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Abstract 

The topological susceptibility is studied in the framework of a covariant chi­
ral quark model with non-local quark-quark interaction. The relation of the first 
moment of topological susceptibility x'(O) and the 'spin crisis' problem is briefly dis­
cussed. It is shown, in particular, that one always gets the inequality x'(O) > XoZI · 

It is well known that due to UA (1) axial Adler-Bell-Jackiw anomaly the iso-singlet 
axial-vector current 

J~~) = Z:::: Q(Yµ.'M! 
I 

is not conserved even in the chiral limit, and its divergence equals 

8,,.J~~) (x) = 2N1Qs (x), 

where 
Qs (x) = (a,/87r)G~v(x)G~v(x) 

is the topological charge density. The correlator of singlet currents is defined as 

(O) ( ) IIA,µ.v q = i j d4x eiqx(o IT { J~~)(x)J~~)(W }I 0) = 

(qµ.Qv - 9µ.vq2) II~!T(Q2 ) + Qµ.QvII~!L(Q2). 

(1) 

(2) 

(3) 

(4) 

In the chiral limit the longitudinal part of the correlator defines the topological suscepti­
bility, i.e. the correlator of the topological charge densities, Q5 (x), 

X (Q2) = i j d4x eiqx(o IT {Qs(x)Qs(O}}I 0), 

with the relation (see, e.g., (1]} 

nt·o (Q2) = (2~{)2 x (Q2). 

At high Q2 the operator product expansion (OPE) predicts (2] 

X (Q2 -+ oo) = - 1~~ (~ (G~v)
2 ) + O{Q-2), 
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(5) 

{6) 

(7) 



where the perturbative contribution has been subtracted. 
At low Q2 , x ( Q2) is represented as a sum of contributions coming purely from QCD 

and from (7r, 1J) -mesonic resonances (1) 

[x (Q2
)Jru11 QCD = (8) 

where the first term has been found in (3) and its chiral limit follows the Crewther theorem 
(4] maintaining that x (0) = 0 in any theory where at least one massless quark exists. 

The estimates of x'(O) existing in the literature are rather controversial: 

x'(O) = (48 ± 6 MeV) 2 (5], x'(O) = (26 ± 4 MeV) 2 (6]. (9) 

Both estimates were found within the QCD sum rules method. These values of the first 
moment of topological susceptibility have to be compared with the value obtained in the 
Okubo-Zweig-Iizuka (OZI) case, the case free of axial anomaly, which is 

X~zI (0) = 2~1 :::::: (39 MeV)
2

• 

The principal point is that smallness of x'(O) is the base for the one of the mechanisms 
explaining "proton spin crisis" problem (6) . Indeed, within this approach it is assumed 
that the flavor singlet axial charge a0 ( Q2) is proportional to the product of the first 
moment of the QCD topological susceptibility taken at scale Q2 and an RC-invariant 
coupling of 'OZI Goldstone boson' with nuclon 

1 Ci/(\\~ 
ao(Q2

) = -
2 

-6v x'(O)r rioNN· 
ffiN . 

(10) 

This mechanism has been, however, criticized in (8). All this makes important further 
model estimates of x'(O). 

Within the chiral quark mode!2 (9) based on the non-local structure of instanton QCD 
vacuum (11] the full iso-singlet axial-vector vertex becomes (10) 

r~s(k, q, k' = k + q) 
[ 

, ( JM(k') _ JM(k)r 
/µ - (k + k )µ k'2 - k2 (11) 

- Qµ2JM(k')M(k) G' l - GJpp(q
2
)] 

5
• 

q2 Gl-G'Jpp(q2) 
1 

where M(k) is dynamical, momentum dependent quark mass, G and G' are 4-quark 
couplings in iso-triplet and iso-singlet channels, correspondingly, and . 

2The explicit calculations below are performed in SU(2) sector of the model. 

36 



In (12) the (inverse) quark propagator is s-1(p) = p - M(p). Because of axial anomaly 
the singlet current does not contain massless pole, since as q2 ---> 0 one has: 

1 - GJpp(q2
) = G J; 

-q2 Mi' (13) 

where frr is pion weak decay constant and Mq = M(O). The cancellation of the massless 
pole occurs with help of the gap equation. Instead, the current develops a pole at the r/­
meson mass 3 , 1 - G'Jpp(q2 = -m~) = 0, thus solving the UA(l) problem. The vertex 
( 11) satisfies the anomalous Ward-Takahashi identity: 

(0) I - - -I I -I ( ) 2)M(k')M(k) ( - G') 
qµfµ 5(k,q,k -k+q)-1sSF (k)+SF k 'Ys+'Ysl-G'Jpp(q2) 1 G , (14) 

where the last term ls dne to the f\llomaly. Thus, the QCD ps+mdoscalar gluonium operator 
is interpolated by th pseudosca!ar ffi ·tive quark field operator with coe.flicient expressed 
in terms of dynamical quark mass. This is a consequence of the fact that in the effective 
q1.1urk model the connection betw en quark and integrated gluon degrees of freedom 'is 
fixed by the gap equation. 

For completeness we display the vertex corresponding to the conserved iso-triplet axial­
vector current 

r~s(k, q, k' k ) T" [ M(k') + M(k) + q = 'Yµ - qµ q2 (15) 

. , k'2-k2 (JM(k')-y'M(k)r] 
-(k + k - q--2-)µ k'2 k2 'Ys . q -

satisfying the axial Ward-Takahashi identity 

qµf~5(k, q, k') = 1ss;1 (k') ra + ras-;.1 (k) 'Ys· (16) 

Th axial-~ctor vertex. (15) has a kinematica.I pole at q2 = 0, a prop rty that follows 
from the sp nta.neous breaking of the chiral symmetry in the limit of masslesi; u and d 
quarks. Evidently, this pole corresponds to the massless Goldstone pion. 

The quark matrix elements of currents conesponding to vertices (11) and (15) <:lll'I be 
expressed in terms of real form factors 

(p's' jA~o/> (o)j ps) = 11,, (p') r<o,3) ['Yµ'YsG~o,3) (q2) - Qµ'YsG~o,3) (q2)) u, (p), (17) 

where T(o.3) = (1, r 3 /2), u, (p) are spinor solutions of the Dirac equation for free quarks, 
and the currents are defined as 

A~~3l (q) = j (~:~4 ij) (k) r~~3l(k, q, k' = k + q)if; (k + q), (18) 

with if; (k) being the solutions of the Dirac equation 

(19) 

3See previous footnote. 
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By using the Dirac equation one gets 

( G') 4 

qµ A~~ (q2) = 1 _ ~~.!,(q2 ) j (~7r~4 2y'M(k1 )M(k)1f} (k) 151/J (k + q) . 

Comparison with ( 17) leads to the relations for form factors (taken in the local limit 
M(k) ~ Mq) 

G~O) (0) = 1, 

resembling the results for a model of free massive quarks. 
Full model calculations lead to the following expression for the topological suscepti­

bility [10] 

(20) 

where D(k) = k2 + M2(k) and the integrals ]Ap(q2) and J1fA(q2) are defined by 

J d
4l M(l) 

4NcNf (27r) 4 D.(l) .,/M (l + q) M (l), 

q~ J d4
k4Tr [s(k)f~11 (k, q, k + q)S (k + q) I'~ (k + q, k)]. 

q (27r) 

At large Q2 one obtains the power-like behavior consistent with the OPE prediction (7), 
namely 

2 ( 2 ) 2N1Mi ( G') -(2N1) X Q --+ oo = -G- 1- G . (21) 

At zero momentum the topological susceptibility is zero 

x(O) = 0, (22) 

in accordance with the Crewther theorem. For the first moment of the topological sus­
ceptibility we obtain [10] 

x'(O) = 2~1 {1; (2- ~) + (i- ~r J~p(O)}. (23) 

If the OZI rule were exact in the flavor singlet channel and there were no anomaly, then 
one would have G' = G and x' (O) = x'ozi (0). But in reality one has strong attraction in 
the iso-triplet channel and strong repulsion due to the anomaly in the iso-singlet channel 
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that means that one has always inequality G' < G. The second, negative term in (23) 
is numerically suppressed with respect to the first, positive term, J~p(O)/ J; ~ -0.24. 
Thus, from the existence of the anomaly we always have inequality 

x' (0) > X~ZI (0), (24) 

and it is impossible to get anomalously small x' (0). At this point we also mention other 
alternative approaches to the spin crisis problem based on screening of topological charge 
in the QCD vacuum [12, 13] (see for review, e.g. (14]). 

The constants G and G' are fixed with the help of the meson spectrum. Approximately 
one has G' ~ 0.1 G. As a profile for the dynamical quark mass we take a Gaussian form 

M(u) = Mqexp (-2u/A2
) (25) 

with the model parameters Mq = 0.3 GeV, A= 1.085 GeV. Then the estimate for the 
first moment of the topological susceptibility is (10] 

x'(O) = (50 MeV)2
. (26) 

To get the above result we have taken N1 = 3 in Eq. (23). We can see that the model 
gives the value of x'(O) which is close to the estimate of Ref. [5] . The influence of the 
cu~rent quark masses on x'(O) is expected to be small and the· contribution of rr- and 
71-mesons may be found from Eq. (8) 

X~,,,(O) ~ (28 MeV)
2

• 

The model prediction for the topological susceptibility is shown in Fig. 1. In the region 
of small and intermediate momenta our result is quantitatively close to the prediction of 
the QCD sum rules with the instanton effects included [l]. 

In the present talk we analyzed 
the correlation function of the singlet '7.(tr)(flla.11) 

axial-vector currents within an effec-
tive non-local chiral quark model. By o,J 

considering this correlator the topo-
logical susceptibility was found as a 
function of the Euclidean-momentum 
and its first moment was estimated. 
We demonstrated that in realistic sit­
uation one always gets the inequal­
ity x'(O) > x'ozr(O), thus discarding 
the mechanism explaining the 'spin 
crisis' based on anomalous smallness 
of x'(O). In addition, the fulfillment 
of the Crewther theorem was demon-

0,1 

d(Gev') 

Figure 1: Topological susceptibility versus Q2 pre­
dicted by the model with G' = 0.1 G, Eq. (20). 

strated. It would be interesting to verify the predictions given in Fig. 11 by modern 
lattice simulations. 
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