
CONSTRUCTING SCATTERING AMPLITUDES

FROM THEIR FORMAL PROPERTIES

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF PHYSICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Andrew McLeod

August 2017



 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      http://creativecommons.org/licenses/by-nc/3.0/us/

 

 

 

This dissertation is online at: http://purl.stanford.edu/bv314fr9257

 
Includes supplemental files:

1. Ancillary files to Chapter 1 (Chapter_1_ancillary.tar.gz)

2. Ancillary files to Chapter 2 (Chapter_2_ancillary.tar.gz)

3. Ancillary files to Chapter 3 (Chapter_3_ancillary.tar.gz)

4. Ancillary files to Chapter 4 (Chapter_4_ancillary.tar.gz)

© 2017 by Andrew J. McLeod. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/bv314fr9257


I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Lance Dixon, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Peter Graham

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Renata Kallosh

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in 
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii



Abstract

Scattering amplitudes in quantum field theory encode the probability of configura-

tions of incoming and outgoing particles scattering into each other, as well as particle

masses and decay rates. Traditionally they have been calculated using Feynman

diagrams, but this method generally proves too computationally intensive to allow

for the calculation of higher-loop contributions, which are relevant for making pre-

dictions in particle physics experiments and to our understanding of quantum field

theory itself. As a step in the direction of filling this computational gap, this disser-

tation presents an improved bootstrap method for computing scattering amplitudes

in the planar limit of maximally supersymmetric Yang-Mills theory. This method

does away with Feynman diagrams altogether, and instead uses knowledge of the

symmetries and analytic properties of scattering amplitudes, in conjunction with an

understanding of the mathematical form these amplitudes take in general and special

kinematics, to uniquely determine them at high loop orders. In particular, it makes

use of the fact that amplitudes in this theory are expressible in terms of generalized

polylogarithms for seven and fewer particles. The first part of this dissertation focuses

on six-particle kinematics, where previously-unappreciated algebraic constraints on

these amplitudes are described that restrict both their double derivatives and their

double discontinuities. Alongside previously-understood constraints, these properties

are used to uniquely determine all six-particle amplitudes in this theory through five

loops. These explicit results are then used to provide analytic and numerical evidence

for a recently-conjectured positivity property these amplitudes are thought to have

in certain kinematic regions. In the second part of this dissertation, it is shown that

these methods straightforwardly generalize to seven-particle kinematics, where they
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in fact prove to be even more restrictive than in six-particle kinematics. In particular,

a smaller set of constraints is shown to be sufficient to determine specific seven-point

amplitudes at three and four loops, up to integration constants. While the results

presented in this thesis are confined to the planar limit of maximally supersymmet-

ric Yang-Mills theory, these bootstrap methods are expected to prove useful even in

theories without supersymmetry.

v



If the fool would persist in his folly he would become wise.

– William Blake, The Marriage of Heaven and Hell

What hath night to do with sleep?

– John Milton, Paradise Lost
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Introduction

Scattering amplitudes have long been of interest as one of the basic observables one

can calculate in quantum field theory. These quantities encode not only the prob-

ability of specific configurations of incoming and outgoing particles scattering into

each other, but also the masses and decay rates of the particles in a given theory.

Of special interest are amplitudes in SU(N) gauge theories (alternately called Yang-

Mills theories), due to the fact that we know that the real world is well-described by

the Standard Model, an SU(3) × SU(2) × U(1) gauge theory, at energies currently

accessible to particle accelerator experiments. However, despite this practical inter-

est and the efforts of multiple generations of physicists, theoretical uncertainties for

some of the predictions at the currently-operating Large Hadron Collider (LHC) re-

main at the ∼ 10% level, making them comparable to the corresponding experimental

uncertainties.

While part of the difficulty in making predictions at the LHC can be attributed

to the large number of interacting particles in the Standard Model and the fact that

the SU(3) part of its gauge group is confined at low energies, another fundamental

limitation arises because of how we traditionally compute even the simplest ampli-

tudes in quantum field theory. This is in terms of Feynman diagrams, a procedure

wherein one pictorially expands an amplitude as all possible ways the incoming parti-

cles can interact to become the outgoing ones, and sums over the contribution coming

from each diagram. An example of this type of expansion is seen in Figure 1, where

the first few Feynman diagrams for the scattering of two distinguishable quarks in a

U(1) gauge theory are shown. When the particles in a quantum field theory interact

1



2

= + + + + . . .

Figure 1: The Feynman diagram expansion in for the scattering of distinguishable
quarks in U(1) gauge theory. The straight lines represent quarks with a given spin,
and the wavy lines represent photons.

weakly, the contributions made by diagrams with a large number of internal parti-

cles are suppressed relative to diagrams with fewer interaction vertices. This allows

amplitudes to be approximated by truncating this expansion at a certain loop order,

which is to say by throwing away all Feynman diagrams whose internal lines trace

out more than this number of loops.

Fortuitously (if one is interested in the weakly-coupled regime), it is the Feynman

diagrams with the fewest number of loops that are easiest to compute—for example,

the first term in the expansion in Figure 1 can be straightforwardly determined to be

ig2q1q2
ū(p′1)γµu(p1) ū(p′2)γµu(p2)

(p1 − p′1)2
,

where pi, p
′
i, and qi correspond to the incoming momentum, outgoing momentum,

and U(1) charge of the ith quark, and g is the coupling constant associated with each

interaction vertex. The products of gamma matrices with incoming and outgoing

spinors encode the helicity structure of the scattering process. Even in the absence of

loops, however, the number of diagrams one can write down increases factorially with

the number of scattering particles. For this reason, it wasn’t until 1985 that the tree-

level contribution was calculated for two incoming gluons scattering into four outgoing

ones (an amplitude relevant for making predictions at particle colliders like the LHC)

by Parke and Taylor [1]. While their original result spanned eight pages, these authors

were quickly able to simplify and generalize this expression to any number of outgoing

particles for the maximum helicity-violating (MHV) part of the all-gluon amplitude,

in which two gluons have negative helicity while all other helicities are positive [2].



3

Their final result for the cross section—that is, the square of the amplitude, in which

guise scattering amplitudes enter observable predictions—takes the compact form

∣∣An(p−1 , p
−
2 , p

+
3 , . . . , p

+
n )
∣∣2 ∝ ∑

σ∈Sn

(p1 · p2)4

(pσ1 · pσ2)(pσ2 · pσ3) · · · (pσn · pσ1)

where all colors and polarizations have been summed over, and we have dropped the

kinematic-independent prefactor; the remaining sum is taken over all permutations

of the momenta of the scattering particles. As this result resums an arbitrarily large

number of Feynman diagrams for large values of n, this prediction provided one of

the first indications that scattering amplitudes themselves aren’t as complicated as

the Feynman diagram techniques normally used to compute them.

The situation becomes more complicated when one wants to compute Feynman

diagrams involving loops, because one must integrate over all possible intermediate

states of the particles in each loop. This can already prove a challenge at two loops,

and while great progress has been made recently on four-particle scattering, basically

none of the amplitudes relevant to five- or higher-particle scattering processes at the

LHC are currently known at this order. This signifies a strong need for new compu-

tational techniques and ways of reformulating the quantities under study. One such

reframing of the problem is realized by the unitarity method, which takes advantage

of the fact that the probabilities assigned to all possible outgoing configurations of

scattered particles must sum to one [3]. This translates to the S-matrix requirement

that S†S = 1, or—if we separate out the contribution coming from interacting par-

ticles by writing S = 1 + iT—that 2ImT = T †T . When expanded perturbatively

in the coupling, this relates the imaginary part of an amplitude—corresponding to

its discontinuity across some set of branch cuts—to lower-loop amplitudes. As the

branch cuts of amplitudes are associated with internal particles going on shell (being

assigned their physical mass), this relation identifies diagrams that have some of their

internal particles put on shell with products of lower-loop amplitudes that are sown

together by these on-shell particles. This makes it possible to express amplitudes

(up to rational terms, which don’t have associated branch cuts) in terms of these

lower-loop building blocks by considering unitarity cuts in all momentum channels.



4

The method of generalized unitarity takes this one step further, by considering

the residues of diagrams with even more internal particles put on shell [4]. Using such

cuts, one can construct the full integrand associated with an amplitude—that is, the

rational function of the internal and external momenta sitting inside the integration

symbol—at any loop order. This information can in turn be used to identify the

amplitude itself (again, up to rational terms) when it can be expanded in terms of a

basis of known integrals. However, the study of integrands themselves has also proven

fruitful in recent years, and has given rise to efficient computational tools [5, 6, 7],

unexpected relations between gauge theory and gravity [8, 9, 10], and novel ways

of thinking about what scattering amplitudes compute [11, 12, 13, 14]. Although a

general method for carrying out the integration over these integrands is still wanting,

this growing command over the integrands entering field theory calculations has given

rise to an increased understanding of the amplitudes we are ultimately interested in.

With the use of these and other such methods, the last three decades have seen

an eruption of progress in our ability to calculate scattering amplitudes. These ad-

vancements, moreover, have continually borne out the observation that scattering

amplitudes, even at high loop orders, are endowed with a mathematical simplicity

that is not at all apparent from their Feynman diagram expansion. This is exception-

ally true in highly supersymmetric theories, in which particles of different spin are

related to each other. For this reason, it is in these theories that many of the most

striking advances have been made.

The theory this thesis will focus on is the maximally supersymmetric gauge the-

ory in four dimensions, N = 4 super-Yang-Mills (SYM) theory [15, 16] (if we were

to add more supersymmetry, we would get a theory of gravity). In particular, we

consider this theory at the origin of the moduli space, where no scalars have been

given vacuum expectation values and all gauge bosons are correspondingly massless.

Consequently, the only two parameters that enter this theory are the coupling con-

stant and the number of colors N in the gauge group, and its particle content is

given by unbroken massless supermultiplets each involving two spin-1 gluons, eight

spin-1
2

gluinos, and six complex scalars related by the action of the supersymmetry

generators. Amplitudes with different particle content are related by supersymmetry
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and R-symmetry Ward identities, and in this theory these identities are rich enough

to completely determine amplitudes involving particles other than gluons in terms

of purely gluonic amplitudes for eight or fewer scattering particles [17]. Correspond-

ingly, we will concern ourselves exclusively with all-gluon amplitudes. In addition to

maximal supersymmetry, this theory enjoys a conformal symmetry that is not spoiled

by quantum corrections. These symmetries combine to form a superconformal group,

described by the graded Lie algebra su(2, 2|4), which includes 30 bosonic generators

and 32 fermionic generators (which change the helicity of the object they act on).

While it is known that this theory can’t describe the real world, its highly con-

strained mathematical structure makes it a natural arena for the development of novel

computational techniques that can hopefully be generalized to the Standard Model.

It is known, for instance, that the same types of iterated integrals appear in the

amplitudes of both of these theories. For amplitudes involving a sufficiently small

number of particles, all current calculations have shown it is enough to consider the

space of multiple polylogarithms, defined recursively by

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1

G(a2, . . . , an; t), G(0, . . . , 0︸ ︷︷ ︸
n

; z) =
logn z

n!
.

This space of functions includes the natural logarithm log z = G(0; z) as well as the

classical polylogarithms Lin(z) = G(0, . . . , 0, 1; z), and comes equipped with a notion

of ‘transcendental weight’ corresponding to the number of integrations appearing in

the construction of a given multiple polylogarithm. (In the case of products of func-

tions, transcendental weight is additive.) The utility of this measure is that the L-loop

contribution to every amplitude in N = 4 SYM is believed to have uniform transcen-

dental weight 2L. This is not true of non-supersymmetric gauge theories, where

amplitudes generically have mixed transcendental weight and can receive contribu-

tions from elliptic integrals when the matter content of the theory includes particles

with different masses (elliptic functions are also expected to appear in higher-point

amplitudes in N = 4 SYM). However, N = 4 SYM amplitudes appear as part of the

leading transcendental piece of the polylogarithmic component of non-supersymmetric

amplitudes, so there is at least a minimal sense in which our increasing understanding
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of these amplitudes already gives us a glimpse into the Standard Model.

The computations presented in this thesis make use of further simplifications that

occur when the number of colors N becomes large. This has the effect of suppressing

contributions coming from non-planar Feynman diagrams—those whose internal lines

cross when projected onto a plane—because their associated color factors give rise to

fewer factors of N than their planar analogues. In this limit, N = 4 SYM becomes

integrable and has a finite radius of convergence [18], indicating that it should be ex-

actly solvable. Amplitudes in this limit moreover become dual to light-like polygonal

(super-)Wilson loops [19, 20, 21, 22, 23, 24, 25], endowing them with a dual super-

conformal symmetry that combines with the ordinary superconformal symmetry to

form an infinite-dimensional Yangian symmetry [19, 26, 27, 28, 29, 30].

This large amount of additional symmetry strongly constrains the form ampli-

tudes can take in the planar limit—in fact, up to additive constants it fixes the four-

and five-particle amplitudes to be nothing more than the exponentiated one-loop con-

tribution dressed with certain anomalous dimensions, as conjectured by Bern, Dixon,

and Smirnov [31]. The success of this ‘BDS ansatz’ is now understood from the dual

(Wilson loop) perspective, where it solves the inhomogeneous part of an anomalous

dual conformal Ward identity associated with ultraviolet divergences that appear at

the cusps of polygonal Wilson loops [20, 21, 22, 23]. Since the amplitude/Wilson loop

duality maps the infrared of one theory to the ultraviolet of the other, and because

these Wilson loops receive no other divergent contributions, the solution to this Ward

identity accounts for all infrared-divergent contributions on the amplitudes side of the

duality for any number of particles.

The fact that these infrared divergences exponentiate is not surprising, since this

exponentiation is a general property of gauge theories—what is surprising is that

the finite part of the amplitude exponentiates as well for fewer than six particles.

However, this can be seen to follow from the fact that the solution to the anoma-

lous Ward identity governing these Wilson loops is unique for four- and five-particle

kinematics, thus determining the finite as well as the divergent pieces of these ampli-

tudes. Once six or more particles are involved, it becomes possible to construct ratios

of kinematic invariants that respect the dual conformal symmetry of the amplitude.
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These dual conformal invariants are annihilated by the (nonanomalous part of the)

Ward identity, implying that any solution to this Ward identity can be shifted by

an arbitrary function that depends only on these variables. The upshot is that the

n-particle amplitude in planar N = 4 SYM is known up to a finite function of dual

conformal invariants, which can appear first in six-particle kinematics—all of which

is completely obscured by the Feynman diagram expansion of these amplitudes. It

is this set of finite, dual conformally invariant functions that the present thesis will

concern itself with.

The first efforts to compute six- and seven-particle corrections to the the BDS

ansatz focussed on the ‘remainder function’ Rn, which encodes the MHV part of the

amplitude, and the ‘ratio functions’ PNkMHV
n , which encode the helicity configuration

with 2 + k negative helicity gluons [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. The first of

these quantities is defined in terms of the n-particle MHV amplitude AMHV
n and the

corresponding BDS ansatz ABDS
n by

AMHV
n = ABDS

n × exp(Rn) ,

while the second is given by the ratio of each other helicity component of the amplitude

to the MHV part of the amplitude,

PNkMHV
n =

ANkMHV
n

AMHV
n

.

In addition to being infrared finite, these functions inherit a broad set of formal

properties from the amplitude, including

◦ symmetries under permutations of particle indices,

◦ simple spacetime parity transformations,

◦ branch cuts only in physical channels,

◦ derivatives constrained by the action of the dual superconformal generators,

◦ universal collinear and multiparticle factorization properties,
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◦ and restricted behavior in special kinematics, such as the multi-Regge limit and

the near-collinear region.

This set of properties, combined with the observation that all known six- and seven-

particle amplitudes in this theory are expressible in terms of multiple polylogarithms

with specific kinematic arguments, makes possible a bootstrap approach to computing

the remainder and ratio functions [32, 33, 34].

The strategy adopted by the ‘Hexagon’ and ‘Heptagon’ bootstrap programs is to

first build the full space of multiple polylogarithms that can appear in the remainder

and ratio functions at a given loop order, and then impose known properties of these

functions on a general ansatz in this space. The verb ‘build’ is appropriate here,

because while it proves easy (at least for six- and seven-particle amplitudes) to write

down all multiple polylogarithms that depend on the right set of kinematic invariants,

this näıve approach leads to a far larger space of functions than is needed—in par-

ticular, the vast majority of functions in this space will have unphysical branch cuts.

A more nuanced approach can be adopted by taking advantage of the Hopf algebra

structure these polylogarithms respect [42, 43]. In particular, they are endowed with

a coproduct ∆ that breaks down each function into tensor products of functions of

lower transcendental weight. This map preserves the total weight, and its action on

a function of weight w can be split into components as

∆ =
∑
p+q=w

∆p,q.

where ∆p,q maps the space of weight p+q polylogarithms to a tensor space of weight p

polylogarithms times weight q polylogarithms. Each of these coproduct components

contains the same information, up to powers of π. This provides a natural algebraic

structure within which functions with some desirable physical properties can be con-

structed. That is, instead of using the coproduct to analyze a known polylogarithm,

one can use it to ‘build’ a function, or rather its coproduct, out of a general tensor

space of lower-weight polylogarithms. For instance, we can define a function F of
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weight w by its action under ∆w−1,1 as

∆w−1,1F ≡
∑
{si}

F si ⊗ log si

for some set of weight w−1 functions F si (the superscript denotes the logarithm each

of these functions is paired with, not a power), and some set of ‘symbol letters’ si

that for us will be algebraic combinations of kinematic invariants. Only logarithms

appear in the second entry because they constitute a basis of polylogarithms of unit

transcendental weight. If the functions in this tensor product are chosen to satisfy

some desirable algebraic or analytic property, they can endow the constructed function

with these properties as well. For instance, the monodromy operator (which computes

the discontinuity picked up by encircling a point) only acts on the first entry of the

coproduct, meaning that the function F will only have the branch cuts it inherits

from the functions F si . Similarly, derivatives only act on the second entry of the

coproduct, so the derivative of F will be given by

dF =
∑
{si}

F si d log si ,

implying that the above coproduct-level definition is equivalent to specifying the

derivatives of the function F . This means that we also need to specify an integration

base point to complete the definition of our function F . To ensure that this integra-

tion can be carried out, we must also impose some ‘integrability constraints’ on the

combination of functions appearing in our coproduct-ersatz of F , since an arbitrary

linear combination of functions in this tensor space will not correspond to the co-

product of a genuine function. This is equivalent to requiring that partial derivatives

acting on F commute.

This technique for bootstrapping multiple polylogarithms with special properties

was first proposed by Dixon, Drummond, von Hippel, and Pennington [34], and—as

the results presented in this thesis will hopefully demonstrate—has proven a fruitful

one. As it will play a central role in the computations presented throughout the rest of

this work, a worked example of this bootstrap procedure is provided in Appendix D,
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where the space of two-dimensional functions appearing in a certain kinematic limit

of six-particle scattering is explicitly constructed through weight 3. Carrying out

this construction in general six-particle kinematics gives rise to the space of Hexagon

functions, which are defined to be multiple polylogarithms such that that (i) only a

specific set of nine arguments enter the logs appearing in weight one entries of their

coproduct, and that (ii) have discontinuities in only physical channels. Heptagon

functions, the analogous functions in seven-particle kinematics, can be similarly de-

fined in terms of a different set of forty-two allowed arguments. With a basis of either

set of functions at weight 2L, it is straightforward—if sometimes computationally

burdensome—to impose symmetry, parity, and proper behavior under the action of

the dual superconformal generators on a general ansatz. However, these constraints

by themselves are not generally sufficient to determine the ratio or remainder func-

tions, so knowledge of kinematic limits must be used to impose further conditions on

this ansatz.

One limit of interest in this respect is the collinear limit, in which two or more

scattering gluons become collinear. In the strict collinear limit, gauge theory ampli-

tudes are expected to factorize into lower-point amplitudes times splitting functions.

This translates to a vanishing condition on loop-level corrections to the six-particle

BDS ansatz, since the BDS ansatz for fewer particles is exact. On the other hand, the

condition that the functional dependence of the seven-particle amplitude reduces to

that of Hexagon functions in all collinear limits turns out to be extremely restrictive,

as we will see in Part II of this thesis. In planar N = 4, a great deal is also understood

about the near-collinear limit from the amplitude/Wilson loop duality [44, 45, 46, 47].

In particular, the amplitude can be expanded as a power series around the collinear

limit for finite coupling, using an operator product expansion that describes the limit

in which two of the lines in the Wilson loops dual to amplitudes become collinear

[48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. This provides a source of boundary data and

consistency checks, through any order one is intrepid enough to compute this operator

product expansion to.

A second limit that can provide boundary data or consistency checks is the multi-

Regge limit, in which the scattering particles are strongly ordered in rapidity. Here
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the amplitude can be transformed into Fourier-Mellin space, where it is determined by

a BFKL eigenvalue and impact factor, both of which can be computed perturbatively

[58, 59, 60, 61, 62, 37]. Notably, the amplitude exponentiates in Fourier-Mellin space,

such that the terms that appear in this limit with two or more powers of large logs

are predicted by the multi-Regge limit of lower-loop amplitudes.

In Part I of this thesis, these and new constraints are used to uniquely determine

the six-particle scattering amplitude in planar N = 4 at four and five loops. First,

Chapter 1 presents an extended set of constraints following from the action of the

dual superconformal generators on these amplitudes (in the guise of the Q̄ equation

[63, 64]), which are used in combination with the other constraints outlined above

to compute the NMHV ratio function at four loops. This complements a previous

computation of the four loop remainder function using similar methods [35], thus

completing the calculation of the four-loop amplitude. This chapter was published,

in a slightly modified form, with Lance Dixon and Matt von Hippel [38].

In Chapter 2, an entirely new class of constraints is shown to follow from the work

of Steinmann [65, 66, 67], who showed that the discontinuities of discontinuities of

amplitudes are required to vanish when these discontinuities are taken in channels that

partially overlap. These constraints do not apply directly to the remainder and ratio

functions, but can be made transparent by bootstrapping instead a set of functions

normalized by a ‘BDS-like’ ansatz in which all dependence on three-particle kinematic

invariants has been removed (see Appendix F). These new functions are related to the

original remainder and ratio functions by a simple exponentiated factor, but live in

the subspace of the Hexagon function space where these double discontinuities vanish.

Since this property can be built into functions at the level of the coproduct, it gives

rise to a drastically smaller space of functions that need be constructed. This new

restriction is then used in combination with only general constraints on the form the

amplitude can take to compute the full six-particle amplitude at five loops. In other

words, it is shown that knowledge of just the symmetries and analytic properties of

the amplitude, in combination with an understanding of the form these amplitudes

must take in either the near-collinear or multi-Regge limit, is sufficient to determine

the amplitude through five loops—no external boundary data is needed as input. This
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chapter was published, in a slightly modified form, with Simon Caron-Huot, Lance

Dixon, and Matt von Hippel [68].

Chapter 3 goes on to give one answer to the question: what can we do with these

amplitudes now that they’ve been computed? It does this by making contact with

some of the structure seen at the level of the Amplituhedron formulation of planar

N = 4 integrands [13]. Namely, the Amplituhedron construction provides a kine-

matic region where the integrands of these amplitudes are positive, and where it has

been further conjectured that the amplitude itself may be uniformly positive [69].

(Note that this does not follow from the positivity of the integrand, because generic

integration contours—and in particular, the usual Minkowski contour—do not mani-

festly preserve positivity.) This chapter presents analytic and numerical evidence in

support of this conjecture through five loops, and in fact makes the stronger obser-

vation that both the ratio function and BDS-like normalized MHV amplitude appear

to grow monotonically in certain kinematical regions. This points to a surprising

property of the contour of integration (which is not yet understood), and the poten-

tial existence of another formulation of the theory that would make this currently

unexplained property manifest. This chapter was published, in a slightly modified

form, with Lance Dixon, Matt von Hippel, and Jaroslav Trnka [70].

Part II turns to the kinematics of seven-particle scattering, and Chapter 4 uses the

same types of bootstrap techniques considered in six-particle kinematics to uniquely

determine the symbols of the four-loop MHV amplitude and three-loop NMHV ampli-

tude. (The symbol can be thought of as just the maximally iterated coproduct, which

lives in a 2L-fold tensor space of weight one logarithms.) Moreover, it is shown that

these objects are even more constrained than their six-particle counterparts, insofar

as only constraints on the form of the amplitude in general and collinear kinematics

are needed to uniquely determine these objects (in six-particle kinematics the math-

ematical form of either the near-collinear limit or the multi-Regge limit was needed

to seed higher-loop constraints from lower-loop predictions). This chapter was pub-

lished, in a slightly modified form, with Lance Dixon, James Drummond, Thomas

Harrington, Georgios Papathanasiou, and Markus Spradlin [71].
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Chapter 1

The Ratio Function at Four Loops

1.1 Introduction

Over the past few decades, the hidden simplicity of N = 4 super-Yang-Mills (SYM)

theory [15, 16] has been steadily revealed. The theory is conformally invariant for

any value of the coupling [72, 73, 74]. In the planar limit of a large number of colors,

further simplifications take place: the perturbative expansion has a finite radius of

convergence, and the theory becomes integrable [18]. Related to integrability, the

theory is endowed with a dual superconformal symmetry [26, 27, 28, 19, 29], and

scattering amplitudes are dual to polygonal Wilson loops with light-like edges [19,

20, 21, 22, 23, 24, 25]. These features make it an ideal setting for exploring general

properties of gauge theory amplitudes, especially for large numbers of external legs

and high loop orders. The infrared divergences of scattering amplitudes in planar

N = 4 SYM are captured by the BDS ansatz [31]. When amplitudes are divided

by this ansatz, the ratio is not only infrared-finite, but its components are functions

only of dual conformally invariant cross ratios [75, 76]. This restricted set of kine-

matic variables simplifies dramatically the problem of determining the amplitudes.

In particular, scattering amplitudes with four or five external particles are uniquely

determined, up to constants, because there are no nontrivial cross ratios in these

cases.

In the six-point case, the subject of this paper, only three functions are needed

14
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to specify the scattering amplitudes. Each function depends on three independent

cross ratios, which we call u, v and w. The first such function, the remainder func-

tion, R6(u, v, w), is defined to be the maximally-helicity-violating (MHV) all-gluon

amplitude divided by the BDS ansatz [75, 76]. MHV amplitudes involving parti-

cles other than gluons are related to this function by the N = 4 superalgebra, and

can be combined with the all-gluon amplitude to form an MHV super-amplitude

[77, 78, 79, 80]. Other helicity configurations, such as the next-to-MHV (NMHV)

amplitude, are specified as ratio functions, which are defined by dividing the super-

amplitude for the chosen helicity configuration by the MHV super-amplitude [29].

The NMHV ratio function can be further decomposed into two independent func-

tions, V and Ṽ , which multiply dual superconformal R-invariants — five-brackets

of supersymmetric versions of momentum twistors [81, 82]. For the six-point ampli-

tude, the next-to-next-to-MHV amplitude is related to the MHV amplitude by parity.

Therefore, R6, V and Ṽ are the only functions that can appear in this amplitude.

In principle, these functions could be determined at L loops by direct integration

of the loop integrand. There are various approaches to computing the multi-loop

integrand, see for example refs. [7, 83, 84, 11, 85, 86, 13, 14]. However, integrat-

ing such representations of the integrand is nontrivial. The hexagon function boot-

strap [32, 33, 34, 35, 36, 37] sidesteps this problem by constructing ansätze for the

functions in the space spanned by iterated integrals [87] with (transcendental) weight

2L. The assumption that the functions lie in this space was originally inspired by

the compact analytic form found for the two-loop remainder function [42], following

earlier work [88, 89]. It can also be argued for from various “dLog” representations

of the loop integrand [11, 85, 86]. Indeed, there is evidence that iterated-integral

representations should exist for all scattering amplitudes with fewer than ten parti-

cles [11]. Familiar examples of iterated integrals include logarithms, polylogarithms,

Riemann ζ values, and multiple polylogarithms [90, 91], where the weight is given

by the number of integrations. By requiring that an ansatz spanning this space of

functions has the appropriate analytic properties and functional dependence, and by

further matching it to known physical limits of six particle scattering, the six-point

remainder and NMHV ratio functions have been uniquely determined, through four
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loops [35] and three loops [37], respectively. A similar heptagon function bootstrap,

based on cluster variables [39, 40] has yielded the (symbol of the) seven-point re-

mainder function — with remarkably little input from physical limits [41]. The main

purpose of this article is to extend the hexagon function bootstrap to the NMHV

six-point amplitude at four loops.

Hexagon functions are defined by two conditions [34]:

1. Their derivatives with respect to the cross ratios can be expanded in terms of

just nine hexagon functions of one lower weight, n− 1. Equivalently, there are

nine different {n − 1, 1} elements of the coproduct [92, 43], corresponding to

nine letters in the symbol [93, 94, 95, 96] of the function. We also refer to these

functions as final entries (of the symbol).

2. Their branch cuts are only in u, v and w, and not in any of the other six symbol

letters [46].

The first condition can be used to construct hexagon functions iteratively in the

weight. The branch-cut condition is imposed iteratively as well, although at each

order most of it is automatically obeyed, given that the first derivative obeys it

by construction. The branch-cut condition massively prunes the space of iterated

integrals. For example, at weight eight — the weight we will primarily be concerned

with in this paper — a representation of the space of iterated integrals in terms

of multiple polylogarithms without imposing the branch-cut condition [34] leads to

1,675,553 such functions, whereas there are only 6,916 hexagon functions. (Recently a

more economical multiple-polylogarithm representation has been found which requires

only 500,217 functions at weight eight [97].)

In this paper, we use the hexagon function bootstrap to determine the four-loop

NMHV ratio function, starting from an ansatz of weight-eight hexagon functions for

each V and Ṽ . Due to the combination ofR-invariants multiplying these functions and

their permutations in the ratio function, a number of discrete symmetry constraints

can be applied from the outset. Some of the discrete symmetries are subsets of the

S3 group of permutations of u, v, and w. There is also a “parity” which leaves u, v, w

alone but flips the sign of a square root needed to define certain symbol letters yi;
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parity takes yi ↔ 1/yi. The function V (u, v, w) must be parity-even and symmetric

in the exchange u ↔ w, while Ṽ (u, v, w) is parity-odd and antisymmetric under the

same exchange.

A particularly powerful constraint comes from dual superconformal symmetry,

which leads to a “Q̄” differential equation [63, 64]. The consequences of this equation

for the first derivatives of six-point amplitudes were explored in refs. [64, 98]. It has

also been studied recently in the context of the operator product expansion [99, 100].

Here we will be interested in its global implications. For the MHV remainder function,

it implies that only six of the nine final entries are allowed. This information was used

in the hexagon function bootstrap for this function at four loops, although it still left

over 100 free parameters [35]. In the initial construction of the NMHV ratio function

at three loops [37], a seven-final-entry condition [64, 98] was imposed on both V and Ṽ .

After the fact, it was found empirically that a function related to V had only five final

entries, but the connection to the Q̄ equation was not yet clear [37]. Subsequently,

we have understood that the five-final-entry condition can be derived from the Q̄

equation, but also that this equation has much more powerful consequences [98].

The five-final-entry condition is a restriction on just one permutation of the parity-

even part of the ratio function; the full power of the Q̄ equation comes from how

it relates different permutations to each other, and also how it relates the parity-

even and parity-odd functions. Imposing the more general restrictions at the outset,

along with the discrete symmetry requirements, we find only a 34-parameter family

of solutions at four loops. (The five-final-entry condition, plus a seven-final-entry

condition on Ṽ , together with the same discrete symmetry constraints, would have

left 808 parameters at four loops.)

To this 34-parameter ansatz we apply the same physical constraints used at three

loops [37]. In the collinear limit, in which two external legs of the amplitude become

parallel, the six-point amplitude must reduce to a splitting function times a five point

amplitude. Because the five-point ratio function is trivial, loop corrections to the

six-point ratio function must vanish in this limit. This constraint fixes all but five of

the 34 parameters. Furthermore, while the hexagon functions are free of unphysical

singularities, some of the R-invariants have spurious poles. Therefore, any linear
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combination of V and Ṽ that multiplies an R-invariant that has a spurious pole

must vanish as that pole is approached. Previously, this condition provided a useful

constraint [33, 37]. Now, however, the combination of the Q̄ and collinear constraints

is so powerful that no additional parameters are fixed by the spurious-pole constraint

(at least through four loops).

To fix the five remaining parameters at four loops, we turn to the multi-Regge

limit. There has been considerable study of the remainder function in this limit [58,

59, 101, 102, 103, 104, 32, 60, 105, 106, 107, 35, 108, 62, 109]. In the NMHV case,

a factorization was proposed at the leading-logarithmic level by Lipatov, Prygarin

and Schnitzer [61], and later extended to all orders [62, 37]. The quantities entering

the multi-Regge factorization — the BFKL eigenvalue and the impact factor — can

either be determined order-by-order [37], or all at once using integrability and a

continuation from the near-collinear limit [62] (see also ref. [109]). The three-loop ratio

function suffices to determine the multi-Regge limit to next-to-leading-logarithmic

(NLL) accuracy. Matching the five-parameter ansatz at four loops to the NLL result,

we fix all five parameters remaining in the ansatz.

Once we have uniquely determined the solution, we can check it against further

boundary data. It predicts the next-to-next-to-leading-logarithmic (NNLL) terms

in the multi-Regge limit, and even the N3LL impact factor. All of these results

agree with previous predictions [35, 37, 62]. Many further checks come from the

operator product expansion (OPE) controlling the near-collinear limit [44, 45, 46,

47], by virtue of the representation of the (super)amplitude as a light-like polygonal

Wilson (super)loop. The Wilson loop OPE can be calculated nonperturbatively in the

coupling, using technology first developed by Basso, Sever and Vieira (BSV), wherein

the expansion is carried out in the number of flux tube excitations [48, 49, 50, 51].

This expansion corresponds to the number of powers of
√
w in the series expansion

around the collinear limit w → 0, u+ v → 1. More recently, this flux-tube approach

has been extended to all helicity configurations [52, 53, 54, 55, 56, 57]. Previously,

we used some of this information in the construction of the three-loop ratio function.

With the additional Q̄ constraints imposed, the OPE comparison becomes purely a

cross-check, at least through four loops. We have compared the series expansion of
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our results to both the single and double flux-tube excitation OPE predictions, and

all are in agreement.1

Another interesting limit is that of multi-particle factorization, where the six-

point amplitude splits into two four-point amplitudes connected by a single-particle

exchange (at tree level). In this limit, two cross ratios get large at the same rate:

u,w → ∞ with u/w and v fixed. At three loops, it was found that the behavior of

the even part of the ratio function in this limit was extremely simple, and could be

expressed just in terms of a polynomial in one kinematic combination, ln(uw/v), with

constant (ζ-valued) coefficients. We find that this pattern persists at four loops.

In order to gain some insight into the structure of the NMHV amplitude, we

explore the analytic and numerical features of V and Ṽ through four loops in a number

of kinematic regions. We give (relatively) compact formulas for V and Ṽ on particular

lines through the space of cross ratios where they simplify. We obtain numerical

values and plot them on these lines, and on various two-dimensional surfaces. From

the finite radius of convergence of the perturbative expansion of planar N = 4 SYM,

we expect the ratios of perturbative coefficients at successive loop orders to eventually

approach the same negative constant. However, the rate at which this happens can

depend on the location within the space of cross ratios. In many limits, there are

logarithmic divergences, where the power of the logarithm increases with the loop

order. Sufficiently close to these limits, the generic asymptotic behavior does not

hold. However, we observe that away from these singular regions, the ratios between

successive loop orders do become increasingly flat as the loop order increases.

Another aspect of this work is to improve our knowledge of the space of hexagon

functions at higher weight, not only to help with the four-loop construction performed

in this article, but also as a platform for going to higher loops in the future. We

have constructed a basis for this space now through weight eight, whereas previously

only a weight-five basis had been constructed [34]. The weight-six part of the basis

allows us to write the three-loop quantities R
(3)
6 , V (3) and Ṽ (3) as single functions,

whereas previously we had to describe them for generic (u, v, w) in terms of their

first derivatives, or equivalently their {5, 1} coproduct elements. Similarly, we can

1We thank Andrei Belitsky for assistance with this comparison.
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express the four-loop quantities for generic (u, v, w) in terms of the weight-eight basis,

although the expressions do start to become rather lengthy.

The structure of this paper is as follows. In section 1.2 we describe the setup

and give an overview of the constraints we impose. We also outline the iterative

construction of a basis of hexagon functions. In section 1.3 we discuss the constraints

coming from the Q̄ equation, which does the bulk of the work in fixing parameters. In

section 1.4 we discuss the multi-Regge constraint, which fixes the final five parameters

in our four-loop ansatz. In section 1.5 we analyze the near-collinear limit and compare

it to the OPE predictions. In section 1.6 we study the multi-particle factorization

limit. In section 1.7 we study the quantitative behavior of the result on various lines

and surfaces in the space of cross ratios. Finally, in section 1.8 we conclude and

provide our outlook for the future. There are four appendices. Appendix A gives

more details on the construction of a hexagon function basis. Appendix B gives

the three-loop quantities R
(3)
6 , V (3) and Ṽ (3) in terms of the weight-six basis, while

appendix C gives parts of the expressions of the corresponding four-loop quantities in

terms of the weight-eight basis. Finally, appendix D describes the basis of functions

of (u, v) to which the hexagon functions collapse on the surface w = 1. This function

space is useful for implementing the spurious-pole constraint.

Many of the analytic results in this paper are too lengthy to present in the

manuscript. Instead we attach them as computer-readable ancillary files, which are

also available on the webpage [110]. The files describe: functional integrability con-

straints, the ratio function and remainder function through four loops in terms of the

weight-eight basis, a coproduct-based definition of the basis, expansions of the ratio

function in the near-collinear limit and in the multi-Regge limit, multiple polylog rep-

resentations in other “bulk” regions, harmonic polylog representations on particular

lines, a basis of functions for the surface w = 1 through weight seven, and the ratio

function and remainder function on w = 1 through three loops in terms of this basis.
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1.2 Setup and overview of constraints

1.2.1 Decomposition of ratio function in terms of R-invariants

As in past work at one, two, and three loops [29, 111, 33, 37], we describe the six-point

amplitude using an on-shell superspace [77, 78, 79, 80]. We package the on-shell states

of the theory into a superfield Φ depending on Grassmann variables ηA, A = 1, 2, 3, 4,

transforming in the fundamental representation of SU(4):

Φ = G+ + ηAΓA + 1
2!
ηAηBSAB + 1

3!
ηAηBηCεABCDΓ

D
+ 1

4!
ηAηBηCηDεABCDG

−. (1.1)

Here G+, ΓA, SAB = 1
2
εABCDS

CD
, Γ

A
, and G− are the positive-helicity gluon, gluino,

scalar, anti-gluino, and negative-helicity gluon states, respectively.

The superamplitudeA(Φ1,Φ2, . . . ,Φn) contains all the information about the com-

ponent helicity amplitudes, which can be extracted as particular terms in the expan-

sion in the Grassmann variables. The superamplitude can be factored into the product

of the MHV superamplitude and the ratio function P [29],

A = AMHV × P . (1.2)

The ratio function is infrared finite. Expanding it in the η variables for six-particle

scattering yields three terms,

P = 1 + PNMHV + PMHV . (1.3)

Because AMHV × PMHV is just the parity conjugate of the MHV superamplitude

AMHV, the only quantity not determined by the MHV expression is PNMHV, which we

compute.

We represent the kinematic variables in terms of dual coordinates (xi, θi). (For a

full discussion see e.g. ref. [112].) The momenta kαα̇i = kµi σ
αα̇
µ and supermomenta qαAi

are expressed in terms of the dual coordinates as,

kαα̇i = λαi λ̃
α̇
i = xαα̇i − xαα̇i+1, qαAi = λαi η

A
i = θαAi − θαAi+1 . (1.4)
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The dual coordinates appear in the amplitude either through the three dual conformal

cross ratios, or (in the R-invariants) through the momentum supertwistors.

The three cross ratios are given by,

u = u1 =
x2

13 x
2
46

x2
14 x

2
36

, v = u2 =
x2

24 x
2
51

x2
25 x

2
41

, w = u3 =
x2

35 x
2
62

x2
36 x

2
52

, (1.5)

where x2
ij ≡ (xµi − x

µ
j )2. The momentum supertwistors [81, 82] are

Zi = (Zi |χi), ZR=α,α̇
i = (λαi , x

βα̇
i λiβ), χAi = θαAi λiα . (1.6)

The momentum twistors Zi transform linearly under dual conformal symmetry, so

that the four-bracket 〈abcd〉 ≡ εRSTUZ
R
a Z

S
b Z

T
c Z

U
d is a dual conformal invariant (al-

though it is not invariant under projective transformations of the Zi). To construct

dual superconformal invariants we can package the four-brackets, along with the χi,

into five-brackets of momentum supertwistors called R-invariants as follows:

(f) ≡ [abcde] =
δ4(χa〈bcde〉+ cyclic)

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (1.7)

Here the six external lines are labeled {a, b, c, d, e, f}, and we use shorthand notation

to represent the five-bracket of Za,Zb,Zc,Zd, and Ze by the remaining leg f .

For higher-point amplitudes these R-invariants obey many identities; however,

here it is sufficient to only consider one [29]:

(1)− (2) + (3)− (4) + (5)− (6) = 0. (1.8)

Using this identity the tree-level ratio function can be represented in two equivalent

ways:

P(0)
NMHV = (2) + (4) + (6) = (1) + (3) + (5). (1.9)

At loop level, the R-invariants are dressed by two functions of the cross ratios: a
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parity-even function V (u, v, w) and a parity-odd function Ṽ (yu, yv, yw) [29, 33]:

PNMHV =
1

2

[
[(1) + (4)]V (u, v, w) + [(2) + (5)]V (v, w, u) + [(3) + (6)]V (w, u, v)

+ [(1)− (4)]Ṽ (yu, yv, yw)− [(2)− (5)]Ṽ (yv, yw, yu) + [(3)− (6)]Ṽ (yw, yu, yv)
]
.

(1.10)

The yi are dual conformally invariant parity-odd variables; indeed the definition of

parity is the inversion yi ↔ 1/yi. The yi variables can be defined in terms of (u, v, w)

as follows:

yu =
u− z+

u− z−
, yv =

v − z+

v − z−
, yw =

w − z+

w − z−
, (1.11)

where

z± =
1

2

[
−1 + u+ v + w ±

√
∆
]
, ∆ = (1− u− v − w)2 − 4uvw . (1.12)

So alternatively, parity can be defined as
√

∆↔ −
√

∆, while leaving (u, v, w) invari-

ant. Each point (u, v, w) corresponds to two points in the yi variables, (yu, yv, yw)

and (1/yu, 1/yv, 1/yw). Parity-even functions have the same values at both yi points,

whereas the values of parity-odd functions flip sign between the two yi points.

1.2.2 V , Ṽ , E, Ẽ and U

The functions V (u, v, w) and Ṽ (yu, yv, yw) can be expanded perturbatively. At tree

level, the function V (u, v, w) is equal to unity, while Ṽ (yu, yv, yw) vanishes. Their full

loop expansions are

V = 1 +
∞∑
L=1

aLV (L) , (1.13)

Ṽ =
∞∑
L=2

aLṼ (L) , (1.14)

where a = g2
YMNc/(8π

2) is our loop expansion parameter, in terms of the Yang-Mills

coupling constant gYM and the number of colors Nc. (The one-loop quantity Ṽ (1)
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vanishes because there is no parity-odd weight-two hexagon function.)

It is convenient to introduce some other functions E and Ẽ, which are closely

related to V and Ṽ , but defined more directly in terms of the NMHV amplitude,

rather than its ratio to the MHV amplitude. The Q̄ equation will be simplest when

expressed in terms of these functions. First recall that the MHV amplitude can be

expressed in terms of two quantities, the BDS ansatz [31] and the remainder function

R6 [75, 76]:

AMHV = ABDS × exp(R6) . (1.15)

Therefore if we divide the NMHV superamplitude by the BDS ansatz ABDS, rather

than by the MHV amplitude, that ratio will have the same expansion (1.10), but with

V → V exp(R6) and Ṽ → Ṽ exp(R6). In fact, we are going to divide the NMHV am-

plitude by a slightly-different, “BDS-like” function. Such a quantity has already been

considered in the analysis of the strong-coupling behavior of amplitudes [113], as well

as in the study of the multi-particle factorization limit of the NMHV amplitude [37].

Before describing the BDS-like ansatz, we recall that the BDS ansatz can be

written as [31],

ABDS
n

AMHV (0)
n

= exp

[ ∞∑
L=1

aL
(
f (L)(ε)

1

2
M1−loop

n (Lε) + C(L)
)]

, (1.16)

where AMHV (0)
n is the MHV tree-level super-amplitude, and

f (L)(ε) ≡ f
(L)
0 + ε f

(L)
1 + ε2 f

(L)
2 . (1.17)

Two of the constants,

f
(L)
0 =

1

4
γ

(L)
K , f

(L)
1 =

L

2
G(L)

0 , (1.18)

are given in terms of the cusp anomalous dimension γK and the “collinear” anomalous

dimension G0, while f
(L)
2 and C(L) are other (zeta-valued) constants. We won’t need

the specific values of any of these constants except for the cusp anomalous dimension.
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This quantity is known to all orders [114]; its expansion to four loops is given by

γK(a) =
∞∑
L=1

aL γ
(L)
K = 4a− 4ζ2 a

2 + 22ζ4 a
3 − 4

(
219

8
ζ6 + (ζ3)2

)
a4 +O(a5) . (1.19)

The function M1−loop
n (Lε) is the one-loop amplitude, normalized by the tree amplitude

AMHV (0)
n , and evaluated in dimensional regularization with D = 4 − 2ε, but letting

ε→ Lε.

The normalized six-point one-loop amplitude is given by [3]

M1−loop
6 (ε) =

6∑
i=1

[
1

4
ln2
( −si,i+1,i+2

−si+1,i+2,i+3

)
− 1

ε2
(−si,i+1)−ε

− ln
( −si,i+1

−si,i+1,i+2

)
ln
( −si+1,i+2

−si,i+1,i+2

)]
− Li2(1− u)− Li2(1− v)− Li2(1− w) + 6 ζ2 , (1.20)

where si,i+1 = (ki + ki+1)2 and si,i+1,i+2 = (ki + ki+1 + ki+2)2. Notice that M1−loop
6

has non-trivial dependence on the three-particle momentum invariants si,i+1,i+2, both

explicitly and implicitly through the three cross ratios. However, this dependence

can be removed by shifting M1−loop
6 by a particular totally symmetric function of the

cross ratios,

Y (u, v, w) ≡ Li2(1− u) + Li2(1− v) + Li2(1−w) +
1

2

(
ln2 u+ ln2 v+ ln2w

)
. (1.21)

We let

M̂6(ε) = M1−loop
6 + Y (u, v, w)

=
6∑
i=1

[
− 1

ε2

(
1− ε ln(−si,i+1)

)
− ln(−si,i+1) ln(−si+1,i+2)

+
1

2
ln(−si,i+1) ln(−si+3,i+4) + ζ2

]
, (1.22)

which contains only the two-particle invariants si,i+1.
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Then we can define the BDS-like function by

ABDS−like
6

AMHV (0)
6

= exp

[ ∞∑
L=1

aL
(
f (L)(ε)

1

2
M̂6(Lε) + C(L)

)]
. (1.23)

Using eq. (1.22), it is related to the BDS ansatz by

ABDS−like
6 = ABDS

6 exp

[
γK
8
Y (u, v, w)

]
. (1.24)

Finally, we normalize the NMHV superamplitude by the BDS-like ansatz, and define

new functions E(u, v, w) and Ẽ(u, v, w) as the coefficients of the R-invariants:

ANMHV

ABDS−like
6

=
1

2

[
[(1) + (4)]E(u, v, w) + [(2) + (5)]E(v, w, u) + [(3) + (6)]E(w, u, v)

+ [(1)− (4)]Ẽ(yu, yv, yw)− [(2)− (5)]Ẽ(yv, yw, yu) + [(3)− (6)]Ẽ(yw, yu, yv)
]
.

(1.25)

The relations between the new expansion coefficients, E and Ẽ, and the old ones,

V and Ṽ , are:

E(u, v, w) = V (u, v, w) exp

[
R6(u, v, w)− γK

8
Y (u, v, w)

]
, (1.26)

Ẽ(u, v, w) = Ṽ (u, v, w) exp

[
R6(u, v, w)− γK

8
Y (u, v, w)

]
. (1.27)

As long as the remainder function R6 is known to the same loop order, it is straight-

forward to pass back and forth between (E, Ẽ) and (V, Ṽ ). The consequences of the

Q̄ equations, which hold globally in (u, v, w), are simplest to describe in terms of E

and Ẽ. On the other hand, the boundary data is often described in terms of V and

Ṽ .

One exception is the limit of multi-particle factorization, in which the perturbative

simplicity of E, or rather its logarithm U , was first noticed. We define

U(u, v, w) = lnE(u, v, w), E(u, v, w) = exp
[
U(u, v, w)

]
. (1.28)
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In section 1.6 we will see that this function has the same simple behavior at four loops

that it has through three loops [37].

1.2.3 Hexagon functions

In order to construct the NMHV amplitude at four loops, we build on the observation

that through three loops V (L) and Ṽ (L) have been found to belong to the space of

hexagon functions of weight 2L [37]. A hexagon function is defined to be any function

whose symbol is constructed from letters drawn from the set

Su = {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} , (1.29)

and which has only physical branch cuts [34]. The latter condition implies that

hexagon functions can only have discontinuities when either u, v, or w approaches

zero or infinity. This condition can be enforced at the level of the symbol by only

allowing the variables u, v, and w to appear in the first entry of the symbol. Hexagon

functions in which none of the variables yu, yv, or yw appear can be factored into

functions whose symbols have letters drawn from {u, 1−u}, or {v, 1−v}, or {w, 1−w}.
Such functions can be expressed as (products of) harmonic polylogarithms (HPLs)

of a single variable [115]. Functions whose symbols contain yu, yv, or yw are more

complex. They can be defined iteratively in terms of lower-weight hexagon functions

by means of their derivatives. They can also be represented in terms of multiple

polylogarithms in particular regions. In ref. [34], the space of hexagon functions was

explored through weight six and a basis of irreducible hexagon functions through

weight five was introduced. Irreducible hexagon functions are those that cannot be

written as products of lower-weight hexagon functions.

The derivatives of a weight-n hexagon function F are given by [34]

∂F

∂u

∣∣∣∣
v,w

=
F u

u
− F 1−u

1− u
+

1− u− v − w
u
√

∆
F yu

+
1− u− v + w

(1− u)
√

∆
F yv +

1− u+ v − w
(1− u)

√
∆

F yw , (1.30)
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√
∆yu

∂F

∂yu

∣∣∣∣
yv ,yw

= (1− u)(1− v − w)F u − u(1− v)F v − u(1− w)Fw

− u(1− v − w)F 1−u + uvF 1−v + uwF 1−w +
√

∆F yu , (1.31)

as well as the cyclic permutations of these formulae under u → v → w → u, yu →
1/yv → yw → 1/yu. Each of the rational prefactors in eq. (A.2) is [∂(lnx)/∂u]|v,w for

some x ∈ Su, while in eq. (A.3) the corresponding rational prefactor is [∂(lnx)/∂yu]|yv ,yw .

The F x for x ∈ Su denote nine weight-(n − 1) hexagon functions. These functions

are also referred to as elements of the {n− 1, 1} coproduct component of F [43]:

∆n−1,1(F ) ≡
3∑
i=1

[
F ui ⊗ lnui + F 1−ui ⊗ ln(1− ui) + F yi ⊗ ln yi

]
. (1.32)

The {n− 1, 1} coproduct component specifies all the first derivatives of F . Hence it

completely specifies F , up to an additive constant.

To fix the additive constant, we will typically require that basis functions vanish

at the point (u, v, w) = (1, 1, 1). Physical constraints are imposed elsewhere, so we

need to transfer information about the value of functions at other points to the point

(1, 1, 1). We can transfer the information along special lines that cut through the

(u, v, w) space. For example, the line (1, v, v) connects (1, 1, 1) to (1, 0, 0). The latter

point corresponds to a soft limit (a special case of two collinear limits), where there

are physical constraints. On the line (1, v, v), all hexagon functions collapse to HPLs

in the single variable v. The standard notation for such functions is H~w(v), where

~w = w1, w2, . . . , wn is a list of n elements (at weight n), all of which are either 0 or 1.

We can use shuffle identities to always choose wn = 1 for n > 1, and it is convenient

to have the argument be 1− v so that the function is regular at v = 1. Furthermore

we use a compressed notation in which (m − 1) 0’s followed by a 1 is written as m.

Thus we define Hv
3,1,1 = H0,0,1,1,1(1−v), and so forth. The function Li2(1−v) entering

the definition of Y (u, v, w) is Hv
2 in this notation.

Equation (A.2) and its cyclic permutations form the cornerstone for the construc-

tion of a basis of hexagon functions, iteratively in the weight. Suppose one knows

all hexagon functions at weight (n − 1). One can define a candidate set of weight n
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hexagon functions by introducing arbitrary linear combinations of the weight (n− 1)

functions for each of the {n−1, 1} coproduct elements F x, x ∈ Su. This construction

is naturally graded by parity. That is, if F is parity-even, then the six coproducts

F ui and F 1−ui are parity-even and should be drawn from the parity-even subspace at

weight (n− 1), while the three coproducts F yi are parity-odd. If F is parity-odd, the

reverse is true.

Not all combinations of {n − 1, 1} coproduct elements F x correspond to actual

functions. First of all, they should obey the functional integrability conditions,

∂2F

∂ui∂uj
=

∂2F

∂uj∂ui
, i 6= j. (1.33)

These conditions can be recast as linear constraints on the {n − 2, 1, 1} coproduct

elements of F , namely F y,x, where F y,x is defined as the y coproduct element for F x,

i.e.

∆n−2,1(F x) ≡
3∑
i=1

[
F ui,x ⊗ lnui + F 1−ui,x ⊗ ln(1− ui) + F yi,x ⊗ ln yi

]
. (1.34)

In fact, the functional integrability conditions (1.33) only involve the antisymmetric

combination F [x,y] ≡ F x,y − F y,x. The constraints are given by:

F [ui,uj ] = −F [yi,yj ] ,

F [1−ui,1−uj ] = F [yi,yj ] + F [yj ,yk] + F [yk,yi] ,

F [ui,1−uj ] = −F [yk,yi] ,

F [ui,yi] = 0 ,

F [ui,yj ] = F [uj ,yi] ,

F [1−ui,yi] = F [1−uj ,yj ] − F [uj ,yk] + F [uk,yi] ,

F [1−ui,yj ] = −F [uk,yj ] ,

(1.35)

for all i 6= j 6= k ∈ {1, 2, 3}. There are a total of 12 independent parity-even relations

(if F is even) and 14 parity-odd ones. We list them all explicitly in an ancillary file.

One can solve the system of linear equations (1.35) to obtain a set of functions
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F , which is almost the set of hexagon functions at weight n. There is one more

branch-cut condition that has to be satisfied [34]: The derivative ∂uF in eq. (A.2)

has a 1/(1− u) singularity as u→ 1, which will lead to a ln(1− u) branch-cut unless

we require, [
F 1−u + F yv − F yw

]∣∣∣
u→1

= 0. (1.36)

Although this condition appears to be a strong one, holding for any v and w, for u = 1

the combination F 1−u +F yv −F yw turns out to be independent of v and w, once the

integrability conditions (1.35) are satisfied. This constancy can be verified using the

basis of functions described in appendix D. Thus eq. (1.36) only fixes weight (n− 1)

(zeta-valued) constants in F 1−u, if F is parity-even. The constants can be fixed in

the corner of the u = 1 plane where v and w both vanish, namely the Euclidean

multi-Regge kinematics (EMRK), which is also known as the soft limit [34]. This

limit can also be reached by taking yu → 1 with yv and yw fixed. In this limit, ∆ = 0

and the parity-odd functions F yi vanish, so the condition (1.36) and its permutations

reduce to the three conditions

F 1−ui |ui→1, uj ,uk→0 = F 1−ui(yi = 1, yj, yk) = 0, i 6= j 6= k, (1.37)

for even F . If F is parity-odd, then eq. (1.36) involves the constant part of the

parity-even functions F yv and F yw . However, such constant terms are forbidden by

the requirement that F vanishes when yi → 1, independently of yj and yk. This is

equivalent to the conditions,

F yj(yi = 1, yj, yk) = 0, i 6= j 6= k, (1.38)

for odd F .

The combined solution to eqs. (1.35), (1.37) and (1.38), for otherwise arbitrary

hexagon functions as {n− 1, 1} coproduct elements, generates the space of weight-n

hexagon functions F , apart from a few constants. These constants are the linear

combinations of the independent multiple zeta values (MZVs) at weight n. Most of

the weight-n functions are reducible, i.e. they are products of lower-weight hexagon
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functions. In order to identify the irreducible subspace, one can generate the vector

space of reducible hexagon functions, and remove them from the complete space of

solutions. This procedure was carried out in ref. [34], and a basis of hexagon functions

was constructed through weight five.

1.2.4 A basis at weight six, seven and eight

Our calculation of the four-loop ratio function was facilitated by extending this basis

of hexagon functions to weight six and seven. We also constructed a weight-eight

basis, but only after obtaining the four-loop result. The extension of the basis beyond

weight five was not strictly necessary; indeed, the four-loop remainder function was

determined without such a basis [35]. In this case, the weight-five basis was used

repeatedly to generate all of the {5, 1, 1, 1} elements of the coproduct of a generic

(parity-even) weight-eight function. From these functions all of the {6, 1, 1} coproduct

elements were constructed, then all of the {7, 1} coproduct elements, and finally all of

the weight-eight functions. The integrability and branch-cut conditions were imposed

at each step, but there was no attempt to construct a basis beyond weight five.

However, the present approach provides a more direct route to the weight-eight four-

loop ratio function. It will also be a platform for going to five loops in the future,

starting with the {8, 1, 1} coproduct elements. (Or one could extend the basis to

weight nine and work with the {9, 1} coproduct elements.)

The basis at weight six also allows us to present results for R6, V and Ṽ at three

loops that are significantly more compact than previous representations in terms of

the {5, 1} coproducts (see appendix B). Similarly, the weight-eight basis lets us write

each of the four-loop functions as a single weight-eight function, although of course

the four-loop results are not as compact as the three-loop ones. In ancillary files, we

provide R
(L)
6 , V (L) and Ṽ (L) for L = 3, 4. We also provide a coproduct description

of the hexagon function basis at weight six, seven and eight; this basis is described

further in appendix A.

There is a certain arbitrariness in defining a basis of irreducible functions; in

principle, one can make an arbitrary linear transformation on the basis, and one can
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add any linear combination of reducible functions to any candidate basis function.

However, in the course of constructing the higher-weight basis functions, we found

that some care in the construction leads to much simpler representations for physical

quantities such as R
(3)
6 , V (3), and Ṽ (3). One can generate a “random” basis by asking

Maple or Mathematica to provide a null space “orthogonal” to the reducible

function space. However, when R
(3)
6 , V (3), or Ṽ (3) are expressed in terms of such

a basis, the rational numbers multiplying the basis functions in the expressions for

these quantities have quite large numerators and denominators, with sometimes as

many as 13 digits. A better way to select the basis for irreducible hexagon functions

at weight n is to require that their weight {n− 1, 1} coproduct elements collectively

contain exactly one of the weight (n − 1) basis elements, and with unit coefficient.

One cannot require this for all weight n irreducible functions; there are too many

of them, compared with the number of weight (n − 1) ones. We start by imposing

this criterion on the yi coproduct entries, and preferentially for the functions with

the most yi entries in their symbol, as these typically have the most complicated

coproducts. When we run out of weight (n − 1) irreducible functions, we impose

the criterion using products of logarithms and weight (n − 2) irreducible functions

instead. It is usually possible to further reduce the number of terms appearing in the

coproducts of the basis functions by adding suitable linear combinations of reducible

functions to them. Finally, as in ref. [34], we constructed our basis functions so that

they form orbits under the permutation group S3 acting on the variables u, v, and w,

either singlets, three-cycles or six-cycles.

The basis we have constructed in this way through weight eight leads to quite

parsimonious rational number coefficients when R6, V , and Ṽ (or their coproduct

elements) are expanded in terms of the basis functions. For instance, the rational

numbers multiplying the weight-six irreducible functions in R
(3)
6 , V (3), and Ṽ (3) have

denominators that are all powers of 2, up to an occasional factor of 3. The largest

denominator is 128, while the largest numerator is 149. (The coefficients in front of

the pure-HPL terms don’t boast the same level of simplicity, but this is unsurprising

since the above prescription for choosing irreducible hexagon functions only constrains

each function up to the addition of reducible functions.) We also constructed a set
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of weight-five basis functions without the degeneracy of the basis defined in ref. [34],

by organizing the S3 orbits differently. Even so, converting R
(3)
6 , V (3), and Ṽ (3) to

the weight-five basis of ref. [34] (which was selected with slightly different criteria in

mind) only gives rise to slightly more complicated rational-number coefficients. So

we will continue to use the weight-five basis of ref. [34].

Using the basis through weight six, we give the results for the three-loop functions

R
(3)
6 , V (3), and Ṽ (3) in eqs. (B.1), (B.3) and (B.5) of appendix B and in an ancillary

file. Continuing the construction to weight eight, we give a similar representation

for the four-loop functions R
(4)
6 , V (4), and Ṽ (4) in appendix C. In this case, we only

give the terms containing the irreducible weight-eight basis functions in the text; the

remaining terms, which are products of lower-weight functions, are very lengthy and

can be found in the same ancillary file.

1.2.5 Overview of the constraints

Our goal is to find a unique pair of functions E(u, v, w) and Ẽ(u, v, w) at four loops.

We begin with an ansatz for the {7, 1} coproduct of a generic weight 8 hexagon

function. There are 5153 such functions with even parity, which are candidates for

E(4), and 1763 with odd parity, which are candidates for Ẽ(4). We then apply a

succession of constraints to our ansatz in order to arrive at a unique result.

We largely follow the methodology of ref. [37], with some refinements. In partic-

ular, we apply the following constraints:

• Symmetry: Under the exchange of u and w, E is symmetric, while Ẽ is

antisymmetric:

E(w, v, u) = E(u, v, w), Ẽ(yw, yv, yu) = −Ẽ(yu, yv, yw). (1.39)

• Q̄ Equation: Caron-Huot and He predicted [64, 98] that the final entries of

the hexagon functions that make up V (u, v, w) should belong to a seven-element

set. At lower loop orders, two of us observed [37] that the function U(u, v, w)

has final entries from a more constrained five-element set. This relation can
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now be derived from the Q̄ equation, but there are a host of other relations,

which we describe further below. Together they are very powerful and do the

bulk of the work in reducing the number of parameters in the ansatz, at four

loops as well as at lower loops.

• Collinear Vanishing: In the collinear limit, the six-point ratio function should

approach the five-point ratio function, multiplied by some splitting function.

Because the only non-vanishing components of the five-point super-amplitude

are MHV and NMHV, which are related by parity, and because there are no dual

conformally invariant cross ratios at five points, the five-point ratio function is

trivial; it vanishes at loop level. As such, the loop level six-point ratio function

must vanish in the collinear limit. We take this limit by sending w → 0 and

v → 1 − u. In this limit, all of the R-invariants vanish except for (1) and (6),

which become equal. Taking into account that parity-odd functions such as Ṽ

always vanish in this limit, we have the constraint,

[V (u, v, w) + V (w, u, v)]w→0, v→1−u = 0. (1.40)

• Spurious Pole Vanishing: Physical states give rise to poles in scattering

amplitudes when the sums of color-adjacent momenta vanish, when (ki+ki+1 +

. . . + kj−1)2 ≡ x2
ij = 0. These sums come from four-brackets of the form 〈i −

1, i, j − 1, j〉. Poles of any other form, in particular poles arising from other

four-brackets, should not appear. Individual R-invariants have such spurious

poles, so these must cancel between R-invariants at tree level. At loop level,

the corresponding condition is that the relevant combination of V and Ṽ must

vanish on any spurious pole. As it happens, examining one of these spurious

poles is sufficient to guarantee vanishing on the others, by Bose symmetry of the

super-amplitude. If we choose to fix behavior on the pole 〈2456〉 → 0, we need

to cancel potential poles from R-invariants (1) and (3) with equal and opposite

residues. This leads to the condition,

[V (u, v, w)− V (w, u, v) + Ṽ (yu, yv, yw)− Ṽ (yw, yu, yv)]〈2456〉→0 = 0. (1.41)
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where the 〈2456〉 → 0 limit can be implemented by taking w → 1 with u and v

held fixed; more precisely,

w → 1 , yu → (1− w)
u(1− v)

(u− v)2
,

yv →
1

(1− w)

(u− v)2

v(1− u)
, yw →

1− u
1− v

. (1.42)

We have used a basis of irreducible two-variable functions, discussed in ap-

pendix D, to impose this constraint.

• Multi-Regge Limit: The multi-Regge limit is a generalization of the Regge

limit for 2 → n scattering, where the outgoing particles are strongly ordered

in rapidity. We build on our three-loop results, using our generalization of the

work of Lipatov, Prygarin, and Schnitzer [61] to subleading logarithmic order.

We also compare our results to a recent all-orders proposal [62].

• Near-Collinear Limit: As at three loops, we employ the pentagon decomposi-

tion of the NMHV Wilson loop OPE developed by Basso, Sever, and Vieira [49].

Their calculation uses integrability to compute the OPE nonperturbatively in

the coupling, in an expansion in the number of flux-tube excitations, correspond-

ing to powers of
√
w in the near-collinear limit. Actually, our new understanding

of the Q̄ equation is such a powerful constraint that our ansatz is completely

fixed before comparing with the OPE constraints, so the OPE results serve as

a pure cross check of our assumptions (and theirs). We perform these checks at

the first order of the OPE, corresponding to one state propagating across the

Wilson loop [49], and then at second order (two flux excitations) [50] using ex-

plicit results of Belitsky [53, 54, 116]. In an ancillary file, we provide limits of V

and Ṽ to third order, making possible comparisons to the OPE terms involving

three flux-tube excitations (we leave these checks to the intrepid reader).

In addition to these constraints, we should point out a residual freedom in our

definition of Ṽ , first noticed in ref. [37]. If we add an arbitrary cyclicly symmetric
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function f̃ to Ṽ , we find that it vanishes in the full ratio function:

1

2

[
[(1)− (4)]f̃(u, v, w)− [(2)− (5)]f̃(u, v, w) + [(3)− (6)]f̃(u, v, w)

]
=

1

2

[
[(1) + (3) + (5)]− [(2) + (4) + (6)]

]
f̃(u, v, w)

= 0,

(1.43)

and thus remains unfixed by any physically meaningful limits.

This “gauge freedom” was used in ref. [37] to set the sum of the cyclic permutations

of Ṽ to zero, essentially as an arbitrary choice of gauge. We make the same choice here.

However, when presenting numerical results we usually present “gauge invariant”

quantities: Instead of Ṽ , we use the difference of two cyclic permutations, such as

Ṽ (v, w, u) − Ṽ (w, u, v). Any cyclicly-symmetric contribution vanishes in such linear

combinations, while the physical information is still preserved. Whenever Ṽ appears

in physical limits, it does so in these linear combinations.

1.3 Q̄ Equation

In refs. [63, 64], an equation was presented describing the action of the dual super-

conformal generator Q̄ on a generic amplitude. In terms of the dual Grassmann

variables χi and momentum twistors Zi, the dual superconformal generator for an

n-point amplitude is a first-order differential operator,

Q̄A
a = (SAα , Q̄

A
α̇ ) =

n∑
i=1

χAi
∂

∂Za
i

. (1.44)

The reason it does not annihilate the amplitude is because of a collinear anomaly,

and so its action on an L-loop NkMHV amplitude can be expressed in terms of the

integral over an (L − 1)-loop Nk+1MHV amplitude with one more external leg. For

the NMHV six-point amplitude we need the N2MHV seven-point amplitude, but by

parity this amplitude is equivalent to the NMHV amplitude. The Q̄ equation for the
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NMHV six-point amplitude takes the form [63, 64],

Q̄R6,1 =
γK
8

∫
d2|3Z7

[
R7,2 −R6,1Rtree

7,1

]
+ cyclic, (1.45)

where

R6,1 =
ANMHV

ABDS
6

. (1.46)

Similarly, R7,2 is the BDS-normalized N2MHV 7-point amplitude, and Rtree
7,1 is the

ratio of NMHV to MHV 7-point tree super-amplitudes. The integration is over a

super-momentum-twistor Z7 along a collinear limit corresponding to one edge of the

hexagon. The “+ cyclic” terms correspond to the other edges.

An analysis of the leading singularities of R7,2 [98] shows that there are only four

linearly independent residues from the edge shown,

(1) Q̄ ln
〈5612〉
〈5614〉

, (2) Q̄ ln
〈5612〉
〈5614〉

, (4) Q̄ ln
〈5612〉
〈5614〉

, (5) Q̄ ln
〈5612〉
〈5614〉

, (1.47)

where (1), (2), (4), (5) are the R-invariants (f) defined in eq. (1.7). However, inte-

gration of the seven-point tree amplitude in the second, collinear subtraction term in

eq. (1.45) would seem to give more possible residues. Using eq. (3.7) of ref. [64], one

finds a term [98] ∫
d2|3Z7Rtree

7,1 = ln
〈6134〉〈6523〉
〈6123〉〈6534〉

Q̄ ln
〈5612〉
〈5613〉

. (1.48)

The unwanted 〈5613〉 term can be removed by considering the action of Q̄ on R̂6,1

rather than R6,1, where

R̂6,1 =
ANMHV

ABDS−like
6

= R6,1 × exp

[
−γK

8
Y (u, v, w)

]
. (1.49)

Here R̂6,1 is the quantity expanded in terms of E and Ẽ in eq. (1.25). The extra

factor of exp[−γK
8
Y ] in R̂6,1 leads to an additional contribution from the action of Q̄

on Y .
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Note from eq. (3.89) that

∂uY =
lnu

u(1− u)
= lnu ∂u ln

(
u

1− u

)
. (1.50)

Using the cyclic symmetry of Y and rewriting u, v, w in terms of momentum-twistors,

we have for Q̄Y (as for any first-order differential operator acting on Y ),

Q̄ Y = ln
〈3456〉〈6123〉
〈6134〉〈5623〉

Q̄ ln
〈6123〉〈3456〉
〈5613〉〈2346〉

+ (2 cyclic) . (1.51)

From this form, it is apparent that in Q̄R̂6,1 the Q̄ ln〈5613〉 term cancels between the

Q̄Y contribution and eq. (1.48).

As a result, the residues in Q̄R̂6,1 are given by eq. (1.47) plus cyclic permutations.

Taking into account the identity [64]

(6) Q̄ ln
〈1234〉
〈1235〉

= 0, (1.52)

and all of its permutations, and completing the momentum twistors into the projec-

tively invariant variables in Su in eq. (1.29), one finds that eq. (1.47) is equivalent to

the following set of final entries [98]:

(1) d ln(uw/v) ,

(1) d ln

(
(1− w)u

yv w(1− u)

)
, (1.53)[

(2) + (5) + (3) + (6)
]
d ln

(
v

1− v

)
+ (1) d ln

(
w

yu (1− w)

)
+ (4) d ln

(
u

yw (1− u)

)
,

plus cyclic rotations, for a total of 3 × 6 = 18 linear combinations. This number

should be compared with a naive count of 6 × 9 = 54 possible R-invariants times

final entries, or 5 × 9 = 45 independent functions if we take into account the tree

identity (1.8).

Next we impose the Q̄ relations (1.53) as constraints on the {n− 1, 1} coproducts

of the functions E and Ẽ defined by eq. (1.25). We do this in the cyclic-vanishing
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gauge for Ẽ:

Ẽ(u, v, w) + Ẽ(v, w, u) + Ẽ(w, u, v) = 0. (1.54)

We can rewrite the derivatives of this condition in terms of the {n− 1, 1} coproducts

of Ẽ:

Ẽu(u, v, w) + Ẽu(v, w, u) + Ẽu(w, u, v) = 0, (1.55)

Ẽ1−u(u, v, w) + Ẽ1−u(v, w, u) + Ẽ1−u(w, u, v) = 0, (1.56)

Ẽyu(u, v, w) + Ẽyu(v, w, u) + Ẽyu(w, u, v) = 0, (1.57)

as well as the cyclic images of these equations.

Then the Q̄ relations that involve parity-even functions (except the first, which

we group here for convenience) are

Eyu(u, v, w) = Eyw(u, v, w), (1.58)

E1−v(u, v, w) = 0, (1.59)

E1−u(u, v, w) = −Eu(u, v, w)− Ev(u, v, w), (1.60)

E1−u(u, v, w) + E1−w(u, v, w) = E1−v(v, w, u) + E1−u(v, w, u), (1.61)

3 [Ẽyu(u, v, w)− Ẽyv(u, v, w)] = 2E1−w(u, v, w)− E1−w(w, u, v), (1.62)

while the remaining ones, which involve parity-odd functions, are

3 [Ẽu(w, u, v) + Ẽ1−u(w, u, v)] = Ẽv(u, v, w) + Ẽw(v, w, u)

− Ẽv(w, u, v)− Ẽw(w, u, v), (1.63)

3 Ẽ1−u(u, v, w) = Ẽv(u, v, w) + Ẽw(u, v, w)− Ẽv(v, w, u)

− Ẽw(v, w, u)− Eyu(u, v, w) + Eyv(u, v, w), (1.64)

2 [Eyu(u, v, w)− Eyv(u, v, w)] = 3 [Ẽw(v, w, u)− Ẽu(w, u, v)]

+ Ẽv(v, w, u)− Ẽv(w, u, v). (1.65)
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All permutations of these equations are implied. The first three of the above equa-

tions do not mix different permutations of E. They are equivalent to the five-final-

entry conditions found for U = lnE [37]. These relations are also manifest from the

form (1.53).

We have used the symmetry relations (1.39) in writing these equations. Using this

symmetry, the arguments of E and Ẽ can be restricted to (u, v, w), (v, w, u), (w, u, v).

At the outset there are nine final entries, for a total of 2 × 3 × 9 = 54 independent

functions (not counting how they are related to each other by permutations). Alto-

gether there are 18 independent even relations and 18 odd relations (including the

cyclic vanishing conditions) which leads to 9 linearly independent even functions and

9 odd ones. This agrees with the 18 linear combinations of final entries described in

eq. (1.53).

In practice, we use the Q̄ relations to write all of the other {n− 1, 1} coproducts

in terms of just six functions: Eu(u, v, w), Ev(u, v, w) (symmetric in (u ↔ w)),

Eyv(u, v, w) (symmetric in (u↔ w)), Ẽu(u, v, w), Ẽv(u, v, w) (antisymmetric in (u↔
w)), and Ẽyv(u, v, w) (antisymmetric in (u↔ w)). For these six functions, we insert

the most general linear combination of weight (2L − 1) hexagon functions with the

right symmetry. Then we use the Q̄ relations to generate the rest of the {n − 1, 1}
coproducts of E and Ẽ, and also as further constraints on the ansatz. At the same

time, we impose the functional integrability constraints (1.35), as well as the branch-

cut conditions (1.37) and (1.38). Solving all these equations simultaneously leads to

the remaining number of parameters in the line labelled “Q̄ equation” in table 1.1.

We never need to construct the full space of weight 2L functions directly. The

number of initial parameters is dictated by the number of weight (2L−1) functions. At

four loops, there are 1,801 parity-even weight 7 functions, and 474 parity-odd weight 7

functions. We start with 4,550 unknown parameters, from Eu (1,801), Ev (996), Eyv

(272), Ẽu (474), Ẽv (202) and Ẽyv (805). This is just twice the total number of weight

7 functions. One implementation of the combined equations gives 28,569 equations

for the 4,550 parameters — obviously with a great deal of redundancy. This linear

system can be solved by Maple in under an hour on a single processor, in terms of

just 30 remaining parameters. (There are four more parameters, corresponding to
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Constraint L = 1 L = 2 L = 3 L = 4

even even odd even odd even odd

0. Integrable functions 10 82 6 639 122 5153 1763

1. (Anti)symmetry in u and w 7 50 2 363 49 2797 786

2. Cyclic vanishing of Ṽ 7 50 2 363 39 2797 583

3. Q̄ equation 2 5 12 34

4. Collinear vanishing 0 0 1 5

5. Spurious-pole vanishing 0 0 1 5

6. LL multi-Regge kinematics 0 0 0 1

7. NLL multi-Regge kinematics 0 0 0 0

Table 1.1: Remaining parameters in the ansätze for V (L) and Ṽ (L) after each con-
straint is applied, at each loop order. Here we use the full Q̄ equation, which together
with symmetry and functional integrability fixes almost all of the parameters at the
outset.

the weight 8 constants ζ8, ζ3ζ5, ζ2(ζ3)2 and ζ5,3. These parameters are invisible at

the level of the {7, 1} coproducts, but they are fixed in the next step by the collinear

vanishing condition.)

The collinear vanishing condition (1.40) is simple to implement and it fixes all of

the remaining parameters at one and two loops. At three and four loops it leaves

only one and five parameters, respectively.

It might seem counterintuitive at first sight that the combination of the Q̄ and

collinear constraints could fix all of the parameters through two loops, because each

constraint appears to be homogeneous, i.e. the right-hand side of the constraint is

zero. A homogeneous constraint should always allow for at least one free parameter,

from rescaling any solution by an overall multiplicative constant. The catch, of course,

is that the Q̄ constraint is on E and Ẽ, while the collinear constraint is on V and Ṽ ,

and these are related to each other inhomogeneously, by a known additive function
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at a given loop order. In other words, in terms of E and Ẽ, the collinear vanishing

constraint is inhomogeneous.

Next we examine the spurious-pole condition (1.41). It depends on two variables,

u and v. We impose it by making use of the function space described in appendix D,

for which we have a basis through weight seven. At four loops, in order to use the

weight-seven basis, we first take the derivative of eq. (1.41) with respect to u, using

eq. (D.3) to write it in terms of the {7, 1} coproduct components. (The condition is

antisymmetric in (u↔ v), so it is sufficient to inspect the u derivative.) However, we

find that the full Q̄ relations seem to almost completely subsume the spurious-pole

condition. That is, when we impose the spurious-pole condition after the collinear

vanishing condition, no additional parameters are fixed by it, at least through four

loops.

In order to see how much the Q̄ relations cover the spurious-pole condition, we also

tried imposing this condition before the collinear vanishing condition. In this case, a

few parameters can be fixed, exclusively those that multiply very simple functions in

the parity-even part E, of the form

c lnk(uw/v) (1.66)

for odd values of k. Here c is a weight-(2L − k) zeta-value that gives the correct

total weight to the function (1.66), namely 2L at L loops. It is easy to see that

functions of the form (1.66) cannot be fixed by Q̄ for either even or odd k. The only

Q̄ relation to which these functions contribute at all is eq. (1.60), and they cancel

trivially between the two terms on the right-hand side, Eu and Ev. For even values

of k, the functions (1.66) are still unfixed by the Q̄ relations, but they drop out of the

spurious-pole condition (1.41), simply because lnk(uw/v)− lnk(vw/u)→ 0 as w → 1.

At three and four loops, we need to impose constraints from the multi-Regge limit

to fix the final few parameters. That is the subject of the next section.

Before we appreciated the full power of the Q̄ relations, we carried out a similar

analysis, but only imposing the five final-entry condition on U and a seven final-entry

condition on Ṽ . In order to impose the latter condition at four loops, we needed
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to leave the cyclic-vanishing gauge for Ṽ . This introduced a number of unphysical,

gauge parameters. In table 1.2 we tabulate the remaining parameters at different

loop orders under these conditions. It is remarkable how much more power there is

in the full Q̄ relations, namely the ones that relate {n− 1, 1} coproducts of E and Ẽ

with different permutations. Whereas in table 1.1 there are only 34 parameters left

after imposing the Q̄ constraint, at the same level in table 1.2, after imposing the 7

final-entry condition on Ṽ there are still 487 + 321 = 808 physical parameters!

It is clear that this kind of massive parameter reduction at the outset will make

it much more feasible to go to higher loops. It also drastically reduces the amount

of boundary data required. In table 1.2 we see that at four loops we needed to use

the NNLL multi-Regge information. (Information at this accuracy is available [35,

37] without relying on integrability-based predictions [62].) We also needed to use

the O(T 1) terms in the OPE limit to fix the final two parameters. In contrast, in

table 1.1 all parameters are fixed without any use of the OPE limit, and only the

NLL approximation for multi-Regge-kinematics.

1.4 Multi-Regge kinematics

In order to fix the last few parameters at four loops, we analyze the limit of multi-

Regge kinematics (MRK) for the NMHV amplitude, following closely ref. [37]. The

multi-Regge limit in this context refers to 2 → 4 scattering, with the four outgoing

particles strongly ordered in rapidity. In particular, it involves the all-gluon ampli-

tude, with helicities

3+6+ → 2+4−5+1+ , (1.67)

where the cross ratios become

u1 → 1 , u2, u3 → 0 , (1.68)

with the ratios

u2

1− u1

≡ 1

(1 + w) (1 + w∗)
and

u3

1− u1

≡ ww∗

(1 + w) (1 + w∗)
(1.69)
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Constraint L = 1 L = 2 L = 3 L = 4

even even odd even odd even odd

0. Integrable functions 10 82 6 639 122 5153 1763

1. (Anti)symmetry in u and w 7 50 2 363 39 + 10 2797 583 + 203

2. 5 even final-entry conditions 3 14 2 78 39 + 10 487 583 + 203

3. 7 odd final-entry conditions 3 14 1 78 21 + 3 487 321 + 64

4. Collinear vanishing 0 2 1 28 21 + 3 284 321 + 64

5. O(T 1) 6134 OPE 0 0 1 0 21 + 3 110 321 + 64

6. NNLL multi-Regge kinematics 0 0 0 0 3 + 3 0 219 + 64

7. Spurious-pole vanishing 0 0 0 + 3 2 + 64

8. O(T 1) 1111 OPE 0 0 0 + 3 0 + 64

9. O(T 1,2) 1114 OPE 0 0 0 + 3 0 + 64

Table 1.2: Remaining parameters in the ansätze for V (L) and Ṽ (L) after each con-
straint is applied, at each loop order. In this version we do not use the full Q̄ equation,
but only the 5 (7) final-entry condition in the parity even (odd) sector. The first six
constraints do not mix the parity-even and parity-odd function spaces, so we can
count the number of even and odd parameters separately until we reach the spurious-
pole constraint. The 7 final-entry condition can only be satisfied if we abandon the
cyclic-vanishing condition, which leaves some unphysical “gauge” parameters. We
split the number of odd parameters into “physical + gauge”; only the former number
is relevant.

held fixed. Here we use (u1, u2, u3) instead of (u, v, w) for the cross ratios, to avoid

confusion with the traditional MRK variable w.

In ref. [37] two of us extended the NMHV leading-logarithmic MRK ansatz of

Lipatov, Prygarin, and Schnitzer [61] along the lines of the MHV MRK factorization
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described by Fadin and Lipatov [60]. We proposed the following ansatz:

PNMHV × eR6+iπδ|MRK = cos πωab

−ia
2

∞∑
n=−∞

(−1)n
( w
w∗

)n
2

∫ +∞

−∞

dν

(iν + n
2
)2
|w|2iν ΦNMHV

Reg (ν, n)

×
(
− 1

1− u1

|1 + w|2

|w|

)ω(ν,n)

,

(1.70)

where

ωab =
1

8
γK(a) log|w|2 ,

δ =
1

8
γK(a) log

|w|2

|1 + w|4
,

(1.71)

and γK(a) is the cusp anomalous dimension, given in eq. (1.19). Here ω(ν, n) is known

as the BFKL eigenvalue, and is the same for MHV and NMHV, while ΦNMHV
Reg (ν, n) is

the NMHV impact factor. Both may be expanded perturbatively in a:

ω(ν, n) = −a
(
Eν,n + aE(1)

ν,n + a2E(2)
ν,n +O(a3)

)
,

ΦNMHV
Reg (ν, n) = 1 + aΦ

NMHV,(1)
Reg (ν, n) + a2 Φ

NMHV,(2)
Reg (ν, n)

+ a3 Φ
NMHV,(3)
Reg (ν, n) +O(a4) .

(1.72)

By expanding eq. (1.70) in a and performing the summation and integration, we are

left with functions of w and w∗ that we can compare to the MRK limit of the ratio

function.

The configuration (1.67) corresponds to the (χ4)4 component of the ratio function.

Taking the MRK limit of this component, the R-invariants reduce to functions of w∗:

(1)→ 1

1 + w∗
, (5)→ w∗

1 + w∗
, (6)→ 1, (1.73)

while the other R-invariants vanish.

Parity symmetry of the ratio function leads, in this limit, to a symmetry under

(w,w∗) → (1/w, 1/w∗). Taking advantage of this symmetry, we break up the ratio
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function as follows:

P(L)
MRK = 2πi

L−1∑
r=0

lnr(1− u1)

{
1

1 + w∗

[
p(L)
r (w,w∗) + 2πi q(L)

r (w,w∗)
]

+
w∗

1 + w∗

[
p(L)
r (w,w∗) + 2πi q(L)

r (w,w∗)
]∣∣∣

(w,w∗)→(1/w,1/w∗)

}
+O(1− u1) . (1.74)

Here the p
(L)
r (w,w∗) and q

(L)
r (w,w∗) are composed of functions known as single-valued

harmonic polylogarithms (SVHPLs) [117, 105]. In general, p
(L)
r and q

(L)
r−1 are closely

related to each other. They are determined by the BFKL eigenvalue and impact

factor evaluated to the same subleading order in a. Essentially, q
(L)
r−1 is generated by

taking the log of (−1) out of the last factor of eq. (1.70) instead of a ln(1− u1). For

this reason, q
(L)
L−1 vanishes, and we will refer to both p

(L)
L−1 and q

(L)
L−2 as leading-log

(LL), p
(L)
L−2 and q

(L)
L−3 as next-to-leading-log (NLL), and so on.

The relations between p
(L)
r and q

(L)
r−1 that we quote below involve the coefficients

appearing in the MRK expansion of the remainder function,

[R6]
(L)
MRK = 2πi

L−1∑
r=0

lnr(1− u1)
[
g(L)
r (w,w∗) + 2πi h(L)

r (w,w∗)
]
, (1.75)

which can be found through four loops in refs. [105, 35]. They also involve the lower-

loop p
(L)
r functions, given in ref. [37].

After imposing collinear vanishing, we fix the five remaining parameters in our

four-loop ansatz by matching to the functions p
(4)
r and q

(4)
r . Four of the five parameters

are fixed merely by matching to the LL expressions p
(4)
3 and q

(4)
2 . We remark that

when we perform the same analysis at three loops, there is a single undetermined

parameter at this stage, which is fixed by the LL coefficient p
(3)
2 .

At four loops, the one parameter remaining after LL matching is fixed by matching

to the NLL coefficients p
(4)
2 and q

(4)
1 . The NLL BFKL eigenvalue and NMHV impact

factor needed to compute these functions were already fixed at lower loops. The

four-loop coefficient functions through NLL are presented below. We express them in

terms of functions L±~w defined in ref. [105], which are combinations of SVHPLs having
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definite symmetry properties under complex conjugation (w ↔ w∗) and inversion

(w ↔ 1/w, w∗ ↔ 1/w∗):

q
(4)
3 = 0 , (1.76)

p
(4)
3 =

1

768

[
−120L−4 + 192L−2,1,1 − 4 (L−0 − 20L+

1 )L+
3 + 96L+

1 L
−
2,1

+ 8 (L−2 )2 + 8 (L−0 )2 L−2 − 5 (L−0 )3 L+
1 − 10 (L−0 )2 (L+

1 )2

− 8L−0 (L+
1 )3 − 16 (L+

1 )4 + 96 ζ3 L
+
1

]
, (1.77)

q
(4)
2 =

3

2
p

(4)
3 −

1

2
L+

1 p
(3)
2 − g

(2)
1 p

(2)
1 − g

(3)
2 p

(1)
0 , (1.78)

p
(4)
2 =

1

64

{
−87L+

5 + 14L−4,1 + 32L+
3,1,1 + 8L+

2,2,1 − 96L−2,1,1,1

− 1

2
(11L−0 + 46L+

1 )L−4 − (L−0 − 4L+
1 )L+

3,1 + 12L−0 L
−
2,1,1

+
[
12 (L−0 )2 − 11L−0 L

+
1 + 20 (L+

1 )2
]
L+

3 −
12

5
(L+

1 )5

+ 2
[
(L−0 )2 − 2L−0 L

+
1 + 12 (L+

1 )2
]
L−2,1 −

13

240
(L−0 )5

+

[
5

24
(L−0 )3 +

13

4
(L−0 )2 L+

1 − L−0 (L+
1 )2 + 4 (L+

1 )3

]
L−2

− 11

8
(L−0 )4 L+

1 +
5

4
(L−0 )3 (L+

1 )2 − 7

3
(L−0 )2 (L+

1 )3 − 2L−0 (L+
1 )4

− ζ2

[
48L+

3 + 48L−2,1 + 24L+
1 L

−
2 − 3 (L−0 )3 − 6 (L−0 )2 L+

1 − 16 (L+
1 )3
]

+ ζ3

[
2L−2 + (L−0 )2 + 28L−0 L

+
1 + 8 (L+

1 )2
]
− 102 ζ5 − 48 ζ2 ζ3

}
, (1.79)

q
(4)
1 = p

(4)
2 −

1

2
L+

1

[
p

(3)
1 − ζ2 p

(2)
1

]
− g(2)

1 p
(2)
0 − g

(2)
0 p

(2)
1 − g

(3)
1 p

(1)
0 . (1.80)

Once the final five parameters are fixed, we can obtain the NNLL and N3LL

coefficients p
(4)
1 , q

(4)
0 and p

(4)
0 with no ambiguity. We obtain:

p
(4)
1 =

1

64

{
96L−6 + 58L+

5,1 + 16L+
4,2 − 12L−4,1,1 − 24L+

3,1,1,1 + 240L−2,1,1,1,1

− 1

2
(3L−0 + 450L+

1 )L+
5 − (9L−0 − 22L+

1 )L−4,1

+ 4 (L−0 + 5L+
1 )L+

3,1,1 + 16L+
1 L

+
2,2,1 − 12 (L−0 + 6L+

1 )L−2,1,1,1
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−
[
13 (L−0 )2 + 25L−0 L

+
1 + 16 (L+

1 )2
]
L−4

−
[
5 (L−0 )2 − 18L−0 L

+
1 − 8 (L+

1 )2
]
L+

3,1

− 4
[
2 (L−0 )2 − 3L−0 L

+
1 + 12 (L+

1 )2
]
L−2,1,1

+

[
3

8
(L−0 )3 +

67

2
(L−0 )2 L+

1 − 12L−0 (L+
1 )2 +

71

3
(L+

1 )3

]
L+

3

+
[
2 (L−0 )3 − (L−0 )2 L+

1 + 5L−0 (L+
1 )2 + 14 (L+

1 )3
]
L−2,1

− 7 (L+
3 )2 − 4 (L−2,1)2 + 8L−2,1,1 L

−
2 −

1

4

[
(L−0 )2 + 12 (L+

1 )2
]

(L−2 )2

−
[
4L−0 L

+
3 −

13

8
(L−0 )4 − 25

6
(L−0 )3 L+

1 +
1

2
(L−0 )2 (L+

1 )2

+ L−0 (L+
1 )3 − 8 (L+

1 )4

]
L−2

− 37

720
(L−0 )6 − 1

48
(L−0 )5 L+

1 −
97

24
(L−0 )4 (L+

1 )2 + 2 (L−0 )3 (L+
1 )3

− 13

3
(L−0 )2 (L+

1 )4 − L−0 (L+
1 )5 − 22

15
(L+

1 )6

+ ζ2

[
180L−4 − 8L+

3,1 − 144L−2,1,1 − 4 (L−0 − 6L+
1 )L−2,1 − 4 (L−2 )2

− 4
[
8 (L−0 )2 + 3L−0 L

+
1 − 12 (L+

1 )2
]
L−2

− 44 (L−0 − L+
1 )L+

3 +
1

6
(L−0 )4 + 16 (L−0 )3 L+

1

− 26 (L−0 )2 (L+
1 )2 − 58L−0 (L+

1 )3 + 108 (L+
1 )4

]
+ ζ3

[
22L+

3 − 4L−2,1 + 4 (6L−0 − L+
1 )L−2 −

5

3
(L−0 )3 + 3 (L−0 )2 L+

1

+ 35L−0 (L+
1 )2 − 10 (L+

1 )3

]
+ ζ4

[
216L−2 + 108 (L−0 − 2L+

1 )L+
1

]
− ζ5 (21L−0 + 54L+

1 )− 4 ζ2 ζ3 (3L−0 − 10L+
1 )

}
, (1.81)

q
(4)
0 =

1

2
p

(4)
1 −

1

2
L+

1

[
p

(3)
0 − ζ2 p

(2)
0 +

11

2
ζ4 p

(1)
0

]
+ π2

[
p

(4)
3 − g

(2)
1 p

(2)
1 − 2 g

(3)
2 p

(1)
0

]
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− π2 L+
1

[
p

(3)
2 − 2 g

(2)
1 p

(1)
0

]
+
π2

2
(L+

1 )2 p
(2)
1 − ζ2 (L+

1 )3 p
(1)
0

− g(2)
0 p

(2)
0 − g

(3)
0 p

(1)
0 , (1.82)

and

p
(4)
0 =

1

64

{
1718L+

7 − 96L−6,1 − 42L+
5,1,1 − 72L+

4,2,1 + 12L−4,1,1,1

− 8L+
3,1,1,1,1 − 48L+

2,2,1,1,1 − 16L+
2,1,2,1,1 − 240L−2,1,1,1,1,1

+ 2 (43L−0 + 24L+
1 )L−6 +

1

2
(3L−0 + 122L+

1 )L+
5,1

+ (17L−0 − 6L+
1 )L−4,1,1 − 4 (L−0 + 3L+

1 )L+
3,1,1,1

+ 12 (3L−0 + 10L+
1 )L−2,1,1,1,1 + 16L+

1 L
+
4,2

− 1

4

[
849 (L−0 )2 − 132L−0 L

+
1 + 552 (L+

1 )2
]
L+

5

+
[
13 (L−0 )2 − 19L−0 L

+
1 + 8 (L+

1 )2
]
L−4,1

−
[
3 (L−0 )2 + 16L−0 L

+
1 + 12 (L+

1 )2
]
L+

3,1,1

+ 2
[
3 (L−0 )2 + 4 (L+

1 )2
]
L+

2,2,1 − 24L+
3,3,1

+ 8
[
(L−0 )2 − 4L−0 L

+
1 + 3 (L+

1 )2
]
L−2,1,1,1

+ 4L−0 L
−
2,1 L

+
3 + 2 (3L−0 L

+
3,1 + 4L+

1 L
−
2,1,1)L−2

+
1

16

[
128L−2,1 − 163 (L−0 )3 − 118 (L−0 )2 L+

1

− 332L−0 (L+
1 )2 − 56 (L+

1 )3
]
L−4

− 1

8

[
3 (L−0 )3 + 52 (L−0 )2 L+

1 − 80L−0 (L+
1 )2 − 24 (L+

1 )3
]
L+

3,1

− 1

6

[
23 (L−0 )3 + 18 (L−0 )2 L+

1 + 18L−0 (L+
1 )2 + 132 (L+

1 )3
]
L−2,1,1

+
1

48

[
1041 (L−0 )4 − 312 (L−0 )3L+

1 + 996 (L−0 )2(L+
1 )2

+ 16L−0 (L+
1 )3 + 496 (L+

1 )4
]
L+

3

− 1

8

[
13 (L−0 )4 − 38 (L−0 )3 L+

1 − 16 (L−0 )2 (L+
1 )2

− 80L−0 (L+
1 )3 + 16 (L+

1 )4
]
L−2,1
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− 1

2

[
3 (L−0 )2 L+

1 + 4 (L+
1 )3
]

(L−2 )2 +
1

3
L−0 (L+

1 )6

− 1

8

[
64L−4,1 + 16L−0 L

+
1 L

+
3 − 8 (L−0 )4 L+

1 −
43

5
(L−0 )5

− 24 (L+
1 )5 − 97

3
(L−0 )3 (L+

1 )2 + 10 (L−0 )2 (L+
1 )3

− 4L−0 (L+
1 )4

]
L−2 +

83

2016
(L−0 )7

− 1691

720
(L−0 )6 L+

1 +
223

240
(L−0 )5 (L+

1 )2 − 32

105
(L+

1 )7

− 109

36
(L−0 )4 (L+

1 )3 − 1

2
(L−0 )3 (L+

1 )4 − 44

15
(L−0 )2 (L+

1 )5

+ ζ2

[
542L+

5 − 84L−4,1 − 72L+
3,1,1 − 16L+

2,2,1

+ (65L−0 + 42L+
1 )L−4 + 432L−2,1,1,1

+ 4 (2L−0 + 5L+
1 )L+

3,1 − 4 (11L−0 + 54L+
1 )L−2,1,1

−
[
81 (L−0 )2 − 212L−0 L

+
1 + 436 (L+

1 )2
]
L+

3

+ 4
[
5 (L−0 )2 − 6L−0 L

+
1 − 6 (L+

1 )2
]
L−2,1

−
[
192L+

3 +
49

6
(L−0 )3 − 24 (L−0 )2 L+

1

+ 19L−0 (L+
1 )2 − 62 (L+

1 )3
]
L−2

+
131

12
(L−0 )4 L+

1 − 33 (L−0 )3 (L+
1 )2 − 43

40
(L−0 )5

+
176

3
(L−0 )2 (L+

1 )3 − 34L−0 (L+
1 )4 +

344

5
(L+

1 )5

]
+ ζ3

[
4L−4 − 26L+

3,1 + 4L−2,1,1 − (47L−0 − 70L+
1 )L+

3

− 34

3
(L+

1 )4 + 4 (2L−0 + L+
1 )L−2,1 + 3L−0 (L+

1 )3

+
1

4

[
7 (L−0 )2 + 124L+

1 L
−
0 − 12 (L+

1 )2
]
L−2

− 3

8
(L−0 )4 +

119

12
(L−0 )3 L+

1 −
21

2
(L−0 )2 (L+

1 )2

]
+ ζ4

[
804L+

3 + 504L−2,1 + 14 (7L−0 − 18L+
1 )L−2 − 23 (L−0 )3
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− 130 (L−0 )2 L+
1 + 108L−0 (L+

1 )2 − 384 (L+
1 )3

]
+

1

2
ζ5

[
16L−2 − 125 (L−0 )2 − 84L−0 L

+
1 + 224 (L+

1 )2

]
+ 4 ζ2 ζ3

[
L−2 − 21L−0 L

+
1 − 6 (L+

1 )2
]

− 438 ζ6 (L−0 − 2L+
1 )− 2 (ζ3)2 (13L−0 + 30L+

1 )

− 720 ζ7 + 504 ζ3 ζ4 + 396 ζ2 ζ5

}
. (1.83)

In addition to presenting these functions here in the main text, we also include

them, alongside their lower-loop analogues, in computer-readable format in an ancil-

lary file.

These functions are also predicted by the recent all-orders proposal [62] for the

BFKL eigenvalue and impact factor. In particular, the NNNLL NMHV impact factor

Φ
NMHV,(3)
Reg (ν, n) enters the computation of p

(4)
0 . It can be extracted from the MHV

impact factor (computed through NNNLL in ref. [35]) and the relation [62]

ΦNMHV
Reg (ν, n) = ΦMHV

Reg (ν, n)×
ν − in

2

ν + in
2

x(u+ in
2

)

x(u− in
2

)
, (1.84)

where

x(u) =
1

2

[
u+
√
u2 − 2a

]
(1.85)

is the Zhukovsky variable. The rapidity u entering this formula is related to the

variable ν by an integral expression [62]; its expansion to the relevant order in our

notation is

u = ν − i

2
a V +

i

8
a2 V (N2 + 4 ζ2)

− i

32
a3

{
V

[
3N2 V 2 +

5

4
N4 − 2 ζ2 (4V 2 −N2) + 88 ζ4

]
− 8 ζ3

[
−i∂νEν,n

]}
+O(a4), (1.86)
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where V = iν/(ν2 + n2/4), N = n/(ν2 + n2/4), and Eν,n is the LL BFKL eigenvalue,

Eν,n = ψ

(
1 + iν +

|n|
2

)
+ ψ

(
1− iν +

|n|
2

)
− 2ψ(1)− N

2
. (1.87)

Expanding eq. (1.84) to O(a3), we see that the relation between the NMHV and MHV

impact factors becomes non-rational in ν and n at NNNLL, due to the ψ function

appearing in eq. (1.86) for u, via eq. (1.87).

When we compute p
(4)
1 , q

(4)
0 and p

(4)
0 from the master formula (1.70), using eq. (1.84)

for ΦNMHV
Reg , we find precise agreement with the above values extracted from our unique

solution. Given the complexity of eqs. (1.81), (1.82) and (1.83), this is already a rather

stringent cross-check.

1.5 Near-collinear limit

By examining the near-collinear limit of the ratio function, we can make contact

with the Pentagon OPE approach of Basso, Sever, and Vieira, allowing for a rich

array of further cross-checks. The duality between amplitudes and Wilson loops

relates NMHV amplitudes to Wilson loops with states inserted on the boundary,

with different choices of states corresponding to different NMHV components [118,

119]. Through four loops, we have compared our limits with BSV’s calculation of the

χ6χ1χ3χ4 and (χ1)4 components of the super-Wilson loop [49], as well as Belitsky’s

computation of the χ3
1χ4 component [54] and χ2

1χ
2
4 component [53, 116].

To approach the w → 0 collinear limit, we convert from the cross ratios (u, v, w)
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to the variables (F, S, T ) ≡ (eiφ, eσ, e−τ ) used by BSV in ref. [48]:

u =
F

F + FS2 + ST + F 2ST + FT 2
,

v =
FS2

(1 + T 2)(F + FS2 + ST + F 2ST + FT 2)
,

w =
T 2

1 + T 2
,

yu =
F + ST + FT 2

F (1 + FST + T 2)
,

yv =
FS + T

F (S + FT )
,

yw =
(S + FT )(1 + FST + T 2)

(FS + T )(F + ST + FT 2)
.

(1.88)

In these variables, the collinear limit corresponds to τ →∞, or T → 0.

BSV investigate the (χ1)4 component of the NMHV amplitude by inserting a

gluonic state on the bottom cusp of the Wilson loop. Up to first order in T , the

R-invariants in this component become

(1)→ 0, (2)→ FT

S(1 + S2)
+O

(
T 2
)
, (3)→ 1− FST +O

(
T 2
)
,

(4)→ 1− FT

S
+O

(
T 2
)
, (5)→ FS3T

1 + S2
+O

(
T 2
)
, (6)→ 0 +O(T 4) .

(1.89)

As in ref. [37], we find that the ratio function in this limit can be expressed as:

P(1111) =
1

2

{
V (u, v, w) + V (w, u, v)− Ṽ (u, v, w) + Ṽ (w, u, v)

+ FT

[
−1− S2

S
V (u, v, w) +

1 + S4

S(1 + S2)
V (v, w, u)

]}
+ O(T 2) .

(1.90)

We match this expression to BSV’s computation of the OPE in this channel [49].

At order T 1 only a single flux-tube excitation contributes; its contribution includes an

integration over the excitation’s rapidity u and also involves its anomalous dimension

(or energy) γ(u), its momentum p(u), a measure factor µ(u), and the NMHV dressing
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functions h and h̄. Of these, h and h̄ can be given in closed form as

h(u) =
2x+(u)x−(u)

a
, h̄(u) =

1

h(u)
, (1.91)

where

x±(u) = x(u± i
2
) (1.92)

is given in terms of the Zhukovsky variable defined in eq. (1.85), while γ(u), p(u),

and µ(u) have perturbative expansions described in refs. [120, 48].

All together, the contribution of one gluonic excitation to the OPE is then

P(1111) = 1 + TF

∫ ∞
−∞

du

2π
µ(u)(h(u)− 1)eip(u)σ−γ(u)τ

+
T

F

∫ ∞
−∞

du

2π
µ(u)(h̄(u)− 1)eip(u)σ−γ(u)τ .

(1.93)

Following ref. [37], we compute this integral as a sum of residues at u = −im/2
for positive integers m. Truncating the series in m to a few hundred terms, we obtain

an expansion in terms of S = eσ, which we can then match to the expansion of an

ansatz of HPLs in S2. (Other methods for performing these sums are described in

ref. [121, 122].) This expression in terms of HPLs can be compared with the O(T )

expansion of the ratio function. The expansion of the transcendental functions V and

Ṽ is computed, as in ref. [37], from the differential equations method [34].

The χ6χ1χ3χ4 component has a simpler OPE at order T 1. All of the R-invariants

vanish except for (2) and (5), which collapse to

(2) = (5) =
1

〈6134〉
=

e−τ

2 coshσ
. (1.94)

Thus only the term multiplying V (v, w, u) survives. This means that through
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O(T ) this component is remarkably simple, and is given by the following expression:

W(6134) =
e−τ

2 coshσ

∞∑
L=0

(a
2

)L L∑
n=0

τnF (L)
n (σ) + O(e−2τ )

=
T

2 coshσ
× V (v, w, u)|O(T 0) + O(T 2) ,

(1.95)

where the F
(L)
n are given explicitly through three loops in appendix F of ref. [49] and

through six loops in ref. [121, 122].

To check the O(T 2) terms in the OPE, which receive contributions from two

flux-tube excitations, we were assisted by Andrei Belitsky, who checked the χ3
1χ4

component in this limit using our expansions of the V and Ṽ functions [54]. For

this component, R-invariants (1) and (4) vanish, while the behavior of the remaining

components was detailed in ref. [54]. In our variables, they behave as follows through

O(T 2):

(2) + (5) = T
1− S2

1 + S2
F 1/2 − T 2

(
S − 2S3 − S5

(1 + S2)2
F 3/2 +

2S + 4S3

(1 + S2)2
F−1/2

)
+O(T 3) ,

(3) + (6) = (2)− (5) = (3)− (6) = TF 1/2 − T 2SF 3/2 +O(T 3) . (1.96)

Belitsky has also checked the χ2
1χ

2
4 component at O(T 2) through four loops [53, 116].

While the relevant expansions of V and Ṽ in the near-collinear limit are too

lengthy to include in the text, in an ancillary file we include expressions for V and

Ṽ , as well as their cyclic permutations, expanded through O(T 3).

1.6 Multi-particle factorization

In the limit that a three-particle momentum invariant goes on shell, the six-particle

amplitude factorizes into a product of two four-particle amplitudes. For MHV am-

plitudes in supersymmetric theories this factorization is trivial, since at least one of

the two resulting four-particle amplitudes is not MHV and thus the product van-

ishes. In the case of NMHV amplitudes, though, this factorization is nontrivial in
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some channels. For the limit K2 = s345 → 0, where K = k3 + k4 + k5, it behaves as

follows [123]:

ANMHV
6 (ki)

s345→0−→ A4(k6, k1, k2, K)
F6(K2, si,i+1)

K2
A4(−K, k3, k4, k5) , (1.97)

where F6 is the factorization function.

In terms of the cross-ratios, this limit corresponds to letting u,w → ∞, with

u/w and v held fixed. For the R-invariants, this entails picking out the pole as

s345 → 0. Only R-invariants (1) and (4) have poles in this limit, and their coefficients

are equal. From eq. (1.10), we see that the factorization limit of the ratio function

can be explored by considering the limit of V (u, v, w) as u,w →∞.

We examined this limit through three loops in ref. [37]. We found that the function

U defined in eq. (1.28), rather than V , has a particularly simple limiting behavior. In

particular, in the factorization limit U becomes a polynomial in ln(uw/v), with zeta-

valued coefficients. We have applied the same method as in ref. [37] to take the limit

of U (4), by iteratively working out the limiting behavior of its relevant coproducts,

and fixing constants of integration using the line (u, 1, u) (see section 1.7.2). We find

that this simplicity of U continues to be manifest at four loops, and the factorization

limit of U (4) is given by:

U (4)(u, v, w)|u,w→∞ =
1

4
ζ4 ln4(uw/v)− (4ζ5 + 3ζ2ζ3) ln3(uw/v)

+

(
3769

32
ζ6 +

21

4
ζ2

3

)
ln2(uw/v)

−
(

785

8
ζ7 +

641

4
ζ3ζ4 +

191

2
ζ2ζ5

)
ln(uw/v)

+
133

4
ζ2ζ

2
3 +

289

4
ζ3ζ5 +

62629

64
ζ8 .

(1.98)

Note that the terms alternate strictly in sign from one power of ln(uw/v) to the next.

At a given power of ln(uw/v), they also alternate strictly from one loop order to the

next. The four loop limit (1.98), as well as the analogous results from one to three

loops [37], are in perfect agreement with a prediction based on integrability [124].

Extracting the factorization function F6 from this expression requires subtracting
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off the four-point amplitudes A4(k6, k1, k2, K) and A4(−K, k3, k4, k5), and adding back

in the BDS-like ansatz that was subtracted off when defining U . Altogether, this

results in the following formula for F6 in terms of U and quantities defined above in

eqs. (1.22) and (1.23), as previously presented in ref. [37]:

[lnF6](L) =
γ

(L)
K

8ε2L2

(
1 + 2 ε L

G(L)
0

γ
(L)
K

)[(
(−s12)(−s34)

(−s56)

)−Lε
+

(
(−s45)(−s61)

(−s23)

)−Lε]
− γ

(L)
K

8

[
1

2
ln2

(
(−s12)(−s34)

(−s56)

/
(−s45)(−s61)

(−s23)

)
+ 6 ζ2

]
+ U (L)(u, v, w)|u,w→∞ +

f
(L)
2

L2
+ C(L) +O(ε). (1.99)

The limiting behavior of U should also control the multi-particle factorization be-

havior of higher-point NkMHV amplitudes [37]. It would be interesting to check this

behavior once such amplitudes become available (or use this information as an aid in

their construction).

1.7 Quantitative behavior

In this section, we explore the ratio function quantitatively, plotting V and Ṽ on a

variety of lines and planes through the space of cross ratios. We stay on the Eu-

clidean branch in the positive octant, u, v, w > 0, for which all the hexagon functions

are real. On certain lines, these functions collapse to sums of well-known functions,

such as HPLs. For another line, the diagonal line where u = v = w, we have series

representations. For faces of the unit cube, we have constructed the function space

in a manner analogous to the full hexagon function construction — see appendix D

for the case where w = 1. We have used these constructions to obtain representa-

tions in terms of multiple polylogarithms whose arguments are the cross ratios. We

can then use the program GiNaC [125, 126] to evaluate the functions numerically.

There are two other “bulk” regions where we have representations in terms of mul-

tiple polylogarithms using the yi variables. These regions, called Regions I and II in

ref. [34], are inside the unit cube and also have ∆(u, v, w) > 0. Although we won’t
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plot the functions in these bulk regions in this paper, we provide the multiple polylog

representations in ancillary files.

1.7.1 The point (1, 1, 1)

The first place we inspect the values of V and Ṽ is the point where all the cross ratios

are equal to one: (u, v, w) = (1, 1, 1). This point is our reference point for defining the

constants of integration for all the irreducible hexagon functions: We define them all

to vanish there (except for Ω(2) which was previously defined as a particular integral).

Also, the point (1, 1, 1) is on the ∆ = 0 surface, so all parity-odd hexagon functions

(including Ṽ ) vanish there:

Ṽ (L)(1, 1, 1) = 0 for all L. (1.100)

However, V is nonzero at this point. The constant value of V can be fixed via

the collinear limits, or even the soft limits, which correspond to the point (1, 0, 0),

for example. Then we fix V along the line (1, v, v), using the fact that it can be

expressed here in terms of HPLs of the form H~w(v) with wi ∈ {0, 1}, as discussed in

section 1.2.3. Setting v = 1, we find that

V (4)(1, 1, 1) = 3 ζ2 ζ
2
3 − 15 ζ3 ζ5 +

5051

12
ζ8 − 3 ζ5,3 . (1.101)

This value can be compared to previous results at lower loops:

V (1)(1, 1, 1) = −ζ2 ,

V (2)(1, 1, 1) = 9 ζ4 ,

V (3)(1, 1, 1) = −243

4
ζ6 .

(1.102)

Interestingly, odd zeta values first appear in V (1, 1, 1) at four loops. (A (ζ3)2 term

appears at three loops in R
(3)
6 (1, 1, 1) and E(3)(1, 1, 1), but it cancels in the ratio

function.)
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1.7.2 The lines (u, u, 1) and (u, 1, u)

When two of the cross ratios are equal and the remaining one is equal to unity,

the hexagon functions collapse to HPLs. On these lines, ∆ = 0, so the parity-odd

functions vanish. For the parity-even functions, E is simpler to express on these lines

than V , so we present it instead. Because it is symmetric in exchange of its first and

third arguments, it suffices to give it on the lines (u, u, 1) and (u, 1, u). We use the

notation introduced in ref. [35], in which we expand all products of HPLs using the

shuffle algebra in order to linearize the expression in terms of HPLs. We then encode

the HPL weight vectors ~w, which consist entirely of 0’s and 1’s, as binary numbers,

but written as a subscript in decimal. We track the length of the original weight

vector with a superscript. For example,

Hu
1H

u
2,1 = Hu

1H
u
0,1,1 = 3Hu

0,1,1,1 +Hu
1,0,1,1 → 3h

[4]
7 + h

[4]
11 . (1.103)

In this notation, the parity-even functions are

E(1)(u, u, 1) = −ζ2 , (1.104)

E(2)(u, u, 1) =
1

2

[
h

[4]
5 + h

[4]
13 − 3(h

[4]
7 + h

[4]
15)
]
− ζ2

[
h

[2]
1 + h

[2]
3

]
+

13

2
ζ4 , (1.105)

E(3)(u, u, 1) = h
[6]
21 + h

[6]
53 − 4(h

[6]
23 + h

[6]
55)− 5(h

[6]
27 + h

[6]
59)

− 4(h
[6]
29 + h

[6]
61) + 10(h

[6]
31 + h

[6]
63)

− 1

2
ζ2

[
5(h

[4]
5 + h

[4]
13)− 19(h

[4]
7 + h

[4]
15)
]

+
21

2
ζ4

[
h

[2]
1 + h

[2]
3

]
− 235

6
ζ6 + ζ2

3 , (1.106)

E(4)(u, u, 1) =
1

8

[
− 18(h

[8]
65 + h

[8]
193)− 18(h

[8]
67 + h

[8]
195)− 18(h

[8]
69 + h

[8]
197)

− 2(h
[8]
71 + h

[8]
199)− 18(h

[8]
73 + h

[8]
201)− 10(h

[8]
75 + h

[8]
203)

− 10(h
[8]
77 + h

[8]
205) + 14(h

[8]
79 + h

[8]
207)− 21(h

[8]
81 + h

[8]
209)

− 13(h
[8]
83 + h

[8]
211) + 21(h

[8]
85 + h

[8]
213)− 107(h

[8]
87 + h

[8]
215)

− 25(h
[8]
89 + h

[8]
217)− 161(h

[8]
91 + h

[8]
219)− 127(h

[8]
93 + h

[8]
221)

+ 225(h
[8]
95 + h

[8]
223)− 24(h

[8]
97 + h

[8]
225)− 8(h

[8]
99 + h

[8]
227)
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− 16(h
[8]
101 + h

[8]
229) + 16(h

[8]
103 + h

[8]
231)− 28(h

[8]
105 + h

[8]
233)

− 156(h
[8]
107 + h

[8]
235)− 164(h

[8]
109 + h

[8]
237) + 348(h

[8]
111 + h

[8]
239)

+ h
[8]
113 + h

[8]
241 + 25(h

[8]
115 + h

[8]
243)− 101(h

[8]
117 + h

[8]
245)

+ 411(h
[8]
119 + h

[8]
247) + 41(h

[8]
121 + h

[8]
249) + 393(h

[8]
123 + h

[8]
251)

+ 267(h
[8]
125 + h

[8]
253)− 525(h

[8]
127 + h

[8]
255)
]

+
1

2
ζ2

[
2(h

[6]
17 + h

[6]
49) + 2(h

[6]
19 + h

[6]
51)− 17(h

[6]
21 + h

[6]
53)

+ 61(h
[6]
23 + h

[6]
55) + 2(h

[6]
25 + h

[6]
57) + 80(h

[6]
27 + h

[6]
59)

+ 61(h
[6]
29 + h

[6]
61)− 143(h

[6]
31 + h

[6]
63)
]

+
1

4
ζ4

[
115(h

[4]
5 + h

[4]
13)− 429(h

[4]
7 + h

[4]
15)
]

+
3

2
(5ζ5 − 2ζ2ζ3) (h

[3]
3 + h

[3]
7 ) (1.107)

− 70ζ6(h
[2]
1 + h

[2]
3 ) +

1

2
ζ2ζ

2
3 −

35

2
ζ3ζ5 +

36271

144
ζ8 −

3

2
ζ5,3 ,

E(1)(u, 1, u) = −2h
[2]
3 − ζ2 , (1.108)

E(2)(u, 1, u) =
1

2

[
h

[4]
5 − 3h

[4]
7 + 2h

[4]
9 − 2h

[4]
11 − h

[4]
13 + 15h

[4]
15

]
−ζ2

[
h

[2]
1 − 5h

[2]
3

]
+

13

2
ζ4 , (1.109)

E(3)(u, 1, u) = h
[6]
21 − 4h

[6]
23 − 5h

[6]
27 − 4h

[6]
29 + 10h

[6]
31 − 3h

[6]
33 − 2h

[6]
35 − 2h

[6]
37

− 3h
[6]
39 − 2h

[6]
41 − 8h

[6]
43 − 8h

[6]
45 + 8h

[6]
47 − 2h

[6]
49 − 3h

[6]
51

− 7h
[6]
53 + 9h

[6]
55 − 3h

[6]
57 + 8h

[6]
59 + 4h

[6]
61 − 40h

[6]
63

− ζ2

2

[
5h

[4]
5 − 19h

[4]
7 + 2h

[4]
9 − 22h

[4]
11 − 17h

[4]
13 + 55h

[4]
15

]
+
ζ4

2

[
21h

[2]
1 − 83h

[2]
3

]
− 235

6
ζ6 + ζ2

3 , (1.110)

and

E(4)(u, 1, u) =
1

8

[
− 18h

[8]
65 − 18h

[8]
67 − 18h

[8]
69 − 2h

[8]
71 − 18h

[8]
73 − 10h

[8]
75

− 10h
[8]
77 + 14h

[8]
79 − 21h

[8]
81 − 13h

[8]
83 + 21h

[8]
85 − 107h

[8]
87

− 25h
[8]
89 − 161h

[8]
91 − 127h

[8]
93 + 225h

[8]
95 − 24h

[8]
97 − 8h

[8]
99
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− 16h
[8]
101 + 16h

[8]
103 − 28h

[8]
105 − 156h

[8]
107 − 164h

[8]
109

+ 348h
[8]
111 + h

[8]
113 + 25h

[8]
115 − 101h

[8]
117 + 411h

[8]
119

+ 41h
[8]
121 + 393h

[8]
123 + 267h

[8]
125 − 525h

[8]
127 + 120h

[8]
129

+ 96h
[8]
131 + 88h

[8]
133 + 96h

[8]
135 + 88h

[8]
137 + 96h

[8]
139

+ 88h
[8]
141 + 80h

[8]
143 + 88h

[8]
145 + 96h

[8]
147 + 92h

[8]
149

+ 84h
[8]
151 + 88h

[8]
153 + 80h

[8]
155 + 76h

[8]
157 + 100h

[8]
159

+ 78h
[8]
161 + 102h

[8]
163 + 86h

[8]
165 + 110h

[8]
167 + 74h

[8]
169

− 62h
[8]
171 − 78h

[8]
173 + 458h

[8]
175 + 106h

[8]
177 + 130h

[8]
179

− 42h
[8]
181 + 654h

[8]
183 + 150h

[8]
185 + 686h

[8]
187 + 514h

[8]
189

− 390h
[8]
191 + 114h

[8]
193 + 122h

[8]
195 + 114h

[8]
197 + 106h

[8]
199

+ 114h
[8]
201 + 106h

[8]
203 + 98h

[8]
205 + 122h

[8]
207 + 135h

[8]
209

+ 151h
[8]
211 + 17h

[8]
213 + 553h

[8]
215 + 179h

[8]
217 + 715h

[8]
219

+ 581h
[8]
221 − 475h

[8]
223 + 126h

[8]
225 + 118h

[8]
227 + 114h

[8]
229

+ 138h
[8]
231 + 162h

[8]
233 + 538h

[8]
235 + 534h

[8]
237 − 546h

[8]
239

+ 95h
[8]
241 + 119h

[8]
243 + 365h

[8]
245 − 579h

[8]
247 + 79h

[8]
249

− 513h
[8]
251 − 267h

[8]
253 + 2205h

[8]
255

]
+
ζ2

2

[
2h

[6]
17 + 2h

[6]
19 − 17h

[6]
21 + 61h

[6]
23 + 2h

[6]
25 + 80h

[6]
27

+ 61h
[6]
29 − 143h

[6]
31 + 4h

[6]
33 − 2h

[6]
35 − 2h

[6]
37 + 4h

[6]
39

+ 84h
[6]
43 + 84h

[6]
45 − 180h

[6]
47 − 2h

[6]
49 + 4h

[6]
51 + 65h

[6]
53

− 199h
[6]
55 + 4h

[6]
57 − 182h

[6]
59 − 121h

[6]
61 + 383h

[6]
63

]
+
ζ4

4

[
115h

[4]
5 − 429h

[4]
7 + 20h

[4]
9 − 524h

[4]
11 − 409h

[4]
13 + 1077h

[4]
15

]
+

1

2
(15ζ5 − 6ζ2ζ3)

[
h

[3]
3 + h

[3]
5 − 3h

[3]
7

]
− 10

3
ζ6

[
21h

[2]
1 − 79h

[2]
3

]
− 2ζ2

3h
[2]
3 +

1

2
ζ2ζ

2
3 −

35

2
ζ3ζ5 +

36271

144
ζ8 −

3

2
ζ5,3 . (1.111)

We provide an ancillary file containing these formulae, as well as the analogous ones

for the remainder function.
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The subscripts on the h
[m]
i in these formulae are always odd, which means that

the HPL weight vectors always end in 1. This restriction enforces the condition that

no branch cuts start at u = 1. On the line (u, u, 1), one can also see that there is

a pairing of terms of the form h
[m]
i + h

[m]

i+2m−1 . This pairing is due to the coproduct

relation Eu + E1−u + Ev + E1−v = 0, which holds globally as a consequence of

eqs. (1.59) and (1.60). On the line (u, u, 1), it implies that the u derivative has the

form, dE(u, u, 1)/du = 2Eu(u, u, 1)/[u(1 − u)], which in turn implies the pairing of

HPLs of the form H0, ~w +H1, ~w, or equivalently h
[m]
i + h

[m]

i+2m−1 .

We plot the behavior of V on the lines (u, u, 1) and (u, 1, u) in figures 1.1 and 1.2,

respectively. In both cases we plot the functions at each loop order, normalized so

that they are all equal to unity at the point (u, v, w) = (1, 1, 1). While these functions

appear to have similar behavior at each loop order away from u = 0, they do have

dramatically varying u → 0 limits, including oscillations at very small u. In this

limit, the curves in figure 1.2 approach the negatives of the corresponding curves in

figure 1.1. That is, V (u, 1, u) ≈ −V (u, u, 1) as u→ 0, which is a consequence of the

collinear vanishing constraint (1.40) if we also let u→ 0, v → 1 in that relation.

1.7.3 The lines (u, 1, 1) and (1, v, 1)

The hexagon functions also collapse to the same class of HPLs on the lines where two

of the three cross ratios are equal to one. These lines are not on the ∆ = 0 surface, so

the parity-odd parts of the NMHV amplitude or ratio function do not automatically

vanish. However, on the line (1, v, 1), Ẽ (or Ṽ ) vanishes due to its antisymmetry

under u ↔ w. This vanishing also means that Ẽ(u, 1, 1) is a physical quantity,

because it is equal to Ẽ(u, 1, 1) − Ẽ(1, u, 1), which is a gauge-invariant difference of

cyclic permutations. Again, we preferentially present E and Ẽ, rather than V and Ṽ ,

because they have somewhat simpler expressions. Using the u↔ w (anti-)symmetry,

the functions we need to present are:

E(1)(u, 1, 1) = −1

2
h

[2]
3 − ζ2 , (1.112)

E(2)(u, 1, 1) =
1

4

[
h

[4]
5 + h

[4]
9 + h

[4]
11 + h

[4]
13 + 3h

[4]
15

]
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Figure 1.1: V (1)(u, u, 1), V (2)(u, u, 1), V (3)(u, u, 1), and V (4)(u, u, 1) normalized to one
at (1, 1, 1). One loop is in red, two loops is in green, three loops is in yellow, and four
loops is in blue.
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Figure 1.2: V (1)(u, 1, u), V (2)(u, 1, u), V (3)(u, 1, u), and V (4)(u, 1, u) normalized to one
at (1, 1, 1). One loop is in red, two loops is in green, three loops is in yellow, and four
loops is in blue.
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− 1

2
ζ2

[
h

[2]
1 − 2h

[2]
3

]
+

13

2
ζ4 , (1.113)

E(3)(u, 1, 1) = −1

8

[
− 4h

[6]
21 + h

[6]
23 + h

[6]
29 + 6h

[6]
33 + 6h

[6]
35 + 5h

[6]
37 + 6h

[6]
39

+ 5h
[6]
41 + 5h

[6]
43 + 5h

[6]
45 + 6h

[6]
47 + 6h

[6]
49 + 6h

[6]
51

+ 6h
[6]
53 + 6h

[6]
55 + 6h

[6]
57 + 6h

[6]
59 + 6h

[6]
61 + 15h

[6]
63

]
− 1

4
ζ2

[
5h

[4]
5 − h

[4]
7 + h

[4]
9 + h

[4]
11 + 9h

[4]
15

]
+

1

4
ζ4

[
21h

[2]
1 − 34h

[2]
3

]
− 235

6
ζ6 + ζ2

3 , (1.114)

E(4)(u, 1, 1) =
1

16

[
− 18h

[8]
65 − 18h

[8]
67 − 18h

[8]
69 − 14h

[8]
71 − 18h

[8]
73 − 18h

[8]
75

− 14h
[8]
77 − 10h

[8]
79 − 24h

[8]
81 − 24h

[8]
83 + 5h

[8]
85 − 20h

[8]
87

− 20h
[8]
89 − 20h

[8]
91 − 18h

[8]
97 − 16h

[8]
93 − 5h

[8]
95 − 18h

[8]
99

− 18h
[8]
101 − 14h

[8]
103 − 24h

[8]
105 − 24h

[8]
107 − 20h

[8]
109 − 10h

[8]
111

− 14h
[8]
113 − 14h

[8]
115 − 20h

[8]
117 − 9h

[8]
119 − 10h

[8]
121 − 10h

[8]
123

− 5h
[8]
125 + 60h

[8]
129 + 60h

[8]
131 + 50h

[8]
133 + 54h

[8]
135 + 50h

[8]
137

+ 50h
[8]
139 + 44h

[8]
141 + 48h

[8]
143 + 50h

[8]
145 + 50h

[8]
147 + 46h

[8]
149

+ 47h
[8]
151 + 44h

[8]
153 + 44h

[8]
155 + 41h

[8]
157 + 45h

[8]
159 + 45h

[8]
161

+ 45h
[8]
163 + 39h

[8]
165 + 42h

[8]
167 + 36h

[8]
169 + 36h

[8]
171 + 33h

[8]
173

+ 39h
[8]
175 + 39h

[8]
177 + 39h

[8]
179 + 33h

[8]
181 + 39h

[8]
183 + 36h

[8]
185

+ 36h
[8]
187 + 36h

[8]
189 + 45h

[8]
191 + 54h

[8]
193 + 54h

[8]
195 + 44h

[8]
197

+ 50h
[8]
199 + 44h

[8]
201 + 44h

[8]
203 + 40h

[8]
205 + 46h

[8]
207 + 43h

[8]
209

+ 43h
[8]
211 + 34h

[8]
213 + 43h

[8]
215 + 39h

[8]
217 + 39h

[8]
219 + 39h

[8]
221

+ 45h
[8]
223 + 48h

[8]
225 + 48h

[8]
227 + 41h

[8]
229 + 47h

[8]
231 + 38h

[8]
233

+ 38h
[8]
235 + 37h

[8]
237 + 46h

[8]
239 + 46h

[8]
241 + 46h

[8]
243 + 40h

[8]
245

+ 46h
[8]
247 + 45h

[8]
249 + 45h

[8]
251 + 45h

[8]
253 + 105h

[8]
255

]
+
ζ2

8

[
4h

[6]
17 + 4h

[6]
19 − 25h

[6]
21 + 11h

[6]
23 + 4h

[6]
25 + 10h

[6]
27 + 11h

[6]
29

+ 5h
[6]
31 + 4h

[6]
33 + 4h

[6]
35 + h

[6]
37 + 4h

[6]
39 + 3h

[6]
41 + 6h

[6]
43

+ 6h
[6]
45 + 9h

[6]
47 + 6h

[6]
49 + 6h

[6]
51 + 9h

[6]
53 + 6h

[6]
55 + 6h

[6]
57
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+ 9h
[6]
59 + 6h

[6]
61 + 60h

[6]
63

]
+
ζ4

8

[
115h

[4]
5 − 21h

[4]
7 + 10h

[4]
9 + 10h

[4]
11 − 11h

[4]
13 + 186h

[4]
15

]
+

3

8
(5ζ5 − 2ζ2ζ3)

[
2h

[3]
3 + h

[3]
5 + h

[3]
7

]
− ζ6

24

[
840h

[2]
1 − 1373h

[2]
3

]
− 1

2
ζ2

3h
[2]
3 +

1

2
ζ2ζ

2
3 −

35

2
ζ3ζ5 +

36271

144
ζ8 −

3

2
ζ5,3 , (1.115)

E(1)(1, v, 1) = −1

2
h

[2]
3 − ζ2 , (1.116)

E(2)(1, v, 1) =
1

4

[
h

[4]
5 + 3h

[4]
15

]
− 1

2
ζ2

[
h

[2]
1 − 3h

[2]
3

]
+

13

2
ζ4 , (1.117)

E(3)(1, v, 1) = −1

8

[
− 4h

[6]
21 + h

[6]
23 + h

[6]
29 + h

[6]
53 + 15h

[6]
63

]
− 1

4
ζ2

[
5h

[4]
5 − h

[4]
7 − h

[4]
13 + 15h

[4]
15

]
+

1

4
ζ4

[
21h

[2]
1 − 55h

[2]
3

]
− 235

6
ζ6 + ζ2

3 , (1.118)

E(4)(1, v, 1) =
1

16

[
− 18h

[8]
65 − 18h

[8]
67 − 18h

[8]
69 − 14h

[8]
71 − 18h

[8]
73 − 18h

[8]
75

− 14h
[8]
77 − 10h

[8]
79 − 24h

[8]
81 − 24h

[8]
83 + 5h

[8]
85 − 20h

[8]
87

− 20h
[8]
89 − 20h

[8]
91 − 16h

[8]
93 − 5h

[8]
95 − 18h

[8]
97 − 18h

[8]
99

− 18h
[8]
101 − 14h

[8]
103 − 24h

[8]
105 − 24h

[8]
107 − 20h

[8]
109 − 10h

[8]
111

− 14h
[8]
113 − 14h

[8]
115 − 20h

[8]
117 − 9h

[8]
119 − 10h

[8]
121 − 10h

[8]
123

− 5h
[8]
125 − 12h

[8]
161 − 12h

[8]
163 − 12h

[8]
165 − 10h

[8]
167 − 18h

[8]
169

− 18h
[8]
171 − 16h

[8]
173 − 8h

[8]
175 − 12h

[8]
177 − 12h

[8]
179 − 18h

[8]
181

− 10h
[8]
183 − 10h

[8]
185 − 10h

[8]
187 − 8h

[8]
189 − 8h

[8]
209 − 8h

[8]
211

− 14h
[8]
213 − 5h

[8]
215 − 8h

[8]
217 − 8h

[8]
219 − 5h

[8]
221 − 6h

[8]
233

− 6h
[8]
235 − 6h

[8]
237 − 3h

[8]
245 + 105h

[8]
255

]
+
ζ2

8

[
4h

[6]
17 + 4h

[6]
19 − 25h

[6]
21 + 11h

[6]
23 + 4h

[6]
25 + 10h

[6]
27

+ 11h
[6]
29 + 5h

[6]
31 + 2h

[6]
41 + 8h

[6]
43 + 8h

[6]
45 + 8h

[6]
47

+ 9h
[6]
53 + 5h

[6]
55 + 6h

[6]
59 + 3h

[6]
61 + 105h

[6]
63

]
+
ζ4

8

[
115h

[4]
5 − 21h

[4]
7 − 21h

[4]
13 + 333h

[4]
15

]
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+
3

4
(5ζ5 − 2ζ2ζ3)

[
h

[3]
3 + h

[3]
5 + h

[3]
7

]
− ζ6

24

[
840h

[2]
1 − 2213h

[2]
3

]
− 1

2
ζ2

3h
[2]
3

+
1

2
ζ2ζ

2
3 −

35

2
ζ3ζ5 +

36271

144
ζ8 −

3

2
ζ5,3 , (1.119)

Ẽ(2)(u, 1, 1) =
1

4

[
h

[4]
9 + h

[4]
11 + h

[4]
13

]
− 1

2
ζ2h

[2]
3 , (1.120)

Ẽ(3)(u, 1, 1) = −1

8

[
6(h

[6]
33 + h

[6]
35 + h

[6]
39 + h

[6]
47 + h

[6]
49)

+ 6(h
[6]
51 + h

[6]
55 + h

[6]
57 + h

[6]
59 + h

[6]
61)

+ 5(h
[6]
37 + h

[6]
41 + h

[6]
43 + h

[6]
45 + h

[6]
53)
]

− 1

4
ζ2

[
h

[4]
9 + h

[4]
11 + h

[4]
13 − 6h

[4]
15

]
+

21

4
ζ4h

[2]
3 , (1.121)

and

Ẽ(4)(u, 1, 1) =
1

16

[
40h

[8]
205 + 41(h

[8]
157 + h

[8]
229) + 43(h

[8]
237 + h

[8]
245)

+ 44(h
[8]
141 + h

[8]
153 + h

[8]
155 + h

[8]
189 + h

[8]
197 + h

[8]
201

+ h
[8]
203 + h

[8]
221 + h

[8]
233 + h

[8]
235)

+ 45(h
[8]
159 + h

[8]
191 + h

[8]
223 + h

[8]
249 + h

[8]
251 + h

[8]
253)

+ 46(h
[8]
149 + h

[8]
185 + h

[8]
187 + h

[8]
207 + h

[8]
239 + h

[8]
241

+ h
[8]
243 + h

[8]
247)

+ 47(h
[8]
151 + h

[8]
175 + h

[8]
217 + h

[8]
219 + h

[8]
231)

+ 48(h
[8]
143 + h

[8]
213 + h

[8]
215 + h

[8]
225 + h

[8]
227)

+ 49(h
[8]
173 + h

[8]
183)

+ 50(h
[8]
133 + h

[8]
137 + h

[8]
139 + h

[8]
145 + h

[8]
147 + h

[8]
199)

+ 51(h
[8]
165 + h

[8]
177 + h

[8]
179 + h

[8]
181 + h

[8]
209 + h

[8]
211)

+ 52h
[8]
167

+ 54(h
[8]
135 + h

[8]
169 + h

[8]
171 + h

[8]
193 + h

[8]
195)

+ 57(h
[8]
161 + h

[8]
163) + 60(h

[8]
129 + h

[8]
131)
]
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+
1

8
ζ2

[
4(h

[6]
33 + h

[6]
35 + h

[6]
39) + h

[6]
37 + h

[6]
41

+ h
[6]
47 + h

[6]
55 − 2(h

[6]
43 + h

[6]
45)

+ 6(h
[6]
49 + h

[6]
51 + h

[6]
57)

+ 3(h
[6]
59 + h

[6]
61)− 45h

[6]
63

]
+

1

8
ζ4

[
10(h

[4]
9 + h

[4]
11 + h

[4]
13)− 147h

[4]
15

]
− 3

8
(5ζ5 − 2ζ2ζ3)(h

[3]
5 + h

[3]
7 )− 35ζ6h

[2]
3 . (1.122)

We provide these formulae in the same ancillary file that contains the functions’ values

on the lines (u, u, 1) and (u, 1, u).

Actually, these functions are not all independent; they obey

Ẽ(u, 1, 1) = E(u, 1, 1)− E(1, u, 1). (1.123)

This relation follows from the spurious pole constraint (1.41), which holds for E and

Ẽ as well as for V and Ṽ because R6 and Y are totally symmetric. However, there

is an issue of choosing the sign for the parity-odd function, or equivalently the choice

of yi versus 1/yi as one approaches this limit. If one lets u → 1, v → u, w → 1 in

eq. (1.41), one obtains eq. (1.123). On the other hand, if one lets u → u, v → 1,

w → 1 in eq. (1.41), one obtains the same equation but with the opposite sign for

Ẽ(u, 1, 1).

The functions Ẽ(L)(u, 1, 1) have a relatively simple form because dẼ(u, 1, 1)/du

has the form of 1/u times a pure function, with no 1/(1−u) contribution. Inspecting

these terms in the u derivative in eq. (A.2), after taking the limit (u, v, w)→ (u, 1, 1),

we find that the following linear combination of coproduct entries vanishes:

Ẽ1−u(u, 1, 1) + 2 Ẽyu(u, 1, 1)− Ẽyv(u, 1, 1)− Ẽyw(u, 1, 1) = 0. (1.124)

However, we have not yet been able to prove that this combination vanishes to all

orders, for example as a consequence of the spurious-pole constraint and the Q̄ rela-

tions.
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Figure 1.3: V (1)(u, 1, 1), V (2)(u, 1, 1), V (3)(u, 1, 1), and V (4)(u, 1, 1) normalized to one
at (1, 1, 1). One loop is in red, two loops is in green, three loops is in yellow, and four
loops is in blue.

Next we plot the functions V and Ṽ on the lines (u, 1, 1) and (1, v, 1). For V (u, 1, 1)

and V (1, v, 1), shown in figures 1.3 and 1.4, respectively, we again normalize the plots

so that each curve takes the value of unity at the point (u, v, w) = (1, 1, 1).

We cannot use this normalization for Ṽ (u, 1, 1), because this function vanishes at

the point (1, 1, 1). Instead, we normalize each loop order so that the coefficient of

the ln2 u term in the u → 0 limit is equal to unity. As u → 0, the functions (before

normalization) behave as follows:

Ṽ (2)(u, 1, 1)|u→0 = −1

8
ζ2 ln2 u− 5

16
ζ4 , (1.125)

Ṽ (3)(u, 1, 1)|u→0 =
47

32
ζ4 ln2 u+

343

128
ζ6 −

1

4
ζ2

3 , (1.126)

Ṽ (4)(u, 1, 1)|u→0 = − 13

512
ζ4 ln4 u+

1

64
(9ζ5 − 2ζ2ζ3) ln3 u

− 1

768

(
8173ζ6 + 48ζ2

3

)
ln2 u+

1

32
(27ζ2ζ5 − 40ζ3ζ4) lnu

− 3

8
ζ2ζ

2
3 +

73

16
ζ3ζ5 −

52217

2560
ζ8 +

33

80
ζ5,3 . (1.127)
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Figure 1.4: V (1)(1, v, 1), V (2)(1, v, 1), V (3)(1, v, 1), and V (4)(1, v, 1) normalized to one
at (1, 1, 1). One loop is in red, two loops is in green, three loops is in yellow, and four
loops is in blue.

Note that when we use the normalization based on the ln2 u coefficient, all three func-

tions in figure 1.5 look almost identical! This is quite surprising, because Ṽ (4)(u, 1, 1)

actually diverges like ln4 u as u→ 0, while the lower-loop functions only diverge like

ln2 u. The coefficient in front of the ln4 u divergence is apparently small enough that

it does little to change the shape of Ṽ (4)(u, 1, 1) over a large region of the u line.

1.7.4 The line (u, u, u)

Unlike the lines discussed above, the hexagon functions do not collapse to HPLs

on the line where all of the cross ratios are equal. Instead they become cyclotomic

polylogarithms [127]. Using the differential equations that they obey, it is relatively

straightforward to evaluate these functions in terms of series expansions, either around

u = 0, u = 1 or u = ∞. For the part of the line where u < 1/4, we have an

alternate representation of V in terms of multiple polylogarithms. That is because

∆(u, u, u) = (1 − u)2(1 − 4u) is positive for u < 1/4, and this segment lies in the
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Figure 1.5: Ṽ (2)(u, 1, 1), Ṽ (3)(u, 1, 1) and Ṽ (4)(u, 1, 1) normalized so that the coeffi-
cient of the ln2 u term in the u→ 0 limit is unity. Two loops is in green, three loops
is in yellow, and four loops is in blue.

Region I defined in ref. [34]. On the whole line (u, u, u), Ṽ vanishes by symmetry.

We plot V (u, u, u) in figure 1.6, normalized so that at each loop order the function

has the value unity at the point (1, 1, 1).

Among other uses, this line allows us to identify a place where the ratio func-

tion crosses zero, which is fairly stable with respect to the loop order. For each L,

V (L)(u, u, u) crosses zero near u = 1/3, although the exact point shifts slightly with

the loop order. Denoting by u
(L)
0 the value of u for which V (L)(u, u, u) equals zero,

we have for this zero crossing,

u
(1)
0 = 0.372098 . . . , u

(2)
0 = 0.352838 . . . , (1.128)

u
(3)
0 = 0.347814 . . . , u

(4)
0 = 0.346013 . . . .

The functions V (L)(u, u, u) oscillate as u→ 0, leading to additional zero crossings

near the origin. In particular, V (2)(u, u, u) has a zero crossing near 0.0015, while

V (3)(u, u, u) crosses near 0.007 and again near 1.3 × 10−6. V (4)(u, u, u) has three
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Figure 1.6: V (1)(u, u, u), V (2)(u, u, u), V (3)(u, u, u), and V (4)(u, u, u) normalized to
one at (1, 1, 1). One loop is in red, two loops is in green, three loops is in yellow, and
four loops is in blue.

additional zero crossings, at roughly 0.014, 0.000025, and 7.2 × 10−10. This can be

seen from the small-u limits of these functions:

V (1)(u, u, u) ∼ 1

2
ln2 u+

1

2
ζ2 , (1.129)

V (2)(u, u, u) ∼ 1

16
ln4 u− 3

2
ζ2 ln2 u+

1

2
ζ3 lnu− 53

16
ζ4 , (1.130)

V (3)(u, u, u) ∼ 1

288
ln6 u− 41

96
ζ2 ln4 u+

1

8
ζ3 ln3 u+

419

32
ζ4 ln2 u

−
(

2 ζ5 +
3

4
ζ2 ζ3

)
lnu+

2589

128
ζ6 −

1

4
(ζ3)2 , (1.131)

V (4)(u, u, u) ∼ 1

9216
ln8 u− 43

1152
ζ2 ln6 u+

1

96
ζ3 ln5 u+

557

96
ζ4 ln4 u

− 1

48

(
23 ζ5 + 32 ζ2ζ3

)
ln3 u− 1

256

(
21971 ζ6 − 8 ζ2

3

)
ln2 u

+
1

32

(
300 ζ7 + 108 ζ2ζ5 + 121 ζ3ζ4

)
lnu

− 131867

1024
ζ8 +

3

8
ζ2ζ

2
3 +

11

4
ζ3ζ5 . (1.132)
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We note that the multiple zeta value ζ5,3 does not appear in this particular limit of

the four-loop ratio function; nor did it appear in the same limit of the remainder

function [35]. Its absence could be a hint that there might be a relatively simple

description of this limit.

1.7.5 Faces of the unit cube

We can also examine V and Ṽ on the faces of the unit cube in cross-ratio space. Here

the functions do not collapse to HPLs, but they do still reduce to simpler bases of

functions which can be readily treated numerically. There are two cases to consider:

planes where one of the cross ratios goes to one, and planes where one of the cross

ratios vanishes. We will consider each in turn.

First, we consider the plane where one of the cross ratios goes to one. For con-

creteness, we choose w → 1, so the surface is (u, v, 1). This limit was discussed in

section 1.2, where it was used to ensure the vanishing of spurious poles. Recall that

in this limit, our symbol entries behave as follows:

w → 1 , yu → (1− w)
u(1− v)

(u− v)2
, yv →

1

(1− w)

(u− v)2

v(1− u)
, yw →

1− u
1− v

. (1.133)

Thus in this limit our set of nine symbol letters reduces to the following five:

Sw→1 = {u, v, 1− u, 1− v, u− v} . (1.134)

We cannot represent this function space solely with one-dimensional HPLs (H~w(u)

and H~w(v) with ~w ∈ {0, 1}), due to the u− v entry. However, it is relatively straight-

forward to express any function with these symbol letters in terms of Goncharov

polylogarithms, which in turn can be evaluated numerically with GiNaC [125, 126].

(We could have used instead the 2dHPL functions introduced by Gehrmann and

Remiddi [128].)

For V (u, v, w), there are two distinct cases to consider. We can either let v → 1,

or let w → 1. The u→ 1 case is related to the w → 1 case by u↔ w symmetry.

For the w → 1 surface we find relatively simple behavior, shown in figure 1.7.
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Figure 1.7: V (4)(u, v, 1) plotted in u and v.

The function V (4)(u, v, 1) is approximately symmetric under u ↔ v. It crosses zero

around the line u + v = 0.3, and increases as u and v increase. Since the function

crosses zero on this surface, plotting ratios between V at different loop orders is not

especially informative, so here we plot only V (4)(u, v, 1).

If we instead take v → 1, the function V (u, 1, w) is exactly symmetric under ex-

change of u and w. It also has uniform sign. Taking advantage of both of these proper-

ties, we show in figure 1.8 the ratios of V (4)(u, 1, w) to V (3)(u, 1, w) and V (3)(u, 1, w)

to V (2)(u, 1, w) on the same plot. Here V (4)(u, 1, w)/V (3)(u, 1, w) is plotted in the

top-left corner, while V (3)(u, 1, w)/V (2)(u, 1, w) is in the bottom-right. In both cases,

the missing part of the plot is just the mirror image, due to u ↔ w symmetry. We

find that these inter-loop ratios are quite heavily constrained, staying between −4

and −8. Note in particular that V (4)(u, 1, w)/V (3)(u, 1, w) is significantly flatter than

V (3)(u, 1, w)/V (2)(u, 1, w). This is encouraging; we expect the ratios to continue to
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Figure 1.8: Ratios of V (u, 1, w) between successive loop orders, plotted in u and w.
V (4)/V (3) is in the top-left corner, while V (3)/V (2) is in the bottom-right.

become more constrained at higher loops due to the finite radius of convergence of

the perturbative expansion. In non-singular regions, we expect the inter-loop ratios

to approach −8 at very large loop order [35].

We can also look at the parity-odd functions on this plane. Here, we need to

make a choice to avoid ambiguity. As discussed in section 1.2, Ṽ has a “gauge”

redundancy: we can add an arbitrary totally antisymmetric function to it without

affecting the full ratio function. This ambiguity will have to be dealt with in order to

present numerical results. Rather than fixing it in some arbitrary way, here we avoid

the ambiguity altogether by taking differences of cyclic permutations of Ṽ (u, v, w).

Totally antisymmetric functions are cyclicly symmetric, so their contribution will

cancel in these differences. The full ratio function can be expressed only in terms of

the cyclic differences, with no independent appearance of Ṽ .
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Figure 1.9: Ṽ (4)(v, 1, u)− Ṽ (4)(1, u, v) plotted in u and v.

There are three such differences to consider, Ṽ (v, w, u)− Ṽ (w, u, v), Ṽ (u, v, w)−
Ṽ (v, w, u), and Ṽ (w, u, v) − Ṽ (u, v, w). Taking w → 1, this gives us Ṽ (v, 1, u) −
Ṽ (1, u, v), Ṽ (u, v, 1) − Ṽ (v, 1, u), and Ṽ (1, u, v) − Ṽ (u, v, 1). Of these, Ṽ (v, 1, u) −
Ṽ (1, u, v) and Ṽ (u, v, 1)−Ṽ (v, 1, u) exchange under u↔ v, while Ṽ (1, u, v)−Ṽ (u, v, 1)

is symmetric under u ↔ v. As it turns out, Ṽ (v, 1, u)− Ṽ (1, u, v) crosses zero while

Ṽ (1, u, v)− Ṽ (u, v, 1) does not. As such, we can plot these cyclic differences of Ṽ in

the same format we used for V . Figure 1.9 plots Ṽ (4)(v, 1, u)− Ṽ (4)(1, u, v), while fig-

ure 1.10 shows the ratios
(
Ṽ (4)(1, u, v)− Ṽ (4)(u, v, 1)

)
/
(
Ṽ (3)(1, u, v)− Ṽ (3)(u, v, 1)

)
and

(
Ṽ (3)(1, u, v)− Ṽ (3)(u, v, 1)

)
/
(
Ṽ (2)(1, u, v)− Ṽ (2)(u, v, 1)

)
in the two panels sep-

arated by the diagonal line u = v. The latter plot again shows fairly constrained

inter-loop ratios, varying between −3 and −8, and varying significantly less as the

loop order increases.
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Figure 1.10: Ratios of Ṽ (1, u, v)− Ṽ (u, v, 1) between successive loop orders, plotted
in u and v. Ṽ (4)/Ṽ (3) is in the top-left corner, while Ṽ (3)/Ṽ (2) is in the bottom-right.
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Next, we consider the plane where one of the cross ratios goes to zero. For con-

creteness, take v → 0. In this limit, as was also the case for the w → 1 limit, the y

variables become rational functions of u, v, and w:

yu →
u

1− w
, yv →

v(1− u)(1− w)

(1− u− w)2
, yw →

w

1− u
. (1.135)

(Equivalently, one could take the yi to the inverse of these values.)

In contrast to the limit w → 1, which is smooth (on the Euclidean branch), the

hexagon functions can have logarithmically divergent behavior as v → 0. As such, we

expand all quantities in powers of ln v. The coefficient of each power of ln v will then

be a polylogarithmic function with symbol entries drawn from the following set:

Sv→0 = {u, w, 1− u, 1− w, 1− u− w} . (1.136)

To plot these functions, we use a similar GiNaC-based implementation to that used

for the w = 1 plane. Here there are two distinct regions to consider, due to the

1−u−w symbol entries. We can either consider u+w > 1, or u+w < 1. In general,

these two regions require different implementations, which together can cover the

whole positive quadrant u,w > 0. Here we just show results for the unit square.

In figure 1.11 we plot the v → 0 limit of the parity-even functions V (4)(u, v, w)

and V (4)(v, w, u) in the left and right columns, respectively, for each of the coefficients

of lnk v that are nonvanishing, k = 0, 1, 2, 3, 4. (In general, V (L) and Ṽ (L) have a

maximum divergence of lnL v at L loops, at least for L ≤ 4.) Figure 1.12 plots the

parity-odd functions Ṽ (4)(v, w, u)−Ṽ (4)(w, u, v), and Ṽ (4)(u, v, w)−Ṽ (4)(v, w, u). The

other possible arguments are related by permutations. In both figures, the left panels

are exactly symmetric under the exchange u↔ w. Since the highest power of ln v in

this limit increases with loop order there are no simple inter-loop ratios to show on

this plane, which is why we plot only the four-loop functions.



CHAPTER 1. THE RATIO FUNCTION AT FOUR LOOPS 78

V (4)(u, v, w) V (4)(v, w, u)

ln4 v

ln3 v

ln2 v

ln1 v

ln0 v

Figure 1.11: V (4)(u, v, w) and V (4)(v, w, u) plotted in the v → 0 limit. The coefficient
of each power of ln v is plotted separately.
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Ṽ (4)(v, w, u)− Ṽ (4)(w, u, v) Ṽ (4)(u, v, w)− Ṽ (4)(v, w, u)

ln4 v

ln3 v

ln2 v
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ln0 v

Figure 1.12: Ṽ (4)(v, w, u) − Ṽ (4)(w, u, v) and Ṽ (4)(u, v, w) − Ṽ (4)(v, w, u) plotted in
the v → 0 limit. The coefficient of each power of ln v is plotted separately.
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1.8 Conclusions and outlook

In this paper we have continued the hexagon function bootstrap program initiated

in ref. [32]. By calculating the six-particle NMHV ratio function through four loops,

we have completed the description of six-point amplitudes at this loop order, com-

plementing the earlier MHV results [35]. We extended the basis of hexagon functions

constructed in ref. [34] to transcendental weight eight. We used the weight-seven part

of this basis to construct an ansatz for the {7, 1} component of the coproduct of the

NMHV coefficient functions V and Ṽ , which we then constrained through a series of

physical inputs.

The most powerful such input comes from the Q̄ equation. Previously, this equa-

tion was understood to imply a seven-final-entry condition. We now understand that

it actually leads to a much more powerful set of relations between different permu-

tations of the functions E(u, v, w) and Ẽ(u, v, w) [98]. This set of relations allowed

us to work from an ansatz which, at four loops, had only 34 free parameters, and we

could fix all but five of them by requiring the collinear limit of the ratio function to

vanish.

The five remaining parameters were then fixed by appealing to the multi-Regge

limit. By using an extension of the ansatz proposed in ref. [61] that we detailed

in ref. [37], we used lower-loop information to predict the multi-Regge limit of the

NMHV ratio function at leading-log and next-to-leading-log order. This allowed us

to fix the remaining parameters in our ansatz. The terms in this limit that are of

subleading logarithmic order have all been predicted using integrability [62]. They

serve as a cross-check on our results.

With a unique result for the ratio function in hand, we proceeded to take the

near-collinear limit and compare to the Pentagon OPE approach of Basso, Sever, and

Vieira. Here we found perfect agreement with their published results [49] and those

of Papathanasiou [121, 122] and Belitsky [53, 54, 116]. We also computed the multi-

particle factorization limit, which takes a very simple form and agrees completely

with integrability-based predictions [124].

Plotting V and Ṽ over a variety of lines and planes through the space of cross
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ratios, we found its behavior to be broadly similar across loop orders. In particular,

we observed that, outside of regions where the functions vanish and corners containing

logarithmic divergences, the ratios between successive loop orders are fairly flat, and

generally stay between −4 and −8.

Recently, based on investigation of the positive Grassmannian [11], it was conjec-

tured [129] that the remainder function ought to have uniform sign in a particular

region of cross-ratio space. While this conjecture appears to be false near the origin

for the remainder function, a similar conjecture seems to hold true for a bosonized

version of the ratio function. Using the “data” found in this paper through four loops,

we will explore this conjecture in future work [70].

Our new understanding of the Q̄ equation has led to remarkably powerful con-

straints. After applying it, the number of free parameters remaining appears to only

increase by around a factor of three at each loop order. If this trend continues, there

should only be around a hundred unfixed parameters at five loops, comparable to

the number that needed to be fixed for the four-loop MHV remainder function. This

suggests that the five-loop ratio function may be well within reach. If so, it would be

a great opportunity to see just how far the hexagon function program can extend.



Chapter 2

The Complete Amplitude at Five

Loops

2.1 Introduction
To “bootstrap” generally refers to solving a problem via an ansatz constrained by

symmetries and physical principles. This is naturally most successful in very special

theories such as low-dimensional integrable models, but it has also proved powerful

for conformal field theories in arbitrary dimensions. The hexagon function boot-

strap [32, 38] is a perturbative version aimed at solving a scattering problem in a

four-dimensional quantum field theory: the planar limit of N = 4 super Yang-Mills

(SYM). While scattering amplitudes in this theory are interesting in their own right,

the methods developed to solve them have often had broader applicability, for example

to computing amplitudes in QCD for scattering at the Large Hadron Collider.

The hexagon function bootstrap exploits the idea that, order by order in perturba-

tion theory, the first nontrivial amplitude in planar N = 4 SYM, the six-point ampli-

tude, “lives” within a relatively small space of functions, which can be parametrized

by a finite set of coefficients. This rigidity means that information from physical

limits, such as when two gluons become collinear, or in a high-energy (Regge) limit,

often suffices to fix the result. In turn this generates new predictions, a fact which

82
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has led to much fruitful interplay with the pentagon operator-product-expansion pro-

gram [48, 49, 53, 57].

The aim of this Letter is to point out that the relevant space of hexagon functions

is far smaller than previously thought. This is due to constraints stemming from

the classic work of Steinmann [65, 66, 67], which restrict the analytic structure of

scattering amplitudes in any quantum field theory. We show that, when combined

with Regge exponentiation and the so-called final-entry condition [64], this restriction

makes it possible to bootstrap the six-gluon amplitude to at least 5 loops without any

external input. Analogous constraints can be exploited for n-particle scattering with

n > 6.

2.2 Hexagon Steinmann functions

We consider the scattering amplitude for six gluons (or other partons) in the planar

limit of N = 4 SYM. A priori, such an amplitude can depend, in four spacetime

dimensions, on 8 Mandelstam invariants. Dual conformal symmetry of this model

restricts the nontrivial dependence to be on 3 cross-ratios [26, 75, 76]

u =
s12s45

s123s345

, v =
s23s56

s234s123

, w =
s34s61

s345s234

, (2.1)

where si...k ≡ (pi+ · · ·+pk)2 are Mandelstam invariants. The same symmetry forces

the four- and five-particle amplitudes to be essentially trivial, which is why we con-

centrate on six particles. It has been conjectured that the amplitude, which is a tran-

scendental function of these three variables, lives in a restricted space of “hexagon”

functions [32]. These are iterated integrals with singularities generated by logarithms

of the nine letters [42]

S = {u, v, w, 1−u, 1−v, 1−w, yu, yv, yw}, (2.2)

where

yu =
1+u−v−w−

√
∆

1+u−v−w+
√

∆
, ∆ = (1−u−v−w)2 − 4uvw,
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and cyclic rotations act as

C : u→ v → w → u, yu → 1/yv → yw → 1/yu, (2.3)

while parity acts as ui → ui, yi → 1/yi. These letters arise naturally as projectively

invariant combinations of momentum twistors [81], variables that make manifest the

dual conformal symmetry. Multiple zeta values ζq1,q2,... with positive indices qi also

appear.

Branch cuts for massless scattering amplitudes start only at vanishing values of

the Mandelstam invariants, si...k = 0. Consequently, there is a canonical Riemann

sheet on which the amplitude is analytic in the positive octant u, v, w > 0. This

constraint is included in the definition of hexagon functions. It implies a “first-entry”

condition [46]: discontinuities associated with the letters (1−u) = 0 or yu = 0 are not

visible in the canonical Riemann sheet; however, they can be exposed after analytic

continuation. The physical interpretation of the restriction (2.2) is that, even after

analytic continuation along an arbitrary complex path, the only possible branch points

remain those characterized by S.

The focus of this Letter is the Steinmann relations, which state that an amplitude

A can have no double discontinuities in overlapping channels [65, 66, 67]. Using the

correspondence between discontinuities and cut diagrams via the Cutkosky rules [130],

overlapping channels correspond to cut lines that intersect. Thus for example the

channels s345 and s234 overlap, which leads, schematically, to:

Steinmann relation: Discs345 (Discs234A) = 0, (2.4)

illustrated in figure 2.1.

We focus on three-particle invariants sijk because these can change sign along

fairly generic codimension-1 surfaces in the space of external momenta. The relation

can therefore be probed with real external momenta. (In contrast, massless thresholds

in two-particle invariants sij occur at phase space boundaries where other invariants

may change sign; it is unclear to the authors how to extract putative constraints from

these thresholds beyond the Regge limit [58].) For functions of the cross-ratios u, v, w,



CHAPTER 2. THE COMPLETE AMPLITUDE AT FIVE LOOPS 85

1

2

3 4

5

6

vs.

1

2

3 4

5

6

Figure 2.1: Illustration of the channels s345 and s234 for 3 → 3 kinematics. The
discontinuity in one channel should not know about the discontinuity in the other
channel.

the discontinuity with respect to s234 can be computed by rotating v, w by a common

phase, as follows from eq. (2.1). The general Steinmann relation (2.4) thus implies

— for the special case of dual-conformally invariant functions — that the following

combination is analytic in a neighborhood of r =∞:

0 = Discr=∞[A(ru, veiπ, reiπ))− A(ru, ve−iπ, re−iπ)],

(2.5)

where u, v > 0 (and r > 0 before taking the discontinuity). The reason why r = ∞
appears is that the three-particle invariants appear in the denominators of eq. (2.1).

Focusing on the region where all three cross-ratios are large and combining this

condition with its permutations, we obtain an equivalent but more practical state-

ment: the amplitude must be expressible as a sum of terms with singularities in only

one three-particle channel:

A =
∑
k

[
auk logk

( u

vw

)
+ avk logk

( v

wu

)
+ awk logk

( w
uv

)]
, (2.6)

with the au,v,wk analytic around u = v = w =∞.
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2.3 The Steinmann basis to weight 4

A complete basis of 88 hexagon functions at transcendental weight 4 was originally

constructed in ref. [33]. The Steinmann relations imply that only a subspace is phys-

ically relevant, a subspace sufficiently small that it can be described in this Letter.

We begin with weight 1, where the first entry condition allows only elementary loga-

rithms: log u, log v, logw. To build the higher weight basis, we use the fact that all

derivatives of a Steinmann function also obey the Steinmann relations.

The derivative of a weight-k hexagon function F has the form [34]

dF =
9∑
i=1

F i d lnSi , (2.7)

where F i are weight-(k−1) hexagon functions and Si ∈ S in eq. (2.2). We thus make

an ansatz (2.7) for the derivatives of F where the F i are Steinmann functions. For the

ansatz to represent a function, the partial derivatives must commute (“integrability

condition”). Once this condition is solved, the analyticity and Steinmann properties

simplify dramatically. It suffices to impose the following constraints, which serve only

to fix a few coefficients of zeta-values of weight (k−1) and (k−2):

• F 1−u, F yv and F yw must vanish at (u, v, w) = (1, 0, 0) [34, 38].

• The s234-discontinuity of F u + F 1−u + Fw + F 1−w must vanish at (u, v, w) =

(+∞, 0,−∞).

Cyclic rotations of these conditions are implied. The first condition enforces the

absence of unwanted discontinuities [46] at function level; the second condition does

the same for the Steinmann condition (2.5).

Following this procedure, at weight 2 we find 7 elements: the constant ζ2 and two

cyclic orbits containing

Ku
1,1 ≡ Li2(1−1/u), Lu2 ≡ 1

2

[
log2(u) + log2(v/w)

]
.

(2.8)
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The naming convention will be explained shortly. Already, the Steinmann relations’

impact is noticeable: without it there would be three additional functions, log2 u,

log2 v and log2w, which do not satisfy eq. (2.6).

At weight 3, the basis contains 17 elements, the 5 cyclic 3-orbits of

Ku
3 ≡ 1

3!
log3(1/u) + 1

2
log(1/u) log2(v/w),

Ku
2,1 ≡ Li2(1/u) log(1/u)− 2Li3(1/u) + 2ζ3,

Ku
1,2 ≡ Ku

1,1 log(v/w), Ku
1,1,1 ≡ −Li3(1−1/u),

ζ2K
u
1 ≡ ζ2 log(1/u), (2.9)

the constant ζ3, and a single parity-odd element: the six-dimensional scalar hexagon

integral Φ̃6 [131, 132, 34].

At this stage we see that the functions in eqs. (2.8)-(2.9) depend nontrivially

on only u, apart from simple powers of log(v/w). We can construct 3× 2k−1 similar

elements at weight k, as follows. We start from “seeds” which trivially satisfy eq. (2.6):

Ku
k (u, v

w
) ≡ 1

2 · k!

[
logk

( v

uw

)
− logk

(uv
w

)]
,

Luk(u,
v
w

) ≡ 1

2 · k!

[
logk

( v

uw

)
+ logk

(uv
w

)]
.

(2.10)

We then construct nontrivial functions as a simple generalization of harmonic poly-

logarithms (HPLs) [115] with argument x = 1/u, by integrating the seeds from the

base point u = ∞. Using this base point automatically maintains the Steinmann

relations. The constraint of analyticity for u > 0 is enforced by recursively removing

values at u = 1:

Ku
i,...(u,

v
w

) ≡
∑
j

cjL
u
j +

∫ 1/u

0

dx

1− x
logi−1( 1

ux
)

(i− 1)!
Ku
...(

1
x
, v
w

), (2.11)

where the zeta-valued coefficients cj are chosen uniquely to make the total vanish

at u = 1. Without the cj, the recursive definition would be identical to that of

HPLs with argument x = 1/u, which makes it straightforward to express the Ku as

combinations of HPLs. At weights 2 and 3, this definition agrees with the examples
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Constraint L = 1 L = 2 L = 3 L = 4 L = 5

0. Functions (10,10) (82,88) (639,761) (5153,6916) (?????,?????)

1. Steinmann (7,7) (37,39) (174,190) (758,839) (3105,3434)

2. Symmetry (3,5) (11,24) (44,106) (174,451) (???,????)

3. Final-entry (2,2) (5,5) (19,12) (72,32) (272,83)

4. Collinear (0,0) (0,0) (1,1) (3,5) (9,15)

5. Regge (0,0) (0,0) (0,0) (0,0) (0,0)

Table 2.1: Free parameters remaining after applying each constraint, for the 6-point
(MHV,NMHV) amplitude at L loops.

given.

Defining Kv, Kw, Lv and Lw as cyclic images of Ku, Lu, the K functions with

positive indices do generate 3 × 2k−1 linearly independent elements. There is one

exception: the three Ku,v,w
k for even weight k are linearly dependent, so for even k we

use Lu,v,wk instead.

At weight 4, the Steinmann basis contains the 8 3-orbits generated by:

Lu4 , K
u
1,3, K

u
2,2, K

u
3,1, K

u
1,1,2, K

u
1,2,1, K

u
2,1,1, K

u
1,1,1,1.

The iterative construction also generates 5 “non-K” functions: 3 parity-even functions

— the integral Ω(2) [33, 34] and its cyclic permutations — plus 2 parity-odd functions.

Ten more functions come from multiplying ζ2, ζ3 and ζ4 by the lower-weight Stein-

mann functions listed earlier. In summary, at weight 4 there are 39 physically relevant

Steinmann functions, to be contrasted with 88 in the original hexagon function space.

This gap increases rapidly with higher weights, as evidenced by the first two lines

of table 2.1, which was generated by implementing the construction iteratively. The

paucity of Steinmann functions is because the space is not a ring: the product of two

Steinmann functions is generically not an allowed function.
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2.4 Application to two loops

Before using the Steinmann basis to help bootstrap the hexagon amplitude, we com-

ment on the subtraction of its infrared divergences. A particularly convenient scheme

for removing infrared divergences in the SYM model is to divide by the so-called BDS

ansatz [31]. This soaks up the dual conformal anomaly, leaving a remainder which

depends only on the cross-ratios u, v, w, and furthermore vanishes in soft and collinear

limits [75, 76].1

However, in order to preserve the Steinmann relation (2.4), it is critical to divide

only by quantities which are free of three-particle discontinuities. This singles out the

so-called BDS-like ansatz [113, 38] R′6:

R′6 ≡Mbare
6 /MBDS−like

6 . (2.12)

In fact, the amplitude is a function of the helicity of all 6 particles, in a way which

can be neatly encoded in so-called R-invariants [29, 81]. In this Letter we thus deal

with bosonic functions E , E and Ẽ which encode all the information and correspond

to suitable components of the MHV and NMHV BDS-like remainders. Schematically,

R′6 ' E ⊕E ⊕ Ẽ. The relations to the more conventional BDS MHV remainder (R6)

and NMHV ratio function (V, Ṽ ), defined for example in ref. [38] (to which we refer

for further details), are:

eR6 ≡ Ee−
1
4

ΓcuspE(1) , V ≡ E/E , Ṽ ≡ Ẽ/E , (2.13)

where 1
4
Γcusp = g2− 2ζ2g

4 + . . . is the cusp anomalous dimension, known exactly as a

function of the coupling g2 ≡ g2YMNc

16π2 [114]. We stress that while E , E and Ẽ obey the

Steinmann relations, R6, V and Ṽ do not: the space of Steinmann functions is not a

ring.

1The reader may object that higher-order poles in ε = (4 −D)/2 in the BDS ansatz mean that
the full amplitude is not determined through O(ε0) by the remainder function alone. However, it
has been proved [133] at next-to-next-to-leading order that the higher-order terms in ε in one-loop
amplitudes are not needed, if one knows the two-loop remainder function to O(ε0). Based on the
universal nature of infrared divergences and their cancellation, we expect the same result to hold to
higher perturbative orders.
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Let us describe a concrete example, the bootstrap of E at two loops. We begin by

applying the following:

1. E is a hexagon Steinmann function

2. E is parity-even and dihedrally symmetric

3. The collinear limit to leading power is universal:

lim
v→0
E = e−

1
4

Γcusp(Lv
2+2ζ2) +O(

√
v lnL−1 v).

In the weight 4 Steinmann space, no linear combination vanishes in all three collinear

limits. Therefore the two-loop MHV amplitude is fully determined by just the above

three conditions! Loop-expanding using E = E (0) + g2E (1) + g4E (2) + . . ., the result at

tree-level is E (0) = 1, at one loop

E (1) = Ku
1,1 +Kv

1,1 +Kw
1,1 , (2.14)

and at two loops

E (2)=(1+C+C2)[Ω(2)−Ku
1,2,1−4Ku

1,1,1,1−ζ2K
u
1,1]+8ζ4 , (2.15)

where the cyclic rotation C is defined in eq. (2.3). This result agrees completely with

refs. [42, 33].

For MHV at higher loops, and for NMHV, we imposed an additional “final-entry”

condition, obtained by considering the action of the Q̄ generator of dual supercon-

formal transformations [64]. The MHV final-entry condition is simply E1−u = −Eu,
plus the cyclic relations. Similarly, the differential of the NMHV BDS-like remainder

is spanned by the 18 elements listed in eq. (3.10) of ref. [38]. These conditions almost

completely determine the higher-loop amplitudes; we need information from only one

more limit.
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2.5 Regge exponentiation and bootstrap

In the multi-Regge limit of 2 → 4 gluon scattering, the four outgoing gluons are

strongly ordered in rapidity. The cross-ratios have the limits u → 1, v, w → 0,

but on an analytically continued Riemann sheet which ensures nontrivial Lorentzian

kinematics. This limit has been thoroughly analyzed for both MHV and NMHV

amplitudes [58, 59, 60, 61, 62, 37]. Amplitudes exponentiate in terms of Fourier-Mellin

variables ν,m which are conjugate to the transverse plane coordinates, schematically:

E(ν,m, vw)
Regge−−−→ Φ(ν,m)×

(
−1/
√
vw
)ω(ν,m)

(2.16)

where the Regge trajectory ω vanishes at tree level and Φ is an “impact factor”. Ex-

ponentiation implies that terms with log2(vw) or higher powers of the large logarithm

are predicted by the multi-Regge limit at lower loops.

Remarkably, through five loops such terms suffice to fix all remaining parameters

and uniquely determine E , E, and Ẽ! Terms with log(vw) or lower were not needed,

but rather led to predictions for the next loop order, enabling a pure bootstrap with

no external information. The constraints are summarized in table 2.1.

With E , E, and Ẽ fixed through five loops we can evaluate them numerically on

a variety of lines in cross-ratio space. Figure 2.2 shows the remainder function on

the line (u, u, u). We have also used “hedgehog” variables [97] to generate multiple

polylog representations of these functions in one bulk region [134].

Past implementations of the hexagon function bootstrap employed a variety of

other constraints, which the Steinmann relations render unnecessary, or relegate to

cross checks. For NMHV, the representation in terms of R-invariants has poles at

kinematically spurious points that must cancel between different permutations of E

and Ẽ [33]. Now, after imposing the collinear constraint in table 2.1, the spurious

poles cancel automatically. Similarly, for MHV and NMHV the Q̄ equation predicts

not only final entries, but next-to-final entries; however, again these constraints are

satisfied automatically.

For both MHV and NMHV, the pentagon operator product expansion (POPE) [48,

49, 53, 57] served previously as a powerful bootstrap constraint [34, 37]. Now Regge
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Figure 2.2: The remainder function R6, evaluated at ratios of successive loop orders
L on the line u = v = w. The spike is an artifact due to R(L)

6 (u, u, u) crossing zero
very close to u = 1/3 at each loop order.

exponentiation is enough to obtain a unique result. Nonetheless, we do check our

results against the POPE predictions. We find complete agreement through five

loops, to each order in the OPE we have computed (T 1 and T 2F 2 for MHV [48, 121,

50, 122, 109, 135] and T 1 for the (6134) component of NMHV [49, 121]).

In [37], two of the authors conjectured a relationship between the L-loop MHV

amplitude and the (L−1)-loop NMHV amplitude. Our five-loop MHV amplitude

allows us to verify this relation at one more loop order. Expressed in terms of the

functions defined in eq. (2.13), it reads (using the coproduct notation [37])

g2 (2E−E) = Eyu,yu+Eyw,yw−3Eyv ,yv−Ev,v−E1−v,v

+2(Eyu,yv+Eyw,yv)−Eyu,yw−Eyw,yu . (2.17)

This relation calls out for explanation.

Remarkably, the space of Steinmann functions appears to be “not much larger”

than required to contain E , E and Ẽ, if we include all derivatives of higher loop

amplitudes. Up to at least weight 6, the complete space is needed, apart from certain

unexpected restrictions on zeta values. For example, the weight 2 functions found

by taking 8 derivatives of E (5), E(5) and Ẽ(5) span a 6 dimensional subspace of the 7

dimensional Steinmann space: Ku
1,1, Lu2 + 2ζ2, plus cyclic; ζ2 is not an independent

element. In an ancillary file, we provide a coproduct representation of this trimmed
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basis, which suffices to describe E , E and Ẽ through five loops. We also give HPL

expressions for these functions on the lines (1, v, v) and (u, 1, 1) [134].

2.6 Conclusion

Leveraging the power of the Steinmann relations, we have bootstrapped six-point

scattering amplitudes in planar N = 4 super Yang-Mills through five loops. Loop by

loop, these amplitudes are dramatically simpler than one would expect. Crucially,

we did not need any external input: all constraints imposed are either general or are

fixed by behavior at lower loops. Yet higher loops, or even finite coupling, may well

be accessible too.

Unlike other techniques used to calculate in N = 4 SYM, the Steinmann relations

apply in general quantum field theories. Their strength here suggests that these

often-neglected constraints may have broader applicability, perhaps making similar

bootstrap techniques viable in other theories, such as QCD.



Chapter 3

Multi-Loop Positivity of the

Amplitude

3.1 Introduction

There has been substantial progress from many different perspectives in understand-

ing and calculating perturbative scattering amplitudes in N = 4 super-Yang-Mills

theory [15, 16], particularly in the planar limit of a large number of colors. The

standard Feynman diagram expansion, as well as more modern methods such as gen-

eralized unitarity, are based on the expansion of the (multi)loop amplitude in terms

of different sets of building blocks. These pieces are then individually integrated over

the loop momenta, and the final amplitude corresponds to the sum over all terms.

In recent years, it was shown that both the total integrand and the final amplitudes

enjoy some extraordinary properties. As it turns out, there is a completely different

way to think about each quantity, holistically and without reference to any expansion

in building blocks.

For the integrand there exists a complete geometric reformulation in terms of the

Amplituhedron, which is a generalization of projective polygons into Grassmanni-

ans [13, 14] (see also refs. [136, 137, 138, 139, 140, 141] for recent progress). The idea

is to rewrite the kinematical and helicity variables in terms of bosonized momentum

twistors Z serving as vertices of a geometric object – the Amplituhedron – whose

94
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volume is equal to the integrand of scattering amplitudes in planar N = 4 SYM. The

definition of this space involves a generalization of the positive Grassmannian that

appears in the context of on-shell diagrams [11].

On the other hand, there has also been great progress in understanding the space

of transcendental functions that contains the final amplitudes. In many cases these

functions are iterated integrals [87], also known as multiple polylogarithms [90, 91].

The weight, or number of integrations, is 2` for perturbative amplitudes at loop

order `. While the origin of these functions comes from the “dlog” structure of the

integrand, the precise connection is still not understood in general. For example,

there may be obstructions to carrying out the dlog integrations in terms of iterated

integrals. The two-loop equal-mass sunrise integral is in this elliptic class [142, 143],

as is an integral entering the N3MHV 10-point scattering amplitude in planar N = 4

SYM [144]. However, it has been argued that MHV and NMHV amplitudes in this

theory should be expressible solely in terms of multiple polylogarithms [11, 85, 86].

A function composed of multiple polylogarithms has a symbol [42], which is con-

structed essentially by repeated differentiation of the function. The alphabet, or set

of letters appearing in the symbol, characterizes the function space. These letters

seem to be closely related to cluster algebras [39, 40]. Once one knows the alphabet,

as well as where the branch cuts are located, one can construct the function space

iteratively. The number of such functions turns out to be much smaller than the

number of independent physical constraints on them, allowing for a unique determi-

nation of the amplitude as a whole without ever inspecting the precise integrand or

its decomposition into building blocks. This program has been carried out for the

six-point amplitude through five loops [32, 33, 37, 35, 38, 68], and for the symbol of

the seven-point amplitude through three loops [41].

Given this excellent progress in understanding both the integrand and amplitude

holistically, it would be great to bring them together. It is not clear yet how the

properties of the Amplituhedron extend from the integrand to the final amplitudes.

However, there is an extension of the Amplituhedron conjecture, namely the existence

of the dual Amplituhedron, which we will test indirectly in this paper. In ref. [69] it

was argued that if the original Amplituhedron can be reformulated into a dual picture
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where the integrand is directly a volume of this space, then this function should be

positive when evaluated inside the Amplituhedron. This positivity property has been

verified explicitly for various integrands up to high loop order. It also turns out to

be true for the integrand of the ratio function – a ratio of amplitudes with different

helicities which is free of infrared (IR) divergences.

It was then conjectured that this positivity property might also hold for the final

transcendental function, rather than just the integrand. In general, the transcendental

functions that determine scattering amplitudes are complex-valued. However, there

exists a Euclidean region in which the amplitude is real-valued, and thus it is possible

to define positivity consistently. For the six-point amplitude, the cross-ratios u, v, w

are all real and positive in this Euclidean region. The conjecture is that the quantities

under consideration are positive in a subregion of this Euclidean region that is selected

by the properties of the Amplituhedron.

This conjecture was explicitly verified at one loop. In this paper we will check

the statement through five loops for the NMHV case, providing strong evidence that

the conjecture is indeed true. In addition, we show that the same is true for the

IR-finite BDS-like normalized MHV amplitude. There are many ways to subtract IR

divergences but the positivity conjecture more or less singles out this function. The

positivity property is very non-trivial and we do not know how to prove it in full

generality even at one loop, not to mention higher-loop examples where our analytic

understanding is even more limited.

To show a simple example, let us consider a function of positive variables u,w > 0,

F (u,w) = Li2(1− u) + Li2(1− w) + log u logw − ζ2 . (3.1)

This function will appear later in this paper in a particular limit of the NMHV one-

loop ratio function, as well as of the BDS-like remainder function. In the first case the

Amplituhedron picture dictates that F (u,w) < 0 whenever u + w > 1, while in the

second case it requires F (u,w) > 0 for u+w < 1. Even in this simple case positivity

is not manifest, i.e. the answer cannot be decomposed into a sum of obviously positive

terms (although the positivity proof here is simple, see section 3.3.2). Note that for
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w = 1− u we get the famous dilogarithm identity which sets F (u, 1− u) = 0, which

also represents a physical vanishing condition on the ratio function in a collinear limit.

In general, positivity relies not only on the sign of transcendental functions like

F (u,w), but also on the sign of rational prefactors. For generic kinematics neither

has uniform sign on its own. Nevertheless, the sign ambiguities of these individual

parts conspire to produce quantities with uniform sign. The statement is even more

interesting because not only the bosonic external data, but also the fermionic vari-

ables, play a crucial role in establishing this surprising and remarkable property. In

the rest of this paper we will flesh out this statement, showcasing numerous regions

in which positivity holds.

In this paper, whenever we refer to positivity, we mean that perturbative coef-

ficients in the loop expansion of a given quantity are positive when the expansion

parameter is the negative of the ’t Hooft coupling, −λ = −g2Nc. Or, in terms of

a standard, positive ’t Hooft coupling (or multiple thereof), we will be testing for

strict sign-alternation with loop order. That is, one-loop terms should be negative,

two-loop terms positive, three-loop terms negative, and so on. From the point of view

of the (dual) Amplituhedron, the overall sign at a given loop order is not dictated;

what is really expected is a uniform sign as a function of the kinematics. However, we

know empirically that the sign alternates for low loop orders, and we also expect it to

alternate at very high loop orders. The reason for the latter statement is that planar

N = 4 SYM has no renormalons and no instantons, and so it is expected to have

a finite radius of convergence of the perturbation theory. For some quantities, the

radius of convergence is known: it is λc = π2 for the light-like cusp anomalous dimen-

sion [114], and λc ≈ 14.7 for the Bremsstrahlung function, which is another limit of

the velocity-dependent cusp anomalous dimension [145, 146]. These quantities have

no singularity on the positive λ axis. Hence their finite radius of convergence is con-

trolled by a singularity for negative λ. This fact implies sign alternation at very large

perturbative orders, with successive perturbative coefficients increasing by a factor

that approaches −1/λc.

This paper is organized as follows. We begin in section 3.2 by describing the
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regions in which the Amplituhedron construction leads to positive tree-level ampli-

tudes; these regions are where we wish to test the corresponding loop amplitudes

for positivity. Section 3.3 then presents some simple one-loop examples in which this

positivity holds for the NMHV ratio function. We also define the double-scaling limit,

in which certain monotonicity properties of the amplitude are manifest. In section

3.4 we explore this limit at higher loops, both analytically on certain special lines and

numerically throughout the full region. We go on in section 3.5 to present numerical

evidence for positivity outside of special limits, in the full space of cross-ratios selected

by the Amplituhedron construction. Section 3.6 discusses the positivity properties of

the MHV amplitude, and we conclude in section 3.7.

Appendix E proves positivity and monotonicity for a quantity, c
(2)
1 (u,w), relevant

at two loops. We also attach ancillary files containing expressions for the quantities

we consider on special lines threading the kinematic space.

3.2 From the Amplituhedron to positive kinemat-

ics

In this section we review the essential ingredients of the Amplituhedron construction

of the multi-loop integrand for planar N = 4 SYM, and show how this setup dictates

where we should inspect the multi-loop six-point amplitudes for positivity.

The Amplituhedron space [13, 14] Y is implicitly labeled by n, k, and `, where n is

the number of external legs, k is the number of negative gluon helicities minus 2, and

` is the loop order. The formal definition of Y is given by the matrix multiplication

Y = C · Z, (3.2)

where C is a (k+2`)×n matrix with certain positivity properties, and Z is an n×(4+k)

matrix with all (4+k)×(4+k) minors positive. The matrix Z corresponds to external

data (momentum twistors and Grassmann variables); Z only depends on k while the

C matrix also depends on `. The loop integrand Ω is then a form which behaves

logarithmically on the boundaries of Y .
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The conjecture made in ref. [69] is that the form Ω is positive when the measure

is stripped off and it is evaluated inside the Amplituhedron, i.e. for Y satisfying

eq. (3.2) with positive C and Z matrices. This property does not follow from the

original Amplituhedron proposal. Rather it would provide evidence for the existence

of a “dual Amplituhedron” of which Ω is literally the volume. This space has not

been found yet, but the fact that Ω is observed to be positive is very encouraging.

Let us now consider the final amplitude rather than the integrand. It has a very

complicated branch-cut structure, but no dependence on the loop momenta. If an

Amplituhedron-like construction exists for the final amplitude then it is natural to

impose the same positivity constraints, but now with ` = 0, i.e.

Y = C · Z, (3.3)

where C is the matrix that appears in the definition of the tree-level Amplituhedron.

The conjecture now is that a properly-defined amplitude must be positive – or rather,

sign-alternating with loop order – if evaluated for Y and Z matrices satisfying the

positivity conditions. We restrict ourselves to our cases of interest, MHV and NMHV

amplitudes (k = 0 and 1), and review what these conditions imply.

3.2.1 MHV positive kinematics

For MHV amplitudes we have k = 0 and l = 0 so there is no C matrix. That is, the

Y space in eq. (3.3) becomes trivial and the only conditions come from the positivity

of the (4 × n) matrix Z. In this case the column vectors composing Z are directly

the 4-dimensional momentum twistors Za and we have to keep them positive – in the

sense that the following (4× 4) minors of the Z matrix should be positive:

Z =


↑ ↑ ↑ . . . ↑ ↑

Z1 Z2 Z3 . . . Zn−1 Zn

↓ ↓ ↓ . . . ↓ ↓

 with 〈abcd〉 ≡ det(Za, Zb, Zc, Zd) > 0

for a < b < c < d.

(3.4)
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Let us now parametrize the positive Z matrix for n = 6. Using a GL(4) trans-

formation we fix the first four columns to be the unit matrix, and parametrize the

remaining two columns with eight positive parameters xa > 0, yb > 0. One solution

that makes all (4× 4) minors positive is

Z =



1 0 0 0 −x1 −y1 − y2
x1
x2
− y3

x1
x3
− y4

x1
x4

0 1 0 0 x2 y2 + y3
x2
x3

+ y4
x2
x4

0 0 1 0 −x3 −y3 − y4
x3
x4

0 0 0 1 x4 y4


. (3.5)

We can now build three different dual-conformal cross ratios,

u =
〈6123〉〈3456〉
〈6134〉〈2356〉

, v =
〈1234〉〈4561〉
〈1245〉〈3461〉

, w =
〈2345〉〈5612〉
〈2356〉〈4512〉

. (3.6)

We also consider the combinations

ε ≡ 1− u− v − w, ∆ = ε2 − 4uvw. (3.7)

From the positive parametrization (3.5) of the Z matrix we get,

u =
x2

2x
2
3y1y4

PQ
, v =

x3x4y2

P
, w =

x1x2y3

Q
, (3.8)

ε =
x2x3(x2x4y1y3 + x1x3y2y4)

PQ
, ∆ =

x2
2x

2
3(x1x3y2y4 − x2x4y1y3)2

P 2Q2
, (3.9)

where P = x3x4y2 + x2x4y3 + x2x3y4, Q = x2x3y1 + x1x3y2 + x1x2y3. For positive

values of xa, yb the cross ratios u, v, w and ε,∆ are all manifestly positive. These

inequalities combine to define conditions for the MHV positive region,

u, v, w > 0, u+ v + w < 1, (1− u− v − w)2 > 4uvw, (3.10)

which restrict the cross ratios to be relatively close to the origin, in contrast to what

we will find for the NMHV positive region. We refer to this region as Region I (see
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ref. [34] and eq. (3.79) below). The only place that ε can approach zero in Region I,

given the constraint on ∆, is for v → 0, u + w → 1, or cyclic permutations of this

line. In this limit, two gluons become collinear.

Now that we have identified MHV positive kinematics, we would like to conjecture

that a properly-defined IR-finite part of the MHV amplitude is positive for any posi-

tive values xa, yb > 0. However, individual on-shell amplitudes are IR divergent, and

there is not a unique way to obtain a finite quantity by removing the IR divergences.

The original way that IR divergences were removed (while preserving dual conformal

symmetry) was to divide by the BDS ansatz [31]. While this procedure leads to re-

mainder functions with smooth collinear limits [75, 76], it breaks a global analytic

property known as the Steinmann relations [65, 66, 67]. To preserve the Steinmann

relations [68], at six points (or seven points) one can divide by a unique “BDS-like”

ansatz [113, 38]. Yet this procedure sacrifices the vanishing in collinear limits of the

six-point BDS remainder function, and the collinear limits form a boundary of the

positive region (e.g. v → 0, u + w → 1 makes ε and ∆ both vanish). There are also

dual-conformal IR regulators based on the Wilson loop interpretation of the ampli-

tude [48], but they break a dihedral symmetry. In short, there is no unique way to

define an IR finite part of the MHV amplitude, nor one that is clearly optimal. We

will discuss the positivity properties of these various choices in section 3.6.

3.2.2 NMHV positive kinematics

In contrast, when we also consider the NMHV amplitude there is a natural way to form

an IR finite quantity, the ratio function, which is defined (at six points) by dividing

the NMHV super-amplitude by the MHV super-amplitude [29]. IR divergences are

helicity-independent and cancel between numerator and denominator. We will inspect

the ratio function for NMHV positive kinematics.

For the NMHV case, k = 1, the Amplituhedron lives in a projective space P4. It

is defined as all points Y that are linear combinations of Za with positive coefficients,

Y = C · Z = c1Z1 + c2Z2 + · · ·+ cnZn with ca > 0, (3.11)



CHAPTER 3. MULTI-LOOP POSITIVITY OF THE AMPLITUDE 102

where the Za are now five-dimensional. They can be written as

Za =

 za

φ · ηa

 , (3.12)

where the first four components are momentum twistor variables za associated with

each particle label, a = 1, 2, . . . , n for n-point scattering. The fifth (last) component

is the contraction φ ·ηa = εIJφ
IηJa , I, J = 1, 2, 3, 4, of an auxiliary Grassmann variable

φI with the standard Grassmann variable ηJa of on-shell superspace [77, 78, 29, 80].

These bosonic variables then carry all information about the external particles in the

scattering. The bosonized momentum twistors are projective variables, defined up to

rescaling Za → tZa.

Positivity conditions are then imposed directly on the five-dimensional Za rather

than the four-dimensional part za. The (n× 5)-dimensional matrix Z has all (5× 5)

minors positive; that is,

〈abcde〉 ≡ det(Za, Zb, Zc, Zd, Ze) > 0 for a < b < c < d < e. (3.13)

Geometrically, the Za form a convex configuration in real projective space P4.

In addition to five-brackets containing five Za, we can also have five-brackets

including the point Y in eq. (3.11), which lies inside the Amplituhedron. The Y -

containing five-brackets are given by,

〈Y abcd〉 ≡ det(Y, Za, Zb, Zc, Zd). (3.14)

A subset of these five-brackets is positive when Y is in the Amplituhedron, specifically

those with two pairs of consecutive indices: 〈Y a a+1 b b+1〉 > 0 for all a, b. The

three-planes (Za Za+1 Zb Zb+1) are boundaries of the Amplituhedron. The condition

〈Y a a+1 b b+1〉 > 0 puts the point Y on the correct side of the boundary, inside the

Amplituhedron. From a physics perspective, the term 〈Y a a+1 b b+1〉 ∼ sa+1...b ≡
(pa+1 + · · ·+ pb)

2 corresponds to a factorization pole of the tree-level amplitude.

For the six-point case, we redefine the three cross ratios defined in eq. (3.6) by
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inserting Y into all the four-brackets to make them five-brackets,

u =
〈Y 6123〉〈Y 3456〉
〈Y 6134〉〈Y 2356〉

, v =
〈Y 1234〉〈Y 4561〉
〈Y 1245〉〈Y 3461〉

, w =
〈Y 2345〉〈Y 5612〉
〈Y 2356〉〈Y 4512〉

. (3.15)

The positive parametrization is now much simpler than in the MHV case because the

matrix Z is (6× 5) rather than (6× 4). A natural parametrization of Z in terms of

five positive parameters xa > 0 is,

Z =



1 0 0 0 0 x1

0 1 0 0 0 −x2

0 0 1 0 0 x3

0 0 0 1 0 −x4

0 0 0 0 1 x5


〈12345〉 = 1, 〈23456〉 = x1,

〈13456〉 = x2, 〈12456〉 = x3,

〈12356〉 = x4, 〈12346〉 = x5.

(3.16)

Using this parametrization and Y = C ·Z from eq. (3.11), we can compute all
(

6
2

)
= 15

five-brackets 〈Y abcd〉:

〈Y 1234〉 = c5x6 + c6x5, 〈Y 1235〉 = c6x4 − c4x6, 〈Y 6123〉 = c4x5 + c5x4,

〈Y 1245〉 = c3x6 + c6x3, 〈Y 1246〉 = c3x5 − c5x3, 〈Y 1256〉 = c3x4 + c4x3,

〈Y 1345〉 = c6x2 − c2x6, 〈Y 3461〉 = c2x5 + c5x2, 〈Y 1356〉 = c4x2 − c2x4,

〈Y 4561〉 = c2x3 + c3x2, 〈Y 2345〉 = c1x6 + c6x1, 〈Y 2346〉 = c1x5 − c5x1,

〈Y 2356〉 = c1x4 + c4x1, 〈Y 2456〉 = c1x3 − c3x1, 〈Y 3456〉 = c1x2 + c2x1, (3.17)

where x6 ≡ 1 is added to make the expressions more uniform.

From eq. (3.15), the cross ratios are now

u =
(c1x2 + c2x1)(c4x5 + c5x4)

(c2x5 + c5x2)(c1x4 + c4x1)
, v =

(c2x3 + c3x2)(c5x6 + c6x5)

(c2x5 + c5x2)(c3x6 + c6x3)
,

w =
(c1x6 + c6x1)(c3x4 + c4x3)

(c1x4 + c4x1)(c3x6 + c6x3)
. (3.18)

As in the MHV case, the cross ratios are all positive.
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Denoting W = (c1x4 + c4x1)(c2x5 + c5x2)(c3x6 + c6x3), we get for the quantities ε

and ∆ defined in eq. (3.7),

ε = −P1(xa, cb)

W
< 0, ∆ =

[P2(xa, cb)]
2

W 2
> 0, (3.19)

where the Pj(xa, cb) are polynomials in xa, cb with positive coefficients. Notice that

the sign condition on ε has flipped from the MHV case, pushing the cross ratios away

from the origin.

The NMHV amplitude also contains R-invariants, defined as the following function

of momentum twistors za and Grassmann variables ηa:

R[a b c d e] =
(ηa〈bcde〉+ ηb〈cdea〉+ ηc〈deab〉+ ηd〈eabc〉+ ηe〈abcd〉)4

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (3.20)

In the bosonized language, the R-invariants become functions of five-brackets, pro-

jective in all variables, which we denote as

[a b c d e] =
〈Y d4Y 〉〈abcde〉4

〈Y abcd〉〈Y bcde〉〈Y cdea〉〈Y deab〉〈Y eabc〉
, (3.21)

where 〈Y d4Y 〉 is the measure in Y . For the six-point case, it is convenient to label

this object by the missing index, and to omit the measure, defining

(1) ≡ [23456]

〈Y d4Y 〉
=

〈23456〉4

〈Y 2345〉〈Y 2346〉〈Y 2456〉〈Y 2356〉〈Y 3456〉
(3.22)

and similarly for (2) = [34561], (3) = [45612], etc.

The form for the tree-level NMHV Amplituhedron is then

Ωtree
6,1 = (1) + (3) + (5) = (2) + (4) + (6). (3.23)

This is also the bosonized version of the tree-level NMHV ratio function Ptree
6,1 , see

section 3.2.3.

Using the positive parametrization (3.11), we can rewrite the bosonizedR-invariants
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as

(1) =
x4

1

(c1x6 + c6x1)(c1x2 + c2x1)(c1x3 − c3x1)(c1x4 + c4x1)(c1x5 − c5x1)
,

(2) =
x4

2

(c1x2 + c2x1)(c2x3 + c3x2)(c2x4 − c4x2)(c2x5 + c5x2)(c2x6 − c6x2)
,

(3) =
x4

3

(c2x3 + c3x2)(c3x4 + c4x3)(c3x5 − c5x3)(c3x6 + c6x3)(c3x1 − c1x3)
,

(4) =
x4

4

(c3x4 + c4x3)(c4x5 + c5x4)(c4x6 − c6x4)(c1x4 + c4x1)(c4x2 − c2x4)
,

(5) =
x4

5

(c4x5 + c5x4)(c5x6 + c6x5)(c1x5 − c5x1)(c2x5 + c5x2)(c3x5 − c5x3)
,

(6) =
x4

6

(c5x6 + c6x5)(c1x6 + c6x1)(c2x6 − c6x2)(c3x6 + c6x3)(c4x6 − c6x4)
. (3.24)

Five-brackets corresponding to spurious poles can be identified in eq. (3.17) as the

expressions containing minus signs, while those corresponding to physical poles are

manifestly positive. Each R-invariant (a) contains two spurious poles. For example,

(1) has 〈Y 2346〉 and 〈Y 2456〉. The spurious poles do not have a fixed sign for all

cb, xa > 0, e.g. 〈Y 2346〉 = c1x5−c5x1. Therefore, the invariant (1) also does not have

a fixed sign and it is not a manifestly positive object, and similarly for the other (a).

Only in the sum (3.23) do these poles cancel, so that Ωtree
6,1 can be positive in the full

positive region.

In fact, we can write the tree amplitude in the form,

Ωtree
6,1 =

N (xa, cb)∏
|j−k|=1 or 3

(cjxk + ckxj)
, (3.25)

where N (xa, cb) is a polynomial in xa, cb with all positive coefficients [69].



CHAPTER 3. MULTI-LOOP POSITIVITY OF THE AMPLITUDE 106

3.2.3 The ratio function

Scattering amplitudes of massless particles suffer from IR divergences from both soft

and collinear virtual exchange. It is necessary to introduce a regulator to get a well-

defined answer. In the planar theory, for gauge group SU(Nc) with Nc →∞, the IR

divergences exponentiate in a relatively simple fashion. In dimensional regularization

with D = 4 − 2ε, the poles in ε in planar N = 4 SYM amplitudes are captured by

the BDS ansatz [31],

Mn,k =Mtree
n,k · exp

[
∞∑
`=1

a`
(
f (`)(ε) · A1−loop

n,0 (`ε) + finite
)]

, (3.26)

where a = g2Nc/(8π
2) is the ’t Hooft coupling, f (`)(ε) = f

(`)
0 + f

(`)
1 ε+ f

(`)
2 ε2 for some

constants f
(`)
k , and A1−loop

n,0 (ε) is the regulated one-loop MHV amplitude M1−loop
n,0 (ε)

divided by the tree-level amplitude Mtree
n,0 .

In the MHV case, k = 0, the finite part in the exponential in eq. (3.26) is called

the remainder function R
(`)
n ,

Mn,0 =Mtree
n,0 · exp

[
∞∑
`=1

a`
(
f (`)(ε) · A1−loop

n,0 (`ε) +R(`)
n

)]
≡MBDS

n,0 (ε) · exp[Rn] , (3.27)

and it is dual conformally invariant. However, we can still move finite, dual confor-

mally invariant terms between the first and second terms in this expression. Corre-

spondingly, there are a few possible different definitions of the remainder function.

In section 3.6 we will discuss the possibilities in more detail, and describe one choice

which appears to satisfy MHV positivity properties.

There is a cleaner and less ambiguous way to define an IR-finite object in the

context of scattering amplitudes, simply by taking a ratio of two amplitudes with

different helicities [29]. Because the IR divergences (3.26) are universal, one can

divide any amplitude Mn,k by the MHV amplitude Mn,0 and get an IR finite ratio

function Pn,k. Expanding the ratio in the coupling constant a, we define the loop



CHAPTER 3. MULTI-LOOP POSITIVITY OF THE AMPLITUDE 107

expansion coefficients of the ratio function as,

Pn,k =
Mn,k

Mn,0

= Ptree
n,k + a · P1−loop

n,k + a2 · P2−loop
n,k + . . . , (3.28)

while those of the amplitude normalized by the MHV tree super-amplitude (an IR

divergent quantity) are denoted by

An,k =
Mn,k

Mtree
n,0

= Ptree
n,k + a · A1−loop

n,k + a2 · A2−loop
n,k + . . . . (3.29)

The two sets of expansion coefficients are related by,

P1−loop
n,k = A1−loop

n,k − Ptree
n,k · A

1−loop
n,0 ,

P2−loop
n,k = A2−loop

n,k − Ptree
n,k · A

2−loop
n,0 − P1−loop

n,k · A1−loop
n,0 , (3.30)

and so on.

The ratio function P`−loop
n,k corresponds to a linear combination of products of

amplitudes with different signs. Therefore, it would be quite surprising if it had any

positivity properties. However, numerical checks performed in ref. [69] for the one-

loop NMHV n-point amplitude for n ≤ 12, and for the one-loop N2MHV amplitude

for n ≤ 9 show that this is indeed true!

Let us now focus on the six-point case in more detail. As was pointed out in

ref. [29], the ratio function can be expressed in terms of two transcendental functions,

V (u, v, w) and Ṽ (yu, yv, yw),

P6,1 =
1

2

(
[(1) + (4)]V (u, v, w) + [(2) + (5)]V (v, w, u) + [(3) + (6)]V (w, u, v)

+ [(1)− (4)]Ṽ (yu, yv, yw)− [(2)− (5)]Ṽ (yv, yw, yu) + [(3)− (6)]Ṽ (yw, yu, yv)
)
,

(3.31)

where the cross ratios u, v, w are written in terms of our bosonized variables in
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eq. (3.15), and the extended cross ratios yu, yv, yw [33] are also bosonized:

yu =
〈Y 1345〉〈Y 2456〉〈Y 1236〉
〈Y 1235〉〈Y 3456〉〈Y 1246〉

, yv =
〈Y 1235〉〈Y 2346〉〈Y 1456〉
〈Y 1234〉〈Y 2456〉〈Y 1356〉

,

yw =
〈Y 2345〉〈Y 1356〉〈Y 1246〉
〈Y 1345〉〈Y 2346〉〈Y 1256〉

. (3.32)

The function V is even under a parity symmetry that inverts yi ↔ 1/yi, and leaves

u, v, w invariant. The function Ṽ is parity-odd, changing sign under this inversion.

For this reason, it is better to think of Ṽ as a function of yu, yv, yw rather than u, v, w.

Note that the extended cross ratios do not have any positivity properties due to

the presence of spurious poles. Under a cyclic shift Za → Za+1 they transform as

yu →
1

yv
, yv →

1

yw
, yw →

1

yu
, (3.33)

and the standard cross ratios transform as u → v, v → w, w → u. The ratio

function is symmetric under both cyclic shifts and dihedral flips. The combined

symmetry group is D6, although acting on the cross ratios u, v, w it reduces to S3,

i.e. all permutations of u, v, w. The individual functions V and Ṽ are (anti)symmetric

under a Z2 subgroup of S3 that leaves v fixed:

V (u, v, w) = V (w, v, u), Ṽ (yu, yv, yw) = −Ṽ (yw, yv, yu). (3.34)

The transcendental functions V and Ṽ have a Euclidean sheet on which they are

real, when the cross ratios lie in the positive octant u, v, w > 0. We evaluate them

on this sheet, with the cross ratios and R-invariants further restricted by the positive

parametrization cb, xa > 0. (In some physical scattering regions V and Ṽ would

acquire imaginary parts, which would make discussing positivity difficult.)
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3.3 One-loop ratio function

At one loop, the parity-odd part vanishes, Ṽ (1) = 0, and the full ratio function can

be written as

2P1−loop
6,1 = [(1) + (4)]V (1)(u, v, w) + [(2) + (5)]V (1)(v, w, u) + [(3) + (6)]V (1)(w, u, v),

(3.35)

where the one-loop function V (1)(u, v, w) is given by

V (1)(u, v, w) =
1

2

[
Li2(1− u) + Li2(1− v) + Li2(1− w)

+ log u log v − log u logw + log v logw − 2ζ2

]
. (3.36)

Our claim is that eq. (3.35) is negative (because the loop order is odd) within the

positive region. Note that the individual pieces in this formula do not have definite

signs, neither the R-invariants (a), nor the function V (1) which has both plus and

minus signs in front of individual terms. Depending on the values of u, v, w, different

terms can dominate.

For some purposes it is convenient to separate out the Li2 part of the expression.

Note that the Li2 part is invariant under S3 permutations, and therefore it multiplies

all R-invariants (a), which can be assembled into the tree-level amplitude,

2P1−loop
6,1 = Ptree

6,1 · [Li2(1− u) + Li2(1− v) + Li2(1− w)− 2ζ2]

+ [(1)− (2) + (3)] log u log v + [(2)− (3) + (4)] log v logw

+ [(3)− (4) + (5)] logw log u , (3.37)

where we have used the identity (1) + (3) + (5) = (2) + (4) + (6). For some purposes

it is more convenient to use eq. (3.35), for others eq. (3.37).

3.3.1 Simple examples of positivity

Let us give a few examples where the overall sign can be easily understood.
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Example 1

Our first case is the point (u, v, w) = (1, 1, 1), which was studied in detail in ref. [69].

To reach this point, we set c3 = c1x3/x1 and c5 = c1x5/x1. This preserves positivity

of cb, xa, and so it is inside the Amplituhedron. Kinematically, it corresponds to

setting 〈Y 2456〉 = 〈Y 2346〉 = 0, which is a spurious boundary of the tree-level

Amplituhedron, so we are not on the true physical boundary. Therefore, the tree-level

term Ptree
6,1 is completely regular and positive here. However, individual R-invariants

(a) do blow up. In order to approach this point, we first set all cross-ratios to be

equal, u = v = w, and then take u→ 1,

P1−loop
6,1 −−−−→

u=v=w

1

2
Ptree

6,1 ·
[
3Li2(1− u) + log2 u− 2ζ2

]
−−→
u=1
−Ptree

6,1 · ζ2 < 0. (3.38)

Thus we obtain the desired negative value. In section 3.5.1 we will study the point

(1, 1, 1) at higher loops.

Example 2

Another interesting case is the point (u, v, w) = (1, 0, 0), which can be reached by

setting c2 = c3 = c4 = 0. Naively, the term log v logw dominates, but there is

a conspiracy of prefactors which makes the situation more complicated. We can

approach this limit by setting c2 → εc2, c3 → εc3, c4 → εc4 and then letting ε → 0.

There are many ways to approach the point (u, v, w) = (1, 0, 0), but this limit always

keeps us in the positive region.

For analyzing the one-loop ratio function in this limit, it is good to use the second

representation (3.37). The relevant combinations of R-invariants behave in this limit

as

Ptree
6,1 =

1

ε2
· x3

c1c5c6(c3x2 + c2x3)(c4x3 + c3x4)
,

(1)− (2) + (3) = − 1

ε2
· x4

c1c5c6(c4x2 − c2x4)(c4x3 + c3x4)
,

(3)− (4) + (5) =
1

ε2
· x2

c1c5c6(c3x2 + c2x3)(c4x2 − c2x4)
. (3.39)
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while the term (2) − (3) + (4) = O(1) is subleading. Combining these limits with

those of the polylog parts, the individual pieces in eq. (3.37) behave like

Ptree
6,1 · (. . . ) =

log ε

ε
· X

c2
1c

2
5c

2
6x2x4(c3x2 + c2x3)(c4x3 + c3x4)

, (3.40)

[(1)− (2) + (3)] · (. . . ) = − log ε

ε
· c1x5 − c5x1

c2
1c

2
5c6x2(c4x3 + c3x4)

, (3.41)

[(3)− (4) + (5)] · (. . . ) =
log ε

ε
· c1x5 − c5x1

c2
1c

2
5c6x4(c3x2 + c2x3)

, (3.42)

where

X = c4c5x2x3(c6x1 + c1x6) + c1c2x3x4(c6x5 + c5x6)

+ c3x2x4(c5c6x1 + c1c6x5 + 2c1c5x6), (3.43)

while the last term is subleading in this limit, [(2)− (3)+(4)] · (. . . ) = O(log2 ε). This

suppression may be counter-intuitive (as that term had the dominant logarithms),

but the rational prefactor is regular in this limit, while the prefactors of other terms

diverge. We see that the terms (3.41) and (3.42) do not have fixed sign, but if we

combine all three pieces together we get

P1−loop
6,1 =

log ε

ε
· Y

2c2
1c

2
5c

2
6x2x4(c3x2 + c2x3)(c4x3 + c3x4)

, (3.44)

where

Y = c5c6x1x4(c3x2 + c2x3) + c1c6x2x5(c4x3 + c3x4)

+ c1c5x6(c4x2x3 + 2c3x2x4 + c2x3x4), (3.45)

which is manifestly negative for ε→ 0 while keeping ca, xb > 0. The negativity of the

final expression requires a conspiracy between the rational prefactors and the polylog

part, as well as between different parts of the answer in eq. (3.37). We can also start

with representation (3.35), but in this case the cancellation is even more complicated.

Individual pieces would also contain logs of ca, xb as prefactors of log ε
ε

. These logs



CHAPTER 3. MULTI-LOOP POSITIVITY OF THE AMPLITUDE 112

would all cancel when taking the sum, leaving us with the rational expression (3.44).

3.3.2 Double-scaling limit

In the previous examples the rational prefactors played a central role in proving

positivity. Let us now discuss an example where positivity relies on a relation between

polylogarithms. Such a case can be found near the boundary 〈Y 1234〉 = 0, which

we can approach by setting c5 = εĉ5, c6 = εĉ6 and taking the limit ε → 0 with ĉ5, ĉ6

fixed. As can be seen from eq. (3.24), the two dominant R-invariants are equal to

each other in this limit,

(5) = (6) =
1

ε
· 1

c1c2c3c4(ĉ6x5 + ĉ5x6)
, (3.46)

while the R-invariants (1), (2), (3) and (4) remain finite. Similarly, the cross ratios

become

u =
c4(c2x1 + c1x2)

c2(c4x1 + c1x4)
, v = O(ε), w =

c1(c4x3 + c3x4)

c3(c4x1 + c1x4)
(3.47)

in this limit.

Thus this limit sends the cross ratio v → 0, but leaves u,w fixed. This limit

has been studied in the context of the operator product expansion (OPE), where it

is referred to as the double-scaling limit and corresponds to contributions with the

maximum number of gluonic flux-tube excitations [46, 51, 109]. While the conven-

tional OPE addresses configurations near the collinear limit v → 0, u + w → 1, the

double-scaling limit allows u and w to be generic.

For NMHV positive kinematics, u and w are not totally generic, because we have

[u+ w]c5,c6→0 = 1 +
c1c4(c2x3 + c3x2)

c2c3(c1x4 + c4x1)
> 1. (3.48)

This turns out to be the only additional constraint; that is, the correct NMHV positive

region within the double-scaling limit is the semi-infinite plane

u > 0, w > 0, u+ w > 1. (3.49)
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In order to show that the entire region (3.49) corresponds to positive kinematics,

we use the fact that the lines u = 1 and w = 1 divide the region (3.49) into four

subregions. Each of the four subregions corresponds to solving eq. (3.47) for two of

the cb, b = 1, 2, 3, 4, in terms of u,w and the remaining cb, xa, in a manifestly positive

manner. There are six possible pairs of cb, but the pairs {c1, c3} and {c2, c4} do not

work. For example, solving eq. (3.47) for c2, c3 gives

c2 =
c1c4x2

uc1x4 + (u− 1)c4x1

, c3 =
c1c4x3

wc4x1 + (w − 1)c1x4

, (3.50)

which is manifestly positive in the subregion u > 1, w > 1. This solution shows that

this entire subregion is covered. The other subregions work in the same way.

Since polylogarithms can generate at most log ε behavior, the one-loop ratio func-

tion in the double-scaling limit becomes dominated by terms involving the singular

(and equal) R-invariants (5) and (6):

P1−loop
6,1

∣∣∣
c5,c6→0

=
1

2ε
· 1

c1c2c3c4(ĉ6x5 + ĉ5x6)
· C(1)(u,w), (3.51)

where

C(1)(u,w) = Li2(1− u) + Li2(1− w) + log u logw − ζ2 . (3.52)

While the rational prefactor in this expression is manifestly positive for all positive

values of the ca, it’s not yet obvious what can be said about the sign of the poly-

logarithmic part C(1)(u,w) in region (3.49). In fact, P1−loop
6,1 |c5,c6→0, and hence also

C(1)(u,w), are required to vanish on the boundary u + w = 1, because this line cor-

responds to a limit in which two adjacent particles become collinear. In general, this

would mean that the six-point ratio function should match onto the five-point ratio

function – but the five-point ratio function receives no loop-level corrections [31]. The

vanishing boundary condition holds to all loop orders. At one loop, it is a trivial dilog

identity, Li2(1− u) = ζ2 − log u log(1− u)− Li2(u).

Given a vanishing boundary condition at the boundary u + w = 1, we can learn

about the sign of the one-loop ratio function throughout the NMHV positive region
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by looking instead at the radial derivative of C(1)(u,w),

(u∂u + w∂w)C(1)(u,w) =
log u

1− u
+

logw

1− w
. (3.53)

This derivative is manifestly negative for all u,w > 0. Also, radial flow can be used

to reach any point (u,w) starting from some point on the boundary, namely the

point ( u
u+w

, w
u+w

). Thus C(1)(u,w) and P1−loop
6,1 |c5,c6→0 must be negative throughout

region (3.49).

3.4 Positivity in the double-scaling limit

We now begin to extend our investigation of positivity from one loop to higher loop

orders. In this section, we focus on the double-scaling limit just discussed in sec-

tion 3.3.2. Because the R-invariants are independent of loop order, the only difference

in going to higher loops is that the transcendental function C(1)(u,w) in eq. (3.52) is

replaced by the sum of the coefficients of the R-invariants (5) and (6), in eq. (3.31)

for P6,1. Up to a factor of 1/2, we denote this sum by C(u, v, w). In terms of the

functions V and Ṽ , it is given by

C(u, v, w) = V (v, w, u) + V (w, u, v) + Ṽ (yv, yw, yu)− Ṽ (yw, yu, yv) . (3.54)

The limit v → 0 with u,w held fixed (or c5, c6 → 0 in the positive parametrization)

acts on the extended cross ratios yi by sending

yu →
1− w
u

, yv →
(1− u− w)2

v(1− u)(1− w)
, yw →

1− u
w

. (3.55)

(Because u, v, w remain stationary under parity, while yu, yv, yw invert, one might

think that one could send the yi variables instead to the reciprocal of the three

values chosen in eq. (3.55). However, this choice is inconsistent with the positive

parametrization (3.32).)

In general, the functions V and Ṽ diverge logarithmically in this limit, because

the amplitude has a physical branch cut at v = 0, where the Mandelstam variables
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s23 and s56 vanish. We therefore parametrize the limiting behavior of C(u, v, w) as

an expansion in powers of log(1/v) as well as loop order,

C(u, v → 0, w) =
∞∑
`=0

`−1∑
n=0

(−a)`c(`)
n (u,w) logn(1/v), (3.56)

up to power-suppressed terms. The upper limit on the sum over n reflects the em-

pirical observation that the leading-logarithmic contribution is log`−1(1/v) at ` loops.

We expect that this observation should have a OPE-based explanation.

The one-loop case studied in the previous section is the only one with no logarith-

mic divergence:

C(1)(u, v → 0, w) = C(1)(u,w) = −c(1)
0 (u,w). (3.57)

The use of (−a) in eq. (3.56) ensures that all the coefficients c
(`)
n (u,w) will be em-

pirically positive, given the overall sign alternation with loop order discussed in the

introduction. The boundary condition discussed in the previous subsection, that the

ratio function vanishes in the collinear limit, tells us that

c(`)
n (u, 1− u) = 0, (3.58)

for all ` and n.

The limiting values (3.55) for the yi imply that the coefficient functions c
(`)
n (u,w)

in eq. (3.56) can be expressed as multiple polylogarithms [90, 91] of weight 2` − n

with symbol letters drawn from the set [37, 109]

SDS = {u,w, 1− u, 1− w, 1− u− w}, (3.59)

and branch cuts only in the letters u and w. This “double-scaling” function space is

a subspace of the 2dHPL function space introduced by Gehrmann and Remiddi [128]

for four-point scattering with one massive leg and three massless legs.

The c
(`)
n (u,w) can be computed from V and Ṽ by expressing them as multiple poly-

logarithms and taking the double scaling limit directly using the replacements (3.55)

for the yi variables. In this process, one can also extract the log(1/v) dependence.
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Alternatively, one can construct the double-scaling function space more abstractly

at first, using the set of relations between derivatives and coproducts implied by the

symbol alphabet SDS. These relations are limiting versions of the coproduct relations

used in the hexagon function bootstrap. Then one can find matching conditions be-

tween these functions and the v → 0 limit of one’s basis of hexagon functions. For

an example of the latter procedure see Appendix D.

In the latter approach, at high loop order it may be preferable to perform interme-

diate steps using the BDS-like normalized MHV and NMHV amplitudes that satisfy

the Steinmann relations, because the space of Steinmann-satisfying hexagon functions

is much smaller [68]. The limiting behavior of the (non-Steinmann) functions V and

Ṽ can then be computed from the limiting values of the Steinmann functions.

In section 3.4.2 we will show plots for the coefficient functions c
(`)
n (u,w) on the

full two-dimensional double-scaling surface (3.49). First, however, we would like to

examine their behavior on three one-dimensional lines that trace through this surface.

3.4.1 Positivity along lines in the double-scaling limit

The space of functions relevant for six-gluon scattering amplitudes simplifies further

in three one-dimensional subspaces of the double-scaling limit, where everything can

be expressed in terms of harmonic polylogarithms (HPLs) of a single variable [115].

On these lines, we can evaluate the ratio function numerically in Mathematica using

the HPL package [147]. Correspondingly, we first explore the behavior of the functions

c
(`)
n (u,w) in these special kinematic regions, before enlarging the scope of our study to

the full double-scaling limit. As we will see later, these lines turn out to capture most

of the interesting information about the ratio function in the double-scaling limit.

The line w = 1

The first simple line in the double-scaling limit corresponds to setting w = 1. This

collapses SDS to the simpler set of letters {u, 1−u}, which implies that the functions

c
(`)
n (u, 1) can be written as a sum of HPLs with argument 1− u. This representation

can be built up through iterative integrations, using the fact that the u derivative of
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Figure 3.1: The coefficient functions c
(`)
n (u, 1) that multiply logn(1/v) in the double-

scaling limit at ` loops. Five loops is shown in blue, four loops in yellow, three loops
in green, two loops in red, and one loop in purple.

a generic hexagon function F collapses to

∂F

∂u

∣∣∣∣
v→0;w=1

=
F u − F yu + 2F yv

u
− F 1−u − F yv + F yw

1− u
(3.60)

along this line. To carry out this integration on a generic hexagon function, one must

also set the integration constant at each weight. This can be done by integrating

from the point (u, v, w) = (1, 1, 1), where the additive constants of hexagon functions

are usually defined, to the point (1, 0, 1) along the line (1, v, 1). Hexagon functions

all collapse to HPLs with argument 1 − v along the line (1, v, 1), so this integration

is also simple [34]. Using this procedure, we have computed the functions c
(`)
n (u, 1)

through five loops, which we plot in figure 3.1. We also provide their HPL expressions

in an ancillary file.

The vanishing of the ratio function along the collinear line u+ w = 1, eq. (3.58),

requires that the c
(`)
n (u, 1) all vanish at the point u = 0. We can also check the
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behavior of these functions as u → ∞, where they reduce to polynomials in log u.

For instance, the coefficient functions c
(`)
0 (u→∞, 1) become

c
(1)
0 (u→∞, 1) =

1

2
log2 u+ 2ζ2 , (3.61)

c
(2)
0 (u→∞, 1) =

1

12
log4 u+

7

4
ζ2 log2 u+

1

2
ζ3 log u+

59

4
ζ4 , (3.62)

c
(3)
0 (u→∞, 1) =

1

80
log6 u+

25

48
ζ2 log4 u+

1

24
ζ3 log3 u+

287

16
ζ4 log2 u

+
7

4
ζ5 log u+

3

2
ζ2

3 +
6303

64
ζ6 , (3.63)

c
(4)
0 (u→∞, 1) =

37

20160
log8 u+

11

96
ζ2 log6 u− 1

480
ζ3 log5 u+

459

64
ζ4 log4 u

−
(

1

2
ζ2ζ3 +

19

48
ζ5

)
log3 u+

(
3

2
ζ2

3 +
108763

768
ζ6

)
log2 u

+

(
381

128
ζ7 −

443

32
ζ4ζ3 −

107

16
ζ5ζ2

)
log u

− 1

4
ζ5,3 +

3299555

4608
ζ8 +

63

4
ζ5ζ3 +

85

16
ζ2

3ζ2 , (3.64)

c
(5)
0 (u→∞, 1) =

13

48384
log10 u+

899

40320
ζ2 log8 u− 7

5760
ζ3 log7 u+

2559

1280
ζ4 log6 u

−
(

223

960
ζ3ζ2 +

71

320
ζ5

)
log5 u+

(
103

192
ζ2

3 +
105113

1536
ζ6

)
log4 u

−
(

1613

96
ζ4ζ3 +

1769

192
ζ2ζ5 +

1913

256
ζ7

)
log3 u

+

(
691

64
ζ2ζ

2
3 +

659

32
ζ5ζ3 −

3

8
ζ5,3 +

21436813

18432
ζ8

)
log2 u

−
(

79

48
ζ3

3 +
60801

256
ζ6ζ3 +

3209

16
ζ4ζ5 +

6913

64
ζ7ζ2 +

66545

1152
ζ9

)
log u

− 101

160
ζ2ζ5,3 −

543

512
ζ7,3 +

10267

128
ζ4ζ

2
3 +

2707

32
ζ2ζ5ζ3

+
1717

16
ζ7ζ3 +

28635

512
ζ2

5 +
592519707

102400
ζ10 , (3.65)

which all approach positive infinity, as expected. More generally, we have checked

that c
(`)
n (u→∞, 1)→ +∞ for all ` ≤ 5 and for all n between 0 and `− 1.

Since v is very small, positivity strictly requires only the leading-log coefficients

c
(`)
`−1(u, 1) to be positive. However, we find a much stronger result: The coefficients
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Figure 3.2: The coefficient functions c̃
(`)
0,k(u) for the w → 0 edge of the double-scaling

limit at ` loops. Five loops is shown in blue, four loops in yellow, three loops in green,
two loops in red, and one loop in purple.

c
(`)
n (u, 1) are all positive for u > 0 and for any n between 0 and ` − 1. Furthermore,

figure 3.1 shows that they all increase monotonically with u.

The line w = 0

The second simple line we will look at is w = 0. It forms an edge of the positive

double-scaling region (3.49). As was the case for the w = 1 line, SDS collapses to

{u, 1 − u}. However, c
(`)
n (u,w → 0) diverges logarithmically in w due to a physical

branch cut analogous to the branch cut in v. The functions c
(`)
n (u,w → 0) are therefore

expressible as an expansion in powers of log(1/w),

c(`)
n (u,w → 0) =

`−n∑
k=0

c̃
(`)
n,k(u) logk(1/w). (3.66)
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Figure 3.3: The coefficient functions c̃
(`)
n,k(u) for the w → 0 edge of the double-scaling

limit at ` loops. Five loops is shown in blue, four loops in yellow, three loops in green,
and two loops in red.

The coefficients c̃
(`)
n,k(u) are drawn from the space of HPLs with argument 1− u, and

empirically they vanish unless k is between 0 and `− n, where we recall that n is the

power of log(1/v) in the expansion (3.56).

The derivative of a generic hexagon function F along the line (u,w → 0) is given

by

∂F

∂u

∣∣∣∣
v,w→0

=
F u − F yu

u
− F 1−u + F yv + F yw

1− u
. (3.67)
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The integration constant can be set at u = 1, using the v → 0 endpoint of the line

(u, v, w) = (1, v, 0), which is just an S3 permutation of the line (u, 0, 1) considered in

the previous subsection.

We have carried out the corresponding integration through five loops and we

include HPL representations of all the c̃
(`)
n,k(u) in an ancillary file. The functions

c̃
(`)
0,k(u), which multiply different powers of log(1/w) in the non-log(1/v) part, are

plotted in figure 3.2, while the functions c̃
(`)
n>0,k(u) that multiply logn(1/v) on this line

are plotted in figure 3.3.

The vanishing of the ratio function along the collinear line u+ w = 1, eq. (3.58),

requires these coefficient functions to become zero at u = 1. We have also checked

analytically that each of these functions approaches positive infinity in the limit u→
∞. Once again, we observe that all the coefficient functions – not just the leading-log

ones – are positive, and furthermore that they are monotonically increasing with u.

Interestingly, there is an HPL representation in which the positivity and mono-

tonicity of the c̃
(`)
n,k(u) is almost manifest. We let the argument of the HPLs be

z = 1 − 1/u. As u increases from 1 to ∞, z increases from 0 to 1. In this range

of z, the HPLs with trailing 1’s in their weight vectors are manifestly positive and

monotonic, simply from their integral definition,

H0, ~w(z) =

∫ z

0

dt

t
H~w(t), H1, ~w(u) =

∫ z

0

dt

1− t
H~w(t), (3.68)

because the integrand is a lower-weight HPL of the same form, H~w(t), multiplied by

a kernel that is positive for 0 < t < 1. Hence if the c̃
(`)
n,k(u) could be written in terms

of such HPLs with only positive coefficients, positivity and monotonicity would both

be manifest.

At one and two loops, this is the case; the non-vanishing coefficients are

c̃
(1)
0,1 = H1 ,

c̃
(1)
0,0 = H0,1 +H1,1 ,

c̃
(2)
1,1 =

1

2
H0,1 +

1

2
H1,1 ,
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c̃
(2)
1,0 = H0,0,1 +H0,1,1 +

1

2
H1,0,1 +

1

2
H1,1,1 ,

c̃
(2)
0,2 =

1

4
H0,1 +

1

2
H1,1 ,

c̃
(2)
0,1 = 2H0,0,1 +

5

2
H0,1,1 +

3

2
H1,0,1 + 2H1,1,1 + ζ2H1 ,

c̃
(2)
0,0 =

9

2
H0,0,0,1 + 5H0,0,1,1 + 3H0,1,0,1 +

7

2
H0,1,1,1 + 2H1,0,0,1 +

5

2
H1,0,1,1

+
3

2
H1,1,0,1 + 2H1,1,1,1 + ζ2

(1

2
H0,1 +H1,1

)
, (3.69)

where we have suppressed the argument z = 1− 1/u of the HPLs H~w(z), displaying

only their weight vector ~w.

Since all the coefficients in eq. (3.69) are positive, positivity and monotonicity on

the line w = 0 is manifest through two loops. However, the plot thickens at three

loops. All 9 nonzero coefficient functions c̃
(3)
n,k have positive coefficients in their repre-

sentations, except for c̃
(3)
1,0 and c̃

(3)
0,0. The only negative coefficients in these functions

are those in terms containing ζ3 – for example,

c̃
(3)
1,0 = 6H0,0,0,0,1 +

45

4
H0,0,0,1,1 + 6H0,0,1,0,1 +

45

4
H0,0,1,1,1 + 4H0,1,0,0,1 +

31

4
H0,1,0,1,1

+ 4H0,1,1,0,1 +
23

4
H1,0,1,1,1 + 2H1,1,0,0,1 + 4H1,1,0,1,1 + 2H1,1,1,0,1 + 4H1,1,1,1,1

+
31

4
H0,1,1,1,1 + 3H1,0,0,0,1 +

23

4
H1,0,0,1,1 + 3H1,0,1,0,1

+ ζ2

(3

2
H0,0,1 +

7

4
H0,1,1 +

3

4
H1,0,1 +H1,1,1

)
− 1

2
ζ3H0,1 . (3.70)

Because the numerical coefficient in front of the ζ3 is relatively small, it doesn’t change

the actual positivity or monotonicity properties; it just makes them less manifest.

Continuing on to four and five loops, there are 14 and 20 nonzero coefficient

functions, respectively, with weights that range from 4 up to 10. The sign in front of

each HPL in each coefficient function is completely predictable: positive, unless the

term has an odd number of odd zeta values, in which case it is negative. The (mostly)

consistent signs for the HPL coefficients are reminiscent of the behavior found for the

velocity-dependent cusp anomalous dimension Ω0(x) in ref. [148].
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The line u = w

The final simple line in the double-scaling limit is given by setting u = w. Here, the

symbol letters in SDS collapse to the set {u, 1− u, 1− 2u}. This makes the functions

c
(`)
n (u, u) expressible as HPLs of argument x ≡ 1 − 2u with weight vectors involving

−1, 0, and 1. The derivative of a generic hexagon function F along this line takes

the form

∂F

∂x

∣∣∣∣
v→0;u,w=(1−x)/2

=
2F yv

x
+
F 1−u + F 1−w + F yu + F yw − 2F yv

1 + x

− F u + Fw − F yu − F yw

1− x
, (3.71)

while the integration constant can be set by matching to the v → 0 endpoint of

the line (u, v, w) = (1, v, 1). This requires setting the argument x = −1, which

introduces transcendental constants beyond the multiple zeta values ζm and ζm,n.

At low weights, there are identities relating these new constants to multiple zeta

values, log 2, and Lin(1/2) with n ≥ 4, but starting at weight 6 new alternating sums

alt~w ≡ (−1)|~w|H~w(−1) are needed [149], where |~w| is the depth of ~w. The numerical

values of these constants can be calculated using the HPL package.

We have computed the functions c
(`)
n (u, u) through five loops and include their

HPL representations in an ancillary file. The functions governing the leading-log and

next-to-leading-log contributions in 1/v are plotted in figure 3.4. These functions

must vanish at u = 1
2

where they intersect the collinear line u + w = 1. While

c
(`)
n (u,w) diverges at large u along the w = 1 and w = 0 lines, it has a finite large

u limit along the line u = w. That is, figure 3.4 shows that the coefficient functions

c
(`)
n (u, u) all asymptote to a constant as u → ∞. This constant can be computed

analytically using our HPL representation; for instance, the constants for n = 0 are

given through four loops by

c
(1)
0 (u, u)|u→∞ = 3ζ2 ,

c
(2)
0 (u, u)|u→∞ = 27ζ4 + 6ζ2 log2 2− 6Li4(1/2)− 1

4
log4 2 ,
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Figure 3.4: The functions c
(`)
`−1(u, u) and c

(`)
`−2(u, u) governing the leading-log and next-

to-leading-log behavior of the ratio function at ` loops in the double scaling limit.
The variable u has been shifted by 1

2
to make it possible to plot on a log scale. Five

loops is shown in blue, four loops in yellow, three loops in green, two loops in red,
and one loop in purple.

c
(3)
0 (u, u)|u→∞ = 213ζ6 +

55

16
ζ2

3 +
341

64
ζ5 log 2 +

2835

32
ζ4 log2 2 +

23

16
ζ2 log4 2

− 51

2
ζ2Li4(1/2)− 30Li6(1/2)− 1

24
log6 2− 11

4
alt5,1 ,

c
(4)
0 (u, u)|u→∞ =

2714608937

1474560
ζ8 +

6793

512
ζ2ζ

2
3 +

10285

4096
ζ3ζ5 −

11683

20480
ζ5,3

+
20489

512
ζ3ζ4 log 2 +

2871

64
ζ2ζ5 log 2 +

354801

16384
ζ7 log 2

− 729

512
ζ2

3 log2 2 +
477873

512
ζ6 log2 2 +

787

192
ζ2ζ3 log3 2

+
2015

384
ζ5 log3 2 +

7423

128
ζ4 log4 2− 221

960
ζ3 log5 2

− 457

720
ζ2 log6 2 +

11

768
log8 2− 5231

16
Li4(1/2)ζ4

− 43

2
Li4(1/2)ζ2 log2 2 +

43

48
Li4(1/2) log4 2 +

43

4
Li4(1/2)2

+
221

8
Li5(1/2)ζ3 +

9

2
Li5(1/2)ζ2 log 2− 135Li6(1/2)ζ2

− 175Li8(1/2)− 67

16
alt5,1,1,1 +

193

64
alt4,2,1,1 +

5281

256
alt7,1

− 327

16
alt5,1ζ2 +

67

16
alt5,1,1 log 2
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− 193

64
alt4,2,1 log 2− 65

8
alt5,1 log2 2 , (3.72)

while the five loop expression c
(5)
0 (u, u)|u→∞ proves too unwieldy to present. At one

loop this constant is manifestly positive. Evaluating the higher-loop expressions nu-

merically confirms that they are positive as well:

c
(1)
0 (u, u)|u→∞ = 4.93480220054 . . . ,

c
(2)
0 (u, u)|u→∞ = 30.8020253462 . . . ,

c
(3)
0 (u, u)|u→∞ = 235.199512804 . . . ,

c
(4)
0 (u, u)|u→∞ = 2091.54312703 . . . ,

c
(5)
0 (u, u)|u→∞ = 22406.9101345 . . . . (3.73)

Indeed, numerical checks reveal that the functions c
(`)
n (u, u) are positive throughout

the positive region, and increase monotonically with u. This has been checked exhaus-

tively through four loops and for n > 1 at five loops. The higher-weight expressions

c
(5)
1 (u, u) and c

(5)
0 (u, u) are more computationally challenging to check at finite u, and

have only been checked in the limit u→∞.

3.4.2 The full double-scaling surface

Figures 3.1, 3.2, 3.3, and 3.4 exhibit a remarkable feature – the functions c
(`)
n (u,w)

are not only positive along these lines, but increase monotonically as they move away

from the u+w = 1 line. We proved this radial monotonicity at one loop, for c
(1)
0 (u,w),

in section 3.3.2. In appendix E we show it for the next simplest case, c
(2)
1 (u,w), a

weight-3 function. These results make it natural to conjecture that the monotonicity

of c
(`)
n (u,w) holds to all loop orders.

In the rest of this section we check the monotonicity of the c
(`)
n (u,w) numerically

throughout the double-scaling surface. This can be done by expressing the functions

in terms of Goncharov polylogarithms, which can be numerically evaluated using

the program GiNaC [125, 126] wherever these functions admit a convergent series

expansion. The convergence condition for a Goncharov polylogarithm G(~a, z) is that
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Figure 3.5: The three-loop coefficient functions c
(3)
n (u,w) in the double-scaling limit,

shifted to make it possible to plot them on a log scale. By plotting these functions
against log u and logw we deform the u + w = 1 line to the concave boundary seen
in each plot.

|z|≤ |ai| for all nonzero ai. This condition is satisfied in the triangle subregion

u+w > 1, u < 1, w < 1 if we work in the following basis of Goncharov polylogarithms:

GDS =

{
G(~a; 1− w)

∣∣∣ai ∈ (0, u, 1)

}
∪
{
G(~a; 1− u)

∣∣∣ai ∈ (0, 1)

}
. (3.74)

This basis can also be used in the remainder of the NMHV positive region, where u

and/or w is larger than 1, because GiNaC automatically employs identities to relate

functions outside their region of convergence to ones that do admit a convergent
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Figure 3.6: The leading-log coefficient functions c
(`)
`−1(u,w) in the double-scaling limit

from one to four loops, shifted to make it possible to plot them on a log scale. By
plotting these functions against log u and logw we deform the u + w = 1 line to the
concave boundary seen in each plot.

expansion. This procedure can generate imaginary parts for individual G functions,

but the imaginary parts cancel out in the final result.

All the numerical checks we have performed on the double-scaling surface support

both positivity and monotonic radial growth for every function c
(`)
n (u,w). We plot

the functions, rather than their radial derivatives, in order to make interpretation

of the magnitudes appearing in these plots more clear. In particular, we provide

two sequences of plots that illustrate the trends the functions c
(`)
n (u,w) exhibit as n

and ` are varied. The first sequence, in figure 3.5, shows how the three-loop result
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c
(3)
n (u,w) changes as we move from the coefficient of the next-to-next-to-leading log

in 1/v (n = 0) to the leading log in 1/v (n = 2) in the expansion (3.56). The plots all

display the u↔ w symmetry of C(u, v, w), which is manifest from its definition (3.54)

and the (anti)symmetry properties of V and Ṽ , eq. (3.34). More interestingly, the

coefficient of the leading log term grows the most slowly in the radial direction at a

given loop order, particularly near the line of symmetry, u = w, where it asymptotes

to a constant. This result holds at least through four loops. (The five loop expressions

proved too computationally taxing to explore exhaustively.)

In figure 3.6 we plot the slowest-growing, leading-log coefficient functions c
(`)
`−1(u,w)

from one to four loops. As the loop order increases, the functions experience slower

radial growth. Moreover, the functions c
(`)
n (u,w) interpolate smoothly between the

lines u = w and w = 0, implying that most of the interesting information about these

functions in present on these two lines. In particular, the functions always grow the

most slowly along the line u = w.

3.5 Bulk positivity at higher loops

The previous sections verified the positivity of the ratio function in various limits,

nearly all of which were on the boundary of the positive octant, i.e. the double-scaling

limit. In this section, we check the positivity of the ratio function in the bulk, where

all three cross ratios are bounded away from zero. Except for the point (u, v, w) =

(1, 1, 1), the topic of the next subsection, our investigations will be numerical. After a

brief review of our procedure for numerically evaluating hexagon functions, we outline

the checks performed. Positivity appears to continue to hold in the bulk through at

least four loops, after which it gets too computationally taxing to check.

3.5.1 The point (u, v, w) = (1, 1, 1)

The parity-odd functions Ṽ (`) all vanish at the point (1, 1, 1), because they are odd

about the surface ∆(u, v, w) = 0, which includes this point. Thus we can repeat the
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analysis from Example 1 in section 3.3.1, obtaining

P`−loop
6,1 −−−−→

u=v=w
Ptree

6,1 × V (`)(1, 1, 1). (3.75)

So all we need to do is check that the sign of V (`)(1, 1, 1) alternates with loop

order `. The value of the functions V (`)(1, 1, 1) were supplied through four loops in

ref. [38], and we have extracted the five-loop value from ref. [68]:

V (1)(1, 1, 1) = −ζ2 ,

V (2)(1, 1, 1) = 9 ζ4 ,

V (3)(1, 1, 1) = −243

4
ζ6 ,

V (4)(1, 1, 1) =
5051

12
ζ8 + 3 ζ2 (ζ3)2 − 15 ζ3 ζ5 − 3 ζ5,3 ,

V (5)(1, 1, 1) = −244257

80
ζ10 −

93

2
ζ4 (ζ3)2 − 21 ζ2 ζ3 ζ5 +

399

2
ζ3 ζ7

+
777

8
(ζ5)2 +

9

2
ζ2 ζ5,3 +

57

4
ζ7,3 . (3.76)

The desired sign alternation is manifest from eq. (3.76) through three loops; after

that it relies on the numerical values of the multiple zeta values:

V (1)(1, 1, 1) = −1.64493406684 . . . ,

V (2)(1, 1, 1) = +9.74090910340 . . . ,

V (3)(1, 1, 1) = −61.8035910155 . . . ,

V (4)(1, 1, 1) = +410.9535753669 . . . ,

V (5)(1, 1, 1) = −2825.3845732862 . . . . (3.77)

We remark that the numerical result for V (`)(1, 1, 1) is dominated by the ζ2` term

through five loops (it gives the correct value to within 10%).



CHAPTER 3. MULTI-LOOP POSITIVITY OF THE AMPLITUDE 130

3.5.2 Method for obtaining bulk numerics and positivity tests

Next we turn to numerical evaluation of the ratio function at random points in the

bulk of the NMHV positive region. To evaluate the ratio function numerically at

higher loops, we followed the procedure pioneered in ref. [34].

Representing the ratio function in terms of multiple polylogarithms allows us to

evaluate them using powerful existing code like GiNaC [125, 126]. In order to do

this, we choose a representation in which the multiple polylogarithms have convergent

series expansions. We also prefer our representations to be manifestly real to reduce

the potential for numerical error.

These conditions lead to two conditions on our multiple polylogarithms. For

a multiple polylogarithm G(w1, . . . , wn; z), we obtain a convergent series expansion

when |z|≤ |wi| for all nonzero wi, and our result is manifestly real if z and all wi are

real and positive.

In order to avoid square roots and their attendant branch-cut ambiguities, we work

in the variables (yu, yv, yw). Following ref. [34], we find four different multiple polylog

representations, corresponding to four different kinematic regions. In particular, for

MHV studies we use

GLI =

{
G(~w; yu)|wi ∈ (0, 1)

}
∪
{
G(~w; yv)

∣∣∣wi ∈ (0, 1,
1

yu

)}
∪
{
G(~w; yw)

∣∣∣wi ∈ (0, 1,
1

yu
,

1

yv
,

1

yuyv

)} (3.78)

which is manifestly convergent for points in Region I, the MHV positive kinematic

region defined by

Region I :

 ∆ > 0 , 0 < ui < 1 , and u+ v + w < 1,

0 < yi < 1 .
(3.79)
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For studying the ratio function in NMHV positive kinematics, we use

GLII =

{
G
(
~w;

1

yu

)∣∣∣wi ∈ (0, 1)

}
∪
{
G
(
~w;

1

yv

)∣∣∣wi ∈ (0, 1, yu)

}
∪
{
G(~w; yw)

∣∣∣wi ∈ (0, 1,
1

yu
,

1

yv
,

1

yuyv

)} (3.80)

for points in Region II:

Region II :

 ∆ > 0 , 0 < ui < 1 , and u+ v − w > 1,

0 < yw <
1

yuyv
< 1

yu
, 1
yv
< 1 .

(3.81)

Cycling the yi in Region II lets us define two other regions, Region III and Region IV,

where we have multiple polylog representations in the bulk. Because the bosonized

ratio function is S3 symmetric, Regions III and IV do not add any new information.

The NMHV positive region always has ∆ > 0 (see eq. (3.19)). However, Region II lies

entirely within the unit cube in (u, v, w), and the bulk NMHV positive region extends

well beyond it (as is clear from the double-scaling plots in the previous section). So

our bulk positivity tests will be confined to points inside the unit cube.

In order to perform this test, we randomly generate a phase-space point in the

NMHV positive region by picking eleven random values of the positive parameters

(cb, xa), each between 0 and 100 (x6 is set to 1, as discussed in section 3.2.2). For each

set of values we use eqs. (3.17) and (3.15) to compute the three cross ratios u, v, w. If

the point (u, v, w) is not inside the unit cube, we stop and generate a new point. If it

is inside the unit cube, we use eqs. (3.24) and (3.32) to compute the R-invariants and

extended cross ratios yu, yv, yw. We plug the latter into the arguments of the multiple

polylogarithms in our Region II (or III or IV) representation of the ratio function,

performing the numerical evaluation with GiNaC. We examined 585 points at loop

orders from one through four, and the ratio function always has the expected sign,

alternating with loop order.
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3.6 MHV positivity

Having found strong evidence that the NMHV ratio function is positive through

five loops in the NMHV positive region, we now return to studying various IR-finite

versions of the MHV amplitude in the MHV positive region.

3.6.1 The remainder function fails

As mentioned in section 3.2.1, there are a variety of possibilities. They are all fairly

simply related to each other analytically, but they still can have different positivity

properties. First we consider the six-point remainder function R6, which is defined

as the logarithm of the MHV amplitude divided by the BDS ansatz, as in eq. (3.27),

exp[R6] =
M6,0

MBDS
6,0

. (3.82)

The remainder function vanishes at one loop by construction. Its positivity in the

MHV positive region (3.10) was investigated at two loops [69], three loops [34], and

four loops [35]. All points investigated numerically were found to have the correct

sign.

However, it turns out that there are regions close to the origin in (u, v, w) that

have the wrong sign for R
(4)
6 . To exhibit such points, we consider the same line v = 0,

w = 0 on which the ratio function was studied for u > 1 in section 3.4.1, but now we

take 0 < u < 1 in order to be in the MHV positive region. As was true for the ratio

function, the remainder function develops logarithmic singularities in both v and w

as they approach zero,

R6(u, v → 0, w → 0) =
∞∑
`=2

`−1∑
n,k=0

(−a)` r
(`)
n,k(u) logn(1/v) logk(1/w), (3.83)

up to power-suppressed terms in v and w. Since R6 is S3 permutation symmetric,

rk,n(u) = rn,k(u). Also, the coefficient functions vanish unless n+ k ≤ `.

At two and three loops, there are no problems in this region. The independent
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nonzero coefficient functions are given by,

r
(2)
1,1 =

1

4
H0,1 ,

r
(2)
1,0 =

1

4

[
2H0,0,1 +H1,0,1

]
,

r
(2)
0,0 =

1

4

[
6H0,0,0,1 + 3H0,1,0,1 + 4H1,0,0,1 + 2H1,1,0,1 − 2ζ2(H0,1 +H1,1)

]
, (3.84)

and

r
(3)
2,1 =

1

16

[
H0,0,1 −H0,1,1

]
,

r
(3)
2,0 =

1

16

[
3H0,0,0,1 − 2H0,0,1,1 +H0,1,0,1 +H1,0,0,1 −H1,0,1,1

]
,

r
(3)
1,1 =

1

4

[
3H0,0,0,1 − 2H0,0,1,1 +H1,0,0,1 −H1,0,1,1 + 2ζ2H0,1

]
,

r
(3)
1,0 =

1

8

[
18H0,0,0,0,1 − 9H0,0,0,1,1 + 3H0,0,1,0,1 + 7H0,1,0,0,1 − 4H0,1,0,1,1 +H0,1,1,0,1

+ 9H1,0,0,0,1 − 6H1,0,0,1,1 +H1,0,1,0,1 + 3H1,1,0,0,1 − 3H1,1,0,1,1

+ ζ2(5H0,0,1 −H0,1,1 + 2H1,0,1)
]
,

r
(3)
0,0 =

1

4

[
30H0,0,0,0,0,1 − 12H0,0,0,0,1,1 + 6H0,0,0,1,0,1 + 12H0,0,1,0,0,1 − 5H0,0,1,0,1,1

+ 2H0,0,1,1,0,1 + 15H0,1,0,0,0,1 − 8H0,1,0,0,1,1 + 2H0,1,0,1,0,1 + 5H0,1,1,0,0,1

− 4H0,1,1,0,1,1 + 18H1,0,0,0,0,1 − 9H1,0,0,0,1,1 + 3H1,0,0,1,0,1 + 7H1,0,1,0,0,1

− 4H1,0,1,0,1,1 +H1,0,1,1,0,1 + 9H1,1,0,0,0,1 − 6H1,1,0,0,1,1 +H1,1,0,1,0,1

+ 3H1,1,1,0,0,1 − 3H1,1,1,0,1,1

+ ζ2(3H0,0,0,1 − 2H0,0,1,1 +H0,1,0,1 +H1,0,0,1 −H1,0,1,1)

− 2ζ3(H0,0,1 +H0,1,1)− 11ζ4(H0,1 +H1,1)
]
, (3.85)

where the suppressed HPL argument is 1 − u. It can be checked that they are all

positive for 0 < u < 1.

The problem starts at four loops with the leading log coefficients,

r
(4)
3,1(u) =

1

96

[
H0,0,0,1 − 2H0,0,1,1 − 2H0,1,0,1 +H0,1,1,1

]
,
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r
(4)
2,2(u) =

1

32

[
H0,0,0,1 − 5H0,0,1,1 −H0,1,0,1 +H0,1,1,1

]
, (3.86)

which turn negative for u < 0.15 and u < 0.2, respectively, and stay negative as

u→ 0. The leading terms in their expansions around u = 0 are clearly negative:

r
(4)
3,1(u) ∼ − u

96

[1

6
log3(1/u) +

1

2
log2(1/u)− (2ζ2 − 1) log(1/u) + 3ζ3 − 2ζ2 + 1

]
,

r
(4)
2,2(u) ∼ − u

32

[1

6
log3(1/u) +

1

2
log2(1/u)− (ζ2 − 1) log(1/u)− 2ζ3 − ζ2 + 1

]
,

(3.87)

Thus R
(4)
6 (u, v, w) is negative for very small v and w and u < 0.14.

3.6.2 Logarithmic fixes fail

One might first try to fix the problem with R
(4)
6 at the logarithmic level. Consider

the logarithm of the BDS-like normalized amplitude,

E =
M6,0

MBDS−like
6,0

= exp

[
R6 −

γK
8
Y

]
, (3.88)

where γK is the cusp anomalous dimension and

Y (u, v, w) = Li2(1−u)+Li2(1−v)+Li2(1−w)+
1

2

(
log2 u+log2 v+log2w

)
, (3.89)

so that

log E(u, v, w) = R6(u, v, w)− γK
8
Y (u, v, w). (3.90)

This attempt immediately runs into trouble, because the limiting behavior of Y ,

Y (u, v → 0, w → 0) ∼ 1

2
log2 v +

1

2
log2w +

1

2
log2 u+ Li2(1− u) + 2ζ2 , (3.91)

like that of any one-loop function, does not have enough logarithms of v or w to

compete with the four powers of logs in the problematic terms in R
(4)
6 .

One can also consider the logarithm of the hexagonal Wilson loop framed by two
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pentagons and a box [44, 48],

Wratio =
〈Whex〉〈Wbox〉
〈Wpent〉〈Wpent′〉

= exp

[
R6 +

γK
8
X

]
, (3.92)

where

X(u, v, w) = −Li2(1− u)− Li2(1− v)− Li2(1− w)

− log

(
uv

w(1− v)

)
log(1− v)− log u logw + 2ζ2 . (3.93)

Since X is a one-loop function, it cannot produce enough logs in the limit to compete

with R
(4)
6 , and thus logWratio cannot be strictly positive either by four loops.

3.6.3 Other fixes fail

Next we turn to functions that are defined at the level of the MHV amplitude, rather

than its logarithm. First we consider the BDS-normalized amplitude exp[R6]. At one

and two loops, it is the same as R6, while its four-loop coefficient receives an extra

positive contribution: [
exp[R6]

](4)

= R
(4)
6 +

1

2

[
R

(2)
6

]2

. (3.94)

Taking into account eq. (3.84), the leading-log [r
(2)
1,1]2 part of [R

(2)
6 ]2 can and does

flip the sign of the log2(1/v) log2(1/w) coefficient function to positive. But it clearly

leaves the log3(1/v) log(1/w) term unaltered. So the addition of [R
(2)
6 ]2 cannot cancel

the negative behavior of R
(4)
6 for kinematics with 0 < v � w � u < 0.14, for which

log3(1/v) log(1/w)� log2(1/v) log2(1/w).

Can the negative behavior be fixed by the framed Wilson loop Wratio defined in

eq. (3.92)? Now X is not S3 symmetric, and the three cyclically-related line segments

all belong to the MHV positive regions: v, w → 0, 0 < u < 1; w, u → 0, 0 < v < 1;

u, v → 0, 0 < w < 1. We need to ensure positivity along all three lines and for both

orderings of the two vanishing cross ratios. Equivalently, since R6 is S3 symmetric,

we should consider the v, w → 0, 0 < u < 1 limits of all six permutations of X. The
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original orientation X(u, v, w) already reveals a problem:

X(u, v → 0, w → 0) ∼ − log(1/w) log(1/u)− Li2(1− u) . (3.95)

Because there are no log(1/v)’s in this expression, powers of X cannot fix the sign

problem that exp[R6] still has in the region 0 < v � w � u < 0.14.

3.6.4 BDS-like normalized amplitude works

Finally, we consider the BDS-like normalized amplitude itself, E(u, v, w) defined in

eq. (3.88). Since the limiting behavior of Y in eq. (3.91) contains both log2(1/v) and

log2(1/w), it can potentially fix the negative behavior. Indeed it does fix the problem

through five loops, at least for v, w → 0, 0 < u < 1, or (by symmetry) on cyclic

permutations of this line segment. It also leads to monotonically increasing behavior

as u decreases from 1. The expansion on this line segment now contains many higher

powers of the singular logs, all the way up to 2`,

E(u, v → 0, w → 0) =
∞∑
`=0

2∑̀
n,k=0

(−a)` ẽ
(`)
n,k(u) logn(1/v) logk(1/w), (3.96)

up to power-suppressed terms. Here ẽ
(`)
k,n = ẽ

(`)
n,k and n + k ≤ 2` for a nonzero

coefficient.

As was the case for the NMHV ratio function on the continuation of this line to

u > 1, discussed in section 3.4.1, there is an HPL representation which almost makes

manifest the positivity and monotonicity. In this case we use the argument 1 − u

rather than 1 − 1/u, since the argument 1 − u runs from 0 to 1 as u runs from the

collinear point u = 1 down to the origin. Positivity is manifest from the signs in front

of the HPLs at one and two loops:

ẽ
(1)
2,0 =

1

4
, ẽ

(1)
1,1 = 0 , ẽ

(1)
1,0 = 0 , ẽ

(1)
0,0 =

1

2

[
H0,1 +H1,1 + 2ζ2

]
, (3.97)
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ẽ
(2)
4,0 =

1

32
, ẽ

(2)
3,1 = 0 , ẽ

(2)
2,2 =

1

16
, ẽ

(2)
3,0 = 0 , ẽ

(2)
2,1 = 0 ,

ẽ
(2)
2,0 =

1

8

[
H0,1 +H1,1 + 4ζ2

]
, ẽ

(2)
1,1 =

1

4
H0,1 , ẽ

(2)
1,0 =

1

4

[
2H0,0,1 +H1,0,1

]
,

ẽ
(2)
0,0 =

1

4

[
6H0,0,0,1 + 2H0,0,1,1 + 4H0,1,0,1 + 3H0,1,1,1 + 4H1,0,0,1 + 2H1,0,1,1

+ 3H1,1,0,1 + 3H1,1,1,1 + 2ζ2(H0,1 +H1,1) + 15ζ4

]
. (3.98)

At three loops the HPL representation no longer makes manifest the positivity of

all terms; for example,

ẽ
(3)
2,1 =

1

16

[
3H0,0,1 +H1,0,1 −H0,1,1

]
,

ẽ
(3)
1,0 =

1

8

[
18H0,0,0,0,1 + 3H0,0,0,1,1 + 9H0,0,1,0,1 + 6H0,0,1,1,1 + 9H0,1,0,0,1 + 2H0,1,0,1,1

+ 5H0,1,1,0,1 + 9H1,0,0,0,1 + 2H1,0,0,1,1 + 5H1,0,1,0,1 + 3H1,0,1,1,1 + 5H1,1,0,0,1

+H1,1,0,1,1 + 3H1,1,1,0,1 + ζ2(9H0,0,1 + 4H1,0,1 −H0,1,1)
]
. (3.99)

In both of these cases, it is easy to see that the terms with a minus sign are over-

powered by the previous term. At higher-loop orders, positivity and monotonicity of

the coefficient functions becomes tricky to prove analytically, but we have verified it

numerically for all ẽ
(`)
n,k coefficients through five loops.

What about positivity of E in other parts of the MHV positive region? The

double-scaling limit intersects this region in the triangle,

u > 0, w > 0, u+ w < 1. (3.100)

which is the complement of the NMHV double-scaling positive region (3.49) in the

positive quadrant. The expansion of E in this limit is

E(u, v → 0, w) =
∞∑
`=0

2∑̀
n=0

(−a)` e(`)
n (u,w) logn(1/v). (3.101)
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The one-loop coefficient functions are,

e
(1)
2 (u,w) =

1

4
,

e
(1)
1 (u,w) = 0 ,

e
(1)
0 (u,w) =

1

4
log2(u/w) + ζ2 +

1

2
C(1)(u,w). (3.102)

Now C(1)(u,w) is negative in the NMHV positive region, but the same radial-derivative

argument shows that it flips sign around the collinear boundary, where it vanishes.

So C(1)(u,w) is positive in the MHV positive region, and the representation (3.102)

makes manifest the desired sign (and monotonicity) for E (1)(u, v, w) in the double-

scaling limit of the MHV positive region.

Similarly at two loops we have,

e
(2)
4 (u,w) =

1

32
,

e
(2)
3 (u,w) = 0 ,

e
(2)
2 (u,w) =

1

4

[
e

(1)
0 (u,w) + ζ2

]
,

e
(2)
1 (u,w) = −1

2
c

(2)
1 (u,w), (3.103)

where e
(1)
0 (u,w) was just argued to be positive. The positivity of c

(2)
1 (u,w) is proved

in the NMHV positive region in appendix E. But again the argument does not rely

on u + w > 1 – except for the overall sign, which flips when crossing the collinear

boundary dividing the MHV and NMHV positive regions. Hence c
(2)
1 (u,w) is negative

in the MHV positive region, implying that e
(2)
1 (u,w) is positive.

The positivity and monotonicity of the last two-loop coefficient, e
(2)
0 (u,w), is not

as simple to prove, but has been confirmed numerically with GiNaC using the basis

of multiple polylogarithms given in eq. (3.74). Similar numerical checks confirm

the positivity and monotonicity of all the three loop coefficient functions e
(3)
n (u,w);

we plot the functions governing the leading-log and next-to-leading log behavior in

figure 3.7. As can be seen in these plots, E is not generically required to vanish on the

line u+w = 1. However, the collinear vanishing of R6 on this line is inherited by the
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Figure 3.7: The three-loop coefficient functions e
(3)
3 (u,w) and e

(3)
4 (u,w) in the double-

scaling limit, shifted to make it possible to plot them on a log scale. By plotting these
functions against log u and logw we deform the u+w = 1 line to the convex boundary
seen in each plot.

coefficient functions e
(`)
n (u,w) that multiply odd powers of logs. This is due to the

fact that the function Y that converts between E and R6 in eq. (3.88) can only provide

even powers of logs, as can be seen from its definition in eq. (3.89). Correspondingly,

e
(3)
3 (u,w) vanishes along the line u + w = 1 while e

(3)
4 (u,w) does not. These plots

also exhibit the u↔ w symmetry that the functions e
(`)
n (u,w) inherit from the total

symmetry of E .

Finally, we examined the values for E (`)(u, v, w) in the bulk MHV positive region

(Region I), from one to four loops, using the representations for E (`) in terms of

multiple polylogarithms referred to in section 3.5.2. After randomly generating 1608

points in this region, we found that E (`) had the correct sign through four loops for

every point examined.

3.7 Conclusion

In this paper we have demonstrated that the positivity properties of the Amplituhe-

dron persist after momentum integration, at least in some cases. In particular, the

ratio function (the IR-finite ratio of the NMHV and MHV amplitudes) has uniform
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sign in the same region in which the Amplituhedron is positive. The MHV amplitude

also has uniform sign provided that we normalize by a “BDS-like” ansatz. In both

cases, it appears that the Minkowski contour of integration preserves positivity more

completely than would have been expected.

While we have not provided a general proof, we do provide analytic evidence on

a variety of lines, as well as numerical checks through the bulk of kinematic space,

all of which support positivity. In doing so, we have observed that the ratio function

and E both appear to be not just of uniform sign but, at least in the double-scaling

limit, they are monotonic in a radial direction away from the collinear limit. This

property appears to be quite robust, and falls in line with older observations of ratio

function numerics, all of which suggest that the ratio function is significantly simpler

than the complicated expressions used to represent it might imply.

In the future, it would be interesting to explore whether a more general proof of

positivity can be devised. It seems possible that one could find rules for which positive

integrands result in positive amplitudes, and such rules would likely be useful in much

broader contexts. This would likely involve finding some contour of integration that,

unlike the usual Minkowski contour, manifestly preserves positivity. Understanding

such a contour could also shed new light on the Amplituhedron, suggesting that

there could be an Amplituhedron-like construction of finite quantities such as ratio

functions or BDS-like normalized MHV amplitudes, both for the integrands and the

final results.
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Chapter 4

The MHV (NMHV) Symbol at

Four (Three) Loops

4.1 Introduction

The desire to construct general scattering amplitudes from their analytic and physical

properties has been a goal since the birth of the analytic S-matrix program (see

e.g. ref. [150]). More recently, such a procedure has been applied in a perturbative

context and referred to as bootstrapping. Aspects of this approach have been applied

to theories such as quantum chromodynamics at one loop [151, 152, 153] and more

recently at two loops [154, 155, 156]. However, the most powerful applications to

date have been to the planar limit of N = 4 super-Yang-Mills (SYM) theory in four

dimensions [15, 16]. Fueled by an increased understanding of the classes of analytic

functions appearing in amplitudes in general quantum field theories, as well as the

stringent constraints obeyed by amplitudes in planarN = 4 SYM, it has been possible

to advance as far as five loops [32, 37, 41, 36, 40, 68]. These results in turn provide

a rich mine of theoretical data for understanding how scattering amplitudes behave.

The planar limit of a large number of colors in N = 4 SYM has received a great

deal of attention because of the remarkable properties it exhibits. In addition to

superconformal symmetry it respects a dual conformal symmetry [23, 26, 27, 28, 157],

and amplitudes are dual to polygonal light-like Wilson loops [19, 20, 21, 22, 23, 75,

142
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76]. Dual (super)conformal symmetry fixes the four-point and five-point amplitudes

uniquely to match the Bern-Dixon-Smirnov (BDS) ansatz [31], which captures all the

infrared divergences of planar scattering amplitudes. Starting at six points, the BDS

ansatz receives corrections from finite functions of dual conformal invariants [158,

58, 76, 75]. The correction to the maximally helicity violating (MHV) amplitude

has traditionally been expressed in terms of a (BDS) remainder function [75, 76,

32, 34, 41], while the correction to the next-to-maximally helicity violating (NMHV)

amplitude has traditionally been expressed in terms of the infrared-finite NMHV ratio

function [29, 111, 159, 33, 37, 38].

The cluster bootstrap program is built on the idea that certain scattering ampli-

tudes can be determined order by order in perturbation theory using a set of basic

building blocks known as cluster coordinates [160, 161]. Inspired by the results of

refs. [42, 39], the bootstrap approach developed in refs. [32, 37, 41, 36, 40, 68] as-

sumes that the MHV and NMHV amplitudes at each loop order belong to a particular

class of iterated integrals, or generalized polylogarithms. More specifically, the L-loop

contribution to the remainder and ratio functions is expected to lie within the space

spanned by polylogarithms of weight 2L [11] whose symbols can be written in terms of

cluster A-coordinates. A further constraint on the relevant space of functions comes

from the restriction that only physical branch cuts can appear in the remainder and

ratio functions [46].

To make use of this expectation, in the bootstrap program one first constructs a

general linear combination of the above set of functions to serve as an ansatz. Then

one tries to determine all free coefficients in the ansatz by imposing analytic and phys-

ical constraints. This procedure becomes increasingly computationally expensive at

higher loop orders, largely due to the fact that the number of relevant functions

increases exponentially with the weight. It is hoped that one day a constructive

procedure for determining these amplitudes can be developed that does not require

constructing the full weight-2L space as an intermediate step. A promising candidate

in this respect is the Wilson loop Operator Product Expansion (OPE) [44, 46, 162]

and the Pentagon OPE program [48, 49, 51, 163, 56, 57, 164] which provides finite-

coupling expressions for the amplitudes as an expansion around (multi-)collinear
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kinematics. The main challenge in this framework is to resum the infinite series

around these kinematics; there has been progress recently in this direction at weak

coupling [109, 165, 166]. Another potential constructive approach could involve the

Amplituhedron [13, 14] description of the multi-loop integrand. Perhaps one can ex-

tend the methods of ref. [167] for reading off the branch-point locations, in order to

enable reading off the entire function.

To date, six- and seven-point amplitudes have been computed in the cluster boot-

strap program through the study of so-called hexagon and heptagon functions. Both

helicity configurations of the six-point amplitude have been determined through five

loops [68], while the MHV seven-point amplitude has been determined at symbol level

through three loops [41]. The seven-point NMHV amplitude has not yet received at-

tention in the bootstrap program, but it has been calculated through two loops using

slightly different methods [64]. Surprisingly, bootstrapping the seven-point remainder

function has thus far proven to be conceptually simpler (i.e. requiring the imposition

of fewer constraints) than bootstrapping its six-point counterpart. The collinear limit

of the seven-point remainder function must be nonsingular and a well-defined hexagon

function. This requirement is so restrictive that it entirely determines the two-loop

heptagon remainder function, up to an overall scale. It similarly determines the three-

loop remainder function, once the full implications of dual superconformal symmetry

are taken into account [41]. The corresponding hexagon remainder function symbols

may then be obtained by taking a collinear limit.

In a recent breakthrough [68], the classic work of Steinmann [65, 66] on the

compatibility of branch cuts in different channels has been used to supercharge the

hexagon function bootstrap program. The Steinmann relations dramatically reduce

the size of the functional haystack one must search through in order to find ampli-

tudes, putting higher-loop amplitudes that were previously inaccessible within reach.

In this paper we reformulate the heptagon bootstrap of ref. [41] to exploit the power

of the Steinmann relations. With their help, we are able to fully determine the sym-

bol of the seven-point three-loop NMHV and four-loop MHV amplitude in planar

N = 4 SYM, using only a few simple physical and mathematical inputs. In a sepa-

rate paper [168], we will investigate various kinematical limits of these amplitudes in
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more detail, including the multi-Regge limit [58, 59, 102, 169, 60, 61, 105, 170, 171,

172, 173, 174], the OPE limit [44, 46, 162, 48, 49, 51, 163, 56], and the self-crossing

limit [175, 176]. In this paper, we study one of the simpler limits, where the NMHV

seven-point amplitude factorizes on a multi-particle pole.

This paper is organized as follows. In section 4.2 we begin by reviewing the

general structure of seven-particle MHV and NMHV (super)amplitudes, and different

schemes for subtracting their infrared divergences. Section 4.3 discusses the essential

ingredients of the amplitude bootstrap for constructing heptagon functions, which

are believed to describe the nontrivial kinematical dependence of these amplitudes.

Section 4.4 focuses on the additional physical constraints that allow us to single out

the MHV or NMHV amplitude from this space of functions.

Our main results, including the analysis of the general space of heptagon sym-

bols, and the determination of the three-loop NMHV and four-loop MHV amplitude

symbols, are presented in section 4.5. Section 4.6 describes a sample kinematical

limit, the behavior of the NMHV amplitude as a multi-particle Mandelstam invariant

vanishes. Finally, section 4.7 contains our conclusions, and discusses possible avenues

for future study.

Many of the analytic results in this paper are too lengthy to present in the

manuscript; instead, we include them as ancillary files. These files can also be down-

loaded from [177].

4.2 Seven-Particle Scattering Amplitudes

4.2.1 MHV: The Remainder Function

In planar N = 4 SYM, n-particle amplitudes are completely characterized by the

color-ordered partial amplitudes An, which are the coefficients of specific traces

Tr(T a1T a2 · · ·T an) in the color decomposition of the amplitudes. The MHV helicity

configuration has precisely two gluons with negative helicity and (n−2) with positive

helicity (in a convention where all particles are outgoing). The MHV amplitude is

encoded in the remainder function Rn, which is defined by factoring out the BDS
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ansatz ABDS
n [31] (reviewed in appendix F):

AMHV
n = ABDS

n exp [Rn] . (4.1)

The BDS ansatz captures all the infrared and collinear divergences [178, 179, 180] in

the planar amplitude, so the remainder function is infrared finite. It is also invariant

under dual conformal transformations [26, 27, 19, 28, 23]. Moreover, since the BDS

ansatz accounts for collinear factorization to all orders in perturbation theory [31], the

n-point remainder function smoothly tends to the (n−1)-point remainder function in

its collinear limits, a fact that will prove to be an important ingredient in the bootstrap

program.

In the definition (4.1), Rn is the finite-coupling (or all-loop) remainder function.

Here we will be interested in its perturbative expansion. For any function F of the

coupling, we denote the coefficients of its perturbative expansion with a superscript

according to the definition

F =
∞∑
L=0

g2LF (L) , (4.2)

where g2 = g2
YMN/(16π2), gYM is the Yang-Mills coupling constant, and N is the

number of colors. Elsewhere in the literature, the coupling constant a = 2g2 is often

used. The L-loop contribution to the remainder function, R
(L)
n , is expected to be a

weight-2L iterated integral.

The remainder function vanishes for the four- and five-particle amplitudes, be-

cause dual conformally invariant cross ratios cannot be formed with fewer than six

external lightlike momenta (in other words, the BDS ansatz is correct to all loop

orders for n = 4 or 5) [158, 76, 75]. The first nontrivial case, the six-point remainder

function, has been successfully computed at two loops [42], three loops [32, 64, 34],

four loops [35] and recently five loops [68]. At seven points, the remainder function

has been computed at two loops [181, 64, 182, 183] and its symbol has been computed

at three loops [41]. The symbol of the four-loop seven-point MHV remainder function

R
(4)
7 is one of the main results of this paper.
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4.2.2 NMHV: The Ratio Function and R-invariants

Beyond the MHV case, scattering amplitudes in SYM theory are most efficiently

organized by exploiting the (dual) superconformal symmetry [29] of the theory, as

reviewed in ref. [184].

In a nutshell, one starts by packaging the on-shell particle content of the theory

into a single superfield Φ with the help of four Grassmann variables ηA, whose index

transforms in the fundamental representation of the SU(4) R-symmetry group. In

other words, all external states, gluons G±, fermions ΓA and Γ̄A, and scalars SAB,

can be simultaneously described by the superfield

Φ = G+ + ηAΓA + 1
2!
ηAηBSAB + 1

3!
ηAηBηCεABCDΓ̄D + 1

4!
ηAηBηCηDεABCDG

− , (4.3)

which allows us to combine all n-point amplitudes into a superamplitudeAn(Φ1, . . . ,Φn).

Expanding the superamplitude in the Grassmann variables separates out its dif-

ferent helicity components. The MHV amplitude is contained in the part of AMHV
n

with 8 powers of Grassmann variables, or Grassmann degree 8. Specifically, the MHV

amplitude discussed in the previous subsection is given in the MHV superamplitude

by the term

AMHV
n = (2π)4δ(4)

( n∑
i=1

pi

) ∑
1≤j<k≤n

(ηj)
4(ηk)

4AMHV
n (1+... j−... k−... n+) + . . . , (4.4)

where we have shown only the pure-gluon terms explicitly. Similarly, the terms of

Grassmann degree 12 make up the NMHV superamplitude. Since NMHV amplitudes

in this theory have the same infrared-divergent structure as MHV amplitudes, the

two superamplitudes can be related by

ANMHV
n = AMHV

n Pn , (4.5)

where the infrared-finite quantity Pn is called the NMHV ratio function and has

Grassmann degree 4. On the basis of tree-level and one-loop amplitude computations,

it was argued in ref. [29] that Pn is dual conformally invariant.
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At tree level, the dual conformal symmetry is enhanced to dual superconformal

symmetry, and the ratio function can be written as a sum of dual superconformal

invariants or ‘R-invariants ’ [29, 111]. These quantities, which carry the dependence

on the fermionic variables, are algebraic functions of the kinematics and can be written

as Grassmannian contour integrals [82]. From this representation it is also possible

to prove their invariance under ordinary superconformal transformations [12, 185], or

in other words their Yangian invariance [30].

As shown in ref. [82], R-invariants are most easily expressed in terms of the mo-

mentum supertwistors Zi defined by1 [81]

Zi = (Zi |χi) , Zα,α̇
i = (λαi , x

βα̇
i λiβ) , χAi = θαAi λiα . (4.6)

Their fermionic components χi are associated with the fermionic dual coordinates θi

in the same way that the bosonic twistors Zi are associated with the bosonic dual

coordinates xi. Differences between color-adjacent dual coordinates xi and θi are

related to the external momenta pi and supermomenta qi, respectively:

pαα̇i = λαi λ̃
α̇
i = xαα̇i+1 − xαα̇i , qαAi = λαi η

A
i = θαAi+1 − θαAi . (4.7)

Given any set of five supertwistors Za,Zb,Zc,Zd,Ze, we may define a corresponding

NMHV R-invariant as a 5-bracket

[abcde] =
δ0|4(χa〈bcde〉+ cyclic)

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
, (4.8)

in terms of dual conformally invariant bosonic 4-brackets

〈ijkl〉 ≡ 〈ZiZjZkZl〉 = εABCDZ
A
i Z

B
j Z

C
k Z

D
l = det(ZiZjZkZl) , (4.9)

and a fermionic delta function δ0|4(ξ) = ξ1ξ2ξ3ξ4 for the different SU(4) components

of ξ. The original definition of the R-invariants [29, 111] (there denoted Rr;ab) in

1The indices α, α̇ = 1, 2 denote the components of the spinor representation of the Lorentz group
SO(3, 1) ' SL(2,C).
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normal twistor space corresponds to the special case Rr;ab = [r, a−1, a, b−1, b].

From the definition (4.8), we can see that R-invariants are antisymmetric in the

exchange of any pair of supertwistor indices (hence also invariant under cyclic per-

mutations). They are also manifestly dual conformally invariant, since they don’t

depend on spinor products 〈ij〉. The aforementioned Grassmannian contour inte-

gral representation in momentum twistor space [82] makes the full dual conformal

invariance manifest. It also allows one to prove more transparently the following

important identity between R-invariants: Given any six momentum supertwistors

Za,Zb,Zc,Zd,Ze,Zf , their R-invariants are related by [29]

[abcde]− [bcdef ] + [cdefa]− [defab] + [efabc]− [fabcd] = 0 . (4.10)

For n-particle scattering, there exist
(
n
6

)
such equations for the

(
n
5

)
distinctR-invariants;

however, it turns out that only
(
n−1

5

)
are independent. So in the end we are left with

# linearly independent n-particle R-invariants =

(
n

5

)
−
(
n− 1

5

)
=

(
n− 1

4

)
.

(4.11)

For example, there are 5, 15, and 35 independent R-invariants relevant for 6-, 7- and

8-particle NMHV scattering amplitudes, respectively.

Let us now focus on the seven-particle NMHV superamplitude. For compactness

we may express the corresponding R-invariants in terms of the particle indices that

are not present in the 5-brackets (4.8), for example

[12345] = (67) = (76) , (4.12)

where (by convention) the 5-bracket on the left-hand side of this definition is always

ordered, so ordering on the right-hand side doesn’t matter.

In this notation, the representation for the tree-level ratio function found in

ref. [111] may be rewritten as

P(0)
7 =

3

7
(12) +

1

7
(13) +

2

7
(14) + cyclic . (4.13)
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Following the same reference, we find it convenient to use a basis of 15 independent

R-invariants consisting of P(0)
7 together with (12), (14), and their cyclic permutations.

(Because P(0)
7 is totally symmetric, it has no independent cyclic images.) In particular,

the remaining R-invariants (i, i+ 2) are related to this set by

(13) = − (15)− (17)− (34)− (36)− (56) + P(0)
7 , (4.14)

plus the cyclic permutations of this identity.

Beyond tree level, the independent R-invariants are dressed by transcendental

functions of dual conformal invariants, and the ratio function can be put in the form

P7 = P(0)
7 V0 + [(12)V12 + (14)V14 + cyclic] . (4.15)

As we will review in section 4.4.2, P7 is symmetric under the dihedral group D7. The

component V0 inherits the full dihedral symmetry of P(0)
7 , whereas V12 and V14 are

only invariant under the flip i→ 3−i and i→ 5−i of their momentum twistor labels,

respectively.

The dependence of P7 on the coupling enters only through the functions V0 and

Vij. Their L-loop contributions, V
(L)

0 and V
(L)
ij , like the remainder function, R

(L)
7 , are

expected to be weight-2L iterated integrals. Using the notation introduced in eq. (4.2)

we must have

V
(0)

0 = 1 , V
(0)

12 = V
(0)

14 = 0 (4.16)

at tree level. At one loop, these functions become [111]

V
(1)

0 = Li2 (1− u1)− Li2 (1− u1u4)− log u1 log u3 + cyclic ,

V
(1)

12 = −Li2 (1− u6) + Li2 (1− u1u4) + Li2 (1− u2u6) + Li2 (1− u3u6) ,

+ log u1 log u2 − log u3 log u2 + log u4 log u2 + log u1 log u3 + log u3 log u4

+ log u1 log u6 + log u4 log u6 − ζ2 ,

V
(1)

14 = Li2 (1− u1u4) + Li2 (1− u3u6) + log u1 log u3 + log u4 log u3 + log u1 log u6

+ log u4 log u6 − ζ2 .

(4.17)
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See also ref. [186] for a more recent, compact representation of the same amplitude.

In the above relations and everything that follows, the cross ratios ui are defined by,

uij =
x2
i,j+1 x

2
i+1,j

x2
i,j x

2
i+1,j+1

, ui = ui+1,i+4 =
x2
i+1,i+5 x

2
i+2,i+4

x2
i+1,i+4 x

2
i+2,i+5

. (4.18)

The ui are dual conformally invariant combinations of the Mandelstam invariants,

see eq. (4.7) and also eq. (4.32) below.

Finally, the symbol of the two-loop NMHV heptagon has been computed in ref. [64]

using the same choice of independent R-invariants as in eq. (4.15), with the help of

an anomaly equation for the Q̄ dual superconformal symmetry generators. Here we

will use the Steinmann cluster bootstrap to push to three loops: The symbols of the

functions V
(3)

0 , V
(3)

12 , and V
(3)

14 constituting the three-loop seven-point NMHV ratio

function are another of the main results of this paper.

4.2.3 The BDS- and BDS-like Normalized Amplitudes

In the previous sections we mentioned that MHV and NMHV amplitudes have the

same infrared-divergent structure, which is accurately captured by the BDS ansatz.

This fact allows us to define the MHV and NMHV BDS-normalized superamplitudes,

Bn ≡
AMHV
n

ABDS
n

=
AMHV
n

ABDS
n

= exp [Rn] , (4.19)

Bn ≡
ANMHV
n

ABDS
n

=
ANMHV
n

AMHV
n

AMHV
n

ABDS
n

= Pn Bn , (4.20)

where ABDS
n is the superamplitude obtained from the bosonic BDS ansatz by replacing

the tree-level MHV Parke-Taylor factor [2, 187] it contains with its supersymmetrized

version [77]. Indeed, normalizations (4.19), (4.20) were found to be more natural for

the study of the dual superconformal symmetry anomaly equation [64].

In what follows, it will prove greatly beneficial to define yet another set of infrared-

finite quantities, using an alternate normalization factor that is compatible with the
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Steinmann relations. The BDS ansatz is essentially the exponential of the full one-

loop amplitude, which includes a finite part with nontrivial dependence on Mandel-

stam invariants involving all possible numbers of external momenta. Dividing by

the BDS ansatz produces a quantity with altered dependence on three-particle Man-

delstam invariants. As we will see, such a quantity does not satisfy the Steinmann

relations. In the case of seven-particle scattering (indeed, whenever n is not a multi-

ple of four), all the dependence on the three-particle invariants (and higher-particle

invariants) can be assembled into a dual conformally invariant function Yn, which we

may remove from the one-loop amplitude in order to define a BDS-like ansatz,

ABDS-like
n ≡ ABDS

n exp

[
Γcusp

4
Yn

]
, (4.21)

where

Y6 = −Li2

(
1− 1

u

)
− Li2

(
1− 1

v

)
− Li2

(
1− 1

w

)
, (4.22)

Y7 = −
7∑
i=1

[
Li2

(
1− 1

ui

)
+

1

2
log

(
ui+2ui−2

ui+3uiui−3

)
log ui

]
, (4.23)

and

Γcusp =
∞∑
L=1

g2LΓLcusp = 4g2 − 4π2

3
g4 +

44π4

45
g6 − 4

(
73π6

315
+ 8ζ2

3

)
g8 +O(g10) , (4.24)

is the cusp anomalous dimension in the normalization of e.g. [49].2 In eq. (4.22),

u, v, w are the three cross ratios for six-point kinematics, defined below in eq. (4.58).

The difference between the BDS- and BDS-like-normalized ansätze for seven-point

kinematics is reviewed in more detail in appendix F. The utility of the BDS-like ansatz

was first noticed in the strong coupling analysis of amplitudes via the AdS/CFT

correspondence [113] (see also ref. [188]). At weak coupling, it was found to simplify

the six-point multi-particle factorization limit [37], self-crossing limit [176] and NMHV

2In particular, Γcusp = γK/2 compared to the normalization of [31] and subsequent papers of
Dixon and collaborators.
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Q̄ relations [38], before its role in applying the six-point Steinmann relations was

noticed [68]. We will see its advantages as well in our seven-point analysis.

When n is a multiple of four it is not possible to simultaneously remove the depen-

dence on all three-particle and higher-particle Mandelstam invariants in a conformally

invariant fashion [189]. However, for n = 8 it is still possible to separately remove the

dependence of all three-particle invariants, or of all four-particle invariants, giving

rise to two different BDS-like ansätze.

Restricting our attention to the case n - 4, we may thus define the BDS-like-

normalized MHV and NMHV amplitudes as

En ≡
AMHV
n

ABDS-like
n

=
AMHV
n

ABDS
n

ABDS
n

ABDS-like
n

= Bn exp

[
−Γcusp

4
Yn

]
= exp

[
Rn −

Γcusp

4
Yn

]
,

En ≡
ANMHV
n

ABDS-like
n

=
ANMHV
n

ABDS
n

ABDS
n

ABDS-like
n

= Bn exp

[
−Γcusp

4
Yn

]
= Pn En ,

(4.25)

where we have also spelled out their relation to the previously-considered normaliza-

tions. Note that

E (1)
n = −Yn , (4.26)

since Rn starts at two loops.

Because we will focus almost exclusively on heptagon amplitudes in this paper,

we will usually drop the particle index n from of all of its associated quantities in

order to avoid clutter, e.g. P7 → P , E7 → E and E7 → E. In the NMHV case we will

instead use subscripts to denote components multiplying the different R-invariants.

For example, the BDS-normalized and BDS-like-normalized analogs of eq. (4.15) are

B = P(0) B0 + [(12)B12 + (14)B14 + cyclic] , (4.27)

E = P(0) E0 + [(12)E12 + (14)E14 + cyclic] . (4.28)

It is important to note that because the R-invariants are coupling-independent, the

same coupling-dependent factor that relates NMHV superamplitudes in different nor-

malizations will also relate the respective coefficient functions of the R-invariants. In
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other words,

E∗ = B∗ exp

[
−Γcusp

4
Y

]
= E V∗ , (4.29)

where ∗ can be any index, 0 or ij.

Given that in this paper we will be focusing exclusively on symbols, it’s also

worth emphasizing that when expanding eq. (4.25) or equivalently eq. (4.29) at weak

coupling, we may replace Γcusp → 4g2, as a consequence of the fact that the symbol

of any term containing a transcendental constant, such as ζn, is zero. Thus, the

conversion between the BDS-like-normalized quantities F ∈ {E , E, E0, Eij} and the

corresponding BDS-normalized quantities F ∈ {B, B,B0, Bij} at symbol level and at

fixed order in the coupling, simply becomes

F (L) =
L∑
k=0

F (k) (−Yn)L−k

(L− k)!
, F (L) =

L∑
k=0

F (k) Y L−k
n

(L− k)!
. (4.30)

In particular, forR7, which sits in the exponent, its analogous conversion to E7 through

four loops is given by

E (2)
7 = R

(2)
7 +

1

2

(
E (1)

7

)2

,

E (3)
7 = R

(3)
7 + E (1)

7 R
(2)
7 +

1

6

(
E (1)

7

)3

, (4.31)

E (4)
7 = R

(4)
7 +

1

2

(
R

(2)
7

)2

+ E (1)
7 R

(3)
7 +

1

2

(
E (1)

7

)2

R
(2)
7 +

1

24

(
E (1)

7

)4

.

In summary, all the nontrivial kinematic dependence of seven-particle scattering

can be encoded in the four transcendental functions R7, B0, B12 and B14 using BDS

normalization, or equivalently E , E0, E12 and E14 using BDS-like normalization. (The

other Eij that are needed are related to E12 and E14 by cyclic permutations.) These

functions are all expected to belong to a very special class of transcendental functions

called heptagon functions, whose definition and construction we turn to in the next

section. However, we will see that it is only the BDS-like-normalized amplitudes

that inherit a specific analytic property from the full amplitudes: they satisfy the

Steinmann relations. Taking this restriction into account hugely trims the space
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of heptagon functions needed to bootstrap the BDS-like normalized functions, thus

allowing for a far more efficient construction of the amplitude.

4.3 The Steinmann Cluster Bootstrap

The heptagon bootstrap approach we use in this paper is a slight refinement of that

used in ref. [41], which in turn is a generalization of the hexagon function boot-

strap [32, 33, 34, 35, 37, 36]. We begin this section by reviewing some basics of the

bootstrap approach and defining heptagon functions. Then we express the seven-

point Steinmann relations in the language of cluster A-coordinates. We assume a

basic working knowledge of both symbols [42, 93, 94, 90, 91, 92, 39, 190] and momen-

tum twistor notation [81].

4.3.1 Symbol Alphabet

In the cluster bootstrap program for n-point amplitudes in planar SYM theory, we

assume that the symbol alphabet consists of certain objects known as cluster A-

coordinates. These coordinates have been discussed extensively in the context of

scattering amplitudes; see for example ref. [39]. Here we will only briefly recall that

the kinematic data for a scattering process in planar SYM theory may be specified by

a collection of n momentum twistors [81], each of which is a homogeneous coordinate

Zi on P3. The configuration space for SYM theory is Confn(P3) = Gr(4, n)/(C∗)n−1,

and cluster A-coordinates on this space can be expressed in terms of the Plücker

coordinates of 4-brackets 〈ijkl〉, which we defined in eq. (4.9).

Mandelstam invariants constructed from sums of cyclically adjacent external mo-

menta pi, pi+1, . . . , pj−1 can be expressed nicely in terms of dual coordinates xi satis-

fying the relation pi = xi+1 − xi. Using the notation xij = xi − xj, the Mandelstam

invariant si,...,j−1 can be written as

si,...,j−1 = (pi + pi+1 + · · ·+ pj−1)2 = x2
ij =

〈i−1 i j−1 j〉
〈i−1 i〉〈j−1 j〉

. (4.32)
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Here we have also shown how to express the Mandelstam invariant si,...,j−1 in terms of

Plücker coordinates and the usual spinor products 〈ij〉 = εαβλ
α
i λ

β
j , see also eq. (4.7).

The denominator factors in eq. (4.32) drop out of any dual conformally invariant

quantity and so may be ignored for our purposes. We will use eq. (4.32) to estab-

lish the connection between the cluster A-coordinates (defined in terms of Plücker

coordinates) and the Steinmann relations (formulated in terms of Mandelstam in-

variants). More general Plücker coordinates 〈ijkl〉 not of the form 〈i−1 i j−1 j〉 have

more complicated (algebraic) representations in terms of Mandelstam invariants. (A

systematic approach for finding such representations was discussed in the appendix

of ref. [191].)

In this paper we focus on n = 7 where there are a finite number of A-coordinates.

In addition to the Plücker coordinates 〈ijkl〉 there are 14 Plücker bilinears of the

form 〈a(bc)(de)(fg)〉 ≡ 〈abde〉〈acfg〉 − 〈abfg〉〈acde〉. A convenient complete and

multiplicatively independent set of 42 dual conformally invariant ratios, introduced

in ref. [41], is given in terms of these building blocks by

a11 =
〈1234〉〈1567〉〈2367〉
〈1237〉〈1267〉〈3456〉

, a41 =
〈2457〉〈3456〉
〈2345〉〈4567〉

,

a21 =
〈1234〉〈2567〉
〈1267〉〈2345〉

, a51 =
〈1(23)(45)(67)〉
〈1234〉〈1567〉

, (4.33)

a31 =
〈1567〉〈2347〉
〈1237〉〈4567〉

, a61 =
〈1(34)(56)(72)〉
〈1234〉〈1567〉

,

with aij for 1 < j ≤ 7 given by cyclic permutation of the particle labels; specifically,

aij = ai1|Zk→Zk+j−1
. (4.34)

The Steinmann relations, to be reviewed in section 4.3.4, are expressed simply in

terms of Mandelstam invariants. We therefore note that with the help of eq. (4.32)

we can express a1j quite simply as

a11 =
s23s67s712

s12s71s45

, (4.35)
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with the remaining six a1j again given by cyclic permutations. The remaining 35

cluster A-coordinates do not admit simple representations in terms of Mandelstam

invariants because they involve brackets not of the form 〈i−1 i j−1 j〉.
Finally, it is useful to relate the cross ratios ui, defined in eq. (4.18), to the letters

aij. Eq. (4.35) can alternatively be written as

a11 =
x2

24x
2
61x

2
73

x2
13x

2
72x

2
46

. (4.36)

Combining this equation with cyclic permutations of it, and using eq. (4.18), we find

that
a11

a14a15

=
x2

73x
2
46

x2
74x

2
36

= u36 = u2 , (4.37)

plus cyclic permutations of this relation. Note that, although we can define 7 of these

cross ratios ui in seven-point kinematics, an n-point scattering process in this theory

only has 3n− 15 algebraically independent dual conformal invariants. Thus only 6 of

the 7 ui (or a1i) are algebraically independent. The seven ui obey a single algebraic

equation, the condition that a particular Gram determinant vanishes, which restricts

the kinematics to a six-dimensional surface within the seven-dimensional space of

cross ratios. We will not need the explicit form of the Gram determinant in this

paper.

4.3.2 Integrability

The heptagon bootstrap is based on the working hypothesis that any seven-point L-

loop amplitude in planar N = 4 SYM theory can be expressed as a linear combination

of weight-2L generalized polylogarithm functions written in the 42-letter alphabet

shown in eq. (4.33). Using this alphabet one can write 42k distinct symbols of weight

k. Fortunately, relatively few linear combinations of these 42k symbols are actually

the symbol of some function. A symbol S of the form

S(fk) =
∑

α1,...,αk

f
(α1,...,αk)
0 (φα1 ⊗ · · · ⊗ φαk

), (4.38)
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where the φαj
are letters, corresponds to an actual function only if it satisfies the

integrability condition

∑
α1,...,αk

f
(α1,...,αk)
0 (φα1 ⊗ · · · ⊗ φαk

)︸ ︷︷ ︸
omitting αj⊗αj+1

dlogφαj
∧ dlogφαj+1

= 0 ∀j ∈ {1, 2, . . . , k−1} ,

(4.39)

where the wedge product between two letters φp, φq that are functions of the inde-

pendent variables xi is defined to be

d log φp ∧ d log φq =
∑
m,n

[
∂ log φp
∂xm

∂ log φq
∂xn

− ∂ log φp
∂xn

∂ log φq
∂xm

]
dxm ∧ dxn . (4.40)

The symbols of physical amplitudes have several additional properties, to which we

will now turn our attention.

4.3.3 Symbol Singularity Structure

Locality requires that amplitudes can only have singularities when an intermediate

particle goes on-shell. In a planar theory the momenta of intermediate particles can

always be expressed as a sum of cyclically adjacent momenta, and thresholds in mass-

less theories are always at the origin. Hence perturbative amplitudes in planar SYM

theory can only have branch points when the corresponding Mandelstam invariants

si,...,j−1 = x2
ij vanish.

When some letter φ appears in the first entry of a symbol it indicates that the

corresponding function has branch points at φ = 0 and φ = ∞. Therefore the first

entry of a symbol that corresponds to a physical scattering amplitude must be a ratio

of products of x2
ij [46]. We see from eqs. (4.32) and (4.33) that only the seven a1j

are valid first entries. The remaining 35 cluster A-coordinates contain terms that

may be zero (or infinite) without any intermediate particles going on-shell. There

is no possibility of cancellation in a sum over terms in a symbol since the letters of

the alphabet are multiplicatively independent. The restriction that the first entry of

the symbol of any seven-point amplitude must be one of the seven a1j is called the

first-entry condition.
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4.3.4 Steinmann Relations

The classic work of Steinmann provided powerful restrictions on the analytic form of

discontinuities [65, 66]. Expanding upon his work, Cahill and Stapp found that the

generalized Steinmann relations hold and that double discontinuities vanish for any

pair of overlapping channels [67].3 A channel is labelled by a Mandelstam invariant,

but it also corresponds to an assignment of particles to incoming and outgoing states.

Two channels overlap if the four sets into which they divide the particles – (incom-

ing,incoming), (incoming,outgoing), (outgoing,incoming) and (outgoing,outgoing) –

are all non-empty. Fig. 4.1 shows a pair of overlapping channels for the seven-point

process, s345 and s234. They overlap because they divide the seven particles into the

four non-empty sets {2}, {3, 4}, {5}, and {6, 7, 1}.
Unlike two-particle invariants, three-particle invariants can cross zero “gently”,

without any other invariants having to change sign. Fig. 4.1 is drawn for the 3 → 4

configuration with particles 1, 2 and 3 incoming. Within that configuration, the left

panel shows that s345 can be either negative or positive. As s345 moves from negative

to positive, a branch cut opens up, due to one or more on-shell particles being allowed

to propagate between the two blobs. The discontinuity in the amplitude across the

branch cut is given by the sum of all such on-shell intermediate-state contributions,

integrated over their respective phase space. The same is true for the s234 discontinuity

illustrated in the right panel. However, once one takes the s345 discontinuity, the

resulting function cannot have a second discontinuity in the s234 channel, because it

is impossible for states to propagate on-shell simultaneously in both the s345 and s234

“directions”. Thus we require the Steinmann conditions,

Discsi+1,i+2,i+3

[
Discsi,i+1,i+2

F
]

= Discsi+2,i+3,i+4

[
Discsi,i+1,i+2

F
]

= 0, (4.41)

to hold for all i = 1, 2, . . . 7.

In contrast, the s234 channel does not overlap the s567 channel (or the s671 channel).

For example, in the right panel of the figure, one can have a second discontinuity,

3The implications of the Steinmann relations for the multi-Regge limit of amplitudes in planar
N = 4 SYM have been analyzed in refs. [192, 193, 58, 59].
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s345 s234

Figure 4.1: The figure on the left (right) shows the discontinuity of an amplitude in
the s345 (s234) channel due to the respective intermediate states. These two chan-
nels overlap, which implies that the states that cross the first cut cannot produce a
discontinuity in the second channel (or vice versa).

after taking Discs234 , in the s567 channel, as particle 1 and the particles crossing the

s234 cut rescatter into another set of intermediate states, which then materializes into

particles 5, 6 and 7. That is, the following double discontinuities can be nonvanishing,

Discsi+3,i+4,i+5

[
Discsi,i+1,i+2

F
]
6= 0, Discsi+4,i+5,i+6

[
Discsi,i+1,i+2

F
]
6= 0, (4.42)

and they provide us with no useful constraints. Also, the “self” double discontinuities

are nonvanishing,

Discsi,i+i,i+2

[
Discsi,i+1,i+2

F
]
6= 0, (4.43)

and are not of use to us. A recent analysis of the Steinmann relations, focusing on

the six-point case, can be found in ref. [68].

We will only consider restrictions imposed on the symbol letters aij by the Stein-

mann relations on overlapping three-particle cuts, eq. (4.41). If there are any re-

strictions imposed by using two-particle cuts, they are considerably more subtle for

generic kinematics. Flipping the sign of a two-particle invariant generally entails

moving a particle from the initial state to the final state, or vice versa, and other

invariants can flip sign at the same time, making it hard to assess the independence

of the two-particle discontinuities.

Because the discontinuities of a symbol are encoded in its first entries, double
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discontinuities are encoded by the combinations of first and second entries that ap-

pear together. Correspondingly, the Steinmann relations tell us that the symbol of

an amplitude cannot have any terms in which overlapping three-particle Mandel-

stam invariants appear together as first and second entries. Eqs. (4.32)–(4.33) imply

that this only imposes a constraint on the letters a1j, since the other letters do not

contain three-particle Mandelstam invariants si−1,i,i+1 ∝ 〈i−2 i−1 i+1 i+2〉. More

specifically, we see in eq. (4.35) that each a1i is proportional to a single three-particle

invariant si−1,i,i+1, so a first entry of a1i cannot be followed by a second entry of

a1,i+1, a1,i+2, a1,i+5, or a1,i+6, all of which contain a three-particle invariant involving

pi−1, pi, or pi+1. A first entry of a1i can be followed by a second entry of a1i, a1,i+3,

a1,i+4, or any aki for k > 1 (subject to the constraint of integrability).

Everything stated thus far about the Steinmann constraint applies to full, infrared-

divergent amplitudes. However, the BDS-like-normalized amplitudes straightfor-

wardly inherit this constraint, due to the fact that the BDS-like ansatz, given ex-

plicitly in eqs. (F.14) and (F.15), contains no three-particle invariants; it therefore

acts as a spectator when taking three-particle discontinuities, e.g.

Discsi−1,i,i+1
AMHV

7 = Discsi−1,i,i+1

[
ABDS-like

7 E
]

= ABDS-like
7 Discsi−1,i,i+1

E . (4.44)

This is no longer true for the BDS-normalized amplitude, which according to eq. (4.25)

comes with an extra factor of exp[Γcusp

4
Yn]. When expanded at weak coupling this

factor will produce powers of Yn. The function Yn is itself Steinmann since Yn = −E (1)
n .

However, products of Steinmann functions are not generically Steinmann functions,

because overlapping discontinuities can arise from different factors in the product.

Indeed, once we observe that Yn has a cut in one three-particle channel, and that it

is dihedrally invariant, we know it has cuts in all three-particle channels. Whereas

Yn itself is a sum of terms having cuts in overlapping channels, it is the cross terms

in (Yn)2, or higher powers of Yn, that violate the Steinmann relations. Similarly, the

ratio function V∗ = E∗/E , when expanded out perturbatively, contains products of

Steinmann functions and therefore does not obey the Steinmann relations. The lesson

here is that the proper normalization of the amplitude is critical for elucidating its
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analytic properties.

To summarize, the Steinmann relations require that any BDS-like-normalized

seven-point function F , such as E7 or E7, must satisfy

Disca1i
[
Disca1jF

]
= 0 if j 6= i, i+ 3, i+ 4 . (4.45)

At the level of the symbol, this statement is equivalent to requiring that the symbol

of F contains no first entries a1i followed by second entries a1,i+1, a1,i+2, a1,i+5, or

a1,i+6.

4.3.5 Absence of Triple Discontinuity Constraints

At the seven-point level, it is interesting to ask whether there could be new constraints

on amplitudes of the following type:

Disca17

[
Disca14

[
Disca11F

]]
?
= 0. (4.46)

The three-particle channels corresponding to a11 and a14 do not overlap, nor do the

channels corresponding to a14 and a17. The channels corresponding to a11 and a17

do overlap, but the two discontinuities are separated by the a14 discontinuity in

between. (An analogous situation never arises for three-particle cuts in the six-point

case, because the only allowed double three-particle cut in that case involves cutting

the same invariant twice.) We have inspected the symbols of the MHV and NMHV

seven-point amplitudes, and we find that eq. (4.46) is generically non-vanishing. The

act of taking the non-overlapping second discontinuity of the amplitude apparently

alters the function’s properties enough that the third discontinuity is permitted.

4.3.6 Steinmann Heptagon Functions

We define a heptagon function of weight k to be a generalized polylogarithm function

of weight k whose symbol may be written in the alphabet of 42 cluster A-coordinates,

eq. (4.33), and which satisfies the first entry condition. These functions have been
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studied in ref. [41], where it was found that the vector space of heptagon function

symbols at weight k = 1, 2, 3, 4, 5 has dimension 7, 42, 237, 1288, 6763, respectively.

In this paper our goal is to sharpen the heptagon bootstrap of ref. [41] by taking

advantage of the powerful constraint provided by the Steinmann relations. We thus

define Steinmann heptagon functions to be those heptagon functions that additionally

satisfy the Steinmann relations (4.45). This corresponds to a restriction on the second

entry of their symbols, as discussed in section 4.3.4. We stress again that while both

BDS-normalized and BDS-like-normalized amplitudes are heptagon functions, only

the BDS-like-normalized ones, E , E0, and Eij, are Steinmann heptagon functions.

We will see in subsection 4.5.1 that a drastically reduced number of heptagon func-

tions satisfy the Steinmann relations. The reduction begins at weight 2, where there

are 42 heptagon function symbols, but only 28 that obey the Steinmann relations.

The corresponding 28 functions fall into 4 orbits:

Li2

(
1− a13a14

a17

)
, Li2 (1− a14a16) , log2 a13 , log a13 log a16 , (4.47)

together with their cyclic permutations. This fractional reduction, by one third, is

the same as in the hexagon case [68], where the number of weight-2 functions was

reduced from 9 to 6. At higher weight, we will see that the reductions are much more

dramatic, and even more so for heptagon functions than hexagon functions. This

reduction in the number of relevant functions vastly decreases the size of our ansatz,

making this version of the bootstrap program more computationally tractable than

its predecessor.

4.4 MHV and NMHV Constraints

Starting from a basis of weight-k Steinmann heptagon symbols, we impose known

analytic and physical properties as constraints in order to identify the amplitudes

uniquely within this space. Here we review these properties and the constraints they

impose.
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4.4.1 Final Entry Condition

The final entry condition is a restriction on the possible letters that may appear

in the final entry of the symbol of an amplitude. As a consequence of the dual

superconformal symmetry of SYM, the differential of an MHV amplitude must be

expressible as a linear combination of d log〈i j−1 j j+1〉 factors [181]. The differential

of a generalized polylogarithm of weight k factors into linear combinations of weight-

(k−1) polylogarithms multiplied by d log φ terms where φ is the final entry of the

symbol. Therefore the final entries of the symbol of an MHV amplitude must be

composed entirely of Plücker coordinates with three adjacent momentum twistors,

〈i j−1 j j+1〉. In the symbol alphabet (4.33) we have chosen, the final entries can

only be drawn from the set of 14 letters {a2j, a3j}.
The MHV final entry condition we just described can be derived from an anomaly

equation for the Q̄ dual superconformal generators [64]. The same anomaly equation

can also be used to constrain the final entries of the symbol of the NMHV super-

amplitude E. In particular, using as input the leading singularities of the N2MHV

8-point amplitude obtained from the Grassmannian [12], and refining the Q̄ equation

so as to act on the BDS-like normalized amplitude rather than the BDS-normalized

one, Caron-Huot has found [194] that only 147 distinct (R-invariant) × (final entry)

combinations are allowed in E, namely these 21:

(34) log a21, (14) log a21, (15) log a21, (16) log a21, (13) log a21,

(12) log a21, (45) log a37, (47) log a37, (37) log a37, (27) log a37,

(57) log a37, (67) log a37, (45) log
a34

a11

, (14) log
a34

a11

, (14) log
a11a24

a46

, (4.48)

(14) log
a14a31

a34

, (24) log
a44

a42

, (56) log a57, (12) log a57, (16) log
a67

a26

,

(13) log
a41

a26a33

+ ((14)− (15)) log a26 − (17) log a26a37 + (45) log
a22

a34a35

− (34) log a33,

together with their cyclic permutations.4

4We thank Simon Caron-Huot for sharing these results with us.
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4.4.2 Discrete Symmetries

The n-particle superamplitudes An are invariant under dihedral transformations act-

ing on the external particle labels. The generators of the dihedral group Dn are the

cyclic permutation i → i + 1 and the flip permutation i → n + 1 − i of the particle

labels, or equivalently of the momentum twistors. For the heptagon a-letters (4.33),

these correspond to

Cyclic transformation: ali → al,i+1 ,

Flip transformation:

a2i ↔ a3,8−i

ali → al,8−i for l 6= 2, 3 .

(4.49)

MHV and MHV amplitudes differ only in their tree-level prefactors. Hence the

functions En and Rn must remain invariant under spacetime parity transformations.

Parity maps NMHV amplitudes to NMHV ones and therefore acts nontrivially on E0,

E12 and E14. In the language of our symbol alphabet (4.33), a parity transformation

leaves the letters a1i and a6i invariant. The remaining letters transform under parity

according to

Parity transformation: a21 ←→ a37, a41 ←→ a51, (4.50)

and the cyclic permutations thereof.

The parity and dihedral symmetries of the (super)amplitude are inherited by its

BDS(-like) normalized counterpart because the BDS(-like) ansätze are also dihedrally

invariant.

4.4.3 Collinear Limit

So far we have primarily focused on the BDS-like normalized amplitude and the

Steinmann functions describing it. However for the study of collinear limits it proves

advantageous to switch, using eq. (4.30), to the BDS-normalized amplitude, since in

the limit the former becomes divergent, whereas the latter remains finite.
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In more detail, the BDS ansatz ABDS
n entering eq. (4.1) is defined in such a way

that the n-point BDS-normalized amplitude (or equivalently the remainder function

for MHV) reduces to the same quantity but with one fewer particle:

lim
i+1||i

Rn = Rn−1 ,

lim
i+1‖i

Bn = Bn−1 .
(4.51)

To take one of these collinear limits, one of the si,i+1 must be taken to zero. From

eq. (4.32), we see that this can be accomplished by taking a limit of one of the

momentum twistor variables. In the case of the NMHV superamplitude we also need

to specify the limit of the fermionic part of the supertwistors (4.6). The (MHV degree

preserving) 7||6 collinear limit can be taken by sending

Z7 → Z6 + ε
〈1246〉
〈1245〉

Z5 + ετ
〈2456〉
〈1245〉

Z1 + η
〈1456〉
〈1245〉

Z2 , (4.52)

for fixed τ , and by taking the limit η → 0 followed by ε→ 0.

Of course for bosonic quantities, only the bosonic part Zi → Zi of the supertwistor

is relevant. As noted in ref. [41], in the limit (4.52) the heptagon alphabet (4.33)

reduces to the hexagon alphabet, plus the following 9 additional letters,

η , ε , τ , 1 + τ ,

〈1235〉〈1246〉+ τ〈1236〉〈1245〉 , 〈1245〉〈3456〉+ τ〈1345〉〈2456〉 ,

〈1246〉〈2356〉+ τ〈1236〉〈2456〉 , 〈1246〉〈3456〉+ τ〈1346〉〈2456〉 ,

〈1235〉〈1246〉〈3456〉+ τ〈1236〉〈1345〉〈2456〉 . (4.53)

Therefore the collinear limits of heptagon functions are not generically hexagon func-

tions. We say that a heptagon symbol has a well-defined 7||6 limit only if in this limit

it is independent of all 9 of the additional letters (4.53).

We must also take the limit (4.52) of the R-invariants. Since these invariants are

antisymmetric under the exchange of any pair of twistor indices, the invariants that

contain both indices 6 and 7 will vanish. All other invariants reduce to six-point
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R-invariants. Denoting the six-point invariants by

[12345] = (6) (4.54)

and its cyclic permutations (under the six-point dihedral group), and solving the

single identity of type (4.10) among them to eliminate (6), we deduce that

lim
7‖6

B =(1)[B̂17 + B̂67 + B̂0] + (2)[B̂26 − B̂67] + (3)[B̂36 + B̂37 + B̂67 + B̂0]

+ (4)[B̂47 − B̂67] + (5)[B̂56 + B̂67 + B̂0] ,
(4.55)

where the hats denote the collinear limit of the corresponding bosonic functions.

Finally, we should note that in this work we will be focusing on collinear limits

of dihedrally invariant functions. Therefore it will be sufficient to consider the 7||6
limit shown above, and the remaining i+1 ‖ i collinear limits will be automatically

satisfied as a consequence of dihedral symmetry.

4.5 Results

4.5.1 Steinmann Heptagon Symbols and Their Properties

As defined in section 4.3.6, a Steinmann heptagon function of weight k is a polylog-

arithm of weight k that has a symbol satisfying the following properties:

(i) it can be expressed entirely in terms of the heptagon symbol alphabet of eq. (4.33),

(ii) only the seven letters a1i appear in its first entry,

(iii) a first entry a1i is not followed by a second entry a1j with j ∈ {i + 1, i + 2, i +

5, i+ 6}.

We will frequently use the term ‘Steinmann heptagon symbol’ to mean the symbol

of a Steinmann heptagon function. We begin by investigating how the number of

Steinmann heptagon symbols compares to the number of heptagon symbols reported

in ref. [41] through weight 5.
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Weight k = 1 2 3 4 5 6 7 7′′

parity +, flip + 4 16 48 154 467 1413 4163 3026

parity +, flip − 3 12 43 140 443 1359 4063 2946

parity −, flip + 0 0 3 14 60 210 672 668

parity −, flip − 0 0 3 14 60 210 672 669

Total 7 28 97 322 1030 3192 9570 7309

Table 4.1: Number of Steinmann heptagon symbols at weights 1 through 7, and those
satisfying the MHV next-to-final entry condition at weight 7.

Table 4.1 presents the number of Steinmann heptagon symbols through weight

7; these numbers can be compared to 7, 42, 237, 1288, and 6763 linearly independent

heptagon symbols at weights 1 through 5, respectively [41]. By weight 5, the size of

the Steinmann heptagon space has already been reduced by a factor of six compared

to the size of the standard heptagon space! (The corresponding reduction factor for

hexagon symbols at weight 5 is only about 3.5.)

The total number of Steinmann heptagon symbols at each weight was calculated

without imposing spacetime parity or dihedral symmetries. The first four rows show

the number of Steinmann heptagon symbols that have the specified eigenvalue under

the Z2 × Z2 generators of parity and the dihedral flip symmetry. There are many

more parity even (parity +) Steinmann heptagon functions than parity odd. At each

weight there are approximately the same number of flip + as flip −. Up through

weight 7, there are an equal number of flip + and flip − parity odd functions.

Table 4.1 has two columns for weight 7. The column 7′′ counts the number of

weight 7 symbols that satisfy an additional constraint we call the MHV next-to-final

entry condition. Paired with the MHV final entry condition, which requires the final

entry of the symbol to be a2j or a3j, integrability imposes an additional constraint that

prohibits the seven letters a6i from appearing in the next-to-final entry of any MHV

symbol. Symbols satisfying this additional constraint are useful for bootstrapping the
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four-loop MHV heptagon, to be discussed in subsection 4.5.3 below.

The fact that there are many more parity-even than parity-odd Steinmann hep-

tagon functions is also true in the hexagon case [68]. In that case, it is possible to give

a closed-form construction of an infinite series of parity-even “K” functions. The K

functions apparently saturate the subspace of Steinmann hexagon functions having

no parity-odd letters. This series of functions can also be repurposed, with appro-

priate arguments, to describe some, but not all, of the Steinmann heptagon symbols

having no parity-odd letters.

Before concluding this section, let us emphasize that we are here counting inte-

grable symbols, not functions. We expect each such symbol to be completable into

a function. However, there are other functions (with vanishing symbol) obtained

by multiplying lower-weight functions by multiple zeta values. When we impose

physical constraints on the full function space, parameters associated with these ad-

ditional functions will also have to be determined. On the other hand, sometimes the

function-level constraints are more powerful than the symbol-level constraints. As

first observed in the case of the 3-loop MHV hexagon [32, 34], the number of n-gon

functions obeying additional constraints, such as well-defined collinear limits, may be

smaller than the number of the corresponding symbols. That is, completing a symbol

to a function with proper branch cuts may require adding to it functions of lower

weight that don’t have a well-defined collinear limit, even if the symbol does. We

leave the problem of upgrading our heptagon bootstrap from symbol to function level

to a later work.

4.5.2 The Three-Loop NMHV Heptagon

Once we have constructed the Steinmann heptagon symbol space, we can assemble it

into an ansatz for the seven-particle amplitude and apply the constraints outlined in

section 4.4 to fix the free parameters. Let us describe the steps of this computation

in the NMHV case.

The NMHV amplitude is a linear combination of 15 transcendental functions mul-

tiplying the independent R-invariants. Therefore the initial number of free parameters
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Loop order L = 1 2 3

Steinmann symbols 15× 28 15×322 15×
3192

NMHV final entry 42 85 226

Dihedral symmetry 5 11 31

Well-defined collinear 0 0 0

Table 4.2: Number of free parameters after applying each of the constraints in the
leftmost column, to an ansatz for the symbol of the L-loop seven-point NMHV BDS-
like-normalized amplitude. The first row in column L is equal to the last line of column
k = 2L of table 4.1, multiplied by 15 for the 15 linearly independent R-invariants.

at L loops, shown in table 4.2, is given by 15 times the entry in table 4.1 that counts

the total number of Steinmann heptagon symbols of weight 2L.5

We then impose the heptagon NMHV final entry condition discussed in subsec-

tion 4.4.1. Similarly to the NMHV hexagon case [38], the list of allowed final entries

in eq. (4.4.1) can be translated into relations between the 42 different {k − 1, 1}
coproduct components for each of the 15 functions multiplying the independent R-

invariants, for a total of 42×15 = 630 independent objects. Note that eq. (4.4.1)

contains all 21 distinct R-invariants, so in order to obtain the aforementioned equa-

tions we first need to eliminate the dependent R-invariants with the help of eqs. (4.13)

and (4.14).

In principle, one can impose the NMHV final entry equations at L = k/2 loops

on the ansatz of weight-k integrable symbols appearing in the first line of table 4.2.

In practice, we have found it more efficient to solve these equations simultaneously

5If we had imposed dihedral symmetry first, we would have had only three independent functions
E0, E12 and E14 to parametrize, each with some dihedral symmetry, and there would have been
fewer than 3 times the number of independent Steinmann heptagon symbols in the first line of the
table. This part of the computation is not a bottleneck either way. This alternative procedure would
also give rise to a different set of numbers in the second line of table 4.2.
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with the weight-k integrability equations (4.39), namely the equations imposing in-

tegrability on the last two slots of an ansatz for E. The number of free parameters

after imposing this condition (using either method) is reported in the second line of

table 4.2. We see that the final entry condition is already very restrictive; out of the

47880 possible NMHV symbols with generic final entry at three loops, only 226 of

them obey the NMHV final entry. Next we impose invariance of E under dihedral

transformations, as discussed in subsection 4.4.2. The dihedral restriction leads to

the small number of remaining free parameters reported in the third line of table 4.2.

We then examine the behavior of the amplitude in the collinear limit. To this end,

we recall from subsection 4.4.3 that it is advantageous to convert to the BDS nor-

malization, since the BDS-normalized amplitude is finite in the collinear limit, while

the BDS-like normalized one becomes singular. Converting our partially-determined

ansatz for E to an equivalent ansatz for B with the help of eq. (4.30), we then take

its collinear limit using eq. (4.52).

Quite remarkably, demanding that the right-hand side of eq. (4.55) be well-defined,

namely independent of the spurious letters (4.53) (and thus also finite), suffices to

uniquely fix B through 3 loops! Even an overall rescaling is not allowed in the last line

of table 4.2, because the condition of well-defined collinear limits, while homogeneous

for BDS-normalized amplitudes, is inhomogeneous for the BDS-like normalization

with which we work. We did not need to require that the collinear limit (4.55) of the

solution agrees with the six-point ratio function computed at three loops in ref. [37],

but of course we have checked that it does agree.

In this manner, we arrive at a unique answer for the symbol of the NMHV heptagon

through three loops. Our results are included in the ancillary files, which can also

be downloaded from [177]. The one- and two-loop results match the amplitudes

computed in refs. [111] and [64], respectively. The fact that six-point boundary data

is not even needed to fix the symbol through three loops points to a strong tension

between the Steinmann relations, dual superconformal symmetry (in the guise of the

final entry condition), and the collinear limit.
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4.5.3 The Four-Loop MHV Heptagon

For the MHV remainder function at L = k/2 loops, we could in principle start from

an ansatz for E (L)
7 involving all heptagon Steinmann symbols of weight k. As with the

NMHV case, however, it is simpler to impose the MHV final-entry condition discussed

in section 4.4.1 at the same time as integrability on the last two entries of the symbol.

In fact, our initial four-loop MHV ansatz was constructed using not just the MHV

final-entry condition, but also the MHV next-to-final entry condition discussed in

section 4.5.1.

Loop order L = 1 2 3 4

Steinmann symbols 28 322 3192 ?????

MHV final entry 1 1 2 4

Well-defined collinear 0 0 0 0

Table 4.3: Free parameter count after applying each of the constraints in the left-
most column to an ansatz for the symbol of the L-loop seven-point MHV BDS-like-
normalized amplitude.

In the first line of table 4.3, we reiterate the number of Steinmann heptagon

functions with general final entry. In the second line of the table, we report the

number of symbols that satisfy the MHV final entry condition. Clearly, there are

only a few Steinmann heptagon functions at each weight that satisfy even these few

constraints. Note that we have not even imposed dihedral invariance, nor that the

symbol have even spacetime parity.

To determine the third line of the table, we convert the ansatz to one for the

BDS normalized amplitude, using eq. (4.30) and the symbol of Y7. We then ask that

this quantity have a well-defined collinear limit. As in the NMHV case, there is a

unique solution to this constraint, this time through four loops, as reported in the

last line of table 4.3; this unique solution must be the symbol of E (L)
7 . Our results

are included in the ancillary files, which can also be downloaded from [177]. Again

the overall normalization is fixed because the last constraint is an inhomogeneous one
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for a BDS-like normalized amplitude. The symbols of the two- and three-loop seven-

point BDS remainder functions R
(2)
7 , R

(3)
7 are known [181, 41]. We have converted

these quantities to the BDS-like normalization with the help of eq. (4.31), and they

agree with our unique solutions. At four loops, when we convert our unique solution

for E (4)
7 (which has 105,403,942 terms) to R

(4)
7 (which has 899,372,614 terms), we find

that its well-defined collinear limit agrees perfectly with the symbol of the four-loop

six-point MHV remainder function R
(4)
6 computed in ref. [35]. Because we did not

need to impose dihedral invariance, nor spacetime parity, we can say that even less

input is needed to fix the symbol of the MHV amplitude through four loops than was

needed for the three-loop NMHV amplitude!

Before concluding, let us note that although we used the Steinmann constraint

to tightly constrain the space of symbols through which we had to sift in order to

find the four-loop MHV heptagon, it is possible that the same result could have been

obtained (in principle, with much more computer power), without it. In the second

row of table 4.3 we see, for example, that at weight 6 there are precisely 2 Steinmann

heptagon symbols satisfying the MHV final-entry condition. Ref. [41] imposed the

MHV final-entry condition, without considering the Steinmann relations, and found 4

different symbols at weight 6: (Y7)3, Y7R
(2)
7 , R

(3)
7 and one more. Modulo the reducible

(product) functions (Y7)3 and Y7R
(2)
7 , heptagon functions satisfying the MHV final-

entry condition automatically satisfy the Steinmann relations as well, at least at

weight 6! We cannot rule out the possibility that the Steinmann constraint is also

superfluous at weight 8 (or, perhaps, even higher), but certainly the complexity of

the computation is significantly reduced if one allows oneself to input this knowledge.

4.5.4 Three Loops from Dihedral Symmetry

In this subsection we consider dropping the final entry condition, which derives from

dual superconformal invariance. One motivation for doing this is to check indepen-

dently the NMHV final entry conditions detailed in eq. (4.4.1). Another possible

motivation, in the MHV case, is to try to widen the applicability of the bootstrap ap-

proach to the study of (bosonic) light-like Wilson loops in weakly-coupled conformal
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theories with less supersymmetry than N = 4 SYM.

Let us consider adding general L-loop Steinmann heptagon symbols Ẽ (L)
7 (with

no restrictions on the final entry) to the known answer E (L)
7 and see whether we can

preserve the conditions of dihedral symmetry and good collinear behavior. We can

ask this question through three loops, because we have a complete basis of Stein-

mann heptagon symbols up to (and beyond) weight six. Since such symbols appear

additively in the BDS-normalized quantity B(L)
7 , we need the Steinmann symbols Ẽ (L)

7

themselves to be well-defined in the collinear limit. The numbers of Steinmann hep-

tagon symbols obeying the successive conditions of cyclic invariance, flip symmetry,

and well-defined collinear behavior are detailed in table 4.4.

We find that the first dihedrally invariant Steinmann symbol with well-defined

collinear limits appears at weight six, i.e. at three loops. We denote this symbol by

Ẽ7. In fact the collinear limit of Ẽ7, which we denote by Ẽ6, automatically turns out

to possess six-point dihedral invariance as well. Furthermore the collinear limit of Ẽ6

from six points to five is vanishing. Therefore the symbol Ẽ7 could be added to that

for E (3)
7 (and simultaneously Ẽ6 to E (3)

6 ) without breaking dihedral symmetry or good

collinear behavior either at seven points or at six points.

Neither Ẽ7 nor Ẽ6 obey the MHV final entry condition, as required to be consistent

with the results of section 4.5.3. Thus at the three-loop order, Q̄-supersymmetry

is really fixing only a single parameter, after the consequences of the Steinmann

relations, dihedral symmetry and good collinear behavior are taken into account.

A different criterion that can be used to uniquely determine E (3)
7 is that the three-

loop remainder R
(3)
6 should have at most a double discontinuity around the locus

u = 0 where u is one of three the cross ratios available at six points. The double

discontinuity is in fact predicted from the original implementation of the Wilson line

OPE [46], which we will not delve into here. We may simply observe that Ẽ6 has a

triple discontinuity and hence we can rule out adding Ẽ7 to E (3)
7 on these grounds.

We may similarly examine the consequences of dihedral symmetry and collinear

behavior for the NMHV amplitude. In this case there are some additional conditions

which we can impose, from requiring the absence of spurious poles. We recall the

form of the NMHV ratio function given in eq. (4.15), or equivalently the form of E
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Loop order L = 1 2 3

Steinmann symbols 28 322 3192

Cyclic invariance 4 46 456

Dihedral invariance 4 30 255

Well-defined collinear 0 0 1

Table 4.4: Number of linearly independent Steinmann heptagon symbols obeying,
respectively: cyclic invariance, dihedral invariance, and well-defined collinear behavior
together with dihedral symmetry.

given in eq. (4.28). The tree-level amplitude P(0) obviously possesses only physical

poles, but the individual R-invariants have spurious poles. Requiring that the NMHV

amplitude as a whole has no spurious poles leads us to the following conditions:

Spurious I: E47|〈1356〉=0 = 0 , (4.56)

Spurious II: E23|〈1467〉=0 = E25|〈1467〉=0 . (4.57)

In table 4.5 we detail the number of Steinmann symbols obeying the successive

conditions of cyclic symmetry, absence of spurious poles, well-defined collinear be-

havior, and flip symmetry. At weight two, we find a single combination obeying all

conditions, which is precisely the combination B(1) itself, which is therefore deter-

mined up to an overall scale by these conditions. Note that unlike the B(L) for L > 1,

the function B(1) obeys the Steinmann relations.

At weight four, we find no Steinmann symbols obeying all the conditions. This

is not in contradiction with the results of section 4.5.2: we recall that the quantity

E(2) does not exhibit well-defined, finite collinear behavior; rather it is the (non-

Steinmann) function B(2) which manifests this. The zero in the final row of the L = 2

column in table 4.5 rather reflects the fact that there is no Steinmann symbol which

could be added to E(2) while preserving the good collinear behavior of B(2), even if

we are willing to abandon the NMHV final entry condition.
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At weight six, we find a single Steinmann symbol with all the properties listed in

table 4.5. It is precisely the same symbol Ẽ7 appearing in table 4.4 multiplied by the

tree-level amplitude P(0). Hence it only appears as a potential contribution to E
(3)
0 .

In other words, the symbols of E
(3)
12 and E

(3)
14 are uniquely fixed by the constraints

of dihedral symmetry, absence of spurious poles and correct collinear behavior. The

appearance of the same ambiguity Ẽ7 in E
(3)
0 is to be expected since the only additional

criterion imposed in table 4.5, that of spurious-pole cancellation, cannot constrain

potential contributions to E0. Finally, we note that the addition of Ẽ7 in E
(3)
0 is

connected to its addition to E (3)
7 by the NMHV to MHV collinear limit which relates

E7 to E6. Thus dropping the final entry condition from Q̄-supersymmetry allows

only a single potential contribution at weight 6 in all of the heptagon and hexagon

amplitudes.

Loop order L = 1 2 3

Steinmann symbols 15× 28 15×322 15× 3192

Cyclic invariant 4 + (2× 28) 46 + (2× 322) 456 + (2× 3192)

Spurious vanishing I 4 + 1 + 28 46 + 19 +

322

456 + 208 + 3192

Spurious vanishing II 4 + 6 46 + 89 456 + 927

Well-defined collinear 1 0 11

Flip invariant 1 0 1

Table 4.5: Number of Steinmann heptagon symbols entering the NMHV ampli-
tude obeying respectively cyclic invariance, vanishing on spurious poles, well-defined
collinear behavior and flip symmetry.

We conclude that, up to three loops, starting from an ansatz of Steinmann hep-

tagon functions, all heptagon amplitudes and hence all hexagon amplitudes (by

collinear limits) in planar N = 4 SYM can be determined just by imposing dihe-

dral symmetry and well-defined collinear limits, combined with the requirement of no
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Figure 4.2: Factorization of a seven-point amplitude in the limit s345→0. Notice that
the collinear limit p7 ‖ p1 can be taken “inside” the factorization limit.

triple discontinuity in R
(3)
6 and no spurious poles in the NMHV amplitudes. These

results provide an independent check of the NMHV final entry conditions (4.4.1). It

would be interesting to investigate whether the ambiguity functions Ẽ7 and Ẽ6 could

play a role in the perturbative expansion of any weakly-coupled conformal theories

with less supersymmetry than N = 4 SYM.

4.6 The Multi-Particle Factorization Limit

One of the kinematic limits we can study using our explicit seven-point results is the

multi-particle factorization limit. In this limit, one of the three-particle invariants

goes on shell, si,i+1,i+2 → 0. Figure 4.2 shows the limit s345 → 0. In this limit

the seven-point NMHV amplitude factorizes at leading power into a product of four-

point and five-point amplitudes, multiplied by the 1/s345 pole. The seven-point MHV

amplitude vanishes at leading power. Indeed, all supersymmetric MHV amplitudes

are required to vanish at leading power when a three-particle (or higher-particle)

invariant goes on shell. This result holds because all possible helicity assignments

for the intermediate state require at least one lower-point amplitude to have fewer

than two negative-helicity gluons; such amplitudes vanish by supersymmetry Ward

identities [195, 196]. For the same reason, MHV tree amplitudes [2] have no multi-

particle poles.

Before turning to the behavior of the seven-point NMHV amplitude, we recall

the multi-particle factorization behavior of the BDS-like-normalized six-point NMHV
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amplitude [37]. As s345 → 0, two of the six-point R-invariants become much larger

than the rest, and they become equal to each other. Therefore the singular behavior

of the six-point amplitude is controlled by a single coefficient function, which we

denote by U6 and whose limiting behavior takes an especially simple form.6 Up to

power-suppressed terms, the limit of U6 was found to be a polynomial in log(uw/v),

whose coefficients are rational linear combinations of zeta values, and whose overall

weight is 2L. Here, u, v, and w are the three dual conformal invariant cross ratios

for the hexagon, whose expressions in terms of six-point kinematics are

u =
x2

13 x
2
46

x2
14 x

2
36

=
s12 s45

s123 s345

, v =
x2

24 x
2
51

x2
25 x

2
41

=
s23 s56

s234 s123

, w =
x2

35 x
2
62

x2
36 x

2
52

=
s34 s61

s345 s234

.

(4.58)

The six-point limit s345 → 0 sends uw/v →∞.

The logarithm of U6, called U in ref. [37], has an even simpler behavior than U6.

The L-loop contribution U (L) is also a polynomial in log(uw/v), but it has only degree

L at L loops, for L > 1. This three-loop result was later found to hold also at four

and five loops [38, 68]. Because U (L) has weight 2L, but a maximum of L powers of

log(uw/v) for L > 1, every term in it contains zeta values, and its symbol vanishes.

The only exception is the one-loop result,

U (1)(u, v, w)
s345→0−−−−−→ − 1

2
log2

(uw
v

)
− 2ζ2 , (4.59)

where we have converted the result in ref. [37] to that for expansion parameter g2.

The results for U (L) agree with the perturbative expansion of an all-orders prediction

based on the Pentagon OPE [197, 198].

Ref. [37] also made a prediction for the multi-particle factorization behavior of

NMHV n-point amplitudes, which we can now test at 7 points at the symbol level.

Define the factorization function Fn by

ANMHV
n (ki)→ Aj−i+1(ki, ki+1, . . . , kj−1, K) (4.60)

6The function U6 can be identified with the function E in refs. [38, 68], but we prefer to adopt
a different notation here to emphasize that this function is not the BDS-like-normalized NMHV
superamplitude E6.
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× Fn(K2, sl,l+1)

K2
An−(j−i)+1(−K, kj, kj+1, . . . , ki−1) ,

as K2 → 0, or in the seven-point case,

ANMHV
7 (ki)

s345→0−−−−−→ A5(k6, k7, k1, k2, K)
F7(K2, sl,l+1)

K2
A4(−K, k3, k4, k5) , (4.61)

where K = k3 + k4 + k5, K2 = s345. Then F7 was predicted to have the form

[logF7]
(L)
symbol = δL,1

{
1

8ε2

[(
(−s712)(−s34)

(−s56)

)−ε
+

(
(−s45)(−s671)

(−s23)

)−ε]
− 1

2
log2

(
(−s712)(−s34)

(−s56)

/
(−s45)(−s671)

(−s23)

)
− 1

2
log2

(
x2

73x
2
35x

2
46x

2
62

x2
57x

2
24(x2

36)2

)}
. (4.62)

For simplicity, we have dropped all terms that vanish at symbol level, which kills

all terms in logF7 beyond one loop, and we have converted to the g2 expansion

parameter.

We should now convert this prediction to one for the BDS-like normalized ampli-

tude. Apart from trivial tree-level factors, we have

logF7 = log

(
ANMHV

7

ABDS
5 ABDS

4

)
= log

(
ANMHV

7

ABDS−like
7

)
− log

(
ABDS

5 ABDS
4

ABDS−like
7

)
. (4.63)

So to obtain log(ANMHV
7 /ABDS−like

7 ) we need to add to [logF7](1) the quantity

−M̂ (1)
7 +M

(1)
5 +M

(1)
4 , (4.64)

where M̂7 is given in eq. (F.14), and M
(1)
4 and M

(1)
5 are the four- and five-point MHV

amplitudes, for the kinematics shown in fig. 4.2, and normalized by their respective

tree amplitudes.
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Adding eqs. (4.63) and (4.64), we find, in terms of dual variables,

log

(
ANMHV

7

ABDS−like
7

)(1)

→ −1

2
log2

(
x2

73x
2
35x

2
46x

2
62

x2
57x

2
24(x2

36)2

)
− 1

2
log2

(
x2

46x
2
72x

2
13

x2
73x

2
24x

2
61

)
− 1

2
log2

(
x2

35x
2
72x

2
61

x2
62x

2
57x

2
13

)
, (4.65)

at symbol level, and a vanishing contribution to the logarithm beyond one loop. Note

that the first term in eq. (4.65) comes directly out of eq. (4.62), and is the “naive”

generalization of −1
2

log2(uw/v) to the seven-point case. The first term diverges

logarithmically as s345 = x2
36 → 0, while the last two terms are finite in this limit.

The one-loop factorization behavior in eq. (4.65) could have been extracted, of

course, from the one-loop seven-point amplitude. Thus the symbol-level content of the

prediction is really the vanishing of the logarithm beyond one loop. Beyond symbol

level, the all-loop-order prediction of ref. [37] is that (up to an additive constant) the

first term gets upgraded to the function appearing in the six-point limit, namely U(x),

where x = (x2
73x

2
35x

2
46x

2
62)/(x2

57x
2
24(x2

36)2), while the last two terms should simply get

multiplied by the cusp anomalous dimension.

Now let us test the symbol-level prediction (4.65) by taking the limit s345 → 0 of

the seven-point NMHV amplitude. Referring back to (4.32), we have

s345 = x2
36 =

〈2356〉
〈23〉〈56〉

→ 0. (4.66)

Keeping s23 and s56 generic requires us to take this limit by sending 〈2356〉 → 0. This

limit can be accomplished using the replacement

Z2 → Z3 + a
〈1436〉
〈1456〉

Z5 + b
〈1453〉
〈1456〉

Z6 + ε
〈3456〉
〈1456〉

Z1 (4.67)

where a, b ∈ C are generic and ε is a regulator. In the limit ε→ 0, a14 vanishes while

the other aij map into a space of 31 finite letters.
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The map works out to be

a25 →
a11a17

a21a24

, a33 →
a17

a24

, a34 →
a21a24

a17

, a37 →
a11a17

a21

a42 → a24 a46 →
a21a24

a17

, a52 →
a17

a24

, a56 →
a11a17

a21a24

a63 → −1, a65 → −1, (4.68)

which removes 10 of the 42 letters, leaving a14 and the 31 finite letters.

We also need the limiting behavior of the seven-point R-invariants. Referring back

to their definition (4.8), we see that the invariants (71), (14) and (47) become singular

as 〈2356〉 → 0 while all others remain finite. The finite R-invariants are suppressed

in the identities (4.10) in this limit, giving us

(71)s345→0 = (14)s345→0 = (47)s345→0 . (4.69)

The function controlling the behavior of E7 as s345 → 0 is thus given by the sum

of functions multiplying these singular invariants in eq. (4.28), corresponding to the

combination

U7 ≡
[
E71 + E14 + E47 + E0

]
s345→0

. (4.70)

Note that from eq. (4.13), the coefficient of E0 receives a 3/7 contribution from (71),

and 2/7 + 2/7 from (14) and (47).

Ignoring the tree amplitude, the quantity U7 is the exponential of log(ANMHV
7 /ABDS−like

7 ),

whose prediction is given in eq. (4.65). Using eq. (4.68) to compute U7 from eq. (4.70)

in terms of the letters aij, we find at one, two, and three loops,

U (1)
7 = −1

2
log2

(
a2

14

a11a17

)
− 1

2
log2 a11 −

1

2
log2 a17 , (4.71)

U (2)
7 =

(
U (1)

7

)2

2!
, (4.72)

U (3)
7 =

(
U (1)

7

)3

3!
. (4.73)
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Hence U7 exponentiates at symbol level, as predicted by eq. (4.65). Substituting

eq. (4.36) for a11, and its cyclic permutations, into eq. (4.71), we find perfect agree-

ment with eq. (4.65). We can also express the result in terms of the cross ratios

ui:

U (1)
7 = −1

2
log2

(
u1u2

u3u7

)
− 1

2
log2

(
u1u4u5

u3u6

)
− 1

2
log2

(
u2u6u5

u7u4

)
. (4.74)

Once this analysis is repeated at function level, we expect the first term in U (1)
7 to

receive higher-loop zeta-valued contributions, dictated by the six-point function U(x),

while the last two terms simply get multiplied by the cusp anomalous dimension.

The last two terms in eq. (4.71) or eq. (4.74) do not diverge in the factorization

limit. On the other hand, they play an essential role in endowing U7 with the correct

behavior as p7 and p1 become collinear. Fig. 4.2 shows that this collinear limit is

well away from the factorization pole, in the sense of color ordering. So it should be

possible to take this collinear limit “inside” the s345 → 0 multi-particle factorization

limit, i.e. as a further limit of it.

The p7 ‖ p1 collinear limit takes x2
72 → 0, and hence the cross ratio u5 → 0.

Equation (4.74) shows that the last two terms of U (1)
7 diverge logarithmically in this

collinear limit, while the first term behaves smoothly. Recall that the n-point BDS

ansatz smoothly tends to the (n−1)-point BDS ansatz in all collinear limits. However,

this is not true for the BDS-like ansatz; that is, Y7 6→ Y6 in collinear limits, rather it

diverges logarithmically. Essentially, the last two terms of eq. (4.71) account for this

non-smooth behavior. In the p7 ‖ p1 collinear limit,

−1

2
log2

(
a2

14

a11a17

)
p7‖p1−−−−→ −1

2
log2

(
uw

v

)
, (4.75)

−1

2
log2 a11 −

1

2
log2 a17 + Y7

p7‖p1−−−−→ Y6 . (4.76)

Thus the last two terms in eq. (4.71) precisely account for the non-smooth collinear

behavior of the BDS-like-normalized amplitude at seven points, within the multi-

particle factorization limit.



CHAPTER 4. THE MHV (NMHV) SYMBOL AT FOUR (THREE) LOOPS 183

4.7 Discussion

Following the inclusion of the Steinmann relations in the hexagon function boot-

strap program [68], we have applied these constraints to heptagon symbols, in order

to drastically reduce the number of symbols needed to bootstrap seven-point scat-

tering amplitudes. We have been able to construct a basis of Steinmann heptagon

symbols through weight 7, and those which further satisfy the MHV final-entry con-

dition at weight 8. In order to apply the Steinmann relations transparently, we have

shifted our focus from the familiar BDS-normalized amplitudes to BDS-like normal-

ized analogues. The simple conversions (4.30) and (4.31) between functions in these

two normalizations allow us to simultaneously take advantage of the smaller space

of Steinmann heptagon symbols, and utilize the simple behavior exhibited by BDS-

normalized functions near the collinear limit. With these advances, we have com-

pletely determined, in a conceptually simple manner, the symbols of the seven-point

three-loop NMHV and four-loop MHV amplitudes in planar N = 4 SYM theory.

Calculating the symbol of these particular component amplitudes is only the tip

of the Steinmann iceberg. The main limiting factor in applying the bootstrap at

higher weight is the computational complexity resulting from the size of the space

of Steinmann heptagon functions, which still grows close to exponentially, despite

its small size relative to the general heptagon function space. This growth can be

especially prohibitive when generating the general basis of Steinmann heptagon sym-

bols at each higher weight. At the same time, nearly the entire space of Steinmann

heptagon symbols is needed to describe the amplitudes we have bootstrapped – in-

cluding derivatives (coproducts) of higher-loop amplitudes. That is, the full space

of Steinmann heptagon symbols is spanned by the derivatives of our amplitudes at

weights 2 and 3. Only 15 of the 322 Steinmann heptagon symbols are absent from the

span of these derivatives at weight 4. This situation resembles what is observed in the

hexagon function bootstrap [68], where the derivatives of the five-loop six-point am-

plitude also span the full weight-2 and weight-3 Steinmann hexagon symbol spaces,

while only 3, 12, and 30 symbols are absent from the span of these derivatives at

weights 4, 5, and 6. In the hexagon case, all of these symbols are observed to drop
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out due to lower-weight restrictions on the appearance of zeta values (i.e. the zeta

values only appear in certain linear combinations with other hexagon functions, and

this leads to symbol-level restrictions at higher weights). We expect that a similar

set of function-level restrictions will explain why a small set of weight-4 Steinmann

heptagon symbols are not needed to describe the seven-point amplitude. (Only 386 of

the 1030 weight-5 Steinmann heptagon symbols are currently needed to describe the

four-loop MHV and three-loop NMHV amplitudes, but here we expect significantly

more of these symbols to be needed to describe coproducts of yet higher-loop contri-

butions.) No physical explanation for the restrictions on the occurrence of zeta values

at six points has yet been discerned, indicating that there remains some physics to

be discovered.

More generally, the task of upgrading our symbol-level results to full functions will

be left to future work. A full functional representation would be valuable for checking

seven-point predictions in both the near-collinear [162, 48, 49, 51, 163, 56, 57, 164]

and multi-Regge limits [58, 59, 102, 60, 61, 105, 169, 170, 171, 172, 173, 174]. An

important problem is to generalize the all-loop results for six-point scattering in the

multi-Regge limit [62] to the seven-point case. The full functional form of the seven-

point amplitude could assist the construction of an all-loop multi-Regge heptagon

formula.

Bootstrapping amplitudes with eight or more external legs will require more than a

simple extension of the heptagon bootstrap presented in this work. Both the hexagon

and heptagon bootstrap approaches depend on the assumption that the weight-2L

generalized polylogarithms can be built from a finite symbol alphabet, corresponding

to an appropriate set of cluster A-coordinates. Going to n = 8, we move into a cluster

algebra with infinitely many A-coordinates. It is expected that only a finite number

of letters will appear at any finite loop order, but it is currently unknown how to

characterize what sets may appear. In principle, this information ought to follow

from a careful consideration of the Landau singularities of these amplitudes (see for

example refs. [199, 167] for recent related work). There is hope that patterns may

emerge at currently accessible loop orders, which may provide insight into the letters

appearing for n > 7.
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Appendix A

Hexagon Function Basis at

Weights 6, 7, and 8

Building on the basis of hexagon functions through weight five introduced in ref. [34],

we describe here a complete basis of hexagon functions at weight six, seven and eight.

These functions can be defined in terms of their {n − 1, 1} coproduct components,

which for a generic hexagon function F take the form

∆n−1,1(F ) ≡
3∑
i=1

F ui ⊗ lnui + F 1−ui ⊗ ln(1− ui) + F yi ⊗ ln yi, (A.1)

where the functions {F ui , F 1−ui , F yi} uniquely determine the derivatives of F to be

∂F

∂u

∣∣∣∣
v,w

=
F u

u
− F 1−u

1− u
+

1− u− v − w
u
√

∆
F yu

+
1− u− v + w

(1− u)
√

∆
F yv +

1− u+ v − w
(1− u)

√
∆

F yw , (A.2)

√
∆yu

∂F

∂yu

∣∣∣∣
yv ,yw

= (1− u)(1− v − w)F u − u(1− v)F v − u(1− w)Fw

− u(1− v − w)F 1−u + uvF 1−v + uwF 1−w +
√

∆F yu , (A.3)

and the cyclic permutations of these formulae. We fix the overall integration constant

of each function by stipulating that it vanish at the point F (u, v, w) = F (1, 1, 1).
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The process of constructing such functions is described in ref. [34], and proceeds

analogously to the construction of the spurious pole functions which we cover in

detail in appendix D. The definitions of the basis functions in terms of their {n−1, 1}
coproduct components are lengthy and unilluminating, so instead of writing them out

explicitly we will only describe their formal properties; these definitions can be found

in the ancillary files.

One way of organizing the space of irreducible hexagon functions is by the maxi-

mum number of times the yi variables appears in a single term of a function’s sym-

bol. Since this number is additive under function multiplication, it endows the space

of hexagon functions with a grading which naturally separates parity-odd functions

(those with odd numbers of y entries) from parity-even functions (those with even

numbers of y entries). The dimension of the hexagon function space with each y-

grading through weight eight is given in table A.1. The hexagon function space also

has an S3 symmetry that acts by permuting the variables u, v, and w. We have

selected basis functions that form orbits under this S3 symmetry, and we only label

one representative of each orbit, since the other members can be found by permuting

the arguments of the representative.

At weight six, we denote the ith odd function by Ai(u, v, w) and the ith even

function by Bi(u, v, w). Up to the action of the S3 symmetry there are 11 independent

odd functions and 11 independent even functions. The size of each basis function’s

orbit is specified alongside its y-grading in table A.2. Similarly, we denote the weight

seven odd functions by Ci(u, v, w) and the weight seven even functions by Di(u, v, w).

All 28 odd functions and 36 even functions fit into orbits of S3, and these orbits are

specified with the y-gradings of these functions in table A.3. Finally, at weight eight

there are 86 odd functions, denoted by Si(u, v, w), and 102 even functions, denoted

by Ti(u, v, w). In table A.4 we give their S3 orbits and y-gradings. We suppress the

arguments of the basis functions in the tables.
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Weight y0 y1 y2 y3 y4 y5 y6

1 3 - - - - - -

2 3 - - - - - -

3 6 1 - - - - -

4 9 3 3 - - - -

5 18 4 13 6 - - -

6 27 4 27 29 18 - -

7 54 4 41 63 108 39 -

8 90 4 50 108 306 238 114

Table A.1: The dimension of the space of irreducible hexagon functions at each weight,
graded by the maximum number of y entries appearing in each function’s symbol.
The y0 column counts one-dimensional HPLs, but the other columns are nontrivial.

S3 orbit y4 y3 y2 y1

6-cycle B1, B2 A1, A2 B5, B6 -

3-cycle B3, B4 A3 . . . A7 B7 . . . B11 A10

singlet - A8, A9 - A11

Table A.2: The weight-six hexagon basis functions organized by the size of their S3

orbits and y-grading.

S3 orbit y5 y4 y3 y2 y1

6-cycle C1 . . . C3 D1 . . . D12 C11 . . . C15 D25, D26, D27 -

3-cycle C4 . . . C10 D13 . . . D24 C16 . . . C26 D28 . . . D34 C27

singlet - - - D35, D36 C28

Table A.3: The weight-seven hexagon basis functions organized by the size of their
S3 orbits and y-grading.
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S3 orbit y6 y5 y4 y3 y2 y1

6-cycle T1 . . . T15 S1 . . . S26 T16 . . . T54 S27 . . . S34 T55 . . . T58 -

3-cycle T59 . . . T66 S35 . . . S61 T67 . . . T89 S62 . . . S80 T90 . . . T97 S81

singlet - S82 T98, T99, T100 S83, S84, S85 T101, T102 S86

Table A.4: The weight-eight hexagon basis functions organized by the size of their S3

orbits and y-grading.
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R
(3)
6 , V (3) and Ṽ (3) in Terms of

Weight 6 Basis

The weight-six basis for the parity-odd sector includes functions Ai(u, v, w), i =

1, 2, . . . , 11, and for the parity-even sector, Bi(u, v, w), i = 1, 2, . . . , 11. This basis

allows us to write the three-loop remainder and ratio functions directly, instead of in

terms of their {5, 1} coproduct components, as was done previously [34, 37].

Using the parity-even weight-six functions and the total symmetry of the remain-

der function, we can write the three-loop result as

R
(3)
6 (u, v, w) = R

(3)
6,A(u, v, w) +R

(3)
6,A(v, w, u) +R

(3)
6,A(w, u, v)

+R
(3)
6,A(u,w, v) +R

(3)
6,A(v, u, w) +R

(3)
6,A(w, v, u) , (B.1)

where

R
(3)
6,A =

1

128

{
30
(
B1 +B2

)
+ 18B3 + 14B4 − 2

(
B5 +B6

)
+ 12B7 − 2B8

− 264B9+2B10−24B11 + 4 ln(u/v)M1 +
128

3
ln(w/v)Qep

−
(

400Hu
2 + 200Hw

2 − 10 ln2 u− 2 ln2w − 204 lnu ln v

+ 412 lnu lnw − 408ζ2

)
Ω(2) +

104

3
(Φ̃6)2 − 96Hu

6

+ 56Hu
5,1 − 6Hu

4,2 − 204Hu
4,1,1 − 44Hu

3,2,1 − 6Hu
3,1,2 + 168Hu

3,1,1,1
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+ 6Hu
2,2,1,1 − 210Hu

2,1,1,1,1 − 2(Hu
3 )2 − 4Hu

3H
u
2,1 + 14(Hu

2,1)2

+Hu
2

(
− 376Hu

4 + 8Hu
3,1 + 594Hu

2,1,1 + 96(Hu
2 )2
)

+ lnu
(

96Hu
5 − 56Hu

4,1 + 10Hu
3,2 + 168Hu

3,1,1 + 26Hu
2,2,1

− 144Hu
2,1,1,1 +Hu

2

(
380Hu

3 + 2Hu
2,1

))
+ ln2 u

(
− 26Hu

4 + 38Hu
3,1 − 60Hu

2,1,1 − 100(Hu
2 )2
)

− 4 ln3 u
(
Hu

3 + 2Hu
2,1

)
+

7

4
ln4 uHu

2

−Hv
3

(
338Hu

3 + 4Hu
2,1 +

10

3
lnuHu

2 −
7

3
ln3 u

)
+Hv

2,1

(
690Hu

2,1 −
34

3
lnuHu

2 −
5

3
ln3 u

)
+Hv

2

(
− 760Hu

4 − 8Hu
3,1 + 1224Hu

2,1,1 +
575

2
(Hu

2 )2

− 64

3
Hu

2H
w
2 + lnu

(
2314

3
Hu

3 +
82

3
Hu

2,1

)
− 610

3
ln2 uHu

2 −
5

2
ln4 u

)
+ ln v

(
− 8Hu

4,1 − 10Hu
3,2 + 120Hu

3,1,1 + 38Hu
2,2,1

− 48Hu
2,1,1,1 +Hu

2

(
4Hu

3 − 18Hu
2,1

)
+ lnu

(
− 276Hu

4 − 320Hu
3,1 − 174Hu

2,1,1 + 197(Hu
2 )2
)

+ 2 ln2 u
(
− 30Hu

2,1 + 119Hu
3

)
− 51 ln3 uHu

2

)
+ ln2 v

(
34Hu

4 − 10Hu
3,1 − 6Hu
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(
Hu

2
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(
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3
Hu
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3
Hu

2,1

)
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6
ln2 uHu

2 − 2 ln4 u
)

− ln3 v

(
631

3
lnuHu

2 +
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2
ln3 u

)
+
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3
ln vHv

2 lnuHu
2

+ lnw
(
Hv

2

(
16Hu

2,1 + 1018 lnuHu
2 + 201 ln3 u

)
+ ln v

(
−764Hu

4 − 164Hu
3,1 + 846Hu

2,1,1 + 126(Hu
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(

334Hu
3 + 582Hu

2,1

)
+
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2
ln2 uHu

2 +
9

2
ln4 u

)
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+ ln2 v

(
114Hu

3 + 643Hu
2,1 +

913

2
lnuHu

2 +
773

12
ln3 u
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− ln2w

(
8Hu

2H
v
2 +

335

2
ln2 vHu

2 +
457

6
ln2 u ln2 v

)
+ ζ2

(
788Hu

4 − 4Hu
3,1 − 1236Hu

2,1,1 + 220(Hu
2 )2

− 783 lnuHu
3 + 4 lnuHu

2,1 + 407 ln2 uHu
2 −

5

2
ln4 u

+ ln v
(
− 13Hu

3 + 2244Hu
2,1 + 297 lnuHu

2 − 39 ln3 u
)

+ ln2 v
(

822Hu
2 + 314 ln2 u

)
+ 858Hu
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2
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(

400Hu
2 + 314 ln2 u
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+ ζ3

(
28 lnuHu

2 + 6 ln3 u+ ln v
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− 40Hu

2 + 125 ln2 u
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+ 58 lnu ln v lnw
)

+
41860

9
ζ6 +
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3
(ζ3)2

− ζ4

(
5704Hu

2 + 980 ln2 u+ 464 lnu ln v
)}

, (B.2)

and we dropped the arguments (u, v, w) on Bi, M1, Qep, Ω(2) and Φ̃6 to save space.

The parity-even part of the three-loop ratio function is

V (3)(u, v, w) = V
(3)
A (u, v, w) + V

(3)
A (w, v, u), (B.3)

where

V
(3)
A (u, v, w) =

1

128

{
−42B1(u, v, w)− 38B1(v, w, u)− 54B1(w, u, v)

− 38B2(u, v, w)− 54B2(v, w, u)− 42B2(w, u, v)

− 60B3(u, v, w)− 18B3(v, w, u)− 40B4(u, v, w)

− 20B4(v, w, u) + 2B5(u, v, w) + 2B5(v, w, u)

+ 10B5(w, u, v) + 2B6(u, v, w) + 2B6(v, w, u)

+ 10B6(w, u, v)− 36B7(u, v, w)− 20B7(v, w, u)

+ 4B8(u, v, w) + 816B9(u, v, w) + 348B9(v, w, u)

− 12B10(u, v, w)− 2B10(v, w, u) + 64B11(u, v, w)
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+ 48B11(v, w, u)− 154(Φ̃6(u, v, w))2

+ ln(v/u)
(

4M1(u, v, w) +
128

3

(
5Qep(v, w, u)−Qep(w, u, v)

))
+ ln(w/v)

(
4M1(v, w, u) +

128

3

(
5Qep(v, w, u)−Qep(u, v, w)

))
+ 2
(

292
(
Hu

2 +Hv
2 +Hw

2

)
− 6 ln2 u− 3 ln2w − 5 ln2 v

− 312 lnu ln v + 298 lnw ln v + 316 lnu lnw

− 596ζ2

)
Ω(2)(u, v, w)

+ 2
(

142
(

2Hu
2 +Hv

2

)
− 12 ln2 u− 3 ln2 v

+
(

298 ln v − 145 ln
)

lnu

− 286ζ2

)
Ω(2)(w, u, v) + pure HPLs

}
. (B.4)

The pure HPL terms are quite lengthy, so we only present them in an ancillary file.

The parity-odd part of the three-loop ratio function can be presented here in its

entirety,

Ṽ (3)(u, v, w) = Ṽ
(3)
A (u, v, w)− Ṽ (3)

A (w, v, u), (B.5)

where

Ṽ
(3)
A (u, v, w) =

1

128

{
−4

3
A1(u, v, w)− 28

3
A1(v, w, u) +

32

3
A1(w, u, v)

+
8

3
A2(u, v, w)− 28

3
A2(v, w, u) +

20

3
A2(w, u, v)

+ 12A3(u, v, w) + 4A4(u, v, w)− 12A6(u, v, w)

+ 12A7(u, v, w)− 120A10(u, v, w)− 4

3
lnuH1(u, v, w)

− 4

3

(
3 lnw − lnu− 2 ln v

)
H1(v, w, u)− 23

3
lnu J1(u, v, w)

+
1

3

(
3 lnw − 13 lnu+ 10 ln v

)
J1(v, w, u)

− 2
(

4
(
Hu

2 +Hv
2 +Hw

2

)
+ 5 ln2 u+ 4 ln2w − 4 lnu lnw

− 2 lnu ln v + 3 ln2 v − 12 ζ2

)
F1(u, v, w)

+ 2
(

ln2 u− 2 lnu ln v
)
F1(v, w, u)
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+ 4
(

2
(

lnu− lnw
)
Hu

2 + 2 ln3 u− ln2 u
(

3 lnw + ln v
)

+ 2 lnu
(
Hv

2 + ln2 v
)
− 26 ζ2 lnu

)
Φ̃6(u, v, w)

}
. (B.6)



Appendix C

R
(4)
6 , V (4) and Ṽ (4) in Terms of

Weight 8 Basis

Using the weight-eight basis, we can describe the four-loop quantities R
(4)
6 , V (4) and

Ṽ (4) directly, instead of via their {7, 1} coproduct components.

First we present the four-loop remainder function R
(4)
6 . Because this function is

totally symmetric in (u, v, w) = (u1, u2, u3), we can express it in terms of the weight-

eight basis as,

R
(4)
6 =

1

1024

{∑
σ∈S3

[
−320T σ1 − 324T σ2 − 290T σ3 − 268T σ4 − 252T σ5 − 292T σ6

− 248T σ7 − 252T σ9 − 248T σ10 − 248T σ11 − 272T σ12 − 296T σ13

− 256T σ14 − 296T σ15 + 4848T σ16 + 5268T σ17 − 4T σ18 − 4T σ19

+ 1173T σ20 − 254T σ21 − 4T σ22 + 12T σ23 + 312T σ24 + 292T σ25

+ 24T σ26 + 252T σ27 + 8T σ29 + 4T σ30 +
725

3
T σ31 + 20T σ32

+ 24T σ33 + 12T σ34 +
1165

3
T σ35 + 724T σ36 + 4T σ37 + 24T σ38

+ 24T σ39 + 20T σ40 − 32T σ41 − 48T σ42 − 32T σ43 + 4T σ44 − 16T σ45

− 48T σ46 − 16T σ47 + 40T σ48 − 28T σ49 − 28T σ50 − 40T σ51

+ 16T σ52 + 20T σ53 + 20T σ54 − 336T σ55 + 177T σ57 − 4T σ58

]

195
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+
∑
σ∈Z3

[
−200T σ59 − 128T σ60 − 136T σ61 − 132T σ62 − 132T σ64

− 128T σ65 − 145T σ66 + 2712T σ67 + 2520T σ68 −
502

3
T σ69

− 114T σ70 −
122

3
T σ71 +

2216

3
T σ72 + 8T σ73 + 390T σ74 + 8T σ75

− 8T σ76 − 24T σ77 − 8T σ78 +
3827

9
T σ80 − 24T σ81 +

215

6
T σ83

− 160T σ84 + 20T σ85 − T σ86 − 4T σ87 + 2T σ88 − 116T σ89

+
11102

3
T σ90 + 197232T σ91 + 336T σ92 −

18465

4
T σ93

+
12643

3
T σ94 − 79T σ95 +

6113

6
T σ96 −

3427

6
T σ97

]
− 5741

6
T100 +

17467

6
T101 −

292661

72
T102

+ products of lower weight functions

}
, (C.1)

where T σi denotes a permuted version of Ti ≡ Ti(u, v, w) = Ti(u1, u2, u3), namely

T σi ≡ Ti(uσ(1), uσ(2), uσ(3)). (C.2)

We sum over all six permutations of the 6-cycle basis functions, T1, . . . , T58, and over

the three cyclic permutations of the 3-cycle ones, T59, . . . , T97. We have dropped the

terms that are products of lower weight functions because they are very lengthy, but

they are given in an ancillary file.

The parity-even part of the four-loop ratio function can be expressed in terms of

the same Ti functions as

V (4)(u, v, w) = V
(4)
A (u, v, w) + V

(4)
A (w, v, u) + V

(4)
B (u, v, w) , (C.3)

where

V
(4)
A =

1

1024

{
380T u1 + 620T v1 + 500Tw1 + 596T u2 + 516T v2 + 396Tw2

+ 542T u3 + 440T v3 + 398Tw3 + 376T u4 + 450T v4 + 446Tw4

+ 380T u5 + 434T v5 + 392Tw5 + 436T u6 + 564T v6 + 394Tw6
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6 , V (4) AND Ṽ (4) IN TERMS OF WEIGHT 8 BASIS 197

+ 400T u7 + 414T v7 + 388Tw7 + 422T u9 + 404T v9 + 396Tw9

+ 388T u10 + 426T v10 + 376Tw10 + 392T u11 + 426T v11 + 376Tw11

+ 374T u12 + 464T v12 + 448Tw12 + 404T u13 + 554T v13 + 446Tw13

+ 432T u14 + 406T v14 + 406Tw14 + 554T u15 + 446T v15 + 404Tw15

− 6984T u16 − 7584T v16 − 8604Tw16 − 8347T u17 − 9102T v17

− 7576Tw17 + 28T u18 + 4T v18 + 16Tw18 + 16T u19 − 8T v19 + 4Tw19

− 7689

4
T u20 −

22685

12
T v20 − 1852Tw20 + 376T u21 + 403T v21

+ 428Tw21 + 16T u22 + 4T v22 + 28Tw22 − 12T u23 − 26T v23 − 24Tw23

− 482T u24 − 562T v24 − 388Tw24 − 408T u25 − 434T v25 − 542Tw25

+ 12T u26 − 72T v26 − 24Tw26 − 456T u27 − 394T v27 − 422Tw27

+ 40T u28 − 36T v28 − 36Tw28 − 8T u29 − 32T v29 − 20Tw29 − 4T u30

− 28T v30 − 16Tw30 −
2621

6
T u31 −

605

2
T v31 −

1219

3
Tw31 − 6T u32

− 20T v32 − 26Tw32 − 24T u33 − 10T v33 + 16Tw33 − 26T u34 − 12T v34

− 24Tw34 −
2965

6
T u35 −

1405

2
T v35 − 729Tw35 − 1031T u36 − 1159T v36

− 2537

2
Tw36 − 4T u37 − 4T v37 − 4Tw37 − 24T u38 − 96T v38 − 42T u39

+ 12T v39 − 54Tw39 + 2T u40 − 20T v40 − 90Tw40 + 102T u41 + 32T v41

+ 46Tw41 + 120T u42 + 48T v42 + 18Tw42 + 38T u43 + 32T v43 + 26Tw43

− 4T u44 − 16T v44 + 8Tw44 − 20T u45 + 16T v45 − 56Tw45 + 80T u46

+ 128T v46 + 48Tw46 + 4T u47 + 16T v47 − 8Tw47 − 40T u48 − 24T v48

− 96Tw48 + 36T u49 + 38T v49 + 28Tw49 + 28T u50 + 108T v50 + 42Tw50

+ 24T u51 + 96T v51 + 40Tw51 − 16T u52 − 28T v52 − 22Tw52 − 20T u53

− 26T v53 − 6Tw53 − 10T u54 − 78T v54 − 20Tw54 + 264T u55 + 756T v55

+ 336Tw55 + 3T u57 − 177T v57 − 102Tw57 − 6T u58 − 2T v58 + 4Tw58

+ 200T u59 + 213T u60 + 190T u61 + 186T u62 + 186T u64 + 213T u65

+
419

2
T u66 − 3468T u67 −

8119

2
T u68 + 235T u69 + 204T u70 + 49T u71

− 1166T u72 − 44T u73 − 544T u74 − 20T u75 + 8T u76 + 48T u77 + 8T u78
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− 18T u79 −
23861

36
T u80 + 24T u81 + 22T u82 −

190

3
T u83 +

1291

6
T u84

− 20T u85 −
7

2
T u86 + 4T u87 − 22T u88 + 202T u89 − 4999T u90

− 284328T u91 − 510T u92 +
42173

6
T u93 −

64501

12
T u94

+ 79T u95 −
34631

24
T u96 +

4467

4
T u97

+ products of lower weight functions

}
, (C.4)

and

V
(4)
B =

1

1024

{
500T v59 + 193T v60 + 252T v61 + 244T v62 + 256T v64 + 193T v65

+ 271T v66 − 5712T v67 − 3922T v68 +
1012

3
T v69 + 173T v70 +

304

3
T v71

− 1215T v72 + 100T v73 −
1561

2
T v74 + 28T v75 − 100T v76 + 24T v77

− 28T v78 + 22T v79 −
13825

18
T v80 + 144T v81 + 18T v82 −

157

6
T v83

+
839

3
T v84 − 68T v85 +

1

2
T v86 + 4T v87 + 30T v88 + 170T v89 −

46967

6
T v90

− 367344T v91 − 336T v92 +
49109

6
T v93 − 9155T v94 + 364T v95

− 8521

4
T v96 +

1633

3
T v97 + 12T u98 + 4T u99 +

9155

6
T u100 −

170141

36
T u101

+
145829

24
T u102 + products of lower weight functions

}
. (C.5)

Here T ui = Ti(u, v, w), T vi = Ti(v, w, u), Twi = Ti(w, u, v). The 3-cycle functions

T59, . . . , S97 are chosen to be symmetric in their last two arguments, so for these

functions the permutation Ti(v, w, u) appears only in V
(4)
B .

Similarly, the parity-odd part of the four-loop ratio function can be expressed as

Ṽ (4)(u, v, w) = Ṽ
(4)
A (u, v, w)− Ṽ (4)

A (w, v, u) , (C.6)
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where

Ṽ
(4)
A =

1

3072

{
−300Su1 + 60Sv1 + 240Sw1 − 126Su2 + 18Sv2 + 108Sw2

+ 156Su3 − 222Sv3 + 66Sw3 − 40Su4 + 206Sv4 − 166Sw4

− 166Su5 − 112Sv5 + 278Sw5 − 976Su6 + 278Sv6 + 698Sw6

+ 44Su7 − 52Sv7 + 8Sw7 − 124Su8 + 224Sv8 − 100Sw8 + 48Su9

+ 192Sv9 − 240Sw9 + 720Su10 − 1110Sv10 + 390Sw10 + 178Su11

− 242Sv11 + 64Sw11 + 150Su12 − 150Sv12 − 196Su13 − 38Sv13

+ 234Sw13 − 96Su14 − 18Sv14 + 114Sw14 + 78Su15 − 78Sw15

+ 114Sv16 − 114Sw16 − 78Su17 − 18Sv17 + 96Sw17 − 122Su18

− 26Sv18 + 148Sw18 − 122Su19 − 26Sv19 + 148Sw19 + 96Su20

+ 18Sv20 − 114Sw20 − 454Su21 + 56Sv21 + 398Sw21 + 12Su22

+ 12Sv22 − 24Sw22 − 18Su23 + 96Sv23 − 78Sw23 + 114Su24

− 96Sv24 − 18Sw24 − 166Su25 − 40Sv25 + 206Sw25 − 166Su26

− 40Sv26 + 206Sw26 + 396Su27 − 2664Sv27 + 2268Sw27 + 2831Su28

− 259Sv28 − 2572Sw28 − 8Su29 − 146Sv29 + 154Sw29 −
215

2
Su30

+ 218Sv30 −
221

2
Sw30 − 20Su31 − 966Sv31 + 986Sw31 − 136Su32

+ 8Sv32 + 128Sw32 + 34Su33 − 8Sv33 − 26Sw33 + 1053Su34

− 1239Sv34 + 186Sw34 + 126Su35 + 126Su36 − 1666Su38 + 228Su39

+ 360Su40 + 712Su41 + 2843Su42 − 72Su43 + 376Su45 − 153Su46

− 492Su47 + 610Su48 + 200Su49 − 846Su50 + 884Su52 − 462Su53

+ 27Su54 + 78Su55 + 114Su57 + 78Su58 − 2313Su62 + 177Su63

− 3060Su64 +
14490793

44
Su65 + 81Su66 −

84153

2
Su67 + 2227Su68

+ 20Su69 + 1354Su70 +
1484251

44
Su71 +

1203

2
Su72 +

657

4
Su73

− 34985

2
Su75 − 808Su76 + 62Su77 −

28471

4
Su78 + 759Su79

+ 1065Su80 − 249048Su81
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+ products of lower weight functions

}
, (C.7)

and Sui = Si(u, v, w), Svi = Si(v, w, u), Swi = Si(w, u, v). Note that the singlet func-

tions S82, . . . , S86 cannot appear in an antisymmetric quantity such as Ṽ . Again, the

3-cycle functions S35, . . . , S81 are chosen to be symmetric in their last two arguments,

so for these functions the permutation Si(v, w, u) cannot appear, and Si(w, u, v) is

related by the u↔ w exchange. The products of lower weight functions for both V (4)

and Ṽ (4) are too lengthy to present here, but they are given in ancillary files.



Appendix D

Functions on the Spurious Pole

Surface w = 1

In section 1.7.5 we explored the behavior of the ratio function in the limit w → 1. We

also need to understand this limit in order to impose the spurious-pole constraint.

We call the functions that the hexagon functions approach in this limit spurious pole

surface functions (SP functions). Just as for the hexagon functions, the space of SP

functions can be built up iteratively in the weight. Because the construction is simpler

than for the full hexagon function space, but contains the same essential ingredients,

it may be useful for the reader to see it in some detail.1

The SP functions must have only physical branch cuts, and their symbol entries

can only be drawn from the set of letters that appear in the w → 1 limit of the

hexagon function letters (1.29). These conditions translate to functions with symbols

constructed out of the letters

Sw→1 = {u, v, 1− u, 1− v, u− v} , (D.1)

with only u and v appearing in the first entry. The {n− 1, 1} coproduct component

1One can always use multiple polylogarithms, or the 2dHPLs of Gehrmann and Remiddi [128]
to describe this function space. The main virtue of the construction described here, as with the
hexagon function approach, is imposing the branch-cut condition at the beginning, which reduces
the size of the space dramatically at high weights.

201
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of a generic SP function f(u, v) of weight n thus takes the form

∆n−1,1(f) ≡ fu ⊗ lnu+ f v ⊗ ln v + f 1−u ⊗ ln(1− u)

+ f 1−v ⊗ ln(1− v) + fu−v ⊗ ln(u− v), (D.2)

where its derivatives are given by

∂f

∂u

∣∣∣∣
v

=
fu

u
− f 1−u

1− u
+
fu−v

u− v
,

∂f

∂v

∣∣∣∣
u

=
f v

v
− f 1−v

1− v
− fu−v

u− v
. (D.3)

We can take the u and v partial derivatives of a full hexagon function F (u, v, w)

using eq. (A.2), let w → 1 in the rational prefactors, and compare with eq. (D.3). This

comparison relates the {n − 1, 1} coproduct components for F to the corresponding

ones for the function f(u, v) that it approaches on the w = 1 surface:

fu = F u ± F yu ,

f v = F v ∓ F yv ,

f 1−u = F 1−u ∓ F yv ± F yw ,

f 1−v = F 1−v ± F yu ∓ F yw ,

fu−v = ∓2F yu ± 2F yv . (D.4)

The overall sign ambiguity associated with the F yi components simply reflects an

ambiguity as to whether the limit (1.133) holds, or the same limit with the yi’s

inverted, so it holds globally for all functions. We note that “coproduct matching

relations” like eq. (D.4) provide a very useful way to collapse hexagon functions into

functions on generic limiting surfaces, beyond the specific case of SP functions treated

here.

We’ll construct the irreducible part of the SP function space through weight three

here, in order to illustrate the same methods used to construct hexagon functions.

At weight one, the only functions satisfying the branch-cut constraints are lnu and
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ln v. Functions of higher weight n can be constructed at the symbol level by requiring

that their symbol satisfy an integrability condition. This condition connects pairs of

adjacent entries, and there are n − 1 such conditions, one for each pair. Imposing

all these conditions ensures that the symbol can be integrated up to a single-valued

function, or equivalently that partial derivatives acting on it commute. However,

integrability can also be imposed iteratively. Suppose we have classified all functions

with weight n− 1. Then we can construct an ansatz for the space of functions with

weight n by requiring that their derivatives are given by eq. (D.3) (for the case of

SP functions) where each of the coproduct entries fu, f v, f 1−u, f 1−v, fu−v is a generic

linear combination of weight n−1 functions. Now we just need to impose integrability

on the last two entries of the corresponding symbol. At function level, this is a linear

constraint on the {n−2, 1, 1} coproduct entries fx,y, which is a set of linear equations

for the coefficients of fu, f v, f 1−u, f 1−v, fu−v, when they are expanded in terms of the

weight n− 1 functions.

On the spurious pole surface, the requirement that partial derivatives commute,

∂2f

∂u∂v
=

∂2f

∂v∂u
, (D.5)

gives rise to six relations between the {n − 2, 1, 1} coproduct entries of a weight n

function f :

f [u,1−v] = 0,

f [v,1−u] = 0,

f [u,u−v] = f [v,u],

f [v,u−v] = f [u,v],

f [1−u,u−v] = f [1−v,1−u],

f [1−v,u−v] = f [1−u,1−v], (D.6)

where the square brackets indicate that an antisymmetric combination of coproduct

entries is being taken, f [x,y] ≡ fx,y − f y,x. These relations are the analogs of the

relations (1.35) for hexagon functions.
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However, the relations (D.6) don’t completely exhaust the conditions we must

impose on an SP function. Note that transcendental constants of weight n − 1 are

in the kernel of the {n− 2, 1, 1} coproduct, so their coefficients remain undetermined

by the above equations. Some of these coefficients will lead to unwanted branch

cuts for f , even if all of the {n − 1, 1} coproducts fx have only the proper branch

cuts. We must also check the first derivatives of our candidate functions at particular

locations, in order to make sure that they remain finite away from the allowed physical

singularities (u → 0, v → 0). From eq. (D.3) we see that we must inspect the lines

u = 1, v = 1 and u = v, where the symbol letters (other than u and v) vanish. We

must impose

f 1−u|u=1 = f 1−v|v=1 = fu−v|u=v = 0, (D.7)

which are the analogs for SP functions of eqs. (1.37) and (1.38) for the hexagon

functions.

After we have found the space of functions with good branch cuts, we remove the

ones that are reducible, i.e. products of lower weight functions, as well as the one-

dimensional HPLs in u and v. The remaining irreducible functions can be classified

by the discrete symmetry. For hexagon functions this symmetry group includes parity

and the S3 symmetry permuting (u, v, w). For the SP functions, there is no parity;

eq. (D.4) shows that parity even and odd hexagon functions such as F u and F yu

combine to give SP functions. Also, the S3 symmetry is broken to S2, generated by

the exchange u↔ v.

When we apply the integrability constraint, eq. (D.6), at weight two we find,

interestingly, that it already allows for the appearance of an irreducible function. (In

the hexagon function case, the first irreducible function is Φ̃6, at weight three.) We

choose to define this function’s {1, 1} coproduct to be

∆1,1

(
SP

(2)
1 (u, v)

)
= − lnu⊗ ln(u− v) +

1

2
lnu⊗ ln v

+ ln v ⊗ ln(u− v)− 1

2
ln v ⊗ lnu , (D.8)
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so that it is antisymmetric under the exchange of u and v.2

No other integrable symbols at weight two involve the letter u − v. We can see

this easily from eq. (D.6): The right-hand sides of the last two relations vanish for

weight two because a first entry is never 1−u or 1−v. Thus f 1−u,u−v = f 1−v,u−v = 0.

The third and fourth relations show that fu,u−v = −f v,u−v, which determines all the

(u− v)-dependent terms up to an overall constant. The rest of the space is spanned

by products of HPLs in u and v.

The derivative of SP
(2)
1 follows from eq. (D.8):

∂

∂u
SP

(2)
1 (u, v) = − ln v

2u
+

ln v − lnu

u− v
. (D.9)

It is indeed singular only in the u → 0 limit. At this weight, there would be no

possibility of adding a transcendental constant to the (weight one) functions in the

{n− 1, 1} coproducts to fix such a singularity, had it been there.

We set the additive constant of all SP functions by requiring that they vanish in

the limit (u, v)→ (1, 1).

At weight three, there are four independent solutions to the integrability condition,

besides the reducible space of HPLs and SP
(2)
1 times lnu or ln v. These four irreducible

solutions can be organized into two orbits of the S2 group that permutes u and v,{
SP

(3)
1 (u, v), SP

(3)
1 (v, u), SP

(3)
2 (u, v), SP

(3)
2 (v, u)

}
. (D.10)

Each orbit is a two-cycle represented by one of the following functions, defined by its

{2, 1} coproduct:

∆2,1

(
SP

(3)
1 (u, v)

)
= −Hu

2 ⊗ ln(1− v) +Hu
2 ⊗ ln(u− v)−Hv

2 ⊗ ln(u− v)

+
1

2
lnu ln v ⊗ ln(1− v) + SP

(2)
1 (u, v)⊗ ln(1− v) ,

(D.11)

∆2,1

(
SP

(3)
2 (u, v)

)
= −1

2
lnu ln v ⊗ ln v + SP

(2)
1 (u, v)⊗ ln v

− 2 SP
(2)
1 (u, v)⊗ ln(u− v) .

(D.12)

2ln(u− v) should be considered inert under this transformation.
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Note that, since each of these two-cycles represents two linearly independent SP

functions, the dimension of the weight three irreducible space (four) is larger than the

number of functions we have indexed (two). Moreover, these definitions are relatively

simple, compared to the number of terms required to specify each function’s symbol.

This feature becomes increasingly true as we move to higher weight.

Next we inspect the behavior of these functions at u = 1, v = 1 and u = v. For

SP
(3)
1 (u, v), eq. (D.11) has no ln(1 − u), so there can be no singularity as u → 1.

The singularity as u → v is cancelled because the first entry multiplying ln(u − v)

is Hu
2 − Hv

2 , which vanishes in this limit. The only subtlety is for v → 1, where we

require, from setting v = 1 in the first entry multiplying ln(1− v) in eq. (D.11),

SP
(2)
1 (u, 1) = Hu

2 = Li2(1− u). (D.13)

But this equation follows by evaluating the u derivative using eq. (D.9) for v = 1,

and the fact that they match at u = 1: SP
(2)
1 (1, 1) = 0 = Li2(0). For the other weight

three irreducible function, the only singularity that has to be checked is the limit

u → v, where the antisymmetry of SP
(2)
1 (u, v) ensures it. So again at weight three,

we do not need to add any transcendental constants (in this case only ζ2 would be

expected) to the weight two functions appearing in the {2, 1} coproducts to fix the

branch-cut behavior. It turns out that such weight n− 1 constants are never needed

in the {n − 1, 1} coproducts of SP functions. (In contrast, they do appear in the

coproducts of many hexagon functions, in order to enforce smoothness as ui → 1.)

A complete basis of SP functions through weight seven was constructed using this

method, and can be found in an ancillary file. The symmetry properties of these

basis functions under the permutation group S2 are laid out in Table D.1. We divide

them into two-cycles, symmetric and antisymmetric functions. Clearly one could form

symmetric and antisymmetric combinations of each member of a two-cycle, but it is

convenient to leave it as a two-cycle, in analogy to how we treat S3 for the hexagon

functions. We introduced some explicitly symmetric functions into our basis starting

at weight five. We provide another ancillary file which uses this SP basis to describe

the ratio function and remainder function on the spurious pole surface through three
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Weight two-cycles symmetric antisymmetric

2 - - SP
(2)
1

3 SP
(3)
1 , SP

(3)
2 - -

4 SP
(4)
1 . . . SP

(4)
5 - SP

(4)
6 , SP

(4)
7

5 SP
(5)
1 . . . SP

(5)
16 SP

(5)
17 , SP

(5)
18 SP

(5)
19 , SP

(5)
20

6 SP
(6)
1 . . . SP

(6)
44 SP

(6)
45 , SP

(6)
46 , SP

(6)
47 SP

(6)
48 . . . SP

(6)
54

7 SP
(7)
1 . . . SP

(7)
126 SP

(7)
127 . . . SP

(7)
138 SP

(7)
139 . . . SP

(7)
150

Table D.1: The symmetry orbits of the SP basis functions through weight seven. The
functional dependence on u and v has been suppressed. Upon exchange of u and
v, each two-cycle is sent to a linearly independent function within the SP function
space. Symmetric and antisymmetric functions are mapped back to themselves, with
an overall sign change in the antisymmetric case.

loops.



Appendix E

Proof that c
(2)
1 (u,w) is Positive and

Monotonic

The coefficient function c
(2)
1 (u,w) has weight 3, which guarantees that it can be rep-

resented in terms of classical polylogarithms. From its coproduct representation we

found that

c
(2)
1 (u,w) = −Li3

(
u+ w − 1

uw

)
+ Li3

(
u+ w − 1

u

)
+ Li3

(
u+ w − 1

w

)
− logw Li2

(
u+ w − 1

u

)
− log uLi2

(
u+ w − 1

w

)
− 1

2
log(uw)

(
Li2(1− u) + Li2(1− w)− ζ2

)
− 1

2

(
log2 u log(1− u) + log2w log(1− w)

)
. (E.1)

Note that it vanishes on the collinear boundary u + w = 1: c
(2)
1 (u, 1 − u) = 0. The

representation (E.1) is manifestly real for u,w > 0 and u,w < 1. It can acquire

an imaginary part in other regions, so another representation might be preferable in

principle.

However, we are going to take its radial derivative now, and write the result in a
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manifestly real form:

c
(2)
1,r(u,w) ≡ (u∂u + w∂w)c

(2)
1 (u,w)

=
c

(1)
0 (u,w)

u+ w − 1
− 1

2

[
1

1− u
+

1

1− w

]
log u logw , (E.2)

where

c
(1)
0 (u,w) = −C(1)(u,w) = −Li2(1− u)− Li2(1− w)− log u logw + ζ2 (E.3)

is positive and monotonically increasing, from the previous one-loop analysis.

Although the first term in eq. (E.2) is positive in the positive double-scaling re-

gion (3.49), the second term can be negative (say, for u < 1 and w < 1). So we have

to show that the second term is outweighed by the first term.

Rather than working with dilogarithms, we take another radial derivative. First

we multiply by the quantity (u + w − 1), which is uniformly positive in the positive

region. So if we can show that (u + w − 1)c
(2)
1,r is positive, it’s the same as showing

c
(2)
1,r is positive. It’s easy to see that c

(2)
1,r(u,w) is regular on the collinear boundary,

because c
(1)
0 (u,w) vanishes there. Hence (u+ w − 1)c

(2)
1,r vanishes there, which allows

a radial flow argument to work. Multiplication by (u + w − 1) before differentiating

also allows the radial derivative to kill the polylogarithms:

c
(2)
1,rr(u,w) ≡ (u∂u + w∂w)

[
(u+ w − 1)c

(2)
1,r(u,w)

]
= −1

2

[
u

(1− w)2
+

w

(1− u)2

]
log u logw

− 1

2

[
u

1− w
+
w + 2u

1− u

]
log u− 1

2

[
w

1− u
+
u+ 2w

1− w

]
logw .

=
1

2
log u

[
− u logw

(1− w)2
− u

1− w
− w + 2u

1− u

]
+ (u↔ w). (E.4)

In the second form, it is enough to show that the term shown is positive everywhere

in the positive region; the same will then be true of the term obtained by (u ↔ w)

reflection.
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Note that the contribution of the third term in brackets, −(w+2u)(log u)/(1−u),

always has the desired sign, positive. Suppose first that u > 1. Then we combine

the first two terms to get (−u)× (logw + 1− w)/(1− w)2. The last factor is always

negative, including w = 1 where it approaches a finite limit. So we are done with the

u > 1 case.

Now let u < 1. In this case we have to combine all three terms, and use the

identity,
u

1− w
+
w + 2u

1− u
>

u

w(1− w)
, (E.5)

which can be established by writing the difference, left minus right, as

w(w + u) + u(u+ w − 1)

w(1− u)
> 0. (E.6)

Therefore

u logw

(1− w)2
+

u

1− w
+
w + 2u

1− u
>

u logw

(1− w)2
+

u

w(1− w)
= u×

logw + 1−w
w

(1− w)2
. (E.7)

The last factor is always positive, so the quantity in brackets in eq. (E.4) is negative

for u < 1. Combined with the fact that log u < 0 for u < 1, we are done proving

that c
(2)
1,rr > 0 in the positive region. This in turn proves that c

(2)
1,r > 0, and hence that

c
(2)
1 (u,w) itself is positive.

For the next simplest quantity, the weight-4 function c
(2)
0 (u,w), we tried to apply

the same method of taking repeated radial derivatives, but we were unable to remove

all the trilogarithms in the second iteration, because they come with different rational

prefactors. So an analytic proof would probably require another method. However, we

could establish numerically that the second such derivative, c
(2)
1,rr(u,w) was positive in

the positive region, consistent with the more general numerical study in section 3.4.2.



Appendix F

The BDS and BDS-like Ansätze

The BDS ansatz [31] for the n-particle MHV amplitude (with the Parke-Taylor tree

amplitude scaled out) is given by

Mn ≡
An

A
(0)
n

= exp

[
∞∑
L=1

aL
(
f (L)(ε)

1

2
M (1)

n (Lε) + C(L)

)]
(F.1)

with

f (L)(ε) = f
(L)
0 + εf

(L)
1 + ε2f

(L)
2 , (F.2)

and where ε is the dimensional regularization parameter in D = 4− 2ε. Here f
(L)
0 is

the planar cusp anomalous dimension with

f
(L)
0 =

1

4
γ

(L)
K =

1

2
Γ(L)

cusp , (F.3)

according to the definition (4.24). However, note that in the above relation the

superscript L refers to coefficients in the expansion with respect to a = 2g2, and not

g2.

For n = 7, the BDS ansatz takes the form

ABDS
7 = A

MHV(0)
7 exp

[
∞∑
L=1

aL
(
f (L)(ε)

1

2
M

(1)
7 (Lε) + C(L)

)]
. (F.4)
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Here we have explicitly factored out 1/2 from the definition of M
(1)
7 (ε) appearing in

the original BDS paper. The seven-particle one-loop MHV amplitude (again with the

tree amplitude scaled out) appearing in the BDS ansatz is given by

M
(1)
7 (ε) = − 1

ε2

7∑
i=1

(
µ2

−si,i+1

)ε
+ F

(1)
7 (0) +O(ε) (F.5)

where

F
(1)
7 (0) =

7∑
i=1

[
− log

(
−si,i+1

−si,i+1,i+2

)
log

(
−si+1,i+2

−si,i+1,i+2

)
+D7,i + L7,i +

3

2
ζ2

]
(F.6)

with

D7,i = −Li2

(
1−si,i+1 si−1,i,i+1,i+2

si,i+1,i+2 si−1,i,i+1

)
(F.7)

and

L7,i = −1

2
log

(
−si,i+1,i+2

−si,i+1,i+2,i+3

)
log

(
−si+1,i+2,i+3

−si−1,i,i+1,i+2

)
. (F.8)

Notice that all of the dependence on the three-particle Mandelstam invariants is

contained within F
(1)
7 (0), so we will focus on determining its dependence. We can

replace the four-particle invariants with three-particle invariants in both D7,i and L7,i.

The two equations then become

D7,i = −Li2

(
1− si,i+1si+3,i+4,i+5

si,i+1,i+2si−1,i,i+1

)
,

L7,i = −1

2
log

(
si,i+1,i+2

si+4,i+5,i+6

)
log

(
si+1,i+2,i+3

si+3,i+4,i+5

)
. (F.9)

At this point, it is convenient to switch to the n = 7 dual conformal cross ratios

ui, defined in terms of the Mandelstam variables by

ui = ui+1,i+4 =
si+2,i+3 si+5,i+6,i+7

si+1,i+2,i+3 si+2,i+3,i+4

, (F.10)

where all indices are understood mod 7. We can see from this definition that D7,i can

be expressed simply in the ui variables asD7,i = −Li2 (1−ui−2). Using the dilogarithm
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identity Li2(z) + Li2(1−1/z) = −1
2

log2 z, we then rewrite D7,i = Li2 (1−1/ui−2) +
1
2

log2 ui−2, and express F
(1)
7 (0) as

F
(1)
7 (0) =

7∑
i=1

[
− log

(
si,i+1

si,i+1,i+2

)
log

(
si+1,i+2

si,i+1,i+2

)
+ Li2 (1−1/ui) +

1

2
log2 ui

−1

2
log

(
si,i+1,i+2

si+4,i+5,i+6

)
log

(
si+1,i+2,i+3

si+3,i+4,i+5

)
+

3

2
ζ2

]
.

(F.11)

After some algebra, F
(1)
7 (0) can be shown to be

F
(1)
7 (0) =

7∑
i=1

[
Li2

(
1− 1

ui

)
+

1

2
log

(
ui+2ui−2

ui+3uiui−3

)
log ui

+ log si,i+1 log

(
si,i+1si+3,i+4

si+1,i+2si+2,i+3

)
+

3

2
ζ2

]
. (F.12)

In this form, we have conveniently isolated all of the three-particle invariants in the

first two terms.

Now we would like to factor out the three-particle invariants from F
(1)
7 (0) because

this removes their dependence from M
(1)
7 as well. We define the function

Y7 = −
7∑
i=1

[
Li2

(
1− 1

ui

)
+

1

2
log

(
ui+2ui−2

ui+3uiui−3

)
log ui

]
(F.13)

so that adding the term Y7 removes the three-particle invariants from M
(1)
7 :

M̂
(1)
7 (ε) ≡ M

(1)
7 (ε) + Y7

=
7∑
i=1

[
− 1

ε2

(
µ2

−si,i+1

)ε
+ log si,i+1 log

(
si,i+1 si+3,i+4

si+1,i+2 si+2,i+3

)
+

3

2
ζ2

]
. (F.14)

The BDS-like ansatz is defined to be the BDS ansatz with M
(1)
7 replaced by with

M̂
(1)
7 , which does not depend on any three-particle invariant:

ABDS-like
7 = A

MHV(0)
7 exp

[
∞∑
L=1

aL
(
f (L)(ε)

1

2

(
M

(1)
7 (Lε) + Y7

)
+ C(L)

)]
, (F.15)
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Factoring out the BDS ansatz explicitly, we have

ABDS-like
7 = ABDS

7 exp

[
∞∑
L=1

aL

2

(
f (L)(ε)Y7

)]
. (F.16)

Recall that in the BDS ansatz formulation, the limit ε → 0 is taken. Since Y7 is

independent of ε, we can set ε → 0 in eq. (F.2) and rewrite the BDS-like ansatz as

simply

ABDS-like
7 = ABDS

7 exp

[
Y7

4

∞∑
L=1

aLΓ(L)
cusp

]
, (F.17)

where we have used the definition (F.3). After introducing Γcusp =
∑∞

L=1 a
LΓ

(L)
cusp,

defined in eq. (4.24), we finally arrive at a simple representation of the BDS-like

ansatz as a function of the BDS ansatz, the cusp anomalous dimension Γcusp, and Y7,

ABDS-like
7 = ABDS

7 exp

[
Γcusp

4
Y7

]
. (F.18)

This result can be generalized to any n for which a suitable BDS-like ansatz exists,

see eq. (4.21).
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