. symmetry 2,940

Article

On Fluxbrane Polynomials for
Generalized Melvin-like Solutions
Associated with Rank 5 Lie
Algebras

Sergey V. Bolokhov and Vladimir D. lvashchuk

Special Issue
Dynamical Systems and Differential Equations. Integral Operators and Inequalities. Polynomial:

Theory. Methods and Applications

Edited by
Prof. Dr. Gastao Silves Ferreira Frederico and Prof. Dr. Moulay Rchid Sidi Ammi



https://www.mdpi.com/journal/symmetry
https://www.scopus.com/sourceid/21100201542
https://www.mdpi.com/journal/symmetry/stats
https://www.mdpi.com/journal/symmetry/special_issues/Dynamical_Systems_Differential_Equations
https://www.mdpi.com
https://doi.org/10.3390/sym14102145

symmetry

Article

On Fluxbrane Polynomials for Generalized Melvin-like
Solutions Associated with Rank 5 Lie Algebras

Sergey V. Bolokhov !

check for
updates

Citation: Bolokhov, S.V,; Ivashchuk,
V.D. On Fluxbrane Polynomials for
Generalized Melvin-like Solutions
Associated with Rank 5 Lie Algebras.
Symmetry 2022, 14, 2145. https://
doi.org/10.3390/sym14102145

Academic Editors: Jan Awrejcewicz

and Sergei D. Odintsov

Received: 20 September 2022
Accepted: 10 October 2022
Published: 14 October 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Vladimir D. Ivashchuk 1%*

Institute of Gravitation and Cosmology, Peoples’ Friendship University of Russia (RUDN University),

6 Miklukho-Maklaya Street, 117198 Moscow, Russia

Center for Gravitation and Fundamental Metrology, All-Russian Research Institute of Metrological Service
(VNIIMS), 46 Ozyornaya St., 119361 Moscow, Russia

*  Correspondence: ivas@vniims.ru

Abstract: We consider generalized Melvin-like solutions corresponding to Lie algebras of
rank 5 (A5, B5, C5, D5).
with five Abelian two-forms and five scalar fields. They are governed by five moduli func-
tions Hs(z) (s =
tial master equations. The moduli functions are polynomials of powers (ny,ny, 113,14, 15) =
(5,8,9,8,5),(10,18,24,28,15), (9,16, 21,24, 25), (8,14, 18,10, 10) for Lie algebras As, Bs, Cs, Ds, re-
spectively. The asymptotic behavior for the polynomials at large distances is governed by some

The solutions take place in a D-dimensional gravitational model

1,..,5) of squared radial coordinates z = pz, which obey five differen-

integer-valued 5 x 5 matrix v connected in a certain way with the inverse Cartan matrix of the
Lie algebra and (in As and Ds cases) with the matrix representing a generator of the Z,-group of
symmetry of the Dynkin diagram. The symmetry and duality identities for polynomials are obtained,
as well as asymptotic relations for solutions at large distances.

Keywords: Melvin solution; fluxbrane polynomials; Lie algebras

MSC: 11C08; 17B80; 17B81; 34A05; 35Q75; 70599

1. Introduction

In this article, we deal with a higher dimensional generalization of Melvin’s solu-
tion [1], which was studied earlier in reference [2].

The model from reference [2] is described by metric, n Abelian 2-forms, and [ > n scalar
fields. Here, we study special solutions with n = [ = 5, which are governed by a 5 x 5
Cartan matrices (Aij) corresponding to Lie algebras of rank 5: As, Bs, Cs, and Ds. We note that
reference [2] contains a special subclass of fluxbrane solutions from reference [3].

We note that Melvin’s solution in the 4-dimensional space-time describes the grav-
itational field of a magnetic flux tube. The multidimensional analog of such a flux tube,
supported by a certain configuration of the fields of forms, is referred to as a fluxbrane.
The appearance of fluxbrane solutions was motivated in past decades by superstring /M-
theory models. A physical relevance of such solutions is that they supply an appropriate
background geometry for studying various processes, which involve branes, instantons,
Kaluza—Klein monopoles, pair production of magnetically charged black holes, and other
configurations that can be studied with a special kind of Kaluza—Klein reduction of a certain
higher dimensional model in the presence of the U(1) isometry subgroup. (The readers
who are interested in generalizations of the Melvin solution and fluxbrane solutions may
be addressed to references [4-19], and references therein.)

The fluxbrane solutions from reference [3] were described by moduli functions
Hs(z) > 0 defined on (0, +00), where z = p? and p is a proper radial coordinate. The
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moduli functions Hs(z) were obeying n master equations (equivalent to Toda-like equa-
tions) governed by a matrix (A, ), and the following boundary conditions were imposed:
Hs(+0)=1,s=1,...,n.

In reference [2] the matrix (Asy) was assumed to coincide with a Cartan matrix
for some simple finite-dimensional Lie algebra G of rank n. In this case according to
the conjecture from reference [3] the solutions to master equations with the boundary
conditions H;(40) = 1 imposed are polynomials

s
Hy(z) =1+ Y P2~ )
k=1

Here Ps(k) are constants, Ps(ns) Z# 0 and

n
ne=2Y A%, @)

s'=1

with the notation assumed: (A%') = (A,y)~'. Here, n; are integer numbers, which are
components of the twice-dual Weyl vector on the basis of simple co-roots [20].

The functions H; (so-called “fluxbrane polynomials”) describe a special solution to
open Toda chain equations [21,22], which correspond to simple finite-dimensional Lie
algebra G [23].

Here we study the solutions corresponding to Lie algebras of rank 5. We prove some
symmetry properties, as well as the so-called duality relations of fluxbrane polynomials.
The duality relations describe the behavior of the solutions under the inversion p — 1/p.
They can be mathematically understood in terms of the groups of symmetry of Dynkin
diagrams for the corresponding Lie algebras. For this work, these groups of symmetry are
either identical (for Lie algebras Bs, Cs) or isomorphic to the group Z; (for Lie algebras As,
Ds). The duality identities may be used in deriving a 1/p-expansion for solutions at large
distances p. The corresponding asymptotic behaviors of the solutions are presented.

The analogous consideration was performed earlier for the case of Lie algebras of
rank 2: Ay, By = Cy, Gy in reference [24], and for Lie algebras of rank 3: A3, B3, C3 in
reference [25], for rank 4 non-exceptional Lie algebras A4, By, C4, D4 in references [26,27]
and for exceptional Lie algebra F; in [27]. Moreover, in reference [28], the conjecture
from reference [3] was verified for the Lie algebra E¢ and certain duality relations for six
E¢-polynomials were found.

2. The Setup and Generalized Melvin Solutions
We deal with the (smooth) manifold

M = (0,+00) x My x My, 6)

where M; = S' and My is a (D — 2)-dimensional manifold of signature (—, +, ..., +), which
is supposed to be Ricci-flat.
The action of the model reads

12 % s
5= [ @ lgl{ Ris] — dug Nomgtone® - 3 L explhgl(F2). @
s=1

Here, ¢ = gumn (x)dxM @ dxN is a (smooth) metric defined on M, § = (¢*) € R is
a vector that consists of scalar fields, ¥ = dAS = %FIS\ANdxM A dxN is a form of rank 2,
As = (A?) € RS is the vector of dilaton coupling constants, s = 1,...,5;a = 1,...,5. In (4) we
denote [g| = | det(gmn )|, (F*)* = Fyy pp, FRy,n, 8 N1 gM2M2

We studied a family of exact solutions to the field equations, which correspond to the
action (4) and depend on the radial coordinate p. These solutions read as follows [2] (for
more general fluxbrane solutions, see [3])
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5 5
g= (H HSZhs/(D72)) {dp ®dp + (H H52h5>p2d(]§®d(]§+g2}, (5)
s=1 s=1
MY
exp(¢”) = [TH™, (6)
s=1
5
F* = g5 (H H AS’)MPAdqb, @)
I=1

s,a=1,..,5 where g1 = d¢ ® d¢ is a metric on a one-dimensional circle M; = St and g2 is
a metric of signature (—, +, ..., +) on the manifold M,, which is supposed to be Ricci-flat.
Here, g5 # 0 are constants.

In what follows, we denote z = p?. Here, the functions Hs(z) > 0 obey the set of
non-linear equations [2]

() - PsllinAS’f ®)
with the boundary conditions imposed
Hs(+0) =1, )
where 1
Py = K3, (10)

s =1,..,5. Condition (9) prevents a possible appearance of the conic singularity for the
metric at p = +0.
The parameters h; obey the following relations

hs =K;!,  Ks=Bs >0, (11)

where ,
le =1+ ﬁ + )\s)\l, (12)

s, =1,...,5. The formulae for the solutions contain the so-called “quasi-Cartan” matrix
(Ast) = (2Bgi/Bu).- (13)

Here, we study a multidimensional generalization of Melvin’s solution [1] for the case
of five scalar fields and five 2-forms. In the case when scalar fields are absent, the original
Melvin’s solution may be obtained here for D = 4, one (electromagnetic) 2-form, M; = st
(0< ¢ <2m), My =R?,and ¢? = —dt ® dt + dx @ dx.

3. Solutions Related to Simple Classical Rank 5 Lie Algebras

Here, we deal with solutions corresponding to Lie algebras G of rank 5. In this case,
the matrix A = (Ag;) should coincide with one of the Cartan matrices
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2 -1 0 0 0 2 -1 0 0 0
-1 2 -1 0 0 -1 2 -1 0 0
(Ag)=|0 -1 2 -1 0|, |0 -1 2 -1 o0 |,
0 o -1 2 -1 0 o -1 2 =2
0 0 0o -1 2 0 0 0o -1 2
2 -1 0 0 0 2 -1 0 0 0
-1 2 -1 0 0 -1 2 -1 0 0
0 -1 2 -1 0|, 0 -1 2 -1 -1]. (14)
0 o -1 2 -1 0 0o -1 2 0
0 0 0o -2 2 0 0O -1 0 2

for G = As, Bs, Cs, Ds, respectively.
The graphical presentation of these matrices by Dynkin diagrams is given in Figure 1.

®
1

®
2

®
3

@ @ @ @ @ *——0 ® L @ *——0
4 5 1 2 3 4 5 1 2 3 4 5
4
1 2 3
5

Figure 1. Dynkin diagrams for the Lie algebras As, Bs, Cs, Ds, respectively.

Due to (11)—(13), we obtain
~D-3

Ks = A2 1
S D _ 2 S/ ( 5)
where h; = K;!, and

- S 1 D-3

AsAp = EKIASI ~ D55 = Gy, (16)

s,1 =1,2,3,4; (15) is a special case of (16).

Polynomials. Due to the conjecture from reference [3], the set of moduli functions
Hi(z), ..., Hs(z), which obey Equations (8) and (9) with any matrix A = (Ag) from (14), are
polynomials. Due to relation (2), the powers of these polynomials are the following ones:
(nq1,n2,n3,n4,n5) = (5,8,9,8,5), (10,18,24,28,15), (9, 16,21, 24, 25), (8,14, 18, 10, 10) for Lie
algebras As, Bs, Cs, Ds, respectively.

Here, we verify (i.e., prove) the polynomial conjecture from reference [3] by solving
the set of algebraic equations for the coefficients of the polynomials (1), which follow from
master Equation (8).

In what follows (in this section), we present structures (or “truncated versions”) of
these polynomials. In Appendix A, we present the total list of these polynomials, which
were obtained by using a certain MATHEMATICA algorithm. Given Cartan matrix Ay, this
algorithm uses a polynomial ansatz (1) for Hs(z) to write and solve Equation (8) as a system

of non-linear algebraic equations on the corresponding polynomial coefficients Ps(k). The
problem is that in the case of higher ranks, this system becomes quite complicated, so the
direct use of built-in “solve’-like commands causes computational fails. To be more efficient,
the algorithm uses the adapted computational procedure based on a certain recurrence
property of the algebraic system under consideration. According to this property, among

(ko)

the full set of variables Ps(k) (k =1, ..., ns), one can single out a certain “starting” subset Ps ko ,
obeying the closed subsystem of equations, and resolving the remaining equations on each
k-th step using the variables found in the previous step. As soon as all variables are found,
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the algorithm writes down the obtained fluxbrane polynomials and checks the correctness
of the obtained solution by direct substitution into the original equations. After that, the
algorithm directly verifies symmetry and duality properties for the obtained polynomials,
which are discussed below.

Here, as in reference [23], we use the rescaled parameters

ps = Ps/ns. (17)
As-case. For the Lie algebra As, the polynomials have the following structures

Hy =1+ 5p1z + 10p1p2z2 + 10p1 p2paz> + 5p1papapaz® + p1papspapsz>,

Ha =1+ 8paz + (10p1pa + 18pap3)z> + - - - + (10p1p3p3pa + 18p1p3papaps)z® + 8p1papapapsz’ + pipapapapsz’,
Hz =1+ 9p3z + (18paps + 18psps)z® + - - - + (18p1p}p3paps + 18p1p2p3pips)z” + 9p1p3pipipsz® + pipspapins?’,
Hy =1+ 8paz + (18paps + 10paps)z> + - - - + (18p1papapips + 10p2p3pips)z® + 8p1papipips?’ + pipaparapsz’,
Hs =14 5psz + 10;74;7522 + 1Op3p4p5z3 + 5p2p3p4p5z4 + p1p2p3p4p5z5.

Bs-case. For the Lie algebra Bs, we obtain the following structures of the polynomials
Hy =14 10p12 + 45p1pyz* + - -+ + 45p1 pap3pip3z° + 10p1 p3p3pip3z’ + pip3pipipsz"”,

Hy =1+18paz + (45p1p2 +108p2p3)z* + - - - + (108pip3p3pps +45p1p3papsps)2'C + 18pipspapapsz +
pipspapipaz's,

Hz =1+ 24psz+ (108p2p3 +168p3ps)z® + - - + (168p7 p3 p3pips + 108pT p3p3peps)2** + 24pTpap3pipsa™ +

ppspsppez™,

Hy =1+428pyz+ (168p3ps +210psps)z* + - - - + (210p3 p3 p§pips + 168pi p3p3pips) 2 + 28pipapipipsz* +

pipapsppEz™,

Hs =1+ 15p5z + 105p4psz® + - - - + 105p1 psp3p3paz’® + 15p1 papapapaz™® + p1p3papipez®.

Cs-case. For the Lie algebra Cs, the polynomials have the following structures

Hy =1+9p1z+36p1paz” + - - - + 36p1p2p3p3pse’ + 9p1p3pipipsz® + pipapspipsz’,

Hy =1+16paz + (36p1pa + 84papa)z® + - - - + (84pTp3p3paps +36p1pap3pap3 )zt + 16pipa p3ppdz’® +

PipIPsPaPEZ'°,

Hy =1+21p3z+ (84paps +126p3pa)2® + - -+ (126p3p3p3p3p3 + 84pipap3pip3)z'” + 21pipsp3pspaz™ +
2..4.,6.,6,,3,21
P1P2P3P4P52",
Hy =1+ 24pyz + (126p3ps +150paps)z> + - -+ (150pip3pspipa + 126p1p3p3pips)2” + 24p p3pspipsz™ +

2. 4.6 8 4. 24
P1P2P3P4PsZ"",
5,25

Hs =1+ 25p5z + 300p4psz” + - - - + 300pipsp§pipaz™ + 250 p3pspipaz™ + pipspspapez®.

Ds-case. For the Lie algebra D5, we obtain the following structures of the polynomials

Hy =1+ 8p1z+28p1paz® + - - - + 28p1p2p3papsz® + 8p1p3papapsz’ + pipapspapsz’,
Hy =1+ 14poz + (28p1pa +63papa)z® + - - - + (63pTp3p3paprs +28p1pap3pp3 )21 + 14pipa pspipdz™® +

pipap3pipsz",

Hz =1+ 18psz + (63p2ps +45papa +45paps)z* + - - -+ (45pTpsp3pap3 + 45pTpspapipa + 63pipspapaps)z® +

18p3p3p3papaz’ + pipapspipaz'®, -

Hy =1+ 10p4z + 45p3pyz® + - - - + 45p1p3p3papsz® + 10p1psp3pipsz’ + pipapapspaz’?,
Hs =1+ 10psz + 45p3psz® + - - - + 45p1 p3p3papdz® + 10p1 p3p3papaz’ + prp3pipipaz.

Now we denote

Hs = Hy(z) = Hs(z, (pi)),  (pi) = (p1, P2, P3, P4, P5)- (18)

The polynomials have the following asymptotic behaviors

5

Hs = H;(z, (pi)) ~ (H(Pz)”SI)Z”S = H(z (pi)), asz— oo, (19)

=1
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where we denote by v = (v*!) the integer-valued matrix, which has the form

11111 22222 2 222 1
12221 2 4 4 4 4 2 4 4 4 2
v=1_1232 1|, |2 46 6 6|, |2 46 6 3],
12221 2 4 6 88 2 4 6 8 4
11111 12345 2 4 6 85
2 2211
2 4 4 2 2
2 46 3 3 (20)
12322
12322

for Lie algebras As, Bs, Cs, D5, respectively. It may be readily verified that the matrix
v = (1°!) obeys the following identity

5
Y vl =n, s=1,234,5. (21)
=1

It should be noted that for Lie algebras Bs, Cs, the v-matrix coincides with the twice-
inverse Cartan matrix A‘l, ie.,

v(G) =2A"Y, G=BsCs, (22)
while in the A5 and Ds cases, we have a more sophisticated relation
v(G) =AY (1+P(G)), G=As,Ds. (23)

Here, we denote by the I 5 x 5 identity matrix and by P(G) - a matrix corresponding to
a certain permutation o € S5 (S is the symmetric group) by the relation: P = (P]’) = (53(].) ),
where o is the generator of the group G = {r,id}. G is the group of symmetry of the
Dynkin diagram for As and Ds, which act on the set of the corresponding five vertices
via their permutations. In fact, group G is isomorphic to the Z; group. Here, we present
the explicit forms for the permutation matrix P and the generator ¢ for both Lie algebras
A 5/ D5I

00001
00010

P(As)=10 0 1 0 0|, o:(1,23,4,5)  (54,3,2,1); (24)
01000
10000
10000
01000

P(Ds)=|0 0 1 0 0|, 0:(1,234,5) — (1,2,3,5,4). (25)
00001
00010

We note that the above symmetry groups control certain identity properties for poly-
nomials H;(z).

We denote p; = p,; for the As and Ds cases, and p; = p; for Bs and Cs cases
(i=1,2,3,4,5). The ordered set (p;) is called a dual one to the ordered set (p;).

By using MATHEMATICA algorithms, we verified the validity of the following identities.

Symmetry relations.
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Proposition 1. The fluxbrane polynomials, corresponding to Lie algebras for As and Ds, obey for
all p; and z > O the following identities:

Hy(s)(z, (pi)) = Hs(z, (pi)), (26)

where o € Ss5,5 = 1,...,5 is defined for each algebra by Equations (24), (25). Relations (26) may
be called symmetry ones.

Duality relations.
Proposition 2. The fluxbrane polynomials, which correspond to Lie algebras As, Bs, Cs, Ds,
satisfy for all p; > 0 and z > 0 the following identities

Hy(z, (pi)) = HE (z, (pi)) Hs (71, (p71), (27)

s=1,2,3,4,5. Relations (27) may be called duality ones.
Fluxes. Now, we place our attention on the oriented 2-dimensional manifold M, =
(0, +00) x S1. We calculate the flux integrals over this manifold:

400
o= [ =2 / dppBB°. 28
" ™), aee (28)
Here,
5
B =g, [[H ™. (29)
=1

Due to the results of reference [29], the flux integrals ®° read
O° = 4rtngg; Lhs, (30)

s =1,2,3,4,5. Here, as in a general case [29], any flux ®° depends upon one integration
constant g; # 0, while the integrand form F° depends upon all constants: 41, 42,43, 94, 95

We also note that by placing q; = 0, we obtain the Melvin-type solutions corresponding
to classical Lie algebras A4, By, C4, and Dy, respectively, which were analyzed in reference
[26]. The case of rank 3 Lie algebras was considered in [25]. (For the case of the rank 2 Lie
algebras, see reference [24].)

Special solutions. By putting p; = p» = p3 = ps = p5 = p > 0 we obtain binomial
relations

Hs(z) = Hs(z; (p, p,p pop)) = (1+ p2)™, (31)

which obey the master Equations (8) with boundary conditions (9) imposed with parameters
gs, satisfying the following relations

1
ZKS‘??/"S =P (32)

s=1,2,3,4,5.
Asymptotic relations.
Now we present the asymptotic relations as p — oo for the solution under consideration:
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5. ,\2/(D-2)
Sas = (H pll) o*4 {dp ® dp (33)

(l—[pm) 2240024y & dp + g }

5
Pas = Z hs)\g(z v*l'In p1 +2nsInp), (34)
s=1 =1
5 = AsPs e dp A dg, (35)
a,s =1,2,3,4,5, where
5 5
g =Y hv', A=2(D-2)"'Y nhs, (36)
s=1 s=1

and in (35) we put § = o for G = As, and 6 = id for G = Bs, Cs, Ds.
Now, we explain the appearance of these asymptotical relations. Indeed, due to
polynomial structures of moduli functions, we have

5

~ Csp™™, Cs = H(pl)"SI, (37)
=1

as p — +oo. From (29), (37) and the equality } | Ayn; = 2, following from (2), we obtain

B ~ qs Cs 74, _ Hp—(AV . (38)

s=1,2,3,4,5.
Using (23) and (38) we have for the As-case

CS — > _(I+P)SI _ > 752];7 o(s) _ . —1,—1 (39)
= ﬂpz = ﬂpl = Ps Pos)

Similarly, due to (22) and (38), we obtain for Lie algebras Bs, Cs, Ds:

5 —24! 2
=11Ip, " =ps" (40)
=1

We note that for G = Bs, Cs, D5 the asymptotic value of form F;; depends on gs,
s =1,2,3,4,5. In the As-case, F;; depends on q; and g5 for s = 1,5 and g, 44 fors = 2,4
and on g3 for s = 3.

4. Conclusions

In this paper, we studied a family of generalized multidimensional Melvin-type
solutions which correspond to simple Lie algebras of rank 5: G = As,Bs,Cs, Ds.
Any solution of this family is ruled by a set of 5 polynomials Hs(z) of powers
ns, s = 1,2,3,4,5. The powers of these polynomials read: (nq,ny,n3,1n4,15) =
(5,8,9,8,5),(10,18,24,28,15), (9, 16,21, 24,25), (8,14, 18, 10, 10) for Lie algebras As, Bs, Cs,
Ds, respectively. In Appendix A, we present all of these polynomials calculated by using
a certain MATHEMATICA algorithm. In fact, these (so-called fluxbrane) polynomials
determine special solutions to open Toda chain equations [23], which correspond to the Lie
algebras under consideration and may be used in various areas of science.
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The moduli parameters p; of polynomials Hs(z) = H;(z, (ps)) are related to parame-
ters g5 by the relation ps; = Ksq2/ (4ns), where K; depends upon the total dimension D and
dilaton coupling vectors A by the relation (15). For D = 4, the parameters gs determine
(up to a sign +) the values of the colored magnetic fields on the axis of symmetry.

Here, we found the symmetry relations and the duality identities for our rank 5
fluxbrane polynomials. These identities may also be used in deriving 1/p-expansion
for solutions under consideration at large distances p, e.g. for asymptotic relations (as
p — +0o0), which were obtained in the paper.

By using the results of reference [23], one can construct black hole solutions corre-
sponding to rank 5 Lie algebras for the model under consideration along the lines of how it
was done in [26] for the rank 4 case. In the rank 5 case, one will need a thorough analysis of
horizons in black hole metrics governed by fluxbrane polynomials extended to negative
values of variable z. For the dyonic black hole solutions corresponding to rank 2 Lie alge-
bras, such an analysis was started in references [30,31] (see also [32]). The proper analyses
of black hole solutions corresponding to Lie algebras of ranks 3 and 4 are also desirable.
This may be the subject of our future papers.
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Appendix A
Appendix A.1. The List of Polynomials
As-case. For the Lie algebra As = s/(6), the polynomials read

Hy =1+ 5p1z + 10p1 p22* + 10p1p2p3z® + Sp1papapazt + pipapspapsz®

Hy =1+8paz + (10p1p2 + 18pap3)z* + (40p1p2ps + 16papaps)z® + (20p1 p3ps + 45p1p2p3ps +
5p2papaps)z* + (40p1p3papa + 16p1p2pspaps)z” + (10p1p3p3pa + 18p1p3pspaps)z® +
8p1p3p3papsz’ + p1pap3pipsz

Hz =1+9p3z+ (18p2p3 + 18p3pa)z? + (10p1 p2ps + 64papaps + 10papaps)z° + (45p1 p2papa+
36p2p3pa +45pap3paps)z* + (45p1pap3pa +36p1p2p3paps +45pap3paps)z” + (10p1p3p3ps +
64p1 papapaps +10p2p3p3ps)2° + (18p1p3p3paps + 18p1p2p3pips)2” +9p1pap3pipsz® +
P1PaPaPIPsZ

Hy =1+8psz+ (18p3ps + 10paps)z2 + (16p2p3pa+40p3paps)z° + (5p1p2papa + 45p2p3paps +
20p3pips)zt + (16p1p2pspaps + 40p2papips)z” + (18p1p2papips + 10p2p3pips)z® +
8p1p2p3pipsz’ + p1pappips’

Hs =1+ 5psz + 10p4ps5z* + 10p3papsz® + 5papapapsz* + p1papapapsz’

Bs-case. For the Lie algebra Bs = so(11), we obtain

Hy =1+10p1z +45p; p222 +120p4 p2p323 +210p, p2p3p4z4 +252p; p2p3p4p525 +210p4 p2p3p4p§26 +

120p1 p2papip3z’ + 45p1p2p3pips2® + 10p1psp3pipsz’ + pivspapspdz’®

Hy =1 + 18pyz + (45p1p2 + 108pap3)z? + (480p1paps + 336papaps)z® + (540p1p3ps +
1890p1pap3pa + 630p2p3paps)z* + (3780p1 p3papa +4032p1 papspaps -+ 756p2papaps)z® +
(2520p1 p3p3pa + 102061 p3p3paps + 5250p1 pap3 papt + 588p2papips) z° + (12096p1 p3p3paps +
15120p1 p3papapi + 4320p1 p2papips +288pap3pipd)z” + (5292p1 pap3pips + 22680p1 pap3papt +
13500p1 p3papps +2205p1pap3paps + 81pap3pips)2® +48620p1 psp3pspdz’ + (81pipapipars +
2205p1 p3p3p3p3 +13500p1 p3p3p3p3 + 226801 p3p3pap3 +5292p1 p3p3paps )zt + (288p papspaps +
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4320p1 p3 p3paps +15120p1 pop3paps +12096p1 psp3pspd)z' + (588pip3papips +5250p1 papaps pé +
10206p1 p5p3papa +2520p1 p3pspaps)z'> + (756p1papapaps +4032p1papapapa + 3780p1 papapaps )z +
(630p1p3p3paps +1890p1 p3papips + 540p1 papapips)z' + (336pTpap3paps + 480p1 pap3pipa)z" +
(108pTp3p3psps + 45p1p3p3pirs)z'® + 18pipapapiraz’ + pipaparspsz'®

Hs =1 + 24psz + (108paps + 168pspa)z* + (120p1p2ps + 1344papsps + 560pspaps)z® +
(1890p1 p2paps + 2016pop3pa + 5670papspaps + 1050pspap?)zt + (5040p1pap3ps +
9072p1p2papaps + 15120p2p3paps +12096papspaps + 1176p3 pip3)z° + (2520p1p3p3pa +
43008p1p2p3paps +11760p2p3pips +21000p1 paps papd + 40824pa p3papd + 14700p2p3pips +
784p3p3p3)z° + (27216p1 p3p3paps +42336p1 p2p3pips +126000p1 p2p3paps +27000p1 p2p3pips +
123552p,p3p2p2)27 + (47628p1p3p2paps + 90720p: papipap? + 424710p1 papipapt +
3969p3p3p3ps + 432002 p3pips + 98784pap3pips + 26460p2p3pip3)2° + (14112p1 p3p3pips +
434720p1 p3p3pip3 + 147000p1 pap3pips + 17496 p5 p3pi p5 + 4082401 pap3pips + 86016p2 p3pips +
117600p1 p2p3p3ps +82320p2p3pap2)2° + (1296p7 pa p3paps + 2917201 p3p3pips + 567000p1 p5p3paps +
370440p1 p2p3p3ps + 37800p5p3paps + 190512p1 p3p3pipa + 387072p1 paps papa +90720p2 p3pipa +
24696p2p3pips)z. + (10584pip3p3pips + 52920p1p3p3pips + 960960p1 p3papips +
127008p1 p3p3p3ps + 680400p1 p3p3 pspa + 4445281 pap3p; pi + 45360p3 p3p3pa + 126000p1 p2p3 papt +
48384pap3pyps)z' + (9408pip3papsps +30618pT pap3p;p3 + 2572501 pap3p;p3 +252000p1p3p3paps +
1605604p1 p3p3 p3pa + 2520001 p3 p3 pa ps +257250p1 pap3p; pa + 30618p3 3 pa pa + 9408pappgps) 212 +
(48384p7 p3 p3paps +126000p1 p3p3pips +45360pT papipips +444528p1 p3p3pipE + 6804001 pip3pyps +
127008p1 p3p3p3ps + 960960p1p3p3paps + 52920p1pap3psps + 10584p3p3pips)z +
(24696p7 p3p3pap3 +90720p7 p3 p3pyp3 + 387072p1 p3p3papa + 190512p1 p5p3pips + 37800pi p3papsps +
370440p1 p3p3psps + 5670001 p3p3psps + 291720p1 p3p3pips + 1296p3p3psps)z't +
(82320p7 p5p3paps +117600p1 p3 p3 pips + 860167 p3 p3pips +408240p1 pp3 pyps + 17496pTpap3pips +
147000p1 p5p3pips + 434720p1 papspips + 14112p1 pap3pip2)z" + (26460pi p3p3pips +
98784p1p>p3paps +43200p7p3p3pips + 39693 pipapips + 424710p1 p3p3pips +90720p1 pip3paps +
47628p1p5p3papa)z'® + (123552p7 p3pipipd +27000p1 p3p3pips + 126000p1 pap3paps +
42336p1p,p3pap3 +27216p1popapap3)z" + (784pTpapapaps + 14700p3 p3p3paps +40824p7 pd pipaps +
21000p1p;p3p3p3 + 11760p7 p3 p3paps +43008p1 p3 p3pspe + 2520p1 p5p3paps)z™® + (1176pi pap3paps +
12096p3 p3 p3paps + 15120p7 ps p3pypa + 9072p1 papapa pa + 5040p1 p3papaps)z' + (1050p3 psp3paps +
5670p7p3 p3paps +2016pipap3paps + 1890p1p3 p3pape) 2> + (560pipsp3paps + 1344pTpa p3paps +
120p1p3p3p§pe) 2> + (168pip3p3paps + 108pip3p3paps)2™ + 24pi pap3pgpez™ + pipapspepez™

Hy =1+ 28paz+ (168p3ps +210paps)z* + (336p2p3pa +2240p3paps + 700paps)z> + (210p1 papspa +
5670p2p3paps +3920p3p3ps + 9450p3 pap? + 1225p3 p2)z* + (4032p1 papspaps + 17640p2p3pips +
27216p,p3pap? +49392p3pip2)z° + (15876 p1 papapsps + 11760p2p3pips +21000p: p2pspaps +
209916p2p3p;p; +19600p3pip3 + 74088ps p;ps +24500p3p3ps)2° + (18816p1 pap3pips +
195120p1 p2p3psp3 +202176p, p3p3p2 + 411600p2 pap3 p2 + 87808p3p3p2 + 158760p2 pspips +
109760p3p3p)z” + (5292p1p}p3p3ps +277830p1 papipipt + 35721 p3p3 pipa + 425250p1 papapip? +
961632p, p3p3 p3 + 176400p1 papapipa + 238140pap3 pips + 771750papapapa + 164640p3 p3p3 +
51450p3p3p2)2° + (109760p1 p3p3 pip3 + 1292760p1 pap3ps pa + 308700p3 p3 p3 p3 + 537600pa2 p3 3 pa +
4704001 pap3p3pa +907200p1 papapi pa + 2731680p2p3 pi pa +411600papapi ps + 137200p3p3pd) 2 +
(7056 p3 p3 P3P + 666680p1 p3 p3p3p3 + 1029000p1 pap3p; p3 + 340200p5 p3 pyp3 + 190512p1 p3 p3pape +
4484844, pyp3p,p3 + 833490p3 p3 p; pa + 2268000p2 p3 py p3 + 576240p2 p3p3 pa + 5250001 papapypa +
2163672p2p3psp5 + 38416p3pips)z'" + (81648p3 p3p3pips +1132320p1p3papsps + 26214721 p3p3pips +
4939200p1 p2p3p3p3 + 1632960p5p3p3p3 + 1524096p1 pop3pips + 1128960p2p3pips +
35910001 p2p3p3ps + 1000188p3p3pips +2721600p2p3p;ps + 1100736p2p3p3ps)2" +
(1666983 p3 p3p3ps + 257250p1 p3p3paps + 272160p3 p3p3paps + 6419812p1 p3pap;ps +
1190700p1 p3p3pap3 + 3111696p1 pap3pip2 + 882000p5p3psp3 + 26667201 papspsps +
6431250p1 pap3psps + 2480058p3p3pips + 2500470p1 papspyps + 540225p5p3p;ps +
3358656p2p3psp5 + 144060p2p3p3p3)z'> + (65856p3 p3p3psp + 987840p3pap3pyps +
1778112p1 p3p3pip3 + 5551504 p1 pip3pips +403200p7 p3p3pips + 10190880p1 p3p3pips +
2744000p1 p3p3p;ps + 9560880p1 p2p3psps + 4000752p3p3pips + 1053696p2p3p3ps +
470400p1 p2p3p4p3 + 635040p2p3pip2)z"> + (493920p3 p3 p3pipa + 7144203 p3papsps +
2160900p1 p3p3p3p3 +529200p1 p3p3pips + 185220093 p3p3p;ps + 3333960p1 p3 p3psps +
291600p1p3p3p3ps + 21364200p1 p3p3p3ps +291600p3p3pips + 33339601 p2p3pips +
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1852200p3 p3p3 pt +529200p1 pp3pip2 + 2160900p1 p2p3p}p3 + 714420p3 p3pi p3 +493920p,p3 pip2 )2 +
(635040p7 p p3p3p3 +470400p1 p3 p3p4ps + 10536967 p3 p3 pyps + 4000752p7 p3p3pyps +
95608801 3 p3P4Ps + 2744000p1 p3p3pips + 10190880p1 p3p3pips + 408200p3p3pips +
5551504p1 pap3pspa + 1778112p1papipsp2 + 987840p3p3psps + 65856pap3psps)z'® +
(144060p7 p3 p3p3ps +3358656p1 p3p3psps + 5402257 pp3psps + 2500470p1 p5papsps +
2480058p1 p3p3p;ps +6431250p1 p3 p3paps -+ 2666720p1p3p3p3ps + 8820000 papapsps +
3111696p1p3p3p3p3 + 1190700p1 p3p3p;p3 + 6419812p1 p3p3pip3 + 272160p3p3psp3 +
257250p1 pap3p; ps +166698p3p3pap3)2' + (1100736p3 p3p3paps +2721600pi p3p3 papa +
1000188p3p3p3p;ps +3591000p1 p3p3p3ps +1128960p] p5 p3pypa +152409p1 p3p3p; p3 +
1632960p p3p3p3ps +4939200p1 p3p3p;p3 + 2621472p1 p3pspap3 + 1132320p1 p3p3pape +
81648p3p3p;p2)z"” + (38416p7p3papips + 2163672p1p3p3paps + 525000p1 p3p3psps +
576240p1p3p3pip3 + 2268000p3 p3p3psps + 833490p7 ppspype + 4484844p1 p3pspips +
190512p1 p3p3pgp3 + 340200p1p3 p3p;p8 + 10290001 p3p3p3p8 + 6666801 p3pap;ps +
7056p3p3pgp2)z'® + (137200p1p3pap;ps + 411600p3 p3p3psps + 2731680p3 p3p3psps +
907200p1 p5p3p;3p2 + 470400p1 p3p3psp3 + 537600p7 pap3psps + 308700pTpapspaps +
1292760p1 p3 p3p3p8 + 109760p1 p3p3pgpe)z'® + (5145073 py p3pspa + 164640p7 ppipapa +
771750p3 p3p3pap3 + 238140p3ppapips + 176400p1p3p3psps + 961632p3 p3pspipe +
425250p1 p3p3pap3 + 35721pTpapapgps + 277830p1p3papips + 5292p1p3p3peps)z”) +
(109760p7p3p3p3pa + 158760pip3p3psps + 87808p7papsapspe + 411600p7pap3p;ps +
202176p3 p3p3p3ps + 195120p1 pap3pgps + 18816p1 pp3ppl)z*! + (24500p7pp3pgps +
74088p7 p5p3pape + 19600p7 p3p3pepse +209916p3 p5p3ppe + 21000p1 p3p3pspe + 11760p  p3p3 pips +
15876p1 pap3pips) 2 + (49392p3pap3pips + 27216p3p3p3pips + 17640p3p3p3pep? +
4032p1p3p3psp%)z> + (1225p7p3ppgps + 9450p3 p3papips +3920p3 pap3peps + 5670p papapspt +
210p1 p3p3p3ps )22t + (700pTp3pspips +2240p  p3p3pips + 336pip3papips) 2™ + (210pT papipips +
168p3p>p3pipR)z> + 28pTpspSpapsz” + pipspspapiz™

Hs =1+ 15psz + 105papsz> + (280p3paps + 175pap2)z® + (315papapaps + 1050pspap?)zt +
(126p1p2p3paps + 1701 papspaps + 1176pspip3)z° + (840p1 papspaps +3675p2p3p5ps +
490p3p3p3)2° + (2430p1 papspip3 + 1800pap3pip3 + 2205papapypd)z” + (2205p1 pap3pipa +
1800p1p2p3pips +2430p2p3pip3)2° + (490p1p3p3p;ps +3675p1 pap3paps +840p2p3pips)z” +
(1176p1p3p3pips + 1701p1 pap3papa +126pap3paps) 2™ + (1050p1 p3p3pap2 + 315p1 papspaps)z' +
(175p1p3p3papa +280p1p3p3paps)z' + 105p1 pip3papaz ' + 15p1papspipsz™ + pipap3pipaz®

N
[

NeJ

Cs-case. For the Lie algebra Cs = sp(5), we find

Hy =1+ 9p1z+36p1p22> + 84p1 papaz® + 126p1 papapaz® + 126p1 papspapsz® + 84p1 papapapsz® +
36p1p2p3pips?’ + 9p1p3p3paps?® + pivapipips?’

Hy =1+ 16paz+ (36p1p2 + 84p2p3)z> + (336p1p2p3 + 224p2p3pa)z> + (336p1p3ps + 1134p1 papaps +
350p2p3paps)z* + (2016p1 p3pspa +2016p1 p2p3paps +336papapips)z° + (1176p1 p5p5pa +
4536p1p5p3paps +2100p1 p2papips +196pap3pips)z° + (4704p1 psp3paps -+ 5376p1p3papaps +
1296p1 pap3paps + 64p5p3p3ps )2 +12870p1 p3p3pipsz® + (64pp3p3paps +1296p1 3 papsps +
5376p1p3p3p3ps +4704p1 p3p3paps )2 + (19603 p3p3paps +2100p1 p3 papips + 4536p1 pspapaps +
1176p1p3p5pap3)2'0 + (336p3 p3papips +2016p1 p3papaps -+ 2016p1 p3p3psp3) 2t + (350pips papsps +
1134p1p3 p3pyps +336p1p5p3pips )22 + (224pTp3 papap3 +336p1pa papsps) 2" + (84pipapapspd +
36p1pap3pyps)ztt + 16pipapapapsz” + pipapapapsz'

Hs =1+21psz+ (84p2ps + 126p3ps)z* + (84p1p2ps + 896p2pspa + 350p3paps)z® + (1134py papaps +
1176pap3ps + 3150papapaps + 525papips)z* + (2646p1papips + 4536p1papapaps +
7350p2p3paps + 5376papapips + 441p3p3ps)z° + (1176p1p3p3ps + 18816p1 pap3paps +
8400p1 pap3pips -+ 25872p2p3paps)z° + (10584p1 p3plpaps + 68112p1 paplpips +2304p3p3paps +
16464p2p3psps + 18816pap3p3ps)z” + (48510p1 p3p3paps + 48384p1 pap3pips + 8400p3p3psps +
66150p1p2p3paps +24696pap3paps + 7350p2p3paps)2° + (784pT p3p3pips + 65142p1 p3p3paps +
75264p1p3p3pyps +91854p1 pap3paps + 14336p3p3 pips + 29400p1 pap3piph + 17150p2p3p3p3)2° +
(5376p3 p3p3p3Ps + 18900p1 p3p3ps ps + 196812p1 p3 p3 pips + 42336 p1 p3p3papa + 72576 p1 papapaps +
12600p5p3p3ps +4116p2p3pip3)z™° + (4116p3p3 p3pips + 12600p3 p5p3psps + 72576 p1 papapaps +
423361 p3pApaps + 196812p1 p3p3paps + 18900p1 papspaps +5376p3papipd)ztt + (17150p3 p3p3paps +
29400p1 p3p3pyps -+ 14336pTpsp3papd -+ 91854p1 p3 p3 pipd -+ 75264p1 psp3pypd + 65142p1 pap3pyps +
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2.,.2..3.4.2
3 2p3p3p3pe + 66150p1 p3pipip3 + 8400p2 pap3pipd +
Teapapspyps)at (73501;70%}9%]02% e erfﬁg 9—+6-p(11;7828pl3(f7;f;3_;%pip% T%Z%fp%;%iﬂ%iﬂipé +
384p1p3 + 48510p1p3p3p4P5 172 2.5 143
A/ 68112p1p3p3psps + 10584p1pspspaps)z' + (25872p7psp3paps s
FoReSLELe e IRty £ I or 3pip3)z1 + (441pippapips + 5376pipipapips +
euiEIE I e O N
[onpPars ¢ 4?32171% £ ’%5? );7 + (215822?9423?0210% +896p1p3p3paps +84p1pap3pspd)zt® +
1176p1Pap3paps +1134p1papspy >19 D S S (O 3,21
(126p7p3p3p3ps + 84p%§’§ggpipi%)zz+ (+2 2{151 ,i’;;’j?fiéo;;féff i’éggg p5)2 + (1269 papaps +
Hy =1 24paz + (126p3ps + 150psps)z ’ 2ps + 7056p2p3ps +
2ps)zt + (2016p1 p2papaps + 20832p2p3psps 3Pabs
3150p2p3paps + 7350pspips)z” + 2, 44ppspips +23814p3pips +
+29400p2p5p5ps + 57344 p2p3paps 3PAPs T
12600pspips)2° + (15288p1p 23faPs 253, 0 3 ps +178752p2p2 p3ps +
+ 14400p5 p5p5ps + 50400p1 p2p3psps h3hal
8750p3p3p5)2° + (22752p1 pop3pips 5547 900p1 papapips + 98304p2p2pips +
2p3p2)z” + (16758p1 p3p3paps + 180900p1 p2p3paps 114
50400p2papyp5 +29400p3pp5)z" S 2p3ip? + 11025p2ptp2) 25 + (3136p2p2pap2ps +
98784pzp§§i’§53+ 504025% §§p3P4P§’ ;g ;713’382’56’ ;f ;5 ;5;34;;5 N 321”35’355 pap2p3p? + 194400p2 p? 1922 p2§ T
195472p1 papapyps | 1632961 papapsps 2 3y ps -+ 233100y P2 p3pps + 322812 ppp
Spapz +117600pap3pip2)z° + (29400p3 p3p3p3ps LP2P3Py Mo
P 3150002 %pfspz+142200p1p2p§p3p%+147456p%p3p4p5+255192P2P3P§1P'25>4
516096p1 p2p3p;ps + P2P3 45 2,2,2,803 935400 p2p3p3p2+268128P1P2P3P4P +
212133 90 + 50400 p3p3p ps + 75264 p 1 p5p5PLPs P1P3P3P4P5 2,2 5502
(50400p7 PzP%P%}Pg p1 haF3hab +98784p2p3pip2 )zl + (171502 p3 pipaps + 229376p1p2p3é74§9
220368p1papapyps +470400papspaps +1544§S43 ;2;3;74;92+78400p§p§p3p§+255150p1sz§P4P5+
o R SRS e e e e
229376p5p3pPaPs + P2P3P4P5 5 15°20314F 50400 3p5p3+50400P§P§P4P5)Z +
2 400p1 p3p3pap3 +75264p3papaps + P1P2P3P4P5 s
268128p1 33y ps + 95240001 33y i) Spapips + 315000p2 p3p3pap: +
3Pip3 + 147456p1 p3p3pip3 + 142200p1 p3p3 0P 1P2P3pPabs
(255192pp3p3pips + 1h2F3Pap ZoApepd + 2040002 phpapd) it +
233100p1p5p3paps + P2P3P4P5
096p1 p3p3p3pE + 322812p1 p3papsp2 + 2 e
>16096p1p2p3paps, +274400p{p3p3pipd + 19400t piplpipl + SN600p ppApIE ¢
(117600, p3p3Psps ey Spapaps +3136p5p3pipe)z"” + (11025p7pap3pips +
2p3p3paps + 163296 p1 p3papa P + 143472p1 p3pipape 2P3P4P3)% bt Sl
896001912?2?354552 50400 p%p%pép2+987g4p%r)gpgpng+983O4p%p%p§p4p5+1803900p1P2P3P4P5
279300p1pappars + S0400p1 papapps + ¢ 230512 4 178752p2pAphpopd +
2)z16 + (29400p% p3p3pap3 + 50400p3 p3 p3p3p2 1P2P3PPs
L6758 p1papapipy)z + (20400 papp; Spipopd)zl” + (8750p2pdpipipt +
22752p1p3papspR)zt’ + P1P2P3PaP5
50400p; p5pap;p: + 14400p7p3p3psps + 5 Lr2P374r 3
PIPaP3PaPs + 57344p2p3p3pipd + 29400p2 p3pdpSpd + 15288P1P2P3P4£5)Z s e
2OSIApipapapis, 2 ptpeps + 208322 p3pSpipd + 2016p p3p3ppd)=? + (735002 ptpdptpd +
SRR 126y i (400521;94217831724?%: 1400pipap3pips +224pipapapaps) = +
3150p1p5papaps + 126p1p5p3p4aPs g 1r2r3rars BRIl 2r fics
3 2p3papape)z? + 24p3papSpipaz®® + pipspspipa
(150p popSpips +126p3p;p3pyps 1PRPaPapse 4 S 0u50psp2ps +
_ 2 4+ (700p3paps + 1600p2ps)z> + (700p2p3paps
Hy =1 + 25psz 4 300papsz” + ( 2 22 ps 4 26250p3p2p2) 20 +
10752p2papsps + 15876p5p;ps P3Paps)z
2500p;p3)2* + (252p1p2papaps + 212 1 78400p2 p2 p? + 175003 p3 p2) 20 +
2 200p2p3pips +37800papspips + P3P4P5 4 30
(4200p1 p2p3pips +39200p2p3pg 202 1245000, p2p2 p2 + 44800p2paplp2 +
(16200p; pgpgpigs JE 250650(?}7% Pzé Pzi ps+ 161810502]0()10;9;921;9;2%5152;§2+52025;9020;9;%’7;%’7;%P?, e szgig§ .
132300p3p3p3 )z + (22050p1 p3p3p3Ps S PLP2P3Ps Opr PP pLpE 4 353400, papRpipl 4
2pip3)z8 + (4900p3 p3p3paps + 198450p1 p3 p3pips P1P2pst
617400;92;9%;92;9%+99225P3P4§5%22 L sab 25p3pipd)z° + (50176p3p3p3pips +
+627200p2 p3p, 5 + 30625p3p 1 ps 1P2 5 4o
691200p3 p3p;pz + 137200p2p3p3pa s 23 p3p? +405000p; pop2pip? + 1048576p2p2ptp? +
2 152p1p2p3p3ps +280000p3 papap3 + P1P2P3P; 5.
798504P1P%P§P2P5+145 P1}2924334 150 212925312 1 491400 217 Pyps +
=+ (235200}71772}73194175 + plpz 3r4rs
296352p2p3pips + 245000p2p3p aps)z 2p3pdp2 + 180000p; poplpips +
2 0200p1 p2p3psps + 1075200p5p3p5ps 3PaPy
1411200;71;7%;7%;92175 34 214 2H 212135312 4+ 567001 p3 PaPs +
179200p1p5p3paps + P1P2P3P1P5
400p3p3pipe + 205800pap3pip)ztt + ( 1 3PaPabs
w0000 2 A + 2118900p; pap3pip? + 313600p3pipip? + 793800p1paPspaps + N
sesson L2rabars +945000p2p3pipd + 34300p2p3pyps)z'? + (34300p7 p3p3psps + 94500097 p3 p3psps
268800p1p2p3P4P5 2P3pabs T 2p20253 4 2118900p; p2plpip? +
2 800p1p3p3p4ps + 313600p1p3p3pips 2P3Pal
268800p1 pap3pyps + 793 Plpgz e 23,5313 205800p3 p3p3psps +
+ 179200p5p3p3p2)z > + ( P1P2P3P4Ps5
490000p3p3pip2 + 56700p1 pap3paps X 20203003 1 340000p pApplps +
2 00p1 p3papips + 1075200p2 p3p3pips 1PaPaPaPs
518400p1p3p3pips -+ 180000p1ppap) 3 2papapd)zt* + (245000p2 p3papa Pt +
3 400p1 p3p3paps +235200p3 papape)z 1P2P3PaPs
1411200}71;7%;7%;73;75_‘_491 P1§22344453 3pdpdp3 4 28000012 n2 3’9 p: +
+ 405000p1 p5p3PaPs + P1P2P3P4P5
296352pipapapyps + 1048576pipapspips 204 p0p3)215 1 (306252 phplpipd +
3 504p1p3p3paps + 50176p5p3p3ps)z 1P3P3P4Ps
145152;91;9%]0%}?2?5 78 plz 333 22949553 1 353400 3P PyP5 +
+ 691200p1psp3paps + P1P2P3P1P5
627200p7p3p3p3ps +137200P1P26P%P41T765 2pbpipiyd 1 617400p2p3pdpapd +
198450p1 p3p3pSp2 + 4900;7%2;%2;744;756)z3 + (929020251913szaép4fi 22050p1 13 ;17 é;gpg)zw-i-
25200p1 p3p3paps + 202500p2 papapSpd 4+ 115200p; p3 papsps

2
5+
+

o3
QTR
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(132300p] pypsp3p3 +44800p3 p3 p3 p3p3 + 245000p3 p3 p pl p3 + 16800p1 p3 p3pips + 25600p3 p3p3peps +
16200p1 p5p3pspe)z'® + (17500pip3p3paps + 78400pipspspsps + 37800pipspapsps +
39200p3pap3pipa + 4200p1p3papipe)z"? + (26250p3pyp3psps + 15876p1p3papsps +

10752p3 3 p3psps +252p1 pap3pyps) 22 + (2500p3 pa pspaps +9450pTpa p3psps + 700p3 papapspa )22 +
(1600p7 p3p3pps +700pi 3 p3paps) 2™ 4 300pT papSpansz™ +25pips ppipaz? + pipspspipaz®

Ds-case. For the Lie algebra D5 = s0(10), we find the following polynomials

Hy =1+ 8p1z + 28p1paz® + 56p1papsz° + (35p1papapa + 35p1p2p3ps)z -+ 56p1 papapapsz” +
28p1pap3papsz® + 8p1p3p3paps?’ + pipspapapsz®

Hy =1+ 14paz + (28p1p2 + 63p2p3)z? + (224p1 paps + 70p2papa + 70p2p3ps)z° + (196p1 p3ps +
315p1p2p3pa+315p1papaps + 175p2papaps)z* + (490p1 p3p3pa +490p1 p3p3ps + 896 p1 papapaps +
126p2p3paps)2° + (245p1 pp3pa + 245p1 pip3ps + 1764p1p3pspaps + 700p1 p2p3paps +
49p3p3paps)2® + 3432p1 p3p3papsz’ + (49p1p3p3paps + 700p1p3papaps + 1764p1 psp3paps +
245p1 pap3p3ps + 245p1p3p3paps)2® + (126p1 p3 papaps +896p1 3 papaps +490p1 p3papaps +
490p1p3p3pap3)2’ + (175pTpap3paps + 315p1p3papaps + 315p1ps papaps +196p1 p3papaps)z'0 +
(70p3pap3paps +70p papapaps + 224p1p3papapd)z' ! + (63pipapapaps +28p1p3papaps)z'> +
14p3p3p3papsz + pipspspipsz™

Hz =1 + 18p3z + (63paps + 45p3ps + 45p3ps)z* + (56p1p2ps + 280p2p3pa + 280papsps +
200p3paps)z® + (315p1papapa +315pap3ps + 315p1 papaps + 315pap3ps + 1575p2p3paps +
225p3paps)z* + (630p1papipa + 630p1 p2p3ps + 2016p1 papapaps + 5292pap3paps)z° +
(245p1p5p3ps + 245p1p3p3ps + 9996p1 p2p3paps + 1225p5p3paps + 5108pap3paps +
875p2p3p5P5 +875p2p3pap3)2° + (5616p1 p5p3paps + 12600p1 pap3 paps + 3528p5p3paps +
2520p1 pap3p3ps +2520p2p3pips +2520p1 pap3papd + 2520p2p3pap3) 7’ + (441pipsp3paps +
17172p1 p3p3paps + 2205p1 p2p3paps + 7875p1 papipips + 2205p3 p3 pa ps + 2205p1 p3papap? +
7875p1pap3papd +2205p3p3pap3 +1575pap3pip3)2° + (2450pi pap3paps +5600p1 p3p3paps +
16260p1 p3p3paps + 16260p1 p3p3pap? +5600p1 pap3pips +2450p3 p3p3p3)2° + (1575p1 p3p3paps +
2205p3 p3p3pips + 7875p1p3 Papaps 4 2205p1 p5papgps +2205p7 p5 papaps + 78751 papapaps +
2205p1 p3p3papi +17172p1p3p3paps + 441 p3papaps)2'0 + (2520p1 p3 p3psps +2520p1 p3papaps +
2520p3p3papaps +2520p1 p3p3paps +3528p1 papapaps -+ 12600p1 papapapé -+ 5616p1 papapaps )zt +
(875p1p3p3pips -+ 875pipap3paps 4 5103pTp3 p3pirs +1225p1 p3p3paps + 999601 Pap3paps +
245p1 p3p3papa + 245p1 psp3pipa)z 't + (5292p3 papapapa +2016p1 p3 ppips + 630p1 p3p3pap3 +
630p1p3p3p3p3)2"> + (225p7 pap3pap3 + 157507 3 p3paps +315pTpapapapd -+ 315p1 pap3pars +
315p3 p3p3paps + 315p1pap3paps) 2t + (200pip3 p3pips +280p7 p3papaps + 280pips papips +
56p1p3papapa)z" + (45pTp3p3paps +45pipsp3pips + 63p1paparars)z ' + 18ptpsp3paraz! +
2.4.6.,3.,3.18
P1P2P3P4P5%

Hy =1+ 10psz + 45;93;9422 + (70p2p3ps + 50;73;94;95)23 + (35p1p2p3ps + 175p2p3p4p5)z4 +
(126p1 pap3paps + 126p2p3paps)z° + (175p1pap3paps + 35p2p3paps)2° + (50p1p5p3paps +
70p1p2p3pips)z” + 45p1 pipipipsz® + 10p1papspapsz’ + prpspapapiztl

Hs =1+ 10psz + 45p3p52° + (70p2p3ps + 50p3paps)z> + (35p1papsps + 175p2p3paps)z* +
(126p1 pap3paps + 126p2p3paps)z> + (175p1pap3paps + 35p2p3paps)2® + (50p1 p3p3paps +
70p1p2p3pap3)?’ + 45p1p3p3papsz® + 10p1p3p3pap3z’ + p1pspappdz'®
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