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As is well known, synchrotron radiation appears to be 
strongly polarized. In particular, in the classical approximation, 
7/8 of the total radiated intensity belongs to the σ-component (the 
electrical vector of the radiation field which is along the radius 
towards the center of the trajectory) and 1/8 to the π-component 
(the electrical vector of the radiation field which is almost 
perpendicular to the plane of the orbit [1]). This deduction was 
experimentally verified by F. A. Korolev and his co-workers [2]. 

In the present paper, we attempted to study the influence of 
the electron spin orientation on the polarization and the intensity 
of the radiation when the electron is moving within a constant and 
uniform magnetic field. During the study of spin effects, it is 
convenient to split the Dirac equation solution into two states 
which characterize the spin orientation either with or against the 
direction of motion (longitudinal polarization) or with or against 
the field, i.e., in our problem the almost perpendicular polariza­
tion. 

The Dirac equation 

i ∂ψ = ψ, = c ( α P ) + 3 m 0 c 2 , ( 1 ) i ∂t = ψ, = c ( α P ) + 3 m 0 c 2 , ( 1 ) 

where 

p = p - e A, A1 = - 1 yH, p = p - c A, A1 = - 2 yH, 
A2 = 1 xH, A3 = 0, (2) A2 = 2 xH, A3 = 0, (2) 

describing the motion of the electron within a constant and uniform 
magnetic field has the following solution: 

ψ1,3 = e-iεcKt 
eik3z ei(l-1)φ 

ƒ1,3 ( ) ; ψ1,3 = e-iεcKt √L √2π ƒ1,3 ( ) ; 

ψ2,4 = e-iεcKt 
eik3z ei/φ 

ƒ2,4 (); ψ2,4 = e-iεcKt √L √2π ƒ2,4 (); 
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ƒ1,2,3,4 = √2γ { 

c1ln-1,s () 
ic2ln-1,s () c3ln-1,s () 
ic4ln-1,s () 

} (4) 

In this equation = γT2, γ = e0H/2ch, e 0 = -e > 0 is the elementary-charge; 
E = εcK = εch √k02 + k32 + 4γn; n = l + s = 0,1 ... are the principal, 
l = 0, ±1 ... - ∞ ≤ l ≤ n are the azimuthal, and s = 0, 1 are the 
radial quantum numbers. The quantity ε = ±1 characterizes the sign 
of the energy, while the function In,s () is connected to the 
Laguerre polynomial Qsl() relationship 

ln,s () = 1 e 
1 

p 
n-s 

Q s
n - s(). (5) ln,s () = 1 e 2 p 2 Q s
n - s(). (5) ln,s () = √n|s| e 

2 p 2 Q s
n - s(). (5) 

For a unique determination of the Cµ coefficients, we must, in 
addition to establishing the validity of the Dirac equation (1) and 
the normalization condition, subject the wave function to another 
additional condition which characterizes the direction of the spin 
and the value of polarization. 

When studying the longitudinal polarization, this additional 
condition is best formulated by the condition for the preservation 
of the spin projection on the direction of motion 

(σP) ψ = ψ. (6) 

The operator (σP) represents the temporal component Tµ4 of the 
electron polarization pseudovector having the general form 

Tµν = 1 {Pνσµ + σµPν}, (7) Tµν = 2 {Pνσµ + σµPν}, (7) 

where σu{σ,i??1} is the spin 4 pseudovector, and P4 = ( - eφ)1/c is the 
fourth component of the generalized momentum which in our case has 
the scalar potential φ = 0 [4]. 

During the study of the almost perpendicular polarization, 
it is convenient to subject the wave equation to the following con­
dition [5]: 

{m0cσ3 + 2 [σP]3}ψ = kζψ. (8) 

The operator on the left-hand side of this equation represents the 
component F124 of the third order polarization tensor: 

Fµνλ = 
1 {pλαµν + aµνpλ}, (9) Fµνλ = 2 {pλαµν + aµνpλ}, (9) 
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where α23 = 3σ1, α14 = i2σ1, etc. are the tensors of the characteristic magnetic and electric momenta. 
Note that the operators on the left side of equations (6) 

and (8) are constants of motion, i.e., are consistent with the 
Hamiltonian . Within these equations the quantities ξ,ζ are equal 
to ±1 and characterize the two possible directions of the spin. 
The quantities and k are equal to 

= √K2-k02, k = √K2-k32. (10) 

During the study of the longitudinal polarization (ξ = ±1) 
the coefficients of equation (4) will be equal [6]: 

C 1 = , 
C2 = , 
C3 = , 
C4 = , 

} (11) 

where 

= √ 1 (1 + ε k0 
), 

= √ 2 (1 + ε K 
), 

= √ 1 (1 - ε k0 ), = √ 2 (1 - ε K ), 
= √ 1 (1 +  k3 ), = √ 2 (1 +  ), 
= √ 1 (1- k3 ). = √ 2 (1- ). 

} (12) 

In particular, the results from the last quoted equations with 
ε = 1 agree with those of another paper [6]. During the study of 
the perpendicular polarization [8] we must put: 

C1 = aA, 
C2 = -ζbB, 
C3 = bA, 
C4 = ζaB, 

} (13) 

where 
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A = √ 
1 (1 + ζ k0 

), 

A = √ 

2 (1 + ζ k ), 

B = √ 1 (1 - ζ k0 ), B = √ 2 (1 - ζ k ), 
a = 1 {√1 + ε k3 + a = 2 {√1 + ε K + 
+ εζ √1 - ε k3 }, + εζ √1 - ε K }, 

b = 1 {√1 + ε k3 — b = 2 {√1 + ε K — 
- εζ √1-ε k3 }. - εζ √1-ε K }. 

} (14) 

Utilizing in what follows the method developed in reference 
[1] (see also [7]), one can find intensities of the synchrotron 
radiation of the π - and σ-components which take into account the 
direction of electron spin. 

During the study of the longitudinal electron polarization 
(see the additional condition (6)), the intensity of radiation 
connected with the change in the spin orientation does not depend 
on the direction of the initial spin (with or against the direction 
of motion). In the case of the almost perpendicular polarization, 
the radiated intensity may depend on the initial direction of the 
spin (with or against the field): 

w = w { 7 
- ξ( 

25√3 +ζ)+ w = w { 8 - ξ( 12 +ζ)+ 
+ ξ2[ 335 + 245 √3 ζ] + ...}, + ξ2[ 18 + 48 ζ] + ...}, 

w = wc {2 1 }, w = wc {2 18 }, 
w = W { 1 - ξ 5√3 + ξ2 25 + ...}, w = W { 8 - ξ 24 + ξ2 18 + ...}, 
w = w·ξ2 23 {1 + ζ 105√3 

}. w = w·ξ2 
18 {1 + ζ 184 }. 

} (15) 

Here 

wcl = 2 e2c ( 
E 

)4; ξ = 
3 

( 
E 

)2. wcl = 3 R2 ( m 0c 2 )4; ξ = 2 mcR ( m 0c 2 )2. 

Arrows indicate the relative direction of the spin in the initial 
and final state, where ζ = 1 indicates the initial spin oriented 
along the field, while ζ = -1 is against the field. 

Let us emphasize that the expression for the radiated 
intensity contains terms proportional to h, depending on the 
initial direction of the spin, which disappear after averaging over 
the final spin states. Furthermore, it is clear from these 
equations that as a result of the radiation the spin will tend to 
orient against the field (ζ = -1). 

Let us investigate the probability of quantum transitions 
for the change of spin orientation per unit time. We then find 
that with the longitudinal polarization this probability does not 
depend on the initial spin orientation with or against the velocity 
direction: 
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w = 5 √ 3 e02 c Ε ξ2 7 . (6) w = 36 ħc R m0c2 ξ2 9 . (6) 

In the case of the almost perpendicular polarization, however, the 
result depends essentially on the initial spin orientation with or 
against the magnetic field: 

w = 5 √ 3 e0
2 c Ε ξ2(1 + ζ 8√3 )· (17) w = 36 ħc R m0c2 ξ

2(1 + ζ 15 )· (17) 

Consequently, because of the synchrotron radiation the electron 
spin must acquire an orientation which is dominantly against the 
direction of the magnetic field. 

For a quantitative estimate of this effect we investigated 
the statistical change in the number of electrons with a given spin 
orientation. Let n1 be the number of electrons with spin directed against the field (ζ = -1), and n2 be the number of electrons with the spin oriented along the field (ζ = 1). Then for the changes of 
these quantities per second we have 

dn1 = n2w21 — nlwl2, (18) dt = n2w21 — nlwl2, (18) 

under the condition of the conservation of the total number of 
particles 

n1 + n 2 = n0. (19) 

In this equation w12 and w21 are the probabilities found from equation (17) if one substitutes ζ = -1 and ζ = 1, respectively. 
By integrating equation (18) we obtain: 

n1 = 
w21n0 — (w21n20 — w12n10)e-t/τ = (15+8√3)n0-[15(n20 - n10)+8√3n0]e

-t/τ 
, n1 = w12 + w21 = 30 , 

n2 = 
w12n0 — (w2ln20 — w12n10)e-t/τ = (15+8√3)n0+[15(n20-n10)+8√3n0]e

-t/τ 
, n2 = w12 + w21 = 30 , 
} (20) 

where n10 and n20 are the initial values of n1 and n2 and the life­
time τ has the following value: 

τ=(w12 + w21)-1 = 

=[ 5 √ 3 ħ ( Ε )5 e02 ]-1 = =[ 8 m0cR ( m0c2 )5 m0cR2 ]-1 = 
= [ 

5 √ 3 mce02 
( 

Ε 
)2( 

Η )3]-1; = [ 8 ħ ( m0c2 )2( H0 )3]-1; (21) 
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H0 = m20c3/e2ħ = 4.67·10-13 Oe. Assuming, in particular, that 
H = 104 Oe and Ε = 1 GeV, we get τ ~ 1 hour. 
At time t » τ the ratio n1/n2 tends to the limiting value 

n1 = w21 = 15+8√3 (22) n2 = w12 = 15-8√3 (22) 

independent of the initial distribution of the electrons over the 
spin states. It is clear from the last expression that this 
limiting value of the polarization may consist of about 95 percent 
of the component with ζ = -1 (i.e., with the spin oriented against 
the field). 
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DISCUSSION 
Yu. F. Orlov 
Does your equation apply for arbitrary particles energies? 

Did you take into account s → s', s ≠ 0 transitions (where 
s is the radial quantum number)? 
A. A. Sokolov 

For this ideal case (constant and uniform field) our formula 
is applicable for arbitrary energies. The s → s' transitions are 
taken care of by means of summation over all values of s'. 
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