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punteada muestra el ajuste del modelo de Fitchett. . . . . . . . . . . 82

4.8. Correlación entre la radiación total emitida Erad y el momento angular
total inicial Jin. La barra de colores indica el cociente de masas q en
cada simulación. La letra k indica el orden del polinomio ajustado. . . 83

vii



4.9. Correlación entre el pico de pérdida de energía Ṁmax y el cociente
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Estudio de propiedades dinámicas en sistemas
binarios de agujeros negros

Emmanuel A. Tassone

Resumen

En esta Tesis, haciendo uso de la estructura asintótica del espaciotiempo y del for-
malismo de Newman-Penrose, definimos la noción de centro de masa y espín para
sistemas gravitacionales que emiten radiación gravitacional. A diferencia de otras
formulaciones disponibles en la literatura, una de las características centrales de
nuestro formalismo es el uso del formalismo de superficies nulas. Explicaremos el
scattering de materia en términos de este formalismo y la definición de cortes reales
que se corresponden con líneas de mundo del espaciotiempo. Mediante el uso de estos
cortes asociados a líneas de mundo derivamos las ecuaciones para el momento angu-
lar y el momento dipolar másico del espaciotiempo mediante el uso de las simetrías
asintóticas presentes en el infinito nulo.

Proponemos un gauge que nos permiten resolver la ambigüedad del momento
angular proveniente de las simetrías asintóticas del infinito nulo. Las ecuaciones
obtenidas nos permiten definir el concepto de centro de masa y momento angular
intrínseco para un espaciotiempo asintóticamente plano arbitrario. Los concepto de-
finidos reproducen la definición de centro de masa y momento angular intrínseco en
el caso de un espaciotiempo de Minkowski. Obtenemos la evolucion temporal de las
variables dinámicas y cinemáticas a partir de las identidades de Bianchi. En parti-
cular, obtenemos la evolucion del centro de masa y momento angular intrínseco a
partir de las variables definidas en la frontera nula.

Finalmente, hacemos una aplicación del formalismo presentado al catálogo de
ondas gravitacionales del instituto de tecnología de Rochester. La evolución del centro
de masa, pérdida de momento angular intrínseco y total, energía radiada y velocidad
del centro de masa para distintos valores iniciales de sistemas binarios de agujeros
negros son calculados. Un análsis exhaustivo es hecho sobre la física de las variables
definidas en el infinito nulo para las distintas categorías de simulaciones: binarias sin
espines, binarias con espines alineados y binarias con espines precesantes. Analizamos
la consistencia de los resultados obtenido y, en particular, comparamos los valores
finales de la velocidad del centro de masa con las kick velocities de los metadatos
computadas para cada simulación.



Estudio de propiedades dinámicas en sistemas
binarios de agujeros negros

Emmanuel A. Tassone

Abstract

In this Thesis, using the asymptotic structure of spacetime and the Newman-Penrose
formalism, we define the notion of center of mass and spin for gravitational systems
emitting gravitational radiation. Unlike other formulations available in the literature,
a central feature of our formalism is the use of the null surface formalism. We will
explain the scattering of matter in terms of this formalism and the definition of
real cuts that correspond to world lines of spacetime. By using these cuts associated
with world lines, we derive the equations for the angular momentum and the mass
dipole moment of spacetime through the use of asymptotic symmetries present at
null infinity.

We propose a gauge that allows us to resolve the ambiguity of angular momen-
tum arising from the asymptotic symmetries of null infinity. The obtained equations
allow us to define the concept of center of mass and intrinsic angular momentum for
an arbitrarily asymptotically flat spacetime. The defined concepts reproduce the de-
finition of center of mass and intrinsic angular momentum in the case of Minkowski
spacetime. We obtain the time evolution of the dynamic and kinematic variables from
the Bianchi identities. In particular, we obtain the evolution of the center of mass
and intrinsic angular momentum from the variables defined on the null boundary.

Finally, we apply the presented formalism to the gravitational wave catalog from
the Rochester Institute of Technology. The evolution of the center of mass, loss of
intrinsic and total angular momentum, radiated energy, and velocity of the center of
mass for different initial values of binary black hole systems are calculated. A tho-
rough analysis is performed on the physics of the variables defined at null infinity for
the different categories of simulations: non-spinning binaries, aligned-spin binaries,
and precessing-spin binaries. We analyze the consistency of the obtained results and,
in particular, compare the final values of the center of mass velocity with the kick
velocities of the metadata computed for each simulation.



Estudio de propiedades dinámicas en sistemas
binarios de agujeros negros

Emmanuel A. Tassone

Convenciones

A lo largo de esta tesis tomaremos las siguientes convenciones:

1. Unidades: Salvo fórmulas específicas, utilizaremos unidades geométricas en
donde la velocidad de la luz, c ([Distancia][Tiempo]−1), y la constante gravi-
tacional, G([Distancia]3.[Masa]−1.[Tiempo]−1) son fijadas a uno:

c = G = 1 (1)

En Relatividad General, todo queda determinado entonces por una sola dimen-
sión escala.

2. Índices: Los correspondientes a tensores tridimensionales se denotará con le-
tras del alfabeto latino (ijk), mientras que os índices correspondientes a ten-
sores cuadridimensionales se denotará con letras del alfabeto griego (µνγ), o
eventualmente, con las primeras letras del alfabeto latino (abcd). En la Sec.1.2
utilizamos letras mayúsculas del alfabeto latino (ABCD) para denotar índices
de espinores.

3. Usamos la convención (+,−,−,−) para la métrica ηµν en el espacio de Min-
kowski y también para la signatura de la métrica gµν de un espaciotiempo
genérico.



Capítulo 1

Introducción

La teoría de la relatividad general de Einstein revolucionó nuestra comprensión
del universo, permitiéndonos entender la naturaleza de la gravedad y su influencia en
los cuerpos celestes. Entre los conceptos fundamentales de la relatividad general se
encuentran el centro de masa y el momento angular, que son herramientas esenciales
para la descripción de sistemas físicos complejos en el espacio-tiempo. En la teoría
de la relatividad general, definir el centro de masa, el momento angular y otras can-
tidades globales es un problema no trivial debido a la naturaleza geométrica de la
teoría.
En la mecánica newtoniana, cantidades como el centro de masa se definen fácilmente
en términos de la masa y la posición de los objetos. Sin embargo, en la relativi-
dad general, la masa y la energía son equivalentes, lo que significa que la energía
gravitatoria también contribuye a la masa del sistema físico en cuestión. Además,
la gravedad misma es una manifestación de la curvatura del espacio-tiempo, lo que
significa que la posición de un objeto no tiene un significado absoluto.
Esta nueva forma de estudiar la realidad introduce dificultades en la definición del
centro de masa y del momento angular en relatividad general. En lugar de definir
estas cantidades globales en términos de la posición y la velocidad de los objetos,
se utilizan cantidades geométricas del espacio-tiempo, como el tensor de energía-
momento y el tensor de momento angular. Estos objetos proporcionan una descrip-
ción matemática de la distribución de masa y momento angular en el espacio-tiempo.
Sin embargo, la definición de estas cantidades en forma global y en términos de canti-
dades geométricas del espacio-tiempo es complicada y en general solo se puede hacer
en situaciones especiales de simetría, como sistemas aislados o sistemas con simetría
axial. En situaciones más generales, la definición del centro de masa y del momento
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Introducción 1 Propiedades dinámicas en sistemas binarios de agujeros negros

angular puede ser ambigua o incluso no tener un significado físico claro.
Por lo tanto, la definición de estas cantidades globales en relatividad general sigue
siendo un tema de investigación activa en la física teórica y se espera que se desarro-
llen nuevas técnicas y herramientas para su definición y cálculo en situaciones más
generales.
El problema de definir el centro de masa, el momento angular y otras cantidades
globales en relatividad general es particularmente relevante en el estudio de sistemas
binarios de agujeros negros.
Los sistemas binarios de agujeros negros son sistemas formados por dos agujeros
negros orbitando uno alrededor del otro en una danza gravitatoria que emite on-
das gravitatorias. Estos sistemas son importantes para la astrofísica y la cosmología
porque son los principales objetos observados por las colaboraciones de detección de
ondas gravitatorias como LIGO y Virgo.
Sin embargo, la definición precisa del centro de masa y el momento angular en siste-
mas binarios de agujeros negros es un problema difícil en relatividad general. Debido
a que los agujeros negros son objetos extremadamente compactos y deforman signi-
ficativamente el espacio-tiempo a su alrededor, la definición del centro de masa y del
momento angular se vuelve mucho más compleja.
En particular, la definición del centro de masa en sistemas binarios de agujeros ne-
gros no es única y puede variar dependiendo de la elección del marco de referencia.
También, la presencia de los agujeros negros dificulta la definición precisa de los
momentos angulares individuales de cada agujero negro y el momento angular total
del sistema.
Existen varios formalismos en relatividad general que dan una definición matemática
rigurosa a estos conceptos globales. Algunos de los formalismos más conocidos son

Formalismo ADM (Arnowitt-Deser-Misner): Este formalismo se basa en la
idea de que el espacio-tiempo se puede dividir en una serie de rebanadas.espaciales
que evolucionan en el tiempo. En este enfoque, la definición de centro de masa
y momento angular se realiza en términos de la geometría de cada rebanada
espacial. La utilidad de este enfoque no radica en las definiciones globales, sino
en los métodos cuasi-locales que permiten definir variables físicas de manera
local [1].

Formalismo de superficies nulas: Este formalismo utiliza la idea de que
las ondas gravitatorias se pueden describir como ondas que se propagan sobre
superficies nulas en el espacio-tiempo. En este enfoque, la definición de centro
de masa y momento angular se realiza en términos de las propiedades de las

2
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superficies nulas.

Formalismo de twistores: Este formalismo utiliza la idea de que el espacio-
tiempo se puede describir en términos de twistores, que son objetos matemáti-
cos que tienen ciertas propiedades geométricas. En este enfoque, la definición
de centro de masa y momento angular se realiza en términos de las propiedades
de los twistores [2].

Formalismo de Cartan: Este formalismo se basa en la idea de que la rela-
tividad general se puede describir en términos de conexiones y curvaturas. En
este enfoque, la definición de centro de masa y momento angular se realiza en
términos de las propiedades de las conexiones y curvaturas.

Cada uno de estos formalismos tiene suposiciones y herramientas matemáticas dife-
rentes que pueden afectar la definición de cantidades globales en relatividad general.
Por lo tanto, es importante elegir el formalismo adecuado para el problema en cues-
tión y tener en cuenta las diferencias en la definición de cantidades globales al realizar
cálculos y análisis en relatividad general. En esta tesis doctoral, se exploraremos la
definición de cantidades globales como el centro de masa y momento angular en el
formalismo de superficies nulas y utilizaremos estas herramientas para analizar sis-
temas binarios de agujeros negros. El objetivo final del trabajo es mejorar nuestra
comprensión de estos sistemas y contribuir al desarrollo de la astrofísica teórica.

1.1. Espacios asintóticamente planos
Dentro de la relatividad general, uno de los varios temas que despiertan el gran

interés de la comunidad científica, es el estudio de las propiedades física de los sis-
temas aislados. La noción de espaciotiempo asintóticamente plano es el marco de
trabajo necesario que permite describir a los sistemas aislados en forma exacta y
precisa.

1.1.1. Definición coordenada-dependiente

Probablemente la forma más sencilla y práctica (también la primera histórica-
mente) de definir un espaciotiempo asintóticamente plano es, por un lado, elegir
una coordenada radial r que esté bien definida para valores de r grandes, es decir,
r → ∞. Para identificar esta coordenada radial en el espaciotiempo basta con tener

3
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una coordenada tipo espacio cuyo intervalo en el que está definido sea isomorfo a R.
Por otro lado, la noción de asintóticamente plano implica que el espaciotiempo se
acerca a un espaciotiempo plano a medida que nuestra coordenada radial va hacia
infinito. En términos de la métrica gab, esto implica que para r → ∞, gab = ηab+hab,
con ηab la métrica de Minkowski.
Entonces que gab sea asintóticamente plano, implica que hab satisfaga las siguientes
condiciones

ĺımr→∞ hab = O(1/r),

ĺımr→∞ hab,p = O(1/r2),

ĺımr→∞ hab,pq = O(1/r3).

En la siguiente sección introduciremos la definición más formal de espacio tiem-
po asintóticamente plano, que permite trabajar el concepto de infinito en términos
matemáticos exactos. Este concepto fue introducido por Penrose y la técnica que
permiten analizar los “bordes” del espaciotiempo se conoce como Compatificación
Conforme.

1.1.2. Definición formal

En términos formales, un espaciotiempo (M, gab) es asintóticamente plano en
el infinito nulo (J ) o espacial (i0) si existe un espaciotiempo (M̃, g̃ab), con g̃ab
infinitamente diferenciable, y una isometría conforme ψ : M → ψ[M ] ⊂ M̃ con
factor conforme Ω satisfaciendo las siguientes condiciones:

1. J̄+(i0)∪ J̄−(i0) = M̃−ψ[M ], donde J+ y J− denotan el futuro y pasado causal
de un punto del espaciotiempo, respectivamente. La barra sobre J corresponde
a la operación clausura de teoría de conjuntos.

2. Existe un entorno abierto, V, de Ṁ = J + ∩J − ∩ i0 tal que el espaciotiempo
(V, gab) es causalmente fuerte.

3. Ω puede ser estendido a una función C2 en i0 y C∞ en todo otro punto de M̃ .

4. Por un lado, en J + ∩ J − debe ser Ω = 0 y Ω;a ̸= 0. Por otro, en i0, Ω = 0 ,
limi0Ω;a = 0 y limi0Ω;a;b = 2g̃ab

4



Introducción 1 Propiedades dinámicas en sistemas binarios de agujeros negros

5. El mapa que lleva las direcciones nulas en i0 a el espacio de curvas integrales
generado por na =ab Ω;a en J + ∩J − es un difeomorfismo. Para una función
suave ω ∈ M̃ − i0 con ω > 0 en M ∩J + ∩J −, si (ω4na);a = 0 en J + ∩J −

entonces ω−1na es un campo vectorial completo en J + ∩ J −.

De estas cinco condiciones, la primera, nos asegura que i0 represente el infinito espa-
cial en forma eficaz; la segunda condición permite evadir cualquier patología causal
cerca del infinito -por ejemplo, como sucede con las curvas cerradas temporales-; la
tercera condición nos garantiza que la función escalar Ω sea bien comportada cerca
del infinito; la cuarta condición, y quizás la más importante en términos prácticos,
nos hablan de un “estiramiento infinito” necesario para pasar de la métrica física gab
a la no física g̃ab. Aún más, la cuarta condición garantiza que la métrica física del
espaciotiempo gab sea plana a medida que nos acercamos al infinito (sea J +,J − o
i0); Finalmente, la quinta condición tiene un trasfondo más técnico. La primera parte
nos asegura que todos los generadores de geodésicas nulas de J + y J − surgen de i0
en forma apropiada, en particular, implica que J + y J − tienen topología S2 ×R.
La segunda parte nos habla de la completitud del campo vectorial na, o visto de otro
modo, la segunda parte requiere que no haya “partes” de J + o J − que falten en
nuestro espaciotiempo no físico M̃ .

Un resultado importante que puede derivarse para dos tensores Rab y R̃ab de los
respectivos espaciotiempos M y M̃ , es la relación entre ambos

Rab = R̃ab + 2Ω−1∇̃a∇̃bΩ + g̃abg̃
cd
(
Ω−1∇̃c∇̃dΩ− 3Ω−2∇̃cΩ∇̃dΩ

)
. (1.1)

1.1.3. Coordenadas adaptadas al infinito nulo

En términos sencillos, el concepto de infinito nulo futuro se refiere a una región
lejana en el futuro de una solución de ondas gravitacionales. Las coordenadas nulas de
Bondi-Sachs están especialmente diseñadas para describir esta región y permiten una
descripción precisa de las propiedades asintóticas del espacio-tiempo en este límite.
Para estudiar la estructura asintótica descripta en la Sección [1.1.2], es común utilizar
estas coordenadas adaptadas al infinito nulo.
En un artículo de Nature de 1960 [3], Hermann Bondi presentó un nuevo enfoque
para el estudio de las ondas gravitacionales en la teoría de la relatividad general de
Einstein. Se basaba en los rayos nulos salientes a lo largo de los cuales viajaban las
ondas. Fue seguido en 1962 por un artículo de Bondi, Metzner y van der Burg [4], en
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el que se daban los detalles de los espaciotiempos axisimétricos. En su autobiografía
Bondi comentó sobre este último trabajo:

«The 1962 paper I regard as the best scientific work I have ever done, which is
later in life than mathematicians supposedly peak.»

Poco después, Rainer Sachs [5] generalizó este formalismo a espaciotiempos no
axisimétricos y resolvió las simetrías asintóticas en la aproximación al infinito nulo.
Este último tema será profundizado en el Cap.[3] de la tesis.

Las coordenadas desarrolladas en los trabajos mencionados , las coordenadas de
Bondi-Sachs xa = (u, r, xA), fueron construidas en base a una familia de superficies
salientes u = const, con x0 = u una coordenada nula. De modo que el vector tangente
es ka = −∂au, y por ende g00 = 0. Aquí, xA representa dos coordenadas angulares
constantes a lo largo de los rayos nulos definidos por al coordenada u, es decir que

ka∂ax
A = 0 = −gab∂a∂bxA, (1.2)

y por ende g0A = 0. La coordenada restante x1 = r, que varía a lo largo de un rayo
nulo ka, es elegida tal que det(gAB) = r4q, donde q es el determinante de la métrica
de la esfera unitaria qAB asociada a las coordenadas angulares xA.

Para coordenadas estándares esféricas xA = (θ, ϕ),

qAB =

(
1 0
0 sin2θ

)
. (1.3)

Para conocer la forma de las componentes restantes de la métrica usamos las iden-
tidades

δ01 = g0aga1 = g01g11 = 0

δ0A = g0agaA = g01g1A = 0,

de donde vemos que g11 = g1A = 0 ya que g01 no puede ser cero, pues sino det(gab) =
0.

Finalmente, podemos concluir que en coordenadas de Bondi-Sachs la métrica
toma la fórma

gabdx
adxb = −V

r
e2βdu2 − 2e2βdudr + r2hAB

(
dxA − UAdu

) (
dxB − UBdu

)
, (1.4)

donde gAB = r2hAB y hemos reescrito las componentes de las métricas restantes en
términos de las funciones V ,β y UA.
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Para el caso de un espaciotiempo plano, la métrica de Minkowski en coordenadas
Bondi-Sachs (1.4) puede escribirse

ηabdx
adxb = −du2 − 2drdu+ r2qABdx

AdxB (1.5)

Por otro lado, para un marco de referencia inercial asintótico en coordenadas de
Bondi-Sachs, la métrica (1.4) debe aproximarse a la métrica de Minkowski en el
infinito nulo (1.5), de modo que

limr→∞β = limr→∞U
A = 0, limr→∞

V

r
= 1, limr→∞hAB = qAB. (1.6)

Los marcos de referencia inerciales se denominan sistemas de Bondi, o coordenadas
de Bondi cuando refiere a las coordenadas que originan el sistema inercial, y son el
análogo a los sistemas no acelerados que se encuentran en Minkowski. Estos siste-
mas son de gran relevancia para la comprensión de la radiación gravitacional y su
descripción será ampliada en el Cap. [3].

1.1.4. Propiedad de Peeling

En una variedad asintóticamente plana, el tensor de Weyl Cabcd, que describe las
ondas gravitatorias en una región del espacio-tiempo, tiene un comportamiento espe-
cífico cerca del infinito nulo. En particular, el tensor de Weyl se puede descomponer
en una serie de términos que se vuelven cada vez más singulares a medida que nos
acercamos al infinito nulo.
Esta descomposición en términos singulares se llama la propiedad de Peeling, y es
importante porque proporciona información valiosa sobre las propiedades de las on-
das gravitatorias cerca del infinito nulo. Por ejemplo, la descomposición de Peeling
permite a los físicos distinguir entre diferentes tipos de ondas gravitatorias, como
ondas gravitatorias de polarización nula y de polarización no nula. Esta descompo-
sición también permite la identificación de características específicas en la forma de
onda de las ondas gravitatorias.
Matemáticamente, la propiedad de Peeling afirma que dada una geodésica nula γ
en un espaciotiempo (M, gab) con parámetro afín λ, si tomamos el límite λ → ∞,
entonces el tensor de Weyl Cabcd tiene el siguiente comportamiento.

Cabcd =
C

(1)
abcd

λ
+
C

(2)
abcd

λ2
+
C

(3)
abcd

λ3
+
C

(4)
abcd

λ4
+O

(
1

λ5

)
. (1.7)
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Es decir, si hacemos una expansión en términos de 1/λ, encontraremos com-
ponentes tensoriales C(N)

abcd que poseen simetrías en sus direcciones nulas. El lector
familiarizado con la clasificación de Petrov para espaciotiempos reconocerá estas
simetrías.

Si tenemos un espaciotiempo con especialidad algebraica asintótica entonces solo
sobrevivirá el término en la descomposición que nos dará las simetrías del tensor de
Weyl correspondientes al tipo algebraico. Esto es

Si C(1)
abcd ̸= 0 → Tipo N

C
(2)
abcd ̸= 0 → Tipo III

C
(3)
abcd ̸= 0 → Tipo II

C
(4)
abcd ̸= 0 → Tipo I (Ninguna simetría)

Más detalle sobre la clasificación de Petrov puede encontrarse en [6]. Veremos luego
que esta descomposición tendrá grandes implicaciones en el formalismo de superficies
nulas, ya que descomponer el tensor de Weyl implica descomponer la radiación gra-
vitacional, y por ende, las variables físicas que la describen. En particular, veremos
en la próxima sección cómo la propiedad de Peeling afecta las variables definidas en
el formalismo de Newman-Penrose.

1.2. Formalismo de Newman-Penrose
El formalismo de Newman-Penrose, también llamado formalismo de coeficientes

de espín, es un marco matemático utilizado para describir la geometría y la física
de la relatividad general de una manera más clara y elegante que las técnicas ma-
temáticas usuales en términos de tensores. Fue desarrollado en la década de 1960
por los físicos Roger Penrose y Ezra Newman. El formalismo de Newman-Penrose es
una herramienta matemática muy poderosa para analizar la curvatura y las propie-
dades físicas del espacio-tiempo en la teoría de la relatividad. En particular, es de
suma utilidad a la hora de estudiar ondas gravitacionales lejos de la fuente, ya que
como veremos luego, es posible codificar toda la información gravitacional en un solo
escalar proporcionado por este mismo formalismo.
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1.2.1. Espinores

Para entender el origen del formalismo de Newman-Pensrose es necesario intro-
ducir el concepto de espinores.
Los espinores son objetos matemáticos que se utilizan en física teórica, especialmente
en teoría cuántica de campos y en relatividad general. Los espinores son una gene-
ralización de los vectores y se caracterizan por transformarse de manera no trivial
bajo ciertas transformaciones de simetría, como rotaciones en el espacio o transfor-
maciones de Lorentz. Quizás uno de los ejemplos más conocido de estos elementos
puede encontrarse en el contexto de la mecánica cuántica, cuando hablamos de las
matrices de Pauli para describir el espín de partículas con espín s = 1/2.
En esta tesis, no nos restringiremos a una representación específica de los espinores
con espín fijo, sino que usaremos el concepto de espinor como elemento de un espacio
espinorial que satisfacen un álgebra de espinores. Esta noción fue desarrollada por
Penrose y Rindler, junto con la notación abstracta de espinores, que utilizaremos
en esta sección. Dado un espinor κ ∈ G, con G un espacio vectorial complejo de
dimensión finita, diremos que κAB

′

CD′ es un tensor de rango 4 que transforma bajo
las transformaciones de Lorentz de acuerdo con las leyes de transformación de los
espinores. Aquí los índices A,B′, C,D′ denotan cuatro tipos diferentes de espacios
vectoriales: los subíndices sin primar indican pertenencia al espacio dual de G, los
supraíndices sin primar indican pertenencia a G, y los subíndices y supraíndices pri-
mados indican pertenencia al espacio G o G-dual respectivamente, bajo la operación
de conjugación de números complejos (los espacios vectoriales G son por definición
complejos).
Vease aquí que la notación introducida para espinores es completamente análoga a
la de vectores, con el agregado de que al ser espacios vectoriales complejos también
tenemos índices primados. Esta notación, al igual que para vectores, es invariante de
coordenadas e utilizamos letras mayúsculas en los índices para señalar que las leyes
de transformación de los espinores son distintas a aquellas de los vectores.

Estructura del espacio espinorial

Es posible definir un producto interno antisimétrico de G × G → G y una forma
ϵAB ∈ GAB tal que, dados dos espinores κA y ωB, se tiene

ϵABκ
AωB = −ϵABωAκB. (1.8)
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La forma ϵAB conforma una parte esencial del algebra espinorial y tiene un rol análogo
al de la métrica para vectores. La forma ϵAB es invariante bajo las transformaciones
de Lorentz y nos permiten “bajar” o “subir” los índices espinoriales, no solo para
espinores de un solo índice sino también para los espinores más generales de la forma
χA...DP

′...R′

L...NU ′...W ′ .
Por otro lado, también es posible definir una base en el espacio espinorial. Es

decir, un par de espinores o, ι tal que sean ϵABo
AιB = 1 y que dada un espinor κA,

se tenga

κA = κ0oA + κ1ιA,

con sus componentes κ0 = −ιAκA y κ1 = oAκ
A.

La base del espacio espinorial y la forma introducida en (1.8), se relacionan mediante
la siguiente ecuación fundamental

ϵAB = oAιB − ιAoB. (1.9)

Relación entre vectores y espinores

La relación entre los espacios espinoriales y el grupo de Lorentz puede ser estable-
cida con los conceptos introducidos. Cabe destacar que las relaciones entre espinores
y vectores deducidas en esta sección, se desprenden del hecho de que el producto
tensorial de dos espinores transforma de la misma manera que un vector, y por ende,
ambos espacios deben ser isomorfos.
Dada una base normalizada (oA, ιA) del espacio espinorial G, podemos definir tenso-
res en W = G × Ḡ de la siguiente manera

tAA
′
=

1√
2
(oAoA

′
+ ιAῑA

′
), (1.10)

xAA
′
=

1√
2
(oAῑA

′
+ ιAōA

′
), (1.11)

yAA
′
=

i√
2
(oAῑA

′ − ιAōA
′
), (1.12)

zAA
′
=

1√
2
(oAōA

′ − ιAῑA
′
). (1.13)

El espacio cuadri-dimensional formado por estos tensores es invariante ante la con-
jugación compleja. Este hecho, sumando al hecho de que la ley de transformación
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de estos tensores se comporta de la misma manera que los vectores ante transfor-
maciones de Lorentz, nos dice que la base (ta, xa, ya, za) también forma una base del
espacio vectorial W . Se define entonces una transformación lineal híbrida σ entre
vectores y espinores tal que

σaAA′ = tatAA′ − xaxAA′ − yayAA′ − zazAA′ . (1.14)

Esta transformación es un isomorfismo en W que nos permite transformar entre los
tensores espinoriales (1.10) y la base vectorial conocida en Minkowski (ta, xa, ya, za).

1.2.2. Coeficientes de espín

Habiendo definido el álgebra de espinores es sencillo ahora definir la base nula a
partir de la cual se desarrolla el formalismo de coeficientes de espín. Entonces dada
una base de espinores (oA, ιA), simplemente definiremos una base ortogonal nula del
espaciotiempo efectuando todas las posibles combinaciones de productos tensoriales
entre esta base y su compleja conjugada. De esta forma surge de manera natural la
base vectorial

la = oAōA
′
, ma = oAῑA

′
, m̄a = ιAōA

′
, na = ιAῑA

′
. (1.15)

Se desprende de las propiedades de los espinores vistas en la anterior sección que
estos vectores satisfacen las siguientes relaciones

lan
a = −1 = lana, mam̄

a = 1 = mam̄a, (1.16)
lam

a = lam̄
a = nam

a = nam̄
a = 0, (1.17)

lal
a = nan

a = mam
a = m̄am̄

a = 0. (1.18)

Esto quiere decir que los cuatro vectores no solamente son nulos, sino que forman
una base ortogonal de un espacio cuadri-dimensional. Los índices de estos vectores
pueden subirse o bajarse para obtener su respectivo par del espacio dual mediante
la métrica que queda determinada por nuestra base espinorial de dos dimensiones.

gab = εABεA′B′ = (oAιB − ιAoB) (ōA′ ῑB′ − ῑA′ ōB′)

= lanb + nalb −mam̄b − m̄amb,

(1.19)
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Si denotamos a los vectores de nuestra base nula como

λai = (la, na,ma, m̄a) , (1.20)

podemos definir las derivadas direccionales, en la dirección de cada vector nulo, como

∇i ≡ λbi∇b = (D,∆, δ, δ̄). (1.21)
Una vez introducidas las derivadas direccionales, podemos aplicarlas sobre la misma
base nula y obtener los coeficientes de rotación de Ricci de nuestra base

γijk = λbjλ
a
k∇aλ

i
b. (1.22)

Estos coeficientes son un caso particular de conexión cuando el marco de referencia
es no coordenado. Luego, los escalares de Newman-Penrose se definen simplemente
como las distintas componentes independientes de la conexión γijk,

π = −γ241, ϵ =
1

2
(γ121 − γ341) , κ = γ131 (1.23)

λ = −γ244, α =
1

2
(γ124 − γ344) , ρ = γ134

µ = −γ243, β =
1

2
(γ123 − γ343) , σ = γ133

ν = −γ242, γ =
1

2
(γ122 − γ342) , τ = γ132.

Algunos de estos coeficientes tienen una interpretación física directa en términos
del comportamiento de un conjunto de geodésicas. Estos escalares son ampliamen-
te usados para estudiar el comportamiento de las ondas gravitatorias, los agujeros
negros y otros fenómenos en la relatividad general, y componen una herramienta
fundamental para comprender la estructura y la dinámica de espaciotiempos no tri-
viales.

Dada una congruencia de curvas nulas, o “manojo” de curvas nulas en términos
informales, algunos coeficientes de espín tienen significado geométrico bien definido.
Estos son

– ρ, con su parte real, representa la dilatación o expansión de los rayos de luz a
lo largo de la congruencia de curvas; la parte imaginaria representa la rotación
o twist de la congruencia. Si tomamos la sección trasversal a los rayos de luz
A, el cambio de la sección con respecto a la coordenada radial viene dado por

1

A

ds

dr
= −(ρ+ ρ̄) (1.24)
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– σ, representa la deformación de la congruencia de curvas por la cual se propa-
gan los rayos de luz;

– κ, nos permite decidir si la congruencia se trata de una congruencia geodésica.
Ya que en este caso, debe ser κ = 0.

– ϵ, también es un escalar vinculado a la condición geodésica ya que en este caso
es posible hacer una elección del parámetro afín de la congruencia de tal forma
que ϵ+ ϵ̄ = 0. Esto es, el escalar ϵ es imaginario.

– π, junto con los escalares κ y ϵ establecen cuando la tetrada nula asociada a la
congruencia se transporta paralelamente sobre esta. En efecto, la tetrada nula
es paralela a la congruencia si y solo si π = κ = ϵ = 0.

Además de los doce escalares [1.23] de la conexión, podemos definir cinco esca-
lares más relacionados a la radiación gravitacional, haciendo todas las contracciones
independientes entre el tensor de Weyl y nuestra base nula,

Ψ0 = −Cabcclamblcmd, (1.25)
Ψ1 = −Cabcdlanblcmd, (1.26)
Ψ2 = −Cabcdlambm̄cnd, (1.27)
Ψ3 = −Cabcdlanbm̄cnd, (1.28)
Ψ4 = −Cabcdm̄anbm̄cnd. (1.29)

En términos generales, los escalares de Weyl proporcionan una descripción de-
tallada de la curvatura del espacio-tiempo y son importantes para la comprensión
de la física de los objetos astrofísicos, como los agujeros negros y las estrellas de
neutrones. También se utilizan en la construcción de modelos teóricos de la radia-
ción gravitatoria y en la interpretación de las observaciones astronómicas. Existe una
estrecha relación entre las simetrías que pueden presentar el espaciotiempo en una
dirección nula y el valor de los escalares de Weyl en dicho punto. El lector interesado
en entender esta relación podrá consultar [6] sobre la clasificación de Petrov para
espaciotiempos.
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1.2.3. Ecuaciones de coeficientes de espín

Escribiremos ahora las ecuaciones que rigen la dinámica de los coeficientes de
espín en regiones de vacío. Por un lado, la tetrada nula [1.15], deben respetar las
siguientes ecuaciones

∆la −Dna = (γ + γ̄)la + (ϵ+ ϵ̄)na − (τ + π̄)m̄a − (τ̄ + π)ma, (1.30)
δla −Dma = (ᾱ + β − π̄)la + κna − σm̄a − (ρ̄+ ϵ− ϵ̄)ma, (1.31)

δna −∆ma = −ν̄la + (τ − ᾱ− β)na + λ̄m̄a + (µ− γ + γ̄)ma, (1.32)
δ̄ma − δm̄a = (µ̄− µ)la + (ρ̄− ρ)na − (ᾱ− β)m̄a + (α− β̄)ma. (1.33)

Luego, los coeficientes de espín deben respetar el siguiente conjunto de dieciocho
ecuaciones diferenciales

∆λ− δ̄ν = −(µ+ µ̄+ 3γ − γ̄)λ+ (3α + β̄ + π − τ̄)ν −Ψ4 (1.34)
δρ− δ̄σ = ρ(ᾱ + β)− σ(3α− β̄) + (ρ− ρ̄)τ + (µ− µ̄)κ−Ψ1 (1.35)
δα− δ̄β = µρ− λσ + αᾱ + ββ̄ − 2αβ + γ(ρ− ρ̄) + ϵ(µ− µ̄)−Ψ2 (1.36)
δλ− δ̄µ = (ρ− ρ̄)ν + (µ− µ̄)π + µ(α + β̄) + λ(ᾱ− 3β)−Ψ3 (1.37)
δν −∆µ = µ2 + λλ̄+ µ(γ + γ̄)− ν̄π + ν(τ − 3β − ᾱ) (1.38)
δγ −∆β = γ(τ − ᾱ− β) + µτ − σν − ϵν̄ − β(γ − γ̄ − µ) + αλ̄ (1.39)
δτ −∆σ = µσ + ρλ̄+ τ(τ + β − ᾱ)− σ(3γ − γ̄)− κν̄ (1.40)
∆ρ− δ̄τ = −(ρµ̄+ σλ) + τ(β̄ − α− τ̄) + (γ + γ̄)ρ+ κν −Ψ2 (1.41)
∆α− δ̄γ = ν(ρ+ ϵ)− λ(τ + β) + α(γ̄ − µ̄) + γ(β̄ − τ̄)−Ψ3 (1.42)
Dρ− δ̄κ = ρ2 + σσ̄ + (ϵ+ ϵ̄)ρ− κ̄τ − κ(3α + β̄ − π) (1.43)
Dσ − δκ = (ρ+ ρ̄)σ + (3ϵ− ϵ̄)σ − (τ − π̄ + ᾱ + 3β)κ+Ψ0 (1.44)
Dτ −∆κ = (τ + π̄)ρ+ (τ̄ + π)σ + (ϵ− ϵ̄)τ − (3γ + γ̄)κ+Ψ1 (1.45)
Dα− δ̄ϵ = (ρ+ ϵ̄− 2ϵ)α + βσ̄ − β̄ϵ− κλ− κ̄γ + (ϵ+ ρ)π (1.46)
Dβ − δϵ = (α + π)σ + (ρ̄− ϵ̄)β − (µ+ γ)κ− (ᾱ− π̄)ϵ+Ψ1 (1.47)
Dγ −∆ϵ = (τ + π̄)α + (τ̄ + π)β − (ϵ+ ϵ̄)γ − (γ + γ̄)ϵ+ τπ − νκ+Ψ2 (1.48)
Dλ− δ̄π = ρλ+ σ̄µ+ π2 + (α− β̄)π − νκ̄− (3ϵ− ϵ̄)λ (1.49)
Dµ− δπ = ρ̄µ+ σλ+ ππ̄ − (ϵ+ ϵ̄)µ− π(ᾱ− β)− νκ+Ψ2 (1.50)
Dν −∆π = (τ̄ + π)µ+ (τ + π̄)λ+ (γ − γ̄)π − (3ϵ+ ϵ̄)ν +Ψ3. (1.51)

Este conjunto de ecuaciones diferenciales acopladas debe resolverse junto con las
identidades de Bianchi que, en términos de los coeficientes de espín, se leen
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δ̄Ψ0 −DΨ1 = (4α− π)Ψ0 − 2(2ρ+ ϵ)Ψ1 + 3κΨ2, (1.52)
δ̄Ψ1 −DΨ2 = λΨ0 + 2(α− π)Ψ1 − 3ρΨ2 + 2κΨ3 (1.53)
δ̄Ψ2 −DΨ3 = 2λΨ1 − 3πΨ2 + 2(ϵ− ρ)Ψ3 + κΨ4 (1.54)
δ̄Ψ3 −DΨ4 = 3λΨ2 − 2(α + 2π)Ψ3 + (4ϵ− ρ)Ψ4 (1.55)
∆Ψ0 − δΨ1 = (4γ − µ)Ψ0 − 2(2τ + β)Ψ1 + 3σΨ2, (1.56)
∆Ψ1 − δΨ2 = νΨ0 + 2(γ − µ)Ψ1 − 3τΨ2 + 2σΨ3, (1.57)
∆Ψ2 − δΨ3 = 2νΨ1 − 3µΨ2 + 2(β − τ)Ψ3 + σΨ4, (1.58)
∆Ψ3 − δΨ4 = 3νΨ2 − 2(γ + 2µ)Ψ3 + (4β − τ)Ψ4 (1.59)

En conlcusión, podemos decir que la versión de vacío de las ecuaciones de Eins-
tein consisten en tres conjuntos de ecuaciones diferenciales en derivadas parciales no
lineales y acopladas entre sí. Estos conjuntos son: el conjunto de ecuaciones dife-
renciales para la tetrada, el conjunto de ecuaciones para los coeficientes de espín y
un tercer conjunto de ecuaciones para los escalares de Weyl. Aunque no hay mucha
esperanza de poder resolver las ecuaciones (1.30),(1.34) y (1.52) en forma general,
muchas soluciones exactas han sido encontradas en estas. En particular, se han en-
contrado varias soluciones de perturbaciones y de soluciones asintónticas. El interés
de este trabajo radica en este último tipo de soluciones que describiremos en la
próxima sección.

1.2.4. Comportamiento asintótico

Presentaremos las soluciones asintóticas para el conjunto de ecuaciones (1.7),(1.34)
y (1.52). Para encontrar estas soluciones uno debe empezar especificando el compor-
tamiento de Ψ0 con respecto a la variable radial r−1, definida en el infinito nulo.
Luego, puede ir desacoplando las ecuaciones y resolviendolas en órdenes de r−1. El
lector interesado en conocer el procedimiento de resolución detalladamente podrá
consultar las referencias [7, 8].
Denotaremos con un superíndice cero a las cantidades definidas en el inifito nulo
J , que serán soluciones asintóticas a las ecuaciónes de Weyl y también constituyen
los términos dominantes en espaciotiempos asintóticamente planos a medida que nos
alejamos de una fuente.
Entonces asintóticamente, y teniendo en cuenta (1.7), podemos escribir los escalares
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de Weyl como

ψ0 = ψ0
0r

−5 +O
(
r−6
)
, (1.60)

ψ1 = ψ0
1r

−4 +O
(
r−5
)
, (1.61)

ψ2 = ψ0
2r

−3 +O
(
r−4
)
, (1.62)

ψ3 = ψ0
3r

−2 +O
(
r−3
)
, (1.63)

ψ4 = ψ0
4r

−1 +O
(
r−2
)
. (1.64)

Mientras que la solución a las Ecs. (1.34) es

ξ0ζ = −P, ξ̄0ζ = 0, (1.65)

ξ0ζ̄ = 0, ξ̄0ζ̄ = −P, (1.66)
P = 1 + ζζ̄, (1.67)

α0 = −β̄0 = −ζ
2
, (1.68)

γ0 = ν0 = 0, (1.69)
ω0 = −∂̄σ0, (1.70)
λ0 = σ̇0, (1.71)
µ0 = U0 = −1, (1.72)
ψ0
4 = −¨̄σ0, (1.73)

ψ0
3 = ∂ ˙̄σ0, (1.74)

ψ0
2 − ψ̄0

2 = σ̄2σ0 − ∂2σ̄0 + σ̄0λ0 − σ0λ̄0, (1.75)
(1.76)

con

ξA = ζ or ζ̄ , (1.77)
ξA = ξ0Ar−1 − σ0ξ̄0Ar−2 + σ0σ̄0ξ0Ar−3 +O

(
r−4
)
, (1.78)

ω = ω0r−1 −
(
σ0ω̄0 + ψ0

1/2
)
r−2 +O

(
r−3
)
, (1.79)

XA =
(
ψ0
1 ξ̄

0A + ψ̄0
1ξ

0A
) (

6r3
)−1

+O
(
r−4
)
, (1.80)

U = U0 −
(
γ0 + γ̄0

)
r −

(
ψ0
2 + ψ̄0

2

)
(2r)−1 +O

(
r−2
)
. (1.81)

Por otro lado, se desprende de las identidades de Bianchi (1.52) que las ecuaciones
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de evolución para los escalares de Weyl asintóticos son

ψ̇0
2 = −∂ψ0

3 + σ0ψ0
4, (1.82)

ψ̇0
1 = −∂ψ0

2 + 2σ0ψ0
3, (1.83)

ψ̇0
0 = −∂ψ0

1 + 3σ0ψ0
2. (1.84)

De las tres ecuaciones (1.82) - (1.84), la primera está relacionada con la pérdida de
energía gravitacional y juega un rol fundamental a la hora de comprender la dinámica
de las cantidades físicas de una sistema. En efecto, definiendo el aspecto de masa
como

Ψ = ψ0
2 + ∂2σ̄0 + σ0 ˙̄σ0, (1.85)

la Ec. (1.82) puede reescribirse como

Ψ̇ = σ̇ ˙̄σ. (1.86)

Dado que todos los coeficientes de espín definidos dependen de las coordenadas
(u, ζ, ζ̄) (Ver Sec. 1.1.3) podemos hacer una expansión del aspecto de masa en tér-
minos de los esféricos armónicos

Ψ(u, ζ, ζ̄) = Ψ0(u) + Ψi(u)Y 0
1i(ζ, ζ̄) + Ψij(u)Y 0

1ij(ζ, ζ̄) + ... (1.87)

donde se suele definir la masa y momento de Bondi como los términos l = 0 y l = 1
de la expansión (1.87)

MB = − c2

2
√
2G

Ψ0, (1.88)

P i = − c3

6G
Ψi. (1.89)

Por otro lado, una definición del momento angular en términos de con estas coor-
denadas no existe y esto introduce, en algún punto, el problema de definir cantidades
globales similares a la mecánica newtoniana en relatividad general. Para teorías de
relatividad lineales en vacío, el momento angular es usualmente definido en forma
similar al momento de Bondi como la parte imaginaria del término vectorial en la
expansión de ψ0i

1

J i = −
√
2

12
Im(ψ0i

1 ), (1.90)
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entonces cualquiera sea la definición de momento angular dada en espaciotiempos
genéricos, deberá tener como resultado de su linearización la Ec. (1.90).

El lector no debe dejar de notar que la Ec. (1.85) contiene una expansión no
trivial de esféricos armónicos, ya que no son los Ylm(ζ, ζ̄) usuales de la literatura
general. Estos esféricos armónicos se conocen como esféricos armónicos tensoriales
Y s
l,IN

(ζ, ζ̄), con IN un conjunto de índices tensoriales (i1...iN), y profundizaremos
sobre su definición en la próxima sección.

1.3. Bases completas en L2(S
2)

En relatividad general, las cantidades escalares Ecs. (1.34) y (1.52) que utiliza-
mos para estudiar la radiación gravitacional exhiben una simetría adicional corres-
pondiendo al grupo de simetrías U(1). Esto quiere decir que si tenemos una cantidad
escalar η en la esfera S2 y efectuamos una rotación alrededor del polo norte de la
esfera, entonces η transforma como

η → eisψη, (1.91)

con s un número entero y ψ una fase. Se definen entonces los esféricos armónicos con
peso de espín, Y s

lm, como una generalización a los esféricos armónicos estándares y
que, al igual que ellos, también son funciones en la esferas donde l,m están asociados
a las transformaciónes alrededor de los ejes x,y,z según las leyes de transformación

Yl,m(θ + δθ, ϕ) = (−1)lYl,−m(θ, ϕ) si eje x
Ylm(θ, ϕ+ δϕ) = eimδϕYlm(θ, ϕ) si eje y
Ylm(θ, ϕ+ δϕ) = eim(ϕ+δϕ)Ylm(θ, ϕ) si eje z

.

Nótese que las funciones Y s
lm(ζ, ζ̄) son funciones integrables en la esfera y por lo

tanto puede definirse un producto interno entre estas funciones como

(Y s
lm, Y

s′

l′m′) =

∫
S2

Y s
lmȲ

s′

l′m′dS. (1.92)

Por lo tanto, se dice que estas son representaciones del grupo U(1) × SO(3) sobre
L2(S

2) en el caso de esféricos armónicos con peso de espín y, similarmente, se dice
que los esféricos armónicos estándares son representaciones del grupo SO(3) sobre
L2(S

2).
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Los esféricos armonicos con peso de espín, al ser una base completa sobre L2(S
2),

permiten hacer un desarrollo en serie de la parte angular de cualquier cantidad
escalar. En particular, en la literatura es usual hacer un desarrollo en serie del escalar
de Weyl asintótico Ψ0

4 como

Ψ0
4(u, ζ, ζ̄) =

l=∞,m=l∑
l=2,m=−l

Ψ0
4lm(u)Y

2
lm(ζ, ζ̄). (1.93)

Notemos que en este caso el escalar de Weyl tiene un peso de espín s = 2 y esto se
debe a que la radiación graviacional tiene dos grados de polarización.

1.3.1. Esféricos armónicos tensoriales

En esta tesis, si bien utilizaremos cantidades con peso de espín, no utilizaremos
los esféricos armónicos espinoriales sino una representación equivalente a esta. Los
esféricos armonicos tensoriales constituyen otra representación de U(1) × SO(3) en
espacios tensoriales de rango (0,m), T(V 0 × V ∗m), con V ∗m el producto tensorial
de m-veces el espacio dual de V . En esta sección nuestro espacio V será un espacio
euclideo tridimensional, por lo tanto la diferenciación entre V y V ∗ es innecesaria.

Esta representación fue introducida por primera vez en [9] y es utilizada en di-
versos ámbitos de relatividad general, en particular, usaremos esta herramienta para
estudiar la radiación gravitacional.
Matemáticamente, dados los vectores que componen la tetrada nula (1.15) en el
espacio de Minkowski

la(ζ, ζ̄) =
1√

2(1 + ζζ̄)

(
1 + ζζ̄, ζ + ζ̄ ,−i(ζ − ζ̄),−1 + ζζ̄

)
, (1.94)

na(ζ, ζ̄) =
1√

2(1 + ζζ̄)

(
1 + ζζ̄,−(ζ + ζ̄), i(ζ − ζ̄), 1− ζζ̄

)
, (1.95)

ma(ζ, ζ̄) =
1√

2(1 + ζζ̄)

(
0, 1− ζ̄2,−i(1 + ζ̄2), 2ζ̄

)
, (1.96)

m̄a(ζ, ζ̄) =
1√

2(1 + ζζ̄)

(
0, 1− ζ2, i(1 + ζ2), 2ζ

)
, (1.97)

(1.98)
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podemos definir vectores espaciales tridimensionales ci, mi y m̄i como las proyeccio-
nes normales de los vectores ca = la − na, ma y m̄a a ta, es decir,

ci =
−
√
2

(1 + ζζ̄)

(
ζ + ζ̄ ,−i(ζ − ζ̄),−1 + ζζ̄

)
, (1.99)

mi =
−1√

2(1 + ζζ̄)

(
1− ζ̄2,−i(1 + ζ̄2), 2ζ̄

)
, (1.100)

m̄i =
1√

2(1 + ζζ̄)

(
1− ζ2, i(1 + ζ2), 2ζ

)
. (1.101)

Geométricamente, el vector ci es un vector en la dirección radial en la esfera, mientras
que los vectoresmi y m̄i son vectores tangentes a la esfera. Los vectores (1.99),(1.100)
y (1.101) forman una base para construir los esféricos armónicos tensoriales. Enton-
ces, se definen los esféricos armónicos tensoriales con peso de espín s = l como

Y l
l,i1...il

= mi1 ...mil . (1.102)

Para extender su definición a pesos de espín s ̸= l, se introducen dos operaciones
de derivación sobre la esfera S2, ð y ð̄, que actúan como “operadores escaleras” con
respecto al índice S. Es decir,

ð̄l−sY l
l,i1...il

= Y s
l,i1...il

, (1.103)

ðl−|s|Y −l
l,i1...il

= Y s
l,i1...il

(1.104)

.
Para ser más precisos, los operadores ð y ð̄ son derivadas covariantes complejas

en la variedad 2-dimensional de S2. Es posible componer estas dos derivadas para
definir el laplaciano en S2 y es sencillo verificar de (1.103) y (1.104) que

ðð̄Y s
l,i1...il

= −(l + s)(l − s+ 1)Y s
l,i1...il

, (1.105)

es decir, los Y s
l,i1...il

son autovalores del laplaciano.
Una vez definida la base tensorial, y siendo que esta es una base completa, pode-

mos realizar un desarrollo similar a (1.93), pero esta vez en términos de los esféricos
armónicos tensoriales:

Ψ0
4(u, ζ, ζ̄) =

l=∞∑
l=2

Ψ0
4(u)l,IlY

2
l,Il

(ζ, ζ̄)

= Ψ0
4(u)2,i1i2Y

2
2,i1i2

(ζ, ζ̄) + Ψ0
4(u)3,i1i2i3Y

2
3,i1i2i3

(ζ, ζ̄) + .... (1.106)
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Descomposición de Clebsh-Gordan

Finalizaremos esta sección describiendo la descomposición de Clebsh-Gordan pa-
ra productos de esféricos armónicos tensoriales. La descomposición de Clebsh-gordan
es un teorema en teoría de grupos que permite descomponer el producto directo de
dos grupos en suma directa de representaciones de dimensiones menor. No nos aden-
traremos en los detalles matemáticos de las representaciones tensoriales ni tampoco
daremos un algoritmo para la descomposición de cualquier producto. Sin embargo,
es necesario mencionar esta herramienta ya que será de gran utilidad en cálculos
posteriores.

Dados dos tensores Y s
l,i1...il

y Y s′

l′,i1...il′
, el producto tensorial de ambos puede ser

descompuesto como

Y s1
l1,i1...il

Y s2
l2,i1...il′

=

l=l1+l2∑
l=−|l1−l2|

Alϵδi1...il1+l2−l
Y s1+s2
l,i1...il

, (1.107)

donde Al constituyen los coeficientes de Clebsh-Gordan, ϵδi1...il1+l2−l
= ϵi1...il1+l2−l

para tensores sobre espacios de dimensión impar y ϵδi1...il1+l2−l
= δi1...il1+l2−l

para
tensores sobre espacios de dimensión par.
De esta forma, si realizamos el producto tensorial de Y 1

1i e Y 0
1j, la descomposición de

Clebsh-Gordan permite expresarlo como

Y 1
1iY

0
1j =

i√
2
ϵijkYk +

1

2
Y 1
2ij. (1.108)

Encontrar las constantes Al no es una tarea sencilla y en general se dificulta hacia
mayores valores del índice l. Para encontrar estos coeficientes deben escribirse ambos
miembros de la igualdad (1.107) en términos de los vectores los ci,mi y m̄i. Luego,
se plantea un sistema de ecuaciones compuesta de todas las ecuaciones con el mismo
peso de espín y se despejan los coeficientes. Una tabla para los productos con índices
más bajos puede verse en el Apéndice C.

1.4. Transformaciones nulas
Finalizaremos este capítulo presentando una subclase de las transformaciones de

Lorentz, llamadas transformaciones nulas. Dentro de las cinco clases de conjugación
del grupo restringido de las transformaciones de Lorentz SO+(1, 3), solo las transfor-
maciones parabólicas (rotaciones nulas) y las hiperbólicas (también conocidas como
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boosts) serán de interés en esta sección. Esto se debe a que trabajaremos con vectores
nulos a lo largo de esta tesis.

Durante la tesis trabajaremos definiendo cantidades cuyas coordenadas (ζ, ζ̄)
están contenidas en S2. Para ver cómo transforma este par de coordenadas ante una
transformación de lorentz restringida, es más sencillo ver su acción bajo el grupo
SL(2, C), que sabemos es isomorfo a SO+(1, 3). Entonces

ζ → aζ + b

cζ + d
, (1.109)

ζ̄ → āζ̄ + b̄

c̄ζ̄ + d̄
,

con a, b, c, d los parámetros del grupo SL(2, C) que satisfacen la relación ac−bd =
1. La transformación (1.109) también es conocida como transformación fraccional o
transformación de Möbius.

Dada una tetrada nula como en (1.15), los seis parámetros de una transformación
de Lorentz pueden ser agrupados en tres parámetros complejos. Estos tres parámetros
dan lugar a tres tipos de rotaciones para la tetrada nula:

Rotaciones nulas tipo I
lc → lc ,nc → nc + āmc + am̄c + āalc

mc → mc + alc ,m̄c → m̄c + ālc

Rotaciones nulas tipo II
lc → lc + b̄mc + bm̄c ,nc → nc

mc → mc + bnc ,m̄c → m̄c + b̄nc

Transformaciones de Boost (hiperbólicas)
lc → A−1lc ,nc → Anc

mc → eiθmc ,m̄c → e−iθm̄c

Estas leyes de transformación pueden deducirse de (1.109) y (1.15).
Por otro lado, se desprende de las leyes de transformación para las tetradas que

los escalares de Weyl (1.25) construidos en la Sec. 1.2.2 también transforman según
el tipo de transformación nula. Esto es

Rotaciones nulas tipo I
Ψ0 → Ψ0
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Ψ1 → Ψ1 + āΨ0

Ψ2 → Ψ2 + 2āΨ1 + ā2Ψ0

Ψ3 → Ψ3 + 3āΨ2 + 3ā2Ψ1 + ā3Ψ0

Ψ4 → Ψ4 + 4āΨ3 + 6ā2Ψ2 + 4ā3Ψ1 + ā4Ψ0

Rotaciones nulas tipo II
Ψ0 → Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4

Ψ1 → Ψ1 + 3bΨ2 + 3b2Ψ3 + b3Ψ4

Ψ2 → Ψ2 + 2bΨ3 + b2Ψ4

Ψ3 → Ψ3 + bΨ4

Ψ4 → Ψ4

Transformaciones de Boost (hiperbólicas)
Ψ0 → Ψ0 → A−2e2iθΨ0

Ψ1 → Ψ1 → A−1eiθΨ1

Ψ2 → Ψ2 → Ψ2

Ψ3 → Ψ3 → Ae−iθΨ3

Ψ4 → Ψ4 → A2e−2iθΨ4

23



Capítulo 2

Formulación de superficies nulas

Las ecuaciones de Einstein en su presentación original, si bien muestran una
forma elegante y práctica a la hora de analizar algunos ejemplos particulares de
espaciotiempos, en general, no son sencillas de resolver para espaciotiempos generales
o con pocas simetrías. En este sentido varios formalismos se han desarrollado con
distintos fines y herramientas, aumentando ampliamente el espacio de soluciones
encontradas. La formulación de superficies nulas es uno de estos formalismos y provee
un marco matemático que se utiliza para describir la geometría del espacio-tiempo
en la teoría de la relatividad general. Este formalismo se basa en la idea de que el
espacio-tiempo puede ser descrito por una red de superficies nulas, que son superficies
tridimensionales que se propagan a la velocidad de la luz.

En la teoría de la relatividad general, sabemos que el campo fundamental o
primordial es el tensor métrico, del cual se deducen el resto de los tensores de la
teoría asociados a la curvatura y otras estructuras geométricas. En cambio, en la
formulación de superficies nulas veremos que la métrica del espacio-tiempo se expresa
en términos de la geometría de las superficies nulas. En lugar de describir el espacio-
tiempo en términos de coordenadas espaciales y temporales, el formalismo utiliza
coordenadas que están asociadas con estas superficies.

En esta formulación los campos fundamentales de la teoría son los escalares Ω
y Z, que representan el factor conforme de la teoría y una familia de superficies
características nulas de la métrica, respectivamente. Los escalares Ω y Z satisfacen
un conjunto de ecuaciones diferenciales que determinan el comportamiento de los
campos en cada punto.

Desde el punto de vista matemático, las diez ecuaciones de Einstein con tensores
dependientes en puntos del espacio xa son intercambiados por una ecuación princi-
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pal para Ω y Z y dos condiciones de metricidad, siendo un total de tres ecuaciones
diferenciales acopladas en derivadas parciales. Este nuevo sistema de ecuaciones di-
ferenciales conitnurá siendo dificil de resolver y en consecuencia métodos numéricos
o perturbativos deben ser utilizados para encontrar sus soluciones.

Dentro de los acercamientos numéricos que se han dado en este formalismo, va-
rios códigos numéricos han sido desarrollados para simular la evolución numérica en
coordenadas nulas de un espaciotiempo. Para conocer más sobre el tratamiento nu-
mérico y los código 1D, 2D y 3D desarrollados en coordenadas nulas, el lector debe
consultar [10].

En esta tesis nos centraremos en las soluciones perturbativas de la formulación.
Usaremos métodos perturbativos para estudiar qué forma toma la radiación gravi-
tacional que recibimos luego de interactuar con un sistema aislado para los casos sin
materia y con materia presente.

2.1. Variables de la formulación
La formulación de superficies nulas reformula la relatividad general como una

teoría de superficies nulas que interactúan con materia a través de las ecuaciones
de campo. En esta formulación, la métrica lorentziana del espacio-tiempo gab se
construye a partir de una métrica invariante conforme g̃ab y un factor conforme Ω
que se relacionan mediante la ecuación

gab(x
a) = Ω2g̃ab(Z). (2.1)

La métrica conforme g̃ab se obtiene a partir de una familia de superficies nulas pa-
rametrizadas por una función real Z, definida sobre el fibrado tangente de la variedad
que define nuestro espaciotiempo gab. Es decir, dada una función Z = Z(xa, ζ, ζ̄), con
xa un punto del espaciotiempo y (ζ, ζ̄) coordenadas estereográficas que parametrizan
S2, entonces Z = constante define una superficie nula en el espaciotiempo. Por lo
tanto, los gradientes de las superficies de nivel de Z deben ser nulos

gab∂aZ∂bZ = 0. (2.2)

Se desprende de la Ec. (2.2) que la estructura conforme no depende de Ω. También
se deduce de esta ecuación que el vector nulo Z ,a = gab∂bZ satisface la ecuación de
geodésica homogénea, permitiendo definir una parámetro afín s.
Si derivamos (2.2), utilizando los operadores ð y ð̄ introducidos en las Ecs. (1.104)
y (1.103), podemos obtener las componentes de la métrica conforme. Este cálculo
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puede visualizarse en el diagrama de la Fig. [2.1]. Las componentes de la métrica
física gab que no están en el diagrama, g21,g31 y g11 pueden obtenerse de la forma

g21 =
1

2
ð̄g22, g31 =

1

2
ðg33, g11 = −2g01 + ð̄g21 + gabð̄Z,aðΛ̄,b. (2.3)

Es importante destacar que la Fig. [2.1] no solo nos proporciona las componentes
de la métrica sino que también impone condiciones sobre la foliación nula del espa-
ciotiempo Z. Si hubiésemos continuado con las derivaciones en la pirámide de la Fig.
[2.1], hubiéramos obtenido identidades y ecuaciones que pueden demostrarse que no
contribuyen con nueva información al sistema.
Si tomamos la ec. Ā en la Fig. [2.1] obtenemos una restricción para la función
Λ = ð2Z,

3ðZaΛa + ZaðΛa = 0. (2.4)

Solo para las funciones Λ que satisfagan la condición (2.4), es posible obtener una
métrica conforme.
La segunda ecuación de relevancia en nuestro desarrollo es la ec. ðB, siendo B la
ecuación de la Fig. [2.1]. De esta ecuación obtenemos

∂ð̄2Λ

∂s
= ðð̄(Ω2) + gab∂aΛ∂bΛ̄. (2.5)

La Ec. (2.5) puede integrarse entre los puntos s = s y s = ∞ formalmente como

ð̄2Λ = ð2σ̄(Z, ζ, ζ̄) + ð̄2σ(Z, ζ, ζ̄) +

∫ ∞

Z

σ̇ ˙̄σdu−
∫ ∞

s

(
ðð̄
(
Ω2
)
+ gab∂aΛ∂bΛ̄

)
ds′,

(2.6)

donde el shear de Bondi σ(Z, ζ, ζ̄), está directamente relacionado con la radiacion
gravitacional alcanzada en el infinito nulo y σ̇ es la derivada con respecto al tiempo de
Bondi u. La ecuación (2.6) la denominamos ecuación fundamental asintótica de cortes
nulos y será la ecuación que nos permitirá hallar las foliaciones Z del espaciotiempo.
Debemos aclarar con respecto a la integración de esta ecuación que hemos elegido el
gauge σ(s = ∞) = 0, de lo contrario, los primeros dos términos deberían escribirse
como variaciones ∆σ. Esta elección es hecha por simplicidad y para poder analizar
la física de los sistemas aislados sin radiación previa presente del espaciotiempo.
La elección de gauge hecha corresponde a haber fijado el grupo de simetrías de las
supertraslaciones (discutiremos esto en detalle en el Cap. 3.).
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Finalmente, para completar nuestro sistema de ecuaciones, el factor conforme Ω
puede encontrarse contrayendos las ecuaciones de Einstein con los vectores normales
a las superficies nulas. De la relación (2.1) entre las dos métricas se obtiene

2
∂2Ω

∂s2
= ZaZb (Rab[g̃]−Rab[g]) Ω. (2.7)

Rab[h] y Rab[g] son tensores de Ricci correspondientes a la métrica conforme y la
métrica física, respectivamente. Es importante destacar que de la ecuación (2.6) junto
con (2.4) y (2.5), son completamente equivalentes a las ecuaciones de Einstein para
una métrica gab. Si reemplazamos Gab[g] = Tab y ZaZbRab[g̃] = Q(Λ)Ω obtenemos la
ecuación final

2D2Ω = (Q(Λ)− T00) Ω, (2.8)

con
Q(Λ) = − 1

4q
DΛ̄,1DΛ1 −

3

8q2
(Dq)2 +

1

4q
D2q, q = 1− Λ,1Λ̄,1, (2.9)

donde D = d
ds

representa la derivada con respecto al parámetro afín s y Λ,1 la
derivada con respecto a la variable radial r, que siempre es posbile definir a partir
de una superficie Z. El factor T00 proviene de la contracción con las superficies nulas
ZaZbTab = T00. Recordemos que Z,a = la es un vector nulo y es tomado como primer
vector de nuestra base ortogonal nula.

La ecuación (2.8) es una ecuación diferencial en derivadas parciales de segundo
orden no lineal. La resolución genérica de esta ecuación no es factible en forma ana-
lítica. Además, notemos que el escalar ZaZbRab[g̃] de (2.7) es una función cuadrática
Q(Λ2) y por lo tanto es nula ante una aproximación lineal en esta variable. Esto
sugiere que los métodos perturbativos son convenientes para el estudio de nuestro
sistema de ecuaciones y explicaremos este método con detalle en la próxima sección.

2.2. Formulación linearizada
Como mencionamos en la anterior sección, las distintas dependencias funcionales

de los términos de las Ecs. (2.8),(2.4) y (2.5) en la variable Λ, sugieren hacer pertur-
baciones sobre esta variable. Nuestro sistema de ecuaciones linearizado en la variable
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Λ toma entonces la forma

2
∂2Ω

∂s2
= −T00Ω, (2.10)

∂
(
ð̄2ð2Z

)
∂s

= 2ðð̄Ω (2.11)

Este sistema de ecuaciones permite resolverse para una mayor cantidad de casos.
Por ejemplo, es posible proponer soluciones de la forma Z(xa, ζ, ζ̄) = Z(xa)Z(ζ, ζ̄)
y obtener un sistema más sencillo cuya solución dependerá del Tab presente en el
espaciotiempo. Espaciotiempos sencillos como los espaciotiempos de Minkowski, De
Sitter y Schwarschild permiten una descripción directa y equivalente en términos de
superficies nulas. Veremos a continuación el caso más sencillo del espaciotiempo de
Minkowski.

Espacio de Minkowski

Para el caso en que no hay materia Tab = 0 y de (2.11) con Λ = 0 tenemos

∂2Ω

∂s2
= 0, (2.12)

ð2Z = Λ = 0. (2.13)

Se desprende de estas ecuaciones que Ω = 1 y por lo tanto, gab = ηab es la métrica
de Minkowski. Por otro lado, de la Ec. (2.13) tenemos Z(xa, ζ, ζ̄) = xala(ζ, ζ̄) con
la(ζ, ζ̄) un vector normalizado en coordenadas de Minkowski

la(ζ, ζ̄) =
1√

2(1 + ζζ̄)
(1 + ζζ̄, ζ + ζ̄ , i(ζ − ζ̄),−1 + ζζ̄), (2.14)

y xa un punto del espaciotiempo en coordenadas de Minkoski que aparecen como las
cuatro constantes de integración de la Ec. (2.13).

Esquema de las perturbaciones

Nos interesa resolver ahora el sistemas de ecuaciones linearizado en forma iterati-
va. Tomaremos para ello como nuestra solución orden cero o foliación de orden cero a
las soluciones correspondientes a la foliación del espacio de Minkowski Z0 = xala con
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Ω0 = 1. El esquema iterativo consistirá en descomponer las variables del formalismo
Z y Ω en las sumas

Z =
∑
n=0

Zn, (2.15)

Ω =
∑
n=0

Ωn. (2.16)

La teoría linearizada de superficies nulas permite escribir a la función Ω como una
funcional explícita del tensor energía momento [Ec. (2.12)], dejando a la teoría con
un solo escalar Z que puede ser obtenido iterando hacia órdenes más altos.

El lector debe recordar que las funciones Z representan superficies nulas y por lo
tanto satisfacen la Ec. (2.2). En términos perturbativos, la condición nula de orden
n puede escribirse

∑
n

n∑
r+s=0

gabn−r−s∂aZr∂bZs = 0. (2.17)

con

gab0 = ηab

gab1 = 2Ω1η
ab + hab1

.

.

.

y ηab la métrica de Minkowski y h1ab la perturbación a primer orden de la métrica
ηab. Si n = 0, recuperamos en la Ec. (2.17) el producto interno para dos vectores
nulos en el espacio plano de Minkoski

ηablalb = 0. (2.18)

Si n = 1, aparece la primera condición nula no trivial

hablalb + 2ηabla∂bZ1 = 0, (2.19)

o también,

hablalb = −2la∂aZ1 = −2
dZ1

ds
. (2.20)
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La Ec.(2.20) relaciona la corrección a primer orden de la métrica plana, hab, con
la corrección a primer orden de la foliación Z1.

Si escribimos las ecuaciones linearizadas para la primera iteración del esquema
perturbativo, el sistema de ecuaciones finales a resolver nos queda

2
∂2Ω1

∂s2
= −T00Ω0 = −TabZa

0Z
b
0Ω0, (2.21)

∂
(
ð̄2ð2Z1

)
∂s

= 2ðð̄Ω1. (2.22)

El lector no debe confundir los subíndices ceros indicando las componente tem-
porales del tensor energía-momento T00 con los subíndices zero que indican las so-
luciones a orden cero de las variables escalares Z y Ω. Nótese también que, si bien
este sistema fue escrito para perturbaciones de primer orden, puede ser fácilmente
generalizable a órdenes mayores. En este trabajo, estudiaremos solo las desviaciones
lineales de la foliación ya que nos interesa hacer un estudio desde el infinito nulo,
lejos de cualquier fuente, de la radiación gravitacional.

Resolveremos las Ecs. (2.21) y (2.22) en las próximas secciones.

2.2.1. Dispersión en ausencia de materia

Estudiaremos cómo es la relación entre la radiación gravitacional que llega al es-
paciotiempo desde el infinito nulo pasado y es recibida en el infinito nulo futuro. El
escalar de Newman-Penrose que representa la radiación gravitacional en el infinito
nulo es σ0. Por ende, describiremos la dispersión de radiación gravitacional en tér-
minos de cómo cambia el valor de esta cantidad en el infinito nulo pasado y futuro,
σ− y σ+.

En esta sección, estudiaremos la dispersión en espacitiempos de vacío, es decir
con Tab = 0, pero luego generalizaremos nuestros resultados a espaciotiempos con
campos de materias.

Solución Z1

De la Ec. (2.21) más la condición asíntotica para el factor conforme Ω, limr→∞Ω =
1, es fácil ver que su perturbación a primer orden debe ser Ω1 = 0. En este caso solo
debemos resolver la Ec. (2.22) para Z, que toma la forma
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ð̄2ð2Z1(x
a, ζ, ζ̄) = ð̄2σ(Z0, ζ, ζ̄) + ð2σ̄(Z0, ζ, ζ̄), (2.23)

con Z0 = u = xall la foliación en el espacio de Minkowski. La Ec.(2.23) es una
ecuación diferencial de cuarto orden elíptica y ð̄2ð2 representa el doble laplaciano en
la esfera. Notemos que Z es una cantidad con peso de espín s = 0, mientras que σ y
σ̄ son cantidades con peso de espín s = 2 y s = −2 respectivamente, y por lo tanto,
la ecuación presenta cantidades con peso de espín cero en cada lado de la igualdad.
La ecuación (2.23) posee una función de Green única de tal forma que la solución
puede ser dada en forma intergral

Z1(x
a, ζ, ζ̄) =

∮
S2

G00′
(
ð̄′2σ(xal′a, ζ

′, ζ̄ ′) + ð′2σ̄(xal′a, ζ
′, ζ̄ ′)

)
dS ′, (2.24)

siendo G00 la función de Green

G00(ζ, ζ̄, ζ
′, ζ̄ ′) =

1

4π
lal′aln(l

al′a), (2.25)

o si hacemos una expansión en esféricos armónicos tensoriales

G00(ζ, ζ̄, ζ
′, ζ̄ ′) =

∞∑
l=2

4π

2l + 1
Y 0
l,Il

(ζ, ζ̄)Y ′0
l,Il

(ζ ′, ζ̄ ′). (2.26)

Como nuestro fin es estudiar la relación entre la radiación entrante y saliente del
espaciotiempo, utilizaremos superíndices + y − para denotar las cantidades que están
relacionadas con el infinito nulo futuro y el infinito nulo pasado respectivamente. De
esta forma podemos distinguir dos tipo de soluciones (2.24) a la ecuación (2.23),

Z+
1 (x

a, ζ, ζ̄) =

∮
S2

G00′
(
ð̄′2σ+(xal+′

a , ζ
′, ζ̄ ′) + ð′2σ̄+(xal+′

a , ζ
′, ζ̄ ′)

)
dS ′, (2.27)

Z−
1 (x

a, ζ, ζ̄) =

∮
S2

G′
00

(
ð̄′2σ−(−xaℓ−′

a , ζ
′, ζ̄ ′) + ð′2σ̄−(−xaℓ−′

a , ζ
′, ζ̄ ′)

)
dS ′., (2.28)

Nótese que en la solución (2.27), se contruye en base a Z+
0 = xal+a que usa conos

de Minkowski orientados hacia el futuro, mientras que (2.28) usa conos orientados
hacia el pasado, Z−

0 = −xal−a . Z+
0 y Z−

0 pueden también interpretarse como las
coordenadas nulas avanzadas y retardadas u y v, respectivamente.
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Transformaciones antipodales

La relación entre los vectores l+a y l−a que simbolizan las direcciones entrantes
y salientes del espaciotiempo, puede entenderse en término de las transformaciones
antipodales. La transformación antipodal en las coordenadas esféricas usuales (θ, ϕ)
se define como

(θ, ϕ) → (π − θ, π + ϕ), (2.29)

y en coordenadas estereográficas

(ζ, ζ̄) → (−1/ζ̄,−1/ζ). (2.30)

Denotaremos las transformaciones antipodales con el símbolo ˆ de modo que ζ̂ =
−1/ζ̄.
Si escribimos el vector nulo la de (2.14) como l+a = 1√

2
(1, ri) con ri = ri(ζ, ζ̄) el

correspondiente vector espacial, entonces

−la+ = − 1√
2
(1, ri) =

1√
2
(−1,−ri) = 1√

2
(−1, r̂i) = l̂a−. (2.31)

Finalmente, si recordamos que los esféricos armónicos tensoriales de la Sec. [1.3.1] se
contruyen a partir de vectores que dependen de los ángulos (ζ, ζ̄), podemos aplicar
una transformación antipodal a estos tensor y ver que se cumple

Y s
lIl
(ζ̂ , ̂̄ζ) = (−1)lY −s

lIl
(ζ, ζ̄) (2.32)

. Esta última relación será usada en los cálculos de dispersión ya que es útil en muchos
casos expandir las cantidades escalares en términos de los esféricos tensoriales, y en
consecuencia, la transformación antipodal de esos escalares corresponderá a aquella
de sus términos de expansión en esféricos armónicos.

Relaciones de dispersión

Dado un punto del espaciotiempio xa y la métrica en ese punto gab(xa), podemos
escribir la métrica en términos de la radiación saliente (σ+) o entrante(σ−), usando
el campo escalar Z. De la unicidad de la métrica, sabemos que ambas descripciones
deben coincidir y en consecuencia h+00 = h−00, o también

h+1ab(x
c)l+al+b = h−1ab(x

c)l̂−al̂−b. (2.33)
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Reemplazando la relación (2.20) en la anterior expresión,

l+a∂aZ
+
1 = l̂+a∂aẐ

−
1 (2.34)

l+a∂a(Z
+
1 + Ẑ−

1 ) =
d(Z+

1 + Ẑ−
1 )

ds+
= 0. (2.35)

La Ec. (2.35) puede ser pensada como una ecuación para dos funciones distintas que
dependen de las mismas variables. Finalizaremos esta sección mostrando la relación
entre los modos de dispersión que conforman la radiación gravitacional entrante y
saliente del infinito nulo. Para ello, utilizamos la relación entre las superficiens nulas
deducida (2.35) y expandimos los escalares de radiación σ en su parte angular

σ(u, ζ, ζ̄) =
∑
l

σ(u)IlY s
l,Il

(ζ, ζ̄). (2.36)

Reemplazando esta relación en las soluciones (2.27) y (2.28), obtenemos los modos
para las superficies nulas entrante y saliente

Z+
l,Il

=

∮ (
Y −2
l,Il
σ+(u, ζ, ζ̄) + Y 2

l,Il
σ̄+(u, ζ, ζ̄)

)
d2S, (2.37)

Ẑ−
l,Il

= (−1)l
∮ (

Y −2
l,Il
σ−(v, ζ, ζ̄) + Y 2

l,Il
σ̄−(v, ζ, ζ̄)

)
d2S. (2.38)

La relación entre los diferentes modos de radiación saliente σ+
l,Il

y radiación entrante
σ−
l,Il

se obtiene reemplazando (2.37) y (2.38) en (2.35), y luego tomando la transfor-
mada de Fourier del tiempo de Bondi retardardo u. Así

σ+
l,Il

(w) + (−1)lσ̄−
l,Il

(w) = 0, (2.39)

con w una frecuencia positiva. Si efectuamos la antitransformada de Fourier en (2.39)
y la suma sobre todos los modos obtenemos las relaciones para la radiación gravita-
cional total en función del tiempo de retardado u y las coordenadas estereográficas
(ζ, ζ̄),

σ+(u, ζ, ζ̄) + σ̄−(u, ζ̂, ̂̄ζ) = 0. (2.40)
La Ec. (2.40) puede interpretarse en términos de su parte real e imaginaria tam-

bién como σ+
R = −σ−

R y σ+
I = σ−

I . Este resultado es lo que denominamos dispersión
trivial y ocurre en un espacio plano sin materia. Esto es esperable ya que no hay
razones para que la radiación entrante deba tener mezclas de modos de radiación o
cambios en el valor de la radiación entrante. Sin embargo, vemos un cambio en el
valor del signo de la parte real de la radiación y esto está vinculado al cambio en la
dirección de el vector nulo l+a por l−a .
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2.2.2. Dispersión en presencia de materia

En presencia de un campo de materia en el espaciotiempo tenemos un tensor
de energía-momento Tab ̸= 0, y por ello, tenemos un término adicional afectando
a la forma de la foliación Z en la Ec. (2.21). La presencia de materia arroja una
complicación adicional ya que, desde el punto de vista matemático, los cálculos son
más complejos. Aún así, es posible derivar una fórmula para relacionar los modos de
radiación entrantes y salientes del infinito nulo.

Si resolvemos la nuevamente Ec. (2.22) incluyendo el término con el factor con-
forme Ω1, los modos de las foliaciones pueden escribirse

Z+
l,Il

=

∮ [
Y −2
l,Il
σ+(u, ζ, ζ̄) + c.c.− 2Y 0

l,Il

∫ ∞

0

dsσ̄σΩ1

(
yc(s), ζ, ζ̄

)]
d2S (2.41)

Z−
l,IL

=

∮ [
Y −2
l,IL
σ−(v, ζ, ζ̄) + c.c.− 2Y 0

l,Il

∫ ∞

0

dsσ̄σΩ1

(
yc(s), ζ, ζ̄

)]
d2S. (2.42)

Aquí yc(s) = xc + sl+c representa la trayectoria nula que parte del punto del
espaciotiempo xc y c.c. denota el término complejo conjugado a Y −2

l,Il
σ+(u, ζ, ζ̄). Las

soluciones (2.41) y (2.42) permiten también escribirse en forma geométrica, definien-
do N+

x al cono futuro nulo que emerge del punto xa y C+
x a la intersección de N+

x

con el infinito futuro nulo J +. Entonces

Z+
l,Il

=

∮
C+

x

d2S
(
Y −2
l,Il
σ+(u, ζ, ζ̄) + c.c.

)
− 2

∫
N+

x

Y 0
l,Il

ð̄ðΩ1(x
c, s, ζ, ζ̄)dsd2S, (2.43)

Z−
l,Il

=

∮
C−

x

d2S
(
Y −2
l,Il
σ+(v, ζ, ζ̄) + c.c.

)
− 2

∫
N−

x

Y 0
l,Il

ð̄ðΩ1(x
c, s, ζ, ζ̄)dsd2S. (2.44)

Factor Conforme

La relación entre un tensor de Ricci Rab de un espaciotiempo genérico gab y su
versión conforme R̃ab es

Rab = R̃ab + 2Ω−1∇̃a∇̃bΩ + g̃abg̃
cd
(
Ω−1∇̃c∇̃dΩ− 3Ω−2∇̃cΩ∇̃dΩ

)
. (2.45)

Esta expresión puede simplificarse notablemente cuando simplificamos los tér-
minos no lineales en Ω. Para la versión linearizada de la formulacion de superficies
nulas, podemos expandir Ω = 1 + Ω1 y recordando que R̃ab = O(Λ2), obtenemos

34



Capítulo 2 Propiedades dinámicas en sistemas binarios de agujeros negros

una versión más sencilla de la Ec. (2.45). Si además de linearizar la expresión, la
contraemos con el tensor nulo lalb, llegamos a la siguiente ecuación

Rabl
alb = 2lalb∂a∂bΩ1. (2.46)

Nótese que hemos cambiado la derivada covariante por la derivada parcial ya que
estamos trabajando a primer orden en nuestra aproximación. Si usamos la trans-
formada de Fourier en la Ec.(2.46) sobre la variable xa, encontramos la expresión
para la perturbación a primer orden del factor conforme Ω1 en términos del tensor
energía-momento

Ω1(k
c, ζ, ζ̄) =

Tab(k
c)lalb

2(kclc)2
, (2.47)

donde el vector ka = (k0, ωk⃗) es un cuadrivector proveniente de la transformación
de Fourier sobre la variable xa.

Habiendo encontrado la forma del factor conforme a primer orden podemos rees-
cribir las foliaciones avanzada (2.41) y retardada (2.42) como

Z+
l,Il

=

∮ (
Y −2
l,Il
σ+(xcℓ+c , ζ, ζ̄) + iY 0

l,Il

∫
d3kð̄ð

(
Tab(k

c)ℓ+aℓ+b

(kcℓ+c )
2

)
e−ix

ckc

kcℓ+c
+ c.c.

)
d2S.

(2.48)

Z−
l,Il

= (−1)l
∮ (

Y −2
l,Il
σ−(−xcℓ−c , ζ, ζ̄)− iY 0

l,Il

∫
d3kð̄ð

(
T̄ab(k

c)ℓ+aℓ−b

(kcℓ−c )
2

)
e−ix

ckc

kcℓ−c
(2.49)

+ c.c.

)
d2S,

Si reemplazamos estas expresiones en (2.35) en forma análoga a la sección anterior
obtenemos las relaciones entre los modos de radiación entrante y saliente en el infinito
nulo.

σ+
l,Il

(w) + (−1)lσ̄−
l,Il

(w) = i

∮
d2SY 0

l,Il

∫ ∞

0

dko
∮
d2k̂Tab (2.50)(

ð̄ð
(

lalb

(kclc)2

)+
kcl+c

+ (−1)l
ð̄ð
(

lalb

(kclc)2

)−
kcl−c

))
.
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Notemos aquí que los términos en la integral de esta ecuación son factores no
triviales que contribuirán a los modos de la radiación entrante σ+

l,Il
. El término del

miembro derecho de la Ec. (2.50) también será responsable de producir acoplamientos
entre los distintos modos de radiación l. Es interesante también notar que los términos
entre paréntesis de la Ec. (2.50) podría anularse para algunos casos especiales del
tensor energía-momento, por ejemplo si Tab = f(k)kakb + g(k)ηab.

Si hacemos la antitransformada de Fourier en (2.50) y si sumamos los modos de
esta ecuación obtenemos la relción entre la radiación entrante y saliente,

σ+(u, ζ, ζ̄) + σ̄−(u, ζ̂, ̂̄ζ) = i

∫
d4keiwuTab(k) (2.51)∮

d2S ′

(
ð2G00′ ð̄′ð′( l′al′b

(kcl′c)
2

)+
kcl′+c

+
ð2G0̂0′ ð̄′ð′( l′al′b

(kcl′c)
2

)−
kcl′−c

)
,

El lector interesado podrá leer en [11] el estudio de la relación de dispersión (2.51)
para el caso particular donde el Tab es aquel de un campo escalar sin masa, es decir,
Tab = gab(−1

2
∂cϕ∂

cϕ) + ∂aϕ∂bϕ.
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Figura 2.1: Ecuaciones obtenidas por la aplicación de derivadas ð que determinan
condiciones de unicidad y existencia de la métrica
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Capítulo 3

Definición de centro de masa y
momento angular intrínseco en
Relatividad General

El momento angular es una propiedad fundamental en la física clásica y cuántica,
que permite describir la rotación de los objetos alrededor de un eje. En la relatividad
general, sin embargo, definir el momento angular globalmente puede ser un problema
complejo y ambiguo.

La ambigüedad de la definición del momento angular en la relatividad general
surge debido a que no hay una noción bien definida de posición absoluta en esta
teoría. En lugar de ello, la relatividad general establece que el espaciotiempo se curva
en presencia de la materia y la energía, lo que hace que la medición del momento
angular dependa del marco de referencia utilizado.
Similarmente, el concepto de centro de masa también es fundamental para describir
la posición promedio de un sistema de partículas en física clásica. Sin embargo, en la
relatividad general, el espaciotiempo se curva en presencia de la materia y la energía,
lo que significa que la geometría del espaciotiempo varía en función de la distribución
de masa y energía en el sistema. Esto plantea un desafío para la definición del centro
de masa, ya que la noción clásica de un punto en el espacio donde se concentra toda
la masa del sistema ya no es válida.

Además, la teoría relatividad general permite una mayor variedad de simetrías
que la teoría clásica, lo que puede llevar a diferentes definiciones de momento angular
dependiendo de la elección de simetrías. En particular, el grupo de simetrías conocido
como BMS (Bondi-Metzner-Sachs) ha sido objeto de interés reciente en la física de
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altas energías debido a su papel en la descripción de la radiación gravitacional. Este
grupo de simetrías tiene dimensión infinita y puede llevar a diferentes definiciones
de momento angular y centro de masa, lo que dificulta aún más su definición global.

El problema de definir el momento angular y centro de masa puede ser resuelto
en espaciotiempos particulares o con simetrías. Por ejemplo, el momento angular en
un espacio de Minkowski puede ser definido en términos de los grupos de Poincaré,
que son finitos y bien definidos. También se conocen fórmulas para espaciotiempos
estacionarios como la integral de Komar o fórmulas perturbativas para gravedad
linearizada [Ver Ec. (1.90)]. Sin embargo, estas soluciones son limitadas ya que el
espaciotiempo real no tendrá en general simetría alguna.

En resumen, la definición del momento angular y centro de masa en la relatividad
general es un problema complejo y ambiguo que requiere una cuidadosa elección de
las simetrías y el marco de referencia utilizados. En general no será posibles definir
estos conceptos para un espaciotiempo general. Sin embargo, la clase de espacio-
tiempos asintóticamente planos presentan un grupo de simetrías asintóticas, o grupo
BMS, que permite definir cantidades físicas en base a las simetrías asintóticas. La
estructura infinita del grupo de simetrías asíntoticas provee una importante herra-
mienta para la identificación de espacios de Minkowski cerca del infinito nulo, si bien,
las definiciones de momento angular intrínseco y centro de masa siguen siendo am-
biguas. Estudiaremos este problema con más profundidad a lo largo de las próximas
secciones.

3.1. Grupo de simetrías de Bondi-Metzner-Sachs
El Grupo de simetrías de Bondi-Metzner-Sachs, también conocido como Grupo

BMS, es un concepto fundamental en la teoría de la relatividad general y tiene una
profunda influencia en la comprensión de las soluciones de ondas gravitacionales y la
estructura asintótica del espacio-tiempo. Este grupo fue introducido originalmente
por H. Bondi, M. G. van der Burg, A.W. Metzner y R.K. Sachs en los trabajos
seminales [4] y [12] como un intento de caracterizar las simetrías asintóticas del
espacio-tiempo en la formulación de la relatividad general.

A diferencia de las simetrías locales que se describen mediante grupos de transfor-
maciones locales, como las simetrías de Poincaré o las transformaciones de gauge, las
simetrías asintóticas se refieren a las transformaciones que dejan invariantes las ca-
racterísticas globales del espacio-tiempo para distancias lejanas o en el límite cuando
r va a infinito.
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Sean u, θ, ϕ, r las coordenadas estándares de Bondi de la Sec.[1.1.3] para un es-
paciotiempo asintóticamente plano. Entonces u es el tiempo retardado y u = const
denotan hipersuperficies nulas abriendose hacia el futuro; θ, ϕ son coordenenadas
esféricas en el infinito nulo para cada superficie u = const; r es una coordenada
radial tal como la coordenada r definida a partir de la luminosidad. El grupo BMS
queda definido por las siguientes transformaciones en las coordenadas θ, ϕ, u

θ′ = θ′(θ, ϕ), (3.1)
ϕ′ = ϕ′(θ, ϕ), (3.2)

u′ = K(θ, ϕ)(u− α(θ, ϕ)), (3.3)

donde (θ, ϕ) → (θ′, ϕ′) es una transformación conforme, es decir, que la métrica de
S2 preserva su forma excepto por un factor K2,

ds2 = K2(θ′, ϕ′)(dθ′2 + sin2θ′dϕ′2), (3.4)

K2 =

(
sinθ

sinθ′

)
|J | (3.5)

con J = ∂(θ,ϕ)
∂(θ′,ϕ′)

el jacobiano de la transformación de coordenadas. La función α(θ, ϕ)
es una función real arbitraria suave en la esfera. Una observación respecto a la coor-
denada radial r es que si bien esta puede ser también transformada, la transformación
es irrevalante para la estructura del grupo BMS y dependerá en general del tipo de
coordenada radial elegida.

En particular, las transformaciones para las cuales θ′ = θ, ϕ′ = ϕ (K = 1) son
llamadas supertraslaciones. Notemos de (3.3) que las supertraslaciones transforman
un sistema con superficies nulas u = const en otro sistema u′ = const, sin involucrar
rotaciones de Lorentz de por medio. La función α de (3.3) puede ser expandida en
términos de los esféricos armónicos tensoriales de la Sec. [1.3.1]:

α =
∞∑
l=0

al,IlY
0
l,Il

(θ, ϕ), (3.6)

donde los coeficientes al,Il son constantes. La función α de (3.6) está generada por
un conjunto de infinitos parámetros al,Il que definen la supertraslación. Si elegimos
al,Il = 0 para l > 2,

α = a0 + a1,1sinθcosϕ+ a1,2sinθsinϕ+ a1,3cosθ, (3.7)
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recuperamos los cuatro parámetros a0 y a1,i que definen traslaciones de las su-
perficies u = const.

El Grupo BMS captura estas simetrías asintóticas del espacio-tiempo en el con-
texto de las ondas gravitacionales. Estas ondas son perturbaciones en la geometría del
espacio-tiempo que se propagan a la velocidad de la luz y son generadas por fuentes
masivas en movimiento, como pares de estrellas de neutrones fusionándose o agujeros
negros en colisión. El Grupo BMS describe las transformaciones que preservan las
propiedades físicas de estas ondas gravitacionales en el límite asintótico.

Si recordamos que σ0 representa la radiación gravitacional en el límite asintótico,
entonces dadas coordenadas de Bondi en un entorno de J , Sachs [5] mostró que el
grupo BMS transforma según la ley

σ0(u′, θ′, ϕ′) = K−1[σ0(u, θ, ϕ) + ð2α(θ, ϕ)], (3.8)

con u′, θ′, ϕ′ dados por la transformación (3.3). Si solo hacemos una supertrasla-
ción entre dos superficies u = const y u′ = const,

σ0(u′, θ, ϕ) = σ0(u′ − α, θ, ϕ) + ð2α(θ, ϕ). (3.9)

En particular, si efectuamos una supertraslación entre dos espacios estacionarios
con σ0 = 0, la Ec. (3.9) toma la forma

ð2α(θ, ϕ) = 0. (3.10)

La solución de α a esta ecuación viene dada por (3.7), es decir, el subgrupo
de las traslaciones. Esto demuestra que para espaciotiempos estacionarios, existen
foliaciones de cortes nulos cuya deformación asintótica σ0 es nula. Estos cortes son
llamados “cortes buenos” (del inglés good cuts). Además, la Ec. (3.7) también nos
dice que el subgrupo que mapea un corte bueno a otro corte bueno es el grupo de
Poincaré. En el espacio de Minkoswki, un corte bueno simplemente vendrá dado por
la intersección del cono de luz generado por un punto interior del espacio con el
infinito nulo futuro, J +. En general, los espaciotiempos radiantes no poseerán cortes
buenos.

3.1.1. Vectores de Killing asintóticos

Los vectores de Killing asintóticos son un concepto importante en la teoría de la
relatividad general, que permite estudiar las simetrías y las propiedades geométricas

41



Capítulo 3 Propiedades dinámicas en sistemas binarios de agujeros negros

de las soluciones de campo gravitatorio en el límite asintótico. En particular, es
posible construir el grupo BMS a partir de estos vectores.

En la relatividad general, los vectores de Killing ξ son campos vectoriales que
generan simetrías en el espacio-tiempo. Estos campos se caracterizan por la propiedad
de que la derivada de Lie del tensor métrico gµν con respecto al campo vectorial
de Killing ξ es igual a cero, es decir Lξgµν = 0. Esto implica que las cantidades
físicas medidas a lo largo de las trayectorias generadas por los vectores de Killing
permanecen constantes a lo largo de esas trayectorias.

Si estudiamos espacios asintóticamente planos, podemos tomar el límite asintótico
de los vectores Killing donde las distancias son muy grandes y el campo gravitatorio es
débil. Estos vectores se llaman vectores de Killing asintóticos y por su construcción
describirán las simetrías y propiedades de los campos gravitatorios en el infinito.
Los vectores de Killing asintóticos capturan la noción de simetría en el infinito.
Matemáticamente, los vectores de Killing asintóticos son las soluciones a la ecuación

Lξgµν = O(1/r), (3.11)

donde r es la coordenada radial inversa a la luminosidad de un sistema de coorde-
nadas de Bondi. Veremos un ejemplo de cómo resolver este tipo de ecuación y el
tratamiento de vectores de Killing asintóticos para un espaciotiempo de dos dimen-
siones a continuación.

Ejemplo 1: Métrica 2-dimensional

Supongamos que tenemos la métrica en dos dimensiones

ds2 =
∞∑
n=0

gn(u)r
−ndu2 − 2dudr(1 +

∞∑
n=1

fn(u)r
−n) +

∞∑
n=1

hn(u)r
−ndr2, (3.12)

donde gn, fn, hn son funciones que pueden fluctuar con u en el infinito nulo. No-
temos que en el límite de r → ∞ esta métrica tiende a la métrica de Minkowski
en coordenadas de Bondi-Sachs (u, r). Por lo tanto se trata de un espaciotiempo
asintóticamente plano.

El vector de Killing asintótico, solución a la Ec. (3.11) , puede escribirse

ξ = (ϵ(u) +O(1/r))∂u + (−ϵ′(u)r + η(u) +O(1/r))∂r, (3.13)

donde ϵ, η son funciones arbitrarias que surgen de integrar las ecuaciones de
Killing y parametrizan la familia de soluciones. Si removemos la parte con términos
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O(1/r) obtenemos el vector de Killing generador de simetrías asintóticas para el
espaciotiempo (3.12),

ξ = ϵ(u)∂u + (−ϵ′(u)r + η(u))∂r. (3.14)

Si además calculamos el conmutador entre dos vectores de Killing ξ1 y ξ2, ob-
tenemos el álgebra que genera las simetrías asintóticas para nuestro espaciotiempo
2-dimensional,

[ξ(ϵ1, η1), ξ(ϵ2, η2)] = ξ (ϵ1ϵ
′
2 − ϵ2ϵ

′
1, (ϵ1η2 − ϵ2η1)

′) (3.15)

Ejemplo 2: Espaciotiempo asintóticamente plano 3-dimensional

Mostraremos con este ejemplo en tres dimensiones que el espacio de generado-
res de simetrías asintóticas para un espacio asintóticamente plano es un grupo más
amplio que el de Poincaré. Usaremos coordenadas de Bondi (u, r, ϕ) de manera que
nuestro analisis estará restringido solo a J +. Dada la siguiente métrica asintótica-
mente plana,

ds2 = (huu+O(1/r))du2−2dudr(1+O(1/r))+(huϕ+O(1/r))dudϕ+r2dϕ2(1+O(1/r)),
(3.16)

donde hemos ya fijado grr = grϕ = 0 y huu = huu(u, ϕ),huϕ = huϕ(u, ϕ). Si
calculamos el escalar de Ricci o cualquier otra contracción escalar veremos que los
invariantes son O(1/rn), n > 1.

Los vectores ξ que preservan la forma de la métrica (3.16), es decir que son
solución a la Ec. (3.11), tienen la forma

ξ = (M(ϕ)+uL′(ϕ))∂u+(L(ϕ)− u

r
L′′(ϕ)− 1

r
M ′(ϕ))∂ϕ−(rL′(ϕ)+O(1/r))∂r. (3.17)

Para reconocer las simetrías subyacentes es conveniente descomponer este vector
en dos partes

ξL = uL′(ϕ)∂u + (L(ϕ)− u

r
L′′(ϕ))∂ϕ − (rL′(ϕ) +O(1/r))∂r (3.18)

ξM =M(ϕ)∂u +O(1/r). (3.19)
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Si calculamos los conmutadores de estos vectores, obtenemos el algebra de Lie
del grupo que preserva la métrica asintótica (3.16)

[ξL(L1), ξ
L(L2)] = ξL(L1L

′
2 − L2L

′
1 +O(1/r) (3.20)

[ξL(L1), ξ
L(M2)] = ξM(L1M

′
2 −M2L

′
1 +O(1/r) (3.21)

[ξL(M1), ξ
L(M2)] = O(1/r). (3.22)

El álgebra (3.20) también se conoce como álgebra de Witt. Para interpretar fí-
sicamente estos vectores es necesario hacer la expansión de la parte angular de los
vectores ξM y ξL, similar a la expansión (3.6) pero teniendo en cuenta que en este ca-
so tenemos una coordenada angular menos. De ese modo, los modos ceros ξM0 = ∂u y
ξL0 = ∂ϕ son los generadores de traslaciones temporales y rotaciones, respectivamente.

De esta manera vemos que el grupo de simetría de la métrica (3.16) contiene al
grupo de Poincaré del espacio de Minkoswki, pero también tiene infinitos generadores
adicionales que conforman un grupo más amplio y producen ambiguedad a la hora
de definir las cantidades físicas conservadas asociadas a cada generador. Los gene-
radores ξM y ξL son llamadas supertraslaciones y superrotaciones respectivamente.
Las supertraslaciones conmutan entre sí pero no así las superrotaciones.

Terminamos este ejemplo destacando que si bien el cálculo ha sido hecho para
una métrica asintótica 3-dimensional, los resultados obtenidos son más generales y
se reproducen en el caso de cuatro dimensiones obteniendo el grupo BMS (3.3) que
definimos al principio de la sección.

3.1.2. Teorema de Noether

La presencia de vectores de Killing asintóticos es crucial para entender la noción
de energía y momento en la relatividad general, ya que permiten definir cantida-
des conservadas asociadas a estas simetrías. Estas cantidades conservadas, como la
energía total y el momento angular, tienen una interpretación física importante y
proporcionan información sobre las propiedades globales de las soluciones gravitato-
rias.

Si suponemos un espaciotiempo con materia presente Tµν y denotamos la deriva-
da de un vector de Killing ξµ,ν , podemos realizar con esta derivada cáculos similares
a aquellos del tensor electromagnético Fµν . La derivada de vector de Killing es an-
tisimétrica, de manera que puede ser visto como una 2-forma. Como una 2-forma
es exacta, es decir que el campo ξµ,ν = −1

2
(dξ)µν satisface una de las ecuaciones de
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Maxwell, y −1
2
ξµ es una cantidad análoga al potencial electromagnético. La ecuación

de Maxwell restante, ∂µF µν = Jµ, también tiene su análogo en términos de vectores
de Killing

ξµ,νν = −Rµ
νξ

ν = −(T µν − 1

2
Tgµν )ξ

ν , (3.23)

de donde vemos que la simetría subyacente dependerá del tensor energía-momento
del espaciotiempo.

Integral de Komar

Continuando con la analogía de los campos electromagnéticos, podemos integrar
el diferencial ⋆dξ sobre una superficie cerrada S, dando lugar a la integral de Komar

K[ξ] =

∮
S

⋆dξ =

∮
S

ξµ,νdSµν . (3.24)

Utilizando el teorema de Stokes y reemplazando la ecuación (3.23) podemos reescribir
la integral de Komar en términos del tensor energía-momento, lo cual permite una
expresión más práctica para su cálculo∮

S

ξµ,νdSµν =

∮
V

(T µν − 1

2
Tgµν )ξ

νdVµ, (3.25)

donde hemos llamado V al volumen encerrado por la superficie S. La integral de
Komar se reduce a las expresiones de relatividad especial para la masa y momento
angular en el límite de la teoría linearizada [13].

Supongamos ahora que tenemos un estaciotiempo estacionario con simetría axial
y carga, es decir un espaciotiempo de Kerr-Newman. En este caso tendremos un
vector de Killing temporal ∂t y otro vector de Killing espacial ∂ϕ, que corresponden
a simetría de traslación en el espacio y simetrías de rotación alrededor del eje de
simetría, respectivamente. En coordenadas de Boyer-Lindquist, el covector de Killing
temporal puede escribirse

ξ =

(
∆Σ

A

)1/2

− (∆Σ/A)1/2dt+
a sin θ

(ΣA)1/2
(
Q2 − 2Mr

)
(Asin2θ/Σ)1/2(dϕ+ Ωdt).

(3.26)
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con

Ω = (a/A)
(
Q2 − 2Mr

)
≡ (a/A)β,

Σ = r2 + a2 cos2 θ,

∆ = r2 + a2 +Q2 − 2Mr,

A =
(
r2 + a2

)
Σ− a2

(
Q2 − 2Mr

)
sin2 θ.

Si tomamos la derivada exterior del vector de Killing y luego el dual para integrar
en (3.24), obtenemos para esta métrica

∗dξ =
[
−f̂A1/2Ω sin θ − h̃Σ(∆/A)1/2

]
dθ ∧ dt (3.27)

+
[
g̃(A/∆)1/2Ω sin θ + K̃Σ

(
1/A1/2

)]
dr ∧ dt

− f̃A1/2 sin θdθ ∧ dϕ
+ g̃(A/∆)1/2 sin θdr ∧ dϕ,

donde hemos definido

f̃ = −
(
2A1/2/Σ3

)
(MΣ + βr)

(
1 + aΩ sin2 θ

)
,

g̃ = aΩ
(
A3/Σ6∆

)1/2
sin 2θ

[
1 +

(
r2 + a2

a

)
Ω

]
,

h̃ = −(∆/A)1/2
(
2a/Σ2

)
(MΣ + βr) sin θ,

K̃ =
2A1/2Ωcos θ

Σ2

(
r2 + a2

)
.

Dado que (3.27) es un vector de Killing temporal, podemos integrar la fórmula (3.24)
y obtener la masa encerrada en un espaciotiempo de Kerr para un radio r, que po-
demos llamar masa efectiva. Si hiciésemos esta integración en un espaciotiempo con
simetría esférica, podríamos integrar sobre una esféra exterior al radio de Schwarzs-
child 2M . En este caso, las coordenadas de Boyer-Lindquist también tienen una
singularidad en θ = π/2, r = 0 por lo que no podemos integrar sobre una esfera. Por
ello, se elige como superficie un toro radio exterior r y radio interior pequeño ϵ. Más
detalles sobre la integración puede encontrarse en [14].

Entonces, si reconocemos Meff = 2K[ξ], obtenemos la fórmula para la masa
efectiva hasta un punto r en el espaciotiempo de Kerr,

Meff =M − Q2

2r
− Q2(r2 + a2)

2ar2
arctan

a

r
. (3.28)
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Esta ecuación nos da una idea de la masa gravitacional efectiva que una partícula
siente para una distancia r, siendo r la coordenada de Boyer-Lindquist. Es interesante
ver que para valores suficientemente altos de la carga, la particula puede sentir una
furza de atracción repelente en el radio r. Este es un fenómeno que solo aparece en
presencia de campos electromagnéticos dado que si Q = 0, tenemos Meff = M y
podemos identificar a la integral de Komar con la masa M del espaciotiempo. Para
el caso de simetría esférica (a = 0), obtenemos la expresión Meff = M − Q2/(2r),
que es la integral de Komar para un espaciotiempo de Reissner-Nordström. En el
límite asintótico, r → ∞, la integral de Komar representa la masa del espaciotiempo
salvo un factor dos (Meff =M).

Similarmente, podríamos haber obtenido el momento angular efectivo usando el
vector de Killing rotacional. Esta aplicación de la integral de Komar a un espa-
ciotiempo de Kerr-Newman nos permite entender cómo se vinculan las cantidades
conservadas usuales en física clásica con sus análogas en relatividad general. En par-
ticular, nos permiten ver que la definición de cantidades como M,P o J dependerán
del punto xa del espaciotiempo. Sin embargo, también vimos que estos conceptos son
más sencillos de interpretar en el límite asintótico.

Linkages de Tamburino-Winicour

Dado un espaciotiempo M , en general no tendremos vectores de Killing presentes
lo cual limita las posibilidades de utilizar la integral de Komar. A pesar de esto, los
espaciotiempos asintóticamente planos poseen vectores Killing asintóticos, que hemos
discutido en la Sec.[3.1.1]. Por ende, es posible definir leyes de conservación en base
a las simetrías de los Killing asintóticos, aún cuando estas leyes se verán afectadas
por las ambiguedades del grupo BMS, discutidas en la Sec.[3.1].

La generalización de la integral de Komar fue hecha por Tamburino y Winicour
en 1966 [15], agregando las nociones de compactificación conforme de Penrose, los
sistemas de coordenadas nulos de Bondi y Newman-Unti, y las simetrías del grupo
BMS. Estas integrales modificadas fueron denominadas por los propios autores como
Linkages.

Los Linkages asignan a cada generador asintótico ξ una función Lξ(Σ+) sobre cada
superficie esférica Σ+ en J +. El esquema para construir los Linkages generadores de
simetrías consiste en tres pasos:

1. Propagar el vector de Killing asintótico ξa sobre una superficie nula Γ que
intersecta J + en Σ+ por medio de la ley de propagacion de Killing sobre la
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superficie nula

[ξ(a;b) − 1

2
ξc,cg

ab]lb|Γ = 0 (3.29)

donde la es un generador nulo de Γ.

2. Evaluar la integral de Komar modificada

Lξ(Σ) = − 1

16π

∮
Σ

(
ξa,b + ξc,cl

[anb]
)
dSab (3.30)

3. Tomar el límite Σ → Σ+ sobre Γ

Los Linkages (3.30) se reducen a la integral de Komar (3.24) cuando ξ es una
simetría exacta. Los linkages contienen un término adicional con la divergencia del
vector de Killing que permite el cálculo de la integral sin conocer las derivadas de ξa
en las direcciones apuntando fuera de Γ. Sin este término la energía obtenida en Σ+

no sería monotónicamente decreciente, sino la energía de Newman-Unti [8] que tiene
una menor relevancia física.

Resulta conveniente a fines prácticos utilizar los Linkages en términos de los
escalares de Newman-Penrose de la Sec.[1.2.2]. Para ello, escribimos el vector de
Killing asintótico ξa en términos de la tetrada nula (la, na,ma, m̄a),

ξa = Ala +Bna + Cma + C̄m̄a (3.31)

con coeficientes

A = A1r + A0 + A−1r
−1 +O(r−2),

B = B0,

C = C1r + C0 + C−1r
−1 +O(r−2),

y
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A1 = −(1/∂uuB)∂u(B0∂uuB),

A0 = ðð̄B0 +B0ðð̄lnP (uB, ξ, x̄i),

A−1 =
1

2

(
B0(ψ

0
2 + ψ̄0

2) + C̄1ψ
0
1 + C1ψ̄

0
1

)
,

C1 = a(ξ, ξ̄)/∂uuB, con ða = 0,

C0 = ðB0 + C̄1σ
0,

C−1 = 0,

B0 = b(ξ, ξ̄)/∂uuB − 1

2∂uuB

∫ u

0

(∂uuB)
3
(
ð(ā(∂uuB)3) + ð̄(a(∂uuB)−2

)
du′,

donde la única libertad está en las supertraslaciones b(ξ, ξ̄) y en el grupo de
Lorentz homogéneo a(ξ, ξ̄).

Si reemplazamos la expresión encontrada para el vector de Killing en la integral
(3.30) y usamos que dS[ab] = lanbdS, podemos encontrar la siguiente expresión que
provee un cálculo independiente de las coordenadas

Lξ
(
Σ+
)
=

1

8π21/2
Re

∮
Σ+

dS
{
ξala

(
ψ0
2 + σ0 ˙̄σ0 − ð̄2σ0

)
(3.32)

+ξam̄a

[
2ψ0

1 − 2σ0ðσσ̄0 − ð
(
σ0σ̄0

)]}
,

donde Re denota la parte real de la integral, dS es el elemento de área de la esféra
y ma es un vector complejo nulo tangente a Σ+.

La integral (3.32) forma una representación lineal del grupo BMS. Las integrales
del centro de masa y momento angular pueden ser obtenidas de esta integral eligiendo
un subgrupo de Lorentz. Aquí surge una nueva dificultad en definir el momento
angular: no hay una única forma de elegir un subgrupo de Lorentz. La situación es
análoga a lo que sucede con la libertad de traslaciones que uno encuentra al elegir
un subgrupo de Lorentz del grupo de Poincaré, excepto que ahora la libertad de las
infinitas supertraslaciones está presente.

Finalizaremos esta sección con una observación en la derivación (3.32). Al reem-
plazar la expresión dS[ab] = lanbdS el lector debe ser cuidadoso, ya que el nb (de ahora
en más, n̂b) no pertenecce al espaciotiempo físico gab, sino que es un vector conforme
paralelo a las superficies u = const y r = const. Para relacionar este vector n̂b con el
vector físico nb nulo perpendicular al vector la de la integral (3.30), debemos hacer
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una rotación nula de la forma

n̂a = na − ω̄ma − ωm̄a + ωω̄la (3.33)

con
ω = −(ð̄σ0)r−1 +O(r−2). (3.34)

De esta forma, concluimos con la expresión para las simetrías asintóticas que será
fundamental en la definición del momento lineal, energía y momento angular.

3.2. Cortes de Bondi, Newman-Unti y cortes de lí-
nea de mundo

Retomaremos en esta sección con la teoría de superficies nulas de [2] para definir
cortes del infinito nulo con relevancia física. Cuando hablamos de cortes nulos nos
referimos a las superficies nulas Γ que intersecan al infinito nulo J en una superficie Σ
con topología S2. Mencionamos ya en la Sección [1.1.3] que los sistemas de Bondi son
aquellos que presentan similitud con los sistemas inerciales del espacio de Minkowski.
En efecto, para el caso de un espaciotiempo plano los sistemas de Bondi pueden
asociarse a líneas de mundo temporales de observadores inerciales.

Matemáticamente, quizás la manera más sencilla de definir a las superficies de
Bondi es definiéndolos como la familia monoparamétrica de superficies nulas que se
trasportan paralelamente y cuyo corte mantiene área unitaria. Es decir

Γu = {u = cte : nan
a = 0,∇an

b = 0, con nb =

(
∂

∂u

)b
y

∮
Σ+

dS = 1} (3.35)

La condición de ∇an
b = 0 implica que los cortes de Bondi se propagan paralelamente

en el infinito nulo. Aún más, implica que el área de las superficies que cortan en el
infinito nulo se mantienen constantes.

Por otro lado, la integral de superficie es hecha sobre cortes de Bondi Σ+ para la
métrica de S2 en J +.

En general, la métrica conforme en el infinito nulo futuro J + puede escribirse en
términos de las coordenadas de Bondi-Sachs (u,ζ,ζ̄) como

d̂s
2
=

dζdζ̄

P (u, ζ, ζ̄)2
(3.36)
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donde P (u, ζ, ζ̄) es una función que nos habla de la forma de los cortes en J +. Para el
caso particular de los cortes de Bondi, la función P toma la forma P (u, ζ, ζ̄) = 1+ζζ̄.
Se deduce al integrar esta expresión que los cortes de Bondi son superficies de área
unitaria.

En un espaciotiempo general, dados dos sistemas de Bondi (uB, ζ, ζ̄) y (u′B, ζ, ζ̄),
estos sistemas pueden relacionarse mediante las transformaciones del grupo BMS

u = K(ζ, ζ̄) u′ + α(ζ, ζ̄), (3.37)

donde α(ζ, ζ̄) es el generador de supertraslaciones del grupo BMS y recordemos
que puede ser expandido como en (3.6).

De la misma manera, existen sistemas más generales que no se propagan para-
lelamente en el infinito nulo. Estos sistemas fueron descubiertos por Newman-Unti
(NU) en [16].

Dados dos sistemas, uno más general de Newman-Unti (u, ζ, ζ̄) y de otro Bondi
(uB, ζ, ζ̄), estos se relacionen a través de la ecuación

u = f(u′, ζ, ζ̄), (3.38)

donde f es una función arbitraria que dependerá de la estructura del espacio-
tiempo.

Generalización de cortes de Newman-Unti

Para estudiar sistemas físicos reales tales como binarias de agujeros negros o
estrellas de neutrones, necesitamos estudiar cortes en el infinito nulo en espaciotiem-
pos radiativos. Es decir, necesitamos cortes similares a los cortes a los cortes en el
espaciotiempo de Minkowski que provengan de un punto del espaciotiempo. Este
concepto fue introducido por primera vez en [17].
Los cortes de línea de mundo son una generalización a los cortes de NU y pueden
asociarse a curvas temporales del espaciotiempo. Los sistemas de coordenadas de
cortes de línea de mundo en un espaciotiempo plano están intrínsecamente ligados
a una línea de mundo temporal arbitraria, es decir observadores acelerados. De esta
forma, estos sistemas constituyen los sistemas análogos no inerciales de relatividad
especial.

En relatividad general, no es posible coorresponder cortes de Bondi o de Newman-
Unti en el infinito nulo con líneas de mundo asociadas a observadores, sino que, sola-
mente a medida que el espaciotiempo gµν → ηµν en forma asintótica, podemos definir
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los observadores de Bondi asintóticos. No obstante, los cortes de línea de mundo per-
miten hacer una correspondencia con los puntos del interior del espaciotiempo, aún
en la presencia de radiación.

Notemos que tanto en las transformaciones de Bondi como las de Newman-Unti
los sistemas uB y u′ tienen las mismas coordenadas (ζ, ζ̄) en S2. Se introducen a partir
de estas transformaciones los sistemas de línea de mundo, que son una generalización
a los sistemas de Newman-Unti en el siguiente sentido.

Dados dos sistemas, uno de línea de mundo (u, ζ, ζ̄) y otro de Bondi (uB, ζB, ζ̄B),
estos se relacionan mediante las transformaciones

u = T (uB, ζB, ζ̄B), (3.39)

y

ζ =
aζB + b

cζB + d
. (3.40)

donde a, b, c, d son cuatro constantes complejas tal que ad − bc = 1. La Ec. (3.39)
puede invertirse para obtener

uB = Z(u, ζ, ζ̄), (3.41)

donde reconocemos a la función Z de la Sec.[2.1] y T es la función inversa de Z.
Como Z es una función suave, T y Z satisfacen ṪZ ′ = 1, siendo que el punto y el
apóstrofe denotan derivación con respecto a las variables uB y u, respectivamente.

Para relacionar las dos bases nulas que pertenecen a distintos sistemas, uno de
línea de mundo y otro de Bondi, podemos hacer una rotación nula por un factor
L(uB, ζ, ζ̄) alrededor de na, es decir una rotación nula tipo II, y rotar el vector laB del
sistema de Bondi al vector la que es tangente a las superficies nulas que provienen
de una línea de mundo. La derivación de la relación entre las tetradas que componen
estos dos sistemas puede encontrarse en [16]. Son de particular interés las relaciones
que se desprenden para los escalares ψ0

1 y σ0
1 en los respectivos sistemas. Estas son

ψ0∗
1

Z ′3 =
[
ψ0
1 − 3Lψ0

2 + 3L2ψ0
3 − L3ψ0

4

]
(3.42)

y
σ0∗

Z ′ = σ0 − ð̄2Z. (3.43)

Las relaciones son similares a aquellas de las transformaciones nulas de Lorentz
pero ahora vemos la aparición adicional de un factor Z ′ dividiendo en la transforma-
ción. Recordemos que Z ′ = ∂uuB. El estudio de las relaciones entre estos dos tipos
de sistemas puede verse con mayor profundidad en [17],[18] y [19].
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Aquí, utilizamos en las Ecs. (3.42) y (3.43) la variable Z en lugar de uB para
especificar que los cortes nulos elegidos son cortes que corresponderán a observadores
del espaciotiempo. En efecto, si Z satisface la ecuación fundamental de cortes de línea
de mundo (2.6) entonces podremos hacer el desarrollo perturbativo ya introducido
en el Cap. [2] y expresar los cortes nulos en términos de la posición de la línea de
mundo y los terminos radiativos.

En particular, si resolvemos hasta orden cuadrupolar encontramos la siguiente
ecuación para cortes nulos

Z = R0 − 1

2
RiY 0

1i +

(
σijR
12

+

√
2

72
σ̇ikI R

lϵjkl

)
Y 0
2ij, (3.44)

donde Rµ(τ) es el cuadrivector posición de una línea de mundo y τ el parámetro
afin.

3.3. Ecuaciones para el centro de masa y momento
angular intrínseco

Si retomamos las soluciones asintóticas de las ecuaciones de Bianchi

ψ̇0
0 = −ðψ0

1 + 3σ0ψ0
2, (3.45)

ψ̇0
1 = −ðψ0

2 + 2σ0ψ0
2, (3.46)

ψ̇0
2 = −ðψ0

3 + σ0ψ0
4, (3.47)

y recordamos al aspecto de masa definido a partir de estas,

Ψ = ψ0
2 + ð2σ̄0 + σ0 ˙̄σ0, (3.48)

es posible definir al cuadrimomento de Bondi

P µ = − c2

8π
√
2G

∮
ΨlµdS. (3.49)

Aquí lµ es el vector nulo de un espacio plano (2.14) y dS = 4dζ
dζ̄
P 2
0

es el elemento de
área en la esfera unitaria.

En términos del teorema de Noether, la energía, el momento y la masa de ADM
están definidos por las simetrías asintóticas en el infinito espacial, y la energía, el
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momento y la masa de Bondi están definidos por las simetrías asintóticas en el infinito
nulo.

Si bien Bondi define el cuadrimomento [4] solamente utilizando el aspecto de
masa, la Ec. (3.32) para los Linkages gravitacionales contiene al cuadrimomento de
Bondi en el primer término multiplicando a la cantidad ξala.

Como ya mencionamos en la Sec. [3.1.2], el primer término en la integral de
Winicour-Tamburino está asociada al momento lineal y energía gravitacional, mien-
tras que el segundo término está asociado al momento angular y momento dipolar
másico del sistema. Elegiremos ξa de tal manera que ξala = 0 y poder quedarnos solo
con el término asociado al momento angular. De este modo, definimos el momen-
to dipolar másico y el momento angular en un sistema de coordenadas de línea de
mundo genérico como la parte real e imaginaria del segundo término en los linkages,
respectivamente.

D∗
i +

i

c
J∗
i =

1

8π
√
2

∮
Y −1
1i

[
2ψ∗0

1 − 2σ∗0ð∗σ̄∗0 − ð∗(σ∗0σ̄∗0)

Z ′3

]
, (3.50)

donde las tres constantes complejas del vector asintótico espacial ξi nos dan las tres
componentes del vector momento dipolar másico y tres componente del momento
angular total. Sucede un comportamiento análogo en gravedad linearizada en donde
las partes reales e imaginarias del escalar ψ0

1i capturan la nocion de la dos forma
que define el momento angular y momento dipolar másico [20]. Los linkages son una
generalización natural de estos conceptos para espacios asintóticamente planos.

Es también importante mencionar que el valor de los linkages y de las cantidades
definidas dependen de la sección integrada que elegimos en el infinito nulo. Esta
libertad de elección de superficies es análoga a lo que sucede en relatividad especial
cuando definimos el momento angular o centro de masa: las posiciones x, y, z pueden
ser medidas desde distintos puntos. La diferencia aquí es que, mientras en relatividad
especial la libertad yace en elegir un punto del espaciotiempo, en relatividad general
la libertad es una superficie entera definida por un conjunto infinito de constantes,
una para cada modo en la descomposición (3.6). En lo que sigue, restringiremos la
libertad de infinitas constantes a cuatro funciones que decriben una línea de mundo
en el espaciotiempo.

Dada una familia de superficies nula de Bondi u = const, si efectuamos una trans-
formación de supertraslación u′ = u − α(ξB, ξ̄B), el aspecto de masa Ψ transforma
como

Ψ′(u′) = Ψ(u) + ð2α. (3.51)
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Si pedimos que para el corte u′ = 0 se cumpla

Ψ′(0)|l≥2 = 0, (3.52)

entonces la única libertad restante de Ψ′ corresponde a las constantes que acompañan
los modos l = 0, 1. De esta manera, hemos fijado la libertad de supertraslaciones
pidiendo que el aspecto de masa se anule sobre la foliación u′ = const. para l ≥ 2. Los
cuatro parámetros restantes son una traslación temporal y espacial que utilizaremos
para definir el centro de masa y momento dipolar másico de estos cortes provenientes
de línea de mundo.

Se deduce de la elección de gauge (3.52) que las supertraslaciones correspondientes
a esta elección debe satisfacer la ecuación

ð2α(ξ, ξ̄) = −
∞∑
l=2

ΨIlYl,Il , (3.53)

donde Il denota un conjunto de l índices espaciales i1, i2, ..., il.

3.3.1. Definición de centro de masa y momento angular in-
trínseco

Como hemos estudiado en las secciones anteriores, hay una correspondencia uno
a uno entre las líneas de mundo del espaciotiempo y la foliaciones de cortes asociadas
a estos observadores en el infinito nulo. Aún más, si pedimos que el momento dipolar
másico definido en (3.50) se anule, queda determinada una única línea de mundo
que definiremos como la línea de mundo asociada al centro de masa. A su vez, si
calculamos el momento angular asociado a esta línea de mundo, obtendremos el
momento angular intrínseco.

Resolviendo la integral de la Ec. (3.50) y teniendo en cuenta el gauge elegido
(3.52), podemos escribir el momento dipolar másico y momento angular de una línea
de mundo del espaciotiempo como

D∗
i +

i

c
J∗
i =

−c2

12
√
2G

[
2ψ0∗

1 − 2σ0∗ð∗σ̄0∗ − ð∗(σ0∗σ̄0∗)

Z ′3

]i
, (3.54)

donde el superíndice i indica que debemos hacer la expansión en esféricos armónicos
de la expresión entre corchetes y quedarnos con el modo l = 1, ya que es el único
que sobrevive en la integral (3.50).
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Las seis funciones definidas en la Ec.(3.50), Di y Ji, dependen de una línea de
mundo particular xa(u) que caractiza cada corte en el infinito nulo, y por ende, nos
define una foliación de superficies nulas. Luego, imponemos una condición sobre esta
foliación pidiendo que para cada corte u = const, el momento dipolar másico D∗ se
anule. Es decir,

Re

[
2ψ0∗

1 − 2σ0∗ð∗σ̄0∗ − ð∗(σ0∗σ̄0∗)

Z ′3

]i
= 0. (3.55)

Las tres condiciones que imponen esta ecuación, una por cada componente espacial
del momento dipolar másico, fijan las componentes espaciales de la línea de mundo.
Por otro lado, de la normalización de la cuadrivelocidad x′(u)µx′(u)µ = 1 queda
determinada la componente temporal de la línea de mundo. Esta línea de mundo
especial la denominamos línea de mundo del centro de masa xi(u) = Ri(u). El
momento angular J i∗ evaluado en el centro de masa será llamado momento angular
intrínseco sel sistema Si. Es decir,

− c3

12
√
2G

Im

[
2ψ0∗

1 − 2σ0∗ð∗σ̄0∗ − ð∗(σ0∗σ̄0∗)

Z ′3

]i
. (3.56)

Dado que las variables relevantes en relatividad general tales como la radiación gra-
vitacional, la pérdida de masa y el momento lineal son descriptas en sistemas de
referencia de Bondi, nos interesa definir el momento dipolar másico y momento an-
gular en estos sistemas de referencia. Entonces,

Di +
i

c
Ji = − −c2

12
√
2G

[
2ψ0

1 − 2σ0ðσ̄0 − ð(σ0σ̄0)
]i
. (3.57)

Podemos asociar las cantidades físicas entre los dos tipos de cortes, mediante las
transformaciones nulas que relacionan a los dos sistemas. Teniendo en cuenta (3.42)
y (3.43), encontramos

D∗i(u) = Di(uB) +
3c2

6
√
2G

Re[ðZ(Ψ− ð2σ̄0) + F ]i, (3.58)

J∗i(u) = J i(uB) +
3c2

6
√
2G

Im[ðZ(Ψ− ð2σ̄0) + F ]i, (3.59)

con

F = −1

2
(σ0ðð̄2Z + ð2Zðσ̄0 − ð2Zðð̄2Z)− 1

6
(σ̄0ð3Z + ð̄2Zðσ0 − ð̄2ð3Z). (3.60)
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En síntesis, podemos decir que dado un corte de línea de mundo del espaciotiempo
Z, podremos relacionar el momento angular total J∗i y el momento dipolar másico
D∗i asociado a este corte con los momentos J i y Di de un corte de Bondi Z = uB =
const en el infinito nulo. En particular, si elegimos los cortes nulos asociados a una
línea de mundo xµ(u) que representa el centro de masa de un sistema, tendremos
D∗i = 0 y de la Ec. (3.58) encontramos Di para el centro de masa en un sistema de
Bondi.

Las expresiones (3.58) y (3.59) permiten describir sistemas físicos complejos uti-
lizando cortes de línea de mundo y vinculándo estos cortes con cortes de Bondi.
Veremos en las próximas secciones cómo calcular la posición del centro de masa y el
momento angular intrínseco utilizando los métodos perturbativos de la Sec.[2] para
superficies nulas.

Espaciotiempo de Minkowski

Mostraremos brevemente la simulitud de nuestra definición del centro de masa
y momento angular intrínseco con aquella que se define en un espaciotiempo plano.
Aquí, no habrá ambiguedad proveniende del grupo BMS y por lo tanto la definición
de estas cantidades resulta más directa y sencilla.

En un espaciotiempo plano los vectores de Killing, pueden encontrarse se forma
exacta ya que están definidos en todo el espaciotiempo. Por esta razón, los vectores
de Killing asintóticos coinciden con los vectores de Killing solución a la ecuación

Lξηαβ = 2∂(αξβ) = 0. (3.61)

Su solución
ξα = ωαβxβ + aα, (3.62)

conforma una representación del grupo de Poincaré, donde ωαβ es el generador de
las rotaciones y aα el generador de traslaciones.

Así como los vectores de Killing asintóticos nos permiten definir el momento
angular y lineal en forma asintótica, en Minkowski sucede algo similar con los vectores
de Killing exactos ξa. Dada la corriente conservada Jµ = T µνξν que satisface ∂µJµ =
0, podemos integrarla sobre una superficie espacial Σ y obtener la correspondiente
cantidad física conservada. Por lo tanto,

Qξ =

∫
Σ

JβtβdΣ, (3.63)
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representa una cantidad conservada en la superficie Σ y tβ es un vector temporal fu-
turo normal a Σ. Notemos que si quisieramos definir cantidades globales, deberíamos
tomar el limr→∞Σ, siendo r el radio de la superficie Σ.

Podemos definir el momento lineal o momento angular en la Ec. (3.63) según
elijamos ξ a un vector temporal o espacial, respectivamente. A saber,

Mµν = 2

∫
Σt

x[µT 0ν]d3x, (3.64)

P µ =

∫
Σt

T 0µd3x. (3.65)

Los vectores Mµν y P µ son respectivamente llamados tensor momento dipolar-
angular relativista y cuadrivector momento lineal. Estas cantidades son las que
obtendríamos del primer y segundo término en el integrando de los Linkages de
Winicour (3.32). Como el término acompañando al parámetro a(ξ, ξ̄) en la integral
(3.32) lo hemos tomado cero, y corresponde al término asociado al momento lineal,
nos olvidaremos del cuadrimomento P µ en lo que sigue.

Si descomponemos el tensor Mµν en su parte espacial y temporal, reobtenemos
dos cantidades conocidas para la física Newtoniana. En primer lugar, el momento
dipolar másico dinámico es

M i0 = N i = Di − tP i =

∫
Σt

(ρxi − tP i)d3x. (3.66)

Aquí, la cantidad Di representa el momento dipolar másico y se relaciona con el
momento dipolar dinámico a traves de una traslación tP i. Di se define como

Di =
∑
A

xiAp
0
A =

∫
Σt

ρxidx3, (3.67)

dependiendo si se trata de un sistema discreto o continuo.
Por otro lado,

M ij =

∫
Σt

(P ixj − xiP j)d3x, (3.68)

nos permite obtener el momento angular Li = ϵijkMjk.
Notemos que el tensor momento angular-momento dipolar másico Mµν presenta

ambiguedades con respecto a su definición ante traslaciónes Rµ, similar a lo que pasa
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con J i en las supertraslaciones. En efecto,

M∗µν = 2

∫
Σt

P [µ(x−R)ν]d3x =Mµν −
∫
Σt

P [µRν]d3x

=Mµν − P [µV Rν]

donde V es el volumen que resulta de hacer la integral en d3x . Separamos el vector
Rµ en su término paralelo a P µ y otro término que contiene la parte perpendicular
a P µ, Rµ

0 . Así pues podemos escribir el momento angular trasladado como

M∗µν =Mµν − P [µV R
ν]
0 . (3.69)

De manera análoga al problema de centro de masa en relatividad general, debemos
fijar una línea de mundo para poder fijar el momento angular. Impondremos entonces
la condición análoga a Di∗ = 0 y calcularemos la línea de mundo que define el centro
de masa del sistema. En nuestro caso, fijaremos primero el término perpendicular a
P µ de Rµ, pidiendo que M∗µνPν = 0. De esta forma,

0 =MµνPν −Rµ
0P

2, (3.70)

de donde obtenemos
Rµ

0 = P−2MµνPν . (3.71)

El término paralelo a P µ solo requiere hallar la función α, y esta puede definirse
como un parámetro afín de la línea de mundo τ . Definiendo M la masa del sistema
dentro del volumen Σt , entonces P µPµ = M2. Al final, obtenemos las siguientes
expresiones para la línea de mundo del centro de masa y la su velocidad V µ = dRµ

dτ
,

MRµ =M−1MµνPν + τP µ, (3.72)
MV µ = P µ, (3.73)

con V µ = dRµ

dτ
.

En resumen, hemos encontrado la línea de mundo que define el centro de masa en
términos de las variables M,Mµν , P ν . Para ello, debimos fijar el momento angular
ya que en el espacio de Minkowski la libertad de traslaciones permiten distintas de-
finiciones. Este procedimiento es una demostración simplificada de lo que sucede en
espaciotiempos asintóticos generales, donde el grupo de simetrías es más grande y
debemos elegir un gauge que fije las supertraslaciones adicionalmente.
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3.3.2. Ecuaciones para un sistema físico con centro de masa
xµ(u)

Dada una foliación nula a primer orden Z = Z0 + Z1 como en la Ec. (3.44),
podemos obtener la posición del centro de masa y su momento angular intrínseco
de manera similar a como hemos hecho para un espaciotiempo plano. Ahora, pro-
cederemos a hacer nuestro cálculo en un espaciotiempo con radiación gravitacional
como puede ser, por ejemplo, el espaciotiempo asociado a un sistema binario de dos
agujeros negros.

Para deducir la posición del centro de masa y el momento angular intrínseco
debemos hacer algunas suposiciones de trabajo:

1. La radiación debió ser nula (σ = 0) para algún tiempo de Bondi. Generalmente
se toma σ|u=−∞ = 0.

2. Supondremos que la parte espacial del Ri(u) de la línea de mundo del centro
de masa es una desviación pequeña del origen de coordenadas.

3. La componente temporal de la línea de mundo R0 = u, es decir, los sistemas
no se mueven a velocidades relativistas.

4. El shear gravitacional solo tiene componente cuadrupolar.

La primera suposición, es una implicación del gauge elegido para las supertraslaciones
y puede pensarse también como una condición equivalente para fijar las supertrasla-
ciones.

En principio estas suposiciones pueden ser abandonadas, pero como queremos ha-
cer una comparación directa con otras formulaciones, como la formulación de Adamo-
Newman-Kozameh (ANK) o la formulación postnewtoniana (PN) de las ecuaciones
de movimiento, serán necesitadas para este propósito. Específicamente, el formalismo
PN elige un tiempo inicial donde el sistema en cuestión es estacionario y la métrica
es plana, en lugar de nuestra suposición número 1.

La últimas dos suposiciones (3 y 4) son suposiciones que permiten una mayor
simplificación en los cálculos pero de ninguna manera son restrictivos: en caso de
querer mayor precisión en las fórmulas, basta agregar órdenes mayores en la veloci-
dad u órdenes mayores en los modos de la radiacción gravitacional, dependiendo si
trabajamos con sistemas relativistas o sistemas altamente no lineales respectivamen-
te.
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Cálculo de la posición

Vimos ya en la Ec. (3.58) cómo podemos hallar el momento dipolar másico para
cortes relacionados al centro de masa del sistema en un sistema de Bondi. Usaremos
ahora el esquema (2.15) para trabajar con una foliación a primer orden de forma
similar al Cap.[2].

Para obtener expresiones desacopladas en modos haremos la expansión en esféri-
cos armónicos tensoriales de todas las cantidades escalares

σ0(u, ξ, ξ̄) = σij(u)Y 2
2,ij(ξ, ξ̄) (3.74)

ψ0
1(u, ξ, ξ̄) = ψ0i

1 (u)Y
1
1i(ξ, ξ̄) + ψ0ij

1 (u)Y 1
2ij(ξ, ξ̄) (3.75)

Ψ = −2
√
2G

c2
M(u)− 6G

c3
P i(u)Y 0

1i(ξ, ξ̄) + Ψij(u)Y 0
2ij(ξ, ξ̄) (3.76)

Notemos que aquí el tensor σij representa el momento cuadrupolar de la radiación
gravitacional.

Ahora, si escribimos xa(u) al cuadrivector (R0(u), Ri(u)), y reemplazando la ex-
pansión (3.74) en la ecuación para los cortes nulos a primer orden homogénea (2.23),
obtenemos la solución

uB = Z0 + Z1(u, ξ, ξ̄) = u+ δu = R0(u)− 1

2
Ri(u)Y 0

1,i +
1

12
σijR(u)Y

0
2,ij. (3.77)

Las componentes de Rµ representan una línea de mundo en un espacio de Minkows-
ki fiduiciario. Si elegimos u como el tiempo propio, podemos encontrar fácilmente
R0(u) en términos de las componentes espaciales de la 4-velocidad. Aún más, en la
aproximación no relativista R0(u) = u+O(v2).

Una vez encontrada la expresión para la foliación Z1, podemos obtener el Rµ(u)
correspondiente a la línea de mundo del centro de masa del espaciotiempo a través
de la Ec. (3.58). De esta forma, tenemos

0 = Di(u+ δu) +
3c2

6
√
2G

Re[(Ψ− ð2σ̄0)ðδu+ F ]i

0 = Di(u) + [Ḋ(u)δu]i +
3c2

6
√
2G

Re[(Ψ− ð2σ̄0)ðδu+ F ]i

0 = Di(u) +
c2

6
√
2G

Re[(ðΨ− ð3σ̄0)δu]i +
3c2

6
√
2G

Re[(Ψ− ð2σ̄0)ðδu+ F ]i.
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En la segunda línea hemos hecho una desarrollo de la funciónDi(u+δu) ya que hemos
supuesto δu pequeño. En la tercera línea hemos usado las ecuaciones de evolución
de Bianchi (1.82,1.83) para reemplazar Ḋ(u).

Luego de reemplazar la expansión en términos de los esféricos armonicos tenso-
riales, podemos despejar la expresión final para la posición del centro de masa Ri. A
saber,

MRi = Di +
8

5
√
2c
σijRP

j, (3.78)

donde σijR y σijI representa la parte real e imaginaria del tensor σij, M es la masa de
Bondi del sistema y P j las componentes del momento lineal gravitacional. Podemos
hallar la foliación de cortes nulos asociados al centro de masa insertando la expresión
encontrada (3.78) en (3.77). Esto es,

ZCM = u− 1

2M
(Di +

8

5
√
2c
σijRP

j)Y 0
1i +

1

12
σijRY

0
2,ij. (3.79)

Similarmente, podemos encontrar el momento angular intrínseco del espaciotiempo
utilizando la relación (3.59),

J∗i(u) = J i(u+ δu) +
3c3

6
√
2G

Im[(Ψ− ð2σ̄0)ðδu+ F ]i

= J i(u) + [J̇(u)δu]i +
3c3

6
√
2G

Im[(Ψ− ð2σ̄0)ðδu+ F ]i

= J i(u) +
c3

6
√
2G

Im[(ðΨ− ð3σ̄0)δu]i +
3c3

6
√
2G

Im[(Ψ− ð2σ̄0)ðδu+ F ]i.

Aquí hemos aplicado el procedimiento análogo al momento dipolar másico en la
segunda y tercer línea. Si reemplazamos la última expresión la foliación del centro
de masa (3.79) y recordamos que J∗i(u) = Si(u), entonces

Si = J i − ϵijkRjPk. (3.80)

El lector debe notar que esta ecuación se reduce a la ecuación Newtoniana que
conocemos del momento angular intrínseco cuando σ = 0. De la misma manera,
Ri = Di/M cuando no hay radiación gravitacional.

Ecuaciones dinámicas

La evolución temporal de Di y J i se deduce de las identidades de Bianchi (1.83)
para ψ0

1. Debemos tener en cuenta que existe un factor
√
2 entre el tiempo retardado
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y el tiempo de Bondi, uret =
√
2uB. Es importante utilizar el tiempo retardado

para obtener los factores numéricos correctos en las expresiones finales. Usaremos un
punto para simbolizar la derivada con respecto al tiempo retardado en las siguientes
expresiones.

Si derivamos la expresión (3.57) e introducimos la Ec. (1.83), obtenemos para la
parte real e imaginaria

Ḋi = P i (3.81)

J̇ i =
c3

5G
ϵijk(σ

kl
R σ̇

jl
R + σklI σ̇

jl
I ) (3.82)

De la misma manera, si tomamos las componentes l = 0 y l = 1 del aspecto de masa,
o equivalentemente, derivamos el primer término en la integral de linkages (3.32) y
reemplazamos la identidad de Bianchi (1.82), se obtienen las ecuaciones de pérdida
de masa y momento lineal.

Ṁ = − c

10G
(σ̇ijR σ̇

ij
R + σ̇ijI σ̇

ij
I ) (3.83)

Ṗ i =
2c2

15G
ϵijkσ̇

jl
R σ̇

kl
I . (3.84)

Si tomamos la derivada con respecto al tiempo retardado de (3.78), encontramos
la velocidad asociada al centro de masa del sistema. Esto es,

MṘi = P i +
8

5
√
2c
σ̇ijRP

j. (3.85)

Esta ecuación provee una relación entre el centro de masa del sistema con el momento
lineal de Bondi P i ya conocido en Relatividad General de un sistema. Notemos que
(3.85) difiere de la relación Newtoniana Ṙi = P i/M en los términos de radiación σij.

Finalmente, si tomamos una derivada más de esta última relación, obtenemos la
ecuación de movimiento del centro de masa

MR̈i =
2c2

15G
ϵijkσ̇

jl
R σ̇

kl
I +

8

5
√
2c
σ̈ijRP

j. (3.86)

Notemos que la acelaración de la línea de mundo depende del dato gravitacional en
el infinito nulo y de la masa inicial del sistema.

Similarmente, si tomamos la derivada temporal del momento angular intrínseco

Ṡi =
c3

5G
ϵijk(σ

kl
R σ̇

jl
R + σklI σ̇

jl
I ) (3.87)
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Esta ecuación también es válida en mecánica Newtoniana para un sistema aislado,
cuando σ = 0 y el momento angular es conservado. En relatividad general, sin
embargo, el momento angular intrínseco de un sistema aislado no se conserva ya que
se pierde en forma de radiación gravitacional.

3.3.3. Comparación con otros formalismos

En esta sección compararemos las fórmulas obtenidas con las ecuaciones de mo-
vimientos provenientes de otros formalismos.

Comparación con las ecuaciones ANK

Existe un formalismo similar presentado en la anterior sección que permite ob-
tener formulas de evoluión para las cantidades físicas globales definidas también en
el inifinito nulo. Este es el formalismo Adamo-Newman-Kozameh ([20]) cuyo espacio
de soluciones se diferencia principalmente por las siguientes características

1. En primer lugar, el formalismo ANK define el momento angular y dipolar
másico a partir del modo l = 1 del escalar ψ0

1. En nuestro caso, el formalismo
presentado en esta tesis define el momento angular y dipolar másico a partir
del concepto de linkages de Winicour y simetrías asintóticas en el infinito nulo.

2. Mientras que el formalismo ANK utiliza cortes con deformación nula asintó-
tica σ0, nuestro formalismo incorpora cortes nulos con σ ̸= 0 obtenidos de la
ecuación de cortes.

3. La ecuación de cortes en el formalismo ANK se denomina ecuación de cortes
buenos (good cuts equation) y su espacio de solución es complejo, mientras que
el espacio de soluciones de nuestra ecuación de cortes nulos es real y de esta
manera permite identificarse con cantidades físicas de interés.

4. Dado que el espacio de soluciones en el formalismo ANK es complejo, también
lo es la línea de mundo asociada a esta solución y por lo tanto su interpretación
física no es tan directa. En el formalismo ANK, el momento angular intrínseco
se define como la parte imaginaria de la línea de mundo, mientras que en nuestro
formalismo se define en forma análoga a la mecánica clásica: es el momento
angular asociado a la línea de mundo del centro de masa.
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Estas diferencias delineadas son fundamentales en los resultados obtenido de ambos
formalismos. En efecto, en el formalismo ANK el momento angular total y momento
dipolar másico se definen

Di = − c2

6
√
2G

ψ0i
1R +

c2

5G
ϵijkσ

jl
Rσ

kl
I (3.88)

J i = − c3

6
√
2G

[ψ0
1 − σ0ðσ̄0 − 1

2
ð(σ0σ̄0)]iI . (3.89)

Como hemos mencionado, la principal diferencia en las ecuaciones proviene de inte-
grar las simetrías del grupo BMS en la definición de estas cantidades. Por otro lado,
M y el momento lineal P i permanecen iguales en ambos formalismos.

Es importante mencionar que el momento angular (3.89) solo está bien definido
para radiación cuadrupolar y su definición debe ser cambiada al considerar momentos
multipolares más altos al l = 2. En cambio, nuestro formalismo permite generalizarse
para cualquier modo de radiación mayor al cuadrupolar.

La ecuación de movimiento para el centro de masa en el formalismo ANK se lee

Mξ̈iR =
2
√
2c2

15G
ϵijkσ̇

jl
R σ̇

kl
I (3.90)

y por lo tanto la dinámica entre ambos formalismo es sustancialmente distinta.

Comparación con las ecuaciones Post-Newtonianas

El formalismo post-newtoniano es una formalismo matemático que combina con-
ceptos de la mecánica newtoniana y la teoría de la relatividad general de Einstein
para proporcionar una descripción más precisa de la gravedad y sus efectos en varios
sistemas físicos.

Actualmente, el formalismo PN es uno de los formalismos más usados en relati-
vidad general [21] con una inumerable cantidad de aplicaciónes: desde simulaciones
de agujeros negros y detección de ondas gravitacionales hasta deflección de la luz y
redshift gravitacional.

En esta sección compararemos parcialmente las ecuaciones de evolución obtenidas
de nuestro enfoque con aquellas que vienen del formalismo Post-Newtonian (PN). En
principio, una comparación detallada entre ambos formalismos es una tarea ardua
ya que las derivaciones de los dos formalismos tienen un punto de partida distinto:
el formalismo PN define los momentos multipolares en zonas cercanas a las fuentes
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y en términos de la fuente, mientras que la formulación asintótica define momentos
multipolares radiativos.

Por otro lado, las ecuaciones de movimiento de la formulación asintótica para la
masa, el momento lineal y angular son exactas, permitiendo aplicarse a cualquier tipo
de sistema gravitacional. En cambio, en el enfoque post-newtoniano se construye la
pérdida gravicional solo válida hasta cierto orden de aproximación, ya que a priori uno
no tiene disponible una fórmula exacta. Sin embargo, es importante intentar contruir
un puente entre los dos enfoques distintos y ver si producen o no ecuaciones de
movimiento equivalentes para una fuente compacta que emite radiación gravitacional.

En el formalismo PN, las ecuaciones para la pérdida de energá, momento lineal
y angular vienen dadas por las ecuaciones

ĖPN = −1

5
U̇ ijU̇ij −

16

45
V̇ ijV̇ij −

1

189
U̇ ijkU̇ijk −

1

84
V̇ ijkV̇ijk, (3.91)

Ṗ i
PN = ϵijk

(
16

45
U̇klV̇ jl +

1

126
U̇klmV̇ jlm

)
− 2

63
(U̇ jkU̇ ijk + 2V̇ jkV̇ ijk), (3.92)

J̇ iPN = −ϵijk
(
2

5
UklU̇ jl +

32

45
V klV̇ jl

)
− ϵijk

(
1

63
UklmU̇ jlm +

1

28
V klmV̇ jlm

)
, (3.93)

donde hemos incluido los términos octupolares de la descripción PN. La descripción
de estas mismas cantidades físicas en términos de nuestro formalismo asintótico, y
teniendo en cuenta también los términos octupolares, se lee

Ṁ = − 1

10
(σ̇ijR σ̇

ij
R + σ̇ijI σ̇

ij
I )−

3

7
(σ̇ijkR σ̇ijkR + σ̇ijkI σ̇ijkI ), (3.94)

Ṗ i = − 2

15
ϵijkσ̇klR σ̇

jl
I −

√
2

7
(σ̇jkR σ̇

jk
I + σ̇jkI σ̇

ijk
I )− 3

7
ϵijkσ̇klmR σ̇jlmI , (3.95)

J̇ i =
1

5
(σklR σ̇

jl
R + σklI σ̇

jl
I )−

9

7
(σklmR σ̇jlmR + σklmI σ̇jlmI ). (3.96)

Como las expresiones son cuadráticas en los términos de radiación, solo necesitamos
una relación lineal entre la deformación gravitacional y los momentos multipolares
post-newtonianos. Usando las ecuaciones de Einstein linearizadas y el gauge trans-
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verso, es posible encontrar las siguientes relaciones

σijR = −
√
2U ij, (3.97)

σijI =
8

3
√
2
V ij, (3.98)

σijkR = −1

9
U ijk, (3.99)

σijkI = −1

6
V ijk. (3.100)

De esta forma, ambos sistemas de ecuaciones son equivalentes a orden octupolar.
Este es un resultado destacable, ya que las ecuaciones de evolución provienen de
enfoques completamentes distintos.

Por otro lado, hay que ser cuidadosos con las ecuaciones finales de movimiento
del centro de masa, energía y espín de un sisetma, ya que la relación de estas canti-
dades con las variables cinemáticas son distintas en ambas formulaciones. Es común
encontrar en la literatura post-newtoniana, la definición de la velocidad de retroceso
(recoil velocity) del centro de masa definida como ∆P

M
, es decir la integral de la ec.

(3.95) dividida la masa total final del sistema. Sin embargo, se sigue de la Ec. (3.85)
que nuestra formulación arroja un resultado diferente. Un estudio más detallado de
esta cantidad será dado en la próxima sección.
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Aplicación a ondas gravitacionales

Las ondas gravitacionales han revolucionado nuestra comprensión del universo y
nos han brindado una nueva ventana para explorar los eventos cósmicos más vio-
lentos. Estas ondas son perturbaciones en el espacio-tiempo que se propagan a la
velocidad de la luz, llevando consigo información sobre eventos como fusiones de
agujeros negros, colisiones de estrellas de neutrones y otras manifestaciones extre-
mas de la gravedad.

Uno de los avances clave en la detección de las ondas gravitacionales ha sido
el uso de simulaciones numéricas de agujeros negros binarios. Estas simulaciones,
basadas en las ecuaciones de la relatividad general de Einstein, nos permiten recrear
y estudiar en detalle los procesos de fusión y colisión de agujeros negros.

La relevancia de estas simulaciones radica en su papel fundamental en la detección
y caracterización de las ondas gravitacionales. Al simular los eventos de fusión de
agujeros negros, es posible predecir las señales que se esperan detectar y compararlas
con las observaciones reales. Esto proporciona una base sólida para identificar y
analizar las ondas gravitacionales detectadas por los observatorios.

Un ejemplo destacado de los catálogos desarrollados mediante estas simulaciones
es el catálogo del Instituto de Tecnología de Rochester [22, 23, 24, 25, 26]. Este ca-
tálogo alberga más de 1800 simulaciones de agujeros negros binarios, abarcando una
amplia gama de masas y configuraciones. Estas simulaciones nos permiten explorar
diversas características de las ondas gravitacionales, como la amplitud, la frecuen-
cia y la duración de las señales, lo que contribuye a nuestro conocimiento sobre la
naturaleza de los eventos astrofísicos extremos.

Haremos uso de este catálogo en las próximas secciones para estudiar las ecua-
ciones del centro de masa y momento angular intrínseco.
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4.1. Ecuaciones de movimiento
Hemos visto en el Capítulo anterior [3], las ecuaciones de movimiento para el

centro de masa y el momento angular intrínseco para términos de radiación octupolar.
También las ecuaciones de evoluciones de la energía, el momento lineal y angular
total para un espaciotiempo radiativo. Ahora nuestro interés yace en utilizar estas
ecuaciones para estudiar la radiación gravitacional de un espaciotiempo formado
por un sistema compuesto por dos agujeros negros. Este tipo de sistemas cumple
con nuestras hipótesis de trabajo ya que al ser un sistema aislado, satisface ser un
espaciotiempo asintóticamente plano. Por otro lado, un sistema binario de agujeros
negros también puede considerarse estacionario en el infinito pasado, por lo tanto
puede elegirse σ(uB = −∞) = 0.

Dado que los sistemas binarios de agujeros negros pueden alcanzar hasta 1,33%
de la velocidad de la luz en el caso de binarias con órbitas cuasicirculares y espínes
precesando [27], o hasta un 9% de la velocidad de la luz para binarias en colisión
frontal [28], necesitamos agregar más precisión a nuestras ecuaciones incluyendo los
términos lineales en la velocidad del centro de masa. También agregaremos los térmi-
nos de la forma σ2R para contemplar las contribuciones provenientes de movimientos
significativos en el centro de masa. Los escenarios donde esta última consideración
serán más importante son las configuraciones con masas muy desiguales.

Si recordamos la expresión para el momento dipolar másico y el momento angular
(3.50),

D∗
i +

i

c
J∗
i =

1

8π
√
2

∮
Y ∗−1
1i (ξ, ξ̄)

[
2ψ∗0

1 − 2σ∗0ð∗σ̄∗0 − ð∗(σ∗0σ̄∗0)

Z ′3

]
, (4.1)

donde para integrar esta expresión hemos hechos la simplificación de velocidades
bajas e ignorado el jacobiano proveniente de integrar en la variable ξ∗. Esto es, la
integración fue hecha considerando un corte de Bondi con área unitaria. Sin embargo,
como ahora nos interesa considerar una foliación con velocidad V (u, ξ, ξ̄) con respecto
a una foliación de Bondi, necesitamos escribir la ley de transformación de Y ∗−1

1i (ξ, ξ̄),
o lo que es lo mismo, el vector m̄∗

i .
El vector m̄i transforma acorde a las transformaciones nulas vistas en la sección

[1.4],
Y ∗−1
1i (ξ, ξ̄) = e−iλ[Y −1

1i (ξB, ξ̄B) + āY 0
1i(ξ, ξ̄)], (4.2)

con

a =
2ðBṪ
Ṫ

≈ 2
√
2V iY −1

1i , (4.3)
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el parámetro del grupo de las rotaciones de Lorentz que hemos aproximado a primer
orden multipolar. De esta manera, las ecuaciones de evolución toman la forma

Ḋi =
√
2P i +

3

7

c2√
2G

[
(σ̇ijkR σjkR − σijkR σ̇jkR )

]
+

3

7

c2√
2G

[
(σ̇ijkI σjkI − σijkI σ̇jkI )

]
, (4.4)

J̇ i =
c3

5G
(σklR σ̇

jl
R + σklI σ̇

jl
I )ϵ

ijk

+
9c3

7G
(σklmR σ̇jlmR + σklmI σ̇jlmI )ϵijk, (4.5)

Ṁ = − c

10
√
2G

(σ̇ijR σ̇
ij
R + σ̇ijI σ̇

ij
I )

− 3c

7
√
2G

(σ̇ijkR σ̇ijkR + σ̇ijkI σ̇ijkI ), (4.6)

Ṗ i =
2c2

15
√
2G

σ̇jlR σ̇
kl
I ϵ

ijk −
√
2c2

7
√
2G

(σ̇jkR σ̇
ijk
R + σ̇jkI σ̇

ijk
I )

+
3c2

7
√
2G

σ̇jlmR σ̇klmI ϵijk, (4.7)

con las ecuaciones para el centro de masa y momento angular intrínseco

Di = MRi +
1

c2
ϵijkV jSk − 8

5
√
2c
P j∆σijR

−c
2

G
ϵijk(

4

5
σjlI σ

kl
R − 36

7
σklmI σjlmR ), (4.8)

J i = Si + ϵijkRjP k

− 151c2

168
√
2G

(σijkR σjkI − σijkI σjkR ), (4.9)
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y las ecuaciones de movimiento del centro de masa

MV i =P i − 1

c2
ϵijk
(
V jSk

)′
+

8

5
√
2c

∆P jσij′R − 36c2

7G
ϵijk
(
σklmI σjlmR

)′
(4.10)

MV i′ =
2c2

15G
σkl′I σ

jl′
R ϵ

ijk −
√
2c2

7G

(
σjk′R σijk′R + σjk′I σijk′I

)
(4.11)

+
3c2

7G
σjlm′
R σklm′

I ϵijk

− 1

Mc2
ϵijkP jSk′′

+
8

5
√
2c

∆P jσij′′R − 36c2

7G
ϵijk
(
σklmI σjlmR

)′′
.

La idea principal de este capítulo será entonces dar datos iniciales para resolver las
Ecs. (4.4)-(4.7), asumiento que antes de que la radiación gravitacional sea emitida,
la línea de mundo del centro de masa es el origen del sistema de coordenadas de
Bondi. Una vez que las identidades de Bianchi han sido resueltas, introducimos
nuestro procedimiento perturbativo que preserva el orden de las ecuaciones y resuelve
algebraicamente para las variables Ri y Sj.

4.2. Obtención del shear gravitacional
Notemos que las ecuaciones de movimientos están escritas en términos de la

deformación de Bondi mientras que la radiación gravitacional en el catálogo del
RIT viene dada a través del escalar ψ0

4. En relatividad numérica es común expandir
este escalar en la base de esféricos armónicos espinoriales (s)Ylm, con s, l,m números
enteros que caracterizan las propiedades del esférico armónico. Entonces

ψ0
4 =

∑
l,m

Ψlm
(−2)Ylm. (4.12)

Aquí Ψlm representa los modos multipolares de radiación provenientes de las ondas
gravitacionales en el infinito nulo. En la práctica, las cantidades Ψlm para cada valor
de l y m, serán arreglos bidimensionales con una columna para la evolución temporal
y otra para los valores de Ψlm en cada tiempo. Estos valores están almacenados
en archivos de datos que han generados las simulaciones numéricas de binarias de
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agujeros negros con distintas configuraciones iniciales.
Conociendo la solución asintótica para σ0 de (1.73), podemos escribir entonces

¨̄σ0 = −
∑
l,m

Ψlm
(−2)Ylm. (4.13)

Luego de integrar dos veces esta ecuación con respecto al tiempo podemos obtener
la parte imaginaria y real de la deformación gravitacional que necesitan nuestras
ecuaciones. Debido a que nuestras ecuaciones de evolución están escrita en términos
de la base de esféricos armónicos tensoriales, necesitamos las leyes de transformación
entre ambas bases (s)Ylm y Y s

l,Il
.

Dada una función f regular en la esfera de peso de espín s, esta puede ser expandida
de la forma

f =
∞∑
l=|s|

l∑
m=−l

flm(s)Ylm, (4.14)

o también como

f =
∞∑
l=|s|

l∑
m=−l

f IlY s
l,Il
. (4.15)

Es decir que podemos escribir también una base completa en términos de la otra,

Y s
l,Il

=
∑
m

Km
Il (s)

Ylm (4.16)

y encontrar los coeficientes Km
Il

usando la ortonormalización de los (s)Ylm. Entonces,

Km
Il

=

∫
S2

Y s
l,Il (s)

YlmdS. (4.17)

Si ahora tomamos f = σ0, podemos escribir las relaciones para encontrar σij y
σijk, requeridas por nuestras ecuaciones de movimiento. Explícitamente, las relacio-
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nes son

¨̄σxy = − i

4

√
5

π
(Ψ22 −Ψ2−2), (4.18)
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¨̄σyy =
1

4

√
5

π
(Ψ2−2 +Ψ22) +

1

6

√
15

2π
Ψ20, (4.20)
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¨̄σxyz =
i

12

√
7

2π
(Ψ3−2 −Ψ32). (4.29)

Los tensores de orden l = 4, σijkl, y en general cualquier tensor de orden l,
también puede obtenerse mediante este método. Aquí solo hemos escrito los tensores
necesarios para resolver nuestras ecuaciones a orden octupolar.

Integración numérica de los modos de radiación

Notamos que la Ec. (4.13) requiere una doble integración numérica del escalar
Ψ4 para la obtención de σ0.
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(a) Comparison of modes l=2,m=2. (b) Comparison of modes l=2,m=-2.

Figura 4.1: Integración de los modos l = 2 de la simulación nº14 del catálogo de
Rochester, que dan la mayor contribución gravitacional. A la izquierda, σdir se mues-
tra el gráfico obtenido de hacer la integración directamente. A la derecha, σReiss se
muestra el gráfico obtenido luego de utilizar el código de Reisswig.

Esta integración sin embargo no puede hacerse de forma directa ya que aparece
un desvío no lineal de σ como efecto secundario. Este efecto tiene su origen en las
rápidas oscilaciones que presenta el escalar Ψ4 en las simulaciones numéricas cerca
de la coalescencia. Los errores de integración se acumulan rápidamente sumando una
contribución no lineal a la radiación. Por otro lado, también hay desvíos lineales que
afectan la integración y provienen de los datos iniciales σB y σ̇B, que deben ser dados
como condición inicial en las integraciones. Estos desvíos pueden producir hasta va-
riaciones en el orden de ≈ 0,2 en la componente de radiación de mayor contribución,
σ22. Dado que la contribución gravitacional aparece en términos cuadraticos en las
ecuaciones de movimiento, la variación es del orden de hasta ≈ 0,04.

Las desviaciones en la integración numérica deben ser corregidas para obtener
más precisión en la deformación gravitacional σ, y por ende en las ecuaciones finales.
Por ello, hemos implementado el código pyGWAnalysis[29] el cual resuelve los pro-
blemas de integración numérica implementando una transformación de Fourier con
una función ventana y una frecuencia de cutoff para las frecuencias bajas (el cutoff
es menor a todas las frecuencias físicas posibles). El código arroja como resultado
final las polarizaciónes lineal, h+, y perpendicular, h×, de las cuales podemos obtener
la deformación gravitacional σ0 a través de la relación σ0 = −h. Aquí, las polariza-
ciones suma y cruz nos darán las componentes reales e imaginarias de la deformación
gravitacional. En la Fig. [4.1] podemos visualizar los efectos de integrar directamen-
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te en forma numérica vs. integrar con el código pygwanalysis. Para conocer más
sobre el código el lector puede consultar [30].

Ondas viajeras en los datos del catálogo

Otro problema con el que lidiamos a la hora de evoluciar las ecuaciones de mo-
vimiento es la ráfaga o explosión inicial espuria que presentan las simulaciónes del
catálogo.

En la fig. [4.2] graficamos la evolución de la cantidad Ψ0
4Ψ̄

0
4 de la simulación nº443

a modo demostrativo. Para calcular el valor absoluto de Ψ0
4 todas las contribuciones

provenientes de los modos l = 2 y l = 3 deben ser sumadas. De esta forma, podemos
visualizar que al principio de esta simulación existe una explosión de radiación, la
cual no tiene relación física con la coalescencia.

Por otro lado, en la fig. [4.3] podemos ver la evolución del momento de Bondi de la
simulación nº443 del catálogo. La evolución se muestra en un sistema de Bondi cuyo
origen es en el centro de masa, inicialmente en reposo. Luego de la ráfaga inicial,
el momento deja de ser nulo y permanece constante hasta que el sistema binario
empieza a emitir ondas gravitacionales. Finalmente, el momento lineal de Bondi es
constante y no nulo. Como la ráfaga inicial de radiación es un efecto numérico en
general no deseado, corremos el código una vez alcanzado el tiempo de relajación
y antes de la colescencia de las binarias de agujeros negros. Entonces, reiniciamos
el tiempo y elegimos otro sistema de Bondi en reposo con el centro de masa de la
simulación luego de la ráfaga inicial espuria de las simulaciones.

Figura 4.2: Evolución de la radiación gravitacional para la simulación nº443
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Figura 4.3: Evolución temporal del valor absoluto del momento de Bondi. La figura
muestra un pequeño cambio de 0 a 500 debido a la explosión inicial.

4.3. Análisis de los Resultados
Para realizar el análisis de la física de nuestra formulación, comenzamos la inte-

gración númerica de las cantidades Ṁ(4.4), Ṗ (4.7), Ḋ(4.4), J̇(4.5), donde los datos
iniciales para estas cantidades son tomadas de los metadatos que se encuentran en
el catálogo de simulaciones.

Las ondas aisladas iniciales o explosión inicial sin relevancia física (ver sección
anterior) que están presenten en la integración numérica son corregidas previamen-
te encontrando el tiempo de relajación (tiempo en que la radiación espuria se ha
desvanecido) y luego quitando la contribución de esta onda a la radiación en el in-
finito nulo. Escencialmente, esto se traduce en resetear el tiempo initial a el tiempo
de relajación de la simulaciones y luego utilizar los datos iniciales del catálogo de
Rochester para las ecuaciones de evolución. Nuestro sistema de Bondi es tal que en
el tiempo de relajación el origen de nuestras coordenadas está en el centro de masa,
que se encuentra en reposo en ese tiempo. El tiempo inicial es reiniciado a cero en
este punto.
Luego de calcular estas ecuaciones, resolvemos algebraicamente los siguientes siste-
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mas.
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Si + ϵijkRjP k = J i +
151c3

168
√
2G

(σjkI σ
ijk
R − σijkI σjkR ). (4.31)

Finalmente, encontramos las velocidades y aceleración del centro de masa.
Siguiendo las mismas convenciones del repositorio de Rochester, hemos agrupado los
resultados numéricos en differentes clases, dependiendo de las masas relativas de los
agujeros negros y dependiendo también de su espín. De esta forma, llamaremos EM
(equal masses) a las simulaciones con dos agujeros negros de igual masa (q = 1) o
NEM (non equal masses) a las simulaciones con dos agujeros negros de distintas
masa. Similarmente, llamaremos a las simulaciones con agujero negros no rotantes
NS (non spinning), a las simulaciones con espines alineados con el momento angular
orbital A (aligned), y a las simulaciones con espines no alineados con el momento
angular orbital P (precessing). Notemos aquí la distinción hecha entre las dos clases
EM y NEM de simulaciones. Nos interesa estudiar particularmente el comporta-
miento del centro de masa gravitatorio para el caso simétrico de dos agujeros negros
con masas iguales y corroborar si la radiación gravitatoria afecta al centro de masa
del sistema o lo mantiene inmóvil como sucede en la mecánica Newtoniana.

Estudiaremos en las próximas secciones la posición del centro de masa, su ve-
locidad, aceleración y también la distribución de estas cantidades a lo largo de las
distintas simulaciones. También el momento angular intrínseco definido a partir del
centro de masa. En particular, nos interesará analizar los valores numéricos de nues-
tras cantidades físicas definidas a partir del infinito nulo y por medio de los Linkages
de Winicour.

Estudiaremos luego la relación de las cantidades físicas finales y los parámetros
iniciales de las simulaciones, tales como la relación entre la energía total radiada y el
momento angular total inicial Jin o el cociente de masas q. Es importante distinguir
entre dos conjuntos de variables en este estudio. El primero, las variables globales,
son bien definidas en nuestro formalismo y pueden construirse a partir del infini-
to nulo sin conocimiento de las masas de los agujeros negros, espines y momento
angular orbital. Basta conocer la radiación gravitacional que arriba al infinito so-
lamente. El segundo conjunto de parámetros corresponde a los parámetros locales
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que componen las condiciones iniciales en el catálogo de Rochester. En este conjunto
se encuentran los espines iniciales de cada agujero negro, las masas y el momento
angular orbital de las binarias de agujeros negros. Conocer este segundo conjunto
es de suma importancia para entender las características propias del sistema aislado
en cuestión y entenderla en términos de la radiación gravitacional que generan. Aún
más, es importante entender la relación entre ambos tipos de variables para obtener
una mejor comprensión de la estructura global del espaciotiempo.

4.3.1. Distribución de resultados

(a) Distribucion del cambio
en el momento angular in-
trínseco ∆S (en unidades del
código) en las simulaciones

(b) Distribución de velocida-
des finales Vf (en km/s) en
las simulaciones

(c) Distribución total de
energía radiada Erad en las
simulaciones

Figura 4.4: Distribución de las principales variables de interés para todas las simu-
laciones.

Hemos hecho un resumen de los resultados obtenido tras usar las Ecs. (4.4)-(4.7)
en las Figs.[4.4a]-[4.4b]. Estas distribuciones nos dan un idea general de la energía
radiada Erad, la velocidad final del centro de masa Vf y la variación del momento
angular intrinseco ∆S para el total de las simulaciones. Las distribuciones fueron
normalizadas y luego ajustadas a una Gaussiana para entender su comportamiento
en términos de la media y dispersión de las variables físicas obtenidas de las simula-
ciones. Podemos ver en estas distribuciones que, por ejemplo, la velocidad del centro
de masa para la mayor parte de las simulaciónes es menor a ≈ 1000km/s (Fig.
[4.4b]). Trataremos de entender este tipo de cuestiones en términos de las variables
locales del sistema de agujeros negros.

Recordemos que nuestro formalismo está descripto en términos del tiempo de
Bondi. Con motivo de comparación dividimos las cantidades que provienen de deri-
vadas, como la velocidad del centro de masa Vf , por un factor

√
2 que contemplará
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la transformación desde el tiempo de Bondi u al tiempo estandar t. El factor
√
2

proviene de la relación t−r√
2
.

En la Fig. [4.4c], hemos graficado la distribución de energía radiada en todas las
simulaciones. Para ello, definimos la energía total irradiada como

Erad = 1− Mf

Mi

, (4.32)

donde Mi es la masa inicial de ADM de las binarias de agujeros negros y Mf es
la masa de Bondi final del remanente obtenida por la Ec. (4.6). Notemos aquí la
diferencia entre la masa final usada en este trabajo y la masa de Christodoulou usada
comunmente en la literatura de relatividad numérica. La distribución de energía
radiada para nuestro conjunto de soluciones varia en el rango ∼ 0− 13% y la media
de energía radiada es de 4,7% con una desviación estandar de 2,1%.

La definicion (4.32) es directamente proporcional al pico de energía Ṁmax o,
equivalentemente, la luminosidad máxima de la fuente. Esto es, a mayor la energía
total radiada en una simulación, mayor será el valor absolutdo de la máxima pérdida
de energía . En la Fig. [4.5], hemos mostrado esta proporcionalidad y vemos que
puede explicarse por la relación Erad = aṀmax con una constante,

a = 41,348± 0,194. (4.33)

Esta relación de proporcionalidad puede hacerse aún más precisa si nos restrin-
gimos a un cociente de masas específico q, como puede apreciarse en la Fig. [4.5].
Teniendo este resultado en mente, las figuras presentes en este trabajo utilizando la
variable Erad no serán muy diferentes de aquellas figuras utilzando Ṁmax. Esta re-
lación de proporcionalidad es una característica de los sistemas binarios de agujeros
negros y no será válida en general para cualquier sistema astrofísico.

Para terminar esta sección, mostramos una descripción general de la distribu-
ción de energía irradiada en términos del momento angular total Jin para todas las
simulaciones en la Fig. [4.6]. El gráfico muestra una relación no lineal entre ambas
variables y dependiente de los parámetros locales de cada simulación. Esta relación
será analizada particularmente para cada categoría de simulaciones hecha. El mode-
lo para entender el comportamiento de la energía radiada con respecto al momento
angular total inicial es desarrollado en el Apéndice C. Este modelo tiene un origen
Post-Newtoniano. De este modo, contrastaremos la evolución numérica de las varia-
bles, de un origen asintótico, con el modelo PN que vincula las variables locales con
la dinámica del sistema.
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Figura 4.5: Correlación entre la energía total radiada Erad y el pico de pérdida de
energía Ṁmax para todas las simulaciones. La línea punteada roja representa el ajuste
a los datos. La barra de colores indica el valor del cociente de masas entre las binarias,
q = m1/m2.

Binarias sin espines

En esta sección haremos el análisis del grupo de simulaciones sin espines iniciales.
Este grupo de binarias son las que presentan la física más sencilla ya que el espacio
de parámetros iniciales tiene la dimensión más baja.

Como primer paso, calculamos las correlaciones de la velocidad final y la lumi-
nosidad gravitacional máxima del sistema binario para un dado valor del cociente
de masas q. La pérdida de radiación gravitacional es calculada a través de la Ec.
(4.6) y está directamente relacionada a la luminosidad gravitacional a través de la
integración de esta sobre una superficie de área muy lejos de la fuente.

Dado que la luminosidad es una cantidad final que puede ser usualmente medida,
es relevante saber si existe una relación entre la radiación por unidad de tiempo y
el cociente de masas q. De la misma manera, asumiendo que la velocidad final del
centro de masas puede ser observada, la correlación con el cociente q también puede
brindar información relevante sobre la coalescencia.

Las correlaciones entre Vf , q y Ṁmax son mostradas en la Fig. [4.7]. Para modelar
la velocidad final del centro de masa hemos tomado el modelo de Fitchett para órbitas
circulares propuesto en [31], cuya dependencia con q es

Vf (q) = a
q2(1− q)

(1 + q)5
. (4.34)

con a una constante a ajustar. Calculamos a a través del método de mínimos cuadra-
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Figura 4.6: Correlación entre la energía radiada durante toda la simulación Erad y el
momento angular inicial Jin. Cada punto representa una simulación distinta.

dos. El mejor ajuste a nuestros datos dan un coeficiente a = 16317,78±207,93 km/s.
La derivación de la Ec. (4.34) puede verse en el apéndice C.

Encontramos que la velocidad máxima del centro de masa Vf = 309,43km/s se
alcanza para el valor q = 0,4. Por otro lado, se encuentran centros de masa con
velocidades nulas en los casos límites q = 0 o q = 1, es decir, m1 = 0 or m1 = m2.
Estos resultados pueden verse en la Fig. [4.7]. En términos clásicos, cuando q = 0,
el centro de masa se coincide con el centro de la masa m2; entonces, el centro de
masa permanece inmóvil ya que m1 no contribuye a su movimiento. Similarmente,
cuando q = 1, el centro de masa no se mueve debido a la simetría del problema y
clásicamente uno esperaría que el centro de masa se encuentra en la distancia media
entre las dos binarias.

Si bien los casos q = 0 y q = 1 producen velocidades nulas, la Fig.[4.7] muestra
que las binarias con q = 0 no tiene prácticamente pérdida de energía, mientras que
aquellas con q = 1 son los sistemas que presentan mayor radiación emitida. Así, los
sistemas binarios sin espines con q = 1 son los más factibles a ser detectables por sus
luminosidades grandes, mientras que los valores intermedios de q son más probables
de ser detectados por sus velocidades finales altas del remanente.

La otra relación explorada corresponde a la energía radiada en una simulación,
Erad, y el momento angular total inicial Jin. Para el grupo de las binarias NS, el
gráfico se muestra en la Fig. [4.8].

La Fig.[4.8] fue ajustada con una curva de la forma

Erad = b J2
in, (4.35)
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Figura 4.7: Correlación entre la velocidad final del centro de masa, el cociente de
masas q y el pico de pérdida de energía gravitacional Ṁmax. La línea punteada
muestra el ajuste del modelo de Fitchett.

con b = 0,050± 0,001. El modelo ajustado en la Ec. (4.35) está motivada por la
derivación hecha en el Apéndice C.

Similarmente, describimos la relación entre Ṁmax y q. El gráfico que relaciona
ambas variables se encuentra en la Fig. [4.9] y la fórmula fenomenológica que contiene
los dos parámetros a ajustar es derivada en el Apéndice C. Esta relación se lee,

Ṁ = − A

1000

q2

(1 + q)4

(
1 +

B

216

(
1− q

1 + q

)2
)
, (4.36)

con A y B obtenidos a partir de los datos numéricos. Esta fórmula tiene un origen
Post-Newtoniano y se deduce de esta misma que la luminosidad tiene un mínimo
en q = 0 y un máximo q = 1, es decir, las BBH con masas iguales producen las
luminosidades máximas.

Los coeficientes encontrados para la fórmula (4.36) a través de mínimos cuadrados
son

A = 22,44± 0,06 (0,30%) , (4.37)
B = −159,00± 4,74 (2,98%) . (4.38)

La relación (4.36) tiene la propiedad de ser injectiva. Por ello, dados los coefi-
cientes (4.37) y (4.38), es posible invertir la fórmula (4.36) y determinar qué cociente
de masa q correponde a esa luminosidad medida. En otras palabras, la información
dinámica global es usada para obtener información local de los agujeros negros.
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Figura 4.8: Correlación entre la radiación total emitida Erad y el momento angular
total inicial Jin. La barra de colores indica el cociente de masas q en cada simulación.
La letra k indica el orden del polinomio ajustado.

Binarias con espines alineados

En esta sección, analizaremos los sistemas de agujeros negros con espines alinea-
dos. Los espines iniciales en este tipo de configuración permanecen en la dirección
del vector momento angular orbital que es escogido como eje z. Este tipo de con-
figuración son conocidas por ser estables a lo largo de la evolución [32]. También
se trata de escenarios más realistas y por ende más relevante para las aplicaciones
astronómicas.

En la Fig. [4.10] comenzamos estudiando la dependencia de la velocidad final del
centro de masa Vf con el cociente de masas inicial q. Las figuras [4.10a] y [4.10b]
resaltan diferentes configuraciones iniciales para las distintas magnitudes y direccio-
nes de los espines. Entre todas las 407 simulaciones alineadas, el valor absoluto de
S2 toma los valores en el intervalo [0,0.7] y el valor absoluto de S1 toma valores en
el intervalo [0.,0.25].

La Fig.[4.10a] muestra que la velocidad final del centro de masa más alta en la ca-
tegoría de binarias de espines alineados Vf = 771,78 km/s se alcanza para el cociente
q = 0,6628. En el mismo gráfico, podemos apreciar que las velocidades máximas solo
se pueden lograr para BBH con espines antialineados (∠S1S2 = π). Esta propiedad
ha sido reportada en otros trabajos [33, 34]. Por otro lado, no parece haber una
imagen clara de la influencia entre la alineación del espín S1 y S2 en las velocidades
finales más bajas. Además, puede verse en la Fig.[4.10b] que cuando el momento
angular orbital inicial Lin está antialineado con el espín inicial S2 (∠LinS2 = π), se
alcanzan velocidades finales más altas.
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Figura 4.9: Correlación entre el pico de pérdida de energía Ṁmax y el cociente de
masas q. La barra de colores indica el valor de la energía radiada que es proporcional
al pico de pérdida de energía. La línea punteada muestra el ajuste del model a los
datos.

En resumen, parece que los espines de valor absoluto más altos, en este caso S2,
deben estar antialineados con el momento angular orbital inicial Lin y el espín de
menor valor absoluto, en este caso S1, para lograr las velocidades máximas para el
grupo alineado.

La correlación entre las velocidades finales Vf y la tasa máxima de pérdida de
masa Ṁmax se muestra en la Fig.[4.11]. También se presenta un patrón similar dis-
cutido para las binarias NS (Sec. [4.3.1]). La máxima velocidad posible en términios
de q tiene un máximo local (y absoluto) en q ∼ 0, 66. La velocidad final se anula en
q = 0, alcanza un valor máximo y luego disminuye para valores cercanos a q = 1.
Además, la pérdida de energía también se anula en q = 0. El caso de igual masa
q = 1 es bastante interesante. Como en el caso de NS, la máxima pérdida de energía
y la velocidad final también se anulan en q = 1. Sin embargo, a diferencia del caso
NS, ahora hay velocidades finales que no desaparecen en la configuración EM-A,
una gran diferencia con el caso NS.

Luego, la relación de la pérdida de energía con respecto al momento angular
total inicial Jin es analizada. En la Fig.[4.12], se muestra la dependencia entre el
momento angular total inicial Jin y la energía radiada total Erad para los rangos de
masas: 0 < q ≤ 0,2, 0,2 < q ≤ 0,4, 0,4 < q ≤ 0,6, 0,6 < q ≤ 0,8 y 0,8 < q ≤ 1.
Ajustamos un modelo polinomial cuadrático para cada rango que podría ser útil para
estimar energía en escenarios astrofísicos o incluso para futuras comparaciones. Los
coeficientes del ajuste para cada rango de masas puede encontrarse en la Tabla 4.1.
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(a) Los colores rojo y azul indican la alinea-
ción del espín S2 con respecto al momento
angular orbital Lin. Los colores verdes repre-
sentan binarias cuya alineación S2 con res-
pecto a Lin no se puede establecer ni diferen-
ciar. Se utilizan diferentes marcadores para
indicar el tipo de alineación entre los espines
S1 y S2.

(b) Los colores rojo y azul indican la alinea-
ción del espín S2 con respecto al momento
angular orbital Lin. El color amarillo tiene
S2 = 0 y por lo tanto no se puede estable-
cer alineación con respecto a Lin. Los puntos
verdes indican S1 = S2. Los marcadores in-
dican qué masa posee el mayor espín en las
simulaciones.

Figura 4.10: Correlación entre la velocidad final Vf y el cociente de masas q para
binarias con espines alineados en la dirección del momento angular orbital.
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Figura 4.11: Correlación entre Vf y q para binarias alineadas. La barra de colores
muestra los niveles de pérdida máxima de energía Ṁmax. La línea discontinua indica
el límite fronterizo de las velocidades finales (en km/s).

q a0 a1 a2
0 < q ≤ 0,2 0,037± 0,016 −0,023± 0,017 0,0095± 0,0031
0,2 < q ≤ 0,4 0,032± 0,004 −0,007± 0,005 0,0138± 0,0013
0,4 < q ≤ 0,6 0,093± 0,009 −0,102± 0,015 0,0553± 0,0065
0,6 < q ≤ 0,8 0,12± 0,01 −0,156± 0,019 0,082± 0,009
0,8 < q ≤ 1 0,149± 0,014 −0,212± 0,029 0,114± 0,014

Tabla 4.1: Coeficientes de polinomios de segundo grado ajustados en la Fig. [4.12]

Para finalizar el análisis de esta sección de las BBH con espines alineados, res-
tringiremos nuestro análisis al caso de masas iguales q = 1 y emplearemos el modelo
de Reisswig de [35]. En este trabajo, los autores han demostrado que la energía
radiada a través de ondas gravitatorias de binarias de igual masa con espines alinea-
dos puede estimarse mediante un polinomio cuadrático en el espín inicial promedio
χ̄ = (χ1 + χ2)/2, donde χ1 y χ2 son las proyecciones del espín inicial en la dirección
Lin. El modelo se lee

Erad = a0 + a1χ̄+ a2χ̄
2. (4.39)

Nuestros ajustes a los datos proveen el siguiente vector de coeficientes

a⃗ =

a0a1
a2

 =

0,051± 0,001
0,040± 0,002
0,029± 0,003

 , (4.40)

86



Capítulo 4 Propiedades dinámicas en sistemas binarios de agujeros negros

Figura 4.12: Correlación entre el momento angular total inicial Jin y la radiación
total emitida Erad para binarios alineados. Los intervalos de relación de masa se han
dividido y seleccionado para ser estudiados y se ilustran con diferentes colores.

mientras que los coeficientes en [35] son

p⃗ =

p0p1
p2

 =

0,036± 0,003
0,030± 0,006
0,02± 0,01

 (4.41)

.
Podemos ver en la Fig. [4.13] que hay una diferencia apreciable entre los polino-

mios. Esta diferencia podría atribuirse al hecho de que los parámetros para las simu-
laciones utilizadas difieren significativamente y, por lo tanto, el Erad final también.
En particular, no se hace mención al momento angular orbital inicial Lin utilizado
en la Ref. [35], que puede causar estados finales distintos en la energía radiada pa-
ra los mismos valores de los espines iniciales χ1,χ2. También podría explicarse este
hecho si la energía radiada predicha para los BBH alineados en el marco de nuestra
formulación fuera ligeramente superior a la energía radiada obtenida utilizando las
cantidades locales, como la masa de Christodoulou en la relatividad numérica.

El mayor error del ajuste (4.40) se encuentra en el coeficiente de segundo orden
y es de ∼ 10%. Estos coeficientes permiten encontrar la energía radiada máxima
evaluando en el valor a = 1 del polinomio obtenido y así encontramos Erad(1) =
12,2%. Este valor es más cercano a la energía máxima reportada Emax

rad = 11, 3% en
[36] que Emax

rad = 9, 9% reportada en [35]. Nuestra energía máxima radiada cumple
estar por debajo del valor Erad ∼ 14% de [37], que ocurre en caso de una colisión
frontal de dos agujeros negros EM-NS.
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Figura 4.13: Correlación entre el espín total inicial χ̄ y la radiación total emitida Erad.
La línea gris discontinua muestra el ajuste a nuestros datos y debajo sus residuos. La
línea discontinua azul claro muestra el polinomio de Reisswig a modo de comparación.

4.3.2. Binarias con espines precesando

En esta sección proporcionaremos un análisis más profundo de los parámetros
para el grupo de espines de precesión. Para este grupo de BBH, los espines iniciales
S1 y S2, en general, no estarán alineados en la dirección del eje Lin. Se espera un com-
portamiento diferente con respecto a los grupos anteriores mencionados en las Secs.
[4.3.1] y [4.3.1] ya que las configuraciones no alineadas presentan un comportamiento
caótico [32].

Primeramente estudiamos, como en secciones anteriores, la dependencia de la
velocidad final del centro de masa Vf con la relación de masas iniciales q. En la Fig.
[4.14a] se puede apreciar que distribución de velocidad es escencialmente distinta con
respecto a las otras clases NS y A. La diferencia más notable en el comportamiento
de Vf es el logro de velocidades más altas para binarias de igual masa.

Por el contrario, la variable Ṁmax se comporta similar a las otras categorías y
esto nos permite decir que para cualquier tipo de simulación los sistemas con q = 0
no emiten energía mientras que con q = 1 son los más energéticos. La diferencia
entre las categoría radicará en los valores alcanzados dentro del rango [0, 1]. La tasa
de pérdida de energía aumenta a medida que lo hace la relación de masa q entre las
binarias.

La Fig. [4.14a] muestra Erad frente al momento angular total inicial Jin. Utiliza-
mos el modelo de polinomio cuadrático para ajustar los datos, también utilizado en
las categoría de espines alineados y sin espín. La motivación del uso de este modelo
puedo verse en el Apéndice C. Los ajustos fueron hecho para cinco rango de ma-
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sas iniciales q diferentes. Los coeficientes de los polinomios se enumeran en la tabla
4.2. Aunque los polinomios de segundo grado pueden no ser los más adecuados para
los datos, priorizamos su simplicidad para describir el comportamiento ascendente a
primer orden de cada rango de masas en el grupo de precesión.

El rango de masas 0 < q < 0,2 se encuentra ausente en el gráfico [4.14a] debido
a la falta de datos suficientes para proporcionar una curva representativa. A su
vez, es interesante notar que el rango de masas 0,2 < q < 0,4 presenta un patrón
regular con binarias por encima del ajuste y otras por debajo. Esto sugiere subdivir
el rango en intervalos de masas más pequeños para los cuales el polinomio ajustaría
el comportamiento con mucho mayor poder predictivo.

q a2 a1 a0
0,2 < q ≤ 0,4 0,040± 0,009 −0,020± 0,014 0,017± 0,005
0,4 < q ≤ 0,6 0,070± 0,013 −0,071± 0,025 0,046± 0,011
0,6 < q ≤ 0,8 0,089± 0,024 −0,097± 0,048 0,059± 0,024
0,8 < q ≤ 1 0,180± 0,038 −0,271± 0,081 0,143± 0,041

Tabla 4.2: Coeficientes de los polinomios ajustados de segundo grado.

(a) Correlación entre el momento angular to-
tal inicial Jin y la radiación total emitida
Erad.

(b) Correlación entre la velocidad final Vf (en
km/s) con el cociente de masa inicial q. La
barra de colores muestra diferentes niveles de
pérdida de energía máxima.

Figura 4.14: Correlación entre las variables finales globales e iniciales locales para las
binarias de precesión.
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(a) 0001-EM-NS (b) 0373-NEM-NS

(a) 0070-EM-A (b) 0509-NEM-A

4.3.3. Cinemática del Centro de Masa

Graficamos la trayectoria del centro de masa obtenia de la Ec.(4.8) para algunas
simulaciones representativas de cada categoría EM: NS,A,P y NEM: NS,A,P.

La evolución del centro de masa en el espacio tridimensional puede verse en
las Figs. [4.15a, 4.15b, 4.16a, 4.16b, 4.17a, 4.17b] y el punto de comienzo de las
simulaciones ha sido identificado con un punto rojo.

El primer gráfico de la Fig. [4.15a] muestra el movimiento del centro de masa
para dos BH con masas iguales (m1 = m2 = 0,5). Es interesante ver que el centro
de masa reproduce el compartamiento Newtoniano para dos cuerpos orbitando con
masas idénticas. Esto es, el centro de masa permanece inmóvil o con movimientos
del orden de ≈ 10−13, los cuales son despreciables. Su velocidad final Vf también es
nula dado nuestro análsis de la Sec. 4.3.1.
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(a) 0362-EM-P (b) 0789-NEM-P

Figura 4.17: Evolución del centro de masa para binarias de agujeros negros de cada
categoría. El punto rojo especifica el punto de inicio del centro de masa y el número
sobre el gráfico indica la simulación del catálogo RIT donde se ha tomado el valor
de ψ4.

Por otro lado, si miramos las simulaciones sin espínes y con masas desiguales
NEM-NS, el centro de masa presenta un movimiento espiral regular hasta la coa-
lescencia, donde las órbitas se vuelven más inestables en el eje alineado con el mo-
mento angular orbital L. Luego de la fusión, el centro de masa sale eyectado a una
velocidad final de 5,5× 10−04 o 165km/s. El movimiento espiral en los principios de
la evolución se debe exclusivamente a la diferencia de masas entre las dos componen-
tes. Este comportamiento desaparece o es despreciable en casos de simetría como se
puede comparar en las Figs. [4.15a,4.15b].

En la Fig.[4.16a], se muestra el centro de masas para dos agujeros negros de
masas iguales y espínes alineados con el momento angular orbital L. El centro de
masa permanece prácticamente inmóvil a lo largo de toda la simulación, similar al
caso EM-NS, y su velocidad final también es casi nula. La Fig. [4.15b] muestra el
caso para masas desiguales, nuevamente se aprecia la trayectoria en forma de espiral
del centro de masa hasta la coalescencia donde luego se aleja de la posición inicial
con un movimiento uniforme.

Hasta aquí podemos apreciar que la posición del centro de masa en presencia de
radiación es mayormente dominada por el cociente de masas q. En efecto, los casos
de masas iguales muestran trayectorias similares y con velocidades finales Vf ≈ 0
independientemente de la prescencia de espines alineados o no. Esto sugiere que las
configuraciones A o NS son estables. Lo contrario sucede cuando q ̸= 0, en este caso
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las velocidad finales del centro de masa son apreciables.
Para los sistemas con espines precesando la situación es distinta, como se visualiza

en las Figs.[4.17a,4.17b]. La interacción de los espines con la radiación gravitacional
permite al centro de masa alcanzar velocidades más elevadas, siendo las velocidades
finales de las Fig. [4.17a] y [4.17b], 200km/s y 354km/s, respectivamente. A su vez, el
acoplamiento del espín a la curvatura del espacio causa que las trayectorias espirales
realizadas por el centro de masa no tienen la forma espiral tan bien definida y regular
como en el caso de espines alineados, sino que el patrón es más complejo.

4.3.4. Momento Angular intrínseco

Momento angular instrínseco inicial y velocidades finales

(a) Velocidades finales del centro de masas pa-
ra simulaciones con masas iguales m1 = m2

(b) Velocidades finales del centro de masas
para simulaciones con masas iguales m1 ̸= m2

Figura 4.18: Momento angular intrínseco inicial del sistema vs. Velocidad Final del
centro de masas

Hemos graficado en la Fig.[4.18a] y [4.18b] la relación para el momento angular
intrínseco en su momento inicial y la velocidad final del centro de masa para todas
las simulaciones. Se aprecia una clara diferencia entre los casos con precesión de
espines y sin precesion. Las BBH alcanzan un valor máximo o pico de velocidades
finales para un valor específico del momento angular intrínseco en cada categoría
hecha. Si bien las velocidades finales son mayores para el caso EM-P, podemos
también encontrar velocidades finales comparables a los casos EM-A y NEM-A.
El comportamiento caótico de las BBH con espines precesando permite una diversa
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cantidad de escenarios con velocidades finales muy distintas [32]. Por otro lado, las
configuraciones con espines alineados y sin espines son estables y muestran valores
más bajos para la velocidad final del centro de masa.

Notemos que la Fig. [4.18a] solo presenta tres simulaciones EM-NS. La escasez
de este número de simulaciones proviene de la sencillez que presenta el espacio de
parámetros iniciales.

Variación momento angular total en el infinito nulo

Figura 4.19: A relationship between the magnitudes of the initial and final angular
momenta

La pérdida de momento angular total que llega al infinito nulo es visualizada en la
Fig.[4.19]. Las BBH con espines alineados tiene una gran variedad de resultados para
el valor absoluto del momento angular total final y en algunos casos particulares esta
cantidad incrementa con respecto al valor inicial del momento angular total, Jf > Jin.
Esta última característica se da cuando el valor del momento angular total inicial
es aproximadamente cero Jin ≈ 0 y los espines se encuentran antialineados con el
momento angular orbital L. Sucede que mientras la magnitud de la parte orbital
del momento angular siempre decrece, el momento angular total aumenta ya que los
espines permanecen aproximadante constantes cuando están alineados.

La línea punteada roja de la Fig. [4.19] muestra un ajuste lineal con constante de
proporcionalidad a = 0,55 al momento angular total de las simulaciones. Esta recta
muestra la pérdida promedio de las simulaciones y vemos que hay categorias de
simulaciones que siguen más fielmente esta recta mientras que otras tienen pérdidas
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más esparcidas. La línea sólida gris marca las simulaciones sin pérdida del momento
angular total.

Cambio de dirección del momento angular intrínseco

Figura 4.20: Relación entre en el cambio en el valor absoluto del momento angular
y el ángulo de volteo

Para calcular el cambio en la dirección del momento angular intrínseco utiliza-
remos el producto escalar usual entre el momento angular intrínseco inicial y final,

∆θ =
Sf · Si
|Sf ||Si|

, (4.42)

donde Si es el momento angular instríseco en el tiempo de relajación y Sf el momento
angular intrinseco al final de la evolución. Si es elegido de manera de evitar la
contribución de la onda viajera al ángulo de volteo.

Podemos apreciar en la Fig. [4.20], que el volteo es nulo para los agujeros negros
NS al igual que la clase EM-A. Un pequeño volteo puede ser observador para la
clase alineada si desigualamos las masas iniciales, es decir en la clase NEM-A.

Como es de esperar, las BBH con precesión muestran gran variación en el ángulo
de volteo. Aún más, la variación en el ángulo de volteo es inversamente proporcional
a la variación en el momento angular intrínseco, como se muestra en la Fig. [4.20].

Velocidad centro de masa Vf y velocidad clásica P i/M

Es interesante estudiar si existe una relación entre la velocidad final del centro
de masa Vf y el concepto Newtoniano de centro de masa P i/M .
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Figura 4.21: Correlation between Vf and (P i/M)f .

Si vemos la Fig. [4.21] podemos ver la constante de proporcionalidad entre Vf y
Pf/Mf obtenida del ajuste hecho a todas las simulaciones. El valor de la constante
de proporcionalidad es de a = 1,02, la cual nos indica una diferencia del 2% entre
ambos conceptos. La razón de esta diferencia podría deberse a las contribuciones pe-
queñas hechas por la radiación que diferencian ambos conceptos. Más investigación
debe ser hecha en esta dirección.

Aceleración del centro de masa

En esta sección hemos graficado cómo es afectada la aceleración del centro de
masa en las distintas etapas del proceso de fusión de dos agujeros negros. Para ello,
definimos la fuerza de reacción como

F i
R =

1√
2

d(MV i)

du
. (4.43)

Es importante entender la evolución temporal de la fuerza de reacción en términos
de los distintos modos de radiación Ψ4. En la Fig. [4.22a] podemos ver la evolución
temporal de los distintos modos de radiación l = 2 y l = 3 del escalar Ψ4 para una
simulación con espines precesando. La evolución corresponde a la simulación nº443
del catálogo. Podemos apreciar en el gráfico que los distintos modos del valor absoluto
de ψ4, toman un valor máximo cerca de la fusión de los dos agujeros negros. En la
Fig. [4.22b] podemos ver que el pico alcanzado para cada modo no se da para un
mismo tiempo, sino que suceden con pequeñas diferencias temporales. Cada modo
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da una contribución distinta a la fuerza de reacción FR y entonces, dependiendo
del escenario, la magnitud y dirección del impulso dado por esta fuerza puede ser
bastante diferente.

En la Fig.[4.23a] hemos graficado la magnitud de la fuerza de reacción y en la
Fig.[4.23b] hemos hecho un acercamiento en el intervalo de coalescencia. En este caso,
la fuerza de radiación FR tiene varios máximos locales provenientes de la contribución
de cada modo cerca de la coalescencia.

(a) Evolución temporal desde el comienzo
hasta el final de la simulación nº443

(b) Zoom en el intervalo donde sucede la coa-
lescencia de los agujeros negros

Figura 4.22: Evolución temporal de los distintos modos de radiación l = 2 y l = 3
del escalar Ψ4 para una simulación con espines precesando.

4.3.5. Comparación con los metadatos del catálogo

El catálogo de Rochester incluye junto con la radiación gravitacional de las simu-
laciones un archivo con los parámetros que caracterizan el estado final de la coales-
cencia de los dos agujeros negros. En esta sección compararemos estas cantidades con
las cantidades finales obtenidas a través de las ecuaciones de evolución (4.4)-(4.7).
Estas ecuaciones fueron obtenidas a través de los linkages asintóticos definidos en el
infinito nulo. Analizaremos en las siguientes secciones qué cantidades son consisten-
tes con los metadatos [38, 39] y qué cantidades se deben reajustar o estudiar más en
profundidad a partir de su comparación.
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(a) Evolución temporal desde el comienzo
hasta el final de la simulación nº443

(b) Zoom en el intervalo donde sucede la coa-
lescencia de los agujeros negros

Figura 4.23: Evolución temporal del valor absoluto de la fuerza de reacción, FR

Variación de Masas

Para comparar la variación de la masas definimos el cambio de masa para una
simulación del catálogo de Rochester como

∆MRoch = |MF −Mrelax| =Mrelax −MF , (4.44)

donde MF es la masa final del agujero negro remanente y Mrelax es la masa de los
dos agujero negros en el tiempo de relajación (que es levemente mayor a la masa
inicial debido a la ráfaga espúrea).

En la Fig. [4.24] podemos ver la relación entre la pérdida de masa obtenida
por la Ecs. (4.6) y (4.44). Vemos que hay una diferencia de ≈ 20% entre ambas
variaciones. Esta diferencia podría deberse al hecho que al definir (4.44) con Mrelax,
estamos usando una medida local de la masa. Esta cantidad no debería diferir mucho
de la masa asintótica relajada ya que la única radiación emitida ha sido aquella
debido a la ráfaga no física inicial. Aún así, podría ser que nuestra ecuación para la
pérdida de masa necesite un factor de corrección en la ecuación de los linkages que
contemple la diferencia entre ambas definiciones. En menor medida, podrían haber
contribuciones de errores numéricos provenientes de la integración a la ecuación final.
Mayor investigación debe ser hecha en esta dirección.
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Figura 4.24: Relación entre ∆M y ∆MRoch para todas las simulaciones.

Variación del momento angular

Para comparar las variaciones del momento angular total con los metadatos del
catálogo, definimos la variación del momento angular total de una simulación según
los metadatos como

∆J = |χM2 − JADM |. (4.45)

El valor absoluto aquí hace la variación ∆J positiva. Estamos suponiendo aquí
que el estado final de la coalescencia es un agujero negro de Kerr y por lo tanto
su momento angular viene dado por la fórmula Jf = χM2, donde χ y Mf son el
parámetro de espín adimensional y la masa final del agujero negro resultante. Como
las componentes del momento angular final del agujero negro remanente no son
dadas en el catálogo, utilizamos la definición (4.45) que nos da una noción de cambio
sin ambiguedad para las configuraciones sin espin y alineadas. Aún así, (4.45) no
coincide exactamente con el cambio del momento angular para las configuraciones
que precesan.

Por otro lado, hemos elegido usar el momento angular total de ADM para hacer
la diferencia (4.45). Notemos que al hacer esta diferencia estamos teniendo en cuenta
las contribuciones pequeñas hechas por la ráfaga inicial numérica a ∆JRoch.

En la Fig. [4.26], mostramos la comparación del resultado final obtenido para el
momento angular total según nuestras ecuaciones de evolución (4.5). El momento
angular total según nuestras ecuaciones JF es definido como

Jf = |JF | = |JADM +∆J|, (4.46)

con ∆J siendo obtenido de (4.5). Como JADM no es igual para todas las simulacio-
nes, no es trivial esperar una correlación lineal entre JF y JRoch, si bien este sería el
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Figura 4.25: Relación entre ∆J y ∆JRoch para todas las simulaciones.

resultado esperado para dos cantidades que tienen origen en distintos formalismos.
El lector debe ser consciente que los métodos para calcular el valor absolute del mo-
mento angular total en ambos formalismos son distintos. En efecto, La Ec. (4.46) es
el valor absoluto de un vector mientras que la Ec. (4.45) es la formula del momento
angular de un agujero negro de Kerr obtenida a partir de los parámetros finales de
la simulación.

Figura 4.26: Relación entre las magnitudes finales del momento angular total para
todas las simulaciones.

Nuevamente podemos apreciar que se manifiesta la diferencia del ≈ 20% entre
las variaciones del momento angular, lo cual es posible suponer que se deba a un
factor global en la ecuación de los linkages.
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Capítulo 5

Conclusiones

Hemos definido la noción del centro de masa y espín intrínseco para espaciotiempos
asintóticamente planos, estos son espaciotiempos en donde existe una noción precisa
de los sistemas gravitacionales aislados. La descripción de estas variables es dada en
términos de los escalares de Newman-Penrose.

Las principales herramientas que hemos usado para definir estos conceptos son
los linkages de Tamburino-Winicour, junto con una foliación de cortes asociados a
una línea de mundo. Estos cortes tienen una ecuación bien definida y un espacio de
soluciones real. La ecuación de cortes de línea de mundo es un ingrediente fundamen-
tal en la vinculación de la estructura del infinito nulo con el espacio tiempo físico. El
espacio físico 4-dimensional junto con la métrica lorenziana construida a partir de
las soluciones de la ecuación de cortes nulos nos dan los cimientos para construir el
concepto de línea de mundo asociada al centro de masa de un sistema.

En este trabajo hemos hecho un desarrollo perturbativo de las foliaciones nulas
a orden cero y uno para encontrar soluciones a la ecuación de cortes de línea de
mundo. Esta aproximación permite una gran variedad de aplicaciones en el marco
de la relatividad general.

Por un lado, en el Cap. 2 hemos estudiado qué sucede si, en lugar de asumir un
espaciotiempo asintótico estacionario en el pasado (σ(u = −∞) = 0), el espacio-
tiempo tiene radiación entrante, σ−. Este problema es conocido como el problema de
scattering en relatividad general. Hemos deducido el primer resultado para el caso
simple de un espaciotiempo vacío donde la radiación obtenida en el infinito futuro
es trivial. Este resultado se visualiza en la Ec. (2.40). Luego, hemos analizado el
problema de scattering en presencia de un tensor de materia Tµν y encontrado una
expresión de los modos de radiación gravitacional que llegan al infinito nulo futuro
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en términos de la radiación que proviene del infinito nulo pasado. El resultado puede
verse en la Ec. (2.51).

Por otro lado, hemos usado las foliaciones para estudiar la radiación gravitacional
de sistemas aislados con σ(u = −∞) = 0. Con el uso de los linkages de Winicour,
definimos cantidades física globales del espaciotiempo y un gauge específico que nos
permite lidiar con la ambiguedad proveniente de las supertraslaciones en el infinito
nulo. Sumando a estas cantidades el concepto de cortes de línea de mundo, pode-
mos vincular la física del infinito nulo con los puntos del espaciotiempo físico. En
particular, recuperamos dos conceptos fundamentales de la física clásica: el centro
de masa de una sistema y su momento angular intrínseco. Estos conceptos han si-
do poco explorados en el área de la relatividad general y por lo tanto hemos hecho
una análisis riguroso de los mismos, utilizando el catálogo de Rochester para ondas
gravitacionales como aplicación de los conceptos construidos.

Hemos calculado la evolución temporal del centro de masa y momento angular
intrínseco para la tercer versión del catálogo de ondas gravitacional desarrollado por
el Instituto de Tecnología de Rochester. Para realizar esta evolución debimos corregir
los siguientes problemas:

Calcular la correspondencia entre los esféricos armónicos tensoriales y los esfé-
ricos armónicos con peso de espín s.

Corregir las ecuaciones de movimiento para las 777 simulaciones por la ráfaga
inicial numérica no deseada. Esto se hizo encontrando el tiempo de relajación
donde la ráfaga inicial no se encuentra presente. Luego obtenemos la velocidad
del centro de masa en ese tiempo y aplicamos un boost a un nuevo sistema de
Bondi cuyo origen coincide con el centro de masa y está inicialmente en reposo.

Realizar la integración numérica de ψ4 corrigiendo los problemas numéricos
provenientes de integrar una función con rápidas oscilaciones.

Los resultados fueron divididos en tres categorías según el tipo de espín que pre-
sentaban las simulaciones del catálogo: sin espines (NS), espines alineados (A), o
espines precesando (P). Luego, utilizamos las ecuaciones de nuestro formalismo (4.8)
para obtener la trayectoria del centro de masa para las simulaciones dentro de caga
categoría de simulación. Las trayectorias se visualizaron en las Fig. [4.16a], [4.15a],
[4.17a], [4.16b], [4.15b] y [4.17b]. Los resultados son prometedores: el centro de masa
presenta un movimiento espiral para masas desiguales y antes de la coalescencia que
se mantiene estable para binarias con espines alineados o sin espines; para sistemas
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con espines precesando el movimiento espiral adquiere mayor complejidad; para los
sistemas compuestos por binarias de igual masas el centro de masas permanece apro-
ximadamente inmóvil; la trayectoria luego de la coalescencia sigue un movimiento
rectilíneo uniforme para todos los casos, ya que el sistema no emite más radiación
gravitacional. La velocidad asociada a este centro de masa es otro concepto que
estudiamos ya que es más fácilmente comparable.

Para el grupo de simulaciones sin espines NS hemos visto que la velocidad fi-
nal del centro de masa alcanza su máximo valor Vf ≈ 310km/s en q = 0,4. Para
las simulaciones alineadas, la velocidad final del centro de masa alcanza su valor
máximo Vf = 771km/s en q = 0,66, mientras que para los espines precesando
Vf = 6120,15km/s en q = 1. La influencia del espín en el punto máximo de velo-
cidades es un fenómeno interesante. Las velocidades mencionadas fueron calculadas
utilizando el tiempo de Bondi.

Con fines comparativos, debemos cambiar al tiempo retardado dividiendo por un
factor

√
2. De esta forma, la velocidad final máxima alcanzada por el centro de masa

es Vf = 219,20km/s, Vf = 545,59km/s y Vf = 4327,59km/s en las simulaciones para
los grupos NS, A y P, respectivamente. Este último valor para los espines precesan-
do es levemente distinto del valor reportado en los metadatos para el remanente final
de la simulación Vkick = 4257,3km/s. La diferencia entre ambas cantidades podría
deberse a una leve desviación entre los dos conceptos. Dado que ambas velocidades
finales son proporcionales, el factor de corrección es de sumo interés para la com-
prensión de esta diferencia. Más investigación debe ser hecha en esta dirección para
entender la correspondencia.

Para el grupo NS, empleamos el modelo de retroceso de Fitchett para ajustar el
comportamiento de las velocidades finales del centro de masa. Obtuvimos una cons-
tante a = 16317,78km/s con error asociado de ≈ 1, 5%. Este modelo puede ser útil
para la comparación de simulaciones posteriores o para modelar BBH astrofísicos con
rotación despreciable. Asimismo, derivamos una fórmula para ajustar la correlación
entre Ėmax y q usando un parámetro fenomenológico adimensional b que debe ser
mayor a 2. El valor obtenido b = 2,1867 es un resultado razonable.

Para el grupo A, los resultados muestran que las velocidades finales del centro de
masa son máximas cuando los espines están antialineados. Este resultado también
ha sido reportado en otros trabajos utilizando las velocidades del remanente final
[30, 31].

Para el grupo P, hemos encontrado que las velocidades finales del centro de masa
más altas provienen de este grupo, y en particular de aquellas binarias con q = 1.
Según las simulaciones tomadas del depósito de Rochester, podemos inferir que si
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el agujero negro remanente se encuentra con velocidades superiores a los 800km/s,
entonces el BBH tendría giros de precesión. Además, si la velocidad del centro de
masa BBH es superior a 3000km/s, las binarias iniciales pertenecen al grupo EM-P.

Por otro lado, también hemos estudiado en profundidad la radiación gravitacional
para cada grupo de simulaciones predicha por la Ec. (4.32). Para el grupo NS,
encontramos que usando el modelo cuadrático, derivado en el Apéndice C, se ajusta
notablemente bien a los datos con un coeficiente b = 0,04976 y error asociado ≈
1,74%. La sencillez de las binarias sin espines permiten modelar la dependencia de
las variables finales con los parámetros iniciales y obtener fórmulas con errores más
pequeños que en otras clases de BBH.

Para el grupo A y P, hicimos un ajuste de la energía radiada y el momento an-
gular total para los diferentes rangos de relaciones de masa q y encontramos valores
de error más altos en que las binarias sin espín. Los errores más altos podrían atri-
buirse a la dependencia de los coeficientes con el espín. Quizás el uso de modelos más
complejos podrían reducir significativamente los errores de los coeficientes. A pesar
de eso, los coeficientes calculados aún proporcionan un modelo simple y útil para la
relación entre la energía total irradiata, Erad, y el momento angular total inicial Jin.

Para el caso de binarias alineadas con masas iguales q = 1, ajustamos la energía
radiada utilizando la variable χ̄ = χ1+χ2

2
en lugar de Jin. La gráfica en términos

de la variable χ̄ nos permite comparar la energía radiada predicha en nuestras Ecs.
con otros trabajos. Vimos que el ajuste obtenido es consistente con la literatura
en general, si bien ligeramente más alto que la mayoría de las energías radiadas
reportadas. Esto podría ser consecuencia de definir (4.32) en términos de la masa
Bondi. Un análisis más detallado sobre la diferencia entre la energía radiada definida
a través de la ecuación (4.6) y la masa de Christodoulou es necesaria para aclarar
estas cuestiones.

Con respecto a los resultados del estudio de las variables globales podemos re-
marcar algunos comentarios generales

Reisswig et al [35] han demostrado que el patrón de ondas gravitacionales para
EM-NS y EM-A son bastante similares. Dado que la evolución numérica de
las binarias EM-NS es mucho más simple que la subclase EM-A, argumentan
que simplemente se podría usar la clase NS para obtener las formas de onda
de ambos subgrupos. Por otro lado, nuestros resultados muestran que el final
las velocidades para las subclases EM-NS y EM-A son completamente dife-
rentes. Mientras que la subclase EM-NS tiene velocidades de retroceso que
se anulan, los casos EM-A no. Esta es una diferencia notable entre las dos
subclases y ayuda a distinguirlas. Por lo tanto, aunque las plantillas de ondas
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gravitacionales son prácticamente las mismas para estas subclases, la evolución
numérica EM-A brinda información valiosa de la coalescencia.

Las Figs. [4.14a] y [4.12] representan resultados globales. Los gráficos Erad vs
Jin están motivados por lo siguiente. Ambas variables se pueden obtener en el
infinito nulo sin conocimiento de las masas, espines y momento angular orbital
de BH. Para obtener Jin solo necesitamos el conocimiento de la posición del
centro de masa y la definición del momento angular total, mientras que Erad
se calcula con el uso de la ecuación de pérdida de masa de Bondi.

Estos gráficos muestran una clara correlación entre Erad y Jin. Usando un ajus-
te cuadrático obtuvimos una relación empírica en términos de dos coeficientes.
Los resultados de este trabajo muestran que el momento angular total inicial
Jin es una variable relevante en el espacio de parámetros para analizar las di-
ferentes evoluciones numéricas. Es justo preguntar por qué debería haber una
dependencia cuadrática del momento angular intrínseco total inicial del siste-
ma BBH. La respuesta se encuentra en la fórmula de Erad y depende de los
términos cuadráticos de radiación gravitacional. Al mismo tiempo, la radiación
depende del momento angular inicial total y se conserva si solo mantenemos
los términos cuadráticos en la fórmula de Erad ya que J̇ es cuadrático en la de-
formación gravitacional σ0. Por lo tanto, deberíamos esperar esta dependencia
en la coalescencia de BBH. Tenga en cuenta que los mismos resultados para
Erad se aplican también para Ṁmax, debido a la Fig. [4.5].

La pérdida de momento angular ∆S solo depende de la cantidad de momento
angular irradiado, y se calcula con el conocimiento de los datos de radiación
disponibles en el infinito nulo. La pérdida de momento angular sigue siendo
un motivo principal de preocupación en nuestro formalismo. Como se mostró
previamente, existe una discrepancia del momento angular intrínseco predicho
con respecto a los valores para el momento angular total del catálogo RIT,
que es un tema a estudiar en trabajos futuros. Por supuesto, una definición
físicamente relevante del momento angular intrínseco es una tarea difícil, pero la
que proporcionamos parece estar libre de ambigüedades. A pesar de eso, hemos
demostrado a lo largo de este documento que las ecuaciones de movimiento para
la energía, el momento lineal, la posición del centro de masa y la velocidad final,
Ecs. (4.4-4.9) empleados en el marco del formalismo presentado son consistentes
con la literatura general.

Finalmente, el cambio en la masa de Bondi y el momento angular fueron comparados

104



Conclusiones Propiedades dinámicas en sistemas binarios de agujeros negros

para nuestras ecuaciones y los metadatos proporcionados por el catálogo del RIT.
Esta comparación es elegida ya que requiere integrar una sola vez, introduciendo
menos error numérico en los resultados finales. Los resultados de las Figs. [4.24,4.26]
muestran una clara correlación lineal entre las cantidades con una pendiente igual
al valor 1,2 para ambos gráficos. El origen del factor causando el 20% de desviación
sobre la correlación deseada será investigado en trabajos futuros.
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Apéndice A

Ecuaciones de coeficientes de espín
para espaciotiempos no vacíos

En una tétrada nula compleja de NP, las identidades de Ricci dan lugar a las
siguientes ecuaciones de campo NP que conectan los coeficientes de espín, los escala-
res Weyl-NP y Ricci-NP. Estas ecuaciones pueden encontrarse con distinta notación
según el texto ([40],[41]). Seguiremos la notación de Newman y Tod en [41]
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Dρ− δ̄κ =
(
ρ2 + σσ̄

)
+ (ε+ ε̄)ρ− κ̄τ − κ(3α + β̄ − π) + Φ00 (A.1)

Dσ − δκ = (ρ+ ρ̄)σ + (3ε− ε̄)σ − (τ − π̄ + ᾱ + 3β)κ+Ψ0 (A.2)
Dτ −∆κ = (τ + π̄)ρ+ (τ̄ + π)σ + (ε− ε̄)τ − (3γ + γ̄)κ+Ψ1 + Φ01 (A.3)
Dα− δ̄ε = (ρ+ ε̄− 2ε)α + βσ̄ − β̄ε− κλ− κ̄γ + (ε+ ρ)π + Φ10 (A.4)
Dβ − δε = (α + π)σ + (ρ̄− ε̄)β − (µ+ γ)κ− (ᾱ− π̄)ε+Ψ1 (A.5)
Dγ −∆ε = (τ + π̄)α + (τ̄ + π)β − (ε+ ε̄)γ − (γ + γ̄)ε+ τπ − νκ+Ψ2 + Φ11 − Λ,

(A.6)
Dλ− δ̄π = (ρλ+ σ̄µ) + π2 + (α− β̄)π − νκ̄− (3ε− ε̄)λ+ Φ20 (A.7)
Dµ− δπ = (ρ̄µ+ σλ) + ππ̄ − (ε+ ε̄)µ− (ᾱ− β)π − νκ+Ψ2 + 2Λ (A.8)
Dν −∆π = (π + τ̄)µ+ (π̄ + τ)λ+ (γ − γ̄)π − (3ε+ ε̄)ν +Ψ3 + Φ21 (A.9)
∆λ− δ̄ν = −(µ+ µ̄)λ− (3γ − γ̄)λ+ (3α + β̄ + π − τ̄)ν −Ψ4 (A.10)
δρ− δ̄σ = ρ(ᾱ + β)− σ(3α− β̄) + (ρ− ρ̄)τ + (µ− µ̄)κ−Ψ1 + Φ01 (A.11)
δα− δ̄β = (µρ− λσ) + αᾱ + ββ̄ − 2αβ + γ(ρ− ρ̄) + ε(µ− µ̄)−Ψ2 + Φ11 + Λ,

(A.12)
δλ− δ̄µ = (ρ− ρ̄)ν + (µ− µ̄)π + (α + β̄)µ+ (ᾱ− 3β)λ−Ψ3 + Φ21 (A.13)
δν −∆µ =

(
µ2 + λλ̄

)
+ (γ + γ̄)µ− ν̄π + (τ − 3β − ᾱ)ν + Φ22 (A.14)

δγ −∆β = (τ − ᾱ− β)γ + µτ − σν − εν̄ − (γ − γ̄ − µ)β + αλ̄+ Φ12 (A.15)
δτ −∆σ = (µσ + λ̄ρ) + (τ + β − ᾱ)τ − (3γ − γ̄)σ − κν̄ + Φ02 (A.16)
∆ρ− δ̄τ = −(ρµ̄+ σλ) + (β̄ − α− τ̄)τ + (γ + γ̄)ρ+ νκ−Ψ2 − 2Λ (A.17)
∆α− δ̄γ = (ρ+ ε)ν − (τ + β)λ+ (γ̄ − µ̄)α + (β̄ − τ̄)γ −Ψ3 (A.18)

Además, los escalares Weyl-NP Ψi y los escalares Ricci Φij se pueden calcular
indirectamente a partir de las ecuaciones de campo NP anteriores después de obtener
los coeficientes de espín en lugar de usar directamente sus definiciones.

A.1. Ecuaciones de Maxwell
Los seis componentes independientes del tensor de Faraday-Maxwell (o tensor

electromagnético) Fab se pueden codificar en tres escalares complejos de Maxwell-
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NP

ϕ0 := Fabl
amb (A.19)

ϕ1 :=
1

2
Fab
(
lanb + m̄amb

)
(A.20)

ϕ2 := Fabm̄
anb (A.21)

y por lo tanto las ocho ecuaciones de Maxwell reales dF = 0 y d⋆F = 0 (si
F = dA) se pueden transformar en cuatro ecuaciones complejas,

Dϕ1 − δ̄ϕ0 = (π − 2α)ϕ0 + 2ρϕ1 − κϕ2 (A.22)
Dϕ2 − δ̄ϕ1 = −λϕ0 + 2πϕ1 + (ρ− 2ε)ϕ2 (A.23)
∆ϕ0 − δϕ1 = (2γ − µ)ϕ0 − 2τϕ1 + σϕ2 (A.24)
∆ϕ1 − δϕ2 = νϕ0 − 2µϕ1 + (2β − τ)ϕ2 (A.25)

con los escalares de Ricci Φij definidos a partir de los escalares de Maxwell de la
forma

Φij = 2ϕiϕ̄j, (i, j ∈ {0, 1, 2}) (A.26)

Vale la pena señalar que, la ecuación suplementaria Φij = 2ϕiϕ̄j solo es válida para
campos electromagnéticos; por ejemplo, en el caso de los campos de Yang-Mills
tendremos Φij = Tr(𭟋i, 𭟋̄j) donde 𭟋i(i ∈ {0, 1, 2}) son escalares de Yang-Mills-NP.
En resumen, las ecuaciones de conmutadores para la tetradra nula, las ecuaciones
de campo NP y las ecuaciones de Maxwell-NP juntas constituyen las ecuaciones de
Einstein-Maxwell en el formalismo de Newman-Penrose. Resolver este sistema de
ecuaciones equivale a resolver las ecuaciones de Einstein en presencia de una campo
electromagnético Fµν .
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Apéndice B

Clebsh-Gordan de los esféricos
armonicos tensoriales Y sl,Il

Presentamos una tabla de productos de función con peso de espín s = (2, 1, 0,−1,−2)
y l = (0, 1, 2).

B.0.1. Productos de l = 1 con l = 1

Y 1
1iY

0
1j =

i√
2
ϵijkY

1
1k +

1

2
Y 1
2ij (B.1)

Y 1
1iY

−1
1j =

1

3
δij −

i
√
2

4
ϵijkY

0
1k −

1

12
Y 0
2ij (B.2)

Y 0
1iY

0
1j =

2

3
δij +

1

3
Y 0
2ij (B.3)
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B.0.2. Productos de l = 1 con l = 2

Y 1
1iY

2
2jk =Y

3
3ijk (B.4)

Y 0
1iY

0
2jk =− 4

5
δkjY

0
1i +

6

5

(
δijY

0
1k + δikY

0
1j

)
+

1

5
Y 0
3ijk (B.5)

Y 1
1iY

0
2jk =

2

5
Y 1
1iδkj −

3

5
Y 1
1jδik −

3

5
Y 1
1kδij (B.6)

+
i√
2

(
ϵiklY

1
2jl + ϵijlY

1
2kl

)
+

2

5
Y 1
3ijk (B.7)

Y 1
1iY

1
2jk =− 1

6
δ
[
Y 1
1iY

0
2jk

]
(B.8)

Y −1
2ij Y

1
1k =

3

10
Y 0
1iδjk +

3

10
Y 0
1jδik −

2

10
Y 0
1kδij (B.9)

+
i
√
2

12

[
ϵjklY

0
2il + ϵiklY

0
2lj

]
− 1

30
Y 0
3ijk (B.10)

Y 0
1iY

1
2jk =− 2

5
Y 1
1iδjk +

3

5
Y 1
1jδik +

3

5
Y 1
1kδij (B.11)

− i

3
√
2

(
ϵiklY

1
2jl + ϵijlY

1
2kl

)
+

4

15
Y 1
3ijk (B.12)

Y 2
2ijY

−1
1k =

3

10
δjkY

1
1i +

3

10
δikY

1
1j −

1

5
δijY

1
1k (B.13)

− i
√
2

12

[
ϵiklY

1
2jl + ϵjklY

1
2il

]
− 1

30
Y 1
3ijk (B.14)

Y 2
2ijY

0
1k =∂

[
Y 2
2ijY

−1
1k

]
(B.15)

B.0.3. Productos de l = 2 con l = 2

s = 4

Y 4
4ijkl = Y 2

2ijY
2
2kl (B.16)

s = 3

Y 2
2klY

1
2ij = − i√

2

[
ϵileY

3
3jke + ϵjkeY

3
3ile

]
+

1

2
Y 3
4ijkl (B.17)
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s = 2

Y 1
2klY

1
2ij =

3

7
K

2(0)
ijkl +

4

7
K

2(14)
ijkl , (B.18)

Y 0
2klY

2
2ij = −3

7
K

2(0)
ijkl +

1

2
K

2(6)
ijkl +

3

7
K

2(14)
ijkl , (B.19)

con los tensores K dados por

K
2(0)
ijkl = −8

3

(
δklY

2
2ij + δijY

2
2kl

)
+ 2

[
δljY

2
2ik + δikY

2
2lj + δkjY

2
2il + δilY

2
2kj

]
(B.20)

K
2(6)
ijkl =

i√
2

[
ϵikeY

2
3ejl + ϵjkeY

2
3eil + ϵileY

2
3ejk + ϵjleY

2
3eik

]
(B.21)

K
2(14)
ijkl =

1

2
Y 2
4ijkl, (B.22)

s = 1

Y 0
2ijY

1
2kl =

3

10
J
1(0)
4ijkl +

1

14
J
1(4)
4ijkl +

1

5
J
1(10)
4ijkl +

3

7
J
1(18)
4ijkl (B.23)

Y −1
2ij Y

2
2kl =

1

20
J
1(0)
4ijkl +

1

28
J
1(4)
4ijkl −

1

20
J
1(10)
4ijkl −

1

28
J
1(18)
4ijkl (B.24)

con los tensores J dados por

J
1(0)
4ijkl = i2

√
2 [δikϵljf + δjkϵlif + δilϵkjf + δjlϵkif ]Y

1
1f (B.25)

J
1(4)
4ijkl = 6

[
δliY

1
2kj + δikY

1
2jl + δjkY

1
2il + δjlY

1
2ik

]
− 8

[
δijY

1
2lk + δklY

1
2ij

]
(B.26)

J
1(10)
4ijkl = − i√

2

[
ϵikeY

1
3ejl + ϵjkeY

1
3eil + ϵileY

1
3ejk + ϵjleY

1
3eik

]
(B.27)

J
1(18)
4ijkl =

1

3
Y 1
4ijkl (B.28)
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s = 0

Y 2
2klY

−2
2ij =

1

5
F

0(0)
ijkl +

2

5
F

0(2)
ijkl +

2

7
F

0(6)
ijkl +

1

10
F

0(12)
ijkl +

1

70
F

0(20)
ijkl , (B.29)

Y 1
2klY

−1
2ij =

4

5
F

0(0)
ijkl +

4

5
F

0(2)
ijkl −

4

7
F

0(6)
ijkl −

4

5
F

0(12)
ijkl − 8

35
F

0(20)
ijkl , (B.30)

Y 0
2klY

0
2ij =

24

5
F

0(0)
ijkl −

48

7
F

0(6)
ijkl +

72

35
F

0(20)
ijkl (B.31)

con los tensores F dados por

F
0(0)
ijkl =

1

2
δikδjl +

1

2
δliδkj −

1

3
δijδkl, (B.32)

F
0(2)
ijkl = i

√
2

8
(δjlϵike + δkiϵjle + ϵjkeδil + δkjϵile)Y

0
1e, (B.33)

F
0(6)
ijkl =

1

6

(
δijY

0
2kl + δklY

0
2ij

)
− 1

8

(
δljY

0
2ik + δkiY

0
2lj + δliY

0
2kj + δkjY

0
2il

)
, (B.34)

F
0(12)
ijkl = − i

24
√
2

[
ϵikeY

0
3ejl + ϵjkeY

0
3eil + ϵileY

0
3ejk + ϵjleY

0
3eik

]
, (B.35)

F
0(20)
ijkl =

1

24
Y 0
4ijkl. (B.36)
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Apéndice C

Derivación Post-Newtoniana entre Ė,
Jin y q

Partiendo de la definición para los momentos cuadrupolares de masa ([42],[21]),
tenemos las siguientes expresiones: con los parámetros de masa dados por m =
m1 +m2, δm = m1 −m2,Li el momento angular orbital, y η = m1m2/m

2 cociente
de masas simétrico.
Para simplificar, consideramos el caso de masas iguales que no giran. Por lo tanto,
δm = 0, m = 1 y η = 1

4
. Con estos parámetros de masa, los momentos radiativos del

cuadrupolo son

I ijN = ηm
[
xixj − 1

3
δijx

2
]

(C.1)

J ijN = 0. (C.2)

Explícitamente, los momentos radiativos distintos de cero en la aproximación N están
dados por,

IzzN = − 1

12
mr2 (C.3)

IxxN =
1

24
mr2[1 + 3 cos(2ωt)] (C.4)

IyyN =
1

24
mr2[1− 3 cos(2ωt)] (C.5)

IxyN = IyxN =
1

8
mr2[sin(2ωt)] (C.6)

117



Apéndice Propiedades dinámicas en sistemas binarios de agujeros negros

Dado que el momento angular orbital L = ηmr2ω se conserva en la aproximación N
obtenemos

I
(3)zz
N = 0 (C.7)

I
(3)xx
N = 4Linω

2[sin(2ωt)] (C.8)

I
(3)yy
N = −4Linω

2[sin(2ωt)] (C.9)

I
(3)xy
N = I

(3)yx
N = −4Linω

2[cos(2ωt)], (C.10)

donde el símbolo (3) denota tres derivadas temporales. Usando la Ec. (4.6) y tomando
un promedio durante un período, tenemos

Ṁ = − 1

10
√
2
σ̇ijR σ̇

ij
R (C.11)

= − 32

10
√
2
L2
inω

4. (C.12)

Entonces,

Ṁmax = − 32

10
√
2
ω4
maxL

2
in. (C.13)

Si las masas no son iguales, la fórmula resultante para la subclase que no gira
viene dada por

Ṁmax = − 16

10
√
2
ω4
maxL

2
in

(
1 +

1

36
(
1− q

1 + q
)2(Minωmax)

2
3

)
. (C.14)

El valor más alto permitido para ω en la aproximación PN es 0, 05. Sin embargo, el
factor numérico resultante de 4 × 10−5 en la ecuación anterior no debe compararse
con el obtenido de la evolución numérica ya que estamos en la aproximación PN y
los binarios ni siquiera están cerca del tiempo de fusión. Sin embargo, es importante
ver la dependencia cuadrática de la luminosidad máxima con el valor inicial del mo-
mento angular total del sistema.
Si queremos aplicar este modelo a las otras clases de giro (A o P), usamos Li =
J i− (S1 +S2)

i, lo que nos da un polinomio de segundo orden con coeficientes cero y
de primer orden que no desaparecen. Aunque los coeficientes dependerán de los espi-
nes iniciales (S1, S2), el modelo seguirá siendo útil para dar un valor representativo
de la dependencia.
También se puede escribir la luminosidad máxima en términos de la relación q escri-
biendo el momento angular orbital como

L = ηmr2ω =
q

(1 + q)2
mr2ω. (C.15)
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Insertando esta ecuación en (C.14) y usando la fórmula de la órbita circular

ω2r2 =
m

r

se obtiene

Ṁ = − 16

10
√
2

q2

(1 + q)4

(m
r

)5(
1 +

1

36

m

r

(
1− q

1 + q

)2
)
. (C.16)

La última órbita circular estable antes de la coalescencia está dada por

rstable = 6m,

Por lo tanto, la luminosidad en esa órbita en particular está dada por

Ṁ = − 16

10
√
2

q2

(1 + q)4

(
1

6

)5
(
1 +

1

216

(
1− q

1 + q

)2
)
. (C.17)

Ahora asumimos que los detalles finales de la coalescencia no cambian la dependencia
del parámetro dada por la ec. (C.17). Sin embargo, la gran cantidad de energía debe
tenerse en cuenta dando dos constantes fenomenológicas, una para cada contribución
de la masa y términos de cuadrupolo magnético. Suponemos así que

Ṁ = − A

1000

q2

(1 + q)4

(
1 +

B

216

(
1− q

1 + q

)2
)
, (C.18)

y los valores de A y B se encuentran ajustando la fórmula con los datos numéricos.
También se puede hacer una correlación fenomenológica entre el valor final de la
velocidad Vf o cantidad de movimiento Pf y q. Tenga en cuenta que la ecuación.
(4.7) depende del producto de la parte real e imaginaria de σ. Por lo tanto, una
derivación análoga a la realizada para Ṁ da como resultado

Vf = aη2
δm

m
= a

q2

(1 + q)4
1− q

1 + q
, (C.19)

donde el parámetro a se puede obtener de la gráfica numérica. Este último resultado
se ha derivado previamente en la Ref. [31].
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