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Abstract We calculate the light-quark condensate, the
strange-quark condensate, the pion condensate, and the axial
condensate in three-flavor chiral perturbation theory (χPT)
in the presence of an isospin chemical potential at next-
to-leading order at zero temperature. It is shown that the
three-flavor χPT effective potential and condensates can
be mapped onto two-flavor χPT ones by integrating out
mesons with strange-quark content (kaons and eta), with
renormalized couplings. We compare the results for the light-
quark and pion condensates at finite pseudoscalar source with
(2 + 1)-flavor lattice QCD, and we also compare the axial
condensate at zero pseudoscalar and axial sources with lat-
tice QCD data. We find that the light-quark, pion, and axial
condensates are in very good agreement with lattice data.
There is an overall improvement by including NLO effects.

1 Introduction

Quantum chromodynamics (QCD) has a rich phase struc-
ture, which can be established using its symmetries and sym-
metry breaking patterns [1–3]. The QCD Lagrangian pos-
sesses an SU (Nc) gauge symmetry with Nc = 3, which
preserves color charge when quarks and gluons interact. Fur-
thermore, the QCD Lagrangian is symmetric with respect to
independent chiral rotations of left-and-right handed quarks
and anti-quarks in the chiral limit. However, the QCD vac-
uum breaks this symmetry by pairing quarks and antiquarks
giving rise to a non-zero, spatially homogeneous, chiral con-
densate, 〈ψ̄ψ〉0, with the following spontaneous symmetry
breaking pattern [4]

SU (3)L × SU (3)R ×U (1)B → SU (3)V ×U (1)B . (1)
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Here SU (3)L(R) is the symmetry group associated with chi-
ral transformations of left(right)-handed quarks in the chiral
limit and SU (3)V is the symmetry group associated with vec-
tor transformations of the quarks. 1 The pairing is analogous
to Cooper pairs in the Bardeen-Cooper-Schrieffer (BCS)
theory of superconductivity [5] as was originally pointed
out by Nambu [4]. U (1)B is the symmetry of the QCD
Lagrangian with respect to global phase transformations of
quarks and anti-quarks, which leads to the conservation of
baryon charge. The order parameter of spontaneous chiral
symmetry breaking is the chiral condensate, 〈ψ̄ψ〉0, which
is non-zero in the QCD vacuum and leads to the meson
octet of (pseudo-) Nambu-Goldstone bosons for (massive)
massless quarks. Since quarks are massive, with the strange
quark mass being much larger than the up and down quark
masses, the vector symmetry group SU (3)V is broken down
to SU (2)I ×U (1)Y in the isospin limit withms � mu = md .

The presence of isospin and strange chemical potentials
in the vacuum phase explicitly breaks the symmetry down as
follows,

SU (2)I ×U (1)Y ×U (1)B (2)
μI �=0 ↓ μs �=0

,

U (1)I3 ×U (1)Y ×U (1)B, (3)

where Y represents hypercharge, I represents isospin, and I3
the third component of isospin. The electromagnetic gauge
group U (1)Q is a subgroup of both SU (3)L × SU (3)R and
SU (2)I ×U (1)Y ×U (1)B as would be expected from the fact
that quarks carry electromagnetic charge in addition to color
charge. In this work, we will maintain a focus on the proper-
ties of QCD at low energies for finite isospin chemical poten-
tial [8]. For isospin chemical potentials larger than the pion
mass (at zero temperature), QCD is known to exhibit pion

1 For a thorough review, see for instance [6] and [7].
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condensation. This is signaled by the formation of a pseu-
doscalar condensate 〈ψ̄γ5

λ1,2
2 ψ〉 �= 0, where λi denotes the

i’th Gell-Mann matrix. This condensate becomes inhomo-
geneous in the presence of an external magnetic field due to
the spontaneous symmetry breaking of the U (1) gauge sym-
metry [9,10]. Furthermore, the condensate increases mono-
tonically as has been observed in lattice QCD and NLO two-
flavor calculations [11] for values of the isospin chemical
potential up to approximately 2mπ . This behavior is analo-
gous to that observed in the context of nuclear matter [12] in
that there is a simultaneous weakening of the chiral conden-
sate with increasing nuclear density or in our case isospin
density.

There is a further condensate: the axial condensate, which
is non-zero in the context of finite isospin chemical poten-
tial. It has been studied in lattice QCD with the added benefit
that unlike the pion and chiral condensates, the zero-source
limit results have been extracted [13]. We have previously
compared finite source results for the pion and chiral con-
densates with two-flavor QCD [11] with results in very good
agreement.

The axial condensate condenses simultaneously with the
pion condensate but also exhibits the feature that it does
not increase monotonically with increasing isospin chemi-
cal potential even though the pion condensate does. Tree-
level χPT calculations show that the condensate increase
steadily at the critical isospin chemical potential and peaks
at 31/4mπ [14] and for larger isospin chemical potentials
decreases monotonically. The condensation of the axial con-
densate is somewhat surprising in that it occurs even in the
absence of an explicit axial chemical potential as has also
been shown in the NJL model [15]. A somewhat heuristic
argument for the condensation was first put forth in Ref. [14]
using the soft-pion theorem valid for any local operator Ô ,

lim
p→0

〈πa(p)s1|Ô|s2〉 = i

f̃π
〈s1|[Ô, Q̂5

a]|s2〉, (4)

which relates a matrix element involving two arbitrary states
|s1〉 and |s2〉 with one that involves a new state |πa(p)s1〉
containing an extra pion compared to |s1〉. Q̂5

a is the axial
charge operator, which can be defined in terms of the axial
charge density operator ρ̂0

a (y),

ρ̂0
a (y) = ψ̄(y)γ 0γ 5 λa

2 ψ(y), (5)

Q̂5
a =

∫
d3y ρ̂0

a (y) . (6)

Finally, f̃π is the relevant pion decay constant, which depends
on the choice of states |si 〉, which we will choose to be the
pion condensed vacuum that forms in the presence of an
isospin chemical potential. The rotation from the normal vac-
uum, |0〉, to a pion-condensed vacuum, |α〉, occurs above a
critical chemical potential equal to the pion mass, with the

parameterα depending on the isospin chemical potential. The
chiral condensate is non-vanishing in both of the vacua. Addi-
tionally, in the pion-condensed vacuum |α〉 both the isospin
density and the pion condensate are non-vanishing, i.e.

〈α|n̂ I (x)|α〉 �= 0, (7)

〈α|π̂a(x)|α〉 �= 0, (8)

where n̂ I is the isospin density operator and the pion con-
densate (operator) are defined as

n̂ I (x) = ψ̄(x)γ 0 λ3
2 ψ(x), (9)

π̂a(x) = ψ̄(x)γ 5 λa
2 ψ(x) . (10)

Using standard equal-time anti-commutation relations for the
quark fields, it is straightforward to show that[
n̂ I (x), Q̂5±

]
= ±ρ̂0±(x), (11)

where Q̂5± = Q̂5
1 ± i Q̂5

2 is the charge associated with ρ̂0± =
ρ̂0

1 (x)±i ρ̂0
2 (x) and ρ̂0± are the axial current density operators,

ūγ 0γ 5d and d̄γ 0γ 5u respectively. Choosing |s1〉 = |s2〉 =
|α〉 and Ô = n̂ I in the soft-pion theorem started in Eq. (4)
and noting that in the thermodynamic limit, adding a single
zero-momentum pion to the pion condensed vacuum does
not alter it, i.e. |πa(0)α〉 = |α〉, we get using Eq. (11) that
the axial density of the pion condensed phase is non-zero,
i.e. 〈α|ρ̂0±|α〉 �= 0 [14].

The paper is organized as follows: In Sect. 2, we dis-
cuss the χPT Lagrangian in the presence of a pseudo-scalar
source and an axial vector potential and point out that the
pion condensate and the axial condensate condenses orthog-
onally in the ground state at tree level. In Sect. 3, we con-
struct the one-loop effective potential in the presence of both
a pseudo-scalar and an axial vector potential using the ingre-
dients of the previous section. Using the effective potential,
we calculate the chiral condensate, the strange-quark con-
densate, the pion condensate, and the axial condensate in
Sect. 4. We also map our three-flavor χPT results to two-
flavor χPT with appropriate identifications of the low energy
constants (LECs). Finally, in Sect. 5 we compare the conden-
sates, in particular the axial condensate at zero pionic source
and the pion and chiral condensates at finite pionic source
with the available lattice data. We list a few useful formulas
in Appendix A.

2 χPT Lagrangian

χPT is a low-energy effective theory for QCD based on its
symmetries and degrees of freedom [16–19]. For two-flavor
QCD, the degrees of freedom are the pion triplet, whereas for
three-flavor QCD, they are the octet of pions, kaons, and the
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eta. The leading-order term in χPT is given by the following
Lagrangian

L2 = f 2

4
Tr

[
∇μΣ†∇μΣ

]
+ f 2

4
Tr

[
χ†Σ + Σ†χ

]
, (12)

where χ is

χ = 2B0M + 2i B0 j1λ1 + 2i B0 j2λ2 (13)

with M = diag(mu,md ,ms) being the quark mass matrix, j1
and j2 are pseudo-scalar (pionic) sources and λi are the Gell-
Mann matrices. We will work in the isospin limit, i.e. mu =
md in this paper. The Gell-Mann matrices are normalized as

1
2 Tr(λiλ j ) = δi j . (14)

Finally, the covariant derivatives contain both a vector source
vμ and an axial source aμ

∇μΣ ≡ ∂μΣ − i
[
vμ,Σ

] − i{aμ,Σ} , (15)

∇μΣ† ≡ ∂μΣ† − i[vμ,Σ†] + i{aμ,Σ†}, (16)

with

vμ = va0
λa
2 δ 0

μ , v3
0 = μI

aμ = aa0
λa
2 δ 0

μ ,
(17)

where μI is the isospin chemical potential and aa0 is the
zeroth-component of the axial source that couples to λa .

In two-flavor QCD, the presence of an isospin chemical
potential rotates the vacuum in the τ1 and τ2 directions [8],

Σα = eiα(φ̂1τ1+φ̂2τ2), (18)

with φ̂1 and φ̂2 being real parameters satisfying φ̂2
1 + φ̂2

2 = 1
such that the ground state is unitary and properly normalized,
i.e. Σ†

αΣα = 1. In three-flavor QCD, the vacuum is rotated
in the same way [20,21] but with τ1 and τ2 replaced by λ1

and λ2,

Σα = eiα(φ̂1λ1+φ̂2λ2) . (19)

The pions then condense in the
(
φ̂1 φ̂2

)T
-direction in isospin

space. As suggested by the heuristic argument in the previ-
ous section, the pion condensate induces an axial condensate

that points in the orthogonal direction,
(−φ̂2 φ̂1

)T
. This fea-

ture has also been observed in the context of the NJL model
[15] and previously in χPT near the critical isospin chemical
potential [22] at next-to-leading order.

As such we proceed, without any loss of generality, by
choosing φ̂1 = 0, φ̂2 = 1 and j1 = 0, j2 = j in the
following discussion. The static Lagrangian, which is equal
to the tree-level effective potential modulo a minus sign, in
three-flavor QCD is

Lstatic
2 = f 2

2

[
4B0(m cos α + j sin α) + 2B0ms

+(a1
0 cos α + μI sin α)2

]
. (20)

Since the pion and axial condensates are derivatives with
respect to the sources ji and aa0 , respectively, we can imme-
diately deduce from the tree-level effective potential that
the tree-level pion and axial condensates are orthogonal as
expected. However, this is not sufficient to guarantee that
orthogonality holds at next-to-leading order. In order to ver-
ify this, one needs to construct the full dispersion relation
(including the most general pionic and axial sources) that
determines that NLO effective potential. While the full dis-
persion relation is too cumbersome to present here, we have
explicitly verified that this is indeed the case. With this under-
standing, we proceed by writing down the rotated vacuum
in the pion condensed phase assuming the pion condensate
points in the λ2 direction and the axial condensate points
in the λ1 direction. Using Eq. (19), we get for the rotated
vacuum

Σα = 1 + 2 cos α

3
1 + iλ2 sin α + cos α − 1√

3
λ8, (21)

which can be conveniently cast in a form that makes the
axial rotation of the normal vacuum transparent [23] Σα =
AαΣ0Aα ,

Aα = 1 + 2 cos α
2

3
1 + iλ2 sin

α

2
+ cos α

2 − 1√
3

λ8 (22)

and Σ0 = 1. As pointed out in Ref. [23] and discussed in
some detail in Ref. [24], parameterizing fluctuations around
the rotated vacuum requires an equivalent rotation of the gen-
erators, without which the theory is not renormalizable and
the kinetic terms are non-canonical. The upshot is that the Σ

fields in the χPT Lagrangian should be written as

Σ = LαΣαR
†
α, (23)

where

Lα = AαU A†
α (24)

Rα = A†
αU

†Aα, (25)

which guarantees that the fluctuations around the rotated
ground state are parameterized correctly. U is defined as

U = ei
φi λi
2 f , (26)

where φi are the fluctuations of the pion, kaon and eta fields
and λi are the unrotated generators. It follows from the
parametrization above that

Σ = Aα(UΣ0U )Aα = AαU
2Aα, (27)

where Σ = U 2 when α = 0.
Expanding the leading order χPT Lagrangian using Σ we

get the following structure

L2 = Lstatic
2 + Llinear

2 + Lquadratic
2 + · · · , (28)
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where Lstatic
2 is the contribution with no derivatives or fluctu-

ations, Llinear
2 is linear in the fields and Lquadratic

2 is quadratic.
Explicitly,

Lstatic
2 = f 2B0(2m j + ms)

+1

2
f 2(μI sin α + a1

0 cos α)2, (29)

Llinear
2 = −2 f B0m̄ jφ2

+ f (μI sin α + a1
0 cos α)μI cos αφ2

− f (μI sin α + a1
0 cos α)a1

0 sin αφ2

− f (μI sin α + a1
0 cos α)∂0φ1, (30)

Lquadratic
2 = 1

2
∂μφa∂

μφa − 1

2
m2

aφ
2
a

+1

2
m12(φ1∂0φ2 − φ2∂0φ1)

+1

2
m45 (φ4∂0φ5 − φ5∂0φ4)

+1

2
m67 (φ7∂0φ6 − φ6∂0φ7) , (31)

where we first define j-dependent masses in order to make
the notation leaner

m j = m cos α + j sin α, (32)

m̄ j = m sin α − j cos α . (33)

The masses in the Lagrangian in terms of m j and m̄ j in the
pion sector are

m2
1 = 2B0m j−(μI cos α − a1

0 sin α)2, (34)

m2
2 = 2B0m j − (μI cos α − a1

0 sin α)2

+ (μI sin α + a1
0 cos α)2, (35)

m12 = 2(μI cos α − a1
0 sin α), (36)

m2
3 = 2B0m j + (μI sin α + a1

0 cos α)2, (37)

in the charged kaon sector are

m2
4 = B0ms + B0m j + 1

4
(μI sin α + a1

0 cos α)2

−1

4
(μI cos α − a1

0 sin α)2, (38)

m2
5 = m2

4, (39)

m45 = (μI cos α − a1
0 sin α) . (40)

in the neutral kaon sector are

m2
6 = m2

4, (41)

m2
7 = m2

4, (42)

m67 = m45, (43)

and finally the eta mass is

m2
8 = 2B0

3
(2ms + m j ) . (44)

Since in the following sections we will need these masses in
the limit of a zero axial vector source, we adopt the following
equals sign convention whereby any equation that follows
a=0= is assumed to be in this limit. For instance,

m2
1
a=0= 2B0m j − μ2

I cos2 α . (45)

Next, using the quadratic Lagrangian, we find the inverse
propagator:

D−1 =

⎛
⎜⎜⎜⎜⎝

D−1
12 0 0 0 0
0 P2 − m2

3 0 0 0
0 0 D−1

45 0 0
0 0 0 D−1

67 0
0 0 0 0 P2 − m2

8

⎞
⎟⎟⎟⎟⎠ , (46)

where P = (p0, p) is the four-momentum in Minkowski
space, such that P2 = p2

0 − p2. The inverse propagator for
the charged pions is D−12, the charged kaons is D−1

45 and the
neutral kaons is D−1

67

D−1
12 =

(
P2 − m2

1 i p0m12

−i p0m12 P2 − m2
2

)
, (47)

D−1
45 =

(
P2 − m2

4 i p0m45

−i p0m45 P2 − m2
5

)
, (48)

D−1
67 =

(
P2 − m2

6 i p0m67

−i p0m67 P2 − m2
7

)
, (49)

with the masses defined above. In order to renormalize the
one-loop effective potential we also need the tree-level con-
tribution from the O(p4) χPT Lagrangian [18], where the
relevant terms are

L4 = L1

(
Tr

[
∇μΣ†∇μΣ

])2

+L2Tr
[
∇μΣ†∇νΣ

]
Tr

[
∇μΣ†∇νΣ

]

+L3Tr
[
(∇μΣ†∇μΣ)(∇νΣ

†∇νΣ)
]

+L4Tr
[
∇μΣ†∇μΣ

]
Tr

[
χ†Σ + χΣ†

]

+L5Tr
[(

∇μΣ†∇μΣ
) (

χ†Σ + χΣ†
)]

+L6

(
Tr

[
χ†Σ + χΣ†

])2

+L8Tr
[
χ†Σχ†Σ + χΣ†χΣ†

]
+ H2Tr[χχ†], (50)

where the low energy constants Li and Hi are defined as [18]

Li = Lr
i − ΓiΛ

−2ε

2(4π)2

[
1

ε
+ 1

]
, (51)

Hi = Lr
i − ΔiΛ

−2ε

2(4π)2

[
1

ε
+ 1

]
. (52)
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The constants Γi and Δi assume the following values [18]

Γ1 = 3

32
, Γ2 = 3

16
, Γ3 = 0, Γ4 = 1

8
, (53)

Γ5 = 3

8
, Γ6 = 11

144
, Γ8 = 5

48
, Δ2 = 5

24
. (54)

Lr
i and Hr

i are scale-dependent and run in order to ensure
the scale independence of physical quantities observables in
χPT, as follows

Λ
dLr

i

dΛ
= − Γi

(4π)2 , Λ
dHr

i

dΛ
= − Δi

(4π)2 . (55)

We only need the static contribution fromL4, Eq. (50), which
is given below,

Lstatic
4 = (4L1 + 4L2 + 2L3)(μI sin α + a1

0 cos α)4

+8L4B0(2m j + ms)(μI sin α + a1
0 cos α)2

+8L5B0m j (μI sin α + a1
0 cos α)2

+16L6B
2
0 (2m j + ms)

2

+8L8B
2
0

[
2m2

j − 2m̄2
j + m2

s

]

+4H2B
2
0

[
2m2

j + 2m̄2
j + m2

s

]
. (56)

3 Effective potential

In this section, we calculate the next-to-leading order effec-
tive potential using the Lagrangian from the previous section.
We begin with the tree-level effective potential V0, which is
simply given by V0 = −Lstatic

2 ,

V0 = − f 2B0(2m j + ms) − 1

2
f 2(μI sin α + a1

0 cos α)2 .(57)

Similarly, the next-to-leading order static contribution V static
1

is given by V static
1 = −Lstatic

4 ,

V static
1 = −(4L1 + 4L2 + 2L3)(μI sin α + a1

0 cos α)4

−8L4B0(2m j + ms)(μI sin α + a1
0 cos α)2

−8L5B0m j (μI sin α + a1
0 cos α)2

−16L6B
2
0 (2m j + ms)

2

−8L8B
2
0

[
2m2

j − 2m̄2
j + m2

s

]

−4H2B
2
0

[
2m2

j + 2m̄2
j + m2

s

]
. (58)

The one-loop contributions from the neutral pion and the eta
meson are of the form

V1 = 1

2

∫
P

log
[
P2 + m2

]
. (59)

The integral can be evaluated easily using dimensional regu-
larization and the result is stated in “Appendix A”, Eq. (A.3).

The one-loop contribution from the charged pions on the
other hand is of the form

V1,π+ + V1,π− = 1

2

∫
P

log[(p2
0 + E2

π+)(p2
0 + E2

π−)]

= 1

2

∫
p

[
Eπ+ + Eπ−

]
, (60)

where the energies Eπ± are given by

E2
π± = p2 + 1

2

(
m2

1 + m2
2 + m2

12

)

±1

2

√
4p2m2

12 + (m2
1 + m2

2 + m2
12)

2 − 4m2
1m

2
2 .

(61)

In order to isolate the divergences, we expand Eπ± in powers
of p around infinity up to terms that contain divergences

Eπ+ + Eπ− = 2p + 2(m2
1 + m2

2) + m2
12

4p

−8(m4
1 + m4

2) + 4(m2
1 + m2

2)m2
12 + m4

12
64p3 + ...

(62)

Noting that the divergences in Eq. (62) are the same as those

of E1 + E2, where E1,2 =
√
p2 + m2

1,2, 4m2
12 = 2B0m j ,

m̃2
2 = m2

3, we can isolate the divergences by writing

V div
1,π+ + V div

1,π− = 1

2

∫
p

[E1 + E2] , (63)

V fin
1,π+ + V fin

1,π− = 1

2

∫
p

[
Eπ+ + Eπ− − E1 − E2

]
, (64)

where the divergent and finite parts of the charged pion inte-
grals satisfy

V1,π+ + V1,π− = V div
1,π+ + V div

1,π− + V fin
1,π+ + V fin

1,π− . (65)

The one-loop contribution to the effective potential from the
charged kaons is

V1,K+ + V1,K− = 1

2

∫
P

log

[(
P2 + m2

4

)2 + p2
0m

2
45

]
, (66)

where we have used that m4 = m5. The integrand can be
factorized and the integral rewritten as

V1,K+ + V1,K− = 1

2

∫
P

log
{[

(p0 + 2im45)
2 + p2 + m̃2

4

]

×
[
(p0 − 2im45)

2 + p2 + m̃2
4

]}
, (67)

with m̃2
4 = m2

4+ 1
4m

2
45. Replacing the terms in the parenthesis

as p0 ± im45
2 → p0, which is permitted since the p0 integral

is being performed from negative infinity to positive infinity,
we get a simple expression for the one-loop contribution from
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the charged kaons in terms of m̃4,

V1,K+ + V1,K− =
∫
P

log
[
P2 + m̃2

4

]
. (68)

Noting that the contribution from the neutral kaons is identi-
cal since log D−1

67 = log D−1
45 , using Eqs. (68) and (A.3), we

get for the divergent contribution to the full one-loop poten-
tial

V div
1 = − m̃4

1

4(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m̃2
1

)]

− m̃4
2

4(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m̃2
2

)]

− m4
3

4(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m2
3

)]

− m̃4
4

(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m̃2
4

)]

− m4
8

4(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m2
8

)]
. (69)

Combining Eq. (69) with the tree-level contribution fromL2,
the counterterm L4, and renormalization of the couplings Li

and Hi according to Eqs. (51)–(52), we get the final form of
the one-loop effective potential

Veff = − f 2B0(2m j + ms) − 1

2
f 2(μI sin α + a1

0 cos α)2

−
[

64Lr
6 + 16Lr

8 + 8Hr
2 + 1

(4π)2

(
37

18
+ log

Λ2

m̃2
1

+2 log
Λ2

m2
3

+ log
Λ2

m̃2
4

+ 1

9
log

Λ2

m2
8

)]
B2

0m
2
j

−
[

64Lr
6 + 1

(4π)2

(
11

9
+ 2 log

Λ2

m̃2
4

+ 4

9
log

Λ2

m2
8

)]

×B2
0m jms

−
[

16Lr
6 + 8Lr

8 + 4Hr
2 + 1

(4π)2

(
13

18
+ log

Λ2

m̃2
4

+4

9
log

Λ2

m2
8

)]
B2

0m
2
s

−
[

8Lr
4 + 1

2(4π)2

(
1

2
+ log

Λ2

m̃2
4

)]

×B0(2m j + ms)(μI sin α + a1
0 cos α)2

−
[

8Lr
5 + 1

2(4π)2

(
3

2
+ 4 log

Λ2

m2
3

− log
Λ2

m̃2
4

)]

×B0m j (μI sin α + a1
0 cos α)2 + (

16Lr
8 − 8Hr

2

)
B2

0 m̄
2
j

−
[

4Lr
1 + 4Lr

2 + 2Lr
3 + 1

16(4π)2

(
9

2
+ 8 log

Λ2

m2
3

+ log
Λ2

m̃2
4

)]
(μI sin α + a1

0 cos α)4

+V fin
1,π+ + V fin

1,π− . (70)

For zero pion and axial sources, j = 0 and a1
0 = 0 respec-

tively, Eq. (70) reduces to the result of Ref. [21].

4 Quark, pion and axial condensates

In this section, we calculate the light-quark, strange, pion
and axial condensates. The up-quark and down-quark con-
densates are equal in the isospin limit, which we denote as
〈ψ̄ψ〉. The light-quark, strange, pion and axial condensates
are then defined as

〈ψ̄ψ〉 ≡ 〈ūu〉 = 〈d̄d〉 a=0= 1

2

∂Veff

∂m
, (71)

〈s̄s〉 a=0= ∂Veff

∂ms
, (72)

〈π+〉 a=0= 1

2

∂Veff

∂ j
, (73)

〈ψ̄ λ1
2 γ 0γ5ψ〉 a=0= ∂Veff

∂a1
0

. (74)

Our definition of the light-quark condensate, 〈ψ̄ψ〉 =
〈ūu〉 = 〈d̄d〉 is different from the definition used in the
finite isospin lattice QCD simulation of Ref. [25], where
〈ψ̄ψ〉 = 〈ūu〉 + 〈d̄d〉. This difference explains the extra
factor of 1

2 in the definition of the quark condensate above.
We also define the pion condensate with an extra factor of 1

2
compared with the lattice work [25]. Their pionic source λ

then corresponds exactly to our source j . At tree level, the
quark, pion and axial condensates are

〈ψ̄ψ〉tree = − f 2B0 cos α = 〈ψ̄ψ〉tree
0 cos α, (75)

〈s̄s〉tree = − f 2B0 = 〈s̄s〉tree
0 , (76)

〈π+〉tree = − f 2B0 sin α = 〈ψ̄ψ〉tree
0 sin α, (77)

〈ψ̄ λ1
2 γ 0γ5ψ〉tree = − f 2μI sin α cos α, (78)

where the tree-level chiral condensate in the normal vacuum
is 〈ψ̄ψ〉tree

0 = − f 2B0.
The NLO light-quark condensate is

〈ψ̄ψ〉 a=0= − f 2B0 cos α

{
1 +

[
64Lr6 + 16Lr8 + 8Hr

2

+ 1

(4π)2

(
log

Λ2

m̃2
1

+ 2 log
Λ2

m2
3

+ log
Λ2

m̃2
4

+ 1

9
log

Λ2

m2
8

)]
B0m j

f 2
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+
[

32Lr6 + 1

(4π)2

(
log

Λ2

m̃2
4

+ 2

9
log

Λ2

m2
8

)]
B0ms

f 2

+
[

8Lr4 + 4Lr5 + 1

(4π)2

(
log

Λ2

m2
3

+ 1

4
log

Λ2

m̃2
4

)]

×μ2
I sin2 α

f 2

}
+ (

16Lr8 − 8Hr
2
)
B2

0 m̄ j sin α

+1

2

(
∂V fin

1,π+
∂m

+
∂V fin

1,π−
∂m

)
. (79)

Similarly, the NLO strange-quark condensate is

〈s̄s〉 a=0= − f 2B0

{
1 +

[
64Lr

6 + 1

(4π)2

(
2 log

Λ2

m̃2
4

+4

9
log

Λ2

m2
8

)]
B0m j

f 2 + [
32Lr

6 + 16Lr
8 + 8Hr

2

+ 1

(4π)2

(
2 log

Λ2

m̃2
4

+ 8

9
log

Λ2

m2
8

)]
B0ms

f 2

+
[

8Lr
4 + 1

2(4π)2 log
Λ2

m̃2
4

]
μ2
I sin2 α

f 2

}
, (80)

where there is no finite effective potential contribution since
the kaon one-loop contributions can be written in the standard
quadratic form. The result reduces to that of Ref. [18] in the
limit of zero isospin chemical potential.

Using the definition of the pion condensate, we obtain

〈π+〉 a=0= − f 2B0 sin α

{
1 +

[
64Lr6 + 16Lr8 + 8Hr

2

+ 1

(4π)2

(
log

Λ2

m̃2
1

+ 2 log
Λ2

m2
3

+ log
Λ2

m̃2
4

+ 1

9
log

Λ2

m2
8

)]
B0m j

f 2

+
[

32Lr6 + 1

(4π)2

(
log

Λ2

m̃2
4

+ 2

9
log

Λ2

m2
8

)]
B0ms

f 2

+
[

8Lr4 + 4Lr5 + 1

(4π)2

(
log

Λ2

m2
3

+ 1

4
log

Λ2

m̃2
4

)]

×μ2
I sin2 α

f 2

}
− (

16Lr8 − 8Hr
2
)
B2

0 m̄ j cos α

+ 1

2

⎛
⎝ ∂V fin

1,π+
∂ j

+
∂V fin

1,π−
∂ j

⎞
⎠ , (81)

where the condensate vanishes for μI ≤ mπ since α = 0.
Finally, the axial condensate, which is zero in the normal
vacuum becomes nonzero in the pion condensed phase. The
final result is

〈ψ̄ λ1
2 γ 0γ5ψ〉 = − f 2μI sin α cos α

{
1 + μ2

I sin2 α

f 2

×
[

16(Lr
1 + Lr

2) + 8Lr
3 + 1

4(4π)2 log
Λ2

m̃2
4

+ 2

(4π)2 log
Λ2

m2
3

]
+ B0m j

f 2

[
16(2Lr

4 + Lr
5)

+ 4

(4π)2 log
Λ2

m2
3

+ 1

(4π)2 log
Λ2

m̃2
4

]

+ B0ms

f 2

[
16Lr

4 + 1

(4π)2 log
Λ2

m̃2
4

]}

+∂V fin
1,π+

∂a1
0

+ ∂V fin
1,π−

∂a1
0

, (82)

where setting α = 0 gives zero as required since pion con-
densation is required for the axial condensate to form.

4.1 Two-flavor χPT in the large-ms limit

In the limit ms � mu = md , we expect using effective field
theory arguments that the degrees of freedom containing an
s-quark, i.e. the kaons and the eta, to decouple. Our results for
the light-quark condensate and the pion condensate should
then reduce to the two-flavor case, albeit with renormalized
couplings. The only reference left to the s-quark is in the
expressions for the modified couplings lri and hri , and mod-
ified parameters f̃ and B̃, see Eqs. (86)–(90) below. This
was shown explicitly in Ref. [18], where relations among
the low-energy constants in two - and three-flavor χPT were
derived.

We begin by expanding the light-quark condensate in
inverse powers of ms . Eq. (79) then reduces to

〈ψ̄ψ〉 = − f̃ 2 B̃0 cos α

{
1 +

[
4lr3 + 4lr4

+ 1

(4π)2

(
log

Λ2

m̃2
1

+ 2 log
Λ2

m2
3

)]
B0m j

f 2

+
[
lr4 + 1

(4π)2 log
Λ2

m2
3

]
μ2
I sin2 α

f 2

}

+4(lr4 − hr1)B
2
0m + 1

2

(
∂V fin

1,π+

∂m
+ ∂V fin

1,π−

∂m

)
,

(83)

where we have introduced new renormalized couplings lr1–
lr4, and hr1, as well as modified parameters f̃ and B̃0, which
we define below,

lr1 + lr2 = 4(Lr
1 + Lr

2) + 2Lr
3 + 1

16(4π)2

[
log

Λ2

m̃2
K ,0

− 1

]
(84)

lr3 + lr4 = 16Lr
6 + 8Lr

8 + 1

4

1

(4π)2

[
log

Λ2

m̃2
K ,0

− 1

]
(85)

+ 1

36

1

(4π)2

[
log

Λ2

m̃2
η,0

− 1

]
, (86)
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lr4 = 8Lr
4 + 4Lr

5 + 1

4

1

(4π)2

[
log

Λ2

m̃2
K ,0

− 1

]
, (87)

lr4 − hr1 = 4Lr
8 − 2Hr

2 , (88)

f̃ 2 = f 2

[
1 +

(
16Lr

4 + 1

(4π)2 log
Λ2

m̃2
K ,0

)
B0ms

f 2

]
, (89)

B̃0 = B0

[
1 −

(
16Lr

4 − 32Lr
6 − 2

9(4π)2 log
Λ2

m̃2
η,0

)
B0ms

f 2

]
.

(90)

The new mass parameters are defined as m̃2
K ,0 = B0ms and

m̃2
η,0 = 4B0ms

3 . The parameters B̃0 and f̃ can also be obtained
by considering the one-loop expressions for the chiral con-
densate and the pion decay constant ignoring the loop cor-
rections from the pions, i.e. they are obtained by integrating
out the s-quark.

The relations between the renormalized couplings lri and
the low-energy constants l̄i in two-flavor χPT are

lri (Λ) = γi

2(4π)2

[
l̄i + log

2B0m

Λ2

]
, (91)

hri (Λ) = δi

2(4π)2

[
h̄i + log

2B0m

Λ2

]
, (92)

where γ1 = 1
3 , γ2 = 2

3 , γ3 = − 1
2 , γ4 = 2, and δ1 = 2 [17].

These equations can be used to calculate the running of the
couplings lri and hri with the renormalization scale. One can
then verify that the running of the left-hand and right-hand
side of Eqs. (86)–(87) is the same. One can also verify that the
modified parameters f̃ 2 and B̃0 do not run. Inserting these
relations into Eq. (79), we find

〈ψ̄ψ〉 = − f̃ 2 B̃0 cos α

[
1 + 1

(4π)2

(
4l̄4 − l̄3

+ log
2B0m

m̃2
1

+ 2 log
2B0m

m2
3

)
B0m j

f 2

+ 1

(4π)2

(
l̄4 + log

2B0m

m2
3

)
μ2
I sin2 α

f 2

]

+4B̃2
0m

(4π)2

(
l̄4 − h̄1

) + 1

2

(
∂V fin

1,π+

∂m
+ ∂V fin

1,π−

∂m

)
.

(93)

The pion condensate can be calculated in the same way and
the result is

〈π+〉 = − f̃ 2 B̃0 sin α

[
1 + 1

(4π)2

(
4l̄4 − l̄3

+ log
2B0m

m̃2
1

+ 2 log
2B0m

m2
3

)
B0m j

f 2

+ 1

(4π)2

(
l̄4 + log

2B0m

m2
3

)
μ2
I sin2 α

f 2

]

+ 4B̃2
0 j

(4π)2

(
l̄4 − h̄1

) + 1

2

(
∂V fin

1,π+

∂ j
+ ∂V fin

1,π−

∂ j

)
.(94)

Finally, the axial condensate in the large-ms limit is

〈ψ̄ τ2
2 γ 0γ5ψ〉 a=0= − f̃ 2μI sin α cos α

{
1 + μ2

I sin2 α

(4π f )2

×
[

2

3

(
l̄1 + 2l̄2

) + 2 log
2B0m

m2
3

]

+ B̃0m j

(4π f )2

[
4l̄4 + 4 log

2B0m

m2
3

]}

+
∂V fin

1,π+

∂a1
0

+
∂V fin

1,π−

∂a1
0

.

(95)

In order to evaluate the condensates in two-flavor χPT, we
need the ground state value of α, which is obtained from the
effective potential of two-flavor χPT in the presence of a
pseudo-scalar source. The two-flavor effective potential can
be found by taking the large-ms limit in the effective potential
Eq. (70) and the identification of two-flavor LECs as was
done with the condensates. We obtain

Veff = −2 f̃ 2 B̃0m j − 1

2
f̃ 2(μI sin α + a2

0 cos α)2

− 1

(4π)2

[
3

2
− l̄3 + 4l̄4 + log

(
2B0m

m̃2
1

)

+2 log

(
2B0m

m2
3

)]
B2

0m
2
j

− 1

(4π)2

[
1

2
+ l̄4 + log

(
2B0m

m2
3

)]
2B0m j

×(μI sin α + a2
0 cos α)2

− 1

2(4π)2

[
1

2
+ 1

3
l̄1 + 2

3
l̄2 + log

(
2B0m

m2
3

)]

×(μI sin α + a2
0 cos α)4

+ 4

(4π)2

(
l̄4 − h̄1

)
B2

0

[
m2

j + m̄2
j

]
+ V fin

1,π+ + V fin
1,π− .

(96)

Taking appropriate derivatives of the two-flavor effective
potential Eq. (96) yields the various condensates. However,
note that 2B0m is a reference scale M and must be held fixed
when taking the partial derivative with respect to m to obtain
the quark condensate. We note that in the two-flavor effec-
tive potential and the condensates, B̃0 of Eq. (90) appears in
the leading order terms and B0 appears in the next-to-leading
order terms. The large-ms limit we perform has the following
formal ordering of the various scales,

B0mu = B0md � B0ms � (4π fπ )2 . (97)
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The first equality is the isospin limit, the second the large-ms

limit, and the last ensures the validity of an effective field
theory approach. In this formal limit the B0 in the next-to-
leading order result can be identified with B̃0 up to the order
we are working. Finally, our expansion in inverse powers of
ms also assumes B0 j � B0ms and μ2

I � B0ms .

5 Numerical results and discussion

In this section, we use the results from the previous section to
plot the strange-quark condensate and the axial condensate
at zero pionic and axial sources. We also plot the light-quark
and pion condensate for nonzero pionic source. Finally, we
compare the nonzero pionic source results with lattice simu-
lations and compare the axial condensate with available lat-
tice results at zero pionic and axial sources.

Finite isospin QCD on the lattice is studied by adding an
explicit pionic source since spontaneous symmetry breaking
in finite volume is forbidden. Obtaining the pion condensate
then requires not just taking the continuum limit but also
extrapolating to a zero external source, which is a difficult
procedure. We also note that the quark, pion and axial con-
densates given by Eqs. (79)-(82) depend on the ground state
value of α, which can be found by minimizing the one-loop
effective potential, i.e. solving ∂Veff

∂α
= 0, at zero axial vector

source.

5.1 Definitions and choice of parameters

Since we are interested in the condensates as functions of
the isospin chemical potential μI , i.e. in medium effects,
we plot the (normalized) change in the chiral condensate,
strange-quark condensate, the pion condensate and the axial
condensate relative to the normal vacuum using the following
definitions [25]

Σψ̄ψ = − 2m

m2
π f 2

π

[
〈ψ̄ψ〉a=0

μI
− 〈ψ̄ψ〉a= j=0

0

]
+ 1, (98)

Σπ = − 2m

m2
π f 2

π

〈π+〉a=0
μI

, (99)

Σs̄s = −m + ms

m2
K f 2

K

[
〈s̄s〉a=0

μI
− 〈s̄s〉a=0

0

]
+ 1, (100)

Σa = −〈ψ̄ λ1
2 γ 0γ5ψ〉 j=0

μI
. (101)

Note that Σa is simply the negative of the axial condensate
and the normalization has been chosen to match that of lattice
QCD [13]. The chiral and pion condensate deviations satisfy

Σ2
ψ̄ψ,tree

+ Σ2
π,tree = 1 , (102)

at tree level in both the normal vacuum and the pion conden-
sate phases even in the presence of a pseudo-scalar source.

For the calculations of the deviations and the axial conden-
sate we will use the following values of the quark masses
allowing for a 5% uncertainty, consistent with Ref. [29],

mu = 2.15 MeV, md = 4.79 MeV, (103)

m = mu + md

2
= 3.47 MeV, (104)

B0ms = m2
K ,tree − 1

2
m2

π,tree, (105)

where mπ,tree and mK ,tree are the tree level pion mass and
kaon mass respectively. Note that since B0 is fixed by the up
and down quark masses and the GOR relation, the strange
quark mass is fixed in three-flavor χPT by the value of B0 and
the tree level pion and kaon masses. In three-flavor χPT we
cannot fix the strange-quark mass independently of the up and
down quark masses. In order to compare with simulations, we
adopt the following values of the pseudo-Nambu-Goldstone
masses and decay constants [28],

mπ = 131 ± 3 MeV, mK = 481 ± 10 MeV, (106)

fπ = 128 ± 3√
2

MeV, fK = 150 ± 3√
2

MeV . (107)

We point out that the quark masses in Eq. (103) are not those
used in the simulations of Ref. [25] as the latter are unknown.
The quark masses from Ref. [29] are approximately 3% larger
than given in Eq. (103). In Ref. [11], we therefore varied the
quark mass mu = md by 5% to gauge the sensitivity of the
results. It turns out that the dominating uncertainty stems
from uncertainty of the l̄i s. The same remains true for three-
flavor χPT condensates.

Additionally, we choose the following experimentally
determined values for the three-flavor LECs and their asso-
ciated uncertaintities [30]. The quoted numerical values are
at the renormalization scale μ = 0.77 GeV, which is approx-
imately the rho-mass, mρ , with Λ2 = 4πe−γEμ2 [26,30].

Lr
1 = (1.0 ± 0.1) × 10−3, (108)

Lr
2 = (1.6 ± 0.2) × 10−3, (109)

Lr
3 = (−3.8 ± 0.3) × 10−3, (110)

Lr
4 = (0.0 ± 0.3) × 10−3, (111)

Lr
5 = (1.2 ± 0.1) × 10−3, (112)

Lr
6 = (0.0 ± 0.4) × 10−3, (113)

Lr
8 = (0.5 ± 0.2) × 10−3, (114)

Hr
2 = (−3.4 ± 1.5) × 10−3 . (115)

We will only use the central values of the three-flavor LECs
for generating our plots since including the uncertainties
gives rise to a complex η-mass which is unphysical [24].
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Fig. 1 Axial condensate deviation, Σa , as a function of the isospin
chemical potential at tree level and NLO for j = 0. See main text for
details

We get the following bare parameters

mcen
π,0 = 131.28 MeV, mcen

K ,0 = 520.65 MeV, (116)

f cen
π,0 = 75.16 MeV, (117)

mlow
π,0 = 128.14 MeV, mlow

K ,0 = 512.72 MeV, (118)

f low
π,0 = 75.68 MeV, (119)

mhigh
π,0 = 134.43 MeV, mhigh

K ,0 = 528.76 MeV, (120)

f high
π,0 = 77.62 MeV . (121)

Similarly, the experimentally determined two-flavor LECs
used to generate the two-flavor condensates are

l̄1 = −0.4 ± 0.6, (122)

l̄2 = 4.3 ± 0.1, (123)

l̄3 = 2.9 ± 2.4, (124)

l̄4 = 4.4 ± 0.2, (125)

h̄1 = −1.5 ± 0.2 . (126)

These are proportional to the running LECs evaluated at the
bare pion mass as follows from their definitions in Eq. (91)
and Eq. (92).

5.2 Deviation of condensates at j = 0

In Fig. 1, we plot the axial condensate deviation, which is the
negative of the axial condensate, at tree level and NLO. We
find that both the tree-level and the NLO axial condensates
are in excellent agreement with lattice QCD. The difference
between the tree-level, NLO and lattice is negligible up to
μI ≈ 1.2mπ with the differences becoming more significant
with increasing isospin chemical potentials. The difference
between the two-flavor and the three-flavor result is tiny.

In Fig. 2, we plot the strange-quark condensate deviation at
both tree level (red) and next-to-leading order (green). At tree

Fig. 2 Deviation of the strange-quark condensate (normalized to 1)
from the normal vacuum value, Σs̄s , in three-flavor χPT for j = 0. See
main text for details

level, the pion condensate does not expel the strange-quark
condensate. However, at NLO, the deviation of the strange-
quark condensate increases above one up to approximately
μI = 1.4mπ and then decreases monotonically relative to its
vacuum value. Compared to the light-quark condensate, the
decrease is significantly smaller. Note that the normalizations
in the chiral and quark condensate deviations are different
by factors of f 2

π and f 2
K respectively, which are insufficient

to explain the difference in the deviations of the respective
condensates. It would be of interest to calculate the strange-
quark condensate on the lattice to see if it displays the non-
monotonic behavior found here.

5.3 Deviation of condensates at j �= 0

In this section, we compare χPT light-quark and pion con-
densates at finite j with available QCD lattice data [13,28,
31,32]. In Fig. 3, we show the deviation of the chiral and pion
condensates as defined in Eq. (98) for j = 0.00517054mπ ,
which is the smallest value of the source for which lattice
data is available. In Fig. 4, we show the deviation of the chi-
ral and pion condensates for j = 0.0129263mπ . We note
that there is no chiral and pion condensate data available for
j = 0 since they are “cumbersome” to generate [25].

For a fair comparison of the finite j lattice data, it is impor-
tant to know the quark masses in the continuum. Since quark
masses are not physical observables their values depend on
the method of renormalization. For the lattice calculation, a
continuum extrapolation was not performed. Consequently,
we use the lattice continuum quark masses of Ref. [29] for our
comparison (and include a 5% uncertainty) with the expec-
tation that the difference with the lattice calculation of Ref.
[13,31,32] is small.

The upper panel of Fig. 3 shows the light-quark condensate
deviation at j = 0.00517054mπ from χPT and lattice QCD
as a function of μI /mπ . Firstly, we observe that the NLO
correction to the LO results (red solid line) is very small for
both N f = 2 (blue dashed line) and N f = 3 (green dashed
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Fig. 3 Upper panel shows the deviation of the light-quark condensate
(normalized to 1) from the vacuum value, Σψ̄ψ for j = 0.00517054mπ .
Lower panel shows the deviation of the pion condensate from the vac-
uum value, Σπ for j = 0.00517054mπ . See main text in [13,25] for
details

line). All three curves are in excellent agreement with the
lattice results (black points), the tree-level results being in
slightly better agreement. In the lower panel of Fig. 3, we
plot the pion condensate deviation for the same value of the
pionic source. The pion condensate is therefore nonzero for
all values of μI because the nonzero pseudo-scalar source
explicitly breaks isospin symmetry. The tree-level and NLO
pion condensate agree with each other and the lattice results
up to μI ≈ 1.2mπ . Beyond that χPT underestimates the pion
condensate with two-flavor χPT in better agreement with
lattice QCD compared to three-flavor χPT. Notice that the
LO results level off for large values of μI independent of the
source j , in disagreement with both lattice data and the NLO
results. Thus the NLO result is a significant improvement
over the tree-level result and we can no longer interpret α as
the angle specifying how the chiral condensate is rotated into
the pion condensate. A similar violation is seen in the NJL
model [33,34].

In Fig. 4, we plot the light-quark and pion condensate devi-
ations at j = 0.0129263mπ from χPT and lattice QCD. The
qualitative behavior is similar to that for j = 0.00517054mπ

and the same remarks apply, in particular the improved agree-
ment of the chiral condensate with lattice data.

Fig. 4 Upper panel shows the deviation of the light-quark con-
densate (normalized to 1) from the vacuum value, Σψ̄ψ , for j =
0.00517054mπ . Lower panel shows the deviation of the pion conden-
sate from the vacuum value, Σπ , at T = 0 and for j = 0.0129263mπ .
See main text in [13,25] for details
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6 Appendix A: Integrals

We use dimensional regularization to regulate ultraviolet
divergences. With dimensional regularization, the momen-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  449 Page 12 of 12 Eur. Phys. J. C           (2021) 81:449 

tum integral are generalized to d = 3 − 2ε dimensions. We
use the following notation
∫
p

=
(
eγEΛ2

4π

)ε ∫
dd p

(2π)d
, (A.1)

where Λ is the renormalization scale in the modified minimal
subtraction (MS) scheme. The integral below is defined as
in Eq. (A.1), but with d = 4 − 2ε and the subscript p being
replaced by P∫

P
=

∫
dp0

2π

∫
p

. (A.2)

The integral we need in order to regularize the one-loop effec-
tive potential is

∫
P

log[P2 + m2] =
∫
p

√
p2 + m2

= − m4

2(4π)2

(
Λ2

m2

)ε [
1

ε
+ 3

2
+ O(ε)

]
. (A.3)
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