
Dilaton field contribution to noncommutativity ∗

B. Sazdović†

Institute of Physics, 11001 Belgrade, P.O.Box 57, Serbia

Abstract

It is known that the Dp-brane world-volume is non-commutative
if open string ends on a Dp-brane with Neveu-Schwarz field Bμν . We
will show that the dilaton field Φ turns the conformal part of the
world-sheet metric to new non-commutative variable and the coordi-
nate in ∂μΦ direction to commutative one. We apply the canonical
method and treat the boundary conditions as constraints.

1. Introduction

Quantization of the open string, ending on Dp-brane with nontrivial anti-
symmetric tensor field Bμν , leads to non-commutativity of Dp-brane world-
volume. This result has been obtained in the literature [1]-[3], for constant
metric Gμν and antisymmetric tensor Bμν .

In this lecture notes, following ref.[4], we include the linear part of the
dilaton field Φ, which turns the coordinate in ∂μΦ direction to commutative
one. We preserve the condition for the background fields Gμν and Bμν to
be constant, and impose the same assumption for ∂μΦ. This choice is
consistent with the space-time field equation, obtained from the quantum
world-sheet conformal invariance. The noncommutative properties of this
theory, have been studied in refs. [4], [5].

In the above choice of background, conformal part of the world-sheet
metric, F , is a dynamical variable. So, beside the known boundary condi-
ton γ

(0)
i |∂Σ = 0, corresponding to the Dp-brane coordinate xi there is an

additional one γ(0)|∂Σ = 0, corresponding to the variable F . In ref. [4], the
conformal part of the metric has been fixed and the additional boundary
condition, γ(0)|∂Σ = 0, has been lost.

Following the paper [4], we apply the canonical method and treat bound-
ary conditions as canonical constraints. We show that they are of the second
class. Instead to use the Dirac brackets, as in ref.[3], we explicitly solved the
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constraints in terms of the open string variables: the effective coordinate
qi and the effective conformal part of the world-sheet metric f .

We find the energy-momentum tensor components in terms of the open
string variables. They have exactly the same form as original ones, but
with different Dp-brane background fields. The explicit dependence on
antisymmetric field disappears and it contributes only to the effective metric
tensor G̃ij . This metric tensor and the non-commutativity parameters,
explicitly depend on the dilaton field. The effective dilaton field is linear
in the open string coordinate qi.

We calculate Poisson brackets of all the variables. We find that the
conformal part of the metric does not commute with the Dp-brane coordi-
nates, on the world-sheet boundary. On the other hand, there exists one
Dp-brane coordinate, x ≡ xμ∂μΦ, which commutes with all other variables.

In ref.[5] the commutative direction is a consequence of the relation,
∂νΦ Bν

μ = 0. In particular, this condition reduces our effective met-
ric tensor and non-commutativity parameter to ones of ref.[5], while non-
commutativity parameter between coordinates and conformal factor van-
ishes. Consequently, our results are more general, because they valid with-
out above restriction on background fields. Boundary conditions, which we
obtained from the action principle, are enough to fulfill requirement that
there is no net flow of energy and momentum from the boundary.

2. The model

We are going to consider the action [6]-[10]

S = κ

∫
Σ

d2ξ
√−g

{[
1
2
gαβGμν(x) +

εαβ

√−g
Fμν(x)

]
∂αxμ∂βxν + Φ(x)R(2)

}
,

(1)
which describes propagation of the bosonic open string. By xμ(ξ) , (μ =
0, 1, ..., D − 1), we denote the D dimensional space-time coordinates, and
chose the gauge so that xi (i = 0, 1, ...p) are the Dp-bane coordinates.
Here, ξα (α = 0, 1) are coordinates of the two dimensional world-sheet Σ,
while gαβ is the intrinsic world-sheet metric and R(2) is the corresponding
scalar curvature. The string propagates in the non-trivial, xμ dependent,
background described by: metric tensor Gμν , antisymmetric tensor field
Bμν = −Bνμ, dilaton field Φ and U(1) gauge field Ai living on the Dp-
brane. The modified Born-Infeld field strength

Fμν = Bμν + (∂iAj − ∂jAi)δi
μδj

ν , (2)

incorporate the antisymmetric field with the field strength of the vector
field. We will use the notation ∂α ≡ ∂

∂ξα , ∂μ ≡ ∂
∂xμ and ∂i ≡ ∂

∂xi .
In the conformal gauge

gαβ = e2F ηαβ , (3)
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we have R(2) = 2ΔF , and the action takes the form

S = κ

∫
Σ

d2ξ

{[
1
2
ηαβGμν(x) + εαβFμν(x)

]
∂αxμ∂βxν + 2Φ(x)e2F ΔF

}
.

(4)
As a consequence of nontrivial dilaton field, the action explicitly depends
on the metric tensor component F and looses the conformal invariance.

2.1. Solution of the space-time field equations
The condition for the world-sheet conformal invariance produces the space-
time field equations [7]

βG
μν ≡ Rμν − 1

4FμρσFμ
ρσ + 2Dμaν = 0 , (5)

βF
μν ≡ DρFρ

μν − 2aρFρ
μν = 0 , (6)

βΦ ≡ 4πκ
D − 26

3
− R + 1

12FμρσFμρσ − 4Dμaμ + 4a2 = 0 , (7)

were aμ = ∂μΦ is gradient of the dilaton field, Fμρσ is field strength of
the field Fμν and Rμν , R and Dμ are Ricci tensor, scalar curvature and
covariant derivative with respect to the space-time metric. For

a2 = κπ
26 − D

3
, (8)

there exists the exact solution of the form (see ref.[10])

Gμν(x) = Gμν = const , Fμν(x) = Fμν = const ,

Φ(x) = Φ0 + aμxμ . (aμ = const) (9)

As usual, the central charge, c = D + 3
κπa2, is equal to 26. We require

a2 �= 0, so that in the present example, the number of space-time dimensions
is smaller then 26.

For simplicity, we suppose that antisymmetric tensor and the gradient
of dilaton field are nontrivial only along directions of the Dp-brane world-
volume, so that Fμν → Fij and aμ → ai. We also chose coordinates so that
Gμν = 0 for μ = i ∈ {0, 1, .., p} and ν = a ∈ {p + 1, ..., D − 1}.

2.2. Canonical analyzes
The canonical analysis of the above action has been done in ref.[11]. The
canonical variables of the theory are xi, πi, F and π. The Hamiltonian
density, which corresponds to Dp-brane part, Hc = T− − T+, is defined in
terms of energy momentum tensor components

T± = ∓ 1
4κ

(
GijJ±iJ±j +

j

a2
iΦ±
)

+
1
2
(iΦ′

± − F ′iΦ±) . (10)
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They satisfy two independent Virasoro algebras

{T±, T±} = −[T±(σ) + T±(σ̄)]δ′ , {T±, T∓} = 0 .

The currents on the Dp-brane have the form

J i
± = P T ijj±j +

ai

2a2
iΦ± , iΦ± = π ± 2κaix

i′ , (11)

j±i = πi + 2κΠ±ijx
j ′ , j = aij±i − 1

2
iΦ± , (12)(

Π±ij ≡ Fij ± 1
2
Gij

)
. (13)

We also introduced the projection operators

PL
ij =

aiaj

a2
, P T

ij = Gij − aiaj

a2
. (14)

3. Canonical treatment of the boundary conditions

3.1. Derivation of the boundary conditions
The evolution of the open string is described by both the equations of
motion and the boundary conditions. The field equations are standard
Δxμ = 0 and ΔF = 0. Generally, the boundary conditions are of the form(

∂S

∂x′μ δxμ +
∂S

∂F ′ δF
)
|∂Σ = 0 . (15)

We use Neumann boundary conditions for Dp-brane coordinates xi and
for conformal part of the world-sheet metric F , allowing arbitrary variations
δxi and δF on the string end points. It means that

γ
(0)
i |∂Σ = 0 , γ(0)|∂Σ = 0 , (16)

where we introduced the variables

γ
(0)
i ≡ δS

δx′i = κ(−Gijx
j′ + 2Fij ẋ

j − 2aiF
′) , γ(0) ≡ δS

δF ′ = −2κaix
i′ .
(17)

Compared with the dilaton free case, the second condition, relating to the
additional variable F , is a new one.

For the other coordinates we use the Dirichlet boundary conditions,
requiring the edges of the string to be fixed, δxa|∂Σ = 0.

In terms of the currents the variables (17) obtain the form

γ
(0)
i = γi− + γi+ , γi± ≡ Π∓ijJ

j
± ∓ ai

2
iF± , (18)

γ(0) = γ− + γ+ , γ± ≡ ∓1
2
iΦ± . (19)
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3.2. Canonical constraints and consistency conditions

We will consider expressions, γ
(0)
i |∂Σ and γ(0)|∂Σ, as canonical constraints.

The constant background fields Gij ,Fij and ai simplify Poisson brackets

{Hc, J±A} = ∓J ′
±A, J±A = {J±i, iF±, iΦ±, γ±i, γ±} . (20)

The Diarc consistency procedure generate two infinity sets of new condi-
tions γ

(n)
i |∂Σ = 0 and γ(n)|∂Σ = 0, (n ≥ 1), where

γ
(n)
i ≡ {Hc, γ

(n−1)
i } = ∂n

σ {γi− + (−1)nγi+} , (21)

γ(n) ≡ {Hc, γ
(n−1)} = ∂n

σ [γ− + (−1)nγ+] . (22)

We can rewrite all the conditions in the compact form

Γi(σ) ≡
∑
n≥0

σn

n!
γ

(n)
i (0) = γi−(σ) + γi+(−σ) , (23)

Γ(σ) ≡
∑
n≥0

σn

n!
γ(n)(0) = γ−(σ) + γ+(−σ) , (24)

and similarly on the other string endpoint

Γ̄i(σ) ≡
∑
n≥0

(σ − π)n

n!
γ

(n)
i (π) = γi−(σ) + γi+(2π − σ) , (25)

Γ̄(σ) ≡
∑
n≥0

(σ − π)n

n!
γ(n)(π) = γ−(σ) + γ+(2π − σ) . (26)

These expressions differ from the boundary conditions, (18)-(19), only in
the arguments of the positive chirality currents. From (23)-(26) we can
conclude that all positive chirality currents and consequently, all variables
xi, πi, F and π are periodic, for σ → σ + 2π.

As a consequence of (20) we have

{Hc, Γi(σ)} = Γ′
i(σ) , {Hc, Γ(σ)} = Γ′(σ) , (27)

and all constraints weakly commute with hamiltonian. Therefore, there are
no more constraints.

The constraint algebra has the form

{Γi(σ), Γj(σ̄)} = −κG̃ijδ
′(σ − σ̄) , {Γ(σ), Γ(σ̄)} = 0 , (28)

{Γi(σ), Γ(σ̄)} = −2κaiδ
′(σ − σ̄) , (29)

were we introduced the effective metric tensor

G̃ij ≡ Gij − 4FikP
TkqFqj . (30)
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In agreement with ref.[2] we will refer to it as the open string metric tensor,
— the metric tensor seen by the open string.

The variables possessing indices raised with inverse effective metric ten-
sor, G̃ij , we marked by tilde: Ṽ i = G̃ijVj , and Ṽ 2 = G̃ijViVj . We also
preserve standard notation, V i = GijVj and V 2 = GijViVj .

Direct calculation yields

{ΓA(σ), ΓB(σ̄)} = −κ

∣∣∣∣∣ G̃ij 2ai

2aj 0

∣∣∣∣∣ δ′(σ − σ̄) ≡ ΔABδ′(σ − σ̄) , (31)

and

 ≡ det
AB = −4(−κ)p+2ã2 det G̃ij , (32)

where ΓA = {Γi , Γ}. We assume ã2 �= 0, so that rank
AB = p + 2 and all
constraints are of the second class (except the zero mode, see [12]).

3.3. Solution of the boundary conditions
The periodicity condition solves the second set of constraints (25)-(26). To
solve the first one (23)-(24) we introduce the open string variables

qi(σ) =
1
2

[
xi(σ) + xi(−σ)

]
, q̄i(σ) =

1
2

[
xi(σ) − xi(−σ)

]
, (33)

pi(σ) =
1
2

[πi(σ) + πi(−σ)] , p̄i(σ) =
1
2

[πi(σ) − πi(−σ)] , (34)

f(σ) =
1
2

[F (σ) + F (−σ)] , f̄(σ) =
1
2

[F (σ) − F (−σ)] , (35)

p(σ) =
1
2

[π(σ) + π(−σ)] , p̄(σ) =
1
2

[π(σ) − π(−σ)] . (36)

In terms of new variables the constraints obtain the form

Γi(σ) = 2(FP T )i
jpj + p̄i +

1
a2

Fija
jp − κG̃ij q̄

j′ − 2κaif̄
′ , (37)

Γ(σ) = p̄ − 2κaiq̄
i′ . (38)

The symmetric and antisymmetric parts of expressions Γi(σ) = 0 and
Γ(σ) = 0 separately vanish and we have

p̄i = 0 , q̄i′ = −2(Θijpj + Θip) , (39)

p̄ = 0 , f̄ ′ = 2Θipi . (40)

Here
Θij =

−1
κ

P̃ T ikFkqP
T qj , (Θij = −Θji) (41)
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Θi =
(ãF)i

2κã2
=

(aFG̃−1)i

2κa2
, (42)

where in analogy with (14) we introduced tilde projectors

P̃Lij =
ãiãj

ã2
, P̃ T ij = G̃ij − ãiãj

ã2
. (43)

Using (33)- (36) and (39)-(40), we can express the original variables in
terms of new ones

xi = qi − 2
∫ σ

dσ1

(
Θijpj + Θip

)
, πi = pi , (44)

F = f + 2 Θi
∫ σ

dσ1 pi , π = p . (45)

4. The effective theory

4.1. The open string background
The original theory is completely described by the energy-momentum ten-
sor T±, eq.(10). We are going to find the effective energy-momentum tensor
T̃±, in terms of new variables defined by the relation

T±[xi(qi, pi, p), πi(pi), F (f, pi), π(p)] = T̃±(qi, pi, f, p) . (46)

Let us first express the currents in terms of new variables. In analogy
with equations (11)-(12) we introduce new, open string currents

J̃ i
± = P̃ T ij j̃±j +

ãi

2ã2
ĩΦ± , ĩΦ± = p ± 2κaiq

i′ , (47)

j̃±i = pi ± κG̃ijq
j′ , j̃ = ãij̃±i − 1

2
ĩΦ± , (48)

so that

T̃± = ∓ 1
4κ

(
G̃ij J̃±iJ̃±j +

j̃

ã2
ĩΦ±

)
+

1
2
(̃iΦ′

± − f ′ĩΦ±) . (49)

We can conclude that the effective energy-momentum tensor depends
on the open string currents in exactly the same way as the original energy-
momentum tensor depends on the original currents. Consequently, the
complete effective theory is equivalent to the original one, except that it is
defined in new, open string background

Gij → G̃ij = Gij − 4FikP
TkqFqj , Fij → F̃ij = 0 , Φ → Φ̃ = Φ0 + aiq

i ,
(50)

using the symmetries σ → σ + 2π and σ → −σ, as orbifold conditions.
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4.2. Non-commutativity in presence of the dilaton field
The standard Poisson brackets

{xi(σ), πj(σ̄)} = δi
jδ(σ − σ̄) , {F (σ), π(σ̄)} = δ(σ − σ̄) , (51)

produce

{qi(σ), pj(σ̄)} = δi
jδs(σ, σ̄) , {f(σ), p(σ̄)} = δs(σ, σ̄) , (52)

where
δs(σ, σ̄) =

1
2

[δ(σ − σ̄) + δ(σ + σ̄)] , (σ, σ̄ ∈ [0, π]) (53)

is symmetric delta-function. So, qi and pi, as well as f and p, are canonically
conjugate variables on symmetric subspace.

If we separate the center of mass, xi
cm = 1

π

∫ π
0 dσxi(σ), in the form

xi(σ) = xi
cm + Xi(σ), the Poisson brackets between dynamical variables

obtain the form

{Xi(σ), Xj(σ̄)} = Θij

⎧⎪⎨
⎪⎩

−1 σ = 0 = σ̄
1 σ = π = σ̄
0 otherwise

, (54)

{Xi(σ), F (σ̄)} = Θi

⎧⎪⎨
⎪⎩

−1 σ = 0 = σ̄
1 σ = π = σ̄
0 otherwise

, (55)

where Θij and Θi have been defined in (41) and (42) respectively.
The relation (55) shows that in the linear dilaton field background, the

non-commutativity between the coordinates and the conformal part of the
world-sheet metric appears on the world-sheet boundary. The expression
for this new non-commutativity parameter, Θi, is proportional to Born-
Infeld field, Fij .

The relation (54) has the same form as in the absence of dilaton field
[1]-[3], but there are some significant differences. Let us first explain geo-
metrical meaning of the projectors P T ij and P̃ T ij . The vector ai is normal
to the Dp-brane p dimensional submanifold Mp, defined by the condition
Φ(x) = const. For a2 �= 0 (ã2 �= 0), the corresponding unit vectors for the
closed and the open string respectively are ni = ai√

εa2
and ñi = ai√

ε̃ã2
. Here

ε = 1 (ε̃ = 1) if ai is time like vector, and ε = −1 (ε̃ = −1) if ai is space like
vector with respect to metrics Gij(G̃ij). Therefore, we can rewrite (41) in
the form

Θij =
−1
κ

G̃(p)ikFkqG
(p)qj , (56)

because the projectors, in fact, are the induced metrics on Mp

P T
ij = Gij − εninj ≡ G

(p)
ij , P̃ T

ij = G̃ij − εñiñj ≡ G̃
(p)
ij . (57)
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The expression for the non-commutativity parameter is similar to the
corresponding one in absence of dilaton field. The essential part again is
the Born-Infeld field strength Fkq, but in the present case we raised the
indices with the metrics of submanifold Mp: G̃(p)ij and G(p)ij instead of
the Dp-brane metrics: Gij

eff = (G − 4FG−1F)−1ij and Gij .

4.3. A commutative Dp-brane direction
From the relations aiP

T ij = 0 and ãFa = 0, it follow that aiΘij = 0 and
aiΘi = 0. Consequently, the component x ≡ aix

i commutes with all other
coordinates as with the conformal part of the metric

{x(σ), xj(σ̄)} = 0 , {x(σ), F (σ̄)} = 0 . (58)

This is an example of Dp-brane with one commutative coordinate in ai
direction (proportional to gradient of the dilaton field).

5. Concluding remarks

We investigated the contribution of the dilaton field to non-commutativity
of the Dp-brane world-volume. We considered the case, with dilaton field
linear in coordinate and constant metric and antisymmetric fields. This
choice preserves the world-sheet conformal symmetry.

Using the canonical method, we obtain the effective theory in terms of
the open string variables qj and f . It has precisely the same form as the
original theory in terms of the closed string variables xj and F , but with
different background. The closed string background Gij , Fij = Bij +∂iAj−
∂jAi and Φ = Φ0 + aix

i should be substituted by the open string one

G̃ij = Gij − 4FikP
TkqFqj , F̃ij = 0 , Φ̃ = Φ0 + aiq

i . (59)

Instead of the boundary conditions γ
(0)
i |∂Σ = 0 and γ(0)|∂Σ = 0, new

variables qi and f satisfy the orbifold conditions: the symmetries under
σ → σ + 2π and σ → −σ.

The relation between the closed and the open string variables clarify
the origin of non-commutativity. The closed string variables depend on the
open string ones, but also on the corresponding momenta. So, the Poisson
brackets between the variables are nontrivial on the world-sheet boundary.

Beside known coordinate non-commutativity, the non-commutativity
relation between the coordinates and the conformal part of the world-sheet
metric has been established in ref.[4], with explicit expressions for non-co-
mmutativity parameters Θij (41) and Θi (42). For the linear dilaton field
we have aiΘij = 0 and aiΘi = 0, so that the coordinate in ai direction is
commutative.

Let us compare the symmetric and antisymmetric string parameters, in
three different cases. In the closed string case, the metric tensor and the
Born-Infeld field strength satisfies

F ij ± 1
2Gij = (G−1Π±G−1)ij . (60)
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The open string is sensitive to the effective metric tensor and to the non-
commutative parameter. In the dilaton free case they produce

κθij ± 1
2Gij

eff = (G−1Π±G−1
eff )ij , (61)

while in the linear dilaton case, corresponding relation obtains the form

κΘij ± 1
2G̃ij

(p) = (G−1
(p)Π±G̃−1

(p))
ij . (62)

Here, Geff
ij = (G−4FG−1F)ij and G̃ij = (G−4FG−1

(p)F)ij are the effective
metric tensors in absence and in presence of the dilaton field, respectively.
Therefore, the addition of dilaton field just turns the metric Gij , of the
Dp-brane world-volume, to the metric G

(p)
ij of its submanifold orthogonal

to ai.

References

[1] F. Ardalan, H. Arfaei and M. M. Sheikh-Jabbari, JHEP 02 (1999) 016; C. S. Chu
and P. M. Ho, Nucl. Phys. B550 (1999) 151.

[2] N. Seiberg and E. Witten, JHEP 09 (1999) 032.

[3] F. Ardalan, H. Arfaei and M. M. Sheikh-Jabbari Nucl. Phys. B576 (2000) 578;
C. S. Chu and P. M. Ho, Nucl. Phys. B568 (2000) 447; T.Lee, Phys. Rev. D62
(2000) 024022.
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