Ti64: baseline performance
- Elemental Segregation
- Grain coarsening
- Crystal lattice expansion
 - Phase stability
- Defect production & dislocation formation
 - Void formation
 - Bulk swelling
- Hardening and embrittlement

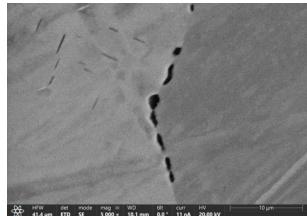
Wisconsin Ion Beam Laboratory (IBL)

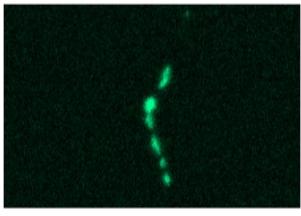



Gen. 1 HEAs for irradiation

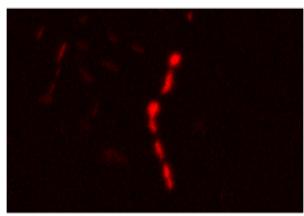
Pre-characterization

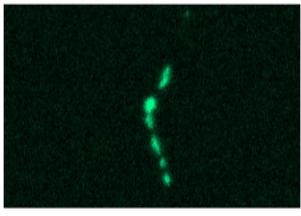
SEM/nanoindentation specimen preparation

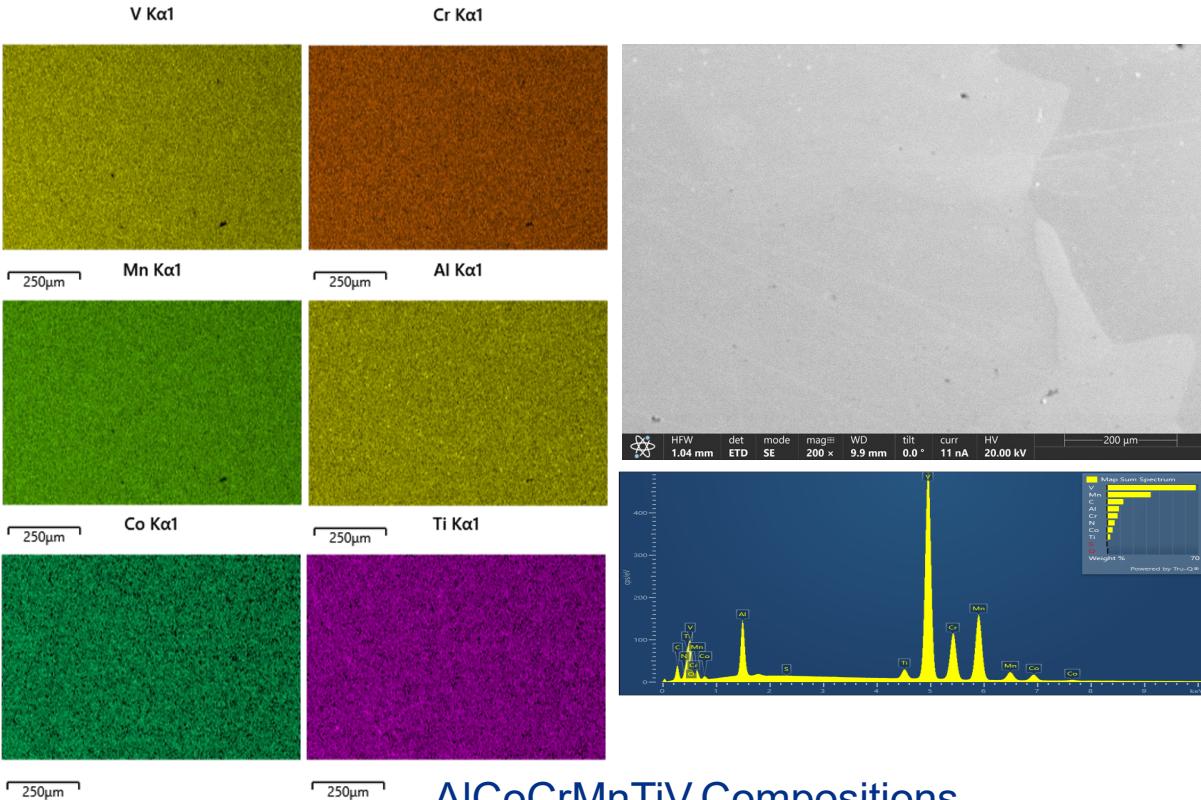

- Sectioning with TechCut 4x low-speed saw
- Grinding and polishing using Metprep3 system
- Optical microscopy inspection with Keyence VHX-7000 microscope
- Preliminary grain size measurements:
 - $150 - 500 \mu\text{m}$


EDS: homogeneity & impurities

Energy Dispersive X-ray Spectroscopy (EDS)


- RIGHT: High degree of homogeneity observed
- BELOW: Ti working well as impurity getter


S K α 1


10μm

N K α 1,2

10μm

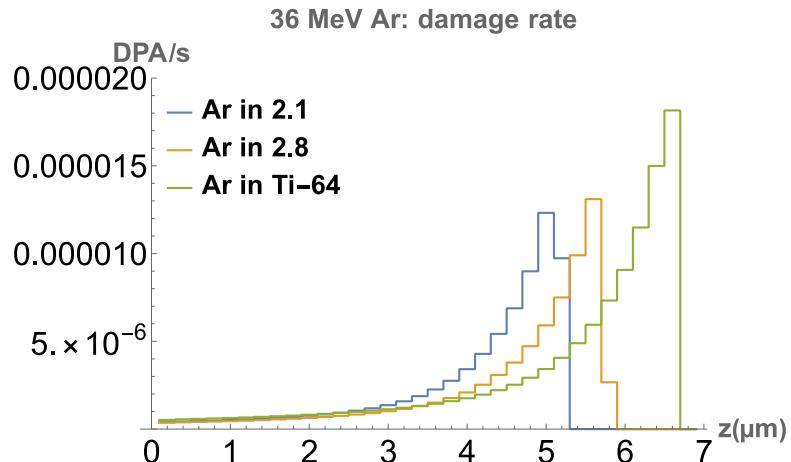
AlCoCrMnTiV Compositions

Indentation studies

Gen. 1 studies completed

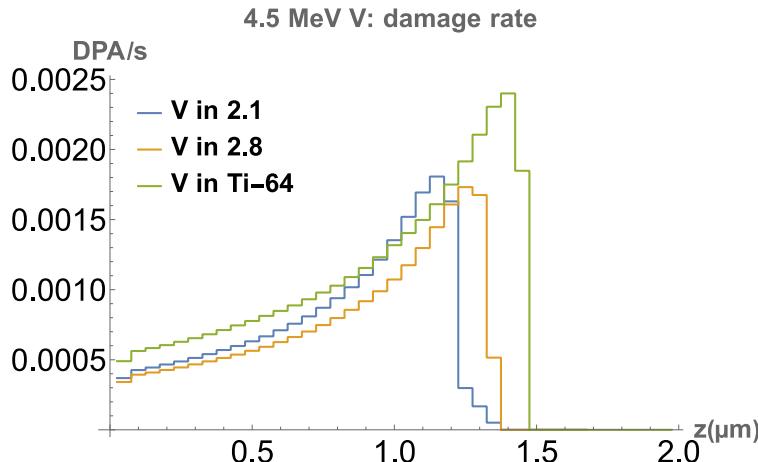
- Significant hardness increase with increased complexity
- Mitigated by heat treatment
- Signs of ductility
- Stiffer than Ti-64, less than Beryllium

Gen. 2 studies ongoing


Sample	Vicker's Hardness (Hv)	Modulus of Elasticity (GPa)
CrMnV	390.58	186.93
CrMnTiV	499.80	222.06
AlCrMnTiV	453.06	163.36
AlCoCrMnTiV	608.19	177.29
Ti64	339	110

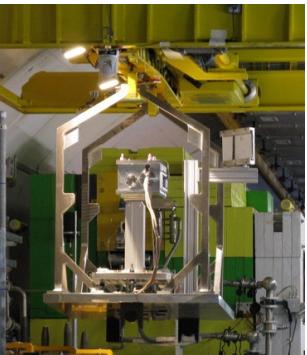
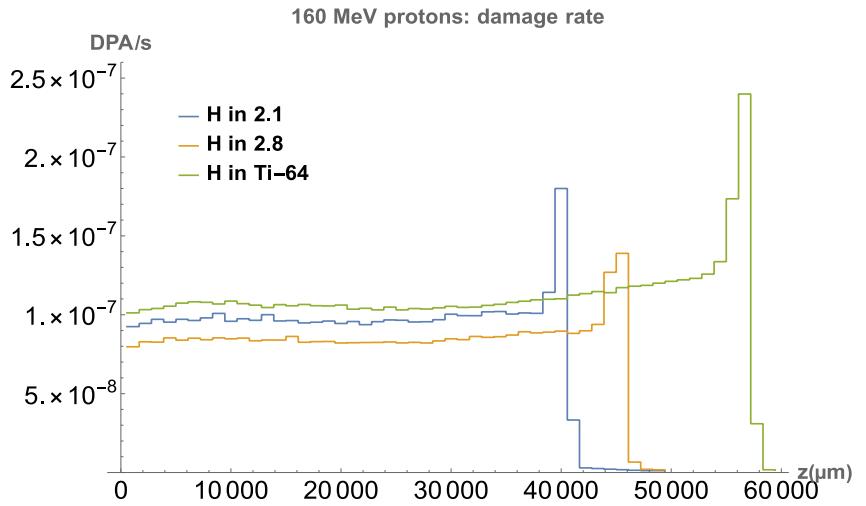
N. Crnkovich, UW-Madison

Recent/upcoming ion irradiations


Argon ion irradiation

- IRRSUD beamline at the GANIL facility, Caen France by UW-Madison collaborators
- $^{36}\text{Ar}^{10+}$, 1 MeV/A
- Damage: 0.1, 0.3, and 0.4 DPA at 550° C (\approx 1/3 melting point \rightarrow defect mobility)
- Study defect formation, void formation/stability
- Ion irradiation: Fast/inexpensive for screening

Vanadium ion irradiation



- Ion Beam Lab at UW-Madison with 4.5 MeV V²⁺
- ARC-DPA calculations:
 - \sim 10 min. (peak) – 40 min. (surf.) for 1 DPA
- Damage levels of 1, 5, and 10 DPA at 550° C and \approx 200° C (estimated peak damage and service temperature of HEA beam window)
- Ti-64 for baseline comparison

Future prototypic irradiations

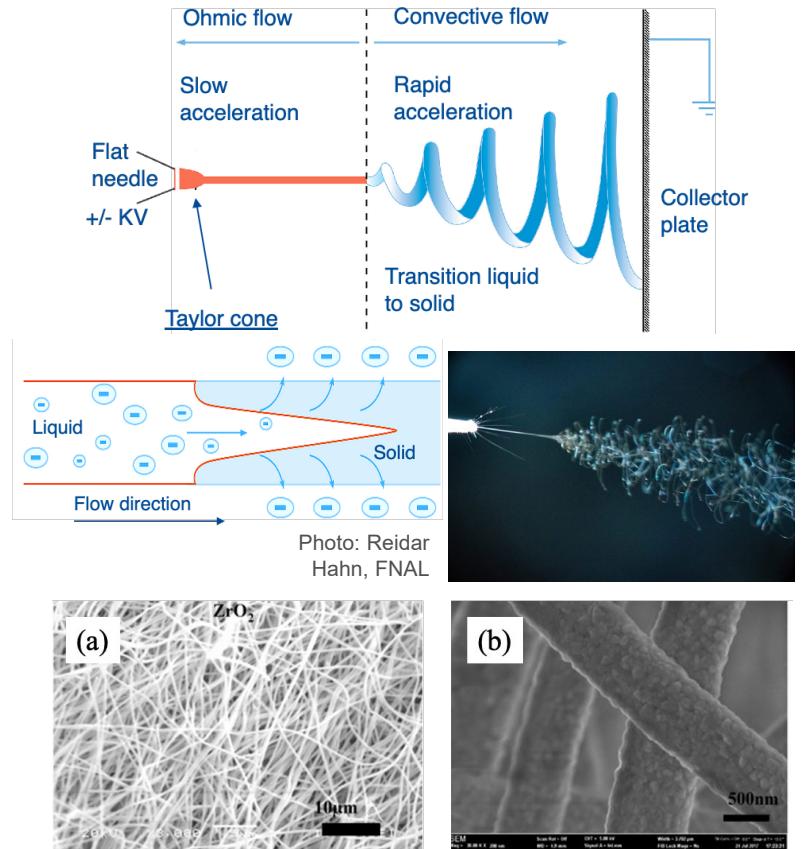
BNL BLIP facility 160 MeV proton irradiation

- Lower damage levels compared to LE-ions (long times)
- Mimics transmutation/gas production
- Increased penetration depth allows for studying irradiation effects on bulk properties

Some 2nd gen. HEAs to be tested at CERN's HiRadMat facility with 440 GeV protons in 2025

- Allows for single-shot pulses to test thermal shock susceptibility (below: iridium target)

Pacific Northwest
NATIONAL LABORATORY


Increased beam energies result in activated specimens

- Hot-cell work for characterization

Nanofiber targetry studies

In-house electrospinner at FNAL

- Electrohydrodynamic production of nanoscale fiber mats
 - Zirconia nanofiber production in place
 - Tungsten nanofibers under investigation
- Irradiation experiments show good resistance to damage/thermal shock (density dependent)
 - CERN's HiRadMat facility (thermal shock)
 - In-situ ion irradiation & TEM at the Argonne National Laboratory – IVM facility (defects and lattice expansion)

Inherent resistance to radiation damage/thermal shock

- Radiation tolerance
 - Nanopolycrystalline grain structure → absorb defects
- Thermal shock
 - Discrete at microscale
 - Reduced temperature gradient (only along fiber)
 - Good heat dissipation in gas (high surface area/porosity)
 - Absorb/dampen stress waves

(Bidhar et al., PRAB, 24, 2021)

Summary

- Novel materials studies for high-power accelerator windows (HEAs) and particle production targets (nanofibers)
- HEA compositions tailored to mitigate radiation damage and thermal shock susceptibility
- Characterization studies ongoing for two generations of HEAs
- Ion irradiation experiments to determine radiation resistance and property alterations
- Electrospun nanofibers found to have

Acknowledgements

- UW-Madison group: A. Couet, N. Crnkovich, M. Moorehead, I. Szufarska
- Fermilab HPT group: K. Ammigan, G. Arora, S. Bidhar, F. Pellemoine
- Work being done in the framework of the RaDIATE Collaboration
- Funded by DOE Early Career Award (Kavin Ammigan)

The work was supported by **Fermi National Accelerator Laboratory**, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. DOE. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under an **Early Career Research Program** award to KA. This project has received funding from the **European Union's Horizon Europe Research and Innovation programme**, under Grant Agreement No 101057511 (EURO-LABS)

Bonus slides

PIE techniques

Material property	Technique	Probe depth	Material property	Technique	Probe depth
Elemental/chemical composition	Energy-Dispersive X-Ray Spectroscopy (EDS/EDX)	nms	Specific heat capacity	Differential Scanning Calorimetry (DSC)	~ 1 mm
Crystallographic grain structure/orientation	Electron Backscatter Diffraction (EBSD)	nms	Coefficient of thermal expansion	Dilatometer	1 - 5 mm
Atomic spacing, lattice defects and spacing	Transmission Electron Microscopy (TEM)	< 1 - 5 um	Elastic modulus, Yield strength, Tensile strength, Elongation	Tensile Tester	~ 1 mm
Nanocrystalline and ultra-fine grain microstructural characterization	Transmission Kikuchi Diffraction (TKD/t-EBSD)	< 1 - 5 um	Fatigue life and endurance limit	Fatigue tester (conventional or mesoscale)	~ 1 mm
Atomic structure, lattice parameters	Grazing Incidence X-Ray Diffraction (GIXRD)	ums	Thermal diffusivity/conductivity	Laser Flash Analyzer (LFA)	~ 1 mm
Hardness, Elastic modulus	Nanoindentation	nms - ums			

High damage rate (surface)

Damage (bulk)

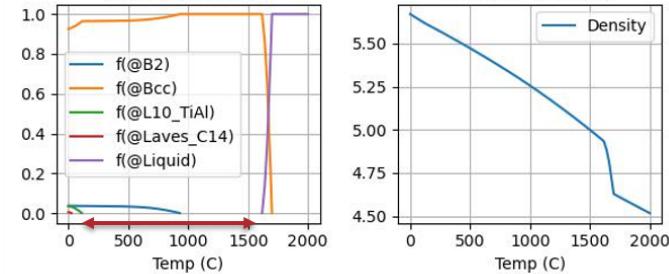
Pre- and post-characterization

Microstructural studies to be paired with ion irradiation experiments (shallow penetration)

- EDS/EBSD studies of pristine Gen. 2 HEAs ongoing at Fermilab Material Science Lab
- TEM work scheduled for April at UW-Madison Materials Science Lab
- Nanoindentation at Fermilab Target Systems Department Materials Lab

Material property	Technique	Probe depth
Elemental/chemical composition	Energy-Dispersive X-Ray Spectroscopy (EDS/EDX)	nms
Crystallographic grain structure/orientation	Electron Backscatter Diffraction (EBSD)	nms
Atomic spacing, lattice defects and spacing	Transmission Electron Microscopy (TEM)	< 1 - 5 um
Nanocrystalline and ultra-fine grain microstructural characterization	Transmission Kikuchi Diffraction (TKD/t-EBSD)	< 1 - 5 um
Atomic structure, lattice parameters	Grazing Incidence X-Ray Diffraction (GIXRD)	ums
Hardness, Elastic modulus	Nanoindentation	nms - ums

HEA compositions for study


Element	Time to LLW/yr	Element	Time to LLW/yr	Element	Time to LLW/yr
C	99	V	54	Zn	1.1×10^3
N	9.4×10^4	Cr	40	Y	21
O	1.1×10^4	Mn	86	Zr	$> 10^6$
Mg	97	Fe	59	Nb	2.9×10^5
Al	157	Co	184	Mo	8.7×10^5
Si	58	Ni	6.6×10^5	Ta	41
Ti	10	Cu	1.3×10^3	W	23

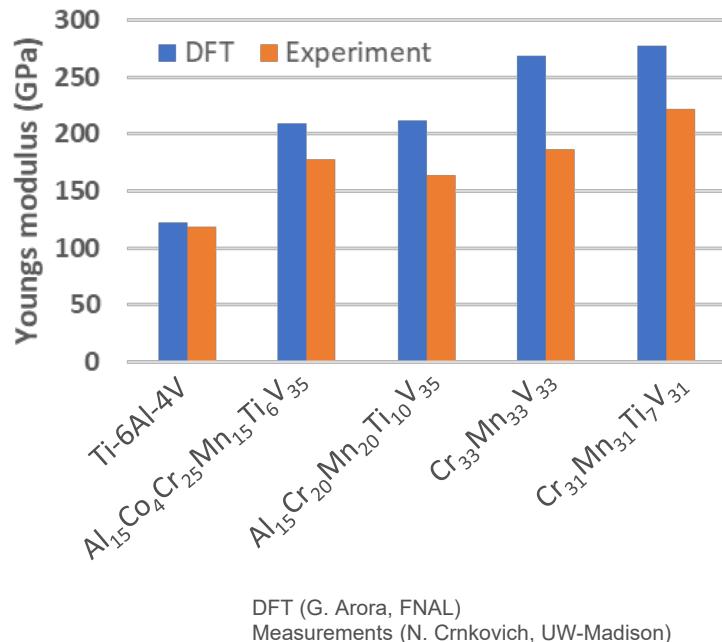
P.J. Barron, A.W. Carruthers and J.W. Fellowes et al.,
Scripta Materialia 176 (2020) 12–16

M. Gilbert, T. Eade, T. Rey, R. Vale, C. Bachmann, U.
Fischer, N. Taylor, Nuclear Fus. 59 (7) (2019) 076015

CALPHAD: HEA Design Refinement

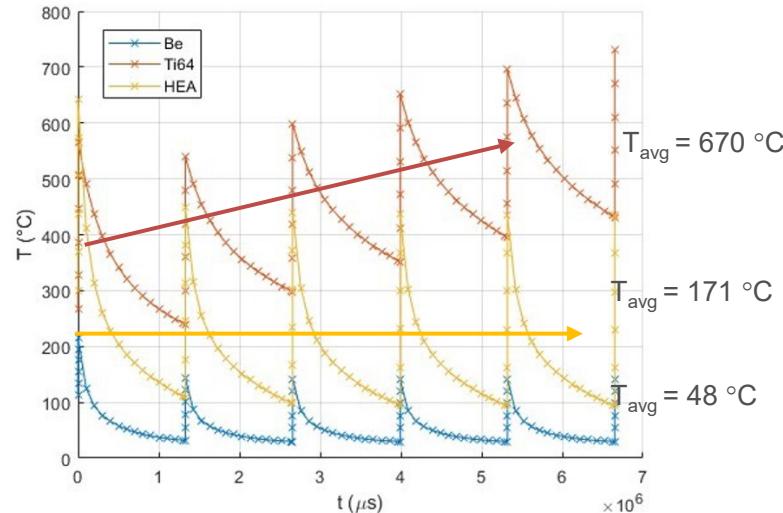
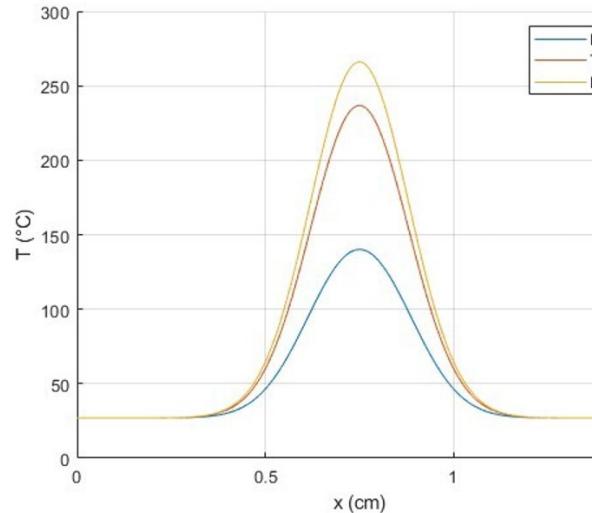
- Systematic compositional space search using high-throughput CALPHAD simulations
 - > 8,500 compositions for optimization of (N. Crnkovich, UW-Madison)
 - B2 phase region
 - Onset of embrittling secondary phases
 - Density, specific heat, CTE
 - > 120,000 compositions were explored (G. Arora, FNAL)
 - New stable single-phase BCC alloys founds

Compositional search space (at%)


	Al	Co	Ti	Cr	Mn	V
Min	10	0	1	10	1	10
Max	30	5	15	35	30	35
Step	4	1	2	3	Bal	2

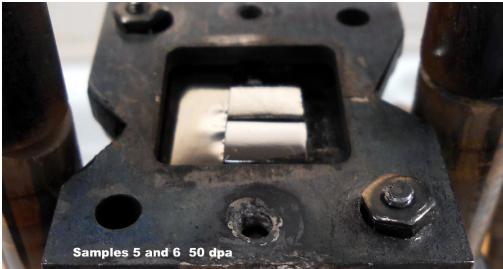
N. Crnkovich, UW-Madison

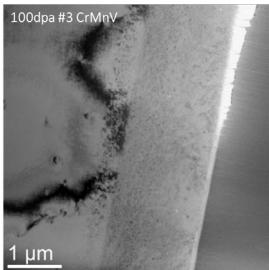
	Al	Co	Ti	Cr	Mn	V
Min	0	0	0	0	0	0
Max	20	5	20	50	50	50
Step	2	1	2	3	3	Bal



G. Arora, FNAL

Mechanical properties/DFT simulations

CALPHAD/DFT simulations


- FNAL NuMI beam line case, based on CALPHAD-predicted properties
 - 120 GeV protons - 1 MW
 - 10 μ s pulse @ 0.75 Hz repetition
 - 3 cm diameter window, edge held at 300 K


N. Crnkovich, UW-Madison

Initial In-Beam Tests

V^{2+} ion irradiation 50/100 DPA at 500 °C
at Wisconsin Ion Beam Laboratory

Two HEAs being prepared for irradiation with a mask

TEM BF image of the irradiated cross-section

PIE is ongoing

- What are the dominant irradiation effects?
- Effects visible at low DPA?

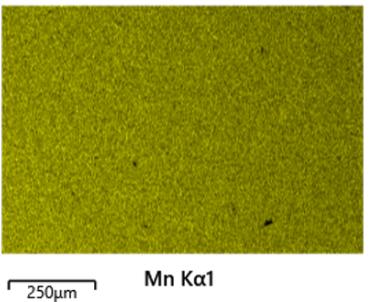
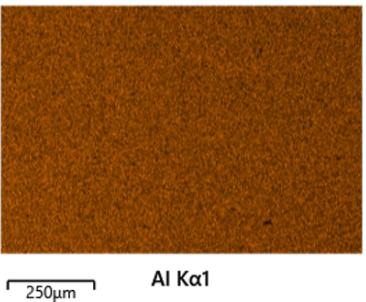
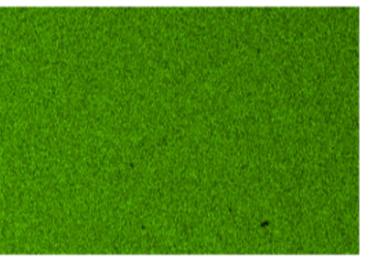
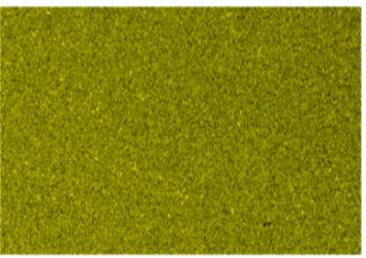
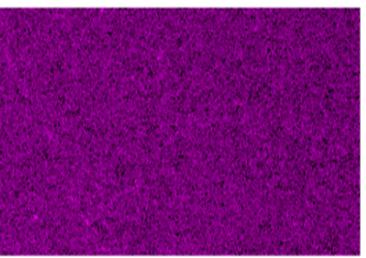
Thermal shock test at CERN's HiRadMat facility (2022)

- HEA samples included in HRMT-60 RaDIATE experiment
- Exposed to single-shot 7×10^{12} proton beam ($\sigma \sim 0.25$ mm)

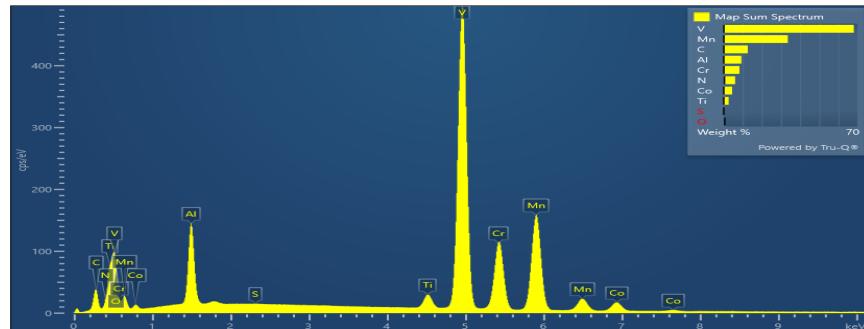
HEA samples images after beam pulse

- Detailed PIE planned at UKAEA-MRF

Facilities / beams

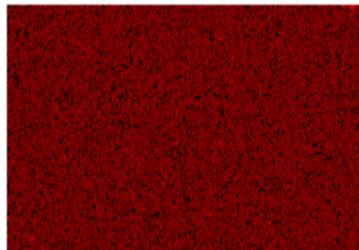





- Irradiation condition
 - High damage rate (surface)
 - Damage (bulk, $E > 22.5$ MeV)
 - Helium implantation / diffusion study
 - Prototypic ("high" energy)

Host Laboratory	Facility	Beam energy	Beam Intensity	Penetration depth (μm)		
				2.1	2.8	Ti-64
BNL	BLIP - proton	120 - 200 MeV	50-165 μA	mm: 24.1 - 58.1	27.3 - 65.7	34.1 - 82.8
	BLIP - HI	2 - 28 MeV/A		He: 22.4 - 1870 V: 10.3 - 222.0 Ar: 9.9 - 262.9 Kr: 11.5 - 172.4 Xe: 12.7 - 141.2	24.8 - 2110 11.56 - 250.1 11.2 - 296.1 12.9 - 380.0 14.3 - 159.0	31.2 - 2650 13.5 - 308.5 13.0 - 364.7 15.1 - 238.2 16.7 - 195.2
University of Birmingham	MC40 - proton	2.7 - 38 MeV	pA to 10's of μA	36.3 - 3120	40.7 - 3500	50.9 - 4410
	MC40 - HI	8 - 50 MeV		He: 22.4 - 456 V: 1.9 - 5.7 Ar: 2.2 - 6.8 Kr: 1.9 - 5.4 Xe: 1.4 - 4.8	24.8 - 516 2.2 - 6.4 2.4 - 7.6 2.1 - 6.1 1.5 - 5.4	31.2 - 647 2.5 - 7.3 2.8 - 8.7 2.4 - 6.9 1.8 - 6.2
	Dynamitron - proton	3 MeV	1 mA	41.8	46.8	58.6
	Hyperion - proton	2.6 MeV	30 mA	34	38	47
TRIUMF	ISAC - proton	13 - 500 MeV	Up to 100 μA	mm: 0.49 - 258.6	0.55 - 292.5	0.69 - 365.9
University of Michigan - MIBL	Wolverine - proton/HI	1 - 9 MeV, (6 MeV for p)	500 nA	p: 7.6 - 131 He: 1.8 - 26.8 V: 0.4 - 2.1	8.5 - 147 2.0 - 29.8 0.5 - 2.3	10.5 - 184 2.4 - 37.5 0.6 - 2.6
	Maize - proton/HI	Up to 4.5 MeV, (3 MeV for p)	Up to 1 μA	p: < 41.8 He: < 9.6 V: < 1.4	< 46.8 < 10.6 < 1.5	< 58.6 < 13.3 < 1.8
	Blue - HI	20 - 400 keV (800 keV for 2+)	Up to 10's of μA	He: 0.1 - 0.9, 1.5	He: 0.1 - 1.0, 1.6	He: 0.1 - 1.2, 2.0
J-PARC	TEF-T - proton	400 MeV	0.6 mA	mm: 182	206	258
University of Wisconsin	WIBL - HI	1.7 MeV/q	Up to 100 μA	He: 11.1 V: 1.5	12.3 1.6	15.4 1.9
University of Tokyo	HIT - HI	0.4 - 4 MeV	Up to ~1 μA	He: 0.9 - 8.2 V: 0.2 - 1.3	1.0 - 9.0 0.2 - 1.4	1.2 - 11.3 0.2 - 1.6
Kyoto University	DuET (dual beam) - HI	1 - 5.1 MeV	1 μA-1 mA	He: 1.8 - 11.4 V: 0.4 - 1.5	2.0 - 12.5 0.5 - 1.7	2.4 - 15.8 0.6 - 1.9
GANIL	IRRSUD - HI	Up to 1 MeV/A	Up to 3 μAe	Ar: 5.2 Kr: 6.7 Xe: 7.9	6.0 7.5 8.9	6.8 8.5 10.1

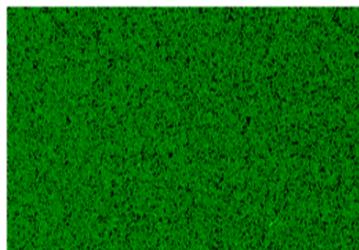

EDS totals: 2.1B – 2.8

	2.1B			2.2			2.3			2.4			2.5			2.6			2.7			2.8		
Element	Atomic %	Specif.	% diff.																					
Al	9.9	10.0	-0.9%	11.7	10.0	16.8%	18.7	16.0	16.8%	18.0	16.0	12.5%	22.4	20.0	12.2%	14.0	12.0	16.7%	20.6	18.0	14.5%	22.3	20.0	11.7%
Ti	1.1	1.0	8.4%	4.3	4.0	6.4%	1.1	1.0	13.7%	1.2	1.0	17.2%	2.1	2.0	6.7%	2.1	2.0	4.8%	2.2	2.0	9.2%	2.0	2.0	1.9%
V	36.4	34.0	7.0%	34.5	34.0	1.5%	26.7	26.0	2.5%	24.3	24.0	1.2%	49.8	50.0	-0.3%	50.7	50.0	1.4%	49.6	50.0	-0.7%	49.5	50.0	-1.0%
Cr	26.5	25.0	6.1%	27.1	27.0	0.4%	25.3	25.0	1.3%	25.1	25.0	0.4%	-----	-----	-----	6.1	6.0	1.3%	-----	-----	-----	-----	-----	-----
Mn	22.1	26.0	-15.2%	18.4	21.0	-12.2%	26.2	30.0	-12.8%	27.4	30.0	-8.6%	24.5	27.0	-9.2%	24.2	27.0	-10.4%	27.6	30.0	-8.1%	24.1	26.0	-7.2%
Co	4.1	4.0	1.5%	4.0	4.0	0.0%	2.0	2.0	1.5%	4.0	4.0	0.2%	1.1	1.0	5.5%	2.9	3.0	-2.1%	-----	-----	-----	2.0	2.0	0.6%
Total	100.0	100.0	0.0%	100.0	100.0	0.0%	100.0	100.0	0.0%	100.0	100.0	0.0%	100.0	100.0	0.0%	100.0	100.0	0.0%	100.0	100.0	0.0%	100.0	100.0	0.0%

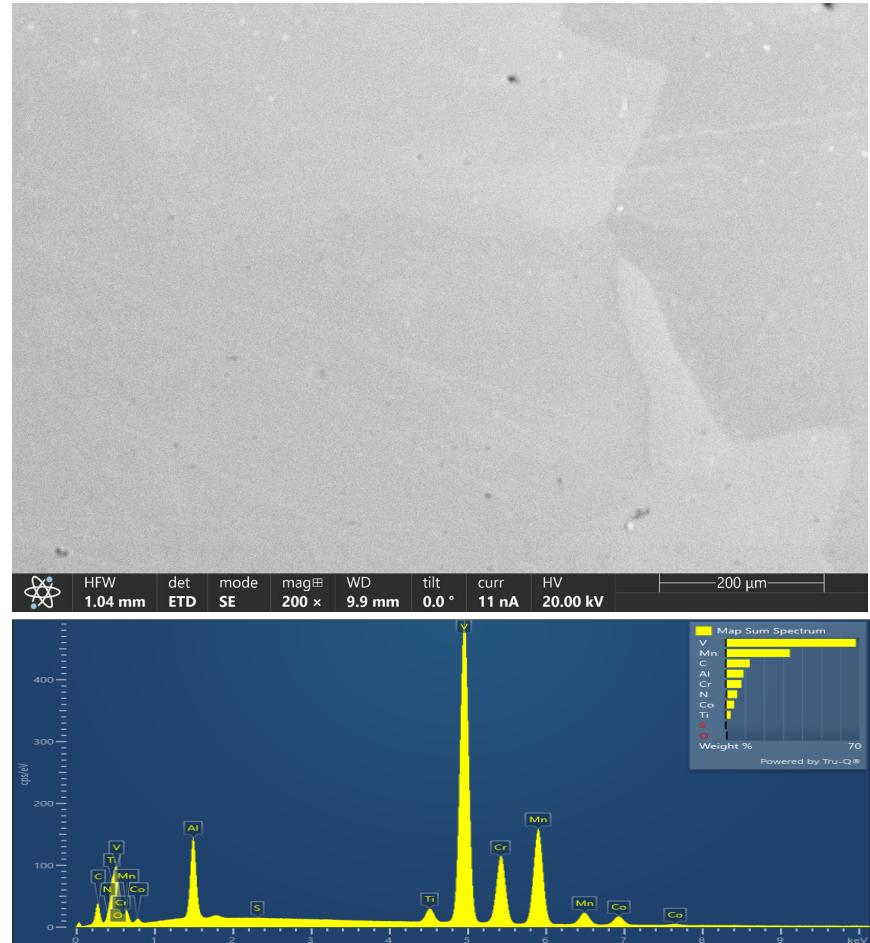
- Atomic concentrations compared to casting specifications
- 20 kV, 11 nA
- Above table: spectra fit to specified elements only: Al, Co, Cr, Mn, Ti, V


V K α 1Cr K α 1Mn K α 1Al K α 1Co K α 1Ti K α 1

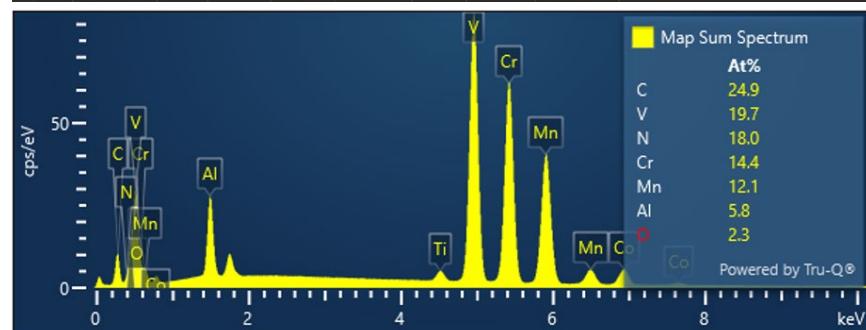
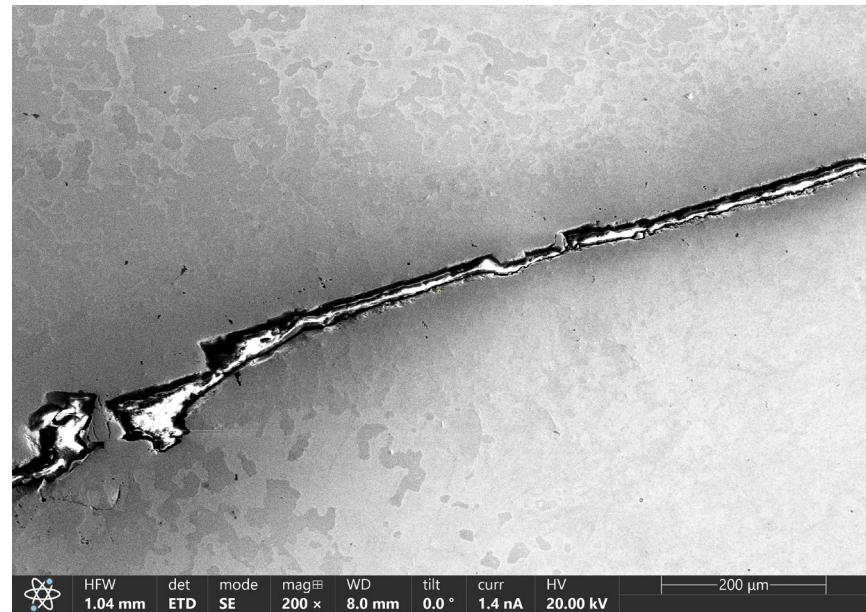
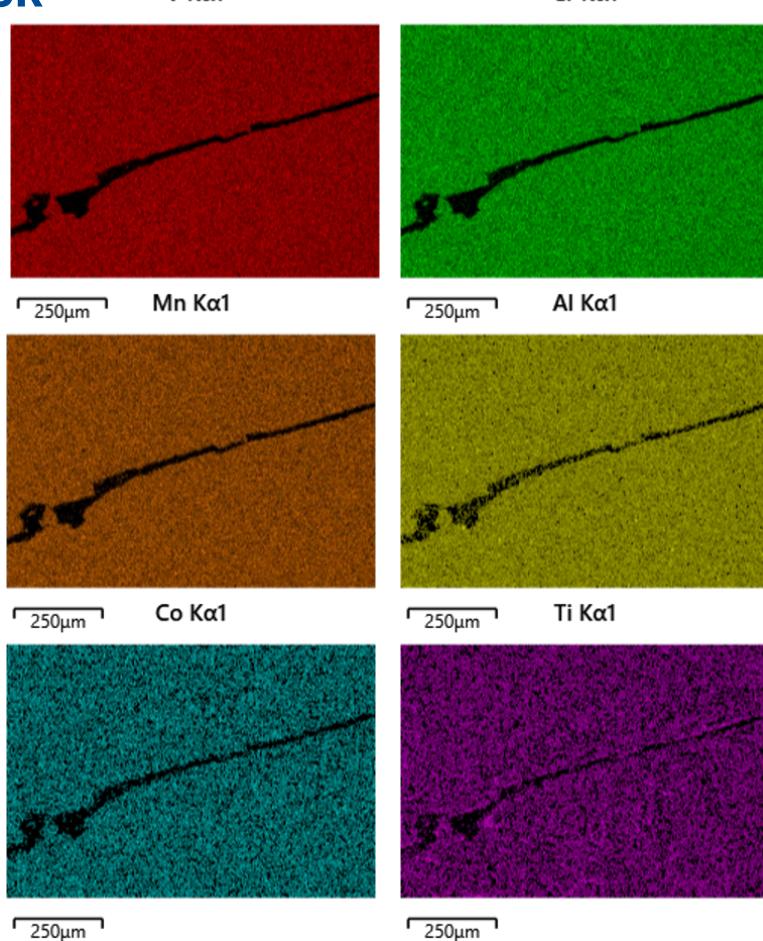
HFV 1.04 mm | det ETD | mode SE | mag 200 x | WD 9.9 mm | tilt 0.0 ° | curr 11 nA | HV 20.00 kV | 200 μm


SEM/EDS: 2.6 - impurities

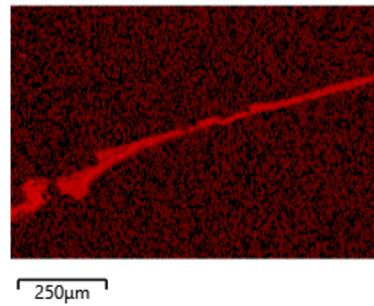
C K α 1_2



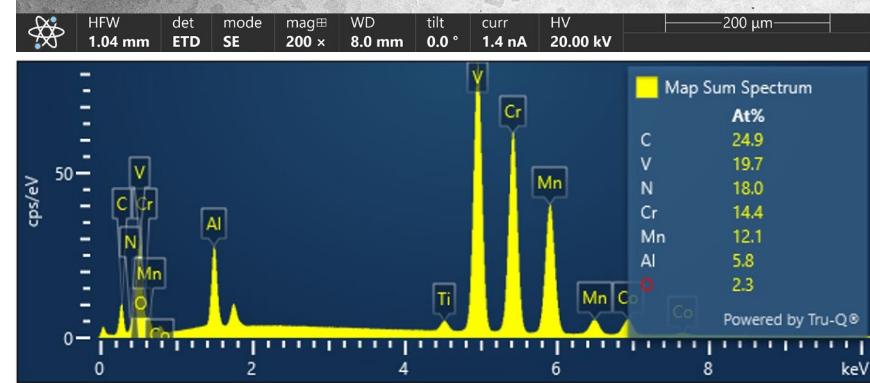
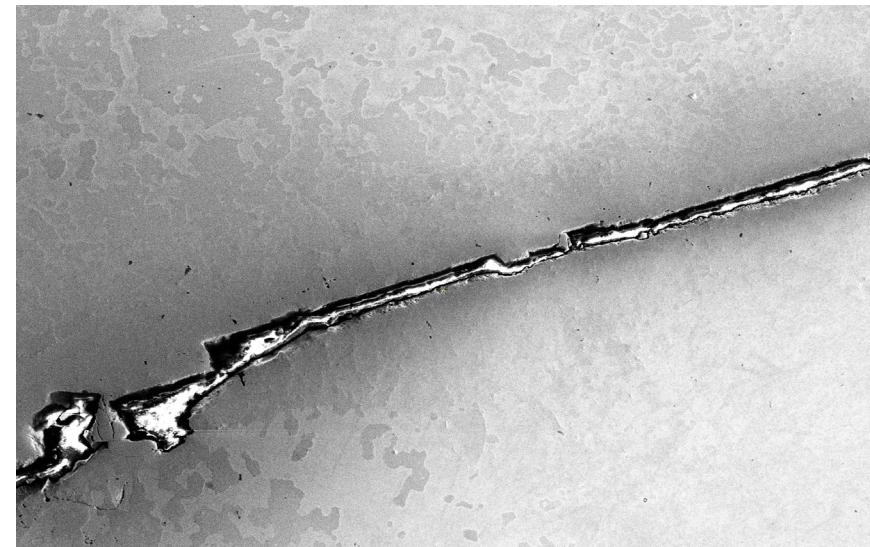
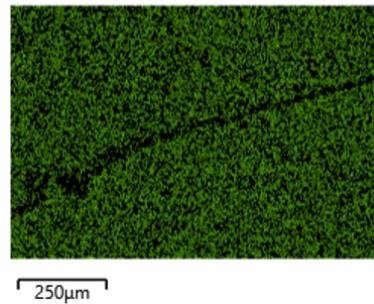
250μm




N K α 1_2

250μm



2.1B: Crack

2.1B: Crack

C K α 1_2

N K α 1_2

