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Abstract There exist Kruskal like coordinates for the Reissner—Nordstrom (RIN)
black hole spacetime which are regular at coordinate singularities. Non-existence
of such coordinates for the extreme RN black hole spacetime has already been
shown. Also the Carter coordinates available for the extreme case are not mani-
festly regular at the coordinate singularity, therefore, a numerical procedure was
developed to obtain free fall geodesics and flat foliation for the extreme RN black
hole spacetime. The Kottler—Schwarzschild—de Sitter (KSSdS) spacetime geom-
etry is similar to the RN geometry in the sense that, like the RN case, there ex-
ist non-singular coordinates when there are two distinct coordinate singularities.
There are no manifestly regular coordinates for the extreme KSSdS case. In this
paper foliation of all the cases of the KSSdS spacetime by flat spacelike hypersur-
faces is obtained by introducing a non-singular time coordinate.
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1 Introduction

In General Relativity one often needs slicing of a spacetime by a sequences of
hypersurfaces which is a foliation. A lot of work has been done on foliation by
hypersurfaces of zero mean extrinsic curvature called maximal slicing |1} 12} 3}
4; 155 165 [7] and by hypersurfaces of constant mean extrinsic curvature or CMC-
slicing [18; 195 (105 [115 125 [135 [145 (155 [16]. There has been a significant work to
obtain foliation by hypersurfaces of zero intrinsic curvature called flat foliation
(175 18 1195 1205 [21] as well. It is known that spherically symmetric static space-
times admit flat foliations [[19; 20; 21] and their uniqueness is also known [22]].
Qadir et al. have obtained foliations of the Schwarzschild and RN spacetimes by
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flat spacelike hypersurfaces [[23]. As the analogue of the Kruskal coordinates does
not exist for the extreme RN spacetime and Carter’s coordinates available for this
geometry are not manifestly regular at the coordinate singularity, a numerical pro-
cedure is developed to use Carter’s coordinates to construct free-fall geodesics and
a complete flat foliation of the extreme RN spacetime [24]).

Here we present foliation of the KSSdS spacetime by flat spacelike hyper-
surfaces (the KSSdS cosmologies and their CMC-slicing has been discussed and
presented in detail in [[16])). Instead of following the procedures similar to those for
the RN and extreme RN spacetimes [23} 24], we have introduced a non-singular
time coordinate to get rid of the coordinate singularities. This removes the co-
ordinate singularities from the equations giving flat foliating hypersurfaces and
enables us to obtain foliations of all the cases of the KSSdS spacetime in a much
simpler way. In the following section we review the earlier work to obtain the dif-
ferential equation satisfied by flat spherically symmetric hypersurfaces. In Sect. 3
foliation of the KSSdS spacetime by flat spacelike hypersurfaces is presented and
in the last section conclusion on our work and some comments on foliation of the
Schwarzschild-anti-de Sitter spacetime by flat spacelike hypersurfaces are given.

2 Flat hypersurfaces admitted by spherically symmetric static spacetimes

Consider the following spherically symmetric static spacetime metric
ds® = —e*Vdr* + *dr? 4 r2dQ?, (1)
where
dQ* = d6” +sin 0d¢>. )

Using spherical symmetry to take 6 and ¢ constant, an arbitrary hypersurface in
explicit form can be given as

t= F(r) (3)
The induced 3-metric (of the hypersurfaces) is then
ds} = (! — *F?)dr? + 17d Q% 4)

For the induced metric to be flat a necessary but not sufficient condition, namely
the Ricci scalar, R = 0, implies

r(—l’el+v’e"F’2+Ze"F’F”) 1 —e* +e"F? —0 5)
(e)LfevF/Z)2 et —eVF2 7

where ' represents the derivative with respect to r. Using the substitution
1
20\ —
g(r)_el—eVFQ’ (6)
Eq. (5) becomes

2rgg' +¢>—1=0, (7)
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and we have the general solution

k
2 — —_ —
F=1-", ®)

where k is an arbitrary constant with dimensions of length. The induced metric
now takes the form

d 2
st = = 4 2dQ”. ©)

r

The above metric, Eq. (9)), of the hypersurfaces is flat, i.e. all the components of the
Riemann curvature tensor are zero (which is the necessary and sufficient condition
for the hypersurfaces to be flat), only if k = 0 or in other words only if g2(r) =
1. Then, from Egs. (3) and (6), the flat spherically symmetric hypersurfaces are
uniquely given as [22]

t=F(r) = /e%v 1—e2dr. (10)

The mean extrinsic curvature, K, of these hypersurfaces is

K (v#)( vieY 2\/1—€V)
=e — 5
2v/1—¢ev r

and the Hamiltonian constraint gives

(11)

2(K%—e") 2v'e¥
R1K — Kk = X - ) — (12)

(here for flat hypersurfaces R = 0).

3 Foliation of the KSSdS spacetime by flat spacelike hypersurfaces

The KSSdS metric in gravitational units (¢ = G = 1) is given by [16]

ds® = =V (r)di* + V"' (r)dr* +r* (46 + sin*0d¢?) (13)
where
r=1-——-—
r 37

and the cosmological constant A and m are positive. In the limit where A goes
to zero, the spacetime metric tends to the Schwarzschild metric and in the limit
where m goes to zero, the metric becomes de Sitter.

There are three possible cases depending on the value of C, where C = 9m?A.
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Case 1 If C < 1, we call it usual black hole. In this case we have two horizons,
namely the black hole horizon, rp, and the cosmological horizon, r., which satisfy

1 3
VA VA
The function V (r) is zero at these horizons and is positive in the interval (r,,r.).

The spacetime can be covered by two coordinate patches: one valid in the region
0 < r < r. and the other in the region r, < r < oo.

2m <rp <3m< <re < (15)

Case 2 If C =1, the black hole horizon and the cosmological horizon coincide at
3m and we have an extreme black hole with maximal mass m = ﬁ and maxi-

mal size r, = r, = 3m. In this case no non-singular coordinates are available that
remove both singularities simultaneously.

Case 3 If C > 1, there are no horizons and we have a naked singularity case.

Now substituting ¢*") =¢=*(") =V (r) in Eq. , where V(r) is given by
Eq. (I4), we obtain the equation satisfied by flat spacelike hypersurfaces for the

KSSdS spacetime as
/ 2m 4 A Ar
t—/ dr+to, (16)

2mJr

where #j is the constant of integration and its different values correspond to differ-
ent flat hypersurfaces in (¢,r) coordinates. Solving Eq. gives the required flat
foliating spacelike hypersurfaces. It is not difficult to obtain numerical solution for
Case[3] as there are no coordinate singularities. One can also try to obtain results
in Case[T] (like the usual RN case [23]]) by solving Eq. (I6) numerically separately
in two coordinate patches and matching the solution at a point between r, and r..
For the extremal case one could try to follow the procedure adopted for the ex-
treme RN case [24]. However, instead of following these procedures to get rid of
the coordinate singularities, we first write Eq. (I6) (by adding and subtracting 1 in
the numerator of the integral and simplifying) as

dr dr
t:/ 2 +/ 2m | Ar? + 10, a7
g A2y S A ]
or
d
z_/ S o, (18)
2m Ar2 +1 (}’)

This motivates to introduce a non-singular time coordinate, 7', given by

dT_dtJr/Va;’;). (19)
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Fig. 1 Flat foliating hypersurfaces in (7', r) coordinates for C < 1 (the usual black hole case). The
hypersurfaces labeled as /, 2 and 3 correspond to the values of the foliating parameter, Tp = —1,
0 and 1 respectively. A = m = 3/7 for all hypersurfaces

Fig. 2 Flat foliating hypersurfaces in (7', r) coordinates for C = 1 (the extreme black hole case).
The hypersurfaces labeled as /, 2 and 3 correspond to the values of the foliating parameter,
To = —1, 0 and 1 respectively. A = 1 and m = 1/3 for all hypersurfaces

Fig. 3 Flat foliating hypersurfaces in (7, r) coordinates for C > 1 (the naked singularity case).
The

hypersurfaces labeled as /, 2 and 3 correspond to the values of the foliating parameter,
To = —1, 0 and 1 respectively. A = 3 and m = 1/2 for all hypersurfaces

Fig. 4 Flat foliating hypersurfaces in (¢, r) coordinates for C > 1 (the naked singularity case).
The

hypersurfaces labeled as /, 2 and 3 correspond to the values of the foliating parameter,
to = —1, 0 and 1 respectively. A =3 and m = 1/2 for all hypersurfaces. Notice that the
behaviour of the corresponding hypersurfaces in (7, 7) coordinates in Fig. [3] is essentially the
same. This shows that the results obtained in (7', r) coordinates are not artifact of the coordinate
transformation

Now using Eq. (I9) in Eq. (I8) to obtain the expression for the flat hypersurfaces
in (T, r) coordinates as

dr
T:/—2 _ T, (20)
A
L+4/5F+ 5

where Tj is the constant of integration and its different values give different flat
hypersurfaces. The numerical solution of Eq. for C greater than, equal to and
less than one are obtained and displayed in Figs.[I} [2]and3|respectively. In order to
see that the results are not artifact of the coordinate transformation, the numerical
solutions of Eq. (I6) are also obtained in Case [3] (when there are no coordinate
singularities) and displayed in Fig. 4| The mean extrinsic curvature, K, of these
hypersurfaces is
m

rh—%

2m_

K= 2D

N
+
>

4 Conclusion

Foliation of the RN spacetime was obtained by Qadir et al. [23]]. They introduced
a numerical procedure to deal with the extreme RN case, but the method was very
sensitive near the coordinate singularity and resulted in the form of kinks in the
graphs [24]. Like the RN spacetime, there are also three cases of the KSSdS space-
time (namely, the usual, extreme and naked singularity). In this paper foliation of
the KSSdS spacetime by flat spacelike hypersurfaces is obtained by introducing a
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coordinate transformation that removes the singularity from the equation of the flat
hypersurfaces in all the cases. In case of the naked singularity we have obtained
flat hypersurfaces both in the original (z,r) coordinates and in the transformed
(T, r) coordinates. The results show that our procedure works well and the hyper-
surfaces obtained in all the cases are not artifact of the transformation. It will be
interesting to apply our procedure to the RN spacetime and compare the results
with the earlier results. It is expected that our procedure will remove the kinks
appearing in the graphs obtained earlier [24]].

The Schwarzschild-anti-de Sitter spacetime has the same form as given by
Egs. and for the KSSdS spacetime, but the cosmological constant, A,
now takes negative values [25]. Replacing A by —A and following the same pro-
cedure as discussed in Sect. 3| for the KSSdS spacetime, we obtain the following
expression for the flat hypersurfaces admitted by the Schwarzschild-anti-de Sitter
spacetime

T = /LJFTo? (A >0). (22)
K 2m Ar?
3

. - . 1/3
Notice that the term inside the square root becomes negative for r > (6—’") /

and
A 2
restricts the solution in that region. Therefore, a direct application of our procedure
does not work for the Schwarzschild-anti-de Sitter spacetime. However, it will be
interesting to try to construct some other non-singular coordinates in this case and
o . 1/3
also explore the significance of the barrier at r = (é\ﬂ) R
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