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Resumo

Finazzo, S. I. Estudando plasmas não-Abelianos fortemente acoplados usando a
dualidade gauge/gravity. 2014. Tese (Doutorado) - Instituto de Física, Universidade
de São Paulo, São Paulo, 2015.

O estudo de teorias de calibre não-Abelianas fortemente acopladas, em especial de
aspectos térmicos e fora do equilíbrio, é um problema central para a compreensão da Cro-
modinâmica Quântica (Quantum Chromodynamics - QCD) - em particular, para entender
a evolução do Plasma de Quarks e Glúons (Quark-Gluon Plasma- QGP). A técnica mais
promissora, QCD na rede, obteve sucesso ao tratar de fenômenos no vácuo e em equilíbrio
térmico, como espectros e termodinâmica, mas enfrenta desafios consideráveis ao lidar
com fenômenos fora do equilíbrio. Uma ferramenta adaptada para lidar com problemas
envolvendo plasmas fortemente acoplados em tempo real é a dualidade gauge/gravity,
que mapeia uma Teoria Quântica de Campos (Quantum Field Theory - QFT) fortemente
acoplada em d dimensões em uma teoria de gravitação em d + 1 dimensões, a qual, de
modo geral, é mais fácil de ser resolvida. Nesta tese, estudamos diversas aplicações da
dualidade gauge/gravity em teorias não-Abelianas fortemente acopladas que modelam
qualitativamente o QGP. Nós estudamos o cálculo holográfico do potencial entre um par
quark-antiquark pesado (QQ̄) para dipolos QQ̄ estáticos e se movendo com relação ao
plasma, apresentando um formalismo geral para o cálculo da parte real e imaginária para
uma grande classe de teorias gravitacionais duais. Um estudo da massa de Debye holo-
gráfica, baseado no maior comprimento de correlação de operadores ímpares por transfor-
mações de CT , foi empreendido, com aplicações em modelos bottom-up que reproduzem a
termodinâmica da teoria de Yang-Mills SU(Nc) pura e da QCD. Para estes modelos, tam-
bém calculamos vários coeficientes de transporte associados com o transporte de cargas
no plasma, como a condutitividade elétrica, a constante de difusão de carga e coeficientes
de transporte associados a uma teoria de hidrodinâmica relativística de segunda ordem.

Palavras-chave: dualidade gauge-gravity, plasmas não-Abelianos, fenômenos de trans-
porte.
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Abstract

Finazzo, S. I. Understanding strongly coupled non-Abelian plasmas using the
gauge/gravity duality. 2014. Thesis (PhD) - Instituto de Física, Universidade de São
Paulo, São Paulo, 2015.

The study of strongly coupled non-Abelian gauge theories, especially concerning their
thermal and non-equilibrium aspects, is a central problem for understanding Quantum
Chromodynamics (QCD) - in particular, to understand the evolution of the Quark-Gluon
Plasma (QGP). The most successful approach, lattice QCD, succeeds in dealing with
vacuum and equilibrium phenomena, such as spectra and thermodynamics, but faces a
considerable challenge when it comes to with non-equilibrium phenomena. A tool adapted
to deal with real time problems in strongly coupled plasmas is the gauge/gravity, which
maps a strongly coupled d dimensional Quantum Field Theory (QFT) to a d + 1 di-
mensional theory of gravity, which, in general, is easier to solve. In this thesis, we study
several applications of the gauge/gravity duality to strongly coupled non-Abelian theories
which model qualitatively the QGP. We deal with the holographic evaluation of the heavy
quark-antiquark (QQ̄) potential for static and moving QQ̄ dipoles, presenting a general
formalism for the computation of the real and imaginary parts for a large class of dual
theories of gravity. A study of the holographic Debye mass, based on the largest screen-
ing length of CT -odd operators, is pursued, with applications on bottom-up holographic
models that reproduce the thermodynamics of pure SU(Nc) Yang-Mills theory and QCD.
For these models, we also compute several transport coefficients associated with charge
transport in the plasma, such as the electric conductivity, the charge diffusion constant,
and transport coefficients associated with a theory of second order relativistic hydrody-
namics.

Keywords: gauge-gravity duality, non-Abelian plasmas, transport phenomena.
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Chapter 1

Introduction

One of the outstanding open problems in physics is the confinement problem. How
are quarks bound inside hadrons (such as the protons and neutrons)? This problem is the
essence of the structure of nuclear matter, addressing an age old question - “what is the
structure of matter?”. The current theory of strong interactions, Quantum Chromodynam-
ics (QCD) is a non-Abelian gauge theory (Yang-Mills theory) with gauge group SU(3),
describing the interaction of the quarks (fermionic fields in the fundamental representa-
tion of SU(3)) with the gluons (gauge fields in the adjoint representation of SU(3)), which
are the mediators particles of the strong interaction. Hadrons, then, are described as com-
posed of quarks bound together by the gluons. QCD, while extremely successful for the
description of phenomena at high energies, where the effective coupling constant between
the quarks and gluons is weak (due to the property of asymptotic freedom [1–3], which
says that the effective coupling constant of the quarks and gluons becomes weaker as one
increases the typical energy scale of the process in question1) and usual perturbative meth-
ods are appplicable, presents a formidable challenge to deal with at low energies, where
perturbation theory breaks down and other methods, appropriate in the non-perturbative
regime, must be sought of.

One of the ways to approach the question of confinement and structure of matter is to
consider its behavior at finite temperature and/or density. For instance, at zero baryonic
chemical potential, µB = 0 and at zero temperature, T = 0, QCD matter is confined
inside the hadrons, due to the confinement property of QCD. However, as one increases
the temperature of the system, the asymptotic freedom property of QCD kicks in - the
quark-gluon interaction becomes progressively weaker and quarks become loosely bound
inside the hadrons. Eventually, one would expect that at extremely high temperatures
(for instance, for T �∼ mπ, where mπ ∼ 140 MeV is the pion mass which sets the scale

1For a complete list of original references on QCD, including textbooks and historical references, we
refer the reader to [4].

1



1.0 2

for typical low energy phenomena of hadronic physics), the hadrons “melt”, releasing the
quarks and gluons previously bound inside into a large “soup” of interacting quarks and
gluons. The resulting system is called the Quark-Gluon Plasma (QGP) [5, 6]. Thus, the
study of the transition of nuclear matter from the confined state at T = 0 to the deconfined
QGP at high temperatures is a guide to further understanding of QCD. Also, the QGP
could furnish clues to the early stages of the universe - as the early universe cools from
its expansion, the hot soup quarks and gluons cools and coalesces into a hadron gas.

The experimental way to probe the existence and the properties of the QGP is through
ultrarelativistic heavy-ion collisions. Initial experiments at the Super Proton Collider
(SPS) at CERN provided initial clues towards establishing the QGP 2. The existence
of the QGP, signaling the existence of a new state of matter, was latter confirmed
at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory
(BNL) [6,8–11]. As of the date of this thesis, the QGP was being explored both at RHIC
and at the Large Hadron Collider (LHC) at CERN. The collision of heavy ions (Au-Au
collisions at RHIC and Pb-Pb collisions at LHC) at very high energies (as high as 200 GeV

per nuclei at RHIC and 2.76 TeV at LHC) are sufficiently energetic to generate, in the
collision region, the QGP. [6]

However, contrary to initial theoretical expectations, the QGP produced at RHIC
and at LHC behaves as a nearly perfect fluid which indicates that in these experimental
conditions, the QGP does not have high enough temperature so as to be a weakly-coupled
plasma, but rather it behaves as a strongly coupled plasma3. This means that perturbation
theory methods to study the QGP are, once again, not generally applicable. This motivates
once again the search for non-perturbative methods to study non-Abelian theories, now
at finite temperature.

The most successful non-perturbative method applied to QCD is, arguably, lattice
gauge theory [12], which has been successfully applied to a wide range of non-perturbative
phenonemena, both at zero and at finite temperature. However, lattice methods are nat-
urally formulated in Euclidean time, which at finite temperature corresponds to Mat-
subara’s formalism, suited for computation of observables in interesting properties, such
as transport phenomena (which characterize the hydrodynamical behaviour of the sys-
tem) and the movement of heavy probes through the plasma, are characterized by non-
equilibrium properties, and as such must be computed necessarily in a real-time formal-
ism. Thus, the need arises for effective non-perturbative methods that can be applied to
strongly coupled non-Abelian plasmas which also can be used at real-time.

2A post-mortem review of the heavy-ion experiments in the SPS can be found in Ref. [7]
3Contrary to a naive expectation, the deconfined phase not necessarily is a weakly-coupled plasma.

For example, the N = 4 super Yang-Mills theory to be studied in later chapters describes a deconfined
plasma, but can be strongly coupled at all scales.
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One such method is a surprising result coming from string theory 4, the AdS/CFT
correspondence [14], also known as the gauge/gravity duality. This conjecture describes
an equivalence between Quantum Field Theories (QFT) in d flat dimensions to quantum
theories of gravity in (d + 1) (or more) dimensions, giving a precise dictionary of how
to relate observables in one theory to the other. The main appeal of this conjecture,
from the point view of phenomenology of the QGP, is that it consists of a strong/weak
duality - that is, when one side of the duality is at strong coupling, the other side is weakly
coupled, and vice-versa. In this case, a strongly coupled QFT means that its dual theory of
gravity is a classical theory of gravity. Thus, we can map, using the gauge/gravity duality,
strongly coupled problems in QFT to classical gravity problems, in a higher dimensional
gravitational theory. One can then hope that the corresponding problem in the dual theory
of gravity is more tractable than that in the original field theory. As we will explore in
this thesis, for several observables, this is the case. Though the quantum field theories for
which the corresponding dual theory of gravity is known are not QCD, these QFTs are
similar to QCD in many ways, which means that they can be used as proxy theories or
as qualitative or semi-quantitative approximations to “real-world” QCD.

In this thesis, we will use the gauge/gravity duality as a tool to explore the dynamics
of strongly coupled non-Abelian plasmas which can serve as proxies to pure Yang-Mills
theories and QCD. The focus will be on real-time processes, specially the movement of
heavy probes through the plasma and transport phenomena, albeit we will also work with
equilibrium phenomena. The gauge theories we will consider include N = 4 Super Yang-
Mills (SYM) (via the original AdS/CFT correspondence), the gauge theory dual to Gauss-
Bonnet gravity (a gravity theory with higher order derivatives), and a class holographic
bottom-up models that reproduce the thermodynamics of QCD at zero baryonic chemical
potential, µB = 0. [15–17]

This thesis is organized as it follows: after a brief review of non-Abelian gauge theories,
QCD and an overview of the dynamics of the QGP (Chapter 2), we discuss the basics of
the gauge/gravity duality and the main computational tools of the holographic dictionary
used in this work (Chapter 3). The next chapters contain the original thesis work. The
observables we will consider in this thesis include the imaginary part of the heavy quark-
antiquark QQ̄ potential both in static (Chapter 4) and moving (Chapter 5) QQ̄ dipoles,
which is associated with the thermal width of heavy quarkonia (such as J/ψ and Υ(1S)).
Associated with this study, we explore the Debye screening mass (Chapter 6), which
sets the typical thermal screening length between two external probes in the plasma,
studying its evaluation using the gauge/gravity duality. Transport coefficients associated

4A useful, but somewhat outdated, reference letter on string theory and related topics can be found
on [13].
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with the charge transport in the plasma, such as the charge conductivity and the diffusion
constant, are relevant observables to understand the effect of strong external electric and
magnetic in the QGP - we deal with the holographic evaluation of these coefficients in
Chapter 7. Complementing and extending the analysis of Chapter 7, in Chapter 8 we
consider a second order theory of hydrodynamics, focusing on the holographic evaluation
of its transport coefficients. The resulting theory can then be used in numerical codes
of hydrodynamics, in order to understand the effect of higher order corrections on the
Knudsen number. In Chapter 9 we present our conclusions.5

The results concerning Chapters 4 and 5 have been published in JHEP [18, 19]. The
results of Chapters 6 and 7 were published in PRD [20, 21], respectively. The results of
Chapter 8 have been published in JHEP [22]. Other research papers, about related topics
and done during the period that the thesis refer to but not covered in this thesis, can be
found in Refs. [23,24] (both published in PRD).

5This thesis is supplemented by several appendices, which present basic material with more detail than
in the main body of the text or deal with technical aspects of the calculations performed in the main
body of the thesis. Appendix A shows that a traceless stress-energy tensor is equivalent to conformal
invariance of the theory, at the classical level. Appendix B shows the equivalence between requiring
infalling boundary conditions in a black hole horizon and horizon regularity. Appendix C we present
with more detail the relation between Wilson loops and the static energy of a heavy quark-antiquark
pair. Appendix D presents several complementary results on holographic Wilson loops, complementing
the analysis of Chapters 4 and 5. Appendix E serves a prelude to Chapter 6, showing the perturbative
computation of the Debye screening mass in QED and QCD. Appendix F presents some technical details
to complement the holographic computation of the Debye screening mass in Chapter 6. Finally, Appendix
G complements the discussion on second order transport coefficients in Chapter 8.



Chapter 2

The Structure of QCD Matter under
Extreme Conditions

2.1 The structure of QCD matter under extreme con-

ditions

The structure of matter under extreme conditions is one of the outstanding problems
in physics. In particular, one is interested in the structure of hadrons under extreme
conditions - that is, what happens to baryons (bound states of three quarks, q1q2q3) and
mesons (bound states of a quark and an antiquark, q1q̄2) at high temperatures, high
densities or strong external fields (for example, strong external magnetic fields). The
theory of strong interactions, namely, Quantum Chromodynamics (QCD) [1–3] is the
correct description of the inner constituents of hadrons in the limit of short distances
and high energies, due to the fact that QCD is an asymptotically free quantum field
theory (QFT) - i.e., at short distances, the interaction between quarks is weak and usual
perturbation theory techniques can be successfully applied. However, at long distances
and low energies, perturbation theory breaks down and other approaches must sought off.

In this Chapter we will review some basic results about Yang-Mills theories and QCD,
with a special view to finite temperature results. Section 2.2 begins with a presenta-
tion of the basics of Yang-Mills theory and QCD. Section 2.3 is dedicated to the most
salient features of QCD - the properties of confinement and asymptotic freedom, described
within the unified language of the renormalization group. In Section 2.4 we present the
basics about finite temperature field theories, and an overview of the current status of the
QCD phase diagram. Section 2.5 finishes this chapter describing the experimental results
that supports the view that the QGP formed in ultrarelativistic heavy-ion collisions is a
strongly coupled plasma.

5
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2.2 Quantum Chromodynamics

2.2.1 Definition and action

QCD is defined as a Lorentz invariant and gauge invariant quantum field theory in
(3+1) dimensions with gauge group SU(Nc)1, the special unitary group (the group of
unitary matrices with determinant +1) of rank Nc (Nc is called the number of colors) and
Nf Dirac fermions (the quarks) which transform in the fundamental representation of the
gauge group2. The action of QCD can be written as

S =

∫
d4x (LYM + Lf ) , (2.1)

where LYM is the Yang-Mills Lagrangean density and Lf is the Lagrangean density for
the Dirac fermions.

The Yang-Mills Lagrangean density LYM , which describes the interaction of the gauge
fields Aaµ (the gluons), where a = 1, 2, . . . , N2

c − 1 is a SU(Nc) index in the adjoint
representation, can be written as

LYM = −1

4
TrFµνF

µν = −1

4
F a
µνF

a,µν (2.2)

where F is the Yang-Mills field strength, defined by

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν , (2.3)

where g is the gauge coupling constant and fabc are the group structure constants. The
trace in Eq. (2.2) is over the color indices: TrFµνF

µν = F a
µνF

µν
a . Due to the last term in

Eq. (2.3), the Yang-Mills Lagrangean (2.2) has cubic and quartic terms in A which implies
that the gluons are self-interacting - in terms of Feynman diagrams, the gauge fields have
cubic and quartic vertices. Thus, even without fermions, Yang-Mills theory defined by

SYM =

∫
d4xLYM (2.4)

is a non-trivial interacting theory on its own.
1Let us fix our metric conventions here: the Minkowski metric in d dimensions is denoted ηµν , with

signature (−,+, . . . ,+). Also, throughout this work, we work with a natural system of units and set
~ = c = kB = 1. Thus, in the unit system used in this thesis, G4, Newton’s constant in four dimensions
is not set to 1. Unless explicitly stated, Einstein’s summation convention is assumed throughout.

2Textbooks and reviews of QFT and QCD can be found on Refs. [25–27]. A guide to the original
references is Ref. [4], as already remarked.
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The Lagrangean density of the quarks, Lf , is given by

Lf =

Nf∑
n=1

ψ̄in
(
i /Dij +mn

)
ψjn, (2.5)

where ψin is the Dirac spinor for the the n-th quark,mn is its corresponding mass and /Dij =

γµD
µ
ij, where i, j = 1, 2, · · · , Nc are gauge group indices for the fundamental representation

and Dµ
ij is the covariant derivative for the Dirac fermions in fundamental representation

of SU(Nc) associated with the gauge connection A:

Dµ
ij = δij∂

µ + igT aijA
µ
a , (2.6)

where T a are a set of generators for SU(Nc). In Eq. (2.6), the last term gives rise, when
substistuted Eq. (2.5), to a quark-quark-gluon vertex, giving the interaction between the
quark sector and the Yang-Mills sector. For QCD, Nc = 3 and Nf = 6. The six flavors of
quarks, in increasing mass order, are the up quark (with a current mass of mu ∼ 3 MeV),
the down quark (md ∼ 6 MeV), the strange quark (ms ∼ 130 MeV), the charm quark
(mc ∼ 1.3 GeV), the bottom quark (mb ∼ 4.5 GeV) and the top quark (mt ∼ 174 GeV).
However, it is useful to consider Nc other than 3, even Nc →∞ - this may be a reasonable
approximation even for QCD phenomenology, sucessfully describing qualitative features
of finite Nc QCD [29–31]. Also, for reasons to be explained in Chapter 3, the large Nc limit
is the most convenient limit of the gauge/gravity duality. As a final remark, depending
of the energy scale of the phenomenon in question, Nf can be taken to effectively smaller
than 6. For the range of energies we will mostly work with (few hundreds of MeV), only the
up, down and strange quarks are dynamical, with the heavier quarks, such as the charm
or the bottom quarks being too heavy - these quarks can be considered as external, non-
dynamical, probes in plasma3. Finally, one should note that the Yang-Mills action (with
or without fermions) is renormalizable in 4 or less spacetime dimensions [28].

2.2.2 Symmetries of QCD - Gauge and conformal invariances

When dealing with a physical system, one of the most important steps is to identify
all the symmetries of the system, whether they are exact or approximate symmetries,
and whether they survive or are broken by quantization of the theory. Symmetries lead to
conservation laws (by Nöether’s Theorem) and strongly constrain the behavior of physical

3The top quark is too massive (mt = 174 GeV). In heavy ion collisions the top quarks produced decay
almost immediately, when compared to the typical time-scale of the evolution of the system (∼ fm/c).
Thus, they are not expected to play any relevant role in the dynamics of heavy ion collisions and of the
quark gluon plasma.
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observables, playing a central role in determining the possible dynamics of the theory.

Gauge invariance

The symmetries of the pure Yang-Mills action (2.4) include, apart from Poincaré sym-
metry as a global symmetry, a SU(Nc) local gauge symmetry. Let U(x) be a element of
the fundamental representation of SU(Nc), that is, a Nc×Nc unitary matrix with positive
unit determinant whose entries are local functions of the space-time coordinates x. Then,
as Aaµ are fields on the adjoint representation, they transform as

T aAaµ → T aA′aµ = U

(
T aAaµ −

i

g
U−1∂µU

)
U−1. (2.7)

The action (2.4) is built to be explicitly invariant under SU(Nc) gauge transformations.
This gauge symmetry implies that two sets of gauge fields Aaµ and A′aµ describe the same
physics, as long they are connected by a gauge transformation (in the jargon, the fields Aaµ
and A′aµ are in the same orbit). This indicates that the Aµ gauge fields furnish a redundant
description of the system. This leads to two novel features of Yang-Mills theories. The
first one is that quantization of Yang-Mills theories must deal with a way of eliminating
the extra degrees of freedom of the theory - either by choosing an explicit gauge or by
introducing unphysical fields (the Faddeev-Popov ghosts) [32, 33]. The second one, more
important to the question at hand, is that the field Aaµ do not, by themselves, constitute
observables - their vacuum expectation values depend on the gauge choice. Physical ob-
servables must arise from gauge invariant operators, such as the the Lagrangean density
(2.2). This point is a key observation that will arise frequently throughout this thesis.

Conformal invariance

The symmetries discussed so far are symmetries that survive after quantization of
the theory. There is one more symmetry of Yang-Mills theory, which will also play a
fundamental role throughtout this work - conformal symmetry [34], which holds only,
in the case of Yang-Mills theories, in four dimensions. However, in contradiction to the
previous symmetries, this symmetry is broken after quantization. A general conformal
transformation is defined by

xµ → x′µ = Λ(x)xµ, (2.8)

where Λ(x) is a smooth function of the space-time coordinate x. That is, a conformal
transformation is a local scale transformation. The conformal group in d dimensions is
given by SO(d,2); it is composed of Poincaré transformations (the Poincaré group is a
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subgroup of the conformal group) together with glocal scale transformations, defined by

xµ → x′µ = λxµ, (2.9)

and special conformal transformations,

xµ → x′µ =
xµ − aµ

1− 2a · x+ a2x2
, (2.10)

where λ > 0 and aµ are the transformation parameters. Let us count the number of
generators of the conformal group SO(d,2): Lorentz transformations are generated by anti-
symmetric d× d matrices (describing both boosts and rotations) which contributes with
d(d−1)/2 generators; together with d parameters to describe translations, we get d(d+1)/2

generators for the Poincaré group. Scale transformations contribute with one generator, as
described by Eq. (2.9), and special conformal transformations with d generators. Summing
everything up, we get (d+ 1)(d+ 2)/2 generators for the conformal group. For d = 4, we
have 15 generators.

Conformal invariance implies that the theory is invariant under transformations that
preserve angles between curves in space-time. Scale invariance, which is a more restricted
symmetry, implies that the theory has no dimensionful scales - there is no natural “ruler” in
the theory with which one can compare quantities. A sign that Yang-Mills is (classically)
conformal invariant in four dimensions comes from the fact that its action does not possess
dimensionful parameters - in d = 4 the coupling constant g is dimensionless.

To verify conformal invariance, it is sufficient to verify that the symmetric energy-
momentum tensor Tµν of the theory is traceless4. For pure Yang-Mills, the symmetrized
energy-momentum tensor is given by

T YMµν = −F a
µρF

ρ
ν a +

1

4
F a
ρλF

ρληµν . (2.11)

Thus,

T YM,µ
µ =

1

4
(d− 4)F a

µνF
a,µν (2.12)

It follows that, for d = 4, T YM,µ
µ = 0. This establishes the classical scale invariance of

Yang-Mills. Now, this symmetry does not survive at the quantum level. A formal way of
seeing this is to note that measure of the path integral for the generating functional of the
Yang-Mills theory is not invariant under scale transformations. A more intuitive way of
seeing this is to note that the quantization of Yang-Mills generates, dynamically, a mass
scale for the theory, ΛYM . We will explore this point further in Section 2.3.

4See Appendix A for a proof of this statement
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Symmetries of QCD at the classical level

The full QCD action (2.1) is also Poincaré invariant. Also, it is still gauge invariant,
as the quarks ψi transform as a vector in the fundamental representation of the gauge
group, that is, as

ψi(x)→ ψ′i(x) = Uij(x)ψj(x). (2.13)

Using the transformations (2.7) and (2.13), it is possible to check that the covariant
derivative defined in Eq. (2.6) transforms as a vector:

Dµψ → (Dµψ)′ = UDµψ. (2.14)

Thus, the fermionic part (2.5) of the action (2.1) is also invariant by gauge transformations,
as promised. The fate of conformal symmetry is more subtle. The fermionic part of the
stress energy tensor is

T fµν =
i

4

Nf∑
n=1

ψ̄n

(
γµ
−→
D ν + γν

−→
Dµ − γµ

←−
D ν − γν

←−
Dµ

)
ψn (2.15)

where
−→
D ν (

←−
D ν) indicates a right (left derivative, respectively) - we also note that we

suppressed color indices. It follows that, using Dirac equation, (iDµγ
µ −m)ψ = 0, that

T f,µµ =

Nf∑
n=1

mnψ̄nψn. (2.16)

Thus, if all quarks are massless, mn = 0 for n = 1, . . . , Nf , then T f,µµ = 0 and the theory
is still conformally invariant. Note that this argument independs of color structure. This
result, in hindsight, is evident since a quark mass introduces a dimensionful scale in the
theory.

Let us discuss briefly the remaining symmetries of QCD, for the sake of completeness.
The QCD action also possess a U(1) global vector symmetry, ψ → ψ′ = eiθψ, where θ
is a phase. The conserved charge associated with this symmetry is the baryonic number.
Also, if all quarks are massless, the theory possesses a U(1) axial symmetry, where the
quark fields transform as ψ → eiγ5θψ. The vector U(1) symmetry survives quantization,
but the axial U(1) is broken, resulting in a chiral anomaly [35, 36]. A final symmetry,
valid in the limit of zero quark masses, is a SU(Nf )L × SU(Nf )R global symmetry, where
the subscript L (R) indicates that the group acts on left (right, respectively) handed
quark fields. However, when QCD is quantized, a mechanism of spontaneous symmetry
breaking breaks SU(Nf )L× SU(Nf )R to a vector SU(Nf ). In the case of Nf = 2 (which is
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equivalent to setting the up and down quark masses to zero), the three Goldstone bosons
corresponding to the three broken generators are the pions, and the remaining vector
SU(Nf ) symmetry group turns out to be the isospin group. [37]

2.3 Renormalization group flow, asymptotic freedom

and confinement

2.3.1 Renormalization group flow and asymptotic freedom

One of the most remarkable features of QCD comes from the perturbative computation
of the renormalization group [38–41]. The renormalization group allows us to understand
how the couplings of the theory change as one looks at the theory from different scales - it is
a key tool for making sense of the renormalization procedure and for understanding second
order phase transitions, especially for computing the scaling behavior at the critical point.
A more complete discussion of the intuitive picture of the renormalization picture will be
presented in the next Chapter. In this section, we will analyze only the renormalization
group equation for the gauge coupling g in QCD.

The main result of the renormalization group are the renormalization group equations,
a set of differential equations for the evolution of the couplings as a function of the scale.
The renormalization group equation for the effective gauge coupling ḡ is

µ
dḡ

dµ
= β(ḡ), (2.17)

where µ is the renormalization scale and the β function depends on the dynamics of
theory. In QFTs, the most common procedure is to compute β perturbatively, from the
Callan-Symanzik equation. In QCD, at 1 loop in perturbation theory5,

β(ḡ) = −β0ḡ
3 +O(ḡ5) (2.18)

where
β0 =

1

(4π)2

(
11

3
Nc − 2

Nf

3

)
. (2.19)

For a sufficiently small number of quark flavors, such that β0 > 0 (for instance, for QCD
with Nc = 3, this means that Nf < 33/2.), the renormalization group equation (2.17) has
a stable fixed point at ḡ = 0 with µ → ∞ - a stable trivial ultraviolet (UV) fixed point.

5For a review of the Callan-Symanizik equation and of this computation, see Refs. [25] or [26]. In the
next chapter a more complete discussion of the renormalization group is going to be given. For reference,
the beta function in QCD has been calculated to 4-loops in perturbation theory, in the minimal subtraction
scheme [42].



2.3 RENORMALIZATION GROUP FLOW 12

Put in other words, the renormalization group flow is such that the effective coupling goes
to 0 as the typical energy scale at which we analyze the theory grows. That is, the theory
becomes free at sufficiently high energies or short enough distances - this the content of
asymptotic freedom.

The breaking of conformal invariance can be seen as the consequence of the necessity
of the introduction of a scale for quantization. At a fixed point of the renormalization
group equations conformal invariance is restored. In the case of QCD, conformal invari-
ance is approximately restored at high energies. The fact that away from the UV fixed
point the theory does not retain its classical conformal symmetry implies that 〈T µµ 〉 6= 0.
The consequence for Yang-Mills theory is that the theory develops a non-trivial gluon
condensate 〈TrF 2〉 6= 0.

Let us now explore the infrared behavior of the theory. The solution of the renormal-
ization group equation (2.17), using the 1-loop beta function of Eq. (2.18), is

g(µ) =
4π

β0

1

log µ2

Λ2

(2.20)

where Λ, which comes about as an integration constant while solving Eq. (2.17), sets the
typical energy scale for strong interactions. For QCD, Λ ∼ 200 MeV, of the order of the
mass of the pion. For µ ∼ Λ, g(µ)� 1, which indicates that the theory becomes strongly
coupled - this signals, naively, the breakdown of the perturbative expansion.

2.3.2 Confinement

This breakdown of perturbation theory is expected to be associated with the fact
that, at low energies, the degrees of freedom present in the Lagrangean (2.1), quarks and
gluons, are not the physical degrees of freedom of the strong interactions. Indeed, one
can only observe colorless degrees of freedom: the hadrons, such as baryons, mesons and
glueballs. Quarks and gluons are then confined to the interior of hadrons. This is the
intuitive description of the property of confinement.

A useful picture of confinement arises when one thinks of mesons, that is, hadrons
composed of a quark and an antiquark. When one draws, in the static limit, the eletric field
lines for an electron-positron pair, interacting by the electromagnetic interaction described
by QED, the field lines joining the pair are spreaded out (Figure 2.1(a)). However, the
chromo-electromagnetic fields which bounds a meson are organized in such a way that
they concentrate mainly into a small region of space joining the quark and the antiquark,
forming a flux tube (Figure 2.1(b)) - the energy contained in the flux tube increases
linearly with the separating distance between the quarks: the potential energy of the
static quark-antiquark pair Vqq̄ for a large separation distance L is expected to be of the
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Figure 2.1: Pictoric description of confinament using flux tubes. (a) Field lines between a static
quark and an antiquark pair in the case of an electromagnetic interaction. (b) Field lines between
a quark and an antiquark in the case of the strong interaction. The lines bunch up and are confined
to a narrow tube of flux lines joining the quark and the antiquark. (c) For light dynamical quarks,
stretching the flux tube can lead to a situation where it is energetically more stable to break the
tube into two mesons, by creating another quark-antiquark pair from the vacuum.

form
Vqq̄(L→∞) ≈ σL, (2.21)

where σ is called the string tension of the flux tube. In a theory with light quarks, at large
separations, the energy of the tube can be great enough that the most stable configuration
of the system is the flux tube breaking creation of a quark and an antiquark pair from
the vacuum, resulting in two mesons (Figure 2.1(c)). In this case, one eventually expects
that Vqq̄ → 0 for L & m−1

meson, where mmeson is the mass of the lightest meson that can
be created with the adequate quantum numbers of the system. Conversely, as L→ 0 the
mesons become weakly interacting and the theory approaches its conformal regime. Thus,
since the meson separation L is the only dimensionful scale in the conformal regime, we
must have Vqq̄ ∝ −1/L (the minus sign is to give the interaction its attractive character).
A perturbative calculation at tree level (the one gluon exchange) yields

Vqq̄(L→ 0) ≈ −αs
L
, (2.22)

where αs = g2/(4π). In passing, we mention that a successful phenomenolgical parametriza-
tion that interpolates between the expected behavior for a confining theory in the IR and
the conformal behavior in the UV is the Cornell potential [43], given by

Vqq̄(L) = −αs
L

+ σL. (2.23)
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A precise definition of what is meant by confinement is an open question in the litera-
ture [44]. For pure Yang-Mills theories, without fermions, the presence of an area law for
large spatial Wilson loops [45] can be taken as a signal for confinement (we will explore
this point further in Chapter 4). Alternatively, at finite temperature, a null expecta-
tion value of the Polyakov loop is a good order parameter for characterizing a confined
phase [46, 47]. However, when the theory has light dynamical quarks, both definitions of
confinement turn out not to be precise and we lack a precise test for confinement in this
case. [44]

2.3.3 Non-perturbative methods

From the study of the renormalization group flow, we see that the coupling constant
becomes large as one goes to the infrared (IR) of the theory, as indicated by Eq. (2.20).
Therefore, to study pure Yang-Mills theories and QCD at low energies, it is then necessary
to go beyond perturbation theory and use non-perturbative methods. Quite a few non-
perturbative methods have been developed during the last decades to deal with this
problem. In this section, we will list some of these techniques, calling attention to some
of the advantages and drawbacks of each approach.

Some of these methods exploit the low-energy symmetries of QCD to write an effective
action for the hadronic interaction - this is the basic premise of chiral perturbation theory,
which exploits the pattern of SU(Nf ) × SU(Nf ) chiral symmetry breaking of QCD [48].
The effective theory possesses a few universal parameters that can, at least on principle,
be computed directly from QCD (or fitted from data). However, the resulting effective
theory is non-renormalizable and thus lack predictive power beyond the first few orders
in perturbation theory.

An alternative approach is to start from high energies, exploiting asymptotic free-
dom and the reliability of perturbative techniques in the UV. The idea is then to ex-
tend the perturbative calculation close to the non-perturbative regime, parametrizing
non-perturbative effects in the vacuum condensates using Wilson’s Operator Product Ex-
pansion (OPE) [49] and matching the results to phenomenological expressions that come
about from the assumption that the low-energy effective degrees of freedom are given by
hadronic degrees of freedom. This is, roughly, the procedure pursued by the QCD Sum
Rules (QCDSR) [50] (for a review, see Ref. [51]; a pedagogical introduction can be found
in [52]). The QCDSR are fairly successful in explaining semi-quantitatively the hadronic
spectrum. However, the QCDSR approach suffers from a lack of precision, dictated mainly
by the extrapolation of a perturbative series to the non-perturbative regime.

Arguably the main technique for exploring non-perturbative QCD is to use lattice
gauge theory [45] (for an introduction and reviews of lattice QCD, see Refs. [53,54]). In-
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stead of maintaining explicit Poincaré invariance and hiding explicit gauge invariance by
choosing a fixed gauge, as in ordinary perturbative calculations, lattice QCD is based on
maintaining explicit gauge invariance and sacrificing Poincaré invariance, by discretizing
space-time on a hyper-cubic lattice. The infinite dimensional path-integrals that give ex-
pectation values of observables of the continuum theory then become, after discretization,
high dimensional integrals which can then be solved numerically using Monte Carlo and
importance sampling methods. The continuum observables are determined by extrapolat-
ing the discretized results computed using the finite lattice gauge theories.

Lattice QCD, albeit being a powerful tool, has three main drawbacks to the type
of problems considered in this thesis. The first one is the numerical power required to
compute observables with accuracy. In the past decades, lattice calculations were mainly
restricted to pure gauge theories, as calculations with dynamical fermions were prohibitive
in terms of computational power due to the extremely costly procedure of evaluating the
fermionic determinant. Nowadays, however, with the available computational power of
modern computers, it is possible to realize reliable computations in QCD with (2+1)
light flavors accurately. For example, the light hadronic spectrum has been computed in
lattice QCD with remarkable accuracy [55] (for a review, see Ref. [56]).

The second drawback is of a more serious nature. Lattice QCD computations start
from the partition function Z for the field theory. In Minkowski space-time, in a path-
integral formulation, the partition function is given by

Z =

∫
DφeiS[φ], (2.24)

where φ is the set of all basic fields of the theory, described by the action S[φ]. To use
importance sampling, lattice methods require the passage from real time t to imaginary
time τ , by the transformation t→ iτ . In this case, the partition function becomes

Z =

∫
Dφe−SE [φ], (2.25)

where the metric is now Euclidean and SE is the Euclidean action. Importance sampling
uses e−SE as a Boltzmann weighting factor in a Monte Carlo calculation, to be able to
select the most representative contributions to Z. The problem is that not all physical
observables can be computed at imaginary time; for example, spectral functions or trans-
port properties require computations at real time. Correlations functions, the main object
computed in lattice QCD calculations, can, in principle, be analytically continued from
imaginary time to real time. However, numerical analytic continuation is a delicate sub-
ject and such computations require extremely precise computations and large statistics.
Recent progress in perfoming this analytic continuation on the lattice is based on the
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Maximum Entropy Method, as implemented in Ref. [57]. A review of the progress of the
computation transport properties on the lattice can be found on Ref. [58].

The third problem is the sign problem [58]. When including a chemical potential µ for
the quarks, for example, in the action in Eq. (2.25) receives a new term to take into account
µ. However, this new term is not hermitean, which means that the weight e−SE may be
complex. Again, in such a case importance sampling cannot be used straightforwardly.

The last method to be considered, and the method to be used throughout this work,
is the gauge/gravity duality [14]. A more complete description of this method will be the
main subject of the next chapter. However, an heuristic way of thinking of the physical
basis of the gauge/gravity duality, to be developed further in the next chapter, is thinking
of it as a geometrization of the renormalization group [59], with the energy scale parame-
ter taking the role of an extra dimension. Then one maps problems of a strongly coupled
quantum field theory to a problem of a classical gravity theory. It is not a method without
drawbacks: the calculations are done in gauge theories which model many of the prop-
erties of QCD - such as confinement, its hadronic spectra or its thermodynamics - but
these theories are not QCD; moreover, albeit the IR properties of these models are well
defined, in the UV all these models are not asymptotically free, being, instead, strongly
coupled. However, even with these problems, the gauge/gravity duality is still a power-
ful tool, providing analytical or semi-analytical solutions for many quantum field theory
problems that would be hard to solve otherwise in a strongly coupled theory. Moreover,
all computations can be done in real-time, which allows for the extraction of transport
coefficients, for example.

2.4 QCD at Finite Temperature

So far, we have focused on the limit of Yang-Mills theory and QCD at zero temperature.
However, the question we posed at the beginning of this chapter, “What is the behavior of
matter under extreme conditions of temperature and pressure?”, require finite temperature
calculations of equilibrium and non-equilibrium quantities. In this section we explore how
we can formulate this question.

2.4.1 Finite Temperature Field Theory

The first step is to formulate quantum field theory at finite temperature. In this
subsection we will briefly review the imaginary time (Matsubara) formalism; results from
the real time, closed time path, formalism will be introduced in this thesis as needed. For
a more complete discussion and an overview of thermal field theory, see Refs. [60,61].
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First, let us remember how a transition amplitude is computed in quantum field theory
at zero temperature in the path integral formulation. Let φ(t, xi) be a (set of) bosonic
fields in d dimensions, with i = 1, 2, · · · , d− 1. Then,

〈φ(t1, x
i
1)|φ(t2, x

i
2)〉 = 〈φ1|e−iĤ(t1−t2)|φ2〉 =

∫
DφeiS[φ], (2.26)

where the action S[φ] is written in terms of the Lagrangian density L as

S =

∫ t2

t1

dt

∫
d3xL[φ]. (2.27)

In Eq. (2.26), the boundary conditions on the fields are

φ(t1, x
i
1) = φ1,

φ(t2, x
i
1) = φ2. (2.28)

In quantum mechanics, the expectation value of the observable Ô in a state described
by the density matrix ρ̂ is given by

〈Ô〉 = Tr
(
ρ̂Ô
)
. (2.29)

If the Hamiltonian of the system is given by Ĥ and the system is in thermal equilibrium
with a thermal bath at temperature T , then the density matrix is given by6

ρ =
e−βĤÔ

Z
, (2.30)

where β = 1/T and Z is the partition function,

Z = Tr e−βĤ , (2.31)

which gives the correct normalization for the density matrix ρ̂.
Now, introducing the complete basis |φ〉, the trace in (2.31) can be written as

Z =

∫
dφ1〈φ1|e−βĤ |φ1〉. (2.32)

The matrix element in Eq. (2.32) can written using the path-integral formulation for
the amplitude in Eq. (2.26). First, we note that φ1 = φ2 in (2.32). Then we identify

6We are discussing the formulation in the canonical ensemble; the grand canonical ensemble is obtained
by changing Ĥ to Ĥ − µN̂ , where N̂ is the conserved number operator associated with the chemical
potential µ.
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β = i(t1 − t2). Thus, the partition function Z can be written as

Z =

∫
Dφe−SE [φ] (2.33)

where SE[φ] is the Euclidean action, obtained from the Minkowski action S by passing to
imaginary time τ , t → −iτ . The boundary conditions in (2.33) are φ(0, xi) = +φ(β, xi);
that is, φ obeys periodic boundary conditions7. The expectation value (2.34) can be writ-
ten as

〈Ô〉 =

∫
DφO[φ]e−SE [φ]. (2.34)

In the imaginary time formalism presented above, the periodic boundary conditions,
written with an Euclidean signature, correspond to compactification in a circle in the
imaginary time direction - the length of the circle is β = 1/T . This means that at high
temperatures, β → 0, a thermal field theory is effectively described by a lower dimensional
Euclidean field theory. Also, perturbation theory in this formalism is, at least in principle,
analogous to perturbation theory in the T = 0 case. The main difference is that, since
all fields are (anti)-periodic in time, Fourier transforms of the temporal dependence of
the fields reduce to Fourier series, where the discrete frequencies, given by ωn = 2πn/β

(ωn = (2n + 1)π/β if the fields are fermionic) are known as the Matsubara frequencies.
The main problem is that, beyond one loop in perturbation theory, different scales come
into play - for instance, one has to consider expansions not only on the coupling constant
g, but also on gT and gT 2. The disentanglement of this multitude of scales is a complex
problem that has to be solved in order to improve perturbative computations (see, for
instance, Ref. [62]).

2.4.2 The Phase Diagram of QCD

Equipped with a formalism to deal with quantum field theories in thermal equilibrium,
one can start searching for answers to the question posed in the beginning of the section. In
this subsection, we will describe the phase diagram of QCD, as it is currently understood,
focusing on the region of the diagram with zero baryonic chemical potential, µB = 0.
As already noted, perturbative QCD cannot be applied safely at strong coupling. This,
together with the many new challenges that perturbation theory at finite temperature
present, means that perturbation theory cannot be used to reliably explore the entire
phase diagram of QCD.

Some qualitative information can be inferred from the two main characteristics of
7We assumed that φ is a set of bosonic fields. The boundary conditions for a fermion ψ are anti-

periodic ones, ψ(0, xi) = −ψ(β, xi). This difference in the boundary conditions takes into account the
different statistics of fermions and bosons. [60, 61]



2.4 QCD AT FINITE TEMPERATURE 19

QCD. The two main parameters that characterize the phase diagram are the temperature
T of the thermal medium and the baryonic chemical potential µB associated with the
conserved baryonic number.8 We know that in the conditions that we live in, T � mπ and
µB ≈ 1 GeV quarks and gluons are confined inside the hadrons. Also, due to asymptotic
freedom, when T � mπ, with T � µB, since the typical interaction energy between
quarks and gluons in the thermal bath is of order T , which implies in this case that
quarks and gluons are weakly interacting and become the physical degrees of freedom.
This means that one should expect that, as T → ∞, the quarks and gluons inside the
hadrons become deconfined - that is, the hadrons “melt” into the quark-gluon plasma
(QGP) [5, 65, 66, 68, 69]. This argument indicates that QCD must possess a non-trivial
phase diagram, with at least one kind of phase transition, a confinement-deconfinement
phase transition at high temperatures.

Gleaning from a variety of approaches, using effective theories such as Nambu-Jona
Lasinio models (see Ref. [70] for a review), general arguments from large-Nc Yang-Mills
theories and, more recently, lattice QCD calculations 9 we have tentative descriptions of
a number of patches of the phase diagram, which can then be collated to sketch what the
phase diagram of QCD should look like.

The free quark-gluon plasma

The simplest example of relevance to heavy-ion collisions which one can study is the
free QGP, so we pause to briefly consider its thermodyanmics. In the UV, we have a free
gas of non-interacting N2

c −1 gluons and Nf quarks with Nc colors. For simplicity, we will
deal with massless fermions. Setting the chemical potential for all quark flavors to zero,
we have that, since a bosonic degree of freedom contributes to T 4/90π2 to the Helmholtz
free energy density f and a fermionic degree of freedom contributes with 7/8-ths of the
bosonic value. Then, the free energy f of the free QGP is given by

f = −(N2
c − 1)

(gluons)

× π2

90
T 4 − Nf

(flavors)

× Nc
(colors)

× 7

8

π2

90
T 4 =

= −
[
(N2

c − 1) +NfNc
7

8

]
π2

90
T 4 (2.35)

The pressure p and entropy density s of the free QGP follow from standard thermody-
namical relations. The pressure is given by p = −f , whereas the entropy density is given

8Given the large external electric and magnetic fields that may be present in the QGP created in heavy
ion collisions at RHIC and the LHC [63] (for a review, see Ref. [64]), one may include, for example, the
external magnetic field B as a new parameter to characterize the thermodynamics of the plasma. This is
a recent topic of interest in lattice calculations [67], and we will have more to say about this in Chapter 7

9See Refs. [71,72] for reviews of the state of art on the thermodynamics computed using lattice QCD.
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by

s = − ∂f
∂T

=

[
(N2

c − 1) +NfNc
7

8

]
2π2

45
T 3. (2.36)

Finally, the energy density ε is given by

ε = −T 2∂(f/T )

∂T
=

[
(N2

c − 1) +NfNc
7

8

]
π2

30
T 4. (2.37)

Zero baryonic chemical potential

Let us focus our attention first in the case of vanishing chemical potential, µB = 0. In
the limit of infinitely heavy quarks, we have a pure SU(Nc) gauge theory to study. Since
a lattice calculation with no dynamical quarks requires far less computational resources
and thus can be done in larger lattices, it is well known that SU(3) Yang-Mills has a first
order phase transition [74]: for T < Tc, we have a confined gas of glueballs and for T > Tc

we have a plasma of deconfined gluons. The transition is of first order since the entropy
density s is discontinuous at Tc: s(T < Tc) � s(T > Tc), jumping to a finite value at
T = Tc.

For SU(3) theories with (2+1) dynamical quarks, the situation is much more intricate,
as shown in the so-called “Columbia” plot, in Figure 2.2. From chiral symmetry, in the
limit of small quark masses, the phase transition is expected to be of first order [75]. For
increasing quark masses, we pass by a line of second order confinement-deconfinement
phase transitions and then to a region where, although there is a sudden increase of the
entropy of the system with increasing temperature characterizing a rapid increase of the
number of degrees of the system, all thermodynamic functions and their derivatives to all
orders are continuous. This sudden, but continuous to all orders, increase of the entropy,
therefore, does not qualify as a true phase transition, being called a crossover. However,
for simplicity, in this work we will refer to a crossover as a phase transition, keeping in
mind the above remark. For heavy quarks, we pass through another line of second order
phase transitions, then going back to a first order phase transition as the quarks become
heavy and non-dynamical.

The point P in Figure 2.2 represents the point with physical quark masses. The ther-
modynamics of this point has been extensively studied on the lattice as computing the
fermionic determinant has become feasible in the last few years. The seminal calculation
perfomed in [73] and confirmed by further studies10 show that, with physical quarks, the
phase transition is of the crossover type. In Figure 2.3 we present the equation of state
(presented as the entropy density s as a function of the temperature T ) from recent lattice

10See Refs. [71, 72] for a full list of references; the most recent equations of state as computed on the
lattice can be found in Refs. [76, 77].
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Figure 2.2: The Columbia plot for QCD with (2+1) dynamical flavors, showing the type of
phase transition for each choice of quark masses. The point P is the point with the physical quark
masses.

results [78]. Around T = Tc = 150 MeV, the entropy density increases rapidly, character-
izing the crossover. For T a few times Tc, the entropy density is about 80% of the entropy
density of the free QGP with N2

c − 1 = 8 gluons and Nf = 3 fermions (Eq. (2.36)).
The approach to the Stefan-Boltzmann limit is slow - this is not surprising, since α(Q2)

decreases logarithmically with Q2.

Non-zero baryonic chemical potential

For µB 6= 0 the situation is more challenging to lattice calculations, due to the sign
problem, and one must resort to effective theories (such as Nambu-Jona-Lasinio models)
and qualitative arguments (see Refs. [79, 80] for reviews; for recent progress in lattice
calculations at µB 6= 0, see Ref. [81]). Figure 2.4 shows what is believed to be the current
picture for the phase diagram of QCD. For low temperatures and chemical potentials,
QCD matter is expected to behave as a hadronic gas, as expected from confinement.
There is a line of first order phase transitions as one increases T and µB, which charac-
terizes a transition from the hadronic phase to the quark-gluon plasma. The line of first
order phase transitions ends at a second order critical point, (µ̄, T̄ ). For µ < µ̄, there
is no true phase transition, only a crossover connecting the hadronic phase to the QGP
phase. At low temperatures, but increasing µB, it is expected that there is another phase
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Figure 2.3: The entropy density s as a function of T for (2+1) QCD, as computed from lattice
QCD (figure reproduced from Ref. [78]).

transition, to a color superconductor (CSC) phase. The reason is an analogy to a nor-
mal conductor/superconductor phase transition in condensed matter systems - a weakly
coupled gas of fermions (described by the Fermi liquid theory) has a spontaneously bro-
ken U(1) gauge symmetry at low temperatures, generating effective atractive interactions
among the fermions mediated by the photons, now massive after the symmetry break-
ing. The same mechanism at high density is expected to work in the case of QCD, with
the photons replaced by the gluons. However, due to the non-trivial structure of SU(3),
the pattern of symmetry breaking is richer. The exact structure of the phase diagram for
T � µB is unknown (much more so then in the case T � µB) - the position and character
of the Fermi liquid/CSC phase transition and the number and characteristics of each of
the CSC phases are unknown.

2.5 Heavy Ion Collisions, QGP, and strongly coupled

plasmas

Since the existence of the quark-gluon plasma in QCD was proposed, it was argued
that it could be produced through sufficiently high energy heavy ion collisions [5, 65,
66, 68, 69]. However, it was first thought that the plasma would be produced at such



2.5 HEAVY ION COLLISIONS, QGP, AND STRONGLY COUPLED PLASMAS 23

µ

Τ

Hadronic
gas

Quark gluon plasma

Color
superconductor

X
~1 GeV0

~150 MeV
(µ, T)

Figure 2.4: The (expected) phase diagram for QCD. The solid lines are expected to be lines of
first order phase transitions. For the hadron gas/quark-gluon plasma phase transition, the line of
first order phase transitions are expected to end in a second order critical point. The cross marks
the ground state of infinite nuclear matter. The hadron liquid/gas phase transition is not shown
in this simplified picture.
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high temperatures that it would behave, due to asymptotic freedom, as a weakly coupled
plasma such that perturbative calculations would be applicable to study its properties.
However, as heavy ion collider experiments began to access experimental conditions where
the plasma was expected to be produced, it became clear that the plasma was, instead,
strongly coupled [8–11]. In this section we briefly describe the basic time evolution of the
QGP produced in heavy ion collision and the main arguments as to why it should be a
strongly coupled plasma.

The evolution of the QGP produced in heavy-ion collisions can be summarized as
follows (Figure 2.5): first, both nuclei collide. Since both ions are close to the light speed
c, in the center of mass frame both are contracted, being described effectively as two
hadronic “pancakes”. Immediately after collision, the resulting medium in the collision
region is out of equilibrium, the so called the pre-thermalization phase. After ∼ 1 fm/c,
the medium thermalizes sufficiently so that a hydrodynamic description of the QGP,
corresponding to a close-to-equilibrium description, can be applied. The QGP fireball
then expands, cooling off in the process. After ∼ 10-15 fm/c, the QGP is sufficiently
cool so that its temperature T is below to the critical temperature Tc; at this stage, the
quarks and gluons coalesce into hadrons (hadronization) - this is the so-called chemical
freeze-out. The hadron gas produced still interacts, due to the residual strong interaction.
As the nuclear interaction is of short range, after some time the hadrons cannot interact
with other anymore (kinetic freezeout). Thus, we have a free gas of hadrons, whose decay
products then reach the detectors.

As already mentioned, the first theoretical expectations were for a weakly coupled
QGP. However, the experimental results from RHIC (Relativistic Heavy Ion Collider)
[6, 8–11] indicate that the plasma produced in heavy-ion collisions is strongly coupled.
Evidence for this comes from several arguments. The main argument is that the observed
behavior is characterized by a strong elliptic flow (Figure 2.6). Non-central collisions
result in an almond shaped collision region. The pressure and energy density distribution
of this almond-shaped plasma is correspondingly anisotropic - the pressure gradient along
the major axis is lower than the pressure gradient along the minor axis. The posterior
hydrodynamical evolution of the fluid depends then on its shear viscosity η (among other
transport coefficients for thermodynamics), which is a measure of the momentum diffusion
in the plasma. A dimensionless measure of the fluidity of the plasma at zero µB can be
estimated by the ratio of the shear viscosity η by the entropy density s, η/s. If the
plasma is weakly (strongly) coupled, η/s & 1 (η/s� 1, respectively) - we will justify this
affirmation below. Thus, a weakly coupled plasma is a viscous plasma, and momentum
transport is efficient - the initial pressure anistropy is quickly diffused and the resulting
flow is isotropic. In a strongly coupled plasma, we have an almost perfect fluid, with little
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Figure 2.5: A cartoon picture of the evolution of the QGP produced in heavy ion collisions. Two
heavy ions collide at relativistic speed in the center of mass frame (a); during a short phase (∼
1 fm/c) the collision region is in a state outside thermal equilibrium ((b), pre-thermalization);
then the resulting QGP is sufficiently close to equilibrium so that an hydrodynamical description
is valid (c); the QGP expands and, in the process, cools off (d); as the QGP cools off below
the critical temperature Tc, the quarks and gluons coalesce into hadrons ((e), hadronization and
freeze-out), interact with another hadrons, decay and finally can be measured by the detectors.
The figure pictures a central collision.

momentum diffusion: the initial pressure anisotropy survives hydrodynamical evolution.
Thus, after the cooling of the QGP, a weakly coupled plasma will result in an isotropic
distribution of particles in the detector, whereas the strongly coupled plasma will be
characterized by an anisotropic distribution - the so called elliptic flow. The results of
RHIC indicated a strong elliptic flow, is qualitatively with that of a perfect relativistic
fluid. A hydrodynamical analysis of the QGP with first order transport coefficients [83]
indicated that values of η/s of the order 0.1-0.3 furnished a good description of elliptic
flow. The picture of strongly coupled QGP is further supported by the measurement
of jet quenching - hard partons plowing through the plasma interact with the medium,
losing energy and momentum. Thus, the jets produced by these partons in the plasma
are quenched, having less particles with hard momenta. (See [82] for more details on the
time evolution of the QGP and its hydrodynamical description.)

Now, let us briefly justify the connection between the shear viscosity and the gauge
coupling. From kinetic theory [84]11 it is known that

η ∼ n〈p〉lmfp, (2.38)
11We should note that one of the main hypothesis of kinetic theory assumes the existence of quasi-

particle excitations in the plasma, which are free-streaming between collisions. However, a strongly
coupled fluid does not have a quasi-particle description. An example is the strongly coupled N = 4
plasma [85, 86], for which no quasi-particle description is possible. It is an open question if the same
happens for QCD in the context of heavy ion collisions.
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Figure 2.6: A cartoon picture of the elliptic flow of the QGP. A strongly coupled plasma (a)
does not exhibit good momentum transport(because lmfp � 1/T , so that an initial spatial (and
thus momentum) anisotropy is propagated to late times in its evolution. Contrast this with a
weakly coupled plasma (b), which can diffuse momentum efficiently and thus diffuse the initial
momentum anistropy.



2.5 HEAVY ION COLLISIONS, QGP, AND STRONGLY COUPLED PLASMAS 27

where n is the (quasi)particle density, 〈p〉 is the average momentum of the particles and
lmfp is the mean free path. The entropy density s proportional to n. Then,

η

s
∼ 〈p〉lmfp. (2.39)

Now, a small (large) mean free path compared to 〈p〉 corresponds to a strongly (weakly)
interacting plasma. A simple consequence of Eq. (2.39) [87] can be inferred using the
uncertainty principle. A particle with momentum 〈p〉 cannot be localized with a precision
greater than 1/〈p〉. Thus, the mean free path is bounded below by 1/〈p〉. Therefore,
〈p〉lmfp & 1, and

η

s
& 1. (2.40)

Restoring units,
η

s
&

~
kB
. (2.41)

This is a simple estimate of a quantum mechanical lower bound for η/s for a system with
a hydrodynamical description (assuming the validity of a quasi-particle picture and of
kinetic theory, see footnote 11). The results extracted from a comparison of hydrodynamic
calculations to the QGP data, η/s ∼ 0.1− 0.3, indicate that the the QGP is close to the
lower bound of Eq. (2.41). Moreover, no other system known in nature seems to have a
shear viscosity/entropy density ratio lower that the QGP, as indicated in Figure 2.7.

Before the near-perfect hydrodynamic behavior and the shear viscosity of the QGP
were estimated, computations using the gauge/gravity duality provided the first hints
of a fluid that came close to the limitations imposed by Eq. (2.41). Specifically, as we
will explore later in the next chapter, for a large class of gauge theories which accept a
description at strongly coupling by a dual gravitational theory [90],

η

s
=

1

4π
∼ 0.08, (2.42)

close to the estimates of η/s for the QGP of Ref. [83]. A perturbative description of η in
gauge theories in the netx-to- leading log calculation yields [88,89]

η = κ
T 3

g4 ln g−1
, (2.43)

with κ ∼ 100, which yields values of η/s � 1/(4π), for all reasonable choices of T and
g compatible with the experimental conditions of the QGP. This indicates one of the
virtues of the gauge-gravity framework to study strongly coupled non-Abelian plasmas.
In the next chapter we will outline the basics of the gauge/gravity duality, including the
calculation of Eq. (2.42).
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Figure 2.7: A comparison of the shear viscosity/entropy density ratio η/s for temperatures
near the phase transition for some systems which admit a hydrodynamic description. Tc is the
corresponding critical temperature for each system (temperature of the endpoint of the liquid-gas
transition line for water and helium, superfluid phase transition for ultracold Fermi fluids and
confinement/deconfinement temperature of the QGP). The top dashed horizontal line refer to the
holographic result for a large class of strongly coupled gauge theories with gravity duals [90]; the
lower dashed horizontal line refer to the theory dual to Gauss-Bonnet gravity [91,92] . This figure
was extracted from Ref. [59], wherein the original references for data can be found.



Chapter 3

Gauge/gravity duality

In this chapter, we present a self-contained review of some of the fundamental as-
pects of the gauge/gravity duality necessary for this work. We will start from a intuitive,
heuristic point of view (Sections 3.1 and 3.2), based on a geometrical interpretation of the
renormalization group flow. The most well-known and studied case of the gauge/gravity
duality, the AdS/CFT correspondence, is treated in Section 3.3. The main computational
tool of the duality is presented in Section 3.4, which is applied to relate scaling dimensions
on the gauge theory with the masses of fields in the dual theory of gravity in Section 3.5.
Aspects of the duality at finite temperature are treated in Section 3.6. Section 3.7 presents
the prescriptions for computing correlation functions from holography. A phenomelogical
application is in Section 3.8, which reviews the computation of transport coefficients using
the membrane paradigm.

3.1 Bird’s eye overview

The gauge/gravity duality, essentially, is the statement of an equivalence between
theories of quantum gravity in (d+ 1) dimensions and quantum field theories in d dimen-
sions [14,93,94]. It can be seen as a concrete example of the holographic principle [95,96].
It is also an example of a weak/strong coupling duality. When the quantum field theory
is strongly coupled, the corresponding quantum gravity dual is weakly coupled, that is, a
classical theory of gravity; in the other hand, when the the gravity theory is in the full
quantum regime, the dual QFT is weakly coupled, amenable to treatment by perturba-
tive methods. Thus, the gauge/gravity duality may be used to probe quantum theories of
gravity or, alternatively, to probe strongly coupled QFTs - the latter being our application
of interest.

The original review of the gauge/gravity duality can be found in Ref. [97]. Pedagogical
introductions are given in Refs. [98–100] or in textbooks [101,102]. For applications of the

29
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gauge/gravity duality in heavy ion physics, see Refs. [59, 103].

3.2 Heuristic arguments

In this section we will present some heuristic arguments to motivate the validity of
the duality gauge/gravity. These arguments, while physically intrusctive, are informal -
many are based on the arguments presented in Ref. [59]. These arguments are even more
heuristic than the arguments used to establish specific cases of the duality, using explicit
constructions from string theory. In this section, we will try to avoid using string theory,
instead arguing directly from quantum field theory and general relativity that the gauge/-
gravity duality duality should be expected to hold in some special cases. Specifically, the
main view point taken in this section is that the gauge/gravity duality is a geometriza-
tion of the renormalization group. This point of view is also useful to justify the use of
bottom-up gauge/gravity constructions as means of developing effective theories that are
close to QCD in the infrared (IR). For completeness, and since it will play an important
role in this thesis, we present in the next section the AdS/CFT correspondence, using
the standard string theory arguments as a paradigmatic example of a well established
example of the gauge/gravity duality.

3.2.1 From gravity to a field theory

Let us consider probing the event horizon of a black hole in a d+ 1 dimensional space-
time as an observer in the asymptotically flat geometry far from the event horizon. We
send to the horizon a robot which emits light signals at a given wavelength. As the robot
approaches the horizon, the wavelength of the emitted signals by the robot gets redshifted,
as observed by the distant observer. The robot takes infinite time, as measured by the
distant observer, to approach the horizon - the distant observer sees the robot ultimately
being frozen near the horizon, sending low frequency redshifted signals.

Now, consider a swarm of these robots, sent isotropically from the asymptotic spatial
infinity to the black hole horizon. The asymptotic observer at infinity sees the swarm
of robots being frozen the horizon, sending all low frequency signals. Thus, the robots
effectively constitute a membrane covering the event horizon, called the membrane horizon
[104]. If another robot is sent afterwards towards the membrane horizon, it will perturb the
membrane horizon as a low frequency fluctuation. Thus, the perturbation will propagate
as a hydrodynamical low-frequency fluctuation on the horizon. This suggests that the
membrane horizon behaves as a hydrodynamical theory - that is, as a d dimensional field
theory. Incidentally, we should note that the low-frequency fluctuations of the membrane
horizon can be characterized by means of corresponding membrane transport coefficients
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- this fact will be exploited in Section 3.8 to evaluate transport coefficients of strongly
coupled non-Abelian plasmas.

3.2.2 From a field theory to a theory of gravity - Renormalization

group redux

Now, let us consider the renormalization group flow of a d dimensional field theory
defined on a lattice with spacing a. Let the dynamics of the theory be described by the
hamiltonian

Ĥ =
∑
x,i

Ji(x)Ôi(x), (3.1)

where Ôi(x) are local operators with couplings Ji(x), with x labelling the lattice sites and
i = 1, 2, . . . label the combinations of operators that enter into the hamiltonian.

The renormalization group (RG) [38–41], already briefly discussed in Chapter 2 in
connection with the asymptotic freedom of QCD, is a tool to analyze the dependence of
observables as a function of the lattice spacing a. We consider a series of coarse-grained
lattices with spacing u, and corresponding coarse grained couplings Ji(x, u), chosen in such
a way that the ground state and low energy excitations of the theory are left invariant.
The scale dependence of the couplings obey flow equations, the renormalization group
equations (of which Eq. (2.17) was a special case)

u
∂

∂u
Ji(x, u) = βi, (3.2)

where the beta functions βi encode the flow of the coupling Ji(x, u), and may depend on
the couplings Jj(x, u) and the scale u.

Now, we can recast the RG flow by stacking the coarse grained theories with lattice
spacing u on top of each other (see Figure 3.1). In this point of view, the dependence on
the scale u can be seen by recasting the original d dimensional theory described in Eq.
(3.1) by a d + 1 dimensional framework, where the scale u takes the place of the extra
dimension. The scale dependent couplings Ji(u, x) must then be local fields in this d + 1

dimensional space-time. The coordinate u runs from the original ultraviolet (UV) theory
with u = a to the deep infrared (IR) with u→∞. Thus, we have that the RG flow of the
original d-dimensional theory is related to a d + 1 dimensional field theory. Let us now
argue that this dimension must be a curved dimension and that the d + 1 dimensional
field theory must be a theory of gravity, whose low-energy effective action is given by
Einstein-Hilbert action coupled to matter fields.

To do so, we ask what must be the field content (the bulk fields) and the (bulk)
Lagrangian of the d+1 field theory. Generalizing the argument in the previous paragraph,
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Figure 3.1: Stacking the coarse grained lattices with scale u on top of each other, and the
resulting curved space description.

to each operator Ôi(x) in the d dimensional field theory there must be corresponding bulk
fields φi(x, u). We impose as boundary conditions on these fields φi(x, u) that they give
the UV couplings of the operators, that is,

φi(x, u = a) = Ji(x). (3.3)

This boundary condition implies that the spin, charges and quantum numbers of the bulk
fields φi(x, u) must be equal to the spin, charges and quantum numbers of the operators
Ôi(x). The combination φi(x, a)Ôi(x) must be a scalar and part of the Hamiltonian of the
theory - that is, φi(x, a) are the sources of the operators Ôi(x).

In particular, we consider d dimensional QFTs where there is a well-defined energy-
momentum tensor operator T̂µν . Thus, there must be a corresponding spin-2 bulk field gµν
which sources T̂µν by Eq. (3.3). Now, assuming that the a→ 0 limit of the d dimensional
QFT is Lorentz invariant, we can use the Weinberg’s theorem [105], which states that any
spin 2 field must respect the equivalence principle and couple universally to all fields or
else decouple in the low energy limit. The latter means that gµν(x, u → ∞) → 0 - that
is, according to Eq. (3.3), that no sources of the energy-momentum tensor can affect the
dynamics of the theory; in other words, that we have a topological field theory. Discarding
this hypothesis, we then conclude that gµν obeys the equivalence principle. Applying now
the Weinberg-Witten theorem [106], which says that spin 2 fields in Poincaré invariant
theories (with conserved energy-momentum tensors) must be massless, we see that gµν can
be identified with the graviton field, and that its low-energy dynamics must be dictated
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by the Einstein-Hilbert action.
As a last remark, the dynamics of the d dimensional local QFT must correspond to

the dynamics of d+ 1 dimensional local theory of gravity. This means that the dynamics
of the theory of gravity must be enconded in a non-local way in the dynamics of the dual
QFT. Thus, the gauge/gravity description is also called a holographic correspondence.1

3.2.3 A geometrical description of a CFT - Anti de-Sitter space

The dual geometry for a CFT

Recapping the content of the previous two sections, we argued, first starting from a
gravitational theory and then starting from a QFT, that there must be a duality between
d dimensional field theories and theories of gravitation in d+ 1 dimensions.

Now, we present an argument that leads to a metric describing a d dimensional con-
formal field theory - for a review of conformal symmetry, recall Sub-Section 2.2.2 and
Section 2.3.

A theory which is conformally invariant possess no intrisic scales. However, a classically
field theory which is conformally invariant may develop a scale anomaly when quantized
which then breaks conformal invariance. This happens whenever βi 6= 0, for then, from
the RG flow equations (2.17), the couplings are scale dependent. This, in fact, is the fate
of an SU(Nc) Yang-Mills theory (and thus of QCD), which is conformally invariant in the
classical regime but acquires a scale ΛQCD from dimensional transmutation, because, as
seen in Eq. (2.18), βg 6= 0.

However, there can exist values of the couplings in other gauge theories such that
βi = 0. In this case, we have a fixed point of the RG flow equations - if this happens
as a → 0 then we have an UV fixed point; if this happens as a → ∞, then we have an
IR fixed point2. At the fixed point, the field theory behaves as a conformal theory. Thus,
understanding the dynamics of a CFT is useful for understading the dynamics of a QFT
on the vicinity of a fixed point.

Consider then a Lorentz invariant d-dimensional CFT, which we suppose that has a
gravitational dual description in d + 1 dimensions. Let us take the emergent dimension
(whose associated coordinate we label z and take it to be associated with the scale with
we probe the field theory). We require that the conformal group SO(d,2) is mapped to

1The gauge/gravity correspondence, in its best known examples, such as the AdS/N = 4 Super
Yang-Mills (SYM) correspondence to be described below, furnish explicit examples of quantum gravity
theories which respect the holographic principle [95, 96], by virtue of its construction. However, it must
be noted that the holographic principle is not equivalent to its realization by gauge/gravity duality - the
holographic principle is a feature that may expected be respected by any theory of quantum gravity [108].

2If, moreover, the couplings themselves are zero at the fixed point, Ji → 0, the fixed point is called a
trivial fixed point; therefore, QCD has a UV trivial fixed point.
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the group of isometries of the d + 1 dimensional space-time. However, as already shown
in Sub-Section 2.2.2, SO(d,2) has d(d+ 1)/2 generators. As a group of isometries of d+ 1

dimensional space-time, this corresponds to a maximally symmetric space-time [107];
thus, it must correspond to a space with a constant curvature scalar: either de Sitter
(dS), Minkowski or Anti-de Sitter (AdS) spacetimes in d + 1 dimensions. However, only
AdSd+1 has the correct isometry group SO(d,2). Thus, the theory dual of gravity for a
CFT takes place in a AdSd+1 space-time, which we now proceed to briefly discuss some
of its most important properties.

Brief review of the properties of Anti de-Sitter space

The metric of an AdSd+1 space-time is, in the so called Poincaré coordinates,

ds2 =
L2

z2

(
−dt2 + d~x2 + dz2

)
, (3.4)

where (t, ~x) are coordinates for copies of d dimensional Minkowski spacetimes at each fixed
z, the emergent coordinate of the fifth dimension, and L is called the radius of AdSd+1.
The coordinate z is interpreted as the length scale of the RG group flow - z → 0 is the UV
of the theory and z →∞ is the IR limit of the theory. Another useful parametrization of
AdS space used in this thesis is given by the coordinate transformation z → L/U , which
yields3

ds2 =
U2

L2

(
−dt2 + d~x2

)
+
L2

U2
dU2, (3.5)

In this coordinate system, U is interpreted as the energy scale in the RG flow. The
curvature scalar R of the geometry is

R = −d(d+ 1)

L2
. (3.6)

Since R < 0, the curvature of AdS space is negative - AdS is an example of hyperbolic
geometry4. As a maximally symmetric space, the Riemann curvature tensor Rµναβ of AdS
space-time is given by

Rµναβ =
R

d(d+ 1)
(gµαgνβ − gναgµβ), (3.7)

3It should be noted that the metric in Eqs. (3.4) or (3.5) coordinatizes only a patch of AdS space;
global coordinates (accompanied with the correspoding causal structure described by means of a Penrose
diagram) can be found, for instance, in [107].

4Indeed, one extrinsic definition of AdSd+1 is via the embedding of a d + 1 hyperboloid in a d + 2
dimensional Minkowski space.
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From Eqs. (3.6) and (3.7) it is easy to check that the AdS geometry is a solution for
Einstein’s equation in vacuum with a cosmological constant Λ,

Rµν −
1

2
Rgµν + Λgµν = 0, (3.8)

as long as Λ = −d(d− 2)/(2L2), that is, with a negative cosmological constant.
The main feature of AdS space is that it serves as a “box” for gravity. For z → 0 AdS

space has an asymptotic Minkowski boundary. Material particles and light signals sent
from the interior of AdS space to the boundary return to the boundary in finite time for
an observer inside AdS space. This can be seen from the geodesic equation, for material
particles; for light signals, this follows more simply from taking ds2 = 0 and solving for t
in Eq. (3.5).

3.3 The AdS/CFT correspondence

The main example of a gauge/gravity duality is the AdS5⊗S5/N = 4 Super Yang-Mills
(SYM) correspondence, for which we have both a heuristic argument from string theory
and extensive checks perfomed by exploiting the symmetries of the theories involved. Since
we will use this correspondence as a check and as a useful example for many applications
of the gauge/gravity duality, and also since it provides an explicit example of a top-down
gravity dual, we will review the arguments for its construction here.

The main point is to consider a stack of coincident D3-Branes in type IIB string theory
and look at the resulting theory from two complementary points of view [14]. First, I will
present the necessary facts needed on Dp-branes to present the argument.

3.3.1 Dp-branes

Dp-Branes [109] arise in string theory, perturbatively, when considering possible bound-
ary conditions for open strings. Open strings which obey Dirichlet conditions have their
ends fixed in p dimensional hypersurfaces, which are called Dp-Branes. The fields describ-
ing the open string can inject fluxes in the ending surface. Thus, the Dp-branes are charged
with respect to the fields of the theory. In particular, they are charged with respect to the
antisymmetric p forms of string theory. Thus, low-energy fluctuations of the end points of
the string, represented by the Dp-brane can be described by a generic action of the form

S = −Tp
∫
dp+1x [. . .] , (3.9)
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where the coupling Tp is given by

Tp =
1

(2π)pgsl
p+1
s

, (3.10)

where ls is the string length and gs is the string coupling constant. From Tp we see
that as gs → ∞, Tp → 0 - this means that Dp-brane is an intrisically non-perturbative
object, since its contribution to the partition function is most important when the coupling
constant is large. Therefore, Dp-branes are dynamical, non-perturbative, objects in string
theory, with their own dynamics. Since they are extended objects, Tp is called the Dp-brane
tension and it is the mass source for the brane. In this non-perturbative point of view,
the open strings are considered as fluctuations of the fields in the brane worldvolume.

If the open strings in the theory carry Chan-Paton charges on their endpoints, then
these fields source gauge field on the Dp-brane worldvolume. In the case of an isolated
Dp-brane, the gauge field on the worldvolume has gauge group U(1). If we have a stack N
of coincident Dp branes, massless (since they have zero length) open strings can connect
any pair of branes - this is the basis of an argument showing that the gauge fields on the
brane worldvolume transform under the gauge group U(N) (for a nice presentation of this
argument, see, for instance, [109,110].

3.3.2 The decoupling argument - The stringy point of view

Let us then consider, in type IIB string theory, a stack of N coincident Dp-branes and
look at the low-energy limit of the theory. That is, we take the string tension α′ → 0,
where we defined α′ = l2s .

The four dimensional gauge theory in the worldvolume of the brane is given by the
low energy open-string fluctuations of the Dp-branes and is described by N = 4 SYM
theory with gauge group SU(Nc). N = 4 SYM is a conformal theory with N = 4 copies
of the supersymmetry algebra; its most remarkable feature is that it is a superconformal
theory - it is invariant by transformations of the super conformal group PSU(2,2|4), which
includes the conformal group in four dimensions SU(4,2). Moreover, it remains conformal
even after quantization: it has been proven that the beta function vanishes at all orders
in perturbation theory (see Ref. [111] for a review of the proofs of this statement) and it
has been argued that this result holds non-perturbatively [112]. Its field content includes,
along with the gauge fields, eight fermionic fields and six scalars, all transforming in the
adjoint representation of SU(N). Alongside the open string fluctuations which give N = 4

SYM on the worldvolume, we have closed strings propagating in the spacetime (whose
low energy limit is type IIB supergravity), which interact with the open strings of the



3.3 THE ADS/CFT CORRESPONDENCE 37

Dp-branes. Thus, we can write the action of the theory as

S = Sbranes + Sbulk + Sint, (3.11)

where Sbranes is the action for the fields in the brane worldvolume, Sbulk the action for the
closed strings in the 10 dimensional spacetime, and Sint is an interaction term between
the brane fields and the space-time fields. However, since Sint ∝ G10, where G10 is the ten
dimensional Newton’s constant, and since G10 ∝ gsα

2, in the low energy limit α′ → 0,
Sint → 0. Thus, in the low energy limit, the theory is described by N = 4 SYM in
the worldvolume of the branes and free supergravity in the bulk of the ten dimensional
spacetime, with the worldvolume and bulk sectors being non-interacting.

3.3.3 Decoupling argument - Supergravity point of view

Now, let us look at the low energy limit from a second point of view, taking, along
with α′ → 0, the string coupling constant gs → 0. In this limit, type IIB string theory
reduces to type IIB supergravity. However, as gs → 0, the mass of the Dp branes must
be large, according to (3.10). Thus, the stack of Dp-branes must deform the space-time.
Type IIB supergravity solutions corresponding to the space-time deformed by the stack
of D3-branes have been found [113]. The metric of this solution is given by

ds2 = H(r)1/2(−dt2 + dx2
1 + dx2

2 + dx2
3) +

1

H(r)1/2
(dr2 + r2dΩ2

5) (3.12)

where (t, x1, x2, x3) are coordinates parametrizing the world volume of the D3-branes, r
is a coordinate perpendicular to the world-volume of the brane and dΩ2

5 is the metric for
a unit five sphere S5. The warping factor H(r) is given by

H(r) = 1 +
L4

r4
, (3.13)

where the constant L is given by

L4 = α′2Ngs. (3.14)

Type IIB supergravity also has an antisymmetric 4-form A4, whose self-dual field strength
5-form F5 = dA4, in this solution, is given by

F5 = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ (dH−1). (3.15)
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The charge of the black brane in this solution is Q = gsN . This solution corresponds
to an extremal black hole extended along the (t, xi) directions, thus being called a black
p = 3-brane. This solution is extremal in the sense that it saturates the bound |Q| ≤ M

between the charge Q and mass M - in this case, the event horizon coincides with the
singularity at r = 0.

Now, consider field fluctuations near the horizon at r = 0, with arbitrary energy
Ehor. By the gravitational redshift, the corresponding energy of the fluctuation as seen
to a distant observer far from the horizon is E ∼ (−g00)−1/2Ehor ∼ rEhor → 0. Thus,
every fluctuation near the horizon is a low-energy fluctuation as seen by the distant
observer. Moreover, low energy gravitational fluctuations distant from the horizon are non-
interacting - this comes from the fact that effective gravitational coupling is proportional
to E2. Thus, we have two sectors of low-energy fluctuations in the geometry: near horizon
fluctuations, which are seen as low-energy fluctuations by a distant observer, and low
energy gravitational fluctuations far from the horizon. Both sectors do not interact with
each other.

Considering only the near horizon geometry, at r ∼ 0, then H(r) ∼ L4/r4. Thus, the
near horizon metric is ds2 = ds2

AdS5
+ ds2

S5 , where ds2
AdS5

is the metric of a AdS5 space
and ds2

S5 the metric of a five sphere, both sharing the common radius L. Thus, the near
horizon geometry is AdS5⊗S5. Thus, near horizon fluctuations are described by type IIB
supergravity on a AdS5 ⊗ S5 background.

3.3.4 The AdS/CFT correspondence

Let’s summarize the results of the previous paragraphs. From the stringy point of
view, we found out that we have, at low energies, N = 4 SYM in the worldvolume of the
D3-branes plus free supergravity in the bulk of the 10 dimensional space time. From the
supergravity extremal black p = 3-brane point of view, we found out that we have, at
low energies, fluctuations near the horizon at r = 0 and free supergravity fluctuations far
from the horizon.

Assuming that it is reasonable to identify the dynamics of free supergravity theories
from both point of views, we can then argue that, somehow, N = 4 SYM in the worldvol-
ume of the D3-branes is equivalent to a type IIB supergravity on a AdS5×S5 background
- this is the basic statement of the AdS/CFT correspondence. [14]

3.3.5 Regimes of validity and versions of the correspondence

Now, let’s examine when the above correspondence is valid. For supergravity to be a
valid approximation, the typical length scale of the geometry, here given by the radius
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L, must large compared to typical string scale, here given by the string length ls =
√
α′.

Also, loop corrections of string theory must be negligible, that is, gs → 0. In summary,
we must have

ls
L
� 1 and gs → 0. (3.16)

By Eq. (3.14), and as gs = g2
YM , supergravity is valid when

λ ≡ Ncg
2
YM � 1 and gYM → 0, (3.17)

where λ is the ’t Hooft coupling. Thus, supergravity is valid when N = 4 SYM theory
is in the large Nc limit and with large ’t Hooft coupling. This justifies the name duality
given to the gauge/gravity duality: as the gravity theory is weakly coupled, the dual gauge
theory is strongly coupled.

As stated, the duality is valid only in the ’t Hooft limit with λ large, but fixed, and
with gYM → 0. Maldacena’s conjecture is that the duality is valid for arbitrary λ and
gYM in the gauge theory side - that is, when we consider the full string theory (with
finite α′) in the quantum regime (with finite gs). However, due to the dual character of
the conjecture - when the gauge theory is strongly coupled and hard to deal with, the
gravity theory is in the classical regime, and when the gauge theory is weakly coupled and
amenable to perturbative methods, the gravity theory is in the full quantum regime - it
is not easy to prove the validity of the AdS/CFT correspondence. However, many checks,
exploiting the fact that N = 4 SYM has a large number of symmetries and thus many
quantities protected by these symmetries can be evaluated at the perturbative level and
then extrapolated safely to the non-perturbative region, where then they can be compared
with the corresponding computations at strong coupling using the correspondence. For
instance, the triangle anomaly in the SO(6) R-current three point function has been
checked [94]. Also, another non-trivial check is the computation of anomalous dimension
of operators in N = 4 SYM and the comparison with the results obtained from AdS/CFT
correspondence [94,114]. See Ref. [97] for more tests of the correspondence.

As a useful result that will be employed later, we relate Newton’s constant with the
number of branes Nc (equivalently, the rank Nc of SU(Nc)) and the AdS5 radius L. Ten
dimensional Newton’s constant G10 is related to the string length ls = α′ and the string
coupling constant gs by

32π2G10 = (2πls)
8g2
s . (3.18)

By using Eq. (3.14) and remembering that gs = g2
YM , we see that

G10 =
π4L8

2N2
c

. (3.19)
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Since S5 is compact, we may consider the dimensional reduction of the theory on AdS5

only. The effective five dimensional Newton’s constant is given by G5 = G10/VS5 , where
VS5 = π3L5 is the volume of S5. Then,

G5 =
πL3

2N2
c

. (3.20)

3.3.6 Top-down and bottom-up constructions

We presented the most well-known and established example of the gauge/gravity du-
ality, namely the AdS5 ⊗ S5/N = 4 SYM duality. However, as argued in Section 3.2, the
gauge/gravity duality is expected to be valid in more general setups. For phenomenolog-
ical applications, one is interested in finding gravity theories which more closely model
the physical system at hand. For instance, to pursue a realistic model for QCD, one may
want to break conformal invariance and supersymmetry, introduce fermions in the fun-
damental representation, and include confinement and chiral symmetry breaking in the
gauge theory.

There have been two main paths in the literature pursued in order to build theories
of gravity with more realistic dual QFT’s. The first one is to start from other string
theory based constructions and then build the corresponding gauge theories and gravity
theories pairs, in a manner analogous to the one performed above for type IIB super-
string theory/N = 4 SYM. This is the so-called top-down approach. Examples are the
Klebanov/Strassler cascading N = 1 SYM, [115], which is a confining gauge theory, and
the Sakai-Sugimoto model [116], which presents chiral symmetry breaking and includes
fermions in the fundamental representation.

An alternative choice is to start from the phenomenology of the desired gauge theory,
and then build an effective gravity theory whose associated dual gauge theory possesses
the desired phenomelogical characteristics. One does not have a well known string theory
construction, and thus the specific gravity/gauge theory pair is not known - if such pair
exists. On the other hand, the resulting gravity theories possess few bulk fields as param-
eters, providing useful and simple models for some aspects of QCD. This is the bottom-up
approach. Examples of this approach are given by the hard-wall [117] and soft-wall [118]
models, models which present the pattern of chiral symmetry breaking of QCD [119] and
the Einstein + scalar confining models of Gubser and Nellore [15] and Gursoy, Kiritsis et
al. [16, 17], both of which will play a role in this work.
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3.4 The duality at work - Extracting observables of the

QFT

After arguing for the validity of the gauge/gravity duality, let us now discuss more
practical aspects of the correspondence. Namely, how to extract non-perturbative infor-
mation of a gauge theory from its dual theory of gravity. In the process, we will also
formulate more precisely the mathematical content of the duality.

3.4.1 The fundamental equality

In the “strong” version of the gauge/gravity duality, we have an equivalence between
two quantum theories - a theory of quantum gravity gravity in (d+ 1) dimensions and a
gauge theory in d dimensions. The description of a quantum theory is by means of the
its generating functional Z, from which all correlation functions can be obtained. This
lead the authors of Refs. [93] and [94] to conjecture that the quantitative expression of
the duality is obtained by means of the equality of the partitions function of the gravity
theory and of its dual gauge theory. Thus, the computation of the partition function of one
of the theories of the pair is enough to compute the partition function and all observables
in its corresponding dual.

Let us explain these afirmations. Let Ô(x) be an operator in the d dimensional quantum
field theory, with φ(x, z) being its associated bulk field in the dual (d + 1) dimensional
theory of gravity. As discussed above, φ0(x) = φ(x, z → 0) is a field in the d dimensional
QFT that sources the operator Ô(x). The main statement of the gauge/gravity duality is
that the following relation between the generating functionals of both theories must hold

ZQFT[φ0] = Zgravity[φ→ φ0]. (3.21)

In the QFT side, the partition function ZQFT is given by

ZQFT[φ0] =

∫ ∏
i

Dφi e
−SQFT+

∫
ddxφ0O =

〈
e
∫
ddxφ0Ô

〉
, (3.22)

where φi is the collection of fields in the theory and SQFT the action of the QFT. On
the gravity side, the partition function Zgravity is not known in the full quantum regime.
However, in the case we are interested in, i.e. the strong ’t Hooft coupling limit of the
QFT, the dual theory of gravity becomes classical - and then we may use a semi-classical
approximation for Zgravity,

Zgravity ≈ e−Sgravity[φ→φ0], (3.23)
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where Sgravity is the classical action for a theory of gravity corresponding to the classical
limit of the d+1 dimensional quantum gravity theory. The action Sgravity is evaluated at a
saddle-point, subjected to the boundary condition that the bulk field φ goes to φ0 at the
boundary of the space-time. If there is more than one saddle-point, a summation over all
saddle-points is implied. Combining Eqs. (3.21), (3.22) and (3.23) we get an approximation
for the d dimensional QFT partition function in the strong ’t Hooft coupling limit,

ZQFT[φ0] ≈ e−Sgravity[φ→φ0]. (3.24)

With the QFT partition function (3.24) written in terms of the gravity theory at hand,
we may proceed to extract the (Euclidean) n-point correlation functions 〈Ô(x1) . . . Ô(xn)〉.
From standard QFT lore [25], n-point connected correlation functions 〈Ô(x1) . . . Ô(xn)〉connected

are given by the nth functional derivative of logZQFT[φ0] with respect to the source φ0(x),
after taking the sources to zero

〈Ô(x1) . . . Ô(xn)〉connected = (−1)n
δn

δφ0(x1) . . . δφ0(xn)
logZQFT[φ0]

∣∣∣∣
φ0=0

. (3.25)

Using Eq. (3.24), the n-point correlation functions can be computed holographically by

〈Ô(x1) . . . Ô(xn)〉connected =
δn

δφ0(x1) . . . δφ0(xn)
Sgravity

∣∣∣∣
φ0=0

. (3.26)

In general, the on-shell action Sgravity is divergent - it picks up a infinite contribution
from the near-boundary region. In terms of the dual QFT, this corresponds to a UV
divergence. This constitutes an example of the UV/IR-correspondence - the asymptotic
boundary defines the long distance, IR, regime of the gravitational theory. On the other
hand, the near boundary contribution to Sgravity generates the usual UV divergences of
the dual QFT. A process, called holographic renormalization [120–122], that regularizes
and renormalizes the on-shell action Sgravity must be applied in order to compute physical
correlation functions. The holographic renormalization procedure also leads to a formal
way of understanding the gauge/gravity duality as a holographic version of the renormal-
ization group [123].

3.5 Scaling dimensions

A simple way to see the renormalization group interpretation of the gauge/gravity
duality at work is to look at how massive fields in the bulk gravity theory are related to
scaling dimensions of the dual quantum field theory. Let us analyze a simple example, of
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a scalar field φ(x, z) on an asymptotically AdSd+1 space-time. The bulk action is given by

S = −1

2

∫
ddx
√−g

[
(∂φ)2 −m2φ2

]
, (3.27)

The classical equation of motion that follows from δS = 0 is a wave equation on AdSd+1,
that is

(�−m2)φ(x, z) = 0, (3.28)

where � is the Laplacian operator on a scalar field,

�φ = DµD
µφ =

1√−g∂µ(
√−ggµν∂νφ). (3.29)

Writing Eq. (3.28) in the background given by the asymptotic AdS metric in Eq. (3.4),
then passing to momentum space in the transverse directions by

φ(k, z) =

∫
ddx

(2π)d
eik·xφ(x, z), (3.30)

we arrive at (after taking z → 0)

[
z2∂2

z + (d− 1)Lz∂z + L2m2
]
φ(k, z) = 0. (3.31)

This differential equation has two linearly independent solutions, given by φ1(z) ∝ zd−∆

and φ2(z) ∝ z∆, where ∆ is given by

∆ =
d

2
+

√
d2

4
+m2L2. (3.32)

Since φ1 and φ2 are linearly independent solutions, the general near boundary solution is

φ(k, z → 0) ≈ A(k)φ1 +B(k)φ2, (3.33)

whereA(k),B(k) are constants with respect to z. Back to coordinate space, the asymptotic
solution is given by Eq. (3.33) but with A = A(x) and B = B(x). Requiring that ∆ is
real means that

m2 ≥ − d2

4L2
. (3.34)

That is, in AdS space a scalar field φ can have a negative mass squared m2, as long as
m2 satisfies Eq. (3.34), known as the Breitenlohner-Freedman bound [124]. If this bound
is satisfied, then ∆ > d − ∆; thus φ1 dominates over φ2 for z → 0. Also, if m2 < 0

then d −∆ < 0 (as ∆ > 0 always) - thus, the solution φ1 is non-normalizable and φ2 is
normalizable. The non-normalizable solution φ2, as it blows up on the boundary, must
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deform the dual gauge theory. This suggests the interpretation φ2 as a source in the gauge
field. The normalizable solution φ1 is interpreted to give the vacuum expectation value of
the operator sourced by φ2. [125]

Now, to apply Eq. (3.24) we need to consider the on-shell action of the scalar field.
Thus, we need to put Eq. (3.33) back into the action (3.27). However, the UV divergences
mentioned in Section 3.4 mean that S → ∞, as φ → ∞ due to the non-normalizable
solution. In this Section, we will adopt a very simple regularizing procedure and impose
an IR cutoff on the geometry at z = ε, where ε � 1. Then, we introduce a boundary
regularized field φreg(x) at the cutoff plane z = ε by

φreg(x) = εd−∆φ(x, ε), (3.35)

which is finite as ε→ 0. Now, integrating the action (3.27) by parts, the bulk term is zero
by the equations of motion and we are left with the boundary term evaluated at the UV
cutoff

S ∼
(
L

ε

)2d ∫
ddxφ(x, ε)O(x, ε), (3.36)

where we identified O(x, z) as a the dual z dependent operator, where z gives the renor-
malization group flow, as discussed in Section 3.2. Introducing the regularized field φreg(x)

of Eq. (3.35) we get

S ∼ L2dε−∆

∫
ddxφreg(x) O(x, ε). (3.37)

Requiring that S is finite for all ε implies that the boundary operator O(x) should satisfy

O(x) = ε∆O(x, ε), (3.38)

so that
S ∼ L2d

∫
ddxφreg(x) O(x), (3.39)

which is now finite for all ε. From Eq. (3.38), we see that ∆ gives the scaling dimension
of the operator associated with O. From the gravity theory side, (3.35), we may associate
d − ∆ with scaling dimension of the bulk field φ(x, z). Thus, we see that the mass and
scaling behavior of a bulk scalar field determines the scaling behavior of the correspondent
operator in the dual gauge theory.

Consider a deformation of the field theory in order to include the operator Ô(x) in
the action. Then, as discussed in Section 3.4, φreg(x) is associated with the UV coupling
of the field theory. In fact, we see that if

1. m2 > 0, then d −∆ > 0 and the coupling φ(x) → 0 as ε → ∞, by (3.35). That is,
O(x) is an irrelevant operator, since its effective coupling at the IR is vanishingly
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small. On the other hand, φ(x) → ∞ as ε → 0 and the UV behavior of the theory
is changed by the deformation. As mentioned above, φ2 is then identified with a
source in the QFT.

2. m2 < 0, then ∆ − d > 0, and φ(x) → ∞ as ε → 0. Thus O(x) is called a relevant
operator, since its effective coupling in the IR is large. On the other hand, φ → 0

as ε→∞ - the operator does not change the UV behavior of the theory.

3. m2 = 0, then ∆ = d and the scaling behavior of Ô(x) cannot be understood only
from the analysis above. Since this case lies on the boundary of the foregoing cases,
the operator O is marginal.

3.6 The duality at finite temperature

So far, we have analyzed the gauge/gravity duality at zero temperature. Our main
interest in this thesis is the finite temperature aspects of strongly coupled gauge theories
from the gauge/gravity standpoint. So, it is necessary to understand how the duality
works a finite temperature [126].

Also, this leads to one of the main virtues of the gauge/gravity duality - it can -
and has been - used to study strongly coupled field theories at finite temperature in
real time [127,128]. As already mentioned in the last chapter, the main non-perturbative
method to study strongly coupled gauge theories, lattice gauge theory, is formulated
in Euclidean time and is ill-suited to compute quantities in real time, such as transport
coefficients. The gauge/gravity duality provides a powerful method of extracting real time
information at finite temperature, which is the origin of its main appplications.

3.6.1 Heuristic argument

The main idea to formulate the duality at finite temperature is to consider a black hole
in the interior of the bulk geometry. The key argument is that, semi-classically, a black
hole emits Hawking radiation with a thermal spectrum at temperature T [129,130]; a black
hole inside an asymptotically AdS5 space then emits thermal radiation in the direction
of the boundary. However, as discussed in Subsection 3.2.3, all radiation incoming at the
boundary is radiated back to the black hole. Thus, we conclude that the black hole acts as
a perfect absorver - a perfect black body, and that the boundary is in thermal equilibrium
with the black hole in the bulk. Thus, the gauge theory at the boundary of the geometry is
also in thermal equilibrium at temperature T . In summary, a black hole emitting Hawking
radiation at temperature T in the bulk of the geometry is correspondent to a non-Abelian
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gauge theory in thermal equilibrium at the same temperature T - that is, a non-Abelian
plasma.

3.6.2 AdS5/Schwarzschild black hole

The simplest example of the gauge/gravity duality at finite temperature is to consider
N = 4 SYM at finite temperature. In Section 3.3, we started from a extremal black 3-
brane - therefore, we started with T = 0. To consider a finite temperature black hole, we
move away from extremality. The corresponding near extremal, near horizon geometry is
given by the Schwarzschild/AdS5 geometry, whose metric is

ds2 =
L2

z2

(
−h(z)dt2 + d~x2 +

dz2

h(z)

)
(3.40)

where h(z) ≡ 1 − z4/z4
h is the blackening factor of the black hole. The event horizon of

this black brane is at z = zh.

3.6.3 Temperature

Let’s study the thermodynamics of this black hole. Since the same procedure will
be used to study the thermodynamics of all models in this work, we will work out the
thermodynamics of the AdS5 /Schwarzschild black hole in more detail.

The simplest way to extract the temperature of the black brane with metric (3.40) is
to consider the Euclidean version of the black hole [132]. First, we analytically continue
the metric (3.40) to imaginary time τ = it, obtaining

ds2 =
L2

z2

(
h(z)dτ 2 + d~x2 +

dz2

h(z)

)
, (3.41)

Now, the Euclidean version of the AdS5 /Schwarzschild black brane must end smoothly
at the event horizon. An indication that this is so stems from the signature of the metric
(3.40) changes from (+,+,+,+,+) to (−,+,+,+,−) if one could go from z > zh to
z < zh. On the other hand, a theorem in linear algebra states that a real symmetric
bilinear form must have the number of positive and negative signs in any diagonal basis.
Since the metric defines a symmetric bilinear form, the signature must be a topological
invariant [131].5 Thus, the Euclidean version of the geometry is cigar-shaped, with the

5This argument, however, is faulty since the real-time metric (3.40) does not describe global
Schwarzschild/AdS5 (Kruskal-like global coordinates for Schwarzschild/AdS can be found, for instance,
in [128]). However, note that, if one insists in using the local patch (3.40), the signature of the metric
changes from (−,+,+,+,+) to (+,+,+,+,+) at the event horizon, which leads to no contradiction with
the theorem used in the main text.



3.6 THE DUALITY AT FINITE TEMPERATURE 47

event horizon being the tip of the cigar where the geometry ends smoothly.
Therefore, the Euclidean geometry must be completely regular and smooth at the

event horizon. However, let’s us study the geometry near the horizon. Change coordinates
from z to r = z − zh and consider the metric at the vicinity of the horizon at r ∼ 0. The
metric becomes

ds2 ≈
(
L2r

4z3
h

dτ 2 +
4L2

rzh
dr2

)
+
L2

z2
h

d~x2. (3.42)

We then consider the coordinate ρ =
√

16L2r/zh:

ds2 ≈
(

2ρ2

L4z2
h

dτ 2 + dρ2

)
+

1

z2
h

d~x2. (3.43)

The expression in brackets is the metric of a plane in polar coordinates, if we identify as
the polar angle the coordinate θ = 2τ/(zh). If the period of θ is less than 2π, then we
we have a a conical singularity at ρ = 0. Since we require smoothness of the metric for
all ρ, this implies that the period of coordinate θ must 2π. That is, τ must be periodic
with period β given by 2β/(zh) = 2π or β = πzh. However, if the coordinate τ is periodic
with period β, then we are considering a thermal field theory with temperature given by
β = 1/T . Thus, the black hole temperature is

T =
1

πzh
, (3.44)

which is also the corresponding temperature of the dual gauge theory.

3.6.4 Entropy density

The entropy S of a black hole described by Einstein’s equations in the semi-classical
regime is given by the Bekenstein-Hawking formula [133,134],

S =
A

4Gd

(3.45)

where A is the area of the hypersurface defined by the event horizon and Gd is Newton’s
constant in d dimensions. For the geometry described by the metric (3.40), we evaluate
the 4-dimensional area of the hypersurface z = zh, which yields

S =

(
1

zh

)3

V3, (3.46)
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where V3 is the volume of the Minkowski slice at z = zh. Since V3 →∞, S →∞. However,
the entropy density s ≡= S/V3 is well-defined and given by

s =

(
1

zh

)3

. (3.47)

Eliminating zh by using (3.44), we obtain

s =
π3

4G5

T 3. (3.48)

Using Eq. (3.20) to eliminate G5 and L3 in favor of Nc, we get

s =
π2N2

c

2
T 3. (3.49)

A basic requirement of the gauge/gravity duality is that the number of degrees of freedom
in both sides of the duality be equal. Since the entropy is a measure of the number of
degrees of freedom, the entropy density of the gravity theory and of the dual quantum
field theory must be the same. Thus, s must be the entropy density sN=4 SYM,λ→∞ of
N = 4 SYM in the ’t Hooft limit λ� 1 with Nc →∞.

A first check of this result is that in a conformal field theory at finite temperature,
the only scale present in the theory is the temperature T . Thus, by dimensional analysis,
s ∝ T 3. Also, in the large Nc limit, s scales as N2

c since the number of gluons scales as
N2. Thus, s = cN2

c T
3 - the only thing remaining is to determine the constant, which may

depend on the ’t Hooft coupling λ. The entropy density of free N = 4 SYM in the large
Nc limit is given by the entropy density of a free gas of (N2

c − 1) ≈ N2
c gluons (2 with two

polarization each), 4 N2
c fermions and 6 N2

c scalars. That is, we have 8N2
c bosonic degrees

of freedom and 8N2
c fermionic degrees of freedom with spin 1/2. Each bosonic degree of

freedom contribute with (2π2/45)T 3 to the entropy density, while the contribution of each
fermionic degree of freedom is 7/8-ths (see Section 2.4) of the bosonic contribution. That
is

sN=4 SYM,λ=0 =

(
8 +

7

8
× 8

)
2π2

45
N2
c T

3 =
2π2

3
N2
c T

3. (3.50)

Note that sN=4 SYM,λ→∞ = 3/4sN=4 SYM,λ=0 - the number of degrees of freedom do not
change radically as one goes from weak coupling to strong coupling. This matches quali-
tatively the observed lattice result for pure SU(3) Yang-Mills [74], that for T & 2Tc, the
entropy density is about 80% of the free result, as remarked in Section 2.4.

The remainder of the thermodynamics of the strongly coupled N = 4 SYM plasma
follows from the equation of state (3.49). The pressure follows from s = (dp/dT ), and the
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energy density from p = −ε+ Ts; we then have6

εN=4,λ→∞ =
3π2

8
N2
c T

4 =
3

4
εN=,λ=0 (3.51)

and
pN=4,λ→∞ =

π2

8
N2
c T

4 =
3

4
pN=4,λ=0. (3.52)

3.6.5 General expressions for the thermodynamics from hologra-

phy

Let us consider fairly general dual theories of gravity, described by effective actions
(containing up to two derivative terms in a derivative expansion) which are given by the
usual Einstein-Hilbert action coupled to matter fields, so as Bekenstein-Hawking formula
can still be applied - the derivation of the Bekenstein-Hawking formula and the usual
thermodynamics of black holes depend upon the fact that Einstein’s gravity is a two
derivative action. Methods for computing the entropy in higher curvature gravity have
been developed - reviews can be found in [135] and [136].

We will assume that we have a gauge theory whose d + 1 dimensional dual theory of
gravity has a background metric gravity dual that is diagonal and is of the form

ds2 = e2A(z)

(
−h(z)dt2 + dx2

1 + . . .+ dx2
d−1 +

1

h(z)
dz2

)
, (3.53)

where A(z) and h(z) describe the geometry. This action has SO(3) rotation symmetry in
the xi spatial sections at each fixed z. We will assume, so as to the geometry describe a
black brane, that h(z) has a simple zero at z = zh, so that for z ∼ zh, h(z) ≈ h′(zh)(z−zh).
The hypersurface z = zh defines the event horizon of the black brane. We will assume that
the asymptotically AdSd+1 boundary is at z → 0. The Euclidean version of the metric is

ds2
E = e2A(z)

(
h(z)dτ 2 + dx2

1 + . . .+ dx2
d−1 +

1

h(z)
dz2

)
, (3.54)

Following the same argument of the previous paragraphs, we derive the temperature
T of the black brane as a function of the horizon position zh

T =
|h′(zh)|

4π
. (3.55)

6Note that the specific heat of AdS/Scharzschild black hole, given by c = (dε/dT ), is positive: c > 0.
This implies that the AdS/Scharzschild black is thermodynamically stable. This is a more formal way
of checking the thermodynamical stability mentioned in Subsection 3.2. It should be also be mentioned
that is in opposition to a asymptotically flat black hole, for instance, the black hole described by the
Scharzschild solution has c < 0 and thus is inherently unstable.
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The black brane entropy density follows the Bekenstein-Hawking formula (3.45), which
results in

s =
e3dA(zh)

4G5

. (3.56)

3.7 Euclidean and real time correlation functions

The prescription presented in Section 3.4 permits the evaluation of Euclidean corre-
lators. However, for studying real time phenomena in a finite temperature field theory
one needs to examine Green’s functions with different boundary conditions, such as the
retarted and advanced Green’s functions. In principle, one could, from the Euclidean cor-
relators, obtain the real-time Green’s functions by analytical continuation. However, in
practice this is often a prohibitive task, since it requires knowledge of the Euclidean cor-
relator at all frequencies (and not only on the Matsubara frequencies) - in most practical
cases the Euclidean correlator is only known at the Matsubara frequencies or in some
part of the frequency space by some high or low temperature expansion. Hence, a prac-
tical mean to extract real time correlation functions it is needed. This practical recipe
was proposed in Ref. [127] and later justified in Ref. [128]. In this subsection, we will
largely follow the discussion in the Appendix C of Ref. [137], where it was presented an
alternative, simpler, justification for the procedure presented in Ref. [127].

3.7.1 Euclidean correlation functions

We start by considering the Euclidean 2-point correlation function of the bosonic
operator Ô in momentum space, GE(ωn, ~k), where ωn are the Matsubara frequencies in
4 dimensions. The Euclidean correlator GE(ωn, ~k) is defined by the Fourier transform of
the 2-point correlation function in coordinate space, that is

GE(ωn, ~k) =
1

β

∫ β

0

dτ

∫
d3xe−i(

~k·~x−ωnτ)
〈
Ô(x)Ô(0)

〉
(3.57)

To compute it, we use the Euclidean prescription (3.26), derived from the the fundamental
equation (3.24). The difference is that at finite temperature, apart from requiring that
the bulk field φ(x, z) dual to the operator Ô satisfies φ(z → 0) → φ0, we require also
regularity at the horizon.

The Euclidean version of the action is given by

SE =

∫
d5x
√
gE

[
1

2q(z)
(∂φE)2 +

1

2
m2φ2

E

]
, (3.58)

where the Euclidean metric gE,µν is defined in (3.54) and φE(τ, ~x, z) is the Euclidean
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version of the bulk field φ(t, ~x, z). Here, q(z) is a z-dependent bulk coupling constant; we
will assume that q(z) is smooth and finite at the boundary and at the horizon. We also
introduce the momentum space version of φE(τ, ~x, z) by

φE(ωn, ~k, z) =
1

β

∫ β

0

dτ

∫
d3x e−i(

~k·~x−ωnτ)φE(τ, ~x, z). (3.59)

The equation of motion one derives from Eq. (3.58) is, in coordinate space,

∂µ

[√
gE gµνE ∂ν

(
φE
q

)]
+m2 1

q
φE = 0. (3.60)

In momentum space, using the specific form of the background (3.54) for d = 4, one finds
that [

∂2
z +

(
3A′ +

h′

h

)
∂z −

1

h

(
ω2
n

h
+ ~k2 + e2Am2

)]
φE(ω,~k, z)

q(z)
= 0. (3.61)

Let us analyze each of the boundary conditions on φ separately:

(a) Near boundary, z → 0

For z → 0, since the geometry is asymptotically Euclidean AdS, h→ 1 and eA → L/z.
The equation of motion (3.61) becomes the equation of motion for a scalar field in
AdS5 space at zero momentum, that is, Eq. . Thus, near the boundary, the solution
φ1 ∼ zd−∆ is the leading solution, where ∆ is given by Eq. (3.32).

(b) Near horizon, z → zh

For z → zh, h(z) ≈ h′(zh)(z − zh) and q(z) ≈ q(zh). The, the equation of motion
becomes, near horizon

∂2
zφE +

1

z − zh
∂zφE −

ω2
n

h′(zh)2

1

(z − zh)2
φE = 0, (3.62)

whose linearly independent solutions are

φE,1 ∼ |z − zh|ωn/(4πT ) (3.63)

φE,2 ∼ |z − zh|−ωn/(4πT ) (3.64)

The regular solution at the horizon is φE,1, while φE,2 is divergent at z → zh.

With the regular and normalizable solution φregE determined, we may proceed to input
the on-shell φE back into the action (3.58). After integrating by parts and using the
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equation of motion to eliminate the bulk term, we arrive at

SE =

∫
d4x gµνE φ

reg
E ∂µ

(
φregE
q(z)

)∣∣∣∣z=zh
z=ε

, (3.65)

where we introduced, as in Section , an UV cutoff at z = ε. Then, introducing the
momentum space φE by Eq. (3.59)

SE = β
∑
n

∫
d3k

(2π)3
JE[φregE ](ωn, ~k, z)

∣∣∣z=zh
z=ε

, (3.66)

where JE is a functional of φE given by

JE[φE](ωn, ~k, z) = φE(−ωn,−~k, z)
h(z)

q(z)
e2A(z)φE(ωn, ~k, z). (3.67)

The Euclidean correlation function GE defined by (3.57) in is then given by the pre-
scription (3.26), that is,

GE(ωn, ~k) = − δ2

δφ(ωn, ~k)δφ(ωn, ~k)
SE, (3.68)

which yields
GE(ωn, ~k) = −

(
JE[φregE ](ωn, ~k, z)

)∣∣∣z=zh
z=ε

. (3.69)

Now, since the equation of motion for φE depends on ωn and ~k only upon their squares
ω2
n and ~k2, and since the boundary conditions are invariant under the transformation
ωn → −ωn and ~k → −~k, it follows that the functional (3.67) satisfies

JE[φE](ωn, ~k, z) = JE[φE](−ωn,−~k, z). (3.70)

Thus, in Eq. (3.69), we have two pairs of terms that are equal to each other. We remark,
in passing, that Eq. (3.70) will play an important role when we discuss the justification
for the real-time prescription.

To complete the discussion of the Euclidean correlator, let’s simplify Eq. (3.69) a bit
further. Suppose that ωn 6= 0, then as φregE ∼ |z−zh|ωn/(4πT ) near the horizon, JE[φregE ]→ 0

as z → zh. Then, the horizon contributions to Eq. (3.69) vanish and we have, finally,

GE(ωn, ~k) = lim
z→0

JE[φregE ](ωn, ~k, z). (3.71)
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3.7.2 The real-time prescription

We first note that, at finite temperature, we must include, besides the boundary condi-
tion φ→ φ0 used in Eq. (3.24) at the boundary of the bulk theory, the regularity condition
of φ at the horizon of the black brane. However, in real time, more boundary conditions
at the horizon become possible, such as incoming or outgoing boundary conditions. This
reflects the fact that, in real time, one has many more possible choices of Green’s func-
tions (such as retarted, advanced, etc.) than in imaginary time. With this in mind, the
proposal of Ref. [127] to compute retarted Green’s functions from gauge-gravity consists
in associating with retarted Green’s function the infalling boundary conditions on the
horizon.

Let us summarize the prescription to compute a retarted correlator from the gauge/-
gravity duality. For simplicity, we consider a bulk scalar field φ(x, z) dual to the gauge
theory operator Ô in the general background (3.53). Let the bulk action for scalar field φ
be given by

S = −1

2

∫
d5x
√−g

[
1

q(z)
(∂φ)2 +m2φ2

]
(3.72)

One wants to evaluate the retarted correlation function in the gauge theory given by

GR(ω,~k) = −i
∫
d3xdt eiωt−i

~k·~xθ(t)
〈[
Ô(t, ~x), Ô(0,~0)

]〉
. (3.73)

The procedure is then the following:

1. One solves the classical bulk equations of motion, subjected to in-falling boundary
conditions at the horizon and also imposes that φ→ φ0 at the boundary at z →∞.
Call φin the solution subjected to these conditions.

2. Plug the solution found in the first step into the action. Integrating by parts and
passing to momentum space, the action can be generally written in the form

S =

∫
dωd3k

(2π)4
J [φin](r, ω,~k)

∣∣∣ z = zhz→0, (3.74)

where J [φ] is a functional quadratic on φ.

3. The retarted Green’s function is then given by

GR(ω,~k) = lim
z→0

J [φin](ω,~k). (3.75)
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3.7.3 Justifying the real-time procedure

Let us now justify the procedure described in the previous section. The goal is to
prove that one can perform an analytical continuation of the bulk fields which give the
Euclidean correlator in Eq. (3.71), and that this analytical continuation, supplemented
with adequate boundary conditions on the horizon, gives the retarted correlator. The main
message is that ingoing (outgoing) boundary conditions on the bulk fields at the horizon
corresponde to the retarted (advanced) real-time correlation function.

Let’s repeat the steps performed for the bulk field φE(τ, ~x, z) in an Euclidean gravity
theory for the bulk field φ(x, z) in a gravity theory with Lorentzian signature. The metric
is now given by the Lorentzian signature ansatz Eq. (3.53) and the corresponding action
is given by Eq. (3.72), both of which are analytical continuations of the Euclidean space-
time (3.54) and the Euclidean action (3.58). The Fourier transform of φ(ω,~k, z) is now
given by

φ(ω,~k, z) =

∫
d4x e−i(

~k·~x−ωt)φ(t, ~x, z). (3.76)

The bulk equation of motion for φ(ω,~k, z) is given by[
∂2
z +

(
3A′ +

h′

h

)
∂z −

1

h

(
−ω

2

h
+ ~k2 + e2Am2

)]
φ(ω,~k, z)

q(z)
= 0, (3.77)

which is the same as the equation of motion for φE, but with the change ω2
n → −ω2. The

near boundary solution is unchanged from the Euclidean case. The near horizon solution,
on the other hand, is slightly changed due to the sign change in Eq. (3.77). The asymptotic
solutions are now

φin ∼ |zh − z|−
iω

4πT (in-falling solution) (3.78)

φout ∼ |zh − z|
iω

4πT (out-going solution). (3.79)

The solution φin represents an in-going wave into the horizon and φout an out-going
wave. Contrary to the Euclidean case, both near horizon solutions in real time are now
acceptable, at least in principle. Before discussing this point, let’s write down the on-shell
action, which is now given by

S =

∫
dωd3k

(2π)4
J [φ](ω,~k, z)

∣∣∣z=zh
z=ε

, (3.80)

where the functional J [φ] is the real version of the functional JE[φE]:

J [φ](ω,~k, z) = −φ(−ω,−~k, z)h(z)e3A(z) 1

q(z)
∂z

(
φ(ω,~k, z)

)
. (3.81)
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Now, let us return to the question of in-falling and outgoing boundary conditions.
Comparing the equations of motion for the Euclidean bulk field φE (Eq. (6.20)) and for
the real time bulk field φ, we see that

φE(ωn) =

{
φin(iωn) for ωn > 0

φout(iωn) for ωn < 0
(3.82)

This implies that the functionals J and JE satisfy the relation

lim
z→0

JE[φE](ωn, ~k, z) =

{
− limz→0 J [φin](iωn, ~k, z)

− limz→0 J [φout](iωn, ~k, z)
(3.83)

Since the retarted correlator is given by analytic continuation of the Euclidean correlator,
[60]

GR(iωn, ~k) = −GE(ωn, ~k) for ωn > 0, (3.84)

it follows from Eqs. (3.71),(3.83) and (3.84) that

GR(ω,~k) = lim
z→0

J [φin](ω,~k), (3.85)

as promised.
We now only need to consider the zero frequency case ω = ωn = 0 to complete the

argument. The first fact to notice is that in this limit, the equations of motion for φ and
φE are identical. The near-horizon solutions are given by

φ ∼ const (regular) (3.86)

φ ∼ log(z − zh) (divergent)

The divergent solution at the horizon could generate extra terms on Eq. (3.80), but must
be discarded imposing horizon regularity.

In passing, we note that the outgoing boundary condition involving φout yields, by the
same argument, the advanced correlator GA:

GA(ω,~k) = −i
∫
d3xdt eiωt−i

~k·~xθ(t)
〈[
Ô(0,~0), Ô(t, ~x)

]〉
=

1

16πG5

lim
z→0

J [φout](ω,~k),

(3.87)
We also note that this argument can be generalized to higher spin operators and in the
case where there is mixing of fluctuations from different channels - see Ref. [137] for
details.



3.8 TRANSPORT COEFFICIENTS 56

3.8 Transport coefficients

Many of the applications of the gauge/gravity duality involve the calculation of trans-
port coefficients for strongly coupled plasmas. In this section, we will present an use-
ful and practical way to evaluate transport coefficients using holography, the membrane
paradigm [104] as applied to the gauge/gravity duality [138].7

3.8.1 Brief review of the literature

The computation of transport coefficients is, in a way, at the heart of gauge/gravity
duality. The seminal work regarding the computation of the shear viscosity in the strongly
coupled N = 4 SYM plasma was done in Ref. [143]; the computation essentially consisted
in studying metric fluctuations in the xy channel, which as we will explain below, couple
with the shear viscosity η. The authors of Ref. [143] have used the fact that the low energy
cross section graviton scattering from an AdS/Scharzschild solution is given by the area
of the horizon to deduce that, for N = 4 SYM at strong coupling, the shear viscosity is
given by

η =
π

8
N2T 3. (3.88)

In Ref. [144], which studied transport coefficients in the membrane horizon, the shear
viscosity and the diffusion constant were computed in other gauge/gravity pairs of theo-
ries. The authors of Ref. [144] noticed that in all backgrounds analyzed in their work, the
following relation held

η

s
=

1

4π
(3.89)

This lead to a general holographic computation [90] (see also Ref. [145]) that proved
that, for all gauge theories with dual theories of gravity with isotropic backgrounds and
effective actions with a maximum of two derivatives, the result in Eq. (3.89) holds at
strong ’t Hooft coupling.8 A further alternative way of compute transport coefficients is

7We note that this procedure relies crucially on the existence of the stretched membrane horizon, which
relies itself on the validity of the black hole complementarity conjecture [139,140] - that is, the argument
that while distant observers see the membrane horizon infinitesimally near the black hole horizon, an
infalling observer sees nothing special while crossing the black hole horizon; in particular, they see no
membrane horizon. However, the validity of the black hole complemntarity is a thorny question of black
hole physics and quantum gravity. Recently, for instance, the validity of black hole complementarity
has been put in check by the so-called AMPS solution to the problem of the black hole information
paradox [141]. See, for instance, Ref. [142] for a counterargument to the AMPS firewall solution.

8In Refs. [144] and [90], it was also conjectured that the result (3.89) provided an absolute lower bound
for the shear viscosity/entropy ratio in quantum fields theories - that is, in all QFTs, either at strong
or weak coupling, η/s ≥ 1/(4π). However, it was shown, in gauge theories dual to theories of gravity
which do not satisfy the conditions used in Ref. [90], namely, having an isotropic background and a two
derivative effective action, that it is possible that η/s ≤ 1/(4π). For example, Gauss-Bonnet gravity, a
higher derivative theory of gravity of gravity, in an asymptotically AdS5 background [146], can lead to
η/s ≤ 1/(4π) in the dual gauge theory [91,92] (see also Ref. [147]). It is possible to have components of the
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to focus on quasinormal modes of black branes [152], which can be put in correspondence
with hydrodynamical poles of the relevant Green’s functions.

3.8.2 Kubo formulas

The main tool to compute transport coefficients from microscopic quantum field the-
ories are the Kubo formulas, one of the main results of the linear response theory [61].
In this section I will present the derivation of Kubo formulas for the shear viscosity and
electric conductivity, which will be discussed in a later chapter.

Linear response theory

Consider a quantum system at finite temperature described by the Hamiltonian

Ĥ = Ĥ0 + Ĥ ′, (3.90)

where Ĥ0 is the original Hamiltonian of the system and H ′ is a small perturbation of Ĥ0

described by
Ĥ ′ = −λÔδ(t), (3.91)

where λ � 1 is a small coupling constant and Ô is a time-independent operator. This
fluctuation represents a small external “kick” to the system at t = 0. The objective of
linear response theory is to characterize the response of the system to this fluctuation.

The equation of motion for the density matrix ρ̂(t) of the complete system is

i
∂ρ̂

∂t
= [Ĥ, ρ̂], (3.92)

Since λ� 1, using time-dependent perturbation theory to linear order in the perturbation,

ρ̂(t) = e−iĤ0tρ̂0e
iĤ0t + δρ̂(t), (3.93)

where
δρ̂(t) = ie−iĤ0t[λÔ, ρ̂0]eiĤ0tθ(t), (3.94)

where ρ̂0 is the density matrix of unperturbed Hamiltonian Ĥ0.
Now, let P̂ (t) be an operator whose expectation value we are interested in computing

shear viscosity tensor ηijkl satisfying ηijkl/s < 1/(4π) in anisotropic backgrounds, such as deformations of
N = 4 SYM by an axion field [148,149] or by including external magnetic fields, such as in Refs. [150,151]
and [24].
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in the perturbed system. Then, its expectation value is given by

〈P̂ (t)〉 = Tr
(
ρ̂(t)P̂

)
. (3.95)

Inserting Eq. (3.94) in Eq. (3.95),

〈P̂ (t)〉 = Tr
{
P̂ e−iĤ0tρ̂eiĤ0t

}
+ δ〈P̂ (t)〉, (3.96)

where
δ〈P̂ (t)〉 = iTr

{
e−iĤ0t

[
λÔ, ρ̂0

]
eiĤ0tP̂

}
θ(t). (3.97)

Since P̂ (t) is a Heisenberg picture operator, the corresponding Schrodinger picture oper-
ator P̂ is

P̂ (t) = e−iĤ0tP̂ eiĤ0t. (3.98)

Using Eq. (3.98) and the invariance of the trace by cyclic permutations, we arrive at

δ〈P̂ (t)〉 = iθ(t)〈
[
P̂ (t), λÔ(0)

]
〉. (3.99)

The main result of linear response theory is Eq. (3.99), which relates the fluctuations of
the expectation value of an operator with a time-ordered expectation value of the operator
in the equilibrium state.

Scalar field

The simplest example is to consider the response of an operator Ô which is coupled
to fluctuations of the field φ0(~x, t). The perturbation hamiltonian is given by

Ĥ ′ = −φ0Ô. (3.100)

We start by considering a small localized kick given by an external field,

φ0(t, ~x) = δφ0 δ
(3)(~x) δ(t). (3.101)

Identifying in Eq. (3.99) P̂ with Ô and φ0Ô with λÔ, we arrive at

δ〈φ0〉(t, ~x) = φ0iθ(t)〈
[
Ô(t, ~x), Ô(0,~0)

]
〉. (3.102)

Now, integrating over an arbitrary distribution of “kicks” over space-time,

δ〈φ0〉(t, ~x) = i

∫
dt′d3x′θ(t− t′)φ0(t′, ~x′)〈

[
Ô(t, ~x), Ô(t′, ~x′)

]
〉, (3.103)
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Considering the Fourier transform of Eq. (3.103),

δ〈Ô〉(ω) = φ0(ω)GR
µν(ω,

~k = ~0), (3.104)

where GR is retarted correlator of Ô

GR(ω,~k) = −i
∫
d3xdt eiωt−i

~k·~xθ(t)〈
[
Ô(t, ~x), Ô(0,~0)

]
〉. (3.105)

We will assume that the the low frequency response of the system to the external pertur-
bation is given by a Ohm’s law of the form,

δ〈Ô〉 = χ∂tφ0, (3.106)

where χ is the transport coefficient associated with the low frequency regime. Comparing
the Fourier transform of Eq. (3.106) with the result of linear response theory Eq. (3.104)
we derive

χ(ω) = −G
R(ω,~k = 0)

iω
= −ImGR(ω,~k = 0)

ω
. (3.107)

Eq. (3.107) is called Kubo’s formula, which permits us to evaluate the transport coefficient
χ, which determines the low momentum, low frequency response of the system to external
fluctuations in terms of the underlying microscopic theory here represented by the retarted
correlator GR.

Conductivity

Let us now apply Eq. (3.99) to the response of a system due to an external electro-
magnetic field perturbation. In this case, the perturbation hamiltonian density is given
by

Ĥ ′ = −AµJµ, (3.108)

where Aµ is the vector potential of the external electromagnetic field and Jµ is the elec-
tromagnetic current. Again starting from a small localized kick of the field of the form

Aµ(t, ~x) = Aµδ
(3)(~x)δ(t), (3.109)

and identifying Aµ with λÔ and Jµ with P̂ , we see that, in Eq. (3.99),

δ〈Jµ〉(t, ~x) = Aνiθ(t)〈
[
Jµ(t, ~x), Jν(0,~0)

]
〉 (3.110)
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Integrating over a distribution of “kicks”,

δ〈Jµ〉(t, ~x) = i

∫
dt′d3x′θ(t− t′)Aν(t′, ~x′)〈[Jµ(t, ~x), Jν(t

′, ~x′)]〉, (3.111)

Passing to momentum space, using the convolution theorem, we arrive at

δ〈Jµ(ω)〉 = Aν(ω)GR
µν(ω,

~k = ~0), (3.112)

where GR
µν(ω,

~k) is the retarted current-current correlator:

GR
µν(ω,

~k) = −i
∫
d3xdt eiωt−i

~k·~xθ(t)〈
[
Jµ(t, ~x), Jν(0,~0)

]
〉. (3.113)

Now, the space-space part of Eq. (3.112) is equivalent to Ohm’s law. In time domain,
Ohm’s law can be written as

δ〈Ji〉 = σij∂tA
j, (3.114)

where σij is the conductivity tensor. Passing to the frequency domain,

δ〈Ji〉 = −iωσij(ω)Aj(ω). (3.115)

Comparing Eqs. (3.115) and (3.112), we see that the conductivity tensor can be calculated
in terms of the microscopic theory by

σij(ω) = −G
R
ij(ω,

~k = 0)

iω
= −ImGR

ij(ω,
~k = 0)

ω
. (3.116)

Eq. (3.116) is the Kubo’s formula for the electric conductivity.

Shear viscosity

For a last example of a Kubo formula for a transport coefficient, we consider the shear
viscosity η of a relativistic fluid. More details on hydrodynamics, we refer the reader to
Chapter 8, where higher order theories and theories with bulk dissipation coefficients are
taken into account. In this section we work only with the simple example of relativis-
tic Navier-Stokes - the objective here will be to show one can derive Kubo formula for
transport coefficients in theories of hydrodynamics from the knowledge of the retarted
energy-momentum tensor correlator.

Hydrodynamics is an effective theory, valid in the long wavelength and low frequency
limit. In hydrodynamics, we relinquish knowledge of the microscopic theory, considering
only a coarse grained, macroscopic, version of the microscopic theory where the main
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degree of freedom is taken to be four-velocity vector field uα of the fluid. The stress
energy tensor T (0)

µν of a perfect relativistic fluid is uniquely fixed considering homogeneity
and isotropy of the fluid in its rest frame, where uα = (−1, 0, 0, 0) being given by [153]

T (0)
µν = (ε+ p)uµuν + pgµν , (3.117)

where ε is the energy density of the fluid and p its pressure. Now, a non-perfect fluid
includes an extra term, which depends upon the gradients of uµ,

Tµν = T (0)
µν + Πµν . (3.118)

where Πµν is called the dissipative tensor. In the case of relativistic Navier-Stokes theory,
the dissipative tensor is given by

Πµν = −∆µα∆νβ

[
η∇〈αuβ〉 + ζgαβ∇λu

λ
]
, (3.119)

where ∇ is the covariant derivative and ∆µα is a projector orthogonal to the four velocity,
given by

∆µα ≡ gµα + uµuα. (3.120)

Also, in Eq. (3.119), the brackets indicate symmetrization with null trace

∇〈αuβ〉 ≡ ∇αuβ +∇αuβ −
1

3
gαβ∇λu

λ. (3.121)

In Eq. (3.119), η is the shear viscosity and ζ is the bulk viscosity.
The goal now is to relate the shear viscosity η with a microcospic theory. We will,

once again, use linear response theory. The stress-energy tensor is sourced by fluctuations
of the metric (see Appendix A). Let us consider a fluctuation of the spatial part of the
metric around flat space, gij = δij → g′ij = δij + hij. Expanding Tµν to first order in h, we
get

δTij = phij −
1

2
κhkkδij + η

(
−∂thij +

1

3
δijδ

kl∂thkl

)
− 1

2
ζδijδ

kl∂thkl, (3.122)

where κ = −V ∂p/∂V is the bulk modulus. The Fourier transform of Eq. (3.122) is given
by

δTij(ω) = hkl(ω)

(
pδki δ

l
j −

1

2
kδijδ

kl

)
+

+
iω

2

[
η

(
δki δ

l
j + δliδ

k
j −

2

3
δijδ

kl

)
+ ζδijδ

kl

]
hkl(ω) (3.123)
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In special, the xy channel yields

δTxy = (p+ iωη)hxy. (3.124)

Now, on the other hand, consider the microscopic theory whose low momentum expan-
sion is the hydrodynamical classical theory. Then, the perturbation hamiltonian density
is given by

Ĥ ′ = −1

2
hijT̂

ij, (3.125)

since metric fluctuations source the energy momentum tensor. As in the case of the electric
conductivity, we consider a small localized kick, hkl(t, ~x) = hklδ

(3)(~x)δ(t), and identify
λÔ = hklδ

(3)(~x)/2 and P̂ (t) = Tij(t, ~x). Proceeding as in that case we arrive, after passing
to the frequency domain,

δ〈T̂ij(ω)〉 = −1

2
hklG

R
ijkl(ω), (3.126)

where GR
ijkl(ω) is the retarted Green’s function of the stress energy-momentum tensor,

GR
µνρλ(ω) = −i

∫
dtd3xeiωt−i

~k·~xθ(t)
〈[
Tµν(t,~0), Tρλ(0,~0)

]〉
. (3.127)

Now, in the hydrodynamic regime we identify 〈T̂ij〉 with the classical stress-energy tensor
Tij of the fluid. Then, comparing Eq. (3.124) with Eq. (3.126) we see that,

η = − lim
ω→0

1

ω
ImGR

xyxy(ω,
~k = 0), (3.128)

which is Kubo formula for the shear viscosity. A Kubo formula for the bulk viscosity ζ
follows from comparing the traces on the ij and kl indices of Eq. (3.124) and Eq. (3.126):

ζ = −4

9

1

ω
ImGR,ij

ijij (ω,~k = 0). (3.129)

3.8.3 Membrane transport coefficients

In this work, we will mainly work with the membrane paradigm as applied to the
gauge/gravity duality [138]. In this section we will prove the result Eq. (3.89) in this way,
as an illustration of the technique. In this work, the membrane paradigm will be used
primarily to compute the electric charge susceptibility and the electric conductivity of the
plasma in Chapter 7.

The main idea is to consider the transport coefficients of the membrane horizon. For
a fairly general class of bulk fields, it will be shown that the transport coefficients for the
membrane horizon are exactly the same transport coefficients of the dual non-Abelian
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plasma. The formalism of the membrane paradigm excels when treating with bulk fluc-
tuations given by massless scalar fields and vector fields.

Throughout this section, I will assume that the background has the form given by Eq.
(3.53).

Scalar fields

Let us present first the formalism for massless scalar fields. Consider an operator Ô
whose associated bulk field has its fluctuations around the background described by a
massless scalar field φ with action

Sbulk = −1

2

∫
dd+1x

√−g 1

q(z)
(∂φ)2, (3.130)

where q(z) is a z-dependent bulk coupling. To have a well-posed variational problem in
the bulk, one must adjoin to Sbulk a term defined in the membrane horizon at z0 = zh− ε,
where ε� 1, whose action is given by

Ssurf =

∫
z=z0

ddx
√−γ Πmb(z0, x)φ(z0, x), (3.131)

where Πmb is a “membrane φ-charge” given by

Πmb(z0, x) = −h(z0)

q(z0)
e−A(z0)∂zφ(z0, x), (3.132)

and γ = det(−γµν), with γµν being the induced metric on the membrane horizon.
The membrane horizon term cancels the contribution from the bulk that comes about

when we integrate by parts when considering δS = δSbulk + δSsurf . Now, as proven in
Appendix B, the requirement of infalling boundary conditions at the membrane horizon
is equivalent to requiring that the bulk fields depend near z0 only upon the Eddington-
Finkelstein coordinate v defined implicitly by

dv = dz +

√
gzz
gtt
dt = dz +

1

h(z)
dt. (3.133)

Then, applying the chain-rule to φ(t, ~x, r) = φ̃(v, ~x), we see that

∂zφ =

√
gzz
gtt
∂tφ =

1

h(z)
∂tφ, (3.134)

so that

Πmb = − 1

q(z0)

e−A(z0)√
h(z0)

∂tφ. (3.135)
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Now, e−A(z0)/
√
h(z0) =

√
gtt is the rescaling factor for the distant observer examining

the dynamics of the membrane horizon. Then, Eq. (3.135) gives a relation between the
current of the membrane paradigm and the time response of the fluctuation,

Πmb = −χ∂t̂φ, (3.136)

where t̂ is the rescaled time coordinate. Eq. (3.136) is a Ohm’s law for the membrane
scalar current, defining its associated membrane transport coefficient χmb by

χmb =
1

q(r0)
e3A(z0). (3.137)

Abelian gauge fields

Let us now extend the membrane paradigm formalism to a U(1) gauge field Aµ(x, z)

in the bulk, dual to the electric current operator Jµ. The bulk action is given by

Sbulk = −1

4

∫
dd+1x

√−g 1

f(z)
FµνF

µν , (3.138)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor and f(z) is a
possible z-dependent coupling. A well-posed variational problem requires, alongisde Sbulk,
a membrane horizon term given by

Ssurf =

∫
z=z0

ddx
√−γ jµmb(z0, x)Aµ(z0, x), (3.139)

where the membrane current jµmb is given by

jµmb(z0, x) = − eA(z0)

h(z0)f(z0)
∂zF

rµ(z0, x). (3.140)

The argument applied for scalar fields that near the membrane horizon the bulk fields
can only depend upon the Eddington-Finkelstein still holds; this requirement leads to the
constraint

∂zAi =

√
gzz
gtt
∂tAi =

1

h(z)
∂tAi as z → z0. (3.141)

Then, fixing the Ar = 0 gauge, Fri = Fti/h(z) and, thus,

jimb(z0, x) = − 1

h(z0)f(z0)
e−A(z0)F i

t . (3.142)
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By the same rescaling argument, the membrane’s Ohm’s law in the rescaled orthonormal
time can be written as, assuming isotropy,

δ〈jimb〉 = σmb∂t̂Aj, (3.143)

where σmb is the membrane conductivity. Comparing Eqs. (3.142) and (3.143) we obtain

σmb =
1

f(z0)
. (3.144)

3.8.4 Flow equations

Now that we know the transport coefficients on the membrane horizon, we have to
discuss how to relate the membrane transport coefficient with the transport coefficients
of the boundary gauge theory. This connection is described by the bulk flow equations.

Scalar fields

Let us start again with the bulk scalar field. We start by observing that, at the linear
response level, we may write, using Eq. (3.104), the real-time prescription (3.75) as

GR(ω,~k) = lim
z→0

Π(ω,~k, z)

φ(ω,~k, z)
. (3.145)

where
Π(ω,~k, z) =

1

q(z)
e3A(z)h(z)∂zφ(ω,~k, z) (3.146)

can be identified as the conjugate momentum to φ(ω,~k, z) in a z-slice. Using Eq. (3.145)
into Eq. (3.107), we see that the transport coefficient χ can be written in terms of the
bulk fields as

χ = lim
z→0

Π(ω,~k = 0, z)

iωφ(ω,~k = 0, z)
. (3.147)

This motivates to define a bulk z-dependent transport coefficient χ̄(ω,~k, z) by

χ̄(ω,~k, z) =
Π(ω,~k, z)

iωφ(ω,~k, z)
. (3.148)

Then the boundary transport coefficient χ(ω) is given by following the flow of the bulk
transport coefficient to the boundary

χ(ω) = lim
z→0

χ̄(ω,~k = 0, z). (3.149)
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Thus, our objective is now to follow the flow of the bulk transport coefficient χ̄ from
the membrane horizon to the boundary. From the definition of the conjugate momentum
(3.146) and the equation of motion for the scalar field (3.77), we derive an equation for
the flow of the bulk transport coefficient χ̄

∂zχ̄ =
iω

h(z)

[
χ̄2

Σ(z)
− Σ(z)

(
1−

~k2

ω2
h(z)

)]
, (3.150)

where Σ(z) is given by

Σ(z) =
1

q(z)
e3A(z). (3.151)

Now, at the horizon we impose that χ̄ is regular. Since h(z) → 0 as z → zh, this means
that the expression in brackets in Eq. (3.150) must vanish at the horizon. In the zero
momentum limit, ~k = 0 (which is the only limit we will be interested in), this implies that

χ̄(ω,~k = 0, z0) = Σ(z0) =
1

q(z0)
e3A(z0) =

s

q(z0)
. (3.152)

Comparing with Eq. (3.137), we see that

χ̄(ω,~k = 0, z0) = χmb(ω), (3.153)

that is, at the membrane horizon the bulk transport coefficient is given by the membrane
transport coefficient. Thus, the transport coefficient at the boundary is given by following
the flow from the membrane transport coefficient to the boundary.9

Now, consider the low-frequency limit, ω → 0. Then, the flow equation (3.150) becomes
trivial, ∂zχ̄ = 0. Therefore, the flow from the horizon to the boundary and the DC
transport coefficient χ(ω = 0) is given by

χ = lim
ω→0

lim
z→0

χ̄ = χmb, (3.154)

that is, at zero frequency, the membrane transport coefficient is equal to the boundary
theory transport coefficient.

9We note that (3.150) is a Riccati equation. The Riccati equation, a first order non-linear equation,
is equivalent to a second order linear equation - in this case, the equation of motion for φ, Eq. (3.75). A
first order equation has one boundary condition, while a second order equation must have two boundary
conditions. The flow equation (3.150) is subjected only to a boundary condition at the horizon. The
equation of motion for φ is subjected to a boundary condition at the horizon and another at the asymptotic
AdS boundary.
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Universality of the shear viscosity in holography

An appplication of membrane paradigm is to prove the universality of the shear vis-
cosity/entropy density ratio η/s in holographic theories. To compute the shear viscosity,
we can use Kubo formula (3.128) and compute the retarted correlation function of T̂xy. As
discussed in Section 3.2, the bulk field that couples with the energy-momentum tensor is
the metric gµν . Thus, to compute the retarted correlator using the real-time prescription,
we should have to compute the on-shell action of the theory under fluctuations of the met-
ric, gµν → gµν + hµν . However, as shown in [90], for strongly coupled field theories dual
to theories of gravity with up to two derivatives in the effective gravitational action, the
fluctuations hµν of the metric over an isotropic background in the transverse x direction
are such that gyyhxy = hyx decouple from the remaining metric fluctuations. The action
for fluctuations of hyx fluctuations is given by

S =
1

16πG5

∫
d5x
√−g1

2
(∂hyx)

2. (3.155)

That is, hyx behaves a massless scalar field with constant coupling q(z) = 1/16πG5. We
can then immediately apply Eq. (3.152) and compute the shear viscosity:

η

s
=

1

4π
, (3.156)

a result that is valid for all strongly coupled field theories dual to theories of gravity with
up to two derivatives in the effective gravitational action. [138]

Abelian gauge field

Let us now turn our attention to the case of an Abelian gauge field and focus on the
computation of transport coefficients linked to the charge transport in the plasma.

Eq. (3.145) now reads

lim
z→0

Ai(ω,~k) = lim
z→0

GR,ij(ω,~k)jj(ω,~k, z), (3.157)

where jµ is the conjugate momentum to the bulk field Aµ in the z-constant slices

jµ = − 1

f(z)

√−gF rµ = − 1

f(z)
e5A(z)F rµ. (3.158)

Now, consider a fluctuation of Aµ along the x3-axis. Then, as we will show, the effect of
theses fluctuations on the gauge invariant fields F µν and jµ separate cleanly in two different
channels - one corresponding to effects on the components transverse to the fluctuation,
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that is, the components x1 and x2, and one corresponding to the components parallel to
the fluctuation, x3. This motivates us to write two z-dependent electric conductivities,
the longitudinal channel conductivity σ̄L

σ̄L(ω,~k, z) =
j3(ω,~k, z)

F3t(ω,~k, z)
(3.159)

and the transverse channel conductivity σT

σ̄T (ω,~k, z) =
j1(ω,~k, z)

F1t(ω,~k, z)
=

j2(ω,~k, z)

F2t(ω,~k, z)
. (3.160)

Our objective is now to write equations for the flow of σ̄L and σ̄T . From the flow equations,
we will be able to extract the two independent components of the conductivity tensor σij
by following the flow of the z-dependent conductivities from the membrane horizon to the
boundary

σL ≡ σ11 = lim
z→0

σ̄L(ω,~k = 0, z) (3.161)

σT ≡ σ33 = lim
z→0

σ̄T (ω,~k = 0, z) (3.162)

The first step is to write the Maxwell equations that follow from the bulk action
(3.138), that is,

∂µ
(√−g

f
Fµν

)
= 0. (3.163)

The goal is first to write all equations in terms of gauge invariant quantities. Using Eq.
(3.158), the z component equation can be writen as

∂3j
3 + ∂tj

t = 0 (z), (3.164)

which expresses charge conservation along the x3 axis. By the same token, the remaining
equations yield

−∂zjt +

√−g
f(z)

gttg33∂3F3t = 0 (t) (3.165)

−∂zj1 −
√−g
f(z)

g00g11∂tFt1 +

√−g
f(z)

g33g11∂3F31 = 0 (x1) (3.166)

−∂zj3 +

√−g
f(z)

gttg33∂tF3t = 0 (x3). (3.167)

The Maxwell equation that comes from the (x2) component is the same as Eq. (3.164) to
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(3.167) with (x→ y). We also must impose the validity of Bianchi’s identity,

DµFνρ +DρFµν +DνFρµ = 0. (3.168)

The independent equations that follow from Eq. (3.168) are, in terms of F and j,

∂zF3t −
√−g
f(z)

g33gzz∂tj
z −
√−g
f(z)

g33gtt∂3j
t = 0 (3.169)

∂zF1t −
√−g
f(z)

gzzg11∂tj
2 = 0 (3.170)

∂3Ft1 + ∂tF13 = 0 (3.171)

The equations of motion can be divided in two groups. One group that involves only jt,
jz and F3t, Eqs. (3.164), (3.165), (3.167) and (3.169), which will be used to derive the
flow equation for σ̄L, and a second group that involves only j1, F1t and F13, Eqs. (3.166),
(3.170) and (3.171), which will lead to the flow equation for σ̄T .

Let’s study the first group and derive the flow equation for σ̄L first. From the defition
of σ̄L, Eq. (3.159),

∂zσ̄L =
∂zj

3

F3t

− j3

F 2
3t

∂zF3t. (3.172)

Using Eq. (3.166) to eliminate ∂zj3 and Eq. (3.169) to eliminate ∂zF3t, and passing to
momentum space, considering a plane wave with momentum q = (ω, 0, 0, k),

∂zσ̄L = −
√−g
f(z)

gttg33(iω) +
ij3gzz
F 2

3t

f(z)√−g
(
ωg33j

3 + gzz + kgzzj
t
)
. (3.173)

The final step is to use Eq. (3.164) in momentum space to eliminate jt. We then arrive
at the flow equation for σ̄L,

∂zσ̄L =
iω

h(z)

[
σ̄2
L

ΣA(z)

(
1−

~k2

ω2
h(z)

)
− ΣA(z)

]
(3.174)

The same procedure using the second group of equations lead to the second flow equation,

∂zσ̄T =
iω

h(z)

[
σ̄2
T

ΣA(z)
− ΣA(z)

(
1−

~k2

ω2
h(z)

)]
, (3.175)

where ΣA(z) is defined by

ΣA(z) =
1

f(z)
eA(z). (3.176)

With the flow equations in hand, we may proceed to follow the flow from membrane
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horizon to boundary, as in the case of the scalar field. The first remark is that in the zero
momentum limit ~k → 0, both flow equations collapse: σ̄L = σ̄T = σ̄ with

∂zσ̄ =
iω

h(z)

[
σ̄2

ΣA(z)
− ΣA(z)h(z)

]
. (3.177)

In the zero frequency limit, the term in brackets must vanish near the horizon so that

σ̄(ω,~k = 0, z0) = ΣA(z0) =
eA(z0)

f(z0)
= σmb, (3.178)

after comparing with Eq. (3.144) The flow, once again, is trivial when ω → 0, and thus
the conductivity is given by

σ = lim
ω→0

lim
z→0

σ̄ = χmb. (3.179)

Diffusion coefficient

Another application of the membrane paradigm formalism for gauge fields that will be
useful in applications will be the calculation of the charge susceptibility and the diffusion
constant of the plasma [144,154,155], which characterizes the diffusion of the small charge
perturbation induced by an external electric field. As we show below, to first order in a
derivative expansion, D is related to a pole of retarted correlator (see also [58,336]).

Let us consider that the current Jµ correspond to a conserved current. Then, it satisfies
the current conservation equation,

∂tn+ ∂iJ
i = 0, (3.180)

where n = J0 is the electric charge density. For low momentum and frequencies, we may
suppose that, in a gradient expansion, Fick’s law holds,

Ji = −D∂in, (3.181)

where D is the diffusion constant. Therefore, n(x) satisfies the diffusion equation,

∂tn = D∂i∂
in. (3.182)

Passing to momentum space, we obtain the propagator GR
00,

GR
00(ω,~k) =

GR(0, ~k)

−iω +D~k2
. (3.183)

Therefore, D is a pole in the 00 component of the Green’s function. By Eq. (3.180), D
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will also be a pole of GR
33.

Let’s study the diffusion constant first. We consider, in the flow equation for σ̄L, the low
frequency and low momentum limit, but with ω ∼ ~k2. The flow equation then simplifies
to

∂zσ̄L
σ̄2
L

= −i
~k2

ω

1

ΣA

. (3.184)

This equation is a first order separable ordinary differential equation, which can be solved
using the boundary condition (3.152), resulting in

1

σ̄L(r)
=

1

σ
+ i

~k2

ω

∫ z

z0

dz′
1

ΣA

. (3.185)

Since GR
33(kµ) = σL(kµ) = σ̄L(z → 0), we find that

GR
33(kµ) =

ω2σ

iω −D~k2
, (3.186)

where D is given by the formula [138]

D = σ

∫ 0

z0

dz′
1

ΣA

= σ

∫ 0

z0

dz′f(z)e−A(z). (3.187)

Charge susceptibility and Einstein’s relation

As a final application, we will study the charge susceptibility χ2. The charge suscep-
tibility is defined by

χ2 =
∂n

∂µ
. (3.188)

That is, at the linear level on the chemical potential µ,

n = χ2µ+O(µ2). (3.189)

The bulk field that couples to the chemical potential µ is the zeroth component of the
gauge field A0. In special, µ = At(z → 0). Also, n = j0(z → 0). Let us choose a static
bulk configuration, which corresponds to a zero momentum limit. Then, from the bulk
field equations (3.164) to (3.167),

∂zjt = 0 (3.190)

and
∂zAt =

f(z)√−ggzzgttj
t, (3.191)
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which can be integrated to
jt(z) = constant = n (3.192)

and to
At(z) = At(z0) + n

∫ z

z0

dz′ e−A(z)h(z). (3.193)

Imposing horizon regularity, At(z0) = 0, Then, taking z → 0, µ = At(z → 0), using
(3.189) we see that χ2 is given by

χ2 =
1∫ 0

z0
dz′f(z)e−A(z)

. (3.194)

We note, in passing, that Eqs. (3.194) and (3.187) imply that

Dχ2 = σ. (3.195)

That is, Einstein’s relation involving the conductivity σ, the diffusion constant D and the
charge susceptibility χ2 holds for this class of gauge theories dual to theories of gravity.

Application: N = 4 SYM at finite temperature.

To exemplify the use of the formulas resulting from the membrane paradigm, let’s
compute some of the transport coefficients for a strongly coupled N = 4 SYM plasma.
The metric of the gravity dual is given by the AdS5/Schwarzshild backgound of Eq. (3.40).
The shear viscosity is given by Eq. (3.156), since the background is isotropic. In this case,
f(z) = g2 is a constant bulk coupling constant. Then, applying Eq. (3.178), we find that

σN=4SYM =
1

f(zh)

(
1

zhL

)
=
πT

g2
, (3.196)

as zh = 1/(πLT ). We see that σN=4SYM ∝ T , as required by dimensional analysis, since
T is the only scale of the theory. Now, Eq. (3.187) yields

DN=4SYM =
1

2πT
. (3.197)

Finally, using either (3.194), we have that

χ2,N=4SYM =
2π2T 2

g2
. (3.198)

These results were obtained first in Ref. [157] and later checked using the membrane
paradigm in Ref. [138]. In Chapter 7 we will apply the membrane paradigm formalism to
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compute the electrical conductivity, the diffusion coefficient and the charge susceptibility
of a bottom-up model that more closely resembles (2+1) flavor QCD.

3.9 N = 4 SYM plasma at large N as a reasonable

proxy of the QCD plasma

As a final point in this brief introduction to the gauge/gravity duality, we give a brief
argument to why the N = 4 SYM plasma should be taken as a reasonable proxy to the
strongly coupled QGP. The main idea is that while N = 4 SYM and QCD are wildly
different theories in vacuum, QCD at temperatures of a few Tc becomes qualitatively
similar (at least in some aspects) to the N = 4 SYM plasma. This partially justifies
considering N = 4 SYM as a reasonable starting point for building holographic models
relevant for the phenomenology of the QGP.

At a first glance, N = 4 SYM and “real-world” QCD are two very different beasts at
zero temperature. N = 4 SYM is a (super)conformal field theory, possessing no scales;
the gauge coupling constant does not run and can be set to any value - as a dial. Pure
Yang-Mills theory is classically conformally invariant; however, as discussed in Chapter
2, quantization breaks conformal invariance and a scale is dynamically generated in the
theory by dimensional transmutation. Moreover, strongly coupled N = 4 SYM is strongly
coupled at all scales; pure SU(Nc) Yang-Mills theory is asymptotically free, becoming
weakly coupled in the UV. Also,N = 4 SYM has no confinement, whereas pure Yang-Mills
is (as far as we know) a confining gauge theory. Moreover, N = SYM is supersymmetric,
with scalars and fermions in the adjoint representation of gauge group. Pure Yang-Mills
is not supersymmetric. QCD introduces massive fermionic degrees of freedom, but in
the fundamental representation of the gauge group. Also, QCD at low energies has an
additional (approximate) symmetry, namely U(3)L × UR(3) chiral symmetry which is
believed to be spontaneously broken in the T = 0 regime, resulting in a non-vanishing
chiral condensate.

However, the introduction of temperature breaks conformal symmetry and supersym-
metry in N = 4 SYM. Conformal symmetry is broken due to the introduction of a
dimensionful scale, the temperature T . The adjoint fermions in N = 4 SYM acquire a
mass due to the imposition of anti-periodic boundary conditions. The adjoint bosons,
in turn, acquire a mass at the one-loop level in perturbation theory. The gauge vector
fields remain massless, due to gauge invariance. Thus, we have a theory of massless gauge
bosons and massive fermions and scalars in the adjoint representation.

In turn, as discussed in the previous Chapter, pure Yang-Mills has a first order con-
finement/deconfiment transition. With (2+1) flavors with physical masses, lattice gauge
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theory indicates that QCD has has a crossover phase transition [73,76,78,158]. For T � Tc,
asymptotic freedom is restored and the theory is weakly coupled. However, for T ∼ Tc,
the theory is still strongly coupled.

Thus, at T ∼ Tc, QCD and strongly coupled N = 4 both possess a similar set of
features: both are deconfined gauge theories, at strong coupling, with no conformal or
supersymmetry. This means that as a proxy model for “real-world” QCD near Tc, N = 4

may be qualitatively similar to each other. Also, we may use N = 4 as a springboard
for model building, either in a top-down or in a bottom-up approach, incorporating more
features of QCD to build more realistic models. Thus, using the gauge/gravity duality,
we may probe the strong coupling limit of N = 4 SYM and others holographic models
for QCD - we may understand strong coupling phenomena in theories that are QCD-like,
but not exactly QCD. This is the main motivation for using the gauge-gravity as a tool
to probe strong coupling phenomena.



Chapter 4

Holographic Wilson Loops - Real and
Imaginary Parts

4.1 Introduction

One of the most important gauge invariant quantities defined in non-Abelian SU(Nc)

gauge theories [12,159] is the Wilson loop

W (C) =
1

Nc

trP exp

[
ig

∮
C

Âµdx
µ

]
, (4.1)

where C is a closed loop embedded in a 4-dimensional spacetime, P indicates path-
ordering, g is the coupling, Âµ is the non-Abelian gauge field potential operator while
the trace is performed over the fundamental representation of SU(Nc) (other representa-
tions can also be used but we will use the fundamental representation in this Chapter).
In particular, the case where C is a rectangular loop of spatial length L and extended
over T in the time direction, as depicted in Figure 4.1, has been extensively studied over
the years. With this contour, the limit T → ∞ of the vacuum expectation value of (4.1)
gives

lim
T →∞
〈W (C)〉0 ∼ eiT VQQ̄(L), (4.2)

where VQQ̄(L) is known as the heavy quark potential (the vacuum interaction energy be-
tween two infinitely massive probes in the fundamental representation).1. In the vacuum of
a confining gauge theory 〈W (C)〉 should obey an area law defined by limL→∞ VQQ̄(L)/L =

σ, with σ being the string tension [12].

In the imaginary time formulation of thermal gauge theories [61], all bosonic fields
1In Appendix C we review the argument that leads to the relation (4.2)
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L

τC

x

t

τ/2

L/2

Figure 4.1: The rectangular Wilson loop, along with the choice of the coordinate system used.

are required to be periodic (or anti-periodic in the case of fermionic fields) in the Eu-
clidean time τ with period β = 1/T and the order parameter for the deconfinement phase
transition in an SU(Nc) theory without dynamical fermions is characterized by the path
ordered Polyakov loop [160–162]

L(~x) =
1

Nc

P ei g
∫ 1/T
0 Â0(~x,τ)dτ . (4.3)

This operator becomes gauge invariant (up to a phase) after performing the trace. In a
pure gauge theory there are also global gauge transformations that are only periodic up
to an element of Z(Nc), which is the center of SU(Nc). In this case, trL transforms as
a field of charge one under the global Z(Nc) symmetry, i.e., trL → ei2πa/NctrL where
a = 0, . . . , Nc−1. Below Tc the system is Z(Nc) symmetric, which implies that 〈trL〉 = 0.
Above Tc this global symmetry is spontaneously broken, 〈trL〉 6= 0, and the system lands
in one of the possible Z(Nc) vacua. The thermal average of the Polyakov loop correlator
C(r, T ) ≡ 〈trL†(r) trL(0)〉 is associated with the difference in the free energy of the
system due to the inclusion of an infinitely heavy QQ̄ pair separated by a distance r in
the medium [163]. Such a formulation has been used to define a heavy quark potential at
finite temperature on the lattice [164–166].

However, the rectangular Wilson loop can also be computed in gauge theories at
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finite temperature. In this case, the expectation value of the Wilson loop operator for the
same rectangular contour can be evaluated in a thermal state of the gauge theory with
temperature T (in Minkowski spacetime) and the T → ∞ limit

lim
T →∞
〈W (C)〉 ∼ eiT VQQ̄(L,T ) (4.4)

defines a quantity VQQ̄(L, T ) which we call here the “heavy quark potential at finite
temperature". In general, this heavy quark potential in QCD can have an imaginary
part, as shown in [167–175,178] (for recent studies about quantum decoherence effects in
quarkonia see [176,177]), while the quantity defined using the Polyakov loop correlator is
necessarily real. The imaginary part of the potential defines a thermal decay width which,
at weak coupling, is related to the imaginary part of the gluon self energy induced by
Landau damping and the QQ̄ color singlet to color octet thermal break up.

In this Chapter we shall elaborate on the method proposed in [179] to estimate the
thermal width of heavy quarkonia at strong coupling using worldsheet fluctuations of
the Nambu-Goto action associated with the heavy quark pair in the gauge/gravity du-
ality [14, 93, 94]. In this approach, the thermal width of heavy quarkonium states stems
from the effect of thermal fluctuations due to the interactions between the heavy quarks
and the strongly coupled medium. This is described holographically by integrating out
thermal long wavelength fluctuations in the path integral of the Nambu-Goto action in
the curved background spacetime. At sufficiently strong coupling, this calculation can be
done analytically and a simple formula for the imaginary part of the Wilson loop can be
found in this approach that is valid for any gauge theory that is holographically dual to
classical gravity2. The formula is used to revisit the calculation of the thermal width in
strongly coupled N = 4 SYM theory done in [179]. Moreover, we compute the imaginary
part of the potential for a strongly-coupled conformal field theory dual to Gauss-Bonnet
(GB) gravity. We also prove a general result that establishes the connection between the
thermal width and the presence of an area law for the Wilson loop at zero temperature
in gauge theories with gravity duals, which may be useful for the study of the imaginary
part of the heavy quark potential in confining gauge theories dual to gravity.

This Chapter is organized as follows. In the next section we will revisit the general
setup concerning the holographic calculation of Wilson loops. In section 4.3 we discuss
the holographic calculation of ReVQQ̄, which is necessary to derive our main formula for
the imaginary part of the potential in Section 4.4. In Section 4.5 we apply the formula to
compute the imaginary part in two different strongly coupled gauge theories with gravity

2The background metric has to fulfill certain conditions for the method to be applicable. This is shown
in Section 4.2.
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duals. Final comments on this Chapter are given in Section 4.63.

4.2 Holographic setup

After the original calculation of the rectangular Wilson loop in the vacuum of strongly
coupled N = 4 SYM theory 4 [180, 181] and its generalization to finite temperature
in [182, 183], rectangular Wilson loops have been extensively studied in strongly coupled
gauge theories using the gauge/gravity duality.

According to the gauge/gravity prescription [180], the expectation value of W (C) in
a strongly coupled gauge theory dual to a theory of gravity is

〈W (C)〉 ∼ Zstr, (4.5)

where Zstr is the generating functional of the string in the bulk which has the loop C at
the boundary. In the classical gravity approximation

Zstr ∼ eiSstr , (4.6)

where Sstr is the classical string action propagating in the bulk evaluated at an extremum,
δSstr = 0. In the case of a rectangular Wilson loop at nonzero T other extrema can become
relevant as one increases the value of LT [184]. In this thesis we are only interested in
deeply bound states where LT < 1 and this question becomes less important5. In the
classical approximation the worldsheet action Sstr may be taken as the Nambu-Goto
action6

Sstr = SNG =
1

2πα′

∫
dσdτ

√
−det(Gµν∂aXµ∂bXν), (4.7)

where Xµ(τ, σ) are the worldsheet embedding coordinates, µ, ν = 0, 1, . . . , 4, a, b = σ, τ ,
and α′ = l2s , where ls is the string length.

Its worth noticing that this problem is analogous to the problem of the catenary dealt
in the elementary variational calculus. There, we want to discover the form that a string
assumes when held fixed at the two extremes, when acted only by the force of gravity.
Here, we want to discover the form that the string worldsheet assumes when its extremes
are held fixed in the form of the curve C at the 4d boundary of a 5d spacetime. The

3Other aspects of the calculations are presented in Appendix D.
4Note that in N = 4 SYM the Wilson loop operator also contains the 6 adjoint scalars.
5We shall come back to this point when discussing the calculation of the imaginary part later in

Section 4.5 and also in Appendix D.
6For gravity duals derived within string theory, supersymmetry requires the presence of fermions on the

worldsheet but those only enter as an ~ correction to the action and can be neglected in the supergravity
limit in which α′ → 0.
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gravitational force is given by the deformation of the spacetime, which “pushes” down the
worldsheet into the bulk.

U=U
h

U → ∞

t

x

U
*

L

U → ∞U
*

L

t

x

τ

C C

(a) (b)

Figure 4.2: The Maldacena prescription for the calculation of Wilson loops via the gauge/gravity
duality. In (a) we present the situation for an arbitrary loop C. In (b) we consider rectangular
Wilson loops with T → ∞. In both cases Uh is the position of the horizon of the black brane and
U∗ denotes the bottom of the sagging string in the bulk.

U=U
h

U → ∞U
*

x

Figure 4.3: A slice of the string worldsheet for the rectangular Wilson loop at fixed time t.

Therefore, the Wilson loop in the strongly coupled gauge theory can be determined
using the classical solution of (4.7) which has the loop C as the boundary of the clas-
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sical string worldsheet. For the case of rectangular Wilson loops one can then calculate
VQQ̄(L, T ) (see Figure 4.2). We will consider an effective 5-dimensional curved spacetime,
which will describe the gravity model dual to the gauge theory7. Finite temperature effects
are taken into account by introducing a near-extremal black brane in the gravity dual and
we assume, in this Chapter, that the metric of the gravity dual has the following general
form8

ds2 = −G00(U)dt2 +Gxx(U)d~x2 +GUU(U)dU2, (4.8)

where ~x = (x, y, z) denotes the usual spatial coordinates while U is the radial direction.
The metric (4.8) is assumed to have an asymptotic boundary at U → ∞. The position
of the horizon of the black brane, Uh, is given by the (first simple) root of G00(U) = 0

starting from the boundary and we will also assume here that GUU(Uh) → ∞, with
G00(Uh)GUU(Uh) finite. The black brane temperature T (which is a function of the position
of the horizon, T = T (Uh)) corresponds to the temperature of the thermal bath in the
gauge theory. Also, note that the thermal state of the gauge theory considered here is
assumed to be invariant under spatial SO(3) rotations and the QQ̄ pair is at rest in
the local rest frame of the plasma - in the next Chapter we will consider examples of
anisotropic situations

4.3 Real part of the heavy quark potential

We start by establishing the holographic formalism for the computation of the real part
of the heavy quark potential. The calculation of the real part of the potential within the
gauge/gravity duality is well-known and can now be found in textbooks [102], for instance.
For the sake of completeness, we provide a review of those results in this Section.

4.3.1 The general formalism

For the rectangular Wilson loop, we choose the coordinate system shown in Fig-
ure 4.1 in which the string worldsheet coordinates are written in static gauge, Xµ =

(t, x, 0, 0, U(x, t)), τ = t and σ = x. Furthermore, since T → ∞, any slice of the world-
sheet with constant t has the same form (as shown in Figure 4.2(b)) - this means that we
can take U(x, t) = U(x). We present a sketch of a fixed t slice of the string worldsheet
in Figure 4.3. With these choices and the general metric (4.8), the action (4.7) takes the

7In the case of AdS × S5 we choose a fixed configuration in S5 for the compact string coordinates.
8The metric (4.8) is assumed to be given in the string frame.
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form

SNG =
T

2πα′

L/2∫
−L/2

dx
√
M(U(x))(U ′)2 + V (U(x)), (4.9)

where U ′ ≡ dU/dx, M(U) ≡ G00GUU and V (U) ≡ G00Gxx. For the models considered in
this work, we will always have M(U) > 0. The action (4.3.1) is only implicitly dependent
on x and, thus, the associated Hamiltonian is a constant of motion

HNG =
V (U)√

M(U)(U ′)2 + V (U)
= const. =

√
V (U∗), (4.10)

where U∗ ≡ U(x = 0) and also U ′(0) = 0 (since the string has its minimum at x = 0). We
can solve (4.10) for U ′ and obtain

dU

dx
=

[
V (U)

M(U)

(
V (U)

V (U∗)
− 1

)]1/2

. (4.11)

Since the endpoints of the string are located at x = −L/2 and x = L/2, we integrate
(4.11) to obtain a relation between U∗ and L,

L

2
=

∞∫
U∗

dU
√
M(U)

[
V (U)

(
V (U)

V (U∗)
− 1

)]−1/2

. (4.12)

We may deduce another consequence of (4.11) which will be useful later. In fact, differ-
entiating (4.11) with respect to x and then setting x = 0 and U = U∗ one finds

U ′′(0) =
1

2

V ′(U∗)

M(U∗)
, (4.13)

where V ′(U) = dV (U)/dU . Since x = 0 is a minimum, U ′′(0) > 0, and one can see that
V ′(U∗) > 0.

Finally, we use (4.11) to obtain an expression for the action evaluated at the classical
solution of the equations of motion

Sstr =
T
πα′

∞∫
U∗

dU
√
M(U)

√
V (U)

V (U∗)

(
V (U)

V (U∗)
− 1

)−1/2

. (4.14)

The (yet to be regularized) real part of the heavy quark potential is simply given by
limT →∞ Sstr/T . The equations (4.12) and (4.14) (minus the regularization) solve the prob-
lem. To obtain ReVQQ̄ as a function of L and T we either eliminate U∗ from both equations
or, when this is not possible, parametrize both L and ReVQQ̄ as functions of U∗.
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Note that (4.14) is UV divergent. This UV divergence, which is characteristic of Wilson
loops, appears in the holographic approach from the fact that the string must stretch
from the bulk to the boundary. Note that this is the same type of UV divergence found
in N = 4 SYM at T = 0 [180], which is to be expected since in thermal gauge theories
all UV divergences must come from the vacuum contribution [61]. This implies that the
same regularization chosen for the vacuum can be used to render the T 6= 0 potential
finite. The regularized real part of the potential at nonzero temperature can be written
as

ReV reg

QQ̄
(L, T ) =

1

πα′

∫ ∞
U∗

dU

[√
M(U)

√
V (U)

V (U∗)

(
V (U)

V (U∗)
− 1

)−1/2

−
√
M0(U)

]

− 1

πα′

∫ U∗

0

dU
√
M0(U). (4.15)

where M0(U) = limU→∞M(U). This temperature independent regularization scheme for
the real part of the potential is well defined for any asymptotically AdS5 geometry, even
in the case in which the dual gauge theory displays confinement at T = 0 (in the sense of
an area law for the rectangular Wilson loop in the vacuum)9. See also [164,165] for further
arguments for using temperature independent subtractions in the Wilson and Polyakov
loops.

The expectation value of the Polyakov loop |〈trL〉| can be easily extracted from Eq.
(4.15) by assuming that when L → ∞, U∗ → Uh and ReV reg

QQ̄
→ 2F reg

Q . This gives the
(regularized) heavy quark free energy

F reg
Q (T ) =

1

2πα′

∫ ∞
Uh

dU
[√

M(U)−
√
M0(U)

]
− 1

2πα′

∫ Uh

0

dU
√
M0(U) (4.16)

and the Polyakov loop |〈trL(T )〉| = exp{−F reg
Q (T )/T}. While this simple procedure gives

the correct expression for F reg
Q (T ) [185, 186] in this type of gravity duals, we note that

other configurations for the string worldsheet besides the U-shaped one must be taken into
account when LT > 1 [184, 187]. In the following we will always consider the regularized
expressions for the quantities discussed above and, thus, the superscript “reg" will be
omitted from the formulas in the rest of the Chapter.

9As explained in [184], the regularization scheme involving the subtraction of the contribution coming
from two “straight” strings running from Uh to U → ∞ is temperature dependent. Moreover, since the
connected U-shaped contribution to the potential is of orderN0

c and this kind of disconnected contribution
involving the two straight strings is of orderN2

c [184], it becomes problematic to use the latter to regularize
the heavy quark potential in the large Nc limit where these classical gravity calculations are performed.
Therefore, in this work we opted to use the expression in Eq. (4.15), which is well defined in the large Nc
limit.
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4.3.2 Confinement from the holographic Wilson loop

Before finishing this section, let us analyse the connection between confinement (de-
fined, for the purposes of this Chapter, as the area law in the Wilson loop, as given by the
relation limL→∞ VQQ̄(L)/L = σ - see Chapter 2 and Ref. [44] for a discussion of the defini-
tion of confinement). For the general metric in Eq. (4.8), it was shown in Refs. [188,189],
that if there is a U0 such that V (U) has a minimum or M(U) diverges, then the theory
linearly confines with string tension

σ =
1

2πα′

√
V (U0). (4.17)

Let us prove this theorem. Assume that V (U) has a minimum at U = U0, whereM(U)

is regular. Starting from Eq. (4.15), using Eq. (4.12), it is possible to rewrite this equation
as

F reg
Q (T ) =

√
V (U∗)

2πα′
L− 1

πα′

∫ ∞
Uh

dU

(√
M(U)

V (U)

√
V (U)2 − V (U∗)2 −

√
M0(U)

)
+

− 1

πα′

∫ U∗

0

dU
√
M0(U). (4.18)

If we prove that the second term is subleading for L→∞, then Eq. (4.17) follows. Then
V ′(U0) = 0. Writing V (U) as V (U) = e−2A(U), then L given by (4.12) in Eq. (4.18) can
be written as

L

2
=

∞∫
U∗

dU

√
M(U∗)

e2A(U)

1√
e4(A(U)−A(U∗)) − 1

. (4.19)

Now, suppose that the string drops in the bulk down to U ∼ U∗. Then, U0 ∼ U∗ and we
may expand the exponential inside the square root in Eq. (4.19) to yield, near the lower
limit of the integral,∫

U0

dU

√
M(U0)

e2A(U)

1√
4A′(U0)(U − U0) + 8A′′(U0)(U − U0)2

. (4.20)

As V (U) is a minimum at U = U0, by hypothesis, V ′(U0) = 0 and V ′′(U0) > 0 , then
A′(U0) = 0 and A′′(U0) > 0. Then, the square root in (4.20) is real and we can write (as
U < U0)

L ∼ 2

∫
U0

1√
8A′′(U0)(U0 − U)

∝ − lim
U→U−0

ln(U0 − U)→∞. (4.21)

Thus, as the second term in (4.18) is finite, the first term dominates and (4.17) holds.
Thus, if V (U) has a minimum at U = U0, with M(U) regular, Eq. (4.17) holds. To
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complete the proof, assume that M(U) diverges at U0. Then Eq. (4.19) implies L → ∞
at U = U0, and Eq. (4.17) also holds.

We can build an intuitive picture for this result: as one pulls the quarks apart and
L → ∞, the bottom of the classical string becomes flat at U0 and cannot penetrate any
further into the geometry. In the deconfined phase of a (T = 0 confining) gauge theory,
however, U0 is hidden by the horizon and σ = 0.

4.4 Thermal worldsheet fluctuations and the imaginary

part of the heavy quark potential in strongly cou-

pled plasmas

We now generalize the procedure proposed in Ref. [179] to extract the imaginary
part of heavy quark potential, ImVQQ̄, using the gauge/gravity duality. After deriving a
formula for ImVQQ̄ using the saddle point approximation, we discuss its limitations and
present some general conditions for the existence of such an imaginary part in this setup.
We remark that other approaches have been proposed to extract the imaginary part of
the potential using holography in [190–192]. These different methods give results that
are qualitatively equivalent in the case of N = 4 SYM theory. The method discussed in
detail in this section has the advantage of being of easy implementation in comparison to
the other schemes since ImVQQ̄ for a generic gravity dual (4.8) can be directly computed
using the formula in Eq. (4.36) derived below.

4.4.1 The saddle point approximation

In the previous section, we saw that the classical solution to the Nambu-Goto action
(4.7) can be used to compute the real part of the heavy quark potential. To extract
ImVQQ̄(L, T ) we have to consider the effect of thermal worldsheet fluctuations about the
classical configuration U = Uc(x). Such fluctuations, although taken here to be small, may
turn the integrand of (4.3.1) negative near x = 0 and generate an imaginary part for the
effective string action. The corresponding physical picture is that some part of the string,
through thermal fluctuations, may reach the horizon (see Figure 4.4).

Therefore, we shall consider the effect of worldsheet fluctuations δU(x) (δU(±L/2) =

0) around the classical configuration Uc(x)

U(x) = Uc(x)→ U(x) = Uc(x) + δU(x). (4.22)

The classical configuration Uc(x) solves δSNG = 0. For simplicity, the fluctuations δU(x)



4.4 THERMAL WORLDSHEET FLUCTUATIONS 85

U= U
h

U
* U → ∞

Figure 4.4: An illustration of the effect of thermal fluctuations (dashed line) around the classical
string configuration (solid line). If the bottom of the classical string solution is close enough to
the horizon, thermal worldsheet fluctuations of very long wavelength may be able to reach the
black brane horizon at Uh.

are taken to be of arbitrarily long wavelength, i.e., d δU(x)
dx

→ 0. The string partition
function that takes into account the fluctuations is then

Zstr ∼
∫
DδU(x)eiSNG(Uc(x)+δU(x)). (4.23)

If δU(x) is such that the integrand in SNG acquires an imaginary part then, by considering
Eq. (4.4) through Eq. (4.6), ImVQQ̄(L, T ) 6= 0. Note that we are assuming that the
fluctuations are not strong enough to allow for transitions to different classical extrema
of Zstr.

We proceed by dividing the interval −L/2 < x < L/2 into 2N points xj = j∆x

(j = −N,−N + 1, . . . , N) with ∆x ≡ L/(2N) and then take the N →∞ limit in the end
of the calculation. Then, Zstr becomes

Zstr ∼ lim
N→∞

∫
d[δU(x−N)] . . . d[δU(xN)] exp

[
i
T ∆x

2πα′

∑
j

√
M(Uj)(U ′j)

2 + V (Uj)

]
,

(4.24)
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where Uj ≡ U(xj) and U ′j ≡ U ′(xj). The thermal fluctuations are most important around
x = 0 where U = U∗, which means that it is reasonable to expand Uc(xj) around x = 0

and keep only terms up to second order in xj. Given that U ′c(0) = 0 we obtain

Uc(xj) ≈ U∗ +
x2
j

2
U ′′c (0). (4.25)

Since the string worldsheet fluctuations which will be more important in generating an
imaginary part are those near the black brane horizon (as will be discussed in more detail in
Subsection 4.4.2), we can consider only small fluctuations around the bottom of the string.
Taking this into account, we expand the classical solution around xj = 0, the bottom of
the classical solution, and consider small fluctuations around it. The inclusion of these
small higher order corrections to the imaginary part, which are associated with the small
fluctuations away from the bottom of the string, could in principle be considered, although
the calculations become considerably more involved. As we are considering only small
fluctuations around the classical configuration, we expand V (U(xj)) = V (Uc(xj)+δU(xj))

in xj and δU , keeping only the terms up to second order in the monomial xmj δUn

V (Uj) ≈ V∗ + δUV ′∗ + U ′′c (0)V ′∗
x2
j

2
+
δU2

2
V ′′∗ , (4.26)

where V∗ ≡ V (U∗), V ′∗ ≡ V ′(U∗), and etc. The function M(U) admits the same expansion
as V (U) but, in the action (3.1), M(U) appears only via M(U)(U ′(x))2. Using Eq. (4.25)
we see that U ′(x) ≈ xjU

′′
c (0) and, therefore, U ′(x)2 is already a term of second order in

xmj δU
n. Then, we consider only the zeroth order term in the expansion of M(U), i.e.,

M(U) ≈ M(U∗). Combining this with Eqs. (4.25) and (4.26) we can approximate the
exponent in Eq. (4.24) as

SNGj =
T ∆x

2πα′

√
C1x2

j + C2 (4.27)

where
C1 =

U ′′c (0)

2
[2M∗U

′′
c (0) + V ′∗ ] (4.28)

and
C2 = V∗ + δUV ′∗ +

δU2

2
V ′′∗ , (4.29)

where we defined M∗ ≡M(U∗). Since U ′′c (0) > 0 and M,V ′∗ > 0, one sees that C1 > 0.
If the function in the square root of Eq. (4.27) is negative then SNGj contributes to

ImVQQ̄(L, T ) 6= 0. The next step consists in determining when this happens and what
the corresponding contribution to Zstr is. In order to do that, let us isolate the j-th such
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contribution to Zstr

Ij ≡
δUjmax∫
δUjmin

d(δUj) exp

[
i
T ∆x

2πα′

√
C1x2

j + C2

]
, (4.30)

where δUjmin, δUjmax are the roots of C1x
2
j + C2 in δU . For δUjmin < δU < δUjmax

we have C1x
2
j + C2 < 0, which means that Eq. (4.30) is exactly the contribution to

ImVQQ̄(L, T ) 6= 0 we were looking for - the total contribution for all xj is
∏

j Ij.
The integral in Eq. (4.30) can be evaluated using the saddle point method in the

classical gravity approximation where α′ � 1. The exponent has a stationary point when
the function

D(δUj) ≡ C1x
2
j + C2(δUj) (4.31)

assumes an extremal value. This happens for

δU = − V
′
∗

V ′′∗
. (4.32)

Requiring that the square root has an imaginary part implies that D(δUj) < 0→ −xc <
xj < xc where

xc =

√
1

C1

[
V ′2∗
2V ′′∗

− V∗
]
. (4.33)

We take xc = 0 if the square root in Eq. (4.33) is not real. Under these conditions, we can
approximate D(δU) by D(−V ′∗/V ′′∗ ) in Eq. (4.30)

Ij ∼ exp

[
i
T ∆x

2πα′

√
C1x2

j + V∗ −
V ′2∗
2V ′′∗

]
. (4.34)

Since the total contribution to the imaginary part is given by
∏

j Ij, returning to the
continuum limit and invoking the prescription (4.5), we find

ImVQQ̄ = − 1

2πα′

∫
|x|<xc

dx

√
−x2C1 − V∗ +

V ′2∗
2V ′′∗

. (4.35)

Evaluating the integral in Eq. (4.35) [193] and using Eq. (4.13) and Eq. (4.28) we finally
find a closed expression for ImVQQ̄

ImVQQ̄ = − 1

2
√

2α′

√
M∗

[
V ′∗

2V ′′∗
− V∗
V ′∗

]
. (4.36)
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Eq. (4.36) reduces to the result derived in Ref. [179] where it was assumed that the
background metric was such that M(U) = 1. The only difference between the general
formula in Eq. (4.36) and the previous one found in Ref. [179] is the presence of the factor√
M∗ (M gives an idea of how much warped the space-time is in the bulk). Also, note that

ImVQQ̄ is UV finite. Moreover, the fluctuations also change the real part of the potential.
This is discussed in Appendix D, Section D.1.

An important condition that must be satisfied in order for the saddle point calculation
shown here to be applicable is V ′′∗ 6= 0. If V ′′∗ = 0 then Eq. (4.31) does not have extrema
and higher orders terms in δU must be kept in the expansion Eq. (4.26) for V , which
signals the breakdown of the saddle point approximation.

Finally, an equivalent derivation of the imaginary part of VQQ̄ using a covariant back-
ground expansion of the Nambu-Goto action is given in Appendix D, Section D.1.

4.4.2 The relationship between ImVQQ̄, confinement, and the black

brane

A first glance into the derivation of Eq. (4.36) may give the misleading idea that the
presence of a black brane is not necessary in order to have ImVQQ̄ 6= 0. However, the
absence of a black brane implies that ImVQQ̄ = 0, as we shall explain below. Moreover,
when the metric satisfies the conditions for the presence of an area law for the rectangular
Wilson loop mentioned in Section 4.3 one can show that ImVQQ̄(L → ∞) = 0. These
results are exact within the semiclassical approximation used for the string partition
function in Eq. (4.23).

The existence of a black brane is necessary for ImVQQ̄ 6= 0

As mentioned in Section 4.2, for the general metric in Eq. (4.8) G00(Uh) = 0 and
GUU(Uh)→∞, with G00(Uh)GUU(Uh) being finite. Therefore,M(U) is finite and positive
for every U and V (U) > 0 if U > Uh, but V (Uh) = 0. The important point here is that
for U < Uh it is possible that V (U) < 0.

In Eq. (4.23), requiring that the square root possesses an imaginary part means that
K(U) ≡ M(U)(U ′)2 + V (U) < 0 for some U . Since M(U), V (U) > 0 for U > Uh, for
any worldsheet fluctuation δU such that U(x) = Uc(x) + δU(x) > Uh one has K > 0 for
every x ∈ [−L/2, L/2]. However, if the fluctuation is such that U < Uh, V (U) may be
negative and K(U(x)) < 0 for some interval in x even though M(U) > 0. In other words,
if the worldsheet fluctuations are such that a portion of the string reaches the horizon
and probes the black brane, then an imaginary part for the heavy quark potential may
be generated. This is illustrated in Figure 4.4. Therefore, in this approach an imaginary
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part for VQQ̄ appears when we consider worldsheet fluctuations in which δU < 0.
On the other hand, if a black brane horizon is not present and the metric (4.8) is

regular everywhere we have that G00, GUU is positive for every U > 0. Then, we have
M(U), V (U) > 0 and, thus, K(U) > 0 for every U > 0. This implies that ImVQQ̄ = 0,
exactly. Therefore, in our approach the heavy quark potential can develop an imaginary
part due to the thermal worldsheet fluctuations induced by the presence of a black brane.

If the rectangular Wilson loop displays an area law then ImVQQ̄(L→∞) = 0

Suppose that M(U) diverges at the confinement scale U0 (with V (U0) 6= 0). In this
case, for large L we have U∗ ∼ U0. Moreover, in this case when L → ∞ the string
worldsheet lays nearly flat at U0. We may write Uc(x) ∼ U0 − ε, where ε � U0. Finally,
sinceM(U0) is large we may neglect the second term in the expression ofK(U). Therefore,
for long wavelength fluctuations δU ′ = 0 the Nambu-Goto action in Eq. (4.23) takes the
form

SNG ≈
T

2πα′

L/2∫
−L/2

dxU0

√
M(U0 − ε+ δU). (4.37)

Note that now we cannot consider fluctuations such that δU > ε since then we would be
taking M past its divergence. Therefore, only fluctuations with δU < ε are allowed in this
case. However, note that this implies that M > 0 and, thus, the square root that appears
in the evaluation of the potential is always real. Therefore, in this situation ImVQQ̄ = 0.

Alternatively, suppose now that M does not diverge at U0 but rather that V (U) has a
minimum at U0. For small fluctuations about Uc(x) = U0 where U ′c(0) = U ′′c (0) = . . . = 0

(since the string lays nearly flat at U0) one finds

V (U0 + δU) ≈ V (U0) +
1

2
V ′′(U0)δU2, (4.38)

where V ′′(U0) > 0. Thus, V (U) > 0 in the neighborhood of U = U0, x = 0 and K(U) > 0.
Therefore, SNG is real and ImVQQ̄ = 0. We then conclude that ImVQQ̄(L → ∞) = 0 if
the background metric is such that the rectangular Wilson loop displays an area law.

We may summarize these results as follows. Suppose that U0 is the value of the U
coordinate at which the metric satisfies the conditions for confinement and that Uh is the
position of the black brane horizon. If U0 > Uh then the classical string cannot go past
U0. As discussed above, we cannot consider fluctuations beyond U0. Effectively, U0 acts
as a “barrier” for the classical string. However, if Uh > U0, the horizon hides this barrier
and we may have fluctuations that reach Uh. Both cases are sketched in Figure 4.5.
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4.4.3 Using ImVQQ̄ to estimate the thermal width of heavy quarko-

nia at strong coupling

In the next section we will compute ImVQQ̄ in two different conformal plasmas using
the prescription derived above. To estimate the thermal width ΓQQ̄ of the heavy QQ̄ pair
we will use a first-order non-relativistic expansion

ΓQQ̄ = −〈ψ|ImVQQ̄(L, T )|ψ〉, (4.39)

where
〈~r|ψ〉 =

1
√
πa

3/2
0

e−r/a0 (4.40)

is the ground-state wave function of a particle in a Coulomb-like potential of the form
V (L) = −K/L and a0 = 2/(mQK) is the Bohr radius (mQ is the mass of the heavy quark
Q such that mQ/T � 1). Even though the real part of the potential at finite temperature
for the cases studied here is not given by just the ∼ 1/L term, this provides the leading
contribution for the potential between deeply bound QQ̄ states in a conformal plasma,
which justifies the use of Coulomb-like wave functions to determine the width. Moreover,
in potential models of the bottomonium spectrum, the Υ(1S) state is mostly bound due
to the Coulomb part of the Cornell potential. The thermal width is then given by

ΓQQ̄ = − 4

a3
0

∫ ∞
0

dLL2e−2L/a0 ImVQQ̄(L, T ) . (4.41)

Actually, as it will be discussed shortly, we should take Eq. (4.41) as representing a lower
bound for the heavy quarkonia thermal width computed within the thermal worldsheet
fluctuation method presented here. We emphasize that this approximation to the thermal
width of heavy quarkonia is made using the imaginary part of the heavy quark potential
as an input for a potential model in QCD, in a phenomenological approach. Also, for
very heavy states, the distance between the quarks in the meson can be so small that
perturbative QCD effects are not negligible.

4.5 Calculation of ImVQQ̄ in some gravity duals

4.5.1 An overview of the models

Using the general framework described in the previous section, we shall now study the
imaginary part of the heavy quark potential and the corresponding heavy quarkonia ther-
mal width in two different strongly coupled plasmas dual to theories of classical gravity.
In particular, we will consider the following models:



4.5 CALCULATION OF IMVQQ̄ IN SOME GRAVITY DUALS 91

U
0

U
* U → ∞U

hU
0

U → ∞U
h(a) (b)

Figure 4.5: An illustration of the relationship between thermal worldsheet fluctuations and con-
finement. Figure 4.5(a) shows that when U0 > Uh the classical string worldsheet, even with the
inclusion of thermal fluctuations, cannot go beyond U0. On the other hand, Figure 4.5(b) shows
that when U0 < Uh the horizon hides the “barrier” at U0 and the thermal fluctuations can reach
the horizon.

1. Strongly coupled, thermal N = 4 SYM at large Nc. This case was already studied
in Ref. [179] but here we shall perform a more complete study of the imaginary part
of the potential and revisit the estimate for the thermal width of heavy quarkonia
at strong coupling done in Ref. [179].

2. A simple model for QCD3. Based on the observation that taking T → ∞ in N =

4 SYM reduces the theory to a non-supersymmetric Yang-Mills-like theory in 3
dimensions at T = 0. This is the simplest modification of thermal N = 4 SYM that
results in a confining theory, although in 3 spatial dimensions.

3. Gauss-Bonnet gravity [194–196]. This model includes R2
µνλρ terms in the gravity

dual action corresponding to higher order derivative corrections to the supergravity
action.

In Appendix D, Section D.3 we discuss some other results involving Wilson loops
and compute ImVQQ̄ for some other simple top-down models of non-conformal strongly
plasmas.

4.5.2 N = 4 SYM

The metric for a near-extremal black-brane in AdS5 × S5 is given by,

ds2 = −U
2

R2
f(U)dt2 +

U2

R2
d~x2 +

R2

U2

1

f(U)
dU2 +R2dΩ2

5, (4.42)
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where R is the common radius of S5 and AdS5, f(U) ≡ 1 − U4
h/U

4, dΩ2
5 corresponds

to the S5 part of metric and, as before, Uh is the position of the black brane horizon10.
The boundary gauge theory is N = 4 SYM with Nc →∞. The ’t Hooft coupling in this
strongly coupled gauge theory is given by λ = R4/α′2 � 1. The temperature of the black
brane (and of the dual gauge theory) is given by

T =
Uh
πR2

. (4.43)

In the following we always choose a fixed configuration for the string coordinates in S5

and, thus, all the calculations are effectively done only using the AdS5 piece. For this
metric M(U) = 1 and V (U) = (U4 − U4

h)/R4.

Heavy quark potential in the vacuum

The expressions for L, Eq. (4.12), and Snreg, Eq. (4.14), turn, in this case, into

L

2
=
R2

U∗

∞∫
1

dy
1

y2
√
y4 − 1

and (4.44)

Snreg =
T
πα′

U∗

∞∫
1

dy
y2√
y4 − 1

. (4.45)

where we made the change of variables U → y = U/U∗. Note that the integral (4.45)
diverges linearly when y → ∞ and this is the UV divergence we already expected. The
regularized potential is

VQQ̄ =
U∗
πα′

 ∞∫
1

dy

(
y2√
y4 − 1

− 1

)
− 1

 . (4.46)

The integrals in Eqs. (4.44) and (4.46) can be done in terms of the beta function, as
described in Appendix D, Section D.2. After integration, one obtains

L =
R2

U∗

2
√

2ππ

Γ(1/4)2
(4.47)

10The AdS5 metric of (3.40) is related to Eq. (4.42) by the coordinate transformation U → R/z, so that
f(U) = h(R/U). The remaining expressions follow from those given in Section 3.6. Whereas z takes the
interpretation of a length scale in the renormalization group interpretation of the gauge/gravity duality,
U is an energy scale in this coordinate system.
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and

VQQ̄ = −U∗
√

2π

α′Γ(1/4)2
. (4.48)

In this particular case, it is possible to eliminate the parameter U∗ from Eqs. (4.47) and
(4.48) to obtain the potential as an explicit function of L [180]

VQQ̄ = − 4π2

Γ(1/4)4

R2

α′
1

L
. (4.49)

From Eq. (4.49) we obtain an estimate for the Bohr radius that will be used throughout
this work, a0 = Γ(1/4)4/(mQ2π2

√
λ). For the case of a bottom quark mb ∼ 4.7 GeV and,

using λ = 9 [197,198], one finds a0 ∼ 0.6 GeV−1.

Thermal N = 4 SYM

We start by computing the heavy quark free energy from Eq. (4.16). For its regular-
ization we use half of the regularization term used for the potential at T = 0, which gives

FQ = − Uh
2πα′

. (4.50)

Using Eq. (4.43) we can write Eq. (4.51) as

FQ
T

= −
√
λ

2
. (4.51)

This result [182,183] is consistent with the fact that the only scale available in the calcu-
lation of the Polyakov loop in a thermal N = 4 SYM theory is the temperature T .

For the rectangular Wilson loop at finite T we use the same regularization employed
for the T = 0 case. The resulting expressions for L and ReVQQ̄ may be written as [182,183]

LT (yh) =
2

π
yh

√
1− y4

h

∞∫
1

dy√
(y4 − y4

h)(y
4 − 1)

(4.52)

ReVQQ̄(yh)

T
=
R2

α′
1

yh

 ∞∫
1

dy

√y4 − y4
h

y4 − 1
− 1

− 1

 (4.53)

where yh ≡ Uh/U∗ and 0 < yh < 1.
These integrals can be calculated in terms of hypergeometric functions [102, 190] as

shown in Appendix D, Section D.2. One finds that

LT (yh) =
2
√

2π

Γ(1/4)2
yh

√
1− y4

h 2F1

[
1

2
,
3

4
;
5

4
; y4
h

]
and (4.54)
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ReVQQ̄
T

= −R
2

α′

√
2π3

Γ(1/4)2

1

yh
2F1

[
−1

2
,−1

4
;
1

4
; y4
h

]
. (4.55)

These equations cannot be solved exactly and must be analyzed as a function of yh.
However, when LT � 1 it is possible to expand both expressions in powers of (LT )4,
obtaining, at first order (Appendix D, Section D.2)

ReVQQ̄
T

= − 4π2
√
λ

Γ(1/4)4LT

[
1 + c(LT )4

]
, (4.56)

where
c =

3

5 · 27π2
Γ(1/4)8. (4.57)

The fact that the potential only depends on the combination LT is expected since N = 4

SYM is a conformal plasma.
Let us examine Eq. (4.54). In Figure 4.6 we plot LT as a function of yh. One sees

that there is a maximum value of yh, yh,max = 0.85, and that LT is a decreasing function
of yh for yh > yh,max. Physically, this means that for yh > yh,max, one has to take into
account highly curved configurations for the string worldsheet which are not solutions of
the Nambu-Goto action but are important for yh > yh,max [184]. In fact, a calculation of
the curvature scalar associated with the worldsheet metric in Appendix D, Section D.4
shows that it diverges for yh → 1. Therefore, we can only trust this U-shaped classical
solution up to yh,max. For further reference, the corresponding value of LT is LTmax =

LT (yh,max) ∼ 0.28. From Figure 4.6 we also see that for yh ∼ 0, LT ≈ byh, where
b = 2

√
2π/Γ(1/4)2 ∼ 0.38.

We show in Figure 4.7 the real part of the potential ReVQQ̄/T computed in an anal-
ogous fashion (using only the allowed interval 0 < yh < yh,max), along with the vacuum
result (4.49) and the LT � 1 approximation (4.56). One can see that the vacuum contri-
bution is very close to the thermal one. Also, the LT � 1 approximation is excellent for
all values of LT in the allowed interval.

Estimating the Debye mass

We now shall describe a way to estimate the Debye screening mass mD directly from
the real part of the heavy quark potential. This approach is simple and driven primarily
by phenomenological reasons. Yet, it provides results qualitatively similar to more refined
estimates involving, for example, the lightest CT-odd supergravity mode [184], as we will
explore with more detail in Chapter 6.

One may define the Debye mass mD(T ) as the screening mass in the QQ̄ potential of
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Figure 4.6: LT as a function of yh for the case of N = 4 SYM at strong coupling. For yh >
yh,max ∼ 0.85 the solution of the classical Nambu-Goto action is not the dominant configuration
and other connected configurations must also be taken into account [184].
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Figure 4.7: The potential ReVQQ̄/T for strongly coupled N = 4 SYM (normalized by the ’t
Hooft coupling

√
λ) as a function of LT , considering the exact solution given by (4.54) and

(4.55) (solid black curve), the approximation (4.56) valid for LT � 1 (dotted-dashed red curve),
and the vacuum limit given by Eq. (4.49) (dashed blue curve).
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the Karsch-Merh-Satz (KMS) model [199]

ReVQQ̄(L, T )√
λ

= −C̃1
e−mD(T )L

L
+

σ

mD

(
1− e−mD(T )L

)
+ C̃2, (4.58)

where C̃1 is a Coulomb coupling constant, C̃2 is a constant that appears due to the
regularization procedure, and σ is the string tension (normalized by

√
λ). The model

(4.58) describes, for mD ∼ 0, a Cornell-like potential and, for σ → 0 but mD 6= 0, a Debye
screened Coulomb potential. For nonzero mD and σ the result interpolates between both
limits. For a conformal field theory, such as N = 4 SYM, we must take σ = 0. Also, we
know that in such theories ReVQQ̄/T can only depend on LT . With this in mind, we write
Eq. (4.58) in the form

ReVQQ̄√
λT

= −C̃1
e−

mD
T

(LT )

(LT )δ
+ C̃2, (4.59)

where mD/T must be a temperature independent constant in a conformal plasma and δ
is an adjustable parameter. A similar function has been used to fit lattice data for the
potential (see the review in [166]).

In the following we will use Eq. (4.59) to obtain an estimate formD through a fit to the
numerical results for ReVQQ̄/T as a function LT . However, we must stress that this is only
a very rough estimate. First, Eq. (4.58) is only a phenomenological model for the effect
of Debye screening in non-Abelian gauge theories. Second, and most importantly, the
solution (4.54) and (4.55) imply that ReVQQ̄/T computed using the classical string does
not show exponential screening. This can be easily seen using a property of the derivative
of the hypergeometric function (as discussed in Appendix D, Section D.2). Nevertheless,
this is a very simple way to estimate mD and moreover Eq. (4.59) provides a reasonable
description of ReVQQ̄/T .

The numerical procedure is to fit Eq. (4.59) to the exact result given by Eqs. (4.54) and
(4.55) using C̃1, δ, and mD as fitting parameters (C̃2 = −1 is fixed by our regularization
procedure). We obtain

mD/T = 11.92 C̃1 = 0.72 , δ = 0.74 . (4.60)

The exact result and the fitted function are shown in Figure 4.8. As a comparison, the
calculation of the screening mass using the lightest CT-odd mode of type IIB supergravity
gives mD/T = 10.694 [184].
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Figure 4.8: A comparison of the exact result for ReVQQ̄/T (solid black curve) and the fitted
function (6.134) (dashed blue curve) for strongly coupled N = 4 SYM.

Imaginary part of the heavy quark potential in N = 4 SYM

From the general formula in Eq. (4.36) we obtain

ImVQQ̄
T

= − π
√
λ

24
√

2

3y4
h − 1

yh
. (4.61)

The condition ImVQQ̄ < 0 implies yh > yh,min = 3−1/4 ≈ 0.760. This translates into
LT > LTmin = 0.266. For LT < LTmin, ImVQQ̄ = 0. As before, we can trust this solution
only if yh < yh,max. For yh > yh,max we should consider other connected contributions and
the formalism developed above to determine ImVQQ̄ is not valid. It should also be noted
that ImVQQ̄/T depends only on LT (via yh), as expected to occur in a conformal plasma.

One can now use Eqs. (4.52) and (4.61) to determine the behavior of ImVQQ̄/T as a
function of LT . This is shown in Figure 4.9 considering only LT < LTmax. We also show
the result obtained using the approximation LT ≈ byh, which ignores the fact that we
should trust Eq. (4.61) only for yh < yh,max (in this case the root of Eq. (4.61) is shifted
to the right).

From Figure 4.9 we conclude that we are only able to reliably calculate ImVQQ̄ using
Eq. (4.61) in a small range of LT . The approximation byh ∼ LT is poor for two reasons.
First, it is being used in a region of yh near yh,max. Second, the extrapolation performed
in the region yh > yh,max is done beyond the trusted region for yh. Nevertheless, the linear
behavior of ImVQQ̄ seen in Figure 4.9 agrees, qualitatively, with other calculations for
ImVQQ̄ [190–192].
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Figure 4.9: The imaginary part of ImVQQ̄/T as a function of LT . The solid black curve is the
result using Eq. (4.52) to eliminate yh, considering only LT < LTmax. The dashed blue curve is
obtained using the approximation byh ∼ LT , which ignores the fact that one should not trust Eq.
(4.61) when LT > LTmax. Using this approximation, the root of Eq. (4.61) is shifted to the right.

Estimating ΓQQ̄ for the Υ(1S) state in a strongly coupled N = 4 SYM plasma

We may rewrite the estimate (4.41) in a dimensionless form

ΓQQ̄
T

= − 4

(Ta0)3

∞∫
0

dw e
− 2w
Ta0w2 ImVQQ̄

T
(w), (4.62)

where w = LT . In the case of N = 4 SYM, since ImVQQ̄/T is only a function of w =

LT the only dependence of ΓQQ̄/T on the temperature is via the weight factor ρ(w) =

exp (−2w/Ta0)w2. The position of the “strip” in Figure 4.9 is independent of Ta0. Note
that as we increase (decrease) T , ρ(w) shifts to the right (left, respectively) (see Figure
4.10).

We will adopt two approaches to estimate the thermal width. The first one consists of
using only the “strip” in Figure 4.9 - this means that we will neglect the region LT > LTmax

where our framework does not provide ImVQQ̄. We call this the “conservative" approach.
The second one consists in using the approximation LT ∼ byh in Eq. (4.61), ignoring the
fact that for LT ∼ LTmax this approximation ceases to be valid - this will be called the
“extrapolation".11

11The authors of [179] used this second approximation. However, the fact that we must impose
ImVQQ̄ < 0 was not considered - the expression (4.61) was used (for a fixed T ) from L = 0 to L → ∞
instead from Lmin to Lmax. Excluding from the integration the region 0 < L < Lmin we obtain that the
estimate of ΓΥ(1S) in [179] is increased from 48 MeV to 165 MeV.



4.5 CALCULATION OF IMVQQ̄ IN SOME GRAVITY DUALS 99

0.0 0.1 0.2 0.3 0.4 0.5

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

LT

Im
V

Q
Q

�HT
Λ

1�2
L

Figure 4.10: As in Figure 4.9 but plotted against the Coulomb ground-state wavefunction (dash-
dotted curve) for T = 0.3 GeV. The wave function has no particular scale on the vertical axis -
it was conveniently normalized to fit the plot.

In Figure 4.11 we show ΓQQ̄/T for the Υ(1S) state as a function of Ta0 for λ = 9.
We see that the conservative approach gives a thermal width that can be three orders
of magnitude smaller than that computed using the extrapolation. For a0 ∼ 0.6 GeV−1,
T ∼ 0.5 GeV, the thermal width varies from 0.5 MeV to 1.5 GeV between the conservative
approach and the extrapolation. Therefore, the extrapolation considerably overestimates
the thermal width while the conservative approach only gives a lower bound for this
quantity.

The result for the conservative approach, shown in more detail in Figure 4.12, can be
understood qualitatively as follows: the weight factor ρ(w) samples only the small region
of LT in which ImVQQ̄ 6= 0. As one increases the temperature, ρ(w) shifts to the right.
For LTmin,max ∼ Ta0 the overlap between ρ(w) and ImVQQ̄ 6= 0 happens at the maximum
of ρ(w) at w = Ta0 - this corresponds to the maximum in Figure 4.11. By increasing
T even further, the overlap occurs before the maximum of ρ(w) and ΓQQ̄ decreases. The
temperature dependence of ΓQQ̄/T found in this case is qualitatively similar to that found
in recent lattice calculations [200].

4.5.3 A model for QCD3

If we start from N = 4 SYM and take T → ∞, then the compactification radius
β = 1/T of the Euclidean time coordinate goes to 0. As already remarked in Section 3.9,
the fermionic degrees of freedom of N = 4 SYM become massive in the limit β → 0,
because of the anti-periodic boundary conditions in the compactified time. Moreover, the
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Figure 4.11: The thermal width ΓQQ̄ of the Υ(1S) state in N = 4 SYM divided by the tempera-
ture T as a function of Ta0 in a logarithmic scale (the t’Hooft coupling is λ = 9). The solid black
curve corresponds to the conservative approach and the dashed blue curve is the extrapolation
explained in the text.
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Figure 4.12: The same as in Figure 4.11 but this time the result for the conservative approach
is shown in detail.



4.5 CALCULATION OF IMVQQ̄ IN SOME GRAVITY DUALS 101

scalar fields decouple at one-loop. Therefore, all supersymmetry is broken and only the
gauge fields remain - in the end we go from thermal N = 4 SYM with SU(N) gauge group
in (3+1) dimensions to a SU(N) gauge theory in 3 dimensions at zero temperature.12

The calculation of VQQ̄ for this model proceeds as before. In the metric (4.42) we
drop the first Euclidean time coordinate; one of the remaining spatial coordinates is then
assigned to be the Euclidean time. We have then V (U) = U4/R4 and M(U) = 1/f(U).
The function M diverges at Uh - this means that the dual gauge theory confines. The
string tension is then

σ =
U2
h

2πα′R2
=
π
√
λT 2

2
, (4.63)

where λ is the 4 dimensional ’t Hooft coupling constant.
The exact formulas for L and VQQ̄ are evaluated following the procedure of the previous

sections. One obtains

L

2
=

2
√

2ππ

Γ(1/4)2

R2

U∗
2F1

[
1

2
,
3

4
;
5

4
; y4
h

]
and (4.64)

FQQ̄ = −U∗
α′

√
2π

Γ(1/4)2 2F1

[
1

2
,−1

4
;
1

4
; y4
h

]
. (4.65)

The expression (4.64) for L has the same functional form of Eq. (4.54), minus the factor√
1− y4

h. This factor is responsible for deconfinement - it controls the divergence of the
hypergeometric function at yh = 1 (U∗ = Uh) and gives the mountain shaped form of
Figure 4.6. Without it, L diverges for yh → 1, as expected from a confining gravity dual.
A second consequence of Eqs.(4.64) and (4.65) is that the short-range behavior is the
same of N = 4 SYM.

This example also gives a (very) tentative argument that ImFQQ̄(LT → ∞) → 0 for
N = 4 SYM. Since this is a vaccuum gauge theory, V cannot have an imaginary part.
This can be checked explicitly using Eq.(4.36). Since this is the high temperature limit of
thermal N = 4 SYM, then we must have ImFQQ̄(LT →∞)→ 0.

4.5.4 Gauss-Bonnet gravity

Action and metric

We now consider a class of bulk theories that includes curvature squared corrections
to the supergravity action for which the conjectured viscosity bound η/s ≥ 1/4π [90] can

12In Chapter 6 we will analyze this dimensional reduction of a (3+1) gauge theory at finite temperature
to a 3 dimensional gauge theory at zero temperature in more detail.
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be violated. The action for these models, called Gauss-Bonnet gravity [194–196], is

S =
1

16πG5

∫
d5x
√−g

[(
R+

12

R2

)
+

+
λGB

2
R2
(
R2 − 4RµνRµν +RµνρσRµνρσ

)]
, (4.66)

where G5 is the five dimensional Newton constant, Rµνρσ is the Riemann tensor, Rµν is
the Ricci tensor, R is the Ricci scalar, and λGB is a constant. The first parenthesis is the
usual Einstein-Hilbert + cosmological constant action. The second parenthesis gives the
curvature squared corrections. For this particular choice of curvature squared corrections,
metric fluctuations in a given background have the same quadratic terms as Einstein
gravity. The action (4.66) has an exact black-brane solution [146] given by

ds2 = −a2fGB(U)dt2 +
U2

R2
d~x2 +

dU2

fGB(U)
, (4.67)

where
a2 =

1

2

(
1 +

√
1− 4λGB

)
and (4.68)

fGB(U) =
U2

R2

1

2λGB

[
1−

√
1− 4λGB

(
1− U4

h

U4

)]
. (4.69)

The black brane horizon is the simple root of fGB(U), Uh. The plasma temperature is
T = aUh/(πR

2). From Eq. (4.67) we see that the AdS radius is given by aR instead of
just R. In particular, the ’t Hooft coupling of the dual strongly coupled CFT is given
by λ = a4R4/α′. The functional form of a and fGB implies that λGB < 1/4. However, in
practice λGB ≤ 9/100 to avoid causality violation at the boundary [91,92].

The constant λGB is related to the ratio of the shear viscosity η and the entropy density
s by [91,92,147]

η

s
=

1

4π
(1− 4λGB). (4.70)

For λGB > 0 the viscosity bound for gauge theories with gravity duals, η/s > 1/4π, is
violated. The constraint λGB ≤ 9/100 implies that 4πη

s
≥ 16/25.

The evaluation of the real part of the heavy quark potential in the strongly cou-
pled plasma dual to Gauss-Bonnet gravity (4.67) was already performed in [201] (see
also [202, 203]). In this Section we extend the analysis of [201] to include the numerical
evaluation of ReVQQ̄ and also the calculation of the imaginary part of the potential using
the worldsheet fluctuation method. Moreover, we give an estimate of the dependence of
the Debye screening mass in this theory as a function of η/s.
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Polyakov loop and the real part of the heavy quark potential

Using Eqs. (4.12), (4.15), and (4.16) one obtains for the regularized heavy quark free
energy

FQ
T

= −R
2

2α′
= −
√
λ

2a2
(4.71)

while

LT (yh) =
2a

π
yh

√
2f̄GB(1, yh)λGB

∞∫
1

[
y8f̄GB(1, yh)

2 − y4f̄GB(y, yh)f̄GB(1, yh)
]−1/2 (4.72)

and the real part of the heavy quark potential is given by

ReVQQ̄
T

=
R2

α′
1

yh


∞∫

1

dy


1 +

1
y4f̄GB(y,yh)

f̄GB(1,yh)

1/2

− 1

− 1

 (4.73)

where f̄GB(y, yh) is a reduced form of fGB(U) defined by

f̄GB(y, yh) = 1−
√

1− 4λGB

(
1− y4

h

y4

)
. (4.74)

For λGB 6= 0, both Eqs. (4.72) and (4.73) cannot be evaluated in terms of hypergeometric
functions. In the limit LT � 1 one can show [201] that

ReVQQ̄
T

= − 4π2
√
λ

Γ(1/4)4LT

(
1 +

c

a6
√

1− 4λGB
(LT )4

)
, (4.75)

where c is the constant given by Eq. (4.57)13.
We can also evaluate Eqs. (4.72) and (4.73) numerically by fixing λGB and using yh

as a parameter. In Figure 4.13 we show LT as a function of yh for λGB = 0 (4πη/s = 1)
and λGB = −0.25 (4πη/s = 2). We see that increasing λGB (decreasing η/s) lowers yh,max
and LTmax. However, as shown in Figure 4.14, the behavior of ReVQQ̄ as a function of
LT does not change significantly with λGB. Moreover, one sees that the approximation in
Eq. (4.75) is excellent for the values of λGB considered here. In the end, the main effect
of increasing λGB is to reduce the allowed interval for LT .

13In Ref. [201] this corresponds to Eq. (34), which can be obtained after some manipulations involving
gamma functions. Here we have not performed the entropy subtraction done in Ref. [201] to obtain their
Eq. (35).
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Figure 4.13: LT as a function of yh in the CFT dual to Gauss-Bonnet gravity. The solid black
curve is the result for λGB = 0 (4πη/s = 1); the dashed blue curve is the result for λGB = −0.25
(4πη/s = 2).
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Figure 4.14: ReVQQ̄/T as a function of LT in the CFT dual to Gauss-Bonnet gravity. The
solid black curve is the result for λGB = 0 (4πη/s = 1); the dotted-dashed red curve is the result
for λGB = −0.25 (4πη/s = 2); the dotted blue curve corresponds to the approximation in Eq.
(4.75).
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Estimate of the Debye mass and its dependence on η/s

Using the simple fitting procedure described in section 4.5.2 we can obtain a simple
estimate for the Debye screening mass in GB gravity and its dependence with η/s. We
use, as before, the model (4.59) (with σ = 0). Since we do not have exact expressions for
LT and ReVQQ̄/T in this case, we cannot prove whether the real part of the potential
computed using the classical string shows exponential Debye screening or not. In any
case, the cautionary remarks previously made for N = 4 SYM are still applicable here
and must be kept in mind.

The fitting procedure is done as before for the case of SYM. Varying the values of λGB
(therefore, η/s) we obtain the results for mD shown in Figure 4.15 (the parameters δ and
C̃1 do not vary appreciably with respect to those found in the SYM calculation). Here we
consider both positive λGB (corresponding to 4πη/s < 1) and negative λGB (4πη/s > 1).
In Figure 4.15, the shaded region denotes the result for mD computed using values of λGB
that lead to problems with causality. One can see that mD decreases with increasing η/s
for the allowed values of λGB. This result is reasonable since larger η/s in general means
weaker coupling, which in turns implies that heavy quark pairs are less screened by the
medium.
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Figure 4.15: An estimate for the Debye screening mass mD as a function of 4πη/s in the
strongly coupled conformal plasma dual to Gauss-Bonnet gravity. The shaded blue region can be
excluded since mD in this region was determined using values of λGB that lead to problems with
causality.
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Imaginary part of the heavy quark potential in GB gravity

Using Eq. (4.36) we can calculate ImVQQ̄ in this theory and study its dependence on
η/s. The full expression, while easy to derive, is rather cumbersome and therefore omitted
in the text. However, a simple expansion for λGB � 1 results in a more useful expression

ImVQQ̄
T

= − π
√
λ

24
√

2

1

yh

[
(3y4

h − 1) +
λGB

3
(9y4

h − 34y8
h + 9y12

h )

]
+O(λ2

GB). (4.76)

For λGB = 0 we recover the N = 4 SYM result (4.61). As before, enforcing ImVQQ̄ < 0

gives a lower limit for yh while the condition regarding the validity of the classical string
calculations gives a maximum value of yh (Figure 4.13). In Figure 4.16 we show the
numerical results for ImVQQ̄/T for λGB = −0.25. Only a small interval of LT is allowed
in the conservative approach and increasing λGB shifts this interval to the left. We also see
that Eq. (4.76) is a satisfactory approximation to the numerical result for λGB = −0.25.

4.5.5 Thermal width of Υ(1S) and its dependence on η/s

In Figure 4.17 we present a lower bound for the thermal width ΓQQ̄ of the Υ(1S)

state as a function of η/s for λ = 9 and T ∼ 300 MeV. Since changing η/s changes the
sampling region for L, we have again that the shape of Figure 4.17 reproduces the shape
of the associated ground-state Coulomb wave function. The shaded blue region denotes
the values of the width computed using values of λGB that lead to causality violations in
the gauge theory. Note that the thermal width, normalized by the value found in strongly
coupled SYM, decreases with increasing η/s.

4.6 Discussion and Conclusions of This Chapter

In this Chapter we used the gauge/gravity duality to study the imaginary part of the
heavy quark potential in strongly coupled plasmas. This imaginary part can be used to
estimate the thermal width of heavy quarkonia in strongly coupled plasmas, which may be
seen as the strongly coupled analog of the Landau damping induced thermal width found
in perturbative QCD calculations [167–169]. The thermal worldsheet fluctuation method,
originally developed in Ref. [179], was used here to obtain a lower bound for the thermal
width of heavy quarkonium states, such as the Υ(1S), in 2 different holographic toy models
of the strongly coupled quark-gluon plasma (QGP): strongly coupled N = 4 SYM at large
Nc and the strongly coupled CFT dual to GB gravity. Moreover, we proved a general
result using the thermal worldsheet fluctuation approach that establishes the connection
between the imaginary part of the heavy quark potential at nonzero temperature and the
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Figure 4.16: ImVQQ̄/T as a function of LT in the CFT dual to Gauss-Bonnet gravity. The full
black curve is the result for λGB = 0; the dashed blue curve is the result for λGB = −0.25; and
the dashed-dotted red curve corresponds to the approximation in Eq. (4.76).
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Figure 4.17: Lower bound for Υ(1S) thermal width ΓQQ̄ computed via Gauss-Bonnet gravity,
normalized by the N = 4 SYM result. We used the gauge theory coupling λ = 9 and T = 300 MeV.
The shaded blue region denotes the values of the width computed using values of λGB that lead
to causality violations in the gauge theory.
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area law of the Wilson loop at zero temperature.
In the case of strongly coupled SYM we found that the thermal width of Υ(1S) is

actually very small in comparison to the plasma temperature for reasonable (and large)
values of the t’Hooft coupling. The estimates previously made for this quantity in Ref.
[179] have been improved in the calculations done in this Chapter and the nontrivial
consistency conditions, discussed at length in this manuscript, have conspired to bring
down the previous value of the thermal width to values that may be consistent with recent
phenomenological models for the quenching of heavy quarkonia in the QGP [212,213]. It
would be interesting to use the imaginary contribution to the heavy quark potential found
here to study other quarkonium states [214].

Moreover, even though the real part of the heavy quark potential (computed with the
classical string approximation) does not show explicit exponential screening in a strongly
coupled N = 4 SYM plasma, a simple phenomenological estimate for the Debye screen-
ing mass can still be extracted via a fit to the real part of the heavy quark potential.
Surprisingly enough, this rough estimate for the Debye screening mass is still in fair
agreement (within ∼ 11%) with the result obtained using the lightest CT-odd supergrav-
ity mode [184] (see also Chapter 6, where we present a more careful definition of the Debye
mass and present details of these holographic calculations).

We remark that in our estimate for the imaginary part of the heavy quark potential
in N = 4 SYM is proportional to T 2, which was also obtained in other non-perturbative
calculations such as the holographic computations based on complexified worldsheet coor-
dinates [190] or the calculation performed using particular choices of worldsheet configu-
rations in Ref. [192]. This behavior is in stark contrast with the T scaling of the imaginary
part found in pQCD calculations [167–169]. In Ref. [207], the thermal width of mesons
in N = 4 SYM was computed within the D7 flavor brane setup and, in this calculation,
a nonzero thermal width for mesons arises from worldsheet instantons being exchanged
between the tip of the D7-brane and the black hole horizon. This method can be used
to understand the momentum dependence of this instanton-induced thermal width of a
meson that is moving relative to the thermal bath. In our method, the nontrivial D-brane
dynamics associated with the inclusion of fundamental flavor is not included. Therefore,
the 1/

√
λ effects found in Ref. [207] cannot appear in our approach. Rather, our calcula-

tion of the width is to be interpreted as an estimate for this quantity in the limit where
the mass of the quarks is very large (static meson approximation), in the same spirit of
Refs. [190–192].

We also computed the thermal width of heavy quarkonia in the CFT dual to GB gravity
to study its dependence with η/s. For a fixed temperature of T = 0.3 GeV the width has
a maximum around η/s = 1/4π and decreases for larger values of η/s. Following the
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phenomenological procedure to extract the Debye mass from the real part of the potential
described above, we obtained an estimate for the dependence of mD with η/s in this
gravity model. Our results suggest that Debye screening effects decrease with increasing
η/s in a strongly coupled plasma.

In this Chapter we assumed that the plasma is isotropic and conformal14 and that the
QQ̄ pair is at rest with respect to the thermal bath. It would be interesting to generalize
the calculations for the imaginary part of the heavy quark potential performed here by con-
sidering gravity models dual to plasmas where these conditions are dropped. For instance,
one could compute the thermal width in an anisotropic strongly coupled plasma [148,208]
or in non-conformal gravity models of the QGP such as of Refs. [15, 209].

The results of this Chapter were published in Ref. [18]. For more examples of the
computation using this method, see Refs. [210, 211] where the imaginary part of the
heavy quark potential was computed in a strongly coupled anisotropic plasma using the
method described here.

14Simple non-conformal models and the respective results for the imaginary part of the potential can
be found in Appendix D, Section D.3.



Chapter 5

Thermal suppression of moving heavy
quark pairs in strongly coupled plasma

5.1 Introduction

In heavy ion collisions, useful probes to studying the formation and evolution of the
QGP [5] are the heavy quarkonia (J/ψ and Υ mainly) formed in hard processes before the
thermalization of the plasma. The seminal work of Matsui and Satz [199] argued that, in a
thermal bath, the binding interaction of the heavy quark-antiquark (QQ̄)pair is screened
by the medium, resulting in the melting of the heavy quarkonia. However, the QQ̄ pair
is not necessarily produced at rest in the QGP and the effects of its motion through the
plasma must taken into account when considering the effects of the medium in the QQ̄
interaction.

As shown in the previous Chapter, the interaction energy VQQ̄(L, T ) may possess,
at finite temperature, a nonzero imaginary part, which can be used to estimate a ther-
mal width of the quarkonium. Calculations of ImVQQ̄(L, T ) relevant to QCD and heavy
ion collisions were performed for static QQ̄ pairs using, for instance, perturbative QCD
(pQCD) [167, 168], lattice QCD [178, 200, 216] and using the gauge/gravity duality [18,
179,191,192,211,217] (for recent studies about quantum decoherence effects in quarkonia
see [176,177]). However, all of these calculations of ImVQQ̄(L, T ) in the literature were per-
formed considering static QQ̄ pairs. To accurately determine the suppression of quarkonia
formed in heavy ion collisions it is necessary to evaluate ImVQQ̄(L, T ) for moving quarko-
nia in the QGP [212–215]. In Ref. [218], it was shown using effective theory techniques
that in a weakly coupled QGP the heavy quarkonia decay width is a nontrivial function
of the temperature and velocity. However, for the two different scenarios considered in
Ref. [218] involving the different scales in the problem, it was found that the decay width
of very rapidly moving quarkonia decreases with the pair’s velocity.

110
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From the viewpoint of holography and the gauge/gravity duality [14,94,126], the eval-
uation of 〈W (C)〉 (and thus of VQQ̄(L, T )) in the large Nc strongly coupled 4-dimensional
gauge theory corresponds to, in the 5-dimensional bulk geometry perspective of the grav-
ity dual, the problem of finding a classical string configuration that has the closed loop
C as the boundary of the string worldsheet in the bulk [180, 181], as shown in Chapter
4. Holographic calculations of the real part of VQQ̄(L, T ) in strongly coupled plasmas, for
moving QQ̄ pairs, were already considered by Liu et al. [219,220] in the case of a strongly
coupled N = 4 SYM plasma. The computation of ReVQQ̄(L, T ) for moving QQ̄ in more
general backgrounds dual to strongly coupled QFTs were studied in Ref. [221].

In Ref. [207], the momentum dependence of meson widths was computed within the
gauge/gravity duality and it was shown that this quantity receives nontrivial contributions
from instantons on the string worldsheet. An interesting feature of their approach is that
the thermal width becomes very large for rapidly moving mesons. Thus, while the general
arguments from Refs. [219,220,222] indicate that the dissociation temperature of mesons
decreases with the pair’s rapidity, the results of Ref. [207] show that even before complete
dissociation the imaginary part of rapidly moving mesons may be already large enough
to cause suppression of these states in a strongly coupled plasma.

A general approach to determine the imaginary part of the static heavy quark potential
using string worldsheet fluctuations was developed in the last Chapter. In this Chapter, we
generalize this method to estimate the imaginary part of VQQ̄(L, T ) for moving quarkonia,
starting from the evaluation of the real part as done in [219, 220]. The main idea is,
following [219, 220], to consider a boost from the frame where the plasma is at rest and
the QQ̄ dipole is moving to a frame where the QQ̄ dipole is at rest, while the plasma is
moving. The procedure presented in this work can be used for a large class of strongly
coupled theories dual to gravity though in this work we focus on its application to strongly
coupled N = 4 SYM plasma. The method pursued here, however, has limitations. In the
static case these limitations (that stem from the saddle point approximation used in the
calculation of the imaginary part of the potential) were discussed in detail in the last
Chapter and we shall see in this Chapter that similar limitations restrict our discussion
here to the case of slowly moving quarkonia (therefore, our results are much more relevant
to RHIC collisions than those at the LHC). We note, however, that the overall qualitative
behavior found here, i.e., slowly moving quarkonia are less stable than the static case and
that QQ̄ pairs are more stable when they are aligned with their velocity axis, is consistent
with the findings of [207,219,220,222].

This Chapter is organized as follows: in Section 5.2, we discuss the case where the
QQ̄ dipole is moving perpendicularly to the axis that joins the QQ̄ pair - this presents a
simpler problem where, in the case of strongly coupledN = 4 SYM, some simple analytical
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results can be obtained. The case of a general orientation of the QQ̄ pair is a more complex
problem that is dealt with in Section 5.3, together with numerical calculations for this
quantity in an N = 4 SYM plasma. In Section 5.4 we present our conclusions and outlook.

5.2 Dipole Perpendicular To The Hot Wind

5.2.1 General results - Real part

In this section we evaluate general expressions for the real and imaginary part of
potential energy VQQ̄ of quark-antiquark QQ̄ pair moving with the QQ̄ dipole axis oriented
perpendicularly to a strongly coupled non-Abelian plasma, using holographic methods.
This case is computationally simpler than the case of a dipole with an arbitrary orientation
with respect to the wind. In fact, this case can be solved analytically in the case of strongly
coupled N = 4 SYM and it represents an extreme case (and check) of the calculations of
VQQ̄ for arbitrary orientations of the dipole with respect to the wind. Our calculations for
the real part follow the analysis done in [219,220].

As in the last Chapter, we start by assuming that our d+ 1-dimensional gauge theory
in Minkowski space has a gravity dual with the following metric,

ds2 = −G00(U)dt2 +Gxx(U)dx2
i +GUU(U)dU2, (5.1)

where i = 1, 2, ..., d, xi are orthornormal spatial coordinates for the boundary and U is
the radial coordinate. We will assume that our gravity dual has an asymptotically AdS5

boundary at U → ∞ and a black brane horizon at U = Uh, where we will assume that
GUU(Uh)→∞, with G00(Uh)GUU(Uh) finite. The presence of a black brane (which implies
G00 6= Gxx) breaks the original SO(d, 1) Lorentz isometry of the metric in the transverse
spacetime coordinates (t, xi) to only a rotational SO(d) isometry in the spatial coordinates
xi.

The fact that we do not have the full SO(d, 1) isometry group means that the metric
(5.1) is not invariant under rigid Lorentz boosts of the Minkowski spacetime slices we have
at each fixed U . This is expected, since the presence of a black brane in the gravity dual
is associated with a thermal boundary field theory, and in this case there is a preferred
reference frame (namely, the frame where the thermal medium is at rest). Boosting this
frame with a velocity ~v means that the an observer in this frame sees the medium moving
past him with velocity −~v.

We can exploit this fact to study the effect of the plasma on a QQ̄ pair in the thermal
medium. Starting from a reference frame where the plasma is at rest and the QQ̄ dipole
is moving with a constant velocity - we can boost to a reference frame where the dipole
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is at rest but the plasma is moving past it. This is the main idea used in this calculation.
When interpreting the results of our calculations, we will interchange frequently between
both points of view.

With these considerations in mind, let us consider a QQ̄ pair moving with rapidity η
along the xd direction with the plasma at rest in this reference frame. Let us then boost
our reference frame in the xd direction with rapidity η, so that the QQ̄ is now at rest and
the plasma moves with rapidity −η in the xd direction (the QQ̄ now feels a hot wind):

dt′ = dt′ cosh η − dx′d sinh η

dxd = −dt′ sinh η + dx′d cosh η. (5.2)

Applying this boost to the transverse coordinates of the metric (5.1), the geometry now
becomes (after dropping the primes):

ds2 =− (G00 cosh2 η −Gxx sinh2 η)dt2 + (Gxx cosh2 η −G00 sinh2 η)dx2
d+

− 2(Gxx −G00) sinh η cosh η dt dxd +Gxxdx
2
j +Grrdr

2, (5.3)

where j = 1, 2, .., d− 1.
Now, consider a QQ̄ dipole oriented perpendicularly to the wind in the gauge theory.

Let x1 be the direction to which the dipole is aligned and let L be the length of the line
joining both quarks. The quarks are located at x1 = L/2 and x1 = −L/2. As discussed in
Section 5.1, the heavy quark-antiquark potential energy VQQ̄ of this system is related to
the expectation value of a rectangular Wilson loop by Eq. (4.2). Holographically, in the
supergravity limit (corresponding to a strongly coupled plasma) we can evaluate 〈W (C)〉
by the prescription of the last Chapter,

〈W (C)〉 ∼ e−iSstr (5.4)

where Sstr is the classical Nambu-Goto action of a string in the bulk,

Sstr = − 1

2πα′

∫
dσdτ

√
−det(GMN∂αXM∂βXN), (5.5)

evaluated at an extremum of the action, δSstr = 0. The resulting equations of motion must
be solved with the boundary condition that the worldsheet of the string, parametrized by
spacetime target functions XM(σ, τ) (M = 0, 1, . . . , d−1 are the target spacetime indices,
α, β = σ, τ are the worldsheet coordinates), must describe the curve C, in the boundary of
the bulk geometry. Plugging back Sstr in Eq. (5.4) we extract the real part of VQQ̄. Once
we include thermal fluctuations of the string in Eq. (5.4), we will be able to evaluate the
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imaginary part of VQQ̄ in this case.
Since the dipole is perpendicular to the wind, xd−1 is constant along the line joining

the endpoints of the string - this means that we can take Xd−1 to be constant. We
use the remaining symmetry of Eq. (5.5) to completely fix the static gauge given by
(X0 = τ = t,X1 = σ = x,X i = const, Xd−1 = const, U = U(σ)), where i = 1, ..., d − 2.
With this gauge choice, Eq. (5.5) becomes, after inserting the background metric (5.3),

Sstr = − T
2πα′

∫ L/2

−L/2
dσ

√
M̃(U)U ′(σ)2 + Ṽ (U), (5.6)

where we defined

M̃(U) ≡M(U) cosh2 η −N(U) sinh2 η (5.7a)

Ṽ (U) ≡ V (U) cosh2 η − P (U) sinh2 η (5.7b)

and

M(U) ≡ G00GUU (5.8a)

V (U) ≡ G00Gxx (5.8b)

P (U) ≡ G2
xx (5.8c)

N(U) ≡ GxxGrr (5.8d)

Also, U ′ ≡ dU/dσ. We see that Eq. (5.6) has formally the same form found in the case of
a plasma at rest - we only need to replace M̃ and Ṽ by M ,V , respectively [18]. We also
see that taking η → 0 takes Eq. (5.6) back to the case in which the plasma is at rest.
However, an important difference between Eq. (5.6) and the corresponding action in the
case where the plasma is at rest is that in the latter the function M is always positive
whereas here M̃ can be negative, depending on the bulk geometry and η.

Let us proceed to solve the variational problem δS = 0. Since the calculation is very
similar to the η = 0 case presented in the last Chapter, here we will only sketch the
basic steps. First we write down the Hamiltonian associated with Eq. (5.6), which is a
constant of motion. Then, since the string is symmetric with respect to X1 = σ = 0, we
have U ′(0) = 0, with the corresponding position of the deepest position in the bulk being
U(0) = Uc. From the Hamiltonian, we can write the equation of motion for U(σ),

dU

dσ
= H(U(σ)) (5.9)
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with H(U) defined by

H(U) ≡
√
Ṽ (U)

Ṽc

Ṽ (U)− Ṽc
M̃(U)

. (5.10)

The subscript c in Ṽc and M̃c means that we evaluate these functions at U = Uc, i.e.,
Fc ≡ F (Uc). It follows by the chain rule that

d2U

dσ2
=

1

2

dH

dU
(U(σ)) (5.11)

and in particular
d2U

dσ2
(σ = 0) =

1

2

Ṽ ′c
M̃c

, (5.12)

where Ṽ ′ ≡ dṼ /dU . This equation will be useful later in the calculation of ImVQQ̄. From
Eq. (5.11), using the boundary condition that at the boundary of the bulk geometry the
string has to reach the Wilson loop contour - or more precisely, U(σ → L/2) = Λ, where
Λ is an UV cutoff, we can relate L with Uc as follows

L

2
=

Λ∫
Uc

dr
1√
H(U)

. (5.13)

Plugging Eq. (5.11) back in Eq. (5.6) we can relate Sstr and Uc

Sstr =
T
πα′

Λ∫
Uc

dU

√
M̃(U)

√
Ṽ (U)

Ṽ (U∗)

[
Ṽ (U)

Ṽ (U∗)
− 1

]−1/2

. (5.14)

This action is formally infinite when we remove the cutoff UV Λ, since this means that
the string worldsheet stretches from U = Uc to the conformal boundary at U → ∞ and
thus has infinite area. To regularize Sstr, we subtract the T → 0 divergence in Sstr. This
comes from the fact that in a thermal field theory all UV divergences should come from
the vacuum, as discussed in the last Chapter. The regularized Wilson loop is, therefore,

Sregstr =
T
πα′


∞∫

Uc

dU

√
M̃(U)

√
Ṽ (U)

Ṽ (U∗)

[
Ṽ (U)

Ṽ (U∗)
− 1

]−1/2

−
√
M0(U)


− T
πα′

∫ Uc

Uh

√
M0(U), (5.15)

where M0(U) ≡ G0
00(U)G0

UU(U), with G0
µν being the metric in the absence of the black

brane. Using Eqs. (5.15) and (5.4) we have, finally, ReVQQ̄ = Sregstr /T as a function of Uc.
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Together with Eq. (5.13) we can find L(Uc) and ReVQQ̄(Uc).

5.2.2 General results - Imaginary part

The main idea to evaluate ImVQQ̄, as before, is to consider thermal fluctuations of
the string worldsheet. The action (5.6) is exactly of the form already considered in the
last Chapter. However, now the function M̃(U) is not strictly positive. When M̃(U) > 0

the argument used in the calculation of the imaginary part from [18, 179] is left un-
changed. However, when M̃(U) is negative, the thermal fluctuations that may generate
an imaginary part must take place away from x1 = 0 and, thus, must have large ampli-
tudes. Fluctuations of this kind cannot be considered using the current approximations
employed in our approach, as we discuss below.

U
c U → ∞U

h

(a)  M(U
c
) > 0

U
c U → ∞U

h~
(b)  M(U

c
) < 0~

Figure 5.1: Thermal fluctuations of the string worldsheet responsible for ImVQQ̄ 6= 0 when (a)
M̃(U) > 0 and (b) M̃(U) < 0. Fluctuations of the second type, large and distant from U = Uc
cannot be considered in our current approach since they require corrections that go beyond the
saddle point approximation.

If M̃(Uc) > 0, the argument in Section 4.4 can be readily used. In the end, one
concludes that in this case

ImVQQ̄ = − 1

2
√

2α′

√
M̃c

[
Ṽ ′c

2Ṽ ′′c
− Ṽc

Ṽ ′c

]
, (5.16)

if ImVQQ̄ < 0.



5.2 DIPOLE PERPENDICULAR TO THE HOT WIND 117

If, instead, M̃(Uc) < 0, the argument is the same up to the point where we write Eq.
(4.27) in the last Chapter,

Lj =
√
C1x2

j + C2 (5.17)

with C1 and C2 given by Eqs. (4.28) and (4.29), with the substitutionsM,V → M̃, Ṽ . The
argument of the square root in Eq. (5.17) is, now, positive for a small interval of xj and
negative outside of this interval. This means that the square root is purely real inside this
interval and negative outside this interval. Thus, Lj has an imaginary part only outside
of the interval centered in x1 = 0. However, our calculation is only valid for x1 ∼ 0, near
the bottom of the string - we do not have access to the fluctuations that may occur far
from x1 = 0 since they would require to go beyond the saddle point approximation. Thus,
there is still an imaginary part for the potential in this case but, due to the saddle point
approximation, we cannot compute it with this formalism derived. This interesting case,
which corresponds to the case of large QQ̄ rapidities, is beyond the range of applicability
of the approximations employed in our method and a more general construction involving
the explicit D-branes degrees of freedom [223] corresponding to fundamental quarks used
in [207] may be required1.

5.2.3 An explicit example - Thermal N = 4 SYM

Let us apply the results of the foregoing subsection for the case of N = 4 SYM plasma.
The gravity dual to thermal N = 4 SYM is type IIB superstring theory on AdS5 × S5

with a black brane. The metric of the gravity dual is given by Eq. (4.42). It follows that
the functions in Eqs. (5.8) are

M(U) = 1 (5.18a)

V (U) =
U4

R4

(
1− U4

h

U4

)
(5.18b)

P (U) =
U4

R4
(5.18c)

N(U) =

(
1− U4

h

U4

)−1

. (5.18d)

After some algebra, one obtains from Eqs. (5.13) and (5.15)

LT =
2yc
π

√
1− y4

c cosh2 η

∫ ∞
1

dy√
(y4 − 1)(y4 − y4

c )
, (5.19)

1We note that even though the worldsheet fluctuation method is formally applicable in general, at the
moment we have not worked out the technically nontrivial issues needed to go beyond the saddle point
approximation.
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ReVQQ̄
T

=

√
λ

yc

{∫ ∞
1

dy

[
y4√

(y4 − 1)(y4 − y4
c )
− 1

]
− 1

yh

}
, (5.20)

where yh ≡ Uh/Uc, yc ≡ 1/yh and λ = R4/α′2 is the ’t Hooft coupling of the gauge
theory. Note that since Uc > Uh one has 0 < yc < 1. It is possible to integrate Eqs. (5.21)
and (5.22) analytically (see the Appendix D for details; the main idea is to use integral
representations of the hypergeometric function [193])

LT =
2
√

2πyc
Γ(1/4)2

√
1− y4

c cosh2 η 2F1

(
1

2
,
3

4
,
5

4
, y4
c

)
, (5.21)

ReVQQ̄
T

= −
√
λ

yc

√
2π3

Γ(1/4)2

[
2F1

(
1

2
,−1

4
,
1

4
, yc

)
+ y4

c cosh2 η 2F1

(
1

2
,
3

4
,
5

4
, y4
c

)]
. (5.22)

where 2F1(a, b, c, d) is the Gauss hypergeometric function. The limit η → 0 yields the
expressions shown in the previous Chapter, Eqs. (4.54) and (4.55); for Eq. (5.21) this is
immediate, whereas for Eq. (5.22) it requires some use of the properties of hypergeometric
functions (namely, Gauss recursion formulas) [193].

In Fig. 5.2 we show the behavior of LT for this perpendicular case as a function of
yc for several choices of η. The maximum of the LT (yc), LTmax indicates the limit of
validity of the saddle point approximation - to go to higher LT it is necessary to include
further connected contributions past the saddle point approximation [184]. We see from
Fig. 5.3 that increasing η reduces LTmax. A systematic study of LTmax as a function of
η is presented in Fig. 5.3. In the literature [219, 220], LTmax has been used to define
a dissociation length for the moving QQ̄ pair - the dominant configuration for Sstr in
this case would be two straight strings (two heavy quarks) running from the boundary
to the horizon. In this Chapter, based on the discussion in Ref. [184] (see also the last
Chapter), we choose to use this quantity to define the region of applicability of the U-
shaped string configuration (which is dependent on the pair’s rapidity). Moreover, the
dissociation properties of heavy quarkonia should be sensitive to the imaginary part of
the potential and that will be estimated later in this section using the expression for
ImVQQ̄ computed above.

We proceed to show, in Fig. 5.4, ReVQQ̄/(T
√
λ) as a function of LT for some choices

of η. We see that for short distances the QQ̄ pair does not feel the moving plasma, as
expected. For each η the upper branch corresponds to another saddle point of the string
action (which is associated to the curve to the right of LTmax in Fig. 5.2), which is
suppressed with respect to the lower branch.
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Figure 5.2: LT as a function of yc for a QQ̄ pair oriented perpendicularly to the hot wind in
an N = 4 SYM plasma. Different rapidities are considered: the solid black curve corresponds to
η = 0, the dashed blue curve to η = 0.4, the dotted red curve to η = 0.8, and the dashed-dotted
purple curve to η = 1.2.
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Figure 5.3: LTmax as a function of rapidity η for a QQ̄ pair oriented perpendicularly to the hot
wind in an N = 4 SYM plasma.

Now, let us proceed to the evaluation of the imaginary part in this case. First, the
condition M̃(Uc) > 0 leads to

yc < ymax,1 = (1− tanh2 η)1/4 . (5.23)

When this is valid, use of Eq. (5.16) yields, after some algebra,

ImVQQ̄
T

= − π

24
√

2

√
λ

yc

√
1− y4

c cosh2 η

1− y4
c

(3y4
c cosh2 η − 1) . (5.24)
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Figure 5.4: ReVQQ̄/(T
√
λ) as a function of LT for a QQ̄ pair oriented perpendicularly to the

hot wind in an N = 4 SYM plasma. Different rapidities are considered: the solid black curve
corresponds to η = 0, the dashed blue curve to η = 0.4, the dotted red curve to η = 0.8 and the
dashed-dotted purple curve to η = 1.2.

Imposing that ImVQQ̄ < 0 leads to

yc > ymin =
1

31/4
√

cosh2 η
. (5.25)

Also, we must take yc < ymax,2, where ymax,2 is the maximum value of yc for which the
connected contribution we consider is valid (see Fig. 5.2). These conditions lead to a
narrow window where our method is applicable, shown in Fig. 5.5. One sees that ymax,2 <
ymax,1 so the case M̃(Uc) < 0 does not need to be considered in our case. For y < ymin,
ImVQQ̄ = 0. For ymax,2 < y < ymax,1, our method is not applicable and the imaginary
part of the potential has to be computed using other methods.

Taking into account these intervals of applicability, we show the result of Eq. (5.24) for
ImVQQ̄ as a function of LT in Fig. 5.6 for some choices of the rapidity η. One can see, from
Eq. (5.24), that ImVQQ̄ roughly scales as T 2 (since yc = Uh/Uc ∝ T ). This scaling was
seen in a calculation of ImVQQ̄ using complex world-sheet coordinates [191] and in lattice
calculations [178], opposed to the T scaling predicted by pQCD [167]. Also, for increasing
rapidity, the onset of the imaginary part happens for smaller LT which indicates that
the suppression becomes stronger. However, the actual magnitude of the imaginary part
computed in this case must be interpreted with caution. The apparent smaller magnitude
observed at larger rapidities happens not because the imaginary part (or, equivalently,
the thermal width) really decreases but simply because we chose to plot only the values
that are consistent with the very stringent requirements used in the last Chapter. One
could have used the linear extrapolation employed in the original study [179] and that
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Figure 5.5: From top to bottom, the limiting curves ymax,1 (solid black line), ymax,2 (dashed
blue line) and ymin (dotted red curve) as a function of the rapidity η for a QQ̄ pair oriented
perpendicularly to the hot wind in an N = 4 SYM plasma. The filled area represents the region
where our method can be reliably used to estimate ImVQQ̄.

would give the correct qualitative result that at large rapidity QQ̄ pairs are less stable.
However, in the last Chapter this extrapolation was shown to largely overestimate the
thermal width and, thus, in this thesis we chose to be very “conservative” and plot in Fig.
5.6 only the region consistent with the approximations used in our method. However, we
stress that the correct way to interpret our findings is that the heavy quark potential of
moving quarkonia should have, in general, larger imaginary parts than the corresponding
static case.
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Figure 5.6: ImVQQ̄/(
√
λT ) as a function of LT for a QQ̄ pair oriented perpendicularly to the

hot wind in an N = 4 SYM plasma. The solid black curve corresponds to η = 0, the dashed blue
curve to η = 0.4, the dotted red curve to η = 0.8, and the dashed-dotted purple curve to η = 1.2.
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5.3 Dipole at Arbitrary Angles

The next step is to generalize the previous calculations for a dipole oriented at an
arbitrary angle with respected to its velocity vector. The main difference, in the gravity
dual calculation of the Wilson loop, is that we cannot take Xd−1 = const anymore. As
emphasized in Refs. [219, 220], the system has now two effective degrees of freedom. The
calculation of the imaginary part, though it follows the same general lines as before, now
needs two pieces of information that can be extracted from the classical solution.

5.3.1 General Results - Real Part

Let us proceed to orient the Q̄Q dipole at an arbitrary angle with respect to the
hot wind in the Xd−1 direction. Our objective will be, as before, to extract the real and
imaginary parts of the heavy quark-antiquark potential energy VQ̄Q holographically. We
will take the dipole to be in the (X1, Xd−1) plane. Let θ be the angle of the dipole with
respect to the Xd−1 axis (see Fig. 5.7). If θ = π/2 the dipole is oriented along X1 and we
return to the case of the previous section.

X
1

θ

X
d-1

U

U
c

-L sin θ /2 +L sin θ /2

+L cos θ /2

-L cos θ /2

Figure 5.7: The geometry of the Q̄Q dipole, as described in the text, along with the string in the
bulk joining the ends of the heavy quark pair. Note that the projection of this string on (X1, Xd−1)
at the boundary is not a straight line joining the Q̄Q quarks but a curved line.

Using the holographic prescription, in order to evaluate VQQ̄ we should evaluate Sstr
given by Eq. (5.5) with the boundary condition that the string described by Sstr joins
the endpoints of the dipole. However, now we have two fixed parameters (aside from η,
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which tells us how to rotate the Minkowski slices): the length of the dipole L and the
angle θ. If we followed the calculations of the previous section of this thesis, we would
have only one constant of motion, given by the Hamiltonian of the problem, to relate to
both L and θ. Indeed, as discussed in Refs. [219,220], one has to consider also a “sagging”
of the string along the line segment joining the quark-antiquark pair, as described in Fig.
5.7. In terms of the string worldsheet, this means that have to consider the behavior of
the embedding function Xd−1(σ). We cannot, as in the previous section, take Xd−1(σ)

as given. Rather, Xd−1(σ) must be taken as the second degree of freedom of the string
worldsheet and that makes a difference both in the computation of the real and imaginary
parts of the potential.

This implies that we must slightly modify the static gauge used in the previous section.
A possible choice of the string worldsheet coordinates, which will be used in this work, is
(X0 = τ = t,X1 = σ = x,X i = const, Xd−1 = Xd−1(σ), U = U(σ)), where i = 1, ..., d−2.
Now we have two degrees of freedom, Xd−1(σ) and U(σ). We note that if the projection
of the string on the (X1, Xd−1) plane was a straight line, then Xd−1(σ) would be given by
σ/ tan θ. The boundary conditions to be imposed here are

U

(
±L

2
sin θ

)
= Λ

Xd

(
±L

2
sin θ

)
= ±L

2
cos θ (5.26)

which, taken together, imply that the string has as its endpoints the heavy quarks. As in
Section 5.2, Λ is an UV cutoff. The background metric is still given by the generic boosted
metric in Eq. (5.3).

With these modifications, the action (5.5) now becomes

Sstr = − T
2πα′

∫
dσL, (5.27)

where we defined the Lagrangian

L ≡
√[

M(U) cosh2 η −N(U) sinh2 η
]
U ′(σ)2 + V (U)X ′d(σ)2 +

[
V (U) cosh2 η − P (U) sinh2 η

]
(5.28)

with the functions M,N, V and P defined as in Eq. (5.8). This action does not depend
on σ explicitly, so the associated Hamiltonian

H ≡ Q ≡ L− dU

dσ

∂L
∂U ′
− dXd

dσ

∂L
∂X ′d

(5.29)
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is a constant of motion. Another constant of motion is

K ≡ ∂L
∂X ′d

, (5.30)

since L does not depend on Xd explicitly. Inserting the Lagrangian (5.28) in the first
integrals (5.30) and (5.29) we obtain, after some algebra,

Q2
[
M(U) cosh2 η −N(U) sinh2 η

]
U ′(σ)2 +Q2V (U)X ′d−1(σ)2+

+
[
V (U) cosh2 η − P (U) sinh2 η

] {
Q2 −

[
V (U) cosh2 η − P (U) sinh2 η

]}
= 0 (5.31)

and

K2
[
M(U) cosh2 η −N(U) sinh2 η

]
U ′(σ)2 + V (U)(K2 − V (U))X ′2d−1(σ)+

+K2
[
V (U) cosh2 η − P (U) sinh2 η

]
= 0 . (5.32)

Eqs. (5.31) and (5.32) can be recast in a more convenient form; first we solve Eq. (5.31) for
X ′2d , then we substitute the resulting expression in Eq. (5.32) to obtain an equation involv-
ing only U ′(σ). Then one can use the common term

[
M(U) cosh2 η −N(U) sinh2 η

]
U ′(σ)2

to obtain a simplified equation for X ′d. After these manipulations, one ends up with the
final form for the equations of motion, namely

Q2V (U)
[
M(U) cosh2 η −N(U) sinh2 η

]
U ′(σ)2 =

= (V (U)−K2)
[
V (U) cosh2 η − P (U) sinh2 η

]2 − V (U)
[
V (U) cosh2 η − P (U) sinh2 η

]
Q2

(5.33)

and
Q2V 2(X ′d−1)2 = K2

[
V (U) cosh2 η − P (U) sinh2 η

]2
. (5.34)

Referring back to the Fig. 5.7, we define Uc as the minimum value of U that the
string reaches in the bulk. By the symmetry of the string worldsheet, we must have
U(σ = 0) = Uc, U ′(σ = 0) = 0 and Xd(σ = 0) = 0. Using these conditions in Eq. (5.33)
we obtain an equation relating Uc with Q and K

(Vc −K2)(Vc cosh2 η − Pc sinh2 η)− VcQ2 = 0, (5.35)

where we used, as before, Fc ≡ F (Uc).
From the equations of motion (5.33) and (5.34), and taking into account the boundary
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conditions (5.51), we are lead to two relations between L, θ and Q,K and Uc

L

2
sin θ =Q

∫ Λ

Uc

dU

{
V (U)

V (U) cosh2 η − P (U) sinh2 η
×

× M(U) cosh2 η −N(U) sinh2 η[
(V (U)−K2)

[
V (U) cosh2 η − P (U) sinh2 η

]
− V (U)Q2

]}−1/2

(5.36)

and

L

2
cos θ = K

∫ Λ

Uc

dU

√ [
M(U) cosh2 η −N(U) sinh2 η

] [
V (U) cosh2 η − P (U) sinh2 η

]
V (U)

{
(V (U)−K2)

[
V (U) cosh2 η − P (U) sinh2 η

]
− V (U)Q2

} .
(5.37)

In these equations, if the metric is asymptotically AdS, the integrals converge and we can
formally take Λ → ∞. The general procedure, to be described in more details when we
treat the explicit example of N = 4 SYM, is to specify a value for the constant Q and
solve Eq. (5.35) to obtain Uc as a function of Q and K. Then, plugging Uc = Uc(Q,K),
we may solve Eqs. (5.36) and (5.37) to relate the set of integration constants (Q,P ) with
the geometrical parameters (L, θ).

With the problem of the integration constants taken care of, we can evaluate the action
in the saddle-point approximation and obtain

S =
T
πα′

∫ Λ

Uc

dU

√
V (U)

[
M(U) cosh2 η −N(U) sinh2 η

] [
V (U) cosh2 η − P (U) sinh2 η

]{
(V (U)−K2)

[
V (U) cosh2 η − P (U) sinh2 η

]
− V (U)Q2

} .

(5.38)
We regularize this action as before (the process of reorienting the string clearly cannot
introduce new UV divergences). The regularized action is thus

Sreg =
T
πα′

∫ Λ

Uc

dU

{√
V (U)

[
M(U) cosh2 η −N(U) sinh2 η

] [
V (U) cosh2 η − P (U) sinh2 η

]{
(V (U)−K2)

[
V (U) cosh2 η − P (U) sinh2 η

]
− V (U)Q2

} +

−
√
M0(U)

}
− T
πα′

∫ Uc

0

dU
√
M0(U), (5.39)

withM0 being, as before, the functionM(U) defined for T = 0, in the absence of the black
brane. The real part of the heavy quark potential of the QQ̄ pair is ReVQQ̄ = Sreg/T .

5.3.2 Imaginary part - General results

Let us proceed to discuss the imaginary part. As before, we consider thermal fluctua-
tions in the string worldsheet, following the ideas exposed on the previous Chapter. The
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main difference is that now we have two degrees of freedom, U(σ) and Xd−1(σ). Thus,
in principle, we have to consider fluctuations δU(σ) and δXd−1(σ), with ∂U/∂σ → 0 and
∂Xd−1/∂σ → 0. Including these fluctuations, the stringy partition function takes the form

Zstr ∼
∫
D(δU)D(δXd−1)eiSstr(Ū+δU,X̄d−1+δXd) (5.40)

where Ū and X̄d−1 are the classical solutions of δSstr = 0 described in the previous
section. Partitioning the interval [−L/2 sin θ, L/2 sin θ] in 2N subintervals and using the
action (5.27), we can write

Zstr ∼
(∫ ∞
−∞

d(δU−N) d(δXd−1,−N)

)
· · ·
(∫ ∞
−∞

d(δUN) d(δXd−1,N)

)
ei
T∆x
2πα′ Lj , (5.41)

where ∆x = (L/2 sin θ)/2N and

Lj =
√
M̃(U(xj))(U ′(xj))2 + V (U(xj))(X ′d−1(xj))2 + Ṽ (xj), (5.42)

with M̃ and Ṽ given in Eq. (5.7). Only considering fluctuations near the bottom of the
string, i.e., at σ = 0 with U = Uc, we can expand the classical solution Ū(σ) around
σ = 0 to quadratic order on σ, and the functions M̃ and Ṽ around Ū - the calculations
are the same as for the static or perpendicular cases, noting that we keep only terms up
to quadratic order in the monomial δUm δXn

d−1σ
p. As for Xd−1(xj), if the string did not

sag, then we would have Xd−1(σ) = σ/ tan θ. With the sagging, Xd−1 does not assume
such a simple form. However, around σ = 0 one must be able to expand Xd−1(σ) as

Xd−1(σ) =
σ

tan θ̃
+ bσ3 +O(σ5), (5.43)

where θ̃ would be equal to θ if the string did not sag and b was a constant. Even terms
do not participate in this expansion because the problem is evidently symmetric under
reflections with respect to the origin of the (X1, Xd) plane (see Fig. 5.7 where the projec-
tion of the string was drawn taking this into account) and Xd(σ) must be an odd function
of σ. Therefore, up to O(σ2),

X ′d−1(σ)2 =
1

tan2 θ̃
+

6b

tan θ̃
σ2. (5.44)

Inserting Eq. (5.44) into Eq. (5.42) we arrive, after some algebra, at

Lj =
√
C̃1x2

j + C̃2, (5.45)
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where we defined

C̃1 ≡ M̃cŪ
′′(0)2 +

1

2

(
V ′c

tan2 θ̃
+ Ṽ ′c

)
Ū ′′(0) +

6b

tan θ̃
Vc (5.46)

and

C̃2 ≡
(

Vc

tan2 θ̃
+ Ṽc

)
+

(
V ′c

tan2 θ̃
+ Ṽ ′c

)
δU +

(
V ′′c

tan2 θ̃
+ Ṽ ′′c

)
(δU)2

2
. (5.47)

Following the same argument presented in the previous section, we must have C̃1 > 0. If
this is the case, then imposing that Eq. (5.45) has an imaginary part, summing all such
contributions of Lj in Eq. (5.41) and finally taking the continuum limit we arrive at a
new and explicit analytical expression for ImVQQ̄ valid for a large class of gravity duals

ImVQQ̄ = − 1

4α′
1√
C̃1


(

V ′c
tan2 θ̃

+ Ṽ ′c

)2

2
(

V ′′c
tan2 θ̃

+ Ṽ ′′c

) − ( Vc

tan2 θ̃
+ Ṽc

) . (5.48)

For this expression to be valid, we must impose ImVQQ̄ < 0. Also, note that to compute
C̃1 using Eq. (5.47) we need to use two pieces of information concerning the shape of Ū(σ)

at σ ∼ 0, Ū ′′(0) and b.

5.3.3 An explicit example - Thermal N = 4 SYM

Let us apply the results of the foregoing sections to strongly coupled thermal N = 4

SYM. The metric is given by equation (4.42), and the M,N,P, V functions are the same
as in Eq. (5.18a). Evaluation of the equations of motion (5.33) and (5.34) lead to

q2

(
dy

dσ̃

)2

= (y4 − cosh2 η)(y4 − 1− p2)− q2(y4 − 1) and (5.49)

(
dz

dσ̃

)2

=
p2

q2

(
y4 − cosh2 η

y4 − 1

2
)2

, (5.50)

where we defined the dimensionless variables y ≡ U/Uh, z ≡ XdUh/R
2 and σ̃ ≡ σUh/R

2

as well as the dimensionless integration constants q2 ≡ R4Q2/U4
h and p2 = R4K2/U4

h .
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With these variables, the boundary conditions (5.51) become

y

(
±πLT

2
sin θ

)
= Λ̃

z

(
±πLT

2
sin θ

)
= ±πLT

2
cos θ (5.51)

where we substituted L for the dimensionless variable LT = LUh/(πR
2) to explicit show

the conformal character of the gauge theory and Λ̃ is the dimensionless UV cutoff. Using
the equations above we arrive at expressions relating the integration constants q, p with
the physical parameters LT, θ:

LT

2
π sin θ = q

∫ Λ̃

yc

dy√
(y4 − 1− p2)(y4 − cosh2 η)− q2(y4 − 1)

and (5.52)

LT

2
π cos θ = p

∫ Λ̃

yc

dy
y4 − cosh2 η

y4 − 1

1√
(y4 − 1− p2)(y4 − cosh2 η)− q2(y4 − 1)

. (5.53)

The condition (5.35) reduces to

(y4
c − 1− p2)(y4

c − cosh2 η)− q2(y4
c − 1) = 0 . (5.54)

The real part of the heavy quark potential, after regularization, is given by Eq. (5.39).
This yields

ReVQQ̄
T

=
√
λ

∫ ∞
yc

dy

 y4 − cosh2 η√
(y4 − cosh2 η)(y4 − 1− p2)− q2(y4 − 1)

− 1

−√λ(yc − 1) .

(5.55)
These results agree with those in Ref. [220]. As for the imaginary part, we use Eq. (5.48)

ImVQQ̄
T

= −π
√
λ

12

[3(cos2 θ̃ + cosh2 η sin2 θ̃)− y4
c ]√

y′′(0)2
(
y4
c−cosh2 η
y4
c−1

)
+ 2y3

cy
′′(0)

sin θ̃
+ 6b̃

tan θ̃
(y4
c − 1)

, (5.56)

where we defined b̃ = U2
hb/R

4. For this formula to be valid, we must guarantee that
ImVQQ̄ < 0. In terms of σ̃, the expansion (5.57) takes the form

z(σ̃) =
σ̃

tan θ̃
+ b̃σ̃3 +O(σ̃5) . (5.57)
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With these expressions, we can proceed to solve the equations numerically. We consider
η and θ as given and fixed. The first step is to relate (q, p) with (LT, θ). First, we solve
Eq. (5.54) for yc as a function of q and p

yc(q, p) =

[
1

2

√(
− cosh2(η)− p2 − q2 − 1

)2 − 4
(
p2 cosh2(η) + cosh2(η) + q2

)
+

+
cosh2(η)

2
+
p2

2
+
q2

2
+

1

2

]1/4

. (5.58)

Then, we substitute Eq. (5.58) into equations (5.52) and (5.53). This results in two equa-
tions relating (q, p) to (L, θ). However, the ratio of these equations involves only (q, p)

and θ. Thus, for fixed θ, we can solve this equation numerically for p as a function of q,
p(q). Therefore, yc is now a function only of p, yc = yc(q, p(q)). We can insert p(q) and
yc(q, p(q)) into any of the equations (5.52) or (5.53) to solve for LT as a function of q.
Finally, we can obtain ReVQQ̄ as a function of LT by considering the parametric curve
(LT (q),ReVQQ̄(q)).

In Fig. 5.8 we present the numerical results for p as a function of q, for a fixed angle
and some choices of the rapidity η and for fixed η and some choices of θ, reproducing
(and extending) the results in Refs. [219,220]. We see that p is a monotonically increasing
function of q, as it should be for the problem to be well-posed.

In Fig. 5.9 we show LT as a function of q. We see that LT assumes a maximum value,
LTmax which depends strongly on the rapidity η, for a fixed orientation of the dipole, but
only slightly on the angle θ, with η fixed. As discussed in the perpendicular case, we will
not take LTmax to define the dissociation length, but only as an indicative of the limit of
validity of our classical gravity calculation.

In Fig. 5.10 we present ReVQQ̄ as a function of LT . The region of small LT does not
change appreciably with either the rapidity η or the angle θ, as it should be expected,
since for small temperatures or short distances the interaction of the QQ̄ pair with the
plasma should not be relevant. Near LTmax, ReVQQ̄ varies slightly with η and almost
nothing at all with θ (note that in Fig. 5.10 (right plot) we are considering only a small
region of LT to zoom in the effect of varying θ). The upper, unphysical, branch in the Fig.
5.10 represents the region 0 < q < qmax, where qmax is the value of q which gives LTmax:
LTmax = qmax. The lower branch, which is the dominant contribution to the action, is
given by the region with q > qmax.

With the real part under control, let us move on to compute ImVQQ̄ for this case.
Before using Eq. (5.56) to calculate ImVQQ̄, we must obtain θ̃, y′′(0) and b̃ for the LT
in consideration, for fixed θ and η. The effective angle θ̃ is obtained directly from Eq.
(5.50) evaluated at σ̃ = 0, y = yc (noting that z′(0) = 1/θ̃, from Eq. (5.57)). To evaluate
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Figure 5.8: The constant p as a function of q, (left plot) for θ = π/3 and η = 0.1 (thick black
curve), η = 0.5 (dashed blue curve), η = 1.0 (dashed-dotted red curve) and η = 2.0 (dotted purple
curve) and (right plot) for η = 1.0 and θ = π/2 (thick black curve), θ = π/3 (dashed blue curve),
θ = π/4 (dashed-dotted red curve), θ = π/6 (dotted purple curve) and θ = π/45 (thin green
curve). The calculations are done for the case of a strongly coupled N = 4 SYM plasma.
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Figure 5.9: LT as a function of q, (left plot) for θ = π/3 and η = 0.1 (thick black curve),
η = 0.5 (dashed blue curve), η = 1.0 (dash-dotted red curve) and η = 2.0 (dotted purple curve);
and (right plot) for η = 1.0 and θ = π/2 (thick black curve), θ = π/3 (dashed blue curve),
θ = π/4 (dashed-dotted red curve), θ = π/6 (dotted purple curve) and θ = π/45 (thin green
curve). The calculations are done for the case of a strongly coupled N = 4 SYM plasma.
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Figure 5.10: ReVQQ̄ as a function of q, (left plot) for θ = π/3 and η = 0.1 (thick black curve),
η = 0.5 (dashed blue curve), η = 1.0 (dashed-dotted red curve) and η = 2.0 (dotted purple curve);
and for η = 1.0 and θ = π/2 (thick black curve), θ = π/3 (dashed blue curve), θ = π/4 (dashed-
dotted red curve), θ = π/6 (dotted purple curve) and θ = π/45 (thin green curve). In (right plot)
we show only the detail of ReVQQ̄ around LTmax. The calculations are done for the case of a
strongly coupled N = 4 SYM plasma.

y′′(0) and b̃ we solve the equations of motion (5.49) and (5.50) subject to the boundary
conditions y(0) = yc and z(0) = 0. In principle we could use the set (5.51) of boundary
conditions, but since these conditions refer to the string far from σ̃ = 0, exactly the region
of interest for the evaluation of y′′(0) = 0 and z′′′(0) = 0, they are not very useful. An
example of the shape of the string when we solve these equations numerically is given in
Fig. (5.11) - we note in this figure we subtracted the contribution that would appear if
the projection of the string on (X1, XD) were a straight line joining the endpoints of the
Q̄Q dipole. After figuring out the shape of the string, we may evaluate y′′(0) and b̃.

With y′′(0) and b̃ known, considering only LT < LTmax and ensuring that Eq. (5.56)
is negative, we can calculate ImVQQ̄ as a function of q. As we know LT (q), we can plot
ImVQQ̄/T as a function of LT . In Fig. 5.12 we show the results of these calculations. We
see that, for a fixed θ 6= π/2, increasing η decreases the interval of LT allowed for the
calculation. Such a behavior is also confirmed when we investigate the LTmin for the onset
of the imaginary part, as shown in Fig. 5.13. We see that LTmin decreases strongly with
η; there is also a slight increase for decreasing θ. When we fix η and vary θ (Fig. 5.12 -
right panel), we see that the region where the calculation is valid decreases and ImVQQ̄/T

is smaller as θ decreases from the perpendicular case θ = π/2 to θ → 0. This suggests
that a dipole oriented parallel to the wind should have a smaller thermal width and the
interactions between the heavy quark-antiquark pair are less screened by the plasma in
comparison to the perpendicular case.



5.4 DIPOLE AT ARBITRARY ANGLES 132

-0.2 -0.1 0.0 0.1 0.2
1.5

2.0

2.5

3.0

3.5

4.0

Σ
�

yH
Σ�

L

-0.2 -0.1 0.0 0.1 0.2

-0.005

0.000

0.005

Σ
�

zHΣ
�

L-
Σ�

�T
an

Θ

Figure 5.11: The profile of the string for an N = 4 SYM plasma. (left plot) y as a function
of σ̃. (right plot) z − σ̃/ tan θ as a function of σ̃ - the subtraction of σ̃/ tan θ is to remove the
trivial shape the string would assume if its projection on the (X1, Xd−1) plane were a straight
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η = 1.0, and LT = 0.203.
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√
λT ) as a function of q, (left panel) for θ = π/3 and η = 0.1 (solid black

curve), η = 0.5 (dashed blue curve) and η = 1.0 (dotted-dashed red curve) and (right panel) for
η = 0.5 and θ = π/2 (solid black curve), θ = π/3 (dashed blue curve), θ = π/4 (dotted-dashed
red curve) and θ = π/6 (dotted purple curve).
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Figure 5.13: LTmin for various angles θ, as a function of the rapidity η, for a QQ̄ pair moving
through an N = 4 SYM plasma. The solid black curve corresponds to θ = π/2, θ = π/3 (blue
circles), θ = π/4 (red squares), θ = π/6 (purple diamonds), and θ = π/45 (green triangles).

5.4 Discussion and Conclusions

In this Chapter, we have used the thermal worldsheet fluctuation method presented in
the last chapter to investigate the imaginary part ImVQQ̄ of moving heavy quarkonia in
strongly coupled plasmas with gravity duals. We have developed a general formalism to
holographically compute ImVQQ̄ in the case where the heavy quark dipole has an arbitrary
orientation with respect to the plasma velocity of the underlying strongly coupled plasma.
The general formula for this quantity is shown in Eq. (5.48). Also, we have discussed in
detail the regime of validity of the method in this case with nonzero rapidity, expanding the
discussion of the last Chapter. In fact, we found that the requirement for small thermal
fluctuations around the classical worldsheet solution imposes severe constraints in the
calculation of ImVQQ̄. The most important constraint in this case is that only slowly
moving quarkonia can be considered. In fact, for large rapidities the range of applicability
of the saddle point approximation used in the calculation of the imaginary part of the
potential decreases significantly. Therefore, the case corresponding to moderately large
quarkonia rapidities would require to go beyond the saddle point approximation in the
calculation of the string path integral for the worldsheet fluctuations. This challenging
task is beyond the scope of the present study and we hope to address this problem in a
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future work. It would be interesting to see if the other holographic methods to determine
ImVQQ̄ [191, 192] are better suited to tackle the problem of rapidly moving quarkonia
(this is the case of the method used in Ref. [207]).

We have applied the worldsheet fluctuation method to evaluate ImVQQ̄ for heavy
quarkonia moving through a strongly coupled N = 4 SYM plasma. When the velocity
becomes parallel (θ → 0) to the heavy quark dipole, we find that the imaginary part of
the potential becomes smaller than that in the perpendicular case (θ = π/2). This shows
that at strong coupling the anisotropy induced by the nonzero rapidity of the heavy quark
pair becomes a relevant factor in the calculation of the associated thermal width in the
plasma, which is suppressed for small angles.

We found a strong dependence of ImVQQ̄ on the rapidity and, taking into account
the strict consistency constraints imposed in our holographic setup, for increasing η the
onset of the imaginary part of the potential occurs at smaller values of LT , though the
precise magnitude of this quantity cannot be reliably determined at the moment with our
approximations. Our results indicate that moving quarkonia are indeed less stable in a
strongly coupled plasma, which is consistent with previous findings using other approaches
[207,219,220,222].

It would be interesting to extend the calculations performed here to other gravity
backgrounds, such as those that display a confinement-deconfinement transition described
by bottom-up Einstein + Scalar models [15–17,185,224].

The results of this Chapter were accepted for publication in JHEP [19]. 2

2We should also mention Ref. [225] which also discussed the effects of nonzero rapidity on the imaginary
part of the heavy quark potential. In their work, they computed ImVQQ̄ only for parallel and perpendicular
configurations. In our work we not only considered arbitrary orientations of the dipole with respect to
the hot plasma wind but also discussed in detail the regime of applicability of the calculations done using
the saddle point approximation (this critical analysis was not performed in Ref. [225]).



Chapter 6

Debye Screening Mass at Strong
Coupling from Holography

6.1 Introduction

In the deconfined phase of non-Abelian gauge theories, the inverse of the Debye screen-
ing mass, m−1

D , can be used to define a screening length of the thermal medium that
roughly signals the effective maximum interaction distance between two colored heavy
probes. Debye screening is the mechanism behind Matsui and Satz’s well known pro-
posal [226] that the “melting” (dissociation) of heavy quarkonia states in the QGP is a
signature of deconfinement.

Although in weakly coupled Abelian and non-Abelian plasmas the Debye screening
mass has been calculated long ago at one loop in perturbation theory [5, 61, 227], higher
order perturbative calculations [228–231] indicate the breakdown of the perturbation series
expansion for this quantity. Thus, a non-perturbative, gauge invariant definition of the
Debye screening mass is needed. A definition that is inherently non-perturbative and
gauge invariant was proposed by Arnold and Yaffe in Ref. [232] where mD was defined as
the largest inverse screening length among all the possible Euclidean correlation functions
involving pairs of CT -odd operators in the thermal gauge field theory. Previous studies
concerning thermal screening lengths in non-Abelian plasmas include lattice calculations
[233–239], non-perturbative analyses of the gluon propagator at finite temperature [240–
243], other analytical approaches [244,245], and holographic calculations [184,246,247].

In this Chapter we use the gauge/gravity duality [14, 93, 94, 126] to understand the
general properties of the smallest thermal screening mass associated with the CT -odd
operator, ∼ TrFµνF̃

µν , in non-conformal strongly coupled plasmas described by Einstein
gravity plus a scalar field. We shall follow Ref. [184] and identify this thermal screening
mass as the Debye mass mD in the strongly-coupled plasma. After associating this Debye

135
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screening mass in the field theory with the lowest lying mass in the spectrum [249,250] of
axion fluctuations in the bulk [184], we show (given some reasonable conditions regarding
the axion effective action) that the bulk axion spectrum is gapped, positive, and discrete
in the deconfined phase of these theories. This shows that this thermal screening radius,
which may be relevant for the melting of heavy quarkonia in this class of strongly-coupled
large Nc plasmas, is necessarily finite (even in the case of a second order deconfining
transition). Also, we find that mD/T generally follows the behavior of the expectation
value of the Polyakov loop operator near the phase transition. In fact, for a first order
deconfinement phase transition mD/T jumps from zero below the critical temperature Tc
to a finite value immediately above it.

To estimate the behavior of this screening mass in a non-conformal strongly coupled
plasma with similar properties to the QCD plasma, we consider a variety of holographic
bottom-up models constructed using 5 dimensional Einstein + scalar effective bulk ac-
tions. The first model, which we call Model A, is built in the context of Improved Holo-
graphic QCD (IHQCD) [16,17,209,224,252], being a simple analytical model [253] involv-
ing an Einstein+scalar gravity bulk action dual to a strongly coupled non-Abelian which
possesses a first order confinement/deconfinement phase transition. The second class of
models (Model B) [15, 137, 254] are also based on Einstein+scalar bulk actions but now
the scalar potentials are chosen in order to reproduce some lattice QCD thermodynam-
ical results. The model that reproduces lattice data for pure SU(3) Yang-Mills, which
possesses a first order deconfinement transition [74,255,256], is called Model B1, whereas
the model that matches lattice data for QCD with (2+1) light flavors of quarks [78] is
called Model B2. For all models, A, B1, and B2, we obtain, numerically, the screening
mass mD as a function of the temperature T . For models A and B1, both of which present
a first order phase transition, we explicitly verify the existence of a discontinuity in mD/T

at the critical temperature Tc, where mD/T jumps discontinuously from 0 to a finite value
above Tc. For the model B2, which displays a crossover phase transition, mD/T increases
with T smoothly from 0 and has a local minimum at a given temperature (following a
behavior similar to that shown by the speed of sound), after which it then continuously
rises to its conformal limit.

As a final application, we consider the screening mass in a strongly coupled conformal
plasma dual to Gauss-Bonnet gravity [146, 194]. In this theory the shear viscosity to
entropy density ratio, η/s, is different than 1/(4π) [90, 143, 145] for a range of values of
the controlling parameter of the theory, λGB, associated with the higher order derivatives
in the action as shown in [91,92]. Thus, in this case one can see how mD/T depends upon
η/s in this strongly coupled plasma and compare with the results of the phenomenological
approach based on fits to the heavy quark potential at strong coupling pursued in Chapter
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4. We find the intriguing result that mD/T decreases with increasing η/s.
This Chapter is organized as follows: in Section 6.2 we motivate the non-perturbative

definition of thermal screening lengths in non-Abelian gauge theories and present the
holographic prescription for evaluating these quantities in strongly coupled plasmas dual
to bottom-up theories of gravity involving the metric and a scalar field. In this section we
also present some general results for the thermal screening mass associated with TrFµνF̃

µν

which are valid in this holographic framework. In Section 6.3 we briefly review the results
and techniques of Refs. [184, 249, 250] for evaluating this thermal screening mass in a
strongly coupled N = 4 SYM plasma. Section 6.4 is dedicated to the evaluation of mD

and the Polyakov loop in Model A. In Section 6.5 we review some general results for
the B class of models pertinent to our purposes. Section 6.6 (Section 6.7) is reserved
for the evaluation of mD in the B1 Model (B2 Model, respectively). We show that the
heavy quark free energy (extracted from the expectation value of the Polyakov loop) in
these holographic models for SU(Nc) Yang-Mills theory nicely describes recent lattice
data [257]. In Section 6.8 we analyze mD × η/s in Gauss-Bonnet gravity. Section 6.9
contains our conclusions and outlook1.

6.2 General Results For The Holographic Debye Screen-

ing Mass

In this section, after some preliminary results on screening lengths in thermal gauge
theories, we will review the non-perturbative definition of the Debye screening mass. Then,
we will motivate the holographic prescription for the evaluation of the Debye mass and
explore some general properties of the Debye screening mass extracted holographically.

6.2.1 Screening lengths in thermal gauge theories

Let Ô be a gauge invariant operator and consider the (equal-time) Euclidean 2-point
correlation function

GE(~x) ≡ 〈0|Ô†(~x)Ô(~0)|0〉. (6.1)

A QFT in thermal equilibrium can, as usual, be studied using the Matsubara (or imaginary
time) formalism [61] (as discussed in Section 2.4), where we consider the compactification

1Supporting this Chapter, we have two Appendices. In Appendix E we review the perturbative com-
puation in QED and QCD of the Debye screening mass at one loop in perturbation theory, also pausing
to present some more aspects of the physical significance of the Debye screening mass. Appendix F is
reserved to supporting results for our holographic computations. Appendix F.1 shows the relationship
between Einstein and string frame, necessary to properly compute Polyakov loops. In Appendix F.2 we
present the technical details of a coordinate change used in the study of the B models. We also present
the evaluation of the glueball spectrum at T = 0 in Model B1 in Appendix F.3.
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of the imaginary time τ = it direction in a circle of radius β = 1/T , where T is the
temperature of the thermal bath. A key insight to this discussion [184, 232] is that the
resulting Euclidean symmetry allows us, instead of compactifying along the time direction,
to compactify along any of the spatial directions; for instance, we may compactify along
the x spatial direction. Let {|n〉} be a complete set of eigenstates of the translation
operator HE along the x direction, with corresponding eigenvalues En. Then, inserting
the completeness relation for the basis {|n〉} one finds

GE(x) =
∞∑
n=0

〈0|Ô†(x)|n〉〈n|Ô(0)|0〉. (6.2)

Since HE is an Euclidean translation operator

Ô(x) = eHE |x|Ô(0)e−HE |x| (6.3)

and, thus,

GE(x) =
∞∑
n=0

e−En|x||cn|2, (6.4)

where
cn ≡ 〈n|Ô(0)|0〉. (6.5)

For large spatial separations, the ground state contribution to Eq. (6.4) dominates and

GE(x) ∼ e−E0|x||c0|2. (6.6)

Thus, E−1
0 may be taken as the screening length of GE(x) - for distances |x| greater than

E−1
0 the fluctuations of Ô are effectively not correlated.

6.2.2 Non-perturbative definition of the Debye screening mass

In this section we briefly review the non-perturbative definition of the Debye screening
mass proposed in [232].

In quantum electrodynamics (QED), perturbatively, the Debye screening mass mD is
defined as the pole in 00 component of the photon propagator at zero frequency, Π00(0, ~p2)

(Figure 6.1) - i.e., the solution of

Π00(0, ~p2 = −m2
D) +m2

D = 0. (6.7)

The screening length of the static potential of two static test charges is given by the inverse
Debye massm−1

D . Magnetic fields are unscreened in perturbation theory so that Πij → 0 as
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Figure 6.1: Perturbative definition of the Debye mass. A single photon (gluon) is exchanged
between two static test charges. The pole of the photon (gluon) propagator at zero frequency gives
the Debye screening mass mD, the inverse screening length of the static potential.

~p→ 0 - the Debye screening mass captures the physics of electric screening. This definition
can be applied perturbatively to non-Abelian gauge theories, yielding the lowest order,
one-loop, perturbative result in the ultrarelativistic approximation (neglecting particle
masses and chemical potentials) [5, 61, 227]

mD =

√
Nc

3
+
Nf

6
gT +O(g2T ), (6.8)

for an SU(Nc) gauge theory with Nf minimally coupled fermions, where g is the gauge
theory coupling constant. In Appendix E we review the details of this computation, which
serves as a contrapoint to the non-perturbative, geometric, approach pursued by the
gauge/gravity duality.

This definition is not valid non-perturbatively, for it suffers from two basic problems
beyond the lowest, one-loop, order: (a) the order g2T correction already receives contri-
butions beyond perturbation theory [228–231] and (b) it is not gauge-invariant in non-
Abelian theories. Point (b) can be illustrated by considering that, in QED, an equivalent
definition of mD is

〈 ~E(~x)〉 · ~E(~0)〉 ∼ e−mD|~x|

|~x|3 for |~x| → ∞, (6.9)

where the correlation function is defined at equal times. However, although ~E is gauge
invariant in QED, the chromo-electric field ~Ea in a non-Abelian gauge theory is clearly not
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Figure 6.2: Two Polyakov loops directly coupled to electric photons but indirectly to magnetic
photons.

gauge-invariant. Thus, definition (6.9) does not yield a gauge invariant screening length
in a non-Abelian gauge theory.

A tentative gauge-invariant, non-perturbative, definition of the Debye screening mass
used sometimes in the literature is achieved through of the correlator of two Polyakov
loops. Let L(~x) be the Polyakov loop operator,

L(~x) =
1

Nc

TrP exp

(
i

∫ β

0

A0(τ, ~x)dτ

)
, (6.10)

where P indicates path-ordering, Nc is the number of colors and the trace is in the
fundamental representation. Then, the Debye mass would be defined by

〈L(~x)L†(0)〉 ∼ e−mD|~x| as |~x| → ∞. (6.11)

However, this definition does not capture the nature of the electric screening, even in
QED; although the Polyakov loop operator couples directly only to electric (A0) photons,
the electric photons can, in turn, couple to unscreened magnetic photons ( ~A), as indicated
in Figure 6.2. In a non-Abelian gauge theory, such coupling to magnetic gluons can be
achieved even more directly by exchaging the fermion loops in Figure 6.2 by two four-gluon
vertices.

Ref. [232] proposed a way to define the Debye screening mass in an explicit gauge
invariant (and non-perturbative) manner using Euclidean time reflection symmetry that
is useful in the context of strongly-coupled plasmas. Consider the CT (the composite of
time reversal T and charge conjugation C) transformation in real time. The corresponding
symmetry in Euclidean time is Rτ , where Rτ is the imaginary (Euclidean) time reflection.
To see this, note that any Lorentz invariant theory must have CPT symmetry, where
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P stands for spatial inversion. Correspondingly, any Euclidean invariant theory must
be rotation invariant. Since PRτ is a pure rotation in an Euclidean theory, CPT must
correspond to PRτ . Also given that P is time independent, Rτ must correspond to CT .
Since A0 is even under Rτ and ~A is odd under Rτ , the authors of Ref. [232] defined the
Debye screening mass mD as the inverse of the largest correlation length (or, equivalently,
the smallest screening mass) of all correlation functions 〈Â(~x)B̂(~0)〉 involving two local,
gauge invariant operators Â, B̂, both odd under Euclidean time reflection Rτ (CT in real
time). This construction explicitly removes the magnetic gluon exchange and takes into
account only the chromo-electric gluons. Thus, according to [232], the Debye screening
mass may be defined as the largest inverse screening length in this channel

GE(~x) = 〈Â(~x)B̂(~0)〉 ∼ e−mD|~x| as |~x| → ∞ . (6.12)

In our study, we will consider the CT odd operator TrF a
µνF̃

b,µν , where F̃ is the dual
field strength to F and assume that it sources the Debye mass. Thus, our problem is then to
find the largest screening length of the correlation function 〈TrF a

µνF̃
b,µν(~x)TrF a

µνF̃
b,µν(~0)〉.

6.2.3 An alternative definition of the Debye screening mass

Consider a (3+1) dimensional thermal non-Abelian plasma (with some fermionic de-
grees of freedom coupled to the gauge fields) in the Matsubara formalism. The partition
function of the theory is

Z =

∫ [
Dψ̄
]

[Dψ] [DA] exp

[
− 1

g2

∫ β

0

dτ

∫
d3xLE

]
, (6.13)

where LE is the Euclidean lagrangean density and g is the coupling constant. As usual, all
bosonic (fermionic) fields satisfy periodic (anti-perodic, respectively) boundary conditions.
Let L be a typical length scale of the theory. For example, it may be the confinement length
scale Λ−1 or the inverse of the confinement/deconfinement transition temperature, T−1

c .
Suppose that the temperature is high enough, or βL � 1 - effectively, the limit of small
compactification radius in the time direction. Then we may integrate Eq. (6.13) in the
imaginary time arriving at

Z ∼
∫

[DA] exp

[
− 1

g2T

∫
d3xLeff

]
. (6.14)

The fermions, since they obey anti-periodic boundary conditions, become infinitely mas-
sive in this limit and decouple from the theory - the effective Lagrangean density Leff
contains only bosonic degrees of freedom. The partition function (6.14) represents the
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partition function of a 3 dimensional Euclidean gauge theory at T = 0. The degrees of
freedom of this theory are the gauge field ~Aa (the spatial components of the original gauge
field) and a scalar field in the adjoint representation of the gauge group, A0

a. However,
as A0

a gets a mass of order gT , it also decouples from the theory. The resulting effective
theory is a 3 dimensional pure Yang-Mills theory. Thus, the physical states of the effective
theory are glueballs.

Instead of performing the compactification along the (imaginary) time, we can, as
indicated previously, compactify along any spatial direction - say z. The resulting effective
theory is unchanged. The Rτ transformation becomes a reflection along the z axis. Thus,
we may take the Debye mass of the thermal plasma as the z-reflection odd glueball in the
3 dimensional effective gauge theory.

6.2.4 Holographic prescription for the evaluation of the Debye

mass

From the preceding discussion, we see that to evaluate the Debye screening mass we
have to evaluate correlation lengths of two point functions in a non-Abelian plasma - or,
equivalently, evaluate the Rτ odd glueball spectra in a 3 dimensional Yang-Mills theory at
zero temperature. From the holographic standpoint, the extraction of the glueball masses
in the large Nc and strong coupling limit was first done in Refs. [249,250]. The holographic
prescription for evaluating the glueball masses is to analyze in the theory of gravity dual
to the QFT in question the fluctuations of the bulk fields that source, in the corresponding
gauge theory, the gauge invariant operators that couple to the glueballs which have the
same quantum numbers of the dual bulk field. In the case of the JPC = 0−+ glueballs,
one must analyze the operator TrF a

µνF̃
b,µν which is sourced by an axion field a(x) in the

bulk. The mass spectrum of the glueballs is given by the eigenvalues of the equations of
motion of the fluctuations in the bulk.

In this subsection, we will present a justification for this procedure, based directly
on the holographic procedure for computing correlation functions [93, 94] (based on the
formalism discussed in Ref. [137] and already discussed, in connection with real time
correlation functions, in Chapter 3).

Let our gravity dual be described by the background metric (with Euclidean signature)

ds2 = gττdτ
2 + gxxd~x

2 + grrdr
2 = e2A(r)

[
h(r)dτ 2 + d~x2 + e2D(r) dr

2

h(r)

]
. (6.15)

where A,D and h are functions only of the radial coordinate r. We will suppose that,
in this coordinate system, the asymptotically AdS5 boundary is at r = 0 (where e2A ∼
e2B ∼ R2/r2, where R is the asymptotic AdS radius, and also h→ 1), and that we have a
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black brane horizon at r = rH > 0 (this will be taken to mean that h(r) has a simple zero
at r = rH , so that h ∼ h′(rH)(r− rH)). Suppose that the bulk action for the fluctuations
of a massless scalar field φE, associated in the boundary gauge theory with the gauge
invariant operator Ôφ, about this background is given by

S =
1

2

∫
d4xdr

√
g

[
1

2
gµν∂µφE∂νφE

]
. (6.16)

Then, as shown in Section 3.7, Eqs. (3.70) and (3.71), (with q(r) = 1 and the notation
change z → r), we have that the Euclidean correlator in momentum space GE(ωn, ~k) is
given holographically by

GE(ωn, ~k) =
1

2
lim
r→0

JE[φ](ωn, ~k, r), (6.17)

where
JE[φE](ωn, ~k, r) = φE(−ωn,−~k, r)h(r)e2A(r)φE(ωn, ~k, r). (6.18)

Let us remember also that the equations of motion are, in coordinate space, given by Eq.
(3.58)

∂µ [
√
gE gµνE ∂ν (φE(τ, ~x, r))] = 0. (6.19)

In momentum space, using the specific form of the background (3.54), we obtain (6.20)[
∂2
r +

(
3A′ + h′

h

)
∂r −

1

h

(
ω2
n

h
+ ~k2

)]
φE(ω,~k, r) = 0. (6.20)

Now, the ground state has ωn → 0 - we will assume this to simplify the discussion.
The near horizon (r ∼ rH) behavior of the regular solution is then φ̃ ∼ const. Suppose
that M2 = −~k2 is an eigenvalue of the equation of motion (6.20). Integrating both sides
in r, we get

√
ggrr∂rφE = M2

∫ r

rH

φE dr′ (6.21)

Thus,

GE(0, ~k) =
M2

2

[
lim
r→0

φE(ωn = 0)
] ∫ 0

rH

dr′φE(ωn = 0) (6.22)

As the solution is regular, the integral is finite. However, since the geometry is asymptot-
ically AdS5, the remaining limit in the previous equation is divergent. This means that
GE has a pole at ~k2 = −M2, corresponding to a state with mass M2.



6.2 GENERAL RESULTS FOR THE HOLOGRAPHIC DEBYE SCREENING MASS 144

6.2.5 General properties of the holographic axion spectrum

Armed with the holographic prescription for extracting the Debye screening mass by
means of the bulk axion spectrum, we now examine some general properties of the axion
spectrum in a large class of gravity duals. For the remainder of this Chapter, we will write
the metric using the notation below

ds2 = e2A(z)

(
f(z)dτ 2 + d~x2 +

dz2

f(z)

)
(6.23)

where A(z) and f(z) are functions of the conformal radial coordinate z. The horizon is at
z = zh (zh is a simple zero of f(z)), and the asymptotically AdS5 (e2A ∼ R2/z2) boundary
is at z = 0. The action for the fluctuations of the massless axion in these backgrounds is
assumed to be of the form2

S =
1

32πG5

∫
d5x
√
g (Z(z) gµν∂µa ∂νa) , (6.24)

where G5 ∼ 1/N2
c is the 5-dimensional gravitational constant and Z(z) is a given function

of the holographic coordinate z - the reason for including this axion coupling function is
that in certain classes of backgrounds, as in those of Improved Holographic QCD [16,17,
209, 224, 252], a resummation of the contributions originating from string theory should
result in an effective action for the axion that involves this multiplicative factor. The
specific form for this function will be defined later in the Chapter.

The equation of motion for the axion is

∂µ(Z(z)e5Agµν∂νa) = 0 (6.25)

and, in momentum space (taking the Matsubara frequency to zero since we want the
largest inverse correlation length) with the plane wave Ansatz a(~x, z) → ei

~k·~xa(z), one
finds the equation of motion (with M2 = −~k2)

∂z(e
2Bf(z)a′) +M2e2Ba = 0, (6.26)

where a′(z) = da(z)/dz and we have defined the function

B(z) ≡ 3

2
A(z) +

1

2
logZ(z) . (6.27)

An alternative, but useful, form of the equation of motion is obtained by introducing
2Note that since in IHQCD the bulk axion is trivial in the background, the action for its fluctuations

is easily determined to be the one in (6.24) [258].
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ψ = eBa, which leads to

−ψ′′ − f ′

f
ψ′ +

1

f

[
f(B′2 + B′′) + f ′B′

]
ψ =

M2

f
ψ . (6.28)

This form of the equation of motion is especially useful at zero temperature where f = 1.
In this case, we have the Schrödinger-like equation

−ψ′′ + V(z)ψ = M2ψ, (6.29)

where the potential V is defined as

V(z) = B′(z)2 + B′′(z) . (6.30)

The pole of the corresponding Euclidean Green’s function is obtained by imposing a
Dirichlet condition for the fluctuation at the boundary while at the horizon zh the axion
fluctuation must be finite. This completely specifies the eigenvalue problem to find M2.

Let us now state some basic facts about the bulk axion spectrum in these theories.
First, M2 is real. Second, the spectrum is gapped (M2 > 0) if there is a black brane
horizon in the bulk. Third, the spectrum is discrete.

That the spectrum is purely real follows simply from the fact that Eq. (6.26) and its
boundary conditions are posed as a Sturm-Liouville problem.

Now, let us analyze the mass gap. It is easy to see M = 0 is not in the spectrum. If
M = 0, then the equation of motion (6.26) can be easily integrated yielding two linearly
independent solutions, a ∝ const and a ∝

∫
dz e−2Bf−1. The solution a ∝ constant 6= 0

is not normalizable in the UV and must be discarded. The other solution is normalizable;
however, near the horizon, as f(z) ∼ −|f ′(zh)|(zh− z) and B ∼ B(zh), a ∝ log(z− zh)→
∞. Thus, the normalizable solution in the UV is not finite on the horizon. Thus, M = 0

does not satisfy the boundary conditions and is not in spectrum if there is a horizon.
To prove that M2 < 0 is not allowed we employ an argument used by Witten [126].

The equation of motion (6.26) can be obtained from the on shell action

1

32πG5 T

∫ zh

0

dzZ(z)e3A [f(∂za)2 −M2a2
]
. (6.31)

If a is a normalizable solution of the equations of motion, then after integrating Eq. (6.31)
by parts one sees that it must vanish. Now, suppose thatM2 < 0. Then in Eq. (6.31) both
terms are strictly positive. Thus, we must have da/dz = 0 and a = 0, since the solution is
normalizable. This is just the trivial solution and, thus, M2 < 0 cannot be an eigenvalue
of the equation of motion. Therefore, as we have already shown that M 6= 0, we see that
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M2 > 0. This shows the existence of the mass gap.
Finally, intuitively, the spectrum must be discrete - the axion is confined into an asymp-

totically AdS5 spacetime with a black brane deep in the bulk. The Dirichlet asymptotic
boundary and the horizon work as two “walls” that confine the axion into an infinite well,
hence the discrete spectrum.

6.3 Debye screening mass in N = 4 SYM

6.3.1 The axion spectrum

In this section we review the holographic evaluation of the Debye mass (i.e., the small-
est thermal mass associated with axion fluctuations in the bulk) in a strongly coupled
N = 4 SYM plasma by means of the gauge/gravity duality [184]. Since the dilaton is
constant in this case the equations of motion for the dilaton and the axion fluctuations
are degenerate. Also, the Z function is constant and one can set it to unity since one can
consistently set the other bulk fields in type IIB supergravity, apart from the metric and
the five-form F5, to be trivial. Thus, one can simply retrieve the result from Ref. [249]
for the spectrum of a massless scalar field in a Schwarzschild AdS5 background. The final
result for the ground state is given by Ref. [184]

mD = c π T (6.32)

where c = 3.4041. Since the analytical and numerical procedures used in this case will be
applied with minimal changes in the next two sections, it will be useful to review here the
numerical procedure used to determine the constant c defined above in some detail.

The Schwarzschild AdS5 metric is written in the Poincaré patch as (recall Eq. (3.40))

ds2 =
R2

z2

(
f(z)dτ 2 + d~x2 +

dz2

f(z)

)
(6.33)

where f(z) = 1− z4/z4
h, and where zh is the z-coordinate of the black brane horizon. The

black hole temperature is T = πR2zh. The equation of motion is given by Eq. (6.29);
it is useful to write it in terms of the normalized variable u = z/zh = πR2Tz and the
dimensionless mass M̃ = M/(πT ). We need to match the solution of equation of motion
Eq. (6.29) with the asymptotic equation of motion near the boundary, z → 0,

−d
2ψ

du2
+ Vasyψ = M̃2ψ, (6.34)

with the asymptotic potential Vasy(u) = V(u → 0) = 15/(4u2) (see Eq. (6.30)). The
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general solution of the asymptotic equation (6.34) is

ψ(u) = C1

√
u[J2(M̃u) + C2Y2(M̃u)], (6.35)

where Jn and Yn are Bessel functions of the first and second kind, respectively, and C1,
C2 are integration constants. Since Y2 does not vanish at the boundary, we pick J2 as
the asymptotic solution setting C2 = 0. The coefficient C1 is chosen to fix the leading
coefficient of the series expansion of the Bessel function to 1; then C1 = M2/8. Thus, at
the boundary, the full solution ψ must match the asymptotic solution

ψasy(u) =
8
√
u

M̃2
J2(M̃u) = u5/2 − 1

12
M̃2u9/2 +

1

384
M̃4u13/2 +O(M̃6u17/2). (6.36)

To obtain the axion spectrum numerically we use a shooting procedure. One starts
with an initial value for M̃2 and numerically solve the equation of motion (6.28) imposing
as boundary conditions that the solution ψ(u) matches the asymptotic solution (6.36)
and its first derivative for some u0 � 1. One then integrates the initial value problem up
to near the horizon. When M̃2 is not an exact eigenvalue ψ(u) diverges at the horizon.
However, ψ(u → 1) changes sign when one passes by an exact eigenvalue and, thus, one
can bracket it by scanning when such sign change happens. Care must be taken to certify
that one has not missed the ground state (or an excited state) by starting with values of
M̃2 only slightly above zero. Proceeding this way, one obtains for the ground state of the
axion spectrum M̃ = mD/(πT ) the result (6.32).

6.4 Debye screening mass in Model A

6.4.1 A simple model of IHQCD

General IHQCD backgrounds

For an interesting, slightly more realistic, toy model for a pure Yang-Mills plasma at
strong coupling, we will explore a simple, analytic, Improved Holographic QCD (IHQCD)
model which presents a first order confinement/deconfinement transition, which we will
name in this thesis Model A. This model is based on the Einstein+dilaton models studied
by Gursoy et al. [16, 17, 209, 224, 252, 253], where the dilaton φ in the bulk is chosen as
to correspond to the gauge coupling the dual gauge theory. The effective five dimensional
action, in the Einstein frame, for the metric and the dilaton in IHQCD is

S =
1

16πG5

∫
g5x
√
g

[
R− 4

3
(∂φ)2 + V (φ)

]
, (6.37)
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plus a Gibbons-Hawking boundary term, necessary to give a well posed variational prob-
lem (this term and other contributions needed in the process of holographic renormal-
ization [121, 122] do not affect our discussion and are, thus, dropped altogether). The
action (6.37) also picks a UV divergence from its asymptotic AdS5 boundary - this means
that one has include counterterms in order to render the action finite. However, for our
discussion, it is not necessary to perform the full holographic renormalization procedure.
The potential V (φ) is assumed to contain part of the sub-critical 5d string theory contri-
butions to the effective action. The metric background (in the Einstein frame) is written
in the conformal gauge in the usual form

ds2 = b(z)2

[
f(z)dτ 2 + d~x2 +

dz2

f(z)

]
, (6.38)

while the dilaton will be assumed to depend only upon the radial coordinate z, φ = φ(z).
The boundary is at z → 0. Comparing with Eq. (??), we see that b(z) = eA(z). The
Einstein’s and scalar equations of motion that follow from extremizing Eq. (6.37) are

f ′′

f ′
+ 3

b′

b
= 0,

6
b′2

b2
− 3

b′′

b
=

4

3
φ′2 and (6.39)

6
b′2

b2
+ 3

b′′

b
+ 3

b′

b

f ′

f
=
b2

f
V,

where the prime indicates differentiation with respect to z. The equation of motion for
φ is a combination of the previous equations - as usual for Einstein’s equations there is
some redundancy in the equations of motion (due to Bianchi’s identity). It is convenient to
recast the equations of motion in an alternative form; define W ≡ −b′/b2. Also, introduce
λ = eφ, the boundary gauge theory coupling [16]. Then,

f ′′ = 3Wbf ′,

W ′ = 4W 2b− 1

f

(
Wf ′ +

1

3
bV

)
and (6.40)

λ′

λ
=

3

2

√
bW ′.

The beta function of the theory is given by [16]

β =
λ′

b′/b
. (6.41)
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The geometry must be asymptotically anti de-Sitter so that we have an UV fixed point:
as z → 0, b → R/z. The gravity dual correspond to a confining gauge theory as long as,
in the IR, z →∞, [17, 253]

β(λ) = −3

2
λ

[
1 +

3(α− 1)

4α

1

log λ
+O

(
1

log2 λ

)]
, (6.42)

with α > 1. The corresponding IR geometry is

b(z)→ e(pz)α(pz)p, (6.43)

where q and p are constants.

An exact solution - Model A

An analytic solution of the equations of motion (6.40) is given by trying the following
ansatz for b, [17, 253]

b(z) =
R

z
e−

1
3

Λ2z2

, (6.44)

where Λ is an infrared scale, of the order of ΛQCD. All other bulk fields can be found from
the equations of motion (6.40). To do so, it is useful to define the dimensionless variable
Z ≡ Λ2z2. Another useful dimensionless variable will be y = Λz =

√
Z. First, we evaluate

W
dW

dz
= 2e

Λz2

3
zΛ2

R

(
1 +

2

9
Λ2

)
. (6.45)

Then, we solve the last of the equations of motion (6.40) for dφ/dZ = (dλ/dZ)/λ

dφ

dZ
=

1

2

√
1 +

9

4Z
, (6.46)

whose solution leads to (with Λ(Z = 0) = Λ0 being the UV coupling)

Λ(Z)

Λ0

= e
1
2

√
Z(Z+ 9

2)

[
√
Z +

√
Z +

9

2

]9/4

. (6.47)

The beta function that follows is

β = −3

2
Λ

√
1 + 9

2Z

1 + 3
2Z

. (6.48)
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In the IR, Z →∞, as Λ ∼ 2 logZ,

β = −3Λ

2

(
1 +

3

8 log Λ
+ · · ·

)
. (6.49)

Thus, for this solution, α = 2 and we have a confining gauge theory dual. On the other
hand, the UV (Z → 0) behavior is

β = −3Λ

√
y

2
+

5Λy3/2

3
√

2
+ · · · (6.50)

This does not vanish in the UV - this means that the UV fixed point is not trivial and the
theory is not asymptotically free. Finally, we can derive the horizon function by integrating
the first of the equations of motion (6.40), imposing the boundary conditions f(0) = 1

(the geometry is asymptotically AdS), and f(zh) = 0 (z = zh defines the black brane
horizon),

f(y, yh) = 1− (y2 − 1)ey
2

+ 1

1 + ey
2
h(y2

h − 1)
. (6.51)

where Zh = λ2z2
h. Finally, the dilaton potential for this solution is given by the second

equation in Eq. (6.40),

V (y, yh) =
12

R2
e

2y2

3

[(
1

3
y4 +

5

6
y2 + 1

)
f(y, yh)−

(
1

2
+

1

3
y2

)
y

2

∂f

∂y
(y, yh)

]
. (6.52)

Note that the potential depends explicitly on the temperature via the position of the
horizon yh. This is not going to be the case in the other type of models considered in
Section6.5.

6.4.2 Thermodynamics

Let us now review the thermodynamics of this solution [17, 253]. The temperature T
of the thermal bath is given by the black brane temperature (see Eq. (3.55)):

T =
|f ′(zh)|

4π
=

Λ

2π

y3
h

y2
h − 1 + e−y

2
h

. (6.53)

where yh ≡ λzh. The entropy density is given by the Bekenstein-Hawking formula (3.45),
which yields

s =
b(zh)

3

4G5

=
R3Λ3

4G5

e−y
2
h

y3
h

. (6.54)
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Moreover, the pressure follows from s = ∂p/∂T

p(yh) = −
∫ ∞
yh

s(T (x))
dT (x)

dx
(6.55)

and the energy density is given by ε = sT − p.
The temperature function T (yh) has a minimum for Tmin = 0.396Λ, ymin

h = 1.466.
For T < Tmin, there is no possible black brane solution and the system is in a thermal
gas phase. However, for Tmin < T < Tc, where Tc = 0.400Λ is reached at ych = 1.299,
albeit there is a black brane solution, the pressure is negative - this signs that the thermal
plasma is in a metastable phase. For T > Tc (thus, yh < ych), we have a deconfined thermal
plasma state. Since the entropy density has a discontinuity at T = Tc, the transition is of
first order. It is possible to explicitly write the equation of state of the system in terms
of the speed of sound squared

c2
s =

d log T

d log s
=

1

3 + y2
h

3− y2
h − (3 + 2y2

h)e
−y2

h

y2
h − 1 + e−y

2
h

. (6.56)

In Fig. 6.3 we compare the equation of state of this model, given by Eqs. (6.53) and
(6.56), with lattice results for a pure glue SU(3) Yang-Mills plasma [255]. We see that
this gravity dual provides a reasonable qualitative description of the equation of state
of a pure glue plasma, more so considering its relative simplicity and the fact that it is
an analytical solution of the Einstein+scalar equations of motion. However, it must be
noted that this simple realization of IHQCD does not describe lattice data quantitatively
between T/Tc = 1.1− 2.53.

6.4.3 Polyakov loop

An interesting observable to compute in this model is the vacuum expectation value of
the Polyakov loop operator [160–163] (see also Chapter 4 and Appendix C). Holographi-
cally, the evaluation of the Polyakov loop in a thermal gauge theory in the imaginary time
formalism corresponds to calculating the classical worldsheet action for a straight string
in the bulk stretching from the conformal boundary to the horizon. This string worldsheet
wraps the imaginary time circle S1, as discussed in Chapter 4. At strong coupling and
large Nc, the norm of the expectation value of the Polyakov loop operator (6.10) is given
by

|〈L̂〉| ∼ e−FQ/T ∼ e−SNG , (6.57)
3This can be remedied by choosing an appropriate dilaton potential and, as shown in [16,17,209,224,

252], a good quantitative agreement with pure glue lattice QCD thermodynamics in this temperature
range can be achieved.
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Figure 6.3: Speed of sound squared c2
s of the plasma as a function of T/Tc, where Tc denotes

the critical temperature for a deconfining first order transition. The solid black line is the result
for the particular IHQCD model studied (see Eq. ??), the dashed blue line corresponds to lattice
results from [255] for an SU(3) Yang-Mills plasma while the horizontal red line gives the result
for a conformal plasma, c2

s = 1/3.

Using expression (4.16) with the background (6.38), one can see that

F reg
Q Tc

σ
= − Tc

Λb2
symin

∫ ych

yh

dybs(y)2, (6.58)

where b(0)(y) is the vacuum form of bs(y) and where bs ≡ λ2/3b is the b function in the Ein-
stein frame - since our background comes from a 5 dimensional non-critical string theory,
gsµν = λ4/3gµν , where gµν is the metric in the Einstein frame [17,253]. In the particular case
of Model A, b(0)

s = bs. Also, for comparison with lattice results, we normalized F reg
Q by

the string tension σ and by the critical temperature Tc. The holographic string tension in
IHQCD is given by [16, 17] σ = L2Λ2b2

s(ymin)/(2πα′). The evaluation must be performed
at y = ymin instead of yc since at the temperature Tmin we are still in the thermal glueball
gas phase, where the theory is confining and has a string tension.

Note that the Polyakov loop computed on the lattice depends on the choice of renor-
malization scheme since the heavy quark bare free energy is divergent in the continuum
limit (one needs to subtract the divergent part and fix the renormalization constant). In
the calculations of Ref. [257] this constant term was set to zero. Clearly, any other value
for the constant would be fine and the scheme dependence just corresponds to adding an
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Figure 6.4: ∆FQTc/σ = (FQ(T )−FQ(2Tc))Tc/σ as a function of T/Tc for model A (solid black
line) defined in ?? and for SU(Nc) Yang-Mills [257] with Nc = 3 (red circles), 4 (purple squares),
and 5 (brown diamonds).

additive constant in the free energy of the renormalized Polyakov loop 4. In this Chapter
we chose to compare the free energy difference ∆FQTc/σ = (FQ(T ) − FQ(2Tc))Tc/σ as
a function of T/Tc computed in the model with the one found on the lattice (note that
this still corresponds to choosing a scheme in which the free energy difference vanishes at
2Tc).

We compare in Fig. 6.4 the holographic result (6.58) with the lattice results for the
SU(Nc) Yang-Mills lattice data with different number of colors from [257]. One can see
that even though the thermodynamics of the simple IHQCD model only reproduces qual-
itatively the lattice data, the holographic result for FQ gives a reasonable description of
the lattice data for Tc < T < 2Tc. Moreover, even though holographic models ought to be
valid only for large Nc, reasonable agreement is seen even for Nc = 3.

6.4.4 Debye screening mass

Axion spectrum in the vacuum

Let us begin by studying the bulk axion spectrum at T = 0 (i.e., we set f = 1).
The first step is to discuss the function Z in the action for the axion fluctuations (6.24),
which represents a partial resummation of higher order forms coming from 5-dimensional

4We thank M. Panero for discussions about this point.
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c4 maxion/Λ
0.1 3.0433
1.0 2.996
10.0 2.986

Table 6.1: Glueball mass mJPC=0−+ associated with the bulk axion at T = 0 for some choices
of c4 computed using Model A.

sub-critical string theory [16, 17]. In the UV, Z(λ) ∼ const while in the IR (λ) ∝ λ4 to
ensure glueball universality. We will use the following standard IHQCD parametrization
that interpolates between these two cases [258]

Z(λ) = c0 + c4λ
4, (6.59)

where c0 and c4 are constants. By a suitable normalization of the action one can set c0 = 1.
To study the dependence of the results with c4, we choose three values for it spanning a
large range of values for this coefficient: 0.1, 1, and 10.

The numerical procedure to find the spectrum is the same as the one described in
6.3. For the vacuum case we consider the Schrödinger equation (6.29) and the asymptotic
potential in the UV, including the first subleading correction in 1/y, which gives

V(y) =
15

4y2
− 9

√
2c4

(1 + c4)y
+O(1) . (6.60)

The asymptotic equation (including the subleading term) can be solved analytically and
the linearly independent solutions are Whittaker functions Mκ,µ and Wκ,µ [193]. If we
consider only the leading term in 1/y, these solutions reduce to the Bessel functions
found in 6.3. The normalized near boundary series expansion, including the subleading
term in Eq. (6.60), is given by

ψ(y) = y1/2

(
y − 9

√
2c4

5

y2

1 + c4

+ · · ·
)
. (6.61)

Using the shooting method to solve the eigenvalue problem, we obtain the results
shown in Table 6.1. One can see that glueball mass associated with the bulk axion in the
vacuum is quite insensitive to the choice of c4 and mJPC=0−+ ∼ 3Λ. This value is also
comparable with the corresponding results for the lightest JPC = 0++ and JPC = 2++

glueballs in this model, mJPC=0++ ≈ 2.5Λ and mJPC=2++ =
√

8Λ ∼ 2.2Λ [253].
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Figure 6.5: Debye screening mass mD for the simplified IHQCD model A discussed in Eq. ??,
normalized by the N = 4 SYM Debye mass at strong coupling cπT with c = 3.4041. We present
the results for c4 = 0.1 (black circles), 1 (blue squares) and 10 (purple diamonds).

Debye screening mass

Let us now proceed to extract the Debye screening mass in this model. Consider now
the background at nonzero temperature. The equation of motion to solve is now of the
form (6.28). The asymptotic solution is the same as in the T = 0 case since f → 1 for
y → 0. We use the same choices for c4 employed in the preceding calculation. Our results
can be found in Fig. 6.5. Since at high temperatures T � Λ the geometry of the gravity
dual simplifies to AdS5, one must have mD(T � λ)→ c πT with c = 3.4041 as shown in
Section 6.3. Thus, our results for mD are normalized by c πT .

One can see that the results are somewhat insensitive to the choice of c4 as long as
c4 & 1. Also, we note that for T → T+

c , mD/(cπT ) ∼ 0.18, which is nearly independent of
c4 - the Debye mass has a discontinuity at T = Tc. As expected, for increasing temperature,
the plasma becomes more and more screened - mD is monotonically increasing with T

until it reaches its conformal value.
Ref. [246] computed the thermal screening lengths for an N = 2∗ plasma, which is

non-conformal deformation of the N = 4 SYM plasma obtained by giving a mass µ to the
adjoint scalars and fermions [259–261]. Using this top-down non-conformal construction
[246] also obtained that mD/T (computed from the axion fluctuations) becomes smaller
than its conformal value at low temperatures when µ/T > 1. However, this theory does
not possess a finite temperature phase transition and, thus, the discontinuity in mD/T

at Tc found here is a new feature brought in by the non-conformal plasmas constructed
within IHQCD.
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6.5 B class of models - Overview

In this section we shall describe a second class (Model B) of strongly coupled non-
Abelian plasmas with gravity duals described by Einsten+scalar actions [15,137,254] (see
also [185,186]) built in order to reproduce some of the thermodynamic results obtained on
the lattice at zero baryon chemical potential. Even though the bulk fields are the same as
in the previous section, in these models the scalar field corresponds to a relevant operator
in the UV.

The interpretation put forward in Ref. [254] is that since these gravity models cannot
truly describe perturbative QCD physics in the UV, one must choose an intermediate semi-
hard scale at which asymptotic freedom is replaced by conformal invariance. In fact, given
that the scaling dimension ∆ of the glueball operator TrF 2 is not a protected quantity in
QCD and it becomes smaller than 4 towards the IR, this semi-hard scale may be used to
define the range of applicability of this effective holographic model in this context. This
implies that, in general, these models should not be used at high temperatures where
asymptotic freedom becomes dominant. However, as will be shown in Chapters 7 and
8, these non-conformal bottom-up models are able to describe not only the equilibrium
quantities found on the lattice but also the temperature dependence of some nontrivial
transport coefficients such as the electrical conductivity recently computed on the lattice
[262] and transport coefficients associated with second order hydrodynamics. Moreover,
these models also give valuable insight into the energy loss experienced by heavy (and
also light quarks) in the QGP near the crossover phase transition [263–265]. Therefore,
we believe that it is relevant to consider these constructions here as well and investigate
the temperature dependence of mD/T in these models. We shall see that by carefully
choosing the scalar potential one can obtain a much better quantitative description of the
thermodynamics of pure glue as well as that of QCD with light dynamical flavors found
on the lattice5.

6.5.1 Bulk action

Even though the bulk action that defines these models is the same as that studied
in Section 6.4, we find it convenient to follow the convention of Ref. [15] (compare the
dilaton normalization in Eq. (6.37) with the one below) where the Einstein+scalar action
is

S =
1

2κ2
5

∫
d5x
√
g

[
R− 1

2
(∂µφ)(∂µφ)− V (φ)

]
, (6.62)

5We note that the models considered here do not have the correct bulk degrees of freedom to fully
describe the physics associated with chiral symmetry breaking. See Refs. [266, 267] for a model which
describes chiral symmetry breaking in this class of Einstein + scalar models by including a second scalar
field, following the spirit of the KKSS model [268].
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where k2
5 = 8πG5. The scalar field in this action is related to the dilaton in Model A (6.37)

by a factor of
√

3/8. The potential V (φ) is chosen in such a way that the thermodynamic
properties of the model (6.62) mimic the ones desired from the gauge theory - in the
next subsections we will describe simple choices of V (φ) which achieve this task. The
desired solutions of Eq. (6.62) must be asymptotically AdS5 for the boundary gauge
theory to have a UV fixed point. The potential V (φ) is chosen in order to interpolate
between a free massive scalar field (plus cosmological constant term) near the boundary,
V (φ) ∼ −12/R2 +m2φ2/2, and a potential which yields the Chamblin-Reall solution [269]
deep in the bulk, V (φ) = V0e

γφ, with γ < 0.

6.5.2 Metric ansatz

As we wish to study the gauge theory at finite temperature, the solution also must
contain a black brane in the bulk. We also want translation symmetry in the gauge theory
and rotational SO(3) symmetry in the spatial directions but not the full Lorentz SO(3,1)
symmetry since the at nonzero temperature the thermal gauge theory is not invariant by
Lorentz boosts. An Ansatz which is able to satisfy these requirements, called here the
Gubser gauge [15], is

ds2 = e2A(h dτ 2 + d~x 2) + e2B dφ
2

h
, (6.63)

where the holographic radial coordinate is given by the scalar field φ itself. We require
that A, B, and h are only functions of φ, i.e., A(φ), B(φ), and h(φ). The asymptotically
AdS5 boundary is recovered when φ→ 0. This choice, as shown in Ref. [15], is convenient
to solve the equations of motion for the action (6.62). However, this gauge choice is not
very useful for analyzing the glueball spectra or studying Wilson and Polyakov loops. For
these purposes, it is convenient to go back to conformal gauge. We discuss this point in
more detail in Appendix F.2.

6.5.3 The equations of motion

It is possible to write a “master” equation that yields all the metric functions in the
Ansatz (6.63) in terms of a single ordinary first order differential equation [15]. The
equations of motion derived from the action (6.62) are the Einstein’s equations

Rµν −
gµν
2
R = 8πG5Tµν , (6.64)

where Tµν is the stress-energy tensor for the scalar field. The equation of motion for the
scalar field φ is

∇µ∇µφ− V ′ = 0, (6.65)
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where ∇ indicates the covariant derivative and V ′ = dV/dφ (in this section, primes will
always indicate derivatives with respect to φ). With the Ansatz (6.63), one can see that
the equation of motion for the ττ component is

2e2BV + 6A′h′ + h(24A′2 − 12B′A′ + 12A′′ + 1) = 0 (6.66)

while for the xx the equation of motion is

2e2BV + 14A′h′ − 2B′h′ + 2h′′ + h(24A′2 − 12B′A′ + 12A′′ + 1) = 0 . (6.67)

The common term in parenthesis can be eliminated from both equations, which yields

h′′ + (4A′ −B′)h′ = 0 . (6.68)

The Gφφ equation of motion is

6A′h′ + h(24A′2 − 1) + 2V e2B = 0 . (6.69)

Using the Gττ equation of motion (6.66) to eliminate 24A′2 from Eq. (6.66) we obtain

A′′ − A′B′ + 1

6
= 0 . (6.70)

The last equation of motion is given by the scalar equation (6.65),

(4A′ −B′) +
h′

h
− e2B

h
V ′ = 0. (6.71)

We use the set consisting of Eqs. (6.68) to (6.71) as our equations of motion. These
equations are not completely independent due to Bianchi’s identity. In this case, the
derivative of Eq. (6.70) follows from the derivative of the other equations of motion and
one can use any subset of three equations among these to obtain the full geometry.

6.5.4 Zero temperature master equation

We start by describing zero temperature solutions. With a vacuum solution at hand,
one can proceed to explore the properties of the T = 0 strongly coupled non-Abelian
gauge theory with gravity dual given by Eq. (6.62). Although this class of models was
built primarily in order to reproduce the thermodynamics of QCD near the crossover
phase transition [73], in Appendix F.3 we show that the glueball spectra is reasonably
described by a confining, zero temperature version of these models.

When T = 0, the boundary gauge theory has full Lorentz invariance and, thus, we set
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h = 1 in (6.63)
ds2 = e2A(dτ 2 + d~x2) + e2Bdφ2 (6.72)

where τ is the Euclidean time. The equation of motion (6.68) is identically satisfied when
h = 1. The remaining equations of motion (6.69), (6.70), and (6.71) simplify to

A′′ − A′B′ + 1

6
= 0, (6.73)

24(A′)2 − 1 + 2e2BV = 0 and (6.74)

4A′ −B′ − e2BV ′ = 0 . (6.75)

Now, following the procedure used in Ref. [15] for the T 6= 0 case, our goal here is
to obtain a first order master equation for G(φ) ≡ A′(φ). Then, one can integrate G to
obtain A and the remaining metric function B. Combining Eqs. (6.74) and (6.75), we
arrive at

V

V ′
=
−8G+ 2B′

24G2 − 1
. (6.76)

We can now use Eq. (6.73) to eliminate B′ from this equation and find the master equation
at T = 0

G+
V

3V ′
= − 6G′G

24G2 − 6G′ − 1
. (6.77)

This is a first order ordinary differential equation for G = A′ for a given potential V (φ).
To solve it, we have to specify a boundary condition for G(φ). Since all the potentials
we shall consider have the IR (φ → ∞) asymptotic V (φ) ∝ eγφ, we see that for φ → ∞,
V/3V ′ = 1/(3γ). Thus, Eq. (6.77) implies that when φ→∞ one must have

G(φ→∞) = − 1

3γ
. (6.78)

6.5.5 Finite temperature master equation

The procedure for extracting a master equation for the finite temperature case is very
similar to the zero temperature case [15]. Let us summarize the necessary steps. From
Eqs. (6.69) and (6.71), one can obtain

V

V ′
=
−6Gh̃− 24G2 + 1

8G− 24B′ + 2h̃
(6.79)
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where h̃ ≡ h′/h. Now, using Eq. (6.68) to eliminate B′ from this equation,

V

3V ′
=
−6G2h̃− 24G3 +G

24G2 − 6G′ − 1 + 6h̃G
. (6.80)

To remove h̃ from the numerator in Eq. (6.80), we sum G on both sides. Then, manipu-
lating a bit further the resulting expression, we get

G′

G+ V
3V ′

= −4G+
G′

G
+

1

6G
− h̃. (6.81)

Now, solving Eq. (6.68) for h′′/h′ and then using Eq. (6.70) to eliminate B′ from the
resulting expression, one can see that

h′′

h′
= −4G+

G′

G
+

1

6G
. (6.82)

Thus, using Eq. (6.82) into Eq. (6.81),

G′

G+ V
3V ′

=
h′′

h′
− h′

h
=

d

dφ
[log h′ − log h] =

d

dφ
log h̃. (6.83)

Finally, using Eq. (6.81), we derive the final form of the master equation for a finite
temperature geometry

G′

G+ V
3V ′

=
d

dφ
log

[
G′

G
+

1

6G
− 4G− G′

G+ V
3V ′

]
. (6.84)

Let us now discuss the boundary conditions for the master equation (6.84). First, we
require that h(φ) has a simple zero at φ = φh, which is the radial position of the event
horizon. Thus, h(φh) = 0 but h′(φ0) 6= 0 so that for φ . φh, h(φ) ≈ −h′(φh)(φ − φh).
Therefore, from Eqs. (6.69) and (6.70) one obtains the constraints

V (φh) = −3e−2B(φh)G(φh)h
′(φh) and (6.85)

V ′(φh) = e−2B(φh)h′(φh). (6.86)

Thus, from Eqs. (6.85) and (6.86) we conclude that(
G+

V

3V ′

)∣∣∣∣
φ=φh

= 0. (6.87)
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Moreover, we can also show that

d

dφ

(
G+

V

3V ′

)
φ=φh

= G′(φh) +
1

3
− V (φh)V

′′(φh)

3(V ′(φh))2
. (6.88)

Thus, near the horizon one may expand G+ V/(3V ′) in a series around φ = φh,

G(φ) = −1

3

V (φh
V ′(φh)

+
1

6

(
V (φh)V

′(φh)

V ′(φh)2
− 1

)
(φ− φh) +O[(φ− φh)2]. (6.89)

Thus, by fixing the position of the horizon φh we may use the series solution (6.89) to
obtain G(φ) near the horizon, at φ̃ = φh−δφ, for δφ� φh, and then integrate numerically
out from φ = φ̃ out to φ = 0, using the series values for G(φ̃) and G′(φ̃) as boundary
conditions.

6.5.6 Geometry asymptotics

As mentioned above, the potential near the boundary (φ→ 0) is given by

V (φ) ∼ − 12

R2
+
m2

2
φ2 . (6.90)

The UV scaling dimension ∆ of the gauge theory operator associated with φ is determined
by the larger root of

∆(∆− 4) = m2R2 . (6.91)

In the coordinate system (6.63), the asymptotic AdS5 geometry (φ→ 0) is given by

A(φ) =
log φ

∆− 4
+O(1) and (6.92)

B(φ) = − log φ+O(1), (6.93)

with h(φ→ 0)→ 1. This also fixes the asymptotic behavior G(φ→ 0) ∼ 1/(φ(∆− 4)).

6.5.7 Obtaining the geometry and the thermodynamics

With the boundary conditions fixed and with the asymptotic behavior defined above
one can obtain the full metric from G(φ). First, one can see that

A(φ) = Ah +

∫ φ

φh

dφ̃G(φ̃), (6.94)
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where Ah = A(φh) is the integration constant. Since near the boundary A behaves as in
Eq. (6.92), one can obtain the integration constant Ah

Ah =
log φh
∆− 4

+

∫ φh

0

dφ

[
G(φ)− 1

(∆− 4)φ

]
. (6.95)

Now, let us also evaluate B(φ) and h(φ). One can solve Eq. (6.70) for B′ in terms of
G to obtain

B(φ) = Bh +

∫ φh

0

dφ

[
G′(φ)

G(φ)
+

1

6G(φ)

]
. (6.96)

with Bh = B(φh) being an integration constant, which we will determine in the end of this
subsection. Also, given that A and B are known, one can integrate Eq. (6.68) to obtain

h(φ) = h0 + h1

∫ φ

φh

dφ̃ e−4A(φ̃)+B(φ̃), (6.97)

where h0 and h1 are integration constants. To determine them, remember that h(φ →
0) = 1 and h(φh) = 0 so that

h0 = 0 and h1 =
1∫ 0

φh
dφ e−4A(φ)+B(φ)

. (6.98)

Let us obtain the thermodynamics. First, the temperature is given by the Hawking
temperature of the black hole in the bulk, which for the coordinate system in Eq. (6.63)
by following the argument in Section 3.2 is given by

T =
eAh−Bh|h′h|

4π
. (6.99)

Let us also obtain an alternative expression for Eq. (6.99). We first suppose that we have
rewritten the metric in the domain-wall gauge, given by

ds2 = e2Ã(−h̃dt2 + d~x2) +
dr2

h̃
, (6.100)

where h̃ = h̃(r) and Ã = Ã(r), where r is the holographic coordinate. Comparing with
the coordinate system (6.63), we see that we must require∣∣∣∣ drdφ

∣∣∣∣ = eB. (6.101)

Now, in the domain-wall gauge, as the φ coordinate goes from φ → 0 (boundary) to
φ = φh (horizon), the r coordinate goes from r →∞ to r = φh. Thus, in Eq. (6.101), we
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must choose the minus sign
dr

dφ
= −eB. (6.102)

In the domain wall gauge, Ã(r) ∼ r/L for r → ∞. Therefore, by a simple application of
the chain rule,

G(φ) =
dA

dφ
=
dr

dφ

dA

dr
≈ −e

B

L
(6.103)

as φ→ 0. Thus,
1 ≈ −LG(φ)e−B(φ) as φ→ 0. (6.104)

Inserting 1 in the form (6.104) into Eq. (6.99) we get

T ≈ L

4π
e−2BhG(φh)h

′(φh) exp

[
Ah +Bh −B(φ)− log

G(φh)

G(φ)

]
as φ→ 0. (6.105)

Now, using the first constraint (6.85) and the B function in the form (6.96) into Eq.
(6.105) we can eliminate both h′ and Bh from the latter, obtaining

T ≈ −LV (φh)

12π
exp

[
Ah +

∫ φh

φ

dφ̃

6G(φ̃)

]
. (6.106)

Finally, pluggings Ah from Eq. (6.95) into Eq. (6.106), and then taking φ→ 0 so that we
can exchange the ≈ sign for an equality, we obtain

T =
φ

1/(∆−4)
h

πL

V (φh)

V (0)
exp

{∫ φh

0

[
G(φ)− 1

(∆− 4)φ
+

1

6G(φ)

]}
. (6.107)

To arrive at Eq. (6.107) we also have used the fact that V (φ→ 0)→ −12/L2, to leading
order in φ.

From Eqs. (6.99) and (6.107) we can also evaluate Bh explicitly. Using the second
constraint (6.86) to remove h′ from Eq. (6.99), we obtain

T =
eAh+Bh|V ′h|

4π
. (6.108)

Comparing Eqs. (6.107) and (6.108), we arrive at an expression for Bh

Bh = log

[
4V (φh)

V (0)V ′(φh)L

]
+

∫ φh

0

dφ

6G(φ)
. (6.109)

Let us continue with the thermodynamics. As Eq. (6.62) is just the Einstein-Hilbert
action coupled with some matter fields, the entropy of the black hole (and, thus, of the
plasma) is given by the Bekenstein-Hawking formula (3.45). Thus, the entropy density of
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the plasma is given by

s =
2π

k2
5

e3A(φh) =
2π

k2
5

e3
∫ φh
0 [G(φ)− 1

(∆−4)φ ]. (6.110)

Therefore Eqs. (6.107) and (6.110) give a thermodynamical equation of state parametrized
by φh: (T (φh), s(φh)). In particular, we can write a more convenient equation of state in
terms the sound speed c2

s:

c2
s =

d log T

d log s
=
d log T/dφh
d log s/dφh

. (6.111)

6.5.8 The scaling dimension of TrF 2 and the trace anomaly.

In this subsection, we will discuss the relation between the trace anomaly and the scal-
ing dimension [254], expanding the discussion in Ref. 2.2. This will allow us to understand
the meaning of ∆ in our holographic models and the limit of validity of our calculations.
In this section, we will expand further the discussion of conformal and scale symmetry
started in Chapter 2 with the aim of understanding how the breaking of scale dimension
is related, at the quantum level, with the trace anomaly. This will be useful to set the
limit of validity of Model B, already hinted in the first paragraphs of this Section.

We start by looking more closely to scale transformations. Let L be the lagrangian
density for a classical field theory for a (representative) field φ(x). Suppose that L is
invariant under the scale transformation

xµ → eσxµ and

φ(x)→ e−Dσφ(xeσ), (6.112)

The associated conserved current this symmetry using from Noether’s theorem is given
by

∂µD
µ = 0, (6.113)

where
Dµ = T µνxν , (6.114)

with T µν being the stress-energy tensor. If the lagrangian is not invariant by scale trans-
formations, then it follows that

∂µD
µ = T µµ . (6.115)

Thus, if T µµ = 0, the theory is scale invariant. In particular, pure SU(Nc) Yang-Mills
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theory in four dimensions, with lagrangian density L

L = − 1

4g2
TrFµνF

µν , (6.116)

satisfies T µν = 0 and thus is classicaly scale invariant.
Quantization may break the scale invariance present in a classical theory, as already

remarked in Chapter 2. If the beta function β of the theory is not zero, β 6= 0, then the
coupling constant g runs with the energy scale E as described by the renormalization
group equation (recall Eq. (2.17))

β(g(E)) =
∂g

∂ log E
µ

. (6.117)

where µ is some reference energy scale. For an infinitesimal scale variation, with E = eσµ,
with σ � 1, one sees that g runs as

g → g′ = g + σβ(g). (6.118)

The lagrangian density L transforms as

L(g)→ L′(g′) = L(g + σβ(g)) ≈ L(g) + βσ
∂L
∂g
. (6.119)

Under a scale transformation L transforms as δL = σ∂µD
µ and we conclude that (using

also Eq. (6.115))

∂µD
µ = T µµ β(g)

∂L
∂g
. (6.120)

For pure SU(Nc) Yang-Mills, with lagrangian density (6.116), this yields, in particular

T µµ =
β(α)

8πα2
TrF 2

µν , (6.121)

where we redefined the coupling constant as α(µ) = g(µ)/4π, as usual. Thus, the trace of
the energy momentum tensor is proportional to TrF 2

µν .
Now we come to the main point of this subsection. As 〈T µµ 〉 = ε− 3p, T µµ is a physical

observable and thus invariant under the renormalization group. Thus, the scaling dimen-
sion of T µµ is given by its canonical dimension, dc = 4. This remark will allow us to evaluate
the scaling dimension of TrF 2

µν . First, let us remember that, for a generic operator Ô, its
renormalization group equation is given by

dÔ

d log µ
= −∆Ô, (6.122)
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where ∆ is the scaling dimension of Ô, the sum of its canonical dimension dc and its
anomalous dimension γ, ∆ = dc + γ. Thus, applying this relation to T µµ we find

dT µµ
d log µ

= −4T µµ . (6.123)

Inserting Eq. (6.121) in both sides of Eq. (6.123) and using the chain rule in the form
dβ(α(µ))/d log µ = (dβ/dα)(dα/d log µ), we finally derive, for pure SU(Nc) Yang-Mills,

∆ = 4 + β′(α)− 2β(α)

α
. (6.124)

Thus, the perturbative scaling dimension ∆ of Tr F2
µν is connected to the beta function β

in pure Yang-Mills theory by Eq. (6.124). Using the pQCD beta function at 3 loops [270],
one can find that, with the scale set at µ = 3 GeV, α = 0.253 and ∆ = 3.93 [254].

In this class of models, the scaling dimension of Tr F2
µν in the UV is fixed and it does

run to the conformal fixed point result ∆ = 4 as one takes µ → ∞. Thus, one way of
estimating the range of validity of this class of models is to evaluate ∆ for the chosen
potential V (φ) and see to which scale µ this ∆ corresponds to - the model is valid up to
T < µ. This implies, in general, that we can trust these models up to T ∼ 1− 4 GeV, or,
optimistically, at least up to ∼ 4Tc. At higher temperatures, T & 4Tc, asymptotic freedom
becomes relevant and these bottom up models, whose UV fixed point is not trivial, are
not useful anymore for phenomenonological applications in QGP physics.

6.5.9 Choice of potential

In this framework, the potential V (φ) is chosen to match the QCD plasma thermo-
dynamics at zero chemical potential. As mentioned above, the main restrictions on V (φ)

are that near the boundary φ→ 0, V (φ) ∼ −12/R2 +m2φ2/2 while near the black brane
horizon, V (φ) ∼ V0e

γφ. A simple, fairly featureless, potential that satisfies both conditions
is

V (φ) = − 12

R2
(1 + aφ4)1/4 cosh(γφ) + b2φ

2 + b4φ
4 + b6φ

6, (6.125)

where γ, b2, b4 and b6 are the free parameters of the potential6.
The parameter a controls the nature of the thermodynamical phase transition; as

we shall see, a = 1 implies that the bulk theory has a Hawking-Page transition and
thus the dual gauge theory has a first order phase transition - this class of models can

6Ref. [271] obtained an important constraint that must be obeyed in order to avoid naked singularities
that cannot be covered by a black brane horizon at finite temperature: V (0) ≥ V (φ) for φ 6= 0. For the
choices of scalar potentials used in Chapters 6 and 7, within the range in temperature we were interested
in, we did not find any naked singularities that could not be covered by a horizon. The potential choice
used in Chapter 8 does not suffer from this issue.
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a γ b2 b4 b6 ∆

Model B1 1
√

2/3 5.5 0.3957 0.0135 3.0
Model B2 0 0.606 0.703 -0.12 0.0044 3.0

Table 6.2: Parameters for the B1 (first order phase transition) and B2 (crossover phase transi-
tion) models. The last column shows the corresponding scaling dimension ∆ of each model.

be used to mimic the properties of the deconfinement transition in SU(Nc) Yang-Mills
theory [74, 255]. On the other hand, a = 0 implies that the dual gauge theory has a
crossover phase transition and the model can be used to describe the thermodynamics of
QCD with (2+1) light quark flavors [78]. The models with a = 1 and a = 0 will be called
here B1 models and B2 models, respectively.

The near-UV (φ→ 0) mass m2 of the bulk effective action can be extracted from Eq.
(6.125)

m2 = −12γ2

R2
+ 2b2 . (6.126)

On the other hand, as in the UV Eq. (6.91) holds, one obtains that b2, ∆, and γ are not
independent

b =
6γ2

R2
+

∆(∆− 4)

2R2
. (6.127)

In Table 6.2 we show the parameters for both models we consider in this Chapter. We
remark that in both models ∆ = 3, as used before in [263–265]. These two sets of pa-
rameters were chosen in order to fit lattice data for pure SU(3) Yang-Mills theory and
QCD, respectively - we shall display the numerical results for the thermodynamics in the
corresponding sections for each model.

In Table 6.2 we show the parameters for both models we will consider in this work, B1
and B2. We remark that in both models, ∆ = 3. These parameters were chosen in order
to fit lattice data for pure SU(3) Yang-Mills and QCD, respectively - we will display the
numerical results for the thermodynamics in the corresponding sections for each model.

6.6 Debye screening mass and Polyakov loop in the B1

model

Let us start by the B1 model which possesses a first order deconfining phase transition
and models the thermodynamics of pure SU(Nc) Yang-Mills theory.
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Figure 6.6: Temperature T (normalized by the critical temperature Tc) as a function of the
horizon position in the holographic coordinate φh for the B1 model.

6.6.1 Thermodynamics

To obtain the thermodynamics of this model we use Eqs. (6.107) and (6.110). We start
by presenting, in Fig. 6.6, the temperature T (normalized by the critical temperature Tc for
the first order transition) as a function of φh. As in Model A, we have two characteristic
temperatures. First, we have a minimum temperature Tmin (given by the minimum of
T in Fig. 6.6) below which the black hole solution does not exist and the dominating
bulk geometry corresponds to a thermal gas. The second distinctive temperature is the
critical temperature, Tc, at which the pressure of the black brane solution vanishes. For
temperatures T such that Tmin < T < Tc, the thermal plasma is in a (superheated)
metastable phase. For the parameters we used, given in Table 6.2, Tmin = 0.89Tc, with
φh,min = 3.20 and φh,c = 2.20.

From Eq. (6.110) we evaluate the entropy density s as a function of φh. Using the
results shown in Fig. 6.6, one can eliminate φh and obtain s as a function of T . With
s(T ), one may proceed to evaluate all the thermodynamic functions. For instance, the
pressure p is given by

p = −
∫ φh

∞
s(x)T ′(x)dx, (6.128)

while c2
s is given by Eq. (6.111). In Fig. 6.7 we show the pressure p (normalized by the

N = 4 SYM result) as a function of T/Tc. In Fig. 6.8, we compare the model results
for the equation of state written in terms of c2

s with the corresponding lattice results for
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Figure 6.7: The pressure p of the plasma for model B1, normalized by the N = 4 SYM result,
as a function of the normalized temperature T/Tc.

pure SU(3) Yang-Mills [74]. We see that the B1 model is in fair agreement with SU(3)

thermodynamics representing a quantitative improvement with respect to model A.

6.6.2 Polyakov loop

The computation of the expectation value of the Polyakov loop proceeds as in Subsec-
tion 6.4.3 using Eq. (6.58). This equation assumes that the geometry is in the conformal
gauge; however, our numerical solution is obtained in the φ = z gauge. Thus, we need to
perform a coordinate system change - the details of this gauge change can be found in
Appendix F.2. Also, our geometry is given in the Einstein frame; to evaluate the Polyakov
loop we have use the string frame. As in Model A, we assume that our geometry is related
to some 5 dimensional subcritical string theory and the string frame metric is related to
the Einstein frame metric by gsµν = λ4/3gµν , where λ = eφ. A final remark is that in this
model b(y) 6= b(0)(y) so that the cancelation that took place in Model A does not happen
in this case. The regularized expression for the heavy quark free energy is

F reg
Q Tc

σ
=

Tc
Λb2

s(ymin)

∫ ych

0

dy
(
b2
s(y)− b2

(0),s(y)
)
− Tc

Λb2
s(ymin)

∫ ych

yh

dy b2
s(y), (6.129)
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Figure 6.8: The speed of sound squared of the plasma c2
s for model B1 as a function of the

normalized temperature T/Tc (solid red curve), compared with SU(3) Yang-Mills lattice results
(dot-dashed blue curve) [74]. The black dashed line is the CFT result, c2

s = 1/3.

where y = φ in order to mantain the same notation used in (6.58).In Fig. 6.9 we show our
numerical results for ∆FQ ≡ FQ(T )−FQ(2Tc), comparing with lattice results for SU(Nc)

[257]. One can see that model B1 follows more closely the lattice data in comparison that
found for Model A.7

6.6.3 Debye screening mass

We may now proceed to evaluate the Debye screening mass in the model B1. To
obtain the Debye mass, we have to obtain the lowest eigenvalue M2 of the corresponding
Eq. (6.28). As in the preceding subsection, this equation was written in the conformal
gauge whereas our numerical solution for the metric is obtained in the Gubser gauge. The
numerical procedure to find mD is exactly the same as described in 6.4.4. As in model
A, we assume that the axion action is given by Eq. (6.24), with the Z function given
by the parametrization (6.59). We use the same values of c4 as in the study of model A,
c4 = 0.1, 1, and 10.

The numerical results for the Debye screening mass in this model are presented in Fig.
7It should be noted that our models are built to study phenomena near the confinement/deconfinement

transition from T ∼ Tc = 150MeV to T ∼ 3 − 4Tc ∼ 450 − 600 MeV. By construction, these models
are strongly coupled in the UV. A reflection of this fact is that one cannot describe adequately both the
Polyakov loop and the thermodynamics simultaneously at high temperatures, near the conformal regime,
as argued in Ref. [272].
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Figure 6.9: ∆FQTc/σ = (FQ(T )− FQ(2Tc))Tc/σ as a function of T/Tc for the model A (solid
black line), model B1 (blue triangles), and for SU(Nc) Yang-Mills [257] with Nc = 3 (red circles),
4 (purple squares), and 5 (brown diamonds).

6.10. As in the case of model A, mD/T has a discontinuity at T = Tc where it jumps
from 0 to a finite value mD/(cπT ) ∼ 0.35 (somewhat higher than the jump in model A
to mD/(cπT ) ∼ 0.2). The value of the jump is not sensitive to the choice of c4 and the
overall behavior of mD/T as a function of T saturates for large c4. Note that we vary c4

by two orders of magnitude and mD/T varies only by ∼ 20% at high temperatures.

6.7 Debye screening mass in the B2 model

6.7.1 Thermodynamics

In this section we describe a choice of scalar potential that yields an equation of
state for the holographic strongly coupled plasma that closely matches the lattice results
for (2+1) QCD [78]. The parameters for this potential can be found in Table 6.2. For
this model, the black brane solution always dominates over the thermal gas solution;
thus, there is no metastable phase and no Tmin. Also, there is no confinement at T = 0.
Moreover, the temperature T as a function of φh is monotonically decreasing, as it can
be seen in Fig. 6.11. The pressure of the black brane phase is always positive and, thus,
one cannot define a critical temperature Tc as in Models A or B1. The phase transition
in Model B2 is of crossover type; the thermodynamic quantities and their derivatives
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Figure 6.10: Debye screening mass for the model B1, normalized by the N = 4 SYM result c πT
(with c = 3.4041) as a function of T/Tc for c4 = 0.1 (black circles), 1 (blue squares), and 10
(purple diamonds).

of all orders are continuous across the “phase transition”. In fact, the phase transition is
characterized only by a sudden, but continuous, change of the thermodynamics properties.

Model B2 gives a reasonable description of (2+1) QCD thermodynamics, as it can
be seen in Fig. 6.13 (pressure p as a function of the temperature T ) and in Fig. 6.12
(equation of state in terms of c2

s)8. We also display the trace anomaly in Fig. 6.13. The
5-dimensional Einstein’s constant G5 = 0.501 is chosen to reproduce lattice data for the
pressure in Fig. 6.13. We also note that this model provides a quantitative description of
the norm of the expectation value of the Polyakov loop found on the lattice [263].

6.7.2 Debye screening mass

Following the same procedure employed in previous sections, we may now evaluate
the Debye screening mass as a function of the temperature in this model. The results
are shown in Fig. 6.15. The Debye screening mass mD/T has a local minimum around
T ∼ 150 MeV showing a similar temperature dependence found for c2

s (Fig. 6.11). This
minimum means, intuitively, that the plasma gets less screened (more transparent) to the
strong interaction between colored heavy probes near the phase transition. Once again,
larger values of c4 show convergence and imply a faster rising to the conformal result (in

8We use the position of the minimum of c2s to set the scale of the temperature and express T in MeV.
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Figure 6.11: Temperature T as a function of the horizon position in the holographic coordinate
φh for the model B2.
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Figure 6.12: The speed of sound squared of the plasma c2
s as a function of temperature T ,

for the B2 model (solid curve), compared with (2+1) flavors SU(3) QCD lattice results (data
points) [78].
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Figure 6.13: The pressure of the plasma p/T 4 as a function of the normalized temperature T ,
for the B2 model (solid curve), compared with (2+1) flavors SU(3) QCD lattice results (data
points) [78].
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Figure 6.14: The trace anomaly of the plasma θ/T 4 as a function of the normalized temperature
T , for the B2 model (solid curve), compared with (2+1) flavors SU(3) QCD lattice results (data
points) [78].
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Figure 6.15: Debye screening mass mD for the model B2 with a crossover transition, normalized
by the N = 4 SYM result c πT (with c = 3.4041) as a function of the temperature T for c4 = 0.1
(black circles), 1 (blue squares) and 10 (purple diamonds).

this case by varying c4 by two orders of magnitude the high T values of mD/T vary by
∼ 30%).

6.8 Debye mass dependence with η/s - Gauss-Bonnet

gravity

6.8.1 Action and Background Geometry

As a final application of the holographic evaluation of the Debye screening mass,
we consider a class of bulk actions that include curvature squared corrections to the
supergravity action of type IIB superstrings and that violate the holographic viscosity
limit η/s ≥ 1/4π [90], described by Gauss-Bonnet gravity. The action for these models,
called Gauss-Bonnet gravity [194], is given by Eq. (4.66) of Chapter 4. For this particular
choice of curvature squared corrections, the metric fluctuations in a given background
have the same quadratic terms of Einstein gravity. The exact black-brane solution given
by Eq. (4.67) is rewritten in the conformal gauge, using z = R/U

ds2 =
R2

z2
a2

(
fGB(z)dτ 2 + d~x2 +

dz2

fGB(z)

)
, (6.130)

where
a2 =

1

2

(
1 +

√
1− 4λGB

)
and (6.131)
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fGB(z) =
1

2λGB

[
1−

√
1− 4λGB

(
1− z4

z4
h

)]
. (6.132)

The z coordinate black brane horizon at the simple root of fGB(z), zh. The common
temperature of the black brane and of the thermal bath is T = a/(πR2zh).

6.8.2 The Debye screening mass

We have not specified the string theory construction that leads to Gauss-Bonnet grav-
ity but such a discussion can be found in [195]. The only field that can contribute to the
channel used to define the Debye mass is the axion, which is once again trivial in this
background. The action for the axion fluctuations (6.24) including only two derivatives is
(this is still a conformal system and, thus, Z = 1)

S =
α

32πG5

∫
d5x e5A(∂a)2, (6.133)

where A(z) = log(R/z). Apart from the constant factor of proportionality α in the action,
this is the same action that would be obtained with a background of the form (6.23). So
our equation of motion is still Eq. (6.28), with B = 3/2 log(z/R). As in Section 6.3 we use
the dimensionless variable y = z/zh, which yields the dimensionless mass M̃ = M/(πT ).

Also, one can check that in this case the potential V(y) in Eq. (6.28) has the same
asymptotic form near the boundary, namely V(y → 0) = 15/(4y2) - the leading term in
1/y is not changed. So, the asymptotic solutions are the same and all the tools used in 6.3
can be applied in this case without modifications. To obtain the Debye screening mass as
a function of η/s, we analyze several values of λGB and then use Eq. (4.70) to obtain the
corresponding values of η/s.

We also compare our numerical results with the phenomenological procedure pursued
in Chapter 4. In that Chapter, we have evaluated in the strongly coupled plasma dual to
Gauss-Bonnet gravity the expectation value of the rectangular Wilson loop operator at
finite temperature, which yields the potential energy VQQ̄ of a heavy quark-antiquark pair
that depends on η/s [201]. Using fits for the real part of the potential of the form

ReVQQ̄√
λT

= −C̃1
e−

m̃D
T

(LT )

(LT )δ
+ C̃2, (6.134)

where L is the interquark distance while C̃1, δ, and m̃D were taken as fit parameters (we
note that C̃2 = −1/α2 by our regularization procedure) we found an estimate for the
Debye screening mass m̃D. For λGB = 0 we found m̃D = 3.79πT , in reasonable agreement
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Figure 6.16: Debye massmD for the Gauss-Bonnet gravity dual, as a function of η/s, normalized
by the N = 4 SYM value. The black circles correspond to the results obtained by computing the
lightest CT odd mode; the blue squares are the results obtained by fits to the heavy quark-antiquark
potential evaluated holographically [18]. The shaded region corresponds to values of η/s which
violate the causality bound [91,92].

with the result of Eq. (6.32).
We present the results for the Debye mass mD (normalized by the SYM value) as a

function of the η/s in Fig. 6.16. We note that we have not restricted our calculations
to the interval 4πη

s
≥ 16/25 as required by causality but considered, for completeness,

η/s ≥ 0. One can see that for increasing η/s the interaction between colored external
probes in the plasma is less screened. This is reasonable, at least from the point of view
of a weakly coupled plasma since η/s is roughly proportional to the mean free path of
momentum isotropization of the plasma and changing η/s does not change the number of
degrees of freedom of the system. Thus, less screening should correspond to a larger mean
free path and, thus, to a larger η/s. We also note the unexpected coincidence between
the results obtained by finding the lightest CT odd mode and those obtained following
the simple phenomenological procedure using the heavy quark potential described in the
previous paragraph.
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6.9 Discussion and Conclusions of This Chapter

In this Chapter we have identified the Debye screening mass mD in non-Abelian gauge
theories at strong coupling with the lightest CT-odd mode in the spectrum (associated
with the operator TrFµνF̃

µν), following Ref. [184,232]. We used this prescription to holo-
graphically evaluate the Debye screening mass for a class of gravity duals involving the
metric and a scalar field. Besides the conformal cases of N = 4 SYM at strong coupling
and the gauge theory dual to Gauss-Bonnet gravity (where the scalar field in the bulk
vanishes), we investigated in detail an analytic bottom-up model with a first order con-
finement/deconfinement transition (Model A), and two bottom-up holographic models
that describe the thermodynamics of QCD as seen on the lattice - Models B1 (pure glue,
first order phase transition) and B2 (QCD, crossover transition).

The calculation of mD/T in both models for a pure Yang-Mills plasma with a first
order phase transition at Tc, models A and B1, revealed some interesting features. Both
models approach the conformal limit for T � Tc and exhibit relatively little sensitivity
to the axion coupling prefactor Z. The most remarkable feature of both models is the
discontinuity of mD/T at the critical temperature Tc - mD jumps from 0 in the thermal
gas phase (T < Tc) to a nonzero value at T = Tc. This behavior for mD/T in a pure
SU(Nc) Yang-Mills plasma is consistent with previous lattice studies [239].

We also computed the expectation value of the Polyakov loop in these models finding
an impressive agreement with lattice results [257] even for Nc = 3. Moreover, even Model
A, which does not provide an adequate quantitative description of SU(3) thermodynam-
ics, yields a reasonable description for the Polyakov loop. This suggests that the Polyakov
loop is largely insensitive to a variation in the number of colors Nc in a pure glue plasma
and that even Nc = 3 may be reasonably described by a large-Nc expansion [257]. More-
over, it would be interesting to identify more clearly what is the specific nonperturbative
mechanism present in these holographic models that is responsible for this simultaneous
description of lattice QCD thermodynamics and the expectation value of the polyakov
loop.

Model B2 provides a reasonable description of the thermodynamics of (2+1) QCD9.
The Debye screening mass, correspondingly, satisfies mD(T ) > 0 strictly and is always
continuous. Near the crossover phase transition region at T ∼ 150 MeV, we see a minimum
of mD/T (Fig. 6.15). This minimum resembles, qualitatively, that found for the speed
of sound squared c2

s(T ), as shown in Fig. 6.12. For all the models, A, B1, and B2 the
9We should, however, emphasize that the gauge theory described by this gravity dual does not strictly

possesses fermions in the fundamental representation. Those can be included using D-branes in the bulk
geometry [223, 273]. See Ref. [274] for a general review and [275] for a study of the Veneziano limit in
bottom-up constructions.
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conformal regime is reached from below; that is, mD(T ) < cπT . The minimum of mD/T

near the phase transition may have consequences for the energy loss of colored probes in
the plasma [276]. Also, such a minimum implies that correlations in the medium are less
screened, which effectively increases the range of interactions and this may be responsible
for the (expected) small value of η/s around T ∼ 150 MeV [277–280]. Equivalently, in
this temperature range the expectation value of the Polyakov loop becomes small and,
within the framework of the semi-QGP model [281, 282], such a reduction may also lead
to a suppression of η/s [283,284].

The Debye screening mass of N = 4 SYM at strong coupling, mD = 3.4041πT ,
extracted using the procedure of Ref. [232], yields a result that is remarkably close to
the crude estimate used in Ref. [18] where fits to the heavy quark-antiquark potential
gave mD = 3.79πT . However, this coincidence should be interpreted with caution since,
as discussed in Ref. [18], the heavy quark-antiquark potential in N = 4 SYM at strong
coupling is not exponentially screened (for small values of LT ) as required to obtain the
Debye screening mass from VQQ̄.

By considering a gravity theory with higher order derivatives such that the gauge
plasma does not satisfy η/s = 1/(4π), namely Gauss-Bonnet gravity, we have evaluated
the dependence of mD/T with η/s, as shown in Fig. 6.16. We found that in this case
less screening is seen as η/s is increased. It would be interesting to check this result in
other strongly coupled gauge theories. In particular, one could consider gravity duals that
correspond to gauge theories in which η/s < 1/(4π) still in the context of applications to
the quark-gluon plasma. For example, axion-induced anisotropic deformations of N = 4

SYM [148, 149] or strongly coupled N = 4 SYM subjected to an external magnetic field
[24,285,286]. However, the prescription of Ref. [232] cannot be straightforwardly applied
to these theories because they are not invariant by CP - P invariance is explicitly broken
by the inclusion of the axion field in Ref. [148] and by the presence of an external magnetic
field in Ref. [24].

The results of this Chapter where published in PRD [20].



Chapter 7

A holographic calculation of the electric
conductivity of the strongly coupled
quark-gluon plasma near the
deconfinement transition

7.1 Introduction

As mentioned in Chapter 3, the gauge/gravity duality [14, 93, 94] is a powerful non-
perturbative tool that can be used to investigate the transport properties of strongly
coupled gauge theories with large number of colorsNc [103]. In particular, after the seminal
calculation of the shear viscosity to entropy density ratio, η/s, performed in [90,143,145],
a lot of effort has been put towards the determination of other transport coefficients
that can be used to fully characterize the non-equilibrium dynamics of strongly coupled
plasmas, such as the QGP formed in ultrarelativistic heavy ion collisions [6].

While much attention has been given to the holographic calculation of transport coeffi-
cients associated with the diffusion of energy and momentum in the hydrodynamic expan-
sion, such as η and also the bulk viscosity [137,287], much less is known about transport
coefficients associated with other conserved currents such as the electric conductivity σ
and the charge diffusion coefficient D (in the context of heavy ion collisions) (see Sec-
tion 3.8 to see how these coefficients are computed using the gauge/gravity duality). The
electric conductivity, in particular, may be relevant [64,288] for the time evolution of the
strong electromagnetic fields present in non-central ultrarelativistic heavy ion collisions
at RHIC and the LHC [63] while Ref. [289] claimed that the directed flow in asymmetric
heavy ion collisions may be used to estimate the value of this coefficient in the QGP.

A recent lattice QCD calculation [262] performed using 2 + 1 dynamical flavors

180
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found that σDC/T is enhanced near the deconfinement transition1. A similar behavior
has been found using a parton-hadron non-perturbative approach [292] (other recent non-
perturbative calculations include [293]). Given the usual difficulties encountered in com-
puting spectral functions from Euclidean correlators determined on the lattice, further in-
dependent confirmation of such an enhancement computed using other non-perturbative
approaches, such as the gauge/gravity duality, are certainly welcome.

The conductivity in strongly coupled plasmas has been studied before using holography
(see, for instance, [86,157,290,294–303]). However, in order to understand how the strong
violation of conformal invariance at temperatures T ∼ 150 − 400 MeV found in current
lattice QCD calculations [76, 78] affects the electric conductivity, it is necessary to drop
the assumption of a conformal plasma. While top-down string theory constructions of non-
conformal plasmas2are known (see Refs. in [103]), these models cannot yet describe the
specific temperature dependence of the equilibrium quantities of finite temperature QCD
found on the lattice. On the other hand, bottom up holographic models in 5 dimensions
involving the metric and a bulk scalar field are able to adequately describe the violation
of conformal invariance seen in the thermodynamical properties of QCD at vanishing
chemical potentials [15, 185, 209, 224, 252, 254, 304]. One should keep in mind that such
phenomenological models for the strongly coupled QGP may be only useful when T ∼
150−300 MeV. For lower temperatures an effective description involving explicit hadronic
degrees of freedom should be used [279,280,305,306] while at sufficiently high temperatures
a weak coupling description of the QGP is more appropriate3 (note also that these non-
conformal holographic models remain strongly coupled even in the UV, which is not the
case of an asymptotically free theory such as QCD).

A few years ago it was shown in Ref. [311] that the effects of a nonzero baryon chemical
potential can be nicely incorporated into this class of models by adding a U(1) gauge field
in the bulk that is dual to the conserved baryon current at the boundary4. This general
strategy follows directly from the holographic dictionary which establishes that global
symmetries at the boundary are dual to gauge symmetries in the bulk [94]. While it
is possible to include D-branes into this type of bottom up model to describe its flavor
content [275,312,313], the Einstein+Scalar+Maxwell model pursued in Ref. [311] contains

1See Refs. [88, 89, 290] and, more recently, [291] for studies about the electric conductivity in weakly
coupled plasmas.

2By a non-conformal plasma we mean a plasma whose associated field theory is non-conformal even
at T = 0.

3In fact, recent calculations [307–310] involving Hard Thermal Loop perturbation theory were shown
to provide a good description of the high temperature QGP properties in equilibrium.

4For QCD with three dynamical quark flavors, the equilibrium pressure may depend on the baryon
µB , electric charge µQ, and strangeness µS chemical potentials besides the temperature T , i.e., p =
p(T, µB , µQ, µS). The case described in [311] corresponds to setting µQ = µS = 0 (i.e., all quark flavors
have the same chemical potential equals µB/3).
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the minimum physics needed to study the effects of global conserved charges in a strongly
coupled plasma. Similar models, usually defined in asymptotically AdS4 spaces, have been
used in condensed matter applications [314,315]. See also [316,317] for applications of the
Einstein+Scalar+Maxwell model in the study of the QCD phase diagram.

Moreover, this type of model provides a straightforward way to compute the transport
coefficients associated with the given conserved charges when their chemical potentials
vanish. In fact, in this case the on-shell gauge field in the bulk vanishes and the Maxwell
action enters only in the description of the small fluctuations needed in a linear response
analysis. More specifically, the metric and the scalar field define the non-conformal back-
ground (taken at zero chemical potential) while the Maxwell action acts as a probe,
entering only in the calculation of 2-point functions of the given channel evaluated on this
background. Therefore, while the gauge field does not backreact on the background, it
determines the calculation of susceptibilities and other transport coefficients such as the
electric conductivity.

In this Chapter, we shall use this Einstein+Scalar+Maxwell model to compute the fre-
quency dependent electric conductivity and the charge diffusion coefficient in a strongly
coupled plasma with thermodynamic properties similar to those displayed by QCD with
three dynamical flavors [78] at zero chemical potential. The non-conformal background
described by the Einstein-Scalar sector has a few parameters that enter into the scalar
potential and are fixed to match lattice QCD thermodynamics [78] at zero chemical po-
tential. The gauge field couples with the metric in the usual way through the Maxwell
action but it also couples to the background scalar field φ. This coupling is described by
an a priori unknown scalar function, f(φ), which does not affect the system’s pressure
though it enters directly in the calculation of the electric charge susceptibility χQ2 (T ), as
we will show below. Thus, f(φ) can be fixed by imposing that the electric charge sus-
ceptibility of the model matches the corresponding lattice data for χQ2 (T )/T 2 [318]. Once
f(φ) is determined, one can use the holographic dictionary [127] and extract the retarded
Green’s function of the electric current, which is used to compute the frequency depen-
dent susceptibility σ(ω). The DC conductivity is simply σDC = limω→0 σ(ω) and it may
be computed directly using the membrane paradigm [138] (for a detailed discussion of the
membrane paradigm, see Section 3.8). The charge diffusion coefficient D can be directly
obtained using the Einstein relation involving the σDC and χQ2 , Eq. (3.195), which is valid
for this class of theories [138]. Since all the parameters of the model are fixed to match
known equilibrium quantities computed on the lattice, the transport properties obtained
in the model can be interpreted as holographic predictions that may be compared with
the results of other methods.

This Chapter is organized as follows. In Section 7.2 we present the details about the



7.3 NON-CONFORMAL HOLOGRAPHIC MODEL 183

holographic model used in this Chapter, which is an extension of the Einstein + scalar
model B2 of the last Chapter (Section 6.7). Section 7.3 is reserved to the calculation of
the electric charge susceptibility χQ2 and its comparison to lattice data. In Section 7.4, we
present the study of the frequency dependence of the conductivity and also compute the
charge diffusion constant. The spectral function that enters in the calculation of σ(ω) is
then used in Section 7.5 to compute the Euclidean correlator. In Section 7.6 we present
the conclusions and an outlook regarding this Chapter.

7.2 Non-conformal holographic model

The holographic model that defines the strongly coupled plasma studied in this thesis
is based on the Eintein + scalar model B2 considered in Section 7.2, with its action being
given by Eq. (6.62). The background geometry is given by the ansatz (6.63), with the
potential given by Eq. (6.125) with the parameters of Table 6.2. The resulting thermody-
namics can be seen in Figures 6.11, 6.12 and 6.13, and the model gives a good description
when compared to lattice data [78].

To the action (6.62) we incorporate a U(1) Abelian field AM with action given by

SM = − 1

2κ2

∫
d5x
√−g f(φ)

4
FµνF

µν (7.1)

where the field tensor is Fµν = ∇µAν − ∇νAµ and f(φ) is an unknown function of the
background scalar field. The gauge field in the background is set to zero, Aµ = 0 (remem-
ber that µQ=0). Its fluctuations are needed to compute the retarded Green’s function
associated with the electric current. This function enters in the calculation of the electric
charge susceptibility, χQ2 (T ) = (∂2p/∂µ2

Q)T , which is defined at µQ = 0.

7.3 Electric charge susceptibility

We now proceed to fix the form the bulk U(1) gauge coupling f(φ). The strategy is
to compute, via holography, the electric charge susceptibility and then choose a simple
form for f(φ) that reproduces the corresponding lattice data for the charge susceptibility
χQ2 (T ).

In the following, we will use the membrane paradigm to compute the electric charge
susceptibility. The applicability of this method for this type of calculations was discussed
in detail in Section 3.8 (see also Ref. [138]). The most convenient gauge to work out these
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Figure 7.1: A typical profile of the function φ(z), for T/Tc = 0.74. The solid line is the function
φ(z) and the dashed curve is the AdS5 result φ(z) = z, which must be the boundary limit of φ(z).

calculations is the conformal gauge (Appendix F.2), defined by

ds2 = e2Ã(z)

(
−h̃(z)dt2 + d~x2 +

dz2

h̃(z)

)
, (7.2)

where now the bulk scalar field is a function of z, i.e., φ = φ(z), the horizon is at z = zh

(φ(z → zh) = φh), and the asymptotically AdS5 boundary is located at z → 0 (where
φ(z → 0)→ 0). The gauges (6.63) and (7.2) are related by the equation

z(φ) =

∫ φ

0

dφ′ eB(φ′)−A(φ′), (7.3)

which can be inverted to yield φ(z). Moreover, we have that Ã(z) = A(φ(z)) and h̃(z) =

h(φ(z)). We shall use the conformal gauge in all the calculations below. In Figure 7.1 we
show a typical profile of the function φ(z) for a temperature near but below the phase
transition.

From the membrane paradigm, the electric charge susceptibility χQ2 (T ) in conformal
gauge is simply given by Eq. (3.194), namely

χQ2 =
1∫ zh

0
dz [eÃ(z)f(φ(z))]−1

. (7.4)

We remark that the gauge field is zero for the µQ = 0 calculations. In fact, f(φ) only
enters in the calculation of χQ2 and Ã(z), h̃(z), and φ(z) are, of course, not influenced
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by the gauge field at µQ = 0, justifying our procedure for solving only the equations for
the metric and the scalar field pursued in the previous section. We note that the proper
dimensionless quantity to evaluate is χQ2 /T 2. For a conformal field theory, χQ2 /T 2 is a
constant. For 3 flavor QCD in the Stefan-Boltzmann limit χSB2 /T 2 = 2/35.

Let’s investigate the minimum physical requirements that the gauge coupling f(φ)

must satisfy. First, f(φ) must clearly be positive and smooth in the bulk. Second, in order
to recover the correct UV fixed point behavior χQ2 /T 2 → constant for T → ∞, we must
require, apart from the geometry being asymptotically AdS5, that f(φ) goes to a finite
constant as zh → 0 (φ(rh)→ 0), in order to render the integral in Eq. (7.4) proportional
to T 2. Third, in order to have χQ2 → 0 as T → 0, we must require that f(φ) → 0 as
φ→∞ so that the integral in Eq. (7.4) diverges.

With these requirements in mind, we have chosen three different simple parametriza-
tions for the gauge coupling in order to check the sensitivity of the electric transport
coefficients with the choice of f(φ). The parametrizations are:

f1(φ) =
sech(a1 φ)

g2
5,1

, (7.5)

f2(φ) =
1

g2
5,2

1

(φ2 + a2
2)

and (7.6)

f3(φ) =
e−a

2
3φ

2

g2
5,3

, (7.7)

where a1, a2, a3, and g5,i are constants. In order to best fit the lattice results for χQ2 /T 2 of
Ref. [318] (for another set of lattice data for χQ2 , which are however compatible with [318],
see Ref. [319]), we have chosen a1 = 0.4, a2 = 4.0 and a3 = 0.23. For comparison, we
show the profiles of the resulting couplings f(φ(z)) in Figure 7.2; we see that, although
the functional forms of each parametrization in Eq. (7.5) are different, the choice of
parameters lead to qualitatively similar profiles for f(φ(z)). We have normalized the
results for χQ2 computed holographically using the highest temperature we had available
numerically (T/Tc ∼ 10) and assumed that the conformal regime χQ2CFT [290] has already
been reached at this temperature - this is reasonable since the holographic results reach
conformality already at T ∼ 500 MeV. One can see in Figure 7.3 that the holographic
model calculation for χQ2 /χ

Q
2CFT is in good agreement with lattice results [318] (normalized

by the Stefan-Boltzmann limit) for T < 300 MeV for the three different parametrizations
chosen in Eqs.(7.5)-(7.7). For T > 300 MeV there is a sizeble discrepancy. However, this is
not worrisome since these holographic models are not expected to model accurately QCD
at high temperatures (i.e., the weakly coupled regime).

5For convenience, we have set the electric charge to 1 in this Chapter.
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Figure 7.2: Typical profiles of the U(1) gauge coupling f(φ) in the z coordinate system, that
is, the function f(φ(z)). We display the profiles for the three parametrizations (7.5); the solid
black curve is for f1(φ(z)) with a1 = 0.4, the dashed red curve is for f2(φ(z)) with a2 = 4.0 and
the dot-dashed curve is for f3(φ(z)) with a3 = 0.23. The constants g5,i were chosen in order to
normalize f(φ(z)) to 1 as z → 0. These profiles where evaluated at T/Tc = 0.74.
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Figure 7.3: The electric charge susceptibility χQ2 of the holographic model, normalized by its
conformal limit, as a function of the temperature T of the plasma. The circles, squares, and
diamonds correspond to the results found using the parametrizations in Eqs. (7.5), (7.6), and
(7.7), respectively. The lattice data points for χQ2 /χ

SB
2 [318] are in black.
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7.4 Holographic calculation of the electric conductivity

and charge diffusion constant

The frequency dependent conductivity associated with the conserved current operator
Ĵ i (x = x1, x2, x3) is a 3 x 3 matrix, σij(ω) in Fourier space and it is directly related to
the retarded Green’s function of Ĵ i via Eq. 3.116, that is,

σij(ω) = −G
ij
R(ω,k = 0)

iω
, (7.8)

where Gij
R(k) = −i

∫
d4x e−ik·xθ(t)

〈[
Ĵ i(t,x), Ĵ j(0,0)

]〉
T
(with kµ = (−ω,k)). The con-

ductivity appears in Ohm’s law as 〈Ĵ i(ω)〉 = σij(ω)Fjt(ω, z → 0). Rotational invariance
implies that σij(ω) = σ(ω)δij and, without any loss of generality, we shall assume here
that the external electric field is in the x1 direction.

7.4.1 DC conductivity

The DC electric conductivity is simply the limit σDC = limω→0 σ(ω). For the type
of theory we consider in this thesis, σDC can be straightforwardly computed using the
general formula (3.179) via the membrane paradigm, which gives (in conformal gauge)

σDC = f(φ(zh))e
Ã(zh). (7.9)

It is now clear that if f(φ) satisfies the properties given in the foregoing section, then
σDC/T goes to a constant when T →∞ (the expected conformal behavior found in [290])
and σDC/T → 0 as T → 0. Since V (φ) is completely fixed by the thermodynamics and
f(φ) was fixed to reproduce the lattice data for the electric charge susceptibility, we have
no more free parameters left to determine and σ(ω) can then be considered a prediction
of the holographic model.

Using the parametrizations for f(φ) discussed above, we obtain the result shown in
Figure 7.4 for σDC , where we again normalize by the conformal result. One can see that
the DC conductivity varies rapidly in the crossover region, a feature also seen in recent
lattice QCD calculations [262]. Note also that the results for σDC/σDC,CFT are robust with
respect to the specific form of the gauge coupling f(φ) (though note that ours choices for
this function guarantee that the conformal limit is reached from below). Also, we remark
that since our charge susceptibility in principle includes the strange quark contribution,
our results may be taken as estimates for the DC conductivity in the QCD plasma near
the deconfinement transition (in the case of QCD the result would be then normalized by
its value in the Stefan-Boltzmann limit). In Figure 7.5 we compare the results for σ/T
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Figure 7.4: The DC conductivity divided by its conformal value as a function of the temperature
T of the plasma. The circles, squares, and diamonds correspond to the results found using the
parametrizations in Eqs. (7.5), (7.6), and (7.7), respectively.

from our model with several partonic transport models and lattice calculations. We see
that impressive qualitative agreement is seen between our holographic setup and the most
recent lattice computations.

7.4.2 Charge diffusion coefficient

The small charge disturbance created by the external electric field eventually diffuses
back into thermal equilibrium and this diffusion process is controlled (to lowest order
in a derivative expansion) by a single transport coefficient D called the charge diffusion
constant (Subsection 3.8.4). This coefficient defines the hydrodynamic mode of the Gx1x1

R

correlator [336], which has been previously investigated in holography (see, for instance,
Refs. [144,154,155]).

Within the membrane paradigm, Einstein’s relation among the transport coefficients
involved is valid and the charge diffusion constant can be directly obtained using our
previous results for χQ2 and σDC using Eq. (3.187), that is,

D =
σDC

χQ2
. (7.10)

Thus, we may compute directly this diffusion coefficient in the dimensionless formD/DCFT ,
arriving at the results shown in Figure 7.6. Again, the results are not sensitive to the spe-
cific form of f(φ) at high temperatures T > 150 MeV. However, for T < 150 MeV,
D/DCFT becomes very sensitive to the choice of f(φ). The curve dispersion is due to the
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Figure 7.5: The DC conductivity temperature ratio σ/T for several partonic transport models
(Boltzmann Approach to Multi-Parton Scattering, BAMPS) and several lattice calculations, to-
gether with results for strongly coupled N = 4 SYM and our holographic model. Figure reproduced
from [321,322] - see wherein for a complete list of references.

fact that both σDC and χQ2 vary strongly as T ∼ Tc = 150 MeV and, since D = σDC/χ
Q
2 , D

becomes sensitive to the particular way that σDC and χQ2 vary near the phase transition.
That is, D for T < 150 MeV is sensitive to the choice of U(1) coupling. This does not
constitute a problem per se because this holographic model certainly does not provide a
good guide for the physics of the plasma at those low temperatures since the plasma is
then in the hadron gas phase. However, the fact that D/DCFT < 1 at low temperatures
should be robust (for instance, this behavior has been seen in the non-conformal top-
down model studied in Ref. [296]). Thus, the overall shape of the curve shown in Eq. (7.6)
provides an estimate for the temperature dependence of the charge diffusion constant in
the strongly coupled QGP, which may be checked by lattice calculations in the near future.

We compare, in Fig. 7.7, the results for DT with a recent lattice calculation [320].
We see that in the range of temperature between 150-300 MeV our holographic model
furnishes a good description of the lattice results. For higher temperatures, however, the
lattice data rises to about twice the expected asymptotic conformal result in holography,
D = 1/(2πT ) - this is expected, since the conformal high temperature limit in these
holographic models is strongly coupled.
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7.4.3 AC electric conductivity

To obtain the AC conductivity σ(ω), we must compute Gx1x1
R (ω). The equations of

motion for the bulk fields in response to the fluctuations can be written in terms of
gauge invariant quantities such as the bulk conserved current and the bulk field strength.
Moreover, these equations of motion can be reduced to first order differential equations
with respect to the z coordinate, which completely describe the flow of the fields from the
black brane horizon to the boundary, as discussed in Section 3.8. For nonzero momentum
there are two such flow equations, Eqs. (3.174) and (3.175): one for the longitudinal
channel involving the x1 direction and another equation for the transverse part. However,
in our case when the momentum is taken to be zero these two equations converge (as
required by rotation invariance) to the following expression

∂zσ̄(ω, z) = i ω
Σ(z)

h̃(z)

[
σ̄(ω, z)2

Σ(z)2
− 1

]
(7.11)

where
Σ(z) = f(φ(z)) eÃ(z). (7.12)

Regularity at the horizon provides the initial condition

σ̄(ω, zh) = σDC (7.13)

and the AC conductivity is obtained by following the flow from the horizon to the bound-
ary, as discussed in Section 3.8,

σ(ω) = −ImGR(ω)

ω
= σ̄(ω, z → 0) . (7.14)

In the limit of ω → 0, the flow equation is trivial: ∂zσ̄ = 0. Thus, σ̄ remains at its initial
value set at the horizon, which is nothing but σDC . This is the basis for the formulas used
in the DC calculations in the previous section. In this case, following Ref. [138], one only
needs to evaluate σ̄ at the horizon to determine σDC . Now, if ω 6= 0, the full flow from
horizon to the boundary must be considered to determine σ(ω).

The numerical procedure to evaluate σ(ω) is straightforward. With a fixed temperature
(and thus a fixed background geometry), one has to integrate Eq. (7.11) for finite ω. We
impose that the intercept of σ(ω) with the σ axis matches σDC . The units for ω are
matched by imposing the correct conformal behavior for ω/T � 1, that is, σ(ω)/T =

CAdS5×ω/T , where CAdS5 is a constant found by analyzing the strongly coupled conformal
limit obtained using an AdS5-Schwarzchild geometry with a constant f(φ).

Following this procedure we obtain for our three choices of f(φ) given in Eqs. (7.5),
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(7.6), and (7.7) the results for Reσ(ω) shown in Figure 7.8. First, we remark that we
were able to reproduce the results obtained in [86] for strongly coupled N = 4 SYM (in
that case, those were interpreted as R-current correlators). We see that for T/Tc < 1 one
can find some nontrivial structure in Reσ(ω) when compared to the conformal strongly
coupled result6. Our holographic model is certainly not applicable in the thermal hadron
gas phase which is present in QCD at low T . The lowest T chosen, T ∼ 0.5Tc, is the abso-
lute lowest temperature used in our model, that is, up to approximately 70 to 100 MeV.
As T increases, these structures disappear. Already for T ∼ 2Tc, the difference between
the non-conformal and conformal results is negligible. This last remark can be seen more
clearly in Figure 7.9, where the strongly coupled conformal result has been subtracted
from the non-conformal results. Also, we see that all choices for f(φ) yield similar results
for the AC conductivity, in agreement with the computation of susceptibility and DC
conductivity shown before.

7.5 The Euclidean correlator

The AC conductivity σ(ω) is given by Eq. (7.8). However, note that Reσ(ω) = ρ(ω)/ω,
where ρ(ω) ≡ −ImGx1x1

R (ω) is the spectral density. The Euclidean correlator GE(Tτ) in
the imaginary time formalism is related to the real time spectral density by the following
relation [61]

GE(Tτ) =

∫ ∞
0

dω ρ(ω)
cosh

[
ω
(
Tτ − 1

2

)
/T
]

sinh (ω/2T )
. (7.15)

It is interesting to check if the structures observed in Reσ(ω) or, alternatively, in
ρ(ω) due to the strong violation of conformal invariance experienced by the theory near
the deconfinement transition are reflected at all in GE(Tτ). Using Eq. (7.15) with the
results of the previous section, we evaluate GE(Tτ) for a range of temperatures and for
all the three model choices of f(φ), obtaining the results shown in Figure 7.10. One can
see that for all the different temperatures considered that the Euclidean correlator is
basically featureless - the details present in ρ(ω) are smoothed out in the computation of
the Euclidean correlator. The strongly coupled CFT limit is reached already in this case
at fairly intermediate temperatures, T ∼ 2Tc.

Also, all model choices of the gauge coupling yield similar results - displaying the
consistency already seen in the calculations done in the previous sections. This suggests
that in order to obtain the real time spectral density at strong coupling ρ(ω) from GE(Tτ)

(reversing the direction of calculation) one needs to be able to evaluate the Euclidean
correlator with extremely great precision, as already remarked in the previous analysis of

6We remind the reader that Tc = 150 MeV.



7.5 THE EUCLIDEAN CORRELATOR 193

0 1 2 3 4 5

0

5

10

15

20

Ω�H2 Π TL

R
e

Σ
HΩ

L�Σ
D

C
,C

F
T

(a) Model 1 - see (7.5)

0 1 2 3 4 5

0

5

10

15

Ω�H2 Π TL

R
e

Σ
HΩ

L�Σ
D

C
,C

F
T

(b) Model 2 - see (7.6)

0 1 2 3 4 5

0

5

10

15

20

Ω�H2 Π TL

R
e

Σ
HΩ

L�Σ
D

C
,C

F
T

(c) Model 3 - see (7.7)

Figure 7.8: The electric conductivity Reσ(ω) (normalized by the DC conductivity in the CFT
limit) as a function of ω/(2πT ) for the different model choices of the gauge coupling in Eqs.
(7.5), (7.6), and (7.7). The solid black curve is the conformal result at strong coupling, the short-
dashed blue curve is for T/Tc = 0.45, the dotted red curve is for T/Tc = 0.74, the dash-dotted
magenta curve is for T/Tc = 1.13, and the long dashed green curve is for T/Tc = 1.81. (Here,
Tc ∼ 150 MeV).
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Figure 7.9: The electric conductivity Reσ(ω) subtracted from the corresponding strongly coupling
CFT result (normalized by the DC conductivity in the CFT limit) as a function of ω/(2πT ) for the
different model choices of the gauge coupling in Eqs. (7.5), (7.6), and (7.7). The short-dashed blue
curve is for T/Tc = 0.45, the dotted red curve is for T/Tc = 0.74, the dash-dotted magenta curve
is for T/Tc = 1.13, and the long dashed green curve is for T/Tc = 1.81. (Here, Tc ∼ 150 MeV).
(Here, Tc ∼ 150 MeV).
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Teaney in Ref. [86]. However, it is interesting to see that as the temperature is lowered
towards the phase transition region the value of GE(Tτ) at the minimum (which must
be at τT = 1/2) decreases. This is consistent with the behavior observed in Figure 7.9:
for lower temperatures the region in ω for which ρ(ω) < ρ(ω)CFT becomes larger and,
thus, for Tτ = 1/2 one should expect that the value of the integral performed with the
conformal spectral density should be larger than the value found for the non-conformal
theory. Also, this is consistent with the fact that σDC/σDC,CFT < 1 for those temperatures.
Thus, at least within this model the downward shift of the minimum of the Euclidean
correlator is a good indicator of the temperature dependence of the DC conductivity. This
also seems to be the case in recent lattice calculations [323] (see also the general discussion
in Ref. [324]).

7.6 Conclusions and Outlook for this Chapter

In this Chapter a non-conformal, bottom-up holographic model that is able to describe
recent lattice QCD thermodynamics at zero chemical potential [78] was used to estimate
the electric transport properties of the strongly coupled QGP near the deconfinement
crossover phase transition. In order to access the electric properties of the plasma, the
coupling between the bulk fields that define the background (the metric and a scalar field)
and the bulk gauge field (which describes the conserved current in the gauge theory) was
fixed by imposing that the charge susceptibility of the model agrees with recent lattice
data [318] near the transition. All the parameters of the model were then fixed and the
model was subsequently used to compute the frequency dependent electric conductivity
(which has the DC conductivity as its ω → 0 limit) and the charge diffusion constant. We
remark that in our phenomenological bottom up model, the coupling f(φ) between the
scalar and gauge sectors is put in by hand and, clearly, its profile is not specified a priori
in the model. However, some information about this function is obtained by imposing
that the electric charge susceptibility of the model is similar to that found on the lattice.
We have used three different parametrizations for this coupling, which give the same
qualitative results for all the observables investigated in this thesis.

The ratio σDC/σDC,CFT was found to vary very rapidly in the temperature range
T ∼ 150− 300 MeV, which may have some interesting implications for heavy ion collision
observables [63,64,288,289]. Also, we have shown that the charge diffusion constant of the
plasma has a similar temperature dependence (when normalized by its conformal value)
as σDC/σDC,CFT when T > 150 MeV. Overall, we find that both the DC conductivity and
the charge diffusion coefficient are suppressed with respect to their CFT values at low
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Figure 7.10: The Euclidean correlator GE(Tτ) in Eq. (7.15) as a function of Tτ . The solid black
curve is the conformal result at strong coupling, the short-dashed blue curve is for T/Tc = 0.45,
the dotted red curve is for T/Tc = 0.74, the dash-dotted magenta curve is for T/Tc = 1.13, and
the long dashed green curve is for T/Tc = 1.81.
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temperatures where the violation of conformal invariance is large7. It would be interest-
ing to check if that is also going to be the case in lattice calculations (in this case the
high T is a weakly interacting CFT). The results for Reσ(ω) show distinct differences
for temperatures below and above Tc = 150 MeV. Below Tc, the violation of conformal
invariance makes Reσ(ω) smaller than its CFT value for low ω (this is consistent with
our findings that σDC/σDC,CFT ≤ 1) while it approaches the CFT result from above at
high frequencies.

We also computed the Euclidean correlator GE(Tτ) and its overall shape seems to be
insensitive to the structure present in σ(ω). This means that, at least from the viewpoint
of this holographic setup, the extraction of the spectral density from GE(Tτ) by analytic
continuation may require very precise numerical results for the Euclidean correlator. How-
ever, within this model the downward shift of the minimum of the Euclidean correlator
due to non-conformal effects seems to be a good indicator for the temperature dependence
of the DC conductivity.

A generalization of the flow equation in Ref. (7.11) can be solved numerically for
nonzero momenta yielding the complete spectral density ρ(ω,k), which can then be used
to estimate holographically the photon and dilepton production rates in the QGP near
the deconfinement transition. Such study was already done for N = 4 SYM in Ref. [290]
and it would be interesting to compute these observables with the model used in this
thesis. We intend to pursue this study in the future.

The results of this Chapter were presented in Ref. [21].

7This infrared suppression was also observed in calculations performed within the soft-wall model [268]
done in Ref. [325].



Chapter 8

Hydrodynamic transport coefficients
for the non-conformal quark-gluon
plasma from holography

8.1 Introduction

After the discovery of the quark-gluon plasma (QGP) in ultra-relativistic heavy ion
collisions [8–11], a lot of effort has been put towards understanding how the spatial
anisotropies present in the initial state are converted into the final flow of hadrons. Rel-
ativistic dissipative hydrodynamics has played an important role in our current view of
the complicated spacetime evolution of the QGP formed in heavy ion collisions (for a
recent review see [82]). The overall picture that is consistent with experimental data is
that before hadronization the QGP evolves in time and space as a relativistic fluid with
minimal dissipative effects. Indeed, current estimates [82] for the shear viscosity to en-
tropy density ratio, η/s, of the QGP obtained by comparison to data are in the ballpark
of the very small value η/s = 1/(4π) [90] found in a broad class of strongly-coupled non-
Abelian plasmas described by the gauge/gravity duality [14,93,94] (as discussed at length
in Chapters 2 and 3). This suggests that the gauge/gravity duality may be useful for the
study of the non-equilibrium properties of strongly interacting plasmas that are similar
(if not quantitatively at least qualitatively so) to the QGP and, thus, several applications
have been studied over the last years (see, for instance, the review [103]).

In fact, we shall show in this Chapter that a simple bottom-up holographic model that
is able to describe (some of) the thermodynamic properties of the QGP near the crossover
phase transition [73], namely Model B2 explored in Chapter 6, can be instrumental in
providing estimates for the temperature dependence of a large number of second order
transport coefficients that appear in consistent theories of (non-conformal) dissipative

198
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relativistic hydrodynamics.
This Chapter is organized as follows. In the next section we shall review the dissipative

hydrodynamic theory obtained at second-order in gradients in the case of a non-conformal,
relativistic plasma (in the absence of conserved charges such as the baryon number) in a
curved spacetime [326]. At this order in the gradient expansion, there are 17 coefficients
(besides the speed of sound) that may possess some nontrivial temperature dependence
(especially near the phase transition)1. In Section 8.3 we present our method to holo-
graphically compute the second order transport coefficients κ and τπ in strongly-coupled
plasmas that are described by a bulk action including the metric and a dynamical scalar
field (see also Appendix G.1). In Section 8.4 we give the details of the parametrization of
model B2 used in this Chapter. In Section 8.5 we compute the temperature dependence
of several transport coefficients for this holographic bottom-up model. In Section 8.6 we
use the 2nd-order gradient theory defined in Section 8.2 to write an Israel-Stewart-like
hydrodynamic theory in flat spacetime with 13 transport coefficients that could be im-
plemented in numerical hydrodynamics. Also, a guide to the temperature dependence of
the several 2nd-order transport coefficients considered in this Chapter (given in terms
of fitting functions that could be easily used in numerical hydrodynamics) can be found
in Appendix G.2. Furthermore, in Appendix G.3 we perform a linear stability analysis
around the static equilibrium for the non-conformal, 2nd order gradient expansion theory
discussed in Section 8.2. Our conclusions and outlook for this Chapter can be found in
Section 8.7.

The reader that is mostly interested in the hydrodynamic discussions and the specific
temperature dependence of the transport coefficients (shown in Figs. 8.4 to 8.13) may
want to focus on Sections 8.2, 8.6, and Appendices G.2 and G.3. The other sections are
devoted to more detailed calculations involving the gauge/gravity duality.

8.2 Second-order non-conformal hydrodynamics via the

gradient expansion

Relativistic dissipative hydrodynamics can be viewed as a type of effective theory for
the long wavelength, low frequency behavior of an interacting system at finite temperature
and/or chemical potential [335,336]. Such an effective theory may be constructed at weak
coupling in the case of a dilute gas [337–343] whose microscopic behavior can be described
by a Boltzmann-like equation for the system’s effective quasi-particles [344, 345]. On the

1We note that many more coefficients would be needed in the case where spatial isotropy in the
equilibrium state is lost, as it occurs in anisotropic hydrodynamics [327–333] and in fluids in the presence
of strong magnetic fields (see, for instance, [334]). However, these interesting generalizations will not be
pursued here.
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other hand, at strong coupling the fluid-gravity correspondence [346] provides an adequate
framework to study the effects of spacetime gradients in a strongly coupled fluid.

In general, dissipation is included directly at the level of the equations of motion2,
which in the absence of conserved charges, correspond solely to the conservation of energy
and momentum

∇µT
µν = 0 , (8.1)

where ∇µ is the covariant spacetime derivative in a curved 4-dimensional spacetime de-
scribed by a metric gµν , and T µν is the expectation value of the system’s energy-momentum
tensor operator (recall Section 3.8). We shall consider here matter described by a relativis-
tic quantum field theory giving the equation of state, P = P (ε), where ε and P are the
local energy density and pressure of the fluid, respectively. The equation of state gives rise
to the speed of sound in the fluid, cs =

√
dP/dε. The basic idea of the gradient expansion

is that the macroscopic degrees of freedom in the long wavelength, low frequency limit
are only the local energy density, ε, 4-velocity, uµ, metric, gµν (in curved spacetime), and
their gradients. In fact, the energy-momentum tensor can be generically decomposed as

T µν = εuµuν + P∆µν + πµν + ∆µνΠ (8.2)

where the flow obeys uµuµ = −1, and ∆µν = gµν + uµuν is a local projection operator
transverse to the flow. Note that such a decomposition inherently assumes that there is a
well defined local rest frame (for examples of quantum field theories in far from equilibrium
conditions without a local rest frame see Ref. [350]). Dissipation generally appears due to
a nonzero shear stress tensor

πµν = ∆µναβTαβ , (8.3)

which is transverse to the flow3, symmetric, and traceless due to the definition of the
tensor projector

∆µναβ =
1

2

(
∆µα∆νβ + ∆µβ∆να

)
− 1

3
∆µν∆αβ . (8.4)

The last term in Eq. (8.2) denotes the dissipative contribution to the energy-momentum
tensor with non-vanishing trace, Π, called the bulk viscous pressure. In terms of Eq. (8.2),
one can show that the conservation of energy and momentum become

Dε+ (ε+ P + Π)θ +
1

2
πµνσ

µν = 0 ,

(ε+ P + Π)Duµ +∇µ
⊥(P + Π) + ∆µ

ν∇απ
αν = 0 , (8.5)

2For recent discussions including attempts to formulate dissipative hydrodynamics in terms of an
effective action see, for instance, [347–349].

3Note in this Chapter we use the Landau frame, i.e., uµTµν = −ε uν [335].
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where D = uµ∇µ is the comoving derivative, ∇α
⊥ = ∆αβ∇β is the derivative transverse to

the flow, θ = ∇µu
µ is the scalar expansion rate, and σµν = 2∆αβ

µν∇αuβ is the shear tensor.
The energy conservation equation can be written in terms of the equilibrium entropy
density, s = (ε+ P )/T , as follows

∇µ(suµ) = Ds+ sθ = −πµνσ
µν

2T
− Πθ

T
. (8.6)

In the gradient expansion approach, since only ε and uµ are the hydrodynamical
variables, the dissipative components πµν and Π must be expressed solely in terms of
derivatives of these quantities. To first order in gradients, this can be easily done and one
finds

πµν = −ησµν , Π = −ζθ , (8.7)

where η is the shear viscosity and ζ is the bulk viscosity, respectively. Note that in this
case the second law of thermodynamics in (8.6) imposes that η, ζ ≥ 0. If one uses the
expressions above for the dissipative contributions in T µν , the conservation equations
represent the relativistic extension of the well-known Navier-Stokes (NS) equations [335]
4 - which we have already analyzed in the context of Section 3.8.

In kinetic theory, the transport coefficients η and ζ are proportional to their corre-
sponding mean free paths, ` 5. One can now see how the power counting scheme adopted
in the gradient expansion works. Since ` is a microscopic scale and ε and uµ are taken to
be slowly varying functions of time and space, one can associate with their gradients a
characteristic (macroscopic) length scale ∼ 1/Lmacro such that `/Lmacro � 1. Therefore,
terms such as those in (8.7) are taken to be of order 1 in the so-called Knudsen number
Kn ∼ `/Lmacro

6. Clearly, the continuous description of the system as a fluid hinges on the
assumption that Kn is sufficiently small. However, given that dissipation only appears at
order 1 in this expansion, one may also entertain the case in which Kn is still sufficiently
small to ensure a well-defined continuous description but the flow is such that higher order
terms may be taken into account. Nevertheless, one should keep in mind that the radius
of convergence of the gradient series is limited by the first nonzero non-hydrodynamical
quasinormal mode, as recently shown in Ref. [355] in the context of strongly coupled gauge
theories and discussed earlier in Ref. [356] in the context of kinetic theory.

4Another way to understand how dissipation appears is to notice that, for instance, in this NS fluid
the inclusion of πµν breaks the time reversal invariance present in the ideal fluid equations of motion.
However, it is possible to find nontrivial fluid patterns involving second order gradients where πµν is
nonzero but time reversal is not broken - see [351,352].

5Note that the mean free path for bulk viscosity is different than that for shear viscosity [353]. However,
for simplicity, we shall denote any mean free path here by `.

6We remark that the Knudsen “number" is actually a field since it depends on the spacetime coordi-
nates. Moreover, in general one may consider several types of Knudsen numbers associated with different
properties of the flow, see for instance [354].
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For instance, in the early stages of a ultrarelativistic nucleus-nucleus collision [357], the
local energy density and flow are expected to have sizable gradients and corrections of sec-
ond order in Kn may be relevant at that stage of the QGP evolution. Also, as emphasized
in [354], in collisions involving smaller systems such as proton-nucleus collisions at the
LHC, the need for higher order Knudsen number corrections may be even more pressing.
Therefore, it is reasonable to ask what are the expressions for πµν and Π including O(K2

n)

terms. Generalizing the previous analysis involving 2nd order terms in a conformal fluid
done in [326], Romatschke proposed in [358] the following expansion for the dissipative
parts of a non-conformal relativistic fluid in curved spacetime valid at O(K2

n)

πµν = −ησµν + ητπ

(
Dσ〈µν〉 +

θ

3
σµν
)

+ κ
(
R〈µν〉 − 2uαuβRα〈µν〉β)+ s

+ λ1σ
〈µ
λ σ

ν〉λ + λ2σ
〈µ
λ Ων〉λ − λ3Ω

〈µ
λ Ων〉λ +

+ 2κ∗ uαuβRα〈µν〉β + ητ ∗π σ
µν θ

3
+ λ4∇〈µ ln s∇ν〉 ln s , (8.8)

and

Π = −ζθ + ζτΠ Dθ + ξ1σµνσ
µν + ξ2 θ

2

+ ξ3ΩµνΩ
µν + ξ4∇⊥µ ln s∇µ

⊥ ln s+ ξ5R+ ξ6u
µuνRµν , (8.9)

where Rλ
µσν is the Riemann tensor, Rµν = Rλ

µνλ is the Ricci tensor, and R = gµνRµν

is the Ricci scalar [359]. Moreover, we have also defined the vorticity tensor Ωµν =
1
2

(
∇⊥µuν −∇⊥ν uµ

)
and the usual notation B〈µν〉 = ∆µν

αβB
αβ for the traceless, symmetric,

and transverse part of a second rank tensor Bµν . Eqs. (8.8) and (8.9) can then be used
in the conservation equations (8.5) to define the equations of motion for a non-conformal
fluid in a curved spacetime valid at second order in gradients7.

One can see that besides the speed of sound squared c2
s = dP/dε that is already present

in ideal hydrodynamics and the coefficients η and ζ that appeared at 1st order, there are
now altogether 15 new transport coefficients that appear at second order in the gradient
expansion. Following [360], one may distinguish these coefficients by separating out those
that are of thermodynamical origin and those that are not. The set of coefficients κ, κ∗,
λ3, λ4, ξ3, ξ4, ξ5, ξ6 can be determined via Kubo formulas involving only equilibrium
quantities and Euclidean two- and three-point functions of the energy-momentum ten-
sor components and, thus, they are of thermodynamical origin being suitable for lattice
calculations [360]. However, the other coefficients η, ζ, τπ, τ ∗π , τΠ, λ1, λ2, ξ1, and ξ2 are as-

7Due to the fact that spacetime covariant derivatives generally do not commute in a curved spacetime,
even when the metric is not dynamical (though still nontrivial) quantities such as Rλµνα, Rµν , and R are
expected to appear in the equations of motion for ε and uµ. Also, we note that the expressions in (8.8)
and (8.9) are in agreement with the corresponding terms (in flat spacetime) at O(K2

n) found in [342].
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sociated with quantities that define the dissipative properties of the theory (for instance,
η is proportional to the imaginary part of a retarded Green’s function) such as σµν and
are, thus, of dynamical origin [360].

There are several interesting points regarding these second order terms. First, as dis-
cussed in [358,360–363] not all of these coefficients are independent and we shall get back
to this point in Section 8.5 where we compute several of these coefficients in the holo-
graphic model defined in Section 8.4. Second, for a conformal plasma only the terms that
transform homogeneously under a Weyl transformation8 are present [326] and this im-
plies that κ∗, τπ∗ , λ4, ζ, τΠ, ξ1,2,3,4,5,6 vanish in the conformal limit (therefore, in this case,
Π = 0). Third, even though κ, κ∗, ξ5, and ξ6 do not contribute to the equations of motion
in flat spacetime, they do contribute to the Kubo formulas for the other coefficients rele-
vant to flat spacetime hydrodynamics and should then be taken into account, as discussed
in [326,360]. Moreover, in a non-conformal fluid all of these coefficients may be nontrivial
functions of the temperature, i.e., η = η(T ), especially near a phase transition (even if
of the crossover type). This shows how challenging numerical 2nd order hydrodynamics
can be if all of these temperature dependent transport coefficients are taken into account.
Clearly, as long as these 2nd order gradient terms can be taken as small corrections, their
effect should be under control. However, it is not clear at the moment if this is indeed
the case for the type of event-by-event hydrodynamic simulations fed by the complicated
initial conditions that describe the early stages of a heavy ion collision [357].

Furthermore, unfortunately the equations of motion defined by Eqs. (8.8) and (8.9)
cannot be directly implemented in numerical hydrodynamic codes because, for instance,
they are linearly unstable against small fluctuations around the static equilibrium (see
Appendix G.3). In fact, in Section 8.6 we propose another second order theory that is
more suitable for numerical investigations using the current relativistic hydrodynamic
codes. This theory can be considered as a type of “UV completion” of the 2nd order
theory in Eqs. (8.8) and (8.9) in the sense that it possesses a well defined (and causal) UV
behavior (at least in the linear regime) but its long wavelength, low frequency asymptotic
hydrodynamical solution is identical to the one obtained by Eqs. (8.8) and (8.9) with the
same transport coefficients. We shall discuss these points in detail in Section 8.6.

8Under a Weyl transformation, gµν → e−2ωgµν , where ω is an arbitrary (positive-definite) scalar
function. In a conformal plasma, Tµν → e6ωTµν while the temperature transforms as T → eωT , see [326].
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8.3 Holographic calculation of the 2nd order coefficients

κ and τπ

In this section we discuss how we are going to evaluate the 2nd order hydrodynamic
transport coefficients κ and τπ, originally defined in [326], using the gauge/gravity duality
[14, 93, 94]. First, we shall consider the case where the action in the bulk corresponds to
5-dimensional pure gravity (with a negative cosmological constant) and then later we will
generalize this discussion for the case where the bulk action contains a dynamical scalar
field.

8.3.1 Renormalized pure gravity action

In order to compute these transport coefficients, it is sufficient to consider only the
small frequency ω, small momentum q limit of the (xy, xy)-component of the retarded
propagator of the stress-energy tensor of the boundary quantum field theory, Eq. (8.10),

GR
µνρλ(ω) = −i

∫
dtd3xeiωt−i

~k·~xθ(t)
〈[
Tµν(t,~0), Tρλ(0,~0)

]〉
. (8.10)

which can be written in momentum space as follows [358]9.

Gxy,xy
R (ω, q) = P − iηω +

(
ητπ −

κ

2
+ κ∗

)
ω2 − κ

2
q2 +O(ωq2, ω3), (8.11)

where κ∗ is a second order hydrodynamic coefficient which is non-vanishing only for non-
conformal fluids (see Eq. (8.8)), being related to κ by the following constraint [360–363]

κ∗ = κ− T

2

dκ

dT
. (8.12)

According to the gauge/gravity duality dictionary, discussed at length in Chapter 3,
the stress-energy tensor of the plasma is sourced in the partition function of the boundary
quantum field theory by the boundary value of a classical metric perturbation placed over
an asymptotically AdS bulk. In Eq. (8.11), it was assumed that the xy-component of
the metric perturbation has no dependence on the x- and y-directions, such that the 4-
momentum of its Fourier mode is given by kµ = (−ω, qx, qy, qz) = (−ω, 0, 0, q). From Eqs.
(8.11) and (8.12), one obtains the following Kubo formulas for κ and τπ (valid for both

9This momentum expansion is analogous to the one performed in Section 3.8 for Txy, Eq. (3.124).
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conformal and non-conformal fluids)10

κ = − lim
q→0

lim
ω→0

∂2Gxy,xy
R (ω, q)

∂q2
, (8.13)

τπ =
1

2η

(
lim
q→0

lim
ω→0

∂2Gxy,xy
R (ω, q)

∂ω2
− κ+ T

dκ

dT

)
. (8.14)

In order to compute κ and τπ from Eqs. (8.13) and (8.14) via holography, we need to
evaluate the renormalized on-shell bulk action and extract from it the retarded graviton
propagator by following the prescription proposed in Ref. [127], which was later justified
and generalized in Refs. [128,137,364]. Note that in this case one cannot use the membrane
paradigm approach exposed in Chapters 3 and 7, since the Kubo formulas (8.14) require
the real part of the retarted correlator.11 In the case of pure gravity, the regularized action
is defined by the sum of the Einstein-Hilbert (EH) action, the Gibbons-Hawking-York
(GHY) action12 [365,366] and the counterterm action13 [154,326]

Sreg = SEH + SGHY + SCT

=
1

16πG5

{∫
M5

d5x
√−g [R(g)− 2Λ] + 2

∫
∂M5

d4x
√−γK(γ)+

− 6

L

∫
∂M5

d4x
√−γ

[
1 +

L2

2
P − L4

12

(
PµνPµν − P2

)
ln(ε)

]}
, (8.15)

where G5 is the five dimensional Newton’s constant and the cosmological constant en-
forcing the existence of asymptotically AdS5 geometries with radius L as solutions of
Einstein’s equations is given by Λ = −6/L2. The metric induced at the boundary is given
by γMN = gMN − n̂M n̂N , where n̂M is an outward directed unit vector orthogonal to the
boundary. In a coordinate chart where the boundary of the asymptotically AdS space is
at the value u = 0 of the radial coordinate, this is given by n̂M = −δuM

√
guu ⇒ n̂M =

−δMu /
√
guu, and the metric induced at the regularizing boundary surface14 u = ε can be

10We thank G. Moore and K. Sohrabi for discussions about these coefficients.
11In principle, one could compute the imaginary part of the the retarted correlator GR and use the

Kramers-Kronig relations to compute the real part from the imaginary part. However, this approach is
plagued by numerical problems.

12The GHY action needs to be added to the EH action in order to properly define the variational
problem with Dirichlet boundary conditions for the metric tensor when the spacetime manifold has a
boundary.

13The counterterm action is obtained through the holographic renormalization procedure [120,122,368–
370].

14Strictly speaking, this quantity diverges at u = 0. Therefore, in order to regularize quantities of
interest, we introduce an ultraviolet cutoff ε� 1 for the radial coordinate near the boundary, which must
be taken to zero at the very end of the calculations after all the divergent terms in the on-shell gravity
action have been canceled.
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simply written as

γµν = gµν

∣∣∣∣
u=ε

. (8.16)

The extrinsic curvature of the boundary of an asymptotically AdS space is given by
(see [367] for a review)

K(γ) =
n̂u

2
γµν∂uγµν = −

√
guu

2
γµνγ′µν , (8.17)

where the prime denotes a derivative in the radial direction. The boundary sectional
curvature tensor and the boundary sectional curvature scalar are defined, respectively,
by [368]

Pµν =
1

2

(
Rµν(γ)− 1

6
R(γ)γµν

)
, P = γµνPµν , (8.18)

where Rµν(γ) and R(γ) are the Ricci tensor and the Ricci scalar evaluated using the
induced metric on the boundary surface.

Let us now consider a small perturbation in the metric, hMN(u, t, z), placed over a di-
agonal and isotropic gravitational background15, g(0)

MN(u), which is assumed to be asymp-
totically AdS. Since we are only interested in the (xy, xy)-component of the retarded prop-
agator of the boundary stress-energy tensor, as discussed in [154], if one fixes the gauge
defined by the subsidiary condition hMu = 0, one only needs to consider hxy(u, t, z) 6= 0

and set to zero all the other components of the metric perturbation since the linearized
equation of motion for the xy-perturbation decouples from the other components of the
metric perturbation in this gauge. Therefore, we consider the following disturbed line
element

ds2 = gMN(u, t, z)dxMdxN

= g
(0)
MN(u)dxMdxN + 2hxy(u, t, z)dxdy

= guu(u)du2 − gtt(u)dt2 + gxx(u)(dx2 + dy2 + dz2) + 2gxx(u)φ(u, t, z)dxdy, (8.19)

where we defined φ(u, t, z) = hxy(u, t, z) and, with the sign convention used in (8.19), we
are considering the tt-component of the metric to be −gtt(u), with gtt(u) > 0.

Let us now explicitly show that the EH action for the disturbed metric, up to second
order in the metric perturbation φ, can be written as the action for a massless scalar field
in the undisturbed background g(0)

MN plus total derivatives which shall contribute to the
15The index (0) refers to the undisturbed background.
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final expression for the regularized on-shell boundary gravity action16. Up to O(φ2), we
find

√−gR(g) ≈
[√
−g(0)

(
1− φ2

2

)] [
R(0) +

3

2
gMN

(0) ∂Mφ∂Nφ+ 2φ∇2
(0)φ+

g′xx
guugxx

φφ′
]
.

(8.20)

Since we are assuming that the background metric is a solution of Einstein’s equations,
we can make use of these equations to write down two useful relations for our purposes.
The first one comes from contracting the background metric with its equation of motion

gMN
(0)

[
R

(0)
MN −

g
(0)
MN

2

(
R(0) − 2Λ

)]
= 0⇒ R(0) =

2D

D − 2
Λ = −20

L2
. (8.21)

The second useful relation comes from substituting (8.21) into the xx-component of the
Einstein’s equations for the background metric

R(0)
xx −

gxx
2

(
− 8

L2

)
= 0⇒ 4

L2
= − 1

gxx

[
−
∇2

(0)gxx

2
+
gMN

(0) ∂Mgxx∂Ngxx

2gxx

]
. (8.22)

Substituting Eq. (8.21) into Eq. (8.20), plugging the result into the EH action and inte-
grating by parts the term proportional to φ∇2

(0)φ, we obtain, up to O(φ2)

SEH ≈ −
1

2πL2G5

V4

∫ uH

ε

du
√
−g(0) +

1

16πG5

∫
M5

d5x
√
−g(0)

[
−1

2
gMN

(0) ∂Mφ∂Nφ+ I
]

+

+
1

8πG5

∫
∂M5

d4x
√
−γ(0)guuφφ′

∣∣∣∣uH
ε

, (8.23)

where V4 =
∫
∂M5

d4x is the 4-volume of the boundary, u = uH is the position of the
background black hole horizon in the radial coordinate17 and∫
M5

d5x
√
−g(0)I =

∫
M5

d5x
√
−g(0)

[
g′xx

guugxx
φφ′ +

4

L2
φ2

]
=

∫
M5

d5x
√
−g(0)

[
gMN

(0) ∂Mgxx∂N(φ2)

2gxx
+
∇2

(0)gxx

2gxx
φ2 −

gMN
(0) ∂Mgxx∂Ngxx

2g2
xx

φ2

]

=

∫
∂M5

d4x
√
−γ(0)guu

g′xx
2gxx

φ2

∣∣∣∣uH
ε

, (8.24)

where we used relation (8.22). Substituting Eq. (8.24) into Eq. (8.23), we obtain, up to
16The author thanks R. Critelli for discussions concerning this derivation.
17If the background has no event horizon (or some kind of infrared wall), then one must take uH →∞.
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O(φ2)

SEH ≈ −
1

2πL2G5

V4

∫ uH

ε

du
√
−g(0) − 1

32πG5

∫
M5

d5x
√
−g(0)gMN

(0) ∂Mφ∂Nφ+

+
1

8πG5

∫
∂M5

d4x
√
−γ(0)guu

[
φφ′ +

g′xx
4gxx

φ2

]∣∣∣∣uH
ε

. (8.25)

From Eq. (8.25) we see that, as stated before, the bulk term of the disturbed EH action
up to second order in the metric perturbation φ corresponds to the action for a massless
scalar field in the undisturbed background g(0)

MN , as is well-known. Hence, the linearized
equation of motion for the mixed metric perturbation φ is just the massless Klein-Gordon
equation in a curved background

∇2
(0)φ =

1√
−g(0)

∂M

(√
−g(0)gMN

(0) ∂Nφ
)

= 0 . (8.26)

Defining the Fourier transform as

φ(u, t, z) =

∫ ∞
−∞

dωdq

(2π)2
e−iωt+iqzφ(u, ω, q), (8.27)

one finds in momentum space

∂u

(√
−g(0)guuφ′(u, ω, q)

)
=
√
−g(0)

(
−gttω2 + gxxq2

)
φ(u, ω, q) . (8.28)

Integrating by parts the bulk piece of Eq. (8.25) and making use of Eq. (8.26), we put the
EH action on-shell up to O(φ2)

Son-shell
EH,bdy ≈

1

2πL2G5

V4 lim
u→ε

∫
du
√
−g(0) − 1

32πG5

∫
∂M5

d4x lim
u→ε

√
−γ(0)guu

[
3φφ′ +

g′xx
gxx

φ2

](on-shell)

,

(8.29)

where, by following the prescription proposed in [127] for calculating the retarded propa-
gator of the metric perturbation, we discarded the horizon contribution coming from the
radial integration and took into account only the boundary contribution for the on-shell
EH action.

Now we add Eq. (8.29) to the contributions coming from the disturbed GHY and
counterterm actions evaluated up to O(φ2) to find the following expression for the total
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regularized on-shell boundary action in momentum space18 up to O(φ2, ω2, q2)

Sreg(ε) ≈
1

16πG5

lim
u→ε

{
V4

L2

[
−6L

√
−γ(0) + 8

∫
du
√
−g(0) − L2gxx(gxxg

′
tt + 3gttg

′
xx)√

guugttgxx

]
+

+

∫ ∞
−∞

dωdq

(2π)2

φ(u,−k)

2L2

[
φ(u, k)

(
6L
√
−γ(0) +

L2gxx(gxxg
′
tt + 2gttg

′
xx)√

guugttgxx
+

+
L3q2√gttgxx

2
− L3ω2

2

√
g3
xx

gtt

)
+ L2

√
−γ(0)guuφ′(u, k)

]}
. (8.30)

One can formally solve Eq. (8.28) in terms of the components of the undisturbed back-
ground metric, g(0)

MN(u), and the boundary value of the metric perturbation, ϕ(ω, q), by
employing a perturbative expansion in ω � T and q � T . Such a solution up to O(ω2, q2)

is derived in details in Appendix G.1 and the results near the boundary read

φ(ε, k) ≈ ϕ(k), (8.31)

φ′(ε, k) ≈ ϕ(k)

[
iω

4πT (uH − ε)
+ f ′(ε, k)

]
≈ ϕ(k)g

3/2
xx (uH)√

−g(0)(ε)guu(ε)

[
iω + ω2

∫ ε

uH

du

(
g

3/2
xx (uH)√
−g(0)guu

−
√
−g(0)gtt

g
3/2
xx (uH)

)
+ q2

∫ ε

uH

du

√
−g(0)gxx

g
3/2
xx (uH)

]
.

(8.32)

Substituting Eq. (8.31) and Eqs. (8.32) into (8.30) one obtains an expression for the total
regularized on-shell boundary action up to O(φ2, ω2, q2) written solely in terms of the
components of the undisturbed background metric and the boundary value of the metric
perturbation ϕ(k).

The renormalized on-shell boundary gravity action is defined by

Sren ≡ lim
ε→0

Sreg(ε). (8.33)

For completeness, let us also review some useful formulas for calculating the pressure,
the entropy density, and the shear viscosity of the boundary plasma using the gauge/grav-
ity duality. From Eq. (8.11), we see that once we have extracted the retarded propagator
from the renormalized on-shell boundary action by following the prescription proposed

18This is a rather lengthy calculation but it can be straightforwardly done with the help of a symbolic
mathematical software such as Wolfram’s Mathematica [371]. We used the EDCRGTC code [372] written
for Mathematica in order to deal with the lengthy tensor manipulations involved in the course of these
calculations.
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in [127]

Sren = lim
ε→0

Sreg(ε) = −1

2
lim
ε→0

∫ ∞
−∞

dωdq

(2π)2
ϕ(−ω,−q)F(ω, q; ε)ϕ(ω, q) + (ϕ-independent terms);

Gxy,xy
R (ω, q) ≡ lim

ε→0
F(ω, q; ε) (8.34)

one can obtain the pressure as follows

P = lim
k→0

Gxy,xy
R (k). (8.35)

Since the perturbation-independent part of the on-shell boundary action gives −PV4 [326],
we can also calculate the pressure by using the following alternative formula

P = − lim
ϕ→0

Sren

V4

. (8.36)

One can evaluate the entropy of the plasma by using the Bekenstein-Hawking’s relation
Eq. (3.45), that is,

S =
AH
4G5

, (8.37)

where the “area" of the horizon is given by, in this coordinate system,

AH =

∫
horizon

d3x
√
g

∣∣∣∣
u=uH and tfixed

=
√
g3
xx(uH)V3, (8.38)

and the entropy density thus reads

s =
S

V3

=

√
g3
xx(uH)

4G5

. (8.39)

Application: Thermal N = 4 Supersymmetric Yang-Mills (SYM)

In this subsection we review the calculations for SYM at finite temperature [326] whose
gravity dual is defined over an AdS5-Schwarzschild background with metric components

guu(u) =
L2

u2h(u)
, gtt(u) =

L2h(u)

u2
, gxx(u) =

L2

u2
; h(u) = 1− u4

u4
H

. (8.40)



8.3 HOLOGRAPHIC CALCULATION OF THE 2ND ORDER COEFFICIENTS κ AND τπ 211

The relation between G5 and the number of colors of the strongly coupled SYM plasma
reads (recall Eq. (3.20))

G5 =
G10

π3L5
=
πL3

2N2
c

. (8.41)

Recall that for N = 4 at strongly coupling, from Eqs. (3.44) and (3.49),

T =
1

πuH
, s =

N2
c

2πL3

L3

uH3
=
π2T 3N2

c

2
. (8.42)

Now we use Eqs. (8.40), (8.41), and (8.42) to calculate Eq. (8.32) and, by substituting the
result into Eq. (8.30) and then evaluating Eq. (8.33), we obtain the renormalized on-shell
boundary action up to O(φ2, ω2, q2) for SYM

Sren ≈ −
π2T 4N2

c

8
V4 +

∫ ∞
−∞

dωdq

(2π)2
ϕ(−k)ϕ(k)

T 2N2
c

32

[
q2 − 2π2T 2 + 2iωπT − ω2(1− ln 2)

]
.

(8.43)

Substituting Eq. (8.43) into Eq. (8.34), we obtain the graviton propagator up toO(φ2, ω2, q2)

Gxy,xy
R (ω, q) ≈ −T

2N2
c

16

[
q2 − 2π2T 2 + 2iωπT − ω2(1− ln 2)

]
, (8.44)

and by using Eq. (8.35) (or also Eq. (8.36)), we obtain, in an alternative way, the pressure
of the conformal strongly-coupled SYM plasma, already given in Eq. (3.52) from the
entropy density (3.49),

P =
π2T 4N2

c

8
. (8.45)

The first order hydrodynamic transport coefficient η for the SYM plasma is found by
substituting (8.44) into the Kubo formula (3.128)

η =
πT 3N2

c

8
. (8.46)

From Eqs. (8.42) and (8.46), one re-obtains (3.156),

η

s
=

1

4π
, (8.47)

first computed in Section 3.8 by means of the membrane paradigm. The second order hy-
drodynamic transport coefficients κ and τπ for the SYM plasma are found by substituting
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Eq. (8.44) into Eqs. (8.13) and (8.14), respectively

κ =
T 2N2

c

8
, (8.48)

τπ =
2− ln 2

2πT
. (8.49)

These results for the conformal SYM plasma were originally obtained in Ref. [326].

8.3.2 General holographic formulas for κ and τπ in Einstein+Scalar

gravity duals

In this section we derive general formulas for κ and τπ which are valid also for systems
where the metric couples to matter fields in the bulk (we shall focus here on the case
where there is a scalar field in the bulk).

For geometries corresponding to solutions of the field equations which take into account
the backreaction of matter fields in the bulk, the pure gravity regularized action (8.30)
shall feature, in general, temperature-independent divergences as one takes the limit ε→
0. For instance, this happens in Einstein+Scalar models [15–17,252,373]. For this kind of
system, the general procedure of holographic renormalization is discussed in [369]. Here,
since we are only interested in evaluating hydrodynamic transport coefficients19, instead
of dealing with a more complicated regularized action, we are going to apply a physical
prescription which will allow us to obtain quite general formulas for κ and τπ through a
simple procedure. This prescription is based on three main facts:

1. The equation of motion for the xy-component of the metric perturbation depends
only on the background metric [154,326] and, therefore, the solution (8.32) remains
valid also for Einstein+Scalar actions.

2. Ultraviolet divergences are temperature-independent and, consequently, one can re-
move these divergences by subtracting contributions evaluated at different temper-
atures.

3. The coefficients κ and τπη, which appear in the gradient expansion, must vanish at
sufficiently low temperatures (as one approaches the vacuum).

Let us first discuss the coefficient κ in Eq. (8.13). We begin by defining the following
19Notice that the Kubo’s formulas for transport coefficients are defined in terms of momentum deriva-

tives of retarded correlators and, therefore, momentum-independent terms in the on-shell action do not
contribute in such calculations.
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regularized quantity (see Eqs. (8.30) and (8.34))

κε := − lim
q→0

lim
ω→0

∂2

∂q2
F(ω, q; ε) =

1

8πG5

[
L3

2ε2
+

∫ ε

uH

du
√
−g(0)gxx

]
, (8.50)

and then we take the following expression, which is free of ultraviolet divergences

κ(T ) = lim
ε→0

(κε(T )− κε(Thigh)) + κSYM(Thigh)− κ0

≈ 1

8πG5

[∫ ε

uH(T )

du
√
−g(0)gxx

∣∣∣∣
uH(T )

−
∫ ε

uhigh

du
√
−g(0)gxx

∣∣∣∣
uhigh

]∣∣∣∣
ε�1

+ κSYM(Thigh)− κ0 , (8.51)

where Thigh is a temperature that is sufficiently large so that we are near the ultraviolet
fixed point and the temperature-dependent part20 of κε(Thigh) approaches κSYM(Thigh),
uhigh = uH(Thigh), and κ0 is a constant to be subtracted (generally by numerical inspection)
in order to ensure that κ(Tmin) = 0 where Tmin is the lowest temperature considered in
our numerical calculations (Tmin ∼ 10 MeV). From Eqs. (8.41) and (8.48), one finds

κSYM =
T 2N2

c

8
=
πT 2L3

16G5

. (8.52)

Analogously, for τπ in Eq. (8.14) we begin by defining

τπ =
1

2η

(
Ω− κ+ T

dκ

dT

)
, (8.53)

Ωε := lim
q→0

lim
ω→0

∂2

∂ω2
F(ω, q; ε) =

=
1

8πG5

[
L3

2ε2
+ g3/2

xx (uH)

∫ uH

ε

du

(
g

3/2
xx (uH)√
−g(0)guu

−
√
−g(0)gtt

g
3/2
xx (uH)

)]
, (8.54)

and then we evaluate the UV finite expression

Ω(T ) = lim
ε→0

(Ωε(T )− Ωε(Thigh)) + ΩSYM(Thigh)− Ω0

≈ 1

8πG5

(
g3/2
xx (uH)

∫ uH(T )

ε

du

[
g

3/2
xx (uH)√
−g(0)guu

−
√
−g(0)gtt

g
3/2
xx (uH)

]∣∣∣∣
uH(T )

+

−g3/2
xx (uhigh)

∫ uhigh

ε

du

[
g

3/2
xx (uhigh)√
−g(0)guu

−
√
−g(0)gtt

g
3/2
xx (uhigh)

]∣∣∣∣
uhigh

)∣∣∣∣
ε�1

+ ΩSYM(Thigh)− Ω0,

(8.55)

20Which is independent of the ultraviolet cutoff ε as mentioned before.
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where

ΩSYM =
T 2N2

c

8
[1− ln 2] =

πT 2L3

16G5

[1− ln 2] , (8.56)

and Ω0 is a constant that is subtracted to ensure that τπ(Tmin)η(Tmin) = 0.
Eqs. (8.51), (8.53), and (8.55) can be used to compute the transport coefficients κ and

τπ for Einstein+Scalar actions. In the next section we employ them to numerically evaluate
κ and τπ in the scalar + Einstein model B2, which reproduces the thermodynamics of
(2+1) QCD.

8.4 Thermodynamics of the updated Einstein+Scalar

holographic model B2

We shall now use model B2 to compute, using the formalism of the previous section,
the transport coefficients of the second order hydrodynamical theory defined by Eq. (8.8),
near the deconfinement transition.

The potential V (φ) used is still given by Eq. (6.125), by in this Chapter we use rhe
following updated parametrization for Model B2, which yields a closer match to more
recent lattice data [374]21: γ = 0.606, b2 = 0.703, b4 = −0.1, b6 = 0.0034 (and the
asymptotic AdS5 radius still fixed as L = 1, as before). As before, the temperature scale is
chosen in order to match the minimum of the speed of sound c2

s computed holographically
with that found on the lattice (we take this minimum now to be at 143.8 MeV, as in the
recent data [374]). Also, by comparing the holographic result for the pressure with lattice
data, we fix G5 = 0.5013. In Figs. 8.1 and 8.2 we compare the lattice results for c2

s and
P/T 4 of with the results of Ref. [374] with the updated Model B2, as a function of the
temperature T . We also compare the trace anomaly θ in Fig. 8.3.

The model is able to describe quantitatively lattice data for the temperature region
near the minimum of the speed of sound but the agreement does not persist at very high
temperatures, which is expected since the model remains strongly interacting in this case
while QCD is asymptotically free (as discussed at length in Section 6.5)22. Moreover, even
though this model does not have the correct (hadronic) degrees of freedom at low temper-
atures, the temperature dependence of the thermodynamical quantities do follow lattice

21The data set from Ref. [374] is from 2012. The most recent lattice data for the thermodynamics of
(2+1) QCD sfrom the Budapest-Wuppertal collaboration is from 2013 [76]. However, both data sets are
similar, and are also similar to the 2010 data set used in Ref. [78].

22The agreement for the trace anomaly is not as good as for the pressure and the sound speed c2s.
This is due to the fact that, in lattice, the trace anomaly is computed considering derivatives of the
pressure. This procedure may introduce large errors, which can be responsible for the difference between
the holographic model and lattice data.
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Figure 8.1: c2
s as a function of the temperature T for the updated Model B2 (solid curve) and

the corresponding lattice results for (2 + 1)-flavor QCD from [374].

data even for T ∼ 130 MeV. The model may then be useful precisely in the temperature
region T ∼ 130 − 450 MeV where a purely hadronic description is not adequate and the
temperature may not be high enough to warrant a simple description using perturbative
QCD23.

8.5 Holographic calculation of the transport coefficients

Coefficient κ

The transport coefficients that we will compute in this section appear in the second-
order gradient expansion equations in Eqs. (8.8) and (8.9). We first compute the coefficient
κ using Eq. (8.51). The first step is to fix a uhigh at which the geometry computed by
solving the equations of motion has already reached its AdS5 asymptotics. For numerical
integration, it is necessary to keep the cutoff ε in Eq. (8.51). A value for the cutoff that is
too small leads to truncation errors due to the subtraction of two small numbers in Eq.
(8.51), which gives an artificial numerical divergence. Thus, to rule out errors introduced
due to truncation, one should compute the integral in Eq. (8.51) with a range of choices

23We note, however, that non-perturbative weak coupling approaches such as the one pursued in [309,
375] do a fairly good job at describing the thermodynamic properties of QCD found on the lattice at high
temperatures. The motivation for finding a holographic description of the strongly-coupled QGP relies
on the fact that holography is not only able to describe the thermodynamics near the phase transition
but it also allows for the direct calculation of non-equilibrium properties, such as transport coefficients,
within the same setup.
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Figure 8.2: P/T 4 as a function of the temperature T for the updated Model B2 (solid curve)
(solid curve) and the corresponding lattice results for (2 + 1)-flavor QCD from [374].
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Figure 8.3: θ/T 4 as a function of the temperature T for the updated Model B2 (solid curve)
(solid curve) and the corresponding lattice results for (2 + 1)-flavour QCD from [374].
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Figure 8.4: κ/T 2 as a function of the temperature T for the bottom-up holographic model.
The black points correspond to the numerical results from the model while the solid black line
corresponds to the fit in Eq. (8.57) with the parameters in Table 8.1.

for ε and search for a reasonable range that does not introduce numerical divergences in
the integral (which gives a lower bound for ε) and also satisfies ε < uhigh (which gives
an upper bound for ε). We found that the optimal region for numerical calculations is
10−3 < ε < 10−1 and we have chosen in this work ε = 10−2 for the calculation of κ. We
have chosen uhigh = 0.201, which corresponds to Thigh = 7.813Tc (where Tc = 143.8 MeV).
We have checked that at this high temperature both the thermodynamics as well as the
transport coefficients have matched their conformal plasma limits.

Proceeding as discussed in the previous paragraph, we determine κ as a function of
uH(T ) for the chosen uhigh. Using the conformal result at strongly coupling (8.52) and the
value of G5 determined in the previous section, we can determine the dimensionless ratio
κ/T 2. In Fig. 8.4 we show the numerical results for κ/T 2 as a function of T . Moreover,
we see that κ/T 2 approaches the conformal limit from below rising monotonically with T .
Our results are consistent with the lattice results in Ref. [376] where the authors obtained
κ/T 2 ∼ 0.36(15) for T = 2 − 10Tc for a pure glue SU(3) plasma (in this case Tc is the
critical temperature for the first-order deconfinement phase transition). However, in our
model we are able to obtain an estimate for the behavior of κ near the crossover transition
of (2+1)-flavor QCD.

For further use, we also present a fit to our calculated points. We use as a fitting
function the seven-parameter fit

κ

T 2

(
x =

T

Tc

)
=

a

1 + eb(c−x) + ed(e−x) + ef(g−x)
, (8.57)
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where a to g are dimensionless fit parameters and Tc = 143.8 MeV, as remarked before. A
five parameter fit using parameters from a to e already yields good results - the two extra
parameters f , g are used to provide a closer match to the points. This function corresponds
to a modified Fermi-Dirac distribution. In Table 8.1 we present the parameters for the fit.
These fit parameters provide a good description of our numerical data as shown in Fig.
8.4.

Table 8.1: Parameters for the fit of κ/T 2 using Eq. (8.57).

a b c d e f g
0.3817 2.047 1.274 6.0545 1.231 0.5438 -0.2076

Coefficient τπ

With the same remarks as in the preceding section one can evaluate τπ using Eqs.
(8.53) and (8.55). The procedure is similar to the evaluation of κ. The same uhigh was
chosen while in the present case ε = 2×10−2 - the integrals in (8.55) are more complicated
than the integrals in Eq. (8.51) and also more sensitive to the choice of the cutoff.

In Fig. 8.5 we show the numerical results for τπη/T 2 (this is a convenient choice
since, by combining the conformal results (8.46) and (8.49), we see that τπη ∼ T 2 for a
conformal plasma) as a function of T . We see the same general behavior as seen for κ/T 2

or P/T 4, with a marked increase near the crossover region. The transport quantity τπη/T 2

approaches its conformal limit (∼ 0.255) from below. We were able to fit these data points
using the same parametrization as used for κ/T 2 in Eq. (8.57) - the fit parameters are
shown in Table 8.2.

Table 8.2: Parameters for the fit of τπη/T 2 using Eq. (8.57).

a b c d e f g
0.2664 2.029 0.7413 0.1717 -10.76 9.763 1.074

For convenience, we show in Fig. 8.6 the quantity τπT . One can see that this quantity
approaches its conformal value, (2− ln 2)/(2π), for T > 300 MeV while it displays a peak
near the transition.
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Figure 8.5: τπη/T 2 as a function of the temperature T for the bottom-up holographic model.
The black points correspond to the numerical results from the model while the solid black line
corresponds to the fit in Eq. (8.57) with the parameters from Table 8.2.
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Figure 8.6: τπT as a function of the temperature T for the bottom-up holographic model.



8.5 HOLOGRAPHIC CALCULATION OF THE TRANSPORT COEFFICIENTS 220

200 300 400 500 600
-0.20

-0.15

-0.10

-0.05

0.00

T (MeV )

κ
*
/T

2

Figure 8.7: κ∗/T 2 as a function of the temperature T for the bottom-up holographic model.

Coefficient κ∗

We can now use our results for κ to evaluate several other transport coefficients of
second order non-conformal hydrodynamics. Since these coefficients involve derivatives of
κ with respect to the temperature, up to third order (in the case of the coefficient ξ4 in
Eq. (8.70), see below), to avoid discretization errors in the computation of the numerical
derivatives we will use the parametrization given by Eq. (8.57) with the parameters dis-
played in Table 8.1. The numerical results for the coefficient κ∗, defined by Eq. (8.12) and
computed this way, are shown in Fig. 8.7. One can see that κ∗/T 2 → 0 as T →∞ - this
can also be checked directly from the expression used for the fit, Eq. (8.57). We note that
this is in agreement with the fact that this coefficient vanishes for a conformal plasma.
Also, this coefficient has a very sharp dependence with the temperature near the phase
transition (following the behavior displayed by c2

s) and κ∗ < 0 for all the temperatures
used here.

Coefficient ξ5

Another second order transport coefficient that we can directly evaluate is ξ5, which
is determined by the following constraint equation [360–363]

ξ5 =
1

2

(
c2
sT

dκ

dT
− c2

sκ−
κ

3

)
. (8.58)

In conformal hydrodynamics one finds that ξ5 = 0. We evaluated ξ5/T
2 as a function of

the temperature using the equation above and the result can be found in Fig. 8.8. One
can see that ξ5/T

2 has a broad peak in the phase transition around T ∼ 150− 250 MeV
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Figure 8.8: ξ5/T
2 as a function of the temperature T for the bottom-up holographic model.

and decreases at high temperatures.

Shear and bulk viscosities

For any isotropic holographic model with an effective gravitational action with at most
two derivatives, the shear viscosity satisfies the ratio η/s = 1/(4π) [90] and this is the
case of our model.

We can now compute the bulk viscosity ζ using the results of Ref. [254]. This transport
coefficient has attracted some attention recently due to its interplay with shear viscosity
effects in event-by-event hydrodynamic simulations [377–380]. The bulk viscosity is given
by the Kubo formula

ζ = −4

9
lim
ω→0

1

ω
Im
[
GR(ω, ~q = ~0)

]
, (8.59)

which is defined in terms of the retarded propagator of the spatial trace of the boundary
stress-energy tensor

GR(ω, ~q) ≡ −i
∫
R1,3

d4x ei(ωt−~q·~x)θ(t)

〈[
1

2
T aa (t, ~x),

1

2
T bb (0,~0)

]〉
. (8.60)

Holographically, this coefficient is computed considering fluctuations of the xx-component
of the metric24, hxx. The equation of motion for the perturbation ψ ≡ hxx = e−2A(φ)hxx is

24In Ref. [254] the authors have shown that in the Gubser φ = r gauge the hxx fluctuation decouples
from the other fluctuations, which means that we can examine this channel in separate in order to compute
the bulk viscosity.
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given by

ψ′′ +

(
1

3A′
+ 4A′ − 3B′ +

h′

h

)
ψ′ +

(
e−2A+2B

h2
ω2 − h′

6hA′
+
h′B′

h

)
ψ = 0, (8.61)

where the prime denotes a φ-derivative.
As usual, in order to apply the real time prescription for the holographic computation

of retarded correlators, we consider the infalling wave condition at the horizon φ = φH

ψ(φ→ φH) ≈ Ceiωt|φ− φH |−
iω

4πT , (8.62)

with the normalization condition ψ(φ→ 0) = 1 at the boundary. The real time prescrip-
tion implies that the imaginary part of the retarded correlator is given by

Im [GR(ω)] = −F(ω, φ)

16πG5

, (8.63)

where F(ω, φ) is a conserved flux in the radial direction

F(ω, φ) =
e4A−Bh

4A′2
|Im [ψ∗ψ′] |, (8.64)

which can then be conveniently evaluated at the horizon25

F(ω, φ→ φH) ≈ e3A(φH)

4A′(φH)2

eA(φH)−B(φH)

4πT
h′(φH)ω|C|2

≈ ωe3A(φH)|C|2
4A′(φH)2

. (8.65)

Substituting Eq. (8.65) into Eq. (8.63) and then into Eq. (8.59), one finds

ζ

s
=
η

s
|C|2V

′(φH)2

V (φH)2
, (8.66)

where we used Eq. (8.47) and also the relation A′(φH) = −V (φH)/3V ′(φH), which can
be derived using Einstein’s equations for the background metric. Therefore, in order to
compute ζ/s from (8.66), one only needs to evaluate (8.62) in the limit of zero frequency
C = limω→0 ψ(φ → φH). We show the numerical results26 for ζ/s in Fig. 8.9. The bulk
viscosity displays a peak near the phase transition but its magnitude is still smaller than
η/s.

25We expand h(φ) around φ = φH to obtain h(φ→ φH) ≈ h′(φH)(φ− φH).
26In order to solve Eq. (8.61) for the perturbation ψ we used a part of numerical code cre-

ated by the authors of Ref. [137], which is available at https://www.princeton.edu/physics/research/
high-energy-theory/gubser-group/code-repository/.

https://www.princeton.edu/physics/research/high-energy-theory/gubser-group/code-repository/
https://www.princeton.edu/physics/research/high-energy-theory/gubser-group/code-repository/
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Figure 8.9: ζ/s as a function of the temperature T for the bottom-up holographic model. The
black points correspond to our numerical results while the black curve is the fit in Eq. (8.67) with
the parameters in Table 8.3.

For completeness, we also provide a fit to the numerical results of Fig. 8.9. The form
of the function suggests a resonance-like fitting function. With this in mind we used a
five-parameter trial function

ζ

s

(
x =

T

Tc

)
=

a√
(x− b)2 + c2

+
d

x2 + e2
, (8.67)

where a to e are fit parameters (and Tc = 143.8 MeV). The first term of Eq. (8.67)
describes the resonance-like peak of Fig. 8.9 while the second term describes a smooth
background away from the peak. Using the parameters in Table 8.3, we obtain the fit
shown in Fig. 8.9, which gives a good description of our numerical results.

Table 8.3: Parameters for the fit of ζ/s using Eq. (8.67).

a b c d e
0.01162 1.104 0.2387 -0.1081 4.870

At this point we have then directly computed 6 transport coefficients (besides matching
lattice QCD thermodynamics): η/s, ζ/s, τπ, κ, κ∗, and ξ5. Among these coefficients, only
η/s was found to be a constant with T - all the other coefficients displayed some nontrivial
behavior near the crossover phase transition.

Next, we use these results to give our best estimate for the temperature dependence
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of 6 other coefficients: λ3, λ4, ξ3, ξ4, ξ6, and τΠ.

Estimates for the coefficients ξ3, ξ4, ξ6, λ3, and λ4

Let us now examine three other second order transport coefficients of non-conformal
hydrodynamics, ξ3, ξ4, and ξ6, which satisfy the following constraints [360]

ξ6 = c2
s

(
3T

dκ

dT
− 2T

dκ∗

dT
+ 2κ∗ − 3κ

)
− κ+

4κ∗

3
+
λ4

c2
s

, (8.68)

ξ3 =
3c2
s

2
T

(
dκ∗

dT
− dκ

dT

)
+

3

2
(c2
s − 1) (κ∗ − κ)− λ4

c2
s

+
1

4

(
c2
sT
dλ3

dT
− 3c2

sλ3 +
λ3

3

)
,

(8.69)

ξ4 = −λ4

6
− c2

s

2

(
λ4 + T

dλ4

dT

)
+ c4

s(1− 3c2
s)

(
T
dκ

dT
− T dκ

∗

dT
+ κ∗ − κ

)
+

− c6
sT

3 d2

dT 2

(
κ− κ∗
T

)
, (8.70)

where the second order coefficients λ3 and λ4 are given by the following Kubo’s formulas
involving Euclidean 3-point functions [360,381]

λ3 = 2κ∗ − 4 lim
pz ,qz→0

∂2

∂pz∂qz
Gxt,yt,xy
E (pt = 0, ~p, qt = 0, ~q), (8.71)

λ4 = −2κ∗ + κ− c4
s

2
lim

px,qy→0

∂2

∂px∂qy
Gtt,tt,xy
E (pt = 0, ~p, qt = 0, ~q) . (8.72)

In order to compute ξ3, ξ4, and ξ6 using the constraints (8.68) to (8.70) it is necessary
to evaluate λ3 and λ4. However, the holographic computation of 3-point functions is far
more involved than the computation of 2-point functions. In fact, for the strongly coupled
SYM plasma λ3 has been evaluated explicitly by computing the Euclidean 3-point function
Gxt,yt,xy
E (p, q), yielding λ3 = 0 [382]. Since κ∗ = 0 in a conformal theory, from Eq. (8.71)

we obtain that for a strongly coupled SYM

lim
pz ,qz→0

∂2

∂pz∂qz
Gxt,yt,xy
E (pt = 0, ~p, qt = 0, ~q) = 0. (8.73)

In order to evaluate λ4 one should in principle compute the Euclidean 3-point function
Gtt,tt,xy
E (p, q). However, there is a shortcut which makes use of the constraint (8.68). In

a 4-dimensional CFT, we know that c2
s = 1/3 and we also know that κ∗ = 0 and that

ξ3,4,5,6 = 0, since these are coefficients of non-conformal hydrodynamics. Then, from Eq.
(8.68) we deduce that in a CFT λ4 = 0, which agrees with [358]. Then, from Eq. (8.72),
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we conclude that in a strongly coupled CFT

lim
px,qy→0

∂2

∂px∂qy
Gtt,tt,xy
E (pt = 0, ~p, qt = 0, ~q) =

2κ

c4
s

. (8.74)

The evaluation of the full 3-point functions required to compute the coefficients λ3

and λ4 in the effective model of Einstein+Scalar gravity where the metric is only known
numerically is far beyond the scope of this work. In order to fully determine them it is
necessary to compute the full bulk-to-boundary and bulk-to-bulk propagators - and it is
very difficult to compute these functions in terms of a numerical metric such as the one
used in this work.

Thus, in this Chapter we will resort to a sort of “hybrid CFT/non-CFT" approxi-
mation. For the evaluation of the second order coefficients λ3 and λ4 from Eqs. (8.71)
and (8.72) we shall mix the CFT 3-point functions (8.73) and (8.74) with the full non-
conformal results for κ and κ∗. In this case, the resulting approximations for λ3 and λ4

give
λ3 = −λ4 = 2κ∗ . (8.75)

With these approximations, and the full non-conformal results for κ, κ∗, and c2
s, we can

approximately evaluate ξ3, ξ4, and ξ6 from Eqs. (8.68) to (8.70). This sort of approxima-
tion provides our best estimate for these coefficients given the current lack of knowledge
about 3-point functions in non-conformal holographic plasmas that display a crossover
phase transition. In Figs. 8.10 to 8.12 we show the results for ξ6/T

2, ξ3/T
2, and ξ4/T

2 as
functions of T - all of these coefficients vary rapidly near the phase transition. We note
that the approximations done here for these coefficients constitute the first deviations
from the ultraviolet conformal regime and, therefore, they are much more reliable at high
temperatures.

A lower bound estimate for τΠ

Ref. [383] derived, using the asymptotic causality condition, a relation among the
transport coefficients τπ, τΠ, η, and ζ

ζ

sτΠT
+

η

sτπT
≤ 1− c2

s . (8.76)

The computation of the transport coefficient τΠ directly from its retarded Green’s function,
as was done for the shear coefficient τπ, is beyond the scope of this Chapter. However,
we note that one can use the relation (8.76) to obtain a lower bound for the coefficient
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Figure 8.10: ξ3/T
2 as a function of the temperature T for the bottom-up holographic model.
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Figure 8.11: ξ4/T
2 as a function of the temperature T for the bottom-up holographic model.
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Figure 8.12: ξ6/T
2 as a function of the temperature T for the bottom-up holographic model.

τΠ that can still be useful for hydrodynamic modeling of the QGP 27. The result for this
lower bound in our holographic model is shown in Fig. 8.13 (this was computed using
directly the fitting functions and Eq. (8.76)). This is the smallest value of τΠT in our
model that is still consistent with causality and linear stability [383]. One can see that
this coefficient displays a peak near the phase transition, as was the case for τπT , but it
becomes very small at high temperatures, as expected due to conformal invariance. The
results in Fig. 8.13 also admit a fit using the following parametrization,

τΠT

(
x =

T

Tc

)
=

a√
(x− b)2 + c2

+
d

x
, (8.77)

with the corresponding fit parameters a to d being given in Tab. 8.4.

Table 8.4: Parameters for the fit of τΠT using Eq. (8.77).

a b c d
0.05298 1.131 0.3958 -0.05060

Therefore, in this section we presented results (computed within different levels of
approximations) for 12 transport coefficients that appear at second order in the gradient
expansion of a non-conformal plasma that has thermodynamic properties similar to those
found for the QGP on the lattice: η/s, ζ/s, τπ, κ, κ∗, ξ5 as well as ξ3, ξ4, ξ6, λ3, λ4,

27A similar idea was used in Ref. [279] to estimate the coefficient τπ in a hadronic gas with Hagedorn
resonances given the result found in this case for η/s [280].
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Figure 8.13: A lower bound for τΠT as a function of the temperature T for the bottom-up
holographic model. The black points correspond to our numerical results while the black curve is
the fit in Eq. (8.77) with the parameters in Table 8.4.

and τΠ. However, the equations of motion obtained from Eqs. (8.8) and (8.9) are not in
a form suitable for numerical implementation. In the next section we use the gradient
expansion to find another 2nd order theory, similar to Israel-Stewart theory [384], that
can be readily used in phenomenological studies of the QGP hydrodynamical evolution
in heavy ion collisions.

8.6 Israel-Stewart-like 2nd order hydrodynamics for a

non-conformal relativistic fluid

It is known that relativistic NS theory leads to acausal propagation of sound and
shear linear disturbances around an equilibrium state at rest and that in the case of a
moving background fluid these disturbances are unstable [385,386]. It can be shown that
the 2nd order theory in Eqs. (8.8) and (8.9) is linearly unstable above a certain critical
wavenumber even for a fluid at rest, as demonstrated in Appendix G.3 (see also [387]).
Note also that the inclusion of these spatial gradients cannot modify the theory at very
large momenta k where the asymptotic causality conditions are defined [383]. However, it
is not the purpose of hydrodynamics to accurately describe small wavelength phenomena
- this is beyond the scope of this effective theory. Nevertheless, it is desirable that for a
system that may be coupled to gravity causality (and stability!) are preserved.

In this section we use the 2nd order theory in Eqs. (8.8) and (8.9) to construct a
relaxation-type theory (in curved spacetime) that is similar to that considered by Israel
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and Stewart [384] and also to those that appear naturally within kinetic theory using the
moments method [342]. The main idea, already pursued in [326] in the case of a conformal
fluid, is to write a simple relaxation-type theory that reduces to the gradient expansion
theory in Eqs. (8.8) and (8.9) in its asymptotic hydrodynamical limit. In this section we
shall use the same procedure generalized to the case of a non-conformal fluid.

First, the terms involving comoving derivatives of σµν and θ on the right-hand side
of Eqs. (8.8) and (8.9) are transferred to the left-hand side of those equations using the
lowest order substitutions σµν → −πµν/η and θ → −Π/ζ. Moreover, we use the leading
order expression Ds = −sθ + . . . in Eq. (8.6) to simplify some of the terms (note that
we are neglecting terms of third order in gradients that would appear in this general
procedure). The same leading order substitution is done in the remaining 2nd order terms
on the right-hand side of the equations with the exception of the term ∼ τπη θσ

µν in Eq.
(8.8) where only the substitution σµν → −πµν/η is done. This choice is made to make it
explicit that the combination Dπ〈µν〉 + 4θπµν/3 is the correct combination that survives
in the conformal limit [326] (being, thus, homogeneous under Weyl transformations). One
can then show that this leads to

τπ

(
Dπ〈µν〉 +

4θ

3
πµν
)

+ πµν = −ησµν + κ
(
R〈µν〉 − 2uαuβRα〈µν〉β)+ τπ π

µν D ln
(η
s

)
+

λ1

η2
π
〈µ
λ π

ν〉λ − λ2

η
π
〈µ
λ Ων〉λ − λ3Ω

〈µ
λ Ων〉λ + 2κ∗ uαuβRα〈µν〉β

+ τ ∗ππ
µν Π

3ζ
+ λ4∇〈µ ln s∇ν〉 ln s (8.78)

and

τΠ (DΠ + Πθ) + Π = −ζθ +
ξ1

η2
πµνπ

µν +
ξ2

ζ2
Π2 + τΠ Π D ln

(
ζ

s

)
+ ξ3ΩµνΩ

µν + ξ4∇⊥µ ln s∇µ
⊥ ln s+ ξ5R+ ξ6u

µuνRµν . (8.79)

These are nonlinear, coupled partial differential equations of relaxation-type for the new
dynamical variables πµν and Π in curved spacetime that require (independent) initial
conditions in order to solve Eqs. (8.78) and (8.79) together with the conservation equations
(8.5)28. These equations are similar to those found in Israel-Stewart theory [384] and they
possess most of the terms found in kinetic theory in flat spacetime [342]29. Furthermore,

28This theory is qualitatively different than that in the gradient expansion - the dissipative parts of the
energy-momentum tensor have their own differential equations and, thus, its initial conditions are not
determined by the initial conditions for the hydrodynamic variables ε and uµ.

29Ref. [342] used the Boltzmann equation and a completely distinct power-counting scheme to deal
with the gradients in comparison to the one used to derived our equations for πµν and Π. For instance,
according to the power-scheme of [342], the vast majority of their terms of order O(K2

n) do not appear
in our equations. Thus, perfect agreement among these approaches should not really be expected.
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note that the asymptotic, leading order solution of these equations necessarily reduce to
the gradient expansion in Eqs. (8.8) and (8.9) up to O(K2

n).
However, for phenomenological applications in heavy ion collisions, the terms con-

taining spacetime curvatures are negligible and can, thus, be dropped. Moreover, note
that while in our holographic model η/s is a constant, in general one should keep the
term involving D ln(η/s) to make sure that this theory reduces to the correct gradient
expansion theory if the asymptotic limit πµν → −ησµν is taken. For the same reason,
one should keep D ln(ζ/s) and, in fact, in our model since ζ/s is a not a constant its
comoving derivative is not zero (note also that the conservation equations imply that, to
lowest order, D ln(η/s) , D ln(ζ/s) ∼ −θ).

This leads us to the following (reduced) set of equations that can be used in hydrody-
namic simulations of the QGP

τπ

(
Dπ〈µν〉 +

4θ

3
πµν
)

+ πµν = −ησµν +
λ1

η2
π
〈µ
λ π

ν〉λ − λ2

η
π
〈µ
λ Ων〉λ − λ3Ω

〈µ
λ Ων〉λ

+ τπ π
µν D ln

(η
s

)
+ τ ∗ππ

µν Π

3ζ
+ λ4∇〈µ ln s∇ν〉 ln s(8.80)

and

τΠ (DΠ + Πθ) + Π = −ζθ +
ξ1

η2
πµνπ

µν +
ξ2

ζ2
Π2 + ξ3ΩµνΩ

µν

+ τΠ ΠD ln

(
ζ

s

)
+ ξ4∇⊥µ ln s∇µ

⊥ ln s . (8.81)

One can show that the hydrodynamic theory described above is linearly stable and causal
according to the criteria of [383] and, thus, it should be suitable for implementation in
modern numerical viscous hydrodynamic codes such as [377,388–392]. We stress that the
terms involving D ln(η/s) and D ln(ζ/s) in the equations above are needed to recover the
correct 2nd order gradient expansion and should not in principle be neglected in numerical
simulations.

Among the 13 transport coefficients left in the equations above, results for 8 of them
have already been presented in this Chapter while we have not yet discussed the coeffi-
cients λ1, λ2, ξ1, ξ2, and τ ∗π . The coefficients λ1 and λ2 have been studied at weak coupling
in [393] and at strong coupling in [326, 346, 382]. The SYM values of these coefficients
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computed at strong coupling via holography are30

λ1 = 2
η2

sT
, λ2 = − ln 2

η

πT
. (8.82)

We are not aware of any calculation of these coefficients in a non-conformal strongly
coupled plasma with a crossover transition. However, within the phenomenological “spirit”
of this section and since we currently lack a better way to compute them, one may take
the SYM expressions above for the non-conformal case at hand. This would imply that
λ1/T

2 ∼ s/T 3 and λ2/T
2 ∼ −s/T 3. Thus, in this case these coefficients would display the

same sharp rise observed by the entropy density near the phase transition.
Knowledge about the coefficients ξ1 and ξ2 is much more scarce. These coefficients only

appear in non-conformal fluids and very little is known about them at strong coupling. An
exception is the strongly coupled non-conformal plasma studied in Ref. [398] constructed
via dimensional reduction of a higher dimensional pure gravity action. In this case, these
coefficients can be extracted using the fluid/gravity correspondence and they read [358]
31

ξ1 = λ1

(
1

3
− c2

s

)
, ξ2 = 2ητπc

2
s

(
1

3
− c2

s

)
. (8.83)

Also, in this theory one finds [358]

τ ∗π = −3τπ

(
1

3
− c2

s

)
. (8.84)

In the absence of a better estimate for these three coefficients above in the non-conformal
plasma proposed in this Chapter, it may be useful in hydrodynamic simulations of the
QGP to use the expressions in Eqs. (8.83) and (8.84) hoping that they get at least part
of the non-conformal dynamics near the phase transition. Notice, however, that these
expressions contain (1

3
− c2

s) and that this is an ubiquitous factor in non-conformal trans-
port coefficients - for instance, the bulk viscosity of our model is proportional to this
factor [254,287]. Thus, it is reasonable to assume that these expressions may describe the
temperature behavior of these coefficients in our model as well. Moreover, we would like to
remark that our calculation for the transport coefficients are qualitatively consistent with

30For CFT’s with a holographic description involving two derivatives in the bulk it was found in
Refs. [394, 395] that 4λ1 + λ2 = 2ητπ (see also [396]). Moreover, Ref. [397] has recently found that this
relation remains valid in a SYM plasma even when the leading order finite t’Hooft coupling corrections
are taken into account.

31The transport coefficients in the theory [398] are known analytically and, even though their numerical
values are different than the ones found in this Chapter (their theory is different than ours), qualitatively
they possess the same features found here - ξ5, ξ6 have the same signal as ours and would also display a
peak where c2s has a minimum. However, their τπT is a constant while ours has a peak near the phase
transition.
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the results found in [399] for the large T expansion of the 2nd order transport coefficients
for the non-conformal plasma dual to the Chamblin-Reall background [269].

Therefore, after this long discussion, the hydrodynamic theory described by Eqs. (8.80)
and (8.81) together with the corresponding conservation equations (8.5) may be a good
starting point for phenomenological applications of relativistic non-conformal hydrody-
namics for the strongly-coupled QGP formed in heavy ion collisions32. To facilitate the
use of our results in hydrodynamic simulations, we have provided a guide for all the rel-
evant formulas for the 13 transport coefficients of this second order theory in Appendix
G.2.

8.7 Conclusions and outlook for this chapter

In this Chapter we used the gauge/gravity duality to determine the transport co-
efficients of a non-conformal, strongly interacting non-Abelian plasma that displays a
crossover transition similar to that found for the QGP determined via lattice calculations.
The 5-dimensional gravity dual model involves the metric coupled with a dynamical scalar
field and its simplicity and capability of describing several nontrivial features of the QGP
have motivated us to pursue the calculations of the several transport coefficients shown
in this Chapter.

We first obtained holographic formulas for the transport coefficients κ and τπ present
in the second-order gradient expansion of relativistic hydrodynamics in curved spacetime.
Our method to compute these coefficients could also be applied in the case where the
gravity dual possesses other fields besides the scalar field, such as the case of an Ein-
stein+Scalar+Maxwell model with at most two derivatives in the action. Also, besides
the well-known result for η/s, we were also able to directly compute five other coefficients
that appear at second-order in the derivative expansion: τπ, ζ/s, κ, κ∗, and ξ5. Apart from
η/s, all of these coefficients displayed nontrivial behavior near the crossover transition. In
particular, τπT , ζ/s, and ξ5/T

2 display a peak near the transition while κ∗/T 2 is similar
to c2

s (though it is negative) in that it displays a minimum at the crossover transition. On
the other hand, κ/T 2 rises monotonically with T until it reaches its conformal limit (i.e.,
its value in SYM). Our values for τπT only deviates from the SYM result (2− ln 2)/(2π) at
low temperatures. The coefficients κ, κ∗, and ξ5 only contribute directly to the equations
of motion in a curved spacetime.

Our ζ/s is in general smaller than that found in other works [400, 401] as it is clear
32Note that the thermodynamics of the model is very similar to lattice data and, thus, in hydrodynamic

simulations one may as well just use directly the lattice data for the thermodynamical quantities such as
c2s or s.
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Figure 8.14: Comparison between different calculations of ζ/s. The solid red curve shows the
holographic calculation of this Chapter (cut at T = 130 MeV), the dashed green curve shows an
extrapolation of the pQCD results of Ref. [353] towards low temperatures, the blue squares shows
the calculation using the PHSD model [400], while the black points shows the hadronic calculation
from Ref. [401].

in33 Fig. 8.14, though it is similar in magnitude to the pQCD calculation in Ref. [353].
Thus, at least according to our calculations, cavitation [402–404] induced by a large ζ/s
in the phase transition is not likely to occur in the QGP (a similar conclusion was reached
in Ref. [405] using a kinetic theory-derived bulk relaxation time in a Bjorken expanding
fluid). However, it could be that the other coefficients that appear in the bulk equation,
together with the shear-bulk coupling terms such as the πµνΠ term in Eq. (8.80), may
in the end take the evolving plasma towards cavitation. This is an interesting possibility
that can be checked in numerical simulations.

We used these calculations to provide estimates for the other coefficients ξ3, ξ4, ξ6,
λ3, λ4, and τΠ. We found that ξ3/T

2 and ξ4/T
2 are negative and have a minimum near

the transition while ξ6/T
2 is positive and displays a peak. Note that ξ6 is only relevant in

curved spacetime while ξ3, λ3, ξ4, λ4 do affect the motion of the fluid in flat spacetime. In
fact, ξ3 and λ3 are related to the vorticity tensor Ωµν whose role in hydrodynamic simu-
lations has not yet been investigated in detail34. Moreover, ξ4 and λ4 also have not been
investigated in hydrodynamic calculations and, thus, we hope the results of this Chapter
may serve as motivation for a detailed investigation of their effects. In this Chapter we
have used the asymptotic causality condition [383] to obtain the lowest possible value of
the coefficient τΠ associated with bulk viscosity relaxation. In this case, this lower bound

33We thank J. Noronha-Hostler for making this plot available to us.
34Note that for (0+1) purely Bjorken hydrodynamics this term disappears even in a non-conformal

plasma.
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for τΠT displays a peak near the transition (though its value at the peak is relatively
small, in agreement with the small value of ζ/s found here)35.

We have used the 2nd-order gradient expansion equations to construct an Israel-
Stewart-like theory in flat spacetime, shown in Eqs. (8.80) and (8.81), which gives equa-
tions of motion that preserve causality and are linearly stable around thermal equilib-
rium36. These equations are similar to those used in current viscous hydrodynamic codes
but they include additional 2nd order terms that are usually not taken into account.

This simplified theory still contains 13 transport coefficients and we have presented
in this Chapter either direct calculations or leading estimates for all of them. In the
case of the transport coefficients τ ∗π , λ1, λ2, ξ1, and ξ2 much more work needs to be
done to obtain their exact temperature dependence in our holographic non-conformal
model with a crossover phase transition. At the moment, our best estimate for their
temperature behavior consisted in using the known expressions for λ1 and λ2 from SYM
and the expressions for τ ∗π , ξ1, and ξ2 from the (related) non-conformal model of Ref. [398].
This (admittedly uncontrolled) approximation must be taken with care, as emphasized
in the main text. However, given our current ignorance regarding these coefficients, we
believe that it still may be of phenomenological interest to heavy ion collisions to use
these expressions and investigate their consequences. In particular, the direct shear-bulk
coupling term τ ∗π may be very relevant in hydrodynamic simulations, as emphasized in
Refs. [407] and [408,409].

Also, regarding the complete evaluation of the 2nd order transport coefficients that
appear in the gradient expansion of non-conformal strongly-coupled hydrodynamics, the
fluid/gravity correspondence [346] provides a way to compute all the coefficients. However,
when the background metric is only known numerically, as it is in our case with a crossover
phase transition, the actual implementation of the fluid/gravity approach becomes much

35We remark that the coefficients τπ and τΠ, as defined via the gradient expansion, do not necessarily
correspond to relaxation time coefficients. Clearly, relaxation time coefficients require at least relaxation
equations for πµν and Π, such as those in Israel-Stewart theory. In fact, according to their definitions in
the gradient expansion, these coefficients do not even need to be positive. For instance, Ref. [406] has
found an example of a gravity dual in which τπ < 0 as defined via the gradient expansion. This, however,
was shown to not generate instabilities as it would have been the case if that coefficient were indeed a
measure of shear relaxation. As discussed in Ref. [356], only the coefficients extracted from the poles
of retarded correlators do have the meaning of shear or bulk relaxation time coefficients, which is not
generally the case for the coefficients defined via derivatives of retarded Green’s functions (such as in the
gradient expansion).

36It is important to remark that the procedure used here to find relaxation equations using the gradient
expansion has some ambiguities. Clearly, the set of relaxation equations obtained this way is not unique -
it only corresponds to one of the possible sets of equations that have the 2nd order gradient expansion as
their asymptotic solution. At this level, this can be viewed as a type of UV completion procedure of the
gradient expansion equations that is consistent with the asymptotic causality condition. Alternatively, this
general procedure can be illustrated via a simple classical mechanics example. The differential equations
ẍ+ γẋ+ x = f(t) and γẋ+ x = f(t) have the same asymptotic solution xasymp(t) ∼ f(t) for large times
tγ � 1 though their transient (short time tγ ∼ 1) behavior can be very different.
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more challenging. In this context, it may be useful to consider a simpler analytical model
that still possesses a phase transition. For instance, one may consider the finite temper-
ature holographic model of Ref. [253] where the background metric and scalar field are
known analytically and the system displays a 1st-order deconfinement phase transition.
In this case, it should be possible to carry out the fluid/gravity procedure and find expres-
sions for all the 2nd order transport coefficients. This would allow for a complete study
of entropy production in 2nd order non-conformal hydrodynamics [358] for a theory that
displays a phase transition.

We remark that very similar equations of motion for a non-conformal plasma have been
derived from the Boltzmann equation in Ref. [407] and, in that Chapter, the authors also
gave explicit formulas for several 2nd order transport coefficients. It would be interesting
to compare the results of hydrodynamic simulations computed using the strongly coupled
transport coefficients of this Chapter with those obtained using the kinetic theory-derived
coefficients of Ref. [407]37. We have gathered in Appendix G.2 the fitting functions that
describe the temperature dependence of all the transport coefficients in this 2nd order
Israel-Stewart theory to facilitate their use in current hydrodynamic codes.

This brings us to an important point concerning the equations of motion of strongly-
coupled relativistic hydrodynamics in the light of the gauge/gravity duality. As discussed
in Refs. [356, 410], the fact that the non-hydrodynamic modes of the xy − xy energy-
momentum tensor retarded correlator possess comparable real and imaginary parts at
zero momentum [152] implies that, strictly speaking, the effective theory that should be
able to describe the hydrodynamical sound and shear modes as well as the lowest set of
non-hydrodynamic modes is not of relaxation-type such as in Israel-Stewart theory (as
obtained from the Boltzmann equation). Ref. [411] has recently proposed a way to describe
the approach towards hydrodynamics in strongly-coupled SYM that involves equations
of motion that are qualitatively different than those in Eqs. (8.80) and (8.81) since they
involve a second order, homogeneous differential equation for the part of the shear stress
tensor associated with the two lowest quasinormal modes πµνQNM (also, in their effective
approach nonlinear terms in πµνQNM are not taken into account). It would be interesting to
investigate whether their effective theory is also applicable in the case of the non-conformal
plasma studied in this Chapter.

The results of this Chapter were accepted for publication in JHEP [22].

37The transport coefficients in Ref. [407] were computed using the 14-moment approximation for the
relativistic Boltzmann equation. Thus, their results are not valid for a strongly coupled fluid with a
crossover phase transition. On the other hand, one should also keep in mind that the holographic ap-
proach pursued here is certainly not applicable at low temperatures (where a Boltzmann description of
hadron dynamics should be applicable) or at sufficiently high temperatures (where asymptotic freedom
is dominant).



Chapter 9

Conclusions

This thesis dealt with some applications of the gauge/gravity correspondence to study
phenomena in strongly coupled non-Abelian plasma, using simple dual theories of gravity.
After a general discussion of the physics of Yang-Mills theories, QCD and ultrarelativistic
heavy-ion collision physics (Chapter 2), we presented a brief review of the gauge/gravity
duality (Chapter 3). Then, we proceeded to the applications: a general formalism to
compute the imaginary part of the heavy quark-antiquark potential in strongly coupled
plasmas (Chapter 4), which was extended to deal with quark-antiquark dipoles moving
through the plasma (Chapter 5); a holographic analysis of the Debye screening mass
in non-perturbative non-Abelian gauge theories (Chapter 6); and the calculation of the
electric conductivity in holographic bottom-up models that describe the thermodynamics
of (2+1) QCD (Chapter 7). The same class of bottom-up models was used to compute
several transport coefficients of a theory of second order hydrodynamics (Chapter 8).
In this Chapter, we present some general considerations on the results of the preceding
Chapters.

The general formalism for holographic Wilson loops presented in Chapters 4 and 5
allowed the evaluation of the imaginary part of heavy quark-antiquark potential. However,
due to the limitations imposed by to the restriction to classical string configurations
described by Nambu-Goto action [184], only relatively small lengths between the quark-
antiquark pair can be probed; however, for small lengths, temperature induced effects are
suppressed, being dominated by the conformal Coulomb part of the potential. Even with
this limitation, we find qualitative behavior which indicates the emergence of a thermal
width for heavy quarkonia. In fact, the lower bounds for the thermal width estimated,
taking into account the limitations imposed by the consistency requirements described in
Chapter 4, are compatible with recent estimates using phenomenological models for heavy-
quarkonia suppression in the QGP [212,213]. This formalism was also extended to moving
dipoles, in Chapter 5. Even though the use of the method is restricted to large rapidities
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due to the absence of higher order corrections on the string worldsheet, the prediction of
the onset of the imaginary part is more robust. In the case of moving dipoles, we see that
increasing the velocity of the pair results in the onset of the imaginary part for smaller
dipoles, which suggests that moving quarkonia may be less stable in the plasma. Also,
the onset occurs for smaller dipoles in the case of dipoles moving with parallel orientation
with respect to the plasma, which shows the the role of velocity induced anisotropy on
the stability of the quarkonia in the plasma. It should be interesting to extend these
calculations to other non-conformal gravity backgrounds - as done, for example, for the
soft-wall model in Ref. [412].

In Chapter 6 we saw the shortcomings of the traditional prescriptions of Debye screen-
ing massmD in terms of the poles of the finite temperature gluon propagator or in terms of
the correlator of Wilson loops, and then, based on the prescription involving the screening
lengths of correlation functions of CT-odd operators [232], we presented the holographic
prescription for the evaluation of Debye screening mass. For N = 4 SYM, we saw that this
holographic method presented similar results to the extraction done in Chapter 4. This
prescription was then applied to some bottom-up Einstein + scalar models which model
the thermodynamics of pure SU(3) Yang-Mills theory and of QCD near the crossover
phase transition [15]. For the former, we saw that at the critical temperature Tc, a dis-
continuity of mD as a function of T , characterized by a jump which is not Nc suppressed
- the existence of this jump could be checked by lattice calculations, and present a robust
feature of the models used. For the former, a minimum of mD/T as a function of T , near
Tc, was found. Recent lattice calculations which extract mD in (2+1) QCD by analyzing
the screening of the correlators of Polyakov loops [413], however, do not currently indicate
the existence of a minimum of mD.

The bottom-up model for the thermodynamics of (2+1) QCD was also used to estimate
the electric conductivity of the plasma (Chapter 7), by adjoining to it a bulk Maxwell
action in the probe limit (as µB = 0). A functional form and the parameters for the
Maxwell action were fixed by computing the charge susceptibility and comparing it to
lattice data [318]. The estimates for the DC conductivity and the diffusion constant furnish
good descriptions of the available lattice results.

Chapter 8 was dedicated to the computation of transport coefficients in a theory
of non-conformal second order hydrodynamics [326, 358]. The shear viscosity η can be
extracted from the membrane paradigm, as discussed at length on Chapter 3, while the
bulk viscosity ζ follows from a computation, similar in spirit, to the membrane paradigm
[137,254], since both η and ζ both depend upon the imaginary part of a retarted Green’s
function of the energy-momentum tensor. However, the second order transport coefficients
κ and τπ, depend upon the real part of the retarted Green’s function of the energy-
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momentum tensor. This means that a direct extraction of these coefficients from the
real-time gauge/gravity prescription was necessary, following the holographic prescription
of Ref. [127], including dealing with the renormalization of the on-shell bulk action. After
obtaining general formulas for κ and τπ, we applied then in the same class of bottom-
up models (Model B2) which match the thermodynamics of (2+1) QCD as seen in the
lattice used in Chapters 6 and 7. By the use of Kubo formulas which relate the transport
coefficients [360,381], we also computed the transport coefficients κ∗, and ξ5. Using more
Kubo formulas and a hybrid conformal-non-conformal approximation, we also computed
ξ3, ξ4, ξ6, λ3, and λ4. We also extracted a lower bound for τΠ considering the asymptotic
causality condition. Finally, another set of approximations yielded the coefficients τ ∗π , λ1,
λ2, ξ1, and ξ2. Altogether, considering the various degrees of approximation, we have
computed from holography all 17 transport coefficients associated with the theory of
second order hydrodynamics defined in Refs. [326, 358]. These transport coefficients can
then be used in numerical simulations of hydrodynamics in order to study the effect of
higher order corrections on the Knudsen number. For this last purpose, we have presented
a causal and (linearly) stable theory of hydrodynamics which is an extension of the theory
of Refs. [326,358].

A next step in these holographic bottom-up setups for modeling (2+1) QCD is to
consider non-zero baryonic chemical potential, µB 6= 0. The extension of the models of
Ref. [15] to non-zero µB was built on Refs. [311, 414], where the authors were interested
in finding estimates of the critical point of QCD from holography. However, one could
also study the thermodynamics and the movement of heavy probes in these holographic
setups, which could also be checked against lattice results (for instance, the results for the
thermodynamics at µB 6= 0 from Ref. [415]). These goal is already being pursued [416].
Extending the results of Chapter 8 to non-zero µB are also interesting: in this, one is
considering real-time phenomena at non-zero µB, a region of great challenges for lattice
computations but approachable in the gauge/gravity framework.



Appendix A

Conformal Invariance and Tracelessness
of Energy Momentum Tensor

In this Appendix, we show that that a sufficient condition for a classical field theory
to be conformal is that the trace of its energy momentum tensor vanishes. This exposition
is based on Refs. [34] and [359].

The argument requires two preliminary results.
The first one is the relation between the metric and the energy momentum tensor.

Recall that the symmetric energy momentum tensor of a field theory described by an
action S can be computed considering the theory recast in curved space with metric gµν
and then evaluating1

Tµν = −2
1√−g

δS
δgµν

. (A.1)

The energy momentum tensor in Minkowski space is obtained by setting gµν = ηµν . This
means that the metric gµν sources the energy-momentum tensor. That is, a transformation
which modifies the metric as gµν → gµν + hµν also modifies the action by

δS = −1

2

∫
ddx
√−gT µνhµν . (A.2)

The second preliminary result comes from the definition of a conformal transformation.
Consider a coordinate transformation of the form xµ → xµ + εµ, where εµ(x) is the
transformation parameter. An infinitesimal transformation is given by

xµ → x′µ = xµ + εµ(x). (A.3)
1For a textbook on physics on curved space-times and general relativity, see, for example Ref. [359]
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Under this infinitesimal transformation, the metric changes as

gµν → g′µν =
∂x′µ
∂xρ

∂x′ν
∂xσ

gρσ = gµν − (∂µεν + ∂νεµ) +O(ε2). (A.4)

To be a conformal transformation, ε(x) must satisfy

∂µεν + ∂νεµ = f(x)gµν . (A.5)

The function f(x) is found by taking the trace of Eq. (A.5),

f(x) =
2

d
∂ρε

ρ. (A.6)

Then, the metric fluctuation for a infinitesimal conformal transformation is given by

hµν = −2

d
∂ρε

ρ (A.7)

Thus, under a conformal transformation, using Eqs. (A.2) and (A.7), the action changes
by the term

δS =
1

d

∫
ddx
√−g T µµ ∂νεν . (A.8)

Then, if the energy-tensor is traceless, T µµ = 0, then δS = 0 and the action is invari-
ant under a conformal transformation - the invariance of the theory under conformal
transformations thus follows.

We remark that this proof is only valid at the classical level. Indeed, at the quantum
level scale symmetry may be broken due to dimensional transmutation (as discussed in
Chapter 2).



Appendix B

Infalling boundary conditions and
Eddington-Finkelstein coordinates

In this Appendix, we present an argument that shows that the imposition of the black
hole regularity, implemented by requiring infalling boundary conditions, is equivalent to
requiring that the bulk fields depend only upon the Eddington-Finkelstein coordinate v
near the horizon. This Appendix complements the discussion of the membrane paradigm
in Chapter 3. We will largely follow the discussion in Ref. [138].

Consider a (d+ 1)-dimensional background of the isotropic form discussed in Chapter
3, that is, with a metric of the form

ds2 = e2A(z)

(
−h(z)dt2 + dx2

1 + . . .+ dx2
d−1 +

1

h(z)
dz2

)
. (B.1)

At z = zh, we assume that the geometry has a black hole horizon. We will assume that
the blackening factor h(z) has a simple zero at zh, so that the near horizon form of the
metric will be

ds2 ∼ e2A(zh)

(
−h′(zh)(z − zh)dt2 + dx2

1 + . . .+ dx2
d−1 +

1

h′(zh)

dz2

z − zh

)
. (B.2)

Now, let be φ(x, z) be a massless scalar field in this background, with action

S = −1

2

∫
dd+1x

√−g (∂φ)2. (B.3)

The equation of motion for φ is the wave equation on the background (B.1)

∂µ
(√−ggµν∂νφ) = 0. (B.4)
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Take a plane wave ansatz with zero momentum, that is, take an ansatz of the form

φ(x, z) = e−iωtφ̃(z). (B.5)

The equation of motion becomes

∂z

(√−ggzz∂zφ̃)+
√−ggttω2φ̃ = 0. (B.6)

Let’s analyze the equation of motion near the black hole horizon, z ∼ zh. As
√−g = edA is

regular at the horiton (assuming a diagonal metric), the near horizon equation of motion
is

gtt∂z

(
1

gzz
∂zφ̃

)
+ ω2φ̃ = 0. (B.7)

In the specific coordinate choice of the metric (B.2),

h′(zh)
2(z − zh)∂z

(
(z − z0)∂zφ̃

)
+ ω2φ̃ = 0. (B.8)

We are now ready to proceed to the main argument. First introduce the rescaled z

coordinate ξ by

dξ =

√
gzz
gtt
dr, (B.9)

which near the horizon can be written as

dξ ≈ h′(zh)
dz

z − zh
. (B.10)

Integrating Eq. (B.10) by choosing an integration constant such that ξ(rh) = 0,

ξ = h′(zh) ln(z − zh). (B.11)

The equation of motion (B.8) then becomes simply

d2

dξ2
φ̃+ ω2φ̃ = 0, (B.12)

whose solutions are
φ̃(ξ) ∝ e±iωξ. (B.13)

Therefore, going back to the time domain, the full solution is

φ(ξ, t) ∝ e−iω(t±ξ). (B.14)
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An infalling (outgoing) solution is chosen by taking the plus (minus, respectively) sign in
Eq. (B.14). Let’s consider the infalling solution. Then Eq. (B.14) implies that φ depends on
(ξ, t) on the combination v = ξ+ t. That is, it only depends on the Eddington-Finkelstein
v coordinate defined by (see Eq. (B.9))

dv = dt+

√
gzz
gtt
dz. (B.15)

This shows the equivalence of the imposition of infalling boundary conditions, horizon reg-
ularity and the requirement that bulk fields depend only upon the Eddington-Finkelstein
coordinate v.

Let us finish this Appendix by writing the usual form used in the literature for the
infalling boundary solution (B.14), using the (t, z) set of coordinates. Employing the
general expression for the temperature, Eq. (3.55) of the main text, and comparing with
Eq. (B.11) we see that

v = t+
β

4π
ln(z − zh) (B.16)

Then, inserting this into Eq. (B.14), we obtain the standard form for the infalling boundary
condition,

φ(t, z) ∝ (z − zh)−
iωβ
4π e−iωt. (B.17)



Appendix C

Wilson Loops and the Potential Energy
of a Quark-Antiquark Pair

In this Appendix we will explore with more details, for the sake of completeness and for
keeping the thesis self-contained, the relation between Wilson loops and the heavy quark-
antiquark (QQ̄) interaction energy. In this exploration, we will uncover more details of
the physical significance of the Wilson loop which are important for the discussion in
Chapters 4 and 5.

C.1 Wilson loops and potential energy of a heavy QQ̄

pair

Consider the definition of the Wilson line operator in a SU(Nc) gauge theory,

W̃ (l) =
1

Nc

P exp

[
ig

∫
C

Âµdx
µ

]
, (C.1)

where P indicates path ordering and l is a given (smooth by parts) path in space-time. In
the main text, we have considered only the fundamental representation, but the argument
below applies to any given representation R of the gauge group. The Wilson line is a gauge
covariant object - by considering the composition of infinitesimal paths, it is straightfor-
ward to show that under a gauge transformation implemented by g(x) in SU(Nc), W̃ (l)

transforms as
W̃ (l)→ g(x1)W̃ (l)g†(x0), (C.2)

where x0 (x1) is the starting point (ending point, respectively) of the path l. However,
from the Wilson line W̃ (l) a gauge invariant object can be built, the Wilson loop W (C),
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which was already defined in Chapter 4,

W (C) = TrRW̃ (C) =
1

Nc

trR

{
P exp

[
ig

∫
C

Âµdx
µ

]}
, (C.3)

where C is now a closed loop in space-time and where the trace is over the representation
R of the gauge group. The gauge invariance of W (C) follow directly from the definition,
from Eq. (C.2) and from the cyclicity of the trace.

The main point is that the Wilson line tell us how to parallel transport gauge fields
along a curve C. The Wilson loop (which is this sense is called the holonomy of the gauge
group) gives us a measure of the failure of the parallel transport of elements of the gauge
group along a closed loop. This means that when we consider external probes in our
theory, to carry them around space-time we need to apply the Wilson line operator in
order to transport the gauge fields correctly.

For instance, let φ(x) = φ(t, ~x) be a complex scalar operator defined in the represen-
tation R of the gauge group that creates and annihilates a given scalar particle 1. In this
Appendix, we will work throughout with Euclidean signature. Let us suppose that the
action of the theory is given by

S =
1

2

∫
d4x(Dµφ

†Dµφ+m2φ†φ)− 1

4

∫
d4x trA (FµνF

µν) , (C.4)

where m is the mass of the φ particle, the trace is over the adjoint representation and the
field strength Fµν and covariant derivative are defined in Eqs. (2.3) and (2.6). A particle-
antiparticle state along the axis x1, with a spatial separation L, at a fixed time τ is created
by the operator Q(t) defined by

Q(τ) = φ†
(
τ,−L

2
x̂1

)
W̃ (Cτ )φ

(
τ,
L

2
x̂1

)
, (C.5)

where x̂1 is an unit vector in the x1 direction and Cτ is an oriented line segment joining the
point (τ,−L/2 x̂1) to the point (τ, L/2 x̂1). The Wilson line in Eq. (C.5) parallel transports
the gauge field of the particle at (τ,−L/2 x̂1) to anti-particle at (τ, L/2 x̂1); the physical
interpretation is the the creation of thin flux tube connecting particle and anti-particle.

The object of interest is a propagator of Q(τ), describing the propagation of a singlet
particle-antiparticle pair from τ = 0 (where the pair is created) to τ = T (where it is
annihilated),

C(T ) = 〈Ω|TrR[Q†(T )Q(0)]|Ω〉 =

∫
[DAµ]Dφ†Dφ trR[Q†(T )Q(0)]e−S∫

[DAµ][Dφ†][Dφ] e−S
, (C.6)

1As we will take the mass of the particle m→∞, the statistics of the particle is irrelevant.
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where |Ω〉 is the vacuum state. The trace makes the pair a colorless singlet. Consider
the limit where m → ∞. Then, the scalar field decouples from the theory, and can be
integrated out. The result is that

C(T ) ∼ const×
∫

[DAµ]W (C)e−S∫
[DAµ] e−S

∼ 〈W (C)〉, (C.7)

where the path C is the rectangle with vertices (0,−L/2 x̂1), (0, L/2 x̂1), (T , L/2 x̂1)

and (T ,−L/2 x̂1), as shown in Fig. 4.1, and the action S now includes only the kinetic
contribution of the gauge fields, given by the second term in Eq. (C.4). The constant in
Eq. (C.7) is irrelevant to this discussion. To see that the combination of Wilson lines in
Eq. (C.6), TrR[Q†(T )Q(0)], results in the Wilson loopW (C), it is best to fix the temporal
gauge, wherein A0 = 0 and thus the parallel transport of the gauge fields along a temporal
line is trivial. Since the Wilson loop is gauge invariant, this result is not restricted to the
temporal gauge.

Now, let us look at the correlation function C(T ) in an alternative form. First, note
that, in Heisenberg’s picture, the time evolution of Q(t) is given by Q(τ) = e−ĤτQ(0),
where Ĥ is the Hamiltonian of the system with a particle-antiparticle pair at the specified
positions. Then,

C(T ) = 〈Ω|Q(0)e−ĤTQ(0)|Ω〉. (C.8)

Now, consider a complete set of eigenvectors of the Hamiltonian |n〉, with n = 0, 1, . . .,
with eigenvalues En, ordered in sequence of increasing energies: E0 < E1 ≤ E2 < . . ..
By definition, |0〉 is the lowest energy state of the system with a particle-antiparticle pair
present, whereas |n〉, with n > 0 gives the excited states of this configuration . Inserting
two completeness relations into C(T ), we obtain

C(T ) =
∞∑

m,n=0

〈Ω|Q(0)|m〉〈m|e−ĤT |n〉〈n|Q(0)|Ω〉 =
∞∑
n=0

∣∣〈Ω|Q(0)2|n〉
∣∣2 e−EnT . (C.9)

In the limit T � L, the contributions from the excited states are exponentially suppressed.
Only E0 remains and

C(T � L) ∼ e−E0T . (C.10)

Comparing Eqs. (C.7) and (C.10), we see that, in the limit T � L, identifying E0 with
the potential energy V of the particle-antiquark pair relative to the vacuum of the system,

〈W (C)〉 ∼ e−VT , (C.11)

for the rectangular contour C described above and in Fig. 4.1.
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C.2 Polyakov loop, heavy quark free energy and con-

finement

So far, we have not assumed anything on the imaginary time axis. The argument above
could be reproduced at real-time and there would be no difference apart from the change
T → −iT in Eq. (C.14); this would lead directly to Eq. (4.2) in the main text. However,
in the context of the imaginary time formalism, the imaginary time axis is compactified
in a circle, with period β = 1/T . We could then consider a temporal Wilson line whose
loop C wraps the imaginary-time axis - C is given by the line segment joining (0, ~x) to
(β, ~x). This defines the Polyakov loop L(~x) of Eq. (C.12) [160–162], namely

L(~x) =
1

Nc

P ei g
∫ 1/T
0 Â0(~x,τ)dτ . (C.12)

The the trace of L(~x) is gauge invariant, as already remarked. One of the importances of
the Polyakov loop operator L(~x) is that it measures the spontaneous breaking of center
symmetry group ZNc of SU(Nc) gauge theories in the absence of dynamical fermions (see
Ref. [44] for more details); if the center symmetry is unbroken, as trFL(~x) transforms
non-trivially under ZNc , one must have 〈trL(~x)〉 = 0. If 〈trL(~x)〉 6= 0, then the center
symmetry is broken.

We now consider the correlator

C̄(β) = 〈Ω|φ (β, ~x)L(~x)φ† (0, ~x) |Ω〉 (C.13)

which describes the propagation of static particle in the thermal bath. The same analysis
pursued above can be applied in this case to yield

〈|L(~x)|〉 ∼ e−βFR , (C.14)

where FR is the Helmholtz free-energy difference of the free-energy of the thermal bath
with a particle φ and thermal bath alone; the Helmholtz free-energy comes about since
we are in the canonical ensemble (see Section 2.4).

In a confining gauge theory, one the energy necessary to create an isolated particle
(i.e., a quark or the particle φ) must be infinite, so that no excitation of the vacuum can
excite a colored particle state - the least energetic configuration is a singlet state of two
or more colored particles. This means that in a confining gauge theory FR →∞. Coupled
with the analysis of the center symmetry, this means that in a pure gauge theory, center
symmetry is linked with confinement. This analysis breaks down when we have dynamical
fermions in the theory, since they explicitly break center symmetry [44].



Appendix D

Some Auxiliary Results For Static
Wilson Loops

In this Chapter we present a series of auxiliary results and technical details relative
to the computation of holographic Wilson loops, complementing the results in Chapters
4 and 5. In Section D.1 we present a covariant calculation of the real and imaginary parts
of the Wilson loop in strongly coupled N = 4 SYM using an explicitly covariant method,
which supports the coordinate dependent calculation performed in the main text. Section
D.2 shows some formulas and results necessary for evaluating the integrals one finds when
computing holographic Wilson loops. Analytic formulas for the real and imaginary part of
heavy quark-antiquark potential for a variety of Dp-branes constructions of dual theories of
gravity are presented in Section D.3. A sign of the failure of the classical string calculation
for a maximum length can appear on the curvature scalar for the string worldsheet - we
address this possibility in Section D.4.

D.1 Covariant expansion of the Nambu-Goto action

around the classical solution

Expansions of the string action around a given classical solution of the equations of
motion, Xµ

0 (τ, σ), are somewhat nontrivial since the worldsheet fluctuations δXµ(τ, σ) do
not transform simply under reparametrization [417]. Thus, the way the fluctuations around
the classical solution were included in Section 4.4, though correct, are not manifestly
covariant. In this section we perform a covariant expansion of the determinant of the
worldsheet metric around a generic solution of the classical string equations of motion.
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A fluctuation of the string worldsheet can be written as [417]

Xµ
0 + δXµ = Xµ

0 + ξµ − 1

2
Γµρλ(X0)ξρξλ +O(ξ3) (D.1)

where ξµ(τ, σ) transforms as a vector under reparametrization (which plays the role of
Riemann normal coordinates [418]). Derivatives with respect to the worldsheet variables
τ and σ are given by

∂a(X
µ
0 + δXµ) = ∂aX

µ
0 +Daξ

µ +
1

3
Rµ
νρλ(X0)ξνξρ∂aX

λ
0 +O(ξ3), (D.2)

where Rµ
νρλ is the Riemann curvature tensor and Da is defined as

Daξ
µ ≡ ∂aξ

µ + Γµνρ(∂aX
µ
0 )ξρ . (D.3)

Note that using the chain rule one obtains Daξ
ν = Dµξ

ν∂aX
µ
0 , where Dµ is the usual space

time covariant derivative with an affine connection. This motivates the definition (D.3) as
the covariant derivative of ξ on the worldsheet. The expansion for the background metric
becomes

Gµν(X0 + ξ) = Gµν(X0)− 1

3
Rµνρλ(X0)ξρξλ +O(ξ3) . (D.4)

Using Eqs. (D.2) and (D.4) we obtain for the induced metric on the worldsheet hab =

Gµν∂aX
µ∂bX

ν , up to second order in ξ,

hab = h
(0)
ab + h

(1)
ab + h

(2)
ab +O(ξ3) (D.5)

where
h

(0)
ab = ∂aX0 · ∂bX0, (D.6)

h
(1)
ab = ∂aX0 ·Dbξ + ∂bX0 ·Daξ and (D.7)

h
(2)
ab = Daξ ·Dbξ + ∂aX

µ
0 ∂bX

ν
0Rµνρλξ

ρξλ. (D.8)

where the inner product here is defined with respect to the background metric, i.e, A ·B =

GµνA
µBν . Eq. (D.5) takes into account the effect of worldsheet fluctuations on the induced

worldsheet metric in an explicitly reparametrization invariant manner.
To show that this procedure yields the same results as the non-covariant approach

developed in the main text, we use the AdS5-Schwarzschild metric (4.42) in the formulas
above. We also use the static gauge for the worldsheet embedding functions and, thus,
τ = t and σ = x and the classical solution is Xµ

0 = (t, x, 0, 0, Uc(x)). As before, the
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fluctuations are δXµ = (0, 0, 0, 0, δU(x)). Then, using the inverse of Eq. (D.1) into Eq.
(D.5) and evaluating the induced metric determinant h = det hab we obtain in the end

−h =

(
dUc(x)

dx

)2

+
1

R2
(U4 − U4

h) +
4U3

R4
δU +

6U2

R4
δU2 +O(δU3) . (D.9)

The saddle point approximation for e−SNB can also be obtained by taking the extremum
of h with respect to δU . The extremum of Eq. (D.56) occurs at δŪ = −U/3, which yields

−h̄ =

(
dUc(x)

dx

)2

+
U4 − 3U4

h

3R4
. (D.10)

Now, dUc/dx is given by the classical solution (4.11) and, thus, we obtain the following
expression for the (regularized) effective action after integrating over τ and defining the
dimensionless variables y = U/Uh and yh = Uh/U∗

S =
T
πα′

U∗

∫ ∞
1

dy

{√(
y4 − y4

h

y4 − 1

)
− 2

3

y4(1− y4
h)

(y4 − 1)(y4 − y4
h)
− 1

}
− T
πα′

U∗. (D.11)

Eq. (D.11) gives both the real and imaginary parts of VQQ̄. Note that second term
inside the square root above represents the contribution from worldsheet fluctuations and
this term only becomes relevant close to the bottom of the classical string solution at
U∗ (also, see that this term is well behaved in the UV, y → ∞, which is expected since
it comes solely from thermal effects). The shift in ReVQQ̄ due to fluctuations is easier to
obtain in the covariant approach and it can be determined from Eq. (D.11). For T = 0 (i.e.,
yh = 0), Eq. (D.11) can be evaluated in terms of hypergeometric functions as explained
in Appendix D.2. The result is

VQQ̄ = − 4π2

Γ(1/4)4

R2

α′
2F1

[
−1

2
,−1

4
;
1

4
;
2

3

]
1

L
. (D.12)

Since 2F1[−1/2,−1/4; 1/4; 2/3] = 1.38, we see that long wavelength worldsheet fluctua-
tions change the vacuum result for N = 4 SYM by ∼ 40% (which can be accommodated,
for instance, by rescaling the t’Hooft coupling).

In Figure D.1 we show the effect of fluctuations on the real part of the potential while
in Figure D.2 we compare the results for the imaginary part of the potential computed
using the covariant method and the non-covariant method developed in the main text.
The real part of the part of the potential changes slightly due to fluctuations while the
imaginary part is almost unaffected by the choice of method. This is expected since in
the non-covariant approach we focus mainly on fluctuations near the bottom of the string
while in the covariant approach long-wavelength fluctuations along the whole worldsheet
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are taken into account. Since the imaginary part is generated by the fluctuations near the
bottom of the string both approaches are equivalent to determine ImVQQ̄.
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Figure D.1: ReVQQ̄/(T
√
λ) as a function of LT for the strongly coupled N = 4 SYM plasma.

The solid line is the real part calculated without considering thermal fluctuations on the string
worldsheet while the dashed line is the real part of the potential including the fluctuations.
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Figure D.2: ImVQQ̄/(T
√
λ) as a function of LT for the strongly coupled N = 4 SYM plasma.

The solid (dashed) line is the result from the non-covariant (covariant) method, respectively.
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D.2 Some useful formulas for the evaluation of Wilson

loops

In this Section we present some useful techniques to evaluate the integrals found in the
calculation of Wilson loops via the gauge/gravity correspondence. All the integrals and
properties studied in this section can be found, for example, in Ref. [193]. The main idea
is to use integral representations of the beta and the (Gaussian) hypergeometric functions
to perform the integrals that appear in the study of holographically computed Wilson
loops.

D.2.1 Beta function

A recurring integral found in these calculations is the beta function

B(a, b) ≡
∫ 1

0

ta−1(1− t)b−1dt (D.13)

with Re(a), Re(b) > 0. This function satisfies the reflection property

B(a, b) = B(b, a) (D.14)

and is related to the gamma function by

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
. (D.15)

For example, for N = 4 SYM at strong ’t Hooft coupling (and T = 0) one finds that
the relation between U∗ and L is given by Eq. (4.44)

L

2
=
R2

U∗

∞∫
1

dy
1

y2
√
y4 − 1

. (D.16)

Therefore, changing variables to t = 1/y4 and using Eq. (D.13) one finds

L

2
=
R2

U∗

1

4
B(3/4, 1/2) =

R2

U∗

Γ(1/2)Γ(3/4)

Γ(5/4)
. (D.17)

To simplify Eq. (D.17) a bit further it is useful to remember that the gamma function
satisfies

Γ(z + 1) = zΓ(z) and (D.18)
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Γ(1− z)Γ(z) =
π

sin(πz)
. (D.19)

Therefore, Γ(1/2) =
√
π. Moreover, we have that Γ(3/4) =

√
2π/Γ(1/4) and Γ(5/4) =

Γ(1/4)/4. We finally obtain Eq. (4.47)

L

2
=
R2

U∗

√
2π3/2

Γ(1/4)2
. (D.20)

The same procedure can be applied to VQQ̄ in Eq. (4.46). To avoid having a or b with
a negative real part, one introduces a factor yγ in the integrand, performs the integration,
and then takes γ → 0. This gives the expression in Eq. (4.48).

D.2.2 Gaussian hypergeometric function

The Gaussian hypergeometric function 2F1 can be defined by the power series

2F1(a, b; c; z) ≡1 +
ab

1! c
z +

a(a+ 1)b(b+ 1)

2! c(c+ 1)
z2+

+ · · ·+ a(a+ 1) · · · (a+ n)b(b+ 1) · · · (b+ n)

n! c(c+ 1) · · · (c+ n)
zn + · · · , (D.21)

where a, b, c, z are real numbers, with c 6= −1,−2, · · · . The series converges for |z| < 1

while for the rest of the complex plane 2F1 is obtained by analytic continuation.
We are mainly interested in the following integral representation of 2F1

2F1(a, b; c; z) =
1

B(b− c, b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−adt . (D.22)

This representation is valid for |z| < 1 and for Re(c) > Re(b) > 0. This relation follows
immediately from the binomial theorem and Eq. (D.13).

Eq. (D.22) was used in Eq. (4.52) for thermal N = 4 SYM at strong ’t Hooft coupling
to find

LT (yh) =
2

π
yh

√
1− y4

h

∞∫
1

dy√
(y4 − y4

h)(y
4 − 1)

. (D.23)

Applying the change of variables t = 1/y4 we find that

LT (yh) =
2
√

2π

Γ(1/4)2
yh

√
1− y4

h 2F1

[
1

2
,
3

4
;
5

4
; y4
h

]
. (D.24)

The same procedure can be applied to determine ReVQQ̄/T in Eq. (4.53), which leads to
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(4.55)
ReVQQ̄
T

= −R
2

α′

√
2π3

Γ(1/4)2

1

yh
2F1

[
−1

2
,−1

4
;
1

4
; y4
h

]
. (D.25)

The series definition of 2F1 (D.21) also simplifies the derivation of the series expansion
in Eq. (4.56). For example, for LT < 1 we find, up to linear terms on y4

h,

LT

2

Γ(1/4)2

√
2πyh

= 1− 1

5
y4
h. (D.26)

For ReVQQ̄/T in Eq. (D.25) we obtain

−ReVQQ̄
T

α′

R2

Γ(1/4)2

√
2π3/2

yh = 1 +
1

2
y4
h. (D.27)

Therefore, after multiplying Eqs. (D.26) and (D.27) and using Eq. (D.26) to zeroth order
in y4

h we obtain the following expression valid to order (LT )4 (4.56)

ReVQQ̄
T

= − 4π2
√
λ

Γ(1/4)4LT
(1 + c(LT )4), (D.28)

with c = 3Γ(1/8)8/(5 · 27π2). The same reasoning also shows that the series expansion of
ReVQQ̄/T is of the form [1 + a4(LT )4 + a8(LT )8 + · · · ] /(LT ).

As a last remark, note that the derivative of 2F1 with respect to z is

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z) . (D.29)

If the real part of the potential has the general form V ∝ e−mD/T (LT )/(LT )δ then

d

d(LT )

[
(LT )δ

V
T

]
= −mD

T
(LT )δ

V
T
. (D.30)

However, by Eq. (D.29), the holographically computed potential given by Eqs. (D.24) and
(D.25) does not satisfy this condition because

d

d(LT )

[
(LT )δ

ReVQQ̄
T

]
=
d
[
(LT )δ

ReVQQ̄
T

]
/dy4

h

d(LT )/dy4
h

6= −mD

T
(LT )δ

ReVQQ̄
T

. (D.31)

D.3 Some other results involving Wilson loops

In this Section we apply the formalism developed in the main text to calculate the
real and imaginary part of heavy quark-antiquark potentials in a slightly more general
class of gravity duals which include, as an interesting subset, the low energy theories of
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coincident stacks of Type II Dp-branes. While some of these results were initially discussed
in Ref. [419], as far as we know, a complete evaluation of VQQ̄ and of its imaginary part
has not been presented before.

This Section is organized as follows. First we present the class of metrics we use. We
then calculate the Polyakov loop and ReVQQ̄. An approximation for small L is discussed.
Finally, we show the results for the imaginary part of VQQ̄ in these theories.

D.3.1 Gravity duals considered

We consider the gravity duals described by the following metric (in the string frame)1

ds2 =

(
U

R

)α{
−
[

1−
(
Uh
U

)2α
]
dt2 + dxidx

i

}
+

(
R

U

)β [
1−

(
Uh
U

)2α
]−1

dU2 (D.32)

where R is a constant, i runs from 1 to D − 1 and D is the total number of dimensions
of the corresponding gauge theory. From the confinement criteria [188], we see that as
long as α ≥ β the theory does not confine (in the sense of an area law for the rectangular
Wilson loop).

The black brane temperature is

T =
α

2πR

(
Uh
R

)α+β−2
2

(D.33)

and the entropy density is

s =
1

4G5

(
Uh
R

) 3α
2

. (D.34)

D.3.2 Polyakov loop

We start by calculating the Polyakov loop in this class of theories. The unregularized
expression for the heavy quark free energy is given by

F nreg
Q =

1

2πα′
R

β−α
2 U

2+α−β
2

∗

∫ ∞
yh

y
α−β

2 dy. (D.35)

1In principle, we could generalize this metric a bit further by making the change 2α → γ in the
exponent of the terms inside the square brackets. However, the expressions obtained cannot be integrated
using the method discussed in Section D.2. Moreover, the analysis of the UV divergence gets more involved
since in this case the metric is not asymptotic AdS. For these reasons, we keep the form of the metric
shown in (D.32).
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We have three possibilities. If α − β < −2, then there is no UV divergence. If α − β =

−2, the integral diverges logarithmically. If α − β > −2 the UV divergence is worse
than logarithmic. If α − β ≥ −2 we use the temperature independent regularization∫∞

0
dy y(α−β)/2 and, with this choice, the final regularized expression for FQ is the same

regardless of the sign of α− β

FQ = − 1

πα′
R

β−α
2 U

α−β+2
2

∗

2 + α− β y
α−β+2

2
h if α− β ≥ −2 (D.36)

and the Polyakov loop is simply |〈trL(T )〉| = e−FQ/T .

D.3.3 Real part of the heavy quark potential

We can now proceed to the calculation of the real part of the heavy quark potential.
Using Eq. (4.14) and adopting the regularization used for FQ, we have

L

2
=

R
α+β

2

U
α+β−2

2
∗

√
1− y2α

h

∞∫
1

dy
y
α−β

2√
(y2α − y2α

h )(y2α − 1)
(D.37)

and

ReVQQ̄ =
R

β−α
2 U

2+α−β
2

∗

πα′


 ∞∫

1

dy y
α−β

2

√y2α − y2α
h

y2α − 1
− 1

− 2

α− β + 2

 . (D.38)

The evaluation of the integrals in both Eq. (D.37) and Eq. (D.38) proceed as discussed
before. The results are

L

2
=

R
α+β

2

U
α+β−2

2
∗

√
1− y2α

h

1

2α
B

(
5α− β − 2

4α
,
1

2

)
2F1

[
1

2
,
5α− β − 2

4α
;
7α− β − 2

4α
; y2α
h

]
(D.39)

and

ReVQQ̄ =
R

β−α
2 U

2+α−β
2

∗

πα′
1

2α
B

(
β − α− 2

4α
,
1

2

)
2F1

[
−1

2
,
β − α− 2

4α
;
α + β − 2

4α
; y2α
h

]
.

(D.40)
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D.3.4 Imaginary part of the heavy quark potential

We can also calculate ImVQQ̄ via Eq. (4.36) and obtain

ImVQQ̄ = − 1

4
√

2α′
1

α

(
Uh
R

)α−β
2 Uh

y
α−β+2

2
h

1

4α− 2

[
(4α− 2)y2α

h − 2α + 2
]
. (D.41)

The condition ImVQQ̄ < 0 implies that

yh >

(
α− 1

2α− 1

) 1
2α

. (D.42)

Note that one must require that α > 1/2 for Eq. (D.42) to be well defined. One can check
that the formulas above give the correct AdS5 limit given by α = β = 2.

D.3.5 Expansion for small yh

The expressions for L and ReVQQ̄ in Eqs. (D.39) and (D.40) can be expanded for

small LU
α+β−2

2
h ∼ LT . This amounts to an expansion in small yh. By the same procedure

applied before we obtain in this approximation

ReVQQ̄ ∝
1

L
α−β+2
α+β−2

(
1 + c U2α

h L
4α

α+β−2

)
, (D.43)

where c is a positive constant. The gauge theory has conformal behavior (i.e., VQQ̄ ∝
(1/L)(1 + c(LT )δ) only when α = β = 2, which corresponds to the gravity dual in AdS5.

D.3.6 Limit for T →∞
Suppose now that we take T →∞ in the dual thermal field theory. Then the Euclidean

time radius β → 0. This means that the gauge theory in this limit “loses” a dimension,
becoming a (D-2)+1 field-theory at T = 0 (we can choose any of the remaining spatial
directions assume the role of the Euclidean time dimension). By the same arguments
presented for N = 4 SYM in (3+1) dimensions going to pure SU(N) gauge theory in
(2+1) dimensions, we expect that whatever fermionic or scalar degrees of freedom the dual
field theory had decouple in the β → 0 limit, along with all remaining supersymmetries.
Then, we expect to have pure SU(N) in (D − 2) + 1 dimensions at T = 0.

We may easily check, from (D.32), that the field theory confines. The string tension is
simply

σ =
Uα
h

2πα′Rα
. (D.44)
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The calculation of the Wilson loop proceeds as before and we omit the details. We
only remark that L is given by

L

2
=

R
α+β

2

U
α+β−2

2
∗

1

2α
B

(
5α− β − 2

4α
,
1

2

)
2F1

[
1

2
,
5α− β − 2

4α
;
7α− β − 2

4α
; y2α
h

]
(D.45)

The only difference between this and (D.39) is the absence of the factor
√

1− y2α. As
discussed in the main text, this factor changes the qualitative behavior of L as a function
of yh. Without this factor, L diverges for yh → 1, as expected for a confining theory. This
factor is, then, responsible for the deconfined behavior of the original theory.

D.3.7 Results for Dp-branes

The results of the previous sections can be applied to a special class of metrics cor-
responding to the (near horizon) supergravity solutions of stacks of Dp-branes in type II
superstring theories. We start by writing the supergravity metric (in the string frame) for
N coincident near-extremal black Dp-branes in the near-horizon limit [420],

ds2 =

(
U

R

)( 7−p
2 ) [
−f(U)dt2 + dxidx

i
]

+

(
R

U

)( 7−p
2 ) dU2

f(U)
+

+ gYM
√
dpNU

p−3
2 dΩ2

8−p (D.46)

where i runs from 1 to p,
R

7−p
2 = gYM

√
dpN, (D.47)

dp = Γ

(
9− p

2

)
211−2pπ

13−2p
2

9− p and (D.48)

f(U) = 1−
(
Uh
U

)7−p

. (D.49)

The dilaton field φ is given by

eφ = (2π)2−pg2
YM

(
R

U

) (7−p)(3−p)
4

. (D.50)

Note that taking p = 3 in Eq. (D.46) corresponds to the AdS5 case. Only in this
case the geometry separates in a product of a p + 2 dimensional spacetime and an 8− p
dimensional sphere. In the following we assume a fixed configuration for the compact
coordinates. Also, note that if p 6= 3 the dilaton runs and, thus, the dual gauge theory is
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not conformal even in the vacuum.
The metric is now of the form (D.32) with α = β = (7 − p)/2. The results of the

previous sections then apply and the (regularized) heavy quark free energy is

FQ = − 1

2πα′
Uh (D.51)

while

L

2
=
R7−p

U
5−p

2
∗

√
1− y7−p

h

1

7− pB

(
6− p
7− p,

1

2

)
2F1

[
1

2
,
6− p
7− p ;

19− 3p

14− 2p
; y7−p
h

]
(D.52)

and the real part of the potential is

ReVQQ̄ =
U∗
πα′

1

7− pB

(
− 1

7− p,
1

2

)
2F1

[
−1

2
,− 1

7− p ;
5− p

14− 2p
; y7−p
h

]
. (D.53)

Moreover, one can use Eq. (4.36) to find

ImVQQ̄ = − 1

4
√

2α′
1

(6− p)(7− p)
Uh
yh

[
(12− 2p)y7−p

h − 5 + p
]
. (D.54)

For the last equation to be valid the following condition must be satisfied

yh >

(
5− p

12− 2p

) 1
7−p

. (D.55)

D.4 Curvature scalar on the string worldsheet

In this Section we study the curvature scalar R associated with the induced metric
on the string worldsheet. As a specific example, we will focus on the Schwarzschild/AdS5

metric (4.42). Our main aim is to evaluate the curvature scalar at the bottom of the
string at finite LT , R(LT ), and compare it with the corresponding T = 0 result, R(0).
If R(LTmax) � R(0), this signals that near the maximum of LT , LTmax, highly curved
string worldsheet configurations start to become relevant. This, in particular, means that
one should be cautious in interpreting LTmax as a screening length of the quark-antiquark
pair.

For the metric (4.42), the induced metric hab = Gµν∂aX
µ∂bX

ν on the string worldsheet
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configuration for the rectangular Wilson loop (in the static gauge) is given by

hττ =
1

4R2

(
U4
h

U(x)2
− U(x)2

)
,

hσσ =
1

4R2

(
U(x)2 +

4R2U(x)2U ′(x)2

U(x)4 − U4
h

)
and

hτσ = hστ = 0. (D.56)

Computing the curvature scalar R using this metric and using the equation of motion
(4.11) to remove U ′(x) and U ′′(x) from the resulting expressions, one finds

R =

2R6

(
R8(3U4

h−U(x)4)(U4
∗−U(x)4)

2

(U4
h−U4

∗)
2 + 2U(x)4 (U8

h − U(x)8) +
(U4

h−U(x)4)(6U4
hU(x)4+U(x)8−3U8

h)(U(x)4−U4
∗)

U4
h−U4

∗

)
U(x)4 (U4

h − U(x)4)
2

(
R8(U(x)4−U4

∗ )

(U4
h−U4

∗)(U4
h−U(x)4)

+ U(x)4 − U4
h

)2 .

(D.57)

At the bottom of the string, U(0) = U∗. Then, Eq. (D.57) reduces to (yh = Uh/U∗),

R(yh) = −4R6 (y4
h + 1)

U8
∗ (1− y4

h)
3 . (D.58)

The T = 0 curvature scalar is found by fixing yh = 0 in the equation above. In this case,
we may use Eq. (4.47) to obtain R explicitly as a function of L and obtain

R(T = 0) = − Γ
(

1
4

)16

1024π12

L8

R10
. (D.59)

One can see that the curvature scalar is well behaved for any finite L when T = 0.
The ratio between the curvature scalars for T 6= 0 and T = 0 at the bottom of the

string is given by
R(yh)

R(0)
=

1 + y4
h

(1− y4
h)

3
. (D.60)

Note that this ratio diverges for yh → 1. This means that a string worldsheet that stretches
up to the horizon is highly curved and must receive quantum corrections. In other words,
the classical configurations with yh > yh,max = 0.85 are highly curved and must be dealt
with care. Already for yh = yh,max, we have R(yh,max) ∼ 15R(0). In Figure D.3 we present
a plot of the ratio R(yh)/R(0) as a function of yh.

Now we can use Eq. (4.54) to solve for yh as a function of LT in the branch 0 < y < yh

and evaluate R as a function of LT , up to LTmax, as in Figure D.4. We see that for
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Figure D.3: The ratio of curvature scalars R(yh)/R(0) as a function of yh associated with the
worldsheet metric for the strongly coupled N = 4 SYM plasma. The ratio diverges when the
bottom of the string reaches the horizon (where yh = 1).

LT ∼ LTmax, R(LT ) ∼ 10R(0), which corresponds to a situation of high curvature on
the string worldsheet.
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Figure D.4: The ratio of curvature scalars R(LT )R(0) as a function of LT , up LTmax, asso-
ciated with the worldsheet metric for the strongly coupled N = 4 SYM plasma. The vertical line
denotes LT = LTmax where R(LTmax) ∼ 10R(0).



Appendix E

Debye screening mass at one loop in
perturbation theory

In this Appendix we will compute the perturbative result of Eq. (6.8) for the Debye
screening mass for a SU(Nc) Yang-Mills plasma with Nf fermions in the fundamental rep-
resentation (first done in Ref. [227]). This calculation will serve as a contrasting example
of the usual perturbative methods with the geometric, non-perturbative approach offered
by the gauge/gravity duality. I will largely follow the notation and procedure of Ref. [421].

E.1 Generalities

At zero temperature, in an Euclidean formalism1, the photon/gluon polarization tensor
Πµν (see Fig.E.1) can be decomposed, by Euclidean and gauge invariance, as

Πµν(Q) =

(
δµν −

QµQν

Q2

)
F0(Q2), (E.1)

where Q is the external 4-momentum of the photon, and F0 is a scalar function which
depends only upon Q2 = QµQ

µ. In components, the four-momentum Q is given by Qµ =

(q4, ~q) = (−iω, ~q). For convenience, we also defined a normalized 3-momentum by q̂ = ~q/q.
At finite temperature, Euclidean covariance is explicitly broken since we have a preferred
frame of the plasma - namely, its rest frame. Thus, the decomposition of Eq. (E.1) is not
valid anymore, and must substituted by a decomposition which respect rotation symmetry
in the x1, x2, x3 subspace, but not rotations about the imaginary time x0 = τ axis. A

1We are already working with a Euclidean metric with signature (+,+,+,+) foreshadowing the use
of Matsubara formalism at finite temperature

262
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Figure E.1: Diagrammatic representation of the photon polarization tensor.

decomposition that respects these properties is given by

Πµν(Q) = F (Q2)PL
µν +G(Q2)P T

µν , (E.2)

where the projectors PL and P T are defined by

P T
00 = P T

0i = 0,

P T
ij = δij − q̂iq̂j, (E.3)

PL
µν = δµν −

QµQν

Q2
− P T

µν .

It is easy to see that PL and P T satisfy

(P T )2 = P T ,

(PL)2 = PL, (E.4)

P TPL = PLP T = 0.

Also, note that directly from the definition,

PL
µν + P T

µν = δµν −
QµQν

Q2
. (E.5)

Before proceeding, we notice that the full Euclidean propagator Gµν for the photon/gluon
can be written as

Gµν =
1

Q2 + F (Q2)
PL
µν +

1

Q2 +G(Q2)
P T
µν +

ξ

Q2

QµQν

Q2
, (E.6)

where we included a gauge fixing contribution in the last term; ξ is the gauge fixing
parameter. Here in this Appendix, we will work in Feynman gauge, with ξ = 1.

To compute the Debye screening mass mD perturbatively, we have to compute the
pole of the electric-electric propagator G00 at zero frequency, as discussed in Chapter 6.
That is, following Eq. (6.7), we search for the roots of Q2 + Π00(Q) = 0 at zero external
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frequency and ~q 2 = m2
D, that is,

Π00(0, ~q 2 = −m2
D) +m2

D = 0. (E.7)

Using the definition of the projectors, Eq. (E.3), and the decomposition (E.2), we see that
we have to search for the roots of F (m2

D) + m2
D = 0. Latter in this Appendix we will

justify more carefully this prescription in the context of perturbation theory.
The above definition captures the physics of the electric screening. A analogous def-

inition for a magnetic screening mass mmag would involve looking at the roots of Q2 +

Πij(Q) = 0 at zero external frequency:

Πij(0, ~q
2 = −m2

mag) +m2
mag = 0. (E.8)

However, as we will argue below, mmag = 0 in perturbation theory, so magnetic fields are
not screened (but only in the context perturbation theory).

E.2 Debye screening mass in perturbation theory - One

loop

Thus, we need to investigate the function F (Q) in perturbation theory. Let us proceed
to compute the polarization tensor Πµν and the F and G functions in perturbation at
one loop. We will make the assumption that the temperature is the largest scale of the
system; that is, T � mf , wheremf is the mass of any fermion field in the system, and that
T � Q - T is larger than the external momenta. This defines the called Hard Thermal
Loop (HTL) approximation.

At one loop, in QED coupled to a massless fermion, the polarization tensor Πµν at
one loop is given by the fermion loop diagram of Fig. E.4, where k is the internal loop
momentum.

E.2.1 Fermion loop diagram

Evaluating the diagram

The first diagram, the fermion loop, yields, in Matsubara’s formalism,

Πµν(Q) = e2 1

β

∑
n

∫
d3k

(2π)3
Tr [γµ/kγν(/k − /Q)] ∆(k)∆(k −Q), (E.9)
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Figure E.2: Feynman diagram for the polarization tensor in QED at one loop.

where e is the QED coupling constant, γµ the Dirac matrices in four dimensions, /a ≡ aµγ
µ

and the trace is over the Dirac matrices. The function ∆(k) is a shorthand for the free
Euclidean propagator. Explicitly,

∆(iωn, ~p) =
1

ω2
n + E2

p

, (E.10)

where E2
p = m2

f + ~k2 is the dispersion relation for the on-shell fermion and ωn are the
Matsubara frequencies for a fermion, ωn = (2n+ 1)πT .

By usual power counting arguments, we see that the integral is quadratically divergent
in the UV and should be regularized. For the purposes of this calculation, we will not need
to consider a full renormalization procedure, since thermal effects do not contribute to
the UV divergence. Instead, we will use the fact the T is our largest scale, and use impose
a momentum cutoff at the scale T .

To compute Πµν , we have first to unpack the trace in Eq. (E.9), before computing
the integrals. The trace unpacking follow the usual trace tricks and techniques for such
calculations (see, for instance, Ref. [25]). In this case, we have only to use the trace identity

Tr
[
γµ/aγν/b

]
= 4(aµbν + aνbµ − δµνaρbρ), (E.11)

which yields
Πµν = 8e2Iaµν − 4δµνe

2Ib, (E.12)

where we defined
Iaµν =

1

β

∑
n

∫
d3k

(2π)3
kµkν∆(k)∆(k −Q), (E.13)

and
Ib =

1

β

∑
n

∫
d3k

(2π)3
k2∆(k)∆(k −Q). (E.14)
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Figure E.3: Contour integration for frequency sums.

Evaluating frequency sums via contour integration

The next step is to compute the Matsubara frequency sums in the integrals Ia and Ib.
Such sums are usually perfomed using complex integration methods. Let us discuss the
basic method here.

Let h(ω) be a meromorphic function on the complex plane ω. Assume that h(ω)

decreases faster than 1/|ω| and that h is analytic along the line Reω = c, where c is a real
constant. Our objective is to compute the following sum over the Matsubara frequencies

S =
∞∑

n=−∞

h(c+ iωn). (E.15)

To compute this, we first prove that

S =
1

β

∫
C1∪C2

dω

4iπ
h(ω) coth

[
1

2
β(ω − c)

]
, (E.16)

where C1 and C2 are parallel paths to the imaginary ω axis, with opposite orientations,
located (infinitesimally) to the left and to the right of the Reω = c line, respectively, as
shown in Fig. E.3. To see this, first note that the function g(z) = coth z has all its (single)
poles along the Im z axis, at z = 2πni, with unit residue. By closing the contour C1 ∪ C2

at infinity, Eq. (E.16) follows, by the residue theorem, since g(ω) is analytic.
Next, we consider once again the integral in Eq. (E.16), but now close off the path C1

by a large semi-circle which closes the path to the left, and C2 by a large semi-circle which
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closes the path to the right, both with clockwise orientation. By hypothesis, |h(ω)| < 1/|ω|
as |ω| → ∞, so that the contribution of the semi-circles is negligible as we take their radii
to infinity. Then, by the residue theorem, the integral in Eq. (E.16) is the sum of residues
to the left of C1 and to the right of C2. As g(z) = coth z is analytic out of the imaginary
axis, this means that

S =
∞∑

n=−∞

h(c+ iωn) = −1

2

∑
Resh(ω) coth

[
1

2
β(ω − c)

]
, (E.17)

where the sum in the right is over all residues of h(ω). Equation (E.17) is the central piece
for evaluating Matsubara equations.

Examples of frequency sum and momentum integrals

Let us use this result to evaluate a typical frequency sum. Consider the integral

J =
1

β

∞∑
n=−∞

∫
d3k

(2π)3
~k2∆(k)∆(k −Q). (E.18)

The frequency sum is evaluted using Eq. (E.17), using the analytic forms of the free
propagators (E.10). The result is

J = − 1

8π2

∫ ~k2dkdΩ

4π

~k2

E1E2

[
(1− ñ(E1)− ñ(E2)

(
1

iω − E1 − E2

− 1

iω + E1 + E2

)
+

−(ñ(E1)− ñ(E2))

(
1

iω + E1 − E2

− 1

iω − E1 + E2

)]
(E.19)

where E1 = |~k| and E2 = |~q−~k| are the off-shell energies of the fermions in the loop (where
we already dropped the fermion masses, since we are working in the HTL approximation),
dΩ = d(cosθ)dφ is the angle integration element and ñ(E) is the Fermi-Dirac distribution:

ñ(E) =
1

eβE + 1
. (E.20)

Another frequency sum that will be needed is

Jl =
1

β

∞∑
n=−∞

∫
d3k

(2π)3
~k2ωnkl∆(k)∆(k −Q). (E.21)
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After a short calculation, similar to the one above, one can see that

J =
1

8π2

∫ ~k2dkdΩ

4π
~k2 ikl
E2

[
(1− ñ(E1)− ñ(E2)

(
1

iω − E1 − E2

+
1

iω + E1 + E2

)
+

−(ñ(E1)− ñ(E2))

(
1

iω + E1 − E2

+
1

iω − E1 + E2

)]
(E.22)

Let us analyze the leading order dependence on T of these integrals. In the HTL
approximation, the external momentum is negligible when compared to the temperature
of the thermal bath, q � T . Also, the integral is dominated by the cutoff contribution,
so we may assume q � k. Then, we have that, in HTL, that

E2 ≈ k − q cos θ (E.23)

and thus
ñ(E2) = ñ(k − q cos θ) ≈ ñ(k)− q cos θ

dñ

dk
. (E.24)

Now, for large k, dñ/dk ∼ 0. Thus,

1− ñ1 − ñ2 ≈ 1− ñ(k), (E.25)

Thus, we have that the typical momentum integral in the first term in brackets in Eq.
(E.19) is of the form∫ ∞

0

dk k (1− ñ(E1)− ñ(E2) ≈
∫ ∞

0

dk k (1− 2ñ(k)). (E.26)

This term will lead to a leading dependence of T of T 2, as∫ ∞
0

dk k ñ(k) =
π2T 2

2
. (E.27)

Another source of a leading T 2 dependence will come from the second term in the
brackets in Eq. (E.19). There, the denominators are of the form

1

iω ∓ E1 ± E2

≈ 1

iω ± q cos θ
. (E.28)

The numerator is
ñ(E1)− ñ(E2) ≈ q cos θ

dñ

dk
. (E.29)

Thus, in the second term in brackets the angular integration and k integration decouple.
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The remaining k integration is ∫
dkk2 ∼ T 2, (E.30)

where we used the HTL cutoff.

Integral Ib

Let us start by integral Ib. Inserting ∆(k) = 1/k2 and computing the frequency sum,
we arrive at

Ib =

∫
dΩ

(2π)2

∫ ∞
0

dk
1

4π
k(1− 2ñ(k)). (E.31)

Integrating on k, only keeping the leading T contribution (as discussed in the preceding
paragraph), then integrating over Ω, we arrive at the leading T result

Ib ≈ −T
2

24
. (E.32)

Integral Iaµν

The other integral necessary to compute Πµν is Iaµν . In this case, we have to take
bit more care in order to deal with the vector indices. The first step is to perform the
Matsubara sum, which leads to

Iaµν = − 1

8π2

∫
dΩdk

4π
kµkν

k2

E1E2

[
(1− ñ(E1)− ñ(E2)

(
1

iω − E1 − E2

− 1

iω + E1 + E2

)
+

−(ñ(E1)− ñ(E2))

(
1

iω + E1 − E2

− 1

iω − E1 + E2

)]
. (E.33)

As q � k, following the arguments above, we have that the denominators in Ia can be
written as

iω + E1 − E2 ≈ iω + ~q · k̂ = Q · K̂, (E.34)

iω − E1 + E2 ≈ Q · K̂ ′, (E.35)

iω ± (E1 + E2) ≈ ±k, (E.36)

where we defined the normalized four-vectors

K̂ = (−i, k̂), (E.37)

K̂ ′ = (−i,−k̂). (E.38)
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We remark again that Q = (−iω, ~q). With these definitions, we then have that

~q · ~k = Q · K̂ ′ − iω. (E.39)

Using the approximations and definitions above, the spatial-spatial part of Iaµν becomes

Iaij = − 1

4π2

∫
dΩdk

4π
k2 k̂ik̂j

[
ñ(k)

k
− dñ

dk
+
dñ

dk

iω

Q · K̂

]
. (E.40)

We then proceed to perform the integration in k. First, due to rotation invariance, one
can see that for a given function of k2, f(k2),∫ ∞

0

k̂ik̂jf(k2) =
1

3
δij

∫ ∞
0

dk k2f(k2). (E.41)

Also, using that for the Fermi-Dirac distribution ñ(k) we have that∫ ∞
0

dk k2 ñ(k)

k
=
π2

12
T 2, (E.42)∫ ∞

0

dk k2dñ

dk
= −π

2

6
T 2. (E.43)

With these results, also using the fact that the integrals in Ω and k decouple, we have
that

Iaij = −T
2

48
δij +

T 2

24

∫
dΩ

4π
k̂ik̂j

iω

Q · K̂
. (E.44)

The integrals Ia0j and Ia00 can be evaluated in an analogous fashion.

The full correlator

From the preceding results for Iaij and Ib, we can write Πij in Eq. (E.12) as

Πij =
e2T 2

3

∫
dΩ

4π

iω

Q · K̂
k̂ik̂j. (E.45)

For Π4j and Π44 the computation is analogous. The final result is

Π0j =
e2T 2

3

∫
dΩ

4π

iω

Q · K̂
k̂j, (E.46)

Π00 =
e2T 2

3

(
1−

∫
dΩ

4π

iω

Q · K̂

)
. (E.47)
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These results can be combined in a single expression for Πµν :

Πµν = 2m2

∫
dΩ

4π

(
iωK̂µKν

Q · K̂
+ δ0µδ0ν

)
, (E.48)

where we defined a thermal mass m by

m2 =
e2T 2

6
. (E.49)

Extracting the functions F and G

From the result (E.48) for the one-loop correlator, we can extract the functions F and
G in Eq. (E.2). Setting ~q = (0, 0, 0, q) (thus ~q = (0, 0, q), along the z axis), we have that

F (Q) =
Q2

ωq
Π03 =

2m2Q2

ωq

∫
dΩ

4π

ω cos θ

iω + q cos θ
, (E.50)

G(Q) = Π11 = 2m2

∫
dΩ

4π

iω sin2 θ cos2 φ

iω + q cos θ
. (E.51)

The angular integration is straightforward and leads to

F (Q) =
2m2Q2

q2

[
1− iω

q
Q0

(
iω

q

)]
, (E.52)

G(Q) = Π11 = m2

(
iω

q

)[(
1−

(
iω

q

)2
)
Q0

(
iω

q

)
+
iω

q

]
, (E.53)

where Q0(x) is a Legendre function of the second kind, defined by

Q0(x) =
1

2
ln

(
x+ 1

x− 1

)
. (E.54)

The Debye screening mass in QED at one loop

We are now in position to extract the Debye screening mass for QED at one loop.
Following the prescription (E.8), we have to look at Π00 and look at its form with ω = 0:

Π00(ω = 0, ~q) = F (~q 2) = 2m2. (E.55)

As Π00(ω = 0, ~q) is independent of ~q, it follows that the Debye screening mass mD is given
by

m2
D = 2m2 =

e2T 2

3
. (E.56)

On the other hand, one could look for the magnetic screening mass mmag. Since G(ω =
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0, ~q) = 0, it follows that
mmag = 0. (E.57)

Although we have seen this at one loop in perturbation theory, one can prove that Eq.
(E.57) holds at all orders in perturbation theory [422].

E.3 The relation between static screening fields and the

Debye screening mass in QED

Another viewpoint that enlightens the meaning of the Debye screening mass comes
from linear response theory. Consider a weak external electromagnetic field ( ~Ecl, ~Bcl),
which couples with classical source jµcl = (ρcl,~jcl) by the interaction term

V =

∫
d3x jµclÂµ, (E.58)

where Âµ is the quantum vector potential. The fluctuation of the quantized field 〈δÂµ〉 is
given by the Kubo formula (see Section 3.8)

〈δÂµ〉 = Aµ = −i
∫
d4x′GR

µν(x, x
′)jνcl(x

′), (E.59)

whereGR
µν is retarted photon Green’s function andAµ is the expectation value of the vector

potential under the influence of the external fields. We also assumed that the background
fields have zero expectation value 〈Aµ〉 = 0, so that 〈δÂµ〉 = Aµ. In momentum space,

Aµ = iGR
µν(Q)jνcl(Q). (E.60)

Our objective is to compute the linear response electric and magnetic fields ~E and ~B from
the response vector potential Aµ which arise due to the response of the system due to the
applied external fields ( ~Ecl, ~Bcl).

So far, we have computed the Euclidean Green’s function G(Q). To obtain the re-
tarted propagator GR from the Euclidean propagator G, we need to perform the analytic
continuation iω → q0 + iε, with Q2 → −Q2. From Eq. (E.6),

GR
µν =

i

Q2 − F̄ (Q2)
P̂L
µν +

i

Q2 − Ḡ(Q2)
P̂ T
µν − i

ξ

Q2

QµQν

Q2
, (E.61)
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where the barred projectors now satisfy

P̄L
µν + P̄ T

µν = −ηµν +
QµQν

Q2
. (E.62)

The barred F̄ (Q) and Ḡ(Q) functions are obtained by analytic continuation from Eqs.
(E.52) and (E.53):

F̄ (Q) = −2m2Q2

q2

[
1− q0

q
Q0

(
q0

q

)]
, (E.63)

Ḡ(Q) =
1

2
[m2

D − F̄ (Q)]. (E.64)

With the retarted propagator discussed, we now proceed to consider the components
of Aµ from Eq. (E.60). We have that, from Eq. (E.61),

A0 = − ρcl
Q2 − F . (E.65)

As for ~A, we have that

~A = −
(

~jLcl
Q2 − F +

~jTcl
Q2 −G

)
, (E.66)

where we splitted ~jcl in two components, one parallel to ~q, ~jLcl, which satisfies ~jLcl × q̂ = 0,
and one transverse to ~q, ~jTcl , which satisfies ~jTcl · q̂ = 0. The linear response electromagnetic
fields ~E and ~B are given by

~E = −∂t ~A−∇A0, (E.67)
~B = ∇× ~A, (E.68)

which in momentum space reads

~E = iq0
~A− i~qA0, (E.69)

~B = i~q × ~A. (E.70)

Then, we have that, using also that Q2 = q2
0 − q2,

~E = −i
(

ρcl
Q2 − F

Q2

q2
~q +

~jTcl
Q2 −Gq0

)
, (E.71)

~B = −i ~q ×
~jLcl

Q2 −G. (E.72)
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Now, the classical fields ( ~Ecl, ~Bcl) satisfy Maxwell’s equations, with the sources given
by jµcl = (ρcl,~jcl). We will need specifically the Gauss law and Ampère’s law:

∇ · ~Ecl = ρcl, (E.73)

∇× ~Bcl = ~jcl + ∂t ~Ecl. (E.74)

In momentum space, these read

i~q · ~Ecl = ρcl, (E.75)

i~q × ~Bcl = ~jcl + iq0
~Ecl. (E.76)

Now, taking the cross product of Ampère‘s law with i~q,

~jTcl = −~q × ~Bcl − iq0
~ET
cl , (E.77)

where the transverse electric field is ~ET
cl = ~q × ~E/q. From Gauss’ law, similarly,

ρcl = i~q · ~EL
cl, (E.78)

where ~EL
cl = (~q · ~Ecl/q2)~q. We can then use Eqs. (E.77) and (E.78) to express the complete

electric and magnetic fields ~E and ~B in Eqs. (E.71) and (E.72) in terms of the classical
background fields ~Ecl and ~Bcl,

~E =
Q2

Q2 − F
~EL
cl +

q0

Q2 −G
(
~q × ~Bcl + q0

~ET
cl

)
, (E.79)

~B =
Q2

Q2 −G
~Bcl. (E.80)

Eqs. (E.79) and (E.80) make it clear that ~E = ~Ecl and ~B = ~Bcl in the limit that the
plasma is non-interacting and F = G = 1.

With the linear response equations Eqs. (E.79) and (E.80) in hand, we may consider
the limit of a static electric external field ~Ecl. In this case, the external frequency is q0 = 0.
Also setting ~Bcl = 0, we arrive at ~B = 0 and

~E =
Q2

Q2 − F (q0 = 0, ~q)
~EL
cl =

~q · ~Ecl
q2 + F (q0 = 0, ~q)

~q. (E.81)

From this, considering that in the static limit the potential V (~x) of unit charge at the
origin is related to the static electric field by ~E = −∇ · ~V , or, in momentum space,
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~E = −i~qV , we see that the potential V (r) is given by

V (~x) =

∫
d3q

(2π)3

ei~q·~x

q2 + F (q0 = 0, ~q)
. (E.82)

We now look at the long range behavior of V (~x), which is dominated by the lowest-lying
pole of the denominator, which in turn corresponds to the Debye screening mass definition
in Eq. (E.8). That is, the long range form of V (~x) is given by, after computing the integral
in ~q,

V (~x) =
e−mDr

r
, (E.83)

where mD is given exactly by Eq. (E.8). This clarifies the meaning of the Debye screening
mass in QED as a static screening of charges by the plasma.

An analogous argument applies to screening by external static magnetic field. In this
case, the screening is given by the poles of G. Since we have seen that the QED plasma
does not develop a magnetic screening mass in perturbation theory, it follows that there
is no static screening of currents in the plasma.

E.4 Debye screening mass in QCD at one loop order

Finally, to close this Appendix, we offer some comments on the one-loop evaluation of
the Debye screening mass in QCD, with Nc colors and Nf massless quarks. Apart from
the fermion loop discussed above, we also have the diagrams presented in Fig. E.4. We
will not evaluate these diagrams here (the procedure is similar to the fermion loop), but
we will offer some comments.

The fermion loop (a) is identical to the fermion loop in QED, with the result being
exactly Eq. (E.12); the only two differences are a factor of Nf due to the Nf different
quarks which can run in the loop, and the change of the coupling constant from e to g.
The sum the gluon loop diagram (b), the ghost loop diagram (c), and the tadpole diagram
(d) also lead to a modification of Eq. (E.12); one should take care of the different bosonic
statistics for these diagrams when evaluating the Matsubara sums (see Ref. [421] for more
details). In the end, the sum of diagrams (a) to (d) lead to

Πµν = −2g2

(
Nc +

1

2
Nf

)
(2Iaµν − δµνIb). (E.84)

Thus, at one loop, the results from Eq. (E.48) for QED can be carried over to QCD with
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=
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++

(a) (b)

(c) (d)

Figure E.4: Feynman diagrams for the gluon polarization tensor in QCD at one loop. The
fermion loop (a) is presented even in QED, while the other diagrams, the gluon loop diagram (b),
the ghost diagram (c), and the tadpole diagram (d) are unique to QCD.

the only modification being the change

e2T 2 → g2T 2

(
Nc +

1

2
Nf

)
. (E.85)

In particular, the Debye screening mass in QCD, at one loop, is given by

m2
D =

(
Nc +

1

2
Nf

)
g2T 2

3
, (E.86)

as given in Eq. (6.8). However, as remarked in the main text, the perturbative analysis of
the Debye screening mass breaks down at higher orders.



Appendix F

Complementary Details about the
Holographic Debye Screening Mass in
Strongly Coupled Plasmas

In this Appendix we present some details relevant to the topics studied in Chapter 6.
Section F.1 shows how to relate the string frame to the Einstein frame - this is necessary
in order to correctly compute Polyakov loops on the Einstein + scalar models considered
in Chapter 6. Section F.2 describes the coordinate system change from the Gubser gauge
to the conformal gauge.

F.1 String and Einstein frames

The metric used in calculations of Wilson and Polyakov loops is the metric that the
string “feels”. From a string theory perspective, the metric used in this calculation is the
one that arises from the low-energy limit of string theory and is referred to as the string
frame metric [102]. However, this effective action that arises couples the dilaton field φ

directly with the Ricci scalar R; this means that this effective action does not correctly
reduce to the Einstein-Hilbert action. To obtain an action that resembles Einstein’s grav-
ity, it is necessary to perform a redefinition of the fields of the theory - this is what
means to go from the string frame to the Einstein frame. Let us review the details of this
transformation. We will follow the discussion in Ref. [359], Appendix G.
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F.1.1 Weyl rescaling

Let gµν be the metric of a d dimensional space-time, and consider the general conformal
transformation (also called Weyl transformation or Weyl rescaling)

gµν(x)→ g̃µν = e2ω(x)gµν(x), (F.1)

where ω(x) is a smooth function. That is, we locally apply a scale transformation at each
point of space-time. This transformation is not, for a general ω(x), a diffeomorphism - as
we will show below, invariant quantities under coordinate transformations, such as the
scalar curvature, transform non-trivially under a Weyl rescaling. One can interpret Eq.
(F.1) as either a transformation of the space-time geometry or, for the purposes of this
Section, as a redefinition of the dynamical fields of the spacetime, including the metric.
Under a Weyl transformation it is a straightforward (if a little lenghty calculation - check
Ref. [359] for further details) calculation to see that the curvature scalar R transform as

R → R̃ = e−2ω
[
R− 2(d− 1)gαβ∇α∇βω − (d− 2)(d− 1)gαβ∇αω∇βω

]
. (F.2)

Now, the d’Alembertian of a scalar field φ, �φ, transforms, under a Weyl rescaling, into
�̃φ, where

�̃φ = e−2ω
[
�φ+ (d− 2)gαβ∇αω∇βω

]
. (F.3)

F.1.2 From the string frame to the Einstein frame

The effective action of the dilaton field φ coupled to gravity has the following general
form in the string frame,

Sstring =

∫
ddx
√−g e−2φ (R+ 4gµν∂µφ∂νφ) . (F.4)

The curvature scalar is directly coupled to the metric by the term Re−2φ. To write this
in the form of the Einstein-Hilbert action coupled to matter fields, we perform a Weyl
rescaling of the form

gµν(x)→ g̃µν = eαφgµν , (F.5)

where α is a coefficient that will be determined below. Using the (inverse of the) transfor-
mation formulas (F.2) and (F.3) and identifying a boundary term of the form g̃αβ∇̃α∇̃βφ

which vanishes assuming that ∇̃αφ→ 0 at the boundary of the space-time, we obtain

S =

∫
ddx

√
−g̃ eα2 (d−2)−2

{
R̃−

[
(d2 − 3d− 2)α2 − 4

]
g̃αβ∇̃αφ∇̃βφ

}
. (F.6)
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To have a Einstein-Hilbert + matter action, we require that the exponential term in
vanishes, that is,

α =
4

d− 2
. (F.7)

Thus, the action in the so-called Einstein frame takes the form

S =

∫
ddx
√−g

(
R̃− 4

d− 2
gαβ∇̃αφ∇̃βφ

)
. (F.8)

The metric then changes to

gµν(x)→ g̃µν = e
4
d−2

φgµν . (F.9)

For d = 10, the case of dual theories of gravity derived from superstring theory, g̃µν =

eφ/2gµν . In the case of some the IHQCD models used in Chapters 6 and 7, namely, those
of Refs. [16, 17], it is assumed that the underlying string theory is a subcritical one with
d = 5; in this case, g̃µν = e4/3φgµν , which explains the Einstein to string frame metric
transform factor used in Chapter 6.

F.2 Gauge choices for the B class of models

As mentioned in the main text, for the models B1 and B2, the Gubser gauge (6.63)
while adequate for studying the thermodynamics is not convenient for evaluating Polyakov
and Wilson loops or finding the glueball spectrum (as done in Appendix F.3). For these
purposes, it is convenient to change to the conformal gauge given by

ds2 = e2Ã(z)

(
h̃(z)dτ 2 + d~x 2 +

dz2

h̃(z)

)
. (F.10)

Comparing Eq. (F.10) with Eq. (6.63), we see that the following relation must hold among
the metric functions

dz

dφ
= eB−A. (F.11)

We require that the asymptotic AdS5 is located at z = 0 and that the horizon is at z = zh.
The solution of Eq. (F.11) that satisfies these requirements is

z(φ) =

∫ φ

0

dφ̃ eB(φ̃)−A(φ̃) (F.12)

We can invert (numerically) Eq. (F.12) to get φ(z). Then, the functions Ã(z) and h̃(z)

are given by Ã(z) = A(φ(z)) and h̃(z) = h(φ(z)).



GLUEBALL SPECTRA IN B1 MODEL 280

F.3 Glueball spectra in B1 model

In this section we compute the glueball spectra for model B1, which displays confine-
ment at T = 0. The parameters used in the scalar potential in this model are given in
Table 6.2.

Let us briefly review the numerical procedure for finding the vacuum geometry and the
glueball spectra. One first numerically integrates the equations of motion (6.77) subject
to the boundary condition (6.78); then, we search, numerically, for the eigenvalues of
the Schrödinger’s equation (6.29), as described in the main text. To find the spectra, we
change the metric from the z = φ gauge (6.63) to the conformal gauge, as described
in Appendix F.2. The potential for the Schrödinger’s equation is given by Eq. (6.30),
where B depends on whether we are dealing with the scalar JPC = 0++ glueballs, tensor
JPC = 2++ glueballs, or pseudo-scalar JPC = 0−+ glueballs [17, 423]

(scalar) 0++ B(z) =
3

2
A(z) +

1

2
logX(z),

(tensor) 2++ B(z) =
3

2
A(z), (F.13)

(axial) 0−+ B(z) =
3

2
A(z) +

1

2
logZ(λ(z)).

In Eq. (F.13), X(z) is defined by

X(z) ≡ dΦ/dz

3A(z)
, (F.14)

where Φ =
√

3/8φ(z) while λ(z) = eφ(z), with Z(λ) still given by Eq. (6.59). For a com-
parison with lattice results, we normalize the spectrum by the fundamental 0++ glueball
mass.

Our results are shown in Figs. F.1 and F.2. For comparison, we used lattice results for
the glueball spectra in pure Yang-Mills with gauge groups SU(3) [424,425] and SU(Nc) in
the large-Nc limit [426,427]. We see in Fig. F.1 that linear Regge trajectories are achieved
for n > 4. Also, we note that the axial glueball has little sensitivity to the choice of c4 -
in the interval c4 = 0.1 to c4 = 10 the masses are almost degenerate. For this reason, in
Fig. F.1 we show only the results for c4 = 1. Comparing with lattice results (Fig. F.2),
we see that reasonable agreement is found for the tensor glueball among all calculations.
The axial glueball of the Model B1 and large-Nc SU(Nc) Yang-Mills are both reasonably
close; however, both axial glueball masses are off by a factor of 2 when compared with
the SU(3) Yang-Mills fundamental axial glueball. This contrasts with the results found
for the holographic Polyakov loop in Subsection 6.6.2, where the results where relatively
insensitive to Nc.
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Figure F.1: Glueball spectra in the Model B1. The glueball masses are normalized by the mass
of the fundamental JPC = 0++ glueball. n indicates the order of the excited state; n = 0 is the
fundamental state.
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Figure F.2: Chew-Frautschi plot of the glueball spectra, comparing results from Model B1 with
lattice results for SU(3) [424,425] and large-Nc SU(Nc) [426,427] Yang-Mills theory.



Appendix G

Complementary Details About Second
Order Transport Coefficient for
Hydrodynamics

G.1 Solution for the metric perturbation up to O(ω2, q2)

In this Appendix we formally solve Eq. (8.28) in detail in terms of the coefficients
of the undisturbed background metric, g(0)

MN(u), and the boundary value of the metric
perturbation, ϕ(ω, q), up to O(ω2, q2). In order to accomplish that one must specify the
boundary conditions for the metric perturbation, φ(u, ω, q), at the boundary and at the
horizon.

We first consider the boundary. The asymptotic form of Eq. (8.28) near the boundary
u = ε for any asymptotically AdS background reads1

φ′′ε −
3

u
φ′ε − k2φε = 0⇒ φε = C1(k)ε2K2(kε) + C2(k)ε2I2(kε), (G.1)

where k2 = −ω2 + q2 and In(ξ) and Kn(ξ) are the modified Bessel functions of the first
and second kinds, respectively. Now we take

lim
u→0

φ(u, k) = lim
ε→0

φε(k) =
2C1(k)

k2
, (G.2)

which is a constant in the radial direction. Therefore, in the case of a massless scalar field,
one can safely impose the Dirichlet boundary condition as follows

lim
u→0

φ(u, k) = ϕ(k) , (G.3)

1For asymptotically AdS geometries one finds guu(ε) ∼ gtt(ε) ∼ gxx(ε) ∼ L2/ε2.
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where ϕ(k) denotes the boundary value of the metric perturbation prescribed by the
Dirichlet boundary condition.

Now that we have specified the boundary condition (G.3), let us discuss which kind
of condition we must impose on the metric perturbation at the horizon. As discussed
in [127, 128, 137, 364], in order to obtain the retarded propagator we must single out the
solution of the equation of motion (8.28) which is regular at the horizon and corresponds
to a wave being absorbed by the horizon. We begin by assuming that the gtt component
of the background metric has a simple zero at the horizon u = uH such that one can write

guu(u) =
G(u)

uH − u
, gtt(u) = F (u)(uH − u), (G.4)

with G(uH) and F (uH) finite. Notice that the Hawking temperature of the black brane
gives

T =

√
g′ttg

uu ′

4π

∣∣∣∣
u=uH

=
1

4π

√
F (uH)

G(uH)
⇒ F (uH)

G(uH)
= (4πT )2 . (G.5)

Using Eqs. (G.4) and (G.5), the asymptotic form of Eq. (8.28) near the horizon u = uH

then reads2

φ′′H −
1

uH − u
φ′H +

(ω/4πT )2

(uH − u)2
φH = 0⇒ φH = C1(ω)(uH − u)−iω/4πT + C2(ω)(uH − u)+iω/4πT ,

(G.6)

and the infalling wave mode at the horizon is obtained by setting C2(ω) = 0 in Eq. (G.6).
Therefore, one is motivated to separate the infalling behavior of the solution and take the
following Ansatz for the metric perturbation

φ(u, k) = ϕ(k)u
+iω/4πT
H (uH − u)−iω/4πTf(u, k), (G.7)

f(u, k) = f0(u) + ωf1(ω) +
ω2

2
f2(u) +

q2

2
f3(u) +O(ωq2, ω3) , (G.8)

with f(0, k) = 1 and f(uH , k) being regular. We considered only even powers of q in the
series expansion (G.8) due to spatial isotropy. Substituting Eq. (G.7) into Eq. (8.28) we
obtain the differential equation for f(u, k),

∂u

[√
−g(0)guu

(
f ′ +

iωf

4πT (uH − u)

)]
+
√
−g(0)guu

(
f ′ +

iωf

4πT (uH − u)

)
iωf

4πT (uH − u)
=

=
√
−g(0)

(
−gttω2 + gxxq2

)
f. (G.9)

2We only keep the dominant terms in each order in radial derivatives of the metric perturbation.
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Now we solve Eq. (G.9) order by order in the momentum expansion (G.8).

Zeroth order - f0

At lowest order, one obtains the differential equation for f0(u),

O(ω0, q0) : ∂u

(√
−g(0)guuf ′0

)
= 0. (G.10)

One can integrate Eq. (G.10) twice to obtain

f0(u) = c1 + c2

∫ u

0

dξ√
−g(0)(ξ)guu(ξ)

, (G.11)

where we just performed two indefinite integrations: the lower limit in the integral
present in Eq. (G.11) has been conveniently chosen to lie at the boundary; however,
we can choose any other value of the radial coordinate to be the lower limit of
this integral and each possible different choice would just redefine the integration
constants c1 and c2. We immediately fix these constants by using the boundary
condition f(0, k) = 1 and the regularity condition for f(uH , k). The former fixes
c1 = 1 and the latter fixes c2 = 0; therefore,

f0(u) = 1 . (G.12)

First order - f1

After using Eqs. (G.8), (G.9), and (G.12), the differential equation for f1(u) then
reads

O(ω, q0) : ∂u

[√
−g(0)guu

(
f ′1 +

i

4πT (uH − u)

)]
= 0. (G.13)

Integrating once, we obtain,

√
−g(0)guu

(
f ′1 +

i

4πT (uH − u)

)
= c2, (G.14)

and, then, integrating again, we find

f1(u) = c1 +

∫ u

0

dξ

[
c2√

−g(0)(ξ)guu(ξ)
− i

4πT (uH − ξ)

]
. (G.15)

Applying the boundary condition f(0, k) = 1 we obtain c1 = 0. The horizon regu-
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larity condition implies

c2 =
i
√
−g(0)(uH)

4πTG(uH)
= ig3/2

xx (uH) (G.16)

and, therefore,

f1(u) = i

∫ u

0

dξ

[
g

3/2
xx (uH)√

−g(0)(ξ)guu(ξ)
− 1

4πT (uH − ξ)

]
. (G.17)

Second order - f2

Using Eqs. (G.8), (G.9), (G.12), (G.14), and (G.16) the differential equation for
f2(u) reads

O(ω2, q0) : ∂u

[√
−g(0)guu

(
f ′2
2

+
if1

4πT (uH − u)

)]
=

g
3/2
xx (uH)

4πT (uH − u)
−
√
−g(0)gtt.

(G.18)

Integrating Eq. (G.18) twice and using Eq. (G.17), we obtain

f2(u) = c1 + 2

∫ u

0

dλ

4πT (uH − λ)

∫ λ

0

dξ

[
g

3/2
xx (uH)√

−g(0)(ξ)guu(ξ)
− 1

4πT (uH − ξ)

]
+

+ 2

∫ u

0

dλ√
−g(0)(λ)guu(λ)

{
c2 +

∫ λ

0

dξ

[
g

3/2
xx (uH)

4πT (uH − ξ)
−
√
−g(0)(ξ)gtt(ξ)

]}
.

(G.19)

In Eq. (G.19), the factors (4πT (uH − λ))−1 and c2/
√
−g(0)(λ)guu(λ) diverge at the

horizon while the factor
√
−g(0)(ξ)gtt(ξ) diverges at the boundary; therefore, the

boundary condition and horizon regularity fix c1 = 0 and3

c2 = −g3/2
xx (uH)

∫ uH

0

dξ

[
g

3/2
xx (uH)√

−g(0)(ξ)guu(ξ)
− 1

4πT (uH − ξ)

]
+

−
∫ uH

0

dξ

[
g

3/2
xx (uH)

4πT (uH − ξ)
−
√
−g(0)(ξ)gtt(ξ)

]
. (G.20)

3Notice that
√
−g(0)(λ)guu(λ)

∣∣∣∣
λ→uH

∼ g3/2
xx (uH)4πT (uH − λ).
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Thus,

f2(u) = 2

{∫ u

0

dλ

4πT (uH − λ)

∫ λ

0

dξ

[
g

3/2
xx (uH)√

−g(0)(ξ)guu(ξ)
− 1

4πT (uH − ξ)

]
+

+

∫ u

0

dλ√
−g(0)(λ)guu(λ)

(
g3/2
xx (uH)

∫ 0

uH

dξ

[
g

3/2
xx (uH)√

−g(0)(ξ)guu(ξ)
− 1

4πT (uH − ξ)

]
+

+

∫ λ

uH

dξ

[
g

3/2
xx (uH)

4πT (uH − ξ)
−
√
−g(0)(ξ)gtt(ξ)

])}
. (G.21)

Second order - f3

Using Eqs. (G.8)), (G.9)), and (G.12) the differential equation for f3(u) reads

O(ω0, q2) : ∂u

(√
−g(0)guuf ′3

)
= 2
√
−g(0)gxx. (G.22)

Integrating twice, we find

f3(u) = c1 + c2

∫ u

0

dλ√
−g(0)(λ)guu(λ)

+ 2

∫ u

0

dλ√
−g(0)(λ)guu(λ)

∫ λ

0

dξ
√
−g(0)(ξ)gxx(ξ).

(G.23)

The boundary condition fixes c1 = 0 and the horizon regularity condition fixes

c2 = −2

∫ uH

0

dξ
√
−g(0)(ξ)gxx(ξ). (G.24)

Consequently,

f3(u) = 2

∫ u

0

dλ√
−g(0)(λ)guu(λ)

∫ λ

uH

dξ
√
−g(0)(ξ)gxx(ξ) . (G.25)

G.2 Summary of the transport coefficients for hydro-

dynamic simulations

The equations of motion for the Israel-Stewart-like theory in flat spacetime are Eqs.
(8.80) and (8.81) together with the conservation equations (8.5). The 13 transport coef-
ficients in this theory, namely η/s, ζ/s, τπ, τΠ, τ ∗π , λ1, λ2, λ3, λ4, ξ1, ξ2, ξ3, and ξ4 were
discussed already in the main text but here we gather the formulas that describe them in
a single place with the intention to facilitate their use in hydrodynamic simulations.

Besides η/s = 1/(4π), the shear relaxation coefficient τπη/T 2 is described by the
function in Eq. (8.57) with parameters in Table 8.2. ζ/s is described by the fitting function
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in Eq. (8.67) with the parameters in Table 8.3. The lower bound for the bulk relaxation
coefficient τΠT is described by Eq. (8.77) with parameters in Table 8.4. The coefficients
λ3 = −λ4 = 2κ∗, where κ∗ in Eq. (8.12) is defined in terms of the coefficient κ. One can
find a fit for κ/T 2 in Eq. (8.57) with parameters in Table 8.1. The coefficients λ1 and
λ2 can be found in Eq. (8.82). Moreover, the coefficients ξ1, ξ2, and τ ∗π are found in Eqs.
(8.83) and (8.84), respectively. The final coefficients ξ3 and ξ4 are given by Eqs. (8.69)
and (8.70) and can be computed using the results for the previous coefficients discussed
above. Furthermore, in all of these fitting functions and tables, the parameter Tc is equal
to 143.8 MeV.

Given that the thermodynamic properties of the model are very similar to those found
on the lattice [374] when T ∼ 130−450 MeV, if one wants to use the transport coefficients
computed in this thesis in hydrodynamic simulations of the QGP formed in heavy ion
collisions one may just use directly an interpolation for the lattice data when computing
c2
s and the entropy density s needed in the evaluation of the transport coefficients.

G.3 Linear instability of the gradient expansion at 2nd

order

In this Section we investigate the linear stability properties of a fluid described by the
2nd order gradient expansion theory in (8.8) and (8.9) (in flat spacetime) around static
equilibrium. In a linear analysis, the relevant linear terms involving the dissipative part
of the energy-momentum tensor are

πµν = −ησµν + ητπDσ
<µν> ,

Π = −ζθ + ζτΠDθ . (G.26)

We follow Refs. [383,385,386,428] and consider linear perturbations around a static back-
ground. In order to investigate the stability of the sound channel, it is sufficient to study
the effect of the perturbations

ε = ε0 + δε(t, x) ,

P = P0 + δP (t, x) ,

uµsound = (1, 0, 0, 0) + (0, δux(t, x), 0, 0) ,

η = η0 + δη(t, x) , τπ = τπ,0 + δτπ(t, x) ,

ζ = ζ0 + δζ(t, x) , τΠ = τΠ,0 + δτΠ(t, x) . (G.27)
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In this case, the relevant terms for linear perturbations are

θ = ∂xδu
x ,

σxx =
4

3
∂xδu

x +O(δ2) ,

πxx = −4

3
η0∂xδu

x +
4

3
η0τπ,0∂x∂tδu

x +O(δ2) ,

Π = −ζ0∂xδu
x + ζ0τΠ,0∂t∂xδu

x +O(δ2) . (G.28)

Using these results in the conservation equations (8.5), one obtains the following differ-
ential equation for the sound disturbance4[

∂2
t − c2

s,0∂
2
x −

(
4

3

η0

s0

+
ζ0

s0

)
∂2
x∂t +

(
4

3

η0

s0

τπ,0 +
ζ0

s0

τΠ,0

)
∂2
x∂

2
t

]
δux(t, x) = 0 , (G.29)

where s0T0 = ε0+P0. In Fourier space, for δux(t, x) = δux0 e
i(kx−ωt), one finds the dispersion

relation

ω2 − c2
s,0k

2 +

(
4

3

η0

s0

+
ζ0

s0

)
iωk2 −

(
4

3

η0

s0

τπ,0 +
ζ0

s0

τΠ,0

)
ω2k2 = 0 . (G.30)

While the equation above can be solved exactly, when it comes to the stability properties
of these modes it is sufficient to look at the sum of the roots [387]. For the polynomial
corresponding to sound disturbances, the sum of the two roots gives

ω1 + ω2 =
i
(

4
3
η0

s0
+ ζ0

s0

)
(

4
3
η0

s0
τπ,0 + ζ0

s0
τΠ,0

)
k2 − 1

. (G.31)

Notice that for k larger than a critical wavenumber ksoundc defined by

ksoundc =
1√

4
3
η0

s0
τπ,0 + ζ0

s0
τΠ,0

, (G.32)

the sum of the roots adds up to a positive imaginary number. Therefore, for k > ksoundc

one of the modes has a positive imaginary part and is, thus, unstable.
Note that in the limit when τπ,0 , τΠ,0 → 0 one finds that ksoundc diverges, which is in

agreement with the fact that NS theory is stable against small perturbations in a fluid at
rest [385]. Clearly, for a moving fluid the stability properties become more involved but it
is possible to show that the same type of problems that appears in NS theory also appear

4Note that we use dimensionless variables t→ t T0 and x→ xT0 and, correspondingly, ω → ω/T0 and
k → k/T0.
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in this case [387]. However, we remark that hydrodynamics is only expected to be valid
in the low frequency, large wavelength limit. Nevertheless, the instability found here at
finite wavenumber motivates the search for a UV completion of this theory (for instance,
the one discussed in Section 8.6) that is linearly stable and can, therefore, be safely used
in numerical simulations.

A larger critical wavenumber, kshearc , appears in the shear channel. Linear stability of
shear modes can be studied by choosing a flow disturbance of the kind uµshear = (1, 0, 0, 0)+

(0, 0, δuy(t, x), 0) while the other relations in Eq. (G.28) remain valid (see [428]). This leads
to the following dispersion relation

ω

(
1− η0

s0

τπ0k
2

)
+ i

η0

s0

k2 = 0 , (G.33)

which can be easily solved to give

ω(k) =
i η0

s0
k2

η0

s0
τπ,0k2 − 1

,

kshearc =
1√
η0

s0
τπ,0

> ksoundc . (G.34)

For a recent study involving the first nonlinear corrections to the stability analysis and
the propagation of waves in relativistic hydrodynamics see, for instance, [429].
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