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Estudio de propiedades dinamicas en sistemas
binarios de agujeros negros

Emmanuel A. Tassone

Resumen

En esta Tesis, haciendo uso de la estructura asintotica del espaciotiempo y del for-
malismo de Newman-Penrose, definimos la nocién de centro de masa y espin para
sistemas gravitacionales que emiten radiacién gravitacional. A diferencia de otras
formulaciones disponibles en la literatura, una de las caracteristicas centrales de
nuestro formalismo es el uso del formalismo de superficies nulas. Explicaremos el
scattering de materia en términos de este formalismo y la definiciéon de cortes reales
que se corresponden con lineas de mundo del espaciotiempo. Mediante el uso de estos
cortes asociados a lineas de mundo derivamos las ecuaciones para el momento angu-
lar y el momento dipolar mésico del espaciotiempo mediante el uso de las simetrias
asintoticas presentes en el infinito nulo.

Proponemos un gauge que nos permiten resolver la ambigiiedad del momento
angular proveniente de las simetrias asintoticas del infinito nulo. Las ecuaciones
obtenidas nos permiten definir el concepto de centro de masa y momento angular
intrinseco para un espaciotiempo asintoticamente plano arbitrario. Los concepto de-
finidos reproducen la definiciéon de centro de masa y momento angular intrinseco en
el caso de un espaciotiempo de Minkowski. Obtenemos la evolucion temporal de las
variables dindmicas y cineméticas a partir de las identidades de Bianchi. En parti-
cular, obtenemos la evolucion del centro de masa y momento angular intrinseco a
partir de las variables definidas en la frontera nula.

Finalmente, hacemos una aplicacion del formalismo presentado al catalogo de
ondas gravitacionales del instituto de tecnologia de Rochester. La evolucion del centro
de masa, pérdida de momento angular intrinseco y total, energia radiada y velocidad
del centro de masa para distintos valores iniciales de sistemas binarios de agujeros
negros son calculados. Un analsis exhaustivo es hecho sobre la fisica de las variables
definidas en el infinito nulo para las distintas categorias de simulaciones: binarias sin
espines, binarias con espines alineados y binarias con espines precesantes. Analizamos
la consistencia de los resultados obtenido y, en particular, comparamos los valores
finales de la velocidad del centro de masa con las kick velocities de los metadatos
computadas para cada simulacion.



Estudio de propiedades dinamicas en sistemas
binarios de agujeros negros

Emmanuel A. Tassone

Abstract

In this Thesis, using the asymptotic structure of spacetime and the Newman-Penrose
formalism, we define the notion of center of mass and spin for gravitational systems
emitting gravitational radiation. Unlike other formulations available in the literature,
a central feature of our formalism is the use of the null surface formalism. We will
explain the scattering of matter in terms of this formalism and the definition of
real cuts that correspond to world lines of spacetime. By using these cuts associated
with world lines, we derive the equations for the angular momentum and the mass
dipole moment of spacetime through the use of asymptotic symmetries present at
null infinity:.

We propose a gauge that allows us to resolve the ambiguity of angular momen-
tum arising from the asymptotic symmetries of null infinity. The obtained equations
allow us to define the concept of center of mass and intrinsic angular momentum for
an arbitrarily asymptotically flat spacetime. The defined concepts reproduce the de-
finition of center of mass and intrinsic angular momentum in the case of Minkowski
spacetime. We obtain the time evolution of the dynamic and kinematic variables from
the Bianchi identities. In particular, we obtain the evolution of the center of mass
and intrinsic angular momentum from the variables defined on the null boundary.

Finally, we apply the presented formalism to the gravitational wave catalog from
the Rochester Institute of Technology. The evolution of the center of mass, loss of
intrinsic and total angular momentum, radiated energy, and velocity of the center of
mass for different initial values of binary black hole systems are calculated. A tho-
rough analysis is performed on the physics of the variables defined at null infinity for
the different categories of simulations: non-spinning binaries, aligned-spin binaries,
and precessing-spin binaries. We analyze the consistency of the obtained results and,
in particular, compare the final values of the center of mass velocity with the kick
velocities of the metadata computed for each simulation.



Estudio de propiedades dinamicas en sistemas
binarios de agujeros negros

Emmanuel A. Tassone

Convenciones

A lo largo de esta tesis tomaremos las siguientes convenciones:

1. Unidades: Salvo férmulas especificas, utilizaremos unidades geométricas en
donde la velocidad de la luz, ¢ ([Distancia][Tiempo|™'), y la constante gravi-
tacional, G([Distancial®.[Masa]™'.[Tiempo]~*) son fijadas a uno:

c=G=1 (1)

En Relatividad General, todo queda determinado entonces por una sola dimen-
sion escala.

2. Indices: Los correspondientes a tensores tridimensionales se denotaré con le-
tras del alfabeto latino (ijk), mientras que os indices correspondientes a ten-
sores cuadridimensionales se denotara con letras del alfabeto griego (uv7y), o
eventualmente, con las primeras letras del alfabeto latino (abcd). En la Sec.1.2
utilizamos letras mayusculas del alfabeto latino (ABCD) para denotar indices
de espinores.

3. Usamos la convenciéon (+, —, —, —) para la métrica 7, en el espacio de Min-
kowski y también para la signatura de la métrica g,, de un espaciotiempo
genérico.



Capitulo 1

Introducciéon

La teoria de la relatividad general de Einstein revoluciond nuestra comprension
del universo, permitiéndonos entender la naturaleza de la gravedad y su influencia en
los cuerpos celestes. Entre los conceptos fundamentales de la relatividad general se
encuentran el centro de masa y el momento angular, que son herramientas esenciales
para la descripcion de sistemas fisicos complejos en el espacio-tiempo. En la teoria
de la relatividad general, definir el centro de masa, el momento angular y otras can-
tidades globales es un problema no trivial debido a la naturaleza geométrica de la
teoria.

En la mecanica newtoniana, cantidades como el centro de masa se definen facilmente
en términos de la masa y la posicion de los objetos. Sin embargo, en la relativi-
dad general, la masa y la energia son equivalentes, lo que significa que la energia
gravitatoria también contribuye a la masa del sistema fisico en cuestién. Ademaés,
la gravedad misma es una manifestacion de la curvatura del espacio-tiempo, lo que
significa que la posicién de un objeto no tiene un significado absoluto.

Esta nueva forma de estudiar la realidad introduce dificultades en la definicién del
centro de masa y del momento angular en relatividad general. En lugar de definir
estas cantidades globales en términos de la posicion y la velocidad de los objetos,
se utilizan cantidades geométricas del espacio-tiempo, como el tensor de energia-
momento y el tensor de momento angular. Estos objetos proporcionan una descrip-
cion matematica de la distribucion de masa y momento angular en el espacio-tiempo.
Sin embargo, la definicién de estas cantidades en forma global y en términos de canti-
dades geométricas del espacio-tiempo es complicada y en general solo se puede hacer
en situaciones especiales de simetria, como sistemas aislados o sistemas con simetria
axial. En situaciones mas generales, la definiciéon del centro de masa y del momento
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angular puede ser ambigua o incluso no tener un significado fisico claro.

Por lo tanto, la definicién de estas cantidades globales en relatividad general sigue
siendo un tema de investigacion activa en la fisica tedrica y se espera que se desarro-
llen nuevas técnicas y herramientas para su definicién y calculo en situaciones més
generales.

El problema de definir el centro de masa, el momento angular y otras cantidades
globales en relatividad general es particularmente relevante en el estudio de sistemas
binarios de agujeros negros.

Los sistemas binarios de agujeros negros son sistemas formados por dos agujeros
negros orbitando uno alrededor del otro en una danza gravitatoria que emite on-
das gravitatorias. Estos sistemas son importantes para la astrofisica y la cosmologia
porque son los principales objetos observados por las colaboraciones de deteccion de
ondas gravitatorias como LIGO y Virgo.

Sin embargo, la definicién precisa del centro de masa y el momento angular en siste-
mas binarios de agujeros negros es un problema dificil en relatividad general. Debido
a que los agujeros negros son objetos extremadamente compactos y deforman signi-
ficativamente el espacio-tiempo a su alrededor, la definicién del centro de masa y del
momento angular se vuelve mucho mas compleja.

En particular, la definicién del centro de masa en sistemas binarios de agujeros ne-
gros no es unica y puede variar dependiendo de la elecciéon del marco de referencia.
También, la presencia de los agujeros negros dificulta la definicién precisa de los
momentos angulares individuales de cada agujero negro y el momento angular total
del sistema.

Existen varios formalismos en relatividad general que dan una definicién matemética
rigurosa a estos conceptos globales. Algunos de los formalismos més conocidos son

» Formalismo ADM (Arnowitt-Deser-Misner): Este formalismo se basa en la
idea de que el espacio-tiempo se puede dividir en una serie de rebanadas.®*paciales
que evolucionan en el tiempo. En este enfoque, la definicién de centro de masa
y momento angular se realiza en términos de la geometria de cada rebanada
espacial. La utilidad de este enfoque no radica en las definiciones globales, sino
en los métodos cuasi-locales que permiten definir variables fisicas de manera
local [1].

» Formalismo de superficies nulas: Este formalismo utiliza la idea de que
las ondas gravitatorias se pueden describir como ondas que se propagan sobre
superficies nulas en el espacio-tiempo. En este enfoque, la definicion de centro
de masa y momento angular se realiza en términos de las propiedades de las
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superficies nulas.

» Formalismo de twistores: Este formalismo utiliza la idea de que el espacio-
tiempo se puede describir en términos de twistores, que son objetos matemati-
cos que tienen ciertas propiedades geométricas. En este enfoque, la definicion
de centro de masa y momento angular se realiza en términos de las propiedades
de los twistores [2].

= Formalismo de Cartan: Este formalismo se basa en la idea de que la rela-
tividad general se puede describir en términos de conexiones y curvaturas. En
este enfoque, la definicion de centro de masa y momento angular se realiza en
términos de las propiedades de las conexiones y curvaturas.

Cada uno de estos formalismos tiene suposiciones y herramientas matematicas dife-
rentes que pueden afectar la definicién de cantidades globales en relatividad general.
Por lo tanto, es importante elegir el formalismo adecuado para el problema en cues-
tion y tener en cuenta las diferencias en la definicion de cantidades globales al realizar
calculos y analisis en relatividad general. En esta tesis doctoral, se exploraremos la
definiciéon de cantidades globales como el centro de masa y momento angular en el
formalismo de superficies nulas y utilizaremos estas herramientas para analizar sis-
temas binarios de agujeros negros. El objetivo final del trabajo es mejorar nuestra
comprension de estos sistemas y contribuir al desarrollo de la astrofisica teorica.

1.1. Espacios asintéticamente planos

Dentro de la relatividad general, uno de los varios temas que despiertan el gran
interés de la comunidad cientifica, es el estudio de las propiedades fisica de los sis-
temas aislados. La nocién de espaciotiempo asintoticamente plano es el marco de
trabajo necesario que permite describir a los sistemas aislados en forma exacta y
precisa.

1.1.1. Definicién coordenada-dependiente

Probablemente la forma mas sencilla y préactica (también la primera historica-
mente) de definir un espaciotiempo asintoticamente plano es, por un lado, elegir
una coordenada radial r que esté bien definida para valores de r grandes, es decir,
r — oco. Para identificar esta coordenada radial en el espaciotiempo basta con tener

3
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una coordenada tipo espacio cuyo intervalo en el que esta definido sea isomorfo a R.
Por otro lado, la nociéon de asintoticamente plano implica que el espaciotiempo se
acerca a un espaciotiempo plano a medida que nuestra coordenada radial va hacia
infinito. En términos de la métrica g, esto implica que para r — 00, gap = Nap + Pab,
con 7y la métrica de Minkowski.

Entonces que g, sea asintoticamente plano, implica que h,;, satisfaga las siguientes
condiciones

u 1imr—>oo hab = 0(1/7"),
v 1m0 Pgpp = O(1/r?),

o 1m0 happg = O(1/73).

En la siguiente seccion introduciremos la definicion més formal de espacio tiem-
po asintoticamente plano, que permite trabajar el concepto de infinito en términos
matematicos exactos. Este concepto fue introducido por Penrose y la técnica que
permiten analizar los “bordes” del espaciotiempo se conoce como Compatificacion
Conforme.

1.1.2. Definicion formal

En términos formales, un espaciotiempo (M, g,) es asintéticamente plano en
el infinito nulo (_#) o espacial (i°) si existe un espaciotiempo (M, gap), con Jup
infinitamente diferenciable, y una isometria conforme ¢ : M — [M] C M con
factor conforme (2 satisfaciendo las siguientes condiciones:

1. Jt(i®)UJ (i%) = M —[M], donde J* y J~ denotan el futuro y pasado causal
de un punto del espaciotiempo, respectivamente. La barra sobre J corresponde
a la operacion clausura de teoria de conjuntos.

2. Existe un entorno abierto, V, de M = _¢#+n _#~Ni° tal que el espaciotiempo
(V, gab) es causalmente fuerte.

3. Q puede ser estendido a una funcién C2 en i® y C* en todo otro punto de M.

4. Por un lado, en #TN _#~ debe ser Q =0y Q, # 0. Por otro, en i®, @ =0,
limjpQ., = 0y limoQd.qp = 204
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5. El mapa que lleva las direcciones nulas en i° a el espacio de curvas integrales
generado por n® =% ., en TN _#~ es un difeomorfismo. Para una funcién
suave w € M —i® conw>0en MN _£+N _F si (wn),,=0en £rn 7~
entonces w™'n® es un campo vectorial completo en I N .

De estas cinco condiciones, la primera, nos asegura que i° represente el infinito espa-
cial en forma eficaz; la segunda condiciéon permite evadir cualquier patologia causal
cerca del infinito -por ejemplo, como sucede con las curvas cerradas temporales-; la
tercera condicion nos garantiza que la funcion escalar €2 sea bien comportada cerca
del infinito; la cuarta condicién, y quizéas la més importante en términos practicos,
nos hablan de un “estiramiento infinito” necesario para pasar de la métrica fisica g,
a la no fisica g,. Atn mas, la cuarta condicién garantiza que la métrica fisica del
espaciotiempo g, sea plana a medida que nos acercamos al infinito (sea Z T, #~ o
iY); Finalmente, la quinta condicién tiene un trasfondo mas técnico. La primera parte
nos asegura que todos los generadores de geodésicas nulas de ¢y #~ surgen de i°
en forma apropiada, en particular, implica que # Ty £~ tienen topologia S? x R.
La segunda parte nos habla de la completitud del campo vectorial n®, o visto de otro
modo, la segunda parte requiere que no haya “partes” de 7+ o #~ que falten en
nuestro espaciotiempo no fisico M.

Un resultado importante que puede derivarse para dos tensores Ry y Ry, de los
respectivos espaciotiempos M y M, es la relaciéon entre ambos

Ry = Rup + 207V, V2 + Gung™ (Q”?(ﬁdQ _ 39*2669%9) . (1.1)

1.1.3. Coordenadas adaptadas al infinito nulo

En términos sencillos, el concepto de infinito nulo futuro se refiere a una region
lejana en el futuro de una solucién de ondas gravitacionales. Las coordenadas nulas de
Bondi-Sachs estan especialmente disenadas para describir esta regiéon y permiten una
descripcion precisa de las propiedades asintoticas del espacio-tiempo en este limite.
Para estudiar la estructura asintotica descripta en la Seccion [1.1.2], es comin utilizar
estas coordenadas adaptadas al infinito nulo.

En un articulo de Nature de 1960 [3], Hermann Bondi presenté un nuevo enfoque
para el estudio de las ondas gravitacionales en la teoria de la relatividad general de
Einstein. Se basaba en los rayos nulos salientes a lo largo de los cuales viajaban las
ondas. Fue seguido en 1962 por un articulo de Bondi, Metzner y van der Burg [], en
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el que se daban los detalles de los espaciotiempos axisimétricos. En su autobiografia
Bondi coment6 sobre este tltimo trabajo:

«The 1962 paper I regard as the best scientific work I have ever done, which is
later in life than mathematicians supposedly peak.»

Poco después, Rainer Sachs [7] generalizo este formalismo a espaciotiempos no
axisimétricos y resolvid las simetrias asintoticas en la aproximacion al infinito nulo.
Este tltimo tema sera profundizado en el Cap.[3] de la tesis.

Las coordenadas desarrolladas en los trabajos mencionados , las coordenadas de
Bondi-Sachs 2% = (u, r, z*!), fueron construidas en base a una familia de superficies
salientes u = const, con 2° = u una coordenada nula. De modo que el vector tangente
es k, = —0,u, y por ende ¢°° = 0. Aqui, 24 representa dos coordenadas angulares
constantes a lo largo de los rayos nulos definidos por al coordenada u, es decir que

k4 O,z = 0 = —¢g™0,0,x7, (1.2)

y por ende ¢%4 = 0. La coordenada restante x' = r, que varia a lo largo de un rayo
nulo k%, es elegida tal que det(gap) = r'q, donde ¢ es el determinante de la métrica
de la esfera unitaria g45 asociada a las coordenadas angulares 4.

Para coordenadas estéandares esféricas 4 = (6, ¢),

1 0
9aB = <O sz’n29> : (1.3)

Para conocer la forma de las componentes restantes de la métrica usamos las iden-
tidades

) = 9" gar = 9”911 = 0

0% = 9" gan = 9" 1a = 0,
de donde vemos que g1 = gi14 = 0 ya que ¢! no puede ser cero, pues sino det(gap) =
0.

Finalmente, podemos concluir que en coordenadas de Bondi-Sachs la métrica
toma la féorma

Japdz’da’ = —Kewdu2 —2e*dudr + r’hap (da — UAdu) (dz” — UPdu), (1.4)
r

donde gap = r?hap y hemos reescrito las componentes de las métricas restantes en
términos de las funciones V.3 y UA.
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Para el caso de un espaciotiempo plano, la métrica de Minkowski en coordenadas
Bondi-Sachs (1.4) puede escribirse

Napdz?dz’ = —du® — 2drdu + r’qapdz’dz® (1.5)

Por otro lado, para un marco de referencia inercial asintotico en coordenadas de
Bondi-Sachs, la métrica (1.4) debe aproximarse a la métrica de Minkowski en el
infinito nulo (1.5), de modo que

V
llmr—moﬂ = limr—ﬂ)oUA = 07 hmr—)oo_ - ]-7 limr—mohAB = gAB- (16)
T

Los marcos de referencia inerciales se denominan sistemas de Bondi, o coordenadas
de Bondi cuando refiere a las coordenadas que originan el sistema inercial, y son el
andlogo a los sistemas no acelerados que se encuentran en Minkowski. Estos siste-
mas son de gran relevancia para la comprension de la radiacion gravitacional y su
descripcion sera ampliada en el Cap. [3].

1.1.4. Propiedad de Peeling

En una variedad asintoticamente plana, el tensor de Weyl Cy;.q, que describe las
ondas gravitatorias en una region del espacio-tiempo, tiene un comportamiento espe-
cifico cerca del infinito nulo. En particular, el tensor de Weyl se puede descomponer
en una serie de términos que se vuelven cada vez mas singulares a medida que nos
acercamos al infinito nulo.

Esta descomposicion en términos singulares se llama la propiedad de Peeling, y es
importante porque proporciona informacién valiosa sobre las propiedades de las on-
das gravitatorias cerca del infinito nulo. Por ejemplo, la descomposicion de Peeling
permite a los fisicos distinguir entre diferentes tipos de ondas gravitatorias, como
ondas gravitatorias de polarizacién nula y de polarizaciéon no nula. Esta descompo-
sicibn también permite la identificacion de caracteristicas especificas en la forma de
onda de las ondas gravitatorias.

Matematicamente, la propiedad de Peeling afirma que dada una geodésica nula ~
en un espaciotiempo (M, gq,) con parametro afin A, si tomamos el limite A — oo,
entonces el tensor de Weyl C.q tiene el siguiente comportamiento.

Coma , Casea . Corea . Coea L
el el —oted 4 =20 +O(F>‘ (1.7)

Cabcd -
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Es decir, si hacemos una expansion en términos de 1/\, encontraremos com-
ponentes tensoriales C’C(lé\gzl que poseen simetrias en sus direcciones nulas. El lector
familiarizado con la clasificacion de Petrov para espaciotiempos reconoceréd estas
simetrias.

Si tenemos un espaciotiempo con especialidad algebraica asintotica entonces solo
sobreviviré el término en la descomposicion que nos dara las simetrias del tensor de
Weyl correspondientes al tipo algebraico. Esto es

= Si C4), #0— Tipo N

« O, #0 = Tipo I11

» C¥ 20— Tipo IT

. égz 4 7 0 — Tipo I (Ninguna simetria)

Mas detalle sobre la clasificacion de Petrov puede encontrarse en [6]. Veremos luego
que esta descomposicion tendra grandes implicaciones en el formalismo de superficies
nulas, ya que descomponer el tensor de Weyl implica descomponer la radiaciéon gra-
vitacional, y por ende, las variables fisicas que la describen. En particular, veremos
en la proxima seccion céomo la propiedad de Peeling afecta las variables definidas en
el formalismo de Newman-Penrose.

1.2. Formalismo de Newman-Penrose

El formalismo de Newman-Penrose, también llamado formalismo de coeficientes
de espin, es un marco matemaético utilizado para describir la geometria y la fisica
de la relatividad general de una manera maéas clara y elegante que las técnicas ma-
tematicas usuales en términos de tensores. Fue desarrollado en la década de 1960
por los fisicos Roger Penrose y Ezra Newman. El formalismo de Newman-Penrose es
una herramienta matemética muy poderosa para analizar la curvatura y las propie-
dades fisicas del espacio-tiempo en la teoria de la relatividad. En particular, es de
suma utilidad a la hora de estudiar ondas gravitacionales lejos de la fuente, ya que
como veremos luego, es posible codificar toda la informacién gravitacional en un solo
escalar proporcionado por este mismo formalismo.
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1.2.1. Espinores

Para entender el origen del formalismo de Newman-Pensrose es necesario intro-
ducir el concepto de espinores.
Los espinores son objetos matemaéticos que se utilizan en fisica teoérica, especialmente
en teoria cuantica de campos y en relatividad general. Los espinores son una gene-
ralizacion de los vectores y se caracterizan por transformarse de manera no trivial
bajo ciertas transformaciones de simetria, como rotaciones en el espacio o transfor-
maciones de Lorentz. Quizas uno de los ejemplos més conocido de estos elementos
puede encontrarse en el contexto de la mecanica cuantica, cuando hablamos de las
matrices de Pauli para describir el espin de particulas con espin s = 1/2.
En esta tesis, no nos restringiremos a una representacion especifica de los espinores
con espin fijo, sino que usaremos el concepto de espinor como elemento de un espacio
espinorial que satisfacen un algebra de espinores. Esta nocion fue desarrollada por
Penrose y Rindler, junto con la notacion abstracta de espinores, que utilizaremos
en esta seccion. Dado un espinor Kk € G, con G un espacio vectorial complejo de
dimensiéon finita, diremos que /{égl, es un tensor de rango 4 que transforma bajo
las transformaciones de Lorentz de acuerdo con las leyes de transformacion de los
espinores. Aqui los indices A, B’,C, D’ denotan cuatro tipos diferentes de espacios
vectoriales: los subindices sin primar indican pertenencia al espacio dual de G, los
supraindices sin primar indican pertenencia a G, y los subindices y supraindices pri-
mados indican pertenencia al espacio G o G-dual respectivamente, bajo la operacion
de conjugacion de nimeros complejos (los espacios vectoriales G son por definicion
complejos).
Vease aqui que la notacion introducida para espinores es completamente analoga a
la de vectores, con el agregado de que al ser espacios vectoriales complejos también
tenemos indices primados. Esta notacion, al igual que para vectores, es invariante de
coordenadas e utilizamos letras maytusculas en los indices para senalar que las leyes
de transformacion de los espinores son distintas a aquellas de los vectores.

Estructura del espacio espinorial

Es posible definir un producto interno antisimétrico de G x G — G y una forma
eap € Gap tal que, dados dos espinores k4 v w?, se tiene

eapkw? = —eapwiKP. (1.8)
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La forma €4 g conforma una parte esencial del algebra espinorial y tiene un rol analogo
al de la métrica para vectores. La forma €45 es invariante bajo las transformaciones
de Lorentz y nos permiten “bajar’ o “subir” los indices espinoriales, no solo para

espinores de un solo indice sino también para los espinores mas generales de la forma
A..DP'..R'

XL..NU"..W'

Por otro lado, también es posible definir una base en el espacio espinorial. Es
decir, un par de espinores o, ¢ tal que sean e4504t® = 1 y que dada un espinor x*,
se tenga

k= kYo + IilLA,
con sus componentes kK = — k4 y k' = oar4.

La base del espacio espinorial y la forma introducida en (1.8), se relacionan mediante
la siguiente ecuacion fundamental

AB AB _ A,B (1.9)

Relacion entre vectores y espinores

La relacion entre los espacios espinoriales y el grupo de Lorentz puede ser estable-
cida con los conceptos introducidos. Cabe destacar que las relaciones entre espinores
y vectores deducidas en esta seccion, se desprenden del hecho de que el producto
tensorial de dos espinores transforma de la misma manera que un vector, y por ende,
ambos espacios deben ser isomorfos.

Dada una base normalizada (0, (1) del espacio espinorial G, podemos definir tenso-
res en W = G x G de la siguiente manera

A4 = %(0’40‘4/ + 47, (1.10)
A = %(OAZA/ + 4%, (1.11)
A = %(of‘/" A, (1.12)
A4 = %(0’46’4/ — A, (1.13)

El espacio cuadri-dimensional formado por estos tensores es invariante ante la con-
jugacion compleja. Este hecho, sumando al hecho de que la ley de transformacion

10



Introduccion 1 Propiedades dindmicas en sistemas binarios de agujeros negros

de estos tensores se comporta de la misma manera que los vectores ante transfor-
maciones de Lorentz, nos dice que la base (t*, %, y*, z%) también forma una base del
espacio vectorial W. Se define entonces una transformacion lineal hibrida o entre
vectores y espinores tal que

JZA’ :tatAA/ —$a$AA/ —y“yAA/ —ZaZAA/. (1.14)

Esta transformacion es un isomorfismo en W que nos permite transformar entre los
tensores espinoriales (1.10) y la base vectorial conocida en Minkowski (t*, %, y*, 2%).

1.2.2. Coeficientes de espin

Habiendo definido el algebra de espinores es sencillo ahora definir la base nula a
partir de la cual se desarrolla el formalismo de coeficientes de espin. Entonces dada
una base de espinores (04, 1), simplemente definiremos una base ortogonal nula del
espaciotiempo efectuando todas las posibles combinaciones de productos tensoriales
entre esta base y su compleja conjugada. De esta forma surge de manera natural la
base vectorial

_A’ _A! _ _ Al A’
1°=o0%%", m*=o"", m*=.%", n®=.4". (1.15)

Se desprende de las propiedades de los espinores vistas en la anterior secciéon que
estos vectores satisfacen las siguientes relaciones

lon® = —1=10,, mym*=1=mn,, (1.16)
lom® =1,m* =nym* =n,m* =0, (1.17)
1,1° = n,n® = mym® = mam® = 0. (1.18)

Esto quiere decir que los cuatro vectores no solamente son nulos, sino que forman
una base ortogonal de un espacio cuadri-dimensional. Los indices de estos vectores
pueden subirse o bajarse para obtener su respectivo par del espacio dual mediante
la métrica que queda determinada por nuestra base espinorial de dos dimensiones.

Gab = €apEarp = (0atp — ta0B) (0alp — LaOp)
= lanb + nalb — MgMp — MMy,
(1.19)

11
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Si denotamos a los vectores de nuestra base nula como
AL = (1%, n% m* m?), (1.20)

podemos definir las derivadas direccionales, en la direcciéon de cada vector nulo, como

V=NV, = (D,A,4,9). (1.21)

Una vez introducidas las derivadas direccionales, podemos aplicarlas sobre la misma
base nula y obtener los coeficientes de rotacion de Ricci de nuestra base

Vi = )\g)\zva)\i. (1.22)

Estos coeficientes son un caso particular de conexién cuando el marco de referencia
es no coordenado. Luego, los escalares de Newman-Penrose se definen simplemente
como las distintas componentes independientes de la conexion 73,

1
™= —7241, €= 5 (7121 - ’7341) , K =M731 (1-23)
1
A= —Youa, Q= 5 (7124 - ’7344) y P = 7134
1
K = —"7243, ﬂ = 5 (7123 - 7343) , 0 = 7133
1

V= —"242, V=2 (’7122 - ’7342) , T = Y132.
2

Algunos de estos coeficientes tienen una interpretacion fisica directa en términos
del comportamiento de un conjunto de geodésicas. Estos escalares son ampliamen-
te usados para estudiar el comportamiento de las ondas gravitatorias, los agujeros
negros y otros fenémenos en la relatividad general, y componen una herramienta
fundamental para comprender la estructura y la dinamica de espaciotiempos no tri-
viales.

Dada una congruencia de curvas nulas, o “manojo” de curvas nulas en términos
informales, algunos coeficientes de espin tienen significado geométrico bien definido.
Estos son

— p, con su parte real, representa la dilatacion o expansion de los rayos de luz a
lo largo de la congruencia de curvas; la parte imaginaria representa la rotacion
o twist de la congruencia. Si tomamos la seccién trasversal a los rayos de luz
A, el cambio de la seccidn con respecto a la coordenada radial viene dado por

1ds
—_— = — 0 1.24
T =—(p+p) (124)

12
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— o, representa la deformacion de la congruencia de curvas por la cual se propa-
gan los rayos de luz;

— K, nos permite decidir si la congruencia se trata de una congruencia geodésica.
Ya que en este caso, debe ser k = 0.

— ¢, también es un escalar vinculado a la condiciéon geodésica ya que en este caso
es posible hacer una elecciéon del parametro afin de la congruencia de tal forma
que € + € = 0. Esto es, el escalar € es imaginario.

— m, junto con los escalares k y € establecen cuando la tetrada nula asociada a la
congruencia se transporta paralelamente sobre esta. En efecto, la tetrada nula
es paralela a la congruencia si y solo sim =k =€ = 0.

Ademaés de los doce escalares [1.23] de la conexion, podemos definir cinco esca-
lares mas relacionados a la radiacion gravitacional, haciendo todas las contracciones
independientes entre el tensor de Weyl y nuestra base nula,

Uy = —Clapeel®m°lm?, (1.25)
Uy = —Clpealn®1cm?, (1.26)
\112 = — abcdlambmcnd, (127)
Uy = —Clpeal®n®mn?, (1.28)
U, = —Cpeamnlmcn. (1.29)

En términos generales, los escalares de Weyl proporcionan una descripcion de-
tallada de la curvatura del espacio-tiempo y son importantes para la comprension
de la fisica de los objetos astrofisicos, como los agujeros negros y las estrellas de
neutrones. También se utilizan en la construccion de modelos teoéricos de la radia-
cion gravitatoria y en la interpretacion de las observaciones astronémicas. Existe una
estrecha relacion entre las simetrias que pueden presentar el espaciotiempo en una
direccion nula y el valor de los escalares de Weyl en dicho punto. El lector interesado
en entender esta relacion podra consultar [6] sobre la clasificacion de Petrov para
espaciotiempos.

13
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1.2.3. Ecuaciones de coeficientes de espin

Escribiremos ahora las ecuaciones que rigen la dindmica de los coeficientes de
espin en regiones de vacio. Por un lado, la tetrada nula [1.15], deben respetar las
siguientes ecuaciones

Al" = Dn® = (y+ )"+ (e + é)n® — (1 +1)m" — (T + m)m?, (1.30)
o —Dm® = (a+ B —7m)"+kn® —om® — (p+e—€m", (1.31)
on® — Am® = —vl* + (1 — a — B)n® + A + (u — v +3)m*, (1.32)
S — 6m = (1 — )l + (5 — p)n — (@ — B)me + (a— fym®. (1.33)

Luego, los coeficientes de espin deben respetar el siguiente conjunto de dieciocho
ecuaciones diferenciales

AN—6v=—(p+a+3y—A+Ba+B+71—T)v— U, (1.34)
op =00 =p(a+pB)—aBa—p)+(p—p)71+ (p—p)k— ¥, (1.35)
da—0B=pup—Ao+aa+ B8 —2aB+~v(p—p)+e(p— i) — ¥y (1.36)
SN —op = (p—p)v+ (p— )7+ pla+ B) + Ma — 36) — (1.37)
ov—Apu=p*+ M+ puly+7) —om+v(r — 38— @) (1.38)
oy —AB=y(r—a—B)+ur —ov—ev—B(y—7—p) +al (1.39)
T —Aoc=poc+pA\+7(r+B—a)—o(3y—7) — ki (1.40)
Ap—0or=—(pip+0oN)+7(B—a—7)+ (y+7)p+ kv — U, (1.41)
Aa—=dy=v(p+e) = AT+ b)) +a(¥—i)+7(3—7) — U3 (1.42)
Dp—dx=p*+00+ (e+&p—kr —r(Ba+ 3 —7) (1.43)
Do —dk=(p+plo+Be—€o—(T—T+a+30)k+ T, (1.44)
Dr—Axk=(1+7m)p+T+m)oc+(e—&)T—By+ )k + ¥, (1.45)
Da —de= (p+&—2€)a+ 35 — Be — kA — ky + (e + p)7 (1.46)
DB —de=(a+mo+(p—86p—(u+vy)k—(a@—7)e+ U, (1.47)
Dy—Ae=(tr+m)a+ (T+m)B—(e+e)y— (y+Y)e+mr —ve+ ¥y  (1.48)
DA\ —o0m=pA+ou+7m°+ (a—B)7 — v — (3¢ — )\ (1.49)
Dpu—ér=pp+oX+7n17—(e+éu—m(a—pP) —ve+ ¥y (1.50)
Dv—Anr=F+mpu+(T+7)A+ (y—9)7 — (Be + é)v + Us. (1.51)

Este conjunto de ecuaciones diferenciales acopladas debe resolverse junto con las
identidades de Bianchi que, en términos de los coeficientes de espin, se leen
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6Uo — DV = (da — m)Wo — 2(2p + €) U, + 3xUy, (1.52)
6U; — DUy = AW + 2(a — )Wy — 3pWy + 2603 (1.53)
6Uy — DUy = 2\U; — 37U, + 2(ec — p) U3 + kT, (1.54)
6U3 — DUy = 3\U, — 2(a + 2m) U3 + (de — p) Uy (1.55)
AWy — 0V = (4y — )V — 2(27 + B)¥; + 30¥,, (1.56)
AV — Uy = vV + 2(y — p)Wy — 3705 + 20V3, ( )
AUy — §U3 = 200, — 3uWy + 2(8 — 7)U3 + oWy, (1.58)
AWz — U, = 3vWy — 2(y 4+ 2u) U3 + (458 — 1) ¥y ( )

En conlcusion, podemos decir que la version de vacio de las ecuaciones de Eins-
tein consisten en tres conjuntos de ecuaciones diferenciales en derivadas parciales no
lineales y acopladas entre si. Estos conjuntos son: el conjunto de ecuaciones dife-
renciales para la tetrada, el conjunto de ecuaciones para los coeficientes de espin y
un tercer conjunto de ecuaciones para los escalares de Weyl. Aunque no hay mucha
esperanza de poder resolver las ecuaciones (1.30),(1.34) y (1.52) en forma general,
muchas soluciones exactas han sido encontradas en estas. En particular, se han en-
contrado varias soluciones de perturbaciones y de soluciones asintonticas. El interés
de este trabajo radica en este dltimo tipo de soluciones que describiremos en la
proxima, seccion.

1.2.4. Comportamiento asintético

Presentaremos las soluciones asintéticas para el conjunto de ecuaciones (1.7),(1.34)
y (1.52). Para encontrar estas soluciones uno debe empezar especificando el compor-
tamiento de W, con respecto a la variable radial r—!, definida en el infinito nulo.
Luego, puede ir desacoplando las ecuaciones y resolviendolas en 6rdenes de r~!. El
lector interesado en conocer el procedimiento de resoluciéon detalladamente podra
consultar las referencias |7, .
Denotaremos con un superindice cero a las cantidades definidas en el inifito nulo
¥, que seran soluciones asintéticas a las ecuaciones de Weyl y también constituyen
los términos dominantes en espaciotiempos asintoticamente planos a medida que nos
alejamos de una fuente.
Entonces asintéticamente, y teniendo en cuenta (1.7), podemos escribir los escalares
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de Weyl como

Yo =YIr > +0 (r?%, (1.60)
Y =Pirt+ 0 (r?), (1.61)
Yo =Pyr P+ 0 (rt), (1.62)
Y3 =Yr 2 +0 (r?), (1.63)
y=Pir Tt + 0 (r?). (1.64)

Mientras que la solucion a las Ecs. (1.34) es
¢ =-—p =0, (1.65)
=0, =-pP (1.66)
P =1+, (1.67)
o = 0 = _g, (1.68)
=" =0, (1.69)
W’ = —00°, (1.70)
A\ =50 (1.71)
p’ =0 = -1, (1.72)
§=—a" (1.73)
5 = 00", (1.74)
0 _ 8 = 526" — 825 + 697" — 00N, (1.75)
(1.76)

con

¢t =(or, (1.77)
gA — fOAT_l . O'OEOA’I"_Q + 0_06_050147,—3 + 0] (7“_4) ’ (178)
w=wr"" = (" +¢)/2)r?+ 0 (r7?), (1.79)
XA = (W + g0 (6r°) T+ O (rY) (1.80)
U=U"—("+3°)r— (3 +49) (2r) ' +0 (r?). (1.81)

Por otro lado, se desprende de las identidades de Bianchi (1.52) que las ecuaciones
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de evolucion para los escalares de Weyl asintéticos son

Uy = —0y§ + oy, (1.82)
U0 = —auY + 2099, (1.83)
Y0 = =Y + 3049, (1.84)

De las tres ecuaciones (1.82) - (1.84), la primera esta relacionada con la pérdida de
energia gravitacional y juega un rol fundamental a la hora de comprender la dindmica
de las cantidades fisicas de una sistema. En efecto, definiendo el aspecto de masa
como

U =) 4+ 0%6° + 052, (1.85)

la Ec. (1.82) puede reescribirse como
U = 6. (1.86)

Dado que todos los coeficientes de espin definidos dependen de las coordenadas
(u,(,¢) (Ver Sec. 1.1.3) podemos hacer una expansion del aspecto de masa en tér-
minos de los esféricos armonicos

U(u, ¢, ¢) = U0 (u) + () Yi5(C, Q) + 7 (u)Yy5(¢, Q) + - (1.87)

donde se suele definir la masa y momento de Bondi como los términos [ =0y [ =1
de la expansion (1.87)

C2

Mg = — v 1.88
R NTE (1.88)

. 03 .
Pl=—— V' 1.89
e (1.89)

Por otro lado, una definicién del momento angular en términos de con estas coor-
denadas no existe y esto introduce, en algiin punto, el problema de definir cantidades
globales similares a la mecénica newtoniana en relatividad general. Para teorias de
relatividad lineales en vacio, el momento angular es usualmente definido en forma
similar al momento de Bondi como la parte imaginaria del término vectorial en la
expansion de ¢V

J' = —=—Im(¥), (1.90)
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entonces cualquiera sea la definicion de momento angular dada en espaciotiempos
genéricos, deberé tener como resultado de su linearizacion la Ec. (1.90).

El lector no debe dejar de notar que la Ec. (1.85) contiene una expansion no
trivial de esféricos arménicos, ya que no son los Y;,,(¢,() usuales de la literatura
general. Estos esféricos armoénicos se conocen como esféricos armonicos tensoriales
Y, (€ ,(), con Iy un conjunto de indices tensoriales (i;...ix), y profundizaremos
sobre su definicion en la préoxima seccion.

1.3. Bases completas en L,(S?)

En relatividad general, las cantidades escalares Ecs. (1.34) y (1.52) que utiliza-
mos para estudiar la radiacion gravitacional exhiben una simetria adicional corres-
pondiendo al grupo de simetrias U(1). Esto quiere decir que si tenemos una cantidad
escalar 1 en la esfera S? y efectuamos una rotacion alrededor del polo norte de la
esfera, entonces 1 transforma como

n— eiswn, (1.91)

con s un namero entero y ¢ una fase. Se definen entonces los esféricos arménicos con
peso de espin, Y’ , como una generalizacion a los esféricos armonicos estandares y
que, al igual que ellos, también son funciones en la esferas donde [, m estan asociados
a las transformaciones alrededor de los ejes x,y,z segiin las leyes de transformacion

Yim(0+00,¢) = (=1)"Yi_m(0,¢)  siecjex
Yim (0, ¢ + 0¢) = ™Y}, (6, ¢) sieje y -
YZm(ea (b + 5¢) = €im(¢+5¢)Y2m(9a (b) si eje Z

Nétese que las funciones Y} (¢, ¢) son funciones integrables en la esfera y por lo
tanto puede definirse un producto interno entre estas funciones como

(Y, Vi) = / o Vil dS. (1.92)
5‘2

Por lo tanto, se dice que estas son representaciones del grupo U(1) x SO(3) sobre
Ly(S?) en el caso de esféricos armonicos con peso de espin y, similarmente, se dice
que los esféricos armonicos estandares son representaciones del grupo SO(3) sobre

La(S?).
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Los esféricos armonicos con peso de espin, al ser una base completa sobre Lo(S5?),
permiten hacer un desarrollo en serie de la parte angular de cualquier cantidad
escalar. En particular, en la literatura es usual hacer un desarrollo en serie del escalar
de Weyl asintotico W9 como

l=00,m=l

V(w,¢, Q)= > Wy, (W)Y (C,Q). (1.93)

1=2,m=—1

Notemos que en este caso el escalar de Weyl tiene un peso de espin s = 2 y esto se
debe a que la radiaciéon graviacional tiene dos grados de polarizacion.

1.3.1. Esféricos armonicos tensoriales

En esta tesis, si bien utilizaremos cantidades con peso de espin, no utilizaremos
los esféricos armoénicos espinoriales sino una representacion equivalente a esta. Los
esféricos armonicos tensoriales constituyen otra representacion de U(1) x SO(3) en
espacios tensoriales de rango (0,m), T(V? x V*™) con V*™ el producto tensorial
de m-veces el espacio dual de V. En esta secciéon nuestro espacio V' serd un espacio
euclideo tridimensional, por lo tanto la diferenciaciéon entre V' y Vx es innecesaria.

Esta representacion fue introducida por primera vez en |9] y es utilizada en di-
versos ambitos de relatividad general, en particular, usaremos esta herramienta para
estudiar la radiaciéon gravitacional.

Matematicamente, dados los vectores que componen la tetrada nula (1.15) en el
espacio de Minkowski

a _; -~ 7—2' N -
Z(C’O_\/i(1+§§) (1+¢C.¢+¢,—i(C =€), —1+¢C), (1.94)

a ~\ 1 s - i(C — ~ _
n*(¢.¢) = NoTERG) (1+¢¢=(C+0),i(C =), 1= <C), (1.95)
alr A\ _ 1 2 _; 2\ o7
~a A\ 1 2 i 2
m*(¢,¢) = NoTENe) (0,1 —¢%i(1+¢%),2¢)., (1.97)
(1.98)
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podemos definir vectores espaciales tridimensionales ¢;, m; y m; como las proyeccio-
nes normales de los vectores ¢ = [* — n% m®y m® a t%, es decir,

Ci \/_

e (C+¢=il¢ =€), —1+¢C), (1.99)
mt = \/5(1—41rgg‘) (1-C—i(1+¢%),20), (1.100)
m' = __ (1—-¢%i(1+¢%),2¢) . (1.101)

V2(1+¢()

Geométricamente, el vector ¢; es un vector en la direccién radial en la esfera, mientras
que los vectores m; y m; son vectores tangentes a la esfera. Los vectores (1.99),(1.100)
y (1.101) forman una base para construir los esféricos armonicos tensoriales. Enton-
ces, se definen los esféricos armoénicos tensoriales con peso de espin s = [ como

Vi = mam,. (1.102)

1,i1...9

Para extender su definicion a pesos de espin s # [, se introducen dos operaciones
de derivacion sobre la esfera S2?, 8 y 0, que actiian como “operadores escaleras” con
respecto al indice S. Es decir,

oYL =Y (1.103)

321...] l,ll...lﬂ

glely 1 —ys (1.104)

lzl K5 l,i1...9;

Para ser mas precisos, los operadores 0 y 0 son derivadas covariantes complejas
en la variedad 2-dimensional de S2?. Es posible componer estas dos derivadas para
definir el laplaciano en S? y es sencillo verificar de (1.103) y (1.104) que

00Y), , =—(+s)l—s+1)Y ., (1.105)
es decir, los Y%

I%:,..i, son autovalores del laplaciano.

Una vez definida la base tensorial, y siendo que esta es una base completa, pode-
mos realizar un desarrollo similar a (1.93), pero esta vez en términos de los esféricos
armoénicos tensoriales:

W(u, ¢, Q) = Z\If‘) WY (6, €)

= \IIZO,L(u)?,ilw 2,i142 (C C) + ‘IIO( )37i1i2i3Y232,i1i2i3 (Ca C) + ... (1'106)
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Descomposicion de Clebsh-Gordan

Finalizaremos esta secciéon describiendo la descomposicion de Clebsh-Gordan pa-
ra productos de esféricos armoénicos tensoriales. La descomposiciéon de Clebsh-gordan
es un teorema en teoria de grupos que permite descomponer el producto directo de
dos grupos en suma directa de representaciones de dimensiones menor. No nos aden-
traremos en los detalles matematicos de las representaciones tensoriales ni tampoco
daremos un algoritmo para la descomposicion de cualquier producto. Sin embargo,
es necesario mencionar esta herramienta ya que serd de gran utilidad en calculos
posteriores.

Dados dos tensores Y} . v lf;-lwil/, el producto tensorial de ambos puede ser
descompuesto como

I=l1+12
S1 52 — § o s1+82
Y21,i1...ilYl2,i1...il/ - Al6621---Zzl+12_lYl,il,,.il7 (1107)
I=—|l1— 2|
donde A; constituyen los coeficientes de Clebsh-Gordan, €d;,. i, .1, , = €iy.iy 41y

para tensores sobre espacios de dimensién impar y €d;,.
tensores sobre espacios de dimension par.

De esta forma, si realizamos el producto tensorial de Y% e Yl(;-, la descomposicion de
Clebsh-Gordan permite expresarlo como

A ig—1 — Yiredp 11y para

) 1
VAYS = sendi+ 5 (1.108)
Encontrar las constantes A; no es una tarea sencilla y en general se dificulta hacia
mayores valores del indice [. Para encontrar estos coeficientes deben escribirse ambos
miembros de la igualdad (1.107) en términos de los vectores los ¢;;m; y m;. Luego,
se plantea un sistema de ecuaciones compuesta de todas las ecuaciones con el mismo
peso de espin y se despejan los coeficientes. Una tabla para los productos con indices
mas bajos puede verse en el Apéndice C.

1.4. Transformaciones nulas

Finalizaremos este capitulo presentando una subclase de las transformaciones de
Lorentz, llamadas transformaciones nulas. Dentro de las cinco clases de conjugacion
del grupo restringido de las transformaciones de Lorentz SO™ (1, 3), solo las transfor-
maciones parabolicas (rotaciones nulas) y las hiperbdlicas (también conocidas como
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boosts) seran de interés en esta seccion. Esto se debe a que trabajaremos con vectores
nulos a lo largo de esta tesis.

Durante la tesis trabajaremos definiendo cantidades cuyas coordenadas (¢, ()
estan contenidas en S?. Para ver como transforma este par de coordenadas ante una
transformacion de lorentz restringida, es mas sencillo ver su accién bajo el grupo
SL(2,C), que sabemos es isomorfo a SOT(1,3). Entonces

aC+0b
o +d
oAt

¢ +d

¢ — (1.109)

con a, b, ¢, d los parametros del grupo SL(2, C') que satisfacen la relacion ac—bd =
1. La transformacion (1.109) también es conocida como transformacion fraccional o
transformacion de Mobius.

Dada una tetrada nula como en (1.15), los seis parametros de una transformacion
de Lorentz pueden ser agrupados en tres parametros complejos. Estos tres parametros
dan lugar a tres tipos de rotaciones para la tetrada nula:

= Rotaciones nulas tipo I
[ —=1¢ n®— n®~+am® + am® + aal®
mc — mc+ al® ,m® — m° + al®

» Rotaciones nulas tipo II
¢ = 1%+ bm® + bm® ;n — n°
me — m¢+ bn® m° — m+ bn°

» Transformaciones de Boost (hiperbdlicas)
¢ — A7 n¢ — An©
me — e¥me m¢ — e~ ¥me
Estas leyes de transformacion pueden deducirse de (1.109) y (1.15).
Por otro lado, se desprende de las leyes de transformacion para las tetradas que
los escalares de Weyl (1.25) construidos en la Sec. 1.2.2 también transforman segin
el tipo de transformacion nula. Esto es

= Rotaciones nulas tipo I
\DO — \I’O
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U, — U, + a\:[/()

Uy — Uy 4 2aW, + @Z\IJO

Uy — Uy + 3aV, + 3a°¥, + a’¥,

U, — Uy +4aVs + 6a>¥y + 4230, + a*¥,

= Rotaciones nulas tipo II
\DO — \Ilo + 4b¥; + 6b2\112 + 4[73\113 + b4\IJ4
\Ill — \Ifl + ?)b\IIQ + 3()2\1’3 + b3\If4
Uy — Uy + 2()\1/3 + b2\P4
Uy — Us + by
\114 — ‘;[/4

» Transformaciones de Boost (hiperbélicas)
Uy — Uy — A2e207,,
U, — Uy — A e,
‘1/2 — \:[12 — \IIQ
Uy — Uy — Ae*w\I/;g
v, = U, — A2672i0\p4
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Capitulo 2

Formulacién de superficies nulas

Las ecuaciones de Einstein en su presentaciéon original, si bien muestran una
forma elegante y practica a la hora de analizar algunos ejemplos particulares de
espaciotiempos, en general, no son sencillas de resolver para espaciotiempos generales
o con pocas simetrias. En este sentido varios formalismos se han desarrollado con
distintos fines y herramientas, aumentando ampliamente el espacio de soluciones
encontradas. La formulacion de superficies nulas es uno de estos formalismos y provee
un marco matematico que se utiliza para describir la geometria del espacio-tiempo
en la teoria de la relatividad general. Este formalismo se basa en la idea de que el
espacio-tiempo puede ser descrito por una red de superficies nulas, que son superficies
tridimensionales que se propagan a la velocidad de la luz.

En la teoria de la relatividad general, sabemos que el campo fundamental o
primordial es el tensor métrico, del cual se deducen el resto de los tensores de la
teoria asociados a la curvatura y otras estructuras geométricas. En cambio, en la
formulacion de superficies nulas veremos que la métrica del espacio-tiempo se expresa
en términos de la geometria de las superficies nulas. En lugar de describir el espacio-
tiempo en términos de coordenadas espaciales y temporales, el formalismo utiliza
coordenadas que estan asociadas con estas superficies.

En esta formulaciéon los campos fundamentales de la teoria son los escalares (2
y Z, que representan el factor conforme de la teorfa y una familia de superficies
caracteristicas nulas de la métrica, respectivamente. Los escalares {2 y Z satisfacen
un conjunto de ecuaciones diferenciales que determinan el comportamiento de los
campos en cada punto.

Desde el punto de vista matematico, las diez ecuaciones de Einstein con tensores
dependientes en puntos del espacio £ son intercambiados por una ecuacién princi-
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pal para 0 y Z y dos condiciones de metricidad, siendo un total de tres ecuaciones
diferenciales acopladas en derivadas parciales. Este nuevo sistema de ecuaciones di-
ferenciales conitnura siendo dificil de resolver y en consecuencia métodos numeéricos
o perturbativos deben ser utilizados para encontrar sus soluciones.

Dentro de los acercamientos numéricos que se han dado en este formalismo, va-
rios codigos numeéricos han sido desarrollados para simular la evoluciéon numérica en
coordenadas nulas de un espaciotiempo. Para conocer méas sobre el tratamiento nu-
mérico y los codigo 1D, 2D y 3D desarrollados en coordenadas nulas, el lector debe
consultar [10].

En esta tesis nos centraremos en las soluciones perturbativas de la formulacion.
Usaremos métodos perturbativos para estudiar qué forma toma la radiacion gravi-
tacional que recibimos luego de interactuar con un sistema aislado para los casos sin
materia y con materia presente.

2.1. Variables de la formulaciéon

La formulacion de superficies nulas reformula la relatividad general como una
teoria de superficies nulas que interactiian con materia a través de las ecuaciones
de campo. En esta formulacion, la métrica lorentziana del espacio-tiempo g, se
construye a partir de una métrica invariante conforme g,, y un factor conforme 2
que se relacionan mediante la ecuacion

gan(2") = L2 gan(Z). (2.1)

La métrica conforme g, se obtiene a partir de una familia de superficies nulas pa-
rametrizadas por una funciéon real Z, definida sobre el fibrado tangente de la variedad
que define nuestro espaciotiempo g,. Es decir, dada una funcién Z = Z(z%,¢, (), con
2 un punto del espaciotiempo y (¢, () coordenadas estereograficas que parametrizan
S?, entonces Z = constante define una superficie nula en el espaciotiempo. Por lo
tanto, los gradientes de las superficies de nivel de Z deben ser nulos

9°0,20,7 = 0. (2.2)

Se desprende de la Ec. (2.2) que la estructura conforme no depende de §2. También
se deduce de esta ecuacion que el vector nulo 2% = ¢*0,7 satisface la ecuacion de
geodésica homogénea, permitiendo definir una parametro afin s.

Si derivamos (2.2), utilizando los operadores d y 0 introducidos en las Ecs. (1.104)
y (1.103), podemos obtener las componentes de la métrica conforme. Este calculo
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puede visualizarse en el diagrama de la Fig. [2.1]. Las componentes de la métrica
fisica gu que no estan en el diagrama, ¢*',¢*' v ¢'' pueden obtenerse de la forma

1= 1 _ _ _
921 — 58922, g31 — 56933, gll — _2g01 + 6921 + gab6Z,a8A,b- (23)

Es importante destacar que la Fig. [2.1] no solo nos proporciona las componentes
de la métrica sino que también impone condiciones sobre la foliacion nula del espa-
ciotiempo Z. Si hubiésemos continuado con las derivaciones en la piramide de la Fig.
[2.1], hubiéramos obtenido identidades y ecuaciones que pueden demostrarse que no
contribuyen con nueva informacion al sistema.

Si tomamos la ec. A en la Fig. [2.1] obtenemos una restriccién para la funcién
A =0d%Z,
30Z,A + Z,0A" = 0. (2.4)

Solo para las funciones A que satisfagan la condicion (2.4), es posible obtener una
métrica conforme.

La segunda ecuacion de relevancia en nuestro desarrollo es la ec. 0B, siendo B la
ecuacion de la Fig. [2.1]. De esta ecuacién obtenemos

02\
0s

= 00(Q%) + g*°0,AD,A. (2.5)

La Ec. (2.5) puede integrarse entre los puntos s = s y s = oo formalmente como

o0

A = B0(Z,0.0) + Pol2.¢.0) + /

Z

5odu — / (05 (22) + g0, A0, ) ds,
) (2.6)

donde el shear de Bondi 0(Z, ¢, (), esta directamente relacionado con la radiacion
gravitacional alcanzada en el infinito nulo y ¢ es la derivada con respecto al tiempo de
Bondi u. La ecuacion (2.6) la denominamos ecuacion fundamental asintotica de cortes
nulos y sera la ecuacion que nos permitira hallar las foliaciones Z del espaciotiempo.
Debemos aclarar con respecto a la integracion de esta ecuacion que hemos elegido el
gauge o(s = oo) = 0, de lo contrario, los primeros dos términos deberian escribirse
como variaciones Ao. Esta eleccion es hecha por simplicidad y para poder analizar
la fisica de los sistemas aislados sin radiaciéon previa presente del espaciotiempo.
La eleccion de gauge hecha corresponde a haber fijado el grupo de simetrias de las
supertraslaciones (discutiremos esto en detalle en el Cap. 3.).
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Finalmente, para completar nuestro sistema de ecuaciones, el factor conforme 2
puede encontrarse contrayendos las ecuaciones de Einstein con los vectores normales
a las superficies nulas. De la relacion (2.1) entre las dos métricas se obtiene

0%Q) S .
255 = 2°Z° (Ra9] — Ral9]) . (2.7)

Rap[h] v Rapg] son tensores de Ricci correspondientes a la métrica conforme y la
métrica fisica, respectivamente. Es importante destacar que de la ecuacion (2.6) junto
con (2.4) y (2.5), son completamente equivalentes a las ecuaciones de Einstein para
una métrica gqp. Si reemplazamos Guplg] = Ty v Z°Z°Rop[§] = Q(A)S) obtenemos la
ecuacion final

2D%*Q = (Q(A) — Tyo) £, (2.8)
con 1 3 1
A) = ——DA DA, — ——(Dq)* + —D? =1-A;A 2.9
Q( ) 4(] ,1 1 8q2( Q) +4q q, q 1401, ( )
donde D = % representa la derivada con respecto al parametro afin s y A; la

derivada con respecto a la variable radial r, que siempre es posbile definir a partir
de una superficie Z. El factor Ty proviene de la contracciéon con las superficies nulas
77T, = Tyo. Recordemos que Z o = lg es un vector nulo y es tomado como primer
vector de nuestra base ortogonal nula.

La ecuaciéon (2.8) es una ecuacion diferencial en derivadas parciales de segundo
orden no lineal. La resolucién genérica de esta ecuacion no es factible en forma ana-
litica. Ademés, notemos que el escalar Z°Z°R,[g] de (2.7) es una funcion cuadratica
Q(A?) y por lo tanto es nula ante una aproximacion lineal en esta variable. Esto
sugiere que los métodos perturbativos son convenientes para el estudio de nuestro
sistema de ecuaciones y explicaremos este método con detalle en la préoxima seccion.

2.2. Formulacion linearizada

Como mencionamos en la anterior seccion, las distintas dependencias funcionales
de los términos de las Ecs. (2.8),(2.4) y (2.5) en la variable A, sugieren hacer pertur-
baciones sobre esta variable. Nuestro sistema de ecuaciones linearizado en la variable
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A toma entonces la forma

9*Q
2@ = —TQ()Q, (210)
0 (0%922)

S = 2000 (2.11)

Este sistema de ecuaciones permite resolverse para una mayor cantidad de casos.
Por ejemplo, es posible proponer soluciones de la forma Z(z?,(,() = Z(2%)Z(¢, )
y obtener un sistema mas sencillo cuya soluciéon dependera del T, presente en el
espaciotiempo. Espaciotiempos sencillos como los espaciotiempos de Minkowski, De
Sitter y Schwarschild permiten una descripcion directa y equivalente en términos de
superficies nulas. Veremos a continuaciéon el caso mas sencillo del espaciotiempo de
Minkowski.

Espacio de Minkowski

Para el caso en que no hay materia T,, = 0 y de (2.11) con A = 0 tenemos

0?Q

— = 2.12

852 Y ( )
0’°Z =A=0. (2.13)

Se desprende de estas ecuaciones que 2 = 1y por lo tanto, gu, = 7 €s la métrica
de Minkowski. Por otro lado, de la Ec. (2.13) tenemos Z (2%, () = 2%1,(¢, () con
lo(¢, ¢) un vector normalizado en coordenadas de Minkowski

la(C,¢) = (1+¢C ¢+ Ci(¢ =) =1 +¢0), (2.14)

1
V2(1 +¢0)
y % un punto del espaciotiempo en coordenadas de Minkoski que aparecen como las
cuatro constantes de integracion de la Ec. (2.13).

Esquema de las perturbaciones

Nos interesa resolver ahora el sistemas de ecuaciones linearizado en forma iterati-
va. Tomaremos para ello como nuestra solucion orden cero o foliacion de orden cero a
las soluciones correspondientes a la foliacion del espacio de Minkowski Zy = 2%, con
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Qo = 1. El esquema iterativo consistira en descomponer las variables del formalismo
Z y ) en las sumas

Z=Y 7, (2.15)
Q=> Q. (2.16)

La teoria linearizada de superficies nulas permite escribir a la funcién €2 como una
funcional explicita del tensor energia momento [Ec. (2.12)], dejando a la teoria con
un solo escalar Z que puede ser obtenido iterando hacia 6érdenes mas altos.

El lector debe recordar que las funciones Z representan superficies nulas y por lo
tanto satisfacen la Ec. (2.2). En términos perturbativos, la condicién nula de orden
n puede escribirse

> i g% 0.2,0,Zs = 0. (2.17)

n r4+s=0

con

g(C]Lb — nab
g1t = 20 + "

V Nap la métrica de Minkowski y hiy, la perturbacion a primer orden de la métrica
Nap- S1 n = 0, recuperamos en la Ec. (2.17) el producto interno para dos vectores
nulos en el espacio plano de Minkoski

1*laly = 0. (2.18)

Si n = 1, aparece la primera condiciéon nula no trivial

Rl + 20®1,0,Z, = 0, (2.19)
o también,
A
Rl L, = —21°0,7, = —2%. (2.20)
S
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La Ec.(2.20) relaciona la correccion a primer orden de la métrica plana, hgp, con
la correccion a primer orden de la foliacion Z;.

Si escribimos las ecuaciones linearizadas para la primera iteracion del esquema
perturbativo, el sistema de ecuaciones finales a resolver nos queda

AL (2.21)
882 - 00840 — ab4() 4(Re0, .
0 (02027 _
% — 2050, (2.22)
S

El lector no debe confundir los subindices ceros indicando las componente tem-
porales del tensor energia-momento 79 con los subindices zero que indican las so-
luciones a orden cero de las variables escalares Z y €. Notese también que, si bien
este sistema fue escrito para perturbaciones de primer orden, puede ser facilmente
generalizable a 6rdenes mayores. En este trabajo, estudiaremos solo las desviaciones
lineales de la foliacién ya que nos interesa hacer un estudio desde el infinito nulo,
lejos de cualquier fuente, de la radiaciéon gravitacional.

Resolveremos las Ecs. (2.21) y (2.22) en las proximas secciones.

2.2.1. Dispersion en ausencia de materia

Estudiaremos como es la relacion entre la radiacion gravitacional que llega al es-
paciotiempo desde el infinito nulo pasado y es recibida en el infinito nulo futuro. El
escalar de Newman-Penrose que representa la radiacién gravitacional en el infinito
nulo es oy. Por ende, describiremos la dispersion de radiaciéon gravitacional en tér-
minos de coémo cambia el valor de esta cantidad en el infinito nulo pasado y futuro,
o_y oy.

En esta seccion, estudiaremos la dispersiéon en espacitiempos de vacio, es decir
con T,, = 0, pero luego generalizaremos nuestros resultados a espaciotiempos con
campos de materias.

Solucién 7,

De la Ec. (2.21) mas la condicién asintotica para el factor conforme €2, lim, .2 =
1, es facil ver que su perturbacion a primer orden debe ser €2; = 0. En este caso solo
debemos resolver la Ec. (2.22) para Z, que toma la forma
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826221 (xa’ Cv 5) = 820_(207 Cv 6) + 625(ZOa ga 5)7 (223)

con Zy = u = x%,; la foliacion en el espacio de Minkowski. La Ec.(2.23) es una
ecuacion diferencial de cuarto orden eliptica y 9202 representa el doble laplaciano en
la esfera. Notemos que Z es una cantidad con peso de espin s = 0, mientras que o y
o son cantidades con peso de espin s = 2 y s = —2 respectivamente, y por lo tanto,
la ecuacion presenta cantidades con peso de espin cero en cada lado de la igualdad.
La ecuacion (2.23) posee una funcion de Green tnica de tal forma que la solucion
puede ser dada en forma intergral

Z(2%,¢,C) = 74 Goo (20 (a"L,, ¢, &) + 5 (a"l,, ', ) dS', (2.24)
SQ
siendo Gg la funcién de Green

Goo(¢,$,¢,0) = - lidn(I°L), (2.25)

o si hacemos una expansion en esféricos armonicos tensoriales

o

o AT o o _

Gool€, €, ¢, C) = D 57 Yin (G QY (¢ Q). (2.26)
1=2

Como nuestro fin es estudiar la relacion entre la radiaciéon entrante y saliente del

espaciotiempo, utilizaremos superindices + y — para denotar las cantidades que estan

relacionadas con el infinito nulo futuro y el infinito nulo pasado respectivamente. De

esta forma podemos distinguir dos tipo de soluciones (2.24) a la ecuacion (2.23),

2160 = Gon (020 (@111, ¢1.C) + 0P (@1 C) dS (220)

Zl_ (Qja’ C7 C) — %92 60 (8/20—_(—xa€;” C/’ 5/) + 6/25_(—xa€;” C/’ CT/)) dS,,, (228)

Notese que en la solucion (2.27), se contruye en base a Z§ = z°l} que usa conos
de Minkowski orientados hacia el futuro, mientras que (2.28) usa conos orientados
hacia el pasado, Z, = —z%,. Zf y Z, pueden también interpretarse como las
coordenadas nulas avanzadas y retardadas u y v, respectivamente.
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Transformaciones antipodales

La relacion entre los vectores I y [ que simbolizan las direcciones entrantes
y salientes del espaciotiempo, puede entenderse en término de las transformaciones
antipodales. La transformacion antipodal en las coordenadas esféricas usuales (6, ¢)
se define como

0,0) = (1 — 0,7+ ), (2.29)
y en coordenadas estereograficas

(¢, Q) = (=1/¢,—1/¢). (2.30)
Denotaremos las transformaciones antipodales con el simbolo ~ de modo que 6 =
S_ilésg(;ribimos el vector nulo I* de (2.14) como I = —=(1,7) con 1 = r*(¢,() el

correspondiente vector espacial, entonces

1 , 1 1 . ~
-8 =——(1,r") = —=(—1, —(—1,7") =12. 2.31
Finalmente, si recordamos que los esféricos armonicos tensoriales de la Sec. [1.3.1] se

contruyen a partir de vectores que dependen de los angulos (¢, (), podemos aplicar
una transformacion antipodal a estos tensor y ver que se cumple

—ri) =

560 = (—1)Y°(¢,0) (2.32)

. Esta ultima relacion sera usada en los calculos de dispersion ya que es ttil en muchos
casos expandir las cantidades escalares en términos de los esféricos tensoriales, y en
consecuencia, la transformacion antipodal de esos escalares corresponderéa a aquella
de sus términos de expansion en esféricos armonicos.

Relaciones de dispersion

Dado un punto del espaciotiempio 2 y la métrica en ese punto g,,(z®), podemos
escribir la métrica en términos de la radiacion saliente (67) o entrante(o™), usando
el campo escalar Z. De la unicidad de la métrica, sabemos que ambas descripciones
deben coincidir y en consecuencia hgy = hg,, 0 también

hi, ()Tt = hi, (z°) 7070 (2.33)
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Reemplazando la relacion (2.20) en la anterior expresion,
170, Zf = 119,27 (2.34)
d(Z] +7Zy)
ds*
La Ec. (2.35) puede ser pensada como una ecuacion para dos funciones distintas que
dependen de las mismas variables. Finalizaremos esta seccién mostrando la relaciéon
entre los modos de dispersion que conforman la radiaciéon gravitacional entrante y

saliente del infinito nulo. Para ello, utilizamos la relacion entre las superficiens nulas
deducida (2.35) y expandimos los escalares de radiacion o en su parte angular

0.6, Q) = 3 o)V (¢, 0). (2.36)

l

1Y 0,(Zf + ZA;) = = 0. (2.35)

Reemplazando esta relacion en las soluciones (2.27) y (2.28), obtenemos los modos
para las superficies nulas entrante y saliente

7, = 74 (Y20 (u,C,0) + Y2,0™ (u, ¢, O)) &5, (2.37)

~

lell = (_1)l]{ (YE,}?Uf(Ua G Ct) + Yz,zfl‘?f(va ¢, 5)) d*S. (2.38)
La relacién entre los diferentes modos de radiacion saliente UZFII y radiacién entrante

0,5, se obtiene reemplazando (2.37) y (2.38) en (2.35), y luego tomando la transfor-
mada de Fourier del tiempo de Bondi retardardo u. Asi

o) (w) + (=15, (w) =0, (2.39)

con w una frecuencia positiva. Si efectuamos la antitransformada de Fourier en (2.39)
y la suma sobre todos los modos obtenemos las relaciones para la radiaciéon gravita-
cional total en funcién del tiempo de retardado u y las coordenadas estereogréficas

(<.7 C_)?

o (u, ¢, ¢) + 5 (u, ¢, ¢) = 0. (2.40)
La Ec. (2.40) puede interpretarse en términos de su parte real e imaginaria tam-
bién como ¢} = —o v 0f = o7 . Este resultado es lo que denominamos dispersion

trivial y ocurre en un espacio plano sin materia. Esto es esperable ya que no hay
razones para que la radiaciéon entrante deba tener mezclas de modos de radiacién o
cambios en el valor de la radiacion entrante. Sin embargo, vemos un cambio en el
valor del signo de la parte real de la radiaciéon y esto esta vinculado al cambio en la
direccion de el vector nulo [ por [ .
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2.2.2. Dispersion en presencia de materia

En presencia de un campo de materia en el espaciotiempo tenemos un tensor
de energia-momento T,, # 0, y por ello, tenemos un término adicional afectando
a la forma de la foliacion Z en la Ec. (2.21). La presencia de materia arroja una
complicacion adicional ya que, desde el punto de vista matematico, los célculos son
méas complejos. Aun asi, es posible derivar una férmula para relacionar los modos de
radiacion entrantes y salientes del infinito nulo.

Si resolvemos la nuevamente Ec. (2.22) incluyendo el término con el factor con-
forme €, los modos de las foliaciones pueden escribirse

Zlfll :f{ {153120+(u,g, () +cc — 2}/}?11 /OOO dsga (y°(s), ¢, ()] d2s (2.41)
Zyy, = f{ [Yl;zg_(v,(, () +cc.—2Y7Y /0 h dsaof), <yc(3),g,g)] d?S.  (2.42)

Aqui y°(s) = x° + sl*° representa la trayectoria nula que parte del punto del
espaciotiempo z¢ y c.c. denota el término complejo conjugado a Y[ﬁa*(u, ¢,¢). Las
soluciones (2.41) y (2.42) permiten también escribirse en forma geométrica, definien-
do N, al cono futuro nulo que emerge del punto z* y C; a la interseccion de N
con el infinito futuro nulo ¢ *. Entonces

Zh :7{ dQS(Y}_IQa*(u,C,E) —|—c.c.) —2/ }/10115_5591(xc,3,§“,5)d3d25, (2.43)
s4l C;_ 54l N;" )

Z, = ji d25(3/l}l20+(v, ¢, ¢)+ c.c.) — 2/ Yl?fléﬁﬁl(xc, 5,(,Q)dsd*S.  (2.44)

T

Factor Conforme

La relacion entre un tensor de Ricci Ry, de un espaciotiempo genérico gq, vy su
version conforme R, es

Rup = Rup + 207"V VpS2 + Gup (Q—lﬁﬁdﬂ - 39—26;2%9) . (245)

Esta expresion puede simplificarse notablemente cuando simplificamos los tér-
minos no lineales en 2. Para la version linearizada de la formulacion de superficies
nulas, podemos expandir = 1 + Q; y recordando que R, = O(A?), obtenemos
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una version mas sencilla de la Ec. (2.45). Si ademas de linearizar la expresion, la
contraemos con el tensor nulo [*/°, llegamos a la siguiente ecuacion

Rapl®1° = 21°1°0,0,8); . (2.46)

Notese que hemos cambiado la derivada covariante por la derivada parcial ya que
estamos trabajando a primer orden en nuestra aproximaciéon. Si usamos la trans-
formada de Fourier en la Ec.(2.46) sobre la variable z, encontramos la expresion
para la perturbacion a primer orden del factor conforme €2; en términos del tensor
energia-momento

T (k) 1008

Q1 (k¢ 0) = 2.47
1( 7C7 C) 2(k0l6)2 Y ( )
donde el vector k¢ = (kY, wlZ) es un cuadrivector proveniente de la transformacion

de Fourier sobre la variable x°.
Habiendo encontrado la forma del factor conforme a primer orden podemos rees-

cribir las foliaciones avanzada (2.41) y retardada (2.42) como

Tab (kc)g—&-aé—i—b ) e—ixckc

Z5 = f{ (mfﬁ(xcej,g, ¢) + 1Y), / d%fﬁ%ﬁ( ()2 o —i—c.c.) ds.

(2.48)

. ) ) . - . 3 Tab(kc)gﬁﬂlé*b e*ixck‘c
ZlJl = (—1)lf (Yivll g (_J: gc 7<7 C) o ZYE?IZ /dsk86 < (kcéc_>2 kcgc_
(2.49)

+ c.c.) d*S,

Si reemplazamos estas expresiones en (2.35) en forma analoga a la seccion anterior
obtenemos las relaciones entre los modos de radiacion entrante y saliente en el infinito
nulo.

o (w) + (=)', (w) =i f{ d*SY), /0 dk° 7{ d*kT,, (2.50)
o (AL )t 00(Ls) "
( ((k [B) ) n ((k [B) ) )> '

—1)
kelf (=1) kel
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Notemos aqui que los términos en la integral de esta ecuaciéon son factores no
triviales que contribuirdn a los modos de la radiacion entrante azrll. El término del
miembro derecho de la Ec. (2.50) también sera responsable de producir acoplamientos
entre los distintos modos de radiacion [. Es interesante también notar que los términos
entre paréntesis de la Ec. (2.50) podria anularse para algunos casos especiales del
tensor energia-momento, por ejemplo si Ty, = f(k)kaky + g(k)nap-

Si hacemos la antitransformada de Fourier en (2.50) y si sumamos los modos de
esta ecuacion obtenemos la relcién entre la radiaciéon entrante y saliente,

ot (1, ¢, C) + 5 (u,C,C) = i / d*ke™" T (k) (2.51)
]{d%w 0°Goo 0D (kss) * N 0° Gl 00 (k)™
kel + kel )

El lector interesado podréa leer en [11] el estudio de la relacion de dispersion (2.51)
para el caso particular donde el T}, es aquel de un campo escalar sin masa, es decir,

Top = gab(_%ac¢86¢> + @a¢ab¢'
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Figura 2.1: Ecuaciones obtenidas por la aplicacion de derivadas 0 que determinan
condiciones de unicidad y existencia de la métrica



Capitulo 3

Definicién de centro de masa y

momento angular intrinseco en
Relatividad General

El momento angular es una propiedad fundamental en la fisica clésica y cuantica,
que permite describir la rotacion de los objetos alrededor de un eje. En la relatividad
general, sin embargo, definir el momento angular globalmente puede ser un problema
complejo y ambiguo.

La ambigiiedad de la definicion del momento angular en la relatividad general

surge debido a que no hay una nociéon bien definida de posiciéon absoluta en esta
teoria. En lugar de ello, la relatividad general establece que el espaciotiempo se curva
en presencia de la materia y la energia, lo que hace que la medicién del momento
angular dependa del marco de referencia utilizado.
Similarmente, el concepto de centro de masa también es fundamental para describir
la posiciéon promedio de un sistema de particulas en fisica clésica. Sin embargo, en la
relatividad general, el espaciotiempo se curva en presencia de la materia y la energia,
lo que significa que la geometria del espaciotiempo varfa en funciéon de la distribuciéon
de masa y energia en el sistema. Esto plantea un desafio para la definicién del centro
de masa, ya que la nocién clésica de un punto en el espacio donde se concentra toda
la masa del sistema ya no es valida.

Ademas, la teoria relatividad general permite una mayor variedad de simetrias
que la teorfa clasica, lo que puede llevar a diferentes definiciones de momento angular
dependiendo de la eleccion de simetrias. En particular, el grupo de simetrias conocido
como BMS (Bondi-Metzner-Sachs) ha sido objeto de interés reciente en la fisica de
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altas energias debido a su papel en la descripcion de la radiaciéon gravitacional. Este
grupo de simetrias tiene dimension infinita y puede llevar a diferentes definiciones
de momento angular y centro de masa, lo que dificulta atin més su definicién global.

El problema de definir el momento angular y centro de masa puede ser resuelto
en espaciotiempos particulares o con simetrias. Por ejemplo, el momento angular en
un espacio de Minkowski puede ser definido en términos de los grupos de Poincaré,
que son finitos y bien definidos. También se conocen férmulas para espaciotiempos
estacionarios como la integral de Komar o féormulas perturbativas para gravedad
linearizada [Ver Ec. (1.90)]. Sin embargo, estas soluciones son limitadas ya que el
espaciotiempo real no tendré en general simetria alguna.

En resumen, la definiciéon del momento angular y centro de masa en la relatividad
general es un problema complejo y ambiguo que requiere una cuidadosa eleccion de
las simetrias y el marco de referencia utilizados. En general no sera posibles definir
estos conceptos para un espaciotiempo general. Sin embargo, la clase de espacio-
tiempos asintoticamente planos presentan un grupo de simetrias asintoticas, o grupo
BMS, que permite definir cantidades fisicas en base a las simetrias asintoticas. La
estructura infinita del grupo de simetrias asintoticas provee una importante herra-
mienta para la identificacion de espacios de Minkowski cerca del infinito nulo, si bien,
las definiciones de momento angular intrinseco y centro de masa siguen siendo am-
biguas. Estudiaremos este problema con mas profundidad a lo largo de las proximas
secciones.

3.1. Grupo de simetrias de Bondi-Metzner-Sachs

El Grupo de simetrias de Bondi-Metzner-Sachs, también conocido como Grupo
BMS, es un concepto fundamental en la teoria de la relatividad general y tiene una
profunda influencia en la comprension de las soluciones de ondas gravitacionales y la
estructura asintotica del espacio-tiempo. Este grupo fue introducido originalmente
por H. Bondi, M. G. van der Burg, A.W. Metzner y R.K. Sachs en los trabajos
seminales [1| y [12] como un intento de caracterizar las simetrias asintoticas del
espacio-tiempo en la formulacion de la relatividad general.

A diferencia de las simetrias locales que se describen mediante grupos de transfor-
maciones locales, como las simetrias de Poincaré o las transformaciones de gauge, las
simetrias asintoticas se refieren a las transformaciones que dejan invariantes las ca-
racteristicas globales del espacio-tiempo para distancias lejanas o en el limite cuando
r va a infinito.
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Sean u, 0, ¢, r las coordenadas estandares de Bondi de la Sec.[1.1.3] para un es-
paciotiempo asintéticamente plano. Entonces u es el tiempo retardado y u = const
denotan hipersuperficies nulas abriendose hacia el futuro; €, ¢ son coordenenadas
esféricas en el infinito nulo para cada superficie © = const; r es una coordenada
radial tal como la coordenada r definida a partir de la luminosidad. El grupo BMS
queda definido por las siguientes transformaciones en las coordenadas 6, ¢, u

0 =00,0), (3.1)
¢ = (6,0), (3.2)
o = K(8,6)(u - (6, 9)). 3.3

donde (0, ¢) — (0',¢') es una transformacion conforme, es decir, que la métrica de
S? preserva su forma excepto por un factor K2,

ds* = K*(0', ¢')(d0"™ + sin*0'd¢'?), (3.4)
nb
2o (5 .

con J = 8%9,’?) el jacobiano de la transformacion de coordenadas. La funcion a(6, ¢)

es una funcion real arbitraria suave en la esfera. Una observacion respecto a la coor-
denada radial r es que si bien esta puede ser también transformada, la transformacion
es irrevalante para la estructura del grupo BMS y dependeré en general del tipo de
coordenada radial elegida.

En particular, las transformaciones para las cuales 8/ = 0,¢' = ¢ (K = 1) son
llamadas supertraslaciones. Notemos de (3.3) que las supertraslaciones transforman
un sistema con superficies nulas u = const en otro sistema u’ = const, sin involucrar
rotaciones de Lorentz de por medio. La funcién a de (3.3) puede ser expandida en
términos de los esféricos armonicos tensoriales de la Sec. [1.3.1]:

(o)
= Z alJlY;?Il (67 ¢)7 (36)
1=0
donde los coeficientes a; ;, son constantes. La funcion « de (3.6) esta generada por
un conjunto de infinitos parametros a; ;, que definen la supertraslacion. Si elegimos

ai;, = 0 para [ > 2,

a = ag + ay15tnbcos¢ + ay 2sinbsing + a; zcost, (3.7)
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recuperamos los cuatro parametros ag y a1, que definen traslaciones de las su-
perficies u = const.

El Grupo BMS captura estas simetrias asintoticas del espacio-tiempo en el con-
texto de las ondas gravitacionales. Estas ondas son perturbaciones en la geometria del
espacio-tiempo que se propagan a la velocidad de la luz y son generadas por fuentes
masivas en movimiento, como pares de estrellas de neutrones fusiondndose o agujeros
negros en colision. El Grupo BMS describe las transformaciones que preservan las
propiedades fisicas de estas ondas gravitacionales en el limite asintético.

Si recordamos que o representa la radiacion gravitacional en el limite asintotico,
entonces dadas coordenadas de Bondi en un entorno de J, Sachs [5] mostro que el
grupo BMS transforma segtn la ley

O, 0, &) = Ko (u, 0, 6) + 32a(6, )], (3.8)

con u/, ', ¢' dados por la transformacion (3.3). Si solo hacemos una supertrasla-
cién entre dos superficies u = const y v’ = const,

a’(u',0,0) =’ (u' — a,0,0) + %a(f, p). (3.9)

En particular, si efectuamos una supertraslacion entre dos espacios estacionarios
con 0% = 0, la Ec. (3.9) toma la forma

%a(0, ¢) = 0. (3.10)

La soluciéon de a a esta ecuacion viene dada por (3.7), es decir, el subgrupo
de las traslaciones. Esto demuestra que para espaciotiempos estacionarios, existen
foliaciones de cortes nulos cuya deformacion asintética o es nula. Estos cortes son
llamados “cortes buenos” (del inglés good cuts). Ademas, la Ec. (3.7) también nos
dice que el subgrupo que mapea un corte bueno a otro corte bueno es el grupo de
Poincaré. En el espacio de Minkoswki, un corte bueno simplemente vendra dado por
la intersecciéon del cono de luz generado por un punto interior del espacio con el
infinito nulo futuro, J*. En general, los espaciotiempos radiantes no poseeran cortes
buenos.

3.1.1. Vectores de Killing asintéticos

Los vectores de Killing asintoticos son un concepto importante en la teoria de la
relatividad general, que permite estudiar las simetrias y las propiedades geométricas
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de las soluciones de campo gravitatorio en el limite asintotico. En particular, es
posible construir el grupo BMS a partir de estos vectores.

En la relatividad general, los vectores de Killing £ son campos vectoriales que
generan simetrias en el espacio-tiempo. Estos campos se caracterizan por la propiedad
de que la derivada de Lie del tensor métrico g, con respecto al campo vectorial
de Killing ¢ es igual a cero, es decir L¢g,, = 0. Esto implica que las cantidades
fisicas medidas a lo largo de las trayectorias generadas por los vectores de Killing
permanecen constantes a lo largo de esas trayectorias.

Si estudiamos espacios asintoticamente planos, podemos tomar el limite asintético
de los vectores Killing donde las distancias son muy grandes y el campo gravitatorio es
débil. Estos vectores se llaman vectores de Killing asintoticos y por su construccion
describirédn las simetrias y propiedades de los campos gravitatorios en el infinito.
Los vectores de Killing asintéticos capturan la nocién de simetria en el infinito.
Matematicamente, los vectores de Killing asintoticos son las soluciones a la ecuacion

Legu = O(1/r), (3.11)

donde 7 es la coordenada radial inversa a la luminosidad de un sistema de coorde-
nadas de Bondi. Veremos un ejemplo de cémo resolver este tipo de ecuacion y el
tratamiento de vectores de Killing asintoticos para un espaciotiempo de dos dimen-
siones a continuacion.

Ejemplo 1: Métrica 2-dimensional

Supongamos que tenemos la métrica en dos dimensiones
ds® = Z Gn(u)r"du® — 2dudr(1 + Z faluw)r™) + Z B (w)r~"dr?, (3.12)
n=0 n=1 n=1

donde g¢,, f., h, son funciones que pueden fluctuar con u en el infinito nulo. No-
temos que en el limite de r — 0o esta métrica tiende a la métrica de Minkowski
en coordenadas de Bondi-Sachs (u,r). Por lo tanto se trata de un espaciotiempo
asintoticamente plano.

El vector de Killing asintotico, soluciéon a la Ec. (3.11) , puede escribirse

&= (e(u) +0O(1/r)0, + (—€(w)r + n(u) + O(1/r))0,, (3.13)

donde €, son funciones arbitrarias que surgen de integrar las ecuaciones de
Killing y parametrizan la familia de soluciones. Si removemos la parte con términos
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O(1/r) obtenemos el vector de Killing generador de simetrias asintéticas para el
espaciotiempo (3.12),

£ =¢€(u)dy + (—€(u)r +n(u))o,. (3.14)

Si ademas calculamos el conmutador entre dos vectores de Killing & y &, ob-
tenemos el algebra que genera las simetrias asintéticas para nuestro espaciotiempo
2-dimensional,

[E(er,m), §(e2,m2)] = & (er€y — €xey, (€1m2 — €2m1)") (3.15)

Ejemplo 2: Espaciotiempo asintéticamente plano 3-dimensional

Mostraremos con este ejemplo en tres dimensiones que el espacio de generado-
res de simetrias asintoticas para un espacio asintéticamente plano es un grupo maés
amplio que el de Poincaré. Usaremos coordenadas de Bondi (u,r, ¢) de manera que
nuestro analisis estara restringido solo a J*. Dada la siguiente métrica asintotica-
mente plana,

ds® = (hyu+0O(1/7))du?—2dudr(1+O(1/7))+(huy+O(1/1))dudp+r?de* (1+O(1/r)),
(3.16)
donde hemos ya fijado g, = gry = 0y hyuw = huu(©, @), huy = hyp(u, ¢). Si
calculamos el escalar de Ricci o cualquier otra contraccion escalar veremos que los
invariantes son O(1/r"),n > 1.
Los vectores ¢ que preservan la forma de la métrica (3.16), es decir que son
solucion a la Ec. (3.11), tienen la forma

€ = (M(9)+ul! ()0, +(L(6) ~ “L(8) ~ - M'(6))0s— (rL/(8) +O(1 /)2, (317)

Para reconocer las simetrias subyacentes es conveniente descomponer este vector
en dos partes

€ = ull($)9, + (L(6) = ~L'(6))0, — (rL'(9) + O/r)d,  (3.18)
&M = M(¢)0, +O(1/)r). (3.19)
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Si calculamos los conmutadores de estos vectores, obtenemos el algebra de Lie
del grupo que preserva la métrica asintotica (3.16)

[€"(L1), €"(La)] = €"(L1Ly — Lo Li + O(1/r) (3.20)
[€5(L1), €5 (Mz)] = €Y (LiMy — Mz L + O(1/7) (3.21)
€5 (M), €5 (Ma)] = O(1/r). (3.22)

El algebra (3.20) también se conoce como algebra de Witt. Para interpretar fi-
sicamente estos vectores es necesario hacer la expansion de la parte angular de los
vectores M y ¢&) similar a la expansion (3.6) pero teniendo en cuenta que en este ca-
so tenemos una coordenada angular menos. De ese modo, los modos ceros & = 9, y
¢l = 94 son los generadores de traslaciones temporales y rotaciones, respectivamente.

De esta manera vemos que el grupo de simetria de la métrica (3.16) contiene al
grupo de Poincaré del espacio de Minkoswki, pero también tiene infinitos generadores
adicionales que conforman un grupo més amplio y producen ambiguedad a la hora
de definir las cantidades fisicas conservadas asociadas a cada generador. Los gene-
radores €M y &F son llamadas supertraslaciones y superrotaciones respectivamente.
Las supertraslaciones conmutan entre si pero no asi las superrotaciones.

Terminamos este ejemplo destacando que si bien el calculo ha sido hecho para
una métrica asintotica 3-dimensional, los resultados obtenidos son mas generales y
se reproducen en el caso de cuatro dimensiones obteniendo el grupo BMS (3.3) que
definimos al principio de la seccién.

3.1.2. Teorema de Noether

La presencia de vectores de Killing asintoticos es crucial para entender la nocion
de energia y momento en la relatividad general, ya que permiten definir cantida-
des conservadas asociadas a estas simetrias. Estas cantidades conservadas, como la
energia total y el momento angular, tienen una interpretacion fisica importante y
proporcionan informacion sobre las propiedades globales de las soluciones gravitato-
rias.

Si suponemos un espaciotiempo con materia presente 7, y denotamos la deriva-
da de un vector de Killing £, ,,, podemos realizar con esta derivada caculos similares
a aquellos del tensor electromagnético F),,. La derivada de vector de Killing es an-
tisimétrica, de manera que puede ser visto como una 2-forma. Como una 2-forma
es exacta, es decir que el campo §,, = —%(d@ v satisface una de las ecuaciones de
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Maxwell, y —%{M es una cantidad analoga al potencial electromagnético. La ecuacion
de Maxwell restante, d,F** = J*, también tiene su analogo en términos de vectores

de Killing
1
& =g = (1) = 5Tg)e", (3.23)
de donde vemos que la simetria subyacente dependeré del tensor energia-momento
del espaciotiempo.

Integral de Komar

Continuando con la analogia de los campos electromagnéticos, podemos integrar
el diferencial xd§ sobre una superficie cerrada S, dando lugar a la integral de Komar

K¢ = }é df = ]i €1 dS,,. (3.24)

Utilizando el teorema de Stokes y reemplazando la ecuacion (3.23) podemos reescribir
la integral de Komar en términos del tensor energia-momento, lo cual permite una
expresion mas practica para su calculo

]i{“’”dSm, = j{ (7" — %ng)g”dv#, (3.25)
1%

donde hemos llamado V' al volumen encerrado por la superficie S. La integral de
Komar se reduce a las expresiones de relatividad especial para la masa y momento
angular en el limite de la teorfa linearizada [13].

Supongamos ahora que tenemos un estaciotiempo estacionario con simetria axial
y carga, es decir un espaciotiempo de Kerr-Newman. En este caso tendremos un
vector de Killing temporal d; y otro vector de Killing espacial d,, que corresponden
a simetria de traslacion en el espacio y simetrias de rotacion alrededor del eje de
simetria, respectivamente. En coordenadas de Boyer-Lindquist, el covector de Killing
temporal puede escribirse

AT V2 asin @
£= <7) — (AS/A)2at + SAE (Q* = 2Mr) (Asin®0 /%) (do + Q).
(3.26)
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con

Q = (a/A) (Q* — 2Mr) = (a/A)B,

Y =1+ a®cos? 0,
A=r24+a*+Q*—2Mr,

A= (7’2 + aQ) Y —a? (Q2 — 2M7") sin’ 6.

Si tomamos la derivada exterior del vector de Killing y luego el dual para integrar
en (3.24), obtenemos para esta métrica

sdf = [— FAY2Qsin 6 — BZ(A/A)U?] df A dt (3.27)
+ [3(4/8)2Qsing + K5 (1/412)] dr n e

— fAY?5in0d6 A do
+ §(A/A)V? sin Gdr A dg,
donde hemos definido
F=— (2A4"2/%) (M + Br) (1 + aQsin®6)
af (A*/25A)"? sin 20 {1 + (TQ - “2) Q} ,

j
a
h=—(AJA)Y? (2a/S%) (M + Br)sin 6,
- 2AY2Qcosf , ,
R=" 0 e
Dado que (3.27) es un vector de Killing temporal, podemos integrar la formula (3.24)
y obtener la masa encerrada en un espaciotiempo de Kerr para un radio r, que po-
demos llamar masa efectiva. Si hiciésemos esta integracion en un espaciotiempo con
simetria esférica, podriamos integrar sobre una esféra exterior al radio de Schwarzs-
child 2M. En este caso, las coordenadas de Boyer-Lindquist también tienen una
singularidad en § = 7/2,r = 0 por lo que no podemos integrar sobre una esfera. Por
ello, se elige como superficie un toro radio exterior r y radio interior pequeno e. Més
detalles sobre la integracion puede encontrarse en [14].

Entonces, si reconocemos M. = 2K[¢], obtenemos la férmula para la masa
efectiva hasta un punto r en el espaciotiempo de Kerr,

Q—2 - Marcmng. (3.28)

M.y =M —
i1 2r 2ar? r
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Esta ecuacion nos da una idea de la masa gravitacional efectiva que una particula
siente para una distancia r, siendo r la coordenada de Boyer-Lindquist. Es interesante
ver que para valores suficientemente altos de la carga, la particula puede sentir una
furza de atraccion repelente en el radio r. Este es un fenémeno que solo aparece en
presencia de campos electromagnéticos dado que si @) = 0, tenemos M.y = M y
podemos identificar a la integral de Komar con la masa M del espaciotiempo. Para
el caso de simetria esférica (a = 0), obtenemos la expresion M., = M — Q*/(2r),
que es la integral de Komar para un espaciotiempo de Reissner-Nordstrom. En el
limite asintotico, r — oo, la integral de Komar representa la masa del espaciotiempo
salvo un factor dos (Mrr = M).

Similarmente, podriamos haber obtenido el momento angular efectivo usando el
vector de Killing rotacional. Esta aplicaciéon de la integral de Komar a un espa-
ciotiempo de Kerr-Newman nos permite entender como se vinculan las cantidades
conservadas usuales en fisica clasica con sus analogas en relatividad general. En par-
ticular, nos permiten ver que la definiciéon de cantidades como M, P o J dependeran
del punto x del espaciotiempo. Sin embargo, también vimos que estos conceptos son
més sencillos de interpretar en el limite asintético.

Linkages de Tamburino-Winicour

Dado un espaciotiempo M, en general no tendremos vectores de Killing presentes
lo cual limita las posibilidades de utilizar la integral de Komar. A pesar de esto, los
espaciotiempos asintoticamente planos poseen vectores Killing asintéticos, que hemos
discutido en la Sec.[3.1.1]. Por ende, es posible definir leyes de conservacion en base
a las simetrias de los Killing asintoticos, atin cuando estas leyes se veran afectadas
por las ambiguedades del grupo BMS, discutidas en la Sec.[3.1].

La generalizacion de la integral de Komar fue hecha por Tamburino y Winicour
en 1966 [15], agregando las nociones de compactificacion conforme de Penrose, los
sistemas de coordenadas nulos de Bondi y Newman-Unti, y las simetrias del grupo
BMS. Estas integrales modificadas fueron denominadas por los propios autores como
Linkages.

Los Linkages asignan a cada generador asint6tico £ una funcion L¢(X7) sobre cada
superficie esférica X" en J . El esquema para construir los Linkages generadores de
simetrias consiste en tres pasos:

1. Propagar el vector de Killing asintotico £€* sobre una superficie nula I' que
intersecta J en X7 por medio de la ley de propagacion de Killing sobre la
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superficie nula

) 1
[g(a®) — §§,chab]lblr =0 (3.29)

donde [, es un generador nulo de I'.

2. Evaluar la integral de Komar modificada

1

Le(X) = “Ton P (

¢b 4+ £ 1ln) dS,, (3.30)

3. Tomar el limite ¥ — X1 sobre I

Los Linkages (3.30) se reducen a la integral de Komar (3.24) cuando ¢ es una
simetria exacta. Los linkages contienen un término adicional con la divergencia del
vector de Killing que permite el célculo de la integral sin conocer las derivadas de £*
en las direcciones apuntando fuera de I'. Sin este término la energfa obtenida en X
no serfa monoténicamente decreciente, sino la energia de Newman-Unti [$] que tiene
una menor relevancia fisica.

Resulta conveniente a fines practicos utilizar los Linkages en términos de los
escalares de Newman-Penrose de la Sec.|1.2.2]. Para ello, escribimos el vector de
Killing asintético £* en términos de la tetrada nula (1%, n®, m*, m*),

£* = Al* + Bn® 4+ Cm" + Cm* (3.31)

con coeficientes

A=Arr+ Ao+ A r '+ 0(r?),
B — Bo,
C=Cir+Co+Coyr ' +0(r7?),
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Ay = —(1/0yup)0,(Bo0yup),
Ag = 00By + ByddInP(ug, £, i),
Ay = 3 (Bo(wg +0) + Cud + Crf),
Cy = a(¢,€)/0,up, con da =0,
Cy = 0By + Cy0°,
C_l = 0,

BO = b(gvg)/auuB -

20,up /Ou@“uB)3 (8(a(0uup)?®) 4+ (a(Byup)~?) du’,

donde la tnica libertad esta en las supertraslaciones b(§,€) y en el grupo de
Lorentz homogéneo a(, €).

Si reemplazamos la expresion encontrada para el vector de Killing en la integral
(3.30) y usamos que dSpy = l,npdS, podemos encontrar la siguiente expresion que

provee un calculo independiente de las coordenadas

Le (B%) = L Re é _ds {€, (Y3 + 0" — 8°0") (3.32)

- 87121/2
+&%mg [20) — 20°005° — 8 (095°)] }

donde Re denota la parte real de la integral, d.S es el elemento de area de la esféra
y m® es un vector complejo nulo tangente a X+.

La integral (3.32) forma una representacion lineal del grupo BMS. Las integrales
del centro de masa y momento angular pueden ser obtenidas de esta integral eligiendo
un subgrupo de Lorentz. Aqui surge una nueva dificultad en definir el momento
angular: no hay una tnica forma de elegir un subgrupo de Lorentz. La situacion es
analoga a lo que sucede con la libertad de traslaciones que uno encuentra al elegir
un subgrupo de Lorentz del grupo de Poincaré, excepto que ahora la libertad de las
infinitas supertraslaciones esta presente.

Finalizaremos esta seccién con una observacion en la derivacion (3.32). Al reem-
plazar la expresion dSj,y = l,nsdS el lector debe ser cuidadoso, ya que el ny, (de ahora
en mas, 7°) no pertenecce al espaciotiempo fisico gu, sino que es un vector conforme
paralelo a las superficies u = const y r = const. Para relacionar este vector 7’ con el
vector fisico n® nulo perpendicular al vector (¢ de la integral (3.30), debemos hacer
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una rotaciéon nula de la forma
n® =n® —wom® — wm® 4+ wwl® (3.33)

con

w=—0c")r ' +00r?). (3.34)

De esta forma, concluimos con la expresion para las simetrias asintoticas que seré
fundamental en la definicién del momento lineal, energia y momento angular.

3.2. Cortes de Bondi, Newman-Unti y cortes de li-
nea de mundo

Retomaremos en esta seccion con la teoria de superficies nulas de |2] para definir
cortes del infinito nulo con relevancia fisica. Cuando hablamos de cortes nulos nos
referimos a las superficies nulas I" que intersecan al infinito nulo 7 en una superficie >
con topologia S?. Mencionamos ya en la Seccion [1.1.3] que los sistemas de Bondi son
aquellos que presentan similitud con los sistemas inerciales del espacio de Minkowski.
En efecto, para el caso de un espaciotiempo plano los sistemas de Bondi pueden
asociarse a lineas de mundo temporales de observadores inerciales.

Matematicamente, quizas la manera méas sencilla de definir a las superficies de
Bondi es definiéndolos como la familia monoparamétrica de superficies nulas que se
trasportan paralelamente y cuyo corte mantiene area unitaria. Es decir

b
Iy ={u=cte:nm*=0,Vyn® =0, conn’= (2) Yy j{ dS =1}  (3.35)
au »+

La condicién de V,n® = 0 implica que los cortes de Bondi se propagan paralelamente
en el infinito nulo. Atin mas, implica que el adrea de las superficies que cortan en el
infinito nulo se mantienen constantes.

Por otro lado, la integral de superficie es hecha sobre cortes de Bondi X1 para la
métrica de SZ en J7.

En general, la métrica conforme en el infinito nulo futuro J* puede escribirse en
términos de las coordenadas de Bondi-Sachs (u,(,() como

P d¢dC
~ P(u,(, ()
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donde P(u, ¢, ) es una funcién que nos habla de la forma de los cortes en J+. Para el
caso particular de los cortes de Bondi, la funcién P toma la forma P(u, (, () = 14+(C.
Se deduce al integrar esta expresion que los cortes de Bondi son superficies de area
unitaria.

En un espaciotiempo general, dados dos sistemas de Bondi (up, ¢, () v (v, ¢, (),
estos sistemas pueden relacionarse mediante las transformaciones del grupo BMS

u=K(¢,¢) v +alC,Q), (3.37)

donde a(¢,¢) es el generador de supertraslaciones del grupo BMS y recordemos
que puede ser expandido como en (3.6).

De la misma manera, existen sistemas més generales que no se propagan para-
lelamente en el infinito nulo. Estos sistemas fueron descubiertos por Newman-Unti
(NU) en [16].

Dados dos sistemas, uno méas general de Newman-Unti (u, ¢, () y de otro Bondi
(up,(,(), estos se relacionen a través de la ecuacion

U = f(ulv C7 E)v (338)

donde f es una funcién arbitraria que dependera de la estructura del espacio-
tiempo.

Generalizacién de cortes de Newman-Unti

Para estudiar sistemas fisicos reales tales como binarias de agujeros negros o

estrellas de neutrones, necesitamos estudiar cortes en el infinito nulo en espaciotiem-
pos radiativos. Es decir, necesitamos cortes similares a los cortes a los cortes en el
espaciotiempo de Minkowski que provengan de un punto del espaciotiempo. Este
concepto fue introducido por primera vez en [17].
Los cortes de linea de mundo son una generalizacion a los cortes de NU y pueden
asociarse a curvas temporales del espaciotiempo. Los sistemas de coordenadas de
cortes de linea de mundo en un espaciotiempo plano estan intrinsecamente ligados
a una linea de mundo temporal arbitraria, es decir observadores acelerados. De esta
forma, estos sistemas constituyen los sistemas analogos no inerciales de relatividad
especial.

En relatividad general, no es posible coorresponder cortes de Bondi o de Newman-
Unti en el infinito nulo con lineas de mundo asociadas a observadores, sino que, sola-
mente a medida que el espaciotiempo g, — 7, en forma asintética, podemos definir
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los observadores de Bondi asintoticos. No obstante, los cortes de linea de mundo per-
miten hacer una correspondencia con los puntos del interior del espaciotiempo, ain
en la presencia de radiacion.

Notemos que tanto en las transformaciones de Bondi como las de Newman-Unti
los sistemas up y v/ tienen las mismas coordenadas (¢, ¢) en S2. Se introducen a partir
de estas transformaciones los sistemas de linea de mundo, que son una generalizacion
a los sistemas de Newman-Unti en el siguiente sentido.

Dados dos sistemas, uno de linea de mundo (u, ¢, () y otro de Bondi (ug, (5, (s),
estos se relacionan mediante las transformaciones

u = T(up, (s, (B), (3.39)
y -
alp +
= —CCB —d (3.40)

donde a, b, ¢, d son cuatro constantes complejas tal que ad — be = 1. La Ec. (3.39)
puede invertirse para obtener

ug = Z(u,(, ), (3.41)

donde reconocemos a la funcion Z de la Sec.[2.1] y T es la funcion inversa de Z.
Como Z es una funcion suave, Ty Z satisfacen TZ' = 1, siendo que el punto y el
apostrofe denotan derivacion con respecto a las variables ug y u, respectivamente.
Para relacionar las dos bases nulas que pertenecen a distintos sistemas, uno de
linea de mundo y otro de Bondi, podemos hacer una rotaciéon nula por un factor
L(up, ¢, ¢) alrededor de n?, es decir una rotacién nula tipo II, y rotar el vector [%, del
sistema de Bondi al vector [* que es tangente a las superficies nulas que provienen
de una linea de mundo. La derivacion de la relacion entre las tetradas que componen
estos dos sistemas puede encontrarse en [16]. Son de particular interés las relaciones
que se desprenden para los escalares ¥? y 0¥ en los respectivos sistemas. Estas son

0

g = (U0 = 3Ly + 3170 — L] (3.42)

O.U*

Z/

Las relaciones son similares a aquellas de las transformaciones nulas de Lorentz

pero ahora vemos la aparicion adicional de un factor Z’ dividiendo en la transforma-

cion. Recordemos que Z’ = d,up. El estudio de las relaciones entre estos dos tipos
de sistemas puede verse con mayor profundidad en [17],[18] y [19].

=0’ - 0°Z. (3.43)
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Aqui, utilizamos en las Ecs. (3.42) y (3.43) la variable Z en lugar de up para
especificar que los cortes nulos elegidos son cortes que corresponderan a observadores
del espaciotiempo. En efecto, si Z satisface la ecuacion fundamental de cortes de linea
de mundo (2.6) entonces podremos hacer el desarrollo perturbativo ya introducido
en el Cap. |2] y expresar los cortes nulos en términos de la posicion de la linea de
mundo y los terminos radiativos.

En particular, si resolvemos hasta orden cuadrupolar encontramos la siguiente
ecuacion para cortes nulos

1 .
Z=R"—SRY})+ ("R Y250t ) Y2 (3.44)

79 ] 2ij

donde RM(T) es el cuadrivector posicion de una linea de mundo y 7 el parametro
afin.

3.3. Ecuaciones para el centro de masa y momento
angular intrinseco

Si retomamos las soluciones asintoticas de las ecuaciones de Bianchi

) = —0yY? + 30049, (3.45)
0 = —Y + 20%9, (3.46)
P = =0y + o, (3.47)

y recordamos al aspecto de masa definido a partir de estas,
U =) + 0%6° + 0%5°, (3.48)

es posible definir al cuadrimomento de Bondi

2
Pr=— \C/ﬁa 7{ WirdS. (3.49)
T

Aqui I* es el vector nulo de un espacio plano (2.14) y dS = 4d]§;<— es el elemento de
0

area en la esfera unitaria.
En términos del teorema de Noether, la energia, el momento y la masa de ADM
estdn definidos por las simetrias asintoticas en el infinito espacial, y la energia, el
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momento y la masa de Bondi estan definidos por las simetrias asintéticas en el infinito
nulo.

Si bien Bondi define el cuadrimomento [1]| solamente utilizando el aspecto de
masa, la Ec. (3.32) para los Linkages gravitacionales contiene al cuadrimomento de
Bondi en el primer término multiplicando a la cantidad £%,,.

Como ya mencionamos en la Sec. [3.1.2], el primer término en la integral de
Winicour-Tamburino esta asociada al momento lineal y energia gravitacional, mien-
tras que el segundo término estd asociado al momento angular y momento dipolar
mésico del sistema. Elegiremos £* de tal manera que £%l, = 0 y poder quedarnos solo
con el término asociado al momento angular. De este modo, definimos el momen-
to dipolar masico y el momento angular en un sistema de coordenadas de linea de
mundo genérico como la parte real e imaginaria del segundo término en los linkages,
respectivamente.

Dby = L fyp [ 200 Bt
c 872 773

donde las tres constantes complejas del vector asintotico espacial £ nos dan las tres
componentes del vector momento dipolar méasico y tres componente del momento
angular total. Sucede un comportamiento analogo en gravedad linearizada en donde
las partes reales e imaginarias del escalar ¥?, capturan la nocion de la dos forma
que define el momento angular y momento dipolar masico [20]. Los linkages son una
generalizacion natural de estos conceptos para espacios asintéticamente planos.

Es también importante mencionar que el valor de los linkages y de las cantidades
definidas dependen de la seccion integrada que elegimos en el infinito nulo. Esta
libertad de eleccion de superficies es analoga a lo que sucede en relatividad especial
cuando definimos el momento angular o centro de masa: las posiciones z, y, z pueden
ser medidas desde distintos puntos. La diferencia aqui es que, mientras en relatividad
especial la libertad yace en elegir un punto del espaciotiempo, en relatividad general
la libertad es una superficie entera definida por un conjunto infinito de constantes,
una para cada modo en la descomposicion (3.6). En lo que sigue, restringiremos la
libertad de infinitas constantes a cuatro funciones que decriben una linea de mundo
en el espaciotiempo.

Dada una familia de superficies nula de Bondi u = const, si efectuamos una trans-
formacion de supertraslacion v’ = u — a(£p,£p), el aspecto de masa ¥ transforma
como

(3.50)

V(') = U(u) + 0%a. (3.51)
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Si pedimos que para el corte u' = 0 se cumpla
(0|2 = 0, (3.52)

entonces la tnica libertad restante de ¥’ corresponde a las constantes que acompanan
los modos [ = 0,1. De esta manera, hemos fijado la libertad de supertraslaciones
pidiendo que el aspecto de masa se anule sobre la foliacion v’ = const. para l > 2. Los
cuatro parametros restantes son una traslacion temporal y espacial que utilizaremos
para definir el centro de masa y momento dipolar mésico de estos cortes provenientes
de linea de mundo.

Se deduce de la eleccion de gauge (3.52) que las supertraslaciones correspondientes
a esta eleccion debe satisfacer la ecuacion

a(E, &) =-> Ty, (3.53)
=2

donde I; denota un conjunto de [ indices espaciales i1, iz, ..., 9;.

3.3.1. Definicién de centro de masa y momento angular in-
trinseco

Como hemos estudiado en las secciones anteriores, hay una correspondencia uno
a uno entre las lineas de mundo del espaciotiempo y la foliaciones de cortes asociadas
a estos observadores en el infinito nulo. Atin maés, si pedimos que el momento dipolar
méasico definido en (3.50) se anule, queda determinada una tnica linea de mundo
que definiremos como la linea de mundo asociada al centro de masa. A su vez, si
calculamos el momento angular asociado a esta linea de mundo, obtendremos el
momento angular intrinseco.

Resolviendo la integral de la Ec. (3.50) y teniendo en cuenta el gauge elegido
(3.52), podemos escribir el momento dipolar méasico y momento angular de una linea
de mundo del espaciotiempo como

Z‘ _02 2 Ox 20.0*5*5.0* - 6* 0.0*5_0* 7
Di +-J; = Y1 ~ ( )| (3.54)
c 12v/2G Z
donde el superindice 7 indica que debemos hacer la expansion en esféricos armonicos
de la expresion entre corchetes y quedarnos con el modo [ = 1, ya que es el tinico

que sobrevive en la integral (3.50).
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Las seis funciones definidas en la Ec.(3.50), D; y J;, dependen de una linea de
mundo particular x*(u) que caractiza cada corte en el infinito nulo, y por ende, nos
define una foliacién de superficies nulas. Luego, imponemos una condicién sobre esta
foliacion pidiendo que para cada corte u = const, el momento dipolar masico D* se
anule. Es decir, A

O 0% 23% =0x% *( 0% =0%\7°?
Re 207 — 20 5;/3 0*(a*a")

Las tres condiciones que imponen esta ecuacién, una por cada componente espacial
del momento dipolar masico, fijan las componentes espaciales de la linea de mundo.
Por otro lado, de la normalizacién de la cuadrivelocidad z'(u)*z'(u), = 1 queda
determinada la componente temporal de la linea de mundo. Esta linea de mundo
especial la denominamos linea de mundo del centro de masa z'(u) = R'(u). El
momento angular J* evaluado en el centro de masa serd llamado momento angular
intrinseco sel sistema S*. Es decir,

—0. (3.55)

C3 2¢§)* _ 20.0*6*5.0* _ 6* (0.0*5.0*) i
J— m .
1212G Z"
Dado que las variables relevantes en relatividad general tales como la radiacion gra-
vitacional, la pérdida de masa y el momento lineal son descriptas en sistemas de

referencia de Bondi, nos interesa definir el momento dipolar méasico y momento an-
gular en estos sistemas de referencia. Entonces,

(3.56)

122G

Podemos asociar las cantidades fisicas entre los dos tipos de cortes, mediante las
transformaciones nulas que relacionan a los dos sistemas. Teniendo en cuenta (3.42)
y (3.43), encontramos

Dit Ji = 208 — 2095 — (0%")]". (3.57)

D*(u) = D'(ug) + 6?/%GR6[6Z(\IJ —0°5°) + FY, (3.58)
JU(u) = Ji(up) + 3¢ Im[dZ(¥ — 3%5°) + FJ, (3.59)

6v2G

con

F= —%(006622 + 0*Z05" — 6°200°7) — é(0063z +0%*Z00° — 0°5° 7). (3.60)
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En sintesis, podemos decir que dado un corte de linea de mundo del espaciotiempo
7, podremos relacionar el momento angular total J** y el momento dipolar mésico
D** asociado a este corte con los momentos J* y D¢ de un corte de Bondi Z = up =
const en el infinito nulo. En particular, si elegimos los cortes nulos asociados a una
linea de mundo x*(u) que representa el centro de masa de un sistema, tendremos
D* =0y de la Ec. (3.58) encontramos D’ para el centro de masa en un sistema de
Bondi.

Las expresiones (3.58) y (3.59) permiten describir sistemas fisicos complejos uti-
lizando cortes de linea de mundo y vinculando estos cortes con cortes de Bondi.
Veremos en las préximas secciones como calcular la posicion del centro de masa y el
momento angular intrinseco utilizando los métodos perturbativos de la Sec.[2] para
superficies nulas.

Espaciotiempo de Minkowski

Mostraremos brevemente la simulitud de nuestra definiciéon del centro de masa
y momento angular intrinseco con aquella que se define en un espaciotiempo plano.
Aqui, no habra ambiguedad proveniende del grupo BMS y por lo tanto la definicién
de estas cantidades resulta mas directa y sencilla.

En un espaciotiempo plano los vectores de Killing, pueden encontrarse se forma
exacta ya que estan definidos en todo el espaciotiempo. Por esta razon, los vectores
de Killing asintoticos coinciden con los vectores de Killing solucién a la ecuacion

Lenap = 20(a8p) = 0. (3.61)

Su solucién
£ = w*rg + a®, (3.62)

conforma una representacién del grupo de Poincaré, donde w®? es el generador de
las rotaciones y a® el generador de traslaciones.

Asi como los vectores de Killing asintoticos nos permiten definir el momento
angular y lineal en forma asintética, en Minkowski sucede algo similar con los vectores
de Killing exactos £?. Dada la corriente conservada J* = T""¢, que satisface d,J" =
0, podemos integrarla sobre una superficie espacial ¥ y obtener la correspondiente
cantidad fisica conservada. Por lo tanto,

Qe = / JPtgdy, (3.63)
%
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representa una cantidad conservada en la superficie 3 y t# es un vector temporal fu-
turo normal a >. Notemos que si quisieramos definir cantidades globales, deberiamos
tomar el lim,_..2, siendo r el radio de la superficie 3.

Podemos definir el momento lineal 0 momento angular en la Ec. (3.63) segun
elijamos £ a un vector temporal o espacial, respectivamente. A saber,

M™ =2 / TV @By, (3.64)
pI
Pr = / T d*x. (3.65)
p

Los vectores M* y P son respectivamente llamados tensor momento dipolar-
angular relativista y cuadrivector momento lineal. Estas cantidades son las que
obtendriamos del primer y segundo término en el integrando de los Linkages de
Winicour (3.32). Como el término acompaifiando al parametro a(¢,€) en la integral
(3.32) lo hemos tomado cero, y corresponde al término asociado al momento lineal,
nos olvidaremos del cuadrimomento P* en lo que sigue.

Si descomponemos el tensor M* en su parte espacial y temporal, reobtenemos
dos cantidades conocidas para la fisica Newtoniana. En primer lugar, el momento

dipolar masico dindmico es
M®=N'=D'—tP" = / (pa' — tP")d’x. (3.66)
¢

Aqui, la cantidad D’ representa el momento dipolar maésico y se relaciona con el
momento dipolar dindmico a traves de una traslacion tP*. D" se define como

D' = Z rypY = / pr'dx®, (3.67)
A Xt

dependiendo si se trata de un sistema discreto o continuo.
Por otro lado,

MY = / (P'a! — z'Ph)d’z, (3.68)
3t

nos permite obtener el momento angular L' = ¢7% M.
Notemos que el tensor momento angular-momento dipolar mésico M presenta
ambiguedades con respecto a su definicién ante traslaciéones R*, similar a lo que pasa
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con J' en las supertraslaciones. En efecto,

M =2 / PW(z — R Ad%z = M* — / PURAd
Et Et
= M" — PV R

donde V es el volumen que resulta de hacer la integral en d®x . Separamos el vector
R* en su término paralelo a P* y otro término que contiene la parte perpendicular
a P*, R. Asi pues podemos escribir el momento angular trasladado como

M = M — Py RY (3.69)

De manera anéloga al problema de centro de masa en relatividad general, debemos
fijar una linea de mundo para poder fijar el momento angular. Impondremos entonces
la condicion andloga a D™ = 0 y calcularemos la linea de mundo que define el centro
de masa del sistema. En nuestro caso, fijaremos primero el término perpendicular a
P de R*, pidiendo que M** P, = (. De esta forma,

0= M"P, — RyP?, (3.70)
de donde obtenemos
Ry = P>M™P,. (3.71)

El término paralelo a P* solo requiere hallar la funcién «, y esta puede definirse
como un parametro afin de la linea de mundo 7. Definiendo M la masa del sistema
dentro del volumen ¥, , entonces P*P, = M?. Al final, obtenemos las siguientes

expresiones para la linea de mundo del centro de masa y la su velocidad V* = dd%,
MR* = M~*M" P, + 7P*, (3.72)
MVH = PH, (3.73)

con V¥ = %.

En resumen, hemos encontrado la linea de mundo que define el centro de masa en
términos de las variables M, M* PY. Para ello, debimos fijar el momento angular
ya que en el espacio de Minkowski la libertad de traslaciones permiten distintas de-
finiciones. Este procedimiento es una demostracion simplificada de lo que sucede en
espaciotiempos asintéticos generales, donde el grupo de simetrias es mas grande y

debemos elegir un gauge que fije las supertraslaciones adicionalmente.
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3.3.2. Ecuaciones para un sistema fisico con centro de masa
at(u)

Dada una foliacion nula a primer orden Z = Zj + Z; como en la Ec. (3.44),
podemos obtener la posiciéon del centro de masa y su momento angular intrinseco
de manera similar a como hemos hecho para un espaciotiempo plano. Ahora, pro-
cederemos a hacer nuestro calculo en un espaciotiempo con radiacién gravitacional
como puede ser, por ejemplo, el espaciotiempo asociado a un sistema binario de dos
agujeros negros.

Para deducir la posicion del centro de masa y el momento angular intrinseco
debemos hacer algunas suposiciones de trabajo:

1. Laradiacion debio ser nula (o = 0) para algtn tiempo de Bondi. Generalmente
se toma oy—_o = 0.

2. Supondremos que la parte espacial del R'(u) de la linea de mundo del centro
de masa es una desviaciéon pequena del origen de coordenadas.

3. La componente temporal de la linea de mundo R® = u, es decir, los sistemas
no se mueven a velocidades relativistas.

4. El shear gravitacional solo tiene componente cuadrupolar.

La primera suposicion, es una implicacion del gauge elegido para las supertraslaciones
y puede pensarse también como una condicién equivalente para fijar las supertrasla-
ciones.

En principio estas suposiciones pueden ser abandonadas, pero como queremos ha-
cer una comparacion directa con otras formulaciones, como la formulacién de Adamo-
Newman-Kozameh (ANK) o la formulacion postnewtoniana (PN) de las ecuaciones
de movimiento, seran necesitadas para este proposito. Especificamente, el formalismo
PN elige un tiempo inicial donde el sistema en cuestion es estacionario y la métrica
es plana, en lugar de nuestra suposiciéon ntimero 1.

La ultimas dos suposiciones (3 y 4) son suposiciones que permiten una mayor
simplificaciéon en los calculos pero de ninguna manera son restrictivos: en caso de
querer mayor precision en las formulas, basta agregar érdenes mayores en la veloci-
dad u o6rdenes mayores en los modos de la radiacciéon gravitacional, dependiendo si
trabajamos con sistemas relativistas o sistemas altamente no lineales respectivamen-
te.
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Calculo de la posicion

Vimos ya en la Ec. (3.58) como podemos hallar el momento dipolar mésico para
cortes relacionados al centro de masa del sistema en un sistema de Bondi. Usaremos
ahora el esquema (2.15) para trabajar con una foliacién a primer orden de forma
similar al Cap.|2].

Para obtener expresiones desacopladas en modos haremos la expansion en esféri-
cos armonicos tensoriales de todas las cantidades escalares

o (u, &, &) = o (u)Y5;(€,€) (3.74)
PP(u, & &) = VP (W)Y, ) + )" (u) Ve, (&, €) (3.75)
v = 22000 - Cpayied s v ed 6

Notemos que aqui el tensor o representa el momento cuadrupolar de la radiacion
gravitacional.

Ahora, si escribimos 2%(u) al cuadrivector (R°(u), R'(u)), y reemplazando la ex-
pansion (3.74) en la ecuacion para los cortes nulos a primer orden homogénea (2.23),
obtenemos la soluciéon

_ 1. 1 .
up = Zo + Z1(u,€,§) = u+du = R’(u) — QRZ(U)Y& + E‘%«%(“)Y;z‘j- (3.77)

Las componentes de R* representan una linea de mundo en un espacio de Minkows-
ki fiduiciario. Si elegimos u como el tiempo propio, podemos encontrar facilmente
R%(u) en términos de las componentes espaciales de la 4-velocidad. Atin més, en la
aproximacion no relativista R%(u) = u + O(v?).

Una vez encontrada la expresion para la foliacion Z;, podemos obtener el R*(u)
correspondiente a la linea de mundo del centro de masa del espaciotiempo a través
de la Ec. (3.58). De esta forma, tenemos

2

\/' 2G
0= D'(u) + [D(u)du]’ +

0= D'(u+ du) + Re[(V — 5°6%)d0u + F|'

\/_GRe[(\If 9%6%)d0u + F)’

Re[(8V — 3%5%)du]’ +

2

C
6v2G

0= D'(u) + Re[(V — 9%6%)d0u + F]".

32
6v2G
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En la segunda linea hemos hecho una desarrollo de la funciéon D*(u+du) ya que hemos
supuesto du pequeno. En la tercera linea hemos usado las ecuaciones de evolucion
de Bianchi (1.82,1.83) para reemplazar D(u)

Luego de reemplazar la expansion en términos de los esféricos armonicos tenso-
riales, podemos despejar la expresion final para la posicién del centro de masa R*. A
saber,

8
5\/§c

donde Jg y a}j representa la parte real e imaginaria del tensor 0%, M es la masa de
Bondi del sistema y P? las componentes del momento lineal gravitacional. Podemos
hallar la foliacién de cortes nulos asociados al centro de masa insertando la expresion
encontrada (3.78) en (3.77). Esto es,

MR' = D' + o Pl (3.78)

8
5\/50

Similarmente, podemos encontrar el momento angular intrinseco del espaciotiempo
utilizando la relacion (3.59),

1 .
PG+ oY

1 i
Zoy = U — —(D + 19 2"

2M

(3.79)

33

6v2G
= J'(u) + [J(u)du]" +

J ) = J"(u + du) + Im[(V — 8%6°)d0u + F)’

3c3
6v2G
c3 - 3c3
Im[(O¥ — 335%)0u]’ +
673G [( JouJ" + = NGTE
Aqui hemos aplicado el procedimiento andlogo al momento dipolar masico en la

segunda y tercer linea. Si reemplazamos la tltima expresion la foliacion del centro
de masa (3.79) y recordamos que J*'(u) = S*(u), entonces

Im|(T — 3%6°)36u + F)'

= J'(u) + Im|[(¥ — 8%6°)06u + F]'.

St = J' — € R; P, (3.80)

El lector debe notar que esta ecuaciéon se reduce a la ecuaciéon Newtoniana que
conocemos del momento angular intrinseco cuando o = 0. De la misma manera,
R" = D'/M cuando no hay radiacion gravitacional.

Ecuaciones dinamicas

La evolucion temporal de D* y J* se deduce de las identidades de Bianchi (1.83)
para 1¢. Debemos tener en cuenta que existe un factor V/2 entre el tiempo retardado
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y el tiempo de Bondi, u,es = v2up. Es importante utilizar el tiempo retardado
para obtener los factores numéricos correctos en las expresiones finales. Usaremos un
punto para simbolizar la derivada con respecto al tiempo retardado en las siguientes
expresiones.

Si derivamos la expresion (3.57) e introducimos la Ec. (1.83), obtenemos para la
parte real e imaginaria

D' =P (3.81)
.. 3 . .
Ji— ;—Geijk(agd% + oMl (3.82)

De la misma manera, si tomamos las componentes [ = 0 y [ = 1 del aspecto de masa,
o equivalentemente, derivamos el primer término en la integral de linkages (3.32) y
reemplazamos la identidad de Bianchi (1.82), se obtienen las ecuaciones de pérdida
de masa y momento lineal.

. C -7;' -’L” "L” ~’L”

M = —@(aéaé +0ai67) (3.83)
. 202 .
Pi= éeijkdﬁd}d. (3.84)

Si tomamos la derivada con respecto al tiempo retardado de (3.78), encontramos
la velocidad asociada al centro de masa del sistema. Esto es,

. , 8 .
MR' = P' + o P 3.85
5 \/50 R ( )
Esta ecuacion provee una relacion entre el centro de masa del sistema con el momento
lineal de Bondi P! ya conocido en Relatividad General de un sistema. Notemos que
(3.85) difiere de la relacion Newtoniana R' = P'/M en los términos de radiacion o*.
Finalmente, si tomamos una derivada mas de esta ultima relaciéon, obtenemos la
ecuacion de movimiento del centro de masa
2c2 ; 8 ..
_ - gl -kl =1] Dj
= ——€ik0p0] + ——=—0xpP. 3.86
15G ijkURYT 5\/§C R ( )
Notemos que la acelaracion de la linea de mundo depende del dato gravitacional en
el infinito nulo y de la masa inicial del sistema.
Similarmente, si tomamos la derivada temporal del momento angular intrinseco

MR

3

§' = meunlotioh +of'sf) (3.87)
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Esta ecuacion también es valida en mecanica Newtoniana para un sistema aislado,
cuando ¢ = 0 y el momento angular es conservado. En relatividad general, sin
embargo, el momento angular intrinseco de un sistema aislado no se conserva ya que
se pierde en forma de radiacién gravitacional.

3.3.3. Comparacién con otros formalismos

En esta seccion compararemos las férmulas obtenidas con las ecuaciones de mo-
vimientos provenientes de otros formalismos.

Comparacion con las ecuaciones ANK

Existe un formalismo similar presentado en la anterior secciéon que permite ob-
tener formulas de evoluiéon para las cantidades fisicas globales definidas también en
el inifinito nulo. Este es el formalismo Adamo-Newman-Kozameh ([20]) cuyo espacio
de soluciones se diferencia principalmente por las siguientes caracteristicas

1. En primer lugar, el formalismo ANK define el momento angular y dipolar
masico a partir del modo [ = 1 del escalar ¥?. En nuestro caso, el formalismo
presentado en esta tesis define el momento angular y dipolar mésico a partir
del concepto de linkages de Winicour y simetrias asintéticas en el infinito nulo.

2. Mientras que el formalismo ANK utiliza cortes con deformaciéon nula asinto-
tica ¢, nuestro formalismo incorpora cortes nulos con ¢ # 0 obtenidos de la
ecuacion de cortes.

3. La ecuacion de cortes en el formalismo ANK se denomina ecuacién de cortes
buenos (good cuts equation) y su espacio de solucion es complejo, mientras que
el espacio de soluciones de nuestra ecuacion de cortes nulos es real y de esta
manera permite identificarse con cantidades fisicas de interés.

4. Dado que el espacio de soluciones en el formalismo ANK es complejo, también
lo es la linea de mundo asociada a esta soluciéon y por lo tanto su interpretacion
fisica no es tan directa. En el formalismo ANK, el momento angular intrinseco
se define como la parte imaginaria de la linea de mundo, mientras que en nuestro
formalismo se define en forma anéloga a la mecénica clasica: es el momento
angular asociado a la linea de mundo del centro de masa.

64



Capitulo 3 Propiedades dinamicas en sistemas binarios de agujeros negros

Estas diferencias delineadas son fundamentales en los resultados obtenido de ambos
formalismos. En efecto, en el formalismo ANK el momento angular total y momento
dipolar maésico se definen

. (32 . (32 .
DZ — 07 i gl _kl 388
6\/§G 1R + 5GE jkORO T ( )
. 3 1 .
J=— 9 0%5° — ~0(c°5%));. 3.89
el S0 (359

Como hemos mencionado, la principal diferencia en las ecuaciones proviene de inte-
grar las simetrias del grupo BMS en la definicion de estas cantidades. Por otro lado,
M vy el momento lineal P* permanecen iguales en ambos formalismos.

Es importante mencionar que el momento angular (3.89) solo esta bien definido
para radiacion cuadrupolar y su definiciéon debe ser cambiada al considerar momentos
multipolares mas altos al [ = 2. En cambio, nuestro formalismo permite generalizarse
para cualquier modo de radiacién mayor al cuadrupolar.

La ecuacion de movimiento para el centro de masa en el formalismo ANK se lee

2/ 22 .
Mép = 2% o (3.90)

y por lo tanto la dinamica entre ambos formalismo es sustancialmente distinta.

Comparacién con las ecuaciones Post-Newtonianas

El formalismo post-newtoniano es una formalismo matemaético que combina con-
ceptos de la mecanica newtoniana y la teoria de la relatividad general de Einstein
para proporcionar una descripcién mas precisa de la gravedad y sus efectos en varios
sistemas fisicos.

Actualmente, el formalismo PN es uno de los formalismos mas usados en relati-
vidad general |21] con una inumerable cantidad de aplicaciones: desde simulaciones
de agujeros negros y deteccion de ondas gravitacionales hasta defleccion de la luz y
redshift gravitacional.

En esta seccion compararemos parcialmente las ecuaciones de evolucion obtenidas
de nuestro enfoque con aquellas que vienen del formalismo Post-Newtonian (PN). En
principio, una comparacion detallada entre ambos formalismos es una tarea ardua
ya que las derivaciones de los dos formalismos tienen un punto de partida distinto:
el formalismo PN define los momentos multipolares en zonas cercanas a las fuentes
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y en términos de la fuente, mientras que la formulacion asintética define momentos
multipolares radiativos.

Por otro lado, las ecuaciones de movimiento de la formulacion asintética para la
masa, el momento lineal y angular son exactas, permitiendo aplicarse a cualquier tipo
de sistema gravitacional. En cambio, en el enfoque post-newtoniano se construye la
pérdida gravicional solo valida hasta cierto orden de aproximacion, ya que a priori uno
no tiene disponible una férmula exacta. Sin embargo, es importante intentar contruir
un puente entre los dos enfoques distintos y ver si producen o no ecuaciones de
movimiento equivalentes para una fuente compacta que emite radiaciéon gravitacional.

En el formalismo PN, las ecuaciones para la pérdida de energa, momento lineal
y angular vienen dadas por las ecuaciones

- 1. g7 16 - ) ) 1 i
Epy = —gUJUU 5VJV — @UJ’“U]k — 84VJ’€1/ZJk, (3.91)
. 16 1 . . 9

P — Uklvjl Uklmv]lm = U]kU’L]k 2vjkvz]k 3.92

JIlJN — _eljk (gUklUjl 4 %Vklvjl) o z (63UklmUjlm 28vklmv]lm> 7 (393)

donde hemos incluido los términos octupolares de la descripcion PN. La descripcion
de estas mismas cantidades fisicas en términos de nuestro formalismo asintotico, y
teniendo en cuenta también los términos octupolares, se lee

. 1 3
M= 10(0%0}% +6767) - 7((7%%%1@ + 7", (3.94)
Pl=—gpetoior - %oﬂ;o’—;’f +o707") = etoRmar ", (3.95)
o] 9
Ji = 5(0§l0§:§ +oflell) - 7(0%ma%m +ofmerm). (3.96)

Como las expresiones son cuadréticas en los términos de radiacion, solo necesitamos
una relacion lineal entre la deformacion gravitacional y los momentos multipolares
post-newtonianos. Usando las ecuaciones de Einstein linearizadas y el gauge trans-

66



Capitulo 3 Propiedades dinamicas en sistemas binarios de agujeros negros

verso, es posible encontrar las siguientes relaciones

o] = —V2UY, (3.97)
g 8
ol = —VU 3.98
I 3\/§ ( )
ijk 1 ijk
o =—5U"", (3.99)
. 1 ..
oIt = —ng’f. (3.100)

De esta forma, ambos sistemas de ecuaciones son equivalentes a orden octupolar.
Este es un resultado destacable, ya que las ecuaciones de evolucién provienen de
enfoques completamentes distintos.

Por otro lado, hay que ser cuidadosos con las ecuaciones finales de movimiento
del centro de masa, energia y espin de un sisetma, ya que la relaciéon de estas canti-
dades con las variables cinematicas son distintas en ambas formulaciones. Es comiin
encontrar en la literatura post-newtoniana, la definiciéon de la velocidad de retroceso
(recoil velocity) del centro de masa definida como %, es decir la integral de la ec.
(3.95) dividida la masa total final del sistema. Sin embargo, se sigue de la Ec. (3.85)
que nuestra formulaciéon arroja un resultado diferente. Un estudio mas detallado de

esta cantidad sera dado en la préxima seccion.
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Aplicacién a ondas gravitacionales

Las ondas gravitacionales han revolucionado nuestra comprension del universo y
nos han brindado una nueva ventana para explorar los eventos césmicos mas vio-
lentos. Estas ondas son perturbaciones en el espacio-tiempo que se propagan a la
velocidad de la luz, llevando consigo informacién sobre eventos como fusiones de
agujeros negros, colisiones de estrellas de neutrones y otras manifestaciones extre-
mas de la gravedad.

Uno de los avances clave en la deteccion de las ondas gravitacionales ha sido
el uso de simulaciones numéricas de agujeros negros binarios. Estas simulaciones,
basadas en las ecuaciones de la relatividad general de Einstein, nos permiten recrear
y estudiar en detalle los procesos de fusion y colision de agujeros negros.

La relevancia de estas simulaciones radica en su papel fundamental en la deteccion
y caracterizacion de las ondas gravitacionales. Al simular los eventos de fusiéon de
agujeros negros, es posible predecir las senales que se esperan detectar y compararlas
con las observaciones reales. Esto proporciona una base sélida para identificar y
analizar las ondas gravitacionales detectadas por los observatorios.

Un ejemplo destacado de los catélogos desarrollados mediante estas simulaciones
es el catalogo del Instituto de Tecnologia de Rochester [22, 23, 24, 25, 20]. Este ca-
talogo alberga més de 1800 simulaciones de agujeros negros binarios, abarcando una
amplia gama de masas y configuraciones. Estas simulaciones nos permiten explorar
diversas caracteristicas de las ondas gravitacionales, como la amplitud, la frecuen-
cia y la duracion de las senales, lo que contribuye a nuestro conocimiento sobre la
naturaleza de los eventos astrofisicos extremos.

Haremos uso de este catalogo en las proximas secciones para estudiar las ecua-
ciones del centro de masa y momento angular intrinseco.
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4.1. Ecuaciones de movimiento

Hemos visto en el Capitulo anterior [3], las ecuaciones de movimiento para el
centro de masa y el momento angular intrinseco para términos de radiaciéon octupolar.
También las ecuaciones de evoluciones de la energia, el momento lineal y angular
total para un espaciotiempo radiativo. Ahora nuestro interés yace en utilizar estas
ecuaciones para estudiar la radiaciéon gravitacional de un espaciotiempo formado
por un sistema compuesto por dos agujeros negros. Este tipo de sistemas cumple
con nuestras hipdtesis de trabajo ya que al ser un sistema aislado, satisface ser un
espaciotiempo asintéticamente plano. Por otro lado, un sistema binario de agujeros
negros también puede considerarse estacionario en el infinito pasado, por lo tanto
puede elegirse o(up = —00) = 0.

Dado que los sistemas binarios de agujeros negros pueden alcanzar hasta 1,33 %
de la velocidad de la luz en el caso de binarias con 6rbitas cuasicirculares y espines
precesando [27], o hasta un 9% de la velocidad de la luz para binarias en colision
frontal [25], necesitamos agregar méas precision a nuestras ecuaciones incluyendo los
términos lineales en la velocidad del centro de masa. También agregaremos los térmi-
nos de la forma o2 R para contemplar las contribuciones provenientes de movimientos
significativos en el centro de masa. Los escenarios donde esta tltima consideracion
serdn mas importante son las configuraciones con masas muy desiguales.

Si recordamos la expresion para el momento dipolar masico y el momento angular

(3.50),

. 7 . 1 .1 _ 2,¢T0 _ 20.*06*5_*0 . 6*(0_*05.*0)
D+l = s fviried| z SENCRI

donde para integrar esta expresion hemos hechos la simplificacion de velocidades
bajas e ignorado el jacobiano proveniente de integrar en la variable £*. Esto es, la
integracion fue hecha considerando un corte de Bondi con area unitaria. Sin embargo,
como ahora nos interesa considerar una foliacion con velocidad V (u, &, €) con respecto
a una foliacion de Bondi, necesitamos escribir la ley de transformacion de Y757 1(€, ),
o lo que es lo mismo, el vector m;.

El vector m’ transforma acorde a las transformaciones nulas vistas en la secciéon

[1.4], i | i i

Vi (6. = e Yy (6m,€p) +aY1i(6, 6], (4.2)
con .
20T 2V/2VY L (4.3)
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el pardmetro del grupo de las rotaciones de Lorentz que hemos aproximado a primer
orden multipolar. De esta manera, las ecuaciones de evolucién toman la forma
D — /2P & 3 ¢ (63 g7 — gk i)
= kR OrR —OR OR

7V2G

[(67* 07" — a7*7")], (4.4)

L3¢
7V2G
3

.. c . o
i kl - jl kl - gl\ ijk
J (0R0R+O—IO_I)E

~5G
+ o (R + o, (4.5)
. C . Z - ’L . . Z . ’L .
M = - O 6o + oY)
3¢ ijk-ijk | -ijk - ijk
- 7\/50(0}% op” o7 e, (4.6)
.. 22 . . \/502 o .
Pt = d_jlo-_kIEz]k . (j_jk‘(j_l]k‘ + é_ykd_zyk
15\/§GRI 7\/§G(RR 767")
4 302 0._]lmo_klm€' (4 7)
7\/§G R YI ijk>
con las ecuaciones para el centro de masa y momento angular intrinseco
. R 8 L
D' = MR + —™"VIS*F — —— P/ Aoy
c 5v/2¢
2 4. 36 ,
~ e (ool - ZoftmoR™), (4.8)
J= St FRIP
151¢? ijk _jk ijk _jk
—W(O’}% } —O'I] U%), (49)
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y las ecuaciones de movimiento del centro de masa

i i 1 ijk i ok’
MV =P — C—2€] (VJS )
8 . 36¢2 .. N
+ 5\/§CAP]0}%/ - —7é ik <0]flm0£m> (4.10)

MV :150G0_/I§l/0_ﬁl€zjk . % <0ng/ng/ i U%klg}]k,> (4.11)
3¢ i
—f——O'JmO' mlG“k
7G R I 1]
1
— Ik pight
Mc?

8 o 367 i\
+ 5—\/§CAPJU§%” — We”k (U’;lmagm> .
La idea principal de este capitulo seré entonces dar datos iniciales para resolver las
Ecs. (4.4)-(4.7), asumiento que antes de que la radiacion gravitacional sea emitida,
la linea de mundo del centro de masa es el origen del sistema de coordenadas de
Bondi. Una vez que las identidades de Bianchi han sido resueltas, introducimos
nuestro procedimiento perturbativo que preserva el orden de las ecuaciones y resuelve
algebraicamente para las variables R’ y S7.

4.2. Obtencion del shear gravitacional

Notemos que las ecuaciones de movimientos estan escritas en términos de la
deformacion de Bondi mientras que la radiacion gravitacional en el catalogo del
RIT viene dada a través del escalar ¥). En relatividad numeérica es comiin expandir
este escalar en la base de esféricos armonicos espinoriales ()Y}, con s, [, m nimeros
enteros que caracterizan las propiedades del esférico armoénico. Entonces

DI L (. (4.12)

Im

Aqui U representa los modos multipolares de radiacién provenientes de las ondas
gravitacionales en el infinito nulo. En la préctica, las cantidades W™ para cada valor
de [ y m, seran arreglos bidimensionales con una columna para la evolucién temporal
y otra para los valores de U™ en cada tiempo. Estos valores estan almacenados
en archivos de datos que han generados las simulaciones numéricas de binarias de
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agujeros negros con distintas configuraciones iniciales.
Conociendo la solucién asintotica para o de (1.73), podemos escribir entonces

5 == V" )Y (4.13)

I,m

Luego de integrar dos veces esta ecuacion con respecto al tiempo podemos obtener
la parte imaginaria y real de la deformacién gravitacional que necesitan nuestras
ecuaciones. Debido a que nuestras ecuaciones de evolucion estan escrita en términos
de la base de esféricos armoénicos tensoriales, necesitamos las leyes de transformacion
entre ambas bases (4)Yy, y Y.

Dada una funcién f regular en la esfera de peso de espin s, esta puede ser expandida

de la forma l

F=Y" fom(Yim, (4.14)

I=|s| m=-1

o también como

[e'S) l
F=>23" (4.15)
l

I=|s| m=—

Es decir que podemos escribir también una base completa en términos de la otra,
Y =Y KR Yim (4.16)
m
y encontrar los coeficientes K7 usando la ortonormalizacién de los (4)Y},,. Entonces,

g2

Si ahora tomamos f = ¢, podemos escribir las relaciones para encontrar o¥ y

0% requeridas por nuestras ecuaciones de movimiento. Explicitamente, las relacio-

72



Capitulo 4 Propiedades dindmicas en sistemas binarios de agujeros negros

nes son
5 = —i\/g(qfﬂ — P22, (4.18)
T
1 /5 1 /15
Srx T et \11272 \1122 - —\1120 4.19
TV ) [ e, (4.19)
1 /5 1 /15
0V = [ (PP ) 4 oy [ =0 4.20
Vo) [ e, (4.20)
L L 21
o = 1 — (U 0, (4.21)
T
.. 1 /5
o7 = Z\/i(qﬂl —urh), (4.22)
a
y
. 1 7 1 /7
Szxr . [ \113_1 . 11131 I \:[133 . \113—3 4.93
5 = =y 2= )+ 51/ 5= ) (4.23)
1 7 1 /7
Soyy —(\113_1 \1131) = _(\1133 _ \113—3) (424)
24V bm 8 m
=YYy _i /l \IJ?’_l \1,31 _ 3 i \1,33 \113—3 4.95
caxy b l g3 sl i l P33 _ 33 49
. 1 7 1 7
~rxz . _ — \1,32 \11372 - _\1130 4.9
12 271'( + )+ 4V 157 (4.27)
.. 1 7 1 7
“yyz . \1132 \113—2 - _\1,30 4.9
=V T s (4.28)
.. ' 7
Gove = é (02— ), (4.29)

Los tensores de orden [ = 4, o“* vy en general cualquier tensor de orden I,
también puede obtenerse mediante este método. Aqui solo hemos escrito los tensores
necesarios para resolver nuestras ecuaciones a orden octupolar.

Integraciéon numérica de los modos de radiacién

Notamos que la Ec. (4.13) requiere una doble integraciéon numeérica del escalar
U, para la obtencién de o”.
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Ogir_l2_m2 OReiss_l2m2 Ogir_l2_m-2 OReiss_l2m-2

+ TO8e —0.3
Tiem 500 1000 o 500 1000 Tien 500 1000 o 500 1000

(a) Comparison of modes 1=2,m=2. (b) Comparison of modes 1=2,m=-2.

Figura 4.1: Integracion de los modos [ = 2 de la simulacion n®14 del catalogo de
Rochester, que dan la mayor contribuciéon gravitacional. A la izquierda, o4, se mues-
tra el grafico obtenido de hacer la integracion directamente. A la derecha, opgeiss se
muestra el grafico obtenido luego de utilizar el codigo de Reisswig.

Esta integracion sin embargo no puede hacerse de forma directa ya que aparece
un desvio no lineal de ¢ como efecto secundario. Este efecto tiene su origen en las
rapidas oscilaciones que presenta el escalar W, en las simulaciones numéricas cerca
de la coalescencia. Los errores de integracion se acumulan rapidamente sumando una
contribucién no lineal a la radiacion. Por otro lado, también hay desvios lineales que
afectan la integracion y provienen de los datos iniciales og y 65, que deben ser dados
como condicion inicial en las integraciones. Estos desvios pueden producir hasta va-
riaciones en el orden de =~ 0,2 en la componente de radiacion de mayor contribucién,
092. Dado que la contribuciéon gravitacional aparece en términos cuadraticos en las
ecuaciones de movimiento, la variacion es del orden de hasta ~ 0,04.

Las desviaciones en la integraciéon numérica deben ser corregidas para obtener
més precision en la deformacion gravitacional o, y por ende en las ecuaciones finales.
Por ello, hemos implementado el codigo PYGWANALYSIS|29] el cual resuelve los pro-
blemas de integraciéon numérica implementando una transformacion de Fourier con
una funcién ventana y una frecuencia de cutoff para las frecuencias bajas (el cutoff
es menor a todas las frecuencias fisicas posibles). El codigo arroja como resultado
final las polarizaciones lineal, h, y perpendicular, h,, de las cuales podemos obtener
la deformacion gravitacional o a través de la relacion o° = —h. Aqui, las polariza-
ciones suma y cruz nos darén las componentes reales e imaginarias de la deformacion
gravitacional. En la Fig. [4.1] podemos visualizar los efectos de integrar directamen-
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te en forma numérica vs. integrar con el c6digo PYGWANALYSIS. Para conocer mas
sobre el codigo el lector puede consultar [30].

Ondas viajeras en los datos del catalogo

Otro problema con el que lidiamos a la hora de evoluciar las ecuaciones de mo-
vimiento es la rafaga o explosion inicial espuria que presentan las simulaciones del
catalogo.

En la fig. [4.2] graficamos la evolucion de la cantidad W4WY de la simulacion n®443
a modo demostrativo. Para calcular el valor absoluto de Y todas las contribuciones
provenientes de los modos [ = 2 y [ = 3 deben ser sumadas. De esta forma, podemos
visualizar que al principio de esta simulaciéon existe una explosion de radiacion, la
cual no tiene relacion fisica con la coalescencia.

Por otro lado, en la fig. [4.3] podemos ver la evolucion del momento de Bondi de la
simulacion n%443 del catalogo. La evolucion se muestra en un sistema de Bondi cuyo
origen es en el centro de masa, inicialmente en reposo. Luego de la rafaga inicial,
el momento deja de ser nulo y permanece constante hasta que el sistema binario
empieza a emitir ondas gravitacionales. Finalmente, el momento lineal de Bondi es
constante y no nulo. Como la rafaga inicial de radiaciéon es un efecto numérico en
general no deseado, corremos el codigo una vez alcanzado el tiempo de relajacion
y antes de la colescencia de las binarias de agujeros negros. Entonces, reiniciamos
el tiempo y elegimos otro sistema de Bondi en reposo con el centro de masa de la
simulacion luego de la rafaga inicial espuria de las simulaciones.

o2 W2 s ¢
Im
0.12 ‘
0.10 ‘

0.08 1

0.06

V2 e

0.04 ”

0.02 1 I
L J|

0.00{ —— —_———— —

T T T T T T
0 500 1000 1500 2000 2500 3000
t

Figura 4.2: Evolucion de la radiacion gravitacional para la simulacion n°443
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Figura 4.3: Evoluciéon temporal del valor absoluto del momento de Bondi. La figura
muestra un pequeno cambio de 0 a 500 debido a la explosién inicial.

4.3. Analisis de los Resultados

Para realizar el analisis de la fisica de nuestra formulaciéon, comenzamos la inte-
gracion nimerica de las cantidades M (4.4), P(4.7), D(4.4), J(4.5), donde los datos
iniciales para estas cantidades son tomadas de los metadatos que se encuentran en
el catalogo de simulaciones.

Las ondas aisladas iniciales o explosion inicial sin relevancia fisica (ver secciéon
anterior) que estan presenten en la integracion numérica son corregidas previamen-
te encontrando el tiempo de relajacion (tiempo en que la radiacion espuria se ha
desvanecido) y luego quitando la contribucion de esta onda a la radiacion en el in-
finito nulo. Escencialmente, esto se traduce en resetear el tiempo initial a el tiempo
de relajacion de la simulaciones y luego utilizar los datos iniciales del catalogo de
Rochester para las ecuaciones de evolucion. Nuestro sistema de Bondi es tal que en
el tiempo de relajacion el origen de nuestras coordenadas esta en el centro de masa,
que se encuentra en reposo en ese tiempo. El tiempo inicial es reiniciado a cero en
este punto.

Luego de calcular estas ecuaciones, resolvemos algebraicamente los siguientes siste-
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mas.
MR+ c*%iﬂ"fijsk _ D4 -5 pingi
M 5v/2¢ R
2 4. 36 .
—|—%€”k(g<7}lag — 70’}””0%7”) (4.30)
and
Y : 151 o o o
St R RIPE = Ji 4 —168\/2 (ool — o o) (4.31)

Finalmente, encontramos las velocidades y aceleracion del centro de masa.
Siguiendo las mismas convenciones del repositorio de Rochester, hemos agrupado los
resultados numéricos en differentes clases, dependiendo de las masas relativas de los
agujeros negros y dependiendo también de su espin. De esta forma, llamaremos EM
(equal masses) a las simulaciones con dos agujeros negros de igual masa (¢ = 1) o
NEM (non equal masses) a las simulaciones con dos agujeros negros de distintas
masa. Similarmente, llamaremos a las simulaciones con agujero negros no rotantes
NS (non spinning), a las simulaciones con espines alineados con el momento angular
orbital A (aligned), y a las simulaciones con espines no alineados con el momento
angular orbital P (precessing). Notemos aqui la distincion hecha entre las dos clases
EM y NEM de simulaciones. Nos interesa estudiar particularmente el comporta-
miento del centro de masa gravitatorio para el caso simétrico de dos agujeros negros
con masas iguales y corroborar si la radiacion gravitatoria afecta al centro de masa
del sistema o lo mantiene inmévil como sucede en la mecénica Newtoniana.

Estudiaremos en las proximas secciones la posiciéon del centro de masa, su ve-
locidad, aceleracion y también la distribucién de estas cantidades a lo largo de las
distintas simulaciones. También el momento angular intrinseco definido a partir del
centro de masa. En particular, nos interesara analizar los valores numéricos de nues-
tras cantidades fisicas definidas a partir del infinito nulo y por medio de los Linkages
de Winicour.

Estudiaremos luego la relacion de las cantidades fisicas finales y los parametros
iniciales de las simulaciones, tales como la relacion entre la energia total radiada y el
momento angular total inicial J;, o el cociente de masas ¢q. Es importante distinguir
entre dos conjuntos de variables en este estudio. El primero, las variables globales,
son bien definidas en nuestro formalismo y pueden construirse a partir del infini-
to nulo sin conocimiento de las masas de los agujeros negros, espines y momento
angular orbital. Basta conocer la radiacién gravitacional que arriba al infinito so-
lamente. El segundo conjunto de parametros corresponde a los parametros locales
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que componen las condiciones iniciales en el catalogo de Rochester. En este conjunto
se encuentran los espines iniciales de cada agujero negro, las masas y el momento
angular orbital de las binarias de agujeros negros. Conocer este segundo conjunto
es de suma importancia para entender las caracteristicas propias del sistema aislado
en cuestion y entenderla en términos de la radiacion gravitacional que generan. Atn
mas, es importante entender la relacién entre ambos tipos de variables para obtener
una mejor comprension de la estructura global del espaciotiempo.

4.3.1. Distribucién de resultados

Histogram for AS : = 0.637, 0=0.232

Frecuency

H
3 oool4
g

Histogram for V;: =0.0, 0= 907.786

Histogram of E4: 1=0.047, 0=0.021
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co6digo) en las simulaciones
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des finales Vy (en km/s) en energia radiada E,.q en las
las simulaciones simulaciones

Figura 4.4: Distribuciéon de las principales variables de interés para todas las simu-
laciones.

Hemos hecho un resumen de los resultados obtenido tras usar las Ecs. (4.4)-(4.7)
en las Figs.|4.4a-[4.4b|. Estas distribuciones nos dan un idea general de la energfa
radiada FE,.q4, la velocidad final del centro de masa V; y la variaciéon del momento
angular intrinseco AS para el total de las simulaciones. Las distribuciones fueron
normalizadas y luego ajustadas a una Gaussiana para entender su comportamiento
en términos de la media y dispersion de las variables fisicas obtenidas de las simula-
ciones. Podemos ver en estas distribuciones que, por ejemplo, la velocidad del centro
de masa para la mayor parte de las simulaciénes es menor a ~ 1000km/s (Fig.
[4.4b]). Trataremos de entender este tipo de cuestiones en términos de las variables
locales del sistema de agujeros negros.

Recordemos que nuestro formalismo esta descripto en términos del tiempo de
Bondi. Con motivo de comparaciéon dividimos las cantidades que provienen de deri-
vadas, como la velocidad del centro de masa V}, por un factor V2 que contemplara
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la transformacion desde el tiempo de Bondi u al tiempo estandar ¢. El factor v/2
proviene de la relacion t_T;
En la Fig. [4.4¢|, hemos graficado la distribucion de energia radiada en todas las

simulaciones. Para ello, definimos la energia total irradiada como
My
M;’

Epa=1- (4.32)
donde M; es la masa inicial de ADM de las binarias de agujeros negros y My es
la masa de Bondi final del remanente obtenida por la Ec. (4.6). Notemos aqui la
diferencia entre la masa final usada en este trabajo y la masa de Christodoulou usada
comunmente en la literatura de relatividad numérica. La distribuciéon de energia
radiada para nuestro conjunto de soluciones varia en el rango ~ 0 — 13 % y la media
de energia radiada es de 4,7 % con una desviacion estandar de 2,1 %.

La definicion (4.32) es directamente proporcional al pico de energia Mnazw O,
equivalentemente, la luminosidad maxima de la fuente. Esto es, a mayor la energia
total radiada en una simulaciéon, mayor sera el valor absolutdo de la maxima pérdida
de energia . En la Fig. [4.5], hemos mostrado esta proporcionalidad y vemos que
puede explicarse por la relacion E,.q = aMmam con una constante,

a = 41,348 + 0,194. (4.33)

Esta relacion de proporcionalidad puede hacerse atin mas precisa si nos restrin-
gimos a un cociente de masas especifico ¢, como puede apreciarse en la Fig. [4.5].
Teniendo este resultado en mente, las figuras presentes en este trabajo utilizando la
variable FE,..; no seran muy diferentes de aquellas figuras utilzando Mo Esta re-
laciéon de proporcionalidad es una caracteristica de los sistemas binarios de agujeros
negros y no sera valida en general para cualquier sistema astrofisico.

Para terminar esta seccién, mostramos una descripcion general de la distribu-
cion de energia irradiada en términos del momento angular total J;, para todas las
simulaciones en la Fig. [4.6]. El grafico muestra una relacién no lineal entre ambas
variables y dependiente de los parametros locales de cada simulacion. Esta relacion
sera analizada particularmente para cada categoria de simulaciones hecha. El mode-
lo para entender el comportamiento de la energia radiada con respecto al momento
angular total inicial es desarrollado en el Apéndice C. Este modelo tiene un origen
Post-Newtoniano. De este modo, contrastaremos la evolucién numérica de las varia-
bles, de un origen asintético, con el modelo PN que vincula las variables locales con
la dinamica del sistema.
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Figura 4.5: Correlacion entre la energia total radiada E,.q y el pico de pérdida de
energia M, .. para todas las simulaciones. La linea punteada roja representa el ajuste
a los datos. La barra de colores indica el valor del cociente de masas entre las binarias,

q = my/ma.

Binarias sin espines

En esta seccion haremos el analisis del grupo de simulaciones sin espines iniciales.
Este grupo de binarias son las que presentan la fisica mas sencilla ya que el espacio
de parametros iniciales tiene la dimension mas baja.

Como primer paso, calculamos las correlaciones de la velocidad final y la lumi-
nosidad gravitacional maxima del sistema binario para un dado valor del cociente
de masas ¢q. La pérdida de radiaciéon gravitacional es calculada a través de la Ec.
(4.6) y esta directamente relacionada a la luminosidad gravitacional a través de la
integracion de esta sobre una superficie de drea muy lejos de la fuente.

Dado que la luminosidad es una cantidad final que puede ser usualmente medida,
es relevante saber si existe una relacion entre la radiaciéon por unidad de tiempo y
el cociente de masas ¢. De la misma manera, asumiendo que la velocidad final del
centro de masas puede ser observada, la correlaciéon con el cociente ¢ también puede
brindar informacién relevante sobre la coalescencia.

Las correlaciones entre V¢, ¢ y Mmaz son mostradas en la Fig. [4.7]. Para modelar
la velocidad final del centro de masa hemos tomado el modelo de Fitchett para orbitas
circulares propuesto en [31], cuya dependencia con ¢ es

_ ¢P(1—q)
Vilg)=a (1+q)°

con a una constante a ajustar. Calculamos a a través del método de minimos cuadra-

(4.34)
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Figura 4.6: Correlacion entre la energia radiada durante toda la simulacion E,..q y el
momento angular inicial J;,. Cada punto representa una simulaciéon distinta.

dos. El mejor ajuste a nuestros datos dan un coeficiente a = 16317,78 £207,93 km/s.
La derivacion de la Ec. (4.34) puede verse en el apéndice C.

Encontramos que la velocidad méaxima del centro de masa V; = 309,43km/s se
alcanza para el valor ¢ = 0,4. Por otro lado, se encuentran centros de masa con
velocidades nulas en los casos limites ¢ = 0 0 ¢ = 1, es decir, m; = 0 or m; = msy.
Estos resultados pueden verse en la Fig. [4.7]. En términos clasicos, cuando g = 0,
el centro de masa se coincide con el centro de la masa mo; entonces, el centro de
masa permanece inmévil ya que m; no contribuye a su movimiento. Similarmente,
cuando g = 1, el centro de masa no se mueve debido a la simetria del problema y
clasicamente uno esperaria que el centro de masa se encuentra en la distancia media
entre las dos binarias.

Si bien los casos ¢ = 0 y ¢ = 1 producen velocidades nulas, la Fig.[4.7] muestra
que las binarias con ¢ = 0 no tiene practicamente pérdida de energia, mientras que
aquellas con ¢ = 1 son los sistemas que presentan mayor radiaciéon emitida. Asi, los
sistemas binarios sin espines con ¢ = 1 son los mas factibles a ser detectables por sus
luminosidades grandes, mientras que los valores intermedios de ¢ son més probables
de ser detectados por sus velocidades finales altas del remanente.

La otra relacion explorada corresponde a la energia radiada en una simulacion,
E,q.q, v el momento angular total inicial J;,. Para el grupo de las binarias NS, el
grafico se muestra en la Fig. [4.8].

La Fig.[4.8] fue ajustada con una curva de la forma

Ereg = b J2

m)

(4.35)
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Figura 4.7: Correlacion entre la velocidad final del centro de masa, el cociente de
masas ¢ y el pico de pérdida de energia gravitacional M,,,,. La linea punteada
muestra el ajuste del modelo de Fitchett.

con b = 0,050 & 0,001. El modelo ajustado en la Ec. (4.35) est4 motivada por la
derivacion hecha en el Apéndice C.

Similarmente, describimos la relaciéon entre M,,q. v ¢. El grafico que relaciona
ambas variables se encuentra en la Fig. [4.9] y la féormula fenomenologica que contiene
los dos pardmetros a ajustar es derivada en el Apéndice C. Esta relacion se lee,

. A q* B [(1—q 2
M: _ _ 1 - _ 4.36
1000 (1 + ¢)* ( +216 <1+q) ’ ( )

con A y B obtenidos a partir de los datos numeéricos. Esta férmula tiene un origen
Post-Newtoniano y se deduce de esta misma que la luminosidad tiene un minimo
en ¢ = 0 y un maximo ¢ = 1, es decir, las BBH con masas iguales producen las
luminosidades maximas.

Los coeficientes encontrados para la formula (4.36) a través de minimos cuadrados
son

A =2244+0,06 (0,30%) , (4.37)
B = —159,00 + 4,74 (2,98%) . (4.38)

La relacion (4.36) tiene la propiedad de ser injectiva. Por ello, dados los coefi-
cientes (4.37) y (4.38), es posible invertir la formula (4.36) y determinar qué cociente
de masa ¢ correponde a esa luminosidad medida. En otras palabras, la informaciéon
dindmica global es usada para obtener informacion local de los agujeros negros.

82



Capitulo 4 Propiedades dindmicas en sistemas binarios de agujeros negros

Enaa non-spinning binaries

1a
0.07

.
0.06 08
0.05
0.04
0.03 0.4
0.02

001
k=2

0z 04 06 08 10 12 a
Jin

Figura 4.8: Correlacion entre la radiacion total emitida F,.q v el momento angular
total inicial .J;,,. La barra de colores indica el cociente de masas ¢ en cada simulacion.
La letra k indica el orden del polinomio ajustado.

Binarias con espines alineados

En esta secciéon, analizaremos los sistemas de agujeros negros con espines alinea-
dos. Los espines iniciales en este tipo de configuraciéon permanecen en la direccion
del vector momento angular orbital que es escogido como eje z. Este tipo de con-
figuracion son conocidas por ser estables a lo largo de la evolucion [32]. También
se trata de escenarios maés realistas y por ende mas relevante para las aplicaciones
astronémicas.

En la Fig. [4.10] comenzamos estudiando la dependencia de la velocidad final del
centro de masa V; con el cociente de masas inicial ¢. Las figuras [4.10a] y [4.10b]
resaltan diferentes configuraciones iniciales para las distintas magnitudes y direccio-
nes de los espines. Entre todas las 407 simulaciones alineadas, el valor absoluto de
Sy toma los valores en el intervalo [0,0.7] y el valor absoluto de S; toma valores en
el intervalo [0.,0.25].

La Fig.[4.10a] muestra que la velocidad final del centro de masa maés alta en la ca-
tegoria de binarias de espines alineados Vy = 771,78 km/s se alcanza para el cociente
q = 0,6628. En el mismo grafico, podemos apreciar que las velocidades maximas solo
se pueden lograr para BBH con espines antialineados (£51Ss = 7). Esta propiedad
ha sido reportada en otros trabajos [33, 34]. Por otro lado, no parece haber una
imagen clara de la influencia entre la alineacion del espin S; y Ss en las velocidades
finales mas bajas. Ademas, puede verse en la Fig.[4.10b] que cuando el momento
angular orbital inicial L;, esta antialineado con el espin inicial Sy (£L;, Sy = 7), se
alcanzan velocidades finales mas altas.
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Figura 4.9: Correlacién entre el pico de pérdida de energia M s y el cociente de
masas ¢. La barra de colores indica el valor de la energia radiada que es proporcional
al pico de pérdida de energia. La linea punteada muestra el ajuste del model a los
datos.

En resumen, parece que los espines de valor absoluto mas altos, en este caso Ss,
deben estar antialineados con el momento angular orbital inicial L;, y el espin de
menor valor absoluto, en este caso Sy, para lograr las velocidades méaximas para el
grupo alineado.

La correlacion entre las velocidades finales V; y la tasa maxima de pérdida de
masa M,,,, se muestra en la Fig.[4.11]. También se presenta un patrén similar dis-
cutido para las binarias NS (Sec. [4.3.1]). La maxima velocidad posible en términios
de ¢ tiene un méximo local (y absoluto) en g ~ 0,66. La velocidad final se anula en
q = 0, alcanza un valor maximo y luego disminuye para valores cercanos a ¢ = 1.
Ademas, la pérdida de energia también se anula en ¢ = 0. El caso de igual masa
q = 1 es bastante interesante. Como en el caso de NS, la maxima pérdida de energia
y la velocidad final también se anulan en ¢ = 1. Sin embargo, a diferencia del caso
NS, ahora hay velocidades finales que no desaparecen en la configuracion EM-A
una gran diferencia con el caso NS.

Luego, la relacion de la pérdida de energia con respecto al momento angular
total inicial J;, es analizada. En la Fig.[4.12], se muestra la dependencia entre el
momento angular total inicial J;, y la energia radiada total E,.,; para los rangos de
masas: 0 < ¢<0,2,02<¢<04,04<¢<06,06<q<08y08<gq<]1.
Ajustamos un modelo polinomial cuadratico para cada rango que podria ser util para
estimar energia en escenarios astrofisicos o incluso para futuras comparaciones. Los
coeficientes del ajuste para cada rango de masas puede encontrarse en la Tabla 4.1.
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(a) Los colores rojo y azul indican la alinea- (b) Los colores rojo y azul indican la alinea-
cion del espin Ss con respecto al momento cion del espin Sy con respecto al momento
angular orbital L;,. Los colores verdes repre- angular orbital L;,. El color amarillo tiene
sentan binarias cuya alineaciéon Sy con res- So = 0 y por lo tanto no se puede estable-
pecto a L;, no se puede establecer ni diferen- cer alineacién con respecto a L;,. Los puntos
ciar. Se utilizan diferentes marcadores para verdes indican S; = S5. Los marcadores in-
indicar el tipo de alineacién entre los espines dican qué masa posee el mayor espin en las
S1y Ss. simulaciones.

Figura 4.10: Correlacion entre la velocidad final Vy y el cociente de masas ¢ para
binarias con espines alineados en la direcciéon del momento angular orbital.
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Figura 4.11: Correlacion entre Vy y ¢ para binarias alineadas. La barra de colores
muestra los niveles de pérdida maxima de energia M,, .. La linea discontinua indica
el limite fronterizo de las velocidades finales (en km/s).

q Qo 51 )
0<qg<0,2 |0,037+0,016 | —0,023 £0,017 | 0,0095 £ 0,0031
02<¢<04]0,032+0,004 | —0,007 + 0,005 | 0,0138 £ 0,0013
04<qg<0,6]0,093+0,009 | —0,102 + 0,015 | 0,0553 £ 0,0065
06<q¢g<08]| 0,12+0,01 —0,156 0,019 | 0,082 4 0,009
08<qg<1 ]0,1494+0,014 | —0,212£0,029 | 0,114 £0,014

Tabla 4.1: Coeficientes de polinomios de segundo grado ajustados en la Fig. [4.12]

Para finalizar el analisis de esta seccién de las BBH con espines alineados, res-
tringiremos nuestro analisis al caso de masas iguales ¢ = 1 y emplearemos el modelo

de Reisswig de |

|. En este trabajo, los autores han demostrado que la energia

radiada a través de ondas gravitatorias de binarias de igual masa con espines alinea-
dos puede estimarse mediante un polinomio cuadratico en el espin inicial promedio
X = (x1+ x2)/2, donde 1 y x2 son las proyecciones del espin inicial en la direccion

L;,,. El modelo se lee

Erga = ao + a1X + a2,

(4.39)

Nuestros ajustes a los datos proveen el siguiente vector de coeficientes

Qo
a1
a2

a=

0,051 & 0,001
0,040 = 0,002
0,029 + 0,003

: (4.40)
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Figura 4.12: Correlaciéon entre el momento angular total inicial .J;, y la radiaciéon
total emitida FE, .4 para binarios alineados. Los intervalos de relaciéon de masa se han
dividido y seleccionado para ser estudiados y se ilustran con diferentes colores.

mientras que los coeficientes en [35] son

Po 0,036 = 0,003
7= |p | = [0,030+0,006 (4.41)
D 0,02 £ 0,01

Podemos ver en la Fig. [4.13] que hay una diferencia apreciable entre los polino-
mios. Esta diferencia podria atribuirse al hecho de que los pardmetros para las simu-
laciones utilizadas difieren significativamente y, por lo tanto, el E,,; final también.
En particular, no se hace mencién al momento angular orbital inicial L;, utilizado
en la Ref. [35], que puede causar estados finales distintos en la energia radiada pa-
ra los mismos valores de los espines iniciales x1,x2. También podria explicarse este
hecho si la energia radiada predicha para los BBH alineados en el marco de nuestra
formulacion fuera ligeramente superior a la energia radiada obtenida utilizando las
cantidades locales, como la masa de Christodoulou en la relatividad numérica.

El mayor error del ajuste (4.40) se encuentra en el coeficiente de segundo orden
y es de ~ 10%. Estos coeficientes permiten encontrar la energia radiada méaxima
evaluando en el valor a = 1 del polinomio obtenido y asi encontramos E,.q(1) =
12,2 %. Este valor es méas cercano a la energia méaxima reportada E%* = 11,3 % en
[36] que E4* = 9,9% reportada en [35]. Nuestra energia méaxima radiada cumple
estar por debajo del valor FE,.q ~ 14% de [37], que ocurre en caso de una colision
frontal de dos agujeros negros EM-NS.
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Figura 4.13: Correlacion entre el espin total inicial x y la radiacién total emitida FE, 4.
La linea gris discontinua muestra el ajuste a nuestros datos y debajo sus residuos. La
linea discontinua azul claro muestra el polinomio de Reisswig a modo de comparacion.

4.3.2. Binarias con espines precesando

En esta secciéon proporcionaremos un analisis méas profundo de los pardmetros
para el grupo de espines de precesion. Para este grupo de BBH, los espines iniciales
S1 y S, en general, no estaran alineados en la direccion del eje L;,. Se espera un com-
portamiento diferente con respecto a los grupos anteriores mencionados en las Secs.
[4.3.1] y [4.3.1] ya que las configuraciones no alineadas presentan un comportamiento
caotico [32].

Primeramente estudiamos, como en secciones anteriores, la dependencia de la
velocidad final del centro de masa V; con la relacién de masas iniciales g. En la Fig.
[4.14a] se puede apreciar que distribucion de velocidad es escencialmente distinta con
respecto a las otras clases NS y A. La diferencia méas notable en el comportamiento
de V es el logro de velocidades més altas para binarias de igual masa.

Por el contrario, la variable M,,,, se comporta similar a las otras categorfas y
esto nos permite decir que para cualquier tipo de simulacion los sistemas con ¢ = 0
no emiten energia mientras que con ¢ = 1 son los mas energéticos. La diferencia
entre las categoria radicara en los valores alcanzados dentro del rango [0, 1]. La tasa
de pérdida de energia aumenta a medida que lo hace la relacién de masa g entre las
binarias.

La Fig. [4.14a] muestra E,.q frente al momento angular total inicial J;,. Utiliza-
mos el modelo de polinomio cuadratico para ajustar los datos, también utilizado en
las categoria de espines alineados y sin espin. La motivacion del uso de este modelo
puedo verse en el Apéndice C. Los ajustos fueron hecho para cinco rango de ma-
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sas iniciales ¢ diferentes. Los coeficientes de los polinomios se enumeran en la tabla
4.2. Aunque los polinomios de segundo grado pueden no ser los més adecuados para
los datos, priorizamos su simplicidad para describir el comportamiento ascendente a
primer orden de cada rango de masas en el grupo de precesion.

El rango de masas 0 < ¢ < 0,2 se encuentra ausente en el grafico [4.14a| debido
a la falta de datos suficientes para proporcionar una curva representativa. A su
vez, es interesante notar que el rango de masas 0,2 < ¢ < 0,4 presenta un patréon
regular con binarias por encima del ajuste y otras por debajo. Esto sugiere subdivir
el rango en intervalos de masas mas pequenos para los cuales el polinomio ajustaria
el comportamiento con mucho mayor poder predictivo.

q as ay ap
0,2<qg<0,4 0,040 £0,009 | —0,020 £+ 0,014 | 0,017 + 0,005
04<¢g<0,6|0,070+£0,013 | —0,071 £ 0,025 | 0,046 + 0,011
0,6 <q<0,810,08 #+0,024 | —0,097 + 0,048 | 0,059 £ 0,024

08<qg<1 |0,180+0,038 | —0,271 £ 0,081 | 0,143 4+ 0,041

Tabla 4.2: Coeficientes de los polinomios ajustados de segundo grado.
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(b) Correlacion entre la velocidad final V7 (en
km/s) con el cociente de masa inicial q. La
barra de colores muestra diferentes niveles de
pérdida de energia maxima.

(a) Correlacion entre el momento angular to-
tal inicial J;, y la radiacién total emitida
Erad-

Figura 4.14: Correlacion entre las variables finales globales e iniciales locales para las
binarias de precesion.
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4.3.3. Cinemaéatica del Centro de Masa

Graficamos la trayectoria del centro de masa obtenia de la Ec.(4.8) para algunas
simulaciones representativas de cada categoria EM: NS,A P y NEM: NS A P.

La evolucion del centro de masa en el espacio tridimensional puede verse en
las Figs. [4.15a, 4.15b, 4.16a, 4.16b, 4.17a, 4.17b| y el punto de comienzo de las
simulaciones ha sido identificado con un punto rojo.

El primer grafico de la Fig. [4.15a] muestra el movimiento del centro de masa
para dos BH con masas iguales (m; = ms = 0,5). Es interesante ver que el centro
de masa reproduce el compartamiento Newtoniano para dos cuerpos orbitando con
masas idénticas. Esto es, el centro de masa permanece inmoévil o con movimientos

del orden de ~ 107'3, los cuales son despreciables. Su velocidad final V; también es
nula dado nuestro analsis de la Sec. 4.3.1.
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Figura 4.17: Evolucion del centro de masa para binarias de agujeros negros de cada
categoria. El punto rojo especifica el punto de inicio del centro de masa y el ntimero
sobre el grafico indica la simulaciéon del catdlogo RIT donde se ha tomado el valor

de w4.

Por otro lado, si miramos las simulaciones sin espines y con masas desiguales
NEM-NS,; el centro de masa presenta un movimiento espiral regular hasta la coa-
lescencia, donde las orbitas se vuelven mas inestables en el eje alineado con el mo-
mento angular orbital L. Luego de la fusién, el centro de masa sale eyectado a una
velocidad final de 5,5 x 107% o 165km/s. El movimiento espiral en los principios de
la evolucion se debe exclusivamente a la diferencia de masas entre las dos componen-
tes. Este comportamiento desaparece o es despreciable en casos de simetria como se
puede comparar en las Figs. [4.15a,4.15b].

En la Fig.[4.16a], se muestra el centro de masas para dos agujeros negros de
masas iguales y espines alineados con el momento angular orbital L. El centro de
masa permanece practicamente inmoévil a lo largo de toda la simulacion, similar al
caso EM-NS, y su velocidad final también es casi nula. La Fig. [4.15b] muestra el
caso para masas desiguales, nuevamente se aprecia la trayectoria en forma de espiral
del centro de masa hasta la coalescencia donde luego se aleja de la posicion inicial
con un movimiento uniforme.

Hasta aqui podemos apreciar que la posicion del centro de masa en presencia de
radiacion es mayormente dominada por el cociente de masas ¢q. En efecto, los casos
de masas iguales muestran trayectorias similares y con velocidades finales V; ~ 0
independientemente de la prescencia de espines alineados o no. Esto sugiere que las
configuraciones A o NS son estables. Lo contrario sucede cuando g # 0, en este caso
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las velocidad finales del centro de masa son apreciables.

Para los sistemas con espines precesando la situacion es distinta, como se visualiza
en las Figs.[4.17a,4.17b]. La interaccion de los espines con la radiacién gravitacional
permite al centro de masa alcanzar velocidades mas elevadas, siendo las velocidades
finales de las Fig. [4.17a] y [4.17b], 200km/s y 354km/s, respectivamente. A su vez, el
acoplamiento del espin a la curvatura del espacio causa que las trayectorias espirales
realizadas por el centro de masa no tienen la forma espiral tan bien definida y regular
como en el caso de espines alineados, sino que el patrén es mas complejo.

4.3.4. Momento Angular intrinseco

Momento angular instrinseco inicial y velocidades finales
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(a) Velocidades finales del centro de masas pa-(b) Velocidades finales del centro de masas
ra simulaciones con masas iguales m; = mg para simulaciones con masas iguales my # mso

Figura 4.18: Momento angular intrinseco inicial del sistema vs. Velocidad Final del
centro de masas

Hemos graficado en la Fig.[4.18a] y [4.18D] la relacion para el momento angular
intrinseco en su momento inicial y la velocidad final del centro de masa para todas
las simulaciones. Se aprecia una clara diferencia entre los casos con precesion de
espines y sin precesion. Las BBH alcanzan un valor maximo o pico de velocidades
finales para un valor especifico del momento angular intrinseco en cada categoria
hecha. Si bien las velocidades finales son mayores para el caso EM-P, podemos
también encontrar velocidades finales comparables a los casos EM-A y NEM-A.
El comportamiento caético de las BBH con espines precesando permite una diversa
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cantidad de escenarios con velocidades finales muy distintas [32]. Por otro lado, las
configuraciones con espines alineados y sin espines son estables y muestran valores
més bajos para la velocidad final del centro de masa.

Notemos que la Fig. [4.18a] solo presenta tres simulaciones EM-NS. La escasez
de este niimero de simulaciones proviene de la sencillez que presenta el espacio de
parametros iniciales.

Variacion momento angular total en el infinito nulo
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Figura 4.19: A relationship between the magnitudes of the initial and final angular
momenta

La pérdida de momento angular total que llega al infinito nulo es visualizada en la
Fig.[4.19]. Las BBH con espines alineados tiene una gran variedad de resultados para
el valor absoluto del momento angular total final y en algunos casos particulares esta
cantidad incrementa con respecto al valor inicial del momento angular total, Jy > J;,.
Esta ultima caracteristica se da cuando el valor del momento angular total inicial
es aproximadamente cero J;,, =~ 0 y los espines se encuentran antialineados con el
momento angular orbital L. Sucede que mientras la magnitud de la parte orbital
del momento angular siempre decrece, el momento angular total aumenta ya que los
espines permanecen aproximadante constantes cuando estan alineados.

La linea punteada roja de la Fig. [4.19] muestra un ajuste lineal con constante de
proporcionalidad a = 0,55 al momento angular total de las simulaciones. Esta recta
muestra la pérdida promedio de las simulaciones y vemos que hay categorias de
simulaciones que siguen més fielmente esta recta mientras que otras tienen pérdidas
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més esparcidas. La linea solida gris marca las simulaciones sin pérdida del momento
angular total.

Cambio de direcciéon del momento angular intrinseco
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Figura 4.20: Relacién entre en el cambio en el valor absoluto del momento angular
y el angulo de volteo

Para calcular el cambio en la direcciéon del momento angular intrinseco utiliza-
remos el producto escalar usual entre el momento angular intrinseco inicial y final,
S¢-S;
aEHI) 2
donde S; es el momento angular instriseco en el tiempo de relajacion y Sy el momento
angular intrinseco al final de la evolucién. S; es elegido de manera de evitar la
contribucién de la onda viajera al angulo de volteo.

Podemos apreciar en la Fig. [4.20], que el volteo es nulo para los agujeros negros
NS al igual que la clase EM-A. Un pequeno volteo puede ser observador para la
clase alineada si desigualamos las masas iniciales, es decir en la clase NEM-A.

Como es de esperar, las BBH con precesion muestran gran variaciéon en el &ngulo
de volteo. Atin mas, la variacion en el &ngulo de volteo es inversamente proporcional
a la variacion en el momento angular intrinseco, como se muestra en la Fig. [4.20].

Velocidad centro de masa V; y velocidad clasica P'/M

Es interesante estudiar si existe una relacion entre la velocidad final del centro
de masa V; y el concepto Newtoniano de centro de masa P*/M.
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Figura 4.21: Correlation between V; and (P?/M);.

Si vemos la Fig. [4.21] podemos ver la constante de proporcionalidad entre V; y
Py/M; obtenida del ajuste hecho a todas las simulaciones. El valor de la constante
de proporcionalidad es de a = 1,02, la cual nos indica una diferencia del 2% entre
ambos conceptos. La razon de esta diferencia podria deberse a las contribuciones pe-
quenas hechas por la radiacion que diferencian ambos conceptos. Méas investigacion
debe ser hecha en esta direccion.

Aceleracion del centro de masa

En esta secciéon hemos graficado como es afectada la aceleracion del centro de
masa en las distintas etapas del proceso de fusion de dos agujeros negros. Para ello,
definimos la fuerza de reacciéon como

i L dMVT)
B2 du

Es importante entender la evolucién temporal de la fuerza de reaccion en términos
de los distintos modos de radiacion ¥,. En la Fig. [4.22a] podemos ver la evolucion
temporal de los distintos modos de radiacion [ = 2 y [ = 3 del escalar W, para una
simulacion con espines precesando. La evolucion corresponde a la simulacion n®443
del catalogo. Podemos apreciar en el grafico que los distintos modos del valor absoluto
de 14, toman un valor maximo cerca de la fusién de los dos agujeros negros. En la
Fig. [4.22b] podemos ver que el pico alcanzado para cada modo no se da para un
mismo tiempo, sino que suceden con pequenas diferencias temporales. Cada modo

(4.43)
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da una contribucién distinta a la fuerza de reaccion Fr y entonces, dependiendo
del escenario, la magnitud y direccion del impulso dado por esta fuerza puede ser
bastante diferente.

En la Fig.[4.23a] hemos graficado la magnitud de la fuerza de reaccién y en la
Fig.[4.23b] hemos hecho un acercamiento en el intervalo de coalescencia. En este caso,
la fuerza de radiacion Fr tiene varios maximos locales provenientes de la contribucién
de cada modo cerca de la coalescencia.
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Im m
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— 2 — 2
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— 1 — 3
6 4 3-1 6 4 3-1
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(a) Evolucion temporal desde el comienzo (b) Zoom en el intervalo donde sucede la coa-
hasta el final de la simulacion n®443 lescencia de los agujeros negros

Figura 4.22: Evolucién temporal de los distintos modos de radiacion [ =2y [ = 3
del escalar W, para una simulacién con espines precesando.

4.3.5. Comparacién con los metadatos del catalogo

El catélogo de Rochester incluye junto con la radiaciéon gravitacional de las simu-
laciones un archivo con los parametros que caracterizan el estado final de la coales-
cencia de los dos agujeros negros. En esta seccion compararemos estas cantidades con
las cantidades finales obtenidas a través de las ecuaciones de evolucion (4.4)-(4.7).
Estas ecuaciones fueron obtenidas a través de los linkages asintoticos definidos en el
infinito nulo. Analizaremos en las siguientes secciones qué cantidades son consisten-
tes con los metadatos [38, 39] y qué cantidades se deben reajustar o estudiar méas en
profundidad a partir de su comparacion.
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Figura 4.23: Evoluciéon temporal del valor absoluto de la fuerza de reaccion, Fr

Variacion de Masas

Para comparar la variacion de la masas definimos el cambio de masa para una
simulacion del catalogo de Rochester como

A]\/[Roch = ‘MF - Mrelar‘ = Mrelax - MFa (444)

donde Mp es la masa final del agujero negro remanente y M, es la masa de los
dos agujero negros en el tiempo de relajacion (que es levemente mayor a la masa
inicial debido a la rafaga espurea).

En la Fig. [4.24] podemos ver la relacion entre la pérdida de masa obtenida
por la Ecs. (4.6) y (4.44). Vemos que hay una diferencia de ~ 20% entre ambas
variaciones. Esta diferencia podria deberse al hecho que al definir (4.44) con M,¢jaz,
estamos usando una medida local de la masa. Esta cantidad no deberfa diferir mucho
de la masa asintotica relajada ya que la tnica radiaciéon emitida ha sido aquella
debido a la rafaga no fisica inicial. Adn asi, podria ser que nuestra ecuacioén para la
pérdida de masa necesite un factor de correccién en la ecuacion de los linkages que
contemple la diferencia entre ambas definiciones. En menor medida, podrian haber
contribuciones de errores numéricos provenientes de la integracion a la ecuacion final.
Mayor investigacion debe ser hecha en esta direccion.
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Figura 4.24: Relacion entre AM y AMp,., para todas las simulaciones.

Variacion del momento angular

Para comparar las variaciones del momento angular total con los metadatos del
catalogo, definimos la variaciéon del momento angular total de una simulacion segin

los metadatos como
AJ = |[xM? - Japul- (4.45)

El valor absoluto aqui hace la variacion AJ positiva. Estamos suponiendo aqui
que el estado final de la coalescencia es un agujero negro de Kerr y por lo tanto
su momento angular viene dado por la formula J; = yM?, donde x y M; son el
parametro de espin adimensional y la masa final del agujero negro resultante. Como
las componentes del momento angular final del agujero negro remanente no son
dadas en el catélogo, utilizamos la definiciéon (4.45) que nos da una nocion de cambio
sin ambiguedad para las configuraciones sin espin y alineadas. Adn asi, (4.45) no
coincide exactamente con el cambio del momento angular para las configuraciones
que precesan.

Por otro lado, hemos elegido usar el momento angular total de ADM para hacer
la diferencia (4.45). Notemos que al hacer esta diferencia estamos teniendo en cuenta
las contribuciones pequenas hechas por la réafaga inicial numérica a AJgroep-

En la Fig. [4.26], mostramos la comparacion del resultado final obtenido para el
momento angular total segin nuestras ecuaciones de evolucion (4.5). El momento
angular total segin nuestras ecuaciones Jr es definido como

Jr = |Jr| =|Japm + AJ, (4.46)

con AJ siendo obtenido de (4.5). Como J 4pps no es igual para todas las simulacio-
nes, no es trivial esperar una correlacion lineal entre Jg v Jgroen, si bien este seria el
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Figura 4.25: Relacion entre AJ y AJroen para todas las simulaciones.

resultado esperado para dos cantidades que tienen origen en distintos formalismos.
El lector debe ser consciente que los métodos para calcular el valor absolute del mo-
mento angular total en ambos formalismos son distintos. En efecto, La Ec. (4.46) es
el valor absoluto de un vector mientras que la Ec. (4.45) es la formula del momento
angular de un agujero negro de Kerr obtenida a partir de los parametros finales de
la simulacion.
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Figura 4.26: Relacion entre las magnitudes finales del momento angular total para
todas las simulaciones.

Nuevamente podemos apreciar que se manifiesta la diferencia del ~ 20 % entre
las variaciones del momento angular, lo cual es posible suponer que se deba a un
factor global en la ecuacion de los linkages.
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Conclusiones

Hemos definido la nocién del centro de masa y espin intrinseco para espaciotiempos
asintoticamente planos, estos son espaciotiempos en donde existe una nocién precisa
de los sistemas gravitacionales aislados. La descripcion de estas variables es dada en
términos de los escalares de Newman-Penrose.

Las principales herramientas que hemos usado para definir estos conceptos son
los linkages de Tamburino-Winicour, junto con una foliaciéon de cortes asociados a
una linea de mundo. Estos cortes tienen una ecuacion bien definida y un espacio de
soluciones real. La ecuacion de cortes de linea de mundo es un ingrediente fundamen-
tal en la vinculacion de la estructura del infinito nulo con el espacio tiempo fisico. El
espacio fisico 4-dimensional junto con la métrica lorenziana construida a partir de
las soluciones de la ecuacion de cortes nulos nos dan los cimientos para construir el
concepto de linea de mundo asociada al centro de masa de un sistema.

En este trabajo hemos hecho un desarrollo perturbativo de las foliaciones nulas
a orden cero y uno para encontrar soluciones a la ecuaciéon de cortes de linea de
mundo. Esta aproximaciéon permite una gran variedad de aplicaciones en el marco
de la relatividad general.

Por un lado, en el Cap. 2 hemos estudiado qué sucede si, en lugar de asumir un
espaciotiempo asintotico estacionario en el pasado (o(u = —oo0) = 0), el espacio-
tiempo tiene radiaciéon entrante, oc~. Este problema es conocido como el problema de
scattering en relatividad general. Hemos deducido el primer resultado para el caso
simple de un espaciotiempo vacio donde la radiacién obtenida en el infinito futuro
es trivial. Este resultado se visualiza en la Ec. (2.40). Luego, hemos analizado el
problema de scattering en presencia de un tensor de materia 7}, y encontrado una
expresion de los modos de radiacién gravitacional que llegan al infinito nulo futuro
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en términos de la radiacién que proviene del infinito nulo pasado. El resultado puede
verse en la Ec. (2.51).

Por otro lado, hemos usado las foliaciones para estudiar la radiaciéon gravitacional
de sistemas aislados con o(u = —o0) = 0. Con el uso de los linkages de Winicour,
definimos cantidades fisica globales del espaciotiempo y un gauge especifico que nos
permite lidiar con la ambiguedad proveniente de las supertraslaciones en el infinito
nulo. Sumando a estas cantidades el concepto de cortes de linea de mundo, pode-
mos vincular la fisica del infinito nulo con los puntos del espaciotiempo fisico. En
particular, recuperamos dos conceptos fundamentales de la fisica clésica: el centro
de masa de una sistema y su momento angular intrinseco. Estos conceptos han si-
do poco explorados en el area de la relatividad general y por lo tanto hemos hecho
una analisis riguroso de los mismos, utilizando el catalogo de Rochester para ondas
gravitacionales como aplicacién de los conceptos construidos.

Hemos calculado la evolucion temporal del centro de masa y momento angular
intrinseco para la tercer version del catalogo de ondas gravitacional desarrollado por
el Instituto de Tecnologia de Rochester. Para realizar esta evoluciéon debimos corregir
los siguientes problemas:

= Calcular la correspondencia entre los esféricos armonicos tensoriales y los esfé-
ricos armoénicos con peso de espin s.

» Corregir las ecuaciones de movimiento para las 777 simulaciones por la rafaga
inicial numérica no deseada. Esto se hizo encontrando el tiempo de relajacion
donde la rafaga inicial no se encuentra presente. Luego obtenemos la velocidad
del centro de masa en ese tiempo y aplicamos un boost a un nuevo sistema de
Bondi cuyo origen coincide con el centro de masa y esté inicialmente en reposo.

= Realizar la integracion numérica de 4 corrigiendo los problemas numéricos
provenientes de integrar una funciéon con rapidas oscilaciones.

Los resultados fueron divididos en tres categorias segtn el tipo de espin que pre-
sentaban las simulaciones del catélogo: sin espines (NS), espines alineados (A), o
espines precesando (P). Luego, utilizamos las ecuaciones de nuestro formalismo (4.8)
para obtener la trayectoria del centro de masa para las simulaciones dentro de caga
categoria de simulacion. Las trayectorias se visualizaron en las Fig. [4.16a], [4.15a],
[4.17a], [4.16b], [4.15b] y [4.17Db]. Los resultados son prometedores: el centro de masa
presenta un movimiento espiral para masas desiguales y antes de la coalescencia que
se mantiene estable para binarias con espines alineados o sin espines; para sistemas
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con espines precesando el movimiento espiral adquiere mayor complejidad; para los
sistemas compuestos por binarias de igual masas el centro de masas permanece apro-
ximadamente inmovil; la trayectoria luego de la coalescencia sigue un movimiento
rectilineo uniforme para todos los casos, ya que el sistema no emite mas radiacion
gravitacional. La velocidad asociada a este centro de masa es otro concepto que
estudiamos ya que es mas facilmente comparable.

Para el grupo de simulaciones sin espines NS hemos visto que la velocidad fi-
nal del centro de masa alcanza su maximo valor V; ~ 310km/s en ¢ = 0,4. Para
las simulaciones alineadas, la velocidad final del centro de masa alcanza su valor
maximo V; = 77lkm/s en ¢ = 0,66, mientras que para los espines precesando
V; = 6120,15km/s en ¢ = 1. La influencia del espin en el punto maximo de velo-
cidades es un fenémeno interesante. Las velocidades mencionadas fueron calculadas
utilizando el tiempo de Bondi.

Con fines comparativos, debemos cambiar al tiempo retardado dividiendo por un
factor v/2. De esta forma, la velocidad final méxima alcanzada por el centro de masa
es Vi = 219,20km/s, Vy = 545,59km/s y Vy = 4327,59km/s en las simulaciones para
los grupos NS, A y P, respectivamente. Este tultimo valor para los espines precesan-
do es levemente distinto del valor reportado en los metadatos para el remanente final
de la simulacion Vi = 4257,3km/s. La diferencia entre ambas cantidades podria
deberse a una leve desviacion entre los dos conceptos. Dado que ambas velocidades
finales son proporcionales, el factor de correcciéon es de sumo interés para la com-
prension de esta diferencia. Mas investigacion debe ser hecha en esta direcciéon para
entender la correspondencia.

Para el grupo NS, empleamos el modelo de retroceso de Fitchett para ajustar el
comportamiento de las velocidades finales del centro de masa. Obtuvimos una cons-
tante a = 16317,78km/s con error asociado de = 1,5 %. Este modelo puede ser til
para la comparaciéon de simulaciones posteriores o para modelar BBH astrofisicos con
rotacion despreciable. Asimismo, derivamos una férmula para ajustar la correlacion
entre Eynee v ¢ usando un parametro fenomenologico adimensional b que debe ser
mayor a 2. El valor obtenido b = 2,1867 es un resultado razonable.

Para el grupo A, los resultados muestran que las velocidades finales del centro de
masa son maximas cuando los espines estdn antialineados. Este resultado también
ha sido reportado en otros trabajos utilizando las velocidades del remanente final
[30, 31].

Para el grupo P, hemos encontrado que las velocidades finales del centro de masa
més altas provienen de este grupo, y en particular de aquellas binarias con ¢ = 1.
Segun las simulaciones tomadas del deposito de Rochester, podemos inferir que si
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el agujero negro remanente se encuentra con velocidades superiores a los 800km/s,
entonces el BBH tendria giros de precesion. Ademas, si la velocidad del centro de
masa BBH es superior a 3000km /s, las binarias iniciales pertenecen al grupo EM-P.

Por otro lado, también hemos estudiado en profundidad la radiacién gravitacional
para cada grupo de simulaciones predicha por la Ec. (4.32). Para el grupo NS,
encontramos que usando el modelo cuadratico, derivado en el Apéndice C, se ajusta
notablemente bien a los datos con un coeficiente b = 0,04976 y error asociado =~
1,74 %. La sencillez de las binarias sin espines permiten modelar la dependencia de
las variables finales con los parametros iniciales y obtener formulas con errores mas
pequenos que en otras clases de BBH.

Para el grupo A y P, hicimos un ajuste de la energia radiada y el momento an-
gular total para los diferentes rangos de relaciones de masa ¢ y encontramos valores
de error méas altos en que las binarias sin espin. Los errores mas altos podrian atri-
buirse a la dependencia de los coeficientes con el espin. Quizas el uso de modelos mas
complejos podrian reducir significativamente los errores de los coeficientes. A pesar
de eso, los coeficientes calculados atn proporcionan un modelo simple y 1util para la
relacion entre la energia total irradiata, E,..q, y €l momento angular total inicial J;,.

Para el caso de binarias alineadas con masas iguales ¢ = 1, ajustamos la energia
radiada utilizando la variable y = X“;XQ en lugar de J;,. La grafica en términos
de la variable Y nos permite comparar la energia radiada predicha en nuestras Ecs.
con otros trabajos. Vimos que el ajuste obtenido es consistente con la literatura
en general, si bien ligeramente mas alto que la mayoria de las energias radiadas
reportadas. Esto podria ser consecuencia de definir (4.32) en términos de la masa
Bondi. Un anélisis mas detallado sobre la diferencia entre la energia radiada definida
a través de la ecuacion (4.6) y la masa de Christodoulou es necesaria para aclarar
estas cuestiones.

Con respecto a los resultados del estudio de las variables globales podemos re-
marcar algunos comentarios generales

= Reisswig et al [35] han demostrado que el patron de ondas gravitacionales para
EM-NS y EM-A son bastante similares. Dado que la evoluciéon numérica de
las binarias EM-NS es mucho mas simple que la subclase EM-A, argumentan
que simplemente se podria usar la clase NS para obtener las formas de onda
de ambos subgrupos. Por otro lado, nuestros resultados muestran que el final
las velocidades para las subclases EM-NS y EM-A son completamente dife-
rentes. Mientras que la subclase EM-NS tiene velocidades de retroceso que
se anulan, los casos EM-A no. Esta es una diferencia notable entre las dos
subclases y ayuda a distinguirlas. Por lo tanto, aunque las plantillas de ondas
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gravitacionales son practicamente las mismas para estas subclases, la evolucion
numérica EM-A brinda informacién valiosa de la coalescencia.

» Las Figs. [4.14a] y [4.12] representan resultados globales. Los gréficos E,q.q vs
Jin estan motivados por lo siguiente. Ambas variables se pueden obtener en el
infinito nulo sin conocimiento de las masas, espines y momento angular orbital
de BH. Para obtener .J;,, solo necesitamos el conocimiento de la posicion del
centro de masa y la definicién del momento angular total, mientras que FE,.q
se calcula con el uso de la ecuacién de pérdida de masa de Bondi.

Estos graficos muestran una clara correlacion entre F,.q y J;,. Usando un ajus-
te cuadratico obtuvimos una relacién empirica en términos de dos coeficientes.
Los resultados de este trabajo muestran que el momento angular total inicial
Jin €s una variable relevante en el espacio de pardmetros para analizar las di-
ferentes evoluciones numéricas. Es justo preguntar por qué deberia haber una
dependencia cuadratica del momento angular intrinseco total inicial del siste-
ma BBH. La respuesta se encuentra en la féormula de E,.q y depende de los
términos cuadréticos de radiacion gravitacional. Al mismo tiempo, la radiacion
depende del momento angular inicial total y se conserva si solo mantenemos
los términos cuadréticos en la formula de E, .4 ya que J es cuadratico en la de-
formacion gravitacional o°. Por lo tanto, deberiamos esperar esta dependencia
en la coalescencia de BBH. Tenga en cuenta que los mismos resultados para
E,.q se aplican también para M,,.., debido a la Fig. [4.5].

» La pérdida de momento angular AS solo depende de la cantidad de momento
angular irradiado, y se calcula con el conocimiento de los datos de radiacion
disponibles en el infinito nulo. La pérdida de momento angular sigue siendo
un motivo principal de preocupaciéon en nuestro formalismo. Como se mostro
previamente, existe una discrepancia del momento angular intrinseco predicho
con respecto a los valores para el momento angular total del catalogo RIT,
que es un tema a estudiar en trabajos futuros. Por supuesto, una definiciéon
fisicamente relevante del momento angular intrinseco es una tarea dificil, pero la
que proporcionamos parece estar libre de ambigiiedades. A pesar de eso, hemos
demostrado a lo largo de este documento que las ecuaciones de movimiento para
la energia, el momento lineal, la posicion del centro de masa y la velocidad final,
Ecs. (4.4-4.9) empleados en el marco del formalismo presentado son consistentes
con la literatura general.

Finalmente, el cambio en la masa de Bondi y el momento angular fueron comparados
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para nuestras ecuaciones y los metadatos proporcionados por el catalogo del RIT.
Esta comparacion es elegida ya que requiere integrar una sola vez, introduciendo
menos error numérico en los resultados finales. Los resultados de las Figs. [4.24,4.26]
muestran una clara correlacion lineal entre las cantidades con una pendiente igual
al valor 1,2 para ambos graficos. El origen del factor causando el 20 % de desviaciéon
sobre la correlacion deseada sera investigado en trabajos futuros.
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Apéndice A

Ecuaciones de coeficientes de espin
para espaciotiempos no vacios

En una tétrada nula compleja de NP, las identidades de Ricci dan lugar a las
siguientes ecuaciones de campo NP que conectan los coeficientes de espin, los escala-
res Weyl-NP y Ricci-NP. Estas ecuaciones pueden encontrarse con distinta notacion
segun el texto ([10],[11]). Seguiremos la notacion de Newman y Tod en [11]
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Dp =k = (p*+05) + (e +&)p— kT — k(3 + B — ) 4+ P (A.1)
Do —dék=(p+po+Bc—&o—(T—7+a+30)k+ Y, (A.2)
Dr—Ak=(1+7)p+(T+m)o+(e—8)T— By +7)k+ V1 + Py (A.3)
Da —de = (p+&—2e)a+ 6 — Be — kA — Ky + (e + p)7 + P (A.4)
Df—de=(a+mo+(p—&)—(p+7)k—(a—7)e+ ¥,y (A.5)
Dy—Ae=(t+ma+(T+m)B—(c+e)y— (v+Y)e+1m — v+ Uy + Oy — A,
(A.6)
DX — 01 = (pA+ap) + 7+ (a — B)7T — vE — (3 — &)\ + Py (A.7)
Du—dém=(pp+oX)+717—(e+&)u—(a—B)mr — vk + ¥y + 2A (A.8)
Dv—An=(rm+7)p+(T+7)A+(y—F)7— Be +&)v+ V3 + Py (A.9)
AN—b0v=—(u+)A— By —P)A+Ba+S+m—7)v— 0, (A.10)
0p— o0 = p(a+B) —oBa—B)+ (p—p)T + (n— )k — U1 + Py (A.11)
5a—5ﬁ=(up—A0)+a@+5ﬁ—2aﬂ+v(p—ﬁ)+€(u—ﬂ)—‘I'2+<I>11+?A
12

N —=0p=(p—pv+ (u— )T+ (a+ B)p+ (@ = 36)\ — Uy + 0y (
ov—Ap= (1 + M)+ (y+7)u—om+ (1= 36— a)v+ oy (
Y= AB=(r—G— By +pr—ov—cr—(y—T—pf+ai+ by
61 — Ao = (po + Xp) + (T + B —a)T — (37 — Y)o — ki + Dy (A.16
Ap—tr=—(pp+o)N)+(B—a—7)T+(y+3)p+vk— Ty —2A (
Aa—=dy=(p+elv—(T+ A+ (7~ pa+ (B —7)y — Vs (

Ademas, los escalares Weyl-NP W, y los escalares Ricci ®;; se pueden calcular
indirectamente a partir de las ecuaciones de campo NP anteriores después de obtener
los coeficientes de espin en lugar de usar directamente sus definiciones.

A.1. Ecuaciones de Maxwell

Los seis componentes independientes del tensor de Faraday-Maxwell (o tensor
electromagnético) F,, se pueden codificar en tres escalares complejos de Maxwell-
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NP
bo = Fpl*m® (A.19)
¢y = % w (190" 4+ m*mP) (A.20)
by := Fyym®n® (A.21)

y por lo tanto las ocho ecuaciones de Maxwell reales dF = 0 y d*F = 0 (si
F = dA) se pueden transformar en cuatro ecuaciones complejas,

Dy — g = (T — 2a) o + 2pP1 — Ko ( )
D¢y — 6¢1 = —Apg + 271 + (p — 26) s (A.23)
Ado — 61 = (27 — p)do — 27¢1 + oo ( )
Apy — 69 = vy — 2u¢1 + (28 — 7)o (A.25)

con los escalares de Ricci ®;; definidos a partir de los escalares de Maxwell de la
forma

oy =2¢i0;, (i,5 €{0,1,2}) (A.26)

Vale la pena senalar que, la ecuacion suplementaria ®;; = 2@»@ solo es valida para
campos electromagnéticos; por ejemplo, en el caso de los campos de Yang-Mills
tendremos ®;; = Tr(f;, F ;) donde F;(i € {0,1,2}) son escalares de Yang-Mills-NP.
En resumen, las ecuaciones de conmutadores para la tetradra nula, las ecuaciones
de campo NP y las ecuaciones de Maxwell-NP juntas constituyen las ecuaciones de
Einstein-Maxwell en el formalismo de Newman-Penrose. Resolver este sistema de
ecuaciones equivale a resolver las ecuaciones de Einstein en presencia de una campo
electromagnético F),,,.
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Apéndice B

Clebsh-Gordan de los esftéricos
armonicos tensoriales ZSIZ

Presentamos una tabla de productos de funcion con peso de espin s = (2,1,0, —1, —2)
v 1=(0,1,2).

B.0.1. Productosdel=1conl=1

1 1
VY = —zenYi + 5 Yay (B.1)
/2 2
_ 1 iv2 1
vivg' = 2oy - et - v, (5.2)
1
le(; = 61] +3 3 21] (BB)
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B.0.2. Productosdel=1conl=2

}/12}/2]]{3 Yz’njk

1
3 3
YiYy, = Yhék] 5Y15 gyfktsij
/l 2
+ E (Ez’lezjl + Eijlyzlkl> + gYﬁ%lmk
1
Vi = — 20 [ViYaj]
3 3 2
Vi Vi =35 Y00 + 15150 — 150y
iv2 1
+ E [Ej]dY'le + EileVQOl } BOYE’SJk
2 3 3
YOV, = — y115k+ =Yii0u + 2 Vikdy
(€Yo + €ijt¥au) + v
3\/_ i 2;1 gl L okl 15 3ijk
3 3
Y22UY ! 105jkY11i + 1—052kY11j - géljyllk
iv/2 1
— E [Eikl}/Qljl + ejle'le‘l} - 30}/})11]16

Y5 Y, =0 [Yo Vi

2ij

B.0.3. Productosdel!l=2con !l =2

4 2 12
Yiij = Yo Yom

215

1 1
Yzzszzlm = _E [GiZngg}ke + Ejkey?,?;le] + §Yz§jkz

(B.16)

(B.17)
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s =2

320 4 o014
YélleQ%ij = ?Kij(kl) + ?Kij(kl )v (B-18)
3 20 1,26 3,204
YQ(;cle%‘j = _?Kij(kl) + §Kij(kl) + ?Kij(kl )= (B.19)

con los tensores K dados por

8
2(0
Kij(kl) =-3 (00 Yor; 4 05 Yo0) + 2 [0 Yo + 0 Yar; + 0k Yoy + 0a¥ar; | (B.20)

2(6 ?
Kij(kl) = 2 [Ez‘keyéijl + €jkeYarn + Ez‘lngerk + €1 Yariy) (B.21)
1
Kin(kll4) ) 42ijkl7 (B.22)
s=1

3 10 , 1 1@ 1 00 3 108
Yégjyzlkl = 1_0J4ijkl + ﬁJMjkl + 5J4z‘jkl + §J4ijkl (B.23)
_ I 10 I 1 I 100 I s
Y2ij1Yz2k:l = 2_0J4i(jlzl + %Ju(jlgl - %J4i(jkl) o %‘]41'(3%[) (B~24)

con los tensores J dados por

Jiz(jolzl == 12\/5 [5ikqu + 5jk€lif + 5il€kjf + 5jl€kz’f] }/llf (B25)
Jiéfiil = 6 [013Yah; + 0ik Yoy + 05 Yau + 05t Vou| — 8 [0 Yaiy + 0t Yoy (B.26)
1
Jii(jlzgz) =5 [€ikeYanji + €jke YVaen + €iteYausp, + EjteYaein ) (B.27)
1
1(18
J4z'(jkl) =3 41ijkl (B.28)
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s=0

_ I o0 200 , 206 I o2 I _oe0
Y22le2ij2 = ng‘j(kl) + ng’j(kl) + ?F’ij(kl) + EFij(kz : + %Fij(kl )v (B-29>
vyl _ 4Fo(o) n 4Fo(2) B 4F0(6) _ 4Fo(12) 8 70020) (B.30)
akit2ig = skt T e T w ik T B ik 35" ikl .
24 _o0) 48 _o6) . 72 020
Y29clY22j = ngj(kz) - 7Fij(kz) + %Fij(kl : (B-31)
con los tensores I’ dados por
1 1 1
V2
Fi‘}(,fl) = Z? (0j1€ike + Oki€jte + €jkedis + Okj€ire) Yy, (B.33)
1 1
F) = 6 (03 Yap + 0aYay;) — 3 (015 Yaip, + Ok Yop; + 01Yop; + 0nYsy) ,  (B.34)
0(12) __ i 0 0 0 0
YN [€ireYarji + €jke Yary + €iteYaojp, + €1 Yarin] (B.35)
1
0(20
Fij(kl )= ﬁyzgjkzl' (B-36)
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Apéndice C

Derivacion Post-Newtoniana entre F,
Jin'y q

Partiendo de la definicién para los momentos cuadrupolares de masa ([12],[21]),
tenemos las siguientes expresiones: con los pardmetros de masa dados por m =
m1 + ma, dm = my — me,L* el momento angular orbital, y n = mlmQ/m2 cociente
de masas simétrico.

Para simplificar, consideramos el caso de masas iguales que no giran. Por lo tanto,
m=0,m=1yn= }1. Con estos parametros de masa, los momentos radiativos del
cuadrupolo son

I =nm (227 — %@jxﬂ (C.1)
JiJ=0. (C.2)

Explicitamente, los momentos radiativos distintos de cero en la aproximacion N estan
dados por,

L s

Iy = 3" (C.3)
1
Iy = ﬁmr2[1 + 3 cos(2wt)] (CA4)
1
Iy = ﬂmTQ[l — 3 cos(2wt)] (C.5)
1
Iy = I = ém’r’2 [sin(2wt)] (C.6)
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2

Dado que el momento angular orbital L = nmr2w se conserva en la aproximacion N

obtenemos
9= — g (C.7)
[](\?)m = 4L;w?[sin(2wt)] (C.8)
]](\?)yy = —4L;w*[sin(2wt)] (C.9)
[](\?)wy _ [](\;’)yz = —4L;,w?[cos(2wt)], (C.10)

donde el simbolo (3) denota tres derivadas temporales. Usando la Ec. (4.6) y tomando
un promedio durante un periodo, tenemos

1 o
=———0300 C.11
10\/5 RYR ( )
32
o5 (€12
Entonces,
32 9

Mmax = T =Wnalin- C.13
10v/2 (E18)

Si las masas no son iguales, la féormula resultante para la subclase que no gira
viene dada por

wln

16 1, 1-—

Moz = —mwfmefn (1 + %(FZ)Q(memm) ) . (C.14)
El valor mas alto permitido para w en la aproximacion PN es 0,05. Sin embargo, el
factor numeérico resultante de 4 x 10~ en la ecuacién anterior no debe compararse
con el obtenido de la evolucién numérica ya que estamos en la aproximacion PN y
los binarios ni siquiera estéan cerca del tiempo de fusiéon. Sin embargo, es importante
ver la dependencia cuadratica de la luminosidad méxima con el valor inicial del mo-
mento angular total del sistema.
Si queremos aplicar este modelo a las otras clases de giro (A o P), usamos L' =
J"— (81 + S5)%, lo que nos da un polinomio de segundo orden con coeficientes cero y
de primer orden que no desaparecen. Aunque los coeficientes dependeran de los espi-
nes iniciales (S, .52), el modelo seguira siendo tutil para dar un valor representativo
de la dependencia.
También se puede escribir la luminosidad maxima en términos de la relaciéon g escri-
biendo el momento angular orbital como

q
L =nmriw = mmr%). (C.15)
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Insertando esta ecuacion en (C.14) y usando la formula de la orbita circular

m
wir? = —
r

et () [t () e

La tltima orbita circular estable antes de la coalescencia esta dada por

se obtiene

Tstable = 6m7

Por lo tanto, la luminosidad en esa é6rbita en particular estd dada por

: 16 ¢ 1\’ 1 (1 — q) 2
M=——"" - 1+ — [ — : C.17
10v/2 (1 + g)* (6) < 216 \1+¢ ( )
Ahora asumimos que los detalles finales de la coalescencia no cambian la dependencia
del pardmetro dada por la ec. (C.17). Sin embargo, la gran cantidad de energia debe

tenerse en cuenta dando dos constantes fenomenologicas, una para cada contribuciéon
de la masa y términos de cuadrupolo magnético. Suponemos asi que

. A q* B [(1—q 2
M=——— " [ 14— [ — 1
1000(1+q)4< 316 <1+q) ’ (C.18)

y los valores de A y B se encuentran ajustando la formula con los datos numéricos.
También se puede hacer una correlacion fenomenolégica entre el valor final de la
velocidad V; o cantidad de movimiento P; y ¢. Tenga en cuenta que la ecuacion.
(4.7) depende del producto de la parte real e imaginaria de o. Por lo tanto, una
derivacion analoga a la realizada para M da como resultado

om ¢ 1—g¢q
Vi =an*— = S
T T Uit

(C.19)

donde el pardmetro a se puede obtener de la grafica numérica. Este tltimo resultado
se ha derivado previamente en la Ref. [31].
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