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A surprising result in e+e− collisions is that the particle spectra from the string formed between 
the expanding quark–antiquark pair have thermal properties even though scatterings appear not to 
be frequent enough to explain this. We address this problem by considering the finite observable 
interval of a relativistic quantum string in terms of its reduced density operator by tracing over the 
complement region. We show how quantum entanglement in the presence of a horizon in spacetime for 
the causal transfer of information leads locally to a reduced mixed-state density operator. For very early 
proper time τ , we show that the entanglement entropy becomes extensive and scales with the rapidity. 
At these early times, the reduced density operator is of thermal form, with an entanglement temperature 
Tτ = h̄/(2πkBτ ), even in the absence of any scatterings.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A longstanding puzzle in e+e− collisions is that the hadron 
spectra measured appear thermal with features that can be char-
acterized in terms of a common temperature [1–6]. The apparent 
thermal origin of the multiparticle production is surprising because 
scatterings appear not to be frequent enough for thermalization to 
occur and therefore demands an alternative explanation [2,7–10].

We argue in this letter that this apparent thermalization is an 
intrinsically quantum phenomenon arising from the entanglement 
between observable and unobservable regions in an expanding 
string. The observable region is described in terms of a reduced 
density operator by tracing over the complement region, which is 
bounded by the Minkowski spacetime horizon for the causal trans-
fer of information. We show that the entanglement of the quantum 
vacuum accross this horizon leads to dramatic macroscopic quan-
tum effects. In particular, for very early proper time τ , we discover 
that the entanglement entropy is extensive and scales with the ra-
pidity. At these early times, a conformal symmetry emerges for the 
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expanding system and the entanglement generates a reduced den-
sity matrix of thermal form, with the temperature

Tτ = h̄

2πkBτ
, (1)

even in the absence of any scatterings.
Our results establish a novel class of horizon phenomena in 

quantum field theory, featuring an instantaneous thermal excita-
tion spectrum from a vacuum pure state. In contrast to the well-
known example of an event horizon in the vicinity of a black 
hole, which leads to Hawking radiation, or the related Unruh tem-
perature for a class of accelerated observers, our setting does 
not involve acceleration and it is non-stationary [11]. Specifically, 
the Unruh acceleration a of an observer in the Rindler-wedge of 
Minkowski spacetime at a spatial position x = c2/a generates a 
space-dependent temperature Tx = h̄c/(2πkB x), while the time-
dependent temperature (1) applies to the initial stages in the for-
ward light cone with crucial applications to e+e− but also hadron–
hadron collisions.

2. Model of expanding strings

Models that describe e+e− collisions successfully [12,13] rely 
on the Schwinger mechanism of particle production in 1 + 1-
dimensional quantum electrodynamics (QED); a recent compre-
hensive discussion of the difficulties presented by thermal-like 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2018.01.068
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:berges@thphys.uni-heidelberg.de
mailto:floerchinger@thphys.uni-heidelberg.de
mailto:raju@bnl.gov
https://doi.org/10.1016/j.physletb.2018.01.068
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2018.01.068&domain=pdf


J. Berges et al. / Physics Letters B 778 (2018) 442–446 443
spectra in such models can be found in [6]. We will work within 
this Schwinger model framework to treat the dynamics of the 
expanding string formed between the relativistic quark–antiquark 
pair. We choose the coordinate system such that the trajectories 
are in natural units z = ±t , x = y = 0, and we assume that the 
strings are essentially confined to the z-direction. Bjorken coordi-
nates are convenient, with z = τ sinh(η) and t = τ cosh(η) with 
rapidity η and proper time τ = √

t2 − z2. In these coordinates, the 
Minkowski space metric in the confined space can be expressed as 
ds2 = −dτ 2 + τ 2dη2.

The Schwinger model is particularly simple for a single mass-
less Dirac fermion. In this case, it can be bosonized to a free 
massive scalar theory with the action [14]

S =
∫

d2x
√

g

{
−1

2
gμν∂μφ∂νφ − 1

2
M2φ2

}
. (2)

For convenience, we have employed general coordinates with the 
two-dimensional metric gμν . The Schwinger model bosons φ cor-
respond to dipoles that are quadratic in the original fermion field. 
Their mass is proportional to the U(1) charge, M = q/

√
π ; likewise, 

the string tension satisfies σ = q2/2. Bosonization also works for a 
nonvanishing fermion mass m but we will not consider that case 
here.

3. Dynamics of expansion

For the bosonized Schwinger model, a solution corresponding 
to an expanding string stretched between two external quarks on 
their lightcones is found as a rapidity invariant solution to the 
equation of motion, ∂2

τ φ̄ + ∂τ φ̄/τ + M2φ̄ = 0. The boundary condi-
tion for τ → 0+ is fixed by the requirement that the electric field 
E = qφ/

√
π approaches the U(1) charge of the external quarks 

E → qe. This gives φ̄(τ ) → √
πqe/q, and with this boundary con-

dition one finds φ̄(τ ) = √
π(qe/q) J0(Mτ ). The oscillations in this 

solution are related to multiple string breaking [15].
The solution φ̄ = 〈φ(x)〉 should be understood as a field expec-

tation value, or equivalently, as a coherent field. Further informa-
tion is contained in correlation functions of the fields φ(x) and 
their conjugate momentum fields π(x), which specify a density 
matrix ρ at some initial time or on an appropriate Cauchy hyper-
surface. Because the action (2) is quadratic in the field φ, we also 
assume that this density matrix is of Gaussian form. Gaussian den-
sity matrices are fixed entirely in terms of the expectation values 
and connected two-point correlation functions.

4. Entanglement entropy of a rapidity interval

To discuss processes, such as the formation of hadrons or res-
onances during the relativistic expansion of the string, we will 
assume that the dynamics is local in a space-like region A within 
the future light cone of the spacetime instant of an e+e− collision. 
This local dynamics can be described by the reduced density ma-
trix ρA , defined as the trace of ρ over the complement region B:

ρA = TrBρ . (3)

If the fields φ in the regions A and B are entangled, the reduced 
density matrix ρA is of mixed form, even if the full density matrix 
ρ is pure. The degree of entanglement, and therefore the devia-
tion of ρA from a pure state, can be characterized in terms of the 
entanglement entropy,

S A = −Tr {ρA ln(ρA)} . (4)
Fig. 1. Bjorken coordinates and causal development of a rapidity interval 
(−
η/2, 
η/2) at fixed proper time τ . The dashed red line corresponds to region A
while the complement region B is composed of the rapidity intervals (−∞, −
η/2)

and (
η/2, ∞) at fixed Bjorken time τ . For 
η → ∞ the causal development re-
gion approaches the lightcone. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

For most problems in quantum field theory, the determina-
tion of the reduced density matrix ρA , as well as of the entan-
glement entropy S A , are formidable tasks. Results are currently 
known for free field theories in static situations [16], or conformal 
field theories [17–19]. For a discussion of entanglement entropy 
in the ’t Hooft model, see [20]. The treatment of entanglement 
in nonequilibrium situations is especially difficult. In a companion 
paper [21], we develop real-time techniques for (relative) entangle-
ment entropies of general Gaussian states in quantum field theory.

In the following, we will take advantage of the fact that if the 
density matrix ρ is Gaussian (in the field theoretic sense) then this 
is also the case for the reduced density matrix ρA of any equilib-
rium or nonequilibrium state. The entanglement entropy S A in this 
case is then given by [21]

S A = 1

2
TrA

{
D ln(D2)

}
, (5)

where the operator trace is restricted to the region A and the ma-
trix D consists of connected correlation functions. For the example 
of the bosonized Schwinger model with field φ and conjugate mo-
mentum field π , we obtain

D(x, y) =
(−i〈φ(x)π(y)〉c i〈φ(x)φ(y)〉c

−i〈π(x)π(y)〉c i〈π(x)φ(y)〉c

)
. (6)

The expectation value 〈· · · 〉 in eq. (6) can equivalently be taken 
with respect to the full density matrix ρ or the reduced density 
matrix ρA . For the specific case of the expanding relativistic string, 
we will compute the trace in eq. (5) by taking A to be the rapid-
ity interval (−
η/2, 
η/2) at fixed Bjorken time τ , corresponding 
to the dashed red line in Fig. 1. The complement region B cor-
responds to the sum of the rapidity intervals (−∞, −
η/2) and 
(
η/2, ∞) at fixed Bjorken time τ . Note that any process (e.g. a 
measurement) within the causal development region delimited by 
the solid red line in Fig. 1 is by reasons of causality at most sen-
sitive to the region A while the density matrix in the complement 
region B cannot affect such processes.

Because the field expectation values φ̄(x) = 〈φ(x)〉 and π̄ (x) =
〈π(x)〉 do not enter (5) and (6), the entanglement entropy for 
an expanding string described by the massless Schwinger model 
(corresponding to a coherent state specified by φ̄(x) and π̄ (x)) 
is the same as the one of the vacuum (which is a coherent 
state with vanishing field expectation values). Moreover, the en-
tropy does not change under unitary evolution with the boundary 
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Fig. 2. Entanglement entropy density dS/d
η as a function of the rapidity interval 

η in the bosonized massless Schwinger model for the case of a massive scalar bo-
son. The curves (from left to right) correspond to Mτ = 1, Mτ = 10−1, Mτ = 10−2, 
Mτ = 10−3, Mτ = 10−4, and Mτ = 10−5. For very early times, Mτ → 0, a plateau 
forms corresponding to the asymptotic conformal case dS/d
η → 1/6 (dashed 
line).

points kept fixed. It can therefore equivalently be evaluated in the 
interval (−
z/2, 
z/2) with 
z = 2τ sinh(
η/2) at fixed time 
t = τ cosh(
η/2), corresponding to the dotted red line in Fig. 1.

Following this identification, our computation of the entangle-
ment entropy reduces to an eigenvalue problem for which one can 
employ a discrete basis involving Fourier expansion on a finite 
interval. The trace in (5) then involves contour integrals in mo-
mentum space, where the nonvanishing contributions arise from 
branch cuts [21]. We emphasize that these contributions would be 
missing if naive discretizations with periodic boundary conditions 
– as are often employed in calculations of nonequilibrium dynam-
ics – are assumed.

We first consider the massless limit M = 0. Here, our result for 
the entanglement entropy corresponds to the expression obtained 
previously for conformal field theories [17–19]. In our case, the 
result can be expressed as

S(τ ,
η) = c

3
ln (2τ sinh(
η/2)/ε) + constant, (7)

where c is the conformal central charge and ε is a length scale 
corresponding to an ultraviolet cutoff. The additive constant is 
not universal, but the derivative of S with respect to the in-
terval length 
z is. This implies τ∂ S/∂τ = c/3 and ∂ S/∂
η =
(c/6) coth(
η/2). For a large rapidity interval 
η � 1, one has 
S = (c/6)[
η + 2 ln(τ )] + const. This demonstrates the existence 
of a time independent piece of the entanglement entropy that is 
extensive in rapidity and a 
η-independent piece that grows log-
arithmically with the proper time.

Turning now to the non-conformal free massive scalars of the 
Schwinger model, the universal part of the entanglement entropy 
behaves just as in the conformal case for M
z 	 1 and decays for 
M
z � 1 [16]. We are particularly interested in the dependence 
on 
η:

∂

∂
η
S(τ ,
η) = ∂ S

∂ ln
z

∂ ln
z

∂
η

= cE (2Mτ sinh(
η/2)) coth(
η/2)/2 ,

(8)

where cE (M
z) = 
z∂ S/∂
z is the entanglement entropy c-
function for a massive scalar field. Taking the conformal limit, 
one obtains, as anticipated, that cE (0) = c/3 = 1/3. For large val-
ues of the argument, the function has the exponential decay form 
cE (x) → xK1(2x)/4.

Employing the numerically known expression for cE (x) [16], 
we can compute dS/d
η for the bosonized massless Schwinger 
model. The result is shown in Fig. 2 for different values of Mτ . 
Fig. 3. Entanglement entropy density dS/d
η as a function of the rapidity interval 

η for a free massive Dirac fermion field. The curves (from left to right) correspond 
to Mτ = 1, Mτ = 10−1, Mτ = 10−2, Mτ = 10−3, Mτ = 10−4, and Mτ = 10−5. In 
the limit of early time, Mτ → 0, a plateau forms at the asymptotic value dS/d
η →
1/6, corresponding to the conformal case (dashed line).

We first note that for short times τ (compared to the mass M or 
string tension σ ), there is substantial entanglement over rapidity 
intervals 
η = O(1). For intermediate values of Mτ and 
η, one 
observes that ∂ S/∂
η approaches a plateau at 1/6 as a function 
of 
η at early times. We also observe that it decays both for very 
large 
η and for later times τ .

Remarkably, because the limit of very early times for expand-
ing strings is equivalent to that of small mass M or string ten-
sion σ , the conformal limit is recovered at time scales where the 
quasiparticle constituents in the Schwinger model are effectively 
non-interacting. This is because the dynamics at very early times 
is dominated by the expansion with “Hubble rate” H = 1/τ � M =
q/

√
π = √

2σ/π . (Note that in 1 + 1 dimensions the charge q has 
dimensions of energy.)

Since the entanglement entropy c-function in the conformal 
limit is identical for real massless scalar bosons and for massless 
Dirac fermions, this indicates that the conformal limit is consis-
tently described with or without bosonization. One may also deter-
mine the entanglement entropy of free massive Dirac fermions us-
ing similar manipulations as described above and the correspond-
ing c-function as given in [16]. The result is shown in Fig. 3. The 
approach to the universal plateau at dS/d
η = 1/6 for Mτ → 0 is 
even faster for the free fermion case.

It is interesting to consider further the implications of these re-
sults. For a realistic description of hadronization, entanglement can 
well be the most relevant source of entropy. Moreover, if the pro-
cesses are essentially dominated by the plateau in entanglement 
entropy density at early times, one would infer that the relation

∂ S

∂η
= ∂ S

∂
η
= c

6
, (9)

in terms of the conformal charge c, is universal.
With this in mind, we can attempt to estimate the relevant 

conformal charge for the ‘t Hooft model [22] which is the QCD 
analogue of two-dimensional QED. There are no dynamical gluons 
in two dimensions and the residual effect of gauge interactions 
is negligible at early times when, as noted, the expansion rate is 
larger than the gauge coupling. We expect that Nc × N f quarks 
with mass m play a role (with Nc = N f = 3 for realistic ener-
gies); for 1/τ � m, they are effectively massless. Beyond the strict 
two dimensional approximation, the QCD string has two additional 
degrees of freedom corresponding to its fluctuating transverse co-
ordinates. In the Nambu–Goto action, these correspond to two 
massless scalar fields [23]. Taking them into account as free scalars 
would lead to c = Nc × N f + 2 = 11.
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Unfortunately, extracting the entanglement entropy from ex-
periment is not straightforward. What is measured in e+e− is 
the number of charged particles per unit rapidity dNch/dη, where 
rapidity here is defined with respect to the thrust axis. When 
evaluated around mid-rapidity this observable increases with the 
collision energy, albeit only logarithmically. Typical values for col-
lision energies between 

√
s = 14 GeV and 

√
s = 206 GeV are in 

the range dNch/dη ≈ 2–4, see [24] for a review. The entropy per 
particle S/N can be estimated for a hadron resonance gas in ther-
mal equilibrium, with a typical value S/Nch = 7.2 [25,26] giving 
dS/dη ≈ 14–28 for the above mentioned energy range. This is sig-
nificantly higher than our simple estimate. However, the entangle-
ment entropy includes many-body correlations that will lower its 
value relative to the entropy estimated from single particle inclu-
sive distributions.

5. Thermal entanglement entropy

A remarkable consequence of our results is that the excitation 
spectrum for sufficiently early Bjorken time τ exhibits thermal 
properties even though the quasiparticles of the system are non-
interacting at these early times! We start by observing that the 
entanglement entropy (7) of the Schwinger model for Mτ → 0
closely resembles the entanglement entropy of a conformal field 
theory at finite temperature in an interval of length l [18]:

S(T , l) = c

3
ln

(
1

π T ε
sinh(π lT )

)
+ const . (10)

In fact, the expressions agree if one sets l = τ
η (in the spirit of 
a “direct translation” from flat space to the expanding geometry 
with metric ds2 = −dτ 2 + τ 2dη2) and identifies T = 1/(2πτ) or 
(1) in conventional units.

The nature of the thermal-like state with time-dependent tem-
perature can be made more precise for conformal fields. Towards 
this end, we consider a conformal field theory in a spacetime re-
gion that is bounded by two light cones, represented for instance 
by the diamond shaped region enclosed by the solid red lines in 
Fig. 1. On any hypersurface � with its boundary on the intersec-
tion of the two light cones, one can express the reduced density 
matrix as

ρA = 1

Z A
e−K , Z A = Tr e−K , (11)

where the so-called modular or entanglement Hamiltonian is a lo-
cal expression given by [27,28] (see also [29])

K =
∫
�

d�μ ξν(x) Tμν(x). (12)

Here Tμν(x) is the energy–momentum tensor and ξν(x) is a vector 
field that can be written as

ξμ(x) = 2π
(k−p)2 [(k − x)μ(x − p)(k − p) + (x − p)μ

× (k − x)(k − p) − (k − p)μ(x − p)(k − x)] , (13)

where k represents the end point of the future light cone and p
the starting point of the past light cone. We note that (12) is of the 
same form as a density matrix of a local thermal equilibrium state 
with βμ = uμ/T = ξμ , the four-vector formed by the inverse of 
temperature T and fluid velocity uμ [30]. The vector ξμ vanishes 
on the boundary of the region enclosed by the two light cones, 
corresponding formally to an infinite temperature. The interpreta-
tion of ξμ as an inverse temperature vector can be made more 
precise in terms of the relative entropy for states that deviate from 
the vacuum state considered. More specifically, the probability to 
find a localized fluctuation with four-momentum pμ in a field is 
given by a Boltzmann thermal weight involving ξμ pμ [28].

As a consequence of causality, the production of hadrons and 
resonances as excitations of the vacuum state of the expanding 
string is confined to the region formed by the intersection of two 
light cones. In the e+e− case, the past light cone originates at the 
collision point p = 0, while the future light cone is determined 
by the produced particles. Taking the corresponding end point k
to be timelike with −k2 → ∞, but keeping xμ finite, leads to 
ξμ = 2πxμ . In the Bjorken coordinates of the expanding string, 
this corresponds to a fluid velocity uμ pointing in τ direction and 
the time-dependent temperature (1). The argument above is not 
restricted to dynamics in 1 + 1 dimensions but holds in general for 
the double cone geometry and for conformal fields.

The modular Hamiltonian is known within the double cone re-
gion only for a conformal field theory. Moreover, ξμ is a conformal 
Killing vector; the local equilibrium interpretation can therefore 
only hold for conformal fields. However, as we argued, the real-
time dynamics of the Schwinger model at early times is nearly 
conformal suggesting that our equilibrium picture of ξμ represent-
ing the inverse temperature is robust at these early times. If the 
system disintegrates shortly thereafter, particles will be produced 
according to the distribution (11), thereby providing an alterna-
tive explanation of statistical hadronization to be a consequence 
of quantum entanglement. If the system doesn’t fall apart quickly 
enough, it is still conceivable that particle production is substan-
tially affected by the quantum entanglement described here. How-
ever in this case, for non-conformal fields, the modular Hamilto-
nian will in general contain additional nonlocal terms with observ-
able corrections.

6. Conclusions

The entanglement of the observable and unobservable regions 
of an expanding quantum field theoretical string formed in e+e−
collisions can lead to dramatic consequences. At very early times, 
the reduced density matrix corresponds to thermal excitations 
of a conformal field theory. More generally, it is of mixed state 
form with a sizable extensive entanglement entropy per unit ra-
pidity. These results suggest that the long-standing experimental 
puzzle of why statistical hadronization models in e+e− collisions 
are successful may be a consequence of quantum entanglement 
as opposed to multiparticle scatterings. Since stringlike dynam-
ics is a ubiquitous feature of hadron–hadron collisions as well, 
it is also plausible that quantum entanglement may also play a 
role in the apparently early thermalization observed at RHIC and 
the LHC.

Our findings open up a wide range of possible new nonequi-
librium applications where similar horizon phenomena from en-
tanglement in quantum field theory can play an important role. 
While here we formulate our results for relativistic dynamics en-
countered in particle collider experiments, related questions apply 
also to non-relativistic systems with a unitary time evolution and 
a sound horizon. For instance, it would be very interesting to 
investigate the remarkable observation of thermal-like states im-
mediately after a sudden quench in one-dimensional split Bose 
condensate experiments in view of our findings [31]. Finally, the 
formalism we have developed further in [21] can be extended be-
yond 1 + 1-dimensions and applied to study the role of quantum 
entanglement in the spacetime evolution of, e.g., strong color fields 
in 3 + 1 dimensions [32–35].
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