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Neue Mechanik materieller Systeme
Nowa mechanika systemow materialnych

Von MYRON MATHISSON, Warschau

{(Eingegangen am 8. September 1937)
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3. Die Bewegungsgleichungen eines Dipols

4. Dipol und Rotation. Prézession

5. Der Quadrupol

6. Wichtige Sonderfille. Die Energiegleichung. Spezielle Relativitéitstheorie
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Ausserhalb der Materie gelten die Feldgleichungen (= elektromagnetische und
Gravitationsgleichungen) der leeren Welt. Dicse Forderung fassen wir in dic Form einer
Variationsgleichung (8§ 1,2). Dabet I6sen wir das materielle System in eine Summe von
Maultipolen auf. Im Falle der Gravitationsgleichungen wird man auf diese Weise auf den
Begriff des Gravitationsskeletts gefiihre (§ 2). Im Gravitationsskelett ist der Pol fiir die Masse
verantwortlich, der Dipol und der Quadrupol fiir den Drechimpuls (§§ 2, 3, 4, 5). Diesc
Zuordnung ergibt sich auf verschicdene Weisen, indem wir dem materiellen System bald eine
aktive Rolle zuweisen (felderzeugende Massen), bald eine passive (durch dusseres Feld an-
gegriffene Massen). Nach Entwicklung einer Behandlungsmethode fiir unsere Variationsglei-
chung, gewinnen wir aus ihr dic dynamischen Gesetze, welchen die Bestimmungsstiicke un-
seres  Gravitationsskeletts gehorchen miissen. So gelangen wir zwangsliufig zu mechanischen
Gleichungen, die, im Vergleich mit den klassischen, neue Glieder enthalten. Neben Gliedern,
die nur in dusseren Gravitationsfeldern zur Geltung kommen, erhalten wir ein neues Glied von
grosster physikalischer Bedeutung, das an iussere Gravirationsfelder nicht gebunden ist.

Bei der Behandlung des Bewegungsproblems zeigt sich, dass der Drehimpuls als antisym-
metrischer Tensor eingefiihrt werden muss. Der Begriff ,Rotationsachse eines starren Kor-
pers” wird nachtriiglich aus dem Drehimpuls konstruiert (§ 4). Bewegung des Schwerpunkes
und Rotation sind miteinander gekoppelt. Der FOKKERsche Ansatz fiir dic Bewegung der
Achse cines symmetrischen Kreisels ist unhaltbar (§ 4). Will man das Gravitationsskelett zum
vollstiindigen Gegenstiick des klassischen dynamischen Modells cines Kérpers ausbilden, so
muss man ncben dem Dipol einen Quadrupol cinfiihren (§ 5). Die daraus entspringenden
Gleichungen enthalten, als Sondetfall, die Prizessionsgicichungen, cin Umstand, der eine
Verifikation unscrer Ansitze gestattet. (§ 5, Ende). Beriicksichtigung des Dipolglieds allein
wiirde in eciner Beschrinkung auf den Fall der Trigheitskugel ihr klassisches Analogon finden.

Dic neuen mechanischen Gleichungen lassen einen Energiesatz zu. Doch kommt eine
neue Art Encrgic hinzu, die Beschleunigungsenergie (§ 6, Ende).
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§ 1. Feldgesetze und Beharrungsgesetze

Am Beispiel der MAXWELL-EINSTEINschen Feldgleichungen wollen
wir einige fundamentale Uberlegungen durchfithren. Unter Einfithrung des
Potentialvektors @, lisst sich das Gleichungssystem der Elektrodynamik
in einer RIEMANNschen Welt zuriickfithren auf die 4 Gleichungen zweiter
Ordnung

L) = U9, — K9 =8 d =¢""V,V)) (1.1

[73

(8 ist kein Tensorindex und bedeutet einfach, dass die Operation sich auf
einen Vektor bezieht) und eine Gleichung erster Ordnung

v,9 = 0. (1.2)

Die Gleichungen (1.1) sind fiir Weltstellen giileig, wo es Ladungen
gibt; sonst wire der Stromvektor S, auf der rechten Seite gleich Null
zu setzen (Y, bedeutet kovariante Differentiation, mit K wollen wir die
Kriimmungsgrossen bezeichnen). Die Spaltung des Gleichungssystems in
ein System (r.r) und eine iiberzihlige Gleichung (1.2) ist, wie man weliss,
an keine Einschrinkung der Allgemeinheit gebunden und immer erreich-
bar durch Hinzufiigung zu den Potentialen ¢, cines geeigneten Gradienten.

Fiir den linearen Operator L, gelten die identischen (d. h., fiir zwei
beliebige Vektorfelder p, , ¥« giiltigen) Reziprozititsbeziehungen:

P Ly(pg) — ©* L, (pz) = V. w*, wobel
(1.3)
wU« = pvv(/."?v - QPVV(/,py R

Genligt p, , als Potentialvektor aufgefasst, den MAXWELL-EINSTEINschen
Gleichungen

vaa'“ = 0, faﬁ: Vﬁpu - Vc/.pﬁ,

so hingt L,(pg) nur von V,p” ab. [Denn es ist Ly(pz) = 0 mit den
MAXWELL-EINSTEINschen Gleichungen identisch, wenn die Normierung
7, p" = 0 erfiillt ist.] Es wird daher L,(pg) fir den Gradientenvektor

eines Skalarfeldes &,
Do = Vs (1.4)

nur von V,p¥, d. h,, von []§, abhingen. Wir haben in der Tat

L(VH = [V, — K V2
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Infolge der Beziechung
Vo Vet — VoV, 9, = Ky, %, (1.5)
haben wir
OVE=g¢"V,VVE=V O+ K VL

und daher

La(VQ E) = vaq: q = D (16)

die

Das stetige Skalarfeld & sei so gewihlt, dass es ausserhalb eines Welt-
gebiets t, verschwindet. Es verschwindet dort auch das Feld g = []% (Exi-
stenz und Stetigkeit der Ableitungen von £ seien immer in ndtigem Masse
vorausgesetzt). Nimmt man an, dass im Gebiet 14 die Potentiale -9, und
ihre erste Ableitungen stetig sind, so ergibt sich aus (1.3), indem man

diC Ska]ardichte
— 9V v
V 7, Vguw)

0 xv

iiber 7, integriert und die Gleichungen (r.1), (1.6) beriicksichtigt:

fl/-g_])“ S, dry — IVQ—QP“ Vegdr,=0.
Ty

Ty

Durch partielle Integration und Anwendung des GAUSSschen Satzes auf den
Fall eines Feldes, das an der Begrenzungsfliche verschwindet, erhilt man,
indem man die Normierung (r.2) einfithrt:

fl/;q)q Vaqd’% = 0.

Ty

Es ist daher

fl/g*pa S,dty = 0. (1.7

[

Ts

Nun nehmen wir an, dass der Strom .S, eine zeitartige Weltrhre
ausfiille, ausserhalb der Rohre sollen die Stromkomponenten verschwin-
den. Wir nennen eine Rohre zeitartig, wenn ihre Begrenzungsfliche durch
zeitartige Weltlinien erzeugt werden kann. Wir wihlen eine innerhalb der
Weltrshre laufende zeitartige Weltlinic als Rohrenachse. 64 sei ein 3-di-
mensionaler Querschnitt der Réhre. Er schneidet die Réhrenachse in ei-
nem Punkte P. Die in (1.7) vorkommende Integration werden wir so aus-
fihren, dass wir zuerst iiber die Schicht zwischen 2 benachbarten 65 1n-
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tegrieren (ihr Abstand ist ds die Weltlinie entlang), das Resultat als Fun-
ktlon der von einem festen Punkete P der Rohrenachse oe7ahlten Bogen-
linge s == PP betrachten und endlich iiber S integrieren. Das Feld p,,, 1
welches die Rohre eingetaucht ist, entwickeln wir in eine TAYLORrelhc
fiir jeden Querschnitt 53 mit dem jeweiligen Punkt £ von 53 als Null-
punkt. Wir nehmen an, dass die Entwicklung fiir alle Punkte des Quer-
schnitts, die innerhalb der Réhre liegen, giiltig bleibt,

= (P.)o + — - (M*—x'*) 4 . (1.8)

und dass beim Integrieren die Funktion p* durch ihre Entwicklung (r.8)
ersetzbar ist. (Die Koeffizienten der Entwicklung sind Funktionen von s
allein.) Dann bekommt das Integral in (1.7) die Gestalt

0L azpa LY o J
fli(p )OE + 8qu BW E + .. |ds. -

S

(Uber gleiche Indizes wird summiert.)

Man kann es immer auf eine invariante Form bringen, indem man
die Ableitungen zu kovarianten Ableitungen erginzt. Gleichung (1.7) be-
kommt dann die Gestalt

f[paea F (Vupa)ers+ (T Vo po) erre £ .1ds =0, (1.9)

(P = V49

Die e sind Tensorkomponenten, Funktionen von s. Fiir die p, und ihre
Ableitungen sind in (1.9) thre Werte lings der Integrationskurve zu nchmen.
Das Glied in der Summe (1.9), das p, enthqlt entspricht einem ein-

fachen Pol, der bei Berechnung der Potentiale ein Glied vom Typus "

ergeben wiirde, der Entwicklungsabschnite, der aus Gliedern mit p, und
Vp Po. besteht, entspricht einer Pol - und einer Dipolsingularitit, der drei-
gliedrige Entwicklungsabschnitt entspricht einem Pol, einem Dipol und
elnem Quadrupol usf. Niheres dariiber s. am Endc von § 2.

Die Gleichung (1.9) ist nicht an die Annahme gebunden, dass (1.1)
bis ins Innere der Materie ihre Giiltigkeit behalten. Gelten sie (mit abso-
luter oder ausreichender Genauigkeit) in einer Umgebung der Materie-
rohre, so setzen wir die beziiglichen Potentiale rein fiktiv ins Rohrenin-
nere glatt fort (die Weyischen virtuellen Ausfiillungen) und bilden die
Grossen



Neue Mechanik materieller Systeme 167
foo=Vets — Vasy
S, =Yaf;? (V.S =0)

Geniigen im Innern der Réhre die ¢, nicht der Bedingung (1.2), so er-
ziclen wir (1.2) durch Hinzufiigung eines passenden Gradienten.

Das Skalarfeld £ ist (von Voraussetzungen iiber Stetigkeit und Diffe-
rentiierbarkeit abgesehen) nur an die Bedingung gebunden, dass es ausser-
halb eines beliebig zu wihlenden Gebiets t, verschwindet. In (1.9) liegt
demnach eine eigenartige Variationsgleichung vor; & ist das variierbare
Element. Setzen wir voraus, dass unser physikalisches Gebilde durch den
einfachen Pol geniigend charakeerisiert wird (Punktladung), so haben wir
die Gleichung

[ 9% pugs —o, ~ (1.10)
0 xa
S

Wir behandeln sie nach folgender Methode. Tn jedem Punkte der Weltli-

nic spalten wir e* nach dem Geschwindigkeitsvektor u® )

o _ dus f
= -g;, (w*u,) =1

b

%

d. h,, wir zerlegen ¢” in der Richtung von @ und in einer zu u* ortho-

gonalen Richtung :
e = Eu* 4 *e*, *e'u, = 0.

Die Grosse £ verschwindet an den Enden des Integrationsweges. Es ist daher

(1.10) kann man demnach wie folgt schreiben:

g

CdE 08
—L( a—s ds ’i"'( e FX; ds = 0. (1'11)
S S

Es ergibt sich daraus das Verschwinden von *e®. Spaltet man nimlich

vai — g(/.V

3

o nach u* (in jedem Punkte der Weltlinie), so ist nur die

£

' . a¢ .
zu u* normale Komponente von VV*$ fiir "‘e"'axa von Bedeutung, diese
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kann aber unabhdngig von & den Integrationsweg entlang variiert wer-
den. [Man kann ein Feld & derart konstruicren, dass in jedem Punkte der

&

. . .. * .
Weltlinie der Wert von & sowie die 3 Grossen C V,5in3 von u* und von-
; .

03
cinander unabhingigen Richtungen (f (i =1, 2, 3) vorgeschrieben sind

und dergleichen fiir die héheren Ableitungen, — mit der Finschrinkung,
dass die gewilhlten Werte den Voraussetzungen iiber Stetigkeit und Diffe-
rentiierbarkeit entsprechen und an den Inden eines Weltlinienbogens ver-
schwinden. Es verschwindet demnach auch das erste Integral in (r.r1).
Dies ist aber nur dann mit der Variierbarkeit von & lings der Weltlinie
vertriglich, wenn die Bedingung

. dE _

ik = 2
E—= ds 0, K const. (1.12)

erfiille 1st.]

Gleichung (1.12) enthilt ein Beharrungsgesetz: ein Entwicklungsgesetz
fiir eine Grosse (die Ladung), die nur von der Zeit (der Eigenzeit) abhiingt.
Das Wesentliche ist, dass wir aus Feldgesetzen, die in der 4-dimensionalen
Welt gelten, ein Gesetz fiir die eindimensionale Weltlinie ausgeschiilt haben.

Es gibt eine zweite Methode zur Ableitung der Beharrungsgesetze
aus den Teldgesetzen. Man 15st die Gleichungen (1.1) und setze die gefun-

denen Potentiale in die Normicrungsgleichung (1.2) ein. Die Divergenz V, %

soll identisch verschwinden; identisch, d. h. unabhingig von den Koordi-
naten des Punktes 0 (xp) == 0 (xg, x“), xz, xz), fiir welchen wir die 7, be-
stimmt haben. Diesen Punkt kénnen wir innerhalb eines 4-dimensionalen
Bereiches frei withlen, was der Variierbarkeit von 3 analog ist. Um alle
zuginglichen Schliisse zu ziehen, geniigt es, den Punkt 0 (x,) innerhalb
eines schr kleinen 4-dimensionalen Gebiets frei wihlen zu kénnen. Dieser
Umstand bestitigt eine frithere Einsicht, dass wir Gleichungen und Be-
trachtungsmethoden verwenden kénnen, die nur in gewisser nicht zu klei-

ner Entfernung von der Materie hinreichend genau sind.

§ 2. Die Variationsgleichung der Mechanik

Gehen wir zu unserem Hauptproblem, der Ableitung der Bewegungs-
¢gleichungen, iiber, so bilden die EINSTEINschen Gravitationsgleichungen die
Grundlage. Von diesen Feldgleichungen aus sollen die Beharrungsgesetze
gewonnen werden. Die Gravitationsgleichungen sind aber in den Gravita-
tionspotentialen nicht lincar. Wir werden sie durch angenihrte lineare Glei-
chungen ersetzen. Es sei nimlich mdglich, die Komponenten des Massten-
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sors fur alle Punkte eines Weltbereiches als cine Summe (],Ju—[—- Taz darzu-
stellen, wobei die 7,5 als klein angenommen werden und guz den Mass-
tensor eines gewissen RIEMANNschen Weltbereichs W darstellt. Die metrische
Mannigfaltigkeit W werden wir den Untergrund nennen und 7,5 als cin
Tensorfeld in W betrachten. Kovariante Ableitungen, Herauf - und Herun-
terzichen der Indizes—alles wollen wir auf die Metrik des Untergrundes
beziehen. Der Untergrund soll ein mégliches Weltstiick darstellen, im Sinne
der allgemeinen Relativititstheorie. Die FINSTEINschen Gleichungen kon-
nen wir nach den Potenzen der 7,5 entwickeln. Aus den in den Tuzy line-
aren Gliedern werden die gesuchten linearen Gleichungen bestehen. So
gewinnen wir eine Veralleemeinerung der bekannten EINSTEINschen ange-
niherten Gravitationsgleichungen, in welchen dic Wele der speziellen Rela-
tivititstheorie die Rolle cines Untergrundes spielt.

<
Es seien K, o K W K die Krimmungsgréssen des Untergrundes.
Kovariante Differentiation ist, wie gesagt, in Bezug auf dic Metrik des
Untergrundes zu verstechen. Der gesamte metrische Tensor mit unteren

Indizes hat die Komponenten

Gy T+ Ty
Fir diec Komponenten mit oberen Indizes findet man leicht in erster
Niherung

a3 7%

g v — .

Es st tatsichlich, bis auf Grossen zweiter Ordnung,

I3 ] 2
.y 2y s P
(0.0 + %) (g7 —) < 3¢
(gleich dem gemischten Finheitstensor).
Benutzen wir ein Koordinatensystem, das in einem vorgegebenen Punkte

fiir den Untergrund geoditisch ist, so gilt bis auf Gréssen zweiter Ordnung
fir die vollstindige Kriimmungskomponente R, g der gesamten Metrik
| £

Faz + Yys in diesem Punkte
P Pz, iz Pra ) (@.1)
aiin = Ayt 2 \ 0x?oxh dxe 0xp dx*dxh  0x3oxe

Es gilt weiter in demselben geoditischen Koordinatensystem, fiir den nim-
lichen Punke,

()"’r/.u N - ;,)_,, l’/.)‘l . d !J.}\l
O IV B P T

V:ﬂ V}\ e
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0x? | v ]' Qe v] o Km;

0 () d {m_ ,

dic Dreiindizessymbole bezichen sich auf den Untergrund. Die Kriimmung
R, 5., lisst sich nun in dem ins Auge gefassten Punkte folgendermassen
¥ v

darstellen:
1/
Ho.ﬁlp. = Kafﬂ.u + ?1 V:ﬁV)‘A(alx + vlkva’(fﬂ - vuv)jﬁ;x - v[,l.v(ﬂYa)\) -+

1 v Y v
+ E Klfﬁu YV{L + [f-l{ﬂp. Tva + Kﬁw. A(Vx’)’ ) '

Wegen ihres invarianten Charakters ist diese Beziehung fiir jeden Punket
und fiir beliebiges Koordinatensystem giiltig. Es sei

,|:3_13__g\9 .___l,"
LS (e, > (—Q{v

Dann betrige Rz, d. h. (g™ —+*") R,,“g’,\”’ bis auf Grossen zweiter Qrdnung:

o% v

) 1 - 1 % v N
R?’%“ - ](lgf"‘ - 7 D Tic‘{* + ? K{ﬁ YVP‘ + Kvp.‘{“i3 - ',v K"p’up.

(O = g’ VN5

es wird dabei vorausgesetzt, dass die 7qz die Bedingung

Vb =0 22
i} ¢ : B
erfiillen. R berechnen wir als (¢g° — ¥ )Rvpﬁ
g 9 1 __ 3 1 %5 v v b @ gev?
. P i 7, J— b —_ Y .
RIXJ. - K(* 9 (] TPL -+ _sz_(hy g J(H 'u) 'y K-'“l‘

Daraus folgt
. o Vv
R=K— [t ——YvI{a'
Es sei L;L (l;aa'g) ein linearer Differentialausdruck (in Bezug auf die r{)a@), den

wir folgendermassen definieren :

Ll 1
LI‘ (‘l’aﬁ):—"_z—

v v u . Ve e

1}L 1 Hv vt Ny 1 Y
Qo+ &y —Ey,+5 8 9 )—K. 4 +

\

1 '
Ty =g uley (2.3)
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Dann ist

1 [ 1 - ;
I{ —5 OLR == K-A— ? SLK + LI . (24)

(Durch Herunterzichen von - ensteht aus L? ein Tensor, der in Bezug

auf A, » unsymmetrisch ist).

Es bedeutet keine Einschrinkung anzunchmen, dass die Normie-
rungsgleichungen (2.2) bestehen. Ist es nimlich nicht von vornherein der
Fall, so kénn:n wir setzen:

q)aﬁ = (Iba"j + Va:{% + vﬁ:q — gaﬁvv’:v'
d-h, 7.=13 + Vg + Vg,

(das lduft aber auf eine infinitesimale Koordinatentransformation hin-

aus)—und die Bedingungen (2.2) fiir die neuen Potentiale ¢3 realisieren,

:
mdem wir dic g, aus den Gleichungen bestimmen :
AV v 2 WY . R 1,
Sh v Vs 7T V/.vv= - vvlf)\'
Durch Anwendung der Formel (r.5) erhilt man
Y. Y v . v
(o + K)‘ o = vv'\;’;‘ :
Indem man aus diesen Gleichungen die g bestimmt, kann man stets das
Bestehen von (2.2) erzwingen.
Die lincaren Differentialausdriicke Ls (byz) erfiillen identische Rezi-

prozititsbezichungen, dic den Bezichungen (1.3) ganz analog sind:

.
B

“ o 3 “ ‘
})‘3 La ((p?‘{x) - '1‘;1 La (pPW) = vuwa, wobei

(2.5)
(/,?) ' Y(L?)
w, = p N 23— ¢ Vibug; Puz = Psu -

Wir wollen jetzt nach (2.3) L{.: (743) berechnen fir

Dazu werden wir uns einer zu (r.5) analogen Formel bedienen, die fiir
5 tel
jeden kovarianten Tensor A;‘p gliltig ist:

U,V dy — VoV, 4, =Ky Ay — K, 4. (20

o 13u

Aus der BIANCHIschen Identitit
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V“K:uf% + VIK;ga + VBK:W,,\: 0

folgt

Va KE'};):(L; vplfl\s — vslg\}x' (2.8)

Aus (r1.5) ergibt sich

O Vié=9""VuViVz & + Kzt
und dann aus (2.7) und (2.8)

D Vl E{xz V)D E’{L + I{/iVE Ep + 2K}i)\a Va &s +
+ E(Vy Kie — VB, (2.9)

(Wir schreiben V%&£, anstatt g™\, &..) Wir fithren jetzt fiir den Unter-

grund folgende Voraussetzung ein:

g 1 IS otk
KE\ - *2* é n K = aoil\ (azconst,) ] (210)
dh, K = — 40, Kf'JL = — aBE:, l

(2.3) bekommt die einfache Gestalt

1
L‘l\p, (‘l’a{%) = — E Dq)l[x

(es wird also Ly, = Ly;).

Dann haben wir fiir das Feld (2.6) die einfache Beziehung, die wir nach
(2.9) berechnen:

Liy(p.2) = Vigu + Vuqn , mit ]

1 .
=y (O & — « &)

(2.12)

Der Untergrund wird im folgenden die Rolle des dusseren Gravitations-
feldes spielen, dem sich das Feld eines Korpers iiberlagert. Durch (2.10)
werden nur solche dussere Felder zugelassen, die ausserhalb ungeladener
Materie herrschen (die Konstante % vermittelt die kosmologische Erweite-
rung). Das ist jedenfalls eine sechr umfangreiche Klasse von Gravitations-

feldern,
Die EINSTEINschen Gravitationsgleichungen
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RN 1 » N
(G DE —5 58— o

=—‘AT!'L
A

N \

(2.13)
ersetzen wir, nach (2.4) und (2.10), durch die linearen Gleichungen

g B
L‘,‘ (".ba@) = P‘)\ (P“

. = D, (2.14)

wh
Vb, =0 (2.15)

Indem wir das elektromagnetische Feld ausschliessen, nehmen wir an, dass

* . . . .. . . W
v, ausserhalb ciner zeitartigen Weltrdhre verschwindet. Die Austiillung p-

der WeltrShre kénnen wir, genau nach dem Muster der vorher behandelten
elektromagnetischen Gleichungen, als eine virtuelle Ausfiillung betrachten,
die aus einer glatten Fortsetzung einer ausserhalb der Réhre vorhandenen
Losung entspringt. Als virtuelle Ausfiillung benutzen wir (einer Idee von
WEYL folgend) den durch die linke Seite von (2.13) definierten Tensor

G) , in welchem wir nur Glieder erster Ordnung in den o3 beriicksich-
\

tigen. Fir den so entstehenden Tensor M, besteht die Identitit

V.M, =0, (2.16)

B
A

. . @ . . e v
unterscheidet sich von L. durch Glieder, die gleichzeitig mit V%, ver-

. B .
die der bekannten Identitit fiir den vollen Tensor G, entspricht. (M

schwinden). Setzen wir Losungen von L. = 0 glatt ins RShreninnere fort,
. PR L . ' S o
indem wir fiir sie p, = M, konstruieren, so bekommen wir ein ., - Feld,

das die postulierten Figenschaften besitzt und die Gleichungen
Vo, =0 (2.17)

erfillt. Das Feld £ von (2.6) soll, seiner Rolle und seinen Fingeschaften

nach, dem Skalarfeld & von § 1 vollig analog sein. Auch das Vektorfeld

& . . . . . . . .
& sollausserhalb cines (beliebig zu wihlenden) Weltgebiets t, mit einer gewis-

sen Anzahl seiner Differentialquotienten verschwinden, sonst kann es beliebig
gewihlt werden. Indem man die Reziprozititsbezichung (2.5) mit /g mul-

tipliziert und iiber 1, integriert, bekommt man, wegen
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e LAWaw) (20w

N B 0 xv % = 0,
Ty
die Gleichung
[ 1/5 e P dr, — zj l/&(;aevaq{jd% — 0.
Ty Ty

Man beweist durch particlle Integration, dass das zweite Integral infolge
der Normicerungsgleichungen (2.2) fiir ¢,3 und des Verschwindens von g,
auf der Begrenzungsfliche verschwindet. Mithin

- 3 ..
[]/g])a‘gp«a‘ dr, = 0 fur l
i
ps = Tutp + Vakeo

in voller Analogic mit (1.7). Der Ubergang zu einem Integral lings einer

Weltlinie geschicht ebenso wie fiir (r.7), und man gelangt zu ciner Glei-
chung, die der Gleichung (1.9) entspricht:

(2.18)

.
%]

[P m™ (Vs pag)m)‘“3+ ..]ds = 0. (2.19)
o
Das ist unsere Variationsgleichung der Mechanik.
Setzen wir voraus, dass unser physikalisches Gebilde durch den ein-

fachen Dol geniigend charakterisiert wird (Punktmasse), so haben wir die
Gleichung

J‘Inapva 33 dS — 0 (220)
S
In jedem Punkte der Weltlinie spalten wir m™ nach dem jeweiligen Ge-
schwindigkeitsvektor u*, d.h., wir zerlegen es nach der Formel
m= Mud® + M+ MPu' #m”, wobe (2.21)
;:_maﬁu‘g: 0, Mu, = 0.

Unter dem Integralzeichen wird es Glieder geben, in welchen Differential-
. > . ) o .

quoticnten von &, In Richtungen, die zu u* orthogonal sind, vorkommen.

Diese Glieder fiigen sich zu

f)i;g

Cm™ + M) (2.22)

0 xo
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zusammen. Es steht uns frei fiir 4.3 = 12 Grdossen

L ((—=1,2,3 s,~z=o,1,2,3>] ‘

, . (2.23)
(c"u, = 0) l

{

eine Wahl zu treffen, die unabhingig von der Wahl der 53 lings der
Weltlinie ist. Dann aber folgt aus (2.20), dass die Gliedergruppe (2.22),
{iber s integriert, fiir sich allein Null ergibt. Daraus folgt aber

m* 4 M uP= 0 (2.24)
und durch Multiplikation mit u*

mt= 0, M =0. (2.25)
Jetzt kann Gleichung (2.20) wie folgt geschricben werden:

f M a7, 5 ds = 0. (2.26)

s
Es ist aber

Muauﬁva Esz uava (Mllgélg — " Vo (MuB )&3 ) (2.27)

. . . . . d .
Das erste Glied rechts ist einfach die Ableitung s cines Skalars. Das

% - Feld verschwindet an den Endpunkten des Integrationsweges, sonst

aber ist es lings der Weltlinie frei wihlbar. Es folgt daher aus (2.26), (2.27):
Y (Mu") = 0 (2.28)

oder, in entwickelter Gestalt,

d (Mu)‘) . @ ﬁ' a B
Indem man (2.28) mit ug multipliziert und die Normierung ugul =1

beriicksichtigt, erhilt man noch

. M
M= d M = 0, M = const. (2.30)
ds
So fiihrt Gleichung (2.20) zum Bewegungsgesetz (Beharrungsgesetz) (2.29)
mit einer konstanten Masse. Es ist klar, dass (2.29) zusammen mit (2.24)
und (2.25) die hinreichende Bedingung fiir (2.20) darstellt.
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Die Gleichungen (1.9) und (2.19) haben wir aus den Gleichungen
(r.7) und (2.18) abgeleitet. Diese aber sind nur dann mit der Willkiir un-
serer Felder &, &a vertriglich, wenn zugleich die Kontinuitdtsgleichungen

v,8 =0, V0= 0 (2.31)

bestehen. Da (1.7) und (2.18) unter Benutzung der Fichung (1.2) und (2.15)
aus den Feldgleichungen (1.r) und (2.14) folgt, so sicht man ein, dass die
Bedingungen (2.31) erfiillt sein miissen, wenn die Eichung nicht zu Wider-
spriichen fiihren soll.*

Das Gravitationsskelett. Indem wir Gleichungen (2.19) am Glied,
das Differentialquotienten r-ter Ordnung von gy, enthilt, abbrechen, 16sen
wir unser materielles System in eine Summe von Multipolen auf. Wir sa-
gen, dass wir das System durch sein Gravitationsskelett ersetzen.

Die Lésungen g eines Systems (2.14) sind (fir ein CAUCHY - Problem)
entweder retardierte Potentiale (euklidische Welt als Untergrund) oder
Lésungen FREDHOLMscher Integralgleichungen, in welchen das freie Glied
(die gegebene Funktion) ein retardiertes Potential ist. Indem man die Funk-

tionen pf in eine schmale zeitartige RShre einschliesst und diese auf eine
73

Weltlinie zusammenschrumpfen lisst, bekommt man fiir die retardierten
Potentiale im einfachsten Fall einen einfachen Pol, d. h. einen Ausdruck
vom Typus m @ (xy, x), der von einem Aufpunkt 0 (xo) und vom Ort
A (x) des Pols von der Stirke m abhingt. 0 (xg) und A (x) gehéren der-

.1 . .
selben geoditischen Nullinie, ¢ wird wie—- unendlich fir 0 (x,) - A (x);

dabei ist r eine dem gewdhnlichen r(xy, x) analoge, invariant definierte
Grésse, die fiir 0 (xg) — A (x) gegen Null konvergiert. ** Dipole (LSsungen
mit Singularititen vom Typus eines klassischen Dipols, Unendlichwerden

M 1 . . . . . . .
wie —5 ) kann man erhalten, indem man zwei Pollinien gegen eine einzige
.

Weltlinie konvergieren lisst, u. dgl. fiir hshere’ Multipole. Die Singularititen
gehen in die Ldsungen der FREDHOIMschen Gleichungen iiber.
Es seien nun die $o Losungen von Lpy = 0, die nach (2.15) geeicht

) .1 ) '
sind und beim Annihern an die Weltlinie wie — unendlich werden. Die

Singularititenlinie sei dem Gebiet 7, durch eine schmale Rohre (einen Ka-

nal) entzogen. Indem wir die Reziprozititsbezichung (2.5) liber das neue
. . . . . ’ .

kleinere Gebiet 7’ integrieren, erhalten wir, da in vy Lpv = 0 ist,

* Aus den Gleichungen (2.31) folgen unmittelbar die Gleichungen (1.7) und (2.18).
Das wire der kiirzeste Weg zu unseren Variationsgleichungen (1.3) und (2.19). Ihr Zusammen-
hang mit den Feldpotentialen wire dabei beiseite gelassen. ‘

#* G, die Literaturangaben am Ende der Arbeit.
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J’[a(l/EwV)

0 xv

L2 Vﬂ“ﬁvaqg}d £, = 0.

7’
Ty
Wegen der Eichung (2.15), ist

q)aB Va(Iﬁ — Va(q)_agqﬁ ),

und wir haben

-, B B
J 5 Vgw’ + 2Vg ¢*%qg) dr, = 0.

’
Ty

Die linke Secite transformiert sich, nach dem GAUSSschen Satz, in ein Fli-
chenintegral. Da die Felder §,,V,%, g, auf der Begrenzungstliche von =,

verschwinden, kommt im Flichenintegral nur das Integral iiber die RShren-
N . .1 . .
fliche vor. Da die ap VOraussetzungsgemiss wie — unendlich werden, die
r

Oberfliche eines raumartigen Querschnitts des Kanals aber beim Zusammen-
zichen das Kanals wie r* gegen Null konvergiert, verschwindet beim
Zusammenschrumpfen des Kanals das Glied mit gz und das Glied mit
Vipus. Pu3 kann man durch das erste Glied der TAYLOR-Entwicklung

[s. (1.8)] ersetzen, da das folgende von der Ordnung r ist. Sind die ¢u3

1 . . .
von der Ordnung & 0 konnen die Glieder mit V), pog und 9y einen

fr r— 0 nicht verschwindenden Beitrag geben. qg ist aber eine Linear-
. . ¥
kombination der V/; pg3:

194 A 1 L
=9 ViV = 6" Vupy — 5 Va6 p)-

Man kann also die Gleichung (2.19) und ebenso die Gleichung
(1.9) begriinden ohne virtuelle Ausfillungen zu benutzen, indem man
Lésungen mit Singularitdtenlinien (Multipollinien) betrachtet. Es folgt

aus unseren Betrachtungen, dass die Potentiale mindenstens wie e

unendlich werden miissen, damit in (2.19) Differentialquotienten von pg3

von der Ordnung n vorkommen. Aus der Betrachtung eines klassischen
(d. h., statischen) Multipols, fiir welchen cine Gleichung (1.9) oder (2.19)
leicht zu berechnen ist, zicht man den Schluss, dass die Potentiale nicht

. . 1 . .
mindenstens, sondern gerade wic — 45 unendlich werden miissen.
r
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Indem man die Gravitationspotentiale in der Umgebung der Singu-
larititenlinie angibt, kann man die linke Seite von (2.19) als ein Flichen-
integral oder ein Grenzwert eines Flichenintegrals berechnen,.

Die Charaklerisierung des Systems durch eine Weltlinie und
Gravitationspotentiale in ihrer Umgebung ist somit zugleich eine An-
gabe seines Gravitationsskeletts.

Ein Potential ¢, = V/.& (i-cin beliebiges Skalarfeld) geniigt sicher-

lich den MaAXWELLschen Gleichungen (die wir als bereits auf Potentiale
zurlickgefithrt voraussetzen) der leeren, stromlosen Welt, denn das entspre-
chende elektromagnetische Feld verschwindet identisch. Sollen die Poten-
tiale die Eichung (1.2) erfiillen, so kann man noch das Skalarfeld & zwi-
schen den Losungen der Gleichung [J&=10 beliebig wihlen. Es folgt
daraus, dass es immer moglich ist, physikalisch unwesentliche Multipole
hineinzufiihren, indem man zu den Potentialen unwesentliche Potentiale

25 =V;5, i= (2.32)

hinzufiigt, deren erzeugendes Skalarfeld & auf gewissen Weltlinien Multi-
polsingularititen besitzt. Doch ist Gleichung (71.9) von diesen physika-
lisch unwesentlichen Singularititen unabhdngig. Wir benutzten nimlich
zu ihrer Ableitung den (wahren oder virtuellen) Strom, auf welchen die
Potentiale (2.31) keinen Finfluss haben (Eichinvarianz). ‘

Ganz ihnliche Verhiltnisse finden wir bei Betrachtung der Gravita-
tionsgleichungen. Die Rolle der Potentiale (2.31) iibernehmen nunmechr
die Gravitationspotentiale

Ta= Vi T Vu& (2.33)
(&, -ein beliebiges Vektorfeld), dic man zu den 13, addieren kann, Sie er-
tillen identisch die Gleichungen (2.14) fiir py, = 0, wobei Y43 nach der
Formel

A%

1 N
g e

R T

e

mit den zusammenhingt und &, zwischen den Losungen der Gleichung

v
Thyx
. v
& + K;‘Ev =0

zu wihlen ist. [Diese Gleichung haben wir schon frither aus der Bedingung
(2.2) abgeleitet.] Es konnen demnach durch die & physikalisch unwesen-
tliche Multipole cingefiihrt werden. Aber, ebenso wie vorher in Gleichung
(1.9), sind die Multipole von Gleichung (2.19) von den physikalisch un-
wesentlichen Singularititen unabhiingig. Das folgt unmittelbar aus der
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Struktur der von uns verwendeten virtuellen Ausfillungen, die in Bezug
auf infinitesimale Koordinatentransformationen invariant sind, durch wel-
che die Felder (2.32), wie bekannt, erzeugt werden.

Es sei noch hervorgehoben, dass zwei verschiedene virtuelle Ausfiil-
lungen, die aber denselben Anschluss an die RShrenwinde besitzen, zu glei-
chen Multipolstirken in der Gleichung (2.19) fithren.

$§ 3. Die Bewegungsgleichungen eines Dipols

Wird Gleichung (2.20) durch Dipolterme erginzt, so hat man

i [pagm“?’ﬂmpag) m)‘ﬂds —o. @.1)

S

Diese Gleichung bildet, wie wir gleich sechen werden, ein in sich ge-
schlossenes, l6sbares Problem: man kann Gleichung (2.19) am Dipolterm
abbrechen, ohne auf Widerspriiche zu stossen. Es wird sich weiter zeigen,
dass den rein deduktiv gewonnenen Resultaten eine zwingende, eindeutige
Interpretation zukommt und dass physikalische Bestimmungsstiicke eines
materiellen Systems, z. B. das Rotationsmoment, in Begriffen des Gravi-
tationsskeletts beschreibbar sind. Das Problem eines Systems in der Form
eines Gravitationsskeletts anzusetzen bietet den Vorzug, dass man solchen
jusserst schwierigen Fragen, wie Existenz von starren Korpern und Rota-
tion (in einer RIEMANNschen Welt) aus dem Wege geht und sich sogleich
einer Anzahl physikalisch bedecutsamer Parameter zuwendet.

Wir zerspalten m"*? nach uk, d. h, stellen es als eine Summe dar,
deren erstes Glied e¢in zu u” orthogonaler Tensor ist und deren iibrige
Glieder Produkte von u* - Komponenten und von Komponenten zu u*
orthogonaler Tensoren sind (vgl. die Zerspaltung von me? im vorigen Pa~
ragraph). Die Zerspaltungskomponenten, die u* enthalten, kdnnen ,weg-
integriert” werden, sie sind durch partielle Integration (nach der Formel

f'ulv)\st — f‘i—g ds = 0,

S S

vorauscesetzt, dass der Skalar Q an den Enden des Integrationsweges ver-
O > O

schwindet, was durch Vermittlung des &* - Feldes geschieht) auf Einzelpol-

terme zuriickfihrbar und daher in m* mit enthalten, z. B.:

{V)ﬁagu}‘AaBdS = — j .pag (1"7,4™) ds. (3.2)

S S
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Wir setzen daher (m)‘“?3 ist in o, B symmetrisch):
mla{%: ::_m)\a.B + na)‘uﬁ + nB)\ua + n)\uauﬁ ' (3.3)

Die Tensoren *m™, n (in allen Indizes) und der Vektor n* sind zu u*
orthogonal ; *mhe3 ist in @, B symmetrisch. Fiir zweite Ableitungen von
& in zu u™ orthogonalen Richtungen, die unabhingig voneinander und von
anderen & - Grossen wihlbar sind, bekommt man zuerst fiir eine Summe

92 a ak
T em® Ly =0, (3.4)
dann fiir einzelne Glieder
(™ ) P4 #m P rm™P = 0, (3.5)

Multiplikation mit ug ergibt

o o ak Ao .
nk+nk=0, i (3.6)

Dann aber kann (3.4) wie folgt geschrieben werden:

3 (6&3 aga) ¥ 0.

9 x* \ax* 9 x®

In der Summe auf der linken Seite kénnen die Faktoren von m\aa— nach-
dem im betrachteten (beliebigen) Punkte ein zu u® orthogonales Raum-
koordinatensystem und u®* als Zeitachse gewihlt worden sind — beliebige
in o, B symmetrische Werte annehmen. Daher

:{-m)\asz 0' (3.7)

Bevor wir unseres Problem deduktiv weiter verfolgen, wollen wir den
physikalischen Sinn suchen, der den Bestimmlfngssti'ic!{cn nh unseres Gra-
vitationsskeletts zukommt. Der Untergrund sei euklidisch und auf ein or-
thogonales (LORENTZsches) Koordinatensystem bezogen. Es sei T,g der in
(2.13) vorkommende Tensor der materiellen Ausfiillung einer zeitartigen Welt-
réhre. Er wird die Rolle von pog [Gleichung (2.14)] tibernehmen. Inner-
halb der Weltrdhre wihlen wir eine glatte zeitartige Weltlinie und zer-
schneiden die Rdhre in Elemente (Schichten), indem wir in Abstinden ds
dreidimensionale parallele Ebenen o; konstruieren, die zur Weltlinie ortho-
gonal sind. Wir haben in allen Punkten der Weltlinie
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=1, ul =0 (i=1273); l
n® = 0 (wegen n*u, = 0), ni* = 0 (wegen n*u, = 0), l (3.8)
m'® = pn! [wegen (3.2) und (3.7)].

Lateinische Indizes nehmen die Werte 1, 2, 3 an.
Nun liefert ein Vergleich von (2.18) und (2.19):

({f apoo g TYdytdy2dy® }ds = fm'oo p"o ds (3.9)
s o
(y sind Koordinaten relativ zum Schnittpunkt von o3 mit der Weltlinie).
Dabher
Nt — J g T%dy'dytdy®. (3.10)
Og
Es wird dabei die TAYLORentwicklung benutzt:

Bp 8 1 0 pag
Pay = (Pagdo + 5yt - 5 St (31)
0 0 0

Wir wollen fiir T,z den bekannten Tensor der inkohirenten Materie,
pu,ug , ansetzen. Fiir ruhende Massen, die mit der Dichte T% =p. ver-
teilt sind, ist n! das statische Moment in Bezug auf die y’-Achse. Zieht
man die Welclinie selbst (deren Spur den Koordinatenanfang y' = 0 be-
stimmt) durch den Schwerpunkt (Massenmittelpunkt) der Schmtte Og, SO Ver-
schwinden die n'. Ist die reprisentative Weltlinie gckriimmt, so werden
die oy - Schnitte nicht mehr parallel sein, das Element einer Schicht wird
einen Faktor f7%1 bekommen. Die Koordinatensysteme (y'y%?®) sind dann
momentane Raumachsen. T® wird fiir Materie, die sich mit der Geschwin-
digkeit v bewegt, Korrekturen erfahren. Wir sagen, dass die nk auch im
allgemeinen Fall bewegter Materie und RIEMANNschen Untergrundes im
wesentlichen statische Momente sind in momentanen Riumen, die die Welt-
linie orthogonal schneiden. Wir diirfen annehmen, dass die n* immer
zum Verschwinden gebracht werden kénnen, und zwar durch Ausbes-
serung der reprisentativen Weltlinie des Systems, die dazu durch die
»Schwerpunkte” der % - Schnitte gezogen werden soll.

Nun kehren wir zur mathematischen Behandlung unseres Problems
zuriick. Setzen wir zur Abkiirzung fiir irgendwelche Tensoren ... mit

oberen und unteren Indizes

o . o A
Y = 50 (2 B, B = u*Vun), (3.12)
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so ist, wenn man (1.5) und (3.6) beriicksichtigt und von particllen Inte-
grationen nach der Art von (3.2) Gebrauch macht:

» Uv\ 2 . o 1 . a)\ . . .
AR Wty ds = 5 figlfa,ex (n*'a” + 2n™u")ds  —

S S

— J(V;ﬁ@)fzg"ds. (3.13)
s

#  spalten wir nach u)‘; d. h., wir zer-

legen ihn wie folgt (die Zerlegung ist eindeutig):

Den antisymmetrischen Tensor n

A= (i) 4 Lfat — L', (314)

(), = () ug = 0; LPug = 0.
Es ist dann
L? = n**u, (3.15)

und fiir die Gesamtheit der Glieder in (3.1), die Differentialquotienten
der &, in zu u* Qrthogonalen Richtungen enthalten [vgl. (2.21)]:

oxh

_ [ 0% [::-(,:l?f/\) — [P —mfh — M.”u?’]ds = 0. (3.16)
) .

Wir wissen, dass daraus das Verschwinden des Klammerausdrucks
folgt; es verschwindet somit sowohl der symmetrische Teil

% (Du® 4+ LPub) 4 *mP % (Ma? + MPut) =0, (3.17)

alsauch der antisymmetrische. Multipliziert man (3.16) mit u®, so erhilt man

L 4+ M» =0, woher *m* = 0. (3.18)

Dann [aus dem Verschwinden des antisymmetrischen Teils des Klammer-
ausdrucks von (3.17)] folgt

*(p)fh = 0, (3.19)

oder

AP eu, uf — W = 0. (3.20)

Zu diesen Bezichungen kommen die folgenden, die man aus der Be-

dingung nfhu, = 0 erhilt, hinzu:
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*ru, + P, = 0. (3.21)

Man kann die beiden Systeme durch das System

AP — P, uf 4 nfra, ut = 0 (3.22)

ersetzen, aus welchem man zuerst (3.21), dann (3.20) wiedergewinnen
kann. V&3 kommen noch nur in Gliedern vor, in welchen sie nach par-

tieller Integration verschwinden:

('v;\ b (—LPd" 4 MPd") ds = f 2 231%ds. (3.23)
‘S LS

[Wir haben von (3.18) Gebrauch gemacht.]
Gleichung (3.1) ergibt jetzt, wenn man die Glieder mit §, zusammen-
fasst :

- [« [u“vv(Mu“) -

t

1 e B Bopy o 3a .
2 Kﬁpx(" u+2n u") 2L]ds = 0, (3.24)

Der Ausdruck in eckigen Klammern muss verschwinden. Dann ist aber

L

Mu®* 4+ My — 5

Ky, a4 2nfaty — 20" = 0. (3.25)

Nun ist, nach (3.15), (3.21) und (3.22),
L= — o™ (3.26)

Y o
aber zugleich L* == ii*’u, und, da #i* antisymmetrisch ist,
u,L* = 0. (3.27)
* . . . . . . . .
KBH)\uau}L ist in B, X symmetrisch, wie man leicht einsicht. Daher ist
w o
K gy n ugu” =0,

wegen (3.6). Multipliziert man Gleichung (3.25) mit u”, so erhilt man

M=o, also M = const. (3.28)
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Ba

Fiir den antisymmetrischen Tensor n™* konnen wir schreiben

2 Ky = (Kpg— Kiyg) n'= Ky

Beriicksichtigen wir noch (3.26), so haben wir, anstatt (3.25),

. a B ph ah,,
Ma®* — K?M” n -+ 2n i, = 0. (3.29)

M = const.

[Wir erinnern, dass, nach (3.12),

o due )\P- TS
ut = - —]—: }uu

a

ist.] Das Glied, das i* enthdlt, wird auch im Falle euklidischen Unter-
grundes vorkommen.

So fithrt Gleichung (3.1) za den Bewegungsgesetzen (3.6), (3.22) und
(3.29). Es ist klar, dass, zusammen mit unseren vermittelnden Feststellun-
gen iber die Tensorkomponenten des Pols und des Dipols [wie z. B.
(3.18)], unsere Bewegungsgesetze hinreichende Bedingungen fiir das Beste-
hen von (3.1) darstellen.

Fiir die 6 Funktionen n*® und die 4 Funktionen u” haben wir die
6 Gleichungen (3.22) und die 4 Gleichungen (3.29). Dass fir unsere 10
Funktionen die Beziehungen

n*fug =: 0, u*u, =1 (3.30)

gelten, kann man aus den Gleichungen ablesen. Man kann (3.30) dazu be-
nutzen, die 10 Funktionen auf 3 - 3 = 6 zuriickzufiihren.
Die Kraft

D* =Kg, uf nt*+ 20" i, (3.31)
ist zu u* orthogonal; dasselbe gilt sogar fiir jeden der 2 Summanden auf
der rechten Seite von (3.31).

§ 4. Dipol und Rotation; Prizession

Die Dipolstirken ne® lassen sich nach derselben Methode interpre-
tieren, die uns im vorigen Paragraph zum Verstindnis der n*- Grdssen
verholfen hat. Die reprisentative Weltlinie des Systems sei wiederum, in
unseren LORENTZschen Koordinaten, zur Zeitachse parallel. Die Materie
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soll relativ. zum Raumkoordinatensystem, in welchem der Schwerpunkt
momentan ruht, langsame Bewegungen ausfilhren. Indem wir Quadrate
der Geschwindigkeiten vernachlissigen, haben wir

L4 O
T"°=(” ):;ka (k = 1,2,3)

[v* sind die Raumkomponenten des Geschwindigkeitsfeldes der Materie
relativ zum Schwerpunkt (Lichtgeschwindigkeit = 1)]. Wir haben weiter,
nach der Zerlegung (3.3), in welcher u® selbstverstindlich sich auf die

reprisentative Weltlinie beziehen (u® =17, u*t = 0):
mik0 = nk I k = 1,2,3)
Der Gleichung (3.9) wird jetzt folgende Gleichung entsprechen:

0Pt oy a1l dg— [ OPH o
f{f—a}? y! THdyldy*dyt! ds = ox; mi0ds,

s G s
woher
nkl = f vy vrdytdyPdy® . . 4.1)

)

n't ist antisymmetrisch, daher

n't = % f%» (v'y* — vty') dy'dydy’,

o]
3
oder

L gas, 4.2)

o _ 1
n 9

wobei Q% der Drehimpuls ist. n®? sind im wesentlichen die Komponenten
des Drehimpulses, wenn man ihn in Bezug auf einen Punkt der Schwer-
punktsweltlinie fiir einen zur Weltlinie orthogonalen 4-Schnitt berechnet.

Wenn es gestattet ist, unser System als einen starren Kérper zu be-
handeln, so ist

ol = vl yr (4, r=1,23), (4.3)

T

wobei v4 der antisymmetrische Tensor der Rotationsgeschwindigkeit ist
[in orthogonalen Systemen gleichen Schraubsinns ist er durch einen Vek-
tor o darstellbar :

(vlzs Va3, Ust) = (— Wy, — Oy, — O, )1
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Dann ist

nit = p! Jhr (4.4)
mit

Ikr= f{"ykyrdyldy2dy3- (4.5)

Ist das Trigheitsellipsoid des Korpers eine Kugel, so haben wir in einem
kartesischen Koordinatensystem

I (k=)
ke __ pokr (4_6)
1 re { 0 (ks~r)
und dementsprechend in einem nichtorthogonalen lincaren System
= ", 4.7

In diesem einfachen Fall ist die rechte Seite von (4.4) antisymmetrisch
und unser Dipolmodell ist dem mechanischen Problem adiquat. Im allge-
meinen Rotationsfall muss man, wie wir weiter sechen werden, als Erwei-
terung des Gravitationsmodells den Quadrupol ecinfiihren. Zwischen dem
skalaren Wert @ des Drehimpulses und dem Drehimpulstensor Q% besteht
die Beziehung

Q= Qqaﬁ, wobel qa?) gog= 1. (4.8)
Aus der Gleichung (3.22) ergibt sich:
%~ u’Ve (naBnag‘) = QQ =0, Q = const. 4.9)

Ist @ als Produkt von Tragheitsmoment [ und Winkelgeschwindigkeit o
darstellbar und ist /= const., so ist ® == const.

Gelegentlich sei darauf hingewiesen, dass die Berechnung der Dipolstir-
ken n®® der angeniherten Berechnung der Dipolglieder des Potentials *
parallel liufr. Es ist namlich 4”8 wenn man Gravitationstheorie auf eukli-
dischem Untergrunde treibt, in einem Weltpunkte 0 durch ein retardier-
tes Potential gegeben [vgl Gleichung (2.11)] das, bis auf einen konstanten
Faktor,

To! .
f (‘1—) dyldgtdy®  (1=1,2,3)

t——
c

betrigt in einem Koordinatensystem, in welchem der nach 0 gerade zu-

strahlende Punkt der Weltlinie momentan ruht. Indem man fiir % die

ersten 2 Glieder seiner TAYLORentwicklung nimmt und die Integration
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iiber den Lichtkegel durch Integration iber einen zur Weltlinie orthogo-
nalen Schnitt ersetzt, bekommt man (4.1) fir die Komponenten der Di-
polstirke. '

Im Gravitationsskelett des rotierenden Korpers kommt der Drehim-
pulstensor gegeniiber der Rotationsachse, die von der Grosse Q% aus kon-
struiert wird, als das Primire vor. Man muss dabei an (4.3) ankniipfen. Die
Rotationsachse eines symmetrischen Kreisels ist zum Drehimpulstensor
orthogonal. Fiir die Rotationsachse c¢* setzen wir daher:

(2) en™ =0, \I
(®) eu” =0, } (4.10)
() et =—1. }
Differentiation ergibt
@) 6,7 — — ¢,i= 0, nach (3.22) und (4.10), ]I
@) ¢uu” = — et ¢ (4.11)
() ¢, = 0. ]

¢® ist demnach zu drei unabhingigen Raumrichtungen orthogonal: zum

Flichenelement n® und zu c¢*; es ist zeitartig und durch

= — (c,a")u* (4.12)

_g”egeben; i” ist aus (3.29) zu entnehmen. Bewegung des Schwerpunkts und
Ubertragung der Rotationsachse sind gekoppelt.

Das Gesetz (4.12) ist mit der FOKKERschen Prizessionsregel unver-
cinbar. Fs fehlt nimlich bei FOKKER der Einfluss der zweiten Ableitungen
der g,g (des Kriimmungstensors : dieser Einfluss kann, wenigstens theoretisch,
durch Verminderung des Rotationsmoments beliebig herabgesetzt werden).
Das ist ja selbsverstindlich: die FOKKERsche Vorschrift ist in der Voraus-
setzung konstruiert, dass das Beharrungsgesetz fir die Achse lokal eukli-
disch ist, d. h., im Vergleich mit dem euklidischen Gesetz Zusitze erfihre, die
in einem geoditischen Koordinatensystem im beziiglichen Punkte verschwin-
den. Andererseits kommt bei FOKKER® zwischen der Achseniibertragung und
der nichtgeoditischen Bewegung des Schwerpunkts in ciner kriimmungs-
losen Welt eine Kopplung vor, die mit der durch (4.12) gegebenen gleich-

* Bei sinngemisser Erweiterung seines fiir eine geoditische Linie formulierten Ansatzes.
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bedeutend ist, wie wir gleich sehen werden. (Dass die eventuellen Krifte
die Bewegung des Schwerpunkts allein beeinflussen, sei vorausgesetzt.) Man
beachte dabei folgendes. Unter den Gleichungen (4.12) ist nur Gleichung
(#) dynamischen Inhalts; sie beruht nimlich auf der Gleichung (3.19), die
besagt, dass der zu u* orthogonale Bestandteil des Rotationsmoments wihrend
der Bewegung konstant bleibt (oder, allgemeiner, parallele Verpflanzung er-
fihrt). In vollig analoger Weise besagt die Regel FOKKERs, dass der zu
u” orthogonale Bestandteil der Rotationsachse Parallelverschiebung erfihrt.

Ist d* cin Vektor, der in einem Punkt der Bahn mit der Rotations-
achse ¢* zusammenfillt, so ist ¢* im benachbarten Punkt, nach FOKKER, ein

zur orthogonalen Komponente *d” proportionaler Vektor:
ca= B;g.da’ ”‘a’a=d“— (dvllv) ua . (413)

d* wird dabei lings der Weltlinie des Schwerpunkts parallel verschoben:

d* = (. Den Faktor B fithren wir ein, damit c¢* auf Einheitslinge nor-
miert werden kann. Wir finden

¢ = gd* + Fd =
= — 3|yt + @) |+
[ (td*) = 0’7, d" ] .

Nun ist es leicht anzusechen, dass, wegen d*=c”, in unserem Anfangspunkt,

v

14 (du)t
s—0

27U setzen ist. Dann stimmt das FOKKERsche ¢* mit unserem ¢* [Formel

(4.12)] iiberein.

B

2

§ 5. Der Quadrupol

Beriicksichtigt man das Quadrupolglied im Gravitationsskelett, so ist
die Variationsgleichung des Problems:

.

S

f [pa,am“a + (Vipop) m™ 4 (V3 Vu0g) m“‘ﬂds:O. (5.1)
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Das erweiterte Gravitationsskelett befreit uns von den Beschrinkun-

gen, die an die Voraussetzung (3.6) gebunden sind, dass n*® antisymme-
trisch ist [vgl. oben das gelegentlich der Gleichung (4.7) Gesagte].

mMe3 jst selbstverstindlich in o, B symmetrisch; es kann als in}, p.
symmetrisch angesetzt werden; der antisymmetrische Teil (Indizes in ek-
kigen Klammern) wiirde nur einen Beitrag

(VaVpug)m Belof (Vi Vi Pag) m"* = Peg Q°
zum Pol liefern mit
¢ 1
Qf=

1 e [hp]ad € Dpldyvy e [Ap]aB
5 (KaMm -+ Kva 7y = Kaw‘m .

Spalten wir nach u*:
mM P L (g L pM%) T (5.2)

¢tm und b sind in allen Indizes zu & orthogonal), so haben wir,

analog zu (3.4),

0% ¢ . huaB n
f g (' 8 ds o,

S
woher

MR pf— 0. (5.3)

(Runde Klammern bedeuten eine symmetrische Summe:

A 1 \
a( w) _ = Z aiw

iiber alle Permutationen summiert.)
Multiplikation mit ug liefert

b= o, 5.4)

Dann aber kann (5.3) wie folgt geschrieben werden:

2 (8t | 08\, desf _
(dxﬁ + ) m 0.

Dxhoxw 0 x=

Die Schlussweise, die uns zu (3.7) gefiihrt hat, ist auch im vorliegenden
Fall anwendbar, und wir erhalten

,:.mxpaﬁ___ 0. (5.5)
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In der Zerspaltung (5.2) konnen wir Glieder, die u* oder u* enthal-
ten, ausser Acht lassen, da sie, wie man leicht ecinsicht, auf Dipole und
Pole zuriickfihrbar sind. Auf Glieder, die 4" mit 3 Indizes enthalten,
werden wir verzichten, da wir nur solche Bestimmungsstiicke des mecha-
nischen Systems einfiilhren wollen, die klassische Gegenstiicke besitzen
(d. h., als im wesentlichen bekannte Grossen der Mechanik der Punktsys-
teme gedeutet werden konnen). Die nichtklassischen Grossen, die den &
zuzuordnen sind, sind die Momente zweiten Grades des Geschwindigkeits-
feldes:

b = % [ vy y*ot dytdy*dy®. (5.6)
Das Deutungsverfahren liuft demjenigen, das zu (4.r) fiihrt, vollig parallel.
So bleibt uns nur die Voraussetzung iibrig, dass in der Gleichung

(s.1) der Quadrupol durch das Glied b uu® vorkommt:
e = b (5.7

Das ergibt, wie wir sehen werden, ein insich geschlossenes, widerspruchs-
freies System von mechanischen Bestimmungsstiicken des materiellen Sy-
stems.

Durch elementare Umformungen, bei welchen wir von Vertauschungs-
relationen fiir kovariante Ableitungen [Formeln (r.5) und (2.7)] wieder-
holten Gebrauch machen, erhalten wir:

S AVAVAE R
= — (Vi) 0" Va0 0+ K 0™ +

+ Vs (Ko, b u"u® 2K, 0" 0'e™ (5.8)

[Ein fiir uns unwesentliches Glied u*¥/, (...) lassen wir einfach fort.] Wir

benutzen dabei die Bezeichnung

Kﬁap,l = V;\Ksap . (59)

Obwoh!l in (5.8) dritte Ableitungen der &, nicht vorkommen, kann das

Quadrupolglied auf Glieder niederer Polaritit nicht zuriickgefithrt wer-
den. Das Glied, das zweite Ableitungen von &, enthilt, ist nicht von der

Gestale (V/;, parg)q“?’.

Wir spalten b nach u” .
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P sy 4 2t 4 ZM 4 zdd (5.10)
Es ist leicht zu sehen, dass man dem b""- Glied, insofern es sich um zweite
Ableitungen der &, handelt, dadurch Rechnung trigt, dass man in Glei-
chung (3.4)
M)xa,'i: ::_nl)\aﬁ . blal.lﬁ G.11)
haB

anstatt “m und

N = (b 5.12)
177 S .
anstatt n  einfithrt. So erhilt man, anstatt (3.6),

N = n"— (™) = — N (5.13)

Wir wollen nun versuchen, (5.13) physikalisch zu deuten. Die uns
geliufige Deutung ergibt im wesentlichen die Stirke des Quadrupolglieds
in der Entwicklung eines NEWTONschen Potentials nach Multipolen:

. 1 I3
“=7wa. (5.14)

Wir haben das Integral durch eine Summe ersetzt; W ist jetzt die
N . .. . o . . .
Masse eines individuellen Materieelements, y*seine Koordinaten relativ zum

Schwerpunkt in seiner gleichzeitigen Lage (y*u, = 0). Der Vektor

dy* _ ,»
ds

ist im wesentlichen die Geschwindigkeit relativ zum Schwerpunkt und

o 7 A . . .ol ah . cpe
zu u orthogonal. *(6 ") kann im wesentlichen mit & identifiziert wer-

den, und wir erhalten fiir Na)\, nach (5.14) und (4.1):

h \ | 3 3 A
N* = % b 0y — vy’ = -;— Q™ (5.15)
es ist titsichlich antisymmetrisch, ohne dass man die Allgemeinheit des
Systems einschrinkt [vgl. das gelegentlich der Formel (4.7) Gesagte]; es
ist gleich dem halben in Bezug auf den Schwerpunkt gebildeten Drehim-
pulstensor. Weiter folgt aus (s5.13), dass im wesentlichen

na)‘— n)‘a;2n[a)‘] — Q% (5.16)
ist.
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Der Gleichung (3.6) entspricht jetzt, wegen (5.13), die Gleichung

R + ¥ g,
wegen (s5.11) folgt aus ihr
% LY + % B _ bt — 0,
woher, da ,:_m)\[aB] = 0 ist,

% - L P

Das Glied von (5.8), das die &g zweimal differentiiert enthilt, ist

—(ViV. &) l;mug. Seine aus der Spaltung (5.11) entspringenden Be-

standteile

— (VW 53\2 u” ll — (ViVa &) Za %

gehoren wegen des symmetrischen Faktors u®a® : der erste zum n-Di-

polglied, der zweite (nach partieller Integration) zum Polglied. Es bleibt
somit

— (V)‘vaag)é u ll =
@V V&) 20— (V, Vi) 2% e = (5.17)

= —£ K: Z°“a —I— ein n"- Dipolglied.

Bah

Glieder niederer Polaritit, die aus den b)‘H-Gliedern entspringen, betrach-
ten wir selbstverstindlich als in den Dipol - und Polgliedern mit einbe-
griffen.

< e
Wir wollen noch das Glied (V&) Kpa)‘b ' umuFa von (5.8) umfor-
men. Wir spalten nach der Formel:

3 P AT € : o
K ab'u" =o'+ pu (o u = 0). (5.18)

Der Koeffizient von ngﬁ in (5.8) ist dann

e’ + ' + 0P (Pa =P = 0)
mit

PB 9 KB b)‘a Vu”'. (519)
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puiuB ergibt einen einfachen Pol. Da n?", wie man aus (5.13) sieht, nicht

mehr antisymmetrisch ist, spalten wir A** nach der Formel
A= oy Pt — P Ll (5.20)
anstatt nach (3.14). Es ist
L= ﬁp}‘ug u; ,
Mo, = 1F + Ldf,
ﬁm”ﬁ L
P4 1P =iy — iuy = 2™y = 0%, = — o, B21)

. k. . . .
Das Glied Ldd" in (5.20) rechnen wir zum Polglied mit. Anstatt (3.13)
haben wir jetzt

fV)\Vaiga @™ + Py ds =
1 r € ah @
= ?j EEKIM\(N +2n u’)ds —

s
— ((V;\ &) ["'(fz@‘) -+ Lgu)‘ —_ L')‘u?’st.
s

Gleichung (3.16) ist durch

0 s B
S R R U e B

0 xh
zu ersetzen, und es folgen aus ihr die Gleichungen
M4t =0, (5.22)
iy — o rmP= 0. (5.23)

Da (5. 22) an dje Stelle von (3.18) kommt, werden wir jetzt

Uy b — LP a4 MPatyds = (&P + 1% 4 6%)ds (5.24)
B 8
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A . . . .
anstatt (3.23) haben. Das & ¥ _Glied liefert unter dem Integrationszeichen,
alles in allem genommen, folgenden Ausdruck mit dem Faktor &g :

t (K, ¢ blP utu’ +of — K20, (5.25)

val

Das Glied mit Z” stammt aus (5.17). Man erhilt aus (5.10)

Z% = by, — b uuu"
und aus (5.18)
B AT _ B .V A a
Kmb u u KM.Ab uu .

Gleichung (3.23) wird ein Zusatzglied erhalten, das (5.25) entspricht. Durch
Nullsetzen der Koeffizienten von &, erhalten wir die Bewegungsgleichung

des Schwerpunktes:
Y, Mu")y+p' = 0. (5.26)

Den Ausdruck fiir p* wollen wir nur fiir den einfachen Fall verschwin-
dender Kriimmung K.... angeben. Nach (5.24) und (5.21) ist dann

Pt — o™it 0%, (5.27)

Gleichung (5.23) ergibt, indem man ihren antisymmetrischen Bestandteil
abspaltet:

:I<(,‘l[|3)‘])_ p["‘g]: 0‘ (5,28)
Nun ist [vgl. (3.14) und (3.1%)]
=:-(,-1[B?\]) zﬁ[ﬁ"\] + ﬁ[B“]ua a— ﬁ[)‘a]ua u?’,
1 g\ \ .
Es ist also, wenn man (5.19) benutzt und < Q™ anstatt n[m schreibt

[vel. (4.2), wo nas als antisymmetrisch vorausgesetzt wird, und (3.21)]:

%(Qm— 0, 0f - 0%, u") = (Kb b — Ko, P ' [5.29)

- 17<
2
tlichen der Drehimpuls ist. Ist b von der Gestalt

(34

A . . . Sh.
QP wurde cinfach anstatt ' cesetzt. Wir wissen, dass " im wesen-
bl b
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A(Llall)\ - g&)\)

(Trigheitskugel), so verschwindet die rechte Seite von (5.29), die, wie
wir gleich sehen werden, im wesentlichen die klassische Prizession wie-
dergibt,

Probe auf klassische Verhdlinisse. Will man den Grenziibergang
¢ = oo durchfithren, so soll man in (5.29):

1, w0, "0 b=0 (wegen bmuy = 0)

setzen. So erhalten wir Gleichung (5.29) in ihrer nichtrelativistischer Gestalt :

s o1 dQm
Ky b — Ko, b5'= 5 43 (5.30)

(lateinische Indizes laufen, wie immer, die Werte 1, 2, 3 durch; der Index
0 entspricht der Zeit: x*=1¢). Fiir den Kriimmungstensor nchmen wir die
geniherte Formel (2.1) an, indem wir K.... als schwaches Feld auf eukli-
dischem Untergrunde ansehen. Dann haben wir fiir das statische zentral-
symmetrische Feld:

g2 L
r

1 0% gy
Kuow =% Gxiow — — Moxiow

100s — 92 gxioxs

1
KOOs__Ki()Os .

2m .
(Es wurde g®° = 1 — — angenommen). Die NEWTONsche Kraft ist

i 0 hkm
Xl L Rl
ox! r

das Moment, bezogen auf den Schwerpunkt :
X b (Xiyk__ Xkyt) .

mq

. k . .
Es st m= ;=5 m, Masse des ZentralkSrpers in gr, k£ die gewdhnliche
c £

Gravitationskonstante. Da fiir den Schwerpunkt

Z py' = 0

ist, haben wir, bis auf hohere Glieder der TAYLORentwicklung von X'
[vgl (5.14)]:
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ik ( a2_i_ sk 8271‘ si
XT=2kmo \ 0 T GaEoxe O )

und (5.30) ist nichts anderes, als der klassische Satz von der Zeitableitung
des Drehimpulses:

dgik

i ik
i =X

[Wir haben die rechte Seite von (5.30) durch ¢? geteilt, da wir sec als
Zeitenheit einfiihren.]

§ 6. Wichtige Sonderfdlle. Die Energiegleichung.
Spezielle Relativititstheorie

Bildet die Metrik ds? = (dx%? — ¥ (dx)? den Untergrund, so ist
in den Gleichungen (5.29) die rechte Seite gleich Null zu setzen. Dann
aber verschwindet das zweite Glied rechts in (5.27), und wir haben fol-
gende Gleichungen fiir die Bewegung des Schwerpunkrtes:

Ma* + @i, = P* (M = const). : (6.1)

P% fithren wir als eine dussere Kraft ein. Fiir den Drehimpuls Q™ haben
wir die Gleichungen

S'ZB)‘_ gka L'lau?) + gg)‘aaul — 0. (6.2)
Von der Kraft P* setzen wir voraus, dass sie zu u” orthogonal ist:
[9
Pu,=0. (6.3)

Diese Bedingung folgt mit Notwendigkeit aus (6.2). Im Falle eines Kor-
pers, dessen Gravitationsskelett von einem einfachen Pol besteht, gelangt
man zum Gleichungsystem

d (Mu*)

S * P* :0
M P (P, = 0),

in welchem P% aus der Wirkung des clektromagnetischen Feldes anderer
Korper und der Riickwirkung der Strahlung besteht (der Korper ist ge-
laden wie ein einfacher elektrischer Pol). Setzt man voraus, dass der Gra-
vitationsdipol und - quadrupol in den elektromagnetischen Kraftwirkungen
keine Anderungen hervorbringen, so erkennt man, dass die Gleichung

d (Mu*)

HGV.. — Pa
Is + @ i
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bestehen muss, wenn Gravitationsmultipol und elektromagnetische Wirkun-
gen nebencinander existieren. Aus der letzten Gleichung folgt M =: const.
und Gleichung (6.1). Wir setzen voraus, dass die Ladung keine Prizessions-
wirkungen hervorruft, so dass (6.2) richtig bleibt.

Der Gleichung (6.1) kann man folgende Gestalt geben:

T A 59, (6.4)

[vgl. (3.26)]. Wegen (6.3) ist, wie bekannt, P° die Leistung der Kraft P
P = Pt 4+ P%? 4+ P31
ol ist die Geschwindigkeit des Schwerpunktes:

o — dx!
Tdt

t = x9.

Wir fithren in (6.4) die Systemzeit ¢ anstatt der Eigenzeit ein:

d 1 4,
T — N,
ds Vi—v? dt @ v)

Hd_t (Mu® — 210 — 4) = 0. (6.5)

A ist die Arbeit von P'; sie enthilt eine willkiirliche additive Konstante.
Aus (6.5) erhalten wir den Energiesatz in der Form

M 0
Vice T =4
Es ist aber
Oy, = — My, 4. h, Q%— — Q" p, .
Qv — QFi 0; Up
: V1i—v?
mithin
M Qik
+ o 4% _ 4, 6.6)
Vi—v® 1—o? dt ‘
Fihrt man die gewdhnliche Zeiteinheit (¢ = 3.10'° em sec?) und, unter

Zugrundelegung eines bis auf orthogonale Transformationen der Raum-
achsen bestimmten LORENTZschen Koordinatensystems, Vektorsymbole ein,
so erhile (6.6) die Form
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eM o w]o

T &(P—%U ~ A (6.7)

2
v2

Neben der Arbeit der iusseren Kraft (oder der potentiellen Energie:

A = — E,ot + const., wenn die Kraft aus einem Potential ableitbar ist)
1

und der relativistischen Energie c¢*M - 5 Muv?-- ... enthilt unser Ener-

giesatz (6.7) noch Beschleunigungsenergie, die sich als skalares Produkt
zweier Vektoren ausdriickt: des Vektorproduktes von Drehimpuls und
Geschwindigkeit und der Beschleunigung. Es ist

(@m0 0 = (w;, Wy, Wy
der Drehimpuls des Systems in Bezug auf den Schwerpunk,
(v, 0% V) = (ox, vy, 0:)
diec Geschwindigkeit des Schwerpunkts,
(0], = , s — , vy — — (2B 8 - Q2 p?) = — Y WvE, sk,
In nichtrelativistischer Fassung (*zc) K 1) besagt unser Energicsatz, falls

ein Kriftepotential existiert:

1 d
Eiin + Epot +?[Dw] a—ot‘ = E = const. (6.8)

Statisches Gravitationsfeld. Ist die Metrik ds® = f2dt® + g dxidxh
G, k, = 1, 2,3) des Untergrundes von der Zeit x° = ¢ unabhiingig, SO,

ist fiir einen kovarianten Tensor Aj

.y d A° 00w w v dA4,
Ay=uV, 4= —go T G 44 = (6.9)
Da die do; gleich Null sind, verschwinden simtliche K;)w , und die O-te

Komponente der Gleichung (3.29) vereinfacht sich fiir einen nicht geladenen

Korper (POL = 0) zu
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M i+ 2n™i, = 0.

Fiir die kovariante O-te Komponente haben wir nach (6.9), wegen (3.26),

N . Ui 7.
indem wir n é durch Q" ersetzen :

d

1 (Mg — 2Lg) = 0,
L
2
Mu, — 2 L, = const.

. 1 Ri .
Qv = — - Q oty

.
L= 2

Wir benutzen dabei die Bezichungen

i dxt 0 dt 1 ¢ vl .

i kR
= ’ = = U — —————» U"—= — (0 0 .

dt ”_H_sz—fv?’ Vi—o

Wir gelangen so zu einer Beziehung, die zu (6.6) analog ist:

2 I
ME 4 ey 0t b — B — const. (6.10)

Vv

Es wird dabei vorausgesetzt, dass das mechanische System ein Dipolskelett
besitzt (Trigheitskugel).

Streszczenie

Prawa pola (elektromagnetycznego i grawitacyjnego) nazewnatrz ma-
terii przyjmujemy w postaci réwnah MaXWELLA-EINSTEINA. (Nasze wy-
wody sz, zreszta, oparte tylko na pewnych cechach zasadniczych struk-
tury tych réwnaf.) Materig charakteryzujemy przez potencjaly wytwarza-
nego przez nig pola. Potencjaly te daja sie przedstawié, jako sumy poten-
cjaléw multipoli (podobnie do potencjalu NEWTONOWSKIEGO bryly ma-
terialnej, nazewnatrz bryly). W ten sposéb dochodzimy do pojcia szkie-
letu grawitacyjnego systemu materialnego nienaladowanego. W szkielecie
grawitacyjnym biegun pojedyficzy charakteryzuje mase, dipol i kwadru-
pol — moment obrotu. Podporzadkowanie to jest wzajemnie jednoznaczne.
Z réwnaf, spehnianych przez potencjaly w $wiecie czterowymiarowym,
otrzymujemy réwnania mechaniki w postaci réwnad o pochodnych zwy-
ktych, okreélajace ruch érodka masy ukladu i zmiany naszych multipoli
w czasie. Z réwnah tych wynika, ze ruch $rodka masy i obrét sq z sobq
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zwiqzane. Nowe wyrazy w réwnaniach mechaniki, powodujace to po-
wigzanie, znikaja przy zalozeniu, ze predkosé éwiatla jest nieskonczenie
wielka. Réwnanie energii dla nowych réwnan mechaniki zawiera nowy
wyraz: energig przyspieszeniowq.

Uwzglednienie multipoli do kwadrupolu wigcznie jest potrzebne
i wystarczajace, aby otrzymaé prawa ruchu, przechodzace w prawa kla-
sycznej mechaniki uktadu punktéw i ciata sztywnego, gdy si¢ zalozy, ze
predkoéé éwiatla jest nieskoficzenie wielka. Interpretacja multipoli przez
wielkoéci klasyczne ma charakter przyblizony, natomiast réwnania ruchu,
dla nich otrzymane, s3 matematycznie $cistym warunkiem istnienia osobli-
woéci multipolowych w rozwigzaniach réwnan grawitacyjnych nazewngtrz
materil. Mozna przeto uwazaé multipole za samodzielng charakterystyke
dynamiczna ukladu.

0% obrotu wystepuje u nas jako konstrukcja wtérna (i to jest
kwestig zasadniczg), natomiast wielkodcia, charakteryzujacy obrét pierwot-
nie, jest tensor antysymetryczny. Dochodzimy do powiazania obrotu i ru-
chu érodka masy wedlug prawa, odmiennego od zalozenia FOKKERA
co do ruchu osi baka symetrycznego.
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ZS. f. Phys. 61, 270 (1931) (Methode der Variationsgleichung) ;

ZS. f. Phys. 69, 389 (1931) (ein strahlendes Elektron im dusseren Feld); _

Math. Ann. 107, 4o0 (1933) und Prace Matematyczno - Fizyczne, 41, 177 (1934)
(deutsch)—zu § 2 (zu den Behauptungen {iber Losungen der Feldgleichungen bei gekriimm-
tem Untergrund).



ETH-Bibliothek
Dokumentenlieferung

ETH Zirich
Rémistrasse 101
8092 Zirich

Dokumentenlieferung
Telefon +41 44 632 21 52
Telefax +41 44 632 10 87
docdel@library.ethz.ch
www library.ethz.ch

Kundeninformation / Customer information

Sehr geehrte Kundin, sehr geehrter Kunde
Dear Customer

Qualitatseinbusse / Loss of quality

Die Qualitat des Scans kann im besten Fall nur so gut wie die Originalvorlage sein.
The quality of the scan can only be as good as the original itself.

Das Dokument weist leider folgenden Mange! auf:
The document has the following insufficiency:

D Dokument sehr eng gebunden |—_—| Originalseite(n) im Miniprint-Format
Binding of document very tight Original page(s) in miniprint format

Originaldruck schlecht lesbar D Originalseite(n) Kopien von Mikrofiche/Mikrofiim
Original printing not very readable Original pages are copies from microfiche/microfilm

Auftragsannullierung / Cancellation

D 1 Auftrag — mehrere Artikel (pro Auftrag wird nur ein Artikel erledigt)
1 order — more than one article (only one article per order is being processed)

Bitte folgende Seiten neu bestellen
Please reorder the following pages:

Fehlende Seiten / Missing pages

D Hat ganzseitige Werbung und/oder leere Seiten enthalten. Wurde nicht kopiert und mitgeliefert.
Contains full-page advertisement and/or empty pages which have not been scanned.

Vielen Dank fur thr Verstandnis / Thank you for your understanding.
Bei Riickfragen wenden Sie sich bitte an das Team Dokumentenlieferung.

If you have any'questions please contact the team Document Delivery.

Mit freundlichen Griissen / Sincerely
ETH-Bibliothek



