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ABSTRACT

Topological order is a new quantum phase that is beyond Landau’s symmetry-breaking paradigm. Its
defining features include robust degenerate ground states, long-range entanglement and anyons. It was
known that R and F matrices, which characterize the fusion-braiding properties of anyons, can be used to
uniquely identify topological order. In this article, we explore an essential question: how can the R and F
matrices be experimentally measured? We show that the braidings, i.e. the R matrices, can be completely
determined by the half braidings of boundary excitations due to the boundary-bulk duality and the anyon
condensation. The F matrices can also be measured by comparing the quantum states involving the fusion

of three anyons in two different orders. Thus we provide a model-independent experimental protocol to

uniquely identify topological order. By using quantum simulations based on a toric code model with

boundaries encoded in three- and four-qubit systems and state-of-the-art technology, we obtain the first

experimental measurement of R and F matrices by means of an NMR quantum computer at room

temperature.
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INTRODUCTION

Topological orders are defined as gapped many-
body systems at zero temperature. They were first
discovered in the two-dimensional (2D) fractional
quantum Hall effect (FQHE), and are new types
of quantum phases beyond Landau’s symmetry-
breaking paradigm [1-17]. Not only do they chal-
lenge us to find a radically new understanding
of phases and phase transitions, but also provide
the physical foundation of fault-tolerant topological
quantum computers (TQCs) [18-22].

A fundamental question is how to character-
ize and measure a topological order precisely. The
key features of topological order in the FQHE
are fractional charges and fractional statistics. The
detection of them has been a major direction
of recent research [23]. The related experiments
in realistic systems are mainly about interferome-
try [24-28], anyon collider [29-31] and transport
experiments [32-36]. Because of the subtle effect of
Coulomb interaction and the participation of other

quasiparticles, these experiments are very challeng-
ing and their interpretation is complicated [23]. On
the other hand, in artificial quantum processors, the
approach of quantum simulation has been highly
developed to study these topological orders due to
their controllability and measurability [37]. Impor-
tant progress has been made toward achieving this
goal, such as the measurement of modular data, i.e. S
matrices and T matrices in a few-qubit system and
the measurement of topological entanglement en-
tropy [6,7,38-45]. This motivated a folklore belief
among experts that the modular data might be com-
plete [46]. A recent mathematical result [47], how-
ever, shows that it is incomplete, in the sense that
different topological orders might have the same
modular data. The complete characterization of
topological order should be R and F matrices.

A 2D topological order permits particle-like
topological excitations, called anyons. Two anyons
can be fused together to produce a new anyon, from
one or several possible outcomes. Consider the case
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Figure 1. Graphical representations of £ matrices, F matrices and a toric code lattice with gapped boundaries. (a) Braiding of two anyons and the
definition of A matrices. (b) Fusion of three anyons in different orders and the definition of £ matrices. (c) Toric code lattice with boundaries. Here o
and «; are two elementary plaquettes: the blue plaquette and the white plaquette; a3 and a4 are the string operators for generating an m anyon pair
and an e anyon pair, respectively; as shows the fusion of an mand an e to produce a new & anyon. The string operators of the two anyons are omitted
for clarity. The double braiding and braiding operations are visualized with ag and «7. Double braiding corresponds to moving an m () anyon around
an e (m) anyon along a full circle, which generates an overall phase of —1. Braiding corresponds to the exchange of an m anyon and an e anyon: if
they are in the bulk of the lattice model, the state after braiding differs from the initial state not only by a phase factor. «eg and «g are half braidings
at the white and blue boundaries. At a white boundary, an m anyon is equivalent to vacuum state 1. Dragging an m anyon from the vacuum state,
moving it around a boundary excitation e along a semicircle and pushing it back out results in a phase difference of —1. The case is similar for a blue
boundary.

that anyons a and b are fused to produce anyon ¢, we
compare two processes. One is to fuse two anyons
a and b to produce anyon c directly, and the other
process is to braid (move one anyon around an-
other along a semicircle, i.e. exchange) these two
anyons first, then fuse them to produce anyon c.
These two processes end up with the same anyon
¢ if a and b are within a distance smaller than the
correlation length of the ground state of the sys-
tem [48]. In this case, the inner structure of anyon
¢, i.e. the relative positions of anyons a and b can be
ignored; thus, their wave functions can only be dif-
ferent by a ‘phase factor’ (or a matrix). This is the
so-called R matrix, as illustrated in Fig. 1(a). Fur-
thermore, one can fuse three anyons a, b and ¢ in
two different ways: ((ab)c) and (a(bc)) with paren-
theses indicating the order of the fusion. The first
set of fused states spans the same Hilbert space as
the second one and the F matrix is the transforma-
tion matrix between these two bases, as illustrated in
Fig. 1(b). Mathematically, it was proven that R ma-
trices and F matrices uniquely determine the topo-
logical order [4,5]. In addition to this, R matrices,
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i.e. the braidings, are the fundamental operations in
TQCs [18-22].

Therefore, the essential question is whether R
matrices (braidings) and F matrices are physically
measurable. The difficulty in measuring R matrices is
two-fold. First, different gauge choices of R matrices
might define the same topological order, so they are
not unique and seem not to be measurable quanti-
ties. Second, by the definition of braiding, if we move
one anyon along a semicircle around another anyon
of a different kind in the bulk, the spatial configura-
tion of the final state is different from the initial one
such that there is no well-defined phase factor. In
continuous models, such a difference in spatial con-
figurations, i.e. the information of the relative posi-
tions of these two anyons, can be erased by putting
them in a region smaller than the correlation length.
However, this procedure does not work for lattice
models since in most lattice models of topological
order, two anyons cannot be put into one lattice
site.

In this paper, we address this fundamental ques-
tion and overcome these two difficulties using
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the theories of boundary-bulk duality [49,50] and
anyon condensation on the boundaries [22,51-53].
The theories show that the braidings among bulk
anyons are determined by the half braidings among
boundary excitations, and a half braiding is defined
and measured by moving one boundary excitation
around another one along a semicircle near the
boundary. We find different but gauge-equivalent R
matrices are associated with different boundaries of
the same 2D topological order. When the boundary
is gapped, certain bulk anyons are condensed on the
boundary, and thus can be created or annihilated on
the boundary by local operators.

By creating an anyon at the boundary, then half
braiding it with another anyon and then annihilat-
ing it on the boundary, we obtain a final state that
differs from the initial state only by a phase factor
(R matrix) and overcome the second difficulty. We
also show that the F matrices are measurable us-
ing a quantum circuit involving the fusion of three
anyons in different orders. As a consequence, we
provide a protocol for experimentally measuring the
R matrices and F matrices. We demonstrate our pro-
tocol through quantum simulation of a few-qubit
toric code model with gapped boundaries, where
we mainly focus on the R matrices measurement
and present a proof-of-principle measurement of the
trivial F matrices.

BOUNDARY-BULK DUALITY AND ANYON
CONDENSATIONS

In this section, we explain the boundary-bulk duality
and anyon condensations that enable the measure-
ment of R matrices in the context of the toric code
model. As the simplest example of the Z, topological
order, the toric code model is a useful platform for
demonstrating anyonic statistics [18]. It is defined
on a 2D square lattice consisting of two kinds of pla-
quettes with qubits on their edges, as illustrated in
Fig. 1(c).

The toric code Hamiltonian is a sum of all four
qubit interaction terms for the plaquettes (stabilizer
operators) in the lattice:

H=- > A,- Y B, (1

white plaquettes blue plaquettes

The operators A, = H;Eapof and B, = l_[jeapajz
are the plaquette operators acting on the four qubits
surrounding white plaquettes and blue plaquettes,
respectively, as shown by «; and «, in Fig. 1(c).
Here 0 and o are the x and z components of Pauli
matrices, respectively, acting on the j-th of the four
qubits for each plaquette. All of the above plaque-
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tte operators commute with each other, and their
eigenvalues are &-1. The ground state (or vacuum,
denoted by 1) of the system is the state in which
all of the plaquette operators are in +1 eigenstates.
Particle-like excitations (anyons) can be created in
pairs via string operators. As shown by a3 and o
in Fig. 1(c), the blue (red) string operator consists
of a sequence of o (07}) operators acting on all
qubits on the string. Since the string operator anti-
commutes with a pair of plaquette operators at its
end, when the blue (red) string operator is applied to
the ground state, the resulting excited state is in the
—1 eigenstate of the plaquette operators at the two
ends of the string, leading to the creation of a pair of
particle-like excitations called m anyons (e anyons)
on the blue (white) plaquettes at the two ends of the
string. The combination (fusion, denoted as ‘®’) of
anyons can produce new types of anyons. Because of
the fact that m and e anyons can be created in pairs,
they are their own antiparticles and the fusion of two
m (or e) anyons gives the vacuum, while the fusion of
aneand an m forms anewanyon denoted €, as shown
by a5 in Fig. 1(c). We obtain the fusion rules: e ® e
=m@®m=1lande®@m=c¢.

Anyons can be braided. As illustrated by o6 in
Fig. 1(c), when an m anyon is moved around an e
anyon along a full circle (double braiding), it pro-
duces an overall phase of —1 between the final and
initial states. This phase is encoded in the S matri-
ces. Another important type of data is the topolog-
ical spins of the anyons encoded in T matrices. The
S and T matrices were believed by many to char-
acterize a topological order uniquely, and, in the
case of the toric code, can be measured by exper-
iments [18,38,41]. However, as mentioned in the
Introduction, S and T matrices were proven to be
inadequate to uniquely identify a topological or-
der [47]. For unique identifications, we need R ma-
trices (braidings) and F matrices. The F matrices are
trivial (factors of 1) for the toric code model. The
R matrices are actually phase factors for the anyons
in the toric code model since the anyons here are
Abelian. Two typical R matrices for the toric code are
R, = —land R, = +1. The measurement of R
matrices is the main focus of this article.

The key to measuring the braidings (R matri-
ces) is to make use of the boundaries due to the
boundary-bulk duality [49,50] and the anyon con-
densation on the boundaries [22,51-53]. There are
two topologically distinct boundary types in the toric
code [22], namely the white boundaries (known
as the smooth boundaries in the original vertex-
plaquette version of the toric code model) and the
blue boundaries (rough boundaries in the original
version), as shown in Fig. 1(c). When an m anyon ap-
proaches a white boundary, it disappears completely
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Figure 2. lllustrations of half braidings, braidings and double braidings. (a) There are
four kinds of bulk anyons in the bulk and two kinds of boundary excitations. Anyons m
and 1 (eand &) belong to the same topological sector when they are moved to a white
boundary. (b) Definitions of the four kinds of bulk anyons using the half braidings on
the boundary. Anyons mand 1 are different when they are equipped with different half
braidings, as are ¢ and e. (c) Braidings in the bulk defined in terms of the half braidings
on the boundary. The black dotted line represents a virtual boundary in the bulk. By
moving bulk anyons to the boundary, and using the half braidings of the boundary exci-
tations, the braidings of the bulk anyons can be defined. There are two equivalent sets
of braidings (the set above the virtual boundary and the set below it) and the double
braidings can be obtained from either set of these braidings as well. (d) A complete list
of braidings for the four kinds of bulk anyons.

or condenses to the vacuum. This means that the m
anyon condenses on the boundary. Here, the mean-
ing of ‘anyon condensation’ is that a single anyon
can be annihilated or created by local operators on
the boundary. As we know, local operators do not
change the topological sectors of states. So, by lo-
cal operators, an anyon can only be created with its
antiparticle from the vacuum. The usual way to cre-
ate a single anyon is to perform a series of local op-
erators, i.e. string operators, to separate it from its
antiparticle and push the antiparticle to infinite. But
due to the existence of boundaries, the condensed
particles (i.e. m anyon) can be created by local op-
erators on the boundaries. However, an e anyon can-
not pass and becomes a boundary excitation. There-
fore, the boundary excitations on a white boundary
are {1, e}, and the bulk anyons map to the bound-
ary excitations as 1, m > 1, ¢, & > e (as illustrated
in Fig. 2(a)). At ablue boundary, e anyons disappear
and m anyons remain. Therefore, the blue boundary
excitations are {1, m} and the corresponding bulk-
to-boundary mapis 1, e = 1, m, & = m. Clearly, the
bulk-boundary map is not one to one.
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Table 1. The bulk anyons defined by boundary excitations
and the bulk anyon braidings defined by the half braidings of
boundary excitations.

The bulk anyons defined by the boundary excitations and half
braidings
1=(L1®l=15>1=1801,10c=¢c >e=c®1)
m=1101=1>1=101,1Qc¢=¢ 5> e=c®1)
e:(e,e®1=e—1>e=l®e,e®e:1—l>1=e®e)
8=(e,e®1:e—l>e:1®e,e®e=131:e®e)
The bulk anyon braidings defined by the half braidings of
boundary excitations

1Qx =« cf;x =xQ®1,forx=1,¢,m¢

xQ@x=1 Ex"—x:>1 l=xQux,forx=1,¢e,m
e@e=1"5 1=¢®¢

cem=1
e@m=¢ — e=mQe

Cme=—1
mPe=¢& —> e=e®@m
cee=1
e@e=m — m=£Qe
cee=—1
EQe = m=eQe¢

cme=—1
mPeE=e —> e=eQm
ce,m=1

EQ@Qm=e — e=mQE

It turns out that bulk anyons can be uniquely de-
termined by the excitations at either of these bound-
aries [49-51]. For example, consider a white bound-
ary where m anyons condense. On this boundary,
m and 1 belong to the same topological sector, i.e.
m = 1. However, when an m is moved into the bulk,
it is automatically endowed with additional struc-
tures called half braidings. These half braidings can
be measured by moving the m around a 1 or e along
asemicircle near the boundary, as illustrated by g in
Fig. 1(c). Itis easy to check that moving an m around
a 1 along a semicircle does not result in a phase dif-
ference, whereas moving an m around an e along a
semicircle results in a phase difference of —1. Con-
sequently, an m anyon in the bulk can be completely
characterized by the triple

m=(1,101=1->1=1®1,

1®e=e;;e=e®1), (2)

where the first component means that the m =1
on the boundary and the second and third compo-
nents are halfbraidings, which are physically measur-
able quantities. Therefore, bulk anyons are precisely
boundary excitations equipped with half braidings.
In this way, we can recover all four bulk anyons in the
forms of four triples, as illustrated in the top panel of

Table 1 and Fig. 2(b).
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Furthermore, the braidings among these four
anyons can be defined by the half braidings [S4]. For
example, we can obtain the braiding

m®e:1®e;;e®1:e®m. (3)

Here we have used the fact that m = 1 on the bound-
ary and the half braiding —1 on the boundary, as il-
lustrated in Fig. 2(c). Thus, we obtain R¢,, = —1.In
addition, since m condenses (m = 1) on the bound-
ary, R?, =1 (For Rj _, b is the moving anyon and
m is the anyon fixed on the boundary. Since m =1
on the boundary, R; = = 1 for an arbitrary b anyon.
For Ry ,, bis the fixed anyon on the boundary, and m
is the moving anyon. A nontrivial half braiding is ap-
plied in this case.) All of the braidings of bulk anyons
can be obtained in this way, as listed in the bottom
panel of Table 1 and illustrated in Fig. 2(d). Thus, we
can obtain the bulk braidings from the boundary half
braidings, which are measurable. Note that a one-to-
one mapping from the bulk braidings to boundary
half braidings can be obtained by considering a vir-
tual boundary in the bulk, as illustrated in Fig. 2(c).
Since the bulk braidings are defined by the boundary
half braidings, which are physically measurable, the
bulk braidings are also physically measurable. Simi-
larly, the same four anyons {1, ¢, m, ¢} in the bulk
can be reconstructed from excitations {1, m} on the
blue boundary by again defining four triples from a
new set of half braidings, which further defines in the
bulk a new set of braidings that is different but equiv-
alent to that constructed from the white boundary.
Therefore, a boundary condition of the model pro-
vides us with a physical way to fix the gauge freedoms
of the braidings. Double braidings are independent
of the gauge and can be obtained from either set of
boundary half braidings, as shown in Fig. 2(c), and
are explained in detail in the online supplementary
material.

In a formal mathematical language, excitations
{1, e} on the white boundary form a mathemati-
cal structure called a unitary fusion category (UFC),
denoted Rep(Z,), i.e. Rep(Z,) = {1, e}. Our con-
struction of the four triples in the top panel of
Table 1 precisely repeats in a completely physi-
cal way the mathematical definition of the Drin-
feld center of Rep(Z,). This Drinfeld center, de-
noted Z(Rep(Z,)), is precisely the unitary modu-
lar tensor category (UMTC) of the bulk anyons,
ie. Z(Rep(Z,)) = {1, e, m, €}. In other words, we
obtain a physical proof of the boundary-bulk du-
ality [49,50]. Similarly, the excitations on the blue
boundary form a UFC Vecz,. Its Drinfeld cen-
ter Z(Vecy,) again reproduces all the bulk anyons.
Mathematically, Z(Rep(Z,)) and Z(Vecy,) are
equivalent as UMTCs. This equivalence is the source

Page 5 of 10

of the gauge freedoms of the braidings. Note that
the toric code model is a special case of the quan-
tum double model (QDM) with group Z,. A gen-
eral measurement protocol of anyon braiding based
on the bulk-boundary duality for the QDM can be

found in the online supplementary material.

MEASUREMENT OF THE R MATRICES

We present our experimental demonstration of the
measurement of R and F matrices for the toric code
model in the following sections.

Anideal quantum simulation should be a simula-
tion of a quantum system of which the Hamiltonian
is the toric code model and we do the braidings and
measure the R and F matrices. It is challenging since
the four-body interaction is hard to achieve. Fortu-
nately, information about the topological order, i.e.
information about anyons, is completely contained
in the wave functions of the system [39]. The Hamil-
tonian is important when we consider fault-tolerated
TQCs using anyons since it is the gap induced by
the Hamiltonian that makes the information stored
in the topological states robust. To get the braiding-
fusion properties of anyons, wave functions of the
system are enough, which is the main focus of our
simulation.

We mainly focus on the measurement of R;,, =
—1 since it is the most important nontrivial phase
factor in the toric code. Our measurement is per-
formed in three- and four-qubit models with white
boundaries. The half braiding can be implemented
by creating a condensed m anyon at the boundary,
moving it around a boundary excitation e along a
semicircle and annihilating it on the boundary. To
measure the phase factor induced by the half braid-
ing, we make use of either a superposition of the
ground state and excited state or a scattering circuit.
The experimental setup and quantum circuits are il-
lustrated in Fig. 3(a)-(c), and the specific quantum
states involved can be seen in Fig. 3(e).

For the three-qubit case (Fig. 3(a)), the Hamil-
tonian and the ground state |¢,) of the triangular
cell are shown in Fig. 3(e). The excited state |¢.)
can be obtained via a 0, rotation of qubit 1 in the
ground state, leading to two e anyons on the lower
two vertices. In this system, two different braiding
processes can be performed by moving m along ei-
ther path 1 or path 2. Braiding along path 1 results
in overall phase factors of +1 for the ground state
and —1 for the excited state since in the latter case
a half braiding of m around e is performed. In con-
trast, path 2 is trivial and it does not generate any
phase factor difference. To measure the phase factor
difference, we prepare an initial state that is a super-
position of the ground state and excited state, |@g)
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Figure 3. lllustrations of the experimental setups and corresponding quantum states, the experimental platforms and the results of quantum state
tomography. (a) A three-qubit toric code model and the half braidings of m along path 1 and path 2. (b) A four-qubit toric code model and the half
braidings of m along path 1 and path 2. (c) Quantum circuit for measuring m-e half braidings on a white boundary. The initial state |@q) + |@c) is
prepared at first, where |¢,) is the ground state and |¢,) represents the excited state with two boundary e excitations. Moving the m anyon through
path 1 and path 2 by applying a series of o, operators to the qubits involved in these paths leads to states |¢4) — l@e) and |@q) + |@e), respectively.
These two states can be differentiated via quantum state tomography. (d) Quantum circuit for the general phase measurement. The state before half
braiding is prepared as the initial state |¢;), and a half braiding is performed as a controlled operation. The phase factor induced by half braiding
can be obtained from the two expectation values (o,) and (o) on the ancilla qubit. (e) The Hamiltonians and quantum states in the experimental
processes for the three- and four-qubits systems. (f) Our three-, four-qubit quantum simulator is a sample of '3C-labeled trans-crotonic acid molecules.
We make four "3C atoms from the sample as four qubits. The table on the right lists the parameters of the chemical shifts (diagonal, hertz ), J-coupling
strengths (off-diagonal, hertz ) and relaxation time scales T, (seconds). (g(i)) State tomography results for the initial and final states obtained when
moving m along different paths in the three-qubit toric code model. The transparent columns represent the theoretical values, and the colored columns
represent the experimental results. Regarding the tick labels of the horizontal axes in each three-dimensional bar graph, 1 represents state |0000), 2
represents state |0001) and so on. Compared with the theoretical results, the two final states in the three-qubit experiments using path 1 and path 2
are obtained with fidelities 96.37% and 96.67%, respectively. (gii)) State tomography results for the final states obtained by moving m along different
paths in the four-qubit toric code model. Compared with the theoretical results, the two final states in the four-qubit experiments using path 1 and path
2 are obtained with fidelities 95.23% and 95.21%, respectively.

+ |@e). Then, half braidings along path 1 and path
2 give rise to the final states [pg) — [@.) and |@g) +
|@e), respectively, which can be identified by quan-
tum state tomography. The four-qubit case is simi-
lar, as shown in Fig. 3(b) and (e). The corresponding
quantum circuits for this experiment are shown in
Fig. 3(c).

In Fig. 3(g), we present the state tomography re-
sults obtained after running these quantum circuits
on our NMR qubit platform. After moving m along
path 2, we obtain a final state that is the same as the
initial state. In contrast, after moving m along path
1, we obtain a final state that is completely different
from the initial state, which is due to the phase fac-
tor of —1 induced by the half braiding of m around
e. The average state fidelities after path 1 and path 2
are 96.37% and 96.67% for the three-qubit system
and 95.23% and 95.21% for the four-qubit system.
Thus we obtain the braiding in the form of R matri-
ces, RY . = —1.In principle, all other braidings can

be similarly obtained.
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In general, a half braiding (denoted H ) leads
to a phase factor for Abelian anyons, which can be
measured by means of a scattering circuit with one
additional ancilla control qubit [41,55], as shown
in Fig. 3(d). The state before half braiding is pre-
pared as the initial state |¢;), and the half braiding
is performed as a controlled operation. In our exper-
iment, the state before half braiding is prepared as
the initial state |¢;) with fidelity 95.32%. The global
phase generated by half braiding is obtained from the
two expectation values (o) and (o) on the ancilla
qubit through the relations (0,) = Re({¢; | H i)
and (0,) = Im({g; |Hf |@;}). This method can also
be applied to the case of the non-Abelian anyon, in
which the measured values are the matrix elements
of the R matrices. This circuit is tested for m-e half
braiding on a three-qubit plaquette on NMR qubits
asaproof of principle. Here RY,, = —1 theoretically
corresponds to an exchange statistics with a phase of
77, and we obtain values of (1.027 & 0.001)7 in the
experiment.
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Figure 4. Two fusion diagrams and measurement of the F
matrix. (a) Two different fusion processes on a three-qubit
plaquette represented by two paths. (b) The circle nota-
tion and fusion tree diagrams for path 1 and path 2 in (a).
(c) The scattering circuit used to measure the overlap of
the final states of the two paths, where A; = oo and
A; = o]0} 0. The value of the overlap yields F

eem-*

MEASUREMENT OF THE F MATRICES

The F matrices can be measured by means of a simi-
lar scattering circuit [41,55] shown in Fig. 4(c). We
demonstrate the measurement of a typical matrix
El . asfollows.

First, the ground state without any anyons is pre-
pared as the initial state |¢;) before fusion, then two
controlled operations A , are applied, which repre-
sent two fusion processes using different fusion or-
ders to fuse two e anyons and an m into an m anyon,
asillustrated in Fig. 4(b). The global phase generated
by the different fusion orders, F |
the two expectation values (0;) and {o0,) of the an-
cilla qubit.

We  experimentally measure (o;) and
(0]) and obtain (0f) =0.712+0.006 and
(07) = 0.177 £ 0.004. We normalize them such
that their squares sum to 1 and obtain the angle § =
arctan((03 )/ (o)) = (0.077 £ 0.002)7, which is
close to its theoretical value 0. Thus, we verify that

Fl" = lin this experiment.

is obtained from

DISCUSSION

In summary, we experimentally measure anyon
braidings (R matrices) through the boundary-bulk
duality—bulk anyons are those boundary excita-
tions equipped with half braidings, and bulk anyon
braidings can be obtained from boundary excitation
half braidings. Two difficulties that arise in the mea-
surement of R matrices, as noted in the Introduction,
can be overcome by means of the boundary-bulk
duality and the anyon condensation on the bound-
aries: (1) if we instead consider the blue boundary,
where e anyons condense, we obtain another set of
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R matrices that is gauge equivalent to what is mea-
sured here, and (2) if an anyon is created on the
boundary, half braided with another anyon, and then
annihilated on the boundary, the final state and ini-
tial state differ only by a phase factor. These two dif-
ficulties seem to be technical problems, but they are
actually related to the following essential question:
what are the fundamental quantities that character-
ize topological order? This question is similar to the
following one: which is the fundamental quantity
for an electromagnetic field, the magnetic/electric
field or the vector/scaler potential? It would seem
that, since the vector potential is a gauge-dependent
quantity, which means that it is not unique, it should
not be measurable. However, the Aharonov-Bohm
effect shows that, when a particle passes through a
region where the magnetic field is zero but the vec-
tor potential is nonzero, the phase of the wave func-
tion is shifted [S6]. This proves that the vector po-
tential, rather than the magnetic field, is the funda-
mental physical quantity. The relation between the
double braiding and braiding of anyons is similar
to that between the magnetic field and the vector
potential. For a double braiding of two anyons, the
spatial configuration of the final state is the same as
that of the initial state, so the effect of the anyonic
statistics can be measured by comparing the phase
(it is a unitary matrix for non-Abelian anyons) be-
fore and after the double braiding. But for a braid-
ing, i.e. an exchange in positions of two anyons, the
spatial configuration of the final state is different
from that of the initial state if these two anyons are
of different kinds, which makes it unmeasurable in
bulk for the lattice model (for a continuous model,
such a spatial configuration difference can be ig-
nored when two anyons are within a region smaller
than the correlation length of the ground state ). Fur-
thermore, the R matrices (braidings) are not unique
for a given topological order. Therefore, it would
seem that double braidings should be the funda-
mental quantities for topological orders. However,
our experiments have demonstrated the important
fact that braidings, rather than double braidings, are
the fundamental physical quantities for topological
orders.

The F matrices can also be measured using a scat-
tering quantum circuit involving the fusion of three
anyons in different orders. The S and T matrices can
be calculated from the R the F matrices [4,5]. Thus,
we provide an experimental protocol for uniquely
identifying topological orders. Although our results
are obtained on only a few qubits, the conclusion is
applicable to large systems since the toric code is at
a fixed point and the conclusion is independent of
the system size [57]. Furthermore, our boundary-
bulk duality between bulk anyons and boundary
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excitations and the correspondence between bulk
anyon braidings and boundary excitation half braid-
ings also holds for other topological orders, even
for non-Abelian anyons such as Fibonacci anyons,
semions and the QDM of the S; group [50]. This
protocol is model independent. The idea of measur-
ing the half braidings should also be useful to the ex-
perimental study of gapless boundaries [$8,59]. For
a 2D topological order with chiral gapless bound-
aries, one can apply the folding trick to embed the
measurability problem to that of a double-layered
system with only gapped boundaries.

Given the special role of anyon braidings and
topological orders in strongly correlated systems and
TQCs, our work has potential applications not only
in uniquely identifying these exotic phases of matter
but also in describing the interplay of bulk physics
and boundary physics in topological systems. The re-
cently proposed surface code, using the toric code
with boundary and geometric defects, provides a
scheme for practical large-scale quantum computa-
tion [60]. The existence of boundaries and defects
provides myriad possibilities for the manipulation
of topological quantum states [61]. A system with
boundaries where anyons can condense is proposed
to construct universal TQCs [62]. It will be interest-
ing to consider a TQC protocol in which new oper-
ations, half braidings of boundary excitations, are in-
troduced. Such a system can perhaps be used to con-
struct universal TQCs with simpler quantum gates.

MATERIALS AND METHODS

Our experiments are accomplished by means of a
four-qubit NMR quantum processor. The systemisa
sample of '*C-labeled trans-crotonic acid molecules
dissolved in d6-acetone. The sample consists of four
13C atoms, as shown in Fig. 3(f), and all exper-
iments are conducted on a Bruker Ascend NMR
600 MHz spectrometer at room temperature. In the
second and third experiments, we choose Q3 in the
molecule (Fig. 3(a)) as the control qubit. Qubits Q1,
Q2 and Q4 in the molecule represent Q1, Q2 and Q3
in the circuit, respectively.

In the first experiment, our goal is to show an ex-
perimental proof-of-principle demonstration of the
half braidings on a gapped boundary and show the
effect of the nontrivial phase factor induced by it.
We create a condensed m anyon at the boundary
and move it around a boundary excitation e along a
semicircle. This is the most important nontrivial half
braiding in the toric code. The experimental setup
and quantum circuits are illustrated in Fig. 3(a)-
(c), and the specific quantum states involved can
be seen in Fig. 3(e). The experiment can be divided
into three steps: (1) prepare the initial state, i.e. a
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superposition of the ground state and the excited
state; (2) perform half braiding and a trivial braiding
by a series of single-qubit rotation operators, which
corresponds to moving anyons through path 1 and
path 2 in Fig. 3(a) and (b), respectively; and (3)
measure the final state and use quantum state to-
mography to obtain the density matrix of the final
state. For path 1, we obtain a final state that is differ-
ent from the initial state due to the nontrivial phase
factor induced by m-e half braiding. For path 2, we
obtain a final state that is the same as the initial one.

In the second experiment, to directly measure
the phase factor induced by half braiding, an an-
cilla qubit is introduced. The state before half braid-
ing is prepared as the initial state |¢;) and the half
braiding is performed as a controlled operation, as
shown in Fig. 3(d). Finally, the two expectation val-
ues (0;) and (0,) on the ancilla qubit are mea-
sured to obtain the real and imaginary parts of the
phase factor generated by half braiding from (o) =
Re((¢;|Hfl:)) and {o,) = Im({g;|Hy|g:)). The
measurement of m-e half braiding on a three-qubit
plaquette is performed using this circuit.

The third experiment is to measure F-matrix
F.% .- The ground state |/,) of the three-qubit toric
code model is prepared with fidelity 92.96%. Then,
the operators A| = (0707)! and A, = 05007
(corresponding to path 1 and path 2 in Fig. 4(a)),
which represent two different orders of fusion of
three anyons, are applied to the three-qubit toric
code under the control of qubit Q4. We measure
(0f) and (0]} of the control qubit to obtain the
overlap of the two final states from two paths;
thus, obtain the angle = arctan({0})/(07)) and
F = exp(if).

Detailed theory and detailed descriptions of the
experimental processes and data are provided in the
online supplementary material.

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.
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