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ABSTRACT

Wave dynamics in locally periodic structures by
multiscale analysis

Alexander B. Watson

We study the propagation of waves in spatially non-homogeneous media, focusing on Schrédinger’s
equation of quantum mechanics and Maxwell’s equations of electromagnetism. We assume that
medium variation occurs over two distinct length scales: a short ‘fast’ scale with respect to which
the variation is periodic, and a long ‘slow’ scale over which the variation is smooth. Let ¢ denote the
ratio of these scales. We focus primarily on the time evolution of asymptotic solutions (as € | 0)
known as semiclassical wavepackets. Such solutions generalize exact time-dependent Gaussian

solutions and ideas of Heller [40] and Hagedorn [36] to periodic media. Our results are as follows:

1. To leading order in € and up to the ‘Ehrenfest’ time-scale ¢t ~ In1/e, the center of mass and
average (quasi-)momentum of the semiclassical wavepacket satisfy the equations of motion
of the classical Hamiltonian given by the wavepacket’s Bloch band energy. Our first result
is to derive all corrections to these dynamics proportional to €. These corrections consist of
terms proportional to the Bloch band’s Berry curvature and terms which describe coupling
to the evolution of the wavepacket envelope. These results rely on the assumption that the

wavepacket’s Bloch band energy is non-degenerate.

2. We then consider the case where, in one spatial dimension, a semiclassical wavepacket is
incident on a Bloch band crossing, a point in phase space where the wavepacket’s Bloch band
energy is degenerate. By a rigorous matched asymptotic analysis, we show that at the time
the wavepacket meets the crossing point a second wavepacket, associated with the other Bloch
band involved in the crossing, is excited. Our result can be seen as a rigorous justification of

the Landau-Zener formula in this setting.

3. Our final result generalizes the recent work of Fefferman, Lee-Thorp, and Weinstein [25] on



one-dimensional ‘edge’ states. We characterize the bound states of a Schrodinger operator
with a periodic potential perturbed by multiple well-separated domain wall ‘edge’ modula-

tions, by proving a theorem on the near zero eigenstates of an emergent Dirac operator.
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Chapter 1

Introduction

In this work we study the propagation of waves in media with a local periodic structure which
varies adiabatically (i.e. over a length scale much longer than the scale of periodicity) through the
material. More precisely, we derive approximate solutions of time-dependent partial differential
equation (PDE) models of waves in such media and prove convergence of these approximate solu-
tions to exact solutions in the limit where the ratio of the ‘fast’ periodic scale to the ‘slow’ scale of
variation of the local periodic structure approaches zero. We will henceforth refer to this ratio as
€ and will describe these solutions as being asymptotic in the limit € | 0. We focus our attention
on Schrodinger’s equation and Maxwell’s equations, which in this context respectively model the
dynamics of electrons propagating in crystalline solids with defects, and the propagation of light
through photonic analogs of such structures known as ‘photonic crystals’.

For the majority of this work, we will be concerned with localized, propagating pulses, or
wavepackets. 1t is well understood that the dynamics of such pulses depends crucially on the
spectral properties (more precisely, the ‘Floquet-Bloch band structure’) of the periodic differential
operator obtained by holding the ‘slow’ dependence of the equation fixed at each position in space.
Depending on this ‘local’ band structure, the effective dynamics of the wavepacket may be ‘ballistic
propagation’ described by a transport equation, or ‘dispersion’ governed by a Schrodinger equation,
for example. The simplest derivation of these effective dynamics is by a multi-scale WKB-type
expansion in the small parameter € (see [11], for example).

These derivations break down, however, in two significant ways. First, at caustics in the char-

acteristic flow, where one must make a modified ansatz in order to correctly capture the dynamics
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(see [69], for example). Second, when the wavepacket is spectrally localized near to degenerate
points in the local Bloch band structure. Bloch band degeneracies often arise due to symmetries of
a periodic structure, and their existence can have considerable physical consequences. For exam-
ple, the ‘Dirac points’ of graphene which give rise to its novel transport properties are Bloch band
degeneracies caused by the particular ‘honeycomb lattice’ symmetries of its atomic structure [28].
In order to address this deficiency of standard methods we have studied a family of asymptotic
solutions known as semiclassical wavepackets. Such solutions obey a particular scaling with respect
to the small parameter ¢ which makes them particularly appropriate for studying the dynamics
nearby to Bloch band degeneracies, and do not suffer from the emergence of caustics.

In the final chapter of this work we prove a theorem on the near zero eigenstates of a Dirac
operator which emerges in the study of bound states of a periodic Schrodinger operator perturbed
by multiple domain wall ‘edge’ modulations. Our result implies that the Schrédinger operator
supports multiple nearly degenerate ‘edge states’, which bifurcate from the continuous spectrum
of the unperturbed periodic operator. Our result represents a generalization of the recent works
of Fefferman, Lee-Thorp, and Weinstein [25; 27]. Such states are of great interest for applications
because of their robustness to local perturbations in the medium.

The structure of this work is as follows:

Corrections to effective dynamics for semiclassical wavepackets away from Bloch
band degeneracies (Chapter 2) We construct asymptotic solutions of Schrodinger’s equa-
tion and Maxwell’s equations in ‘locally periodic’ media of semiclassical wavepacket type under
the assumption that the wavepacket avoids any Bloch band degeneracies. By computing all
corrections to the asymptotic solution up to and including terms of order ¢!/2 we are able to
derive a new Hamiltonian system describing the coupled evolution of the wavepacket’s center
of mass, (quasi-)momentum, and wave envelope up to and including all corrections propor-
tional to €. These corrections include terms proportional to the Bloch band’s Berry curvature
(Theorems 2.1.1 and 2.1.2, Sections 2.1-2.4). The research described in this Chapter is joint
with J. Lu and M. I. Weinstein. Sections 2.1-2.4 and Appendices A.1-A.6 were published in
[73].

The dynamics of a semiclassical wavepacket incident on a band crossing in one

spatial dimension (Chapter 3) Working in one spatial dimension we derive the dynamics
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of a wavepacket which is accelerated through a Bloch band crossing. We show that at the
time the wavepacket’s Bloch band energy becomes degenerate, a second wavepacket is excited
which is associated with the other band involved in the crossing (Theorems 3.3.2 and 3.3.3,
Sections 3.1-3.5). To our knowledge this is the first result on the propagation of an explicit
wavepacket asymptotic solution through a Bloch band degeneracy. The research described in

this chapter is joint with M. I. Weinstein.

Bound states of a Schrodinger operator with a periodic potential perturbed by
multiple domain wall modulations (Chapter 4) Again working in one spatial dimension,
we prove a theorem (Theorem 4.2.1) describing the near zero eigenstates of a Dirac operator
which emerges in the study of bound states of a periodic Schrédinger operator perturbed
by multiple domain wall ‘edge’ modulations. We proceed by a Lyapunov-Schmidt reduction
which allows us, in the limit where the distance between domain walls is large, to reduce the
full Dirac eigenvalue problem to an effective two-by-two matrix eigenvalue problem (Sections

4.1-4.4). The research described in this Chapter is joint with J. Lu and M. I. Weinstein.

We give a more detailed summary of these results in Sections 1.1-1.4 before presenting our work in

full detail in the remainder of this thesis.

1.1 PDEs of interest and semiclassical wavepacket asymptotic so-
lutions
We now state the PDEs we study in the remainder of this work and give a general introduction

to semiclassical wavepacket asymptotic solutions. We study the Schrédinger equation for ¢¢(x,t) :

R? x R — C depending on a real parameter which we take to be small € < 1:
1
i€ = =S+ U (fx) e
€

P*(,0) = ().

(1.1.1)

Here, we assume that U is a real, smooth function of both arguments which is periodic with respect

to some lattice A in its first argument:

Voe A, U(z+4wv,x)=U(zzx) (1.1.2)
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at every value of z,z € R? Tt is useful to define the class of separable potentials which may be

written as a sum:

U(z,x) =V(z) + W(x) (1.1.3)

where V' is smooth and periodic with respect to the lattice A and W is smooth. Studying (1.1.1)
when the potential is separable turns out to be considerably easier than the general case.

We are also interested in the time-dependent Maxwell system for the electromagnetic fields
FE%(z,t) : R x R — C3, H(x,t) : R® x R — C? in matter depending on a small parameter § < 1

given by:

DO (z,t) 0 Vx\ [E’axt) DO(z,t)
— A v =0 (1.1.4)
B (x,t) -Vx 0 HO(x,t) B®(x,t)

together with the constitutive relations:

DO(z,t) _ (e (%,2) X' (%,2) E°(x,t) . (1.15)
B®(x,t) x(%,2) (%) HO(x,t)
Here, we assume that each entry in the matrix of constitutive relations is smooth in both arguments
and periodic with respect to a lattice A in its first argument, and such that the matrix as a whole
is positive-definite and Hermitian at each value of z € R3. Note that when studying Maxwell’s
equations it is convenient to label the small parameter d rather than e to avoid confusion with the
dielectric tensor .

We now describe the family of semiclassical wavepacket asymptotic solutions of the Schrodinger
equation (1.1.1) in the simplest case, when the potential U(z,x) is separable (1.1.3). The first
proof of these results is due to Carles and Sparber [61], building on ideas of Hagedorn [36] and
Heller [40]. Let E,(p) denote a Bloch band dispersion function of the Schrédinger operator with
periodic co-efficients —1A, 4+ V/(z). Let py denote a point in the first Brillouin zone B such that
the Bloch band is non-degenerate i.e. E, 1(po) < En(po) < Ens1(po). Let go € R? be such that

the Hamiltonian dynamical system:
q(t) = VpEn(p(t)), p(t) = =VW(q(t))

q(0) = qo, p(0) = po

(1.1.6)

has a smooth solution for all ¢t € [0,00) such that the Bloch band remains non-degenerate along
the curve p(t):
vt € [0,00), En-1(p(t)) < En(p(t)) < Enta(p(t)), (1.1.7)
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and let ag(y) € S(R?) denote an arbitrary Schwartz class function. Then, the solution ¢ of the
initial value problem (1.1.1) with U as in (1.1.3) and semiclassical wavepacket initial data given
by:

— ipo-[r— € L=
R T Gt ) P 11

evolves as a modulated semiclassical wavepacket plus a corrector function n(z,t) for all ¢ € [0, 00):

V(z,t) = e~ a/4iS(t) e gip(t)[z—q(t)]/e <$;/q2(t)’ t) Yu(2: (1) + nf(z, t) (1.1.9)

Here, S(t) denotes the action associated with the path ¢(t),p(t), a(y,t) satisfies a Schrodinger

equation with time-dependent coefficients:

. . , 1

idha = 5 (=iVy) - DyEn(p(t))(=iVy)a + 3y DiW (q(t))ya + VW (q(1)) - An(p(t))a (1110)
a(ya 0) = aO(y)7

where DgEm DZW denote the Hessian matrices of E,,W, d > 1 denotes the spatial dimension,

and A,, denotes the Berry connection:

An(p) =i (xn(:2)| Vpxn (5P)) 120 - (1.1.11)
Here, ) is a unit cell of the lattice A. The corrector function 7€ satisfies the bound:
(1) 2 < Ce'/2ect (1.1.12)

for constants C' > 0,¢ > 0 which are independent of €,¢. The bound (1.1.12) implies that the
semiclassical wavepacket ansatz provides an asymptotic (in the limit ¢ | 0) description of the

dynamics of the PDE up to ‘Ehrenfest time’ ¢ ~ In1/e.

1.2 Higher order effective dynamics for semiclassical wavepackets
away from Bloch band degeneracies
By a natural extension of the argument given in Section 1.1, it is possible to derive higher order

analogs of (1.1.9) such that the corrector function 7¢(z,t) satisfy bounds of the form Cel/2et for

any j € {1,2,...}. We demonstrate this for the case j = 2 in Chapter 2; see Theorem 2.1.1 and
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Sections 2.1.2 and 2.3 for details. We can then study the evolution of observables such as the center

of mass:
Q°(t) :—/ x| (z,t)]* dz (1.2.1)
Rd

of the solution using these asymptotic expressions. Our result (Theorem 2.1.2; see Sections 2.1.2

and 2.4 for details) is that (1.2.1) satisfies a system which, when d = 3, takes the form:

Qc(t)= VpeH,(Q(t), PE(t)) +e{ —PE(t) x Vpe x Ap(P(t)) +C1]a](t) }

. ’
Pe(t)=—VarHn(Q:(t), P(1)) +e { +Cola](t) }
Dynamics generated by Anomalous V;Tocity due to ‘Particle-field’
‘Bloch band’ Hamiltonian Berry curvature coupling to (122)
Ho:=E,, (P€)+W (Q°) envelope a*

. € € € € 1 € 1 €
0" = AL (as HLE) = —5Vy - DhEW(P 1)V, + 5y DEW(Q(1)y.

Quantum harmonic oscillator Hamiltonian
with parametric forcing through Q¢(t), P¢(t)

Here, P€(t) denotes another observable associated with the solution which can be thought of as
the average ‘quasi-momentum’ of the wavepacket, and a(y, t) is the wavepacket envelope function.
The ‘particle-field’ coupling terms C(t), C2(t) are original to our work and can have a significant
impact on the effective dynamics.

In the remainder of Chapter 2 we sketch how the above theory generalizes to the case where
U(z,x) is ‘non-separable’, i.e. cannot be written in the form (1.1.3), (Section 2.5) and to the
full Maxwell system (1.1.4)-(1.1.5) (Section 2.6), and then present examples of systems where

expressions for the Berry curvature can be worked out explicitly (Section 2.7).

1.3 Dynamics at a one dimensional band crossing

We then consider the simplest possible relaxation of the ‘isolated band’ assumption (1.1.7). We
specialize to one spatial dimension (d = 1), assume that the potential U is separable (1.1.3), and

then consider the problem:

Problem. What are the dynamics generated by equation (1.1.1) with initial conditions given by a
wavepacket associated with a band E, which is then driven by the external potential W through a

point in phase space where the Bloch band E, is degenerate?
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1,2

n

eigenvalues E_, n

quasi-momentum p

Figure 1.1: Plot of the two lowest Bloch band dispersion functions Ej(p), F2(p) when V(z) =
4 cos(4rz). Note that the band functions are equal (degenerate) when p = 7. This crossing turns

out to be “trivial” (see Example 2).

More precisely, suppose that two bands E,(p), En+1(p) touch at a quasi-momentum p* in the
Brillouin zone, but are otherwise non-degenerate in a neighborhood of p* (see Figure 1.1). Then,
we study a wavepacket associated with the band FE,, initially localized in phase space on a classical
trajectory (q(t),p(t)) generated by H,, := E,(p) + W(q) which encounters the crossing after some
finite time ¢*: for some t* > 0, limy= p(t) = p*.

Our results can be roughly stated as follows; we give a more precise statement in Section 3.2.
Assume that the wavepacket is driven through the crossing so that limss- p(t) # 0 (Assumption
3). Then:

1. (Theorem 3.3.2) For ¢ < t* and for any fixed positive integer N, the solution of (1.1.1) is a
wavepacket associated with the band E,, up to errors of o(eN )in L2. As t 1 t*, this ‘single-
band’ description fails to capture the dynamics of the PDE to any order in € higher than 1,
because of an excited wave associated with the band E,; whose norm grows to be of order
€'/2 for t ~ t*. The precise limit of validity of the ‘single-band’ description as ¢ 1 ¢* may be

explicitly characterized.

2. (Theorem 3.3.3) For t ~ t* and t >> t* the solution of (1.1.1) up to errors of o(e'/?) is the sum

of two semiclassical wavepackets: a wavepacket associated with the band E, 1 with L?-norm
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proportional to 1 and a wavepacket associated with the band E,, with L?-norm proportional

1/2

to ¢/, The precise form of both wavepackets can be explicitly characterized.

Our proof relies on the existence of smooth continuations of the Bloch band dispersion functions
E,, E, 11 through the crossing point p* (see Property 2 and Figures 3.2 and 3.4). Such continuations
always exist in one spatial dimension (see Theorem 3.3.1). Our proof does not readily generalize
to cases where no such continuation exists; for example at ‘conical’, or ‘Dirac’ points which occur
in dimensions d > 2 [28]. We believe that the propagation of wavepackets through such crossings
may be treated by adapting the methods of Hagedorn [37] who studied such cases in the context

of the Born-Oppenheimer approximation of molecular dynamics.

1.4 Bound states of a periodic Schrodinger operator perturbed by

domain wall modulations

The final problem we consider is that of determining the bound states of a Schrédinger operator
in one spatial dimension with a periodic potential perturbed adiabatically by one or more domain

walls. The model we consider is:
— 02 + V() + 0k (62)Wo(x), (1.4.1)

where § < 1 is a small parameter. Here V. denotes a smooth, 1-periodic potential which may be
written as an even-index cosine series and W, denotes a smooth, 1-periodic potential which is the
sum of a cosine series with only odd-index terms. The function x(¢), which is constant as |(| — oo,
defines the domain wall modulations in the structure. ‘Topologically protected’ bound states of the
operator (1.4.1) were constructed in the limit as ¢ | 0 by Fefferman, Lee-Thorp and Weinstein in [26;
25] (see also [27] for the two-dimensional case) in the case where k() is smooth and satisfies the
asymptotics:

lim £(¢) = koo >0, lim K(¢) = ko < 0. (1.4.2)
¢Too (l—o0

It was furthermore demonstrated that the existence of such states is tied to the existence of a robust

(up to perturbations of x which do not change (1.4.2)) zero mode of the Dirac operator:

D= | % ~(¢) (1.4.3)

K(C) —i0¢
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when k satisfies the asymptotics (1.4.2). More generally if the function x converges to non-zero
constants Koo, K—oo as || — 00, but not necessarily with different signs as in (1.4.2), then the same
argument given in [26; 25] implies that any eigenvalue of D, in the ‘mass gap’ in the essential
spectrum:

(— min |K4eo|, min |Kioo|), (1.4.4)

will lead to a bound state of the Schrédinger operator (1.4.1) in the limit 6 | 0. We are therefore
motivated to study bound states of the operator D, for more general functions x converging to
non-zero constants at infinity.
Let k1, denote the ‘two domain wall’ function (see Figure 1.2):
—k(z+ L) for —co<x<0
kr(z) = (1.4.5)
k(z — L) for 0 <z < oo
where k denotes a ‘domain wall’ potential function which we assume to be smooth, monotone
increasing, odd, and to satisfy:

—Koo 1< -1
k(z) = . (1.4.6)

Koo ifx>1
Then, our result (Theorem 4.2.1, see Sections 4.2, 4.4, C.1 for details) is that for sufficiently large
L > 1, the Dirac operator (1.4.3) with  replaced by £z, (1.4.5) has two bound states with near-zero
eigenvalues and eigenfunctions which may be characterized up to errors of any polynomial order in

the small parameter e~2%. Our analysis extends to 3 or more domain wall modulations, see Section

4.3.
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mately satisfies (1.4.6)), L = 10.
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Chapter 2

Semiclassical wavepacket solutions

and effective ‘particle-field’ dynamics

The research detailed in this chapter is joint with J. Lu and M. I. Weinstein. Sections 2.1-2.4 and
Appendices A.1-A.6 were published in [73] with minor alterations. We present extensions of this

work in Sections 2.5-2.7 and Appendix A.7.

2.1 Introduction

In this work we study the non-dimensionalized time-dependent Schrodinger equation for ¥(z,t) :
R x [0,00) — C:

iedppt = —%e%xw YV (%) W+ W ()¢ o1

V(x,0) = ¥5(x).
Here, € is a positive real parameter which we assume to be small: ¢ < 1. We assume throughout

that the function V' is smooth and periodic with respect to a d-dimensional lattice A so that:
V(z+v)=V(z) forallv e A,z € R%, (2.1.2)

and that W is sufficiently smooth with uniformly bounded derivatives. Equation (2.1.1) is a well-
studied model in condensed matter physics of the dynamics of an electron in a crystal under the
independent-particle approximation [3], whose periodic effective potential due to the atomic nuclei

is specified by V', under the influence of a ‘slowly varying’ external electric field generated by W.
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In this work we rigorously derive a family of explicit asymptotic solutions of (2.1.1) known
as semiclassical wavepackets. We then derive the equations of motion of the center of mass and
average quasi-momentum of these solutions, including corrections proportional to e.

At order €°, the mean position and momentum of the semi-classical wavepacket evolve along
the classical trajectories associated with the ‘Bloch band’ Hamiltonian H,, := E,(p) + W(q), where
p — E,(p) is the dispersion relation associated with the n‘* spectral (Bloch) band of the periodic
Schrodinger operator —%Az +V(2). The order € corrections to the leading order equations of motion
depend on the gauge-invariant Berry curvature of the Bloch band and the wavepacket envelope.
Through order ¢, the system governing appropriately defined mean position Q¢(¢), mean momentum
P<(t) and wave-amplitude profile a(y,t) is a closed system of Hamiltonian type (Theorem 2.1.2).
When d = 3, this system takes the form:

Qc(t)= VpeHn(Q(t), PE(t)) +e{ —Pe(t) x Vpe x Ap(P(t)) +Cilac](t) }

. 7
Pe(t)=—VoeHn(Q(t), P(t)) +e { +Ca[a](t) }
Dynamics g?efrlerated by Anomalous velocity due to ‘Particle-field’
‘Bloch band’ Hamiltonian Berry curvature coupling to (2 1 3)
Hn:=En(P)+W(Q°) envelope a® o

1 1
00" = Ay (H)a% H(t) = =5V, D3.E,(P(t))V, + Y D4 (Q(t))y .

Quantum harmonic oscillator Hamiltonian
with parametric forcing through Q€¢(t), P€(t)

Here, D%EEn,DZQEW denote Hessian matrices and A,, is the Berry connection (2.1.26). For the
explicit forms of C1[a], C2la] and the generalization of (2.1.3) to arbitrary dimensions d > 1, see
(2.1.46). The derivation of the form of the anomalous velocity displayed in (2.1.3) is given in
Remark 2.1.12.

The ‘particle-field’” dynamical system (2.1.3) appears to be new, and contains terms which are
not accounted for in the works of Niu et al. [76]. The system reduces, in the case of Gaussian
initial data and zero periodic background V' = 0, to that presented in Proposition 4.4 of Ref. [55]
(see also Ref. [56]).

The asymptotic solutions and effective Hamiltonian system (2.1.3) provide an approximate
description of the dynamics of the full PDE (2.1.1) up to ‘Ehrenfest time’ ¢ ~ In1/e, known to be
the general limit of applicability of wavepacket, or coherent state, approximations [66]. The validity
of the approximation relies on an extension of the result of Carles and Sparber [61] (Theorem 2.1.1)

Our methods are applicable when the wavepacket is spectrally localized in a Bloch band which
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has crossings (degeneracies), as long as the distance in phase space between the average quasi-
momentum of the wavepacket and any crossing is uniformly bounded below independent of € (see
Assumption 2.1.1). We do not attempt a description of wavepacket dynamics when this distance
1 0 (propagation through a band crossing), or at an avoided crossing where the separation between
bands is proportional to e. We believe that both of these cases may be studied by adapting the work
of Hagedorn and Joye [37; 39] on wavepacket dynamics in the Born-Oppenheimer approximation
of molecular dynamics to the model (2.1.1).

Our methods are also applicable, with some modifications (see Section 2.1.5), to potentials with

the general two-scale form U (%, x) where U is periodic in its first argument:
Uz +wv,2)=U(z,z) forall z,z e R:,v e A (2.1.4)

and U(z,x) is ‘nonseparable’, i.e., cannot be written as the sum of a periodic potential V(z) and
an ‘external’ potential W (z). For details, see Section 2.5. For ease of presentation we consider in
this work only the ‘separable’ case (2.1.1).

The semiclassical wavepacket ansatz was introduced by Heller [40] and Hagedorn [36] to study
the uniform background case (V = 0) of (2.1.1). See also related work on Gaussian beams [62].
Hagedorn then extended this theory to the case where the potential W(z) is replaced by an -
dependent operator in his study of the Born-Oppenheimer approximation of molecular dynamics
[37]. Semiclassical wavepacket solutions of (2.1.1) in the periodic background case (V # 0) were
then constructed by Carles and Sparber [61].

The anomalous velocity term in (2.1.3) was first derived by Karplus and Luttinger [44]. For a
derivation in terms of Berry curvature of the Bloch band, see Chang and Niu [15] (see also Ref.
[76]). It was then derived rigorously by Panati, Spohn, and Teufel [57] (see also [23]). This term is
responsible for the ‘intrinsic contribution’ to the anomalous Hall effect which occurs in solids with
broken time-reversal symmetry (see Nagaosa et al.[52] and references therein). The anomalous
velocity due to Berry curvature is better known in optics as the spin Hall effect of light and was

experimentally observed by Bliokh et al.[7].
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2.1.1 Dimensional analysis, derivation of equation (2.1.1)

In this section we derive the non-dimensionalized equation (2.1.1) starting with the Schrédinger

equation in physical units:

h2
where h is the reduced Planck constant, and m is the mass of an electron. This analysis is based
on those given in Refs. [23; 4]. Define [ as the lattice constant, and let 7 denote the quantum time

scale:
2
%. (2.1.6)

T =

Let L, T denote macroscopic length and time-scales. We assume that the periodic potential V' acts

on the ‘fast quantum scale’ and the W acts on the ‘slow macroscopic scale’:

Vi(z) = "T”;f/ (%) W (z) = ”;L;Vv (%) . (2.1.7)
After re-scaling x,t by the macroscopic length and time-scales:
Fim L= L 0@ ) = (e ), (2.1.8)
L T
(2.1.5) becomes: ) ) )
?aﬂ; = —%ZﬁAyZ + ”;—if/ (Ll"”> W+ ";—I;W (Z) V. (2.1.9)

We now identify two dimensionless parameters. Let h denote a scaled Planck’s constant, and € the

ratio of the lattice constant to the macroscopic scale:

hT l
= —, 6= —. 2.1.1
s Tl (2.1.10)
Writing (2.1.9) in terms of h, e and dropping the tildes we arrive at:
. h,e h2 h,e h2 L h,e h,e
O = = A + LV <Z) e+ W ()l (2.1.11)

where we have written ¥/¢(z,t) to emphasize the dependence of the solution on both parameters.
We obtain the problem depending only on € (2.1.1) by setting h = €. Therefore, the limit € | 0 in
(2.1.1) corresponds to sending to zero the ratio of the lattice spacing [ to the scale of inhomogeneity

L and Planck’s constant (appropriately re-scaled) to zero at the same rate.
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Remark 2.1.1. Other scalings of the Schrédinger (2.1.11) have been considered. For example, the
scaling corresponding to h fixed and € | 0 is considered in Refs. [2; 60; 42/, and for the nonlinear
Schrédinger / Gross-Pitaevskii (NLS/GP) equation in Refs. [68; 8. Here, the dynamics are
governed by a homogenized effective mass Schréodinger equation (linear, respectively, nonlinear).
The articles Refs. [{2; 8] concern the bifurcations of bound states of (2.1.11) or NLS/GP from
spectral band edges into spectral gaps of the periodic potential, V. Another scaling where such band-
edge bifurcations arise due to an oscillatory, localized and mean-zero potential, W, is considered
in Refs. [20; 21; 18; 19]. In this case, a subtle higher order effective potential correction to the

classical homogenized Schrodinger operator is required to capture the bifurcation.

2.1.2 Statement of results

In order to state our results we require some background on the spectral theory of the Schrédinger

operator:

Ho= —%AZ +V(2) (2.1.12)

where V is periodic with respect to a d-dimensional lattice A[46; 63]. Let A* denote the dual lattice
to A, and define the first Brillouin zone B to be a fundamental period cell. Consider the family of
self-adjoint eigenvalue problems parameterized by p € B:

H(p)x(z:p) = E(p)x(2;p)

x(z+v;p) = x(2z;p) for all z€ R%, v € A (2.1.13)

1 .

H(p) = 5(p —iV:)* +V(2).

For fixed p, known as the quasi-momentum, the spectrum of the operator (2.1.13) is real and

discrete and the eigenvalues can be ordered with multiplicity:
Ei(p) < Ex(p) < ... < E,(p) < ... (2.1.14)
For fixed p, the associated normalized eigenfunctions y,(z;p) are a basis of the space:

L%, = {f €L, f(z4+v)=f(z) forallv e A,z € Rd} (2.1.15)

per

Varying p over the Brillouin zone, the maps p — E,(p) are known as the spectral band functions.

Their graphs are called the dispersion surfaces of H. The set of all dispersion surfaces as p varies
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over B is called the band structure of H (2.1.12). Any function in L?(RY) can be written as a

superposition of Bloch waves:
{@,(2p) = ePixn(z;p) in€N,p € B}; (2.1.16)

see (2.2.8). Moreover, the L?-spectrum of the operator (2.1.12) is the union of the real intervals

swept out by the spectral band functions E,,(p):
o(H)2ray = Uner {En(p) : p € B} . (2.1.17)

The map p — E,(p) extends to a map on R? which is periodic with respect to the reciprocal lattice
A*:
for any b € A*, E,(p+b) = En(p). (2.1.18)

7

If the eigenvalue FE,,(p) is simple, then: (up to a constant phase shift) x,(z;p+b) = e %y, (2;p).
A more detailed account of the Floquet-Bloch theory which we require, in particular results on the
regularity of the maps p — E,,(p), xn(2;p), can be found in Section 2.2.

We will make the following assumptions throughout:

Assumption 2.1.1 (Uniformly isolated band assumption). Let E,(p) be an eigenvalue band func-
tion of the periodic Schrédinger operator (2.1.12). Assume that (qo,po) € R? x R? are such that
the flow generated by the classical Hamiltonian Hy(q,p) := En(p) + W(q):

q(t) = VpEn(p(t))
p(t) = =V W(q(t)) (2.1.19)
q(0), p(0) = qo, po

has a unique smooth solution (q(t),p(t)) € R x RVt > 0, and that there exists a constant M > 0
such that:
inf |En(p(t) — En(p(t))| > M for allt > 0. (2.1.20)

m#n
That is, the nth spectral band is uniformly isolated along the classical trajectory (q(t),p(t)).

Assumption 2.1.2. }7,, ;55|07 W(z)| € L>®(RY).

Remark 2.1.2. An example of W satisfying Assumption 2.1.2 is the ‘Stark’ potential W (x) = E-x

for any constant vector E € RY. Assumption 2.1.2 may be significantly weakened. For example, a
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refinement of our methods would allow us to deal with any function W with finite order polynomial
growth at infinity. This larger class of admissable potentials would include the quantum harmonic

oscillator potential W (zx) = %l‘ - Mx where M is any real positive definite d X d matriz.

Remark 2.1.3. Our methods may be adapted to work with time-dependent external potentials
W (z,t) which are smooth in x and continuous in t as long as there exists a constant C > 0 such
that for allt = 0:3", 1254105 W(z,t)] < C.

2.1.3 Dynamics of semiclassical wavepackets in a periodic background

Our first result is an extension of Theorem 1.7 of Carles and Sparber [61]:

Theorem 2.1.1. Let Assumptions 2.1.1 and 2.1.2 hold. Let ag(y),bo(y) € S(RY). Let S(t) denote

the classical action along the path (q(t),p(t)):
S(t) = /0 p(t) - VpEn(p(t) — En(p(t')) — W(q(t')) dt’. (2.1.21)
Let a(y,t) satisfy:

iata(yvt) = %(t)a(yvt)

(2.1.22)
a(y,0) = ao(y),
where:
H(t) = —5Vy - DABa(p(t)Vy + 5y - DIW (a(t))y. (2.1.23)
And let b(y,t) satisfy:
i0eb(y, t) = A ()b(y,t) + S (t)aly, t)
(2.1.24)
b(y,0) = bo(y),
where F(t) is as in (2.1.23) and:
H(t) == 59, [Vy - DEEapO),] - (=i9,) + £V, [y D2W(alt))o] -y
(2.1.25)

+Vp [VeW(a(®) - An(p(t))] - (=iVy) + V4 [VeW (g (?)) - An(p(t))] - y-

Here A, (p) denotes the nth band Berry connection:

An(p) := 1 (X (52D Vpxn(50)) 12 (2.1.26)
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where Q0 denotes a fundamental period cell of the lattice A. Let ¢pp(t) be the Berry phase associated
with transport of xn along the path p(t) € B given by:

t p(t)
b5(t) = /0 B0 Ao = [ A)- . (2.1.27)

PO
Then, there exists a constant eg > 0 such that for all 0 < € < eg the following holds. Let ¢¢(x,t) be

the unique solution of the initial value problem (2.1.1) with ‘Bloch wavepacket’ initial data:

ieOp)° = —%62A$¢€ +V (2) vt + W)y

€
— ipo-(x— € T — x
$(,0) = e/ gimo(e—a)/ {%( el/go)xn (2”’0) 2.1.38)

1/2 . T —qo T T —qo T
+el/ [(—@Vy)ao <61/2) - VpXn <?PO) + bo <61/2> Xn <6,p0)] } .

Then, for allt > 0 the solution evolves as a modulated ‘Bloch wavepacket’ plus a corrector n®(x,t):

a7
+el/? [(—ivy)a <$;72(t)7t> - VpXn <%;p(t)) +b (x ;72(t)7t> Xn (f;p(t))} } (2.1.29)

+n(z, 1)

W (2, ) = eSO ein)-(e—a(t) /e i (1) {a (ﬂc - Q(t)’t) - (% p(t))

where the corrector ¢ satisfies the following estimate:
17, )| 2 (ray < Cee™. (2.1.30)
Here, ¢ > 0,C > 0 are constants independent of €,t. It follows that:

sup [ 0) |2 (may = o(e'/?) (2.1.31)
t€[0,C'In1/€]

where C is any constant satisfying C < i

Remark 2.1.4. We include the pre-factor e~%* throughout so that the L2(R%) norm of ¢¢(z,t) is
of order 1 as € ] 0.

Remark 2.1.5. We have improved the error bound of Carles and Sparber [61] from Ce'/2et to
Cee® by including correction terms in the asymptotic expansion proportional to €l/2. Note that we
must also assume that the initial data is well-prepared up to terms proportional to €*/2 (2.1.28).

By keeping more terms in the expansion we may produce approrimations where the corrector can
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be bounded by CeN/2et for any positive integer N. The only changes in the proof are that we

N/2

include corrections to the initial data proportional to €/<, and that Assumption 2.1.2 is replaced

by Z|a\:1,2,...,N+2 09W (z)| € L>(RY).

Remark 2.1.6. Keeping terms proportional to €'/? in the expansion will allow us to calculate

corrections to the dynamics of physical observables proportional to €; see Theorem 2.1.2 and Section

2.4.

Remark 2.1.7. The time-scale of validity of the approzimation (2.1.29), t ~ In1l/e, is known as
‘Ehrenfest time’. Without additional assumptions this is known to be the general limit of validity of
wavepacket, or coherent state, approzimations. Note that including higher order terms (proportional
to powers of 61/2) in the approzimation does not extend the time-scale of validity. Under further
assumptions on the classical dynamics, coherent state approximations have been shown to be valid

over the longer time-scale t = o(1/+/€); see Refs. [64; 66] for further discussion.

Remark 2.1.8. For a discussion of Berry’s phase, connection, and curvature, and gauge indepen-
dence in the setting of a two-by-two matriz example, see Appendix A.7. We compute the Berry
curvature in a ‘non-separable’ Schrédinger example and for Mazwell’s equations in free space in

Sections 2.7.1 and 2.7.2 respectively.

There exists a family of time-dependent Gaussian explicit solutions of the envelope equation

(2.1.22). Consider (2.1.22) with initial data:

N 1 )
ao(y) = TdetAg]1/2 exp <22y - Bo Ay y> . (2.1.32)

Here, N € C is an arbitrary non-zero constant, and Ag, By are d x d complex matrices satisfying:

ATBy— BT Ay =0
o (2.1.33)
AT By — BY Ay = 2i1.

Remark 2.1.9. The conditions (2.1.33) imply:

1. The matrices By, Ag are invertible

2. The matriz BoAal is complex symmetric: (BoAal)T = Bvo_l



CHAPTER 2. SEMICLASSICAL WAVEPACKET SOLUTIONS AND EFFECTIVE
‘PARTICLE-FIELD’ DYNAMICS 20

3. The imaginary part of the matriz ByA, L is symmetric, positive definite, and satisfies:

Im BoAy' = (ApgAT)™ (2.1.34)

and are equivalent to the condition that the matrix:

Re Ag Im Ay T 0 —1
Y = is symplectic: Y JY = J where J := . (2.1.35)
Re BO Im BO I 0

The proofs of (1)-(3) are given in Refs. [38; 36; 24].

Note that it follows from assertion (3) of Remark 2.1.9 that ag(y) (2.1.32) satisfies |ag(y)| <
Ce=¥ for constants C > 0,c > 0. We have then that:

Proposition 2.1.1 (Gaussian wavepackets). The initial value problem (2.1.22) with initial data
ap(y) given by (2.1.32) has the unique solution for all t > 0:

a(y, t) = ity B(t)Al(t)y) . (2.1.36)

N
[detA()) 172 P ( 2

Here, the complex matrices A(t), B(t) satisfy:

A(t) = DyEa(p(t))B(t),  B(t) = —DgW (q(t)) A(t),
(2.1.37)

A(0) = Ay, B(0) = By.
Moreover, for all t > 0, the matrices A(t), B(t) satisfy (2.1.33) with Ao replaced by A(t) and By
replaced by B(t). Thus (see Remark 2.1.9), |a(y,t)] < C(t)e O where C(t) > 0,c(t) > 0
for all t > 0. More generally, we may construct a basis of L*(R?) of solutions of the envelope
equation (2.1.22), consisting of products of Gaussians with polynomials, known as the ‘semiclassical

wavepacket’ basis [38; 36; 24].

Remark 2.1.10. Our convention for the complexr matrices A, B follows that introduced in Ref.
[24], with A, B standing for Q, P in Ref. [24] respectively. Note that our convention is not to be
confused with that introduced in Ref. [36]; our choice of B corresponds to iB in Ref. [36].
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2.1.4 Dynamics of observables associated with the asymptotic solution

We now deduce consequences for the physical observables associated with the solution ¥(z,t) of

(2.1.28), using the asymptotic form (2.1.29). Denote the solution of (2.1.28) through order €'/2 by:

Dy, 2,t) 1= e WSO/ O/ ion(® {“(y, £)xn (25 (1))

(2.1.38)
e /2 (=09, )aly, 1) - Vpxa(zi () + by, O)xa(zip(0)]
Thus:
e(x,t) = @E(y,z,t) NP + n(x, t). (2.1.39)
T IT a2

where n° is the corrector which satisfies the bound (2.1.30). Define the physical observables:

€ 1 € 2

Q (t) = ./\/’e(t) /Rdx w (y,Z,t) Z:%y:x—l%t) dz

. ] 6~ (2.1.40)
PE) = e | (o2, t) (i€ 2, ) Gy, 2,1) o do

(t) Jra = Y=g

where N¢(t) is the normalization factor:
- 2
N<(t) —/ (y, 2, t) o gty A (2.1.41)
R4 =y="T7

We will refer to Q°(¢), P(t) as the center of mass and average quasi-momentum of the wavepacket.

We will see (Theorem 2.1.2): Q(t) = q(t)+o(1), P<(t) = p(t)+o(1) up to ‘Ehrenfest time’ ¢ ~ In1/e.

Remark 2.1.11. In the uniform background case V = 0, solutions of (2.1.13) are independent of
z: xn(z;p) =1 for all p € B. The asymptotic solution (2.1.38) obtained in this case is therefore

independent of z, and our definition of P¢(t) reduces to the usually defined momentum observable:

/Rdl/ze(x,t)(—z‘evx)we(x,t) dx. (2.1.42)

In the periodic background case V- # 0, P¢ (2.1.40) corresponds to the quasi-momentum and may

be measured in experiments [16].

Let a“(y, t) satisfy the equation of a quantum harmonic oscillator, with parametric forcing defined

by (Q4(t), P<(1)):

1 1
Z.atae — %E(t)ae; %g(t) = —§Vy . D%eEﬂ(Pg(t))vy + iy ' D2 SW(QE(t))y (2 1 43)

a(y,0) = ao(y)-
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Note that we have replaced dependence on (¢q(t),p(t)) in equation (2.1.22) with dependence on
Q(t), P(t).

For simplicity of presentation of the following theorem we assume that:

(ao(¥)| yao(y)) L3 (ra) = (a0(y)] (=1Vy)ao(y)) 13 gay = 0 (2140
llao(y)ll L2 (ray = 1.
The result holds for general ag(y) € S(R?); see Section 2.4.
Theorem 2.1.2. Let ¢<(y, z,t) denote the asymptotic solution (2.1.38) including corrections pro-
portional to €'/2. Let Q°(t), P<(t) denote the observables (2.1.40). Then, there exists an ey > 0
such that for all 0 < € < €, and for all t € [0,C"In1/e] where C' > 0 is a constant independent of
t,e:
1. Q%(t), Pe(t) satisfy:
Q(t) = q(t) +e [<b(y, )ya(y, 1)) 2 may + (aly, t)] yb(y, t)>L§(]Rd)} + eAn(p(t)) + o(e)
PE() = () + € [(by, O] (=i9,)a(y, ) gy + (a0, O] (=,)b(y, ) 3 | + ()
(2.1.45)
where Ay, (p) is the nth band Berry connection (2.1.26), and a(y,t),b(y,t) satisfy (2.1.22) and
(2.1.24) respectively.
2. Let a(y,t) satisfy (2.1.43). Then:
Q4 () = Opg Bn(PX(t)) — €P5(t) Fuap(P(2))

1
+e50p; (Vya(y,t)| - Dpe En(P(t)Vya(y, 1)) La(ma) T o(e)

. (2.1.46)
Pa(t) = =00, W(Q1(1))
1
- 65893 <yae(y, t)| : DQQEW(QE(t))ny(ya t)>L§(Rd) + 0(6)'
Here, Fy, a5(P(t)) denotes the Berry curvature of the nth band:
Fnap(P€) := Ope Ap g(P) — 879;«4”,&(736) (2.1.47)

where A, (P€) is the nth band Berry connection (2.1.26). When d = 3 the anomalous veloc-
ity —ﬁg(t)]-"nvag(Pe(t)) may be re-written using the cross product as in (2.1.3); see Remark
2.1.12.
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3. After dropping the terms of o(€) in (2.1.46), equations (2.1.46), (2.1.43) form a closed, coupled
‘particle-field’ system for Q(t), P<(t),a(y,t).

4. Let

2(t) := Q°(t) — eAn(P(1))
(2.1.48)
PE(t) == PE(t).
Let a%(y,t) denote the solution of (2.1.43) with co-efficients evaluated at 2°(t), Z¢(t) rather
than Q(t), P(t).
Then, after dropping terms of o(e), 2¢(t), P(t),a(y,t) satisfy a closed, coupled ‘particle-

field’” system which is expressible as an e-dependent Hamiltonian system:

D =V peHE, P = —V g HE

SHE (2.1.49)
z’@taE = Sac
with Hamiltonian:
H(PC, 2 a¢,a%) := Ep (D) + W(2°) + eV W (2°) - A, ()
(2.1.50)

1 € € € 1 € € €
+e5 (Vya| - D% By (P)Vya >L§(Rd) +e5 (ya| - DH W (2)ya >L5(Rd)

Remark 2.1.12. In three spatial dimensions (d = 3) the anomalous velocity may be re-written

using the cross product:

P51 Faas(P(1) = ~P5(1) (OpgAns(P(1)) = Dps Ana(PE(1))
= — (00086 — 00Oy ) P5(1)0pe An o (PE(1))
= _57704/3577%75/63(t)apf,-An,qb(Pe(t)) (2.1.51)

= — (PF(0) x Ve x A(P())

Here, € and § are the Levi-Civita and Kronecker delta symbols respectively and each equality follows
from well-known properties of these symbols; see Section 2.1.6 (2.1.71)-(2.1.74). In this case the
curl of the Berry connection: Vpe X A,(P€) is often referred to as the Berry curvature, see for

example [23].
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Remark 2.1.13. FEquations (2.1.46) agree with those derived elsewhere (for example (3.5)-(3.6)
of Ref. [76]) up to the terms which depend on the wavepacket envelope a¢. The change of vari-
ables (2.1.48) was introduced in Ref. [23] to transform between the Hamiltonian system for the
characteristics of a ‘corrected’ eikonal ((4.9)-(4.10) in that work) and a gauge-invariant system

((4.11)-(4.12) in that work).
Corollary 2.1.1.

1. Choose initial data ag(y) of the form (2.1.32)-(2.1.33) with N = n=%* s0 that Hag(y)HL% =1.

Then, a“(y,t), the solution of the initial value problem (2.1.43), is given by:

Ay, 1) = W]\Et)]l/? exp @y . Bf(t)Afl(t)y) , (2.1.52)

where A(t), B€(t) satisfy:

A(t) = DpEn(P(1))B(t),  B(t) = — D W(Q“(£)) A*(2),
(2.1.53)
A(0) = Ay, B°(0) = By.
2. After the change of variables (2.1.48), the full coupled system governing (2°¢, 7€, A*(t), B€(t))
governed by (2.1.46) (with o(e) terms dropped) and (2.1.53), is expressible as a Hamiltonian

system:

D =VpeHS, P = -V o HE

. e . e (2.1.54)
Aty = 497 ey = 42
0B¢ 0A¢
with Hamiltonian:
H(P, 9°, A€, A, B¢, B¢) := E,(2°) + W(Z2°) + eV W(2°) - A, ()
(2.1.55)

+ ei Tr ((B€)" D3 E,(2)B] + % Tr [(A) " D% W (2°) A9 .

Remark 2.1.14. In the special case where the periodic background potential V = 0 the Bloch band
dispersion function E,(2¢) reduces to the ‘free’ dispersion relation (€)% and the Hamiltonian
(2.1.55) takes on the simple form:

1 €\2 €

(PP W(2)
. . (2.1.56)
+eg Tr [(A)' D% W (2°) A9] + € Tr (B9 B9].

H (P, 2°, A5, A° B<, BY) :=
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The system (2.1.54), with Hamiltonian H¢ given by (2.1.56) has been derived by other methods:
see Proposition 4.4 and equations (32b)-(32c) of Ref. [55]. It was shown furthermore in Ref. [56]
that corrections to the dynamics of 2¢, ¢ proportional to € due to ‘field-particle’ coupling to the
A€, B¢ system can lead to qualitatively different dynamical behavior. In particular, the coupling may

destabilize periodic orbits of the unperturbed (¢ = 0) system; see Section 9 of Ref. [56].

Remark 2.1.15. In Remark 2.1.7 we commented that the general timescale of validity of our results
is up to ‘Ehrenfest time’ t ~ In1/e, and that under further assumptions on the classical dynamics
we expect that this time-scale may be extended up to t = o(1/\/€). Note that the Berry curvature
terms and the new ‘field-particle’ coupling terms occur at the same order in €. It is an interesting

question to determine their impact on the dynamics for t greater than the ‘Ehrenfest time’.

2.1.5 Discussion of results, relation to previous work

The € | 0 limit of (2.1.1) has been studied by other methods. For example, by space-adiabatic
perturbation theory [57; 58; 72; 70], and by studying the propagation of Wigner functions associated
to the solution of (2.1.1) [51; 4; 10]. The Wigner function approach is notable in that it has
been used to study the propagation of wavepacket solutions of (2.1.1) through band crossings [48;
32]. It was shown in Ref. [23] that the anomalous velocity due to Berry curvature can be derived
by a multiscale WKB-like ansatz by studying the characteristic equations of a corrected eikonal
equation. The Hamiltonian structure of equations (2.1.46) without field-particle coupling terms
was studied in Ref. [22]

The effective system (2.1.46), in particular the ‘particle-field’ coupling that we derive, is original
to this work. Such coupled ‘particle-field’ models arise naturally in many settings where a coherent
structure interacts with a linear or nonlinear wave-field; see, for example Ref. [74] and references
therein.

The results detailed in Section 3.2 generalize to the case where the potential has the more

general form U (f, x) where U is periodic in its first argument:
U(z+v,2) =U(z,z) for all z,z € R%, v € A. (2.1.57)

If U(z, z) is not expressible as the sum of a periodic potential V' (z) and a smooth potential W (z) we

will say that U is ‘non-separable’. In this case we must work with an z-dependent Bloch eigenvalue
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problem:
H(p,z)Xxn(2p, ) = En(p, x)Xn(2;p, x)
Xn(z +v;p, ) = Xn(z;p, x) for all z,2 € RE, v € A (2.1.58)
1
H(p,z) := i(p —iV,)? + U(z, ).
For details, see Section 2.5. Related problems were considered in Refs. [43; 65]. An interesting
example of a potential of this type is that of a domain wall modulated honeycomb lattice potential,

which was shown to support ‘topologically protected’ edge states in Ref. [26].

2.1.6 Notation and conventions

e Where necessary to avoid ambiguity we will use index notation, making the standard con-
vention that repeated indices are summed over from 1 to d where d is the spatial dimension.

Thus, in the expression:

Opa Ops f (P) (=104, ) (=i8y5)9(y), (2.1.59)

it is understood that we are summing over « € {1,...,d}, 8 € {1, ...,d}.

e Where there is no danger of confusion we will use the standard conventions:

VgWE =V - W,VUZ =V - VU (2.1.60)

e A, = V2 denotes the d—dimensional Laplacian
e D2 denotes the d—dimensional Hessian matrix with respect to

e We will adopt multi-index notation where appropriate so that:

> 102 ()] € L=®(RY) (2.1.61)

|a|=l

means all derivatives of order [ of f(x) are uniformly bounded.

e It will be useful to introduce the energy spaces for every [ € N:

SR = e PR N flls= D0 Iy (i)  f®)lzz < oo (2.1.62)
laf+|B]<l
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e The space of Schwartz functions S(R?) is the space of functions defined as:

S(RY) := Mjen ! (RY). (2.1.63)

e We will refer throughout to the space of L2-integrable functions which are periodic on the

lattice A:

L;W_{feLmﬂW):bumzeRﬂvemf@+v%:ﬂ@}. (2.1.64)
e We will write a fundamental period cell in R? of the lattice A as Q.

e We will make use of the Sobolev norms on a fundamental period cell 2 for integers s > 0:

F )z =D 100 F (=)l (2.1.65)

l71<s

e It will also be useful to introduce the ‘shifted’ Sobolev norms, for arbitrary p € R%:

£ as, =D Ml —i02) f(2)ll 2 (2.1.66)
l7]<s
e Define the dual lattice to A:
A%:{beRﬁaveA:vvzzm%nez} (2.1.67)

o We will refer to a fundamental cell in ]Rg of the dual lattice A* as the Brillouin zone, or B

e We make the standard convention for the L?-inner product:
(f19) r2py = /Df(m)g(x) dz (2.1.68)
e We will make the conventions:
fé(z,t) = O(efe) «—= F¢>0,C >0, independent of ¢, e such that [f(z,t)][ 2 < Ceflet
g<(t) = O(efe?) «—= F¢ > 0,C > 0, independent of t, e such that |g¢(t)| < Cefe

(2.1.69)

e Let A be a complex matrix. Then we will write AT for its transpose, A for its complex

conjugate, and TrA for its trace. Using index notation:

(Aap)’ i= Age, (A)ap = A0z, TrA:= Ay, (2.1.70)
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e The Kronecker delta .z is defined:

+1 when a =g
0aB = (2.1.71)

0  when a # S

e In dimension d = 3, the Levi-Civita symbol .3, is defined:
+1 when (o, 8,7) € {(1,2,3),(2,3,1), (3,1,2)}
€apy *= 4§ —1 when (o, 8,7) € {(1,3,2),(2,3,1),(3,2,1)} (2.1.72)
0 when a = 5,8 =7, or vy =«
and satisfies the identities:

Capy = Efya = Eyap

(2.1.73)
EpapEong = Oay08 — Ogy0ap-
The cross product of 3-vectors v, w may then be written:

(VX W)o = €apyUaWy (2.1.74)

2.2 Summary of relevant Floquet-Bloch theory

In this section we recall the spectral theory of the operator:
1

H:= A+ V(2). (2.2.1)

where V is periodic with respect to the lattice A [46; 63]. For p € R%, define the spaces of p—pseudo-

periodic L? functions as follows:
LIQ) = {f e L. : f(z+v) =ePVf(z) for all z € R%, v € A} . (2.2.2)
Let A* denote the lattice dual to A:

A*::{bERd:EIUGA:U-b:27m,nEZ} (2.2.3)

since the p—pseudo-periodic boundary condition is invariant under p — p + b where b € A*, the

dual lattice to A, it is natural to restrict to a fundamental cell, B.
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We now consider the family of eigenvalue problems depending on the parameter p € B:

H®(z;p) = E(p)®(2;p)

' (2.2.4)
Oz +v;p) = ePVP(z;p) for all z € RE,ve A
We can also define the space LloC functions which are periodic with respect to the lattice:
12, = { f(2) € LEo(RY) s Yo € A, f(z 4+ v) = f(2) }. (2.2.5)

Then solving the eigenvalue problem (2.2.4) is equivalent via ®(z;p) = e®?x(z;p) to solving the

family of eigenvalue problems:

H(p)x(z;p) = E(p)x(z;p),

x(z+v;p) = x(z;p) for all ze R, v e A (2.2.6)
1 .
H(p) = L (- iV.) + V(2)

For fixed p, the operator H(p) with periodic boundary conditions is self-adjoint and has compact
resolvent. So, for each n € N, there exists an eigenpair E,(p), xn(2;p). The eigenvalues are real

and can be ordered with multiplicity:
Ei(p) < E2(p) < ... < Ep1(p) < En(p) < Enpa(p) < ... (2.2.7)

and the set of normalized eigenfunctions {x,(z;p) : n € N} is complete in L2 . The set of Floquet-

Bloch waves {®,,(z;p) = €P*x,,(2;p) : n € N, p € B} are complete in L?(R%):

ge L’RY) = g(x Z/gn (z;p) dp, where gn(p) := (Pn(-;P)|9(")) 2maey  (2.2.8)

n>1

where the sum converges in L2. The L?(R?) spectrum of the operator (2.2.1) is obtained by taking

the union of the closed real intervals swept out as p varies over the Brillouin zone B:

U(H)LQ(HW) = UnER{En(p) 1pE B} (2.2.9)

Our results require sufficient regularity of the maps:

En:B— R, p = Eu(p) (2.2.10)
1B Ly, p = Xn(2:p) (2.2.11)
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Definition 2.2.1. We will call an eigenvalue band E,(p) of the problem (2.2.6) isolated at a point
p € B if:
it |Bn(p) ~ En(p)| > 0. (2.2.12)
We have in this case:
Theorem 2.2.1 (Smoothness of isolated bands). Let E,(p), xn(2;p) satisfy the eigenvalue problem

(2.2.6). Let the band E,(p) be isolated at a point py in the sense of Definition 2.2.1. Then the

maps (2.2.10) are smooth in a neighborhood of the point py.
When bands are not isolated we have the following situation:

Definition 2.2.2. Let E,,(p), E,(p) : m,n € N;m # n be eigenvalue bands of the eigenvalue
problem (2.2.6). If p* € B is such that:

En(p*) = En(p"), (2.2.13)
we will say that the bands E,(p) and Ey,(p) have a band crossing at p*.

In a neighborhood of a crossing, the band functions E,(p), E.,(p) are only Lipschitz contin-
uous, and the eigenfunction maps p — xn(2;D), Xm(2;p) may be discontinuous [46]. This loss of
regularity occurs at conical degeneracies, which appear, for example, in the band structure of hon-
eycomb lattice potentials [28; 29], and in the dispersion surfaces of plane waves for homogeneous
anisotropic media [6]. An in depth study of conical crossings which appear in the study of the
Born-Oppenheimer approximation of molecular dynamics was given in Ref. [37].

It will be convenient to extend the maps p — FE,(p), Xn(2;p) to maps on all of R%. Let p € B,

and let b € A* denote a reciprocal lattice vector. Then we have that:
H(p+b) (6*ib"zxn(2;p)) = e " *H(p)xn(2: p)
= B (p)xalzi0) = Ealp) (€7 xalz:))

for all v € A, e*ib'(””)xn(z +v;p)

(2.2.14)

—ibv _—ib-z —ib-z

=e e xn(21p) = €V xn (25 p),

so that if x,(2;p) satisfies (2.2.6) with eigenvalue E,(p), then e=®%y,,(z;p) satisfies (2.2.6) with p
replaced by p + b, with the same eigenvalue. It then follows that the map p — E,(p) extends to a
periodic function with respect to the reciprocal lattice A*. If the eigenvalue E,(p) is simple, then:

—ib-z

(up to a constant phase shift) x,(z;p +b) = e ?xn(2;p).
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2.3 Proof of Theorem 2.1.1 by multiscale analysis

2.3.1 Derivation of asymptotic solution (2.1.29) via multiscale expansion

Following Hagedorn [36; 37], and Carles and Sparber [61], we seck a solution of (2.1.1) of the form:

’lbg(x,t) _ e—d/4€i5(t)/€eip(t)'y/el/Qfe(y’z,t)‘ +n(z,t). (2_3'1)

_xz ,_x—q(t)

Y= 172

Substituting (2.3.1) into (2.1.1) gives an inhomogeneous time-dependent Schrédinger equation for
n(x,t), with a source term r¢(x,t) which depends on S(t), q(t),p(t), and f(y, z,1):
2
iedf (1) = [—;Ax +v(2)+ W(x)] (2. 1) + (S, q.p. (. 1)

| | (2.3.2)
ne($7 0) _ 77(6)[57 q,p, fe](.%') _ ’(/JG(ZC,O) _ efd/llelS(O)/eezp((])-y/51/2fe(z’y7 0)

_z ,_2=q(0)
=ov=Tam

The idea behind the proof of Theorem 2.1.1 is to choose the functions S(t), q(t), p(t), and f(y, 2, t)

so that:
IS, q,p, f)(z,t) = O(€*)
nolS, @, p, f)(x) = O(e)

We will derive S(t),q(t),p(t), f(y,2,t) by a systematic formal analysis. This is the content of

(2.3.3)

Sections 2.3.1.1, 2.3.1.2, 2.3.1.3. Proving rigorous bounds on the residual will be the content of
Section 2.3.2. The bound (2.1.30) on n(z,t) will then follow from applying the standard a priori
L? bound for solutions of the time-dependent inhomogeneous Schrédinger equation.

Before starting on the formal asymptotic analysis, we note some exact manipulations which will

ease calculations below. The residual r¢(z,¢) has the explicit form:

P () = e~ d/A¢iSO e gin(®)3/e 2 {6 [ % (—iv,)2 — i 84

+€'/? [(p(t) —iV.) - (=iVy) = §(t) - (=iVy) + B(t) - y] (2.3.4)
. _ 1 , ;
#8300 0w + 5000 - v+ Ve s W+ )| b
Z:%7y:$€_1/2
Since W is assumed smooth, we can replace W (q(t) + €'/2y) by its Taylor series expansion in e'/2y:

W alt) + €/2y) = Wla(t)) + V29,0 (a(6) -y + 504,00, W (a(t) oy

1 (r—1)4
4!

1
+ 63/268%1 aqﬁ 8‘]’\/W(q(t))y0£yﬁy"/ + 62 /0 aQa a‘lﬁa@yaqu(q(t) + Tel/Qy) dTyOéyﬁy"/y(S

(2.3.5)
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We expand f€(y, z,t) as a formal power series:

Flyzt) = Oy, 2,t) + €2 f (Y 2,0) + ... (2.3.6)

and assume that for all j € {0,1,2,...} the f/(y, z,t) are periodic with respect to the lattice in z

and have sufficient smoothness and decay in y:

for all v € A7fj(yuz +U’t) = f](y,Z,t)
| | (2.3.7)
Fly,z 1) € 7 (RY).

The Yl-spaces are defined in (2.1.62). R > 0 is a fixed positive integer which we will take as large

as required. Recall the notation:
1 o \2
H(p) == E(p —iV,)* +V(2). (2.3.8)

Substituting (2.3.5) and (2.3.6) then gives:

) ) 1 -1 4
re(x,t):e_d/4ezs(t)/gew(t)'9/61/2 {62 [/0 (T m ) 8%8%8%8%1/{/((]@)—i—Tel/Qy)dTyaygyyyg}
1 1 .
02 00,0000, W (O + | 31V + 3040, W (a(O) s — i01
e [ )iV - (—iV,) + VW (gt)) -y — d(t) - (=iV,) + p(t) y]

A EORFOR <>+H<(>>]}{f0<y,z,t>+el/2f1<y7z,t>+...}

(2.3.9)

In order to prove Theorem 2.1.1 it will be sufficient to choose the f7(y,z,t),j € {0,...,3} so
that terms of orders €//2,j € {0,...,3} vanish. With this choice of f7,5 € {0,...,3} we will then
prove rigorously in Section 2.3.2 that 7¢(z,t) can be bounded by Ce%e! for constants ¢ > 0,C >

0 independent of €,t. There will then be no loss of accuracy in the approximation by taking
fj(y,Z,t) = 07] > 4.
2.3.1.1 Analysis of leading order terms

Recall that we assume each f7,j € {0,1,2,...} to be periodic with respect to the lattice A in z

(2.3.7). Collecting terms of order 1 in (2.3.9) and setting equal to zero therefore gives the following
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self-adjoint elliptic eigenvalue problem in z:

HpW))f (g, 21) = [=$@) + (@) - p(t)] 1, 2,0
for all v € A, fO(y, z + v, t) = fO(y, 2, 1) (2.3.10)
1y, 2 1) € SHRY)

Under Assumption 2.1.1, E,(p(t)) is a simple eigenvalue with eigenfunction x,(z;p(t)) for all t > 0.
Projecting equation (2.3.10) onto the subspace of:

12, = {f e L2 (RY) ;W e A, f(z+v) = f(z)} . (2.3.11)
spanned by x,(z;p(t)) implies:
S(t) = d(t) - p(t) — En(p(t)) (2.3.12)

which, after matching with the initial data (2.1.28), implies (2.1.21). Equation (2.3.10) then be-

comes:

[H(p(t)) — En(p(t)] f(y,2,t) =0
for all v € A, fo(y, z4v,t) = fo(y, 2, t) (2.3.13)
Py, 2, t) € SHRY

which has the general solution:

SOy, z,t) = a®(y, ) xn (2; (1)) (2.3.14)

where a®(y, t) is an arbitrary function in Ef(Rd), to be fixed at higher order in the expansion.

2.3.1.2 Analysis of order ¢/2 terms

Collecting terms of order €!/2 in (2.3.9), substituting the form of S(t) (2.3.12), and setting equal

to zero gives the following inhomogeneous self-adjoint elliptic equation in z for f1(y, z,t):
[H(p(t)) = Ea(p(®)] f1(y, 2,t) = €' (y, 2, 1)
for all = € A, fL(y, 2 +0,8) = fL(y 2,8 [y, 21) € SRR (2.3.15)
&= = [(p(t) —iV.) - (=iVy) + VW (a(t)) -y — d(t) - (=iVy) +5(t) - y] Oy, 2, 1)

Before solving (2.3.15) we remark on our general strategy for solving equations of this type.
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Remark 2.3.1. Collecting terms of orders €//2 for each j € {1,2,...} and setting equal to zero, we

obtain inhomogeneous self-adjoint elliptic equations of the form:

[H(p(t)) = En(p(t)] f(y, 2,t) = E1f°, f15 s 771w, 2, 1)
for all z € A,fj(y,z +u,t) = fj(yvzat); fj(y,z,t) € Ef_j(Rd)

(2.3.16)

Our strategy for solving (2.3.16) will be the same for each j. Under Assumption 2.1.1, the eigenvalue
E.(p(t)) is simple with eigenfunction xn(z;p(t)) for allt > 0. By the Fredholm alternative, equation
(2.3.16) is solvable if and only if:

for allt >0, (xn(z;p(t))] & (y, z,t)>L§(Q) =0. (2.3.17)

We will first use identities derived in Appendiz A.1 from the eigenvalue equation:

[H(p) — En(p)]Xn(z:p) =0 (2.3.18)

to write &1 (y, z,t) as a sum:

Gy, z,t) =& (y,2,t) + [H(p(t) — En(p(t))] v/ (y, 2, t) (2.3.19)

Note that by self-adjointness of H(p(t)) — En(p(t)), condition (2.3.17) is equivalent to the same

condition with & (y, z,t) replaced by & (y, z,t):

for allt >0, <Xn(z;p(t))] gj(y, z,t)> (2.3.20)

2@

For f € L2, define:

per’

PEW)f(2) = F(2) = (xa(0)] F(2)) 2 Xnl259) (2.3.21)

to be the projection onto the orthogonal complement of the subspace of Lger spanned by xn(z;p(t)).

Then, assuming (2.3.20) is satisfied, the general solution of (2.3.16) is:

Fy,2,t) = d (y, t)xalz;p(t) + W (y, 2,1) + [H(p(t)) — En(p(t)] " Pi(p(t)& (y, 2,t). (2.3.22)

Note that we have again made use of Assumption 2.1.1 to ensure that the operator [H(p(t)) —
En(p(t)] " P (p(t)) L2, — L2, is bounded for all t > 0. When j =1, condition (2.3.20) may

be enforced by choosing ¢(t),p(t) to satisfy (2.1.19). For j > 2, enforcing the constraint (2.3.20)

leads to evolution equations for a’~2(y,t).
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We will give the proof of the following Lemma at the end of this section:

Lemma 2.3.1. (y, 2,t), defined in (2.5.15), satisfies:

&'y, z,t) =& (Y, 2,t) + [H(p(t) — En(p(t)] u' (y, 2,1) (2.3.23)
where:

&'y, 2,t) =
= [(VpEa(p(t)) = 4(t)) - (=iVy)a’(y, t) + (VqW (q(t)) + D(t)) - ya’(y, )] xn(z; (1)) (2:3.24)
ul(y, z,t) == (—ivy)ao(y,t) - Vpxn(z;p(t))

The solvability condition of (2.3.15), given by (2.3.20) with j = 1 on £'(y, z,t) (2.3.24) is then

equivalent to:

(Vo Bulp(t) = d(t)) - (=iV,)a(y. ) + (VW (a()) + 5(2)) - ya*(y,£) = 0 (2.3.25)

which we can satisfy by choosing (q(t),p(t)) to evolve as the Hamiltonian flow of the nth Bloch
band Hamiltonian H,(q,p) = En(p) + W(q):

q(t) = VpEn(p(t)),p(t) = =V, W(q(1)). (2.3.26)

Taking ¢(0),p(0) = qo, po to match with the initial data (2.1.28) implies (2.1.19).
The general solution of (2.3.15) is given by taking j = 1 in (2.3.22), where u!,£! are given by
(2.3.24). With the choice (2.3.26) for G(t), p(t) we have that £' = 0 for all ¢ > 0 so that the general

solution reduces to:

FHy,z,t) = a' (y, ) xn(zp(t) + (—iVy)a’ (y, 1) - Vpxa(z; (1)) (2.3.27)

where a'(y,t) is an arbitrary function in Zf‘l(Rd) to be fixed at higher order in the expansion.

Note that since a®(y,t) € Eff(Rd), this ensures that fl(y,z,t) € Ef‘l(Rd) as required.

Proof of Lemma 2.3.1. By Assumption 2.1.1, E,(p) is smooth in a neighborhood of p(t). By adding
and subtracting V,E,(p(t)) - (=iVy) f%(y, 2, 1), £} (y, z,t) is equal to:

E(y, 2 1) = = [((p(1) = iV2) = VpEn(p(1))) - (=iVy)] f2(y, 2, 1)

—(VpEa(p(t) = d(t)) - (=iVy)] f2(y, 2,1) = [(VeW (a(8)) + 5(1)) - ) fO(y, 2, 1)

(2.3.28)
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Substituting the explicit form of f9(y, z,t) (2.3.14) into (2.3.28) we have:

'y, 2, 1) = —(=iVy)a’ (y,1) - [(p(t) — iV2) = VpEa(p(t))] Xn (23 p(1))
— (=iVy)a’(y, 1) - [VpEa(p(t)) — 4(8)) xn (25 p(1)) — ya®(y, 1) - [VeW (q(1)) + B()] xn (3 p(1)).-
(2.3.29)

(2.3.24) then follows immediately from identity (A.1.2). O

2.3.1.3 Analysis of order ¢ and ¢*/? terms (summary)

It is possible to continue the procedure outlined in Remark 2.3.1 to any order in €'/2. In Appendices
A.2 and A.3 we show the details of how to continue the procedure in order to cancel terms in the
expansion of orders € and ¢/2. In particular, we derive the evolution equations of the amplitudes

a®(y,t),a'(y,t) and show that:
a(y,t) = a(y,1)e’*» D a' (y, 1) = by, t)e'?s ") (2-3.30)

where a(y,t),b(y,t), pp(t) satisfy equations (2.1.22), (2.1.24), and (2.1.27) respectively.

2.3.2 Proof of estimate (2.1.30) for the corrector 7

Let:
F52,t) == Oy, 2,t) + €2 f 1y, 2,t) + ef2(y, 2,t) + €2 3 (y, 2, 1) (2.3.31)

Where the fO, 1 f2, f3 are given by (2.3.14), (2.3.27), (A.2.5), (A.3.5) respectively, and define:

Y§(a, 1) == e WeiSO/eeir®v/e ey o 1) (2.3.32)

x :Z*‘I(t)

SY="1/2

Let ¢(x,t) denote the exact solution of the initial value problem (2.1.28). From the manipulations
of the previous Section, we have that n§(z,t) := ¢(x,t) — ¢¥5(z, t) satisfies:
. € €2 T € €
ieoms(@,t) = |~ 5 A0 +V (2) + W) nsa.t) + r5(a.1)
€ (2.3.33)
13(,0) = nj o(x)
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where r§(x,t) is given by:

1

. 4 -1

T§($,t) :G*d/4els(t)/ﬁelp(t)'y/elm {62/ (T i ) 8 8 a a W( ()+T€1/2y)d7yo¢yﬂyyy6
0 .

(P2t + 2 ) + g2 8) + 2Py, 0))

1
+é 68110481158‘17W(Q(t))yayﬁy’¥:| (fl(y,z,t) + e 2 f2(y, 2, t) + ey, Zﬂf))

1 1
+ e | —idy + 5(—1Vy)2 + 28%8%W(q(t))yay4 (fQ(y, 2, t) + 23y, 2, t))

& [ () = V) = Y, Bu(o(1))) - <—z‘vy>] P, m)}

_z—q(®)
SY=Tan

z=

(2.3.34)

And 7§ o() is given by:

Hio(@) = — Vv L[ 2z ,0) + 27 (2, p,0)] |

2.3.35
ZZ%W: i;/qgo ( )

Since the f7(y,z,t),j € {0,...,3} are periodic with respect to the lattice A, we will follow Carles

and Sparber [61] and bound the above expressions in the uniform norm in z and the L? norm in y:

s (@, t)l| 2 <

2 1(7'—1) 1/2
e/ 1 S04, 04504, 0y SW(q(t) + 7€/ %y) dTyaysyYs

(fo z t)+el/2f (y, 2, t)—l—ef (y, 2, t)+63/2f3(y,z t)>

€ | =040 04500, W ( ())yayﬁyv] (fl(y,z,t)ﬂlﬂf?(y,z,t)+6f3(yaz7t>> (2.3.36)

1
69

2

,
e [—zat + 5T+ 30000, WO | (F(02,0) + 20 5,1)

V) - VEa(p(1)) - <—ivy>] P, 21)

Lge,L2

Ins(a, 0)llzz < [le [0 0) + 23w 0)]||
- z "y

where we have used the fact that:

We show how to bound the first term in (2.3.36). Bounding the other terms is similar, although

Y (jp) ’ ; — Hf(y)HLZ. (2.3.37)

care must be taken in bounding terms in LZ°, see Appendix A.4. Let:

Lir—1
20 = | [ T 0,.00,0, 00 W 0(0)+ 720) druysas 200

(2.3.38)
L, L2
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where fO(y, z,t) = a®(y, t)xn(z; p(t)) (2.3.14). By Assumption 2.1.2, D laj=a |0 W (2)] € L®(R%):

1 fe% a
<l S W@l Y a0  (2339)
) |a|=4 Loo(R9) lor|=4

Recall Assumption 2.1.1. Define:
S, :={peR?: ir;f |Em(p) — En(p)| > M}, (2.3.40)

so that for all t € [0, 0), p(t) € S,. For each fixed p € S,,, by elliptic regularity, x,(z;p) is smooth
in z so that ||xn(z;p)||lre < oco. Using compactness of the Brillouin zone B and smoothness of

Xn(z;p) for p € S,, we have that:

sup  [[xn(2;p)llLx < oo (2.3.41)
peEBNSH

Recall that for any reciprocal lattice vector b € A*, yn(z;p + b) = e ®?*x,(2;p). It then follows
that:
forall b € A", [|xn(2;0+b)llze = Xn(25p) |0 (2.3.42)

It then follows from combining (2.3.41) and (2.3.42) that:

sup [[xn(2;p)|| e < o0 (2.3.43)
PESn

In Appendix A.4 we show how to bound all z-dependence in r§(x,t) (2.3.34) uniformly in p € S,
in a similar way.

We have therefore that (2.3.39):

1 N o
I(t) < 625 > losw ()] sup [xn(z:p) Iz D lyaly )l (2.3.44)
" llel=4 Lo (R) pESn |o|=4

We see that to complete the bound, we require a bound on the 4th moments of a(y, t), which solves

the Schrodinger equation with time-dependent co-efficients:

$00a(y,0) = 500y En(p(1)) (~i0,,) (=i, () + 500, W (a(0) oy, 1)

(2.3.45)
CL(y, 0) = aO(y)
Following Carles and Sparber [61] we first define, for any [ € N, the spaces:
SIRY = { e R Sl = S0 19 (=i0,) ()l < o, (2.3.16)

o +[BI<!

We then require the following Lemma due to Kitada [45]:
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Lemma 2.3.2 (Existence of unitary solution operator for the envelope equation). Let ug € L? (Rd),
and nap(t), Cap(t) be real-valued, symmetric, continuous, and uniformly bounded in t. Then the

equation:

: 1 . . 1
001 = s (1) (=10, (=10, ) + 5o (Dayisu

2 (2.3.47)
has a unique solution u € C([0,00); L*(R%)). It satisfies:
e, )y = llto () e (2.3.48)

Moreover, if ug € X{(RY), then u € C(]0,00); XH(RY)).

We seek quantitative bounds on [lu(-,t)[/5ge) for I > 1. For simplicity, we consider in detail
the case [ = 1. Recall (2.1.23):

1

HO) = G0 (=03, (~iy) + 5 s (s (2:3.49)

and let ug(y) € S(RY) so that VI > 0, the solution of (2.3.47), u(y,t) € C([0,00); B/(R?)). Then
(—i0y, )u(y,t) € S(R) solves:

10¢(—i0y, )u = F(t)(—i0y, )u + [(—10y, ), H(t)]u

(=i0y, )u(y,0) = (—idy, Juo(y)

We can solve this equation using Duhamel’s formula and the solution operator of equation (2.3.47).

(2.3.50)

It follows that:

(0, uy, )l < I(~idy, July, 0)llz3 + /0 l[(=i0y,), 2(Nuly, )l ds  (2.3.51)

Since (o5(t) is symmetric, the commutator is given explicitly by:
[(=i0y.,), 7 (s)] = (—i)Cap(t)ys (2.3.52)
So that:

=0y )uly, Dz < [[(=i0y.)uo(y)l L2 +/O [Cap(®)llysuly; )l ds (2.3.53)

By an identical reasoning we can derive a similar bound on y,u(y,t):

t
1Yau(y, t)llzz < llyavo(y)llzz +/0 N0 (8)[[[(=i0ys)uy, )| Lz ds (2.3.54)
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Adding inequalities (2.3.53) and (2.3.54) gives:

t
Bl < JoC)ln +2 [ e Almas(s) Ga(s) o) s (2:3.55)

Using the following version of Gronwall’s inequality:

Lemma 2.3.3 (Gronwall’s inequality). Let v(t) satisfy the inequality:

o(t) < a(t) + /0 b(s)o(s) ds (2.3.56)
where b(t) is non-negative and a(t) is non-decreasing. Then:
v(t) < a(t)exp </Otb(s) ds> (2.3.57)
We have that:
a8l < [Juo ()]s €2 omaxaset,ay {Mas () ICas ()1} ds (2.3.58)

(-, )| < ||u0(')HEleCl Jomaxa seqr, . ay{1map(s)[Cap ()]} ds (2.3.59)

We have proved the following:

Lemma 2.3.4 (Bound on solutions of (2.3.47) in the spaces X!(R%)). Let the time-dependent co-
efficients 1,p5(t), Cap(t) be real-valued, symmetric, continuous, and uniformly bounded in t. Let
ug(y) € BHRY). Then, by Lemma 2.3.2, there exists a unique solution u(y,t) € C(]0,00); THRY)).

For each integer 1 > 0, there exists a constant C; > 0 such that this solution satisfies:
Hu('at)”EZ(Rd) < HUO(')szC’ Jomaxa gei,...ay{nas(s)1Cap(5) } ds (2.3.60)

Since the map p — E,(p) is B-periodic and smooth for all p € S,,, we have that under Assump-
tion 2.1.1, SUPsc(g,00) MAXq,ge(1,....d} |OpaOps En(p(t))| < 0o. Under Assumption 2.1.2 we have that
SUPte(0,00) MaAXy Be(1,...,d} 040, 0qs W (a(t))| < o0. Since Op,Opys En(p(t)), g, 095 W (q(t)) are clearly
real-valued, symmetric, and continuous in ¢ we have that Lemma 2.3.4 applies to solutions of

(2.3.45). Since ag(y) € S(R?) by assumption we have that for any integer [ > 0:
lay, )llsiray < llao(y)|ls:ra

(2.3.61)
emGhﬁﬁwﬁ&@%%@m@m%%wmw%>
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Remark 2.3.2. Terms which depend on b(y,t) rather than a(y,t) may be dealt with similarly, by

an application of Duhamel’s formula and a Gronwall inequality.
We have therefore that:

1 r—1 4
e /O u('3(;&(;56’%3(15W(q(t) + 7€2y) ATyay sy ysa(y, t)xn (2 p(t))

4!

Lg, L (2.3.62)
S Cl€2€CQt
where:
1
= > 09W ()] sup Ixn (25 P) | Lo [lao () |5 me)

n

|a|=4 Lo (Rd) pe (2.3.63)

= En )
=Gl e s {10005, Bulp(s)) 20,00, W o))

are constants independent of ¢, e.

We conclude that there exist constants C1, Cs, C5 > 0, independent of ¢, € such that:

175,0(2)ll 12 < Cre
(2.3.64)
I (2. 6)] 12 < Coe'e?
The bound (2.1.30) then follows from the basic a priori L? bound for solutions of the linear time-

dependent Schrédinger equation:

Lemma 2.3.5. Let ¢(x,t) be the unique solution of:

O =Hy+ f

(2.3.65)
¢($70) = wo(.ﬁ)
where H is a self-adjoint operator. Then:
t
[ (, Ol L2 way < [P0l 22 way +/0 1) 2 ray dt’ (2.3.66)
when f =0, we have:
10, Ol 2@ay = [190()ll L2 re) (2.3.67)
Applying Lemma 2.3.5 to equation (2.3.33) then gives the bound on n§(x,t):
1 t
In5(@,t)l[ 22 < [In3(,0)l[r2 + 6/0 175(z, )| 2 ¥’
I :
< Cre+ - / Cyest 2 dt! (2.3.68)
€ Jo

< Cete
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where C is a constant independent of €,¢. This completes the proof of Theorem 2.1.1.

2.4 Proof of Theorem 2.1.2 on dynamics of physical observables
Let ¢¢(z,t) be the solution of (2.1.28). By Theorem 2.1.1 we have that this solution has the form:

+ 1 (x, 1) (2.4.1)

_z

1/}6(113,15) = QZJE(Z%Z’t)‘y:zfq(t) sz

/2 FT

where:

Py, 2,t) 1= e WSO O/ idn (0 {“(y, t)xn (2 (1))

(2.4.2)
2 [ (<i9,)a(y. 1) - Vyxn(z: (1)) + by D)xa(:0(0)| |
In this section we compute the dynamics of the physical observables:
) = ey [, |5zt a
‘t)i=—— [ z|Y(y, 2,1 ’ T
() Jra " 17T e
1 - R (2.4.3)
€(4) :m T 0 (—icl/2 Te ; ’ d
P ( ) Ne(t) /Rd¢ (yvza ) ( 1€ vy) 77/) (y,Z, ) _=z, :%‘;g) €
where:
- 2
N(t) =/ we(y,z,t)) s e A (2.4.4)
Re Fev=Tan

Remark 2.4.1. Throughout this section we will employ a short-hand notation:

fé(z,t) = O(Xe) <= e >0,C > 0 independent of t,e such that [f(z, )2 < Cellect
g<(t) = O(fe?) = Fc>0,C > 0 independent of t, e such that |g¢(t)| < CeXe
(2.4.5)

We will use the following Lemma which is a mild generalization of that found in Ref. [8] (as

Lemma 4.2):

Lemma 2.4.1. Let f € S(RY), g smooth and periodic with respect to the lattice A, s € R a constant,

and § > 0 an arbitrary positive parameter. Then for any positive integer N > 0:

[ r@ (5+ ) do= < [ 1) dx) </Qg(z) dz> +O@M). (2.4.6)

For the proof, see Appendix A.5.
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2.4.1 Asymptotic expansion and dynamics of N¢(t)

By changing variables in the integral (2.4.4), we have that:

Ne(t) = 6d/2/

Rd

2

V(y, 2, 1)

dy. (2.4.7)

y +q(t)

Z:el/2 €

Substituting (2.4.2) into (2.4.7) gives:

= [ {atnomalpto) + 2 [(-09,)al00)- Tya :0(0) + b0 st
R4

{ay, 00xa(z5p(0) + €72 [ (=¥, )aly, £) - Tyxn 5 0(8)) + by, )xn(z50(1)) |}

(2.4.8)

We expand the product in the integral and apply Lemma 2.4.1 term by term with s = ¢(t),d = €l/2,

Since the x,, are assumed normalized: for all ¢ € [0,00) |[xn(;P(t))|lL2(q) = 1, we have:

NE(®) = llaly, Ol s gay
+ 2 ((=i9y)aly. )]y 1)) g - (Toxn(0(0) xn(2:2(0) 120

+{aly, O] (=iVy)ay, 1)) 13 ma) - (Xn (2 2(0)] Vxa(z:0(1))) 12 @)

(2.4.9)

+(b(y. )] aly: 1)) o mey + {a(y, ) b(y, 1)) 12 ga) | + Olee™).

Remark 2.4.2. In (2.4.9) we have made explicit all terms through order V2. To justify the
error bound, consider that the remaining terms may be bounded by C(t)e where C(t) depends on
Sl -norms of a(y,t),b(y,t) and LZ-norms of 01 xn(z; p(t)) where l1,ly are positive integers. By an
identical reasoning to that given in Section 2.3.2 we have that C(t) may be bounded by Cet where
c > 0,C > 0 are constants independent of e, t. Error terms of this type will arise throughout the

following discussion and will be treated similarly.

Under Assumption 2.1.1, in a neighborhood of the curve p(t) € B, the mapping p — xn(z;p) is
smooth. Hence, we may differentiate the normalization condition: || Xn(';p)‘|%2(9) = 1 with respect

to p and evaluate along the curve p(t) to obtain the identity:

On (2 ()] Vpxn (2 0(1))) 12() + (Vpxn (25 ()| X (25 2(1))) 120y = O (2.4.10)

It follows from this, and the fact that (—iV,) is symmetric with respect to the LZ—inner product,
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that:

((=iVy)aly, D) a(y, 1)) 13 ra) - (Vpxn (25 2()] X (2 2(1)) 2

+{aly, O (=iVy)aly, 1)) 13 ma) - (Xn (2 2()] Vpxa(2:0(1))) 12(q) = 0

(2.4.11)

so that (2.4.9) reduces to:

Nﬁ(t) = Ha(y7 t)“i%(Rd) + 61/2 <b(y7 t)’ Cl(y, t)>L§(Rd) + <Cb(y, t)| b(y7 t)>L§(Rd) + O(Gect). (2412)

From L?-norm conservation for solutions of (2.1.22), we have that la(y, )llzz = llao(¥)|zz- In

Appendix A.6 we calculate (A.6.17):

[0 aly, D) gy + 0l D], ) 3] =0, (2.4.13)

so that:
NE(t) = O(ee®t) (2.4.14)

Integrating in time then gives:

N(t) = N(0) + O(ee) (2.4.15)

= HGO(?J)H%g(Rd) +e/? [(bO(?J)| ao(y»Lg(Rd) + (ao(y)| bO(y»L%(Rd)} + O(ee™).

2.4.2 Asymptotic expansion of Q¢(t), P<(t); proof of assertion (1) of Theorem
2.1.2

Changing variables in the integrals (2.4.3) and using the identity:

= q(t)+ 61/23/‘ _a—q(t) (2:4.16)
T2
we have:
el 1/24d/2_ 1L Jy€ ? d
Q(t) =q(t) + ¢ N Y| (y, 2,t) L, g Y
( ) R4 zZ= e + 1/2
R ‘ (2.4.17)
€(py — A/24d/2_ L Te _ /)€
P = P Sy Jou V0B D V) B 0], W
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Substituting (2.4.2) into (2.4.17) we have, for each o € {1, ..., d}:

€ _ 61/2
Q:(0) = a0(0) + s | e

+e 2 [(—idy, )aly, 1)0p, xn (2 p(1)) + b(y, t)xn (2 p(1))]

a(y, t)xn (2 p(t))

Palt ) Pa(t)+

€

T L, 20 0(0) + 7 [0, )l 00, xale52(0) + o O (O]

(=0, (aly, O0xa(z:p(1) + €72 [(=idy,)aly, 1)y, xn (25 p(1)) + by x5 p(1))] )

P 1/2
(2.4.18)
Expanding all products and applying Lemma 2.4.1 term by term in (2.4.18) we obtain:
QC () = qa(t) + €'/ ! (a(y,t)| yaaly,t))
o) = At e gy N T B (e
1
+ EW [(b(y,t)\ yaa(y,t)>L§(Rd) + {a(y, 1) yab(y7t)>L§(Rd)
+ ((=i0y5)a(y, )] a0(: D) 12 ay (Fpsxn (23 2() | X (23 P(1))) 12
o 7t —1 7t n\%; n
+ (Yaaly, )] (=i0y,)a(y £)) 1 oy (Xn(2:2(0) 9 X (2:2(1))) 120 ) (2.4.19)
+ 0(63/2€Ct)

Po(t) = pal(t) +¢'/?

+6N61(t) (bl )] (=10, )0, 1)) gy + (0 D] (10, )b(0,1) 2

+ 0(63/266t).

1
_/\/'e(t) <a(y7t)’( Zaya) ( )>L2(Rd)

Here, terms of higher order than e are bounded by a similar reasoning to that given in Section 2.3.2
(Remark 2.4.2). Using the identity (2.4.10) and the fact that (—iV,) is self-adjoint we have that
< (—iayﬂ)a(y, t)| yaa(y, t)>L§(Rd) <8p5Xn(Z; p(t))‘ Xn(z; p(t))>Lg(Q)
+ (aa(y, )] (=i0y)a(y:1)) 12 ay (X (2 P(8))] B X (23 P(1))) 12 ) (2.4.20)

= (a(y, D [y (=i0y5)]a(y: £)) 12 zay (X2 PO FpaXn (23 P(1))) 13
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where [ya, (—i0y,)] = Ya(—10y,) — (—i0y,)ya is the commutator. Since [ya, (—idy,)] = idas We

have that:

(a(y,t)| [Yas (_iayﬁ)]a(y>t)>L§(Rd) (xn(z:p(1))| apBX”(Z;p(t)»L%(Q) (2.4.21)

= illa(y, t)\l%g(m) (xn (25 P(O)] Opo X (2:2(8))) 2 -

Using L?-norm conservation for solutions of (2.1.22), we have that for all ¢ > 0, ||a(y, t)H%Q(Rd) =
Yy
||a0(y)H%§(Rd). Using (2.4.15), we have that ||ag(y )||L2 RY) = NE(t) + O(e/%e) (2.4.12). We have

proved that:

i‘|a(y> t)”%%(Rd) (Xn(z§p(t))’ Van(z§p(t))>L§(Q)
= N(£)An(p(t)) + O(e"/?e)

(2.4.22)

where the last equality holds by the definition of the n-th band Berry connection (2.1.26). We have

proved that:

Q(t) = q(t) + 61/2/\/1(75) {aly; ) ya(y, 1)) 2 ra)
+ ey ({01000 ey + (a0 0] 00 D)y
T eAn(p(t)) + O(¥/2e)

‘ (2.4.23)
PE(E) = p(0) + € e ol O (iV)aly, 0) e

+ ey [P 01 (=i9,)al0.0) ey + (a0 O] (<9100 )y

+ 0(63/260t).
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2.4.3 Computation of dynamics of Q¢(t), P¢(t); proof of assertion (2) of Theorem
2.1.2

Differentiating both sides of (2.4.23) with respect to time and using N(t) = O(ee®) (2.4.14) gives:

: : 1 d
Qa(t) = da(t) + " 55 g7 (a0, Ol vaay: D) g s
1 d
TN @ (b(y, Dl Yaa(y, 1)) 12 may + (a(y,1)] yably, t))L%(IRd)}

+ ep(t)Dps Ana(p(t)) + O(e¥/ %) (2.4.24)

P(t) = palt) +€'/?

+ GN—El(t)(i (b(y,1)] (_iaya)a(yvt»/;gl(mgd) + (a(y,1)] (_iayoc)b(y7t)>L§(Rd)

e o oD (0,0 50

+ O(3/2et)

Recall that (¢(t), p(t)) satisfy the classical system (2.1.19). In Appendix A.6 we calculate (A.6.13):

() (9, 1) 1yt = o B (p(0)) ()] (~0,)0(9, 1)) 3

(1) (104, )aly, 1) gy = Dy O, W (a(0)) (aly, )] 30, 0) 2 5

(2.4.25)

and (A.6.18):

17 L0 0l vaay. ) ey + (a(y. 0] vab(y. D) 30|

= 0y, O Ba(p() [(60, D] (=i0,)a(9,0)) o) + (ay: )] (=i0,)a(3,8)) |
4 500a 9.0y, En(p(0) (0l )] (~03) (104, Ja(0: 1)) 5

o 00, W (1)), Ans (1) 0y 1) |3 s

[0 01 (<100l )3 sy + (0l O] (<30 0000, ) 350 |

= 03,0, W (a(8)) | (b9, 8)| 509, 8)) 3 ) + (aly: DI Y50y D) 3 )|

- %%ﬁqﬁ@qu(q(t)) (a(y, )| Ysy1(y, 1)) L2 ray — Oau Ogs W (a(1)) An,p(p(1)) |a(y, 1)II75 (2o
(2.4.26)
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Substituting these expressions into (2.4.24) and using ||la(y, )7, RY) = Ne(t) + O(e/2et) (2.4.9)
Yy

we have:

Qe (t) = apaEn(p(t)) + 61/2./\/’6( )apaaPBE ( ( )) <a(y7t)| (_iayg)a(y7t)>Lz2/(Rd)

J\/e( )apaapBE L (p(t)) [(b(y,t)y (—z'ayﬁ)a(y,t»%(w) + (a(y,t)] (—iayﬁ)a(y,t)>L§(Rd)]

+ 5 3737 0P O 2 000) (a0 )] (=104, (=104, )00 0) 15

+ €0y, W(q(1)Dpe An, 5 (0(t)) — €0 W (a(1)) Dy Ana(p(1)) + O(e¥/ %) (2427
Pa(t) = —03, W (g(t) — ¢'/? NE( )3 045 W (q(1)) {aly, )] ysa(y: 1)) 2 (may

- eNl()a 05 W (q(t)) [(b(y,t)l Ypa(y: 1)) s gy + (0(y, )| Y50y, 1) 12 (zay

1
2/\/6()

- eafhxalIﬁW(Q(t))An,ﬁ(p(t)) + 0(63/2eCt)

e 04 94500, W (a(®)) (aly, )| yayra(y: 1)) 12 (me)

Equation (2.4.23) gives expressions for ¢(t), p(t) in terms of Q°(¢), P(t):

qa(t) = Qg (t) — 61/2N€1(t) (a(y,t)] yaa(y,t»Lg(Rd)

N;L(t) {<b(y,t)’ yaa(y,t)>L§(Rd) + (a(y,t)]| yab(y,t)>L§(Rd)} — eApa(p(t)) + O(/2¢t)

polt) = P5(t) = /i ()] (=i, )a(y. )

— €

(2.4.28)

— Nf(t) (b0, )] (=i0,,)a(y, ) 3y + (a0, )] (=i, )by, ) | + O 2e)
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Substituting these expressions into (2.4.27), Taylor-expanding in €!/2

lao(y )HLQ (RY) O(e/?et) (2.4.9) then gives:

, and again using N¢(t) =

Q5 (1) = dpg En(PA(1))

1 . .
+ €50p; Ops Op: B (P(1) (s 0)l (~i0,) (=10, )a(, )

lao(y )”L2 (RY)

—m (aly, t)| (—idy,)aly, t)>L5(Rd) {a(y,t)] (—idy, )a(y, t)>L§(Rd)]

+ €0y W (Q° (1)) Fary (PE(1)) + O(e¥2)

P(1) =~y W(Q1(1)) — 590y Doy Do W (Q (1) [ (aly,0)| 5305 1) 3 g

fao(y >||L2(Rd>

(a(y, )] yﬂa(% t)>L§(Rd) (a(y,t)| ywa(ya t)>L§(Rd) + 0(63/266t)'

lao(y )HL2 (R4)
(2.4.29)
where oy (P€) 1= Opg Any(P) — Opg Ana(PF) is the nth band Berry curvature (2.1.47). Note
that the system (2.4.29) is not closed: a(y,t) satisfies an equation parametrically forced by ¢(t), p(t)
(2.1.22). Recall the definition of a“(y,t) (2.1.43) as the solution of (2.1.22) with co-efficients evalu-
ated at Q°(t), P(t):
- € 1 € - - € 1 € €
300 (3,1) = 50 Dp3 B (P(0) (0, ) (i )a (5, 1) + 3005 05 W (Q“(1)yaysa (. )
a“(y,0) = ao(y),

Recall the definition of the X! norms (2.3.46). If we can show that |la(y,t) — a(y,t)HE%(Rd) =

(2.4.30)

O(e!/2e) for each positive integer [, then we may replace a(y,t) by a(y,t) everywhere in (2.4.29)

and, after dropping error terms, we will have obtained a closed system for Q°(t), P¢(t), a“(y,t). Let:
1 ) ) 1
H(t) 1= 50ps Opg En(P*(1))(—10y, ) (—i0y,) + 5905 005 W (a(t))yays,
1 ) ) 1
H (1) := 5 0paOpy En(p(t))(=10y, ) (=10y,) + 5 040 Og, W (a(t))yays
then a(y,t) — a(y,t) satisfies:
i0; (a*(y, 1) — a(y, 1)) = A (t)a"(y, t) = A (t)a(y,?)
= () (a*(y; 1) — aly, 1)) + (H*(t) = H(1)) aly, 1) (2.4.32)

a(y,0) —a(y,0) =0

(2.4.31)
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Using the fact that #(t) is self-adjoint on L2(R?) for each ¢, it follows from (2.4.32) that:

0 .1) — aly, ) s
=1 <(‘%ﬂ€(t) - %(t)) a(y7 t)‘ ae(yv t) - a(ya t)>L§(]Rd) (2'4‘33)
— i (a (1) — aly. )] () — H(0)) aly, ) 3 e

By the Cauchy-Schwarz inequality:

< 2[la*(y, ) — aly, )l 2 ey | () = (1)) aly, 1) L2 (ra) (2.4.34)

It then follows that:

la®(y, 1) = aly, )l Lz we) < /0 1(#(s) = H(s)) aly; s)|| L2 (e ds. (2.4.35)

Using the precise forms of J¢(t), 7 (t) we have:

¢
la®(y, 1) — a(y7t)HL§(Rd) < /0

sup  (10p50my Eu(P(5)) — Op, Oy Eulplo)] + |05 B0 W(Q4(5)) — 34,00, W (a()])
s€[0,00),a,8€{1,...,d}

a(y, 8)”25(11@) ds
(2.4.36)

where Z‘z(Rd) is the norm defined in (2.3.46). Recall that |Q¢(t) — q(t)| + |P(t) — p(t)| = O(e'/2e)
(2.4.23). It follows from compactness of the Brillouin zone and Assumptions 2.1.1 and 2.1.2 that
there exists a uniform bound in ¢ on third derivatives of E,(p),W(q) for all p along the line
segments connecting p(t) and P€(t), and all ¢ along the line segments connecting ¢(¢) and Q¢(t).
We may therefore conclude from the mean-value theorem that there exist constants ¢ > 0,C' > 0

independent of €,t such that:

t
la(y.1) — aly, )]l 3 ae) < C? /0 e**laly, )l e ds. (2.4.37)

We now use the a priori bounds on the Zé(Rd)—norms of a(y,t) for each | € N (Lemma 2.3.4) to
see that:

la*(y, 1) — a(y, t)l| 2 ga) < €/°Ce (2.4.38)
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for some constants ¢ > 0,C’ > 0 independent of €,t. By a similar argument, we see that for any

integer [ > 0 there exist a constants ¢; > 0,C] > 0 such that:
la“(y, ) — a(y, t)llsy ey < '/Crect’. (2.4.39)

It then follows that we may replace a(y,t) by a“(y,t) everywhere in (2.4.29), generating further

errors which are O(e%/%et) to derive:

Q5 (1) = Opg En(PA(1))
1

1
+ 678'P(§ 8’P€ a’PE -E’Tl(,])E (t)) Y
5 57P5 Hao(y)H%g(Rd)

(9,01 (=0,) (i, )a" (5. )) 1

HGO(?J)% <a6(y, t)] (—i0y, )a(y, t)>L§(Rd) <a€(y> t)] (—idy,)a (v, t)>L§(Rd)]

+ €D W (Q°(t)) Fray (PE()) + O( %)

. ) 1 6 . 6 E
Palt) = =00, W(Q(?)) — €5005 00590 W(Q(2)) | 1—sp—— (a*(y, )| 491" (¥, 1)) 12 (e
Hao(y)HLi(Rd) Yy
: ¢ ‘ € ¢ 3/2 ct
_m {a®(y, O ypa®(y, 1)) 13 (ray (@ (¥, )| 970" (y, 1)) 12 (ay | + O(” 7).
Y

(2.4.40)

2.4.4 Hamiltonian structure of dynamics of Q¢(¢), P¢(t); proof of assertion (3) of
Theorem 2.1.2

Following Ref. [23], we introduce the new variables (2.1.48):

DE(t) := Q(t) — eAn(P(1)) (2.4.41)

DE(t) = P(2).

Let a(y,t) denote the solution of (2.1.43) with co-efficients evaluated at 2¢(t), 22¢(¢t) rather than
Q¢(t), P<(t), with initial data normalized in L2(R%):
- € 1 € - - € 1 € €
00°(y, t) = 505 0 En(P(1))(—i0y, ) (—i0y, )a(y,8) + 5005 00 W (2°(2))yaypa(y, 1)

a ”ao(y)HLg(Rd) '
(2.4.42)
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Since 2¢(t) — Q°(t) = O(ee), P<(t) = P(t), by a similar argument to that given in the previous

section we have that for each integer | > 0:

ae(y7 ) E(y,t)

— = O(ee). 2.4.43
Tao®)llz2n (€e) (2.4.43)

5, (RY)

Differentiating (2.4.41), using equations (2.4.40) for Q¢(t), P¢(t), and using (2.4.43) to replace

a‘(y,t) “hoaf .
Tao ) 13 et with a“(y,t) everywhere we obtain:

F(6) = 0 En(P(0) + 509,09, 0 B P(0) [(0° (3, )] (=03, (=03 )0 (0, )13 g
— () (=i0,)0° (1)) 13 gy (0 (00 (=i0,)0 (0, 1)) s |
+ D05 W(2°(1)) g An.a( P(1)) + O 2e)
P (1) = —0, W(2°(1)) — 5D, D05 Do W(2°(1)) (0 (0, )] i (0, 1) 1 g
(0, ) 950" (95 ) 1 gty 80 D) 920 (0 1)) 3 |
— 095 00 W (2°(1)) An g (2°(t)) + O(¥2e).
(2.4.44)

Note that, up to error terms, equations (2.4.44) (2.4.42) constitute a closed system for 2¢(t), Z¢(t),

a(y,t).

We now show that this system may be derived from a Hamiltonian. Let:

pe(t) == (a(y, ) ya“(y, 1)) 2 may
(a(y, ) (=1Vy)a*(y, 1)) 13 (ray -

(2.4.45)

OF
Then, we may write (2.4.44) as
95 (t) = Ope B (P<(t))
+ %ag,;a%a e En(24(0)) [(0 0, )] (=03, (=0, )05 1)) 3 gy — NN (0]
+ €095 W (2°(£) 05 Ana 2(1)) + O(e¥%e)
F(1) = 0 WD) — €20, 03 05 W(2(0)) (a0 ) 0510 (0 0) gty — 50

- 663&89[3W(Qﬁ(t))v‘ln,ﬂ(ye(t)) + 0(63/2€Ct)
(2.4.46)
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By an identical calculation to that given in Appendix A.6 (A.6.13) (A.6.14), we have that:

5 (8) = D95 D B 5(£) 251

Ao (t) = =825 Do W (2°(1)) s (t).

(2.4.47)

Let:
H(L2, 705, a5, 15, X%) 1= Ep(P°) + eW(2°) + eV W(2°) - Ay (F°)

1
+ €509, 075 En () [<8yaa€\ Dy - A;Ag} (2.4.48)

L3(RY)

1 € € € € €
o+ €500; D0 W (2°) [ ot Y30°) g0y — k)

Then we may write the closed system (2.4.42), (2.4.47), (2.4.46) as:

Q@'e _ VC@EIHE((@€>7 g’ze _ _VQEHG(QE),

SH :
i0yac = % fE(E) = —VaeHE, A (t) = Ve HE.

(2.4.49)

The precise statements (1),(2),(3) of Theorem 2.1.2 follow from the following observations.
The errors in equations (2.4.23), (2.4.40), (2.4.46) may each be bounded by €3/2C1ett, €3/2Cyec2t,
e3/2Cse08t for positive constants ¢, Cj, j € {1,2,3}. Define:

d:= max c¢j, C':= max C;. (2.4.50)
j6{17273} j6{17273}

Then all of these errors may be bounded by €3/2C"et. Tt follows that these terms are o(e) for all
t € [0,C"In1/e] where C’ is any constant such that C’ < 5. Next, in Appendix A.6 (A.6.13)
(A.6.14) we show that (ag(y)] yag(y)>L§(Rd) = (ap(y)| (—iVy)ao(y»L%(Rd) = 0 implies that for all
t >0 (a(y,t)| ya(y,t))Lg(Rd) = (a(y,t)| (—ivy)a(y,t)>L§(Rd) = 0. Imposing the constraints (2.1.44),
then, the simplified expressions (2.1.45) (2.1.46) follow from (2.4.23), (2.4.40) respectively. We are
also justified in ignoring the A€, u¢ degrees of freedom in (2.4.48) (2.4.49) since for all ¢ > 0,

AS(t) = pc(t) = 0. In this way we obtain the simplified Hamiltonian system (2.1.49) (2.1.50).
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2.5 Semiclassical wavepacket asymptotic solutions when the po-

tential is ‘non-separable’

In this section we consider the following generalization of equation (2.1.1) for ¥¢(x,t) : R?x [0, 00) —
C:
. € 1 2 € £ €
ied) = —5¢ Ay +U (f,x) )
€

(2, 0) = Pp().

(2.5.1)

We assume that U(z,x) is periodic in its first argument with respect to some d-dimensional lattice

A for each fixed value of the second:
U(z4v,x) =U(z,z) for all z,z € R v e A, (2.5.2)

and that U(z,z) is a smooth function of both z and x. We show how to construct semiclassical
wavepacket asymptotic solutions of (2.5.1) which approximate exact solutions up to error of o(1) up
to ‘Ehrenfest time’. We will not go through the details of calculating corrections to the asymptotic
solution proportional to €/2 and then computing the dynamics of observables associated to this
solution including corrections proportional to € as we did in sections 2.1-2.4 for the special case of
(2.5.1) where U is ‘separable’: U(z,z) =V (z)+ W (z). A similar analysis would be possible in this
setting, although we expect that the system derived in this way would be complicated and difficult
to interpret.

The model (2.5.1) (and generalizations of (2.5.1) where U is time-dependent and non-zero
magnetic fields are present) was studied by E, Lu, and Yang [23] through a multi-scale WKB-
type expansion. They showed how Berry curvature associated to the appropriate Bloch eigenvalue
problem in this case (2.5.3) enters into the characteristic equations of an ‘e-corrected’ eikonal
equation (see Section 5 of that paper). In Section 2.7 we derive the form of the Berry curvature
for an example potential U(z, z) related to that which appears in a model of a system displaying
robust ‘edge’ states [27].

Consider the family of self-adjoint eigenvalue problems parameterized by real parameters q,p €
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R4 x R<:

H(q,p)x(2;9,p) = E(q,p)x(2; ¢, p)

X(z;9,p) = x(z;¢,p) for all z,q,p € RYveA (2.5.3)

H(q,p) = %(p —iV.)? + U(2,9).

Just as in the separable case (2.1.13), there is no loss in restricting our attention to p € B, a
fundamental cell of the reciprocal lattice A*. For fixed ¢ and p, the spectrum of (2.5.3) is real and

discrete and the eigenvalues can be ordered with multiplicity:

Ei(q,p) < Ea(q,p) < ... < En(g,p) < ... (2.5.4)

and the associated normalized eigenfunctions x,(z;¢q,p) are a basis of the space:

L} = {f €L, :flz4+v)=f(z)forallve A,z e Rd}. (2.5.5)

per

Varying ¢ and p, we again obtain band functions: (¢,p) — E,(q,p). If a band E,(q,p) is isolated
at some qo, po € B x R%:
inf |Ep (g0, po) — En(qo,po)| >0 (2.5.6)
m#n

then a Lyapunov-Schmidt reduction argument shows that the maps (¢, p) — E.(q,p), xn(z;q,p) are
smooth in a neighborhood of qg, pg (cf. Definition 2.2.1, Theorem 2.2.1). The natural generalization

of the ‘isolated band’ Assumption 2.1.1 to this setting is the following;:

Assumption 2.5.1 (Uniformly isolated band assumption). Let E,(q,p) denote an eigenvalue band
function of the periodic Schrédinger operator (2.5.3). Assume that (qo,po) € R? x R? are such that
the flow generated by the classical Hamiltonian Hy(q,p) := En(q,p):

q(t) = VpEn(q(t),p(t),  p(t) = =VeEn(q(t),p(t))

q(0), p(0) = qo, po

(2.5.7)

has a unique smooth solution (q(t),p(t)) € RY x R, ¥t > 0, and that there exists a constant M > 0
such that:
inf | En(a(t), p(t)) — En(a(t), p(t)] > M for allt > 0. (2.5.8)

m#n

That is, the nth spectral band is uniformly isolated along the trajectory (q(t),p(t)) for all t > 0.
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The appropriate generalization of Assumption 2.1.2 to this setting is the following;:

00U (z,z)| € L=(2 x RY).

Assumption 2.5.2. >3, _; 53

We have then the following result on the propagation of semiclassical wavepacket solutions of
(2.5.1) up to errors of o(1) over the Ehrenfest time-scale. Our result may be viewed as a direct

generalization of Theorem 1.7 of Carles and Sparber [61] to this setting:

Theorem 2.5.1. Let Assumptions 2.5.1 and 2.5.2 hold. Let ag(y),bo(y) € S(RY). Let S(t) denote

the classical action along the path (q(t),p(t)):
t
S0 = [ pE)- ,Bulat).p(¢) = Pulalt). (1) . (25.9)
Let a(y,t) satisfy:

iata(yv t) = %(t)a(yv t)
(2.5.10)
a(y,0) = ao(y),
where:
HE) = 50,y Bna0), p(0) (104, )(~304,) + 504,05, B a(1),p(1) s
50D Bnla(0), (1)) (03, s + (i)
+1Im (Voxn(::q(t), p(1)[ [H(q(t), p(t)) = En(a(t), p(£)] - Vpxn (5a(t), p(1))) 120 -
(2.5.11)

Let Ay(q,p), Ap(q,p) denote the nth band Berry connections with respect to q and p respectively:

Ag(a:p) =i xn (54, 0) Voxn (54, 0)) 120y Ad(@:p) =i (xn (56, 0)| Voxn (54, 1)) 12(q) (2.5.12)

Let ¢pp(t) denote the Berry phase associated with transport of xn(z;q,p) along the path q(t),p(t) €

R? x B given by:

¢B(t) = /O q(t) - Ag(q(t), p(t) + p(t') - Ap(a(t), p(t')) dt’

(q(t),p(t))
:/( Aq(q,p) - dg+ Ap(q,p) - dp.

40,P0)

(2.5.13)
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Then, there exists a constant eg > 0 such that for all 0 < € < eg the following holds. Let ¢¢(x,t) be

the unique solution of the initial value problem (2.5.1) with ‘Bloch wavepacket’ initial data:
1
1€0)© = —§€2Axwe +U (E, x) €
€

2.5.14
V(2,0) = E*d/‘leipo-[x*qo]/eao L~ 40 Y (f. 90, D ) ( )
9 61/2 n 67 07 0 .

Then for all t > 0 the solution evolves as a modulated ‘Bloch wavepacket’ plus a corrector n®(x,t):

(s 1) = YISO/ gin®)a=a(0)/eyivn(t), (x - /(12(75) 7 t) o (Za®).0(0)
€ €

(2.5.15)
+1°(z, 1)
where the corrector n° satisfies the estimate:
17 )| o (ray < Ce'/2e. (2.5.16)
Here, ¢ > 0, C' > 0 are constants independent of €,t. It follows that:
sup  [|n°( D)l L2 (ray = o(1) (2.5.17)
te[0,C'In1/¢€]
where C is any constant satisfying C' < i
Remark 2.5.1. The term:
Im (Vgxn(5q(t),p(t))| [H(q(t), p(t)) — En(q(t), p(t))] - Vpxu (- q(t), p())) 120 (2.5.18)

contributes an overall phase shift to the solution a(y,t) of (2.5.11). This term has been derived
elsewhere and interpreted as a ‘correction to the wavepacket energy’. See, for example, (2.18) of

[71] and (6.8) of [76].

Remark 2.5.2. For a discussion of Berry’s phase, connection, and curvature, and gauge indepen-
dence in the setting of a two-by-two matriz example, see Appendiz A.7. We compute the Berry
curvature in a ‘non-separable’ Schrodinger example and for Mazwell’s equations in free space in

Sections 2.7.1 and 2.7.2 respectively.

Equations (2.5.7), (2.5.9), (2.5.11) and (2.5.13) may be derived by a formal multiscale analysis,
which we present in the following section. The proof of the bound (2.5.16) is sufficiently similar to

the separable case (Section 2.3.2) that we omit it.
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2.5.1 Derivation of the asymptotic solution (2.5.15) via multiscale expansion
We seek a solution of (2.5.1) of the form:

Ye(x,t) = efd/‘leis(t)/feil’(’f)'y/ﬁl/zfﬁ(y7 z, t)‘ + n(z,t). (2.5.19)

z—q(t) T
= z=Z
/2 0 €

Substituting (2.5.19) into (2.5.1) gives an inhomogeneous time-dependent Schrédinger equation for

n(x,t), with a source term r¢(x,¢) which depends on S(¢), ¢(t),p(t), and f(y, z,1):

. € 62 x € € €
Z€8t77 - |:—2A$+U<6,(E>:| n +r [57Q7p7f]

e (2.5.20)
776(51770) — we<x7 0) _ G*d/4ezS(0)/€elP(0)'y/6 fﬁ(y’ 2,0)‘ R e "
=127
The source term r¢(x,t) has the explicit form:
r(x,t) = e~/ 4giS(t)/egin(t)y/e/? {6 B(—Z’V;;)Q - i@t}
+€/? [(p(t) —iV.) - (=iVy) = 4(t) - (=iVy) + B(t) - y] (2.5.21)
. , 1 . ;
#[80) - a0 + 500 - .2 4 Ut + 2| | rzo|
=ov=ra
Since U is assumed smooth, we can replace Uz, q(t) +€'/%y) by its Taylor series expansion in e'/2y:
1
Uz, q(t) + €'y) = U(z,q(t) + €°VU (2, q(t) -y + €59%.04,U (2, a(t))yays
3/2 Hr—1)° 1/2 (2:5.22)
+ &/ /0 3l 8%8%6qu(2, q(t) + 1e / Y) ATYaysY~
We expand f(y, z,t) as a formal power series:
fe(ya 2, t) = fo(yv Zy t) + 61/2f1(y7 2, t) + .. (2523)

and assume that for all j € {0,1,2,...} the f/(y, z,t) are periodic with respect to the lattice in z

and have sufficient smoothness and decay in y:

for all v € A, fi(y,z 4+ v,t) = fi(y, z, 1)
(2.5.24)

Fy,z,t) € BEI(RY).
The Yl-spaces are defined in (2.1.62). Here, R > 0 is a fixed positive integer which we will take as

large as required. Recall the notation (2.5.3):

. (p—iV2)? +U(z,9). (2.5.25)

H(q,p) =3
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Substituting (2.5.22) and (2.5.23) then gives:

. . 1/2 ! - 1)
P 1) = iSO e bt v/e {63/2 [ / (T 3'1) 404,04, U (2,q(t) + T/ %y) dTyayﬂyv]
0 !
I 1 '
+e [2(—zvy)2 + 58%811/3[](2: q(t))yays — Zat]
+ €/ [(p(t) —iV2) - (=iVy) + VU (2,q(t) -y — 4(t) - (=iVy) + H(t) - y}

+ [$(t) = d®) - p®) + H(a(®). p0)] | { £ 2. 8) + /27 o2, 8) + .}

—z ,_x—qt) ’
Z=5y= 1/2

(2.5.26)

In order to prove Theorem 2.5.1 it is sufficient to choose the f7(y, z,t),7 € {0,...,2} so that terms

of orders €//2, j € {0, ..., 2} vanish. There is then no loss of accuracy in the approximation by taking

fj(y,Z,t) :Oa] > 3.

2.5.1.1 Analysis of leading order terms

Recall that we assume each f7,j € {0,1,2,...} to be periodic with respect to the lattice A in
z (2.5.24). Collecting terms of order 1 in (2.5.26) and setting equal to zero therefore gives the

following self-adjoint elliptic eigenvalue problem in z:

H(q(t), p(0) (9, 2,) = [=5(8) + (1) - p(0)] L0, 2 0),
for all v € A, fO(y,z +v,t) = Oy, 2, 1), (2.5.27)
Oy, z,t) € Eg(Rd).

Under Assumption 2.5.1, E,(q(t),p(t)) is a simple eigenvalue for all ¢ > 0. Projecting (2.5.27) onto

the subspace of L]%er spanned by xn(z;q(t), p(t)) implies:

S(t) = (1) - p(t) = En(a(t), p(t)) (2.5.28)
which, after matching with the initial data (2.5.20), implies (2.5.9). Equation (2.5.27) then becomes:

[H(q(1), p(t)) — En(a(t), p(t))] f*(y, 2, 1) = 0,
for all v € A, fO(y,z +v,t) = fO(y, 2, 1), (2.5.29)

Oy, z,t) € BHRY)
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which has the general solution:

FOysz,t) = a®(y, t)xn(25.4(t), p(1)), (2.5.30)

where a”(y, ) is an arbitrary function in Eg(Rd) to be fixed at higher order in the expansion.

2.5.1.2 Analysis of order ¢/2 terms

Collecting terms of order €!/2 in (2.5.26), substituting the form of S(t) (2.5.9), and setting equal

to zero gives the following inhomogeneous self-adjoint elliptic equation in z for f1(y, z,):

[H(q(t), (1)) — En(a(t), p(t))] f1(y, 2,1) = £ (y, 2, ),
for all z € A, fY(y, 2z +v,t) = fH(y, 2,t); f1(y, 2,t) € Effl(Rd), (2.5.31)
== [(p(t) = iV2) - (=iVy) + VU (2,q(t)) -y = 4(t) - (=iVy) +5(t) - 9] f(y, 2, 1).

We now follow the same general strategy followed in the separable case (see Remark 2.3.1) to solve

(2.5.31). We first observe that by differentiating (2.5.3) with respect to ¢, p we derive the identities:

[H(q(t),p(t)) = En(q(t), p(t))]Vpxn(2: q(t), p(t)) =

= [(p(t) = iV2) = V. En(a(t), p(t))] Xn(z: 4(t), p(t))
[H (q(t),p(t)) — En(q(t), p(t))]Vaxn(2; a(t), p(t)
— (04U (2, 4(t)) = VaEn(a(t), p(t))] xn(2; q(t), p(1)),

which generalize identities (A.1.2) to this setting. Using (2.5.32) and the form of f%(y, z,t) (2.5.30)

(2.5.32)

)=
p(

we may write:
&y, 2,t) = &'y, 2,t) + [H(q(t), p(t)) — En(q(t), p(t)]u' (y, 2, 1) (2.5.33)

where:

&'y, 2,t) = — [(VpEn(q(t), p(t) — d(t)) - (—iV,)a’(y, 1)
+(VeEn(q(t),p(t)) +p(t)) - ya°(y, )] xn(z; q(t), p(t)) (2.5.34)
u(y, z,t) = (—iVy)a’(y,t) - Vpxn(2;q(t), p(t) + ya’(y,t) - Voxn(z; (1), p(t).

The solvability condition of (2.5.31) is then equivalent to:

(VpEn(a(t),p(t)) = (1)) - (=iVy)a’(y,t) + (Ve En(a(t), p(t)) +5(t)) - ya°(y,t) =0 (2.5.35)
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which we can satisfy by choosing ¢(t), p(t) to evolve along the Hamiltonian flow of the nth Bloch
band Hamiltonian H,(q,p) = Fn(q,p):
Q) = VpEa(a(t), p(),  5(t) = —VoBala(t),p(t)). (2.5.36)

Taking ¢(0),p(0) = qo,po to match with the initial data (2.5.20) implies (2.5.7). With the choice

(2.5.36) for ¢(t), p(t), &(y,2,t) =0 for all t > 0. We may therefore solve (2.5.31) by taking:

Fy,2.t) = a' (Y, )xn(z: (), p(t))

+ (=iVy)a’(y,t) - Vpxn(z:4(t), p(t) + ya’(y, ) - Voxn(z; (t), p(t))

(2.5.37)

where a'(y,t) is an arbitrary function in Zf‘l(Rd) to be fixed at higher order in the expansion.

Note that since a®(y,t) € Zﬁ(Rd), this ensures that fl(y,z,t) € Zg_l(Rd) as required.

2.5.1.3 Analysis of order ¢ terms

Equating terms of order € in (2.5.26), using equations (2.5.9) and (2.5.7), and then setting equal to

zero gives the following inhomogeneous self-adjoint elliptic equation in z for f2(y, z,t):

[H(q(t),p(8)) = En(a(t), p(t)]f(y, 2, 1) = €(y, 2, 1),

for all z € A, f*(y,z+v,t) = f2(y,2,0); F*(y, 2, 1) € S *(RY),

1, . 1 .
52(1/’ Z,t) == §<_Zvy)2 + §6QQaqﬁU(Z7 q(t))yayﬁ - Zat fo(y7 Zat)

+[=((p(t) = iV2) = VpEa(a(t), p(t))) - (=iVy) = (VU (2,4(t)) = VEu(a(t),p(t))) - 4] [ (y, 2, 1).
(2.5.38)

Again following the strategy of Remark 2.3.1, we first record the following generalizations of (A.1.3)

which result from taking second derivatives of (2.5.3) with respect to ¢ and p:

(608 = OpaOps En(q; P)IXn (234, 0) + (P — i02)a — Opo En(q: P)]Ops xn (23 ¢, p)

(2.5.39)
[(p —i02)5 — Ops En(q; P)0po Xn(2; 4, ) + [H(q, p) — En(q,P)10paOps xn(2;¢,p) =0
(040 045U (2,q) — 04,045 En(q, )| X0 (25 4, ) + [04,U (2, @) — 04 En(q, )]0y X (25 45 D) (2.5.40)
(045U (2,q) — 045 En(q, )]0ga xn (25 ¢, ) + [H(q,p) — En(q, p)]0g Ogs xn (24, p) =0
(=010 045 En (a0, 0)]Xn (25 ¢, 0) + [(p — i02)a — Op, Bn(q,P)10gsxn(2; ¢, p) (2.5.41)

(045U (2,q) — 945 En(q, )| Opo Xn (25 ¢, ) + [H(q, ) — En(q,P)|0pa g Xn(2; 4, p) = 0.
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We now work to manipulate £2(y, 2, t) into the form:

E(y,z,t) = E(y, z,t) + [H(q(t),p(t) — En(q(t), p(t))]u’(y, 2, 1), (2.5.42)

where €2(y, z,t) and u%(y, z,t) are functions to be determined. We start by substituting the forms

of fO(y,z,t) (2.5.30) and f'(y, z,t) (2.5.37) into the expression for £2(y, z,t) (2.5.38):

&y, 2t) = - %(—z’vy>2+%aqaaqﬁU(z,q(t))yayﬁ—mt [0’ )xn(za(), p(2)]

+ [=((p(t) —iV3) = VpEn(q(t),p(t))) - (—=iVy) — (VqU(z,q(t)) — VeEn(q(t),p(t))) - y]
[at(y, )xn(254(8), p(t) + (—iV)a’ (y, t) - Vpxn (23 0(t), p(t)) + ya° (y.t) - Voxn(z1a(t), p(t))] -

(2.5.43)

We now observe that the terms depending on a'(y, t) in (2.5.43) have an identical form to the terms
depending on a"(y,t) which appeared in (2.5.31). An identical manipulation using the identities
(2.5.32) therefore gives:

[—((p(t) —iV2) = VpEn(q(t), p(t))) - (—iVy) — (VU (2,4(t)) — VeEn(q(t),p(t))) - y]
[at (. )xn (25 q(t), p(t))]
= [H(q(t),p(t)) — En(q(t), p(t))]:

[(=iVy)al (y:) - Vixu(2:4(t), p(t) + ya' (y.1) - Voxa(2:(t),p(t))] -

(2.5.44)

All remaining terms in (2.5.43) may be written as the sum of terms 77 + T4, where:

Ty 1= | (i) + 500,00,V (= a)iays — i04 | - [(9: Doz a(6), ()]

Ty = [=((p(t) = 1V2) = VpEn(q(t), (1)) - (=iVy) = (VaU (2, 4(1)) = Vo En(q(t), p(1))) - y]

[(=iVy)a®(y, 1) - Vpxn (23 (), p(t) + ya®(y, 1) - Voxa(z:q(t), p(t))] -

(2.5.45)
Using (2.5.7), we have that:
Ti = = |509,)20°0 0+ 500,00,U (a0 aysa® (1) — 01 (3:0)| xon(z5(0), (1)
+ iV En(q(t), p(£)a’(y, ) - Vpxn(z; q(t), p(t)) (2.5.46)

— iV En(a(t), p(1))a’ (4, ) - Voxn (23 a(t), p(1)).
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Terms 75 may be written out as follows:

Ty = Tor + Tao + Tos

To1 i= —(=i8y, ) (=i0y,)a’ (y, ) (P(t) = i02)a — Opo En(q(1), p(1))) By xn (25 (2), (1))

Tyy = —(—i0y, )ypa® (y: ) ((p(t) = i0:)a — Oy En(a(t), p(£))) gy xn(2; a(t), p(1)) (2.5.47)
~ Ya(=i8y,)a’ (y, 1) (94, U (2, 4(1)) — 8gu En(q(1), p(t)))Ipy Xn (23 4(2), p(t))

Toz = —yay5a” (4, 1) (94, U (2, 4(1)) — 84 En(a(t), p(£))) gy xn(2; a(t), p(1)).

Using (2.5.39) and (2.5.40) respectively we have that:

Tor = (3as = Oy By Bala(t).0(0) (<103, (=104, )00 ) 35 4(2) (1)
+ [H(a(t), () = Ea(a(t), p(t))] [;(_i%(_iayﬁ)ao(y,t) i q(t%p(t))} | (2.5.48)
and:
Ty = % (032 05U (2, 4(1)) = 84, 0g5 En(a(1), p(1))) Yatpa’ (y, t)xn (25 ¢(1), p(t)) -

+ HG(0).0(0) = (a0 p0)] | J0asa” (01 004,900 50,5000

We simplify Tsy as follows. First, we observe that:

) 1, . 1 ) .
(—i0y,)ys = 5(—@8%)% + 53/5(_18%) — i0ap
2 2 (2.5.50)
Yo (—i0y,) = iya(—iayﬁ) + 5(—i8y6)ya + 10a3-

Hence, we can write Ty as:

Ty =~ %(—iaya)yﬁao(y, H((p(t) = i02)a = Opa En(q(t), p())) g5 xn(2; q(t), p(1))
- %yﬁ(—iaya)ao(y,t)((p(t) — 10z)a = Opo En(q(t), p(£))) 05 X (23 (1), p(1))
+ia’(y, t)%((p(t) —iV2) = VpEa(q(t), p(1))) - Vaxa(z; (1), p(t))

- %ya(—iayﬂ)ao(y,t)(aan(z,Q(t)) = 00 En(q(t), (1)) Fps xn (23 4(1), (1))
(=i0y5)yaa” (Y. )(Dg, U (2, 4(t)) — 0o Bn(a(£), p(£)))Fps xn (23 a(1), p(1))

1
—ia’(y, t)%(VqU(z, q(t)) = VgEn(q(t),p(t))) - Vpxn(2; (), p(t))-

(2.5.51)

2
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We now make use of (2.5.41) to conclude that:

Ty =— %@oa@qﬁEn(Q(t),p(t))(—iaya)yﬂao(%t)xn(Z; q(t), p(t))

LG(0), p0)) ~ Bula(0) p)] |1 (3049500 (0, 0,000 (2500, p(1))

500Dy Ba(a(0), D)) (~i0,)a (0, 1) (22 (1), (1)
%ya(fiayg)ao(y, t)04 Ops xn (23 4(t), p(t))

(2.5.52)

+ [H(q(t),p(t)) — En(q(t),p())]
+ia’(y, t)%((p(t) —iV2) = VpEn(q(t), p(1))) - Voxa(z (1), p(t))
—ia’(y, t)%(VqU(% q(t)) = VaEn(q(t),p(t))) - Vpxa(z; (), p(t)-

Putting together (2.5.46), (2.5.47), (2.5.48), (2.5.49), and (2.5.52) we have that:

&y, z,t) = &y, 2, t) + [H(q(t), p(t)) — En(q(t), p(t)u*(y, 2, t), (2.5.53)
where:

w(y, z,t) = (—iVy)a' (y,1) - Vpxn(z;4(t), p(t) + ya' (y,) - Voxn(z; (1), p(t))

b5 (10, (=i0,)° (5, )y, By (25 4(6), 0) + 5 (=10, 9305 1) Oy X (23 a(0), ()

1 , 1
+ §ya(—l<9yﬁ)a0(y, )04 Ops Xn (25 q(t), p(t)) + §yayﬁa°(y, )04 045 xn (2 q(t), p(t)),

(2.5.54)

and:

By, 2.1) = — [ (19360, 0) + 50400,V (= 1)y, 0) — 1000y, 1)| xn (=3 (0), (0)

+iVpEn(a(t), p(1)a’(y. 1) - Vpxn(2:4(t), p(t) — iVqEn(a(t), p(t))a’(y.t) - Voxn(z:(t), p(t)

+ % (00 = OpoOps En(q(t), p(£))) (=i0y, ) (—i0y,)a" (y, )xn (25 a(t), p(1))

+ 5 (00,000 (5 4(0) = 04,04, B(a0), p0) waia (v, )5 (1), (1)
+ia®(y, )3 (p(0) — iV2) ~ Yy Bala(t),p(t))) - V(=5 a(t), p(1))
— a3 1)5 (VU (2 4(0) = Vg Bala(0),p(0))) - Vipxa(=: a(6), (1))
(2.5.55)
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Taking note of some exact cancellations and re-arranging gives:
E(y,z,t) = — BﬁpaapBEn(Q(t),p(t))(—i(?ya)(—i(?yg)ao(y,t) + %aqaangn(q(t),p(t))yayﬁao(y, t)
b 30, Bala(1),p(0)) (~i0y. )y (0, ) + 500, Bn(a(t), p(1) i —i04,)a (0, 1)
- i01a”(y.)] w1000,
iV Bala(t), )09, ) - Ty (21 4(0), (1)) — iV Bula(8),p(1))a (4, 1) - Vipxn 2 q(8), (1))
iy, 0)5(p(1) — iV2) ~ Ty Eu(a(t),p(1))) - Voxn(z: a(t) p(1)
— 0, 0)5 (VU (2, (8)) — Vg Bula(t), p(0))) - V(=3 (1), p(1))
(2.5.56)

By Assumption 2.5.1, equation (2.5.38) is solvable for f2(y,z,t) under the condition that the
projection of &2(y, z,t) onto the subspace of L?JBT spanned by xn(z;q(t),p(t)) vanishes. By self-
adjointness of H(q(t),p(t)) and from the decomposition of &3(y, z,t) displayed in (2.5.53), this
condition is equivalent to the condition that the projection of £2(y, z,t) given by (2.5.56) onto the

subspace of L}%er spanned by xn(z;q(t),p(t)) vanishes. This condition is equivalent to requiring

that a®(y,t) satisfies the following Schrédinger equation for all ¢ > 0:

$000°(y,£) = 50,0y, Bn(a0) p(0))(~i03,)(~i04, )3 (5, 1) + 504,00, En(a0), p(0) a5 (3. 1
50000, B 0(6), D)) (=0, )950° (0, 0) + 500,y a(6), p(8) (104, )0, )

— Y Bala(t),p(8)) - Agla(t),p(1))a’ () + V. Bula(t), p(0)) - Apla(t), p(t))a (1)

+ 57 (3000, p() (VU (2, 4(0) ~ VaFnla(t), p0) - Typen (3 9(8),p(1)) 13 ) °(9:)

2
— i (08,00 (p(1) — V) — VpEn(a(t), p(#))) - Vaxa(:4(t), p(1)) 12 () a” (9, 1).

2
(2.5.57)
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Here, A,(q,p) and Ap(q,p) are the Berry connections with respect to ¢, p defined by (2.5.12). The

last two terms in (2.5.57) may be simplified using self-adjointness of H(q,p) as follows:

57 On(3.(0), D) (VU (2. (8)) — Vi Bala(t),p(6))) - Typen (39(8), 1))y 0”0, )

— S0 a0) PO (B0) — 192) = VpBn(at), p(1))) - Foptn -50(6), (1) 2y (0 1)
= %z (VU (2, q(1)) = VaEn(a(t),p(1))) X (-3 a(), P(E)] - Vi (3 a(t), (1) 12y @° (1, 1)
- % (((p(t) = iV2) = VypEu(a(t), p()) X (5 (), ()] - Vigxn (- a(t), P(E)) 12y @ (01 1)
= — 5 ([H(a(0), p(1)) — Ealat),p(1)] Voxal: a(0), p()] - Vs (0), p(1)) 130 a0, )
i{[H (a(0).p(0)) — En(a(t).p(0)] Vixa(: a(6),p(t)| - Vaxn(: (1), p(0)) 12y 2°(0: 1)
= _; (Vaxa (5 a(0),p(0) TH (a(t), p(1) = En(a(),p())] - VpXn(:(8). (1)) 120 a°(4:1)

+ 51 {(Vpxn(5a(), p(0) [H (a(t), (1)) = Enla(t), p(t)] - Vxn(5a(), p(1))) 120y a° (4, 1),
(2.5.58)

N | =

+

N[ —

where the second-to-last equality in (2.5.58) follows from (2.5.32). By self-adjointness of H(q, p),

the final expression in (2.5.58) has the form:

1.

51(2 —z)=Imz, (2.5.59)
where:

2= (Voxa (5 q(t), p(t)[ [H (q(t), p(t)) — En(q(t), p(0)] - Vpxn (54(), p()) 20y - (2:5.60)
Hence (2.5.57) may be written in the compact form:

3000”3, 1) = By Oy B (0(1), P () (~i01) (104,00, ) + 500,y B (4(0),p(1) o (3,1
¥ 50000, Bn(a(t),p(1)) (104, )y + 95~ )] (3.1
Y Bala(t).p(1)) - Ag(al0).p(0)a (0. 1) + Vi Bala(t).p(8)) - Apla(t). p(1))a (v, 1)

+Im (Voxn (5 a(t), p(t)| [H(a(t), (1)) — En(a(t), p(t))] - Vxu(5a(t), p(t) 12 () a° (9, 1)-
(2.5.61)
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Equations (2.5.11) and (2.5.13) now follow from substituting a®(y,t) = €¢*3®a(y,t) into (2.5.61)

and matching with the initial data (2.5.20). Equation (2.5.38) now has the unique solution:

PPy, 2,t) = u?(y, 2,1)
+iVpEn(a(t), p(t)a’(y, 1) - [H(q(t), p(1)) — Ea(a(t), p(1)] " PH(a(t), p(1) Vipxn(z: a(t), p(t))
— iV En(q(t), p(t))a’(y,t) - [H (q(t), p(£)) = Enla(t), p(t))]~ P (a(t), p(t)) Vxn(z; a(), p(t))
+ia’(y, t)%[H(Q(t)’p(t)) — En(q(t), ()] P (q(t), p(t))

((p(t) = iV2) = VpEn(q(t),p(t))) - Vaxn(z; (t), p(t))
—ia’(y, t)%[H(Q(t)’p(t)) — En(q(t), p(t)]~ P (q(t), p(t))

(VqU(z,4(t)) = VaEn(q(t),p(1))) - Vpxn(2; q(t), p(t)).

(2.5.62)

Here, u?(y, z,t) is defined by (2.5.54) and P*(q(t),p(t)) denotes the projection operator on L.,
onto the orthogonal complement of the subspace spanned by xn(z;q(t),p(t)). Invertability of the
operator [H(q(t),p(t)) — En(q(t),p(t))] on P+(q(t), p(t))L2,, for all t > 0 is guaranteed by As-
sumption 2.5.1. Theorem 2.5.1 now follows from an identical analysis to that given in Section

2.3.2.

2.6 Semiclassical wavepacket solutions of Maxwell’s equations

We now discuss how the above theory (Sections 2.1-2.5) may be adapted to the setting where the
Schrodinger equations (2.1.1) or (2.5.1) are replaced by a time-dependent Maxwell system. Consider
the following system of equations for the electromagnetic fields E(x,t) : R3 x R — C3, H®(x, ) :

R? x R — C? in matter depending on a small parameter § < 1:

DO (z,t) 0  Vx\ [FE’axt) DO(z,t)
O = , V- =0 (2.6.1)
B®(x,t) -Vx 0 HO(x,t) B®(x,t)

together with the constitutive relations:

(D5(x,t)> _ (5 (5.2) X (§,w)> (Eé(i”’t)) - (2.6.2)
B'x,t))  \x(5.2) n(}.2)) \H'(z,0)
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Here, we assume that each entry in the matrix of constitutive relations is smooth in both arguments
and periodic with respect to a lattice A in its first argument, and such that the matrix as a whole
is positive-definite and Hermitian at each value of z € R3. Note that when studying Maxwell’s
equations it is convenient to label the small parameter § rather than € to avoid confusion with the
dielectric tensor €.

The essential observations that will allow us to adapt the theory developed above for Schro-

dinger’s equation are the following;:

Remark 2.6.1 (Schrodinger structure of Maxwell’s equations and conservation of weighted norm).

Let:
E9 x,t
WO (z,t) := (1) , (2.6.3)
HO(x,t)
s0 that WO (x,t) : R3 x R — CS. Substituting (2.6.3) into (2.6.1) and using positive-definiteness of

the matriz (2.6.2) we see that we can write the Mazwell system (2.6.1) as a Schridinger equation

for WO(z,t):

100 (x,t) = HO(—iV, z) W (x, 1) (2.6.4)
where: B
z T z 0 AV4
HO(—iV,z) = ¢ (o) X (57) e (2.6.5)
X (5x) n(52) —iVx 0

Now, let ®(x),0(z) : R? x R — Cb be arbitrary functions and define the weighted, §-dependent

iner product:

—— [eG) A (G)) (@
(®]0) = [ &(z)- O(z) dx. (2.6.6)
/R3 x(%.2) p($2)) \H(z,1)

Then, by assumption on the elements of (2.6.2), the operator H°(—iV,z) defined by (2.6.5) is
symmetric with respect to (])5 It follows that the norm (induced by this inner product) of solutions

of (2.6.4) is conserved: if W°(x,t) solves (2.6.4) for all t > 0, then:

% <\115(.,t)‘ \1:5(.,75)>5 —0. (2.6.7)

The conservation law (2.6.7) is precisely what is needed to prove convergence (as § | 0) of the

asymptotic semiclassical wavepacket solutions (in the norm induced by the inner product (2.6.6)).
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The appropriate Bloch eigenvalue problem (cf. (2.1.13) and (2.5.3)) in this setting is the fol-

lowing:

H(q,p)X(2:9,p) = E(q,p)X (24, p),

for allv € A, X(z +v;q,p) = X(2;4,p),

-1

Hlg.p) = e(z,9) x'(z,9) 0 —(p—1iV,)x
X(z,q) n(zq) (p—iV:)x 0

(2.6.8)

Just as before (cf. (2.1.13) and (2.5.3)), the operator (2.6.8) is self-adjoint (with respect to the

inner product 2.6.6 with discrete real eigenvalues which may be ordered with multiplicity:

Ei(q,p) < Es(q,p) < ... < E,(¢,p) < ... (2.6.9)

which vary smoothly in ¢ and p along with their associated eigenfunctions X (z; ¢, p) away from band

degeneracies (cf. Theorem 2.2.1). We expect that there exist solutions of the system (2.6.1)-(2.6.2)

satisfying:
Eo(z,t . . _
(z,t)) _ §5-3/40i8()/8 ip(t)-(x—a(1) /6, [ * q(t)’t X, (f;q(t),p(t)> +o(l), (2.6.10)
Hb(z, 1) 61/ §

where X,,(z;p, q) satisfies (2.6.8) and the band E,(q,p) is isolated along the trajectory q(t),p(t),
up to ‘Ehrenfest time’ ¢ ~ In1/§ (cf. Theorems 2.1.1 and 2.5.1) for appropriate evolution of S(¢),
q(t), p(t), a(y,t). To fully generalize the theory displayed in Sections 2.1-2.5 to this setting is the
subject of ongoing work.

The § | 0 limit of the system (2.6.1)-(2.6.2) was studied by De Nittis and Lein [53; 54]. By
proving an Egorov theorem, they are able to describe the evolution of observables associated to
solutions of (2.6.1)-(2.6.2) up to and including terms proportional to §. These terms again depend
on the Bloch band’s Berry curvature.

Interestingly, Berry curvature corrections to the dynamics of wavepacket solutions of the Max-
well system (2.6.1)-(2.6.2) have been derived even when all entries in the matrix of constitutive
relations (2.6.2) are independent of the periodic scale. This is in contrast to the Schrédinger case.
In the Schrédinger cases (2.1.1) and (2.5.1), if the periodic background is trivial, i.e. U(z,x) is
actually independent of z, then the associated Bloch functions y,(z;q,p) are also trivial: for all

n,q,p, we may take xn(z;¢,p) = 1. In particular, the correction to the equations of motion of
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observables associated to the wavepacket solution due to Berry curvature (see (2.1.3), for example)
is always zero. These corrections are responsible for the spin Hall effect of light which has been
experimentally observed [7; 77]. We give a derivation of Berry curvature for eigenfunctions of
(2.6.8) in ‘free space’ in Section 2.7.2.

Light propagation in a so-called biazial crystal is described by (2.6.1)-(2.6.2) with x (£,z) =
0, p (%,x) =1, and ¢ (f,x) = ¢ where ¢ is a constant Hermitian matrix with 3 real distinct
eigenvalues. Such media exhibit conical intersections in their dispersion surfaces (which correspond
to the eigenvalue bands of (2.6.8)). These intersection points are responsible for the phenomenon of
conical diffraction [6]. It would be interesting to understand the dynamics due to Berry curvature in
the case where the medium is ‘strained’ so that the matrix ¢ varies across the medium: ¢ — ¢(z). We
expect the Berry curvature-induced dynamics to be non-trivial in this case because of the presence
of multiple degeneracies: along the ‘optic axis’ the dispersion surfaces are two-fold degenerate, and
at the origin of parameter space the dispersion surfaces are three-fold degenerate (in Section 2.7.2

we consider the simplest case, where e(x) is a scalar function multiplying the identity matrix).

2.7 Examples of systems with non-zero Berry curvature

2.7.1 Berry curvature near to a domain wall ‘edge’ modulation of a honeycomb

structure

In this section we consider the eigenvalue problem (2.5.3) when d = 2 and:
U(z,2) =Vhe(2) + (R 2)Vio (2). (2.7.1)

Here, V}, . is a smooth honeycomb lattice potential in the sense of Definition 2.1 of [28]. It was
demonstrated in [27] that Schrédinger’s operator with a closely-related potential to (2.7.1) supports

robust ‘edge’ states. V} o(z) therefore has the periodicity of a honeycomb lattice Ap:
Yo € Ay, Vh,e(z + ’U) = Vhye(z), (2.7.2)

is even:

Vihe(=2) = Vhe(?) (2.7.3)
and is invariant under rotation by 27/3:

Vihe(R'2) = Vie(z) (2.7.4)
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where R* denotes the counter-clockwise rotation matrix by 27/3. V}, ,(2) is assumed smooth, has

the periodicity of the lattice, and is odd:
Vio(=2) = =Vio(2). (2.7.5)
Let vy, vy denote primitive lattice vectors of A so that:
Ay = Zvy & Zvg (2.7.6)

and k1, ko denote primitive lattice vectors of the dual space A* so that:

Ko+ 0 = ap (2.7.7)
= Zky @ Zko

We define an edge in the structure, following [26], by fixing real constants a1, b; and setting:

v = aivy + blvg
(2.7.8)
vy = agvy + bovy

where a1by — asby = 1 so that Zvy @ Zvy = Zv1 ® Zvy = Aj. We have the dual lattice vectors:

ﬁl = b2]€1 — agk‘g

(2.7.9)
Ko = —bik1 + arks
so that:
Ra g =04
g ter (2.7.10)
2 =781 © ZKs.
The ‘domain wall’ function x(() is assumed smooth and satisfies:
k(0) = 0,£"(0) > 0, lim k() =: koo >0, lim K(() =: koo <O (2.7.11)
(—o0 (——o00
For example, we may take x(¢) = tanh(¢). The eigenvalue problem (2.5.3) takes the form:
H(p, q)x(z:p,9) = E(p,q)x(:p,q)
Vo € Ap, Xx(2+v;p,9) = x(2p,9) (2.7.12)

H(p.) = 5 (p— iV2)* + Vie (2) + K(8 )Vio (2)
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Taking R - ¢ = 0 in (2.7.12) gives:

H(p,0)x(z;p,0) = E(p,0)x(z;p,0)
Vv € Ap, x(z+v;p,0) = x(2;p,0) (2.7.13)

H(p,0) := %(p VL) 4 Vil (2):

which is the Bloch eigenvalue problem for a honeycomb lattice potential, as studied in [28]. In that
paper (see Theorem 5.1) it was shown that for generic honeycomb lattice potentials V}, .(z) there
exist conical singularities in the dispersion surface of the operator H(p,0). They occur at every
vertex of the Brillouin zone. After symmetry reduction, there are essentially two distinct vertices

of B, known as the K and K’ points. The K and K’ points are related by:
K =K. (2.7.14)

Let E4(p,0) denote eigenvalue bands which are degenerate at the quasi-momentum k = K with
energy E*:
E{(K,0)=FE" (2.7.15)
And let:
x1(2; K, 0), x2(2; K, 0) := x1(—2; K,0)
(2.7.16)
Vv € Ah’j € {172}7X](Z+U7K50) = X](ZvK’O)

denote the basis of the degenerate E*-eigenspace introduced in [28]. It was shown in that paper
that generically this degeneracy is lifted for p — K # 0 and |p — K| small enough. Moreover, the

eigenvalue splitting is conical:

Ei(p,0) = E* £ [N|p — K|+ O(]p — K[*). (2.7.17)
where A is a complex constant which depends on the degenerate eigenfunctions (2.7.16) and is
non-zero for generic V}, ,.
2.7.1.1 Derivation of local character of eigenvalue bands

We now study the behavior of the eigenvalue bands E4 (p, q) for small p— K, ¢ by a formal degenerate

perturbation theory about the point (K,0) and energy E*. The argument we present may be
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made rigorous by Lyapunov-Schmidt reduction (see the Appendices of [25] for examples of these

techniques). Let:

p=p—K
(2.7.18)
q2 =Ko ¢
then we can re-write (2.7.12) as:
H(K 479, q2)x(2 K +p',q02) = E(K + 7/, ¢2)x (2, K + ', g2)
Yo € Ap,x(z+0; K +p',q2) = x(z K + 7', q2) (2.7.19)

1 .
HK +.) = S 49 092" 4 Vioe(2) + (@)Vio(2).
Expanding the eigenvalue problem (2.7.19) in p’ and g2 using smoothness of x(¢) we have:

H(K,0) + ' - (K —iV.) + ¢29ck(0)Vio(2) + O, 62) | X (2 K + 1/, go)

(2.7.20)
=E(K+7p,¢)x(z K+, q)
we seek a solution of (2.7.20) of the form:
EK+p,¢)=E+EQ{, q@)
(2.7.21)
X(z K+, q) = x(2K,0) + X' (27, ¢2)
where:
x1(5 K, 0)[ X' (51, q2) = (x2(5 K,0)[ X (7, ¢2) =0
( >L§(Q) ( >L§(Q) (2.7.92)

x(2; K,0) = a(p', a2)x1(2; K, 0) + B(p, ¢2) x2(2; K, 0)
where a(p', q2), B(p', g2) are functions to be determined, and x'(z;p’, ¢2) has the periodicity of the
lattice:
Vo€ An, X' (z+ 00, q2) = X' (59, ¢a)- (2.7.23)

Here and in the remainder of this section (2 refers to a fundamental cell of the honeycomb lattice.
Substituting (2.7.21) into (2.7.20) gives:

[H(K,0) = E*]X'(2;7, ) =

— [P (K =iV2) + q20c6(0)Vio(2) — E'(p),q2)] [a(P, g2)x1(2; K, 0) + B(p', g2) x2(2; K, 0)]

+ higher order terms in p/, go.
(2.7.24)
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Ignoring higher order terms, equation (2.7.24) is uniquely solvable for x'(z;p’, ¢2) if and only if the
projection of the right-hand side onto the null space of [H(K,0) — E*] is zero:

Q) { [0 (K —iV.) + 20ck(0)Vio(2) — E' (¢, q2)] [a(p', g2)x1 (25 K, 0) + B(1', g2) x2(2; K, 0)}}

(2.7.25)
where:
Q= S (K0 F(2) o 135 K 0) (2.7.26)
je{1,2}
Equation (2.7.25) can be written as a matrix equation for E'(p’, ¢2), a(p’, q2), BV, q2):
ap,
M(E', P, g2) Woi)) 0 (2.7.27)
B, q)
where:
M(E'" P, q2) =

P (xa(z K 0)[ (K = iVa)xa (2 K, 0)) 20y + 0cr(0)g2 (x1(25 K, 0)| Vio(2)x1 (25 K, 0)) 2 ) — B
P (xa(z K 0)[ (K = iV2)x2(2; K, 0)) £2(0) + 0cr(0)g2 (xa (25 K 0)| Vao(2)x2(25 K, 0)) 12(q

P (a2 K 0) (K = iVa)xa(2 K, 0) 12 (q) + 9ck(0)g2 (X125 K, 0) Vao(2)x2(2 K, 0)) 120
P (x2(2 K 0)[ (K = iV2)xa(2 K, 0)) 12(0) + 9cr(0)g2 (X2(2; K, 0)] Vio(2)x2(2 K, 0)) 12y — B
(2.7.28)

We can use symmetries to simplify the matrix (2.7.28). Let:
p;- =v;-p. (2.7.29)
From Proposition 4.2 of [29] we have that:

Je{Lzhp - (x( K, 0)| (K —iV2)x;(2 K, 0)) 20y = 0

(x1(2 K, 0)[ (K = iV2)x2(2 K, 0)) 200y = (x2(2 K, 0)| (K —iV2)x1(2; K, 0)) 2y (2:7:30)

= X (p} + iph)
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where Ay € C is a complex constant which is non-zero for generic honeycomb lattice potentials

Vh.e(2). From Proposition 6.2 of [26] we have that:

(X1(2 K, 0)| Vao(2)x2(2; K, 0)) 12 = (X2(2 K, 0)| Vao(2)x1(2; K, 0)) 2() = 0
(x1(2: K, 0)[ Vho(2)x1 (21 K, 0)) 12 () = — (X2(21 K, 0)] Vho(2)X2(2: K, 0)) 12 (2.7.31)
=: 0.

Here, 0 is a real constant which is non-zero for generic V} . and V}, ,. We have, therefore, that the

matrix (2.7.28) takes the form:

9ck(0)0sq2 — E' Ng(p) + iph)

M(p/7q2) = , - ,
M(p) —ipy)  —0ck(0)0hg2 — B

(2.7.32)

Solving the matrix problem (2.7.27) we have that the local character of the dispersion surface

E(K + 7, ¢2) is conical:

E (P, 1, g2) = E* £ ((0cr(0)8:02)° + (IMglph)? + (1Melp2)*)'? + ol aal, 1], [p2])

(2.7.33)
X+ (251, P, q2) = ax (Ph, ph, q2)x1(2; K, 0) + B+ (1, Py, 2)x2(2; K, 0) + o(1)
where a4, 8+ solve:
Ocr(0)0sq2  N(p +iph) \ [ex(V',q)
Me(py —ipy) —0ck(0)03q2 ) \ B+ (P, q)
(2.7.34)
a+(p',q)
= £((0cr(0)0:q2)* + (IAelp))? + (| Xe[ph)*) M/ /
Bi(p ,Q)

2.7.1.2 Direct derivation of Berry curvature of eigenspaces of the matrix problem

(2.7.34)

To ease notation, let:

0 :=0ck(0)8s, X:= M. (2.7.35)

In this section we compute the Berry curvature of the & ((0g2)? + (|A[p})? + (JA|p5)?) 1/z—eigenspaces

of the matrix eigenvalue problem:

0q2 APy +ipy) | [ax(p 12 [ax(®',q)

. =+ ((0g2)* + (|AIP1)* + (|A[ph)?)
A(py — iph) —0go B+, q) B+ (P, q)
(2.7.36)



CHAPTER 2. SEMICLASSICAL WAVEPACKET SOLUTIONS AND EFFECTIVE
‘PARTICLE-FIELD’ DYNAMICS 76

where 6, A are real and imaginary constants, respectively. The matrix (2.7.36) has been well-studied
as the prototype of a self-adjoint operator displaying a conical crossing in its eigenvalue bands. For
another route to calculating the Berry curvature in this case see, for example, [5]. We can simplify

greatly the study of this problem by changing variables. First, we decompose \ as follows:
X = |[\|et. (2.7.37)
Then, we change variables to spherical polar co-ordinates p, ¢, QE:
p(PhPhr g2) = ((IAP1)? + (IAlph)® + (6g2)*)'/?

/
A b2
¢(p1,pz) = arctan <p ) T H (2.7.38)

1
((1A[ph)? + <rA|p'2>2>1/2>

Tl /
, Do, = arcta
¢(p1, P2, q2) = arctan ( P

so that:
IAlp) = psin ¢ cos(¢ — p)
IAlph = psin @ sin(¢p — ) (2.7.39)
0gs = pcos ¢

and the eigenvalue problem (2.7.36) becomes:

- i T - ~
?OS"& ¢ Sm? o (%’ 20 (dj '9) (2.7.40)
e~ sing —cos¢ B+ (0, ¢) B+ (¢, ®)
which has the solution for all ¢ € [0,27), ¢ € [0, 7):
ar(@9)| _ (€Pcos(d/2) | [a-(d,0)) _ [—esin(9/2)) (2.7.41)

Br(6,0))  \esiné/2)) \B-(6,0))  \e¥2cos(d/2)
The normalized eigenvectors (2.7.41) are clearly unique only up to a phase, or gauge. The choice
of gauge (2.7.41) turns out to simplify calculations in the present case. For a general discussion of
these issues, see Appendix A.7. Our final result (2.7.49) is manifestly gauge-invariant. We record

at this point:

Oy, = NI sin § cos( — 1), D, p = [Nl sin G sin(g — 1), Dyup = Ocos &

_ _Alsin(¢ —p) o [A[cos(¢ —p) _
81)’1(15 = psing{) >8p2¢ = psinqNS ;00,0 =0 (2.7.42)

|A|cosa>c;>s<¢ 0 46— rA|cos<£s;n<¢ ) i _esipnqs

Oy & =
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which implies that:
5. ar(@9)| 1 (MCOS&COS(qﬁ — u)) a— (¢, ¢)
"\ b)) 2 p B-(.¢)
+1 (_ |A[ sin(¢ — u)) i€’/ cos(¢/2)
2 psin ¢ —jei9/2 sin(g?)/z)

o [0+(8:9) :1<Arcos¢sm¢ )
" \B.(6,9)) 2

1 ]/\|cos¢ u (Zeld)/zcos /2) )
¢, ¢)
,9)

2 psin ¢ e /2 sin(¢/2)

, Cﬂ&@)l(emm (
” /8+(§53 ¢) 2 P

o, a_ (¢, ) _ 1 <|/\|cos¢cos O — 1 ) ay(d,¢) (2.7.43)
"\sde) 2 B (. 0)
+1 ( |Alsin(¢ — p) ,u —ie'®/? sin(¢/2)
2 psin ¢ —ie~ /2 cos ¢/2
o, a_(p, ) __1<| cosqbsmqb 1 )
"\p-de) 2 m¢¢
+1 <|A| cos(¢ u)) —ie*/?sin(¢/2)
2 psin ¢ —je~i9/2 cos(gE/Q)

:_1<_6sing£> a (4, 9) |
2 p B (b, )

cos?(¢/2) — sin?(¢/2) = cos(¢) (2.7.44)

Using the identity:



CHAPTER 2. SEMICLASSICAL WAVEPACKET SOLUTIONS AND EFFECTIVE
‘PARTICLE-FIELD’ DYNAMICS 78

we have that the Berry connections with respect to variation of each parameter satisfy:

A < Oli(qz)’ o) P Oéj:(qza ®) > _ i|)\|sin(¢ — ) Cos ¢

£y ~ P - = —
/Bi(¢7 ¢) ﬂ:l:((ﬁ’ ¢) 2,0 Sln¢

-Ai,pg _ < ai(@?, o) apé Oéi(Qja ®) > _ :F|)\|cos(¢) — ,uN) cos ¢ (2.7.45)
/Bi(¢7 ¢) ﬂ:l:(gzs’ ¢) 2p sin d)

. < (000, [@+(@9) > o
/B:E(d)a ¢) ﬂ-f— (¢7 Qs)

Here, (|) refers to the standard C%inner product. We have then that:

Op As = i‘;\p’z <cosg5cos2(¢ — )+ cos(¢ — ) COSin—Q 2112@ — W) cos é)

Opty Aty = i‘;\p’j <— cos psin’(¢p — p) + cos*(¢ — p) COSiH_Q §n2(¢ — p) cos éfN))

Opy A g =0 (2.7.46)

Ogo A pyy = $¥ sin ¢ cos(¢ — 1)

Ogp Ay = i‘;p’g sin ¢ sin(¢ — p)

Op As g, =0

From which it follows that the Berry curvatures satisfy:

e ks — SNl rsns
Ous Ay, — Oy Ay = i!xyasm«;sp; psing j:’;\’:fp’? (2.7.47)
Op, Aty — Opp Ay = i’;\pj cos ¢ = i|;\;|j39q2

We may write the result (2.7.47) compactly as follows. Define the vectors:

|AlP! Ag 2t
pi= [ Ay [ Asp = | Appp |- (2.7.48)
02 AL og
Then (2.7.47) is equivalent to:
Vo x AL, =+-F (2.7.49)
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Hence the Berry curvature takes the form of a monopole at p| = pl, = 0, g2 = 0, where the eigenvalue

bands of (2.7.19) are 2-fold degenerate.

2.7.2 Berry curvature due to degeneracy of polarization condition when wave-

vector is zero

In free space:
€ (%,az) =u (%,az) =1, and x (%,x) =0. (2.7.50)

The Maxwell-Bloch eigenvalue problem (2.6.8) then reduces to:

") X)) = B0 X ). (2.751)

For any fixed p € R3, we may choose a real orthonormal basis {p, 9(p), w(p)} of R? (here, p := p/|p|)
with the property that:

B x 8(p) = w(p). (2.7.52)

0(p), w(p) are clearly unique up to a rotation. Given 0(p) and w(p) which satisfy (2.7.52), the
vectors g(p) and wy(p) defined by:

bo(p) |  [cosf —sinb 0(p) (2.7.53)

we(p) sinf  cosf w(p)

will also satisfy (2.7.52) for any 6 € [0,27). We can now solve (2.7.51) exactly. There are precisely

3 eigenvalues: |p|, —|p|, and 0. The |p|-eigenspace and —|p|-eigenspace are spanned by, respectively:

1 [ o(p) 1 [ w(p) 1 (o) 1 [—0(p)

= y T = ) = y T = . (2754)
V2 \ap)) V2 \-o) V2 i) ) V2 \ ap)
The 0-eigenspace is spanned by:
p 0
P ) . (2.7.55)
0 p

We now restrict our attention to the |p|-eigenspace. The —|p|-eigenspace is similar, while the 0-
eigenspace turns out to be physically unimportant because of the ‘divergence-free’ condition of

Maxwell’s equations in free space.
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We may simplify calculations (the Berry connections with respect to this basis will turn out to

be diagonal (2.7.63)) considerably by changing basis to that of circular polarizations:

>
=
+

(o)) 1 ) )LL) w(p) ) 1 [0(p) —iw(p) (2.7.56)
5 : . .

V2 \am ] V2 \ o) w(p) —iv(p)] 2 \w(p) + id(p)

We define:

et(p) = % ol )—izw( P) , e—(p) = % UA(p) _i?{)(p) . (2.7.57)
w(p) — 0 (p) w(p) + 0 (p)

A~

The rotational freedom in the choice of v(p) and w(p) corresponds to a phase freedom in the choice

of e4(p),e—(p):

Op(p) Fitho(p) | _ gl [0(p) Fitb(p) 0

ex0(p) = ‘ 5 ' =e"ex(p). (2.7.58)
g (p) F ivg(p) w(p) F i0(p)

1
2
In order to compute the Berry connections and curvatures associated with transport of e (p), e_(p)
(2.7.57), we must compute the derivatives V e, (p) and Vye_(p). In order to compute these

quantities, we fix an orthonormal right-handed basis of R? and then write p, ©(p) and w(p) as

vectors with respect to this basis using spherical polar co-ordinates:

P = (sin 6 cos ¢, sin 6 sin ¢, cos )

(—sin ¢, cos ¢,0) (2.7.59)

0]

w

(— cos 6 cos ¢, — cos Osin ¢, sin 0)

The gradient operator V, in spherical polar co-ordinates takes the form:

1
Vp = PO, + 9 dp + p———0y, (2.7.60)
Pl Vplsing
where é,q@ denote unit vectors pointing in the directions of varying 6, ¢. Hence:
Vi = (47520 5500
|p|sinf’ " |p|sin @ (2.7.61)
Ui <ésinecos¢ ~cos 0 sin ¢ ésinﬁsingb ~—cosfcos ¢ ACOS@> o
w = B ) . )
: p| [p| sin 0 p] [p| sin 0 p]
We compute from (2.7.61) that:
(0] Vpt) = (W] Vp) = 0,
1 L (2.7.62)

(0| Vpib) = — &, (W] Vp) =

|p| tan 6 |p| tan 6
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where (|) refers to the standard inner product on R3. We therefore have that the Berry connections

with respect to the basis of circular polarizations (2.7.57) have the form:

i{e—| Vpes) =i{eq|Vpe) =0,
. L (2.7.63)

i{er|Vpey) = W(]B’ i{e_|Vpe ) =

|p[tan® "

The Berry curvatures associated with e, (p) and e_(p) can now be computed using the curl operator
in spherical polar co-ordinates as follows:
Fo(p) = Vp X i{es(p)| Vpea(p))

. (2.7.64)

p
—Uw, o= =.

The Berry curvature has the form of a monopole at p = 0, the point in parameter space at which

the eigenvalue 0 of (2.7.51) is no longer two-fold degenerate but siz-fold degenerate.
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Chapter 3

Dynamics at a one-dimensional band

crossing

The research described in this chapter is joint with M. I. Weinstein.

3.1 Introduction

In this work we study the non-dimensionalized, semi-classically scaled, time-dependent Schrodinger

equation for ¢(x,t) : R x [0,00) — C:

iedu = —%Jagzzf TV (f) U+ W)y = HE oy
¢ (3.1.1)
P(2,0) = ¥5(z).

Here, € is a positive real parameter which we assume to be small. We assume throughout that the

function V' is smooth and 1-periodic so that:
V(z+1) =V(z) for all z € R, (3.1.2)

and that W is smooth with all derivatives uniformly bounded (this assumption may be relaxed;
see Remark 1.2 of [73]). Equation (3.1.1) is the independent-particle approximation in condensed
matter physics [3] for the dynamics of an electron in a crystal described by periodic potential V/,
under the influence of an external electric field generated by a ‘slowly varying’ potential W.

Let E,, denote the nth Bloch band dispersion function of the periodic operator —%33 +V(z). It

is known that [61; 73] for any uniformly isolated, or non-degenerate, band E,, (see Figure 3.1) there
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20

eigenvalues E , n=12

quasi-momentum p

Figure 3.1: Plot of the two lowest Bloch band dispersion functions E;(p), E2(p) when the 1-periodic
potential is given by V(z) = 4cos(2mrz). Note that both bands are isolated from each other and
all other bands: for all p € [0, 27], G(E2(p)) > 0 and G(E1(p)) > 0 where G(E,(p)) is the spectral

band gap function (3.2.8). Consequently, the maps p — E1(p), E2(p) are smooth.

exists a family of explicit asymptotic solutions of (3.1.1) known as semiclassical wavepackets which,
for any fixed positive integer N, approximate exact solutions up to ‘Ehrenfest time’ ¢ ~ In1/e up
to errors of order ¢V in L2. The center of mass and average quasi-momentum of these solutions
evolve (up to errors of o(1)) along classical trajectories generated by the ‘Bloch band’ Hamiltonian
Hy, := En(p) + W(q). We refer to such an asymptotic solution as a wavepacket associated with the
band E,. The ‘Ehrenfest’ time-scale of validity of the asymptotics is known to be the general limit
of applicability of wavepacket, or coherent state, approximations [66]. These results generalize to
d-dimensional analogs of (3.1.1) [73; 61].

In this work we consider the following question concerning the dynamics of wave-packets in a

situation where two Bloch bands are not isolated:

Problem 1. Consider equation (3.1.1) with initial conditions given by a wavepacket associated
with a band E, which is then driven by the external potential W through a point in phase space
where the Bloch band E,, is degenerate, i.e. intersects with an adjacent band; see Figure 3.2. How

are the dynamics different from the isolated band case?

More precisely, suppose that two bands E,,(p), En+1(p) (WLOG, E,,_; is similar) touch at a quasi-
momentum p* in the Brillouin zone, but are otherwise non-degenerate in a neighborhood of p* (see

Figure 3.2 ). Then, we study a wavepacket associated with the band FE,, initially localized in phase
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1945 T
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1935 |-
1930
1925 |-

1920 - PN

eigenvalues E_

1915 7 ~ o
1910 - ~_

1905 \/

1900 -
-3

quasi-momentum p

Figure 3.2: Plot of the three lowest Bloch band dispersion functions when V(2) = @1 /2 (2 4 i),
the ‘one-gap’ potential (see Example 1), with w’ = .8. The band F;(p) is isolated over the whole
Brillouin zone [—m, 7], but the bands Es(p), Es(p) are degenerate at p = 0. For this choice of
potential, for all integers n > 2 the band E,(p) is degenerate with the band FE,;1(p) at either

p =0 or p=m, hence ‘one gap’.

space on a classical trajectory (q(t), p(t)) generated by H,, which encounters the crossing after some
finite time ¢*: for some t* > 0, limy4= p(t) = p*.

Our results can be roughly stated as follows; we give a more precise statement in Section
3.2. Assume that an “incident” wavepacket is driven through the crossing so that limg- p(t) =

limyye+ O W (q(t)) # 0. For a precise set up, see the Band Crossing Scenario (Property 3). Then:

1. Quantifying the breakdown of the ‘single-band’ description as ¢ 1 t*; Theorem
3.3.2: Fix any positive integer, N. For ¢ < t*, the solution of (3.1.1) can be represented as a
wavepacket associated with the band F,, with errors which are O((y/€)V) in L2(R). As t 1 t*,
this ‘single-band’ description fails to capture the dynamics of the PDE to any order in /e
higher than order (1/€)? = 1, since it does not incorporate an excited wave associated with the
band E, 1 whose norm grows to be of the order /e as t approaches t* on the non-adiabatic

time-scale s = (t — t*)/+/e.

2. Coupling of degenerate bands and excitation of a reflected wave-packet; Theo-
rem 3.3.3: For t ~ t* and for ¢t > t* the solution of (3.1.1) is well-approximated by the
sum of two semiclassical wavepackets: a “transmitted” wavepacket associated with the band

E, 41 with L?-norm proportional to 1 and a “reflected” wavepacket associated with the band
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o 0(1)

Strong
or inter-band

coupling \O(\/g)

centerof massq_,q_

timet-t"

Figure 3.3: Plot of position of center of mass against time of the “incident/transmitted” wavepacket
¢+(t) and the “excited/reflected” wavepacket ¢_(t), which satisfy (3.3.16) and (3.3.35) respectively,
for t near to t*. As t approaches t* such that the expected quasi-momentum of the incident
wavepacket is degenerate (p4(t*) = p* where EL(p*) = E_(p*)) inter-band coupling, which occurs
over the emergent non-adiabatic time-scale s := %, is non-negligible and leads to the excita-
tion of the second wavepacket. The size in L2 of the “excited” wavepacket is smaller than that
of the “incident” wavepacket by a factor of /e and proportional to the “coupling coefficient”
(X=(;p") Opx+(-;p*)). Here E4(p), x+(z;p) refer to the smooth continuations of the band eigen-
pairs En(p), Ent1(p), Xn(2; D), Xn+1(z; p) through the crossing (see Property 2 and Figure 3.4). Such

continuations always exist at one-dimensional band crossings (Theorem 3.3.1).

E,, with L?-norm proportional to /e (Figure 3.3). The size of the error terms is o(y/€) in
L?(R). The expansion is constructed via a rigorous matched-asymptotic analysis in which the
“transmitted” and a “reflected” wave-packets evolve on an additional emergent non-adiabatic

time-scale s = &=L
Ve

Our proof of Theorem 3.3.2 relies on the existence of smooth continuations of the Bloch band
dispersion functions E,, E,+1 through the crossing point p*; see Property 2 and Figure 3.4. Such
continuations exist in one spatial dimension; the details are presented in Theorem 3.3.1. Our proof
does not readily generalize to cases where no such continuation exists; for example at ‘conical’, or
‘Dirac’ points which occur in dimensions d > 2 [28; 29]. The dynamics of semiclassical wavepackets
at such crossings was studied in the context of the Born-Oppenheimer approximation of molecular

dynamics by Hagedorn [37]. Adapting his methods to the present context is the subject of ongoing
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quasimomentum p

Figure 3.4: Plot of the maps E(p), E_(p) defined by (3.3.3) with n = 2 and where Es(p), E3(p)
are the second and third lowest Bloch band dispersion functions when V(2) = 12, (2 + iw'),
the ‘one-gap’ potential with w’ = .8. The lowest three Bloch bands of this potential are shown in

Figure 3.2.

work.

Quantum dynamics at eigenvalue band crossings was studied by Landau [47], and Zener [78]
in the 1930s. A discussion of these phenomena from the perspective of normal forms and mi-
crolocal analysis was given by Colin de Verdiere et al. [17]. The propagation of Wigner measures
through crossings in the context of the Born-Oppenheimer approximation has been well studied by
Fermanian-Kammerer and others [30; 31; 49; 33; 12; 32; 13]. A model of the dynamics at a ‘conical’
Bloch band degeneracy was derived in [35]. So-called ‘avoided’ crossings are also of considerable

interest: see, for example, [34] and references therein.

3.1.1 Notation

e [t will be useful to introduce the energy spaces for every [ € N:

SR = fELPR): | flls = Y Ny (=i0,)° f(y)lla < oo (3.1.3)
8] <t

e The space of Schwartz functions S(R) is the space of functions defined as:

S(R) := Mien X! (R). (3.1.4)
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e We will refer throughout to the space of L?-integrable functions which are 1—periodic:

L2, :={f€L}.(R): f(z+1) = f(2) at almost every z € R} . (3.1.5)

per

e For functions of period 1, the Brillouin zone B may be chosen to be any real interval of
length 27. Since the band degeneracy we consider occurs at quasi-momentum p* = 7, we fix

B :=[0,2n].

e We make the standard conventions for the L2-inner product and induced norm:

<f|9>L2(D) = /Df(l’)g(w) dz, ||fllz2p) = ([l f>1L/22(D) (3.1.6)

For brevity, when D = R we omit the domain of integration:

(Flg)ge = /R F@a()de, |fllee = (F| Y2, (3.1.7)

and when D = [0, 1] we omit all subscripts:
(Fl9)i= [ F@lgla)da 171 (110", (3.1
[0,1]
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3.2 Review of Floquet-Bloch theory and the isolated band theory

of wavepackets

3.2.1 Floquet-Bloch theory

In order to state our results we require some background on the spectral theory of the Schrodinger

operator:

1
H:= —583 +V(2) (3.2.1)
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where V is 1-periodic (see [46; 63] for proofs and details). Consider the family of self-adjoint
eigenvalue problems parameterized by the real parameter p:
H®(z;p) = E(p)®(z;p)

(2 + 1;p) = PP(2; p) for all z € R.

(3.2.2)

Because of the explicit 27-periodicity of the boundary condition, there is no loss of generality in
restricting our attention to p € B, where B is any real interval of length 27. B is usually fixed to be
[—7, 7] or [0, 27] and referred to as the Brillouin zone. The eigenvalue problem (3.2.2) is equivalent
(by the transformation ®(z;p) = e®P*x(z;p)) to the family of self-adjoint eigenvalue problems with

1-periodic boundary conditions:

H(p)x(z;p) = E(p)x(2;p)

X(z+ 1;p) = x(z;p) for all z € R (3.2.3)

Hp) i= 50— i0.)* + V().

For fixed p, the spectrum of the operator (3.2.3) is real and discrete and the eigenvalues can be

ordered with multiplicity:
Ei(p) < Es(p) < ... < E,(p) < ... (3.2.4)

and the associated normalized eigenfunctions of (3.2.3) x,(z;p) are a basis of the space:

L% = {re L, : f(z41) = f(z) at almost every z € R} (3.2.5)

per loc

The maps p — E,(p), for p varying over B, are known as the spectral band functions and their
graphs are called the dispersion curves of H. The set of all dispersion surfaces as p varies over B is
called the band structure of H (3.2.1). Any function in L?(R) may be expressed as a superposition
of Bloch waves:

{Cbn(z;p) = ey, (2;p) :n €EN,p € B} ) (3.2.6)

Moreover, the L2-spectrum of the operator (3.2.1) is the union of the real intervals swept out by

the spectral band functions E,(p):

o(H)p2ray = Uner {En(p) : p € B}. (3.2.7)
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We define a measure of the spectral gap or separation at quasimomentum p € B between FE,, and

all other spectral band functions satisfying (3.2.3):

G(En(p)) == gll?iég |En(p) — Em(p)]- (3.2.8)

We make the following definitions:

Definition 3.2.1. Let E,(p) denote an eigenvalue band of either of the equivalent eigenvalue prob-
lems (3.2.2), (3.2.3) and let p € B. If:

G(En(p)) > 0, (3.2.9)
then we will say that E,(p) is isolated at p. If:
G(En(p)) =0, (3.2.10)

then we will say that E,(p) is involved in a Bloch band degeneracy.

3.2.2 Isolated band theory

Property 1 (Isolated Band Property). Let E,, denote a band dispersion function satisfying (3.2.3)
forpe B. Let tyg < t1 < oo and qo,po € R x B be such that the equations of motion of the classical
Hamiltonian Hy,(p,q) = En(p) + W(q):

q(t) = OpEn(p(t)), p(t) = —9,W(q(?)) (3.2.11)
q(to) = qo p(to) = po

have a unique smooth solution (q(t),p(t)) fort € [to,t1) such that E,, is isolated along the trajectory
(q(t),p(t)) fort € [to, t1); i.e:
M(to,t1) :== inf G(E,(p(t))) >0, (3.2.12)
tefto,t1)

where G(En(p)) is defined by (3.2.8).

For arbitrary constant Sy € R we let S(¢) denote the classical action along the path (¢(t), p(t)):

5(t) = So + / p(t")0pEn(p(t')) — En(p(t')) — W(q(t')) dt’ (3.2.13)

to
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For arbitrary aJ(y) € S(R), let a®(y,t) denote the unique solution of Schrédinger’s equation with
a time-dependent harmonic oscillator Hamiltonian depending on the classical trajectory (q(t), p(t))

with initial data specified at ¢y by ad(y):
iatao(y7 t) = ‘%ﬂ(t)ao(yv t)v
A = SORE(0) (10, + SR @Oy + 0TV (1) An(p(t)), (3214)
ao(yatO) = ag(y)

Here, p € B — A, (p) denotes the n-th band Berry connection (see Section 3.1.1 for conventions

regarding inner products and norms):
An(p) =i {(xn(:0)| OpXn (D)) - (3.2.15)
Since the x,(z;p) are assumed normalized:
for all p € R, |Ixn(-,p)|| = 1, (3.2.16)

it follows that A,(p) is real-valued. The term 9,W (q(t)).A,(p(t)) in (3.2.14) therefore leads to an

overall phase shift in the solution of (3.2.14) known as Berry’s phase.

Remark 3.2.1. For any path p(t) through parameter space it is possible to choose phases of the
eigenfunctions xn(z;p) in such a way that the Berry connection (3.2.15) is zero when evaluated
along the curve p(t) for allt. This choice is known as the adiabatic gauge. See Proposition 3.1 of
[37], for example.

We now state a mild refinement of the result of Carles-Sparber [61] which we find more directly

applicable:

Theorem 3.2.1 (Order 1 wave-packet). Let (q(t),p(t)) denote the classical trajectory generated by
the Hamiltonian H,(p, q) = En(p) +W(q), where p — E,(p) denotes the n'" spectral band function
for the periodic Schridinger operator —%83 + V(z). Assume that band E, satisfies the Isolated
Band Property 1 along the trajectory (q(t),p(t)) fort € [to,t1), i.e. M(to,t1) > 0; see (3.2.12).

Let S(t) be as in (3.2.13) and a®(y,t) be the unique solution of (3.2.14) with initial data ad(y) €
S(R).
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Then, for sufficiently small € > 0 the following holds. Let ¢¥¢(x,t) denote the unique solution of
the initial value problem (3.1.1) with approximate ‘Bloch wavepacket’ initial data given at t = ty:
1€0pp® = HY®

€ — i € _ipo(x— € T —qo z
¥ (l‘,to) — ¢ 1/46 So/ 6po( )/ a8< \/E )Xn (;;p())'

For t € [to,t1), the solution evolves as a modulated ‘Bloch wavepacket’ plus a corrector n®(z,t):

(3.2.17)

1/16(% t) = 6—1/46i5(t)/66ip(t)(x—q(t))/eao (13 _\/(é(t) ’ t> Yn (%;p(t)) + ne(m’ t) (3218)

where the leading order term is of order 1 in L*(R) and the corrector n° satisfies:
In“ (. t)ll g2 < CeUT0e,  tg <t <t (3.2.19)

The constants C > 0,c > 0 depend on M (tg,t1) and the initial data specified at toy, are independent
of € and do not depend otherwise on ty and t;. Moreover, C T oo as M (to,t1) | 0.
In particular, if M(tg,o0) > 0 then

sup  [|n°(,t)[|z2 = o(1), (3.2.20)
t€(to,C'In1/e]

where C is any constant such that C' < 2%

Remark 3.2.2. The timescale t ~ In1/e is known as ‘Ehrenfest time’ and is known to be the gen-
eral limit of applicability of wavepacket, or coherent state, approzimations (see [66] and references

therein).

It is convenient at this point to introduce a short-hand notation for the leading order (O(1) in
L?) ‘Bloch wavepacket’ asymptotic solution associated with the band E, with centering along the

classical trajectory (g(t),p(t)) and envelope function a®(y,t) (3.2.18):

WP[S(2), q(t), (1), a°(y, ), xn (2 p(1))) (2, 1) :=

3.2.21
e~ 1/45i5(t) /€ ip(t)(z—q(t)) /€ ,0 Lq(t),t Xn (g;p(t)) : ( |
Ve €

In our analysis we require a refinement of Theorem 1.1 of [73] where it was demonstrated how

to compute corrections to the asymptotic solution (3.2.18) in order to improve the error bound

(3.2.19) by a factor of \/e.
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For any aj(y) € S(R), let a'(y,t) denote the unique solution of the following inhomogeneous
Schrédinger equation with initial data specified at ¢y by aj(y) driven by the solution a°(y,t) of
(3.2.14):

ida(y,t) = A (t)a' (y, 1) + 7 (1)a’(y, 1),
1 ) 1
2(1) = LB O (~i0,) + SO (al1))y?
(3.2.22)
+ 9gW (a())pAn(p(t)) (—i0y) + 7 W (q(1))An(p(1))y,
a'(y,to) = ag(y)-
Again, A, (p) denotes the Berry connection, displayed in (3.2.15). We next introduce a convenient

short-hand notation for the ‘Bloch wavepacket’ asymptotic solution associated with the band F,

with a first-order correction to WP%€ in (3.2.21):

WPL[S(2), q(t), p(1), a(y, 1), a* (y, 1), Xn(2: (1)) (. 1) ==

—1/4,iS(0) e in(t) w—a(t) fe { 0 (L= 4() .
e ek {a< 7e ! xn<67p(t)) (3.2.23)

et (T2 ) v (Zaoto) + i (1) gy (Znt0) | .

Then, we have the following mild generalization of the result of Theorem 1.1 in [73]:

Theorem 3.2.2 (Order 1 wave-packet with order /e correction). Assume the same setting as in
Theorem 3.2.1, in particular that the Isolated Band Property 1 holds along the trajectory (p(t), q(t))
of the classical Hamiltonian H,, = En(p) + W(q) for t € [to,t1), where tg < t1 < oo. Let ad(y)
and aj(y) € S(R). Let S(t) be as in (3.2.13) with initial action S(0) = Sy € R. Let a®(y,t) as in
(3.2.14) and a*(y,t) be as in (3.2.22).

Then, for sufficiently small € > 0, we have that the unique solution (x,t) of the initial value
problem (3.1.1) with approximate ‘Bloch wavepacket’ initial data with corrections proportional to

Ve given at t = ty:
jedp = HEY*

P2, to) = WPH[So, g0, po, a) (1), ag(y), Xn (23 p0)](z) + Orz (€)

(3.2.24)

evolves as a modulated ‘Bloch wavepacket’ plus a corrector n(z,t):

V(. t) = WPH[S(t),q(1), p(t), a”(y, 1), a' (y, 1), X (23 ()] (2, 1) + 17 (2, 1) (3.2.25)
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where the corrector n° satisfies, for t € [to,t1), the bound:
¢, 1) 2 < Cee (3.2.26)

where the constants C > 0,c > 0 are as stated in Theorem 38.2.1.
Furthermore, it follows that if M (tp,00) > 0, then we have the following error bound on the

Ehrenfest time-scale:

sup ()| 22 = o(Ve), (3.2.27)
t€[0,C1In1/e]

where C is any constant such that C' < i, cf. (3.2.20).

Remark 3.2.3. By a natural extension of the methods of [61] and [73] one may derive, for any

integer k > 0, ‘kth-order Bloch wavepacket’ approximate solutions:

WPRC[S(t),q(t), p(t),a’(y, 1), a' (y,1),a* (Y, t), ..., xn(2;0(1))] (2, 1) (3.2.28)

such that the exact solution ¢(x,t) of (3.1.1) with ‘k-th order Bloch wavepacket’ initial data:

¥§(z) = WPH[Sy, q0, po, ag(y), ap(y), ag(y), .- Xn (21 p0)](2) (3.2.29)
satisfies:

Vi) = (3.2.30)
WPES(L), q(8), p(t), a’(y, 1), a' (y, 1), a* (4, 1), -, xn (23 P()] (2, £) + 072 (/%)

up to ‘Ehrenfest time’t ~ In1/e. Note that each function WP*[...](z,t) depends on k+1 envelope
functions a®(y,t),a' (y,t),a®(y,t),... each of which satisfies a suitable Schridinger equation driven
by the k previously defined envelope functions. Hence a®(y,t) satisfies a Schrédinger equation driven

by a’(y,t) and a'(y,t) and so on.

3.3 Statement of results on dynamics at band crossings

3.3.1 Linear band crossings

We next give a precise discussion of the character of one-dimensional band crossings. The following
property describes a linear band crossing, illustrated in Figures 3.2 and 3.4. In Theorem 3.3.1 we

assert that Bloch band degeneracies in one dimension are of this type:
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Property 2 (Linear band crossing). Let E,(p), En+1(p) denote two spectral band functions satis-
fying (3.2.3) for p € B, and let p*, U denote a point and open interval respectively with p* € U C B
such that:

(A1) The bands E,, and E,1 are degenerate at p*, and this degeneracy is unique in U :

En(p*) = Enqa(p")

if p* €U and E,(p*) = Ent1(p*), then p* = p*.

(3.3.1)

(A2) The bands Eyny1, Ey are uniformly isolated from the rest of the spectrum for all p € U, i.e.

there exists a positive constant M > 0 such that:

min  min_A[Ep(p) = Ent1(p)]; |En(p) — Em(p)[} 2 M >0 (3.3.2)
peU m¢{nvn+1}

(A3) The maps:

En(p): xn(z; or U and *
p = (Ex(p), x4 (2:p)) = (En(p), xn(2;p)) forpe p<p

(Eng1(p), Xns1(z3p)) forp e U and p > p*

(3.3.3)
(En+1(p); Xn41(2;p))  forp €U and p <p*
p = (E-(p), x-(2;p)) =
(En(p), xn(2:p)) forpe U andp > p*
are smooth for allp € U.
(A4) The bands E, E_ satisfy 0,E,(p*) > 0, 0,E_(p*) <0 and in particular:
OyF, (") — OpF_ (1) = 20,B4 (") > 0. (3:3.4)

Caveat Lector! In (3.3.3), the notation + and — refers to the sign of the derivative of the smooth
band functions at the crossing point: O,E(p*) > 0,0, E_(p*) < 0. This is not to be confused with

an ordering of the bands themselves. Indeed, with our conventions we have:
forpeU andp <p*: E4(p) = En(p) < Ent1(p) = E_(p). (3.3.5)

It is useful to view the functions Ey(p), E_(p) as smooth continuations of the band functions
En(p), Ent1(p) from the interval {p € U : p < p*} to the interval {p € U : p > p*}. We will refer to
any crossing satisfying Property 2 as a linear crossing. In one spatial dimension, all band crossings

are linear. Moreover, crossings can only occur at 0 or 7 (modulo 27):
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Theorem 3.3.1. Let E,(p), E,+1(p) denote spectral band functions satisfying (3.2.3) for p € B,
and let p* € B be such that: E,(p*) = En+1(p*). Then:

1. p* =0 or m (modulo 27 ).

2. There ezists an open interval U containing p* such that hypotheses (A1)-(A4) of Property 2
hold.

The proof of Theorem 3.3.1 is given in Appendix B.1.

Corollary 3.3.1. Let E,(p), Ent1(p) denote spectral band functions in one dimension which cross

at some p* € B. Let P{(p) denote the projection onto the orthogonal complement in Lger of the
functions x+(z;p), x—(z;p), defined for p € U by (3.3.3). Then:
_ 1 _
I(H(p) = Eo(0)) ' PE®)l13,, m3,, < . =t rel (3.3.6)

where M > 0 is the constant appearing in (3.3.2).

The bound (3.3.6) follows immediately from (3.3.2). When we consider the dynamics of
wavepackets associated with E,(p) or E,,+1(p) and spectrally localized close to p*, the gap condition
(3.3.2) and Corollary 3.3.1 will allow us to bound contributions to the solution from all bands other

than E,(p) and E,1(p) uniformly through the crossing time, see Appendix D of [73] for details.

Remark 3.3.1. Theorem 3.3.1 does not generalize to spatial dimensions larger than one. Indeed, at
so-called ‘conical’ or ‘Dirac’ points, which occur in the spectral band structure of two-dimensional
periodic Schrédinger operators with honeycomb lattice symmetry, the local band structure is the
union of Lipschitz surfaces [28; 29] and the map p — xn(2;p) from the Brillouin zone to the Bloch

eigenfunctions is discontinuous [29].

3.3.2 Examples of potentials with linear band crossings

Example 1 (Weierstrass elliptic functions). Let wi,ws € C with Im (ws/w1) # 0. Define ©u, ws(2),

the Weierstrass elliptic function with periods 2wq, 2ws by:

@wl,w?,(z) =+ Z ! 5 ! (337)

(mr) el Z (z — 2mwi — 2nw3)?  (2mw; + 2nws)?
(m,n)#(0,0)




CHAPTER 3. DYNAMICS AT A ONE-DIMENSIONAL BAND CROSSING 96

The function gy, w,(2) is doubly-periodic and even:

fwr,ws (Z + le) = Pwi,ws (Z + 2(4)3) = Pwq,ws (Z)
(3.3.8)

P ws (—2) = Pur w3 (2),
and has poles of degree two at the points Sy, , = 2mwy + 2nws for all (m,n) € Z x Z. If w1 = w,
w3 = iw with w,w’ € R and w > 0, then @, (2) is real for z such that Re z € {0,w} or
Im z € {0,w'} by the symmetries (3.3.8). Now fix w = 1/2, and define for any w' € R with w' # 0
and positive integer m:
m(m +1)

V(z) = f@l/z,w(z +iw'). (3.3.9)

Then for z € R, V(z) is a real, smooth, 1-periodic function.

The m lowest Bloch band dispersion functions defined by (3.2.3) for this potential are non-
degenerate for all p € B, but for every n > m, the band E,(p) has a linear crossing with the band
Eni1(p) at p =0 or p =« [50]. Such potentials are known as ‘m-gap’ potentials since the L*(R)
spectrum of the operator —%33 + V(2) in this case consists of m + 1 real intervals with m ‘gaps’
between them. Indeed, all ‘m-gap’ potentials, for positive integers m, must be elliptic functions
[41]. Any Weierstrass elliptic function may be written in terms of Jacobi elliptic functions; for
more detail see [9; 75; 14; 1; 59)].

The lowest three bands of a ‘one-gap’ potential are shown in Figure 3.2. The smooth bands at
the linear crossing between the second and third bands defined by (3.3.3), whose existence is ensured

by Theorem 3.3.1, are shown in Figure 3.4.

Example 2 (Trivial band crossings). Fvery Bloch band of any 1-periodic function which has min-
imal period 1/2 will be degenerate. To see this, let V(z) be 1/2-periodic. We may plot the band
structure of the operator —%82 + V(2) with respect to the natural 4mw-periodic Brillouin zone, which
we take for concreteness to be [0,4w]. Now, we may also treat V(z) as a 1-periodic potential and
plot its band structure with respect to the 2m-periodic Brillouin zone [0,2r]. But it is clear that any
eigenpair of the 1/2-periodic eigenvalue problem will also be an eigenpair of the 1-periodic eigen-
value problem. Hence the band structure of the 1-periodic operator is nothing but the band structure
of the 1/2-periodic operator ‘folded over’ onto the shorter interval. More precisely, eigenvalues of
the 1/2-periodic operator with quasi-momentum p € [2m,4w| will be eigenvalues of the I-periodic

operator with quasi-momentum p — 2w. For an example, see Figure 3.5. We will refer to such
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Figure 3.5: Lowest Bloch bands when V(z) = 4 cos(4nz), viewed as a 1/2-periodic potential and
plotted over the natural Brillouin zone in this case [0, 47] (a) and viewed as a 1-periodic potential
and plotted over [0,27] (b). When V(z) is viewed as a 1-periodic potential, every Bloch band is

degenerate at p = 7.

crossings as “trivial”, since they may be removed by a proper choice of Brillouin zone. The wave

“excited” at such crossings is zero: see Remark 3.8.5 and Appendiz B.2.

3.3.3 Band crossing dynamics

We now make precise the scenario of a wavepacket whose quasi-momentum is driven by the external
potential W towards a quasi-momentum p* € B at which there is a linear band crossing; see

Property 2.

Property 3 (Band Crossing Scenario). Let E,, E,+1 denote spectral band functions associated with
the eigenvalue problem (3.2.3) for p € B which have a linear crossing in the sense of Property 2 at
p*. Let qo,po € R x B be such that G(E,(po)) > 0 (i.e. the band E,(p) is isolated at py: recall the
definition of the spectral gap function G (3.2.8)). We assume the existence of a positive constant

t* > 0 such that the equations of motion of the classical Hamiltonian H,(q,p) := En(p) + W(q):

4(t) = GpEn(p(t)) p(t) = —9,W(a(?)) (3.3.10)

q(0) = qo p(0) = po
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have a unique smooth solution (q(t),p(t)) C R x B for all t € [0,t*) such that the Bloch band

function E,, is isolated when evaluated at p(t) for every t € [0,t%):

for allt € [0,t"), G(E,(p(t))) >0 and %It{}p(t) =p". (3.3.11)

Let ¢* denote the limit: limy- q(t). We assume that the wavepacket is ‘driven’ towards the crossing
in the following sense:

11Tr)trgp(t) =—0,W(q*) > 0. (3.3.12)

Remark 3.3.2. We choose the sign of —0,W (¢*) in (3.3.12) to be positive without loss of generality.
Note that it follows from (3.3.12) that for t < t* with |t — t*| sufficiently small, p(t) < p*: i.e. the
wave-packet quasi-momentum approaches p* ‘from the left’. As a consequence the ‘smooth extension’
of the map t — E,(p(t)) for t > t* makes use of E1(p(t)) rather than E_(p(t)); see Proposition

3.5.1.

We aim to describe the solution of the PDE (3.1.1) with ‘Bloch wavepacket’ initial data of the

form:
¥ (x,0) = WP[So, g0, po, af (4), a5 (), Xn (23 90)) () 5 (3.3.13)
see (3.2.23). Here, aJ,a} € S(R) and Sy € R in the Band Crossing Scenario (Property 3) up to
errors of or2(y/€) for ¢ up to and greater than the crossing time ¢*.
Note that for ¢t < ¢*, (3.3.11) implies that Property 1 holds with ¢y = 0 and ¢; = t. By Theorem
3.2.2 the solution 9(x,t) of (3.1.1) satisfies, for fixed ¢ and € | 0:

Ve (x,t) = WPH[S(t), (), p(t), a"(y, 1), a' (y. 1), xn (23 ()] (2, 1) + Opz2(e) (3.3.14)

where q(t), p(t), S(t),a’(y,t),a' (y,t) are as in (3.3.10), (3.2.13), (3.2.14), and (3.2.22) respectively.

Two difficulties arise in estimating error term in the solution ¢(z,t) of (3.1.1) for ¢ > ¢*:
Difficulty 1. The functions q(t), p(t), S(t), a®(y,t), a'(y,t), xn(2;p(t)), and Opxn(z;p(t)), and
therefore the function:

WPH[S(2), q(t), p(1), a°(y,1), a* (3, 1), xn (2 0(t))] (. ), (3.3.15)

are not well-defined at t = t* since the band function E,(p) and its associated eigenfunctions

Xn(z;p) are not smooth in p at p*.
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Difficulty 2. The L2-norm of the error in the approzimation (3.3.14) depends directly on the
inverse of the spectral gap function G(E,(p(t))), which blows up as t 1 t* since |G(E,(p(t)))| ~

[Ent1(p(t)) — En(p(t))] 4 0.

We return to Difficulty 2 below: see Theorem 3.3.2 and Corollary 3.3.2.

3.3.4 Resolution of Difficulty 1; Smooth Continuation of Bands

Difficulty 1 may be overcome by making proper use of the smooth band functions E,, E_; see
(3.3.3) in Property 2, Theorem 3.3.1 and Figure 3.4. The following proposition shows how in the
Band Crossing Scenario (Property 3), we may extend the map [0,t*) — R x B, ¢t +— (q(t),p(t)) to a

smooth map over an interval [0,7] with 7" > ¢* using the smooth band function E.:

Proposition 3.3.1. Assume the Band Crossing Scenario (Property 3) with crossing occurring for
t =t*. Then for sufficiently small positive 6 with 0 < § < t*, the equations of motion of the classical

Hamiltonian H4(q,p) := E+(p) + W(q) with data specified at t*:

4+(t) = B4 (p+(1)), pr(t) = =0, W (q+(t)) (3.3.16)

* *

q+(t") =q p+(t")=p

have a unique smooth solution (q4+(t),p+(t)) C R x U over the interval t € [t* — 0,t* + 6] which
satisfies:

forallt € [t* —6,t%), q(t) = q+(t), p(t) = p+ (). (3.3.17)

Furthermore, for sufficiently small T > t*+§ > 0, there exists a solution (qn+1(t), pnt1(t)) C RxB
of the equations of motion of the classical Hamiltonian Hyp+1(q,p) := Ent1(p) + W(q) over the
interval t € (t*,T) satisfying the limits:

Gnt1(t) = OpEnt1(pnt1(t)) Prt1(t) = —=0gW (qn+1(t)) (3.3.18)
}fﬁ{} nt1(t) =q grgpnﬂ(t) =p

such that G(Ep+1(pnt1(t))) > 0 for all t € (t*,T). This solution satisfies:

for allt € (t*,t" 4+ 6], q+(t) = gn+1(t), p+(t) = pns1(t). (3.3.19)
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It follows from (3.3.17) and (3.3.19) that the map:

t (@4(8), p+(8) = 4 (g4 (1), p4 (1)) fort e t*—0,t" + 4] (3.3.20)
(QH+1(t)7pn+1(t)) fOT‘ te [t* + 57 T]
is smooth as a map [0,T] — R x B.
Proof. The potential W is smooth by assumption, the band functions E,, E, 1 are smooth ev-
erywhere away from p*, and the band function Ey is smooth in U, a neighborhood of p*. The

proposition then follows easily from existence and uniqueness for solutions of ODEs with smooth

coefficients. O

Corresponding to the smooth extension ¢ — (q4(t), p+(¢)) we may define the smooth extension

of xn(z;p(t)) through the crossing:
Xn(z;p(t)) for t € [0,t* — 0]
t X (204 (D) = § xy (2504 (1)) for t € [t* — 6,t* + 6] - (3.3.21)
Xn+1(2;Ppt1(t))  for t € [t* +6,T]

Finally, using the smooth maps ¢ — (q+(¢),p+(t)) and t — Xy (z;p+(t)), we introduce smooth

extensions of the functions a®(y,t), a'(y,t), and S(t) over the whole interval ¢ € [0, 7] as follows:
Definition 3.3.1 (Smooth extensions of a®(y,t), a'(y,t), and S(t)). Let:

=1 ), a¥*(y) := lima®(y, t d a“*(y) := lima'(y, ). .3.22
S tlTIg,}S(),a (y) lim a (y,t), and o™ (y) lim (y,1) (3.3.22)

Then let S1(t), a%(y,t), and al(y,t) be defined for t € [t* — §,t* + 4] by (3.2.13), (3.2.14), and
(3.2.22) with ty = t*, and where all dependence on p(t), q(t), En(p(t)), xn(z;p(t)), and W(q(t))
replaced by dependence on p4(t),q+(t), E+(p+(t)), x+(2;0+(t)), and W (q4(t)) respectively, and:

So = S*, ag(y) = ao’*(y), and a(l](y) = al’*(y). (3.3.23)

Then let Spy1(t), ab 1 (y,t), a1 (y,t) be defined fort € (t*,T] by equations (3.2.13), (3.2.14), and
(3.2.22), replacing dependence on p(t), q(t), En(p(t)), xn(z;p(t)), and W(q(t)) by dependence on

Pn+1 (t), An+1 (t)7 Ent1 (pn—i—l(t)); Xn+1 (Z; pn-l—l(t)), and W(Qn—f—l (t)) and the limits:

lim S,,41(t) = S*, lima, t) = a%* d lima'(y,t) = a"*(v). .3.24
t}LItl}SJrl() s, lim a +1(y,t) =a*(y), an lim a (y,t) =a"(y) (3.3.24)



CHAPTER 3. DYNAMICS AT A ONE-DIMENSIONAL BAND CROSSING 101

We denote by &4(t), a9 (y,t), and al(y,t) smooth maps defined over the whole interval t € [0, T
defined analogously to (3.3.20) so that, for example:
a’(y,t) fort € [0,t* — 0]
tesal(y,t) = al(y,t)  forte[tr—o,t*+6]- (3.3.25)
a’(VJLJrl(ya t) fOT te [t* + 57 T]

We now define a first-order wavepacket smoothly continued through the crossing, an expression

which is smooth for all ¢ € [0, T] by (recall the definition of WP€ (3.2.23)):

WPH[G (1), 4+ (t), b4 (1), 0l (y, 1), (3, 1), Xy (259 (1)) (2, 1) o=

WPH[S(1), q(t), p(t),a°(y, 1), a" (y, 1), Xn(2; (1)) (1) for t € [0,¢* — 4]

WPH[S4 (t), ¢4 (1), p+ (1), al (3, 1), @l (y,), x4 (25 p(8)) (1) for t € [t —6,t" + 0] -

WPL[S,41(8), @1 (6, Pt (8), 041 (0 8), 01 (1 2)s X (530 (2,8) for £ € [1° +6,7T)
(3.3.26)

Remark 3.3.3. Note that by construction, (3.3.26) is a wavepacket associated with the band E,
fort € [0,t* — 8], a wavepacket associated with the band E, 41 fort € [t* +3,T], and a wavepacket

associated with the ‘smooth transition’ E4 for t € [t* — §,t* + 9].

3.3.5 Resolution of Difficulty 2; Incorporation of the second band and a new,

fast / non-adiabatic, time-scale

We first present a result which quantifies, through a blow-up rate of the error bound, the breakdown

of the single band approximation (3.3.14) as ¢ 1 t*:

Theorem 3.3.2. Assume the Band Crossing Scenario (Property 3). Assume ad(y) and ab(y) €

S(R) and let ¢ (z,t) denote the unique solution of (3.1.1) with ‘Bloch wavepacket’ initial data:
¥ (x,0) = WP L[S0, o, o, a9 (), a5 (), Xn(2; p0)] (). (3.3.27)
Then fort € [0,t*), ¢¥(x,t) satisfies:

Ve(x,t) = WPH[S.(t), q4.(t), p4- (1), a5 (. 1), 0l (,8), X (2504 (1)) () + (2, )  (3.3.28)
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where WPi’e(x,t) is given by (3.8.26). Moreover, the corrector n(x,t) satisfies the following bound
for 0 <t < t*, which blows up as t 1 t*:

. 5 c €3/2
(. < —(5p* 5P
H?](,t)HL2_ ’<X (7]9 )’ pX+(7p )>‘ ‘t—t*‘+‘t—t*|2

+0 6,63/21H‘t—t*‘,£
|t — t*]

The constants in (3.3.29) (explicit and implied) are independent of t,e and are finite as long as:

OpE(p*) — OpE_(p*) = 20,E(p*) > 0 and 0,W(q*) # 0.

(3.3.29)

Theorem 3.3.2 is proved in Section 3.4 and Appendix B.3.

Remark 3.3.4. The manner in which the nonzero constants OpE1(p*) — OpE_(p*) = 20,E1(p*)
and 0,W (¢*) play a role in the bound (3.3.29) is seen in (3.4.22) and (B.3.6).

Theorem 3.3.2 shows that the single band ansatz, even when smoothly continued through the
linear band crossing, fails to give a good approximation (error of size or2(+/€)) to the solution

Y(z,t) of equation (3.1.1) for small |t — ¢t*|. Furthermore, since the dominant terms in the bound

(3.3.29), /e x (Ve/|t — t*]), Ve x (\/e/|t — t*|)?, are proportional to
(XG5 POOpx+ (507)) 5 (3.3.30)

we see that the failure of the single band wave-packet approximation is due to contributions to the
solution from the other band participating in the linear crossing, p — F_(p), growing to be of size
~ /€ when:

[t —t*| ~ e. (3.3.31)

Remark 3.3.5. At “trivial” crossings, which occur when the potential V(z) has minimal period
1/2 (recall Example 2), the “inter-band coupling coefficient” (3.3.30) is zero (see Appendix B.2).
It follows that the amplitude of the wave associated with the other band involved in the crossing
“excited” (Theorem 3.3.3) at the crossing is also zero. This is consistent with the observation that

the crossing may be removed by making the proper choice of Brillouin zone.

The following Corollary of Theorem 3.3.2 precisely characterizes the time interval of validity of

the single band ansatz:
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Corollary 3.3.2. Lett = t* —e¢. Then, for small enough € > 0, (8.3.29) implies that the corrector
function n(x,t) which appears in (3.3.28) satisfies:
sup [In“(-, 1)l 2 < Ce' ¢ (3.3.32)
te[0,t* —ef]
where C > 0 is a constant independent of €,&,t. In particular, if 0 < £ < 1/2, then:
sup ()]l z2 = o(Ve). (3.3.33)
te[0,t* —et]

It follows that n°(x,t) is negligible in L*(R) compared with WPY€ in the expansion (3.3.28) for
t€[0,t* — €.

In order to describe the solution for ¢ ~ ¢* and ¢ > t*, it is necessary to make a more general
ansatz for the solution which accounts for the excitation of a wave associated with the other band

involved in the crossing over the time-scale:
ot
=7

The following proposition, which is analogous to Proposition 3.3.1, is required to construct this

s (3.3.34)

excited wave:

Proposition 3.3.2. Assume the Band Crossing Scenario (Property 3). Then for sufficiently small
positive §' the equations of motion of the classical Hamiltonian H_(q,p) := E_(p)+ W (q) with data
specified at t*:

Q-(t) = 9B (p-(1)) p-(t) = —0,W (g (1)) (3.3.35)

(") =q" p-(t") =p" (3.3.36)

have a unique smooth solution (q—(t),p—(t)) C R x U over the interval t € [t* — &', t* + ¢']. Fur-
thermore, for sufficiently small T' > t* 4+ &' > 0, there exists a solution (qn(t),pn(t)) C R x B of
the equations of motion of the classical Hamiltonian H,(q,p) := En(p) + W(q) over the interval
t € (t*,T'] satisfying the limits:

Gn(t) = OpEn(pn(t)) Pn(t) = =04 W (an(t)) (3.3.37)

* *

5 = i o=
tlﬁgqn() q tlftgp”() P
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such that G(Ey(pn(t))) > 0 for all t € (¢*,T']. This solution satisfies:
forallt € (t*,t* + 0], q_(t) = qu(t), p—(t) = pn(t). (3.3.38)
It follows from (3.3.38) that the map:

(a-(t),p-(2) := (@-(@)p-10) fortelf" =01+ 5] (3.3.39)
(an(t),pu(t))  fort e [t*+ o, T].

is smooth over the interval t € [t* — &', T"].

We again define, as in (3.3.21):

t= X (zp_(1) = x-(zp-() fort e i =0, 4] . (3.3.40)

Xn(z;pn(t)) fort e [t* 40, T"]
The precise form of the wave “excited” at the crossing time is derived from a rigorous multi-
scale analysis on the emergent nonadiabatic time-scale (3.3.34) (see Section 3.5.1). The following

definition is the result of this calculation:

Definition 3.3.2 (Parameters of the excited wave-packet). We let S_(t) and a” (y,t) be defined
fort e [t* =8 t* 4+ '] by (3.2.13) and (3.2.14) with to = t*, in which all dependence on p(t), q(t),
En(p(1), xn(2;p(t)), and W(q(t)) replaced by dependence on p—(t),q—(t), E—(p—(t)), x—(2;p—(t)),
and W (q_(t)) respectively.

Moreover, Sy = S* and the initial data for a® (y,t), generated by the incoming “+ band’ wave-

packet is given by:

a? (y, t*) = 9, W (q*) x (x—(s0")| Opx+ (%))

00 3.3.41
X / eH0aW (@)][0p B+ (p*)—0p E— (p")]7%/2 a®*(y — [0,E+ (p*) — 0, E_(p*)]7) dr ( )
— 00

The definitions of S* and limg a®(y,t) = a®*(y) are given in (3.3.22).

Recall that 0,W (q*) is assumed to be non-zero (see (3.3.12)) and that O,E, (p*) — OpE—(p*) =
20,E(p*) is always nonzero at band crossings (Theorem 3.3.1, Property 2 (A4)) and hence the
integral in (3.3.41) is well-defined since a®*(y) is localized. We then define S,(t), al(y,t) for
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t € (t*,T'] by replacing dependence on p(t), q(t), En(p(t)), xn(z;p(t)), and W(q(t)) by dependence
on Pu(t), qn(t), En(pn(t)), xn(z;0n(t)), and W(gn(t)) respectively, and by the limits:

lim S, (t) = S*, lima® = a"*(y). :3.42
lim $,(t) = S°, Hmay (y.1) = a**(y) (3.3.42)

We denote by &_(t), a® (y,t) the smooth maps defined over the whole interval t € [t* — §',T'] in
analogy with the definitions of G, (t) and at(y,t) in Definition (3.3.25).

We now define the wave-packet associated with the band E_ which is “excited” at the crossing

time t* by:
WP (S _(t),q-(t),p—(t), a2 (y, 1), X (z;p— (1)) (=, 1) :=
WPO[S_(t),q_(t),p_(t),a’ (y, 1), x_(z;p(t))|(x,t) for t € [t* — & t* 4+ ] (3.3.43)

WPC[S, (), 4 (t), pn(t), ad (y, t), xn(z: p(t)|(z,t)  for t € [t* + &', T
3.3.6 The main theorem

Our main theorem is that a size 1 incoming wave-packet associated with the ‘+ band’, when
encountering a band-crossing, generates a size 1 ‘transmitted 4+ band’ wave-packet and a ‘reflected
— band’ wave-packet of size y/e. Moreover, when the wave-packet is in a neighborhood of the
crossing, i.e. t ~ t, and hence (p(t),q(t)) =~ (p«, ¢x), the detailed dynamics are non-adiabatic and
are described by an ansatz incorporating wave-packets from both bands with envelopes varying on

an additional fast scale. The precise statement is the following;:

Theorem 3.3.3. Assume the Band Crossing Scenario (Property 3) in which the crossing time,
along the trajectory (p(t), q(t)) is t = t.. Let &,&' be fized such that 3/8 < & < & < 1/2. Let T > 0,
with 0 < t, < T, be sufficiently small that Propositions 3.3.1 and 3.3.2 hold with T = TandT' =T
respectively.

Let ¢(x,t) denote the unique solution of (3.1.1) with ‘incident Bloch wavepacket’ initial data
(8.8.27), defined for t € [0,T).

Then, there exists an €y > 0 such that for all 0 < € < €g the following holds.

1. Fort € [0,t* — ¢%), ¥(x,t) may be approzimated up to errors of orz2(vVe) by a single-band
ansatz (see Theorem 3.3.2 and Corollary 3.8.2):

W(% t) = WPLE[G-i-(t)’ q+(t)a p-i-(t)’ ag—(% t)v Cli_ (yv t)’ x-i— (25 p-i-(t))](xv t) + 0r2 (\/E) (3'3'44)
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2. Fort € (t* + ¢, T), v(x,t) is approzimated up to errors of or2(v/€) by the sum of two Bloch

wave-packets, one associated with each band involved in the crossing (recall Definition 3.3.2):

T/Je(%‘a t) = WPl,e[G—i—(t)? q+(t), p+(t)7 ag—(y’ t)v a}&- (ya t)a %-I—(Z; p+(t))]($, t)

+ Ve WP[S_(t),q-(t),p-(t), 2 (y, 1), X (25 p— (1) (2, t) + 0r2 (VVe).

(3.3.45)

Over the interval t € (t* — €€, t* + €5, the solution ¢*(x,t) is expressible, with errors of size
oLg(ﬁ), by a superposition of wave-packets from both + and — bands, whose amplitudes vary on

an additional (fast / non-adiabatic) time scale:

t—t*
g

The detailed construction appears in Section 3.5.1.

(3.3.46)

S =

Remark 3.3.6. The restriction to sufficiently small T > 0 in Theorem 3.3.8 is to ensure that
neither the incident nor excited wavepacket encounter a second band crossing over the time interval
t € [O,T]. It is clear that this assumption may be relaxed and the analysis repeated each time a
wavepacket is incident on a band crossing in order to obtain results valid over arbitrary finite time

intervals, fized independent of e.

Remark 3.3.7. By construction:

WPH[S.4 (), 0+ (1), p+ (1), 0l (y,1), 0} (y,1), X (259 (1))] (2, 1) (3.3.47)

is a wavepacket with L2-norm proportional to 1 associated with the band E, fort € [0,t* — 6] and

with Epyq fort € [t* +6,T), and:

VEWP[S_ (1), a- (1), p—(1), a2 (y, 1), X (2:p-(1))] (2, 1) (3.3.48)

is a wavepacket with L2-norm proportional to /¢ associated with the band E, fort € [t* + 5’,T].
Hence the statement of Theorem 3.3.3 is consistent with the description of our results given in

Section 3.1.

Remark 3.3.8. To leading order in \/e, the center of mass of the wavepacket ‘excited’ at the
crossing 1is given by q_(t), which, for t — t* small enough, evolves according to (3.3.35). The

center of mass of the incoming wavepacket is given by (again to leading order in \/€) q4(t), which
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evolves (again for t — t* small enough) according to (3.3.16). Since 44 (t*) = 0p,E+(p*) > 0 and
q—(t*) = 0, E_(p*) < 0 we have that the velocities of the centers of mass of each wavepacket have

opposite signs: see Figure 3.3.

Remark 3.3.9. By dropping terms of o(1) in L2 in (3.3.44), (3.3.45), and in the asymptotic
solution which we construct for t € (t* — efl,t* =+ 6£/), we have that, under the assumptions of

Theorem 3.3.3, for all t € [0,T]:

V(@ t) = WP[S1(£), a4 (1), p+ (1), a5 (3, 1), Xt (2394 (D)) (2, 1) + 012 (1). (3.3.49)

3.4 Sketch of proof of Theorem 3.3.2 on blow-up of error in single-

band approximation as ¢t approaches the crossing time t*

3.4.1 Strategy for estimating the corrector

In this section we recall the simple Lemma which we use in the proofs of Theorem 3.3.2 and
Theorem 3.3.3 to estimate the corrector to a wave-packet approximate solution. A similar strategy

was followed in [61; 73]

Lemma 3.4.1. For 0 < T < oo, let ¢ € C([to, T); L3(R)) denote the unique solution of the initial

value problem (3.1.1) with initial data ¥§(x) given at t = to:

iD= HY

(3.4.1)
P (z,t0) = () -
Furthermore, let g,,(z,t) € CO([to, T); L*(R)), r(z,t) be such that:
1€ apy = H gy, +7°
P P (3.4.2)
wgpp($’ to) = 1/1§pp,0($)-
Introduce n®(x,t) defined by:
776(‘757 t) = ¢E(x> t) - ¢pr($7 t) (343)

Then,
€ € € 1 ! €
In°CoOll2 < 196() — Yappo()llr2 + E/t 7 )| 2t (3.4.4)
0
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Remark 3.4.1. We shall apply Lemma 3.4.1 with wgpp(x,t) equal to an approximate solution of
(3.1.1) and r¢(x,t) equal to the residual.
Proof. The function n(z,t) satisfies the initial value problem:

ieom = Hn +r€

%Z)pr(% tO) = 1/}(6)(33) - ¢pr,0(x)

(3.4.5)

Multiplying both sides of (3.4.5) by n¢, taking the imaginary part yields and using self-adjointness
of H® we obtain: €dy|n[|5. = —i (n°|r€) 2 + i (r°|n) 2. This implies, using the Cauchy-Schwarz
inequality that 2e||n||z2 OlnlL2 < 2[|7¢||z2]|n¢|| 2. Cancelling common factors from both sides

(note that the inequality is trivially true if ||n¢||2 = 0) and integrating from ¢¢ to ¢ gives (3.4.4). [

We now estimate the error in the single-band approximation as t T t*, as measured by the
L2-norm of the corrector function 7¢(x,t) which appears in (3.3.28). We start by recalling the
strategy of the proof of Theorem 3.2.2; the proof of Theorem 3.2.1 is similar. Let ¢¢(x,t) denote
the exact solution of (3.1.1) with approximate ‘Bloch wavepacket’ initial data (3.2.24) specified at
t = to. Then by Lemma 3.4.1, if we can find an approximate solution of (3.1.1), 9g,,(z,t), such

that (3.4.2) holds with:

196(-) — Vappo ()2 < Ce (3.4.6)

and [[r“(- 1)) 2 < Ce'e, (3.47)

where the constants C' > 0,¢ > 0 are independent of ¢, ¢, then it follows from (3.4.3) and (3.4.4)
that:
19(58) = i D)l 22 < Cee. (3.4.8)

If in addition we have that:
[0 ( 1) — WPLS(t), q(t), p(t), a®(y, t), a' (y, 1), xn (23 p(£))] (-, 1) || 12 < Cee, (3.4.9)

where ¢(t), p(t) and so on are as in the statement of Theorem 3.2.2, then the conclusions of Theorem
3.2.2 follow immediately by the triangle inequality. The details of how to construct such a ¥¢,, (z,t)

were presented in [73].
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Theorem 3.2.2 implies, in particular, that the solution ¥¢(z, t) of (3.1.1) with initial data (3.3.27)

as initial data satisfies:
for t € [0,t* — 9],
Hwe('u t) - WPLG[S(t)7 q(t)vp(t)v a0<y7 t)a al (ya t)v Xn(zvp(t))](7 t) HL2 = OLE (6)

Due to the band crossing at p*, the Isolated Band Property 1 does not hold as t T t*. As a

(3.4.10)

result the proof of Theorem 3.2.2 fails as follows:
1. Ast1t*, the L2-norm of the residual r¢(x,t) defined by (3.4.2), diverges.

2. The integral fOtHre(-, t')|| 2 dt’, and hence the bound (3.4.4) on the L?-norm of the corrector

function n(x,t) diverges as t 1 t*.

Theorem 3.3.2 is proved by analyzing the rates of blow-up of singular terms in 7¢(z, t) and then
deducing the resulting rate of blow-up of the bound (3.4.4). In Section 3.4.2 explain the strategy

by studying a representative term. We then sketch the general argument in Appendix B.3.

3.4.2 Estimation of representative term demonstrating blow-up as ¢t 1 t*
Let t € [t* — 6,t*] where § > 0 is as in Proposition 3.3.1 so that:

WP (2), 4+ (1), p+ (1), af (y,1), 0} (y,1), X (259 (1)) (2, 1)

= WP17€[S+(1€)’ Q+(t)7p+(t)7 ag—(ya t)v ai(y, t)) X+(Z;p(t))](l‘, t)

(3.4.11)

Here, q4(t),p4(t) are as in (3.3.16), Sy (t),a%(y,t),al (y,t) are as in Definition 3.3.1, and E. (p),
X+(z;p) are as in (3.3.3). The representative term which appears in the residual r°(z,t) (3.4.2)

which we will consider is the following;:

RE (.’L', t) = 671/467:(251 (y,t)/G

/2 7T

(i) (=i0,W (a4 ()0, DR+ (04 (D) PE @4 ()t 30+ (D) ]| e . (3:412)

where ¢ (y, 1) :== Sy (t) + €'/*py (t)y
Here, Pi(p) denotes the projection operator onto the orthogonal complement of the subspace of

L2, spanned by x(z;p), and:

per

R (p) == (H(p) — B+(p)™" (3.4.13)
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denotes the resolvent operator where H(p) is as in (3.2.3). Because of the band crossing at p*,

the operator R+(p)Pj(p) is singular as p — p* on the subspace of L12767" spanned by x_(z;p).
The operator R (p) P (p) however, where P (p) is defined as the projection onto the orthogonal
complement of x4 (z;p) and x_(z;p) in L2, is regular for all p € U by (A2) of Property 2 (see
Corollary 3.3.1).

We isolate the singular part of (3.4.12) as follows. Expressing d,x+(2;p+(t)) in terms of its
projections onto both x4 (z;p+(t)) and x—(z;p+(¢)), and their orthogonal complement, the range

of P{(p4(t)), we have

R (p+(8)) P (94 (1) Fpx+ (2504 (£)) = Res (p(1)) P (p+(£)) px+ (23 94 (1))

+ (B-(p+(1)) = B (p+(1))) ™" (X= (1 P+ (8))] Fpxs (504 (1)) x— (23 p(2)) -

(3.4.14)

Since p4(t) — p* as t 1 ti, E4(p*) = E_(p*), the singular behavior is isolated in the latter term of

(3.4.14). We decompose R(x,t) into its corresponding regular and singular parts:
R (1’, t) = R;egular (‘Tv t) + R;ingular (l’, t) (3415)

where:

R

f‘egular(

x,t) = ¢ /ei?i Ww)/e {
€*(—id) (—z‘an(qu(t))aS’r(y, t)R+(p+(t))Pi(p+(t))3pX+(Z;p+(t)>>} ‘y—w o
=1z #=¢

R

€
singular

(2,1) = € VA0 [2(—iay) (= i0,W (g1 (£))al (5, )

X (E-(p4 (1) = Bo (0 (1) (=104 (0) O (510 O) x= 50+ 0) ]| o -

=Tz T«
(3.4.16)
It follows from the techniques detailed in [73] that:
f“egular(m? t) = OL?C (62) (3417)
uniformly as ¢ T ¢t*. On the other hand, R;ingul o (@, 1) is explicitly singular, since it depends on

(E_(p+(t)) — E4(ps(t)))~" which is unbounded as t 1 t*. The time derivative of RS gutar(T:1)
yields two terms:

; (z,t) = RY  (2,t)+R%  (x,1), (3.4.18)

singular singular singular
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where:
RY g (.1) 1= P00/ [ (B (p (1)) — B (pa (1)

x(=ith) (= i0,W (g (0)a (v, ) (- (2504 (0| Dy (25 O x- i ()] | oo,

V=" =
B2 gutar (@) i= AR 00/ | 2, (B (p (8) = By (1. (1))) )
%(=i) (=i0,W (g (£)a (9,8) (- (P4 ()] O (30 () X- (3P ()] | oo -
Az €

(3.4.19)

We now concentrate on R x,t) which will turn out to be the dominant term as ¢ 1 t*. We

szngular(

first evaluate the time-derivative:
01 ((B-(r+ (1) = B4 (o1 (6) ) =
0W (a4 (£)(GpE—(p1(£) — OBy (p4+ (1)) (E—(p+ (1)) — B4 (p4 (1))

We then follow [61; 73] in estimating R%¢

(3.4.20)

in L2 by taking the L> norm of all z-dependence

singular

and the L?-norm of all y dependence:

IR gutar (5 Ol L2 < €10,W (q1(0)* [0 E— (p1 (1)) — OB (p4 ()| | E-(p1(1)) — Ex(py- ()]
X [lad Gy Ol 2 | O G520 X (594 (0))) 20,17 X+ G P+ () [ Lo 0,1
(3.4.21)

Taylor-expanding in t — t*, using the non-degeneracy conditions (3.3.4) and (3.3.12), we have that
as t T t*:

(B4 (p4 (1) = B-(p4-(1)) ] <

1
W (q*) (Bp B+ (p*) — OpE—(p¥))

(3.4.22)

2
1 1
(t—t*\z) “)(rt—t*\)'

Substituting (3.4.22) into (3.4.21) and Taylor-expanding all other terms gives:

<|t_€2t*|2)+0<|ti2t*|> (3.4.23)

2
l,e o €
IR gt (Dl 2 = O (n—u) | (3.4.24)

2)
”Rsi;gular ('7 t) HL2 <

(= G2 B () gy 1 2l ) [ oeporn
OpE_(*) — OpE+ (1)

Similar analysis shows that:
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Recall the relationship between the residual r“(z,t) and the bound on the solution error n(z,t) :=
Ye(w,t) — Popp(w,t) (3.4.4). Putting everything ((3.4.15), (3.4.17), (3.4.23), and (3.4.24)) together,
then integrating once in time and dividing by €, we see that the term contributed by R(z,t) to

the solution error n(x,t) may be bounded by:

/ IR £ 2 A <

X= (527 Opx4 (5 0)) g7 G (o ) e X (P 2oe o,y
pE-(p*) = B+ (p*)

<‘t ft*\) (3.4.25)

It follows that the right hand side of (3.4.25), which is the bound on the corrector to the wave-

+ O (e,eln|t — 7).

packet ansatz, is of the same size as the O(el/ 2) term in the wave-packet approximate solution for

|t — t,] ~ €/?

3.5 Proof of Theorem 3.3.3 on coupled band dynamics when ¢ ~ t*

We now turn to the proof of Theorem 3.3.3, on the dynamics through the crossing time t*. Theorem
3.3.2 and Corollary 3.3.2 give a description of the exact solution ¢¢(z,t) of (3.1.1) with initial data
given by (3.3.27) which is valid with errors of or» (€'/2) up to t = t* — €& for any & € (0,1/2):

For all t € [0,t* — €°),

(3.5.1)
W (33, t) = WPLE[G-F(t)? q+(t)7 ]J+(t), ug (y7 t)? ai(y, t)? :{4_(2’; p+(t))] (33, t) + orz2 (61/2)'

We seek to extend (3.5.1) to a description of 1)*(z,t) up to errors of or2 (¢'/2) over the entire interval
t € [0,T] where T is chosen such that Propositions 3.3.1 and 3.3.2 hold with 7= T and 7" = T

We first claim that the proof of Theorem 3.3.3 may be reduced to (a) the construction of a function

€

app.inner (T, t) satisfying certain properties and (b) an application of Lemma 3.4.1:

Proposition 3.5.1. Let &, & € (0,1/2) be such that & < € so that (t* —e&, t*+¢&) C (t*—ef , t* 4.

Assume (3.5.1) for an incoming wave-packet. Consider an approzimate solution Vg, e (%)

which satisfies the following three properties:

P1 x,t) is equal to the single-band ansatz in the ‘ncoming’ overlap region t € (t* —
app inner
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€' t* — &) up to errors of o(e'/?) in L2(R). That is,
forallt e (t* — & — €%),

Hwépp,inner(‘ﬂ t) - WPLG[@-F(t)v q+(t)7 p+(t)7 Clg (yv t)? a}k(yv t)? x-l-(z; p+(t))] ('7 t) HL2 = 0(61/2)7

(3.5.2)
(P2) app, inner (T, 1) s an approzimate solution to (3.1.1) (iedy — HE)Y* = 0:
ieat¢2pp,irmer - HE¢pr,z’nner = rfnner (353)
with residual satisfying the bound:

1 t*+e€
€ / Hrfnner('a t/)HL2 dt' = 0(61/2)7 (354)

t*—et’
(P3) ¥epp inner(T,t) matches the ‘two-band’ ansatz of (3.3.45) in the ‘outgoing’ overlap region

te (t* + et + ') up to errors of o(e'/?) in L*(R). That is,
Jor allt € (t* 4 €,t* + ¢),

qubappznner ’ )—WP1’€[6+(t),q+(t),p+(t),a9r(y,t),afr(y,t),3€+(z;p+(t))](-,t) (355)
WIS (1), 0 (1), b (1) €% (1), % (- ()], 1) = o(e?)

L2

Then, under conditions (P1), (P2), and (P3), Theorem 3.5.3 holds.

Proof. We apply Lemma 3.4.1 with tg = t* — €', t; = t* + ¢ s Yapp(T,t) = (x,t), and

app inner

(2, t) = T8, inner (T, ). 1t then follows from (P1) and (P2) that:

For all t € (t* — &', t* + ¢¥),
||77Z} ( ) app mner( ) )HL2 = 0(61/2)'

Combining (3.5.6) with (P3), we have that:

(3.5.6)

For all t € (t* + €6, t* + %),

W P1€[6+( ) q+(t)7p+(t)vag—(yvt)va},—(y’t)?er(Z; er(t))]('?t) (3'5'7)
+61/2WP0’6[67(t)7qf(t),pf(t%a(l(y,t)ﬁf(sz(t))](w,t) L, = o(e'?).

We claim that the main statement (3.3.45) of Theorem 3.3.3 then follows from the isolated band

theory. For any T fixed independent of ¢ such that t* < Ty < T, the Isolated Band Property
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1 holds for the bands E,(p) and E,4+1(p) and trajectories p,(t) and p,11(t) defined by (3.3.37),
(3.3.18) with ty = T, 0,t1 = T. By linearity, the two-band wavepacket ansatz agrees (modulo errors

of oLg(el/g)) with the exact solution v

Sutgoing(T:t) of the full equation (3.1.1) over the interval

t € [Ty, T) with initial data given at Ty by:

gutgoing (:L', TO) =

WPH(&. (Ty), 94 (To), p+(To), 0% (v, To), 0 (v, To), X (2394 (T0))] (=, To) (3.5.8)
+ 61/2WP076[6—(TO)7 q—(j:b)? p—(TO)? Cl(i (y7 TO)? x—(z; p— (TO))] ($, TO)

By performing the same analysis as in the proof of Theorem 3.3.2 backwards in time towards t*,

we have that:
For all t € (t* + ¢, T,

Hz/}outgomg ) - WP176[6+(t)7q+(t)7p+(t)7a3—<y7t)?a}i-(yat)7x+(z;p+(t))]<'7t> (359)
+PWPOS (1), - (1), p- (1), 02 (3, £), X (5 p- ()@, 1) | , = ole?).

But now combining the triangle inequality with (3.5.7), we have that:

For all t € (t* + €5, t* + 65/),

(3.5.10)
HW(', woutgozng HL2 - 0(61/2)‘

Since 1(x,t) and ¥g,;05ine (T, t) are both exact solutions of (3.1.1), applying Lemma 3.4.1 one more

time with g, (7,t) = (z,t) gives that:

€
outgoing

For all t € (t* + ¢, T, ( )
3.5.11
Hd} outgozng HL2 - 0(61/2)'

The main statement of Theorem 3.3.3 (3.3.45) then follows from combining (3.5.11) and (3.5.9). O

This brings us to the core construction of the paper.

3.5.1 Derivation of ¢ satisfying hypotheses of Proposition 3.5.1

app,inner

We make the following ansatz for ¢¢ which incorporates both + and — bands, and a

app,inner ($, t),

new ‘fast’ timescale:
t—t*
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which was motivated by the preceding single-band analysis:

— 1/2
¢t61pp,inner 1/4 Z HSo (B po (8 yc}/efcerznner (yo,27t7 5) _z=go(t) ,_ = ¥ " (3513)

Yo= /2 FT e

The new time scale has been introduced in the envelope functions f ;... We take (¢,(t),ps(t)),
o == as in (3.3.16) and (3.3.35), S,(t),0 = =+, as in Definitions 3.3.1 and 3.3.2, and assume that

€ 1/2.

o.inner (Yo 2, 1, 8) may be expanded in powers of €

;,inner(yOW Zs t’ 5) = gznner(y07 2, t S) + EI/QfC} mner(yo" Zs t’ 5) + . (3514)

Then, ¥, inner» given by (3.5.13), satisfies the non-homogeneous Schroedinger equation (3.5.3)

with residual:

1
S en(2,1) 1/42 i{ 8o ( +51/2pa(t)yg}/e{ {ya/ (Tgl) W ([,(t)—l—Tel/ng) dT:|
0

e [1< 9,00 + GOEW o (O 0] + 7% | (o) = 0. ~ 0, 0, (1) (~i0,.) ~ i3

(3.5.15)
(10 0) = B o O)] b { e 200,84 @2 e 2.009) .

T—qo (t) z t—t*
Yo= =2 5=
4 /2 FTeT a2

= T;nner,o(xat) + € 1/2 Tf’nner 1($,t) + (1/2)2 T:nner?(x7t) + ...+ (1/2)m Tfnner3('r,t) + ...
Here, H(p) = —3(p — i0.)? + V (2); see (3.2.3).

so that ¢

app,inner(

In the coming sections we construct the functions fj x,t) satisfies the

a, inner

properties (P1), (P2) and (P3) of Proposition 3.5.1.

3.5.1.1 Terms in r{,, . with L,i norm of order €°

The terms with L2 norm proportional to €® = 1 in (3.5.15) are of the form:

Foumero(@, ) = ¢ V0SSO E0 Ol B () — o (po (1)) | £inner (Uor 21t 9)

o=+ Yo=—"Ta/;2 #*T /2 .
(3.5.16)

We may set these two terms individually to zero by defining:
gznner(yo'az’tvs) = ag,inner(ydvt’ S) XU(Z;pU(t))’ o== . (3517)

The functions ag,mner(yo,t, s), o = =+ are left arbitrary for now and will be determined a later

stage.
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3.5.1.2 Terms in 75, ., with L2 norm of order €l/?

1/2

The terms with L2 norm proportional to ¢'/2 in (3.5.15) are of the form ¢'/2 times the following

expression which is O , (1):

TZ‘Gnner 1(‘T7 t) - 671/4 Z €i{sa(t)+61/2p0(t)ya}/6 {
o=%

[ (po(t) = 0. = 0 Eo (po (1)) (=i0),) — a] 19 inner (2, ,9) (3.5.18)
+|HOAD) = Eeor)] im0} *
Yo= 5372 ’Z:%SZ:/E

Proposition 3.5.2. Substituting the expression (3.5.17) for f2 (Yo, 2, L, 8) into (3.5.18) yields

inner

the following equivalent expression for (3.5.18):

/4 Z ei{so(t)"rel/on(t)yU}/e{ [H(pa(t)) — Eo(pa(t))] <f;,mner(ya, 2,t,8)
o=%

(i) e (s s)apgx(f(z;pa(t))) 0300 e (s S)XU(Z;pa(t))}

it
(3.5.19)

Proof. Differentiating the eigenvalue problem (3.2.3) satisfied by (E,,x,) with respect to p, we

obtain the following pair of identities for o = +:

(pa(t) — 10, — apUEO'(pO'(t))) Xa(z;pa(t))

= — (H(ps(t)) — Ex(ps(t))) OpXo(2:ps(t)).

(3.5.20)

Relation (3.5.19) now follows from substituting (3.5.17) into (3.5.18) and using (3.5.20). O

We may therefore set the expression in (3.5.18) equal to zero by setting each term in the sum

individually to zero. To do this, we first take:

dsa (Yo, t,5) =0, o=+ . (3.5.21)

oinner

We then require, for o € +, that f!

ganner

(Yo, 2, t, s) satisfy:

H(po (1)) — Ea<pg<t>>] ( L er (71, 8) — (—i0y,)a g (i . s)apaxr;(z;pa(t))) 0
(3.5.22)
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Therefore, for o = +,

;,inner(yau =2 tv 5) = acIT,z'nner (yd’ t’ S)XO'(Z; Po (t)) + (_iayo)ag,inner (yo'a t)apxo'(z; Po (t))v (3523)

where the functions atlmnner(yg, t,s) are thus far arbitrary and to be determined.

3.5.1.3 Terms in r¢

: 2 1
fmer With L7 norm of order ¢

The terms in 7¢,,,,, with L2 norm proportional to €! in (3.5.15) are of the form: € times the following

expression which is O , (1):

Tfnner 2(‘7:7 t) - 671/4 Z 67:{5‘7 (t)+61/2p0 (t)ycr}/ﬁ {
o=%

1 1
+ |:(_i8yo)2 + §8§W(q0(t))y3 - Zat:| fg,inner(yUa zZ,t, S)

2
(3.5.24)
+ |: ( U(t) B ’Laz B aPEU(pU<t))> (_iaya) - Z68:| fol,inner(ygv 2,1, 3)
[ H000) = B 0a®)] it}
Yo= 5;172 A 5= I
Recall (Proposition 3.5.1, (P2)) that we must choose the fg,inner in (3.5.15) such that:
1 e
L Wl = o), (3.5.29
€ t*—Esl
It follows that we need to choose the undetermined functions so that 7§, o (z,t) in (3.5.24) satisfies:
et
[ e Bl = o). (3.5.20
t*—eé

In contrast to considerations at previous orders in €'/2, we will not be able to satisfy (3.5.26) by
choosing each summand of (3.5.24) to satisfy the smallness condition (3.5.26). To see this and to see
how to proceed, we first simplify the expression (3.5.24) using the expressions for fgmner(yg, z,t,8)

(3.5.17) and f} (Yo, 2, t, 5) (3.5.23) derived above.

sinner



CHAPTER 3. DYNAMICS AT A ONE-DIMENSIONAL BAND CROSSING 118

Proposition 3.5.3. The expression (3.5.24) may be written in the following form:

Tgnner,2(x7 t)
= v 3 s e} e Ly 0) = B )]  Zierlir 218.9
o=+
. .
_(_Zaya)aflf,inner (yo" t? S)apa XU(Z; Po (t)) - 5(_Zaya)2ag,i’rmer (yo'a t)aga XU(Z; Po (t)))

(3.5.27)
- iasai’,inner (yﬂv t, S)XU(Z; pd(t)) - [ 0y — ‘%ﬂf"(t) ] ag,inner (yﬂﬂ t)XU(z; Po (t))

+ iaan(qG(t))ag,inner(yU7 t,8) (X0 ;06 (t)] Opy Xo (505 (1)) X~ (25 Do (1))

i, W (4 (£))a e (s s>Pi<pa<t>>apgxg<z;po<t>>}

t—t*
/2

_x—qo(t) —T
Yo= /2 R="2 5=

Here, we recall that H(p) = —(p—i0.)?+V (z) and H#;(t) denotes the time-dependent harmonic
oscillator Hamiltonian defined in (3.2.14), where we replace p(t),q(t), En, Xn, Yy, respectively, by
Po(t), 65 (t), By, Xo» Yo Finally, P{(py(t)) denotes the orthogonal projection operator given by:

PL(po(0)f(2) = F(2) = Y (Xor (50 (0)] () Xor (23 Do (1)) (3.5.28)
o'=+
Proof. We begin with the identity, obtained by differentiating the eigenvalue problem (3.2.3), sat-
isfied by the eigenpair (FE,, X, ), twice with respect to p:

5 (1= O Eolpol6)) xa i (6) + (o (€) = 0. = 0y, Eolpo(£))) X (2570 1)
_ _% (H(po(t) = Bo(po(1)) 0 Xo (206 (1)), o=+

(3.5.29)

To obtain the expression (3.5.27), we first substitute expression (3.5.17) for f°
(3.5.23) for f!

inner a0d expression

into (3.5.24). We then simplify using the identity (3.5.29) and the expansion of

inner

Op, Xo (205 (t)) in terms of its orthogonal components:

OpXo (200 (1)) =

D (Xor (320 (0)] FpXo (190 (£)) Xor (23 Po (1)) + P (po(£)) X0 (25 o (1))
o/'=%

(3.5.30)

O]

By Proposition 3.5.3 the smallness condition (3.5.26) may be studied with the expression (3.5.27)
in place of (3.5.24). We proceed in two steps.



CHAPTER 3. DYNAMICS AT A ONE-DIMENSIONAL BAND CROSSING 119

(A) We first use certain degrees of freedom to eliminate ‘in-band’ contributions to (3.5.27).

(B) We will then be left with contributions which relate to the coupling of bands revealed in

analysis of the breakdown of the single-band approximation.

Step A: We first choose a®

o,inner

(Yo, t) so that:

i0rad (Yo, t) = S5 (t)ad (Yo,t), o=%. (3.5.31)

ginner ginner

We also require that z — fimnw(yg, z,t,s) be a 1— periodic solution of:

H(pa (t)) — Eq (pa (t)):| <fg,inner (ym Z,1, 5)

. I
~(=i9y, )8y inner (o £, )9, X (23 o (1)) = 2<—zaya>2a2,mer<ymt)azaw;pa(t))) (8:5.32)

= ~i0g, W (45 (1)) ag inner (Yo t, 8) P (Po (1)) Opy X (2 P (1)) -

Equation (3.5.32) is solvable, with a uniform bound in time on the inverse, for all ¢ near t* by

Corollary 3.3.1. Hence we have for ¢ = +:

g,inner (y07 Z, ta S) = ag',inner (y07 t? S)XJ(Z; Po (t))

+ (_iaya)a;',inner (y07 S, t)apXU (z;pU (t)) + %(_iaya)Qag,inner (yUa t)azXJ (Z; Po (t)) (3533)
— 10,W (45 (1)) R (0 (£)) P (9o () DX (23 o (1))

Here, aczr,imer(yo, t,s) is presently arbitrary and can be determined at higher order in e'/2,

The initial data for equations (3.5.31) is fixed by the requirement that 1g,, ;... satisfy (P1) of
Proposition 3.5.1. By inspection of the incoming solution, we see that this is equivalent to requiring
that:

fort € (t* — &', t* — ¢¥) : a) (y,t) = a%.(y,t) and a_ jpner(y,t) = 0. (3.5.34)

a+,inner

The only choice of initial data agrvmner(y, t*), a’ (y,t*) for (3.5.31) consistent with (3.5.34) are:

—,inner

a(-)ﬁ-,inner(yv t*) = %%I*l a(—)i- (y’ t) =a

y)’ a—,irmer(ya t*) =0.
Indeed, for all t € (t* — €&, t* + €&):

agr,inner(y-i-v t) = 04 (y+7 t)? and a(l,inner(y—v t) =0. (3535)
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The choices (3.5.31), (3.5.33), and (3.5.35) simplify (3.5.27) to:

Fmarala) = & SO O L 00 ) 574 (0)
04, WG (00 e (01:8) O G 0] () - im0} (35.36)
VA0 0N L il ety -G 0)]
Yo ="t p= 2 o=
We find that at this order in €!/2 that there is no loss in taking
@Y jner Wi t8) = A e (i, 8), Al e (Wt 8) = ab e (yss 9),

independent of t. From (3.5.36) it is natural to set

8sa}|—,inne7"(y+7 i 5) =0 (3 5) 37)

a}l—,inner (y+> 0) = a}&-,inne’r,o (y-l-)

innera(
inner,2

and to choose a® ;,,,...(y+, s) to eliminate the projection of r x,t) onto the vector x_(z; p+(t)).
The function a}hmner,o(er) is at this point arbitrary, it will be fixed below by enforcing (P1) of

Proposition 3.5.1. Taking a},’_7inner(y+, s) to satisfy (3.5.37) reduces (3.5.36) to the following:

r z,t) = e VA S+ O+ 2ps (s } /e [

gnner,Q(
10gW (q+())as (Y4, 1) (X= (504 (O Opx+ (504 (1)) X— (25 4 (1))] (3.5.38)

e MAHS- O Po-Ou-Ye g al (g, s)x-(zip- ()]

_x—qo(t) ,_x __t—t*
Yo="T/2 FT 5T /2

We next determine the evolution of a® (y—,s) to satisfy the smallness condition (3.5.26).

,inner

We find it useful at this point to re-express functions of ¢ and y4 in terms of the variables y_ and

s using the relations:

() — qu(t
=y q()61/2q+()’ t =t + 2. (3.5.39)



CHAPTER 3. DYNAMICS AT A ONE-DIMENSIONAL BAND CROSSING 121

This yields:

€
Tinner,2(

z,t* + €'/25)

6_1/4€i{5+ (t*+e'/28)+€'/2py (t*+€'/25)y_+py (t*+€'/25) (g (t*+el/23)fq+(t*+51/23))}/e |:

—q+ (" + 61/28),7&* n 61/25>

* 1/2
ian(Q+(t*+61/28))a+ (y_+ q*(t + € 5)

/2
(3.5.40)
X <X—(-;p+(t* + 61/23))‘ Opx+ (5 (" + 61/28))> X- (2504 (1" + 61/28)):|
+ /A S— (el o)1l 2p_ (17 e/ 2s)y_ } /e [
_Za a mner(y S)X_(Z;p_ (t* + 61/25))} ' q_ (t*+el/2s)
-= 1/2 EE
In terms of s, the condition (3.5.26) reads:
&'—1/2
| o Winneralat €29, = o), (35.41)
.
We proceed with the construction of al—,inner(y s) by seeking the expression in rf,,..o(z,t* +

et/ 25) which, to leading order, will be balanced (indeed cancelled out by) the term proportional to
05l imer(y—8), for —e' 12 < s < €712 (0 < ¢ < 1/2).
Thus we expand the expression for rmnem(m,t* + 61/28) in powers of €'/2s, making use of

the equations governing (g+(t),p+(t)) and S (t) (3.3.16), (3.3.35), Definitions 3.3.1 and 3.3.2 to

compute their derivatives. We first Taylor-expand the expression within square brackets in (3.5.40):

€ * 1/2
r'mner,Q(xﬂt +e / S)

L/ S+ (¢ e 2o) el 2po (e 2 )y +py (7 +e! 25) (g (7 e 25) —q i (t"+€/25)) } e [

i0W(q") ay (- + [0 B-(p") = Op ()]s, 1) (X=(507)| Fpx+(507)) X—(Z;P*)}

_ LS (t*+el/2 1/2 * 1/2 .
+e 1/4,i{ S—(t"+€/25)+e! 2p_(t*+e y-}/e [ lasal_’mner(y—,S)X—(Z;p*)] ‘ e

- 1/2 T e

+Or2 (e'/25,€'/%5%),

(3.5.42)
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Rearranging terms, we obtain:

€ * 1/2
rinneT,Z(xﬂt +e / S)

— 671/461{57 (t*+€l/28)4€'/2p_ (t*+€/25)y_ }/EZX_ (Z; p*) >

{ S+t +e/28) =S (17 el 25) e /2 (pi ("€ /28) —p— (t"+€/28) Jy—+p4 (¢° '/ 28) (g (¢ +€' /%) g (7 +¢'/25)) } e

X [0W(q") ay (y— + [OpE-(p") = Gp By (p7)]s, t7) (X~ (507)| px+-(5507))]

_8Sa£,inner (y— ) 3) }

_T—q_ (t*+el/2s) _
vETar .

+ OL%(el/zs,el/zsz).
(3.5.43)

We next Taylor-expand the exponential:
Syt +€2s) — S_(t* + '/2s)
= ('25)p" (0, B4 (p") — OpE_(p"))
+ %(61/28)2 (0,W (¢")p* (B E—(p*) — O3 E1(p")) + 0 W (¢*) (B, E_(p*) — O, B4 (p%)))
+ 0325
2 (py (t* + €/2s) —p_ (1" + €'25))y 5540
— 0(¥2s2y)
Pt + € 28) (g (" + €'/%5) — qi (" + €'/%9))
= ('%5)(p" (0, E-(p*) — DB (p")))
+ %(61/23)2 (—20,W (¢")(Op E—(p*) — Op 1 (p")) + 0,W (¢*)p* (02 B (p*) — O, E—(p")))
+ O(%5%).

Substituting these expressions and using the fact that a4 (y,t) € S(R) gives:

r :E,t*+€1/28) _ 6_1/4€i{5_(t*+€1/25)+€1/2p_(t*+61/25)y_}/€ixf(z;p*)

€
inner,Q(

x {2 GOy )

X [an(q*) (X (507 BpX . (50%)) a (y— + (B, B (p*) — BB (p")]s, %) (3.5.45)

_asal—,inner (y,, 5)} + OL% (61/287 61/252’ 61/253) ® :
49— z t—t*

q _x o
/2 T ST /2

Yy—=

€
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It follows that by taking al_mner(y_, s) to satisfy:

Bsal ;. (y_,s) = €30V (@) OB (") =0pE-(p7))s?

—,inner

< W (g s (- + [BpE- (") — 0B ()]s ) (x—(50") By (")) (3.5.46)
alf,mner (y—v 0) = a’lf,inner,()(y—)'
We have that g, ;e (2,1) satisfies (3.5.41), and therefore (P2) of Proposition 3.5.1, provided

3/8 < & < 1/2. That is, for 3/8 < ¢ < 1/2, we have

£ -1/2
/65'1/2

o e . 1 1
The initial data choices aj ;;,e.0(y+) and a”

HOL%<€1/28,61/282,61/283)”L% ds — 0(625/,1/27635',1764573/2) _ 0(1) _ (3'5‘47)

(y—) are forced by the requirement that

sinner,0

app.inner (T, t) satisfies the matching condition (P1) of Proposition 3.5.1. Since these terms appear

at order €!/2 in the asymptotic expansion, for (P1) to hold it is sufficient that for s € (—65/_1/2, t*—

€-1/2): a}hmner(%, s) — al (yy,t" + €'/%s) = oLz (1) and al_mner(y_, s) = oz (1).

We claim that we may ensure this by taking:

a}i-,inner,D(y+) = a}s- (y-l-: 0) = al’*<y+)7 (3548)
and

al—,inner,ﬂ(y—) = an<q*) X <X—(';p*)‘ 8PX+(';p*)>

0 id * * * 72 (3549)
[ OB BEN 0y (4 [0,E-(57) = B, () ) A
This claim follows from Taylor-expansion:
for all s € (—e&' 12 ¢ — &71/2) .
(3.5.50)

al (yy t* + €/%s) —al (o, 1) = Orz, (€'/25) = OL§,+(€5 ) =orz (1)

since 3/8 < ¢’ < 1/2 and from integration by parts, which shows that for s € (—65/_1/2, —65_1/2):

—.,inner

Al (ys) = / T W) OB () 0y B (p))(5))?

x 0,W (q")ay (Y- + [0pE—(p*) — B4 (p7)]s, %) (x=(:p")| X+ (5p")) ds’ (3.5.51)

=02 (e'/279).

Since £ < 1/2 by assumption, we are done.
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It remains to show (P3) of Proposition 3.5.1. But by an identical argument,

for s € (712, &71/2),

A ier (U=, 8) = 0gW (q") (x—(:p") x4 (597)) %

1 (s . (2 (3.5.52)
/ 120 W (@) OB (p) =Op E-(r"))(s)* (y— + [0p E—(p*) — p B4 (p™)]s', t*) ds’
+O(£ 71?2,
so that for o = =+:
aclr,inner(yo" t* + 61/28) - aclr(yo’a t*) = OL?,U (65/) - 0L12;o (1) (3553)

for t —t* = €'/2s € (5, ¢¢). Tt follows that 1) x,t) so constructed satisfies all hypotheses of

‘ (
app,inner

Proposition 3.5.1, and so the proof of Theorem 3.3.3 is complete.
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Chapter 4

Bound states of a periodic operator
with multiple well-separated domain

wall modulations

The research described in this chapter is joint with J. Lu and M. I. Weinstein.

4.1 Introduction

In this work we consider the eigenvalue problem:

Dy, = Ea
(4.1.1)
a:R—H
where H is the Hilbert space:
fi ) 5
H=(f= for j € {1,2}, f; € L*(R)
fa (4.1.2)
<f‘g>7-[ = <fj‘gj>L2(R)
§=1,2

and Dy, is a Dirac operator with a potential 7, depending on a parameter L:

Dy, = 10,03 + kL (x)o1. (4.1.3)
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Here o1, 03 denote the usual Pauli matrices:
o1 = , 03:= . (4.1.4)

We assume L > 1 and let ko, denote a fixed positive constant. We define k7, to be the ‘2 domain
wall” potential function (see Figure 4.1):

—k(z+ L) for —co<x<0
kr(z) = (4.1.5)

k(z — L) for 0 <z < oo

where k denotes a ‘domain wall’ potential function which we assume to be smooth, monotone
increasing, odd, and to satisfy:

—Koo < -1

k(z) = (4.1.6)

Koo ifx>1
where ko > 0 is a positive constant. Note that the condition that L > 1 ensures that s is
smooth for all x € R. Our study of the problem (4.1.1) is motivated by recent works of Fefferman,
Lee-Thorp and Weinstein [26; 25; 27] which showed that Dirac operators of the form (4.1.3) control
the bifurcation of ‘edge states’ of periodic Schrédinger operators modulated by domain walls. It
follows from their analysis that the Dirac operator (4.1.3) with the ‘double’ domain wall potential
(4.1.5) controls the bifurcation of ‘edge states’ of periodic Schrodinger operators perturbed twice
by domain wall modulations. Our analysis may be readily extended to the case of Schrédinger

operators modulated n times by domain walls (see Remark 4.3).

4.1.1 Notation

In what follows, we will make use of the following short-hand notations. For the norm induced by

the H-inner product, we will write:

£l = (FLF)3)7 (4.1.7)

For complex vectors v,w in C?, we will write their inner product and the norm induced by this

inner product as:

_ 1/2
(Wl wee == Y Twy,  Jolez = (0] o) (4.1.8)
j=1,2
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Figure 4.1: kp(z) with k(z) = tanh(z), L = 10. Note that tanh(z) doesn’t strictly satisfy (4.1.6)

but gives a good approximation to a function satisfying those conditions.

With this notation in hand, a short manipulation of the definition of the H-inner product shows

that:
(Fl gy = / (@) g@) e dz, |2 = / (@) 2 da (4.1.9)
R R
4.2 Statement of theorem

In order to state our theorem we first require some background on the case of a single domain wall

potential:

4.2.1 The single domain wall operator
Let D,; denote the Dirac operator with potential x(z) which is independent of L:

D, == i0,03 + Kk(x)o1. (4.2.1)
The following properties are immediate:

e The operator D, has continuous spectrum (—o00, —foo| U [Kog, 00)
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e The operator D, has a zero mode: an eigenfunction a, with eigenvalue 0, given explicitly by:

1 @
ay(z) =1 e~ Jorw)dy, (4.2.2)
)

where:

o ! (4.2.3)

VRl R
ensures that ||ay|lyy = 1. It is clear from (4.1.6) that there exist constants C' > 0 depending

only on x such that:

(@) |2 < Ce ol 18,0 (@) |2 < Cereell, (4.2.4)
We will require the following ‘spectral gap’ assumption on the operator D,. This assumption may

be significantly weakened; see Remark 4.2.1.

Assumption 4.2.1. If (a.| f), = 0, then:

IDwfll = ool f 2 (4.2.5)

Remark 4.2.1. Our methods extend to the case where the operator Dy has additional spectrum in
the interval (—Keo, Koo ). Any such spectrum must be bounded a fized distance § > 0 away from zero
since the 0-eigenvalue is simple. The proof of our assertions is then identical after replacing Koo

everywhere it appears with .
As an immediate consequence of Assumption 4.2.1 we have the following Lemma:

Lemma 4.2.1. Let Assumption 4.2.1 hold. Then, for |E| < %s2:

1D = Bl 2 2 F e (4.2.6)

Furthermore, (D, — E) is invertible on the space P+H where P+ denotes the orthogonal projection
operator onto {a, }*, and:

_ 2
[(De = B) Pl < —. (4.2.7)

o0
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4.2.2 Zero modes of ‘shifted’ one domain wall operators

Consider the ‘shifted’ one domain wall operators:

D} :=i0,03 + k(x — L)oy, D,

. = 10,03 — k(x + L)o;. (4.2.8)
Then we have the following on zero modes of the operators Di:

Lemma 4.2.2. Let:
af (z) = ax(zr— L), af(r):=acz+L), (4.2.9)

then o and oy are zero modes of D and D;, respectively.

Proof.

(0310 + K(x)o1) au(z) =0

= (0310 + k(x — L)o1) a(z — L) = 0. (changing variables, 0, = 05_1,)

0310, + k(x)o1) ax(z) =0

(
= (0310; + k(r+ L)o1) ax(z + L) =0 (changing variables, 0y = O0y41.)
= (—03i0; — k(r+ L)o1) au(x + L) =0 (multiply by —1)
— (0310, — k(x + L)oy) ay(z + L) = 0. (complex conjugate, k real)

We are now in a position to state our theorem:

Theorem 4.2.1. Let Assumption 4.2.1 hold. For sufficiently large L, the operator D,., has a pair

of mear-zero eigenvalues E1, which satisfy:
By = £272e 2 /s ") dy y (e 4reoly, (4.2.10)

Their associated (normalized) eigenfunctions, which we denote ot (x), may be written as approzi-

mate linear combinations of o} (z), a (x):

(4.2.11)
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where the functions o (x) are the shifted zero-mode functions defined by (4.2.9) and the real con-

stant 7y is as in (4.2.3).

Our result can be seen as complementary to those obtained by Barry Simon and others for
Schrodinger operators with potentials having two or more well-separated wells related by a sym-

metry (see [67], for example).

4.3 Generalization to n domain walls

Our analysis may be readily extended to the case of n domain walls, each separated by a distance
2L. In this case we expect that there will be n near-zero eigenvalues with exponentially small:
O(e=%r =) gaps between them. When n is odd, one of the n non-zero eigenvalues will be an exact
zero mode since in this case £, is an ‘odd’ function of z at infinity: as |z| — oo, kp(—z) = —k(x).

If as  — oo, K (x) > 0, the normalized zero-mode is given by:

1 p
(@) =qp [ | e lorwdy (4.3.1)
7
where:
- ! (4.3.2)
VL= ﬂHe‘fo%L(y)dyHLQ 3.
If, as * — oo, kr(x) < 0, then the normalized zero-mode is given by:
1\ e o
() =1 eJo ) dy (4.3.3)

?
4.4 Proof of Theorem 4.2.1 (strategy)

We now describe the strategy of the proof of Theorem 4.2.1. We seek a solution of the eigenvalue

problem (4.1.1) as a linear combination of the functions o, a; plus a corrector function n:
a(z) = b af () + b a, (z) + n(z). (4.4.1)

where bt,b~ are complex numbers to be determined. Let P¥1 denote the projection operator

onto {af,a;}*. We assume without loss of generality that P11y = 5. Substituting (4.4.1) into
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.1.1) and projecting onto each ot the orthogonal subspaces (& §, 10, j, 105, o gives a couple
4.1.1) and projecti h of the orth 1 sub + N Fa7 g led

system of equations for b, b~ and #:

iex, > b {(al]| (D, — E)ol), + (k| (De, — E)n), =0 (4.4.2)
JEE

> ¥ PEH(D,, - E)a) + P*H(D,, — E)p=0. (4.4.3)

JEE

We claim the following key Lemma:

Lemma 4.4.1. There exists an Lo > 1 such that for all L > Lq the following holds. If (af| f)y, =
(ax| f)y =0 then:

3K
1Py fllae = == flle- (4.4.4)
Moreover, for |E| < %=
K
(D, = B)flln > = (4.4.5)

2
In particular, (D, — E) is invertible on the space P where PT denotes the orthogonal
projection operator onto {af,a; }*, and:

_ 2
— B)7 1Py < — (4.4.6)

(e 9]

I(D

KL

For the proof of Lemma 4.4.1, which follows from Lemma 4.2.1 and a partition of unity, see
Section C.1.

Assuming Lemma 4.4.1, for |[E| < %= we can solve (4.4.3) in terms of b*,b™:

n=-Y ¥VP¥(D,, — E)'P*H(D,, — E)al

e | (4.4.7)
=Y VP H(D,, — E)'PEID, ol
JjEE
Substituting (4.4.7) back into (4.4.2), we then obtain a closed system for b, b~ alone:
i€x, > b {(al]| (D, - E)ol),,
JeE (4.4.8)

-3 <ai\ (Dy, — E)PEL(D,, — E)_lPi’iDﬁLa1>H b = 0.
jEE
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Using self-adjointness of (D, — E)P%~ (4.4.8) can be written as the following simplified matrix
equation:
iex, > MY =0
jex (4.4.9)
MY (L, B) := (| De,al)y, — B (k] al) = ( PE4 Dyl (Do, — B) ' PHD, 0d)

KL ™%

KL

In particular:

Corollary 4.4.1 (of Lemma 4.4.1). For E such that |E| < "=, E is an eigenvalue of Dy, if and
only if det MY (L, E) = 0.

Theorem 4.2.1 will follow from a detailed analysis of each component of the matrix M%¥ (L, E),

assuming that F < “= so that Lemma 4.4.1 and Corollary 4.4.1 hold. Note that the resolvent

operator (D, — E)~'P*4 is actually analytic in F in this case. The result of our analysis of the

matrix M (L, E) is the following:

Lemma 4.4.2. Assume that E < %= so that Lemma 4.4.1 holds. Then each of the entries of
M(L, E) varies analytically with E, and the matrix M (L, E') may be written:

M(L,E) = + My(L,E) (4.4.10)

_22‘726_2.[‘011’{’(?/) dy _E

where each of the entries of the matriz My(L,E) satisfies |M (L, E)| < Ce=%L for constant
C > 0 independent of L, E.

For the proof of Lemma 4.4.2, see Section C.1. We now prove Theorem 4.2.1 as follows. Note
that it is clear also that |2iy?e™2 Jo #(w) dy| < Ce=2r=L for some constant C' > 0 independent of

L, E. Taking the determinant of (4.4.10) we obtain:
det MU (L, E) = (E — 2722l "0 W) (F 1 2422 Je v@) dv)) 4 g(L B) = 0 (4.4.11)
where the function ¢g(L, F) is analytic in E and satisfies the bound:
9(L, E)| < C (Be #rel 4 g0l (4.4.12)

for some constant C' > 0 independent of L, E. Let C* > 0 denote a constant independent of

L, E such that C*e 28l < |2i726*2f0L”(y) 49|, and consider the real interval Tr(ry(27%e™? Jo ww) dy)
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centered at £ = 2726_2f0L’"“(y) 4 with radius R(L) := C*e~2¢~L. We then have that for all E €
Irny, Cre 2rol < B 4 2v2e2 Jo ¥ dy g6 tha:

g(L, E)

det MI(L,E) =0 = E —2y2e2Jo ") dy | —0. 4.4.13
v 3
F + 2"}’2672 f() H(y) dy
Now, for sufficiently large L > 0, we have that:
if |E| = R(L), then:
(4.4.14)

g(Lv E) < Cle—4nooL < C*B—QHDOL — |E _ 2726—2f0L/4(y) dy|
Bt 2y lerdy| = -

for some constant C7 > 0 independent of L, E. It is now clear from the intermediate value theorem
that the matrix M (L, F) (4.4.10) has precisely one eigenvalue in the interval I(p, (2726_2f0LH(y) dy),

It is furthermore clear that this eigenvalue (which we denote E (L)) satisfies:
—2 [Fr(y)d koo L
Ey (L) = 22200 w0 dy L O (e=trecly, (4.4.15)

By an identical argument, it is clear that the matrix M (L, E) (4.4.10) has precisely one eigenvalue

in the interval IR(L)(—2726_2f0L“(y) 4Y) which satisfies:
E_(L) = —272e 2 )0 ") dy | O(e=4rcly, (4.4.16)

The associated eigenfunctions of these eigenvalues may be similarly expanded as:

bt 1
—_ + O(e—QnooL)
b~ —1
+ (4.4.17)
bt 1
— 4 O(efZKOOL)’
b~ )

from which the statement of Theorem 4.2.1 is then clear.
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Appendix A

Chapter 2 Appendices

A.1 Useful identities involving F,, x.,,

Let E(p), x(z;p) satisfy the eigenvalue problem:

[H(p) — E(p)] x(2;p) =0

H(p) = 5(p— iV + V(2)

(A.1.1)

and assume that E(p), x(z;p) are smooth functions of p. Taking the gradient with respect to p
gives:

[(p = iV3) = VpEn(p)] Xn(2;p) + [H(p) — En(p)] Vpxu(z;p) =0 (A.1.2)

Taking two derivatives with respect to p of the equation gives:

(668 = 0paOps En(p)] Xn(2:0) + [(p — i02)a — Opo Bn(p)] Dps Xn(2: D)

+ [(p - iaz)ﬁ - angn(p)] aann(ZQP) + [H(p) - En(p)] apaamaXn(z;p) =0

(A.1.3)

where 0,4 is the Kronecker delta. Taking the derivative with respect to p, of (A.1.3) gives:

[_8pa6pﬁ8pwEn(p)]Xn(z;p) + [5045 - apa apﬁEn(p)]aprn(z;p)
+ [6a7 - 8paap~yEn(p)]8ngn(Z;p) + [557 - 8p58p7En(p>]6ann(z;p)
+[(p—1i02)a — 8paEn(p)]8p58prn(z§p) +[(p—1i0:)5 — 8p5En(p)]apaaprn(z5p)

+ [(p = 102)y = Op, En(P)]0po Ops Xn (25 1) + [H (D) — En(p)]Opo Ops Op, Xn(25p) =0

(A.1.4)
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A.2 Derivation of leading-order envelope equation

Collecting terms of order € in the expansion (2.3.9), using equations (2.1.21) for S(t) and (2.1.19) for
q(t),p(t), and setting equal to zero gives the following inhomogeneous self-adjoint elliptic equation

in z for f2(y, z,t):

[H(p(t)) - En(p(t))] f2(ya Zs t) = gg(ya Zs t)

for all v € A, fQ(ya z+ th) = f2(y7 Zat); fQ(y? Z7t) € Ef};_z(Rd)
2 L . (A.2.1)
&= = | 5(=1Vy)" + 5000, W (a(8) yays — i0: | £2(y, 2,1)

2
—[((p(t) = iV2) = VpEa (1)) - (=iVy)] £ (y, 2, 1)
We follow the strategy outlined in Remark 2.3.1. The proof of the following Lemma will be given

at the end of this section:

Lemma A.2.1. £2(y, 2,t), defined in (A.2.1) satisfies:

E(5,2,1) = (5,2, 1) + [H (1)) — Bulp(t)] (5, 2,1 (A2
where:
E(02.0) = 1010 (00) = 5000y BP0} (104 (=10, )6(0.1) = 304,00, W (a0 (1,1
= VW (a(0) - Aol i)

+ Py (p(1)) [~ia"(y, ) VgW (a(t) - Vipxa(2;p(1))]

u?(y, z,t) = (=iVy)a' (y, 1) - Vpxa(zp(t)) + %(—iaya)(—iayﬁ)ao(%t)f?paapﬁxn(zm(t))-

(A.2.3)

Here, A, (p(t)) is the Berry connection (2.1.26) and P;-(p(t)) is the orthogonal projection operator
away from the subspace of LZQM spanned by xn(z;p(t)) (2.3.21).

Imposing the solvability condition of equation (A.2.1), given by (2.3.20) with j = 2 and £2(y, z, t)

given by (A.2.3), gives the following evolution equation for a®(y,t):

. 1 . . 1
100"y, t) = 2 0po Ops En (p(£)) (=10, ) (=i0y, )" (y, ) + 5040095 W (a(t))yaysa’ (y,1)

+ VW (a(t)) - An(p(1))a® (y, 1)

(A.2.4)
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Taking a®(y,t) = a(y,t)e’*® and matching with the initial data implies equations (2.1.27) and
(2.1.22). The general solution of (A.2.1) is given by (2.3.22) with j = 2:

P2y, 2,t) = a®(y, )xanlz:p(1) + (=iVy)a' (y, 1) - Vypxa(z; (1))

5 (104, (10, )a°(0, )0y, Dy (25 (1) (4.2.5)
[H (p(t)) = En(p(®))] ™ Po (p(1)) [V W (a()a’(y, 1) - Vipxa(z:p(t))]

where a?(y,t) is an arbitrary function in Zf‘Q(Rd) to be fixed at higher order in the expansion.

Proof of Lemma A.2.1. Adding and substracting terms, using smoothness of the band F,(p) in a
neighborhood of p(t) (Assumption 2.1.1) we can re-write £2 (A.2.1) as:

(y, z,t) = — B8pa8pBEn(p(t))(—iaya)(—iayﬂ) + %3qa3q,3W(q(t))yay5 — 0| Oy, 2, t)
- B (505 — DOy Bu (1)) (~i0,,)(~i8y,) | £y, 2,0) (A.2.6)

= [((p(t) = iV2) = VypEn(p(1)) - (=iV,)] f1(y, 2, ).
Substituting the forms of fO(y, z,t) (2.3.14) and f'(y, z,t) (2.3.27) gives:

E2(02.0) = | 3000y B0 (10, ) (104,00 (00) + 504,00, W (a(0) a0,

0, t)] Y25 0(0) + 70 (5, D (E) - V(22 (1))

— (2i03) (103,00 (.15 (305 — By, Enpl1))) X (2:1(2) (427
— (=18, ) (—i8y,)a’ (y, £) (1) = i0:)a — Fpo Bn(p(t))) py X (23 0(1))
— (=iVy)a' (y,1) - ((p(t) = iV2) = VpEn(p(t))) xn (25 p(1))-
Using (A.1.2) we can simplify the term involving a':
— (=iVy)a' (y,1) - ((p(t) = iV2) = VpEn(p(t))) xn (2 p(1)) (A.28)

= (=iVy)a' (y,t) - [H(p(t)) — En(p(1)] Vipxn(2: p(2))-
Using (A.1.3), and the symmetry: (—idy, )(—idy,)a’(y,t) = (—idy,)(—idy, )a’(y,t) we can simplify

the terms:

- (_iaya)(_iay@>a0(ya t)% (5a6 - 6paangn(p(t))) Xn(z§p(t))

— (=0, (~i0y,)a (. 1) () — i0:)a — Dy Ea0(1)) By xn (0(0)  (A2.9)

= 4 (03, (=0, )a°(y, 1) [H(p(1)) — En(p(1)] 8y Oy, xa (22 (1),
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Recall that p(t) = =V, W(q(t)) (2.1.19). Substituting this, (A.2.8), and (A.2.9) into (A.2.1) and
adding and subtracting a®(y,t)V,W (q(t)) - An(p(t))xn(z;p(t)) gives:

€2(0200) = [i006°(0.) = 500y B () (10, (~0,,)a” 0. ) = 500,00, W a3

-V W(q()) 'An(p(t))] Xn(2:0(1)) + Py (p(1)) [=ia®(y, 1) VW (a(1)) - Vpxu(z:p(1))]

1

T H(®) — Ea(p(t))] [ i0y.)(—i0y,)a° (4, 6)3p. By o (25 0(1))

2(_
(Va1 - vpxn<z;p<t>>]
(A.2.10)

2
per

where A, (p(t)) is the Berry connection (2.1.26) and P;-(p(t)) is the orthogonal projection in L
away from the subspace spanned by x,(z;p(t)). O

A.3 Derivation of first-order envelope equation

Collecting terms of order €/ in the expansion (2.3.9), using equations (2.1.21) for S(t) and (2.1.19)
for ¢(t),p(t), and setting equal to zero gives the following inhomogeneous self-adjoint elliptic equa-

tion in z for f3(y, z,1):
()~ B0l | 0.0 = €020
for all v € A, f2(y, 2 +v,t) = f2(y,2,1); f(y,2t) € B 3(RY)
&y, z,t) =~ [é0qa3q53qu(q(t))yay5yw] Py, 21) (A.3.1)
~ [5EIP + §0u00,W O~ 0] £
100 - 9 - B (-i9,)] P

We claim the following lemmas, the proofs of which will be given at the end of this section:

Lemma A.3.1. £3(y,2,t), as defined in (A.3.1), satisfies:

Ey.z.t) = Ey, 2. 0) + [H(p(1)) — Eal(p(t)] u’(y, 2,1) (A:3.2)
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where §~3 is given explicitly by (A.3.24) and:

u(y, z,t) := (—=iVy)a*(y,t) - Vpxn(z; p(t) + %(—iﬁya)(—iayg)al(y,t)apaapﬁxn(Z;p(t))
1

t 5 (=10 (=10, ) (=0, )a" (4, 1) Dpa Opy Op., X (23 P(1)).

(A.3.3)

Lemma A.3.2. The solvability condition for (A.3.1), given by (2.3.20) with j = 3 and £3(y, z,t)
given by (A.3.24), is equivalent to the following evolution equation for a'(y,t):
300" (4, 2) = 50Oy Bn(p(0)(~104,) (040" (4. 0) + 304,00, W (a(0) e (5,)
+ VW(a(®) - Au(p(t))a' (y, )
+ %%ﬁpﬁ@pﬁn(p(t))(—iaya)(—ié‘yg)(—if?yy)ao(y, t) + éaqa8q58q7W(q(t))yayﬁywa°(y, t)
+ 03, W (q(1))Dp, An, s (p(£)) (=i, )a° (y, ) + Dgy 0g, W (q(t)) An, s (p(£))y1a° (y, 1)

Here, A, (p(t)) is the Berry connection (2.1.26).

(A.3.4)

Taking a'(y,t) = b(y, t)e’*2®) and matching with the initial data implies equation (2.1.24) for
b(y,t). The solution of (A.3.1) is then given by (2.3.22):

Py z,t) = a® (Y, )xn(2:0(1) + 1P (y, 2.8) + [H(p(t) — En(p(t)] ' P (p(t)&3(y, 2,1)  (A.3.5)

where £3(y, z,t) is given by (A.3.24) and u®(y, z,t) by (A.3.3). a®(y,t) is an arbitrary function in
25*3 (R9) to be fixed at higher order in the expansion. Note that all manipulations so far are valid

as long as R > 3.

Proof of Lemma A.3.1. Adding and subtracting terms using smoothness of the band E,(p) in a
neighborhood of p(t) (Assumption 2.1.1) we can re-write £3(y, z,t) (A.3.1) as:

E(0:1) = — | 50 Dpup, Bn(p(0)) (103, )(~03,) (=101, + 04,040, W (0l vawsi | 10,2, 1)
(1

- _—GapaapﬁapwEn@(t))(—iaya><—z‘ayﬁ><—iayy>] Py, 21

- éapaapﬁEn(p(t))(_iaya)(_iayg> + éﬁqaanW(q(t))yayg - iat] fl(% z,1)

1

=5 (o = 3,00, Buo(0) (-i04)(-10,) | £

() - i92) - VB () - (—z‘vyﬂ P2, 1)

(A.3.6)
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Substituting the forms of fO(y, z,t) (2.3.14), fl(y,2,t) (2.3.27), and f%(y, 2,t) (A.2.5) gives a very
long expression on the right-hand side. We simplify this expression by treating terms which depend
on a’(y,t),a'(y,t),a’(y,t) in turn.

Contributions to (A.3.6) depending on a?(y,t). There is one term which depends on a?(y, t):

— (=iVy)a®(y, 1) - ((p(t) = V=) = VpEa(p(t))) xn(2:p(1)) (A.3.7)
which can be simplified using (A.1.2):

—(=iVy)a*(y,t) - ((p(t) — iV.) = VpEn(p(t))) xn(z; p(t))

= [H(p(t) — Ea(p(t))] [(=iVy)a*(y,1) - Vixu(z:p(1))] -

(A.3.8)

Contributions to (A.3.6) depending on a'(y,t). The terms which depend on a!(y,t) are as follows:

| 500y B ) (10, =0,,)0(0.) + 5020, W s (3.

— idhat(y, t)} Xn(2p(1) + ip(t) - Vpxa (2 p(t))a’ (y,1) (A.3.9)

— (i) (0,00 (5,1) 5 (5as — By Ba(p(0))) x5 9(0)
— (=iy,) (0, )" (9, 1) ((P(t) — i02)0 — pBu(p(t)) ) Dy (2 p(1).

Note that these terms have an identical form to the terms depending on a°(y,t) in expression
(A.2.7) for &2(y,z,t) which were simplified to the form (A.2.10). We may therefore manipulate

these terms in an identical way (specifically, using (2.1.19), (A.1.3)) into the form:
= (000 (4, 2) ~ 3000, B (1)) (10, ) (=03, )" (5,1) — 5000, W (1) s (5.1
=V Wi(q(t)) - An(p(t))] Xn(2:p(t)) + Py (p(1)) [~ia' (y, ) VoW (a(1)) - Vipxa(z;p(1))]  (A.3.10)
+[H(p(t)) — En(p(t))] [2(—2'%)(—@'3@;5)@1(% £)3pq Ops xn (23 P(1))

Contributions to (A.3.6) depending on a’(y,t). The terms which depend on a”(y,t) may be written

as 11 + 15 + T35 + T, where:

Ty = — EiapaapﬂapwEn(P(t))(_iaya)(_myﬁ)(_iayv)ao(y’t)
1
6

(A.3.11)

+ 2040 0q5 00, W (q(1))yaypyra’ (y, t) | xn(z:p(t))
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T i —(i0,) (i04:) (0, )a"(011) |~ £ 00Oy O Bl 025000
(0,103, =0, )0(0.1) | 5 (0o = 0By Eulp(0)) 8y 000 (A312)
(0,103, =0, )0%(0.1) |5 (910) = 0230 = 3y B 9(0) By 000

I

| 5000 Bl (10,103, + 500,00, W a0 0| (<104, )0 (3,012, x5 p(0)

(A.3.13)
Ty =i ((p(t) — i02)5 — Ops En(p(t))) Bg, W (q(1)) (=i, )a’ (y, t) (A314)
x [H(p(t)) = En(p(t))] " Py (p(£))8p, xn (23 p(1))
Using (A.1.4) and the equality of mixed partial derivatives, we can simplify Ty:
T, = [H(p(0) ~ Ea(pl)] | ¢ (~,)(~i0,)(~idy,)a" . t)apaapﬂapyxn@;p(t»} (A315)
We can simplify 73 using the evolution equation for a®(y,t) (A.2.4):
T = = | 5000y Bulp)(10,)(=103,) + 500,00, (00| (-0, )00, ()
+ (=i, ) [104a°(y, )] By, xn (25 D(t)) + (—i8y, )a" (y, £)ipp (£)Bpy Dp, X (2 (1))
= 509, W (1) a5 (=i, )" (1, 1)y, x5 p(0)
50000, W (a(0)) (04, )30 (3 1), (25 2(1)
+ Dy W (a(t)) An s (p(£))(—18y, )a® (y, ), xn (25 (1))
— 103, W (q(£))(=i8y, )a" (y, )8y, Op, xn (2 (1))
(A.3.16)
We now write 13 = T3 1 + T3 2 where:
Ty = 500,04, W (1) as (18, )" (0, 1)y, X (25 2(0)
1 (A.3.17)
+ §aqaaq5W(fJ(t))(—i3yw)yayﬂag(y, £)0p. xn(z: p(1))
T30 = 0y, W (q(t))An 5 (p(1)) (—i0y, )a® (y, 1), X (73 p(1)) (A.318)

— 10, W (q(t)) (=0, )a" (y, )0y, Op, X (25 p(1))
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We can simplify T3 as follows. We first re-arrange (A.3.17):

Ts1 = ((—idy,)Yays — Yays(—idy,)) %aQanBW(Q(t))ao(y’t)apan(Z;p(t))' (A.3.19)

Using the identity: (—i0y,)ys — ys(—idy,) = —idap twice we have that:
(=i, )Yays — Yayp(=idy,) = (=idar)ys + (=i0py)Ya- (A.3.20)
Using the symmetry 0y, 0q, W (q(t)) = 94,0, W (q(t)) we have that:
Ts1 = —i0g, gy W (q(£))yat” (Y, £)Dps xn (2; p(1)).- (A.3.21)

Summing 71 + T + 131 + T32 + T4 (A.3.11) (A.3.15) (A.3.21) (A.3.18) (A.3.14), we have that the
terms which depend on a°(y,t) in (A.3.6) are equal to:

| B, B p(1)) (=i, ) (=10, (64, )a (s, 1)
5000000, W 00051 | 5 0)
+ TH(0) = Bup(0)] | (-i04.)(10,,) (104, )a"(5.1)35. 50,0, o 255(0)
— 104,04, W (a(1))y0a° (y, 1) Opy X (23 p(1)) (A.3.22)
0, W (0(0)) A 5 (0(0)) (3,0 (1, 1), o (2 (1)
- ianW(q(t))(—i(?yv)ao(y, t)apgapWXn(zp(t))
i (1) — i02)5 — Dy, Bu(p(1))) D, W (a(0)(~i0y,)a"(0. 1)
x [H(p(t)) = En(p(t)] Py (0(1)9p, Xn (25 0(1)).-

By adding and subtracting terms and using the definition of A, (p(t)) (2.1.26) we can put (A.3.22)
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into the form:

04,1 a(0)) (x50 800 5000 (0500 B 59000) 2

+ (O] (BL0) = 80:), = By, Enlp(0) (D) — Ealp(O)] BBy a (5150,
— (xn(2:2(1))| Dpy Op, X (25 0(1))) LE(Q)) (—i0y,)a’(y, t) — Dy 0gs W (q(£)) An g (p(t) )yaa® (y, 1)
&0 BB, B (1) (0, (i) (104, )a (. )
59000590, W 00 05,0 | )
+ P (p(t) | — 0, 0, W (a(t))yaa® (¥, £)0p, xn (2 p(t))
+ 0, W (a0) Au s (p(8)) (18, )" (4, )0, X0 (25 p(0)
— 04, W (g(8)) (=i, )a" (4, )0, D, o (2 (1)
41 ((plt) — i0.)3 — Oy, Bu(p(8))) Dy, W(a0)(~i04,)a°(5. 1)

< [H(p(t)) — Ba(p()] ™ P (p() Dy (25 0(1))
FH() — Ba(p()] | £(~i04,)(~104,) (=i, )3 100 0,5, (25 ()
(A.3.23)

Adding (A.3.8), (A.3.10) and (A.3.22) we have that &3(y, z,t) can be decomposed as in (A.3.2)
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where u3(y, z,t) is given by (A.3.3) and £ (y, z,t) is equal to:
(02.0) = (10101 0) = 1030y, Eulpl0))(~10,,) (=103, )01 (3.1
- %%%W(q(t))yayml(yat) = VoW(a(?)) - An(p(1))
+i0g, W (g(t)) ( (xn (23 P(8)] B xn (23 0(1)) 2y (X (23 P(E))] O X (23 P(F))) 2y

+ (RN (@) — i0:), = By, Ea(p(8)) [H@(0) ~ Eapl)] ™ B 00,10 (z20(0) |,

— (xn(z:p(1))] 3p53pwxn(2;p(t))>Lg(Q)> (—i8y,)a’(y, t) — B4, Ogs W (a()) An,5(p(1))yaa® (y, 1)
— SO0y, B (1) (304, ) (~i0,,) (i64,)a (. )
—%aqa5q53q7W(Q(t))yayﬁywa°(y, t)] Xn(2;p(1))
+ Ppr(p(t) | —ia' (y, ) VW (q(t)) - Vpxa (2 p(t) — 104, 0gs W (q(£))yaa® (y, £)Bpy X (25 p(1))
+ 0 W (a(£) An, s (p(£)) (—i0y, )a’ (y, £)Bp, xn (3 p(1))
— 109 W (q(t)) (i, )a° (Y, 1) By, B, X (2 (1))
+i ((p(t) = i02)5 — Ops En(p(t))) By, W (q(t)) (=i, )a’ (y, t)
x [H(p(t)) = En(p(t)] " By (p(t))3p, xn (73 p(1))
(A.3.24)

O]

Proof of Lemma A.3.2. Tmposing the orthogonality condition (2.3.20) with j = 3 on £3(y, 2, t) given
by (A.3.24) we obtain:
. 1 . . 1
10,0 (y,t) = 5 0po Ops En (p(1)) (=10, ) =iy, )a' (y, 1) + 5040 0gs W (a(t) )yaysa’ (y,1)
+ V W(g(t) - An(p(t))a' (y, )
1 . . ‘ 1
+ 63pa3p53pa,En(p(t))(—2aya)(—Zay;a)(—layw)ao(ya t)+ gaqaaqgaqwW(Q(t))yayﬁywao(ya t)

+ i (1) (=0, )a° (y, 1) + 8,04, W (a(2)) A5 (p(1)) 10" (y, 1)
(A.3.25)



APPENDIX A. CHAPTER 2 APPENDICES 151

which is precisely (A.3.4) with the coefficient multiplying (—i9y, )a’(y,t) replaced by:

o (8) = 104, W (g(1)) (<xn<z;p<t>>\ BT (3)) S

= (Xn (25 p()] O, xn (2 2(8))) 12 ) (X (23 P(0))] DX (25 (1)) 12

(A.3.26)
— i (xnlz:p(®) | (p(8) = i02), = By, Ba(p()
< () ~ B O] PG00, 0G5, ).
We claim that:
Ky (t) = 0gs W (q(t))Op, An s (p(t))- (A.3.27)

Adding and subtracting iy, W (q(t)) { Op, xn(2; p(t))| Opsxn (25 p(t))) 12( 10 (A:3.26), we have that:
Ky (t) = 0gs W (q(t))Opy An s(p(t)) + Ry (1) (A.3.28)
where:
o 0 5= 04, 1 a(0) (= (0 50| 00 5000) 13

= (Xn (25 p()] O, xn (2 2(1))) 12 0y (X (23 P(0)] DX (25 (1)) 12

(A.3.29)
— i (xu(p) | ((0() = 02), = 0y, Bu(p(1))
<TG~ B O] PG00, 0G5, ).
Using self-adjointness of the operators:
(p(t) = i02)y = By, Bu(p(1)), [H(p(t)) — En(p(t)] Py (p(1)) (A.3.30)

on L2, for each t > 0, and then identity (A.1.2) we have that the last term in (A.3.29) is equal to:

per

= (IH0) = Eap0)] 7 PE(0) ((0(2) = 102)s = 0y, Ealp(0) xn (21 (0) | 0y, a2 0(1)))

= (H®(1) = Ea(p)] ™ PO HBE) = Balp()))p, xn(5 (1)) 9y xa(25p(1)))

L2(9)

2
(A.3.31)

It is clear that the operators Pi-(p(t)),[H (p(t)) — E,(p(t))] commute on L2, for any t > 0. We

per

have therefore that this term:

= (P (0(1) 3y, xa (2 p(1)) ap,jxn(z;p(t))>L2(m . (A.3.32)
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Substituting (A.3.32) into (A.3.29) we obtain:

Fir (£) = i0g, W (a(1)) [— (O, xn (23 P())| Ops X (21 P())) 12
= (Xn (25 p()] O, xn (23 P(8))) 12 2y X (23 P(0))] D X (25 D(1)) 2. (A.3.33)

(PG00 50| D), |

Recall that xn(2;p(t)) is assumed normalized: (xn(z;p(t))|Xn(2;p(t)))12(q) = 1. Differentiating

this relation with respect to p and using the definition of the L?-inner product we obtain:

<Xn(z§p(t>)| anXn(Z;p(t)»Lg(Q) = <Xn(z§p(t))| anXn(Z;p(t)»Lg(Q) . (A'3'34)

We now use conjugate linearity of the L?-inner product in its first argument and the identity

(A.3.34) to re-write the expression inside the square brackets in (A.3.33) as:

= {0, Xn(2:P(1))| Op X (25 P(1))) 15

o+ { (=081 B, X (2 D(0) 2 gy X (2 2(8))| B (2 0(0))) (A.3.35)

L2(9)

+ <Prf(p(t))8pvxn(z; p(t))‘ OpsXn(2; p(t))>Lg(Q)

which is clearly zero by definition of the orthogonal projection operator Pi-(p(t)) (2.3.21). (A.3.29)
is therefore zero, and the claim (A.3.27) holds. O

A.4 Proof of L>* bounds on z-dependence of residual, uniform in

p €Sy

In this Appendix we provide details on how to bound the z-dependence of terms which appear in

the residual (2.3.36) in L2°, uniformly in p € S,,, where:
S, :={peRe: ir;léf |Em(p) — En(p)| > M}, and M > 0. (A.4.1)
m*+n
We consider the problem of bounding a representative term:

Jop(P) = [19ap (25 P) ||l 2o ()

905(2:D) = [(pa — 102,) — Opo En(p)] [H (p) — En(p)] ™" Pi(p)Ops xn (3 ).

(A.4.2)
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uniformly in p € S,. Note that although the maps p — E,(p) are periodic with respect to the
lattice A, the map p — g(z;p) is not. We claim that:

sup Jap(p) = l|9as(2; p)l e () < 00 (A.4.3)
PESnH

First, we define the ‘shifted’ Sobolev norms for any vector p € R? to be:

1F s o) = D 0 = i02) £(2)ll2 - (A.4.4)

l71<s

For any fixed p, H}  is equivalent to the standard norm H?. Using Sobolev embedding we have

zp

that for any integer s > %:

1908(2P) |2 = €77 gap(2: D)L < Coalle™gap(z;p)|lms = Csallgas(zp)lms,-  (A.4.5)

where the constant Cs 4 > 0 depends on s and d but is independent of p. We are therefore done if
we can show that [|gas(2;p)| s, can be bounded uniformly in p € S, for some integer s > d/2.
From the definition of the H? -norms and periodicity of d,, En(p) we have that for any integer
s>1,pe Sy,
[P~ 10-) — Oy Bl ;g < O (A.46)

where C" := 1 + sup,eg, ng |[En(p)|- By elliptic regularity, we have that for any integer s > 0, all

pE Sy:
1
“1pl
@)~ Bl PO e, i S 77 (A7)

Differentiating the eigenvalue equation (2.2.6) for x,(z;p) with respect to p, we have that

P-(p)8ps xn(2; p) satisfies:

[H(p) = En(p)1 Py (p)Ops xn(2;0) = =P (p) [(pg — 1024) — Ops En(p)] xn(2: D). (A.4.8)

Again, by elliptic regularity, for all p € Sj,:

1P (0)Bp X (25 0) | s S %II [(Ps = i0=4) — Ops En(p)] X (2:P) 1112 - (A.4.9)

Using (A.4.6) we then have for all p € Sp,:

!

C
1P (2)0psxn (25 P) | g2 < 57 Ixn (25 9) gz (A.4.10)
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Combining (A.4.6), (A.4.7), and (A.4.10) we have:

l9a5(z:P) 1z, < C'IIH (D) = En(0)] ™" P (9)3py X (23 1) | s (using (A.4.6))
C’ ‘
S M“P#(p)angn(Z;p)HH;;} (using (A.4.7))
'\
S (M) Ixn (2Pl =2 (using (A.4.10))  (A.4.11)

We now claim that for any integer s:
sup [[xn(2;p)ms, = sup |[Ixn(2p)|ms, < oo (A.4.12)
PESH peESLNB

By elliptic regularity it is clear that for any fixed p € R? and fixed positive integer s that:

Ixn (25 0) |12, < 00 (A.4.13)

Using smoothness of the map p — xn(z;p) in S,, and compactness of the Brillouin zone B we have
that:

sup |[xn(z;p)| 1z, < oo (A.4.14)
peESLNB
ib-z

Since for any reciprocal lattice vector b € A* we have that x,(z;p +b) = e "?x,(2;p), we then

have that:

for any b € A, |[xn(z:p + 0|z, = ™™

z,p+b

xn(z Pz, = X (2 0)las - (A.4.15)

2. p+b
The bound (A.4.12) follows.

We now turn to completing the proof of (A.4.3). Fix o, a positive integer such that o >
max{%,Q}. Then:

sup J(p) = sup [|gap(2;p) Lo (by definition)
PESn PESH
< Cs.a 8up ||gap(2:0) | e, (by Sobolev embedding, since o > d/2)
PESn ’
A%
<Csal~7) sup lxn(2z;p)llgo-2 (by (A.4.11), with s = o)
M) pes, =P
A%
=Csd <M) sup [\ xn (25 p)| o2 (using (A.4.12) with s = 0 — 2)
peEBNS,, P
< 0. (by (A.4.14) with s = 0 — 2)

All other z-dependence in expression (2.3.36) for the residual may be bounded in L3 uniformly in

p € Sy, by similar arguments.
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A.5 Proof of Lemma 2.4.1

First, it is clear from changing variables in the integral that:

X

[ Fa) (5+ ) do= < [ @ d:r:) </Qg(z) dz) + 0N (A5.1)

is equivalent to:

/Rdf (2-5)9(5) do= < [ 1) d:c) (/Qg(z) dz> oY), (A.5.2)

Let v;,j € {1,...,d} denote generators of the lattice A so that if v € A, there exist unique integers
nj,j € {1,...,d} such that:

v = niv1 + ngts + ... + ngug. (A.5.3)
And let bj,j € {1,...,d} denote generators of the dual lattice A* such that if b € A*, there exist

unique integers m;, j € {1, ...,d} such that:
b =m1by + maby + ... + mgby, (A.5.4)

and furthermore, for all 4, j € {1,...,d}, b; - vj = 2m0;;.
Since g(z) is smooth and periodic with respect to the lattice A, it has a uniformly convergent
Fourier series:
g(z) = Z Gm mdei[mﬂn~z+mgbg~z+...mdbd~z}
Lyeees

(ma,...;mq) €L (A.5.5)

gml,...,md — / 6—i[m1b1-z+m2b2-z+...mdbd-z]g(z) dZ.
R /A

We have therefore that:

c z imi1b1-x maba-x ..mgbg-x
/df (w _ 5) g (5) de = Z G /de [maby-a/6+maby-w/o+..mabaw/3] £(2 _ ¢/5) da
R (m1,...,mq)€Z4 R
(A.5.6)

where it is valid to change the order of summation of the series with the integration by uniform

convergence of the series. We now write the right-hand side of (A.5.6) as:
— 0.0 [ Fla = c/8)do
Rd

+ Z Gy / ei[mlbl~x/5+m2b2~x/5+...mdbd-x/5]f(x - 6/5) dux
(101 s0ees1120) €28 (1 5.00510)(0,...0) Re

(A.5.7)
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By the definition of gg_. o (A.5.5) and by a trivial change of variables we have that:

-----

mo [ fa=cipyae=( [ s@ae) ( [a)a:) (A5.8)

To see that the second term in (A.5.7) is of O(6") for arbitrary N € N, consider a representative

term in the series where (m1,...,mq) = (1,0, ...,0):

; —idvy - Vg N ibr oz
91,0,...0/ Mol f(w — ¢/8) da| = 91,0,...0/ [(;) et /5] flx—c/0)dz| (A.5.9)
R4 Rd ™
Integrating by parts gives:
- iovy - Vi \ N
= 91,0,...0/(161171 =/ [(%) f($—c/5)] dz
® (A.5.10)
1
<oN_~ ) VN flz— ’
< (%)N\gl,o,,,,()%d (w1 - V)N f(@ — ¢/8)| da
Using the definition of g1 9,0 (A.5.5) and another change of variables, we have:
1
<oV [ lo@ld: [ oY £ do (A5.11)
2m)N Jr/a Rd

since f € S(R?), we are done:

/Rdf <$+ g) g (%) dz — ( Rdf(:c) dx> (/Qg(z) dz>‘ < On,pgd™ (A.5.12)

where Cy > 0 is a positive constant which depends on N, f, g but not 4.

A.6 Computation of dynamics of physical observables

In this Appendix we compute:

% :<b(?/,t)| a(y, 1)) 2 (ma) + (a(y, t)] b(yvt»Lg(Rd)}

dr d '

? :<a(y,t)’ ya(y;t)>L§(Rd)] e [(a(y,t)| (—zvy)a(y,t))Li(Rd)} o)
3 L0 Olya(y, ) 3w + (aly, )| yoly, t)>L§(Rd)]

% {0y, D (=iVy)a(y, 1)) 2 ray + (aly, )] (=iVy)b(y, t)>L§(Rd)]

We will make use of the following simple lemmas which are each elementary to prove:
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Lemma A.6.1. Let a(y,t) satisfy:
i0a = H(t)a (A.6.2)
where F(t) is self-adjoint for every t. Let G(t) denote a physical observable defined by:
Gg(t) = /Rda(y,t)Ga(y, t) dy (A.6.3)
where G is self-adjoint. Then:
g(t)=i /IR Laly DA (1), Glaly.t) dy (A.6.4)
Lemma A.6.2. Let a(y,t) satisfy (A.6.2), and b(y,t) satisfy:
i0tb = ()b + I (t)a (A.6.5)

where S (t) is self-adjoint for every t. Define:

K(t) := /Rdb(y,t)Ka(y,t) dy + /Rda(y,t)Kb(y, t) dy (A.6.6)

where K is self-adjoint. Then:

K(t) =i / b, DI (1), Klaly, ) dy + i / (g DA (1), K]b(y, 1) dy
R R (A.6.7)

wi [ DL, Kaly.t) dy
Lemma A.6.3. Let G1,Go,G3 be operators. Then:

[G1G2, G3] = G1[G2, G3] + [G1, G3]G2

(A.6.8)
[G1,G2G3] = [G1,G2]Gs + G2|Gy, G3)
Lemma A.6.4.
[(~i0.). 93] = =16, [y (~i0),)] = i (A6.9)
We will apply the Lemmas with:
H0) = 50,0y Eap(0)(~i0,,)(~10,) + 500,00, W (a(yas (A610)

For any operator G, we have:
. 1. . . 1. . .
i (t), Gl = 510pa Opy En(p(8))(=i0y, )|(—i8y, ), Gl + 510p, Opy En(p(1))[(— 10y, ), G1(~10y,)

+ 510,00, W () O3ty G + 510,00, W () (Ol Glus
(A.6.11)
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From (A.6.11), we have:
i (2): Yol = OpaOps Ln(p(1))(—10y)
i (1), (=i0y,)] = —04a s W (a())yp

So that, using Lemma A.6.1:

a1 a0 (0.1 3y = Oy 0(0)) (0, ] (104, )0(3: 1)) 3 g
% (a(y,t)] (—Z'aya)a(y,t»%(Rd) = _8qaang(q(t)) (a(y,t)] yﬁa(yat»L%(Rd) .

Note that it follows from (A.6.13) that:
(a(y,0)|yaly, 0)>L§(Rd) = (a(y,0)| (—ivy)a(y,O»Lg(Rd) =0
— for all t > 0, (a(y, )| ya(y,t))Li(Rd) = (a(y,t)| (—ivy)a(y,t)>L§(Rd) =0.
We will then apply Lemma A.6.2 with:
1 . . . 1
SI(t) = gapaapgapwEn(p(t))(_laya)(_Zayﬁ)(—layw) + gaqaaqganW(Q(t))yayﬁyv
+ 0y [VaW(a(t) - An(p(1))] (=i8y) + Oy [VeW (a(1)) - An(p(t))] w5

Calculating the commutators:

i[7(1),1] =0
L (0),5e] = 5090,y Bn(p(0) (104, (~iy,) + Oy [V W (a(8)) - An(p(0)]
(1), (~i03,)] = 5, 94,00, W a(1)) s, — . (VW (a() - An(p(0)]

We have, by Lemma A.6.2:

% (b(y; D)l aly, 1)) 2 may + (aly, )] b(y, 1)) 2 (Ray| = O

158

(A.6.12)

(A.6.13)

(A.6.14)

(A.6.15)

(A.6.16)

(A.6.17)
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(0D vy, )3 g + €0 ) b, ) 1300

= OO B 0(8)) [ (100 2) (04, )00 ) ) + (2] (~i0 000 ) 5 |
500090 B (0(0)) (O] (303, (=104, )a(3: 1)) 1y

0 [V (0(0)) - An (D) ) 3 e

[0 01 (-0, )00 ) 30y + {000 )] (3030000 1 |

= 04,04, W (a(1)) | (0(y: D) Ypa(y: 1)) 2 gy + {aly, V)] yﬁb(y,tmg(m)}

(A.6.18)

1
- iaQaaQ,Baq'yW(q(t)) <a(y7 t)| yﬁy'ya(y, t))[%([gd)

— 4o [VaW(q(1)) - An(p())] Ha(y,t)\lig(ued)-
A.7 Berry phase and curvature in a two-by-two matrix example

Consider the matrix depending on parameters:
z T +1
H(z,y,2) == Y (A.7.1)
r—1y —z
where z,y, z € R. This matrix has eigenvalues:
By = +(a? +92 + 2H)V2 (A.7.2)
so that £y = E_ at x =y = z = 0. Introduce standard spherical polar co-ordinates:
x = psinfcos ¢
y = psinfsin ¢ (A.7.3)
z = pcosf

where now p € R, 6 € [0,7),¢ € [0,27). Note that the Jacobian of this transformation:

‘ oz, y, z)
d(p,0,9)

which implies that the change of variables is not smooth anywhere on the z—axis (where p = 0 or

= p*sinf (A.7.4)

6 = 0). In the new variables the matrix becomes:

' (A.7.5)
sinfe~®  —cosé

cos sin fe'®
H(p,0,¢)=p :
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This matrix has eigenvalues:

EL=+p (A.7.6)

So that EL = E_ at p = 0. The normalized eigenvectors associated with these eigenvalues are
unique up to a choice of gauge. Specifically, if y+ are normalized eigenvectors of the eigenvalues

E., then so are e+ y1 where 6+ € R. One possible choice of normalized eigenvectors is given by:

Cos e'? sin
ey /2 .
sin(6/2) —cos(0/2)e~

This choice is smooth away from the z-axis and 27-periodic in ¢:

X+ (¢ +27) = x4(0) (A.7.8)

Another choice is given by making the gauge transformation:

X = eT9 2y (A.7.9)
the new eigenvectors are:
Y= cos(6/2)e'/? s sin(h/2)e?/? (A7.10)
_l’_ — . ) - . . .
sin(6/2)e¢/2 —cos(0/2)e /2

This choice is smooth away from the z—axis and the ¢ = 0 half-plane. Across the ¢ = 0 half-plane

the eigenfunctions change sign:
X (o +2m) = =X (0) (A.7.11)

According to the adiabatic theorem of quantum mechanics, a system prepared in an eigenstate of
the Hamiltonian corresponding to an isolated eigenvalue remains proportional to the eigenstate after
the parameters of the system have been varied adiabatically in a closed loop. Consider the example
of the matrix Hamiltonian (A.7.5), and let v be a closed loop in parameter space parameterized
by 7 :v(1) = (p(7),0(7), (7)), 7 € [0,1],7(1) = v(0). Assuming that the variation is slow enough,

the final state of a system prepared initially in an eigenstate of the matrix Hamiltonian:

$(0) = x£(~(0)) (A.7.12)

is given by:

W(1) = eFi I PN drgion £y | (4(1)) (A.7.13)
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The first factor is known as the dynamic phase and is analogous to the factor e *#* which would
appear in the case where the parameters remain fixed. The second factor is known as the geometric

phase, and is given by integrating the Berry connection along the path:
1
o5+0) = [ Ax(r(r) () ar (A714)
0
where the Berry connections AL in each eigenspace are given by:
Ar =i (x+| Vxs) (A.7.15)
In spherical polar co-ordinates, (1) is:
(1) = pp + 0pf + ppsin 6¢. (A.7.16)
and V is given by:

1
psinf

V= ﬁapf+é;agf+g£ 9o . (A.7.17)

Explicit computation gives:

ll—i—cosﬁA

A = $2 psin 6

(A.7.18)
As an example consider the path vo(7) = (p(7) = 1,0(7) = 7/2,¢(7) = 277), 7 € [0,1]. Then:
¢px(v0)=Fr=m (A.7.19)

where the final equality is understood as modulo 27. So that the final state of the system is given
by:
Y1) = eFiJopoNdreimy | (40(1)) (A.7.20)

since the y+ are 2m-periodic in ¢, x+(7(1)) = x+(70(0)) so that:
B(1) = —eFidorto@)dry, ) (A.7.21)
We can study the same problem in the primed gauge. Taking initial data:
(0) = xt(7(0)) (A.7.22)
then the final state of the system is given by:

B(1) = FiJopOo(M)dridh £ (0)3 1 (40(1)) (A.7.23)
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where: )
¢gﬁt«v>=:j€.A;<v<f>>-w<f>df (A.7.24)

The Berry connection in the primed gauge is:

o= (X VL) (A.7.25)
Explicit computation gives:
1 cos@ -
=z A.7.26
Az :F2 psin 6 ( )

which is zero for § = 7/2. For the example loop v (7):
(1) = eF PO ary (4(1)) (A.7.27)
since the y/; are 2m-anti-periodic, x4 (70(1)) = —x+(70(0)) so that:
W(l) = _e$if()1p(vo(T))dT¢(0) (A.7.28)

which verifies that the result of adiabatic transport of the eigenvector about a closed loop is gauge-

invariant when the Berry phase is taken into account.

A.7.1 Berry curvature

Another route to this result is as follows. Since the path «(7) is closed we can transform the line

integral into a flux integral:

¢B+(7) = / Ay - dy = /Q Fy-dS (A.7.29)
8l

where (2 is any surface whose boundary is the curve v and:

is the Berry curvature. The Berry curvature is gauge independent since under the gauge transfor-
mation:

Xt — X = €% xy, (A.7.31)

the Berry connection and curvature transform as:

Ai%A;::Ai—V(Si
(A.7.32)

.7'];-%7'1
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For the example curve 7y I can take § to be the upper hemisphere of the sphere: Q = (p=1,6 €
[0,7/2],¢ € [0,27]). Let be an arbitrary vector field, then define:

Ayi=p-AAg:=0-AAg:=¢-A (A.7.33)
then the curl operator in polar co-ordinates is:
Vx A= sin 0 (89(A¢> sin 9) — 6¢A9) [)
p (A.7.34)

1

.1 )
P <81n08¢’4 -9 (pA¢)> 0+ » (0p(pAg) — g Ap) .

Applying this to AL gives the gauge-independent Berry ‘monopole’ with strength 1/2 at the origin:

1p
Fi=+= 27 (A.7.35)
In spherical polars:
dS = p%sin 0d0dep + psin Odpdpd + pdpdfe (A.7.36)

Integrating the monopole over the upper hemisphere gives:

2
¢B,+(70) / / sinfdfd¢ =+ (A.7.37)

as expected.
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Appendix B

Chapter 3 Appendices

B.1 Proof of Theorem 3.3.1 on linearity of band crossings in one

spatial dimension

In this section we will prove Theorem 3.3.1 using the fact that in one spatial dimension solving
the eigenvalue problem (3.2.3) is equivalent to solving a set of first-order ODEs. Throughout
this section we will take ¢ as the dependent variable rather than z for consistency with common

presentations of ODE theory.

B.1.1 Floquet’s theorem

Consider the following general second-order ODE with periodic coefficients:

FO + Q) () =0
Qt+1) = Q).

(B.1.1)

Here and throughout this section, dots will denote derivatives with respect to ¢ hence f(t) :=

azf
iz
t) of

By standard ODE theory, there exist two unique linearly independent solutions f;(¢) and fa(
(B.1.1) which satisfy:

A0)=1 f1(0)=0,

f200) =0 f2(0) = 1.
By periodicity of @, we have that fi(t+ 1) and fo(¢t + 1) are also solutions of (B.1.1). Hence, they

(B.1.2)

may be written as a linear combination of fi(¢) and f2(¢). Using the conditions (B.1.2), we have
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more precisely that:

Alt+1) = AMAR) + AQ) ),

. (B.1.3)
fo(t+1) = fo(L)f1(2) + fo(1) f2(2).
We now seek quasi-periodic solutions f(t) of (B.1.1):
VieR, f(t+1) = pf(t) (B.1.4)

for any constant p € C. We will refer to f(¢) satisfying (B.1.4) with p = 1 as periodic, and to f(t)
satisfying (B.1.4) with p = —1 as anti-periodic. Any solution f(¢) of (B.1.1) may be expressed as
f(t) = c1f1(t) + cafa(t) for constants c1,co € C. Combining (B.1.2), (B.1.3), and (B.1.4) we have

that cq, co must satisfy:

72 I Y Bl I Ve A 20 (B.1.5)

Co co AQ) f2(1)

The matrix M is known as the monodromy matriz. Since for all ¢ the Wronskian is equal to 1:
W(t) == f1i(t) f(t) = fa() 1 (2) = 1, (B.1.6)
the characteristic polynomial whose roots are the eigenvalues of M takes the form:
P -Ap+1, A= fi(1)+ fa(1). (B.1.7)

The constant A is known as the discriminant. Denote by p,, p— the roots of (B.1.7):

A++VAZ -4
pr = (B.1.8)
It is easy to check that:
p+p— =1 and p4 + p— = A. (B.1.9)

There are three possibilities:

|A| < 2. p1 and p_ have non-zero imaginary part and are complex conjugates of each other.
Since |p+|> = pyp+ = p—ps+ = 1 we have that there exists a unique p € (0,7) such that

py = €P and p_ = e "P. Moreover, there exists a linearly independent set of solutions of

(B.1.1) g+(t), g—(t) satisfying:
gi(t +1) =Pge(t), g-(t+1)=e"Pg_(t). (B.1.10)

It follows that in this case all solutions of (B.1.1) remain bounded for all ¢.
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|A| > 2. p; and p_ are distinct real numbers such that p_py = 1. In particular, p4 and p_
have the same sign. If A = p, + p_ > 2, it follows that p; and p_ are both positive and that
p+ > p—. Then p4 > 1. Define p :=logp;+ > 0. Then p; = eP and p_ = e~ and there exists

a linearly independent set of solutions of (B.1.1) g4 (¢), g—(t) such that:
gi(t+1) =g (t) g (t+1)=ePg (t). (B.1.11)

The case where A < 2 is similar. It follows that in this case no solutions of (B.1.1) remain

bounded for all ¢.

|A| =2. py = p_. Tt follows that pip_ = p% =p? =1,s0 that py =p_ =1lor py =p_ =
—1. The monodromy matrix M therefore has a single eigenvalue 1 or —1. There are then

two further possibilities:

f2(1) = f1(1) = 0. The eigenvalue £1 has geometric multiplicity 2. If the eigenvalue is 1,

then all solutions of (B.1.1) are periodic. If it is —1, then all solutions are anti-periodic.

Else: The eigenvalue 41 has geometric multiplicity 1. Equation (B.1.1) has one solution
which is periodic if the eigenvalue is 1 and anti-periodic if the eigenvalue is —1 and one

solution which is unbounded as ¢t — oo or t — —o0.

The above result is known as Floquet’s theorem.

B.1.2 The Floquet-Bloch eigenvalue problem

We now consider the eigenvalue problem obtained by taking Q(t) = E — V(t) in (B.1.1) where V
is real and 1-periodic: V(¢ +1) = V(t) and F € R:
— O(t; B) + V()®(t; E) = E®(t; E),
(B.1.12)
V(t+1)=V(t).
Just as before we may define normalized solutions fi (t; E), fo(t; E) of (B.1.12) and the discriminant
as functions of E:

A(E) := fi(1;E) + fo(1; E). (B.1.13)

We have the following theorem:
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Theorem B.1.1. The discriminant function A(E) defined by (B.1.13) is an entire analytic func-
tion of E such that:

(D1) The functions A(E) — 2 and A(E) + 2 have infinitely many roots along the real line. The

roots may have multiplicity one or two.

(D2) Denote by Ao < A1 < ... the roots of the function A(E) — 2 and by N} < N, < ... the roots of
the function A(E) + 2, ordered with multiplicity. Then the following ordering holds:

X< <A <A< A<M\, <. (B.1.14)

We will refer to the intervals Ao, A], [Ny, A1], ... where |A(E)| < 2 as bands, and to the intervals
(AN, AL), (A1, A2), ... where A(E) > 2 as gaps. Note that gaps may be empty, or closed; this happens

whenever A(E) — 2 or A(E) + 2 have a double root: X;, = X, or Ay = A\yq1 for some integer n.

(D3) At interior points of the bands, i.e. for E € (Ao, \)), (A5, A1), ... the derivative of A with

respect to E, A'(E), is never zero.

(D4) The double roots of A(E) — 2 (resp. A(E) + 2) are precisely the roots A, (resp. M., ) where
f2(1;E) = f1(1; E) = 0 and all solutions of (B.1.12) are periodic (resp. anti-periodic).

For the proof and further details, see [50]. The usual 27-periodic Bloch band dispersion func-

tions:

E,:R—>R
(B.1.15)

which are the eigenvalue band functions of the equivalent problems (3.2.3) and (3.2.2), may now
be recovered as follows. First, we construct Ey(p). For E € (g, \}), we have that |[A(E)| < 2. By

Floquet’s theorem, we may define the map:

(Ao, A1) = (0, 7) (B.1.16)
E ' p(E)

where p € (0,7) is as in (B.1.10). To see that (B.1.16) is invertible, note that:

2cos p(E) = P E) 4 ¢~ P(E) — A\(E), (B.1.17)
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since e®? and e~ are the two roots of the characteristic polynomial (B.1.7). Differentiating both

sides with respect to E gives:

. dp dA
By Theorem B.1.1 (D3) we have that for p € (0,7) and E € (Ao, \}):
dp i
— = . B.1.1
dEE —2sinp 70 ( 9

So, by the inverse function theorem the inverse map p — FE(p) is well-defined and smooth at each

p € (0, 7) with derivative:
dE —2sinp

ex_ “2np (B.1.20)
dp GH(E®P)
We define the map E; over the interval [0, 27) by:
)\0 P = 0
E(p) p € (0,m)
Ei(p) == (B.1.21)

Ay p=m
EQ@2m —p) pe(m2m)

where E(p) denotes the inverse of the map (B.1.16). We then define this map for all p € R by
imposing 27-periodicity. By an analogous argument, all of the higher band functions p — E,(p),

n € {2,3,...} may be uniquely defined.

Remark B.1.1. Whenever a Bloch band E,(p) is isolated, i.e. for all pg € R such that:

En—1(po) < En(po) < Eny1(po), (B.1.22)

it follows from a Lyapunov-Schmidt reduction argument that there exists a neighborhood Uy of po

such that the maps p — (Ey(p), ®n(t;p)) are both analytic at each p € Uy.

Now, let E,(p), Ent1(p) denote spectral band functions satisfying (3.2.3) for p € B, and let
p* € B be such that: E,(p*) = E,+1(p*). It follows that there exist two linearly independent
solutions of (B.1.12) when E* := E,, (p*) = E,+1(p*) both satisfying:

VteR, ®(t+1;p*) =P d(t;p*). (B.1.23)
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By Floquet’s theorem, this may only happen when p* = 0 or # (modulo 27), and implies that all
solutions of (B.1.12) with E = E* are periodic (if p* = 0) or anti-periodic (if p* = 7). We now
seek quasi-periodic solutions of (B.1.12) in a neighborhood of E = E*| i.e. for E = E* + E’ where
|E'| < 1, assuming WLOG that p* = 0. Such solutions have the form ®(¢; E) = ¢1(E) f1(t; E) +
co(E) fao(t; E) where ¢1(E), co(E) satisty:

(ﬁ(l;E) @(nE)) (q(E)) . (q(E)) B.120
O:E) fo(1:E)) \ea(B) cs(E)

Taylor-expanding the monodromy matrix in E’ about E* and then using (B.1.2) and the fact that

all solutions are periodic when E = E* gives:
]Tl(l;E) f:z(l;E) _ 10 LB (9Ef'1(1;E*) GEf‘g(l;E*) .\ O(’El|2) (B.1.25)
[ E) fo(LE) 0 1 Iefi(1;E*) Opfa(L; E7)

We seek solutions of (B.1.24) where:

c1(E) c1(E¥) , * ey
_ L E . p(E) = p(E) + E'5(E). (B.1.26)
CQ(E) CQ(E*) EQ(E/)

Equating terms independent of E’ in the resulting expression gives:

01 ca(E¥) c2(E")

which implies that p(E*) = 1. The eigenvector (c1(E*),c2(E£*))" is unconstrained at this order in

E’. The remaining terms are:

3Ef1(1;E*> 3Ef2(1;E*) +O(E) c1(E*) j
Oefi(L; E*) Opf2(1; E7) ca(E™) & (E)

alB)) (B
CQ(E*) 52(E,)

By constructing the Green’s function (see [50] for details) we have that:

(B.1.28)
~ )]

Opfi(1; E7) = (a5 E)[ ®1(; EY)), Opfa(L; EY) = || @a(; B,

Opfi(L E*) = —[@1(5 B9, Opf2(1; BY) = — (®2( )| @1(+ BY)) .
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Taking the determinant of (B.1.28) then gives:

(@2(5 E7)|[@1(5 E7)) — p(E'))(( @25 E7)| @1(5 E7)) + p(E'))
— [1®1(5 BY)|?[[ @25 B> = O(E')
(B.1.29)
=
(BE")? = (@25 EF)| @1(; E*))® = [|@1( EY)[*|B2(5 E)||* + O(E").
Taking the square root of both sides and using the Cauchy-Schwarz inequality we have that there

are two smooth solutions pi(E’), satisfying:

pi(E') = £iX+ O(E'])

(B.1.30)
A= \/||‘1>1(';]-“7*)HZ||‘1)2(';E*)H2 — (D2 B*)[ @1( E*)* > 0.
Substituting (B.1.30) back into (B.1.28) and setting E’ = 0 gives:
0 1L, E*) 0 1; E* c1(B* c1(E*
pfGED OpRGED ) [alED) ) (aE) (B.1.31)
Iefi(LEY) Opf(l;E*)) \c2(E") c2(E”)
i.e. (c1(E*),c2(E*))T must be chosen to be an eigenvector of:
0 1, E*) 0 1, E*
pfi(1;E%)  Opfa( ) (B.1.32)

Opfi(L;E*) Opfa(l; E¥)

with eigenvalue +i\. We denote these eigenvectors by (c+1(E*),cx2(E*))T. It now follows now
from a standard Lyapunov-Schmidt reduction argument that for all E sufficiently close to E* there
exist two distinct eigenpair solutions (p+(E), (c1.+(E), co+(E))T) of (B.1.24) which are smooth in
E with py(E*) = 1, satisfying:
pa(E) = 14£iNE - E7) + O(E — B[,
C+1 E C+1 E* (B133)
(E) = (&) +O(|E — EY|).
cx2(F) cx2(E")

In particular we have that:

P2 () = iy (5 B [2)1@a( B2 — (@3 B4)| @4 (5 )2

dE (B.1.34)
£0
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and that for small enough |E — E*| the py(F) are complex. Since py = p_ and pyp_ =1 (B.1.9)
they must be expressible as:

p+(E) = etPE) (B.1.35)

for some smooth function p(E) satisfying p(E*) = 0. Substituting (B.1.35) into (B.1.30) then

implies that:

%(E*) :\/H‘IH(';E*)||2‘|®2('§E*)”2 —(Do(5 B*)| @1(+; B¥))° (B.1.36)

#0
which then implies, by the inverse function theorem, the existence of smooth band functions p —

E4 (p) for p sufficiently close to 0 such that:
dEy 1
ap 7 >
\/||¢>1(';E*)H2||q>2(';E*)H2 — (@25 E¥)| @1 (5 EF))

(B.1.37)

By definition we have that the associated eigenfunctions ®4 (¢; E') are smooth in F and satisfy:
.(t+1;E) = P B (t; E) (B.1.38)

for E sufficiently close to E*. Inverting the map F — p we obtain eigenfunctions of (3.2.2)
depending smoothly on p:
Ou(t+1;p) = e PPs(t;p) (B.1.39)

for p sufficiently close to 0. By defining x+(¢;p) := e~ P!®_ (t; p) we obtain eigenfunctions of (3.2.3)

depending smoothly on p sufficiently close to 0. We have now proved Theorem 3.3.1 in all details.

B.2 Proof that the “inter-band coupling coefficient” vanishes for

trivial crossings

B.2.1 Formula for (x_(-;p*)| d,x+(;p*)) from symmetry of Bloch band

Let E(p), x(z;p) denote an eigenpair of (3.2.3). Then:

H(2r —p)e >™*x(z;p) = e ™™ H(—p)x(2;p)

_ e_szm _ E(p)e—%rizm (B21)

e—2wi(z+1)m — C_QWiZW.
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Hence, for p € B such that the eigenvalue E(p) is non-degenerate, E(p) and x(z;p) obey the
symmetry (after possibly multiplying x(z;p) by a constant):

E(2m —p) = E(p) X(2;2m = p) = e 7™ x(z; p). (B.2.2)

Note further that the symmetry (B.2.2) implies that the eigenvalue F (27 — p) is non-degenerate
if and only if E(p) is; if it were not, we could use (B.2.2) to generate two linearly independent
eigenfunctions with eigenvalue E(p) from those with eigenvalue E (27 — p).

Now, let E,(p), En+1(p) denote eigenvalue bands of (3.2.3) which cross at p = 7 (WLOG), and
fix the Brillouin zone: B = [0,27]. Let F4(p), E_(p) and x+(z;p), x—(z;p) denote the smooth
eigenpairs defined in a neighborhood U of 7 by (3.3.3). It follows from (B.2.2) that for p away from

the degeneracy at 7, x+(z;p) and x—(z;p) obey the symmetry:
X-(z:p) = e xu(zip), peU\{r}. (B.2.3)

But now recall that the maps x4 (z;p), x—(z;p) are smooth at p = 7, hence:

X-(zm) = limx-(;p) = lim e x4 (z3p) = e P x (7 m). (B:2.4)
pim ptm
It follows that (B.2.3) holds for every p € U:
X_(z;p) = e 2™y (z;p), peU. (B.2.5)

Substituting (B.2.5) into the formula for the “inter-band coupling coefficient” (3.3.30) gives:
(x=(2:m)| Opx+ (23m)) = <6_2m><+(2;p)‘ 3px+(2;7f)> :/0 x4 (2 m)Opx+ (73m) dz. (B.2.6)

B.2.2 Proof that coefficient vanishes for trivial crossings

Now, suppose that E,(p) and E,11(p) cross trivially in the sense that V(z) = Vj/5(z), where
Vi/2(2) denotes a 1/2-periodic function, and the smooth band functions E, (p), E_(p) and associ-
ated eigenfunctions x(z;p), x—(z;p) defined in a neighborhood of p = = satisfy (all equality of

eigenfunctions understood as holding up to a constant phase):

E.(p) = E(p) X+(2:p) = X(2;p)

E_(p) = E(27 +p) X-(21p) = X(2: 27 + p) (B.2.7)
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where E(p) is an eigenvalue band of the Bloch eigenvalue problem (3.2.3) with potential V(z) =
Vi/2(2) and 1/2 -periodic boundary conditions, considered on the Brillouin zone [0, 47] (see Figure
3.5).

(B.2.7) in particular implies that x(2;p), dpXx+(2;p), and the function:

X+(230)Opx+ (25 p), (B.2.8)

are all 1/2 -periodic for all p € U. It follows that the function (B.2.8) has for all p € U a convergent

Fourier series with only even index modes:

1
e ) = 3 [T ) 4 e (B29)
me27

and hence, by orthogonality of Fourier modes:

1
(- EmI Gtz = [ o esmop (i) dz = (B.2.10)

B.3 Completion of proof of Theorem 3.3.2 by estimation of re-
maining terms

Let t € [t* — 6,t*] where § > 0 is as in Proposition 3.3.1 so that:

WPH[S.4(t), 9+ (1), p+(t), 0% (y,1), 0l (y,1), Xy (2594 (1))] (2, 1)

= WPLG[SJF(t)a Q+(t)7p+(t)7 a?i-(y7 t)? a}&-(yv t)? X+(Z;p(t))]($’ t)'

(B.3.1)

Here, ¢ (t),p+(t) are as in (3.3.16), S1(t),a.(y,t),al (y,t) are as in Definition 3.3.1, and x4 (2;p)
is as in (3.3.3). The approximate solution 15, (, t) constructed in the proof of Theorem 3.2.2 [73]

then takes the form:
W (@, 1) = € /At e {

(B.3.2)

x

PPl 2) 4 €27 w20+ 6P e 2 ) + 2P 20} o

/2 *T

€

¢ (yg,t) == Sy (t) + 2p. by
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where:

P2y, 0) = al (g, Oxr (204 (1), 1 (2.9:8) = al (y, ) x+ (25 p()) + (—iy)al (y, )Opx+ (25 P4 (1)
P22, 0,1) = (=10, )al (0, 00+ (2104 (1) + 5 (=0, (0, 0081 (254 (1)

— 30,V (a4 ()0 (5, VR (04 () P (p+ (1) Oy (239 (1)

(=0, Pl (3, )0Fx (2504 (1) + 5 (=i0,)%a8 (v, 9+ (34 (1)

—i03W (g4 (1))ya (y, YR+ (04 (1) Pr(p+ (1)) 3px+ (25 p+ (1))

O (54 ()] Oy (3224 () (=i0,)a (0 VR (04 () P (9 () Oy (2 (1)

+i0gW (g1 (1)) (—i0y)ad (y, )Ry (p+ (1)) PL(p+ ()9 x4 (23 p4 (1))

X R (p+(8)) PL(p+ (1)) [(p+(t) — i02) — OBy (p+ (1)) R (p+ (1)) PL(p4-(£)) Opx+ (23 4 (1))
(B.3.3)

Here, Pj (p) denotes the projection operator away from the subspace of Lger spanned by x(z;p),

while R (p) denotes the resolvent operator:

R (p) == (H(p) — E-(p) . (B.3.4)

The residual r¢(z,t) defined by (3.4.2) with ¢S (x,t) given by (B.3.2) (see [73] for details) is as

app
follows:
(2, 1) = e VAP rt)/e {6254 (fo +el2fpef? 4 63/2f3)

+ 208 (fl + 61/2f2 + €f3> + €22 <f2 + 61/2f3) +62£1f3} (B.3.5)

)
_x _x—q+(t)
EEY=Taz

where:

£ = (i (1) — 0. — QB (pe (1)) (—i0,) L2 = —idy + 5(~i0,)7 + Ly (g (1)

1
"6

[,3

303 4 4 1(7'—1)4 4 1/2
W (g (1)) £timy /0 O (g (1) + e ) dr

Recall the discussion below (3.4.13): some terms in (B.3.5) are singular as t 1 t* because of the band
crossing at p*. We estimate r(x,t) term by term, using identical reasoning to that given in Section

3.4.2 and using the following basic estimates which follow immediately from Taylor-expansion and



APPENDIX B. CHAPTER 3 APPENDICES 175

the non-degeneracy conditions (3.3.4) (3.3.12):

1 1
émwwﬂa&Mﬂ—@Ewa<u—m>+Om

W (q*) (9 E+(1p*) pE_(p*)) 2 <It —1t*|2> o <It —1t*|>
1 1
W (q*) (Bp B+ (p*) — 3pE(p*))‘ <It - t*lz) o <It - t*|>

1
2 1
it — 7|3

(B (o (6) = E-(p4 (1)) | <

=0 (@) OB () — 0B (")

(B.3.6)
Our results are that as t 1 t*:

e VL0 = 0ps () VLt =0y (65/2) (B.3.7)
iptp2 — o “igis — o ik B.3.8
= YLz |t—t*| € = L3 |t—t*|2 ( )

5/2
VALt = Oz (62) VALt = O (M) (B.3.9)
VAL o <|t t*|2) (B.3.10)

1/4 p2 p2 2 1/4 p2 3 /
e VAL =0y <‘t t*P) ALY = Op W (B.3.11)
VAL =0y <‘t t*’2> (B.3.12)

Note that the overall phase ¢'®+®#+%/¢ in (B.3.5) doesn’t contribute. Summing up all terms in

(B.3.7) we have that:

€2 5/2 5/2
“(z,t) =0 2. B.3.13
T(IE7 ) L2 <‘t—t*|2”t—t*‘37|t—t*’ € ( )

(3.3.29) then follows immediately from substituting (B.3.13) into (3.4.4).
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Appendix C

Chapter 4 Appendices

C.1 Proofs of key lemmas

C.1.1 Proof of Lemma 4.4.1

We introduce the partition of unity:
L= (07 (2))* + (6°(x))* + (8" (2))? (C.1.1)

where the functions 8%, 6° satisfy:

0 (z) = - (C.1.2)

0°(z) = (C.1.3)

1 for x> %
0 (x) = : (C.1.4)

0 forx<

S

We note two consequences of the definition. First, note that for j € {4, —,0} and each positive

integer n > 1:
; C
ane’ < — C.1.5
i‘éﬁ’ 207 (@) = 7 (C.1.5)
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for positive constants C' > 0 which are independent of L and depend only on the particular shape

of the cutoff. Second, note that if L > 2, then:

L L
—L41< -2 <=,
tlsmy sy

So that for L > 2:
for x € supp[0T], kp(x) = K(x — L)
for 2 € supp[0®], kKL(z) = —koo
for z € supplf~], kr(z)=—k(z+L).
It follows that:
for x € supp[0t], Dk, = D+
for 2 € supp[0°], Du, = Do,
for x € supp[0~], Dx, = D,-.
where we have introduced the notation:

D—Hm = i8x03 — RKooO1.-
We assume at this point that L > 2 so that (C.1.7) and (C.1.8) hold.
We now prove Lemma 4.4.1. Using the partition of unity, we have that:

1Dt = 3 /(eﬂ'(x))%pmf(m)@gdm: 3 /|ej(:c)z>mf(:c)|(%2 da.

Jj=0,% J=0,%

By a trivial re-arrangement we have that:

j€{0,£}, 0(2)Dx, =D, 0/ (2) + [0 (), D, ] = D, 0 () — i0:0” (2)03.

Combining (C.1.10) and (C.1.11) gives:
Dl = Y [ D0 83(a)(0) 00,2 £(0) 2
j=0,+
We then proceed as follows:

$ / Dy 09 (2) f () — 130,67 () f ()22 dav

§=0,%

= > Dw, 07() fll3; + 10267 (2) £13; — 2Re (io30,07 () f ()| Dy, 07 f ),
§=0,%

(C.1.6)

(C.1.7)

(C.1.8)

(C.1.9)

(C.1.10)

(C.1.11)

(C.1.12)
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> 3 1D, 00@) FI + 110269 (2) £ 13, — 2730007 Flle [ D, 6 f 3¢ (Cachy-Schwars inequality)
§=0,+

> Z (1 — )| Dy, 07 (z) fI|7, + (1 — e 2)]|0:67 f|3, (Young’s inequality)
j=0,%

(C.1.13)

for any positive € > 0. Fixing e sufficiently small in (C.1.13) so that (1 — e 2) > ¢ 2 and using
(C.1.5), we have that:

,C

1Du fl3 > > (1= )| Dap () fll3 — € ﬁ\lfH% (C.1.14)
§=0,%
where the constant C' is independent of L. We now estimate the terms:
je{0, %}, Dk 0 (2)fI%- (C.1.15)
First, we consider j = +:
D81 = | 6030, + w0 @)(07 () f(@) o
— [P (0 @) (@) do = D0 115, (Using (C.18))  (C.1.16)
We now use the fact that (af| f),, = 0:
(ol | £y =0
= (|07 f), == (| (1=07)]),,
= (of| 9+f>7—t < o (1 = 0) ||l £l % (Cauchy-Schwarz inequality)
but:
(1= 6%)af 3 = /l(1 — 0" (@) on(z — L)[22 dz
3
< [ laa- Dl da (Supp (1~ (7)) = [~o0,L/2)
o ;
< C’/ e~ moolr =Ll qp — C/ e2roo(@=L) 4y (Since L/2 > 1, using (4.2.4))

L/2
_ Ce2nooL/ €2noox dz < CvefnooL

— 00
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where C' > 0 is a constant independent of L > 0. We have therefore that:
(|07 £y < llaf (1 =60l flln < Ce™ ™| fl3. (C.1.17)
We now require the following corollary of Lemma 4.2.1:

Corollary C.1.1. Let f € H. Then:

IDwfllre = Foo [ ll2 = [ Caxl gl ]- (C.1.18)

Proof. For any f € H, we may write f = P-f + (a,| f) ax. Since o, is a zero mode of D, and

using Lemma 4.2.1 we have:
IDwflls = IDP* fllz > rool P - (C.1.19)

Using PLf = f — (ay| f) o, the reverse triangle inequality and normalization of ay : [|ou |y = 1

we have that:
1D fll3e 2 Kool P fllae = Kool f = Cauel Fag llre = koo [(1f Il — 1 (el g DI (C.1.20)
O]
It then follows from combining (C.1.16), (C.1.17), and Corollary C.1.1 that:
1Dy 0% F1By = D0 i > w2 (1= Ce=12) " % £, (C.1:21)
An identical argument shows that:
1D207 71, > w2 (1~ Ce=112)" 0™ 113, (C.1.22)
where C' > 0 again simply stands for a constant depending only on x. Finally, we have that:
D261 1 = [ I(ioa0s + () 6°(@)F () s o
= [li730. = mocr)(0"(0) £ (@) s (Using (C.1.7))
= (6°F| D2, 00 f),, > K26 FII3 (C.1.23)

Summing (C.1.21) (C.1.22) and (C.1.23) we see that for sufficiently large L > 0 (so that 1 —
Ce rl/2 > ():

. 2 . 2
> DL fIBy 2wk (1= Cemm =BT ST 0 f3 = s (1 Cem™E2) | fI. (C124)
j=0,% j=0,%+
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Combining this with (C.1.14) we have:
. 2 1
P 1> (1= comb2) - L) 1515
(C.1.25)
. 1
S

from which Lemma 4.4.1 follows immediately by taking L large enough.

C.1.2 Proof of Lemma 4.4.2
C.1.2.1 Proof that <ai‘ 041> =5
H

That (a;f | o)y = (a5 [ @y )y = 1is by definition. That (o | ajf)y = (af |ax),, is clear from the

definition of the inner product. We then have that:

(o]l y = [(ar@al@)e do

= /R<a*(x+L)‘ ay(z — L)>C2 dz (by definition: (4.2.9))

1 1 @ o
= /72< > e~ Jo TR dy o= J§T R dy gy (by definition: (4.2.2))
R —1 1
C2

=0
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C.1.2.2 Proof that (a; | Dw o )2 = (o | Dyyax )z and (af | Dyyaff )y = (a5 | Duypay )y

That (o | Dwp o )2 = (aif | Dy, o >C2 is clear from self-adjointness of D, . The other symmetry

follows from:

(@l Dyl

H

/(a*(fv )| Dyl — L)) s da
R

= /R<a*(x — L)| (0310, + kr(z)o1)ow(x — L)) 2 da

_ /R (au(—2 — L)| (0310 + K (~2)o1)as(—2 — L))ga da (Changing variables)
- /R<a*(—:c — L)| (~03i0y + ki (@)o1)an(—2 — L)) dz (Since rp(~z) = rp(z))
- /R (on(z + L)| (—03i8y + ki ()01)as(z + L))o dz (Since ay(—2) = 0 (2))
- /R (oot L)] (Co3i0y + rr(@)o0)an(@ + L)>C2 do (Using self-adjointness)
_ /R<a*(x + L)‘ Dy, on(z + L)>C2 dr = (a;| Dy, ar ), (C.1.26)

C.1.2.3 Proof that (af|of),, =0 and (o |af),y = 2iy26*2foL”(y)dy

We compute (ajf| o)y, as follows:

(af| DHLaj>H = /ﬂ{(a*(:r — L)| Dppo(x — L)) e da

A

e_ f()ziLK(y) dy

e_ f()ziL"{(y) dy

1 o
(0310, + o1k (T)) ( ) e Jo L'f(y)dy> dz

7 c2

(Z> (0r + Kp(x))e” fOzL”(y)dy> dz
1

(C2

(Z) > e f()ziL,‘{(y) dy(ax + HL(x))e_ foz—LH(y) dy dx
1
(CQ

(C.1.27)
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We compute (a; | Dy, o) as follows:

{ay | DHLaf>H = /R<a*(x+L)‘ Dy, oz — L)><C2 dz

- [(wET D 5o + ormsteDante - 1), @

= ’)/2 /< 1 (4 > e 5+Lm(y)dy(a$ + HL(HC))e_ f(f—LH(y) dy e
R _Z 1 I

x—L
K

= 2i'72 /e— foz+Ln(y) dy(ax + kp(x))e” Is ) dy Q1
R

0 _
= 21'72/ e~ Jo TR W(a, + kp(z))e” I3 W) dy gy (Since K (x) = k(xz — L) for z > 0)
0
= —22"72/ {(&I; — k() o TR A] o= JT W)y g
+ 2iy%e” Jo ww) dy o= Jo " n(y) dy (Integration by parts)
= 2iy%e” Jo m @) dy = fy " (y) dy (Since kr(x) = —k(z + L) for z < 0)
= 2iy%e 2 Jy wly) dy (Since k(—z) = —k(x))

C.1.2.4 Proof of bounds on elements of M;(E, L)
Very similar computations to those given above show that:
Dyt |ly < Ce 2l ||D,, a7 ||y < Cem2rek, (C.1.28)

That all elements of the matrix M;(FE, L) may be bounded by Ce~*’ then follows from the
Cauchy-Schwarz inequality using boundedness of the resolvent operator PivL(D,{L — E) in H for

Koo
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