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Abstract

This thesis is dedicated to advancing our understanding of the origin and evolution of
the Universe by studying the cosmic microwave background (CMB), a light travelling
through the cosmos since the dawn of time. The CMB contains rich information
about the earliest time of the Universe, and informs us about the Universe as a
whole due to it containing an imprint of the mass distribution of the Universe.
We study this imprint through the development and application of a novel curved
sky Bayesian analysis method. This comprehensive approach, inclusive of carefully
treating biases, is designed to effectively handle real observational data and is aimed
at tackling cosmological phenomena captured through the CMB.

Central to this thesis is the improvement of a Bayesian method, dubbed the
Maximum a-posterior (MAP) lensing reconstruction. The MAP method optimally
recovers the lensing information and is therefore an improvement over standard
quadratic estimators (QE). Our Bayesian approach iteratively finds the MAP point
of the deflection field, which makes this approach computationally more expensive
than the QE. This is in particular true due to the full sky treatment for which
spherical harmonics are the basis functions; their numerical calculation is more
expensive than their flat sky counterpart, the Fourier basis.

An important element of our approach is the lensing operator, whose optimiza-
tion is vital for the efficiency and accuracy and which is not present in QE method.
The lensing operator describes the mapping between the unlensed and the lensed
CMB field. In this context, we discuss the notion of non-uniform Spherical Har-
monic Transforms (SHT), and non-uniform Fast Fourier Transforms (nuFFT), and
show how to approximate the former at machine precision accuracy. We introduce
two novel algorithms that significantly expedite this calculation: one optimized for
CPU and the other for GPU architectures. Both implementations achieve machine
precision accuracy and fast computations, marking a substantial improvement over
existing methods.

We demonstrate our approach in the context of the analysis of early-time physics.
Our methodology plays a pivotal role in probing inflationary theories by mitigating
the contamination known as B-lensing. With many current and upcoming experi-
ments probing scales of the CMB polarization that are obscured by B-lensing, an
efficient and optimal mitigation, a so called delensing, is desired. To reach the ac-
curacy needed to rule out current viable inflationary models, and to fully utilize
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the information accessible by current experiments sensitivity, Bayesian methods are
preferred over QE. Delensing is crucial for refining measurements of the tensor-to-
scalar ratio, a fundamental parameter in cosmology. Our analyses demonstrate the
application onto realistic simulations for upcoming experiments and its integration
into state-of-the-art CMB analysis pipelines: we present the evaluation on differ-
ent sky models using various foregrounds, inclusive of inhomogeneous noise, and a
masked sky. We provide means to mitigate mask effects such as the mean-field.

We also demonstrate our approach in the context of late-time physics that cov-
ers non-linear structure growth, and post-Born effects and analyse their impact on
the Bayesian reconstruction. By reconstructing a non-Gaussian lensing power spec-
trum, we assess its induced biases, providing new insights into the reconstruction
capabilities of our Bayesian approach.

Furthermore, we present Delensalot, a software further developed during this
thesis, crafted to enable the broader cosmology community to use optimal lensing
reconstruction. Delensalot is designed with the intent to lower the barrier to entry
for researchers not specializing in lensing or unfamiliar with Bayesian techniques.
While further enhancements are possible, Delensalot stands as a robust, user-
friendly tool that is ready for practical application in real-world scenarios.

The integration of Bayesian methods into the CMB data analysis pipelines of ma-
jor collaborations like CMB-S4 and PICO underscores the timeliness and relevance
of this work. Our contributions not only push forward the frontier of cosmological
research but also equip the scientific community with powerful, accessible tools to
explore the cosmos.
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Résumé

Cette thèse est dédiée à l’avancement de notre compréhension de l’origine et de
l’évolution de l’Univers en étudiant le fond diffus cosmique (CMB), une lumière qui
voyage à travers le cosmos depuis la nuit des temps. Le CMB contient de riches in-
formations sur les premiers instants de l’Univers et nous renseigne sur l’Univers dans
son ensemble car il porte une empreinte de la distribution de masse de l’Univers.
Nous étudions cette empreinte à travers le développement et l’application d’une
nouvelle méthode d’analyse bayésienne pour le ciel courbé. Cette approche globale,
incluant un traitement soigné des biais, est conçue pour gérer efficacement les don-
nées d’observation réelles et vise à aborder les phénomènes cosmologiques capturés
à travers le CMB.

L’amélioration d’une méthode bayésienne, appelée reconstruction de lentille par
Maximum A-Posteriori (MAP), constitue le cœur de cette thèse. La méthode MAP
récupère de manière optimale l’information sur les lentilles, constituant ainsi une
amélioration par rapport aux estimateurs quadratiques standards (QE). Notre ap-
proche bayésienne trouve itérativement le point MAP du champ de déviation, ce
qui rend cette méthode plus coûteuse en termes de calcul par rapport à l’estimateur
quadratique, surtout pour le traitement du ciel complet où les harmoniques sphériques
servent de fonctions de base.

Un élément crucial de notre approche est l’opérateur de lentille, dont l’optimisation
est cruciale pour l’efficacité et la précision, et qui n’est pas présent dans la méthode
QE. L’opérateur de lentille décrit la correspondance entre le champ du CMB non
lentillé et le champ lentillé. Dans ce contexte, nous discutons des notions de transfor-
mée harmonique sphérique non uniforme (SHT) et de transformée de Fourier rapide
non uniforme (nuFFT), et nous montrons comment approximer la première avec une
précision de machine. Nous introduisons deux nouveaux algorithmes qui accélèrent
considérablement ce calcul : l’un optimisé pour les architectures CPU et l’autre
pour les architectures GPU. Les deux implémentations atteignent une précision de
machine et des calculs rapides, ce qui représente une amélioration substantielle par
rapport aux méthodes existantes.

Nous démontrons notre approche dans le contexte de l’analyse de la physique des
premiers instants de l’Univers. Notre méthodologie joue un rôle essentiel dans l’étude
des théories inflationnistes en atténuant la contamination connue sous le nom de B-
lensing. Avec de nombreuses expériences actuelles et à venir sondant les échelles de
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polarisation du CMB qui sont obscurcies par le B-lensing, une atténuation efficace et
optimale, appelée delensing, est souhaitée. Pour atteindre la précision nécessaire à
l’élimination des modèles inflationnistes viables actuels, et pour utiliser pleinement
l’information accessible par la sensibilité des expériences actuelles, les méthodes
bayésiennes sont préférées au QE. Le delensing est crucial pour affiner les mesures
du rapport tenseur-scalaire, un paramètre fondamental en cosmologie. Nos analyses
démontrent l’application sur des simulations réalistes pour les expériences à venir
et son intégration dans les pipelines d’analyse CMB de pointe : nous présentons
l’évaluation sur différents modèles de ciel utilisant divers avant-plans, y compris le
bruit inhomogène, et un ciel masqué. Nous proposons des moyens d’atténuer les
effets de masque tels que le champ moyen.

Nous démontrons également notre approche dans le contexte de la physique
tardive qui couvre la croissance non linéaire de la structure et les effets post-Born et
analysons leur impact sur la reconstruction bayésienne. En reconstruisant un spectre
de puissance de lentille non gaussien, nous évaluons les biais induits, ce qui donne
un nouvel aperçu des capacités de reconstruction de notre approche bayésienne.

En outre, nous présentons Delensalot, un logiciel développé au cours de cette
thèse, conçu pour permettre à tout le monde d’utiliser la reconstruction optimale
de l’effet de lentille. Delensalot est conçu dans l’intention de réduire toutes les
difficultés que pourraient rencontrer les chercheurs qui ne sont pas spécialisés dans
les lentilles ou qui ne sont pas familiers avec les techniques bayésiennes. Bien que
d’autres améliorations soient possibles, Delensalot est un outil robuste et agréable
qui est prêt pour une application pratique dans des scénarios du monde réel.

L’intégration des méthodes bayésiennes dans les pipelines d’analyse des données
CMB de collaborations majeures telles que CMB-S4 et PICO souligne l’actualité et
la pertinence de ce travail. Nos contributions ne font pas que repousser les frontières
de la recherche cosmologique, elles équipent également la communauté scientifique
d’outils puissants et accessibles pour explorer le cosmos.
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0

Cosmic Microwave Background lensing Analysis

This chapter introduces the Cosmic Microwave Background (CMB), CMB lensing,
lensing reconstruction, and the data analysis pipeline for the search of the tensor-
to-scalar ratio r.

0.1 Cosmic Microwave Background

The CMB is the oldest light in the Universe, first theorized by [6] and discovered
later by [7]. Originating from the hot, dense plasma of the early Universe, the CMB
now fills the cosmos, observed from all directions at a mere few Kelvin. Under the
hot Big Bang model, proposed by [8], the Universe began in a hot and dense state
and has since expanded to its current size. Initially, the Universe’s high temperatures
prevented the formation of atoms, leading to a state where electrons and protons
existed as a plasma. As the Universe cooled, these particles combined to form
neutral hydrogen—and during Big Bang Nucleosynthesis, trace amounts of helium
and lithium isotopes—allowing CMB photons to decouple and travel largely undis-
turbed. This process, known as recombination, occurred approximately 380,000
years after the Big Bang, marking the photons’ decoupling from the plasma. This
event also defines the last scattering surface, from which these photons now reach
us as a sphere with a radius of about 46 billion light years.1 Additionally, due to
Compton scattering and the presence of a quadrupole moment during decoupling,
the CMB is slightly polarized, providing a wealth of information. Serving as the
earliest electromagnetic snapshot of the Universe, the CMB carries invaluable data
about the Universe’s infancy, including insights into the inflationary epoch proposed
by [9] in 1980.

Inflation describes a commonly acknowledged paradigm proposing that the very
early Universe, when it was younger than about 10−32 years old, underwent expo-
nential expansion. This explains the observed isotropy of the Universe as detected
by various cosmological probes. During this period, primordial microscopic fluctua-

1While today, the CMB has travelled about 13.4 billion years to reach Earth, cosmic expansion
increased its size.
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Chapter 0. Cosmic Microwave Background lensing Analysis 2

tions were present and expanded to macroscopic scales, contributing to the first order
anisotropies seen in the CMB. These fluctuations also serve as the seeds for growth
of cosmic structures. Two types of perturbations resulting from the primordial fluc-
tuations - scalar and tensor - are (potentially) observable today. The microscopic
scalar fluctuations that were expanded to macroscopic scales initiated the formation
of large-scale structures, and leave an anisotropic imprint in the CMB’s intensity
at the level of O(10−5) and due to the presence of a quadrupole also in polariza-
tion. This quadrupole arises due to the scalar perturbations in combination with
the expansion of the Universe.

Tensor perturbations that are directly related to primordial gravitational waves
[10, 11] are proportional to the energy scale of inflation, a critical parameter for the
characterisation of inflationary models. They also leave an imprint in the CMB;
due to their nature as spin-2 fields, they also generate a quadrupole in the den-
sity distribution of the primordial plasma. This quadrupole is different than the
one described above. Thus, primordial gravitational waves generate a very distinct
polarization pattern during recombination, different from that generated by scalar
perturbations.

Primordial anisotropies in the CMB are analyzed using the CMB power spec-
trum, a critical statistical tool that quantifies the variance of temperature fluctu-
ations at various angular scales. The power spectrum is computed from the dis-
tribution of CMB photons over the celestial 2-sphere. This computation involves
spherical harmonic transforms (SHT). In this context, ℓ describes the angular mo-
mentum number, representing different angular scales, and m, ranging from −ℓ to ℓ
specifies each mode’s orientation. By averaging the squared amplitudes over all m
for each ℓ, the power spectrum is obtained, and illustrates the scale dependence of
the variance in the CMB.

The CMB power spectra are fundamental observables providing insights into
the condition of the early Universe. Their forms are directly linked to the initial
conditions and are shaped by the primordial perturbations. Assuming the Lambda
Cold Dark Matter (ΛCDM) model [12], these fluctuations evolved into the observed
large-scale structures, and also describes how matter and energy content influence
its evolution. It describes the Universe’s total energy content as a mix of ordinary
matter and radiation, dark matter, and dark energy. This composition affects the
expansion and matter waves that propagated through the primordial plasma which
thus leaves an imprint in the CMB as temperature and polarization anisotropies.

The connection between the primordial fluctuations and the CMB power spec-
tra is through the Boltzmann equations, which describes the evolution under the
influence of gravity and pressure. The equations track how perturbations in density,
velocity, and potential evolve over time. By using the parameters from the ΛCDM
model to solve the Boltzmann equations, one can simulate the early Universe and
obtain the shapes of the power spectra of the CMB, and thus compare this with the
observational data.

Through time, the Universe formed rich and complex structures due to the
macroscopic perturbations and emerging gravitational pull, rendering the Universe
anisotropic and creating mass concentrations that formed into stars, galaxies, galaxy



Chapter 0. Cosmic Microwave Background lensing Analysis 3

Figure 1: The Cosmic Microwave Background and its journey through the
anisotropic cosmos. Copyright: ESO/M. Kornmesser

clusters, and Large Scale Structure filaments. For better or worse, this gravitational
pull also affects photons. Due to the interaction via gravitational pull of the inter-
mediate mass distribution, it thus imprints a second order anisotropy in the CMB in
the distribution of the CMB photons. This is implicitly shown in Fig. (1), where I
show a cutout through the Universe over time. On the far left, we see the primordial
CMB. The evolving matter of the Universe becomes more and more anisotropic over
time, giving rise to the deflection of the CMB.

CMB lensing is an important tool for cosmology for several reasons listed below
and motivates why CMB lensing is appealing for today’s research.

Primordial tensor perturbations that give rise to primordial B-modes are
one major science goal of many upcoming experiments. CMB lensing supports this
by setting tighter constraints on their existence, that can in return also inform about
the validity of inflationary models. Our findings are presented for the CMB-S4 and
PICO collaboration in chapter 3.

The mapping of the mass distribution is particularly interesting due to
CMB lensing being sensitive to dark matter, an elusive content of the Universe that
does otherwise not interact lightly. CMB lensing provides a way of mapping the
distribution of matter content in the Universe. We discuss this in the context of
the CMB-S4 and PICO collaboration and on the search of non-Gaussian biases in
chapter 3 and 4.

Neutrino mass impacts the smallest scales of the power spectra of the lensing
potential due to their damping effect. Lighter neutrinos, being more relativistic,
slow the growth of structures as they escape the gravitational potential well, and
thereby smooth out small-scale features in the matter power spectrum and lensing
potential. These effects can be quantified with CMB lensing and used to inform
us about the neutrino mass, among others. This is discussed in the context on the
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search of non-Gaussian biases in chapter 4.
Cluster lensing offers a direct method for mapping the distribution of dark

matter within clusters. As it is sensitive to the total matter content, it thus also
offers means to study the mass profile of galaxy clusters, constraint neutrino mass
and the matter density, and informs on feedback processes and cluster dynamics.

Cross-correlation to large-scale-structure and galaxy surveys enhances
our understanding of the Universe. This synergy improves measurement accuracies
and helps resolve inherent observational degeneracies and pin down systematics. As
both are sensitive to similar phenomena, combining these two sources of information
can improve uncertainties in the measurements, and break degeneracies due to their
intrinsic different nature.

CMB lensing slightly changes the CMB statistics, and therefore obscures a clear
picture of the primordial Universe. Accumulating the combined matter along the
line-of-sight gives the deflection field α that is sourced by any potential that might
be present. We decompose the potentials into the gradient and curl part, α =
∇ϕ+∇× Ω, where ϕ is the lensing potential, and Ω is the curl potential.

Introducing the gradient of the gravitational potential, ∇Ψ, the total deflection
is a weighted projection along the line of sight n̂ [13],

α(n̂) = −2
∫ χ∗

0

dχW (χ, χ∗)∇Ψ(n̂, χ)) = ∇
(
−2
∫ χ∗

0

dχW (χ, χ∗)Ψ(n̂, χ))

)

︸ ︷︷ ︸
:=ϕ, Born approx.

, (1)

with χ the comoving distance and χ∗ the source distance. The weighting comes from
the lensing efficiency W , which in a flat Universe, is given by,

W =
χ∗ − χ

χ∗χ
. (2)

To lowest order, and good accuracy, lensing can be described within the Born ap-
proximation, which assumes that the integration in Eq. (1) can be performed along
the unperturbed photon path. In this approximation, the deflection field is neces-
sarily curl-free, ∇×α = 0. Post-Born corrections can be included by perturbatively
treating the effect onto the background geodesic, which to second order is,

Ψ(n̂) = Ψ(n̂0 +α(n̂0)) = Ψ(n̂0) + (αa(n̂0)∇aΨ)(n̂0) , (3)

and the index a denotes the coordinate - either the Cartesian a ∈ (x, y) on the flat
sky, or angular positions a ∈ (θ, ϕ) on the curved sky. Plugging this into Eq. (1)
gives an equation that can be solved iteratively for the deflection field. With the
zeroth order being the Born approximation, each subsequent iteration gives higher
order post-Born corrections [14]. Concretely to second order,

αa(n̂0) =− 2

∫ χ∗

0

dχW (χ, χ∗)

[
∇aΨ(χ)− 2

∫ χ

0

dχ′W (χ′, χ)∇a∇bΨ(χ)∇bΨ(χ′)

]
(n̂0)

+O(Ψ3).

(4)
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The first term, again, is the Born approximation. The second term is the lens-lens
coupling that is the primary source of lensing rotation, and also gives a correction
to the convergence.

Post-Born corrections have an almost negligible impact on the estimate of the
deflection field. And while lensing rotation may be detectable by upcoming CMB-
S4 experiments, I ignore the subdominant lensing curl in the following. We return
to these effects later again, when we study the lensing curl in chapter 3 (where
we also discuss its negligible contribution to B-lensing at current and near-future
experiment sensitivities, an effect that I describe further below) and for convergence
in chapter 4.

The general impact of CMB lensing on a CMB field is that the lensed field
observed at location n̂ is the un-deflected field at another location n̂′ = n̂ +∇ϕ;2
the majority of the effect can be described by a remapping of the CMB,

T̃ (n̂) = T (n̂+∇ϕ) ,(
Q̃± iŨ

)
(n̂) = (Q± iU) (n̂+∇ϕ) .

(5)

Q̃ ± iŨ denotes the two lensed polarization maps as measured by experiments in
terms of the coordinate-dependent Stokes parameters and are spin-2 fields. We
may decompose them into the spin-0 coordinate-independent gradient (E) and curl
(B) part, as fundamental physics can be well described and distinguished by this
composition, here on flat sky,

(
Eℓ

Bℓ

)
=

(
cos(2βℓ) sin(2βℓ)
− sin(2βℓ) cos(2βℓ)

)(
Qℓ

Uℓ

)
. (6)

βℓ = arctan (ℓy/ℓx) is the angle between two modes.
It is often helpful to define the magnification matrix A, that is valid in the lensing

regime for which it is everywhere invertible, and its determinant close to unity,

A =
∂α

∂n̂
=

(
1 + κ+ γQ γU + ω
γU − ω 1 + κ− γQ

)
, (7)

and is parameterised by the convergence κ, the two shear components that stretch
and compress the image along x and y and vice versa, γQ and γU , and the field
rotation ω. The convergence and field rotation can directly be derived from the
deflection field,

κ = −1

2
∇α , ω = −1

2
∇×α . (8)

Explicitly, and going to Fourier space, (remember that curl is a second order effect
in the expansion of the gravitational potential) [14],

2There are subtle effects other than remapping that we can safely ignore here: time delay, and
the emission angle at the last scattering surface.
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κ(L) = L2

∫ χ∗

0

dχW (χ, χ∗)Ψ(L, χ) , (9)

ω(L) = −2
∫ χ∗

0

dχW (χ, χ∗)

∫ χ

0

dχ′W (χ′, χ)×
∫

d2l

(2π)2
(ℓ · ℓ′)[ℓ× L]Ψ(ℓ, χ)Ψ(ℓ′, χ′) .

(10)

Returning to Eq. (5): in the flat-sky approximation, ignoring the lensing curl, and
assuming that deflection is a perturbation to the unlensed field, a Taylor series
expansion for the temperature case gives up to second order,

T̃ (n̂) = T (n̂) +∇T (n̂) · ∇ϕ(n̂) + 1

2
∇a∇bT (n̂)∇aϕ(n̂)∇bϕ(n̂) +O(ϕ3) . (11)

I note here that this perturbative approach is only approximately correct,3 but comes
in very handy for a general understanding of the effect. One way to investigate the
effect of CMB lensing is by analysing the summary statistics such as the power
spectrum. We calculate the auto power spectrum of the temperature map as the
2-point correlator of the field in harmonic space, that are obtained either via a SHT
on the curved sky, or Fourier transform (FT) on the flat sky. The type-2 transforms
are given by,

F [X̃(n̂)] = X̃(ℓ) =

∫
dn̂ X̃(n̂)e−iℓ·n̂ , (FT) (12)

S[X̃(n̂)] = X̃(ℓ) =

∫
dn̂ X̃(n̂)Y m,†

ℓ (n̂) . (SHT) (13)

For brevity, in Fourier space ℓ are the two Fourier modes in x and y-direction,
respectively; in spherical harmonic space, ℓ are the two multipole numbers ℓ and m.
The temperature power spectrum is thus,

⟨T̃ (ℓ1)T̃ ∗(ℓ2)⟩ ∝ δ(ℓ1 − ℓ2)C̃
TT
ℓ , (14)

that, after plugging Eq. (11) into this equation gives that it is proportional to a term
with suppression factor γ = 1 − ℓ2Rϕ, with Rϕ defined as half the total deflection
power and a term that causes smoothing of the peaks [13]. Overall, CMB lensing
smooths the oscillations in the power spectrum of the temperature and polarization,
and shifts the power onto smaller scales.

In polarization, CMB lensing has another very important effect: B-lensing. B-
lensing describes the conversion from E-modes into B-modes, and can directly be
seen by repeating Eq. (14) for polarization: assuming that there is no primordial B,
we find for the lensed B-power spectrum on the flat sky [13],

C̃BB
ℓ =

∫
d2ℓ′

(2π)2
[ℓ′ · (ℓ− ℓ′)]

2
CEE

|ℓ′| C
ϕϕ
|ℓ−ℓ′| sin

2(2(βℓ′ − βℓ)) . (15)

3The perturbative approach breaks down when reconstructing the actual B-modes, as B-lensing
is the primary signal in the observed maps (ignoring foregrounds and noise). However, power
spectrum estimates still work well [15].
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Hence, even in the absence of primordial B-modes there will be lensed B-power,
sourced by the deflection field and primordial E-modes.

It is exactly this signal that is the main driver of this thesis: our hunt to measure
the faint primordial B-modes is hindered by the much larger B-lensing signal, a
contamination of the size of about 5µK-arcmin. The primordial B-mode signal is
currently confirmed to be at least roughly 30 times smaller (at the relevant scales)
than B-lensing itself. By removing the variance of the B-lensing signal, we are able
to measure and constraint the tensor-to-scalar ratio r, which measures the size of the
primordial tensor perturbations (that directly relate to the B-modes) relative to the
scalar perturbations. Sophisticated tools such as Bayesian methods and presented
in this thesis are needed to reach this level of cleaning. The currently best upper
bound on r comes from a combination of BICEP/Keck, baryonic acoustic oscillation
measurements, and Planck: r < 0.032 at 95% confidence [16]. The variance of r,
σ2(r), can be calculated via the inverse of the information matrix I,

1

σ2(r)
= I =

ℓmax∑

ℓ=ℓmin

∂Ctot
ℓ

∂r
Cov−1

ℓ

∂Ctot
ℓ

∂r
, (16)

and I use only the diagonal of the covariance and the sum goes over the multipole
range of interest. Assuming that the total power spectrum Ctot

ℓ is given by the sum
of the foreground, noise, B-lensing (and parameterized by Alens), and the primordial
(tensor) signal itself, Ctot

ℓ = CBB,fg
ℓ +CBB,noise

ℓ +AlensC
BB,lens
ℓ +rCBB,tensor

ℓ , and using
Covℓ = ∆Ctot

ℓ =
2(Ctot

ℓ )2

(2ℓ+1)fsky
, with fsky the observed sky fraction, I find,

1

σ2(r)
=

ℓmax∑

ℓ=ℓmin

(2ℓ+ 1)fsky

2

(
CBB,tensor

ℓ

CBB,fg
ℓ + CBB,noise

ℓ + AlensC
BB,lens
ℓ + rCBB,tensor

ℓ

)2

.

(17)

We return to lensing in more detail in chapter 2 where I discuss highly accurate
lensing operators, and when I present the embedding of lensing into our software
Delensalot in chapter 1.1.4.

0.2 Quadratic Estimator

CMB lensing is a second order anisotropy in the CMB. The standard way of extract-
ing the effect of CMB lensing is by quadratic estimators (QE). A QE can in principle
be built for any source that causes (anisotropic) correlations. If the source is the
lensing potential, we make use of the induced correlation between different scales ℓ1
and ℓ2, hereby allowing to distinguish between the primordial anisotropies that are
assumed uncorrelated between different scales, and the effect of the lensing poten-
tial. Correlating squared combinations of the temperature and polarization maps,
first proposed by [17], allows to uncover the imprint of this second order anisotropy
by measuring the correlations. The key is to determine the response fXY (ℓ1, ℓ2) of
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Figure 2: The CMB temperature and polarization power spectra and how key fea-
tures relate to the underlying primordial perturbations and the ΛCDM model.

the quadratic combination of the fields X and Y to the source of the anisotropy.4
While this thesis focuses on the full sky, the flat sky equivalents are often easier

to follow and lighter in notation which is why flat sky equations are mainly discussed
in the following. Occasionally, I provide full sky equations. Lensing reconstruction is
done on observed fields that contains the map-level experiment noise n and transfer
function B, X̃obs = BX̃ + n and we assume the noise to be uncorrelated with the
fields.

The perturbative, curved sky response function is given by [18],
〈
X̃obs(ℓ1)Ỹ

obs(ℓ2)
〉

CMB
=

CXY
ℓ1

δℓ1ℓ2δm1−m2(−1)m1 +
∑

LM

(−1)M
(
ℓ1 ℓ2 L
m1 m2 −M

)
fXY
ℓ1Lℓ2

ϕLM ,
(18)

and I have introduced the average over a fixed deflection field that only averages
over the CMB, ⟨⟩CMB.5 The 2×3 structure in the brackets is the Wigner-3j symbol.
On the flat sky this becomes much easier to track,

⟨X̃obs(ℓ1)Ỹ
obs(ℓ2)⟩CMB = δ(L− ℓ1 − ℓ2)f

XY (ℓ1, ℓ2)ϕ(L) , L = ℓ1 + ℓ2 . (19)

4To follow convention of the literature, functions with fields as superscripts are without diacrit-
ical mark: however, this does not mean that they are a function of the unlensed field

5An ensemble average, that is the average over both the CMB and deflection field would give
zero, as the deflection field is statistically zero.
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In the following, I drop the superscript obs for brevity. Plugging the equations
Eq. (5) into Eq. (19) directly gives the desired response function, and are direct func-
tions of the power spectra of the CMB fields. The more accurate, non-perturbative
response function can be obtained by tracking the impact of ϕ onto the lensed fields
non-perturbatively,

〈
δ

δϕ(L)
X̃(ℓ1)Ỹ (ℓ2)

〉
= δ(L− ℓ1 − ℓ2)f

XY,np(ℓ1, ℓ2) , (20)

and gives a solution to further reduce the variance of the estimator: fXY,np, for most
field combinations, is a function of the power spectrum of the gradient of the field,
CX∇Y

ℓ [19].
A quadratic estimate of the lensing potential on the full sky is [18],

ϕ̂XY
LM =

∑

ℓ1m1ℓ2m2

[
AXY

L

L(L+ 1)
(−1)M

(
ℓ1 ℓ2 L
m1 m2 −M

)
FXY
ℓ1Lℓ2

]
X̃ℓ1m1

Ỹℓ2m2
. (21)

AXY
L is the normalization, and FXY

ℓ1Lℓ2
are the appropriate quadratic weights. More

intuitively on the flat sky this is,

ϕ̂XY (L) =
AXY

L

L2

∫

ℓ1+ℓ2=L

X̃(ℓ1)Ỹ (ℓ2)F
XY (ℓ1, ℓ2) , L = ℓ1 + ℓ2 , (22)

and I have introduced the notation
∫
ℓ1+ℓ2=L

=
∫

dℓ1
(2π)2

dℓ2
(2π)2

(2π)δ(L − ℓ1 − ℓ2) for
brevity. AXY

L is the corresponding flat-sky normalization but using the same symbol
for brevity. We find the normalization by requiring this estimator to be unbiased,

⟨ϕ̂(L)⟩CMB = ϕ(L) , (23)

thus,

AXY
L = L2

(∫

ℓ1+ℓ2=L

fXY (ℓ1, ℓ2)F
XY (ℓ1, ℓ2)

)−1

. (24)

Minimizing the variance of the power spectrum of this estimator, ⟨ϕ̂ϕ̂⟩−⟨ϕ̂⟩⟨ϕ̂⟩, and
rearranging gives the handy interpretation of using inverse variance filtered maps
(denoted by the bar), and at the same time simplifies as F = f ,

ϕ̂XY (L) =
AXY

L

L2

∫

ℓ1

˜̄X(ℓ1)
˜̄Y (ℓ2)f

XY (ℓ1, ℓ2) . (25)

The inverse variance filtering is,

˜̄X = BCov−1
α X̃ . (26)

In the case of isotropic sky, the inverse variance filtering is achieved by simply
dividing the maps by the corresponding power spectra [18].

The response functions are functions of the power spectra of the CMB fields,
and Eq. (25) can also be reformulated to give the interpretation of, instead, inverse
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variance filtering one of the maps, and Wiener-filtering the other. A Wiener-filtered

(WF) map XWF = C̃XX
ℓ

(
C̃XX

ℓ + CXX,N
ℓ

)−1

X̃, with CXX,N
ℓ the noise power spec-

trum, is our best estimate of the primordial, unlensed field.6 With this at hand, we
can build a B-lensing template, that is our best estimate of the B-lensing map. This
can be achieved by calculating the B-lensing map with the Wiener-filtered E-field
and the estimate on the deflection field, in principle following Eq. (11) but for po-
larization. Delensing then requires the subtraction of this template from the actual
B map, which, when sufficiently correlated with the underlying lensing signal, will
reduce the variance, and thus undo the B-lensing. It is worth noting that the QE
delensing performs better by using a perturbative version of the B-lensing template
[15].

It is instructive to discuss the variance of the deflection field estimator as we can
derive important properties that we review in the following. The isotropic noise of
the estimator is,

⟨(ϕ̂− ϕ)(L1)(ϕ̂− ϕ)∗(L2)⟩ ∝ N(L1)δ(L1 −L2) , (27)

and the average goes over both the CMB and deflection fields. The complete variance
is the ensemble average,

⟨⟨ϕ̂ϕ̂⟩CMB − ⟨ϕ̂⟩CMB⟨ϕ̂⟩CMB⟩LSS . (28)

In the following, we assume a Gaussian lensing potential, unlensed fields, and detec-
tor noise. Later in this section, we discuss a bias that arises from the non-Gaussianity
of the lensing potential itself.

The variance on ϕ̂ is important whenever we study the power spectrum. The
power spectrum C ϕ̂ϕ̂

L is a 4-point function in the map and picks up contributions
beyond the signal because it is itself a measure of the variance. We need to distin-
guish between the actual signal, and other contributions, in the following referred
to as reconstruction bias.

For starter I am only interested in the leading order contribution to the recon-
struction bias, but will discuss higher order contributions shortly after.

To calculate the variance, we can decompose it into all possible contractions.
Assuming Gaussianity, contractions of an odd number of fields are trivially zero.
The remaining contractions can be split into disconnected correlators that are 2-
pairings of contractions, and the fully connected, 4-pairing contraction,

⟨X̃X̃X̃X̃⟩ = ⟨X̃X̃X̃X̃⟩C︸ ︷︷ ︸
signal+bias

+ ⟨X̃X̃X̃X̃⟩DC︸ ︷︷ ︸
bias

. (29)

For brevity I have omitted the dependence of the field to the multipole ℓi and used
only one character for the 4 different fields. From context I assume that it is clear
to the reader that ⟨X̃X̃X̃X̃⟩ ≡ ⟨X̃(ℓ1)X̃

′(ℓ2)X̃ ′′(ℓ3)X̃ ′′′(ℓ4)⟩.
6For anisotropic sky or noise, the implicit change to Fourier space, as was done above, is not as

trivial, resulting in the Wiener-filtering to become more involved than just dividing by the power
spectra, but can be solved with iterative and approximate methods like conjugate gradient (CG)
[20].
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The disconnected contractions make up the primary bias, denoted N
(0)
L , and

relates to the 2-pairings through Wick’s theorem,7

⟨X̃X̃X̃X̃⟩DC =
∑

P

⟨X̃X̃⟩⟨X̃X̃⟩ , (30)

where P refers to all possible pairings (here, there are 3).
The signal of interest is in the connected correlator that gives a trispectrum,

C ϕ̂QEϕ̂QE

L ∝ ⟨X̃X̃X̃X̃⟩C = T (ℓ1, ℓ2, ℓ3, ℓ4).
The complete correlator is proportional to the signal and all biases,

⟨ϕ̂ϕ̂⟩ ∝ Cϕϕ
L +N

(0)
L +N

(1)
L +N

(2)
L + . . . . (31)

and I have grouped the noise contributions in terms of their dependence on Cϕϕ
L : N (1)

L

has a linear dependence on it. The ellipsis denotes higher order variance contribu-
tions. All contributions higher than zeroth order arise from higher-order contractions
inside the connected graph.

It is an important result that N
(0)
L is present even in the absence of lensing.

Concretely, and making use of Wick’s theorem, I find,

N (0),XY (L)

=
(AXY

L )2

L2

∫

ℓ1+ℓ2=L

FXY (ℓ1, ℓ2)
(
FXY (ℓ1, ℓ2)C

XX
ℓ1

CY Y
ℓ2

+ FXY (ℓ2, ℓ1)C
XY
ℓ1

CXY
ℓ2

)
,

(32)

which directly falls out of the calculation for the disconnected graph when we cal-
culate the variance of the estimator: there are 3 possible contractions, with one of
them cancelling with the second term of the equation of the variance. The super-
script XY denotes any quadratic combination of the two fields (XY ) ∈ {T,E,B}2.
It is independent of the lensing potential and only depends implicitly on it due to
the total power spectrum.

We now review the origin of higher order contractions in the trispectrum, with
a rigorous derivation of the individual biases provided in [21]. The quantum field
theory analog to higher-order corrections can also be developed in terms of Feynman
diagrams [22].

Starting with the variance, only averaging over CMB realizations, we find (as-
suming a Gaussian deflection field thus, L = L′),

⟨ϕ̂∗XY (L)ϕ̂X′Y ′
(L′)⟩CMB − ⟨ϕ̂∗XY (L)⟩CMB⟨ϕ̂X′Y ′

(L′)⟩CMB

∝ δ(L−L′)L ·L′A
XY
L AX′Y ′

L′

L2L′2

∫

ℓ1+ℓ2=ℓ′1+ℓ′2

⟨X̃Ỹ X̃ ′Ỹ ′⟩CMBF
XY (ℓ1, ℓ2)F

X′Y ′
(ℓ′1, ℓ

′
2)

− ϕ∗(L)ϕ(L′) ,
(33)

7We will see shortly that the superscript (0) refers to the dependence of powers in CϕϕL .
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with L = ℓ1 + ℓ2, L′ = ℓ′1 + ℓ′2, and the integral goes over all modes with the
constraint L = L′. The 4-point correlator inside the integral is quite involved, see
Eq. (18) of [21]. To obtain the terms that contribute to N (1), the 4-point function
can be evaluated, similar to calculating the response function, using Eq. (5) up to
second order.

Averaging Eq. (33) over realizations of the deflection field,

⟨⟨ϕ̂∗ϕ̂⟩CMB − ⟨ϕ̂∗⟩CMB⟨ϕ̂⟩CMB⟩LSS , (34)

gives the final result. For temperature only, the 4-point correlator inside the integral
(again, assuming Gaussianity of the deflection field, thus ℓ1+ ℓ2 = ℓ′1+ ℓ′2, and that
L = 0 is unobservable) is defined as,

⟨⟨T̃ T̃ T̃ T̃ ⟩CMB⟩LSS ∝
CTT

ℓ1
CTT

ℓ2
(δ(ℓ′1 − ℓ1)δ(ℓ

′
2 − ℓ2) + δ(ℓ′2 − ℓ1)δ(ℓ

′
1 − ℓ2)) + T (−ℓ1,−ℓ2, ℓ′1, ℓ′2) ,

(35)

Plugging in the term with the δ-function into Eq. (34), again, gives the leading
contribution of the reconstruction bias, N (0). These δ-functions, in essence act as
a splitting of the 4-point function into 2-point functions, and are thus equivalent of
Wick’s theorem.

The trispectrum can be written as [21],

T (ℓ1, ℓ2, ℓ3, ℓ4) =Cϕϕ
|ℓ1+ℓ2|f

TT (ℓ1, ℓ2)f
TT (ℓ3, ℓ4)+

Cϕϕ
|ℓ1+ℓ3|f

TT (ℓ1, ℓ3)f
TT (ℓ2, ℓ4)+

Cϕϕ
|ℓ1+ℓ4|f

TT (ℓ1, ℓ4)f
TT (ℓ2, ℓ3) ,

(36)

which helps in identifying the individual contributions, and from which we can di-
rectly see that it is a function of the lensing potential power spectrum (which should
somehow be obvious due to it being a trispectrum). N -th order reconstruction bi-
ases come from N -th order in Cϕϕ

ℓ term of the trispectrum after subtracting the
actual signal ⟨⟨ϕ̂∗(L)⟩CMB⟨ϕ̂(L′)⟩CMB⟩LSS (the second term in Eq. (34)).8 Explicitly
for temperature [21],

N (1),TTTT (L) =

δ(L−L′)L ·L′A
TT
L ATT

L′

L2L′2

∫

ℓ1+ℓ2=ℓ′1+ℓ′2

F TT (ℓ1, ℓ2)F
TT (ℓ′1, ℓ

′
2)

×
{
Cϕϕ

|ℓ1−ℓ′1|
fTT (−ℓ1, ℓ′1)fTT (−ℓ2, ℓ′2) + Cϕϕ

|ℓ1−ℓ′2|
fTT (−ℓ1, ℓ′2)fTT (−ℓ2, ℓ′1)

}
.

(37)

In some sense, N (1) can be considered a signal due to its direct proportion to Cϕϕ
ℓ .

But it is important to note that N (1) arises from an integration across different com-
bination of scales than Cϕϕ

L itself, and may rather be understood as an interference.

8Note that there are no higher order than N (1) in this trispectrum shown here due to our lensing
perturbation that we terminated after the second order in ϕ.
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Figure 3: CMB lensing reconstruction and associated reconstruction biases N (0) and
N (1) for a CMB-S4 like configuration. See text for discussion.

As a side note, the same scheme can be used to obtain the N (2) biases, for which
consequently Eq. (5) would have to be taken up to fourth order, which generates
the needed higher order terms in the 4-point correlator Eq. (35).

Typical reconstruction biases are shown in Fig. (3) in purple (N (0)) and pink
(N (1)) for a CMB-S4 like configuration. QE is shown as solid lines. The figure
also shows results on the optimal approach (dashed lines), and reconstruction that I
discuss in the next section. These lines come from the forecasting method developed
in [23]. Example reconstruction estimates are shown in blue and orange, binned over
a few multipoles.

In the case of a non-Gaussian lensing potential, additional biases arise. The
leading contribution is dubbed N

(3/2)
L . This is because the leading contribution comes

from the 3-point function of the lensing field that is now non-zero (as opposed to
the Gaussian case, in which correlators across odd number of fields become zero).
A thorough derivation is given in [24]. Using Edgeworth series, we find that the
primary contribution comes from the 3-point correlator and can be interpreted as
the response of the variance to the 3-point correlator [25]. The first term, the
Gaussian part, can be calculated in the usual manner and gives the result discussed
above. This three-point correlator gives rise to a bispectrum and is non-zero because
the following now non-vanishing correlators need to be considered for the calculation
of the variance,

N
(3/2)
L ∝ ⟨δX̃δX̃δX̃X̃⟩+ ⟨δ2X̃δX̃X̃X̃⟩+ ⟨δ3X̃X̃X̃X̃⟩ , (38)

and I have introduced the n-th order perturbation on the field X̃ through lensing
as X̃ = X +

∑
n δ

nX. Analytic results are presented in [26].
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Another effect that adds a bispectrum is the post-Born evaluation itself, Eq. (4),
as α is not Gaussian. The resulting bias has similar shape and signal to the one
discussed above, but quantitatively opposite sign [25]. Both effects therefore some-
what cancel each other, which makes this an important source of N (3/2)

L , and hence
needs to be accounted for. We discuss both in the context of iterative lensing re-
construction in chapter 4 and show that they can be treated in similar ways.

QEs have a long and successful history and are a crucial ingredient of today’s
research. A rigorous prescription on the flat sky was presented in [27], and later
extended to the full sky [18]. [28] showed that using lensed spectra in the filter
effectively leads to cancellation between the N (1) and N (2) bias on large scales, and
[19] derived the non-perturbative response function, which is more correct due to
the non-perturbative nature of lensing, further reducing the variance.9

With real data come real foregrounds. In this context, impacts from second
order anisotropies onto the reconstructions and possible methods for mitigation have
been studied [29, 30], and bias-hardened approaches [31] to reduce the impact of
foregrounds that correlate with the lensing field.

QE methods, and CMB lensing cross galaxy surveys have successfully been ap-
plied to data by many collaborations and experiments [32, 33, 34, 35, 36, 37] where
they contribute significantly to constraining cosmological parameters and help to
break degeneracies [38], and are also a key ingredient in measuring the sum of the
neutrino mass [39], and constraint dark energy [40].

Recently, an improved, generalized gMV has been proposed [41] that further
reduces the variance of the combined, minimum variance estimator.

Due to their comparably straightforward implementation, and analytic tractabil-
ity for many problems, QEs will likely remain an important tool for decades to come.
QE is the perfectly suited entry level for studying CMB lensing effects and cover
much of the needed properties for today’s research.

Despite its practicality, the QE does have limitations. Due to the squared combi-
nation of the maps, a QE probes correlations that are at most two-point in the map.
Lensing, however, also induces higher order correlations such as the bispectrum,
trispectrum, and higher orders. Probing them is crucial for a complete disentangle-
ment of the anisotropies.

QE analysis is therefore not optimal. The next section discusses an optimal
estimator via a Bayesian approach.

0.3 Maximum a posteriori Estimator

The first optimal estimator for extracting the deflection field was proposed in the
pioneering paper [42], and is based on a maximum likelihood estimator (MLE). Our
approach [43] follows their idea and iteratively reconstructs the deflection field by
calculating the gradient of the likelihood. This section aims to introduce the MLE

9non-perturbative response functions are particular helpful in temperature and for low noise
experiments.
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Figure 4: Improvement forecast of MAP compared to QE for the residual lensing
amplitude Alens in the perturbative, large-scale limit of the B-modes [13]. This
forecast assumes full sky reconstruction and an intermediate beam-width for all
noise levels. The sensitivity, the noise level shown in the x-axis shows a highly
optimistic range; for CMB-S4 an about 4-times improvement compared to QE will
likely be achieved. This forecast assumes that we have foregrounds under control
on all scales.

approach and how it is applied in the context of CMB lensing reconstruction, and
lays out arguments why it works and why it is better than QE.

The quadratic estimator of the previous section would be (close to) optimal if
lensing was a perturbative effect. However, CMB lensing does induce higher-order
correlations, therefore only tracing the 2-point function does not recover all the
information. In the following, I switch to the estimation of α rather than ϕ which
has no real impact other than the notation. An optimal estimator that takes into
account higher-order correlations such as ⟨X̃X̃X̃⟩, ⟨X̃X̃X̃X̃⟩, up to N fields, in
principle would be,

α̂(L) =
N∑

n

A
(n)
L

Ln

∫

∂ℓn

(
n∏

i

X̃ i(ℓi)

)
F (n)({ℓ}n) , (39)

with F ({ℓ}n) being the weighting function with the set over all n modes, A(n)
L the

normalization for the n-th correlator, and X̃ i the i-th field, and the integral goes
over the respective surface constraint by the conditions ∂ℓn : L =

∑
n ℓn

A MLE finds the maximum value of the likelihood. This point is optimal due to
the likelihood principle, stating that all information is contained in the likelihood
function, and is optimal as the MLE achieves the lowest possible variance.10 In fact,

10There are various measures that could be considered optimal, examples being the mean of the
a posteriori or the maximum of it. This thesis solely uses the maximum.
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what we eventually use is the maximum a posteriori (MAP) estimator. The main
difference is that MAP estimators also provide means to include a prior. I start by
defining the negative log likelihood using Gaussian fields and Gaussian experiment
noise,

−2 ln(L(X̃|α)) = ln(det(covα)) + X̃†cov−1
α X̃ . (40)

ln(L(·)) is Gaussian in X̃, and covα is the Gaussian covariance, and α is the deflec-
tion field with respect to both Cartesian directions.

covα = ⟨X̃X̃†⟩ = BDαYCXXY†D†
αB† +N , (41)

Y is a short-hand matrix notation for a SHT, and I have introduced the data model
X̃(n) = BDαX + n, with B again the transfer function, and Dα the deflection
operator. With this, the likelihood becomes directly dependent on α. Applying
Bayes’ theorem, we obtain the log posterior up to an irrelevant constant,

P(α|X̃) ≡ ln
(
p(α|X̃)

)
= ln

(
L(X̃|α)P (α)

)
, (42)

with P the prior on α. The posterior is a scalar that depends on each and every
mode that is reconstructed and is thus a high-dimensional problem. We find the
MAP point by calculating the gradient g = ∂L

∂α
, and setting the condition g = 0.

This gradient has the dimension of the number of modes that are reconstructed.
If the posterior P(α|X̃) were Gaussian in α,

P(α|X̃) =
1

2
(α−αµ)H−1(α−αµ) , (43)

with αµ the mean, and H being the curvature matrix of the log likelihood, [H−1]abLL′ =
∂2ln(L(X̃|α))

∂αa(L)∂α∗b(L′) , and ab the indices of the two coordinates, one step would be enough
to instantly reach the MAP point,

α̂MAP = H−1g . (44)

However, the posterior is not Gaussian in α: while not directly visible, Eq. (40)
depends on α in a non-trivial way through the covariance that may or may not
give a quadratic dependence on it. Therefore, an iterative scheme must be applied.
The first to propose this were [42]. [20] present a flat sky implementation using the
above likelihood, and is also the starting point for the curved sky implementation
presented in chapter 3.

The iterative scheme works as follows. Calculating the gradient of the likelihood
with an initial guess of α, we calculate DαX.11 The gradient of the likelihood
contains a Wiener-filtering that is a function of Dα and returns an estimate of
the unlensed fields. With the gradient obtained, we get a new α using Eq. (44).
This new α can be used to update the likelihood model with a new DαX, that in
return gives an even better estimate on the unlensed fields through Wiener-filtering.

11The calculation of the lensed field merely adds computational complexity, as this can be solved
at machine precision accuracy and can therefore be considered exact.
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Repeating this until convergence gives the desired MAP point. The reason that every
iteration becomes better is that we obtain better and better unlensed fields. The
MAP points’ convergence is only limited by the instrumental noise for polarization
estimators, due to the data model depending on the unlensed spectra: there is no
primordial EB correlation due to parity, and primordial B is confirmed to be very
small (perhaps even zero).12 By iteratively following the gradient, we can therefore
follow the non-Gaussian features of the likelihood (such as skewness and kurtosis)
to eventually reach the MAP point.

The gradient can naturally be split into three pieces: the quadratic term, the
prior term, and the "mean-field" that comes from the determinant. Only looking at
the "quadratic" part of the gradient, we see a clear similarity between the QE and
iterative estimate in position space. Here, using spin-weight notation (see [18, 44]
for QE),

α̂QE =
∑

s=0,±2

[
sX̄

res,mod∂ sY
WF
]
, (45)

α̂MAP,i+1 = α̂MAP,i +H−1
∑

s=0,±2

[
sX̄

resDα∂ sY
WF
]
, (46)

with X̄res,mod and X̄res being the inverse noise weighted "residual" for the QE
and MAP data model, respectively [20],

X̄res,mod = B†N−1(X − BXWF) , (47)
X̄res = B†N−1(X − BDαX

WF) , (48)

and are a direct result of applying some matrix operations onto Eq. (26). As the
residual approaches zero, α̂MAP,i+1 will more and more closely match α̂MAP,i as the
Wiener-filtering does not improve further. If we were to only use the quadratic part
(and assuming that the mean-field term can be ignored), this would result in an illicit
behaviour: the likelihood of the noisy modes, the smallest scales of the deflection
field is not very constraining (has a large width), and motivates introducing the
prior. This is one of the reasons why we use a MAP estimator as opposed to an
MLE. Modes that are too noisy would otherwise drive the reconstruction into a
regime that renders the result (possibly) unusable.

With this description, we are ready to understand that the Bayesian approach
can truly trace the higher order correlations. We will see shortly, that the higher
order correlations originate from the deflection operator and Wiener-filtering. To
see this, consider first the QE. For brevity, I use α ≡ α, and assume that the
estimator can be written as a correlator to show its dependence on the fields: α̂QE =
⟨X̃modX̃mod⟩ = α̂(0), but should really be understood as a short-hand notation for

12In the case of jointly reconstructing the lensing potential and curl potential, one might wonder
if both fields can be reconstructed simultaneously as the number of unknowns essentially doubles
in this case. We show in section 3.2, that, at least for the noise levels and resolutions considered
there, we can indeed jointly reconstruct both; to leading order, these fields do not share the same
parameters for the reconstruction as their N (0) reconstruction noise do not correlate.
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Eq. (22) (and of course rewriting to account for α). The second equality holds as
the MAP approach uses the QE as starting point. Here X̃mod = BX̃ + n is the QE
model. Then, for the first iteration, we use the QE estimate to derive the deflection
operator Dα̂QE and estimate a new lensing field, α̂(1):

α̂QE = ⟨X̃modX̃mod⟩ ,
α̂(1) = ⟨X̃ α̂QE

X̃ α̂QE⟩ ,
...

(49)

and the ellipsis denotes further iterations. X̃ α̂QE uses the optimal data model with
Dα̂QE . The deflection operator, to first order, is linear in the lensing potential and
acts along the gradient of the Wiener-filtered field,

Dα̂QEXWF ∝ XWF + α̂∇XWF , (50)

I find,

⟨X̃αQE

X̃αQE⟩ ∝
〈
(XWF + α̂QE∇XWF)(XWF + α̂QE∇XWF)

〉

∝ ⟨X̃modX̃mod∇XWFX̃modX̃mod∇XWF⟩ ,
(51)

and the second line holds by only collecting all terms that are explicitly second order
in α̂ (hereby assuming XWF is close to the primordial signal). Applying Wick’s
theorem, I already find one type of pairing that traces the trispectrum,

⟨X̃modX̃mod∇XWFX̃modX̃mod∇XWF⟩
∋ ⟨X̃modX̃modX̃modX̃mod⟩︸ ︷︷ ︸

trispectrum

⟨∇XWF∇XWF⟩ . (52)

This shows in simple ways that an iterative approach captures higher-order corre-
lations. Needless to say, this schematic derivation is too simplified to make any
quantitative statements. Further, the result is after one iteration, for a perturba-
tive deflection operator, and I have omitted many more contractions. A rigorous
study would become quickly much more involved and include non-perturbative de-
flection, and the non-linear Wiener-filtering in α that further induces higher order
correlations.

It is for this reason that analytic descriptions of iterative lensing reconstruc-
tions are currently somewhat ‘underdeveloped’. It would certainly be interesting
to describe the reconstruction biases analytically by calculating the variance of the
estimator as in the previous section, and understand - at least qualitatively - the
individual higher-order terms that enter. However, the iterative approach makes
it difficult to trace exactly the reconstruction biases, and the intermediate, itera-
tive steps depends on the path that is chosen towards the MAP point, that is the
concrete Wiener-filter implementation and gradient update. Luckily, at the MAP
point, things become clearer again and the reconstruction agrees well with a forecast
method developed in [45]. They show in essence that the above iterative scheme boils
down to using partially delensed spectra for calculating the reconstruction biases.
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Iterative lensing reconstruction comes at a cost. It is computationally much more
demanding, partly as it also requires the reconstruction of both the primordial fields
and the lensing potential, and calculation of the deflected maps, which is not the
case for QE.

Nonetheless, optimal methods improve the lensing reconstruction compared to
QE, which is an interesting, and sometimes much needed aspect for many science
cases as discussed in the following.

0.3.1 A New Light on Science Cases

The MAP approach can be seen as an improvement to QE for two reasons. First,
it generates data products that have a higher cross correlation to the true input
(that is, to the underlying deflection field, and primordial CMB fields). Second, the
data products are built using an estimator model that traces higher order correlation
than two point and thus contain entirely new information that QE does not provide.
Another important aspect is that the reconstruction error are in principle unbound
and only depend on the experiment noise [42]; a very different behaviour to QE
which precision is additionally bound by the lensed spectra.

This has various implications on the final data products and on the CMB science
cases:

First and foremost are the improved constraints on the tensor-to-scalar ratio r
that we obtain with MAP and for the polarization fields due to the reconstruction
error being unbound. A forecast on this is shown in Fig. (4), where I show the
improvement on the residual lensing amplitude Alens as a function of the noise level
of the experiment.13

Second, in the case of the T and E maps the reconstructed fields resemble a better
estimate of the earliest times of the Universe than for QE. This can be beneficial;
if the estimate better resembles the early Universe, they will correlate less with late
time physics, perhaps resulting in lower biases, among other.

Third, as the MAP estimated deflection field traces higher order correlations
of the underlying CMB fields, any external tracer that also contains higher order
correlations may potentially show different behaviour than QE and inform us in
completely new ways. An example of this may be studies on extra galactic fore-
grounds (or external tracers coming from large-scale-structure probes and galaxy
cluster surveys), that have non-Gaussian distributions, and are also correlated with
the deflection field. As an example, we study the impact of higher order correlations
of a non-Gaussian deflection field onto our MAP estimator in chapter 4 and find that
it is less biased than QE. In some sense, optimal methods such as the one presented
in this thesis can provide means to study higher order correlations like never before,
albeit in a brute-force manner.

13Measuring neutrino properties can also benefit from the the reconstruction error being unbound
as their properties leave a direct imprint in CMB lensing. However, the effect of the neutrino mass
on the deflection field reconstruction is degenerate with other parameters such as the depth of
reionization τ , the amount of baryonic matter, and the scalar amplitude As. The CMB-S4 science
goals on the sum of the neutrino mass can actually be reached without MAP [45, 46].
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0.3.2 Some Unexplored Charters

One avenue is to optimally and simultaneously reconstruct the deflection field, and
foregrounds that correlate with the CMB, or other fields such as the cosmic infrared
background. It is left to explore how to accurately incorporate non-Gaussian fields
into the likelihood, however. Related to this, there has been no study so far on how
to mitigate biases in the MAP approach that arise from extra galactic foregrounds
that are correlated with the underlying deflection field. It would be interesting to
perform lensing reconstruction jointly on the individual frequency maps rather than
the component separated maps. Also, further studies on real data would be highly
beneficial for the further development of Delensalot.

Another path would be to include non-Gaussianity by starting with non-Gaussian
probability functions to build the likelihood model. However, the primordial CMB
appears to be Gaussian, and the amount of primordial non-Gaussianity, parame-
terized by fNL, is constrained to be rather small [47], making this effort somewhat
difficult to motivate. And Gaussian probability distribution in the likelihood, Gaus-
sian covariance, and using a Gaussian prior for the deflection field does not prevent us
from reconstructing non-Gaussian features, as we show in chapter 4. Furthermore,
tailored approaches to probe non-Gaussianity might be better suited by directly
building a bispectrum estimator [48, 49]. On the bright side, delensing can still help
reduce lensing-induced biases on the estimation of fNL.

Some technical topics that come to mind: it would be interesting to explore other
starting points than QE. As the posterior clearly is non-Gaussian, a QE starting
point, implicitly assuming Gaussianity of the posterior, is not optimal. A machine
learning approach could potentially help here, and could serve as a provider of
starting points from which the exact algorithm then converges onto the MAP point.

The MAP approach raises the question if there are "interference-terms" between
the different iterations that result in sub-optimal directions for the descent along
the lensing posterior. A thorough study on the implementation of the Wiener-filter,
or in the update on the MAP point in the gradient step Eq. (44) could explore
this. This also leads to the question about knowing whether or not we have actually
reached the MAP point.

A final source of complication is that the estimator is numerically not exact due
to the Wiener-filtering being applied. We use a conjugate gradient (CG) solver. De-
pending on the accuracy, numerical inaccuracies lead to inaccuracies on the filtered
modes, which is why the accuracy parameters of the CG step is often a much varied
parameter in the reconstruction. It would be interesting to study the impact of the
CG accuracy onto the estimates of the iterative estimator more thoroughly in the
sense of,

ϕ̂QE,CG ≈ ϕ̂QE,exact − δϕ̂QE . (53)

δϕ̂QE is a function of the multipole and generally depends on the accuracy of the
method and the method itself. This allows to study terms of the form ⟨δϕ̂QEδϕ̂QE⟩:
if some of the scales of this correlator were insensitive to the actual reconstruction,
they could be traced and forced to converge faster. Additionally, with the conju-
gate gradient being an iterative approach, it might be worth exploring if the initial
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iterations can be replaced by machine learning models. This is in particular true
for the pre-conditioner, a technique that helps with the convergence by binning the
problem across scales first, before solving the full problem, if applied.

We study the iterative lensing reconstruction in more detail in chapter 3, where
we discuss the full Bayesian approach, and how to achieve this on the full sky
inclusive of foreground, masking, and inhomogeneous noise in the context of tensor-
to-scalar ratio searches. A thorough discussion on the development of Delensalot
that was done after the implementation of the curved sky code is given in chapter 1.
We discuss another application that studies non-Gaussian deflection fields in chapter
4.

0.4 CMB Data Analysis Pipeline

I discuss the pipeline needed for testing and validation of the analysis of the CMB
science goals, and how lensing reconstruction is integrated.

Real data is challenging. As the true input is unknown, we need to make sure
to clearly understand the error budget and systematics, and each and every step
of the pipeline so that results become interpretable. This is generally achieved by
running the analysis pipeline on simulations for which the true input is known. In
the following, I describe a general CMB lensing data analysis pipeline on simulations.

Simulation of the primordial fields: these are the CMB fields after the
evolution of the Boltzmann equation, and may also include the effect of (patchy)
reionization. To generate these simulations, parameters of the inflationary phase
are chosen, and the Universe evolves using a Boltzmann solver [50, 51] to eventually
obtain the auto and cross power spectra of the CMB fields. Additional parameters
have an influence such as the optical depth τ of reionization. Sampling realizations
of the final spectra then gives the primordial CMB fields.

Simulation of the sky: during their journey across the Universe, the CMB
photons are slightly deflected which results in a change of the distribution of the
anisotropies as discussed in the previous sections. A realization of the mass dis-
tribution is required which can be simulated either by highly realistic many-body-
simulations and ray tracing [52] (which has the advantage of including post-Born
effects), or by sampling of the expected power spectrum of an assumed lensing po-
tential itself. This deflection field can then be used to lens the primordial CMB.
Most notably, this can be done by [53, 54, 1, 55]. Secondary anisotropies such as the
integrated Sachs Wolfe (ISW) effect [56], the Rees-Sciama effect [57], the thermal
and kinematic Sunyaev-Zel’dovich effect [58], cluster lensing, and reionization may
be of interest and can additionally be simulated and included, as well as galactic
foregrounds that do not correlate with the deflection field, but add to the overall
noise budget. Mainly, there exist dust, and synchrotron foregrounds emitted from
our own galaxy and simulation suites such as PySM [59] can be used to include
them. Ultimately, different galactic foreground models are analysed simultaneously
to quantify impact onto the analysis.

Simulation of the atmosphere and human activity: For ground-based
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telescopes, additional complications such as atmospheric noise or satellites passing
by the field of view potentially have to be taken into account (in the future).

Simulation of the experiment: this includes modelling of the transfer func-
tion that describes the actual readout of the measured sky and includes the beam,
and the scan strategy of the experiment, as well as the simulation of the noise. The
experiment may consist of multiple detectors at different frequencies, for which the
simulations need to be generated accordingly.

Component Separation: CMB lensing reconstruction, in its current form,
requires some kind of pre-cleaning of the data. Generally, this is done by what is
called component separation. Through component separation, the different maps of
the experiment at different frequencies are combined in a way to reduce variance,
and to filter out components other than the CMB. This works in particular well
for components that are frequency dependent, which makes them detectable and
distinguishable from the CMB, as the experiments are calibrated in a way that the
CMB has the same power across all frequencies of an CMB observation [60, 61, 62,
63]. Component separation can be validated using likelihood searches to recover the
input foreground parameters, which helps understanding biases that enter through
component separation.

Reconstruction of the lensing field, primordial CMB, and B-lensing
templates QE and iterative lensing reconstruction are performed on the component
separated maps to extract the effect of CMB lensing. This is the main topic of this
thesis, discussed above, and in more detail in the subsequent chapters.

Estimation of cosmological parameter: the effect of B-lensing on the ob-
served B map can be removed with the B-lensing template, which reduces the over-
all variance. As the power spectra are sensitive to the cosmology, they are fed into
Markov Chain Monte Carlo (MCMC) solvers to determine the parameters that best
fit the data [64, 65]. They are arguably quite sensitive to the likelihood at choice, so
caution is advised. Eventually, this then gives results on r, σ(r), the neutrino mass,
and all initial parameters that we started with.
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Developing the Software: Delensalot

Figure 1.1 shows the Delensalot logo, a byproduct of the initial work of this thesis:
the duck is a reference to the underlying SHT solver DUCC1, the scarf emphasises the
integration of DUCC into our code; this integration was initially done by our Bachelor
student Samuel Šimko in the scope of his seminar project. The magnifier refers to
the task of lensing, and the sword is a reference to the software name Delensalot
that is phonetic similar to "Sir Lancelot", one of the knights of the round table.

Figure 1.1: The Delensalot logo.

1.1 Motivation

With the advent of CMB experiments reaching sensitivity surpassing 5µK-arcmin,
QE have become sub-optimal, necessitating more advanced methods for lensing re-
construction. One such method is developed and implemented through Delensalot,
the first publicly available software using a Bayesian approach for iterative lensing
reconstruction at the map level that performs the task on the full-sky in reasonable
time. This novel approach is essential for optimally reconstructing the lensing field
in current and upcoming CMB experiments, particularly those sensitive enough to
resolve B-lensing.

1https://pypi.org/project/ducc0/
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The development of Delensalot began prior to this thesis, initially demonstrated
with a flat-sky implementation that also included masking [20]. It was subsequently
upgraded to curved-sky applications, and its effectiveness on realistic sky models
with inhomogeneous noise was demonstrated in a CMB-S4 collaboration paper in
the scope of this thesis (see chapter 3.3.2.1).

Delensalot is not yet at a software maturity level (SML) that would make it
broadly accessible to a wide range of users with low risk (SML-5). Currently, it
is mainly used by experts due to the complexity of the task it addresses and the
specialized nature of its application; most research relies on QE, and only a mere
few CMB observations that are currently running (such as the South Pole Telescope
(SPT)) provide data sensitive enough to fully benefit from the MAP reconstruction
and thus from Delensalot. A reasonable reconstruction also requires the right
choice of many parameters, including those related to the data, the experiment, and
the reconstruction itself. With around 100 parameters involved, the process is far
from automatic.

As with every software, an execution calls underlying functions in the right se-
quence, in the following referred to as the pipeline. Versions of Delensalot prior to
this thesis had one access point; the usage of what I call a parameter file. In essence,
a parameter file is the whole pipeline: raw function calls, intervened with the nec-
essary parameters, exceeding hundreds of lines of code. The logical connection of
a pipeline is merged with the parameters themselves, and using a parameter file
requires the knowledge of the underlying functions and logical connection. While
suitable for experts and the development of different reconstruction pipelines, this
entry point presents a high barrier for broader use, in particular if we want to provide
Delensalot to the greater cosmologists community. Thus, Delensalot was rather
positioned around SML-2: expert knowledge needed and software poses somewhat
high risk.

Delensalot is proven to be feasible [2, 3, 5, 23, 43, 45]; its results are robust and
promising and it was ready to be elevated onto the next level on the SML scale and
to make it more accessible to everyone. This means lowering the threshold, removing
the need of expert knowledge to produce sensible results, and reducing overall risk
of using the software by introducing validation and testing. This chapter describes
the efforts that aim to reach this.

Central to this chapter is the implementation of the Delensalot language model
(DLM) and the "job-stream". The DLM simplifies the complex task of some of the
pipelines that may include iterative lensing reconstruction. In particular, it provides
almost one-click solutions for standard applications like reconstructing the lensing
field or building the B-lensing template for measuring the tensor-to-scalar ratio r,
as required by many collaborations. The DLM organizes parameters in a structured,
human-readable format and connects them to the core functions of Delensalot via
model transformers, significantly reducing the complexity of running these pipelines.
Delensalot provides well optimized pipelines that can automatically be run by the
user and be controlled by a set of parameters. At the same time, Delensalot is de-
veloped with backward-compatibility for parameter files, so that existing workflows
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that depend on them are not affected. The job-stream combines minimal worker
units, dubbed "jobs", that are executed sequentially.

The shortest possible code for a complete Delensalot analysis can be as short
as three lines of code! This is a severe reduction of complexity for the usage of
Delensalot that previously required about 250 lines of code to run. As a concrete
example, the sequence of instructions to run a full analysis is shown in the following
snippet:

-1 from . dlensalot_mm import DLENSALOT_Model as DM
0 from de l e n s a l o t . run import run
1 dmodel = DM( de fau l t s_to=’ CMBS4_fullsky_polarization ’ )
2 drunner = run ( c on f i g=dmodel )
3 drunner . run ( )
4 ana = drunner . co l l ect_model ( )

The first line (after the imports) creates a DLM: for each parameter that is not ex-
plicitly chosen by the user (in this case here, all), Delensalot automatically defaults
to the values defined for a general full sky polarization reconstruction for CMB-S4-
like experiments, defaults_to=’CMBS4_fullsky_polarization’. The second line
validates the DLM and initializes the analysis. The third line executes the analysis.

The additional fourth line returns the full Delensalot analysis inclusive of con-
venience functions to access the results. Of course, a concrete analysis requires a
correct configuration of the dmodel, and details will be discussed in the following
sections.

This new architecture also allows for the development of robust convenience
functions. In particular for the idealized of a full sky analysis, Delensalot now
also provides functions to calculate map-delensed fields, lensing templates, delensed
B-modes, and residual B-mode power spectra, with one line of code, as shown in
the following snippet:

1 import d e l e n s a l o t
2 b l t = de l e n s a l o t . map2tempblm(obs_map)
3 delblm = de l e n s a l o t . map2delblm (obs_map)
4 Clde l = de l e n s a l o t . ana fa s t (obs_map)

Most complication is thus hidden and greatly simplified. While not necessarily
providing optimal reconstruction, these functions allow for very simple and fast ac-
cess to results that were otherwise difficult to reach.

This chapter gives a high level introduction into the Delensalot architecture.
Furthermore, I discuss the following contributions:

• a user-friendly simulation library and handler for generating and managing
CMB realizations, and handling external input, see Sec. 1.4.

• implementation of a new interface using the DLM, see Sec. 1.3.

• introduction of model-transformers to map between DLM and other models,
see Sec. 1.5.
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• a structured approach to managing default settings.

• a single entry point for executing Delensalot and analyzing results, see Sec. 1.3.

• introduction of a job-stream, see Sec. 1.5.

• introduction of a collect-run structure for handling message passing interface
(MPI) calls. See Sec. 1.5.

• enhanced tracking and validation of analyses ensuring robust and safe resump-
tion, see Sec. 1.3.

• continuous integration (CI) for testing and validation, see Sec. 1.7.

• comprehensive documentation and tutorials, see Sec. 1.6.

1.2 Major Milestones

Throughout the last years, Delensalot has seen many changes to the code base.
Fig. 1.2 puts the most important achievements chronologically into context. The
first "flat sky" implementation was demonstrated in 2017. At the start of this
PhD, "itercurv", the first curved sky pipeline, was developed. In summer 2021, our
Bachelor student Samuel Simko developed and integrated "lenscarf", allowing for
SHTs on custom geometries. The "DLM" was introduced at the start of 2022, and
marks the birth of Delensalot. Shortly after, the simulation library "simlib" was
built to simplify simulation management. "Lenspyx2.0" was integrated in 2023,
significantly speeding up the deflection operation and increasing accuracy. As an
outlook, I would like to mention the integration of a GPU implementation of the
deflection operator, "cunuSHT".

Figure 1.2: Milestones during the development of Delensalot.

1.3 The Delensalot Language Model

A Delensalot language model (DLM) consists of 14 data structures, each contain-
ing various parameters, and in total defines a complete Delensalot analysis. Its
capabilities reach beyond standard iterative lensing reconstruction: it automates the
generation of simulations, QE analysis, delensing and ϕ power spectrum analysis,
and Wiener-filter maps, as well as mean-fields. The data structures are shown in
Fig. 1.3, and the full model inclusive of all parameters is shown in Appendix A.



Chapter 1. Developing the Software: Delensalot 27

Figure 1.3: The Delensalot language model and its data structures. Each structure
contains a set of parameters. A complete configuration consists of all data structures
and their parameters.

For the sake of this chapter, each structure is grouped into types.
There is only one type 0 structure, "Job". It controls which job to execute

in the analysis: Building the overlapping B-mode deprojection matrix, generating
Simulations, QE reconstruction, MAP reconstruction, Map-level delensing, and the
analysis of the power spectrum of ϕ.

In addition, there are four types of data structures:

• type 1 controls modelling aspects: Analysis, Noisemodel.

• type 2 configures the individual jobs: Simulation, OBD, QErec, Itrec, Mapde-
lensing, Phianalysis.

• type 3 controls behaviour and does not affect the analysis: Meta, Config,
Computing.

• type 4 controls very specific, underlying behaviour of the gradient update,
and conjugate gradient method: Stepper, Chaindescriptor.

The third and fourth type does not generally need to be changed by the user
and can be left unconfigured; Delensalot takes care of it anyway.

The first and second type of data structures are most important for everyday
usage.

The data structure "Analysis" contains the configuration of the overall run such
as the type of quadratic combination of fields (e.g. TT , EB, etc.), filter, and detector
settings.

The data structure "Noisemodel" collects parameters for the modelling of the
noise: how to build the noise variance map, and how to deal with masking, if
applicable.

The type 2 data structures configure the individual jobs. In the case of the QE
and iterative reconstruction, jobs are divided in tasks and controlled by the "tasks"
parameter. A task is the calculation of the deflection field, the B-lensing template,
and the meanfield. Further, there are parameters that define the behaviour of the
reconstruction and configure the Wiener-filtering, among others.
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Figure 1.4: The simulation library. "external" refers to the possibility of it being
replaceable by external data

For each analysis that is executed, Delensalot reads the DLM and validates the
parameters. If a provided parameter does, for example, not match the expected
data type or range, validation will not succeed and provide feedback to the user.
If a parameters, however, is not set by the user, Delensalot falls back to a set
of predefined default values, thereby handily simplifying the amount of parameters
that need to be set. The user can choose which of the predefined default values
Delensalot should fall back to, with many for typical configuration scenarios to
choose from (such as analysing data on the full sky, masked sky, for CMB-S4 like
experiments, only using polarization estimator, among other).

Configurations are also tested against existing analyses, guaranteeing that re-
construction results are not mixed up. For each analysis, a directory is created
which contains a copy of the DLM, intermediate results, and the analysis results. If
analyses folders match, the already existing and currently executed DLM’s will be
compared against each other. Mismatching parameters result in a failed validation
and termination of the execution for a subset of parameters.

I refer to Appendix A for a complete list of parameters, and to the next sections
for examples of how to use it. I also provide an online documentation, and tutorials,
as discussed in Sec. 1.6.
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1.4 The Simulation Library

This section describes the implementation of the type 2 data structure "Simulation"
and how to use it. One of the possible jobs of Delensalot is the generation and
handling of simulations. While a simulation library already existed since the de-
velopment of plancklens �2, building a new simulation library was motivated to
seamlessly integrate it with the DLM.

Delensalot takes a single CMB field (or a combination of two different fields)
and performs iterative lensing reconstruction to optimally reconstruct the underlying
deflection field. This is either done on real data, or simulations. In many cases,
Delensalot needs to generate its own simulations.

There is some amount of freedom how data or simulations are usually provided,
and a performant library must be able to safely handle all of them:

• The CMB field can either be polarization, or temperature. In the case of
polarization, fields may come as spin-2 (Q,U), or spin-0 (E,B) fields.

• The simulations may come as either harmonic coefficients or as real-space
maps. It is also possible to start with mere power spectra.

• CMB fields can either be provided as unlensed, lensed, or observed maps. For
unlensed maps, this means that the simulation library must be able to per-
form lensing on the data and apply the transfer function to generate sky, and
observed maps, respectively. It must be capable of generating and applying
noise.

Each of these come with constraints and instructions, that are partly shared
and dependent on each other. It thus offers means to automate most of it. The
motivation behind a new simulation library is to handle all the above in a consistent
and user-friendly manner, hiding most of the detailed operations.

The simulation library is implemented as follows, and shown in Fig. 1.4. I im-
plement 3 classes, each handles a different stage of the simulation: unlensed, lensed,
and observed sky. They are interconnected to share common parameters. Data pro-
visioning uses simple data structures that define the properties (configuration) for
the individual generation of realizations (CMB field simulation, deflection field simu-
lation, noise simulation). Configuration further contains instructions for the lensing
operation and experiment configuration. An outward facing class (SimulationLi-
brary) provides high-level functions for accessing simulations. For the generation
and access of the simulations, each high-level function comes with the same set of
parameters:

simidx is an identifier of a particular realization.
field refers to either temperature or polarization fields.
space refers to either power spectra, harmonic coefficients, or real space maps.
flavour refers to the fields either being unlensed, lensed, or observed maps.

2plancklens provides routines for QE analyses and is integrated into Delensalot: https:
//github.com/carronj/plancklens.

https://github.com/carronj/plancklens
https://github.com/carronj/plancklens
https://github.com/carronj/plancklens
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spin refers to the polarization maps either being Q/U (spin-2) or E/B (spin-0
maps). In case of temperature, spin is always assumed zero.

Five outward facing functions facilitate easy access to different simulation prod-
ucts and stages:

1 get_sim_unl (∗∗ kwargs )
2 get_sim_sky (∗∗ kwargs )
3 get_sim_obs (∗∗ kwargs )
4 get_sim_noise (∗∗ kwargs )
5 get_sim_phi (∗∗ kwargs )

with **kwargs being the same set of parameters as described above.
Default configurations hide underlying parameters that may be irrelevant to

the user. The simulation library is built to always generate observed CMB fields,
independent of the simulation stage that the configuration provides. If this is not
possible, the configuration is not valid and the library returns feedback to the user.
The library, of course, cannot go the other way round: if only observed maps are
provided by the configuration, it is still a valid configuration. The library simply
cannot provide lensed, or unlensed maps from it.

A typical configuration of the simulation data that starts with unlensed CMB
maps is shown in the following code snippet. Note, that this data structure is also
part of the DLM.

1 s imu l a t i on con f i g = DLENSALOT_Simulation(
2 space = ’map ’ ,
3 f l a vou r = ’ unl ’ ,
4 lmax = 4096 ,
5 phi_lmax = 5120 ,
6 sp in = 2 ,
7 l i b d i r = data_dir ,
8 l i b d i r_no i s e = data_dir_noise ,
9 f n s n o i s e = {

10 ’E ’ : ’E_mc{{ :04d }} . f i t s ’ ,
11 ’B ’ : ’B_mc{{ :04d}} . f i t s ’
12 } ,
13 f n s = {
14 ’Q ’ : ’Q_{{:04d }} . f i t s ’ ,
15 ’U ’ : ’U_{{:04d }} . f i t s ’
16 } ,
17 CMB_modifier = func ,
18 t r an s f unc t i on = gauss_beam (2 .3/180/60 ∗ np . pi , lmax=4096) ,
19 geominfo = ( ’ hea lp ix ’ , { ’ n s ide ’ : 2048}) ,
20 )

The next snippet initializes the simulation library with the above configuration
using the outward-facing Simhandler.

1 from de l e n s a l o t . s ims . s ims_l ib import Simhandler
2 s = Simhandler (∗∗ s imu l a t i on con f i g .__dict__)
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The following snippet shows example calls of how to access the simulations from
the simulation library above, for a few combinations of parameters:

1 Tu = s . get_sim_unl (0 , sp in =0, space=’ alm ’ , f i e l d=’ temperature ’ )
2 EBu = s . get_sim_unl (0 , sp in =0, space=’ alm ’ , f i e l d=’ p o l a r i z a t i o n ’ )
3

4 phi = s . get_sim_phi (0 , space=’ alm ’ )
5

6 Ts = s . get_sim_sky (0 , sp in =0, space=’ alm ’ , f i e l d=’ temperature ’ )
7 To = s . get_sim_obs (0 , sp in =0, space=’ alm ’ , f i e l d=’ temperature ’ )
8 QUo = s . get_sim_obs (0 , sp in =2, space=’ alm ’ , f i e l d=’ p o l a r i z a t i o n ’ )
9 Tn = s . get_sim_noise (0 , sp in =0, space=’ alm ’ , f i e l d=’ temperature ’ )

This library does not automatically store simulations on disk. Instead, this can
be achieved by running a Delensalot-job called generate_sim,

-1 from . dlensalot_mm import DLENSALOT_Model as DM
0 from de l e n s a l o t . run import run
1 dmodel = DM( s imulat iondata = s imu l a t i on con f i g )
2 drunner = run ( c on f i g=dmodel , job=’ generate_sim ’ )
3 drunner . run ( )
4 ana = drunner . co l l ect_model ( )

Note that this is a completely valid DLM. It is the exact same entry point as one
would use for running iterative lensing reconstruction. In the example above, it is
merely used for generating the simulations. Hence, all irrelevant parameters do not
have to be provided.

1.5 Implementation

The configuration file (that contains an instance of a DLM) contains requested jobs,
for example "simulation generation", "MAP reconstruction", "delensing". Execut-
ing Delensalot with a configuration file executes the jobs as a "job-stream"; as
jobs have an implicit hierarchy, they are automatically executed sequentially in the
right order. While the jobs are executed sequentially, each job is parallelized using
the message passing interface (MPI). The parallelization is generally done across
simulations. This is shown in Fig. 1.5: pointing solid arrows show the dependency
of one job to another. It is possible that the configuration only requests the highest
hierarchy, in which case Delensalot internally builds the job-stream by adding all
required lower-hierarchy jobs. If the user requests MAP reconstruction, Delensalot
first builds the B-mode deprojection (OBD) matrix and generates the simulations,
and then executes QE reconstruction.

Delensalot, upon execution, validates the configuration, sets default values for
unconfigured parameters, and builds the job-stream using the configuration as pro-
vided by the DLM. The job-stream and DLM data structures correspondence is shown
in Fig. 1.5. Some data structures affect the whole job-stream (analysis, meta, config,
computing), while others configure a particular job (type 2 data structures).

Some jobs contain tasks, which can be thought of as sub-jobs. For each task in



Chapter 1. Developing the Software: Delensalot 32

Figure 1.5: The DLM data structures and connection to the job-stream.

a job, all simulations are collected that need execution, which is decided based on
the configuration and existing files in the analysis folder. Then, with the collected
execution list, these are executed in parallel using the message passing interface
(MPI).

1.5.1 Transformer

The configuration of an analysis in Delensalot can be represented in three distinct
models, as shown in Fig. 1.6. These models are used to manage and transform data
in stages, making the system flexible and efficient. Let’s break down each model
and its role:

1. Outward-facing DLM: This is the most basic model, containing simple data
structures. It provides an initial high-level view of the configuration and is
easy to manipulate by users.

2. Core Model: This is an internal, validated representation of the DLM. It holds
all the necessary parameters and lower-level instructions that the core func-
tions of Delensalot can process.

3. Job Model: The final representation is the job model, which is derived from
the core model. It contains all the detailed instructions and parameters needed
for executing specific jobs within Delensalot.

The system works by mapping the parameters from the DLM to the core model
and then transforming them into the job model, ensuring that all instructions are
correctly passed along at each stage.
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Figure 1.6: The different model representations and their correspondence.

To transition between these different models, Delensalot uses a model trans-
former. A transformer, denoted as T , converts one model M into another model M ′

based on specific instructions I.

M ′ = T (M, I) . (1.1)

In some cases, these instructions might simply be another model or an identifier.
This transformation process allows the system to convert high-level user input into
the appropriate format for execution.

This approach is implemented in Delensalot to handle transformations between
the DLM, core model, and job model. Below is an example of how to transform a
core model into a job model using the function l2d_T() and an identifier, Job_id,
which is part of a set of defined jobs:

1 job_model = transform3d(configuration_model , job_id , l2d_T ())

Here, the job model is created as a fully defined model, containing all the neces-
sary instructions for execution. This model can then be passed directly to the job
class for running the task.

Working with transformers offers several advantages,

1. Code Simplification: Wherever a model is needed, it can be generated on the
fly using a transformer and a base model. For example, generating a job model
is straightforward when starting with the core model.

2. Hidden Parameters: Parameters for different models are encapsulated within
the transformation instructions, ensuring proper initialization. This also re-
duces the clutter in the code by moving parameter handling outside of the
main structure.

Beyond handling the core, DLM, and job models, transformers in Delensalot
serve various purposes. They can be used to generate models for filters: you can
transform a job model into specific MAP filters by using particular instructions. An
example for creating MAP filters is shown in the following snippet.

1 MAP_filters = transform(job_model , MAP_transformer ())
2 MAP_filter = transform(job_model , MAP_filters ())

Transformers are also used to generate iterators: different iterators can be gen-
erated for the MAP reconstruction. For instance, you can create an iterator model
from a job model, where the instructions depend on the DLM and the simulation
index, as shown in the following snippet.

1 iterator_model = transform(job_model , it_T(job_model , 0, Dlm))
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One final use-case worth mentioning is the ease of validation. Since the instruc-
tions used in transformations generally remain unchanged, the output model (M ′)
can be easily validated against expectations. If M ′ does not match the expected
output, then the input model M is likely faulty, allowing for efficient debugging.

1.6 Usage, Documentation and Tutorials

Using this new interface, the workflow goes as follows:

1. Define a DLM (Delensalot can receive this as a standalone configuration file).
Choose the jobs you would like to execute.

2. Call the Delensalot runner with the configuration file. The configuration file
will be validated, and the job-stream will be set up.

3. Run the analysis. The job-stream gets executed.

4. Upon finishing the job-stream, Delensalot terminates.

5. The Delensalot analysis-collector can now be called to return the analysis
results.

A code snippet of this workflow is shown in Sec. 1.1. Concrete examples can be
found on our GitHub page3. We provide various tutorials for,

• running quadratic estimator and iterative lensing reconstruction on the full
and masked sky.

• delensing B-modes.

• mitigating the impact of the meanfield and internal lensing bias.

• forecasting residual lensing amplitudes.

• . . . and many more!

Additionally, a documentation can be found at https://delensalot.readthedocs.
io/en/latest/.

1.7 Testing and Validation

Within frameworks like Delensalot, robust testing and validation mechanisms are
important to ensure the reliability and accuracy of an ever-changing and evolving
software. As the code base exceeds thousand of lines of code, a structured approach
for tracking code changes and providing means to validate changes are crucial.

Delensalot employs continuous integration (CI) to automate the testing and
validation process, streamlining development and ensuring that the integration of

3https://github.com/NextGenCMB/delensalot/tree/main/first_steps

https://delensalot.readthedocs.io/en/latest/
https://delensalot.readthedocs.io/en/latest/
https://github.com/NextGenCMB/delensalot/tree/main/first_steps
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new features meets quality standards and does not degrade existing features. We
utilize GitHub’s CI feature to provide rapid feedback to defects introduced in the
code base.

We use CI to validate various components of Delensalot. This includes the
validation of the job models, and verifies that the correct computational tasks are
performed for the specified configuration files. This step verifies that all components
of the job model are correctly instantiated. Among other, it validates that the filter
models within the reconstruction jobs.

We additionally use CI to run a full job-stream, and for various estimators.
This goes beyond testing individual components and verifies that the job-stream
operates as expected. This full job-stream starts with the generation of simulation
data, and eventually performs delensing, hereby not only testing the result against
the expected outcome, but also provides means to check its performance.

Delensalot is shipped with a suite of pre-configured tests that cover a wide
range of scenarios and edge cases. With these tests, users can check the performance
individually, if desired. This is in particular helpful for users and developers who
are modifying the code.

The complete list of tests can be found on the GitHub �4 page.

1.8 Outlook

Building the DLM, introducing the minimal worker units "jobs" of Delensalot, and
structuring the execution of Delensalot via a job-stream introduced new means
for testing and validation, and simplified the every day’s task of generating B-
lensing templates for CMB-S4 and PICO’s analysis pipeline on simulations. It even
provides automated ways for delensing, analysing lensing potential power spectra,
and accessing the results.

The DLM is far from optimal and has many sharp edges that need honing. Also,
the workflows are not as intuitive as one might wish for, thus still requiring an expert
providing necessary information for support.

Another limitation is that I do not currently provide means to build a custom job-
stream. To achieve this, in the end, one currently has to return to parameter files.5
Tailored job-streams for the study of, for example, the mean-field, the likelihood
itself, or the correlation to external tracers would likely be interesting to have.
However, the DLM is developed with the simplification of supporting r-analysis,
putting this effort somewhat out of scope. Nonetheless, a future development of
Delensalot can include this, if needed.

The question arises what are the most sensitive minimal worker units that provide
enough flexibility. Instead of "MAP reconstruction", it might be better to have
the underlying functions such as calculating the Wiener-filter and gradient of the

4https://github.com/NextGenCMB/delensalot/tree/main/tests
5In fact, a change in the pipeline can be achieved by building a new job and adding it to

the job-stream in the corresponding place, but requires knowledge of the underlying architecture
of Delensalot. This could, for example, be an extra-galactic foreground cleaning step if this is
needed.

https://github.com/NextGenCMB/delensalot/tree/main/tests
https://github.com/NextGenCMB/delensalot/tree/main/tests
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likelihood to provide better flexibility. A job stream built with more fine-grained
jobs like this may be more advantageous and flexible.

This makes me wonder if iterative lensing reconstruction software, once more
mainstream, will be built around a single tool like Delensalot. More likely, the in-
dividual steps such as calculating the Wiener-filter, the deflection operation, the cal-
culation of the gradient, and the gradient stepper will be standalone tools. The final
application of the actual iterative lensing reconstruction might as well just be a sim-
ple likelihood maximiser with the above mentioned building blocks maintained and
optimized as standalone packages, similar to modern software development where
each and every part is a standalone service. This will highly increase robustness,
maintainability, and flexibility.



2

Accelerating Spherical Harmonic Transforms

2.1 Motivation

One aspect of the Bayesian method for lensing reconstruction is the introduction
of the deflection operator, Dα. The deflection operator maps the unlensed field X
to the lensed one, X̃ = DαX. On the curved sky, this operation includes a non-
uniform SHT. Numerical evaluation is necessarily performed on a grid, and there
is some freedom in how to choose the grid for SHT, with some reducing computa-
tional complexity of the problem. But, either the undeflected, or deflected field will
have to be evaluated at positions that are off-grid, and of course, non-uniform. This
means, that the deflection operators task actually involves the more complicated job
of calculating a SHT on a non-uniform grid, and no fast algorithm exists for this.1
Furthermore, our Bayesian approach requires many such transforms: O(102) simula-
tions for sensible error estimation, O(101) MAP iterations per simulation for finding
the MAP point, and O(102) conjugate-gradient solver iterations per MAP iteration
to find the Wiener-filtered map that matches the accuracy threshold. The Wiener-
filtered field is, schematically XWF = C

C−1+N−1
α
X, where C is the power spectrum

"signal", and N−1
α is the partially delensed noise covariance matrix. Concretely for

the E-mode,

N−1
α = 2Y†D†

αB†N−1BDα 2Y , (2.1)

where 2Y is a short-hand notation for a spin-2 spherical harmonic transform, B is
the transfer function, and N−1 is the noise covariance matrix. Thus, N−1

α contains a
forward and backward non-uniform SHT. This is repeated for each quadratic combi-
nation of the CMB fields, each change in the mask, or the noise model, to name a few.
All combined, this often accumulates to about O(106) non-uniform SHT. With SHTs
often being the bottleneck of the computation, it is thus quite natural to search for
efficient ways of calculating the deflection operator. In addition, a higher accuracy
than what we could provide with the previous approach is also desired in some cases.

1In fact, some faster algorithms are current active research, but none have proven feasible so
far due to their parameter limitations or memory usage, among others.

37
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This chapter discusses two paper that aim to efficiently and accurately solve the
deflection operator using a much better suited interpolation scheme between the
ring-ordered grids: non-uniform fast Fourier transforms.

The first paper here presents lenspyx 2.0, a paper in collaboration with Martin
Reinecke and Julien Carron, that tremendously improves the previous CPU algo-
rithm of Delensalot. While Julien and Martin implemented the CPU routines in
their respective packages DUCC and lenspyx 2.0, I tested the implementations, and
ran benchmarks. We decided to compare the new approach not only to our previous
solution, but also to many other existing, yet sometimes outdated implementations
of the deflection operation. These implementations sometimes had outdated package
dependencies and compiler requirements, compliacting installation. I contributed to
the paper by writing the "benchmark" section, and integrating lenspyx 2.0 into
Delensalot, where it is now extensively used.

The second paper presents cunuSHT, a paper in collaboration with Nathanael
Schaeffer, Martin Reinecke, Julien Carron, and Adriaan Duivenvoorden, that studies
the feasibility of the deflection operator on GPUs.

The opportunity to work abroad during my PhD led to Julien proposing the idea
of porting our lenspyx 2.0 code to GPU, supported by a pre-doctoral program at
the Simons Foundation. This initiative allowed me to relocate to New York for five
months to lead the project, despite my initial lack of GPU programming experience.

My role involved reimplementing lenspyx 2.0 on the GPU, a task demanding
optimal programming and minimizing data transfers between host and device to
compete with established CPU algorithms. The GPU implementation was devel-
oped using the structural framework from Martin’s and Julien’s CPU work, along
with Nathanael’s SHT implementation from SHTns2, to ensure high performance.
My experience with lenspyx 2.0 provided a strong foundation, enabling a fast
development and benchmarking of the new solution.

Motivated by the encouraging results, I aimed to include this work in my thesis
and publish it as a standalone paper.

2.2 lenspyx 2.0

This section contains the lenspyx paper as published on Astronomy and Astro-
physics.

2https://nschaeff.bitbucket.io/shtns/

https://nschaeff.bitbucket.io/shtns/
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ABSTRACT

Deep cosmic microwave background polarization experiments allow a very precise internal reconstruction of the gravitational lensing
signal in pinciple. For this aim, likelihood-based or Bayesian methods are typically necessary, where very large numbers of lensing
and delensing remappings on the sphere are sometimes required before satisfactory convergence. We discuss here an optimized
piece of numerical code in some detail that is able to efficiently perform both the lensing operation and its adjoint (closely related
to delensing) to arbitrary accuracy, using nonuniform fast Fourier transform technology. Where applicable, we find that the code
outperforms current widespread software by a very wide margin. It is able to produce high-resolution maps that are accurate enough
for next-generation cosmic microwave background experiments on the timescale of seconds on a modern laptop. The adjoint operation
performs similarly well and removes the need for the computation of inverse deflection fields. This publicly available code enables de
facto efficient spherical harmonic transforms on completely arbitrary grids, and it might be applied in other areas as well.
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1. Introduction

Weak gravitational lensing by large-scale structure affects radi-
ation from the cosmic microwave background (CMB) in subtle
but important ways (Lewis & Challinor 2006) by distorting and
smoothing the primordial near isotropic two-point statistics and
introducing a large trispectrum that can now easily be detected
with very high significance (Aghanim et al. 2020; Carron et al.
2022; Qu et al. 2023). Extraction of the signal is now an impor-
tant piece of the science case of many CMB experiments (Abaza-
jian et al. 2016; Challinor et al. 2018; Ade et al. 2019) because
the lensing potential power spectrum, which probes the forma-
tion of structure at high redshift, is thought to be a particularly
clean probe of the neutrino mass scale (Lesgourgues & Pastor
2006; Hall & Challinor 2012; Allison et al. 2015). Another rea-
son is that removal of the lensing signal (delensing) from the
CMB polarization B-mode (Zaldarriaga & Seljak 1998; Knox &
Song 2002; Kesden et al. 2002) is now compulsory in order to
place the best constraints on a primordial background of grav-
itational waves from inflation (Ade et al. 2021; Tristram et al.
2022).

It has long been known that deep high-resolution observa-
tions of the CMB polarization in principle allow an extremely
good internal reconstruction of the lensing signal (Hirata & Sel-
jak 2003b). Recent years have seen works trying to achieve this
goal of capturing a signal-to-noise ratio that is as high as possible
in realistic experimental configurations (Carron & Lewis 2017;
Millea et al. 2019, 2021; Millea & Seljak 2022; Legrand & Car-
ron 2022, 2023; Aurlien et al. 2022), and some attempts were
made on data as well (Adachi et al. 2020; Millea et al. 2021).
These methods have in common that they use a likelihood model
of the lensing signal, which allowed them to outperform the now
standard quadratic estimators (Hu & Okamoto 2002; Okamoto &

Hu 2003; Maniyar et al. 2021), which are limited by the amount
of lensing B-mode power in the data.

These likelihood-based methods form the main motivation
for this work. They are typically much more expensive than cur-
rent quadratic estimator analysis: Properly modeling the subtle,
∼ 2 arcmin remapping effect of gravitational lensing or delens-
ing on CMB maps requires working at high resolution, and these
operations must be performed many times before convergence.
Numerically speaking, harmonic transforms of data distributed
on the sphere are significantly costlier than in flat space. Only a
handful of works were so far able to run such optimized recon-
structions on large sky fractions and take the sky curvature into
account (Aurlien et al. 2022; Legrand & Carron 2022, 2023).

In order to be slightly more concrete, we consider for exam-
ple the problem of recovering the unlensed CMB from data and
an estimate of the lensing deflection. The unlensed CMB like-
lihood conditioned on the lensing map is Gaussian, but with a
covariance that is anisotropic owing to the deflection. If no fur-
ther approximation is made, recovery of the delensed CMB will
involve the inverse covariance (Wiener-filtering), which today
can only be performed with iterative methods such as a con-
jugate gradient, and needs approximately ten iterations to con-
verge. Each iteration requires two remapping operations (one
forward operation, and the second operation is the adjoint oper-
ation). The construction of optimal lensing mass maps internally
from the CMB proceeds by iteratively applying these delensing
steps and measuring residual lensing (Hirata & Seljak 2003a,b),
and at best, it requires about approximately ten delensing itera-
tions. Hence (again, in the absence of approximations), it seems
difficult to reconstruct a single best-lensing mass map with fewer
than approximately 200 remapping operations. Sampling meth-
ods (Millea et al. 2019, 2021) are in principle orders of magni-
tude costlier still.
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Fig. 1. Lensing geometry and notation near the north pole. The sky
curvature is suppressed for clarity. The deflection vector α(n̂) lies in
the plane tangent to the observed coordinate n̂ at latitude θ and longi-
tude φ, and points toward the unlensed coordinate n̂′, lying a distance
α = |α(n̂)| away along the great circle generated by α. The lensing
remapping for parallel-transported spin-weighted fields like the dashed
green vector or ellipse receives a phase correction eis(β−β′) from the ro-
tation of the local θ and φ basis axes.

For these reasons, we have developed an optimized piece
of code that is able to perform the deflection operation and its
adjoint (the operations are properly defined below) efficiently.
While several pieces of software are publicly available to per-
form the forward-deflection operation, we find that our imple-
mentation outperforms them by far, and the adjoint operation
(equally as important for likelihood-based methods) appears to
be new.

2. Lensing and delensing the cosmic microwave
background

To a very good approximation that is valid for next-generation
CMB experiments such as CMB-S41 (Abazajian et al. 2016), the
effect of gravitational lensing is that of a remapping of points on
the sphere. The observed CMB intensity signal at position n̂′ is
related to that of an unlensed position by the relation

T len(n̂) = T unl(n̂′), (1)

where n̂′ is located at a distance α from n̂ along the great circle
generated by the deflection field α. Fig. 1 shows the geometry
and our notation. In polarization, and more generally, for any
spin-weighted field sT , there is an additional phase factor that is
sourced by the change in the local basis between the deflected
and undeflected position (hence mostly relevant only near the
poles) (Challinor & Chon 2002). This may be written

sT len(n̂) = eisχ(n̂)
sT unl(n̂′), (2)

where χ = β − β′ on Fig. 1. We are primarily interested in
efficient implementations of both the deflection operator, Dα,
which from a band-limited set of harmonic modes results in the
lensed map on some arbitrary locations, or pixels, n̂i, and of its

1 www.cmb-s4.org

adjointD†α. The forward operation can be written explicitly (for
spin-0 fields) as

[
DαT unl

]
i
≡
ℓmax∑

ℓ=0

ℓ∑

m=−ℓ
T unl
ℓm Yℓm(n̂′i) (spin-0) (3)

and is thus closely related to the problem of finding an efficient
forward spherical harmonic transform to an irregular grid. The
adjoint takes a map as input, together with a set of deflected coor-
dinates, to produce harmonic coefficients as follows (again, here
for a spin-0 field):
[
D†αT len

]
ℓm
≡

∑

i

T len(n̂i) Y∗ℓm(n̂′i) (spin-0) (4)

for |m| ≤ ℓ ≤ ℓmax. In the most general situation, the points
n̂i and n̂′i are completely arbitrary, such that the code presented
here forms in fact a spherical harmonic transform (SHT) pair
that works on any pixelization of the sphere.

In situations like those encountered in CMB lensing, the
points n̂i cover the sphere according to a reasonable sampling
scheme (e.g., a Healpix (Górski et al. 2005) or Gauss-Legendre
grid), and n̂′i are the deflected coordinates given by Fig. 1. When
quadrature weights are added to Eq. (4), the sum becomes an
approximation to an integral over the observed coordinate,

[
D†αT len

]
ℓm
∼

∫
d2n T len(n̂) Y∗ℓm(n̂′) (spin-0). (5)

This is different to the operation inverse to Eq. (3) (delensing),
as we discuss now.

If the remapping of the sphere is invertible (which is always
the case in the weak-lensing regime), we can perform a variable
transformation to the unlensed coordinate n̂′ and obtain

[
D†αT len

]
ℓm
∼

∫
d2n′

(
T len(n̂)
|A(n̂)|

)
Y∗ℓm(n̂′) (spin-0), (6)

where |A(n̂)| = |d2n′/d2n| is the Jacobian (magnification) deter-
minant of the lensing remapping.

Eq. (6) now has the form of a standard SHT of (T/|A|)(n̂),
where n̂ is matched to n̂′ as in Fig. 1 (hence, T len/A is first de-
lensed, and then mapped back to harmonic space). The choice
of an isolatitude grid for n̂′ provides one way to calculate this
integral quickly with a standard backward SHT (Aurlien et al.
(2022); Legrand & Carron (2022, 2023) ) implemented D† in
this way. However, significant overhead can remain with this
method because it requires calculating the inverse deflection an-
gles n̂(n̂′) on this grid. In a standard situation, the angles n̂′(n̂)
are easily obtained from a standard SHT of the deflection field
on an isolatitude grid sampling the observed coordinate n̂, which
does not provide n̂(n̂′) when the unlensed coordinate n̂′ itself is
sampled on such a grid. Moreover, usage of Eq. (6) requires the
additional calculation of the magnification determinant, which
has the cost of several forward SHTs (see Appendix B). The al-
gorithm presented here bypasses this additional work and drops
the requirement of an invertible deflection field.

For spin-weighted fields, the situation is almost identical.
The harmonic space coefficients are split into a gradient (Gℓm)
and a curl term (Cℓm), and the deflection operation is defined
through

s [Dα T ]i = −eisχ(n̂i)
ℓmax∑

ℓ=0

ℓ∑

m=−ℓ
(Gℓm + iCℓm) sYℓm(n̂′i) (7)
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for s > 0. The sign is not consistent with the spin-0 case to ac-
commodate for the most prevalent conventions in the commu-
nity. This creates a complex map of spin weight s, whose com-
plex conjugate can be referred to with the subscript −s.

The adjoint takes this complex map as input and calculates
the two sets of coefficients

±s

[
D†αT

]
ℓm
=

∑

i

e∓isχ(n̂i) ±sT (n̂i) ±sY∗ℓm(n̂′i), (8)

which are decomposed as usual into gradient and curl modes,

−1
2

(
s

[
D†αT

]
ℓm
+ (−1)s −s

[
D†αT

]
ℓm

)
(Gℓm)

− 1
2i

(
s

[
D†αT

]
ℓm
− (−1)s −s

[
D†αT

]
ℓm

)
(Cℓm). (9)

The phase χ is quite specific to CMB lensing applications and is
absent in the general-purpose interpolation routines. The relation
between the adjoint and inverse is unchanged from the case of
spin-0 fields.

3. Implementation

Of the many implementations of the forward operation that were
tested over the years, our approach is closest to that of Basak
et al. (2008). The fundamentals are quite straightforward: The
key point is that on the sphere parameterized by co-latitude θ
and longitude φ, a band-limited function can be exactly written
as a two-dimensional discrete Fourier series in θ and φ. While
any function on the sphere is naturally periodic in the longitude
coordinate, we must artificially extend the θ range to [0, 2π) to
obtain a doubly periodic function. We can then apply nonuni-
form fast Fourier transform (NUFFT) techniques (Barnett et al.
2019) to this function to perform the desired interpolation.

The main steps of the forward operations can be summarized
as follows:

synthesis Synthesis of the map from T unl
ℓm on a rectangular

equidistant grid with nθ ≥ ℓmax + 2 and nφ ≥ 2ℓmax + 2
points with a standard SHT, with one isolatitude ring on each
pole. Both dimensions are chosen in a way to make FFTs of
lengths nφ and 2nθ − 2 efficient; in addition, nφ must be an
even number to enable the subsequent doubling step. For a
standard CMB lensing application requiring ℓmax ∼ 5000,
this corresponds to a sampling resolution close to 2 arcmin.
The asymptotic complexity is O(ℓ3max).

doubling Doubling the θ-range from [0, π] to [0, 2π), by creating
a (2nθ−2, nφ) map, with the original map in the first half, and
mirrored image θ → 2π−θ and φ→ φ+π in the second half.
In the case of odd spin values, the mirrored image also takes
a minus sign.

FFT Going to Fourier space with the help of a standard for-
ward 2D FFT. These coefficients by construction contain all
information necessary to evaluate the map perfectly at any
location. The asymptotic complexity is O(ℓ2max log ℓmax).

NUFFT Finally, from these Fourier coefficients and the coordi-
nates n̂′, interpolation proper, performed with a uniform-to-
nonuniform (or type 2) NUFFT. The asymptotic complexity
is O(ℓ2max log ℓmax) +O(npoints), where npoints is the number of
points on the irregular grid.
This is the only step that incurs inaccuracies beyond those in-
troduced by the finite precision of floating-point arithmetic.
These inaccuracies are controlled by a user-specified param-
eter ϵ that was described in some detail in Arras et al. (2021).

The first three steps given here construct the 2D Fourier coef-
ficients of the doubled-sphere representation of the same map
from the spherical harmonic coefficients. Our approach to per-
forming this (synthesis-doubling-FFT) starts with an SHT (syn-
thesis). Consistent with the given asymptotic complexities, we
find that this typically dominates the execution time overall.
There are alternative approaches, however: By manipulating
Wigner small-d matrices, we can build a more explicit repre-
sentation of the relation between spherical and 2D Fourier har-
monics that can be implemented via a well-behaved three-term
recurrence formula without any Fourier transforms and with a
similarO(ℓ3max) theoretical complexity. This is how Huffenberger
& Wandelt (2010) implemented their SHTs, for example, and
how Basak et al. (2008) implemented their CMB remapping. In
place of a Legendre transform for each θ coordinate, a Legendre
transform is required only at the equator, but one spin-weighted
transform is required for each spin between 0 and ℓ max. In our
case, previous measurements (see, e.g., Section 2 of Galloway
et al. 2022) showed that it was difficult to bring this recursion to
speeds on CPUs that were comparable to the highly optimized
standard Legendre transforms derived from the libsharp li-
brary (Reinecke & Seljebotn 2013) we are using. While we can-
not exclude that there is some room for improvements provided
the recursion can be optimized in a similar fashion (or, possibly,
on GPUs), these are likely to be minor.

For the adjoint operation, the steps naturally go backwards
(the individual complexities stay unchanged):

NUFFT From the input map and deflected coordinates, we per-
form a nonuniform-to-uniform (or type 1) NUFFT, resulting
in the 2D FFT Fourier coefficients.

FFT We remap them to position space using a standard back-
ward FFT on the same doubled Fourier sphere of shape
(2nθ − 2, nφ) as for the forward operation.

undoubling The doubling of the Fourier sphere is undone by
adding its mirror image to (or, for odd spins, subtracting
from) the part [0, π] .

adjoint synthesis We perform a standard adjoint SHT on this
new map of shape (nθ, nφ). This gives us the desired spherical
harmonic coefficients.

Most of these steps are well established2 in the astrophysical
community or can be understood intuitively, with the possible
exception of the NUFFT, whose purpose and structure we there-
fore outline (for more theoretical and technical details, see Potts
et al. (2001); Greengard & Lee (2004); Barnett et al. (2019)).
When given the Fourier coefficients of an n-dimensional func-
tion, it is trivial to obtain the function values on a regular grid
in real space, in (almost) linear time. This is achieved using the
fast Fourier transform, potentially after zero-padding the Fourier
coefficients to increase the grid resolution. If the function values
are required at irregularly spaced positions, however, this is not
possible, and naive calculation of the Fourier series at each point
is typically prohibitively slow in practice. One mathematically
correct approach is to perform an FFT to a regular grid and then
convolve these points with a sinc kernel centered on the desired

2 Fast Fourier transforms are handled with code derived from
the pocketFFT library (https://gitlab.mpcdf.mpg.de/
mtr/pocketfft), which in turn is a descendant of FFTPACK
(https://netlib.org/fftpack/), which was heavily modified for
an improved accuracy and performance.
The standard ring-based spherical harmonic transforms are de-
rived from the libsharp (Reinecke & Seljebotn 2013) library
(https://gitlab.mpcdf.mpg.de/mtr/libsharp).
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locations (sinc-interpolation). This is just as prohibitive, but ap-
proximate solutions can be found by choosing an alternative and
more suitable convolution kernel. In particular, a kernel with
compact support will be chosen (in our case, it takes the form
of eq. (29) of Arras et al. 2021), and we divide the Fourier coef-
ficients of the function by the Fourier coefficients of the kernel.
This is the deconvolution step, and is followed by zero-padding
the Fourier coefficients which increases the size of each dimen-
sion by a factor of roughly 1.2 to 2, and perform an FFT of the
resulting array. At last comes the convolution step: for each ir-
regularly spaced point, we perform a sum over its neighborhood
and weight it by the kernel function.

Depending on the chosen kernel shape, zero-padding factor,
and kernel support, it is possible to achieve accuracies close to
machine precision; tuning the algorithm for higher tolerances is
also possible and will improve the run time considerably. Good
kernels compromise between the conflicting properties of being
fast to evaluate and having small support and a quickly decaying
Fourier transform. We used the variations of the kernel proposed
in Barnett et al. (2019), as discussed in Arras et al. (2021).

Because all steps mentioned above are linear operations, the
adjoint of the described NUFFT is obtained by executing the ad-
joint steps in reverse order, which is the nonuniform-to-uniform,
or type 1, NUFFT.

Finally, for CMB-lensing applications, the unlensed angles
n̂′ can easily be gained from the representation

n̂′ = cosα n̂ +
sinα
α

(
αθeθ + αφeφ

)
, (10)

where at each point, the deflection vector is obtained from the
spin-1 transform of the gradient (ϕ) and curl (Ω, if present) lens-
ing potentials,

αθ(n̂) + iαφ(n̂)

= −
∑

LM

√
L(L + 1) (ϕLM + iΩLM) 1YLM(n̂). (11)

Here, we follow the convention of using capital letters LM to re-
fer to the spherical harmonic coefficients of the lensing potential.

4. Benchmark

This section discusses the computational cost, the scaling with
threading, and memory usage of the forward and adjoint opera-
tion, and it compares our work to a few publicly available imple-
mentations of the forward operation, such as LensPix3 (Lewis
2005), lenspyx4 (Aghanim et al. 2020), pixell5 (Naess et al.
2021), and Flints6 (Lavaux & Wandelt 2010).

A typical task in the CMB lensing context is to compute
lensed CMB spherical harmonic coefficients (alen

ℓm) starting from
unlensed ones (aunl

ℓm ). This can be achieved by first performing
a forward remapping onto a suitable pixelization of the sphere,
and computing the spherical harmonics coefficients by a stan-
dard backward SHT. The adjoint of this entire operation is first
built out of a forward SHT, followed by the adjoint remap-
ping. Key parameters impacting the execution time are the band
limit ℓunl

max of aunl
ℓm and the requested maximum multipole ℓlen

max of
the lensed CMB. In the applications that motivated this work,
ℓlen

max is at most the multipole above which the information on

3 https://cosmologist.info/lenspix
4 https://github.com/carronj/lenspyx
5 https://pixell.readthedocs.io
6 https://bitbucket.org/glavaux/flints
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Fig. 2. Execution time of different transforms as a function of number
of threads used for the calculation. Upper panel: Scaling of a single
forward-lensing execution time, producing lensed spherical harmonic
coefficients from their unlensed counterparts. The solid blue line shows
the total time of producing alen

ℓm from aunl
ℓm in the polarized spin-2 case,

and the solid orange, green, and red curves show the synthesis, inter-
polation proper and final backward SHT contributions. The black line
shows a perfect scaling with the inverse thread number for comparison
and the scaling of each and every operation is almost perfect. Dashed
lines show the spin-0 results, for which harmonic transforms are sub-
stantially faster. The forward-lensing operation is built out of remapping
on a pixelized sphere (orange and green, the latter being the remapping
step, properly speaking), and sending it back to harmonic space with a
standard spin-2 spherical harmonic transform (red). See the text for the
precise specifications. These curves do not include the cost of calcu-
lating the deflected angles from the deflection field spherical harmonic
coefficients, which is comparable to that of a spin-1 forward spherical
harmonic transform. Lower panel: Corresponding results for the adjoint
operation (note that while the adjoint operation is closely related to de-
lensing, this is not the operation inverse to forward lensing; see text).
The dashed lines show the corresponding results for the spin-0 case.

the lensing signal becomes negligible. For example, Planck re-
constructions (Aghanim et al. 2020; Carron et al. 2022) used
ℓlen

max = 2048, and the recent ACT results (Madhavacheril et al.
2023) ℓlen

max = 3000. For a very deep future polarization experi-
ment such as the CMB-S4 deep survey (Abazajian et al. 2016),
this is closer to ℓlen

max = 4096, a number we use often as reference
in this section. Then ℓunl

max must typically be taken slightly higher
than ℓlen

max in order to account for the mode mixing by lensing.
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When lensed spherical harmonic coefficients are built in this
way, another important parameter is the intermediate grid pix-
elization. Because the lensed CMB is not band limited, there is
no exact quadrature rule, and this choice can strongly impact
the accuracy of the recovered alen

ℓm at high multipoles. We show
in Fig. 2 the execution time of these tasks for the forward (up-
per panel) and adjoint (lower panel) cases as a function of the
number of threads (strong scaling). We picked ℓunl

max = 5120,
ℓlen

max = 4096, and a longitude-thinned Gauss-Legendre grid with
6144 rings as intermediate grid (∼ 5 · 107 pixels). This is a con-
servative configuration that in our experience allows a robust
and accurate lensing reconstruction for very deep stage IV CMB
observations. This was performed on a CSCS Piz Daint XC50
compute node7, with 12 physical cores. Results on more recent
processors can sometimes be up to twice as fast in our experi-
ence. The top panel shows the result for the synthesis operation,
while the lower panels shows the adjoint of it, and we see that
each operation scales almost perfectly. We have excluded the
cost of building the undeflected angles from the timing, which
we briefly discuss below, as is suitable in the context of optimal
lensing reconstruction, where many maps are deflected with the
same set of angles. The accuracy of the interpolation was set to
10−5, which value is good enough for most purposes, as also dis-
cussed in more detail below. The interpolation is very efficient.
Only a minor part of the total time is dominated by the pair of
SHTs that is involved.

We now discuss the accuracy and memory usage of our im-
plementation. Our code uses simple heuristics to allow the user
to choose a target-relative accuracy, ϵtarget, of at least 10−13. For
the forward operation, schematically aunl

lm → m̃, we calculated
a map-level effective relative accuracy, ϵeff, as follows: We took
the difference between the true and estimated lensed maps, m̃true,
m̃est, respectively, and normalized by the total power of the true
lensed maps,

ϵeff =
1

Ptrue

√∑

i

(
m̃true

i − m̃est
i

)2
. (12)

Here, Ptrue =

√∑
i (mtrue

i )2, and the sum index i run over pixels
as well as the map components for nonzero spin (Q and U in
polarization). The maps m̃true were determined by a brute-force
approach: We remapped the unlensed map to the desired grid by
calculating eq. (3) explicitly. As this can be fairly expensive, we
calculated 105 exactly lensed pixels at most for a few numbers
of isolatitude rings close to the equator.

The right panel in Figure 3 shows the computational cost of
the lensing routine for spin-2 fields at ℓunl

max = 4096, using four
CPUs, mapping onto a Healpix pixelization with Nside = 2048,
as a function of ϵeff (bottom axis) and ϵtarget (top axis). The effec-
tive accuracy is typically slightly higher than requested, except
in the vicinity of 10−13. This is not a problem of the NUFFT
interpolation, however, but rather of the true SHT calculations
themselves, which lose several digits in accuracy at this band
limit. The diagram shows the split of the total computational cost
into its most relevant steps described earlier. The SHT steps for
the angle and doubled Fourier sphere always dominate the cost in
this configuration, and the choice of accuracy has a fairly minor
impact. If relevant, the SHTs can be performed with a gradient-
only setting for nonzero spin fields (an implementation specific
to the case of a vanishing curl component), further reducing the
computational cost of these tasks by about 25%. The scale of the

7 https://www.cscs.ch/computers/piz-daint/
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Fig. 3. Full-sky forward operation execution times for spin-2 fields
of our implementation compared with lenspyx, which uses a popular
bicubic spline interpolation technique. The top panels show lenspyx
(left) and the new implementation (right) as a function of the effective
relative accuracy for ℓmax = 4096, producing lensed CMB maps in a
Healpix geometry with Nside = 2048. The effective accuracy is calcu-
lated for a few isolatitude rings close to the equator. All calculations
were made with four CPUs. We indicate the execution time (shaded ar-
eas, left y-axes), peak memory usage (green data points, right y-axis),
and the accuracy parameters (target resolution, target accuracy) at the
top x-axes. For lenspyx, we divided the full sky map into two bands to
reduce the memory consumption. The differently colored areas show the
main steps of the operation. The execution time and memory consump-
tion both grows rapidly for lenspyx because it requires high-resolution
grids for an accurate interpolation.

peak memory usage is indicated on the right y-axis of the right
panel, and is shown as connected green square data points. The
timings, memory, and accuracy calculations were made for a set
of five analyses, and their standard deviation is negligible.

The left panel shows the corresponding results for a code
using a popular interpolation scheme, lenspyx. This code (just
as LensPix and pixell) uses bicubic spline interpolation on a
intermediate grid obtained by cylindrical projection. The resolu-
tion of this grid then essentially sets the accuracy of the result
and memory usage. While these interpolation schemes are per-
fectly fine for the purpose of producing a set of lensed CMB
maps, they have strong limitations for more intensive tasks, or
when higher accuracies are imperative. For low target resolu-
tions of about 1.4 arcmin, the new implementation speeds up the
execution time approximately 7 times for a similarly effective
accuracy of about ϵeff ≈ 10−2. This increases to a speed-up of
30 times for an effective accuracy of 10−5. Higher accuracies are
almost not manageable for lenspyx in both time and memory,
whereas the new implementation can easily reach accuracies as
low as 10−12.

Figure 4 shows the execution time and peak memory usage
of the new implementation for various Nside and ℓunl

max configura-
tions and a target accuracy of ϵtarget = 10−13. The memory us-
age for the most challenging benchmarks is still below 64 GB,
and we would like to note that the memory consumption is only
slightly larger than the memory needed for the three maps (the
deflection angles) for the respective Nside.
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Fig. 4. Benchmark of the execution time and peak memory con-
sumption for a wide range of Healpix resolution Nside and ℓmax, for
a target accuracy of 10−13, and for our new implementation. The cell
highlighted in magenta is the configuration we used for the accuracy
benchmark in Fig. 3. The execution time ranges from 0.55 seconds
(Nside = 512, ℓmax = 1024) to 336 seconds (Nside = 8192, ℓmax = 12288),
while the memory consumption increases from 0.4 GB to 51 GB. The
memory consumption closely follows the memory needed to store the
Healpix maps of that particular size.

We now compare our results to other implementations that
benchmark the spin-0 forward operation. The effective accu-
racy was calculated as in the above case, replacing the data by
the spin-0 true and estimated temperature maps. For LensPix
and Flints, we estimated the costs by using the natively C-
implemented lensing routine, and with OpenMP support and four
CPUs. We measured the tasks directly related to lensing, such as
the calculation of deflection angles, the deflection, the interpo-
lation, and rotation. To farily compare all implementations, we
did not cache any calculations in Flints, even though they are
available. For pixell, we used the full-sky lensing routine im-
plemented in Python, and measured the costs within Python.

Almost all implementations provide an accuracy parameter
in form of the intermediate grid pixel resolution. We chose them
to provide approximately comparable results.

For Flints, LensPix, and lenspyx, we generated input
CMB and lensing potential realizations and the true and esti-
mated lensed maps on a Healpix grid. For pixell, the full-sky
lensing routine was evaluated onto a CAR geometry, and we cal-
culated the effective accuracy using our own CAR geometry to
calculate the true lensed map.

We used ℓunl
max = 4096 and an HPC machine with four CPUs

and 60 GB of memory. To reduce memory usage, the data for
LensPix were split into sets and were calculated individually.

Table 1 summarizes the computational costs and memory
usage for the pixel resolution and effective accuracy. LensPix
and Flints are well-established algorithms and perform the
task in reasonable time and for very reasonable memory usage.
LensPix allows us to control the intermediate grid pixel reso-
lution, whereas with Flints, this can be indirectly controlled
by the choice of Nside. If needed, Flints execution time could
be reduced by caching some of the calculations, making them
available for repeated runs. pixell supports splitting of the full
sky data into bands, which can be used to reduce the memory us-
age, if needed. The algorithm in this paper, shown in the bottom
row, is vastly more efficient both in execution time and memory
consumption, even more so in the high-accuracy regime.

Finally, we comment more specifically on the relevance of
this code for a maximum a posteriori lensing reconstruction (Hi-
rata & Seljak 2003b; Carron & Lewis 2017). In these methods,
the reconstruction proceeds by finding an approximate solution
to the Wiener-filtered delensed CMB using a conjugate gradi-

ent solver at each iteration that involves applying the forward
and adjoint operation. As mentioned earlier, this typically in-
volves several hundred such operations. The benefits for a recon-
struction strategy like this are twofold. Faster operations directly
speed up the lensing reconstruction, and accurate operations can
prevent the conjugate gradient solver from building up errors or
showing instability.

We saw this explicitly by testing the full-sky lens-
ing reconstruction with CMB-S4-like settings ((ℓunl

max, ℓ
len
max) =

(4500, 4000), a polarization noise level of
√

2 arcmin, and 4
CPUs), reconstructing the lensing potential using polarization-
only maps, using both lenspyx, and the new implementation
for the forward and adjoint operations. With lenspyx, we ob-
served that a target resolution of about 1.0 arcmin is beneficial
for a stable reconstruction of the very largest modes of the lens-
ing potential in experimental configurations like these, result-
ing in execution times for a single adjoint operation of about
3 minutes. This is significantly longer than for the new imple-
mentation, for which we find execution times of only 8 sec-
onds for better accuracy. Analogously, we find for the execution
time of a typical full-iteration step of a lensing reconstruction
∼ 25 minutes, or ∼ 4 minutes, respectively, and the speed-up is
even larger for lower ℓmax analyses (∼ 24 minutes vs. ∼ 2 for
((ℓunl

max, ℓ
len
max) = (3200, 3000)). It is worth mentioning that with

lenspyx at this resolution, outliers can occasionally occur. They
can take more than one hour or do not converge at all. This is di-
rectly due to the lower accuracy, in particular very close to the
poles, where the bicubic spline method is less accurate. This has
not been observed with the new implementation, whose error
map is uniform across the entire sphere. We observed something
similar for temperature-only reconstruction, where an effective
relative accuracy of 10−7 generally appears to be required for a
successful convergence of the lensing-map search on the very
largest scales. This accuracy is accessible only with the imple-
mentation discussed here.

5. Conclusion

We have described an optimized implementation of the spheri-
cal transform pair of an arbitrary spin-weight that can be used
on any pixelization of the sphere, such as regular grids distorted
by CMB lensing. A C++ implementation and comprehensive
Python front-end is available, together with the low-level algo-
rithms (FFT, NUFFT, and SHT), under the terms of the GNU
General Public License and named DUCC8. The code is written
with the goal of portability and does not depend on external li-
braries. It supports multithreading via the C++ standard thread-
ing functionality and will make use of CPU vector instructions
on x86 and ARM hardware, if the compiler supports the respective
language extensions. The Python interface is kept deliberately
general and flexible to allow use in the widest possible range of
scientific applications. As a consequence, parts of the interface
are somewhat complex and are perhaps best used by higher-level
more application-specific packages to hide unnecessary details
from the end user.

For users interested in applications specific to CMB lensing,
the lenspyx9 Python package has been updated in this spirit to
include these developments and provide additional wrappers to
these routines. This results in an improvent of some orders of
magnitude in execution time and accuracy over currently pub-
licly available tools.

8 https://gitlab.mpcdf.mpg.de/mtr/ducc
9 https://github.com/carronj/lenspyx
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Table 1. spin-0, ℓmax = 4096, and Nside = 2048 (if applicable) forward-operation execution time and memory consumption for different imple-
mentations on the full sky, using 4 CPUs. Additionally, we split the full sky map for pixell and lenspyx into two bands to reduce memory
consumption.

implementation grid resolution effective accuracy computation time memory peak usage
pixell 1.0 arcmin 6 · 10−3 3 min 30 sec 20 GB
LensPix 0.85 arcmin 3 · 10−4 9 min 30 sec 3.4 GB
Flints N.A. 3 · 10−3 4 min 6.5 GB
lenspyx 0.70 arcmin 1 · 10−4 2 min 8 GB

0.35 arcmin 1 · 10−5 5 min 22 GB
This work N.A. 2 · 10−6 9 sec 2.8 GB

N.A. 4 · 10−12 10 sec 2.8 GB
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Appendix A: Map analysis with a minimal number
of rings

In the text above, we regularly use equiangular spherical grids
with ℓmax + 2 rings (first and last ring located at the poles) to
represent functions with a band limit of ℓmax (inclusive). This
number of rings may sound insufficient to fully represent a func-
tion with the given band limit because the minimum number of
rings required for an accurate map analysis via a quadrature rule
on this layout is 2ℓmax + 2 (Clenshaw-Curtis quadrature).

However, we can again make use of the double Fourier
sphere technique that was introduced in Sect. 3, that is, we can
follow a meridian from the north pole to the south pole, and then
back again on the opposite side. A full meridian like this has
2ℓmax + 2 points in total. Because we assumed the function on
the sphere to be band limited, the θ-dependent function along
each of these full meridians is the sum of associated Legendre
polynomials of degrees up to ℓmax in cos(θ). In other words, it
can be expressed as a Fourier series

∑ℓmax
k=0 Ak cos(kθ). This func-

tion in turn is completely determined by 2ℓmax + 1 equidistant
samples in the range θ = [0; 2π), that is, one less than we actu-
ally have. The same is true in azimuthal direction, where we also
have at least 2ℓmax + 2 pixels on each ring.

As a consequence, the actual function value at any θ and φ
can be obtained using a combination of fast Fourier transforms
and phase-shifting factors, or (in an approximate fashion) via
NUFFT. One way of extracting the spherical harmonic coeffi-
cients from this map would therefore be by first computing the
function values at a shifted set of isolatitude rings located ex-
actly between the existing ones, increasing the number of rings
to 2ℓmax + 3. This is then followed by applying the appropriate
Clenshaw-Curtis quadrature weights to the full set of rings. Fi-
nally, running an adjoint spherical harmonic synthesis operation
on the full set of weighted rings gives the desired result.

It is even possible to shift the newly generated rings back to
the original positions after weighting, which again reduces the
number of rings in the adjoint synthesis operation to ℓmax + 2.
This speeds up the SHT considerably.

Appendix B: Adjoint and inverse lensing

In the most general situation, invertibility of the deflection field
is not necessarily always achieved at all points in a likelihood
search under nonideal conditions, where lensing estimators can
react strongly to signatures of anisotropies unrelated to lensing.
When the lensing deflection is invertible, the inverse lensing op-
eration can still be useful. To this end, we can use the same
adjoint operation D†, but with input T len(n̂) · |A|(n̂) instead of
T len(n̂). Eq. (6) in the main text shows that the result then is T unl

ℓm .
The magnification determinant may be obtained as follows:

With 1α = αθ + iαφ as in Eq. (11), let the convergence (κ), field
rotation (ω) and shears (γ) be

κ + iω =
1
2
ð̃ 1α

γ1 + iγ2 =
1
2
ð 1α, (B.1)

where ð and ð̃ are the spin raising and lowering operators (see
the first appendix of Lewis et al. (2002) for a discussion in the

context of the CMB). It holds

|A|(n̂) =
sinα
α

(
(1 − κ)2 + ω2 − γ2

)

+

(
cosα − sinα

α

)
(1 − κ − cos(2β)γ1 − sin(2β)γ2) . (B.2)

All of these quantities can be computed from the harmonic co-
efficients of the deflection field with the help of spin-weighted
spherical harmonic transforms.

Informally, ignoring technical issues of band limits, quadra-
ture weights, and so on, we may write

[
DαD†α

]
(n̂i, n̂ j) ∼

δD(n̂i − n̂ j)
|A(n̂i)| , (α invertible), (B.3)

where δD is the Dirac delta. Similarly, the operator D†D pro-
duces the spherical harmonic coefficients of

(
T unl/|A|

)
(n̂) from

those of T unl.
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2.3 cunuSHT

This section contains the lenspyx paper as approved on RASTI.
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ABSTRACT
We present cunuSHT�, a general-purpose Python package that wraps a highly efficient CUDA implementation of the nonuniform
spin-0 spherical harmonic transform. The method is applicable to arbitrary pixelization schemes, including schemes constructed
from equally-spaced iso-latitude rings as well as completely nonuniform ones. The algorithm has an asymptotic scaling ofO(ℓ3

max)
for maximum multipole ℓmax and can be made to achieve machine precision accuracy, considering band-limited transforms for
which 𝑁 ≈ ℓ2

max (where N is the number of pixels in the map). While cunuSHT is developed for applications in cosmology in
mind, it is applicable to various other interpolation problems on the sphere. We outperform the fastest available CPU algorithm
at problem sizes ℓmax ∼ 4 · 102 and larger. The speed-up increases with the problem size and reaches a factor of up to 5 for
problems with a nonuniform pixelization and ℓmax > 4 · 103 when comparing a single modern GPU to a modern 32-core CPU.
This performance is achieved by utilizing the double Fourier sphere method in combination with the nonuniform fast Fourier
transform and by avoiding transfers between the host and device. For scenarios without GPU availability, cunuSHTwraps existing
CPU libraries. cunuSHT is publicly available and includes tests, documentation, and demonstrations.

keywords: Nonuniform Spherical Harmonic Transform, Nonuni-
form Fast Fourier transform, Cosmic Microwave Background Weak
Lensing, CUDA

1 INTRODUCTION

Spherical harmonic transforms (SHTs) are a key ingredient in signal
processing for data sets on the 2-sphere. They are extensively used in
active research fields such as cosmology (both in studying the cosmic
microwave background (CMB) (Hivon et al. 2002; Aghanim et al.
2020; Ade et al. 2021, 2018; Qu et al. 2024; Hanany et al. 2019) and
large-scale structure of the Universe Scharf & Lahav (1993); Hikage
et al. (2011)), gravitational waves Deppe et al. (2024), meteorology
Wedi et al. (2013), solar physics Brun & Rempel (2009), or solving
partial differential equations on the sphere Browning et al. (1989).

Modern applications of harmonic analysis on the sphere routinely
require the evaluation of the SHT up to to a maximum multipole
ℓmax = O(104) onto the 𝑁 ∼ ℓ2

max points that are required to rep-
resent a signal of harmonic band-limit ℓmax on the sphere. A direct
evaluation of the SHT scales as O(ℓ4

max), which is intractable for

large problems. Reducing the computational complexity is thus cru-
cial. One standard optimization is achieved by pixelizing the sphere
into rings of constant latitude with equi-angular spaced samples, re-
ducing the problem to O(ℓ3

max). We will refer to this setup as the ring
spherical harmonic transform (rSHT).1 See Reinecke & Seljebotn
(2013); Schaeffer (2012) for modern implementations of the rSHT.
For cases where the transform has to be evaluated on irregularly
sampled pixels, ring sampling is not possible. We will refer to this
more general setup as the nonuniform spherical harmonic transform
(nuSHT). Notable applications of the nuSHT are CMB weak lensing
Lewis & Challinor (2006), ray tracing Fabbian et al. (2018); Ferlito
et al. (2024), or fields where the pixelization changes over time. It
should be noted that due to their computational complexity, the rSHT

1 There exist algorithms for the rSHT that asymptotically scale as
O(ℓ2

max log2 (ℓmax ) ) Driscoll & Healy (1994); Potts et al. (1998a,b); Keiner
et al. (2009); Seljebotn (2012) or O(ℓ2

max log2 (ℓmax )/log log(ℓmax ) ) Hale
& Townsend (2015). While there have been improvements over the last few
years Slevinsky (2019); Yin et al. (2019) such methods require high memory
usage and significant pre-computations. A general purpose implementation
that is competitive with the O(ℓ3

max ) counterpart has yet to be published.

© 2024 The Authors
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and nuSHT often become the bottleneck in iterative algorithms that
repeatedly apply the transforms Wandelt et al. (2004); Carron &
Lewis (2017).

In the field of cosmology, nuSHTs are routinely solved via an
rSHT and subsequent interpolation to the nonuniform points using
bicubic splines Lewis (2005) or a Taylor series expansion Næss &
Louis (2013). These methods scale as O(ℓ3

max) but only reach relat-
ively low accuracy. A different O(ℓ3

max) nuSHT method, proposed
by Basak et al. (2008), makes use of the double Fourier sphere (DFS)
method (see Boer & Steinberg (1975); Merilees (1973) for the back-
ward or type 2 transform, McEwen (2011) for the forward or type
1, and Huffenberger & Wandelt (2010a); McEwen & Wiaux (2011)
for both) in combination with the nonuniform fast Fourier transform
(nuFFT) to achieve an accurate nuSHT algorithm. Several other im-
plementations of this setup exist Townsend et al. (2016); Keiner et al.
(2009); Potts & Van Buggenhout (2017). Recently, the lenspyx2

and DUCC3 libraries Reinecke & Seljebotn (2013); Reinecke et al.
(2023) implemented a highly efficient and machine precision accur-
ate implementation of the nuSHT based on the DFS method.

In recent years, there has been a dramatic increase in the availab-
ility and usage of graphics processing units (GPUs) dedicated to sci-
entific computing. This development drives the need for GPU based
codes and provides an opportunity for increased performance of exist-
ing methods. GPUs are optimized for single-instruction multiple-data
(SIMD) applications and provide multi-threading well beyond what
is achievable with CPUs. Highly parallelizable algorithms can thus
greatly benefit from the GPU architecture. In principle, the evaluation
of the SHT allows for a large amount of parallel computation, mak-
ing it a natural target for a GPU implementation. The work presented
in Hupca et al. (2012); Szydlarski et al. (2013) was one of the first
that explored the use of GPUs for SHTs in the context of cosmology.

Robust and efficient rSHT GPU implementations have been de-
veloped in recent years. Notable examples are SHTns Schaeffer
(2012), supporting the spin-0 and 1 rSHTs, and S2HAT4 Szydlarski
et al. (2013), which supports spin-𝑛 transforms. S2FFT Price &
McEwen (2024) is a recent JAX implementation of the spin-𝑛 rSHT
that provides differentiable transforms. A first implementation of
the nuSHT in a cosmological context on GPUs was presented in
Baleato Lizancos & White (2024).

We present cunuSHT, a CUDA accelerated nuSHT algorithm on
the GPU. This is, to our knowledge, the first publicly available
nuSHT GPU algorithm that can reach machine precision accuracy
and achieves significant speed-up compared to the fastest CPU al-
gorithms. We achieve this by carefully combining existing robust and
efficient GPU implementations of the rSHT and nuFFT algorithm.

2 https://github.com/carronj/lenspyx
3 https://pypi.org/project/ducc0/
4 https://apc.u-paris.fr/APC_CS/Recherche/Adamis/MIDAS09/
software/s2hat/s2hat.html

cunuSHT does not require memory allocation or calculation on the
host, which allows it to be incorporated in GPU-based software.5

The remainder of the paper is organized as follows. In Section 2 we
introduce notation and definitions, and present in qualitative terms
our implementation. Section 3 discusses the implementation on the
GPU. Section 4 shows benchmarks and results. We conclude in Sec-
tion 5. A series of appendices collect further details.

2 NONUNIFORM SPHERICAL HARMONIC TRANSFORM

We introduce our notation and conventions in 2.1, and define the
spherical harmonic transform operations that we implement in this
paper. We describe the double Fourier sphere method in 2.2.

2.1 Definition and properties

The (spin-0) spherical harmonic functions 𝑌𝑚
ℓ
(𝜃, 𝜙), with quantum

numbers ℓ and 𝑚, with −ℓ ≤ 𝑚 ≤ ℓ, are given by,

𝑌𝑚
ℓ (𝜃, 𝜙) = 𝑃𝑚

ℓ (𝜃)𝑒i𝑚𝜙 , (1)

where 𝑃𝑚
ℓ
(𝜃) are the associated Legendre polynomials. A “general”

(or “nonuniform”) spherical harmonic transform (nuSHT) is a lin-
ear transformation between a set of spherical harmonic coefficients
and field values defined at arbitrary locations on the sphere. We
distinguish two types of transforms, with nomenclature inspired by
nonuniform Fourier transform literature6 Barnett et al. (2019):

• Type 1 (also “adjoint nuSHT”, the adjoint operation to type 2 below):
given as input a set of 𝑁 values 𝑓𝑖 , and 𝑁 locations (𝜃𝑖 , 𝜙𝑖), desired
are the coefficients 𝑐ℓ𝑚 defined by,

𝑐ℓ𝑚 =
𝑁∑︁
𝑖=1

𝑓𝑖 𝑌
†𝑚
ℓ

(𝜃𝑖 , 𝜙𝑖) , (2)

for ℓ up to some band-limit ℓmax. We want the result to match a target
accuracy 𝜖 requested by the user.
• Type 2: given as input a set of harmonic coefficients 𝑐ℓ𝑚 up to some
band-limit ℓmax, and a set of 𝑁 locations (𝜃𝑖 , 𝜙𝑖), desired are the
field values,

𝑓𝑖 =
ℓmax∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝑐ℓ𝑚𝑌
𝑚
ℓ (𝜃𝑖 , 𝜙𝑖) , (3)

again respecting a target accuracy 𝜖 as requested by the user.

In matrix notation, type 2 may be written as,

f = Yc, (4)

where the vector c collects the harmonic coefficients, the vector f the

5 The current implementation does not support automatic differentiation.
6 The DUCC package uses the names adjoint_synthesis_general and
synthesis_general for type 1 and type 2.

MNRAS 000, 1–?? (2024)
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Figure 1. Illustration of the doubling step in the DFS method. The upper half
shows a spherical map calculated on a rectangular grid and is mirrored along
the 𝜃 = 𝜋 axis. The mirrored image is split in half across the 𝜙-direction
in the center, and swapped. The result is a function on the torus, with a 2D
ordinary Fourier series having the exact same band-limit as the spherical
harmonic series of the original map defined on the sphere. This allows the
use of efficient nonuniform Fast Fourier Transform for accurate interpolation.

output field values, and the entries of the matrix Y are the spherical
harmonics. Type 1 is represented by the adjoint matrix Y† =

[
Y𝑡

]∗. 𝑡
denotes transposition and ∗ complex conjugation of the matrix𝑌 . We
also use the qualifiers type 1 and type 2 for the analogous nonuniform
(or uniform) Fourier transforms, where the spherical harmonics and
coefficients are replaced by their plane wave counterparts.

In typical applications, the total number of points 𝑁 is comparable
to the squared band-limit, ℓ2

max. In this case the naive computational
complexity of these operations is O(ℓ4

max).

2.2 Double Fourier sphere method

We adopt the approach proposed in Reinecke et al. (2023) and im-
plement type 1 and type 2 transforms using the DFS method. In this
approach, the matrix Y of the type 2 nuSHT is decomposed into 4
matrices,

Y = NFDS . (5)

The final operation N, which represents the main novel aspect to
our approach, is a nonuniform Fourier transform of type 2 to the
given locations. The role of FDS is to produce the needed Fourier
coefficients.

The matrix S is an iso-latitude rSHT, that transforms the input
harmonic coefficients onto an equi-spaced grid in both 𝜙 and 𝜃,
covering the entire sphere. D is a “doubling” operation, that extends
the range of 𝜃 from [0, 𝜋] to [0, 2𝜋), see Fig. 1. The doubling is
performed by extending the meridians across the south pole back up
to the north pole. The essential point is that the resulting map, seen
as a map on the doubly-periodic torus, has a standard Fourier series
with exactly the same Fourier band-limit7 as the spherical harmonic

7 This may be seen for example from the well-known Fourier representation

band-limit of the input array 𝑐ℓ𝑚. Finally, F is simply the standard
2D Fourier transform that produces the Fourier coefficients input to
N from the doubled map.

The adjoint operator Y†, or the type 1 nuSHT is, by definition,

Y† = S†D†F†N† . (6)

N† is a nuFFT of type 1 that produces Fourier frequencies from the
input locations and field values. F† produces from these frequencies
a 2D map on the torus. D† (the adjoint doubling matrix) effectively
“folds” this doubled map. The resulting map is 2𝜋-periodic in the
𝜙-direction, and the 𝜃-direction goes again from 0 to 𝜋. The map
is then transformed to harmonic coefficients with S†, an iso-latitude
type 1 rSHT.

3 IMPLEMENTATION

We discuss the concrete GPU implementation. Readers interested in
the CPU equivalent may consult Reinecke et al. (2023).

A GPU is designed to efficiently apply a single instruction on
multiple data (SIMD). On the hardware side, it achieves this with
Streaming Multiprocessors (SMs) (at the order of 100), that contain
a number of simple processors for arithmetic operations (at the order
of 100) that execute “warps” of 32 threads in parallel.

On the software side, a GPU accelerated program is executed via
a number of threads that are arranged in thread blocks. The GPU is
responsible for distributing the thread blocks across the SMs. High
throughput is achieved by overloading SMs with many threads as
to hide data latency and by ensuring that memory is accessed in
multiples of the warp size.

We differentiate between the GPU memory that is “close” to the
processor units and can be accessed fast by the device, and host
memory, that is managed by the host system of the GPU, and which
is generally slow to access by the GPU. We show data transfer
benchmarks in Appendix A. Our implementation avoids data transfer
and usage of host memory altogether; intermediate results are kept
in GPU memory. This is realized by CuPy-arrays in combination
with a C++-binding nanobind, Jakob (2022), handily providing a
nanobind-CuPy interface.

Our implementation of the individual operators N, D, F, and S and
their adjoints are realised as follows.

For the (adjoint) synthesis (S†) S, we use the highly efficient
software package SHTns Schaeffer (2012), and calculate the SHTs
onto a Clenshaw-Curtis (CC) grid. The GPU implementation uses
vkFFT Tolmachev (2023) for the Fourier transforms, and requires
the sample size to be divisible by 4, see Appendix B for details. For
the (adjoint) synthesis (S†) S, we use the highly efficient software

of the Wigner 𝑑-matrices Risbo (1996); Huffenberger & Wandelt (2010b),
and using the relation 𝑃𝑚

ℓ
(𝜃 ) = 𝑑ℓ

𝑚0 (𝜃 )
√︁
(2ℓ + 1)/4𝜋.
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package SHTns Schaeffer (2012), and calculate the SHTs onto a
Clenshaw-Curtis (CC) grid.

For iso-latitude rings, in order to achieve best efficiency for the
Legendre transform part (the 𝜃 part of the transform, which is the crit-
ical part), modern top-performing CPU and GPU codes like SHTns
use on-the-fly calculation of 𝑃𝑚

ℓ
(𝜃) using efficient recurrence formu-

las put forward recently Ishioka (2018). This allows to keep memory
usage low: indeed, only the recurrence coefficients that are independ-
ent of 𝜃 need to be stored, which requires only O(ℓ2

max) memory, the
same order as the data. It leaves two dimensions along which to par-
allelize: 𝜃 and 𝑚, and requires a sequential loop over ℓ to compute the
𝑃𝑚
ℓ
(𝜃) recursively. When ℓmax is larger than 500 to 1000, this leaves

enough parallelization opportunities to efficiently use all of the GPU
compute units. The computational complexity stays O(ℓ3

max).
The (adjoint) doubling (D†) D is implemented via CUDA, and

we write the arrays in a 𝜃-contiguous memory layout, as required
by SHTns to keep high efficiency for the Legendre transform. The
computational complexity is O(ℓ2

max).
For the type-1 and type-2 nuFFT in 2-dimensions (N†, N), we

use cufinuFFT Shih et al. (2021) in double precision, even for
single-precision accuracy final results. This choice is done to robustly
and consistently reach the requested accuracies for single precision,
which would otherwise not always be the case using single-precision
cufinuFFT. The nuFFT method works by utilizing the Fourier trans-
form convolution theorem, and interpolation or convolution onto a
slightly finer, up-sampled grid. Highly accurate versions use ker-
nels whose error 𝜖 decreases exponentially as a function of the up-
sampling factor. The computational complexity (without planning
phase) is O(ℓ2

max log(ℓmax) + ℓ2
max | log2 (𝜖) |) in 2 dimensions. It is

worth mentioning that we use the guru8 interface to cufinuFFT to
initialize the nuFFT plans. The plans allow for repeated and fast
transforms, without re-initialization. However, this planning step is
the most time consuming operation and is therefore done before
calling the functions.

For the FFT operations F (type 2) and F† (type 1), we use the
package CuPyxOkuta et al. (2017) and its cuFFT9 integration therein.
For the type 1 Fourier synthesis, we use double-precision accuracy.
For the type 2 Fourier synthesis, we use single precision accuracy
for 𝜖 ≤ 10−6, which increases speed at the cost of a negligible
decrease in effective accuracy on the final result. For 𝜖 < 10−6, we
again use double-precision accuracy. The computational complexity
is O(ℓ2

max log(ℓmax)).
FFTs become particularly fast if the prime factorization for the

sample size gives many small prime numbers, in the following re-
ferred to as a good number. If additional constraints are put on the

8 This is an interface that allows for more fine grained configuration of the
nuFFT pipeline.
9 https://developer.nvidia.com/cufft

sample size, good numbers may be more difficult to find, see Ap-
pendix B for a discussion and concrete definition.

Ignoring the scaling with accuracy, the overall asymptotic compu-
tational complexity (for both type 1 and 2) is,

O(ℓ3
max) + O(ℓ2

max log(ℓmax)) + O(ℓ2
max) . (7)

We assume that the number of uniform, or equi-spaced grid in (𝜃, 𝜙),
and the number of nonuniform points are about the same. In the case
of CMB weak lensing, the number of equi-spaced grid points is
set by the band limit of the unlensed map, and the number of non-
uniform grid points can be assumed close to this number for robust
reconstructions. We provide a pointing routine for calculating the
deflected locations, and implemented via CUDA, see Appendix C.
The pointing routine provides the deflected positions (𝜃′, 𝜙′) from
the initial undeflected positions and the deflection field of the CMB.
For use cases that are not CMB weak lensing, cunuSHT supports the
use of custom user-provided non-uniform locations as the nuSHT
routines merely require a set of new deflected locations.

Y (and Y†) could be further optimized: S and F both contain
a Fourier transform in 𝜙-direction, effectively cancelling out each
other. Avoiding this reduces F to a 1-dimensional Fourier transform
and S to a Legendre transformation. This optimization is implemen-
ted in the CPU implementation in DUCC. We leave this optimization
to a future study for the GPU implementation. We only expect a large
speed-up for the F operator in cunuSHT, which takes about 10 to
20% of the total runtime.

In Appendix D, we show example code snippets that demonstrate
the usage of cunuSHT.

4 BENCHMARK

We present the scaling and execution time of our implementation.
We take as a use case an application in CMB weak lensing Lewis
& Challinor (2006). CMB weak lensing describes the deflection of
primordial CMB photons by mass fluctuations along the line of sight
as they travel through the Universe. These small deflections (their
root-mean-square is of the order of a few arcminutes) are large enough
to be detectable in CMB sky maps Aghanim et al. (2020); Qu et al.
(2024); Pan et al. (2023). For some applications, it is necessary to
simulate these deflections accurately and efficiently Hirata & Seljak
(2003); Carron & Lewis (2017); Belkner et al. (2024).

Owing to the deflections, the CMB intensity field 𝑓 (𝜃, 𝜙) observed
at location (𝜃, 𝜙) is the un-deflected field 𝑓 at another location,

𝑓 (𝜃, 𝜙) = 𝑓 (𝜃′, 𝜙′) , (8)

where (𝜃′, 𝜙′) depends on (𝜃, 𝜙) in a smooth way. Eq. (8) describes
the relation between the spherical harmonic transforms and the
remapping operation: a remapping is a SHT (Eq. (2) and Eq. (3))
with the locations (𝜃, 𝜙) replaced by the new, deflected locations

MNRAS 000, 1–?? (2024)
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Figure 2. Setup and simulated data, here for a problem size of ℓmax = 3095, 𝑁 ≈ 2 · 107. The top left (right) panel shows a typical CMB temperature map
(a typical deflection field) in orthographic projection. The bottom left plot shows a 10 × 10 degree detail view of the difference between the undeflected and
deflected CMB in Cartesian projection. On the bottom right, we show a 0.5 × 0.5 degree detail view comparison between the uniform grid (blue squares),
nonuniform grid (orange squares), and the relation between them as indicated by the black arrows.

(𝜃′, 𝜙′). Concretely for type 1,

𝑐ℓ𝑚 =
𝑁∑︁
𝑖=1

𝑓𝑖 𝑌
†𝑚
ℓ

(𝜃′𝑖 , 𝜙′𝑖) , (9)

where 𝑓 is the set of values of the lensed field. For the type 2 nuSHT,
the inputs are these same set of angles and the spherical harmonic
coefficients of the un-deflected field 𝑓 . Details on how these angles
relate to each other are given in Appendix C. The set up of our use
case is shown in Fig. 2. The top left panel shows the input CMB
map, the deflection field is shown on the top right. Both are shown
in orthographic projection. The bottom maps show a detail view of
10 × 10 degree of the difference between the input and deflected
map (left panel) and a detail view of approximately 0.5 × 0.5 degree
(right panel) of the nonuniform point (orange squares) relative to the
uniform point locations (blue squares). We use the same setup for
the adjoint operation, in which case the deflected map becomes the
input, and the result becomes the adjoint SHT coefficients.

Benchmarks are run on an NVIDIA A-100 GPU with 80 GB of

memory and an Intel Xeon Gold 8358 processor with 32 cores. We
set the number of threads to 32 for the CPU benchmarks. If not stated
otherwise, we choose the following parameters (that mostly affect the
nuFFT): an up-sampling factor of 1.25 to reduce the memory usage
at a small price of increased computation time10, a gpu_method
utilizing the hybrid scheme, called shared memory, and the default
kernel evaluation method. The resulting map (or input map in the
case of the adjoint) is calculated on a Gauss-Legendre grid.

With this implementation, we can solve problem sizes of up to
ℓmax ∼ 9000 on an A-100 with 80 GB, by using the pre-computed
nuFFT plans and keeping all necessary intermediate results in
memory.

Fig. 3 shows the speed-up of the GPU algorithm compared to the
CPU as a function of ℓmax for different accuracies. The left panel

10 This somewhat low up-sampling factor reduces the maximal possible
accuracy, in double precision, to 10−10 due to its dependence on the size of
the up-sampled grid, but can easily be changed by the user, if needed.
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Figure 3. cunuSHT execution time comparison against DUCC for type 2 (type 1) nuSHT shown in the left (right) panel, comparing one A-100 against one Intel
Xeon Gold 8358 processor with 32 cores. A speed-up factor > 1 means that the GPU is faster, and we show the result for different target accuracies. The error
bars show the ±1𝜎 variance calculated from 5 runs. The GPU takes over at ℓmax ∼ 3 · 102 for type 2, and at ℓmax ∼ 4 · 102 for type 1. The speed-up increases
up to 5 (3) for large ℓmax left (right) panel.

shows the evaluation of Eq. (5), the right panel shows Eq. (6). The
±1𝜎 variance from 5 runs is indicated by error bars.

For type 2 nuSHT, we reach a speed-up between 1 and 5 times
for single precision and 1 to 3 times for double precision, with the
speed-up increasing with increasing ℓmax. This increase is expected
due to better parallelizability for GPUs for higher ℓmax. The speed-
up is mostly independent of the target accuracy, with the smallest
accuracies tending to perform better. For type 1 nuSHT, we find
lower speed-up factors, which may indicate further improvements.
However, type 1 directions are generally expected to perform worse
on the GPU due to the sheer amount of threads that have to be written
concurrently to the same memory location. Nevertheless, the GPU
code either performs almost as good as the CPU code (small ℓmax),
or better by a factor of up to 3 for large problem sizes. For high
ℓmax, the speed-up depends on the accuracy, with lower accuracies
performing better. For double precision (𝜖 = 10−10), the speed-up
is diminished due to the double-precision penalty that we pay in our
implementation.

We can get a better understanding of the resulting speed-up factors
by looking at the time spent on each of the operators on the GPU.
This breakdown is shown in the top panels of Fig. 4 for the type 2
(left panel) and type 1 (right panel) nuSHT, as a function of ℓmax for
different accuracies. The respective total execution times are shown in
the bottom panels together with the empirically fitted computational
complexity model, Eq. (E1). At the top panels, for each problem
size ℓmax, each bar represents a benchmark with an accuracy of

(from left to right) 10−10, 10−6, 10−2.11 Each bar represent the
mean over 5 runs. For small problem sizes, doubling dominates and
becomes almost negligible for large ℓmax. S only takes about 20%
of the execution time for large ℓmax, even though it has the worst
asymptotic computational complexity. This highlights the quality of
the rSHT implementation by SHTns.

The choice of accuracy has an impact on the total execution time, as
seen in the bottom panels of Fig. 4. The highest accuracy (𝜖 = 10−10,
red line) takes at most twice as long compared to the low accuracy
(𝜖 = 10−2, purple line). Our results suggests that improvements in F
might be possible: due to FFT being in principle a bandwidth limited
routine, we would expect the execution time of F to be comparable to
that of D, and only a fraction of that of S. For type 1 (right column),
the total execution time overall takes longer. The breakdown shows
that for the low and intermediate accuracy cases, less time is spent
in the F† call. This is a consequence of our use of single precision
arithmetic FFTs for the 𝜖 ≤ 10−6 case, which, as mentioned before,
is possible for the type 1 nuSHT. The lower panels show an empirical
fit of the data to the computational complexity model, see Appendix
E.

It is interesting to compare this breakdown to the CPU imple-
mentation of DUCC. While we cannot expect both breakdowns to
be exactly the same due to the different nature of the hardware,
large differences may imply possible improvements. Fig. 5 shows the

11 The highest possible accuracy for double precision is 10−14 and tests show
that this can well be reached with our code. We have, however not included
them in our benchmarks.
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Figure 4. Breakdown and total execution time of the GPU implementation cunuSHT. The top panels show the percentage of time spent with the individual
operators for type 2 (left column) and type 1 (right column) nuSHT. For each of the problem sizes we show this for different accuracies (10−10 on the left, 10−6

in the center, 10−2 on the right). The bottom panels show the total execution time, with ±1𝜎 variance as shaded area, for different accuracies and the empirically
fitted computational complexity model, Eq. (E1). The grey dashed lines show the theoretical scaling for different computational complexities.

computation time of the CPU implementation of DUCC for the type 2
nuSHT (left column) and type 1 nuSHT (right column) as a function
of ℓmax for different accuracies. Looking at the top left panel, we see
that S increases with increasing ℓmax, as expected from its O(ℓ3

max)
scaling. The bottom panel of the left figure shows that the total exe-
cution time of the high-accuracy run is at most twice as long as the
low accuracy one.

Many optimizations have gone into DUCC’s and SHTns’s SHT
routines (S, S†) over the years and it is safe to assume that they

are close to optimal. Comparing the breakdown of the CPU and
GPU implementation for S (green bars) shows that DUCC spends
more than twice as long with this operator. This hints to potential
sub-optimalities in the implementations of the GPU operators. This
also becomes apparent when we look at the operator N (and N†). The
scaling with the problem size is much more pronounced for the GPU
code.

Fig. 6 shows the effective accuracy as a function of target accuracy
for both CPU and GPU. The effective accuracy 𝜖eff is calculated by
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Figure 5. Same as Fig. 4, but for the CPU implementation DUCC. It is important to note that DUCC implements the individual operators more efficiently by
avoiding redundant Fourier transforms and by effectively combining the doubling and Fourier transform operations into one. To reflect this, we have grouped
the D and F contributions in the top panel.

solving Eq. (3) in a brute-force manner (giving us the values 𝑓 true)
and comparing it against Eq. (5) (giving us the values 𝑓 est),

𝜖eff =
1

𝑓 true

√√√ 𝑁𝑡∑︁
𝑖=1

(
𝑓 true
𝑖 − 𝑓 est

𝑖

)2
, (10)

with

𝑓 true =

√√√ 𝑁𝑡∑︁
𝑖=1

(
𝑓 true
𝑖

)2
. (11)

We choose 𝑁𝑡 = 106 random points on the sphere, giving us good
sampling across the full sphere, and a sufficiently low variance on
𝜖eff . Both algorithms achieve good effective accuracies, with the CPU
code being more conservative. For the GPU implementation, we
note that only low effective accuracies, 𝜖eff > 10−4, can be achieved
when nuFFT is executed in single precision. When an accuracy of
𝜖 = 10−6 is desired, a single precision nuFFT evaluation is thus
insufficient. We find that executing N and N† in double precision
solves this. There is an associated penalty in efficiency due to the
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Figure 6. Effective accuracy as a function of target accuracy for the CPU
(blue), and GPU (orange) implementation.

double-precision calculations being approximately twice as slow.
The nuFFT implementation in DUCC circumvents this by allowing for
double-precision accuracy on the pointing and intermediate results
while using single precision accuracy on the Fourier coefficients,
hereby reducing the execution time for single precision accuracies.

5 CONCLUSION

We presented cunuSHT Belkner (2024)12, a GPU accelerated imple-
mentation of the spherical harmonic transform on arbitrary pixeliz-
ation that is, to our knowledge, the first of its kind to achieve faster
execution when compared against CPU based algorithms. cunuSHT
can be made to achieve machine precision accuracy by transforming
the problem of interpolating on the sphere into a problem of com-
puting a nonuniform fast Fourier transform on the torus. Comparing
our implementation executed on an A-100 to the fastest available
CPU implementations to date running on a single Intel Xeon Gold
8358 processor with 32 cores, we find that our implementation is up
to 5 times faster. We used highly efficient, publicly available pack-
ages that are well tested and robust: SHTns for rSHTs, cufinuFFT
for nuFFTs. We found that, although it has the highest asymptotic
complexity, the high-quality rSHT implemented in SHTns is not the
bottleneck. Our code does not require intermediate transfers between
host and device, allowing it to be incorporated within larger GPU-
based algorithms. Many applications in cosmology that we have in
mind typically require spin-1 to 3 transforms. We thus plan to extend
this package to spin-𝑛 transforms in the near future. There are, in prin-
ciple, no obstacles to the generalization to spin-𝑛 by implementing
the corresponding Wigner-𝑑 transform.
cunuSHT is a general purpose package distributed via pypi, and

12 https://github.com/Sebastian-Belkner/cunuSHT

also works on standard pixelization schemes such as HEALPix, and
can also perform rSHTs. Demonstrations of our package on GitHub
present how to integrate it into exisiting pipelines.
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Figure A1. type 2 nuSHT transfer times “Host-to-Device” (H2D) (green)
and “Device-to-Host” (D2H) (yellow) as a function of ℓmax. The shaded areas
show the ±1𝜎 variance in transfer time, calculated from ten runs. Note that
these transfer times are not generally part of the routine and can completely
be avoided. H2D transfer contains the SHT coefficients, while D2H contains
the much larger map. For type 1 nuSHT, the transfer times are equally long,
but the H2D and D2H are swapped due to the input and output of the function.

APPENDIX A: DATA TRANSFER

All benchmarks are performed without accounting for the time re-
quired to transfer data to and from the device (the GPU). This can
be a large part of the overall computation and should be avoided, as
is shown in Fig. A1 for different problem sizes. We note here that
cunuSHT provides means to keep everything on the GPU without
having to transfer the data. Thus, these transfer times can in principle
be avoided.

APPENDIX B: GOOD NUMBERS

For fast Fourier transforms, execution time depends strongly on the
largest prime factor of the transform length; the smaller it is, the
better. Luckily enough, many good numbers for CPU algorithms
exist. Assuming Clenshaw-Curtis quadrature, the constraint on the
number of rings 𝑁𝑟 to sufficiently sample a map with band limit ℓmax

is 𝑁𝑟 ≥ ℓmax +1. Therefore, after applying the double Fourier sphere
method, we must have at least 2𝑁𝑟 + 2 samples, and we are free
to choose an arbitrarily larger number which happens to be a good
FFT size. For the GPU algorithm, however, there is a caveat: due
to the additional constraint on 𝑁𝑟 to be divisible by 4 for the rSHT
operation, the selection of good numbers is reduced. While there
are still good numbers for FFT satisfying both constraints, they are
sparser. The full list of 𝑁𝑟 that are multiples of 4 up to 𝑁𝑟 ≤ 10000

MNRAS 000, 1–?? (2024)
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for which ℓmax = 𝑁𝑟 − 1 can be factored into primes up to 11 is 4,
8, 12, 16, 28, 36, 56, 64, 76, 100, 136, 148, 176, 232, 244, 276, 316,
344, 364, 376, 496, 540, 568, 676, 736, 848, 876, 892, 1156, 1216,
1324, 1332, 1376, 1576, 1716, 1816, 1876, 2080, 2188, 2476, 2696,
2836, 3088, 3268, 3376, 3676, 4236, 4376, 4456, 4852, 5104, 5776,
6076, 6616, 6656, 6876, 7204, 7624, 7876, 8020, 8576, 9076, 9376.

The numbers with the highest prime factor being 11 are underlined;
they tend to lead to slightly less fast computation times in the FFT
parts, and have not been used in this study. They could nonetheless
be used, as well as numbers factored by higher primes.

It is important to note that during the review process of this paper,
SHTns’ was upgraded. Its next release will support arbitrary 𝑁𝑟 ,
removing the constraint on 𝑁𝑟 to be divisible by 4. This increases
the list of available good numbers. Hence, restrictions on the number
of good numbers are expected to go away with the next release of
SHTns.

APPENDIX C: CMB WEAK LENSING POINTING

Let 𝑒𝜃 , 𝑒𝜙 and 𝑛̂ form the right-handed unit basis vectors at the
point on the sphere parametrized by 𝜃, 𝜙 (so, the components of
𝑛̂ are sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃). In our benchmark CMB lensing
application, the deflected positions 𝑛̂′ that define the angles 𝜃′ and
𝜙′ at which the CMB field must be evaluated are given by,

𝑛̂′ = cos(𝛼)𝑛̂ + sin(𝛼)
𝛼

(
𝛼𝜃 𝑒𝜃 + 𝛼𝜙𝑒𝜙

)
, (C1)

where 𝛼 =
√︃
𝛼2
𝜃 + 𝛼2

𝜙 , and 𝛼𝜃 and 𝛼𝜙 form the gradient of the
lensing potential Φ,

𝛼𝜃 (𝑛̂) + i𝛼𝜙 (𝑛̂) =
(
𝜕

𝜕𝜃
+ i

sin 𝜃
𝜕

𝜕𝜙

)
Φ(𝑛̂). (C2)

cunuSHT first obtains 𝛼𝜃 and 𝛼𝜙 from this equation using SHTns.
Then, threading across each ring, we solve for 𝜃′, 𝜙′ in Eq. (C1) on
the fly. A benchmark as a function of ℓmax is shown in Fig. C1.

APPENDIX D: CODE EXAMPLES

The following code block shows a minimum working example for
calculating a type 2 and type 1 nuSHT on the GPU for SHT coeffi-
cients alm that are deflected by a deflection field dlm_scaled, for
an accuracy of epsilon and band limit lmax. Both routines will
set up the plans, so that the actual nusht2dX() call may be called
repeatedly. The lenjob_geominfo structure identifies the geometry
that is used by cunuSHT, here ’gl’ stands for "Gauss-Legendre".
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Figure C1. Execution time of the pointing routine on the GPU as a function
of the problem size. The shaded area shows the ±1𝜎 uncertainty calculated
from 5 runs.

1 import cunusht as cu

2

3 lenjob_geominfo = (’gl’,{’lmax’: lmax})

4 kwargs = {

5 ’geominfo_deflection’: lenjob_geominfo ,

6 ’epsilon’: epsilon,

7 ’nuFFTtype’: 2,

8 }

9 t = cu.get_transformer(backend=’GPU’)(**kwargs)

10 ptg = t.dlm2pointing(dlm_scaled)

11 lenmap = t.nusht2d2(alm, ptg, lmax, lenmap)

1 import cunusht as cu

2

3 lenjob_geominfo = (’gl’,{’lmax’: lmax})

4 kwargs = {

5 ’geominfo_deflection’: lenjob_geominfo ,

6 ’epsilon’: epsilon,

7 ’nuFFTtype’: 1,

8 }

9 t = cu.get_transformer(backend=’GPU’)(**kwargs)

10 ptg = t.dlm2pointing(dlm_scaled)

11 alm = t.nusht2d1(alm, ptg, lmax, lenmap)
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Table E1. Empirical fits of Eq. (7) for type 2 and type 1 nuSHT, for different
accuracies for both CPU and GPU.

type 2 Target acc. 𝛼 𝛽

CPU
10−10 1.52 · 10−1 6.96 · 10−1

10−6 1.41 · 10−1 6.16 · 10−1

10−2 1.67 · 10−1 4.11 · 10−1

GPU
10−10 1.04 · 10−6 2.72 · 10−1

10−6 1.06 · 10−2 1.60 · 10−1

10−2 1.39 · 10−4 1.19 · 10−1

type 1 Target acc. 𝛼 𝛽

CPU
10−10 1.24 · 10−1 7.34 · 10−1

10−6 1.06 · 10−1 6.67 · 10−1

10−2 1.68 · 10−1 3.72 · 10−1

GPU
10−10 1.31 · 10−8 4.33 · 10−1

10−6 1.07 · 10−6 2.84 · 10−1

10−2 2.16 · 10−5 1.64 · 10−1

APPENDIX E: COMPUTATIONAL COMPLEXITY

Table E1 shows the results for the empirical fit of the type 2 and type
1 nuSHT computational complexity models,

𝐶 (ℓ) = 𝛼
ℓ3

ℓ3
norm

+ 𝛽
ℓ2 log(ℓ)

ℓ2
norm log(ℓnorm)

, (E1)

with ℓnorm = 6067 the normalization for the unknown prefactors.
Compared to Eq. (7) we only account for the terms with the largest
complexities. The fits are shown in Fig. 3, Fig. 4, and Fig. 5.
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Searching for the Tensor-to-Scalar Ratio

3.1 Motivation

One of the primary CMB Science goals of current and future CMB experiments is
the detection of the tensor-to-scalar ratio r, or to give tighter upper bounds. Two
experiments that are currently designed and studied for this purpose are the CMB
stage-4 (CMB-S4) and probe of inflation and cosmic origin (PICO).

Both depend on the delensing of the B-maps, a task that reduces the variance of
the observed B-modes by removing the contamination coming from B-lensing. For
this purpose, we have integrated Delensalot into the analysis pipeline of these two
experiments. This integration had also been the driver for developing the DLM as
discussed in the previous section.

This chapter discusses our contributions to the CMB lensing analysis for these
two collaborations.

3.2 CMB-S4

CMB-S4 is a future CMB observation, currently in design phase and supported
by the Department of Energy (DOE) Office of Science and the National Science
Foundation (NSF) of the United States. It is the next generation ground-based
CMB experiment, building and operating highly sensitive telescopes both at the
South Pole, and the Chilean Atacama desert, and aims to cross critical thresholds
in our understanding of the origin and evolution of the Universe. Recommended
by the 2014 Particle Physics Project Prioritization Panel (P5), and the by the 2015
National Academies report, CMB-S4 is strongly supported and aiming for success.
The CMB-S4 collaboration was established in 2018, and finally approved by the
DOE critical decision (CD-0) in July 2019: today, the collaboration has 100s of
members, from hundreds of different institutions, coming from almost 20 countries
on 6 continents.

CMB-S4 four science cases are spectacular: first, the search for primordial grav-
itational waves and other evidence of inflation. Its sensitivity will probe physics at
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the highest energy scales and cross important thresholds for constraining inflation.
Second, to study the dark Universe and search for imprints of relic particles includ-
ing neutrinos. CMB-S4 will shed light on the earliest times, reaching 10 000 times
further back than current experiments. Third, the mapping of the matter in the
cosmos to help constraint dark energy, the sum of neutrino masses and test general
relativity, and fourth, explore the time-variable millimeter-wave sky, and thus pro-
vide a powerful complement to other surveys for the task of studying the transient
Universe.

CMB-S4 will provide an unprecedented dataset, setting a new baseline for testing
models: we have only just begun to access the information that is available in CMB
polarization, lensing, and secondaries, all of them providing a large discovery space,
with CMB-S4 going to lead with a data set to discover and test new physics.

To achieve its science goals, CMB-S4 requires an enormous increase in sensitivity
compared to previous experiments, totaling half a million superconducting detectors
that will measure the sky at different sky fractions: the "deep" field, covering about
5% of the sky aims to reach a noise level as low as approximately 0.5µK-arcmin,
ultimately giving the best data for allowing to remove about 95% of the B-lensing
contaminant. The "wide" field will cover about 60% of the sky and help constraint
neutrino parameters, will map the matter of the Universe, detect secondaries, and
enable time-variable millimeter-wave science.

I joined CMB-S4 in 2021, and became a full member in 2023. With my contribu-
tions mostly centered around the low-ell-BB group that focuses on the r-estimate
analysis (the first science case in the list above), we were able to support CMB-S4
for various analyses and contributed to many data challenges as well as to different
studies: the analysis of alternatives, the search for optimal component separation,
and the validation of the general analysis pipeline for the search of r that resulted
in a collaboration paper.

3.2.1 Collaboration paper

This section reviews the collaboration paper that describes the functionality of
Delensalot on a curved sky, and showcases its capabilities by reaching the CMB-S4
science goals using realistic simulation data.

This analysis was performed in the context of one of the data challenges of
CMB-S4, a systematic approach to test the current r-estimate analysis pipeline.
This comprehensive process includes the generation of simulations inclusive of var-
ious foregrounds and inhomogeneous noise, performing component separation, re-
constructing lensing, and estimating cosmological parameters.

The successful completion of the pipeline was the result of a collaborative effort
involving numerous co-authors and additional support from both the low-ell-BB
group and the broader collaboration.

My contribution to this project is the execution of Delensalot using the com-
ponent separated maps that were provided by the group and the analysis of the
data products such as the B-lensing template. I also investigated the reconstruction
and its dependence on the mean-field, and developed a simple forecasting tool to
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validate our findings on the residual lensing amplitude as a function of residual noise
and foreground, and sky area. I performed comparative reconstructions for different
field surveys (form the South Pole and Chile) to evaluate performance variations in
the lensing reconstruction. My contribution to the paper is the writing of the result
section.

The analysis began with 100 simulations for each of three sky models, eventu-
ally expanding to 500. Managing an increasing number of simulations introduced
complexities, and manual adjustments of reconstruction parameters were sometimes
necessary. Initially, analyses were run using parameter files, which made modifying
reconstruction parameters challenging and prone to errors.

The duration and complexity of the project were considerable, largely due to
the extensive data and various tests applied, requiring significant computational
resources from NERSC in Berkeley. During the project, NERSC transitioned from
the Cori system to Perlmutter, a newer high-performance computing system. This
change led to frequent down-times and required all computations to be migrated to
the new system, occasionally resulting in the repetition of some analyses.

This project was a key motivator for developing the DLM to ensure better control
over parameters, analysis status, and automated result inspection tools.

The project ended successfully with the convergence on final results, the intro-
duction of a new interface for Delensalot, and the acceptance of the paper for
publication. The following contains the paper as published in The Astrophysical
Journal (Astrophys. J).
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ABSTRACT
The tightest constraints on the tensor-to-scalar ratio r can only be obtained after removing a substantial

fraction of the lensing B-mode sample variance. The planned CMB-S4 experimenta) will remove the lensing
B-mode signal internally by reconstructing the gravitational lenses from high-resolution observations. We
document here a first lensing reconstruction pipeline able to achieve this optimally for arbitrary sky coverage.
We make it part of a map-based framework to test CMB-S4 delensing performance and its constraining power on
r, including inhomogeneous noise and two non-Gaussian Galactic polarized foreground models. The framework
performs component-separation of the high-resolution maps, followed by the construction of lensing B-mode
templates, which are then included in a parametric small-aperture maps cross-spectra-based likelihood for r.
We find that the lensing reconstruction and framework achieve the expected performance, compatible with the
target σ(r) ≃ 5 · 10−4 in the absence of a tensor signal, after an effective removal of 92% to 93% of the lensing
B-mode variance, depending on the simulation set. The code for the lensing reconstruction can also be used for
cross-correlation studies with large-scale structures, lensing spectrum reconstruction, cluster lensing, or other
CMB lensing-related purposes. As part of our tests we also demonstrate joint optimal reconstruction of the
lensing potential with the lensing curl potential mode, second-order in the density fluctuations.

1. INTRODUCTION

According to the inflationary paradigm, the same mecha-
nism responsible for the seeds of structure in the Universe
also may produce a sizeable background of primordial grav-
itational waves (PGWs). These waves, or tensor perturba-
tions, leave a signature on the polarization of the Cosmic Mi-
crowave Background (CMB), which is potentially observable
with current technology (Seljak & Zaldarriaga 1997; Seljak
1997; Kamionkowski et al. 1997). So far, several fundamen-
tal predictions of the simplest inflationary models have been
confirmed by observations, including a nearly but not exactly
scale invariant spectrum of almost completely Gaussian and
adiabatic scalar perturbations (Akrami et al. 2020). A detec-
tion of the tensor signal would provide us a closer view than
ever of the earliest moments of our Universe, and would give
strong support for large-field inflation, with important impli-
cations for our understanding of the inflationary phase and
physics at very high energies (see (Kamionkowski & Kovetz

sebastian.belkner@unige.ch

julien.carron@unige.ch

a) cmb-s4.org

2016; Achúcarro et al. 2022) or (Lyth & Riotto 1999; Bau-
mann & McAllister 2015) for reviews).

The tensor signal is most distinctive on the degree scales
of the CMB polarization B-mode, owing to the absence of
first-order scalar contributions and their associated cosmic
variance (Seljak & Zaldarriaga 1997; Kamionkowski et al.
1997; Hu & White 1997). Several experiments have been
conducted or are currently undertaking measurements of the
B-mode power. The primordial component is usually param-
eterized by the tensor-to-scalar ratio r. The tightest constraint
to date1 is r0.05 < 0.032 at 95% CL., and comes from a
combination of Planck and BICEP/Keck measurements (Ade
et al. 2021; Tristram et al. 2022).

The limiting factor in this constraint is now the leading
non-linear effect in the CMB: gravitational lensing. During
their journey across the Universe, the CMB photons are de-
flected by the pull of large-scale structures. The light is de-
flected by a few arc minutes at all frequencies by large-scale
lenses distributed across a wide range of redshifts (Lewis &
Challinor 2006). In particular, this distorts the primordial
polarization pattern of the CMB slightly: a pure E polariza-
tion pattern will produce a sizeable amount of B-modes af-

1 The pivot scale in this constraint is k⋆ = 0.05Mpc−1 and tensor spectral
index nt = 0.
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ter lensing (Zaldarriaga & Seljak 1998; Knox & Song 2002;
Kesden et al. 2002). On the scales relevant for r measure-
ments, this lensing effect appears as a white-noise power with
amplitude close to 5 µK-arcmin, which is well above the cur-
rent sensitivity of dedicated experiments. As a result, the
lensing sample variance significantly contributes to the error
of the measurement of r (Ade et al. 2021).

The Cosmic Microwave Background Stage 4 experiment,
or CMB-S4, is a next-generation planned ground-based ex-
periment. Among its major science goals (Abazajian et al.
2016) is detecting PGWs at greater than 5σ, provided r is
larger than 0.003, or putting an upper limit r < 0.001 at 95%
C.L. in the absence of a signal (Abazajian et al. 2022), which
would either confirm or reject some of the most popular in-
flationary models. This can be achieved through deep ob-
servations of the recombination peak of the B-mode power,
in combination with high-resolution observations dedicated
to the reconstruction of the lensing signal. These tight con-
straints on r from degree scales can only be achieved if the
lensing sample variance is removed to some fraction of its
initial value (Abazajian et al. 2022). By providing a high-
quality tracer of the lenses on a broad range of scales cen-
tered on lensing multipole L ∼ 500, one can combine this
with knowledge of the E-mode on similar scales to produce
a template of the lensingB-mode. This is illustrated in Fig. 1,
where we have used the well-known perturbative, large-scale
limit for the white lensing B-mode power (Lewis & Challi-
nor 2006; Challinor et al. 2018),

CBB,lenℓ ≃ 2
∑

L

2L+ 1

4π
CκκL CEEL . (1)

Here, CκκL is the lensing convergence power spectrum and
CEEL is the CMB E-mode power. The template-delensing
approach is essentially optimal ((Baleato Lizancos et al.
2021a)) when compared to complex and costly Bayesian
techniques that extract all of the information (Carron 2019).
As can be seen in the Figure, the deep CMB-S4-like con-
figuration allows for about 95% delensing, leaving a de-
lensed kernel centered on L ∼ 1000 (shown as the dashed
line, again with an arbitrary normalization). External lens-
ing tracers including ambitious future galaxy surveys are
not expected to exceed a cross-correlation of ∼ 0.7 (Man-
zotti 2018) on the relevant scales, leaving little room for fur-
ther improvements to internal delensing. This is in contrast
to shallower experiments such as Simons Observatory (Ade
et al. 2019; Namikawa et al. 2022) which can benefit from ex-
ternal delensing. In a practical situation, it is often the largest
lenses that are hardest to reconstruct, but as can be seen, they
contribute little to the B-mode power.

The standard tools to extract the lensing deflections from
the CMB are the quadratic estimators originally designed
by (Hu & Okamoto 2002; Okamoto & Hu 2003) (see also
the more recent (Maniyar et al. 2021)). By construction, the
lensing reconstruction noise of a quadratic estimator is deter-
mined by the observed CMB total power spectra, inclusive of
the lensing component and instrumental noise. While instru-
mental noise can be lowered with the help of more sensitive
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Figure 1. Expected fidelity of an optimal internal lensing recon-
struction from idealized deep CMB-S4-like polarization data with
noise level 0.5 µK-arcmin (blue). Plotted is the expected cross-
correlation coefficient, ρL, of the reconstruction to the true lens-
ing. Quadratic estimator reconstruction is also shown for com-
parison (orange). The solid black line shows the contribution of
lensing multipoles to the large-scale lensing B-mode power, and
is derived from the lensing-perturbative, large-scale limit formula,
Eq. (1), with an arbitrary normalization. The shape of the black line
shows that good lens reconstruction is relevant over the approximate
range 30 ≲ L ≲ 2000. In this approximation, the contribution of
the E-mode power to the large-scale B-mode power is given by the
exact same curve, and the E-mode on the relevant scales for lens-
ing reconstruction purposes is essentially noise-free. The expected
cross-correlation coefficient to the true E-mode is shown in green,
and ignores possible complications on large scales owing to the in-
tricacies of ground-based observations.

observations, the lensing component sets a fundamental limit
to the precision of the estimator. However, with deep ob-
servations of the sub-degree scale CMB polarization, where
the primordial B-mode is negligible, a simple field-counting
argument2 suggests that the lensing deflection field can be
reconstructed internally from the CMB with high S/N. Meth-
ods to overcome this limit in idealized experimental settings
have long been known (Hirata & Seljak 2003b,a), where us-
age of the CMB likelihood function is the key to improve the
lensing measurement. The output is the Maximum A Posteri-
ori (MAP) lensing map, conditioned on the likelihood model.
More recently, this method has been revisited, cleaned of ap-
proximations and extended to more realistic conditions (Car-
ron & Lewis 2017), and was tested on deep POLARBEAR
data (Adachi et al. 2020). Its applicability remained, how-

2 In the absence of significant tensor modes, and since the deflection is almost
a pure gradient, there are two unknown fields; the unlensed E-modes and
the lensing potential, which in the low-noise limit can be reconstructed
from the same number of observed fields, the lensed E and B (Hirata &
Seljak 2003a), at least in principle.
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ever, limited to very small fractions of the sky, since it used
the flat sky approximation.

As part of the CMB-S4 collaboration planning ef-
fort (Abazajian et al. 2022), we extended the MAP lensing
reconstruction method presented in (Carron & Lewis 2017)
to arbitrary large sky fractions and to curved sky geometry,
and used it to test the performance of a map-based inter-
nal delensing forecast. The forecast starts from component-
separation of simulated CMB maps all the way to the in-
ference of r. The CMB-S4 simulations include inhomoge-
neous noise that our internal delensing algorithm takes into
account accordingly. Preliminary versions of these efforts to-
wards optimal iterative lensing reconstruction on component-
separated data were recently demonstrated by (Legrand &
Carron 2022, 2023), focussing on the lensing auto-spectrum
reconstruction. Further, this algorithm was applied on the
simulated full sky polarization maps of the Probe of Infla-
tion and Cosmic Origins (PICO) (Aurlien et al. 2022). PICO
is a probe-scale space mission concept (Hanany et al. 2019)
targeting σ(r) ≃ 1 × 10−4. A successful implementation
of map-based internal delensing after component-separation
has been demonstrated, reaching the required levels of σ(r)
for most foreground models with homogeneous noise.

In this paper, we use polarization maps only. The moti-
vation for this is simple. Although there is some additional
independent information on the lensing B-mode that can be
gleaned by including the temperature maps, when the polar-
ization noise is low, the expected gain is small.3 Including
temperature would also substantially complicate the analy-
sis, if only due to the expected small-scale extragalactic fore-
grounds (such as the Cosmic Infrared Background (CIB),
the Sunyaev–Zeldovich (SZ) effect and point-source signals),
which are correlated with the lensing signal and to which
standard quadratic estimators react strongly (Osborne et al.
2014; van Engelen et al. 2014; Ferraro & Hill 2018; Darwish
et al. 2023; Baleato Lizancos & Ferraro 2022; Omori 2022;
MacCrann et al. 2023). Nevertheless, the lensing reconstruc-
tion software, delensalot� (Belkner & Carron 2023),4

which is now publicly available, can also analyze tempera-
ture data alone or in combination with polarization data.

This paper is structured as follows. After a general
discussion dedicated to lensing reconstruction beyond the
quadratic estimator, Section 2 presents the lensing recon-
struction scheme. This is the most technical section of the
paper, which can be omitted for readers interested in results
obtained on CMB-S4 simulations. In its most general im-
plementation, the reconstruction is optimal. We close that
section with a few tests assuming full-sky coverage. Among
those tests, we demonstrate in Section 2.9 a successful joint-
reconstruction of the lensing gradient and post-Born lens-

3 On the South Pole deep-patch configuration, the main focus of this paper,
we have estimated that including temperature data could reduce the resid-
ual lensing B-mode power by only 0.2 percentage, provided the effects of
atmospheric noise and foregrounds are perfectly under control.

4 https://github.com/NextGenCMB/delensalot

ing curl deflection modes that is detectable with CMB-S4.
In Sec. 3 we discuss the generation of the CMB-S4 simula-
tions. Besides the lensed CMB signal, the simulations con-
tain inhomogeneous noise. In addition, we also test different
foreground models that contain non-Gaussianity signatures
extending to high multipoles, both aspects potentially rele-
vant for the lensing reconstruction. Results are presented in
Sec. 4. We first discuss the component-separation of the sim-
ulations generated in Sec. 3, we then present the delensing
performance seen on these maps, and compare to predictions,
and finally, we feed the lensing templates to a parametric r-
inference pipeline. We conclude in Sec. 5. The appendix
collects curved-sky geometry calculational details relating to
Sec. 2.

2. ITERATIVE CMB LENSING RECONSTRUCTION

Intuitively, optimal lensing reconstruction works itera-
tively until the two following steps have converged i) esti-
mation of the lensing signal with a quadratic estimator, and
ii) construction of a version of the CMB data that is de-
lensed using that estimated lensing signal. This is what the
pioneering papers on likelihood-based reconstructions effec-
tively do (Hirata & Seljak 2003b,a), albeit not very transpar-
ently.

We use a straightforward and economical approach, where
gradients of a CMB lensing likelihood and prior are calcu-
lated and used to progress towards the most probable lensing
map, using a variant of Newton’s optimization method. How-
ever, this is certainly not the only possible way to eventually
achieve efficient delensing. Several variants of ‘Bayesian-
lensing’ are being developed, that can potentially also be very
powerful and most useful by the time CMB-S4 starts collect-
ing data. For example, instead of finding the most probable
lensing map, the CMB lensing posterior can also be probed
through sampling (Anderes et al. 2015; Millea et al. 2020),
as has also been demonstrated recently on data (Millea et al.
2021). In this case, keeping the computational cost under
control is clearly a challenge at the moment. Reconstructing
the joint most probable CMB fields and lensing map (Millea
et al. 2019), instead of just the lensing map, is another possi-
bility, which should have in principle a numerical complexity
comparable to the one of this work. The lensing map ob-
tained from the joint posterior has some unphysical features
on large scales (Millea et al. 2019), but this is of moderate im-
portance for delensing, and could potentially also be cured.
Finally, the MUSE method (Millea & Seljak 2022; Bianchini
& Millea 2023) is another iterative scheme that addresses the
CMB lensing reconstruction problem which could also be ef-
ficient, but was not tested here.

Before we turn to details, let us discuss, first in gen-
eral terms, the analogies and differences of our method to
quadratic estimation, and the physical interpretation of the
CMB lensing likelihood gradients.

Crucially, for a fixed set of lenses, a deflected Gaussian
field remains Gaussian, and only displays an anisotropic
power spectrum, or, equivalently, an anisotropic covariance.
The log-likelihood function of the lenses, ln p(Xdat|α)
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(where α is the deflection vector field), when seen as a func-
tion ofXdat, has a Gaussian form, and therefore always con-
tains a term quadratic in the CMB fields. The variation with
respect to α of this term has a form that is close to a (un-
normalized) standard quadratic estimator acting on maps de-
lensed by α (Hanson et al. 2010; Carron & Lewis 2017, see
also later on in this paper, where we derive all the relevant
terms in this discussion), and is sensitive to the residual lens-
ing signal beyond α. Further, the anisotropic covariance ex-
plicitly depends on α. Hence, the log-likelihood gradient
also contains a term independent of the data (the variation of
the log-determinant of the covariance function). This is the
direct analog to the ‘mean-field’ of quadratic estimation that
removes signatures of anisotropy, unrelated to lensing, from
the quadratic piece. Let us call these two pieces gQD

α and
gMF
α , with the total log-likelihood gradient being gQD

α −gMF
α ,

as introduced in (Carron & Lewis 2017). For α = 0 this gra-
dient is precisely5 the quadratic estimator. For non-zero α,
this is a ‘quadratic’ estimator probing residual lensing be-
yond α from α-delensed maps. We note that the usage of
‘quadratic’ here is an abuse of language, since α itself de-
pends on the data in a quite convoluted manner.

In a practical situation, the quadratic estimator mean-field
typically strongly dominates at low lensing multipoles, but
has a very red spectral profile and therefore becomes irrele-
vant for smaller scale lenses (see (Hanson et al. 2009; Benoit-
Levy et al. 2013), or(Aghanim et al. 2020a, figure B.1) for a
detailed characterization of the components of the Planck re-
construction mean-field). For perfectly idealized conditions,
it is zero (because with α = 0 and an isotropic covariance
there is no special vector-field to point to). At non-zero
α, gMF

α differs in two ways from the quadratic estimator
mean-field. On the one hand, the CMB maps are partially
delensed by α. This, however, does not essentially change
anisotropies coming from masking or other anisotropies, that
leave a similar signature, but would have a different ampli-
tude according to the changes in the data spectra. On the
other hand, when producing the delensed maps, the instru-
mental noise is unavoidably also ‘delensed’ by α. This cre-
ates a new source of anisotropy in the delensed data, which
was not present before delensing, and therefore induces a
mean-field even for perfectly idealized conditions. To the
best of our knowledge, this specific characterization of the
mean-field component is new to this paper and is therefore
discussed in detail in Sec. 2.5.

If p(Xdat|α) were also Gaussian when seen as a function
of α, then from the gradient calculated at α = 0, a single
step of Newton’s method would bring us directly to the max-
imum; in other words, the quadratic estimator would be per-
fect. This is clearly not the case when the lensing effect on
the total map spectra is strong, which then requires an itera-

5 Up to optimization of the quadratic estimator weights to include non-
perturbative effects (Hanson et al. 2011; Fabbian et al. 2019), which are
irrelevant for the discussion, and up to the normalization of the estimate.

tive method to find the maximum point. The main technical
difficulties one encounters in doing so can be split as follows:

i) to get gQD
α we must, using the data and α, estimate the

partially delensed CMB in the presence of masking and (pos-
sibly wildly) inhomogeneous noise etc.;

ii) a naive estimate of gMF
α in quadratic estimation must go

through simulations, but this is too costly to perform at each
and every iteration; and

iii) all this is costly enough numerically speaking that we
must devise a scheme with fast convergence to the maximal
likelihood point.

We found that converting the flat-sky tools of (Carron
& Lewis 2017) to the curved sky without essential modi-
fications does deal with point i) and iii) to a satisfactory
level: lensing reconstruction is to a large extent a localized
operation in position space, and flat-sky implementations
can inform in a mostly reliable manner the performance of
their curved-sky versions6. The iterative scheme we use to
progress towards the maximum point is the very same L-
BFGS scheme (Nocedal 1980) as described in (Carron &
Lewis 2017). Point ii) has the potential of being more than
a technical annoyance: even if a maximally-efficient method
to calculate an accurate mean-field with just one simulation
existed (which is in fact the case under some conditions, as
we test later on), this would still approximately double the
numerical cost. The good news is that in this paper, we
account for the mean-field gMF

α at no additional cost com-
pared to a standard quadratic estimator (QE) analysis, by us-
ing the QE mean-field. The mean-field dependence on α is
weak, because it is almost entirely sourced by the EE part
of the quadratic piece. Typical mean-field sources look like
lensing convergence rather than shear, but large-scale con-
vergence modes do not produce EB-type signatures from a
pure-E-polarization pattern. Since the relative importance of
the lensing contribution to the EE CMB spectrum is much
weaker than for BB, the change in the mean-field with itera-
tions is relatively weak. Additionally, low lensing multipoles
where the mean-field is largest contribute little to degree-
scale lensing B-modes (see Fig. 1), so inaccuracies have mi-
nor impacts.

The rest of this section is dedicated to a detailed and self-
contained description of our lensing reconstruction method
in curved-sky geometry. Sec. 2.1 reviews the basis of lens-
ing remapping on the sphere, which allow us to introduce
some notation as well. Sec. 2.2 defines more precisely our
lensing likelihood model and priors. Sec. 2.3 obtains the
lensing magnification matrix induced by the deflection on the
curved sky, which our implementation requires. We then dis-
cuss gQD

α in more detail in Sec. 2.4, and gMF
α in Sec. 2.5.

Finally, the construction of the lensing-induced CMB polar-
ization templates from the lensing reconstruction outputs are
discussed in Sec. 2.6. We make heavy use throughout of spin-
weighted spherical harmonics transforms, and of the spin-

6 After accounting of course for the different scaling of spherical harmonic
transforms compared to Fourier transforms etc.



5

Figure 2. Lensing geometry on the curved sky and our nota-
tion, here for a greatly exaggerated deflection. The deflection vec-
tor α lies in the plane tangent to the unit sphere at observed posi-
tion n̂, pointing towards the undeflected position n̂′, lying an angle
α = |α| away on the great circle generated by α. The change of the
local reference axes from n̂ to n̂′ owing to the sky curvature is char-
acterized by the difference β − β′, the change in the angle between
the great circle and the local basis vector eθ at n̂ and n̂′ respectively
(see Eq. (2)).

raising and spin-lowering operators on the sphere, with the
necessary mathematics reviewed in appendix A.

2.1. Lensing remapping

To a good approximation,7 the only effect of gravitational
lensing on the Stokes parameters of the CMB is a remapping
of points on the sphere (Lewis et al. 2017; Lewis & Challi-
nor 2006). Within this approximation, the lensed tempera-
ture field at position n̂ matches that of the unlensed one at
n̂′, where n̂′ is defined lying at distance α from n̂ along the
geodesic starting there in the direction α. Here α(n̂) is the
deflection vector field, living in the space tangent to the unit
sphere at n̂. The geometry and angles are shown on Fig. 2.
For polarization or other fields with non-zero spin, the curva-
ture of the sphere sources a typically small additional phase
shift, caused by the change in the reference axes at n̂ and n̂′.
For a spin-weighted CMB-field (sT ), we can generally write
the deflection operation (Dα) compactly as

[Dα sT ] (n̂) ≡ eis(β−β′)
sT (n̂′). (2)

Actual implementation of the remapping on the sphere re-
quires explicit formulae relating n̂′, β′ to n̂, β. These are eas-
ily gained from spherical trigonometry (Lewis 2005; Lavaux
& Wandelt 2010, for example).

7 For degree scale B-modes, leading deviations from the remapping approx-
imation are expected to come from the combination of emission-angle and
time-delay effects, relevant only for r well below 10−5 (Lewis et al. 2017).

Let ð (or ∂+) and ð̃ (or ∂−) be the spin-raising and spin-
lowering operators (reviewed very briefly in appendix A). We
can use the gradient and curl scalar potentials, ϕ and Ω, to
describe the two degrees of freedom of α, with spin-weight
components,

1α(n̂) = −∂+ϕ(n̂)− i∂+Ω(n̂) . (3)

To first order and for a flat Universe,

ϕ(n̂) = −2

∫ χ∗

0

dχ

(
χ∗ − χ
χχ∗

)
Ψ(n̂, χ) , (4)

where Ψ is the Weyl potential and χ∗ the comoving radial
distance to the last scattering surface. There is no first-order
contribution of Ψ to Ω, because to linear order in the scalar
perturbations, the lensing curl potential Ω vanishes. We do
not consider non-scalar sources here, since they are expected
to be small. At second order, the scalar curl has, however,
some relevance at CMB-S4 depth and is discussed further in
Sec. 2.9. Locally, the distortions induced by α can also be
characterized through the (scalar) convergence κ, the (scalar)
field rotation ω, and the spin-2 shear 2γ = γ1 + iγ2:

κ(n̂) + iω(n̂) =
1

2
∂−1 α(n̂) ;

γ1(n̂) + iγ2(n̂) =
1

2
∂+1 α(n̂) .

(5)

Plugging (3) into (5), we see that the gradient and curl modes
of the shear are uniquely set by the gradient and curl po-
tential, respectively. It also holds that κ = − 1

2∆ϕ and
ω = − 1

2∆Ω, where ∆ is the spherical Laplacian.
Finally, for future reference, we provide the perturbative

version of the lensing remapping (2), which is valid for tiny
deflections (Challinor & Chon 2002):

[Dα sT ] (n̂) ∼ −1

2

[
−1α(n̂)∂+s T (n̂) + 1α(n̂)∂−s T (n̂)

]
.

(6)
In ΛCDM cosmologies, however, this perturbative descrip-
tion is not sufficient, and (2) must be applied.

2.2. Lensing likelihood model and priors

A concrete calculation of the CMB likelihood must utilize
several fiducial ingredients, which we now discuss.

We model the likelihood according to the remapping ap-
proximation, Eq. (2), as follows: let 2P

unl be the unlensed
polarization maps. The observed Stokes Q and U polariza-
tion maps are then

Xdat ≡
(
Qdat

Udat

)
= BDα 2P

unl + noise , (7)

where B describes the instrument beam and transfer func-
tions, along with the projection of the lensed polarization
onto its Q and U components. In all realistic cosmological
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models, the unlensed polarization is massively dominated by
the E-mode signal. The degree scales at which the B-mode
signal, sourced from gravitational waves, could potentially
be observed, are typically excluded from the lensing recon-
struction analysis (see Sec. 2.7). This motivates the use of a
pure E-mode unlensed polarization as the baseline, in which
case

2P
unl(n̂) = −

∑

ℓm

Eunl
ℓm 2Yℓm(n̂) . (8)

The power spectrum of this Gaussian unlensed E-mode, the
CEE,unlℓ spectrum, is another fiducial ingredient of the anal-
ysis. In principle, one could attempt to jointly reconstruct
this spectrum along with α and Eunl. However, within the
ΛCDM model, this spectrum is already tightly constrained
(and will be even more so by the time of CMB-S4), and in-
troducing this additional flexibility is unlikely to improve the
delensing while complicating the analysis by a fair amount.
Therefore, we fix it to our fiducial cosmology.

The covariance of the data conditioned on α, Covα, is ob-
tained by squaring (7) and averaging over the unlensed CMB,
while keeping the lensing deflection fixed:

Covα ≡
〈
XdatXdat,†〉

α

= BDα 2Y CEE,unl 2Y†D†
αB† +N .

(9)

Here, we have used the compact matrix times vector nota-
tion 2P

unl = 2YEunl to represent Eq. (8), and assumed that
the noise term is statistically independent of the signal, with
noise covariance matrixN . The lensing likelihood then takes
the form

−2 ln p(Xdat|α) = Xdat,† Cov−1
α Xdat + ln det Covα.

(10)
Of course, a likelihood that relies on several fiducial in-

gredients will only be approximate. For example, the noise
matrix is, at least in part, only crudely known in practice. Un-
modeled anisotropies in the beams or induced by the scan-
ning strategy can also potentially introduce uncertainties in
the lensing estimation. These challenges do not generally
prevent the reconstruction of the lensing map, but can cer-
tainly result in a suboptimal performance of the resulting
tracer. These complications are beyond the scope of this pa-
per and left for future work.

The lensing likelihood does not carry enough information
to constrain the small-scale modes of the lensing deflection
field. Supplementing the likelihood with prior information
is necessary for an iterative search to converge. Including a
prior is in fact not only necessary, but also desirable, since the
prior down-weights noisy lensing modes, thereby preventing
lensing reconstruction noise to add too much B power to the
lensing B-mode template. Non-linear effects affecting the
lensing map are fairly weak on most scales relevant to de-
lensing, making the simplest choice of a Gaussian prior on

each mode both natural and close to optimal.8 This requires
introducing another fiducial ingredient, the spectrum of the
lensing map. Using κ and ω to parametrize the field, the pos-
terior probability density function to be maximized can then
be written

−2 ln p(α|Xdat) =− 2 ln p(Xdat|α)

+
∑

LM

|κLM |2
Cκκ,fidL

+
∑

LM

|ωLM |2
Cωω,fidL

,
(11)

where the likelihood on the right-hand side is given by
Eq. (10), and Cκκ,fidL , Cωω,fidL are the fiducial spectra. In
our baseline analyses the curl is assumed to vanish, in which
case only the convergence term appears in this equation.

2.3. Lensing magnification for macroscopic deflections

Gravitational lensing changes the solid angle under which
a CMB patch is observed. In Fig. 2, a lensed region of solid
angle dΩ observed at n̂ occupies an unlensed area dΩ|A(n̂)|
at n̂′, where

|A(n̂)| ≡
∣∣∣∣
d2n̂′(n̂,α(n̂))

d2n̂

∣∣∣∣ , (12)

is the determinant of the magnification matrix (the Jacobian
of the sphere remapping induced by α). The well-known
main effect is given by the convergence, as |A| ∼ 1 − 2κ
to first order (Lewis & Challinor 2006, e.g.). For this rea-
son, delensing the CMB will slightly demagnify (for κ > 0)
or magnify (for κ < 0) regions of the data, inevitably,
for the purpose of reducing statistical anisotropies in the
CMB signal. However, this (de)magnification induces new
anisotropies in the noise map. Based on this, and for deflec-
tions larger than the coherence length of the noise, we expect
the noise covariances to crudely follow the magnification,

N [delensed map] ∼ (1− 2κ(n̂))N [raw map] . (13)

As a result, the noise covariance becomes inhomogeneous
after delensing, even if it were perfectly uniform in the data.
The noise covariance decreases(increases) slightly in regions
of positive(negative) convergence. This introduces a novel
source of ansisotropy in the iterative search for the optimal
lensing map, referred to as the ‘delensed-noise mean-field’.
Quadratic estimates aimed at capturing residual lensing must,
in principle, subtract this ‘delensed-noise mean-field’. Fur-
ther details on this effect are discussed in Sec. 2.5.

In our reconstruction algorithm, which is based on the like-
lihood function (see Eq. (9) and (10)), the operator D†

α con-
tains the delensing operations, and its explicit form is as fol-
lows: it can be observed (using for example an explicit matrix

8 Usage of a prior ignoring the non-Gaussianity of the deflection field does
not prevent reconstruction of non-Gaussian features, as long as the likeli-
hood is constraining enough. Reconstructions on simulations with realistic,
non-Gaussian input lensing maps converge just as well. A detailed study
will be presented in a different paper. Using a Gaussian prior, results are
insensitive to the prior spectrum shape, since this is already tightly con-
strained from observations (Aghanim et al. 2020b; Carron et al. 2022; Qu
et al. 2023).
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representation for Dα defined in 2), that for deflection fields
that are weak enough to be invertible, the following relation
holds:

[
D†

α sT
]

(n̂′) = |Aα−1(n̂′)| [Dα−1 sT ] (n̂′). (14)

In this equation, α−1 is the deflection field inverse9 to α, and
|Aα−1 | is the determinant of its magnification matrix.

In practice, delensing is always applied through D†
α, on

maps that are first inverse-noise-variance weighted. At the
time this analysis started, the implementation of D†

α used
relation (14), and therefore required explicit calculation of
these determinants, which we now discuss.10

The exact form of the Jacobian determinant, and allowing
for macroscopic deflections, is derived in Appendix C. The
result is

A =
sinα

α

[
(1− κ)

2
+ ω2 − γ21 − γ22

]

+

(
cosα− sinα

α

)
(1− κ− cos(2β)γ1 − sin(2β)γ2) ,

(15)

at each point on the sphere. The entire second line is a cor-
rection that is at least quadratic in the deflection angle α.
It tends to reduce the Jacobian for large deflections, since
neighboring geodesics get closer together on the sphere. San-
ity checks of this formula are provided in Appendix C. Gen-
erally though, the difference of |A| to the leading order re-
sult 1 − 2κ is of course small for reasonably sized deflec-
tions. This linearization is accurate over the full sky to 0.3%
at worst for a ΛCDM deflection field with Lmax = 4000.
For the same configuration, neglecting the sky curvature (i.e.
only considering the square bracket in Eq. (15)), introduces a
negligible error of O(10−7) in the determinant. This is what
we used in practice.

2.4. Likelihood gradients, quadratic part

The gradients with respect to the lensing map of the lensing
likelihood are a necessary calculation to search for the max-
imum a-posteriori deflection field. We find position-space
convenient for analytical work: lensing is a local effect on
the CMB and this naturally leads to compact expressions. We
proceed following Appendix A of (Carron & Lewis 2017),
which we complete with the exact calculation of the gradi-
ents. We consider the complex variation,

2
δ

δ±1α(n̂)
≡ δ

δαθ(n̂)
∓ i δ

δαφ(n̂)
. (16)

These two gradients will lower (for δ1α(n̂)), or raise (for
δ−1α(n̂)) the spin of the field acted upon by one unit, re-

9 The deflection field α−1 inverse to α is defined as the one undoing the
remapping induced by α, when this is possible. In the notation of Eq. (2),
Dα−1 = [Dα]−1.

10 At the time of publishing this paper, the delensing operation has been im-
proved by (Reinecke et al. 2023), and explicit calculation of the determinant
is not a requirement anymore.

spectively. We can then define the spin-1 likelihood gradient
as:

2
δ ln p(Xdat|α)

δ−1α(n̂)
≡ 1g

QD
α (n̂)− 1g

MF
α (n̂), (17)

where we have split the total likelihood gradient into its con-
tribution from the quadratic part (gQD

α ), and from the log-
determinant (−gMF

α ). The decomposition of 1gα(n̂) into gra-
dient and curl components gives the lensing potential and curl
potential gradients.

It is apparent that the relevant variations entering Eq. (17)
are those of deflected spin-weighted fields Dα sT under a
change in the deflection vector. On the flat sky, where the
remapping equation at position n̂ is merely [Dα sT ] (n̂) =

sT (n̂ + α), the gradient with respect to α is simply the gra-
dient of the field evaluated at the deflected position. On the
curved sky, we expect a similar-looking result, with (when
working with the spin-weighted components) the standard
gradient replaced by minus the spin-raising operator. If the
deflection is large enough that the sky curvature is relevant
between n̂ and n̂′, there will be possible corrections. As we
now discuss, it turns out that they can be calculated exactly,
but are also safely negligible.

The concrete calculation is deferred to appendix D. The
result is

2
δ [Dα sT ] (n̂)

δ±1α(n̂)
= −

[
Dα ∂

∓
s T
]

(n̂)

+ f(α(n̂))
([
Dα ∂

∓
s T
]

(n̂)− e∓2iβ
[
Dα ∂

±
s T
]

(n̂)
)
.

(18)

Here, sT is the corresponding spin-s field, and we have omit-
ted its spin subindex on the right hand side of the equation.
The first line is the direct analog of the flat-sky result, and
the second line is the correction term. The prefactor f(α)
is 1

2

(
1− sinα

α

)
∼ α2/12 for small α. The second line ac-

counts for the focusing effect of the spherical geometry on
nearby geodesics. For example, all geodesics of length π
starting from a point meet again at the antipodal point. This
provides a useful sanity check of this formula, performed in
the appendix, which is that any variation of α at n̂ that leaves
the deflection angle α(n̂) invariant and equal to π must re-
sult in a vanishing gradient (18). For any realistically-sized
ΛCDM CMB weak lensing deflection field of a couple of ar-
cmin, f(α) ≃ 5 × 10−8, hence is a negligible correction.
There are no practical difficulties including this correction
term and we tested its impact for both temperature and po-
larization estimators and on the full sky and found that it has
negligible impact: the relative improvement on the cross cor-
relation coefficient improves only marginally.

Safely neglecting this correction, the precise expression
for the likelihood gradient takes a form perfectly analo-
gous to the case of the quadratic estimator. As is well
known (Okamoto & Hu 2003; Lewis & Challinor 2006;
Maniyar et al. 2021), the quadratic estimator constructs an
estimate of the lensed CMB from the data, and weights its
gradient in real-space by inverse-variance-weighted residu-
als. In our context, the only difference is that the lensing
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likelihood uses the current estimate of lensing map α as an
additional piece of knowledge. The calculation of the gradi-
ent can be described as follows:

In a first step, we estimate α using a standard QE, and
construct an estimate of the unlensed CMB, referred to as
EWF

α . This is in contrast to the QE for which the lensed
CMB is used. We call this CMB reconstruction step ‘Wiener-
filtering’, since it has the precise meaning of reconstruct-
ing the Maximum a Posterior point of the assumed Gaussian
Eunl signal, conditioned on α and the other likelihood ingre-
dients11 being the truth. Its explicit form is

EWF
α =

[
CEE,unl,−1 +N−1

α

]−1
2Y†D†

αB†N−1Xdat ,
(19)

where Nα is the delensed E-noise covariance matrix,

N−1
α ≡ 2Y†D†

αB†N−1BDα 2Y. (20)

In practice, the large bracketed matrix inverse is performed
with a conjugate-gradient solver. In the second step, we
construct the inverse-variance weighted polarization residu-
als, which we write 2P̄α(n̂). The residuals are the differ-
ence between the data maps (Xdat) and the prediction of the
likelihood model assuming that the deflection and Wiener-
filtered CMB are the truth. This conditioned prediction is
the beamed and deflected polarization BDαP

WF
α , where the

Wiener-filtered Stokes polarization PWF
α is obtained from its

E-mode EWF
α in the usual way, Eq. (8). Inverse-variance

weighting the residuals gives

2P̄α(n̂) ≡
[
B†N−1

(
Xdat − BDαP

WF
α

)]
(n̂) . (21)

With this in hand, the quadratic piece of the likelihood gra-
dient is

1g
QD
α (n̂) = −

∑

s=±2

−sP̄α(n̂)
[
Dα ∂

+
s P

WF
α

]
(n̂) , (22)

where, for the reasons discussed above, we have only in-
cluded the first line of Eq. (18) in the brackets. This equation
is the exact analog of the standard unnormalized, quadratic
estimators built from polarization (Hu & Okamoto 2002),
when written in the spin-weight formalism (Aghanim et al.
2020b). Since P̄α contains both E and B components, this
gradient is the combination of an EE and an EB quadratic
piece, with the EB piece containing most of the signal.
There is no BB piece since our fiducial model assumes van-
ishing primordial B-modes.

2.5. Likelihood gradient, ‘mean-field’

Our goal in this section is to quantify the importance of the
‘delensed-noise’ mean-field which we introduced briefly in
Sec. 2.3. We will demonstrate that it plays a very minor role
in the configurations of interest in this paper.

11 Explicitly, these ingredients are the inverse noise matrix, the transfer func-
tion, and the unlensed E-mode power spectrum.

The mean-field is the part of the likelihood gradient that
originates from the determinant term in Eq. (10). As is the
case with standard quadratic estimator analyses, its role is to
remove signatures of anisotropies picked up by the quadratic
piece that are unrelated to the lensing signal of interest: this
can be seen from the identity

1g
MF
α (n̂) =

〈
1g

QD
α (n̂)

〉
, (23)

where the average is over realizations of the data according
to the likelihood model p(Xdat|α), with the deflection field
set to α in each of these realizations.12 In the case of the
quadratic estimator (for which α = 0 in Eq. (23)), and in
the absence of non-idealities like masking or noise inhomo-
geneities, the mean-field vanishes. For the iterative process,
this is not true anymore, because α, the current best esti-
mate of the lensing field, sources itself a mean-field: as dis-
cussed in Sec. 2.3, by moving the data slightly around, it ef-
fectively magnifies or demagnifies certain areas, and the de-
lensed noise on the E-mode becomes inhomogeneous even
if it was homogeneous before.

We calculate and discuss this contribution in the absence
of other sources of anisotropies in Appendix B. For high-
resolution experiments, with polarization noise spectrumNℓ,
there is the simple result

gMF,κ
LM ≃ −2κLM

∑

ℓ

2ℓ+ 1

4π

(
CEE,unlℓ

CEE,unlℓ +Nℓ

)
. (24)

This is valid for low lensing Ls, but does not fail too badly
at high Ls either. The sign is negative, because a magnified
(κ > 0) CMB patch will have its noise map appear demag-
nified after delensing. The curl component gMF,ω is much
smaller, since the lensing curl potential affects the magnifi-
cation to second order.

Equation (24) comes from the EE-only part of the itera-
tive quadratic estimator. Although theEB estimator captures
much more signal, its contribution to the convergence mean-
field is small. This can be understood as follows: a large
converging lens does not locally change the pure E property
of the unlensed E-modes. Hence, the EB part does not gen-
erally respond to large-scale convergence-like anisotropies.

To assess the importance of this mean-field component, it
is instructive to compare its magnitude to that of the other
gradients. Doing so allows us now to give an analytical ar-
gument that this mean-field component is small enough that
it can only play a role when the MAP iterative search has al-
ready converged to very good accuracy, but is negligible on
the onset of the iterations.

For deep experiments like CMB-S4, the number of noise-
free E-modes is high. For a beam with full width at half

12 The above equation follows from the fact that under any parameter variation
δ we must have 0 = δ ⟨1⟩ =

〈
δ ln p(Xdat|α)

〉
=

〈
gQD

〉
−

〈
gMF

〉
=〈

gQD
〉
− gMF. The last equality holds since the gradient of the log-

determinant is data-independent.
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maximum (FWHM) of 1 arcmin and polarization noise of
0.5 µK-arcmin, we find from Eq. (24),

gMF,κ
LM ≃ (−3 · 106)κLM . (25)

If the mean-field component is neglected, then a fully con-
verged iterative solution must have the prior and quadratic
pieces in equilibrium, that is,

gPR,κ
LM = − κLM

Cκκ,fidL

= −gQD,κ
LM . (26)

At the peak of the lensing power of L ∼ 30, we find a similar
value:

− κLM

Cκκ,fidL=30

≃ (−4.5 · 106)κLM . (27)

On the other hand, in the first few iterations, the quadratic
piece still completely dominates. The first iteration gradient
is the (unnormalized) standard quadratic estimator, gQE,κLM .
The standard EB quadratic estimator response in the large
lens limit is

gQE,κLM ≃

2κLM
∑

ℓ

2ℓ+ 1

4π

(
CEE,lenℓ

CEE,lenℓ +Nℓ

)(
CEE,lenℓ

CBB,lenℓ +Nℓ

)
.

(28)

This equation holds for L ≥ 2.13 Since the quadratic estima-
tor already resolves the spectrum at lowLwith good signal to
noise, we can directly compare the result to Eq. (25), finding

gQE,κLM ≃ (1.7 · 108)κLM , (29)

for the same, deep configuration. This suggests, that at low
L, the delensed noise mean-field piece is small. Only if the
MAP method reduces the difference between the true and es-
timated convergence by a factor of about 70 compared to the
QE estimate, does this mean-field become a bias on the re-
construction which may be taken into account. At higher
L, it is irrelevant in any case. In practice, the mean-field is
heavily dominated by masking, as well as other instrumen-
tal non-idealities that are either poorly known or more diffi-
cult to include in the likelihood model for practical reasons.
Most relevant contributions of the mean-field peak at low L,
but they contribute little to B-mode delensing. This moti-
vates a simple baseline solution as follows (and comes at zero
additional cost): we perform the iterations using a constant
mean-field, calculated for example from quadratic estimators
on a set of simulation with accurate noise maps and vary-
ing lensing fields. If necessary, after the iterative scheme has
converged to an approximate MAP solution, α̂MAP, we can
correct for residual mean-field contamination using

α̂MAP −
〈
α̂MAP

〉
MC

, (30)

13 The polarization estimator dipole response is much weaker, since a lensing
dipole does not produce any shear.

instead of α̂MAP for the delensing step, where the average
is built from the set of simulations for which the iterative
solutions are constructed. Since these simulations have vary-
ing input lensing, Eq. (30) does not contain the α-induced
part, which is neglected altogether in this approach. Secs. 2.8
and 4 contain explicit tests of this and of other options, con-
firming that the mean-field is not a major issue for the pur-
pose of B-mode delensing.

2.6. Construction of the B-polarization lensing templates

We now discuss our construction of the lensing B-mode
template from the reconstructed lensing and E-mode tracers.

At the end of the iterative process, we can calculate the
prediction of the lensing-induced CMB polarization as fol-
lows. The Wiener-filtered E-mode from Eq. (19) (with, in
that equation, α = αMAP) is our best estimate of the un-
lensed E-mode, which we write Êunl. We first build its
Stokes polarization maps, 2P̂ unl, and then remap it,

2P̂
len(n̂) =

[
Dα̂MAP 2P̂

unl
]

(n̂) , (31)

where
2P̂

unl(n̂) = −
∑

ℓm

Êunl
ℓm 2Yℓm(n̂). (32)

The B-mode of the deflected polarization 2P̂
len of Eq. (31)

is the B-mode lensing template, B̂LT,MAP. In several parts
of this work, we will use the following shorter notation for
these operations:

B̂LT,MAP ≡ α̂MAP ◦ Êunl . (33)

We will often compare the performance of iterative delensing
to that of quadratic estimator delensing. One possibility is to
proceed in the same manner,

B̂LT,QE ≡ α̂QE ◦ Êlen , (34)

where the E-mode map Êlen is the Wiener-filtered lensed
CMB. There is a known subtelty, though, that when com-
bining the lensed E-mode with the quadratic estimator, it is
more powerful to apply the remapping to leading order in
the deflection, rather than exactly (Baleato Lizancos et al.
2021a). This is due to a beneficial cancellation of non-
perturbative effects, which does not occur anymore when
the exact remapping Eq. (31) is used on the lensed E-mode.
Hence, for quadratic estimator delensing, we also consider
the perturbative action of lensing (given by Eq. (6)) on the
E-mode.

There is less flexibility in the choice of the E-template
in the case of the iterative lensing solution: by design of
the lensing reconstruction process, the reconstruction noise
in α̂MAP and Êunl have a strong statistical dependence:
when the CMB likelihood model is inaccurate, both Êunl and
α̂MAP can be somewhat wrong, but still manage to provide a
reliable B-mode template. In this case, independent adjust-
ments to Êunl or α̂MAP can break this dependence and de-
grade the delensing performance. The construction described
by Eq. (31) consistently gives the best results.
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2.7. Low-ℓ B-mode deprojection

The search for primordial B-mode power focuses on
large, degree scales, where B-lensing is weaker and the
primordial signal is expected to be strongest. To remove
B-lensing, we construct a B-lensing template from high-
resolution data, which provides the small-scale information
needed for reconstructing the deflection field and primordial
E modes. This template is then applied to data measuring the
largest CMB scales, effectively reducing variance from non-
primordial signals. Although large-scale information from
high-resolution data could technically improve the lensing
template, this approach generally introduces a statistical de-
pendence between the deflection field’s reconstruction noise
and the delensed map (Teng et al. 2011; Carron et al. 2017;
Namikawa 2017; Baleato Lizancos et al. 2021b). At the QE
level, this appears notably as a very strong disconnected 4-
point function, given by the Gaussian pairings of

ĈB
datBLT,QE

ℓ ∋ Bdat · α̂QE(Edat, Bdat) ◦ Êlen , (35)

with a tendency to decrease both the B-mode power and its
variance, however, it is unrelated to true delensing. At low
noise levels, a 6-point function also becomes relevant, as
studied in some detail in (Namikawa 2017; Baleato Lizan-
cos et al. 2021b), and predictions of the spectra are rendered
much more complicated, particularly in the presence of ten-
sor modes for which Bunl ̸= 0.

Less is known in the case of the iterative estimator, but this
bias is even larger there (as we show later in Sec. 2.8). The
lensing reconstruction gives little weight to these large scale
B-modes. Hence, a simple solution which we adopt here is
to exclude these overlapping modes from the beginning. We
proceed here in a quite careful manner with the curved-sky
version of the ‘overlapping B-mode deprojection’ (OBD)
technique introduced in (Adachi et al. 2020). We exclude
modes as follows: let Pℓm(n̂i) be the Stokes polarization
pattern on pixel n̂i produced by a CMB-sky Bℓm-mode. We
assign a high noise level to a set of these patterns by augment-
ing the noise matrix in the following way,N → N+P†σ2P ,
where σ2 is a diagonal matrix of dimension the number of
patterns considered, with values on the diagonal the assigned
noise variances of the patterns. According to the Woodbury
matrix identity (Hager 1989), this has the effect of replacing
the inverse noise matrix model N−1 by

N−1 −N−1P†
[

1

σ2
+ PN−1P†

]−1

PN−1 . (36)

In this way, all patterns included in P are perfectly masked
from the analysis in the limit of infinite σ2. A high but finite
value of σ2 is often required for practical reasons but works
equally well. We deproject all modesBℓm with 2 ≤ ℓ ≤ 200,
for a tiny loss of signal to noise14, using σ2 =

(
103µK

)2
.

14 In the CMB-S4 South Pole deep configuration of this paper, deprojection
of these modes causes the predicted residual B power amplitude after de-
lensing to rise formally to 0.053 from 0.052

The matrix inside the square brackets in this expression is
therefore a dense matrix with about ℓ4B elements. The ma-
trix is precomputed and stored in memory during the recon-
struction. An alternative to this computationally rather ex-
pensive calculation of the OBD-matrix would be to filter the
data maps by setting the transfer function for these modes to
zero. On the full sky with homogeneous noise, the two pro-
cedures are exactly equivalent. On the masked sky, it is less
straightforward to cleanly exclude this set of sky modes, po-
tentially sourcing residual internal delensing biases. We have
not pursued the alternative approach in this work and leave it
to a future study.

2.8. Idealized full sky delensing

As a first step, we demonstrate the effectiveness of our
lensing reconstruction method and of the B-mode delensing
procedure on the full-sky. We generate full-sky curved-sky
lensed CMB data with no primordial B-modes, and use dif-
ferent ϕ and E-modes for each realization, synthesized from
a standard ΛCDM cosmology. The simulations use an ide-
alized, low-noise, high-resolution configuration: we add an
isotropic Gaussian noise of ∆P = 0.5 µK arcmin and con-
volve the maps with a beam FWHM of 1 arcmin. We re-
construct the lensing potential from the E and B maps using
both QE and MAP methods. We restrict to the multipole
range ℓ ∈ [2, 3000] for the E-modes and ℓ ∈ [200, 3000] for
the B-modes to avoid internal delensing bias, as discussed in
Sec. 2.7.

For the QE B-mode template estimation, we compare two
approaches, as described in Sec. 2.6. The first approach is a
perturbative remapping of the Wiener-filtered and lensed E-
mode at first order, following Eq. (6). The deflection field is
taken as the Wiener-filtered QE estimate,

κWF
L = κ̂QEL

CκκL

CκκL +N
(0),κQE
L

, (37)

with N (0),κQE
L the dominant term in the variance of the re-

constructed QE power spectrum, arising from the Gaussian
contractions of the four-point function of the lensed CMB
fields.15 The second B-mode template is estimated with the
non-perturbative lensing remapping of Eq. (31), where the
unlensed polarization field is given by Eq. (19) and the de-
flection field is the QE field. In practice, this corresponds to
the first iteration of the MAP algorithm. We found that both
approaches give a similar residual B-mode lensing power.
As shown in (Baleato Lizancos et al. 2021a), the perturba-
tive remapping of the observed (Wiener-filtered) polarization
field has a similar residualB-mode lensing power as the non-
perturbative remapping of the unlensed polarization.

For the MAP approach, the B-mode template is derived
using Eq. (31), hence, by remapping the unlensed polariza-

15 We find that including N
(1),κQE
L to the Wiener filter reduces the residual

lensing amplitude by about 2 percent.
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tion field by the MAP lensing estimate.16 As discussed in
Sec. 2.5, the QE mean-field is zero, but the MAP mean-field
is not. We estimate the mean-field at first order in the lensing
field estimate, as described in the appendix B of (Carron &
Lewis 2017). Figure 3 shows the power spectrum of the lens-
ingB-mode (orange), and residual lensingB-modes after the
subtraction of the QE (dark blue), and MAP (light blue) B-
mode templates. The QE method removes significant power
of the lensed B-modes, thereby decreasing the mean CBBℓ
amplitude in the range ℓ ∈ [2, 200] from 2.1 × 10−6µK2 to
4.8 × 10−7µK2. The MAP method reduces it further, leav-
ing about 1.3 × 10−7µK2 of the B power. For illustration
purposes, we also estimate the MAP B-mode template for
which the B-modes ℓ ≤ 200 are included in the lensing re-
construction (solid gray), and additionally show the power
spectrum of the simulation’s white noise (dashed gray). In-
cluding these modes results in an internal delensing bias (see
Eq. (35)), as can clearly be seen: the residual B-mode power
is below the noise level of the polarization maps. In the
standard analysis, where we reconstruct the lensing potential
from the B-modes with ℓ ∈ [200, 3000], this internal delens-
ing bias appears at scales ℓ > 200 for both the QE and the
MAP methods, albeit it is much smaller in the former case,
as we can see in Fig. 3.

We can compare our results with the prediction of the
residual lensing B-mode power. To build predictions we
generally follow the procedure detailed in (Legrand & Car-
ron 2022), a variant on the original procedure for the EB-
estimator put forward by (Smith et al. 2007). The MAP so-
lution is analytically intractable even under idealized condi-
tions, and this simplified procedure is not free from some
ambiguities, as we now discuss.

Predictions are estimated by computing the delensed
power spectrum CBB,delensℓ from the unlensed E spectrum
CEE,unlℓ and a lensing power spectrum Cκκ,delensL reduced
by some fraction:

Cκκ,delensL = (1− ϵL)CκκL , (38)

where the delensing efficiency ϵL is

ϵL =
CκκL

CκκL +Nκκ
L

. (39)

This variance of the reconstructed lensing potential Nκκ
L

contains the Gaussian contribution N
(0)
L , as well as terms

higher-order in CκκL . For the QE, we found that the N (1)
L

term (the secondary connected contractions at first order in
CκκL ) has an impact of roughly 20% on the amplitude of
the predicted residual B-mode, from 3.9 × 10−7µK2 when
Nκκ
L = N

(0)
L to 4.8× 10−7µK2 when Nκκ

L = N
(0)
L +N

(1)
L .

16 We find that using the perturbative remapping, together with the lensed
E-map, results in an almost identical MAP residual lensing B-mode spec-
trum, in agreement to the findings discussed in (Baleato Lizancos et al.
2021a)

The case including N (1)
L provides a better fit to the observed

delensed power. For the MAP prediction, we compute the-
ses lensing spectrum biases iteratively following (Legrand &
Carron 2022): starting with the noise of the QE reconstruc-
tion, Nκκ

L , we compute the delensed spectrum of Eq. 38, and
the corresponding partially lensed E power spectrum. These
spectra are then inserted as the weights and lensing response
in the analytical expression of Nκκ

L . Finally, we obtain a
new delensing efficiency ϵL and repeat the calculation with
an iterative procedure until convergence. Contrary to (Smith
et al. 2012), we do not include the imperfect knowledge of
the E-mode power in the iteration procedure. We found that
it does not impact the predictions, due to the low noise level
in polarization considered here. It appears that the predic-
tion of the MAP delensing residual provides a better fit when
we only include the N (0)

L bias in the iterations. By includ-
ing the N (1)

L bias in all iteration steps we obtain a mean B-
mode amplitude of 1.6×10−7 µK2 across the relevant scales.
However, not including it gives a meanB-mode amplitude of
1.3×10−7 µK2, which matches the observed delensing resid-
ual from our simulation. Nevertheless, we do not have an
analytical argument for whether or not the N (1)

L bias should
be taken into account for the lensing power spectrum noise
of the MAP algorithm. We take this as a measure of our un-
certainty in the prediction, and show the predicted delensing
amplitudes as shaded areas in Fig. 3. The lower limit corre-
sponds to Nκκ

L = N
(0)
L , while the upper limit corresponds to

Nκκ
L = N

(0)
L +N

(1)
L .

The reconstruction described above used a perturbative ap-
proximation to the delensed noise mean-field, which is the
only source of mean-field in this idealized reconstruction.
We now test the importance of this term explicitly. Figure 4
shows the spectrum of the quadratic piece gQD

α of the gra-
dients at the starting point (the quadratic estimator, in blue)
and at iteration 15 in orange, where we often stop the recon-
struction for CMB-S4-like configurations. We show results
for L ≥ 2 because the lensing dipole behaves differently.17

The displayed spectra are the gradients normalized by our
prediction of the iterative estimator response,RMAP

L ,

gQD
α,LM

RMAP
L

, (40)

such that, very crudely, the normalized map corresponds to
the expected Newton increment to the lensing map whenever
the prior is irrelevant. The prior term is shown in purple.
The two gradients are mostly in equilibrium at L ≳ 2000.18

As can be seen in the Figure, for L ≲ 1000, the prior is

17 On the one hand, the lensing dipole has much higher noise than for L ≥ 2,
because it is insensitive to the shear part of the signal. On the other hand,
the dipole receives a strong contribution from the aberration of the CMB
caused by our motion relative to the CMB frame (Aghanim et al. 2014).

18 In this reconstruction, the size of the Newton step in the iterative procedure
was suppressed for L ≥ 1000 compared to smaller L’s, in order to avoid
too large steps. This causes the feature seen at L ∼ 1000 in the orange
line.
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Figure 3. Residual B-mode power after subtracting the B-
template estimated with the QE (blue line) or with the MAP (light
blue line), in an idealized full-sky reconstruction, on the scales rele-
vant for inference on r. The dashed blue line overlaps with the solid
blue and is therefore invisible; it corresponds to using the lensing
remapping of the unlensed E obtained at the first iteration of the
MAP and it matches almost exactly the perturbative remapping of
the lensed E-modes. Colored bands show the corresponding fidu-
cial delensed CMB spectra (see discussion in the text). The or-
ange line is the B power of the map before template subtraction
(including noise) and the dashed orange line is the fiducial lensed
B power including noise. The gray dashed line shows the instru-
mental polarization noise power. To calculate the light blue line, the
B-modes below ℓ = 200 are not used to estimate the B-templates.
This avoids internal delensing bias; the result of not treating inter-
nal delensing bias is illustrated by the gray line, in which case the
B-template is estimated using all modes from ℓ = 2. Interpreted
naively, the line shows unrealistically efficient delensing with de-
lensed B-mode power slightly below the instrumental noise power
of the map. The light blue line follows the gray line for ℓ ≥ 200.

substantially smaller, which suggests that there is still some
amount of information in the likelihood that can be collected,
although it is small.

The estimated mean-field for iteration step 15 is shown in
green. To compute it, we used a trick presented in the ap-
pendix 2 of (Carron & Lewis 2017): instead of

〈
gQD
α

〉
we

calculate the average of a similar map,

1ĝ
MF
α (n̂) = −

∑

s=±2

〈
−sp̄α(n̂)

[
Dα∂

+
s p

WF
α

]
(n̂)
〉
, (41)

where p̄α = B†x, pWF
α = CEE,unlD†

αB†Cov−1
α x, x is a

map of unit variance, independent Gaussian variables, and
s is the spin of the field. Assuming the CMB likelihood
model correctly describes the data, the average, Eq. (41), is
the same as

〈
gQD
α

〉
, but requires orders of magnitude less

Monte-Carlo simulations for the same precision of the result.
This is because the N (0) noise of this quadratic estimator is
much lower than that of the one with the correct weights:
see appendix 2 of (Carron & Lewis 2017) for more details.
As derived in Sec. 2.5, the mean-field shape follows that
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Figure 4. Comparison of normalized CMB likelihood gradients
for a full-sky idealized reconstruction. The blue and orange curves
show the quadratic piece spectrum at iteration 0 (the quadratic es-
timator) and 15, where we often stop the iterations. The prior term
at the same iteration is shown in purple. The delensed noise mean-
field term, shown in green and obtained with the steps given in the
text, is very small and has negligible impact on the quality of the
reconstruction. We also show the quadratic piece after 35 iterations
in red. Only then does it become comparable to the mean-field on
large-scales. As discussed in the text, the improvement achieved in
going from 15 to 35 iterations is tiny, however.

of the convergence (shown in black). At the lowest multi-
poles, it appears negative, but this may be attributed to resid-
ual Monte-Carlo noise in that range. The mean-field remains
much smaller than the quadratic gradient piece. Only at iter-
ation 35 (red) does the latter reach an amplitude comparable
to the former. Between iterations 15 and 35, the delensing
efficiency has hardly grown, from 94.5% to 95.0%.

Finally, using Eq.(41), it is possible to run the entire full-
sky reconstruction process using a single Monte-Carlo simu-
lation to obtain the mean-field. As expected from Fig. 4, we
find no significant difference. All of this demonstrates that
in general the delensed-noise part of the mean-field can be
safely neglected in the reconstruction from polarization data.

2.9. Idealized joint ϕ-Ω lensing reconstruction

Even though the lensing curl vanishes to first order for den-
sity perturbations,19 it is well known that the combined effect
of two shearing lenses (with misaligned shears) does induce
field rotation. The leading contribution to quadratic order can
be written as,

ω(n̂) = −4

∫ χ∗

0

dχ

(
χ∗ − χ
χχ∗

)∫ χ

0

dχ′
(
χ− χ′

χ′χ

)

· [γ1(n̂, χ)γ2(n̂, χ′)− γ2(n̂, χ)γ1(n̂, χ′)] ,

(42)

19 We ignore here non-scalar contributions, such as lensing by gravitational
waves, which are expected to result in negligible signals (Cooray et al.
2005).



13

101 102 103

L

10 12

10 11

10 10

10 9

10 8

10 7

10 6

C L

C , fid
L

CL , QE
CL , MAP

N(0)
L , QE

N(0)
L , MAP

N(1)
L , QE

N(1)
L , MAP

101 102 103

L

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

C
in
/

C L
C

in
in

L
 

QE

MAP

Pred.

Figure 5. Lensing field rotation reconstruction results from our full-
sky joint lensing gradient and curl reconstruction. Upper panel:
Spectra of the curl quadratic estimator and iterative reconstruc-
tion are shown in blue and orange, after rescaling by the predicted
Wiener-filter amplitude, as described in the text. The predicted N (0)

biases are shown in green and red. The black line shows the field
rotation power spectrum in our fiducial cosmology. The dashed
lines show the corresponding κ-induced N (1) lensing biases (the
ω-induced N (1) are much smaller and negligible), which is mostly
relevant in the QE case. Lower panel: Cross-correlation coefficient
of this reconstruction to the input curl modes, together with the pre-
dictions built from the N (0) and N (1) biases. Error bars are ob-
tained from the scatter within bins assuming independent estimates
at each and every L. The auto-spectrum detection S/N jumps by a
factor of 5 with the iterative solution.

and is referred to as ‘lens-lens coupling’, see (Hirata & Sel-
jak 2003a) or (Pratten & Lewis 2016) for recent discussions.
Here, 2γ(n̂, χ) is the spin-2 shear as defined in the usual way
(see Eq. (5)), but acting on the Weyl potential along the ray.
At the noise levels of CMB-S4, this lensing curl mode can
be detected in cross-correlation to external data (Robertson
& Lewis 2023). In this section, we test the impact of the ex-
pected curl signal by performing a joint reconstruction of the
lensing gradient and curl modes. This will allow us to con-
firm that the lensing curl is not a source of worry for CMB-S4
delensing. Although this joint analysis doubles the number
of modes to be reconstructed simultaneously, we note that

this is not expected to significantly degrade the quality of the
gradient reconstruction: in the absence of a parity-violating
CEBℓ or CTBℓ signal, the lensing gradient and curl CMB
quadratic reconstruction share no leading Gaussian covari-
ance20 N (0) (Namikawa et al. 2012). It is true though that
each component (here convergence and curl) induces a bias
of N (1)-type (Kesden et al. 2002) on the lensing spectrum
of the other component,21 but this effect is smaller than their
individual N (0) noise variance levels.

For the test conducted in the following, we add a Gaus-
sian realization of the post-Born lensing curl component to
a simulation. This Gaussian realization comes from the
Eq. (42)-induced power spectrum calculated by CAMB,22

and is shown as the black line in Fig. 5. The lensing curl is
second order in the scalar perturbations. A consistent frame-
work would require the inclusion of the corresponding post-
Born corrections to the lensing gradient potential (this is,
however, smaller than 0.2% and we can therefore neglect it
here), as well as the usage of a non-Gaussian simulated lens-
ing potentials. However, the latter goes beyond the scope of
this paper and we stick to Gaussian realizations, which still
provides an important test of the joint reconstruction.

We jointly reconstruct the convergence κ and field rota-
tion ω on the full sky by starting from their Wiener-filtered
quadratic estimate.23 The reconstruction is done for 1 ≤ L ≤
5120 for κ and 2 ≤ L ≤ 5120 for ω. The same lensing curl
spectrum used for the simulation generation is used as the
prior on the curl modes for the reconstruction in Eq. (11).
We pick a homogeneous polarization noise level of 0.5µK-
arcmin, use modes of the data up to ℓmax = 4096, and recon-
struct the unlensed CMB E-mode up to ℓmax,unl = 5120.

Figure 5 shows in the upper panel the spectrum of the re-
constructed curl in orange, with Blue being QE for compar-
ison. We have rescaled the MAP spectrum by the isotropic
normalization, (Wω

L)2, with

Wω
L =

Cωω,fidL

Cωω,fidL +N
(0),ωMAP
L

. (43)

Regarding the lensing gradient, (Legrand & Carron 2022)
demonstrates that the approximation of this normalization,
and applied to the MAP solution, is accurate within a few
percent. This appears to also be a good fit for the curl mode
normalization, and the resulting spectrum can nicely be de-
scribed by the expected reconstruction noise N (0),ωMAP

L , as
shown in red. In this joint reconstruction, there are two types
of N (1) bias: the standard one induced by κ, and the one
induced by the non-zero ω. The latter, however, is much

20 Contrary claims are given, for example in (Cooray et al. 2005; Pratten &
Lewis 2016). However, this is likely due to small numerical inaccuracies
in (Cooray et al. 2005).

21 See for example appendix A of (Aghanim et al. 2020a) for the general form
of N(1)-type contributions.

22 https://camb.readthedocs.io/en/latest/postborn.html
23 We use the same Plancklens package to build the curl-mode quadratic

estimators
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smaller than the κ-induced bias and is negligible. For the
QE, the N (1) bias (dashed green) plays a relevant role in the
auto-spectrum, but is strongly suppressed for the MAP solu-
tion (dashed red), since both the lensing B power and lens-
ing power are reduced by large factors. In the lower panel
of Fig. 5, the points show binned estimates of the empirical
cross-correlation coefficient to the input lensing curl modes,

ρωL ≡
Cω̂ω

in

L√
Cω̂ω̂L Cω

inωin

L

. (44)

The error bars were calculated from the empirical scatter
within each bin, assuming statistically independent fluctua-
tions across multipoles. The black lines show the predictions

ρω,predL =

(
Cωω,fidL

Cωω,fidL +N
(0),ω
L +N

(1),ω
L

)1/2

, (45)

for the QE and MAP. The improvement brought by the iter-
ative method is clearly substantial: the full-sky QE signal to
noise,

(S/N)
2 ≡ 1

2

∑

L

(2L+ 1)
(
ρω,predL

)2
, (46)

on the auto-spectrum detection is S/N ∼ 2.1 for this con-
figuration, but reaches S/N ∼ 10.4 for the MAP method.
Of course, at the polarization noise level of 0.5µK-arcmin,
CMB-S4 would probably observe only a small fraction of
the sky, so that a purely internal detection in this configura-
tion still remains challenging.

Finally, the impact on the residual lensing B-mode ampli-
tude is small. Comparing delensing efficiencies obtained on
this same simulation with and without curl modes, we find
that the amplitude is reduced by 0.4% compared to the for-
mer case. This allows us to conclude that our reconstruction
tools perform as expected, even in the presence of the lensing
curl. For simplicity, the curl mode is set to zero for the rest
of the paper.

2.10. A faster scheme under idealized conditions

The construction of the Wiener-filtered delensed E-mode
map, as given by Eq. (19), is generically the most expen-
sive step of the entire lensing reconstruction procedure. This
equation may be rewritten

EWF
α = CEE,unl

[
CEE,unl +Nα

]−1
Edel

α , (47)

where Edel
α is the delensed CMB,

Edel
α ≡ Nα 2Y†D†

αB†N−1Xdat, (48)

and the prefactor to it is the Wiener-filtering matrix. The in-
terpretation of Edel

α as the delensed E-mode can be justified
by noting that the signal part of Edel

α is the unlensed CMB,
provided that the true transfer function matches that of the

likelihood model and that α is the true lensing. While still
tractable, these optimized weights and filters are not trivial
to apply, even under idealized conditions, because α breaks
the isotropy of the delensed noise, making Nα a dense ma-
trix. However, this is a small effect, and, under idealized
conditions, one can still expect to recover the bulk of the
signal with suitable approximations using much faster filter-
ing (as suggested by the pioneering papers (Hirata & Sel-
jak 2003b,a)). At each iteration, it is quite natural to replace
Eq. (47) with

[
EWF

α

]
ℓm
→ CEE,unlℓ

CEE,unlℓ +NEE
ℓ

[
2Y−1D−1

α B−1Xdat
]
ℓm
,

(49)

where the inverse beam and transfer operation, B−1, is a sim-
ple rescaling by the isotropic beam, 1/bℓ, in harmonic space.
NEE
ℓ is the isotropic instrument noise, and 2Y−1 is the pro-

jection onto the E-mode. There is no conjugate gradient in-
version to perform here, which makes this version signifi-
cantly faster, numerically.

We tested this approximation in the same configuration as
in the previous section. At each step, the quadratic gradi-
ent calculation takes the slightly suboptimal Wiener-filtered
E-mode as input, but is otherwise unchanged. We found
that the first iteration worsened the solution significantly be-
low L = 30, which we solved simply by fixing these large
lenses to the QE solution. On the other hand, smaller scales
appear to be recovered almost equally well. After 15 it-
erations, we found that the cross-correlation coefficient is
within 1% of the solution without these approximations for
100 ≤ L ≤ 5120. While we do not pursue this further here, it
clearly means that the simplified gradient calculation can be
valuable for theoretical investigations using idealized condi-
tions. Work is ongoing to understand to what extent faster
yet efficient methods can also be devised in realistic configu-
rations.

3. SIMULATIONS

This section discusses the individual components of the
simulated maps and how they are generated and combined.

3.1. CMB signal simulations

The simulations used in this work are generated using the
lensed CMB maps from the Planck FFP10 simulation suite
as input. These CMB maps, in harmonic space, were built
by one of the corresponding authors in preparation for the
2018 Planck release, and were later made public on NERSC
and used by the CMB-S4 collaboration. The maps contain a
series of small lensing-related defects (and another one was
also introduced at the very beginning of this work), which are
completely innocuous at most noise levels and on large scales
relevant for r-inference. However, in precise tests performed
at low polarization noise levels, these defects occasionally
caused troubles. In the following, we provide a record of
these issues along with the relevant lensing properties.
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• For the simulations, the rotation of the polarization
that is required to match the change in reference axes
caused by the sky curvature (the phase in Eq.(2)) was
not performed. As a consequence, the polarization
right at the poles is just wrong, since there this phase is
not small. This is something to which our reconstruc-
tion pipeline reacts (for noise below the µK-arcmin
level) by assigning absurd values to the lensing po-
tentials at the poles, or failing to converge altogether.
However, only a few arcmin away from the poles, we
find that this is not an issue any longer.

• Due to a bug in the interpolating code that was used at
the time, a set of about ∼ 20 pixels at Nside = 2048
that are located in the southern hemisphere, well sep-
arated from one another, and close to the meridian de-
fined by φ = 0◦, were just wrong.

• In addition to the massive CMB dipole, our velocity
relative to the CMB frame also causes more subtle
modulation and aberration of the anisotropies along the
velocity direction (Aghanim et al. 2014). This aberra-
tion results in an almost perfect dipole lensing signal,
approximately 5 times larger than the expected ΛCDM
lensing potential dipole, and is easily detected with
reasonably wide sky coverage (Aghanim et al. 2014).
Utilized for this were CMB frequency maps that con-
tain the frequency-independent part of the modulation
plus the aberration, for all Planck channels.

• After synthesizing the FFP10 lensed Eℓm and Bℓm
into real-space maps, the CMB-S4 team adds fore-
ground maps defined in equatorial coordinates to these
maps. However, the Planck team worked in Galac-
tic coordinates, and this leads to the aberration signal
mentioned just above having a inconsistent direction to
the pair of statistically anisotropic galactic foreground
models that we will be using.

3.2. Instrument noise simulations

Noise is generated in the same manner as was done in our
previous CMB-S4 r forecast paper (Abazajian et al. 2022).
Uniform full sky realizations of noise are generated and then
divided by the “Pole Deep” and “Chile Full” hits patterns,
which are shown in Figure 7 of that paper. The normaliza-
tion of the noise is adjusted such that when re-analyzing these
realizations with inverse-variance weighting one obtains the
power spectrum noise levels given in Table 1. These hits
pattern come from full-blown time-ordered-data level scan-
ning simulations for the CMB-S4 small aperture telescopes
(SATs). The noise levels in Table 1 come from a prelim-
inary set of CMB-S4 measurement requirements. For the
present we assume that the large aperture telescopes (LATs)
have the same hits pattern—as could be (approximately) ar-
ranged in practice. Excess low frequency 1/f noise is in-
cluded with the knee and slope parameters given in the ta-
ble. These parameters are derived from BICEP/Keck and
SPT data (Abazajian et al. 2022). Map noise contours are

shown in Figs. 9 and 18. Experiments at the South-Pole, or
more generally ground-based experiments, can suffer from
large-scale noise that is highly anisotropic in harmonic space,
sourced by atmospheric noise and the scanning strategy. This
type of anisotropy is not included in this series of simulations
and the study of its impact on the iterative lensing map is left
for future work.

3.3. Foreground models

We run the curved-sky lensing reconstruction algorithm on
three different simulation sets with varying degrees of fore-
ground complexity. We refer to the three sets containing fore-
ground and CMB only as Sky Model 00, 07, 09, and as the
Simulation Set (M00, M07, M09), if it includes all compo-
nents (foregrounds, CMB, and noise). In our previous pa-
per (Abazajian et al. 2022), more foreground models were
studied. However, the other models did not extend to the
small scales relevant to the lensing reconstruction.

M00 includes the simplest possible (and completely un-
realistic) foreground model; Gaussian realizations of syn-
chrotron and dust with uniform amplitude across the full
sky. For the synchrotron As, and dust amplitude Ad, we use
As = 3.8 µK2 and Ad = 4.25 µK2, for the correspond-
ing α parameters, we use αs = −0.6 and αd = −0.4, and
for the β parameters βs = −3.1 and βd = 1.6. For the
temperature of the dust Td we choose Td = 19.6 K (see
(Ade et al. 2018) for a description of the foreground emis-
sion laws). There are good reasons to include such a model
in this study; the mean-field from this simulation set will not
pick up foreground residuals (other than foreground inhomo-
geneities arising from the magnifying and demagnifying of
the delensing procedure, analogous to the induced noise in-
homogeneity, as discussed in Sec. 2.3), which will be useful
for assessing the impact of the mean-field on our results.

M07 includes an amplitude-modulated foreground model;
we take the Gaussian fields from M00 and modulate their am-
plitude across the sky according to a map of degree-scale
B-mode power measured from small patches of Planck’s
353 GHz map in a similar manner to Fig. 8 of (Adam et al.
2016).

M09 includes a realization of the multi-layer Vansyngel
model (Vansyngel et al. 2017). Each layer has the same in-
tensity (constrained by the Planck intensity map), but differ-
ent magnetic field realizations. It produces Q and U maps by
integrating along the line of sight over these multiple layers
of magnetic fields.

The complete simulation sets are generated as follows. For
each, we sum the noise, lensed CMB, and the respective fore-
ground for each simulated frequency band. All components
are generated in equatorial coordinates, with the exception
of the FFP10 lensed CMB. This is not expected to pose an
issue for lensing reconstruction, as discussed in the previ-
ous section. The component fg09 is rotated to equatorial co-
ordinates before adding it. Each realization contains a dif-
ferent realization of the lensed CMB and noise. For M00

and M07, each realization contains a different foreground re-
alization, with the amplitude modulation of fg07 being the
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Table 1. Simulated SAT and LAT map noise levels.

Band Beam
EE BB

white ℓ-knee slope white ℓ-knee slope

[GHz] [arcmin] [µK-arcmin] [µK-arcmin]

SAT

30 72.8 3.74 60 -2.2 3.53 60 -1.7

40 72.8 4.73 60 -2.2 4.46 60 -1.7

85 25.5 0.93 60 -2.2 0.88 60 -1.7

95 22.7 0.82 60 -2.2 0.78 60 -1.7

145 25.5 1.25 65 -3.1 1.23 60 -3.0

155 22.7 1.34 65 -3.1 1.34 60 -3.0

220 13.0 3.48 65 -3.1 3.48 60 -3.0

270 13.0 8.08 65 -3.1 5.97 60 -3.0

LAT

20 11.0 13.16 150 -2.7 13.16 150 -2.7

30 7.3 6.50 150 -2.7 6.50 150 -2.7

40 5.5 4.15 150 -2.7 4.15 150 -2.7

95 2.3 0.63 150 -2.6 0.63 150 -2.6

145 1.5 0.59 200 -2.2 0.59 200 -2.2

220 1.0 1.83 200 -2.2 1.83 200 -2.2

270 0.8 4.34 200 -2.2 4.34 200 -2.2

same in each realization. For M09 there is only one realiza-
tion; each and every map therefore contains the exact same
foreground component. The foreground models do not con-
tain extragalactic foregrounds, and our analysis focuses on
polarization data only. Extragalactic polarized foreground
contamination is generally expected to be weak and not to
affect the lensing reconstruction significantly, dominated by
the EB signal. Source masking can potentially bias the lens-
ing reconstruction if the mask cross-correlates substantially
to the lensing signal. However, this has also been shown to
be small (Lembo et al. 2022) in our configuration. Therefore,
we do not include point source masks in our analysis.

4. RESULTS

The discussion on the full pipeline of the r-analysis and the
analysis of the robustness of our iterative curved-sky lens-
ing reconstruction is split as follows: in Sec. 4.1, we discuss
the component-separation technique used to produce a clean
CMB map from the LAT simulated maps. In Sec. 4.2 and 4.3,
we discuss the performance of the lensing reconstruction and
the generation of the B-lensing template to obtain the best
estimate of the B-lensing signal. In Sec. 4.4, we discuss the
construction of the likelihood for r and resulting constraints.

4.1. component-separation

We apply a harmonic internal linear combination (ILC) on
the LAT frequency maps (Tegmark et al. 2003). We use for
this all frequencies with the exception of the 20GHz chan-
nel, which is placed on the LAT but has the primary function
of aiding in the constraint of the synchrotron component in
the likelihood for r; the beam of the 20GHz channel is too

large to make any meaningful contribution for the purpose of
lensing reconstruction and is therefore not taken into account
for the LAT component separation. We obtain the weights ωℓ
analytically by creating a covariance matrix Rℓ and applying
the formula.

ωℓ =
aTR−1

ℓ

aTR−1
ℓ a

, (50)

where a is the emission law of the CMB in the chosen units.
The covariance matrix Rℓ is composed of input theoretical
spectra and cross-spectra of simulation-set M00 maps. We do
this for the E-mode and B-mode independently, but apply a
single set of weights to all simulation sets. These weights are
derived analytically from the input power spectra of the CMB
+ noise + fg00. We compare the weights obtained from the
input spectra, and from the spectra obtained from the realiza-
tions and find that for each simulation set and on the scales
relevant to the lensing reconstruction they differ by a margin
we consider acceptable. At most, the weights between the
input and empiricial spectra varied 10 percent. The above
approach is, by no means, an optimized approach and more
sophisticated component-separation techniques are currently
studied. The weights are applied as follows. We first con-
vert the Stokes parameters Q and U to E and B with a stan-
dard spin-2 transform using the Healpix package (Górski
et al. 2005), and re-beam the maps to a common resolution of
2.3 arcmin FWHM. In order to avoid too large E-to-B leak-
age, we first multiply the maps with an apodization mask.
Here we simply use the hits map of the scanning strategy,
smoothed by a 0.5 degree Gaussian beam. We then isotropi-
cally weight the harmonic coefficients and re-project onto Q
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Figure 6. Foreground residual maps for fg00 (top), fg07 (center),
and fg09 (bottom), band-passed with 10 < ℓ < 3000, in equatorial
coordinates obtained via combining the individual foreground-only
frequency maps with the ILC weights. For fg00, we only show the
B-map in Mollweide projection, whereas for fg07 and fg09 we show
the E-map (left column), and the B-map (right column) in Cartesian
projection and about the South Pole Deep Patch. The graticules in
the Cartesian projection plots have a spacing of 15 degrees in both
RA and DEC direction. The edges of the South Pole Deep Patch are
indicated by the red honeycomb shape in the top panel, and the gray
wiggly line indicates the Chile Full Patch.

and U . Owing to masking, the resulting maps are suppressed
close to the patch edges. The lensing estimation pipeline al-
ways assumes that the local response of the data map to the
CMB is isotropic. We approximately account for this by sim-
ply rescaling the ILC maps by the inverse of the mask.

An estimate of each of the foreground model residuals is
shown in Fig. 6, and is calculated by combining all frequency
maps with the ILC weights from the component-separation
step, and for the foreground-only maps. We also indicate the
boundaries of the South Pole Deep and Chile Full hits pattern
indicated by the dark red and gray contours.

Figure 7 shows theEE (BB) noise, CMB, and foreground
power spectra estimates on the South Pole Deep Patch in the
top (bottom) panel and for a single realization. The fiducial

CMB signal is shown in red. The noise is shown in blue,
and becomes the dominant component at L ≳ 4000 in E,
and at L ≳ 2800 in B. We also show a theoretical purely
white-noise power spectrum of 0.45 µK-arcmin in thin gray.
The different foregrounds fg00 (dash dotted), fg07 (solid), and
fg09 (dashed) are shown in green; The component fg07 has
the largest amplitude in both E and B and on most scales.
The black data points show the binned power spectra of the
component-separated maps, and the error bars indicate the
uncertainties on the bins.

4.2. South Pole Deep Patch Map-based Delensing

We now discuss the QE and iterative lensing reconstruc-
tion, which we use to delens the simulations on the South
Pole Deep Patch (SPDP). We use 500 ILC component-
separated maps of simulation sets M00, M07, and M09 on the
SPDP, which covers about five percent of the sky. Our final
products are QE and MAP method Wiener-filtered E-maps,
QE and MAP method lensing potential maps, and QE and
MAPB-lensing templates. We quantify the performance and
accuracy of ourB-lensing templates by calculating the resid-
ual lensing amplitude Alens and split the SPDP into various
sky patches of different noise levels. We analyse Alens as a
function of these sky patches that we consider, and analyze
the robustness of the lensing reconstruction by changing parts
of the pipeline and dependencies. If not stated otherwise, cal-
culation of a power spectrum is always done with our own
implementation of the PolSpice (Chon et al. 2004) algo-
rithm.

4.2.1. B-lensing templates

As discussed in detail in Sec. 2.2, the reconstructions (both
QE and iterative solution) take a number of fiducial ingre-
dients as input, notably a suitable noise-covariance matrix
model. We do this by calculating a central noise level n̂lev
and scale it with the hits-count map as follows. To ob-
tain n̂lev, we calculate the empirical power spectrum of the
component-separated noise maps for the central area of the
patch, Ĉnoise

ℓ , and then convert that result to a white noise
level in µK-arcmin, using

n̂lev =

√
⟨Ĉnoise

ℓ ⟩ℓ
60 · 180

π
, (51)

where ⟨⟩ℓ denotes the average over the multipole range
1800 < ℓ < 2000. We choose this range (which is not partic-
ularly critical) because lensing reconstruction utilizes infor-
mation of the CMB at the smallest scales possible, which
are, at the same time, not too noisy. While the E-mode
is always close to being effectively noise-free, this range is
roughly at the scales at which, for the first iterations in the
B-mode map, noise becomes the dominant component (see
Fig. 7). With this, we find n̂lev = 0.42 µK-arcmin. We scale
this number with the inverse root of the hits-count map to
obtain our fiducial inhomogeneous noise map across the full
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Figure 7. Binned LAT residual power spectra on the South Pole
Deep Patch for a sky fraction of about two percent about the central
area. The component-separated M07 CMB (black) with a simple
error estimation shown as error bars, foreground residuals (green)
for foreground model fg00 (dash-dotted), fg07 (solid), and fg09
(dashed), and noise (blue) are shown in both panels. The compo-
nent fg07 has the largest power compared to all foreground models.
The gray line shows the theoretical white-noise level power spec-
trum of 0.45 µK-arcmin and is the estimated average of that patch,
(see Fig. 9). Top panel: E-mode power spectra. The red line is
the fiducial lensed E-mode power spectrum. Noise becomes the
dominant component at about ℓ = 4000. Bottom panel: B-mode
power spectra. The red line is the fiducial B-lensing power spec-
trum, the dashed red line shows the theoretical B power spectrum
with a residual lensing amplitude of 6 percent (we only show mul-
tipoles ℓ < 200, as these are the ones that our procedure can pro-
duce). Noise becomes the dominant component at about ℓ = 2800.

patch. 24 The resulting SPDP noise variance map is shown
in Fig. 9, which ultimately is used for both reconstruction
methods. The procedure described above does not account

24 For a real data analysis, the same simulation-based approach might not
necessarily be as accurate, but the precise value is not critical and other
ways are possible, for example using splits of the data.

for the residual foregrounds in the maps, and therefore re-
sults in slightly suboptimal reconstructions. However, the
analytical forecast tool described earlier predicts this to be a
small effect25 and we neglect it in this paper. We also neglect
any effective noise correlation introduced by the component-
separation procedure, foregrounds, or 1/f -noise.

Our fiducial model transfer function is the same isotropic
Gaussian beam with a FWHM of 2.3 arcmin used for
the component-separation, along with the appropriate pixel
window function, and the fiducial spectra for Cκκ,fidL and
CEE,unlℓ are the input FFP10 cosmology spectra.

The recovery of the unlensedE-modes with ℓE < 10 is not
attempted in the baseline reconstructions. This is taken care
of by setting the fiducial transfer function in the likelihood for
these multipoles to zero. We apply the overlapping B-mode
deprojection on the noise model as discussed in Sec. 2.7 for
scales ℓB ≤ 200, suppressing all these B-modes by a factor
of 104. Further, a prior much smaller than Cκκ,fidL is set on
the lenses with L < 4. This is done to reduce the size of the
Newton steps for these scales and for all iterations, so that the
algorithm becomes numerically more stable on these scales.

The quadratic estimator is built in the same way as for the
latest Planck analyses (Aghanim et al. 2020b; Carron et al.
2022), using Plancklens. The QE mean-field α̂QE,MF

is calculated by averaging over 200 reconstructions of α̂QE,
less than the available 500 simulations for historical rea-
sons.26 The QE lensing potential is mean-field subtracted,
and then isotropically27 weighted by

Wκ
L =

Cκκ,fidL

Cκκ,fidL +N
(0),κ
L

, (52)

and this serves as the starting point for the iterative method.
The QE uses CMB multipoles up to 3000, but the MAP iter-
ations use modes up to 4000.28 We assume that the unlensed
E-mode is band-limited to 4000, and neglect the transfer of
power caused by lensing beyond this scale.

The mean-field part of the gradient, gMF
α is set to α̂QE,MF

at each iteration and therefore kept invariant across iterations.
By doing this, we neglect the delensed noise mean-field as
discussed earlier, as well as the changes in the mask and noise
mean-fields induced by the changes in power of the maps

25 In a comparable experimental configuration we found a predicted relative
increase in residual lensing B-mode power of 3% to 12% depending on
the foreground model.

26 This is not critical; results using 100 simulations only for the QE mean-field
are extremely close to our baseline 200.

27 We do not include the QE a-posteriori inhomogeneous weighting called
‘κ-filtering’(Mirmelstein et al. 2019), which could in principle slightly im-
prove the reconstruction and QE lensing templates close the mask edges.

28 The values for QE and MAP are different only for historical reasons. The
main purpose of the QE estimate is to have a starting point for the MAP
estimator; using more multipoles to build the QE keeps the converged MAP
solution unchanged. In the baseline configuration discussed in this paper,
the predicted residual lensing amplitude for QE-delensing reduces from
23.2 to 20.6 if the multipole range is increased to 4000, which could have
been done without any caveats.
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through the iterations. Later in Sec. 4.2.4, we show that this
is an adequate approximation.

During each iteration, we must perform a number of de-
flection operationsDα. This remapping, in principle, is done
on the full sky. However, the reconstructed lensing map
is very weak outside of the SPDP. It is therefore a valid
simplification to neglect the deflection field sufficiently far
away from the SPDP. We define this region to be larger by
5 degrees than the SPDP itself. Outside that region, we ef-
fectively assume that the Wiener-filtered, unlensed E-mode
is zero. We perform the lensing remapping on a reduced
Gauss-Legendre geometry (Reinecke & Seljebotn 2013) us-
ing a bicubic spline interpolation on an equidistant, cylin-
drical grid of resolution 1.7 arcmin. This resolution is not
always sufficient for precise recovery of the largest lenses,
but is good enough for our purposes. A higher resolution in-
creases the robustness of the reconstruction at these low mul-
tipoles at the expense of an increased computational cost. 29

We calculate the B-lensing templates following Eq. (33),
and for the quadratic estimator with the perturbative version
of Eq. (34), given by Eq. (6). Figure 8 shows an example B-
lensing map before (top panel), and the residual B-lensing
maps after QE (middle panel), and MAP delensing (bottom
panel) on the patch area. As expected, most power is re-
moved at the center of the patch where the data noise is low-
est and therefore lensing reconstruction performs best.

4.2.2. Delensing Performance

We now characterize the fidelity of the obtained B-lensing
templates and quantify the reduction of the B-lensing signal
after internal delensing in terms of the residual lensing am-
plitudeAlens. The QE and MAP residualB-lensing maps are
calculated by subtracting the respective B-lensing templates
from the B-lensing maps by using Eq. (33). We obtain Alens

by calculating the ratio between the B-lensing power spec-
trum and the residual B-lensing power spectrum, and com-
pare our results to the analytical predictions obtained by our
tools described earlier in Sec. 2.8.

Both the noise and foreground residuals are inhomoge-
neous across the patch. For this reason, the quality of the
lensing reconstruction varies across the observed area. To
quantify the residual lensing amplitudes as a function of po-
sition, we define sky patches inside the SPDP following its
hits-count map: patch pt with hits-count ratio threshold t in-
cludes the observed pixel i with the hits-count hi if,

hi <
1

t
. (53)

29 As we neared completion of this paper, our lensing remapping procedure
has seen major improvements (Reinecke et al. 2023) in accuracy and execu-
tion time, allowing better recovery of the large-scale lenses and removing
the need for the simplifications just discussed. While the entire set of maps
of this analysis has not been reprocessed, dedicated tests on M00 are in-
dicating that our latest and most ambitious version of the code can lead
to visible improvements, reaching a residual lensing amplitude of 0.059,
compared to 0.069 obtained in this paper in Sec. 4.2.2.

0.25 0.15 0.00 0.15 0.25
K

Figure 8. CMB B-lensing maps of the South Pole Deep Patch,
before (top panel) and after quadratic estimator (middle panel) and
iterative delensing (bottom panel), using the B-lensing templates
from simulation set M00. The maps are band-passed to only show
30 < ℓ < 200. Delensing works best in the center of the patch,
where the improved performance of the iterative solution is clearly
visible. Close to the mask edges the instrumental noise increases,
reducing the quality of the lensing reconstruction and of the delens-
ing. The graticules have a spacing of 15 degrees in both RA and
DEC directions.

Here, hi is normalized by the maximum number of hits. The
conversion between hi and its noise level nlev,i is straightfor-
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ward, if the central noise level n̂lev is known:

nlev,i =
n̂lev√
hi
. (54)

Thus, an area of the sky observed 10 times less frequently is
about 3.3 times noisier. We choose t = [1.2, 2, 10, 50] and
obtain patches with sky fractions between 0.07% and 4.4%
(see Fig. 9). The blue patch is the essentially homogeneous
central region, with an average noise level of 0.44µK-arcmin
and its edge pixels noise level is about 0.46µK-arcmin. This
is indicated as a blue line inside the color bar at the bot-
tom. A summary of the average and maximum noise levels

Figure 9. South Pole Deep Patch noise-level map used in the lens-
ing likelihood model, derived from calculating a central noise level
and scaling it according to the hits-count map. The contours show
edges which contain the masks p1.2 (blue), p2 (red), p10 (green),
and p50 (yellow). Each mask covers the full area inside of it, for ex-
ample, p1.2 is contained in p2. The lowest (highest) noise of about
0.42(9.39) µK-arcmin is indicated by the pink (dark gray) contour.
The edge pixel noise levels of the contours are indicated by lines in
the color bar, the pink contour is not shown. The graticules have a
spacing of 15 degrees in both RA and DEC directions.

together with its sky fraction and the hits-count ratio thresh-
olds is shown in Table 2. TheB-lensing signal is about 5 µK-
arcmin. With a central noise level of n̂lev = 0.42 µK-arcmin,
we therefore expect the iterative lensing analysis to become
ineffective at∼ 10 times the central noise value, asB-lensing
is an ∼ 5 µK-arcmin contamination that cannot be resolved
anymore at these levels. This boundary is close to the green
contour that can be seen in Fig. 8, where delensing is much
weaker and the iterative method brings little improvement.

The power spectra of theB-lensing and residualB-lensing
maps of M07 for each of the sky patches are shown in Fig. 10,
using a binning window of ∆ℓ = 30 for the calculation. Each
panel shows the ensemble average and standard deviation of
the B-lensing (orange), and QE (dark blue), and MAP (light
blue) delensed power spectra for the patch indicated by the
legend referring to Fig. 9. The orange line shows the input

Table 2. Average and maximum noise levels for the patches chosen
in this analysis. fsky is the ratio of the number of considered pixels
to the total in patch. See text for discussion.

Identifier
Contour
color

fsky

[%]
Average
noise level
[µK arcmin]

Maximum
noise level
[µK arcmin]

p1 pink 0.42 0.43

p1.2 blue 0.65 0.44 0.46

p2.0 red 1.77 0.48 0.59

p10 yellow 3.59 0.55 1.33

p50 green 4.45 0.64 2.97

p∞ 4.97 0.67 9.39

B-lensing signal, and the blue lines show the analytic predic-
tions of the delensed power spectra. Later, we give more de-
tails about the calculation of the predictions. As can be seen,
the delensed power spectra are largely scale-independent and
increase with increasing sky fraction due to the increase in
noise. At the same time, the standard deviation decreases
due to the larger sky fraction reducing the sample variance.
We do not show the first bin of the delensed power spectra,
since the simulations do not contain simulated signals on the
reionization peak.30

Across all simulation sets, M07 gives the highest ensem-
ble variance, and is consistent with M07 having the largest
foreground residuals, see Fig 7.

We now calculate Alens as the ratio of the ensemble mean
of the power spectra using the relation between the power
spectrum and its Gaussian variance. This approximates the
decrease in the B power fluctuations, since for Gaussian
fields, the spectrum variance

(
∆CBBℓ

)2
is quadratic in the

power itself,

(∆CBBℓ )2 ≈ 2(CBBℓ )2

fsky(2ℓ+ 1)
, (55)

where fsky is the sky fraction from which the power spectrum
is computed. We quote the QE and MAP delensed Alens us-
ing

A
QE/MAP
lens =

〈
C
BB,QE/MAP,RL
ℓ

〉
30≤ℓ≤200〈

CBB,Lℓ

〉
30≤ℓ≤200

, (56)

where CBB,QE/MAP,RL
ℓ (CBB,Lℓ ) is the (residual) B-lensing

power spectrum. The results are shown in Fig. 11. The left
(right) panel shows the empirical MAP (QE) result and all

30 By construction, the CMB-S4 simulation suite used in this work did not
contain signals below ℓ = 30, in order to force conservative forecasts based
on the recombination peak signal only.
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Figure 10. Ensemble average and standard deviation of the B-
lensing (orange), QE delensed (dark blue), and MAP delensed (light
blue) B-lensing power spectrum, binned with ∆ℓ = 30, for simu-
lation set M07. The power spectra are calculated on four different
sky patches (see Fig. 9), one per panel. The solid lines show the
fiducial B-lensing signal (orange), and analytical prediction for the
QE (dark blue) and MAP residual power spectrum. Delensing per-
forms almost equally well across all scales but shows a dependence
on the sky patch owing to inhomogeneous noise and foreground
residuals. Results on the other foreground models are qualitatively
similar. See Fig. 11 for more detailed comparisons.

three simulation sets in light blue (dark blue), where M00

is shown in the top two columns, M07 in the middle two
columns, and M09 in the bottom two columns. The error bars
display the standard deviation of this ratio across the simula-
tion set.

Each panel shows the empirical results on Âlens for each
sky patch, and includes semi-analytical predictions (orange
and pink), which we discuss in the next section. The QE
results show the values obtained via perturbative remap-
ping of the E-mode, Eq. (6). We note that perturbative
lensing remapping results in lower residual lensing ampli-
tudes by about 4 percent compared to non-perturbative re-
sults, for all sky patches and simulation sets, in agreement
with (Baleato Lizancos et al. 2021a). Table 3 reproduces the
numbers for the central, most relevant region.

Table 3. Residual lensing amplitudes for 30 ≤ ℓ ≤ 200 found in
this study on the region p2 of the South Pole Deep patch, see Fig. 9.

M00 M07 M09

AQE
lens 0.232± 0.015 0.238± 0.015 0.235± 0.015

AMAP
lens 0.069± 0.005 0.079± 0.005 0.073± 0.005

Unsurprisingly, M00 gives the lowest values for both QE
and MAP, since it has the lowest foreground contamina-
tion, and, in addition, contains homogeneous Gaussian noise
across the SPDP. M07 contains the highest foreground con-
tamination, therefore resulting in the highest Alens. M09 is
the most complex of all three simulation sets, but has slightly
less foreground residual power compared to M07, leading to
a slightly lower residual lensing amplitude.

4.2.3. Comparison to predictions

We now discuss the calculation of our predictions, starting
with simple assumptions, and gradually adding components
to increase realism.

In the most optimistic case, we can calculate predictions
based solely on the central white noise level of 0.42 µK-
arcmin, and ignore foregrounds, sky cuts, and the scan strat-
egy of the experiment. By using the same cuts as in the re-
construction, (200 < ℓB < 4000, 10 ≤ ℓE ≤ 4000) for
MAP, and (200 < ℓB < 3000, 10 ≤ ℓE ≤ 3000) for QE,
we predict AMAP

lens = 0.053 for the polarization-only iterative
delensing estimator and AQE

lens = 0.23 for the QE case. For
sky-model M00 on the sky patch p2 we find 0.069 and 0.23,
see Table 3. This indicates that in contrast to the QE case,
foreground residual power plays a non-negligible role over-
all in the iterative reconstruction. This is of course expected
to some extent, since the size of the foreground residuals rel-
ative to the B-lensing power is much greater for the MAP
reconstruction.

We can attempt to take foreground residuals into account
by assuming they effectively act as additional noise. Fore-
ground models fg07 and fg09 contain some level of non-
Gaussianity, which can in principle affect the reconstruction
in less trivial ways. In the baseline reconstructions, this non-
Gaussianity is removed by subtracting the mean-field from
the lensing-potential estimates (recall that for these fore-
ground models the same non-Gaussian realization enters all
simulations). However, the next section shows that iterative
reconstructions, for which the mean-field does not match the
input foreground model, gives the almost same results.

We construct residual foreground maps by combining the
single frequency simulation-input foreground maps with the
weights derived from the component-separation step in the
previous section, and with the appropriate beams of each de-
tector. By repeating the exercise of calculating the power
spectrum for each patch on the sky for an appropriate bin-
ning, we obtain the corresponding residual foreground power
spectra.
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Figure 11. Ensemble average and standard deviation of the QE
(right panels, dark blue), and MAP (left panels, light blue) residual
lensing amplitude Alens binned across the recombination peak, for
M00 (top two panels), M07 (middle two panel), and M09 (bottom
two panel), and predicted residual lensing amplitudes shown as pink
(MAP) and orange (QE) data points. The dark blue data points are
the empirical results using perturbative lensing remapping. In each
panel, data point across the y-axis shows the result for the different
sky regions, as indicated by the labels on the y-axis (see Fig. 9). M07

is always slightly larger than M09 and we find the lowest ensemble
mean Alens for MAP delensing in patch p1.2. The lowest ensemble
standard deviation, however, comes from patch p2. All predictions
consider foreground power in the noise estimate.

We refer to the input-noise in our prediction as noise-only
when we calculate the noise power spectrum from the em-
pirical noise maps, and as effective noise if we add the fore-
ground residuals power spectrum on top of it. Calculating the
power spectrum across a sky patch effectively gives the aver-

age noise power spectrum. This may be valid for the central
area, for which the hits-count map is close to being homoge-
neous, but it is a poor approximation for the areas outside the
central part of the SPDP. It is therefore advisable to include
the noise inhomogeneities for the calculation of the residual
lensing amplitude. We do this as follows. Let fsky(n̂lev)
be the observed sky fraction with local noise level n̂lev, and
Alens(n̂lev) the predicted residual local lensing amplitude. A
weighted average across the SPDP is

1

fsky,tot

∫
dn̂levfsky(n̂lev)Alens(n̂lev) . (57)

Here, fsky,tot is the total observed sky fraction. fsky(n̂lev)
can simply be obtained from the hits-count map, and
Alens(n̂lev) is approximated as a polynomial function and
calculated from various white-noise and noise-only level pre-
dictions. With this, we find that including inhomogeneous
noise, Alens increases by about 0.01 at p10, and by about
0.03 at p50.

Since Alens is close to linearly dependent on the noise for
small Alens, we include this correction by simply adding
it on top of our predictions for the noise-only and effective
noise case. Figure 12 shows the predictions for M09 in pur-
ple (noise-only) and pink (effective noise) in the left panel
for the MAP solution, and similarly in yellow and orange in
the right panel for the QE. The effective noise predictions
all seem consistent with our empirical findings, and we see
a similar behavior for sky models M00 and M09 as shown in
Fig. 11.

Our findings show that for the relevant sky areas, inclusive
of the area in which the noise is not too inhomogeneous any
more, the residual foregrounds effectively act as a source of
noise in the lensing reconstruction, and a simple modelling
can accurately predict the reduction in B-mode power.

4.2.4. Mean-field tests

The lensing reconstruction likelihood model contains sev-
eral ingredients, and their accuracy affects the quality of the
B-lensing template. One factor that relies heavily on good
simulations of the data is the mean-field, which reflects our
(mis-)understanding of induced anisotropies from, among
other factors, noise, foreground residuals, and masking. The
better we can simulate our noise and foregrounds, the more
we can remove their contribution from our estimate. At the
same time, it is interesting to understand the impact of hav-
ing simulations with only limited accuracy. In this section,
we discuss the robustness of our lensing reconstruction by al-
tering the mean-field, and obtain lensing potential estimates
and residual lensing amplitudes that are modified compared
to the ‘baseline’ results, which were discussed in the previous
section.

Similar to the quadratic estimator mean-field, we define
the mean-field of the iterative solution using an average over
a set of converged iterative reconstructions,

α̂MF ≡
〈
α̂MAP

〉
MC

. (58)
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Figure 12. Residual lensing amplitude for simulation set M09 at
the recombination peak, as calculated for different regions inside
the observed patch (see Fig. 9) from their empirical instrumental
noise and foreground residuals. If we include the residual fore-
grounds as additional noise in our prediction, the iterative prediction
increases by a few percent (pink on the left panel), and agrees well
with our empirical findings, with the exception of the largest sky
region where the noise is highest and least homogeneous, and our
prediction scheme is less effective. The impact of the foregrounds
on the QE results (right panel) is milder owing to the increased im-
portance of the lensing B power relative to the foreground residuals.

We remind the reader, that all lensing estimates α̂MAPare
built by subtracting a constant QE mean-field at each itera-
tion. Hence, α̂MF is a residual mean-field that has not been
accounted for by this term: if we could incorporate the mean-
field term gMF

α from Eq. (23) perfectly and at all iterations,
then α̂MF defined by Eq. (58) would vanish.

Figure 13 shows the lensing mean-field deflection field,

α̂MF
LM ≡

√
L(L+ 1)ϕ̂MF

LM , (59)

for QE (MAP) in the right (left) column, and for M00 (top
panels), M07 (middle panels), and M09 (bottom panels).
Fig. 14 shows their power spectra in green. In Fig. 13, in the
QE case, only the largest modes are visible, and are sourced
by the mask and noise anisotropies. Their amplitudes are
much larger than the expected true lensing signal, and are
not visible in the MAP mean-field (seen as the wildly dif-
ferent scale), showing that the usage of the approximate QE
mean-field in the iterations is successful at removing these
large signatures. This might be surprising at first, since the
delensedB-mode power is wildly different to the lensed one,
which could in principle create large changes in the mean-
field. However, the EE spectrum is much less affected by
delensing, and the mean-field is predominantly sourced by
the EE quadratic piece. The reason for this is that all mean-
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Figure 13. QE mean-field (left column) and MAP residual mean-
field (right column) for simulation sets M00 (top panels), M07 (mid-
dle panels), and M09 (bottom panels). The MAP mean-field is about
three orders of magnitude smaller than the QE mean-field. In fact,
most of the small-scale fluctuations are merely noise, but for M09

some foreground-induced artefacts are visible in the lower left part
of the patch.

field sources in these simulations appear as a convergence-
like lensing signal rather than shear-like. Small-scale signa-
tures in these maps have large Monte-Carlo noise originating
from the finite number of simulations (only 100 simulations
were used for the tests in this section) used in Eq.(58). The
M09 QE mean-field (bottom left panel) has a feature in the
lower left area of the patch. A similar structure and a couple
of bright spots can also be seen for the MAP case.

The mean-field difference maps, between simulation sets
(obtained by differencing maps obtained from Eq.(59)) are
shown in Fig. 15. The top two panels show the deflection-
mean-fields of α̂MF(M07) − α̂MF(M00), while the bottom
two panels show α̂MF(M09) − α̂MF(M00). QE is shown in
the left panels, MAP on the right. These differences are ∼
10% of the total mean-field. The top panels shows signatures
of the foreground amplitude modulation of fg07 in the bottom
left part of the patch, and in the bottom panels, signatures
from foreground filaments of fg09 can be seen in the southern
part.

In Fig. 14, the pink lines show the spectrum of the lens-
ing potential estimates for M00 (dot-dashed), M07 (solid),
and M09 (dashed), Cϕ̃ϕ̃L , before subtracting their respective
mean-field. The foregrounds only become relevant in the
MAP case: without delensing, the lensing B power domi-
nates the QE reconstruction noise over the foregrounds and
all curves are basically indistinguishable.
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The calculation of the mean-field from an average of sim-
ulations like that given in Eq.(58) inevitably leads to some
level of residual Monte-Carlo noise in the estimate due to
the finite number of simulations (with expected spectrum
∼ N (0)/NMC, whereNMC is the number of simulations). To
avoid this type of noise in the mean-field spectra (indicated
by the green lines), we have plotted the cross-spectrum

CMFx

L ≡ 1

fsky(2L+ 1)

∑

M

ϕ̂MF1

LM (̂ϕMF2

LM )∗ , (60)

where the two estimates come from two independent sets
of simulations, and we show them in green. Here, fsky is
calculated from the ratio of number of pixels between the
masked and unmasked sky. The Monte-Carlo noise enters
the iterative reconstruction via the subtracted mean-field of
the QE, the starting point of the iterations. We show the auto-
spectrum of the mean-field estimate in gray, and the spectrum
of this noise is clearly seen, as the curve departs from the
green at higher multipoles. Of course, the mean-field tem-
plate can be set to zero when the noise dominates, and ac-
celerating methods as discussed on the full sky in Sec. 2.8
can also be used in this setting (though the accuracy of the
mean-field recovered with these methods relies on that of the
likelihood model).

We now turn to three quantitative tests on the impact of the
mean-field on the delensing efficiency. The changes applied
are the following.

(I) A posteriori mean-field subtraction: we obtain the
average of the MAP reconstructions obtained from
Eq.(58) and subtract it from each lensing potential es-
timate (a procedure similar to the QE mean-field sub-
traction).

(II) Swapped mean-field: we use the simplest simulation
set available (the Gaussian foreground model M00) to
build the mean-field template for the reconstructions
on all simulation sets. Hence, the mean-field subtrac-
tion will not remove the non-Gaussianity of the fore-
grounds (and also be wrong in a broader sense, since
the different models have different power).

(III) Mean-B-lensing template subtraction (similar to point
(I), but at the level of the B-lensing templates): we
subtract from each B-template the average of tem-
plates obtained on a set of reconstructions.

In all of these tests, we calculate the residual lensing ampli-
tude on the large, green contoured sky patch p50 (see Fig. 9).
This includes some mean-field signals in the outskirt of the
SPDP, yielding conservative results due to the small weight
of the SPDP edge for the r-inference. For convenience, we
only use 100 simulations, with almost exactly same configu-
ration as described in Sec. 4.2 (here, we boosted the numer-
ical accuracy parameters to obtain more precise large scale
lenses). We obtain Alens from the ratio of power, following
Eq. (56), along with the ensemble standard deviation. We
summarize our findings in terms of a single value ∆Alens

Alens
in

Figure 14. Lensing potential estimate pseudo-power spectra for
QE (left panel) and MAP (right panel) as obtained from the CMB-
S4 LAT simulations. The solid dark line is the fiducial lensing po-
tential. We show the result for all three simulation sets: M00 in
dot dashed, M07 solid, and M09 dashed. However, their spectra of-
ten overlap and are barely distinguishable, particularly so in the QE
case. Pink (blue) shows the QE or MAP lensing potential before (af-
ter) mean-field subtraction, gray (green) shows the QE mean-field
or MAP residual mean-field with (without) Monte-Carlo noise. The
mean-field drops off quickly for multipoles larger than L ≃ 10. The
QE mean-field (green and gray) contains a large signal at large an-
gular scales, and is the lensing potential’s (pink) main component
on that scale. On large scales, the residual MAP mean-field signal
is of the order of the lensing potential, many orders of magnitude
smaller than its QE counter part (green, left panel). This means that
at each iteration, the QE mean-field is a good proxy for the true
mean-field term.
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Figure 15. Absolute difference maps for the QE (left column) and
MAP (right column) deflection-mean-fields, MF07 − MF00 (top
panels), and MF09 − MF00 (bottom panels). There are clear fea-
tures seen in every panel, which originate at least in part from the
foreground residuals.
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Table 4 that compares the tests to the baseline configuration.
Here, ∆Alens is the difference in residual lensing amplitude
between the baseline and modified analyses.
(I): Mean-field subtraction:
For test (I), we subtract the MAP mean-field from the
lensing-potential estimates prior to the lensing operation, and
calculate the B-lensing templates, denoted BLT

MF− . Explic-
itly,

BLT,MAP
MF− =

(
α̂MAP − α̂MF

)
◦ Êunl. (61)

The result is shown in the first row of Table 4. The impact is
always small, and mostly consistent with zero (at 2σ for sim-
ulation set M00). The given error bars are the one-simulation-
equivalents, and therefore, averaging across all simulations,
we would detect a tiny improvement in all cases. Neverthe-
less, this confirms that simply subtracting the QE mean-field
as calculated for the starting point is sufficient.
(II): Swapped mean-field:
We now perform the lensing reconstructions with a mean-
field different to the baseline. For simulation sets M07 and
M09, we perform reconstructions where the mean-field gra-
dient term is set to that of model M00 (doing so also changes
the starting point for the quadratic estimator but this alone
does not affect the converged solution).

Thus, the lensing reconstruction is performed on an in-
homogeneous and non-Gaussian foreground simulation set,
but its mean-field is calculated from a simpler simulation set
(with differences shown in Fig. 15), with homogeneous and
Gaussian foregrounds. The result is shown in Table 4 in the
second row, and is consistent with zero. This demonstrates
that the choice of mean-field in the lensing reconstruction
does only have a small impact. The mean-field from M00

only traces the patch mask and noise variance map, yet it
nevertheless yields similar results for all simulation sets.
(III): Mean-B-lensing Template Subtraction:
Figure 16 shows an example B-lensing template for M07

and M09. The MAP mean-B-lensing templates for M07 and
M09, together with the MAP difference maps, M07 −M00,
and M09 −M00 are shown in Fig. 17. For M09 (bottom left

-0.3 0.3
K

-0.3 0.3
K

Figure 16. B-lensing templates for M07 (left panel) and M09 (right
panel). All plots are band-passed to 30 < ℓ < 200.

panel) we see in Fig. 17 clear features along the edge of the
patch, hinting at contamination from foreground residuals.
M07 does not show any dominant features. The difference
plots (right panels) show that for M07 minus M00, the mean-
B-lensing template follows the foreground amplitude mod-

Figure 17. Left column: MAP mean B-lensing templates for M07

(top) and M09 (bottom). Right column: Difference maps between
the mean B-lensing templates M07 and M09 with M00. All plots
are band-passed to 30 < ℓ < 200.

Table 4. Mean-field test results. We give the relative change in
terms of residual lensing amplitude, compared to the ‘baseline’ con-
figuration, ∆Alens

Alens
, a negative number indicating an improvement.

See text for the definition of the individual tests.

Test M00 M07 M09

I: −0.0028± 0.0014 −0.0005± 0.0014 −0.0009± 0.0014

II: 0.0001± 0.004 0.0039± 0.01

III: −0.0005± 0.02 −0.0002± 0.015 −0.0028± 0.03

ulation of M07. For M09 minus M00, we see bright spots
at about the same areas where foreground contamination ap-
pears in the mean-field of M09, also clearly visible in the
mean-B-lensing template in Fig. 16. We also see a small am-
plitude ringing effect along the latitude of the SPDP, which
we believe is an artefact of the map-building procedure, in-
troduced when modes below 30 were excised from the maps.

We test for the impact of these features by subtracting the
mean-B-lensing template from each B-lensing template,

BLT,MAP
ℓm → BLT,MAP

ℓm −
〈
BLT,MAP
ℓm

〉
MC

, (62)

where in the average on the right-hand side we always ex-
clude the simulation index for which BLT,MAP is calculated.

However, similar to the QE and MAP mean-field, subtract-
ing does not only remove contaminants, but also adds some
level of Monte-Carlo noise. For this reason, we calculate
power spectra by dividing the simulation sets into two splits
and taking cross-spectra. The result is shown in the third col-
umn of Table 4. We do not find any improvement, and the
error bars are rather large.

Summarizing these tests, they confirm that our results are
robust against changes to the mean-field treatment, and more
generally that the impact of the mean-field is small.
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4.3. Chile Deep Patch Delensing

As a last test, we repeat the calculation of the B-lensing
template for a different CMB-S4 configuration. Specifi-
cally, we assume that the Deep Field would be observed
from Chile, referring to this as the Chile Deep Patch (CDP).
Observing the sky from Chile would, among other things,
change the scan strategy of the telescopes, therefore im-
pacting the noise levels and observed sky fractions. Fig-
ure 18 shows the derived noise-level map after component-
separation, in equatorial coordinates. The central noise level
is n̂lev = 0.6 µK-arcmin and therefore about 50% higher
than for SPDP, and the scan area is much broader.

We generate two simulation sets, that is, the foreground
models M00 and M07, and repeat lensing reconstruction for
100 realizations of the CDP component-separated maps (M09

was not available over the larger area at this time owing to
practical difficulties). We update our noise model and over-
lapping B-mode deprojection matrix to this case, and leave
other ingredients of our algorithm essentially the same.
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Figure 18. This is a full sky Noise-level map for the Chile Config-
uration and in equatorial coordinates. The contours show edges that
contain the masks A (blue), B (red), C (green), and D (yellow), and
the numbers in the color bar refer to the contour noise level. The
lowest (highest) noise of about 0.65 (13.19) µK-arcmin is indicated
by the blue (dark gray) contour and all are derived from the Chile
hits-count map.

To improve numerical stability for the iterative lensing re-
construction step, we have increased the mask by excluding
areas for which the noise is more than 100 times larger than
the central noise value. These are mostly pixels near the
galactic plane with high foreground residuals that can safely
be discarded. Iterative lensing reconstruction succeeds on the
entire resulting area.

The bulk of the constraining power comes from the red
region in Fig. 18. The larger sky patches indicated by the
yellow and green contours partly cover the Galactic plane.
Although lensing reconstruction does converge there as well,
the foreground residuals are too large in these areas, leading
to uninteresting delensing results.

In the red region and for M07, we find31 AQE
lens = 0.30 ±

0.02, AMAP
lens = 0.121 ± 0.007. For M00, we find AQE

lens =
0.29± 0.02, AMAP

lens = 0.115± 0.006.
These empirical results for iterative delensing are in rea-

sonable agreement with our theoretical predictions,AMAP
lens =

0.11 for M07, and AMAP
lens = 0.10 for M00, matching as well

those expected from the CMB-S4 r-forecast paper (Abaza-
jian et al. 2022).

4.4. Constraints on r

In our previous CMB-S4 r constraint paper (Abazajian
et al. 2022) one of the two re-analysis methods used was the
parametric multi-component cross-spectral likelihood that
was first introduced in (BICEP2/Keck Collaboration et al.
2015), and which has been used in all BICEP/Keck analy-
ses up to the most recent (Ade et al. 2021). Here we take this
likelihood and add the lensing templates derived in the pre-
vious section as an additional pseudo-frequency band, in a
similar manner to the joint analysis of BICEP/Keck and SPT
data presented in (BICEP/Keck Collaboration et al. 2021).

To obtain sufficientE/B separation purity we calculate the
auto- and cross-spectra between the maps using the S2HAT
library (Grain et al. 2009). The resulting bandpowers are
then compared against a likelihood model built using the
Hamimeche-Lewis (Hamimeche & Lewis 2008) approxima-
tion with the following parameters: the tensor-to-scalar ratio
r; the amplitudes of the dust and synchrotron B-mode power
spectra, their frequency spectral indices, and their spatial
power law indices; the frequency-independent spatial corre-
lation between dust and synchrotron; and the dust correlation
between 217 and 353 GHz. See appendix G of (Ade et al.
2018) for a full description of the parameterization.

The likelihood requires statistical characterization of the
signal and noise parts of the lensing template auto-spectrum
and of their cross-spectra to the SAT frequency maps. In this
first analysis, we do this in the following crude (but effec-
tive) manner. Making the assumption that the template may
be written as a filtered version of the true CMB lensing B-
mode plus an additive noise term, we compute an effective,
isotropic filter function from 100 cross-spectra to their known
simulation CMB inputs (neglecting the precise position de-
pendence of the filter). This allows us to build predictions
for the cross-spectra to the SAT maps. Further, we obtain the
lensing template auto-spectrum noise power by subtracting
from the templates spectra the signal term as predicted from
the isotropic filter model.

For each of the 500 simulation realizations, and each of the
three foreground models, we perform a maximum-likelihood
(ML) search, both with and without the lensing template. We
use the mean and the standard deviation of a given parame-
ter value to assess the bias and experimental uncertainty of
that parameter—where the parameter r is of course by far of
the greatest interest. The SPDP results are shown in Fig. 19

31 The results for QE are calculated using non-perturbative remapping of the
E-mode, improving performance slightly, as before.
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Figure 19. Results from reanalysis of map-based simulations of
CMB-S4 observing the South Pole Deep Patch. The mean and
standard deviation of the maximum likelihood r values evaluated
over ensembles of simulation realizations are shown as the central
point and horizontal error bar, respectively. Blue and orange points
show the results for r = 0 and r = 0.003 realizations, with the
vertical lines indicating these values. The darker points are results
without the lensing template, while the lighter points show the sub-
stantial benefit of including the iteratively-reconstructed templates
described in this paper.

Table 5. Results from reanalysis of map-based simulations of
CMB-S4 observing the South Pole Deep Patch, including the re-
constructed lensing templates described in this paper.

r value Sky model σ(r)× 104 r bias ×104

0 0 4.3 -1.0

7 4.7 -1.3

9 5.8 1.1

0.003 0 6.4 1.3

7 6.9 1.4

9 7.8 4.7

for the realizations with r = 0 and those with r = 0.003.
As expected, the addition of the lensing template (effective
delensing) dramatically reduces the uncertainty σ on r, here
denoted σ(r). In the case of the non-Gaussian model M09,
a significant bias is also removed. Table 5 gives the with-
template results in numerical form. These can be compared
to the results in the rightmost column of Table 2 of our previ-
ous paper (Abazajian et al. 2022). The results for M00 are
most directly comparable. Previously for r = 0 we had
σ(r) = 5.7×10−4, to be compared to the present 4.3×10−4,
the latter being below the σ(r) = 5 × 10−4 science goal of
CMB-S4 (Abazajian et al. 2019).

We have preliminary ML search runs for the CDP simula-
tions as well. The uniform amplitude M00 model is a gross
oversimplification for this larger sky patch. Nevertheless, for
input r = 0 this model gives σ(r) = 5.2 × 10−4, which is
consistent with the expectation that the best sensitivity will be
obtained with the most concentrated sky coverage. For M07

the effective foreground amplitude averaged over the patch
is extremely high and the likelihoods result is not robust. We
find that σ(r) is only increased to 7.0×10−4, but there is sig-
nificant bias—further investigations are ongoing. No results
are available for M09 at the time of writing.

5. CONCLUSION

In this paper, we have presented an optimal lensing recon-
struction software on the curved sky, usable under realistic
conditions, inclusive of inhomogeneous noise, and on sky
patches of arbitrary size. With it, we achieve the CMB-S4
science goal on r by removing 92% to 93% of the B-lensing
power, depending on the simulation set.

The method mostly generalizes that of (Carron & Lewis
2017) to curved-sky geometry. We discussed carefully all in-
gredients, and showed that the few approximations that are
made are perfectly under control given the moderate size of
ΛCDM deflection angles (as is often the case, the sky curva-
ture can be neglected on the scale of the deflection), and that
the reconstruction should be optimal provided that the CMB
likelihood model is a fair representation of the data.

We found most difficulties of practical nature in the re-
construction process at low lensing multipoles. There, the
mean-field is prominent, and more generally, the behavior
of the reconstruction of the largest scale lenses is less stable,
and also often requires higher accuracy in the most important
steps (lensing remappings, recovery of the delensedE-mode)
than for smaller-scale lenses. We have used here as the base-
line a compromise, where the mean-field and largest lenses
are not precisely reconstructed, which for most applications
is perfectly satisfactory: these large lenses contribute little to
B-mode delensing on degree scales, and, for the purpose of
lensing-spectrum reconstruction, cosmic variance dominates
there anyway, so that the quadratic estimator solution can be
satisfactory. Recent work (Reinecke et al. 2023) allowed us
to solve most of these issues, making upcoming analyses eas-
ier as well as slightly improving the lensing reconstruction
further.

New to this paper is the characterization of the noise
anisotropies induced by delensing as the only source of the
mean-field, which has no direct analog in quadratic-estimator
theory. We showed that it is a negligible source of compli-
cation, in particular for situations where uncertainties in the
statistical properties of the data overshadow its contribution.
One is naturally lead to drastic simplifications in the treat-
ment of the mean-field, which becomes as simple as for the
standard quadratic estimator.

The iterative reconstruction usually converges in a reason-
able number of steps (rarely did we use more than 15 iter-
ations), but is by no means a smooth process. In fact, the
non-Gaussian nature of the likelihood is such that for low



28

noise levels full Newton steps are much too strong, resulting
generically in unrealistic, non-invertible deflection-field esti-
mates. We found that reducing the step in a scale-dependent
manner can correct that problem, but this requires undesir-
able ad-hoc tuning, with little improvements each time, ex-
cept for the first few iterations; calculation of the gradients
is costly and generally improvement of the convergence after
a few steps would be highly desirable and is left for future
work. For the purpose of delensing, it helps that recovery of
the lensing B-mode appears easier than that of the lensing
deflection field and E-mode map individually: errors in both
tracers display statistical dependence in order to still produce
the right level of B-modes seen in the data.

Also new to this paper is the joint reconstruction of the
lensing post-Born curl together with the standard lensing-
gradient mode. The joint reconstruction brought no com-
plications with it, and the output is correctly described by
our predictions of the iterative N (0) and N (1) biases. At the
current time the lensing curl is really only useful as a sanity
check of the lensing reconstruction, but at the CMB-S4 depth
probed here, it will be also be a signal, whose detectability is
boosted by large factors with our optimal method.

We focused mostly on simulations of a very deep patch,
using semi-realistic inhomogeneous CMB-S4 noise maps,
together with two non-Gaussian foreground models. Our
baseline reconstructions on ILC-cleaned maps are not per-
fect near the edges and on large scales. Nevertheless this has
little impact overall, and the tracer is able to remove close to
93% of the lensing over the relevant area, as expected. Of
course, available Galactic foreground models are still crude
on small scales, but we find encouragingly that the main ef-
fect of the presence of the foregrounds on the lensing tem-
plates appears to be the increased effective noise of the maps.
This extends cautious optimism of (Beck et al. 2020) to the
case of iterative delensing. For the most complex model M09

a non-Gaussian feature is present close to the edges, which is
visible when averaging the templates.

We built predictions for the delensing capabilities and lens-
ing bias calculations, using a slightly modified version of the
well-known algorithm introduced in (Smith et al. 2012). It
is quite noteworthy how well these predictions (which do not
exactly follow from first principles), seem to work even un-

der non-idealized conditions, and it is reassuring to see that
forecasts with these tools can probably be trusted.

To summarize, (Kamionkowski & Kovetz 2016) writes that
B-mode delensing is an ‘ambitious, sophisticated, and chal-
lenging endeavor’: we believe that this paper makes the
prospect of an eventually successful delensing much more
realistic. Of course, much work remains to be done. Our
noise simulations were inhomogeneous but otherwise did not
have the full complexity expected from a ground-based ex-
periment like CMB-S4. While at least some of such non-
idealities are expected to impact predominantly scales larger
than those most relevant for lensing reconstruction, it is diffi-
cult to assess the importance of these effects for delensing
without more realistic simulations. This is left for future
work. Other areas that need development include the study
of systematic effects, better foreground models and cleaning
methods, non-linear large-scale structure simulation inputs,
and further code improvements.
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APPENDIX

A. SPIN-WEIGHTED FIELDS AND HARMONICS

Throughout this paper, we make heavy use of spin-weighted spherical harmonic (Newman & Penrose 1966; Goldberg et al.
1967; Lewis et al. 2002) transforms with spins between 0 and 3. A spin-weighted field sf(n̂) (s ≥ 0) on the sphere and
parametrized with colatitude and longitude (θ, φ) is defined with reference to the local axes, eθ and eφ. Our conventions are that
eθ and eφ point southwards and eastwards, respectively.

Under a clockwise rotation at n̂ by some angle ψ, the field transforms, by definition, as

sf(n̂)→ eisψ(n̂) sf(n̂). (A1)

A spin-s field can conveniently be decomposed into its gradient (G) and curl (C) harmonics by using the spin-weighted spherical
harmonics, sYℓm(n̂). The expansion has the form

±sf(n̂) = −(±1)s
∑

ℓm

(Gℓm ± iCℓm) ±sYℓm(n̂). (A2)

Further, let ∂+ and ∂− be the spin-raising and spin-lowering operators (Newman & Penrose 1966; Goldberg et al. 1967),

∂±s f = − (sin θ)
±s
(
∂θ ±

i

sin θ
∂φ

)
(sin θ)

∓s
sf . (A3)

We follow generally the conventions of (Lewis et al. 2002), and refer to the appendices of that paper for a discussion in the
context of the CMB. With the help of these operators, one can introduce orthonormal basis functions (the spin-weighted spherical
harmonics sYℓm) for spin-weighted fields. Explicitly,

∂±s Yℓm = ±
√

(ℓ∓ s)(ℓ± s+ 1) s±1Yℓm. (A4)

A lensing remapping on the sphere can be described by a vector field (concretely, a field of spin-1), and this vector field can, in
turn, be described by two scalar (spin-0) lensing potentials, ϕ(n̂) and Ω(n̂), with the spin-1 deflection vector defined as follows:

1α(n̂) = −ð+ (ϕ(n̂) + i Ω(n̂))

= −
∑

ℓm

√
ℓ(ℓ+ 1) (ϕℓm + iΩℓm) 1Yℓm(n̂) . (A5)

The second line follows from Eq. (A4). As can be seen by comparing this to Eq. (A2), ϕ defines the gradient and Ω the curl
component of the deflection vector. For a pure gradient deflection field, its real and imaginary components at n̂ are simply
∂θϕ(n̂) and csc(θ)∂φϕ(n̂), and are generally denoted αθ and αφ. If convenient, we also make use of the polar representation of
the vector, with α the magnitude of the field, and β the angle to the θ coordinate direction, such that, at each point on the sphere,
the following relation holds:

±1α(n̂) ≡ αθ(n̂)± iαφ(n̂) ≡ α(n̂)e±iβ(n̂). (A6)

B. DELENSED-NOISE MEAN-FIELD

This section gives details on the delensed-noise mean-field (the variation of the covariance matrix log-determinant with α) in
the case of an otherwise isotropic configuration. Using the Woodbury determinant relation, the relevant log-determinant is

1

2
ln det

[
CEE,unl,−1 +N−1

α

]
≡ 1

2
lnD , (B7)

with the inverse delensed E-mode noise matrix

N−1
α = 2Y†D†

αB†N−1BDα 2Y. (B8)

There are two variations to be considered. The first variation of the log-determinant can be written in the following way, using
simple matrix algebra,

δ lnD = Tr CEE,unl(CEE,unl +Nα)−1δ lnN−1
α

≡ TrWαδ lnN−1
α .

(B9)
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For convenience, we have used the notation δ lnN−1
α for the matrix NαδN

−1
α . This matrix has roughly constant contributions on

all scales. It is contracted with the Wiener-filtering matrix (defined asWα in the second line), thereby suppressing contributions
from noisy E-modes. The impact of α in the Wiener-filter matrix is, however, only significant when the noise is comparable
to CEE,unl. Hence, for low noise experiments, the isotropic Wiener filter Wℓ = Cℓ/(Cℓ + Nℓ), which is the leading-order
contribution, already gives an almost exact result. We now discuss δ lnN−1

α in more detail, and then look at the second variation
as well.

The action of lenses much larger than the beam commutes with the beam to good accuracy. It is useful to consider this
approximation first, which results in the correct low-L behavior, and which also renders the results more transparent. This
assumption also corresponds to the exact result in the case of zero beamwidth (but arbitrary large white noise level, so that this
still corresponds to a somewhat physically relevant situation). Under this assumption, we can swap the order of appearance of the
beam and deflection operations in Eq. (B8). Assuming homogeneous noise with full sky coverage, and using the exact relation
[D†

αDα][n̂, n̂′] = |Aα−1 |(n̂)δD(n̂, n̂′), the noise matrix greatly simplifies.
For convenience, we now adopt notation convenient for intensity measurements by using spin-0 spherical harmonics. However,

the simulations discussed in this paper include polarized data and have no primordial B-modes, and we generally must use spin-
2 harmonics to correctly describe it. These two differences lead to slight complications in the argument below. They are,
nevertheless, only formal, and lead to identical leading-order and similar second-order results, and will be discussed at the end.

The inverse noise matrix, in the approximation discussed above, becomes

[
N−1

α

]
ℓm,ℓ′m′ =

∫
dn̂
|Aα−1 |(n̂)

N
1/2
ℓ N

1/2
ℓ′

Y †
ℓm(n̂)Yℓ′m′(n̂) . (B10)

Assuming that the bandlimits give a sufficiently large range, the spherical harmonics project onto a complete set, and the matrix
has the explicit inverse

[Nα]ℓm,ℓ′m′ =

∫
d2n̂

N
1/2
ℓ N

1/2
ℓ′

|Aα−1 |(n̂)
Y †
ℓm(n̂)Yℓ′m′(n̂) . (B11)

With this, we find that the variation NαδN
−1
α in Eq. (B9) is

[
δ lnN−1

α

]
ℓm,ℓ′m′

=
N

1/2
ℓ

N
1/2
ℓ′

∫
d2n̂ δ ln |Aα−1 |(n̂)Y †

ℓm(n̂)Yℓ′m′(n̂).
(B12)

Further, we can then write the leading term of Eq. (B9) as

δ lnD =

(
δ

∫
d2n̂′

4π
lnAα−1(n̂′)

)(∑

ℓ

(2ℓ+ 1)Wℓ

)
. (B13)

By using lnAα−1(n̂′) = − lnAα(n̂), where n̂′ and n̂ are the deflected and undeflected positions, respectively, and performing
the change of parameterization in the integral, the prefactor is

−δ
∫
d2n̂

4π
|Aα|(n̂) ln |Aα|(n̂) ∼ −δ

∫
d2n̂

4π
2κ2(n̂) . (B14)

By definition, gMF,κ
LM = 1

2δ lnD/δκLM , and we recover

gMF,κ
LM = −2κLM

(∑

ℓ

2ℓ+ 1

4π
Wℓ

)
, (B15)

as given in the text in Eq. (24).
Let us now discuss the second variation. It is natural to continue working with lnAα−1 , since the second variation δ2 lnN−1

α

vanishes (see Eq. B12). For this reason, the only contribution is from the change of the Wiener filter. This may be written as

δ2 lnD =
[
TrWαδ lnN−1

α (1−Wα)δ lnN−1
α

]
. (B16)

The full result following from this is given in Eq. (B18). The squeezed limit, however, (low L, high ℓ, and ℓ ∼ ℓ′) is easily
extracted: (∫

d2n̂

4π
|Aα|(ln |Aα|)2

)(∑

ℓ

(2ℓ+ 1)Wℓ(1−Wℓ)

)
. (B17)



33

The prefactor is
∫

(2κ)2+ higher orders. This is of the same order in κ as the first variation, but with much lower relevance due
toWℓ(1−Wℓ) and taking only contributions when Cℓ ∼ Nℓ. The exact second variation result for spin-0 intensity is

1

2
lnD ∋1

2

∑

LM

|2κLM |2

· 2π
∫ 1

−1

dµ dL00(µ)ξW00 (µ)ξ
(1−W)
00 (µ) ,

(B18)

with, for any spins a, b, and filter F ,

ξFab(µ) =
∑

ℓ

2ℓ+ 1

4π
Fℓ d

ℓ
ab(µ). (B19)

For polarization, and in the limit of vanishing CBB,unlℓ , the differences are the following. First, the Wiener-filterWα becomes
pure EE to leading order, but (1−Wα) has both an EE and a BB component. This last term originates from the contribution
of the EB part of the quadratic estimator. Second, we must use the spin-2 harmonics. The first variation is unchanged, but the
second becomes

1

2
lnD ∋ 1

2

∑

LM

|2κLM |2×
{

2π

∫ 1

−1

dL00(µ)
1

2

[
ξW2,2(µ)ξ1−W

−2,−2(µ) + ξW−2,2(µ)ξ1−W
2,−2 (µ)

]

+2π

∫ 1

−1

dL00(µ)
1

2

[
ξW2,2(µ)ξ1−2,−2(µ)− ξW−2,2(µ)ξ12,−2(µ)

]}
,

where the second line is the EB contribution. Combining this with Eq. (B15) gives the final result for the mean-field for tiny
beams,

gMF,κ
LM = −2κLM

{[∑

ℓ

2ℓ+ 1

4π
Wℓ

]

− 2π

∫ 1

−1

dL00(µ)
1

2

[
ξW2,2(µ)ξ1−W

−2,−2(µ) + ξW−2,2(µ)ξ1−W
2,−2 (µ)

]

−2π

∫ 1

−1

dL00(µ)
1

2

[
ξW2,2(µ)ξ1−2,−2(µ)− ξW−2,2(µ)ξ12,−2(µ)

]}
.

(B20)

The first two lines are the leading and sub-leading EE contributions, while the third line is the one from the EB-part of the
quadratic estimator, which is basically zero at low L, as expected.

C. MAGNIFICATION DETERMINANT

In this section, we describe a series of steps to derive the exact form of the remapping Jacobian determinant in Eq. (15).
In standard polar coordinates, we use the local orthonormal basis at n̂, yielding er = n̂, eθ, and eφ. Variations along eθ and eφ
induce at the deflected position n̂′ shifts ∂θn̂′ and 1

sin θ∂φn̂
′ in the plane tangent to the sphere at n̂′. We can write these shifts

using er, eθ, and eφ.
With this, the Jacobian determinant can be written as

|A| = |∂θ n̂′ × ∂φ̃ n̂′| , (C21)

where we have used the notation ∂φ̃ for 1
sin θ∂φ. The third deflection vector d = n̂′ − n̂ can be written in this basis as

n̂′ = n̂+ d ≡ (1 + α̃r)er + α̃θeθ + α̃φeφ , (C22)

with

1 + α̃r = cosα, α̃θ =
sinα

α
αθ, α̃φ =

sinα

α
αφ. (C23)

The variation of n̂′ can be calculated from the variations of 1α̃, and those of er, eθ, and eφ. A straightforward, albeit somewhat
lengthy calculation, gives
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∂θn̂
′ × ∂φ̃n̂′

=




∂θα̃r − α̃θ
1 + α̃r + ∂θα̃θ

∂θα̃φ


×




∂φ̃α̃r − α̃φ
∂φ̃α̃θ − α̃φ cot θ

1 + α̃r + α̃θ cot θ + ∂φ̃α̃φ


 .

(C24)

With the definitions of the convergence and field rotation, κ̃ + iω̃ = 1
2 ð̃ 1α̃, shear γ̃ = 1

2ð 1α̃, as well as a new spin-1 field
1f = f1 + if2 ≡ 1α̃+ ðα̃r, we may write

∂θn̂
′ × ∂φ̃n̂′ =




(1 + α̃r − κ̃)2 + ω̃2 − γ̃2
−f1(1 + α̃r − κ̃+ γ̃1) + f2(−γ̃2 − ω̃)

−f1(−γ̃2 + ω̃) + f2(1 + α̃r − κ̃− γ̃1)


 . (C25)

The first (er) component reduces to the usual magnification matrix determinant 1− 2κ for infinitesimal deflections. The eθ and
eφ components form the real and imaginary parts of a spin-1 field, giving a correction quadratic in the deflection angle.
To simplify all the calculations, we introduce and calculate with spin-0 quantities η̃, η and ξ̃, ξ, built from the 3-dimensional and
tangential deflection , respectively,

η̃ ≡ 1 + α̃r − κ̃+ iω̃, η ≡ 1− κ+ iω ,

ξ̃ ≡ e−2iβ γ̃, ξ ≡ e−2iβγ .
(C26)

A short calculation, applying ð on η̃ and ξ̃ shows that they are quite simply related to their tangential counterparts:
(
η̃

ξ̃

)
=

(
j0(α)− α

2 j1(α) α
2 j1(α)

α
2 j1(α) j0 − α

2 j1(α)

)(
η

ξ

)

− α

2
j1(α)

(
1

1

)
,

(C27)

with j0(α) = sin(α)/α and αj1(α) = − cos(α) + sin(α)/α the first two spherical Bessel functions. With this notation in place,
the er component of the vector product is

(1 + α̃r − κ̃)2 + ω̃2 − γ̃2 = |η̃|2 − |ξ̃|2

= cosα
(
j0(α)

(
|η|2 − |ξ|2

)
− α

2
j1(α)(η + η∗ − ξ − ξ∗)

)
.

(C28)

The contributions of the eθ and eφ can also be expressed easily in terms of η and ξ, with the exact same result as Eq. (C28),
but with a sinα prefactor replaced by cosα. The full Jacobian determinant then collects a factor cos2 α and sin2 α from the
component parallel and perpendicular to n̂, respectively, with the result

|A| =
∣∣∣j0(α)

(
|η|2 − |ξ|2

)
− α

2
j1(α)(η + η∗ − ξ − ξ∗)

∣∣∣ , (C29)

equivalent to the expression given in Eq. (15).
The first line of Eq. (15) looks familiar in the context of lensing, arguably less so the second. We can illustrate its role with the

case of a locally constant deflection field, for which κ = ω = γ = 0 locally, with the result A(n̂) = cosα. Consider a tiny disk
centred at the North Pole, with a locally constant deflection field there. If we increase the magnitude of the deflection field there
gradually from zero, the circle starts to move towards the equator. The diameter of the disk parallel to the deflection vector stays
unchanged, since the points are lying on the same great circle. The diameter transverse to the deflection gets smaller owing to
focussing. Upon reaching the equator (α = π/2), the disk has become a line, with the component parallel to the equator being
squeezed to zero, consistent with A = 0. Increasing α further, at the South Pole (α = π) the line has becomes a disk again, but
with A = −1, since the transverse geodesics did cross each other on the equator.

D. CURVED-SKY LIKELIHOOD GRADIENTS

In this section, we give details on the derivation of the curved-sky likelihood gradients, Eq. (18). For this, we consider a small
variation ϵ to the deflection vector α(n̂) in the plane tangent to n̂ in Fig. 2. The deflection vector α gives the coordinates of the
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deflected position n̂′. If we were to slightly change the deflection vector, for example to α + ϵ, this would lead us to a position
n̂′ϵ. We can picture this as a squeezed spherical triangle, with two large sides, one of length |α| joining n̂ to n̂′, the other of
length |α(n̂) + ϵ(n̂)| joining n̂ to n̂′ϵ. The remaining, squeezed side of the triangle joining n̂′ to n̂′ϵ lies, for practical purposes, in
the plane tangent to n̂′ and can be treated to first order in ϵ.

Our strategy is then as follows. Working in spin-weight components, we can associate to the change in deflection 1ϵ(n̂) at n̂ a
deflection field 1ϵ(n̂

′) at n̂′, and the remapping from n̂′ to n̂′ϵ that it induces can be treated perturbatively. Doing so, and using
Eq. (2) for the ‘large’ deflection and Eq. (6) for the small deflection, we can write

2
δ

δ±1α(n̂)
[Dα sT ] (n̂)

= −eis(β−β′)

[
∂ −1ϵ(n̂

′)
∂ ±1ϵ(n̂)

∂+s T (n̂′) +
∂ 1ϵ(n̂

′)
∂ ±1ϵ(n̂)

∂−s T (n̂′)

]
.

(D30)

In this way, we only need to obtain the linear, explicit dependency of the components 1ϵ(n̂
′) to 1ϵ(n̂).

It is convenient to split ϵ(n̂) = ϵ∥(n̂) + ϵ⊥(n̂) in the components parallel and perpendicular to α(n̂). Using, for example,
simple spherical trigonometry, it is not too difficult to see that the parallel component gives a contribution ϵ∥(n̂) to the squeezed
side of the spherical triangle, but the perpendicular contribution is reduced by the sky curvature to ϵ⊥(n̂) (sinα/α).

The spin-weight components of ϵ(n̂) at n̂ are given by

1ϵ(n̂) = eiβ(ϵ∥(n̂) + iϵ⊥(n̂)) . (D31)

At n̂′, for the reason just discussed above, the components of the deflection vector pointing to n̂′ϵ become instead

1ϵ(n̂
′) = eiβ

′
(
ϵ∥(n̂) + i

(
sinα

α

)
ϵ⊥(n̂)

)
. (D32)

We can rearrange these two relations, and find one piece that is linear in the deflection angle α, and a second piece that is
quadratic:

1ϵ(n̂
′) = e−i(β−β

′)
1ϵ(n̂)

− e−i(β−β′) 1

2

(
1− sinα

α

)[
1ϵ(n̂)− e2iβ −1ϵ(n̂)

]
.

(D33)

Plugging this into Eq. (D30), and using the definition of the remapping by α, Eq. (2), recovers Eq. (18), as given in the text, after
identification of e±2iβ to (±1α(n̂)/α(n̂))

2.
For α = π, the perpendicular component is reduced to zero, since all great circles starting at n̂meet at the antipodal point. This

provides a simple sanity check of these expressions: consider varying the deflection phase β, then the gradient of the deflected
fields must exactly vanish. Since, by definition, ±1α(n̂) = α(n̂)e±iβ(n̂), we may write in general

1

i

δ [Dα sT ] (n̂)

δβ(n̂)
=

1α(n̂)
δ [Dα sT ] (n̂)

δ1α(n̂)
− −1α(n̂)

δ [Dα sT ] (n̂)

δ−1α(n̂)
.

(D34)

The spin-weighted gradients (Eq. 18) themselves become

2δ

δ±1α(n̂)
[Dα sT ] (n̂)

α(n̂)=π︷︸︸︷
= −1

2
[Dαð∓s T ](n̂)− 1

2

(
∓1α(n̂)

α(n̂)

)2

[Dαð±s T ](n̂) .

(D35)

It is not difficult to see that the β gradient Eq. (D34) always vanishes, as it should.

E. OTHER MISCELLANEOUS FORMULAE

Generally, the undeflected angles can easily be obtained from the relation

n̂′ = cosα n̂+
sinα

α
(αθeθ + αφeφ) . (E36)
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The explicit relations are (Lewis 2005, for example)

cos θ′ = −αθ
sinα

α
sin θ + cosα cos θ ,

sin θ′ sin (φ′ − φ) =αφ
sinα

α
,

sin θ′ cos (φ′ − φ) =αθ
sinα

α
cos θ + cosα sin θ .

(E37)

The explicit dependence on the deflection amplitude is always second order and weak, since α ≃ 2 arcmin = 5.8 × 10−4.
Conversely, the components of a deflection field can be obtained from the angles using

αφ

(
sinα

α

)
= sin(φ′ − φ) sin θ′ ,

αθ

(
sinα

α

)
= sin(θ′ − θ)− 2 sin2

(
1

2
(φ′ − φ)

)
cos θ sin θ′ .

(E38)

To leading order the phase of the lensing remapping is given by32

β − β′ = αφ

[
cot θ − 1

2
csc2θ(1 + cos2 θ)αθ + · · ·

]
, (E39)

and can also easily be calculated in general from

β′ = arctan2(αφ, α sinα cot θ + αθ cosα) . (E40)

32 (Challinor & Chon 2002) lacks a factor csc(θ) in their Eq. 8.
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3.2.2 Analysis of Alternatives

With the NSF requesting to study various experiment configuration of CMB-S4 to
analyse feasibility of reaching the CMB-S4 science goals, we continuously work on
optimizing the experiment capabilities.

As delensing is a critical part of the pipeline, we want to confirm that changes
in the experiment configuration support the CMB-S4 science goals for map based
delensing.

In this context, we explored the distribution of the number of telescopes across
South Pole and Chile. For each of the final three configurations, we simulated noise
maps and a sky scanning strategy, and applied different foreground models. We
then generated component separated maps for each of them. I performed iterative
lensing reconstruction with Delensalot and calculated the B-lensing templates for
100 simulations for each of the sky models and configurations.

I tested the results by calculating the residual lensing amplitudes that we would
obtain with these sky models and configurations, and found that they were not in
alignment with the expected delensing efficiencies, in particular for two out of three
of the configurations.

Near the end of performing lensing reconstruction, it became clear that the noise
simulations were erroneous. This error had not directly shown up in the estimation
of the noise model due to a combination of bugs somewhat cancelling each other.

My work on this is summarized on the CMB-S4 Confluence website. They can
be found with the following links (membership required):

1. https://cmb-s4.atlassian.net/wiki/spaces/XC/pages/1452343297/AoA+
-+delensing+all+foregrounds+alternative+1

2. https://cmb-s4.atlassian.net/wiki/spaces/XC/pages/1453260808/AoA+
-+delensing+all+foregrounds+alternative+2

3. https://cmb-s4.atlassian.net/wiki/spaces/XC/pages/1453817858/AoA+
-+delensing+all+foregrounds+alternative+3

Ultimately, we decided to not move forward with any of the analysis results
and instead redo the generation of the maps. On the bright side, it was good to
test Delensalot for this task, hereby proving that the DLM indeed simplifies this
task, allowing to easily handle the 9 different analyses, for which each configura-
tion requires a different noise model, and overlapping B-mode deprojection matrix.
Compared to the time of working on the collaboration paper, Delensalot is now
much easier to control.

3.2.3 Optimal Component Separation

The goal of this project is to compare different pipelines for estimating r using
map-based simulations, and we use the bias and sensitivity on r as a measure.
While the CMB-S4 configuration and noise map is the same as in the collaboration
paper of the previous section, we changed the foregrounds to various PySM models.

https://cmb-s4.atlassian.net/wiki/spaces/XC/pages/1452343297/AoA+-+delensing+all+foregrounds+alternative+1
https://cmb-s4.atlassian.net/wiki/spaces/XC/pages/1452343297/AoA+-+delensing+all+foregrounds+alternative+1
https://cmb-s4.atlassian.net/wiki/spaces/XC/pages/1453260808/AoA+-+delensing+all+foregrounds+alternative+2
https://cmb-s4.atlassian.net/wiki/spaces/XC/pages/1453260808/AoA+-+delensing+all+foregrounds+alternative+2
https://cmb-s4.atlassian.net/wiki/spaces/XC/pages/1453817858/AoA+-+delensing+all+foregrounds+alternative+3
https://cmb-s4.atlassian.net/wiki/spaces/XC/pages/1453817858/AoA+-+delensing+all+foregrounds+alternative+3
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Foreground cleaning methods consist of a parametric maximum likelihood method
using auto- and cross-power spectra between frequencies, a parametric maximum
likelihood method based on frequency maps, and a harmonic-space internal linear
combination based on frequency maps. This project uses Delensalot to generate
lensing B-mode templates from LAT frequency maps.

We initially started with two simulations each. A quick sanity check uncovered a
much better cross correlation coefficient to the input lensing potential. The reason
for it was quickly identified as a better reconstruction from Delensalot: Lenspyx
2.0 allows for a much more accurate deflection operation and subsequently also
increases accuracy at the Wiener-filtering step.

However, two simulations were not enough for interpretable results which is why
we ended up reconstructing 100 simulations per sky model.

In addition, to asses the bias from higher order correlations from these PySM
foreground models on the lensing template, we additionally generated three sky mod-
els containing specific foreground parameterisation; they are constructed assuming
that all information can be obtained from the two-point spectrum measurements.
Compared to previous Gaussian foreground models, these are constructed, among
other, using isotropic decorrelation and isotropic spectral energy distribution (SED)
parameters.

My contribution to this project is the generation of the B-lensing templates for
all sky models.

At the time of writing the thesis, this project is still ongoing. Results may be
presented in a standalone paper in the near future.

3.3 PICO

PICO will scan the sky for 5 years in 21 frequency bands spread between 21 and
799 GHz from space; It will produce full-sky surveys of temperature and polar-
ization with a resulting noise that would perform as 6400 Planck missions. With
these capabilities, PICO will address seven science objectives. First, PICO will
determine the energy scale of inflation and give a first, direct probe of quantum
gravity. The mission will attempt to detect the tensor-to-scalar ratio r signal at a
level of r = 5 · 10−4 at 5σ. This level is 100 times lower than current upper limits.
PICO will constrain a wide range of classes of inflationary models, exclude models
at 5σ for which the characteristic scale in the potential is the Planck scale and will
be able to distinguish between reheating scenarios at 3σ. Combining PICO data
with large-scale-structure (LSS) surveys (such as LSST) could rule out all models
of slow-roll single-field inflation, marking a significant contribution to science. Sec-
ond, the mission will have a strong impact on particle physics by measuring the
minimum sum of neutrino masses at 4σ, a precision that can only be met with an
instrument like PICO measuring the polarization of the CMB on the largest angular
scales, while at the same time being able to remove large amounts of foreground
contaminants by deploying a wide range of frequency detectors. An independent
and equally competitive measure of the sum of neutrino masses can be achieved
by using the cluster counts provided by PICO in combination with LSS data and
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in combination of the reconstructed lensing potential. Third, the PICO will either
detect or strongly constrain deviations from the standard model of particle physics
by counting the number of light particle species Neff in the early Universe. The
constraint of ∆Neff < 0.06(2σ) will move the allowed decoupling temperature of a
hypothetical new vector particle to temperatures that are 400 times higher than the
Planck constraints. Fourth, PICO will measure the optical depth to reionization τ
with an error σ(τ) = 0.002, a measurement that will be limited by cosmic variance
from the largest polarization scales. Fifth, PICOs galactic dust polarization maps
will make maps of the galactic magnetic field. Seventh, PICO will enable a search
for primordial magnetic fields with good sensitivity: PICO will rule them out as the
sole source for the largest observed galactic magnetic fields. PICO will improve con-
straint on polarization rotation from early Universe magnetic fields causing cosmic
birefringence by a factor of 300, and thus constrain string theory-motivated axions.

I joined PICO in 2022, and supported the collaboration with the iterative lensing
reconstruction and calculation of the residual lensing amplitudes for the simulations
they provided. The PICO maps are clearly different compared to Planck or other
CMB experiments: quite astonishing is the feature-less galactic plane, a feature only
reached by the shear amount of different frequency channels that PICO can provide
for the component separation.

For the paper that is presented in the next section, we studied various compo-
nent separation and sky models and assessed PICOs capabilities in constraining r
for two different configurations: the baseline configuration, and the best estimate
configuration. Further, we divided the sky into sky patches of different residual
foreground levels, to analyse the improvements on r with this approach.

With all the above being based on forecast approaches, we decided to validate
our findings using map-based delensing. For one of the sky models, we generated 10
high-resolution simulations to perform map-based delensing.

With this exceptionally effective component separation from PICO, we decided
to work on full-sky maps without a galactic mask, which turned out to give very
good results, well in agreement with forecasts.

My contributions to this paper is the QE and iterative reconstruction, and the
analysis of the map-level delensing. I supported the paper by contributing to writing
the chapter about map-level delensing.

The following contains the publication as appeared in the Journal of Cosmology
and Astroparticle Physics (JCAP).
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ABSTRACT

PICO is a concept for a NASA probe-scale mission aiming to detect or constrain the tensor to scalar
ratio r, a parameter that quantifies the amplitude of inflationary gravity waves.

We carry out map-based component separation on simulations with five foreground models and

input r values rin = 0 and rin = 0.003. We forecast r determinations using a Gaussian likelihood
assuming either no delensing or a residual lensing factor Alens= 27%. By implementing the first full-
sky, post component-separation, map-domain delensing, we show that PICO should be able to achieve

Alens= 22% - 24%. For four of the five foreground models we find that PICO would be able to set
the constraints r < 1.3 × 10−4 to r < 2.7 × 10−4 (95%) if rin = 0, the strongest constraints of any
foreseeable instrument. For these models, r = 0.003 is recovered with confidence levels between 18σ
and 27σ. We find weaker and, in some cases, significantly biased upper limits when removing a few

low or high-frequency bands. The fifth model gives a 3σ detection when rin = 0 and a 3σ bias with
rin = 0.003. However, by correlating r determinations from many small 2.5% sky areas with the
mission’s 555 GHz data we identify and mitigate the bias. This analysis underscores the importance of

large sky coverage. We show that when only low multipoles ℓ ≤ 12 are used, the non-Gaussian shape of
the true likelihood gives uncertainties that are on average 30% larger than a Gaussian approximation.

Keywords: (cosmology:) cosmic microwave background — (cosmology:) early universe — (cosmology:)

diffuse radiation — (cosmology:) observations — methods: data analysis

1. INTRODUCTION

Observations of the cosmic microwave background (CMB) from three space missions, COBE-DMR, WMAP, and
Planck have established ΛCDM as the widely accepted standard model of cosmology, have give a wealth of information

about the evolution of structures in the Universe, and have been used to support numerous astrophysical investigations.
Several missions have been proposed to take the next leap in understanding the evolution of the Universe, including
LiteBIRD (LiteBIRD Collaboration et al. 2022), which has been approved by the Japanese space agency JAXA,

CORE (Delabrouille et al. 2018), CMB-Bhārat (Adak et al. 2021), and PICO (Hanany et al. 2019). PICO, The Probe
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of Inflation and Cosmic Origins, a concept for a NASA-led probe-scale space mission (Hanany et al. 2019), is the most
sensitive of the proposed next generation space missions. For example, relative to LiteBIRD it would give maps that

are deeper by at least a factor of 2.5 with nearly four times higher angular resolution in overlapping bands. PICO is
expected to give the tightest constraints on cosmological parameters compared to all forthcoming or planned CMB
instruments.

PICO has seven science objectives, five of which are to be extracted from the highest ever signal-to-noise ratio (S/N)

full-sky maps of the CMB. After PICO’s prime mission of 5 years, the combined map-noise level over the entire sky
would be 0.6 µK arcmin. Since the mission has no liquid cryogens, longer lifetime and lower noise are likely. Of the
numerous probe-scale mission concepts submitted to the Astro2020 panel, a next-generation CMB mission was one

of three recommended for further development this decade for a possible flight in the 2030s (National Academies of
Sciences, Engineering, and Medicine 2021).

PICO’s most demanding requirement is the level of constraint on the tensor to scalar ratio r, which quantifies the
amplitude of gravitational waves produced during the epoch of inflation shortly after the big bang. For the case of a

null detection, the requirement is to achieve r ≤ 0.0002 (95%). If r ̸= 0 the requirement is to achieve 5σ detection of
r = 0.0005. A priori, in the context of inflation, the expected value of r can range over many orders of magnitude,
including values far too small to be detected. However, the simplest models of inflation that have a single inflaton,

and that naturally explain the observed value of the scalar spectral index, only have a single free parameter, the
distance in field space over which the potential varies appreciably. In several well-motivated scenarios, this scale
shares a common origin with the scale of gravity, typically referred to as the Planck scale. Such models predict

values r ≳ 0.001 (Abazajian et al. 2016; Linde 2017). The absence of detection at this level would definitively rule
out this particularly well-motivated class of inflationary models (Shandera et al. 2019). Conversely, an unambiguous
detection would definitively establish inflation as the source of primordial perturbations, determine the energy scale
at which inflation took place, and would give a first direct probe of quantum gravity. The current upper limit is

r < 0.032 (95%) (Ade et al. 2021; Tristram et al. 2021).
CMB determinations of r rely on measuring the polarization Q and U Stokes parameters, converting them to E- and

B-modes, and forming the corresponding EE and BB angular power spectra. The level of r is linearly proportional to

the BB power spectrum, r = 0.15 · DBB
ℓ=90/(0.1µK)2, where DBB

ℓ=90 = ℓ(ℓ + 1)CBB
ℓ /2π is the level at ℓ = 90. Reaching

PICO’s constraint on inflationary gravitational waves is demanding – even with its high S/N maps – because the
B-mode foreground emission within the Milky Way is known to have amplitudes much larger than the levels of r
targeted by PICO (Planck Collaboration et al. 2020a; Ade et al. 2021). Separating the cosmological signal from the

foregrounds, a process commonly called “component separation,” requires low-noise multi-frequency observations, or
accurate prior knowledge, that are unlikely to be available before the mission flies, because it would take a PICO-type
mission to map the sky with the requisite S/N.

Gravitational lensing of CMB photons by large scale structures between the surface of last scattering and our
telescopes presents another challenge (Lewis & Challinor 2006). Lensing scatters photons off their original paths,
distorting slightly the original pattern of the CMB anisotropy. In polarization, the primary effect is the conversion

of high ℓ E-mode power to lower ℓ B-mode power. The sample variance of this lensing-induced B-mode acts as a
source of approximately white noise. However, with sufficiently high S/N polarimetric measurements extending to
ℓ ≳ 1000, CMB maps can be delensed (Zaldarriaga & Seljak 1998; Hu 2002; Seljak & Hirata 2004) and delensing
improves constraints on cosmological parameters. PICO’s resolution of few arcmin at the main CMB bands near

200 GHz makes internal delensing – the use of its own data to delens – possible (Hu & Okamoto 2002; Okamoto & Hu
2003), which is a key element in achieving the stringent science goal for r.

In this paper we use simulations to study whether data from PICO’s 21 frequency bands (Section 2) would enable

foreground cleaning such that the required level of constraint on r can be achieved. We construct sky maps matching
five possible foreground models, all of them broadly consistent with current Planck data (Section 3). They span a
broad range of complexity and input assumptions. The sky maps, which include CMB signals and noise (Section 4),
approximately represent maps that would be obtained with PICO. The maps are approximate because we assume a

spatial noise distribution that is pixel-independent and scale-free with ℓ, an appropriate approximation at this stage
of mission development. We apply both parametric and blind component separation methods and estimate r. Details
of the methods and results from each are given in Sections 5 and 6. Delensing of the sky maps is handled in two ways,

an analytic, power spectrum domain approach, and using an iterative, map domain delensing algorithm (Section 7).
We discuss and summarize in Sections 8 and 9.
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Testing the component separation capability of various instruments has been carried out in the past. The recent most
relevant reports were those provided in the context of CORE (Remazeilles et al. 2018), LiteBIRD and PICO (LiteBIRD

Collaboration et al. 2022; Remazeilles et al. 2021), CMB-Bharat (Adak et al. 2021), Simons Observatory (Ade et al.
2019), and CMB-S4 (Abazajian et al. 2022). This paper is unique because with the PICO data we strive to set
unprecedented constraints on cosmological parameters, because we analyze a diverse set of five sky foreground models
spanning a realistic range of possibilities, and because this is the first paper to report on map-level iterative delensing

as an integral part of the analysis pipeline.

2. PICO INSTRUMENT PARAMETERS

The PICO mission concept has a single instrument, an imaging polarimeter, operating in 21 frequency bands between
21 and 799 GHz. The instrument consists of a two mirror telescope with a 1.4 m diameter entrance aperture, which
is based on an ‘open-Dragone’ design (Young et al. 2018). The telescope feeds a focal plane populated with 13,000
bolometers and gives a resolution between 1.1 arcmin at the highest frequency and 38.4 arcmin at the lowest. The

bolometers are operated from a bath temperature of 0.1 K. PICO will conduct observations from the L2 Lagrange
point with a scan pattern that covers the full sky within 6 months. The prime mission duration is 5 years giving 10
redundant full sky surveys, but because there are no consumables, mission lifetime could extend significantly longer.

The mission concept has required and estimated noise levels of 0.87 and 0.61 µK arcmin, respectively, accounting only
for the 5 yr prime mission. In this paper we use the estimated map noise levels, as given in Table 1. The simulations
that are used in this work began before the concept report was finalized and due to late iterations on the design
of the focal plane some of the values in the table differ slightly from the values quoted in the more definitive final

report (Hanany et al. 2019). The differences are minor and do not change the combined map noise level. The frequency
bands and their noise levels as given in Table 1 were not optimized for component separation. Such optimization is
left for future work; see Section 8.

Table 1. Parameters of the PICO mission. The map noise is assumed white and the numbers given are for the polarized maps
(Q/U or E/B).

Frequency (GHz) 21 25 30 36 43 52 62 75 90 108 129 155 186 223 268 321 385 462 555 666 799

FWHM (arcmin) 38.4 32.0 28.3 23.6 22.2 18.4 12.8 10.7 9.5 7.9 7.4 6.2 4.3 3.6 3.2 2.6 2.5 2.1 1.5 1.3 1.1

Noise† (µK-arcmin) 16.9 11.8 8.1 5.7 5.8 4.1 3.8 2.9 2.0 1.6 1.6 1.3 2.6 3.0 2.1 2.9 3.5 7.4 34.6 144 896

Combined Map Noise 0.61 (µK-arcmin)
† Polarization noise in CMB thermodynamic units

3. FOREGROUND MODELS

We consider five models for Galactic foreground emission, as described in the following sections and summarized in
Table 2. For ease of reference, the models are given the names and short names as shown in the first column. For

levels of r relevant for upcoming CMB instruments including PICO, 0.5 × 10−3 ≤ r ≤ 5 × 10−3, the B-mode signal
is much smaller than Galactic foregrounds, see Figure 1. The figure shows the level of foregrounds expected at three
frequency bands with the five models and the level of CMB B-modes as a function of ℓ. Models 2MBB, PhysDust,

and MHD, are identical to those used in Abazajian et al. (2022).

3.1. Model Planck Baseline

The ‘Baseline’ model is based on polarized Galactic emission provided by the Python Sky Model (PySM2; Thorne
et al. 2017), specifically the “d1” model of polarized dust emission and the “s1” model of polarized synchrotron emission.
In each sky pixel the dust emission is characterized by Planck’s 353 GHz polarized intensity in Q and U (Planck

Collaboration X 2016) and by an opacity law index βd and dust temperature Td to describe the frequency dependence.
The Q and U 353 GHz amplitude maps, as well as the Td and βd maps, are based on the Planck Collaboration X
(2016) component separation analysis with the Commander framework. Gaussian fluctuations are added to low-pass
filtered amplitude maps at angular scales ℓ > 69, where the data are not constraining, to produce final maps with

power at scales up to ℓ ∼ 1500 (Thorne et al. 2017).
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Table 2. Summary of Polarized Foreground Models

Model Name (Short Name) Dust Model Synchrotron Model Other Components

Planck Baseline (Baseline) PySM d1: modified black-
body with spatially varying
Td and βd

PySM s1: power law spec-
trum with spatially varying
βs

None

Dust: Two Modified Black
Bodies (2MBB)

PySM d4: two component
dust model of Meisner &
Finkbeiner (2015)

PySM s3: power law spec-
trum with spatially varying
βs and sky-constant curva-
ture

PySM a2 AME model: Spa-
tially varying spectrum with
fixed 2% polarization frac-
tion

Physical Dust (PhysDust) PySM d7: physical dust
model of Hensley (2015)
including magnetic dipole
emission

PySM s3 PySM a2 AME model

MHD (MHD) Modified blackbody dust
emission in each cell of a
TIGRESS MHD simulation
(Kim & Ostriker 2017; Kim
et al. 2019), integrated along
the line of sight

Power law synchrotron spec-
trum with amplitude cou-
pled to B-fields in a TI-
GRESS MHD simulation
(Kim & Ostriker 2017; Kim
et al. 2019)

None

Multi-Layer Dust (Multi-
Layer)

“MKD” dust model
(Mart́ınez-Solaeche et al.
2018) based on multi-
ple modified blackbody
emission laws in each pixel

PySM s3 PySM a2 AME model

The synchrotron emission in each pixel is likewise described by an amplitude in each of Q and U and by a power
law index βs to describe the frequency dependence. The Q and U amplitudes are based on the 9-yr WMAP 23 GHz Q
and U maps smoothed to a resolution of 3◦. The βs map is taken from “Model 4” of Miville-Deschênes et al. (2008),

who used the Haslam 408 MHz survey data (Haslam et al. 1982) and 3-yr WMAP 23 GHz data (Hinshaw et al. 2007)
to derive synchrotron spectral indices.

3.2. Model Dust: Two Modified Black Bodies

Model 2MBB is also based on polarized Galactic emission models from PySM, but differs from the Baseline in the
frequency scalings of both dust and synchrotron emission as well as inclusion of a polarized anomalous microwave
emission (AME) component. Specifically, model 2MBB employs the “d4” dust model, “s3” synchrotron model, and

“a2” AME model.
The dust emission in model d4 is based on the parametric fits of Meisner & Finkbeiner (2015), who employed a two

component dust model to describe a combination of Planck and DIRBE/IRAS data. The emission in each pixel is
specified by an amplitude in each of Q and U and by a dust temperature for each of the two components to describe

the frequency dependence. The temperature maps are taken directly from the fits of Meisner & Finkbeiner (2015).
The Q and U amplitude maps are generated by scaling the model to 353 GHz in total intensity, then applying the
same polarization angle and polarization fraction as used in the d1 model. Gaussian small scale fluctuations are added

as in the d1 model. Thus, the 353 GHz Q and U amplitude maps of the d4 model differ in detail from those of the d1
model.

The s3 synchrotron model is in all respects identical to the s1 model described in the previous section with the

addition of a curvature term to the frequency scaling. The synchrotron curvature parameter is taken to be constant
over the full sky.

The AME emission in the a2 model is based on the parametric fits of Planck Collaboration X (2016), who describe
the AME spectrum as the sum of two spinning dust components. The a2 model in total intensity is described by

three parameter maps specifying the amplitudes of each of these components and the peak frequency of one. The
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Figure 1. B-mode power spectra from dust and synchrotron at 21 GHz (dash), 90 GHz (solid), and 799 GHz (dots) for
different foreground models on 46% of the sky compared to the primordial CMB spectrum (gray) with tensor-to-scalar ratio
values 0.5 × 10−3 ≤ r ≤ 5 × 10−3, lensing (light green dots), and to the PICO instrument noise level (magenta dash dot). All
models except MHD have information up to ℓ ≃ 1500. Model MHD, based on a 3D MHD simulation with finite resolution,
has information only up to ℓ ≃ 380. Synchrotron emission dominates at 21 GHz and the two PySM synchrotron models used
for models Baseline, 2MBB, PhysDust, and MultiLayer overlap (purple dash). Dust emission dominates at 799 GHz and the
different models are constrained to match available data at low ℓ.

peak frequency of the other is held fixed across the sky. The parameter maps are taken directly from the Planck
Collaboration X (2016) fits. To construct Q and U maps, it is assumed that the AME has the same polarization
angle as the Planck Collaboration X (2016) maps of 353 GHz polarized dust emission and a sky-constant polarization
fraction of 2%.

3.3. Model Physical Dust

Model PhysDust is identical in all respects to 2MBB with the exception of the model for polarized dust emission,
where the “d7” model is used instead of d4. Polarized dust emission in the d7 model is based on a physical model of
interstellar grains with a distribution of sizes and temperatures (Hensley 2015). This model notably includes grains
with magnetic iron inclusions, which emit significant magnetic dipole radiation at frequencies ≲ 100 GHz (Draine &

Hensley 2013).
The Q and U dust amplitude maps of the d7 model are identical to those in the d1 model (employed in our model

Baseline). The frequency scaling is based on a single parameter U quantifying the intensity of radiation heating the

grains. A map of U is constructed from the Planck Collaboration X (2016) dust temperature maps assuming U ∝ T 4+βd

d

and that Td = 20 K corresponds to U ≃ 1. The frequency scaling is based on tabulated model calculations and is not
simply expressed with a parametric formula.

3.4. Model MHD

Unlike the Baseline, 2MBB, and PhysDust models that are taken from PySM, model MHD is based on the output

of the large-scale TIGRESS magnetohydrodynamic (MHD) simulations (Kim & Ostriker 2017). Kim et al. (2019)
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constructed full sky maps of Galactic emission from these simulations, and we use maps generated in a similar way
here. Model MHD includes only polarized dust and synchrotron components.

The polarized dust emission in model MHD is based on the gas density and magnetic field orientation in each grid
cell of the MHD simulation. The frequency scaling is taken to be a modified blackbody in each cell, with the dust
temperature set by the local radiation field and a βd value having a dependence on the local gas density. The 3D
simulation cube is then integrated along the line of sight to produce full sky maps following Kim et al. (2019). The

fact that the dust frequency spectrum can vary along the line of sight introduces line of sight frequency decorrelation
(Tassis & Pavlidou 2015; Mart́ınez-Solaeche et al. 2018; Pelgrims et al. 2021) in addition to decorrelation induced by
spectral parameters that vary across the sky, which is present in the Baseline, 2MBB, and PhysDust models.

The polarized synchrotron emission in model MHD is based on the 3D magnetic field geometry of the simulation
coupled with a simple parametric model of the cosmic ray electron number density with Galactic scale height (see Choi
& Page 2015). The synchrotron frequency spectrum is taken to be a power law with constant spectral index across
the sky.

3.5. Model Multi-Layer Dust

Model MultiLayer is a realization of thermal dust emission with the multi-layer dust model of Mart́ınez-Solaeche
et al. (2018), updated to be included in the Planck Sky Model (version 2.2.3, Delabrouille et al. 2013). The key idea
of the model is that if parameters describing the frequency scaling of dust emission vary across the sky, they must
also vary along the line of sight. Similar to model MHD, this introduces line of sight frequency decorrelation. The

total emission at 353 GHz is modelled as the sum of emissions from six dust template maps (loosely associated with
six layers of distance from the observer), the sum of which is constrained to the total dust emission at this frequency
in the Planck intensity and polarization maps (Planck Collaboration et al. 2016, 2020a) as obtained with the GNILC

component separation method (Remazeilles et al. 2011a).
Explicitly, in each pixel

QMKD
ν =

∑

k

AQd,k

(
ν

ν0

)βd,k

Bν (Td,k) (1)

UMKD
ν =

∑

k

AUd,k

(
ν

ν0

)βd,k

Bν (Td,k) , (2)

where index k, running from 1 to 6, identifies a layer of emission. In practice, at high Galactic latitude only the

first three layers contribute to the total emission. Closer to the Galactic plane, all six layers have non-vanishing
contributions because even the more distant layer contain a significant amount of dust. These dust maps are added
to PySM maps of other Galactic components to produce a full emission model enumerated dms3a2f1.

4. COMPONENT SEPARATION APPROACHES AND SKY MAPS

There are two broad classes of component separation approaches, parametric and blind (e.g., Leach et al. 2008;

Delabrouille & Cardoso 2009). With the parametric approach one parametrizes the spectral dependence of the emission
law for a given foreground emission component, estimates the free parameters given the data, and produces a map of
the cosmological signal by marginalizing over the foreground parameters. The premise with the blind approach is not

to assume any specific model for the foreground emission. Rather, one exploits the statistical independence of emission
from different physical origins to separate them using observations at different frequencies. In particular, assuming
that the frequency scaling of only the CMB is known, one can form linear combinations of the various observations
that minimize residual foreground and noise.

We use the blind approach with all five sky models. The specific implementation is NILC (Delabrouille et al. 2009).
We use the parametric approach only with Baseline model, and the specific implementation is Commander1 (Eriksen
et al. 2004, 2008). In Commander1 component separation is carried out on each map pixel. While the algorithm

is computationally fast, it requires uniform angular resolution for all frequency maps. More advanced versions of
Commander (Seljebotn et al. 2017; Galloway et al. 2022) can account for beam size differences, but require significantly
more compute time. For estimating r, most of the relevant information comes from ℓ < 150, and for the very low
values of r that PICO targets and at which the lensing signal dominates, the reionization peak at ℓ ≲ 12 is particularly

important. In this paper, the Commander analysis is restricted to ℓ ≤ 12.
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We make simulated PICO-observed Q, and U sky maps for NILC by adding the Galactic foreground models described
above to realizations of CMB and experimental noise, using the same methods as used by Abazajian et al. (2022).

Realizations of lensed-ΛCDM are borrowed from the Planck FFP10 simulations (Planck Collaboration et al. 2020b),
as are realizations of tensor modes with r = 0 and r = 0.003. The foreground and CMB maps are smoothed assuming
Gaussian beam shapes with the FWHM values given in Table 1. Gaussian noise is generated in harmonic space with
the levels given in Table 1. The noise is assumed to have a flat spectrum in Cℓ. The foregrounds, CMB, and noise are

added together to produce simulated observed sky maps. While there is only one realization for each of the foreground
models, we add these to multiple realizations of CMB and noise. The simulations are done at a HEALPix (Górski
et al. 2005) resolution Nside = 512, except when we are doing lensing reconstruction and map-based delensing, for

which additional maps are rendered at Nside = 2048; see Section 7. The foreground component uses the same ℓ space
information at Nside = 2048 as at Nside = 512.

Maps for Commander are constructed largely the same way as they are for NILC except for the following differences:

(1) isotropic, homogeneous Gaussian noise is generated in pixel space, not harmonic space; (2) because Commander1
requires a common beam, the CMB and foreground signals have been smoothed with a Gaussian beam of 40 arcmin
FWHM for all frequency bands. The noise is not smoothed; (3) as stated earlier, with Commander we only use
model Baseline.

5. COMPONENT SEPARATION - NILC

5.1. Methodology

We compute the spherical harmonic transform of the PICO-observed Qν and Uν full-sky maps at frequency ν to
obtain the harmonic coefficients aEℓm,ν and aBℓm,ν . For the analysis and results presented in this section we maintain

only the B-mode coefficients aBℓm,ν , calculate their inverse spherical harmonic transform, and obtain full-sky B-mode
maps Bν at each frequency. The subsequent component separation process only requires the Bν maps and its goal is
to produce a best estimate of the underlying CMB B-mode map B̂NILC. However, the map-domain delensing analysis

presented in Section 7 also requires a best estimate component-separated CMB E-mode map ÊNILC, and to produce
this map we use the aEℓm,ν coefficients to obtain E-mode maps Eν . Although subsequent paragraphs in this section
refer to component separation using Bν , the process is identical for Eν . Using full-sky maps prevents E-to-B leakage.

With NILC, the data dν at each frequency ν and sky pixel p are assumed to be the sum of the CMB component,

whose SED! (SED!) aν is known but fluctuation amplitude s is not, and a global nuisance term nν which includes
all other foreground emission components and instrument noise

dν = aν s + nν . (3)

In this equation and most subsequent equations the dependence on sky pixel p has been suppressed to simplify
notation. The data dν represent the observed B-mode signal at frequency ν, that is dν ≡ Bν . Operating on B-mode

maps instead of using the Stokes Qν and Uν maps optimizes foreground cleaning by having NILC minimize the variance
of the foreground B-mode signal directly. The variance of the Q and U maps is dominated by E-modes.

The first step in the NILC algorithm is to perform a wavelet decomposition of the B-mode data on a needlet

frame (Narcowich et al. 2006) as follows. The full-sky B-mode maps dν are bandpass-filtered in harmonic space

using the seven window functions (j) = (1), ..., (7) shown in Figure 2. This provides seven maps d
(j)
ν , each exhibiting

fluctuations of a specific range of angular scales (j), for each frequency band. For each range of scales (j) we compute

an estimate ŝ (j) of the CMB B-mode anisotropy s in each pixel by forming a weighted linear combination of the
frequency band data d

(j)
ν

ŝ (j) =
∑

ν

w(j)
ν d(j)ν , (4)

using the specific weights

w(j)
ν =

∑
ν′ C−1(j)

νν′ aν′
∑
ν′
∑
ν′′ aν′ C−1(j)

ν′ν′′ aν′′
. (5)

C−1(j)
νν′ are the elements of matrix C−1(j) which is the inverse of the empirical covariance matrix of the data C(j) in

each pixel p and needlet scale (j), whose elements are computed as

C
(j)
νν′,p =

∑

p′

W
(j)
p,p′ d

(j)
ν,p′ d

(j)
ν′,p′ . (6)
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Figure 2. Cosine-shaped needlet bandpasses in harmonic space. Most of the analysis uses the seven bandpasses that peak at
ℓ = 0, 50, 100, 200, 300, 400, and 500 (solid orange lines). Two additional bandpasses (red dots), one peaking at ℓ =1000, and
another peaking at ℓ = 500 and ℓ = 2000 are only used for the high-resolution maps of Section. 7.

The matrix coefficient C
(j)
νν′,p is the result of a convolution in pixel space and for this reason we show the explicit

dependence on p. The Gaussian convolution kernel W (j) in Equation (6) defines the spatial domain over which the

average of the product of maps d
(j)
ν d

(j)
ν′ for a given pair of frequencies is computed. The size of the convolution kernel

is set by the number of independent modes within each spatial domain, which requires a FWHM of the Gaussian
function W (j) of 4.0, 1.6, 0.85, 0.56, 0.46, 0.40, and 0.51 radians for needlet scale (j) = (1), ... , (7), respectively. These

values guarantee sufficient spatial localization of the convolution kernel in pixel space while keeping the number of
pixels large enough to ensure that the so-called ‘ILC bias’ (Delabrouille et al. 2009) is lower than a percent. We then
combine the seven estimated CMB B-mode maps ŝ (j) from each needlet scale to form the final CMB B-mode full sky

map B̂NILC. The best estimate CMB E-mode map ÊNILC is produced the same way using Eν as input. No attempt
was made to optimize the needlet window functions as a function of the effectiveness of component separation; see
Section 8.

For each foreground model and r value, we take ten realizations of CMB and noise. For each realization, r value,

and foreground model, we construct the map BNILC, apply the same Galactic mask corresponding to a sky fraction
fsky = 0.46, and calculate the B-mode angular power spectrum ĈBBℓ using MASTER (Hivon et al. 2002). The mask
was built from sky model Baseline by nulling the pixels in which the variance of the 40′-smoothed observed B-mode

map at 555 GHz is the largest, until 50% of the sky is masked out, see Figure 3. Apodization of the mask border
leaves an effective sky fraction of 46%. This mask choice has not been optimized, although we will see later that it
appears to be conservative for foreground models Baseline-MHD. Power spectra error bars are derived analytically

using Equation (A7). Angular power spectra of residual foreground and noise are obtained by applying the NILC
weights Equation (5) to foreground-only and noise-only maps, then following the same process that generates B̂NILC.

Using the B-mode power spectrum of B̂NILC and the corresponding noise power spectrum, we calculate a likelihood
for r including information from multipoles 2 ≤ ℓ ≤ 300. We assume the Gaussian likelihood given in Equation (A6),

which is a common approximation for the exact likelihood. We discuss the approximation in Appendix A. To account
for PICO’s capability to improve r constraints through delensing, we subtract 73% of the cosmic variance of the lensing
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B-mode signal from the covariance matrix of the likelihood, that is, in Equations (A6) and (A7) we replace ĈBB,NILC
ℓ

with ĈBB,NILC
ℓ − 0.73C lens

ℓ . We justify the level of 73% in Section 7.1. When confidence intervals are quoted, they
are calculated by integrating the likelihood to encompass 68% when r ̸= 0, or to 95% when r = 0.

5.2. NILC results

Figure 3 gives two B-mode map-domain examples for the component separation results. The left column is for the

Baseline model, which is also prototypical of the results with 2MBB, PhysDust, and MHD, and the right column is for
the MultiLayer model. At 90 GHz, and at all other PICO frequency bands, the input sky map (first row) is entirely
dominated by foregrounds. The input CMB map, containing no inflationary signal and only lensing induced B-modes
(second row), has a scale ten times lower than the full emission map. Nevertheless, the component separation produces

an output CMB map (third row) that is visually nearly indistinguishable from the input, including along the Galactic
plane. With model MultiLayer, the Galactic plane is clearly visible and there is a larger variance across sky. The
residual maps showing the difference of output and input (fourth row) more clearly reveal the same conclusions.

Figure 4 gives the NILC component separation results. The top row shows results for each of the ten realizations
with the Baseline model with the two rin values. The recovered CMB signal matches the input, which is dominated by
lensing for ℓ ≳ 10; the noise post-component separation is well below the signal; and the residual foregrounds are well

below the noise. The middle panels show the average power spectra over the ten realizations and demonstrate that
these conclusions hold for all models except MultiLayer. The inflection point in the residual noise spectra at ℓ ∼ 800,
most prominently visible for the MultiLayer model (purple triangles), is a typical consequence of NILC weighting
(Planck Collaboration IV 2020). The outcome of the algorithm is to minimize the foreground variance at low ℓ at

the expense of higher noise. At high ℓ there is minimization of noise variance. For all models except MultiLayer the
residual foreground spectra are equivalent to levels below r = 5×10−4 for 2 ≤ ℓ ≤ 150. The lower row gives likelihoods
for r calculated using the average spectra , and the posteriors are rescaled to make it easier to compare them with

one another. With the exception of the MultiLayer model, both r = 0.003 and an upper limit on r = 0 are obtained
without bias. With MultiLayer the residual foreground is larger than with other sky models and it reaches a level of
r = 0.005 near ℓ = 10. The large residual leads to biased posterior distributions for both r = 0 and r = 0.003. We

discuss the MultiLayer model in more detail in Section 5.2.1.
Table 3 summarizes the inferred values of r for input values rin = 0.003 and rin = 0. For all sky models except

MultiLayer, r = 0.003 is detected with insignificant bias and more than 5σ significance without accounting for delensing,
and with 18σ significance or more with 73% delensing. Similarly, with rin = 0 the inferred values are consistent with

r = 0, and after delensing the 95% confidence upper bounds are between 1.3 and 2.7× 10−4. With model MultiLayer
there is a 3σ bias with both r values after 73% delensing. Residual foregrounds after component separation lead to
biased estimates.

Table 3. r forecasts using blind component separation with rin = 0.003 and rin = 0 and using 21 frequency bands. r95% denotes
the 95% upper limit, while r/σ(r) gives the value of r at the peak of the likelihood relative to the 1σ interval, calculated by
integrating the likelihood from its peak to 68% probability.

rin = 0.003 rin = 0

[r ± σ(r)] /10−3 r95%/10−4 r/σ(r) r95%/10−4 r/σ(r)

Model No delensing 73% delensing No delensing 73% delensing

Baseline 3.12± 0.54 3.15± 0.16 3.7 < 1 2.6 1.2

2MBB 3.07± 0.50 3.09± 0.13 2.5 < 1 1.5 < 1

PhysDust 3.07± 0.50 3.09± 0.11 2.3 < 1 1.3 1.2

MHD 3.09± 0.53 3.09± 0.17 4.1 < 1 2.7 1.2

MultiLayer 3.90± 0.79 3.93± 0.32 14.8 1.6 13.2 2.8

The results presented in Table 3 and in Figure 4 use all the frequency bands for the component separation. We have
analyzed the need for the wide frequency range by carrying out the component separation and removing some edge

bands. A PICO-HF configuration assumes bands only between 43 and 799 GHz. In this configuration the four lowest
PICO bands have been removed. A PICO-LF configuration assumes bands only between 21 and 462 GHz. In this
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Figure 3. B-mode maps smoothed to 40’ fwhm for models Baseline (left) and MultiLayer (right) before and after component
separation with NILC. From top to bottom: sky map at 90 GHz; the input CMB with r = 0; the output CMB after component
separation; and the CMB residual map = output CMB - input CMB, and outline of the 50% mask that determines the portion
the sky for power spectra calculations.
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Figure 4. Power spectra and r likelihood after NILC component separation with rin = 0.003 (left) and rin = 0 (right). Top:
Recovered B-mode power spectra of CMB (cyan), residual foregrounds (blue) and noise (blue) for sky model Baseline and
ten realizations of CMB and noise. For reference, the black solid lines show the power spectra of the input CMB realisations
while the gray shaded area shows the theoretical power spectrum of the primordial CMB B-mode for r ranging from 5× 10−4

to 5 × 10−3. Middle: Power spectra averaged over all 10 realisations of residual foregrounds (solid coloured lines) and noise
(coloured triangles) for all sky models: Baseline (blue), 2MBB (orange), PhysDust (green), MHD (red) and MultiLayer (purple).
The cyan boxes show the average recovered CMB B-mode power spectrum and standard deviations for model Baseline. Bottom:
Recovered posterior distributions of r without delensing (solid) and with Alens= 27% for models Baseline and MultiLayer (dash).
To improve readability, the posterior distributions are rescaled by their maximum value to have a maximum value of 1.
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configuration the three highest PICO bands have been removed; see Table 1. The PICO-HF and -LF configurations
are intended to give a coarse assessment about the relative importance of accounting for synchrotron vs. Galactic dust

and to inform the level of constraints attainable with a narrower frequency range. A frequency range narrower than
PICO’s baseline are planned for next generation ground-based instruments and have been proposed for a future space
mission (Abazajian et al. 2016; Delabrouille et al. 2018; Hazumi et al. 2020). Results from this analysis, which was
only carried out for rin = 0, are given in Figure 5 and Table 4.

For either band-restricted configuration and for all sky models the level of residual foregrounds increases (Figure 5
left column), degrading constraints on r and in some cases producing statistically significant biases. For example, with
models Baseline and MHD, the value of r at the peak of the likelihood is approximately 3σ away from r = 0. For sky

models 2MBB and PhysDust, which include synchrotron curvature, the constraints on r degrade approximately equally
with PICO-HF and -LF indicating an approximate equal role for separating Galactic dust and synchrotron. In contrast,
with model Baseline, which has no synchrotron curvature, or with models MHD and MultiLayer, in which Galactic
dust has more complex emission properties, PICO-HF gives slightly less biased r constraints compared to PICO-LF,

indicating that separating Galactic dust is more important than separating the relatively simpler synchrotron emission
model. Overall, a 21-band PICO instrument would reduce the 95% upper limit on r = 0 by 20-50% relative to
PICO-HF and by 40-54% relative to PICO-LF, see Table 4.

Table 4. NILC r forecasts with rin = 0 and without either the low frequencies (LF) or the high frequencies (HF), and assuming
73% delensing.

rin = 0, 73% delensing

PICO-HF (43-799 GHz) PICO-LF (21-462 GHz)

Model r95%/10−4 r/σ(r) r95%/10−4 r/σ(r)

Baseline 4.3 1.5 5.6 1.6

2MBB 2.8 1.4 2.5 1.3

PhysDust 2.6 1.7 2.7 1.3

MHD 3.8 1.3 4.8 1.6

MultiLayer 16.7 3.4 22.8 4.4

5.2.1. Model MultiLayer and Local Estimates of r

With model MultiLayer, the NILC component separation process gives biased estimates of r. In Section 8 we discuss
potential improvements for the component separation process that might mitigate the biases.

One way to identify the existence of biased estimates during the analysis is to compare independent constraints on
r from independent sections of the sky. To carry out this analysis, we partition the sky to 26 sections of equal area

outside the Galactic plane, each with a 2.5% area of the sky, see Figure 6. Masks for individual regions are directly
applied to the B̂NILC map, with no apodization, to compute local B-mode spectra and infer local constraints on r. No
apodization is necessary because there is no E-to-B leakage and no significant contamination of small scale power from

large angular scale modes. With models Baseline and MultiLayer we plot the constraints as a function of the rms dust
polarization intensity σP555

as determined by the 555 GHz data in each section prior to component separation

σP555
= σ

(
P555 =

√
Q2

555 + U2
555

)
, (7)

where Q555 and U555 are the pixel values in each section. There is no difference in the component separation process
itself; it is conducted on the full sky. The results are shown in Figure 6 for rin = 0 (left panel) and rin = 0.003 (right
panel). In both cases we show r estimates after 73% delensing. For both input r values we identify a common trend

that is best observed by following σP555 from higher to lower values. As σP555 decreases the values of the estimated r
values on the individual sky sections are decreasing. For the lowest σP555

values, those corresponding to the cleanest
sections of the sky, r converges to a stable value; that is, the same value or upper limit is obtained within statistical

errors. The trend indicates that, as expected, sky areas with high polarized intensity from dust correlate with biased
r values. As the dust polarization intensity decreases, the bias decreases and at a certain level becomes insignificant.
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Figure 5. Power spectra (left column) and r likelihoods without and with delensing (middle and right columns) when rinput = 0
comparing three configurations: all frequency bands (21 GHz - 799 GHz, solid); without the low frequency bands (43 GHz -
799 GHz, dots); and without the high frequency bands (21 GHz - 462 GHz, crosses). Legends for the panels are given in the
first row. To improve readability, the posterior distributions are rescaled by their maximum value to have a maximum value of
1.
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Figure 6. The top panel shows the 26 equal area sky sections with fsky= 2.5% each. The middle and bottom rows show
the section-by-section results from NILC for models Baseline and MultiLayer, respectively. The left and right panels give 95%
confidence limits (blue bars with arrows) with rin = 0, and r likelihood confidence intervals (thick blue is 68%, thin blue is
95%) with rin = 0.003 (black dashed line), respectively, both as a function of P555. Some patches produce biased detections at
a confidence level larger than 95% (red points), both when r = 0 (lower left, for Multilayer) and when r = 0.003 (right column,
Baseline and Multilayer). For biased detections we give the 68% (thick red) and 95% (thin red) confidence intervals. With
model MultiLayer and rin = 0 we also give 95% upper limits after aggregating the sections with the three lowest values (lower
left, magenta arrow) and with the nine lowest values (lower left, orange arrow) of dust polarization. The vertical scale in all
panels is identical to give a visual comparison of the results.
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When rin = 0, most patches give upper limits at 95% confidence (bars with arrows) even when dust contamination is
more pronounced. However, with model MultiLayer, which has higher dust residual after component separation than

Baseline, four patches give biased r ̸= 0 detections at levels exceeding 2σ (red thin error bars). When rin = 0.003 the
higher dust residual of model MultiLayer gives higher r levels at high σP555

and larger error bars compared to Baseline.
The final result is that in both models there are five patches that give biased detections of r > 0.003 by more than 2σ
significance, and in both models many lower dust level patches are consistent with rin = 0.003. Most of the patches

that give erroneous detections are near the Galactic plane, although not all, and all are at levels of 4 times the lowest
σP555

or above.
Aggregating several areas of the sky that have low dust polarized intensity, and for which r upper limits have

converged, decreases sample variance and decreases the upper limit. By aggregating the three (magenta) and nine
lowest P555 (orange) sky areas we find with model MultiLayer 95% upper limits of 1.9×10−3 and 1.6×10−3, respectively.

6. COMPONENT SEPARATION - COMMANDER

6.1. Methodology

The Commander data model dν at each frequency ν and sky pixel is given by the sum of the signal components and
a noise term nν ,

dν = aCMB

+ as γ(ν)

(
ν

ν0,s

)βs

(8)

+ ad γ(ν)
e

hν0,d
kTd − 1

e
hν
kTd

−1

(
ν

ν0,d

)βd+1

+ nν .

At each pixel the free parameters are the CMB, synchrotron, and thermal dust amplitudes, {aCMB, as, ad}; the
synchrotron and thermal dust spectral indices, βs and βd; and the dust temperature, Td. In addition, k and h are
Boltzmann’s and Planck’s constants, respectively, γ(ν) = (ex− 1)2/(x2ex) with x = hν/kTCMB, is the unit conversion

factor between Rayleigh-Jeans brightness temperature and the CMB thermodynamic temperature, and ν0,s and ν0,d
are reference frequencies for the synchrotron and thermal dust components.

The aim is to fit all the modelled parameters ω = {ai, βi, Td} to the input data, which in a Bayesian framework

means computing the posterior distribution P (ω|d), where d = {dν}. With Bayes’ rule this is given as the product of
the likelihood P (d|ω) and a set of priors P (ω). The amplitudes a = {aCMB, ad, as} and spectral indices θ = {βs, βd, Td}
are fitted with Gibbs sampling iteratively in steps described by

ai+1 ← P (a|θi, d)

θi+1 ← P (θ|ai+1, d) (9)

where the parameters to the left of ← are sampled from the distribution to the right, keeping the spectral indices

fixed while sampling the amplitudes and vice versa. As discussed by Eriksen et al. (2008), the amplitude distribution
P (a|Cil , θi, d) is a simple multi-variate Gaussian in the various component amplitudes, while the spectral index distri-
bution P (θ|Cil , ai+1, d) can be sampled efficiently by mapping out the corresponding one-dimensional distribution by

brute force per pixel and parameter. We adopt a standard Blackwell-Rao estimator for likelihood and cosmological
parameter estimation (Chu et al. 2005).

Commander is first run for the full sky, fitting component amplitudes and spectral parameters at each pixel. We
define a per-pixel χ2 statistic

χ2 =
∑

ν

(
dν − sν
σ

)2

, (10)

where sν is the total signal model and σ are the instrumental noise rms per pixel. This χ2 map is smoothed to 8◦

FWHM and conservatively thresholded at 4σ to remove pixels with a significant model errors. The resulting confidence

mask, outside of which the CMB is presumed reconstructed at higher confidence, removes 25 % of the low-latitude and
high-foreground sky; it is shown in gray in Figure 7.
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We use a Blackwell-Rao estimator (Chu et al. 2005) to estimate r. The estimator requires a series of full-sky CMB
map samples, rather than the partial sky samples as are available at this stage. We therefore run another Gibbs chain

for just the CMB map of the form,

ai+1
CMB ← P (aCMB|d, as, ad, θ, Cil )
Ci+1
l ← P (Cil |ai+1

CMB) (11)

in which the presence of the power spectrum Cl in the first distribution ensures that the masked pixels in the CMB
sky map sample are effectively “in-painted” with a constrained Gaussian realization (Eriksen et al. 2004). The second
distribution P (Cl|ai+1

CMB) is an inverse Wishart distribution, which has a known, simple sampling algorithm (Larson
et al. 2007). The explicit expression for the Blackwell-Rao estimator given these full-sky CMB samples is given in

Appendix A. No correction for delensing is done with the Commander analysis, and to the extent that comparison is
done with NILC, the comparison should be with the no-delensing results.

In principle, the two Gibbs chains described by Equations (9) and (11) can be merged into one chain with three steps.

However, splitting it into two independent steps has several advantages (Colombo et al. 2022; Paradiso et al. 2022).
The most important concerns the amplitude sampling step in Equation (9). Solving for both foreground amplitudes
and a power spectrum-constrained CMB component leads to a computationally costly non-local linear system with a
high condition number, and increases the total runtime of the full algorithm by orders of magnitude (Seljebotn et al.

2017). A second advantage is that the χ2-based CMB confidence mask can be defined after the component separation
step, but before estimating the CMB power spectrum. The main disadvantage of a split chain is a slightly higher
white noise level, as the foreground amplitudes are allowed to explore a larger posterior volume in the first step, when

the CMB component is unconstrained by the power spectrum (Colombo et al. 2022). A total of ten simulations with
independent CMB and noise realizations are processed with this algorithm for both r = 0 and r = 0.003.

6.2. Commander Results

The upper panels in Figure 7 show the Stokes Q and U for one single reconstructed CMB realization with model
Baseline, smoothed to an effective resolution of 5◦ FWHM. Commander was only used with model Baseline. The gray
region is the confidence mask. The bottom panel, which shows the difference between the reconstructed and the true
input CMB map with a color scale that is hundred times smaller than the signal, demonstrates the high signal-to-noise

ratio maps that PICO will generate. At a visual level the residual map appears statistically consistent with white
noise, and there are no discernible foreground residuals around the mask edge.

The likelihood results from Commander are summarized in Figure 8. The left and right columns shows r constraints

for simulations with input values of r = 0 and r = 0.003, respectively. The top row gives individual marginal posterior
distributions for ten realizations of each of the r inputs. In both cases, the recovered distributions are consistent with
the true inputs; for r = 0, three out of ten realizations peak at r = 0, while the remaining seven realizations peak at

a slightly positive value, but none has a likelihood ratio greater than L(rmax)/L(r = 0) ≈ 3, as expected for random
variations. The probability of observing seven realizations with a positive value by random chance is 17 % from pure
binomial statistics. Similar conclusions are obtained for the r = 0.003 case, with four (six) realizations having a lower
(higher) peak value than the true input.

The bottom left panel of Figure 8 shows the cumulative distribution functions for each of the ten realizations. The
black vertical dashed line shows the median upper limit of r < 8.9× 10−4 (95 % confidence limit). This limit accounts
for the non-Gaussian shape of the posterior distributions, and it is a factor of 2.4 higher than the corresponding NILC

limit, which uses a Gaussian likelihood. The NILC estimate, however, includes a factor of ∼ 20 broader multipole
range, ℓ < 200, and is therefore expected to give tighter constraints. The bottom right panel shows the posterior
standard deviation σr when rin = 0.003 for each of the ten realizations, and the dashed black line shows their mean

of σr = 1.1 × 10−3. For comparison, the dashed red line shows the corresponding NILC estimate for model Baseline
without delensing σ = 0.54× 10−3.

7. LENSING AND DELENSING

PICO constraints on r depend on the effectiveness of delensing. In Section 5 we assume Alens= 0.27, amounting to

a delensing factor of 73%. This estimate is based on an angular power spectrum domain calculation rather than on an
actual map domain delensing exercise. In Section 7.1 we explain how Alens was estimated. For one foreground model
we have also conducted map domain delensing. We describe it in Section 7.2 and show that the map domain delensing

level is in close agreement with the power spectrum-based estimate.
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Figure 7. Top row: Stokes Q (left) and U (right) maps reconstructed with Commander for one realization with model Baseline.
Bottom row: Difference between the reconstructed map and the input CMB map. The gray region is the confidence mask derived
from the χ2 cut. All maps are smoothed to a common angular resolution of 5◦ FWHM. Note that the color scale in the bottom
row is 100 times smaller than the top row.

7.1. Power Spectrum Domain Estimate of Delensing

Given PICO’s noise level and beam size we forecast the beam-deconvolved noise power spectrum of the CMB
polarization after component separation. For this, we use a harmonic-domain internal linear combination (ILC)

approach identical to the one described by Ade et al. (2019), apart from minor changes described in the following.
The sky model includes analytic models for the polarized power spectra of dust, synchrotron, the dust-synchrotron
cross-correlation, radio sources, and CMB (Ade et al. 2019). The amplitudes of the dust and synchrotron power spectra

at ℓ = 80 are chosen to approximately match those measured on large sky fractions by Planck (Planck Collaboration
XI 2020) at 353 and 30 GHz, respectively. The assumed correlation coefficient of the dust and synchrotron fields is
40%. The computed E- and B-mode power spectra at all PICO frequencies are then passed through the harmonic

ILC code to obtain the post-component-separation noise on the CMB component. On the largest angular scales
ℓ < 30, we use inverse-covariance-weighted noise curves rather than the post-ILC noise, due to potential ILC biases
at these low multipoles (Delabrouille et al. 2009); this has negligible impact on the derived lensing noise curves,
and thus on the delensing performance. We implement standard minimum-variance ILC as well as constrained ILC

methods (Remazeilles et al. 2011b) that deproject components with a fiducial polarized dust SED, assumed to be
a modified blackbody with βd = 1.59, a fiducial synchrotron SED that is a power-law in antenna temperature with
βs = −3.1, or both. This deprojection leads to larger post-ILC noise, but would significantly reduce biases due to

foregrounds, and thus conservatively brackets the expected post-ILC sensitivity.
Given the post-ILC polarization noise power spectra, we use the forecasting approach of Smith et al. (2012) to obtain

the expected delensed level of the lensing B-mode power spectrum. This method involves iteratively computing the
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Figure 8. Top row: Commander posterior distributions for r = 0 (left) and r = 0.003 (right) with ten realizations. Bottom
left: Cumulative probability distributions for ten realizations with r = 0. The vertical dashed black line shows the median of
the 95% confidence limits derived with Commander, while the vertical red line shows the corresponding 95% confidence limit
computed with NILC and a Gaussian likelihood. Bottom right: Posterior standard deviation σr for each of the ten Commander
realizations with r = 0.003 (solid black). For comparison, the dashed black line shows the corresponding mean, while the
dashed red line shows the corresponding estimate derived with NILC coupled to a Gaussian likelihood (red dash). Note that
NILC results use all simulations to generate one combined estimate while the Commander results are based on an independent
estimate per realization.

quadratic estimator-based lensing noise and then the B-mode power after delensing with the associated lensing map.
With this entirely angular power spectrum-based forecasting approach, we necessarily neglect the spatial variation of

the foregrounds, both for the initial harmonic-ILC step and for the subsequent iterated steps of forecasted lensing
reconstruction and delensing.

Table 5 shows the delensing factor 1−Alens, defined in Equation (A5), as a function of deprojection choices for two
values of map noise. The lower noise is the value we use in this paper; see Table 1. The higher noise is the level PICO

is required to achieve (Hanany et al. 2019). We emphasize that the harmonic ILC procedure uses each band’s noise
level and beam size, and that the combined map noise levels are only a short-hand to indicate either configuration.
The NILC component separation of Section 5 conservatively uses 1−Alens= 0.73, obtained when deprojecting both

synchrotron and dust components with a noise level that is
√

2 higher than assumed in this paper. With the level of
noise we use here we expect 1−Alens= 0.78. In the next section, we describe a map-based delensing exercise that give
Alens values closely reproducing the results of the power spectrum-based forecasting approach.
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Table 5. Forecast delensing factor 1−Alens with two map noise levels for different ILC analysis assumptions (Ade et al. 2019;
Remazeilles et al. 2011b). The delensing factor is defined in Equation (A5).

ILC Assumptions

Map Noise Level

(µK arcmin)

0.87 0.61

No foregrounds 0.80 0.85

No deprojection; standard ILC 0.80 0.84

Polarized dust deprojected 0.80 0.84

Polarized synchrotron deprojected 0.73 0.78

Polarized dust & synchrotron deprojected 0.73 0.78

7.2. Map Domain Delensing

To perform map-domain delensing we made maps of model Baseline with r = 0 at Nside= 2048 (see Section 4). We
conducted NILC component separation as described in Section 5, this time with an output resolution of 8′, and the
high-resolution output E- and B-mode CMB maps ÊNILC and B̂NILC were used to reconstruct the lensing field ϕ̂ and
to produce a best estimate delensed E-mode map. This map and the field ϕ̂ are then used to estimate two additional

maps, the delensed, primordial CMB B-mode map and a B-mode lensing map. Ten simulations have been conducted
beginning with generation of ÊNILC and B̂NILC high resolution maps and culminating with these four products, one
lensing field, delensed E- and B-mode maps, and a lensing map.

The lensing field ϕ̂ and delensed E-mode maps were reconstructed in two ways: (1) using a standard quadratic
estimator, the output of which we denote ϕ̂QE and ÊNILC,QE (Hu & Okamoto 2002; Okamoto & Hu 2003; Mani-
yar et al. 2021); and (2) using a maximum a-posteriori reconstruction, the output of which is denoted ϕ̂MAP and

ÊNILC,MAP (Seljak & Hirata 2004). For the quadratic estimator we use Plancklens1 and the same methodology
implemented with Planck (Planck Collaboration XV 2016; Planck Collaboration VIII 2020), and the maximum a-
posteriori reconstruction is obtained from a curved-sky implementation of the iterative delensing solver described by
Carron & Lewis (2017). In the next paragraph we discuss only key elements of this solver and refer the reader to the

cited publication for more details.

7.2.1. Reconstructing the lensing field ϕ̂MAPand the delensed E-mode map ÊNILC,MAP

The posterior p for the lensing potential ϕ is

log
[
p(ϕ|ÊNILC,B̂NILC)

]
= log

[
p(ÊNILC,B̂NILC|ϕ)

]
− 1

2

∑

LM

|ϕLM |2

Cϕϕ,fidL

, (12)

where ϕ is assumed to be a Gaussian field, the fiducial lensing field power spectrum Cϕϕ,fidL comes from the Planck

FFP10 simulations (Planck Collaboration et al. 2020b), and ϕLM is the harmonic transform of ϕ. The prior is
necessary to handle the large number of poorly-constrained, high-L modes, and it is desirable so as to optimally weigh
each lensing multipole when building the lensing map (Sherwin & Schmittfull 2015). We assume that the lensing

likelihood p(ÊNILC,B̂NILC|ϕ) is Gaussian in the maps. It contains a noise covariance matrix on which we apply a
Gaussian isotropic beam with 8 arcmin FWHM. The noise is modeled empirically by using smoothed power spectra
of ÊNILC and B̂NILC noise maps.

All ÊNILC multipoles 2 ≤ ℓ ≤ 2000 and B̂NILC multipoles 200 ≤ ℓ ≤ 2000 are used for the reconstruction of ϕ̂MAPand

the delensed E-mode maps. The B̂NILC multipole range ℓ ≤ 200 is excluded to minimize statistical dependence with
the degree-scale information used for r-inference (Teng et al. 2011; Baleato Lizancos et al. 2021a). This exclusion
produces a 2% increase in the final residual lensing amplitude, that is, a 2% increase in Alens (Legrand & Carron

2022). We assume that the unlensed CMB and the lensing map are limited to ℓ ≤ 2500 and L ≤ 2000, respectively,
and the reconstruction is done on the full-sky, since the ÊNILC and B̂NILC maps show no obvious spatial features which
would have to be masked, see Figure 9.

1 https://github.com/carronj/plancklens
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The solver is iterative. It calculates the gradient of the log-posterior with respect to ϕ and combines this information
with an estimate of the local posterior curvature, which is built from previous solutions, to produce the next ϕ

estimate (Carron & Lewis 2017). Each calculation of the maximum a-posteriori reconstruction is equivalent to obtaining
the most probable, or Wiener-filtered (WF), unlensed CMB conditioned on the current estimate of the lensing map
and the fiducial cosmology being the truth (Carron & Lewis 2017).

The likelihood model assumes r = 0, and we ignore temperature anisotropy information. The iteration of the solver

starts from the lensing potential estimated by the QE estimator ϕ̂0,MAP = ϕ̂QE. Two maps are produced at each step
of the iteration Êi,WF and ϕ̂i,MAP, and the iteration continues ten times, a number that was verified with a separate
set of simulations to produce solver convergence. Construction of Êi,WF is the most computationally demanding task.

We use the same multigrid-preconditioned conjugate-gradient solver from the Planck analysis (Planck Collaboration
VIII 2020; Carron et al. 2022), which we modified to account for the maximum a-posteriori iterative solver. The last
iteration produces the best estimate ϕ̂MAP, and the final Wiener filtered E-mode map is the best estimate for the
delensed E-mode, namely Êlast,WF=ÊNILC,MAP.

7.2.2. Estimating the primordial and lensing B-mode maps

We produce two versions of each pair of the following: (1) a predicted B-mode lensing map, and (2) a delensed CMB
B-mode map. One pair is based on ϕ̂QE and ÊNILC,QE coming from the quadratic estimator, and a second pair is
based on ϕ̂MAP and ÊNILC,MAP, which are the result of the maximum a-posteriori solver. We produce both pairs to

compare their delensing performance. The B-mode lensing map is estimated by calculating the effect of the lensing
field ϕ̂ on the estimated primordial, delensed E-mode field. The delensed (DL) CMB B-mode map is that obtained by
subtracting the lensing B-mode map from B̂NILC, that is,

B̂QE,DL = B̂NILC − B̂QE,L , B̂MAP,DL = B̂NILC − B̂MAP,L , (13)

where BQE,L and BMAP,L are the lensing maps, which some authors refer to as ‘lensing templates’ (Hanson et al. 2013;

Ade et al. 2021). When r ̸= 0 and for an ideal full sky, high sensitivity, and high angular resolution experiment the DL
maps would approach the true primordial signal. When r = 0 they would only include noise. In practice, delensing is
never complete and the DL maps have residual lensing. Because we have access to the simulated input lensing map

we assess the residual lensing (RL) for each of the lensing estimators. We make two maps of residuals

B̂QE,RL = BL − B̂QE,L , B̂MAP,RL = BL − B̂MAP,L . (14)

where BL are the simulated input lensing maps. With the RL maps we calculate the residual lensing amplitude
Alens. For each delensing estimator we calculate power spectra post-delensing for full sky maps and for maps with the
NILC mask. After deconvolution from the mask (following Chon et al. (2004)), the spectra of the ten simulations are

averaged to produce an average spectrum.

7.2.3. Map delensing results

Figure 9 shows the pre- and post-delensed B-mode maps as produced by the iterative maximum a-posteriori solver.
They are compared to the input B-mode lensing BL and the map of residual lensing B̂MAP,RL. The B̂NILC map

pre-delensing (top left) is a high resolution version of the map shown for model Baseline in Figure 3 (left column,
third panel). The map variance is σ2 = (0.086 µK)2, where σ is the full-sky pixel standard deviation of the maps
band-passed to 2 ≤ ℓ ≤ 200, with the dominant contribution σ2 = (0.082 µK)2 coming from the input lensing map,

shown for a small patch of sky at the bottom left panel; 9% of the total variance comes from residual foregrounds and
noise. The post-delensing variance decreases to σ2 = (0.047 µK)2 (top right), of which (0.039 µK)2, or 69%, is due to
the residual lensing and the noise introduced in the delensing process.

The reduction of map variance by a factor of 3 to 4 post-delensing is also apparent when comparing the angular

power spectra of the pre-delensing map B̂NILC and the post-delensing map B̂MAP,DL, see Figure 10. The results shown
in the figure are equivalent to the first row of Figure 5 except that here the maps are rendered at high resolution (and
we are using all frequency bands). The likelihood for r post-delensing, shown in the right panel, is nearly identical to

the likelihood calculated with the fiducial 73% that has been used in Section 5.
Figure 11 gives a visualization of a different metric for PICO’s delensing efficacy. We show the ten-simulation average

spectrum of the input lensing BL and the averages of spectra of residual lensing maps with the QE and maximum
a-posteriori iterative solvers. The spectra for the full and masked skies have approximately the same amplitude, with
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Figure 9. B-mode maps in Galactic coordinates after NILC component separation for model Baseline and rin = 0, before
(left) and after (right) iterative delensing including full sky (top panels), smaller (60◦ × 30◦) area centered on a clean patch
of the sky (middle panels), the input B-lensing map BL (bottom left), and residual lensing map (bottom right) in the same
area. All maps are band-passed to only show 2 ≤ ℓ ≤ 200, and no masking has been applied to the lensing reconstruction. The
quantity σ in all maps is the full-sky pixel standard deviation of the band-passed maps.

the full sky version showing a variance that is on average lower by 48% compared to the masked version, consistent
with the fsky difference. Post-delensing there is a factor of ∼2 reduction in lensing power with QE and ∼4 with the

iterative solver. The reduction in power is essentially uniform over 2 ≤ ℓ ≤ 200.
To quantify the delensing efficiency we calculate the residual delensing Alens from the ratio of the residual lensing

power spectrum CBB,XX,RL
ℓ and the input lensing CBB,L

ℓ

〈
AXX

lens

〉
=

〈
CBB,XX,RL
ℓ

CBB,L
ℓ

〉
(15)

where XX is for the QE or iterative solvers, and ⟨⟩ denotes averaging ten values of Alens. We calculate Alens values
after binning the power spectra over the entire range of angular scales 2 ≤ ℓ ≤ 200, separately for the reionization
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Figure 11. Ten-simulation average spectra of the input lensing BL (red) and residual lensing maps BXX,RL, XX=QE (blue)
or MAP (cyan), calculated over the entire sky (top) and with the NILC mask (bottom). Error bars are standard deviation over
the ten simulations.

and recombination angular scales encompassing (ℓreio, ℓreco) = ([2, 30), [30, 200]), and for the full and masked sky. The
values are given in Table 6.

The lowest residual lensing Alens= 24% is achieved with the iterative solver when binning the entire range of angular

scales, and it is consistent with Alens for the recombination angular scale. Within statistical uncertainty it is also
consistent with the value achieved for the reionization scale Alens= 25%, see Table 6. The uncertainty intervals given
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are standard deviations of the ten simulations. We use two additional methods to validate our Alens estimate. First,
it is possible to predict the performance of the iterative solver (Smith et al. 2012; Legrand & Carron 2022), and this

prediction gives Alens=0.23 and 0.22, for the reionization and recombination scales, respectively, which are close to
the values we report. Second, the angular power spectrum domain analysis, described in Section 7.1, gave Alens=0.22
with the PICO map noise level we assume in this paper, see Table 5.

The QE solver gives Alens values that are nearly two times larger than obtained with the iterative solver. We find

no difference between values derived for the full and masked sky. For completeness, we note that the QE result could
have been further optimized by calculating the effect of ϕ̂QE on ÊNILC,QE in a perturbative manner (Baleato Lizancos
et al. 2021b). This approach would have led to removing at most an additional 3% of the lensing power. There is no

analogous further optimization possible for the iterative solver.

Table 6. Alens values obtained with the iterative and QE solvers for the full and masked sky, calculated over different ranges
of angular scales. The uncertainties are the standard deviation over 10 simulations.

ℓ range
Iterative Quadratic Estimator

Full Masked Full Masked

2− 200 0.239± 0.002 0.238± 0.005 0.416± 0.004 0.416± 0.005

2− 30 0.25± 0.01 0.25± 0.02 0.43± 0.03 0.44± 0.04

30− 200 0.238± 0.002 0.238± 0.005 0.416± 0.004 0.416± 0.006

8. DISCUSSION AND FUTURE WORK

The analysis that led to the constraints described in Sections 5 and 6 includes several assumptions, some of which
could be relaxed in future work. We discuss these below together with other possible extensions:

• We assumed spatially uniform noise. Future work could begin with time-domain simulations that include PICO’s

sky scan pattern and 1/f noise, and that would give a map with a more realistic spatial noise distribution.

• There is limited information about the behavior of foregrounds across the sky. In particular, in diffuse regions

observations are limited to ℓ ≲ 100. While there are models that include information up to ℓ ∼ 1500, extending
simulations into this regime and into even higher ℓ in physically realistic ways is a topic of current research.

• The analysis ignores systematic uncertainties. Preliminary analysis shows that calibration uncertainties on
Planck’s CMB maps give negligible errors2. However, we have not included calibration uncertainties with bands
that cannot be calibrated on CMB maps, nor other polarimetric systematic uncertainties.

• With all sky models, the NILC component separation has been carried out over the full sky, and we made no
attempts to vary NILC parameters such as the shapes of the needlet window functions. Varying these parameters
or masking the Galactic plane prior to component separation might lead to smaller residual foregrounds. With

model MultiLayer, masking the Galactic plane prior to component separation might reduce the bias on r, although
this is not guaranteed because the NILC algorithm is already fairly local in pixel space. Another strategy to
reduce residual foreground biases, when they occur, would be to use a more constrained version of NILC, such
as cMILC (Remazeilles et al. 2021) to enforce the minimization of the foreground variance instead of the overall

variance. With this approach one deprojects the main statistical moments of the foreground emission (Chluba
et al. 2017) out of the reconstructed CMB map.

• We chose to apply the same conservative mask to all sky models so as to compare their forecasts from the same
portion of the sky. In a further study, the mask could be optimized separately for each sky model. The choice
of the mask could be informed by the small patch analysis carried out for models Baseline and MultiLayer.

2 z.umn.edu/picomission
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• Estimates for r after component separation with NILC used a Gaussian approximation for the likelihood, and
an approximation to account for delensing. While for ℓ < 12 we showed that the exact likelihood gives weaker

constraints by a factor of 1.3 relative to the Gaussian approximation, the magnitude of this factor for higher ℓ
limit is not known. Including the effect of delensing into the r likelihood is also a topic of current active research.

• In this paper we took the focal plane configuration from Hanany et al. (2019). We did not attempt to optimize
the focal plane as a function of r limits, neither in terms of the number of frequency bands, nor in terms of the
noise level per band.

• Future work could extend to other foreground models, and to assessing the performance of parametric component
separation, with Commander or otherwise, with more than the single model we included in this paper and over
a larger range in ℓ.

Model MultiLayer stands out as a model that is plausible from a physics point of view, yet posing challenges to

the component separation process, even with PICO’s low noise and large number of frequency bands. The spectral
decorrelation of thermal dust due to multi-layer contributions along the line-of-sight makes such foreground sky more
complex because of the larger dimension of the foreground subspace. Model MultiLayer was not included in the
analysis of Abazajian et al. (2022), which analyzed the expected performance of CMB-S4 over a small, ∼ 5% area of

the sky, and with somewhat looser target constraints on r. There is therefore no information on potential biases with
a narrower frequency coverage.

We have shown, however, that PICO’s deep integration over the full sky and its high frequency bands that are only

sensitive to Galactic dust, enable a powerful cross check by analyzing individual small patches of the sky and correlating
the inferred r determinations or limits with the variance in dust polarized intensity; see Section 5.2.1. The analysis
methodology we presented – quantifying r constraints as a function of observed local foreground polarized intensity

and searching for asymptotic behavior as a function of decreasing foreground levels – only uses data as observed by
the mission, and parallels the process that is likely to be pursued by an analysis team. The fact that r determinations
or limits converge to the same value does not guarantee the absence of bias, but it is, however, a strong systematic
cross-check. The more sky areas that give the same result, the higher the confidence there is no bias.

The small-patch analysis also suggests that constraining observations to the lowest dust polarized intensity variance
regions could provide immunity from biased detections. We showed that only having the region away from the Galactic
plane is not sufficient. The analysis we presented relies on data from a relatively high frequency band, which is entirely

dominated by dust and may not be available for other instruments. We have not repeated the analysis with other
instrument noise levels, nor with a different mix of frequency bands.

Parametric component separation with Commander has only been attempted with model Baseline. Both r = 0 and
r = 0.003 are recovered with no bias. No delensing has been applied and therefore the constraints achieved cannot be

compared to PICO’s requirements. The constraints are nevertheless useful because they illustrate the limitations of
using a Gaussian likelihood approximation, specifically when limiting the analysis to low ℓ multipoles. Commander
uses a Blackwell-Rao approximation, which, as we show in the Appendix, closely matches the exact likelihood in the

case of full sky coverage and uniform noise. Using the Blackwell-Rao approximation, and when ℓ ≤ 12, Commander
gives a factor of two higher upper limits compared to NILC. We note that in the NILC analysis we use ℓ ≤ 200.
Assessing the differences between the exact, Blackwell-Rao, and Gaussian likelihoods over this extended ℓ range is

computationally demanding and there are currently no quantitative estimates.

9. SUMMARY

We used blind and parametric component separation techniques to assess PICO’s capability to reach its r determina-
tion requirements. The analysis employs realistic noise levels, only the prime mission duration without any extensions

(even though the mission has no consumables), sky foreground models that match current data and are broadly ac-
cepted as plausible, and analysis techniques that have been implemented with other instruments including Planck.
The analysis assumes a spatially uniform noise with white spectrum, and does not include systematic uncertainties.
We initially used an angular power spectrum domain analytic calculation to find a predicted level of delensing and

took the most conservative value obtained for the residual delensing factor Alens= 0.27.
For four out of the five sky models, Baseline, 2MBB, 2PhysDust, and MHD, and with rin = 0 the PICO experiment

configuration that has 21 frequency bands gives 95% upper limits between 1.3 × 10−4 and 2.7 × 10−4; see Table 3.

These constraints could definitively rule out the simplest models of inflation that predict r ≃ 0.001. With the same
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four models, if the true value of r is rin = 0.003 it would be detected with confidence levels between 18σ and 27σ after
5 yrs of the prime mission. The r estimates are based on a Gaussian approximation to the likelihood. They are the

strongest upper limits and detections predicted for any instrument in the foreseeable future.
Removal of the lowest or the highest frequency bands weakens the upper limits when rin = 0, and gives more biased

r likelihoods; see Table 4 and Figure 5. With models Baseline and MHD, nearly 3σ biases occur with removal of either
low or high frequency bands. Although removal of the higher frequency bands results in somewhat more pronounced

biases, to achieve its requirements a space mission like PICO requires bands over the entire frequency range.
With model MultiLayer the r estimates are significantly biased. However, PICO’s deep integration over the full sky

and its high frequency bands, enables identification and mitigation of the bias. Model MultiLayer is an example for

the limitation of inference using an r determination over a small patch of sky and with limited frequency band data.
Parametric component separation with Commander has only been attempted with model Baseline and without

delensing. Both r = 0 and r = 0.003 are recovered with no bias.
We presented the first application of map-domain iterative delensing, and it is the first application of iterative

delensing on maps that have first undergone a component separation exercise. The delensing has been applied over
the entire sky because the map for model Baseline after component separation does not indicate the need to mask any
region, including along the Galactic plane; see Figure 9.

The map-domain delensing gives a residual delensing factor Alens= 0.24, which would have been Alens= 0.22 had the
range of multipoles ℓ < 200 been included in the delensing process; see Section 7.2.1. This level reproduces the level
we calculated using the analytic approximation, which predicted Alens= 0.22 for the noise levels we assumed here; see

Section 7.1. The map-domain delensing confirms that the choice we made to use Alens= 0.27 is conservative.

APPENDIX

A. COMPARISON OF GAUSSIAN AND BLACKWELL-RAO LIKELIHOODS

In this appendix we compare the Gaussian approximation used in the NILC analysis and the Blackwell-Rao estimator

used in the Commander analysis. We consider only ideal primordial Gaussian CMB fluctuations and instrumental
noise, and ignore instrumental systematic effects, foreground subtraction, and other potential complications. Explicitly,
we assume that the data d may be written as d = s + n, where s is a Gaussian distributed true CMB signal with

covariance matrix S, and n is Gaussian distributed instrumental noise with covariance matrix N . The sum of the two
terms is Gaussian distributed with total covariance S +N , and the full exact likelihood is

L0 =
exp

(
− 1

2d
T (S +N)−1d

)
√
|S +N |

. (A1)

The covariance N is typically a deterministic quantity, given by the noise and scanning strategy of the instrument, and
S is typically defined by additionally assuming that the CMB is statistically isotropic. In this case S is block-diagonal
in the spherical harmonic domain, and Slm,l′m′ = Cℓδll′δmm′ , where Cl is the angular power spectrum, which is a

function of the cosmological parameters. In our case, S = S(r).
For full sky data with uniform noise per pixel Equation A1 may be written in harmonic space

L1 =
∏

ℓ

exp
(
− 2ℓ+1

2
σℓ

b2ℓp
2
ℓCℓ+Nℓ

)

(b2ℓp
2
ℓCℓ +Nℓ)

2ℓ+1
2

, (A2)

σℓ ≡
1

2ℓ+ 1

m∑

ℓ=−m
|aℓm|2, (A3)

Nℓ = σ2
04π/Npix, (A4)

where σℓ is the observed realization-specific power spectrum, Nℓ is the noise power spectrum, σ0 is the noise per

pixel, and bℓ and pℓ are the beam and pixel window transfer functions, respectively. In order to use this expression to
estimate r, one may write (Ade et al. 2019)

Cℓ ≡ Cℓ(r,Alens) = rCtens
ℓ +AlensC

lens
ℓ , (A5)
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where the total power Cℓ has contributions from the inflationary, tensor term and from the lensing term, which has a
delensing factor 1−Alens, and a residual lensing factor Alens. When Alens=1 there is no delensing. The nominal 0.73

delensing factor value used with NILC in Section 5 leaves Alens= 0.27 of the original C lens
ℓ power in the map. In this

expression, we implicitly assume that the net distortion effect from lensing may also be approximated as Gaussian.
The likelihood L1 is not valid for data with a spatially varying noise distribution or when the data do not include

the full sky. Even for uniform noise and full sky, calculating L0 is too computationally expensive to evaluate by

brute-force methods due to expensive matrix inversion and determinant operations. For these reasons many likelihood
approaches have been developed that aim to approximate L0. One common approach is to assume that L(Cl) is close
to a Gaussian distribution. In fact, L1 is an inverse Gamma distribution in Cl, which converges to a Gaussian for

large ℓ. For ℓ ≳ 30 the Gaussian approximation is acceptable (e.g., Hamimeche & Lewis 2008).
Motivated by this observation, the NILC component separation pipeline uses the following expression for the likeli-

hood

L3 ∝ exp


−1

2

∑

ℓ

(
ĈBB,NILC
ℓ − Cℓ (r,Alens)− N̂ℓ

)2

Ξ̂ 2
ℓ


 , (A6)

Ξ̂ℓ =

√
2

(2ℓ+ 1) fsky
ĈBB,NILC
ℓ , (A7)

where N̂ℓ is an estimate of the NILC B-mode noise power spectrum after component separation, ĈBB,NILC
ℓ is the total

measured power spectrum after component separation (see Section 5) and possibly delensing (see Section 7.2), and Ξ̂ℓ
is the corresponding variance, which implicitly includes the cosmic and sample variance contributions of the primordial
signal (if any), the residual lensing signal, the residual foreground signal, and the noise. When using NILC to estimate
r, we evaluate L3 as a function of r.

Commander addresses the computational cost associated with evaluating L0 through Bayesian Monte Carlo sampling.
With this method one first draws many Monte Carlo samples from the joint sky signal and power spectrum distribution,
i.e., P (s, Cl|d). At first sight, this may appear more complicated than working directly with P (Cl|d). However, joint
samples may be drawn through a particularly efficient Gibbs sampling algorithm (Jewell et al. 2004; Wandelt et al.

2004) by first sampling from P (s|d,Cl) and then from P (Cl|d, s), and this two-step approach is in fact computationally
far cheaper than evaluating the marginal distribution directly. Each sky map sample si represents one possible ideal
CMB sky map consistent with the observed data, and the histogram of all these Monte Carlo samples converges to

the true likelihood in Equation A1.
A commonly used statistical method for speeding up the convergence rate of a Monte Carlo estimator is the Blackwell-

Rao (BR) approximation (Chu et al. 2005). Rather than building up a histogram directly from the sample set, which

is subject to a high Monte Carlo uncertainty, this method instead averages the analytical probability distributions for
each sample. In our case, this is equivalent to averaging L1 over all si. The advantage of this method is that the Monte
Carlo sampler only needs to map out uncertainties due to instrumental noise and masks, but not cosmic variance; that
source of uncertainty is instead handled analytically by the expression in Equation A2.

In practice, Monte Carlo convergence can be improved even further through ‘Gaussianization’ (Rudjord et al. 2009).
In that approach, one first averages L1 over a large number of samples, setting bℓ = pℓ = 1 for each ℓ. We call the
resulting distribution Lℓ(Cℓ). This is then used to define a transformation xℓ(Cℓ) that maps Ll(Cl) to a perfect Gaus-

sian by matching their cumulative distributions percentile-by-percentile. One then corrects for correlations between ℓs
using

L2 = P (Cℓ|d) ≈
(∏

ℓ

∂Cℓ
∂xℓ

)−1

exp

(
−1

2
(x− µ)TC−1(x− µ)

)
. (A8)

Here, x = {xℓ(Cℓ)} is the vector of Gaussianized input power spectrum coefficients, ∂Cℓ

∂xℓ
is the Jacobian of this

Gaussianizing transformation, and the mean µ and covariance matrix Cℓℓ′ are estimated from Monte Carlo samples
of the full posterior distribution. The advantage of this approach is that only second-order correlations need to be
mapped out through Monte Carlo sampling, as opposed to all possible N -point correlations, and this greatly speeds

up the overall convergence rate. The disadvantage is that the expression is no longer an exact representation of L1,
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Figure 12. Two simulations with r = 0 (left and right) comparing the likelihood curves calculated using the exact (red),
Gaussian (blue), and BR (green) likelihoods. In all cases r is estimated for 2 ≤ ℓ ≤ 12.

and it can break down for data that cover only small sky fractions and that have strong correlations. However, for
fsky ≳ 0.70, as is typical for CMB satellite experiments, it is an excellent approximation (Rudjord et al. 2009).

We quantitatively compare the Gaussian and the BR approximations to the exact likelihood L0. We generate ten

CMB full sky simulations that all have r = 0 and a noise level of σ0 = 0.3µK/pixel at Nside = 512, set by the estimated
NILC noise level shown in Figure 4. We omit delensing to simplify the comparison. We compare the r95% upper limits
obtained with L1, L2, and L3 using 2 ≤ ℓ ≤ 12. The resulting posterior distributions are thus not representative of

the full PICO sensitivity, which also includes higher multipoles, but are only useful for comparing the three likelihood
approximations. Figure 12 shows the r likelihoods for two of these simulations, one for which the likelihood peaks at
zero (left panel) and another for which a noise fluctuation gives a non-zero value for the peak of the likelihood (right
panel). In both cases the BR approach gives a larger r95%, although this is more pronounced when the peak has a

non-zero value. In both cases the BR likelihood L2 agrees quite closely with the exact likelihood L0, and is in better
agreement than the Gaussian approximation L3. This suggests that L2 might also be closer to L0 when only part of
the sky is used.

The distribution of r95% for the ten simulations are given in Figure 13. On average the BR likelihood predicts upper
limits that are a factor of 1.3 times larger than the Gaussian likelihood. However, this may be split into two classes,
those that peak at zero and those that peak at a non-zero value. Examination of the likelihoods indicates that the
Gaussian approximation performs well for the former class, while for the latter, the BR r95% value may be up to nearly

two times larger than the Gaussian, as happens in realizations 5 and 8.

This research used resources of the National Energy Research Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. MR would like
to thank the Spanish Agencia Estatal de Investigación (AEI, MICIU) for the financial support provided under the

project with reference PID2019-110610RB-C21.
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arXiv e-prints, arXiv:2112.07961.

https://arxiv.org/abs/2112.07961

Wandelt, B. D., Larson, D. L., & Lakshminarayanan, A.

2004, PhRvD, 70, 083511,

doi: 10.1103/PhysRevD.70.083511

Young, K., Alvarez, M., Battaglia, N., et al. 2018, in

Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series, Vol. 10698, Space Telescopes

and Instrumentation 2018: Optical, Infrared, and

Millimeter Wave, ed. M. Lystrup, H. A. MacEwen, G. G.

Fazio, N. Batalha, N. Siegler, & E. C. Tong, 1069846,

doi: 10.1117/12.2309421

Zaldarriaga, M., & Seljak, U. 1998, Phys. Rev. D, 58,

023003, doi: 10.1103/PhysRevD.58.023003



4

Studying Non-Gaussian Induced Biases

4.1 Motivation

Beyond the Gaussian approximation of the lensing field lays the uncharted territory
of the impact of non-Gaussian imprints onto the iterative reconstruction. Under-
standing this is a crucial part for future analyses of real CMB data, due to the slight
non-Gaussianity of the true deflection field.

It is known that a non-Gaussian deflection field induces a bispectrum in QE.
This was a well studied aspect of previous research and was the starting point of this
project. This effect had not been quantified in the context of MAP reconstruction.
Eventually, it is MAP that will be used to reconstruct the deflection field and support
the detection of primordial B-modes, hereby necessitating the quantification of this
effect.

Another rather interesting aspect of the analysis is the characterization of the
induced N (3/2) bias in terms of higher order correlations: if the majority of the
N (3/2) bias is truly induced by a bispectrum, a sign-flip of the convergence field
should negate the impact. If however, the bispectrum receives contributions from
higher, even-order correlation functions due to MAP, we will see a residual signal as
they cannot cancel out by the sign-flip of the κ map.

My contribution to the paper is the lensing of the simulation data with both
Gaussian and non-Gaussian deflection fields, calculating the QE and iterative re-
construction for all estimators, calculating the empirical Wiener-filter, calculating
the N (3/2) biases, calculating the sign-flipped κ analysis, and supporting writing the
section sign-flipped kappa. Further, I calculated the PTE values for this test.

4.2 N32

This section contains the N (3/2) paper as appeared on the ArXiv,1 and has been
approved on Physical Review D.

1https://arxiv.org/abs/2407.00228
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The gravitational lensing signal from the Cosmic Microwave Background is highly valuable to
constrain the growth of the structures in the Universe in a clean and robust manner over a wide
range of redshifts. One of the theoretical systematics for lensing reconstruction is the impact of the
lensing field non-Gaussianities on its estimators. Non-linear matter clustering and post-Born lensing
corrections are known to bias standard quadratic estimators to some extent, most significantly so
in temperature. In this work, we explore the impact of non-Gaussian deflections on Maximum
a Posteriori lensing estimators, which, in contrast to quadratic estimators, are able to provide
optimal measurements of the lensing field. We show that these naturally reduce the induced non-
Gaussian bias and lead to unbiased cosmological constraints in ΛCDM at CMB-S4 noise levels
without the need for explicit modelling. We also test the impact of assuming a non-Gaussian prior
for the reconstruction; this mitigates the effect further slightly, but generally has little impact on the
quality of the reconstruction. This shows that higher-order statistics of the lensing deflections are
not expected to present a major challenge for optimal CMB lensing reconstruction in the foreseeable
future.

I. INTRODUCTION

Gravitational lensing of the cosmic microwave back-
ground (CMB) is one of the leading cosmological probes
of the next generation of CMB polarization surveys such
as Simons Observatory (SO) [1] and CMB-S4 [2]. Maps
of the CMB lensing potential and its summary statistics
can provide clean and robust probes of the large-scale
structure (LSS) in the Universe and allow to constrain
cosmological parameters that govern the LSS growth
and to which CMB anisotropies alone are weakly sen-
sitive (for example neutrino mass, dark energy proper-
ties, curvature) [3–6]. On the other hand, galaxy surveys
in different wavelengths probing the same LSS distribu-
tion (through galaxy clustering, weak lensing or intensity
mapping) are also expected to extract complementary
cosmological information on the LSS growth, or on pri-
mordial non-Gaussianities. Through galaxy-CMB lens-
ing cross-correlations we will be able to marginalize over
some observational systematics (e.g. shear multiplica-
tive bias) [7–9], or modeling uncertainties (e.g. galaxy
bias, magnification bias) [10–12]. Masses of high-redshift
galaxy cluster samples can also be calibrated with the
highest sensitivity through stacking of CMB lensing maps
at location of the clusters. and later used to probe
cosmology through their mass function [13–15]. Addi-
tionally, CMB lensing maps can also be used to pre-
dict and subtract the lensing-generated B-mode signal of
CMB polarization to enhance constraints on inflationary
physics achievable through precise measurements of the
primordial B-mode signal on large angular scales [16, 17]
Given the importance and diversity of the science case

connected to CMB lensing, it is crucial to understand all
the properties and shortcomings of statistical estimators
employed to reconstruct maps of the CMB lensing po-
tential from the observed maps of the CMB anisotropies.
The most commonly employed technique used for this
purpose is the so-called quadratic estimator (QE) [18].
This uses the breaking of statistical isotropy introduced
by the projected matter potential field into the observed
CMB to reconstruct the lensing modes through weighted
couplings between pairs of harmonic modes of the ob-
served CMB itself. Such technique has been used to
derive the most sensitive measurements in the field so
far from the Planck satellite data or ground-based CMB
polarization experiments such as ACTpol, SPTpol, Po-
larbear and BICEP [19–25].

Extensive effort has been recently carried out to eval-
uate the sensitivity to the QE to noise anisotropies, in-
strumental systematics, galactic and extragalactic fore-
grounds, and suitable modification have been proposed
to minimize their impact in the final reconstructed lens-
ing map and power spectrum for future experiments [25–
31]. But for very deep surveys such as CMB-S4, the
QE is expected to be suboptimal since it only accounts
for the lensing coupling at linear order. Several addi-
tional methods that account for the full lensing informa-
tion have been proposed. These advocate either sam-
pling techniques [32–34], iterative maximum likelihood
[35] or Maximum a-Posteriori (MAP) estimates [36] to
reach the lowest possible reconstruction noise for future
measurements of the lensing potential and of its power
spectrum. MAP estimators in particular offer the ad-
vantage of a reduced computational cost compared to
sampling or iterative spectrum reconstruction methods
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and have so far been employed successfully on data cov-
ering large sky fraction. Very deep polarization obser-
vations of Polarbear were used to validate for the first
time the performances of MAP estimates for joint lens-
ing reconstruction and delensing analyses [37]. Similar
results have then been achieved by sampling methods on
the SPTpol data [38]. Recent work also showed how to
achieve unbiased measurements of the CMB lensing spec-
trum from MAP estimates accounting for residual noise,
normalization biases and mean field effects induced by
noise anisotropies and masking, even in presence of mis-
characterization of the data statistical properties [39, 40],
so that it is now possible to start investigating biases
induced by foregrounds and theoretical assumptions em-
ployed in the design of this new class of lensing estimator.
In this work we focus our attention in particular on
the assumption of the Gaussianity of the CMB lensing
field for iterative MAP CMB lensing reconstruction. As
shown in previous work of [41–43], non-Gaussian effects
induced by the non-linear evolution of the LSS and post-
Born lensing corrections due to multiple photon deflec-

tions [44] can bias the QE reconstruction (N
(3/2)
L bias)

and in turn affect the constraints achievable on cosmo-
logical parameters, in particular on the total mass of neu-
trinos [42]. Such bias becomes more important when cor-
relating CMB lensing with external LSS tracers [45].

In Sec. II we review the properties of MAP estima-

tor and N
(3/2)
L for the QE. In Sec. IV we measure the

N
(3/2)
L bias in the MAP estimator, comparing it to the

QE results and assess its importance for future surveys.

In Sec. VI B we evaluate the impact N
(3/2)
L on cosmologi-

cal parameters and cross-correlation science and propose
mitigation strategies.
In the following we use the standard convention and de-
note CMB lensing multipoles (L,M) and CMB multi-
poles with (ℓ,m). We will also mention in the discussion
the CMB lensing convergence κ, defined in function of the
CMB lensing potential ϕ in real and harmonic domains
as

κ(n̂) = −∇
2

2
ϕ(n̂) (1)

κLM =
1

2
L(L+ 1)ϕLM (2)

II. LENSING RECONSTRUCTION AND
NON-GAUSSIAN DEFLECTIONS

In this section, we provide background information on
the lensing reconstruction methods we employ and offer
a brief recap of the origin of the non-Gaussianity induced
bias in the CMB lensing estimates.

First, we summarize the Maximum A Posteriori
(MAP) CMB lensing estimator. For more details, we re-
fer the reader to [46, 47] for the specific implementation
we use.

A. Lensing reconstruction from the MAP
estimator

To obtain the MAP estimator [46, 48, 49] we will start
by modelling the observed CMB as

Xdat = BDαX + n, (3)

where Dα is the lensing operator mapping the primor-
dial CMB X into the lensed CMB through the deflection
α [48], B a linear response matrix that includes the beam,
and n the noise, that we assume to be uncorrelated with
the CMB; in this work we will ignore foregrounds, and
consider only experimental noise.

The goal of the MAP estimator is to derive a maximum
a posterior estimate of the CMB lensing field, given the
data, by maximising the posterior

p(α|Xdat) ∝ p(Xdat|α)pα(α) , (4)

given the likelihood p(Xdat|α) and a prior pα(α). For
simplicity, due to the monotony of the natural logarithm,
from now own will take the natural logarithm of probabil-
ities, and so maximing it will be equivalent to maximizing
the original quantities.

We will assume a Gaussian log-likelihood for the data
[46]

ln p(Xdat|α) = −1

2
Xdat ·Cov−1

α Xdat− 1

2
det Covα+const

(5)
with a covariance

Covα = ⟨XdatXdat,†⟩ = BDαC
unlD†

αB† +N , (6)

where Cunl and N are the covariance of the unlensed
CMB and that of the noise respectively, and we explicitly
specify that the covariance has a structure that depends
on the realization of the deflection angle α.

For now we will ignore the curl of the deflection field
α, and we consider only its gradient mode. We can
parametrize with κ, such that the final log-posterior for
κ can be written as

−2 ln p(κ|Xdat) = Xdat · Cov−1
α Xdat + det Covα

+
∑

LM

κLMκ
†
LM

CκκL

(7)

up to irrelevant constants.
The CMB lensing estimator is then derived by requir-

ing the gradient of the posterior, Eq. (7), to vanish. To
solve for this, we will follow [46] and employ an iterative
scheme starting from the standard quadratic estimator to
finally obtain an estimate of the lensing potential field.
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In particular, the calculation of the gradient of the like-
lihood gives a term that is quadratic in the data, which
we will refer to as gQD, and is given by the product of an
inverse variance weighted field, and a deflected Wiener-
filtered one [46]

gQD(n̂) = −
(
B†Cov−1

α Xdat
)

(n̂) (8)

·
(
DαðCunlD†

αB†Cov−1
α Xdat

)
(n̂) ,

where ð is the spin-raising operator.
The gradient of the likelihood also introduces a mean

field term which, in the absence of other sources of
anisotropies, represents the anisotropy introduced de-
lensing the noise map by the estimated α in the
quadratic gradient [46]. This term predominantly
produces dilations (convergence-like) rather than lo-
cal anisotropies (shear-like) terms, hence generally very
small for polarization-only estimators [47]. However, it is
larger for temperature estimators, possibly contributing
up to 10−20% to the cross-spectrum with the input field.
For further exploration of this impact, a brief discussion
is presented in Appendix A, while a more detailed study
is deferred to further work.

B. Lensing reconstruction from the QE estimator

The standard quadratic estimator (QE) [18] can be
easily obtained from this likelihood perspective. If one
writes the gradient (‘gα’) to linear order in α, and forces
it to vanish, one obtains an estimate α̂ defined by:

gα ≈ gQD
α=0 −Hα=0 α̂ = 0. (9)

In this equation, H (the Hessian) is minus the second
derivative of the log-likelihood function. Taking instead
of the realization-dependent curvature its average of data
realizations, α̂ will be quadratic in the data. This aver-
age is a Fisher matrix calculated at no deflection, and
is identical to the quadratic estimator response function
calculated in the standard manner [18].

In this case, the unnormalized estimate gQD
α=0 of the

CMB lensing field is given by the product of an inverse-
variance-weighted field, and an undeflected Wiener-
filtered one

gQE(n̂) = (10)

−
(
B†Cov−1

α=0X
dat
)

(n̂)
(
ðCunlB†Cov−1

α=0X
dat
)

(n̂) .

(11)

This is similar to the quadratic part of Eq. (8), but for
the absence of all deflections: the gradient part in (8) is
deflected, because the iterative estimate works by cap-
turing the residual lensing at the unlensed position, and
then remapping back to give the estimate at the observed
locations [50].

C. Non-Gaussian deflections effect on the
reconstruction

The autospectrum of an estimated normalized QE
CMB lensing map then results in

Cϕ̂ϕ̂L ≈ CϕϕL +N
(0)
L +N

(1)
L +N

(3/2)
L + ... , (12)

where the total estimated power spectrum Cϕ̂ϕ̂L has

contributions from the signal of interest itself CϕϕL ,

from chance Gaussian fluctuations N (0) [3], from addi-
tional secondary lensing contractions N (1) [51], and non-

Gaussian contributions N
(3/2)
L . These are induced by

non-zero higher order statistics in the CMB lensing po-
tential, arising from non-linear growth of structure and
post-Born lensing [44].

The study of these effects on the estimate of the CMB
lensing potential has been thoroughly studied for the
quadratic estimator [41–43, 45]. They mainly arise due to
a non-zero response in the auto-spectrum to the presence
of a bispectrum term of the lensing potential.

For next generation surveys, such as CMB-S4 [2], the

N
(3/2)
L bias, if unaccounted for, can lead to 1-2σ induced

biases in cosmological parameters [42] such as the sum
of neutrino masses, or have a large impact on cross-
correlations with external matter tracers such as galaxy
clustering or lensing [45]. 1 While methods to mitigate
these effects has been proposed, such as using polariza-
tion data only (by excluding temperature information
that often leads to large biases), or alternative quadratic
estimators, such as bias hardened ones [45, 52], these will
not be able to fully harness the statistical power of up-
coming CMB data as the MAP estimator does. Indeed,
for low noise and high resolution experiments, the MAP
will be able to reconstruct the lensing potential to the
highest significance [39, 46], and therefore it is impor-
tant to assess its potential in dealing with known lensing
QE biases.

In this paper, we will focus on the quality of recon-
struction of the MAP estimator, specifically examining
its performance in the presence of non-Gaussian contri-
butions. Our primary focus will be on the lensing auto-
spectrum, which serves as the main observable for CMB
lensing analyses. We additionally present results for the
lensing cross-spectrum with the input lensing potential.
We plan to investigate the effect on cross-correlations for
MAP with large-scale structure surveys in future studies
(as it was done for the QE case [45]).

Finally, we also present simulations results demon-
strating the robustness of the bias hardening technique
[52] to the non-Gaussian bias.

1 See Section VIB for an updated discussion on the bias induced
on the sum of neutrino masses.
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III. MEASUREMENT SETUP

A. Experimental setup

We consider acrudely CMB-S4 wide-field-like exper-
imental setup [2]. The assumed observed sky frac-
tion is 40%, and the noise is modelled for simplicity
as a homogeneous and isotropic white noise, with a
noise level after component separation of NT

lev (NP
lev) =

1(
√

2)µK− arcmin for the temperature T (polarization
P ), and a beam modelled as a Gaussian with full width
at half-maximum of 1 arcmin. Our focus is to assess
the fundamental performance of the MAP to the non-
Gaussianity of CMB lensing, though it is worth noting
that, at the small CMB scales considered here, extra-
galactic foregrounds will play an important role in tem-
perature data.

These will still play a key role for future CMB lens-
ing measurements like Simons Observatory [1], and are
potentially the most sensitive reconstruction channel at
even lower noise levels, provided scales deep enough in
the damping tail of the CMB spectrum can be used,
where the lensing effect is large. Figure 1 shows fore-
casts2 for MAP estimators involving different data com-
binations in our baseline configuration, assuming CMB
modes up to ℓmax = 4000 are used in the reconstruction.
The polarization data on its own can reach a nominal
precision of 0.25% on the spectrum using L ≤ 1500 with
the iterative approach, and provided all sources of fore-
grounds and complications are under control, one can
push to slightly less than 0.2%.

500 1000 1500 2000 2500 3000 3500 4000

L

0

100

200

300

400

500

S
N

R

TT

Pol

MV

FIG. 1. Predictions of the signal to noise ratio, defined in
Equation 50, on the lensing auto spectrum for different lensing
estimators, for our baseline CMB-S4 wide-like configuration,
with ℓmax = 4000. Dashed is the standard QE and solid the
MAP estimator. The temperature-only, polarization-only and
minimum variance estimators are shown in red, orange and
blue respectively.

2 The MAP curves were calculated using 5 iterations, with theoret-
ical reconstruction noise calculated using the plancklens code.

To extract the N
(3/2)
L bias we will consider different

kind of simulations, classified based on the nature of the
input convergence field. To remove unphysical effects
that could come from finite number of particles in the N-
body simulation used in this work, we keep input lensing
modes up to an Lsim = 5120. Given then an input CMB
lensing map, we use lenspyx [53] to generate lensed CMB
maps deflected with α = ∇ϕ.3 Finally, we convolve the
CMB simulation with the beam, and add a noise real-
ization. The total map Xobs = Xcmb + n will be our
observed map.

We now proceed to describe the sets of deflection fields
used to lens the CMB.

B. Simulated data sets

In order to isolate the relevant effects and test the im-
pact of the assumption of the prior on κ for the lensing
reconstruction, we made use of different sets of simula-
tions, summarized below:

• κtot ≡ κLSS+PB, CMB lensing convergence simula-
tions that include the total effect from LSS non-
linearity and post-Born (PB) effects.

• κLSS, CMB lensing convergence simulations that
include only the effect from LSS non-linearity.

• κX,R, with X ∈ {tot,LSS} where we randomize the
phases of the CMB lensing convergence simulations
that include the total effect from LSS non-linearity
and PB effects, or only LSS if X = LSS.

• κG, Gaussian CMB lensing simulations that include
the exact power spectrum of the raw input conver-

gence field Cκ
XκX

L , X ∈ {tot,LSS}. 4

In addition, in Section III B 2 we will also use log-
normal simulations of κ with a custom third moment γ,
and they will be indicated by κlog, and their randomized
version by κlog,R.

Below we provide more details on each type of simula-
tions.

1. Fully non-linear observables

To model the realistic effect of the non-linear LSS clus-
tering of matter and the effect of post-Born corrections on

3 https://github.com/carronj/lenspyx
4 Though we generate Gaussian simulations with CMB lensing
power spectra matching the total and LSS only cases, we note
that the impact of post-Born corrections on Cκκ

L has been proven
to be negligible at the level of accuracy considered in this work,
at the 0.25% level at L = 8000 [44, 54].Therefore one might only
use only Gaussian simulations with LSS only spectra.
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lensing observables we used the full-sky maps of the CMB
lensing and curl potential of [54]. These were constructed
using a multiple-lens plane raytracing algorithm [55] with
lensing planes constructed from a ΛCDM simulation of
the DEMNUni suite. This was designed to study the im-
pact of massive neutrinos on the universe evolution and
its interplay with different dark energy models [56, 57].
The ΛCDM simulation used a Planck 2013 cosmology
with massless neutrinos

{Ωcdm,Ωb,ΩΛ, ns, σ8, H0,Mν , τ} = (13)

{0.27, 0.05, 0.68, 0.96, 0.83, 67 Km/s/Mpc, 0, 0.0925},

and sampled the matter distribution with 20483 dark
matter particles in a volume of 2Gpc/h between z = 99
and z = 0. The mass resolution of the simulation at
z = 0 is MCDM = 8.27 × 1010M⊙/h. The details of the
full-sky lightcone construction from the finite volume of
the N-body simulation are provided in Refs. [58, 59]. The
output of the lightcone construction consists in 62 surface
mass density planes Σθ(k) including the mass contained in
spherical shells of comoving thickness ∆χ ≈ 150 Mpc/h
that are used to construct k-th CMB lensing potential
convergence plane as

∆
(k)
Σ = Σθ(k)/Σ̄θ(k) − 1. (14)

κ(k)χCMB
= 4πG

Da(χCMB − χk)

Da(χCMB)

(1 + zk)

Da(χk)
∆

(k)
Σ (15)

where Da is the angular diameter distance and χCMB , χk
are comoving distances to the CMB and to the k-th lens-
ing plane respectively. The simulation neglects the mat-
ter distribution at 99 < z ≤ 1089 without any effec-
tive loss in accuracy. The lensing convergence planes can
then be summed together to obtain the lensing potential
in Born approximation (κLSS) following [60] or used to
propagate the full lensing distortion tensor beyond the
Born approximation as discussed in [54] and obtain also
maps of CMB κtot and lensing rotation ω which arises
from coupling between subsequent lensing events. The
fact that both Born and post-Born lensing maps are de-
rived from the exact same matter distribution allows to
disentangle the impact of each of the specific term as any-
thing depending on κtot − κLSS will isolate the effect of
post-Born corrections alone. The pipeline is general and
can be adopted for lensing planes located at χs different
from the CMB. We refer the reader to [54, 61] for more
technical details of the raytracing procedure used here.

2. Log-normal simulations

The main relevant effect for our study is the bispec-
trum signal introduced in the N-body derived conver-
gence map. For comparison, it will be useful to gener-
ate simpler maps that introduce a connected higher than
two order correlation function, such as log-normal simu-
lations. These are much cheaper to produce and better

understood analytically compared to full N-body simu-
lations, while allowing to tune the skewness of the gen-
erated map to match the value found in the full N-body
simulation.

We follow the methods of [62] to produce our log-
normal simulations.5 We model the CMB lensing with a
shifted lognormal field:

κlog(n̂) = eZ(n̂) − λ (16)

where Z is a Gaussian random field with mean µ and
variance σ2, and λ a shift parameter. These values are
calculated in such a way to match a desired power spec-
trum and skewness calculated from a band-limited map.
We relate the moments of the desired map µκlog , σ2

κlog ,
and γκlog to the parameters µ, σ, and λ to generate the
log-normal simulation (see e.g. [62])

To obtain the desired log-normal field, we first calcu-
late the correlation function of the convergence field, and
obtain from it the correlation function of the Gaussian
field Z according to [62]

ξZ = ln

(
ξκ

α2
+ 1

)
(17)

where α = µκlog + λ > 0. We then generate the zero
mean Gaussian field Z−µ, from the power spectrum CZl ,
obtained from ξZ ,6 using Healpy [63, 64].7 Finally, we
go back to real space and obtain

κlog(n̂) = eZ(n̂) − λ, (18)

where eµ = (µκlog + λ)e−σ
2/2, with σ2 = ξZ(0) is the

variance of the Gaussian field Z. The generated maps
are saved at the same resolution NSIDE = 4096 of the
N-body convergence simulation, and are then processed
with the same pipeline. In Figure 2 we show on the top
panel an histogram of the non-Gaussian input and log-
normal maps, and on the lower panel the third moment
for the different simulations used in this work. As we
will discuss in detail later in the text, the bulk of non-
Gaussian biases is related, to leading order, to the bis-
pectrum of the lensing field and recent work has shown
that shifted-lognormal simulations like the ones adopted
here can provide a moderately accurate approximation
to weak lensing fields’ higher-order statistics [65].

5 As implemented in https://github.com/Saladino93/fieldgen.
6 We use the package https://cltools.readthedocs.io/flt/ to
perform Legendre transforms to quickly switch from/to correla-
tion functions/angular power spectra.

7 healpy.readthedocs.io/
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FIG. 2. Upper panel : binned histogram of several input
convergence maps. We can see that the histograms from
the LSS and lognormal convergence maps are slightly skewed
compared to the Gaussian and randomized ones. We do not
plot an histogram of a convergence map including LSS+Post
Born effects, though this will have a reduced skewness com-
pared to the LSS only one [54]. Lower panel : The skewness for
different input convergence maps in function of the FWHM
of a Gaussian smoothing. The lognormal case shown here is
built to match the log-normal parameter λ of the LSS map
at fwhm = 0. The values are calculated considering lensing
modes up to Lsim = 5120 where the CMB lensing modes used
to lens the CMB simulations are cut at.

C. Lensing potential reconstruction setup

Unless indicated otherwise, we reconstruct the lensing
potentials for L ∈ (2, 5120) from the generated simula-
tions, using CMB modes in the range ℓT,CMB ∈ (10, 4000)
for T , E and B.

We use delensalot [47]8 for the MAP or QE recon-
struction of the lensing potentials (the QE reconstruction
of delensalot follows plancklens). Unless stated oth-
erwise, throughout the paper the presented MAP results
performed at least 5 iterations, where we find converged

8 https://github.com/NextGenCMB/delensalot

results, in the sense of negligible changes in the derived
spectra of the reconstructed fields.9

For the MAP estimates, reconstruction of lensing po-
tential and the Wiener filtered CMBs are attempted up
to an ℓunl,max = 5120 at each step. The step size used
in the Netwon-Raphson method to updated the iterative
estimates is λ = 0.5, and the tolerance to check for con-
vergence of the conjugate gradient method used for the
inverse variance operation is set to cg tol = 10−7, run-
ning 7-10 iterations per reconstruction.

We renormalize the reconstructed maps as follows: we
do not employ analytical expressions, but use reconstruc-
tions based on observed CMB simulations lensed with the
Gaussian CMB lensing simulations set (κG), and we cal-
culate a normalization factor given by

Wemp,XY
L =

⟨C ĝ
XY κ

L ⟩sims

⟨CκκL ⟩sims
,

where ĝXY represents an unnormalized CMB lensing
potential reconstruction, and κ the corresponding input
used to lens the CMB simulation.10

We then use this isotropic factor to normalize the
lensing potential estimates from all simulation sets
(κX , κX,R | X ∈ {LSS,T, log} )

κ̂XYLM =
ĝXYLM

Wemp,XY
L

(19)

from which we calculate the raw power spectrum

C κ̂
XY κ̂XY

L =
1

2L+ 1

∑

M

κ̂LM κ̂
†
LM . (20)

Finally, to assess the quality of the reconstructions, it
is useful to define the cross correlation coefficient ρL

11.

ρL =
C κ̂

XY κ
L√

C κ̂
XY κ̂XY

L CκκL

,

9 In the case of temperature, convergence of the results can be
reached earlier though we still keep a larger number of iterations.

10 We checked that for the QE, we get consistent results both with
this method and by using a response function given by CMB
gradient spectra, following [45].

11 By ‘quality’ of the reconstruction we mean here its information
content on the true lensing potential, irrespective of potential bi-
ases (the cross-correlation coefficient is invariant under arbitrary
multiplicative biases in the reconstructed field (small additive
ones can also be cast as multiplicative biases))
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IV. N
(3/2)
L BIAS

With the notation now established, we are ready to
calculate the biases associated with the presence of non-

Gaussianity in our CMB lensing fields. The N
(3/2)
L bi-

ases are determined through simulations, specifically by
cross-correlating the estimated CMB lensing field with
another tracer, such as the input CMB lensing potential
itself, or by examining the CMB lensing auto-correlation.
This methodology, as outlined in ([42, 45]) allows us to
quantitatively assess and account for the impact of non-
Gaussian features in our lensing fields. This is achieved
by calculating the difference from the scenario where no
non-Gaussianity is present.

The biases, denoted as N
(3/2)
L , are computed through

the following expressions:

Total : N
(3/2)
L = ⟨Ĉϕ̂

XY ϕext

L [κtot]− Ĉϕ̂
XY ϕext

L [κtot,R]⟩CMB

LSS : N
(3/2)
L = ⟨Ĉϕ̂

XY ϕext

L [κLSS]− Ĉϕ̂
XY ϕext

L [κLSS,R]⟩CMB

PB : N
(3/2)
L = ⟨Ĉϕ̂

XY ϕext

L [κtot]− Ĉϕ̂
XY ϕext

L [κLSS]⟩CMB .
(21)

We denote ϕext either the input lensing field or the

reconstructed field ϕ̂XY itself. The angle brackets sig-
nify the average over lensed CMB simulations. To gauge
the reliability of our measurements, we will compute the
scatter in the biases from these simulations to obtain the
uncertainty on the mean measurement. Our subtraction
method ensures that simulations which are differentiated
in these equations share identical primordial CMB and
noise, mitigating realization-dependent biases and cosmic
variance effects.

In Figures 3 and 4 we show the N
(3/2)
L bias for the

CMB lensing autospectrum and cross-spectrum with the
input, respectively. The shaded areas are computed from
the scatters on the mean of the simulations, while grey
area represent statistical error bars as calculated from
the diagonal of the covariance matrix

CLL′ =
2δLL′

(2L+ 1)fsky

(
CϕϕL +N

(0)
L +N

(1)
L

)2
. (22)

In Figure 3, it is evident that, for the lensing autospec-

trum, the N
(3/2)
L bias of the MAP estimator shows a

lower absolute value compared to the QE estimator for
L ≤ 1800. Specifically, at the scales presented, the LSS

effect in the QE tends to suppress power in the recon-
structed potential. This effect is alleviated in the MAP
for all estimators except on the smallest scales. The sit-
uation is similar, but with the opposite sign, for the PB
bispectrum effect. This results in partial cancellation be-
tween the two effects for the total contribution for both
the QE and MAP. Similar conclusions are achieved with
the cross-spectrum with the input lensing potential as
depicted in Figure 4.

Both MAP and QE estimators share the characteristic
that the total bias effect depends on the combination of
used data. Specifically, in the minimum variance com-
bination, the polarization estimator dominates at lower
modes L ≤ 1500, while the temperature one dominates
at higher L’s.

Finally, a distinct feature is the noticeable steep rise in
the bias of the MAP estimator for the LSS cases, partic-
ularly in the TT and MV combinations, evident in both
the auto and cross spectra. While the specific origin of
this rise remains uncertain, we validated our bias method
by assessing Gaussian simulations with no LSS bias and
randomized ones. We checked that the difference is con-
sistent with zero. Therefore this rise at small scales in the
MAP might be due non-Gaussanities, or from the choice
of normalisation of the maps (obtained from Gaussian
simulations). To investigate the choice of normalisation,
we consider the cross-correlation coefficient of the recon-
structions with their respective inputs

ρX =
⟨C κ̂κL ⟩√
⟨C κ̂κ̂L ⟩⟨CκκL ⟩

(23)

where ⟨.⟩ denotes the average over sims. This quantity
does not require any normalisation, and it is related to
the faithfulness of our reconstruction to the input. We
assume that we can directly take the difference of the
cross-correlation coefficient with the corresponding input
for the LSS non-Gaussian MAP vs the Gaussian MAP
estimates, as shown in Figure 5.

As expected, we can see that on large scales the Gaus-
sian case reconstruction is better correlated with the in-
put, for both the QE and MAP cross-correlation differ-
ences. While on small scales, L > 1500, interestingly we
see a small rise in the difference with the cross-correlation
coefficient of the MAP of the non-Gaussian case. This
might be related to additive terms that we test in Section
IV B 2.

A. Simple theory calculations

Given the complexity of beyond-the-QE reconstruc-
tion, a comprehensive analytic treatment of the theory

curves for the MAP-N
(3/2)
L bias seems out of reach. Nev-

ertheless, we can proceed by analogy with quadratic es-
timator theory to obtain some curves that matches rea-
sonably well our findings.

We will focus on the simpler case of the cross-
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FIG. 3. Fractional N
(3/2)
L bias on the CMB lensing auto-correlation for a CMB-S4 like configuration, as described in the text.

This is calculated by averaging over 64 realization of the input CMB primordial field. We show results for the LSS only,
post-Born (PB) and full cases in blue, green and red, respectively. In grey and light grey we show the statistical error bars for
MAP and QE respectively. We bin the spectra from Lmin = 30 to Lmax = 3000 with a wide binning of around 140.
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FIG. 4. Same as Figure 3 but for the cross-spectrum between the reconstruction and the input lensing potential.

correlation of the reconstructed CMB lensing potential

ϕ̂ with the input lensing potential ϕ on the flat-sky:12

N
(3/2),cross
L = ⟨ϕ̂(L⃗)ϕ∗(L⃗)⟩ − ⟨ϕ(L⃗)ϕ∗(L⃗)⟩, (24)

where we assume the reconstruction ϕ̂(L⃗) is unbiased, in

the sense that ⟨ϕ̂⟩ = ϕ. The difference between these two

12 We focus on the cross-correlation with the input, and not on the
reconstruction auto-spectrum, as the former is easier to predict
with respect to the latter. In particular, we perform all of our
studies using CMB modes up to lmax = 4000. Our baseline per-
turbative analytical model for prediciting the QE auto-spectrum,
based on [41, 45], works well only on the largest scales, where we
get the prediction N(3/2),auto ∼ 2N(3/2),cross. This will require
a more careful treatment for future studies.

terms depends predominantly on the bispectrum of the
observed lensing potential Bϕϕϕ(L, l2, l3), where L stands
for the external tracer (here ϕ itself) multipole and l’s for
the ones entering through the CMB modes used for CMB
lensing reconstruction.

For the standard QE CMB lensing temperature-only
estimator, calculations are given in [41, 45]. We briefly
review the rationale here.

A temperature-based quadratic estimator is of the
form

ϕ̂(L⃗) = ATTL
∑

l⃗

g(⃗l, L⃗)T dat(L⃗− l⃗)T dat(⃗l). (25)

for some normalization ATTL and weights g(⃗l, L⃗).
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FIG. 5. Difference in the cross-correlation coefficients between
the LSS non-Gaussian (blue), randomized LSS non-Gaussian
(orange) cases with the Gaussian case, for the TT estimator.
In solid (dashed) we have the MAP (QE). We can see that the
difference with randomized (orange) is consistent with zero.
While as expected, the non-Gaussian case is below zero on
large scales. Nevertheless, for the non-Gaussian MAP (blue
solid line), we can see a small rise after L > 1500.

The lensed CMB may be perturbatively expanded in
a series with respect to the lensing potential, leading to

T = Tu + δTu + δ2Tu +O(ϕ3) , (26)

where Tu is the unlensed CMB, and δnTu depends on
the lensing potential power n [3].

On evaluating the cross-correlation (24),

⟨ϕ̂(L⃗)ϕ(−L⃗)⟩ ∼ ⟨T (L⃗− l⃗)T (⃗l)ϕ(−L⃗)⟩ , (27)

the lensing potential bispectrum will give rise to the

N
(3/2),cross
L ,

N (3/2),cross ∼ ⟨δTuδTuϕ⟩+ 2⟨Tuδ2Tuϕ⟩ . (28)

The full expression for the temperature case, includ-
ing to a good approximation non-perturbative lensing
remapping effects [45], is

N
(3/2),cross
L = ATTL

∫

l⃗1

Bϕϕϕ(L, l1, |L⃗− l⃗1|)
∫

l⃗2

g(⃗l2, L⃗)

(
−CT∇T

|⃗l1−l⃗2|[(⃗l1 − l⃗2) · l⃗1][(⃗l1 − l⃗2) · (L⃗− l⃗1)]

+ CT∇T
l2 [⃗l2 · l⃗1][⃗l2 · (L⃗− l⃗1)]

)
.

(29)

The spectra CT∇T
l are here the same lensed gradient

spectra that enters the non-perturbative lensing response
functions.

Let’s discuss how we connect the MAP bias to this rep-
resentation. Reference [39] demonstrated through simu-
lations that the converged CMB lensing MAP solution

power spectrum (for polarization at least) can be accu-
rately described as a quadratic estimator with partially
lensed CMB spectra. These spectra can be obtained us-
ing an iterative scheme initially proposed for the EB es-
timator by [17]. Hence, it is natural to test this recipe

for N
3/2
L as well.

In this picture, the lensing potential entering the CMB
legs are now given by the unresolved, residual lensing
map

ϕ̂resLM ≡ (1−WL)ϕLM . (30)

We then make use of the same flat-sky prediction
Eq (29), but with the substitution

Bϕϕϕ(L, l1, l3)→ Bϕϕϕ(L, l1, l3)(1−Wl1)(1−Wl3).

where l⃗3 = L⃗− l⃗1, and W is the Wiener-filter. The nor-
malization ATTL is the standard quadratic estimator nor-
malization but calculated with partially lensed gradient
spectra, and CT∇T

l are also calculated with the partially
lensed spectra.

In Figure 6 we show the result of this naive calcula-
tion, compared to simulations.13. For simplicity we con-
sider the case of temperature only. On the upper panel
we show the LSS-only case, where N3/2 is stronger than
with the total bispectrum, shown in the lower panel. It
assumes a LSS bispectrum calculated at the tree level
in perturbation theory with corrections coming from [66]
(though an improved version can be found in [67]). The
Post-Born corrections are based on [44]. See the Ap-
pendix of [45] for a short review.

We can see that on a wide range of scales this simple
predictive scheme is able to recover the estimated biases
from simulations, validating the understanding that the
bispectrum of the CMB lensing field correctly describe
the bias also in the case of the iterative estimator. In
the LSS-only case, and on small scales, the prediction
deviates significantly from our findings in simulations. In
Section IV B 2 we check that its origin is not from higher
even CMB lensing connected n-point functions.

B. Consistency and robustness tests

To have a better understanding of our reconstructions
and validate our pipeline, we perform a series of con-
sistency checks to explore possible residuals in our esti-
mates, specifically those of higher order than the bispec-
trum residuals.

1. Joint reconstruction with lensing field rotation

In this section we test the impact of post-Born lensing
rotation on the MAP reconstructions.

13 The code to calculate these biases is based on https://github.

com/Saladino93/lensbiases.
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FIG. 6. Approximate theory calculation for the N
(3/2)
L bias

on the CMB lensing cross-spectrum. In blue, we show results
for the quadratic estimator, and in red for the MAP recon-
struction. The MAP predictions are obtained from the naive
analytic prescription given in the text. This is for our CMB-
S4-like reconstruction from temperature.

The CMB lensing deflection vector field α⃗(n̂) can be
written thanks to the Helmholtz decomposition in flat-
sky notation as

α⃗(n̂) = ∇⃗ϕ(n̂) + ∇⃗ × Ω(n̂) , (31)

On the full-sky, the decomposition is compactly written
using the spin-weight formalism,

1α(n̂) = −ðϕ(n̂)− iðΩ(n̂), (32)

where Ω is the lensing curl potential, and

ω(n̂) = −∇
2Ω(n̂)

2

ωLM =
1

2
L(L+ 1)ΩLM

(33)

is the lensing field rotation; the angle by which tiny local
images are rotated by lensing. The leading rotation is
induced by post-Born lensing, that couples pair of non-
aligned shearing lenses at different redshifts, producing
in this way a net rotation. For a single deflection or
in the Born approximation the rotation is null. Non-
zero bispectra of the kind κκω or κωω [44, 54] are also
generate at higher perturbative orders. The amplitude of
the rotation field power spectrum is about 3 to 4 orders
of magnitude smaller than the one of κ [35, 44] on the
scales considered here.

The simulations of [45, 54] naturally include the ro-
tation component of CMB lensing. We use this field in
combination with the post-Born convergence map to es-
timate the lensing potentials in the presence of a curl-like
displacement using either a joint ϕ-Ω optimal reconstruc-
tion (the differences to the standard ϕ-only algorithm are
minors and described in [47]), or completely neglecting
Ω in the reconstruction.

We can then estimate the effects in the N
(3/2)
L bias

coming from the mixed-bispectrum terms κκω, κωω as :

Mixed : N
(3/2)
L = ⟨Ĉϕ̂

XY ϕext

L [κtot, ω]−Ĉϕ̂
XY ϕext

L [κtot]⟩CMB,
(34)

where the first term include the lensing rotation in the
inputs and reconstruction, and the second does not. As
for the biases obtained in previous sections, here we use
64 CMB primordial realizations, and we run the pipeline
up to 10 iterations, though outputs appeared to have
converged starting from the fifth one.

We show in Fig. 7 the N
(3/2)
L biases to the auto and

cross-spectra in the presence of a full deflection field (in-
cluding LSS and post-Born effects in the gradient-like de-
flection component as well as curl-like deflections), com-
pared to a case without curl-like displacement component
in the simulations. We see no statistically significant dif-
ferences.
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FIG. 7. Non-Gaussian N
(3/2)
L lensing biases in the estimated

lensing potential auto-spectra (top panels) or cross-spectrum
to the true lensing (bottom panels), with and without curl-
like deflections in the simulations. In red we show the total
bias that does not include post-Born lensing field rotation
(same as Figure 3), while in orange we show the difference
between the biases obtained including post-Born corrections
for both the gradient and curl component of the deflections
and the red curve. The difference is consistent with zero in
both panels.

2. Sign-flipped κ

At the perturbative level, the N
(3/2)
L bias is propor-

tional to a projected bispectrum on large scales [41]. We
will test this assumption in this section.

Flipping the sign of the lensing potential should flip the
sign of the bias, if it depends the bispectrum that is odd
in the lensing field. For the QE, this argument breaks
down only when using the smallest CMB scales for our
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reconstructions, where perturbative arguments are less
effective (e.g., at ℓmax ∼ 4000 [41]). On the other hand,
the MAP always uses the full likelihood information and,
therefore, higher-order point functions to reconstruct the
lensing field. This also makes the MAP more difficult to
assess analytically compared to the QE. Therefore, we
turn to simulations to check if the MAP bias behaves
significantly differently with respect to the sign of the
input lensing map.

For each of the convergence maps (κG, κLSS, κtot) we
calculate their flipped version

κin,¬LM = (−1) · κinLM , (35)

where κinLM is the reference input CMB convergence
lensing field. We generate then 64 lensed CMB simu-
lations with this flipped lensing potential, and calculate
the half-sum and half-differences

∆XY
± =

〈
1

2

(
N

(3/2)
L [κinLM]±N (3/2)

L [κin,¬LM ]
)〉

sims

. (36)

for the TT , EE, EE + EB, and MV estimators, and

where the N
(3/2)
L are estimated as explained in Section

IV.
Any contribution from contractions which are even in

the lensing field will appear in the half-sum of the biases,
and similarly for odd terms in the half-differences. Fig-
ure 8 shows these half-sum in blue and half-differences in
orange, for the cross LSS-only reconstruction bias from
temperature. We can see that for MAP and QE re-
constructions we have a small residual in the half-sum
(∼ 0.2%). In particular, the rise at the highest L ob-
served in the previous section is still most likely to an
odd n-point function effect.

To quantify the consistency of these results with a
signal dominated by the bispectrum, we calculate the
probability-to-exceed (PTE) using Welch’s test. This
test compares the means of two simulation sets (κ, sign-
flipped κ) with unequal variances, calculated from sim-
ulation scatters. The input data vector is the average
over simulation measurements for 21 multipole bins over
the range 5 ≤ L ≤ 3000. The results are shown in Ta-
ble I, where the average PTEs over the 21 multipoles
are shown. A test is assumed successful if the PTE is
greater than 0.05. With this definition, the QE MV ,
EB cross-spectrum for PB cases fail, though this is ac-
ceptable given the number of tests performed.

V. ALTERNATIVE CMB LENSING
ESTIMATORS

A. Iterative estimator with a non-Gaussian prior

The conventional iterative estimator for CMB lensing
assumes a Gaussian potential field due to its incorpo-
ration in the prior distribution. However, the observed

FIG. 8. Half-sum and half-differences of N
(3/2)
L biases, built

from a baseline simulation, and a second one flipping the sign
of the input lensing potential, in order to isolate the constri-
butions of even(blue) and odd(orange) n-point functions on
the total bias. The light (dark) colors are the QE (MAP)
reconstructions for ℓmax = 4000, from temperature-only and
LSS bispectrum only.

CMB lensing field exhibits non-Gaussian characteristics
that the standard iterative approach does not directly ad-
dress. In this context, our objective is to accommodate
potential non-Gaussian aspects of the field by proposing
an alternative method for estimating ϕ.

To begin with, we introduce a non-Gaussian prior.
Specifically, we characterize the lensing convergence field
using a log-normal model, as outlined in section III B 2.
This choice establishes the foundation for our new ap-
proach and is motivated by the fact that the log-normal
approximation is a sensible one for moderately non-linear
fields, e.g. [68], [69].

The basic idea is that instead of iteratively solving for
the CMB lensing potential field directly, we iterate over
a posterior that is a function of the Gaussian field whose
exponential gives the CMB lensing convergence field.14

In this case, we will assume a prior on the Gaussianized
field Z, which may be written in harmonic space

−2 ln pZ(Z) =

(
Z2
00 − µ

√
4π
)2

CZL=0

+
∑

L≥0,|M |≤L

ZLMZ
†
LM

CZL
,

(37)
up to irrelevant constants. The un-normalized posterior
can be written as before

p(Z|Xdat) ∝ p(Xdat|Z)p(Z) (38)

14 This allows us to use our baseline MAP pipeline with little mod-
ifications.
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Estimator QE MAP
auto cross auto cross

LSS / TOT / PB LSS / TOT / PB LSS / TOT / PB LSS / TOT / PB
ℓmax = 3000

TT 0.51 / 0.78 / 0.31 0.56 / 0.21 / 0.24 0.89 / 0.51 / 0.98 0.66 / 0.20 / 0.33
EE 0.42 / 0.28 / 0.95 0.44 / 0.63 / 0.56 0.32 / 0.19 / 0.86 0.65 / 0.79 / 0.72
EE + EB 0.11 / 0.17 / 0.69 0.07 / 0.61 / 0.04 0.58 / 0.96 / 0.25 0.10 / 0.28 / 0.10
MV 0.90 / 0.47 / 0.13 0.11 / 0.79 / 0.02 0.20 / 0.10 / 0.94 0.75 / 0.74 / 0.45

ℓmax = 4000
TT 0.97 / 0.87 / 0.88 0.74 / 0.71 / 0.75 0.38 / 0.43 / 0.37 0.25 / 0.09 / 0.36
EE 0.07 / 0.06 / 0.43 0.31 / 0.28 / 0.37 0.52 / 0.29 / 0.74 0.28 / 0.27 / 0.35
EE + EB 0.38 / 0.99 / 0.31 0.15 / 0.44 / 0.14 0.82 / 0.88 / 0.65 0.32 / 0.59 / 0.22
MV 0.42 / 0.96 / 0.14 0.25 / 0.25 / 0.27 0.99 / 0.93 / 0.95 0.77 / 0.73 / 0.79

TABLE I. Averaged over L-bins PTEs for the half-sum tests of the N
(3/2)
L biases. Shown are the temperature, polarization,

their combination, QE and MAP estimators, for N
(3/2)
L auto- and cross spectra.

Subsequently, our objective is to determine the optimal
estimate of Z based on the available data.15

In this case, the total gradient with respect to the
Gaussian field is

gtotZ (n̂) =
δ ln p(Z|Xdat)

δZ(n̂)
= gQD

Z (n̂)− gMF
Z (n̂) + gPR

Z (n̂) ,

(39)
This gradient can be calculated with minimal modifica-
tions to our ϕ-based MAP reconstruction code: using the
chain rule, we have namely

gQD
Z (n̂)− gMF

Z (n̂) =
δ ln p(Xdat|Z)

δZ(n̂)

=

∫
d2n̂′

δκ(n̂′)
δZ(n̂)

δ ln p(Xdat|ϕ)

δκ(n̂′)

= eZ(n̂)
(
gQD
κ (n̂)− gMF

κ (n̂)
)

(40)

We have used in the second line

δκ(n̂′)
δZ(n̂)

= δ
(2)
D (n̂′ − n̂)eZ(n̂), (41)

which follows directly from our definition κ(n̂) = eZ(n̂)−
λ. Finally, the gradients gκ(n̂) are easily obtained in
harmonic space from those of ϕ which the original MAP
reconstruction calculates: from κLM = 1

2L(L + 1)ϕLM
follows for the gradients

gκ(n̂) =

∫
d2n′

δϕ(n̂′)
δκ(n̂)

gϕ(n̂′) (42)

=
∑

LM

2

L(L+ 1)
gϕ,LMYLM (n̂). (43)

15 In principle we could also attempt to reconstruct Z jointly with
the parameters µ and λ. This is a complication with no relevance
for what is being tested here however, and we assume fixed fidu-
cial values of µ and λ, and fixed fiducial spectrum CZ

L for the
reconstructions.

Starting from the quadratic estimator solution we then
iterate over estimates of Z in the same manner than the
original code.16

Once the MAP point Ẑ is reconstructed, we apply the
transform to get an unnormalized estimate of the lensing
field,

κ̂log(n̂) ≡ eẐ(n̂) − λ. (44)

which we then normalize in the same way as before, by
rescaling with the inverse averaged cross-spectrum to in-
put Gaussian fields, Eq. (19). We then reconstruct the
biases in the very same way.

The approach we follow (maximizing for Z) does lead
to a slightly different map than if we were maximizing di-
rectly for κ, even if using the same lognormal prior on Z.
This is because the relation between the point-estimates
(44) is nonlinear. Our approach is arguably more natu-
ral than maximizing for κ, and avoids one issue we en-
coutered in preliminary work, which is how to enforce
the lognormality of κ map across iterations: when max-
imizing for κ, one must ensure that κ(n̂) + λ is always
positive at each point, since Z(n̂) is its logarithm.

In Figures 9 we focus on temperature-only reconstruc-
tions, and with the LSS non-linear part of the non-
Gaussianity only, which has the strongest signature.

For each set of curves, the dashed lines show the biases
found in maps with the N-body LSS kappa convergence
map, and the dotted lines the biases found in our sim-
ple lognormal simulated convergence maps with the same
skewness.

In blue and red we have results for the QE and base-
line MAP, respectively, where the reconstruction is done

16 A way to see how the starting point is chosen is the following: if
we take the gradient in Z, gZ , then we require as a first step that:
gZ ≈ gZ0 + FZ0 (Z −Z0) ≈ 0. By exponentiating the expression
that we find for Z we can relate it to κ + λ, and derive that
Ẑ = ln(κ̂+ λ).
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as in the previous section, with a Gaussian prior on κ.
Given the simplicity of the lognormal simulations, it is
remarkable how well they reproduce the N (3/2) bias, par-
ticularly in the MAP case.

In orange, we show the curves obtained from the re-
constructions using the lognormal prior as just discussed.
Again, there are essentially no difference found between
the N-body input (orange dashed) or lognormal input
(orange dotted). Both curves shifts up slightly, reducing
slightly the bias on most signal dominated scales, but
remain qualitatively very similar.

The fact that the lognormal prior improves only mildly
the Gaussian prior is due the fact that we are likeli-
hood dominated, and therefore the MAP reconstruction
is mainly data driven.
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FIG. 9. Comparison of the N
(3/2)
L bias for different variants of

temperature reconstructions. The solid lines use the N -body
LSS map, while the dashed ones a lognormal map with a
similar skewness (at the same input resolution). We show QE
results in blue, MAP results with Gaussian prior in red, and
MAP results with lognormal prior in orange. We see a small
shift upwards between these two choices of priors. The biases
found on lognormal maps match well the ones found on the
LSS input map. The top shows the bias in the auto-spectrum,
and bottom for the cross-spectrum to the true lensing.

B. Bias Hardening

The small-scale CMB temperature is strongly con-
taminated by foregrounds, limiting the use of more
modes to perform CMB lensing reconstruction. Recently,
foreground-mitigating lensing reconstruction methods
have been developed, allowing more robust and power-
ful CMB lensing measurements.

In particular, bias-hardening [52, 70, 71], deprojecting
the response of the CMB lensing QE to a foregrounds
QE, have been used in recent data analyses to extract
cosmological parameters from observations.

At the likelihood level, we can derive the bias-hardened
QE CMB lensing estimator by looking for modulations
in the observed map, going beyond the CMB and noise,
that could be attributed to point sources.

We imagine to model our data in pixel space as

Xdat = BDαX + BS + n , (45)

where S is some source field. From this equation, the
pixel-pixel covariance is

C ≡ ⟨XdXd,†⟩ = Covα⃗,S2 = BDαC
unlD†

αB†+BS2B†+N
(46)

assuming no cross-terms between CMB, the source, or
the noise terms. We can see that at the covariance level
the source term induces a variance that is larger than the
expected one from just experimental noise.

The log-likelihood becomes then

L ≡ lnL(Xdat|α⃗, S2) = −1

2
Xdat·Cov−1

α⃗,S2X
dat−1

2
det Covα⃗,S2 .

(47)
To derive the bias-hardened estimator, we adopt a

method akin to the standard quadratic estimator. We
start by nulling the gradients for both the lensing poten-
tial ϕ and the source term variance S2, expanding around
(ϕ, S2) = (0, 0) using a first-step Newton iteration:

G⃗ϕ,S2 ≈ G⃗0,0+F0,0

[
ϕ
S2

]
≈ 0→

[
ϕ
S2

]
≈ F−1

0,0 G⃗0,0 , (48)

where the total gradient of the log-likelihood G⃗ =
[∂L∂ϕ ,

∂L
∂S2 ]T is approximated by its value at (ϕ, S2) =

(0, 0), G⃗0,0, and a curvature matrix F0,0. The latter,
encapsulates the responses Rab of the estimator for a to
the presence of b, with a, b ∈ ϕ, S2.

In Figures 10, 11 we show results for the N
(3/2)
L bias

from our simulations using a bias-hardened estimator
against a point source. We can see that, compared to
the QE, the bias hardening estimator mitigates the im-
pact of the non-Gaussian bias, confirming analytical ex-
pectations of [45]. This suggests a bias-hardened MAP-
solution might also be helpful, which just adds a prior to
Equation 47, which is work in progress.

VI. IMPACT OF N
(3/2)
L FOR COSMOLOGICAL

ANALYSES

We now turn to the impact of the bias for parameter
inference.
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FIG. 10. Auto-spectrum N
(3/2)
L biases induced by the non-

Gaussian LSS-only map on several lensing reconstructions; in
dashed we have the QE, in blue, and the bias hardened QE,
in purple. The solid line is the MAP. The QE BH is able
to mitigate the bias on large scales on a similar level to the
MAP estimator, at a small cost in signal to noise compared
to the QE. On the left panel, results with temperature data
only, while and on the right including polarization too.
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FIG. 11. Similar to Figure 10 but for the bias in cross-
correlation to the true lensing. After bias-hardening, the

quadratic estimator also shows a somewhat reduced N
(3/2)
L

bias.

A. Bias in the lensing amplitude

In this subsection we estimate the bias in the ampli-

tude of CMB lensing power spectrum due to N
(3/2)
L . We

assume that the covariance matrix of the CMB lensing
power spectrum is diagonal and is given by

CLL′ =
2δLL′

(2L+ 1)fsky

(
CϕϕL +N

(0)
L +N

(1)
L

)2
. (49)

We report the signal to noise ratio of the CMB lensing
power spectrum between multipoles Lmin and Lmax as

SNR =

√√√√
Lmax∑

Lmin

CϕϕL C−1
LL′C

ϕϕ
L′ . (50)

This signal to noise ratio is exactly the square root of
the Fisher information matrix on the amplitude of the
CMB lensing spectrum. The inverse of this SNR thus
gives the expected constraint on the amplitude of the
CMB lensing spectrum if we only vary this parameter.

We show on the upper panel of the Figure 12 the signal
to noise ratio as a function of the maximum lensing scale
considered. We see that for the noise levels considered,
the polarization estimator brings the most information,
but the temperature estimator cannot be neglected. The
MAP estimator performs particularly better than the QE
especially in the polarization channel. We see that for
the polarization, the information gain saturates above the
scale L ∼ 1500, while it still grows up to L ∼ 3000 for the
temperature and minimum variance estimators. This is
an important point as future lensing analyses, including
cross-correlations with large scale structure, will be able
to push the signal to noise to high significances, provided
that systematic and modelling treatments are accurately
handled.

We estimate the bias in the CMB lensing amplitude as
in [72]:

b(AL) =
1

SNR2

Lmax∑

Lmin

∆AL , (51)

with

∆AL = N
(3/2)
L C−1

LL′C
ϕϕ
L′ . (52)

We show in the Table II the bias on the lensing
amplitude for the different estimators with Lmin = 0,
Lmax = 4000, including both the LSS and post-Born ef-

fects in N
(3/2)
L . We see that the MAP seems to be almost

unbiased on temperature and polarization, but has an al-
most 1σ bias on the minimum variance combination.

We show in the lower panel of the Figure 12 the bias
∆AL as a function of scale. As it can be seen from this

figure, the N
(3/2)
L introduce a scale dependent bias. In

some cases, the N
(3/2)
L bias flip signs. This lowers the

sum in Eq. 51, and thus gives a low bias despite a large
absolute value for some given scales. This is the case
for the QE in polarization, which has a negative bias for
L ∈ [300, 1200] and positive outside, and for MAP in
temperature, which is negative for L < 1500 and posi-
tive above. This scale dependent bias, which seems to
be more important for the MAP than for the QE, could
bias the measurements of cosmological parameters that
are sensitive to the shape of the lensing spectrum. How-
ever, as the total bias almost cancels-out, the parameters
combinations sensitive only to the amplitude of the lens-
ing power spectrum should in principle be immune from
shape changing effects.

B. Cosmological parameters

We now estimate the biases on cosmological param-

eters if one does not take into account the N
(3/2)
L bias

in the analysis. We focus on the sum of the neutrino
masses, as this is a key science goal of CMB-S4. We con-
sider the temperature only (TT), the polarization only
(Pol), and the combined (MV) estimators, for both QE
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FIG. 12. Upper panel: Signal to noise ratio on the lensing
power spectrum as a function of the maximum scale consid-
ered. We show the QE in dashed lines and the MAP in plain
lines. The temperature only, polarization only and minimum
variance are respectively in blue, orange and green. Lower
panel: Bias on the lensing power spectrum amplitude as a
function of scale, for the different estimators considered, in-

cluding both the LSS and post-Born effects in N
(3/2)
L .

Bias TT Pol MV
QE −3.7σ 0.07σ −2.13σ
MAP −0.36σ −0.12σ 0.93σ

TABLE II. Bias on the lensing power spectrum amplitude,
estimated from the Fisher matrix, given in terms of number
of sigmas, including both the LSS and post-Born effects in

N
(3/2)
L .

and MAP. Our fiducial cosmology is the Planck FFP10
cosmology17, with one massive neutrino of 0.06 eV.

Our analysis combines the CMB lensing spectra, the
primary (unlensed) CMB spectra and the BAO. We as-
sume that all three sets of observables are independent,
so we can sum their log-likelihood. For the BAO we
consider a DESI configuration, following the recipes of
[73, 74]. For the CMB likelihood, we consider a CMB-

17 The CAMB parameter file used to generate the spectra can
be found in https://github.com/carronj/plancklens/blob/

master/plancklens/data/cls/FFP10_wdipole_params.ini

S4 experiment, with a beam θFWHM = 1 arcmin, a tem-
perature noise ∆T = 1µK-arcmin, a polarization noise
∆P =

√
2µK-arcmin and a sky fraction fsky = 0.4. For

the primary CMB likelihood, we consider unlensed spec-
tra CTTℓ , CTEℓ and CEEℓ , between multipoles 30 and 3000,
and assume that these spectra follow a Gaussian like-
lihood, with Gaussian covariance matrix. We discuss
in Appendix B the impact of using the unlensed CMB
spectra or the lensed CMB spectra. We show there that
the bias on the marginalized cosmological parameters are
similar as long as we correctly model the non-Gaussian
covariance of the lensed CMB and the correlations be-
tween the lensed CMB and the reconstructed lensing po-
tential.

The Gaussian CMB lensing power spectrum likelihood
is

−2 lnL(θ) =
(
ĈϕϕL − Cth

L (θ)
)
C−1
LL′

(
ĈϕϕL′ − Cth

L′(θ)
)
,

(53)
where θ is the set of cosmological parameters being sam-
pled. The covariance matrix is assumed to be diagonal

CLL′ =
2δLL′

(2L+ 1)fsky

(
CϕϕL +N

(0)
L +N

(1)
L

)2
, (54)

where CϕϕL , N
(0)
L and N

(1)
L are evaluated in the fiducial

cosmology. We consider lensing multipoles between 10
and 3000, and assume that the lensing field has been re-
constructed with CMB multipoles between 10 and 4000
for both temperature and polarization channels. For the

different estimators and different configurations of N
(3/2)
L

bias (LSS, PB or Total ), we generate mock data vectors.

These mock data vectors assume that the N
(0)
L bias can

be perfectly subtracted, and that the N
(1)
L cosmology de-

pendence is perfectly modelled. Our mock data vectors
are given by

ĈϕϕL = CϕϕL (θfid) +N
(1)
L (θfid) +

CϕϕL (θfid)

Cϕϕ,simL

N
(3/2)
L . (55)

where the N
(3/2)
L bias has been estimated from simula-

tions, as described in the previous sections, and the CMB

lensing power spectrum and N
(1)
L bias are taken at the

fiducial cosmology. To cancel part of the realization vari-

ance of the simulation we divide N
(3/2)
L by the lensing

power spectrum of the simulation, bin this ratio in 19
multipole bins between 10 and 3810, and fit a spline to
these points, weighting by the inverse variance of each
bin. We then multiply this spline by our fiducial lensing
spectrum. This also allows to partially take into account
the difference in the cosmology between the simulation

used to estimate the N
(3/2)
L (which do not have massive

neutrinos, see Equation 13), and the Planck FFP10 cos-
mology used to generate the data vector. We assume

that higher order cosmology dependence of N
(3/2)
L can

be neglected.
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To accelerate the computation of the theory vector

Cth
L (θ), we do not re-estimate the N

(1)
L bias for the sam-

pled cosmology. Instead we correct for the variations of

the N
(1)
L bias around the fiducial, at first order in CϕϕL (θ),

following the procedure of [19]. The theory vector is then

Cth
L (θ) = CϕϕL (θ)+N

(1)
L (θfid)+

∂N
(1)
L

∂CϕϕL′

[
CϕϕL′ (θ)− CϕϕL′ (θfid)

]

(56)

where the N
(1)
L correction matrix has been previously

evaluated in the fiducial cosmology. We neglect the cor-
rection due to the variation of the response around the
fiducial. We do not expect that this will impact the re-

sults. Indeed in the Gaussian case (i.e. without N
(3/2)
L

bias) we recover unbiased cosmological parameters.
In this analysis we do not model the reconstruction

bias N
(0)
L in the data vector, we assume it is perfectly

subtracted. In a standard analysis one would use the real-

ization dependent bias estimator RD-N
(0)
L , which makes

the debiasing robust at first order to differences between
the fiducial spectra assumed for the reconstruction, and
the true CMB spectra of the maps. It was showed in

[39, 40] that the realization dependent RD-N
(0)
L allows

for unbiased cosmological parameter estimates, for both
the QE and the MAP estimators. However we note that
this analysis was performed with a Gaussian lensing po-
tential, contrary to the maps we are using here, but we
assume that this will have a negligible impact on the

RD-N
(0)
L estimate.

We sample for seven cosmological parameters, namely
ln(1010As), ns, θMC,Ωch

2,Ωbh
2, τ and

∑
mν . We include

a strong Gaussian prior on τ , the reionisation optical
depth, assuming a cosmic variance limit of στ = 0.002.

We rely on the CAMB cosmological Boltzmann code
[75, 76], and sample the posterior with adaptive, speed-
hierarchy-aware MCMC sampler (adapted from Cos-
moMC) [77, 78]. We explore the posterior using the
Cobaya [79] and GetDist packages [80].

The marginalized posterior distribution on the sum of
the neutrino masses, for our different lensing estimators

and source of N
(3/2)
L bias, is shown in Figure 13. We

show the impact of each term that contributes to the

N
(3/2)
L bias: the large scale structures non-Gaussianities

(LSS) and the post-Born lensing. We confirm that taking
into account only one of the two effects, either LSS or
PB, will bias the neutrino mass estimates with the QE.
We can see that in general, the MAP estimators are less

impacted than the QE. When looking at the total N
(3/2)
L ,

we see that the MAP is unbiased, both for temperature
and for polarization. The QE shows a ∼ 1σ bias with
the temperature reconstruction, while it is unbiased in
the polarization.

We note also that as previously observed in the litera-
ture [39, 81], the marginalized constraints on the sum of
the neutrino mass from the QE is not improved with the
MAP. Indeed, even if, as we showed in the Figure 12, the

∑
mν
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mν
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∑
mν
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FIG. 13. marginalized posteriors on the sum of the neutrino
masses. Panels from top to bottom show respectively the im-

pact of N
(3/2)
L when considering the post-Born term only, the

large scale structure term only, both terms together, or with

no N
(3/2)
L bias (fiducial, Gaussian case). The dashed lines are

for the QE and the plain lines are for the MAP. Blue, orange
and green lines show the temperature only, polarization only
or minimum variance estimators. The fiducial cosmology as-
sumes a sum of neutrino masses of 0.06 eV, showed as the
vertical dashed line. We combine here the CMB-S4 likelihood
with DESI-BAO, and we set a cosmic variance Gaussian prior
on the optical depth to reionization.

SNR is increased with the MAP, there are some degen-
eracies between the cosmological parameters that prevent
to reach the full statistical power of the MAP estima-
tor on the marginalized constraints. The marginalized
constraints also do not change much if we use the tem-
perature, polarization or the minimum variance estima-
tors, with a one sigma constraint of about 0.016 eV for
all cases.

Figure 14 shows the posterior distribution for the ns,

Ωch
2 and

∑
mν parameters, for the total N

(3/2)
L bias
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FIG. 14. Posterior distribution for a subset of the sampled
cosmological parameters. We show the reconstruction for the
minimum variance estimator, for both QE (blue) and MAP

(orange), considering the bias due to the total N
(3/2)
L . The

Figure 18 in the Appendix shows the full posterior.

with the minimum variance estimator. We see that even
if the MAP is unbiased on the sum of the neutrino mass,
it shows a slight 0.5σ bias on the ns parameter. This

bias could be sourced by the shape of the N
(3/2)
L bias.

Indeed, we showed in Figure 12 that the N
(3/2)
L creates

a scale dependent bias. In particular, this could tilt the
lensing power spectrum, and thus create a bias on the
ns parameter. In comparison, the amplitude bias for the
minimum variance QE is mostly negative, so it will not
create a strong scale dependent bias, but rather an overall
amplitude shift on the CMB lensing power spectrum.

In Appendix B, we compare our results for the QE with
the previous results from [42]. They obtained a larger
bias on the sum of the neutrino masses. This higher
bias comes from the fact that they consider lensed CMB
spectra in the likelihood but neglect the non-Gaussian
covariance due to lensing and the correlations between
CMB and the QE, as described in [82]. In Appendix B
we show that using lensed CMB spectra with the correct
covariance results in a bias on the sum of the neutrino
mass that is similar to the one obtained when consid-
ering unlensed spectra and neglecting the non diagonal
correlations.

VII. CONCLUSIONS

Future CMB surveys will detect the CMB lensing auto-
spectrum well over 100σ significance, and will enable

powerful cosmological constraints on the structure for-
mation history and on the sum of neutrino masses. Great
care is required before interpreting these measurements
at this high level of sensitivity. Standard quadratic es-
timators are only guaranteed to be unbiased for purely
Gaussian fields and under idealized conditions. When
the Gaussianity assumptions fail, future CMB surveys
such as CMB-S4 can deliver a biased lensing reconstruc-
tion induced by the bispectrum of the lensing potential
which, in turn will affect constraints on the sum of neu-
trino masses [42].

In this work we studied the induced non-Gaussian bi-
ases in the auto-spectrum of the CMB lensing potential
reconstructed through maximum a posteriori estimators.
By using state-of-the art simulations that include non-
Gaussian lensing deflections induced by nonlinear mat-
ter clustering as well as post-Born lensing corrections, we
found that for scales relevant for a CMB-S4 like configu-
ration the non-Gaussian induced bias is mitigated com-
pared to the QE one. When including additional effects
due to the post-Born rotation we do not find a significant
difference.

When performing a ΛCDM cosmological forecast on
the sum of neutrino masses through a full MCMC analy-
sis, we found that contrary to the QE, the MAP estimator

does not suffer from biases even if N
(3/2)
L biases are not

specifically accounted in the fitting of the data vector.
This shows that cosmological analyses using a MAP re-
constructed lensing potential should in principle be more
robust than those based on the standard QE. However, if
not correcting for the bias, caution should still be taken
when investigating extensions to ΛCDM, as the bias has
not fully disappeared, but is only to weak to shift the
maximum posterior point, and this could change in other
models.

We also tested simple modifications to the MAP es-
timator to take into account the non-Gaussian statis-
tics of the deflection field. Using the prior of a log-
normal field instead of a Gaussian field on the input
lensing convergence further mitigates slightly the bias.
We have also found that the bias itself found on our N-
body simulations is reasonably well reproduced by much
simpler lognormal simulations. Generally, differences be-
tween reconstructions using the Gaussian or lognormal
prior are small, and the lensing reconstructions of sim-
ilar quality, both on N -body and lognormal simulated
inputs. Lognormal simulations are effective in replicat-
ing non-Gaussian bias effects from large-scale structure
non-linearity. They could be leveraged to predict and
subtract biases with sufficient accuracy even when ap-
plied to more sophisticated models affecting the full prob-
ability density function of the projected matter distribu-
tion, such as baryonic effects or extended cosmologies.
On the other hand we have found that the lognormal
distribution is not a good approximation when includ-
ing post-Born effects, suggesting that the lognormal ap-
proximation is insufficient for recovering the shape of
the post-Born induced bispectrum (and same would be
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for highly non-linear fields, necessitating alternative ap-
proaches [54, 68, 69]). Nevertheless, using state-of-the art
simulations one could learn realistic probability density
functions of fields using machine learning techniques to
generate new samples or even include alternative priors
in our MAP formulation (e.g. [83]).

Our results allow us to conclude that the non-
Gaussianity of CMB lensing deflections should not
present a major challenge to CMB lensing science in
the near future: the bias, small to start with, is miti-
gated, and the baseline MAP reconstructions with Gaus-
sian prior remain very close to optimal.

In the era of precision-cosmology, additional informa-
tion will come from the combination and cross-correlation
of CMB lensing measurements and multiple large-scale
structure observables, such as cosmic shear and galaxy
clustering, from DESI, Euclid, and Rubin. It is known
that in this case, for QE-based reconstructions, the

N
(3/2)
L bias in the CMB lensing cross-correlations has a

stronger impact depending on the specific tracer and red-
shift considered in the analysis [45]. This is left for future
work.
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Appendix A: Mean field impact

The MAP estimator tries to find the best estimate of
the CMB lensing potential by nulling the total gradient

gtot(ϕ) = gQD(ϕ) + gMF(ϕ) + gPR(ϕ) (A1)

Ignoring the mean field contribution gMF, as we often
do for simplicity, one is effectively nulling instead

gtot,noMF(ϕ̂) = gQD(ϕ̂) + gPR(ϕ̂)
!
= 0 . (A2)

The neglect of this gradient piece is equivalent to maxi-
mizing a slightly different, but still well-defined likelihood
function. Hence the iterative procedure converges with-

out problems. The actual total gradient at this point ϕ̂
is not zero but

gtot(ϕ̂) = gMF(ϕ̂) ̸= 0 . (A3)

Early indications from reconstructions from polariza-
tion suggested this term was small [47]. Physically, this
is because this term accounts for the anisotropies in the
noise maps induced by delensing, and these anisotropies
trace for the most part the magnification part of the lens-
ing signal, rather than the shear-like signal that the most
powerful EB polarized estimator is sensitive to. Delens-
ing affects the local noise levels by changing areas ac-
cording to the local magnification, given by 1 − 2κ to
first order, and the mean-field removes the contribution
of this noise anisotropy to the quadratic gradient piece.

It turns out that that for reconstructions from tem-
perature, that takes substantial contribution from the
magnification-like lensing signals, the mean field contri-
bution is much larger. If the mean-field at the solution
κ̂LM were exactly proportional to κ̂LM as suggested by
the argument above, the mean-field contamination of κ̂
acts simply as a rescaling of the output map. This would
have no impact on the cross-correlation coefficient of the
reconstruction with the input (the ‘quality’ of the recon-
struction), only on its normalization

Wemp
L ≡ Cϕ̂ϕL

CϕϕL
(A4)

(the empirical ‘Wiener-filter’ of the reconstruction). The
shift seen on temperature reconstruction for our CMB-
S4-like configuration is shown on Fig. 15, and is sub-
stantial. Not accounting for the mean field lowers the
Wiener-filter curve. This is because the magnification
follows κ but with a minus sign. In Fig. 16 we show that
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FIG. 15. Comparison of the empirical normalization of output
lensing maps, after a few iterations, for our temperature-based
CMB-S4 like reconstructions. In blue we show the case of the
QE estimator, in green for the MAP estimator if ignoring
the mean field contribution, and in orange when including
it, using an estimate from a finite number of Monte-Carlo at
each step.

after applying the empirical normalization, for the case of
mean-field subtraction/no subtraction, we find a power
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spectrum in line with naive expectations,

Cϕ̂ϕ̂L ∼ CϕϕL +N
(0)
L +N

(1)
L (A5)

where the lensing biases are calculated using the partially
delensed CMB spectra. The change in cross-correlation
coefficient between the two maps is tiny. This gives sup-
port to the idea that the bulk of the effect is only a rescal-
ing. Hence, in this paper we proceed using the empirical
normalization, and neglecting the delensed-noise mean-
field altogether. A more careful study of the mean-field
is ongoing.
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FIG. 16. Lensing spectrum from a MAP temperature recon-
struction, after dividing by the empirical normalization of the
lensing map (blue). In red the naive theory prediction, ob-

tained from a iterative N
(0)
L and N

(1)
L calculation. We get a

similar result if we account for the mean field, justifying the
usage of an empirical normalisation when not account for a
mean-field.

Appendix B: About the impact of non-Gaussian
lensing correlations on the cosmological parameter

biases

In the previous study of [42] (herefater Beck18), the
likelihood was neglecting the correlations between the
reconstructed lensing field and the CMB spectra. In the
results we present in the Section VI B above, assume we
can neglect these correlations by using unlensed CMB
spectra un the likelihood. We will now make systematic
study of this assumption, and evaluate the impact of us-
ing the lensed or unlensed CMB spectra, and the impact
of the non-Guassian covariance on the final cosmological
constraints.

We will consider four different likelihood configura-
tions:

1. The Beck18 likelihood

2. The Beck18 likelihood but with unlensed CMB
spectra

3. The likelihood we introduced in Section VI B,
which uses unlensed CMB spectra and assumes no
correlations between the lensing power spectrum
and the CMB fields

4. A complete likelihood including the full non-
Gaussian correlations between the lensed CMB
spectra and the lensing potential, following [82]

The Beck18 CMB likelihood is

−2 logL(θ|Ĉ) =
∑

ℓ

(2ℓ+ 1)fsky

(
ln
|Cℓ|
|Ĉℓ|

+ C−1
ℓ Ĉℓ − 3

)

(B1)
where the theoretical covariance matrix C and the data
covariance matrix Ĉ are constructed with the lensed
CMB spectra and are given by

Cℓ =



CTTℓ +NTT

ℓ CTEℓ CTϕℓ
CTEℓ CEEℓ +NEE

ℓ 0

CTϕℓ 0 Cϕϕℓ +Nϕϕ
ℓ


 (B2)

For the theoretical covariance Cℓ, the CMB lensing noise

is Nϕϕ
ℓ = N

(0)
ℓ +N

(1)
ℓ . For the mock data covariance we

include the N
(3/2)
L bias estimated from the simulations

as

Nϕϕ
L = N

(0)
L +N

(0)
L +

Cϕϕ,fidL

Cϕϕ,simL

N
(3/2),sim
L . (B3)

In this configuration, and in order to reproduce the re-
sults of Beck18, we do not take into account the cosmo-

logical dependence of the N
(0)
L and N

(1)
L biases, and we

keep them fixed to their fiducial value.
The Beck18 likelihood with unlensed spectra is the

same as above but replaces the lensed CMB spectra by
their unlensed version.

The likelihood which takes into account the non-
Gaussian covariance introduced in [82] has the following
data vector:

Cℓ =
(
CTTℓ , CEEℓ , CTEℓ , Cϕϕℓ +N

(1)
ℓ

)
. (B4)

For the theory vector Cℓ(θ) we vary the theoretical N
(1)
ℓ

at first order in the CMB lensing spectra when sampling
the cosmology, like in Eq. 56. The mock data vector Ĉℓ
includes the N

(3/2)
L bias, which is not modelled by the

theory vector. The full likelihood is then

−2 logL(θ) =
(
Ĉℓ − Cℓ(θ)

)
C−1
ℓℓ′

(
Ĉℓ′ − Cℓ′(θ)

)
(B5)

The covariance matrix Cℓℓ′ includes the non-Gaussian
terms described in [82], such as the correlations between
the CMB spectra due to lensing, and the correlation be-
tween the reconstructed lensing field and the CMB.

In all likelihood scenarios we generate the data vector
using the same cosmology of Beck18, reproduced in Ta-
ble B, contrary to the analysis in the Section VI B where
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Ωbh
2 0.02225± 0.00016

Ωch
2 0.1198± 0.0015

τ 0.058± 0.012
log(1010As) 3.094± 0.034

ns 0.9645± 0.0049
100θMC 1.04077± 0.00032∑
mν [eV] [0, 300]

TABLE III. Fiducial cosmological parameters used in this sec-
tion, following Beck18, together with their 1σ Gaussian prior,
or uniform parameter bound.

we used the FFP10 cosmology. Notably, we now consider
massless neutrinos, instead of the minimal mass normal
hierarchy considered before. Moreover, contrary to the
main analysis, the likelihoods used here do not include
external BAO constraints. We follow again Beck18 and
assume tight Gaussian priors on the parameters, except
for the sum of neutrino mass which assumes a flat prior,
given on Table B.

We perform the MCMC samplings like in the main
analysis, and we now discuss the results obtained for
the QE minimum variance estimator, with the LSS only

term in the N
(3/2)
L bias. We show in the Figure 17

the constraints for three cosmological parameters Ωch
2,

ln(1010As) and
∑
mν . The purple contours are the one

obtained with the likelihood of Beck18, with the lensed
CMB spectra. We retrieve the same results as in Beck18
(see their Figure 11), with a posterior estimate on the
sum of neutrino masses peaking at 0.18 eV. The red con-
tours show the posterior with the Beck18 likelihood with
unlensed CMB spectra in the data and theory vectors.
The blue contours are for our likelihood, using unlensed
CMB spectra, for Beck18 cosmology and priors. In prac-
tice, the main difference here with the Beck18 unlensed
likelihood is that we take into account the variation of
the N

(1)
L bias when sampling the cosmology, while it is

not the case for the Beck18 likelihood. Finally, the green
contours are for the likelihood with lensed CMB spectra
and the [82] non-Gaussian covariance.

It appears that the Beck18 likelihood, with the lensed
CMB spectra, has the largest bias on the sum of the neu-
trino masses and on the amplitude of the matter power
spectrum. We see that when considering unlensed CMB

spectra the Beck18 likelihood obtains similar constraints
as ours, whihc has unlensed spectra as well. We show
that we obtain almost exactly the same posterior, with
a reduced bias, if we use the lensed spectra but correctly
taking into account the correlations due to lensing from
[82]. This reduction of the bias when using the full non-
Gaussian covariance can be understood as lowering the
impact of the bias from the lensing power spectrum, by
avoiding to “double” count the biased lensing power spec-
trum in the analysis. If we include as well the lensed CBBℓ
spectrum in the data vector, even if the correlations are
properly taken into account, the bias is not reduced. We
interpret that as the fact that the lensed spectrum is an-
other measurement of CϕϕL , as we can approximate for
ℓ≪ 1000 [3]

CBBℓ ∼ 1

4π

∫
dℓ′

ℓ′
ℓ′4Cϕϕℓ′ ℓ

′2CEE,unlℓ′ . (B6)

Thus there is a tension between the lensed BB spectrum,

which measures an unbiased CϕϕL , and the estimate lens-

ing power spectrum which is biased by N
(3/2)
L . It ap-

pears that the biased CϕϕL dominates and the likelihood
is leaning towards the biased measurement of the neu-
trino mass. In practice, future surveys might not include
the lensed BB spectrum in the analysis since the BB spec-
trum might be more prone to instrumental systematics
and polarized foregrounds such as point sources. But
comparing the marginalized constraints with or without
the BB spectra in the likelihood could serve as additional
robustness test to assess the presence of biases coming
from non-Gaussian effects.

We do not test the impact of the full non-Gaussian co-
variance for the MAP estimator. In that case, one would
use the partially delensed CMB spectra in the likelihood,
reducing the non-diagonal terms in the covariance ma-
trix. Fisher forecasts using the covariance matrix com-
puted with delensed spectra were published in [93, 94].
We leave for a future work a detailed comparison of our
MAP reconstructed delensed spectra with this delensed
analytical covariance.

We show in the Figure 18 the full posterior of the like-
lihood for the QE and MAP reconstruction, considering

the total N
(3/2)
L bias, and seven cosmological parameters

as described in the Section VI B.
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5

Summary and Conclusions

This thesis has focused on the optimal lensing reconstruction of CMB lensing, ex-
ploring a Bayesian method that goes beyond the traditional quadratic estimator.
Central to this work was the optimal lensing reconstruction, map-based delensing,
and the development and enhancement of Delensalot, a software designed for op-
timal lensing reconstruction. The discussions covered the limitations of QE, the
advantages of iterative lensing reconstruction, and the impact of his novel approach
onto the CMB science goals.

This thesis covered five papers that explore the capabilities of this Bayesian
method, and we demonstrated successful application of our software in two major
collaborations: CMB-S4 and PICO.

In the first and second paper, we developed both CPU and GPU implemen-
tations of the deflection operator. The thesis work has pushed the boundaries of
computational efficiency by more than one order of magnitude, enabling faster and
more precise simulations and analyses that can reach machine precision accuracy.

In the third paper, we discussed the concrete details of the curved sky imple-
mentation of this method, and applied it to realistic simulation data of the CMB-S4
collaboration with the aim of measuring r. In the fourth paper, we repeated a sim-
ilar exercise for the PICO collaboration. In both cases, we could show that the
respective experiments’ CMB science goals can be reached with our method.

The fifth paper addressed the complexities of non-Gaussian deflection fields and
the implications on the lensing reconstruction’s accuracy. We found that using a
Gaussian likelihood and prior does not prohibit the reconstruction of non-Gaussian
features, and that our MAP estimator is less biased compared to the standard QE.

Throughout this research, Delensalot was improved in terms of robustness, ac-
curacy, and processing speed, making it not only a powerful tool for researchers
but also more accessible and user-friendly. Within the two mentioned collabora-
tions, Delensalot was seamlessly integrated into the existing analysis pipelines,
demonstrating its utility and effectiveness in real-world research environments and
underscores the practical relevance and applicability of the software. The integra-
tion of Delensalot into the analysis pipelines of major collaborations like CMB-S4
and PICO sets a precedent for broader adoption across other cosmological projects.
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Future work could extend beyond CMB studies, incorporating observations from
other cosmic phenomena like large-scale structure surveys. Concretely, this could
either be done via an additional prior term included in the posterior, or by expand-
ing the likelihood model. Future work could also delve deeper into the statistical
properties of correlations beyond the 2-point statistics, exploring their origins and
implications for cosmological parameter estimation. This research could enable the
development of new statistical tools tailored for impacts from foregrounds that are
correlated with the CMB and deflection field itself, enhancing our ability to inter-
pret increasingly complex datasets. Delensalot can potentially play a pivotal role
in this.

As Delensalot becomes more user-friendly and integrated into more research
pipelines, there is an excellent opportunity to focus on educational resources and
community development. Creating detailed documentation, tutorials, and training
programs can empower a new generation of cosmologists to use advanced lensing re-
construction tools effectively. Moreover, open-source contributions and community-
driven enhancements to Delensalot can foster a more collaborative and innovative
research environment.

The outlook for CMB lensing reconstruction is promising. The methodologies de-
veloped in this thesis are necessarily needed for unravelling CMB science at current
and future experiment noise levels. As we stand on the brink of new astronomi-
cal insights with current and upcoming experiments, the continued development of
lensing reconstruction techniques will undoubtedly be a key player in discovering
new insights in the data analysis.
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Appendix

A.1 Delensalot Language Model

This section shows the complete Delensalot language model DLM.
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1 """dlensalot_mm . py : Contains c l a s s e s d e f i n i n g the metamodel o f the Dlensa lo t formal ism .
2 The metamodel i s a s t ruc tu r ed repr e s en ta t i on , with the ‘DLENSALOT_Model‘ as the main bu i l d ing

block .
3 We use the a t t r package . I t prov ides handy ways o f v a l i d a t i on and de f au l t i n g .
4 """
5
6 c l a s s DLENSALOT_Concept :
7 """An abs t rac t element base type f o r the Dlensa lo t formal ism . """
8 __metaclass__ = abc .ABCMeta
9

10 @attr . s
11 c l a s s DLENSALOT_Chaindescriptor (DLENSALOT_Concept) :
12 """A root model element type o f the Dlensa lo t formal ism .
13 This c l a s s c o l l e c t s a l l c on f i g u r a t i o n s r e l a t ed to conjugate g rad i ent s o l v e r . There are

cu r r en t l y not many opt ions f o r t h i s . Better don ’ t touch i t .
14
15 Att r ibute s :
16 p0 : 0
17 p1 : type o f the cond i t i on e r . Can be in [ " diag_cl " ]
18 p2 : value o f lm_max_ivf [ 0 ]
19 p3 : value o f ns ide o f the data
20 p4 : np . i n f
21 p5 : value o f cg_tol
22 p6 : ‘ tr_cg ‘ : va lue o f cd_solve . tr_cg
23 p7 : cacher s e t t i n g
24 """
25 # TODO change names a f t e r t e s t i n g var ious cha ins − can we f i nd be t t e r h e u r i s t i c s ?
26 p0 = at t r . f i e l d ( va l i d a t o r=cha inde s c r i p t o r . p0 )
27 p1 = at t r . f i e l d ( va l i d a t o r=cha inde s c r i p t o r . p1 )
28 p2 = at t r . f i e l d ( va l i d a t o r=cha inde s c r i p t o r . p2 )
29 p3 = at t r . f i e l d ( va l i d a t o r=cha inde s c r i p t o r . p3 )
30 p4 = at t r . f i e l d ( va l i d a t o r=cha inde s c r i p t o r . p4 )
31 p5 = at t r . f i e l d ( va l i d a t o r=cha inde s c r i p t o r . p5 )
32 p6 = at t r . f i e l d ( va l i d a t o r=cha inde s c r i p t o r . p6 )
33 p7 = at t r . f i e l d ( va l i d a t o r=cha inde s c r i p t o r . p7 )
34
35 @attr . s
36 c l a s s DLENSALOT_Stepper(DLENSALOT_Concept) :
37 """A root model element type o f the Dlensa lo t formal ism .
38 Def ines the s tepper func t i on . The s tepper func t i on c on t r o l s how the increment in the

l i k e l i h o o d search i s added to the cur rent s o l u t i on .
39 Currently , t h i s i s pre t ty much j u s t the harmonicbump c l a s s .
40
41 Att r ibute s :
42 typ ( s t r ) : The name o f the s tepper func t i on
43 lmax_qlm ( in t ) : maximum ‘\ e l l ‘ o f the l e n s i n g po t en t i a l r e c on s t ru c t i on
44 mmax_qlm ( in t ) : maximum ‘m‘ o f the l e n s i n g po t en t i a l r e c on s t ru c t i on
45 a : TBD
46 b : TBD
47 xa : TBD
48 xb : TBD
49 """
50 # FIXME th i s i s very ’ harmonicbump’− s p e c i f i c .
51 typ = at t r . f i e l d ( va l i d a t o r=stepper . typ )
52 lmax_qlm = at t r . f i e l d ( va l i d a t o r=stepper . lmax_qlm) # must match lm_max_qlm −> va l i d a t o r
53 mmax_qlm = at t r . f i e l d ( va l i d a t o r=stepper .mmax_qlm) # must match lm_max_qlm −> va l i d a t o r
54 a = a t t r . f i e l d ( va l i d a t o r=stepper . a )
55 b = at t r . f i e l d ( va l i d a t o r=stepper . b)
56 xa = at t r . f i e l d ( va l i d a t o r=stepper . xa )
57 xb = at t r . f i e l d ( va l i d a t o r=stepper . xb )
58
59
60 @attr . s
61 c l a s s DLENSALOT_Job(DLENSALOT_Concept) :
62 """A root model element type o f the Dlensa lo t formal ism .
63 d e l e n s a l o t can execut te d i f f e r e n t jobs (QE recons t ruc t i on , s imu lat i on generat ion , MAP

recons t ruc t i on , de l ens ing , . . ) which i s c on t r o l l e d here .
64
65 Att r ibute s :
66 jobs ( l i s t [ s t r ] ) : Job i d e n t i f i e r ( s )
67 """
68 jobs =a t t r . f i e l d ( va l i d a t o r=job . jobs )
69
70 @attr . s
71 c l a s s DLENSALOT_Analysis(DLENSALOT_Concept) :
72 """A root model element type o f the Dlensa lo t formal ism .
73 This c l a s s c o l l e c t s a l l c on f i g u r a t i o n s r e l a t ed to the s p e c i f i c a na l y s i s performed on the data

.
74
75 Att r ibute s :
76 key ( s t r ) : r e c on s t ru c t i on es t imator key
77 ve r s i on ( s t r ) : s p e c i f i c c on f i gu r a t i on f o r the es imator ( e . g . ‘noMF‘ , which turns o f f

mean−f i e l d subt rac t i on )
78 s imidxs (np . array [ i n t ] ) : s imu la t ion i nd i c e s to use f o r the d e l e n s a l o t job
79 simidxs_mf (np . array [ i n t ] ) : s imu la t ion i nd i c e s to use f o r the c a l c u l a t i o n o f the mean−

f i e l d
80 TEMP_suffix ( s t r ) : i d e n t i f i e r to customize TEMP d i r e c t o r y o f the ana l y s i s
81 Lmin ( i n t ) : minimum L f o r r e c on s t ru c t i ng the l e n s i n g po t en t i a l
82 zbounds ( tup le [ i n t or s t r , f l o a t ] ) : l a t i t u d i n a l boundary (−1 to 1) , or i d e n t i f i e r

toge the r with no i s e l e v e l r a t i o t r e sho ld at which l e n s i n g r e c on s t ru c t i on i s perfromed .
83 zbounds_len ( tup l e [ i n t ] ) : l a t i t u d i n a l extended boundary at which l e n s i n g r e c on s t ru c t i on

i s performed , and used f o r i t e r a t i v e l e n s i n g r e c on s t ru c t i on
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84 lm_max_ivf ( tup l e [ i n t ] ) : maximum ‘\ e l l ‘ and m fo r which i nv e r s e var iance f i l t e r i n g i s
done

85 lm_max_blt ( tup l e [ i n t ] ) : maximum ‘\ e l l ‘ and m fo r which B−l en s i n g template i s
c a l cu l a t ed

86 mask ( l i s t [ s t r ] ) : TBD
87 lmin_teb ( i n t ) : minimum ‘\ e l l ‘ and m of the data which the r e c on s t ru c t i on uses , and i s

s e t to zero below via the t r a n s f e r func t i on
88 cls_unl ( s t r ) : path to the f i d u c i a l unlensed CAMB−l i k e CMB data
89 c l s_len ( s t r ) : path to the f i d u c i a l l ensed CAMB−l i k e CMB data
90 cpp ( s t r ) : path to the power spectrum of the p r i o r f o r the i t e r a t i v e

r e c on s t ru c t i on
91 beam ( f l o a t ) : The beam used in the f i l t e r s
92 """
93 key = at t r . f i e l d ( va l i d a t o r=ana l y s i s . key )
94 ve r s i on = a t t r . f i e l d ( va l i d a t o r=ana l y s i s . v e r s i on ) # TODO e i t h e r make i t more use fu l , or

remove
95 s imidxs = a t t r . f i e l d ( va l i d a t o r=ana l y s i s . s imidxs )
96 simidxs_mf = at t r . f i e l d ( va l i d a t o r=ana l y s i s . simidxs_mf )
97 TEMP_suffix = a t t r . f i e l d ( va l i d a t o r=ana l y s i s . TEMP_suffix )
98 Lmin =at t r . f i e l d ( va l i d a t o r=ana l y s i s . Lmin)
99 zbounds = a t t r . f i e l d ( va l i d a t o r=ana l y s i s . zbounds )

100 zbounds_len = at t r . f i e l d ( va l i d a t o r=ana l y s i s . zbounds_len ) # TODO rename
101 lm_max_ivf = a t t r . f i e l d ( va l i d a t o r=v_ f i l t e r . lm_max_ivf )
102 lm_max_blt = a t t r . f i e l d ( va l i d a t o r=ana l y s i s . lm_max_blt )
103 mask =at t r . f i e l d ( va l i d a t o r=ana l y s i s . mask ) # TODO i s t h i s used ?
104 lmin_teb = at t r . f i e l d ( va l i d a t o r=ana l y s i s . lmin_teb )
105 cls_unl = a t t r . f i e l d ( va l i d a t o r=ana l y s i s . c l s_unl )
106 c l s_len = a t t r . f i e l d ( va l i d a t o r=ana l y s i s . c l s_len )
107 cpp = at t r . f i e l d ( va l i d a t o r=ana l y s i s . cpp )
108 beam =at t r . f i e l d ( va l i d a t o r=ana l y s i s . beam)
109 trans funct ion_desc = a t t r . f i e l d ( va l i d a t o r=ana l y s i s . t r an s func t i on )
110
111
112 @attr . s
113 c l a s s DLENSALOT_Simulation(DLENSALOT_Concept) :
114 """A root model element type o f the Dlensa lo t formal ism .
115 This c l a s s c o l l e c t s a l l c on f i g u r a t i on s r e l a t ed to the input maps , and va lues can d i f f e r from

the no i s e model and ana l y s i s .
116
117 Att r ibute s :
118 f l avou r ( s t r ) : Can be in [ ’ obs ’ , ’ sky ’ , ’ unl ’ ] and d e f i n e s the type o f data provided

.
119 space ( s t r ) : Can be in [ ’map ’ , ’ alm ’ , ’ c l ’ ] and d e f i n e s the space o f the data

provided .
120 maps(np . array , op t i ona l ) : These maps w i l l be put in to the cacher d i r e c t l y . They are used

f o r s e t t i n g s in which no data i s generated or accesed on disk , but d i r e c t l y provided ( l i k e
in ‘ d e l e n s a l o t . ana fa s t ( ) ‘ ) De fau l t s to DNaV.

121 geominfo ( tuple , op t i ona l ) : Lenspyx geominfo de s c r ip to r , d e s c r i b e s the geominfo o f
the data provided ( e . g . ‘ ( ’ hea lp ix ’ , ’ n s ide ’ : 2048) ) . De fau l t s to DNaV.

122 f i e l d ( s t r , op t i ona l ) : the type o f data provided , can be in [ ’ temperature ’ , ’
p o l a r i z a t i o n ’ ] . De fau l t s to DNaV.

123 l i b d i r ( s t r , op t i ona l ) : d i r e c t o r y o f the data provided . De fau l t s to DNaV.
124 l i bd i r_no i s e ( s t r , op t i ona l ) : d i r e c t o r y o f the no i s e provided . De fau l t s to DNaV.
125 l i bd i r_ph i ( s t r , op t i ona l ) : d i r e c t o r y o f the l e n s i n g po t en t i a l provided . De fau l t s to

DNaV.
126 fn s ( d i c t with s t r with formatter , op t i ona l ) : f i l e names o f the data provided . I t expects

‘{ ’T ’ : <f i l ename { simidx } . something >, ’Q ’ : <f i l ename { simidx } . something >, ’U ’ : <f i l ename {
simidx } . something >} ‘ , where ‘{ simidx } ‘ i s used by the l i b r a r i e s to format the s imu la t ion
index in to the name . De fau l t s to DNaV.

127 f n s no i s e ( d i c t with s t r with formatter , op t i ona l ) : f i l e names o f the no i s e provided .
I t expects ‘{ ’T ’ : <f i l ename { simidx } . something >, ’Q ’ : <f i l ename { simidx } . something >, ’U ’ : <
f i l ename { simidx } . something >} ‘ , where ‘{ simidx } ‘ i s used by the l i b r a r i e s to format the
s imula t i on index in to the name . De fau l t s to DNaV.

128 fnsP ( s t r with formatter , op t i ona l ) : f i l e names o f the l e n s i n g po t en t i a l provided . I t
expects ‘< f i l ename { simidx } . something >, where ‘{ simidx } ‘ i s used by the l i b r a r i e s to format
the s imulat i on index in to the name . De fau l t s to DNaV.

129 lmax ( int , op t i ona l ) : Maximum l o f the data provided . De fau l t s to DNaV.
130 t r an s func t i on (np . array , op t i ona l ) : t r a n s f e r func t i on . De fau l t s to DNaV.
131 nlev ( d ict , op t i ona l ) : no i s e l e v e l o f the i nd i v i dua l f i e l d s . I t expects ‘{ ’T ’ : <value >, ’P

’ : <value >}. De fau l t s to DNaV.
132 sp in ( int , op t i ona l ) : the sp in o f the data provided . De fau l t s to 0 . Always d e f a u l t s to 0

f o r temperature .
133 CMB_fn ( st r , op t i ona l ) : path+name o f the f i l e o f the power spec t ra o f the CMB.

De fau l t s to DNaV.
134 phi_fn ( st r , op t i ona l ) : path+name o f the f i l e o f the power spectrum of the l e n s i n g

po t en t i a l . De fau l t s to DNaV.
135 ph i_f i e ld ( s t r , op t i ona l ) : the type o f p o t en t i a l provided , can be in [ ’ p o t en t i a l ’ , ’

d e f l e c t i o n ’ , ’ convergence ’ ] . This s imu la t ion l i b r a r y w i l l automat i ca l l y r e s c a l e the f i e l d ,
i f needded . De fau l t s to DNaV.

136 phi_space ( s t r , op t i ona l ) : can be in [ ’map ’ , ’ alm ’ , ’ c l ’ ] and d e f i n e s the space o f the
l e n s i n g po t en t i a l provided . . De fau l t s to DNaV.

137 phi_lmax (_type_ , opt i ona l ) : the maximum mult ipo l e o f the l e n s i n g po t en t i a l . i f
s imu la t i on l i b r a r y perfroms l ens ing , i t i s adv i sab l e that ‘ phi_lmax ‘ i s somewhat l a r g e r than
‘ lmax ‘ (+ ~512−1024) . De fau l t s to DNaV.

138 ep s i l o n ( f l o a t , op t i ona l ) : Lenspyx l en s i n g accuracy . De fau l t s to 1e−7.
139 l i b d i r_ s u f f i x ( s t r , op t i ona l ) : d e f i n e s the d i r e c t o r y the s imu lat ion data w i l l be s to r ed to

, d e f a u l t s to ’ g ene r i c ’ . He lp fu l i f one wants to keep track o f d i f f e r e n t p r o j e c t s .
140 CMB_modifier ( c a l l a b l e , op t i ona l ) : operat ion de f ined in the c a l l a b l e w i l l be app l i ed to

each o f the input maps/alms/ c l s
141 phi_modif ier ( c a l l a b l e , op t i ona l ) : operat ion de f ined in the c a l l a b l e w i l l be app l i ed to

the input phi lms
142
143 """
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144
145 f l avou r = a t t r . f i e l d ( va l i d a t o r=data . f l a vou r )
146 space =a t t r . f i e l d ( va l i d a t o r=data . space )
147 maps = a t t r . f i e l d ( va l i d a t o r=data . maps)
148 geominfo = a t t r . f i e l d ( va l i d a t o r=data . geominfo )
149 lenjob_geominfo=a t t r . f i e l d ( va l i d a t o r=data . geominfo )
150 f i e l d =a t t r . f i e l d ( va l i d a t o r=data . f i e l d )
151 l i b d i r = a t t r . f i e l d ( va l i d a t o r=data . l i b d i r )
152 l i bd i r_no i s e = a t t r . f i e l d ( va l i d a t o r=data . l i bd i r_no i s e )
153 l i bd i r_ph i = a t t r . f i e l d ( va l i d a t o r=data . l i bd i r_ph i )
154 fn s = a t t r . f i e l d ( va l i d a t o r=data . fn s )
155 f n s n o i s e = a t t r . f i e l d ( va l i d a t o r=data . f n s n o i s e )
156 fnsP = at t r . f i e l d ( va l i d a t o r=data . fnsP )
157 lmax = at t r . f i e l d ( va l i d a t o r=data . lmax )
158 t r an s func t i on = a t t r . f i e l d ( va l i d a t o r=data . t r an s func t i on )
159 nlev = a t t r . f i e l d ( va l i d a t o r=data . n lev )
160 sp in = a t t r . f i e l d ( va l i d a t o r=data . sp in )
161 CMB_fn = at t r . f i e l d ( va l i d a t o r=data .CMB_fn)
162 phi_fn = at t r . f i e l d ( va l i d a t o r=data . phi_fn )
163 ph i_f i e ld = a t t r . f i e l d ( va l i d a t o r=data . ph i_ f i e ld )
164 phi_space = a t t r . f i e l d ( va l i d a t o r=data . phi_space )
165 phi_lmax = at t r . f i e l d ( va l i d a t o r=data . phi_lmax )
166 ep s i l o n = at t r . f i e l d ( va l i d a t o r=data . e p s i l o n )
167 l i b d i r_ s u f f i x = a t t r . f i e l d ( d e f au l t=’ g ene r i c ’ , v a l i d a t o r=data . l i b d i r_ s u f f i x )
168 CMB_modifier = a t t r . f i e l d ( va l i d a t o r=data . mod i f i e r )
169 phi_modif ier = a t t r . f i e l d ( d e f au l t=lambda x : x )
170
171
172 @attr . s
173 c l a s s DLENSALOT_Noisemodel(DLENSALOT_Concept) :
174 """A root model element type o f the Dlensa lo t formal ism .
175 This c l a s s c o l l e c t s a l l c on f i g u r a t i o n s r e l a t ed to the no i s e model used f o r Wiener−f i l t e r i n g

the data .
176
177 Att r ibute s :
178 sky_coverage ( s t r ) : Can be e i t h e r ’masked ’ or ’ unmasked ’
179 spectrum_type ( s t r ) : TBD
180 OBD ( s t r ) : OBD i d e n t i f i e r . Can be ’OBD’ , ’ trunc ’ . De f ines how lowest B−modes w i l l be

handled .
181 nlev_t ( f l o a t ) : ( c en t r a l ) no i s e l e v e l o f temperature data in muK arcmin .
182 nlev_p ( f l o a t ) : ( c e n t r a l ) no i s e l e v e l o f p o l a r i z a t i o n data in muK arcmin .
183 rh i t s_normal i sed ( s t r ) : path to the h i t s −count map , used to c a l c u l a t e the no i s e l e v e l s ,

and the mask t r a c i ng the no i s e l e v e l . Second entry in tup le i s the <inve r s e h i t s −count
mu l t i p l i e r >.

184 geominfo ( tup l e ) : geominfo o f the no i s e map
185 """
186 sky_coverage = a t t r . f i e l d ( va l i d a t o r=noisemodel . sky_coverage )
187 spectrum_type =at t r . f i e l d ( va l i d a t o r=noisemodel . spectrum_type )
188 OBD = at t r . f i e l d ( va l i d a t o r=noisemodel .OBD)
189 nlev =a t t r . f i e l d ( va l i d a t o r=noisemodel . nlev_t )
190 geominfo = a t t r . f i e l d ( va l i d a t o r=noisemodel . ninvjob_geominfo )
191 rh i t s_normal i sed = at t r . f i e l d ( va l i d a t o r=noisemodel . rh i t s_normal i sed )
192 nivt_map = at t r . f i e l d ( va l i d a t o r=noisemodel . ninvjob_geominfo ) # TODO t e s t i f i t works
193 nivp_map = at t r . f i e l d ( va l i d a t o r=noisemodel . ninvjob_geominfo ) # TODO t e s t i f i t works
194
195 @attr . s
196 c l a s s DLENSALOT_Qerec(DLENSALOT_Concept) :
197 """A root model element type o f the Dlensa lo t formal ism .
198 This c l a s s c o l l e c t s a l l c on f i g u r a t i o n s r e l a t ed to the quadrat i c e s t imator r e c on s t ru c t i on job .
199
200 Att r ibute s :
201 tasks ( l i s t [ tup l e ] ) : t a sks to perfrom . Can be any combination o f : code : ‘ calc_phi ‘ ,

: code : ‘ calc_meanf ie ld ‘ , : code : ‘ ca lc_blt ‘
202 qlm_type ( s t r ) : l e n s i n g po t en t i a l e s t imator i d e n t i f i e r . Can be ’ sepTP ’ or ’ jTP ’
203 cg_tol ( f l o a t ) : t o l e r an c e o f the conjugate g rad i ent method
204 f i l t e r _ d i r e c t i o n a l ( s t r ) : can be e i t h e r ’ i s o t r o p i c ’ ( unmasked sky ) or ’ i s o t r o p i c ’ (

masked sky )
205 lm_max_qlm ( type ) : maximum mult ipo l e ‘\ e l l ‘ and m to r e con s t ru c t the l e n s i n g po t en t i a l
206 chain (DLENSALOT_Chaindescriptor ) : c on f i gu r a t i on o f the conjugate g rad i ent method .

Conf igures the chain and pr e cond i t i one r
207 c l_ana ly s i s ( bool ) : I f tru , performs l e n s i n g power spectrum ana l y s i s
208 blt_pert ( bool ) : I f True , d e l en s ing i s performed p e r u r b i t i v l y ( recommended )
209
210 """
211
212 tasks = a t t r . f i e l d ( va l i d a t o r=qerec . ta sks )
213 qlm_type = at t r . f i e l d ( va l i d a t o r=qerec . qlms )
214 cg_tol = a t t r . f i e l d ( va l i d a t o r=qerec . cg_tol )
215 f i l t e r _ d i r e c t i o n a l = a t t r . f i e l d ( va l i d a t o r=qerec . f i l t e r _ d i r e c t i o n a l )
216 lm_max_qlm = at t r . f i e l d ( va l i d a t o r=qerec . lm_max_qlm)
217 chain = a t t r . f i e l d ( d e f au l t=DLENSALOT_Chaindescriptor ( ) , v a l i d a t o r=qerec . chain )
218 c l_ana ly s i s = a t t r . f i e l d ( va l i d a t o r=qerec . c l_ana ly s i s ) # TODO make t h i s u s e f u l or remove
219 blt_pert = a t t r . f i e l d ( va l i d a t o r=qerec . btemplate_perturbative_lensremap )
220
221 @attr . s
222 c l a s s DLENSALOT_Itrec(DLENSALOT_Concept) :
223 """A root model element type o f the Dlensa lo t formal ism .
224 This c l a s s c o l l e c t s a l l c on f i g u r a t i o n s r e l a t ed to the i t e r a t i v e r e c on s t ru c t i on job .
225
226 Att r ibute s :
227 tasks ( l i s t [ s t r ] ) : t a sks to perfrom . Can be any combination o f : code : ‘ calc_phi ‘ , : code : ‘

calc_meanf ie ld ‘ , : code : ‘ ca lc_blt ‘
228 itmax ( i n t ) : maximum number o f i t e r a t i o n s
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229 cg_tol ( f l o a t ) : t o l e r an c e o f the conjugate g rad i ent method
230 i t e rator_typ ( s t r ) :mean−f i e l d handl ing i d e n t i f i e r . Can be e i t h e r ’ const_mf ’ or ’ pert_mf ’
231 chain (DLENSALOT_Chaindescriptor ) : c on f i gu r a t i on f o r the conjugate g rad i ent s o l v e r
232 f i l t e r _ d i r e c t i o n a l ( s t r ) : can be e i t h e r ’ i s o t r o p i c ’ ( unmasked sky ) or ’ i s o t r o p i c ’ (

masked sky )
233 lenjob_geominfo ( s t r ) : can be ’ healpix_geominfo ’ , ’ thin_gauss ’ or ’ pbdGeometry ’
234 lenjob_pbgeominfo ( s t r ) : can be ’ healpix_geominfo ’ , ’ thin_gauss ’ or ’ pbdGeometry ’
235 lm_max_unl ( tup l e [ i n t ] ) : maximum mul t ipo l e s ‘\ e l l ‘ and m fo r r e c on s t ru c t i on the

unlensed CMB
236 lm_max_qlm ( tup le [ i n t ] ) : maximum mul t ipo l e s L and m fo r r e c on s t ru c t i on the l e n s i n g

po t en t i a l
237 mfvar ( s t r ) : path to p r e ca l cu l a t ed mean−f i e l d , to be used in s t ead
238 soltn_cond ( type ) : TBD
239 stepper (DLENSALOT_STEPPER) : c on f i gu r a t i on f o r updating the cur rent l i k e l i h o o d i t e r a t i o n

point with the l i k e l i h o o d grad i ent
240
241 """
242 tasks = a t t r . f i e l d ( va l i d a t o r=i t r e c . ta sks )
243 itmax = at t r . f i e l d ( va l i d a t o r=i t r e c . itmax )
244 cg_tol = a t t r . f i e l d ( va l i d a t o r=i t r e c . cg_tol )
245 i t e ra tor_typ = at t r . f i e l d ( va l i d a t o r=i t r e c . i t e ra to r_type ) # TODO rename
246 chain = a t t r . f i e l d ( d e f au l t=DLENSALOT_Chaindescriptor ( ) , v a l i d a t o r=i t r e c . chain )
247 f i l t e r _ d i r e c t i o n a l = a t t r . f i e l d ( va l i d a t o r=i t r e c . f i l t e r _ d i r e c t i o n a l )
248 lenjob_geominfo = a t t r . f i e l d ( va l i d a t o r=i t r e c . lenjob_geominfo )
249 lenjob_pbdgeominfo = a t t r . f i e l d ( va l i d a t o r=i t r e c . lenjob_pbgeominfo )
250 lm_max_unl = a t t r . f i e l d ( va l i d a t o r=i t r e c . lm_max_unl)
251 lm_max_qlm = at t r . f i e l d ( va l i d a t o r=i t r e c . lm_max_qlm)
252 mfvar = a t t r . f i e l d ( va l i d a t o r=i t r e c . mfvar ) # TODO rename and check i f i t s t i l l works
253 soltn_cond = at t r . f i e l d ( va l i d a t o r=i t r e c . soltn_cond )
254 stepper = a t t r . f i e l d ( d e f au l t=DLENSALOT_Stepper ( ) , v a l i d a t o r=i t r e c . s t epper )
255 ep s i l o n = a t t r . f i e l d ( va l i d a t o r=data . e p s i l o n )
256
257 @attr . s
258 c l a s s DLENSALOT_Mapdelensing(DLENSALOT_Concept) :
259 """A root model element type o f the Dlensa lo t formal ism .
260 This c l a s s c o l l e c t s a l l c on f i g u r a t i on s r e l a t ed to the i n t e r n a l map de l en s ing job .
261
262 Att r ibute s :
263 data_from_CFS ( bool ) : i f set , use B−l en s i n g templates l o ca t ed at the $CFS d i r e c t o r y

in s t ead o f the $TEMP d i r e c t o r y \n
264 edges (np . array ) : b inning to c a l c u l a t e the ( de lensed ) power spectrum on\n
265 dlm_mod ( bool ) : i f set , modf ies the l e n s i n g po t en t i a l be f o r e c a l c u l a t i n g the B−l en s i n g

template \n
266 i t e r a t i o n s ( l i s t [ i n t ] ) : which i t e r a t i o n s to c a l c u l a t e de lensed power spectrum f o r \n
267 n l e v e l s ( l i s t [ f l o a t ] ) : n o i s e l e v e l r a t i o t r e sho ld up to which the maps are delensed , uses

the rh i t s_normal ized map to generate masks .
268 lmax ( i n t ) : maximum mult ipo l e to c a l c u l a t e the ( de lensed ) power spectrum\n
269 Cl_fid ( type ) : f i d u c i a l power spectrum , and needed f o r template c a l c u l a t i o n o f the binned

power spectrum package\n
270 l i b d i r_ i t ( type ) : TBD\n
271 binning ( type ) : can be e i t h e r ’ binned ’ or ’ unbinned ’ . I f ’ unbinned ’ , ove rwr i t e s : code : ‘

edges ‘ and c a l c u l a t e s power spectrum f o r each mul t ipo l e \n
272 spectrum_calculator ( package ) : name o f the package o f the power spectrum ca l c u l a t o r . Can

be ’ healpy ’ i f : code : ‘ b inning=unbinned ‘ \ n
273 masks_fn ( l i s t [ s t r ] ) : the sky patches to c a l c u l a t e the power spec t ra on . Note that t h i s

i s d i f f e r e n t to us ing ‘ n l ev e l s ‘ . Here , no t r e s ho l d s are ca l cu la t ed , but masks are used ’ as
i s ’ f o r de l en s ing . \ n

274 basemap ( s t r ) : the de lensed map Bdel i s c a l cu l a t ed as Bdel = basemap − b l t . Basemap can
be two th ings : ’ obs ’ or ’ l e n s ’ , where ’ obs ’ w i l l use the observed sky map, and l en s w i l l use
the pure B−l en s i n g map .

275 """
276
277 data_from_CFS =at t r . f i e l d ( va l i d a t o r=mapdelensing . data_from_CFS)
278 edges = a t t r . f i e l d ( va l i d a t o r=mapdelensing . edges )
279 dlm_mod = at t r . f i e l d ( va l i d a t o r=mapdelensing . dlm_mod)
280 i t e r a t i o n s = a t t r . f i e l d ( va l i d a t o r=mapdelensing . i t e r a t i o n s )
281 n l e v e l s = a t t r . f i e l d ( va l i d a t o r=mapdelensing . n l e v e l s )
282 lmax =at t r . f i e l d ( va l i d a t o r=mapdelensing . lmax )
283 Cl_fid = a t t r . f i e l d ( va l i d a t o r=mapdelensing . Cl_fid )
284 l i b d i r_ i t = a t t r . f i e l d ( va l i d a t o r=mapdelensing . l i b d i r_ i t )
285 binning = at t r . f i e l d ( va l i d a t o r=mapdelensing . b inning )
286 spectrum_calculator = a t t r . f i e l d ( va l i d a t o r=mapdelensing . spectrum_calculator )
287 masks_fn = at t r . f i e l d ( va l i d a t o r=mapdelensing . masks )
288 basemap = at t r . f i e l d ( va l i d a t o r=mapdelensing . basemap )
289
290 @attr . s
291 c l a s s DLENSALOT_Phianalysis (DLENSALOT_Concept) :
292 """A root model element type o f the Dlensa lo t formal ism .
293 This c l a s s c o l l e c t s a l l c on f i g u r a t i on s r e l a t ed to the i n t e r n a l map de l en s ing job .
294
295 Att r ibute s :
296 custom_WF_TEMP ( s t r ) : Path to the d i r o f an e x i s i t i n g WF. fn must be ’WFemp_%s_simal l%

s_ i t a l l%s_avg . npy ’\n
297 """
298
299 custom_WF_TEMP = at t r . f i e l d ( )
300
301 @attr . s
302 c l a s s DLENSALOT_OBD(DLENSALOT_Concept) :
303 """A root model element type o f the Dlensa lo t formal ism .
304 This c l a s s c o l l e c t s a l l c on f i g u r a t i on s r e l a t ed to the over lapp ing B−mode dep ro j e c t i on .
305
306 Att r ibute s :
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307 l i b d i r ( s t r ) : path to the OBD matrix
308 r e s c a l e ( f l o a t ) : r e s c a l i n g o f OBD matrix amplitude . Use fu l i f matrix a l ready

ca l cu la t ed , but n o i s e l e v e l changed
309 tp l ( type ) : func t i on name f o r c a l c u l a t i n g OBD matrix
310 nlev_dep ( f l o a t ) : d ep ro j e c t i on fac to r , or , s t r ength o f B−mode dep ro j e c t i on
311 """
312 l i b d i r = a t t r . f i e l d ( va l i d a t o r=obd . l i b d i r )
313 r e s c a l e = a t t r . f i e l d ( va l i d a t o r=obd . r e s c a l e )
314 tp l = a t t r . f i e l d ( va l i d a t o r=obd . tp l )
315 nlev_dep = at t r . f i e l d ( va l i d a t o r=obd . nlev_dep )
316
317 @attr . s
318 c l a s s DLENSALOT_Config(DLENSALOT_Concept) :
319 """A root model element type o f the Dlensa lo t formal ism .
320 This c l a s s c o l l e c t s a l l c on f i g u r a t i o n s r e l a t ed to gene ra l behaviour to the operat ing system .
321
322 Att r ibute s :
323 outdir_plot_root ( s t r ) : root path f o r the p l o t s to be s to r ed at
324 outd i r_plot_re l ( s t r ) : r e l a t i v e path f o l d e r f o r the p l o t s to be s to red at
325 """
326 outdir_plot_root = a t t r . f i e l d ( d e f au l t=opj ( os . environ [ ’HOME’ ] , ’ p l o t s ’ ) )
327 outd i r_plot_re l = a t t r . f i e l d ( d e f au l t=’ ’ )
328
329 @attr . s
330 c l a s s DLENSALOT_Meta(DLENSALOT_Concept) : # TODO do we r e a l l y need a Meta?
331 """A root model element type o f the Dlensa lo t formal ism .
332 This c l a s s c o l l e c t s a l l c on f i g u r a t i o n s r e l a t ed to i n t e r n a l behaviour o f d e l e n s a l o t .
333
334 Att r ibute s :
335 ve r s i on ( s t r ) : v e r s i on con t r o l o f the d e l e n s a l o t model
336 """
337 ve r s i on = a t t r . f i e l d ( va l i d a t o r=a t t r . v a l i d a t o r s . instance_of ( i n t ) )
338
339
340 @attr . s
341 c l a s s DLENSALOT_Computing(DLENSALOT_Concept) :
342 """A root model element type o f the Dlensa lo t formal ism .
343 This c l a s s c o l l e c t s a l l c on f i g u r a t i o n s r e l a t ed to the usage o f computing r e s ou r c e s .
344
345 Att r ibute s :
346 OMP_NUM_THREADS ( in t ) : number o f threads used per Job
347 """
348 OMP_NUM_THREADS = at t r . f i e l d ( va l i d a t o r=computing .OMP_NUM_THREADS)
349
350
351 @attr . s
352 c l a s s DLENSALOT_Model(DLENSALOT_Concept) :
353 """A root model element type o f the Dlensa lo t formal ism .
354
355 Att r ibute s :
356 de fau l t s_to ( s t r ) : I d e n t i f i e r f o r de fau l t −d i c t i ona ry i f user hasn ’ t s p e c i f i e d value

in con f i gu r a t i on f i l e
357 meta (DLENSALOT_Meta) : c on f i g u r a t i on s r e l a t ed to i n t e r n a l behaviour o f d e l e n s a l o t
358 job (DLENSALOT_Job) : d e l e n s a l o t can execut te d i f f e r e n t jobs (QE recons t ruc t i on ,

s imu la t i on generat ion , MAP recons t ruc t i on , de l ens ing , analyse_phi ) which i s c on t r o l l e d here
359 ana l y s i s (DLENSALOT_Analysis) : c on f i g u r a t i on s r e l a t ed to the s p e c i f i c a n a l y s i s performed

on the data
360 data (DLENSALOT_Data) : c on f i g u r a t i on s r e l a t ed to the input CMB maps
361 noisemodel (DLENSALOT_Noisemodel) : c on f i g u r a t i o n s r e l a t ed to the no i s e model used f o r

Wiener−f i l t e r i n g the data
362 qerec (DLENSALOT_Qerec) : c on f i g u r a t i o n s r e l a t ed to the quadrat i c e s t imator

r e c on s t ru c t i on job
363 i t r e c (DLENSALOT_Itrec) : c on f i g u r a t i on s r e l a t ed to the i t e r a t i v e r e c on s t ru c t i on

job
364 madel (DLENSALOT_Mapdelensing) : c on f i g u r a t i o n s r e l a t ed to the i n t e r n a l map de l en s ing job
365 con f i g (DLENSALOT_Config) : c on f i g u r a t i o n s r e l a t ed to gene ra l behaviour to the

operat ing system
366 computing (DLENSALOT_Computing) : c on f i g u r a t i on s r e l a t ed to the usage o f computing

r e s ou r c e s
367 obd (DLENSALOT_OBD) : c on f i g u r a t i o n s r e l a t ed to the over lapp ing B−mode dep ro j e c t i on
368 phana (DLENSALOT_Phyanalysis ) : c on f i g u r a t i o n s r e l a t ed to the s imple power spectrum

ana l ay s i s o f phi
369
370 """
371
372 de fau l t s_to = a t t r . f i e l d ( d e f au l t=’ default_CMBS4_fullsky_polarization ’ )
373 validate_model = a t t r . f i e l d ( d e f au l t=True )
374 meta =at t r . f i e l d ( d e f au l t=DLENSALOT_Meta( ) , v a l i d a t o r=model . meta )
375 job = at t r . f i e l d ( d e f au l t=DLENSALOT_Job( ) , v a l i d a t o r=model . job )
376 ana l y s i s = a t t r . f i e l d ( d e f au l t=DLENSALOT_Analysis ( ) , v a l i d a t o r=model . a n a l y s i s )
377 s imulat iondata = a t t r . f i e l d ( d e f au l t=DLENSALOT_Simulation ( ) , v a l i d a t o r=model . data )
378 noisemodel = a t t r . f i e l d ( d e f au l t=DLENSALOT_Noisemodel ( ) , v a l i d a t o r=model . noisemodel )
379 qerec = a t t r . f i e l d ( d e f au l t=DLENSALOT_Qerec( ) , v a l i d a t o r=model . qerec )
380 i t r e c = a t t r . f i e l d ( d e f au l t=DLENSALOT_Itrec ( ) , v a l i d a t o r=model . i t r e c )
381 madel = a t t r . f i e l d ( d e f au l t=DLENSALOT_Mapdelensing ( ) , v a l i d a t o r=model . madel )
382 con f i g = a t t r . f i e l d ( d e f au l t=DLENSALOT_Config ( ) , v a l i d a t o r=model . c on f i g )
383 computing = a t t r . f i e l d ( d e f au l t=DLENSALOT_Computing( ) , v a l i d a t o r=model . computing )
384 obd = at t r . f i e l d ( d e f au l t=DLENSALOT_OBD() , v a l i d a t o r=model . obd )
385 phana = at t r . f i e l d ( d e f au l t=DLENSALOT_Phianalysis ( ) )
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