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Abstract. The time dependent Schrédinger equation is frequently “derived” by postulating
the energy £ — ih% and momentum p — %? operator relations. In the present paper we
review the quantum field theoretic route to the Schrodinger wave equation which treats time
and space as parameters, not operators. Furthermore, we recall that a classical (nonlinear) wave
equation can be derived from the classical action via Hamiltonian-Jacobi theory. By requiring
the wave equation to be linear we again arrive at the Schrédinger equation, without postulating
operator relations. The underlying philosophy is operational: namely “a particle is what a
particle detector detects.” This leads us to a useful physical picture combining the wave (field)
and particle paradigms which points the way to the time-dependent Schrodinger equation.

1. Introduction

Prof. J. Briggs presented an interesting paper [1] at the “Time-Dependent Phenomena in
Quantum Mechanics” Conference on the time-dependent Schrodinger equation (TDSE). His
thesis was that time is not an operator in quantum mechanics, but space is an operator; and
therefore the TDSE

. 0U(7,t)

ih—— = H(F U (F,1) (1)

is a strange mixture of “classical” (C number) time and quantum (operator) space. In the paper
entitled “The Derivation of the Time-Dependent Schréodinger Equations,” [1] the authors say:

“In previous papers [see [1]] fundamental dissatisfaction with the conventional
'derivations’ of the TDSE given in quantum mechanics textbooks was expressed [...]
It is important to recognized that when time enters the Schrodinger equation in the
form of a time-dependent interaction potential, the time is a classical variable arising
from the solution of the classical Maxwell, Newton (or equivalent) equations. From
this point of view the TDSE is a mixed quantum-classical equation, the interaction
potential representing the influence of an exterior classical time-dependent force on a
quantum system.”

The essence of Briggs’ perspective is that time in e.g. Maxwell’s equations is a classical
variable, unlike the time in the TDSE which is somehow different.

L Tt is a pleasure to dedicate this paper to Prof. Manfred Kleber whose excellence as a scholar, physicist, and
friend binds us to him and brings us together.
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Stimulated by his paper we here present another perspective following a quantum field
theoretic [2] route to the Schrédinger wave equation. We then present an alternative (De Broglie
+ Hamilton-Jacobi) [3] route to the TDSE which provides yet another way into ordinary wave

mechanics. In neither case do we postulate operator relations like p — ??, and £ — ih%.
Fig. 1 conveys the message of the present paper.

Most of what we present here is “well known to those who know it well.” However, in view of
discussions at this conference and elsewhere, it seems that a tutorial review blending quantum
field theory, quantum measurement theory, and Bohmian mechanics is useful.

The philosophy we present is essentially that of Heisenberg: focus on what we measure.
Thus, we regard a particle as that which a particle detector detects. An explicit example of
this approach is given in the preprint included as Appendix A. In this way, we are led to
think of the |z) state as resulting from a detector located at x which detects a particle at that
point. This allows us to keep a field theoretical description (and mental picture) for the particle
while thinking of a “point” detector which under goes Lorentz boosts, etc. This perspective is
especially useful in quantum optics as is discussed in a second paper [6] on the TDSE.

II. The Quantum Field Route to the Time Dependent Schréodinger Wave Equation
Consider a free spinless particle of mass m, e.g. a m meson or an « particle, in a one D. The
system is described by the state vector |¥(t)) where ¢ is the time parameter. The wave function
is then given by

(2] W()) = W(a,1) (2)

where the position eigenvector |z) is given by the action of the creation operator (see Appendix
A) on the vacuum, that is
[2) = 47 () |0) 3)
with
~ ]_ 4 ipx

Pl (z) = NeT: . cpen (4)

where p = hk is the momentum of the particle and é;; is the corresponding creation operator.
The time evolution of a free particle can be gleaned by considering the simple Lorentz boost
operation. That is for a spin zero particle as described by the Lorentz group we have:

(P (1) W) = e~ "0 (p), (5)

where pg = \/p?c? + m2¢t and t is the usual (proper) time. Furthermore, for a nonrelativistic
particle py & % + moc? and from Eq’s (3-5) we have

W) = = e ) (6
p

where [p) = ¢]0).
It then follows that

1 —iit—f—iﬁ
V(at) = —=) e 2" Tp) (7)
V2m >
where |p) = ¢/]0), and therefore
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where E, = p*/2my. Finally we note that Eq(8) can be written as

z'hgt\lf(x,t) _ (—hzzf]ﬂ) W(z,b). )

Thus we arrive at the Schrodinger wave equation (9) in which the time and space derivatives
arise naturally without attributing operator character to neither momentum and energy nor
space and time.

One point should be emphasized: the wave function ¥(z, t) is nothing more (nor less) than the
probability amplitude for detecting the particle described by the state |¥) at position 2. That

is, (x| ¥) = (0]¢h(2)|¥) where ¢(z) destroys the particle at 2, where a point particle detection is
placed. This is further discussed in the conclusion and in the appendix.

II1. The Classical Hamilton-Jacobi Route to the Schrodinger Wave Equation
Next, we follow David Bohm [3] and apply Hamilton-Jacobi (H-J) theory of classical mechanics
to obtain a classical wave equation for the quantity

(7, t) = Re™/P, (10)

where R = ,/p, and the classical action

S(7. 1) = S(Fo, to) +/L(f,m)dt, (11)

where h is a constant, which will turn out to be Planck’s constant, and

p=VS§, H= —gts. (12)

Using the classical H-J equations together with the continuity equation

> 02
68155 + (ZZ) =0, (Hamilton-Jacobi) (13a)
gtp +V- (p Vﬁf) =0, continuity (13b)
we find that Eq’s (14) are equivalent to the ”classical wave function” given by
indw— —ﬁ§2m+Qm (14)
o 2m

Where the so called quantum potential, @), is given by

B (V)’R

@=5."r

(15)

Comparing the classical wave equation with the quantum (Schrédinger) wave equation we see
that the difference is the QU term in Eq (15); that is, the difference between the classical and
quantum wave equation is the quantum potential we must throw out term to make the classical
to quantum transition, see Appendix B. Then, as before we have the Schrédinger wave equation.
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IV. Conclusions

The message is clear: The time in Schrodinger equation is the same as it is in Newtonian physics.
Time is a parameter but not an operator in both the top down, quantum field theory derivation,
and the bottom up, classical Hamiltonian-Jacobi derivation, see Fig. 1. The same can be said

h -
for momentum. In both cases, we find that it is as if we end up replacing p — =V, just as in

the textbook derivations of the Schrédinger wave equation. However, we are led naturally to
this result, it is not an ansatz or a postulate.
It is almost a century since the advent of quantum mechanics. The conventional assignments

0
E —ihs 1
Zh@t (16)
and "
7=V (17)

1

should be motivated from quantum field and/or classical physics. When confusion arises, it is
better to regard both time and space as simple c-number parameters. Further support for this
approach comes from an operational measurement theory [4] perspective. From that vantage
point, the key expression

W(7.t) = (01 (7)| W (1)) (18)

is regarded as representing the “matrix element” for exciting a photodetector at 7, see Eq’s (A.7)
and (A.8) in the appendix.

It is also noted that from this “a-particle-is-what-a-particle-detector-detects” perspective we
could equally well regard the detector as being boosted. That is, the quantum field |¥) need
not be visualized as describing a particle. The nice features of the Lorentz group (e.g., not using
ihp = H1p) applies to the field |¥) interacting with the point-like detector.

Finally, we endorse the Briggs program but from a different perspective. The most interesting
affect of his approach is, in my opinion, that it provides a nice example of what Schrodinger
calls “statistical time”. Robert Scully [5] in his book “The Demon and the Quantum” expounds
on Schrodinger’s position as follows:

“Schraodinger explains that the very notion of past and future comes from statistical reasoning:

“To my view the ’statistical theory of time’ has an even stronger bearing on the philosophy
of time than the theory of relativity may, or so I believe, assert that physical theory in this
present stage strongly suggests the indestructibility of Mind by Time.”

The statistical time concept that entropy = time’s arrow, has deep and fascinating implications.
It therefore behooves us to try to understand entropy ever more deeply. Entropy not only explains
the arrow of time, it also explains its existence; it is “time”. This was one of the first observations
relating information (entropy) to our actual experience in nature. Clausius and Boltzmann were
intrigued by this idea.”

In another paper [6], we present two other approaches to the TDSE. In the first instance,
we follow a quantum optical [7] approach, and then a classical approach based on Maxwell’s
Equations.
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— Figure 1. Top Down: The time dependent Schrodinger wave
<0‘(/j (F)‘ L|J(t)> equation follows from quantum field theory in which (7, ¢),
o the operator which annihilates a particle at 7, sandwiched
between the vacuum and the state of a particle at time ¢ is the
AW(r,t) _ A® wave function of that particle. Physically, we may think of a
IhT - _% point particle detector at 7 which is excited by the annihilation
of the particle at that position; i.e., U(7,¢) is the probability
T amplitude for detecting a particle at 7.
) Bottom Up: The time dependent Schrodinger equation follows
\/;eusm from classical Hamiltonian-Jacobi theory where p is the
particle density and S is the action, by requiring that our wave
function be linear in ¥(7,¢).

O2W(F 1)

Appendix A. .
The Operational Approach to Measurement Yields (0|4 (r)|¥(t)) = ¥(z,t).
The analysis of an array of particle detectors, i.e., atom detectors as in Fig 2 of [4]b, to
demonstrate particle interference is carried out in Appendix A. In particular, the probability
amplitude for triggering a detector of 7 is shown in A.7 and A.8 to go as (0[¢)(r)| ¥ (t)).

The main point of this Appendix is to demonstrate by worked (physical) example how
naturally the definition

|z) = ¢ (2)]0) ,

arises in measurement theory. This is in complete accord with the usual quantum field and
many body perspective in which the many particle state is written in terms of

ORb(Fn) - . . () (7)1, may - gy ) (A1)

and 1Z)+(Fi) is discussed as the operator which creates a particle at ;. This is a most useful tool
in the many body problem. However, in modern quantum optical experiments the positions 7;
are the positions of photo/atom detectors as is discussed at length in [4]b (see also [6]).
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