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A surprising result in ete~ collisions is that the particle spectra from the string formed between
the expanding quark-antiquark pair have thermal properties even though scatterings appear not to
be frequent enough to explain this. We address this problem by considering the finite observable
interval of a relativistic quantum string in terms of its reduced density operator by tracing over the
complement region. We show how quantum entanglement in the presence of a horizon in spacetime for

the causal transfer of information leads locally to a reduced mixed-state density operator. For very early
proper time t, we show that the entanglement entropy becomes extensive and scales with the rapidity.
At these early times, the reduced density operator is of thermal form, with an entanglement temperature
T =h/(2mkpT), even in the absence of any scatterings.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

A longstanding puzzle in ete~ collisions is that the hadron
spectra measured appear thermal with features that can be char-
acterized in terms of a common temperature [1-6]. The apparent
thermal origin of the multiparticle production is surprising because
scatterings appear not to be frequent enough for thermalization to
occur and therefore demands an alternative explanation [2,7-10].

We argue in this letter that this apparent thermalization is an
intrinsically quantum phenomenon arising from the entanglement
between observable and unobservable regions in an expanding
string. The observable region is described in terms of a reduced
density operator by tracing over the complement region, which is
bounded by the Minkowski spacetime horizon for the causal trans-
fer of information. We show that the entanglement of the quantum
vacuum accross this horizon leads to dramatic macroscopic quan-
tum effects. In particular, for very early proper time 7, we discover
that the entanglement entropy is extensive and scales with the ra-
pidity. At these early times, a conformal symmetry emerges for the
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expanding system and the entanglement generates a reduced den-
sity matrix of thermal form, with the temperature
h
T 2mkgT
even in the absence of any scatterings.

Our results establish a novel class of horizon phenomena in
quantum field theory, featuring an instantaneous thermal excita-
tion spectrum from a vacuum pure state. In contrast to the well-
known example of an event horizon in the vicinity of a black
hole, which leads to Hawking radiation, or the related Unruh tem-
perature for a class of accelerated observers, our setting does
not involve acceleration and it is non-stationary [11]. Specifically,
the Unruh acceleration a of an observer in the Rindler-wedge of
Minkowski spacetime at a spatial position x = c%/a generates a
space-dependent temperature T, = hc/(2mkpx), while the time-
dependent temperature (1) applies to the initial stages in the for-
ward light cone with crucial applications to ete~ but also hadron-
hadron collisions.

(1)

2. Model of expanding strings

Models that describe eTe~ collisions successfully [12,13] rely
on the Schwinger mechanism of particle production in 1+ 1-
dimensional quantum electrodynamics (QED); a recent compre-
hensive discussion of the difficulties presented by thermal-like
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spectra in such models can be found in [6]. We will work within
this Schwinger model framework to treat the dynamics of the
expanding string formed between the relativistic quark-antiquark
pair. We choose the coordinate system such that the trajectories
are in natural units z = 4t, x =y = 0, and we assume that the
strings are essentially confined to the z-direction. Bjorken coordi-
nates are convenient, with z = tsinh(n) and t = 7 cosh(n) with
rapidity  and proper time T = +/t2 — z2. In these coordinates, the
Minkowski space metric in the confined space can be expressed as
ds? = —dt? + t2dn?.

The Schwinger model is particularly simple for a single mass-
less Dirac fermion. In this case, it can be bosonized to a free
massive scalar theory with the action [14]

S= /dzx@{—%gﬂvau¢av¢ - %1\/1%2} . (2)

For convenience, we have employed general coordinates with the
two-dimensional metric g,,. The Schwinger model bosons ¢ cor-
respond to dipoles that are quadratic in the original fermion field.
Their mass is proportional to the U(1) charge, M = q/./7; likewise,
the string tension satisfies o = g% /2. Bosonization also works for a
nonvanishing fermion mass m but we will not consider that case
here.

3. Dynamics of expansion

For the bosonized Schwinger model, a solution corresponding
to an expanding string stretched between two external quarks on
their lightcones is found as a rapidity invariant solution to the
equation of motion, 82¢ + 3;¢/7 + M2¢ = 0. The boundary condi-
tion for T — 0, is fixed by the requirement that the electric field
E = q¢//7 approaches the U(1) charge of the external quarks
E — qe. This gives ¢(T) — /mqe/q, and with this boundary con-
dition one finds ¢(7) = /7 (qe/q) Jo(M7). The oscillations in this
solution are related to multiple string breaking [15].

The solution ¢ = (¢(x)) should be understood as a field expec-
tation value, or equivalently, as a coherent field. Further informa-
tion is contained in correlation functions of the fields ¢(x) and
their conjugate momentum fields m (x), which specify a density
matrix p at some initial time or on an appropriate Cauchy hyper-
surface. Because the action (2) is quadratic in the field ¢, we also
assume that this density matrix is of Gaussian form. Gaussian den-
sity matrices are fixed entirely in terms of the expectation values
and connected two-point correlation functions.

4. Entanglement entropy of a rapidity interval

To discuss processes, such as the formation of hadrons or res-
onances during the relativistic expansion of the string, we will
assume that the dynamics is local in a space-like region A within
the future light cone of the spacetime instant of an e*e~ collision.
This local dynamics can be described by the reduced density ma-
trix pa, defined as the trace of p over the complement region B:

oa=Trgp. (3)

If the fields ¢ in the regions A and B are entangled, the reduced
density matrix p4 is of mixed form, even if the full density matrix
p is pure. The degree of entanglement, and therefore the devia-
tion of p4 from a pure state, can be characterized in terms of the
entanglement entropy,

Sa=-Tr{paln(pa)} . (4)

Fig. 1. Bjorken coordinates and causal development of a rapidity interval
(—An/2, An/2) at fixed proper time 7. The dashed red line corresponds to region A
while the complement region B is composed of the rapidity intervals (—oo, —An/2)
and (An/2,00) at fixed Bjorken time 7. For An — oo the causal development re-
gion approaches the lightcone. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

For most problems in quantum field theory, the determina-
tion of the reduced density matrix ps, as well as of the entan-
glement entropy Sp, are formidable tasks. Results are currently
known for free field theories in static situations [16], or conformal
field theories [17-19]. For a discussion of entanglement entropy
in the 't Hooft model, see [20]. The treatment of entanglement
in nonequilibrium situations is especially difficult. In a companion
paper [21], we develop real-time techniques for (relative) entangle-
ment entropies of general Gaussian states in quantum field theory.

In the following, we will take advantage of the fact that if the
density matrix o is Gaussian (in the field theoretic sense) then this
is also the case for the reduced density matrix ps of any equilib-
rium or nonequilibrium state. The entanglement entropy S4 in this
case is then given by [21]

Sy= %TrA [Dln(Dz)}, (5)

where the operator trace is restricted to the region A and the ma-
trix D consists of connected correlation functions. For the example
of the bosonized Schwinger model with field ¢ and conjugate mo-
mentum field v, we obtain

—H{dX) T (Y))e i(¢(x)¢(y))c>
T T ) HTXOWN)c)

The expectation value (---) in eq. (6) can equivalently be taken
with respect to the full density matrix o or the reduced density
matrix p4. For the specific case of the expanding relativistic string,
we will compute the trace in eq. (5) by taking A to be the rapid-
ity interval (—An/2, An/2) at fixed Bjorken time t, corresponding
to the dashed red line in Fig. 1. The complement region B cor-
responds to the sum of the rapidity intervals (—oo, —An/2) and
(An/2,00) at fixed Bjorken time 7. Note that any process (e.g. a
measurement) within the causal development region delimited by
the solid red line in Fig. 1 is by reasons of causality at most sen-
sitive to the region A while the density matrix in the complement
region B cannot affect such processes.

Because the field expectation values ¢(x) = (¢ (x)) and 7T (x) =
(m(x)) do not enter (5) and (6), the entanglement entropy for
an expanding string described by the massless Schwinger model
(corresponding to a coherent state specified by ¢(x) and 7 (x))
is the same as the one of the vacuum (which is a coherent
state with vanishing field expectation values). Moreover, the en-
tropy does not change under unitary evolution with the boundary

D(x,y) = ( 6)
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Fig. 2. Entanglement entropy density dS/dAn as a function of the rapidity interval
An in the bosonized massless Schwinger model for the case of a massive scalar bo-
son. The curves (from left to right) correspond to Mt =1, Mt =101, Mt =102,
Mt =103, Mt =10%, and Mt = 10>, For very early times, MT — 0, a plateau
forms corresponding to the asymptotic conformal case dS/dAn — 1/6 (dashed
line).

points kept fixed. It can therefore equivalently be evaluated in the
interval (—Az/2, Az/2) with Az = 27 sinh(An/2) at fixed time
t = 7 cosh(An/2), corresponding to the dotted red line in Fig. 1.

Following this identification, our computation of the entangle-
ment entropy reduces to an eigenvalue problem for which one can
employ a discrete basis involving Fourier expansion on a finite
interval. The trace in (5) then involves contour integrals in mo-
mentum space, where the nonvanishing contributions arise from
branch cuts [21]. We emphasize that these contributions would be
missing if naive discretizations with periodic boundary conditions
- as are often employed in calculations of nonequilibrium dynam-
ics — are assumed.

We first consider the massless limit M = 0. Here, our result for
the entanglement entropy corresponds to the expression obtained
previously for conformal field theories [17-19]. In our case, the
result can be expressed as

S(t,An) = %ln (2t sinh(An/2)/€) + constant, (7)

where ¢ is the conformal central charge and € is a length scale
corresponding to an ultraviolet cutoff. The additive constant is
not universal, but the derivative of S with respect to the in-
terval length Az is. This implies tdS/9t =c/3 and 35/0An =
(c/6) coth(An/2). For a large rapidity interval An > 1, one has
S = (c/6)[An + 2In(7)] + const. This demonstrates the existence
of a time independent piece of the entanglement entropy that is
extensive in rapidity and a An-independent piece that grows log-
arithmically with the proper time.

Turning now to the non-conformal free massive scalars of the
Schwinger model, the universal part of the entanglement entropy
behaves just as in the conformal case for MAz <« 1 and decays for
MAz > 1 [16]. We are particularly interested in the dependence
on An:

a dS 0dlnAz
—S(t,An) =
dAn dlnAz dAn (8)
=cg (2M7 sinh(An/2)) coth(An/2)/2,

where cp (MAz) = AzdS/dAz is the entanglement entropy c-
function for a massive scalar field. Taking the conformal limit,
one obtains, as anticipated, that cg(0) =¢/3 = 1/3. For large val-
ues of the argument, the function has the exponential decay form
CE(X) > xK1(2x) /4.

Employing the numerically known expression for cg(x) [16],
we can compute dS/dAn for the bosonized massless Schwinger
model. The result is shown in Fig. 2 for different values of Mrt.

ds/dAn
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Fig. 3. Entanglement entropy density dS/dAn as a function of the rapidity interval
An for a free massive Dirac fermion field. The curves (from left to right) correspond
to Mt =1, Mt =10"1, Mt =1072, Mt =1073, M7t =104, and Mt =107>. In
the limit of early time, M7 — 0, a plateau forms at the asymptotic value dS/dAn —
1/6, corresponding to the conformal case (dashed line).

We first note that for short times t (compared to the mass M or
string tension o), there is substantial entanglement over rapidity
intervals An = O(1). For intermediate values of Mt and An, one
observes that S/dAn approaches a plateau at 1/6 as a function
of An at early times. We also observe that it decays both for very
large An and for later times 7.

Remarkably, because the limit of very early times for expand-
ing strings is equivalent to that of small mass M or string ten-
sion o, the conformal limit is recovered at time scales where the
quasiparticle constituents in the Schwinger model are effectively
non-interacting. This is because the dynamics at very early times
is dominated by the expansion with “Hubble rate” H=1/t > M =
q/+/7 = /20 /7. (Note that in 1+ 1 dimensions the charge q has
dimensions of energy.)

Since the entanglement entropy c-function in the conformal
limit is identical for real massless scalar bosons and for massless
Dirac fermions, this indicates that the conformal limit is consis-
tently described with or without bosonization. One may also deter-
mine the entanglement entropy of free massive Dirac fermions us-
ing similar manipulations as described above and the correspond-
ing c-function as given in [16]. The result is shown in Fig. 3. The
approach to the universal plateau at dS/dAn =1/6 for M7 — 0 is
even faster for the free fermion case.

It is interesting to consider further the implications of these re-
sults. For a realistic description of hadronization, entanglement can
well be the most relevant source of entropy. Moreover, if the pro-
cesses are essentially dominated by the plateau in entanglement
entropy density at early times, one would infer that the relation

aS as c

== (9)
n 0dAn 6

in terms of the conformal charge c, is universal.

With this in mind, we can attempt to estimate the relevant
conformal charge for the ‘t Hooft model [22] which is the QCD
analogue of two-dimensional QED. There are no dynamical gluons
in two dimensions and the residual effect of gauge interactions
is negligible at early times when, as noted, the expansion rate is
larger than the gauge coupling. We expect that N. x Ny quarks
with mass m play a role (with No = Ny =3 for realistic ener-
gies); for 1/7 > m, they are effectively massless. Beyond the strict
two dimensional approximation, the QCD string has two additional
degrees of freedom corresponding to its fluctuating transverse co-
ordinates. In the Nambu-Goto action, these correspond to two
massless scalar fields [23]. Taking them into account as free scalars
would lead to ¢ =N¢ x Ny +2=11.
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Unfortunately, extracting the entanglement entropy from ex-
periment is not straightforward. What is measured in ete™ is
the number of charged particles per unit rapidity dN¢,/dn, where
rapidity here is defined with respect to the thrust axis. When
evaluated around mid-rapidity this observable increases with the
collision energy, albeit only logarithmically. Typical values for col-
lision energies between /s =14 GeV and /s = 206 GeV are in
the range dN,/dn ~ 2-4, see [24] for a review. The entropy per
particle S/N can be estimated for a hadron resonance gas in ther-
mal equilibrium, with a typical value S/N¢, = 7.2 [25,26] giving
dS/dn ~ 14-28 for the above mentioned energy range. This is sig-
nificantly higher than our simple estimate. However, the entangle-
ment entropy includes many-body correlations that will lower its
value relative to the entropy estimated from single particle inclu-
sive distributions.

5. Thermal entanglement entropy

A remarkable consequence of our results is that the excitation
spectrum for sufficiently early Bjorken time t exhibits thermal
properties even though the quasiparticles of the system are non-
interacting at these early times! We start by observing that the
entanglement entropy (7) of the Schwinger model for M7 — 0
closely resembles the entanglement entropy of a conformal field
theory at finite temperature in an interval of length [ [18]:

1
S(T,l):%ln <ﬁ sinh(rrlT)) + const. (10)

In fact, the expressions agree if one sets | = T An (in the spirit of
a “direct translation” from flat space to the expanding geometry
with metric ds? = —dt? + 72dn?) and identifies T = 1/(27 1) or
(1) in conventional units.

The nature of the thermal-like state with time-dependent tem-
perature can be made more precise for conformal fields. Towards
this end, we consider a conformal field theory in a spacetime re-
gion that is bounded by two light cones, represented for instance
by the diamond shaped region enclosed by the solid red lines in
Fig. 1. On any hypersurface ¥ with its boundary on the intersec-
tion of the two light cones, one can express the reduced density
matrix as

Tk
PA= ZAe ,
where the so-called modular or entanglement Hamiltonian is a lo-
cal expression given by [27,28] (see also [29])

Za=Tre K, (11)

K =/d2“§-‘”(x) Ty (%). (12)
X

Here T, (x) is the energy-momentum tensor and &V (x) is a vector
field that can be written as

_ 2m
E“(X)—W[(k—X)"(x—p)(k—p)Jr(X—p)“ (13)

x (k=x)(k — p) = (k= p)Hx = p)k —x)],

where k represents the end point of the future light cone and p
the starting point of the past light cone. We note that (12) is of the
same form as a density matrix of a local thermal equilibrium state
with g* = u*/T = &H, the four-vector formed by the inverse of
temperature T and fluid velocity u# [30]. The vector £# vanishes
on the boundary of the region enclosed by the two light cones,
corresponding formally to an infinite temperature. The interpreta-
tion of &% as an inverse temperature vector can be made more

precise in terms of the relative entropy for states that deviate from
the vacuum state considered. More specifically, the probability to
find a localized fluctuation with four-momentum p# in a field is
given by a Boltzmann thermal weight involving £*p,, [28].

As a consequence of causality, the production of hadrons and
resonances as excitations of the vacuum state of the expanding
string is confined to the region formed by the intersection of two
light cones. In the eTe~ case, the past light cone originates at the
collision point p = 0, while the future light cone is determined
by the produced particles. Taking the corresponding end point k
to be timelike with —k?® — oo, but keeping x* finite, leads to
&M = 2mx*. In the Bjorken coordinates of the expanding string,
this corresponds to a fluid velocity u* pointing in t direction and
the time-dependent temperature (1). The argument above is not
restricted to dynamics in 1+ 1 dimensions but holds in general for
the double cone geometry and for conformal fields.

The modular Hamiltonian is known within the double cone re-
gion only for a conformal field theory. Moreover, £* is a conformal
Killing vector; the local equilibrium interpretation can therefore
only hold for conformal fields. However, as we argued, the real-
time dynamics of the Schwinger model at early times is nearly
conformal suggesting that our equilibrium picture of £* represent-
ing the inverse temperature is robust at these early times. If the
system disintegrates shortly thereafter, particles will be produced
according to the distribution (11), thereby providing an alterna-
tive explanation of statistical hadronization to be a consequence
of quantum entanglement. If the system doesn’t fall apart quickly
enough, it is still conceivable that particle production is substan-
tially affected by the quantum entanglement described here. How-
ever in this case, for non-conformal fields, the modular Hamilto-
nian will in general contain additional nonlocal terms with observ-
able corrections.

6. Conclusions

The entanglement of the observable and unobservable regions
of an expanding quantum field theoretical string formed in ete™
collisions can lead to dramatic consequences. At very early times,
the reduced density matrix corresponds to thermal excitations
of a conformal field theory. More generally, it is of mixed state
form with a sizable extensive entanglement entropy per unit ra-
pidity. These results suggest that the long-standing experimental
puzzle of why statistical hadronization models in eTe~ collisions
are successful may be a consequence of quantum entanglement
as opposed to multiparticle scatterings. Since stringlike dynam-
ics is a ubiquitous feature of hadron-hadron collisions as well,
it is also plausible that quantum entanglement may also play a
role in the apparently early thermalization observed at RHIC and
the LHC.

Our findings open up a wide range of possible new nonequi-
librium applications where similar horizon phenomena from en-
tanglement in quantum field theory can play an important role.
While here we formulate our results for relativistic dynamics en-
countered in particle collider experiments, related questions apply
also to non-relativistic systems with a unitary time evolution and
a sound horizon. For instance, it would be very interesting to
investigate the remarkable observation of thermal-like states im-
mediately after a sudden quench in one-dimensional split Bose
condensate experiments in view of our findings [31]. Finally, the
formalism we have developed further in [21] can be extended be-
yond 1+ 1-dimensions and applied to study the role of quantum
entanglement in the spacetime evolution of, e.g., strong color fields
in 3+ 1 dimensions [32-35].



446 J. Berges et al. / Physics Letters B 778 (2018) 442-446

Acknowledgements

This work is part of and supported by the DFG Collaborative Re-
search Centre “SFB 1225 (ISOQUANT)”. R. V.’s research is supported
by the U.S. Department of Energy Office of Science, Office of Nu-
clear Physics, under contracts No. DE-SC0012704. We would like
to thank A. Andronic, D. Kharzeev and K. Reygers for useful discus-
sions. R. V. would like to thank ITP Heidelberg and the Alexander
von Humboldt Foundation for support, and ITP Heidelberg for their
kind hospitality.

References

[1] F. Becattini, Z. Phys. C 69 (3) (1996) 485.
[2] P. Castorina, D. Kharzeev, H. Satz, Eur. Phys. J. C 52 (2007) 187.
[3] A. Andronic, F. Beutler, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B
675 (2009) 312.
[4] E. Becattini, R. Fries, The QCD confinement transition: hadron formation, in:
Relativistic Heavy lon Physics, vol. 23, Landolt-Bornstein, 2010, p. 208.
[5] F. Becattini, P. Castorina, A. Milov, H. Satz, Eur. Phys. J. C 66 (2010) 377.
[6] N. Fischer, T. Sjostrand, J. High Energy Phys. 1701 (2017) 140.
[7] H.T. Elze, Phys. Lett. B 369 (1996) 295.
[8] H.T. Elze, Nucl. Phys. B 436 (1995) 213.
[9] A. Bialas, Phys. Lett. B 466 (1999) 301.
[10] S.V. Akkelin, Eur. Phys. J. A 53 (12) (2017) 232.
[11] W.G. Unruh, Phys. Rev. D 14 (1976) 870.
[12] B. Andersson, G. Gustafson, G. Ingelman, T. Sjéstrand, Phys. Rep. 97 (1983) 31.
[13] S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock, B.R. Webber, Phys. Lett. B 269
(1991) 432.

[14] Y. Frishman, J. Sonnenschein, Non-Perturbative Field Theory: From Two-
Dimensional Conformal Field Theory to QCD in Four Dimensions, Cambridge
University Press, Cambridge, 2010.

[15] F. Hebenstreit, J. Berges, D. Gelfand, Phys. Rev. Lett. 111 (2013) 201601.

[16] H. Casini, M. Huerta, ]J. Phys. A 42 (2009) 504007.

[17] C. Holzhey, E. Larsen, F. Wilczek, Nucl. Phys. B 424 (1994) 443.

[18] P. Calabrese, J.L. Cardy, ]. Stat. Mech. 0406 (2004) PO6002.

[19] P. Calabrese, J. Cardy, J. Phys. A 42 (2009) 504005.

[20] M. Goykhman, Phys. Rev. D 92 (2) (2015) 025048.

[21] J. Berges, S. Floerchinger, R. Venugopalan, arXiv:1712.09362.

[22] G. 't Hooft, Nucl. Phys. B 75 (1974) 461.

[23] B.B. Brandt, M. Meineri, Int. ]. Mod. Phys. A 31 (22) (2016) 1643001.

[24] J.F. Grosse-Oetringhaus, K. Reygers, J. Phys. G 37 (2010) 083001.

[25] A. Andronic, P. Braun-Munzinger, J. Stachel, M. Winn, Phys. Lett. B 718 (2012)
80.

[26] S. Pal, S. Pratt, Phys. Lett. B 578 (2004) 310.

[27] H. Casini, M. Huerta, R.C. Myers, J. High Energy Phys. 1105 (2011) 036.

[28] R. Arias, D. Blanco, H. Casini, M. Huerta, Phys. Rev. D 95 (6) (2017) 065005.

[29] P. Candelas, ].S. Dowker, Phys. Rev. D 19 (1979) 2902.

[30] D.N. Zubarev, A.V. Prozorkevich, S.A. Smolyanskii, Theor. Math. Phys. 40 (1979)
821;

Ch.G. Van Weert, Ann. Phys. 140 (1982) 133;
H.A. Weldon, Phys. Rev. D 26 (1982) 1394;
See also F. Becattini, Phys. Rev. Lett. 108 (2012) 244502.

[31] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets,
D.A. Smith, E. Demler, ]J. Schmiedmayer, Science 337 (2012) 6100.

[32] A. Kovner, M. Lublinsky, Phys. Rev. D 92 (3) (2015) 034016.

[33] D.E. Kharzeev, E.M. Levin, Phys. Rev. D 95 (11) (2017) 114008.

[34] ]J.C. Martens, ].P. Ralston, J.D.T. Takaki, Eur. Phys. J. C 78 (1) (2018) 5.

[35] E. Shuryak, I. Zahed, arXiv:1707.01885 [hep-ph].


http://refhub.elsevier.com/S0370-2693(18)30086-8/bib426563617474696E693A313939356966s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib436173746F72696E613A323030376562s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib416E64726F6E69633A323030386576s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib416E64726F6E69633A323030386576s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib426563617474696E693A323030396676s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib426563617474696E693A323030396676s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib426563617474696E693A32303130736Bs1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib466973636865723A323031367A7A73s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib456C7A653A31393934686As1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib456C7A653A313939347161s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib4269616C61733A313939397A67s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib416B6B656C696E3A3230313672686Ds1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib556E7275683A313937366462s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib416E64657273736F6E3A313938336961s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib436174616E693A31393931686As1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib436174616E693A31393931686As1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib46726973686D616E3A323031307A7As1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib46726973686D616E3A323031307A7As1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib46726973686D616E3A323031307A7As1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib486562656E7374726569743A32303133626161s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib436173696E693A323030397372s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib486F6C7A6865793A313939347765s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib43616C6162726573653A323030346575s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib43616C6162726573653A323030397179s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib476F796B686D616E3A32303135736761s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib42465632s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib74486F6F66743A31393734706E6Cs1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib4272616E64743A32303136787370s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib47726F7373654F657472696E67686175733A323030396B7As1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib416E64726F6E69633A323031327574s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib416E64726F6E69633A323031327574s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib50616C3A32303033727As1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib436173696E693A323031316B76s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib41726961733A323031366E6970s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib43616E64656C61733A313937386766s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib62657461s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib62657461s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib62657461s2
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib62657461s3
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib62657461s4
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib636F6C64676173s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib636F6C64676173s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib4B6F766E65723A32303135686761s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib4B6861727A6565763A32303137717A73s1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib4D617274656E733A3230313763766As1
http://refhub.elsevier.com/S0370-2693(18)30086-8/bib5368757279616B3A3230313770687As1

	Thermal excitation spectrum from entanglement in an expanding quantum string
	1 Introduction
	2 Model of expanding strings
	3 Dynamics of expansion
	4 Entanglement entropy of a rapidity interval
	5 Thermal entanglement entropy
	6 Conclusions
	Acknowledgements
	References


