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Abstract
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1 Introduction

This paper describes an approach to analysing meromorphic connections on Riemann
surfaces. The technique, called abelianisation, is to introduce a decorated graph I" on
a Riemann surface X in order to establish a correspondence between meromorphic
connections on vector bundles of higher rank over X and meromorphic connections on
line bundles (which we call abelian connections) over a multi-sheeted ramified cover
> — X. Namely, given a flat vector bundle £ on X, an application of the standard
local theory of singular differential equations near each pole allows one to extract
valuable asymptotic information in the form of locally defined flat filtrations on &,
first discovered by Levelt [18]. These filtrations, often called Levelt filtrations, can be
organised into a single flat line bundle £ over ¥, and £ can be recovered from £ using
the combinatorial data encoded in I".

1.1 Main result

In this paper, we restrict our attention to the simplest case of sl;-connections with
logarithmic singularities and generic residues. Our main result (Theorem 3.3) is a
natural equivalence between a category of slp-connections on X and a category of
logarithmic abelian connections on a double cover X of X. More precisely, fix (X, D) a
compact smooth complex curve with a finite set of marked points, fix the data of generic
residues along D, and choose an appropriate meromorphic quadratic differential ¢ on
X with double poles along D. Then ¢ gives rise to a double cover 7 : ¥ — X (called
the spectral curve) ramified at R C X, a graph I" on X (called the Stokes graph), and a
transversality condition on the Levelt filtrations extracted at nearby poles as dictated
by I'. Then there is a natural equivalence of categories:

slr-connections onX abelian connections on >
with logarithmic poles at D ﬁb with logarithmic poles
with very generic residues <n_r at 7~ (D) U R with fixed residues
transverse with respect to I' ® equipped with odd structure

Given a flat vector bundle £ on X, the abelianisation functor yrli‘b extracts Levelt filtra-
tions along D and glues them into a flat line bundle £ over X. In order to recover £ from
L, the main difficulty is that the naive guess that & is the pushforward .. £ is incorrect
because L necessarily has logarithmic singularities along the branch locus. The
solution is to realise the combinatorial content of the Stokes graph I" in cohomology:
we construct a canonical cocycle V on X (called the Voros cocycle) which deforms
the pushforward functor 7., as a functor, and this deformation is the nonabelianisa-
tion functor JT;I). The Voros cocycle is constructed in a completely standardised and
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combinatorial way from the Stokes graph I'. This is significant because it means V is
constructed without reference to any specific choice of £ or L, thereby setting up an
equivalence of categories.

1.2 Context: spectral networks and exact WKB

Analysis of higher rank connections using abelian connections over a multi-sheeted
cover has previously appeared in the context of spectral networks [7-10,14], and
even earlier from a different point of view in the context of the exact WKB analysis;
e.g., [4,16,21]. The purpose of our work is to give a mathematical formulation of
abelianisation of connections, and this paper is the first and important step in this
direction. Our point of view, via the deformation theory of the pushforward functor,
sheds light on the mathematical content of the methods of spectral networks and the
exact WKB analysis, unifying the insights coming from these theories. Indeed, the
local expressions for the Voros cocycle V involve precisely the same type of unipotent
matrices that appear in the pioneering work of Voros on the exact WKB analysis [21]
(we call V the Voros cocycle exactly for this reason). At the same time, the off-diagonal
terms of V are given in terms of abelian parallel transports along canonically defined
paths on the spectral curve. These appeared in the work of Gaiotto—-Moore—Neitzke
[8] which inspired the current project. In fact, one of the main achievements of this
paper is giving a clear mathematical explanation that the path-lifting rule appearing
in [8] emerges simply from the repeated application of the Voros cocycle.

1.3 Outlook

Abelianisation of connections can be seen as generalising the abelianisation of Higgs
bundles [1,13] (a.k.a. the spectral correspondence, which is a key step in the analysis of
Hitchin integrable systems and the geometric Langlands programme) to flat bundles.
Indeed, Proposition 3.6 shows that the abelianisation line bundle £ is the correct
analogue of the spectral line bundle. It was also conjectured in the work of Gaiotto—
Moore—Neitzke [8] that such a procedure of abelianisation of connections should yield
symplectic cluster coordinates on moduli spaces of meromorphic connections. This
article (which is an extension of the work the author completed in his thesis [19]) is
thus the first important step in realising this programme in mathematical terms.

1.4 Content

The article is dedicated to the proof of Theorem 3.3, which proceeds by constructing
the functors nl‘ib, 71253 and showing that they form an inverse equivalence. Propositions
3.5 and 3.6 give a summary of the main properties of the relationship between (£, V)
and its abelianisation (£, 9). We also make the curious observation that the nonabelian
Voros cocycle may itself be abelianised: there is an abelian cocycle A on the spectral
curve > which completely determines the Voros cocycle V in the sense of Proposition

3.16.
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2 Logarithmic connections and spectral curves

Throughout this paper, let X be a compact smooth complex curve and D C X a finite
set of marked points. We assume that D is nonempty with |D| > x(X) = 2 — 2gx,
where gx is the genus of X. The Lie algebra s((2, C) is denoted by sl5.

2.1 Logarithmic connections and Levelt filtrations

2.1. A logarithmic sl,- connection on (X, D) is the data (£, V, M) of a holomorphic
rank-two vector bundle £ on X, a Cy-linear map of sheaves

V:E— ERQD)

satisfying the Leibniz rule V(fe) = e ® df 4+ fV(e) foralle € &, f € Ox, and a
trivialisation M : det(£) —> Oy such that M (tr V)M ~! = d. They form a category,
which we denote by Connil(X, D). We will often omit “M” from the notation.

2.2. Generic Levelt exponents and residue data. The residue sequence for Q}((D)
implies that the restriction of V to D is a well-defined Op-linear endomorphism
ResV := V|p € H?( (8 nd(&€ ID)), called the residue of V along D. A further restriction
of Res V to any point p € D is an endomorphism of the fibre Resp V € End(&]|y)
whose eigenvalues £, € C are called the Levelt exponents of V at p. The determinant
map det : End(E|p) — Op sends Res V to a global section of Op:

a:=—detResV = {ap ;= —det(Resp V) = A% eC | pe D} € H())(((’)D)

2.3 Definition (Generic residue data) The Levelt exponents A, at p are called
generic if Re(Ap) # 0 and Ap ¢ %Z. We will refer to any section a € H?((OD)
as residue data, and say it is generic if for each p € D, the two square roots Ap of
ap define generic Levelt exponents.

2.4. Thus, a is generic if and only if each complex number ay, is not purely negative
real or a quarter square n” /4 for some n € Z. We will always order the generic Levelt
exponents by their increasing real part: —Ap < Ap if and only if Re(Ap) > 0. The
assumption that Re(Ap) # 0 is necessary for the construction in this paper because
we will use the ordering <, but the assumption that A, ¢ %Z (usually called non-
resonance) can be removed without a great deal of difficulty; in this paper, however, we
restrict ourselves to this simplest situation and generalisations will appear elsewhere.

2.5 Example Perhaps the most familiar explicit example is the following. Take X :=

P!, fix d > 3 distinct points D = {uy,...,uq} C P!, and d constant matrices
A, ..., Aq € slp with A1 4 --- + Az = 0. We usually choose an affine coordinate
z on P! =: P! such that u, is the point at infinity. Then the trivial rank-two vector

bundle £ = Op1 @ Op: is equipped with a logarithmic connection V defined with
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respect to the standard basis for £ by the following formula in the affine coordinate

charts z and w = 771

d—1

A,’ dw
1—uw w

-1, -
v:=d+Z ! dz and V=d- (1)
T — U :
i=l i=l
Evidently, V has logarithmic singularities at each point u#; with residue Res,; V = A;.
The residue Res V along D is then simply the full collection of the chosen matrices
{A1, ..., Ag}. The eigenvalues +1; € C of each A; are the Levelt exponents of V, so

the residue data of Visa = {A%, R )LLZI}

2.6. The central object of study in this paper is the category of logarithmic sl-
connections on (X, D) with fixed generic residue data a, for which we shall use the
following shorthand notation:

Conn)z( = Conni[(X, D;a) C Connﬁ[(X, D)

2.7. Local diagonal decomposition. Fix a point p € D, and consider a connection
germ (&p, Vp) at p with generic Levelt exponents A, at p, where Re(d) > 0. A
coordinate trivialisation £, — C {z}2 transforms V,, to a logarithmic sl,-differential
system d + A(2)z71dz, where A(z) is some sly-matrix of holomorphic function
germs. By [22, Theorems 5.1, 5.4], there exists a holomorphic SL, gauge trans-
formation which transforms the given differential system into the diagonal system
d + diag(—Ap, +kp)z_1 dz which depends only on A, and z. This classical theorem
about singular ordinary differential equations admits vast generalisations, but we do
not need them here. Together with the fixed ordering on the Levelt exponents, it induces
a graded decomposition of &, with respect to which Vj, is diagonal.

2.8 Proposition (Local diagonal decomposition) Let (£p, V), Mp) be the germ of a
logarithmic sly-connection at p € D with generic Levelt exponents £Ap. Then there
is a canonical ordered decomposition

E —> Ay ® AL with V,~ 0, &0

where (AF, agt) is a rank-one logarithmic connection germ at p with residue tip.
Moreover, M induces a flat skew-symmetric isomorphism Mp : A, ® A; — Oxp.

Here, “skew-symmetric” means that My is multiplied by —1 under the switching
map. The order on the Levelt exponents —A, < +Ap determines a Vp-invariant filtra-
tion &5 1= (Ag C Sp) on the vector bundle germ &, which we will refer to as the
Levelt filtration in reference to the more general such concept studied by Levelt in his
thesis [18].

We will refer to the Vp-invariant filtration &3 := (Ag C &p), given by the order on
the Levelt exponents —Ap < +Ap, as the Levelt filtration on the vector bundle germ
&p. Clearly, any pair of logarithmic sl,-connection germs (Ep, Vp), (£, Vé) with the
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same generic Levelt exponents d=Ap, at p are isomorphic and any such isomorphism
is necessarily diagonal with respect to the diagonal decompositions. Any morphism
(&p, Vp) — (SF’,, Vé) necessarily preserves the Levelt filtration.

2.9 Example Continuing Example 2.5, assume that V has generic residue data, and
restrict our attention to the disc germ of, say, the singularity u. There is an SL, matrix
G = G(z), holomorphic at z = u1, such that

dz

_ -\
GVGl=d —
+|: +)»1]z—u1

Then the line subbundles A}, A} are generated by e_ := G~![§] and e := G~![].

2.2 Logarithmic connections and double covers

Logarithmic connections can be pulled back and pushed forward along ramified covers.
In this section we describe these operations, restricting ourselves to the simplest case
of double covers 7 : ¥ — X with simple ramification and which are trivial over the
polar divisor D. Thus, letC := 7 —1(D) and let R C X be the ramification divisor. Here
and everywhere, we assume that R has no higher multiplicity and that the branch locus
B := 7 (R) C Xis disjoint from D. We denote by o : ¥ — ¥ the canonical involution.

2.10. Odd abelian connections. Connections on line bundles are sometimes called
abelian connections. The line bundle Oy (R) carries a canonical logarithmic connec-
tion dg, defined to be the connection for which the canonical map Oy — Oy (R) is
flat. Explicitly, if z is a local coordinate on ¥ vanishing atr € R, then the local section
z7le Os-(R) gives a trivialisation, in which dg is given by

Rz H=dz H=-z"dz@z" e, ®h=d—zldz

2.11 Definition (Odd abelian connection) An odd abelian logarithmic connection on
(X,RUQ) is the data (£, 9, i) consisting of an abelian logarithmic connection on
(X, RU Q) equipped with a skew-symmetric isomorphism u : L ® 0*£L — Oy (R)
intertwining 0 ® o *9 and 9.

Here, “skew-symmetric” means u satisfies 0 *u = —u. Abelian connections with
a similar structure but over the punctured curve ¥ \ CU R have appeared in [14, §4.2]
under the name equivariant connections. We refer to the isomorphism p as the odd
structure on (L, d). Odd abelian connections form a category

Conn;: = Connédd(z, RUQ)

where morphisms are morphisms of connections ¢ : £ — L’ that intertwine the
odd structures w, i in the sense that ©' o (¢ ® o*¢) = u. It is easy to check that
if w1, np are any two odd structures on the same abelian connection (£, d), then
(L, 0, 1) = (L, 0, u2), and there are exactly two such isomorphisms.
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2.12 Proposition (Residues of odd connections) The residue of any odd abelian con-
nection (L, 9, ) at a ramification point is —1/2. In particular, the monodromy of d
around a ramification point is —1. Furthermore, if p € D and p,. € C are the two
preimages of p, then the residues of 0 at p satisfy

Resp_ 9 +Resp, 3 =0

Proof Theresidue of dgatr € Ris —1.If A = Res, 9, then the residue of the connection
0®0*d atris 24, so the odd structure on £ forces A = —1/2. Next, since o (p_) = Py
the residue at p_ of 0*9 is equal to the residue of 9 at p, . This means 9 ® o*9 has
residue Resp 0 + Resp, 0 at p_. But the residue of g at p_ is 0, so the odd structure
on L forces the identity. O

By using the residue theorem for connections [6, Cor. (B.3), p.186], it is easy to
compute the degree of a line bundle carrying an odd connection.
2.13 Proposition (Degree of odd connections) If (£, 9, u) € Connédd(z, RUOQ), then
deg(L) = 3Rl = — deg (7. Oy).

2.14. Pullback and pushforward of connections. The pullback of Ox-modules along
7 extends to a pullback functor on connections

¥ Conni[(X, D) — Conni[(z, @)

by the rule 7*V(r*e) = n*(Ve) for any local section e € . Clearly, the Levelt
exponents of V at p € D and the Levelt exponents of 7*V at any preimage p € C of
p are the same. More interesting is pushing connections forward along 7. The direct
image functor 7, of Oy -modules can be used to pushforward connections from ¥
down to X, but the relationship between the polar divisors is more complicated (see
[11, proposition 2.17] for more generality).

2.15 Proposition (Pushforward of odd abelian connections) The direct image .
extends to a functor

7, : Connl gy (T, RU C) —> ConnZ (X, BU D) )

Moreover, for any 0 € Conn(l)dd(z, RUO), if £1 € C are its residues at the two
preimages py. € C of a point p € D, then the Levelt exponents of m,0 at p are £A.

Proof A logarithmic connectionon (X,RUC)isamapd: L — L® QIZ(R U Q), and
its direct image is therefore .0 : w, L — 7, (E ® QIZ(R U C)). We claim that there
is a canonical isomorphism QIZ(R uo — n*Q)l((B U D). First, n*Qg((B UuD) =
(7*Qy)(*(B U D)), where 7*(B U D) = 2R U C (pulled back as a divisor). The

derivative map dr : 7y — 7*7x drops rank along R; i.e., it is a nonvanishing section
of the line bundle Ti/ ® m*Tx(—R), thereby inducing an isomorphism 7*7x —>

Ty (R). Dualising, we get 7*Q) —> le(—R). Thus, the projection formula implies
T (E ® Q]Z(R U C)) Ea.LQ Q;((B U D). To check that ,d satisfies the Leibniz



78 Page8of35 N. Nikolaev

rule, let ¢ € m, L be a local section on some open set U C X, and f € Ox(U). Then
e d(fe) = 71*( o™ f -e) ) Now it is clear that the Leibniz rule for 7,0 follows from
the Leibniz rule for 9. Therefore, (7L, m,d) is a rank-two logarithmic connection on
(X,BUD).

To show that the odd structure on £ induces an sl,-structure on 7, L, recall that
there is a canonical isomorphism det(,£) = det(m,Oy) ® Nm(L), where Nm (L)
is the norm of £ [12, Cor. 3.12]. For a double cover, there is a canonical isomorphism
7*Nm(£L) = L ® o*L. Moreover, it is easy to see that 7* det(,Oy) is canonically
isomorphic to OZ(_R)' The statement about the residues is obvious because 7 is
unramified over D. O

2.16. Image of ... One can show that the monodromy of 7,0 around the branch locus
B is a quasi-permutation representation of the double cover ¥ — X [17]. As a result,
no connection on (X, D) is the pushforward of an abelian connection on ¥. In other
words, the image of the pushforward functor 7, in Connﬁ (X, BU D) does not even
intersect the subcategory Conni[(X, D). Abelianisation fixes this problem: in Sect. 3.3,
we will explicitly construct a deformation of the pushforward functor m,, which does
map into ConnﬁI(X, D).

2.3 Spectral curves for quadratic differentials

Let ¢ be a quadratic differential on (X, D), by which we mean a meromorphic quadratic
differential on X with at most order-two poles along D; i.e., it is a global holomor-
phic section of 5252)1((2D). The standard reference is [20]; see also [3, §§2,3]. By the
Riemann—Roch Theorem,

dim HY (S*Q4(2D)) = 2|D| + 3gx — 3 A3)

2.17. Quadratic residue. In any local coordinate x centred at p € D, a quadratic
differential ¢ with a double pole at p is expanded as ¢ = (apx’2 + --.)dx?. The
coefficient ap € Cis a coordinate-independent quantity, called the (quadratic) residue
of ¢ at p and denoted Resp(¢). The residue of ¢ along D is thus a global section
a = Res(p) € H())( (Op), same as what we called residue data in Sect. 2.1. There is a
quadratic residue short exact sequence:

0 — $?QL(D) — S*Qk(2D) 2% Op — 0 (4)

2.18Lemma For any a € Hg)((OD), there is a quadratic differential ¢ on (X, D) with
Res(p) = a.

Proof By the Kodaira Vanishing Theorem, H)l( (SZQ)I((D)) = 0, which implies that
the residue map Res : HY(S? Q}(2D)) — HY(Op) is surjective. This means that any
residue data a decorating the divisor D can be lifted to a quadratic differential . O
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2.19. In view of (3), the only configuration (X, D) for which there is a unique quadratic
differential ¢ with specified residues is (gx, |D|) = (0, 3) (i.e., P! with three marked
points). In this case, the three-dimensional vector space of quadratic differentials
H?( (SZQ)I((ZD)) can be parameterised by the residues «, 8, y at the three points of
D. Identifying (X, D) with (P', {0, 1, 0o}), one can show that the unique quadratic
differential with residues «, 8, y at the double poles 0, 1, co is

_yzz—(ot—ﬁ+y)z+ad2
- 22z —1)? ‘

(&)

2.20. Generic quadratic differentials. We will say that a quadratic differential ¢ is
generic if all zeroes are simple. The subspace of generic quadratic differentials in
H§)< (S2 Q)]( (2D)) is obviously open dense given as the complement of a hypersurface. If
(gx, ID]) # (0, 3), then the space of quadratic differentials is at least one-dimensional;
but if (gx, |D]) = (0, 3), this is a condition on the residues of ¢. One can use (5) to
calculate that the open subspace of generic quadratic differentials for (gx, |D|) = (0, 3)
is the complement of the quadratic hypersurface

{az B2+ 92— 20 —2ay — 28y = 0} C €y, = HY(SQ4CD))  (6)

2.21Lemma Leta € Hg)((OD) be generic residue data. If (gx, |D|) = (0, 3), assume
in addition that a is contained in the complement of the hypersurface (6). Then there
exists a generic quadratic differential ¢ on (X, D) such that Res(¢) = a.

2.22 Example Consider the following examples of meromorphic quadratic differen-
tials on X := [P;:

N e S )
(pl T 9 ZZ(Z—I)Z dZ
1 [an! 2
Y2 =9It dz
. 3mi/416 424 415i2%44 1.2
Y3 :=e 15" (+1)2 dz

The quadratic differential ¢; is of the form (6) with o = B = y = 1/9. They
respectively have double poles along D; := {0, 1, 0o}, D, := {0, £1, 00}, and D3 :=
{e£7i/4, e2371/4} Bach quadratic residue of 1 and ¢, is 1/9; each quadratic residue of
@3 is e™/*. The quadratic differential ¢ has two simple zeros at e*7!/3. The quadratic
differentials ¢-, @3 both have four simple zeros; they are respectively e7i/4, ¢®37i/4
and :I:%e’” /4 £2¢371/4 Consequently, all three of these quadratic differentials are
generic with generic residues.

2.23. The log-cotangent bundle. Let Y be the total space of Q}((D), sometimes called
the log-cotangent bundle, and let p : Y — X be the projection map. Like the usual
cotangent bundle, the log-cotangent bundle Y has a canonical one-form, which can be



78 Page 10 of 35 N. Nikolaev

constructed as follows. Let 6 € HO(Y, p*Q)]((D)) be the tautological section. Then the
fibre product

A — p*Tx(-D)

!

Ny —— Pk

exists in the category of vector bundles, because p : Y — X is a surjective submer-
sion. Unravelling the definition of the fibre product, we find that A consists of all
vector fields on Y that are tangent to the divisor p*D C Y; i.e., A = Ty(—log p*D).
Finally, dualising the surjective map A — p*7x(—D) yields an injective morphism
p*Q)l((D) — Q}((log p*D). The canonical one-form ny < HO(Y, Q}((log p*D)) onY
is then defined as the image of the tautological section 8 under this map.

2.24 Example Take X = [P; withD = {0, 1, co}. Then Q[IP] (D) has a trivialisation over

the affine z-chart given by the logarithmic one-form z~'(z — 1)~! dz. With respect to
this trivialisation, the canonical one-form ny is simply yz~!(z — 1)~! dz where y is
the linear coordinate in the fibre.

2.25. The spectral curve. If ¢ is a quadratic differential on (X, D), then p*¢ is a
section of $?(£2} (log p*D)) via p*QL(D) < QI (log p*D). The spectral curve of ¢
is the zero locus in Y of the section 5 — p*¢ € S*(Q}(log p*D)):

Y := Zero (1§ — p*o) (7

We denote by 7 : ¥ — X the restriction to ¥ of the canonical projection p : Y — X.
We also denote the ramification divisor by R C X and the branch divisor by B C X.
As a double cover, ¥ is equipped with a canonical involution o : ¥ — X.

If ¢ is generic, then ¥ is embedded in Y as a smooth divisor, and the projection
m : ¥ — Xis a simply ramified double cover, branched exactly at the zeroes of ¢,
and trivial over the points of D. Its genus is g5~ = |D| + 4(gx — 1) + 1. (see, e.g., [1,
remark 3.2]). Using the Riemann—Hurwitz formula, the number of ramification points
IR] of r, which is the same as the number of zeroes |B| of ¢, is

IRl = [B] =2|D] +4(gx — 1) ®)

2.26 Example For the quadratic differential ¢ from Example 2.22, the spectral curve
Y has genus 0, hence is a copy of P!. If we trivialise Q[}DI(D) over the affine z-

chart using the differential form z=!(z — 1)~!dz, then ¥ is given by the equation

y? = %(12 — z+ 1). For both quadratic differentials ¢, and ¢3, the spectral curve has

genus 1, so it is an elliptic curve over P!, and it is given by y? = %(z4 +1).
Notice that, although the quadratic differential ¢ is singular at the points 0, 1 in the
affine z-chart, its spectral curve X is perfectly well-behaved above these points (see
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Fig.1 A real slice of the total
space of Q[lpl (D) over the real

line in P % In blue is the spectral
curve X of the quadratic

differential ¢ from Example
222

L
—

Fig. 1). This is a manifestation of the fact that our spectral curve ¥ is embedded inside
the total space of the logarithmic cotangent bundle rather than the usual cotangent
bundle. In contrast, constructing a spectral curve of ¢ using the same equations but
in the usual cotangent bundle yields a curve which escapes from the total space above
the points 0, 1 (see Fig. 2).

\/

Fig.2 A real slice of the total
space of Q[lpl over the real line
in [P%. In blue is the curve given
by the equation (y dz)? = ¢,
where ¢ is the quadratic
differential from Example 2.22

B

2.27. The canonical one-form. Pulling back the canonical one-form 7y to ¥ yields a
differential form » with logarithmic poles along C := 7~ (D), called the canonical
one-form on ¥. It satisfies n> = 7*¢ and 0*n = —n, and can therefore be thought
of as the ‘canonical square root’ of the quadratic differential ¢. It has zeroes along
the ramification locus R, and its residues at the two preimages p, € C of any point

p € D satisfy Resp_n = —Resp, 7 and (Respi n)2 = Resp ¢. If the residue data
a = Res(y) is generic, we can fix an order on the preimages of p:

p_<pL & Re(Resp7 n) <0<Re(Resp+ r;) )

If p_ < p,, we shall call p_ a sink pole and p_ a source pole. The divisor C is thus
decomposed equally into sinks and sources C = C~ L C*.

2.4 Logarithmic connections and spectral curves

In general, connections do not have an invariant notion of eigenvalues or eigenvectors.
However, in the presence of a spectral curve, we can make sense of these notions as
follows.
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2.28. Let 7 : ¥ — X be the spectral curve of a generic quadratic differential ¢
with generic residue data a along D. Suppose (£, V) € Conn)z( is a logarithmic sl;-
connection on (X, D) with residue data a. If p € D, let &Ap, be the Levelt exponents
at p, which by construction are the residues of 7 at the preimages p,. € C. Consider
the local diagonal decomposition & = Ay @ Ag.

Let z be a local coordinate on ¥ centred at p, in which 71 is in normal form
+Apdz /z. Since ¥ is unramified over p, we also use z as a local coordinate on X
centred at p. If we fix a basepoint p,, near p, then examining the Levelt normal form
of Vp with respect to the coordinate z we obtain germs of (multivalued) flat sections
wpi which can be expressed as 1//6E = geg, where e;t is a (univalued) generator
of Agt, and fpjE is the germ of a (multivalued) function defined in the coordinate z
by fgt(z) = exp (— f;* +rpdz /7 ) . The observation is that the integrand in this
expression is precisely the canonical one-form 7n thought of as written in the local
coordinate z near p.

2.29. To express this in a coordinate-free way, let U C X be any simply connected
open neighbourhood of p disjoint from B and all other points of D. Then U has two
disjoint preimages U1 on X where U4 contains p,.. Let 4 be the restriction of 7 to
U4, and we can think of n1 as being defined on U. Define (multivalued) functions

on the punctured neighbourhood U° := U\ {p} by f1(q) := exp (— f:‘ ﬁi) . Note
that the germ of f4 at p is precisely ff, and that f satisfies the differential equation
dlog f+ = —n+; moreover, f4 is nowhere-vanishing on U°. Analytically continue the
solutions I/JSE to multivalued flat sections ¥4 of £ over U°, and define ey := f_ ! /.
These sections of £ form a basis of holomorphic generators over U satisfying:

Ver =0+ ®ex

Thus, we can think of e1 as an eigensection of V with eigenvalue n., and the line
subbundles A[JJE C &|y that they generate determine the flat eigen-decomposition of
(€, V) over U that uniquely continues the local diagonal decomposition of &y:

Ely = Aj®A, with V3 @t

2.30. More invariantly, let U C ¥ be any simply connected neighbourhood of a pole
p € C = 7~ (D) Cc X which is disjoint from R and all other points of C. Let f be
any (multivalued) solution of the differential equation dlog f = —n defined over the
punctured neighbourhood 0 :=0 \ {p}. Then the same calculation as above shows
that the pullback 77*€ over U has a section e which is an eigensection of 7*V with
eigenvalue 7:

7*Ve=nQ®e
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Fig.3 A horizontal strip on X (left) and on 2 (right). Topologically an open disc, the boundary consists of
exactly four critical leaves of § or §§, two points in D or C (not necessarily distinct), and two points in B or R
(necessarily distinct). The preimage of a horizontal strip on X is a pair of horizontal strips on 2. Notation:
points in B or R are denoted by @; points in D or C are denoted by

2.5 The Stokes graph

Fix some generic residue data a. If (gx, [D]) = (0, 3), assume in addition that a
is contained in the complement of the hypersurface (6). For any generic quadratic
differential ¢ on (X, D) with residues «, let ¥ be its spectral curve with canonical
one-form 7.

2.31. The horizontal foliation. The curves X and %, viewed as rgal two-dimensional
surfaces, are naturally equipped with singular foliations § and §, respectively, with
the property that § -5 § is the orientation double cover of F. These foliations are
well-known (see, e.g., [IS,ZO]L and we only recall what is necessary (see [3, §3] for a
concise survey). The foliation § can be defined as the integration of the real distribution
ker(Im(n)) inside the real tangent bundle of . Concretely, the local equation for a

leaf passing through a point p is given by Im ( f; n ) = 0. Evidently, this foliation

is singular at the poles C = 7~ (D) and at the ramification points R. The foliation
§, defined as the image of § under r, is often called the horizontal foliation for the
quadratic differential ¢; it is singular at the poles D and the branch points B. A leaf of
$ (or J) is critical if one of its endpoints belongs to B (or R). A critical leaf of § is a
saddle trajectory if both of its endpoints belong to B.

2.32. If the horizontal foliation § has no saddle trajectories, then by [3, Lemma 3.1]
the open real surface X \ (D U B UT"), where I' is the union of all critical leaves of
§, decomposes into a finite disjoint union of topological open discs, called horizontal
strips (Fig. 3). Similarly, the open real surface 3 \ (CURUT"), where I' is the union
of all critical leaves of §, is also a finite disjoint union of horizontal strips (Fig. 3).
2.33. Saddle-free quadratic differentials and very generic residues. If the horizon-
tal foliation § has no saddle trajectories, then the quadratic differential ¢ is said to be
saddle-free. It follows from [3, Lemma 4.11] that the subset of quadratic differentials
which are saddle-free is open dense. Note that “saddle-free” may be a condition on
the residue data a. For example, if (gx, |D]) = (0, 3), the quadratic differential ¢ with
given residues a is unique (given by (5)) and may fail to be saddle-free. In this case,
there are only two ramification points r+ € ¥, so a saddle trajectory occurs if and

only if the canonical one-form 7 satisfies Im ( frrf n ) = 0 for a path of integration
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Fig. 4 From left to right: plot of critical trajectories of quadratic differentials ¢1, ¢, ¢3 from Example
2.22. In plots 1 and 2, the trajectories that escape the picture frame tend to infinity

in ¥\ C = P!\ {6points}. If b € B are the two branch points, then upon identifying
X = P! and choosing a branch cut in order to write 7 with /9, where ¢ is given by
(5), this integral can be explicitly computed in terms of logarithms and it defines a
closed real-analytic subset of Cgﬁy. It therefore determines an explicit condition on
the residues @ = {«, B, y} for the unique ¢ to be saddle-free. We will say that residue
data a is very generic if there exists a generic saddle-free quadratic differential ¢ with
residues a.

Ultimately, however, this apparent rigidity in our construction is artificial and can
be removed by using a more topological argument. We will study this as well as other
non-generic situations elsewhere.

2.34 Example All three quadratic differentials ¢;, ¢o, ¢3 from Example 2.22 are
saddle-free. The true plots of their critical trajectories are presented in Fig. 4.

2.35. The Stokes and spectral graphs Now we define the main combinatorial gadgets
in our construction. Let ¢ be a generic and saddle-free quadratic differential.

2.36 Definition (Stokes graph, spectral graph) The Stokes graph T is the graph on X
whose vertices are D U B and whose edges are the critical leaves of §. The spectral
graph T is the oriented graph on & whose vertices are CU R and whose edges are the
critical leaves of S

Thus, I 5Tisa (ramified) orientation double cover of graphs. Each face of I'
and T is a horizontal strip. We refer to the edges and the faces of I" as Stokes rays
and Stokes regions; and to the edges and the faces of T as spectral rays and spectral
regions. The graphs I', T are bipartite with bipartitions I'o = D U B and Fo =CUR.

The polar vertices C are further divided into sinks and sources (cf. 2.27):

e sink vertices C_: those where Re(Res ) < 0;
e source vertices C : those where Re(Res ) > 0.

If p € D, we will always denote its preimages in Cby p_, p, where p,. € C+. They
satisfy therelation o (p,.) = p. All spectral rays incident to a sink/source are oriented
into/out of the sink/source, so spectral rays I'| are divided by parity:

e positive spectral rays F_Ir: polar vertex is a source;
e negative spectral rays I'| : polar vertex is a sink.
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P+ p- — b p
r

Fig.5 Every spectral ray and every Stokes ray has a polar vertex and a ramification/branch vertex. Depicted
are the pair of opposite spectral rays a4, o— on X in the preimage of the Stokes ray « on X. Notation: We
index Stokes rays by «, f, .. .; the corresponding positive spectral rays are denoted by o, B+, ... and the
negative ones by «—, f—, ...

2.37. Spectral rays always occur in pairs: the involution o maps a spectral ray to a
spectral ray of opposite parity. Stokes rays have no natural notion of parity; instead,
the preimage of every Stokes ray o € T’y is a pair of opposite spectral rays o4 €
Fl ,a_ € I'[ (see Fig. 5). The graphs T', T are squaregraphs: every Stokes region is
a quadrﬂateral with two branch vertices and two polar vertices, and its boundary is
made up of four Stokes rays (Fig. 6).

Similarly, every spectral region is a quadrilateral with two ramification vertices and
two polar vertices (one of which is a source and one is a sink), and its boundary is
made up of four spectral rays (two of which are positive and two are negative). We
index them as described in Fig. 6:

ro={r={ii'} |i.i' e T2 with o (i) = ']

Each branch point has three incident Stokes rays and three incident Stokes regions,
but each Stokes region has two branch vertices, so there are 3|B| Stokes rays and %|B|
Stokes regions in total. So, using (8),

1| = 6IDI+12(gx — 1) and T2 = 3|D| +6(gx — 1) (10)
T'i| = 12ID| + 24(gx — 1) and || = 6|D| + 12(gx — 1) (11)
Note also that || = 1|T';| = 6D + 12(gx — 1) = |T1].

2.38 Example Figure 4 shows a plot of the Stokes graph of the quadratic differential
@1 from Example 2.22. Figure 7 shows a more schematic rendering.

P+ 9+ q
s ..
i i — I={iq}
ro r ra b1 ba
q-— p— p

Fig.6 Two spectral regions i, i’ in the preimage of the Stokes region I = {i, i/}. Here, 1y, ry € Rare the
ramification points above the branch points by, by € B. Notation: We index faces of I by letters i, j ky...,
though if two faces are both preimages of the same Stokes region /, we will usually call them i, i’. A face
of T, whose preimage consists of faces i, i’ of 1" is indexed by the unordered pair / = {z i’ } Notice that
if a Stokes region I = { } has polar vertices p, q € D, and if the spectral region i has polar vertices
P, d_, then the spectral region i’ has polar vertices p_, a4
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04 b,

by

Fig. 7 Right: a schematic picture of the Stokes graph I' (orange) of the quadratic differential ¢; from
Example 2.22. The point at infinity has been blown up to an orange bounding circle. Left: the corresponding
spectral graph T on the spectral curve X = P!. The preimages of the points 0, 1, oo carry a label according
to whether the vertex is a sink or a source

2.39. The Stokes open cover. The graphs I', I" define canonical acyclic open covers
(i.e., every finite intersection is either empty or a disjoint union of contractible open
sets) of the punctured curves

°:=X\(DUB) and ¥°:=Y¥\(CUR)

by enlarging all edges and faces as follows. For every face / € I'; and every edge
a € I't, let Uy and U, be the germs of open neighbourhoods in X° of the face 7 and
the edge «, respectively. We continue calling them Stokes regions and Stokes rays. We
define spectral regions U; and spectral rays Ui foralli e I‘z, ot € F] in the same
way. We obtain what we call Stokes open covers of X° and X°, respectively:

Sri={U;[TeTy) and  4p:={U;|ieT,) (12)

If p is a vertex of Uy, then intersecting U; with the infinitesimal disc Uy, around p can
be seen as the germ of a sectorial neighbourhood of p (or a disjoint union of two).
In fact, the infinitesimal punctured disc U; centred at p is covered by such sectorial
neighbourhoods whose double intersections are the Stokes rays incident to p.

2.40. Any double intersection Uy N U, of Stokes regions is either a single Stokes ray
or a pair of disjoint Stokes rays with the same polar vertex but necessarily different
branch vertices, and there are no nonempty triple intersections. So we define the nerves
of these covers by

fr:={Uy |@ e} and L :={U} U, |« e} (13)
We adopt the following notational convention: if Uy is a Stokes ray contained in the

double intersection U; N Uy, then Uy, U; are ordered such that going from U; to U,
the Stokes ray « is crossed anti-clockwise around the branch vertex of U,.
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0 by
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Fig.8 The Stokes and spectral regions from Fig. 7 are appropriately coloured to show which pair of spectral
regions lie in the preimage of which Stokes region

2.41. The restriction of the projection m : ¥ — X to any spectral region U;, any
spectral ray Uojf, or any infinitesimal disc U;E around a pole p4. is an isomorphism
respectively onto its image Stokes region U; = Uy; 7y, Stokes ray Uy, or infinitesimal
disc Up around the pole p; we denote these restrictions as follows:

m; U, — U; and n(;t : Uf]l'E -~ U, and npi : Ug — Up

2.42 Example For the differential ¢ from Example 2.22, the Stokes open covers of
X° =PI\ {0, 1,00} and £° = P! \ {0, 1+, co} are illustrated in Fig. 8.

2.6 Transverse connections

2.43. If Uy is a Stokes region with I = {i, i ’}, denote its polar vertices by p, p’ €
D. Given a connection (£, V) € Conn)z(, consider its local diagonal decompositions
Ep = A, O A;‘ and &y = A;, @ A;‘,. Let us analytically continue the flat abelian

connection germs Ag, A;, to Uy using the flat structure on &:

(A, 9;) := the unique continuation of(A;, 8p_)t0U1
14
(Ajr, 9;7) := the unique continuation of (A;,, 8;) toUy (9

2.44. Transversality of Levelt filtrations. These continuations equip the vector bundle
& over U; with a pair of flat filtrations £3 ; = (A; C &) and £, = (Ay C &),

p.l —
where &3 ;, €5, are the unique continuations to the Stokes region U; of the Levelt

P> =p,
filtrations £3 = (Ay C &), & = (A, C &p).
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Fig.9 A Stokes region U; whose polar vertices coincide. The subset of X bounded by the Stokes rays «, B
in the complement of U; must contain another point q € D, for otherwise all Stokes rays incident to the
branch point b are also incident to p. But then the complement of I" has a connected component which is
not a horizontal strip contradicting [3, Lemma 3.1]. Generically, the monodromy of V around the pole q
does not preserve the Levelt filtration coming from p

2.45 Definition (Transversality with respect to T') We will say that a connection
(&, V) € Conn>2( is transverse with respect to I' if for every Stokes region U; the

M [ ] (] . [ ] (]
two filtrations 5p’ Iz €p,’ ; are transverse: 5p’ ;M 5p,’ 7

In other words, the two flat line subbundles A;, A;; C & are required to be distinct.
Such transverse connections form a full subcategory Conni(F) - Conni.

That such connections exist is obvious: one can, for example, choose a point in
each Stokes region U; and connect it to some fixed basepoint by an arbitrary path
that avoids D. Then I'-transversality is equivalent to avoiding finitely many algebraic
conditions. In fact, the same argument shows that (with respect to an appropriate
topology) the subset of I'-transverse connections is open dense. We do not need these
details here, and only mention that these and other moduli-theoretic considerations
will be described in great detail in a future publication.

2.46 Proposition (Semilocal diagonal decomposition of transverse connections) If
&, V,M) € Conn)z((l"), then the restriction & = &|y, to any Stokes region Uy
has a canonical flat decomposition

El — A ® Ay with V>0, ®0

where (A;, 9;) and (A1, 9;7) are defined by (14). Moreover, the sl,-structure M defines
a flat skew-symmetric isomorphism My : A; ® Ay —> Oy, .

The main construction in this paper (Theorem 3.3) is an equivalence between
Conn)z((r‘) and a certain category of odd abelian connections on the spectral curve
>,

2.47. Transversality over Stokes rays. Suppose U, is a Stokes ray contained in the
double intersection U; N U of two adjacent Stokes regions. Then £ has two diagonal
decompositions over U,:

El — A DAy EJ%A]‘@A/‘/ (15)

Let p’ € D be the common polar vertex of Uy, U;. Then Ay, A j are continuations
of the same line bundle germ Ag, C &p, s0 Ay = A over the Stokes ray U,.
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With respect to this pair of decompositions, the identity map on £ has the following
upper-triangular expression, which will be exploited throughout our construction in
this paper:
1
A by j— A s
1 Ag ! 5
= e A @ 16
U [0 ga} (16)

(o) }
AT A

2.48 Remark Note that in the definition of transversality with respect to I, it is not
required that the two polar vertices p, p’ of U; be different. If p = p’ it may seem
that no connection V can be transverse with respect to I" for such a Stokes graph, but
this is not the case. This is because the Stokes region U; defines two disjoint sectorial
neighbourhoods of p, so the two analytic continuations A;, A;; C & of the same germ
A, are generically not the same, as explained in Fig. 9.

3 Abelianisation

3.1. As before, let (X, D) be a smooth compact curve equipped with a nonempty set of
marked points D such that |D| > 2 — 2gx. Suppose D is decorated with very generic
residue data a in the sense of Definition 2.3 and 2.33. We are studying the category

Conn)z( = Connir(X, D;a)

of logarithmic sl;-connections on (X, D) with residue data a.

Our method is to choose a generic saddle-free quadratic differential ¢ on (X, D) with
residues a. Let w : ¥ — X be the spectral curve of ¢, and let I" be the corresponding
Stokes graph on X. Consider the subcategory of connections that are transverse with
respect to I' in the sense of Definition 2.45:

Conni(f‘) - Conn)z(

3.2. The main result of this paper is that Conn)z((r‘) is equivalent to a category of odd
abelian connections on the spectral curve ¥ as follows. For every p € D, let £1, € C
be the Levelt exponents of the residue data a at p (arranged such that Re(Ap) > 0).
PutC:=7x"! (D), let C be as in 2.35, let R C X be the ramification divisor of 77, and
define abelian residue data along C U R as follows:

L= {+rp |pp eCe}U{-1/2|reR] (17)

Consider the category of odd abelian logarithmic connections on (X, C U R) with
residues A, for which we use the following shorthand notation:

Conn]Z := Conn! 44 (X, CUR; 1)
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3.3 Theorem (Abelianisation of logarithmic sl-connections) There is a natural equiv-
alence of categories Conn)z((r‘) = Conn}z.

Expressed more explicitly, this equivalence is

(E,V, M) (L, 9, 1)
logarithmic I"-transverse odd logarithmic abelian
sly-connections on(X, D) connections on (., CUR)

with generic Levelt exponents

(s | p < D)

12

1
—5 al R
with residues { 2 > 018 N
thrpatpy €C

We will prove this theorem by constructing a pair functors,

srab

Conn>2((l“) <—>;r ConnlZ

TTab

called abelianisation and nonabelianisation with respect to I'; they are constructed
in Sects. 3.1 and 3.3, respectively. In Proposition 3.21, we prove that they form an
equivalence of categories.

3.1 The abelianisation functor

In this subsection, given an sly-connection (£, V, M) € Conn)Q((F), we construct an
abelian connection (£, 9, i) € Connl, and show that this construction is functorial.
The idea is to extract the diagonal decompositions of £ at the poles of V, analytically
continue them to the spectral regions on the spectral curve, and then glue them into a
flat line bundle using canonical isomorphisms that arise due to transversality.
DEFINITION AT THE POLES. Given p € D, consider the local diagonal decomposi-
tion £, — Ay ® A,‘)" from Proposition 2.8. We define (£, ) over the infinitesimal
disc U;t around p, to be the pullback of the connection germ (AE,'E, api):
(Ly.05) = (m)* (A5 95) (18)
Thus, (ﬁi, Z)pi) is the germ of a logarithmic abelian connection at p_ with residue &=Ap.
It also follows that (nrf )"‘AE,t = o*Lg, so the pullback of the flat skew-symmetric
isomorphism Mp : Ay ® A} —> Ox p to the disc Ug defines a flat skew-symmetric
isomorphism
wy = () My : Ly @ 0* LT —> Oy (19)

DEFINITION ON SPECTRAL REGIONS. Let U; C X be a spectral region, and let p_
be its sink vertex. We define (£, 9) by uniquely continuing the germ L using the flat
structure on 7 *&:

(L;, 9;) := the unique continuation of(E,; , 85 )toU;
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P+ p—

U, Uy

Fig. 10 Uy is a pair of opposite spectral rays, r is their common ramification vertex, and py. are their

respective polar vertices. U;, U are a pair of oriented Stokes regions which have U[)f in their intersection,
arranged such that the ordered pair (U;, U;) respects the cyclic anti-clockwise order around r. Let U/ :=

o(U;), Uj/ :=0(U;), so Uy is a connected component of U;y N Uj/

Evidently, (£;, 9;) := 7/ (A;, 9;) for A; defined by (14). Furthermore, if U;» = o (U;),
then Ay = o* Ly for A;s defined by (14). Soif I = {i,i’}, the pullback to U; of the
sly-structure M; from Proposition 2.46 defines a flat skew-symmetric isomorphism

wi =w M L @ c* Ly = Oy, (20)

GLUING OVER SPECTRAL RAYS. For every a € I'y, consider the pair of opposite
spectral rays o4 € Fi, and let p, € C* be their respective polar vertices. Let
U; = Uy in, Uy = Uyg; iy C X be the pair of adjacent Stokes regions which intersect
along the Stokes ray U, as described in Fig. 10.

By transversality with respect to I', the vector bundle £ has two diagonal decom-
positions over the Stokes ray Uy:

El — A DAy Ey L)Aj@Aj/ 21

Then A;, A j are continuations of the same line bundle germ A;, C &pso Ny = Ay
over the Stokes ray Uy. The identity map on &, written with respect to this pair of
decompositions, is the upper triangular matrix (16). We therefore define

(807 DLy —> Ef) = (n;)*(l Ay = Aj/>

(22)

(s i 0= £) =@ (8 A = )
The upper- tn'angular form (16) of the identity map on £ also implies that the gluing
maps g, , g intertwine the pullbacks u;, i j and p;r, p s, respectively.

GLUING NEAR THE POLES. For every p € D, let Ui C X be the infinitesimal disc
neighbourhoods of p_.. Consider a Stokes region U; = Uy; ;7 such that U; is incident
to p, and Uy is incident to p_. First, the intersection of U;» with Uy is a sectorial
neighbourhood of p_, and the line bundle £;/ is the unique continuation of the germ

Lp , so identity is the glulng map here. On the other hand, the intersection of U; with
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Ug is a sectorial neighbourhood of p ., over which by Propositions 2.8 and 2.46 we
have two decompositions £, — Ay @ Ag' and & — A; @ A;. Then the obvious
isomorphism £, — &7 over this double intersection implies

Ay = (Mg @AL) /Ay = &/ Ay = E1fAi = (A @A) [ A = A,
(23)

The pullback of this map is the desired gluing map EE,* —> L;. These gluing maps
satisfy the cocycle condition, because if U; and U; are two adjacent spectral regions
incident to p_ , then the identity map £, — &£ over the intersection of Stokes regions
U; = Uy inand Uy = Uy; jn has the upper-triangular form (16), and therefore induces
an isomorphism SI/Ai/ - Ej/Aj/. The isomorphism A; & Ay —> Ap ® Ag
given by the identity on £ is unipotent. So its determinant A; ® Ay —> Ay ® Ag
intertwines M; and Mp, and therefore also w; and u; as well as ;s and Mp -

EXTENSION OVER RAMIFICATION. This completes the construction of (£, 9, t) on
the spectral curve ¥ away from the ramification divisor R. Deligne’s construction [5,
pp. 91-96] gives an extension over R with logarithmic poles and residues —1/2, and
it is easy to check that for any such extension, u extends uniquely to an odd structure.
Deligne extensions are unique only up to a unique isomorphism (see also [2, Theorem
IV.4.4]), but it is possible to fix this ambiguity as follows (details are not important for
us here and will appear elsewhere). If r € R is any ramification point and b = 7 (r) is
the corresponding branch point, let Uy, Uy, Ux be the three Stokes regions incident
to b. Then the germ L, of £ at r is the pullback of the line bundle germ Ay, at b which
is defined as the kernel of the canonical map A; & Aj & Ax —> &p. As aresult, we
obtain an abelian connection (£, 9, i) € Connl.

Finally, functoriality of our construction readily follows from the fact that mor-
phisms of connections necessarily preserve diagonal decompositions.

3.4 Proposition The assignment (£,V, M) — (L, 9, i) extends to a functor
ab . 2 1
. : Conny(I') — ConnZ

We call nlzlb the abelianisation functor, and the image (£, 9, u) of (£, V, M) under
nlﬁb the abelianisation of (£, V, M) with respect to I". The following proposition
summarises some properties of abelianisation all of which are immediate consequences
of the construction.

3.5 Proposition (Properties of abelianisation) Let (£,V, M) € Conn)z((r‘), and let
(L,0,n) € ConnlZ be its abelianisation.

(1) deg(£) = —3|R| = — deg(m,.Oy).

For any p € D, let Uy, be the infinitesimal disc around p. Let £, —> A, @ A;‘ be
the local diagonal decomposition (Proposition 2.8). Then there is a canonical flat
isomorphism

() mLp = 7Ly, = A, @ A; = &

Let Uff be the infinitesimal disc around the preimage p,. € C of p. Recall the notation

TE

5 = 7l Ut U;,t — Up. Then there are canonical flat isomorphisms
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@) Lp, = Llyz —> (T AE = L.

Let Uy C Xbe a Stokes region with polar verticesp, p' € D, andletE; —> A; ® A, be
the semilocal diagonal decomposition of € over Uy (Proposition 2.46), where A;, Ay
are as in (14). Then there is a canonical flat isomorphism

“) 7T*£|U, == A ® Ay = &.

Let U;, Uy be the spectral regions above Uj incident to p_,p’_ € C, respectively,
and recall the notation 7w; = |y, : U; —> Uj. Then there are canonical flat
isomorphisms

(5) Li = Lly, — 7N and Ly = Lly, 7\
Finally, recall that n is the canonical one-form on the spectral curve ¥.

(6) The abelian connection d — n on the abelianisation line bundle L is holomorphic
along C; it has logarithmic poles only along the ramification divisor R with residues
—1/2.

The following proposition, which readily follows from the discussion in Sect. 2.4,
expresses the sense in which the abelianisation of connections is the analogue of
abelianisation of Higgs bundles.

3.6 Proposition (Spectral properties of abelianisation) For any simply connected open
subset U C XL \ R, the abelianisation line bundle L has a generator e which is an
eigensection for 0 with eigenvalue n (in the sense of Sect. 2.4); i.e., it satisfies the
following equation:

de=nQe

Moreover, over any spectral region U; C X, there is a canonical flat inclusion L —
*E with respect to which this section e is an eigensection for w*V with eigenvalue

n:
7*Ve=nQ®e

3.7 Example Let us illustrate the above construction in the simplest possible explicit
example. Consider a logarithmic sl-connection (£, V) from Example 2.5 with d = 3.
Namely, X = P!, £ = O%7, and D := {0, 1, 00}. Let Aj, A3 be any pair of sl(2, C)-
matrices, both with eigenvalues +1/3, and let V be given by the formula (1). Then
the V has Levelt exponents 1/3 at each pole.

To abelianise V, we must choose a generic saddle-free quadratic differential on
(X, D) withresidues 1/9 at each point of D. One such choice is the quadratic differential
@1 from Example 2.22. Its spectral curve > was described in Example 2.26, its Stokes
and spectral graphs were detailed in Fig. 7, and the relevant Stokes open cover was
presented in Fig. 8. Finally, in Fig. 11, we illustrate the abelianisation construction by
displaying which Levelt line subbundle is considered on which Stokes and spectral
region.
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Fig. 11 TIllustration of the construction of the abelianisation line bundle £ for a connection on (P ! ,{0, 1, 00})
from Example 2.5 using the quadratic differential ¢ from auto 2.22

3.2 The Voros cocycle

This section introduces the main ingredient in constructing the deablianisation functor
n,ﬂ), the Voros cocycle. Let (L, 9, i) be its abelianisation of (£, V, M) € Conn)z((F).

3.8. The canonical nonabelian cocycle V. Let U, € I'| be a Stokes ray on X with
polar vertex p € D and branch vertex b € B. It is a component of the intersection
of exactly two Stokes regions Uy, U; (see Fig. 12). Consider the pair of canonical
identifications given by Proposition 3.5(4):
o1 : Ely, - mLly, and ¢y : 5|u, = n*EIUJ (24)
Over the Stokes ray Uy, their ratio yields a flat automorphism of (7, L, 7,9):
Vo =@y 0p; ' € Aut( mLly,) (25)
where 7, L denotes the associated local system ker (77,.9) on X°. The nerve of the cover
Ur of X° consists of Stokes rays, so we obtain aCech 1-cocycle V with values in the

local system Aut (7, L):

Vi=|Vy|ael} e Z" (Ur, Aut(n.L)) (26)

39Lemma If(£,V, M) € Conn)z((l"), let (L, 0, w) be its abelianisation, and consider
the pushforward m, L = n*nl‘fbg. If V is the cocycle (26), then there is a canonical
isomorphism

V.mafte = €
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Proof The action of the cocycle V on the pushforward bundle 7, L is a new bundle
£ =V - m.L. Explicitly, the local piece £, over a Stokes region Uy is defined to be
7« L|y,, and the gluing data over a Stokes ray U, C U; N'Uy is given by Vy:

/ ~ /
Eily, — &y,
I I
JT*£|Ua T) 7T*£|Ua

But this commutative square together with (24) and (25) imply that £ and &’ are
canonically isomorphic. O

3.10. Transposition paths. Let us explicitly compute each automorphism V, with
respect to a pair of canonical decompositions of ., £ over the Stokes ray U,. Through
the isomorphisms 7, L]y, — A;®A; and m. L]y, —> A ;@A j, the automorphism
Vo = @y o<pl_1 over Uy, is just the identity on £ writtenasamap A; @Ay — Aj@A .
Notice that A; = A j» because they are continuations of the same line bundle germ at
p, so using (16) we find:

® AT @ Q7

S S

1A“:|' Ajr HAA/
. _ o

AiT)Aj

Now, we can decompose the map Ay, : A; — Ajs through canonical inclusions,
projections, and the upper-triangular expressions (16) for the identity on £ as follows:

AC‘ = Ai — ®/ & -— Ak — & / ® —> A//
AE— Ay Apy=—=A;

We interpret the first and second upper-triangular expressions as the identity maps on
& over U, and Ug, respectively. Since all these bundle maps are V-flat, the map A,
can be interpreted as the endomorphism of the fibre of £ over a point in U, obtained
as the composition of V-parallel transports Pj, Pk, P; along paths §; contained in
U; from U, to U, followed by §x contained in Uk from U, to Ug, followed by §,
contained in Uy from Ug back to Uy (see Fig. 12).

Explicitly:

The key idea, which goes back to Gaiotto—-Moore—Neitzke [8], is to notice that this
expression has an interpretation as a parallel transport for the abelian connection 9 on
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Up
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I:)// (SJ
LN Ux Ok
p
o
U, Uy Us

U

Fig.12 U7, U;, Ug C X are the Stokes regions with I = {i,i'},J = {j. j’}, K = {k, k’}. The stokes
rays Uy, Uy, Uy, are indicated by «, B, y (same for the spectral rays). b € B is the branch point and r € R
is the ramification point above b

the spectral curve. Indeed, if we fix points p, p’, p” in Uy, U,,, Ug as shown in Fig. 12,
then through the canonical identification of fibres using Proposition 3.5(4), we have:

—1
A _ P 1 P 88 P
(e % A5l, ) = ((Arle 2 Aily == Auly 78 Al a4 Al )
112 I 112 IR IR 12 I lIe

( Llo, = Ll ) = ( Llp, 5 Llo

o

— L > Ly —— Ly = L )
()~ ot 3 Elor ()™ o 57 Llo-

Here, A is defined by the diagram; we used (22), and p;, px., pj are 0-parallel transports along
the paths §;, &, §» which are the lifts of 67, 8k, 8, as shown in Fig. 12. Since g;, g, are precisely
the gluing maps for £, we find that A} is nothing but the parallel transport of d along the clockwise
semicircular path 8; = 8;78x8; (our paths compose the same way as maps: from right to left)
around the ramification point r starting at p,, and ending at p_. The Stokes graph determines such
sheet transposition paths on all Stokes rays: i.e., for any p € U, the path 8;' on ¥ is the unique lift
starting at p_ of a clockwise loop &, based at p € U, around the branch point b (see Fig. 13).

3.11Lemma For every Stokes ray U, C X and every point p € Uy, the automorphism Vy p of the
fibre mwo L|p is:

Ll =—=Llp_

s
Va,pz[w;w]; o M5 & A, =Par(3.8) (28)

The correspondence p + 8 is a well-defined map &7 : Uy — £2;(X°), where Q1 (X°) is
the fundamental groupoid of the punctured spectral curve, which is the set of paths on X° = ¥ \ R
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by
—
P+ r p— 8

Fig. 13 The sheet transposition path SE,L associated with the positive spectral ray «4. Its projection onto X
is a clockwise loop 8p around the branch point b

considered up to homotopy with fixed endpoints. If we define a flat bundle isomorphism
A} :=Par(d,8)) : Llys = o™ Llys

then Ay = 7, A} defines an endomorphism of 7, L over the Stokes ray U,. So Lemma 3.11 may
be expressed in terms of bundle maps as follows.

3.12Lemma For every a € I'y, the automorphism Vy of m Ly, is Vo = id + T AT

3.13. The Voros cocycle. One of the central observations in this paper is that formula (28) does not
depend on the fact that (£, 9) is the abelianisation of (£, V). Indeed, this formula is written purely
in terms of the parallel transport along canonically defined paths on _° and the pushforward functor
7. In other words, if (£, ) € Connl is any abelian connection (i.e., not a priori the abelianisation
of some connection on X), then for each Stokes ray o € I';, we can consider the automorphism V,,
of . L over U, defined by

1 A} Elp === Llp.
Valp = |: « Py i| e /AJ ® A p, ‘= Par (a, 8:{‘p ) 29)
! £|p+— 'Clp+ ' "

for each p € U, with preimages p, € U‘f. As a bundle automorphism over U,
Vo = id + m. A € Aut(m.Ly) (30)

where 7, L := ker(m,0) and w4 Ly := 74 Ll|y,. This yields a cocycle
Vi={Vy|ael}eZ! (ur, Aut(n*L)> 31

Now, if ¢ : (£, d) —> (L', 3’) is a morphism in Connlz, and V, V’ are respectively the cocycles
for £, L' defined by the formula (29), then the identity d¢p = ¢’ immediately implies the following
commutative square for every o:

Lo L Ty Ly
7| |70 (32)

L), — m. L),
VD(
In other words, for every Stokes ray « € I'1, the collection

V, = {va c Aut(n*LQ)}(w) (33)
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indexed by abelian connections (L, V) € Conn]z, forms a natural transformation
Vy @ e = 4

of the pushforward functor (2), defined over U,. We obtain a cocycle valued in the local system
Aut () of nonabelian groups on the punctured base curve X° consisting of natural automorphisms
of 7.

3.14 Definition (Voros cocycle) The Voros cocycle is the nonabelian Cech 1-cocycle
V= {Woz | o€ F]} S 21 (ﬂr,Aut(n*))

]

3.15. Abelianisation of the Voros cocycle. The parallel transports A, can also be arranged into
a cocycle as follows. If (£, d) € Connlz is any abelian connection, then Aj{ = Par(0, 5;' ) €
Hom(Lof, L,) = Hom(LDf, O'*L;r), where L := ker(d) and Lf = L|U,§ for each o € l"i".
The sheaf Hom (L, c*L) is a local system of abelian groups, and we can define an abelian Cech
1-cocycle on X° by

A= {Af. Ay | 2o e Tf) e 2! (uf, Hom(L.o" L) (34)

by A} :=Par(3,8})and A :=0.If ¢ : (£,9) —> (L', ') is a morphism in Connlz, and A, A/
are the corresponding cocycles, then the identity d¢ = ¢d’ implies for every « a pair of commutative
squares:

o

LE Ly o*LE
9| lo%o (35)

== * 7/t
Lut AE g La
a

In other words, for every «, the collection of flat homomorphisms

o

AL = {Ai € Hom(LE, o*L* }
o ( o o (1) ([;,8)

indexed by abelian connections (£, 9) € Connlz, forms a natural transformation
A id = o*

defined over Uf, Here, o™ : ConnlZ — ConnlZ is the pullback functor by the canonical involution
o. Thus, we obtain a cocycle valued in the local system Hom(id, 0*) of abelian groups on the
punctured spectral curve 2.° consisting of natural transformations from the identity functor id to the
pullback functor o *:

bi={1F |a e T} e Z'(Ur, Hom(d, o) (36)

Formula (30) makes it apparent that the Voros cocycle V is completely determined by the cocycle
1; let us make this precise. Suppose (£, 9) € Connlz, and choose a point p € U, for some «. If



Abelianisation of Logarithmic s[-Connections Page 29 of 35 78

py € Uff are the two preimages of p, then the canonical isomorphism 7Ly —> Lp_ @ Lp, on
stalks induces a canonical inclusion of Hom (L, c*L)p, into £ \ f(rr*L)p via

Hom(L,0*L)p, =Hom(Lp,,0"Lp,)
=Hom(Lp, , Lp_) < End(msLp) = End (. L)p

Given any ¢ € Hom(L, a*L)pi, we denote its image in Snd(n*L)p by m.c.

3.16 Proposition The Voros cocycle V and the abelian cocycle A satisfy V = 1 + m, 1, where 1 is
the identity cocycle.

That is to say, the nonabelian Voros cocycle V is actually ‘in disguise’ the data of an abelian cocycle
A but on a different curve. In other words, A should be thought of as the abelianisation of the Voros
cocycle.

Proof Notice that v induces a double cover $If — {1, yielding a map on cocycles:
7! ()JF, Hom(id, a*)) — 7! ().lr, Aut(m)) givenby ¢+ 1+ myc 37
Then formula (30) implies that V is the image of A. O

3.3 The nonabelianisation functor

In this section, we construct the nonabelianisation functor 7raI;J and prove that it is an inverse equiv-
alence to the abelianisation functor nlih. The main ingredient is the Voros cocycle V, and the
construction proceeds in two steps. If (£, d) is an abelian connection on X, we first use the the
pushforward functor 7, to obtain a rank-two connection (4L, 7,3) on (X, D U B). But 7,9 does
not holomorphically extend over the branch locus B, because it has nontrivial monodromy around
B, as we remarked after the proof of Proposition 2.15. Therefore, 7, cannot invert nlzlb, because its
image is not even contained in Conn)z(. Instead, step two is to use the Voros cocycle V to deform 7,
as a functor. The result is the nonabelianisation functor 71,5).

3.17. Construction of V. Given any abelian connection (L, d, u) € Connlz, we construct

E, V., M) € Conn)z((l“). Consider the pushforward (7, L, 77,9, 7, ). The Voros cocycle V deter-
mines a cocycle V := V(L) € Z! (&tr, Aut (7. L£)).

DEFINITION OVER STOKES REGIONS. The main step in the construction is to use V to reglue
7. L over Stokes rays. For each Stokes region Uy, let

& =mLly,, Vi=mdly,, M= mply,

and if Uy, is a Stokes ray in the ordered double intersection U; N Uy, then the gluing over U, is
given by V, : & = &;. If U; is a spectral region in the preimage of Uy, then since £;(U;) =
L) & c*L(U;), the map M defines an sl,-structure on each local piece £;. Moreover, M; and
M glue over U, because V, is unipotent with respect to the corresponding decompositions.
DEFINITION AT THE POLES. Recall that the infinitesimal punctured disc Ug centred at a point
p € Dis covered by sectorial neighbourhoods coming from the Stokes regions incident to p. Thanks
to the upper-triangular nature of the Voros cocycle V, we obtain a flat bundle 5:; over U; equipped
with a filtration (5;)‘ whose associated graded is canonically isomorphic to JT*£|U;. Now, it is a
simple fact that if the associated graded of a filtered connection extends over a point, then the filtered
connection itself extends with the same Levelt exponents. Thus, SS has a canonical extension over
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7 I
o 24 or .

ol & Ll

Fig. 14 A short path g on X intersecting the Stokes ray « and its lifts ', o' to 2

Up to a bundle &, with connection Vp, that has logarithmic poles at p and Levelt exponents £Ap. It
remains to define V over the branch locus B.

DEFINITION AT THE BRANCH POINTS. We will first compute the monodromy of V around each
branch point directly to show that it is trivial, and then use Deligne’s canonical extension [5, pp.
91-96].

3.18 Lemma The monodromy of V around any branch point is trivial. Therefore, the connection
(E,V, M) on X° has a canonical holomorphic extension over B.

The technique is to express the parallel transport of V along paths on X in terms of the parallel
transport of d along their lifts to 2_ as well as the sheet transposition paths. We adopt the following
notation for the parallel transports of V, 9, 7,9, respectively:

P : TIIT{ (X°) — GL(&), p: 1 (X°) — GL(L), e p : I (X°) = GL(7. L)

It follows immediately from the construction of £ that if o is a path on X° contained in a Stokes
region, then P(p) = m, p(p). Explicitly, let o', " be the two lifts of g to L. Let x, y be the
startpoint and the endpoint of g, and similarly for &’, &”. Then, for example, the fibre Ex = |, is
the direct sum of fibres Ly @ Ly of £. With respect to these decompositions, the parallel transport
P(p) : Ex —> Ey is expressed as

Ly——Ly
- o (38)

[p(so/) }
A RSN Ly

P(p) =mp(p) =

We say that a path o on X° (or > °) is a short path if its endpoints do not belong to the Stokes
graph I (or to the spectral graph I') and it intersects at most one Stokes ray (or spectral ray). If g is
a short path on X° that intersects a Stokes ray @ € I'1, then g is divided into two segments g_, g+
(Fig. 14).

Each g4 is contained in a Stokes region, so P (p+) = . p(g+). On the other hand, the vector
bundle £ is constructed by gluing 7, L to itself over Uy by the automorphism Vy, so we obtain the
following formula for P (g):

P(p) = mep(9+) - Vo - ap(0-) (39

Explicitly, let g, " denote the two lifts of g to X, where g’ intersects a_ and g intersects oy
(Fig. 14). The parallel transport P(g¢) : Ex — Ey can be expressed as

P(p) = {p(@;) } [1 AS{] {p(pi) ] _ [p(so’) p(@;)Aip(soﬁ)]
ey 1 p®") ")
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The off-diagonal term p(/,) A} p(e) is the parallel transport of 9 along the concatenated path
o = el 83 e (Fig. 15), so

Ly—Ly
(") p(@*)] X y

P(p) = aoll. @ 40

®) [ p" Lx//*>/’ La;,/ “0

Proof of Lemma 3.18 Fix a branch point b € B, and let Uy, Ug, U, be the three Stokes rays incident
to b. Fix a basepoint x in the Stokes region U; as shown in Fig. 16, and also fix a loop g around b.
We calculate the monodromy P (g). Fix two more basepoints y, z in the other two Stokes regions,
thus dividing the loop g into three short paths denoted by g4, g, ), as explained in Fig. 17. Then
P(p) = P(py)P(pp)P(9«). Each P(p,) (Where ® = a, B, y) can be expressed via (39) as

P(9e) = T4 p(§0+) - Vie) - s P (§20—)

"
o

Now, let ', " be the two lifts of g to X, as explained in Fig. 18. The lifts o/, @/’5 g, intersect
the positive spectral rays o, B+, ¥4, giving rise to three sheet transposition paths g, 50; ga; as

shown in Fig. 19. By inspection,

o0 = @yop " of =@ oy = (0pe ! (41)
o4
[ o N
KJH gJ, , -

11
QL

Fig. 15 The concatenated path g/, §; ¢! (left) is homotopic to g (right)

Fig. 16 Three Stokes rays

a, B, y on X incident to the
branch point b € B, and an
anti-clockwise loop g around b
based at x
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Fig. 17 The loop g from Fig. 16
is homotopic to the concatenated
path oy g« as shown

Fig. 18 Left: Let X', X" be the two preimages of x on 2 as shown. Right: Let y',y”,Z’, 2" be the lifts of
n_ I

y, z as shown, g’ = 50)’, 50//3 e and p’ = @;/ £

©) S O ©) " O

Fig. 19 Three sheet transposition paths 50; s p;, p}‘f arising from the intersections of g, 50/’3, 50;,/ with

positive spectral rays «, B, y, respectively
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The explicit formula (40) gives three expressions:

Ly———Ly

Plpa) = [p() PO . o
* P | L~ Ly

B Ly———L,

Plop) = | PO e o
P pop) pop | 1,31,
Plp,) = | PO PED]. L@%/L@,,
A | N I Ny

Notice that P (pp) is lower-triangular in the given decompositions of I1,L|, and I1, L], because
it is the lift 50;9 of gp starting at y’ that intersects the positive spectral ray B. Also notice that the
source fibre of P (gy) is decomposed as Ly @ Ly, whilst the target fibre of P (g, ) is decomposed
as Lys @® Ly, so the monodromy P () € Aut(Ly @ Ly) is given by

_ p(&y) Pl )] p(®p) [p(p&) p(p‘j)]
P )_[1 H ) [p(so;) P} Pl

P97 94) p(@ypﬁ 9a) + p(soysogsog)
p(@y 9p9%) + PO 95 4 90) P&y 0p0d) + P g Fod) + ploy) Pp8q)

Applying relations (41), we find that o) 505 9o = 0y a8y )_lp& = 1, which is a constant path
at X/, so the top-left entry of P (g) is 1. Next, the path py ©p p(; appearing in the bottom-left entry,

" " 7

simplifies to (9} 950) ™", 50 p(p; oy zoa* ) = P(oy 9" ' Now, 0/ 0408, 9% is a loop
around the ramification point r based at x’, and since the connection 8 has monodromy —1 around
r by Proposition 2.12, we find:

" _n. I 1

POy RO, Op80) =
" "

It follows that p(py o /) oo L= p(py §p8a)s and so the bottom-left entry of P (g) is 0. Similarly,
we can calculate the other entries of P () and find that P (p) = id. O

3.19. Diagonal decompositions and transversality. The fact that the connection V is transverse
with respect to I" is deduced from the fact that the local and semilocal diagonal decompositions of
& (Propositions 2.8 and 2.46) can be easily recovered from our construction as follows. Let Uy, be
the infinitesimal disc around a pole p € D. If UjE are respectively the infinitesimal discs around p.,
let ﬁi = ,Clui and A = JT*Ei Then it follows from the construction of £ over Uy, that the
local dlagonal decomposmon of Sp is precisely 7'[*[,|U =A@ A+ As aresult, the local Levelt
filtration of € at pis £ = (A, C EP).

Let U; be a Stokes region with I = { i’ } and with polar vertices p, p’ such that the spectral
regions U;, Uy are respectively incident to the preimages p_, p’_. By construction, if £;¢) := Ly O
and A;o) = L0, then & = A; & Ay Of course, £; is the unique continuation of E from
Up to U;, and therefore A; is the unique continuation of A from Up to Uy. Same for A;/. As a
result, the direct sum A; @ Ay is nothing but the transverse intersection 5; M 5 , p of Levelt
filtrations S Y S °, continued to U;. This demonstrates the fact that V is transverse w1th respect tol,

so(E,V,M) ¢ ConnX(F).
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3.20 Proposition The correspondence (L, 9, u) — (€, V, M) extends to a functor
7l Conn'z — Conn)z((r')

This follows immediately from the commutative square (32). We call n;;) the nonabelianisation
Sfunctor, and the image (£, V, M) of (L, 9, u) under n;; the nonabelianisation of (L, 9, ) with
respect to the Stokes graph I'. Finally, our Main Theorem 3.3 follows from the following proposition.

3.21 Proposition The functors nflb, n{b form a pair of inverse equivalences of categories.

Proof Given (£,V, M) € Conn)z((F), let (£, 0, 1) € ConnlZ be its image under Jrli‘b. By construc-

tion, the Voros cocycle V applied to L is the cocycle V from (26). Lemma 3.9 gives a canonical
isomorphism n;;)nl"lbg = &, 50 ngjnﬁb = Id.

The converse is clear from the discussion above of diagonal decompositions and transversality
(3.3), so we will be brief. Given (L, 9, u) € Connl):, let (£,V, M) in Connf((F) be its nonabelian-
isation, and suppose £’ is the abelianisation of £. First, we have [,;t = Egt for every p € D. If
U; C X is a spectral region with sink polar vertex p_, then A; = m,L; is the unique continuation

of Ag. Both £; and L] are the unique continuations of (n';)*A; to U;, we get L] —> L;. Thus,

p
L, L' are canonically isomorphic over 2 \ R, and because their extensions over R are unique, this
isomorphism also extends over . So £ —> L' = nfibrr;)E, and hence id = n]zibrr;;. [}
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