
Wave dynamics in locally periodic structures by
multiscale analysis

Alexander B. Watson

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2017



c�2017

Alexander B. Watson

All Rights Reserved



ABSTRACT

Wave dynamics in locally periodic structures by
multiscale analysis

Alexander B. Watson

We study the propagation of waves in spatially non-homogeneous media, focusing on Schrödinger’s

equation of quantum mechanics and Maxwell’s equations of electromagnetism. We assume that

medium variation occurs over two distinct length scales: a short ‘fast’ scale with respect to which

the variation is periodic, and a long ‘slow’ scale over which the variation is smooth. Let ✏ denote the

ratio of these scales. We focus primarily on the time evolution of asymptotic solutions (as ✏ # 0)

known as semiclassical wavepackets. Such solutions generalize exact time-dependent Gaussian

solutions and ideas of Heller [40] and Hagedorn [36] to periodic media. Our results are as follows:

1. To leading order in ✏ and up to the ‘Ehrenfest’ time-scale t ⇠ ln 1/✏, the center of mass and

average (quasi-)momentum of the semiclassical wavepacket satisfy the equations of motion

of the classical Hamiltonian given by the wavepacket’s Bloch band energy. Our first result

is to derive all corrections to these dynamics proportional to ✏. These corrections consist of

terms proportional to the Bloch band’s Berry curvature and terms which describe coupling

to the evolution of the wavepacket envelope. These results rely on the assumption that the

wavepacket’s Bloch band energy is non-degenerate.

2. We then consider the case where, in one spatial dimension, a semiclassical wavepacket is

incident on a Bloch band crossing, a point in phase space where the wavepacket’s Bloch band

energy is degenerate. By a rigorous matched asymptotic analysis, we show that at the time

the wavepacket meets the crossing point a second wavepacket, associated with the other Bloch

band involved in the crossing, is excited. Our result can be seen as a rigorous justification of

the Landau-Zener formula in this setting.

3. Our final result generalizes the recent work of Fe↵erman, Lee-Thorp, and Weinstein [25] on



one-dimensional ‘edge’ states. We characterize the bound states of a Schrödinger operator

with a periodic potential perturbed by multiple well-separated domain wall ‘edge’ modula-

tions, by proving a theorem on the near zero eigenstates of an emergent Dirac operator.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

In this work we study the propagation of waves in media with a local periodic structure which

varies adiabatically (i.e. over a length scale much longer than the scale of periodicity) through the

material. More precisely, we derive approximate solutions of time-dependent partial di↵erential

equation (PDE) models of waves in such media and prove convergence of these approximate solu-

tions to exact solutions in the limit where the ratio of the ‘fast’ periodic scale to the ‘slow’ scale of

variation of the local periodic structure approaches zero. We will henceforth refer to this ratio as

✏ and will describe these solutions as being asymptotic in the limit ✏ # 0. We focus our attention

on Schrödinger’s equation and Maxwell’s equations, which in this context respectively model the

dynamics of electrons propagating in crystalline solids with defects, and the propagation of light

through photonic analogs of such structures known as ‘photonic crystals’.

For the majority of this work, we will be concerned with localized, propagating pulses, or

wavepackets. It is well understood that the dynamics of such pulses depends crucially on the

spectral properties (more precisely, the ‘Floquet-Bloch band structure’) of the periodic di↵erential

operator obtained by holding the ‘slow’ dependence of the equation fixed at each position in space.

Depending on this ‘local’ band structure, the e↵ective dynamics of the wavepacket may be ‘ballistic

propagation’ described by a transport equation, or ‘dispersion’ governed by a Schrödinger equation,

for example. The simplest derivation of these e↵ective dynamics is by a multi-scale WKB-type

expansion in the small parameter ✏ (see [11], for example).

These derivations break down, however, in two significant ways. First, at caustics in the char-

acteristic flow, where one must make a modified ansatz in order to correctly capture the dynamics
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(see [69], for example). Second, when the wavepacket is spectrally localized near to degenerate

points in the local Bloch band structure. Bloch band degeneracies often arise due to symmetries of

a periodic structure, and their existence can have considerable physical consequences. For exam-

ple, the ‘Dirac points’ of graphene which give rise to its novel transport properties are Bloch band

degeneracies caused by the particular ‘honeycomb lattice’ symmetries of its atomic structure [28].

In order to address this deficiency of standard methods we have studied a family of asymptotic

solutions known as semiclassical wavepackets. Such solutions obey a particular scaling with respect

to the small parameter ✏ which makes them particularly appropriate for studying the dynamics

nearby to Bloch band degeneracies, and do not su↵er from the emergence of caustics.

In the final chapter of this work we prove a theorem on the near zero eigenstates of a Dirac

operator which emerges in the study of bound states of a periodic Schrödinger operator perturbed

by multiple domain wall ‘edge’ modulations. Our result implies that the Schrödinger operator

supports multiple nearly degenerate ‘edge states’, which bifurcate from the continuous spectrum

of the unperturbed periodic operator. Our result represents a generalization of the recent works

of Fe↵erman, Lee-Thorp, and Weinstein [25; 27]. Such states are of great interest for applications

because of their robustness to local perturbations in the medium.

The structure of this work is as follows:

Corrections to e↵ective dynamics for semiclassical wavepackets away from Bloch

band degeneracies (Chapter 2) We construct asymptotic solutions of Schrödinger’s equa-

tion and Maxwell’s equations in ‘locally periodic’ media of semiclassical wavepacket type under

the assumption that the wavepacket avoids any Bloch band degeneracies. By computing all

corrections to the asymptotic solution up to and including terms of order ✏1/2 we are able to

derive a new Hamiltonian system describing the coupled evolution of the wavepacket’s center

of mass, (quasi-)momentum, and wave envelope up to and including all corrections propor-

tional to ✏. These corrections include terms proportional to the Bloch band’s Berry curvature

(Theorems 2.1.1 and 2.1.2, Sections 2.1-2.4). The research described in this Chapter is joint

with J. Lu and M. I. Weinstein. Sections 2.1-2.4 and Appendices A.1-A.6 were published in

[73].

The dynamics of a semiclassical wavepacket incident on a band crossing in one

spatial dimension (Chapter 3) Working in one spatial dimension we derive the dynamics
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of a wavepacket which is accelerated through a Bloch band crossing. We show that at the

time the wavepacket’s Bloch band energy becomes degenerate, a second wavepacket is excited

which is associated with the other band involved in the crossing (Theorems 3.3.2 and 3.3.3,

Sections 3.1-3.5). To our knowledge this is the first result on the propagation of an explicit

wavepacket asymptotic solution through a Bloch band degeneracy. The research described in

this chapter is joint with M. I. Weinstein.

Bound states of a Schrödinger operator with a periodic potential perturbed by

multiple domain wall modulations (Chapter 4) Again working in one spatial dimension,

we prove a theorem (Theorem 4.2.1) describing the near zero eigenstates of a Dirac operator

which emerges in the study of bound states of a periodic Schrödinger operator perturbed

by multiple domain wall ‘edge’ modulations. We proceed by a Lyapunov-Schmidt reduction

which allows us, in the limit where the distance between domain walls is large, to reduce the

full Dirac eigenvalue problem to an e↵ective two-by-two matrix eigenvalue problem (Sections

4.1-4.4). The research described in this Chapter is joint with J. Lu and M. I. Weinstein.

We give a more detailed summary of these results in Sections 1.1-1.4 before presenting our work in

full detail in the remainder of this thesis.

1.1 PDEs of interest and semiclassical wavepacket asymptotic so-

lutions

We now state the PDEs we study in the remainder of this work and give a general introduction

to semiclassical wavepacket asymptotic solutions. We study the Schrödinger equation for  ✏(x, t) :

Rd ⇥ R ! C depending on a real parameter which we take to be small ✏⌧ 1:

i✏@t 
✏ = �1

2
✏2�x 

✏ + U
⇣x

✏
, x
⌘

 ✏

 ✏(x, 0) =  ✏
0(x).

(1.1.1)

Here, we assume that U is a real, smooth function of both arguments which is periodic with respect

to some lattice ⇤ in its first argument:

8v 2 ⇤, U(z + v, x) = U(z, x) (1.1.2)
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at every value of z, x 2 Rd. It is useful to define the class of separable potentials which may be

written as a sum:

U(z, x) = V (z) +W (x) (1.1.3)

where V is smooth and periodic with respect to the lattice ⇤ and W is smooth. Studying (1.1.1)

when the potential is separable turns out to be considerably easier than the general case.

We are also interested in the time-dependent Maxwell system for the electromagnetic fields

E�(x, t) : R3 ⇥ R ! C3, H�(x, t) : R3 ⇥ R ! C3 in matter depending on a small parameter � ⌧ 1

given by:

@t

0

@

D�(x, t)

B�(x, t)

1

A =

0

@

0 r⇥
�r⇥ 0

1

A

0

@

E�(x, t)

H�(x, t)

1

A , r ·
0

@

D�(x, t)

B�(x, t)

1

A = 0 (1.1.4)

together with the constitutive relations :
0

@

D�(x, t)

B�(x, t)

1

A =

0

@

"
�

x
� , x
�

�† �x
� , x
�

�
�

x
� , x
�

µ
�

x
� , x
�

1

A

0

@

E�(x, t)

H�(x, t)

1

A . (1.1.5)

Here, we assume that each entry in the matrix of constitutive relations is smooth in both arguments

and periodic with respect to a lattice ⇤ in its first argument, and such that the matrix as a whole

is positive-definite and Hermitian at each value of x 2 R3. Note that when studying Maxwell’s

equations it is convenient to label the small parameter � rather than ✏ to avoid confusion with the

dielectric tensor ".

We now describe the family of semiclassical wavepacket asymptotic solutions of the Schrödinger

equation (1.1.1) in the simplest case, when the potential U(z, x) is separable (1.1.3). The first

proof of these results is due to Carles and Sparber [61], building on ideas of Hagedorn [36] and

Heller [40]. Let En(p) denote a Bloch band dispersion function of the Schrödinger operator with

periodic co-e�cients �1
2�z + V (z). Let p0 denote a point in the first Brillouin zone B such that

the Bloch band is non-degenerate i.e. En�1(p0) < En(p0) < En+1(p0). Let q0 2 Rd be such that

the Hamiltonian dynamical system:

q̇(t) = rpEn(p(t)), ṗ(t) = �rqW (q(t))

q(0) = q0, p(0) = p0

(1.1.6)

has a smooth solution for all t 2 [0,1) such that the Bloch band remains non-degenerate along

the curve p(t):

8t 2 [0,1), En�1(p(t)) < En(p(t)) < En+1(p(t)), (1.1.7)
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and let a0(y) 2 S(Rd) denote an arbitrary Schwartz class function. Then, the solution  ✏ of the

initial value problem (1.1.1) with U as in (1.1.3) and semiclassical wavepacket initial data given

by:

 ✏
0(x) = ✏�d/4eip0·[x�q0]/✏a0

✓

x� q0
✏1/2

◆

�n(z; p0) (1.1.8)

evolves as a modulated semiclassical wavepacket plus a corrector function ⌘✏(x, t) for all t 2 [0,1):

 ✏(x, t) = ✏�d/4eiS(t)/✏eip(t)·[x�q(t)]/✏a

✓

x� q(t)

✏1/2
, t

◆

�n(z; p(t)) + ⌘✏(x, t) (1.1.9)

Here, S(t) denotes the action associated with the path q(t), p(t), a(y, t) satisfies a Schrödinger

equation with time-dependent coe�cients:

i@ta =
1

2
(�iry) ·D2

pEn(p(t))(�iry)a+
1

2
y ·D2

qW (q(t))ya+rqW (q(t)) · An(p(t))a

a(y, 0) = a0(y),
(1.1.10)

where D2
pEn, D2

qW denote the Hessian matrices of En,W , d � 1 denotes the spatial dimension,

and An denotes the Berry connection:

An(p) := i h�n(·; p)|rp�n(·; p)iL2(⌦) . (1.1.11)

Here, ⌦ is a unit cell of the lattice ⇤. The corrector function ⌘✏ satisfies the bound:

k⌘✏(·, t)kL2  C✏1/2ect (1.1.12)

for constants C > 0, c > 0 which are independent of ✏, t. The bound (1.1.12) implies that the

semiclassical wavepacket ansatz provides an asymptotic (in the limit ✏ # 0) description of the

dynamics of the PDE up to ‘Ehrenfest time’ t ⇠ ln 1/✏.

1.2 Higher order e↵ective dynamics for semiclassical wavepackets

away from Bloch band degeneracies

By a natural extension of the argument given in Section 1.1, it is possible to derive higher order

analogs of (1.1.9) such that the corrector function ⌘✏(x, t) satisfy bounds of the form C✏j/2ect for

any j 2 {1, 2, ...}. We demonstrate this for the case j = 2 in Chapter 2; see Theorem 2.1.1 and
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Sections 2.1.2 and 2.3 for details. We can then study the evolution of observables such as the center

of mass:

Q✏(t) :=

Z

Rd

x| ✏(x, t)|2 dx (1.2.1)

of the solution using these asymptotic expressions. Our result (Theorem 2.1.2; see Sections 2.1.2

and 2.4 for details) is that (1.2.1) satisfies a system which, when d = 3, takes the form:

Q̇✏(t)

Ṗ✏(t)

=

=

rP✏Hn(Q✏(t),P✏(t))

�rQ✏Hn(Q✏(t),P✏(t))
| {z }

Dynamics generated by
‘Bloch band’ Hamiltonian
H

n

:=E
n

(P✏)+W (Q✏)

+

+

✏
�

✏
�

�Ṗ✏(t)⇥rP✏ ⇥An(P✏(t))

| {z }

Anomalous velocity due to
Berry curvature

+C1[a✏](t)

+C2[a✏](t)
| {z }

‘Particle-field’
coupling to
envelope a✏

 

 

,

i@ta
✏ = H ✏

n (t)a
✏; H ✏

n (t) := �1

2
ry ·D2

P✏

En(P✏(t))ry +
1

2
y ·D2

Q✏

W (Q✏(t))y
| {z }

Quantum harmonic oscillator Hamiltonian
with parametric forcing through Q✏(t),P✏(t)

.

(1.2.2)

Here, P✏(t) denotes another observable associated with the solution which can be thought of as

the average ‘quasi-momentum’ of the wavepacket, and a✏(y, t) is the wavepacket envelope function.

The ‘particle-field’ coupling terms C1(t), C2(t) are original to our work and can have a significant

impact on the e↵ective dynamics.

In the remainder of Chapter 2 we sketch how the above theory generalizes to the case where

U(z, x) is ‘non-separable’, i.e. cannot be written in the form (1.1.3), (Section 2.5) and to the

full Maxwell system (1.1.4)-(1.1.5) (Section 2.6), and then present examples of systems where

expressions for the Berry curvature can be worked out explicitly (Section 2.7).

1.3 Dynamics at a one dimensional band crossing

We then consider the simplest possible relaxation of the ‘isolated band’ assumption (1.1.7). We

specialize to one spatial dimension (d = 1), assume that the potential U is separable (1.1.3), and

then consider the problem:

Problem. What are the dynamics generated by equation (1.1.1) with initial conditions given by a

wavepacket associated with a band En which is then driven by the external potential W through a

point in phase space where the Bloch band En is degenerate?
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Figure 1.1: Plot of the two lowest Bloch band dispersion functions E1(p), E2(p) when V (z) =

4 cos(4⇡z). Note that the band functions are equal (degenerate) when p = ⇡. This crossing turns

out to be “trivial” (see Example 2).

More precisely, suppose that two bands En(p), En+1(p) touch at a quasi-momentum p⇤ in the

Brillouin zone, but are otherwise non-degenerate in a neighborhood of p⇤ (see Figure 1.1). Then,

we study a wavepacket associated with the band En initially localized in phase space on a classical

trajectory (q(t), p(t)) generated by Hn := En(p) +W (q) which encounters the crossing after some

finite time t⇤: for some t⇤ > 0, limt"t⇤ p(t) = p⇤.

Our results can be roughly stated as follows; we give a more precise statement in Section 3.2.

Assume that the wavepacket is driven through the crossing so that limt"t⇤ ṗ(t) 6= 0 (Assumption

3). Then:

1. (Theorem 3.3.2) For t ⌧ t⇤ and for any fixed positive integer N , the solution of (1.1.1) is a

wavepacket associated with the band En up to errors of o(✏N ) in L2. As t " t⇤, this ‘single-

band’ description fails to capture the dynamics of the PDE to any order in ✏ higher than 1,

because of an excited wave associated with the band En+1 whose norm grows to be of order

✏1/2 for t ⇠ t⇤. The precise limit of validity of the ‘single-band’ description as t " t⇤ may be

explicitly characterized.

2. (Theorem 3.3.3) For t ⇠ t⇤ and t � t⇤ the solution of (1.1.1) up to errors of o(✏1/2) is the sum

of two semiclassical wavepackets: a wavepacket associated with the band En+1 with L2-norm
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proportional to 1 and a wavepacket associated with the band En with L2-norm proportional

to ✏1/2. The precise form of both wavepackets can be explicitly characterized.

Our proof relies on the existence of smooth continuations of the Bloch band dispersion functions

En, En+1 through the crossing point p⇤ (see Property 2 and Figures 3.2 and 3.4). Such continuations

always exist in one spatial dimension (see Theorem 3.3.1). Our proof does not readily generalize

to cases where no such continuation exists; for example at ‘conical’, or ‘Dirac’ points which occur

in dimensions d � 2 [28]. We believe that the propagation of wavepackets through such crossings

may be treated by adapting the methods of Hagedorn [37] who studied such cases in the context

of the Born-Oppenheimer approximation of molecular dynamics.

1.4 Bound states of a periodic Schrödinger operator perturbed by

domain wall modulations

The final problem we consider is that of determining the bound states of a Schrödinger operator

in one spatial dimension with a periodic potential perturbed adiabatically by one or more domain

walls. The model we consider is:

� @2x + Ve(x) + �(�x)Wo(x), (1.4.1)

where � ⌧ 1 is a small parameter. Here Ve denotes a smooth, 1-periodic potential which may be

written as an even-index cosine series and Wo denotes a smooth, 1-periodic potential which is the

sum of a cosine series with only odd-index terms. The function (⇣), which is constant as |⇣| ! 1,

defines the domain wall modulations in the structure. ‘Topologically protected’ bound states of the

operator (1.4.1) were constructed in the limit as � # 0 by Fe↵erman, Lee-Thorp and Weinstein in [26;

25] (see also [27] for the two-dimensional case) in the case where (⇣) is smooth and satisfies the

asymptotics:

lim
⇣"1

(⇣) = 1 > 0, lim
⇣#�1

(⇣) = �1 < 0. (1.4.2)

It was furthermore demonstrated that the existence of such states is tied to the existence of a robust

(up to perturbations of  which do not change (1.4.2)) zero mode of the Dirac operator:

D :=

0

@

i@⇣ (⇣)

(⇣) �i@⇣

1

A (1.4.3)
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when  satisfies the asymptotics (1.4.2). More generally if the function  converges to non-zero

constants 1,�1 as |⇣| ! 1, but not necessarily with di↵erent signs as in (1.4.2), then the same

argument given in [26; 25] implies that any eigenvalue of D in the ‘mass gap’ in the essential

spectrum:

(�min |±1|,min |±1|), (1.4.4)

will lead to a bound state of the Schrödinger operator (1.4.1) in the limit � # 0. We are therefore

motivated to study bound states of the operator D for more general functions  converging to

non-zero constants at infinity.

Let L denote the ‘two domain wall’ function (see Figure 1.2):

L(x) =

8

>

<

>

:

�(x+ L) for �1  x  0

(x� L) for 0  x  1
(1.4.5)

where  denotes a ‘domain wall’ potential function which we assume to be smooth, monotone

increasing, odd, and to satisfy:

(x) =

8

>

<

>

:

�1 if x  �1

1 if x � 1
. (1.4.6)

Then, our result (Theorem 4.2.1, see Sections 4.2, 4.4, C.1 for details) is that for su�ciently large

L � 1, the Dirac operator (1.4.3) with  replaced by L (1.4.5) has two bound states with near-zero

eigenvalues and eigenfunctions which may be characterized up to errors of any polynomial order in

the small parameter e�2L. Our analysis extends to 3 or more domain wall modulations, see Section

4.3.
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Figure 1.2: The “two domain wall” function L(x) (1.4.5) with (x) = tanh(x) (which approxi-

mately satisfies (1.4.6)), L = 10.
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Chapter 2

Semiclassical wavepacket solutions

and e↵ective ‘particle-field’ dynamics

The research detailed in this chapter is joint with J. Lu and M. I. Weinstein. Sections 2.1-2.4 and

Appendices A.1-A.6 were published in [73] with minor alterations. We present extensions of this

work in Sections 2.5-2.7 and Appendix A.7.

2.1 Introduction

In this work we study the non-dimensionalized time-dependent Schrödinger equation for  ✏(x, t) :

Rd ⇥ [0,1) ! C:

i✏@t 
✏ = �1

2
✏2�x 

✏ + V
⇣x

✏

⌘

 ✏ +W (x) ✏

 ✏(x, 0) =  ✏
0(x).

(2.1.1)

Here, ✏ is a positive real parameter which we assume to be small: ✏ ⌧ 1. We assume throughout

that the function V is smooth and periodic with respect to a d-dimensional lattice ⇤ so that:

V (z + v) = V (z) for all v 2 ⇤, z 2 Rd, (2.1.2)

and that W is su�ciently smooth with uniformly bounded derivatives. Equation (2.1.1) is a well-

studied model in condensed matter physics of the dynamics of an electron in a crystal under the

independent-particle approximation [3], whose periodic e↵ective potential due to the atomic nuclei

is specified by V , under the influence of a ‘slowly varying’ external electric field generated by W .
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In this work we rigorously derive a family of explicit asymptotic solutions of (2.1.1) known

as semiclassical wavepackets. We then derive the equations of motion of the center of mass and

average quasi-momentum of these solutions, including corrections proportional to ✏.

At order ✏0, the mean position and momentum of the semi-classical wavepacket evolve along

the classical trajectories associated with the ‘Bloch band’ Hamiltonian Hn := En(p)+W (q), where

p 7! En(p) is the dispersion relation associated with the nth spectral (Bloch) band of the periodic

Schrödinger operator �1
2�z+V (z). The order ✏ corrections to the leading order equations of motion

depend on the gauge-invariant Berry curvature of the Bloch band and the wavepacket envelope.

Through order ✏, the system governing appropriately defined mean positionQ✏(t), mean momentum

P✏(t) and wave-amplitude profile a✏(y, t) is a closed system of Hamiltonian type (Theorem 2.1.2).

When d = 3, this system takes the form:

Q̇✏(t)

Ṗ✏(t)

=

=

rP✏Hn(Q✏(t),P✏(t))

�rQ✏Hn(Q✏(t),P✏(t))
| {z }

Dynamics generated by
‘Bloch band’ Hamiltonian
H

n

:=E
n

(P✏)+W (Q✏)

+

+

✏
�

✏
�

�Ṗ✏(t)⇥rP✏ ⇥An(P✏(t))

| {z }

Anomalous velocity due to
Berry curvature

+C1[a✏](t)

+C2[a✏](t)
| {z }

‘Particle-field’
coupling to
envelope a✏

 

 

,

i@ta
✏ = H ✏

n (t)a
✏; H ✏

n (t) := �1

2
ry ·D2

P✏

En(P✏(t))ry +
1

2
y ·D2

Q✏

W (Q✏(t))y
| {z }

Quantum harmonic oscillator Hamiltonian
with parametric forcing through Q✏(t),P✏(t)

.

(2.1.3)

Here, D2
P✏

En, D2
Q✏

W denote Hessian matrices and An is the Berry connection (2.1.26). For the

explicit forms of C1[a], C2[a] and the generalization of (2.1.3) to arbitrary dimensions d � 1, see

(2.1.46). The derivation of the form of the anomalous velocity displayed in (2.1.3) is given in

Remark 2.1.12.

The ‘particle-field’ dynamical system (2.1.3) appears to be new, and contains terms which are

not accounted for in the works of Niu et al. [76]. The system reduces, in the case of Gaussian

initial data and zero periodic background V = 0, to that presented in Proposition 4.4 of Ref. [55]

(see also Ref. [56]).

The asymptotic solutions and e↵ective Hamiltonian system (2.1.3) provide an approximate

description of the dynamics of the full PDE (2.1.1) up to ‘Ehrenfest time’ t ⇠ ln 1/✏, known to be

the general limit of applicability of wavepacket, or coherent state, approximations [66]. The validity

of the approximation relies on an extension of the result of Carles and Sparber [61] (Theorem 2.1.1)

Our methods are applicable when the wavepacket is spectrally localized in a Bloch band which
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has crossings (degeneracies), as long as the distance in phase space between the average quasi-

momentum of the wavepacket and any crossing is uniformly bounded below independent of ✏ (see

Assumption 2.1.1). We do not attempt a description of wavepacket dynamics when this distance

# 0 (propagation through a band crossing), or at an avoided crossing where the separation between

bands is proportional to ✏. We believe that both of these cases may be studied by adapting the work

of Hagedorn and Joye [37; 39] on wavepacket dynamics in the Born-Oppenheimer approximation

of molecular dynamics to the model (2.1.1).

Our methods are also applicable, with some modifications (see Section 2.1.5), to potentials with

the general two-scale form U
�

x
✏ , x
�

where U is periodic in its first argument:

U(z + v, x) = U(z, x) for all z, x 2 Rd, v 2 ⇤ (2.1.4)

and U(z, x) is ‘nonseparable’, i.e., cannot be written as the sum of a periodic potential V (z) and

an ‘external’ potential W (x). For details, see Section 2.5. For ease of presentation we consider in

this work only the ‘separable’ case (2.1.1).

The semiclassical wavepacket ansatz was introduced by Heller [40] and Hagedorn [36] to study

the uniform background case (V = 0) of (2.1.1). See also related work on Gaussian beams [62].

Hagedorn then extended this theory to the case where the potential W (x) is replaced by an x-

dependent operator in his study of the Born-Oppenheimer approximation of molecular dynamics

[37]. Semiclassical wavepacket solutions of (2.1.1) in the periodic background case (V 6= 0) were

then constructed by Carles and Sparber [61].

The anomalous velocity term in (2.1.3) was first derived by Karplus and Luttinger [44]. For a

derivation in terms of Berry curvature of the Bloch band, see Chang and Niu [15] (see also Ref.

[76]). It was then derived rigorously by Panati, Spohn, and Teufel [57] (see also [23]). This term is

responsible for the ‘intrinsic contribution’ to the anomalous Hall e↵ect which occurs in solids with

broken time-reversal symmetry (see Nagaosa et al.[52] and references therein). The anomalous

velocity due to Berry curvature is better known in optics as the spin Hall e↵ect of light and was

experimentally observed by Bliokh et al.[7].
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2.1.1 Dimensional analysis, derivation of equation (2.1.1)

In this section we derive the non-dimensionalized equation (2.1.1) starting with the Schrödinger

equation in physical units:

i~@t = � ~2
2m
�x + V (x) +W (x) (2.1.5)

where ~ is the reduced Planck constant, and m is the mass of an electron. This analysis is based

on those given in Refs. [23; 4]. Define l as the lattice constant, and let ⌧ denote the quantum time

scale:

⌧ =
ml2

~ . (2.1.6)

Let L, T denote macroscopic length and time-scales. We assume that the periodic potential V acts

on the ‘fast quantum scale’ and the W acts on the ‘slow macroscopic scale’:

V (x) =
ml2

⌧2
Ṽ
⇣x

l

⌘

,W (x) =
mL2

T 2
W̃
⇣x

L

⌘

. (2.1.7)

After re-scaling x, t by the macroscopic length and time-scales:

x̃ :=
x

L
, t̃ :=

t

T
,  ̃(x̃, t̃) :=  (x, t), (2.1.8)

(2.1.5) becomes:
i~
T
@t̃ ̃ = � ~2

2mL2
�x̃ ̃ +

ml2

⌧2
Ṽ

✓

Lx̃

l

◆

 +
mL2

T 2
W̃ (x̃) . (2.1.9)

We now identify two dimensionless parameters. Let h denote a scaled Planck’s constant, and ✏ the

ratio of the lattice constant to the macroscopic scale:

h :=
~T
mL2

, ✏ :=
l

L
. (2.1.10)

Writing (2.1.9) in terms of h, ✏ and dropping the tildes we arrive at:

ih@t 
h,✏ = �h2

2
�x 

h,✏ +
h2

✏2
V
⇣x

✏

⌘

 h,✏ +W (x) h,✏ (2.1.11)

where we have written  h,✏(x, t) to emphasize the dependence of the solution on both parameters.

We obtain the problem depending only on ✏ (2.1.1) by setting h = ✏. Therefore, the limit ✏ # 0 in

(2.1.1) corresponds to sending to zero the ratio of the lattice spacing l to the scale of inhomogeneity

L and Planck’s constant (appropriately re-scaled) to zero at the same rate.
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Remark 2.1.1. Other scalings of the Schrödinger (2.1.11) have been considered. For example, the

scaling corresponding to h fixed and ✏ # 0 is considered in Refs. [2; 60; 42], and for the nonlinear

Schrödinger / Gross-Pitaevskii (NLS/GP) equation in Refs. [68; 8]. Here, the dynamics are

governed by a homogenized e↵ective mass Schrödinger equation (linear, respectively, nonlinear).

The articles Refs. [42; 8] concern the bifurcations of bound states of (2.1.11) or NLS/GP from

spectral band edges into spectral gaps of the periodic potential, V . Another scaling where such band-

edge bifurcations arise due to an oscillatory, localized and mean-zero potential, W , is considered

in Refs. [20; 21; 18; 19]. In this case, a subtle higher order e↵ective potential correction to the

classical homogenized Schrödinger operator is required to capture the bifurcation.

2.1.2 Statement of results

In order to state our results we require some background on the spectral theory of the Schrödinger

operator:

H := �1

2
�z + V (z) (2.1.12)

where V is periodic with respect to a d-dimensional lattice ⇤[46; 63]. Let ⇤⇤ denote the dual lattice

to ⇤, and define the first Brillouin zone B to be a fundamental period cell. Consider the family of

self-adjoint eigenvalue problems parameterized by p 2 B:

H(p)�(z; p) = E(p)�(z; p)

�(z + v; p) = �(z; p) for all z 2 Rd, v 2 ⇤

H(p) :=
1

2
(p� irz)

2 + V (z).

(2.1.13)

For fixed p, known as the quasi-momentum, the spectrum of the operator (2.1.13) is real and

discrete and the eigenvalues can be ordered with multiplicity:

E1(p)  E2(p)  ...  En(p)  ... (2.1.14)

For fixed p, the associated normalized eigenfunctions �n(z; p) are a basis of the space:

L2
per :=

n

f 2 L2
loc : f(z + v) = f(z) for all v 2 ⇤, z 2 Rd

o

(2.1.15)

Varying p over the Brillouin zone, the maps p 7! En(p) are known as the spectral band functions.

Their graphs are called the dispersion surfaces of H. The set of all dispersion surfaces as p varies
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over B is called the band structure of H (2.1.12). Any function in L2(Rd) can be written as a

superposition of Bloch waves:

�

�n(z; p) = eipz�n(z; p) : n 2 N, p 2 B ; (2.1.16)

see (2.2.8). Moreover, the L2-spectrum of the operator (2.1.12) is the union of the real intervals

swept out by the spectral band functions En(p):

�(H)L2(Rd) = [n2R {En(p) : p 2 B} . (2.1.17)

The map p 7! En(p) extends to a map on Rd which is periodic with respect to the reciprocal lattice

⇤⇤:

for any b 2 ⇤⇤, En(p+ b) = En(p). (2.1.18)

If the eigenvalue En(p) is simple, then: (up to a constant phase shift) �n(z; p+ b) = e�ib·z�n(z; p).

A more detailed account of the Floquet-Bloch theory which we require, in particular results on the

regularity of the maps p ! En(p),�n(z; p), can be found in Section 2.2.

We will make the following assumptions throughout:

Assumption 2.1.1 (Uniformly isolated band assumption). Let En(p) be an eigenvalue band func-

tion of the periodic Schrödinger operator (2.1.12). Assume that (q0, p0) 2 Rd ⇥ Rd are such that

the flow generated by the classical Hamiltonian Hn(q, p) := En(p) +W (q):

q̇(t) = rpEn(p(t))

ṗ(t) = �rqW (q(t))

q(0), p(0) = q0, p0

(2.1.19)

has a unique smooth solution (q(t), p(t)) 2 Rd ⇥Rd, 8t � 0, and that there exists a constant M > 0

such that:

inf
m 6=n

|Em(p(t))� En(p(t))| � M for all t � 0. (2.1.20)

That is, the nth spectral band is uniformly isolated along the classical trajectory (q(t), p(t)).

Assumption 2.1.2.

P

|↵|=1,2,3,4 |@↵xW (x)| 2 L1(Rd).

Remark 2.1.2. An example of W satisfying Assumption 2.1.2 is the ‘Stark’ potential W (x) = E ·x
for any constant vector E 2 Rd. Assumption 2.1.2 may be significantly weakened. For example, a
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refinement of our methods would allow us to deal with any function W with finite order polynomial

growth at infinity. This larger class of admissable potentials would include the quantum harmonic

oscillator potential W (x) = 1
2x ·Mx where M is any real positive definite d⇥ d matrix.

Remark 2.1.3. Our methods may be adapted to work with time-dependent external potentials

W (x, t) which are smooth in x and continuous in t as long as there exists a constant C > 0 such

that for all t � 0 :
P

|↵|=1,2,3,4 |@↵xW (x, t)|  C.

2.1.3 Dynamics of semiclassical wavepackets in a periodic background

Our first result is an extension of Theorem 1.7 of Carles and Sparber [61]:

Theorem 2.1.1. Let Assumptions 2.1.1 and 2.1.2 hold. Let a0(y), b0(y) 2 S(Rd). Let S(t) denote

the classical action along the path (q(t), p(t)):

S(t) =

Z t

0
p(t0) ·rpEn(p(t

0))� En(p(t
0))�W (q(t0)) dt0. (2.1.21)

Let a(y, t) satisfy:

i@ta(y, t) = H (t)a(y, t)

a(y, 0) = a0(y),
(2.1.22)

where:

H (t) := �1

2
ry ·D2

pEn(p(t))ry +
1

2
y ·D2

qW (q(t))y. (2.1.23)

And let b(y, t) satisfy:

i@tb(y, t) = H (t)b(y, t) + I (t)a(y, t)

b(y, 0) = b0(y),
(2.1.24)

where H (t) is as in (2.1.23) and:

I (t) :=� 1

6
rp

⇥ry ·D2
pEn(p(t))ry

⇤ · (�iry) +
1

6
rq

⇥

y ·D2
qW (q(t))y

⇤ · y

+rp [rqW (q(t)) · An(p(t))] · (�iry) +rq [rqW (q(t)) · An(p(t))] · y.
(2.1.25)

Here An(p) denotes the nth band Berry connection:

An(p) := i h�n(·; p))|rp�n(·; p)iL2(⌦) (2.1.26)
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where ⌦ denotes a fundamental period cell of the lattice ⇤. Let �B(t) be the Berry phase associated

with transport of �n along the path p(t) 2 B given by:

�B(t) =

Z t

0
ṗ(t0) · An(p(t

0)) dt0 =
Z p(t)

p0

An(p) · dp. (2.1.27)

Then, there exists a constant ✏0 > 0 such that for all 0 < ✏  ✏0 the following holds. Let  ✏(x, t) be

the unique solution of the initial value problem (2.1.1) with ‘Bloch wavepacket’ initial data:

i✏@t 
✏ = �1

2
✏2�x 

✏ + V
⇣x

✏

⌘

 ✏ +W (x) ✏

 ✏(x, 0) = ✏�d/4eip0·(x�q0)/✏

⇢

a0

✓

x� q0
✏1/2

◆

�n

⇣x

✏
; p0
⌘

+✏1/2


(�iry)a0

✓

x� q0
✏1/2

◆

·rp�n

⇣x

✏
; p0
⌘

+ b0

✓

x� q0
✏1/2

◆

�n

⇣x

✏
; p0
⌘

��

.

(2.1.28)

Then, for all t � 0 the solution evolves as a modulated ‘Bloch wavepacket’ plus a corrector ⌘✏(x, t):

 ✏(x, t) = ✏�d/4eiS(t)/✏eip(t)·(x�q(t))/✏ei�B

(t)

⇢

a

✓

x� q(t)

✏1/2
, t

◆

�n

⇣x

✏
; p(t)

⌘

+✏1/2


(�iry)a

✓

x� q(t)

✏1/2
, t

◆

·rp�n

⇣x

✏
; p(t)

⌘

+ b

✓

x� q(t)

✏1/2
, t

◆

�n

⇣x

✏
; p(t)

⌘

��

+ ⌘✏(x, t)

(2.1.29)

where the corrector ⌘✏ satisfies the following estimate:

k⌘✏(·, t)kL2(Rd)  C✏ect. (2.1.30)

Here, c > 0, C > 0 are constants independent of ✏, t. It follows that:

sup
t2[0,C̃ ln 1/✏]

k⌘✏(·, t)kL2(Rd) = o(✏1/2) (2.1.31)

where C̃ is any constant satisfying C̃ < 1
2c .

Remark 2.1.4. We include the pre-factor ✏�d/4 throughout so that the L2
x(Rd) norm of  ✏(x, t) is

of order 1 as ✏ # 0.

Remark 2.1.5. We have improved the error bound of Carles and Sparber [61] from C✏1/2ect to

C✏ect by including correction terms in the asymptotic expansion proportional to ✏1/2. Note that we

must also assume that the initial data is well-prepared up to terms proportional to ✏1/2 (2.1.28).

By keeping more terms in the expansion we may produce approximations where the corrector can
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be bounded by C✏N/2ect for any positive integer N . The only changes in the proof are that we

include corrections to the initial data proportional to ✏N/2, and that Assumption 2.1.2 is replaced

by
P

|↵|=1,2,...,N+2 |@↵xW (x)| 2 L1(Rd).

Remark 2.1.6. Keeping terms proportional to ✏1/2 in the expansion will allow us to calculate

corrections to the dynamics of physical observables proportional to ✏; see Theorem 2.1.2 and Section

2.4.

Remark 2.1.7. The time-scale of validity of the approximation (2.1.29), t ⇠ ln 1/✏, is known as

‘Ehrenfest time’. Without additional assumptions this is known to be the general limit of validity of

wavepacket, or coherent state, approximations. Note that including higher order terms (proportional

to powers of ✏1/2) in the approximation does not extend the time-scale of validity. Under further

assumptions on the classical dynamics, coherent state approximations have been shown to be valid

over the longer time-scale t = o(1/
p
✏); see Refs. [64; 66] for further discussion.

Remark 2.1.8. For a discussion of Berry’s phase, connection, and curvature, and gauge indepen-

dence in the setting of a two-by-two matrix example, see Appendix A.7. We compute the Berry

curvature in a ‘non-separable’ Schrödinger example and for Maxwell’s equations in free space in

Sections 2.7.1 and 2.7.2 respectively.

There exists a family of time-dependent Gaussian explicit solutions of the envelope equation

(2.1.22). Consider (2.1.22) with initial data:

a0(y) =
N

[detA0]1/2
exp

✓

i
1

2
y ·B0A

�1
0 y

◆

. (2.1.32)

Here, N 2 C is an arbitrary non-zero constant, and A0, B0 are d⇥ d complex matrices satisfying:

AT
0 B0 �BT

0 A0 = 0

AT
0 B0 �BT

0 A0 = 2iI.
(2.1.33)

Remark 2.1.9. The conditions (2.1.33) imply:

1. The matrices B0, A0 are invertible

2. The matrix B0A
�1
0 is complex symmetric: (B0A

�1
0 )T = B0A

�1
0
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3. The imaginary part of the matrix B0A
�1
0 is symmetric, positive definite, and satisfies:

Im B0A
�1
0 = (A0AT

0 )
�1 (2.1.34)

and are equivalent to the condition that the matrix:

Y :=

0

@

Re A0 Im A0

Re B0 Im B0

1

A is symplectic: Y TJY = J where J :=

0

@

0 �I

I 0

1

A . (2.1.35)

The proofs of (1)-(3) are given in Refs. [38; 36; 24].

Note that it follows from assertion (3) of Remark 2.1.9 that a0(y) (2.1.32) satisfies |a0(y)| 
Ce�c|y|2 for constants C > 0, c > 0. We have then that:

Proposition 2.1.1 (Gaussian wavepackets). The initial value problem (2.1.22) with initial data

a0(y) given by (2.1.32) has the unique solution for all t � 0:

a(y, t) =
N

[detA(t)]1/2
exp

✓

i
1

2
y ·B(t)A�1(t)y

◆

. (2.1.36)

Here, the complex matrices A(t), B(t) satisfy:

Ȧ(t) = D2
pEn(p(t))B(t), Ḃ(t) = �D2

qW (q(t))A(t),

A(0) = A0, B(0) = B0.
(2.1.37)

Moreover, for all t � 0, the matrices A(t), B(t) satisfy (2.1.33) with A0 replaced by A(t) and B0

replaced by B(t). Thus (see Remark 2.1.9), |a(y, t)|  C(t)e�c(t)|y|2 where C(t) > 0, c(t) > 0

for all t � 0. More generally, we may construct a basis of L2(Rd) of solutions of the envelope

equation (2.1.22), consisting of products of Gaussians with polynomials, known as the ‘semiclassical

wavepacket’ basis [38; 36; 24].

Remark 2.1.10. Our convention for the complex matrices A,B follows that introduced in Ref.

[24], with A,B standing for Q,P in Ref. [24] respectively. Note that our convention is not to be

confused with that introduced in Ref. [36]; our choice of B corresponds to iB in Ref. [36].
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2.1.4 Dynamics of observables associated with the asymptotic solution

We now deduce consequences for the physical observables associated with the solution  ✏(x, t) of

(2.1.28), using the asymptotic form (2.1.29). Denote the solution of (2.1.28) through order ✏1/2 by:

 ̃✏(y, z, t) := ✏�d/4eiS(t)/✏eip(t)·y/✏
1/2

ei�B

(t)
n

a(y, t)�n(z; p(t))

+✏1/2
h

(�iry)a(y, t) ·rp�n(z; p(t)) + b(y, t)�n(z; p(t))
io

.
(2.1.38)

Thus:

 ✏(x, t) =  ̃✏(y, z, t)
�

�

�

z=x

✏

,y=
x�q(t)

✏

1/2

+ ⌘✏(x, t). (2.1.39)

where ⌘✏ is the corrector which satisfies the bound (2.1.30). Define the physical observables:

Q✏(t) :=
1

N ✏(t)

Z

Rd

x
�

�

�

 ̃✏(y, z, t)
�

�

�

2

z=x

✏

,y=
x�q(t)

✏

1/2

dx

P✏(t) :=
1

N ✏(t)

Z

Rd

 ̃✏(y, z, t)
⇣

�i✏1/2ry

⌘

 ̃✏(y, z, t)
�

�

�

z=x

✏

,y=
x�q(t)

✏

1/2

dx.
(2.1.40)

where N ✏(t) is the normalization factor:

N ✏(t) =

Z

Rd

�

�

�

 ̃✏(y, z, t)
�

�

�

2

z=x

✏

,y=
x�q(t)

✏

1/2

dx. (2.1.41)

We will refer to Q✏(t),P✏(t) as the center of mass and average quasi-momentum of the wavepacket.

We will see (Theorem 2.1.2): Q✏(t) = q(t)+o(1),P✏(t) = p(t)+o(1) up to ‘Ehrenfest time’ t ⇠ ln 1/✏.

Remark 2.1.11. In the uniform background case V = 0, solutions of (2.1.13) are independent of

z: �n(z; p) = 1 for all p 2 B. The asymptotic solution (2.1.38) obtained in this case is therefore

independent of z, and our definition of P✏(t) reduces to the usually defined momentum observable:

Z

Rd

 ✏(x, t)(�i✏rx) 
✏(x, t) dx. (2.1.42)

In the periodic background case V 6= 0, P✏ (2.1.40) corresponds to the quasi-momentum and may

be measured in experiments [16].

Let a✏(y, t) satisfy the equation of a quantum harmonic oscillator, with parametric forcing defined

by (Q✏(t),P✏(t)):

i@ta
✏ = H ✏(t)a✏; H ✏(t) := �1

2
ry ·D2

P✏

En(P✏(t))ry +
1

2
y ·D2

Q✏

W (Q✏(t))y

a✏(y, 0) = a0(y).
(2.1.43)
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Note that we have replaced dependence on (q(t), p(t)) in equation (2.1.22) with dependence on

Q✏(t),P✏(t).

For simplicity of presentation of the following theorem we assume that:

ha0(y)| ya0(y)iL2
y

(Rd) = ha0(y)| (�iry)a0(y)iL2
y

(Rd) = 0

ka0(y)kL2
y

(Rd) = 1.
(2.1.44)

The result holds for general a0(y) 2 S(Rd); see Section 2.4.

Theorem 2.1.2. Let  ̃✏(y, z, t) denote the asymptotic solution (2.1.38) including corrections pro-

portional to ✏1/2. Let Q✏(t),P✏(t) denote the observables (2.1.40). Then, there exists an ✏0 > 0

such that for all 0 < ✏  ✏0, and for all t 2 [0, C̃ 0 ln 1/✏] where C̃ 0 > 0 is a constant independent of

t, ✏:

1. Q✏(t),P✏(t) satisfy:

Q✏(t) = q(t) + ✏
h

hb(y, t)| ya(y, t)iL2
y

(Rd) + ha(y, t)| yb(y, t)iL2
y

(Rd)

i

+ ✏An(p(t)) + o(✏)

P✏(t) = p(t) + ✏
h

hb(y, t)| (�iry)a(y, t)iL2
y

(Rd) + ha(y, t)| (�iry)b(y, t)iL2
y

(Rd)

i

+ o(✏)

(2.1.45)

where An(p) is the nth band Berry connection (2.1.26), and a(y, t), b(y, t) satisfy (2.1.22) and

(2.1.24) respectively.

2. Let a✏(y, t) satisfy (2.1.43). Then:

Q̇✏
↵(t) = @P✏

↵

En(P✏(t))� ✏Ṗ✏
�(t)Fn,↵�(P✏(t))

+ ✏
1

2
@P✏

↵

⌦rya
✏(y, t)| ·D2

P✏

En(P✏(t))rya
✏(y, t)

↵

L2
y

(Rd)
+ o(✏)

Ṗ✏
↵(t) = �@Q✏

↵

W (Q✏(t))

� ✏
1

2
@Q✏

↵

⌦

ya✏(y, t)| ·D2
Q✏

W (Q✏(t))ya✏(y, t)
↵

L2
y

(Rd)
+ o(✏).

(2.1.46)

Here, Fn,↵�(P✏(t)) denotes the Berry curvature of the nth band:

Fn,↵�(P✏) := @P✏

↵

An,�(P✏)� @P✏

�

An,↵(P✏) (2.1.47)

where An(P✏) is the nth band Berry connection (2.1.26). When d = 3 the anomalous veloc-

ity �Ṗ✏
�(t)Fn,↵�(P✏(t)) may be re-written using the cross product as in (2.1.3); see Remark

2.1.12.
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3. After dropping the terms of o(✏) in (2.1.46), equations (2.1.46), (2.1.43) form a closed, coupled

‘particle-field’ system for Q✏(t),P✏(t), a✏(y, t).

4. Let

Q✏(t) := Q✏(t)� ✏An(P✏(t))

P✏(t) := P✏(t).
(2.1.48)

Let a✏(y, t) denote the solution of (2.1.43) with co-e�cients evaluated at Q✏(t),P✏(t) rather

than Q✏(t),P✏(t).

Then, after dropping terms of o(✏), Q✏(t),P✏(t), a✏(y, t) satisfy a closed, coupled ‘particle-

field’ system which is expressible as an ✏-dependent Hamiltonian system:

Q̇✏ = rP✏H✏, Ṗ✏ = �rQ✏H✏

i@ta
✏ =

�H✏

�a✏

(2.1.49)

with Hamiltonian:

H✏(P✏,Q✏, a✏, a✏) := En(P
✏) +W (Q✏) + ✏rQ✏W (Q✏) · An(P

✏)

+ ✏
1

2

⌦rya
✏| ·D2

P✏

En(P
✏)rya

✏
↵

L2
y

(Rd)
+ ✏

1

2

⌦

ya✏| ·D2
Q✏

W (Q✏)ya✏
↵

L2
y

(Rd)

(2.1.50)

Remark 2.1.12. In three spatial dimensions (d = 3) the anomalous velocity may be re-written

using the cross product:

�Ṗ✏
�(t)Fn,↵�(P✏(t)) = �Ṗ✏

�(t)
⇣

@P✏

↵

An,�(P✏(t))� @P✏

�

An,↵(P✏(t))
⌘

= �(�↵���� � �↵����)Ṗ✏
�(t)@P✏

�

An,�(P✏(t))

= �"⌘↵�"⌘��Ṗ✏
�(t)@P✏

�

An,�(P✏(t)) (2.1.51)

= �
⇣

Ṗ✏(t)⇥rP✏ ⇥An(P✏(t))
⌘

↵
.

Here, " and � are the Levi-Civita and Kronecker delta symbols respectively and each equality follows

from well-known properties of these symbols; see Section 2.1.6 (2.1.71)-(2.1.74). In this case the

curl of the Berry connection: rP✏ ⇥ An(P✏) is often referred to as the Berry curvature, see for

example [23].
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Remark 2.1.13. Equations (2.1.46) agree with those derived elsewhere (for example (3.5)-(3.6)

of Ref. [76]) up to the terms which depend on the wavepacket envelope a✏. The change of vari-

ables (2.1.48) was introduced in Ref. [23] to transform between the Hamiltonian system for the

characteristics of a ‘corrected’ eikonal ((4.9)-(4.10) in that work) and a gauge-invariant system

((4.11)-(4.12) in that work).

Corollary 2.1.1.

1. Choose initial data a0(y) of the form (2.1.32)-(2.1.33) with N = ⇡�d/4 so that ka0(y)kL2
y

= 1.

Then, a✏(y, t), the solution of the initial value problem (2.1.43), is given by:

a✏(y, t) =
N

[detA✏(t)]1/2
exp

✓

i
1

2
y ·B✏(t)A✏�1(t)y

◆

, (2.1.52)

where A✏(t), B✏(t) satisfy:

Ȧ✏(t) = D2
P✏

En(P✏(t))B✏(t), Ḃ✏(t) = �D2
Q✏

W (Q✏(t))A✏(t),

A✏(0) = A0, B
✏(0) = B0.

(2.1.53)

2. After the change of variables (2.1.48), the full coupled system governing (Q✏,P✏, A✏(t), B✏(t))

governed by (2.1.46) (with o(✏) terms dropped) and (2.1.53), is expressible as a Hamiltonian

system:

Q̇✏ = rP✏H✏, Ṗ✏ = �rQ✏H✏

Ȧ✏(t) = 4
@H✏

@B✏
, Ḃ✏(t) = �4

@H✏

@A✏

(2.1.54)

with Hamiltonian:

H✏(P✏,Q✏, A✏, A✏, B✏, B✏) := En(P
✏) +W (Q✏) + ✏rQ✏W (Q✏) · An(P

✏)

+ ✏
1

4
Tr
⇥

(B✏)TD2
P✏

En(P
✏)B✏

⇤

+ ✏
1

4
Tr
⇥

(A✏)TD2
Q✏

W (Q✏)A✏
⇤

.
(2.1.55)

Remark 2.1.14. In the special case where the periodic background potential V = 0 the Bloch band

dispersion function En(P✏) reduces to the ‘free’ dispersion relation 1
2(P

✏)2 and the Hamiltonian

(2.1.55) takes on the simple form:

H✏(P✏,Q✏, A✏, A✏, B✏, B✏) :=
1

2
(P✏)2 +W (Q✏)

+ ✏
1

4
Tr
⇥

(A✏)TD2
Q✏

W (Q✏)A✏
⇤

+ ✏
1

4
Tr
⇥

(B✏)TB✏
⇤

.
(2.1.56)
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The system (2.1.54), with Hamiltonian H✏ given by (2.1.56) has been derived by other methods:

see Proposition 4.4 and equations (32b)-(32c) of Ref. [55]. It was shown furthermore in Ref. [56]

that corrections to the dynamics of Q✏,P✏ proportional to ✏ due to ‘field-particle’ coupling to the

A✏, B✏ system can lead to qualitatively di↵erent dynamical behavior. In particular, the coupling may

destabilize periodic orbits of the unperturbed (✏ = 0) system; see Section 9 of Ref. [56].

Remark 2.1.15. In Remark 2.1.7 we commented that the general timescale of validity of our results

is up to ‘Ehrenfest time’ t ⇠ ln 1/✏, and that under further assumptions on the classical dynamics

we expect that this time-scale may be extended up to t = o(1/
p
✏). Note that the Berry curvature

terms and the new ‘field-particle’ coupling terms occur at the same order in ✏. It is an interesting

question to determine their impact on the dynamics for t greater than the ‘Ehrenfest time’.

2.1.5 Discussion of results, relation to previous work

The ✏ # 0 limit of (2.1.1) has been studied by other methods. For example, by space-adiabatic

perturbation theory [57; 58; 72; 70], and by studying the propagation of Wigner functions associated

to the solution of (2.1.1) [51; 4; 10]. The Wigner function approach is notable in that it has

been used to study the propagation of wavepacket solutions of (2.1.1) through band crossings [48;

32]. It was shown in Ref. [23] that the anomalous velocity due to Berry curvature can be derived

by a multiscale WKB-like ansatz by studying the characteristic equations of a corrected eikonal

equation. The Hamiltonian structure of equations (2.1.46) without field-particle coupling terms

was studied in Ref. [22]

The e↵ective system (2.1.46), in particular the ‘particle-field’ coupling that we derive, is original

to this work. Such coupled ‘particle-field’ models arise naturally in many settings where a coherent

structure interacts with a linear or nonlinear wave-field; see, for example Ref. [74] and references

therein.

The results detailed in Section 3.2 generalize to the case where the potential has the more

general form U
�

x
✏ , x
�

where U is periodic in its first argument:

U(z + v, x) = U(z, x) for all z, x 2 Rd, v 2 ⇤. (2.1.57)

If U(z, x) is not expressible as the sum of a periodic potential V (z) and a smooth potential W (x) we

will say that U is ‘non-separable’. In this case we must work with an x-dependent Bloch eigenvalue
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problem:

H(p, x)�n(z; p, x) = En(p, x)�n(z; p, x)

�n(z + v; p, x) = �n(z; p, x) for all z, x 2 Rd, v 2 ⇤

H(p, x) :=
1

2
(p� irz)

2 + U(z, x).

(2.1.58)

For details, see Section 2.5. Related problems were considered in Refs. [43; 65]. An interesting

example of a potential of this type is that of a domain wall modulated honeycomb lattice potential,

which was shown to support ‘topologically protected’ edge states in Ref. [26].

2.1.6 Notation and conventions

• Where necessary to avoid ambiguity we will use index notation, making the standard con-

vention that repeated indices are summed over from 1 to d where d is the spatial dimension.

Thus, in the expression:

@p
↵

@p
�

f(p)(�i@y
↵

)(�i@y
�

)g(y), (2.1.59)

it is understood that we are summing over ↵ 2 {1, ..., d},� 2 {1, ..., d}.

• Where there is no danger of confusion we will use the standard conventions:

v�w� = v · w, v�v� = v · v (2.1.60)

• �x = r2
x denotes the d�dimensional Laplacian

• D2
x denotes the d�dimensional Hessian matrix with respect to x

• We will adopt multi-index notation where appropriate so that:

X

|↵|=l

|@↵x f(x)| 2 L1(Rd) (2.1.61)

means all derivatives of order l of f(x) are uniformly bounded.

• It will be useful to introduce the energy spaces for every l 2 N:

⌃l(Rd) :=

8

<

:

f 2 L2(Rd) : kfk⌃l

:=
X

|↵|+|�|l

ky↵(�i@y)
�f(y)kL2

y

< 1,

9

=

;

(2.1.62)
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• The space of Schwartz functions S(Rd) is the space of functions defined as:

S(Rd) := \l2N⌃l(Rd). (2.1.63)

• We will refer throughout to the space of L2-integrable functions which are periodic on the

lattice ⇤:

L2
per :=

n

f 2 L2
loc(Rd) : for all z 2 Rd, v 2 ⇤, f(z + v) = f(z)

o

. (2.1.64)

• We will write a fundamental period cell in Rd of the lattice ⇤ as ⌦.

• We will make use of the Sobolev norms on a fundamental period cell ⌦ for integers s � 0:

kf(z)kHs

z

:=
X

|j|s

k(@z)jf(z)kL2
z

. (2.1.65)

• It will also be useful to introduce the ‘shifted’ Sobolev norms, for arbitrary p 2 Rd:

kf(z)kHs

z,p

:=
X

|j|s

k(p� i@z)
jf(z)kL2

z

(2.1.66)

• Define the dual lattice to ⇤:

⇤⇤ :=
n

b 2 Rd : 9v 2 ⇤ : b · v = 2⇡n, n 2 Z
o

(2.1.67)

• We will refer to a fundamental cell in Rd
p of the dual lattice ⇤⇤ as the Brillouin zone, or B

• We make the standard convention for the L2-inner product:

hf | giL2(D) :=

Z

D
f(x)g(x) dx (2.1.68)

• We will make the conventions:

f ✏(x, t) = O(✏Kect) () 9c > 0, C > 0, independent of t, ✏ such that kf ✏(x, t)kL2
x

 C✏Kect

g✏(t) = O(✏Kect) () 9c > 0, C > 0, independent of t, ✏ such that |g✏(t)|  C✏Kect

(2.1.69)

• Let A be a complex matrix. Then we will write AT for its transpose, A for its complex

conjugate, and TrA for its trace. Using index notation:

(A↵�)
T := A�↵, (A)↵� := A↵� , TrA := A↵↵ (2.1.70)
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• The Kronecker delta �↵� is defined:

�↵� =

8

>

<

>

:

+1 when ↵ = �

0 when ↵ 6= �
(2.1.71)

• In dimension d = 3, the Levi-Civita symbol "↵�� is defined:

"↵�� :=

8

>

>

>

>

>

<

>

>

>

>

>

:

+1 when (↵,�, �) 2 {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

�1 when (↵,�, �) 2 {(1, 3, 2), (2, 3, 1), (3, 2, 1)}

0 when ↵ = �,� = �, or � = ↵

(2.1.72)

and satisfies the identities:

"↵�� = "��↵ = "�↵�

"�↵�"��� = �↵���� � ����↵�.
(2.1.73)

The cross product of 3-vectors v, w may then be written:

(v ⇥ w)↵ = ✏↵��v�w� (2.1.74)

2.2 Summary of relevant Floquet-Bloch theory

In this section we recall the spectral theory of the operator:

H := �1

2
�z + V (z). (2.2.1)

where V is periodic with respect to the lattice ⇤ [46; 63]. For p 2 Rd, define the spaces of p�pseudo-

periodic L2 functions as follows:

L2
p :=

n

f 2 L2
loc : f(z + v) = eip·vf(z) for all z 2 Rd, v 2 ⇤

o

. (2.2.2)

Let ⇤⇤ denote the lattice dual to ⇤:

⇤⇤ :=
n

b 2 Rd : 9v 2 ⇤ : v · b = 2⇡n, n 2 Z
o

(2.2.3)

since the p�pseudo-periodic boundary condition is invariant under p ! p + b where b 2 ⇤⇤, the

dual lattice to ⇤, it is natural to restrict to a fundamental cell, B.
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We now consider the family of eigenvalue problems depending on the parameter p 2 B:

H�(z; p) = E(p)�(z; p)

�(z + v; p) = eip·v�(z; p) for all z 2 Rd, v 2 ⇤
(2.2.4)

We can also define the space L2
loc functions which are periodic with respect to the lattice:

L2
per :=

n

f(z) 2 L2
loc(Rd) : 8v 2 ⇤, f(z + v) = f(z)

o

. (2.2.5)

Then solving the eigenvalue problem (2.2.4) is equivalent via �(z; p) = eip·z�(z; p) to solving the

family of eigenvalue problems:

H(p)�(z; p) = E(p)�(z; p),

�(z + v; p) = �(z; p) for all z 2 Rd, v 2 ⇤

H(p) =
1

2
(p� irz)

2 + V (z)

(2.2.6)

For fixed p, the operatorH(p) with periodic boundary conditions is self-adjoint and has compact

resolvent. So, for each n 2 N, there exists an eigenpair En(p),�n(z; p). The eigenvalues are real

and can be ordered with multiplicity:

E1(p)  E2(p)  ...  En�1(p)  En(p)  En+1(p)  ... (2.2.7)

and the set of normalized eigenfunctions {�n(z; p) : n 2 N} is complete in L2
per. The set of Floquet-

Bloch waves
�

�n(z; p) = eipz�n(z; p) : n 2 N, p 2 B are complete in L2(Rd):

g 2 L2(Rd) =) g(x) =
X

n�1

Z

B
g̃n(p)�n(x; p) dp, where g̃n(p) := h�n(·; p)| g(·)iL2(Rd) (2.2.8)

where the sum converges in L2. The L2(Rd) spectrum of the operator (2.2.1) is obtained by taking

the union of the closed real intervals swept out as p varies over the Brillouin zone B:

�(H)L2(Rd) = [n2R{En(p) : p 2 B} (2.2.9)

Our results require su�cient regularity of the maps:

En : B ! R, p 7! En(p) (2.2.10)

�n : B ! L2
per, p 7! �n(z; p) (2.2.11)
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Definition 2.2.1. We will call an eigenvalue band En(p) of the problem (2.2.6) isolated at a point

p 2 B if:

inf
m 6=n

|Em(p)� En(p)| > 0. (2.2.12)

We have in this case:

Theorem 2.2.1 (Smoothness of isolated bands). Let En(p),�n(z; p) satisfy the eigenvalue problem

(2.2.6). Let the band En(p) be isolated at a point p0 in the sense of Definition 2.2.1. Then the

maps (2.2.10) are smooth in a neighborhood of the point p0.

When bands are not isolated we have the following situation:

Definition 2.2.2. Let Em(p), En(p) : m,n 2 N,m 6= n be eigenvalue bands of the eigenvalue

problem (2.2.6). If p⇤ 2 B is such that:

Em(p⇤) = En(p
⇤), (2.2.13)

we will say that the bands En(p) and Em(p) have a band crossing at p⇤.

In a neighborhood of a crossing, the band functions En(p), Em(p) are only Lipschitz contin-

uous, and the eigenfunction maps p 7! �n(z; p),�m(z; p) may be discontinuous [46]. This loss of

regularity occurs at conical degeneracies, which appear, for example, in the band structure of hon-

eycomb lattice potentials [28; 29], and in the dispersion surfaces of plane waves for homogeneous

anisotropic media [6]. An in depth study of conical crossings which appear in the study of the

Born-Oppenheimer approximation of molecular dynamics was given in Ref. [37].

It will be convenient to extend the maps p 7! En(p),�n(z; p) to maps on all of Rd. Let p 2 B,
and let b 2 ⇤⇤ denote a reciprocal lattice vector. Then we have that:

H(p+ b)
⇣

e�ib·z�n(z; p)
⌘

= e�ib·zH(p)�n(z; p)

= e�ib·zEn(p)�n(z; p) = En(p)
⇣

e�ib·z�n(z; p)
⌘

for all v 2 ⇤, e�ib·(z+v)�n(z + v; p)

= e�ib·ve�ib·z�n(z; p) = e�ib·z�n(z; p),

(2.2.14)

so that if �n(z; p) satisfies (2.2.6) with eigenvalue En(p), then e�ib·z�n(z; p) satisfies (2.2.6) with p

replaced by p+ b, with the same eigenvalue. It then follows that the map p 7! En(p) extends to a

periodic function with respect to the reciprocal lattice ⇤⇤. If the eigenvalue En(p) is simple, then:

(up to a constant phase shift) �n(z; p+ b) = e�ib·z�n(z; p).
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2.3 Proof of Theorem 2.1.1 by multiscale analysis

2.3.1 Derivation of asymptotic solution (2.1.29) via multiscale expansion

Following Hagedorn [36; 37], and Carles and Sparber [61], we seek a solution of (2.1.1) of the form:

 ✏(x, t) = ✏�d/4eiS(t)/✏eip(t)·y/✏
1/2

f ✏(y, z, t)
�

�

�

z=x

✏

,y=
x�q(t)

✏

1/2

+ ⌘✏(x, t). (2.3.1)

Substituting (2.3.1) into (2.1.1) gives an inhomogeneous time-dependent Schrödinger equation for

⌘✏(x, t), with a source term r✏(x, t) which depends on S(t), q(t), p(t), and f ✏(y, z, t):

i✏@t⌘
✏(x, t) =



�✏
2

2
�x + V

⇣x

✏

⌘

+W (x)

�

⌘✏(x, t) + r✏[S, q, p, f ✏](x, t)

⌘✏(x, 0) = ⌘✏0[S, q, p, f
✏](x) =  ✏(x, 0)� ✏�d/4eiS(0)/✏eip(0)·y/✏

1/2
f ✏(z, y, 0)

�

�

�

z=x

✏

,y=
x�q(0)

✏

1/2

(2.3.2)

The idea behind the proof of Theorem 2.1.1 is to choose the functions S(t), q(t), p(t), and f ✏(y, z, t)

so that:

r✏[S, q, p, f ✏](x, t) = O(✏2)

⌘✏0[S, q, p, f
✏](x) = O(✏)

(2.3.3)

We will derive S(t), q(t), p(t), f ✏(y, z, t) by a systematic formal analysis. This is the content of

Sections 2.3.1.1, 2.3.1.2, 2.3.1.3. Proving rigorous bounds on the residual will be the content of

Section 2.3.2. The bound (2.1.30) on ⌘✏(x, t) will then follow from applying the standard a priori

L2 bound for solutions of the time-dependent inhomogeneous Schrödinger equation.

Before starting on the formal asymptotic analysis, we note some exact manipulations which will

ease calculations below. The residual r✏(x, t) has the explicit form:

r✏(x, t) = ✏�d/4eiS(t)/✏eip(t)·y/✏
1/2

⇢

✏



1

2
(�iry)

2 � i@t

�

+ ✏1/2


(p(t)� irz) · (�iry)� q̇(t) · (�iry) + ṗ(t) · y
�

+



Ṡ(t)� q̇(t)p(t) +
1

2
(p(t)� irz)

2 + V (z) +W (q(t) + ✏1/2y)

��

f ✏(y, z, t)

�

�

�

�

z=x

✏

,y=
x�q(t)

✏

1/2

(2.3.4)

Since W is assumed smooth, we can replace W (q(t)+ ✏1/2y) by its Taylor series expansion in ✏1/2y:

W (q(t) + ✏1/2y) = W (q(t)) + ✏1/2rqW (q(t)) · y + ✏
1

2
@q

↵

@q
�

W (q(t))y↵y�

+ ✏3/2
1

6
@q

↵

@q
�

@q
�

W (q(t))y↵y�y� + ✏2
Z 1

0

(⌧ � 1)4

4!
@q

↵

@q
�

@q
�

@q
�

W (q(t) + ⌧✏1/2y) d⌧y↵y�y�y�.

(2.3.5)
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We expand f ✏(y, z, t) as a formal power series:

f ✏(y, z, t) = f0(y, z, t) + ✏1/2f1(y, z, t) + ... (2.3.6)

and assume that for all j 2 {0, 1, 2, ...} the f j(y, z, t) are periodic with respect to the lattice in z

and have su�cient smoothness and decay in y:

for all v 2 ⇤, f j(y, z + v, t) = f j(y, z, t)

f j(y, z, t) 2 ⌃R�j
y (Rd).

(2.3.7)

The ⌃l-spaces are defined in (2.1.62). R > 0 is a fixed positive integer which we will take as large

as required. Recall the notation:

H(p) :=
1

2
(p� irz)

2 + V (z). (2.3.8)

Substituting (2.3.5) and (2.3.6) then gives:

r✏(x, t) = ✏�d/4eiS(t)/✏eip(t)·y/✏
1/2

⇢

✏2


Z 1

0

(⌧ � 1)4

4!
@q

↵

@q
�

@q
�

@q
�

W (q(t) + ⌧✏1/2y) d⌧y↵y�y�y�

�

+ ✏3/2


1

6
@q

↵

@q
�

@q
�

W (q(t))y↵y�y�

�

+ ✏



1

2
(�iry)

2 +
1

2
@q

↵

@q
�

W (q(t))y↵y� � i@t

�

+ ✏1/2


(p(t)� irz) · (�iry) +rqW (q(t)) · y � q̇(t) · (�iry) + ṗ(t) · y
�

+
h

Ṡ(t)� q̇(t) · p(t) +H(p(t))
ion

f0(y, z, t) + ✏1/2f1(y, z, t) + ...
o

�

�

�

z=x

✏

,y=
x�q(t)

✏

1/2

(2.3.9)

In order to prove Theorem 2.1.1 it will be su�cient to choose the f j(y, z, t), j 2 {0, ..., 3} so

that terms of orders ✏j/2, j 2 {0, ..., 3} vanish. With this choice of f j , j 2 {0, ..., 3} we will then

prove rigorously in Section 2.3.2 that r✏(x, t) can be bounded by C✏2ect for constants c > 0, C >

0 independent of ✏, t. There will then be no loss of accuracy in the approximation by taking

f j(y, z, t) = 0, j � 4.

2.3.1.1 Analysis of leading order terms

Recall that we assume each f j , j 2 {0, 1, 2, ...} to be periodic with respect to the lattice ⇤ in z

(2.3.7). Collecting terms of order 1 in (2.3.9) and setting equal to zero therefore gives the following
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self-adjoint elliptic eigenvalue problem in z:

H(p(t))f0(y, z, t) =
h

�Ṡ(t) + q̇(t) · p(t)
i

f0(y, z, t)

for all v 2 ⇤, f0(y, z + v, t) = f0(y, z, t)

f0(y, z, t) 2 ⌃R
y (Rd)

(2.3.10)

Under Assumption 2.1.1, En(p(t)) is a simple eigenvalue with eigenfunction �n(z; p(t)) for all t � 0.

Projecting equation (2.3.10) onto the subspace of:

L2
per :=

n

f 2 L2
loc(Rd) : 8v 2 ⇤, f(z + v) = f(z)

o

. (2.3.11)

spanned by �n(z; p(t)) implies:

Ṡ(t) = q̇(t) · p(t)� En(p(t)) (2.3.12)

which, after matching with the initial data (2.1.28), implies (2.1.21). Equation (2.3.10) then be-

comes:

[H(p(t))� En(p(t))] f
0(y, z, t) = 0

for all v 2 ⇤, f0(y, z + v, t) = f0(y, z, t)

f0(y, z, t) 2 ⌃R
y (Rd)

(2.3.13)

which has the general solution:

f0(y, z, t) = a0(y, t)�n(z; p(t)). (2.3.14)

where a0(y, t) is an arbitrary function in ⌃R
y (Rd), to be fixed at higher order in the expansion.

2.3.1.2 Analysis of order ✏1/2 terms

Collecting terms of order ✏1/2 in (2.3.9), substituting the form of Ṡ(t) (2.3.12), and setting equal

to zero gives the following inhomogeneous self-adjoint elliptic equation in z for f1(y, z, t):

[H(p(t))� En(p(t))] f
1(y, z, t) = ⇠1(y, z, t)

for all z 2 ⇤, f1(y, z + v, t) = f1(y, z, t); f1(y, z, t) 2 ⌃R�1
y (Rd)

⇠1 := � [(p(t)� irz) · (�iry) +rqW (q(t)) · y � q̇(t) · (�iry) + ṗ(t) · y] f0(y, z, t).

(2.3.15)

Before solving (2.3.15) we remark on our general strategy for solving equations of this type.
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Remark 2.3.1. Collecting terms of orders ✏j/2 for each j 2 {1, 2, ...} and setting equal to zero, we

obtain inhomogeneous self-adjoint elliptic equations of the form:

[H(p(t))� En(p(t))] f
j(y, z, t) = ⇠j [f0, f1, ..., f j�1](y, z, t)

for all z 2 ⇤, f j(y, z + v, t) = f j(y, z, t); f j(y, z, t) 2 ⌃R�j
y (Rd)

(2.3.16)

Our strategy for solving (2.3.16) will be the same for each j. Under Assumption 2.1.1, the eigenvalue

En(p(t)) is simple with eigenfunction �n(z; p(t)) for all t � 0. By the Fredholm alternative, equation

(2.3.16) is solvable if and only if:

for all t � 0,
⌦

�n(z; p(t))| ⇠j(y, z, t)
↵

L2
z

(⌦)
= 0. (2.3.17)

We will first use identities derived in Appendix A.1 from the eigenvalue equation:

[H(p)� En(p)]�n(z; p) = 0 (2.3.18)

to write ⇠j(y, z, t) as a sum:

⇠j(y, z, t) = ⇠̃j(y, z, t) + [H(p(t))� En(p(t))]u
j(y, z, t) (2.3.19)

Note that by self-adjointness of H(p(t)) � En(p(t)), condition (2.3.17) is equivalent to the same

condition with ⇠j(y, z, t) replaced by ⇠̃j(y, z, t):

for all t � 0,
D

�n(z; p(t))| ⇠̃j(y, z, t)
E

L2
z

(⌦)
= 0. (2.3.20)

For f 2 L2
per, define:

P?
n (p)f(z) := f(z)� h�n(z; p)| f(z)iL2

z

(⌦) �n(z; p) (2.3.21)

to be the projection onto the orthogonal complement of the subspace of L2
per spanned by �n(z; p(t)).

Then, assuming (2.3.20) is satisfied, the general solution of (2.3.16) is:

f j(y, z, t) = aj(y, t)�n(z; p(t)) + uj(y, z, t) + [H(p(t))� En(p(t))]
�1 P?

n (p(t))⇠̃j(y, z, t). (2.3.22)

Note that we have again made use of Assumption 2.1.1 to ensure that the operator [H(p(t)) �
En(p(t))]�1P?

n (p(t)) : L2
per ! L2

per is bounded for all t � 0. When j = 1, condition (2.3.20) may

be enforced by choosing q̇(t), ṗ(t) to satisfy (2.1.19). For j � 2, enforcing the constraint (2.3.20)

leads to evolution equations for aj�2(y, t).
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We will give the proof of the following Lemma at the end of this section:

Lemma 2.3.1. ⇠1(y, z, t), defined in (2.3.15), satisfies:

⇠1(y, z, t) = ⇠̃1(y, z, t) + [H(p(t))� En(p(t))]u
1(y, z, t) (2.3.23)

where:

⇠̃1(y, z, t) :=

� ⇥(rpEn(p(t))� q̇(t)) · (�iry)a
0(y, t) + (rqW (q(t)) + ṗ(t)) · ya0(y, t)⇤�n(z; p(t))

u1(y, z, t) := (�iry)a
0(y, t) ·rp�n(z; p(t))

(2.3.24)

The solvability condition of (2.3.15), given by (2.3.20) with j = 1 on ⇠̃1(y, z, t) (2.3.24) is then

equivalent to:

(rpEn(p(t))� q̇(t)) · (�iry)a
0(y, t) + (rqW (q(t)) + ṗ(t)) · ya0(y, t) = 0 (2.3.25)

which we can satisfy by choosing (q(t), p(t)) to evolve as the Hamiltonian flow of the nth Bloch

band Hamiltonian Hn(q, p) = En(p) +W (q):

q̇(t) = rpEn(p(t)), ṗ(t) = �rqW (q(t)). (2.3.26)

Taking q(0), p(0) = q0, p0 to match with the initial data (2.1.28) implies (2.1.19).

The general solution of (2.3.15) is given by taking j = 1 in (2.3.22), where u1, ⇠̃1 are given by

(2.3.24). With the choice (2.3.26) for q̇(t), ṗ(t) we have that ⇠̃1 = 0 for all t � 0 so that the general

solution reduces to:

f1(y, z, t) = a1(y, t)�n(z; p(t)) + (�iry)a
0(y, t) ·rp�n(z; p(t)) (2.3.27)

where a1(y, t) is an arbitrary function in ⌃R�1
y (Rd) to be fixed at higher order in the expansion.

Note that since a0(y, t) 2 ⌃R
y (Rd), this ensures that f1(y, z, t) 2 ⌃R�1

y (Rd) as required.

Proof of Lemma 2.3.1. By Assumption 2.1.1, En(p) is smooth in a neighborhood of p(t). By adding

and subtracting rpEn(p(t)) · (�iry)f0(y, z, t), ⇠1(y, z, t) is equal to:

⇠1(y, z, t) = � [((p(t)� irz)�rpEn(p(t))) · (�iry)] f
0(y, z, t)

� [(rpEn(p(t))� q̇(t)) · (�iry)] f
0(y, z, t)� [(rqW (q(t)) + ṗ(t)) · y] f0(y, z, t)

(2.3.28)
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Substituting the explicit form of f0(y, z, t) (2.3.14) into (2.3.28) we have:

⇠1(y, z, t) = �(�iry)a
0(y, t) · [(p(t)� irz)�rpEn(p(t))]�n(z; p(t))

� (�iry)a
0(y, t) · [rpEn(p(t))� q̇(t)]�n(z; p(t))� ya0(y, t) · [rqW (q(t)) + ṗ(t)]�n(z; p(t)).

(2.3.29)

(2.3.24) then follows immediately from identity (A.1.2).

2.3.1.3 Analysis of order ✏ and ✏3/2 terms (summary)

It is possible to continue the procedure outlined in Remark 2.3.1 to any order in ✏1/2. In Appendices

A.2 and A.3 we show the details of how to continue the procedure in order to cancel terms in the

expansion of orders ✏ and ✏3/2. In particular, we derive the evolution equations of the amplitudes

a0(y, t), a1(y, t) and show that:

a0(y, t) = a(y, t)ei�B

(t), a1(y, t) = b(y, t)ei�B

(t) (2.3.30)

where a(y, t), b(y, t),�B(t) satisfy equations (2.1.22), (2.1.24), and (2.1.27) respectively.

2.3.2 Proof of estimate (2.1.30) for the corrector ⌘

Let:

f ✏
3(y, z, t) := f0(y, z, t) + ✏1/2f1(y, z, t) + ✏f2(y, z, t) + ✏3/2f3(y, z, t) (2.3.31)

Where the f0, f1, f2, f3 are given by (2.3.14), (2.3.27), (A.2.5), (A.3.5) respectively, and define:

 ✏
3(x, t) := ✏�d/4eiS(t)/✏eip(t)·y/✏

1/2
f ✏
3(y, z, t)

�

�

�

z=x

✏

,y=
x�q(t)

✏

1/2

(2.3.32)

Let  ✏(x, t) denote the exact solution of the initial value problem (2.1.28). From the manipulations

of the previous Section, we have that ⌘✏3(x, t) :=  ✏(x, t)�  ✏
3(x, t) satisfies:

i✏@t⌘
✏
3(x, t) =



�✏
2

2
�x + V

⇣x

✏

⌘

+W (x)

�

⌘✏3(x, t) + r✏3(x, t)

⌘✏3(x, 0) = ⌘✏3,0(x)

(2.3.33)
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where r✏3(x, t) is given by:

r✏3(x, t) = ✏�d/4eiS(t)/✏eip(t)·y/✏
1/2

⇢

✏2
Z 1

0

(⌧ � 1)4

4!
@q

↵

@q
�

@q
�

@q
�

W (q(t) + ⌧✏1/2y) d⌧y↵y�y�y�

·
⇣

f0(y, z, t) + ✏1/2f1(y, z, t) + ✏f2(y, z, t) + ✏3/2f3(y, z, t)
⌘

+ ✏2


1

6
@q

↵

@q
�

@q
�

W (q(t))y↵y�y�

�

⇣

f1(y, z, t) + ✏1/2f2(y, z, t) + ✏f3(y, z, t)
⌘

+ ✏2


�i@t +
1

2
(�iry)

2 +
1

2
@q

↵

@q
�

W (q(t))y↵y�

�

⇣

f2(y, z, t) + ✏1/2f3(y, z, t)
⌘

+✏2


((p(t)� irz)�rpEn(p(t))) · (�iry)

�

f3(y, z, t)

�

�

�

�

�

z=x

✏

,y=
x�q(t)

✏

1/2

(2.3.34)

And ⌘✏3,0(x) is given by:

⌘✏3,0(x) = � ✏�d/4eip0·y/✏
1/2
n

✏
h

f2(z, y, 0) + ✏1/2f3(z, y, 0)
io

�

�

�

z=x

✏

,y=
x�q0
✏

1/2

(2.3.35)

Since the f j(y, z, t), j 2 {0, ..., 3} are periodic with respect to the lattice ⇤, we will follow Carles

and Sparber [61] and bound the above expressions in the uniform norm in z and the L2 norm in y:

kr✏3(x, t)kL2
x



=

�

�

�

�

✏2
Z 1

0

(⌧ � 1)4

4!
@q

↵

@q
�

@q
�

@q
�

W (q(t) + ⌧✏1/2y) d⌧y↵y�y�y�

·
⇣

f0(y, z, t) + ✏1/2f1(y, z, t) + ✏f2(y, z, t) + ✏3/2f3(y, z, t)
⌘

+ ✏2


1

6
@q

↵

@q
�

@q
�

W (q(t))y↵y�y�

�

⇣

f1(y, z, t) + ✏1/2f2(y, z, t) + ✏f3(y, z, t)
⌘

+ ✏2


�i@t +
1

2
(�iry)

2 +
1

2
@q

↵

@q
�

W (q(t))y↵y�

�

⇣

f2(y, z, t) + ✏1/2f3(y, z, t)
⌘

+✏2


((p(t)� irz)�rpEn(p(t))) · (�iry)

�

f3(y, z, t)

�

�

�

�

L1
z

,L2
y

k⌘✏3(x, 0)kL2
x


�

�

�

✏
h

f2(z, y, 0) + ✏1/2f3(z, y, 0)
i

�

�

�

L1
z

,L2
y

(2.3.36)

where we have used the fact that:
�

�

�

�

✏�d/4f

✓

x� q(t)

✏1/2

◆

�

�

�

�

L2
x

= kf(y)kL2
y

. (2.3.37)

We show how to bound the first term in (2.3.36). Bounding the other terms is similar, although

care must be taken in bounding terms in L1
z , see Appendix A.4. Let:

I(t) := ✏2
�

�

�

�

Z 1

0

(⌧ � 1)4

4!
@q

↵

@q
�

@q
�

@q
�

W (q(t) + ⌧✏1/2y) d⌧y↵y�y�y�f
0(y, z, t)

�

�

�

�

L1
z

,L2
y

(2.3.38)
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where f0(y, z, t) = a0(y, t)�n(z; p(t)) (2.3.14). By Assumption 2.1.2,
P

|↵|=4 |@↵xW (x)| 2 L1(Rd):

I(t)  ✏2
1

4!

�

�

�

�

�

�

X

|↵|=4

|@↵xW (x)|
�

�

�

�

�

�

L1(Rd)

X

|↵|=4

ky↵a(y, t)�n(z; p(t))kL1
z

,L2
y

(2.3.39)

Recall Assumption 2.1.1. Define:

Sn := {p 2 Rd : inf
m 6=n

|Em(p)� En(p)| � M}, (2.3.40)

so that for all t 2 [0,1), p(t) 2 Sn. For each fixed p 2 Sn, by elliptic regularity, �n(z; p) is smooth

in z so that k�n(z; p)kL1
z

< 1. Using compactness of the Brillouin zone B and smoothness of

�n(z; p) for p 2 Sn we have that:

sup
p2B\S

n

k�n(z; p)kL1
z

< 1. (2.3.41)

Recall that for any reciprocal lattice vector b 2 ⇤⇤, �n(z; p + b) = e�ib·z�n(z; p). It then follows

that:

for all b 2 ⇤⇤, k�n(z; p+ b)kL1
z

= k�n(z; p)kL1
z

(2.3.42)

It then follows from combining (2.3.41) and (2.3.42) that:

sup
p2S

n

k�n(z; p)kL1
z

< 1. (2.3.43)

In Appendix A.4 we show how to bound all z-dependence in r✏3(x, t) (2.3.34) uniformly in p 2 Sn

in a similar way.

We have therefore that (2.3.39):

I(t)  ✏2
1

4!

�

�

�

�

�

�

X

|↵|=4

|@↵xW (x)|
�

�

�

�

�

�

L1(Rd)

sup
p2S

n

k�n(z; p)kL1
z

X

|↵|=4

ky↵a(y, t)kL2
y

(2.3.44)

We see that to complete the bound, we require a bound on the 4th moments of a(y, t), which solves

the Schrödinger equation with time-dependent co-e�cients:

i@ta(y, t) =
1

2
@p

↵

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)a(y, t) +
1

2
@q

↵

@q
�

W (q(t))y↵y�a(y, t)

a(y, 0) = a0(y)
(2.3.45)

Following Carles and Sparber [61] we first define, for any l 2 N, the spaces:

⌃l(Rd) :=

8

<

:

f 2 L2(Rd) : kfk⌃l

:=
X

|↵|+|�|l

ky↵(�i@y)
�f(y)kL2

y

< 1,

9

=

;

(2.3.46)

We then require the following Lemma due to Kitada [45]:
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Lemma 2.3.2 (Existence of unitary solution operator for the envelope equation). Let u0 2 L2(Rd),

and ⌘↵�(t), ⇣↵�(t) be real-valued, symmetric, continuous, and uniformly bounded in t. Then the

equation:

i@tu =
1

2
⌘↵�(t)(�i@y

↵

)(�i@y
�

)u+
1

2
⇣↵�(t)y↵y�u

u(y, 0) = u0(y)
(2.3.47)

has a unique solution u 2 C([0,1);L2(Rd)). It satisfies:

ku(·, t)kL2(Rd) = ku0(·)kL2(Rd) (2.3.48)

Moreover, if u0 2 ⌃l(Rd), then u 2 C([0,1);⌃l(Rd)).

We seek quantitative bounds on ku(·, t)k⌃l(Rd) for l � 1. For simplicity, we consider in detail

the case l = 1. Recall (2.1.23):

H (t) :=
1

2
⌘↵�(t)(�i@y

↵

)(�i@y
�

) +
1

2
⇣↵�(t)y↵y� (2.3.49)

and let u0(y) 2 S(Rd) so that 8l � 0, the solution of (2.3.47), u(y, t) 2 C([0,1);⌃l(Rd)). Then

(�i@y
↵

)u(y, t) 2 S(R) solves:

i@t(�i@y
↵

)u = H (t)(�i@y
↵

)u+ [(�i@y
↵

),H (t)]u

(�i@y
↵

)u(y, 0) = (�i@y
↵

)u0(y)
(2.3.50)

We can solve this equation using Duhamel’s formula and the solution operator of equation (2.3.47).

It follows that:

k(�i@y
↵

)u(y, t)kL2
y

 k(�i@y
↵

)u(y, 0)kL2
y

+

Z t

0
k[(�i@y

↵

),H (s)]u(y, s)kL2
y

ds (2.3.51)

Since ⇣↵�(t) is symmetric, the commutator is given explicitly by:

[(�i@y
↵

),H (s)] = (�i)⇣↵�(t)y� (2.3.52)

So that:

k(�i@y
↵

)u(y, t)kL2
y

 k(�i@y
↵

)u0(y)kL2
y

+

Z t

0
|⇣↵�(t)|ky�u(y, s)kL2

y

ds (2.3.53)

By an identical reasoning we can derive a similar bound on y↵u(y, t):

ky↵u(y, t)kL2
y

 ky↵u0(y)kL2
y

+

Z t

0
|⌘↵�(s)|k(�i@y

�

)u(y, s)kL2
y

ds (2.3.54)
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Adding inequalities (2.3.53) and (2.3.54) gives:

ku(·, t)k⌃1  ku0(·)k⌃1 + 2

Z t

0
max

↵,�2{1,...,d}
{|⌘↵�(s)|, |⇣↵�(s)|} ku(·, s)k⌃1 ds (2.3.55)

Using the following version of Gronwall’s inequality:

Lemma 2.3.3 (Gronwall’s inequality). Let v(t) satisfy the inequality:

v(t)  a(t) +

Z t

0
b(s)v(s) ds (2.3.56)

where b(t) is non-negative and a(t) is non-decreasing. Then:

v(t)  a(t) exp

✓

Z t

0
b(s) ds

◆

(2.3.57)

We have that:

ku(·, t)k⌃1  ku0(·)k⌃1e2
R
t

0max
↵,�2{1,...,d}{|⌘↵�

(s)|,|⇣
↵�

(s)|} ds (2.3.58)

More generally, we have for any l � 0 that there exists a constant Cl > 0 such that:

ku(·, t)k⌃l

 ku0(·)k⌃l

eCl

R
t

0max
↵,�2{1,...,d}{|⌘↵�

(s)|,|⇣
↵�

(s)|} ds (2.3.59)

We have proved the following:

Lemma 2.3.4 (Bound on solutions of (2.3.47) in the spaces ⌃l(Rd)). Let the time-dependent co-

e�cients ⌘↵�(t), ⇣↵�(t) be real-valued, symmetric, continuous, and uniformly bounded in t. Let

u0(y) 2 ⌃l(Rd). Then, by Lemma 2.3.2, there exists a unique solution u(y, t) 2 C([0,1);⌃l(Rd)).

For each integer l � 0, there exists a constant Cl > 0 such that this solution satisfies:

ku(·, t)k⌃l(Rd)  ku0(·)k⌃l

eCl

R
t

0max
↵,�2{1,...,d}{|⌘↵�

(s)|,|⇣
↵�

(s)|} ds (2.3.60)

Since the map p 7! En(p) is B-periodic and smooth for all p 2 Sn, we have that under Assump-

tion 2.1.1, supt2[0,1)max↵,�2{1,...,d} |@p
↵

@p
�

En(p(t))| < 1. Under Assumption 2.1.2 we have that

supt2[0,1)max↵,�2{1,...,d} |@q
↵

@q
�

W (q(t))| < 1. Since @p
↵

@p
�

En(p(t)), @q
↵

@q
�

W (q(t)) are clearly

real-valued, symmetric, and continuous in t we have that Lemma 2.3.4 applies to solutions of

(2.3.45). Since a0(y) 2 S(Rd) by assumption we have that for any integer l � 0:

ka(y, t)k⌃l(Rd)  ka0(y)k⌃l(Rd)

· exp
 

Cl max
↵,�2{1,...,d}

sup
s2[0,1)

⇢

|@p
↵

@p
�

En(p(s))|, |@q
↵

@q
�

W (q(s))|
�

t

!

.
(2.3.61)



CHAPTER 2. SEMICLASSICAL WAVEPACKET SOLUTIONS AND EFFECTIVE
‘PARTICLE-FIELD’ DYNAMICS 41

Remark 2.3.2. Terms which depend on b(y, t) rather than a(y, t) may be dealt with similarly, by

an application of Duhamel’s formula and a Gronwall inequality.

We have therefore that:

✏2
�

�

�

�

Z 1

0

(⌧ � 1)4

4!
@q

↵

@q
�

@q
�

@q
�

W (q(t) + ⌧✏1/2y) d⌧y↵y�y�y�a(y, t)�n(z; p(t))

�

�

�

�

L1
z

,L2
y

 c1✏
2ec2t

(2.3.62)

where:

c1 :=
1

4!

�

�

�

�

�

�

X

|↵|=4

|@↵xW (x)|
�

�

�

�

�

�

L1
x

(Rd)

sup
p2S

n

k�n(z; p)kL1
z

ka0(y)k⌃4
y

(Rd)

c2 := Cl max
↵,�2{1,...,d}

sup
s2[0,1)

⇢

|@p
↵

@p
�

En(p(s))|, |@q
↵

@q
�

W (q(s))|
�

(2.3.63)

are constants independent of t, ✏.

We conclude that there exist constants C1, C2, C3 > 0, independent of t, ✏ such that:

k⌘✏3,0(x)kL2
x

 C1✏

kr✏3(x, t)kL2
x

 C2e
C3t✏2

(2.3.64)

The bound (2.1.30) then follows from the basic a priori L2 bound for solutions of the linear time-

dependent Schrödinger equation:

Lemma 2.3.5. Let  (x, t) be the unique solution of:

i@t = H + f

 (x, 0) =  0(x)
(2.3.65)

where H is a self-adjoint operator. Then:

k (·, t)kL2(Rd)  k 0(·)kL2(Rd) +

Z t

0
kf(·, t0)kL2(Rd) dt

0 (2.3.66)

when f = 0, we have:

k (·, t)kL2(Rd) = k 0(·)kL2(Rd) (2.3.67)

Applying Lemma 2.3.5 to equation (2.3.33) then gives the bound on ⌘✏3(x, t):

k⌘✏3(x, t)kL2
x

 k⌘✏3(x, 0)kL2
x

+
1

✏

Z t

0
kr✏3(x, t0)kL2

x

dt0

 C1✏+
1

✏

Z t

0
C2e

C3t0✏2 dt0

 CeCt✏

(2.3.68)
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where C is a constant independent of ✏, t. This completes the proof of Theorem 2.1.1.

2.4 Proof of Theorem 2.1.2 on dynamics of physical observables

Let  ✏(x, t) be the solution of (2.1.28). By Theorem 2.1.1 we have that this solution has the form:

 ✏(x, t) =  ̃✏(y, z, t)
�

�

�

y=
x�q(t)

✏

1/2 ,z=x

✏

+ ⌘✏(x, t) (2.4.1)

where:

 ̃✏(y, z, t) := ✏�d/4eiS(t)/✏eip(t)·y/✏
1/2

ei�B

(t)
n

a(y, t)�n(z; p(t))

+✏1/2
h

(�iry)a(y, t) ·rp�n(z; p(t)) + b(y, t)�n(z; p(t))
io

(2.4.2)

In this section we compute the dynamics of the physical observables:

Q✏(t) :=
1

N ✏(t)

Z

Rd

x
�

�

�

 ̃✏(y, z, t)
�

�

�

2

z=x

✏

,y=
x�q(t)

✏

1/2

dx

P✏(t) :=
1

N ✏(t)

Z

Rd

 ̃✏(y, z, t)
⇣

�i✏1/2ry

⌘

 ̃✏(y, z, t)
�

�

�

z=x

✏

,y=
x�q(t)

✏

1/2

dx
(2.4.3)

where:

N ✏(t) =

Z

Rd

�

�

�

 ̃✏(y, z, t)
�

�

�

2

z=x

✏

,y=
x�q(t)

✏

1/2

dx (2.4.4)

Remark 2.4.1. Throughout this section we will employ a short-hand notation:

f ✏(x, t) = O(✏Kect) () 9c > 0, C > 0 independent of t, ✏ such that kf ✏(x, t)kL2
x

 C✏Kect

g✏(t) = O(✏Kect) () 9c > 0, C > 0 independent of t, ✏ such that |g✏(t)|  C✏Kect

(2.4.5)

We will use the following Lemma which is a mild generalization of that found in Ref. [8] (as

Lemma 4.2):

Lemma 2.4.1. Let f 2 S(Rd), g smooth and periodic with respect to the lattice ⇤, s 2 R a constant,

and � > 0 an arbitrary positive parameter. Then for any positive integer N > 0:

Z

Rd

f (x) g
⇣x

�
+

s

�2

⌘

dx =

✓

Z

Rd

f(x) dx

◆✓

Z

⌦
g(z) dz

◆

+O(�N ). (2.4.6)

For the proof, see Appendix A.5.
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2.4.1 Asymptotic expansion and dynamics of N ✏(t)

By changing variables in the integral (2.4.4), we have that:

N ✏(t) = ✏d/2
Z

Rd

�

�

�

 ̃✏(y, z, t)
�

�

�

2

z= y

✏

1/2+
q(t)
✏

dy. (2.4.7)

Substituting (2.4.2) into (2.4.7) gives:

=

Z

Rd

⇢

a(y, t)�n(z; p(t)) + ✏1/2
h

(�iry)a(y, t) ·rp�n(z; p(t)) + b(y, t)�n(z; p(t))
i

�

n

a(y, t)�n(z; p(t)) + ✏1/2
h

(�iry)a(y, t) ·rp�n(z; p(t)) + b(y, t)�n(z; p(t))
io

�

�

�

z= y

✏

1/2+
q(t)
✏

dy.

(2.4.8)

We expand the product in the integral and apply Lemma 2.4.1 term by term with s = q(t), � = ✏1/2.

Since the �n are assumed normalized: for all t 2 [0,1) k�n(·; p(t))kL2(⌦) = 1, we have:

N ✏(t) = ka(y, t)k2L2
y

(Rd)

+ ✏1/2
h

h(�iry)a(y, t)| a(y, t)iL2
y

(Rd) · hrp�n(z; p(t))|�n(z; p(t))iL2
z

(⌦)

+ ha(y, t)| (�iry)a(y, t)iL2
y

(Rd) · h�n(z; p(t))|rp�n(z; p(t))iL2
z

(⌦)

+ hb(y, t)| a(y, t)iL2
y

(Rd) + ha(y, t)| b(y, t)iL2
y

(Rd)

i

+O(✏ect).

(2.4.9)

Remark 2.4.2. In (2.4.9) we have made explicit all terms through order ✏1/2. To justify the

error bound, consider that the remaining terms may be bounded by C(t)✏ where C(t) depends on

⌃l1
y -norms of a(y, t), b(y, t) and L2

z-norms of @l2p �n(z; p(t)) where l1, l2 are positive integers. By an

identical reasoning to that given in Section 2.3.2 we have that C(t) may be bounded by Cect where

c > 0, C > 0 are constants independent of ✏, t. Error terms of this type will arise throughout the

following discussion and will be treated similarly.

Under Assumption 2.1.1, in a neighborhood of the curve p(t) 2 B, the mapping p 7! �n(z; p) is

smooth. Hence, we may di↵erentiate the normalization condition: k�n(·; p)k2L2(⌦) = 1 with respect

to p and evaluate along the curve p(t) to obtain the identity:

h�n(z; p(t))|rp�n(z; p(t))iL2
z

(⌦) + hrp�n(z; p(t))|�n(z; p(t))iL2
z

(⌦) = 0 (2.4.10)

It follows from this, and the fact that (�iry) is symmetric with respect to the L2
y-inner product,
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that:

h(�iry)a(y, t)| a(y, t)iL2
y

(Rd) · hrp�n(z; p(t))|�n(z; p(t))iL2
z

(⌦)

+ ha(y, t)| (�iry)a(y, t)iL2
y

(Rd) · h�n(z; p(t))|rp�n(z; p(t))iL2
z

(⌦) = 0
(2.4.11)

so that (2.4.9) reduces to:

N ✏(t) = ka(y, t)k2L2
y

(Rd) + ✏1/2
h

hb(y, t)| a(y, t)iL2
y

(Rd) + ha(y, t)| b(y, t)iL2
y

(Rd)

i

+O(✏ect). (2.4.12)

From L2-norm conservation for solutions of (2.1.22), we have that ka(y, t)kL2
y

= ka0(y)kL2
y

. In

Appendix A.6 we calculate (A.6.17):

d

dt

h

hb(y, t)| a(y, t)iL2
y

(Rd) + ha(y, t)| b(y, t)iL2
y

(Rd)

i

= 0, (2.4.13)

so that:

Ṅ ✏(t) = O(✏eCt) (2.4.14)

Integrating in time then gives:

N ✏(t) = N ✏(0) +O(✏ect)

= ka0(y)k2L2
y

(Rd) + ✏1/2
h

hb0(y)| a0(y)iL2
y

(Rd) + ha0(y)| b0(y)iL2
y

(Rd)

i

+O(✏ect).
(2.4.15)

2.4.2 Asymptotic expansion of Q✏(t),P✏(t); proof of assertion (1) of Theorem

2.1.2

Changing variables in the integrals (2.4.3) and using the identity:

x = q(t) + ✏1/2y
�

�

�

y=
x�q(t)

✏

1/2

(2.4.16)

we have:

Q✏(t) = q(t) + ✏1/2+d/2 1

N ✏(t)

Z

Rd

y
�

�

�

 ̃✏(y, z, t)
�

�

�

2

z=
q(t)
✏

+ y

✏

1/2

dy

P✏(t) = ✏1/2+d/2 1

N ✏(t)

Z

Rd

 ̃✏(y, z, t) (�iry)  ̃
✏(y, z, t)

�

�

�

z=
q(t)
✏

+ y

✏

1/2

dy.
(2.4.17)
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Substituting (2.4.2) into (2.4.17) we have, for each ↵ 2 {1, ..., d}:

Q✏
↵(t) = q↵(t) + ✏1/2

1

N ✏(t)

Z

Rd

y↵

�

�

�

�

a(y, t)�n(z; p(t))

+✏1/2
⇥

(�i@y
�

)a(y, t)@p
�

�n(z; p(t)) + b(y, t)�n(z; p(t))
⇤

�

�

�

2

z=
q(t)
✏

+ y

✏

1/2

dy

P✏
↵(t) = p↵(t)+

✏1/2
1

N ✏(t)

Z

Rd

a(y, t)�n(z; p(t)) + ✏1/2
⇥

(�i@y
�

)a(y, t)@p
�

�n(z; p(t)) + b(y, t)�n(z; p(t))
⇤

(�i@y
↵

)
⇣

a(y, t)�n(z; p(t)) + ✏1/2
⇥

(�i@y
�

)a(y, t)@p
�

�n(z; p(t)) + b(y, t)�n(z; p(t))
⇤

⌘

�

�

�

z=
q(t)
✏

+ y

✏

1/2

dy

(2.4.18)

Expanding all products and applying Lemma 2.4.1 term by term in (2.4.18) we obtain:

Q✏
↵(t) = q↵(t) + ✏1/2

1

N ✏(t)
ha(y, t)| y↵a(y, t)iL2

y

(Rd)

+ ✏
1

N ✏(t)

h

hb(y, t)| y↵a(y, t)iL2
y

(Rd) + ha(y, t)| y↵b(y, t)iL2
y

(Rd)

+
⌦

(�i@y
�

)a(y, t)
�

� y↵a(y, t)
↵

L2
y

(Rd)

⌦

@p
�

�n(z; p(t))
�

��n(z; p(t))
↵

L2
z

(⌦)

+
⌦

y↵a(y, t)| (�i@y
�

)a(y, t)
↵

L2
y

(Rd)

⌦

�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

i

+O(✏3/2ect)

P✏
↵(t) = p↵(t) + ✏1/2

1

N ✏(t)
ha(y, t)| (�i@y

↵

)a(y, t)iL2
y

(Rd)

+ ✏
1

N ✏(t)

h

hb(y, t)| (�i@y
↵

)a(y, t)iL2
y

(Rd) + ha(y, t)| (�i@y
↵

)b(y, t)iL2
y

(Rd)

i

+O(✏3/2ect).

(2.4.19)

Here, terms of higher order than ✏ are bounded by a similar reasoning to that given in Section 2.3.2

(Remark 2.4.2). Using the identity (2.4.10) and the fact that (�iry) is self-adjoint we have that:

⌦

(�i@y
�

)a(y, t)
�

� y↵a(y, t)
↵

L2
y

(Rd)

⌦

@p
�

�n(z; p(t))
�

��n(z; p(t))
↵

L2
z

(⌦)

+
⌦

y↵a(y, t)| (�i@y
�

)a(y, t)
↵

L2
y

(Rd)

⌦

�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

=
⌦

a(y, t)| [y↵, (�i@y
�

)]a(y, t)
↵

L2
y

(Rd)

⌦

�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

(2.4.20)
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where [y↵, (�i@y
�

)] := y↵(�i@y
�

) � (�i@y
�

)y↵ is the commutator. Since [y↵, (�i@y
�

)] = i�↵� We

have that:

⌦

a(y, t)| [y↵, (�i@y
�

)]a(y, t)
↵

L2
y

(Rd)

⌦

�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

= ika(y, t)k2L2
y

(Rd) h�n(z; p(t))| @p
↵

�n(z; p(t))iL2
z

(⌦) .
(2.4.21)

Using L2-norm conservation for solutions of (2.1.22), we have that for all t � 0, ka(y, t)k2
L2
y

(Rd)
=

ka0(y)k2L2
y

(Rd)
. Using (2.4.15), we have that ka0(y)k2L2

y

(Rd)
= N ✏(t) + O(✏1/2ect) (2.4.12). We have

proved that:

ika(y, t)k2L2
y

(Rd) h�n(z; p(t))|rp�n(z; p(t))iL2
z

(⌦)

= N ✏(t)An(p(t)) +O(✏1/2ect)
(2.4.22)

where the last equality holds by the definition of the n-th band Berry connection (2.1.26). We have

proved that:

Q✏(t) = q(t) + ✏1/2
1

N ✏(t)
ha(y, t)| ya(y, t)iL2

y

(Rd)

+ ✏
1

N ✏(t)

h

hb(y, t)| ya(y, t)iL2
y

(Rd) + ha(y, t)| yb(y, t)iL2
y

(Rd)

i

+ ✏An(p(t)) +O(✏3/2ect)

P✏(t) = p(t) + ✏1/2
1

N ✏(t)
ha(y, t)| (�iry)a(y, t)iL2

y

(Rd)

+ ✏
1

N ✏(t)

h

hb(y, t)| (�iry)a(y, t)iL2
y

(Rd) + ha(y, t)| (�iry)b(y, t)iL2
y

(Rd)

i

+O(✏3/2ect).

(2.4.23)
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2.4.3 Computation of dynamics of Q✏(t),P✏(t); proof of assertion (2) of Theorem

2.1.2

Di↵erentiating both sides of (2.4.23) with respect to time and using Ṅ ✏(t) = O(✏ect) (2.4.14) gives:

Q̇✏
↵(t) = q̇↵(t) + ✏1/2

1

N ✏(t)

d

dt
ha(y, t)| y↵a(y, t)iL2

y

(Rd)

+ ✏
1

N ✏(t)

d

dt

h

hb(y, t)| y↵a(y, t)iL2
y

(Rd) + ha(y, t)| y↵b(y, t)iL2
y

(Rd)

i

+ ✏ṗ�(t)@p
�

An,↵(p(t)) +O(✏3/2ect)

Ṗ✏
↵(t) = ṗ↵(t) + ✏1/2

1

N ✏(t)

d

dt
ha(y, t)| (�i@y

↵

)a(y, t)iL2
y

(Rd)

+ ✏
1

N ✏(t)

d

dt

h

hb(y, t)| (�i@y
↵

)a(y, t)iL2
y

(Rd) + ha(y, t)| (�i@y
↵

)b(y, t)iL2
y

(Rd)

i

+O(✏3/2ect)

(2.4.24)

Recall that (q(t), p(t)) satisfy the classical system (2.1.19). In Appendix A.6 we calculate (A.6.13):

d

dt
ha(y, t)| y↵a(y, t)iL2

y

(Rd) = @p
↵

@p
�

En(p(t))
⌦

a(y, t)| (�i@y
�

)a(y, t)
↵

L2
y

(Rd)

d

dt
ha(y, t)| (�i@y

↵

)a(y, t)iL2
y

(Rd) = �@q
↵

@q
�

W (q(t)) ha(y, t)| y�a(y, t)iL2
y

(Rd)

(2.4.25)

and (A.6.18):

d

dt

h

hb(y, t)| y↵a(y, t)iL2
y

(Rd) + ha(y, t)| y↵b(y, t)iL2
y

(Rd)

i

= @p
↵

@p
�

En(p(t))
h

⌦

b(y, t)| (�i@y
�

)a(y, t)
↵

L2
y

(Rd)
+
⌦

a(y, t)| (�i@y
�

)a(y, t)
↵

L2
y

(Rd)

i

+
1

2
@p

↵

@p
�

@p
�

En(p(t))
⌦

a(y, t)| (�i@y
�

)(�i@y
�

)a(y, t)
↵

L2
y

(Rd)

+ @q
�

W (q(t))@p
↵

An,�(p(t))ka(y, t)k2L2
y

(Rd)

d

dt

h

hb(y, t)| (�i@y
↵

)a(y, t)iL2
y

(Rd) + ha(y, t)| (�i@y
↵

)b(y, t)iL2
y

(Rd)

i

= �@q
↵

@q
�

W (q(t))
h

hb(y, t)| y�a(y, t)iL2
y

(Rd) + ha(y, t)| y�a(y, t)iL2
y

(Rd)

i

� 1

2
@q

↵

@q
�

@q
�

W (q(t)) ha(y, t)| y�y�a(y, t)iL2
y

(Rd) � @q
↵

@q
�

W (q(t))An,�(p(t))ka(y, t)k2L2
y

(Rd)

(2.4.26)
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Substituting these expressions into (2.4.24) and using ka(y, t)k2
L2
y

(Rd)
= N ✏(t) + O(✏1/2ect) (2.4.9)

we have:

Q̇✏
↵(t) = @p

↵

En(p(t)) + ✏1/2
1

N ✏(t)
@p

↵

@p
�

En(p(t))
⌦

a(y, t)| (�i@y
�

)a(y, t)
↵

L2
y

(Rd)

+ ✏
1

N ✏(t)
@p

↵

@p
�

En(p(t))
h

⌦

b(y, t)| (�i@y
�

)a(y, t)
↵

L2
y

(Rd)
+
⌦

a(y, t)| (�i@y
�

)a(y, t)
↵

L2
y

(Rd)

i

+ ✏
1

2

1

N ✏(t)
@p

↵

@p
�

@p
�

En(p(t))
⌦

a(y, t)| (�i@y
�

)(�i@y
�

)a(y, t)
↵

L2
y

(Rd)

+ ✏@q
�

W (q(t))@p
↵

An,�(p(t))� ✏@q
�

W (q(t))@p
�

An,↵(p(t)) +O(✏3/2ect)

Ṗ✏
↵(t) = �@q

↵

W (q(t))� ✏1/2
1

N ✏(t)
@q

↵

@q
�

W (q(t)) ha(y, t)| y�a(y, t)iL2
y

(Rd)

� ✏
1

N ✏(t)
@q

↵

@q
�

W (q(t))
h

hb(y, t)| y�a(y, t)iL2
y

(Rd) + hb(y, t)| y�a(y, t)iL2
y

(Rd)

i

� ✏
1

2

1

N ✏(t)
@q

↵

@q
�

@q
�

W (q(t)) ha(y, t)| y�y�a(y, t)iL2
y

(Rd)

� ✏@q
↵

@q
�

W (q(t))An,�(p(t)) +O(✏3/2ect)

(2.4.27)

Equation (2.4.23) gives expressions for q(t), p(t) in terms of Q✏(t),P✏(t):

q↵(t) = Q✏
↵(t)� ✏1/2

1

N ✏(t)
ha(y, t)| y↵a(y, t)iL2

y

(Rd)

� ✏
1

N ✏(t)

h

hb(y, t)| y↵a(y, t)iL2
y

(Rd) + ha(y, t)| y↵b(y, t)iL2
y

(Rd)

i

� ✏An,↵(p(t)) +O(✏3/2ect)

p↵(t) = P✏
↵(t)� ✏1/2

1

N ✏(t)
ha(y, t)| (�i@y

↵

)a(y, t)iL2
y

(Rd)

� ✏
1

N ✏(t)

h

hb(y, t)| (�i@y
↵

)a(y, t)iL2
y

(Rd) + ha(y, t)| (�i@y
↵

)b(y, t)iL2
y

(Rd)

i

+O(✏3/2ect)

(2.4.28)
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Substituting these expressions into (2.4.27), Taylor-expanding in ✏1/2, and again using N ✏(t) =

ka0(y)k2L2
y

(Rd)
+O(✏1/2ect) (2.4.9) then gives:

Q̇✏
↵(t) = @P✏

↵

En(P✏(t))

+ ✏
1

2
@P✏

↵

@P✏

�

@P✏

�

En(P✏(t))

"

1

ka0(y)k2L2
y

(Rd)

⌦

a(y, t)| (�i@y
�

)(�i@y
�

)a(y, t)
↵

L2
y

(Rd)

� 1

ka0(y)k4L2
y

(Rd)

⌦

a(y, t)| (�i@y
�

)a(y, t)
↵

L2
y

(Rd)

⌦

a(y, t)| (�i@y
�

)a(y, t)
↵

L2
y

(Rd)

#

+ ✏@Q✏

�

W (Q✏(t))Fn,↵�(P✏(t)) +O(✏3/2ect)

Ṗ✏
↵(t) = �@Q✏

↵

W (Q✏(t))� ✏
1

2
@Q✏

↵

@Q✏

�

@Q✏

�

W (Q✏(t))

"

1

ka0(y)k2L2
y

(Rd)

ha(y, t)| y�y�a(y, t)iL2
y

(Rd)

� 1

ka0(y)k4L2
y

(Rd)

ha(y, t)| y�a(y, t)iL2
y

(Rd) ha(y, t)| y�a(y, t)iL2
y

(Rd)

#

+O(✏3/2ect).

(2.4.29)

where Fn,↵�(P✏) := @P✏

↵

An,�(P✏) � @P✏

�

An,↵(P✏) is the nth band Berry curvature (2.1.47). Note

that the system (2.4.29) is not closed: a(y, t) satisfies an equation parametrically forced by q(t), p(t)

(2.1.22). Recall the definition of a✏(y, t) (2.1.43) as the solution of (2.1.22) with co-e�cients evalu-

ated at Q✏(t),P✏(t):

i@ta
✏(y, t) =

1

2
@P✏

↵

@P✏

�

En(P✏(t))(�i@y
↵

)(�i@y
�

)a✏(y, t) +
1

2
@Q✏

↵

@Q✏

�

W (Q✏(t))y↵y�a
✏(y, t)

a✏(y, 0) = a0(y),
(2.4.30)

Recall the definition of the ⌃l norms (2.3.46). If we can show that ka✏(y, t) � a(y, t)k⌃l

y

(Rd) =

O(✏1/2ect) for each positive integer l, then we may replace a(y, t) by a✏(y, t) everywhere in (2.4.29)

and, after dropping error terms, we will have obtained a closed system for Q✏(t),P✏(t), a✏(y, t). Let:

H ✏(t) :=
1

2
@P✏

↵

@P✏

�

En(P✏(t))(�i@y
↵

)(�i@y
�

) +
1

2
@Q✏

↵

@Q✏

�

W (q(t))y↵y� ,

H (t) :=
1

2
@p

↵

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

) +
1

2
@q

↵

@q
�

W (q(t))y↵y�

(2.4.31)

then a✏(y, t)� a(y, t) satisfies:

i@t (a
✏(y, t)� a(y, t)) = H ✏(t)a✏(y, t)� H (t)a(y, t)

= H ✏(t) (a✏(y, t)� a(y, t)) + (H ✏(t)� H (t)) a(y, t)

a✏(y, 0)� a(y, 0) = 0

(2.4.32)
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Using the fact that H ✏(t) is self-adjoint on L2
y(Rd) for each t, it follows from (2.4.32) that:

d

dt
ka✏(y, t)� a(y, t)k2L2

y

(Rd)

= i h(H ✏(t)� H (t)) a(y, t)| a✏(y, t)� a(y, t)iL2
y

(Rd)

� i ha✏(y, t)� a(y, t)| (H ✏(t)� H (t)) a(y, t)iL2
y

(Rd)

(2.4.33)

By the Cauchy-Schwarz inequality:

 2ka✏(y, t)� a(y, t)kL2
y

(Rd)k (H ✏(t)� H (t)) a(y, t)kL2
y

(Rd) (2.4.34)

It then follows that:

ka✏(y, t)� a(y, t)kL2
y

(Rd) 
Z t

0
k (H ✏(s)� H (s)) a(y, s)kL2

y

(Rd) ds. (2.4.35)

Using the precise forms of H ✏(t),H (t) we have:

ka✏(y, t)� a(y, t)kL2
y

(Rd) 
Z t

0

sup
s2[0,1),↵,�2{1,...,d}

⇣

|@P✏

↵

@P✏

�

En(P✏(s))� @p
↵

@p
�

En(p(s))|+ |@Q✏

↵

@Q✏

�

W (Q✏(s))� @q
↵

@q
�

W (q(s))|
⌘

ka(y, s)k⌃2
y

(Rd) ds

(2.4.36)

where ⌃2
y(Rd) is the norm defined in (2.3.46). Recall that |Q✏(t)� q(t)|+ |P✏(t)�p(t)| = O(✏1/2ect)

(2.4.23). It follows from compactness of the Brillouin zone and Assumptions 2.1.1 and 2.1.2 that

there exists a uniform bound in t on third derivatives of En(p),W (q) for all p along the line

segments connecting p(t) and P✏(t), and all q along the line segments connecting q(t) and Q✏(t).

We may therefore conclude from the mean-value theorem that there exist constants c > 0, C > 0

independent of ✏, t such that:

ka✏(y, t)� a(y, t)kL2
y

(Rd)  C✏1/2
Z t

0
ecska(y, s)k⌃2

y

(Rd) ds. (2.4.37)

We now use the a priori bounds on the ⌃l
y(Rd)-norms of a(y, t) for each l 2 N (Lemma 2.3.4) to

see that:

ka✏(y, t)� a(y, t)kL2
y

(Rd)  ✏1/2C 0ec
0t. (2.4.38)
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for some constants c0 > 0, C 0 > 0 independent of ✏, t. By a similar argument, we see that for any

integer l � 0 there exist a constants c0l > 0, C 0
l > 0 such that:

ka✏(y, t)� a(y, t)k⌃l

y

(Rd)  ✏1/2C 0
le

c0
l

t. (2.4.39)

It then follows that we may replace a(y, t) by a✏(y, t) everywhere in (2.4.29), generating further

errors which are O(✏3/2ect) to derive:

Q̇✏
↵(t) = @P✏

↵

En(P✏(t))

+ ✏
1

2
@P✏

↵

@P✏

�

@P✏

�

En(P✏(t))

"

1

ka0(y)k2L2
y

(Rd)

⌦

a✏(y, t)| (�i@y
�

)(�i@y
�

)a✏(y, t)
↵

L2
y

(Rd)

� 1

ka0(y)k4L2
y

(Rd)

⌦

a✏(y, t)| (�i@y
�

)a✏(y, t)
↵

L2
y

(Rd)

⌦

a✏(y, t)| (�i@y
�

)a✏(y, t)
↵

L2
y

(Rd)

#

+ ✏@Q✏

�

W (Q✏(t))Fn,↵�(P✏(t)) +O(✏3/2ect)

Ṗ✏
↵(t) = �@Q✏

↵

W (Q✏(t))� ✏
1

2
@Q✏

↵

@Q✏

�

@Q✏

�

W (Q✏(t))

"

1

ka0(y)k2L2
y

(Rd)

ha✏(y, t)| y�y�a✏(y, t)iL2
y

(Rd)

� 1

ka0(y)k4L2
y

(Rd)

ha✏(y, t)| y�a✏(y, t)iL2
y

(Rd) ha✏(y, t)| y�a✏(y, t)iL2
y

(Rd)

#

+O(✏3/2ect).

(2.4.40)

2.4.4 Hamiltonian structure of dynamics of Q✏(t),P✏(t); proof of assertion (3) of

Theorem 2.1.2

Following Ref. [23], we introduce the new variables (2.1.48):

Q✏(t) := Q✏(t)� ✏An(P✏(t))

P✏(t) := P✏(t).
(2.4.41)

Let a✏(y, t) denote the solution of (2.1.43) with co-e�cients evaluated at Q✏(t),P✏(t) rather than

Q✏(t),P✏(t), with initial data normalized in L2
y(Rd):

i@ta
✏(y, t) =

1

2
@P✏

↵

@P✏

�

En(P
✏(t))(�i@y

↵

)(�i@y
�

)a✏(y, t) +
1

2
@Q✏

↵

@Q✏

�

W (Q✏(t))y↵y�a
✏(y, t)

a✏(y, 0) =
a0(y)

ka0(y)kL2
y

(Rd)

.

(2.4.42)
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Since Q✏(t)�Q✏(t) = O(✏ect), P✏(t) = P✏(t), by a similar argument to that given in the previous

section we have that for each integer l � 0:
�

�

�

�

�

a✏(y, t)

ka0(y)kL2
y

(Rd)

� a✏(y, t)

�

�

�

�

�

⌃l

y

(Rd)

= O(✏ect). (2.4.43)

Di↵erentiating (2.4.41), using equations (2.4.40) for Q̇✏(t), Ṗ✏(t), and using (2.4.43) to replace

a✏(y,t)
ka0(y)k

L

2
y

(Rd)
with a✏(y, t) everywhere we obtain:

Q̇✏
↵(t) = @P✏

↵

En(P
✏(t)) + ✏

1

2
@P✏

↵

@P
�

@P✏

�

En(P
✏(t))

h

⌦

a✏(y, t)| (�i@y
�

)(�i@y
�

)a✏(y, t)
↵

L2
y

(Rd)

� ⌦a✏(y, t)| (�i@y
�

)a✏(y, t)
↵

L2
y

(Rd)

⌦

a✏(y, t)| (�i@y
�

)a✏(y, t)
↵

L2
y

(Rd)

i

+ @Q✏

�

W (Q✏(t))@P✏

�

An,↵(P
✏(t)) +O(✏3/2ect)

Ṗ✏
↵(t) = �@Q✏

↵

W (Q✏(t))� ✏
1

2
@Q✏

↵

@Q✏

�

@Q✏

�

W (Q✏(t))
h

ha✏(y, t)| y�y�a✏(y, t)iL2
y

(Rd)

�ha✏(y, t)| y�a✏(y, t)iL2
y

(Rd) ha✏(y, t)| y�a✏(y, t)iL2
y

(Rd)

i

� @Q✏

↵

@Q✏

�

W (Q✏(t))An,�(P
✏(t)) +O(✏3/2ect).

(2.4.44)

Note that, up to error terms, equations (2.4.44) (2.4.42) constitute a closed system for Q✏(t), P✏(t),

a✏(y, t).

We now show that this system may be derived from a Hamiltonian. Let:

µ✏(t) := ha✏(y, t)| ya✏(y, t)iL2
y

(Rd)

�✏(t) := ha✏(y, t)| (�iry)a
✏(y, t)iL2

y

(Rd) .
(2.4.45)

Then, we may write (2.4.44) as:

Q̇✏
↵(t) = @P✏

↵

En(P
✏(t))

+ ✏
1

2
@P✏

↵

@P
�

@P✏

�

En(P
✏(t))

h

⌦

a✏(y, t)| (�i@y
�

)(�i@y
�

)a✏(y, t)
↵

L2
y

(Rd)
� �✏�(t)�

✏
�(t)

i

+ ✏@Q✏

�

W (Q✏(t))@P✏

�

An,↵(P
✏(t)) +O(✏3/2ect)

Ṗ✏
↵(t) = �@Q✏

↵

W (Q✏(t))� ✏
1

2
@Q✏

↵

@Q✏

�

@Q✏

�

W (Q✏(t))
h

ha✏(y, t)| y�y�a✏(y, t)iL2
y

(Rd) � µ✏
↵(t)µ

✏
�(t)

i

� ✏@Q✏

↵

@Q✏

�

W (Q✏(t))An,�(P
✏(t)) +O(✏3/2ect)

(2.4.46)
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By an identical calculation to that given in Appendix A.6 (A.6.13) (A.6.14), we have that:

µ̇✏
↵(t) = @P✏

↵

@P✏

�

En(P
✏(t))�✏�(t)

�̇✏↵(t) = �@Q✏

↵

@Q✏

�

W (Q✏(t))µ✏
�(t).

(2.4.47)

Let:

H✏(Q✏,P✏, a✏, a✏, µ✏,�✏) := En(P
✏) + ✏W (Q✏) + ✏rQ✏W (Q✏) · An(P

✏)

+ ✏
1

2
@P✏

↵

@P✏

�

En(P
✏)
h

⌦

@y
↵

a✏| @y
�

a✏
↵

L2
y

(Rd)
� �✏↵�

✏
�

i

+ ✏
1

2
@Q✏

↵

@Q✏

�

W (Q✏)
h

hy↵a✏| y�a✏iL2
y

(Rd) � µ✏
↵µ

✏
�

i

(2.4.48)

Then we may write the closed system (2.4.42), (2.4.47), (2.4.46) as:

Q̇✏ = rP✏H✏(P✏), Ṗ✏ = �rQ✏H✏(Q✏),

i@ta
✏ =

�H✏

�a✏
, µ̇✏(t) = �r�✏H✏, �̇✏(t) = rµ✏H✏.

(2.4.49)

The precise statements (1),(2),(3) of Theorem 2.1.2 follow from the following observations.

The errors in equations (2.4.23), (2.4.40), (2.4.46) may each be bounded by ✏3/2C1ec1t, ✏3/2C2ec2t,

✏3/2C3ec3t for positive constants cj , Cj , j 2 {1, 2, 3}. Define:

c0 := max
j2{1,2,3}

cj , C 0 := max
j2{1,2,3}

Cj . (2.4.50)

Then all of these errors may be bounded by ✏3/2C 0ec0t. It follows that these terms are o(✏) for all

t 2 [0, C̃ 0 ln 1/✏] where C̃ 0 is any constant such that C̃ 0 < 1
2c0 . Next, in Appendix A.6 (A.6.13)

(A.6.14) we show that ha0(y)| ya0(y)iL2
y

(Rd) = ha0(y)| (�iry)a0(y)iL2
y

(Rd) = 0 implies that for all

t � 0 ha(y, t)| ya(y, t)iL2
y

(Rd) = ha(y, t)| (�iry)a(y, t)iL2
y

(Rd) = 0. Imposing the constraints (2.1.44),

then, the simplified expressions (2.1.45) (2.1.46) follow from (2.4.23), (2.4.40) respectively. We are

also justified in ignoring the �✏, µ✏ degrees of freedom in (2.4.48) (2.4.49) since for all t � 0,

�✏(t) = µ✏(t) = 0. In this way we obtain the simplified Hamiltonian system (2.1.49) (2.1.50).
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2.5 Semiclassical wavepacket asymptotic solutions when the po-

tential is ‘non-separable’

In this section we consider the following generalization of equation (2.1.1) for  ✏(x, t) : Rd⇥[0,1) !
C:

i✏@t 
✏ = �1

2
✏2�x 

✏ + U
⇣x

✏
, x
⌘

 ✏

 ✏(x, 0) =  ✏
0(x).

(2.5.1)

We assume that U(z, x) is periodic in its first argument with respect to some d-dimensional lattice

⇤ for each fixed value of the second:

U(z + v, x) = U(z, x) for all z, x 2 Rd, v 2 ⇤, (2.5.2)

and that U(z, x) is a smooth function of both z and x. We show how to construct semiclassical

wavepacket asymptotic solutions of (2.5.1) which approximate exact solutions up to error of o(1) up

to ‘Ehrenfest time’. We will not go through the details of calculating corrections to the asymptotic

solution proportional to ✏1/2 and then computing the dynamics of observables associated to this

solution including corrections proportional to ✏ as we did in sections 2.1-2.4 for the special case of

(2.5.1) where U is ‘separable’: U(z, x) = V (z)+W (x). A similar analysis would be possible in this

setting, although we expect that the system derived in this way would be complicated and di�cult

to interpret.

The model (2.5.1) (and generalizations of (2.5.1) where U is time-dependent and non-zero

magnetic fields are present) was studied by E, Lu, and Yang [23] through a multi-scale WKB-

type expansion. They showed how Berry curvature associated to the appropriate Bloch eigenvalue

problem in this case (2.5.3) enters into the characteristic equations of an ‘✏-corrected’ eikonal

equation (see Section 5 of that paper). In Section 2.7 we derive the form of the Berry curvature

for an example potential U(z, x) related to that which appears in a model of a system displaying

robust ‘edge’ states [27].

Consider the family of self-adjoint eigenvalue problems parameterized by real parameters q, p 2
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Rd ⇥ Rd:

H(q, p)�(z; q, p) = E(q, p)�(z; q, p)

�(z; q, p) = �(z; q, p) for all z, q, p 2 Rd, v 2 ⇤

H(q, p) :=
1

2
(p� irz)

2 + U(z, q).

(2.5.3)

Just as in the separable case (2.1.13), there is no loss in restricting our attention to p 2 B, a

fundamental cell of the reciprocal lattice ⇤⇤. For fixed q and p, the spectrum of (2.5.3) is real and

discrete and the eigenvalues can be ordered with multiplicity:

E1(q, p)  E2(q, p)  ...  En(q, p)  ... (2.5.4)

and the associated normalized eigenfunctions �n(z; q, p) are a basis of the space:

L2
per :=

n

f 2 L2
loc : f(z + v) = f(z) for all v 2 ⇤, z 2 Rd

o

. (2.5.5)

Varying q and p, we again obtain band functions: (q, p) 7! En(q, p). If a band En(q, p) is isolated

at some q0, p0 2 B ⇥ Rd:

inf
m 6=n

|Em(q0, p0)� En(q0, p0)| > 0 (2.5.6)

then a Lyapunov-Schmidt reduction argument shows that the maps (q, p) 7! En(q, p), �n(z; q, p) are

smooth in a neighborhood of q0, p0 (cf. Definition 2.2.1, Theorem 2.2.1). The natural generalization

of the ‘isolated band’ Assumption 2.1.1 to this setting is the following:

Assumption 2.5.1 (Uniformly isolated band assumption). Let En(q, p) denote an eigenvalue band

function of the periodic Schrödinger operator (2.5.3). Assume that (q0, p0) 2 Rd⇥Rd are such that

the flow generated by the classical Hamiltonian Hn(q, p) := En(q, p):

q̇(t) = rpEn(q(t), p(t)), ṗ(t) = �rqEn(q(t), p(t))

q(0), p(0) = q0, p0

(2.5.7)

has a unique smooth solution (q(t), p(t)) 2 Rd⇥Rd, 8t � 0, and that there exists a constant M > 0

such that:

inf
m 6=n

|Em(q(t), p(t))� En(q(t), p(t))| > M for all t � 0. (2.5.8)

That is, the nth spectral band is uniformly isolated along the trajectory (q(t), p(t)) for all t � 0.
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The appropriate generalization of Assumption 2.1.2 to this setting is the following:

Assumption 2.5.2.

P

|↵|=1,2,3 |@↵xU(z, x)| 2 L1(⌦⇥ Rd).

We have then the following result on the propagation of semiclassical wavepacket solutions of

(2.5.1) up to errors of o(1) over the Ehrenfest time-scale. Our result may be viewed as a direct

generalization of Theorem 1.7 of Carles and Sparber [61] to this setting:

Theorem 2.5.1. Let Assumptions 2.5.1 and 2.5.2 hold. Let a0(y), b0(y) 2 S(Rd). Let S(t) denote

the classical action along the path (q(t), p(t)):

S(t) =

Z t

0
p(t0) ·rpEn(q(t

0), p(t0))� En(q(t
0), p(t0)) dt0. (2.5.9)

Let a(y, t) satisfy:

i@ta(y, t) = H (t)a(y, t)

a(y, 0) = a0(y),
(2.5.10)

where:

H (t) :=
1

2
@p

↵

@p
�

En(q(t), p(t))(�i@y
↵

)(�i@y
�

) +
1

2
@q

↵

@q
�

En(q(t), p(t))y↵y�

+
1

2
@p

↵

@q
�

En(q(t), p(t)) [(�i@y
↵

)y� + y�(�i@y
↵

)]

+ Im hrq�n(·; q(t), p(t))| [H(q(t), p(t))� En(q(t), p(t))] ·rp�n(·; q(t), p(t))iL2
z

(⌦) .

(2.5.11)

Let Aq(q, p),Ap(q, p) denote the nth band Berry connections with respect to q and p respectively:

Aq(q, p) := i h�n(·; q, p)|rq�n(·; q, p)iL2
z

(⌦) , Aq(q, p) := i h�n(·; q, p)|rq�n(·; q, p)iL2
z

(⌦) (2.5.12)

Let �B(t) denote the Berry phase associated with transport of �n(z; q, p) along the path q(t), p(t) 2
Rd ⇥ B given by:

�B(t) =

Z t

0
q̇(t0) · Aq(q(t

0), p(t0)) + ṗ(t0) · Ap(q(t
0), p(t0)) dt0

=

Z (q(t),p(t))

(q0,p0)
Aq(q, p) · dq +Ap(q, p) · dp.

(2.5.13)
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Then, there exists a constant ✏0 > 0 such that for all 0 < ✏ < ✏0 the following holds. Let  ✏(x, t) be

the unique solution of the initial value problem (2.5.1) with ‘Bloch wavepacket’ initial data:

i✏@t 
✏ = �1

2
✏2�x 

✏ + U
⇣x

✏
, x
⌘

 ✏

 ✏(x, 0) = ✏�d/4eip0·[x�q0]/✏a0

✓

x� q0
✏1/2

◆

�n

⇣x

✏
; q0, p0

⌘

.
(2.5.14)

Then for all t � 0 the solution evolves as a modulated ‘Bloch wavepacket’ plus a corrector ⌘✏(x, t):

 ✏(x, t) = ✏�d/4eiS(t)/✏eip(t)·[x�q(t)]/✏ei�B

(t)a

✓

x� q(t)

✏1/2
, t

◆

�n

⇣x

✏
; q(t), p(t)

⌘

+ ⌘✏(x, t)

(2.5.15)

where the corrector ⌘✏ satisfies the estimate:

k⌘✏(·, t)kL2(Rd)  C✏1/2ect. (2.5.16)

Here, c > 0, C > 0 are constants independent of ✏, t. It follows that:

sup
t2[0,C̃ ln 1/✏]

k⌘✏(·, t)kL2(Rd) = o(1) (2.5.17)

where C̃ is any constant satisfying C̃ < 1
2c .

Remark 2.5.1. The term:

Im hrq�n(·; q(t), p(t))| [H(q(t), p(t))� En(q(t), p(t))] ·rp�n(·; q(t), p(t))iL2
z

(⌦) (2.5.18)

contributes an overall phase shift to the solution a(y, t) of (2.5.11). This term has been derived

elsewhere and interpreted as a ‘correction to the wavepacket energy’. See, for example, (2.18) of

[71] and (6.8) of [76].

Remark 2.5.2. For a discussion of Berry’s phase, connection, and curvature, and gauge indepen-

dence in the setting of a two-by-two matrix example, see Appendix A.7. We compute the Berry

curvature in a ‘non-separable’ Schrödinger example and for Maxwell’s equations in free space in

Sections 2.7.1 and 2.7.2 respectively.

Equations (2.5.7), (2.5.9), (2.5.11) and (2.5.13) may be derived by a formal multiscale analysis,

which we present in the following section. The proof of the bound (2.5.16) is su�ciently similar to

the separable case (Section 2.3.2) that we omit it.
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2.5.1 Derivation of the asymptotic solution (2.5.15) via multiscale expansion

We seek a solution of (2.5.1) of the form:

 ✏(x, t) = ✏�d/4eiS(t)/✏eip(t)·y/✏
1/2

f ✏(y, z, t)
�

�

�

y=
x�q(t)

✏

1/2 ,z=x

✏

+ ⌘✏(x, t). (2.5.19)

Substituting (2.5.19) into (2.5.1) gives an inhomogeneous time-dependent Schrödinger equation for

⌘✏(x, t), with a source term r✏(x, t) which depends on S(t), q(t), p(t), and f ✏(y, z, t):

i✏@t⌘
✏ =



�✏
2

2
�x + U

⇣x

✏
, x
⌘

�

⌘✏ + r✏[S, q, p, f ✏]

⌘✏(x, 0) =  ✏(x, 0)� ✏�d/4eiS(0)/✏eip(0)·y/✏
1/2

f ✏(y, z, 0)
�

�

�

y=
x�q0
✏

1/2 ,z=x

✏

.
(2.5.20)

The source term r✏(x, t) has the explicit form:

r✏(x, t) = ✏�d/4eiS(t)/✏eip(t)·y/✏
1/2

⇢

✏



1

2
(�iry)

2 � i@t

�

+ ✏1/2


(p(t)� irz) · (�iry)� q̇(t) · (�iry) + ṗ(t) · y
�

+



Ṡ(t)� q̇(t)p(t) +
1

2
(p(t)� irz)

2 + U(z, q(t) + ✏1/2y)

��

f ✏(y, z, t)

�

�

�

�

z=x

✏

,y=
x�q(t)

✏

1/2

(2.5.21)

Since U is assumed smooth, we can replace U(z, q(t)+✏1/2y) by its Taylor series expansion in ✏1/2y:

U(z, q(t) + ✏1/2y) = U(z, q(t)) + ✏1/2rqU(z, q(t)) · y + ✏
1

2
@q

↵

@q
�

U(z, q(t))y↵y�

+ ✏3/2
Z 1

0

(⌧ � 1)3

3!
@q

↵

@q
�

@q
�

U(z, q(t) + ⌧✏1/2y) d⌧y↵y�y�

(2.5.22)

We expand f ✏(y, z, t) as a formal power series:

f ✏(y, z, t) = f0(y, z, t) + ✏1/2f1(y, z, t) + ... (2.5.23)

and assume that for all j 2 {0, 1, 2, ...} the f j(y, z, t) are periodic with respect to the lattice in z

and have su�cient smoothness and decay in y:

for all v 2 ⇤, f j(y, z + v, t) = f j(y, z, t)

f j(y, z, t) 2 ⌃R�j
y (Rd).

(2.5.24)

The ⌃l-spaces are defined in (2.1.62). Here, R > 0 is a fixed positive integer which we will take as

large as required. Recall the notation (2.5.3):

H(q, p) :=
1

2
(p� irz)

2 + U(z, q). (2.5.25)
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Substituting (2.5.22) and (2.5.23) then gives:

r✏(x, t) = ✏�d/4eiS(t)/✏eip(t)·y/✏
1/2

⇢

✏3/2


Z 1

0

(⌧ � 1)3

3!
@q

↵

@q
�

@q
�

U(z, q(t) + ⌧✏1/2y) d⌧y↵y�y�

�

+ ✏



1

2
(�iry)

2 +
1

2
@q

↵

@q
�

U(z, q(t))y↵y� � i@t

�

+ ✏1/2


(p(t)� irz) · (�iry) +rqU(z, q(t)) · y � q̇(t) · (�iry) + ṗ(t) · y
�

+
h

Ṡ(t)� q̇(t) · p(t) +H(q(t), p(t))
ion

f0(y, z, t) + ✏1/2f1(y, z, t) + ...
o

�

�

�

z=x

✏

,y=
x�q(t)

✏

1/2

.

(2.5.26)

In order to prove Theorem 2.5.1 it is su�cient to choose the f j(y, z, t), j 2 {0, ..., 2} so that terms

of orders ✏j/2, j 2 {0, ..., 2} vanish. There is then no loss of accuracy in the approximation by taking

f j(y, z, t) = 0, j � 3.

2.5.1.1 Analysis of leading order terms

Recall that we assume each f j , j 2 {0, 1, 2, ...} to be periodic with respect to the lattice ⇤ in

z (2.5.24). Collecting terms of order 1 in (2.5.26) and setting equal to zero therefore gives the

following self-adjoint elliptic eigenvalue problem in z:

H(q(t), p(t))f0(y, z, t) =
h

�Ṡ(t) + q̇(t) · p(t)
i

f0(y, z, t),

for all v 2 ⇤, f0(y, z + v, t) = f0(y, z, t),

f0(y, z, t) 2 ⌃R
y (Rd).

(2.5.27)

Under Assumption 2.5.1, En(q(t), p(t)) is a simple eigenvalue for all t � 0. Projecting (2.5.27) onto

the subspace of L2
per spanned by �n(z; q(t), p(t)) implies:

Ṡ(t) = q̇(t) · p(t)� En(q(t), p(t)) (2.5.28)

which, after matching with the initial data (2.5.20), implies (2.5.9). Equation (2.5.27) then becomes:

[H(q(t), p(t))� En(q(t), p(t))] f
0(y, z, t) = 0,

for all v 2 ⇤, f0(y, z + v, t) = f0(y, z, t),

f0(y, z, t) 2 ⌃R
y (Rd)

(2.5.29)
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which has the general solution:

f0(y, z, t) = a0(y, t)�n(z; q(t), p(t)), (2.5.30)

where a0(y, t) is an arbitrary function in ⌃R
y (Rd) to be fixed at higher order in the expansion.

2.5.1.2 Analysis of order ✏1/2 terms

Collecting terms of order ✏1/2 in (2.5.26), substituting the form of Ṡ(t) (2.5.9), and setting equal

to zero gives the following inhomogeneous self-adjoint elliptic equation in z for f1(y, z, t):

[H(q(t), p(t))� En(q(t), p(t))] f
1(y, z, t) = ⇠1(y, z, t),

for all z 2 ⇤, f1(y, z + v, t) = f1(y, z, t); f1(y, z, t) 2 ⌃R�1
y (Rd),

⇠1 := � [(p(t)� irz) · (�iry) +rqU(z, q(t)) · y � q̇(t) · (�iry) + ṗ(t) · y] f0(y, z, t).

(2.5.31)

We now follow the same general strategy followed in the separable case (see Remark 2.3.1) to solve

(2.5.31). We first observe that by di↵erentiating (2.5.3) with respect to q, p we derive the identities:

[H(q(t), p(t))� En(q(t), p(t))]rp�n(z; q(t), p(t)) =

� [(p(t)� irz)�rpEn(q(t), p(t))]�n(z; q(t), p(t))

[H(q(t), p(t))� En(q(t), p(t))]rq�n(z; q(t), p(t)) =

� [@qU(z, q(t))�rqEn(q(t), p(t))]�n(z; q(t), p(t)),

(2.5.32)

which generalize identities (A.1.2) to this setting. Using (2.5.32) and the form of f0(y, z, t) (2.5.30)

we may write:

⇠1(y, z, t) = ⇠̃1(y, z, t) + [H(q(t), p(t))� En(q(t), p(t))]u
1(y, z, t) (2.5.33)

where:

⇠̃1(y, z, t) = � ⇥(rpEn(q(t), p(t))� q̇(t)) · (�iry)a
0(y, t)

+(rqEn(q(t), p(t)) + ṗ(t)) · ya0(y, t)⇤�n(z; q(t), p(t))

u1(y, z, t) = (�iry)a
0(y, t) ·rp�n(z; q(t), p(t)) + ya0(y, t) ·rq�n(z; q(t), p(t)).

(2.5.34)

The solvability condition of (2.5.31) is then equivalent to:

(rpEn(q(t), p(t))� q̇(t)) · (�iry)a
0(y, t) + (rqEn(q(t), p(t)) + ṗ(t)) · ya0(y, t) = 0 (2.5.35)
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which we can satisfy by choosing q(t), p(t) to evolve along the Hamiltonian flow of the nth Bloch

band Hamiltonian Hn(q, p) = En(q, p):

q̇(t) = rpEn(q(t), p(t)), ṗ(t) = �rqEn(q(t), p(t)). (2.5.36)

Taking q(0), p(0) = q0, p0 to match with the initial data (2.5.20) implies (2.5.7). With the choice

(2.5.36) for q̇(t), ṗ(t), ⇠̃(y, z, t) = 0 for all t � 0. We may therefore solve (2.5.31) by taking:

f1(y, z, t) = a1(y, t)�n(z; q(t), p(t))

+ (�iry)a
0(y, t) ·rp�n(z; q(t), p(t)) + ya0(y, t) ·rq�n(z; q(t), p(t))

(2.5.37)

where a1(y, t) is an arbitrary function in ⌃R�1
y (Rd) to be fixed at higher order in the expansion.

Note that since a0(y, t) 2 ⌃R
y (Rd), this ensures that f1(y, z, t) 2 ⌃R�1

y (Rd) as required.

2.5.1.3 Analysis of order ✏ terms

Equating terms of order ✏ in (2.5.26), using equations (2.5.9) and (2.5.7), and then setting equal to

zero gives the following inhomogeneous self-adjoint elliptic equation in z for f2(y, z, t):

[H(q(t), p(t))� En(q(t), p(t))]f
2(y, z, t) = ⇠2(y, z, t),

for all z 2 ⇤, f2(y, z + v, t) = f2(y, z, t); f2(y, z, t) 2 ⌃R�2
y (Rd),

⇠2(y, z, t) := �


1

2
(�iry)

2 +
1

2
@q

↵

@q
�

U(z, q(t))y↵y� � i@t

�

f0(y, z, t)

+ [�((p(t)� irz)�rpEn(q(t), p(t))) · (�iry)� (rqU(z, q(t))�rqEn(q(t), p(t))) · y] f1(y, z, t).

(2.5.38)

Again following the strategy of Remark 2.3.1, we first record the following generalizations of (A.1.3)

which result from taking second derivatives of (2.5.3) with respect to q and p:

[�↵� � @p
↵

@p
�

En(q, p)]�n(z; q, p) + [(p� i@z)↵ � @p
↵

En(q, p)]@p
�

�n(z; q, p)

[(p� i@z)� � @p
�

En(q, p)]@p
↵

�n(z; q, p) + [H(q, p)� En(q, p)]@p
↵

@p
�

�n(z; q, p) = 0
(2.5.39)

[@q
↵

@q
�

U(z, q)� @q
↵

@q
�

En(q, p)]�n(z; q, p) + [@q
↵

U(z, q)� @q
↵

En(q, p)]@q
�

�n(z; q, p)

[@q
�

U(z, q)� @q
�

En(q, p)]@q
↵

�n(z; q, p) + [H(q, p)� En(q, p)]@q
↵

@q
�

�n(z; q, p) = 0
(2.5.40)

[�@p
↵

@q
�

En(q, p)]�n(z; q, p) + [(p� i@z)↵ � @p
↵

En(q, p)]@q
�

�n(z; q, p)

[@q
�

U(z, q)� @q
�

En(q, p)]@p
↵

�n(z; q, p) + [H(q, p)� En(q, p)]@p
↵

@q
�

�n(z; q, p) = 0.
(2.5.41)
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We now work to manipulate ⇠2(y, z, t) into the form:

⇠2(y, z, t) = ⇠̃2(y, z, t) + [H(q(t), p(t))� En(q(t), p(t))]u
2(y, z, t), (2.5.42)

where ⇠̃2(y, z, t) and u2(y, z, t) are functions to be determined. We start by substituting the forms

of f0(y, z, t) (2.5.30) and f1(y, z, t) (2.5.37) into the expression for ⇠2(y, z, t) (2.5.38):

⇠2(y, z, t) = �


1

2
(�iry)

2 +
1

2
@q

↵

@q
�

U(z, q(t))y↵y� � i@t

�

· ⇥a0(y, t)�n(z; q(t), p(t))
⇤

+ [�((p(t)� irz)�rpEn(q(t), p(t))) · (�iry)� (rqU(z, q(t))�rqEn(q(t), p(t))) · y]
· ⇥a1(y, t)�n(z; q(t), p(t)) + (�iry)a

0(y, t) ·rp�n(z; q(t), p(t)) + ya0(y, t) ·rq�n(z; q(t), p(t))
⇤

.

(2.5.43)

We now observe that the terms depending on a1(y, t) in (2.5.43) have an identical form to the terms

depending on a0(y, t) which appeared in (2.5.31). An identical manipulation using the identities

(2.5.32) therefore gives:

[�((p(t)� irz)�rpEn(q(t), p(t))) · (�iry)� (rqU(z, q(t))�rqEn(q(t), p(t))) · y]
· ⇥a1(y, t)�n(z; q(t), p(t))

⇤

= [H(q(t), p(t))� En(q(t), p(t))]·
⇥

(�iry)a
1(y, t) ·rp�n(z; q(t), p(t)) + ya1(y, t) ·rq�n(z; q(t), p(t))

⇤

.

(2.5.44)

All remaining terms in (2.5.43) may be written as the sum of terms T1 + T2, where:

T1 := �


1

2
(�iry)

2 +
1

2
@q

↵

@q
�

U(z, q(t))y↵y� � i@t

�

· ⇥a0(y, t)�n(z; q(t), p(t))
⇤

T2 := [�((p(t)� irz)�rpEn(q(t), p(t))) · (�iry)� (rqU(z, q(t))�rqEn(q(t), p(t))) · y]
· ⇥(�iry)a

0(y, t) ·rp�n(z; q(t), p(t)) + ya0(y, t) ·rq�n(z; q(t), p(t))
⇤

.

(2.5.45)

Using (2.5.7), we have that:

T1 = �


1

2
(�iry)

2a0(y, t) +
1

2
@q

↵

@q
�

U(z, q(t))y↵y�a
0(y, t)� i@ta

0(y, t)

�

�n(z; q(t), p(t))

+ irpEn(q(t), p(t))a
0(y, t) ·rp�n(z; q(t), p(t))

� irqEn(q(t), p(t))a
0(y, t) ·rq�n(z; q(t), p(t)).

(2.5.46)
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Terms T2 may be written out as follows:

T2 = T21 + T22 + T23

T21 := �(�i@y
↵

)(�i@y
�

)a0(y, t)((p(t)� i@z)↵ � @p
↵

En(q(t), p(t)))@p
�

�n(z; q(t), p(t))

T22 := �(�i@y
↵

)y�a
0(y, t)((p(t)� i@z)↵ � @p

↵

En(q(t), p(t)))@q
�

�n(z; q(t), p(t))

� y↵(�i@y
�

)a0(y, t)(@q
↵

U(z, q(t))� @q
↵

En(q(t), p(t)))@p
�

�n(z; q(t), p(t))

T23 := �y↵y�a
0(y, t)(@q

↵

U(z, q(t))� @q
↵

En(q(t), p(t)))@q
�

�n(z; q(t), p(t)).

(2.5.47)

Using (2.5.39) and (2.5.40) respectively we have that:

T21 =
1

2

�

�↵� � @p
↵

@p
�

En(q(t), p(t))
�

(�i@y
↵

)(�i@y
�

)a0(y, t)�n(z; q(t), p(t))

+ [H(q(t), p(t))� En(q(t), p(t))]



1

2
(�i@y

↵

)(�i@y
�

)a0(y, t)@p
↵

@p
�

�n(z; q(t), p(t))

�

,
(2.5.48)

and:

T23 =
1

2

�

@q
↵

@q
�

U(z, q(t))� @q
↵

@q
�

En(q(t), p(t))
�

y↵y�a
0(y, t)�n(z; q(t), p(t))

+ [H(q(t), p(t))� En(q(t), p(t))]



1

2
y↵y�a

0(y, t)@q
↵

@q
�

�n(z; q(t), p(t))

�

.
(2.5.49)

We simplify T22 as follows. First, we observe that:

(�i@y
↵

)y� =
1

2
(�i@y

↵

)y� +
1

2
y�(�i@y

↵

)� i�↵�

y↵(�i@y
�

) =
1

2
y↵(�i@y

�

) +
1

2
(�i@y

�

)y↵ + i�↵� .
(2.5.50)

Hence, we can write T22 as:

T22 =� 1

2
(�i@y

↵

)y�a
0(y, t)((p(t)� i@z)↵ � @p

↵

En(q(t), p(t)))@q
�

�n(z; q(t), p(t))

� 1

2
y�(�i@y

↵

)a0(y, t)((p(t)� i@z)↵ � @p
↵

En(q(t), p(t)))@q
�

�n(z; q(t), p(t))

+ ia0(y, t)
1

2
((p(t)� irz)�rpEn(q(t), p(t))) ·rq�n(z; q(t), p(t))

� 1

2
y↵(�i@y

�

)a0(y, t)(@q
↵

U(z, q(t))� @q
↵

En(q(t), p(t)))@p
�

�n(z; q(t), p(t))

� 1

2
(�i@y

�

)y↵a
0(y, t)(@q

↵

U(z, q(t))� @q
↵

En(q(t), p(t)))@p
�

�n(z; q(t), p(t))

� ia0(y, t)
1

2
(rqU(z, q(t))�rqEn(q(t), p(t))) ·rp�n(z; q(t), p(t)).

(2.5.51)



CHAPTER 2. SEMICLASSICAL WAVEPACKET SOLUTIONS AND EFFECTIVE
‘PARTICLE-FIELD’ DYNAMICS 64

We now make use of (2.5.41) to conclude that:

T22 =� 1

2
@p

↵

@q
�

En(q(t), p(t))(�i@y
↵

)y�a
0(y, t)�n(z; q(t), p(t))

+ [H(q(t), p(t))� En(q(t), p(t))]



1

2
(�i@y

↵

)y�a
0(y, t)@p

↵

@q
�

�n(z; q(t), p(t))

�

� 1

2
@q

↵

@p
�

En(q(t), p(t))y↵(�i@y
�

)a0(y, t)�n(z; q(t), p(t))

+ [H(q(t), p(t))� En(q(t), p(t))]



1

2
y↵(�i@y

�

)a0(y, t)@q
↵

@p
�

�n(z; q(t), p(t))

�

+ ia0(y, t)
1

2
((p(t)� irz)�rpEn(q(t), p(t))) ·rq�n(z; q(t), p(t))

� ia0(y, t)
1

2
(rqU(z, q(t))�rqEn(q(t), p(t))) ·rp�n(z; q(t), p(t)).

(2.5.52)

Putting together (2.5.46), (2.5.47), (2.5.48), (2.5.49), and (2.5.52) we have that:

⇠2(y, z, t) = ⇠̃2(y, z, t) + [H(q(t), p(t))� En(q(t), p(t))]u
2(y, z, t), (2.5.53)

where:

u2(y, z, t) = (�iry)a
1(y, t) ·rp�n(z; q(t), p(t)) + ya1(y, t) ·rq�n(z; q(t), p(t))

+
1

2
(�i@y

↵

)(�i@y
�

)a0(y, t)@p
↵

@p
�

�n(z; q(t), p(t)) +
1

2
(�i@y

↵

)y�a
0(y, t)@p

↵

@q
�

�n(z; q(t), p(t))

+
1

2
y↵(�i@y

�

)a0(y, t)@q
↵

@p
�

�n(z; q(t), p(t)) +
1

2
y↵y�a

0(y, t)@q
↵

@q
�

�n(z; q(t), p(t)),

(2.5.54)

and:

⇠̃2(y, z, t) = �


1

2
(�iry)

2a0(y, t) +
1

2
@q

↵

@q
�

U(z, q(t))y↵y�a
0(y, t)� i@ta

0(y, t)

�

�n(z; q(t), p(t))

+ irpEn(q(t), p(t))a
0(y, t) ·rp�n(z; q(t), p(t))� irqEn(q(t), p(t))a

0(y, t) ·rq�n(z; q(t), p(t))

+
1

2

�

�↵� � @p
↵

@p
�

En(q(t), p(t))
�

(�i@y
↵

)(�i@y
�

)a0(y, t)�n(z; q(t), p(t))

+
1

2

�

@q
↵

@q
�

U(z, q(t))� @q
↵

@q
�

En(q(t), p(t))
�

y↵y�a
0(y, t)�n(z; q(t), p(t))

+ ia0(y, t)
1

2
((p(t)� irz)�rpEn(q(t), p(t))) ·rq�n(z; q(t), p(t))

� ia0(y, t)
1

2
(rqU(z, q(t))�rqEn(q(t), p(t))) ·rp�n(z; q(t), p(t)).

(2.5.55)
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Taking note of some exact cancellations and re-arranging gives:

⇠̃2(y, z, t) = �


1

2
@p

↵

@p
�

En(q(t), p(t))(�i@y
↵

)(�i@y
�

)a0(y, t) +
1

2
@q

↵

@q
�

En(q(t), p(t))y↵y�a
0(y, t)

+
1

2
@p

↵

@q
�

En(q(t), p(t))(�i@y
↵

)y�a
0(y, t) +

1

2
@q

↵

@p
�

En(q(t), p(t))y↵(�i@y
�

)a0(y, t)

� i@ta
0(y, t)

�

�n(z; q(t), p(t))

+ irpEn(q(t), p(t))a
0(y, t) ·rp�n(z; q(t), p(t))� irqEn(q(t), p(t))a

0(y, t) ·rq�n(z; q(t), p(t))

+ ia0(y, t)
1

2
((p(t)� irz)�rpEn(q(t), p(t))) ·rq�n(z; q(t), p(t))

� ia0(y, t)
1

2
(rqU(z, q(t))�rqEn(q(t), p(t))) ·rp�n(z; q(t), p(t)).

(2.5.56)

By Assumption 2.5.1, equation (2.5.38) is solvable for f2(y, z, t) under the condition that the

projection of ⇠2(y, z, t) onto the subspace of L2
per spanned by �n(z; q(t), p(t)) vanishes. By self-

adjointness of H(q(t), p(t)) and from the decomposition of ⇠2(y, z, t) displayed in (2.5.53), this

condition is equivalent to the condition that the projection of ⇠̃2(y, z, t) given by (2.5.56) onto the

subspace of L2
per spanned by �n(z; q(t), p(t)) vanishes. This condition is equivalent to requiring

that a0(y, t) satisfies the following Schrödinger equation for all t � 0:

i@ta
0(y, t) =

1

2
@p

↵

@p
�

En(q(t), p(t))(�i@y
↵

)(�i@y
�

)a0(y, t) +
1

2
@q

↵

@q
�

En(q(t), p(t))y↵y�a
0(y, t)

+
1

2
@p

↵

@q
�

En(q(t), p(t))(�i@y
↵

)y�a
0(y, t) +

1

2
@q

↵

@p
�

En(q(t), p(t))y↵(�i@y
�

)a0(y, t)

�rpEn(q(t), p(t)) · Aq(q(t), p(t))a
0(y, t) +rqEn(q(t), p(t)) · Ap(q(t), p(t))a

0(y, t)

+
1

2
i h�n(·; q(t), p(t))| (rqU(z, q(t))�rqEn(q(t), p(t))) ·rp�n(·; q(t), p(t))iL2

z

(⌦) a
0(y, t)

� 1

2
i h�n(·; q(t), p(t))| ((p(t)� irz)�rpEn(q(t), p(t))) ·rq�n(·; q(t), p(t))iL2

z

(⌦) a
0(y, t).

(2.5.57)
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Here, Aq(q, p) and Ap(q, p) are the Berry connections with respect to q, p defined by (2.5.12). The

last two terms in (2.5.57) may be simplified using self-adjointness of H(q, p) as follows:

1

2
i h�n(·; q(t), p(t))| (rqU(z, q(t))�rqEn(q(t), p(t))) ·rp�n(·; q(t), p(t))iL2

z

(⌦) a
0(y, t)

� 1

2
i h�n(·; q(t), p(t))| ((p(t)� irz)�rpEn(q(t), p(t))) ·rq�n(·; q(t), p(t))iL2

z

(⌦) a
0(y, t)

=
1

2
i h(rqU(z, q(t))�rqEn(q(t), p(t)))�n(·; q(t), p(t))| ·rp�n(·; q(t), p(t))iL2

z

(⌦) a
0(y, t)

� 1

2
i h((p(t)� irz)�rpEn(q(t), p(t)))�n(·; q(t), p(t))| ·rq�n(·; q(t), p(t))iL2

z

(⌦) a
0(y, t)

= �1

2
i h [H(q(t), p(t))� En(q(t), p(t))]rq�n(·; q(t), p(t))| ·rp�n(·; q(t), p(t))iL2

z

(⌦) a
0(y, t)

+
1

2
i h [H(q(t), p(t))� En(q(t), p(t))]rp�n(·; q(t), p(t))| ·rq�n(·; q(t), p(t))iL2

z

(⌦) a
0(y, t)

= �1

2
i hrq�n(·; q(t), p(t))| [H(q(t), p(t))� En(q(t), p(t))] ·rp�n(·; q(t), p(t))iL2

z

(⌦) a
0(y, t)

+
1

2
i hrp�n(·; q(t), p(t))| [H(q(t), p(t))� En(q(t), p(t))] ·rq�n(·; q(t), p(t))iL2

z

(⌦) a
0(y, t),

(2.5.58)

where the second-to-last equality in (2.5.58) follows from (2.5.32). By self-adjointness of H(q, p),

the final expression in (2.5.58) has the form:

1

2
i(z � z) = Im z, (2.5.59)

where:

z := hrq�n(·; q(t), p(t))| [H(q(t), p(t))� En(q(t), p(t))] ·rp�n(·; q(t), p(t))iL2
z

(⌦) . (2.5.60)

Hence (2.5.57) may be written in the compact form:

i@ta
0(y, t) =

1

2
@p

↵

@p
�

En(q(t), p(t))(�i@y
↵

)(�i@y
�

)a0(y, t) +
1

2
@q

↵

@q
�

En(q(t), p(t))y↵y�a
0(y, t)

+
1

2
@p

↵

@q
�

En(q(t), p(t)) [(�i@y
↵

)y� + y�(�i@y
↵

)] a0(y, t)

�rpEn(q(t), p(t)) · Aq(q(t), p(t))a
0(y, t) +rqEn(q(t), p(t)) · Ap(q(t), p(t))a

0(y, t)

+ Im hrq�n(·; q(t), p(t))| [H(q(t), p(t))� En(q(t), p(t))] ·rp�n(·; q(t), p(t))iL2
z

(⌦) a
0(y, t).

(2.5.61)
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Equations (2.5.11) and (2.5.13) now follow from substituting a0(y, t) = ei�B

(t)a(y, t) into (2.5.61)

and matching with the initial data (2.5.20). Equation (2.5.38) now has the unique solution:

f2(y, z, t) = u2(y, z, t)

+ irpEn(q(t), p(t))a
0(y, t) · [H(q(t), p(t))� En(q(t), p(t))]

�1P?(q(t), p(t))rp�n(z; q(t), p(t))

� irqEn(q(t), p(t))a
0(y, t) · [H(q(t), p(t))� En(q(t), p(t))]

�1P?(q(t), p(t))rq�n(z; q(t), p(t))

+ ia0(y, t)
1

2
[H(q(t), p(t))� En(q(t), p(t))]

�1P?(q(t), p(t))

· ((p(t)� irz)�rpEn(q(t), p(t))) ·rq�n(z; q(t), p(t))

� ia0(y, t)
1

2
[H(q(t), p(t))� En(q(t), p(t))]

�1P?(q(t), p(t))

· (rqU(z, q(t))�rqEn(q(t), p(t))) ·rp�n(z; q(t), p(t)).

(2.5.62)

Here, u2(y, z, t) is defined by (2.5.54) and P?(q(t), p(t)) denotes the projection operator on L2
per

onto the orthogonal complement of the subspace spanned by �n(z; q(t), p(t)). Invertability of the

operator [H(q(t), p(t)) � En(q(t), p(t))] on P?(q(t), p(t))L2
per for all t � 0 is guaranteed by As-

sumption 2.5.1. Theorem 2.5.1 now follows from an identical analysis to that given in Section

2.3.2.

2.6 Semiclassical wavepacket solutions of Maxwell’s equations

We now discuss how the above theory (Sections 2.1-2.5) may be adapted to the setting where the

Schrödinger equations (2.1.1) or (2.5.1) are replaced by a time-dependent Maxwell system. Consider

the following system of equations for the electromagnetic fields E�(x, t) : R3 ⇥ R ! C3, H�(x, t) :

R3 ⇥ R ! C3 in matter depending on a small parameter � ⌧ 1:

@t

0

@

D�(x, t)

B�(x, t)

1

A =

0

@

0 r⇥
�r⇥ 0

1

A

0

@

E�(x, t)

H�(x, t)

1

A , r ·
0

@

D�(x, t)

B�(x, t)

1

A = 0 (2.6.1)

together with the constitutive relations :

0

@

D�(x, t)

B�(x, t)

1

A =

0

@

"
�

x
� , x
�

�† �x
� , x
�

�
�

x
� , x
�

µ
�

x
� , x
�

1

A

0

@

E�(x, t)

H�(x, t)

1

A . (2.6.2)
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Here, we assume that each entry in the matrix of constitutive relations is smooth in both arguments

and periodic with respect to a lattice ⇤ in its first argument, and such that the matrix as a whole

is positive-definite and Hermitian at each value of x 2 R3. Note that when studying Maxwell’s

equations it is convenient to label the small parameter � rather than ✏ to avoid confusion with the

dielectric tensor ".

The essential observations that will allow us to adapt the theory developed above for Schrö-

dinger’s equation are the following:

Remark 2.6.1 (Schrödinger structure of Maxwell’s equations and conservation of weighted norm).

Let:

 �(x, t) :=

0

@

E�(x, t)

H�(x, t)

1

A , (2.6.3)

so that  �(x, t) : R3 ⇥ R ! C6. Substituting (2.6.3) into (2.6.1) and using positive-definiteness of

the matrix (2.6.2) we see that we can write the Maxwell system (2.6.1) as a Schrödinger equation

for  �(x, t):

i@t 
�(x, t) = H�(�ir, x) �(x, t) (2.6.4)

where:

H�(�ir, x) :=

0

@

"
�

x
� , x
�

�† �x
� , x
�

�
�

x
� , x
�

µ
�

x
� , x
�

1

A

�10

@

0 ir⇥
�ir⇥ 0

1

A . (2.6.5)

Now, let �(x),⇥(x) : R3 ⇥ R ! C6 be arbitrary functions and define the weighted, �-dependent

inner product:

h�|⇥i� :=
Z

R3
�(x) ·

0

@

"
�

x
� , x
�

�† �x
� , x
�

�
�

x
� , x
�

µ
�

x
� , x
�

1

A

0

@

E�(x, t)

H�(x, t)

1

A⇥(x) dx. (2.6.6)

Then, by assumption on the elements of (2.6.2), the operator H�(�ir, x) defined by (2.6.5) is

symmetric with respect to h |i�. It follows that the norm (induced by this inner product) of solutions

of (2.6.4) is conserved: if  �(x, t) solves (2.6.4) for all t � 0, then:

d

dt

D

 �(·, t)
�

�

�

 �(·, t)
E�

= 0. (2.6.7)

The conservation law (2.6.7) is precisely what is needed to prove convergence (as � # 0) of the

asymptotic semiclassical wavepacket solutions (in the norm induced by the inner product (2.6.6)).
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The appropriate Bloch eigenvalue problem (cf. (2.1.13) and (2.5.3)) in this setting is the fol-

lowing:

H(q, p)X(z; q, p) = E(q, p)X(z; q, p),

for all v 2 ⇤, X(z + v; q, p) = X(z; q, p),

H(q, p) :=

0

@

" (z, q) �† (z, q)

� (z, q) µ (z, q)

1

A

�10

@

0 �(p� irz)⇥
(p� irz)⇥ 0

1

A .

(2.6.8)

Just as before (cf. (2.1.13) and (2.5.3)), the operator (2.6.8) is self-adjoint (with respect to the

inner product 2.6.6 with discrete real eigenvalues which may be ordered with multiplicity:

E1(q, p)  E2(q, p)  ...  En(q, p)  ... (2.6.9)

which vary smoothly in q and p along with their associated eigenfunctionsX(z; q, p) away from band

degeneracies (cf. Theorem 2.2.1). We expect that there exist solutions of the system (2.6.1)-(2.6.2)

satisfying:
0

@

E�(x, t)

H�(x, t)

1

A = ��3/4eiS(t)/�eip(t)·(x�q(t))/�a

✓

x� q(t)

�1/2
, t

◆

Xn

⇣x

�
; q(t), p(t)

⌘

+ o(1), (2.6.10)

where Xn(z; p, q) satisfies (2.6.8) and the band En(q, p) is isolated along the trajectory q(t), p(t),

up to ‘Ehrenfest time’ t ⇠ ln 1/� (cf. Theorems 2.1.1 and 2.5.1) for appropriate evolution of S(t),

q(t), p(t), a(y, t). To fully generalize the theory displayed in Sections 2.1-2.5 to this setting is the

subject of ongoing work.

The � # 0 limit of the system (2.6.1)-(2.6.2) was studied by De Nittis and Lein [53; 54]. By

proving an Egorov theorem, they are able to describe the evolution of observables associated to

solutions of (2.6.1)-(2.6.2) up to and including terms proportional to �. These terms again depend

on the Bloch band’s Berry curvature.

Interestingly, Berry curvature corrections to the dynamics of wavepacket solutions of the Max-

well system (2.6.1)-(2.6.2) have been derived even when all entries in the matrix of constitutive

relations (2.6.2) are independent of the periodic scale. This is in contrast to the Schrödinger case.

In the Schrödinger cases (2.1.1) and (2.5.1), if the periodic background is trivial, i.e. U(z, x) is

actually independent of z, then the associated Bloch functions �n(z; q, p) are also trivial: for all

n, q, p, we may take �n(z; q, p) = 1. In particular, the correction to the equations of motion of
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observables associated to the wavepacket solution due to Berry curvature (see (2.1.3), for example)

is always zero. These corrections are responsible for the spin Hall e↵ect of light which has been

experimentally observed [7; 77]. We give a derivation of Berry curvature for eigenfunctions of

(2.6.8) in ‘free space’ in Section 2.7.2.

Light propagation in a so-called biaxial crystal is described by (2.6.1)-(2.6.2) with �
�

x
✏ , x
�

=

0, µ
�

x
✏ , x
�

= 1, and "
�

x
✏ , x
�

= " where " is a constant Hermitian matrix with 3 real distinct

eigenvalues. Such media exhibit conical intersections in their dispersion surfaces (which correspond

to the eigenvalue bands of (2.6.8)). These intersection points are responsible for the phenomenon of

conical di↵raction [6]. It would be interesting to understand the dynamics due to Berry curvature in

the case where the medium is ‘strained’ so that the matrix " varies across the medium: "! "(x). We

expect the Berry curvature-induced dynamics to be non-trivial in this case because of the presence

of multiple degeneracies: along the ‘optic axis’ the dispersion surfaces are two-fold degenerate, and

at the origin of parameter space the dispersion surfaces are three-fold degenerate (in Section 2.7.2

we consider the simplest case, where "(x) is a scalar function multiplying the identity matrix).

2.7 Examples of systems with non-zero Berry curvature

2.7.1 Berry curvature near to a domain wall ‘edge’ modulation of a honeycomb

structure

In this section we consider the eigenvalue problem (2.5.3) when d = 2 and:

U (z, x) = Vh,e (z) + (K · x)Vh,o (z) . (2.7.1)

Here, Vh,e is a smooth honeycomb lattice potential in the sense of Definition 2.1 of [28]. It was

demonstrated in [27] that Schrödinger’s operator with a closely-related potential to (2.7.1) supports

robust ‘edge’ states. Vh,e(z) therefore has the periodicity of a honeycomb lattice ⇤h:

8v 2 ⇤h, Vh,e(z + v) = Vh,e(z), (2.7.2)

is even:

Vh,e(�z) = Vh,e(z) (2.7.3)

and is invariant under rotation by 2⇡/3:

Vh,e(R
⇤z) = Vh,e(z) (2.7.4)
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where R⇤ denotes the counter-clockwise rotation matrix by 2⇡/3. Vh,o(z) is assumed smooth, has

the periodicity of the lattice, and is odd:

Vh,o(�z) = �Vh,o(z). (2.7.5)

Let v1, v2 denote primitive lattice vectors of ⇤ so that:

⇤h = Zv1 � Zv2 (2.7.6)

and k1, k2 denote primitive lattice vectors of the dual space ⇤⇤ so that:

k↵ · v� = �↵�

⇤⇤
h = Zk1 � Zk2

(2.7.7)

We define an edge in the structure, following [26], by fixing real constants a1, b1 and setting:

v1 = a1v1 + b1v2

v2 = a2v1 + b2v2

(2.7.8)

where a1b2 � a2b1 = 1 so that Zv1 � Zv2 = Zv1 � Zv2 = ⇤h. We have the dual lattice vectors:

K1 = b2k1 � a2k2

K2 = �b1k1 + a1k2

(2.7.9)

so that:

K↵ · v� = �↵�

⇤⇤
h = ZK1 � ZK2.

(2.7.10)

The ‘domain wall’ function (⇣) is assumed smooth and satisfies:

(0) = 0,0(0) > 0, lim
⇣!1

(⇣) =: 1 > 0, lim
⇣!�1

(⇣) =: �1 < 0 (2.7.11)

For example, we may take (⇣) = tanh(⇣). The eigenvalue problem (2.5.3) takes the form:

H(p, q)�(z; p, q) = E(p, q)�(z; p, q)

8v 2 ⇤h, �(z + v; p, q) = �(z; p, q)

H(p, q) :=
1

2
(p� irz)

2 + Vh,e (z) + (K · q)Vh,o (z) .

(2.7.12)
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Taking K2 · q = 0 in (2.7.12) gives:

H(p, 0)�(z; p, 0) = E(p, 0)�(z; p, 0)

8v 2 ⇤h, �(z + v; p, 0) = �(z; p, 0)

H(p, 0) :=
1

2
(p� irz)

2 + Vh,e(z).

(2.7.13)

which is the Bloch eigenvalue problem for a honeycomb lattice potential, as studied in [28]. In that

paper (see Theorem 5.1) it was shown that for generic honeycomb lattice potentials Vh,e(z) there

exist conical singularities in the dispersion surface of the operator H(p, 0). They occur at every

vertex of the Brillouin zone. After symmetry reduction, there are essentially two distinct vertices

of B, known as the K and K 0 points. The K and K 0 points are related by:

K 0 = �K. (2.7.14)

Let E±(p, 0) denote eigenvalue bands which are degenerate at the quasi-momentum k = K with

energy E⇤:

E±(K, 0) = E⇤ (2.7.15)

And let:

�1(z;K, 0),�2(z;K, 0) := �1(�z;K, 0)

8v 2 ⇤h, j 2 {1, 2},�j(z + v;K, 0) = �j(z;K, 0)
(2.7.16)

denote the basis of the degenerate E⇤-eigenspace introduced in [28]. It was shown in that paper

that generically this degeneracy is lifted for p �K 6= 0 and |p �K| small enough. Moreover, the

eigenvalue splitting is conical:

E±(p, 0) = E⇤ ± |�||p�K|+O(|p�K|2). (2.7.17)

where � is a complex constant which depends on the degenerate eigenfunctions (2.7.16) and is

non-zero for generic Vh,o.

2.7.1.1 Derivation of local character of eigenvalue bands

We now study the behavior of the eigenvalue bands E±(p, q) for small p�K, q by a formal degenerate

perturbation theory about the point (K, 0) and energy E⇤. The argument we present may be
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made rigorous by Lyapunov-Schmidt reduction (see the Appendices of [25] for examples of these

techniques). Let:

p0 := p�K

q2 := K2 · q
(2.7.18)

then we can re-write (2.7.12) as:

H(K + p0, q2)�(z;K + p0, q2) = E(K + p0, q2)�(z;K + p0, q2)

8v 2 ⇤h,�(z + v;K + p0, q2) = �(z;K + p0, q2)

H(K + p0, q2) :=
1

2
(K + p0 � irz)

2 + Vh,e(z) + (q2)Vh,o(z).

(2.7.19)

Expanding the eigenvalue problem (2.7.19) in p0 and q2 using smoothness of (⇣) we have:

h

H(K, 0) + p0 · (K � irz) + q2@⇣(0)Vh,o(z) +O(p02, q22)
i

�(z;K + p0, q2)

= E(K + p0, q2)�(z;K + p0, q2)
(2.7.20)

we seek a solution of (2.7.20) of the form:

E(K + p0, q2) = E⇤ + E0(p0, q2)

�(z;K + p0, q2) = �(z;K, 0) + �0(z; p0, q2)
(2.7.21)

where:

⌦

�1(·;K, 0)|�0(·; p0, q2)
↵

L2
z

(⌦)
=
⌦

�2(·;K, 0)|�0(·; p0, q2)
↵

L2
z

(⌦)
= 0

�(z;K, 0) = ↵(p0, q2)�1(z;K, 0) + �(p0, q2)�2(z;K, 0)
(2.7.22)

where ↵(p0, q2),�(p0, q2) are functions to be determined, and �0(z; p0, q2) has the periodicity of the

lattice:

8v 2 ⇤h,�
0(z + v; p0, q2) = �0(z; p0, q2). (2.7.23)

Here and in the remainder of this section ⌦ refers to a fundamental cell of the honeycomb lattice.

Substituting (2.7.21) into (2.7.20) gives:

[H(K, 0)� E⇤]�0(z; p0, q2) =

� ⇥p0 · (K � irz) + q2@⇣(0)Vh,o(z)� E0(p0, q2)
⇤ ⇥

↵(p0, q2)�1(z;K, 0) + �(p0, q2)�2(z;K, 0)
⇤

+ higher order terms in p0, q2.

(2.7.24)
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Ignoring higher order terms, equation (2.7.24) is uniquely solvable for �0(z; p0, q2) if and only if the

projection of the right-hand side onto the null space of [H(K, 0)� E⇤] is zero:

Qk

⇢

⇥

p0 · (K � irz) + q2@⇣(0)Vh,o(z)� E0(p0, q2)
⇤ ⇥

↵(p0, q2)�1(z;K, 0) + �(p0, q2)�2(z;K, 0)
⇤

�

= 0,

(2.7.25)

where:

Qkf(z) :=
X

j2{1,2}
h�j(z;K, 0)| f(z)iL2

z

(⌦) �j(z;K, 0). (2.7.26)

Equation (2.7.25) can be written as a matrix equation for E0(p0, q2),↵(p0, q2),�(p0, q2):

M(E0, p0, q2)

0

@

↵(p0, q2)

�(p0, q2)

1

A = 0 (2.7.27)

where:

M(E0, p0, q2) :=
0

@

p0 · h�1(z;K, 0)| (K � irz)�1(z;K, 0)iL2
z

(⌦) + @⇣(0)q2 h�1(z;K, 0)|Vh,o(z)�1(z;K, 0)iL2
z

(⌦) � E0

p0 · h�1(z;K, 0)| (K � irz)�2(z;K, 0)iL2
z

(⌦) + @⇣(0)q2 h�1(z;K, 0)|Vh,o(z)�2(z;K, 0)iL2
z

(⌦)

p0 · h�1(z;K, 0)| (K � irz)�2(z;K, 0)iL2
z

(⌦) + @⇣(0)q2 h�1(z;K, 0)|Vh,o(z)�2(z;K, 0)iL2
z

(⌦)

p0 · h�2(z;K, 0)| (K � irz)�2(z;K, 0)iL2
z

(⌦) + @⇣(0)q2 h�2(z;K, 0)|Vh,o(z)�2(z;K, 0)iL2
z

(⌦) � E0

1

A

(2.7.28)

We can use symmetries to simplify the matrix (2.7.28). Let:

p0j := vj · p0. (2.7.29)

From Proposition 4.2 of [29] we have that:

j 2 {1, 2}, p0 · h�j(z;K, 0)| (K � irz)�j(z;K, 0)iL2
z

(⌦) = 0

h�1(z;K, 0)| (K � irz)�2(z;K, 0)iL2
z

(⌦) = h�2(z;K, 0)| (K � irz)�1(z;K, 0)iL2
z

(⌦)

= �](p
0
1 + ip02)

(2.7.30)
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where �] 2 C is a complex constant which is non-zero for generic honeycomb lattice potentials

Vh,e(z). From Proposition 6.2 of [26] we have that:

h�1(z;K, 0)|Vh,o(z)�2(z;K, 0)iL2
z

(⌦) = h�2(z;K, 0)|Vh,o(z)�1(z;K, 0)iL2
z

(⌦) = 0

h�1(z;K, 0)|Vh,o(z)�1(z;K, 0)iL2
z

(⌦) = �h�2(z;K, 0)|Vh,o(z)�2(z;K, 0)iL2
z

(⌦)

=: ✓].

(2.7.31)

Here, ✓] is a real constant which is non-zero for generic Vh,e and Vh,o. We have, therefore, that the

matrix (2.7.28) takes the form:

M(p0, q2) =

0

@

@⇣(0)✓]q2 � E0 �](p01 + ip02)

�](p01 � ip02) �@⇣(0)✓]q2 � E0

1

A . (2.7.32)

Solving the matrix problem (2.7.27) we have that the local character of the dispersion surface

E(K + p0, q2) is conical:

E±(p01, p
0
2, q2) = E⇤ ± ((@⇣(0)✓]q2)

2 + (|�]|p01)2 + (|�]|p02)2)1/2 + o(|q2|, |p01|, |p02|)
�±(z; p01, p

0
2, q2) = ↵±(p01, p

0
2, q2)�1(z;K, 0) + �±(p01, p

0
2, q2)�2(z;K, 0) + o(1)

(2.7.33)

where ↵±,�± solve:
0

@

@⇣(0)✓]q2 �](p01 + ip02)

�](p01 � ip02) �@⇣(0)✓]q2

1

A

0

@

↵±(p0, q)

�±(p0, q)

1

A

= ±((@⇣(0)✓]q2)
2 + (|�]|p01)2 + (|�]|p02)2)1/2

0

@

↵±(p0, q)

�±(p0, q)

1

A .

(2.7.34)

2.7.1.2 Direct derivation of Berry curvature of eigenspaces of the matrix problem

(2.7.34)

To ease notation, let:

✓ := @⇣(0)✓], � := �]. (2.7.35)

In this section we compute the Berry curvature of the ± �(✓q2)2 + (|�|p01)2 + (|�|p02)2
�1/2

-eigenspaces

of the matrix eigenvalue problem:
0

@

✓q2 �(p01 + ip02)

�(p01 � ip02) �✓q2

1

A

0

@

↵±(p0, q)

�±(p0, q)

1

A = ± �(✓q2)2 + (|�|p01)2 + (|�|p02)2
�1/2

0

@

↵±(p0, q)

�±(p0, q)

1

A .

(2.7.36)
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where ✓,� are real and imaginary constants, respectively. The matrix (2.7.36) has been well-studied

as the prototype of a self-adjoint operator displaying a conical crossing in its eigenvalue bands. For

another route to calculating the Berry curvature in this case see, for example, [5]. We can simplify

greatly the study of this problem by changing variables. First, we decompose � as follows:

� = |�|eiµ. (2.7.37)

Then, we change variables to spherical polar co-ordinates ⇢,�, �̃:

⇢(p01, p
0
2, q2) = ((|�|p01)2 + (|�|p02)2 + (✓q2)

2)1/2

�(p01, p
0
2) = arctan

✓

p02
p01

◆

+ µ

�̃(p01, p
0
2, q2) = arctan

 

((|�|p01)2 + (|�|p02)2)1/2
✓q2

!

(2.7.38)

so that:

|�|p01 = ⇢ sin �̃ cos(�� µ)

|�|p02 = ⇢ sin �̃ sin(�� µ)

✓q2 = ⇢ cos �̃

(2.7.39)

and the eigenvalue problem (2.7.36) becomes:
0

@

cos �̃ ei� sin �̃

e�i� sin �̃ � cos �̃

1

A

0

@

↵±(�̃,�)

�±(�̃,�)

1

A = ±
0

@

↵±(�̃,�)

�±(�̃,�)

1

A (2.7.40)

which has the solution for all � 2 [0, 2⇡), �̃ 2 [0,⇡):
0

@

↵+(�̃,�)

�+(�̃,�)

1

A =

0

@

ei�/2 cos(�̃/2)

e�i�/2 sin(�̃/2)

1

A ,

0

@

↵�(�̃,�)

��(�̃,�)

1

A =

0

@

�ei�/2 sin(�̃/2)

e�i�/2 cos(�̃/2)

1

A . (2.7.41)

The normalized eigenvectors (2.7.41) are clearly unique only up to a phase, or gauge. The choice

of gauge (2.7.41) turns out to simplify calculations in the present case. For a general discussion of

these issues, see Appendix A.7. Our final result (2.7.49) is manifestly gauge-invariant. We record

at this point:

@p01⇢ = |�| sin �̃ cos(�� µ), @p02⇢ = |�| sin �̃ sin(�� µ), @q2⇢ = ✓ cos �̃

@p01� = � |�| sin(�� µ)

⇢ sin �̃
, @p02� =

|�| cos(�� µ)

⇢ sin �̃
, @q2� = 0

@p01 �̃ =
|�| cos �̃ cos(�� µ)

⇢
, @p02 �̃ =

|�| cos �̃ sin(�� µ)

⇢
, @q2 �̃ = �✓ sin �̃

⇢

(2.7.42)



CHAPTER 2. SEMICLASSICAL WAVEPACKET SOLUTIONS AND EFFECTIVE
‘PARTICLE-FIELD’ DYNAMICS 77

which implies that:

@p01

0

@

↵+(�̃,�)

�+(�̃,�)

1

A =
1

2

 

|�| cos �̃ cos(�� µ)

⇢

!

0

@

↵�(�̃,�)

��(�̃,�)

1

A

+
1

2

✓

� |�| sin(�� µ)

⇢ sin �̃

◆

0

@

iei�/2 cos(�̃/2)

�ie�i�/2 sin(�̃/2)

1

A

@p02

0

@

↵+(�̃,�)

�+(�̃,�)

1

A =
1

2

 

|�| cos �̃ sin(�� µ)

⇢

!

0

@

↵�(�̃,�)

��(�̃,�)

1

A

+
1

2

✓ |�| cos(�� µ)

⇢ sin �̃

◆

0

@

iei�/2 cos(�̃/2)

�ie�i�/2 sin(�̃/2)

1

A

@q2

0

@

↵+(�̃,�)

�+(�̃,�)

1

A =
1

2

 

�✓ sin �̃
⇢

!

0

@

↵�(�̃,�)

��(�̃,�)

1

A

@p01

0

@

↵�(�̃,�)

��(�̃,�)

1

A = �1

2

 

|�| cos �̃ cos(�� µ)

⇢

!

0

@

↵+(�̃,�)

�+(�̃,�)

1

A

+
1

2

✓

� |�| sin(�� µ)

⇢ sin �̃

◆

0

@

�iei�/2 sin(�̃/2)

�ie�i�/2 cos(�̃/2)

1

A

@p02

0

@

↵�(�̃,�)

��(�̃,�)

1

A = �1

2

 

|�| cos �̃ sin(�� µ)

⇢

!

0

@

↵+(�̃,�)

�+(�̃,�)

1

A

+
1

2

✓ |�| cos(�� µ)

⇢ sin �̃

◆

0

@

�iei�/2 sin(�̃/2)

�ie�i�/2 cos(�̃/2)

1

A

@q2

0

@

↵�(�̃,�)

��(�̃,�)

1

A = �1

2

 

�✓ sin �̃
⇢

!

0

@

↵+(�̃,�)

�+(�̃,�)

1

A .

(2.7.43)

Using the identity:

cos2(�̃/2)� sin2(�̃/2) = cos(�̃) (2.7.44)
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we have that the Berry connections with respect to variation of each parameter satisfy:

A±,p01
:=

*

0

@

↵±(�̃,�)

�±(�̃,�)

1

A

�

�

�

�

�

�

@p01

0

@

↵±(�̃,�)

�±(�̃,�)

1

A

+

= ±|�| sin(�� µ) cos �̃

2⇢ sin �̃

A±,p02
:=

*

0

@

↵±(�̃,�)

�±(�̃,�)

1

A

�

�

�

�

�

�

@p02

0

@

↵±(�̃,�)

�±(�̃,�)

1

A

+

= ⌥ |�| cos(�� µ) cos �̃

2⇢ sin �̃

A±,q2 :=

*

0

@

↵±(�̃,�)

�±(�̃,�)

1

A

�

�

�

�

�

�

@q2

0

@

↵+(�̃,�)

�+(�̃,�)

1

A

+

= 0.

(2.7.45)

Here, h |i refers to the standard C2-inner product. We have then that:

@p01A±,p02
= ±|�|2

2⇢2

 

cos �̃ cos2(�� µ) +
cos2(�� µ) cos �̃� sin2(�� µ) cos �̃

sin2 �̃

!

@p02A±,p01
= ±|�|2

2⇢2

 

� cos �̃ sin2(�� µ) +
cos2(�� µ) cos �̃� sin2(�� µ) cos �̃

sin2 �̃

!

@p02A±,q2 = 0

@q2A±,p02
= ⌥ |�|✓

2⇢2
sin �̃ cos(�� µ)

@q2A±,p01
= ±|�|✓

2⇢2
sin �̃ sin(�� µ)

@p01A±,q2 = 0

(2.7.46)

From which it follows that the Berry curvatures satisfy:

@p02A±,q2 � @q2A±,p02
= ±|�|✓ cos(�� µ) sin �̃

2⇢2
= ±|�|2✓

2⇢3
p01

@q2A±,p01
� @p01A±,q2 = ±|�|✓ sin(�� µ) sin �̃

2⇢2
= ±|�|2✓

2⇢3
p02

@p01A±,p02
� @p02A±,p01

= ±|�|2
2⇢2

cos �̃ = ±|�|2✓
2⇢3

q2.

(2.7.47)

We may write the result (2.7.47) compactly as follows. Define the vectors:

p :=

0

B

B

B

@

|�|p01
|�|p02
✓q2

1

C

C

C

A

,A±,p :=

0

B

B

B

@

A±,|�|p01
A±,|�|p02
A±,✓q2

1

C

C

C

A

. (2.7.48)

Then (2.7.47) is equivalent to:

rp ⇥A±,p = ± p

2|p|3 . (2.7.49)
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Hence the Berry curvature takes the form of amonopole at p01 = p02 = 0, q2 = 0, where the eigenvalue

bands of (2.7.19) are 2-fold degenerate.

2.7.2 Berry curvature due to degeneracy of polarization condition when wave-

vector is zero

In free space:

"
⇣x

✏
, x
⌘

= µ
⇣x

✏
, x
⌘

= 1, and �
⇣x

✏
, x
⌘

= 0. (2.7.50)

The Maxwell-Bloch eigenvalue problem (2.6.8) then reduces to:

0

@

0 �p⇥
p⇥ 0

1

AX(p) = E(p)X(p). (2.7.51)

For any fixed p 2 R3, we may choose a real orthonormal basis {p̂, v̂(p), ŵ(p)} of R3 (here, p̂ := p/|p|)
with the property that:

p̂⇥ v̂(p) = ŵ(p). (2.7.52)

v̂(p), ŵ(p) are clearly unique up to a rotation. Given v̂(p) and ŵ(p) which satisfy (2.7.52), the

vectors v̂✓(p) and ŵ✓(p) defined by:

0

@

v̂✓(p)

ŵ✓(p)

1

A =

0

@

cos ✓ � sin ✓

sin ✓ cos ✓

1

A

0

@

v̂(p)

ŵ(p)

1

A (2.7.53)

will also satisfy (2.7.52) for any ✓ 2 [0, 2⇡). We can now solve (2.7.51) exactly. There are precisely

3 eigenvalues: |p|,�|p|, and 0. The |p|-eigenspace and �|p|-eigenspace are spanned by, respectively:

8

<

:

1p
2

0

@

v̂(p)

ŵ(p)

1

A ,
1p
2

0

@

ŵ(p)

�v̂(p)

1

A

9

=

;

,

8

<

:

1p
2

0

@

ŵ(p)

v̂(p)

1

A ,
1p
2

0

@

�v̂(p)

ŵ(p)

1

A

9

=

;

. (2.7.54)

The 0-eigenspace is spanned by:
8

<

:

0

@

p̂

0

1

A ,

0

@

0

p̂

1

A

9

=

;

. (2.7.55)

We now restrict our attention to the |p|-eigenspace. The �|p|-eigenspace is similar, while the 0-

eigenspace turns out to be physically unimportant because of the ‘divergence-free’ condition of

Maxwell’s equations in free space.
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We may simplify calculations (the Berry connections with respect to this basis will turn out to

be diagonal (2.7.63)) considerably by changing basis to that of circular polarizations :
8

<

:

1p
2

0

@

v̂(p)

ŵ(p)

1

A ,
1p
2

0

@

ŵ(p)

�v̂(p)

1

A

9

=

;

7!
8

<

:

1

2

0

@

v̂(p) + iŵ(p)

ŵ(p)� iv̂(p)

1

A ,
1

2

0

@

v̂(p)� iŵ(p)

ŵ(p) + iv̂(p)

1

A

9

=

;

. (2.7.56)

We define:

e+(p) :=
1

2

0

@

v̂(p) + iŵ(p)

ŵ(p)� iv̂(p)

1

A , e�(p) :=
1

2

0

@

v̂(p)� iŵ(p)

ŵ(p) + iv̂(p)

1

A . (2.7.57)

The rotational freedom in the choice of v̂(p) and ŵ(p) corresponds to a phase freedom in the choice

of e+(p), e�(p):

e±,✓(p) :=
1

2

0

@

v̂✓(p)± iŵ✓(p)

ŵ✓(p)⌥ iv̂✓(p)

1

A = e±i✓ 1

2

0

@

v̂(p)± iŵ(p)

ŵ(p)⌥ iv̂(p)

1

A = e±i✓e±(p). (2.7.58)

In order to compute the Berry connections and curvatures associated with transport of e+(p), e�(p)

(2.7.57), we must compute the derivatives rpe+(p) and rpe�(p). In order to compute these

quantities, we fix an orthonormal right-handed basis of R3 and then write p̂, v̂(p) and ŵ(p) as

vectors with respect to this basis using spherical polar co-ordinates:

p̂ = (sin ✓ cos�, sin ✓ sin�, cos ✓)

v̂ = (� sin�, cos�, 0)

ŵ = (� cos ✓ cos�,� cos ✓ sin�, sin ✓)

(2.7.59)

The gradient operator rp in spherical polar co-ordinates takes the form:

rp = p̂@|p| + ✓̂
1

|p|@✓ + �̂
1

|p| sin ✓@�, (2.7.60)

where ✓̂, �̂ denote unit vectors pointing in the directions of varying ✓,�. Hence:

rpv̂ =

✓

�̂
� cos�

|p| sin ✓ , �̂
� sin�

|p| sin ✓ , 0
◆

rpŵ =

✓

✓̂
sin ✓ cos�

|p| + �̂
cos ✓ sin�

|p| sin ✓ , ✓̂
sin ✓ sin�

|p| + �̂
� cos ✓ cos�

|p| sin ✓ , ✓̂
cos ✓

|p|
◆

.

(2.7.61)

We compute from (2.7.61) that:

h v̂|rpv̂i = h ŵ|rpŵi = 0,

h v̂|rpŵi = � 1

|p| tan ✓ �̂, h ŵ|rpv̂i = 1

|p| tan ✓ �̂
(2.7.62)
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where h |i refers to the standard inner product on R3. We therefore have that the Berry connections

with respect to the basis of circular polarizations (2.7.57) have the form:

i he�|rpe+i = i he+|rpe�i = 0,

i he+|rpe+i = 1

|p| tan ✓ �̂, i he�|rpe�i = � 1

|p| tan ✓ �̂.
(2.7.63)

The Berry curvatures associated with e+(p) and e�(p) can now be computed using the curl operator

in spherical polar co-ordinates as follows:

F�(p) := rp ⇥ i he�(p)|rpe�(p)i

= �� p̂

|p|2 , � = ±.
(2.7.64)

The Berry curvature has the form of a monopole at p = 0, the point in parameter space at which

the eigenvalue 0 of (2.7.51) is no longer two-fold degenerate but six -fold degenerate.
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Chapter 3

Dynamics at a one-dimensional band

crossing

The research described in this chapter is joint with M. I. Weinstein.

3.1 Introduction

In this work we study the non-dimensionalized, semi-classically scaled, time-dependent Schrödinger

equation for  ✏(x, t) : R⇥ [0,1) ! C:

i✏@t 
✏ = �1

2
✏2@2x 

✏ + V
⇣x

✏

⌘

 ✏ +W (x) ✏ ⌘ H✏  ✏

 ✏(x, 0) =  ✏
0(x).

(3.1.1)

Here, ✏ is a positive real parameter which we assume to be small. We assume throughout that the

function V is smooth and 1-periodic so that:

V (z + 1) = V (z) for all z 2 R, (3.1.2)

and that W is smooth with all derivatives uniformly bounded (this assumption may be relaxed;

see Remark 1.2 of [73]). Equation (3.1.1) is the independent-particle approximation in condensed

matter physics [3] for the dynamics of an electron in a crystal described by periodic potential V ,

under the influence of an external electric field generated by a ‘slowly varying’ potential W .

Let En denote the nth Bloch band dispersion function of the periodic operator �1
2@

2
z +V (z). It

is known that [61; 73] for any uniformly isolated, or non-degenerate, band En (see Figure 3.1) there
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Figure 3.1: Plot of the two lowest Bloch band dispersion functions E1(p), E2(p) when the 1-periodic

potential is given by V (z) = 4 cos(2⇡z). Note that both bands are isolated from each other and

all other bands: for all p 2 [0, 2⇡], G(E2(p)) > 0 and G(E1(p)) > 0 where G(En(p)) is the spectral

band gap function (3.2.8). Consequently, the maps p 7! E1(p), E2(p) are smooth.

exists a family of explicit asymptotic solutions of (3.1.1) known as semiclassical wavepackets which,

for any fixed positive integer N , approximate exact solutions up to ‘Ehrenfest time’ t ⇠ ln 1/✏ up

to errors of order ✏N in L2
x. The center of mass and average quasi-momentum of these solutions

evolve (up to errors of o(1)) along classical trajectories generated by the ‘Bloch band’ Hamiltonian

Hn := En(p) +W (q). We refer to such an asymptotic solution as a wavepacket associated with the

band En. The ‘Ehrenfest’ time-scale of validity of the asymptotics is known to be the general limit

of applicability of wavepacket, or coherent state, approximations [66]. These results generalize to

d-dimensional analogs of (3.1.1) [73; 61].

In this work we consider the following question concerning the dynamics of wave-packets in a

situation where two Bloch bands are not isolated:

Problem 1. Consider equation (3.1.1) with initial conditions given by a wavepacket associated

with a band En which is then driven by the external potential W through a point in phase space

where the Bloch band En is degenerate, i.e. intersects with an adjacent band; see Figure 3.2. How

are the dynamics di↵erent from the isolated band case?

More precisely, suppose that two bands En(p), En+1(p) (WLOG, En�1 is similar) touch at a quasi-

momentum p⇤ in the Brillouin zone, but are otherwise non-degenerate in a neighborhood of p⇤ (see

Figure 3.2 ). Then, we study a wavepacket associated with the band En initially localized in phase
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Figure 3.2: Plot of the three lowest Bloch band dispersion functions when V (z) = }1/2,i!0(z+ i!0),

the ‘one-gap’ potential (see Example 1), with !0 = .8. The band E1(p) is isolated over the whole

Brillouin zone [�⇡,⇡], but the bands E2(p), E3(p) are degenerate at p = 0. For this choice of

potential, for all integers n � 2 the band En(p) is degenerate with the band En+1(p) at either

p = 0 or p = ⇡, hence ‘one gap’.

space on a classical trajectory (q(t), p(t)) generated by Hn which encounters the crossing after some

finite time t⇤: for some t⇤ > 0, limt"t⇤ p(t) = p⇤.

Our results can be roughly stated as follows; we give a more precise statement in Section

3.2. Assume that an “incident” wavepacket is driven through the crossing so that limt"t⇤ ṗ(t) =

limt"t⇤ @qW (q(t)) 6= 0. For a precise set up, see the Band Crossing Scenario (Property 3). Then:

1. Quantifying the breakdown of the ‘single-band’ description as t " t⇤; Theorem

3.3.2: Fix any positive integer, N . For t ⌧ t⇤, the solution of (3.1.1) can be represented as a

wavepacket associated with the band En with errors which are O((
p
✏)N ) in L2(R). As t " t⇤,

this ‘single-band’ description fails to capture the dynamics of the PDE to any order in
p
✏

higher than order (
p
✏)0 = 1, since it does not incorporate an excited wave associated with the

band En+1 whose norm grows to be of the order
p
✏ as t approaches t⇤ on the non-adiabatic

time-scale s = (t� t⇤)/
p
✏.

2. Coupling of degenerate bands and excitation of a reflected wave-packet; Theo-

rem 3.3.3: For t ⇠ t⇤ and for t � t⇤ the solution of (3.1.1) is well-approximated by the

sum of two semiclassical wavepackets: a “transmitted” wavepacket associated with the band

En+1 with L2-norm proportional to 1 and a “reflected” wavepacket associated with the band
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Figure 3.3: Plot of position of center of mass against time of the “incident/transmitted” wavepacket

q+(t) and the “excited/reflected” wavepacket q�(t), which satisfy (3.3.16) and (3.3.35) respectively,

for t near to t⇤. As t approaches t⇤ such that the expected quasi-momentum of the incident

wavepacket is degenerate (p+(t⇤) = p⇤ where E+(p⇤) = E�(p⇤)) inter-band coupling, which occurs

over the emergent non-adiabatic time-scale s := t�t⇤p
✏
, is non-negligible and leads to the excita-

tion of the second wavepacket. The size in L2
x of the “excited” wavepacket is smaller than that

of the “incident” wavepacket by a factor of
p
✏ and proportional to the “coupling coe�cient”

h��(·; p⇤)| @p�+(·; p⇤)i. Here E±(p),�±(z; p) refer to the smooth continuations of the band eigen-

pairs En(p), En+1(p),�n(z; p),�n+1(z; p) through the crossing (see Property 2 and Figure 3.4). Such

continuations always exist at one-dimensional band crossings (Theorem 3.3.1).

En with L2-norm proportional to
p
✏ (Figure 3.3). The size of the error terms is o(

p
✏) in

L2(R). The expansion is constructed via a rigorous matched-asymptotic analysis in which the

“transmitted” and a “reflected” wave-packets evolve on an additional emergent non-adiabatic

time-scale s = t�t⇤p
✏
.

Our proof of Theorem 3.3.2 relies on the existence of smooth continuations of the Bloch band

dispersion functions En, En+1 through the crossing point p⇤; see Property 2 and Figure 3.4. Such

continuations exist in one spatial dimension; the details are presented in Theorem 3.3.1. Our proof

does not readily generalize to cases where no such continuation exists; for example at ‘conical’, or

‘Dirac’ points which occur in dimensions d � 2 [28; 29]. The dynamics of semiclassical wavepackets

at such crossings was studied in the context of the Born-Oppenheimer approximation of molecular

dynamics by Hagedorn [37]. Adapting his methods to the present context is the subject of ongoing
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Figure 3.4: Plot of the maps E+(p), E�(p) defined by (3.3.3) with n = 2 and where E2(p), E3(p)

are the second and third lowest Bloch band dispersion functions when V (z) = }1/2,i!0(z + i!0),

the ‘one-gap’ potential with !0 = .8. The lowest three Bloch bands of this potential are shown in

Figure 3.2.

work.

Quantum dynamics at eigenvalue band crossings was studied by Landau [47], and Zener [78]

in the 1930s. A discussion of these phenomena from the perspective of normal forms and mi-

crolocal analysis was given by Colin de Verdiere et al. [17]. The propagation of Wigner measures

through crossings in the context of the Born-Oppenheimer approximation has been well studied by

Fermanian-Kammerer and others [30; 31; 49; 33; 12; 32; 13]. A model of the dynamics at a ‘conical’

Bloch band degeneracy was derived in [35]. So-called ‘avoided’ crossings are also of considerable

interest: see, for example, [34] and references therein.

3.1.1 Notation

• It will be useful to introduce the energy spaces for every l 2 N:

⌃l(R) :=

8

<

:

f 2 L2(R) : kfk⌃l

:=
X

|↵|+|�|l

ky↵(�i@y)
�f(y)kL2

y

< 1,

9

=

;

(3.1.3)

• The space of Schwartz functions S(R) is the space of functions defined as:

S(R) := \l2N⌃l(R). (3.1.4)
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• We will refer throughout to the space of L2-integrable functions which are 1�periodic:

L2
per :=

�

f 2 L2
loc(R) : f(z + 1) = f(z) at almost every z 2 R

 

. (3.1.5)

• For functions of period 1, the Brillouin zone B may be chosen to be any real interval of

length 2⇡. Since the band degeneracy we consider occurs at quasi-momentum p⇤ = ⇡, we fix

B := [0, 2⇡].

• We make the standard conventions for the L2-inner product and induced norm:

hf | giL2(D) :=

Z

D
f(x)g(x) dx, kfkL2(D) := hf | fi1/2

L2(D)
(3.1.6)

For brevity, when D = R we omit the domain of integration:

hf | giL2 :=

Z

R
f(x)g(x) dx, kfkL2 := hf | fi1/2

L2 , (3.1.7)

and when D = [0, 1] we omit all subscripts:

hf | gi :=
Z

[0,1]
f(x)g(x) dx, kfk := hf | fi1/2 , (3.1.8)
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3.2 Review of Floquet-Bloch theory and the isolated band theory

of wavepackets

3.2.1 Floquet-Bloch theory

In order to state our results we require some background on the spectral theory of the Schrödinger

operator:

H := �1

2
@2z + V (z) (3.2.1)
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where V is 1-periodic (see [46; 63] for proofs and details). Consider the family of self-adjoint

eigenvalue problems parameterized by the real parameter p:

H�(z; p) = E(p)�(z; p)

�(z + 1; p) = eip�(z; p) for all z 2 R.
(3.2.2)

Because of the explicit 2⇡-periodicity of the boundary condition, there is no loss of generality in

restricting our attention to p 2 B, where B is any real interval of length 2⇡. B is usually fixed to be

[�⇡,⇡] or [0, 2⇡] and referred to as the Brillouin zone. The eigenvalue problem (3.2.2) is equivalent

(by the transformation �(z; p) = eipz�(z; p)) to the family of self-adjoint eigenvalue problems with

1-periodic boundary conditions:

H(p)�(z; p) = E(p)�(z; p)

�(z + 1; p) = �(z; p) for all z 2 R

H(p) :=
1

2
(p� i@z)

2 + V (z).

(3.2.3)

For fixed p, the spectrum of the operator (3.2.3) is real and discrete and the eigenvalues can be

ordered with multiplicity:

E1(p)  E2(p)  ...  En(p)  ... (3.2.4)

and the associated normalized eigenfunctions of (3.2.3) �n(z; p) are a basis of the space:

L2
per :=

�

f 2 L2
loc : f(z + 1) = f(z) at almost every z 2 R

 

(3.2.5)

The maps p 7! En(p), for p varying over B, are known as the spectral band functions and their

graphs are called the dispersion curves of H. The set of all dispersion surfaces as p varies over B is

called the band structure of H (3.2.1). Any function in L2(R) may be expressed as a superposition

of Bloch waves:
�

�n(z; p) = eipz�n(z; p) : n 2 N, p 2 B . (3.2.6)

Moreover, the L2-spectrum of the operator (3.2.1) is the union of the real intervals swept out by

the spectral band functions En(p):

�(H)L2(Rd) = [n2R {En(p) : p 2 B} . (3.2.7)
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We define a measure of the spectral gap or separation at quasimomentum p 2 B between En and

all other spectral band functions satisfying (3.2.3):

G(En(p)) := min
m 6=n

|En(p)� Em(p)|. (3.2.8)

We make the following definitions:

Definition 3.2.1. Let En(p) denote an eigenvalue band of either of the equivalent eigenvalue prob-

lems (3.2.2), (3.2.3) and let p̃ 2 B. If:

G(En(p̃)) > 0, (3.2.9)

then we will say that En(p) is isolated at p̃. If:

G(En(p̃)) = 0, (3.2.10)

then we will say that En(p) is involved in a Bloch band degeneracy.

3.2.2 Isolated band theory

Property 1 (Isolated Band Property). Let En denote a band dispersion function satisfying (3.2.3)

for p 2 B. Let t0 < t1  1 and q0, p0 2 R⇥ B be such that the equations of motion of the classical

Hamiltonian Hn(p, q) := En(p) +W (q):

q̇(t) = @pEn(p(t)), ṗ(t) = �@qW (q(t)) (3.2.11)

q(t0) = q0 p(t0) = p0

have a unique smooth solution (q(t), p(t)) for t 2 [t0, t1) such that En is isolated along the trajectory

(q(t), p(t)) for t 2 [t0, t1); i.e:

M(t0, t1) := inf
t2[t0,t1)

G(En(p(t))) > 0, (3.2.12)

where G(En(p)) is defined by (3.2.8).

For arbitrary constant S0 2 R we let S(t) denote the classical action along the path (q(t), p(t)):

S(t) = S0 +

Z t

t0

p(t0)@pEn(p(t
0))� En(p(t

0))�W (q(t0)) dt0 (3.2.13)
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For arbitrary a00(y) 2 S(R), let a0(y, t) denote the unique solution of Schrödinger’s equation with

a time-dependent harmonic oscillator Hamiltonian depending on the classical trajectory (q(t), p(t))

with initial data specified at t0 by a00(y):

i@ta
0(y, t) = H (t)a0(y, t),

H (t) :=
1

2
@2pEn(p(t))(�i@y)

2 +
1

2
@2qW (q(t))y2 + @qW (q(t))An(p(t)),

a0(y, t0) = a00(y).

(3.2.14)

Here, p 2 B 7! An(p) denotes the n-th band Berry connection (see Section 3.1.1 for conventions

regarding inner products and norms):

An(p) := i h�n(·; p))| @p�n(·; p)i . (3.2.15)

Since the �n(z; p) are assumed normalized:

for all p 2 R, k�n(·, p)k = 1, (3.2.16)

it follows that An(p) is real-valued. The term @qW (q(t))An(p(t)) in (3.2.14) therefore leads to an

overall phase shift in the solution of (3.2.14) known as Berry’s phase.

Remark 3.2.1. For any path p(t) through parameter space it is possible to choose phases of the

eigenfunctions �n(z; p) in such a way that the Berry connection (3.2.15) is zero when evaluated

along the curve p(t) for all t. This choice is known as the adiabatic gauge. See Proposition 3.1 of

[37], for example.

We now state a mild refinement of the result of Carles-Sparber [61] which we find more directly

applicable:

Theorem 3.2.1 (Order 1 wave-packet). Let (q(t), p(t)) denote the classical trajectory generated by

the Hamiltonian Hn(p, q) = En(p)+W (q), where p 7! En(p) denotes the nth spectral band function

for the periodic Schrödinger operator �1
2@

2
z + V (z). Assume that band En satisfies the Isolated

Band Property 1 along the trajectory (q(t), p(t)) for t 2 [t0, t1), i.e. M(t0, t1) > 0; see (3.2.12).

Let S(t) be as in (3.2.13) and a0(y, t) be the unique solution of (3.2.14) with initial data a00(y) 2
S(R).
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Then, for su�ciently small ✏ > 0 the following holds. Let  ✏(x, t) denote the unique solution of

the initial value problem (3.1.1) with approximate ‘Bloch wavepacket’ initial data given at t = t0:

i✏@t 
✏ = H✏ ✏

 ✏(x, t0) = ✏�1/4eiS0/✏eip0(x�q0)/✏a00

✓

x� q0p
✏

◆

�n

⇣x

✏
; p0
⌘

.
(3.2.17)

For t 2 [t0, t1), the solution evolves as a modulated ‘Bloch wavepacket’ plus a corrector ⌘✏(x, t):

 ✏(x, t) = ✏�1/4eiS(t)/✏eip(t)(x�q(t))/✏a0
✓

x� q(t)p
✏

, t

◆

�n

⇣x

✏
; p(t)

⌘

+ ⌘✏(x, t) (3.2.18)

where the leading order term is of order 1 in L2(R) and the corrector ⌘✏ satisfies:

k⌘✏(·, t)kL2  Cec(t�t0)
p
✏, t0  t < t1. (3.2.19)

The constants C > 0, c > 0 depend on M(t0, t1) and the initial data specified at t0, are independent

of ✏ and do not depend otherwise on t0 and t1. Moreover, C " 1 as M(t0, t1) # 0.

In particular, if M(t0,1) > 0 then

sup
t2[t0,C̃ ln 1/✏]

k⌘✏(·, t)kL2 = o(1), (3.2.20)

where C̃ is any constant such that C̃ < 1
2c .

Remark 3.2.2. The timescale t ⇠ ln 1/✏ is known as ‘Ehrenfest time’ and is known to be the gen-

eral limit of applicability of wavepacket, or coherent state, approximations (see [66] and references

therein).

It is convenient at this point to introduce a short-hand notation for the leading order (O(1) in

L2) ‘Bloch wavepacket’ asymptotic solution associated with the band En with centering along the

classical trajectory (q(t), p(t)) and envelope function a0(y, t) (3.2.18):

WP0,✏[S(t), q(t), p(t), a0(y, t),�n(z; p(t))](x, t) :=

✏�1/4eiS(t)/✏eip(t)(x�q(t))/✏a0
✓

x� q(t)p
✏

, t

◆

�n

⇣x

✏
; p(t)

⌘

.
(3.2.21)

In our analysis we require a refinement of Theorem 1.1 of [73] where it was demonstrated how

to compute corrections to the asymptotic solution (3.2.18) in order to improve the error bound

(3.2.19) by a factor of
p
✏.
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For any a10(y) 2 S(R), let a1(y, t) denote the unique solution of the following inhomogeneous

Schrödinger equation with initial data specified at t0 by a10(y) driven by the solution a0(y, t) of

(3.2.14):

i@ta
1(y, t) = H (t)a1(y, t) + I (t)a0(y, t),

I (t) :=
1

6
@3pEn(p(t))(�i@y)

3 +
1

6
@3qW (q(t))y3

+ @qW (q(t))@pAn(p(t))(�i@y) + @2qW (q(t))An(p(t))y,

a1(y, t0) = a10(y).

(3.2.22)

Again, An(p) denotes the Berry connection, displayed in (3.2.15). We next introduce a convenient

short-hand notation for the ‘Bloch wavepacket’ asymptotic solution associated with the band En

with a first-order correction to WP0,✏ in (3.2.21):

WP1,✏[S(t), q(t), p(t), a0(y, t), a1(y, t),�n(z; p(t))](x, t) :=

✏�1/4eiS(t)/✏eip(t)(x�q(t))/✏

⇢

a0
✓

x� q(t)p
✏

, t

◆

�n

⇣x

✏
; p(t)

⌘

+
p
✏



a1
✓

x� q(t)p
✏

, t

◆

�n

⇣x

✏
; p(t)

⌘

+ (�i@y)a
0

✓

x� q(t)p
✏

, t

◆

@p�n

⇣x

✏
; p(t)

⌘

��

.

(3.2.23)

Then, we have the following mild generalization of the result of Theorem 1.1 in [73]:

Theorem 3.2.2 (Order 1 wave-packet with order
p
✏ correction). Assume the same setting as in

Theorem 3.2.1, in particular that the Isolated Band Property 1 holds along the trajectory (p(t), q(t))

of the classical Hamiltonian Hn = En(p) + W (q) for t 2 [t0, t1), where t0 < t1  1. Let a00(y)

and a10(y) 2 S(R). Let S(t) be as in (3.2.13) with initial action S(0) = S0 2 R. Let a0(y, t) as in

(3.2.14) and a1(y, t) be as in (3.2.22).

Then, for su�ciently small ✏ > 0, we have that the unique solution  ✏(x, t) of the initial value

problem (3.1.1) with approximate ‘Bloch wavepacket’ initial data with corrections proportional to
p
✏ given at t = t0:

i✏@t 
✏ = H✏ ✏

 ✏(x, t0) = WP1,✏[S0, q0, p0, a
0
0(y), a

1
0(y),�n(z; p0)](x) +OL2

x

(✏)
(3.2.24)

evolves as a modulated ‘Bloch wavepacket’ plus a corrector ⌘✏(x, t):

 ✏(x, t) = WP1,✏[S(t), q(t), p(t), a0(y, t), a1(y, t),�n(z; p(t))](x, t) + ⌘✏(x, t) (3.2.25)
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where the corrector ⌘✏ satisfies, for t 2 [t0, t1), the bound:

k⌘✏(·, t)kL2  Cect✏ (3.2.26)

where the constants C > 0, c > 0 are as stated in Theorem 3.2.1.

Furthermore, it follows that if M(t0,1) > 0, then we have the following error bound on the

Ehrenfest time-scale:

sup
t2[0,C̃ ln 1/✏]

k⌘✏(·, t)kL2 = o(
p
✏), (3.2.27)

where C̃ is any constant such that C̃ < 1
2c , cf. (3.2.20).

Remark 3.2.3. By a natural extension of the methods of [61] and [73] one may derive, for any

integer k � 0, ‘kth-order Bloch wavepacket’ approximate solutions:

WPk,✏[S(t), q(t), p(t), a0(y, t), a1(y, t), a2(y, t), ...,�n(z; p(t))](x, t) (3.2.28)

such that the exact solution  ✏(x, t) of (3.1.1) with ‘k-th order Bloch wavepacket’ initial data:

 ✏
0(x) = WPk,✏[S0, q0, p0, a

0
0(y), a

1
0(y), a

2
0(y), ...,�n(z; p0)](x) (3.2.29)

satisfies:

 ✏(x, t) =

WPk,✏[S(t), q(t), p(t), a0(y, t), a1(y, t), a2(y, t), ...,�n(z; p(t))](x, t) + oL2
x

(✏k/2)
(3.2.30)

up to ‘Ehrenfest time’ t ⇠ ln 1/✏. Note that each function WPk,✏[...](x, t) depends on k+1 envelope

functions a0(y, t), a1(y, t), a2(y, t), ... each of which satisfies a suitable Schrödinger equation driven

by the k previously defined envelope functions. Hence a2(y, t) satisfies a Schrödinger equation driven

by a0(y, t) and a1(y, t) and so on.

3.3 Statement of results on dynamics at band crossings

3.3.1 Linear band crossings

We next give a precise discussion of the character of one-dimensional band crossings. The following

property describes a linear band crossing, illustrated in Figures 3.2 and 3.4. In Theorem 3.3.1 we

assert that Bloch band degeneracies in one dimension are of this type:
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Property 2 (Linear band crossing). Let En(p), En+1(p) denote two spectral band functions satis-

fying (3.2.3) for p 2 B, and let p⇤, U denote a point and open interval respectively with p⇤ 2 U ⇢ B
such that:

(A1) The bands En and En+1 are degenerate at p⇤, and this degeneracy is unique in U :

En(p
⇤) = En+1(p

⇤)

if p̃⇤ 2 U and En(p̃
⇤) = En+1(p̃

⇤), then p̃⇤ = p⇤.
(3.3.1)

(A2) The bands En+1, En are uniformly isolated from the rest of the spectrum for all p 2 U , i.e.

there exists a positive constant M > 0 such that:

min
p2U

min
m/2{n,n+1}

{|Em(p)� En+1(p)|, |En(p)� Em(p)|} � M > 0 (3.3.2)

(A3) The maps:

p 7! (E+(p),�+(z; p)) :=

8

>

<

>

:

(En(p),�n(z; p)) for p 2 U and p < p⇤

(En+1(p),�n+1(z; p)) for p 2 U and p � p⇤

p 7! (E�(p),��(z; p)) :=

8

>

<

>

:

(En+1(p),�n+1(z; p)) for p 2 U and p < p⇤

(En(p),�n(z; p)) for p 2 U and p � p⇤

(3.3.3)

are smooth for all p 2 U .

(A4) The bands E+, E� satisfy @pE+(p⇤) > 0, @pE�(p⇤) < 0 and in particular:

@pE+(p
⇤)� @pE�(p⇤) = 2@pE+(p

⇤) > 0. (3.3.4)

Caveat Lector! In (3.3.3), the notation + and � refers to the sign of the derivative of the smooth

band functions at the crossing point: @pE+(p⇤) > 0, @pE�(p⇤) < 0. This is not to be confused with

an ordering of the bands themselves. Indeed, with our conventions we have:

for p 2 U and p < p⇤: E+(p) = En(p) < En+1(p) = E�(p). (3.3.5)

It is useful to view the functions E+(p), E�(p) as smooth continuations of the band functions

En(p), En+1(p) from the interval {p 2 U : p  p⇤} to the interval {p 2 U : p > p⇤}. We will refer to

any crossing satisfying Property 2 as a linear crossing. In one spatial dimension, all band crossings

are linear. Moreover, crossings can only occur at 0 or ⇡ (modulo 2⇡):
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Theorem 3.3.1. Let En(p), En+1(p) denote spectral band functions satisfying (3.2.3) for p 2 B,
and let p⇤ 2 B be such that: En(p⇤) = En+1(p⇤). Then:

1. p⇤ = 0 or ⇡ (modulo 2⇡).

2. There exists an open interval U containing p⇤ such that hypotheses (A1)-(A4) of Property 2

hold.

The proof of Theorem 3.3.1 is given in Appendix B.1.

Corollary 3.3.1. Let En(p), En+1(p) denote spectral band functions in one dimension which cross

at some p⇤ 2 B. Let P?± (p) denote the projection onto the orthogonal complement in L2
per of the

functions �+(z; p),��(z; p), defined for p 2 U by (3.3.3). Then:

k(H(p)� E�(p))
�1P?

± (p)kL2
per

!H2
per

 1

M
, � = ±, p 2 U. (3.3.6)

where M > 0 is the constant appearing in (3.3.2).

The bound (3.3.6) follows immediately from (3.3.2). When we consider the dynamics of

wavepackets associated with En(p) or En+1(p) and spectrally localized close to p⇤, the gap condition

(3.3.2) and Corollary 3.3.1 will allow us to bound contributions to the solution from all bands other

than En(p) and En+1(p) uniformly through the crossing time, see Appendix D of [73] for details.

Remark 3.3.1. Theorem 3.3.1 does not generalize to spatial dimensions larger than one. Indeed, at

so-called ‘conical’ or ‘Dirac’ points, which occur in the spectral band structure of two-dimensional

periodic Schrödinger operators with honeycomb lattice symmetry, the local band structure is the

union of Lipschitz surfaces [28; 29] and the map p 7! �n(z; p) from the Brillouin zone to the Bloch

eigenfunctions is discontinuous [29].

3.3.2 Examples of potentials with linear band crossings

Example 1 (Weierstrass elliptic functions). Let !1,!3 2 C with Im (!3/!1) 6= 0. Define }!1,!3(z),

the Weierstrass elliptic function with periods 2!1, 2!3 by:

}!1,!3(z) :=
1

z2
+

X

(m,n)2Z⇥Z,
(m,n) 6=(0,0)

1

(z � 2m!1 � 2n!3)2
� 1

(2m!1 + 2n!3)2
. (3.3.7)
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The function }!1,!3(z) is doubly-periodic and even:

}!1,!3(z + 2!1) = }!1,!3(z + 2!3) = }!1,!3(z)

}!1,!3(�z) = }!1,!3(z),
(3.3.8)

and has poles of degree two at the points ⌦m,n = 2m!1 + 2n!3 for all (m,n) 2 Z ⇥ Z. If !1 = !,

!3 = i!0 with !,!0 2 R and ! > 0, then }!,i!0(z) is real for z such that Re z 2 {0,!} or

Im z 2 {0,!0} by the symmetries (3.3.8). Now fix ! = 1/2, and define for any !0 2 R with !0 6= 0

and positive integer m:

V (z) :=
m(m+ 1)

2
}1/2,i!0(z + i!0). (3.3.9)

Then for z 2 R, V (z) is a real, smooth, 1-periodic function.

The m lowest Bloch band dispersion functions defined by (3.2.3) for this potential are non-

degenerate for all p 2 B, but for every n > m, the band En(p) has a linear crossing with the band

En+1(p) at p = 0 or p = ⇡ [50]. Such potentials are known as ‘m-gap’ potentials since the L2(R)

spectrum of the operator �1
2@

2
z + V (z) in this case consists of m + 1 real intervals with m ‘gaps’

between them. Indeed, all ‘m-gap’ potentials, for positive integers m, must be elliptic functions

[41]. Any Weierstrass elliptic function may be written in terms of Jacobi elliptic functions; for

more detail see [9; 75; 14; 1; 59].

The lowest three bands of a ‘one-gap’ potential are shown in Figure 3.2. The smooth bands at

the linear crossing between the second and third bands defined by (3.3.3), whose existence is ensured

by Theorem 3.3.1, are shown in Figure 3.4.

Example 2 (Trivial band crossings). Every Bloch band of any 1-periodic function which has min-

imal period 1/2 will be degenerate. To see this, let V (z) be 1/2-periodic. We may plot the band

structure of the operator �1
2@

2
z +V (z) with respect to the natural 4⇡-periodic Brillouin zone, which

we take for concreteness to be [0, 4⇡]. Now, we may also treat V (z) as a 1-periodic potential and

plot its band structure with respect to the 2⇡-periodic Brillouin zone [0, 2⇡]. But it is clear that any

eigenpair of the 1/2-periodic eigenvalue problem will also be an eigenpair of the 1-periodic eigen-

value problem. Hence the band structure of the 1-periodic operator is nothing but the band structure

of the 1/2-periodic operator ‘folded over’ onto the shorter interval. More precisely, eigenvalues of

the 1/2-periodic operator with quasi-momentum p 2 [2⇡, 4⇡] will be eigenvalues of the 1-periodic

operator with quasi-momentum p � 2⇡. For an example, see Figure 3.5. We will refer to such
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Figure 3.5: Lowest Bloch bands when V (z) = 4 cos(4⇡z), viewed as a 1/2-periodic potential and

plotted over the natural Brillouin zone in this case [0, 4⇡] (a) and viewed as a 1-periodic potential

and plotted over [0, 2⇡] (b). When V (z) is viewed as a 1-periodic potential, every Bloch band is

degenerate at p = ⇡.

crossings as “trivial”, since they may be removed by a proper choice of Brillouin zone. The wave

“excited” at such crossings is zero: see Remark 3.3.5 and Appendix B.2.

3.3.3 Band crossing dynamics

We now make precise the scenario of a wavepacket whose quasi-momentum is driven by the external

potential W towards a quasi-momentum p⇤ 2 B at which there is a linear band crossing; see

Property 2.

Property 3 (Band Crossing Scenario). Let En, En+1 denote spectral band functions associated with

the eigenvalue problem (3.2.3) for p 2 B which have a linear crossing in the sense of Property 2 at

p⇤. Let q0, p0 2 R⇥ B be such that G(En(p0)) > 0 (i.e. the band En(p) is isolated at p0: recall the

definition of the spectral gap function G (3.2.8)). We assume the existence of a positive constant

t⇤ > 0 such that the equations of motion of the classical Hamiltonian Hn(q, p) := En(p) +W (q):

q̇(t) = @pEn(p(t)) ṗ(t) = �@qW (q(t)) (3.3.10)

q(0) = q0 p(0) = p0
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have a unique smooth solution (q(t), p(t)) ⇢ R ⇥ B for all t 2 [0, t⇤) such that the Bloch band

function En is isolated when evaluated at p(t) for every t 2 [0, t⇤):

for all t 2 [0, t⇤), G(En(p(t))) > 0 and lim
t"t⇤

p(t) = p⇤. (3.3.11)

Let q⇤ denote the limit: limt"t⇤ q(t). We assume that the wavepacket is ‘driven’ towards the crossing

in the following sense:

lim
t"t⇤

ṗ(t) = �@qW (q⇤) > 0. (3.3.12)

Remark 3.3.2. We choose the sign of �@qW (q⇤) in (3.3.12) to be positive without loss of generality.

Note that it follows from (3.3.12) that for t < t⇤ with |t� t⇤| su�ciently small, p(t) < p⇤: i.e. the

wave-packet quasi-momentum approaches p⇤ ‘from the left’. As a consequence the ‘smooth extension’

of the map t 7! En(p(t)) for t � t⇤ makes use of E+(p(t)) rather than E�(p(t)); see Proposition

3.3.1.

We aim to describe the solution of the PDE (3.1.1) with ‘Bloch wavepacket’ initial data of the

form:

 ✏(x, 0) = WP1,✏[S0, q0, p0, a
0
0(y), a

1
0(y),�n(z; p0)](x) ; (3.3.13)

see (3.2.23). Here, a00, a
1
0 2 S(R) and S0 2 R in the Band Crossing Scenario (Property 3) up to

errors of oL2(
p
✏) for t up to and greater than the crossing time t⇤.

Note that for t < t⇤, (3.3.11) implies that Property 1 holds with t0 = 0 and t1 = t. By Theorem

3.2.2 the solution  ✏(x, t) of (3.1.1) satisfies, for fixed t and ✏ # 0:

 ✏(x, t) = WP1,✏[S(t), q(t), p(t), a0(y, t), a1(y, t),�n(z; p(t))](x, t) +OL2(✏) (3.3.14)

where q(t), p(t), S(t), a0(y, t), a1(y, t) are as in (3.3.10), (3.2.13), (3.2.14), and (3.2.22) respectively.

Two di�culties arise in estimating error term in the solution  ✏(x, t) of (3.1.1) for t � t⇤:

Di�culty 1. The functions q(t), p(t), S(t), a0(y, t), a1(y, t), �n(z; p(t)), and @p�n(z; p(t)), and

therefore the function:

WP1,✏[S(t), q(t), p(t), a0(y, t), a1(y, t),�n(z; p(t))](x, t), (3.3.15)

are not well-defined at t = t⇤ since the band function En(p) and its associated eigenfunctions

�n(z; p) are not smooth in p at p⇤.
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Di�culty 2. The L2
x-norm of the error in the approximation (3.3.14) depends directly on the

inverse of the spectral gap function G(En(p(t))), which blows up as t " t⇤ since |G(En(p(t)))| ⇠
|En+1(p(t))� En(p(t))| # 0.

We return to Di�culty 2 below: see Theorem 3.3.2 and Corollary 3.3.2.

3.3.4 Resolution of Di�culty 1; Smooth Continuation of Bands

Di�culty 1 may be overcome by making proper use of the smooth band functions E+, E�; see

(3.3.3) in Property 2, Theorem 3.3.1 and Figure 3.4. The following proposition shows how in the

Band Crossing Scenario (Property 3), we may extend the map [0, t⇤) ! R⇥B, t 7! (q(t), p(t)) to a

smooth map over an interval [0, T ] with T > t⇤ using the smooth band function E+:

Proposition 3.3.1. Assume the Band Crossing Scenario (Property 3) with crossing occurring for

t = t⇤. Then for su�ciently small positive � with 0 < � < t⇤, the equations of motion of the classical

Hamiltonian H+(q, p) := E+(p) +W (q) with data specified at t⇤:

q̇+(t) = @pE+(p+(t)), ṗ+(t) = �@qW (q+(t)) (3.3.16)

q+(t
⇤) = q⇤ p+(t

⇤) = p⇤

have a unique smooth solution (q+(t), p+(t)) ⇢ R ⇥ U over the interval t 2 [t⇤ � �, t⇤ + �] which

satisfies:

for all t 2 [t⇤ � �, t⇤), q(t) = q+(t), p(t) = p+(t). (3.3.17)

Furthermore, for su�ciently small T � t⇤+� > 0, there exists a solution (qn+1(t), pn+1(t)) ⇢ R⇥B
of the equations of motion of the classical Hamiltonian Hn+1(q, p) := En+1(p) + W (q) over the

interval t 2 (t⇤, T ] satisfying the limits:

q̇n+1(t) = @pEn+1(pn+1(t)) ṗn+1(t) = �@qW (qn+1(t)) (3.3.18)

lim
t#t⇤

qn+1(t) = q⇤ lim
t#t⇤

pn+1(t) = p⇤

such that G(En+1(pn+1(t))) > 0 for all t 2 (t⇤, T ]. This solution satisfies:

for all t 2 (t⇤, t⇤ + �], q+(t) = qn+1(t), p+(t) = pn+1(t). (3.3.19)
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It follows from (3.3.17) and (3.3.19) that the map:

t 7! (q+(t), p+(t)) :=

8

>

>

>

>

>

<

>

>

>

>

>

:

(q(t), p(t)) for t 2 [0, t⇤ � �]

(q+(t), p+(t)) for t 2 [t⇤ � �, t⇤ + �]

(qn+1(t), pn+1(t)) for t 2 [t⇤ + �, T ]

(3.3.20)

is smooth as a map [0, T ] ! R⇥ B.

Proof. The potential W is smooth by assumption, the band functions En, En+1 are smooth ev-

erywhere away from p⇤, and the band function E+ is smooth in U , a neighborhood of p⇤. The

proposition then follows easily from existence and uniqueness for solutions of ODEs with smooth

coe�cients.

Corresponding to the smooth extension t 7! (q+(t), p+(t)) we may define the smooth extension

of �n(z; p(t)) through the crossing:

t 7! X+(z; p+(t)) :=

8

>

>

>

>

>

<

>

>

>

>

>

:

�n(z; p(t)) for t 2 [0, t⇤ � �]

�+(z; p+(t)) for t 2 [t⇤ � �, t⇤ + �]

�n+1(z; pn+1(t)) for t 2 [t⇤ + �, T ]

. (3.3.21)

Finally, using the smooth maps t 7! (q+(t), p+(t)) and t 7! X+(z; p+(t)), we introduce smooth

extensions of the functions a0(y, t), a1(y, t), and S(t) over the whole interval t 2 [0, T ] as follows:

Definition 3.3.1 (Smooth extensions of a0(y, t), a1(y, t), and S(t)). Let:

S⇤ := lim
t"t⇤

S(t), a0,⇤(y) := lim
t"t⇤

a0(y, t), and a1,⇤(y) := lim
t"t⇤

a1(y, t). (3.3.22)

Then let S+(t), a0+(y, t), and a1+(y, t) be defined for t 2 [t⇤ � �, t⇤ + �] by (3.2.13), (3.2.14), and

(3.2.22) with t0 = t⇤, and where all dependence on p(t), q(t), En(p(t)), �n(z; p(t)), and W (q(t))

replaced by dependence on p+(t), q+(t), E+(p+(t)), �+(z; p+(t)), and W (q+(t)) respectively, and:

S0 = S⇤, a00(y) = a0,⇤(y), and a10(y) = a1,⇤(y). (3.3.23)

Then let Sn+1(t), a0n+1(y, t), a
1
n+1(y, t) be defined for t 2 (t⇤, T ] by equations (3.2.13), (3.2.14), and

(3.2.22), replacing dependence on p(t), q(t), En(p(t)), �n(z; p(t)), and W (q(t)) by dependence on

pn+1(t), qn+1(t), En+1(pn+1(t)), �n+1(z; pn+1(t)), and W (qn+1(t)) and the limits:

lim
t#t⇤

Sn+1(t) = S⇤, lim
t#t⇤

an+1(y, t) = a0,⇤(y), and lim
t#t⇤

a1(y, t) = a1,⇤(y). (3.3.24)
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We denote by S+(t), a0+(y, t), and a1+(y, t) smooth maps defined over the whole interval t 2 [0, T ]

defined analogously to (3.3.20) so that, for example:

t 7! a0+(y, t) :=

8

>

>

>

>

>

<

>

>

>

>

>

:

a0(y, t) for t 2 [0, t⇤ � �]

a0+(y, t) for t 2 [t⇤ � �, t⇤ + �]

a0n+1(y, t) for t 2 [t⇤ + �, T ]

. (3.3.25)

We now define a first-order wavepacket smoothly continued through the crossing, an expression

which is smooth for all t 2 [0, T ] by (recall the definition of WP1,✏ (3.2.23)):

WP1,✏[S+(t), q+(t), p+(t), a
0
+(y, t), a

1
+(y, t),X+(z; p+(t))](x, t) :=

8

>

>

>

>

>

<

>

>

>

>

>

:

WP1,✏[S(t), q(t), p(t), a0(y, t), a1(y, t),�n(z; p(t))](x, t) for t 2 [0, t⇤ � �]

WP1,✏[S+(t), q+(t), p+(t), a0+(y, t), a
1
+(y, t),�+(z; p(t))](x, t) for t 2 [t⇤ � �, t⇤ + �]

WP1,✏[Sn+1(t), qn+1(t), pn+1(t), a0n+1(y, t), a
1
n+1(y, t),�n+1(z; p(t))](x, t) for t 2 [t⇤ + �, T ]

.

(3.3.26)

Remark 3.3.3. Note that by construction, (3.3.26) is a wavepacket associated with the band En

for t 2 [0, t⇤ � �], a wavepacket associated with the band En+1 for t 2 [t⇤ + �, T ], and a wavepacket

associated with the ‘smooth transition’ E+ for t 2 [t⇤ � �, t⇤ + �].

3.3.5 Resolution of Di�culty 2; Incorporation of the second band and a new,

fast / non-adiabatic, time-scale

We first present a result which quantifies, through a blow-up rate of the error bound, the breakdown

of the single band approximation (3.3.14) as t " t⇤:

Theorem 3.3.2. Assume the Band Crossing Scenario (Property 3). Assume a00(y) and a10(y) 2
S(R) and let  ✏(x, t) denote the unique solution of (3.1.1) with ‘Bloch wavepacket’ initial data:

 ✏(x, 0) = WP1,✏
n [S0, q0, p0, a

0
0(y), a

1
0(y),�n(z; p0)](x). (3.3.27)

Then for t 2 [0, t⇤),  ✏(x, t) satisfies:

 ✏(x, t) = WP1,✏[S+(t), q+(t), p+(t), a
0
+(y, t), a

1
+(y, t),X+(z; p+(t))](x) + ⌘✏(x, t) (3.3.28)
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where WP1,✏
+ (x, t) is given by (3.3.26). Moreover, the corrector ⌘✏(x, t) satisfies the following bound

for 0 < t < t⇤, which blows up as t " t⇤:

k⌘✏(·, t)kL2  C |h��(·; p⇤)| @p�+(·; p⇤)i|
 

✏

|t� t⇤| +
✏3/2

|t� t⇤|2
!

+O

 

✏, ✏3/2 ln |t� t⇤|, ✏3/2

|t� t⇤|

! (3.3.29)

The constants in (3.3.29) (explicit and implied) are independent of t, ✏ and are finite as long as:

@pE+(p⇤)� @pE�(p⇤) = 2@pE+(p⇤) > 0 and @qW (q⇤) 6= 0.

Theorem 3.3.2 is proved in Section 3.4 and Appendix B.3.

Remark 3.3.4. The manner in which the nonzero constants @pE+(p⇤) � @pE�(p⇤) = 2@pE+(p⇤)

and @qW (q⇤) play a role in the bound (3.3.29) is seen in (3.4.22) and (B.3.6).

Theorem 3.3.2 shows that the single band ansatz, even when smoothly continued through the

linear band crossing, fails to give a good approximation (error of size oL2
x

(
p
✏)) to the solution

 ✏(x, t) of equation (3.1.1) for small |t� t⇤|. Furthermore, since the dominant terms in the bound

(3.3.29),
p
✏⇥ (

p
✏/|t� t⇤|),p✏⇥ (

p
✏/|t� t⇤|)2, are proportional to

h��(·; p⇤)| @p�+(·; p⇤)i , (3.3.30)

we see that the failure of the single band wave-packet approximation is due to contributions to the

solution from the other band participating in the linear crossing, p 7! E�(p), growing to be of size

⇠ p
✏ when:

|t� t⇤| ⇠ p
✏. (3.3.31)

Remark 3.3.5. At “trivial” crossings, which occur when the potential V (z) has minimal period

1/2 (recall Example 2), the “inter-band coupling coe�cient” (3.3.30) is zero (see Appendix B.2).

It follows that the amplitude of the wave associated with the other band involved in the crossing

“excited” (Theorem 3.3.3) at the crossing is also zero. This is consistent with the observation that

the crossing may be removed by making the proper choice of Brillouin zone.

The following Corollary of Theorem 3.3.2 precisely characterizes the time interval of validity of

the single band ansatz:
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Corollary 3.3.2. Let t = t⇤� ✏⇠. Then, for small enough ✏ > 0, (3.3.29) implies that the corrector

function ⌘✏(x, t) which appears in (3.3.28) satisfies:

sup
t2[0,t⇤�✏⇠]

k⌘✏(·, t)kL2  C✏1�⇠ (3.3.32)

where C > 0 is a constant independent of ✏, ⇠, t. In particular, if 0 < ⇠ < 1/2, then:

sup
t2[0,t⇤�✏⇠]

k⌘✏(·, t)kL2 = o(
p
✏). (3.3.33)

It follows that ⌘✏(x, t) is negligible in L2(R) compared with WP1,✏ in the expansion (3.3.28) for

t 2 [0, t⇤ � ✏⇠].

In order to describe the solution for t ⇠ t⇤ and t � t⇤, it is necessary to make a more general

ansatz for the solution which accounts for the excitation of a wave associated with the other band

involved in the crossing over the time-scale:

s :=
t� t⇤p

✏
. (3.3.34)

The following proposition, which is analogous to Proposition 3.3.1, is required to construct this

excited wave:

Proposition 3.3.2. Assume the Band Crossing Scenario (Property 3). Then for su�ciently small

positive �0 the equations of motion of the classical Hamiltonian H�(q, p) := E�(p)+W (q) with data

specified at t⇤:

q̇�(t) = @pE�(p�(t)) ṗ�(t) = �@qW (q�(t)) (3.3.35)

q�(t⇤) = q⇤ p�(t⇤) = p⇤ (3.3.36)

have a unique smooth solution (q�(t), p�(t)) ⇢ R ⇥ U over the interval t 2 [t⇤ � �0, t⇤ + �0]. Fur-

thermore, for su�ciently small T 0 � t⇤ + �0 > 0, there exists a solution (qn(t), pn(t)) ⇢ R ⇥ B of

the equations of motion of the classical Hamiltonian Hn(q, p) := En(p) + W (q) over the interval

t 2 (t⇤, T 0] satisfying the limits:

q̇n(t) = @pEn(pn(t)) ṗn(t) = �@qW (qn(t)) (3.3.37)

lim
t#t⇤

qn(t) = q⇤ lim
t#t⇤

pn(t) = p⇤
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such that G(En(pn(t))) > 0 for all t 2 (t⇤, T 0]. This solution satisfies:

for all t 2 (t⇤, t⇤ + �0], q�(t) = qn(t), p�(t) = pn(t). (3.3.38)

It follows from (3.3.38) that the map:

(q�(t), p�(t)) :=

8

>

<

>

:

(q�(t), p�(t)) for t 2 [t⇤ � �0, t⇤ + �0]

(qn(t), pn(t)) for t 2 [t⇤ + �0, T ].
(3.3.39)

is smooth over the interval t 2 [t⇤ � �0, T 0].

We again define, as in (3.3.21):

t 7! X�(z; p�(t)) :=

8

>

<

>

:

��(z; p�(t)) for t 2 [t⇤ � �0, t⇤ + �0]

�n(z; pn(t)) for t 2 [t⇤ + �0, T 0]
. (3.3.40)

The precise form of the wave “excited” at the crossing time is derived from a rigorous multi-

scale analysis on the emergent nonadiabatic time-scale (3.3.34) (see Section 3.5.1). The following

definition is the result of this calculation:

Definition 3.3.2 (Parameters of the excited wave-packet). We let S�(t) and a0�(y, t) be defined

for t 2 [t⇤ � �0, t⇤ + �0] by (3.2.13) and (3.2.14) with t0 = t⇤, in which all dependence on p(t), q(t),

En(p(t)), �n(z; p(t)), and W (q(t)) replaced by dependence on p�(t), q�(t), E�(p�(t)), ��(z; p�(t)),

and W (q�(t)) respectively.

Moreover, S0 = S⇤ and the initial data for a0�(y, t), generated by the incoming ‘+ band’ wave-

packet is given by:

a0�(y, t
⇤) = @qW (q⇤)⇥ h��(·; p⇤)| @p�+(·; p⇤)i

⇥
Z 1

�1
ei[@qW (q⇤)][@

p

E+(p⇤)�@
p

E�(p⇤)]⌧2/2 ⇥ a0,⇤(y � [@pE+(p
⇤)� @pE�(p⇤)]⌧) d⌧

(3.3.41)

The definitions of S⇤ and limt"t⇤ a0(y, t) = a0,⇤(y) are given in (3.3.22).

Recall that @qW (q⇤) is assumed to be non-zero (see (3.3.12)) and that @pE+(p⇤)� @pE�(p⇤) =

2@pE+(p⇤) is always nonzero at band crossings (Theorem 3.3.1, Property 2 (A4)) and hence the

integral in (3.3.41) is well-defined since a0,⇤(y) is localized. We then define Sn(t), a0n(y, t) for
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t 2 (t⇤, T 0] by replacing dependence on p(t), q(t), En(p(t)), �n(z; p(t)), and W (q(t)) by dependence

on pn(t), qn(t), En(pn(t)), �n(z; pn(t)), and W (qn(t)) respectively, and by the limits:

lim
t#t⇤

Sn(t) = S⇤, lim
t#t⇤

a0n(y, t) = a0,⇤(y). (3.3.42)

We denote by S�(t), a0�(y, t) the smooth maps defined over the whole interval t 2 [t⇤ � �0, T 0] in

analogy with the definitions of S+(t) and a+(y, t) in Definition (3.3.25).

We now define the wave-packet associated with the band E� which is “excited” at the crossing

time t⇤ by:

WP✏,0[S�(t), q�(t), p�(t), a0�(y, t),X�(z; p�(t))](x, t) :=

:=

8

>

<

>

:

WP✏,0[S�(t), q�(t), p�(t), a0�(y, t),��(z; p(t))](x, t) for t 2 [t⇤ � �0, t⇤ + �0]

WP✏,0[Sn(t), qn(t), pn(t), a0n(y, t),�n(z; p(t))](x, t) for t 2 [t⇤ + �0, T ]
.

(3.3.43)

3.3.6 The main theorem

Our main theorem is that a size 1 incoming wave-packet associated with the ‘+ band’, when

encountering a band-crossing, generates a size 1 ‘transmitted + band’ wave-packet and a ‘reflected

� band’ wave-packet of size
p
✏. Moreover, when the wave-packet is in a neighborhood of the

crossing, i.e. t ⇡ t⇤ and hence (p(t), q(t)) ⇡ (p⇤, q⇤), the detailed dynamics are non-adiabatic and

are described by an ansatz incorporating wave-packets from both bands with envelopes varying on

an additional fast scale. The precise statement is the following:

Theorem 3.3.3. Assume the Band Crossing Scenario (Property 3) in which the crossing time,

along the trajectory (p(t), q(t)) is t = t⇤. Let ⇠, ⇠0 be fixed such that 3/8 < ⇠0 < ⇠ < 1/2. Let T̃ > 0,

with 0 < t⇤ < T̃ , be su�ciently small that Propositions 3.3.1 and 3.3.2 hold with T = T̃ and T 0 = T̃

respectively.

Let  ✏(x, t) denote the unique solution of (3.1.1) with ‘incident Bloch wavepacket’ initial data

(3.3.27), defined for t 2 [0, T̃ ].

Then, there exists an ✏0 > 0 such that for all 0 < ✏ < ✏0 the following holds.

1. For t 2 [0, t⇤ � ✏⇠),  ✏(x, t) may be approximated up to errors of oL2
x

(
p
✏) by a single-band

ansatz (see Theorem 3.3.2 and Corollary 3.3.2):

 ✏(x, t) = WP1,✏[S+(t), q+(t), p+(t), a
0
+(y, t), a

1
+(y, t),X+(z; p+(t))](x, t)+oL2

x

(
p
✏). (3.3.44)
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2. For t 2 (t⇤ + ✏⇠, T̃ ],  ✏(x, t) is approximated up to errors of oL2
x

(
p
✏) by the sum of two Bloch

wave-packets, one associated with each band involved in the crossing (recall Definition 3.3.2):

 ✏(x, t) = WP1,✏[S+(t), q+(t), p+(t), a
0
+(y, t), a

1
+(y, t),X+(z; p+(t))](x, t)

+
p
✏WP0,✏[S�(t), q�(t), p�(t), a0�(y, t),X�(z; p�(t))](x, t) + oL2

x

(
p
✏).

(3.3.45)

Over the interval t 2 (t⇤ � ✏⇠
0
, t⇤ + ✏⇠), the solution  ✏(x, t) is expressible, with errors of size

oL2
x

(
p
✏), by a superposition of wave-packets from both + and � bands, whose amplitudes vary on

an additional (fast / non-adiabatic) time scale:

s :=
t� t⇤p

✏
. (3.3.46)

The detailed construction appears in Section 3.5.1.

Remark 3.3.6. The restriction to su�ciently small T̃ > 0 in Theorem 3.3.3 is to ensure that

neither the incident nor excited wavepacket encounter a second band crossing over the time interval

t 2 [0, T̃ ]. It is clear that this assumption may be relaxed and the analysis repeated each time a

wavepacket is incident on a band crossing in order to obtain results valid over arbitrary finite time

intervals, fixed independent of ✏.

Remark 3.3.7. By construction:

WP1,✏[S+(t), q+(t), p+(t), a
0
+(y, t), a

1
+(y, t),X+(z; p+(t))](x, t) (3.3.47)

is a wavepacket with L2
x-norm proportional to 1 associated with the band En for t 2 [0, t⇤ � �] and

with En+1 for t 2 [t⇤ + �, T̃ ], and:

p
✏WP0,✏[S�(t), q�(t), p�(t), a0�(y, t),X�(z; p�(t))](x, t) (3.3.48)

is a wavepacket with L2
x-norm proportional to

p
✏ associated with the band En for t 2 [t⇤ + �0, T̃ ].

Hence the statement of Theorem 3.3.3 is consistent with the description of our results given in

Section 3.1.

Remark 3.3.8. To leading order in
p
✏, the center of mass of the wavepacket ‘excited’ at the

crossing is given by q�(t), which, for t � t⇤ small enough, evolves according to (3.3.35). The

center of mass of the incoming wavepacket is given by (again to leading order in
p
✏) q+(t), which
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evolves (again for t � t⇤ small enough) according to (3.3.16). Since q̇+(t⇤) = @pE+(p⇤) > 0 and

q̇�(t⇤) = @pE�(p⇤) < 0 we have that the velocities of the centers of mass of each wavepacket have

opposite signs: see Figure 3.3.

Remark 3.3.9. By dropping terms of o(1) in L2
x in (3.3.44), (3.3.45), and in the asymptotic

solution which we construct for t 2 (t⇤ � ✏⇠
0
, t⇤ + ✏⇠

0
), we have that, under the assumptions of

Theorem 3.3.3, for all t 2 [0, T̃ ]:

 ✏(x, t) = WP0,✏[S+(t), q+(t), p+(t), a
0
+(y, t),X+(z; p+(t))](x, t) + oL2

x

(1). (3.3.49)

3.4 Sketch of proof of Theorem 3.3.2 on blow-up of error in single-

band approximation as t approaches the crossing time t⇤

3.4.1 Strategy for estimating the corrector

In this section we recall the simple Lemma which we use in the proofs of Theorem 3.3.2 and

Theorem 3.3.3 to estimate the corrector to a wave-packet approximate solution. A similar strategy

was followed in [61; 73]

Lemma 3.4.1. For 0 < T  1, let  ✏ 2 C0([t0, T );L2(R)) denote the unique solution of the initial

value problem (3.1.1) with initial data  ✏
0(x) given at t = t0:

i✏@t 
✏ = H✏ ✏

 ✏(x, t0) =  ✏
0(x) .

(3.4.1)

Furthermore, let  ✏
app(x, t) 2 C0([t0, T );L2(R)), r✏(x, t) be such that:

i✏@t 
✏
app = H✏ ✏

app + r✏

 ✏
app(x, t0) =  ✏

app,0(x).
(3.4.2)

Introduce ⌘✏(x, t) defined by:

⌘✏(x, t) :=  ✏(x, t)�  ✏
app(x, t). (3.4.3)

Then,

k⌘✏(·, t)kL2  k ✏
0(·)�  ✏

app,0(·)kL2 +
1

✏

Z t

t0

kr✏(·, t0)kL2 dt0. (3.4.4)
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Remark 3.4.1. We shall apply Lemma 3.4.1 with  ✏
app(x, t) equal to an approximate solution of

(3.1.1) and r✏(x, t) equal to the residual.

Proof. The function ⌘✏(x, t) satisfies the initial value problem:

i✏@t⌘
✏ = H✏⌘✏ + r✏

 ✏
app(x, t0) =  ✏

0(x)�  ✏
app,0(x)

(3.4.5)

Multiplying both sides of (3.4.5) by ⌘✏, taking the imaginary part yields and using self-adjointness

of H✏ we obtain: ✏@tk⌘✏k2L2 = �i h⌘✏| r✏iL2 + i hr✏| ⌘✏iL2 . This implies, using the Cauchy-Schwarz

inequality that 2✏k⌘✏kL2 @tk⌘✏kL2  2kr✏kL2k⌘✏kL2 . Cancelling common factors from both sides

(note that the inequality is trivially true if k⌘✏kL2 = 0) and integrating from t0 to t gives (3.4.4).

We now estimate the error in the single-band approximation as t " t⇤, as measured by the

L2
x-norm of the corrector function ⌘✏(x, t) which appears in (3.3.28). We start by recalling the

strategy of the proof of Theorem 3.2.2; the proof of Theorem 3.2.1 is similar. Let  ✏(x, t) denote

the exact solution of (3.1.1) with approximate ‘Bloch wavepacket’ initial data (3.2.24) specified at

t = t0. Then by Lemma 3.4.1, if we can find an approximate solution of (3.1.1),  ✏
app(x, t), such

that (3.4.2) holds with:

k ✏
0(·)�  ✏

app,0(·)kL2  C✏ (3.4.6)

and kr✏(·, t)kL2  Cect✏2, (3.4.7)

where the constants C > 0, c > 0 are independent of ✏, t, then it follows from (3.4.3) and (3.4.4)

that:

k ✏(·, t)�  ✏
app(·, t)kL2  C✏ect. (3.4.8)

If in addition we have that:

k ✏
app(·, t) � WP1,✏[S(t), q(t), p(t), a0(y, t), a1(y, t),�n(z; p(t))](·, t)kL2  Cect✏, (3.4.9)

where q(t), p(t) and so on are as in the statement of Theorem 3.2.2, then the conclusions of Theorem

3.2.2 follow immediately by the triangle inequality. The details of how to construct such a  ✏
app(x, t)

were presented in [73].
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Theorem 3.2.2 implies, in particular, that the solution  ✏(x, t) of (3.1.1) with initial data (3.3.27)

as initial data satisfies:

for t 2 [0, t⇤ � �],

k ✏(·, t) � WP1,✏[S(t), q(t), p(t), a0(y, t), a1(y, t),�n(z; p(t))](·, t)kL2 = OL2
x

(✏).
(3.4.10)

Due to the band crossing at p⇤, the Isolated Band Property 1 does not hold as t " t⇤. As a

result the proof of Theorem 3.2.2 fails as follows:

1. As t " t⇤, the L2
x-norm of the residual r✏(x, t) defined by (3.4.2), diverges.

2. The integral 1
✏

R t
0kr✏(·, t0)kL2 dt0, and hence the bound (3.4.4) on the L2-norm of the corrector

function ⌘✏(x, t) diverges as t " t⇤.

Theorem 3.3.2 is proved by analyzing the rates of blow-up of singular terms in r✏(x, t) and then

deducing the resulting rate of blow-up of the bound (3.4.4). In Section 3.4.2 explain the strategy

by studying a representative term. We then sketch the general argument in Appendix B.3.

3.4.2 Estimation of representative term demonstrating blow-up as t " t⇤

Let t 2 [t⇤ � �, t⇤] where � > 0 is as in Proposition 3.3.1 so that:

WP1,✏[S+(t), q+(t), p+(t), a
0
+(y, t), a

1
+(y, t),X+(z; p+(t))](x, t)

= WP1,✏[S+(t), q+(t), p+(t), a
0
+(y, t), a

1
+(y, t),�+(z; p(t))](x, t)

(3.4.11)

Here, q+(t), p+(t) are as in (3.3.16), S+(t), a0+(y, t), a
1
+(y, t) are as in Definition 3.3.1, and E+(p),

�+(z; p) are as in (3.3.3). The representative term which appears in the residual r✏(x, t) (3.4.2)

which we will consider is the following:

R✏(x, t) := ✏�1/4ei�
✏

+(y,t)/✏
h

✏2(�i@t)
⇣

�i@qW (q+(t))a
0
+(y, t)R+(p+(t))P

?
+ (p+(t))@p�+(z; p+(t))

⌘ i

�

�

�

y=
x�q+(t)

✏

1/2 ,z=x

✏

where �✏+(y, t) := S+(t) + ✏1/2p+(t)y

(3.4.12)

Here, P?
+ (p) denotes the projection operator onto the orthogonal complement of the subspace of

L2
per spanned by �+(z; p), and:

R+(p) := (H(p)� E+(p))
�1 (3.4.13)
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denotes the resolvent operator where H(p) is as in (3.2.3). Because of the band crossing at p⇤,

the operator R+(p)P?
+ (p) is singular as p ! p⇤ on the subspace of L2

per spanned by ��(z; p).

The operator R+(p)P?± (p) however, where P?± (p) is defined as the projection onto the orthogonal

complement of �+(z; p) and ��(z; p) in L2
per is regular for all p 2 U by (A2) of Property 2 (see

Corollary 3.3.1).

We isolate the singular part of (3.4.12) as follows. Expressing @p�+(z; p+(t)) in terms of its

projections onto both �+(z; p+(t)) and ��(z; p+(t)), and their orthogonal complement, the range

of P?± (p+(t)), we have

R+(p+(t))P
?
+ (p+(t))@p�+(z; p+(t)) = R+(p(t))P

?
± (p+(t))@p�+(z; p+(t))

+ (E�(p+(t))� E+(p+(t)))
�1 h��(·; p+(t))| @p�+(·; p+(t))i��(z; p(t)) .

(3.4.14)

Since p+(t) ! p⇤ as t " t⇤, E+(p⇤) = E�(p⇤), the singular behavior is isolated in the latter term of

(3.4.14). We decompose R✏(x, t) into its corresponding regular and singular parts:

R✏(x, t) := R✏
regular(x, t) +R✏

singular(x, t) (3.4.15)

where:

R✏
regular(x, t) = ✏�1/4ei�

✏

+(y,t)/✏
h

✏2(�i@t)
⇣

�i@qW (q+(t))a
0
+(y, t)R+(p+(t))P

?
± (p+(t))@p�+(z; p+(t))

⌘i

�

�

�

y=
x�q+(t)

✏

1/2 ,z=x

✏

R✏
singular(x, t) = ✏�1/4ei�

✏

+(y,t)/✏
h

✏2(�i@t)
⇣

� i@qW (q+(t))a
0
+(y, t)

⇥ (E�(p+(t))� E+(p+(t)))
�1 h��(z; p+(t))| @p�+(z; p+(t))i��(z; p+(t))

⌘i

�

�

�

y=
x�q+(t)

✏

1/2 ,z=x

✏

.

(3.4.16)

It follows from the techniques detailed in [73] that:

R✏
regular(x, t) = OL2

x

(✏2) (3.4.17)

uniformly as t " t⇤. On the other hand, R✏
singular(x, t) is explicitly singular, since it depends on

(E�(p+(t)) � E+(p+(t)))�1 which is unbounded as t " t⇤. The time derivative of R✏
singular(x, t)

yields two terms:

R✏
singular(x, t) = R1,✏

singular(x, t) +R2,✏
singular(x, t), (3.4.18)
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where:

R1,✏
singular(x, t) := ✏�1/4ei�

✏

+(y,t)/✏
h

✏2(E�(p+(t))� E+(p+(t)))
�1

⇥(�i@t)
⇣

� i@qW (q+(t))a
0
+(y, t) h��(z; p+(t))| @p�+(z; p+(t))i��(z; p+(t))

⌘i

�

�

�

y=
x�q+(t)

✏

1/2 ,z=x

✏

R2,✏
singular(x, t) := ✏�1/4ei�

✏

+(y,t)/✏
h

✏2@t
⇣

(E�(p+(t))� E+(p+(t)))
�1
⌘

⇥(�i)
⇣

�i@qW (q+(t))a
0
+(y, t) h��(z; p+(t))| @p�+(z; p+(t))i��(z; p+(t))

⌘i

�

�

�

y=
x�q+(t)

✏

1/2 ,z=x

✏

.

(3.4.19)

We now concentrate on R2,✏
singular(x, t) which will turn out to be the dominant term as t " t⇤. We

first evaluate the time-derivative:

@t
⇣

(E�(p+(t))� E+(p+(t)))
�1
⌘

=

@qW (q+(t))(@pE�(p+(t))� @pE+(p+(t))) (E�(p+(t))� E+(p+(t)))
�2 .

(3.4.20)

We then follow [61; 73] in estimating R2,✏
singular in L2

x by taking the L1 norm of all z-dependence

and the L2-norm of all y dependence:

kR2,✏
singular(·, t)kL2  ✏2|@qW (q+(t))|2 |@pE�(p+(t))� @pE+(p+(t))| |E�(p+(t))� E+(p+(t))|�2

⇥ ka0+(·, t)kL2

�

�

�

h��(·; p+(t))| @p�+(·; p+(t))iL2[0,1]

�

�

�

k�+(·, p+(t))kL1[0,1].

(3.4.21)

Taylor-expanding in t� t⇤, using the non-degeneracy conditions (3.3.4) and (3.3.12), we have that

as t " t⇤:
�

�

�

(E+(p+(t))� E�(p+(t)))�2
�

�

�


�

�

�

�

1

@qW (q⇤) (@pE+(p⇤)� @pE�(p⇤))

�

�

�

�

2✓ 1

|t� t⇤|2
◆

+O

✓

1

|t� t⇤|
◆

.
(3.4.22)

Substituting (3.4.22) into (3.4.21) and Taylor-expanding all other terms gives:

kR2,✏
singular(·, t)kL2 

�

�

�

�

�

h��(·; p⇤)| @p�+(·; p⇤)iL2[0,1] ka0+(·, t⇤)kL2k�+(·, p⇤)kL1[0,1]

@pE�(p⇤)� @pE+(p⇤)

�

�

�

�

�

✓

✏2

|t� t⇤|2
◆

+O

✓

✏2

|t� t⇤|
◆ (3.4.23)

Similar analysis shows that:

kR1,✏
singular(·, t)kL2 = O

✓

✏2

|t� t⇤|
◆

. (3.4.24)
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Recall the relationship between the residual r✏(x, t) and the bound on the solution error ⌘✏(x, t) :=

 ✏(x, t)� ✏
app(x, t) (3.4.4). Putting everything ((3.4.15), (3.4.17), (3.4.23), and (3.4.24)) together,

then integrating once in time and dividing by ✏, we see that the term contributed by R✏(x, t) to

the solution error ⌘✏(x, t) may be bounded by:

1

✏

Z t

0
kR✏(·, t0)kL2 dt0 

�

�

�

�

�

h��(·; p⇤)| @p�+(·; p⇤)iL2[0,1] ka0+(·, t⇤)kL2k�+(·, p⇤)kL1[0,1]

@pE�(p⇤)� @pE+(p⇤)

�

�

�

�

�

✓

✏

|t� t⇤|
◆

+O (✏, ✏ ln |t� t⇤|) .

(3.4.25)

It follows that the right hand side of (3.4.25), which is the bound on the corrector to the wave-

packet ansatz, is of the same size as the O(✏1/2) term in the wave-packet approximate solution for

|t� t⇤| ⇠ ✏1/2.

3.5 Proof of Theorem 3.3.3 on coupled band dynamics when t ⇠ t⇤

We now turn to the proof of Theorem 3.3.3, on the dynamics through the crossing time t⇤. Theorem

3.3.2 and Corollary 3.3.2 give a description of the exact solution  ✏(x, t) of (3.1.1) with initial data

given by (3.3.27) which is valid with errors of oL2
x

(✏1/2) up to t = t⇤ � ✏⇠ for any ⇠ 2 (0, 1/2):

For all t 2 [0, t⇤ � ✏⇠),

 ✏(x, t) = WP1,✏[S+(t), q+(t), p+(t), a
0
+(y, t), a

1
+(y, t),X+(z; p+(t))](x, t) + oL2

x

(✏1/2).
(3.5.1)

We seek to extend (3.5.1) to a description of  ✏(x, t) up to errors of oL2
x

(✏1/2) over the entire interval

t 2 [0, T̃ ] where T̃ is chosen such that Propositions 3.3.1 and 3.3.2 hold with T = T̃ and T 0 = T̃ .

We first claim that the proof of Theorem 3.3.3 may be reduced to (a) the construction of a function

 ✏
app,inner(x, t) satisfying certain properties and (b) an application of Lemma 3.4.1:

Proposition 3.5.1. Let ⇠, ⇠0 2 (0, 1/2) be such that ⇠0 < ⇠ so that (t⇤�✏⇠, t⇤+✏⇠) ⇢ (t⇤�✏⇠0 , t⇤+✏⇠0).
Assume (3.5.1) for an incoming wave-packet. Consider an approximate solution  ✏

app,inner(x, t)

which satisfies the following three properties:

(P1)  ✏
app,inner(x, t) is equal to the single-band ansatz in the ‘incoming’ overlap region t 2 (t⇤ �
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✏⇠
0
, t⇤ � ✏⇠) up to errors of o(✏1/2) in L2(R). That is,

for all t 2 (t⇤ � ✏⇠
0
, t⇤ � ✏⇠),

�

� ✏
app,inner(·, t)�WP1,✏[S+(t), q+(t), p+(t), a

0
+(y, t), a

1
+(y, t),X+(z; p+(t))](·, t)

�

�

L2 = o(✏1/2),

(3.5.2)

(P2)  ✏
app,inner(x, t) is an approximate solution to (3.1.1) (i✏@t �H✏) ✏ = 0:

i✏@t 
✏
app,inner �H✏ ✏

app,inner = r✏inner (3.5.3)

with residual satisfying the bound:

1

✏

Z t⇤+✏⇠
0

t⇤�✏⇠0
kr✏inner(·, t0)kL2 dt0 = o(✏1/2), (3.5.4)

(P3)  ✏
app,inner(x, t) matches the ‘two-band’ ansatz of (3.3.45) in the ‘outgoing’ overlap region

t 2 (t⇤ + ✏⇠, t⇤ + ✏⇠
0
) up to errors of o(✏1/2) in L2(R). That is,

for all t 2 (t⇤ + ✏⇠, t⇤ + ✏⇠
0
),

�

� ✏
app,inner(·, t)�WP1,✏[S+(t), q+(t), p+(t), a

0
+(y, t), a

1
+(y, t),X+(z; p+(t))](·, t)

�✏1/2WP0,✏[S�(t), q�(t), p�(t), a0�(y, t),X�(z; p�(t))](·, t)
�

�

�

L2
= o(✏1/2).

(3.5.5)

Then, under conditions (P1), (P2), and (P3), Theorem 3.3.3 holds.

Proof. We apply Lemma 3.4.1 with t0 = t⇤ � ✏⇠
0
, t1 = t⇤ + ✏⇠

0
,  ✏

app(x, t) =  ✏
app,inner(x, t), and

r✏(x, t) = r✏app,inner(x, t). It then follows from (P1) and (P2) that:

For all t 2 (t⇤ � ✏⇠
0
, t⇤ + ✏⇠

0
),

k ✏(·, t)�  ✏
app,inner(·, t)kL2 = o(✏1/2).

(3.5.6)

Combining (3.5.6) with (P3), we have that:

For all t 2 (t⇤ + ✏⇠, t⇤ + ✏⇠
0
),

�

� ✏(·, t)�WP1,✏[S+(t), q+(t), p+(t), a
0
+(y, t), a

1
+(y, t),X+(z; p+(t))](·, t)

+✏1/2WP0,✏[S�(t), q�(t), p�(t), a0�(y, t),X�(z; p�(t))](x, t)
�

�

�

L2
= o(✏1/2).

(3.5.7)

We claim that the main statement (3.3.45) of Theorem 3.3.3 then follows from the isolated band

theory. For any T̃0 fixed independent of ✏ such that t⇤ < T̃0 < T̃ , the Isolated Band Property
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1 holds for the bands En(p) and En+1(p) and trajectories pn(t) and pn+1(t) defined by (3.3.37),

(3.3.18) with t0 = T̃0, t1 = T̃ . By linearity, the two-band wavepacket ansatz agrees (modulo errors

of oL2
x

(✏1/2)) with the exact solution  ✏
outgoing(x, t) of the full equation (3.1.1) over the interval

t 2 [T̃0, T̃ ] with initial data given at T̃0 by:

 ✏
outgoing(x, T̃0) =

WP1,✏[S+(T̃0), q+(T̃0), p+(T̃0), a
0
+(y, T̃0), a

1
+(y, T̃0),X+(z; p+(T̃0))](x, T̃0)

+ ✏1/2WP0,✏[S�(T̃0), q�(T̃0), p�(T̃0), a
0
�(y, T̃0),X�(z; p�(T̃0))](x, T̃0).

(3.5.8)

By performing the same analysis as in the proof of Theorem 3.3.2 backwards in time towards t⇤,

we have that:

For all t 2 (t⇤ + ✏⇠, T̃ ],
�

� ✏
outgoing(·, t)�WP1,✏[S+(t), q+(t), p+(t), a

0
+(y, t), a

1
+(y, t),X+(z; p+(t))](·, t)

+✏1/2WP0,✏[S�(t), q�(t), p�(t), a0�(y, t),X�(z; p�(t))](x, t)
�

�

�

L2
= o(✏1/2).

(3.5.9)

But now combining the triangle inequality with (3.5.7), we have that:

For all t 2 (t⇤ + ✏⇠, t⇤ + ✏⇠
0
),

�

� ✏(·, t)�  ✏
outgoing(·, t)

�

�

L2 = o(✏1/2).
(3.5.10)

Since  ✏(x, t) and  ✏
outgoing(x, t) are both exact solutions of (3.1.1), applying Lemma 3.4.1 one more

time with  ✏
app(x, t) =  ✏

outgoing(x, t) gives that:

For all t 2 (t⇤ + ✏⇠, T̃ ],
�

� ✏(·, t)�  ✏
outgoing(·, t)

�

�

L2 = o(✏1/2).
(3.5.11)

The main statement of Theorem 3.3.3 (3.3.45) then follows from combining (3.5.11) and (3.5.9).

This brings us to the core construction of the paper.

3.5.1 Derivation of  ✏
app,inner satisfying hypotheses of Proposition 3.5.1

We make the following ansatz for  ✏
app,inner(x, t), which incorporates both + and � bands, and a

new ‘fast’ timescale:

s =
t� t⇤

✏1/2
, (3.5.12)
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which was motivated by the preceding single-band analysis:

 ✏
app,inner(x, t) = ✏�1/4

X

�=±
ei{S�

(t)+✏1/2p
�

(t)y
�

}/✏f ✏
�,inner (y�, z, t, s)

�

�

�

y
�

=
x�q

�

(t)

✏

1/2 ,z=x

✏

,s= t�t

⇤
✏

1/2

. (3.5.13)

The new time scale has been introduced in the envelope functions f ✏
�,inner. We take (q�(t), p�(t)),

� = ± as in (3.3.16) and (3.3.35), S�(t),� = ±, as in Definitions 3.3.1 and 3.3.2, and assume that

f ✏
�,inner(y�, z, t, s) may be expanded in powers of ✏1/2:

f ✏
�,inner(y�, z, t, s) = f0

�,inner(y�, z, t, s) + ✏1/2f1
�,inner(y�, z, t, s) + ... (3.5.14)

Then,  ✏
app,inner, given by (3.5.13), satisfies the non-homogeneous Schroedinger equation (3.5.3)

with residual:

r✏
inner

(x, t) = ✏�1/4
X

�=±
ei{S�

(t)+✏

1/2
p

�

(t)y
�

}/✏
⇢

✏3/2


y3
�

Z 1

0

(⌧ � 1)3

3!
@3
x

W
⇣

q
�

(t) + ⌧✏1/2y
�

⌘

d⌧

�

+ ✏



1
2
(�i@

y

�

)2 +
1
2
@2
x

W (q
�

(t))y2
�

� i@
t

�

+ ✏1/2


⇣

p
�

(t)� i@
z

� @
p

E
�

(p
�

(t))
⌘

(�i@
y

�

)� i@
s

�

+



H(p
�

(t))� E
�

(p
�

(t))

��

n

f0
�,inner

(y
�

, z, t, s) + ✏1/2f1
�,inner

(y
�

, z, t, s) + ...
o

�

�

�

�

y

�

=
x�q

�

(t)

✏

1/2
,z= x

✏

,s= t�t

⇤
✏

1/2

= r✏
inner,0(x, t) + ✏1/2 r✏

inner,1(x, t) + (✏1/2)2 r✏
inner,2(x, t) + . . . + (✏1/2)m r✏

inner,3(x, t) + . . .

(3.5.15)

Here, H(p) = �1
2(p� i@z)2 + V (z); see (3.2.3).

In the coming sections we construct the functions f j
�,inner so that  ✏

app,inner(x, t) satisfies the

properties (P1), (P2) and (P3) of Proposition 3.5.1.

3.5.1.1 Terms in r✏inner with L2
x norm of order ✏0

The terms with L2
x norm proportional to ✏0 = 1 in (3.5.15) are of the form:

r✏
inner,0(x, t) = ✏�1/4

X

�=±
ei{S�

(t)+✏

1/2
p

�

(t)y
�

}/✏


H(p
�

(t))� E
�

(p
�

(t))

�

f0
�,inner

(y
�

, z, t, s)

�

�

�

�

y

�

=
x�q

�

(t)

✏

1/2
,z= x

✏

,s= t�t

⇤
✏

1/2

.

(3.5.16)

We may set these two terms individually to zero by defining:

f0
�,inner(y�, z, t, s) = a0�,inner(y�, t, s) ��(z; p�(t)), � = ± . (3.5.17)

The functions a0�,inner(y�, t, s), � = ± are left arbitrary for now and will be determined a later

stage.
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3.5.1.2 Terms in r✏inner with L2
x norm of order ✏1/2

The terms with L2
x norm proportional to ✏1/2 in (3.5.15) are of the form ✏1/2 times the following

expression which is O
L

2 (1):

r✏inner,1(x, t) = ✏�1/4
X

�=±
ei{S�

(t)+✏1/2p
�

(t)y
�

}/✏
⇢



⇣

p�(t)� i@z � @pE�(p�(t))
⌘

(�i@y
�

)� i@s

�

f0
�,inner(y�, z, t, s)

+



H(p�(t))� E�(p�(t))

�

f1
�,inner(y�, z, t, s)

�

�

�

�

�

y
�

=
x�q

�

(t)

✏

1/2 ,z=x

✏

,s= t�t

⇤
✏

1/2

.

(3.5.18)

Proposition 3.5.2. Substituting the expression (3.5.17) for f0
�,inner(y�, z, t, s) into (3.5.18) yields

the following equivalent expression for (3.5.18):

✏�1/4
X

�=±
ei{S�

(t)+✏1/2p
�

(t)y
�

}/✏
⇢

H(p�(t))� E�(p�(t))

�✓

f1
�,inner(y�, z, t, s)

� (�i@y
�

)a0�,inner(y�, t, s)@p���(z; p�(t))

◆

� i@sa
0
�,inner(y�, s)��(z; p�(t))

�

�

�

�

�

y
�

=
x�q

�

(t)

✏

1/2 ,z=x

✏

,s= t�t

⇤
✏

1/2

.

(3.5.19)

Proof. Di↵erentiating the eigenvalue problem (3.2.3) satisfied by (E�,��) with respect to p, we

obtain the following pair of identities for � = ±:

(p�(t)� i@z � @p
�

E�(p�(t)))��(z; p�(t))

= � (H(p�(t))� E�(p�(t))) @p��(z; p�(t)).
(3.5.20)

Relation (3.5.19) now follows from substituting (3.5.17) into (3.5.18) and using (3.5.20).

We may therefore set the expression in (3.5.18) equal to zero by setting each term in the sum

individually to zero. To do this, we first take:

@sa
0
�,inner(y�, t, s) = 0, � = ± . (3.5.21)

We then require, for � 2 ±, that f1
�,inner(y�, z, t, s) satisfy:



H(p�(t))� E�(p�(t))

�✓

f1
�,inner(y�, z, t, s)� (�i@y

�

)a0�,inner(y�, t, s)@p���(z; p�(t))

◆

= 0

(3.5.22)
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Therefore, for � = ±,

f1
�,inner(y�, z, t, s) = a1�,inner(y�, t, s)��(z; p�(t)) + (�i@y

�

)a0�,inner(y�, t)@p��(z; p�(t)), (3.5.23)

where the functions a1�,inner(y�, t, s) are thus far arbitrary and to be determined.

3.5.1.3 Terms in r✏inner with L2
x norm of order ✏1

The terms in r✏inner with L2
x norm proportional to ✏1 in (3.5.15) are of the form: ✏ times the following

expression which is O
L

2 (1):

r✏inner,2(x, t) = ✏�1/4
X

�=±
ei{S�

(t)+✏1/2p
�

(t)y
�

}/✏
⇢

+



1

2
(�i@y

�

)2 +
1

2
@2xW (q�(t))y

2
� � i@t

�

f0
�,inner(y�, z, t, s)

+



⇣

p�(t)� i@z � @pE�(p�(t))
⌘

(�i@y
�

)� i@s

�

f1
�,inner(y�, z, t, s)

+



H(p�(t))� E�(p�(t))

�

f2
�,inner(y�, z, t, s)

�

�

�

�

�

y
�

=
x�q

�

(t)

✏

1/2 ,z=x

✏

,s= t�t

⇤
✏

1/2

.

(3.5.24)

Recall (Proposition 3.5.1, (P2)) that we must choose the f j
�,inner in (3.5.15) such that:

1

✏

Z t⇤+✏⇠
0

t⇤�✏⇠0
kr✏inner(·, t0)kL2 dt0 = o(✏1/2). (3.5.25)

It follows that we need to choose the undetermined functions so that r✏inner,2(x, t) in (3.5.24) satisfies:

Z t⇤+✏⇠
0

t⇤�✏⇠
kr✏inner,2(·, t)kL2 = o(✏1/2). (3.5.26)

In contrast to considerations at previous orders in ✏1/2, we will not be able to satisfy (3.5.26) by

choosing each summand of (3.5.24) to satisfy the smallness condition (3.5.26). To see this and to see

how to proceed, we first simplify the expression (3.5.24) using the expressions for f0
�,inner(y�, z, t, s)

(3.5.17) and f1
�,inner(y�, z, t, s) (3.5.23) derived above.
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Proposition 3.5.3. The expression (3.5.24) may be written in the following form:

r✏inner,2(x, t)

= ✏�1/4
X

�=±
ei{S�

(t)+✏1/2p
�

(t)y
�

}/✏
⇢ 

H(p�(t))� E�(p�(t))

�✓

f2
�,inner(y�, z, t, s)

�(�i@y
�

)a1�,inner(y�, t, s)@p���(z; p�(t))� 1

2
(�i@y

�

)2a0�,inner(y�, t)@
2
p
�

��(z; p�(t))

◆

� i@sa
1
�,inner(y�, t, s)��(z; p�(t))� [ i@t � H�(t) ] a0�,inner(y�, t)��(z; p�(t))

+ i@q
�

W (q�(t))a
0
�,inner(y�, t, s) h���(·; p�(t))| @p

�

��(·; p�(t))i���(z; p�(t))

+i@q
�

W (q�(t))a
0
�,inner(y�, t, s)P

?
± (p�(t))@p

�

��(z; p�(t))

�

�

�

�

�

y
�

=
x�q

�

(t)

✏

1/2 ,z=x

✏

,s= t�t

⇤
✏

1/2

.

(3.5.27)

Here, we recall that H(p) = �1
2(p�i@z)2+V (z) and H�(t) denotes the time-dependent harmonic

oscillator Hamiltonian defined in (3.2.14), where we replace p(t), q(t), En,�n, y, respectively, by

p�(t), q�(t), E�,��, y�. Finally, P?± (p�(t)) denotes the orthogonal projection operator given by:

P?
± (p�(t))f(z) := f(z)�

X

�0=±
h��0(·; p�(t))| f(·)i��0(z; p�(t)). (3.5.28)

Proof. We begin with the identity, obtained by di↵erentiating the eigenvalue problem (3.2.3), sat-

isfied by the eigenpair (E�,��), twice with respect to p:

1

2

�

1� @2pE�(p�(t))
�

��(z; p�(t)) + (p�(t)� i@z � @p
�

E�(p�(t))) @p
�

��(z; p�(t))

= �1

2
(H(p�(t))� E�(p�(t))) @

2
p
�

��(z; p�(t)), � = ± .
(3.5.29)

To obtain the expression (3.5.27), we first substitute expression (3.5.17) for f0
�,inner and expression

(3.5.23) for f1
�,inner into (3.5.24). We then simplify using the identity (3.5.29) and the expansion of

@p
�

��(z; p�(t)) in terms of its orthogonal components:

@p��(z; p�(t)) =
X

�0=±
h��0(·; p�(t))| @p��(·; p�(t))i��0(z; p�(t)) + P?

± (p�(t))��(z; p�(t)).
(3.5.30)

By Proposition 3.5.3 the smallness condition (3.5.26) may be studied with the expression (3.5.27)

in place of (3.5.24). We proceed in two steps.
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(A) We first use certain degrees of freedom to eliminate ‘in-band’ contributions to (3.5.27).

(B) We will then be left with contributions which relate to the coupling of bands revealed in

analysis of the breakdown of the single-band approximation.

Step A: We first choose a0�,inner(y�, t) so that:

i@ta
0
�,inner(y�, t) = H�(t)a

0
�,inner(y�, t), � = ± . (3.5.31)

We also require that z 7! f2
�,inner(y�, z, t, s) be a 1� periodic solution of:



H(p�(t))� E�(p�(t))

�✓

f2
�,inner(y�, z, t, s)

�(�i@y
�

)a1�,inner(y�, t, s)@p���(z; p�(t))� 1

2
(�i@y

�

)2a0�,inner(y�, t)@
2
p
�

��(z; p�(t))

◆

= �i@q
�

W (q�(t))a
0
�,inner(y�, t, s)P

?
± (p�(t))@p

�

��(z; p�(t)) .

(3.5.32)

Equation (3.5.32) is solvable, with a uniform bound in time on the inverse, for all t near t⇤ by

Corollary 3.3.1. Hence we have for � = ±:

f2
�,inner(y�, z, t, s) = a2�,inner(y�, t, s)��(z; p�(t))

+ (�i@y
�

)a1�,inner(y�, s, t)@p��(z; p�(t)) +
1

2
(�i@y

�

)2a0�,inner(y�, t)@
2
p��(z; p�(t))

� i@qW (q�(t))R�(p�(t))P
?
± (p�(t))@p��(z; p�(t)).

(3.5.33)

Here, a2�,inner(y�, t, s) is presently arbitrary and can be determined at higher order in ✏1/2.

The initial data for equations (3.5.31) is fixed by the requirement that  ✏
app,inner satisfy (P1) of

Proposition 3.5.1. By inspection of the incoming solution, we see that this is equivalent to requiring

that:

for t 2 (t⇤ � ✏⇠
0
, t⇤ � ✏⇠) : a0+,inner(y, t) = a0+(y, t) and a�,inner(y, t) = 0. (3.5.34)

The only choice of initial data a0+,inner(y, t
⇤), a0�,inner(y, t

⇤) for (3.5.31) consistent with (3.5.34) are:

a0+,inner(y, t
⇤) = lim

t"t⇤
a0+(y, t) ⌘ a0,⇤(y), a0�,inner(y, t

⇤) = 0 .

Indeed, for all t 2 (t⇤ � ✏⇠
0
, t⇤ + ✏⇠

0
):

a0+,inner(y+, t) = a+(y+, t), and a0�,inner(y�, t) = 0. (3.5.35)
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The choices (3.5.31), (3.5.33), and (3.5.35) simplify (3.5.27) to:

r✏inner,2(x, t) = ✏�1/4ei{S+(t)+✏1/2p+(t)y+}/✏
⇢

� i@sa
1
+,inner(y+, t, s)�+(z; p+(t))

+i@q+W (q+(t))a
0
+,inner(y+, t, s)

⌦

��(·; p+(t))| @p+�+(·; p+(t))
↵

��(z; p+(t))
�

✏�1/4ei{S�(t)+✏1/2p�(t)y�}/✏
⇢

� i@sa
1
�,inner(y�, t, s)��(z; p�(t))

�

�

�

�

�

y
�

=
x�q

�

(t)

✏

1/2 ,z=x

✏

,s= t�t

⇤
✏

1/2

.

(3.5.36)

We find that at this order in ✏1/2 that there is no loss in taking

a1+,inner(y+, t, s) = a1+,inner(y+, s), a1�,inner(y�, t, s) = a1�,inner(y+, s),

independent of t. From (3.5.36) it is natural to set

@sa
1
+,inner(y+, t, s) = 0

a1+,inner(y+, 0) = a1+,inner,0(y+).
(3.5.37)

and to choose a1�,inner(y+, s) to eliminate the projection of r✏inner,2(x, t) onto the vector ��(z; p+(t)).

The function a1+,inner,0(y+) is at this point arbitrary, it will be fixed below by enforcing (P1) of

Proposition 3.5.1. Taking a1+,inner(y+, s) to satisfy (3.5.37) reduces (3.5.36) to the following:

r✏inner,2(x, t) = ✏�1/4ei{S+(t)+✏1/2p+(t)y+}/✏ h

i@qW (q+(t))a+(y+, t) h��(·; p+(t))| @p�+(·; p+(t))i��(z; p+(t))]

+✏�1/4ei{S�(t)+✏1/2p�(t)y�}/✏ ⇥�i@sa
1
�,inner(y�, s)��(z; p�(t))

⇤

�

�

�

�

y
�

=
x�q

�

(t)

✏

1/2 ,z=x

✏

,s= t�t

⇤
✏

1/2

.

(3.5.38)

We next determine the evolution of a1�,inner(y�, s) to satisfy the smallness condition (3.5.26).

We find it useful at this point to re-express functions of t and y+ in terms of the variables y� and

s using the relations:

y+ = y� +
q�(t)� q+(t)

✏1/2
, t = t⇤ + ✏1/2s. (3.5.39)
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This yields:

r✏inner,2(x, t
⇤ + ✏1/2s)

= ✏�1/4ei{S+(t⇤+✏1/2s)+✏1/2p+(t⇤+✏1/2s)y�+p+(t⇤+✏1/2s)(q�(t⇤+✏1/2s)�q+(t⇤+✏1/2s))}/✏


i@qW (q+(t
⇤ + ✏1/2s))a+

 

y� +
q�(t⇤ + ✏1/2s)� q+(t⇤ + ✏1/2s)

✏1/2
, t⇤ + ✏1/2s

!

⇥
D

��(·; p+(t⇤ + ✏1/2s))
�

�

�

@p�+(·; p+(t⇤ + ✏1/2s))
E

��(z; p+(t⇤ + ✏1/2s))
i

+ ✏�1/4ei{S�(t⇤+✏1/2s)+✏1/2p�(t⇤+✏1/2s)y�}/✏ h

�i@sa
1
�,inner(y�, s)��(z; p�(t⇤ + ✏1/2s))

i

�

�

�

�

y�=
x�q�(t⇤+✏

1/2
s)

✏

1/2 ,z=x

✏

.

(3.5.40)

In terms of s, the condition (3.5.26) reads:

Z ✏⇠
0�1/2

�✏⇠
0�1/2

kr✏inner,2(·, t⇤ + ✏1/2s)k
L

2 = o(1). (3.5.41)

We proceed with the construction of a1�,inner(y�, s) by seeking the expression in r✏inner,2(x, t
⇤ +

✏1/2s) which, to leading order, will be balanced (indeed cancelled out by) the term proportional to

@sa1�,inner(y�, s), for �✏⇠
0�1/2 < s < ✏⇠

0�1/2 (0 < ⇠0 < 1/2).

Thus we expand the expression for r✏inner,2(x, t
⇤ + ✏1/2s) in powers of ✏1/2s, making use of

the equations governing (q±(t), p±(t)) and S±(t) (3.3.16), (3.3.35), Definitions 3.3.1 and 3.3.2 to

compute their derivatives. We first Taylor-expand the expression within square brackets in (3.5.40):

r✏inner,2(x, t
⇤ + ✏1/2s)

= ✏�1/4ei{S+(t⇤+✏1/2s)+✏1/2p+(t⇤+✏1/2s)y�+p+(t⇤+✏1/2s)(q�(t⇤+✏1/2s)�q+(t⇤+✏1/2s))}/✏


i@qW (q⇤) a+ (y� + [@pE�(p⇤)� @pE+(p
⇤)]s, t⇤) h��(·; p⇤)| @p�+(·; p⇤)i��(z; p⇤)

�

+ ✏�1/4ei{S�(t⇤+✏1/2s)+✏1/2p�(t⇤+✏1/2s)y�}/✏ ⇥�i@sa
1
�,inner(y�, s)��(z; p⇤)

⇤

�

�

�

�

y�=
x�q�(t⇤+✏

1/2
s)

✏

1/2 ,z=x

✏

+OL2
x

(✏1/2s, ✏1/2s2).

(3.5.42)
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Rearranging terms, we obtain:

r✏inner,2(x, t
⇤ + ✏1/2s)

= ✏�1/4ei{S�(t⇤+✏1/2s)+✏1/2p�(t⇤+✏1/2s)y�}/✏i��(z; p⇤)⇥
⇢

ei{S+(t⇤+✏1/2s)�S�(t⇤+✏1/2s)+✏1/2(p+(t⇤+✏1/2s)�p�(t⇤+✏1/2s))y�+p+(t⇤+✏1/2s)(q�(t⇤+✏1/2s)�q+(t⇤+✏1/2s))}/✏

⇥ [@qW (q⇤) a+ (y� + [@pE�(p⇤)� @pE+(p
⇤)]s, t⇤) h��(·; p⇤)| @p�+(·; p⇤)i]

�@sa1�,inner(y�, s)
�

�

�

�

�

y�=
x�q�(t⇤+✏

1/2
s)

✏

1/2 ,z=x

✏

+OL2
x

(✏1/2s, ✏1/2s2).

(3.5.43)

We next Taylor-expand the exponential:

S+(t
⇤ + ✏1/2s)� S�(t⇤ + ✏1/2s)

= (✏1/2s)p⇤(@pE+(p
⇤)� @pE�(p⇤))

+
1

2
(✏1/2s)2

�

@qW (q⇤)p⇤(@2pE�(p⇤)� @2pE+(p
⇤)) + @qW (q⇤)(@pE�(p⇤)� @pE+(p

⇤))
�

+O(✏3/2s3)

✏1/2(p+(t
⇤ + ✏1/2s)� p�(t⇤ + ✏1/2s))y�

= O(✏3/2s2y�)

p+(t
⇤ + ✏1/2s)(q�(t⇤ + ✏1/2s)� q+(t

⇤ + ✏1/2s))

= (✏1/2s)(p⇤(@pE�(p⇤)� @pE+(p
⇤)))

+
1

2
(✏1/2s)2

��2@qW (q⇤)(@pE�(p⇤)� @pE+(p
⇤)) + @qW (q⇤)p⇤(@2pE+(p

⇤)� @2pE�(p⇤))
�

+O(✏3/2s3).

(3.5.44)

Substituting these expressions and using the fact that a+(y, t) 2 S(R) gives:

r✏inner,2(x, t
⇤ + ✏1/2s) = ✏�1/4ei{S�(t⇤+✏1/2s)+✏1/2p�(t⇤+✏1/2s)y�}/✏i��(z; p⇤)

⇥
n

ei
1
2@qW (q⇤)(@

p

E+(p⇤)�@
p

E�(p⇤))s2

⇥


@qW (q⇤) h��(·; p⇤)| @p�+(·; p⇤)i a+ (y� + [@pE�(p⇤)� @pE+(p
⇤)]s, t⇤)

�

�@sa1�,inner(y�, s)
�

+OL2
x

(✏1/2s, ✏1/2s2, ✏1/2s3)

�

�

�

�

y�=
x�q�(t)

✏

1/2 ,z=x

✏

,s= t�t

⇤
✏

1/2

.

(3.5.45)



CHAPTER 3. DYNAMICS AT A ONE-DIMENSIONAL BAND CROSSING 123

It follows that by taking a1�,inner(y�, s) to satisfy:

@sa
1
�,inner(y�, s) = ei

1
2@qW (q⇤)(@

p

E+(p⇤)�@
p

E�(p⇤))s2

⇥ @qW (q⇤)a+ (y� + [@pE�(p⇤)� @pE+(p
⇤)]s, t⇤) h��(·; p⇤)| @p�+(·; p⇤)i

a1�,inner(y�, 0) = a1�,inner,0(y�).

(3.5.46)

We have that  ✏
app,inner(x, t) satisfies (3.5.41), and therefore (P2) of Proposition 3.5.1, provided

3/8 < ⇠0 < 1/2. That is, for 3/8 < ⇠0 < 1/2, we have

Z ✏⇠
0�1/2

�✏⇠
0�1/2

kOL2
x

(✏1/2s, ✏1/2s2, ✏1/2s3)kL2
x

ds = O(✏2⇠
0�1/2, ✏3⇠

0�1, ✏4⇠�3/2) = o(1) . (3.5.47)

The initial data choices a1+,inner,0(y+) and a1�,inner,0(y�) are forced by the requirement that

 ✏
app,inner(x, t) satisfies the matching condition (P1) of Proposition 3.5.1. Since these terms appear

at order ✏1/2 in the asymptotic expansion, for (P1) to hold it is su�cient that for s 2 (�✏⇠0�1/2, t⇤�
✏⇠�1/2): a1+,inner(y+, s)� a1+(y+, t

⇤ + ✏1/2s) = oL2
y+
(1) and a1�,inner(y�, s) = oL2

y�
(1).

We claim that we may ensure this by taking:

a1+,inner,0(y+) = a1+(y+, 0) = a1,⇤(y+), (3.5.48)

and

a1�,inner,0(y�) = @qW (q⇤)⇥ h��(·; p⇤)| @p�+(·; p⇤)i

⇥
Z 0

�1
ei

1
2@qW (q⇤)(@

p

E+(p⇤)�@
p

E�(p⇤))(s0)2a+
�

y� + [@pE�(p⇤)� @pE+(p
⇤)]s0, t⇤

�

ds0.
(3.5.49)

This claim follows from Taylor-expansion:

for all s 2 (�✏⇠0�1/2, t⇤ � ✏⇠�1/2) :

a1+(y+, t
⇤ + ✏1/2s)� a1+(y+, t

⇤) = OL2
y+
(✏1/2s) = OL2

y+
(✏⇠

0
) = oL2

y+
(1)

(3.5.50)

since 3/8 < ⇠0 < 1/2 and from integration by parts, which shows that for s 2 (�✏⇠0�1/2,�✏⇠�1/2):

a1�,inner(y�, s) =
Z s

�1
ei

1
2@qW (q⇤)(@

p

E+(p⇤)�@
p

E�(p⇤))(s0)2

⇥ @qW (q⇤)a+
�

y� + [@pE�(p⇤)� @pE+(p
⇤)]s0, t⇤

� h��(·; p⇤)| @p�+(·; p⇤)i ds0

= OL2
y�

(✏1/2�⇠).

(3.5.51)

Since ⇠ < 1/2 by assumption, we are done.
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It remains to show (P3) of Proposition 3.5.1. But by an identical argument,

for s 2 (✏⇠�1/2, ✏⇠
0�1/2):

a1�,inner(y�, s) = @qW (q⇤) h��(·; p⇤)| @p�+(·; p⇤)i⇥
Z 1

�1
ei

1
2@qW (q⇤)(@

p

E+(p⇤)�@
p

E�(p⇤))(s0)2 a+
�

y� + [@pE�(p⇤)� @pE+(p
⇤)]s0, t⇤

�

ds0

+O(✏⇠
0�1/2),

(3.5.52)

so that for � = ±:

a1�,inner(y�, t
⇤ + ✏1/2s)� a1�(y�, t

⇤) = OL2
y

�

(✏⇠
0
) = oL2

y

�

(1) (3.5.53)

for t� t⇤ = ✏1/2s 2 (✏⇠, ✏⇠
0
). It follows that  ✏

app,inner(x, t) so constructed satisfies all hypotheses of

Proposition 3.5.1, and so the proof of Theorem 3.3.3 is complete.



CHAPTER 4. BOUND STATES OF A PERIODIC OPERATOR WITH MULTIPLE
WELL-SEPARATED DOMAIN WALL MODULATIONS 125

Chapter 4

Bound states of a periodic operator

with multiple well-separated domain

wall modulations

The research described in this chapter is joint with J. Lu and M. I. Weinstein.

4.1 Introduction

In this work we consider the eigenvalue problem:

D
L

↵ = E↵

↵ : R ! H
(4.1.1)

where H is the Hilbert space:

H :=

8

<

:

f =

0

@

f1

f2

1

A : for j 2 {1, 2}, fj 2 L2(R)

9

=

;

hf | giH :=
X

j=1,2

hfj | gjiL2(R)

(4.1.2)

and D
L

is a Dirac operator with a potential L depending on a parameter L:

D
L

:= i@x�3 + L(x)�1. (4.1.3)
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Here �1,�3 denote the usual Pauli matrices:

�1 :=

0

@

0 1

1 0

1

A , �3 :=

0

@

1 0

0 �1

1

A . (4.1.4)

We assume L > 1 and let 1 denote a fixed positive constant. We define L to be the ‘2 domain

wall’ potential function (see Figure 4.1):

L(x) =

8

>

<

>

:

�(x+ L) for �1  x  0

(x� L) for 0  x  1
(4.1.5)

where  denotes a ‘domain wall’ potential function which we assume to be smooth, monotone

increasing, odd, and to satisfy:

(x) =

8

>

<

>

:

�1 if x  �1

1 if x � 1
(4.1.6)

where 1 > 0 is a positive constant. Note that the condition that L > 1 ensures that L is

smooth for all x 2 R. Our study of the problem (4.1.1) is motivated by recent works of Fe↵erman,

Lee-Thorp and Weinstein [26; 25; 27] which showed that Dirac operators of the form (4.1.3) control

the bifurcation of ‘edge states’ of periodic Schrödinger operators modulated by domain walls. It

follows from their analysis that the Dirac operator (4.1.3) with the ‘double’ domain wall potential

(4.1.5) controls the bifurcation of ‘edge states’ of periodic Schrödinger operators perturbed twice

by domain wall modulations. Our analysis may be readily extended to the case of Schrödinger

operators modulated n times by domain walls (see Remark 4.3).

4.1.1 Notation

In what follows, we will make use of the following short-hand notations. For the norm induced by

the H-inner product, we will write:

kfkH := hf | fi1/2H . (4.1.7)

For complex vectors v, w in C2, we will write their inner product and the norm induced by this

inner product as:

hv|wiC2 :=
X

j=1,2

vjwj , |v|C2 := hv| vi1/2C2 . (4.1.8)
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Figure 4.1: L(x) with (x) = tanh(x), L = 10. Note that tanh(x) doesn’t strictly satisfy (4.1.6)

but gives a good approximation to a function satisfying those conditions.

With this notation in hand, a short manipulation of the definition of the H-inner product shows

that:

hf | giH =

Z

R
hf(x)| g(x)iC2 dx, kfk2H =

Z

R
|f(x)|2C2 dx. (4.1.9)

4.2 Statement of theorem

In order to state our theorem we first require some background on the case of a single domain wall

potential:

4.2.1 The single domain wall operator

Let D denote the Dirac operator with potential (x) which is independent of L:

D := i@x�3 + (x)�1. (4.2.1)

The following properties are immediate:

• The operator D has continuous spectrum (�1,�1] [ [1,1)



CHAPTER 4. BOUND STATES OF A PERIODIC OPERATOR WITH MULTIPLE
WELL-SEPARATED DOMAIN WALL MODULATIONS 128

• The operator D has a zero mode: an eigenfunction ↵? with eigenvalue 0, given explicitly by:

↵?(x) := �

0

@

1

i

1

A e�
R
x

0 (y) dy, (4.2.2)

where:

� :=
1p

2ke�
R
x

0 (y) dykL2

(4.2.3)

ensures that k↵?kH = 1. It is clear from (4.1.6) that there exist constants C > 0 depending

only on  such that:

|↵?(x)|C2  Ce�1|x|, |@x↵?(x)|C2  Ce�1|x|. (4.2.4)

We will require the following ‘spectral gap’ assumption on the operator D. This assumption may

be significantly weakened; see Remark 4.2.1.

Assumption 4.2.1. If h↵?| fiH = 0, then:

kDfkH � 1kfkH. (4.2.5)

Remark 4.2.1. Our methods extend to the case where the operator D has additional spectrum in

the interval (�1,1). Any such spectrum must be bounded a fixed distance � > 0 away from zero

since the 0-eigenvalue is simple. The proof of our assertions is then identical after replacing 1

everywhere it appears with �.

As an immediate consequence of Assumption 4.2.1 we have the following Lemma:

Lemma 4.2.1. Let Assumption 4.2.1 hold. Then, for |E| < 1
2 :

k(D � E)fkH � 1
2

kfkH. (4.2.6)

Furthermore, (D�E) is invertible on the space P?H where P? denotes the orthogonal projection

operator onto {↵?}?, and:
k(D � E)�1P?kH!H  2

1
. (4.2.7)
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4.2.2 Zero modes of ‘shifted’ one domain wall operators

Consider the ‘shifted’ one domain wall operators:

D+
 := i@x�3 + (x� L)�1, D�

 := i@x�3 � (x+ L)�1. (4.2.8)

Then we have the following on zero modes of the operators D±
 :

Lemma 4.2.2. Let:

↵+
? (x) := ↵?(x� L), ↵�

? (x) := ↵?(x+ L), (4.2.9)

then ↵+
? and ↵�

? are zero modes of D+
 and D�

 respectively.

Proof.

(�3i@x + (x)�1)↵?(x) = 0

=) (�3i@x + (x� L)�1)↵?(x� L) = 0. (changing variables, @x = @x�L)

(�3i@x + (x)�1)↵?(x) = 0

=) (�3i@x + (x+ L)�1)↵?(x+ L) = 0 (changing variables, @x = @x+L)

=) (��3i@x � (x+ L)�1)↵?(x+ L) = 0 (multiply by �1)

=) (�3i@x � (x+ L)�1)↵?(x+ L) = 0. (complex conjugate,  real)

We are now in a position to state our theorem:

Theorem 4.2.1. Let Assumption 4.2.1 hold. For su�ciently large L, the operator D
L

has a pair

of near-zero eigenvalues E±, which satisfy:

E± = ±2�2e�2
R
L

0 (y) dy +O(e�41L). (4.2.10)

Their associated (normalized) eigenfunctions, which we denote ↵±(x), may be written as approxi-

mate linear combinations of ↵+
? (x),↵

�
? (x):

↵+(x) =
�p
2

�

↵+
? (x)� i↵�

? (x)
�

+OH(e�21L)

↵�(x) =
�p
2

�

↵+
? (x) + i↵�

? (x)
�

+OH(e�21L)
(4.2.11)
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where the functions ↵±
? (x) are the shifted zero-mode functions defined by (4.2.9) and the real con-

stant � is as in (4.2.3).

Our result can be seen as complementary to those obtained by Barry Simon and others for

Schrödinger operators with potentials having two or more well-separated wells related by a sym-

metry (see [67], for example).

4.3 Generalization to n domain walls

Our analysis may be readily extended to the case of n domain walls, each separated by a distance

2L. In this case we expect that there will be n near-zero eigenvalues with exponentially small:

O(e�21L) gaps between them. When n is odd, one of the n non-zero eigenvalues will be an exact

zero mode since in this case L is an ‘odd’ function of x at infinity: as |x| ! 1, L(�x) = �L(x).
If as x ! 1, L(x) > 0, the normalized zero-mode is given by:

↵?,L(x) := �L

0

@

1

i

1

A e�
R
x

0 
L

(y) dy (4.3.1)

where:

�L :=
1p

2ke�
R
x

0 
L

(y) dykL2

. (4.3.2)

If, as x ! 1, L(x) < 0, then the normalized zero-mode is given by:

↵?,L(x) := �L

0

@

1

i

1

A e
R
x

0 
L

(y) dy (4.3.3)

4.4 Proof of Theorem 4.2.1 (strategy)

We now describe the strategy of the proof of Theorem 4.2.1. We seek a solution of the eigenvalue

problem (4.1.1) as a linear combination of the functions ↵+
? ,↵

�
? plus a corrector function ⌘:

↵(x) = b+↵+
? (x) + b�↵�

? (x) + ⌘(x). (4.4.1)

where b+, b� are complex numbers to be determined. Let P±,? denote the projection operator

onto {↵+
? ,↵

�
? }?. We assume without loss of generality that P±,?⌘ = ⌘. Substituting (4.4.1) into
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(4.1.1) and projecting onto each of the orthogonal subspaces {↵+
? }, {↵�

? }, {↵+
? ,↵

�
? }? gives a coupled

system of equations for b+, b� and ⌘:

i 2 ±,
X

j2±
bj
⌦

↵i
?

�

� (D
L

� E)↵j
?

↵

H +
⌦

↵i
?

�

� (D
L

� E)⌘
↵

H = 0 (4.4.2)

X

j2±
bjP±,?(D

L

� E)↵j
? + P±,?(D

L

� E)⌘ = 0. (4.4.3)

We claim the following key Lemma:

Lemma 4.4.1. There exists an L0 > 1 such that for all L > L0 the following holds. If h↵+
? | fiH =

h↵�
? | fiH = 0 then:

kD
L

fkH � 31
4

kfkH. (4.4.4)

Moreover, for |E| < 1
4 :

k(D
L

� E)fkH � 1
2

. (4.4.5)

In particular, (D
L

� E) is invertible on the space P±,?H where P±,? denotes the orthogonal

projection operator onto {↵+
? ,↵

�
? }?, and:

k(D
L

� E)�1P±,?kH!H  2

1
. (4.4.6)

For the proof of Lemma 4.4.1, which follows from Lemma 4.2.1 and a partition of unity, see

Section C.1.

Assuming Lemma 4.4.1, for |E| < 1
4 we can solve (4.4.3) in terms of b+, b�:

⌘ = �
X

j2±
bjP±,?(D

L

� E)�1P±,?(D
L

� E)↵j
?

= �
X

j2±
bjP±,?(D

L

� E)�1P±,?D
L

↵j
?.

(4.4.7)

Substituting (4.4.7) back into (4.4.2), we then obtain a closed system for b+, b� alone:

i 2 ±,
X

j2±
bj
⌦

↵i
?

�

� (D
L

� E)↵j
?

↵

H

�
X

j2±

D

↵i
?

�

� (D
L

� E)P±,?(D
L

� E)�1P±,?D
L

↵j
?

E

H
bj = 0.

(4.4.8)
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Using self-adjointness of (D
L

� E)P±,? (4.4.8) can be written as the following simplified matrix

equation:

i 2 ±,
X

j2±
M ijbj = 0

M ij(L,E) :=
⌦

↵i
?

�

�D
L

↵j
?

↵

H � E
⌦

↵i
?

�

�↵j
?

↵�
D

P±,?D
L

↵i
?

�

�

�

(D
L

� E)�1P±,?D
L

↵j
?

E

H
.

(4.4.9)

In particular:

Corollary 4.4.1 (of Lemma 4.4.1). For E such that |E| < 1
4 , E is an eigenvalue of D

L

if and

only if det M ij(L,E) = 0.

Theorem 4.2.1 will follow from a detailed analysis of each component of the matrix M ij(L,E),

assuming that E < 1
4 so that Lemma 4.4.1 and Corollary 4.4.1 hold. Note that the resolvent

operator (D
L

� E)�1P±,? is actually analytic in E in this case. The result of our analysis of the

matrix M(L,E) is the following:

Lemma 4.4.2. Assume that E < 1
4 so that Lemma 4.4.1 holds. Then each of the entries of

M(L,E) varies analytically with E, and the matrix M(L,E) may be written:

M(L,E) =

0

@

�E 2i�2e�2
R
L

0 (y) dy

�2i�2e�2
R
L

0 (y) dy �E

1

A+M1(L,E) (4.4.10)

where each of the entries of the matrix M1(L,E) satisfies |M ij
1 (L,E)|  Ce�41L for constant

C > 0 independent of L,E.

For the proof of Lemma 4.4.2, see Section C.1. We now prove Theorem 4.2.1 as follows. Note

that it is clear also that |2i�2e�2
R
L

0 (y) dy|  Ce�21L for some constant C > 0 independent of

L,E. Taking the determinant of (4.4.10) we obtain:

detM ij(L,E) = (E � 2�2e�2
R
L

0 (y) dy)(E + 2�2e�2
R
L

0 (y) dy)) + g(L,E) = 0 (4.4.11)

where the function g(L,E) is analytic in E and satisfies the bound:

|g(L,E)|  C
�

Ee�41L + e�61L
�

(4.4.12)

for some constant C > 0 independent of L,E. Let C⇤ > 0 denote a constant independent of

L,E such that C⇤e�21L  |2i�2e�2
R
L

0 (y) dy|, and consider the real interval IR(L)(2�
2e�2

R
L

0 (y) dy)
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centered at E = 2�2e�2
R
L

0 (y) dy with radius R(L) := C⇤e�21L. We then have that for all E 2
IR(L), C

⇤e�21L  E + 2�2e�2
R
L

0 (y) dy so that:

detM ij(L,E) = 0 () E � 2�2e�2
R
L

0 (y) dy +
g(L,E)

E + 2�2e�2
R
L

0 (y) dy
= 0. (4.4.13)

Now, for su�ciently large L > 0, we have that:

if |E| = R(L), then:
�

�

�

�

�

g(L,E)

E + 2�2e�2
R
L

0 (y) dy

�

�

�

�

�

 C1e
�41L  C⇤e�21L = |E � 2�2e�2

R
L

0 (y) dy|
(4.4.14)

for some constant C1 > 0 independent of L,E. It is now clear from the intermediate value theorem

that the matrix M(L,E) (4.4.10) has precisely one eigenvalue in the interval IR(L)(2�
2e�2

R
L

0 (y) dy).

It is furthermore clear that this eigenvalue (which we denote E+(L)) satisfies:

E+(L) = 2�2e�2
R
L

0 (y) dy +O(e�41L). (4.4.15)

By an identical argument, it is clear that the matrix M(L,E) (4.4.10) has precisely one eigenvalue

in the interval IR(L)(�2�2e�2
R
L

0 (y) dy) which satisfies:

E�(L) = �2�2e�2
R
L

0 (y) dy +O(e�41L). (4.4.16)

The associated eigenfunctions of these eigenvalues may be similarly expanded as:

0

@

b+

b�

1

A

+

=

0

@

1

�i

1

A+O(e�21L)

0

@

b+

b�

1

A

�

=

0

@

1

i

1

A+O(e�21L),

(4.4.17)

from which the statement of Theorem 4.2.1 is then clear.



BIBLIOGRAPHY 134

Bibliography

[1] N. I. Akhiezer. Elements of the theory of elliptic functions. Number 79 in Translations of

Mathematical Monographs. American Mathematical Society, 1990.

[2] G. Allaire and A. Piatnitski. Homogenization of the Schrödinger equation and e↵ective mass

theorems. Communications in Mathematical Physics, 258(1):1–22, 2005.

[3] N.W. Ashcroft and N.D. Mermin. Solid State Physics. Saunders College, 1976.

[4] P. Bechouche, N. J. Mauser, and F. Poupaud. Semiclassical limit for the Schrödinger-Poisson

equation in a crystal. Communications on Pure and Applied Mathematics, 54(7):851–890,

2001.

[5] M. V. Berry. Quantal phase factors accompanying adiabatic changes. In Proceedings of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 392,

pages 45–57. The Royal Society, 1984.

[6] M. V. Berry and M. R. Je↵rey. Conical di↵raction: Hamilton’s diabolical point at the heart

of crystal optics. Progress in Optics, 50:13–50, 2007.

[7] K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman. Geometrodynamics of spinning light. Nature

Photonics, 2(12):748–753, 2008.

[8] I. Boaz and M. I. Weinstein. Band-edge solitons, nonlinear Schrödinger/Gross-Pitaevskii equa-

tions, and e↵ective media. Multiscale Modeling & Simulation, 8(4):1055–1101, 2010.

[9] K. Cai. Dispersive properties of Schrodinger equations. PhD thesis, California Institute of

Technology, 2005.



BIBLIOGRAPHY 135

[10] R. Carles, C. Fermanian-Kammerer, N. J. Mauser, and H. P. Stimming. On the time evolution

of Wigner measures for Schrödinger equations. Communications on Pure and Applied Analysis,

8(2):559–585, 2009.

[11] R. Carles, P. A. Markowich, and C. Sparber. Semiclassical asymptotics for weakly nonlinear

Bloch waves. Journal of statistical physics, 117(1-2):343–375, 2004.

[12] L. Chai, S. Jin, and Q. Li. Semiclassical models for the Schrödinger equation with periodic

potentials and band crossings. Kinetic and related models, 6(3):505–532, 2013.

[13] L. Chai, S. Jin, Q. Li, and O. Morandi. A multiband semiclassical model for surface hopping

quantum mechanics. Multiscale Modeling & Simulation, 13(1):205–230, 2015.

[14] K. S. Chandrasekharan. Elliptic functions. Number 281 in Grundlehren der Mathematischen

Wissenschaften. Springer-Verlag Berlin, 1985.

[15] M-C. Chang and Q. Niu. Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical

dynamics in magnetic Bloch bands. Physical Review B, 53(11):7010–7023, 1996.

[16] A. Damascelli. Probing the electronic structure of complex systems by ARPES. Physica

Scripta, 2004(T109):61–71, 2004.

[17] Y. Colin de Verdiere, M. Lombardi, and J. Pollet. The microlocal Landau-Zener formula.

Annales de l’I.H.P. Physique théorique, 71(1):95–127, 1999.
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[20] V. Duchêne, I. Vukićević, and M.I. Weinstein. Scattering and localization properties of highly

oscillatory potentials. Comm. Pure Appl. Math., 1:83–128, 2014.

[21] V. Duchêne, I. Vukićević, and M.I. Weinstein. Homogenized description of defect modes in

periodic structures with localized defects. Commun. Math. Sci., 13(3):777–823, 2015.



BIBLIOGRAPHY 136
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[55] T. Ohsawa. The Siegel upper half space is a Marsden-Weinstein quotient: symplectic reduction

and Gaussian wave packets. Letters in Mathematical Physics, 105(9):1301–1320, 2015.



BIBLIOGRAPHY 139

[56] T. Ohsawa and M. Leok. Symplectic semiclassical wave packet dynamics. Journal of Physics

A: Mathematical and Theoretical, 46(40), 2013.

[57] G. Panati, H. Spohn, and S. Teufel. E↵ective dynamics for Bloch electrons: Peierls substitution

and beyond. Communications in Mathematical Physics, 242(3):547–578, 2003.

[58] G. Panati, H. Spohn, and S. Teufel. Motion of Electrons in Adiabatically Perturbed Periodic

Structures, pages 595–617. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
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Appendix A

Chapter 2 Appendices

A.1 Useful identities involving En,�n

Let E(p),�(z; p) satisfy the eigenvalue problem:

[H(p)� E(p)]�(z; p) = 0

H(p) =
1

2
(p� irz)

2 + V (z)
(A.1.1)

and assume that E(p),�(z; p) are smooth functions of p. Taking the gradient with respect to p

gives:

[(p� irz)�rpEn(p)]�n(z; p) + [H(p)� En(p)]rp�n(z; p) = 0 (A.1.2)

Taking two derivatives with respect to p of the equation gives:

⇥

�↵� � @p
↵

@p
�

En(p)
⇤

�n(z; p) + [(p� i@z)↵ � @p
↵

En(p)] @p
�

�n(z; p)

+
⇥

(p� i@z)� � @p
�

En(p)
⇤

@p
↵

�n(z; p) + [H(p)� En(p)] @p
↵

@p
�

�n(z; p) = 0
(A.1.3)

where �↵� is the Kronecker delta. Taking the derivative with respect to p� of (A.1.3) gives:

[�@p
↵

@p
�

@p
�

En(p)]�n(z; p) + [�↵� � @p
↵

@p
�

En(p)]@p
�

�n(z; p)

+ [�↵� � @p
↵

@p
�

En(p)]@p
�

�n(z; p) + [��� � @p
�

@p
�

En(p)]@p
↵

�n(z; p)

+ [(p� i@z)↵ � @p
↵

En(p)]@p
�

@p
�

�n(z; p) + [(p� i@z)� � @p
�

En(p)]@p
↵

@p
�

�n(z; p)

+ [(p� i@z)� � @p
�

En(p)]@p
↵

@p
�

�n(z; p) + [H(p)� En(p)]@p
↵

@p
�

@p
�

�n(z; p) = 0

(A.1.4)
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A.2 Derivation of leading-order envelope equation

Collecting terms of order ✏ in the expansion (2.3.9), using equations (2.1.21) for Ṡ(t) and (2.1.19) for

q̇(t), ṗ(t), and setting equal to zero gives the following inhomogeneous self-adjoint elliptic equation

in z for f2(y, z, t):

[H(p(t))� En(p(t))] f
2(y, z, t) = ⇠2(y, z, t)

for all v 2 ⇤, f2(y, z + v, t) = f2(y, z, t); f2(y, z, t) 2 ⌃R�2
y (Rd)

⇠2 := �


1

2
(�iry)

2 +
1

2
@q

↵

@q
�

W (q(t))y↵y� � i@t

�

f0(y, z, t)

� [((p(t)� irz)�rpEn(p(t))) · (�iry)] f
1(y, z, t).

(A.2.1)

We follow the strategy outlined in Remark 2.3.1. The proof of the following Lemma will be given

at the end of this section:

Lemma A.2.1. ⇠2(y, z, t), defined in (A.2.1) satisfies:

⇠2(y, z, t) = ⇠̃2(y, z, t) + [H(p(t))� En(p(t))]u
2(y, z, t) (A.2.2)

where:

⇠̃2(y, z, t) =



i@ta
0(y, t)� 1

2
@p

↵

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)a0(y, t)� 1

2
@q

↵

@q
�

W (q(t))y↵y�a
0(y, t)

�rqW (q(t)) · An(p(t))

�

�n(z; p(t))

+ P?
n (p(t))

⇥�ia0(y, t)rqW (q(t)) ·rp�n(z; p(t))
⇤

u2(y, z, t) = (�iry)a
1(y, t) ·rp�n(z; p(t)) +

1

2
(�i@y

↵

)(�i@y
�

)a0(y, t)@p
↵

@p
�

�n(z; p(t)).

(A.2.3)

Here, An(p(t)) is the Berry connection (2.1.26) and P?
n (p(t)) is the orthogonal projection operator

away from the subspace of L2
per spanned by �n(z; p(t)) (2.3.21).

Imposing the solvability condition of equation (A.2.1), given by (2.3.20) with j = 2 and ⇠̃2(y, z, t)

given by (A.2.3), gives the following evolution equation for a0(y, t):

i@ta
0(y, t) =

1

2
@p

↵

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)a0(y, t) +
1

2
@q

↵

@q
�

W (q(t))y↵y�a
0(y, t)

+rqW (q(t)) · An(p(t))a
0(y, t)

(A.2.4)
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Taking a0(y, t) = a(y, t)ei�B

(t) and matching with the initial data implies equations (2.1.27) and

(2.1.22). The general solution of (A.2.1) is given by (2.3.22) with j = 2:

f2(y, z, t) = a2(y, t)�n(z; p(t)) + (�iry)a
1(y, t) ·rp�n(z; p(t))

+
1

2
(�i@y

↵

)(�i@y
�

)a0(y, t)@p
↵

@p
�

�n(z; p(t))

[H(p(t))� En(p(t))]
�1P?

n (p(t))
⇥�irqW (q(t))a0(y, t) ·rp�n(z; p(t))

⇤

(A.2.5)

where a2(y, t) is an arbitrary function in ⌃R�2
y (Rd) to be fixed at higher order in the expansion.

Proof of Lemma A.2.1. Adding and substracting terms, using smoothness of the band En(p) in a

neighborhood of p(t) (Assumption 2.1.1) we can re-write ⇠2 (A.2.1) as:

⇠2(y, z, t) = �


1

2
@p
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�
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(A.2.6)

Substituting the forms of f0(y, z, t) (2.3.14) and f1(y, z, t) (2.3.27) gives:

⇠2(y, z, t) = �
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1

2
@p
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@p
�

En(p(t))(�i@y
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�
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1(y, t) · ((p(t)� irz)�rpEn(p(t)))�n(z; p(t)).

(A.2.7)

Using (A.1.2) we can simplify the term involving a1:

� (�iry)a
1(y, t) · ((p(t)� irz)�rpEn(p(t)))�n(z; p(t))

= (�iry)a
1(y, t) · [H(p(t))� En(p(t))]rp�n(z; p(t)).

(A.2.8)

Using (A.1.3), and the symmetry: (�i@y
↵

)(�i@y
�

)a0(y, t) = (�i@y
�

)(�i@y
↵

)a0(y, t) we can simplify

the terms:

� (�i@y
↵

)(�i@y
�

)a0(y, t)
1

2

�

�↵� � @p
↵

@p
�

En(p(t))
�

�n(z; p(t))

� (�i@y
↵

)(�i@y
�

)a0(y, t) ((p(t)� i@z)↵ � @p
↵

En(p(t))) @p
�

�n(z; p(t))

=
1

2
(�i@y

↵

)(�i@y
�

)a0(y, t) [H(p(t))� En(p(t))] @p
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�
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(A.2.9)
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Recall that ṗ(t) = �rqW (q(t)) (2.1.19). Substituting this, (A.2.8), and (A.2.9) into (A.2.1) and

adding and subtracting a0(y, t)rqW (q(t)) · An(p(t))�n(z; p(t)) gives:

⇠2(y, z, t) =



i@ta
0(y, t)� 1

2
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�
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�
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⇤
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

1

2
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)a0(y, t)@p
↵

@p
�

�n(z; p(t))

+ (�iry)a
1(y, t) ·rp�n(z; p(t))

�

(A.2.10)

where An(p(t)) is the Berry connection (2.1.26) and P?
n (p(t)) is the orthogonal projection in L2

per

away from the subspace spanned by �n(z; p(t)).

A.3 Derivation of first-order envelope equation

Collecting terms of order ✏3/2 in the expansion (2.3.9), using equations (2.1.21) for Ṡ(t) and (2.1.19)

for q̇(t), ṗ(t), and setting equal to zero gives the following inhomogeneous self-adjoint elliptic equa-

tion in z for f3(y, z, t):



H(p(t))� En(p(t))

�

f3(y, z, t) = ⇠3(y, z, t)

for all v 2 ⇤, f3(y, z + v, t) = f3(y, z, t); f3(y, z, t) 2 ⌃R�3
y (Rd)

⇠3(y, z, t) := �


1

6
@q

↵

@q
�

@q
�

W (q(t))y↵y�y�

�

f0(y, z, t)

�
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1

2
(�iry)

2 +
1

2
@q

↵

@q
�

W (q(t))y↵y� � i@t

�

f1(y, z, t)

�


[(p(t)� irz)�rpEn(p(t))] · (�iry)

�

f2(y, z, t)

(A.3.1)

We claim the following lemmas, the proofs of which will be given at the end of this section:

Lemma A.3.1. ⇠3(y, z, t), as defined in (A.3.1), satisfies:

⇠3(y, z, t) = ⇠̃3(y, z, t) + [H(p(t))� En(p(t))]u
3(y, z, t) (A.3.2)
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where ⇠̃3 is given explicitly by (A.3.24) and:

u3(y, z, t) := (�iry)a
2(y, t) ·rp�n(z; p(t)) +

1

2
(�i@y

↵

)(�i@y
�
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6
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)a0(y, t)@p
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�

@p
�

�n(z; p(t)).
(A.3.3)

Lemma A.3.2. The solvability condition for (A.3.1), given by (2.3.20) with j = 3 and ⇠̃3(y, z, t)

given by (A.3.24), is equivalent to the following evolution equation for a1(y, t):

i@ta
1(y, t) =

1

2
@p

↵

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)a1(y, t) +
1

2
@q

↵

@q
�

W (q(t))y↵y�a
1(y, t)

+rqW (q(t)) · An(p(t))a
1(y, t)

+
1

6
@p

↵

@p
�

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)(�i@y
�

)a0(y, t) +
1

6
@q

↵

@q
�

@q
�

W (q(t))y↵y�y�a
0(y, t)

+ @q
�

W (q(t))@p
�

An,�(p(t))(�i@y
�
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�
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(A.3.4)

Here, An(p(t)) is the Berry connection (2.1.26).

Taking a1(y, t) = b(y, t)ei�B

(t) and matching with the initial data implies equation (2.1.24) for

b(y, t). The solution of (A.3.1) is then given by (2.3.22):

f3(y, z, t) = a3(y, t)�n(z; p(t)) + u3(y, z, t) + [H(p(t))� En(p(t))]
�1 P?

n (p(t))⇠̃3(y, z, t) (A.3.5)

where ⇠̃3(y, z, t) is given by (A.3.24) and u3(y, z, t) by (A.3.3). a3(y, t) is an arbitrary function in

⌃R�3
y (Rd) to be fixed at higher order in the expansion. Note that all manipulations so far are valid

as long as R � 3.

Proof of Lemma A.3.1. Adding and subtracting terms using smoothness of the band En(p) in a

neighborhood of p(t) (Assumption 2.1.1) we can re-write ⇠3(y, z, t) (A.3.1) as:

⇠3(y, z, t) = �


1

6
@p

↵

@p
�

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)(�i@y
�

) +
1

6
@q

↵

@q
�

@q
�

W (q(t))y↵y�y�

�

f0(y, z, t)

�


�1

6
@p

↵

@p
�

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)(�i@y
�

)

�

f0(y, z, t)

�


1

2
@p

↵

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

) +
1

2
@q

↵

@q
�

W (q(t))y↵y� � i@t

�

f1(y, z, t)

�


1

2

�

�↵� � @p
↵

@p
�

En(p(t))
�

(�i@y
↵

)(�i@y
�

)

�

f1(y, z, t)

�


((p(t)� irz)�rpEn(p(t))) · (�iry)

�

f2(y, z, t)

(A.3.6)
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Substituting the forms of f0(y, z, t) (2.3.14), f1(y, z, t) (2.3.27), and f2(y, z, t) (A.2.5) gives a very

long expression on the right-hand side. We simplify this expression by treating terms which depend

on a2(y, t), a1(y, t), a0(y, t) in turn.

Contributions to (A.3.6) depending on a2(y, t). There is one term which depends on a2(y, t):

� (�iry)a
2(y, t) · ((p(t)� irz)�rpEn(p(t)))�n(z; p(t)) (A.3.7)

which can be simplified using (A.1.2):

�(�iry)a
2(y, t) · ((p(t)� irz)�rpEn(p(t)))�n(z; p(t))

= [H(p(t))� En(p(t))]
⇥

(�iry)a
2(y, t) ·rp�n(z; p(t))

⇤

.
(A.3.8)

Contributions to (A.3.6) depending on a1(y, t). The terms which depend on a1(y, t) are as follows:

�


1

2
@p

↵

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)a1(y, t) +
1

2
@q

↵

@q
�

W (q(t))y↵y�a
1(y, t)

� i@ta
1(y, t)

�

�n(z; p(t)) + iṗ(t) ·rp�n(z; p(t))a
1(y, t)

� (�i@y
↵

)(�i@y
�

)a1(y, t)
1

2

�

�↵� � @p
↵

@p
�

En(p(t))
�

�n(z; p(t))

� (�i@y
↵

)(�i@y
�

)a1(y, t) ((p(t)� i@z)↵ � @pEn(p(t))↵) @p
�

�n(z; p(t)).

(A.3.9)

Note that these terms have an identical form to the terms depending on a0(y, t) in expression

(A.2.7) for ⇠2(y, z, t) which were simplified to the form (A.2.10). We may therefore manipulate

these terms in an identical way (specifically, using (2.1.19), (A.1.3)) into the form:

=



i@ta
1(y, t)� 1

2
@p

↵

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)a1(y, t)� 1

2
@q

↵

@q
�

W (q(t))y↵y�a
1(y, t)

�rqW (q(t)) · An(p(t))

�

�n(z; p(t)) + P?
n (p(t))

⇥�ia1(y, t)rqW (q(t)) ·rp�n(z; p(t))
⇤

+ [H(p(t))� En(p(t))]



1

2
(�i@y

↵

)(�i@y
�

)a1(y, t)@p
↵

@p
�

�n(z; p(t))

�

(A.3.10)

Contributions to (A.3.6) depending on a0(y, t). The terms which depend on a0(y, t) may be written

as T1 + T2 + T3 + T4 where:

T1 := �


1

6
@p

↵

@p
�

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)(�i@y
�

)a0(y, t)

+
1

6
@q

↵

@q
�

@q
�

W (q(t))y↵y�y�a
0(y, t)

�

�n(z; p(t))

(A.3.11)
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T2 := �(�i@y
↵

)(�i@y
�

)(�i@y
�

)a0(y, t)



�1

6
@p

↵

@p
�

@p
�

En(p(t))�n(z; p(t))

�

� (�i@y
↵

)(�i@y
�

)(�i@y
�

)a0(y, t)



1

2

�

�↵� � @p
↵

@p
�

En(p(t))
�

@p
�

�n(z; p(t))

�

� (�i@y
↵

)(�i@y
�

)(�i@y
�

)a0(y, t)



1

2
((p(t)� i@z)↵ � @p

↵

En(p(t))) @p
�

@p
�

�n(z; p(t))

�

(A.3.12)

T3 :=

�


1

2
@p

↵

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

) +
1

2
@q

↵

@q
�

W (q(t))y↵y� � i@t

�

(�i@y
�

)a0(y, t)@p
�

�n(z; p(t))

(A.3.13)

T4 := i
�

(p(t)� i@z)� � @p
�

En(p(t))
�

@q
�

W (q(t))(�i@y
�

)a0(y, t)

⇥ [H(p(t))� En(p(t))]
�1P?

n (p(t))@p
�

�n(z; p(t))
(A.3.14)

Using (A.1.4) and the equality of mixed partial derivatives, we can simplify T2:

T2 = [H(p(t))� En(p(t))]



1

6
(�i@y

↵

)(�i@y
�

)(�i@y
�

)a0(y, t)@p
↵

@p
�

@p
�

�n(z; p(t))

�

. (A.3.15)

We can simplify T3 using the evolution equation for a0(y, t) (A.2.4):

T3 = �


1

2
@p

↵

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

) +
1

2
@q

↵

@q
�

W (q(t))y↵y�

�

(�i@y
�

)a0(y, t)@p
�

�n(z; p(t))

+ (�i@y
�

)
⇥

i@ta
0(y, t)

⇤

@p
�

�n(z; p(t)) + (�i@y
�

)a0(y, t)iṗ�(t)@p
�

@p
�

�n(z; p(t))

= �1

2
@q

↵

@q
�

W (q(t))y↵y�(�i@y
�

)a0(y, t)@p
�

�n(z; p(t))

+
1

2
@q

↵

@q
�

W (q(t))(�i@y
�

)y↵y�a
0(y, t)@p

�

�n(z; p(t))

+ @q
�

W (q(t))An,�(p(t))(�i@y
�

)a0(y, t)@p
�

�n(z; p(t))

� i@q
�

W (q(t))(�i@y
�

)a0(y, t)@p
�

@p
�

�n(z; p(t)).

(A.3.16)

We now write T3 = T3,1 + T3,2 where:

T3,1 := �1

2
@q

↵

@q
�

W (q(t))y↵y�(�i@y
�

)a0(y, t)@p
�

�n(z; p(t))

+
1

2
@q

↵

@q
�

W (q(t))(�i@y
�

)y↵y�a
0(y, t)@p

�

�n(z; p(t))
(A.3.17)

T3,2 := @q
�

W (q(t))An,�(p(t))(�i@y
�

)a0(y, t)@p
�

�n(z; p(t))

� i@q
�

W (q(t))(�i@y
�

)a0(y, t)@p
�

@p
�

�n(z; p(t)).
(A.3.18)
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We can simplify T3,1 as follows. We first re-arrange (A.3.17):

T3,1 =
�

(�i@y
�

)y↵y� � y↵y�(�i@y
�

)
� 1

2
@q

↵

@q
�

W (q(t))a0(y, t)@p
�

�n(z; p(t)). (A.3.19)

Using the identity: (�i@y
↵

)y� � y�(�i@y
↵

) = �i�↵� twice we have that:

(�i@y
�

)y↵y� � y↵y�(�i@y
�

) = (�i�↵�)y� + (�i���)y↵. (A.3.20)

Using the symmetry @q
↵

@q
�

W (q(t)) = @q
�

@q
↵

W (q(t)) we have that:

T3,1 = �i@q
↵

@q
�

W (q(t))y↵a
0(y, t)@p

�

�n(z; p(t)). (A.3.21)

Summing T1 + T2 + T3,1 + T3,2 + T4 (A.3.11) (A.3.15) (A.3.21) (A.3.18) (A.3.14), we have that the

terms which depend on a0(y, t) in (A.3.6) are equal to:

�


1

6
@p

↵

@p
�

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)(�i@y
�

)a0(y, t)

+
1

6
@q

↵

@q
�

@q
�

W (q(t))y↵y�y�a
0(y, t)

�

�n(z; p(t))

+ [H(p(t))� En(p(t))]



1

6
(�i@y

↵

)(�i@y
�

)(�i@y
�

)a0(y, t)@p
↵

@p
�

@p
�

�n(z; p(t))

�

� i@q
↵

@q
�

W (q(t))y↵a
0(y, t)@p

�

�n(z; p(t))

+ @q
�

W (q(t))An,�(p(t))(�i@y
�

)a0(y, t)@p
�

�n(z; p(t))

� i@q
�

W (q(t))(�i@y
�

)a0(y, t)@p
�

@p
�

�n(z; p(t))

+ i
�

(p(t)� i@z)� � @p
�

En(p(t))
�

@q
�

W (q(t))(�i@y
�

)a0(y, t)

⇥ [H(p(t))� En(p(t))]
�1P?

n (p(t))@p
�

�n(z; p(t)).

(A.3.22)

By adding and subtracting terms and using the definition of An(p(t)) (2.1.26) we can put (A.3.22)
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into the form:


i@q
�

W (q(t))

✓

⌦

�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

⌦

�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

+
D

�n(z; p(t))|
�

(p(t)� i@z)� � @p
�

En(p(t))
�

[H(p(t))� En(p(t))]
�1P?

n (p(t))@p
�

�n(z; p(t))
E

L2
z

(⌦)

� ⌦�n(z; p(t))| @p
�

@p
�

�n(z; p(t))
↵

L2
z

(⌦)

◆

(�i@y
�

)a0(y, t)� @q
↵

@q
�

W (q(t))An,�(p(t))y↵a
0(y, t)

�1

6
@p

↵

@p
�

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)(�i@y
�

)a0(y, t)

�1

6
@q

↵

@q
�

@q
�

W (q(t))y↵y�y�a
0(y, t)

�

�n(z; p(t))

+ P?
n (p(t))



� i@q
↵

@q
�

W (q(t))y↵a
0(y, t)@p

�

�n(z; p(t))

+ @q
�

W (q(t))An,�(p(t))(�i@y
�

)a0(y, t)@p
�

�n(z; p(t))

� i@q
�

W (q(t))(�i@y
�

)a0(y, t)@p
�

@p
�

�n(z; p(t))

+ i
�

(p(t)� i@z)� � @p
�

En(p(t))
�

@q
�

W (q(t))(�i@y
�

)a0(y, t)

⇥ [H(p(t))� En(p(t))]
�1P?

n (p(t))@p
�

�n(z; p(t))

�

+ [H(p(t))� En(p(t))]



1

6
(�i@y

↵

)(�i@y
�

)(�i@y
�

)a0(y, t)@p
↵

@p
�

@p
�

�n(z; p(t))

�

(A.3.23)

Adding (A.3.8), (A.3.10) and (A.3.22) we have that ⇠3(y, z, t) can be decomposed as in (A.3.2)
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where u3(y, z, t) is given by (A.3.3) and ⇠̃3(y, z, t) is equal to:

⇠̃3(y, z, t) =



i@ta
1(y, t)� 1

2
@p

↵

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)a1(y, t)

� 1

2
@q

↵

@q
�

W (q(t))y↵y�a
1(y, t)�rqW (q(t)) · An(p(t))

+ i@q
�

W (q(t))

✓

⌦

�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

⌦

�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

+
D

�n(z; p(t))|
�

(p(t)� i@z)� � @p
�

En(p(t))
�

[H(p(t))� En(p(t))]
�1P?

n (p(t))@p
�

�n(z; p(t))
E

L2
z

(⌦)

� ⌦�n(z; p(t))| @p
�

@p
�

�n(z; p(t))
↵

L2
z

(⌦)

◆

(�i@y
�

)a0(y, t)� @q
↵

@q
�

W (q(t))An,�(p(t))y↵a
0(y, t)

� 1

6
@p

↵

@p
�

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)(�i@y
�

)a0(y, t)

�1

6
@q

↵

@q
�

@q
�

W (q(t))y↵y�y�a
0(y, t)

�

�n(z; p(t))

+ P?
n (p(t))



� ia1(y, t)rqW (q(t)) ·rp�n(z; p(t))� i@q
↵

@q
�

W (q(t))y↵a
0(y, t)@p

�

�n(z; p(t))

+ @q
�

W (q(t))An,�(p(t))(�i@y
�

)a0(y, t)@p
�

�n(z; p(t))

� i@q
�

W (q(t))(�i@y
�

)a0(y, t)@p
�

@p
�

�n(z; p(t))

+ i
�

(p(t)� i@z)� � @p
�

En(p(t))
�

@q
�

W (q(t))(�i@y
�

)a0(y, t)

⇥ [H(p(t))� En(p(t))]
�1P?

n (p(t))@p
�

�n(z; p(t))

�

(A.3.24)

Proof of Lemma A.3.2. Imposing the orthogonality condition (2.3.20) with j = 3 on ⇠̃3(y, z, t) given

by (A.3.24) we obtain:

i@ta
1(y, t) =

1

2
@p

↵

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)a1(y, t) +
1

2
@q

↵

@q
�

W (q(t))y↵y�a
1(y, t)

+rqW (q(t)) · An(p(t))a
1(y, t)

+
1

6
@p

↵

@p
�

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)(�i@y
�

)a0(y, t) +
1

6
@q

↵

@q
�

@q
�

W (q(t))y↵y�y�a
0(y, t)

+ �(t)(�i@y
�

)a0(y, t) + @q
�

@q
�

W (q(t))An,�(p(t))y�a
0(y, t)

(A.3.25)
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which is precisely (A.3.4) with the coe�cient multiplying (�i@y
�

)a0(y, t) replaced by:

�(t) := i@q
�

W (q(t))

✓

⌦

�n(z; p(t))| @p
�

@p
�

�n(z; p(t))
↵

L2
z

(⌦)

� ⌦�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

⌦

�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

� i
D

�n(z; p(t))
�

�

�

�

(p(t)� i@z)� � @p
�

En(p(t))
�

⇥ [H(p(t))� En(p(t))]
�1P?

n (p(t))@p
�

�n(z; p(t))
E

L2
z

(⌦)

◆

.

(A.3.26)

We claim that:

�(t) = @q
�

W (q(t))@p
�

An,�(p(t)). (A.3.27)

Adding and subtracting i@q
�

W (q(t))
⌦

@p
�

�n(z; p(t))
�

� @p
�

�n(z; p(t))
↵

L2
z

(⌦)
in (A.3.26), we have that:

�(t) = @q
�

W (q(t))@p
�

An,�(p(t)) + ̃�(t) (A.3.28)

where:

̃�(t) := i@q
�

W (q(t))

✓

� ⌦@p
�

�n(z; p(t))
�

� @p
�

�n(z; p(t))
↵

L2
z

(⌦)

� ⌦�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

⌦

�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

� i
D

�n(z; p(t))
�

�

�

�

(p(t)� i@z)� � @p
�

En(p(t))
�

⇥ [H(p(t))� En(p(t))]
�1P?

n (p(t))@p
�

�n(z; p(t))
E

L2
z

(⌦)

◆

.

(A.3.29)

Using self-adjointness of the operators:

(p(t)� i@z)� � @p
�

En(p(t)), [H(p(t))� En(p(t))]
�1P?

n (p(t)) (A.3.30)

on L2
per for each t � 0, and then identity (A.1.2) we have that the last term in (A.3.29) is equal to:

�
D

[H(p(t))� En(p(t))]
�1P?

n (p(t))
�

(p(t)� i@z)� � @p
�

En(p(t))
�

�n(z; p(t))
�

�

�

@p
�

�n(z; p(t))
E

L2
z

(⌦)

=
D

[H(p(t))� En(p(t))]
�1P?

n (p(t))[H(p(t))� En(p(t))]@p
�

�n(z; p(t))
�

�

�

@p
�

�n(z; p(t))
E

L2
z

(⌦)
.

(A.3.31)

It is clear that the operators P?
n (p(t)), [H(p(t)) � En(p(t))] commute on L2

per for any t � 0. We

have therefore that this term:

=
D

P?
n (p(t))@p

�

�n(z; p(t))
�

�

�

@p
�

�n(z; p(t))
E

L2
z

(⌦)
. (A.3.32)
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Substituting (A.3.32) into (A.3.29) we obtain:

̃�(t) = i@q
�

W (q(t))



� ⌦@p
�

�n(z; p(t))
�

� @p
�

�n(z; p(t))
↵

L2
z

(⌦)

� ⌦�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

⌦

�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)

+
D

P?
n (p(t))@p

�

�n(z; p(t))
�

�

�

@p
�

�n(z; p(t))
E

L2
z

(⌦)

�

.

(A.3.33)

Recall that �n(z; p(t)) is assumed normalized: h�n(z; p(t))|�n(z; p(t))iL2
z

(⌦) = 1. Di↵erentiating

this relation with respect to p and using the definition of the L2-inner product we obtain:

⌦

�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)
= � ⌦�n(z; p(t))| @p

�

�n(z; p(t))
↵

L2
z

(⌦)
. (A.3.34)

We now use conjugate linearity of the L2-inner product in its first argument and the identity

(A.3.34) to re-write the expression inside the square brackets in (A.3.33) as:

� ⌦@p
�

�n(z; p(t))
�

� @p
�

�n(z; p(t))
↵

L2
z

(⌦)

+
D

⌦

�n(z; p(t))| @p
�

�n(z; p(t))
↵

L2
z

(⌦)
�n(z; p(t))

�

�

�

@p
�

�n(z; p(t))
E

L2
z

(⌦)

+
D

P?
n (p(t))@p

�

�n(z; p(t))
�

�

�

@p
�

�n(z; p(t))
E

L2
z

(⌦)

(A.3.35)

which is clearly zero by definition of the orthogonal projection operator P?
n (p(t)) (2.3.21). (A.3.29)

is therefore zero, and the claim (A.3.27) holds.

A.4 Proof of L1 bounds on z-dependence of residual, uniform in

p 2 Sn

In this Appendix we provide details on how to bound the z-dependence of terms which appear in

the residual (2.3.36) in L1
z , uniformly in p 2 Sn, where:

Sn := {p 2 Rd : inf
m 6=n

|Em(p)� En(p)| � M}, and M > 0. (A.4.1)

We consider the problem of bounding a representative term:

J↵�(p) := kg↵�(z; p)kL1
z

(⌦)

g↵�(z; p) := [(p↵ � i@z
↵

)� @p
↵

En(p)] [H(p)� En(p)]
�1P?

n (p)@p
�

�n(z; p).
(A.4.2)
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uniformly in p 2 Sn. Note that although the maps p 7! En(p) are periodic with respect to the

lattice ⇤, the map p 7! g(z; p) is not. We claim that:

sup
p2S

n

J↵�(p) = kg↵�(z; p)kL1
z

(⌦) < 1. (A.4.3)

First, we define the ‘shifted’ Sobolev norms for any vector p 2 Rd to be:

kf(z)kHs

z,p

(⌦) :=
X

|j|s

k(p� i@z)
jf(z)kL2

z

(⌦). (A.4.4)

For any fixed p, Hs
z,p is equivalent to the standard norm Hs

z . Using Sobolev embedding we have

that for any integer s > d
2 :

kg↵�(z; p)kL1
z

= keipzg↵�(z; p)kL1
z

 Cs,dkeipzg↵�(z; p)kHs

z

= Cs,dkg↵�(z; p)kHs

z,p

. (A.4.5)

where the constant Cs,d > 0 depends on s and d but is independent of p. We are therefore done if

we can show that kg↵�(z; p)kHs

z,p

can be bounded uniformly in p 2 Sn for some integer s > d/2.

From the definition of the Hs
z,p-norms and periodicity of @p

↵

En(p) we have that for any integer

s � 1, p 2 Sn:

k(p↵ � i@z
↵

)� @p
↵

En(p)kHs

z,p

!Hs�1
z,p

 C 0, (A.4.6)

where C 0 := 1 + supp2S
n

\B |En(p)|. By elliptic regularity, we have that for any integer s � 0, all

p 2 Sn:

k[H(p)� En(p)]
�1P?

n (p)kHs

z,p

!Hs+2
z,p

. 1

M
. (A.4.7)

Di↵erentiating the eigenvalue equation (2.2.6) for �n(z; p) with respect to p, we have that

P?
n (p)@p

�

�n(z; p) satisfies:

[H(p)� En(p)]P
?
n (p)@p

�

�n(z; p) = �P?
n (p)

⇥

(p� � i@z
�

)� @p
�

En(p)
⇤

�n(z; p). (A.4.8)

Again, by elliptic regularity, for all p 2 Sn:

kP?
n (p)@p

�

�n(z; p)kHs+2
p

. 1

M
k ⇥(p� � i@z

�

)� @p
�

En(p)
⇤

�n(z; p)kHs

z,p

. (A.4.9)

Using (A.4.6) we then have for all p 2 Sn:

kP?
n (p)@p

�

�n(z; p)kHs+2
p

 C 0

M
k�n(z; p)kHs+1

z,p

. (A.4.10)
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Combining (A.4.6), (A.4.7), and (A.4.10) we have:

kg↵�(z; p)kHs

z,p

 C 0k[H(p)� En(p)]
�1P?

n (p)@p
�

�n(z; p)kHs+1
z,p

(using (A.4.6))

. C 0

M
kP?

n (p)@p
�

�n(z; p)kHs�1
z,p

(using (A.4.7))

.
✓

C 0

M

◆2

k�n(z; p)kHs�2
z,p

. (using (A.4.10)) (A.4.11)

We now claim that for any integer s:

sup
p2S

n

k�n(z; p)kHs

z,p

= sup
p2S

n

\B
k�n(z; p)kHs

z,p

< 1. (A.4.12)

By elliptic regularity it is clear that for any fixed p 2 Rd and fixed positive integer s that:

k�n(z; p)kHs

z,p

< 1. (A.4.13)

Using smoothness of the map p 7! �n(z; p) in Sn and compactness of the Brillouin zone B we have

that:

sup
p2S

n

\B
k�n(z; p)kHs

z,p

< 1. (A.4.14)

Since for any reciprocal lattice vector b 2 ⇤⇤ we have that �n(z; p + b) = e�ib·z�n(z; p), we then

have that:

for any b 2 ⇤⇤, k�n(z; p+ b)kHs

z,p+b

= ke�ib·z�n(z; p)kHs

z,p+b

= k�n(z; p)kHs

z,p

. (A.4.15)

The bound (A.4.12) follows.

We now turn to completing the proof of (A.4.3). Fix �, a positive integer such that � >

max{d
2 , 2}. Then:

sup
p2S

n

J (p) = sup
p2S

n

kg↵�(z; p)kL1
z

(by definition)

 Cs,d sup
p2S

n

kg↵�(z; p)kH�

z,p

(by Sobolev embedding, since � > d/2)

 Cs,d

✓

C 0

M

◆2

sup
p2S

n

k�n(z; p)kH��2
z,p

(by (A.4.11), with s = �)

= Cs,d

✓

C 0

M

◆2

sup
p2B\S

n

k�n(z; p)kH��2
z,p

(using (A.4.12) with s = � � 2)

< 1. (by (A.4.14) with s = � � 2)

All other z-dependence in expression (2.3.36) for the residual may be bounded in L1
z uniformly in

p 2 Sn by similar arguments.
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A.5 Proof of Lemma 2.4.1

First, it is clear from changing variables in the integral that:

Z

Rd

f (x) g
⇣x

�
+

c

�2

⌘

dx =

✓

Z

Rd

f(x) dx

◆✓

Z

⌦
g(z) dz

◆

+O(�N ) (A.5.1)

is equivalent to:

Z

Rd

f
⇣

x� c

�

⌘

g
⇣x

�

⌘

dx =

✓

Z

Rd

f(x) dx

◆✓

Z

⌦
g(z) dz

◆

+O(�N ). (A.5.2)

Let vj , j 2 {1, ..., d} denote generators of the lattice ⇤ so that if v 2 ⇤, there exist unique integers

nj , j 2 {1, ..., d} such that:

v = n1v1 + n2v2 + ...+ ndvd. (A.5.3)

And let bj , j 2 {1, ..., d} denote generators of the dual lattice ⇤⇤ such that if b 2 ⇤⇤, there exist

unique integers mj , j 2 {1, ..., d} such that:

b = m1b1 +m2b2 + ...+mdbd, (A.5.4)

and furthermore, for all i, j 2 {1, ..., d}, bi · vj = 2⇡�ij .

Since g(z) is smooth and periodic with respect to the lattice ⇤, it has a uniformly convergent

Fourier series:

g(z) =
X

(m1,...,m
d

)2Zd

gm1,...,m
d

ei[m1b1·z+m2b2·z+...m
d

b
d

·z]

gm1,...,m
d

=

Z

Rd/⇤
e�i[m1b1·z+m2b2·z+...m

d

b
d

·z]g(z) dz.
(A.5.5)

We have therefore that:

Z

Rd

f
⇣

x� c

�

⌘

g
⇣x

�

⌘

dx =
X

(m1,...,m
d

)2Zd

gm1,...,m
d

Z

Rd

ei[m1b1·x/�+m2b2·x/�+...m
d

b
d

·x/�]f(x� c/�) dx

(A.5.6)

where it is valid to change the order of summation of the series with the integration by uniform

convergence of the series. We now write the right-hand side of (A.5.6) as:

= g0,...,0

Z

Rd

f(x� c/�) dx

+
X

(m1,...,m
d

)2Zd,(m1,...,m
d

) 6=(0,...0)

gm1,...,m
d

Z

Rd

ei[m1b1·x/�+m2b2·x/�+...m
d

b
d

·x/�]f(x� c/�) dx
(A.5.7)
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By the definition of g0,...,0 (A.5.5) and by a trivial change of variables we have that:

g0,...,0

Z

Rd

f(x� c/�) dx =

✓

Z

Rd

f(x) dx

◆✓

Z

⌦
g(z) dz

◆

(A.5.8)

To see that the second term in (A.5.7) is of O(�N ) for arbitrary N 2 N, consider a representative

term in the series where (m1, ...,md) = (1, 0, ..., 0):

�

�

�

�

g1,0,...0

Z

Rd

eib1·x/�f(x� c/�) dx

�

�

�

�

=

�

�

�

�

�

g1,0,...0

Z

Rd

"

✓�i�v1 ·rx

2⇡

◆N

eib1·x/�
#

f(x� c/�) dx

�

�

�

�

�

(A.5.9)

Integrating by parts gives:

=

�

�

�

�

�

g1,0,...0

Z

Rd

eib1·x/�
"

✓

i�v1 ·rx

2⇡

◆N

f(x� c/�)

#

dx

�

�

�

�

�

 �N
1

(2⇡)N
|g1,0,...0|

Z

Rd

�

�

�

(v1 ·rx)
N f(x� c/�)

�

�

�

dx

(A.5.10)

Using the definition of g1,0,...0 (A.5.5) and another change of variables, we have:

 �N
1

(2⇡)N

Z

R/⇤
|g(z)| dz

Z

Rd

�

�

�

(v1 ·rx)
N f(x)

�

�

�

dx (A.5.11)

since f 2 S(Rd), we are done:

�

�

�

�

Z

Rd

f
⇣

x+
c

�

⌘

g
⇣x

�

⌘

dx�
✓

Z

Rd

f(x) dx

◆✓

Z

⌦
g(z) dz

◆

�

�

�

�

 CN,f,g�
N (A.5.12)

where CN > 0 is a positive constant which depends on N, f, g but not �.

A.6 Computation of dynamics of physical observables

In this Appendix we compute:

d

dt

h

hb(y, t)| a(y, t)iL2
y

(Rd) + ha(y, t)| b(y, t)iL2
y

(Rd)

i

d

dt

h

ha(y, t)| ya(y, t)iL2
y

(Rd)

i

,
d

dt

h

ha(y, t)| (�iry)a(y, t)iL2
y

(Rd)

i

d

dt

h

hb(y, t)| ya(y, t)iL2
y

(Rd) + ha(y, t)| yb(y, t)iL2
y

(Rd)

i

d

dt

h

hb(y, t)| (�iry)a(y, t)iL2
y

(Rd) + ha(y, t)| (�iry)b(y, t)iL2
y

(Rd)

i

(A.6.1)

We will make use of the following simple lemmas which are each elementary to prove:
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Lemma A.6.1. Let a(y, t) satisfy:

i@ta = H (t)a (A.6.2)

where H (t) is self-adjoint for every t. Let G(t) denote a physical observable defined by:

G(t) :=
Z

Rd

a(y, t)Ga(y, t) dy (A.6.3)

where G is self-adjoint. Then:

Ġ(t) = i

Z

Rd

a(y, t)[H (t), G]a(y, t) dy (A.6.4)

Lemma A.6.2. Let a(y, t) satisfy (A.6.2), and b(y, t) satisfy:

i@tb = H (t)b+ I (t)a (A.6.5)

where I (t) is self-adjoint for every t. Define:

K(t) :=

Z

Rd

b(y, t)Ka(y, t) dy +

Z

Rd

a(y, t)Kb(y, t) dy (A.6.6)

where K is self-adjoint. Then:

K̇(t) = i

Z

Rd

b(y, t)[H (t),K]a(y, t) dy + i

Z

Rd

a(y, t)[H (t),K]b(y, t) dy

+ i

Z

Rd

a(y, t)[I (t),K]a(y, t) dy
(A.6.7)

Lemma A.6.3. Let G1, G2, G3 be operators. Then:

[G1G2, G3] = G1[G2, G3] + [G1, G3]G2

[G1, G2G3] = [G1, G2]G3 +G2[G1, G3]
(A.6.8)

Lemma A.6.4.

[(�i@y
↵

), y� ] = �i�↵� , [y↵, (�i@y
�

)] = i�↵� . (A.6.9)

We will apply the Lemmas with:

H (t) =
1

2
@p

↵

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

) +
1

2
@q

↵

@q
�

W (q(t))y↵y� (A.6.10)

For any operator G, we have:

i[H (t), G] =
1

2
i@p

↵

@p
�

En(p(t))(�i@y
↵

)[(�i@y
�

), G] +
1

2
i@p

↵

@p
�

En(p(t))[(�i@y
↵

), G](�i@y
�

)

+
1

2
i@q

↵

@q
�

W (q(t))(t)y↵[y� , G] +
1

2
i@q

↵

@q
�

W (q(t))(t)[y↵, G]y�

(A.6.11)
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From (A.6.11), we have:

i[H (t), y↵] = @p
↵

@p
�

En(p(t))(�i@y
�

)

i[H (t), (�i@y
↵

)] = �@q
↵

@q
�

W (q(t))y�

(A.6.12)

So that, using Lemma A.6.1:

d

dt
ha(y, t)| y↵a(y, t)iL2

y

(Rd) = @p
↵

@p
�

En(p(t))
⌦

a(y, t)| (�i@y
�

)a(y, t)
↵

L2
y

(Rd)

d

dt
ha(y, t)| (�i@y

↵

)a(y, t)iL2
y

(Rd) = �@q
↵

@q
�

W (q(t)) ha(y, t)| y�a(y, t)iL2
y

(Rd) .
(A.6.13)

Note that it follows from (A.6.13) that:

ha(y, 0)| ya(y, 0)iL2
y

(Rd) = ha(y, 0)| (�iry)a(y, 0)iL2
y

(Rd) = 0

=) for all t � 0, ha(y, t)| ya(y, t)iL2
y

(Rd) = ha(y, t)| (�iry)a(y, t)iL2
y

(Rd) = 0.
(A.6.14)

We will then apply Lemma A.6.2 with:

I (t) =
1

6
@p

↵

@p
�

@p
�

En(p(t))(�i@y
↵

)(�i@y
�

)(�i@y
�

) +
1

6
@q

↵

@q
�

@q
�

W (q(t))y↵y�y�

+ @p
�

[rqW (q(t)) · An(p(t))] (�i@y
�

) + @q
�

[rqW (q(t)) · An(p(t))] y�

(A.6.15)

Calculating the commutators:

i[I (t), 1] = 0

i[I (t), y↵] =
1

2
@p

↵

@p
�

@p
�

En(p(t))(�i@y
�

)(�i@y
�

) + @p
↵

[rqW (q(t)) · An(p(t))]

i[I (t), (�i@y
↵

)] = �1

2
@q

↵

@q
�

@q
�

W (q(t))y�y� � @q
↵

[rqW (q(t)) · An(p(t))]

(A.6.16)

We have, by Lemma A.6.2:

d

dt

h

hb(y, t)| a(y, t)iL2
y

(Rd) + ha(y, t)| b(y, t)iL2
y

(Rd)

i

= 0 (A.6.17)
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d

dt

h

hb(y, t)| y↵a(y, t)iL2
y

(Rd) + ha(y, t)| y↵b(y, t)iL2
y

(Rd)

i

= @p
↵

@p
�

En(p(t))
h

hb(y, t)| (�i@y
↵

)a(y, t)iL2
y

(Rd) + ha(y, t)| (�i@y
↵

)b(y, t)iL2
y

(Rd)

i

+
1

2
@p

↵

@p
�

@p
�

En(p(t))
⌦

a(y, t)| (�i@y
�

)(�i@y
�

)a(y, t)
↵

L2
y

(Rd)

+ @p
↵

[rqW (q(t)) · An(p(t))] ka(y, t)k2L2
y

(Rd)

d

dt

h

hb(y, t)| (�i@y
↵

)a(y, t)iL2
y

(Rd) + ha(y, t)| (�i@y
↵

)b(y, t)iL2
y

(Rd)

i

= �@q
↵

@q
�

W (q(t))
h

hb(y, t)| y�a(y, t)iL2
y

(Rd) + ha(y, t)| y�b(y, t)iL2
y

(Rd)

i

� 1

2
@q

↵

@q
�

@q
�

W (q(t)) ha(y, t)| y�y�a(y, t)iL2
y

(Rd)

� @q
↵

[rqW (q(t)) · An(p(t))] ka(y, t)k2L2
y

(Rd).

(A.6.18)

A.7 Berry phase and curvature in a two-by-two matrix example

Consider the matrix depending on parameters:

H(x, y, z) :=

0

@

z x+ iy

x� iy �z

1

A (A.7.1)

where x, y, z 2 R. This matrix has eigenvalues:

E± = ±(x2 + y2 + z2)1/2. (A.7.2)

so that E+ = E� at x = y = z = 0. Introduce standard spherical polar co-ordinates:

x = ⇢ sin ✓ cos�

y = ⇢ sin ✓ sin�

z = ⇢ cos ✓

(A.7.3)

where now ⇢ 2 R, ✓ 2 [0,⇡),� 2 [0, 2⇡). Note that the Jacobian of this transformation:
�

�

�

�

@(x, y, z)

@(⇢, ✓,�)

�

�

�

�

= ⇢2 sin ✓ (A.7.4)

which implies that the change of variables is not smooth anywhere on the z�axis (where ⇢ = 0 or

✓ = 0). In the new variables the matrix becomes:

H(⇢, ✓,�) = ⇢

0

@

cos ✓ sin ✓ei�

sin ✓e�i� � cos ✓

1

A . (A.7.5)
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This matrix has eigenvalues:

E± = ±⇢ (A.7.6)

So that E+ = E� at ⇢ = 0. The normalized eigenvectors associated with these eigenvalues are

unique up to a choice of gauge. Specifically, if �± are normalized eigenvectors of the eigenvalues

E±, then so are ei�±�± where �± 2 R. One possible choice of normalized eigenvectors is given by:

�+ =

0

@

cos(✓/2)ei�

sin(✓/2)

1

A ,�� =

0

@

sin(✓/2)

� cos(✓/2)e�i�

1

A (A.7.7)

This choice is smooth away from the z-axis and 2⇡-periodic in �:

�±(�+ 2⇡) = �±(�) (A.7.8)

Another choice is given by making the gauge transformation:

�0
± := e⌥i�/2�± (A.7.9)

the new eigenvectors are:

�0
+ =

0

@

cos(✓/2)ei�/2

sin(✓/2)e�i�/2

1

A ,�0
� =

0

@

sin(✓/2)ei�/2

� cos(✓/2)e�i�/2

1

A (A.7.10)

This choice is smooth away from the z�axis and the � = 0 half-plane. Across the � = 0 half-plane

the eigenfunctions change sign:

�0
±(�+ 2⇡) = ��0

±(�) (A.7.11)

According to the adiabatic theorem of quantum mechanics, a system prepared in an eigenstate of

the Hamiltonian corresponding to an isolated eigenvalue remains proportional to the eigenstate after

the parameters of the system have been varied adiabatically in a closed loop. Consider the example

of the matrix Hamiltonian (A.7.5), and let � be a closed loop in parameter space parameterized

by ⌧ : �(⌧) = (⇢(⌧), ✓(⌧),�(⌧)), ⌧ 2 [0, 1], �(1) = �(0). Assuming that the variation is slow enough,

the final state of a system prepared initially in an eigenstate of the matrix Hamiltonian:

 (0) = �±(�(0)) (A.7.12)

is given by:

 (1) = e⌥i
R 1
0 ⇢(�(⌧)) d⌧ei�B,±(�)�±(�(1)) (A.7.13)
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The first factor is known as the dynamic phase and is analogous to the factor e�iEt which would

appear in the case where the parameters remain fixed. The second factor is known as the geometric

phase, and is given by integrating the Berry connection along the path:

�B,±(�) =
Z 1

0
A±(�(⌧)) · �̇(⌧) d⌧ (A.7.14)

where the Berry connections A± in each eigenspace are given by:

A± := i h�±|r�±i (A.7.15)

In spherical polar co-ordinates, �̇(⌧) is:

�̇(⌧) = ⇢̇⇢̂+ ✓̇⇢✓̂ + �̇⇢ sin ✓�̂. (A.7.16)

and r is given by:

rf = ⇢̂@⇢f + ✓̂
1

⇢
@✓f + �̂

1

⇢ sin ✓
@�f. (A.7.17)

Explicit computation gives:

A± = ⌥1

2

1 + cos ✓

⇢ sin ✓
�̂ (A.7.18)

As an example consider the path �0(⌧) = (⇢(⌧) = 1, ✓(⌧) = ⇡/2,�(⌧) = 2⇡⌧), ⌧ 2 [0, 1]. Then:

�B,±(�0) = ⌥⇡ = ⇡ (A.7.19)

where the final equality is understood as modulo 2⇡. So that the final state of the system is given

by:

 (1) = e⌥i
R 1
0 ⇢(�0(⌧)) d⌧ei⇡�±(�0(1)) (A.7.20)

since the �± are 2⇡-periodic in �, �±(�0(1)) = �±(�0(0)) so that:

 (1) = �e⌥i
R 1
0 ⇢(�0(⌧)) d⌧ (0) (A.7.21)

We can study the same problem in the primed gauge. Taking initial data:

 (0) = �0
±(�0(0)) (A.7.22)

then the final state of the system is given by:

 (1) = e⌥i
R 1
0 ⇢(�0(⌧)) d⌧ei�

0
B,±(�0)�0

±(�0(1)) (A.7.23)
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where:

�0B,±(�) =
Z 1

0
A0

±(�(⌧)) · �̇(⌧) d⌧ (A.7.24)

The Berry connection in the primed gauge is:

A0
± := i

⌦

�0
±
�

�r�0
±
↵

(A.7.25)

Explicit computation gives:

A0
± = ⌥1

2

cos ✓

⇢ sin ✓
�̂ (A.7.26)

which is zero for ✓ = ⇡/2. For the example loop �0(⌧):

 (1) = e⌥i
R 1
0 ⇢(�0(⌧)) d⌧�0

±(�0(1)) (A.7.27)

since the �0± are 2⇡-anti-periodic, �±(�0(1)) = ��±(�0(0)) so that:

 (1) = �e⌥i
R 1
0 ⇢(�0(⌧)) d⌧ (0) (A.7.28)

which verifies that the result of adiabatic transport of the eigenvector about a closed loop is gauge-

invariant when the Berry phase is taken into account.

A.7.1 Berry curvature

Another route to this result is as follows. Since the path �(⌧) is closed we can transform the line

integral into a flux integral:

�B,±(�) =
Z

�
A± · d� =

Z

⌦
F± · dS (A.7.29)

where ⌦ is any surface whose boundary is the curve � and:

F± = r⇥A± (A.7.30)

is the Berry curvature. The Berry curvature is gauge independent since under the gauge transfor-

mation:

�± ! �0
± = ei�±�±, (A.7.31)

the Berry connection and curvature transform as:

A± ! A0
± = A± �r�±

F± ! F 0
±

(A.7.32)
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For the example curve �0 I can take ⌦ to be the upper hemisphere of the sphere: ⌦ = (⇢ = 1, ✓ 2
[0,⇡/2],� 2 [0, 2⇡]). Let be an arbitrary vector field, then define:

A⇢ := ⇢̂ ·A,A✓ := ✓̂ ·A,A� := �̂ ·A (A.7.33)

then the curl operator in polar co-ordinates is:

r⇥A =
1

⇢ sin ✓
(@✓(A� sin ✓)� @�A✓) ⇢̂

+
1

⇢

✓

1

sin ✓
@�A⇢ � @⇢(⇢A�)

◆

✓̂ +
1

⇢
(@⇢(⇢A✓)� @✓A⇢) �̂.

(A.7.34)

Applying this to A± gives the gauge-independent Berry ‘monopole’ with strength 1/2 at the origin:

F± = ±1

2

⇢̂

⇢2
(A.7.35)

In spherical polars:

dS = ⇢2 sin ✓d✓d�⇢̂+ ⇢ sin ✓d⇢d�✓̂ + ⇢d⇢d✓�̂ (A.7.36)

Integrating the monopole over the upper hemisphere gives:

�B,±(�0) = ±1

2

Z 2⇡

0

Z ⇡/2

0
sin ✓ d✓ d� = ±⇡ (A.7.37)

as expected.
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Appendix B

Chapter 3 Appendices

B.1 Proof of Theorem 3.3.1 on linearity of band crossings in one

spatial dimension

In this section we will prove Theorem 3.3.1 using the fact that in one spatial dimension solving

the eigenvalue problem (3.2.3) is equivalent to solving a set of first-order ODEs. Throughout

this section we will take t as the dependent variable rather than z for consistency with common

presentations of ODE theory.

B.1.1 Floquet’s theorem

Consider the following general second-order ODE with periodic coe�cients:

f̈(t) +Q(t)f(t) = 0

Q(t+ 1) = Q(t).
(B.1.1)

Here and throughout this section, dots will denote derivatives with respect to t hence f̈(t) := d2f
dt2

.

By standard ODE theory, there exist two unique linearly independent solutions f1(t) and f2(t) of

(B.1.1) which satisfy:

f1(0) = 1 ḟ1(0) = 0,

f2(0) = 0 ḟ2(0) = 1.
(B.1.2)

By periodicity of Q, we have that f1(t+ 1) and f2(t+ 1) are also solutions of (B.1.1). Hence, they

may be written as a linear combination of f1(t) and f2(t). Using the conditions (B.1.2), we have
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more precisely that:

f1(t+ 1) = f1(1)f1(t) + ḟ1(1)f2(t),

f2(t+ 1) = f2(1)f1(t) + ḟ2(1)f2(t).
(B.1.3)

We now seek quasi-periodic solutions f(t) of (B.1.1):

8t 2 R, f(t+ 1) = ⇢f(t) (B.1.4)

for any constant ⇢ 2 C. We will refer to f(t) satisfying (B.1.4) with ⇢ = 1 as periodic, and to f(t)

satisfying (B.1.4) with ⇢ = �1 as anti-periodic. Any solution f(t) of (B.1.1) may be expressed as

f(t) = c1f1(t) + c2f2(t) for constants c1, c2 2 C. Combining (B.1.2), (B.1.3), and (B.1.4) we have

that c1, c2 must satisfy:

M

0

@

c1

c2

1

A = ⇢

0

@

c1

c2

1

A , M :=

0

@

f1(1) f2(1)

ḟ1(1) ḟ2(1)

1

A . (B.1.5)

The matrix M is known as the monodromy matrix. Since for all t the Wronskian is equal to 1:

W (t) := f1(t)ḟ2(t)� f2(t)ḟ1(t) = 1, (B.1.6)

the characteristic polynomial whose roots are the eigenvalues of M takes the form:

⇢2 ��⇢+ 1, � := f1(1) + ḟ2(1). (B.1.7)

The constant � is known as the discriminant. Denote by ⇢+, ⇢� the roots of (B.1.7):

⇢± :=
�±p

�2 � 4

2
. (B.1.8)

It is easy to check that:

⇢+⇢� = 1 and ⇢+ + ⇢� = �. (B.1.9)

There are three possibilities:

|�| < 2. ⇢+ and ⇢� have non-zero imaginary part and are complex conjugates of each other.

Since |⇢+|2 = ⇢+⇢+ = ⇢�⇢+ = 1 we have that there exists a unique p 2 (0,⇡) such that

⇢+ = eip and ⇢� = e�ip. Moreover, there exists a linearly independent set of solutions of

(B.1.1) g+(t), g�(t) satisfying:

g+(t+ 1) = eipg+(t), g�(t+ 1) = e�ipg�(t). (B.1.10)

It follows that in this case all solutions of (B.1.1) remain bounded for all t.
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|�| > 2. ⇢+ and ⇢� are distinct real numbers such that ⇢�⇢+ = 1. In particular, ⇢+ and ⇢�

have the same sign. If � = ⇢++⇢� > 2, it follows that ⇢+ and ⇢� are both positive and that

⇢+ > ⇢�. Then ⇢+ > 1. Define p := log ⇢+ > 0. Then ⇢+ = ep and ⇢� = e�p and there exists

a linearly independent set of solutions of (B.1.1) g+(t), g�(t) such that:

g+(t+ 1) = epg+(t) g�(t+ 1) = e�pg�(t). (B.1.11)

The case where � < 2 is similar. It follows that in this case no solutions of (B.1.1) remain

bounded for all t.

|�| = 2. ⇢+ = ⇢�. It follows that ⇢+⇢� = ⇢2+ = ⇢2� = 1, so that ⇢+ = ⇢� = 1 or ⇢+ = ⇢� =

�1. The monodromy matrix M therefore has a single eigenvalue 1 or �1. There are then

two further possibilities:

f2(1) = ḟ1(1) = 0. The eigenvalue ±1 has geometric multiplicity 2. If the eigenvalue is 1,

then all solutions of (B.1.1) are periodic. If it is �1, then all solutions are anti-periodic.

Else: The eigenvalue ±1 has geometric multiplicity 1. Equation (B.1.1) has one solution

which is periodic if the eigenvalue is 1 and anti-periodic if the eigenvalue is �1 and one

solution which is unbounded as t ! 1 or t ! �1.

The above result is known as Floquet’s theorem.

B.1.2 The Floquet-Bloch eigenvalue problem

We now consider the eigenvalue problem obtained by taking Q(t) = E � V (t) in (B.1.1) where V

is real and 1-periodic: V (t+ 1) = V (t) and E 2 R:

� �̈(t;E) + V (t)�(t;E) = E�(t;E),

V (t+ 1) = V (t).
(B.1.12)

Just as before we may define normalized solutions f1(t;E), f2(t;E) of (B.1.12) and the discriminant

as functions of E:

�(E) := f1(1;E) + ḟ2(1;E). (B.1.13)

We have the following theorem:
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Theorem B.1.1. The discriminant function �(E) defined by (B.1.13) is an entire analytic func-

tion of E such that:

(D1) The functions �(E) � 2 and �(E) + 2 have infinitely many roots along the real line. The

roots may have multiplicity one or two.

(D2) Denote by �0  �1  ... the roots of the function �(E)� 2 and by �01  �02  ... the roots of

the function �(E) + 2, ordered with multiplicity. Then the following ordering holds:

�0 < �01  �02 < �1  �2 < �03  �04 < ... (B.1.14)

We will refer to the intervals [�0,�01], [�02,�1], ... where |�(E)|  2 as bands, and to the intervals

(�01,�02), (�1,�2), ... where �(E) > 2 as gaps. Note that gaps may be empty, or closed; this happens

whenever �(E)� 2 or �(E) + 2 have a double root: �0n = �0n+1 or �n = �n+1 for some integer n.

(D3) At interior points of the bands, i.e. for E 2 (�0,�01), (�02,�1), ... the derivative of � with

respect to E, �0(E), is never zero.

(D4) The double roots of �(E) � 2 (resp. �(E) + 2) are precisely the roots �n (resp. �0n) where

f2(1;E) = ḟ1(1;E) = 0 and all solutions of (B.1.12) are periodic (resp. anti-periodic).

For the proof and further details, see [50]. The usual 2⇡-periodic Bloch band dispersion func-

tions:

En : R ! R

p 7! En(p),
(B.1.15)

which are the eigenvalue band functions of the equivalent problems (3.2.3) and (3.2.2), may now

be recovered as follows. First, we construct E1(p). For E 2 (�0,�01), we have that |�(E)| < 2. By

Floquet’s theorem, we may define the map:

(�0,�
0
1) ! (0,⇡)

E 7! p(E)
(B.1.16)

where p 2 (0,⇡) is as in (B.1.10). To see that (B.1.16) is invertible, note that:

2 cos p(E) = eip(E) + e�ip(E) = �(E), (B.1.17)
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since eip and e�ip are the two roots of the characteristic polynomial (B.1.7). Di↵erentiating both

sides with respect to E gives:

� 2 sin p
dp

dE
=

d�

dE
. (B.1.18)

By Theorem B.1.1 (D3) we have that for p 2 (0,⇡) and E 2 (�0,�01):

dp

dE
=

d�
dE

�2 sin p
6= 0. (B.1.19)

So, by the inverse function theorem the inverse map p 7! E(p) is well-defined and smooth at each

p 2 (0,⇡) with derivative:
dE

dp
=

�2 sin p
d�
dE (E(p))

. (B.1.20)

We define the map E1 over the interval [0, 2⇡) by:

E1(p) :=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�0 p = 0

E(p) p 2 (0,⇡)

�01 p = ⇡

E(2⇡ � p) p 2 (⇡, 2⇡)

(B.1.21)

where E(p) denotes the inverse of the map (B.1.16). We then define this map for all p 2 R by

imposing 2⇡-periodicity. By an analogous argument, all of the higher band functions p 7! En(p),

n 2 {2, 3, ...} may be uniquely defined.

Remark B.1.1. Whenever a Bloch band En(p) is isolated, i.e. for all p0 2 R such that:

En�1(p0) < En(p0) < En+1(p0), (B.1.22)

it follows from a Lyapunov-Schmidt reduction argument that there exists a neighborhood U0 of p0

such that the maps p 7! (En(p),�n(t; p)) are both analytic at each p 2 U0.

Now, let En(p), En+1(p) denote spectral band functions satisfying (3.2.3) for p 2 B, and let

p⇤ 2 B be such that: En(p⇤) = En+1(p⇤). It follows that there exist two linearly independent

solutions of (B.1.12) when E⇤ := En(p⇤) = En+1(p⇤) both satisfying:

8t 2 R, �(t+ 1; p⇤) = eip
⇤
�(t; p⇤). (B.1.23)



APPENDIX B. CHAPTER 3 APPENDICES 169

By Floquet’s theorem, this may only happen when p⇤ = 0 or ⇡ (modulo 2⇡), and implies that all

solutions of (B.1.12) with E = E⇤ are periodic (if p⇤ = 0) or anti-periodic (if p⇤ = ⇡). We now

seek quasi-periodic solutions of (B.1.12) in a neighborhood of E = E⇤, i.e. for E = E⇤ +E0 where

|E0| ⌧ 1, assuming WLOG that p⇤ = 0. Such solutions have the form �(t;E) = c1(E)f1(t;E) +

c2(E)f2(t;E) where c1(E), c2(E) satisfy:

0

@

f1(1;E) f2(1;E)

ḟ1(1;E) ḟ2(1;E)

1

A

0

@

c1(E)

c2(E)

1

A = ⇢(E)

0

@

c1(E)

c2(E)

1

A . (B.1.24)

Taylor-expanding the monodromy matrix in E0 about E⇤ and then using (B.1.2) and the fact that

all solutions are periodic when E = E⇤ gives:

0

@

f1(1;E) f2(1;E)

ḟ1(1;E) ḟ2(1;E)

1

A =

0

@

1 0

0 1

1

A+ E0

0

@

@Ef1(1;E⇤) @Ef2(1;E⇤)

@E ḟ1(1;E⇤) @E ḟ2(1;E⇤)

1

A+O(|E0|2) (B.1.25)

We seek solutions of (B.1.24) where:

0

@

c1(E)

c2(E)

1

A =

0

@

c1(E⇤)

c2(E⇤)

1

A+ E0

0

@

c̃1(E0)

c̃2(E0)

1

A , ⇢(E) = ⇢(E⇤) + E0⇢̃(E0). (B.1.26)

Equating terms independent of E0 in the resulting expression gives:

0

@

1 0

0 1

1

A

0

@

c1(E⇤)

c2(E⇤)

1

A = ⇢(E⇤)

0

@

c1(E⇤)

c2(E⇤)

1

A (B.1.27)

which implies that ⇢(E⇤) = 1. The eigenvector (c1(E⇤), c2(E⇤))T is unconstrained at this order in

E0. The remaining terms are:

2

4

0

@

@Ef1(1;E⇤) @Ef2(1;E⇤)

@E ḟ1(1;E⇤) @E ḟ2(1;E⇤)

1

A+O(|E0|)
3

5

2

4

0

@

c1(E⇤)

c2(E⇤)

1

A+ E0

0

@

c̃1(E0)

c̃2(E0)

1

A

3

5

=



⇢̃(E0)
�

2

4

0

@

c1(E⇤)

c2(E⇤)

1

A+ E0

0

@

c̃1(E0)

c̃2(E0)

1

A

3

5 .

(B.1.28)

By constructing the Green’s function (see [50] for details) we have that:

@Ef1(1;E
⇤) = h�2(·;E⇤)|�1(·;E⇤)i , @Ef2(1;E

⇤) = k�2(·;E⇤)k2,
@E ḟ1(1;E

⇤) = �k�1(·;E⇤)k2, @E ḟ2(1;E
⇤) = �h�2(·;E⇤)|�1(·;E⇤)i .
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Taking the determinant of (B.1.28) then gives:

(h�2(·;E⇤)|�1(·;E⇤)i � ⇢̃(E0))(h�2(·;E⇤)|�1(·;E⇤)i+ ⇢̃(E0))

� k�1(·;E⇤)k2k�2(·;E⇤)k2 = O(E0)

=)
(⇢̃(E0))2 = h�2(·;E⇤)|�1(·;E⇤)i2 � k�1(·;E⇤)k2k�2(·;E⇤)k2 +O(E0).

(B.1.29)

Taking the square root of both sides and using the Cauchy-Schwarz inequality we have that there

are two smooth solutions ⇢̃±(E0), satisfying:

⇢̃±(E0) = ±i�+O(|E0|)

� :=
q

k�1(·;E⇤)k2k�2(·;E⇤)k2 � h�2(·;E⇤)|�1(·;E⇤)i2 > 0.
(B.1.30)

Substituting (B.1.30) back into (B.1.28) and setting E0 = 0 gives:

0

@

@Ef1(1;E⇤) @Ef2(1;E⇤)

@E ḟ1(1;E⇤) @E ḟ2(1;E⇤)

1

A

0

@

c1(E⇤)

c2(E⇤)

1

A = ±i�

0

@

c1(E⇤)

c2(E⇤)

1

A (B.1.31)

i.e. (c1(E⇤), c2(E⇤))T must be chosen to be an eigenvector of:

0

@

@Ef1(1;E⇤) @Ef2(1;E⇤)

@E ḟ1(1;E⇤) @E ḟ2(1;E⇤)

1

A (B.1.32)

with eigenvalue ±i�. We denote these eigenvectors by (c±,1(E⇤), c±,2(E⇤))T . It now follows now

from a standard Lyapunov-Schmidt reduction argument that for all E su�ciently close to E⇤ there

exist two distinct eigenpair solutions (⇢±(E), (c1,±(E), c2,±(E))T ) of (B.1.24) which are smooth in

E with ⇢±(E⇤) = 1, satisfying:

⇢±(E) = 1± i�(E � E⇤) +O(|E � E⇤|2),
0

@

c±,1(E)

c±,2(E)

1

A =

0

@

c±,1(E⇤)

c±,2(E⇤)

1

A+O(|E � E⇤|).
(B.1.33)

In particular we have that:

d⇢±
dE

(E⇤) =± i
q

k�1(·;E⇤)k2k�2(·;E⇤)k2 � h�2(·;E⇤)|�1(·;E⇤)i2

6= 0

(B.1.34)
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and that for small enough |E � E⇤| the ⇢±(E) are complex. Since ⇢+ = ⇢� and ⇢+⇢� = 1 (B.1.9)

they must be expressible as:

⇢±(E) = e±ip(E) (B.1.35)

for some smooth function p(E) satisfying p(E⇤) = 0. Substituting (B.1.35) into (B.1.30) then

implies that:

dp

dE
(E⇤) =

q

k�1(·;E⇤)k2k�2(·;E⇤)k2 � h�2(·;E⇤)|�1(·;E⇤)i2

6= 0

(B.1.36)

which then implies, by the inverse function theorem, the existence of smooth band functions p 7!
E±(p) for p su�ciently close to 0 such that:

dE±
dp

(0) = ± 1
q

k�1(·;E⇤)k2k�2(·;E⇤)k2 � h�2(·;E⇤)|�1(·;E⇤)i2
. (B.1.37)

By definition we have that the associated eigenfunctions �±(t;E) are smooth in E and satisfy:

�±(t+ 1;E) = e±ip(E)�±(t;E) (B.1.38)

for E su�ciently close to E⇤. Inverting the map E 7! p we obtain eigenfunctions of (3.2.2)

depending smoothly on p:

�±(t+ 1; p) = e±ip�±(t; p) (B.1.39)

for p su�ciently close to 0. By defining �±(t; p) := e�ipt�±(t; p) we obtain eigenfunctions of (3.2.3)

depending smoothly on p su�ciently close to 0. We have now proved Theorem 3.3.1 in all details.

B.2 Proof that the “inter-band coupling coe�cient” vanishes for

trivial crossings

B.2.1 Formula for h��(·; p⇤)| @p�+(·; p⇤)i from symmetry of Bloch band

Let E(p), �(z; p) denote an eigenpair of (3.2.3). Then:

H(2⇡ � p)e�2⇡iz�(z; p) = e�2⇡izH(�p)�(z; p)

= e�2⇡izH(p)�(z; p) = E(p)e�2⇡iz�(z; p)

e�2⇡i(z+1)�(z + 1; p) = e�2⇡iz�(z; p).

(B.2.1)
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Hence, for p 2 B such that the eigenvalue E(p) is non-degenerate, E(p) and �(z; p) obey the

symmetry (after possibly multiplying �(z; p) by a constant):

E(2⇡ � p) = E(p) �(z; 2⇡ � p) = e�2⇡iz�(z; p). (B.2.2)

Note further that the symmetry (B.2.2) implies that the eigenvalue E(2⇡ � p) is non-degenerate

if and only if E(p) is; if it were not, we could use (B.2.2) to generate two linearly independent

eigenfunctions with eigenvalue E(p) from those with eigenvalue E(2⇡ � p).

Now, let En(p), En+1(p) denote eigenvalue bands of (3.2.3) which cross at p = ⇡ (WLOG), and

fix the Brillouin zone: B = [0, 2⇡]. Let E+(p), E�(p) and �+(z; p), ��(z; p) denote the smooth

eigenpairs defined in a neighborhood U of ⇡ by (3.3.3). It follows from (B.2.2) that for p away from

the degeneracy at ⇡, �+(z; p) and ��(z; p) obey the symmetry:

��(z; p) = e�2⇡iz�+(z; p), p 2 U \ {⇡}. (B.2.3)

But now recall that the maps �+(z; p),��(z; p) are smooth at p = ⇡, hence:

��(z;⇡) = lim
p"⇡

��(z; p) = lim
p"⇡

e�2⇡iz�+(z; p) = e�2⇡iz�+(z;⇡). (B.2.4)

It follows that (B.2.3) holds for every p 2 U :

��(z; p) = e�2⇡iz�+(z; p), p 2 U. (B.2.5)

Substituting (B.2.5) into the formula for the “inter-band coupling coe�cient” (3.3.30) gives:

h��(z;⇡)| @p�+(z;⇡)i =
D

e�2⇡iz�+(z; p)
�

�

�

@p�+(z;⇡)
E

=

Z 1

0
e2⇡iz�+(z;⇡)@p�+(z;⇡) dz. (B.2.6)

B.2.2 Proof that coe�cient vanishes for trivial crossings

Now, suppose that En(p) and En+1(p) cross trivially in the sense that V (z) = V1/2(z), where

V1/2(z) denotes a 1/2-periodic function, and the smooth band functions E+(p), E�(p) and associ-

ated eigenfunctions �+(z; p), ��(z; p) defined in a neighborhood of p = ⇡ satisfy (all equality of

eigenfunctions understood as holding up to a constant phase):

E+(p) = Ẽ(p) �+(z; p) = �̃(z; p)

E�(p) = Ẽ(2⇡ + p) ��(z; p) = �̃(z; 2⇡ + p) (B.2.7)
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where Ẽ(p) is an eigenvalue band of the Bloch eigenvalue problem (3.2.3) with potential V (z) =

V1/2(z) and 1/2 -periodic boundary conditions, considered on the Brillouin zone [0, 4⇡] (see Figure

3.5).

(B.2.7) in particular implies that �+(z; p), @p�+(z; p), and the function:

�+(z; p)@p�+(z; p), (B.2.8)

are all 1/2 -periodic for all p 2 U . It follows that the function (B.2.8) has for all p 2 U a convergent

Fourier series with only even index modes:

�+(z; p)@p�+(z; p) =
X

m22Z

Z 1

0
e�2⇡imz0�+(z

0; p)@p�+(z
0; p) dz0 e2⇡imz (B.2.9)

and hence, by orthogonality of Fourier modes:

h��(z;⇡)| @p�+(z;⇡)i =
Z 1

0
e2⇡iz�+(z;⇡)@p�+(z;⇡) dz = 0. (B.2.10)

B.3 Completion of proof of Theorem 3.3.2 by estimation of re-

maining terms

Let t 2 [t⇤ � �, t⇤] where � > 0 is as in Proposition 3.3.1 so that:

WP1,✏[S+(t), q+(t), p+(t), a
0
+(y, t), a

1
+(y, t),X+(z; p+(t))](x, t)

= WP1,✏[S+(t), q+(t), p+(t), a
0
+(y, t), a

1
+(y, t),�+(z; p(t))](x, t).

(B.3.1)

Here, q+(t), p+(t) are as in (3.3.16), S+(t), a0+(y, t), a
1
+(y, t) are as in Definition 3.3.1, and �+(z; p)

is as in (3.3.3). The approximate solution  ✏
app(x, t) constructed in the proof of Theorem 3.2.2 [73]

then takes the form:

 ✏
app(x, t) = ✏�1/4ei�

✏

+(y+,t)/✏
n

f0(y+, z, t) + ✏1/2f1(y+, z, t) + ✏f2(y+, z, t) + ✏3/2f3(y+, z, t)
o

�

�

�

y+=
x�q+(t)

✏

1/2 ,z=x

✏

�✏+(y+, t) := S+(t) + ✏1/2p+(t)y+

(B.3.2)
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where:

f0(z, y, t) := a0+(y, t)�+(z; p+(t)), f1(z, y, t) := a1+(y, t)�+(z; p(t)) + (�i@y)a
0
+(y, t)@p�+(z; p+(t))

f2(z, y, t) := (�i@y)a
1
+(y, t)@p�+(z; p+(t)) +

1

2
(�i@y)

2a0+(y, t)@
2
p�+(z; p+(t))

� i@qW (q+(t))a
0
+(y, t)R+(p+(t))P?(p+(t))@p�+(z; p+(t))

f3(y, z, t) :=
1

2
(�i@y)

2a1+(y, t)@
2
p�+(z; p+(t)) +

1

6
(�i@y)

3a0+(y, t)@
3
p�+(z; p+(t))

� i@2qW (q+(t))ya
0
+(y, t)R+(p+(t))P?(p+(t))@p�+(z; p+(t))

+ i@qW (q+(t)) h�+(z; p+(t))| @p�+(z; p+(t))i (�i@y)a
0
+(y, t)R+(p+(t))P?(p+(t))@p�+(z; p+(t))

+ i@qW (q+(t))(�i@y)a
0
+(y, t)R+(p+(t))P?(p+(t))@2p�+(z; p+(t))

+ i@qW (q+(t))(�i@y)a
0
+(y, t)

⇥R+(p+(t))P?(p+(t)) [(p+(t)� i@z)� @pE+(p+(t))]R+(p+(t))P?(p+(t))@p�+(z; p+(t)).

(B.3.3)

Here, P?
+ (p) denotes the projection operator away from the subspace of L2

per spanned by �+(z; p),

while R+(p) denotes the resolvent operator:

R+(p) := (H(p)� E+(p))
�1 . (B.3.4)

The residual r✏(x, t) defined by (3.4.2) with  ✏
app(x, t) given by (B.3.2) (see [73] for details) is as

follows:

r✏(x, t) = ✏�1/4ei�
✏

+(y+,t)/✏

⇢

✏2L4
⇣

f0 + ✏1/2f1 + ✏f2 + ✏3/2f3
⌘

+ ✏2L3
⇣

f1 + ✏1/2f2 + ✏f3
⌘

+ ✏2L2
⇣

f2 + ✏1/2f3
⌘

+✏2L1f3

�

�

�

�

�

z=x

✏

,y=
x�q+(t)

✏

1/2

,
(B.3.5)

where:

L1 := (p+(t)� i@z � @pE+(p+(t))) (�i@y) L2 := �i@t +
1

2
(�i@y)

2 +
1

2
y2@2qW (q+(t))

L3 :=
1

6
y3@3qW (q+(t)) L4 := y4

Z 1

0

(⌧ � 1)4

4!
@4qW (q+(t) + ⌧✏1/2y) d⌧.

Recall the discussion below (3.4.13): some terms in (B.3.5) are singular as t " t⇤ because of the band

crossing at p⇤. We estimate r✏(x, t) term by term, using identical reasoning to that given in Section

3.4.2 and using the following basic estimates which follow immediately from Taylor-expansion and
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the non-degeneracy conditions (3.3.4) (3.3.12):

�

�

�

(E+(p+(t))� E�(p+(t)))�1
�

�

�


�

�

�

�

1

@qW (q⇤) (@pE+(p⇤)� @pE�(p⇤))

�

�

�

�

✓

1

|t� t⇤|
◆

+O(1)

�

�

�

(E+(p+(t))� E�(p+(t)))�2
�

�

�


�

�

�

�

1

@qW (q⇤) (@pE+(p⇤)� @pE�(p⇤))

�

�

�

�

2✓ 1

|t� t⇤|2
◆

+O

✓

1

|t� t⇤|
◆

�

�

�

@t (E+(p+(t))� E�(p+(t)))�1
�

�

�


�

�

�

�

1

@qW (q⇤) (@pE+(p⇤)� @pE�(p⇤))

�

�

�

�

✓

1

|t� t⇤|2
◆

+O

✓

1

|t� t⇤|
◆

�

�

�

@t (E+(p+(t))� E�(p+(t)))�2
�

�

�


�

�

�

�

1

@qW (q⇤) (@pE+(p⇤)� @pE�(p⇤))

�

�

�

�

2✓ 1

|t� t⇤|3
◆

+O

✓

1

|t� t⇤|2
◆

.

(B.3.6)

Our results are that as t " t⇤:

✏�1/4L4f0 = OL2
x

�

✏2
�

✏�1/4L4f1 = OL2
x

⇣

✏5/2
⌘

(B.3.7)

✏�1/4L4f2 = OL2
x

✓

✏3

|t� t⇤|
◆

✏�1/4L4f3 = OL2
x

 

✏7/2

|t� t⇤|2
!

(B.3.8)

✏�1/4L3f1 = OL2
x

�

✏2
�

✏�1/4L3f2 = OL2
x

 

✏5/2

|t� t⇤|

!

(B.3.9)

✏�1/4L3f3 = OL2
x

✓

✏3

|t� t⇤|2
◆

(B.3.10)

✏�1/4L2f2 = OL2
x

✓

✏2

|t� t⇤|2
◆

✏�1/4L2f3 = OL2
x

 

✏5/2

|t� t⇤|3
!

(B.3.11)

✏�1/4L1f3 = OL2
x

✓

✏2

|t� t⇤|2
◆

. (B.3.12)

Note that the overall phase ei�
✏

+(y+,t)/✏ in (B.3.5) doesn’t contribute. Summing up all terms in

(B.3.7) we have that:

r✏(x, t) = OL2
x

 

✏2

|t� t⇤|2 ,
✏5/2

|t� t⇤|3 ,
✏5/2

|t� t⇤| , ✏
2

!

. (B.3.13)

(3.3.29) then follows immediately from substituting (B.3.13) into (3.4.4).
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Appendix C

Chapter 4 Appendices

C.1 Proofs of key lemmas

C.1.1 Proof of Lemma 4.4.1

We introduce the partition of unity:

1 = (✓�(x))2 + (✓0(x))2 + (✓+(x))2 (C.1.1)

where the functions ✓±, ✓0 satisfy:

✓�(x) =

8

>

<

>

:

1 for x  �L
2

0 for x � �L
4

(C.1.2)

✓0(x) =

8

>

<

>

:

1 for � L
4  x  L

4

0 for x  �L
2 or x � L

2

(C.1.3)

✓+(x) =

8

>

<

>

:

1 for x � L
2

0 for x  L
4

. (C.1.4)

We note two consequences of the definition. First, note that for j 2 {+,�, 0} and each positive

integer n � 1:

sup
x2R

|@nx✓j(x)| 
C

Ln
(C.1.5)
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for positive constants C > 0 which are independent of L and depend only on the particular shape

of the cuto↵. Second, note that if L � 2, then:

� L+ 1  �L

2
< �L

4
. (C.1.6)

So that for L � 2:

for x 2 supp[✓+], L(x) = (x� L)

for x 2 supp[✓0], L(x) = �1
for x 2 supp[✓�], L(x) = �(x+ L).

(C.1.7)

It follows that:

for x 2 supp[✓+], D
L

= D+

for x 2 supp[✓0], D
L

= D�1

for x 2 supp[✓�], D
L

= D� .

(C.1.8)

where we have introduced the notation:

D�1 := i@x�3 � 1�1. (C.1.9)

We assume at this point that L � 2 so that (C.1.7) and (C.1.8) hold.

We now prove Lemma 4.4.1. Using the partition of unity, we have that:

kD
L

fk2H =
X

j=0,±

Z

(✓j(x))2|D
L

f(x)|2C2 dx =
X

j=0,±

Z

|✓j(x)D
L

f(x)|2C2 dx. (C.1.10)

By a trivial re-arrangement we have that:

j 2 {0,±}, ✓j(x)D
L

= D
L

✓j(x) + [✓j(x),D
L

] = D
L

✓j(x)� i@x✓
j(x)�3. (C.1.11)

Combining (C.1.10) and (C.1.11) gives:

kD
L

fk2H =
X

j=0,±

Z

|D
L

✓j(x)f(x)� i�3@x✓
j(x)f(x)|2C2 dx. (C.1.12)

We then proceed as follows:

X

j=0,±

Z

|D
L

✓j(x)f(x)� i�3@x✓
j(x)f(x)|2C2 dx

=
X

j=0,±
kD

L

✓j(x)fk2H + k@x✓j(x)fk2H � 2Re
⌦

i�3@x✓
j(x)f(x)

�

�D
L

✓jf
↵

H
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�
X

j=0,±
kD

L

✓j(x)fk2H + k@x✓j(x)fk2H � 2k�3@x✓jfkHkD
L

✓jfkH (Cauchy-Schwarz inequality)

�
X

j=0,±
(1� ✏2)kD

L

✓j(x)fk2H + (1� ✏�2)k@x✓jfk2H (Young’s inequality)

(C.1.13)

for any positive ✏ > 0. Fixing ✏ su�ciently small in (C.1.13) so that (1 � ✏�2) � ✏�2 and using

(C.1.5), we have that:

kD
L

fk2H �
X

j=0,±
(1� ✏2)kD

L

✓j(x)fk2H � ✏�2 C

L2
kfk2H (C.1.14)

where the constant C is independent of L. We now estimate the terms:

j 2 {0,±}, kD
L

✓j(x)fk2H. (C.1.15)

First, we consider j = +:

kD
L

✓+fk2H =

Z

|(i�3@x + L(x))(✓
+(x)f(x))|2C2 dx

=

Z

|D+(✓+(x)f(x))|2C2 dx = kD+✓+fk2H (Using (C.1.8)) (C.1.16)

We now use the fact that h↵+
? | fiH = 0:

⌦

↵+
?

�

� f
↵

H = 0

() ⌦

↵+
?

�

� ✓+f
↵

H = � ⌦↵+
?

�

� (1� ✓+)f
↵

H

=) ⌦

↵+
?

�

� ✓+f
↵

H  k↵+
? (1� ✓+)kHkfkH (Cauchy-Schwarz inequality)

but:

k(1� ✓+)↵+
? k2H =

Z

|(1� ✓+(x))↵?(x� L)|2C2 dx


Z

L

2

�1
|↵?(x� L)|2C2 dx (Supp (1� (✓+)) = [�1, L/2])

 C

Z

L

2

�1
e�21|x�L| dx = C

Z

L

2

�1
e21(x�L) dx (Since L/2 � 1, using (4.2.4))

= Ce�21L

Z L/2

�1
e21x dx  Ce�1L
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where C > 0 is a constant independent of L > 0. We have therefore that:

⌦

↵+
?

�

� ✓+f
↵

H  k↵+
? (1� ✓+)kHkfkH  Ce�1L/2kfkH. (C.1.17)

We now require the following corollary of Lemma 4.2.1:

Corollary C.1.1. Let f 2 H. Then:

kDfkH � 1 | kfkH � | h↵?| fiH | | . (C.1.18)

Proof. For any f 2 H, we may write f = P?f + h↵?| fi↵?. Since ↵? is a zero mode of D and

using Lemma 4.2.1 we have:

kDfkH = kDP
?fkH � 1kP?fkH. (C.1.19)

Using P?f = f � h↵?| fi↵?, the reverse triangle inequality and normalization of ↵? : k↵?kH = 1

we have that:

kDfkH � 1kP?fkH = 1kf � h↵?| fiH ↵?kH � 1 |(kfkH � | h↵?| fiH |)| . (C.1.20)

It then follows from combining (C.1.16), (C.1.17), and Corollary C.1.1 that:

kD
L

✓+fk2H = kD+✓+fk2H � 21
⇣

1� Ce�1L/2
⌘2 k✓+fk2H. (C.1.21)

An identical argument shows that:

kDL✓
�fk2H � 21

⇣

1� Ce�1L/2
⌘2 k✓�fk2H. (C.1.22)

where C > 0 again simply stands for a constant depending only on . Finally, we have that:

kDL✓
0fk2H =

Z

|(i�3@x + L(x))(✓
0(x)f(x))|2C2 dx

=

Z

|(i�3@x � 1�1)(✓0(x)f(x))|2C2 dx (Using (C.1.7))

=
⌦

✓0f
�

�D2
�1✓

0f
↵

H � 21k✓0fk2H. (C.1.23)

Summing (C.1.21) (C.1.22) and (C.1.23) we see that for su�ciently large L > 0 (so that 1 �
Ce�1L/2 � 0):

X

j=0,±
kDL✓

jfk2H � 21
⇣

1� Ce�1L/2
⌘2 X

j=0,±
k✓jfk2H = 21

⇣

1� Ce�1L/2
⌘2 kfk2H. (C.1.24)



APPENDIX C. CHAPTER 4 APPENDICES 180

Combining this with (C.1.14) we have:

kD
L

fk2H � C

✓

⇣

1� Ce�1L/2
⌘2 � 1

L2

◆

kfk2H

� C

✓

1� Ce�1L/2 � 1

L2

◆

kfk2H
(C.1.25)

from which Lemma 4.4.1 follows immediately by taking L large enough.

C.1.2 Proof of Lemma 4.4.2

C.1.2.1 Proof that

D

↵i
?

�

�↵j
?

E

H
= �ij

That h↵+
? |↵+

? iH = h↵�
? |↵�

? iH = 1 is by definition. That h↵�
? |↵+

? iH =
⌦

↵+
?

�

�↵�
?

↵

H is clear from the

definition of the inner product. We then have that:
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�

�↵+
?

↵
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Z

R

⌦

↵�
? (x)

�

�↵+
? (x)

↵

C2 dx

=

Z

R

D

↵?(x+ L)
�

�

�

↵?(x� L)
E

C2
dx (by definition: (4.2.9))

=

Z

R
�2
*

0

@

1

�i

1

A

�

�

�

�

�

�

0

@

1

i

1

A

+

C2

e�
R
x+L

0 (y) dye�
R
x�L

0 (y) dy dx (by definition: (4.2.2))

= 0
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C.1.2.2 Proof that h↵�
? | D

L

↵+
? iC2 =

⌦

↵+
?

�

�D
L

↵�
?

↵

C2 and h↵+
? | D

L

↵+
? iH = h↵�

? | D
L

↵�
? iH

That h↵�
? | D

L

↵+
? iC2 =

⌦

↵+
?

�

�D
L

↵�
?

↵

C2 is clear from self-adjointness of D
L

. The other symmetry

follows from:
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L
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Z
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Z
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C.1.2.3 Proof that h↵+
? |↵+

? iH = 0 and h↵�
? |↵+

? iH = 2i�2e�2
R
L

0 (y)dy

We compute h↵+
? |↵+

? iH as follows:

⌦

↵+
?

�

�D
L

↵+
?

↵

H =

Z

R
h↵?(x� L)| D

L

↵?(x� L)iC2 dx

=

Z

R

*

0

@

1

i

1

A e�
R
x�L

0 (y) dy

�

�

�

�

�

�

(�3i@x + �1L(x))

0

@

1

i

1

A e�
R
x�L

0 (y) dy

+

C2

dx

=

Z

R

*

0

@

1

i

1

A e�
R
x�L

0 (y) dy

�

�

�

�

�

�

0

@

i

1

1

A (@x + L(x))e
� R

x�L

0 (y) dy

+

C2

dx

=

Z

R

*

0

@

1

i

1

A

�

�

�

�

�

�

0

@

i

1

1

A

+

C2

e�
R
x�L

0 (y) dy(@x + L(x))e
� R

x�L

0 (y) dy dx

= 0. (C.1.27)
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We compute h↵�
? | D
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↵+
? i as follows:
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C.1.2.4 Proof of bounds on elements of M1(E,L)

Very similar computations to those given above show that:

kD
L

↵+kH  Ce�21L, kD
L

↵�kH  Ce�21L. (C.1.28)

That all elements of the matrix M1(E,L) may be bounded by Ce�41L then follows from the

Cauchy-Schwarz inequality using boundedness of the resolvent operator P±,?(D
L

� E) in H for

E < 1
4 .
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