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Abstract

We consider a quantum fully packed loop model on the square lattice with a
frustration-free projector Hamiltonian and ring-exchange interactions acting on
plaquettes. A boundary Hamiltonian is added to favor domain-wall boundary
conditions and link ground state properties to the combinatorics and six-vertex
model literature. We discuss how the boundary term fractures the Hilbert space
into Krylov subspaces, and we prove that the Hamiltonian is ergodic within
each subspace, leading to a series of energy-equidistant exact eigenstates in
the lower end of the spectrum. Among them we systematically classify both
finitely entangled eigenstates and product eigenstates. Using a recursion rela-
tion for enumerating half-plane configurations, we compute numerically the
exact entanglement entropy of the ground state, confirming area law scaling.
Finally, the spectrum is shown to be gapless in the thermodynamic limit with
a trial state constructed by adding a twist to the ground state superposition.
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1. Introduction

Ergodicity and its breaking lies at the foundation of modern statistical mechanics. It plays a
key role in understanding of why the long-time average of an observable of a single system can
be well-approximated by a statistical ensemble average. In quantum systems, any initial state
being thermalized necessarily requires each eigenstate of the Hamiltonian to be thermalized,
leading to the so-called eigenstate thermalization hypothesis (ETH) [1, 2]. Over the past few
years, ETH violation has been realized outside the scope of the integrability and many-body
localization paradigms [3, 4], such as in quantum many-body scars (QMBSs) and Hilbert space
fragmentation [4, 5].

Two types of models have played important roles in understanding these novel mechan-
isms of weak ergodicity-breaking. The first type is kinetically constrained models, which can
arise as low energy effective models through a Schrieffer—Wolf transformation [6, 7]. The
dimensionality of constrained Hilbert spaces typically grows as an integer sequence, reflecting
an underlying combinatorial structure. In one dimension, a prime example is the PXP model
[8—10], which successfully explains Rydberg blockade experiments [11]. The dimensionality
of its Hilbert space grows as the Fibonacci numbers with the asymptotic scaling 1.618". In two
dimensions (2Ds), arguably one of the most studied models in classical statistical mechanics
and combinatorics is the six-vertex model. With periodic boundary conditions, its Hilbert space
dimension grows as 1.540", following from Lieb’s solution to the square ice problem at the
ice point for which the weights of the six vertices are identical [12]. Sophisticated results have
been established when the model is subject to domain-wall boundary conditions (DWBCs), for
which a bijection between configurations and alternating sign matrices (ASMs) [13] has been
proven. The exact enumeration of ASMs is a celebrated result in combinatorics [13-16]. Not-
ably, progress has also been made in technologies and ideas for realizing classical and quantum
spin ice models [17], with platforms ranging from arrays of ferromagnetic islands [18] to 2D
Rydberg atom arrays [19-23].

A second type of models studied in weak ergodicity-breaking are frustration-free (FF)
Hamiltonians, which have a unique ground state being the superposition of configurations
from a usually classical statistical mechanical or combinatorial ensemble. Such Hamiltonians
are called FF because their ground state is the simultaneous lowest energy eigenstate of all its
local terms. Examples of FF models in one-dimensional (1D) include the Motzkin [24] and the
Fredkin spin chain [25, 26], for which ground state configurations reassemble combinatorial
structures known as Motzkin and Dyck walks. Recently, it has been shown that by flipping
the signs of some of the projectors, the FF eigenstate can be relocated to the middle of the
spectrum, making it qualified for a QMBS. These systems, as well as the original models,
also exhibit Hilbert space fragmentation [27-29], which refers to the emergence of exponen-
tially many dynamically disconnected subspaces. A classification further distinguishes genu-
ine from ‘local’ fragmentation, as related to the scaling of the Krylov subspaces with system
size [30, 31].

Entanglement entropy (EE) plays an important role in the study of both types of aforemen-
tioned models of novel weak ergodicity-breaking. In the first type of models, the growth of EE
is used to characterize the slow thermalization behavior of the so-called scarred initial state. In
the second type of models in one dimension, the ground state provides an example of violation
of area law. Area law here refers to a ground state EE scaling of § ~ N%~! where d is the spa-
tial dimension. A milestone in the study of EE has been Hastings’ proof of area law in gapped
1D systems [32]. Recently, a similar result in 2D has been proven for FF models [33, 34].
The EE of free fermions generally violate area law, but only logarithmically, N“~!InN [35].
In 1D there are multiple mechanisms that generate beyond logarithmic violation of area law,

2



J. Phys. A: Math. Theor. 56 (2023) 194001 Z Zhang and H Schou Reising

such as enlarging the degrees of freedom or the local Hilbert space [36], and strong inhomo-
geneities [37]. A combination of these approaches also generalizes extensive entanglement
growth to Hausdorff dimension one lattices embedded in higher dimensions [38]. One route
to generalize area law violation to higher dimensions is offered by the Motzkin and Fredkin
spin chains, which are both translationally invariant and can violate the area law strongly, with
up to volume-law scaling [39—43]. A crucial ingredient of the Motzkin and Fredkin models is
that they allow a height representation that can carry non-local information of the interactions.
The first obstacle in generalizing this to 2D is to find a well-defined height function that does
not give rise to any ambiguity when going around a closed loop in the lattice. This problem is
intrinsically avoided in the context of dimer and fully packed loop (FPL) models [44—47]. To
further enforce the incremental height change between adjacent plaquettes to be =1 on square
lattice, we opt for FPLs.

In this manuscript, we combine the two mechanisms of weak ergodicity-breaking in a single
model in 2Ds and explore its various features, including Hilbert space fragmentation, ground
state EE, and an upper-bound on the spectral gap. We find that the notion of a height function
alone in 2Ds is not enough to generate beyond area-law EE, due to the strong constraint of
gauge invariance. A further decoration of the model in the current manuscript, with enlarged
local degrees of freedom and next-nearest neighbor interactions, was recently proposed in two
models possessing up to volume EE scaling of ground state [48, 49]. In this manuscript we lay
the foundation that make these two generalizations possible, including detailed discussions of
ergodicity breaking and its dynamical consequences, why a height model alone is not enough to
break area-law (contrary to the 1D case with Motzkin and Fredkin spin chains), and a proof of
gaplessness in the thermodynamic limit. The current manuscript also complements the models
of [48, 49], which are more focused on EE area-law violation and phase transitions, from
considerations of the global structure of the Hilbert space and excited states.

The paper is organized as follows. In section 2, we introduce the Hilbert space and Hamilto-
nian of our model. In section 3 we explore ergodicity breaking in detail (section 3.1), in
addition to constructing a series of exact eigenstates (section 3.2). In section 4 we compute
numerically the exact ground state bipartite EE between half-systems, yielding area law scal-
ing. In section 5 we construct a trial state with vanishing energy in the thermodynamic limit,
demonstrating that the model is gapless. Finally, we provide a summary and propose future
directions. In appendix A we prove that FPL configurations with a fixed boundary are ergodic
with respect to plaquette flipping in the bulk. In appendix B we provide a sufficiency proof
for exact unentangled exited states. In appendix C we explain how half-system configura-
tions can be counted recursively, which is used to calculate the EE, and in appendix D we
devise a Monte Carlo algorithm to faithfully sample the classical configuration space. Finally,
in appendix E we provide an example of a 2D FF FPL model that does not suffer from boundary
constraints.

2. The model and its dual lattice formulation

We consider a square lattice G of N x N vertices, with binary degrees of freedom living on
the horizontal and vertical bonds connecting neighboring vertices. We constrain the Hilbert
space to that of the FPL (or 2-dimer) coverings of the lattice by the diagonal Hamiltonian
Hy = VZ?L.ZI (ov(i.)) + onlinj) +ov(i,j+ 1) +ou(i+ l,j))z, where subscripts v and & refer
to vertical and horizontal bonds respectively, and 0 = 41 (¢ = —1) for a covered (uncovered)
bond. In the limit V> 1 we can effectively work in the ground state manifold of Hy. In the
constrained Hilbert space we consider the low-energy effective Hamiltonian
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H = Huyu+ Hyp= > P,+ Hp,
pEbulk (1)

P= (1 -2 (0 1- (2D,

The Rokhsar—Kivelson projectors, Pp, contain the diagonal potential term
1 —— —
5(“ I> <I I| +|°—-> <-—-D and the off-diagonal ring-exchange kinetic term

_%(“ I> <—-| + |-—-> <I Il) that allows parallel covered bonds to resonate [51]. We will
refer to plaquettes that contain two parallel covered bonds as flippable, and unflippable oth-
erwise. Here bonds are either covered (black) or uncovered (light gray), with the bond-spin
conversion rules in figure 2(b). The sum above runs over the bulk plaquettes, which there are
(N — 1)? of. The boundary terms

Hy = H})+ Hj + H) + H} + 2N,

HY = i(—l)x 1)l

r=1

3= X0 AL, @)

)
z,N

Hjy = E_:l(—l)y [—) (=l
Hy = ;(—1)“1 =) (—lny -

impose a DWBC (labelled DWBC1) on the ground state, where every other bond is covered
along the boundary (see figure 2(c)). Above, subscripts denote the (horizontal or vertical) bond
position (x, y), as counted from the lower left of the graph with row-major ordering. With these
boundary conditions FPL coverings are also in bijection to ASMs*, see figure 1.

The bulk Hamiltonian has the apparent Z, symmetry R of reversing the covering of all the
bonds, satisfying

[Hbulk7 R] = 07 (3)
which is broken by the boundary terms:
{Hs,R} =4NR. “)

4 Alternating sign matrices are matrices with elements 0, —1, or 41 such that the sum of each column and row is 1, and
where the 41 and —1 elements alternate along rows and columns. The mapping to six-vertex model configurations
is obtained by assigning c¢; vertices +1, ¢, vertices —1, and all the remaining four vertices 0 [13, 16].
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Figure 1. Bijections with domain-wall boundary conditions. Left: fully packed loop
configuration, middle: six-vertex model configuration, right: alternating sign matrix.
The mapping between the first two representations is explained in figure 2(a), and the
mapping between the latter two amounts to assigning a and b vertices to 0, and c vertices
to =1 [50].

The commutation relation of equation (3) can be understood by observing that all
the projectors P, are invariant upon interchanging covered and uncovered bonds.
The anti-commutation relation of equation (4) becomes apparent by noticing that
— _ 1
“> <” =1- ‘°> <" o 5(1 - “> <” o '> <' )’, which makes Hg — 2N anticommute
with R. The full Hamiltonian also has a hidden symmetry given by Wieland’s gyration [52],
which reverses the coverings around only the non-flippable plaquettes, while leaving the
flippable ones unchanged.

The off-diagonal terms in equation (1) relate FPL configurations differing on a single
plaquette with parallel bonds covered in different directions. This is conveniently expressed
in the height representation on the dual lattice [44, 46]. On the square lattice the height
field is integer-valued and changes in units of 1 between neighboring plaquettes. Using the
bipartite rules summarized in figure 2(b) the conversion between spins and height is com-
pactly expressed as S = (S,, ;) = Vh, with 8;h(i,j) := h(i+ 1,j) — h(i,j) and OWh(i,j) ==
h(i,j+ 1) — h(i,j). The FPL constraint then amounts to imposing V x S(i,j) = 0 around each
vertex. It can easily be verified that these definitions make precisely the (flippable) plaquettes
with two parallel covered bonds local extrema in the height, see figure 3.

On the dual lattice, the model can be expressed as the kinetically constrained Hamiltonian

H =Y (T + 107 =T AT =TIk, 11 ) + H, (5)
pEbulk

where Hp> (<) projects onto the state where the four neighboring plaquettes of p all have the
same height above (resp. below) the height of p, and h;(f)

height of plaquette p by 2. The boundary term is given by

increases (resp. decreases) the

Hy=h(1,1) —h(1,N+1) —h(N+1,1) + h(N+1,N+ 1) +2N. (6)

The height representation on the dual lattice reveals another symmetry of the Hamiltonian. The
height difference along each row and column (or along any other path connecting two boundary
plaquettes), which are equal to the sum of spins Zjl.vzl S,(i,j) and Z?’: 1 Su(i,j), respectively,
is conserved. In fact, in the absence of kinetic (off-diagonal) terms on the boundary, which
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Figure 2. (a) Mapping between configurations of the six-vertex model (top row) and
fully packed loop configurations (FPLs, lower two rows), with rules alternating on
the even (cyan dots) and odd (red dots) sublattices [50]. (b) Helght (on plaquettes)
and spin (on bonds) representation of FPLs, which are related as S= (Sv, Sn) = Vh
with discrete derivatives, see the main text. The FPL constraint amounts to imposing
V x § = 0 around each vertex. (c) Maximal height configuration for N = 6 with domain-
wall boundary condition DWBCI1 in the height representation. The dashed green line
represents the cut between the left (L) and right (R) half-systems of which we calculate
the ground state EE in section 4. (d) Boundary conditions labelled DWBC2 relevant for
the unique and exact excited state with energy E = 4N described in section 3.2.

transform one boundary configuration into another’, there are a linear number of local discrete

symmetries:

3 One example of such kinetic terms is an on-site operator that creates or annihilates a covered bond, another example
is the swapping of a neighboring pair of covered and uncovered bonds.
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Figure 3. Flippable plaquettes are precisely those for which the height is above or below
all its four neighbors.

[H,Sp(1,/)] =0 Vj=1,N+1,
[H,S,(i,N+1)]=0 Vi=1N+]1, -
[H.S,(N+1,j)]=0 Vj=1N+1,

[H,S,(,1)] =0 Vi=1,N+1,

which are responsible for the ergodicity breaking to be discussed in the next section. This
makes the model possess ‘local fragmentation’ in the terminology of [31], to be contrasted
with ergodicity breaking due to either discrete or continuous global symmetry such as the
total magnetization in spin chains, or genuine fragmentation in models such as caused by pair
flipping [30]. In appendix A we prove that the bulk Hamiltonian is ergodic within each Krylov
subspace spanned by all the FPL configurations sharing the same boundary configuration.

3. Ergodicity breaking and exact eigenstates

In this section we identify exact unentangled and finitely entangled eigenstates, by making
simple observations of constraints on the boundary configurations. Among the exact eigen-
states we construct the exact and unique ground state and its twin ceiling state.

3.1 Product eigenstates and finitely entangled eigenstates

If we follow the height counter-clockwise around the perimeter, the fact that it must come back
to the same value after a full cycle implies that there must be at least one pair of height kink
and anti-kink along the graph perimeter, as the height of neighboring plaquettes must differ
by +1. Moreover, if anywhere on the lattice, there is a segment, such as those in the same
color in figure 4, in which the height changes monotonically, and which has a right-angle turn,
the height in the entire rectangle spanned by the two perpendicular sides must also change
monotonically between diametrically opposing corners of the rectangle. We will henceforward
refer to this as the convexity lemma, and use it repetitively. By ‘segment’ we here refer to any
path between two plaquettes with a single right-angle turn, i.e. any ‘L’-shaped path. The key
point is that since flippable plaquettes correspond to local extrema in the height, a monotonic
segment can not contain any flippable plaquettes.

An immediate consequence of the convexity lemma is that a monotonic segment on the
perimeter cannot cover two corners. Thus, besides the special case of two kinks being located
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Figure 4. A boundary configuration with four monotonic segments (two kinks and two
anti-kinks), demanding four rectangular monotonic regions near four corners, leaving a
core with a single flippable plaquette. The right panel shows the corresponding height
going around the lattice boundary counter-clockwise.

on diagonally opposing corners as described below, there must be at least two pairs of altern-
ating kink and anti-kink, with the sum of lengths of every other segment being 2 N, since the
height along half of the perimeter must increase, and decrease along the remaining half, the
net height change along the entire perimeter (of length 4 N) is zero. A four-segment case is
depicted in figure 4.

As for the exceptional kink-antikink case, the height change must be monotonic in each
row and column inside the bulk, so there are no flippable plaquettes in this case. We have thus
found the first product eigenstate, as depicted in figure 5(a) (for which the kink and the anti-
kink are located at diagonally opposing corners). With two kink-antikink pairs, it is still easy
to pick boundary configurations that only allow one bulk configuration. First, notice that the
only way in which none of the four segments go around a corner is for each of them to cover
exactly one side of the lattice, including one of two corner bonds in either end. This gives the
ground state boundary configuration depicted in figure 2(c). Otherwise, each segment must go
around one corner and one corner only.

If the four rectangles formed by the four monotonic segments cover the entire square lattice,
it also results in a product eigenstate. This gives the states shown in figures 5(b)—(d). Together,
up to translations and rotations, they exhaust all product eigenstates with two pairs kink-
antikink on the boundary. This can be seen by writing each segment length as /; = x; +y; for
i=1,...,4,seefigure 4. Monotonicity within each rectangular region and alternation of mono-
tonicity between regions require the constraints min(x; + x3,y; + y3) and min(x; 4 x4,y2 + y4)
to be either N or N — 1 for the excited state to be a product state. The former case gives (b)
and (c), up to translations, and the case latter gives (d), up to translations and % rotations.

By now it can be seen that in general, a rule in searching boundary configurations yield-
ing product eigenstates is that each plaquette in the lattice is penetrated by at least one height
gradient line. Here gradient line just means any directed path (among multiple choices) along
which the height changes monotonically and should not be confused with the direction of
steepest descend. Gradient lines must start and end at boundaries, as loops are not allowed
and endpoints imply a flippable plaquette. We now prove that the only possible full cov-
erage of gradient lines, other than the special ones going around four corners as we dis-
cussed above, are parallel straight line coverings, corresponding to product states of the type
figures 5(e) and (f).



J. Phys. A: Math. Theor. 56 (2023) 194001 Z Zhang and H Schou Reising

(fﬂﬁ (b) j_];B:‘L\_ll: (c) _[‘I L]_
- L R
(d) (e) (f)

L
-
-
-
C

R
arTrir ;LLU?;E

Figure 5. Representatives of the two types of product eigenstates in isolated one-
dimensional Krylov subspaces, with the opaque green color scale reflecting the height.
(a), (e) and (f) have straight height gradient lines penetrating to opposite sides of the
lattice, while (b)—(d) have a saddle point of height gradients in the bulk. The energy of
(a), (b), (c), (e), (f) is always 2 N, while the energy of (d) is 2N — 2. Up to translations
and rotations, the only remaining product states not depicted here have height functions
being monotonic in one direction, and globally shifted parallel random walks in the
orthogonal direction.

¥
i
-

If there is at least one plaquette being traversed by a gradient line that starts and ends on
opposite sides, we call this plaquette (i, ), otherwise, it becomes the one of special cases to
be discussed in the next paragraph. Assume the plaquette (i, j) is traversed by a gradient line
starting from side a and ending on side b. Since a and b are on opposite sides, without loss
of generality, we can assume the coordinates of the two end points are (i,, 1) and (i,,N),
with i, <i < i,. We then immediately have that the entire region between i, and i is tra-
versed by straight gradient lines from the bottom to the top of the lattice, by the convex-
ity lemma. But the lines in the region with first coordinate i ¢ [i,, i5] will have no where
to go except turning to the adjacent side, resulting in either a curl or violation of the con-
vexity lemma. We thus conclude that if we have a product state in which one plaquette
is traversed by a gradient line that starts and stops on opposite sides, then all plaquettes
must be traversed by straight and parallel gradient lines starting and ending on opposite
sides.

If however, all gradient lines turn to end on adjacent sides, an analogous argument will
result in product states of the type in figures 5(b), (c) or (d). Hence we have exhausted all the
possible unentangled eigenstates. Alternatively, the above argument can be made elegantly
in the six-vertex language. As such, a discrete version of electrostatics dictates that gradient
lines, coming from strings of unflippable plaquettes, are curl-free and source-free. These are
precisely what the FPL configurations shown in figure 5 correspond to when tracing their
height profile.

Apart from product eigenstates, the lowest entangled FF eigenstate corresponding to the
boundary configuration in figure 4, which is a equal superposition of two FPLs differing only
by the center plaquette, with EE of In2. One can further explicitly diagonalize a2 x 2 plaquette
system subject to DWBC, which is satisfied by the four-plaquette core surrounded by four
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monotonic rectangular wings. These states have area law EE of the size of the core, which can
be anywhere between 1 and N, if the cut is through it.

3.2. Exact eigenstates

As we prove in appendix A, each consistent boundary configuration forms a Krylov subspace,
in which a uniform superposition of all FPLs with that boundary configuration is an eigenstate.
Among these would-be degenerate eigenstates, the boundary Hamiltonian picks the one with
DWBCI to be the unique and global ground state

GS) = —— > 1A, ®)

A(N) FEFPL with DWBC1
where the normalization constant
N—1
Bm+1)!
A(N) = - 9
(N) EO o ©)

is equal to the number of ASMs® due to the DWBCs realized by the ground state [13-16],
cf figure 1.

The Hamiltonian can be deformed locally with a large class of parameters. One can con-
sider the graph Laplacian that gives the Hamiltonian. That graph turns out to have chordless
cycles only of length four, originating from flipping two corner-sharing plaquettes in differ-
ent orders. The projectors acting on each plaquette p can be deformed in a FF manner inde-
pendently by a spatially varying angle 6, not subject to any consistency relation of the type

in [41]: Pp<9p) = (COS 013 |I I> — sin ‘g’p |:>) (COS 6)79 <I ” — sin 917 <:Dp further-

more, it appears possible to deform the Hamiltonian in a neighborhood-resolved manner such
that the ground state is a superposition of weighted six-vertex configurations. The detailed
investigation of this quantum six-vertex model beyond the ice point, we intend to undertake in
future work.

The necessary and sufficient condition for a boundary configuration allowing an integer
energy eigenvalue is most succinctly expressed in the six-vertex language: firstly, the total
number of inward and outward pointing arrows must be the same; secondly, if the lattice is
divided along any row or column, the difference between inward and outward pointing arrows
on either side of the partition line can not exceed N, see figure Bl in appendix B, in which
the sufficiency condition is proven with backward induction. The necessity follows straight-
forwardly from the conservation of arrows at each vertex, so any partition of the lattice must
leave the interior arrows along the cut capable of balancing the net arrow flow in the exterior.

An eigenstate with 2 n flipped boundary spins relative to DWBCI (in figure 2(c)), and oth-
erwise being annihilated by the bulk Hamiltonian in a construction similar to the ground state,
will have energy E = 2n. As explained above and proved in appendix B, a consistent bound-
ary condition in the height representation requires color balancing, meaning that there is a
balanced number of covered boundary bonds connected to vertices of either sublattice, i.e. n
red and n blue vertices connected to covered boundary bonds. The excited state for a consistent
boundary condition S, (the set of boundary spins) thus takes the form

2,8y > |F), (10)

F€eFPL with S,

6 The asymptotics of A(N) is given by A(N) ~ N~5/36(3v/3/4)¥ [53].
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where the sum runs over FPLs with boundary condition S,,. A simple estimate for the degen-

eracy of level 27 is dy, < (2,?' )2 since there are (2rzlv ) ways in which both n blue and n red
boundary spins can be flipped from DWBCI. This is an upper bound since it includes a hand-
ful of boundary configurations violating the second part of the sufficiency condition explained
above, so that global conservation of arrows is respected, but where the arrow conservation in
a subsystem including the partition line is violated’. For n =0 we recover the unique ground
state with £ =0 and Sy = DWBC1, and for n = 2N we get the unique excited state with E = 4N
and S,y = DWBC2. This E = 4N state is related to the ground state by the Z; operator R from
equations (3) and (4).

3.3. Relation to QUIBSs

Here we comment on how our mechanism of weak ergodicity-breaking contrasts and com-
plements the known paradigms of spectrum generating algebra [54] and the Shiraishi—-Mori
embedding formalism [55]. Our Hamiltonian resembles the Shiraishi-Mori formalism, with
a target space given by the space of all classical FPLs. The diagonal boundary Hamiltonian
lifts the a priori ground state degeneracy, making the ground state unique on the open square
grid. Our exact FF excited states are also equidistant in energy. Yet, the majority of our states
are not related by ladder operators, except for the ground state and the ceiling state, which are
related by the gyration operator [52]. Furthermore, the energy of our exact excited states are
of order N while the spectrum ranges from 0 to order N2, so the eigenstates do not have finite
energy density in the thermodynamic limit and hence do not qualify for QMBS states. The
boundary puts stringent constraints on 2D models in constrained Hilbert spaces, to the point
that even product state can become eigenstates, which is not observed in 1D, and could lead
to potential applications in quantum technology.

4. Bipartite EE

The bipartite EE of the half-system defined by the central cut shown in figure 2(c) is given by
S==> palnps, (1)
{i}
where 7t = (h(N/2,1),h(N/2,2),...,h(N/2,N)) is the height field across the cut. In what fol-
lows we will evaluate this for the ground state using an exact recursion relation.

4.1. Schmidt decomposition and exact recursion

The numbers pj; are obtained by Schmidt decomposing the ground state:

GS) = > VPl PLs(N/2)) @ [Pra(N/2)), (12)

{ni}
where [Py 7(N/2)) (resp. |Pg#(N/2))) is the normalized sum of FPLs in the left (resp. right)
half-system with heights /7 imposed along the right (resp. left) edge (and DWBC on the remain-
ing three). The number of different height configurations along the (full system) central cut is

7 For N = 6 for instance, explicit counting results in a total of 2 668 952 consistent boundary modes, whereas the
2N 1
formula g(N) := =24 ()” = S22 predicts g(6) = 2704 156.
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Figure 6. The bipartite entanglement entropy of the half-system from equation (11),
as obtained with the exact recursion relation (black squares) described in appendix C
and with the Monte Carlo method (red diamonds) described in appendix D. The blue
dashed line shows a fit to the last three data points. The inset shows the difference
between consecutive points, AS(N) = S(N) — S(N — 2), which from the upper bound
of equation (15) is expected to saturate to a constant for large N.

given by the number paths with height changes of +1 across neighboring plaquettes, starting
and ending at the same height of N/2:

N
= . 13
2= (x2) .
The coefficient p;; above then takes the form
| PLw(N/2)|[Pri(N/2)|
where |Pg 7(N/2)| is the number of FPLs in the right half-system with the left boundary 7.
By reflection symmetry around the central cut we have |Pg #(N/2)| = [P, 5_;(N/2)| , with

N = (N,N,...,N). Closed-form expressions for | P, z(N/2)| in terms of contour integrals were
given in [56], however, for the purpose of extracting the EE scaling, it is more efficient to use
a recurrence relation to enumerate them for incrementally growing N. We refer to appendix C
for details on the recursion relation®.

(14)

4.2. Scaling of the EE

The combinatoric nature of the counting problem explained above, related to the rapid growth
of A(N) (see footnote 6), and the exponential slowdown encountered when solving the recur-
sion relation numerically still pose as a practical challenge.

In figure 6 we show the outcome of calculating the EE of the half-system from the exact
recursion relation. A Monte Carlo algorithm, which does not rely on ergodicity and which
faithfully samples FPL configurations, was devised and verifies the results with excellent

8 The enumeration of half-system configurations for a subset of the 7i’s has been established with available asymp-
totics, namely those with ‘U-turn’ boundaries [57] and some with certain symmetry constraints [58].
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accuracy. Details of the Monte Carlo method are provided in appendix D. The EE resulting
from the exact recursion relation has area law scaling. Due to the shape of our lattice (having
corners) one generally expects subleading corrections like In N. On the cylinder and torus the
general behavior is a non-universal linear term and a universal constant related to the Lifshitz
field theory relevant at the quantum critical point [46, 59, 60].

To shed further light on the scaling we can state a simple upper bound on equation (11)
in the height field representation. The extreme case is obtained for a flat distribution with

pin=1/Ng:
1 1.2
Séln/\/,ﬁNNIHZ—ElnN—FEln;. (15)

This shows that the growth of the number of central height field configurations is only enough
to make the half-system EE upper bounded by Nln2. The same argument applies to the exact
excited states, while a generic excited state would not be subjected to the same Schmidt decom-
position of equation (12) and therefore have EE upper bounded by Lieb’s residue entropy of
square ice instead [12]. Recently, a 2D generalization of the Fredkin model was proposed on
the hexagonal lattice with the dimer constraint [61]. In appendix E, we define a similar 2D
generalization of the Fredkin spin chain to the square lattice with the FPL constraint. By the
logic of the upper bound above this model presumably also faces a ground state bipartite EE
bounded by area law. The same conclusion is expected to hold for other height-conserving
dimer models considered recently [62].

From a tensor network point of view, the ground states of both models can be view as given
by projected entangled paired state, with virtual legs corresponding to our physical degrees
of freedom, and no degrees of freedom on the physical legs. In the tensor network language,
the EE scaling is given by the number of bonds crossed by the boundary between subsystems.
So to achieve an area law breaking EE or a real 2D generalization to the Fredkin model, one
may consider constructing a 3D holographic tensor network for which the physical legs only
live on the bottom layer, while for the rest of the layers, the virtual leg from the previous layer
plays the role of a physical leg [63].

5. Upper bound on the spectral gap

The classical six-vertex model at the homogeneous point, at which the Boltzmann weights of
the a-, b-, and c-type vertices of figure 2(a) are equal, is critical [64], with algebraically decay-
ing bond-bond correlators. By construction, the ground state of our quantum Hamiltonian has
the same equal-time correlation function as the classical model, which mean the spectral gap
between ground state and first excited state must vanish in the thermodynamic limit [65-68].
In this section, we construct a trial state (equation (16)) to show that the excitation gap is upper
bounded by a quantity that decays exponentially with system size.

The trail state needs to meet two requirements: it has to be both orthogonal to the ground
state, and the Hamiltonian must have an expectation value that approaches zero in thermo-
dynamic limit for it to provide an upper bound on the excitation gap. The first requirement
can be satisfied by adding a ‘twist’ to the ground state superposition [24], such that when
taking the inner product with the ground state, the two parts with opposite signs cancel. The
second requirement calls for a carefully chosen boundary between the two sets of configur-
ations, such that the Hamiltonian annihilates the intra-set contributions, leaving only contri-
butions from the interface of the sets in the energy expectation value. A convenient choice
of the set boundary is halfway between the highest Vinx = N(N+ 1)(2N+ 1) and lowest
Vinin = %N (N+1)(N+2) volume configurations (as found by summing up the configurations

13
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Figure 7. (a) Fully packed loop configurations with domain-wall boundary conditions
partitioned into two sets, dictated by the volume of the configuration. Only configur-
ations in the vicinity of the boundary between the two sets, as measured in a volume
metric, contribute to the energy expectation of the trial state in equation (16). (b) One
of the (& ) configurations (with M = N? /4) with volume V; — 1. The other configura-
tions are i)btained by simultaneously flipping an equal number of plaquettes with height
6 and 4.

in equation (D.4)). The two sets contain the same number of configurations, and one has to
traverse one of the many such configurations to go from configurations with a volume smaller

N(N+1)?
2

than their average, Vj := %(Vmin + Vinax) = , to one with a larger volume, see figure 7.

We thus pick the trail state
) = > sen(V(F) = Vo)l F). (16)
FEFPL with DWBCI

It immediately follows that (GS|w) =0 and (7 |m) = A(N). Before evaluating its energy
expectation value, we first count the numbers of configurations near the volume interface V. A
representative configuration with volume Vj — 1 is shown in figure 7. The flippable plaquettes
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of this configuration are all located inside a diamond with half the size of the lattice. Outside
this diamond the plaquettes are frozen. Inside, every other plaquette is flippable, giving a total

number of M := NTZ flippable plaquettes. Among these there are 2+! plaquettes with height

2
¥ —1 and 2! with height § + 1°. The number of configurations with volume Vo — 1 can
thus be enumerated as

M—1

2 /M1 M+1 M
2 ()(0)- ()

since one can simultaneously flip any number of pairs of plaquettes of heights %’ —1land %’ +1
from this reference state and remain in vicinity to the volume boundary. Each of these config-
urations can brought across the volume boundary by @ Hamiltonian terms flipping one of
the plaquettes with height g — 1. We have

(nHlm) = Y (FIHF)

V(F) V(F)=Vo£l

18
M+ < M ) (1%)
2\
Using the asymptotic behavior of A(N) form equation (9) (see footnote 6) we find
NZ
4
() e (V2 0, (19)
(m|m) 3V3/4

proving that the Hamiltonian is gapless in the thermodynamic limit. A remark is in order here
to point out the connection between our proof of gaplessness and the ‘arctic curves’ of the
six-vertex model [69]. The vanishing asymptotics above strongly relies on the fact that near
Vo, the region containing flippable plaquettes only occupy half of the lattice and the corners
outside the orange rhomboid in figure 7(b) are frozen.

6. Conclusions

We constructed a quantum FPL model with a Rokhsar—Kivelson type Hamiltonian [51], in
which configurations permit multiple equivalent formulations from the classical statistical
mechanics and combinatorics literature. By making the model FF the quantum ground state
becomes an equal superposition of configurations from the classical space of configuration.
We showed that the bulk configurations are heavily constrained by the boundary, to the point
that certain boundary configurations imply product eigenstates. The bulk Hamiltonian is not
ergodic in the entire Hilbert space, but only within each Krylov subspace, as dictated by the
boundary configuration. Each ergodic subspace has its own lowest energy eigenstate, which
are equidistant in energy across subspaces. Owing to enumerable half-system configurations
by recursion, we performed an exact lattice calculation of the ground state bipartite EE for
systems of sizes up to 18 x 18 giving area law scaling.

Our methodology may turn useful in the study of other height models and in related studies
of ergodicity breakdown induced by boundary terms. One possible generalization is to consider
a Z, generalized model involving a boundary condition that alternates with period » instead
of two. One may also expect the emergence of interesting phases and refined structures in

9 We have assumed that N/2 is odd. For N/2 being even, the construction is analogous with slight modifications.
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the ergodicity breaking for FPL models adopted to non-bipartite lattices. Lattices of interest
include the triangular one [70-72], or more exotic ones such as the Kagome lattice [73], or
even aperiodic tilings like the Penrose [74] and the Amman—Beenker tiling.

One could attempt to construct a microscopic Hamiltonian that makes the FPL constraint
emerge, like what was done for the dimer model in [75, 76] using Klein terms of the Hamilto-
nian. There are also alternative ways to implement the DWBC, for example, by employing
an antiferromagnetic interaction along the boundary. The outcome of this choice, other than
making the ground state two-fold degenerate and the exact excited states reordered in energy,
is that the entire Hamiltonian will have a Z, symmetry.

One can also introduce dynamic terms in the boundary Hamiltonian, so that the fragment-
ation is removed and the unique ground state becomes the superposition of FPLs with all
boundary configurations. It would be of interest to explore the consequences of that on the EE
scaling. In addition, it is also interesting to think of whether the Hamiltonian can be modified
to reallocate the exact excited states to mid-spectrum QMBS states.
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Appendix A. Proof of ergodicity of plaquette flipping within boundary sectors

In this appendix we prove by induction that each Krylov subspace specified by the boundary
configuration (Hyp) is ergodic with respect to the bulk Hamiltonian (Hyy).

For a 2 x 2 lattice, there are at most two choices of the bulk configuration, differing by the
height on the central plaquette, for any fixed boundary configuration. These two are related by
the flipping the central plaquette.

Suppose we have proven the ergodicity for (the interior of) a lattice of size k x k for any
fixed boundary configuration, that is, if such a boundary allows multiple bulk configurations,
they can all be transformed into each other by sequences of plaquette flips. Then for a lattice
of size (k+ 1) x (k+ 1), for which the bottom left corner is a k x k lattice with established
ergodicity, see figure A1, we just need to show that any configuration of the newly added strip
above the top and to the right with identical bulk configurations, transform into each other by
sequences of plaquette flips.
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Figure A1. Proving ergodicity of the bulk Hamiltonian by induction: two configurations
differing only by the height of one plaquette along the strip added in step (k+ 1) are
either related by flipping that plaquette (p;), or if it is not flippable, and a sequence of
flipping operations in the k x k bulk (by its proven ergodicity) will make it flippable.
Here, the height configuration of one of the two configurations differing at p; and p; is
shown, the other configuration has height iy — 1 on p; and kg on p.

To show this, we only need to show that sequences of plaquette flips can transform any two
strip configurations differing only by the height of any single plaquette into each other, because
once that is established, configurations differing at multiple places can be connected step by
step transitively. If the difference is located in the corner of the strip, then the two configuration
are related by simply flipping the corner plaquette. Otherwise, if the heights Ay &= 1 differ on
a plaquette py, see figure A1, on the right boundary, its neighbors above and below must both
have height &, or there are at least two plaquettes along the strip with different heights between
the two strip configurations in question, contradicting our assumption.

All we need to do now is to show that there is another bulk configuration in the k X k lattice
compatible with the strip configuration on its boundary, for which the adjacent plaquette p;
to the left of p; has height &y, between the two plaquettes of the strip with height iy + 1.
Then these two configurations of the k+ 1 x k+ 1 lattice with identical heights in the k x k
lattice are related by flipping plaquette p;. And this must be the case, because if not, p, must
have hy + 2 (resp. hy — 2) if the height on p; is hy+ 1 (resp. ho — 1), with neighbors above
and below both of same height as p;, otherwise, the flippability of p, implies that there is
another bulk configuration with height 4 on p, making p; flippable. This argument goes on
until we reach at the left boundary, with a monotonic gradient along this row, see figure Al.
As we established in the exhaustion of product eigenstates, this means the entire lattice must
be covered by horizontal straight gradient lines, making the ergodicity proof irrelevant for the
boundary configuration under discussion.

In the periodic boundary case, ergodicity was proven in [77] for the ‘zero-flux’ sector, which
contains two configurations with every plaquette flippable, called ‘ideal states’, and they are
connected to each other by flipping half of the plaquettes. Since a global extremum implies a
local extremum, each configuration has at least two flippable plaquettes which can be flipped
to reduce the difference between maximum and minimum heights until one reaches one of the
two ideal states. As elegant as this proof is, it does not work for fixed boundary conditions
since the extrema can be located on the boundary. Modulo exceptions of configurations with
no flippable plaquettes, which we provide the precise criteria for in section 3.1, the ergodicity
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in other Krylov subspaces under periodic boundary conditions can be proved without too many
modifications of the above proof.

In [78] it is stated that the ‘topological sectors’ are classified by the height change along
two perpendicular non-contractible loop directions in the case of periodic boundary conditions.
There are 2N + 1 such sectors and the bulk Hamiltonian is ergodic within each of these. This
can be seen by cutting the torus along two orthogonal non-contractible loops, due to periodicity,
the boundary configuration are uniquely determined by the height along these two loops, which
form an ‘L’-shaped strip. The kinetic terms in the Hamiltonian can change any configuration
along the strip to any other with the same magnetization of arrows pointing in and out. The
disconnected sectors can simply be enumerated with a representative where arrows pointing in
come before all arrows pointing out, from each magnetization. The number of possible domain
wall locations is 2N + 1 for 2 N spins. Note that this is different from the case of open boundary
conditions considered above, for which the number of sectors grows exponentially with system
size. We caution, however, that the meaning of ‘topological sectors’ here is different from the
more conventional usage, the latter in which there are 4% disjoint sets of configurations for a
genus g graph that can not be transformed into each other by sequences of plaquette flips.

Finally, ergodicity of plaquette flipping moves among FPLs or dimer coverings is trivial on
the hexagonal lattice, but less understood on the (tripartite) triangular lattice [70, 71].

Appendix B. Sufficiency condition for exact excited product states

The fact of zero net inflow of arrows in the six-vertex language for all subsystems of the lattice
is sufficient to guarantee exact excited states is proven by construction. We start with an N x N
lattice configuration of which the boundary satisfies this condition, and show how to construct
all the configurations of the (N — 1) x (N — 1) interior layer that satisfy the same condition.
By backwards induction the procedure keeps going until a lattice with only one plaquette is
reached, which can be easily shown to allow a consistent configuration by examination. In
practice, we use backwards induction in the height degree of freedom. An illustration of the
second clause of the sufficiency condition is shown in figure B1.

A boundary configuration for a system of size N satisfying the condition guarantees that
heights of plaquettes on opposite sides of the same row or column differ by at most N. We
imagine filling in the heights on the plaquettes in the next layer one by one, starting from
the plaquette with coordinate (1,1). If its two neighbors on the left and below have different
heights, then its height is fixed to be the average of those two. Otherwise, one still needs
to check if the height difference between plaquette pairs (1,0), (1,N), and (0,1), (N, 1) is
exactly =N. If so the height of (1, 1) plaquette must be increase (resp. decrease) by one from
its neighbors on the left and below. One can easily check that if the two requirements are
simultaneously met one can never run into a contradiction. In all other cases we have a freedom
in choosing the height. The algorithm devised in appendix D makes use of these observations.
Next, we fill in the height of cell (1,2) in the same way, only this time checking the horizontal
constraint of whether height at (1,1) and (1,N) differ exactly by N — 1. After finishing the first
row, we fill in the rest of the first column in the same way. Then we proceed to the second last
row, checking the height differences at (1,7) and (N, i) instead. And finally, we fill the second
last column, checking differences in heights at plaquette (i,1) and (i, N). In the process, we
have guaranteed that the boundary configuration of the (N — 1) x (N — 1) lattice satisfies the
same condition. The induction goes on until the 3 x 3 lattice, for which we know that the two
ends of the middle row and column can differ by at most two, so we can always fill in the height
in the center. The resulting height distribution from each outcome of the above procedure
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Figure B1. An illustration of the second clause of the sufficiency condition for an exact
excited state to be a product state: The height change going around two corners of the
lattice cannot exceed the maximum possible height change of N, corresponding to going
straight from one side to the opposite side.

would map to a unique FPL configuration, and the exact excited state corresponding to their
common boundary configuration is given by the uniform superposition of all of them.

Appendix C. Enumeration of half-system configurations

The recurrence relation for enumerating half-system FPL configurations can be explained in
the language of the six vertices (top row of figure 2(a))'°. In this language the height change
going one step up increases (resp. decreases) by one if a right (resp. left) pointing arrow is
crossed. Since the DWBC fixes the height at the top and bottom of the middle column to be
the same, the height profile along the middle cut is a Dyck walk [42, 43], therefore having half
of the arrows pointing left and half pointing right. Along the zeroth column on the left bound-
ary, all arrows are pointing left. If we label the locations of the arrows that are now pointing
right instead along the 5 th column with a vector ¥ = (x1,X2,...,Xy/2), then [Py 5(N/2)| in

—

equation (12) becomes a function of X, which we define to be Py, v (¥):
Pyjaxn(X) = |Pri(N/2)|, (C.1)

where x; denotes the location of the i’th arrow (counting from bottom to top) reversed to point
right in this column, and N/2 x N specifies the dimension of the half-system.

For N =2, there is only one allowed configuration for each boundary condition, so
Pr1x2(1) = P142(2) =1, see figure Cl(a). While we only care about right boundary con-
figurations with half of the arrows flipped in the end, in order to enumerate them recursively,
we also need the number of configuration with less than half of the arrows flipped. In fact,
we also have & «y(i) = 1,V 1 <i < N, corresponding to a kink of vertical arrows on the i’th
row. On the left half-lattice, all the horizontal arrows point to the left along the 0’th column.
After taking into account the two inward vertical arrows in the first column at the lower and
upper boundary, only one horizontal arrow changes to the right, as there can only be one kink

10 This recurrence relation was derived in [79] where the author proved the relation after mapping to equivalent
Gelfand-Tsetlin patterns. Here we give a proof directly from the six-vertex degrees of freedom.
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Figure C1. (a) The two vertex configurations of size 1 x 2 with kinks of vertical arrows
on the first and second row. (b) An illustration of recursively enumerating the configura-
tions of size 2 x 4 with reversed horizontal arrows on the right boundary on the first and
third row, from the counting of configurations of size 1 x 4. The orange arrows indicate
how each closest pair of right arrows must vertically sandwich a right arrow on their
left. The general recursion relation is given by equation (C.2).

along the vertical line (any more than that would violate the six-vertex rules at some point).
Once a horizontal arrow is reversed along the first column, two things can happen after the
next column: either it will be reversed to point left again, or one more arrow will be flipped to
point right. Only the latter case is relevant to us because, otherwise, we can not accumulate a
number of reversed arrows equal to the number of columns N/2, which is half of the number
of rows, see figure C1(b).

A recurrence relation can be summarized from the simple fact that the right arrows along the
previous column must be evenly sandwiched between the rows of each adjacent right arrow
pairs in the next column. If instead, all the horizontal arrows between any two closest right
arrows in the next column (including upper and lower boundaries) were pointing to the left,
then we would have either an even number of kinks of vertical arrows, or a violation of the
six-vertex rules, neither of which is allowed. We have:

9(%1) «(N2) X)) = Z Py v ), (C2)

DR IES RSV RN
NERFE . FEY

<x

Nz

+1

NIz o=

which states that between each neighboring pairs of reversed horizontal arrows in the current
column, there must be one in the previous column, and they must all be distinct.

Appendix D. Monte Carlo method

Here we devise a Monte Carlo method to verify the recursion relation of appendix C. Given a
protocol to generate central height configurations i uniformly, the principle is to approximate
equation (11) as

S==> palnpi~— > palnpa, (D.1)
{ri} {#i}mc
where the distribution p;; approximates equation (14) as
MzMy_j;

) D.2)
Myc

Dii
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with Mj; being the number of times the central height #i is sampled, Myc is the total number
of configurations sampled, and where {7i}mc is the set of distinct heights /7 encountered in
the Myic samples.

The key part of the algorithm is to uniformly generate the central heights 7i. To achieve
this, we iterate row by row from the lower left corner of the graph (with DWBC1 imposed)
and draw height configurations with the following rule:

s =1 +hj=D] i h(i—1.j) #h@j=1)
(i—1,j)—1 if h(i—1,j)=h(i,j—1) and h(i — 1,j) + 1 > hmax (i,))
h(i,j)=14 h(i—1,j if h(i—1,j) = h(i,j — 1) and h(i — 1,j) — 1 < huyin(i,j) ,
( ( ( )
( ( ( )

=

)
)+
)
)

h(i —1,j) + 1 with prob. 1 if A(i — 1,j) = h(i,j — 1) and hin(i,j) < h(i — 1,j) < hmax(i,))
h(i —1,j) — 1 with prob. L if h(i — 1,j) = h(i,j — 1) and huin(ir]) < h(i = 1,j) < hmax (i.))
(D.3)

where we invoke the globally extremal height configurations, which due to the imposed
DWBC:s take the form

o i <N
) WIS N - pay

hmin(iaj):‘i 7j|’ and hmax(ivj): {2N_l_] lfl+]>N

with fi.x (7, ) being shown in figure 2(c). To make sure all height configurations are generated
with equal probability we trace the number of random numbers drawn to achieve the lower two
lines of equation (D.3), R, and weigh the corresponding branch in the configuration binary tree
by 2F.

In practice the main hurdle to overcome with this algorithm is to make My large enough
to guarantee that all the Nz ~2V//7N/2 (equation (13))) central heights are encountered
with sufficient multiplicity, otherwise accuracy is expected drop and the entropy is eventually
underestimated. For instance, with N =12, a single run with My;c =2- 10° was enough to
make |{ni}mc| =922 < 924 = Nj.

Appendix E. A less constrained FF 2D model

One can relax the fixed boundary height and impose the Fredkin moves | 11) <> | 1]1) and
[ J1)) <> | 144) in the vertical and horizontal direction by constructing a Hamiltonian made
out of projectors onto singlets of Fredkin-flipped states in both the vertical and horizontal
direction. Sticking to the bipartite rules of figures 2(a) and (b) we must distinguish between
even and odd plaquettes in doing so, resulting in the Hamiltonian

H= 3" [IEp)(Epl + [Wp) Wyl + INp) (Nl + 1,45, ] (E.1)
p€{o,e}
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Figure E1. (a) Maximal height configuration for the model defined in equation (E.1).
(b) The four plaquettes that are not flippable in the model of equation (E.1) but that are
flippable in the quantum dimer model.
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wa=|Z D-LT 1), ma=12Z D-1117), (E.3)

-5 -1 w5 -1, 4
=) =) -=) )

In figure E1 panel (a) we show the maximal height configuration of this model, and in panel
(b) we show the plaquettes that are not flippable in this model, to ensure a positive height. For
system sizes of N =4, 6 we confirmed by explicit enumeration'! that this model exhibits a
larger ground state bipartite EE than the model of section 2. In fact, this is the case for any
straight horizontal or vertical system partition. And even though this Hamiltonian poses as a
perhaps more direct 2D generalization of the 1D Fredkin chain than equation (1), it comes at
the price of losing the combinatorial counting technology developed for FPLs with DWBC.
And crucially, the simple bound of equation (15), or more precisely the growth of the number
of height configurations, makes it immediately clear that also this model is bounded by area
law bipartite EE scaling in the ground state.

’SO> =

ORCID iDs

Zhao Zhang ( https://orcid.org/0000-0002-9425-732X

1 The number of configurations in the ground state superposition is 690 (cf 42 for the model in section 2) and
14 058 234 (cf 7 436 for the model in section 2) for N =4 and N = 6, respectively.
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