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Abstract

The present thesis is dedicated to questions at the interface of the perhaps currently
best known approaches toward quantum gravity, namely loop quantum gravity and
superstring theory. Combining gravity with the principle of local supersymmetry leads
to supergravity which, in certain cases, turns out to arise in terms of a low-energy limit of
superstring theory. In this thesis, we want to deal with mathematical and physical aspects
of (extended) supergravity theories in four spacetime dimensions and applications in
the framework of loop quantum gravity such as quantum dynamics, boundary theory
as well as classical and quantum cosmology.

To this end, in the beginning, we will study a mathematically rigorous approach toward
geometric supergravity also commonly known as the Castellani-D’Auria-Fré approach
by introducing the notion of a super Cartan geometry in an enriched category of super-
manifolds. In fact, considering enriched categories turns out to be mandatory in order to,
among other things, consistently implement the anticommutative nature of (classical)
fermionic fields in mathematical physics. Furthermore, within this category, we will
study mathematical aspects of super gauge theory and fiber bundle theory and analyze
the parallel transport map associated to super connection forms.

We then turn towards applications of these methods in the framework of loop quantum
gravity. First, the canonical analysis of pure D = 4, N' = 1 Holst supergravity will
be performed using real Asthekar-Barbero variables and the existing formalism for
the Hilbert space, representation, etc. A compact expression for the so-called SUSY
constraint operator will be derived. Moreover, in this context, we will propose a specific
regularization procedure and derive explicit expressions for its action on spin network
states. This is important to investigate the dynamics in the quantum theory and to find
physical states.

Next, the Cartan geometric approach toward (extended) supergravity in the presence
of boundaries will be discussed. In particular, based on newer developments in this
field, we will derive the Holst variant of the MacDowell-Mansouri action for N = 1
and N = 2 pure anti-de Sitter supergravity in D = 4 for arbitrary Barbero-Immirzi
parameters. This action plays a crucial role if one imposes supersymmetry invariance
at the boundary. We will also discuss the chiral limit of the theory, which turns out
to possess some very special properties such as the manifest invariance of the resulting
action under an enlarged gauge symmetry. Moreover, we will show that demanding
supersymmetry invariance at the boundary yields a unique boundary term corresponding
to a super Chern-Simons theory with OSp(N[2) gauge group. These results provide a
step towards the quantum description of supersymmetric black holes in the framework
of loop quantum gravity.
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Abstract

Using the observations made in the chiral theory, we will finally study a class of symmetry
reduced models of N' = 1 chiral supergravity. In fact, the enlarged gauge symmetry
turns out to be essential as it allows for nontrivial fermionic contributions in the sym-
metry reduced super Ashtekar connection even if one imposes spatial isotropy. We
will then also quantize the theory in terms of representations of a graded variant of
the holonomy-flux *-algebra which yields a natural state space. Finally, the remaining
dynamical constraints will be implemented in the quantum theory. For a certain subclass
of these models, we show explicitly that the (graded) commutator of the supersymmetry
constraints exactly reproduces the classical Poisson relations. In particular, the trace
of the commutator between the so-called left and right SUSY constraint reproduces
the Hamilton constraint operator. Finally, we consider the dynamics of the theory
and compare it to a quantization using standard variables and standard minisuperspace
techniques.
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Zusammenfassung

Die vorliegende Arbeit widmet sich Fragen, die sich im Schnittbereich der vielleicht
derzeit bekanntesten Ansitze zur Quantengravitation befinden, nimlich der Schleifen-
quantengravitation und der Superstringtheorie. Die Kombination der Gravitation mit
dem Prinzip der lokalen Supersymmetrie fihrt zur Supergravitation, die sich in be-
stimmten Fillen als ein Niederenergie-Limes der Superstringtheorie herausstellt. In
dieser Arbeit wollen wir uns mit mathematischen und physikalischen Aspekten (erwei-
terter) Supergravitationstheorien in vier Raumzeitdimensionen und Anwendungen im
Rahmen der Schleifenquantengravitation wie der Quantendynamik, der Randtheorie
sowie der klassischen und Quantenkosmologie beschiftigen.

Zu diesem Zweck werden wir zu Beginn einen mathematisch rigorosen Ansatz zur
geometrischen Supergravitation untersuchen, der auch allgemein als Castellani-D’Auria-
Fré-Ansatz bekannt ist, indem wir den Begriff einer Super-Cartan-Geometrie in einer
angereicherten Kategorie von Supermannigfaltigkeiten einfithren. Tatsichlich erweist
sich die Betrachtung angereicherter Kategorien als zwingend notwendig, um u.a. die
antikommutative Natur (klassischer) fermionischer Felder in der mathematischen Physik
konsistent zu implementieren. Dartiber hinaus werden wir innerhalb dieser Kategorie
mathematische Aspekte der Super-Eichtheorie und Faserbtindeltheorie untersuchen
und den, zu Super-Zusammenhangsformen assoziierten, Paralleltransport analysieren.

Als nichstes wenden wir uns Anwendungen dieser Methoden im Rahmen der Schleifen-
quantengravitation zu. Zunichst wird die kanonische Analyse der reinen D = 4, N =1
Holst-Supergravitation unter Verwendung reeller Asthekar-Barbero-Variablen sowie
des bestehenden Formalismus fir den Hilbertraum, der Darstellung etc. durchgefiihrt.
Es wird ein kompakter Ausdruck fiir den sogenannten SUSY-Constraint-Operators
abgeleitet. Dartiber hinaus werden wir in diesem Zusammenhang ein spezifisches Re-
gularisierungsverfahren vorschlagen und explizite Ausdriicke fiir dessen Wirkung auf
Spin-Netzwerk-Zustinden herleiten. Dies ist wichtig, um die Dynamik in der Quanten-
theorie zu untersuchen und physikalische Zustinde zu identifizieren.

Als nichstes wird der Cartan-geometrische Ansatz zur (erweiterten) Supergravitation in
Gegenwart von Rindern diskutiert. Insbesondere werden wir, basierend auf neueren
Entwicklungen in diesem Feld, die Holst-Variante der MacDowell-Mansouri-Wirkung
tiir die reine N' = 1 und N = 2 Anti-de Sitter-Supergravitation in D = 4 fiir beliebige
Barbero-Immirzi-Parameter herleiten. Diese Wirkung spielt eine entscheidende Rolle,
wenn man Supersymmetrie-Invarianz am Rand fordert. Wir werden auch den chiralen
Grenzwert der Theorie diskutieren, der einige sehr spezielle Eigenschaften besitzt, wie
zum Beispiel die manifeste Invarianz der resultierenden Wirkung unter einer erweiterten
Eichsymmetrie. AufSerdem werden wir zeigen, dass die Forderung nach Supersymmetrie-



Zusammenfassung

Invarianz am Rand einen eindeutigen Randterm ergibt, der einer Super-Chern-Simons-
Theorie mit OSp(N|2)-Eichgruppe entspricht. Diese Ergebnisse stellen einen Schritt
in Richtung einer Quantenbeschreibung von supersymmetrischen Schwarzen Lochern
im Rahmen der Schleifenquantengravitation dar.

Unter Verwendung der Beobachtungen, die in der chiralen Theorie gemacht wurden,
werden wir schliefflich eine Klasse Symmetrie-reduzierter Modelle der N = 1 chiralen
Supergravitation untersuchen. Tatsichlich erweist sich die erweiterte Eichsymmetrie als
essentiell, da sie nicht-triviale fermionische Beitrige im Symmetrie-reduzierten Super-
Ashtekar-Zusammenhang erlaubt, selbst bei Forderung riumlicher Isotropie. Sodann
wenden wir uns der Quantisierung der Theorie unter Studium der Darstellung einer
gradierten Variante der Holonomie-Fluss *-Algebra zu, die einen natiirlichen Zustands-
raum ergibt. Schlief8lich werden die dynamischen Constraints in der Quantentheorie
implementiert. Fiir eine bestimmte Unterklasse dieser Modelle zeigen wir explizit, dass
der (gradierte) Kommutator der SUSY-Constraints die klassischen Poisson-Relationen
exakt reproduziert. Insbesondere reproduziert die Spur des Kommutators zwischen dem
sogenannten Links- und Rechts-SUSY-Constraint den Hamilton-Constraint-Operator.
Schliefilich betrachten wir die Dynamik der Theorie und vergleichen sie mit einer Quan-
tisierung unter Verwendung von Standardvariablen und Standard-Minisuperspace-
Techniken.
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1. Introduction

LI.  Quantum gravity

According to our current understanding of the fundamemtal laws of nature, the physics
of the macro- and microcosm is described in terms of two fundamental theories namely
the general theory of relativity (or general relativity for short) and guantum field theory
(QFT), respectively. General relativity, gradually discovered by Einstein, and published
in its final form in 1915, led to a completely new understanding of gravity. It is based on
the revolutionary idea that gravity is not just a force but the incarnation of geometry of
space and time. Despite its huge successes and numerous experimental verifications inter
alia achieved over the past decade, there also exist various phenomena which indicate its
incompleteness. For instance, as an immediate consequence of the theory, singularities
appear in the interior of black holes which turn out to be physically inconsistent. More-
over, cosmological models unavoidably lead to infinite energy densities as one follows
the evolution equations of general relativity backwards in time from the present state of
the universe. Since the curvature radius close to the singularities becomes smaller than

Planck length
/ bG
Zp = (,‘_3 (I.I)

this strongly suggests, that such a theory needs a unification of both general relativity
and quantum theory, that is, a guantum theory of gravity.

One possible candidate for such a theory is string theory. According to string theory,
it is expected that all fundamental particles can be understood as certain excitations of
one-dimensional strings. Also the graviton, i.e. the hypothetical fundamental particle
mediating the gravitational interaction, is part of the spectrum of closed strings. Hence,
this gave a first hint towards unification of the four fundamental forces of nature. How-
ever, it turns out that a consistent theory incorporating fermionic particle species and
excluding negative mass states requires the incorporation of supersymmetry (SUSY) and
even higher spacetime dimensions. As a consequence, it follows from supersymmetry
that there exist five possible versions of a superstring theory, two of them, called IIA-
and IIB-superstring theory, containing the same low-energy particle spectrum as certain
one-dimensional compactifications of the unique maximal 11-dimensional supergravity
theory. Moreover, there are various duality relations connecting the different string the-
ories. Since its original discovery, superstring theory attained a lot of interest and many
intriguing results have been achieved such as a consistent microscopic description of the
entropy of supersymmetric (charged) black holes [6-13] or a possible concrete realization
of the holographic principle via the famous AdS/CFT-correspondence [14-16].



1. Introduction

Another approach towards the formulation of a theory of quantum gravity which the
present thesis will be focused on is loop quantum gravity (LQG) (see e.g. [17,18] and
references therein). Loop quantum gravity is a program originally based on canonical
quantization of variables introduced by Sen, Ashtekar, Immirzi and Barbero [19-22]
for Einstein gravity. These variables have the remarkable property that they embed
the phase space of gravity in that of Yang-Mills theory. It was pointed out in [23] that
all these variables can be obtained from an action that differs from the Palatini action
of first-order Einstein gravity by a certain topological term defined by an operator on
the Lie algebra of the structure group. This modification of the gravitational action
is thus one of the foundations of the theory. While LQG is much less ambitious then
string theory in terms of unification, it has very interesting results to its credit, such as
a kinematical representation that carries a unitary representation of spatial diffeomor-
phisms explicitly incorporating the important principle of background independence
in general relativity [17,24-27], quantization of spatial geometry [28-32], as well as a
path integral formulation in terms of so-called spin foams (see, e.g., [33,34] and refer-
ences therein). Moreover, within this theory, a consistent microscopic description of
the black hole entropy for various physical four-dimensional (charged) black holes has
been achieved [35—4s]. Finally, adapting techniques from the full theory to a symmetry
reduced setting, dynamical cosmological [46—48] (see also references in [49-51]) and
black hole models [s2—58] have been developed that are able to resolve the singularities
one encounters in the classical theory.

1.2. The topic of this thesis

The present thesis is devoted to the question of how to bring together the two different
approaches towards a formulation of a quantum theory of gravity, namely superstring
theory and LQG, and to relate results and ideas achieved in these different theories. To
this end, we will combine standard quantization techniques of LQG with the concept
of supersymmetry. This also brings LQG closer to ideas of unification. In fact, even
without consideration of string theory, there are hints that a unification of the gauge
theory sector and gravity necessitate some form of SUSY. Supersymmetry is a new kind
of symmetry that arose in the context of the famous results of Coleman-Mandula [59]
and Haag-Lopuszanski-Sohnius [60] who were looking for symmetries of interacting
QFTs that can have a nontrivial mixture with spacetime symmetries. As a consequence, it
turns out that supersymmetries form a certain kind of Lie algebras (g, [, ]) that carry an
internal Zy-grading g = go @ @ also called Lze superalgebras that split into even and odd
part g and g; also referred to as the bosonic and fermionic part of g, respectively, where
generators of the latter turn out transform as spin- fermions. Consequently, according
to Wigner’s classification theorem (see for instance [61] for a mathematical sophisticated
approach), this implies that QFTs incorporating this new kind of symmetry necessarily
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need to contain an equal number of bosonic and fermionic degrees of freedom. Thus,
supersymmetry yields a unified description of bosonic and fermionic particle species,
that is, both force and matter particles, and therefore seems to be a natural candidate for
the search for a unified field theory.

Combining the principle of local supersymmetry with gravity leads to supergravity
(SUGRA). As mentioned above, supergravity theories also naturally arise in terms of
low-energy limits of certain superstring theories. In the framework of LQG, the study of
supergravity theories also has a long history. For instance, in [62], Jacobson introduced
a chiral variant of the real N' = 1 Poincaré supergravity action using Ashtekar’s self-
dual connection variables which soon after has been extended by Fiilop [63] to anti-de
Sitter supergravity including a cosmological constant. Canonical supergravity with rea/
Asthekar-Barbero has been considered in [64, 65]. Generalizations to higher spacetime
dimensions have been studied by Bodendorfer et al. [66-69] introducing new kind of
variables different but similar to those of Ashekar-Barbero as usually applied in LQG in
the context of four spacetime dimensions.

In this thesis, we want to investigate various physical and mathematical aspects of classical
supergravity and study applications in the framework of LQG and loop quantum
cosmology (LQC). To this end, we will focus on (extended) supergravity theories in
D = 4 spacetime dimensions. In particular, we are interested in a reformulation of the
corresponding canonical theory such that it preserves as much as possible the geometrical
structure underlying SUGR A. In this context, we will also talk about an appropriate
description of boundary theories in the framework of supergravity which are compatible
with the principle local supersymmetry.

For this purpose, in Chapter 3, we will study a mathematically rigorous approach towards
GEOMELVIC SUPErgravity. In fact, supergravity turns out to have a very intriguing geomet-
rical interpretation allowing to store all the physical degrees of freedom of the theory
in a single connection. As a consequence, SUGR A attains a structure quite similar to
Yang-Mills gauge theories. This is the starting point of the so-called group geometric
approach to SUGR A initiated by Ne'eman and Regge [70] and further developed by
Castellani-D’Auria-Fré [71,72] to include extended and higher dimensional supergravity
theories. In the following, we want to study this approach in a mathematically rigorous
manner using and extending tools in supergeometry discussed in detail in Chapter 2 and
which results have been published in [1]. In particular, we will introduce an appropriate
notion of a super Cartan geometry that consistently incorporates the anticommutative
nature of (classical) fermionic fields which turns out to be a crucial property in the
context of supergravity. In fact, as we will see, in order to resolve the fermionic degrees
of freedom, this requires the inclusion of an additional parametrizing supermanifold
leading to the concept of so-called relative supermanifolds. This is based on an idea first
formulated by Schmitt in [73] and developed more systematically in [74,75]. Interest-
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ingly, as will be explained in detail in Section 3.6, within this formalism, it turns out
that one can provide a concrete link to the description of (classical) anticommutative

fermionic fields in perturbative algebraic QFT (pAQFT) [76,77].

Furthermore, working in the category of relative supermanifolds, we will construct and
analyze the parallel transport map associated to super connection 1-forms defined on
parametrized principal super fiber bundles. Moreover, explicit expressions of this map
will be derived which will be useful for concrete physical applications to be discussed in
Chapter s as well as Chapter 6. Finally, the induced parallel transport map corresponding
to induced covariant derivatives on associated super vector bundles will be discussed.
In this context, we will also relate our results to similar constructions on super vector
bundles in the algebro-geometric approach in [78,79].

We then turn next towards applications of these methods to loop quantum supergravity
(LQSG). To this end, in Chapter 4, we will first address the canonical analysis of D =
4, N' = 1 Poincaré supergravity using real Ashtekar-Barbero variables starting with
the corresponding Holst action of supergravity as first introduced by Tsuda [65]. In
particular, we will work with half-densitized fermionic fields. Furthermore, a compact
expression of the so-called SUSY constraint will be derived. The SUSY constraint plays
a major role in canonical supergravity theories, akin to the role of the Hamiltonian
constraint in non-supersymmetric generally covariant theories governing the dynamics
of the theory. The canonical analysis of Poincaré supergravity with real Asthekar-Barbero-
variables has been studied the first time in [64, 65]. However, these considerations did
not include a full consistent treatment of half-densitized fermionic fields as proposed by
Thiemann in [80] in order to solve the reality conditions to be satisfied by the Rarita-
Schwinger field. The canonical analysis in arbitrary higher spacetime dimensions has
been considered in [67]. But, for D = 4, the variables used there turn out to be different
from the standard ones usually applied in LQG.

We will then devote ourselves to the proper implementation of the SUSY constraint
operator in the quantum theory which, so far, has not been considered in the literature.
To this end, we will propose a specific regularization procedure adapted to the classical
SUSY constraint and derive for the first time a compact expression of the corresponding
constraint operator using loop quantum gravity methods. Moreover, explicit expressions
of the action of the resulting operator will be obtained. This is important as it is the
first step on the way of analyzing the Dirac algebra generated by supersymmetry and
Hamiltonian constraint in the quantum theory and for finding physical states in the
tull theory. We also discuss some qualitative properties of such solutions of the SUSY
constraint. The results have been published in [2].

Chapter s is then devoted to classical and quantum description of (extended) anti-de
Sitter supergravity theories in 1D = 4 spacetime dimensions. In particular, in this context,
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we will address the question of how to properly include boundary terms to the theory
that are compatible with local supersymmetry at the boundary. This is important as this
provides a first step towards the description of inner boundaries in the framework of
LQSG as well as applications in the quantum description of supersymmetric black holes.
This, among other things, may open up the possibility to compare results of entropy
computations in LQG and superstring theory and thus to gain deeper insights into
the relationship between these different approaches. To this end, adapting techniques
developed in [81-83] to the case of a finite Barbero-Immirzi parameter /3, we will consider
the most general ansatz of boundary terms that are compatible with the symmetries
of the bulk Lagrangian and such that the full theory is invariant under SUSY at the
boundary. In this way, it turns out that the boundary term, at least in the cases of
N =1and N = 2 extended SUGRA, is in fact uniquely fixed by this requirement and
the resulting action of the full theory acquires an intriguing structure taking the form
a Yang-Mills-type action where the contraction over internal indices of the structure
group given by the N-extended super anti-de Sitter group OSp(N[4) is carried out via
a B-deformed inner product. The results have been published in [3].

We then also consider the chiral limit of the theory corresponding to a purely imaginary
Barbero-Immirzi parameter 4 = +7. This limit turns out have interesting properties
such as, in particular, the manifest invariance of the resulting action under an enlarged
gauge symmetry given by the orthosymplectic supergroup OSp(N|2)c for both cases
N =1and N = 2. In particular, it follows that the boundary theory which, as explained
above, is uniquely fixed by the requirement of SUSY invariance at the boundary, takes the
form of a super Chern-Simons action with gauge supergroup OSp(/N|2)c. Moreover,
the equations of motion (EOM) of the full theory yield boundary conditions coupling
bulk and boundary degrees of freedom which turn out to be in complete analogy to the
classical bosonic theory.

For N' = 1 and without consideration of the boundary theory, the existence of an
enlarged gauge symmetry of the chiral theory has been first observed by Fiil6p in the
seminal paper [63] while studying the constraint algebra generated by the Gauss and left
SUSY constraint. In this way, it turns out that the constraint algebra has the structure
of a graded Lie algebra leading to some kind of a graded generalization of Ashtekar’s
self-dual variables also called the super Asthekar connection. Using the Cartan geometric
description of AdS supergravity, we will provide a conceptual and geometric explanation
of the observations of [63] studying the chiral structure of the underlying super anti-de
Sitter algebra yielding an interpretation of the super Ashtekar connection in terms of a
generalized super Cartan connection. Using this connection, this paves the way towards a
new approach to non-perturbative quantum supergravity in which parts of SUSY as
well as the underlying geometrical structure of covariant SUGR A are kept manifest.
In fact, as seen in Chapter 4, the canonical formulation of SURGA theories using real
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variables generically yield very complicated constraints which themselves, when going
over to the quantum theory, are plagued by quantization ambiguities. This also makes
any attempts to compare LQG with other approaches to quantum gravity much more
difficult. However, this turns out to be resolved, at least partially, in the context of
the chiral theory since, by quantizing this theory adapting tools of standard LQG, the
left-handed part of the SUSY constraint is already implemented in a manifest way by
simply imposing gauge invariance.

Explicitly making use of the gauge-theoretic structure of the canonical chiral theory, we
will derive a graded analog of the classical holonomy-flux algebra in a mathematically
rigorous way. To this end, we will, in particular, employ the parallel transport map as
constructed in Chapter 2 induced by the super Ashtekar connection. As a consequence,
in order to consistently incorporate the anticommutative nature of the fermionic fields,
besides embedded graphs, it follows that the corresponding inductive family is labeled
by an additional parametrization supermanifold. These results provide a mathematically
consistent framework to study the manifest approach to loop quantum supergravity.
In fact, existing results in this direction [63,84—86] are rather formal and do not take
into account the issue of how to consistently model the anticommuative nature of
the (classical) fermionic fields. Based on these observations, we will then sketch the
quantization of the theory adapting techniques from standard LQG. As we will see, the
resulting kinematical state space carries a structure which shares many similarities with
the kinematical Hilbert space obtained via the standard quantization scheme in LQG
coupled to fermions [67, 80, 87].

In Chapter 6, we will finally go over to the application of the results obtained in the
previous chapter in the framework of spatially symmetry reduced models and quantum
cosmology which results have been published in [4]. For this purpose, we will first
develop the theory of symmetry reduced super connections forms providing a general
scheme towards symmetry reduction of supersymmetric field theories with local gauge
symmetry associated to a gauge supergroup. These methods will then be used in the
context of chiral N' = 1 supergravity. More precisely, we exploit the enlarged OSp(1|2)c-
gauge symmetry of the theory and derive a general class of homogenenous and isotropic
super connection forms. In fact, the enlarged gauge symmetry turns out to be crucial
to allow for isotropic connections that contain nontrivial fermionic contributions.
Moreover, the fermionic part of the connection turns out to coincide with the ansatz as
derived by other means by D’Eath et al. in [88-90].

These results will then be used to derive symmetry reduced expressions for the constraints
of the canonical chiral theory and study the constraint algebra. Moreover, mimicking
the standard procedure in loop quantum cosmology and using the explicit form of
the super holonomies as derived in Chapter 2, we will motivate the graded holonomy-
flux algebra of the symmetry reduced classical theory. In this context, it follows, using



1.2. The topic of this thesis

the symmetry reduced form of the reality conditions, that the graded algebra can be
equipped with a consistent *-relation. The quantum theory is then constructed choosing
a Ashtekar-Lewandowski-type representation of the *-algebra. As it turns out, requiring
the representation to define an even morphism of graded *-algebras already fixes uniquely
the inner product on the graded kinematical Hilbert space extending and generalizing
results obtained in the context of the purely bosonic theory in [91]. We will then finally
also study the dynamics of the resulting quantum theory. In particular, for a specific
subclass of the symmetry reduced models, we will show explicitly that the essential part
of the quantum constraint algebra exactly reproduces the classical Poisson relations.
More precisely, we will show that the anticommutator between the so-called left and
right SUSY constraint operator exactly reproduces the Hamiltonian constraint operator.
As a last step, we will consider the semi-classical limit of the theory and compare the
results with those obtained by different means in [88-90].

In the following, the thesis is subdivided into two parts: The first two chapters deal with
the mathematical rigorous approach toward geometric supergravity and, in this context,
introduce essential mathematical methods such as the category of relative supermanifolds
as well as bundles, connection forms and Cartan geometries defined in this category.
Moreover, the parallel transport map will be constructed. The second part, treated
in the Chapters 4-6, then focuses on physical applications in the framework of loop
quantum supergravity. There, many mathematical details will be dropped in order to
simplify the notation and to make it easier accessible for the reader. In particular, we
will not explicitly mention the underlying parametrization supermanifold except in
Section 5.5 as well as Sections 6.3 and 6.5.1 in the context of the construction of the
graded holonomy-flux algebra and the symmetry reduction of chiral supergravity where
the parametrization turns out be essential.

A list of important symbols as well as an overview of our choice of conventions con-
cerning indices, physical constants etc. used in the main text can be found in the List of
symbols, notations and conventions.






2.  Supergeometry

2.1. Introduction

Over the last fifty years, many different approaches have been developed in order to
formulate the notion of a supermanifold. The first and probably most popular one
is the so-called algebro-geometric approach introduced by Berezin, Kostant and Leites
[92,93] which borrows techniques from algebraic geometry. It is based on the interesting
observation that ordinary smooth manifolds can equivalently be described in terms of
the structure sheaf of smooth functions defined on the underlying topological space. In
this framework, it follows that supersmooth functions /" are locally of the form

F=f+hA0 +. ..+ +.. . +f.,0" 0" (2.1)

where 8 for7 = 1,...,n are anticommuting Grassmann variables and, for any ordered
multi-index 7 of length < 7, f is an ordinary smooth function. This approach is very
elegant and, in particular, avoids the introduction of superfluous (unphysical) degrees
of freedom. Nevertheless, its definition turns out to be very abstract since, roughly
speaking, points in this framework are implicitly encoded in the underlying structure
sheaf of supersmooth functions. This makes this approach less accessible for physicists
for concrete applications.

Hence, another approach to supermanifolds, the so-called concrete approach, was initiated
by DeWitt [94] and Rogers [95,96], and studied even more systematically by Tuynman
in [97], defining them similar to ordinary smooth manifolds in terms of a topological
space of points, i.e., a topological manifold that locally looks a flat superspace (see
Appendix C for a brief review). However, as it turns out, this definition has various
ambiguities in formulating the notion of a point which, in contrast to the algebro-
geometric approach, leads to too many unphysical degrees of freedom.

It was then found by Molotkov [98] and further developed by Sachse [99, 100] that
both approaches can be regarded as two sides of the same coin. In that framework, at
least in the finite-dimensional setting, it follows that Rogers-DeWitt supermanfolds can
be interpreted in terms of a particular kind of a functor constructed out of a algebro-
geometric supermanifold. This functorial intepretation then resolved the ambiguities
arising in the Rogers-DeWitt approach and also opened the way towards a generalization
of the theory to infinite-dimensional supermanifolds.

Another caveat, both in the algebraic and Rogers-DeWitt approach, is the appropriate
description of anticommuting fermionic fields. In fact, it turns out that the pullback
of superfields to the underlying ordindary smooth manifold are purely commutative
(bosonic). In fact, roughly speaking, restricting a generic supersmooth function f
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to the body of a supermanifold amounts to setting ° = 0 in the expansion (2.1) so
that £ reduces to an ordinary smooth function f¢ which, in particular, is commutative
(bosonic). This seems, however, incompatible in various constructions in physics. For
instance, in the Castellani-D’Auria-Fré approach [71,72], a geometric approach to super-
gravity (see Section 3.4), by the so-called rheonomy principle, physical degrees of freedom
are supposed to be completey determined by their pullback.

Furthermore, as we will also see in Section 2.7.1, from a mathematical point of view, this
issue also appears in the context of the parallel transport map corresponding to super
connection 1-forms. In fact, it follows that in the ordinary category of supermanifolds,
both in the algebraic and concrete approach, the parallel transport cannot be used in
order to compare different fibers of the bundle, in contrast to the classical theory. A
resolution has been proposed by Schmitt [73]. There, motivated by the Molotkov-Sachse
approach to supermanifold theory [98, 99], superfields on parametrized supermanifolds
are considered. Since, a priori, this additional parametrizing supermanifold is chosen
arbitrarily, one then has to ensure that these superfields transform covariantly under
change of parametrization. This idea has been studied rigorously for instance by Hack
et. al. in [ro1] considering relative supermanifolds which are well-known in the algebraic
approach [74] (see also [75]). As it turns out, superfields on these supermanifolds
indeed have the required properties, i.e., in the sense of Molotkov-Sachse, they behave
functorially under change of parametrization. Moreover, as we will show explicitly later
in Section 2.2, in this framework, it follows that fermionic fields have the interpretation in
terms of functionals on supermanifolds which is in strong similarity to other approaches
such as in the context of pAQFT [76,77].

In this chapter, we want to provide the mathematical rigorous foundations for the
study of gauge theories on (relative) supermanifolds. In particular, we will study the
parallel transport map corresponding to super connection forms defined on (relative)
principal super fiber bundles. The parallel transport map, or the associated holonomies,
have been considered in the context of covariant derivatives on super vector bundles
in the algebro-geometric approach in [78,79]. The theory of super fiber bundles and
connection forms in the concrete approach has been developed in [97]. In the algebraic
category, a precise definition of principal bundles and connection forms has been given
in [102]. In what follows, we will generalize the considerations of [97] to the relative
category and, in particular, define super connection forms on relative principal super
fiber bundles. We will then use this formalism in order to construct the corresponding
parallel transport map and study some of its important properties. Moreover, we will
analyze the precise relation between the algebraic and concrete approach and show
explicitly that both approaches are in fact equivalent. To this end, we will employ the
functor of points technique which will be discussed in detail in Section 2.2. Moreover,
studying the induced parallel transport map on associated super vector bundles, this

10
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enables us to compare the results with those obtained in [78,79] in the algebraic setting.
For an investigation of the geodesic flow on super Riemannian manifolds see [103].

The structure of this chapter is as follows: At the beginning, we will give a detailed
introduction to the theory of supermanifolds and super Lie groups and establish a
concrete link between these various approaches via the functor of points prescription.
Then, in Section 2.4, we will summarize various important aspects of super fiber bundle
theory in the concrete approach to supermanifold theory. To this end, we will mostly
follow [97]. However, in contrast to [97], we will use the concept of formal bundle
atlases which is very well-known in the classical theory (see e.g. [104, 105] and references
therein) and turns out to be even applicable in the context of supermanifolds. In Section
2.5, we will then introduce the concept of relative supermanifolds and define principal
connections and super connection one-forms. In Section 2.6, we will compare the theory
of principal bundles and connection forms both in the algebraic and concrete approach
and show that both approaches are equivalent. These results will then be used in the last
Sections 2.7.1and 2.7.2 in order to construct the parallel transport map. Moreover, for a
particular subclass of super Lie groups, a concrete formula for this map will be derived
making it easier accessible for physical applications.

A list of important symbols as well as an overview of our choice of conventions concern-
ing indices, physical constants etc. can be found in the List of symbols, notations and
conventions.

2.2. Three roads towards a theory of supermanifolds
2.2.1.  Algebro-geometric supermanifolds

In the following, let us briefly review the basic definition of algebro-geometric super-
manifolds. For a review of the Rogers-De Witt approach to supermanifold theory, we
refer to Appendix C. The algebro-geometric approach is based on the observation that
ordinary smooth manifolds can equivalently be described in terms of locally ringed
spaces. To this end, one notes that any smooth manifold canonically yields the locally
ringed space (M, Cy) which is locally isomorphic to some (V, Cg,,|y) with V' € R”
open. In fact, it turns that all smooth manifold M can be described this way. That is,
if (M, Opr) is alocally ringed space with Oz a sheaf on M such that (M, Oyy) is
locally isomorphic to some (V', Cg;, ) with ' € R” open. Then, M can be given the
structure of smooth manifold in a unique way such that Oz = C3. Even more, it
follows that both categories are in fact equivalent (for a proof see, e.g., [117]).

Based on this idea, one defines supermanifolds as some sort of locally super ringed
spaces generalizing appropriately the notion of a smooth function. Hence, a so-called



2. Supergeometry

supersmooth function ot superfield f on the superspace R”1” = R” @ R” is defined as a

function of the form
f= Z f 6L (22)
I

with f7 ordinary smooth functions on R for any ordered multi-index [ = (71, ..., )
oflength 0 < |/| = k < msuchthats; <7, < ... <7, where 6L .= 971 ... §% with
6% being odd Grassmann-variables. In the following, we will follow very closely [106] for
the definition of algebro-geometric supermanifolds and the construction of the functor
of points (see also Appendix A for our choice of conventions in super linear algebra as
well as Appendix B for summary of important aspects of category theory and algebraic
geometry). Therefore, we will omit most of the proofs.

Definition 2.2.x. An algebro-geometric supermanifold of dimension (2, ) is a locally
super ringed space M = (M, O ) that is locally isomorphic to the superspace R”/”.
More precisely, (M, Opr) consists of a topological space M which is Hausdorft and
second countable as well as a sheaf Oy over M of super commutative rings called
structure sheaf such that, for any x € M, the stalk Oy . is alocal super ring. Moreover,
for x € M, there exists an open neighborhood U C M of x as well as an isomorphism

¢u = (lgul, ¢§j) of ordinary locally ringed spaces

su = (gul, 8} - (U,0mlv) = (Iul(U), Culigpiny ® J\ 18-, 6"])
(23)
such that ¢§] 2 Canligoiw) ® N [6%,...,0"] — Ourlu, in addition, is an even
morphism of sheaves of superalgebras. The tuple (U, ¢r/) is called a local chart or
superdomain around x. A family {(U,, ¢,) } wex of chartsis called an atlas of (M, O pr)
if Upgey Ur = M.
A morphism /= (|f], fﬁ) : (M,0p1) = (IN,Op) of algebro-geometric super-
manifolds is a morphism of the underlying ordinary locally ringed spaces such that
f*: On — £.0p1 also is an even morphism of superalgebras. Algebro-geometric

supermanifolds together with morphisms between them form a category SMany g called
the category of algebro-geometric supermanifolds.

Remark 2.2.2. Choosing a chart (U, ¢¢/) of an algebro-geometric supermanifold
(M, Opr), this induces local coordinates (£%, 8%/) on M|y := (U, Opzlu) via t# =
¢f, (") and 6% = ¢ (6/)Vi = 1,...,m, j = 1,...,m where dim (M, Op) =
(m, n). Moreover, any function / € O]y is of the form

f=p it (2.4)
I
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where, for any ordered mulit-index / = (73,...,7;) oflength 0 < £ < #, G .=
ghi ... gha and f1 = ¢§](g£) for some smooth function g7 € C*(|¢r|(U)).

Any supermanifold naturally contains an ordinary smooth manifold as a submanifold.
To see this, for any algebro-geometric supermanifold M = (M,Opr) andU € M
open, consider the set Ja7(U) = {f € Opr(U)| f is nilpotent}. It then follows that
Im (U) isanideal in Ops (U) yielding another sheaf U +— J37(U). Hence, one can
construct the quotient sheaf O 57/ Jar whose sections locally have the structure of an
ordinary smooth functions. This yields a locally ringed space

My = (M,0n/Inr) (2.5)

which is a submanifold and has the structure of an ordinary smooth manifold. Before we
continue, let us mention a central result in the theory of algebro-geometric supermani-
folds as it will appear quite frequently in the discussion in what follows. It states that mor-
phisms are uniquely characterized via the pullback of a basis of global sections. To this
end, recall that, for a section f € O(M) := Opr (M), the value f (x) = evy(f) of f at
x € M is defined as the unique real number such that /= £ (x) is not invertible in any
open neighborhood of x in M. This induces a morphism ev,, € Homgalg(O (M), R)
defined as

eve(f) = £ (x), VF € O(M) (2.6)

called the evaluation morphism at x € M.

Theorem 2.2.3 (Global Chart Theorem [106]). Let M = (M, Opr) be an algebro-
geometric supermanifold and U™ = (U, C) € R™" be a superdomain with U C
R™ open. There is a bijective correspondence between supermanifold morphisms ¢
M = U and tuples (£, 647 of global sections of O pr with t¥ even and 6% odd,
i=1,...,mand j= 1,...,n,smbthat(tm(x),...,tﬂm(x)) e UVx e M.

Proof. Itfollows that,if ¢ : M — N isa morphism of supermanifolds, then 95‘1 () ()
= ¢(I¢l(y)) forany ¢ € O(N) and y € N where N = (N,Op). Itis clear, by
restricting the global sections ¢/ and 87/ of R”!” to the superdomain U”", that their
respective pullback = ;kﬁ(tl') and 6%/ .= ;kﬁ(ﬁj) w.r.t. amorphism ¢ : M —
U™ indeed satisfy the properties as stated in the theorem. The inverse direction follows
from the local triviality property of supermanifolds. m|

Example 2.2.4 (The split functor (see also Example C.11)). Typical examples of a super-

. . 0 . . . 7[
manifolds are obtained via their strong relationship to vector bundles. Let V" — E —
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M be a real vector bundle over an 72-dimensional manifold with typical fiber given by a
vector space V' of dimensional 7. This naturally yields a locally ringed space setting

S(E, M) = (M,T(\E)) (2.7)

where I'(/\ £7) denotes the space of of smooth sections of the exterior bundle A £*.
Since I'(AE*) = AT(E)" naturally carries a Z,-grading, it follows that it has the
structure of a sheaf of local super rings, that is, S(£, M) defines an algebro-geometric
supermanifold of dimension (mz, z) also called a split supermanifold. A morphism
(¢,f): (E, M) — (F, N)between two vector bundles induces a morphism $(¢, f) :
S(E, M) — S(F, N) between the corresponding split supermanifolds. Hence, this
yields a functor

S : Vectyg — SMany,, (2.8)

from the category of real vector bundles to the category of algebro-geometric super-
manifolds which we call the split functor. In case that the vector bundle (£, M) =
(M xV, M) is trivial, S(E, M) will be called globally split and we also simply write
S(V,M) = S(E, M). Itis a general result due to Batchelor [107] that any algebro-
geometric supermanfold is isomorphic to a split supermanifold of the form (2.7), i..,
(2.8) is surjective on objects. However, the split functor is zot full, i.e., not every mor-
phism / : S(E, M) — S(F, N) between split manifolds arises from a morphism
between the respective vector bundles (£, M), (F, N) € Ob(Vectg). Hence, the
structure of morphisms between supermanifolds, in general, turns out to be much
richer than for ordinary vector bundles. This is of utmost importance in modelling for
instance supersymmetry transformations to be discussed in Section 3.4.

As a next step, we want to describe a relation between algebro-geometric and Rogers-
DeWitt supermanifolds. A very elegant way in describing this relationship is given by the
so-called functors of point approach. Itis a general technique in algebraic geometry which
can be used in order to give, a priori, very abstract objects a more concrete reinterpretation
making proofs much easier in certain instances. As explained already in the introduction
to this chapter, a general “issue” concerning algebro-geometric supermanifolds is the
lack of points. In fact, in contrast to ordinary smooth manifolds, the points of the
underlying topological space do not suffice to uniquely characterize the sections of the
structure sheaf. As it turns out, this can be cured by studying the morphisms between
them.

Definition 2.2.5. Let M be an algebro-geometric supermanifold. The functor of points
of M is defined as the covariant functor M : SManOA};g — Set on the opposite category

SManOA};g associated to M which on objects 7~ € Ob(SManyj,) is defined as

M(T) := Hom(7, M) (2.9)
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also called the 7 -point of M and for morphisms /' € Hom(7", S), the corresponding
morphism M(f) € Hom(M(S), M(7)) is given by

M) : M(S) > M(T), g— gof (2.10)

Hence, the functor of points of M coincides with the partial Hom-functor by =
Hom(M, -) on SManng.

If  : M — N isamorphism between algebro-geometric supermanifolds, this yields a
map @7 : M(T) — N(T) between the associated 7 -points by setting ¢o-(f) := ¢of
Vf € M(T) = Hom(7, M). By definition, it then follows that for any morphism
f: S — 7 onehas

N(f)opr(g) =¢r(g)of =¢pogof =¢soM(f)(g) (2.10)

Vg € M(T), thatis, the following diagram is commutative

MT) 2L pms)

N(l:) al2e Nk:)

Hence, a morphism ¢ : M — N induces a natural transformation between the
associated functor of points. This poses the question whether all natural transformations
arise in this way. This is an immediate consequence of the following well-known lemma.

Lemma 2.2.6 (Yoneda Lemma). Let C be a category and F : C — Set be a_functor.
Then, for any object X € Ob(C), the assignment y v yx(idx) yields a bijective
correspondence between natural transformations y : Hom(X, -) — F and the set

F(X) € Ob(Set).

Applied to our concrete situation, this implies that for the functor of points b :
SManOAFI) — Setand by : SManOA}; — Set associated to algebro-geometric superman-
ifolds M and N, one has a bijective correspondence between natural transformations
between /o and b and elements in Hom(N, - ) (M) = Hom(M, N). In particular,
the supermanifolds M and N are isomorphic iff the associated functor of points are
naturally isomorphic.

We next want to find an equivalent description of the 7 -points of an algebro-geometric
supermanifold M purely in terms of global sections of the structure sheaf O 57. Consider
therefore the set Specy (O(M)) := Homgag(O (M), R) called the real spectrum of
O(M) = Opr(M). Since, amorphism ¢ : O(M) — Rin the real spectrum is always
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surjective, it follows that the kernel ker(¢) yields a maximal ideal in O(M), i.e., an
element of the maximal spectrum

MaxSpec, (O(M)) == {1 € O(M)] I is a maximal ideal} (2.12)

In fact, it follows that all maximal ideals in O(M) are of this form. This is a direct
consequence of the super version of the classical “Milnor’s exercise” [106].

Proposition 2.2.7 (Super Milnor’s exercise). For an algebro-geometric supermanifold
M all the maximal ideals in O (M) are of the form 3. := ker(evy : O(M) — R) for
some x € M, where ev,, € Homgpig (O (M), R) is the evaluation morphism at x (Eq.

(2.6)).

Proof. Let I C Ops be a maximal ideal. On M, := (M, Opr/ Jar) consider the the
subset 7#(1) € C*(My) of C*(My), where 7% : Opr — Ot/ Im = Cy s the
pullback of the canonical embedding 7 : My < M. Since jﬂ is a surjective morphism
of super rings and 1 ¢ 7, it follows that jﬂ([ ) is a maximal ideal in C*° (M). By the
classical Milnor’s exercise, we thus have jﬁ (1) :=ker(evy, : C®°(My) — R) for some
x € M.Hence, I C 3, implying I = J, by maximality of /. ]

Hence, according to Prop. 2.2.7, we are allowed to identity the real spectrum with

MaxSpec (O(M)) and even obtain a bijection ¥ : M — Specg (O(M)) via

M>3x (evy: O(M) > R) € Specg (O(M)) — ker(evy) € MaxSpecg (O(M))

(2.13)
We want to define a topology on Specy (O(M)) such that ¥ becomes a homeomor-

phism. To this end, note that any section /* € O (M) canonically induces a morphsim
¢r : Specg (O(M)) — R by setting

87 (eva) = eve(f) = F() (2.14)

Hence, let us endow Specg, (O (M)) with the Gelfand topology which is defined as the
coarsest topology such that the maps ¢ for all f € O(M) are continuous. A basis of
this topology is generated by open subsets of the form

¢]?1(Be(xo)) = {evx € Specg (O(M))] [(evy — v ) (f)| < €} (2.15)
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2.2. Three roads towards a theory of supermanifolds

for some f € O(M) and B,(x9) C M an open ball of radius € around xy € A . It
then follows immediately that the map ¥ : M — Specy (O(M)) is continuous w.r.t.
this topology, since

Y (g7 (Be(x0))) = If 17 (Be(f (%)) (2.16)

isopenin M as|f| : M — Ris continuous. In fact, ¥ is even a homeomorphism. To
see this, consider a closed subset X C A and let py be the ideal in O (M) defined as
the set of all sections f € O(M) vanishing on X. Using a partition of unity argument,
it follows that

X={xeM|f(x)=0,Vf €px} (2.17)
and thus
Y(X) = () ¢7'{op (2.18)
fer

ie., ¥(X) is closed in Specg (O (M)) proving that ¥ is indeed a homeomorphism.

Theorem 2.2.8. Let M and N be algebro-geometric supermanifolds. Then, their exists a
bijective correspondence between the set Hom(M, N') of morphisms of algebro-geometric
supermanifolds and the set Homsaig (O (N), O (M) of superalgebra morphisms between

the superalgebras of global sections of the respective structure sheaves.

Sketch of Proof. One direction is immediate, i.c., that the pullback of a supermanifold
morphism ¢ : M — N induces a morphism ¢ﬁ : O(N) — O(M) of the respective
structure sheaves. The proof of the inverse direction uses a standard tool in algebraic
geometry called localization of rings. See [106] for more details. m]

Hence, according to this theorem, in the following, we will identify the 7 -point M(7")
of an algebro-geometric supermanifold M with Hom(O (M), O(7")). For instance,
let us consider the 7 -points R””(77) = Hom(O(R™!"), O(T)) of the superspace
R™2, By the Global Chart Theorem 2.2.3, this set can be identified with
R (T = {(e},....¢™, 8%, ...,0M)|t € O(T ), 6/ € O(T)1}
=O0(T)y ® O(T)} = (O(T) ® R™"), (2.19)
For J(7) = {f € O(T)|f isnilpotent} the ideal of nilpotent sections of O(7"),

this yields the canonical projection € : O(7) — O(T)/J(T) = C*(1p) with Tj
defined via (2.5) which can be extended to the body map

emn i (O(T) @Ry — C*(T;)" (2.20)
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2. Supergeometry

In the following, we want to restrict to a subclass of supermanifolds 7~ € SMan Alg
for which C*(1j) = R, i.e., for which the underlying topological space 7" = {x*} just
consists of a single point. Hence, it follows that 7~ = ({*}, An) = RO for some
N € Np.

Definition 2.2.9. An algebro-geometric supermanifold 7~ is called a superpoint if the
underlying topological space 7" only consists of a single point. The subclass of super
points form a full subcategory SPoint of SMan Alg called the category of superpoints.

Proposition 2.2.10 (see [98,99]). Let Gr be the category of (finite-dimensional) Grass-
mann algebras whose objects are given by equivalence classes of Grassmann algebras
AN € Ob(Gr), N € Ny, and for An, An+ € Ob(Gr), Homge(An, Anv) is given
by the set of superalgebra morphisms between Grassmann algebras. Then, the assignment

Gr’? — SPoint, Ay — ({*},An) (2.21)
(¢: An — Anv) = (i), @)

yields an equivalence of categories. m]

In the following, we will therefore identify superpoints with finite-dimensional Grass-
mann algebras. From (2.19), it follows for N € N

R™"(An) = (Ax ® R™1)g = A" (2.22)

with A%’” the superdomain of dimension (72, ) (see Definition C.1). We equip A]nf[’”
with the coarsest topology such that the body map €,,,,, : A%’” — R™ is continuous,
the so-called De Witt-topology. Hence, in this way, it follows that R I"(An) can be

identified with a trivial supermanifold in the sense of Rogers-DeWitt.

2.2.2. Algebro-geometric and /7* supermanifolds: An equivalence of
categories

With these preliminaries, in the following, we are ready to describe a concrete link
between the algebro-geometric and Rogers-DeWitt approach using the functor of points
technique. To this end, we first show that smooth functions on R™"(Ay) = A]n\z[,n
can be described in terms of natural transformations between functor of points.

More precisely, by the Global Chart Theorem 2.2.3, a section /€ O(R™") can be
identified with a morphism £ R7r — RN, According to (2.11), this in turn induces
a natural transformation f7- : R (77) — RY(T") between the respective functor of
points. Sticking to Grassmann algebras, we want to find an explicit form of fj . To this
end, let (x, §) € A" which we can identify with a morphism g : R%™ — R”I" such
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2.2. Three roads towards a theory of supermanifolds

that gﬁ(t") =x’and gﬁ(é’f) =£iVi=1,...,m, 7 =1,...,n Itthen follows again
from Theorem 2.2.3 that /3, (x, £) can be identified with an element of A}\’[l = An

whose even and odd part is given by gji (f #(¢)) and gﬁ (f 4(9)), respectively, where #
and 4 denote the global sections of O (R!"). Thus, expanding £ = 3.; f76%, this yields

fan (5,6) = S (FH0) + £ (FHO) = %afﬁi|g|s<gﬁ<r>>f(gﬁ<e>>f
L] &

= Z %aﬂi(em)n(x)):(x)ifi = Z G(ﬁ)(x)f£ (2.23)
Lj l 7

where 5(X) = x — €,,,,(x) is the soul map and

G () 1= D, Fidsfilemn())s(x)) (224)
i

is called the Grassmann-analytic continuation of /7 or simply its G-extension. Functions
of the form (2.23) are precisely supersmooth functions in the sense of Rogers-DeWitt!
In the standard literature, they are also called of class 4™ (see Appendix C). As a
result, A" together with functions of the form (2.23) yields a Rogers-DeWitt or A%
supermanifold. The assignment

Hormmany, (R™1%, RI1) — H (A7) (225)
f = fAN

is clearly surjective but in general not injective unless N' > 7. We next want to extend
these considerations from superspaces to arbitrary algebro-geometric supermanifolds.
To this end, we make the following definition.

Definition 2.2.11. For N € N, the functor Hy : SMany; — Sets is defined on
objects M € Ob(SManyj,) via

Hy (M) = M(Ayx) = Hom(O(M), AR™) (2.26)
and on morphisms f : M — N according to

Hx(f) : Hom(O(M), ARN) - Hom(O(N), /\RN), pr>po fﬂ (2.27)

The set M(A ) contains the real spectrum Specg (O(M)) = Hom(O(M),R) =
M(R) as a proper subset. According to Prop. 2.2.7 (see also (2.13)), this set can be
identified with M and thus, in particular, naturally inherits a topology. Using this
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2. Supergeometry

property, we again introduce the De Witt-topology on M (/A n) to be coarsest topology
such that the projection’

B: M(An) = Specy (O(M)) =M,y eoy (2.28)

is continuous.

Proposition 2.2.x2. Let U C M be an open subset of the underlying topological space
M of an algebro-geometric supermanifold M. Let us identify U via ¥ : M —
Specg (O(M)), x > evy with an open subset in the real spectrum. Then, it follows
that the open subsets B~ (U) in M(AN) are given by

B L(U) = {v: OM) = An|eoyy =evy forsomex € U} (2.29)

In particular, one has B (U) = M|y (An) with M|y := (U, Oarlv).

Proof. The first assertion is immediate, since y € B™!(U) ifand onlyif e o y € ¥ (U),
ie., € o ¥ = evy for some x € U. To prove the last one, note that, by Theorem 2.2.8,
one can identify a superalgebra morphism ¢ : O(M) — Ay with the pullback of
a supermanifold morphism ¢ := (||, ¢ﬁ) : ROW = ({«},An) — M. Forany
f e OM), e(¢N (f)) is defined as the unique real number such that ¢ji (f) - 6(¢ﬂ ()
is not invertible. This is precisely the definition of the value of a section of A at {x},
ie, e($ (1)) = 4 () ({+}) = FU1({})). Since, € 0 ¢ = ev, for some x € M, this
yields £ (|¢|({*})) = evi(f) = f (x) forany f € O(M) which implies |¢|({*}) = .
Note that ng’i is a morphism of sheaves and thus, in particular, commutes with restrictions.
Hence, if, for f € O (M), there exists an open neighborhood x € V such that £ = 0,
then ¢ﬁ (f) = 0. Thatis, ¢ﬁ is uniquely determined by the induced stalk morphism
925,% : Om,x — An. From this, it is immediate to see that any ¥ € M|y (An) =
Hom (O (U), An) can trivially be extended to a morphism ¢ : O(M) — Ay
satisfying € o ¢ = ev, forsome x € U, ie, ¥ € B (). Conversely, it follows that
any morphism in B7!(U) arises in this way. This proves the last assertion. m|

By the local property, for any x € A, there exists an open subset x € U C M
such that M| is isomorphic to a superdomain U”™ 7 which is a submanifold of the
superspace R” I, Applying the functor (2.26) and using Prop. 2.2.12, we thus obtain an
isomorphism

B 1(U) = Mly(An) = U™ (An) S R™7(An) (2:30)

|n

' In case M is simply given by the superspace R”* 1%, this coincides with the body map (2.20).
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2.2. Three roads towards a theory of supermanifolds

i.e., alocal superchart of M(Ap). By (2.23), it follows immediately that the transition
map between two local supercharts defines a A *-smooth function. As a consequence,
M (A ) indeed carries the structure of a /> supermanifold. Hence, it follows that the
A-points of an algebro-geometric supermanfold naturally define supermanifolds in the
sense of Rogers-DeWitt (or more generally A-manifolds in the sense of Tuynman [97]).
Moreover, the corresponding topological space BUOM(An)) = Specy (O(M)) has the

structure of an ordinary C* manifold.

Remark 2.2.13. Just for sake of completeness, note that each M € Ob(SManyj,) gives
rise to the obvious functor

M : Gr — Top (2.31)

which maps Grassmann algebras A to A-points M(A). This leads to the interpretation
of a supermanifold in the sense of Molotkov-Sachse [98-100].

Similar to (2.25), for any U C M open, one obtains a map

Oy (U) = Hom(M|u, R'") — H®(M|u(An)) = B.Hyy s, (U)  (232)
f = fAN

which is generally surjective but injective iff N > 7. In particular, one can show that it
defines a morphism of sheaves, i.e., it commutes with restrictions.

Consider next a H* supermanifold K € Ob(SMang~). To K, one can associate the
body B(K) defined as the subset of K given by

B(K) = {x € K| f(x) € R, Vf € H™(%K)} (2.33)

which, by definition, has the structure of an ordinary smooth manifold. This can be
extended to morphisms / : K — L between H* supermanifolds setting* B(f) :=
flBx) : B(K) — B(L) yielding a functor B : SMang~ — Man called the body
Sfunctor. In case K is given by a An-point M(Ap) of an algebro-geometric super-
manifold M € Ob(SManyy) with odd dimension bounded by /N, one can iden-
tify B(K) with the real spectrum Specg (O(M)) justifying the notation. To see this,
note that, in this case, (2.32) implies that smooth functions on K are given by natu-
ral transformations £y ,, induced by morphisms £ € Hom(M,R!"). For ¢ € K =
Hom(O (M), AN), fa, (¢) can be identified with the element ¢ o fﬁ € An. Hence,
¢ € B(N) & fu, (¢) € Hom(O(R'"),R) = RVf € Hom(M,R'") if and only if
¢ € Hom(O(M), R), that s, iff ¢ is contained in the real spectrum Specy (O (M)).

> Note that f(B(K)) € B(L) so thatf|B((K) : B(K) — B(L) is indeed well-defined. In fact, for any
g€ H*(L)and x € B(K), it follows ¢(f(x)) = (g o f)(x) € Ras ¢ o f is smooth and therefore
f(x) € B(L).
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To any H* supermanifold K, one can associate the locally ringed space
A(K) = (B(K), B. Hye) (2:34)

which has the structure of an algebro-geometric supermanifold. A morphism f*: K —
L between H supermanifolds % and L canonically induces a morphism

A(f) = (flBx), ) = A(K) = A(L) (2.35)

between the corresponding algebro-geometric supermanifolds, where /™ denotes the
ordinary pullback of smooth functions. Hence, this yields a functor

A : SManp~ — SMany, (2.36)

Let us restrict Hy to the full subcategory SMan Alg N C SManyig v of algebro- geomet-
ric supermanifolds with odd dimension bounded by /N. Then, based on the previous
observations, if follows A(Hx (M)) = M for any M € Ob(SManyy, 7). In fact, we
have the following.

Theorem 2.2.14. The functor A o Hy : SManyj, ;v — SManyjg N 7s naturally
equivalent to the identity functorid : SManyy; y — SManyyg N

Proof. We have to show that the following diagrams are commutative

#

T LE

Specg (O(M)) —— Specy (O(N)) B*HK/O(AN) H—N(f)> ﬁ‘(B*H/‘C((AN))

forany M, N' € Ob(SManyyg ) and morphisms f = (|f|,fﬁ) : M — N where, in
the diagram on the left, the lower arrow is given by the restriction of Hx () to the real
spectrum Specy (O(M)). That the left diagram commutes follows immediately, since,
by Def. (2.27), we have

Hy (F)(evy) = vy o f* = evip () (237)

forany x € M. To see the commutativity of the right diagram, note that, by identifying
g € O(N) with a morphism ¢ : N — R the pullback fﬁ (g) is given by the
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2.3. Super Lie groups and Lie superalgebras

morphism go f : M — R, Moreover, identifying ¢ € M(A ) with a morphism
¢ RN — M, we have Hx (f)(¢) =f o ¢. Thus, this yields

Hy () (gay)(8) = gay (H (F)(8))
=gofog=FHg) os= gy (9 (2.38)

forany g € O(N) and ¢ € M(Ap). This proves the theorem. O

Conversely, it is immediate to see that Hx o A is naturally equivalent to the identity
functor on the full subcategory SMan g~ n of H supermanifolds with odd dimen-
sion bounded by N (see also [95,108]). Thus, the functors Hy : SManp, n —
SMang~ n and A : SMang~ ny — SManyj N provide an equivalence of categories.

To summarize, any algebro-geometric supermanfold induces a functor of the form (2.31)
assigning Grassmann algebras to the corresponding ' supermanifold. Moreover,
in case that the number of odd generators of the Grassmann algebra is large enough,
via (2.26), one even obtains an equivalence of categories which allows one to uniquely
reconstruct the underlying algebro-geometric supermanifold. For this reason, many
constructions on algebro-geometric supermanifolds can equivalently be performed on
the corresponding A * supermanifolds (in fact, we will mainly do so in what follows
as H* manifolds are often easier to handle for applications in physics). However, the
choice of a particular Grassmann algebra is completely arbitrary and therefore tends
to introduce superfluous (physical) degrees of freedom. Consequently, any definition
made on a A supermanifold should not depend on a particular choice of a Grassmann
algebra but, in the sense of Molotkov-Sachse, behave functorially under the change of
Grassmann algebras. In the following, working with a particular 4 supermanifold
M, we will only assume that the number of odd generators of the Grassmann algebra A
over which M is modeled is large enough, i.e., greater than the odd dimension of M.3

2.3. Super Lie groups and Lie superalgebras

Super Lie groups and their corresponding algebras play a prominent role in context
of supergravity, in particuular, in the framework of the Cartan geometric approach
which will be discussed in detail in Chapter 3. In the following, let us recall very briefly
the main definition of super Lie groups in the algebraic category and their associated
super Lie algebras as well as the relation to their corresponding //* counterparts (see,
e.g., [106] for an introduction to super Lie groups in the algebraic category as well as [96]

3 For this reason, in the standard literature, one typically chooses the infinite-dimensional Grassmann
algebra Ao generated by infinite number of Grassmann-generators which may be obtained as an
inductive limit of the finite-dimensional ones. Also in this case, one can show that the category of
algebro-geometric and A* supermanifolds modeled over Aco are indeed equivalent [95,108].
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2. Supergeometry

in the Rogers-DeWitt approach). We will then turn quickly towards important examples
which will be of central interest in the context of physical applications.

Definition 2.3.x (sce [106]). An algebro-geometric super Lie group G = (G, Og) is an
algebro-geometric supermanifold G € Ob(Manyj,) together with three morphisms

u:GxG—@G, i:G—G, e:R0|0—>g (2.39)

called multiplication, inverse and neutral element, respectively, satisfying the following
commutative diagrams

G6x6x62L -~ Gxg GxG GxG

(id,7) \(\ ii}/ ‘\<\
idxp “ g ¢ g g id g
GxG © G (7,id) / (@id) /
G

G X

GXxXG

(2.40)
where & denotes the composition of the neutral element ¢ : RI® — G with the
unique morphism G — RI°, Moreover, for two morphisms gand ¥ : G — G,
(¢, ¥) : G — G is defined as the morphism (¢ X ) o dg with dg the diagonal map
dg: G- GXG.

Definition 2.3.2. Let G = (G, Og) be an algebro-geometric super Lie group. A
smooth vector field or derivation X € Der(Og) on the function sheaf Og is called left-
resp. right-invariant it

]l®Xo‘uﬁ:‘uﬁoX resp. X®]lo‘uﬁ=‘uﬂ0X (2.41)

Definition 2.3.3. The super Lie algebra (or Lie superalgebra) g of an algebro-geometric
super Lie group G = (G, Og) is defined as the sub super Lie algebra of left-invariant
vector fields on G where the Lie bracket [+, -] on g is defined via the graded commutator
of vector fields, i.e.,

[X,Y]=XoY - (-)¥ My o x (2.42)

for any homogeneous X, Y € g.
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Remark 2.3.4. Trivially, any left-invariant vector field X' € g on an algebro-geometric
super Lie group G = (G, Og) defines a tangent vector at the identity X, € 7,(G, Og),
that s, a linear derivation X, : Og, — R on the stalk O . by evaluation X, := efoX.
Conversely, any tangent vector ¥, € 1;(G, Og) canonically induces a left-invariant
vectorfieldY € gviaY = 1® Y, 0 Iuﬁ. In fact, using associativity of the group
multiplication, it follows

]l(X)Yo[uﬁ:]l<£<)(IL(§Z>on‘z4ﬁ)o‘uﬁ:]1@]1<§§Y;O]1<§§‘uﬁo[uﬂ
:]1®]1®Ygo‘uﬁ®]lo‘uﬁ:yﬁo(]l®)’;oyﬁ)=y“0Y (2.43)

Hence, in this way, this yields an isomorphism of super vector spaces such that we may
identify g = 7;(G, Og). For this reason, if not stated otherwise, we will not specify
whether a super Lie algebra element X' € g is viewed as a left-invariant vector field or as
a tangent vector at the identity.

Remark 2.3.5. In Definition 2.3.3, the sub super Lie algebra of left-invariant vector fields
was taken for the definition of the super Lie algebra of an algebro-geometric super Lie
group G = (G, Og). On the other hand, we could also have taken the right-invariant
vector fields as these form a sub super Lie algebra, as well. In the following, we will
denote this super Lie algebra by g*.

Next, we want to turn to the notion of super Lie groups in the category of Rogers-
DeWitt supermanifolds which is more or less in complete analogy to the standard theory
of ordinary smooth manifolds.

Definition 2.3.6. A H* super Lie group G is a > supermanifold together with
two morphisms ¢ : G X G — Gand 7 : G — G called multiplication and inverse,
respectively, as well as an element ¢ € G called neutral element such that, after applying
the forgetful functor SMany~ — Set, (G, u, 7, ¢) defines an ordinary group in the
category Set.

Itis clear by functoriality that, given an algebro-geometric super Lie group G = (G, Og),
the corresponding A x-points G(An) = Hy (G) with N greater than the odd dimen-
sion of G have the structure of H* super Lie groups. Conversely, a H* super Lie
group G naturally induces a corresponding algebro-geometric super Lie group A(G) =
(B(G), H g’ ). In this context, it is important to note that the neutral elemente € G
of a H® super Lie group G is an element of the body* such that the pullback induces

* Infact, since B(7) = 7|g(g), it follows that, for any ¢ € B(G), one has g‘l =i(g) =B(:)(g) €
B(G). Thus, since B(%) = g|(g), we have in particular g - g71 = ¢ € B(G). This also demonstrates
that B(G) in fact defines an ordinary Lie group.
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amorphism ¢* = ev, : H*”(G) — R, ie, an element of the real spectrum ¢* €
Specg (H*(G)). Thus, in this way, we obtain an equivalence of categories between
algebro-geometric and A supermanifolds. Again, in what follows, we will mainly
work in the H* category as these objects are often easier to handle.

Definition 2.3.7. The super Lie algebra g of a H®™ super Lie group G is defined as the
super Lie algebra of left-invariant vector fields on the corresponding algebro-geometric
super Lie group A(G). Furthermore, we define the super Lie module Lie(G) as the
tangent space Lie(G) = 1.G.

Remark 2.3.8. According to Remark 2.3.4, one can identify g = 7,A(G). Since, left-
invariant vector fields induce a homogeneous basis on the tangent spaces and Lie(G)
defines a super A-module with A the underlying Grassmann algebra over which G is
modeled as a H* supermanifold, one thus has

Lie(G) =A®g (2.44)

Hence, in particular, if follows that Lie(&G) defines a super A-vector space with distin-
guished basis represented by smooth left-invariant vector fields.

Finally, let us briefly mention a very important equivalent characterization of super Lie
groups in terms of so-called super Harish Chandra pairs. It turns out that super Lie
groups G (concrete or algebraic) have a relatively simple structure: They are completely
determined by the data (G, g) consisting of underlying topological space G and the
super Lie algebra g and a certain representation of G on g.

In the algebraic category, this correspondence remains rather implicit (for an abstract
proof see for instance [106]). In the /* category, however, a very concrete proof of this
correspondence has been given in [97]. As we will see, this theorem will also turn out to
be quite useful in constructing invariant measures on super Lie groups to be discussed
in Section s.5.2 in the context of loop quantization of chiral supergravity. It provides a
concrete relation between a super Lie group G and the data (B(G), g). More precisely,
one has the following:

Theorem 2.3.9 (Super Harish-Chandra pair (after [97,109])). Let G be a H™ super Lie
group with body G := B(G). Then, G is globally split, that is, it is diffeomorphic to the
split supermanifold $(g1, G) = S(G) X (g1 ® \)g associated to the trivial vector bundle
G X §1 — G via the canonical mapping

D:8(91,G) > G (2-45)
(g, X) > g-exp(X)
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In particular, it follows that there exists a unique super Lie group structure on $(g1, G)
such that (2.45) turns into a morphism of super Lie groups. Hence, any H™ super Lie group
is uniguely determined via (2.45) by the data (G, §) called a super Harish Chandra pair
consisting of its body G as well as the super Lie algebra g = gp © 91.

Itis interesting to note that, in [110], it has been shown in the Molotkov-Sachse approach
that such a correspondence via (2.45) even holds in the case of infinite-dimensional
(Fréchet) super Lie groups. With these preparations, let us next turn towards important
examples which will play a central role in the geometric approach to supergravity as well
as in the context of loop quantum supergravity.

Example 2.3.10 (The super translation group 7 %3). Let (g, Ag) be the real Majorana
representation of Spin* (1, 3) (see Section 4.2). Consider the trivial vector bundle bundle
R x Agp — R over Minkowski spacetime (R"?, 7). Applying the split functor, this
then yields a split supermanifold

R34 .= §(Ap, RY) = A% (2.46)

also called super Minkowski spacetime with A** the superdomain of dimension (4,4)
(Def. C.1). On this supermanifold, we define the map

gAY x AP - A (2.47)
(%, 0), (3, 7) = (2,0 +7)

where 2/ := 2T+ -1 (C}/I)ﬂ/@ 6%yfforI = 0,...,3with C is the charge conjugation
matrix and }/1 the gamma matrices of 4D Minkowski spacetime satisfying the Clifford
algebra relations

Ly, v+ =291y (2.48)
where y = (y77) = diag(— + ++) is the Minkowski metric (see Section 4.2). It follows
immediately that x is smooth and associative. In particular, RL3M equipped with u
defines a super Lie group with neutral element e = (0, 0) and inverse 7 : A** —
A, (x,8) = (—x,—0) (note that C;/[ is symmetric for / = 0,...,3). From now
on, let us denote this super Lie group by 7731 and call it the super translation group.
To derive the corresponding super Lie algebra, note that the comultiplication is given by

(u*(xf):x1®1+1®x1—;}(C;/1)d/;¢9“®(9ﬁ (2-49)

W@ ) =0"®1+10 0~ (2.50)

27
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The super Lie module of the super translation group takes the form

-

so thata homogeneous basis of left-invariant vector fields is given by Py := (]l ® % |€) o

wandQ, = (18 5%

on the coordinate functions yields

KA
dx!

0

ETL3|4 =A® t1’3|4 = span, { e, W

e) ou*for] =0,...,3and @ = 1,...,4. Hence, their action

1
Qulx!) = 2(CYNy 7, Qu(8F) = 08
Pr(xly=08], Pi(6%) =0 (252)
so that the vector fields can explicitly be written in the form

) 1 U 9
Qu= 55z +1(CrNapbtl s, Pr=5— (2:53)

Using these identities, we can compute the corresponding (graded) commutation rela-
tions which yields

Qo Q1 = 5(Cy)ugPrs Qe P =0and [P P1=0  (as4)

Example 2.3.1x (Super Poincaré group). The super Poincaré groupin D = 4, N = 1is
defined as the semi-direct product

ISO(RM1) = 77131 »ag, §(Spin* (1, 3)) (2.55)

where @ : §(Spin*(1,3)) — GL(7 %) is the representation of the purely bosonic
super Lie group $(Spin* (1, 3)) on the super translation group 731 obtained by apply-
ing the split functor on the group representation

Spin*(1,3) 3 g > diag(1*(g), xr(g)) € GL(R"™ @ Ap) (2.56)

of Spin* (1, 3) on the super vector space R @ Ag with A* : Spin*(1,3) — SO*(1, 3)
the universal covering map where A is viewed as a purely odd super vector space. The
super Lie algebra iso(R1*1*) is generated by the (bosonic) infinitesimal spacetime trans-
lations P; and Lorentz transformations My, I,/ = 0,...,3, and four fermionic
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2.3. Super Lie groups and Lie superalgebras

Majorana generators Q,, @ = 1, ..., 4. It follows that, in addition to (2.54), the nonva-
nishing (graded) commutation relations are given by

[Mi7,Qul = 5 Qp(yi) s and [P1, Q] = 0 (2:57)

One can equip the super translation group 7 *1* (or super Minkowski spacetime)
with a smooth super metric . (see Def. 2.3.12 below) setting .’ (P, Py) = 57 and
' (Qa> Qp) = Cpp. By definition, it then follows that . is invariant under the Adjoint
representation of Spin*(1, 3) on 71314 Moreover, ISO(R™*) can be identified with
the super isometry group of super Minkowski spacetime.

Definition 2.3.12 (after [97,109]). (i) A (homogeneous) super bilinear form . of
parity || € Z; on a free super A-module V is a right bilinear map .7 : V X
YV — A%, A% := A ® C, which satisfies .7 (V}, V) C (AC)|y|+,-+j and is

graded symmetric, i.c.,
S (v,w) = (1) 7 (w, ) (2.58)

for all homogeneous v, w € V. Let V := V/N with N := {v € V|Ta € A :
a # 0and ax = 0} the subset of nilpotent vectors. A super bilinear form . is
called smooth, it & (V, V') C C. Aneven super bilinear form . : VXV — AC
is called a super metric if it is non-degenerate, that is, forany v € V" with v # 0,
there exists w € V such that (.7 (v, w)) # 0 where ¢ : A® — Cis the body
map.

(ii) A (homogeneous)supersesquilinear form .7 of parity |.7’| € Z; on afree super A-
module V isarightsesquilinear map . : VXV — A® (i.e., linear in the second
and anti-linear in the first argument) satistying .’ (V;, V;) C (A®) |7 |++; and
is graded Hermitian, i.c.,

S (v,w) = (-7 (w,0) (2:59)

for all homogeneous v, w € V. A super sesquilinear form .7 is called smooth, if
LV, V) € Cwith V' := V/N. An even non-degenerate super sesquilinear
form.” : VxV — ACiscalled a super Hermitian metric or super scalar
product.

Remark 2.3.13. From the smoothness requirement of a super bilinear form ., it
follows immediately that .%|7xp defines a graded symmetric bilinear form on the super
vector space V' / N in the sense of [111], i.e., &~ (V7, V;) = Ounless i+ j = |.’|. Moreover,
LN vyx, is symmetric and .|y, xp; is antisymmetric. If . is furthermore even and
non-degenerate then so is .| xp which implies that 7} is necessarily even-dimensional.
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2. Supergeometry

Moreover, one can always find a homogeneous basis (¢;, f]) of V' (resp. V) such that,
w.r.t. this basis, .7 takes the form

(]lm 0 ) (2.60)
0 o
where dim V) = m and dim V; = 2z and J5,, is the standard symplectic structure on
R?" given by
Jon = ( 0 ]ln) (2.61)
-1, o

We will call (2.60) the standard representation of 7.

Example 2.3.14 (The general linear supergroup GL(V) (see also [97])). For a finite-
dimensional super A-vector space V = V' ® A with dim V" = m|n, the general linear
supergroup GL(V) is defined as the open subset Aut(V) C Endz (V) of (right
linear) automorphisms of V. Choosing a real homogeneous basis (¢;); of V, we may
identify Endg (V) = At amn yielding (72 + 7)? smooth coordinate functions
x"]. : Endg (V) — A mapping an endomorphism 4 € Endz (V) to its coordinates

x’.j (A) € Asuchthat 4 = xl‘j (A) e; ® e/ with (¢; ® ej)l',j the corresponding real
homogeneous basis of End , (V) = V ® V* where (¢’); denotes the right dual basis
of V* satisfying ¢’ (¢;) = 0 j‘ Note that, here and in the following, we will strictly
distinguish between the coordinates x’j (A) of an endomorphism 4 € Endz (V)
and its matrix coefficients A’ Wt the real homogenous basis (¢;); of V such that

A=¢® A "jej , with the relation being given by
- A i = §leil( 47
A" =0 (" () & & (4)=C(4)) (2.62)

where the involution € : A — A is defined as € (1) = (—=1)!*12 for any homogeneous
A € A. In general, these are equivalent iff 4 has purely real coordinates. Let 4, B €
Endg (V) be two endomorphisms. The coordinates of the composition 4 o B are then
given by

xllj(A o B) = @Ie;’l((A o Bz’j)) — (gleil(Az'/e . Bkj)
(glfz'I(Aik)glcfl(Bkj) - (glfz'l(Aik)(glfz'lﬂfkl((glf/el(Bkj))
5 (A) - Glallal(t (B)) (2.63)

Let us now restrict to the subset GL(V) = Aut(V) C Endg (V) of (even) auto-
morphisms of V. Since GL(V) is given by the open subset B (GL(V;) x GL(F1))
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of Endg(V), this implies that GL(V) defines a ' supermanifold of dimension
dim GL(V) = (m? + n%, 2mn) and body B(GL(V)) = GL(¥,) X GL(F}). Restrict-
ing the global derivations 5xz-j on Endz (V), defined via &xz-j xk )= ) lk 3{ forz, j, k,[ =
1,...,m+n,t0 GL(V), the tangent bundle T’GL(V) can be identified with GL(V) X
End, (V), the identification being given by

TGL(V) 3 X, — (g, <Xg|dxfj> ¢;®¢/) € GL(V) X End (V) (2.64)

The general linear supergroup GL(V) forms an abstract group with multiplication g
defined by the composition of endomorphisms. By (2.63), it follows that for ¢, b €
GL(V) one has

xl’j (goh) = (_1)(|C’z‘|+|5’k|)(‘€k‘+|€j|)x"k (g)- xkj(h) (2.65)

since x/"’j (h) is homogeneous with parity |xkj ()| = leg| +le;| as b is even. Hence, the
coordinates of (g, h) = g o b forany g, b € GL(V) consists of a sum of products
of coordinate functions of ¢ and » and thus g is of class £ implying that GL(V)
defines a H* super Lie group with super Lie module Lie(GL(V)) =: A ® gl(V)
isomorphic to End (V). By (2.65), the comultiplication ¢* : H*(GL(V)) —
H>®(GL(V))®H*(GL(V)) takes the form

*(x' ) = (=1)Ueil+leeD Uepltles D) i k
w(x') = (-1 Waty @ x" (2.66)

Using (2.66), let us derive the Lie bracket on Lie(GL(V)). To do so, for Y € gl(V),
we have to compute the corresponding left-invariant vector field Y £ := (1 ® ¥) o g*.
Applying it on coordinate functions x’) yields

YE' ) = (L@ x, (Y)den,) 0 ("))
= Y7 (1® den,) ((~D) e lab (allesh i, @ it )
= (—yUesteenD eal+les o (g Cembeon stelnd 1, 5t g
= x"kY/;. (2.67)
where we used that ¥ has purely real coordinates such that x"k Y)=Y 2 Vi, j =

1,...,m + n. Hence, '
YE=(x0Y) 0w (2.68)
i
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Using (2.68), we find for commutator between two left-invariant vector fields Y £, Z*

corresponding to Y, Z € gl(V)
[YL,ZL] — YLZL _ (—1)|Y||Z|ZLYL
— xl‘kY/;- ax"j (xleln ax”‘,,) _ (_1)|Y||Z\xl‘k ij &x’j (xml Yﬁl 9x’”,,)
— xz.k (Yé Z/en _ (_1)|Y||lekjyl; )&x’},
=(xo Y, 20y =Y, Z]* (2.69)
J

that is, via the identification (2.64), the commutator on Lie(GL(V)) coincides with
the standard commutator on End , (V).

Definition 2.3.15. A super matrix Lie group is an embedded H > super Lie subgroup G
of the general linear supergroup GL(V) = Aut(V) on some finite-dimensional super
A-vector space V.

Example 2.3.16 (The super unitary group). On the super A-vector space V =V @ A
with V' = C”1”, we consider a smooth Hermitian super metric b : V x V — A
which, when restricted to V', takes the form

1T o0
blyxy = ( ) ) (2.70)
0 71

The super unitary group U(m|n) is defined as the subgroup of the general group GL(V)
= GL(m|n, A®) consisting of all those group elements preserving /. That is, g€
GL(m|n, A®) defines an element of U(|n) if and only if

h(gv, gw) = h(v,w), Yo,weV (2.71)

It follows that U(#2|%) defines an embedded super Lie subgroup of GL(m|n, A®), ie.
super matrix Lie group, with Lie superalgebra u(z|z) given by (see e.g. [112])

u(m|n) = {X € gl(m|n, A°)| h(Xv,w) + (~1) "W h0, Xw) =0} (2.72)
In the literature, for a matrix X € gl(m|n, A), one defines its super adjoint X* €

gl(m|n, A®) via
h(Xv,w) = () p (0, X*w) (2.73)

32



2.3. Super Lie groups and Lie superalgebras

As can be checked by direct computation, this implies that the super adjoint is given
by X* = /I XT with X7 the ordinary adjoint of X regarded as a morphism between
(ungraded) vector spaces. Hence, by (2.73), it follows that X' € u(m|n) iff

X'=-X (2.74)
From (2.74), one deduces that a generic element X' € u(m2|n) has to be of the form

A C
-iC" B

(2.75)

with 4 € u(m) and B € u(n) and some arbitrary 7z X 7 matrix C. Thus, u(m|z) is a
real super vector space of dimension 72%+7%|2mn and bosonic subalgebra 1t (72) ®u (7).
Since we will come back to this example later in Chapter s, in what follows, let us focus
on the special case 7, n = 1. According to (2.75), the Lie superalgebra 1(1[1) of the
super unitary group U(1|1) is generated by the real homogeneous basis

7 0 0 0 0 1 0 =7
Xl = 5 XZ = . . ) 62 = (2'76)
0 0 0 ¢ -7 0 -1 0

which satisfy the following graded commutation relations

[X1,01] = O, [X1, 0] = -0y, [)(z'an] =0

(2.77)
[X2,©1] = =02, [X2,02] =0, [0,0;]=-20;;(X;+X,)

for 7, j = 1,2. For later purposes, let us discuss the equivalent characterization of
the supergroup U(1|1) in terms of the super Harish-Chandra pair (U(1)%, u(11)).
By Theorem 2.3.9, it follows that U(1]1) is diffeomorphic to the split supermanifold
S(u(1]1)1, U(1)?) = S(U(1))* x (A ® u(1]1)1)o via

(O S(u(1|1)1,U(1)Z) — U(1]1), (g, Y) — g -exp(Y) (2.78)

The exponential can be computed rather quickly yielding?

(2.79)

0 w)):(HW v )

exp (f@l + 77@2) = e&xp ((“/ 0 l'-s} 1- %V'S}

5 Note that, in contrast to the non-graded case, the matrix representation of an endomorphism 4 €
End , (V) on a super A-vector space V is not left linear. More precisely, according to Example 2.3.14,

for A € A, one has (QA)"]. = glel (l)Al‘j. This explains the additional minus sign involved in the
matrix representation of £©1 + 703 in Eq. (2.79).
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where we set ¢ := £ + 7. Hence, the diffeomorphism takes the explicit form

]

with 4 :=1+ %;h} Moreover, if x := xll, y = xzz and 9! := xlz aswell as 92 := x
denote the global coordinate functions as defined in Example 2..3.14, this yields

xA Xy
iyg ydA™

5 f@l + }762 (2.80)

2
1

O*(x) =xd, O (8")=xy, O (6*)=-iyy, D (y)=yd"' (281

Example 2.3.17 (The orthosymplectic supergroup). Let (V,. (-, -)) beasuper A-
vector space V = V' ® A equipped with a smooth super metric . : V XV — A°.
The orthosymplectic supergroup OSp(V) is defined as the super Lie subgroup of the
general linear supergroup GL(V) consisting of all those group elements preserving .7,
ie, g € OSp(V) ifand only if

S (gv, gw) = L (v,w), Yo,w eV (2.82)

It follows from the “Stabilizer Theorem” (see e.g. Prop. s.13 in [97] or Prop. 8.4.7.
in [106] in the pure algebraic setting) that OSp(V) defines a super matrix Lie group
with corresponding super Lie algebra

osp(V) = {X € gl(V)|.¥ Xv,w) + (-D)EL2 (0, Xw)Vo,w e V}  (2.83)

If (e;, ;) is homogeneous basis of V' such that .7 acquires the standard representa-
tion (2.61), the orthosymplectic super Lie group is also simply denoted by OSp(22#).
Accordingly. the bosonic sub super Lie algebra takes the form osp(72|212)¢ = so(m) ®
sp(2n).

In the following, we want to construct a graded generalization for the isometry group
SO(2, 3) of anti-de Sitter spacetime AdS,.¢ To this end, we consider the following Lie
algebra representation of $0(2, 3): Let }/I, I =0,...,3, be the gamma matrices of 4D

Recall from Appendix E, Corollary E.8, that the four-dimensional anti-de Sitter spacetime AdSy is
defined as the pseudo hyperbolic space H‘}(L) defined as an embedded submanifold of the semi-
Riemannian manifold R?? equipped with the metric (7 45) = diag(— +++ —)

HY(L) = {x € R®| pypxx? = — L2} (2.84)
with L the so-called anti-de Sitter radius
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Minkowski spacetime (see Example 2.3.10 and Section 4.2). Similar as in [113, 114], we
define totally antisymmetric matrices =48 4 B=0,...,4,via
1.1 4l 14

—[;/[,7/]]_ aswellas =% := -y "= %y[ (2.85)

=] _ -
=Y 2;/ 2

where indices are raised and lowered w.r.t. the metric (7 4p) = diag(— + + + —). These
satisfy the following commutation relations

[Z48,Zcp] = 98cE 4D — 94cEBD — ¥BDE 4C + 7 ADZBC (2.86)

and thus provide a representation of $0(2, 3). Indeed, choosing a real representation
of the gamma matrices, it follows that the charge conjugation matrix C is of the form
C = —iJ; with J, the standard symplectic structure given by (2.61) for » = 2 and, by
the symmetry properties of the gamma matrices, one has

(CE4p)" = CE4p (2.87)

Hence, the = 4 generate the Lie algebra sp(4) of the universal covering group Sp(4, R)
of SO(2,3). Thus, a candidate for the graded extension of the anti-de Sitter group
with N -fermionic generators is given by the orthosymplectic Lie group OSp(N[4). We
therefore choose V = (AS)N1 as super vector space equipped with the bilinear form

1 0
Q= (2.88)
0 C
The algebra 0sp(N|4) is then generated by all X € gI(V) satisfying
XTO+QX =0 (2.89)
where X*T denotes the super transpose of X . Writing X in the block form
Xu X
y o [An A (2.90)
Xo1 Xoo
(2.89) is equivalent to
X =-X, (CXp)" =CXp, Xin=-X)C (2.01)

35
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and therefore, in particular, X;; € $0(N) and X,; € $p(4). Thus, following [115],
based on the above observation, we set

0 0

Myp = ( ) and T := (2.92)

0 o0

A7 0
0 Z4B

as generators for the bosonic sub super Lie algebras sp(4) and so(/N), respectively,
where (A") 54 = 25]Er3;], p>-q,7,5 = 1,..., N. For the fermionic generators, we
set [115]

(2.93)

0 —C, ® ey
=l
e, ®e, 0

where (¢,) g := oy g and (&,)g := C,p. It then follows by direct computation that

[Map, Qi) = Q3(Eap)’s and [TP7,Q5]=57QL-87Q)  (294)

In order to compute the Lie bracket between two fermionic generators, one can use
o 5 N I 1 I

the Fierz identity 2(e,és + epén) = y1(Cy ) ap+ 3771(Cy ])“[g (see Eq. (4.8)) where

the sum terminates after second order in the gamma matrices as the higher rank gamma

matrices are antisymmetric with respect to the charge conjugation C. Thus, one finds

[Q7, Q51 = 8" (CEAP) My — Cog T™ (2.95)

Defining P := Z47 and reintroducing the cosmological constant Ao = —3/L* with
L the anti-de Sitter radius by rescaling P — Pr/L, Q,, — Q. /V2L as well as
T7° — T7 [2L, one finally ends up with the following (graded) commutation relations

(M), Q] = %Q{Z‘(?’U)ﬁzx (2.96)

[P Q) = =5 - Q5. (2.7)

(74,1 = (37 QL - 37 Q) (2:99)

[Q5 Q41 = 37 (Cy g Pred” — (Cy sy = Cog T (299)

which is the form we will use in what follows. Performing the In6nii-Wigner contraction,
i.e., taking the limit L — oo, one reobtains the super Poincaré algebra (cf. Def. 2.3.11).
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2.4. Super fiber bundles

2.4. Super fiber bundles

The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

In this section, we want to give a detailed account on super fiber bundles in the category
of H* supermanifolds as this will provide us with the necessary mathematical tools
needed in the subsequent chapters (see Appendix C for a review on /' supermanifold
theory and our choice of conventions; for a relation to algebro-geometric supermanifolds
see Section 2.2 as well as Section 2.6 below). If not stated explicitly otherwise, in what
follows, we will always work in the category of 4 supermanifolds so that smoothness
and related notions are always referred to this particular category. Let us start with the
basic definition of a super fiber bundle.

Definition 2.4.x (Super fiber bundle). A super fiber bundle (E, w, M, F), also simply
denoted by ¥ — & 5 M, consists of supermanifolds &, M and F called zotal space,

base and typical fiber, respectively, as well as a smooth surjective map 7 : & — M,
called projection, satistying the local triviality property: For any p € & there exists an
open subset U C M which is an open neighborhood of 7 ( p) and a homeomorphism
¢ 7N U) » U X F called local trivialization such that the following diagram
commutes

¢ 7V WU)—=UXxXF
Wl Py
U

i.e. pr; o ¢ = w where pr, denotes the projection onto the first factor.

Proposition 2.4.2. Let F — & 5 Mbea super fiber bundle. Then B(F) —

B(&) 5 B(M), with @ := B(7) and B : SMan g~ — Man the body functor, defines
a smooth fiber bundle in the category Man of ordinary C*-smooth manifolds.

Proof. This is an immediate consequence of Prop. C.10 as well as the fact that B :
SMan g~ — Man is a functor. m]

Definition 2.4.3. Let M and ¥ be supermanifolds, & an abstractsetand 7 : & — M
a surjective map.

(i) Let U ¢ Mbeopenand ¢ : 771 (U) — U x F abijective map such that
pryo¢= 7r|7r_1(U), then (U, ¢ ) is called a formal bundle chart.
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(ii) A family {(Uy, $x)}uex of formal bundle charts is called a (smooth) formal
bundle atlas of & (w.r.t. ) iff {U,}zex is an open covering of M and for any
a,f e Y withU,N Us # 0, the transition functions

$p 0 ¢a : (Uen Up) X F = (U NUp) X F (2.100)

are smooth.

Theorem 2.4.4. Let M and T be supermanifolds of dimensions dim M = (m, n) and
dim F = (p, q), respectively, & an abstract set and w - & — M a surjective map. Let
Sfurthermore {(Uy, ¢4) } wex be a smooth formal bundle atlas of & (w.r.t. 7). Then, there
exists a unique topology and smooth structure on & such that & becomes a supermanifold
of dimension im & = (m + p,n+ q) and (&, w, M, F) a super fiber bundle which is
locally trivial w.r.t. the bundle atlas {(Uy,, $4) } zex-

Proof. We define a topology on & by declaring a subset O C & to be open if and only if
forany & € Y the image

$.(0N7H(U,) CU X F (2.101)

is an open subset in M X F (note that this condition is mandatory in order for ¢, to
define a homeomorphism). Since the formal bundle charts are bijective, it follows imme-
diately that arbitrary unions and finite intersections of open sets are open. Moreover,
the empty set and & are open as well, so that this indeed defines a topology on &.

By intersection, one may assume that the {U, }, are coordinate neighborhoods of M.
Let then {(Uy, @2) }aex and{(Vp, ¥5) } ges be smooth atlases of M and F, respectively.
For (, 8) € Y X Z we define open sets I/, 5 := ¢, (U, x Vg) € & as well as bijective

maps
eaﬂ = (@a X %/2) ° ¢zx : Waﬂ - ¢a(Ua) X Wa(Vﬂ) C AP (2.102)

For (', ') € Y X Zsuch that W5 N W,y # 0, it then follows

5“%/ o 5;27 = (P X Yp) © P © ¢;1 o (¢;1 X ;kﬂ_l) (2.103)

on 0,5(Wop N W), which is smooth by definition of a formal bundle atlas. Hence,
{(W.p, 0ap)} defines a smooth atlas of & turning it into a proto /' supermanifold
(see Def. C.4) of dimension dim & = (m + p,n + q).

Let U € Mbeopen. Then, forany ¢ € Y, ¢,(7 " (U) N 77 (U,)) = ¢ (z7H(U N
U,) = (UNU,) x F isopenin U, X F and thus 771 (U) C & is open proving that
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7 : & — M is continuous. To see thatis also smooth, let (¢, 8) € Y xXand 2’ € Y
such that U, N U, # 0. It follows

Por © T O 9;/1; = @uOopr;o (@;1 X kg_l) : ¢zx(Ua’ N Ua) X ?ﬂ(Vﬁ) - @a(sz’ NU,)

(2.104)
which is obviously smooth. It remains to show that & is in fact a /' supermanifold,
ie., B(&E) is a second countable Hausdorft topological space.

To prove that it is Hausdorff, consider first p, g € B(E) with B(7)(p) # B(7)(q).
Since B(M) XB(F) is Hausdorff by assumption, there are open subsets B(7) (p) € U,
andB(7)(g) € U, inB(M)xB(F) with U,NU, # 0. Since, B(7) : B(E) — B(M)
is smooth, these yield disjoint open subsets p € B(7)™! (Up)and g € B(7r)71(Uq)
in B(&) separating p and ¢. If B(7)(p) = B(7)(g), consider € Y with p,q €
B(7) ' (B(U,)), where B(¢) : B(7) ' (B(U,)) — B(U,) x B(¥) is the correspond-
ing bundle chart on the body which, in particular, defines a homeomorphism. Let
then V), V, € B(¥) be disjoint open subsets with B(4) (p) € V, and B(¢)(q) € V.
This then finally yields disjoint open subsets p € B(¢)™'(B(U,) % Vy)and g €
B(¢) ' (B(U,) % V;) inB(&E) seperating p and g. This shows that B(E) is indeed Haus-
dorff. That B(&) is also second countable follows similarly using that B(M) x B(F) is
second countable. Hence, this proves that & indeed defines a /> supermanifold and

that (&, 7, M, F) is a super fiber bundle. O

Example 2.4.5 (Pullback bundle). Given a smooth map / : N — M between
supermanifolds and a super fiber bundle (&, 7, M, F), one can construct a new bundle
by setting

78 ={(x,p) e NxE|f(x) =7(p)} SN XE (2.105)

as total space together with the projection
mr: [TE N, (x,p) > x (2.106)

that is, fibers over M are pulled back w.r.t. / to fibers over N. Let {(U,, ¢4)} e be a
smooth bundleatlason &. For 2 € Y, define themap ¢, : /*E 2 ﬂ}?l (Uy) - U, xF

via
Va(x, p) = (x,pr, 0 ¢a(p)) (2.107)

It is clear by definition that ¥, is bijective and fiber-preserving. Moreover, for 2, € Y
with U, N (]/3 # (0, we compute

Veo s (% p) = ¥u(x, ¢, (£ (%), p)) = (%, pry 0 gg 0 ¢, (f (), ) (2108)

Y(x, p) € (U,NUp) XF and thusis smooth. It follows that { (U, ¥) } ze satisfies the
properties of a formal bundle atlas so that, by Theorem 2.4.4, (/*&E, Tfs N, F) has the
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structure of a super fiber bundle called the pullback bundle of & w.r.t. f. The pullback
bundle defines the pullback in the category of super fiber bundles. More precisely, it

satisfies the following universal property: Given super fiber bundles & i M and

Q 38 N as well as a smooth bundle morphism (¢, /) : (Q,N) = (&, M), there
exists a unique amooth bundle morphism (55, idy) : (@ N) = (f*E,N) such that

the following diagram commutes

hm

N M (2.109)

In fact, ¢ has to be of the form ;z@ : Q39 (mq(9), $(¢)) and therefore is smooth.

We next consider a particular subclass of super fiber bundles whose typical fiber carries
the structure of a super A-vector space (see also [97]).

Definition 2.4.6 (Super vector bundle). A super vector bundle of rank m|n is a super

fiber bundle V — & 5 M such that
(i) the typical fiber is a super A-vector space V of dimension dim V' = m|xn.

(ii) foreach x € M, the fibers &, := 77! ({x}) have the structure of free super
A-modules.

(iii) there exists a smooth bundle atlas {(U,, @) } xex of & such that, foreach 2 € Y,
the induced map

Pax: Ex >V (2.110)

Uy /> pr, o ¢a(0x)
Vx € U, is a (right linear) isomorphism of super A-modules.

A super vector bundle of rank 1|1 is also called a super line bundle.

Lemma 2.4.7 (after [97]). Let V and W be super N-vector spaces, M a supermanifold
and ¢ : MXYV — W asmooth map such that $(p, -) : V — W € End o (V, W)
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is a right linear map for any p € M. Then, there exists a unique smooth map ¥ : M —
End o (V, W) such that Y (p) (v) = ¢(p,0) forany p € M,v € V.

Since ¢; are body pointsand £/ : ‘W — Aare smooth, the maps ¢’ := f70¢( -, ¢;) :
M — Aareofclass H forany 7 = 1,...,nand j = 1,...,m. Hence, we can
define a smooth map ¢ : M — End,(V, W) viay(p) :==f; ® ¢]Z.(]))e" VpeM
which, by construction, satisfies ¥ ( p) (v) = ¢(p, v) forany v € V. That ¢ is unique

is immediate. m|

Remark 2.4.8. Given a super vector bundle V — & — M and local trivializations

(Uss ) and (U[g, ¢ﬁ), this yields the map
pr, © (¢a o ¢g1) (U Uﬁ) XYV -V (2.1m)

which, in particular, is linear in the second argument. Thus, using Lemma 2..4.7, this
yields a smooth map

Zap: Uz NUp — GL(V) (2.112)
satisfying g,(x)v = pry o (¢4 0 ¢;1)(x, v), thatis, g,5(%) = ax © gb/_glx, which we

will call transition maps.

Proposition 2.4.9 (after [97]). There is a one-to-one corrvespondence between local triv-

talizations of a super vector bundle V — & 5 Mand families (X;); of smooth local
sections X; : U — E of &, U € M open, such that (X;.); defines a homogeneous basis
of the super N-module E, Vx € U.

Proof. Let (U, ¢rr) be alocal trivialization of &. If (¢;); is a real homogeneous of the
super A-vector space V, define X, = X;(x) := ¢l_]1(x, e;) Yx € U. Since the ¢; are
body points, it follows that the X; define smooth local sections of & and (X} ); is a
homogeneous basis of &, Vx € U. Conversely, if (X;); is a family of smooth local
sections X; : U — & of & such that, forany x € M, (X;); defines a homogeneous
basis of &, Vx € U, consider the map

v:UxV -z (U)cCé, (x, vie)) > v’ X, (2.113)

By definition, ¥ is bijective, smooth and an isomorphism of super A-modules on each
fiber. Hence, it remains to show that has a smooth inverse. To see this, following
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[97], let (W, ) be a local trivialization of & with U NIV # 0. Then, ¢y o ¢ :
UnNW)yxV —- (UNW)xYV isof the form

¢ o ¥ (x,v) = (x, vllg—ﬁ:‘j(x)ej) (2.114)

with smooth coefficients ;é: = (pry o ¢ (-,e:)l ‘e) defining an invertible matrix
which has a smooth inverse yielding a smooth inverse of ¢r o ¥. But, as ¢y is a
diffeomorphism, this implies that ¢~ is alocal diffeomorphism and hence admits a smooth
inverse ¥ ' : 771 (U) — U XV providing a local trivialization of &. O

Corollary 2.4.10 (after [97]). A super vector bundle V — & 5 M s trivial if and
only if there exists a_family (X;); of smooth global sections X; € I'(&E) of & such that
(X;x): defines a homogeneous basis of the super A-module &, Vx € M. O

Example 2.4.11 (The dual vector bundle). Recall that, to a super A-module V, one
can associate its corresponding left dual *V defined as the super A-module *V :=
Hom/ (V, A). Analogously, one defines the right dual V* := Hom , (V, A). Thus,

T
given a super vector bundle V — & — M, we can construct the corresponding Jeft
dual bundle as follows. As total space, we set

& = U &, (2.115)

together with the surjective map
me: & ->ME 3T, - x (2.116)

Let {(Uy, $4) } zex be a smooth bundle atlas on &. Then, for any @ € Y, define the
map

¢, "6 Qm_é(U,x) - U, x*V (2.117)
T = (x,¢,(T%))

where ¢7,(T;) € *V is defined as (v|¢,(1})) = (<U|¢;lx) |T) Yo € V. It follows
that ¢, is bijective, fiber-preserving and an isomorphism of super A-modules on each

fiber. The inverse is given by

j;_l U, x*V — 71'*_31(Ua), (x,0) > (¢;1)*€x €’8, (2.118)
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where (0, |(¢,1)*Cs) == ((vxlPux) |€) Yo € Ex, x € M. Fora, f € Y with U, N
Ug # 0, the transition function ¢Z ol (U, N Up) X*V — (U, N Up) X*V
takes the form

g0 67100 = (620 = (. 83(62)°6) ()
Choosing a real homogeneous basis (¢;); of V), the r.h.s. of (2.119) becomes

(ealg5((#2)°6)) = (el g3 [(62)"6)) = (el 0 $ud 10 (2ur20)
sT j
= (ga[@) z'] (x)g_]
with “s7" denoting super transposition, for any x € U, and thus is smooth. Hence,
it follows that {(U,, ¢},) } xex defines a formal bundle atlas of *& so that, by Theorem

2.4.3, "V —*E& — M has the structure of a super vector bundle called the left dual

super vector bundle of &. Analogously, one defines the right dual super vector bundle
V"> & - Mofé&.

Suppose V — & 5 Misa super vector bundle and (X}); a family of smooth local
sections X; : U — & of & over U € M open such that, forany x € U, (X;,); defines
a homogeneous basis of the super A-module E. According to Prop. 2.4.9, this yields a
local trivialization (U, ¢y7) of & with the inverse given by

¢L_]1 UV -7 Y (U)CE, (x,v'e) — v' Xy (2.121)

with (e;); a real homogeneous basis of V. By (2.118), this in turn induces a local local
trivialization (U, ¢7,) of the left dual bundle *E with inverse

¢ UXY - 22 (U), (x,0) - (¢7) 0 €78, (2.122)

Hence, if (¢); denotes the corresponding left dual basis of *V satisfying (e;|/¢) = 5\; ,
again by Prop. 2.4.9, this yields a family (“); of smooth local sections ‘w € Iy (*E)
of *E given by

= ¢ 1L ) (2.123)
such that, forany x € U, (‘w,); defines a homogeneous basis of the corresponding left
dual super A-module *E, . Evaluation on the X; then yields

<Xz'x|ja)x> = <Xix|(¢al)*]€x> = <<Xz'x|¢U,x> |j€> = <<<€l|¢&l,x> |¢U,x> |]€>
= (eilgilh, o gue) e) = (esle) = 3] (2124)
Vx € U, thatis, (X;|/w) = 5{ Vi, j. Hence, we have established the following.
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Proposition 2.4.12. LetV — & 5 Mbea super vector bundle, (X;)i=1,..., a family
of local sections X; : U — & of & over U C M open such that, for any x € U,
(Xix): defines a homogeneom lmszs of the super N-module E . Then, there exists a_ family
(“®);,...n of smooth local sections 'w € Ty (*E) of the corvesponding left dual super vector
bundle *V —*& — M such that (‘w..); defines a homogeneous basis of *E, ¥x € U
and are dual in the sense that

(X w) =9 (2.125)
Vi,j=1,...,n O

Example 2.4.13 (Maurer-Cartan form). Given a super Lie group G, one can choose a
real homogeneous basis (X, ); of the super Lie module Lie(G) = 1,G = A®g. It then
follows that the corresponding left-invariant vector fields (X;); induce a homogeneous
basis of the tangent module 7,G atany ¢ € G. Thus, via Prop. 2.4.12, this in turn
induces a basis (“@); of smooth 1-forms ‘w € Q!(M) = T'(*T'M), that is, smooth
sections of the left dual cotangent bundle *T M. It follows immediately from the left-
invariance of the X; that the 1-forms o are also left-invariant.

The Maurer-Cartan form on G is defined as the Lie(G)-valued 1-form fyc € QY(G, 9)
= Q'(G) ® g given by '
Omc ="' ® X; (2.126)

By definition, the Maurer-Cartan form is left-invariant. Moreover, using the generalized
tangent map (see Definition 2.5.9 in Section 2.5), it follows that one can also write
(Omc)g = L,1, Vg € Gwhere L, := ©6(g,") (resp. Ry = ug (-, g)) denotes the
left (vesp. right) translationon G w.rt. g € G.

Example 2.4.14 (Tensor product of super vector bundles). Let V — & — M and
YV — & — M be super vector bundles. Set

§ = U &, @) &y (2.127)
xeM
together with the surjective map
To: ERE > M, E,®E v > x (2.128)

Let {(Uy, ¢2) Yaex and {(V, 5,,/)}0/62 be smooth bundle atlases of & and &, respec-
tively. For (2, ") € Y x 2 with U, := U, NV, # 0, define

Ve : E®E 2 15 (Up ) = Upw X (V @4 V) (2.129)
Ux ® wy > (X, (¢o¢ ® ;gzx’)(vx ® wy))
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Then, {(Uy,'s Ya,a') } (a,27) exxs defines a formal bundle atlas of & ® & turning V ®

—~ ~
VYV 5ERE S Mintoa super vector bundle called the tensor product super vector

bundle.

Definition 2.4.15 (Principal super fiber bundle). A principal super fiber bundle is a
super fiber bundle G — P 5 M such that

(i) the typical fiber is a super Lie group G.

(ii) the total space P is equipped with a smooth G-right action® : P x G — P
preserving the fibers, thatis, 7 o® = 7 opr , or explicitly, p- g := O(p, g) €Px
VgeGand p € Pwithz(p) =x € M.

(iii) there exists a smooth bundle atlas {(U,, ¢,) } xex of P such that, foreach 2 € Y,
the bundle chart ¢, : 77 1(U,) — U, X G is G-equivariant, i.e.

$p0®@=(id X ug) o (¢, X idg) (2.130)

where U, X G is equipped with the standard G-right action id X pg : (U, X
G)xG - U,xgG, ((x,9),8) — (v, g¢').

Proposition 2.4.16. Let G — P 2 Mbea principal super fiber bundle, then the orbit
space P | G equipped with the quotient topology can be given the structure a supermanifold
such that P | G is canonically isomorphic to M and the body B(P | G) is isomorphic to
B(P)/B(G) in the sense of ordinary smooth manifolds. Morcover, the sheaf HJ 16 of
smooth functions on P |G is canonically isomorphic to the quotient sheaf

Hp|Hg : |G > U — (Hy [HZ)(U)={f € H*(z7/(U)| @*(f) = f®lg}

(2.131)
where v : P — P |G is the canonical projection.

Proof. Since 7p o @ = 7p o pr,, wp is constant on G-orbits. Hence, by universal
property of the quotient, there exists a unique continuous map # : /G — M such
that the following diagram commutes

It follows immediately that 7 is bijective. Moreover, since 7 is open as a bundle map, it
follows, by definition of the quotient topology, that 7 is a homeomorphism. Choosing
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anatlas {(Uy, ¢) } xex on M, this yields a corresponding atlas {(V,, ¥) }xex of P/G
by setting V, := 271 (U,) and ¢, := g0 % : Vy = ¢, (U,) € A" Va € Y, where
dim M = (m, »). In this way, # /G becomes a supermanifold diffeomorphic to M via
7. By Prop. 2.4.2, B(G) — B(P) — B(M) defines a ordinary smooth principal fiber
bundle over B(M) with structure group B(G). Hence, arguing as above, one concludes
that B(P)/B(G) is canonically diffeomorphic to B(M). To summarize, we have the
isomorphism

B(P/G) “3 B(M) - B(P)/B(G) (2.132)

Finally, let U € $/G be an open subset and f € H* (7' (U)) a smooth map with
®*(f) = f ® 1g. Then, f is constant on G-orbits such that, by the universal property
of the quotient, there exists a unique continuous map f : U — A with ]E omw =f.By
definition of the differential structure on P /G, it follows immediately that ]? is smooth,
ie., f; € H¥(U). Conversely, if ¢ € H*(U),then ¢’ := 7°g = go 7|1y €
H>®(z7}(U)) satisfying @*(g’) = @* o 7*(g) = (7 0 ®)*(g) = (7w o pr,)*(g) =
prio7*(g) = ¢’ ' ®1g,ie, g’ € (H;f/Hg)(U) This closes the prove of the above

proposition. O

Proposition 2.4.17 (after [97]). There is a one-to-one correspondence between local triv-

ializations of a principal super fiber bundle G — P s M and smooth local sections
s € Ty(P) of P forany U C M open.

Proof: 1f (U, ¢u) is alocal trivialization of P, the map s : 7#71(U) 3 p > s(x) :=
l_]l (x,¢) € Py defines, as ¢ € B(G), a smooth local section of P over U. Conversely,
if s € I'y (P) is a smooth local section of P over U € M, consider the map

v:UxG— = Y(U), (x, g) — D(s(x), g) (2.133)

Then, ¢ defines a smooth fiber-preserving and G-equivariant map which, in particular,
is bijective, as the G-right action @ : P X G — P on P is free and transitive. That the
inverse is also smooth follows as in proof of Prop. 2.4.9. |

Example 2.4.18 (The frame bundle .# (&)). Given a super vector bundle V — & 5
M, one can construct a new bundle as follows. For any x € M we define a frame at x
as an isomorphism of super A-modules p, : V — E,. Let # (&), denote the set of
all frames at x € M. We set

7)== | | 7@ (2134)
xeM
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together with the surjective map
Tz F(E) > M, F(E)y 3 pr—>xeM (2.135)
Furthermore, we introduce a GL(V)-right action on .% (&) via

O: F(8)XGL(V) > F(E) (2.136)

(Px> &) P (px o Qx
It follows that @ is fiber-preserving, i.e., @(py, g) € F(E)x Vpy € F(E)y, g €
GL(V) and x € M, and therefore is also free and transitive on each fiber. Let
{(Uss ¢4)} zex be a smooth bundle atlas on &. Then, forany 2 € Y and x € U,

the induced map ¢, : V — &, canonically yiclds a frame at . Hence, let us define
the new map

Y Uy X GL(V) — W;(Ud) C.Z(8) (2.137)
(x, ) = ©(8,%, 0)
This map is bijective with inverse ¥, ' (py) = (%, ux © px) Vpu € F(E)y,x € U,

(note thatindeed ¢, 0 py € GL(V)). Leta, 8 € Y with U, N Up # 0, the transition
function %3—1 o Yu i (Uz N Up) X GL(V) — (U, N Up) x GL(V) then takes the

form
Vo' o ¥ul(x, 0) = ¥ (P(¢r ) = (% Ppx © P © ©)
= (xa gﬂzx(x) © g) (2"138)

Y(x, g) € (U, N Up) X GL(V) and thus is smooth. Hence, we have constructed an

appropriate formal bundle of .% (&) such that GL(V) — .7 (&) % M turns into
a principal super fiber bundle with structure group GL(V) and GL(V)-right action
D: F(E) X GL(V) = F(E), called the frame bundle of E.

Definition 2.4.19. Given a supermanifold, the frame bundle % (M) of M is defined
as the frame bundle .7 (M) = .7 (T'M) of the associated tangent bundle 7M.

Proposition 2.4.20 (Associated fiber bundle). Let G — P & Mbea principal super
fiber bundle with G-right action @ : P X G — P. Let furthermore p: GXF — F
be a smooth left action of G on a supermanifold F. On P X F consider the map

O (PXF)XG > PXF, (pv), g) = (Pp,g),p(g7h0)  (2139)
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Then, ©* defines an effective smooth G-right action on P X F. Let & .= P X, F :=
(P x F) |G be the corresponding coset space and g : & — M be defined as

rg: &E > M (2.140)
[p,v] = 7p(p)
Then, & can be equipped with the structure of a supermanifold such that wg is a smooth

surjective map and (&, wg, M, F) turns into a super fiber bundle, called the super fiber
bundle associated to P w.r.t. the G-left action p on F.

Proof. Itisimmediate that @* : (P X F) x G — P X F defines a smooth G-right
action. That it also is effective follows from the fact that @ : P x G — P is effective.

Let {(Uy, ) }aex be a smooth bundle atlas of G — P = M. For & € Y define

bt 75 (Up) = Uy X F (2.141)
[P’ U] - (7773(]7)> P(Prz © ¢ot(P): U))
which is well-defined as p is a G-left action on F. Moreover, ¢, is a bijection with

inverse (4)71 : Uy X F — 51 (U, (,0) > [¢51(x, ), ], For 2, 2’ € T with
U, NU, # 0, it follows

850 (¢2)7 (x,0) = (x, plpry © pg © 4, (v, ¢),0)) (2142)

V(x,0) € (UyNUp) X F, and thus ¢2 o (¢3)~"issmooth as pr, o $po ¢," is smooth
and ¢ € B(G) isabody point. Thus, the family {(U,, ¢})} e defines a formal bundle

atlas of & (w.r.t. 7g) and hence induces a topology and smooth supermanifold structure

on & such that (&, wg, M, F) becomes a super fiber bundle. O

Proposition 2.4.2x. Under the conditions of Prop. 2.4.20, the canonical projection
T:PXF >E=PX,F (2.143)

is a smooth bundle map, i.e, P X F 5 px o F carries the structure of a super fiber

bundle with typical fiber G. As a consequence, T is an open submersion and the topology
on & defined via the construction in the proof of Theorem 2.4.4 coincides with the quotient

topology.
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Proof. First,let us show that 7 is continuous. Therefore, if U C & is open, by definition
of the topology on &, forany & € Y, U N Wél(Ua) is of the form U N ﬁgl(U,z) =

(¢)71(U,) with U, € U, x F open. Then,

7 (U) =77 (U Un m:}(@)) S O E(CHIA
aeY aeY

= J @rom (T (2144)

aeY

and hence 771 (U) € P X F is open proving that 7 is continuous. That it is smooth
can be checked by direct computation.

Next, to see that is in fact a bundle map, i.e., P X ¥ Lpx p  carries the structure
of a super fiber bundle, let us define an atlas {(7{51 (U.)s ¢2) }wex of locally trivializing
bundle charts as follows. For & € Y, the map ¢,, : ﬁ_l(ﬂél(Ua)) = 777_>1(U,x) XF —
Wél (U,) X G is obtained via the following commutative diagram

- paxidy
T (Up) X F ——F——U, XG X F

5"‘[] = idUﬂXG’)

“1(U,) x = U, X F X
7 (U)X 6~ G
where © : G X F — F X G is the diffeomorphism given by ©(g,v) := (p(g,v), £)
¥(g,v) € GXF andthus g, (p,0) = ([, 0], pry 0 $.() V(p,0) € 77 (75! (Un).
It follows that @, is a diffeomorphism preserving the fibers, i.e., pr; o ¢, = 7 and thus
indeed defines a local trivialization.

Thatz : P XF — & = P X, F is an open map follows by a standard argument
using the fact that it is a bundle map and thus locally coincides with the projection pr,
which is open. It remains to show that the topology on & coincides with the quotient
topology. Obviously, any open subset U C & is also open w.r.t. the quotient topology
as 7 is continuous. Conversely, if U € & is a subset of & such that 77} (U) € P X F
is open, it follows from 7 (7~ (U)) = U that U is open, as well. Hence, this proves
the proposition. O

Corollary 2.4.22. Let G — P 2 Mbea principal super fiber bundle with structure
group G and p : G — GL(V) be a representation of G on a finite-dimensional super
N-vector space V which induces the smooth G-left action p : G XV — V, (g,v)
p(g,v) = p(g)von V. Then, the associated fiber bundle & = P X, V can be given the
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structure of a super vector bundle where, for cach x € M, the fiber Ex = Py X, V carries
the structure of a free super \-module via

alp,v]l +b[p,w] :=[p, av + bw] (2.145)
V[p,vl, [ p,w] € Ey, a,b € Aand Zy-grading

(Ex)o = {[P> v] € Eclv € Vo), (Ex)i:= {[P, v] € Ex|lv € Vi} (2.146)

The bundle V — & — M is called the super vector bundle associated to P w.r.t. the
representation p. O

Corollary 2.4.23. Let G — P Z Mbea principal super fiber bundle with G-right
action® : PxXG — Pandlet p : G — GL(V) be a representation of G on a
finite-dimensional super N-vector space V. Let H® (P, V)Y be the subspace of smooth
G-equivariant functions on P with values in V defined as

HY(P, V)G ={f e HYP,WIf(p-2) =p(gVF(p),VpeP, geG}
(2.147)
LetE =P X sV be the associated super vector bundle. Then, there exists an isomorphism
of super vector spaces given by

Y HY(P, V)9 = T(E), f = (Y(F): mp(p) = [ F (P (2148)

Proof. For f € H®(P,V)Y define the smooth map f P — Evia f(p)
[p,f(p)],Vp € P. By construction, this yields @*( f ) = f ® 1g, thatis, f is constant
on G-orbits. Thus, according to Prop. 2.4.16, this induces a smooth map ¥ (f) : M —
& satistying ¥ (f ) omp = f and, in particular, is fiber-preserving. Hence, ¥ (f) € I'(E).
Conversely, suppose one has given a smooth section X € I'(E). Forany p € P, we
define the bijective map [p] : V — &, v = [p,v] with x := 7p(p). Hence, let us
defineamap f : P — Vviaf(p) = [p] (X (x)),Vp € Py. By construction, it
then follows £ (p - ¢) = p(g™")(f(p)) forany ¢ € G. To see that it is smooth, let us
choose alocal section s : U — P of the principal super fiber bundle  with U € M
open which, in turn, induces a local trivialization ¢ : # 2 7r,;>1(U ) > U X GofP
as well as smooth sections §; : U — & of the associated super vector bundle & via
$(x) = [s(x), e;] Vx € U where (¢;), is areal homogeneous basis of V. By Prop. 2.4.9,
this induces a local trivialization ¢ : & 2 71‘51 (U) - U XV of E over U. Itis then
easy to see that there exists a smooth map v : U — V such that X (x) = [s(x), v(x)]
Vx € U. Then, it follows that f o ¥ !(x, g) = p(g™hv(x)) V(x,2) €e UX G
which is obviously smooth proving that indeed f € H* (P, V) G This shows that ¥

is bijective. That ¥ is linear and preserves the grading is immediate. O
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Example 2.4.24 (Vector bundles as associated bundles). LetV — & 5 Mbea super
vector bundle. The general linear supergroup GL(V) acts in a trivial way on “V via the
so-called fundamental representation

p=id: GL(V) > GL(V), g~ ¢ (2.149)
This yields the associated super vector bundle 7 (&) X, V. Consider the map

F(E)x,V—-E& (2.150)
[an U] - (UZ‘Xz‘x)x

where we have chosen a real homogeneous basis (¢;); of V and set X, := p.(e;) V7.
It is immediate that (2.150) is smooth and well-defined, fiber-preserving as well as an
isomorphism of super A-modules on each fiber. Hence, itindeed defines an isomorphism
of super vector bundles. This shows that each super vector bundle is associated to a

principal super fiber bundle.

This construction also yields a new characterization of the (left) dual super vector
bundle *V —*& — M as follows. A representation p : G — GL(V) of a super Lie
group on a super A-vector space yields a representation *p : G — GL(*V) on the
corresponding left dual super A-vector space *V via

() v w"p(9)l) = (olp(g™)) 10 (2.151)

Vg e G,l eV andv € V, called the left dual representation of G. In our case, i.c.,
G = GL(V) and p = id, this yields the associated super vector bundle F (&) X+, "V .
In fact, in turns out that this bundle is isomorphic to the left dual super vector bundle
via
F(E) x:,"V — & (2.152)
[px: €] - (ZXx €z)x

where, for any x € M, ("X, ); denotes the left dual basis of (X;,); in *E ...

Corollary 2.4.25. Let H — P 2 Mbea principal super fiber bundle with structure
group H and H-right action @ : P x H — H. Let A : H — G be a morphism of
super Lie groups and p) := pg o (A xidg) : H X G — G the induced smooth left
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action of H on G. Then, the associated fiber bundle P X41 G := P X, G can be given
the structure of a principal super fiber bundle with structure group G and G-right action

D: (PXxuG)XG — PXuG (2.153)

Furthermore, let 1 : P — P Xy G bedefined as 1(p) = [ p,e] Vp € P, then v is smooth,

fiber-preserving and H-equivariant in the sense that 1 o @ = ® o (¢ X A). Moreover, if
A+ H — G isan embedding, then 1 is an embedding.

Proof. First, let us show that o (P Xy G) X G — P Xq G is asmooth G-right
action with respect to which the local trivializations ¢; are G-equivariant. To see that is
continuous, consider the smoothmap @’ : (PXG)xXG — Pxu G, ((p, g),h) —
[ p, 16 (g, b)]. Since @’ is constant on G-orbits it follows from Prop. (2.4.21), i.e., the
topology on & coincides with the quotient topology, that this induces a continuous
map D (P X G) X G — P Xy G such that the following diagram commutes

@

(PxG)xG

ﬁXidg l /
0]

(PxnG)xXG

PX(HQ

That @ is smooth can be checked by direct computation. Furthermore, for a locally
trivializing bundle chart ¢ : 7r(§)1 (U,) = U, X G, we compute

#% o ®([p, g1, h) = (mp(p), p(pr, © $2(p), k(g h)))
= (id X 1) (7p (), p(pry © $a(p), )5 b)
= (id x ug) o ¢, ([ p, gl, b) (2.154)

and hence ¢, o ® = (id x ug) © ¢y as required.

Finally, let us consider themap ¢ : P — P Xy G, p > [p,e]. Sincet = 7w o 1p
is a composition of the canonical projection 7 as well as the embedding tp : P —
P x {e} C P x G, it follows that ¢ is smooth. That ¢ is fiber-preserving is immediate
and for (p,h) € P x Hitfollows 1 o D(p, h) = [D(p, h),e] = [p, pa(h,e)] =
[p, ug(e, A(h))] = Do (1% 1) (p, b), that s, ¢ is H-equivariant. To prove the last
assertion, if A : H < G is an embedding, it follows that ¢ is injective. Moreover,
since 7 is an open submersion, ¢ is a homeomorphism onto its image. To see that it is

52



2.5. S-relative super connection forms

an immersion and thus an embedding, let {(U,,, ¢%) } zex be a smooth bundle atlas of

P X, G induced by a smooth bundle atlas of P. Then, for & € Y, this yields

¢n 0 t(p) = (mp(p), A(pry 0 pu(p))) = (id X A) 0 ¢ (p) (2.155)
Vp € P.But,since ¢, is a diffecomorphism andidx 1 : P xH — P XG an embedding

the claim follows. |

Definition 2.4.26. Under the assumptions of Corollary 2.4.2s, the associated principal
super fiber bundle P X G := P X, G is called the A-extension of P. I 1 : H — G
is an embedding, P X4 G will also simply be called the G-extension of P. In the latter
case, we also simply write P[G] := P Xy G.

Definition 2.4.27. LetG — P 5 Mbea principal super fiber bundle with structure

group G and 1 : H — G amorphism of super Lie groups. A H-bundle H — Q 3
M over M is called a A-reduction of P, if there exists a smooth map A : @ — P such

that the following diagram commutes

QXH Q (2.156)
\ﬂj
AxA A M
S
PXxXG P

i.e. A\ is fiber-preserving and H-equivariant in the sense that A o @ g = Pp o (A X 1)
with®q : QX H — Qand Pp : P x G — P the super Lie group actions on Q
and P, respectively.

Corollary 2.4.28. Under the assumptions of Corollary 2.4.25, the H-bundle P is a A-
reduction of the G-bundle P Xy G. O

2.5. S-relative super connection forms

The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

One of the main issues when working in the standard category of supermanifolds, both
in the H* or the algebraic category, is that superfields on the body of a supermanifold
only contain commuting (bosonic) degrees of freedom, that is, there are no anticom-
muting (fermionic) field configurations on the body. This, however, turns out to be
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incompatible with various constructions in physics, such as in the geometric approach
to supergravity. In the Castellani-D’Auria-Fré approach to supergravity [71, 72] (see
Section 3.4), for instance, one has the so-called rheonomy principle stating that physical

fields are completely fixed by their pullback to the body manifold.

This can be cured by factorizing a given supermanifold M by an additional parametrizing
supermanifold S and studying superfields on S X M. One is then interested in a certain
subclass of such superfields which depend as little as possible on this additional super-
manifold making them covariant in a specific sense under a change of parametrization.
This idea is based on a proposal formulated already by Schmitt in [73] which is motivated
by the functorial approach to supermanifold theory according to Molotkov [98] and
Sachse [99,100]. This approach also recently found application in context of super-
conformal field theories on super Riemannian surfaces [75,116] as well as in context of
the local approach to super quantum field theories (QFT) [1o1]. Moreover, as will be
explained in more detail later in Section 3.6, the description of fermionic fields turns out
to be quite similar to considerations in perturbative algebraic QFT [76,77].

In the following, we will adopt the terminology of [1o1] introducing the notion of a
relative supermanifold. However, unlike [1o01], in order to study fermionic fields, we
will not restrict to superpoints as parametrizing supermanifolds. We will then define
principal connections and connection 1-forms on parametrized supermanifolds. These
results will then be applied in Section 2.7.2 for the construction of the parallel tansport
map.

Definition 2.5.1. Let S and M be supermanifolds. The pair (S X M, prg) with prg :
S x M — § the projection onto the first factor is called a S-relative supermanifold also
denoted by M, s. The supermanifold S is called parametrizing supermanifold or simply
parametrization. A morphism ¢ : M;s — N, s between S-relative supermanifolds is
amorphism ¢ : S X M — 8§ X N of supermanifolds preserving the projections, i..,
the following diagram is commutative

SxM SN

Prs Prs

S

Hence, ¢(s, p) = (5, gg(s,p)) V(s, p) € Sx Mwithgg =pryog: SXM—-N.
This yields a category SMan s called the category of S-relative supermanifolds.

The following proposition gives a different characterization of morphism between S-
relative supermanifolds.
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2.5. S-relative super connection forms

Proposition 2.s.2 (after [101]). Ler M;s, N)s € Ob(SMan,s) be S-relative super-
manifolds. Then, the map

as : HomSMan/S (M/S: N/S) - HomSManHoo (S x M, N) (2-157)
($: SXM—SXN) = (pryod: Sx M= N)

is a bijection with the inverse given by

“3*1 : HomSManHoo (SxM, N) - HomSMan/S (M/S> N/S) (2-158)
(¥ : SXM—->N) - ((dsxy)o(ds xidy) : SX M —= SXN)

withds : S — 8 X 8 the diagonal map. o

Let A : 8 — 8’ be amorphism between parametrizing supermanifolds, we will also call

such a morphism a change of parametrization. Then, any smoothmap ¢ : S'XM — N

can be pulled back via A to a morphism 1*¢ := ¢ o (4 X idpy) : S x M — N. Using
2.158, this yields the map [101]

A" : HomsMan,s (M5, N/s7) — Homsman,s (M5, Ns) (2.159)
¢ ag'(as/(¢) o (A xidm))
Hence, explicitly, for ¢ : M;s» — Njs/, A*(¢) reads

AT(9) (s, p) = (5, prp 0 $(A(5), p)) (2.160)

V(s, p) € S x M. The following proposition demonstrates that the set of morphisms
between relative supermanifolds is functorial in the parametrizing supermanifold and
thus indeed has the required properties under change of parametrization.

Proposition 2.5.3 (after [101]). The assignment

SMan — Set : Ob(SMan) > S — Homsman s (M;s, N)s) € Ob(Set)
1:8->8)- 2" (2.161)
defines a contravariant functor on the category SMan gy~ of H* supermanifolds. More-

over, the map A* associated to the morphism A : S — S’ preserves compositions, i.e.,

A (poy)=2(@) o A*(¥) foranyy : M= Nand¢: N — L

Proof. This is an immediate consequence of the identities (2.157), (2.158) and (2.159).
Alternatively, one may directly prove this proposition using the explicit formula (2.160)
valid in the A category. O
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Definition 2.5.4. (i) Let M, s € Ob(SMan, s) be a S-relative supermanifold and
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(i)

(ii)

2 € M, s apoint, thatis, a tuple p = (s, x) in S X M. A tangent vector X, at p
is defined as a tangent vector X, € T),(S x M) satistying

Xp(f®1)=0,Vf € H(S) (2.162)

The collection of tangent vectors at p defines a super A-sub module of 77, (SXM)
denoted by 7, (M, s) which we call the tangent module ot M s at p. A smooth
vector field X € X(M;s) on Mg is a smooth section X € X(S x M) of
the tangent bundle of § X M such that X, € T;,(Ms) forany p € S X M.
The vector fields on M, s form a super (S x M)-sub module X(Ms) of
X(S x M) isomorphic to H*(S) ® X(M).

A cotangent vector wp at p € Mg is defined a left linear morphism w), :
T,(M;s) = A. Al-form w on M, s isaleftlinear morphism of super H* (S x
M)-modules @ € Hom , (X¥(M)s), H*(S x M)). The set Q' (M,s) of S-
relative 1-forms on M s defines a super H* (SxM)-sub module of Q' (SXM)
isomorphic to Q' (M) @ H*(S).

Analogously, one defines £-forms w € Qk(/\/(/s) on M;s, k € N, as skew-
symmetric £-left linear morphisms w € Hom_ , (%(M/S)k, H>® (S8 x M)) of
super (S x M)-modules. For £ = 0, we set Q°(M,s) = H™(S x M).
Operations on forms, such as the exterior and interior derivative as well as Lie
derivative can be defined as in the non-relative setting (see e.g. [74, 97,102, 117]).
For instance, given a 1-form w € Q! (M, s) and homogeneous X € X(M,s),
the interior derivative is given by 1y (@) := (X|w) and similarly for arbitrary
k-forms. The Lie derivative is then defined via the (graded) Cartan formula
Ly :=dotxy +ty od. Moreover, one has the important identity

[Lx,ir] = Lyowy — (1) Wy o Ly =y y (2.163)

for any homogeneous X, Y € X(M,s).

For a super A-module V, we denote by QF M;s,V) = Qk(M/S) ® V the
super H* (S x M)-module of V-valued k-forms on M, s. In case, V is given
by the super Lie module Lie(G) = A ® g of a Lie group G, we simply write
Qk(M/S, g) := Qk(M/S) ® g. Operations on Qk(M/S) such as exterior,
interior or Lie derivative are extended in a straightforward way to QM /s> V).



2.5. S-relative super connection forms

Definition 2.5.5. (i) Consider a principal super fiber bundle G — P 5 M with
G-rightaction @ : P X G — P as well as a parametrizing supermanifold S.
Taking products, this yields a fiber bundle

SXP~——¢G
TS

SxM

with projection 7g := idg X 7 and G-right action @5 := idg X P : (S x
P)x G — S x P. By construction, 7s defines a morphism of S-relative
supermanifolds. Moreover, @ g satisfies 75 0 @5 = 7 0 prg, 4 as well as

Dg o (Dgxid) = Dg o (id X ) (2.164)

We will call such a group action a G-right action of S-relative supermanifolds.

Hence, this yields a fiber bundle G — P s M /s in the category SMan, s of
S-relative supermanifolds which will be called a S-relative principal super fiber
bundle.

(ii) LetV — & 5 Mbea super vector bundle. Similarly as above, taking products,

this yields a fiber bundle V — &5 EM /s in the category SMan, s with
typical fiber given by a super A-vector space V which will be called a S-relative
super vector bundle. A smooth section X € I'(E,s) of the S-relative super
vector bundle &, s is given by morphisms X : M;s — &5 of S-relative
supermanifolds satisfying 7g o X = id.

Remark 2.5.6. Let M, s € Ob(SMan, s) be a S-relative supermanifold. Choosing a
local coordinate neighborhood of M, it is immediate to see that for any (s, p) € Mg,
the tangent module 7(;, ) (M} s) is isomorphic to T, Mvia T,M 3 X, = 1 ® X, €
T(5,p)(Mys). On S x M consider the assignment 7'(M,s) : Sx M 3 (s, p) =
1(;,5) (M, s) which defines a subbundle of 7'(S x M) and which we call the tangent
bundle of M;s. On the other hand, according to Definition 2.5.5 (ii), one can also
consider the S-relative super vector bundle (7°M),s. Together with the previous
observation, we obtain an isomorphism

(TM)ys = T(Mys), (5,Xp) = (18 X)(,,p) € Tisp)(Mys) (2.165)

Moreover, via this identification, it follows that smooth vector fields on M/ s can be
identified with smooth sections X € I'((7"”M), s) of the S-relative super vector bundle
(T'’M);s. In a similar way, it follows that S-relative 1-forms on M/ s can be identi-
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fied with smooth sections @ € I'((*I'’M),s) of the S-relative super vector bundle
("TM)s.

As in the ordinary theory of principal fiber bundles and gauge theory in physics, connec-
tions and connection 1-forms play a very central role. To implement these notions in the
category of relative supermanifolds, we first have to introduce the notion of a geometric
distribution.

Definition 2.5.7. A smooth geometric distribution & of rank k|l on a S-relative super-
manifold M s is an assignment

E: Mis3p— 8, CT(Ms) (2.166)

mapping each point p € M s to asuper A-sub module & of T),(Ms) of dimension
k|l such that, for any p € Mg, there exists p € U € S X M open as well as a
family (X;),=1, g+ of smooth vector fields X € X(U) on S X M such that X;(g) €
1;(M;s) ¥q € U and (X;(g)); defines a homogeneous basis of &,.

Lemma 2.5.8 (a generalization of [97]). Let M, s be a S-relative supermanifold of
dimension (m,n) and W — F;s — N s be a S-relative super vector bundle of rank
k|l Let (¢, g) : TM;s — Fs a (even, right linear) morphism of S-relative super
vector bundles such that ¢, - TyM;s — (F18) g(p) s surjectiveN p € M;s. Then

ker(p) = | | ker(gy: TpMys = (Fs)g(p) (2.167)
pEM/s

defines a smooth geometric distribution of rank (m — k)|(n — 1) on M;s.

Proof. The following proof is a generalization of the proof in the ordinary /* category
as given in [97]. For an arbitrary but fixed po € M, s, let (Uys, yu) and (V}s, ¥7,) be
local trivializations of 7'M, s and ¥ s, respectively, such that py € Ujs and S x U C
g7 (SXV). Consider the map ¢y := Yoo %&1 : Us XA VisxW. Since
¢ is a right linear super vector bundle morphism, pr, o ¢y (p, - ) : A" W e
Endg(A™ 2 W)isa rightlinear map Vp € Uys. Hence, there exists a (unique) smooth
map ¢VU : SxU — EndR(Aml” ‘W) such that ¢VU(p)v = pr, o gru(p,v)
V(p,v) € (SxU)x A" Thus, w.r.t. a real homogeneous basis (¢;);=1,....m+» and
(f7) =1kt OF A 7 and ‘W, respectively, this yields

¢VU(ID9 U) = (g(p)afj VU ,(P)U ) (2'168)
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Since ¢ : TyM;s — (F8)¢(p) is surjective, the rank of the super matrix &;VUJ A(p)
hastobe |/ Vp € S X U. Hence, after reordering the real homogeneous basis (¢;);,
we may assume that the sub super matrix (&;V v +(P0))ir=1,.. ks is invertible. Hence,
there exists U’ € S x U open such that (;?VU”Z.(p))l-,rzl,m,k” is inv;rtible VpelU'.
As taking the inverse of super matrices is smooth, the inverse matrix (b, (p)); r=1,. g+l
of (&;VUVZ. (p)) Vp € U’ defines a smooth right linear map from W to A7,

Fori’ =k+1,...,m+n,set

sir(p) = Wl}l (P’ €ir = ‘fl'bir (P)EJVUV,-/(P)) (2.169)

Vp € U’. Then, since ¢ is homogeneous, it follows thats;» € X(U), 7" = k+/,...,m+
n define smooth vector fields on U” such that s, (p) € T,M;sVp € U’ and (s (p)) i
is a homogeneous basis of ker(¢) ,. Hence, this proves that ker(¢) defines a smooth
geometric distribution of rank (7 — £)|(n — /) on M s. O

Before we proceed with the definition of vertical and horizontal distributions as well
as connection forms on principal super fiber bundles, let us first note a very important
fact concerning partial evaluation of smooth maps defined on supermanifolds. More
precisely, note that, in the /7 category, the space of smooth functions defines a R-vector
space. Thus, it follows that, given a smooth map ¢ : M X N — L between H*
supermanifolds as well as a point g € N, the map

¢ =9(q): M—> L (2.170)

in general, will not be of class 7, unless ¢ € B(N).” However, following [97], one
can still associate a tangent map to ¢, even if g is not an element of the body. More
precisely, one makes the following definition.

Definition 2.5.9. Let ¢ : M X N — L be a smooth map between supermanifolds
and g € N be an arbitrary but fixed point. Using the identification 7'(M x N) =
T (M) X TN, the generalized tangent map ¢4 : TyM — Ty ) L of ¢y = ¢(-,9)
at p € Mis defined as

Pg=(Xp) = Dpgy(Xp) := D (p,0)$(Xp, 04) (2.171)

7 Note that the set smooth functions on a * supermanifold is a R-vector space. For a general product
supermanifold M X N, one has H®*(M X N) = H®(M) @ H*®(N) . If then f ® g isasmooth
function on M X N, itfollows that f ® g(-, p) = - g(p) € H®(M) & g(p) eR & p e B(N).
In fact, this has its explanation in the algebraic category since, due to super Milnor’s exercise (Prop. 2.2.7),
the real spectrum Hom(O(M), R) is given by the set of morphisms ev : O(M) — R associated to
points p on the underlying topological space of an algebro-geometric supermanifold.
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forany X, € T, M. In a similar way, one defines the generalized tangent map @ .. for
peM

Definition 2.5.30. Let ¢ : M XN — Land ¢ : K x L — P be smooth maps
between supermanifolds and p € K and g € M arbitrary fixed points. Then, the

generalized tangent map (@, 0 ¥ ). of themap ¢, 0 ¥, = $(p, ¥ (g, -)) : N — Pis
defined, according to 2.5.9, as the generalized tangent map (¢ X (id X ¢)) 5,4)« associated
o (pX ([dX¥))(pg : N = P.

Proposition 2.5.ax. Lety : MXN — Land ¢ : K x L — P be smooth maps
between supermanifolds and p € K and q € M arbitrary fixed points. Then,

(¢p © Wq)* = ¢p* o Wq* (2.172)
Proof. For X, € TN, g € N, we compute

(Bp 0 ¥g)(Xyg) := (¢ X (id X ¥)) ()« (Xg) = D($ X (id X ¥))(0(p,9), X)
= D@(D(id X ¥)(0(p,q)> X))
= D¢(0,, Dy (04, X))
= @ px 0 Ygu (X)) (2.173)

O

Definition 2.5.02. Let s : M;s X G — Mg be a smooth right action of a
super Lie group G on a S-relative supermanifold M s. A fundamental tangent vector
Xy, € TyM;sat p € Mg associated to X € Lie(G) = 1.G is defined as

Xy = (0s)p-(X) € TyMys (2174)

where we made use of the generalized tangent map. In case X' € g, this yields a smooth
vector field X' € X (M s) which can equivalently be written as

X=(1®X)o D (2.175)

and which is called the fundamental vector field generated by X .

Definition 2.5.13. Let G — P)s BEM /s be a S-relative principal super fiber bundle.
The vertical tangent module ¥V, of P s ata point p € P is a super A-sub module of
the tangent module 7,#, s defined as

Yy =ker(D,7s) (2.176)

60



2.5. S-relative super connection forms

Lemma 2.5.14. Let Ps : M;s X G — M s be a smooth right action of a super Lie
group G on a S-relative supermanifold M s. Then, for X € Lie(G) = 1.G, one has

(Ds) X, = Adg X, ,, VpePs, g€G (2.177)

with Ad g X, the fundamental tangent vector associated to Ad - X € Lie(G) at
p- g € Ms. Here, Ad : G — GL(Lie(G)) denotes the Adjoint representation of G
with pushforward ad := Ad. : Lie(G) — End,(Lie(G)), X  [X, ] given by the
adjoint representation of Lie(G).

Proof. By Prop. 2.5.11, we find

(D) ey = () gv © (D) pu(X) = ((P5) g © (Pss) ) (X)
= (Ps o (Ps xid))(p,., 0+ (X)
= (Qs o (id X @) (p,-,0)+(X)
= (Ds)px © Rgu(X) (2.178)

Since Ry = L= 0 Lgfl* ORgi=Lg o Adgfl, it thus follows
(P5)gsXp = (D) p© Ly 0 Ly1, 0 Ryu(X)
= (Ds)p g« © Adgfl (X) = Adglep_g (2.179)
as claimed. O

Proposition 2.5.35. Let G — Ps — M, s be a S-relative principal super fiber bundle
with right-action ®s : P1s X G — Pys. Forany p € Ps, one has

¥, ={X,| X € Lie(@)} (2.180)

i.c.,, the vertical tangent module V), is generated by the fundamental tangent vectors at
p- In particular, the assignment V' : M;s > p v V) defines a smooth geometric
distribution of rank dim g called the vertical tangent bundle which is right-invariant in

the sense that (P§) ¢« Vp = V5., Vg € G.

Proof. Forany p € Ps,lets : Us — P;s be asmooth local section of P, s with
ws(p) € SxU < 8 x Mopen. Then, 7g o s = id implies 7s, o 5. = id and
thus D,7s : TyM;s — Trg(p)P)s is surjective. Since, D,7s is homogeneous,
it follows that ¥}, = ker D,7s is a super A-sub module of 7),(;s) of dimension
dim ”//P = dim 7},?)/3 — dim Tﬁs(p)M/S =dimLie(G) Vp € P/s.
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For X € 1,G = Lie(G), the associated fundamental tangent vector X patp € Pgis
given by X, = (@) »« X . By definition of the generalized tangent map, this yields

DpWS()?p) = DpWS o D(p,g)QDS(OP, X)
= D(p,e) (s 0 Ds)(0,, X)
=D pe)(7ms o pr;)(0p, X) =0 (2.181)

ie., fp € Vy. As®p. : T.G — T,P;s is an even and injective map of super A-
modules, it follows from the observation above that it is an isomorphism onto ¥},
proving (2.180).

To prove the last assertion, let (X;); be a real homogeneous basis of 7,G and X =
1 ® X o @ the associated smooth fundamental vector fields on #; 5. Then, (fl( )i
is a homogeneous basis of ¥, Vp € P/sand thus ¥ : M;s > p > ¥}, definesa
smooth geometric distribution of rank dim g. It remains to show that 7 is indeed right-
invariant, thatis, (Os) ¢+ ¥y = ¥, Vg € G. Therefore, if X, € ¥}, with X € Lie(G),
it follows from Lemma 2.5.14

((DS)g*fp = dgleP'g € %.g- (2.182)

Since (Qs) g« © (Ds) g-1. = id, the claim follows. O

Definition 2.5.16. Let G — P s SM /s be a S-relative principal super fiber bundle
with right-action @5 : P/s X G — P;s. A principal connection (ala Ehresmann)
H on P s is a smooth geometric distribution 7 : s 3> p > H, C T,(P)s) of
horizontal tangent modules on #; s of rank dim M such that 7, & ¥, = T,(P/s)
and J7 is right-invariant in the sense that

((DS)g*% = %-g (2.183)

V])GP/S,gEQ.

Definition 2.5.07. Let G — P;s — M/s be a S-relative principal super fiber
bundle and 57 : P;s — T (P)s) a principal connection on P, s. A tangent vector
X, € T)(Ps) at p € Pys is called horizontal or vertical it X, € 7 or X, € V),
respectively. Analogously, one defines horizontal and vertical vector fields.

Remark 2.5.18. Since, 77, ® ¥, = T,(P/s) Vp € P;s, this induces projections
prj, and pr, on T'(;s) onto the horizontal and vertical tangent modules. As .7 and

¥ define smooth geometric distributions, it clear that, for any smooth vector field
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X € I'(T'Ps), the projections pr;, o X and pr, o X define smooth horizontal and

vertical vector fields, respectively.

We finally come to an equivalent characterization of principal connections in terms of
kernels of particular 1-forms defined on (relative) principal super fiber bundles. These
so-called super connection 1-forms yield a generalization of the well-known gauge fields
playing a prominent role in ordinary gauge theory in physics.

Definition 2.5.19. A super connection 1-form A on the S-relative principal super fiber

bundle G — P/s 5 M s is an even Lie(G)-valued 1-form A € Q! (P;s, g) such
that

() (X|AY=XVX €g
(i) (Ps)sA =Adg10AVg€QG.

where, in condition (ii), the generalized tangent map was used (see Def. 2.5.9).

Theorem 2.5.20 (a generalization of [97]). Fora S-relative principal super fiber bundle
G — P1s = Mys, there is a one-to-one correspondence between principal connections
and connection 1-forms on P, s. More precisely,

(i) if A : Pis > p > H)isaprincipal connection on P s, then A € QYP;s,8)o0

defined via

(Ep X1y = X (2184)
V()?P, Y)) e, 07, =TpP, p € Prsand X € Lie(G), defines a connection
1-form on P s.

(i7) if A € QN (P;s,8)o is a connection 1-form on P s, then the assignment
H: Prs > pker(Ay) C T (P)s) (2.185)

defines a principal connection on P s

Proof. (i) We have to show that A as defined via (2.185) satisfies the conditions (i)
and (ii) in 2..5.19 of a super connection 1-form on #; s. First, to see that A indeed
defines a smooth even Lie(G)-valued 1-form on P s, ie., A € Q1 (P}s,9)o, let
(X;); be a homogeneous basis of g C Lie(G) = 7.G. Consider the components
‘A = Ao 'X Vi with (“X); the corresponding left dual basis of *Lie(G).
According to Remark 2.5.18, if X € X(%)s) is a smooth vector field, we can
decompose X into vertical and horizontal parts via X = pr, o X +pr, o X =:
X, + X,. Since X, and X, are smooth, it follows that *A is smooth iff (X, | A)
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and (X),|"A) are smooth for any X and thus iff ‘A is smooth when restricted
to smooth vertical and horizontal vector fields. The fundamental vector fields )Z
generated by X; define global smooth vertical vector fields such that (X;(p)); is
a homogeneous basis of ¥, ¥ € ;5. By definition of A, we have

(XN AYy=3] Vi, ; (2.186)

which is smooth and thus A is smooth on vertical vector fields. Finally, since .7 is
asmooth geometric distribution, forany p € P, thereexistsa p € U, C SXP
open as well as a family (¥;); of smooth horizontal vector fields on U, such that
(Y:(9)): is a homogeneous basis of 75 Vg € U,. Since (¥;[A) = 0 and thus
is smooth, it follows that A is also smooth on horizontal vector fields. Hence,
indeed A € Q' (P}s,3). That A has to be even is immediate.

It remains to show that A in fact satisfies the conditions (i) and (ii). By definition,
(i) is immediate. Moreover, by right-invariance of S, it suffices to show (ii) for
vertical tangent vectors. Hence, let fp € ¥, € T)(Ps) with X € Lie(G).
Using Lemma 2.5.14, we compute

(D) g X p|Apg) = (Adg1X | |Apg) = Adg1X = Ad o (X, A,)

(2.187)
This shows that A defines a principal connection 1-form on P s.

Conversely, for A € Q'(P;s,8)o a principal connection 1-form on P;s, we
have to show that 77 : P)s 3 p > ker(A,) C T(P)s) defines a principal

connection on . To this end, similar as in [97], consider the map
T(Ps) — (P xLie(G))/s, TP 3 Xp = (9, (Xp|Ap)) (2.188)

from T'(P)s) to the trivial S-relative super vector bundle Lie(G) — (P X
Lie(G));s — P;s. By Remark 2.5.6, we can identify 7'(#,s) with the S-
relative super vector bundle (7P),s. Hence, it follows that (2.188) defines a
smooth even and surjective, as A is even and surjective, morphism of S-relative
super vector bundles. Hence, by Lemma 2..5.8, the kernel of (2.188), which coin-
cides with 47, defines a smooth geometric distribution. To see that it is right-
invariant, note that, by condition (ii), for p € ;s and X » € %’} = ker(A p),
we have

(D) s XplAp.g) = Ad g1 (Xp|A,) = 0 (2.189)
and thus (Os) ¢+ Xy € 5.4
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We finally want to define the notion of a covariant derivative and curvature 2-forms cor-
responding to super connection forms defined on relative principal super fiber bundles.

Definition 2.5.21. Let G — P;s — M5 be a S-relative principal super fiber
bundle and A € Q! (P/s>8)o a super connection 1-form on ;5. The linear map
DWW . QF(Ps, V) — QF(Ps, V) defined as

(X0, ..o, Xt | DV w) = (pr) 0 Xy, . ..., pr, © Xildw) (2.190)

for smooth vector fields X; € X(P)s),7 =0,.. ., k, is called the covariant derivative
induced by A where pr, : TP)s — FH := ker A denotes the projection onto the

horizontal tangent modules induced by A.

An important subclass of vector-valued forms on (relative) principal super fiber bundles
is provided by forms that transform covariantly in a specific sense under gauge trans-
formaions. This is the content of the following definition. One then asks the question,
whether one can define a derivative on such forms so that the transformation property
is preserved. As we will see, it follows that the covariant derivative induced by super
connections forms indeed has the right properties.

Definition 2.5.22. Let G — P s — M g be a S-relative principal super fiber bundle
with G-rightaction®@ : P/sxXG — P/sand p : G — GL(V) bearepresentation of
G on asuper A-vector space V. A k-form w on P s with valuesin V is called horizontal
of type (G, p), symbolically w € Qﬁw (Prs>V) (6:°) if w vanishes on vertical tangent

vectors and

Qw= p(g) low, Vge@g (2.191)

Proposition 2.5.23 (a generalization of [97]). Let G — P15 — M,s be a S-relative
principal super fiber bundle and A € Q' (P, 8)o a super connection 1-form on P s.
Letw € Q/ZW (P/s> VYGF) be a horizontal k-form on P s of type (G, p). Then, the

induced covariant derivative DV takes the form
DWWy =dw+ p(A) N w (2.192)
where the (k + 1)-form p.(A) N w on P s is defined as

(X0 s Xp| pu(A) A )

k . _
= 3 (- W (1 A) (X, X X)) (2.193)
=0
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In particular, Dy e Qi:}} (Prs>V) (G:P) e, D induces a covariant derivative
on the subspace of horizontal forms of type (G, p).

Proof. That D' & defines a horizontal form of type (G, p) if @ does, follows imme-
diately from the right-invariance of the horizontal distribution which implies pr; o
(Ps)y = (Ps)gopr, Vg € G where Os : Pjs X G — P,s denotes the G-right

actionon P s.

To prove (2.192), it is sufficient to show equality when evaluating (2.192) on smooth
horizontal and vertical vector fields X;,7 = 0, . . ., . Moreover, if X is vertical, it suffices
to assume that is a fundamental vector field X = ¥ generated by some Y € g. In case all
X; are vertical, then it is clear that both sides in (2.192) trivially vanish by horizontality.
If all X; are horizontal, then (2.193) simply vanishes as A vanishes on horizontal vector
fields proving equality also in this case. Next, assume that at least two vector fields are
vertical. Then, note that if X for some X € g is a fundamental vector field and Y * is
horizontal then [)? , Y] is also horizontal. In fact, according to Prop. 2.6.10, we have

LA = —ady o A such that, following [97], this yields

([X,Y*]|A) = X (V' |A) - (- X ITI(y*| Lz 7)
=ady o (Y"|A) =0 (2.194)
Hence, again, both sides in (2.192) vanish as w is horizontal and A vanishes on horizontal
vector fields. It tilus remains to consider the case where at least one vector field is vertical.
Thus, suppose X is a fundamental vector field generated by X' € g and ¥; are horizontal
Vi =1,..., k. By definition, the left-hand side of (2.192) simply vanishes. On the other

hand, following precisely the same steps as in the proof of Prop. 2.6.10 to be discussed

in Appendix F, it follows that L zw = —p.(X) o w. This yields

(-DF (X, V..., Gildw) = (~)Z= KB YL sw)
= —p(X) (..., Yilw)) (2.195)

where identity (2.163) was used. Moreover, using Definition (2.193), we get

(X, V1. Vil pe(A) A w)
= (D! (1) (W, .., Til@)) = pu(X) (Wi, ..., Vil @) (2.196)

proving that the right-hand side of (2.192) vanishes, as well. O

Definition 2.5.24. Let 2 € Qk(M/S, g)and 8 € QZ(M/S,Q) be a k- resp. /-

form on a S-relative supermanifold M, s with values in a super Lie module Lie(G)
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corresponding to a super Lie group G. The k + /-form [« A B] € Q¥ (M,s,g) is
then defined via

[a A Bl =o' ACII(BT) ® [es,¢)] (2.197)

where we have expanded a = a’ ® e; and B = (8" ® ¢; w.r.t. a homogeneous basis
(¢;); of g. Here, the involution € : A — A is defined as €(1) = (—1)!*12 for any
homogeneous A € A.

Remark 2.5.25. Forw € QF (Ps,9) (99, it follows that
DWWy =dw+ [A A ] (2.198)
To see this, let us consider the case # = 1. By direct computation, it then follows
X, Y|[A A w]) =ty 0 ty (ﬂf A cslff'(wf)) ® [erre]
- ((_1)(|e,‘|+|Y|>|X| (YA (X|€ (7))

~(-0) I XA I8 @) ® e ]

= - [(X|A), Y |w)] + () EI (7| A), (X|w)]
=(X,Y|ad(A) A w) (2.199)

Hence, indeed, [A A w] = ad(A) A w.

Definition 2.5.26. Let A € Q!(P)s, 8)o be a super connection 1-form on a S-relative
principal super fiber bundle G — #;s — M s. The horizontal 2-form

F(A) =D AeQl (Ps, g9 (2.200)

is called the curvature of A.

Proposition 2.5.27. Let A € QN (P)s, 8)o be a super connection 1-form on a S-relative
principal super fiber bundle G — P1s — M s. Then,

(i) F(A)=dA+ [A AN A]
(ii) DV F(A) = 0 (Bianchi identity)

Proof. The first identity can be shown similarly as in the proof of Prop. 2.5.23 by apply-
ing both sides separately on horizontal and vertical vector fields.
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To show the Bianchi identity, let us decompose A = A’ ® ¢; with (¢;); areal homoge-
neous basis of . Then,

dF(A)

%d[ﬂ AA = (—1)'51‘”?/'% (4 A AT = A N dAT) ® [esr )]
1 . . . .
> (A A dA = () AN AAT) © [essej] = ~[A A A

(2.201)

Thus, it follows that dF'(A) vanishes when evaluating it on horizontal vector fields.
But, since D'V F(A) = prj, ¢ dF(A) (see Eq. (A.8)), the claim follows. O

2.6. Graded principal bundles and graded connections

The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

In Section 2.2, a precise link between the algebro-geometric approach and Rogers-
DeWitt approach has been discussed (see also [95,108] as well as [98, 99] in the context
of the categorial approach). In the following, we want to show in which sense super
principal fiber bundles and connection forms in the category of algebro-geometric
supermanifolds SManyj, as given in [102] can be related to the respective formulation
in the A category. Just for notational simplication, only in this section, we will call
objects and morphisms in the category SMan, with the addition graded to distinguish
them from their respective /* counterparts. However, we have to emphasize that the
definition of graded manifolds as chosen here is different from the original definition
as given by Berezin-Kostant-Leites [92, 93] using the notion of finite duals, the latter
being much more general (see also [106] for a comparison). Also, in this section, we
are considering trivial parametrizing supermanifolds S = {*}. The generalization to
nontrivial parametrizing supermanifolds is straightforward, though with the addition
graded is a bit cumbersome.

Definition 2.6.x. A right action of a graded Lie group G = (G, Og) on a graded
manifold M = (M, Opr) is a morphism @ : (M, 0pr) X (G,0¢g) — (M, Opr) of
graded manifolds such that®

o (@ el =0 o(lon), (L1ech)odi=1 (2.202)

8 By the “Global Chart Theorem”, Theorem 2..2.3, it follows that a morphism between graded manifolds
is uniquely determined by its pullback. Hence, in the following, we will often state certain properties of
morphisms that only involve the corresponding pullback.
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where ‘uﬁg and eﬁg denote the pullback of the group multiplication zg : G X G — G
on G as well as its neutral element eg : R° — G. Analogously, one defines a left action
of (G,0¢g) on (M, Opr) asamorphism @ : (G,Og) X (M,0pr) — (M,Opr) of
graded manifolds such that

o (1o @) =0 o (4 0l), (fel)odi=1 (2.203)

The following definition is a particular variant of the definition of graded principal
bundles given in [102].

Definition 2.6.2 (after [102]). A graded principal bundle over a graded manifold
(M, Opr) consists of a graded manifold (P, Op) as well as arightaction @ : (P, Op) %
(G,0¢) = (P,0Op) of agraded Lie group (G, Og) on (P, Op) such that

(i) thequotient (P/G, Op/Og) exists asagraded manifold isomorphicto (A4, Oxr)
and the canonical projection 7 : (P,O0p) — (P/G,Op/Og) is a submersion

(i) (P, Op) satisfies the local triviality property: For any p € M, there exists an
open neighborhood U € M of p as well as an isomorphism ¢ : (V, Oprly) —
(UxXG,Op|u®,0¢) of graded manifolds, where V' := [0 7|~} (U) C P with
¢ the isomorphism ¢ : (P/G,0p/O¢) — (M, O3pr), such that ¢is (G, Og)-

equivariant, that is,
@ o ¢ﬂ = (¢ﬁ ®@l)o(l® /f‘ﬁg) (2.204)

Remark 2.6.3. As demonstrated in Section 2.2, using the functor of points technique,
there exists an equivalence of categories given by two functors A : SMany~ ny —
SManyj, N and Hyy : SManyj, v — SMange N where, for a given Grassmann alge-
bra A = A, both categories have to be restricted to the subcategories of supermanifolds
with odd dimensions bounded by the number N of generators in A (this can be avoided
choosing instead the infinite-dimensional Grassmann algebra A, see e.g. [95,108]). If

M isa H* supermanifold, the corresponding graded manifold A(M) is defined as
A(M) = (B(M),B.Hy)) (2.205)

with B, the pushforward sheaf BIM) 2 U +— B.Hy (U) = H*(B™(V)).
On the other hand, for any graded manifold K = (K, Ok), the corresponding %
supermanifold is defined as the A-point

Hy (K) := Homsalg (O(K), A) (2.206)
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As it turns out, these functors, in particular, preserve products. In fact, for instance, con-
sider two H* supermanifolds M and N, then H* (M X N) = H®(M)&, H*(N)
where the completion is taken w.r.t. the Grothendiek’s 7-topology. Moreover, one has
B(M x N) = B(M) x B(N) which yields A(M x N) = A(M) x A(N). On the
other hand, for given graded manifolds K and £, the corresponding A-point is given by
Hy(Kx L) = HomSAlg(O(q()é)ﬂO(L), A). Given morphisms ¢ : O(K) — A
and ¥ : O(L) — A, this yields a morphism (¢ ® ¥) : O(K)®,0(L) — A which

on elementary tensors is defined as

(gey) (feg=¢(v(g) (2.207)

Conversely, given a morphism ¥ : O(K)®,0(L) — A, we can define morphims
¢: O(K) = Aand ¢ : O(L) — Asetting ¢(f) := Y(f ® 1) and ¢ (g) :
Y (1 ® g). Hence, this yields an isomorphism between A-points Hy (K x L)
Hp (K) x Hy(L). To summarize, it follows that A and Hp can be extended to
monoidal functors between monoidal categories.

113l

Proposition 2.6.4. There is a bijective correspondence between graded principal bundles

and H ™ -principal super fiber bundles. More precisely,

(i) if G — P B MisaH C-principal super fiber bundle with structure group G,
then A(P) = (B(P), BLHJ) has the structure of a graded principal bundle over
the graded manifold A(M) = (B(M), B.H ).

(iz) if (P, Op) is a graded principal bundle over a graded manifold (M, Opr), then
Hn(G,06) — Hn(P,0p) — Hn(M,Opr) for a suitably large N € N
has the structure of a H®-principal super fiber bundle with bundle map 7@ =
Hy(to7) =Hpy () oHy(7) : Hy(P,0p) —» Hn (M, Opy), where 7 -
(P,0p) = (P/G,0p/Og) is the canonical projection and 1 the isomorphism
t: (P)G,0p/0g) — (M, 0.

Proof. This is an immediate consequence of Remark 2.6.3 as well as Prop. 2.4.16. O

Hence, this proposition demonstrates that the categorical equivalence between graded
and A supermanifolds even carries over to principal super fiber bundles. Next, we
want to show that connection 1-forms defined on these bundles are in fact in one-to-one
correspondence.

Definition 2.6.5. Let (M, Oyr) be a graded manifold and g be a super Lie alge-
bra. A g-valued differential form w on (M, Opy) is an element of Q°* (M, Oyr,6) =
Q*(M,0) ®g.
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Definition 2.6.6. Let (G, Og) be a graded Lie group with super Lie algebra g. The
morphism

Ad: G - GL(g), Adg(X) = (evg ® X ®evy1) o (1@ ph) oy (2.208)

VX € g, is called the Adjoint representation of G on g.

Definition 2.6.7. Let (P, Op) be a graded principal bundle over a graded manifold
(M, Opr) andrightaction @ : (P,0p) X(G,0g) — (P, Op) of agraded Lie group
(G,0¢) on (P,Op). A graded connection 1-form w on (P, Op) is an even g-valued
1-form w € Q(P, Op, g)o such that

(i) (fla)) = XVX egand X =1® X o ®* € Der(O(P)) the associated

fundamental vector field
(ii) CDZ@ =Adj1owVgeGand Lyw=—adyocw VX €g

Here, for g € G, ®, : (P,0p) — (P, Op) is the isomorphism of graded manifolds

induced by the pullback morphism CDE, =(I®evy)o ®* . Op — Op. Moreover, for
homogeneous X € g,ady o w is defined as

(Zlady o w) = (-1)*Wlady (Z|w) (2.209)

for any homogeneous Z € Der(O(P)).

In order to provide a link between graded and H *-super connection 1-forms, the
following lemma will play a central role. It is based on the equivalent characterization of
super Lie groups in terms of the corresponding super Harish-Chandra pair (B(G), g),
Theorem 2.3.9.

Lemma 2.6.8. Given a H™-super Lie group as a well as a smooth map F € H™(G).
Then, F vanishes identically on G if and only if X F|g(g) = 0 for all X € U(g) (and
thus in particular F|g(g) = 0) with U(Q) the universal enveloping algebra of 8.

Proof. One direction is clear, so suppose that for some smooth function ¥ € H*(G),
XFlgg) = Oforall X € U(g). By the super Harish Chandra theorem, G can
be identified with the globally split super Lie group 8(g, B(G)) = Gy X (g1 ® Ay)
associated to the trivial vector bundle B(G) X ¢ — B(&). Hence, there exist odd
functions 0% € H*(G), 2 = 1,...,n, n = dim gy, such thatany f € H*(G) is of

the form

f=> S(fot (2.210)
I

71



2. Supergeometry

with 8(f7) the (generalized) Grassmann extension of smooth functions f7 € C*(B(G))
for any ordered multi-index / of length < 7. Hence, F can be written in the form

F=Ys(r)bt (2.211)
I

for some F; € C*(B(G)). It then follows from the assumptions that for 1 € U(g),
F(g) =0 = Iy(g) forany body point ¢ € B(G), thatis, Fj = 0.

Let d, be the derivations on H*(G) satisfying 9, 6f = 35, (X;); be a homogeneous
basis of smooth left-invariant vector fields X; € g V7 on G and, according to Prop. 2.4.12,
(‘w); the corresponding smooth left-invariant 1-forms satisfying (X il ‘w)y=129 ]l Then,
0, can be written in the form 9, = (0,|'w) X, with (d,|'w) € H®(G)Va =1,...,n
and 7. As a consequence, for each multi-index 7, df := d,, -+ 0y, with b = |I]is
a H*(G)-linear expansion of elements in U(g). Hence, by hypothesis, this implies
0= 0/F(g) = (-1)**V2F(g) for any body point ¢ € B(G), i, Ff = 0, and
therefore F = 0 as claimed. O

Remark 2.6.9. Itis clear that Lemma 2.6.8 equally holds if one replaces U/ (g) by the
respective right-invariant counterpart U(gR), i.c., the universal enveloping algebra of
the super Lie algebra g® of smooth right-invariant vector fields on G.

Proposition 2.6.10. Let G — P 2 Mbea H® principal super fiber bundle with
G-right action @ : P X G — P. Asmooth even Lie(G)-valued 1-form A € Q' (P, g)o
is a connection 1-form on P if and only if

() (flﬂ) =XVX € gandf =1 ®X o @ € I'(TP) the associated smooth
fundamental vector field

(i7) D3A = Ady1 0 AVg € B(G) and LA = —ady o AVX €.

Proof. The proof of this proposition is a bit lengthy and technical as one always has
to care about smoothness in the various construction since / *°-smoothness is not
preserved under partial evaluation. Therefore, we have moved it to Appendix F. m]

Proposition 2.6.1x. There is a bijective correspondence between graded connection 1-forms
on graded principal bundles and H ™ -smooth super connection 1-forms on H™ principal

super fiber bundles.

Proof. This is an immediate consequence of Prop. 2.6.4 and 2.6.10 as well as Remark
2.6.3. m|
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2.7.  Parallel transport map

The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

2.7.1. Preliminaries and first construction

In this section, we want to derive the parallel transport map corresponding to super
connection forms. To this end, at the beginning, we want restrict to trivial parametrizing
supermanifolds S = {*}. This will provide us already with the main ideas behind the
construction and, at the same time, points out the necessity of the parametrization. The
generalization to the relative category will then be considered in the subsequent section.
The following proposition plays a central role.

Proposition 2.7.x. Let D : M X G — M be a smooth right action of a super Lie group
G on a supermanifold M. Then,

D(p,g)CD(Xp, Yg) = (Dg*(Xp) + QMC(Kf)p.g (2.212)

atany (p,q) € M X G and tangent vectors X, € TyM, Y, € T,G, where Oyc €
0O(G, g) is the Maurer-Cartan form on G (see Example 2.4.13).

Proof. The proof is very similar to the classical theory of ordinary smooth manifolds.
One only has to care about smoothness. We will therefore employ the notion of the
generalized tangent map. By linearity, we have

D p, ) @(Xps Yy) = D, @(Xps 0g) + D5, P(0p, Tg) = D (X)) + D (Tg)
(2.213)
Since Yy = Lgs 0 Ly1,(Yy) = Lg.(0mc(Yy)) by definition of the Maurer-Cartan
form, this yields, using Prop. 2.s.11 and that @ defines a right action,
©p(Yy) = Opio Lou(mc(Yy)) = (Pp o Lo)u(Omc(Yy))
= (@ o (id X ))(p,9)+ (Omc(¥g)) = (P o (P X id))(p,¢)«(Imc(¥y))
= q)p-g*(eMC(Y:g)) (2.214)

which implies @ 5. (Y,) = mc (Yg)pg by definition of the fundamental tangent vector.
O

Before we state the main definition of this section concerning the horizontal lift of
smooth paths on supermanifolds, let us briefly recall the notion of a local flow of a

73



2. Supergeometry

smooth vector field. In the super category, one needs to distinguish between even and
odd vector fields whose corresponding local flows turn out to possess different properties.
In what follows, we want to focus on odd vector fields as these seem to be rarely discussed
in the literature. In contrast to the classical theory, it follows that the corresponding local
flow depends on two parameters (¢, £) given by both an even and odd parameter # and
g, respectively. These define elements of the superdomain A! which can be given the
structure of a super Lie group also called the super translation group with multiplication

defined via (¢, 8) - (s,7) = (¢ + 5+ 07,0 + ) V(£, ), (s, 7) € AbL

Definition 2.7.2. Let X € I'(7'M); be an odd smooth vector field on a supermanifold
M, f + M — M asmooth map and 1, € ALl a body point. A smooth map
¢X : I xU — V,withU,V c Mopenandt € I C AVl an open (connected)
super interval, is called a local flow of X around £, with initial condition /', if ¢X satisfies

(D®1)o (¢X)* =Xo ¢X (2.215)

as well as ¢{iﬂ 0) = ¢X (%,0, -) = f on U, where D denotes the right-invariant vector
field D := dy + 60, on AV If, in particular, 7 = A and U =V = M, ;zSX is called
a global flow.

Proposition 2.7.3. Let X € I'(T' M)y be an odd smooth vector field on a supermanifold
Mand f : M — M a smooth map, then, for any body point t, € AYY X admits a
local flow ¢* around ty with initial condition f.

Proof. See for instance [78] for a proof in the pure algebraic setting using the concept
of functor of points. m]

Corollary 2.7.4. If $* is a local flow of an odd smooth vector field X, then

X X _ X
¢(r,5) °© ¢(x,;7) - ¢(t+:+(977,€+77) (2‘216)

whenever both sides are defined.

Proof. We give an algebraic proof of this proposition. To this end, consider the smooth

maps
Dy: (1,0,5,9,p) > (t+5+09,0+7, ¢f§+;+9%5+7) (») (2.217)
(6,857, p) > (4 5+ 07,85 ) (B (D)) (2218)
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defined on some open subsets of A% X A X M. It then follows that both maps satisfy
(D1)o®;=Po(DR1+1®X), Vi=1,2 (2.219)

For instance, since @; = (id X ¢) o (d x id) o (u X id), with d the diagonal map on
AL it follows from the right-invariance of D aswellas Do d* = d* o (D@ 1+1 8 D)

(D) odi=(Del)o(el)o(d ®l)o(les™
=(FeDel)o(d ®l)o(1®¢")
=(elo(del)o(DI+1eD)o(1e¢")
=(@el)o(d®l)o (D™ +1 (¢ * 0 X))
=Qio(DR1+11X) (2.220)

and similarly for @;. Hence, ®@; for 7 = 1, 2 both define local flows of the odd vector
field D ® 1 + 1 ® X with the initial condition ®;(0,0, -) = (id X ¢X) o (d xid).
By uniqueness, it thus follows that they have to coincide on the intersection of their
domains. O

Definition 2.7.5. Let P 5 Mbea principal super fiber bundle and 5 C TP a
principal connection on P. Let 7 C A"! be a super intervaland ¥ : 7 — Mbea
smooth map also called a path on M. Then, a smooth path 7h‘"’ : AP DT - Pon
P is called a horizontal lift of y, if 7 o }/1””’ = y and (;/h”’)*l) - (7/}”"”)*%.

The following theorem provides the existence of horizontal lifts of paths defined on
supermanifolds. Since, the zero element 0 € 1 of a super interval defines a body point
and paths are supposed to be smooth, it is important to note that the initial values of
both the path and its horizontal lift need to be body points, as well. Moreover, as will
be proven below, in order to obtain a nontrivial parallel transport map, one necessarily
needs to consider smooth paths depending on both even and odd parameters. However,
as will be discussed in the subsequent Section 2.7.2, this can be remedied considering
instead relative supermanifolds.

Theorem 2.7.6. Let A € QY (P, 8)o be a super connection 1-form on a principal super

Jfiber bundle G — P 5 Mover M defining a principal connection 7 C TP on P.

Then, for any smooth path y : Ab! 2 61_% [0,1]) — M on the supermanifold M and
any body point p € B(P), there exists a unique horizontal lift }/]1,”” : 61_1 ([0,1]) - P
of y such that y[éor(o) = p.
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If, in particular, the path is bosonic, i, y : No 2 €1 ([0, 1]) — M the horizonzal lift

hor

75 ei(l) [0,1]) — P of y is given by
}/]lf”r = S(B(;/)f,‘”) (2.221)

where B(;/)f,‘” is the (unique) horizontal lift of B(y) through p € P := B(P) to the
ordinary principal bundle P where the principal connection H C T P on P is induced by
the ordinary connection 1-form A := B(A) € Q' (P, go).

Proof. Using a gluing argument, it suffices to show that, for any local trivialization
neighborhood 771 (U) c P of P with U € Mopenandimy N U # 0, there exists
a horizontal lift 7/1”” : T — PofywithZ = y7(U). Hence, in the following,
let us assume that y is contained within a local trivialization neighborhood of P, i.e.,
there is a local section s : U — P of P such thatimy C U. Let I = el_} [0,1]) and
9 := s o y. A horizontal lift then has to be of the form ;/17”’ = ® o (d X g) for some
smooth function g : y— G defined on some open subset IcI. By Prop. 2.7.1, this
yields

DY (£,6) = D 52,6),4(,6) P(D9, Dg) = Py (1,6)(DI) + Omc(D ) yor 1 5)

(2.222)
Hence, ;/b % defines a horizontal lift of y if and only if
0= (Dy""(£,8)|A) = Ady(, 51 (DI|A) + (D gluc)
= Lg(t’g)—l*(Rg([,g)* (DAY +Dyg) (2.223)

But, since the pushforward of the left translation is an isomorphism of tangent modules,
this equivalent to

Dg(t,8) = ~Ry10). (D31, O)|A) = ~R (1,00 A7 (2, 6) (2.224)

whereweset A7 (¢, 0) = (DI(t, 0)|A) = (Dy(z,0)|s"A). Hence, the claim follows
if we can show that (2.22.4) admits a smooth solution on all of 7, i.e., I = 1. To see this,
let us define the vector field

Z:IxG—->TIxG) =ANxTG
(5,7, 8) 7 (9,1, =D, q) g (A7 (5, %), 04)) (2.225)
Since A and the zero section 0 : G — T'G, g > 0, are both of class /', it follows
that Z defines a smooth section of the tangent bundle of the supermanifold 7 X G. In

particular, as A is even and D is odd, A? (¢, &) defines an odd derivation V(¢, §) € I
and therefore Z is an odd vector field. Hence, by Prop. (2.7.3), there exists a smooth
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function F : Ab! D el_i([’) — AMx G, (¢,0) — (b(z,0), g(¢,0)), with smooth
functions » and ¢ defined on some interval el_i (1) with = [0,97),0 < 9’ < 1, such

that
DF(s, g) = ZF(t,ﬁ) (2.226)

with the initial condition F(0,0) = (0,0, ¢). Since b : (£, 8) — h(t,8) € A hasto
be of the form b (z, 8) = (a(¢), 8b(¢)) with smooth functions , & : el_(l)(j) — Ay, it
follows that Dh(¢, 6) = (6d;a(t), b(t)). Hence, by definition of the vector field Z,
the differential equation (2.226) yields & = 1 and d;2 = & = 1 such that, by the initial
condition, it follows »(z, 8) = (¢, 8). Thus, (2.226) becomes

Z)F(t> 5) = (6) 1, Z)g(t’ 5)) = (5: 1, _D(t,ﬁ,g(t,ﬁ)){ug(ﬂy(t’ 5)’ Og(t,ﬂ)))
(2.227)
Thatis, g : €] }([’ ) — G defines a smooth solution of (2.224) with initial condition

2(0,0) =e.

It remains to show that g can be extended toall of 7. To this end, since 7 X {¢} C T XG
is compact, there exists finitely many open subsets U; € 7 and V; C G,i =1,...,n,
such that U7, U; = T ande € V; Vi = 1,...,n, as well as smooth maps ¢lZ :
€1((=95,9)) x Uy xV; > I xG,0< 9, <1Vi=1,...,n,such that ¢ZZ defines
a local flow of Z. If we set & = min{d’, 0;};=1,.., > Oand V" := N7, V; 3 ¢, we
may glue the ¢ZZ to get a local flow ¢Z : 61_)}((—5‘, ) x I xV — I x@G. Hence,
let us choose #; € [0,1],7 =0,...,m,suchthat0 =: ) < # < ... <, :=1land
|t; —tis1| < dVi=1,...,m.SetI; := el_j([t,-,ti_l]) fori=1,...,m.

By assumption, we know that g is well-defined on 7;. Hence, let us next consider the
path G : I, — I X G defined as G (s, 9) = ¢(ZS’5) (1,0, €) which is well-defined by
definition of 7. Similarly as above, it follows that G has to be of the form G (s, ) = (s+
11, 0, b(s, 0)) with Db(s, 0) = =Ry, 6). AY (s + 11, 0). If we then define G’ (s, 9) ==
(s+1,0,6(5,0) - g(21,0)) on Iy, it follows (note that G” is smooth as g(#1,0) is a
body point)

Z)G,(Sa 5) = (65 1, Rg(tl,O)*Db(-fJ 5)) = (93 1, _Rg(tl,O)*Rb(J,ﬁ)*ﬂy(J + 14, 5))
= (0,1, =Ry(5,6)-g(61,0+ A7 (s + 11, 0)) = Z1(5.6) (2.228)

Thatis, G’ defines an integral curve of Z through G’(0,0) = (1,0, g(#,0)). Thus,
let us define the smooth path § : ; UL, — G via

g(z,9), if (¢,0) € I

(2.229)
b(t—1,0) - g(t1,0), if(z,0) € L

#(t,6) = {
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It then follows that ¢ is smooth and defines a solution of (2.224). We have thus found
an extension of g to J; U Z,. Hence, by induction, it follows that ¢ can be extended to
allof 7.

To prove the last claim note that, by pulling back A to the bosonic sub supermanifold
Py = SoB(P), A only takes values in the even super Lie sub module A®g, = Lie(Gy).
Hence, on Py, A can be reduced to a super connection 1-form on the principal super
fiber bundle Gy — Pol m, — Mo. The claim now follows immediately. m]

2.7.2. Parallel transport map revisited

As we have seen in the last section, in the ordinary theory of principal super fiber bundles,
in order to obtain a nontrivial parallel transport map, one necessarily has to consider
smooth paths depending on both even and odd parameters. Bug, still, due to smoothness,
the endpoints at which the parallel transport map is constructed have to be points on
the body of a supermanifold. Hence, it is important to emphasize that, in the ordinary
category of supermanifolds, one cannot use the parallel transport map to compare points

on different fibers of a super fiber bundle!

As we will see in what follows, a resolution is given considering instead super connections
forms on parametrized super fiber bundles. At the same time, this also allows us to
include (anticommutative) fermionic degrees of freedom on the body of a supermanifold
which is of utmostimportance in context of the geometric approach to supergravity to be
discussed in Chapter 3. In this framework, it moreover suffices to consider (parametrized)
paths depending solely on an even time parameter. The generalization to both even and
odd parameters can be obtained along the lines of the previous section.

Definition 2.7.7. Let M, s be a S-relative supermanifold. A (smooth) path y on M, s
isasmoothmap y : SxI — M;swithZ C A asuperinterval which will mostly be
assumed to be of the form 7 = ¢ §([0,1]). Let £, g : S — M be smooth functions.
Asmoothpathy : f — ¢ between f and gisasmooth path y : S X T — M;son
M, s such that yy := ¥(+,0) = fand 31 == (-, 1) = g.

Definition 2.7.8. Let G — P/ EM /s be a S-relative principal super fiber bundle
andy : S X I — Mg asmooth path. Given a super connection 1-form A on P, s,
a smooth path ;/h 7 8X I — P onPsis called a horizontal lift of y w.r.t. A if
7oy’ = yand (1 ® d)ag!(y"")(5,£)|A) = 0V(s5,2) € Sx T.

Proposition 2.7.9. Let A € QNP s, 8)o be a super connection 1-form on the S-relative

principal super fiber bundle G — P s M jsaswellasy : S X T — M asmooth
path. Let furthermore [ : S — P be a smooth map. Then, there exists a unique
borizontal lift "« S x I — M of y wrt. A such that " (-,0) = f.
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Proof. The proof of this proposition is similar as in Theorem 2.7.6. Let us therefore only
sketch the most important steps. Again, it suffices to assume that y is contained within
alocal trivialization neighborhood of #; s, i.c., there exists an open subset U € M and
asmooth morphism §: Uys := M, s|sxv — P;s of S-relative supermanifolds such
that 7g o5 =idygandimy C 7z'§1 (S xU). Furthermore, w.l.o.g., we can assume that
5(+,y(-,0)) = f. In fact, suppose this would not be the case. Then, since the super
Lie group G acts transitively on each fiber of the underlying principal super fiber bundle
P, there exists a unique map g’ : SXU — G with@s(5(-, ¥(-,0)), ¢’) = f. Since
5(-,y(-,0)), f as well as the inverse operation in the super Lie group G are of class
H*®, it follows immediately that ¢’ is also smooth. Hence, replacing § by @5 (5, g’) the
map thus obtained will have the required properties.

Setd :=J5o (idxy): I)s = P;s. Itfollows that a horizontal lift has to be of the form

7}“” = O go(dxg) forsome smooth function g : S xI — G defined on some open

subset 7 C T. Using Prop. 2.7.1, one finds that ((1 ® 6[)agl(ybor)(:, t)A) =0if
and only if

(L ®0)g(s,2) = =Ry(s (L ® )0 (5, )| A) = —=R(6,0)+ A (5,2)  (2230)

where A7 (5,2) :== (1 ® ;)0 (s, 2)|A) = (1 ® &t)a;(;/)(J, 1)|5* A) with the ini-
tial condition g( -, 0) = e. Hence, the claim follows if one can show that (2.230) admits
a smooth solution with 7 = I . Therefore, consider the even smooth vector field

Z:(SXxI)xG—->T(SxI)XxTG
(-Yla t/9 g) = (OI’J 17 _D(E,g){ug(ﬂ?/(j,x t/)’ Og)) (2"2'31)

It follows that there exists a smooth local solution £ : U’ — (SXI)XG, U’ ¢ SXTI
open, of the equation
0 F(5,t) = ZF(sy) (2.232)

with the initial condition F(-,0) = (-,0,¢). Moreover, F has to be of the form
F(s,t) = (s,t, g(5,¢)) for some smooth function ¢ : U" — G suchthat g(-,0) =¢

and

0 F(5,8) = (05,1, (1 ®9) g(5,2)) = (05, 1, =Dy, g g (A7 (5,2),00))  (2:233)

that is, g is a solution of (2.230) proving that a local smooth solution indeed exists.
Remains to show that ¢ can be extended to all of S X 1.

Therefore, one can proceed as in the proof of Theorem 2.7.6. In fact, restricting on
compact subsets and gluing local solutions together, it follows that, for any 5y € S, there
exists an open neighborhood 5y € V' C S aswell asa smoothmap g, : V' XTI — G
such that V" is contained in a compact subset and g, is a solution of (2.230) with
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2(+,0) = e. Thus, by uniqueness of solutions of differential equations, these maps can

be glued together yielding a global solution g : S X I — G of (2.230). O

Remark 2.7.10. Forasmoothmap f : & — M, one can consider the pullback super
fiber bundle

FfP=AGpIf()=z(p)} cSxP (2.234)

over S. A smooth section 95 : S — f *P of the pullback bundle is then of the form
B(5) = (5, 4(5)) Vs € Swith ¢ : S — P asmooth map satisfying 7 o ¢ = . Hence,
we can identify

I(f"P)={¢: S>Plrop=f} (2.235)

Definition 2.7.11. Under the conditions of Prop. 2.7.9, the parallel transport map in
P s along y w.r.t. the connection A is defined as

yﬁy : Ty P) » T(P) (2.236)
g 727 (-0
where, forI'(yyP) 2 ¢: S — P, 7; " is the unique horizontal lift of  with respect
to A such that yf”( +,0) =¢.

Given a change of parametrization 1 : S — &', this induces the pullback 1* :
H®(8') = H*(S), f = A*f = o 1 on the respective function sheaves. Since the
super (S x M)-module X(M,s) of smooth vector fields on M; s is isomorphic
to H(S) ® X(M), this yields the morphism

A=1"01: ¥X(M)s) = X(M)s) (2.237)
FfoXH-AUfeoX

Moreover, from Q' (M,s) = Q'(M) ® H®(S) we obtain the morphism

AT=1A": Ql(M/S,) - Ql(M/S) (2.238)
w®f > wAf

By definition, it then follows

A XA A) = 1 (X[|A) (2.239)
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In fact, since (2.239) is a local property, let us choose a local coordinate neighborhood
such that X and @ can be locally expanded in the form X = /' ® X; andw = w; ® g/
with X; and @ ; smooth vector fields and 1-forms on M, respectively. We then compute

A XV A) = (l*f" ® Xl~|a)j ® l*gj) = l*f" <Xi|a)j) l*gj
=V {f" ® X;|lw; ® ¢/) = 2" (X|A) (2.240)
The following proposition summarizes some important properties of the parallel trans-
port map such as the functoriality under composition of paths as well as covariance

under change of parametrization demonstrating the independence of the choice of a
particular parametrizing supermanifold.

Proposition 2.7.x2. The parallel tansport map enjoys the following properties:

(i) & g‘ is functorial under compositions of paths, that is, for smooth paths y : S X
I > Mandd: SxI — Mon M;s, one has

A _ A A
‘@s,yoa = L@S)y o 93’9 (2.241)

(iz) 3”?7 is covariant under change of parametrization in the sense thatif A : S — S’
is a morphism of supermanifolds, then the diagram

2%

T(F*P) L~ T(g*P) (2.242)

Fl L o
PUA

T((f 0 2)*P) —LT((g 0 2)*P)

is commutative for any smooth pathy : [ — gon Mg

Proof. The functoriality property of the parallel transport map under the composition
of paths is an immediate consequence of Eq. (2.230) or (2.232) and the uniqueness of
solutions of differential equations once fixing the inital conditions. In fact, this implies
(703)1907 — yhoroghor
change of parametrization, notice that for a supermanifold morphism A : & — §’,
one has (1 ® ﬁ[)l*;/}”” =1 (3t)7/b’”’) so that, by Definition (2.159), it follows

yielding (2.241) by Definition (2.236). To prove covariance under

(1® d)ag (2 ") = 2((1 @ d)ag (")) (2.243)
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and thus

(1® 0)ag A y"") A = (A (1 ® d) gl ()11 A)
=(1a at)“gfl(?’hw)|ﬂ> =0 (2.244)

according to (2.239). Since l*ygo’( ,0)=¢ol=A"¢and 7o 2*7/;’” = A%y, by

uniqueness, this yields l*yg”” = (l*}/)ﬁ’f ;

and therefore

L@é’?y(l*gg) = (l*y)ljo;( 1) = ),*%aor( 1) = 2*(@57(95)) (2.2453)
V¢ € I'(f*P) proving the commutativity of the diagram (2.242). O

Definition 2.7.13. A global gauge transformation [ on the S-relative principal super
fiber bundle G — P;s — Mg is a morphism f : P;s — P;s of S-relative
supermanifolds which is fiber-preserving and G-equivariant, ie., 7g o f = 7g and
fo®s = Dg o (f xid). The set of global gauge transformations on $;s will be
denoted by 4 (P s).

Proposition 2.7.14. There exists a bijective correspondence between the set G (Ps) of
global gange transformations on the S-relative principal super fiber bundle G — P;s —
M, s and the set

H®(SxP,6)% :={7: SXP - GlcoDg=za,100} (2.246)
via
H®(SXP,G)9 30+ DPgo(idxa)odsp € 9(Ps) (2.247)

In particular, global gauge transformations are super diffeomorphisms on Ps and
G(P)s) forms an abstract group under composition of smooth maps.

Proof. The proof of this proposition is almost the same as in the classical theory. Hence,
let us only show that the map oy € H*(S X P, G)Y corresponding to a global gauge
transformation /' € ¢(P)s) such that f (s, p) = (5, p) - 77 (s, p) V(s5, p) € SX P
is indeed of class /. To this end, choose a local trivialization (U, ¢y) of P and set
gEU =idX ¢y : 7[51 (SxU) — (SxU)xG. Onthelocal trivialization neighborhood,
f is then of the form

Fuof o8 (5,2, 0) = (5,%),7(5,%, £) (2248)
for some smooth function & : (S X U) X G — G. Hence,

9 ° ¢ ((5,%), 8) = pa(g ™", o (s, %, ¢)) (2.249)
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on (S X U) X G proving that o is smooth. That global gauge transformations are
diffeomorphisms and ¢ (P, s) forms an abstract group now follows immediately from
the respective properties of H* (S X P, G)9. O

Proposition 2.7.15. Let A € QN (P)s,8)0 be a S-relative super connection 1-form and
f € 9(P)s) aglobal gauge transformation on the S-relative principal super fiber bundle

G — P/S g M/S- Then,
(i) f*A € QUP)s,8)o is a connection 1-form and, in particular,

[fA= Adg.];l oA+ J}ﬁ‘é’MC (2.250)

(11) the diagram
73,
I'(g*"P) —=T(h*P)

I(¢'P) —>T(h*P)
is commutative for any smooth pathy = g — hon M;s.
Proof. First, let us show that f*A is a S-relative connection 1-form on P s. To this end,

since /' is G-equivariant, it follows that fundamental vector fields X on P s associated
to X € g satisfy

ﬁfz]l@qu)fSOf*:]léon]‘*@]lo(Ds
=ffol®@Xods=f"0X (2.251)

which yields _ _ _
(FIf*A) = (| A () = (FNAY = X (2252)

VX € g. Moreover,
(@)} (") = (f 0 Ds)' A= f*(@9);A) = Adg1 0 f' A (225)

This proves that f*A € QY(P)s,8)o indeed defines a connection 1-form on ;.
Next, applying Prop. 2.7.1, we find
f:(Xp) = Dp(Ps o (id X 7)) (Xp, Xp) = D(p,o(p)) @5 (Xps Dpoy (X))
= (D)o () (Xp) + [Omc(Dpor(Xp))]™
(2254)
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VX, € T,(Ps), p € Ps,and thus

I Ap) = (Dof (Xp)|Ar () = (D) (Xp)A) + (D (X)|6ric)
= Ady, (1 (X1 Ap) + (X, 17 Buic) (2259)

which yields (2.250). To prove the last assertion, let 7;‘;’ : S X P — P forany
¢ € I'(¢*P) be the unique horizontal lift of the smooth path y : ¢ — hwrt A

through as(f o a;l(gé)) e I'(g"P). Set

7o =as(f o agl(;/}f";’)) SXP 5P (2.256)

Then, 74 is a smooth path on #/s with 74( -, 0) = ¢ and

(T d)plf Ay =1 3r)a31(7£;’)|ﬂ> =0 (2.257)

so that V2 coincides with the unique horizontal lift of y w.r.t. f*A through ¢. ]

Example 2.7.16. We want to give an explicit local expression of the parallel transport
map as derived above making it more accessible for concrete applications in the context
of quantum supergravity to be discussed in Chapter s and 6. To this end, let us assume
that G is a super matrix Lie group, i.e., an embedded super Lie subgroup of the general
linear supergroup GL(V) on a super A-vector space V (Def. 2.3.15). In this case,
the pushforward R g of the right translation for any ¢ € G then just coincides with
the right multiplication by the super matrix g. Hence,let y : S X1 — Mbea
smooth path which is contained within a local trivialization neighborhood of ;s and
5: Us = M;s|lsxu — Ps the corresponding smooth section. Then, Eq. (2.230) in
the proof of Prop. 2.7.9 reads

(]l ® al‘)g(-ﬁ t) = _ﬂ}/(-f: t) ' g(jy t) (2'258)

with A7 (s5,¢) = (1 ® 5;)&4;,1 (») (s, 1)|5* A). Furthermore, suppose that U defines a
local coordinate neighborhood of M. The 1-form §*A on S X U can then be expanded
in the form

FA = dx”ﬂ}(j) +do* Al (2.259)

with smooth even and odd functions A f(j) and A ,E;) on S X U, respectively. This yields

AT (s,1) = A (5,0) + 6* AT (5,1) (2.260)
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Hence, the solution of Eq. (2.258) with the initial condition g( -, 0) = 1 takes the form
t - . -
g(s,2) = Pexp (— / de’ J&f‘ﬂ;f) (5,¢") +62A7 (5, 1) (2.261)
0

where P exp(. . .) denotes the usual path-ordered exponential. This is the most gen-
eral local expression of the parallel transport map corresponding to a S-relative super
connection 1-form. This form is used for instance in [118] in the discussion about the
relation between super twistor theory and N = 4 super Yang-Mills theory (see also [79]).
Note thatin case S = {*} is a single point, the odd coefficients in (2.261) become zero so
that this expression just reduces to the parallel transport map of an ordinary connection
1-form on a principal fiber bundle in accordance with Theorem 2.7.6.

By definition, g[A] := g(-,1) defines a smooth map g[A] : & — G from the
parametrizing supermanifold S to the gauge group G. As explained in detail in Section
2.2 (see also Section 2.6), there exists an equivalence of categories A : Mang~ —
Many, between the category Man gy~ of H* supermanifolds and the category Man Alg
of algebro-geometric supermanifolds. Using this equivalence, it thus follows

H™(S,G) = Homsman,, (A(S), A(G)) (2.262)

Hence, g[A] can be identified with a A(S)-point of A(G). This coincides with the
results of [78] and [79] where the parallel transport induced by covariant derivatives on
super vector bundles in the pure algebraic setting has been considered. It was found that
the parallel transport map has the interpretation in terms of 7 -points of a general linear
supergroup.

Example 2.7.x7. Finally, let us restrict to a subclass of smooth paths on M s obtained
via the lift of smooth paths  : 7 — M on the bosonic sub supermanifold® Mg of M
defined as the split supermanifold M, := S(B(M)). A S-relative connection 1-form
A € Q1 (P}s,9) induces via pullback along the inclusion : : S X My — Sx MaS-
relative super connection 1-form ¢*A on the pullback bundle G — *P;s — (Mo),s.
Let

A= pry, © A+ pry, © FA=w+y (2.263)

be the decomposition of ¢*A according to the even and odd part of the super Lie algebra
g = 8o®g;. Sincew € Q' (1*P/s,80)0 = Q' (P My 80)0® HX(8)y, it follows that
can be reduced to a S-relative super connection 1-form on the S-relative principal super
fiber bundle Gy — (Po);s — (My),s which will be denoted by the same symbol.
Hence, w gives rise to a parallel transport map (@37 along as(idx y) : SxI — M,.

9 1In [97,109] this is also called the G-extension of B(/M) as this can be viewed as a generalization of the
ordinary G-extension of smooth functions (Eq. (C.2))
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2. Supergeometry

Suppose that y is contained within a local tirvialization neighborhood of P and let
§: Us — (Po);s be the corresponding local section with U € M, open. Let
g[A] : 8§ X I — G be the solution of the parallel transport equation (2.230) of A

();g[ﬂ] (s,0) = —Rg[y{](J)t)*ﬂ7(5, t) (2.264)
with the initial condition g( -, 0) = ¢, where
A" =1 @ oy|5FAY=(1 @ dylFw)y + (1 Q@ g y|5°y) = & +¢7  (2.265)

Furthermore, let g[w] : S X T — G be the solution of the corresponding paral-
lel transport equation of w. Set g[y] = glw]™ - g[A] : Sx I — G. Using
()t(g[w]_l) = _Lg[w]—l* Rg[w]—l* (@g[w]) = Lg[w]fuaﬂ’, it then follows

3&?[%] = Dﬂg(()r(g[w]_l), atg[ﬂ]) = Rg[ﬂ]*Lg[a)]‘l*(’ﬂ/ - Lg[w]‘l*Rg[?{]*ﬂy
= —RapLgrop+¥” = =Rgpyls Refole L g ¢
= =Rygiy)eAdgo1 (¥7) (2.266)

thatis, g[¢] is the solution of the equation

0 g[¥] = —Rgy1eAdgu)1 (¥7) (2.267)
For a super matrix Lie group G, the solution of (2.267) can be explicitly written as
gl¥](s,t) = Pexp (— /Ot dz (Ad, )1 ¥7) (s, 7)) (2.268)
such that
g[Al(s,t) = glw] (5, 2) - Pexp (— /Ot dz (Ady (.- ¥7) (s, 7)) (2.269)

As a consequence, if y is closed loop on My, in this gauge, the super Wilson loop takes
the form

W, [A] = str (gy[a)] - Pexp :S—> G (2.270)

- jf Ady oy
7

where ;k(f) := §¢. It follows from Prop. 2.7.15 that I, [A] is invariant under local
gauge transformations. In fact, g, [A] transforms as

GLAI) = () - gy [Al(s) - g(9)7!, Vs €S (2.271)
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2.7. Parallel transport map

for some smooth function ¢ : S — G. Hence, due to cyclicity of the supertrace,
(2.270) is indeed invariant. Finally, by Prop. 2.7.12 (ii) the super Wilson loop is also
invariant under change of parametrizations. That s, if 1:8 - Sisa supermanifold
morphism, then

VW, [A] =W, [V A] S —->gG (2.272)

Thus, due these properties, 17, [ A] can be regarded as a fundamental physical quantity
according to [73].

As explained in Example 2.7.16, the parallel transport map corresponding to super
connection 1-forms on relative principal super fiber bundles shares many properties
with the parallel transport map as studied in the pure algebraic setting in [78,79] in the
context of covariant derivatives on super vector bundles. To make this link even more
precise, let us start with an equivalent characterization of horizontal forms in terms of
forms with values in the associated bundle.

Proposition 2.7.18. Let G — Ps BEMm /S be a S-relative principal super fiber
bundle and p : G — GL(V) be a representation of G on a super A-vector space V.
Then, there exists an isomorphism between Qfm (Prs>V) (G:P) and QF M;s,8E)8) =
QF(M 18) ® &5, i.e., k-forms on M s with values in the associated S-relative super
vector bundle &5 := (P X, V)s.

Proof. For k = 0, this is straightforward generalization of Corollary 2.4.23. For gen-
eral £ € N, suppose w is a horizontal £-form on P, s of type (G, p). Choose a local
trivialization s : Ujs — P;s with U C M open. On U} s, we then define a k-form
w € Qk(M/S, &/s) as follows

X, .o Xlw) = [, (X, -, Kpls" )] (2.273)

for any smooth vector fields X; on M;s, 7 = 1,...,k. By horizontality and G-
equivariance of , it is then immediate to see that @ is indeed well-defined and indepen-
dent of the choice of a local section. The inverse direction follows similarly. |

Definition 2.7.19. Under the assumptions of Prop. 2.7.18, on Q(M,s,E/s), the
exterior covariant derivative d 7 : QF (M /8,68) — QF (M 18>68) induced by
A is defined via

daw:= DAy (2.274)

forany w € QIZW(P/& V) (G:P) For k = 0, we also write d g = VU,
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2. Supergeometry

Definition 2.7.20. Under the assumptions of Prop. 2.7.18,let /' : & — M bea
smooth map. As in Remark 2.7.10, for the pullback bundle /&, we have

I(f°8)={¢: S—>8E|lmgop=f} (2.275)

By definition, any ¢ € I'(f*E) is of the form ¢ = [y, v] with ¢g € I'(f*P). Hence,
lety : S X I — M beasmooth path on M/ s. The connection 1-form A on ;s
then induces a parallel transport map L@gyﬂ on &/ along y via

P T(58) = T(G1E), ¢ = [po,0] = [P (80), 0] (2.276)
with @? the parallel transport map induced by (A as defined via Def. 2.7.11.

The following proposition, together with Prop. 2.5.23 giving an explicit form of the
exterior covariant derivative on horizontal forms, provides a link between the parallel
transport on associated S-relative super vector bundles and the parallel transport on
algebraic super vector bundles as constructed in [78,79].

Proposition 2.7.21. Under the assumptions of Prop. 2.7.18, let A € Q! (Ps,8)0 bea
super connection 1-form on the S-relative principal super fiber bundle G — Prs — M,s

and @g’ﬂ the induced parallel transport map on the associated S-relative super vector
bundle. Let furthermorey : S X I — M be a smooth path on M ;s ande € I'(E,s) a

smooth section which is covariantly constant along y w.r.t. A, i.c,
(18 2)719Pe) =0 (2.277)

V(s,t) € S X I with y := ag' (y). Then, the pullback of ¢ along the path y is given by
e = [;/gf””, v] with [¢,v] =: ¢ 0 P(-,0) € I'(y;E) and 7;7"” is the unique horizontal
lift through ¢. In particular,

e = ﬁgf{(ﬁe) (2.278)

Proof. By locality, it suffices to assume that the claim holds on a local trivilization neigh-
borhood. Hence, w.l.o.g. suppose that y is contained within a local trivialization neigh-
borhood of #;s induced by a local section § : Ujs — P;s. With respect to this
trivialization, the section ¢ is then of the form e = [§,v] withv : S XU — Va
smooth map. Using (2.273), it then immediately follows by definition of the covariant
derivative that

(18 9)7IVPe) = [3,(1.® 0)d + pu(A7)0)] (2.279)
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where A” == (1 ® 9,)P|5A),d =50y : I)s = P/sand & = v o y such that
(-, 0) = vy. Hence, ¢ is covariantly constant along  iff

(1® )0+ pu(AY)D =0 (2.280)

On the other hand, consider the smooth path é(s, £) = [7/;’”” (s5,8),00] V(s,8) € SXTI.
By the proof of Prop. 2.7.9, w.r.t. to the chosen local trivialization, the horizontal lift
takes the form y; = @ 5(d, g) with ¢ : 8§ x I — G asmooth map satisfying

(1®d)g(s,t) = —Rg(j,t)*.?w(s, t) (2.281)

together with the initial condition g(+,0) = ¢. Hence, this yields ¢ = [D5(9, g), vo] =
[0,0] withd := p(g)ve : S x I — V. Taking the partial time derivative of 9, this
then yields, together with po R, = R,(5) 0 pVg € G,

(1 ®0,)i(s5,2) = Dy(sr) p((L ® 0) g(5,£))v9 = =D (p 0 Ry (5,0)) (AT g
= _Rp(g(x,t))*(/o*(ﬂy))vo = _P*(ﬂy)P(g(-f: t))UO
= —p.(AY)0(s, ) (2.282)

where, in the second line, we used that the pushforward of the right translation on
GL(V) can be identified with the ordinary right group multiplication. Since, #(-,0) =
vy it thus follows from the uniqueness of solutions of differential equations once fixing
the initial conditions that & = # on S X 7. This proves the proposition. O

2.8. Discussion

In this chapter, we have studied the theory of super fiber bundles, in particular, principal
super fiber bundles and super connection forms defined on them. We studied these
objects mainly in the Rogers-DeWitt category extending the seminal work of Tuynman
[97] to relative supermanifolds defining objects in enriched categories. To this end, at the
beginning, we discussed some important aspects of supermanifold theory and established
a concrete link between various different approaches to this subject via the functor of
points prescription. We also used this technique in order to provide a link to the theory
of principal super fiber bundles and super connection forms in the algebro-geometric
approach [102] and showed that both approaches are in fact equivalent.

We then studied the parallel transport map induced by super connection 1-forms. A
generic issue in both the algebro-geometric and concrete approach is the lack of (anti-
commutative) fermionic degrees of freedom on the body of a supermanifold. From a
mathematical point of view, this implies that the parallel transport map cannot be used
to compare points on different fibers of the bundle in contrast to the classical theory. A
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2. Supergeometry

resolution is given by considering relative supermanifolds as studied, e.g., in [74,101] and
which is rooted in the Molotkov-Sachse approach to supermanifold theory [98-100]. In
this chapter, a rigorous mathematical account on this subject was given. In particular,
we defined and analyzed super connection 1-forms on relative principal super fiber
bundles. Finally, the parallel transport map was constructed in this enriched category. It
follows that the parallel transport map indeed has the right properties as it provides an
isomorphism between the fibers of the underlying relative principal super fiber bundle.
Moreover, it behaves functorially under composition of (parametrized) paths and, in
particular, transforms covariantly under change of parametrization.

Finally, the induced parallel transport map on associated super vector bundles was
considered. In this context, among other things, we established a link to similar con-
structions in the algebraic approach [78,79] studying the parallel transport map induced
by covariant derivatives on super vector bundles.

We will use these results in the following chapters. On the one hand, in Chapter 3, a
mathematically rigorous approach towards geometric supergravity will be established.
In this context, we will work in the category of relative supermanifolds. Again, this
turns out to be mandatory in order to resolve the fermionic degrees of freedom of the
theory. On the other hand, we will need the parallel transport map in Chapter s as well as
Chapter 6 in a symmetry reduced setting in order to construct the graded holonomy-flux
algebra of chiral supergravity. To this end, in Example 2.7.17, for a particular choice of a
gauge, we derived an explicit expression of the parallel transport map in which bosonic
and fermionic degrees of freedom are separated as far as possible.

There are many possible and interesting extensions of the present formalism. For
instance, it would be desirable to generalize it to include higher gauge theories which typ-
ically arise in context of higher dimensional supergravity theories. To this end, one needs
to generalize the theory of higher principal super fiber bundles and super connection
forms defined on them as studied for instance in [119,120] to the relative category. Finally,
there is quite some recent interest in the description of boundary charges [121-124]. This
has been addressed for instance in context of AdS supergravity in [125]. There, among
other things, it was found that a consistent treatment of (supersymmetric) boundary
charges may be possible in the context of the geometric approach to supergravity (see
Section 3.4). It would therefore be very interesting to generalize the Iyer-Wald’s Noether
charge formalism [126] to supergravity which, in particular, explicitly takes into account
the underlying supersymmetry of the theory. This may be achieved generalizing the
work of Prahbu [127] to field theories defined on principal super fiber bundles.
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3.  Supergravity and super Cartan geometry

3.. Introduction

Soon after the first discovery of supergravity in 1976 by Freedman, Ferrara and van
Nieuwenhuizen [128], Ne’eman and Regge studied a new geometric approach based on
the ideas of Cartan of a purely geometric interpretation of gravity [70]. In this theory,
now commonly known as Cartan geometry, gravity arises by considering the underlying
symmetry groups of flat Minkowski spacetime, i.e., a Klein geometry consisting of the
isometry group given by the Poincaré group and the Lorentz group as stabilizer subgroup
of a particular spacetime event. Gravity is then obtained by deforming this flat initial
data in a particular way by studying a certain kind of connection forms, called Cartan
connections, taking values in the Lie algebra of the isometry group of the flat model. This
Cartan geometric approach gives gravity a very clear geometric interpretation and even
allows the inclusion of matter fields via Kaluza-Klein reduction of higher dimensional
pure gravity theories leading for instance to Einstein-Yang-Mills theories. However, it still
has some limitations as, for instance, it does not include fermionic fields. This changes in
case of supersymmetry as graded Lie algebras, by definition, naturally include fermionic
generators. It was then realized extending Cartan geometry to the super category that
this in fact leads to supergravity. The fermion field, given by the superpartner of the
graviton field, then arises from the odd components of a super Cartan connection taking
values in the graded extension of the Poincaré algebra. Besides, this description also yields
a geometric interpretation of supersymmetry transformations in terms of infinitesimal
superdiffeomorphisms.

These ideas were studied more systematically and developed even further by Castellani-
D’Auria-Fré [71,72] to include extended and higher dimensional supergravity theories.
Moreover, generalizing the Maurer-Cartan equations to include higher p-form gauge
fields which naturally appear in higher dimensions, such as the supergravity C-field in
the unique maximal D = 11, N' = 1 supergravity theory, then lead to the concept of
free graded difterential algebras (FDA). These type of algebras then turned out to have a
rigorous geometric interpretation in higher category theory describing the higher gauge
fields as components of a higher Cartan connection [129,130].

In this chapter, we want to provide a mathematically rigorous approach towards geo-
metric supergravity introducing the notion of a super Cartan geometry. However, the
problem of modeling anticommuting classical fermion fields, which is crucial in the
context of supersymmetry, turns out to be by far non-straightforward. This seems to
be usually ignored in the physical literature. Again, motivated from algebraic geometry,
this problem has an intriguing resolution using the concept of enriched categories as
studied in detail in Chapter 2 and used for instance for the construction of the parallel
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3. Supergravity and super Cartan geometry

transport map. We will then see that pure D = 4, N' = 1 Poincaré supergravity arises
naturally in this framework. For an interesting approach which is different from the
present one, using the notion of zntegral forms see [131,132, 220].

Later, in Chapter s, these considerations will be extended, though with slightly less
mathematical rigor, to include pure N-extended (Holst-)AdS SUGRA in D = 4 for
N =1, 2 as well as a discussion about the appropriate description of boundary theories
compatible with SUSY. Moreover, we will use this geometric formulation in Section
5.4.1in context of chiral supergravity in order to give a geometric interpretation of the
super Asthekar connection in terms of a generalized super Cartan connection. This
provides a conceptual explanation for the observation of Fiilp [63]. As we will see, this
connection appears quite naturally when studying the chiral structure of the underlying
supersymmetry algebra corresponding to the super Klein geometry and is rooted in
the special properties of the (bosonic) self-dual variables and even survives in case of
extended supersymmetry.

The structure of this chapter is as follows: First, in Section 3.2, we will review the
geometrical interpretation of gravity in terms of a Cartan geometry. In Section 3.3 We
will then introduce the notion of a (metric reductive) super Cartan geometry in the
framework of enriched categories and discuss some of its properties such as their strong
relation to Yang-Mills gauge theories. This formulation will subsequently be used in
Section 3.4 in order to give a geometric interpretation of N' = 1, D = 4 Poincaré
supergravity.

As an interesting application, we will use this geometric approach in Section 3.5 to
discuss global symmetries in supergravity and to describe Killing spinors in terms of
odd Killing vector fields on super Riemannian manifolds induced by metric reductive
super Cartan geometries. These play a prominent role in context of supersymmetric
black holes. Finally, in Section 3.6, we will sketch a concrete link between the description
of anticommuting fermionic fields in context of enriched categories as well as in the
framework of pAQFT [76,77] demonstrating the strong relation between these two
approaches.

A list of important symbols as well as an overview of our choice of conventions concern-
ing indices, physical constants etc. can be found in the List of symbols, notations and
conventions.

3.2. Review: Gravity as Cartan geometry

In this section, mostly following [133], we want to review the interpretation of gravity in
terms of a Cartan geometry as this will serve a starting point for a very elegant approach
to supergravity as described in detail in Section 3.4 and a derivation of a super analog
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of Asthekar’s connection discussed in Section s.4. For a more detailed introduction to
Cartan geometry see, e.g., [134-136]. For more details on the relation between Cartan
geometry and general relativity we refer to [133] (see also [137] for a nice exposition).

In his famous Erlangen program, Klein studied the idea of classifying the geometry of
space via the underlying group of symmetries. For instance, one can consider Minkowski
spacetime (R'?, 77) and study the corresponding Lie group ISO(R"?) of isometries
which is isomorphic to the Poincaré group R*><SO™ (1, 3). If one then chooses a specific
spacetime event p € R’ one can consider the corresponding stabilizer subgroup
SO*(1,3) which preserves that point. Since the isometry group acts transitively on R,
it follows that Minkowski spacetime can be described in terms of the coset space

RY = ISO(RY)/SO*(1,3) (3.1)

Hence, the collection of spacetime events can equivalently be described in terms of
the underlying symmetry groups. A similar kind of reasoning applies in case of the
other maximally symmetric homogeneous spacetimes such as de Sitter of anti-de Sitter
spacetime (see Appendix E, Corollary E.8) playing a central role in general relativity and
cosmology. Hence, one makes the following definition (see also [133,134]):

Definition 3.2.1. A Klein geometry is a pair (G, H) consisting of a Lie Group G and
an embedded Lie subgroup A4 < G such that G/ H is connected.

Given a Klein geometry (G, H ), the coset space G/ H has the structure of principal
H-bundle
G—H

G/H

Moreover, on G, there exists a canonical g-valued 1-form given by the Maurer-Cartan
form fyc € Q(G, g) (cf. Example 2.4.13) which, choosing a basis of left-invariant
vector fields X; € g,7 = 1,...,dim g, is defined as

bvc =X; ® a)" (3.2)

where ' € Q!(G) is the corresponding dual basis of left-invariant one-forms on
G satisfying o’ (X /) =29 J‘ It follows by definition that the Maurer-Cartan form is
G-equivariant, i.e.'

R;&Mc = Adg—l o Omc (3:3)

' This can be seen directly using the equivalent definition in terms of the left-translation fyc (X, ) =

L1, Xy,
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Vg € Gwith R Ik G — G denoting the right translation on G. By definition, fypc
maps left-invariant vector fields to themselves, i.e., Opc(X) = X, VX € gand, asa
consequence, yields an isomorphism fpc : QG — g of vector spaces atany ¢ € G.
Moreover, it satisfies the Maurer-Cartan structure equation

1
dfmc + > [Omc A Omc] =0 (3.4)

As seen above, standard examples of Klein geometries (G, H ) arising in physics are given
by the Minkowski spacetime (ISO(R"?), SO*(1, 3)), de Sitter (SO(1, 4), SO*(1, 3))
or anti-de Sitter spacetime (SO(2, 3), SO*(1, 3)), respectively. These have in common
that the Lie algebra g of G can be split into Ad(/)-invariant subspaces g =) @ g/h
with b the Lie algebra of /4. Moreover, on the moduli space g/§) there exists a canonical
Ad(H )-invariant bilinear form. In this case, the Klein geometry is called metric and
reductive [133]. Hence, we see that flat spacetime can equivalently be described in terms
of a Klein geometry. Based on this observation, Cartan formulated a theory now known
as Cartan geometry which can be interpreted as a deformed Klein geometry such as
gravity is a deformed version of flat Minkowski spacetime (see also [133,134]):

Definition 3.2.2. A metric reductive Cartan geometry (w : P — M, A; ) modeled
on a metric reductive Klein geometry (H, G; #) is a principal fiber bundle H — P —
M with structure group H together with a g-valued 1-form 4 € Q'(P, ) on P called
Cartan connection such that

(i) 4p(Xp)=XVX eh=T.H,pe P
(ii) @, 4=Ady-10AVhe H
(iii) themap 4, : T, P — g defines an isomorphism of vector spaces for any p € P

where the last condition is also called the Cartan condition.

Given a metric reductive Cartan geometry (7 : P — M, A;7), one can split the
Cartan connection 4 by projecting it according to the decomposition g = § @ g/ of
the Lie algebra of G yielding

A:prg/boA+prboA::e+a) (3-5)

with 1-forms w € Q!(P,h) and ¢ € Q!(P, g/bh) with the latter also referred to as the
soldering form. Due to the conditions (i) and (ii) of the Cartan connection, it follows
immediately that @ defines an ordinary principal connection 1-form in the sense of
Ehresmann. Let 77 := ker(w) be the induced horizontal distribution on the tangent
bundle TP.If X € ¥ isa (vertical) fundamental vector field generated by X € B, one
has A(f) =X = a)(f) and thus e()?) = 0. Hence, since g/ defines a H -invariant
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e

N

Figure 1.: Pictorial representation of a Cartan geometry. The soldering form provides a local identification of
tangent spaces on the spacetime manifold (left) with tangent spaces on the flat model (right) corresponding
to the Klein geometry.

subspace, together with condition (ii), this immediately implies that the soldering form
is horizontal of type (H, Ad), i.c. ¢ € Q}W(P, g/h) “AD Tn face, the soldering form
even provides an identification of the principal bundle P as a H-reduction of the frame
bundle .7 (M) explaining its name (see also Figure 1). To see this, following [136], note
that 6;1 = (ePI%)_l forany p € P defines an isomorphism on g/} and a)PL;fP is an

isomorphism onto 77 () M so that D7 o e;l :g/h— 17 (p)M is alinear frame at
7 (p). Hence, this yields a map
z:P—>ﬁ(]l/[),p»—>Dp7roe1;1 (3.6)

By condition (i), we have @} ¢, (Y) = ¢ (D@ (¥y)) = Adj-1(e,(Yp)) VY, € T, P
and b € H and therefore

e;}) =D,®j 0 e‘;l o Ad, (3.7)
from which we obtain
(p-h)=Dyymo e;)}a =Dypm o Dp®y 0 e;l o Adj, = t(p) o Ady, (3-8)

Vpe P, bhe H. Thatis,: : P — F(M) is H-equivariant and fiber-preserving
so that P defines a / -reduction of the frame bundle w.r.t. the group morphism Ad :
H — GL(g/h). Moreover, it follows that ¢ induces an isomorphism [136] (denoted by
the same symbol)

1: PXaq0/h— TM (3.9)
[(2, X)] ¥ Dym(e,' (X))

between the associated vector bundle P X a4 g/b and the tangent bundle of M.
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To a Cartan connection A4 one associates the Cartan curvature F(A) € Q*(P,g)
according to

F(A) =dd+ %[A A Al (3.10)

In case of a “flat” Klein geometry, the Cartan connection is given by the Maurer-Cartan
form (3.2) which satisfies the structure equation (3.4), i.e., the Cartan curvature is identi-
cally zero. Thus F(4) indicates the deviation of a Cartan geometry from a flat Klein
geometry [136]. In fact, one can prove that a Cartan geometry modeled on the Klein
geometry (G, H) is locally isomorphic to the homogeneous model (G — G/H, Omc)

if and only if the associated Cartan curvature vanishes (for a proof see, e.g., [134,135]).

Decomposing F'(A) according to the decomposition g = b @ g/b of the Lie algebra,
one obtains

F(A) = pry o F(A) +pr, 0 F(A) = F() + 0 + %[e nel ()

a/h

where

1
F(w)=DWw=dw+ 5[&) A @] (3.12)
is the curvature of the connection 1-form w and
0@ .=D@We=de+[wAe] (3.13)

is the corresponding torsion 2-form. To see that (3.13) in fact encodes the torsion of the
connection, one may proceed similar as in [136] and note that @ induces a connection
on the associated vector bundle P Xaq g/b and thus, via (3.9), an affine connection
V=V® . I(I'M) - I[(T*M ® T M) on the tangent bundle. For vector fields
X,Y e I(T' M), itis given by

(VxY)y = ([ p, XPre(vPr)]) (3.14)

forany x € M and p € P with 7(p) = x where X hor "y'hor denote the horizontal
lifts of X and Y, respectively.* Moreover, in general, given a representation p : H —
GL(V') of H on a vector space V, there exists an isomorphism

QF (P, )R S QMM Px, V), 0B (3.15)

* Recall from Def. 2.5.17 in the ungraded case, for a vector field X € I'(T'M), the corresponding
horizontal life X 77 € T'(T P) is a vector field on P which is horizontal, i.e., XZ}’]W € % Vp e P,and

satisfies Dpﬂ(Xb”r) = X”(p).
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between I -valued k-forms of type (H, p) and k-forms with values in the associated
bundle P X, V. Hence, we can associate to O 22-form O e 02 (M, Pxpqa/bH),

which, applying (3.9), yields another form : 0 ©@(®) € Q?(M) ® I'(T'M). For vector
fields X, Y € I'(T M), we then compute

10 @@ (Xx, Y;c) =40 [p’ dé‘(Xhar, Yhar)]
-0 [P: Xbore(Yhar) _ Yhore(Xbor) _ 6([Xh0r’ Ylggr])]
=VxY - VyX - D,w([X,Y]"") = TV (X., Yz) (3.16)

forany x € M and p € P such that 7(p) = x. Hence, ©®) indeed encodes the
torsion of the associated affine connection V on the tangent bundle of 1.

With all these observations, let us now make contact to general relativity. As seen already
at the beginning, flat Minkowski spacetime can be described in terms of the metric Klein
geometry (ISO(R'?), SO* (1, 3); 7). Hence, we consider gravity as a metric reductive
Cartan geometry (P — M, 4; ) modeled on the metric reductive Klein geometry
(ISO(RY®),SO*(1, 3); ) where SO*(1,3) — P 5 Misa principal bundle with
structure group SO*(1,3) and 4 € Q' (P, iso(R"?)) is a Cartan connection.

By (3.6), we know that P defines a SO* (1, 3)-reduction of the frame bundle .% (M) of
M . As such, it induces a Lorentzian metric g € I'(7"M ® T* M) on M which, for
vector fields X, Y € I'(T M), is defined as [133,137]

2(Xn Y) = 70551 (X), 151 (1) (3.7)

Vp € Py, x € M. Note that ¢ is in fact well-defined, i.e., independent of the choice of
p € Py, since ¢ is equivariant and 7, by definition, is a bilinear form invariant under the
Adjoint representation of SO* (1, 3) on R. Hence, M is in fact a Lorentzian manifold

and P can be identified with the bundle %50 (M) of Lorentz frames on M .

Lete! for7 =0,...,3bedefined viae =: ¢ P;. Givenalocal sections: M > U — P
of the bundle, the corresponding pullback then induces 1-forms (denoted by the same
symbol for convenience) ¢/ = s*¢! € Q' (U) which satisfy

G =7(5ey, 57¢,) = fﬁe{ 1] (3.8)

ie. (¢!) defines a local co-frame on M with the corresponding frame fields being given
by e; := s*1(Pr). With these ingredients, we can define an action on M via

S =52 [ SE@Y AE AePreris (319)

97



3. Supergravity and super Cartan geometry

where ¥ = 87 G. This action precisely coincides with the first-order Palatini action of
pure Einstein gravity. As we see, the whole theory including the underlying geometrical
structure of the spacetime is completely encoded in the Cartan connection.

Following [133], there also exists another version of action (3.19) which depends on the
Cartan connection in a more explicit way. This requires a nonvanishing cosmological
constant which we take as negative for convenience (for a positive cosmological constant
this in fact completely analogous (see, e.g., [133])). To this end, let us consider a Cartan
geometry modeled on the Klein gravity (SO(2, 3), SO™(1, 3)) corresponding to anti-de
Sitter space. Since then [ Py, Pr] = %M 17 with L the anti-de Sitter radius (see Example
2.3.17), it follows that the Lorentzian part of the Cartan curvature acquires an additional
contribution depending on the soldering form yielding

F(A)Y = F(w) + ée‘[ Al (3.20)

One can then define the so-called MacDowell-Mansouri action as follows [133,138]

2

Swaa(A) = & /M SEDY AP Yer s (3.21)

which, in particular, solely depends on the curvature of the Cartan connection and thus
has the structure of a Yang-Mills-type action. Expanding (3.21) using (3.20), it follows
that the term quadratic in F'(w) is given by the well-known Gauwss-Bonnet term an thus
is purely topological. Hence, it follows that, up to boundary terms, (3.21) indeed leads
back to first-order Einstein gravity with a nontrivial cosmological constant.

3.3.  Super Cartan geometry

The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

As discussed in the previous section, gravity has a very elegant geometrical interpretation
in terms of a Cartan geometry modeled on the Klein geometry corresponing to flat
Minkowski, de Sitter or anti-de Sitter spacetime. As it turns out, this description also
carries over to the super category providing a geometrical foundation of supergravity.
This is the starting point of the Castellani-D’Auria-Fré approach to supergravity [71,
72]. However, in order to obtain nontrivial fermionic degrees of freedom as well as
supersymmetry transformations on the body of a supermanifold, in the following, we
will define the notion of super Cartan geometry using the concept of enriched categories.
In [101], super Cartan structures on supermanifolds were introduced and also lifted
trivially to Cartan structures in the relative category. However, a precise definition of
super Cartan geometries on (nontrivial) relative principal super fiber bundles in the
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3.3. Super Cartan geometry

framework of enriched categories has not been given so far in the mathematical literature.
For a motivation of super Cartan geometry, let us consider first the “flat” case given by a
super Klein geometry?.

Definition 3.3.x. A super Klein geometry is a pair (G, H) consisting of a super Lie
Group G and an embedded super Lie subgroup H — G.

Remark 3.3.2. Suppose one has given a pair (G, H) of super Lie groups with H — G
an embedded super Lie subgroup. By definition of the DeWitt topology, G/H is
connected iff B(G/H) = B(G)/B(H) is connected, that is, iff (B(G), B(H)) is a

Klein geometry.

As shown in [109], as in the classical theory, a super Klein geometry (G, H) canonically

induces super fiber bundle with typical fiber H via

G=—H

|

GIH

together with the natural H-rightaction®: GXH — GonG. Hence H — G 5
G /H has the structure of a principal H-bundle. Let (X;); be a homogeneous basis

of g and (“w); the associated left dual basis (see Prop. 2.4.12) of left-invariant 1-forms

‘w € QY(G) on G satisfying (X;|/w) = 3{, Vi, j =1,...,n. By Example 2.4.13, the
Maurer-Cartan form fyc € Q' (G, §) on G is then given by

Ovc =0 @ X; (3.22)

By definition, the fundamental vector fields on G correspond to the subspace of left-
invariant vector fields X € Lie(H). Hence, it follows immediately from (3.22) that
(X|0mc) = X VX € Lie(H). Moreover, this also implies that the map (Omc), :
1,G — 1.G is an isomorphism of super A-modules for any ¢ € G (and even an
isomorphism of super A-vector spaces if ¢ € B(G)). Finally, since the right action on
G essentially coincides with the restriction of the group multiplication, this yields

RZ@MC = Adj-1 0 Oyc (3-23)

3 All the following definitions will be formulated in the ° category. However, they can also be extended
to the algebraic category without major changes (cf. Section 2.6)
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3. Supergravity and super Cartan geometry

Vh € H, where RZ denotes the generalized pullback w.r.t. the right translation
Rj = D(-, h),on G w.r.t. b € H (cf. Definition 2.5.9). This motivates the following

definition.

Definition 3.3.3 (Super Cartan geometry). A super Cartan geometry (ws : Prs —
M s, A) modeled on a super Klein geometry (G, H) is a S-relative principal super
fiber bundle H — P;s — M s with structure group H together with a smooth even
Lie(G)-valued 1-form A € Q1 (P)s,8)o on P, called super Cartan connection such
that

() (X|AY=X, VX e}
(ii) (q)s);;ﬂ =Ad,-10A, VYheH

(iii) for any s € B(S), the pullback of A w.r.t. the induced embedding tp : P —
S X P, p — (s, p) yields an isomorphism ¢, A, : TP — Lie(G) of free
super A-modules for any p € P

where the last condition will be called the super Cartan condition. If (iii) is not satisfied,
A will be called a generalized super Cartan connection.

Remark 3.3.4. Note that, by definition, it follows that condition (iii) for a super Cartan
connection A is preserved under change of parametrization. In fact,let 1 : $" = S
be a smooth map. Then, since A|g(s/) € B(S), it follows that the pullback 1*A also
satisfies (iii).

Definition 3.3.5. A super Cartan geometry (7s : P/s — M,s, A) modeled on a
super Klein geometry (G, H) is called

(i) reductive if the super Lie algebra g of G admits a decomposition of the form
g = g/b ® b with b the super Lie algebra of H and g/ a super vector space
such that the corresponding super A-vector space A ® g/b is invariant w.r.t. the
Adjoint action of H on Lie(G).

(ii) metric if it is reductive and if the super A-vector space A ® g/f) admits a smooth
super metric (Def. 2.3.12) that is invariant w.r.t. the Adjoint action of H.

Definition 3.3.6. For M a supermanifold, consider the right dual tensor product
super vector bundle (M ® T'M)*. A smooth section g € IC((TM e TM)*) =
Homg(I'(T M)?, H*® (M) ® C) is called a super metric on M, if g, for any x € M
defines a super metric on the tangent module 7, M. Thus, for any homogeneous
smooth vector fields X, Y € T(TM), ¢(X,Y) = (-1) ¥ ¢(¥, X) and the map
I'(TM) > X = g(X,-) € I(T M) is an isomorphism. Thus, g defines a super

metric in the sense of [139].
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3.3. Super Cartan geometry

Remark 3.3.7. Let ¢ be a super metric on a supermanifold M. Similar as in Remark
2.3.8, it follows that, if p € B(M) is a body point, the tangent module V) := T, M
has the structure of a super A-vector space V, = A ® V;, with the super vector space V,
consisting of derivations X, € T;, M satisfying

Xy(f) e R, Vf € H®(M) (3.24)

Hence, it follows that 7/, can be identified with the tangent space 7, A(M) of the cor-
responding algebro-geometric supermanifold A(M) (cf. Remark 2.3.4). By definition,
any X, € V, arises from the restriction of a local smooth vector field on M to p. Con-
sequently, as g is smooth and p is a body point, it follows that g,(V5, V) € C, thatis,
gy is smooth according to Definition 2.3.12.

Proposition 3.3.8. Let (s : Ps — M;s, A) be a super Cartan geometry modeled
on a super Klein geometry (G, H). Let pry : Lie(G) — Lie (H) denote the projection of
Lie(G) onto the super Lie sub module Lie(H). Then, pryo A € QNP s,h)o defines a
super connection 1-form on P s. Let the super Cartan geometry, in addition, be reductive
and P4/t denote the projection of Lie(G) onto the super N-vector space A ® g /Y. Then,

E = prgp © A (3.25)

called super soldering form or supervielbein, defines an even horizontal A ® §/bY-valued

1-form on P s of type (H, Ad).

Proof. Thatw := pry oA defines a super connection 1-form in the sense of Ehresmann
is immediate by condition (i) and (ii) of a super Cartan connection. Furthermore, if
the Cartan geometry is reductive, A ® g/ defines a Ad(H)-invariant super A-module.
Hence, by condition (ii) of a super Cartan connection, the super soldering form £
yields a well-defined H-equivariant 1-form on P s. To see that is horizontal, let X bea
fundamental vector field on P s generated by X € b. Then, by condition (i), it follows

X =(X|A) = (X|w) + (X|E) = X + (X|E) (3.26)

Hence, QZ' | E) = 0 proving that £ is horizontal. m|

Proposition 3.3.9. Let (75 : P1s — M;s, A) be a reductive super Cartan geometry
modeled on a super Klein geometry (G, H) with super Cartan connection ‘A. Let E =
prgm oA be the super soldering form as defined in Prop. 3.3.8. Let tp : P — S X P
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3. Supergravity and super Cartan geometry

furthermore be an embedding. Then, the pullback 6 = 1, E € Q) (P, A®g/D) (H.Ad)

defines a non-degenerate 1-form and induces a smooth map*
t:P—>FM), p— Dymo (9;1 (3.27)

which is fiber-preserving and H-equivariant in the sense that 1 o ® =Y o (¢« X Ad) with
Ad: H — GL(A ® g/b) the Adjoint action and @ and Y the group right actions on
P and F (M), respectively. In particular, P defines a H-reduction of the frame bundle

Proof. By the previous proposition, it is clear that & defines a horizontal 1-form on
of type (H, Ad). Let 7 := ker(4,w) be the horizontal distribution induced by the
pullback of the super connection 1-form @ := pry o A. Then, by the super Cartan
condition (iii) in Def. 3.3.3, it follows that 8, : 7, — A ® g/}, forany p € P, yields
an isomorphism of free super A-modules. Moreover, the pushforward of the bundle
projection induces an isomorphism D P % > Y},M Hence, this in turn induces
an isomorphism

D,mo 5;,1 : A®g/h— THM (3.28)

that is, a linear frame at p. It thus remains to show that (3.27) indeed defines a H-
reduction of .# (M). To this end, note that, by condition (ii) for a super Cartan con-
nection, we have 8(®.(Y,)) = ©;0(Y,) = Ady-1(6(Y,)) VY, € TpP and heH.
Hence, this yields

(p-h)=Dymo 49;11 = Dy,m o D,®) 0 6;1 o Adj, = t(p) o Ad, (3.29)

which proves that ¢ is H-equivariant. O

Remark 3.3.10. Under the assumptions of Prop. 3.3.9,let¢ : £ — S X P be
an embedding and suppose P is trivial, i.e., P = M X G with respect to a global
trivialization s : M — P. Let (¢;); be ahomogeneous basis of the quotient super vector
space m := g/f. This in turn induces a (homogeneous) basis (s;); of global sections
s; = [, ¢;] of the associated super vector bundle & := P Xgr V with V := A @ m.
This yields an isomorphism

Q' M, V") - QUM E) = Q) (P, V) HAD

W w's; (3.30)

4 Note that, in this definition, the soldering form G is regarded as right linear morphism which is possible
as & is even.
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It thus follows from condition (iii) of a super Cartan connection that, via (3.30), the
pullback (*E € Q}W (P, V) induces a non-degenerate 1-form E € Q'(M, V).
Consequently, the pair (M, E) defines super Cartan structure in the sense of [1o1].
Conversely, if (M, E)isa super Cartan structure with E e QO'(M,V) being non-
degenerate, one can use (3.30) to get a non-degenerate 1-form £ € Q}OW (P, V) which
can be lifted trivially to a S-relative 1-form 1 ® E € Q; (s, V) satisfying the super
Cartan condition (iii). Hence, definition (3.3.3) provides a generalization of super Cartan
structures in the sense of [1o1] to a generalized notion of super Cartan connections on
nontrivial S-relative principal super fiber bundles.

Corollary 3.3.101. Let (7s : Prs — M;s, A) be a metric reductive super Cartan
geometry modeled on a super Klein geometry (G, H) with a super Cartan connection A
and smooth super metric & on A ® g/h. Let 0 := 1, E € QYP, A ® g/h) HAD pe
the pullback of the super soldering form to the principal super fiber bundle P w.r.t. an
embedding 1p : P — SXP. Forany x € M, consider the map g : TMXT M —
A® defined as

G Yo) = F(8,(X}), 0(Y;) (331

forany p € Pyand X ;, YP* € TP the unique horizontal tangent vectors such that
DPW(X;) =X, and Dp7r(1’;‘) = Yy. Then, gy is a well-defined super metric on T, M
forany x € M. In particular, the assignment g : M > x v g, defines a smooth super
metric on M.

Proof. Since D, : - T, M is an isomorphism of super A-modules for any
p € P, where H# := ker (1, w) is the horizontal distribution induced by the pullback
of the super connection 1-form w := pry © A., itis clear that, for any tangent vectors
X, Y. € T, M, the horizontal lifts X ;, YP* € T, exist and are unique. Moreover, as
g pisa right linear isomorphism of super A-modules, it is clear that g, defines a super
metric on 7 M once we have shown that g is well-defined. To this end, let p” € P, be
another point on the fiber over x. Then, there exists ¢ € # such that p’ = p - ¢. By
uniqueness, it follows X' , = @ ;. X and ¥\, = .Y} Thus,

0 (X3) = 0o (@ X,) = Ad g1 (8,(X;)) (3:32)

and similarly for Y*. Thus, as .’ is Ad(H)-invariant, it follows that g is indeed well-
defined. To see that ¢ : M > x + g, is smooth,lets : M 2 U — P bealocal
section and (¢;); be a homogeneous basis of g/b. Then, on U, the super metric is given

by

g(X,Y) = Z(s°0(X),s*0(Y)) = (-1l &XDles] 7. (5+6) (X)) (5°6) (Y)/
(3-33)
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where 5”1]' = S (e;,e j) € Cas . is smooth and we have made the expansion
s*0(X) = e; ® (s*0)(X)? with (s*8)(X)? smooth functions on U and similarly for
s*0(Y). Thus, it follows that g(X,Y) € H*(U) ® C proving that g is smooth. O

The following proposition demonstrates the strong link between super Cartan connec-
tions and Ehresmann connections defined on associated (S-relative) principal super fiber
bundles (for a discussion in the category of ordinary smooth manifolds see, e.g., [140]).
In physics, this thus provides a concrete relation between Cartan geometries and Yang-
Mills gauge theories. This is due to the fact that, by definition, both type of connections
turn out to be already fixed uniquely on vertical vector fields, i.e., vector fields tangent
to the fibers of the underlying principal super fiber bundles. Indeed, on vertical fields,
both connections are related to the Maurer-Cartan forms on the respective structure
groups. Using this observation, one then arrives at the following.

Proposition 3.3.02. Let H — P;s — M;s be a S-relative principal super fiber
bundle with structure group H as well as (G, H) a super Klein geometry. Then, there is
a bijective correspondence between generalized super Cartan connections in Q' (P)s,8)o
and super connection 1-forms in Q' (P s X1 G, 8)o withP1s X¢ G := (P X1 G) s
the G-extension of P s.

Proof. The following proof is a generalization of the proof given in [140] to the super
category. One direction is immediate, i.c., given a S-relative super connection 1-form A
on P/s X4 G, the pullback A w.r.t. theembedding 7 :=id X ¢ : P/s = P/sXu G,
with ¢ as defined in Corollary 2.4.25, yields a generalized super Cartan connection on
P, s according to Def. 3.3.3. Conversely, suppose A € Q' (P;s, @) is a generalized
super Cartan connection. Let 7 : /s X G — P/s X4 G be the canonical projection.

If &g denotes the G-rightaction on P s X4 G, it follows that the fundamental vector
fields are given by

Yipg1 = (PS)[p,g1+(Xe) = D(1p,g1,0)Ps (01,1, ¥)
= D (15100 PS(D(5,0)%(05,04),¥) = D (p,g.0)(Ps 0 (7 x1d)) (0,04, )
= D(p,g.0) (70 (id X £G))(0p,04,Y) = Dy )7 (05, £5(04,Y))
=Dy, % (05, LgsY) = D5, )% (05, LguY) (3:34)

forany Y € Lie(G) and p € Ps, ¢ € G, where the generalized tangent map was used
at various stages. Furthermore, for any X, € 7,(#;s), one has

D, #(Xp,0¢) = D(p, ) (X, D(g,0) 5 (0g, 0c))
=D p,g,0) (% 0 (id X £g))(Xp, 0, 0c)
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= D(pge) (7 0 (D)5 X id))(X,0,,0,)
= D(pg0) 7 (D)) g X, 0c)
= 2*((®S)g*Xp) (3-35)
Y(p, g) € P1s X G. Hence, this yields
Dpg)%(Xps Yg) = D(p,0)(Xp, 0¢) + D(p,0) % (0, Y)
= 2*((q)3)g>sXp) + D(]),g)f[(opa Lg* © L‘g—l*()fg))
= l*((q)S)g*Xp) + <Yg|€MC>[

] (3-36)

Therefore, if there exists a super connection 1-form #,A whose pullback under 7 is given
by A, then it necessarily has to be of the form

(D(p,g) 7 (Xp, Y 1AL p,g1) = Ad gt (Xp|Ap) + (Yg|Omc) (337)

In particular, as 7 is a submersion, it is uniquely determined by (3.37). Hence, it remains
to show that £, A as given by via (3.37) is in fact well-defined and provides a super
connection 1-form on P/ s X¢1 G.

To see that it is well-defined, note that, forany (p, g) € P,s X G, the kernel of D 2.0) 7
is given by {()7:1,, —R.Y)|Y € Lie(H)} € T,(P)s) X T,G*. This yields

(Yp, =R 1)1 App 1) = Ad gt (V| A,) = (R .Y |6ric)
= Adg1(Y) = Ly-1, 0 Rgu(¥) =0 (3.38)

VY € Lie(H). Finally, to see that is independent of the choice of a representative of
[ g] € P/s Xu G, we compute Vb € H

(D pp 1 )7 (D)3 X Lyt Y60 pi i 41)

= Ad(p1 )1 (D) Xpl A ) + (L1 Y Oric)

= Ad g1 (Xp|Ap) + L1914 © L1 (Yy)

= Ad g1 (Xp|A) + (YylOmc)

= (D (p,0) 7 (Xp, Y|t A p 41 (3-39)

5 This may be checked by direct computation using the local trivializations {(71'51 (Up), 5 «) }aex of the
bundle 7 : P X G — P Xqy G as defined in the proof of Prop. 2.4.21.
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This shows that £, A is in fact well-defined. To see that it is also G-equivariant, we
compute

(D 8)pD () T(Xpy Y0 A p 1)

= (D(p, g (D 0 (7 xd)) (X, Yy, 0,) |1 A 1)

= (D g0 (% 0 (id X 1)) (X, Yo, 0) [t A p 1))

=D p, gy # (Xps Ry Y) [t A p, g11)

= Ad( gy (Xp|Ap) + (R Yy|6mc)

= Adj1 (Ad gt (Xp|Ap)) + L gyt 0 Rpu(Y)

= Adj1 (Ad -1 (X, |Ap) + (Y| Buic))

= Adj-1 (D p,0) 7 (Xp, Yo) 1A p,01) (3.40)

Finally, for Y € Lie(G), it follows

<i;[p,g]|i*ﬂ[p,g]> = (D)7 (Xps Lo V) A p 1) = (LguY [OMc) =Y (3.41)

Hence, this proves that ., A € Q1 (P)s X9 G, 8)o is a well-defined super connection
I-formon P s X9 G. |

3.4. Supergravity as super Cartan geometry and the
Castellani-D’Auria-Fré approach

The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

With these preparations, let us turn next to supergravity. We want to describe D = 4,
N = 1Poincaré supergravity as a metric reductive super Cartan geometry (7s : P;s —
M, s, A) modeled on the super Klein geometry (G, H) = (ISO(RM3M4), Spin*(1, 3))
corresponding to super Minkowski spacetime (see Example 2.3.10 and 2.3.11). Here and
in the following, for notational simplification, we will often identify Spin*(1, 3) with
the corresponding bosonic split super Lie group S(Spin* (1, 3)). Let us split the super
Cartan connection according to the decomposition g = g/b @) of the super Lie algebra
of G yielding

A=prgpoA+pyoA=E+w (3.42)

with £ the supervielbein. According to Prop. 3.3.8, @ defines a super connection 1-form
in the sense of Ehresmann (Definition 2.5.19) whereas the supervielbein provides an even

horizontal 1-form of type (H, Ad), i.e., E € Q}MV(SD/S, A® g/b)éH’Ad)-
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Lets € B(S)andtp : P > SXP : p > (5 p) beasmooth embedding. This
induces a smooth horizontal 1-form ¢, £ on # which, by the super Cartan condition,
is non-degenerate. Furthermore, it follows that /g, € Q!(P,b)o defines an ordinary
super connection 1-form on P. According to Prop. 3.3.9, this induces a H-equivariant

morphism between # and the frame bundle .7 (M) via

P — F M), pr> Dymo E,! (3.43)

where, forany p € P, D,z o E]jl : (a/h) @ A — T3 (p)M is an isomorphism of
free super A-modules. Hence, P defines a H-reduction of .7 (M). Applying the body
functor, this in turn induces a Spin* (1, 3)-reduction P := B(P) — % (M) of the
frame bundle of the body M := B(M). That is, the body carries a spin structure.
Moreover, it follows that M has the same dimension as the super vector space /b =: t
where

t=t8 =R @ A (3.44)

denotes the super Lie algebra of the super translation group L3l (Example 2.3.10).
Hence, the supervielbein can be further split in the following way

E=prioA=ce+y = P +yeQ, (3.45)
with ¥ € QY (P,s, Ar) and ¢ € Q' (P, s, R?) defining even horizontal 1-forms of

type (Spin* (1, 3), Ad) called the Rarita-Schwinger field and co-frame, respectively. As a
consequence, the super Cartan connection takes the form

1
A =e[P1+5a)UM1j+W‘Qa (3.46)
The super Cartan curvature of the super Cartan connection A is defined as
1 1
F(A) = dA+ Z[ANA] = dA+ 5(—1)'&”@'314 ANAL® [Ty, Tl (3.47)
w.r.t. a homogeneous basis (1) 4, 4 € (I,1], ), of the super Porincaré algebra
iso(R1314) (Example 2..3.11) where the minus sign in (3.47) appears due to the (anti)
commutation of T4 and AL 1t then follows from (M), Px] = nixk Py — njx Pr as

well as (2.96)-(2.99) that the components of ' ((A) in the translational part of the super
Lie algebra, also called the supertorsion, take the form

FA) =de! +o! nel + }1((—1)'94”%';&% A ¥ ® [Qu Qp])

1.
=W _ Z;k A 7/1;# (3.48)
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since (—1) 1Qel1Q6l = _1, with ©(@ is the torsion 2-form associated to the spin connec-
tion w. For the spinorial components, we find

FAY =do + 0! A ™) = F(o)V (3.49)

with F'(w) the curvature of w. Finally, for the odd part, we immediately obtain
1
F(A)" =dy* + o' (y1))% Ay = D@y (3.50)

with D(“));k = dy + xr.(w) A ¥ the exterior covariant derivative in the Majorana
representation.

With these preliminary considerations, let us finally state the action of D = 4, N =1
Poincaré supergravity. It can be derived from the MacDowell-Mansouri action of anti-
de Sitter supergravity to be discussed in a more general context in Section 5.2 (see Eq.
(5.3)) performing the Inonii-Wigner contraction, i.e., considering the limit L — oo
with L the anti-de Sitter radius corresponding to a vanishing cosmological constant (see
also [138,141]). Let P — M be the underlying ordinary Spin* (1, 3)-bundle obtained
after applying the body functor. Choosing a local sections : M > U — P C P, it
follows that the action takes the form

_ 1 .
N (551
with Langrangian & € QZW (P)s) defining a horizontal form on #; s given by

1 _
& = EF(a))U A €K A KLEIJKL + l'% A }/*}/1D(w)¢ A 61 (3.52)

In what follows, we want to study the local symmetries of the Lagrangian of Poincaré
supergravity. To this end, we will adapt the “group-geometric” approach of Castellani-
D’Auria-Fré. Before we proceed, however, we need to make some preparations.

Definition 3.4.1. Let H — $;5 — M s be a S-relative principal super fiber bundle.
On P, s, the set of infinitesimal automorphisms is defined as

aut(Prs) = {X € [(TPs)| (Ps)p X =X, Vb € H} (3.53)

Since the generalized tangent map commutes with the commutator between smooth
vector fields, it follows that aut (%) s) defines a proper super Lie subalgebra of the super
Lie algebra I'(T'P; s) of smooth sections of the tangent bundle of £/ 5.
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3.4. Supergravity as super Cartan geometry and the Castellani-DAuria-Fré approach

Suppose X € I'(T'’M,s) is a smooth vector field. As the restriction of the bundle
projection to the horizontal distribution .7 := ker(w) induced by the Ehresmann
connection @ yields an isomorphism to the tangent bundle of M, s, it follows that there
exists a unique horizontal lift X* € I'(T'P)s) such that X; € Hyand w5, X" = X.
Then, by uniqueness, it follows (O s) o+ X* = X since 75 0 @g = 7s o pr;. The
horizontal lift thus defines an infinitesimal automorphism on $; s. Moreover, it follows
that we can identify I'(7P;s) C aut($,s) with smooth horizontal vector fields on
Ps. Let us next consider the vertical counterpart.

Definition 3.4.2. Thesetgau(P,s) of vertical infinitesimal automorphisms or infinites-
imal gauge transformations is defined as the subset of aut(#,s) given by

gau(Ps) = {X € aut(P/s)| X, € ¥, Vp € P/s} (3-54)

Again, since the generalized tangent map preserves the commutator, it follows that the
commutator between infinitesimal gauge transformations is again an infinitesimal gauge
transformation. Thus, gau(%,s) defines a proper super Lie subalgebra of aut(#)s).

Together with Proposition 2.7.18, we obtain the following.

Proposition 3.4.3. There exists an isomorphism between infinitesimal gauge transforma-
tions aW(Ps) and H-equivariant smooth functions on S X P with values in Lie(H)
via

T'(Ad(P)s)) = H®(S x P, Lie(H) ™ = gau(Ps) (3.55)
fPX:pe D(p,c)q)s(op,f(P)) (3.56)

where Ad(P)s) = (P Xag Lie(H)),s is the Adjoint bundle.

Remark 3.4.4. Note that, according to Prop. 2.7.14, one can identify global gauge trans-
formations on ¢ (P, s) with the set (S X P, H) M which forms an abstract group
via pointwise multiplication. Taking pointwise derivatives, this suggests that one may
thus interpret gau(#,s) as the super Lie algebra of the group of global gauge transfor-
mations ¢ (P, s) if one may be able to equip it with a smooth supermanifold structure.
An explicit proof, however, requires the study of infinite-dimensional supermanifolds
(see for instance [99, 100, 110] for recent results in this direction).

With these preparations, let us discuss the local symmetries of Poincaré supergravity.
Since, the Lagrangian .Z is pulled back to the body M = B(M) of the base super-

manifold M, we only have to require that . is invariant after restriction to the bosonic
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3. Supergravity and super Cartan geometry

subbundle $y of P defined as Py := S(B(#P)). Hence, let X € aut(P,s) be an
infinitesimal automorphism. We say that X defines a Jocal symmetry ift

Ix ZLp, = tp (LxZL) = da (3.57)

for some smooth 3-form 2 € Q*(($),s). In order to compute the variation of the
Lagrangian, one has to determine the variations of the individual field components. To
this end, note that the super Cartan connection induces an isomorphism

A aut(Ps) — H®(S x P, Lie(G) M, X > (X|A) (3.58)

from the super Lie algebra of infinitesimal automorphisms to the super Lie algebra of
H-equivariant smooth functions with values in Lie(&G). In fact, forany X € aut(?;s),
we have (93);,. X = X Vb € H which implies

(X|A) (p- h) = (Xp|(Ds),A) = Adj-1 (X |A) (p) (3-59)
Hence, it follows that the variation of the super Cartan connection takes the form
OxA = LyA = 1xF(A) + DN (13 A) (3.60)

where, according to Remark 2.5.25, D (1xA) = d(1x A) + [A A 1xA]. To see
this, choosing a homogeneous basis (74) 4 of g, a direct calculation yields (setting

|| = [T4l)
ix[ANA] = (-1)418l (AL N ALY © [Ty, T
— (—1)'4‘@(1)@?{4/\ AL — (_1)lélleﬂé/\ [Xﬂﬁ) ® [Ty, T5]
— (_1)(Iél+|X|)|§|ﬂ£ A ,Xﬂé@, (73, T4l
(1) (BRIXDIAl 74 o AE

=-2[A A 1xA] (3-61)
which immediately gives (3.60). Since .2 is obviously invariant under global Spin* (1, 3)-
gauge transformations by definition, i.e., it is horizontal, it follows that any X €

gau(P;s), in particular, defines a local symmetry of the Lagrangian without even
pulling it back to $y. That is, we have

oxZ =0, VX €gau(P;s) (3.62)

Since the Cartan curvature F'(A) is horizontal, this furthermore implies that the curva-
ture contribution to the variations (3.60) of the Cartan connection vanish in general
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3.4. Supergravity as super Cartan geometry and the Castellani-DAuria-Fré approach

iff X € gau(#P;s). In this case, the variation of the connection takes the form of an
ordinary infinitesimal gauge transformation.

On the other hand, this is not immediately the case if X is horizontal and the curvature
contributions do not vanish a priori. Let us briefly explain how these are treated in the
Castellani-D’Auria-Fré approach to supergravity and how this approach may be related
to the present formalism (for a detailed introduction to this fascinating subject see for
instance [71,72,142] as well as [131,132, 220] using the concept of integral forms).

The horizontal vector fields can be subdivided into two different categories. In fact, note
that the super Poincaré algebra splits into three H-equivariant subspaces iso(R" 14y =
R @ spin* (1, 3) @ Ag so that one can decompose H ™ (S X P, Lie(G)H = I'(&)s)
according to

&= @ &N g ghv (3.63)

where, for instance, E2% 1= P X4 (A ® Agr) denotes the associated super vector
bundle corresponding to the real Majorana representation on Ag. Horizontal vector
fields then correspond to sections of the bundle ER” @ E8%. In the Castellani-D’Auria-
Fré approach, horizontal vector fields corresponding to EX” are typically referred to as
infinitesimal spacetime translations while those corresponding to EL® are associated to
supersymmetry transformations. In general, they do not provide local symmetries of
the Lagrangian. In the Castellani-D’Auria-Fré approach, one then tries to resolve this
by appropriately fixing the curvature contributions (or rather their pullback to $) to
the variations of the connection. These are typically referred to as the horizontality and
rheonomy conditions. However, this cannot be done arbitrarily as, for instance, one has
to ensure consistency with the Bianchi identity DA F(A) =o0.

To explain this in a bit more detail, following [142], note that the Lie derivative of the
Lagrangian Ly.Z = d(1x.Z) + 1xd.Z picks up an additional exact form so that, after
pulling back to Py, condition (3.57) can be written in the equivalent form

(1xd.D)|p, = da’ (3.64)

for some &’ € Q*((P);s). In order to compute the variation of the Lagrangian,
one observes that its exterior derivative can be completely re-expressed in terms of the
components (3.48) of the super Cartan curvature. In fact, exploiting the manifest
Spin™ (1, 3)-invariance of the Lagrangian, it follows that
d.Z =F(a))U A D@ KA eLeUKL + z'D(“’);} A ;/*7/1D(“’)¢ N
-y A ;/*;/ID(“’)D(’”)% Ael — i A ;/*;/1D(“’)¢ A D@ el
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3. Supergravity and super Cartan geometry

=F(A) A F(A)K A eLeUKL +IpAYyIp A ¢!
+ }IF(@)U AT AYEY Aeterrir - iF(w)jK AV A vy Ael
— i Ayyip AE(R) —ip Ayyry A9 A YTy (3.65)
where we set p* := F(A)* and used the relation A %.77p = p A .71 . Moreover,
in the second equality, we made use of the Bianchi identity
DWDWy = xp (F(w) Ay = iF(w)U Nyrry (3.66)

Using the relation ;& VeVIVIKY = —;}}/* YK Y1y which gives

_ 1. )
VAyyyky =S¥ Anlyn ey =iegkiy Ayt (667)

it follows that the third and forth term in the second equality of (3.65) exactly cancel.
Furthermore, due to the Fierz identity yyy A ;} A }/1 ¥ = 0, it follows that (3.64) reduces
to
d.¥ =F(ﬂ)[j A F(ﬂ)K A eLeijL +Iip A yyrp N el - YA vyrp A F(ﬂ)l
(3.68)

Thus, indeed, the exterior derivative of the Lagrangian can be solely expressed in terms
of the curvature of the super Cartan connection.

Let us consider variations of the Lagrangian which correspond to supersymmetry trans-
formations. Thus, let X € F(S/ASR)O be an even smooth vector field and ¢ := (X |A)

be the corresponding Spin* (1, 3)-equivariant function. The contraction of (3.68) with
X then takes the form

xd & ZIXF(ﬂ)IJ A F(ﬂ)K A €L€1jKL + F(ﬂ)]] A lXF(ﬂ)K A €L€[]KL
+20p A yuyr(ixp) A el —ieA YeVIp A F(A)!
+1EAyyr(txp) A F(A)! + YA vyIp A ix F(A)! (3.69)

Thus, when pulled back to the bosonic subbundle Py, we see that condition (3.64) for a
local symmetry is satisfied if

ixF(A)Y =0, 1xF(A)*=0, 1xF(A)Y neXerjxr=—ipyyre (370)
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3.4. Supergravity as super Cartan geometry and the Castellani-DAuria-Fré approach

where, here and in the following, the pullback to Py is always implicitly assumed. As
can be checked by direct computation, the last condition in (3.70) is solved by

; _
L F(AY = - (EIJKLPKL}/*}/MEgM + EKLMUPKL}’*}’M”]]) . 5;{]€€1<

(.71)
where we set p =: % pI ]61 A ¢/ . Thus, to summarize, it follows that even smooth
vector fields X € F(S/AE)O define local symmetries of the Lagrangian provided that
their contraction with the super Cartan curvature satisfy the conditions (3.70) and (3.71)
also called the rbheonomy conditions. Inserting these conditions into the general formula
(3.60), it follows that the supersymmetry transformations of the individual components
of the super Cartan connection take the form

. _
dxe’ =s&y'y, Sxy=DWe and dxa =Gl (G72)

Note again that, by definition, X € I (8/A§)0 implies (X |w) = 0, thatis, X is horizontal.
Hence, in this framework, supersymmetry transformations have the interpretation in
terms of superdiffeomorphisms on the base supermanifold M. Of course, one still needs
to check whether the rheonomy conditions are in fact compatible with the Bianchi
identity. As it turns out, this is indeed the case provided that the basic fields satisfy
their equations of motion. Thus, in this framework, it follows that supersymmetry
transformations can be interpreted in terms of superdiffeomorphisms only when applied
on solutions of the field equations [142]. For general field configurations, this will no
longer be the case. In this case, one needs to add additional fields, so-called awuxzlary fields,
to the theory. For more details on this subject, the interested reader may be referred
to [142] and references therein.

Remark 3.4.5. Let us emphasize that, technically, the existence of a nonvanishing
e := (X|A) € HY(SxP,A® Ar)] for X € r(a/ASR)0 when pulled back to the
body of P relies crucially on the additional parametrizing supermanifold S. Hence,
working in the relative category resolves both, nontrivial anticommuting fermionic fields
as well as supersymmetry transformations on the body of a supermanifold.

In the Cartan geometric framework, there also exists another kind of variation of the
Lagrangian which arises from the lift of the Cartan connection to an Ehresmann con-
nection on the associated bundle. More precisely, one can consider the G-extension
PlGl;s = (P Xq G);s with respect to which P s defines a H-reduction via the
embedding

i:Pis > PlGlis, pr [psel (3.73)
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3. Supergravity and super Cartan geometry

By Prop. 3.3.12, the Cartan connection can be lifted to an Ehresmann connection A on
the associated bundle in a unique way such that /*A = A. Again, this connection can
be decomposed in the following way

. 1. \
A = €[P[ + ECUUMIJ + %szx (3.74)

In fact, it follows that the Lagrangian .’ can also be lifted uniquely to a horizontal form
P et

1or (P 1G1)s) on the associated bundle which, using (3.74), is explicitly given
by

5 1., . A .2 S
L = EF(w)U A K A eLeUKL +iY A 7*71D(“’);k Aél (3.75)

It is clear that, via the embedding (3.73), the bosonic subbundle $) (or body P) can be
identified with the bosonic subbundle (or body) of the G-extension P [G]. Thus, given
alocal section s : M — P C P[G], the action SN=1(A) as defined via (3.51) turns
out to be equivalent to

SN1(A) = /M P (3.76)

Consider then an infinitesimal automorphism of the form X € gau(®[G],s)o such
thate .= (X|A) € H*(SxP[G], A®AR)OQ. We say that X defines alocal symmetry
of the Lagrangian (3.75) provided that

(1xdD)|p, = da’ (3.77)

for some 3-form 2’ € Q*(P[G],s). The variations 9 v A := Ly A of the individual
components of the connection take the form

5)(51 = %é}/[;}, 5)(;} = D@We and 3)(&31] =0 (3.78)
Thus, in contrast to the previous considerations, it follows that the curvature now
does not enter to the field variations as the infinitesimal automorphism X is vertical,
i.e., it is a local gauge transformation, not a superdiffeomorphism. Comparing with
(3.72), when pulled back to $y, one observes that this yields precisely the supersymmetry
transformation for the supervielbein £ as found in the previous prescription while the
variation of the spin connection is altered.

The variation of the Lagrangian can be computed following the same steps as before
which, when pulled back to Py, leads to a similar expression for ¢ xd.Z as in (3.69) just
replacing all the fields by their respective hatted counterparts. However, as X is vertical,
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this implies that the curvature contributions of the form ¢y F'(A) are identically zero.
Thus, in this case, we end up with

(ixdD)lp, = (=ie A yayrp A F(A) g, (3.79)

Hence, as we see, it follows that X indeed provides a local symmetry of the theory
provided that the supertorsion constraint F (A) = 0 is satisfied which is equivalent
to requiring that w satisfies its field equations (see also [128, 143]). This observation
will in fact play a crucial role in the context of chiral supergravity to be discussed in
Section s.4. There, it turns out that a certain subclass of local gauge transformations
X € gau(P[G],s)o provides alocal symmetry of the theory, even without pulling back
the Lagrangian to $ and, in particular, without requiring @ to satisty its field equations.
Thus, in this framework, in follows that (at least a certain sublcass of) supersymmetry
transformations have the interpretation in terms of true gauge transformations.

3.5. Application: Killing vector fields and Killing spinors

The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

In this section, we want to discuss an interesting application of the Cartan geometric
interpretation of supergravity. More precisely, We want to describe global symmetries of
supergravity theories in terms of Killing vector fields on the underlying super Rieman-
nian manifold which arises from a metric reductive super Cartan geometry. This has
important applications in the description of supersymmetric black holes in supergravity.

Let (s : P1s — M;s, A) be a metric and reductive super Cartan geometry mod-
eled on a super Klein geometry (G, H) with super Cartan connection A and smooth
Ad(H)-invariant super metric .# defined on A ® g/. For sake of simplicity, let us
assume that S is a superpoint, i.e., the body just consists of a single point B(S) = {*}.

From a physical perspective, the necessity of the choice of a nontrivial parametriz-
ing supermanifold S is based on the requirement of nonvanishing (anticommuting)
fermionic degrees of freedom on the body of a supermanifold. The structure of the
underlying base supermanifold M in the Cartan geometric framework, however, is
encoded in the super soldering form E = pryp © A when restricted on bosonic con-
figurations (see also the discussion in Section 3.6 below). In fact, let 77 = ker(w|(s))
be the horizontal distribution induced by pullback of the Ehresmann connection
@ := pry oA to B(S). By the super Cartan condition, it then follows that the restriction
6 := Elg(s) € Q' (P, A ® g/b) yields an isomorphism

bp: My — A®g/h (3.80)
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3. Supergravity and super Cartan geometry

of free super A-modules at any p € P. Horizontal vector fields on # are in one-
to-one correspondence with smooth vector fields on the base supermanifold M. If
X € I'(T'M) is a smooth vector field and X its horizontal lift, then X, in particular,
defines an infinitesimal bundle automorphism. By H-equivariance, it follows that
(X*|9) defines a H-equivariant smooth function on M with values in A ® g/9. Thus,

to summarize, we have an isomorphism
6: T(TM) > H®(P,Aeg/h)™, X — (X*|6) (3.81)

Since the super Cartan geometry is metric, according to Corollary 3.3.11, the super
soldering form ¢ induces a super metric g on M which, w.r.t. any local section s € T'(P)
of the principal super fiber bundle, takes the form

g= )Nl (5°6) ® (s°6)7 (3.82)

where we have chosen a homogeneous basis (¢;); of /b and set .7;; := (e, ¢;) € C.
With respect to this metric, the base (M, ¢) has the structure of a super Riemannian
manifold. We now want to introduce the super analog of an infinitesimal isometry on a
super Riemannian manifold.

Definition 3.5.1. Let (M, g) be a super Riemannian manifold. A smooth vector field
X € I'(T M) is called a Killing vector field if g is constant along the flow generated by
X, that s,

Lxg=0 (3.83)

Since Lx,y] = [Lx, Ly] for any smooth vector fields X and Y, Killing vector fields
form a super Lie subalgebra £ (M, g) of T'(T'M).

In the supergeometric framework, Killing vector fields X € £(M, ¢) fall into two
categories depending on their grading. In context of the super Cartan geometry, we will
call an odd Killing vector field X € ¥(M); a Killing spinor. To explain its name, let
us consider for example the super Cartan geometry corresponding to N = 1 Poincaré
supergravity and let X € ¥(M); be a odd Killing vector field. Via the super soldering
form, this then corresponds to an odd smooth function

e= HY(P, A" Y = T(P Xgynr (15 A® 1)y (5.84)

with t = R & AR the super Lie algebra of the super translation group 71314 If one
restricts to the bosonic sub supermanifold M this then implies that € defines a section
of the associated spinor bundle, that is, it defines a Majorana spinor. Thus, Killing
spinors of the super Riemannian geometry, induced by the metric reductive Cartan
geometry, are associated to Majorana spinors.
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3.5. Application: Killing vector fields and Killing spinors

Note that odd Killing vector fields on a supermanifold vanish when pulled back to
the underlying bosonic supermanifold M, := S(B(M)). Thus, they define trivial
infinitesimal isometries of the bosonic Riemannian manifold (M, go) with gy the
even part of the supermetric g. Neverthless, existence of Killing spinors, in general, may
still impose strong restrictions on the structure of the underlying bosonic geometry. In
fact, given two Killing spinors X, ¥ € (M, ¢); their (graded) commutator [X, Y] €
t(M, g)o defines an even Killing vector field which can be nonvanishing when pulled
back to the bosonic submanifold.

To illustrate this, let us consider the homogeneous super Cartan geometry (7 : G —
G/H, Onmc) given by the super Klein geometry (G, H) = (OSp(1]4), Spin* (1, 3))
corresponding to super anti-de Sitter space M := G/H (see Example 2.3.17) where
Ormc denotes the Maurer-Cartan form on G. On 0sp(1]4), we can define a smooth
Ad-invariant super metric .% induced by the supertrace str on Mat(1[4, A) setting

(X, Y):==str(X - Y), VX,Y €Lie(G) (3.85)

This yields an orthogonal decomposition of 0sp(1[4) = R>® & spin*(1,3) & Ag into
Ad(H)-invariant subspaces generated by momenta and Lorentz transformations Py and
M, respectively, as well as four Majorana charges Q,, such that (P, Py) = L2;7 1]
and . (Qx, Qp) = %Ca[g. Thus, on g/h = RY® @ Ag, .7 takes the form

L2;7 0
= 1 (3-86)
0o ;C
Let furthermore,
E = Pry/p © Omc = 61])1 +¥%Qy (3.87)

be the super soldering form which induces a super metric ¢ on G/H via (3.82). Accord-
ing to Definition 3.4.1, an infinitesimal automorphism X € aut(&G) needs to satisfy

Ry X=X, VheH (3-88)

Thus, in particular, it follows that infinitesimal automorphisms are provided by right-
invariant vector fields on G. In fact, it follows that right-invariant vector fields are Killing
vector fields of the induced super Riemannian geometry (M, ¢). To sce this, note that
for right-invariant and left-invariant vector fields X and ¥ on the super Lie group G,
respectively, it follows that

(YILxE) = (-0)* (X (Y|E) - ([X,Y]IE))
= (-n)*ITX(Y|E)y =0 (3.89)
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3. Supergravity and super Cartan geometry

since left- and right-invariant vector fields commute® and (Y| E) is constant by left-
invariance. But, since, atany ¢ € G, the left-invariant vector fields yield a homogeneous
basis of Tg G, this implies Ly £ = 0 so that, by (3.82), X is indeed a Killing vector
field. According to our definition above, odd right-invariant vector fields define Killing
spinors which can be identified with g; = Ag, that is, they are Majorana spinors. Let
€ := €*Q, € g1 be such a spinor. Using (3.60) and Ly E = 0 for any right-invariant
vector field X, it then follows in particular (note that the super Cartan curvature vanishes
by the Maurer-Cartan equation (3.4) which equally holds also in the super category)

’ 1 ’
Ly =D®e — ielyje =0 (3.91)

where we set €’ := ¢,z E. Spinors satisfying an equation of the form (3.91) are called
twistor spinors [144]. Thus, we see that odd Killing vector fields of the super Riemannian
manifold (M, g) correspond to twistor spinors.

Next, let €, 7 € g1 be two Majorana spinors and ek, ;7R be the corresponding right-
invariant vector fields. Since the commutator of two right-invariant vector fields is again
right-invariant, the bilinear K* := [eR, ;7R] again defines a Killing vector field. Using,
[eR, z;R] = —[e, z;]R, it follows

x . L
K" = —ey1;7P[R - EeyUVMIR] (3.92)

As K™ is purely bosonic, its pushforward K := 7, K™ defines, in general, a nonvanishing
Killing vector field on the bosonic semi-Riemannian manifold (Mo, go), i.e., ordinary
D = 4 AdS spacetime.

Remark 3.5.2. Much more generally, in the algebraic framework, in [144], it was shown
that for the split supermanifold S(Er, M) associated to a Majorana bundle Fr X M —
M with M spin, odd Killing vector fields of the corresponding super Riemannian
geometry precisely correspond to twistor spinors. Its highly suggestive that any super
Cartan geometry corresponding to Poincaré supergravity is of this form. More precisely,
the principal super fiber bundle may be of the form  — S(Eg, M) with P a spin-
reduction of the frame bundle .# (S(Eg, M)). This is supported by the fact that the
super soldering form induces frame fields on the base supermanifold which are of the
form as stated in [144].

¢ A direct proof is given using the algebraic Definition 2.3.2. Let X and ¥ be homogeneous right- and
left-invariant vector fields on G, respectively. Then,

YoX =1®Y,0p"0X =100 X®@Toy" = (—1)‘X||Y|XOIL®on‘u* = (- X0y (3.90)
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3.6. On the role of the parametrizing supermanifold

Remark 3.5.3. In physics, Killing spinors appear by studying consistency conditions
for the bosonic background of solutions of supergravity theories. For instance, let us
consider a super Cartan geometry corresponding to N' = 1, D = 4 AdS supergravity.
As will be discussed in detail in Chapter s, the super Cartan connection is again of the
form (3.46) and the supersymmetry transformations of the individual field components
are given by

1

1
del = —e';/lgk, o = DWe - 7€

1
I g_ 1 1
> yre and Jew o7 éyly (3.93)

One may then be interested in the structure of the bosonic background of a general
solution of the SUGR A field equations. As will be argued in Section 3.6 below, based on
the considerations in algebraic QFT [76,77], the parametrizing supermanifold S may
be interpreted as the field configuration space. Bosonic (c-valued) field configurations
taking values in the ordinary complex numbers are then encoded in the body B(S). But,
if one then pulls back the field variations (3.93) to the underlying spacetime manifold
B(M), the fermionic fields, as being anticommutative, simply vanish. Hence, if the
bosonic background solutions are required to be consistent with supersymmetry, there
has to exist a nontrivial spinor field € such that

1

D@ —
€ 2L€

Tyre =0 (3.94)

Thus, again, this leads back to the Killing spinor equation (3.91).

3.6.  On the role of the parametrizing supermanifold

The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

As we have frequently observed in the previous sections as well as Chapter 2, among
other things, studying parametrized supermanifolds is mandatory in order to incorporate
nontrivial fermionic degrees of freedom on the body of a supermanifold. For instance,
for the action SN=1(A) corresponding to Poincaré supergravity (Eq. (3.51) and (3.52)),
one has

SN=1(A) :/ ' € H*(S)o (3.95)
M

that is, the action defines an even smooth map on the underlying parametrizing super-
manifold S. If S would be trivial, this then implies that the fermionic fields contained
in the action would simply drop off, that is, the action reduces the standard action of
ordinary Einstein gravity.
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3. Supergravity and super Cartan geometry

It follows from the definition of super connection forms on parametrized super fiber
bundles that all physical quantities transform covariantly under change of parametriza-
tion. More precisely, let 1 : 8" — S be a change of parametrization. Then, the super
Cartan connection A transforms via A — A*A (see Eq. (2.238)) so that for the action
of the theory it follows

SN A) - SN A) = 2 SNUA) € HX(S), (3.96)

This may be regarded as the mathematical realization of the physical requirement that
the physical theory should not depend on a particular choice of a parametrizing super-
manifold.

In what follows, we want to further analyze the structure of field configuration space of
Poincaré supergravity and work out explicitly the relation to pAQFT [76,77]. However,
let us emphasize thata full consistent treatment requires the study of infinite-dimensional
supermanifolds. Hence, in the following, we will only sketch the main ideas behind
such a link.

Choosing a reference connection, the configuration space of the theory can be identified
with Q'(M)s, Ad(Ps))o. Since, by the rbeonomy principle [72], we are actually only
dealing with the pullback of super connections on the body of the supermanifold, in
what follows, it suffices restrict on forms defined on the body A4 := B(M) so that, for
a specific choice of parametrization S, the configuration space C of the theory can be
taken to be

C:=(HY(S)@Q (M, Pxpa8)o=H"(S) ke H(S1®F (3.97)
where I denotes the infinite-dimensional Z,-graded vector space given by
F:=Q'(M,E) = Q' (M, Ey) & Q' (M, E)) (3.98)

Here, E := P Xaq g is the associated bundle which itself carries the structure of a
super vector space with even and odd part respectively given by Ey = P Xaq4 g0 and
Ey = P X4 g1 with E; the spinor bundle of Majorana fermions. For @ € C it follows
that, forany s € S, @(s) defines an element of the superspace

F(A) :=(FOAy=FoMA®F®A (3.99)

where A is the Grassmann algebra over which S is modeled as a /> supermanifold.
Hence, in this sense, it follows that one can identify the configuration space C with the
space of H*-smooth functions on S with values in the superspace F'(A).
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3.6. On the role of the parametrizing supermanifold

So far, our consideration was based on the choice of a particular parametrizing superman-
ifold S. However, as explained at the beginning of this section, by definition of super
connection forms defined on parametrized principal super fiber bundles, all the above
constructions behave covariantly under change of parametrization. Due to this property,
one may ask the question, whether there exists a particular choice of a parametrization 8,
possibly infinite-dimensional, such that any field configuration associated to some finite
S can be obtained via pullback. Hence, § should be suitably large enough to encode all
the configurations associated to S-parametrized field theories with S finite.

In fact, this idea has been first studied by Schmitt in [73] where, in this context, a theory
of infinite-dimensional analytic supermanifolds has been developed. In the following,
we want to sketch this idea using the Molotkov-Sachse approach to supermanifold
theory [98, 99], more precisely locally convex supermanifolds as considered in [110], as
this seems to be the more established approach to this subject. In fact, as already outlined
in the introduction, the Moltokov-Sachse approach can be regarded as a generalization of
the correspondence between finite-dimensional algebro-geometric and Rogers-De Witt
supermanifolds via the functor of points prescription to the case of infinite dimensions.
This is actually one of the reasons why we have focused on the Rogers-DeWitt approach
in this work.

To find a suitable candidate for 8, note that, for any A € Ob(Gr), the superspace F(A)
can be endowed with the structure of a locally convex space by choosing a particular
locally convex topology on F and extending it to F(A) using the product topology. In
this way, the assignment Ob(Gr) > A — F(A) induces a functor

(F: Gr — Top) € TopGr (3.100)

from the category of superpoints to the category Top of topological spaces. Hence,
F defines a supermanifold (more precisely, a superdomain) in the sense of Molotkov-
Sachse [98, 99, 110].

Next, note that the parametrizing supermanifold S, as a H* supermanifold, can be
regarded as a A-point S = S(A) of a particular algebro-geometric supermanifold S.
On the other hand, via the functor of points prescription, S itself induces a functor
S: Gr — Top and thus yields a Molotkov-Sachse supermanifold (for a proof see,
e.g., [99]). Hence, if we do not focus on a particular Grassmann algebra, according to
the discussion above, we may identify the configuration space C with (SC* (S)®F),,
i.e., smooth functions (in the sense of Molotkov-Sachse) on S with values in F. We now
make the important assumption that this space can be identified with SC* (g, F), that
is, the space smooth maps between the infinite-dimensional supermanifolds S and F.
Note that this would be trivially the case, if F* were finite-dimensional.
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3. Supergravity and super Cartan geometry

Hence, in this case, it follows that any @ € C can be identified with a morphism ¢ :
S — F. But, note that g = g (xp) with xz :=1id : F — F theidentity morphism.
Hence, any field configuration @ associated to a particular parametrizing supermanifold
S can be obtained via pullback of xz w.r.t. a (unique) morphism g : S — F. As
in [73], we may therefore call x7 a fundamental coordinate and the morphism g the
classifying morphism of the field configuration @. Hence, to summarize, based on these
observations, this suggests setting § := F. With slight abuse of terminology, in what
follows, we will also often refer to § as a configuration space.

As shown in [110], similar to the finite-dimensional case, it turns out that any smooth
function /' € SC% (F) = SC®(F,R!") on F can be uniquely described in terms
of a so-called skeleton (f,,), consisting of smooth maps between locally convex spaces
fn: B — Al (F, R, 2z € Ny, from F to Al* (£, R, ie., the space of graded

symmetric z-multilinear smooth functionals on /1. Thus, we can make the identification
SC*(F,RIIY) = C*(F, Al(F,R1) (3.101)

It is interesting to note that (3.101) is precisely the field configuration space as considered
in [76,77] in context of pAQFT. There, among other things, this space has been con-
sidered in order to (classically) consistently incorporate the anticommutative nature of
fermionic fields. As we see, here, it arises quite naturally studying relative supermanifolds.

To make this link to the description of fermionic fields in pAQFT even more precise, let
us choose a mutual local trivialization neighborhood of A1 and the vector bundle E. Let
(e4) 4 with A € {I, a} be a corresponding homogeneous basis of local sections of E.
De?o?nposing the fundamental coordinate x7 w.r.t. the homogeneous basis (¢ 4) 4 and
evaluating on coordinate differentials d,| , at any point p € M, it follows that the odd
components induce smooth functionals Yy (p) € (R)',with (K) =1"(T"M ® E;)
the topological dual of £, via ‘I’;‘ (p) = pr, © (9l plx5(+)) such that

‘I’Z(p) . >R xR, Y- %f‘(p) (3.102)

Thus, it follows that, in this framework, fermionic fields are described in terms of odd
evaluation functionals on the configuration space. This is exactly the interpretation of
(classical) anticommutative fermionic fields in pAQFT [76,77]. Given two fermionic

fields Yy (p) and ‘I’f (p) at the same point p € M, their product is defined via the
ordinary wedge product yielding the bilinear map

V()Y (p) = Y2(p) A5 (p) = —Y5(p) A YE(p) (3.103)

so that, in this sense, the fermionic fields are indeed anticommutative.
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3.7. Discussion

3.7. Discussion

In this chapter, we have studied the geometric approach to supergravity. To this end, we
provided the mathematical foundations for the formulation of super Cartan geometries.
A crucial ingredient for supersymmetry is the anticommutative nature of fermionic
fields. However, as we have seen, modeling anticommuting classical fermion fields
turns out to be by far non-straightforward. Again, a resolution is given considering
enriched categories as studied in detail in Chapter 2 based on standard techniques in
algebraic geometry. This procedure requires the choice of an additional parametrizing
supermanifold which encodes the fermionic degrees of freedom. Since the choice is
arbitrary, one needs to ensure that physical quantities behave functorially under a change
of parametrization. This property follows naturally, if one works in the category of
relative supermanifolds. This also reflects the interpretation of supermanifolds in the
sense of Molotkov-Sachse [98,99] in terms of a functor Gr — Top assigning Grassmann
algebras to Rogers-DeWitt supermanifolds (see Remark 2.2.13).

Having formulated the notion of a super Cartan geometry in the framework of enriched
categories, we then turned towards applications in context of supergravity. More pre-
cisely, we considered D = 4, N' = 1 Poincaré supergravity as a metric reductive super
Cartan geometry and analyzed local symmetries of this model. In this context, we also
discussed a possible embedding of the Castellani-D’Auria-Fré approach to supergrav-
ity [71,72,131,132,142] into the present formalism. In this framework, it follows that,
under certain conditions on the fields as well as the on the individual components on
super Cartan curvature associated to the super Cartan connection, supersymmetry
transformations have the interpretation in terms of infinitesimal superdiffeomorphisms
along the odd directions of the underlying base supermanifold.

Alternatively, using the Cartan geometric description as well as the strong link between
super Cartan connections and Ehresmann connections as provided in detail in Section
3.3, it follows that supersymmetry transformations can also be interpreted in terms of
gauge transformations on an associated principal super fiber bundle. This interpretation
will in fact play an important role in explaining the manifest enlarged gauge symmetry
of the chiral theory to be discussed in Section s.4.

Finally, Killing vector fields on super Riemannian manifolds arising from metric reduc-
tive super Cartan geometries were discussed. In this context, odd Killing vector fields
were identified with Killing spinors typically arising as consistency conditions for the
bosonic background of solutions of supergravity with supersymmetry.

Furthermore, using the functorial dependence of the supergravity action as well as the
resulting configuration space of the theory on the underlying parametrization super-
manifold, we sketched a concrete link to the description of anticommutative (classi-

cal) fermionic fields in pAQFT. More precisely, by adapting the idea of [73] to the
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3. Supergravity and super Cartan geometry

Molotkov-Sachse approach to supermanifold theory a kind of infinite-dimensional uni-
versal parametrization supermanifold was constructed such that any field configuration
defined on a finite-dimensional parametrization can be obtained via pullback. Fermionic
fields on this universal parametrization supermanifold then turn out to be described in
terms of evaluation functionals on configuration space in complete analogy to pAQFT.

There are many possible and interesting extensions of the present formalism, both from
the mathematical and physical perspective. On the one hand, It would be interesting to
see how extended supergravity theories can be described via super Cartan geometries in
the framework of enriched categories as presented here. The case of pure N = 2, D = 4
AdS SUGRA will be discussed in Section s.3. In this context, it would also be very
interesting to compare the present formalism to other approaches towards geometric
formulations of supergravity theories [131,132,145].

On the other hand, it would be also interesting to generalize the formalism to include
higher dimensional supergravity theories. Higher dimensional supergravity theories
typically involve higher gauge fields. Connection forms on higher principal bundles are
studied for instance in [119,120]. It would be very interesting to see how these approaches
can be related. As will be discussed in Chapter 5.4, the Cartan geometric approach
to supergravity leads to an intriguing geometric structure of the corresponding chiral
theory. Hence, generalizing this formalism to supergravity theories with extended SUSY
or even higher spacetime dimensions may also have important applications in LQG.
Among other things, the geometric approach may lead to a very natural quantization
scheme of higher gauge fields in the framework of LQG. For an interesting treatment
of higher gauge fields in a complementary approach that does not keep a part of the
supersymmetry manifest but can handle higher dimensional SUGR A theories see [68].
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4. Loop quantum supergravity and the
quantum SUSY constraint

4.1. Introduction

The content of this chapter has been reproduced with permission from [2], with slight
changes to account for the context of this thesis. Copyright (2021) by the American
Physical Society.

About ten years after the discovery of supergravity, Jacobson [62] introduced a chiral
variant of the real N = 1 Poincaré supergravity action using Ashtekar’s self-dual connec-
tion variables. Soon after, Fiilop [63] extended this theory to anti-de Sitter supergravity
including a cosmological constant where he also pointed out some interesting remnant
supersymmetric structure in the resulting Poisson algebra between the Gauss and left
SUSY constraint. This paved the way towards a new approach to non-perturbative
supergravity in which parts of SUSY were kept manifest." In particular, this was more
intensively studied by Gambini and Pullin et al. [84] as well as Ling and Smolin [8s, 86],
where the notion of super spin networks first appeared. Later it was also considered by
Livine and Oeckl [147] in the spinfoam approach to quantum gravity.

Canonical supergravity with real Asthekar-Barbero variables was for the first time con-
sidered by Tsuda [65] where a generalization of the chiral N' = 1 supergravity action
to arbitrary real Barbero-Immirzi parameters was found. In parallel, Sawaguchi [64]
constructed the phase space in terms of real Ashtekar-Barbero variables by performing a
canonical transformation of the ADM phase space. However, as mentioned already in
the main introduction, these considerations did not include a fully consistent treatment
of half-densitized fermionic fields as proposed by Thiemann in [80] in order to solve the
reality conditions to be satisfied by the Rarita-Schwinger field. Generalizations in the
classical setting have been studied for instance in [148], where Holst actions for extended
D = 4 supergravity theories have been constructed.

Finally, these considerations have been extended to higher spacetime dimensions by
Bodendorfer et al. [67, 68] based on a new method discovered by the same authors
in [69] allowing them to construct Ashekar-Barbero type variables in case of more
general spacetime dimensions going beyond the limitations of the variables usually
applied in LQG. Since, we are not working in higher dimensions, we use the standard
Ashtekar connection, shifted by some torsion terms. These are slightly different variables
for the gravitational field than [67, 68]. However, [67] uses half-densitized variables for

" For an earlier approach to the canonical quantization of supergravity using ADM variables (in which

this manifest part of SUSY is absent) see [146].
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4. Loop quantum supergravity and the quantum SUSY constraint

the Rarita-Schwinger field, and it introduces an ingenious technique for dealing with its
Majorana-nature, which we will also employ.

In this work, we will be mainly interested in the N' = 1, D = 4 case, in particular,
in the implementation of the SUSY constraint in the quantum theory. In the chiral
approach, Jacobson studied the classical Poisson algebra generated by the left and right
SUSY constraints which maintain the right balance between fermionic and bosonic
degrees of freedom. In particular, it was shown that the Poisson bracket among the
SUSY constraints generates the Hamiltonian constraint which is in fact a generic feature
in canonical supergravity theories. Similar results obtained in [64] using real Ashtekar
variables supported this hypothesis showing that, on the constrained surface of gauge-
and diffeomorphism-invariant states, the Poisson bracket between the SUSY constraints
is indeed proportional to the Hamiltonian constraint.

This has interesting consequences implying that the SUSY constraint is superior to
the Hamiltonian constraint in the sense that the solutions of the SUSY constraint
immediately are solution of the latter. Hence, in case of presence local supersymmetry,
the SUSY constraint plays a similar role as the Hamiltonian constraint in ordinary field
theories. In fact, it has been conjectured early on that the SUSY constraint could be
understood as the “square root” of the Hamilton constraint, in the same sense and
with the same resulting simplifications as the relation between Dirac and Klein-Gordon
operator [149—151]. This is precisely what makes its study in LQG particularly interesting.
However, an explicit implementation of the SUSY constraint in the quantum theory
has not been considered so far in the literature. In fact, the SUSY constraint turns out to
have a different structure than the Hamiltonian constraint which also requires special
care for its regularization. As a result, its implementation in the quantum theory leads
to an operator which has a different structure than the Hamiltonian constraint operator.
It would be interesting to check by computing the commutators, in which sense these
operators can be related to each other. This may also fix some of the quantization
ambiguities. In fact, for a certain subclass of symmetry reduced models, we will explicitly
show in Chapter 6 that such a strong relationship can indeed be maintained in the
quantum theory. It would be of great interest to see whether these results can be extended
to the full theory.

The structure of this chapter is as follows: At the beginning, in Section 4.2, we will review
very briefly some important aspects about Clifford algebras and Majorana spinors. We
will use this opportunity to fix our notation and conventions as well as to collect impor-
tant identities used in the main part of this chapter. In Section 4.3, we will subsequently
discuss the canonical analysis of the Holst action of D = 4, N' = 1 Poincaré super-
gravity as introduced in [65] filling in some details concerning half-densitized fermion
fields. We will finally derive a compact expression of the supersymmetry constraint that
will be used for the implementation in the quantum theory. The quantization of the
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4.2. Some notes on Clifford algebras and Majorana spinors

Rarita-Schwinger field will be discussed in detail in Section 4.5.1 following the proposal
of [67] performing an appropriate extension of the canonical phase space. We will also
use this occasion to point out some interesting mathematical structure underlying the
usual quantization scheme of fermion fields in LQG also discussed in more detail in
Section s.5.4 in the context of the manifestly supersymmetric approach to quantum
supergravity.

Finally, in Section 4.5.2, we will turn to the quantization of the SUSY constraint in the
quantum theory. In particular, an explicit expression of the quantum SUSY constraint
will be derived using a specific adapted regularization scheme. In this way, we will
also find some explicit formulas for its action on spin network states which may be of
particular interest in order to find relations to the standard quantization scheme of
Hamiltonian constraint. In Section 4.5.3, possible solutions of the SUSY constraint
will be discussed on a qualitative level showing that general solutions may indeed be
supersymmetric in the sense that they need to contain both fermionic and bosonic
degrees of freedom.

As already explained at the end of the main introduction of this thesis in Chapter
1, in the following, we will drop many mathematical details such as the underlying
parametrization supermanifold in order to simplify the notation and to make the fol-
lowing discussion easier accessible for the reader.

A list of important symbols as well as an overview of our choice of conventions concern-
ing indices, physical constants etc. can be found in the List of symbols, notations and
conventions.

4.2. Some notes on Clifford algebras and Majorana spinors

In this section, we will only recall some essential aspects of Clifford algebras and Majo-
rana spinors. To this end, we will mainly follow the mathematical exposition in [104],
although our conventions are those in [152].

Let (R*, #) be the inner product space where 7 is a symmetric bilinear form of signature
(s,2), i.e., with respect to the standard basis {¢;} of R”, [ = 0,...,D — 1 with
D :=s5+t,onehas

( ) -1, for/=0,...,5—1 (4)
er,er) = 4.1
7 +1, forl=s,...,D—-1

andy(er,ey) = 0for I # J.Incases = 1,7 isalso called the D-dimensional Minkowsk:
metric. The Clifford algebra CI(R™, 7) is an associative algebra over the reals with unit
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4. Loop quantum supergravity and the quantum SUSY constraint

1 generated defined via D elements y; € CI(R*, ) called gamma matrices satisfying
the anticommutation relations

Ly, v7le =291 (4.2)

It follows that CI(R*, ») is real vector space of dimension dim CI(R*,») = 2P
spanned by the unit 1 together with elements of the form

Vhbly = YILYL -+ VI (4.3)

fork =1,..., D, where the bracket denotes antisymmetrization. A basis of the Clifford
algebra is provided by the set

{]l’ 713 711123 7/11.”113} (4-4)

where [} < [, < ... < I, with0 < » < D also referred to as the rank of ;/[1"'1’.

It follows that the }/11"'[V can be subdivided into two sub classes of symmmetric and
antisymmetric elements. More precisely, there exists a unitary matrix C called charge
conjugation matrix such that, w.r.t. that matrix, the basis elements satisfy

(Cyiil = —pCyft (45)

for certain z € {£1}. The coeflicients ¢, are fixed by the choice of 7y and #; via £, = —£,,
t3 = —t; and g = £,

In concrete applications, we will usually work in Lorentzian signature, i.e., s = 1 and
t = D — 1. In this case, for even spacetime dimensions D, a useful formula which will
often be used in the main text interrelating elements of the form (4.3) of different rank
7 is given by the following

Lbd. _ ~24 1 Ly Jp-
7,12 7*_(_1)2 € 1l ]Dr},1

(D _ }")' S Jp-r (46)

for 0 < » < D where ¥, denotes the unique highest rank Clifford algebra element also

commonly denoted by y. = yp.1 defined as

Vi 1= (—l')%-‘-l}/o}/l <.« YD-1 (47)

LIp

Moreover, € = —¢ denotes the completely antisymmetric symbol in D
LI

01---D-1

spacetime dimensions with the convention € = 1. Finally, another important
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4.2. Some notes on Clifford algebras and Majorana spinors

identity that we will frequently use is given by the Fierz rearrangement formula which,
in case of even spacetime dimensions D, states that

D
1 1
M = D72 Z ﬁ?’lrlrtr(?’[r har) (4.8)

r=0

for an arbitrary D x D-matrix M . The Clifford algebra has the structure of a graded alge-
bra via the decomposition CI(R**, ) = CI(R"*, ) ® CI(R*, 7)1 where CI(R*, ),
for 7 = 0 or 1 is the subalgebra generated by elements of the form (4.3) containing an
even resp. odd number of elements ;. The even part CI(R*/, 7)y contains a subset
Spin™ (s, #) which turns out to have the structure of a Lie group. In particular, it follows
that this Lie group defines a universal covering of the orthochronous pseudo-orthogonal
group SO* (s, £) together with a covering map

A* 2 Spin* (s, £) — SO* (s, ) (4.9)

In case of Minkowski spacetime in D = 4, Spin*(1, 3) is isomorphic to SL(2, C). The
Lie algebra spin® (s, #) of Spin* (s, #) is generated by the elements

1
Miy = 5y1) (4.10)

In this work, we are mainly concerned about four spacetime dimensions. In fact, most
of the computations do not require a specific representation of the Clifford algebra.
However, in Section 4.5.1, it will be worthwhile to choose a representation in which
the gamma matrices are explicitly real which is also referred to as the real or Majorana
representation of the gamma matrices. For instance, in case D = 4, a concrete realization
of such a representation is provided by (for a discussion in case of arbitrary even spacetime
dimensions see, e.g., [152])

0o -1 1 0 0 0 d 0 o ( )
= s = 5 = an = I
7 1 0 n 0 -1 72 o 0 & o 0 *

where o7, 7 = 1, 2, 3 denote the ordinary Pauli matrices satisfying the product relation

o0 = 01 + z'el.jko*/e (4.12)

On the other hand, in context of the quantization of the SUSY constraint to be dis-
cussed in Section 4.5.2, it will prove particularly beneficial to work instead in a chiral
representation or Weyl representation. This will also play a prominent role in the context
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4. Loop quantum supergravity and the quantum SUSY constraint

of self-dual variables as discussed in detail in Chapter s and 6. In this representation, the
gamma matrices take the form

0 o d 1 o0 (4.13)
= an . = I
" g 0 7 0 -1 5

where 07 := (=1, 0;) and 77 := (1, 0;). It follows that, in this representation, the
generators (4.10) of spin™ (1, 3) then take the form

1 1 |[|oro7r —oyor 0
My =yy=2""7""77 _ (4.14)
2 4 0 aroy — ayor
Moreover, they satisty well-known Lie algebra relations
(Mrj, Myl =njxMrr—nixMpp = njiMix +priMyk (4.15)

The charge conjugation matrix C is given by C = 7y°y! and, according to (4.5) with
ty = 1and £, = —1, satisfies the symmetry relations

Cl=-C, (Cyn"=Cyroyl =-CyiC and (Cyr))" =Cyry  (416)

Next, let us briefly say something about Majorana representations and Majorana spinors.
Letx : Spin™(s,#) — GL(Ap) be the complex Dirac representation (for a detailed
account on complex Dirac representations in arbitrary spacetime dimensions see for
instance [104] and references therein). A Majorana representation is then defined as
an induced representation on a real subspace of the complex vector space Ap. More
precisely:

Definition 4.2.1. The complex spinor representation « is called Majorana it it admits a
real structure o, i.e. a complex antilinear map o : Ap — Ap such that o is Spin® (s, £)-
equivariant

cgox(g)=x(g)oc (4.17)

Vg € Spin*(s,#) and 7 is involutive o = idp,.
The real structure defines a proper real Spin* (s, #)-invariant subspace

Ax = {y € Aplo(y) =) (4.18)

of Ap of real dimension dimg Ag = dimc A p. Moreover, due to Spin* (s, £)-equivariance,
itinduces a real sub representation

kg : Spin®(s,7) = GL(AR) (4.19)
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of the complex Dirac representation of Spin* (s, #) on Ag called the Majorana represen-
tation of Spin™ (s, 2).

Choosing a basis of A p, one can write the condition ¥ = o () equivalently in the form

v =By (4.20)

which is also often referred to as the Majorana condition in the literature where B is a
complex matrix satisfying B* B = 1. This matrix is related to the charge conjugation
matrix C via B = itCy° where £, € {1} depends on the signature and the dimension
of the spacetime. In the case of Minkowski spacetime in four spacetime dimensions, one
usually sets £y = 1 in which case the charge conjugation matrix is given by C' = z';/3 71
and therefore, in the chiral representation,

0 —io
B = 70717/3 = ( 2) (4.2,1)

10 0
For a Dirac fermion ¢ = (y, ¢)T, the Majorana condition (4.20) then reads

V' =By © y=-ing'orp=iny" (4.22)

In the Majorana representation (4.11), one has C' = 7y so that, in this case, the matrix
B reduces to the identity matrix B = 1. Hence, it follows that the Majorana condition
(4.20) is equivalent to ¥* = ¥, that is, in the Majorana representation the Majorana
spinor ¥ is explicitly real.

Finally, by convention, the gamma matrices y; are defined to have the natural index
position (y7)* s whereas spinors are denoted by ##. On the other hand, the conjugate

spinor 1} = %TC , by definition, has the natural index position % = ¥,. Indices are
raised and lowered w.r.t. %4 .= (C~17)%€ and C, p = C,pg with the convention

y*=C*yy and vy, =yPCy, (4.23)

In the Weyl representation for D = 4, the individual 2-component Weyl spinors con-
tained in the Dirac (resp. Majorana) spinor ¥ * are denoted by ;kA and ¢4, respectively,
such that % = (;kA s ;}Ar)T. Since C = diag(7e, 7€) with € := 773 the completely anti-
symmetric symbol which itself carries the index structure €48 and 4%, respectively,
in accordance with (4.23) up to global factor of +7, primed and unprimed Weyl spinor

indices are raised and lowered via
va=y"ega and y=ePyy (4.24)
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4. Loop quantum supergravity and the quantum SUSY constraint

and analogously for primed indices. With respect to chiral spinorial indices, o7 and 77

. ’
are written as G'IAA

7

and 7 4 4. These can be used to map the internal indices 7 of the

co-frame ¢’ to spinorial indices setting

AA I _AA
e,” =e,0] (4.25)

Dueto egze = (TZ.T , one has the useful formula

BB’ _
Traq = 07" €BAER 4 = =TI 44 (4.26)

Using (4.26), it is easy to see that

I AA _ I
23]

Tyn%; = (4.27)

Finally, in view of the canonical analysis of chiral supergravity to be discussed in detail
in Chapter 6, let us mention that in a 3+1-decomposition M = R X X of the four

dimensional spacetime M, one considers the spinor-valued one-forms efA which are
related to the spatial metric 4 on 2 according to
AA

29,40 = —€q44€), (4.28)
with 2 = 1, 2, 3. These, together with the future-directed unit normal vector field nA4
which is normal to the time slices Z; and satisfies

’ ’

nAA/efA =0 and }’ZAAIWAA =2 (4.29)

form a basis of spinors with one primed and one unprimed index. On then has the
following important identities

nAAfﬂAB, = 56: (4-30)

naan®d =358 (4.31)
AB _ s 3B _ .k AB'

GianT] " = i1y i€, nqq0] (4.32)
BA B, .k BA

Gigao; " = =050, +ic nayay (4.33)

4.3. Holst action for Supergravity in D = 4 and its 3 + 1
decomposition

Recall from Section 3.4 that Poincaré supergravity in D = 4 with N' = 1 supersymme-
try can be described geometrically as a super Cartan geometry modeled on the super
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4.3. Holst action for Supergravity in D = 4 and its 3 + 1 decomposition

Klein geometry (ISO(R1314), Spin* (1, 3)) with ISO(RY*) the super Poincaré group
(Example 2.3.11) with super Lie algebra

iso(RY314) = R @ spin*(1,3) @ Ag (4.34)

The super Cartan connection A = ' P+ %wU My + ¥*Q, splits into the spin
connection w € Q'(P,spin*(1,3)), the soldering forme € Q) (P, R"?) as well

as the Rarita-Schwinger field ¥ € QZUF(P, Ar) with P L M the underlying spin

structure.”

For the purpose of describing supergravity in the context of LQG, we take the Holst
action of N = 1 Poincaré supergravity as stated in [65] which, adapted to our conven-
tions and written in a coordinate-free form, reads? (see also Section s.2.1)

- 1
SY o) = 5 [ 2 A (Bro F@) Leryi

+xe NG A ;ﬂ — D@y (4s)

where ¥ = 87 G and D(“);ﬁ = d¢ + xr«(@w) A ¥ denotes the exterior covariant
derivative of ¢ and

1
(Pgo F(w) = PﬂUKLF(w)KL with P[g XL: 3%5{ Z{BEUKL)

(4.36)
with 3 the Barbero-Immirzi parameter which is either assumed to be real, i.e., 8 € R* =
R\{0}, in case of real variables, or purely imaginary, i.e., £ = +7 in case of the chiral
theory. In this chapter, we are mostly interested in the case of real variables. The chiral
theory will be discussed in detail in the following Chapters. In (4.35), F'(») = dw+wAw
is the associated curvature of @ and

Z:=eAcE€ in(]), spint(1,3)) (4.37)

Note that, in the action (4.35), we have implicitly chosen a local section s : A D
U — P of the bundle so that the differential forms appearing the action are implicitly
assumed to be pulled back to respective differential forms on A4. One needs to ensure
that the equations of motion resulting from (4.35) are independent on the choice of the
Barbero-Immirzi parameter and, at second order, are equivalent to those of ordinary

> Recall that the spin structure arises as the body of the principal super fiber bundle corresponding to the
super Cartan geometry.

3 For convenience, the factor 1/4/x will be absorbed in the Rarita-Schwinger field.
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4. Loop quantum supergravity and the quantum SUSY constraint

N = 1 Poincaré supergravity. To this end, one has to the vary (4.35) with respect to the
spin connection . As this is rarely done explicitly in the literature, let us perform the
variation for a general matter contribution. That is, we consider an action S of the form
S = Su + St-matter, where Sy is the standard Holst action of pure first-order Einstein
gravity and SH.macer is some Holst-like modification of the matter contribution such
that the resulting equations of motion remain unchanged.

First, let us consider the Holst term of pure gravity

Siu=gr [ T A Reo F@) eryir= 5o [ EABoF@) (a)
where (- A -y : Q%(M,spin*(1,3)) x Q?(M,spin*(1,3)) — R is the extension
of the Adjoint invariant bilinear form on spin™(1, 3) to spin*(1, 3)-valued forms on
M . Let us then consider a variation of connection @ + dw. The variation of F(w)
is then given by 0 F(w) = D@ Jw. Since Py o D@ jy = D("’)(P‘g o dw) and
(Z A D(“’)(P[g 0dw)) = —(D@WIZ A Pg o dw) up to a total derivative [105], this
yields

dSy = i/ (D@IT A Pgodw) = —i/ D@ A (Pgodw)ter ks
2k Jym 2k Jym

(439)
Using (4.15), it follows
1
D@ =d(ef Aéd) + waf AL ® [ Mgy, My ]V
=d€1/\€“/—€1/\d€]+a)[]</\ZK]+CU‘[K/\ZIK
NNy (4.40)

with ® = @@/ = d¢/! + wl A X the components of the associated torsion 2-form
O, Inserting (4.40) into (4.39), this yields

1
08y = ——/ ' nel A (Pgodw) ek
kK Jm
1
:__ MNJOEUKL@WeMeN(PﬁoSa)p)KLeg dvol s
=-= / 31017 5N 07101 e en (Pg o dw ) Ll dvolay
=1 [ B 20l + @ eheinl dol (e

K
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4.3. Holst action for Supergravity in D = 4 and its 3 + 1 decomposition

Hence, including the matter contribution, we find for the variation of the total action

1 BS matter
55:/ ——PﬂKL1](2®§#€#K€E+®V eKeL)%)V] Zofmater 5, fjdvolM
M

K Bwij
(4.42)
which vanishes if and only if
v — 3SH-ma er
PKL (2@/’ w1+ O%) = I—Utt (4.43)
with e := det(eé). Applying the inverse
2
(P[g_l)[jKL =7 ﬂ{g (355\} ﬂ€1]KL (4.44)
on both sides of (4.43), this gives
v v - - é\SH-mat er
2®£Iej+®[j:7¢e I(Pﬂl)[]KLTKLt (4.45)

This is the most general formula for the equations of motion of the spin connection for
arbitrary matter contributions resulting from the variation of the Holst action. In case
of N' = 1 supergravity, we have

(;SH—matter 1 Voo 1+ lﬁ}/
W = 6# PPy e ——— 28 VKLY (4-46)
so that
_ oSu. B 1+:8y. 1
1 KL H-matter Voo KL
(Pﬂ )U gwg(L - 2(1+ﬂ2 err 7/#70' 20 (71]"'%51] }’KL) Vo
(4-47)
Since EUKL;/KL = 2{y1 77« by (4.6), this implies
_ oS ng - 1+ l{g 7
1 KL H-matter _ Voo i
R v s TPy M T (m+ 1@71]7*) Vi
ng  uvpa T ]1+l‘lg}/*]1_l.lg7*

R N— P
ey
= —Zfﬂ PV v Ve (4.48)
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4. Loop quantum supergravity and the quantum SUSY constraint

Finally, using e¥”#?y, = iey*’Fy., we find

v 14 K 7 v
26?161 +07, = ZVM’# Pyijve (4.49)

which are exactly the equations of motion of w of N' = 1 supergravity, in particular,
completely independent of the Barbero-Immirzi parameter. These can equivalently be
written in the form [152]

K -
GZV = E%L}’p"/v (4-50)

In view of the canonical decomposition of the action, let us rewrite (4.35) in a coordinate-
dependent form which gives

1
SN‘ / d*x —6‘16] (F(w)/w - zﬂeUKLF(w){ff

1+18y.
28

As shown above, variation of (4.51) yields the same equation of motion as the standard
action (3.51) of N' = 1 Poincaré supergravity. As will be demonstrated explicitly in
Section 5.3.1 in the context of AdS supergravity with N' = 2, reinserting the EOM of w
into the Holst action, the terms proportional to 4 -1 together become purely topological
(see also [148]). Hence, the Holst action coincides with the ordinary one provided w
satisfies its field equations.

+ Py, Dy, (4-51)

The 3 + 1-split of the action (4.51) follows the standard procedure (see for instance [18]
and references therein for a nice review on the canonical analysis of ordinary Einstein
gravity). Since M is supposed to be globally hyperbolic, it is diffeomorphic to a foliation
of the form R X X, where X is a spacelike Cauchy hypersurface. Let ¢ : RX £ — M
denote such a diffeomorphism. Then, for a specific time z € R, we define the time
slice 2, via X, = ¢,(X), where ¢, := $(¢,-) describing the evolution of X in M.
Furthermore, the flow of the time slices induces a global timelike vector field d, which,
on smooth functions f € C* (M), acts via

MHF) = (f g (4:52)

We choose a unit normal vector field # which is normal to the time slices such that there
exists a lapse function N as well as a shift vector field N tangential to the foliation, such
that _

o=Nn+N (4.53)

In order to perform the 3+1-split the action (4.51), we have to decompose the covariant
tensors according to the foliation. To this end, following [153], let us define the smooth
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4.3. Holst action for Supergravity in D = 4 and its 3 + 1 decomposition

geometric distribution M 3 p Y}J‘M = {v € 7},M|g(n, v) = 0} c L,M
together with the projection Pl defined via [153]

I
Pl T,M — T M
v v+ g(n,0)n (4:54)

Vp € M where g denotes the metric on M induced by the soldering form, i.c., g =
7 jeée,{ . By duality, this induces a corresponding projection P on the space of covariant
tensor fields which forany 7" € L((T*M)®*), k € N, is defined as [153]

P\T :=ToPl (4.55)

where the projection on the right-hand side acts on each slot such that the contraction of
any index of (P T") ... with nf yields zero. Thus, for instance, in case of the curvature

tensor F'(w), this yields
P F(w) = F(w) = t,F () A" (4.56)

where we set 7° := g(n,+). As another example, if L, denotes the Lie derivative with
respect to the global timelike vector field d;, one finds

PyLyw =P (l',)tda) + d(a)(&,«))) = NP (i,dw) + Z'Nd(P”a)) + Pydw;)  (4.57)
with w; := w(d;) which yields the important identity
. 1 .
Py (,dw) = N (P”La[a) - l]\*[d(PHa)) - P||da)t) (4.58)

In local coordinates, this reads

1
npt)[pa)ﬂ] = — (Lg[a)ﬂ - ZNbﬁ[ba)ﬂ] - (3450[) (4.59)
2N
where 2, b ... =1, 2,3 are local coordinate indices on X. With these preparations, we

are ready to perform the 3+ 1-split of the action functional (4.51). As the canonical
analysis of the purely bosonic term in (4.51) is very well-known [23] (see also [154] for a
nice treatment), let us only comment on some main steps. By (4.56), it follows that the
decomposition of the curvature tensor w.r.t. the unit normal (co)vector field yields

€ kv pl] KL _ € a bpif KL I 1y KL
Ee'[e}P KLF((‘))W —Eefej]) i Eu +e€]€;n’°P KLFP[#n,,] (4.60)
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4. Loop quantum supergravity and the quantum SUSY constraint

with };LIEL = Zﬁ[ﬂa)f]L + 20K |M|w%L. Using identity (4.59), the last term in (4.60)

[«
becomes
“ 1] KL
eele}n/’P KL };[# 7y
. 1 . .
_ 14 70 i0 kl | _ 07 KL
=— N+/gn’e. (FML - ﬁe lep/t) = N+ge P" nE,,
07 KL K ML
=N+/ge}P" | (anc)[ﬁa)ﬂ] +2nf @i, 41905 )
1 .1 .
=g VaeiL (ﬂa)gl - Eelklwfl) — \ges POy O, E
b 07 KL 07 K ML
- 2N"+\[ge! P oppw a7t 24/qef P™ nf’w[PlMla)d]
1 ; 1 . ,
75;114@/%; - g + 2ES PV, oF | WML
b 07 KL K ML
- NYEFP, (200K, + 208, 0ME) (4.61)
where »
AL =T+ BK! and  E* = \Jge" (4.62)
are the usual (real) Ashtekar-Barbero connection and the canonically conjugate (gravita-
y conjugate (&
tional) electric field, respectively. Here, we set % := —3¢? okl and K7 := 0% for the
p Y a 2€ 11 %a a a
3D spin connection on X and extrinsic curvature, respectively. Moreover, g,,, = d;7¢%.¢’
P p Yy q €46,

denotes the induced metric on 2. The canonically conjugate variables (4.62) satisfy the
nonvanishing Poisson brackets

{°}y(x), EL(9)} = x882820 (x, 9) (4.63)
Furthermqre, in ('4.61), we introduced the Lagrange multiplier 4% := —%e"k ; W+
B =T+ BK]. Since
. 1 . 1+ /32 .
2P% ok M = —A?"emn“gAZ - b K¢, K7 (4.64)

£ k

the two mid terms in (4.61) can be combined to give, after integration by parts and
dropping a boundary term,

1
£

=A!

AL, ES +2E8 P, ok 0t

1

A

1+ B2 .
(aﬂE;Z + eikff%’f,E;) 148 K™, KIES

A
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4.3. Holst action for Supergravity in D = 4 and its 3 + 1 decomposition

1 1+ B2 .
=A;ED2“)E;’ E TﬂKt’”%n’K:Ef’ (4.65)

For the last term in (4.61) proportional to the shift vector field, it follows [154]
b / ML
- NYE; PO’KL (2&[4 5 +2“[4|M|wb] )

a 1 i i
=N EEf (F(ﬂA)db +(1+FYe kZKbeZ) (4.66)
with F(€4)" = 484" + %e"j L £47 A E4* the curvature of the Ashtekar-Barbero con-
nection. Finally, following [154], let us comment on the first term appearing in the
decomposition (4.60). Since ¢ = N /7, this can be written in the form

Eel eﬁp’f F(w)KE = 2«/? @ b(F(w)ZJ ﬁ ¢’ LF(@)%)
NEﬂEb l .
= v (F(r) L+ 20), b{ zej F(»)%)  (4.67)

with F(I') the curvature of the 3.D spin connection I'. Using
4 4 D) o7 i -k
F(D),, = F(“),, - 26D} K, - B¢’ , KIK] (4.68)

it follows that (4.67) can be written as

b ‘L NE?ZEb. p .
a z _ ! z mpn
EelejP L F(w)fF=— i (F( ), — (14 B)eb,, KK (4.69)
2(1
L) +fg)D(r>K’f)

A

Next, let us decompose the fermionic part of the supergravity action (4.51). Following

[65], since €2 = —n"(d;) = N and ¢! = N“¢’,, we find

vpo,7 ]1+l'ﬂ}/* 2] abe 7 lﬂ}/* 1)
6#PW#7J 2[8 D1(/ )%:617%4 ﬂ D( )wf

abc 7 +l'ﬂ)/* w
- Ne %},OTDE v

S
_NdEﬂb[;ﬁd 2?@157/ D( )%_'_
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4. Loop quantum supergravity and the quantum SUSY constraint

wbe -~ L+1iBy. 1
et Var—g (Lm § ;wt]]m%)

_ o 1+ 78y, 1
- 6““%%7{87/ (f)c% + Zw{]}/lﬂh) (4.70)

Hence, taking the left-derivative of kinematical term apearing in (4.70) with respect to
¥ and noticing that fermionic fields are anticommuting, it follows that the momentum
conjugate to ¥/, is given by

- 1+ 78y,
e gy L2 -

These satisty the nonvanishing Poisson brackets
Y (), mg (0} = =85955 (x, 3) (4.72)

In particular, according to (4.71), the canonically conjugate momentum 7 is related to
¥, via the reality condition

Q% =77+ €“b[%;/c7)[g =0 (4.73)
where we set
1+78y.
Pp = 28 (4.74)

If we consider the last term in (4.70), it again follows after integration by parts and
dropping a boundary term

_eﬂb%nmz_z;y* (,;[% N iwy},}]%) el ), +2j8f57* e
_i abeg, 1) m]l +lﬂ/37* ot
Z%ﬂ;—;fg%aﬂ (6"[”%%)
+ %]1 . ;ﬁy* 7€ ‘Wi vy

iz s Z@%D(m ( mh) (4.75)
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4.3. Holst action for Supergravity in D = 4 and its 3 + 1 decomposition

Let us rewrite (4.75) in terms of the covariant derivative of the Ashtekar connection.
Since

, y ‘
g yiy = @y + 208 s

= 2iT yvos + 2K v, (4.76)
we find
L+iBy. pp L +iBy (., i
g YAVIET g (F Ve Yoi = lKﬂVoz')
1 , ‘ ‘ ‘
7 (l"; yeyoi = 1K y0i + 18T yoi + BK 7’*7’0")
_ i ﬂ 7 . 7 . 7 .
= — l'ﬂ (Ad lKﬂ}/*'f'lﬂrd}/*) 7*701
1 i . 7 . 7
=—— (/3/14 + 1/3%7* - i(1+B)K, 7*) Y Yoi
i
_]].+l'{g}’* B i 1+ﬂz 7
_721 A v yoi + /@ K, vi (4.77)
Hence, this yields
1+ lﬂy* (w) _]1 + 1137* (,@A) 1+ ﬂz ;
with

8 18 ;
D} A)% = 0a Y + gﬂAa?’*VOz% (4.79)

With respect to the chiral representation of the gamma matrices, one has

7 7; 0
—VYoi = (4.80)
2 0 7

where 7; = %a’i for 7 = 1,2, 3 is a basis of generators of 51u(2). Hence, in particular,
in the chiral representation the covariant derivative acts separately on the respective
chiral sub components of the Rarita-Schwinger field. We will use this property later
in Section 4.5.2, when we will study the action of SUSY constraint on spin network
states. Note that the appearance of the term ..y, in the covariant derivative in (4.79)
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4. Loop quantum supergravity and the quantum SUSY constraint

is not a coincidence, but follows from the identification of $1(2) as a Lie subalgebra of

spin’ (1, 3) generated by My, = %?’jk such that &4 = —%el‘jkﬁA"Mﬂe which implies
1 i ik 1 i ik 7 ;

KR*(@/.I) = _EﬂA e/ K (M) = _ZﬂA el‘J ik = E;/*;/ol'fgzﬁl (4.81)

For the derivation of the SUSY constraint, we need to collect the terms in (4.75) pro-

portional to ¥;. Using (4.78), one finds again by integration by parts and eventually
dropping boundary terms

abe 7 L+7 _ abcy 1 p)
€Yt Ya 28 Db Ve =€ Yay 2 %+ wc Tyt

. 1+78y. '
_ abc (w)
_%(5 g DY =g D (e y;n))
) 1+28y. 1+78y. (4
_ abc (44) (“4) ( abe
=7, (e re—g D e =Dl (e ;W[)
1 2
+1@ achz

4ﬁ fd;/o VisVj +;h)

c 1+ﬂz aoc
7173%)_ 2/3 EbeaVOW)

~J, (6m sk +2;ﬂ7* piy, Lt ;ﬂ% DI (et

(4.82)
Hence, the SUSY constraint of the theory takes the form
L +7By. (ﬂA) L+ 2By ay ( a
S = abc . Da abc .
€ 7/ a 2 ﬂ % {8 (E 7/ Hk )
1+[82
- b Ve Ko (4-83)

2

For the term proportional to @, in (4.70) we compute, using (4.77),

L oabe; ]l+llg7/* i 1ac +Zl@7*
3 Vg Yt =At( g vt

1+ﬂ . _
+ 45 1 € VaYpyoite

; 1+8
_A 77: 7*}/019% 4{8 t € %ﬂ 7b701'¢c

(4.84)
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so that, combining with (4.65), this yields

i 7 1 e a 4 a
A,G; =4, @sz )El. - 57[ Vi Yoi Va (4.85)

Hence, the Gauss constraint takes the form

1 8y 7
G, = @Di VEs - ~m ey

1 (%4) ra ! abe 7 1+7
=—D E; . a/* 7 c .
P I Ay 2y, (4.86)
As fermion fields anticommute, it follows that
e Tavovacte = € Vevacyova = € Fayoyacte = 0 (4.87)

Therefore, combining the last term in (4.84) with the last term in (4.65), this gives

1+ 2 1 _
[glg Kz ( leEla _ ZGdb[%z}/b}/o;‘%)

1 2
— Tglg Kz (—EZlekEﬂ + ‘116 ebﬂ/a?’O%) (4.88)

yielding the second class constraint

1[(/"/E‘Z —e ew%}’o%:() (4-89)

For the vector constraint, we need to collect terms proportional to the shift vector field
N*. From (4.66), we deduce, using (4.84),

1 i 7
NdﬁEf (Fayy, + 1+ 8¢ KIS

N4 gy S gk, it
T ¥ 4 d €kt By Fi

Nd 1 EbF(&)l _Nd1+lgzeach 7 ( )
[g 7 db 4ﬁ db%ﬂ 70 ;k[ 490

143



4. Loop quantum supergravity and the quantum SUSY constraint

On the other hand, (4.70) yields together with (4.78)

- 1+iBy.
_ Nd abc d D(&J) .

o 1+iBy. 2
—_ Ndé'ﬂb[%ﬂ yi— {87/ ( A)% ﬂ achz %}’d}’oﬂh
28 1@
_ _ Ayd abc 7 +l/87* (é4) +1@2 ﬂbf
=—N% "/a Zﬂ D % 4ﬂ Kbgﬂka}/o}kc (4-91)

Therefore, the vector constraint is given by

1 b 7 be,7 1+ 1187* (%4) 1+ lg bc
H, = @EZ.F(ﬁA)dh—e“ VaYa 2 —D, "y + o e KipayVayove

(4.92)

Finally, using (4.69), we find for the Hamilton constraint of the theory, modulo the
second class constraint,

45%
“oeis Ll (P - (4 @96, KK
- 1 +78y, (s 1+
+ €ﬂb[¢ﬂ % 2[@187 D(A)'% [glg dbtKlVain% (4.93)

The form of the constraints as derived in this section are consistent with those found
in [65]. At this point, we have expressed them so far in terms of 4, E, v, 7, I'and K.
However, while we can further express K as K (#4,T), T is undetermined as of yet. At
the same time we have a further second class constraint, coming from the variation of
the action with respect to

A, =T, - BK,. (4.94)
The 9 components of this constraint, together with the 3 components of (4.89) should
allow us to solve for I" and K, thus solving the second class constraints. The calculation
is tedious already for Dirac fermions coupled to gravity [155], so we take a shortcut.
The precise expression for K; is not relevant for our purposes and the gravitational
contribution to I', the torsion-free spin connection, is well known. The fermionic
contribution is simply the spatial component of the contortion tensor C,1y which, using
(4.50), is given by

, . K
CZZ = —Ezjkcﬂj/e = —ﬁé‘[%d Z (%bya% + 2%1771%4 (4‘95)
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4.3. Holst action for Supergravity in D = 4 and its 3 + 1 decomposition

This is a function of E, ¢, 7. From now on, we always assume that I' and X are
determined by the canonical variables in this way.

4.3.1. Introducing half-densitized fermion fields

As proposed in [80], in order to solve the reality conditions of fermion fields in canonical
quantum gravity, it is worthwhile to go over to half-densitized fermion fields. In the case
of the Rarita-Schwinger field, this amounts to introducing the new fields [64]

‘ 1 .
=gt and wl= (4.96)

Asboth sides have been rescaled by the spatial metric, it is clear that this, a priori, does not
define a canonical transformation. In fact, as we will see in the following, this requires a

redefinition of the Ashtekar connection. Therefore, following the same steps as in [67],
we substitute the transformed fields (4.96) in the symplectic potential which yields

/dt/d3 Eﬂ%—ﬂ%
/ de / &x E“% %Eﬁélaf (vaEl¢))
/ dr / & E“% migi — miEfE])
/ dr / d’x E“% migi+ M ELE] S,
/ dt / & —E“ﬂA; mydi = Ef L, (ﬂ;EZ ¢j)
= [ar [@xtn, (-omiply)) - mi o)

where we have dropped a boundary term from the third to the fourth line. Hence,
transforming the Ashtekar-Barbero connection via

- Cal =1+ K (4.98)
with
, 1+:78y.
Kz KZ—KWZEZ¢1 qdbc€;12k1¢j7k 2[87/;51

. 1+:8v.
=K, + 21/? kel v ;y ) (4.99)
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4. Loop quantum supergravity and the quantum SUSY constraint

this yields a canonical transformation with the new canonically conjugate pairs (47, £)
and (¢;, 7r;) and the nonvanishing Poisson brackets

(AL, ENY =20 (x,9) and {7 (0, ] (1)} = =3/3500) (x, )
(4.100)

In the new variables, the reality condition (4.73) takes the form
Q= 7[5 + 6ljkg5j}//€7’fg =0 (4.101)

which now, in particular, neither depends on the internal triad nor on the spatial metric
simplifying significantly the further canonical analysis. As a next step, we have to refor-
mulate the constraints in the new variables. Since we will mainly be interested in the
explicit form of the SUSY constraint, we will only derive the transformed expressions
of the Gauss and SUSY constraint in what follows. The remaining constraints can be
treated in complete analogy.

4.3.1.1. Gauss constraint

By (4.86), the Gauss constraint takes the form

1 (E4) 14 4 abe.y I+ lﬂ;/*
G, =—D, E+ g P N

<f Pt gE VAT e

U )  E k5 1+:6y.
= ﬁDﬂ E? + EE] P VsYoYmYi 2 Pk (4.102)
Considering the first part in (4.102), we find

DI ES =0, + " (AL 4 kP ELg) B

1+:78y.

by ixf 0 -
:sz )Ef+76m/€mﬂe¢j7//e7¢l

EA') 10 kB . 1+iBy. L ixB . 1+iBy. ;
=D, " E+ L,y ——pf — —— By ——

Ay g K - ixf - ixpB
=Dy Ef + §¢z‘7/e¢k - Tﬂ¢z‘7*7k¢k + Tﬂ¢17*75¢1 (4.103)
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Since y;y; = 9;j + yij, one has

4 imk 1 18 L ik
¢ S e 20 i =7/

_1 ]m/e
mk
N @e/ B0V mi Bk
By antisymmetry of the fermion fields, it follows
ijk 1 ijk 1 ijk 1
€7 gjrarde =€ fiyapeds =~y r = 0

so that, using y.y;; = —7€ l.jk)/o/e, we find

1+

PiV0YmYiPr — @6” @iV Vobh

PiVoYm¥ibh + —/ff ¥ v vorm it

(4.104)

(4.105)

"G e roymyi 2; ¢k—j;€f”k¢1707m7z¢k 4/3@%@ 4ﬂ¢w ¢

==e/"* 3 Vo Ymyidh — ﬁ@}’/e?ﬁ/e

S Xokg L
45 PPk 5Pk

(4.106)

where from the second to the last line we again used (4.105). Hence, the Gauss constraint

can be written as
) a1 jk s > k,Lz k
G; =D, E: _Zﬁj 108k =SB d + S PrYYif

In fact, this can be simplified even further. To see this, note that

- : 1. . 1- .
drrnriyV Y =2 dirnriy! 8+ Sdivmrir'e

1- . 1. .
= by’ ¢t = S ding!
which, due to y; 71‘ = 23{ - yf y; yields

_ . _ 1-. -
giraeriyI e =ipng' = 38 vard' - durid!

7 - - z
256% Beroyiyig; + vy’ — Bureyist

I kj: z 7
== ¢ fing; + birngt - dryigt

(4.107)

(4.108)

(4.109)
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4. Loop quantum supergravity and the quantum SUSY constraint

Thus, to summarize, in the new variables, we find that the Gauss constraint can be
written in the following compact form

ey ., - ;
Gr =Dy Ef = o rmyy Vg (4.110)

4.3.1.2. Supersymmetry constraint

Finally, we want to express the supersymmetry constraint S in the new variables. To this
end, inserting (4.96) as well as (4.98) and (4.99) into (4.83), the first two terms in (4.83)
become

1 A ') ; 1+ 78y,
Eabce;% +l187 D(/’)A 1 €Z¢j + +l/87 Da(z{gA) ljkE47j¢/e
26\ 26\

ZKﬁ lmn z]k]l 1167 +lﬂ}’*
T oy7 ng YVerormYidn | S5 — 20 i
_ﬁ Imn ZJk ﬂy* +lﬂ}’*
2@6 € 208 YeX0YiYm®Pn ¢]7//€ 28 of} (4.111)
where the second and last line in (4.111) can be summarized as
”CI@ mn i I+ lﬂ 1 )
z\y— Z J/e (¢j7/€ [g ¢l) |:_[@7/*70[7/WLJ 7/1']— - 570 [7/7}13 71’]+:| ¢n
ix 1+:78y.
=%€lmn€z]k7*}/om1¢n (¢] 7t 2(81@7 ¢1)
Kﬂ ln zﬂe 7 1+ llg}/*
2\/— YoPn (975]7% 26 ¢ (4.112)

Since ¥ Yom: = —z'emz.p 7> the first term in the second line of (4.112) takes the form

K Im e PZJ/e (' ]l+lﬂ7* ) z]/e / 7 ]l+1187*
Wi VpPu \iVe—— ¢ Y U\ P 7e®
ZW p J zﬂ \/? [ 1= 57 2[8 J
(4.113)
Next, let us rewrite the “X -term” of the supersymmetry constraint (4.83) as
abe _ 1 4dc n i / b _ b
€ }’O%Klm _W ¢ 54170¢nKb 465 = \/_ €; 7/O¢nK E
=— —6”‘6’; Yobn(Vayote) = —6’” 700 (@i7¢e)  (4.114)

4\4/_ \y—
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4.3. Holst action for Supergravity in D = 4 and its 3 + 1 decomposition

Hence, combining (4.114) with second term in the second line of (4.112), this yields

W

Er Tl (67" Zf %) - £ 7 Zf e na(F )
fm (Brrng’) + frmﬂ(sﬁ, lf r 1)

-3 \y— > ;2 5 10nd 108

\/‘fm (§517*7’i¢1_551‘7’*7’1¢l+gel'jkéﬂ’o@e) \/_7o¢ (#7'¢)
Sﬂ\/‘mé’ *(7080)

=—M§ nd (Brrenir V80 4 ond’ (80'01) = g7 mmeie” @ mg)

(4.115)

where, from the third to the last line, identity (4.109) was used. Since (this can be shown
along the lines of Eq. (4.108) and (4.109))

_ 7 - _ .
biv's1= <M b ypnridi+ vyt ¢ (4.116)

and e7/* é iYoPr = —eJk é Y0k Y:$1> the last line of (4.115) finally takes the form

ﬁ K iz
~ i (Breny U80) + o (8'81) - g = mtie ™ Gimg)

j—?’osé (éme 2;7*%7”45“) \/_795(’“%70 ﬂ‘g nmﬁ;)

(4.117)

To summarize, we have found the following form of the supersymmetry constraint in
the new variables

_abe i L+ iBy W)( 1 ) 1 +78y. <ﬁA)(
S =ebeely,——CpU L - iy )y ZZE pl
T \g )T e V7
K ikl . L+ify. kB 3 1 +ify. Gk
+%€] Y Pu (¢z] 2,@‘ }%%) Wmﬁ (¢]7//e 26 vyl e )
70¢i( ﬂd%?’o ; 7%7/1?51) (4.118)

ljkEﬂyj ¢k)

K
+
7
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4. Loop quantum supergravity and the quantum SUSY constraint

With an eye towards quantization of this expression, it is useful to rewrite the second
term in (4.118) depending on the covariant derivative of the fermion field. In fact, using

YeYorYe = —20€,,'v1 + Yiyayoi, we find

0 (1
d@w__

mw@
a ¢ «* V0L YkEPL
V7 7707¢

ab[€7€¢) ( 1 eab£€y€¢) 1
kEc Pl = kCc Pl
’ vi ! i

[@ aoc
_(D(A) )\/_ 7/eef¢1+6beb;/D(A)(

)
7
(4.119)
so that we can equivalently write (4.118) as follows
i fy (1 U abe L+ By o)
S =iee 7/,)/*D( (—ec o) ) + —e""e.————n.(D, )¢
W\ ) e 26

- ) P - 1 +iBy. ;
+_glﬂ€71¢[1(¢11 +;7 m%) ﬁyosb (¢j7k+2—;77z'7”¢“

K
W
( jklglf']}/ /J]{g 7k}/z¢1) (4.120)

K
7"?
This is the most compact form of the supersymmetry constraint that we will use for
quantization of the theory.

4.4. Anti-de Sitter Supergravity

The canonical analysis of N' = 1 anti-de Sitter supergravity in context of the chiral
theory has been studied, for instance, in [63, 84, 85] (see also Section 6.4). For sake of
completeness, let us briefly discuss it in case of arbitrary real Barbero-Immirzi parameters.
As seen in Example 2.3.17, it follows that the isometry group SO(2, 3) of anti-de Sitter
space AdS4 can be extended to a super Lie group with NV fermionic generators given
by the orthosymplectic Lie group OSp(/N[4). This leads to a supergravity theory with
negative cosmological constant Acos = —% where L is the anti-de Sitter radius. As will
be discussed in detail in Section s.2.1, for N = 1, the Holst action then takes the form

SI}{VKdS SN_ / (_5_%47[“/% (4.121)

with Sg =! the Holst action (4.35) (or (4.51)) of N' = 1 Poincaré supergravity. Since these
additional terms do not depend on the spin connection, it follows immediately that the
variation of (4.121) w.r.t.  yields the same equations of motion as in the A, = 0 case
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4.5. Quantum theory

and thus, in particular, are again independent of the Barbero-Immirzi parameter. The
3+1-split of the additional terms is straightforward and yields

1 - - 3
—eo By Yt e = == NN (20 Y+ ay ) + N— oG
(4.122)

as for antlcommutmg fermionic fields one has ¥, 7*¢; = ¥:7'“¥,. Since e = 0and

eo N, we find

1 . v 3 _ a / 3
—eﬁ;@y% Vo + — 2= ——E %70 Y.+ N (ZL\/_%;/ v+ 12 \/?)
(4.123)

The first term in (4.123) yields an additional contribution to the SUSY constraint whereas
the second term contributes to the Hamiltonian constraint. Hence, it follows that the
SUSY constraint in AdS supergravity takes the form

1+78y. (s L+7By &
_abc (“4) (“4)
S ="y, Zﬂ ) Vet ———— 28 —D, (

P Yo Ky — Ef’ a7z (4.124)

VWc)
1 +ﬂ2

26

which again can be re-expressed in terms of half-densitized fermionic variables.

4.5. Quantum theory
4.5.0. Quantization of the Rarita-Schwinger field

In what follows, we want to discuss the quantization of the fermionic sector of canon-
ical supergravity expressed in terms of real Asthekar-Barbero variables. The quantiza-
tion of the gravitational sector of the theory, including the proper definition of (super)
holonomies and electric fluxes, follows along the lines of Section s.5.1-5.5.3 by identifying
the underlying super gauge group G of the theory with the purely bosonic super Lie
group G = S(SU(2)) (see also Section s.5.4).

The quantization of the Rarita-Schwinger field is more subtle than for ordinary Dirac
fermions due to the form (4.101) of the reality condition Q, which, however, has already
been drastically simplified using half-densitized fermionic fields since then (4.101) no
longer depends on the triads and the spatial metric. In order to solve this second class
constraint, we follow the standard procedure and compute the corresponding Dirac

brackets for which we have to compute Poisson brackets of the form {Q, Q’ } Using
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4. Loop quantum supergravity and the quantum SUSY constraint

(4.101) as well as (4.100), this yields (occasionally omitting the delta distribution 9 G) for
notational convenience)

(Q4, O = (B, [} (1P s + 7 i s} (1 Pp)
= —e’jkC‘g,;()//eP[g)sa + el‘j/ecﬁ(}%pﬂ);ﬁ
= ¢k (cy,eso/g)jﬂ ~ (CyPp)ug
= —Elj/e(C}//e [P{g + P_[g])a[g = 1'617/6(C7*7//e)a/3 =: CZ@ (4.125)

As we see, the operator P{g has dropped out completely so that, in particular, (4.125) is
independent of the Barbero-Immirzi parameter. Finally, since

(85,053 ==9/35 and {0, 85} =—3/Ciy (4126)

it follows that the graded Dirac brackets for the Rarita-Schwinger field take the form
a I a - 9 n - a
{87, 80008 = ~{85, QUHCTH{Q5, $7p) = (€T O (4127)

with C™! the inverse of (4.125) which satisfies (C™1) Zj-Cf k=) lk 1. As can be checked by
direct computation, this matrix takes the form

- 1 -
(CHij=-n (155]' - E}’z‘}’]’) c! (4.128)

so that the resulting Dirac brackets can be written as

(42, 869 Yo = ((Mz-j _ gm,-) }’0) 0w )

Note that, since (4.101) does not depend on the internal triads, the Dirac brackets of the
bosonic degrees of freedom (A%, E?) coincide with the original Poisson brackets. In
particular, the mixed Dirac brackets between bosonic and fermionic degrees of freedom
are still vanishing. For further simplification, we will work in the real representation
(4.11) of the gamma matrices such that Majorana fermions are explicitly real. In this
representation, the charge conjugation matrix is given by C = 7y° and (4.129) yields

p £ _1 1 # @
{¢z‘ (X), ¢J(y)}DB = 5 131] - 57;'7/]' ) (X, y) (4.130)

together with the Majorana condition ¢? = @;. Due to the complicated form of
the Dirac bracket (4.130), the implementation of the Rarita-Schwinger field which
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4.5. Quantum theory

simultaneously also allows a direct solution of the Gauss constraint in the quantum
theory is by far not straightforward. However, in [67], a clever way was found to solve all
these issues simultaneously by appropriately enlarging the phase space. More precisely,
the idea in [67] is to decompose ¢; in its trace part ¢ := y’@; and its trace-free part
pi == ¢ — %71'(7 w.r.t. to the gamma matrices y; such that ¢; = p; + %7,‘0'. On the
enlarged phase space, we then impose the Poisson brackets

(FE ), 0} = 1353859 (3, ) and {o%(2), 7P ()} = =2 333 (v, )
(4.31)

with the remaining brackets being zero such that the Dirac bracket (4.130) is recovered.

Moreover, in order to account for the superfluous degrees of freedom, i.e. the trace-

freeness of p;, one has to add the additional secondary constraint A := 75 pi = 0[67].
Using {A%, AP} =379%F this yields the Dirac brackets

{p£(x), P () }om = i ﬁw——wnﬂﬁ(wa—zP%@wd)
(4.132)

ap . . . . .
where Pf is the projection operator onto the subspace of trace-free Rarita-Schwinger
fields, i.e., p; = P;; ¢f. Due to the fact that, in contrast to (4.130), this indeed defines a
projection now allows for a direct implementation in the quantum theory.

Before we do so, following [80], we first exploit the fact that the ¢; (resp. p; and o)
are half densities and introduce new Grassmann-valued variables. For later purposes,
in contrast to [80], in view of the regularization of the supersymmetry constraint, we
therefore triangulate the spatial slice X by disjoint (again up to common faces, edges
and vertices) tetrahedra A; instead of boxes at countably infinite discrete points x; € Z,
7 € I (|I]=Nyp),and coordinate volume 5\3/6 such that 2 = |, A;. Here, 9; > 0
Vi € I are small positive numbers determining the fineness of the triangulation. Then,
foreach 7 € 1, we define [80]

09 (x,) = /z d*y w;;y)qb(y) (4.133)

J;

where y;.(x; — ) is the characteristic function of the tetrahedron A; centered at x;.
These satisty the bracket relations

{e(z?k)(xk) ‘9( 1)(x )} /d3 Zak( b x) 2(31 )’){¢l( ) ¢j()’)}DB

N

A PSS S 5 20 (%~ %)
= 5 (]131] 2717]) 5,@1Ld X 32/6
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4. Loop quantum supergravity and the quantum SUSY constraint

7 1
=3 (]l% - 5757/;) Ok (4.134)

We then take the continuum limit sup,_ - {d;} — 0andset §;(x) := limy__, 553'“) (x)

Vx € Z. Furthermore, setting (91@ (x) =Py 07 (x) as well as () = y! 0;(x), this
finally yields

o
(67 ), 6 ()} = iPyd, and {67)(x),69 ()} = ~F 1o, (4139)

together with the Majorana conditions 6’5”) (x)* = 51@ (x) and 89 (x)* = (9 (x)
Vx, y € Z. Hence, one ends up with an abstract CAR *-algebra at any point x € X.
The quantization of the theory can be performed following [67]. In what follows, let us
sketch some basic ideas lying behind this quantization scheme and also point out some
further mathematical structures which have a natural interpretation in the framework
of supergeometry and even naturally arise in the chiral approach. For more details, from
both a mathematical and physical point of view, we refer to Section s.5.4.

For any point x € X we choose the supermanifold RglN = ({x}, An), also called
a superpoint (Def. 2.2.9), with N fermionic generators 8, with <7 an index < €
{1,..., N}, whose sections f € A% := AN ® C of the complexified function sheaf

take the form
f=p hit" (4136)
I

with f7 € C for all ordered multi-indices / of length 0 < |[/| < N. On the superspace
one has the standard translation-invariant super scalar product . : A% X A% — C
given by the Berezin integral*

7 (flg) ==/Bdﬁl'~d6’Nfg, Vf,g €Ay (4.37)

This gives the space (A%, %) the structure of an indefinite inner product space for
which there exists an endomorphism J € End(A%) such that (-] /-) defines a positive
definite scalar product on A(]%. The choice of such an endomorphism / is not unique
but is strongly restricted by the implementation of the reality conditions. A standard

choice of a scalar product is given by identifying A% =~ 2" and setting

(flg) =) frer (4.138)
I

4 For a generic section f = ZUCL&L € A%, the Berezin integral is defined via fB det...dgN f =
fi2..-N» i.e., the Berezin integral selects the coefficient of the component of highest degree in ¢
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4.5. Quantum theory

It follows, even for general super Lie groups, that there always exists an endomorphism
J on A% such that® [109]

¢l =C1T) (4.139)
Hence, this yields a Hilbert space or, more prescisely, a standard super Hilbert space
N = (A%, (-|)) (see Def. s5.5.9 and Remark 5.5.10). On $ we define the mul-
5

as well as odd derivations 9,y = 2 forof = 1,...,N

tiplication operators 587

via
é\ﬂf =07f and 09,07 =937 (4.140)

Vf e A%. As shown in [67], due to the choice of the scalar product (4.138), these
operators are indeed self-adjoint on 2. With these ingredients, one can then construct
a faithful representation of the CAR *-algebra (4.135). To this end, one takes the tensor
product Hilbert space $, := 55,15\] ® Sf)f/[ with N = 12 and M = 4 and defines

b i 5 3vVh
J;wg+%)

= b
and %”%xp:7;{W+aﬂ (4.141)
on HY and $, respectively. By construction, these operators are then self-adjoint
as required by the Majorana conditions and moreover satisfy the anticommutation
relations

67" (x) =P

(6, (x),6 (x)] =Py and [6,")(x),67)(x)] = 9;11 (4142)
The quantized Rarita-Schwinger field on $, is then given by
-~ 1 -~
6:(x) 1= 6 () + 57,67 () (4143)

This construction then takes over to a family of points {1, . . ., 43 } yielding the tensor

product Hilbert space ;.. x,} = ®f:1 9y, The fermionic Hilbert space $ is
then obtained as the inductive limit over the corresponding family of Hilbert spaces
9 (x1,...,x, ) - As result, the total super Hilbert space HLBE of the theory is given by

55LQSG = 55grav ® gjf (4.144)

with $gray the Hilbert space of the quantized bosonic degrees of freedom generated by
SU(2) spin network states (see also Section s.5).

5 For this situation, such an endomorphism has in fact been constructed explicitly in [67], although it
is important to emphasize that their definition of the super scalar product differs from the definition
chosen here.
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4. Loop quantum supergravity and the quantum SUSY constraint

4.5.2. Quantization of the SUSY constraint
4.5.2.1. Partl

Having derived the compact expression (4.120) of the classical supersymmetry constraint
with half-densitized fermionic fields, we next want to find an implementation in the
quantum theory. As stated in [64], the Poisson bracket of the SUSY constraint with
itself should be proportional to the Hamiltonian constraint modulo Gauss and dif-
feomorphism constraint. Hence, in the quantum theory, on the subspace of gauge-
and diffeomorphism-invariant states, it is expected that the commutator of the SUSY
constraint operator reproduces the Hamiltonian constraint operator. This is a very
interesting and important feature in canonical supergravity theories as this provides a
very strong relationship between both operators and thus serves as a consistency con-
dition in the quantum theory. This may also fix some of the quantization ambiguities.
In fact, in the framework of self-dual loop quantum cosmology, for a certain subclass
of symmetry reduced models, it will explicitly be shown in Chapter 6 that this strong
relationship even holds exactly in the quantum theory. More precisely, we will show that
the (graded) commutator between the SUSY constraints exactly reproduces the classical
Poisson relation.

Another point of view is that the SUSY constraint is superior to the Hamiltonian
constraint in the sense that once the SUSY constraint is quantized (or even solved)
this immediately yields the quantization (or solution) of the Hamiltonian constraint
by computing the commutator. For this reason, it is desirable to quantize the SUSY
constraint in a way that does not involve the Hamiltonian constraint. For instance, it
should not depend on the extrinsic curvature as this, via Thiemann’s proposal, would
involve commutators with the Euclidean part of the Hamiltonian. On the other hand,
in order to be able to compare it with the Hamiltonian constraint, it is desirable to
find an as compact expression as possible. In the following, we will propose a specific
quantization scheme of the SUSY constraint that does not involve the Hamiltonian
constraint.

As a first step, let us therefore consider the first part in the classical expression (4.120)
depending on the covariant derivative of the fermionic fields

SO y) = /Z P giettel yyDy " (%4 ¢j) (4.145)
Here and in what follows, in order to simplify the notation, the prime indicating the
transformed Ashtekar connection in case of half-densitized fermionic variables will be
dropped. The expression (4.145) looks quite similar to the Dirac Hamiltonian studied
for instance in [156] with the crucial difference that the conjugate spinor 7 in (4.145)
now plays the role a smearing function and thus is not a dynamical variable. Hence, in
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4.5. Quantum theory

Figure 2.: A tetrahedron A with the edges used for the regularization. The star marks the location of the
fermion operator (source: [2]).

contrast to [156], we cannot change its density weight going over to half-densities for
the regularization as this will change the density weight of the constraint operator as a
whole. Moreover, changing the density weight of the smearing function may change the
constraint algebra which should be avoided. Hence, particular attention is required for
its regularization.

We will proceed in analogy with [157], i.e., we will consider triangulations adapted to a
graph y. First, we describe triangulations of the neighborhood of a vertex v of  that
are labeled by a triplet of edges (ey, ¢/, ex) at v. We will keep track of the fineness of
these triangulations, measured in a fixed fiducial metric around the vertex, in terms of a
parameter 0 > 0.

(i) All edges of the graph are assumed be outgoing in the sense that if ¢ is an edge
with vertices v, v” as endpoints, subdivide it into two new edges ¢; and ¢; such
thate = ¢1 0 ¢; and ¢; and ¢; are outgoing at v and v, respectively.

(i) Given an edge e; incident at a vertex v, choose a segment sy : [0,1] — Zof¢;
such that s is also incident and outgoing at v and such that it does not include
any other endpoint of the edge ¢;.

(iif) In order to treat all edges of the graph equally, at each vertex v, let (e, ¢/, ex)
be an arbitrary triple of mutually distinct edges incident at the common vertex
0. For each triple, we chose corresponding segments (57, 57, sk ) shorter than
J. They span a tetrahedron A with basepoint v(A) = v (see Figure 2), where

6 If the vertex is two-valent, one can adjoin a third edge in an arbitrary manner. However, it will become
clear below that the action of the operator on such vertices is trivial.
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4. Loop quantum supergravity and the quantum SUSY constraint

the missing three edges of A are chosen in a diffeomorphism covariant way [157].
Furthermore, we assume that the triple is ordered in such a way that the tangents
of the segments are positively oriented, i.e., det(sz, §7, 5x) > 0.

(iv) Let (es,e7,ex) be a positively oriented triple of edges as in (iii) with corre-
sponding segments (57, 57, 5x ). Forany 9 > 0, we introduce another segment
st [0,1] — Z which is incident and at outgoing at 57 (1) in such a way, that in
the limit & — 0, 5~ converges to the segment s (see Figure 2). As it will become
clear in what follows, the end result will not depend on the specific choice of such
an additional edge provided it satisfies the requirements just mentioned.

(v) To obtain a triangulation 7°(y, v, 9, I ] K) of a neighborhood of v, we proceed

as in [157] and construct seven additional (“mirror”) tetrahedra.

We will now write down a regularization of the classical expression (4.145), using some
triangulation 77°(9) of fineness d. Let A; be a tetrahedron from this triangulation
spanned by some triplet (57, 57, sg) of edges. We will additionally assume that edges
57 have been chosen according to (iv) above. As usual, we apply Thiemann’s trick and
replace the co-frame fields ¢/, by the Poisson bracket of the connection with the volume

26 = A%l VY = <ALV (5, 9)) (+146)
where
V(x,9) = /Z &y 1506 g () (4.147)

is the volume of the tetrahedron A containing x € X, with y; its characteristic function,
such that, in the limit & — 0, one has limy_,, %V(x, 9) = 4/q(x). Let h,[PA]
denote the holonomy induced by #4 along an arbitrary segment s in the triple (see
Equation (5.161) for the case of the purely bosonic super Lie group S(SU(2))). For
9 > 0 small enough, it follows that A, [£4] can approximately be written as b, [4] =

1+054 ﬂA; 7; + O(9?) such that, using tr(7;77) = —%Sij, it follows that

2e(zy b, [PAY (D, [PAL ™,V (x, 9)}) = 9035054 {°4% (x), 7 (x, 8)} (4.148)

This enables one to express (4.146) in terms of holonomies and fluxes with the latter
implicitly contained in the definition of the volume.

Finally, in order regulate the covariant derivative in (4.168), for any segment s, let

H,[A] =P exp ( / me)) (4.149)
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4.5. Quantum theory

be the holonomy induced by £4 in the su(2)-sub representation of the real Majorana
representation kg, which, according to (4.80), in the chiral representation of the gamma
matrices consists of a direct sum of two spin—% representations. Hence, w.r.t. this
representation, H; [é4] = diag (b, [£4], b,[£4]) is in fact block diagonal. Again, in
the limit of small & > 0, the holonomy can approximately be written in the form

H,[PA] = 1+ 359 L. 70,"A", + O(52) which yields

H[E41(0, )Y (5(3)) — ¥ (5(0)) = 35(0) (DS VW) (5(0)) (4.150)

where ¥ stands for an arbitrary spinor-valued field defined on . With these preparations,
we are now ready to write down a regularization of (4.145). Given the triangulation
T (9) of fineness § > 0, we set

1 , -
S0l = ) wwie Kby ) by a) V (e DX
A €T (,9)

X7yl Xk (57(A) = Xk (x:)]  (4.151)

with
P tr(Tkh:}((A,'){h;[:(Al.yV(5](Az');3)})H S0 (As
x(s7(A7) = B0 5000 (s7(A)(9))
(4.152)
and

te( by an{h™t o LV (x50
ity = DO iy PO DD gy (4153)
VV (x5, 0)
where in (4.151), for any basepoint x; = v(A;), we have chosen a particular triple of
segments (s7(A;), 57 (A;), sk (A;)) incident at x; and an additional segment s such
that the above requirements are satisfied. First, let us show that (4.151) indeed provides a
regularization of (4.145). To this end, we use the fact that, by property (iv), s3- converges
to sk in the limit 9 — 0 such that for small J, due to (4.150), we can approximately

write

(48, V (x:,9)}

<EZ‘K(JJ(AZ')) - %K(xl‘) =~ 325§(AZ)J§<(AZ)DSA) V( 3)
Xis

52(9@‘)

(4.154)
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4. Loop quantum supergravity and the quantum SUSY constraint

Recall that, by (4.133), 6’? is defined as

s = [ & 20200 (4155)

\/;

so that, using dya y3(x = y) = =0dya y5(x — y) [156], it follows that

0y y5(x = y) (x =)
oo 3 D23 Yooy 3. X0 Ny .
0xa 0] (x) = /zd y————0:(y) /zd Yy T——=""0y:8:(y) (4.156)

33 53

6 V6
Hence, if 8% (x;) denotes the term inside the covariant derivative of (4.154) depending
on the volume V' (x;, ), we can rewrite (4.154) as

DI (826 (1))
=008 () (30) + B (30) s8] ) + B () & s A ()81 )

- [ &\/;) (0084 (x)8](5) + B* (326 7)
6

+B" () =y 0 A ()00 1) (4157)

By definition, for small 0 we have V' (x;, ) ~ %3\/4(.%'1‘). Hence, approximating the

denominator in 8% (x;) by /9% /6+/g(x;) and inserting it into Eq. (4.157) and finally
using the fact that in the limit & — 0 one has y;(x; — )/)/%3 — d(x; — ¥), (4.151)
becomes

8k
Y B, ] ] ] (P4) {AuV(xz') é\)} )
——lim X TZW) 76 i (550, V (30, D)) 7D, (—W $i (1) | x
x K558 (M) (D)5 (D) (4.158)

Hence, if we finally use
€K 357 (M55 (D)5 (D)) = €70°det(5r, 37, 5k) (A7) = 66" Vol(A;)  (4.159)

Equation (4.158) takes the form of a Riemann sum which in the limit & — 0 converges
to a Riemann integral which precisely coincides with expression (4.145). That is, we

found
lim S\"[7] =5[] (4.160)

0—0
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4.5. Quantum theory

Hence, we can use (4.151) as a staring point for the quantization. To this end, we apply

the identity
1

AV (@ 9)) = —e (UL V (2,9)) (4:161)
’ 2V (x,0)
in order to express (4.151) resp. (4.152) purely in terms of Poisson brackets between
holonomies and volume. The corresponding quantum operator is then obtained by
replacing the classical phase space variables by their respective quantum counterparts
and replacing the Poisson bracket by the commutator {-, -} — %b [ -]

At this point we have to pause, however, since we have to specify the triangulation 77(9)
in adaptation to the graph . To do this, We follow precisely the procedure from [157]:
Triangulations around the vertices are chosen as 7°(y, v, 9, 1 / K), and the rest of the
space triangulated arbitrarily. Finally, an averaging over /, J, K at each vertex is carried
out. To write out this averaging, we denote by £ (v) the number of triples at the given
vertex. With this procedure, we end up with

o) — 1 3 N TJK — s
5" 1nl = —%Zﬂve;w—ﬂv);;(xz)ze 77 [ Zi (57 () = Zxc ()]
X tr(7; by (a) [/7;11@), 2}]) (4.162)
with

Lk (s7 (D)) = tr(7hy (a) [b;}:(A), \/;U(A)])H;](A) gk(fj(A)) (4.163)

and
<%-;((x) = tr(Tkth(A) [h;;(A); \/EU])gk(v) (4.164)

where, for reasons that will become clear below, the first factor in the classical expression
(4.151) depending on the volume has been ordered to the right. Here, V, denotes the
volume operator at a vertex v € V() (see the following discussion below).

Note thatin (4.162) we have implicitly assumed that the discrete sum over all tetrahedra in
the triangulation collapses to a sum over the vertices of the underlying spin network graph
y. This is permissible in case of the Ashtekar-Lewandowski volume operator V= AL
[31,32] as this operator acts trivially on planar vertices. However, this also implies that

the operator 3?;((5 7(A)) in (4.163) becomes trivial as \/;5 /(A) acts on a vertex with

coplanar tangent vectors. But then 31?;( (s7(A)) - ﬁ( (x) is not a difference operator
and therefore this would not resemble a quantization of a regularized covariant derivative.
A resolution would be to quantize a different classical quantity in which the covariant
derivative operator acts directly on the Rarita-Schwinger field. The regularization can
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4. Loop quantum supergravity and the quantum SUSY constraint

then be performed as described above. However, we would like to keep the SUSY
constraint operator as simple as possible. For this reason, we consider another possibility
ensuring nontriviality of the action of 3&7;( (s7(A)). To this end, let us choose instead
the Rovelli-Smolin variant of the volume operator vV =PRS [29,31,158]. This operator is
defined according to [31,32]

VoTy 2 = Z 19017, 3, (4.165)
vel (y)
for any SU(2) spin network state 7}, z 7 7 w.r.t. a finite graph y with edges ¢ € E£(y)
labeled by irreps 7, = 7/ (see Section §.5.3.3, in particular, Eq. (5.258)). In (4.165), the
operator |7, | is defined as

1 A 1 ;o
1701 = 72 Z e Z IEZy/efszfzﬁl (4.166)

1#]#K+#1 1#]#K#1

where the sum is taken over all possible triples (¢;, ¢7.ex) of mutually distinct edges
at v. Moreover, / 1’ for 7 = 1, 2,3 denote the components of the angular momentum
operator J at the edge e (see also Equation 4.212 below). The operator g7 7 can also
be written in the form

Tk = gl 176 = S0 o) (4167)

with (J77)? := (J; + J7)? the Casimir operator corresponding to the total angular
momentum J7; := Jr + J;. Note that the modulus appears inside the sum. For this
reason, the action of the Rovelli-Smolin volume operator on vertices with coplanar
tangent vectors is in general nontrivial. At first sight, this seems to be a problem as then
the sum in (4.162) would also include basepoints of tetrahedra located inside a given
edge of a spin network graph, i.e., the sum would be a priori infinite. However, due to
our choice of the factor ordering, we will see that this indeed not the case. To this end,
let us consider the operator

0=u (Tl‘loe[he_l, \/5]) (4.168)

appearing for instance to the right in (4.162) where the holonomy 4, is taken along an
edge e incident at a vertex sitting inside a spin network edge and which is transversal

162



4.5. Quantum theory

Y

Figure 3.: Illustrations of the action of s [#] on spin network states. The picture on the right shows
the action of the trace operator O defined in (4.168) creating a new vertex v” by adding a new edge labeled
with spin-1/2. The picture on the left illustrates the action of 2% (57 (A)) in (4.162) which, in contrast

to O, creates two new spin-1/2 edges at v’, one parallel and one transversal to the spin network edge
(source: [2]).

to that particular edge (see Figure 3). Given a spin network state ¥, = T, z 5 5, this
operator takes the form

5\1’7 =tr (T,'hg[be_l, \/;]) Y, = tr(ri)\/;\yy —tr (Tibe\/;h;l) ¥,

=,-1C

where the first term in second equation vanishes due the trace-freeness of the Pauli
. . . A A
matrices. Since, the matrix components of a holonomy 5, [4] g = m1(h, [é4])
2
can be identified with the matrix components of the spin—% representation, it follows

that

(OY,)[4] = —rz-ABw%w;l[%)BCﬁ (7 (b)) Y 1841)  (4170)

Hence, according to (4.170), the holonomy 4, adds a new edge to the spin network
graph y with spin quantum number ; = % (see Figure 3). To evaluate the action of the
volume operator, note that, effectively, the state located at the new created vertex can
symbolically be written in the form

A
Y, = 1(/1/2) jrzs E,im> (4.171)

where 71 = jo = j denote the spin quantum numbers of the original spin network edge
coupling to ji, = 0 (for divalent spin network vertices), 73 = 3 is the spin quantum
number of the new created edge and ; (resp. 72) denotes the total spin (resp. magnetic)

quantum number. For later purposes, it is worthwhile to keep the computation a bit
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4. Loop quantum supergravity and the quantum SUSY constraint

more general and assume that 7; and f, are not necessarily equal (therefore 71 does not
have be zero). For the vertex under consideration, the operator (4.167) takes the form

Fis =7 = 51U Uas)) (4172)

Hence, in order to determine its action on (4.171), we have to perform a recoupling
of angular momenta by coupling 7> and /3. This can be done using the Wigner 6- j
symbols which yields

l . .
Y,,= Z (= 1)]1+j2+ +j\/(2]12 + 1)\/(2]23 +1) { J.IZ }|]1, (/2 —)]23,]7”)
23 ]1 J23 .]2

(4.173)

In this form, it is particularly easy to compute the action of (/i) which gives

(_/23) _]12 =
l . .
= D UM (s + 1)y 2 + Dy (2 + 1) { > i}x
J23 J1 J23 )2

1
X1 1> (J2 5) Jess Jm)

l . .
=Z(—nﬂ*ﬂ*z*szg(jzg+1>\/<zj12+1>\/<zjzg+1){% e i_}x
Jos Ju J23 )2

1 ., .
1+ 2 2 AN
xZ( 1)”/**f\/(z]12+1)\/(2]23+1){2 S i_}l(ﬁjz)flz-g;i@

o Ju J23 )2
=@zt 1) 3 s+ D @fs + D 2y + 1) { /i —}x
Joir ]l 1 j23 J2
l . .
{ i ’}m (4174)
J1 J23 )2

where in the last line we have again performed a recoupling by coupling 7; with . This
immediately yields

i) 1Un)" Y ji] = @i+ 1) D oty + Dy (27, + 1) X

s
J12
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4.5. Quantum theory

1 . . 1 .y .
X Z J23(j23 + 1) (223 + 1) { : ]_12 i} { ? J‘1z i} Y, (4175)
Jo3 J1 J23 )2 Jr J23 )2

Remains to evaluate the last term in the commutator of (4.172). In a similar way as above,
one finds

(ﬂz3)2[(]12)2\1'j12] = J1z(Jj12 + 1)(]23)2le2
=j12(j12 + 1)\/(2]'12 +1) Z \/(2]'1,2 +1)x

!
J12

1 . . 1 .y .
X Z J23(Jo3 + 1) (2723 + 1) { 2 ]_12 i} { 2 ]'12 i} Y (4.176)
Jos Ju J23 )2 Ji1 J23 )2

Hence, we found
;
7Y, :Z[(flz)z; (31 i,

:2\/(2]'12 + 1) Z \/(2].1/2 " 1) (].1/2(].1/2 +1) - ]‘12(_].12 + 1)) y

!
J12

1 . . 1 ., .
X Z J23(Ja3 + 1) (223 + 1) { 2 ]_12 i} { 2 ]_12 i} Y (4177)
o3 Jr J23 )2 Ju J23 )2

In fact, this expression can be further simplified using the identity [159]

Z(zjm +1) ja3(j23 + 1) {J,l 712 ]2} {jl J'1z ]2}

s 73 J23 Ja) \Js Je3 Ja
:1(_1)j1+jz+j3+j};+j12+j1’2+1X(jl,j4)% {]'2 A jl?} {J3 Ja ]‘12} (4.178)
2 1 ji, 5 L ji, Ja

S+ + (e +1)
4 o,
2]'12 +1 J12]12

with X (71, ja) == 2/1(2/1 + 1)(2 /1 + 2)2 /(2 js + 1)(2 j4 + 2). Due to the difference
appearing in (4.177), it is immediate that the matrix representation of 7 is purely off-
diagonal, i.e., only entries with fj, # |, are nonzero. In this case, (4.178) becomes

1 ; . 1 ., .
2(2]'23+1)]'23(j23+1){2. ]‘12 i}{z ].12 i} _
J23 J1 J3 J2) \Jt Ji3 J2
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4. Loop quantum supergravity and the quantum SUSY constraint

. 1 . . . .
— %(—1)j1+j2+1+j12+j1/2+%X(%’]'2)% {f 2 ]12} {]1 J2 ]12} (4179)

. 1 .
Jiz 3 L iy o

with X(%, ]'2)% = 2\/5\/]'2 (j2 +1)4/(2 2 + 1). Furthermore, by the properties of the
6- j symbols, in order for (4.179) to be nonzero f;, has to appear in the decomposition
of the tensor product representation jiz ® 1 = (12 = 1) ® ji2 ® (ji2 + 1), thatis
Ji» € {12 — 1, jiz + 1}. Thus, inserting (4.179) into (4.177), we finally obtain

\/_

7V, =- —( DI (21 + 1) o jz+1)\/(2jz+1)>< (4180)
X k(2]12+/e+1),/2]12+2k+1{ lz}x
/e;l} 1 J12 +/€ %

x
1 Jiz t k J2
This is the most general form for the action of é\ on a planar vertex with an additional

decoupled edge labeled by spin—%. Applying (4.180) to our situation, i.e., /i = jo =: j
and ji = 0, this yields

11 i
¥, 31\/_( 1)21+1\/(2]+1)\/J(J+1){2 i ;} {(]) i ;}\Ijl
\/— ( 1)2]+1

27+1
(=) \/(2J+1)\/](]+1)\/—\/2]—+\/—

=é, i+ 1Y, (4.181)

where we used that [160]

a+b+c
{a b c}z (-1) (4.182)

0 ¢ b} @b+1)y(2c+1)

Similarly, for fi2 = 1, one obtains

q¥: = _%\/]'(]' +1)¥, (4.183)
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4.5. Quantum theory

Hence, w.r.t. the subspace spanned by the orthonormal basis ¥, and ¥, the operator g
has the following matrix representation

- I 0 1
=—4/7(7+1 I8
g= 5470+ )(_1 0) (4.184)
from which we can directly deduce that

—~ ~ 1 A
|q|:,/$ :5,/](]+1)]1::C]1 (4.185)

Hence, the Rovelli-Smolin volume operator (4.165) acts via multiplication with the
constant factor C'2 on the subspace spanned by ¥ and ¥;. This immediately implies
that the action of (4.168) is given by

(OF) 4] = (=) ymy (el Ea))” N (my (812D, 14

== Cher(reh [A) b [PAD Y [#4] = ~Cier(z) ¥, [4] = 0
(4.186)

that is, O simply vanishes on these type of edges and therefore is only nonzero in case of
spin network vertices proving that (4.162) is indeed finite also justifying or choice of the
factor ordering. This is in fact different to the situation of the standard regularization
of the Hamiltonian constraint [157] as, e.g, the Euclidean part contains a term of the
form tr(h,h.[ b1, ﬁ]) where 2 is a closed loop. In contrast to (4.168), the action of this
operator will then, in general, be nonzero (in fact, as observed in (4.186), the triviality of
the action of O mainly arose due to the appearence of the Pauli matrix inside the trace).
At first sight, this may look like a contradiction, as the the commutator of the SUSY
constraint should reproduce the Hamiltonian constraint. However, as already explained
at the beginning of this section, the SUSY constraint is superior to the Hamiltonian
constraint, i.e., once the SUSY constraint is quantized, this yields a quantization of the
Hamiltonian constraint by computing its commutator. Hence, our proposal of the
quantum SUSY constraint provides, at least in principle, another possibility for the
quantization of the Hamiltonian constraint.

It finally remains to the check that the action of the operator %{ (s7(A)) in (4.163)
is nontrivial such that 5&;;( (s7(A)) - 52‘”7( («) can indeed be viewed as a quantization
of a regularized covariant derivative. To this end, we have to study the action of 7 on
decoupled product states of the form

G 0@ | m)@ |, m') (+18)
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4. Loop quantum supergravity and the quantum SUSY constraint

where |( 7 7)0) is again the gauge-invariant divalent vertex located inside a spin network
edge and |%, m) resp. |%, m') are the additional edges with spin—% arising from the
holonomies th(A) resp. H;; (a) contained in (4.163) (see Figure 3). Note that, for the
ansatz (4.187), we have implicitly chosen the chiral represenation of the gamma matrices
so that the holonomy H, is indeed block diagonal according to the decomposition of
the restricted Majorana representation into a direct sum of two spin-3 representations.
Hence, this operator does not mix between the two chiral sub representations so that it
suffices to restrict to one particular chiral sector. However, note that for the quantization
of the Rarita-Schwinger field in Section 4.5.1 a representation was chosen in which the
gamma matrices are explicitly real. But, since both representations are related via a
similarity transformations, one can map from one representation to the other.

In order to compute the action of (4.172) on the state (4.187), we first need to couple the
angular momentum ; corresponding to the one part of the spin network edge ¢ that is
incident at the vertex v € /() under consideration with the spin—— quantum number
corresponding to the segment s7-(A) that is parallel to that edge. Using again Wigner
6- j symbols, we find

G )0 @ |5,m) @ |5,y = 17 )0, 355 m) ©15,m)

2
=| D )Pz + 1 {]23
0

2}|J (j )]23, m> ®|— "
J23 J

(=1)2/+1 e — 11 1,
=———— > (=172 +1|7,(j =) jo3, - m) @ | =, m")
\/5\/2]+1§ 2 2 2

11
~/z]]+1'f (307 %35 ®l5m)
11
_‘/2]+1|] (J )J——-M>®|—,M> (4.188)

This can then be coupled with the remaining spin—% quantum number using the well-

I—=

(ST

known identities

11 11 1 1 1 1
- )®=, =)y =1,1), |5,-=)®|=,—=)=]1,-1 18
538155 = LD, 5= @) =IL-1)  (4:89)

and

)= —=11,0) £ —10,0) (4.190)
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4.5. Quantum theory

Hence, we have to determine the action of (4.172) on states of the form

¥ =l(j£5))

vl

[N

5 %,im) ,  with i € {0,1} (4,191)

N =
N =

>

The action of g on (4.191) now follows directly from the general formula (4.180) setting
ji=j=*3and j» = j. Since ji, = 3 in this case, only the £ = +1-term in the sum of
(4.180) remains yielding

qYi,  =- 31"/3(—1)214%%%\/](] + 1)\/(2j +1) {i } X (4192)
ey 1

NW D=
N= D=

(4.193)

X
—
~
- W
o=
i N,
. N—
—_——
e
D=
|~

which, according to the first 6 /-symbol appearing in (4.192), will be nonzero if and only
if j € % ® % = 1 & 2. Hence, in particular, for j = 0 this immediately implies

7Y

o

o=

0 =0 (4.194)

On the other hand, for j = 1, one obtains

1.1 1 11
TV, =30 i D+ g
2 2
. l . l
X{Jiz g 2.}‘1’3,1,1 (4.195)
1 E ] 222

Using the general formula [160]

13 )t 3 g

el sl
V327 + 137+ 1) 2)\2 2 2

(4.196)

oW
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4. Loop quantum supergravity and the quantum SUSY constraint

it follows for2 = 1and j = %

1 101 1
2 2 __
{1 3 1}_ 3 (4.197)
2 2

Fora = j+ % one finds

Jt+3 J o3| (=¥ (27 +3)
s - — (4.198)
1§ j) 2V V2 + D)
and finally for 2 = ]‘_%
i3 j 3| ¥ JG+DE/-D
57 - — (4.199)
A T RNV
Thus, inserting (4.197), (4.198) and (4.199) into (4.195) this yields
é\I’%—'%l = MTJ;\Y%,%J (4.200)

with a4 := +/7(27 +3) and a_ := y/(j +1)(2j — 1). Since g is Hermitian, its matrix

representation in the subspace spanned by the orthonormal basis \I’g 1 and \I’g 1 thus
takes the form

— fas [0 1

9=— (_1 0) (4.201)

As a consequence, the Rovelli-Smolin volume operator is diagonal on this subspace so

that, in particular,
\/; =4/17] = ,4[%]1 = C.1 (4.202)

i.e. VIV acts as a multiplication operator with the constant factor Cy. Let us define

11 R | 1,
(G D0 5i3m @5 m) =1(j Oy @ 5, my @ =, m')

0,717, form=m' =1
10, ), form = Lom =-1
0,11), form=—-3,m' =1
10,11), form =m’' = _%
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4.5. Quantum theory

in order to simply our notation. Using then (4.188), (4.189) and (4.190) as well as (4.202),
we find

Y7 K/Eﬁus Gi*553°053
\/;\/7] (j )J %;%:%W'%:?
2;+ |(”+2)2’§11>_ ZJJ;rlC‘l(jj_%)%’%;l’n
:\/Equ,(;@ﬁ}%,%m|§,§>
—\/Z VAV, )J—E%%W'%@

=di [+ 1) e[ -4 -1 ) (4.203)

and similarly

N _ /J'“ ce .11 10011
Vo,ll) = 2].+1C+|],(]2)]+2,2, 2>®|2, 2)
_ / J ey 11 1.1 1
2].+1C—|]>(]2)] 55 5 2>®|2, 2)

=41+, ) @) -4z - 1) ® 1) (4.204)

Finally, using (4.190) and the fact that the action of the volume operator on states with

vanishing total angular momentum ; = 0 is zero (see Eq. (4.194)), we find for the mixed
spin-components B

\Em,m:
\/:\fm =553 8153)
\/— 2 1 Cil(jj+3 ) 1,0 \/_\/7 %;1,())

171




4. Loop quantum supergravity and the quantum SUSY constraint

/2]+17(| e +1+ 1))

—(I Dell+I-heln)

A
=D ne+ Linhe -2 Nellh - 2l el (0

and analogously

A
\/7|0 ) =— |+ nell w4 |+ beln - 72 - el - % OX-BIp
(4.206)

Recall that we want to the determine the action of (4.163) on the spin network state ..
We therefore have already derived all necessary ingredients. It only remains to evaluate
the trace appearing in (4.163). For this, in the following remark, let us recall some basic
facts concerning the action of flux operators appearing e.g. in the volume operator (see
also Section s.s.1).

Remark 4.5.1. In the Asthekar-Lewandowski representation, the quantized (bosonic)

electric flux operator ;\’\n (8) smeared over two-dimensional surfaces S with smearing
function 7 acts on holonomies b, [£4] via [18] (sce Eq. (s5.180) with coupling constant

g =-xf)

X, (S)h.[4] = —"b‘fﬂ e, S)n(b(e)) b, [¥4] (4.207)

Since {E,,(S), h[EA]™'} = —h [PA)HEL(S), b [PA]} b [£4] 71, this yields in case
of a single edge ¢ ingoing at S N e

R (Sl = ~hy (A (X (S AN AT = 22 (61 ()
(4.208)
Hence, in case that f* = /, is a cylindrical function w.r.t. a graph consisting of the single
edge e, this yields
) b 4
XS (el = —2L a1 (’ B A1 (b e))
0 (be [@4]‘1) B
th{B 1 47
= n(b(e))f— F(be[fA]e'™)
=0
- ?n(b(e))f (DL (el 1) (4209)
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with L ; the left-invariant vector field generated by 7; € su(2), ; € 1,2,3, which is
related to the pushforward representation of the right regular representation

pr = SU(2) = B(L*(SU(2))), g+ (pr(g): f—f(-9) (4.210)
according to

d

(Lf)h) = =

d

tTiy o
tzof(be )= dz

PR () (h) = prl7))f (B)  (4.211)
=0

t

Vf e C*(SU(2)) and b € SU(2) and extended uniquely to a (unbounded) self-adjoint
operator on L#(SU(2)), that is,

]/ = ihpri(7;) = ihL; (4.212)

For the concrete situation considered here, we are interested in the action on cylindrical

function f corresponding to the matrix components of the spin-; representation of
SU(2), i.e.

f=m bl (4213)

forany 4, B € {£}. As it is very well-known, these matrix components generate a
proper invariant subrepresentation of the right regular representation on L2(SU(2)).
In fact, since for general spin- 7

PR(Q(m) 5 (h) = 7(hg) 'y = m; (D)7 (9) (4.214)

for any group element ¢ € SU(2), it follows that pr(g)Vy S V4 with V4 =
spang {(ﬂj)A gl BE€ {i}} and thus, in particular,

JVacVy, VAe{} (4.215)
Moreover, for j = %, it follows

13(@)/43(19)::'% W%(h6t73)AB=z'b7r%(h)AC% (¢'™),
t=0

=0
= z'bﬁ%(/o)ACrch (4.216)
so that 5 5
Pyt =)t ad Prptl=-2(rpt (4am)
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4. Loop quantum supergravity and the quantum SUSY constraint

To summarize, we have

|2’2 22 2

71 = |2>2 |%)_%> ( 2.18)
2 1 1 4

and, due to (4.214), the rows in (4.218) define 2-dimensional invariant subspaces w.r.t.
the angular momentum operator // and thus, in particular, w.r.t. the quantized electric

fluxes Xn(S)

Using the observations of Remark 4.5.1, let us now compute the action of (4.163) on the
spin network state ¥, which, for sake of simplicity, we assume to be a product state of
the form Y, = ¢}, ® ¥ with ;, a proper spin network function and ¥7 an element of
the fermionic part of the Hilbert space. Using (4.203) as well as (4.218) and (4.214), we
then immediately find

\/519[@4] Nz ALY [lo me 8y
= (Allo‘l LT = Ao |- T)) ® 6} ¥y
(4.219)

On the other hand, we have

\/517[/%4]—1‘4_1&11 grY, [£4) s\/E 10,11 ® 6 gy
::(:glb-1A+|+,¢>+-fglb—lﬁ_|+,T>
A A =
S N SR R L
(4.220)

as well as

\/%b[ﬁA]‘lAJrH*_ 6.Y, [£4] z\/i 7 |0, u>®§f¢f

(G b+ G e

“fWMJﬂU—3%*{Fﬁ>®%W

(4.221)
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N Vs

_H* 67, [4]

4.5. Quantum theory

EJ%QW®%W
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If we write for the holonomy
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for some complex coefficients a, 8, y, 9 € C, this yields for the action of (4.163)

(27Y,)[#4] =
= tr(rih[@él]\/;b[@]_l)H*B 65y [°4]

— _ C —
= riABbBC\/;/o Y H S % ® 6’?#

/11
=t(mh ji: ‘8)) [+, T) ® 6’+W +tr(7;h (2
Azﬂé Azﬂ -~ 0
—tr(zh Aoy )|— TNe; %r—tr(fl 0
A1 4,
+tr(z;h 5{8 ))|+ T)®(9 vy +u(zh (A “
79 0 S
A A,
2B O) ~ Za
—t(mh| 2 )= 1) ® 07y — te(7ih ( 2
0 ' Ty

This can be further simplified using that
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4. Loop quantum supergravity and the quantum SUSY constraint

as well as
4 0) ( 0 0)
y =h! (4.227)
Ay Aq
(73 0 > 0
such that, for instance,
Ay éﬂ 0 fori =1
tr(7; D=5 0, fori=2 (4.228)
Ay 43
2 ’44; fori =3

and similar for the other traces. Hence, we finally end up with
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and thus
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(4.230)
where
A = j+1 1 ; i d 4, = j . . %
b m(](2]+3)) and - A = m((]+1)(2]—1))
(4-231)

As we see, the action of (4.163) is indeed nontrivial as required and, moreover, creates a
new vertex coupled to a fermion. In particular, we see that (4.230) is completely inde-
pendent of the additional segment s} (A) which was needed for the regularization. This
is indeed a good thing as the choice of such an additional segment would be completely
arbitrary and not based on any fundamental principles justifying the assumption made
in (iv) above. Let us make two final remarks about the quantization chosen here.
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4.5. Quantum theory

Remark 4.5.2. We have seen that the properties of the additional edge added at the
new vertex, in the definition of (4.230) are irrelevant for the end result. This property
can have some side effects, however. Consider the situation depicted in Figure 2, and
additionally consider a second tetrahedron spanned by the edge segments 51, 52 and a
third segment #3 along an edge different from sy, s7, 53. Depending on the orientation of
the tangent vectors, the triplet (51, 2, #3) may be either positively or negatively oriented.
However, the action of (4.230) will otherwise be exactly the same in both cases. The
relative orientation of the two triplets enters through the € tensor and gives a relative
minus sign in one of the cases. If the orientations differ, the two contributions to the
operator SO cancel after all. This runs counter to the intuition from the classical theory.
Thus one might consider defining a variant of this operator in which an additional sign
depending on the orientation is introduced in (4.230).

Remark 4.5.3. Another possibility in quantizing the first term in the SUSY constraint
(4.120) would be to choose a different variant in which the covariant derivative acts
directly on the Rarita-Schwinger field involving of course additional contributions due
to the derivation property. That is, one could instead consider an expression of the form

’ = abe i i £
'Oyl = /2 Exj—e el yyel Dy Vg, (4.232)

2.
/7
Following the standard procedure, it is then immediate to see that a regularization of
(4.232) is given by (see also Part II below)

S!;(l)[y]:
1
= D, i) == a(mby a1 by an [V (1, D))

AET(7,9) K2V (x,9)
X Yiyte(7ihy a1 by a ) [ P17V (51, 0) }) X
X (L (ED) (51 (M) (9) 8 sk (A (9)) - 8 (x2)) (4233)

For the quantization of (4.233), one can now use either the Ashtekar-Lewandowski
or Rovelli-Smolin volume operator. In both cases, based on our observations above,
the resulting operator will be finite, i.e., only terms involving spin network vertices
contribute. Moreover, one obtains a nontrivial action for the difference operator result-
ing from the last term in (4.233) which is consistent for a regularization of a covariant
derivative.
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4. Loop quantum supergravity and the quantum SUSY constraint

4.5.2.2. PartIl

Next, let us turn to the quantization of the second term in the SUSY constraint (4.120)
depending on the covariant derivative of the frame field

1 1+ 78y
S y] = /E Prf e z{f PrDP g (4a)

We want to quantize this expression by similar means as in the foregoing section. As
we have recently observed, the implementation of the regularized covariant derivative
in (4.151) yields an operator that creates new vertices. However, according to (4.230),
this new vertex is strongly coupled to the fermion. Hence, in order for this additional
contribution to be nonzero, the presence of a fermion is crucial. One may therefore
expect that the quantization of the covariant derivative in (4.234) by similar means will
lead to vanishing contributions of the operator acting apart from the spin network vertex
which seems to be inconsistent for the regularization of a covariant derivative. For this

. . . . 5 . .
reason, let us introduce the total covariant derivative V() which acts on both internal
indices and spinor indices. With respect to this covariant derivative, we can write

84 84 84
(DS kg =V (k) - kv g, (4235)

In the quantum theory, this then has the advantage of creating vertices coupled to
fermion fields and therefore, based on our previous observations, yields nontrivial con-
tributions. Inserting (4.235) into (4.234) yields two terms, one which is very similar to
expression (4.145) replacing the covariant derivative acting on purely spinor indices with
the new total covariant derivative which also acts on internal indices. The implemen-
tation of this quantity can be performed in analogy to the foregoing section. For this
reason, we will not explain the steps in detail. Concerning the second contribution, one
arrives at an expression of the form

I+ *
S/(Z) /d3x;7 dbc ¢ lﬂ}/ (A)¢l (4.236)
28
We make the following ansatz for a regularization of (4.236)
-1
N e
£€T(7,9) K2V (x4, 9)
1+:By.

x ATy ATV G900 (9 61(80) = 27 )

K et (1hsp an [PAT Doy (8, [PA1Y V (5, 9) }) %

(4.237)
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4.5. Quantum theory

where

D (s1(A)) = H(PA) (s1(A) ()67 (s1(A;)(9)) (4.238)

and
Y (x;) = 65 (x;) (4-239)

Here, H(#4) denotes the holonomy induced by the total covariant derivative v ()
which, in the limit of small 9, satisfies

HEA) (51 (D) ()Y (51(A)(9) = V() = 337 (A VDY () (4.240)

where Y is some spinor-valued co-vector field (w.r.t. internal indices) defined on Z.
Following the same steps as in the previous section, it can be shown immediately that
for & — 0, one obtains

’ -1 Zﬂy*
lim S, [5] = lim —{A V( z,a)}
350 5= Ae;m 32x2 /g (x;) 2p

X ALV (e, YD 812K 3358 (AN (AN (D) (4.240)

so that, together with (4.159) and (4.146), this yields a Riemann sum so that in the limit
9 — 0 one finally arrives at

lim ;% [5] = @[] (4.242)

0—0

For the quantization of the regularized expression (4.237), we use

L ALV e AV (5, 9)) = ALV (e, ) AV (x, )
V(x,9) 9
(4.243)
and replace Poisson brackets by the respective commutators yielding
5Py =
8 8 1L +48y. L 5l
== Zy oy 70 gy o A1y o) [A1 7, VT x
X (T1(51(8)) = () (@b ) [EA) U oy [ AT, P D) (4244)
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4. Loop quantum supergravity and the quantum SUSY constraint

with
D(s1(8)) = H(A) (s1(D)(9))8y(s1(A)(9)  and  H(0) = 8)(v)  (4.245)

In the infinite sum of (4.244) we were again allowed to restrict to the sum over the
vertices of the underlying spin network graph since one of the trace terms was ordered to
the right. By (4.186), this yields vanishing contributions in case that the Rovelli-Smolin
volume operator does not act on a spin network vertex.

4.5.2.3. Part III

Finally, we need to quantize the last three terms in the SUSY constraint (4.120). These
terms are all of very similar structure and, in particular, do not contain any covariant
derivative. Hence, it suffices for instance to consider the last one which we write in the
form

A - L1+iB
3,1 .= 3, K i jkl 7 Ve o
AN VIE /Zd 9“74%70?5 (6 0 28 7’k7’z¢1) (4.246)
For its regularization, we make the ansatz

sr= Y a(xi)—g)yoe%xl)(ef“e%x»yo [@ﬂr*ykyl'eﬁxi))

aeT(re) WV

(4.247)
Due to (4.133), we have

. 1+ 78y, .
e/* 8% (x,) o zj % 6] (x:) (4.248)
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and on the other hand

TK»«»M? (x"):/ d'x m(;;/; 2 mm(x) (4.249)

In thelimit & — 0, it follows % 2o (x;=x) — 9(x;—x) and moreover % 1(xi—2) —
J(x; — z) and y;(x; — y) can be replaced by the Kronecker delta d, .
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4.5. Quantum theory

Therefore, in this limit, (4.247) finally becomes

li (3)

lim 557 7] =
. _ K + 18y

= lim 77(951')4—70?5;‘(351‘) ( ]k1¢j70 TRV ¢l(xz vol(A;)
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and therefore (4.247) indeed provides an appropriate regularization of (4.246). Its
implementation in the quantum theory is now straightforward yielding

S Y= N <v>(zef“ () f %y B o)

v€V(7/)

(4.251)
where, in the real representation of the gamma matrices, we used that the charge conjuga-
tion matrix is given by C = 77°. There exist various possibilities for the implementation
of the inverse volume operator 71 such that this operator is well-defined and non-
singular. For instance, one can re-express it in terms of a product of Poisson brackets
of the form (4.146). However, for sake of simplicity, let us choose a quantization as
proposed in [161]. There, one quantizes the inverse volume via

V1= lim,_,o(ﬁ2 + tzl;)_lﬁ (4.252)

with / » the Planck length. This operator then simply vanishes while acting on vertices
with zero volume and therefore provides a suitable regularization.

4.5.3. Solutions of the quantum SUSY constraint

In this last section, we would like to sketch possible solutions of the quantum SUSY

constraint. Going over to the sector of diffeomorphism-invariant states, we are thus
. Ed

looking for vectors Wppys € Dj.q- (see [18]) such that”

(Yonys [S[719) =0, Yy € H'LC = §,.. ® H7, 7 € T(Ez) (4.253)

7 Actually, working on the dual requires an antilinear representation of the constraint algebra involving

rather the adjoint S| [7] T of the SUSY constraint. However, since the classical thco_ry, the SUSY constraint
is a real function and thus we could equally quantize the complex conjugate 5[] which then yields

Sty
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4. Loop quantum supergravity and the quantum SUSY constraint

Figure 4.: Schematic depiction of the action of the supersymmetry constraint on a 4-valent vertex v with
intertwiner /. Each sub diagram on the right side of the arrow represents a type of term that is appearing
in the result. The star symbol represents a vertex containing a fermion, and / is the new holonomy that
connects a new vertex v’ to the intertwiner at v (source: [2]).

where I'(ER ) denotes the space of smooth sections of the spinor bundle Fg := P X, Ar
induced by the Majorana representation on Ag.

Considering the first part (4.162) of the quantum SUSY constraint studied in Section
4.5.1, this operator creates new vertices coupled to a fermion. A qualitative description of
the action is depicted in Figure 4. Each diagram on the right side of the arrow represents
a type of term that is appearing in the result. Fermions are created both, at the original
vertex v and at new vertices v’ that lie on the edges incident at ». The creation of fermions
is a generic feature of the quantum SUSY constraint because the conjugate spinor plays
the role of smearing function. In case of an ordinary Dirac fermion, this would mean
that even if, on the right-hand side of (4.253), one initially started with a state ¥ in the
pure gravitational sector of the Hilbert state, i.e., an ordinary spin network state without
any fermions, this operator would always create states with nontrivial fermionic degrees
of freedom. But then, any pure gravitational state ¥ pp,ys would be a solution of (4.253)
as the inner product between a pure bosonic and fermionic state is always zero by (4.138)
(or (4.139)). This is, however, no longer true in case of Majorana fermions. In fact, as
seen in Section 4.5.1 (see formula (4.141)), due to the Majorana condition, it follows that
the quantization of the Rarita-Schwinger field necessarily involves both multiplication
operators and derivations, i.e., creation and annihilation operators. Therefore, the
quantum SUSY constraint generically both creates and annihilates fermionic degrees of
freedom. As a consequence, pure gravitational states cannot be a solution of (4.253). For
purely fermionic states, the situation is less clear, we can not immediately rule out their
existence. In any case, such solutions of (4.253) would seem to be unphysical.
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4.6. Discussion

In this chapter, we have studied the canonical theory of N' = 1 supergravity in four
spacetime dimensions based on the Holst action of supergravity as first introduced by
Tsuda [65] as well as its extension to the case of a nonvanishing cosmological constant. In
this framework, we considered half-densitized fermion fields as suggested by Thiemann
[80] in order to simplify the reality conditions for the Rarita-Schwinger field. We then
derived a compact expression for the classical SUSY constraint which then served as a
starting point for its implementation in the quantum theory. To this end, following [67],
we quantitzed the Rarita-Schwinger field by appropriately extending the classical phase
space.

With these prerequisites, we turned to the quantitzation of the SUSY constraint which
so far has not been considered in the literature. This is important because the quantum
SUSY constraint in canonical supergravity theories plays a similar role as the quantum
Hamiltonian constraint in quantum gravity theories without local supersymmetry. For
this purpose, we first had to derive a suitable regularization of the continuum expression
guided by the principle that the resulting operator should be as compact as possible. For
the regularization, special care was required. This is mainly due to the fact that, although
the SUSY constraint looks similar to the Dirac Hamiltonian constraint, there is a crucial
difference: The conjugate spinor plays the role of a Lagrangian multiplier. As a result,
one cannot simply follow the standard regularization procedure as the density weight
of the smearing function should be kept fixed in order to not the change the density
weight of the SUSY constraint as a whole. Changing its density weight may change
the resulting quantum algebra and thus its strong relationship to the Hamiltonian
constraint as indicated in the classical regime in [64] in case of real Ashtekar-Barbero
variables. We succeeded in finding an appropriate regularization such the density weight
is maintained.

The resulting operator consists of various different terms one of which arose from
the quantization of the covariant derivative on the fermion field considered in Section
4.5.2. Requiring consistency with the classical theory forced us to choose the Rovelli-
Smolin variant of the volume operator for the quantization of the triads via Thiemann’s
trick. Based on an explicit calculation, it was shown, choosing an appropriate factor
ordering, that the resulting operator was still finite as the sum over the tetrahedra in the
triangulation again restricts to the sum over vertices of the underlying graph. Different
implementations in the quantum theory involving the Ashtekar-Lewandowski volume
operator have also been discussed. For this, a different but equivalent form of the classical
SUSY constraint has to be considered.

As it turns out, the operator thus obtained has an interesting feature as it creates new ver-
tices strongly coupled to fermions. This was shown via explicit computation evaluating
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4. Loop quantum supergravity and the quantum SUSY constraint

its action on generic spin network states. Due to this fact, it is expected that solutions
of the quantum SUSY constraint need to contain both gravity and matter degrees of
freedom as required for supersymmetry. We have seen that the reality condition enforced
on Majorana spinors is important. Whether these solutions indeed contain the same
number of bosons and fermions, however, is still unclear so far and remains a question
for the future. Also it would be highly desirable to study the commutator algebra of the
quantum SUSY constraint. In particular, it would be very interesting to see in which
sense the commutator on diffeomorphism- and gauge-invariant states is related to the
Hamiltonian constraint. In context of the chiral theory, we will study this question
explicitly in Chapter 6 considering a class of symmetry reduced models. In the full
theory, as a first step, one could try to evaluate the commutator of the terms involving
the quantization of the covariant derivative and investigate whether this can be related
to the quantization of the curvature of the connection along loops.
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s.  Holst-MacDowell-Mansouri action for
(extended) supergravity with boundaries,

and chiral LQSG

s.0. Introduction

The physics of boundaries, in particular, the interaction between degrees of freedom on
the boundary and those in the bulk play an important role in diverse areas of physics,
from solid state physics to gravity. In the latter area, this is particularly the case for the
horizons of black holes. Bekenstein-Hawking entropy [162,163] assigns the black hole an
entropy as if there was one bit of information encoded in each Planck unit of its horizon
area, and Hawking radiation looks as if it was perfectly thermal at its surface [164].
The holographic principle as advocated by ’t Hooft, Susskind and others states that
the entire state of the black hole is represented on its surface [165]. In loop quantum
gravity, a picture that is consistent with these holographic ideas emerges partially from
an observation about the classical theory and its boundary at the horizon: If a spacetime
with an inner boundary is considered, and boundary condition are imposed at the inner
boundary consistent with it being an apparent horizon, the symplectic structure attains
a contribution corresponding to a Chern-Simons theory on the horizon [35-39]. In the
quantum theory, the excitations of the gravitational field create defects in the horizon
Chern-Simons theory, thereby changing the size of the state space and account for black
hole entropy [40-44].

Boundary theories in supergravity also play a crucial role in string theory such as in
context of the celebrated AdS 7,1/ CFT ; conjecture [14-16], a far reaching duality which
attained a lot of interest since its discovery by Maldacena. It describes a duality between
string theory on a d + 1 asymptotically anti-de Sitter spacetime and a d-dimensional
conformal field theory on the boundary such as, most prominently, between type IIB
superstring theory on an AdSs X S° background and N = 4 super Yang-Mills theory
living on the boundary. In the low-energy limit of string theory aka supergravity, this
holographic correspondence has been studied very intensively. There, one observes a one-
to-one correspondence between fields of the bulk supergravity theory satisfying certain
boundary conditions and quantum operators associated to the boundary conformal

field theory.

On the other hand, boundaries in string theory have also recently been explored in [166]
where a specific brane configuration in the framework of type IIB superstring theory has
been considered consisting of a stack of D3 branes on two sides of a NSs brane where
the worldvolume theory on the D3 branes corresponds to a maximally supersymmetric
Yang-Mills theory with U(7) gauge group. There, it has been observed that the boundary
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5. Holst-MacDowell-Mansouri action for (extended) supergravity with boundaries, and chiral LQSG

theory is described by a super Chern-Simons theory with gauge group given by the super
unitary group U(72|z) and complex Chern-Simons level. But also other configurations
have been considered leading to super Chern-Simons theories with gauge supergroups

OSp(m|n).

In the context of supergravity, there exist various different approaches on the proper
description of boundaries (see e.g. [167-170]). More recently, boundaries in supergravity
have been considered in [81, 83, r71-173] in the framework of the Castellani-D’Auria-
Fré approach [71,72] (see Section 3.4). There, a systematic approach for D = 4 pure
supergravity theories both with and without a cosmological constant has been developed,
by studying the most general class of possible boundary terms that are compatible with
the symmetry of the bulk Lagrangian. By demanding supersymmetry invariance at
the boundary, these boundary terms then turned out to be determined even uniquely.
Moreover, within this formalism, one finds in both cases, i.e., with and without a
cosmological constant, that the associated boundary conditions are not of Dirichlet-
type but require the vanishing of the super curvatures on the boundary. Finally, it
follows that the resulting action of the theory including bulk and boundary degrees of
freedom takes a very intriguing form which, for N' = 1 and nontrivial cosmological
constant, exactly reproduces the well-known MacDowell-Mansouri action [138]. In
particular, in this way, a similar structure has been found for N' = 1, D = 4 Poincaré
supergravity [171] as well as N' = 2, D = 4 pure AdS supergravity [81].

In this chapter, we want to study the classical theory of boundaries in supergravity
in D = 4 using Asthtekar-Barbero variables. There are several reasons why this is an
interesting topic to study. Among other things, it may shed further light on the quantum
description of black holes in loop quantum gravity (LQG) and string theory. We will
not use the formalism of isolated or dynamical horizons ( [174-176] and [177] for an
overview and further literature) as it has not yet been thoroughly studied in the context
of supergravity, and because its boundary conditions seem to not be well-adapted to
the requirement of local supersymmetry at the boundary. Rather, following [81, 83],
we make the condition of local supersymmetry extending to the boundary the guiding
principle for finding appropriate boundary terms and boundary conditions.

As already mentioned in the main introduction in Chapter 1, in the context of LQG,
N = 1 supergravity in terms of self-dual variables has been studied e.g. in [62,63]. In
particular, in [63], on the kinematical level, a hidden 0sp(1]2) gauge symmetry in the
constraint algebra has been observed which subsequently has been used to formulate
a quantum theory a la LQG by Gambini, Pullin et al. [84] and Ling and Smolin [8s]
and in the context of spin foam models in D = 3 for instance in [147,178]. Extended
N =2, D = 4 chiral supergravity has been studied e.g. in [179,180], and in terms of a
constrained super BF-theory in [181]. Boundaries in supergravity in the framework of
LQG have been discussed using self-dual variables already a long time ago in [86,182].
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Interestingly, there the authors already seem to suggest that topological terms contained
in the (chiral) MacDowell-Mansouri action may play a role in (quantum) description of
boundaries in supergravity.

In what follows, we want to study this question from a more general perspective fol-
lowing newer developments in the geometric approach [81, 83] and pointing out the
importance of supersymmetry invariance at the boundary and also explicitly including
real Ashtekar-Barbero variables. Moreover, we will start from the original supergravity
Lagrangians instead from constrained field theories. To this end, using the interpretation
of supergravity in terms of a super Cartan geometry, we will derive the Holst modifica-
tion of the MacDowell-Mansouri action for arbitrary Barbero-Immirzi parameter j for
N =1and N = 2 pure AdS supergravity as derived in [81] which as mentioned above,
by construction, already contains the most general class of boundary terms maintaining
supersymmetry invariance at the boundary. To do so, inspired by [183-185] in the context
of ordinary gravity, we will introduce some kind of a 8-deformed inner product induced
by a B-dependent operator Py defined on super Lie algebra-valued differential forms. As
we will see, this approach then also allows for a very elegant and unified discussion of the
chiral limit of the theory. There, it follows that P, leads to a projection operator onto a
proper subalgebra of the super anti-de Sitter algebra corresponding to the (complex)
orthosymplectic group OSp(N[2)c. As a consequence, the resulting action becomes
manifestly invariant under OSp(N[2)c leading to the notion of the super Ashtekar
connection. This reveals the underlying enlarged gauge symmetry of the chiral theory
for both cases in a very clear way.

In particular, it follows that the resulting boundary terms correspond to a super Chern-
Simons action with gauge group given by the supergroups OSp(N[2)c and complex
Chern-Simons level. For N' = 1, we will also prove explicitly that the full action is indeed
invariant under left- and right-handed supersymmetry transformations on the boundary
and turns out to be even fixed uniquely by this requirement. Moreover, we will derive
the boundary conditions of the full theory describing the coupling between the bulk and
boundary degrees of freedom. As we will see, these turn out to be in strong analogy to the
standard boundary conditions as usually applied in LQG and, in particular, transform
covariantly under the enlarged gauge symmetry of the chiral theory.

Finally, using the gauge-theoretic structure of the canonical phase space of N-extended
chiral SUGR A, we will derive a graded analog of the holonomy-flux algebra as well-
known in standard LQG with real variables. This will be done rigorously explicitly
taking into account the parametrization supermanifold required in order to resolve
the fermionic degrees of freedom of the theory and using the parallel transport map
as derived in Chapter 2 induced by the super Ashtekar connection. It follows that the
configuration space of generalized super connections carries an intriguing structure
similar to a Moltokov-Sachse supermanifold which, in case of compact super Lie groups,
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becomes projectively Hausdorft. Based on these observations, we will then sketch the
quantization of the theory choosing a Ashtekar-Lewandowski-type representation of the
superalgebra and introduce the notion of super spin networks as first considered in [84—
86]. Finally, we will compare this quantization scheme with the standard quantization
techniques of LQG coupled to fermions as proposed in [67, 80, 87] and will encounter
many conceptual similarities.

The structure of this chapter is as follows: At the beginning, we recall very briefly some
basic elements of the Cartan geometric approach to N' = 1 pure AdS supergravity
and discuss the most general class of possible boundary terms following [81, 83]. We
then define in Section s.2.1 the Holst-MacDowell-Mansouri action by introducing a
[B-dependent operator and corresponding inner product on the underlying superalgebra.
We then repeat this procedure for the N = 2 extended case in the subsequent Sections
5.3 and s.3.1. In particular, we will extend the N = 2 pure supergravity action as found
in [81] to arbitrary £ including the most general class of boundary terms compatible
with local supersymmetry. We will then discuss the chiral limit as well as the bound-
ary theory in Section 5.4 and compare our results with those found in [81, 83] using
standard variables. In Section s.5, we will derive the graded holonomy-flux algebra and
quantize the theory adapting quantization techniques of standard LQG. In Section s.6,
we will give an outlook on the application of these results to the quantum description
of supersymmetric black holes in chiral LQSG. Finally, in the last Section 5.7, we will
discuss some results on super Peter-Weyl theory considering the supergroups U(1[1)
and SU(1]1).

As already explained in the previous chapter as well as at the end of the main intro-
duction of this thesis in Chapter 1, in the following, we will drop many mathematical
details in order to simplify the notation and to make the following discussion easier
accessible for the reader. In particular, we will not explicitly mention the underlying
parametrization supermanifold except in Section s.5 in the context of the construction
of the graded holonomy-flux algebra and the quantization of chiral supergravity where
the parametrization turns out be essential.

A list of important symbols as well as an overview of our choice of conventions concern-
ing indices, physical constants etc. can be found in the List of symbols, notations and
conventions.

s.2. Geometric N = 1 supergravity with boundaries

The content of this section has been reproduced from [3], with slight changes to account
for the context of this thesis with the permission of Springer-Nature.
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In this section, we want to briefly recall the geometric interpretation of N' = 1 AdS
supergravity in terms of a super Cartan geometry. In particular, following [81], we discuss
the extension of the theory in the presence of boundaries and the implementation of
supersymmetric boundary conditions.

Pure D = 4, N = 1 AdS supergravity can be described in terms of a super Car-
tan geometry modeled on the flat super Klein geometry (OSp(14),Spin*(1, 3)) corre-
sponding to super anti-de Sitter space (see Example 2.3.17). Using the decomposition
osp(1]4) = R @ spin*(1, 3) @ Ag of the super Lie algebra, with odd part Ag corre-
sponding to a real Majorana representation of Spin* (1, 3), the super Cartan connection
A of the theory takes the form

1
A =e[P1+5wUMU+W“Qa (5.1)

with ¢! the co-frame, w!/ the spin connection and ¢# the Rarita-Schwinger field. More-
over, the horizontal forms contained in the Cartan connection build up the supervielbein
or super soldering form

E=¢"Pr+y*Q, (52)

which provides a local identification of the curved supermanifold with the flat model
given by super AdS,. This is a direct consequence the super Cartan condition (condition
(iii) in Def. 3.3.3). The action of the theory takes the form [141,142,152]

N= L?
SR =— [ #

1 1 _
= (—F(a))U A K /\eLeUKL+z'¢/\ 7*;/1D(“’)¢/\e[
2K M 2

1 - 1
—Egk/\ 7/1];#/\61( /\L’Le']]KL +—c nel AEK /\L’LE]]KL

412
(5:3)

with F(0)/ = dw!/ + & x N X/ the curvature of the spin connection @ and
D(‘”);k =dy + iw” y1J N ¥ the induced exterior covariant derivative. Similar as in
the discussion at the end of Section 3.4, it follows that the underlying supersymmetry of
the theory can be described using the bijective correspondence between super Cartan
connections and Ehresmann connections (Prop. 3.3.12), i.e. ordinary gauge fields playing
a role for instance in Yang-Mills gauge theories, on the associated OSp(1|4)-bundle.
One can then interpret local supersymmetry in terms of local gauge transformations in
the odd direction of the supergroup. In fact, using the (graded) commutation relations
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5. Holst-MacDowell-Mansouri action for (extended) supergravity with boundaries, and chiral LQSG

(2.96)-(2.99), it follows that, under such kind of gauge transformations, the individual
fields transform as

1_1_ a_n@.e_ L 1. \a 8 _ L
de€ —26}/;&, oy =D"e 2L€(71)ﬁ/\€’ O —2L67 v

(5-4)

for some Grassmann-odd Majorana spinor €“. It then turns out that (5.3) is indeed
invariant under (5.4) provided the spin connection satisfies its field equations.

So far, we have excluded the possibility of boundaries in our discussion. In the presence
of boundaries, it follows that one needs to add additional (topological) boundary terms
in order to maintain functional differentiability of the action functional (s5.3). More-
over, in case of supergravity, one is particularly interested in boundary terms which
also ensure invariance of the full action under supersymmetry transformations at the
boundary. It turns out that this requirement strongly restricts the structure of possible
boundary terms to be added to the theory. To this end, following [81], one notes that
the only possible topological terms which are consistent with the symmetries of the bulk
Lagrangian .Z = £,y in (5.3) are of the form

Sy =CF(@)" N F@)  eryxr+ G (DP9 A 7DDy (s3)
*%esz(w)” ng Aty )

for any constant coefhicients C7, Cy. The first term in (5.5) is given by the Gauss-Bonnet
term which is indeed topological. The second term can equivalently be written as

DY Ay D@y + ety F@) A Ay Ey =df A7 D@y (56)

and therefore is also a total derivative. As shown in [81] (see also the discussion in
Section s5.3), if one requires invariance of the full Lagrangian Zr1 = ZLuk + Ly
under supersymmetry transformations, then the coefficients Cy, C; are uniquely fixed
to particular values given by C; = 1/8 and C; = 7/(2L), respectively. We will in fact
show this explicitly in the context of the chiral theory in Section 5.4.2 below. Moreover,
using (5.6) it follows that the full Lagrangian %4y is that of the MacDowell-Mansouri
action [81,138, 141], i.e. quadratic in the super Cartan curvature F'(A) to be defined in
the next section such that

1 .
L= JFA N FA  eyxr+ ZFA* A FA (Crdas (57)
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s.2. Geometric N = 1 supergravity with boundaries

To summarize, the boundary terms for D = 4, N' = 1 AdS supergravity in the presence
of boundaries are uniquely fixed by requirement of supersymmetry invariance at the
boundary, and they are neatly contained in the MacDowell-Mansouri action.

s.2.1. Holst-MacDowell-Mansouri action of N = 1 SUGRA

The content of this section has been reproduced from [3], with slight changes to account
for the context of this thesis with the permission of Springer-Nature.

In this section, we want to discuss D = 4, N = 1 AdS supergravity in the context
of LQG. As in the previous section, we want to explicitly include the possibility of
boundaries in the theory. We therefore need to derive a Holst variant of the MacDowell-
Mansouri action for arbitrary Barbero-Immirzi parameter 4. A derivation of the Holst
action of D = 4, N' = 1 supergravity via a MacDowell-Mansouri action, by adding a
suitable topological term and treating 8 as kind of a #-ambiguity similar to Yang-Mills
theory, has been given in [186] and for the special case of the chiral theory in [187]. Here,
we want to follow the ideas of [183,184] in the context of classical first-order Einstein
gravity and its reformulation in terms of a constrained BF-theory [185]. As we will show,
these ideas can naturally be extended to supergravity by introducing a B-deformed inner
product on the superalgebra.

To this end, note that, using the explicit representation of 05p(1|4) as derived in Example
2.3.17, the generators of spin* (1, 3) take the form M;; = %7/11. One can then define
an operator P on spin” (1, 3) via

1+78y.
Py = L+28y. : spin®(1,3) — spin(1,3) (58)

2

That this operator indeed leaves the Lie algebra spin™(1, 3) invariant follows from
Ivayry = %6 7 ]K L;/K £ which, moreover, yields the important identity

IJ_ . pl] _KL _. o _ Y 1 1
pﬁy]—ly*Pﬁ kLY , with P{g KL_E 3[1(5\”—%6 KL) (5-9)

Since the odd part of 0sp(1]4), in particular, defines a Clifford module, we can naturally
extend P4 to an operator on Ag via P Q. = Q5(Pp) ? . Hence, using the identification
osp(1]4) = R @ spin*(1,3) @ Ag, one can introduce an operator P on the super
Lie algebra (or rather its complexification), by setting

Py :=0@ Py & Pp: 0sp(1]4) — osp(1]4) (5.10)

Using this operator, we can define an inner product on the super Lie algebra. Note first
that a standard Adjoint-invariant inner product on 0$p(1[4) is given by the supertrace
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5. Holst-MacDowell-Mansouri action for (extended) supergravity with boundaries, and chiral LQSG

(- ) := str. When combined with (5.10), this yields a the corresponding 4-deformed
inner product setting

(X, Y){g =str(X - PgY), VX,Y €osp(1]4) (5.1)

which isinvariant under Spin* (1, 3) but not under the full supergoup OSp(1/4). Extend-
ing this inner product to an inner product on Q?( M, g) with M the underyling super-
manifold (see Section 5.6.1), we can now formulate the Holst-MacDowell-Mansouri
action of N' = 1, D = 4 AdS supergravity. It is given by

_ L?
SYan (0 = = [ (F(0 £ P (s12)
k Jm
where F(A) is the Cartan curvature of A defined as
1 1
F(A) = dA+ Z[ANA] =dA+ 5(—1)@”@'314 NAL® [Ty, Tl  (5.13)

w.r.t. the homogeneous basis (74) 4 of 0sp(1]4), 4 € (I, 1], a), where the minus
sign in (5.12) appears due to the (anti)commutation of 74 and AL, Using the graded
commutation relations (2.96)-(2.99) in case N' = 1as well as [M;, Px| = 5 Py —
77k Pr, it follows that the translational and Lorentzian sub components of F'(A) take
the form

1. 1 ' 7
F(ﬂ)[ _ 6(&))[ _ Z%A 71¢, F(ﬂ)lf — F(Cd)[]+ ﬁzjj — E'sk/\ 71]4%
(5-14)

respectively, with =7/ = ¢/ A ¢/ and @@ = de! + ! A ¢/ the torsion 2-form
associated to w. For the odd part of the curvature, we find

F(@)* = D&y = =l A () 9 (515

To see that this in fact leads to the Holst action Sg 215 (Eq. (4.121)) of N = 1 AdS

supergravity, let us expand the action (s.12). If we use (5.14) and (s.15), we find"

(F(A) A F(R))g =3 F(ANY A PR (M, Micr)

~ F(A)* A F(A)’ (Qa Q)

! To symplify our notation, we write § A y**y for the spin* (1, 3)-valued 2-form with components
vaylly.
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s.2. Geometric N = 1 supergravity with boundaries

= (F(@) A F(@))g+ 5 (S A F(w»ﬂ
- _L(F(a)) /\3}/\7/"%)5— 2_L3 (2/\;}/\}/"%)[8
. é (SAT)+ %F(ﬂ)"‘ A F(AY (CP).5 (5.16)

where we used that (Q,, Qs), = —+ (CP ) 5 which can be checked by direct compu-
8 8 Y p

tation using the explicit representation given in Example 2.3.r7. Using

;
(Mry, Mir)g = _ZPﬂMNKLtr(YIJYMNY*) =N eun (517)

this yields
<F(w) A F(w))g * 72 <Z A F(w»ﬂ e <F(w) S 2N 2r
2L3 (EA;&/\;/";M/; L4 (Z/\Z>ﬂ
= (F(w) A F(@))g t 5 <z A F(w))g - —F(a))U/\PﬂKLMNgk/\;/MN}MUKL
8L3Z[]/\P[gKLMN¢/\}/ %EJJKL+mZ[]/\PIgKL NZM €E[JKL
= (F(@) A F(@))g+ 7 <z A F(w))g+ —F(w)ff AN Ay Pover ki
+$Z[] /\5}/\}/*}/ P/;WEIJKL+72[] /\EKLG]]KL (5.18)
On the other hand, we have
LF(A) A F(A)(C =(D'“y A D@ Ly D)
T FAANF(A)(CPgas = (DY A Vig— T2V ANy APpDY
1 -
-V APy AT (5.19)

where we set y := el yr. Adding the Equations (5.18) and (5.19) and again using the
identity €, jK L YKL = 21y yielding

8L3Z[j/\¢/\}/}/ Pﬁ¢€1jKL_4L3¢/\71]7)ﬂ¢/\Z]

—@¢ Nyy M Pe+Pgly NEV erjir = —ms; Ny*iy nE ek
(5.20)
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it follows that the Holst-MacDowell-Mansouri action takes the form

= 1 _ 1+ 78y
SP}}{R/IIM(‘?():%[WEIJ/\(PﬁoF(w))KLEUKL—z//\;//\%D(a))w

1 - 1
—E;# AN 7KL¢ AN EljeijL + EEU A EKLEIJKL + dey
(5.21)

where we wrote (Pp o F(w) = P[gUKLF(a))KL. Moreover, S4y denotes a bound-
ary term given by

L2
Suy( ) == [ (F() AF@hg+ D@y DDy, (522
K Jum
1 _
- EF(&J)U ANY A }/1]7)1531/
Thus, we see, up to a topological term, (5.12) indeed reduces to the Holst action (4.121)
of N =1, D = 4 AdS supergravity and which in the limit of a vanishing cosmological

constant, i.e. L — oo, yields the respective action (4.35) of Poincaré supergravity. To see
that (5.22) is in fact purely topological, note that, by the Bianchi identity, we have

1
D@Dy =, (F(@) Ay = L F (@) yiyny (5.23)
such that by the Spin* (1, 3)-invariance of the inner product, this yields
(D@Wy ADWy),=dy ADWy)+(y ADWDWy),
1 _
= d(y A DW;W + EF(w)U AT AYY (524)

Moreover, according to the general discussion in Section 5.6.1 in case of arbitrary (super)
connections, we have

1
(F(w) /\F(a)))/; :d(a)/\dw+§a)/\ [a)/\a)]){g (5.25)
Thus, to summarize, it follows that (5.22) can be equivalently be written in the form
L? 1 (@)
Spay (A) = — (wAdw+-wA[wAw]) +{¥ AD ;k)ﬁ (5.26)
k Jom 3 £

and hence, in particular, is nonvanishing in the presence of boundaries. According to the
general discussion in the previous section, this is the most general boundary term one can
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s.2. Geometric N = 1 supergravity with boundaries

havein the contextof N' = 1, D = 4anti-de Sitter supergravity in the framework of LQG
if one requires invariance of the full theory under local supersymmetry transformations.

In this context, note that the deformed action (5.12) is invariant under the same SUSY
transformations (5.4) as in the standard theory. In fact, since in the N' = 1 case the
SUSY transformations can be regarded as super gauge transformations, it follows that
the transformation of the super Cartan curvature takes the form

0 F(A) = —[e, F(A)] (5:27)

Thus, if we set p* = F(A)* this implies that the variation of the Lagrangian in (5.12)
yields

0 == ([&; (A A F(A)) g = (F(A) A&, F(A)])g

ZﬁF(ﬂ)[] A E'}/KLp PlgMNKLQ]MN - %F(ﬂ)l A ,5?{/3}/]6

- S F(AY A &Payiyp =~ F(A) A pPayre (5:29)
Hence, it follows that the Lagrangian of the full -deformed action is invariant under
the SUSY transformations, both in the bulk and at the boundary, provided that the
supertorsion constraint £ (A) = 0is satisfied which is equivalent to requiring that
the spin connection w satisfies its equations of motion. As far as the bulk theory is
concerned, this was actually to be expected since, as will be proven explicitly for the
case N = 2 in Section s.3.1 below, at second order, the deformed action coincides with
the standard action up to topological terms, so that the SUSY variations are indeed
unaltered.

Due to the deformed inner product appearing in (5.26) the boundary action contains
additional topological terms compared to the standard theory. For instance, writing out
the bosonic contribution in (5.26), this yields

(F@) n F@)g = 3 F@)" AF @ eryir+ 35F @) AF@y - (529
so that the bosonic part of the boundary action splits into the ordinary Gauss-Bonnet
term as in the standard theory as well as an additional topological Pontryagin term. As
discussed in [188], these are in fact the most general boundary terms one can expect in the
pure bosonic theory in case of a finite Barbero-Immirzi parameter which are compatible
with the symmetries of the bulk Lagrangian. The fermionic contribution in (5.26) takes
the form (¥ A D@ %)ﬂ = %;} A PﬁD(”) . Similar to the bulk theory as discussed in

Section 4.3, in the canonical description of the boundary theory, the operator 5 implies
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5. Holst-MacDowell-Mansouri action for (extended) supergravity with boundaries, and chiral LQSG

that the covariant derivative can be re-rexpressed in terms of the covariant derivative
associated to the (real) Ashtekar-Barbero connection 4.

Finally, comparing with Eq. (5.296) in Section 5.6.1, one may suspect that the boundary
action (5.26) almost looks like a super Chern-Simons action. Note, however, that the
deformed inner product is not invariant under the full supergroup OSp(1|4) but only
under the action of its bosonic subgroup so that (5.26), at least in general, will not
correspond to a Chern-Simons action with a supergroup as a gauge group. This is of
course in contrast e.g. to the IH formalism [177], where the IH boundary conditions
imply that the boundary theory is generically described in terms of a Chern-Simons
theory. As we will see however in Section 5.4, this changes drastically in case of the chiral

theory.

5.3. N =2 pure SUGRA with boundaries

The content of this section has been reproduced from [3], with slight changes to account
for the context of this thesis with the permission of Springer-Nature.

In the ungauged theory, for N = 2, the full R-symmetry group is given by the unitary
group U(2). But, in case of AdS supergravity, due to the appearence of the so-called Fayer-
Lliopoulos (FI) term, it follows that this group is broken yielding an effective SO(2) =
U(1) gauge symmetry of the theory [81,83,189]. Thus, it follows that pure N' = 2, D = 4
anti-de Sitter supergravity can be described as a super Cartan geometry modeled on
the super Klein geometry (OSp(2]4), SO(2) X Spin™ (1, 3)) corresponding to extended
super anti-de Sitter space. In this case, since 0sp(2[4) = R @spin®(1,3)@A2 @u(1),
the super Cartan connection A takes the form

1 N
A=cPr+ EwUMU + AT + Y2 Q" (5.30)

In particular, besides the spin connection w, the super Cartan connection contains
an additional U(1) gauge field 4 = AT also referred to as the graviphoton field with
T := T = —T?1 Moreover, the supermultiplet consists of two Majorana gravitinos
which we denote by capital letters ¥,., » = 1, 2 to simplify notation. In this form, the
R-symmetry index is raised and lowered w.r.t. the Kronecker symbol ;. On the other
hand, we denote the individual chiral components of the Majorana fermions by lower
case letters ¥ and 5., respectively, where the position of the R-symmetry index now
explicitly indicates the chirality:

7 1+ Ve 1- v+
¥y = 5 Y,, and ¢ := 5 Y. (5.31)
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5.3. N =2 pure SUGRA with boundaries

for » = 1, 2 denote the left-handed and right-handed components of the Majorana
fermions, respectively. Similar to the N = 1 case, the horizontal 1-forms combine to the
super soldering form E := el P+ Y7 Q7, which provides a local identification of the
underlying (curved) supermanifold M with the flat model given by the extended super
anti-de Sitter space. In particular, it induces an isomorphism

E: T(TM) S L(Ad(P)), X — (X|E) (5.32)

between smooth vector fields on M and sections of the Adjoint-bundle P X 54 05p(2]4),
where % is the underlying U(1) X Spin* (1, 3) principal super fiber bundle over which
the super Cartan geometry is defined. By the rheonomy principle, the fields are uniquely
fixed by their pullback to the underlying ordinary smooth manifold A4. Hence, choosing
alocal section s : M — P C P of the underlying (bosonic) smooth subbundle P, the
action of the theory takes the form

- Lr [,
SNE(A) = — /M ;L (5-33)

where the Lagrangian .Z is a horizontal form living on the bundle which, when adapted
to our choice of conventions and pulled back to M, takes the form* [81, 83,189]

1 .
5L ZEZ[—[ A F(a))KLSIJKL - #\YV ANYYse N VY,

1 - 1
- @\YV A }/KL\I’, A leeijL + mZU A ZKLEIJKL

Z PR ; = 1 . .
+m(dA+Z\Y A e,, /\\I,p/\}/*\yq€pq—mF/\*F (5.34)

where, again, S = ¢l A ¢/ whereas VY, and F (resp. *F ) are defined via Eq. (5.45)
and (5.46) in Section 5.3.1 below. In contrast to the N = 1 case, supersymmetry trans-
formations no longer have the simple interpretation in terms of gauge transformations
on the associated OSp(2[4)-bundle. Instead, according to the Castellani-D’Auria-Fré
approach (see Section 3.4), one regards them as certain superdiffeomorphisms along
the odd directions of the supermanifold. More precisely, in the presence of boundaries,

> Due to the appearance of the Hodge-star operator in the Maxwell-kinetic term in the Lagrangian (5.34),
in this form, the Lagrangian can only be defined on the underlying spacetime manifold. This is related to
the lack of top-degree forms on supermanifolds (for an alternative approach towards top-degree forms
on supermanifolds using the concept of integral forms see e.g. [131,132]). In order to extend (5.34) to the
whole supermanifold, one works in the so-called first-order formalism in the U(1)-sector by introducing
additional fields (auxiliary fields). By solving the equations of motion of these additional fields, one
regains the original action (5.33) (see e.g. [81, 83]).
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5. Holst-MacDowell-Mansouri action for (extended) supergravity with boundaries, and chiral LQSG

SUSY transformations correspond to smooth vector fields X € I'(7'M) such that
ixel =0and
IxZ|p=LxZ|p=(ixdZ +dixL)|p =0 (5:35)

Recall that the super Cartan connection transforms via Eq. (3.60), i.e.,
dxA=ixF(A)+DWe (s5:36)

with € := (X |E). Since X is horizontal, the curvature contribution in (5.36), in general,
no longer vanishes in contrast to pure gauge transformations. Moreover, in order for
X to describe a symmetry of the theory, this imposes constraints on the curvature, the
so-called rheonomy conditions.

Instead of deriving the explicit form of the SUSY transformations of the theory in what
follows (see for instance [72, 81, 83,189] for more details), let us finally comment on the
possible boundary terms to be added to (5.34) such thatlocal supersymmetry is preserved.
As argued in [81], the most general ansatz for the boundary term which is compatible
with the symmetries of the bulk action (5.34) turns out to be of the form

Loay = CLF ()Y A F(0)Xejir + Gd(Y™ A 3.VY,) + CGd(A A dA)

for any constant coefficients Cy, C; and Cs. Requiring invariance of the full action
Ll = Lhulk + Lhdy under local supersymmetry, in case of the presence of a nontrivial
boundary d A, this imposes the condition

(txLra)loar =0 (5-37)

As shown in [81], it follows that condition (5.37) uniquely fixes the constants to the
particular values C; = %, G, = 57 and C3 = 0 yielding

1 Lo
Loy =g F(@) NF(@) Ferjxr+ 2V A VY, (5:38)

l‘ I I l‘ A -
- F@) TAY A yyr )Y, - ANV Ay ey,

Moreover, when added to (5.34), one then recognizes that the resulting action %y has
avery intriguing structure similar to the MacDowell-Mansouri action of N' = 1 AdS
supergravity as discussed in the previous sections [81, 83].
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5.3. N =2 pure SUGRA with boundaries

s.3.1. Holst action for N = 2 pure SUGRA

The content of this section has been reproduced from [3], with slight changes to account
for the context of this thesis with the permission of Springer-Nature.

We want to derive a Holst variant of the action (5.34) corresponding to N' = 2, D = 4
AdS supergravity for arbitrary Barbero-Immirzi parameters 4 including the boundary
terms (5.38). We therefore follow the ideas in Section s.2.1 and introduce a B-deformed
inner product. To this end, according to the decomposition (5.30) of the super Cartan
connection, let us define an operator Py : Q*(M, g) — Q*(M, ) on the space of
differential 2-forms with values in the super Lie algebra g := 0$p(2]4) (or rather the
corresponding super Lie module A ® 0sp(2[4)) as follows

Pp:=00PsaPy0Pp& Py, where Pg = Zi (1 + (5*) (5:39)

A

with % : Q2(M) — Q*?(M), for0 < p < 4 denoting the Hodge star operator
on the bosonic spacetime manfifold M (trivially extended to g-valued, in fact even
Grassmann-valued, differential forms) which, in case of Lorentzian signature and even
spacetime dimensions, satisfies

** ooy = (FD)P V0 < p <4 (5.40)

Similar to the general discussion in Section 5.6.1, the operator (5.39) can be used to
introduce an inner product on Q?( A, g) setting

(-Ayg: QXM,g) x QF(M,g) — Q1 (M)
(@, 7) - str(w A Pgy) (5.41)

Using this inner product, we define the Holst-MacDowell-Mansouri action of N = 2,
D = 4 AdS supergravity as follows

2
SYh (0 = = [ () A P (5.42)

with F/(A) the associated Cartan curvature. Using the commutation relations (2.96)-
(2.99) for N' = 2, it follows that the translational components of the curvature take the
form

F(ﬂ)] = del +0.)1] A e] + 31((_1)|Qa||Qﬂ|\Y}f¢ /\\I/f ® [QZHQ%])I

1-
=W _ Z\I’V A 7I‘I’V (5.43)
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since (—1) Q1161 = _1, with ®(®) the torsion 2-form associated to the spin connection
w. For the Lorentzian components, we find

1 1
F(AY =do' + ol A’/ + Z—Lzef Ael - SV A ¥ & [0, ;DY

1 1 -
= F(o)” + EEU - E‘I”' A 71]‘1’, (5-44)

Moreover, for the odd part, we obtain, using A= %AA T, for the U(1) gauge field,

a _ (w)\pa LA m_i] a 8
F(A); =D+ o dens NY™ = el A (yn)*p Yy

_. a i I a /J]
= VY- o7 A% Y (5.45)
Finally, for the U(1) components, we get
A 1 A1 -
F = EF(?I)”em =dA4+ E‘I” AYe, (5.46)

We need to show that action (5.42) is indeed independent of the choice of the Barabero-
Immirzi parameter. Thatis, we have to prove that the action at second order, i.e. provided
w satisfies its field equations, reduces to the action (5.34) together with the boundary
term (5.38). This is equivalent to requiring that the supertorsion of A vanishes, i.e.
F(A)! = 0, and, when reinserting back into (5.42), all f-dependent terms become
purely topological.

To this end, let us expand the action (5.42). Using the curvature expressions (5.44)-(5.46)
aswell as (T, T') g = —ﬁ, which can be checked by direct computation using the
explicit representation (2.92), we find

(F(A) A F())g =2 F@) A FAYE (M, Micr),
- F(: A F(A) (Q5 Q) = 577 APGE

=(F(w) A F(w))g+ % (EAF(w))g
1 Sy ee 1 Tr o ee
—Z(F(a;)/\‘lf Ay ‘I’r>ﬂ—2—L3<Z/\‘I’ Ay ‘I’r)ﬁ
1 1
+ 77 (S AD)g+ PR A F(A)! 9™ (CPp) s

1 . A 1
- — P AxEF -
E 4BL7

EAF (5-47)
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where
A A A A A - 1- -
FANF=dAANdA+dAANY AV¢,, + Z‘I” AYe  ANYP A Y€,y (5.48)

Let us further expand the terms in (5.47) arising form the Lorentzian components of
the curvature which gives

2 ] -
(F(w) A F(@))g+ 73 (EAF(w)g+ ép(w)ff ANV Ay P e kL

Z - 1
+ @Z[] AV A ;/*yKLpﬁ\I'rGIJKL + WZU A ZKLGIJKL

1 - -
YAy AV A v PeY (5.49)

+
3212

In contrast to the N = 1 case, an additional ¥*-order term appears which, in gen-
eral, no longer vanishes since the supermultiplet contains two independent Majorana
fermions. In order to further evaluate this term, let us split the fermionic fields in
their chiral components and use the following important identities stemming from the
Fierz-rearrangement formula (4.8)

b A= SH N = b Ay T (550)
YAy = %71%‘ A (5-51)
In this way, we obtain (summation over repeated indices)
YA YN Ay Y= Ay YN A vy
9 AV N A Y

=4y AP ers NYP AP ley,
+ 4y A€ Ny A yYyeld (5.52)

where in the second equality we used that
_ _ 1. _
VAP A A= =BT A e A A e (553
On the other hand, we have

YAy N Ay =g Ay A Ny

~ ¥ N Y AT A
=4V A We,, AP A 7Y€, (5-54)
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Thus, using (5.52) and (5.54), we can rewrite it as follows

—— VAP AT Ay PV =V A Ve AV A Y ey,

32L2 L
L V"N e AP Ay
+ ¥ AYE™ A P A Yy elT) (s.55)

Hence, if we combine this with the 4-dependent F A E-term in the expansion (5.47)
given by the expression (5.48), this yields

4{gL2F/\F+ 32L2\1”/\y1f\11 AN Ay PpYs

- 4ﬂL2d(A/\dA)

ﬂLZdA AV A e,

R -
+ 16L2 AYe s NYP A 7Y€y, — W;ﬂ AV ers Ny A Yyel? (5.56)

The remaining terms in (5.47) can be treated as in the N = 1 case. For sake of complete-
ness, let us repeat them here. Again, notice that

1 a 0 \rs 1 I
ZF(?I)V A F(A) " (CPp)us =(VY A V), - E‘Y ANy NPVY,

- —3\1” Ay P_g¥, AEV (s.57)
4L

Hence, using ¢, ]K L YKL = 21Y1] Y+, the last term in (5.57) can be combined with the

first term in the second line of (5.49) to give

LSZIJ/\\I”/\y}/ p{g\lf €IJKL — 3\1’ /\}/[]plg\l’ /\Z]

8 4L

:@\I’r Ny [ Pe+ P ¥ A erycr = —?‘I” A KV A e ks
(5-58)

Thus, to summarize, it follows that the action (5.42) can be written in the equivalent
form

1

— 1 -
S}/;/iAzM(ﬂ) = p [\4 (521] A F(w)KLEIJKL Y Ayy. AVY,

1 - 1
— E\I’r A yKL\I’,, A EIJEJJKL + 4_LZZIJ A ZKLG[]KL
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+ éi”’ AYier ANYP Ay Ye,, - %ﬁ AxE

+ ;}F(w)]] A F(w)KLeUKL +iLVY" A 7, VY,
1
£

where we have collected all terms depending on the Barbero-Immirzi parameter in the

Lagrangian .Z given by

iL -
- TF(w)U AY AN yyrp¥, + -5 (5:59)

Z =%F(a))U AF(w)y+ 57 A Fw)p) - i‘V AP ers APy A Ype?
~Y Ay AVY, + LVY AVY, - éF(w)U AY" Ay Y,
- %dﬁi A" A e, — %d(ﬁ A dA) (5.60)
We have to show that this Lagrangian is indeed topological at second order, i.e. it takes

the form of a boundary term provided the spin connection satisfies its field equations.
For the second line in (5.60), this is an immediate consequence of the identity

LYY AVY, =d(LY" AVY,) + ¥ AVVY,
- L . 1., -
=d(LY" AVY,) + ZF(a))ff AY" Ay, + Sdd A Y7 A ¥ie,,
(s.61)

For the first line, note that the EOM of w are equivalent to the supertorsion constraint
F(A)! =0, thatis

D@l = @@ = }L\I’ A vy, (5.62)
Thus, using (5.62), we can rewrite the last term in the first line of (5.60) as follows
Y Ay AVY, :%d(‘i” Ay AY,)+ %‘I’ ADWelyr A,
:%d(‘i” Ay AY,)+ %‘i’” AyrY N A YT,
:%d(‘I”/\y/\\I',)+%;hAy1AW/\;}‘/\7/1/\%

1. - 1. -
=§d(‘1” ANy AY,) - E;V ANV ers Ny A Ygel? (5.63)
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On the other hand, according to (5.50)-(s.51) and (5.53), we have the important identity

1 - - 1. _
Wl A0 = VN N Ny = =g A Y e A A Yyt
(5.64)

Hence, the last three terms in the first line of (5.60) can be re-expressed in the following
way
1. - -
S AF(w)r) - VAV s Ay Age! =Y Ay AVY,
=S A F(w)r; - 091 A0 +2d(e! A1) (5.65)

In fact, this can be simplified even further. To this end, we notice that the first two terms
in equation (s5.65) yield the so-called Nieh-Yan toplogical invariant d(e’ A @;w)) [190].
This is easy to see using the properties of the covariant derivative which immediately
gives?
d(e! A0y = D@l A@ — el A D@ D@,
=0@WI A0\ — 3l A F(w)y (5.66)

Thus, to summarize, we observe that, provided that the spin connection satisfies its field
equations, the Lagrangian (s5.60) takes the final form

1 _ 1 4 N
Ly =5 F(@)Y NF(0)ry + d(ef AOY + LY AVY, — SAndd] (5.67)

and therefore is indeed topological. Moreover, if we subtract this term from the full
action (5.42), it follows that this action finally reduces to

1 1 -
S(ﬂ) = % A/[ (521] AN F(a))KLEI_]KL — V" A YV« A\ V\I’,

1

- 1
4[,\1” A }/KL\YV A EljeijL + EZIJ A ZKLeijL

3 This can also be checked by direct computation. Indeed,

def A 0) =de! A0 —f ndOl =de! A O +&

=def ne' +o/

/\6’1/\d€]—€1/\€]/\da)jj
I

I

1/\61Ad€j+wK]/\cJ/\wK Aé’[—eI/\e]/\F(w)U

=@/ A0\ IV A Fw)yy
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d4 + ‘If’ AVe | A2 A o Yep, — —F AxE + Ly

(5.68)

Do |

with £,q4, given by (5.38) (times 2L7?). Hence, at second order, the Holst action leads
back to the original action of N' = 2, D = 4 AdS supergravity as stated in [81, 83] as
required. To summarize, the Holst-MacDowell-Mansouri action can be written in the
form

1+78y.
14

\I’r A }/KL\I’ AN ]51]KL + —Z[] A ZKLEJJKL

SH2(A) = / Z[J/\(PﬂOF(w))KLG[/KL YA y———"AVY,

4L
- (dﬁ LR 2N Wien | A2 A ¥,

;k ANV ers Ny A Ygel? — —F/\*F+dey (5.69)

4p

with Spdy a boundary action given by

2
dey(?():L—/ (a)/\da)+1a)/\[a)/\w]) - A/\dA+(‘I’/\V‘I’)/;
K Jom 3 4

4ﬁL2
(5.70)

In particular, according to the general discussion in Section 5.3, similar to the N = 1 case,
this boundary action is determined uniquely if one requires supersymmetry invariance
of the full action at the boundary.

Again, as in the non-extended case, since the inner product in (s5.70) is not invariant
under the full supergroup OSp(2[4) but only under the action of its bosonic subgroup,
the boundary action (s.70), in general, will not correspond to a super Chern-Simons
action (see Section 5.6.1). As we will see in the following section, this changes however
in case of the chiral theory where the boundary theory will generically be described in
terms of a super Chern-Simons theory with gauge supergroup OSp(2|2)c.

Nevertheless, one should emphasize that, at least in context of the standard underformed
theory, one can construct models where this turns out to be true even in case of classical
(real) variables. For instance, in [82], particular falloff conditions for the physical fields
in the N' = 2 case where considered leading to a super Chern-Simons theory on the
boundary corresponding to a OSp(2]2) x SO(1, 2) gauge group. This model has also
been studied in [191-193] which turned out to have interesting applications in condensed
matter physics in the description of graphene near the Dirac points.
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Remark s.3.1. Itis interesting to note that, via Definition (5.39) and (5.41), the Barbero-
Immirzi parameter leads to an additional topological term in the U(1) sector of the
theory which is also known as the #-term in Yang-Mills theory. Hence, in this sense, the
Barbero-Immirzi parameter literally has the interpretation in terms of a #-ambiguity.
This supports the hypothesis of [186]. This may also have interesting consequences for
the quantum theory of the U(1) sector (see Section 5.5 below).

s.4. Chiral supergravity and the super Ashtekar
connection

s.4.I. The super Ashtekar connection

In the previous sections, we have derived the actions of N-extended D = 4 anti-de Sitter
supergravity for N' = 1, 2 including unique boundary terms considering it geometrically
in terms of a super Cartan geometry. In particular, all the basic entities of the theory
turn out to be completely encoded in the super Cartan connection

1 1 4
A=e P+ waf My + EAHT” +¥*Q" (5.71)

taking values in the super Lie algebra 0sp(/N'|4) corresponding to the underlying super
Klein geometry.

In 1986 in [20], Ashtekar introduced his self-dual variables which give the canonical
phase space of ordinary gravity the structure of a SL(2, C) Yang-Mills theory. This
construction is based on a particular structure of the internal symmetry algebra. In fact,
the complexification of the Lie algebra of the orthochronous Lorentz group SO™ (1, 3)
has a decomposition of the form

$0*(1,3)c = su(2)c ® su(2)c = sl(2,C) & sl(2,C) (5.72)

and thus splits into two proper $1(2, C) subalgebras (viewed as complex Lie algebras
of complex SL(2,C)). This precisely corresponds to the decomposition of the spin
connection @ into its self-dual A" and anti self-dual part 4™, respectively. In this
sense, the self-dual variables can be regarded as chiral sub components of the 4D spin
connection.

Hence, the natural question arises whether such a construction carries over to the super
category. As we will see in what follows, this will be indeed the case, even for arbitrary
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5-4. Chiral supergravity and the super Ashtekar connection

N > 1. To this end, recall that the Ashtekar variables 4* are defined as the (anti)
self-dual part of the four-dimensional spin connection @ according to

P
’ 2 2

1 .
- (a)lj ¥ ieleLCOKL) ]M]] (573)

which takes values in the complexification $pin(1, 3)c of the Lie algebra of the spin
double cover Spin™ (1, 3) of the orthochronous Lorentz group generated by A4; 7. After
some simple algebra, it follows that

Y1y 717 kI
A —E[E(aj +§e KL% Mj;

11, ki Lo o kas I KL o 0i
:E(Zelleleimnw an+55 L@ M01'+56()i W Mg+ o My,
_ _1 z kl 0z l _l /elM M . AiiTi
= (5w Fiot | S| -5 Mu + iMy; | = ) (5-74)
where A =T'F/K?,i=1,...,3,with[? = _%El‘/el w*! the 3D spin connection

and K = »" the extrinsic curvature (cf. Section 4.3). Moreover, 7+ are given by

T = -(J; + iK)) (5.75)

. k ~ .
with J; = —%El.] My and K; = My, the generators of local rotations and boosts,

respectively. These satisfy the commutation relations

(775,71 = e,/ T} (5:76)

and therefore generate the chiral s1(2, C) subalgebras of spin(1,3)c. Since y,, =
éelj L ;/f k ¥« one has the important identity

1 j/e . '« £ 1 7
1 (—fi Vikt l}’o:’) = Ta}’o:’ (5:77)

Hence, using (5.77), it immediately follows that the exterior covariant derivative induced
by A* (resp. A7) acts on purely unprimed (resp. primed) spinor indices according to

DIyA —dyd s A nyB, and D)y =dyy+ 47 5 Ayw (578)
respectively, where A+AB = A”(TZ‘)AB and A‘A,B, = A_"(Tl‘)A,B/ (note that the
second identity in (5.78) can be obtained taking the complex conjugate of the first one).

Hence, focusing for the moment on the self-dual sector, let us consider the chiral sub
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components Q’, of the Majorana charges Q,. From (2.96), it then follows, using again
(5:77),

(7}, Q7] = Q5(m)”? (5:79)

thatis, the Weyl fermions Q”, transform in the fundamental representation of s1(2, C) as
to be expected from (5.78). Next, let us consider the anticommutation relations between
two Weyl fermions. In the Weyl representation, recall that the charge conjugation matrix
C admits a block diagonal form given by C = diag(7e, 7¢). From this, we immediately
deduce

1y L OV S S
(Cy ) apMipy 5 (6(0’ a —d/a ))ABMU
= 2i(ea”) apMo; — €7 (e*) apMj;

7 . 1 ik 7
=2(eq’) 4B (ZMol‘ - 56/ Mj/e) =2(ea’) 45T} (5-80)

Hence, using (2.99), it follows
1 . .
Q) Qp) =37 (ea") T — ieasT’ (5:81)
The R-symmetry generators 77 do not mix the chiral components of the Majorana

charges Q’,. Thus, to summarize, we have found that (Tl.+, T, Q;{) indeed form a
proper chiral sub super Lie algebra of 0sp (N |4)c with the graded commutation relations

(75 T7] = ¢, T} (5.82)
(77, Q) = Qp()® (583)
Q) Q31 = 3" (e) ap T} = ieanT" (584)
(77, = 52 (07 Q) = 37 Q) (555

which precisely coincide with the graded commutation relations of the complex orthosym-
plectic Lie superalgebra 0sp(N|2)c, the extended supersymmetric generalization of the
isometry algebra of D = 2 anti-de Sitter space [115]. Performing the In6nti-Wigner con-
traction, i.e., taking the limit L — oo, this yields the NV-extended D = 2 super Poincaré
algebra also often denoted by 0sp(N'|2)c. Similarly, considering the anti self-dual sector,
one obtains a proper sub super Lie algebra generated by the anti chiral components

(7,77, Qf/) which again forms 0sp(N|2)c.

For the construction of the super analog of Ashtekar’s self-dual variables, in what follows,
let us restrict to the cases N = 1, 2 in which case we know that the theory is described
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in terms of the super Cartan connection A € Q' (P;s, 05p(N[4)) (5.71). Based on
the above observations, we then introduce the following graded self-dual variables also
called the super Ashtekar connection

AT = AT + %Af”T” +yAQ7 and AT = AT+ %Af”T“ +y7,0:
(5-86)
defining S-relative 1-forms on the S-relative principal super fiber bundle SO(N) x
Spin*(1,3) — Ps — M,s with values in the chiral sub superalgebra 0sp(N|2)c
which, in the limit of a vanishing cosmological constant, yields the N-extended D = 2
super Poincaré algebra.

Remark s.4.1. The N-extended D = 2 super Poincaré algebra has an equivalent
description in terms of a direct sum super Lie algebra s1(2, C) @ C*1N, where CO2N
is regarded as a purely odd super vector space. Given N copies of the fundamental
representation p : $[(2,C) — End(C?) of sI(2, C), the graded commutation relations
are given by

[(,9), (x",0))] = ([x, %", p2N () (0) = PN (%) (¢)) (5-87)

V(x,v), (x',0") € sl(2,C) & C°PN_ In the mathematical literature, such kind of
superalgebras are usually called generalized Takiff Lie superalgebras [194].

For the rest of this section, let us focus on the chiral case (and the case of nonvanishing
cosmological constant), the considerations for A~ are in fact completely analogous. Let
us consider the complexification P of P defined as the associated super SO(N) X
Spin* (1, 3)c-bundle

PC .= P[SO(N) x Spin* (1, 3)c] (5.88)

via the obvious mapping Spin* (1, 3) < Spin™(1, 3)c. Due to (5.72), this bundle can
be reduced to a super SO(N) x SL(2, C)-bundle Q — P €. It follows from the chiral
nature of A” that it can be reduced to a well-defined 1-form

A" € QN(Qys, 05p(N]2)c)o (5.89)

which, by construction, satisfies the conditions (i) and (ii) of Def. 3.3.3. Hence, A*
defines a generalized super Cartan connection on the S-relative SO(N) x SL(2, C)-
bundle Q;s. For N' = 1, this is precisely the connection as first introduced in [63].
There, this connection arose by studying the constraint algebra of the canonical theory.
Here, we have derived it using the geometrical description of N-extended D = 4
supergravity in terms of super Cartan geometry and studying the chiral structure of
the underlying supersymmetry algebra corresponding to the super Klein geometry. In
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particular, we have found that it has the interpretation in terms of a generalized super
Cartan connection on the S-relative SO(N) x SL(2, C)-bundle Q,s.

Thus, using Prop. 3.3.12, we can lift A to a super connection 1-form on the associated
OSp(N2)c-bundle
Q[OSp(N2)c]s (5.90)

In this way, it follows that the canonical phase space of N-extended, D = 4 supergravity
inherits the structure of a OSp(N|2)c Yang-Mills theory which is complete analogy to
the standard self-dual variables in ordinary first-order gravity.

Remark s.4.2. Let us emphasize that, since the above construction relied crucially on
the chiral description of the theory, this construction cannot be carried over to real
Barbero-Immirzi parameters! In fact, real 4 requires the consideration of both chiral
components of the Majorana fermions Q},. But, the anticommutator between Q”, and
QFA’ is proportional to Py which is related to the soldering form e encoded in the dual
electric field (see Section 4.3 or Section s5.4.4 below). Hence, this does not lead to a
proper sub super Lie algebra and the super Ashtekar connection cannot be defined.

5.4.2. N =1 chiral SUGRA: Chiral Palatini action and super
Chern-Simons theory on the boundary

The content of this section has been reproduced from [3], with slight changes to account
for the context of this thesis with the permission of Springer-Nature.

Having derived the most general form of the Holst action of D = 4 AdS supergravity
for the cases N' = 1,2 in the presence of boundaries which also incorporates local
supersymmetry invariance, in what follows, we want to focus on the special case of
an imaginary Barbero-Immirzi parmareter f = 7 and N' = 1 (the case N' = 2 will
be discussed in Section s5.4.3 below). As we will see, the resulting theory has many
interesting properties and in fact leads to numerous intriguing structures which seem to
be well-compatible with the underlying supersymmetry.

Hence, in what follows, let us set 8 = —7 (the other case can be treated in complete
analogy). In this case, the operator (s.10) takes the form Pp-_; = z'% sothatPp__; =
/P* where, according to the general discussion in the previous section, P* defines a
projection

P* : osp(1]4)c — 0sp(1|2)c (s.91)

onto a proper sub superalgebra of 0sp(1|4) given by the (complex) orthosymplectic
algebra 0sp(1]2)c corresponding to the superalgebra of N' = 1, D = 2 super anti-de
Sitter space (in fact, it turns out that (5.91) even defines a morphism of superalgebras).
It then follows that the inner product (s.11) reduces to the standard inner product
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(+,-) on 0sp(1]2)c given by the supertrace which, in particular, is invariant under the
Adjoint representation of OSp(1]2)c. Applying the projection (5.91) on the super
Cartan connection (s.1), this yields the super Ashtekar connection (5.86) for N' = 1

At =P A= AT +y1Qy (5-92)

As discussed in the previous section, the super Ashtekar connection defines a generalized
super Cartan connection, so that, via the correspondence Cartan <> Ehresmann (Prop.
3.3.12), it gives rise to a proper super connection 1-form on the associated OSp(1|2)c-
bundle. By applying the projection (s.91) on the Cartan curvature (5.13), we then find
for the Lorentzian sub components

i_ i 4 A B_i i i 1 i
(P*F(A)) = F(AY) + Z;k ANY T e+ ?Z =F(A") + ﬁz (5.93)
with F(A*) the associated curvature of A*. Here, 48 = X7 AB denotes the self-
dual part of 44 BB .= oA4" A ¢BB \which, due to antlsymmetry, can be decomposed
according to

ZAA’BB’ — GABZA’B’ + EA’B’ZAB (5'94)

such that =458 .= %E w5244 BB" Moreover, for the chiral odd components, we find
+ 1 1
(P E(A) =Dy = F(AD) + —x* (5.95)

where we set y := —y A ¢ suchthat yy=e 4 A ;}A,. Thus, defining & := E"T;r +
L ;(A Q 4 which will also be called the super electric field, this yields

P'F(A) = F(A") + — - Lz (5.96)

Inserting this expression into the Holst-MacDowell-Mansouri action (5.12) for 8 = —7,
this gives

(F(A) A F()g =1 (P LS) NP + =€)

(8AF(?[+))+ (8/\8>+z (F(A*) A F(AY))
(5-97)

such that

SN=L (A) = :C / ((8AF(ﬂ+)>+ S(EAEY| + Sy (598)
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with a boundary term Spqy taking the form

K

Soay (AT = /M (F(A") A F(AY)

k 1
=— / (A*ANdAT+ A AN [ATANAT]) (5.99)
47 Jom 3

where we used Eq. (5.291) in Section (5.6.1) which now holds due to OSp(1|2)c-invariance.
Thus, as we see, in the chiral theory, the Holst-MacDowell-Mansouri action becomes
manifestly OSp(1]2)c gauge-invariant and the boundary term takes the form of a super
Chern-Simons action with gauge supergroup OSp(1|2)c and (complex) Chern-Simons
level k = i4m L?|x = =127 [ 5 \cos With Ao, the cosmological constant.

Finally, for the last part of this section, we want to explicitly show that the full action
(5.98) is indeed invariant under local supersymmetry transformations. To this end, let
us further evaluate the bulk term in (5.98). Using (5.93) and (5.95), we find

(ENF(AY)) =P NF(AY) 45+ iZAB NYaNYB+ixa N D(/ﬁ);kA
(5.100)

as well as

(ENE)=ZENS g +iLlyy A y? (s.101)

so that the bulk contribuation in (5.98) can be written in the form

Z . +
Spulk (A) = ./M SABNF(A") 45 +iy4 A DAy

4
+—ZAB/\¢A/\1/B+

1
i 4 A ;(A +—SAB A g (5.102)

;
aL’* 4L?

This is precisely the form of the action of chiral N' = 1, D = 4 AdS supergravity as
stated, e.g., in [63,180] and coincides with the Holst action SI/{Y :is (Eq. (4.121)) for the
special case £ = —7.

In the Weyl representation of the gamma matrices, the Majorana spinor € generat-
ing supersymmetry transformations splits into a left- and right-handed Weyl spinor
e = (e4, ). We will say that transformations associated with the former are left-
handed supersymmetry transformations, whereas the latter will be called right-handed
supersymmetry transformations. According to the general discussion in Section 5.2,

it follows that under left supersymmetry transformations corresponding to some left-
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handed Weyl spinor € = (e2,0)7, the super Ashtekar connection and super electric
field transform via

At =De and 3.8 =-[e, E] (5.103)

respectively, and therefore correspond to ordinary OSp(1]2)c-gauge transformations
under which the action (5.98) is manifestly invariant. Note that this is true even off-shell,
i.e. without w satisfying its field equation. Thus, in the chiral theory, it follows that a
sub part of the full SUSY transformations becomes a true gauge symmetry of the theory!
It remains to show that the action is invariant under right SUSY transformations corre-
sponding to some (anticommutative) right-handed Weyl spinor € = (0, € )7 In that
case, from (5.4) we deduce

’ ’ 1 ’ -
St = z';kAeA , 353%4 = —ie‘m €4, OcYa = D e, 0.47=0
(5-104)
Using (5.104), it follows that the variation of the super electric field takes the form

deu = Z'WAEAf/\;}A,h&’AAr/\D(A_)e'Ar = D(A+)77A+(D(w)€AAr+z'¢A/\3}A/) (5.105)

A4

where, similar as in [180], we introduced 77‘4 .= ¢4 ¢ 1, which furthermore yields

3,348 = jy A A »B) (5.106)

In what follows, we want to assume that the self-dual Ashtekar connection A" satisfies
its field equations. In this context, it is important to note that the field equations of
both A" and 4 are altered due to the appearence of additional boundary terms in the
full action. More precisely, if one varies (5.98) w.r.t. the super Ashtekar connection A*,
one finds that

2/ L2
K

SSNL (A) = /M (DF)3A* A E) +

K

/ (D) At A F(AY))
M

_Z / GA ADTIgy+ L / QA" N[E+2L*F(AM)]) =0
% S K Jom (s.107)
5.107

where we have integrated by parts and used the Bianchi identity DI F(AY) = o.
Hence, the EOM of A* are unaltered provided that the boundary contribution in

(5.107) vanishes, i.e.

1
ng*') = —mg (5.108)
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where the arrow denotes the pullback to the boundary. In the following, let us assume
that the boundary condition (5.108) is satisfied. Then, modulo the field equations of
A* which, as will be discussed in detail in Section 5.4.4 below, turn out to be equivalent
to the EOM of w, i.e. D@e 4 4 + ‘Y4 A Y =0, it follows that

(AP N F(A) 4p) = 0P N F (AN ap = iy Ay NF(AY) a5 (5109)

On the other hand, we have

+ " 1 .
0(xa A DY) =Dy A DY — gy A DU 4
=d(y4 A DU yA) 4 54 A DA DAY YA
1 .
_ EXA A D(A )7714
:d(77A A D(AJ()%A) _ }k(A A7) A F(A+)AB

D(A+) A

1
- EXA A i (5.110)

as well as
1
SS(ZAB A ;ﬁA A %B) = —ZZAB ANn N 1/3) (5.111)

Finally, using 9. (y4 A ;(A) =2y4 A D) ;7‘4 and 0. (Z48 A 2 45) = 2348 A
(4 N ¥B), we finally obtain for the variation of the full Lagrangian %4y in (5.98) under
right-handed SUSY transformations

SeLia = 1d(y4 A D)y ) + 3. By, (5.112)

where, by the Bianchi identity, the variation of the boundary term can be written in the
form

3eLoay = L*0c (F(A") A F(AY)) = 2L* (D)9, A* A F(AY))
= 2L2d(3. A" A F(AY)) + 2L% (0. A A DY) F(A™))

= 2L%d(3.y A DYDYy = —Ld(y A DUV y) = —id(y4 A DAy A).
(5.113)

Thus, when we combine the variations, we see that the variation of the boundary term
cancels exactly with the respective contribution of the bulk Lagrangian, finally yielding

0eLru = 0 (s.114)
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5-4. Chiral supergravity and the super Ashtekar connection

This proves that, provided boundary condition (5.108) is satisfied, the full action (5.98)
is indeed invariant under local SUSY transformations at the boundary. Moreover, from
the previous computations, we infer that, in the presence of boundaries, the boundary
contributions (5.99) taking the form of a OSp(1|2)c super Chern-Simons action to
the full action (5.98) are in fact unique if one requires both manifestly OSp(1|2)c-
gauge invariance and invariance under local right-handed SUSY transformations at the
boundary. As we will see in the next sections, these observations even carry over to
supergravity theories with extended supersymmetry.

Remark s.4.3. As an aside, note that one can introduce a new independent 2-form
field B, also simply called the B-fzeld, satisfying the simplicity constraint 8 := &. In this
way, it then follows that one can rewrite the bulk term in (5.98) in terms of a constrained
super BF-action with a nonvanishing cosmological constant [86,181,182].

As a last step, let us briefly comment on the canonical analysis of the theory (see also
Section 5.4.4 below) as well as the boundary conditions which couple the bulk and
boundary degrees of freedom. To this end, we split the full action (5.98) into a bulk and
boundary term such that Spyi + Spdy with Spay given by (5.99). Similar as above, the
variation of the bulk contribution with respect to A then yields

O Stk = % /M (D)3 A A E) = dO + % /M A ADYIEY  (5.115)

Here, ©(d) denotes the pre-symplectic potential inducing the bulk pre-symplectic
structure Q) = dO

0
Qpuik (91, 92) = ?l /z O AT A 928) (5.116)

and, as a consequence, (A, &) (or rather their pullback to X) define canonically conju-
gate variables of the canonical phase space. Moreover, from (s.115), we can immediately
read off the Gauss constraint which takes the form

G[a] = % /Z (DWPE, 2) (5.117)

where « denotes a 05p(1]2)c-valued smearing function defined on . As can be checked
by direct computation, the Gauss constraint satisfies the corresponding constraint alge-
bra{¥4[a], 98]} = ¥9[[a, £]] and therefore generates local OSp(1]2)c-gauge trans-
formations. In this context, note that the form (s5.117) of the super Gauss constraint,
in general, is only valid in the absence of boundaries. In case of a nontrivial boundary
0M # 0, in order to account for functional differentiability, one either needs to assume
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that the smearing function « vanishes on the boundary or one has to add an additional
boundary term. In the latter case, it follows that the Gauss constraint is instead given by

:__/<8/\D(7‘)a)+ /(8 a) (5.118)

with A defined as A := XN d M. Asalready explained above, the boundary contribution
to (5.98) is given by the action corresponding to a OSp(1]2)c super Chern-Simons theory.
As aresult, the pre-symplectic structure of the full theory takes the form

21 k
0xGud) =% [(Gua nsd) - 5= [ AT nmAY (o)

Furthermore, the decomposition of the full action into bulk and boundary terms leads to
a matching condition on the boundary between bulk and boundary degrees of freedom.
This is equivalent to requiring consistency with the equation of motion of the full theory,
ie. 5SgMM = 0Spulk + 9 Sbdy = 0 which leads back to boundary condition (5.108). As
we see, this condition arises quite naturally from the requirement of supersymmetry
invariance at the boundary and in fact, based on the previous observations, even turns

out to be unique.

Furthermore, it ensures that the pre-symplectic structure Qs of the full theory is con-
served. More precisely, let Z; for 7 = 1, 2 be two Cauchy hypersurfacesand B € d M be
a subset of the boundary enclosed by %; and 5. Then, since on-shell the pre-symplectic
current of the bulk pre-symplectic structure defines a closed 2-form on field space [195],
by Stokes’ theorem, it follows that

sz(alx 52) - Qzl (5\13 52)
9/

2 / (5[1ﬂ+ A 32]8> -
K JB
2/ L%

+

K Ay

2i L7

Ay

(3[1ﬂ+ A 32]ﬂ+>

O AT A 9 AT) (5.120)

with A; == Z; N dM for i = 1,2. According to boundary condition (s.108), the
variation of the super electric field & on B is given by 0&|p = —2L*0F(AY)|p =
—2L2DW) 3 A*| . Hence, this implies that first term on the right-hand side of Eq.
(5.120) can be written as

21 L%

/d<5\[1ﬂ A 32 ﬂ+>
sz

/(5\[13{ /\52 )

2/ L2
=2 /A@[lﬂwsz]ﬂ*)—
2

/ QAT A 9 AT) (5.121)
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5-4. Chiral supergravity and the super Ashtekar connection

Thus, when inserted back into (5.120), it follows immediately that the individual terms
on the right-hand side cancel exactly finally proving that, on shell, Qs, (1, d2) =
Qs (04, 92), that is, the pre-symplectic structure of the full theory is indeed conserved.

Remark s.4.4. Note that one can also rewrite the boundary condition (5.108) in the
equivalent form

1
ng“L) + 2_[,22 =0 © P+iﬂ) =0 (5.122)
according to the identity (5.96). Furthermore, taking the complex conjugate of (5.123)
yields P~ F(A) = 0. Hence, when combined together, this in turn gives

P EF(A)+P F(A) =0 o FA =0and F(A)*=0 (5.123)
— — — —

that is, the curvature associated to the (full) super Cartan connection A is constrained
to vanish at the boundary. This is precisely the boundary condition as derived in [81] in
context of the non-chiral theory.

Remark s.4.5. The derivation of the Holst-MacDowell-Mansouri action via the &-
deformed inner product as described in Section 5.2.1 also gives an elegant approach to the
“double chiral” action as considered e.g. in [86]. One notices that the standard action of
N =1 AdS SUGRA (modulo boundary terms) arises from (s.12) in the limit 8 — co.
On the other hand, one has P; + P_; = 2P, where P,; = F/P* with P* defining
projections from 0$p(1]4) onto two chiral copies of 0sp(1|2)c. The action § N=1(A)

AdS
of N =1 AdS SUGRA (Eq. (5.3)), modulo boundary terms, then decomposes as

N=1,8=—i

ZSIQQ? (A) = SN:l"BZH(ﬂ) +Shuavm (A (5.124)

H-MM

and thus splits into two chiral acions of the form (5.98). These actions can be expressed
in terms of the super Ashtekar connections A~ and A*, respectively.

5.4.3. N = 2 chiral SUGRA with boundaries

The content of this section has been reproduced from [3], with slight changes to account
for the context of this thesis with the permission of Springer-Nature.

Let us finally consider the chiral limit setting 8 = —7 for the Barbero-Immirzi parameter.
Then, the operator (5.39) takes the form P_; = /P* with

P Q%(M, 05p(2[4)c) — Q% (M, 0sp(2]2)c) (5.125)
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the projection onto differential forms on the bosonic spacetime manifold with values in
the orthosymplectic subalgebra 0sp(2|2)c. In order to see the underlying OSp(2|2)c-
gauge symmetry of the theory, let us introduce the super Ashtekar connection (5.86)
for N' = 2 by projection the super Cartan connection (5.30) onto the chiral subalgebra
yielding

AT = PR A = 4T+ AT + 407, (5.126)

which, according to the general discussion in Section s.4.1, defines a generalized super Car-
tan connection and therefore yields a proper connection on the associated OSp(2|2)c-
bundle. Applying the projection on the super curvature, we obtain for the Lorentzian
sub components*

i 7 4 A B_i 1 7 i 1 i
(PPC2R) F(A)) = F(A4Y) AN TAB+EZ = F(A") +EZ (5.127)
with F(A") the curvature of A* and X’ defined as in the N = 1 case. Moreover, for
the chiral odd components, we find

+ 1 4 1 1
Posp(2|2)F 4 _ D(A )., A — de,, A4, - ,A4_ F(A* 4, - 4
( (A)); Y R AN ey » R GOy

(5.128)
where ;(;4 = —ed4 A ;};;, Jys. Finally, for the U(1)-component, we get

PUPRR) o fo oy %S}Q, N (5129)

with Ft:=d4 + %;k/’; A %A’ €rs. To summarize, we can decompose the super Cartan
curvature in the following way

PP F( ) = F(AY) + 8 (5.130)
where & isa graded field which (in constrast to & to be defined below), as we would like
to emphasize, does not have a simple transformation behavior as in the N' = 1 case under
left-handed supersymmetry transformations. This is due to the fact that, for N' = 2,
supersymmetry transformations have to be regarded as superdiffeomorphisms rather
than gauge transformations leading to nontrivial curvature contributions in the SUSY
variations of the super Cartan connection according to the general formula (5.36).

+ W stick to our notation and write ¢ and ;}1’;, for the chiral and anti chiral components of the Majorana
fermion fields, respectively. The position of the R-symmetry index for the chiral components stays fixed.
Moreover, we will sum over repeated indices.
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5-4. Chiral supergravity and the super Ashtekar connection

Let us insert (5.130) into (5.42) for = —7 which gives the chiral Holst-MacDowell-
Mansouri action

SA=2 () = /<F<ﬂ+>+ EINPTIFA) + 28l (53)

For reasons that will become clear in a moment, let us next subtract the topological
term (F(A*) A F(AT)) of the full action (s.131). If we then define the projection
P~ := 0 ® 3(1 + i%) ® 0 projecting onto the anti self-dual part of the U(1)-sub
component of F/(A"), it follows that the bulk contribution in (5.131) takes the form

Spulk (A) = % /M —LY(F(A") AP"F(AN)) + (F(A") APTE)
+ Iz (8 AP*E)
/ (F(ﬂ+) A [PTE — L*P"F(AY]) + (8 APYEY  (5.32)

As it turns out, (5.132) can be rewritten in a very intriguing form. In fact, let us define
& = P*E — 2L2P~ F(A) for the super electric field. It then follows that the bulk

action (5.132) is equivalent to

Sput(A) = / (F(A) A E) + 13 (61 6) (s.133)

This follows immediately from the fact that both P* and P~ define projections projecting
onto mutually orthogonal subspaces such that P* o P~ = 0 = P~ o P* which yields
(ENE)Y = (EAPTE) + 4L* (F(A*) AP~ F(A™)). Hence, the bulk action takes
the form of a Palatini-type action with nontrivial cosmological constant written in chiral
variables and OSp(2]2)c structure group. It is interesting to note that the subtraction
of the CS-topological term from the full action was crucial for this result leading to the
projection P~ which is orthogonal to the chiral projection P*.

In order to see that the super electric field & indeed defines the canonical conjugate of
the super Ashtekar connection, let us go back to (5.132) and vary the action with respect
to A*. In this way, it follows

3 Syt (A) = = / (DA AEY = dO + = / (OA* ADYEY (5.134)
K M K M
with pre-symplectic potential ©(d) inducing the bulk pre-symplectic structure

Qo (91, 3) = / GnA* A 3E) (s.5)
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Thus, indeed, (A*, &) define the fundamental variables of the canonical phase space.
Moreover, as discussed in the previous section, from (5.134), we deduce that the super
Gauss constraint G [ «] in the presence of boundaries takes the form

ar :—£/2<8/\D(ﬂ+)a>+£/A(8, a) (5.36)

for arbitrary smooth 0sp(2]2)c-valued smearing function « defined on =. As a con-
sequence, it follows that the super Gauss constraint satisfies the constraint algebra
{9a],9[8]} =9, B]]. Thatis, the Gauss constraint generates local OSp(2|2)c-
gauge transformations. The boundary action of the theory takes the form
+ 25 + +
Spdy(AT) = — | (F(A") AF(A))
kK Jm
iL° + P S + +
= — (ATAdAT + A" A [AT ANAT]) (5.137)
K oM 3
and thus, in particular, corresponds to the action of a OSp(2|2)c super Chern-Simons
theory with (complex) Chern-Simons level £ = 747w L?/x = =127 [k Acos. The pre-
symplectic structure of the full theory is given by

27 k
Qi) =2 [[Guatnme) -5 [ GuATAmAY )

Asin the N = 1 case, due to the splitting of the full action into a bulk and boundary
term, one needs to derive a matching condition relating bulk and boundary degrees of
freedom at the boundary. This is equivalent to requiring consistency with the equation
of motion of the full theory, i.e. 9 Sg ;IZM = 0Spulk + 9Sbdy = 0. From this we can
immediately read off the boundary condition

&= Xk

&= (iﬂ (5.139)

where, again, the arrow denotes the pullback to the boundary. This condition relates
the super electric field & to the curvature of the super connection A corresponding to
the OSp(2]2)c super Chern-Simons theory living on the boundary.

Remark 5.4.6. Note that boundary condition (5.139) can equivalently be rewritten in
the following form

1
F(iJr) + mg =0 o P+iﬂ) =0 (5.140)
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5-4. Chiral supergravity and the super Ashtekar connection

where we used that the U(1)-component & of the super electric field can be written as
E=E-I1*(1+ z'*)ﬁ such that

R 1 4 o 1 s 1 A
Froomé=F-c(+mmf=-(1-i0F (5-141)

Thus, if we take the complex conjugate of (5.140) yielding P~ F(A) = 0, we find that
condition (5.139) is equivalent to

P'F(A)+P F(A) =0 (5.142)
— —

that is, the pullback of the curvature components F (A, F(A)* and F correspond-
ing to the OSp(2[4) super Cartan connection A to the boundary are constrained to
vanish at the boundary in accordance with the boundary condition as derived in [81] in
context of the non-chiral theory.

5.4.4. Reality conditions

According to the results of Section 5.4.2 and 5.4.3, the bulk pre-symplectic structure of
chiral supergravity in D = 4 with N-extended supersymmetry with N = 1, 2 is given by

Oun(rn ) =2 [t naye) = [ & (aAtaey - nnises)
kK Js kJs - -
(5-143)

where we have made the expansion A* = AT w.r.t. the real homogeneous basis
(Ty)a = (T7,Q7, T7) of OSp(N2) and introduced the super electric field &% on
2 defined as ) B
a aoc E :
84 = 56 b gﬂgbc’ with 9@ = (Té, T§> (5.144)

Hence, it follows that the pair (ﬂ;é, 82) build up a graded symplectic phase space
with graded Poisson relations

(&%(x), AL ()} = ixdf 8709 (x, 9) (5.145)
where we used that pre-symplectic structure (), defines an even 2-form on the phase
space. As it turns out, these fundamental variables are, however, not fully independent
but need to satisfy certain reality conditions. This is due to the fact that the initial
conditions of the dynamical fields have to chosen in such a way such that their resulting
dynamics as governed by the chiral action (5.98) (resp. (5.133)) are consistent with the
dynamics of the ordinary (real) supergravity theory.
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In what follows, following [62], we want to derive the explicit form of these reality
conditions for the case N' = 1 (the case N' = 2 is similar yielding an additional condition
for the U(1) component of the super electric field £%). To this end, note that the super

electric field decomposes via &% = (Ef, —i7%) with E? = \/ge? the usual (bosonic)
gravitational electric field conjugate to self-dual Ashtekar connection 4% and 7¢ the
canonically conjugate momentum of ¥ given by

bec 7. A
5= €Y ecan (5.146)

These are the reality conditions for the fermionic degrees of the freedom which allow to
re-express the components of the complex conjugate Weyl spinor /" in terms of the
fundamental variables. With respect to the canonically conjugate pairs (A4, E?) and
(%ZA , %) the graded Poisson brackets (5.145) take the form

(E5(x), 47 ()} = %0537 39 (x, 5) and {7%(x), Y2 ()} = ~x37985C) (x, 7)
(5.147)
In order to find the respective reality conditions for the bosonic degrees of freedom, let

us derive the equations of motion of the self-dual Ashtekar connection. Thus, varying
the chiral bulk action (5.102) with respect to A", we find

DUNEAE = g5 4B 4 g+ 4 ASCE 4 4P ASAC = —igy Ay A AP (5.048)

If we take the complex conjugate of (5.148) this yields, provided ¢ is real, the respective
equations involving D47 =48’ Together with (5.148), this can then be combined to
give the respective equations of motion for Z44'85" which is equivalent to

D@ Ad = @@Ad - _jyd p g4 (5-149)

. ’ . . . . . .
with ©(@44” the torsion two-form associated to the spin connection @ (written in
spinor indices). Moreover, using the identity

D@(DW ALy = F(AH) g AP — F(A7) 54 A AP (5.150)

it follows, provided again that e is real and (5.149) is satisfied, that the imaginary part of
the chiral action (5.102) takes the form

1 , . .
I(Lu) =— o (l’eAAr A D@ D@ A4 _ 2e 44 N DA )3}/1 A SyA
K
+2e 40 AV A D(A'%}A')

1 - ’ 1 - ’
=—ear ADW (Y AgT) = ——dleax Ayt AP Gas)
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and thus becomes a pure boundary term. Hence, it follows that, in this way, one indeed
reobtains the field equations of ordinary real N' = 1 supergravity. As discussed in detail
in [62], in the canonical description of the theory, it follows that the reality conditions
are equivalent to the requirement that the electric field £ (depending on the co-frame

ef) is real and the 3D spin connection part I = —%ellj . w/* of A* satisfies the torsion

equation
. . . . . l. - g :
DWe =de’ + ezjkrf At =0 = E;ﬁA A ;kA Ty (5-152)
This equation has the unique solution

I =T"(e) + C' (e, v, ¥) (5-153)

with I (¢) the torsion-free metric connection
rz'()___z‘j/eba +lc/& ( )
a(€) = —eVTe | dacy e + Sepeadiceny 5.154
and C? the contorsion tensor (Eq. (4.95)) which can be written in the form

Cz' 4 ebcdez'

4_4\/? d

Thus, to summarize, the reality conditions for the bosonic degrees of freedom are given

by

(w293 e = 519" can) (5159

A4 () =2 +2Ci e ), EF=R(ED  (5150)

Provided that the initial conditions of the dynamical fields satisfy (s5.156) as well as (5.146),
this then ensures that the dynamical evolution remains in the real sector of the complex
phase space, i.e., the phase space of ordinary real N' = 1 supergravity.

s.s.  The state space of chiral LQSG
s.s.1.  The graded holonomy-flux algebra

As observed in the previous sections, reintroducing the underlying parametrizing super-

manifold S, the phase space of chiral supergravity for N'= 1 and N = 2 is described in
terms of the conjugate pair (ﬂ:é, &%) consisting of the pullback of the super Ashtekar

connection to X5 with Z a Cauchﬁlice of the body M := B(M) of the underlying
base supermanifold M as well as the dual super electric field 82.

According to the general discussion in Section s.4.1, the super Ashtekar connection
defines a super-connection 1-form on the associated OSp(/N|2)c-bundle. Thus, the
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phase of the theory turns out to be a graded generalization of the pure bosonic theory.
This suggests to canonically quantize it using standard tools from loop quantum gravity
and generalizing them to the super category. To this end, we first need to derive a graded
analog of classical holonomy-flux algebra encoding the dynamical degrees of freedom
and find a representation which is the starting point for the quantization of theory a la

LQG.

In what follows, we would like to keep the discussion as general as possible and assume
that we are given any locally supersymmetric field theory, such as a Yang-Mills gauge
theory with gauge group given by a supergroup G, such that its corresponding canonical
description results into a canonically conjugate pair (A,, &%) with ﬂdé the pullback
to X of a super connection 1-form defined on a S-relative principal G-bundle £, s and
a canonically conjugate momentum & which is related to a Lie(G)-valued 2-form &
also referred to as the super electric field defined on the bundle via (5.144), that is,

1 b B
&Y= §€ﬂ ‘T4, (5.157)
Moreover, they satisfy the graded Poisson relations

B B
(&5 (5, %), A, (5, )} = g970,0%) (x, 7) (5.158)
Vx,y € Zand s € S for some coupling constant g which in the context of chiral
supergravity is given by ¢ = 7x. In Eq. (5.157), we have chosen an Ad-invariant super
metric (-, -) on Lie(G) which is supposed to be non-degenerate and defined 74 :=
(T4, Tp) w.r.t. a real homogeneous basis (74) 4 of g.

Finally, let us restrict the underlying parametrizing supermanifold S to be a superpoint,
i.e., its body B(S) = {*} just consists of a single point such that, according to Prop.
2.2.10, the parametrizing supermanifold can be regarded as an object of the category
Gr. Due to categorial equivalence, in the following, we will interchangeably interpret
supermanifolds as objects of the category of ' or algebro-geometric supermanifolds.
Thus, for instance, if M and S are regarded as objects in SManyg, the set M(S) :=
{f + & = M} of smooth maps between supermanifolds can be identified with the
S-point of M (see Def. 2.2.5) which itself, since S € Gr, carries the structure of a %
supermanifold.

For the construction of the classical algebra, on M, s, let us introduce the path groupoid
P(M;s) whose set of objects Ob(P( M s)) is defined as the S-point M(S) and where,
for any objects g,/ : S — M, the morphisms Homp(m,s) (£, £) is defined as the set
of all piecewise smooth paths y : f— ¢ (see Def. 2.7.7). On the other hand, to M, s
one can associate the Atiyah groupoid At(P,s) with objects given by Ob(At(P,s)) =
M(S) and where, for any pair of objects ¢,/ : S — M, the set of morphisms
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Homae(p,s) (f> g) consists of smooth maps & : ['(f*P) — I'(g"P) that are G-
equivariant in the sense that a(f - ¢) = a(f) - ¢ forany S-point¢: S — G.

According to the general discussion in Section 2.7.2, in particular Prop. 2.7.12 and Prop.
2.7.15, it then follows that the parallel transport map SZ? corresponding to the super
connection 1-form A induces a covariant functor

{?S'ffy
P P(Mys) = ALPs), (f 5 @) = T(F'P) = T(g'P)  (5159)

from the path groupoid to the Atiyah groupoid. Actually, adapting the conventions
chosen in [18], it seems to be convenient to consider the corresponding contravari-
ant counterpart (@?)Op : P(M)s) — At(P;s) of (s.159) which to any piecewise
smooth pathse : f — g associates the parallel transport map along the inverse path
¢t g — f,thatis,

(2P (e) = ,@g‘fﬂ = (2{)7 T(g'P) = T(F*P) (5.160)
such that (9?)09(6' oeg) = (@?)Op(e) o (9?)09(6’). Next, for the canonical
description of the theory, let us to restrict P(M}s) to the subgroupoid P(X) of non-
parametrized piecewise ordinary smooth paths® ¢ : x — y between points x, y € X on
the Cauchy slice ¥ where we identified x with the constant map ¢, : S — {x} C 2.
This in fact sufficient to resolve the physical degrees of freedom of the theory since,
by the rheonomy principle, the super connection 1-form is uniquely determined by
its pullback to the body of the supermanifold. Actually, as we will see later, for the
construction of the graded holonomy-flux algebra, it turns out to be more convenient
to work in the semianalytic category and thus to assume the edges ¢ of a graph to be
piecewise semianalytic (see Remark s.5.1 below). Moreover, in the following, we want to
work on alocal trivialization of the relative principal super fiber bundle which, for sake
of simplicity, we assume to be defined on all of . This is reasonable as, in the quantum
theory, we will restrict to gauge-invariant quantities anyway.

Thus, according to Example 2.7.16, for any smooth path ¢ on X the parallel transport
map along ¢ is uniquely determined by the group-valued map g.[A] : & — G as
defined via (2.269). Hence, in turn this implies that the functor (L@?)Op is uniquely
determined by the S-point

helA] = g1 [A] = g.(, Nt S—>g (5.161)

5 Recall that the split functor 8 induces an equivalence of categories between the category Man of ordinary
smooth manifolds and the subcategory SMang C SMan of bosonic supermanifolds with trivial odd
dimensions.
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which we call the super holonomy along e induced by A. Splitting A =: 4+ ¢ according
to the even and odd part of the super Lie algebra g = go ® g1 with A the underlying
bosonic connection, it follows by Example 2.7.17 that (5.161) explicitly takes the form

helA] = g,-1[A] = Pexp (‘/Adbe[A”k) - h[A] (5.162)

with [ A] the holonomy of the corresponding bosonic connection 4. Under a local
gauge transformation ¢ : S X M — G, it transforms as

he[A] = (5 b(€)) - he[A] - ¢(-, f(e))™ (5.163)
where b(e) := ¢(0) and f(¢) = e(1) are defined as the beginning and endpoints of the

edge ¢, respectively. Using this identification of the parallel transport map in terms of its
holonomies, we may equivalently describe it as a contravariant functor

(P3P P(Z) 5 G(S), (v 5 ) - (v 25 ) (5.164)

from the path groupoid on X to the groupoid G(S) where Ob(G(S)) = X and, for
any x, y € X, the arrows x — y are labeled by S-points ¢ : S — G.

Asusal in LQG, for the construction of the classical algebra, in the following we consider
the whole set® Homgc,e (P(Z)°P, G(S)), that is, the set of «// contravariant functors
H : P(X) — G(S) from the path groupoid to the groupoid G(S). That is, we do
not restrict to those functors arising from the parallel transport map of a smooth super
connection 1-form. For this reason, we will also refer to a such functor H as a generalized
super connection. Next, we are looking for a different description of the set of generalized
super connections on the whole path goupoid P(X) in terms of subsets defined on

supgroupoids /() generated by finite graphs y.

To this end, following [18, 196], we define a graph ¥ as a collection of finitely many
piecewise smooth paths ¢;, 7 = 1,..., 7, embedded in X also called edges such that
y = U, im(e;) and the ¢; are independent in the sense that they at most intersect at
their endpoints also called vertices. For such a graph y, let E(y) and V' (y) denote the set
of its underlying edges and vertices, respectively. Then, each graph y in X induces a sub-
groupoid /() of the path groupoid P(X) with objects given by the set of vertices /()
and morphisms generated by finitely many compositions of edges and their inverses.

The collection L of all such subgroupoids / forms a partially ordered set £ = (£, <)

6 Here, Cat denotes the category of small categories with small categories C as objects and covariant
functors F : C — D between small categories as morphisms where a category C is called small if
the collection of objects Ob(C) defines a set (see Appendix B). This category can be even lifted to a
2-category regarding natural transformations 7 : F' — G between functors as 2-morphisms.
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where / < [’ forany /,/” € L iff [ is a subgroupoid of /’. Since, we are working in the
semianalytic category, it follows that this partially ordered set, in addition, is directed,
ie,Vl, /" € L, thereexists [’ € L suchthat/, ]’ < [” [18,196].

Remark s.5.1. Given two subgroupoids /, /" generated by graphs y and y” in X, respec-
tively, one may try to define the groupoid /"’ containing /,/ < /" as the groupoid
generated by the graph »”" := ¥ U y’. For this to be well-defined, one needs to ensure
that the so-constructed graph can again be subdivided into a finite number of edges.
This is equivalent to requiring that two distinct edges only have a finite number of
intersection points. This is generically not the case for arbitrary piecewise smooth edges.
Similar issues arise by trying to consistently implement the (graded) holonomy-flux
algebra, as one needs to ensure that edges only have a finite number of intersections with
2-dimensional surfaces. As it turns out, all these issues can be remedied simultaneously
working instead in the analytic or even semianalytic category (see [18,196] for more
details; for a definition of analytic supermanifolds see [106]). One thus assumes that
spatial manifold X allows for a (semi)analytic structure that is, a maximal smooth atlas so
that transition functions are (semi)analytic. Consequently, (semi)analytic edges and sur-
faces are defined as 1- and 2-dimensional (semi)analytic submanifolds of %, respectively.
In the semianalytic case, recall that, roughly speaking, a smooth function (or, more
generally of class C”* with 7 > 0) defined on an open subset of R” is called semianalytic,
if it locally coincides with an analytic function defined on a slightly larger neighborhood.
Perhaps, this definition can be generalized to the supermanifold category by requiring
smooth functions f7 appearing in the expansion (C.1) of a 4 smooth function f to
be semianalytic.

In the following, we would like to show that contravariant functors H : P(Z) — G(S)
defined on the whole path groupoid P(X) can equivalently be described in terms of
their restrictions  |; on subgroupoids / € L. This will also enable us to equip this set
with a topology which, under certain assumptions on the gauge group G, turns out to
be projectively Hausdorff. For this, for any / € L, let us define

As, = Homeae(/F, G(S)) (5.165)

It is clear that a contravariant functor A on a subgroupoid / = /(y) generated by a
graph y is uniquely determined by its images (/4 (¢;));=1,....» of the underlying edges e;.
Hence, this yields a bijection

Ass — GS)ED H s (H(ey),...,H(ey)) (5.166)

Since the S-point G(S) defines a topological space via the DeWitt topology, we can
use (5.166) to induce a topology on A g ;. In fact, in this way, it follows that A g ; in
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particular is projectively Hausdorff. In fact, in case that S corresponds to the Grassmann

algebra R € Ob(Gr), the set
Ag,; = Homcae(£°F, G(R)) (5.167)

can be identified with set of ordinary bosonic generalized holonomies on / with values
in the bosonic subgroup G := B(G) which is Hausdorft. Hence, for this reason, we
may call Ag ; the body of Ag ;. Forany S € Ob(Gr), this induces a projection

As) — Ary (5.168)

By definition, Ap ; defines a topological Hausdorft space. Moreover, by construction, it
follows that the topology on A s ; is the coarsest topology such that projection (5.168) is
continuous. Hence, in this sense, A g ; indeed defines a projective Hausdorft space.

Next, as in the pure bosonic theory, forany /,/” € L with / < /’, one has a surjective
mapping
pur: Asy — Asy (5-169)

by simply restricting functors defined on /’ to the subgroupid /. In this way, one obtains
a projective family (As 1, pir)1,rer (see Def. B.i (ii)) to which one can associate the
corresponding projective limit

As=lim sy = {(Her € | | Asgl pur(Hy) = HVL <1} (s170)
leL

which itself naturally inherits a topology via the Tychonoff topology. As in the classical
bosonic theory, one can then prove that via restriction of functors this in fact yields a
bijection

Homcae(P(2)*F, G(S)) — As, H — (H|))iex (5.171)

so that, in this sense, the set of generalized holonomies can also be equipped with a
topology. For § = R, we obtain the topological space

Ag = lim Agy (5.172)

which can be identified with the subset of generalized bosonic connections with values

in G. Again, by construction, the topology on A s turns out to be coarsest topology
such that the projection

As — Ag (5.173)

is continuous. If furthermore G (and thus G) is compact, it follows from (5.166) for
S = R that A is also compact and Hausdorff for any / € L. Therefore, by the
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properties of the Tychnonoft toplogy, this implies that the projective limit .ZR is compact
and Hausdorft. But, due to (5.173), this then finally shows that A g for any Grassmann
algebra S defines a compact topological space which is projectively Hausdorff.

Remark s.5.2. Itisinteresting to note that, since the topological spaces A s transform
covariantly under change of the parametrizing supermanifold S, they naturally induce
a functor

A:Gr— Top, S — As (5.174)

Moreover, in case G is compact, it follows that the body f_l(R) = Ag in particular
defines a Hausdorft space. Thus, A carries a structure which is intriguingly similar to a
Molotkov-Sachse supermanifold (see Remark 2.2.13).

Using the identification (5.166), for any / = /() € L, let us introduce a set of smooth
functions on A g ; denoted by Cyl™ (A ;) such that

Cyl®(Asy) = H®(G(S) W C) = H*(G(S),C)®=FW)] (5.175)

where H°(G(S),C) := H*(G(S)) ® C. Then, forany /,/” € L with/ < [’, the
pullback of the projection (5.169) induces a map p;), Cyl®(As;) — CyI®(Asp).
Thus, this in turn induces an inductive family (Cyl™ (As ), Pyp)irer (see Def. B
(i)) to which we can associate the corresponding inductive limit

Cyl™(As) :=lim Cyl™(As) = | | CyI™(Asp) ) (5.176)
lel

which we will call the space of cylindrical functions on Ag.In (5.176), for two functions
f1 € CylI®(As,) and fr € Cyl*(Ag ), the equivalence relation is defined via f; ~
iff there exists /, /” < /”” such that yare f1= Py fr.

So far, we have focused on the choice of a particular superpoint S as a parametrizing
supermanifold. According to the general discussion in Section 2.2, in particular Eq.
(2.32), it follows that if the odd dimension of S is suitably large enough, that is, larger
than the odd dimension of the underlying gauge supergroup S, then the function
sheaf H*(G(S)) on the corresponding S-point G(8) is isomorphic to the function
sheaf on G. Hence, here and in what follows, we will always implicitly assume that the
dimension of the parametrizing supermanifold S is bounded by the odd dimension of G.
From (5.175), it then follows that the space of cylindrical functions corresponding to two
different parametrizing supermanifolds satistying this bound will always be isomorphic.

Finally, let us turn to the dual dynamical variables given by the super electric field &.
Since it defines a 2-form, one can smear it over two dimensional surfaces embedded in
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2. Hence, let § C X be a two-dimensional orientable submanifold which, in addition,
we assume to be semianalyticand 7 : S — @ be a g-valued smearing function” defined
on the surface S. Then, we can integrate the super electric field over .S yielding the
Grassmann-valued quantity

En(S) = /S (n,8) (577)

which w.r.t. alocal coordinate neighborhood ¢ : R?> > U — ¢(U) C X of X adapted
to § such that, for sake of simplicity, S C #(U), explicitly takes the form

8.(5)= [ ¢ .8) = [ Jnt 48" a7 n oy’
U U
1
=‘/Ud2u 5n48fé€[ab()u1¢”3”z¢b (5.178)

Via the graded Poisson bracket, the smeared quantities &, (.S) induce derivations X () :
Cyl® (Ag) — Cyl® (As) on the space of cylindrical functions which we will call super
electric fluxes. To find an explicit form of these fluxes, let us compute their action on
holonomies corresponding to a smooth connection along certain edges e. In this case,
we have

X (8) (he[A]) = {En(S), be[Al} (5179)

In the following, by splitting edges appropriately, let us assume that e is adapted to the
surface §' in the sense that ¢ intersects the surface only at a single point and such that e
starts at S, i.e., e NS = b(e). Then, performing a specific regularization scheme similar
as in classical theory (see for instance [18]), it follows from the equivalent form (2.261) of
the parallel transport map given in Example 2.7.16, the graded Poisson relation (5.158) as
well as the fact that the super connection 1-form A is even that

Xu(S) (AN = Le(e, )W) Th (A (5.180)
where e(e, S) = +1, =1, 0if vols (v1, v2, €) is positive, negative or vanishing, respectively,
at b(e) € S for any positive oriented basis (v1, v2) of Tj(,)S with voly the volume form

7 One may wonder whether one could allow for a more general class of S-parametrized Lie(G)-valued
smearing function 7z : S X .§ — Lie(G) defined on S In fact, also in this case one could define flux
operators via the Poisson bracket. However, by the general formula (5.185) to be derived below, this
implies that these operators no longer preserve Cyl®™ (Z $) but needs to be replaced by Cyl™ (Z s)®
H®(S). In the quantum theory to be discussed in Sec. 5.5.3, this would then require the choice of an
additional inner product on H*°(S) so that expectation values become real quantities. However, in
the following, we would like to avoid this additional subtlety.
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on 2. From this, we can immediately read off the action of the super electric fluxes on
the coordinate functions x’j : G — A as defined in Example 2.3.14 which is given by

X () (B LAY = S ele, BN (TahlA) (281
where, using (2.63), the right-hand side can be written in the form

5 (Tah [ A) = (TCI el (o (h, [A])
=(-py ettt ()7, e (b, [A]) (5.182)

where we used that x"/e (Ty) = (Ty) d , 3 T4 has purely real resp. complex coordinates.
As it turns out, this can re-expressed in a very intriguing form. To see this, let R 4 =
Ty®Noy"and L 4 = 1®T 0 u" be theright-and left-invariant vector field, respecti;ely,
generated by 74. Then, using identity (2.66), its action on the coordinate functions x"j

yields

R (B [A]) =(-1) (1D (4D (74 & 1) (7, @ 3 ) (. [A)
:(_1)(|fl-|+|€/e|)(\€1e [+le; 1) (Té)l'kx/ej (}]e [ﬂ]) (5.183)

Comparing with (5.181), we thus conclude
X, (S) (& (L AD) = S (e, A b)) Rax' (B IAT)  (5184)

that is, the action of the super electric fluxes on coordinate functions is given by the
action of right-invariant vector fields. Since, the coordinate functions generate the
whole function sheaf % (&), this immediately implies that (5.184) equally holds for
any f € H®(G). Thus, more generally, if /; € [f;] € Cyl™(As) is a representative
of an equivalence class of smooth cylindrical functions associated to a subgroupoid

! = I(y) generated by a graph y adapted to S, this yields

XS =5 D e SmAbERY (5:55)

¢€E(y),enS#0 o

where we used the identification Ag ; = G(S) IE)| such that R®, denotes the right-
invariant vector field generated by 74 acting on the copy of G(S) labeled by ¢ [18].
Similar as in in the classical non—super;ymmetric case, one can prove that the action of
the super electric flux via (5.185) is indeed well-defined, i.e., independent of the choice of

arepresentative f; € [f;] defined w.r.t. a graph adapted to S.
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From identity (5.185), we deduce the remarkable property that, for a given graph y in =
generating the subgroupoid / = /(y), super electric fluxes corresponding to surfaces S
which intersect the underlying edges only at their endpoints leave the space Cyl™ (A g ;)
of cylindrical functions on A g ; invariant. Hence, if V" (A 5 ;) denotes the superalgebra
generated by the graded commutator of all such super electric flux operators, on this

graph, we can define the graded holonomy-flux algebra ?Ii,HlF via

gzIgSHlF = Cyl™ (As ) < V= (As,) (5.186)
which, in particular, forms a (infinite-dimensional) super Lie algebra according to

[(F, ), (F, )] = (X (F) = (0" Wy (), [X,Y]) (5.187)
forany f,f" € Cyl”(Ags,) and fluxes X, Y € V*(Ag;). Here, the parity |.X|

of a homogeneous super electric flux X is defined in the usual way regarding it as a
homogeneous derivation on Cyl™ (A g ;). Thus, for instance, in case X = X, (5) with
X, (S) defined via (5.185), one has | X| = |z| with |z| =: 7 € Z, the parity of the
homogeneous smearing function z : .§ — g;. More generally, considering all possible

graphs, we define the graded holonomy-flux algebra 912}11: via
AL = Cyl™ (As) = V=(As) (5.188)

with V" (Ag) the superalgebra generated by the graded commutator of super electric
fluxes on the inductive limit Cyl™ (As). Again, it follows that (5.188) forms a super Lie
algebra. In context of the non-supersymmetric theory, this algebra is usually considered
for quantization.

So far, we have not imposed any *-relation on the superalgebras (5.188) resp. (5.187)
so that they form *-algebras. This is, however, necessary in order to identify physical
quantities in terms of self-adjoint elements. In context of chiral supergravity, this may
be achieved by re-expressing the reality conditions, such as (5.156) in the case N' = 1, in
terms of holonomy and flux variables. However, since the reality conditions are highly
non-linear, even in the purely bosonic theory, this turns out to be a nontrivial task.
Hence, in the following, we do not want to comment further on the specific form of
the reality conditions and the *-relations imposed on the graded holonomy-flux algebra.
We will come back to this question in Chapter 6, specifically Sec. 6.6.1, in context of a
symmetry reduced model where we will be able to find an explicit form of the *-relation
induced by the reality conditions.
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5.5.2. Haar measures on super Lie groups and super Hilbert spaces

Before we turn next towards quantization of the theory 4 la LQG to be discussed in the
subsequent section, let us review some important facts concerning invariant measures
on super Lie groups and the notion of super Hilbert spaces. In the literature, there exist
various different approaches in this direction in both the algebraic or concrete approach
to supermanifold theory. For instance, a first systematic approach in constructing
invariant measures has been developed in the pure algebraic setting a long time ago
in [197,198]. There, one uses the fact that the function sheaf on a super Lie group, by
its very definition, naturally inherits the structure of a super Hopf algebra. In this way,
invariant measures have been found, e.g., for the series OSp(1|27) and OSp(2|2%). In
particular, it has been shown that these measures are indeed unique and both left- and
right-invariant. Nevertheless, this construction turns out to be very abstract making it
hardly accessible for concrete computations.

In [112], a more concrete approach has been developed for the construction of invariant
measures for various real super Lie groups using their equivalent description in terms
of super Harish Chandra pairs (see Theorem 2.3.9). In this way, Haar measures have
been derived for the super unitary groups U(#2|%), the orthosymplectic supergroups
OSp(m|n) as well as their compact real forms given by the unitary orthosymplectic super-
groups UOSp(m|n) := OSp(m|n) N U(m|n) (see also Section s.5.3 below). However,
in the algebraic setting, the correspondence between super Lie groups and super Harish-
Chandra pairs, unfortunately, remains rather implicit. In the A category (or more
generally for A-manifolds), in [97], a concrete algorithm was given constructing invari-
ant Haar measures for arbitrary (real) super Lie groups. This is based on the existence
of a concrete relation between a super Lie group G and the data (B(G), g) provided
by the diffeomorphism (2.45). This helps significantly in finding concrete formulae for
invariant measures which can directly be used for computations.

Before, we state the basic definition of invariant measures, let us note that many super Lie
groups that we are interested in are in fact non-compact. Hence, we need to integrate over
a particular subclass of smooth functions on a super Lie group G that have support only
on compact subsets. In this context, a function / on G is called of compact support iff
fIB(g) vanishes outside a compact subset of B(G). In the literature, invariant measures
are usually defined involving the pullback of the group multiplication. However, the
pullback, in general, does not preserve compact subsets. Hence, in the following, let us
consider instead the smooth maps © and © g on G X G defined as

Op:=(dxpu)o(dxid): GXG > GXG (5.189)
(g, h) —=(g,u(g, b))
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and

Op:=(uxid)o(iddxd): GXG > GXG (5.190)
(g, h) —(u(g, h), h)

respectively. The reason for choosing these maps is based on the fact they are proper
maps, i.e., preimages of compact sets in G X G are compact in G X G (note that this is
true for the group multiplication only in case G is compact). If X £ and X ® denote left-
and right-invariant vector fields on G, respectively, it is then easy to see that

1@ XLo@% =0%o (Xrel+1®Xt)
XR®]IO®*L=G)ZO(XR®]1+]1®XR) (5.191)
We are now ready to define invariant measures on super Lie groups.

Definition s.5.3. Let G be a H® super Lie group and H*(G,C) := H*(G) ® C
denote the C-vector space of smooth functions on G with compact support and values

in A®. A C-linear map / G H>(G,C) — Ciscalled

(i) aleft-invariant integral or left-invariant Haar measure of G if

1@/0@}:]169/ (5.192)
G G

(i) aright-invariant integral or right-invariant Haar measure of G if

‘/®110®’;3=/®]l (5.193)
G G

Moreover, f is called simply invariant integral or invariant (Haar) measure if it is
both left- and right-invariant.

The following proposition gives an equivalent characterization of invariant Haar mea-
sures using the correspondence between super Lie groups and super Harish-Chandra
pairs. It provides a generalization of Theorem 6 stated in [199] to the case of non-compact
super Lie groups.

Proposition s.5.4. Let G be a H* super Lie group and f G H>*(G,C) - Ca
C-linear map. Then / G 15 a left- resp. right-invariant integral if and only if

evg®/ ou =/ resp. /@evgo u© =/ (5.194)
G G G G
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for all body points g € B(G) as well as

/OXR=0 resp. /OXL=0 (5.195)
G G

for all smooth right- resp. left-invariant vector fields X RIL e T(TG).

Proof. Let us prove this proposition using Lemma 2.6.8. To do so, in the following, let
us focus on the left-invariant case, the proof for the right-invariant case being similar.

Hence, suppose that f is a left-invariant integral. Then, applying the evaluation mor-
phism ev, for any body point ¢ € B(G) on both sides of (5.192) immediately yields
(5.194). On the other hand, using (s.191), the action of a smooth right-invariant vector
field X R € g® on (5.192) gives

XR®/OG*L:]l@/oXR®]IOG*L=]l®/o@*Lo(XR®]l+]l®XR)
G G G

=XR®/g+]1®(/goXR) (5.196)

But, by assumption, we have

XR®/go®*L=XR®/g (5.197)

Thus, if we compare the right-hand sides of (5.196) and (5.197), this immediately gives
(5.195).

Conversely, assume that (5.194) and (5.195) are satisfied for a C-linear map / G: H>(G,C)

— C. To show that this yields (5.192), let us define for any elementary tensors y ® f €
H*(G).®,H>(G) two smooth functions Foofs Gyrop € HX(G) via Fygr =10

fg G*L((g}[) ® f) and Gyrer =X /g /- By (5.194), it follows that for any body point
g€B

Far(@) =evelar =evc [ @30 =29 [ w(h
=249 [ = Grort@) 599

forany y, f € H>(G), where 4, := u(g, -) whichis smooth as g has real coordinates.
Hence, as both Fy g and G, gf are smooth for any y, f € H®(G), the claim follows
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by Lemma 2.6.8 if we can show that X Iy gr[p(g) = X GyerlB(g) forall X € U(gR).
For 1 € U(gR) this follows from (5.198) above. So, let X ® € g® for which we compute

XRE o = X° ®/g e (yof) =1 ®/g@*L(XR;(®f+ (-n)Xllrly @ XRF)
= Fyryor + (_1)|X||X|F;(®XR;‘ (5-199)

Hence, for ¢ € B(G) a body point, this implies, together with (5.198) above,
XRFyep(g) = Fynyop(g) + (C)PIE a0

= Gyiyer(9) + (CDPIEIG (ar(g) = (XR)(g) /g £ (5:200)

where, in the last step, condition (ii) was used. Thus, X % FoerlB(g) = XR GyoflB(G)-
Following the same steps as before, by induction, it is then easy to see that X F g7 (g) =
X Gyer(g) forany body point ¢ € B(G) and X € U (gR). Hence, by Lemma 2.6.8,

wehave For = Gy or Yy ®f € H(G X G) so that fg indeed defines a left-invariant
integral. =

Remark s.s.s. Identifying a super Lie group G with its corresponding super Harish-
Chandra pair (G, g) with G := B(G). one can define the left and right regular represen-
tation pr and pg of G in terms of pairs of morphisms pz/r = (|pr/r|, pr/R+) With
lpr/rl : G — Aut(H7 (G, C)) defined as

(pLl(Qf)(h) = f (g h) and (IprI(£)F)(h) = f (bg) (5-201)

Vg € G aswell as super Lie algebra morphisms g7/ : ¢ — End, (H7(G, C)) given
by
prs(X) = —X®and pp.(X) := Xt (5.202)

VX € g. Hence, by Prop. s5.5.4, it follows that f : H*(G,C) — Cdefines a left- resp.
right-invariant integral iff it is invariant under the left resp. right regular representation

of G.

Integrals on supermanifolds can be formulated in terms of Berezinian densities (see
[200-202] for more details). A Berezinian density on a supermanfold M is defined
as a smooth section I'.(Ber(M)) with compact support of the Berezin line bundle®
Ber(M) := . (M) xpe: A which is a bundle associated to the frame bundle . % (M) via

8 In the case of an ordinary C* manifold M of dimension 7, these can be identified with sections of the
exterior bundle A”7™ M, i.e., top-degree forms (M) on M. This, however, is no longer true in
the case of supermanifolds as there a graded notion of a top-degree form turns out not to exist.
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the one-dimensional dual representation GL(m|n, A) 3 A + Ber(A)™! € Aut(A)
where dim M = (m, ). For a super Lie group G, it then follows that a Berezinian
density » € I';(Ber(&G)) induces a left-invariant integral iff its trivial extension # on

G X G satisfies [109]
Q,9=19 (5.203)

We will also refer to a Berezinian density satisfiying (5.203) as a left-invariant (Haar)
measure on G. To construct such an invariant measure note that, for any super Lie group
G, the tangent bundle 7°G is always trivializable with a global frame p € I'(#(G))
induced by a homogeneous basis (¢;, f}) of left-invariant vector fields e;, f] € gon
G,i=1,...,mand j = 1,...,nwithdim G = (m, ). In particular, this yields a
global section v4 := [p, 1] € I'(Ber(G)) of the associated Berezin line bundle which,
by construction, automatically defines a left-invariant Haar measure. With respect to
local coordinates (x, £) on G, we can write p = (0,4, 55].) - X where X denotes the
matrix representation of the left-invariant vector fields w.r.t. the induced coordinate
derivatives. Thus, in local coordinates, the density ¥4 then takes the form

v = [(0ers 05,) - X, 1] = [(9y1, 05,), Ber(X) '] (5:204)

To find an explicit expression for X, one can then use the equivalent description of
G in terms of the corresponding super Harish-Chandra pair (G, g) via identification
(2.45). This requires an intense use of the Baker-Campbell-Hausdorft formula and
thus involves various powers of the (right) adjoint representation adg : Lie(G) —
Endz(Lie(G)), X = [X,-]. Asshown in [109], the matrix representation then takes
the form

X(x,6) = (5.205)

Clx) C(x)- H(f))
A(§) B(&)
where C(x) as well as H (&), A(£) and B(£) are submatrices depending purely on

even and odd coordinates, respectively, and which are defined via

adr (0)(e;) = fAEY,,  bo(adr(0)fy = fiB(£)*,
and  h(adr(v))f; = e,'H(f)"j (5.206)

with v := ]‘}f/ € (g1 ® A)p and real functions

t cosh(t 1 1 -1 1 1
, @) _ +-tP——t v b(r) = = 3
sinh(?) 3 45 e

by(t) =
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Moreover, C(x) is determined via the matrix representation of the even left-invariant
vector fields e; via

eil(gw) = 05, C7, (x) + 05, 4* (&) (5.208)

In particular, when restricting to the body, C can be identified with the matrix represen-
tation of the left-invariant vector fields on G. The left-invariant integral on §(g;, G) for
smooth functions f € H (S(g1, G)) = C°(G) ® Ag] then takes the form [109]

/g Fry = / & /B & f (%, £)Ber(X) ™ (x, £)

_ 4 x -1 n detB(f) x
= [awcer [ae e —HEBE AE) ©?)

= [ dunto) [ @£ 867 (0.8) (5.209)
G B

where u g is the induced left-invariant Haar measure on G and /B denotes the usual
Berezin integral on \gj. Hence, the derivation of the invariant integral on G boils
down to the choice of an invariant Haar measure on the body G as well as the derivation
of the density A(£) in the Berezin integral which, according to (5.206) and (5.207), only
involves the computation of the matrix representation of the adjoint representation on
the super Lie algebra g.

Example 5.5.6 (Invariant Haar measure on OSp(1|2)c). Let us apply the algorithm
outlined above to compute the invariant Haar measure on the complex orthosymplec-
tic group OSp(1]2)c. In case of the real orthosymplectic group, this has been done
explicitly already in [109] and in the algebraic category in [112]. Using the explicit matrix
representation of the generators (777, Q 4) as resulting from (2.92) and (2.93), by The-
orem 2.4s, it follows that we can identify OSp(1|2)c with the split super Lie group
$(0sp(1]2)1, SL(2, C)) according to

1-7E%YE~ —iE -t
O(g,0) = geXp(fAQA) =g =&t 1+ %f+f_ 0 (5.210)
-&- 0 1+ L6787
for ¢ € SL(2,C) and £ e A(f for A € {£}. For the derivation of the Haar measure,

let us introduce a new real homogeneous basis (5, J+, V) of 05p(1]2)c defining

L
Je=—i(T{ £4T})), =01, V.= ig(i -1)Q: (5.211)
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From (5.82)-(5.85), it follows that the commutators among the even generators satisfy

LA Jel =+, [ 1 =25 (5.212)

which are the standard commutation relations of s1(2, C). For the remaining commuta-
tors, we find

Vo Vil =Ve, Vil =0 (5.213)

VWil =z )y V] =3 (5214)

[]33 Vil =+

These are precisely the graded commutation relations of 7ea/ OSp(1|2) as stated for
instance in [109]. Using the commutation relations above, it then follows immediately
that the matrix representation of ad g (§4V) is given by

0 0 0 —367 -16*
0 0 0 6% 0
adz(0 V)= 0o 0o o o -l& (5.215)
10v 60 0 0 0
-6 0 6 0 0

Hence, it follows from (5.206) as well as (5.208), using ad(61V )" = 0forn > 3,

1 0 o -i6 —16*
1 0 Al 0
LA 0 1 0 i (5.216)
= —= .21
4 B :
30 67 0 1-36%6" 0

-6 0 6* 0 1-16%6-

Actually, for the derivation of (5.209), it has been implicitly assumed that the super Lie
group defines a real supermanifold. Hence, we need to view OSp(1|2)c as a real super
Lie group. A homogeneous basis of the realification of g := 0sp(1|2)c (resp. Lie(G) :=
g ® A®) is then given by (J3, Ju, Vi) U (i, i)+, V). Let R : Endp(Lie(G)) —
End , (Lie(G)r) be the morphism which identifies any X' € End , (Lie(G)) with the
corresponding real endomorphism R (A4) on the realification Lie(G)r. For the density
A=A €, %, 77) in the Berezin integral, we then compute

~ det(R(B)) R 1 y
B (i )10 38) e
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Hence, it follows that the invariant integral for any smooth function f € V :=

C™(SL(2,C),C) ® A[64, 6] is given by

/ /7 :/ dﬂH(g,g)/dﬂ(ﬁ, 6)f(g.3.6,0) (5.218)
0Sp(12)c SL(2,C) B

with dy g7 an invariant Haar measure on SL(2, C) and

du(8, ) = d6Ad6" (1 + 41?9+9) (1 + }LM) (5.210)

Finally, let us introduce the notion of a super Hilbert space. As already mentioned in the
introduction, there are indeed many different approaches in formulating such a notion.
Since, in this work, we are mainly interested in applications to LQSG, we would like to
consider super vector spaces V' given by the space V' := H* (G, C) of smooth functions
on super Lie groups G equipped with the super scalar product . (see Def. 2.3.12 (ii))

induced by the invariant Haar measure / g on G such that

S (flg) = /g fg (5.220)

Unfortunately, it turns out that the induced super scalar product as defined via (5.220)
will be in general indefinite yielding an indefinite inner product space (¥, .%’). Hence,
at least a priori, the super scalar product cannot be used in order to extend V" to a (super)
Hilbert space. However, as shown in [109], one can always find an, not necessarily
unique, endomorphism / : V7 — V such that

Clyy=ClT) (5-221)

defines a positive definite inner product on /. Moreover, . turns out to be continuous

w.r.t. the topology induced by (-} ; on V.

Definition s.5.7. A pre-super Hilbert space is a triple ($, .7, ) consisting of a super
vector space § = o @ 9, together with a super scalar product . on § as well as
an endomorphism / : § — $ such that the sesquilinear form (:|-) ; as defined via
(5.221) yields a positive definite inner product on §, i.e., (£, (|-) ;) defines a ordinary
pre-Hilbert space and .’ is continuous w.r.t. the topology induced by (:|-) ;.

A pre-super Hilbert space (), -7, /) is called a super Hilbert space it (9, (-|") ;) defines
a Hilbert space in the category of ordinary vector spaces, that is, if $), regarded as an
ungraded vector space, is complete w.r.t. the topology induced by (:[-) ;.
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An interesting subclass of (pre-)super Hilbert spaces is provided by triples (9, %, J)
where the endormorphism J : § — $ satisfies additional properties yielding the
notion of a super Krein space (for a definition of Krein spaces in the ungraded case see

e.g. [203]).

Definition s.5.8 (a reformulation of [204,205]). A (pre-)super Hilbert space (£, .7, J)
is called a super Krein space if the endomorphism / : § — $ defines a fundamental
symmetry, ie., if it satisfies J* = 1 as well as .7 (Jv| Jw) = .7 (v|w) Yo, w € H.

Following [205], given a super Krein space (£, .7, /), the fundamental symmetry
induces a decomposition of § in the form

D=D119 91 ©9[-11© D[] (5.222)
with 9,41 = ker(J - i ~*1) such that

S (v|v) € z'kRZO,Vhomogeneous v E Dk (5.223)

which we also refer to as a super Krein decomposition. Conversely, it is clear that any
decomposition of the form (5.222) naturally induces a fundamental symmetry / : $ —
$ via

J =Py = iPyy) = (Pro1) — iP-) (5-224)

where P41+ $ — 9,47 denotes the projection onto the subspace §| ;1. In the special
case H[-1] = {0} = 9[-, this leads back to original definition of super Hilbert spaces
typically used in the literature [61,74,206]. The corresponding fundamental symmetry
J = Jo then acquires the standard form [205]

Jov = (=1)¥ly, VYhomogeneous v € $ (5.225)

Definition s.5.9. A (pre-)super Hilbert space (£, .7, J) is called standard if it is a super
Krein space and if the fundamental symmetry / is of the standard form / = J; (5.225).

Remark s.5.10. By definition, it follows that any super vector space I equipped with a
positive definite inner product (:|-) : V' X V' — Csuch that (V, {-|-)) is an ordinary
pre-Hilbert space naturally induces a corresponding standard pre-super Hilbert space
(V,.7, Jo) with super scalar product .’ defined as .’ := (-| ;). Hence, there exists
a one-to-one correspondence between standard (pre-)super Hilbert spaces and ordinary
(pre-)Hilbert spaces where the underlying vector space carries an additional Z,-grading.

Example s.5.11. In the following, let us analyze the structure of inner product space
(V,”) with V" := H*(U(1]1), C) the super vector space of smooth functions on
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super Lie group U(1]1) (see Example 2.3.16) equipped with a super scalar product .
induced by the invariant Haar measure on U(1]1) defined via (5.220).

To this end, we first need to find an explicit form of the invariant Haar measure of U(1|1).
In the algebraic setting, this has been discussed already in [112]. Here, we want to rederive
it applying the concrete algorithm outlined above and originally developed in [109]
using the super Harish-Chandra isomorphism (2.45). Hence, let Y := £©; + 7O, with
£,7 € Aq. Using (2.77), it follows that the adjoint representation ady acquires the
following matrix representation

0 0 —2&£ -2y
0 0 =2¢& -2y

ady = (5.226)
-7 7 0 0
E £ 0 0
which yields
4y —4fy 0 0
aky —4fy 0 0
d?; = 7 7 (5.227)
0 0 0 0
0 0 0 0
as well as ad? = 0 for #z > 3. Thus, from this, we deduce
10 =& =
1, H 0 1 - -
2 = S (5.228)
A B -7 7 1 0
E £ o0 1
so that the density takes the form
det B
A&, p) = =1 (5:229)

det(1, — HB14)

Thus, to summarize, up to a constant rescaling, the invariant integral fU a V- C
on the super Lie group U(1[1) is given by

/U(1|1) f= ‘/L;(l)xU(l) dl“H/ idydy f (5-230)
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forany /' € V. Moreover, using (5.230), we can introduce a corresponding super scalar

product . : V' XV — ConV via

Z(flg) = fg (5.231)

u(|n

As it turns out, the tuple (V,.7’) can be equipped with the structure of a pre-super
Hilbert space such that, after completion, the resulting super Hilbert space has the
structure of a super Krein space. In fact, defining v, := 1 F zzﬂ} as well as w, := 1}
and w_ := ¢ it follows that ./ (v4|v+) = £2 and . (w+ |w) = £7 with all remaining
combinations being zero. Since, the constant unit function 1 on U(1]1) can be written
inthe form 1 = %(U.,. + v_), this implies

/ 1=0 (5-232)
U

that is, the constant unit function is not normalizable. Let us then define the super
vector spaces

V. = C®(U(1)%,C)v. U C®(U(1)% Cw, (5:233)
This yields the super Krein decomposition
V=Vviel (5-234)

which is precisely of the form (5.222). Thus, following the standard procedure, we can
complete (V', %) to a super Hilbert space. To do so, let PJ_f V- (Vi) fori € Zy
denote the projections onto the homogeneous subspaces (V.); and J : V7 — V the
fundamental symmetry defined by

J =P -iP}) - (P’ -iPl) (5-235)
Then, this induces a inner product (-, -) ; : V"XV — Con I setting
(flg); = (f1g), Yf,geV (5-236)

which, by construction, is positive definite. In fact, for a general smooth function
f eV =C*U(1)?3C) ® A; of the form £ = fo + iV + /¥ + fi2¢ ¥ one can
decompose f = %(f@ +if12)vs+ %(f@ —ifi2)v—+ fws + fow_. According to Definition
(5.235), it then immediately follows that

(Flg), =D (filgr (5:237)
1
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where ({:|-)) denotes the ordinary positive definite inner product on C*(U(1)?,C)
induced by the unique normalized invariant Haar measure ¢z on U(1) X U(1). Thus,
this immediately implies that the completion of 7 w.r.t. the induced topology takes the
form

$:=7"" = LU, dur) @ AT (5.239)
Moreover, by construction, it follows that . is continuous so that it can be extended
uniquely to $ yielding the super Hilbert space (£, (|}, ") which, in particular,

carries the structure of a super Krein space.

5.5.3. Loop quantization
5.5.3.I. General Scheme

With these preparations, let us finally turn towards the quantization of the theory adapt-
ing techniques from standard LQG. Again, in order to keep our considerations as general
as possible, before focusing on the loop quantization of chiral supergravity, let us first dis-
cuss the general quantization scheme and suppose we are given a graded holonomy-flux

algebra ?IgSHF as constructed in Section s.5.1 based on a general gauge supergroup G. At
this point, let us, however, emphasize that the final picture will remain rather incomplete.
This is mainly due to the additional difficulties arising in the supersymmetric setting
such as the indefiniteness of inner products induced by invariant integrals as well as
their non-normalizability which is crucial in order to implement cylindrical consistency.
Finally, in context of chiral supergravity to be discussed below, one needs to deal with the
non-compactness of the gauge group and solve reality conditions which, even in case of
the bosonic self-dual theory, still remains an open problem. Hence, in the following, we
will only sketch the main idea behind the construction pointing out various difficulties
arising along the way and discuss their possible resolutions.

For the quantization of the theory, we are looking for a faithful (grading preserving)
morphism of superalgebras

zs: AL — Op(Ds, Hs) (5.239)

mapping from ‘ZI%;HF to the space Op(Ds, Hs) of (un)bounded operators 7" : D C
dom(7) — $s on a super Hilbert space Hs = (Hs,-7, /) with domain dom(7")
containing a dense graded subspace D s C $s. Moreover, we require the representation
to transform covariantly under change of parametrization S. In fact, as we will see
below, provided that S is large enough, the resulting quantum theory is completely
independent of the choice of parametrization.
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Following the standard procedure in the purely bosonic theory, for the quantization,

we choose a Ashtekar-Lewandowski-type representation of ?IiHF. To this end, for any
subgroupoid / = /() € L generated by agraph ¥ C Z, let us consider the super vector

space Vg == Cyl™(Ag). On Vs ; we then define the representation of QI%SHZF via

7s(f) = fir  ws(X,u(S)) i= ihX,(S) (5.240)

where f; acts as a multiplication operator by f;. Using the identification (s.175), we can
define a super scalar product .7 on Vg ; choosing an invariant Haar measure / 6(S)
on the 4 super Lie group G(S) which, via factorization, induces an invariant Haar

measure on G(S) £ yielding

S alfy) = /{j - (s.241)

S)ED

for any /7, g7 € Vs;. As a next step, one then needs to check that the super scalar
product as defined via (5.241) is indeed cylindrically consistent, i.e., independent of the
choice of a graph . More precisely, given a graph y” with [(y) < I(y’) =: [’, one
needs to check that

Sr(pfilpr ) = < 1(filg) (5.242)

’

Y/, g1 € Vs,. To do so, it suffices to consider the following three distinct cases: (1) ¥
arises from y by adding a new edge not contained in y, (2) an edge in ¥ can be written
as a composition of two distinct edges in y’, (3) y” arises from y by inversion of the
orientation of an edge.

As in the non-supersymmetric setting, consistency under these three cases turns out
to be equivalent to requiring that the family of super scalar products (-#7); as defined
via (5.241) are both left- and right-invariant and that the constant unit function 1 :

G(S) — C, g — 1iscontained in H*(G(S), C) and is normalized, i.c.,

/ I=1 (5:243)
6(S)

In fact, it follows that the last condition imposes severe restrictions on the super Lie
group. On the one hand, as in the bosonic case, existence of the unit function implies
that the super Lie group G(S8) is compact which, by the DeWitt topology, is equivalent
to requiring that the body G (R) is compact. While, in the bosonic theory, this condition
is sufficient in order to ensure normalizability of the unit function, this, however, turns
out to be no longer the case in the supersymmetric setting. We have indeed encountered
an explicit example in Example s5.5.11 (see Eq. (5.232)). As shown in [198], requiring
f 6(S) 1 to be different from zero implies that the finite-dimensional representations
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of G(8) are completely reducible which, for super Lie groups, is satisfied only in rare
special cases. Nevertheless, there exists interesting candidates where all these conditions
are satisfied such as, for instance, the unitary orthosymplectic group UOSp(1|2) defined
as the intersection

UOSp(1]2) = OSp(1|2) N U(1]2) (5-244)

In particular, it defines a compact subgroup of OSp(1|2) and thus may be even of
interest in context of chiral supergravity.

Hence, in the following, let us assume that the underlying super Lie group G(S) indeed
satisfies all these conditions. It then follows that the family of super scalar products
(#7); can be lifted consistently to a super scalar product .%” on the inductive limit

Vs =limVs, (5-245)

Thus, under these assumptions, we end up with an indefinite inner product space
(Vs,-). For the quantum theory, we then finally need to extend Vs to a Hilbert space.
To this end, for any / € L, one can apply the general results of [109] and construct an
endomorphism J; : Vs ; — Vs such that the induced inner product

¢l =Clr) (5.246)

is positive definite which can then be used in order to complete to Vs ; to a Hilbert space

=l
Hs, =V " (5.247)

and, in particular, .} turns out to be continuous w.r.t. the induced topology. Thus,
in this way, we indeed obtain a family of super Hilbert spaces (s ;, -7, J;). As a final
and crucial step in the quantization scheme, we need to ask the question whether the
family of inner products (5.246) can be lifted consistently to well-defined inner product

([} = F(:|/) induced by an endomorphism / : $s — $s on the inductive limit
9s = limHs, (5-248)

This, in general, turns out to be a difficult question to answer as the choice of endo-
morphisms J}, a priori, is by far not unique. A sufficient criterion for this to be possible
would be the existence of a choice of a family ( /;); which commute with the pullbacks
of the graph projections, i.e.,

Py =Jr o (5.249)

since then the cylindrical consistency of the induced inner product is indeed trivially
satisfied. However, this condition seems to be rather restrictive. For an example of such a
family of endomorphisms satisfying this condition see Section s.5.4 below. Alternatively,
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one may try to find a suitable basis of the indefinite inner product spaces (Vs ;, /),
such as a super spin network type basis (see Section s.5.3.3), which can then be used
in order to construct a canonical endomorphism J; for any / € L. One then finally
needs to check, whether the induced positive inner products are indeed cylindrically
consistent. For the construction of such a basis, one needs a Peter-Weyl-type theorem
for super Lie groups stating that matrix coefficients of irreducible finite-dimensional
representations of the underlying super Lie group provide, at least in a specific sense,
an orthonormal basis of the indefinite inner product spaces (Vs ;, 7). Results in this
direction have been studied for instance in [207] in context of UOSp(1|2). Interestingly,
the basis constructed there seems to have almost the same properties as in the SU(2)
case and therefore seem to be suitable in order to find such an endomorphism /.

Remark s.s.r2. Ultimately, one may follow a completely different strategy applying the
methods of [208]. There, introducing a particular kind of topology on H* super Lie
groups different from the DeWitt topology, the authors of [208] are able to identify the
underlying supermanifold with a corresponding ordinary real manifold. This approach
then allows one to construct invariant integrals which, in particular, turn out to be
positive definite. However, this construction depends crucially on the choice of the
underlying Grassmann algebra. From the functor of points perspective, this means
that one needs to make a particular choice of the parametrizing supermanifold S. A
suggestive candidate would be to choose the infinite-dimensional Grassmann algebra A
as it arises in terms of an inductive limit of the family of finite-dimensional Grassmann

algebras.

5.5.3.2. Application: Chiral supergravity

Having sketched the general strategy to canonically quantize field theories with gauge
symmetry given by a supergroup in the framework LQG, we finally want to apply it in
the context of chiral supergravity. However, there, one runs into several problems as
the underlying gauge supergroups given by the (complex) orthosymplectic supergroups
OSp(N2)c are non-compact. Moreover, one also needs to deal with the consistent
implementation of the reality conditions as one s still dealing with a complex theory.
An interesting and elegant possibility to solve the reality conditions would be to be
adapt the ideas of [209] and to introduce some kind of a Wick rotation on the phase
space so that the complex theory arises from an Euclidean counterpart corresponding
to a real Barbero-Immirzi parameter 8 € {+1} via a Wick transformation. However,
the resulting gauge group given by the real orthosymplectic supergroup OSp(N[2)
is still non-compact. Adapting ideas in context of the purely bosonic theory (see for
instance [210—214] and references therein for recent advances in this direction), this may
be solved by going over instead to their corresponding compact form given by unitary

orthosymplectic group UOSp(N[2) = OSp(N|2) N U(N2). As already mentioned
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in the previous section, for the special case N' = 1, besides compactness, this group has
very useful properties such as the existence of an invariant Haar measure with respect to
which, in particular, the unit function is normalizable which is important in context
of loop quantization in order to implement cylindrical consistency. Nevertheless, this
last property turns out to be no longer satisfied in case of extended supersymmetry
corresponding to higher N' > 1.

Anyway, since, we want to explicitly include the extended case N = 2, in what follows,
we will not discuss the question of how to impose cylindrical consistency and instead
work on a single graph y in 2. As argued in [213], we may therefore assume that the
graph under consideration is at least suitably fine enough to resolve the topology of X.

Let ‘II\CSL}SG = ?I?SI,{ZF(y) denote the graded holonomy-flux algebra w.r.t. the graph » and
underlying gauge group given by OSp(N[2)c. The quantization of the theory then

COrreSpOndS toa representation
cLQSG cLQSG
7[8,;/ : QIS,y - OP(DS,}/J 53,}, ) (5-250)

cLQSG . cLQSG . .
of A s, onasuper Hilbert space $ Sy - To construct this representation, as pre-

Hilbert space, we consider the super vector space Vs ,, := Cyl™ (A s(;)) which, accord-
ing to (5.175), can be identified with

H(G(S)ED C) = H*(G(S),C)%1ED)] (s-251)

or a suitable subspace thereof, if one restricts, for instance, to holomorphic functions as
naturally arising from super holonomies induced by the super Ashtekar connection (see
discussion below). The representation of the algebra on this vector space is then defined
via (5.240). For the super scalar product .’ on Vs, we make the ansatz

S(Flg) = /g R /B 4u(8,0)p(g, 3.6,0) f ¢ (5.252)

with dg g the invariant Haar measure on the body G(R) = SL(2, C) and the measure
du(d, 8) in the Berezin integral which, in case N' = 1, is given by expression (s.219).
Here, p = p(g, 4, 0, 8) denotes an additional density which has been chosen in order
to deal with the non-compactness of the group. In this context, note that, generically,
the matrix coefhicients of the super holonomies (5.162), as part of the underlying algebra
and thus of the resulting state space in the quantum theory, are functions of the form

= it fay Shyay” (5:253)
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with f7 Grassmann extensions of holomorphic functions on SL(2, C). But, by Liou-
ville’s theorem, if required to be nontrivial, general functions of this kind cannot be of
compact support. This is of course problematic in context of integration theory and thus
for the proper definition of the inner product. Hence, either one excludes holomorphic
functions already in the definition of the classical algebra or the measure on SL(2, C) is
changed appropriately by introducing a density p which is of compact support. We will
study the last possibility in the following chapter in the context of symmetry reduced
models. There, the measure turns out to be in fact distributional. In particular, we will
see that this will also enable us to exactly implement the reality conditions (5.156). In
context of the full theory with ordinary self-dual variables, this idea also been studied
in [215] considering a specific subclass of the full reality conditions where it was found
that the resulting density imposes a gauge-fixing onto the compact subgroup SU(2) of
SL(2, C). Maybe, these results can be extended to the supersymmetric setting possibly
involving the unitary orthosymplectic group UOSp(1|2) which, as explained above, has
many interesting properties quite analogous to the purely bosonic theory.

Ultimately, for the construction of the super Hilbert space, we have to choose an endo-
morphism / : Vs, — Vs, such that the induced inner product (-|-) ; := S (:|]") is
positive definite. The choice of such an endomorphism is, of course, not unique but
strongly restricted by the correct implementation of the reality conditions (see Section
(5.5-4) or (6.6.2) in context of symmetry reduced models). Using this inner product, we

can then complete Vs, to a Hilbert space 35;LSSG so that finally end up with the super

Hilbert space (5;1“35(;, <)),

5.5.3.3. Super spin networks and the super area operator

Having constructed the Hilbert space representation of the classical algebra underlying
canonical chiral supergravity, we next have to select the proper subspace of physical states
consisting of states in SE)TSLSSG that are annihilated by the operators corresponding to
the constraints of the canonical classical theory given by the super Gauss, the right SUSY
and the diffeomorphism constraint, respectively, as well as the Hamiltonian constraint.
In the following, let us only focus on the super Gauss constraint. The other constraints
will be discussed in the context of the reduced theory in Section 6.4 below. In fact, the
particular advantage of the loop representation as studied in this section is the rather
straightforward implementation of the super Gauss constraint (5.118) (resp. (5.136) for
N = 2) in the quantum theory implying invariance of physical states under local gauge
transformations.
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To this end, recall that the super Gauss constraint in the bulk theory, modulo boundary
terms, takes the form

/

Gla] = / (D) ap &) = —= / &x (D) atygs, = ~26(D) a)
z K Js £ K

(5-254)
and thus resembles the definition of a super electric flux but smeared over a three-

K

dimensional region instead of two-dimensional surfaces. Thus, for the corresponding
operator in the quantum theory, we may set

Gla] = g{a(D(W) a),-} (5.255)

Following the same steps as in the purely bosonic theory, it is then immediate to see that
the super Gauss constraint operator takes the form

Q[a]:% Z a4 () Z R - Z LY (5.256)

vel (y) e€E(y),b(e)=v e€E(y),f (e)=v

In particular, due to its structure, the super Gauss constraint has a well-defined action
on the super Hilbert space as it takes the standard form of a super electric flux operator

and maps cylindrical functions to cylindrical functions. For a generic state f € QELSSG
to be physical, this then yields the condition
Glalf =0 (5-257)

that is, according to (5.256) and Remark (s.5.5), physical states have to be invariant under
both the left- and right-regular representation of G(S).

In standard loop quantum gravity, one considers a typical class of states satistying the
constraint equation (5.257) given by the so-called spin network states. These states are
constructed via contraction of matrix coefhicients of irreducible representations of the
underlying gauge group. In fact, in case that the bosonic group is compact, it follows that
these type of states form an orthonormal basis of the entire Hilbert space. This follows
from the well-known Peter-Weyl theorem which is valid for compact bosonic groups.
However, in case of general super Lie groups such a general statement, unfortunately,
is not known. Nevertheless, the finite-dimensional irreducible representations of the
orthosymplectic series OSp(N'|2) for N = 1, 2 are well-known and have been intensively
studied in the literature (for a summary see Appendix D). In particular, for the case
N = 1, it follows that these type of representations form a subcategory which is closed
under tensor product. In fact, the same applies to the extended case N = 2 if one
restricts to a particular subclass of the so-called typical representations (see [216,217] for
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[ — G S

Figure s.: A pictorial representation of a super spin network state for the case N' = 2. In contrast to the
standard quantization scheme of fermions in LQG, the fermions are smeared over the one-dimensional
edges of the graph which are labeled by admissible representations 7D e Py of the supergroup
OSp(2]2) with isospin j and charge quantum number g.

more details). We may call these kind of representations admissible in what follows.
Thus, restricting to admissible representations, one can construct invariant states which
lead to the notion of super spin network states. For N = 1, these have been studied for
instance in the References [84, 85]. For the rest of this section, let us briefly sketch the
main idea behind their construction explicitly including the extended case N = 2.

To thisend, let P4, denote the set of equivalence classes of admissible finite-dimensional
irreducible representations of OSp(N|2) with N = 1, 2. Forany subset 7 := {7, YeeE(y)
C Padm, we then define the cylindrical function 7, z 7 5 € Cyl®(As,,) via

Toami= || (7)™, (5.258)
e€L(y)

also called a gauge-variant super spin network state where, for any edge e € E(y),
(7)™, denote certain matrix coefficients of the representation 7, € P,4m. By defini-
tion, it then follows from the general transformation law (5.163) of a super holonomy
under local gauge transformations, that, at each vertex v € V' (y), the state (5.258)
transforms under the following tensor product representation of G(S)

7, = ® T, | ® ® 7, (5.259)

eel (v) eeF (v)

where 7} € P,qm denotes the right dual representation corresponding to 7,. Here,
1 (v) and F () are defined as subsets of £ () consisting of all edges ¢ € E(y) which are
beginning or ending at the vertex v € V' (), respectively. Hence, in order to construct
gauge-invariant states, at each vertex v € V' (y), we have to assume that the trivial
representation 7 appears in the decomposition of the product representation (s.259),
ie,m € m, Vv € V(y). Foranyv € V' (y), we can then choose an intertwiner 1, which
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contracted with the state (5.259) project onto the trivial representation at any vertex. As
a consequence, the resulting state transforms trivially under local gauge transformations
and thus indeed forms a gauge-invariant state which we call a (gauge-invariant) super
spin network state (see Figure ).

On the super Hilbert space 55;%3%, one can introduce a gauge-invariant quantity in
analogy to the area operator in ordinary LQG. More precisely, since the super electric field
& defines a Lie(G)-valued 2-form, for any oriented (semianalytic) surface S embedded
in Z, one can define the graded or super area gAr(S) via

gAr(S) = /S Il (5.260)

where, generalizing the considerations in [4s, 218, 219] in the context of the purely
bosonic theory to the supersymmetric setting, the norm ||&E|| is a 2-form on §' defined
as follows: Let 15 : § <> X denote the embedding of the surface S in Z. Since, /&
defines a 2-form on S, it follows that there exists a unique Lie(G)-valued function

&g : 8 X § — Lie(G) such that /(& = Eg volg. The norm ||E|| is then given by

I8l == V(&s; Es) (5.261)

For the special case N = 1, it follows that the expression (5.260) coincides with the super
area as considered in [8s]. Note that, in case that the parametrizing supermanifold is
trivial S = {*}, the super area reduces, up to numerical factors, to the standard area of
S in Riemannian geometry.

By definition, the quantity (5.260) solely depends on the super electric field which defines
a phase space variable. Thus, we can implement it in the quantum theory. To do so,
we first need to perform an appropriate regularization. Following [4s], let us therefore
assume that the surface S intersects the graph ¥ only in its vertices and is contained
within a single coordinate neighborhood (U, ¢¢7) of X adapted to S. Furthermore,
let U, = {U;}; be a partition of U of fineness ¢ > 0 such that S is covered by the
Sy, = ¢u (U;). Then, for € > 0, we define

gAr(8):= > I8(SNI= Y. JTAEXp(S)Xa(Sr)  (5262)

Vel Vel

where X 4(Sy) denotes the super electric flux operator smeared over Sy with smearing
function 7 : S — g satistying n2 = 1 for B = 4 and #2 = 0 otherwise. In the limit
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€ — 0, this then implies gAr(S) = lim,_, gAr,(.5). Using this regularization, we can
define the super area operator as follows

BAK(S) = lim gAT,(S),  BAT(S)= > | TEXp(SXa(S)  (5263)
Vel

Next, let us derive an explicit formula for its action on super spin network states. To
this end, following again [4s] in the context of purely bosonic theory, we compute

2
TRy 550 = (7 9“( N e(e,st;)( > e(e,SmR;)

enSy #0 eNSy 0
(3] 7o - ) - )
= (Z—")Z T4E (2R R + 2Ry RY"
- (R + Ry) (R + RYY))

b 2
P (ZK) (2A1 +2AF — Aur) (5.264)

with Rz = Zfingoing Rig and Rzut = Zf outgoing R; Moreover, A= —gﬁRéRé
denotes the super Laplace-Beltrami operator of the super Lie group G.

With these preliminary considerations, let us compute the action of the super area
operator on a (gauge-invariant) super spin network 7}, z 7 5 for the special case N = 1.
Suppose that the surface S intersects the graph y in a single divalent vertex v € V' (y) so

that, at this vertex, one has A; = Ar as well as A;yr = 0. Using the results of Section
D.1, up to numerical factors, we then find

— . .01
AT(S) Ty, 2 i o< il ](]+§)Ty,7?,n7t,71 (5.265)

with 7 the spin quantum number labeling the edge ¢ € E(y) that intersects the vertex
v. This coincides with the results of [8s].

5.5.4. Comparison: Quantization of fermions in standard LQG

In the following, we would like to point out various similarities between the quantization
of the combined boson-fermion system in chiral LQSG exploiting the enlarged gauge
symmetry of the theory and the standard quantization scheme in the framework of loop
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quantum gravity using real Asthekar-Barbero variables [67,80]. To this end, following
[80,156] and explicitly taking into account the underlying parametrization supermanifold
S, let us assume we are given a canonical system of anticommuting half-densitized
fermion fields 8 (cf. Section 4.3.1), 4 € {+}, defined on ¥ and canonically conjugate
momentum 7 4 satisfying the anti-Poisson relations

{WA(S) x)’ 63(5’ }’)} = _953(3) (X, }’) (5266)

Vx, y € Zand s € S together with certain reality conditions relating the momentum
7 to the corresponding complex conjugate Weyl spinor §. In the standard literature,
matter fields in loop quantum gravity are quantized by discretizing them over a finite
number of points. As we will see below, the classical algebra has in fact an interesting
interpretation in context of S-parametrized field theories studying smooth functions
on supermanifolds arising from the functor of points prescription.

To explain this in a bit more detail, in what follows, for a graph y in X and a finite set of
points {x;}; C Z, let us define a generalized graph T .= y U {x;},. Again, it follows
that the collection of all such generalized graphs forms a partially ordered directed set by
defining

I'<I":o l(y) <I(y')and {x;}; C {x}}j (5.267)

forT'= yU{x;};andI" = y"U {x}}] To a generalized graph I' = y U {x; },, we then

associate the set Ag 1 of pointed generalized super connections via

k
Ay = Homeae(U(7)F, G(S)) x | | C(S) (5.268)

=1

where, forany x € %, C§'2 denotes the superpoint Cglz = ({x}, Agj). In Definition
(5.268), the first factor corresponds to the bosonic degrees of freedom given by the set
As,, = Homcat (£(y)°P, G(S)) of generalized bosonic connections on the graph y
with the underlying gauge gauge group given by the purely bosonic super Lie group
S(SU(2)) which, as usual, we will identify with G := SU(2) to simplify notation.
Moreover, the second factor encodes the fermionic degrees of freedom. In this context,
note that, fixing a spatial point x € %, it follows that the fermionic fields 84 induce
S-points 04(x) = 4(-,x) € Cg‘Z(S). Using the isomorphism (5.166) in case of a
purely bosonic super Lie group, this implies

P o
‘AS,F =

k
GEDIXT ] cﬁj?) (S) = M(S) (5.269)

=1
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that s, flg 1 can be identified with the S-point of a split supermanifold M (see Example
2.2.4). Hence, using this identification, we define the space Cyl™ (.Ag r) of generalized

cylindrical functions on Ag [ in terms complex smooth functions on the 4 super-

manifold M(S), i.e.,

k
CyI™ (A ) = H(M(S),0) = ¢V, 0) © (Q AR (%) (5270)

=1

where, for the last identity, it has been implicitly assumed that the parametrization
supermanifold § is suitably large enough. It follows immediately from the definition
that, given two generalized graphs I and I with I" < I, the pullbacks pl*l' of the
morphisms p; : Agp — Ag as defined via (5.169) can be extended to morphisms
pl*T, on generalized cylindrical functions, i.e.,

Pt CyIT(AG ) — CyI® (A% T) (5.271)

satisfying the compatibility condition pl’i,r,, o pl*ir, = PI*"F” forallT' < I” < I"”. Thus,
in this way, it follows that (Cyl™ (‘Ag,r)’ Pr) defines an inductive family to which we
can associate its corresponding inductive limit

00 —P . o)
Cyl™®(Ag) = lim Cyl (ASr) (5.272)

For a generalized graph I' = y U {x;}, we define J'* (./lf;’r) as the space '™ (./lf;’r) =
V=(As,i(y)) of (bosonic) electric fluxes X;,(S) acting on cylindrical functions on
A i(y) via the Poisson bracket with the smeared (bosonic) electric flux £, () associated
to the gravitational electric field £’. Hence, again, it follows that electric fluxes leave
the generalized graph unchanged so that they can be lifted consistently to electric fluxes

Vo(A s) on the inductive limit. For the classical algebra, we then set

00 —P 00 —P
Bs := Cyl"(Ag) = V=(Ag) (5.273)

It follows that B s has the structure of a semi-direct Lie superalgebra with graded Lie
bracket [+, -] defined via

[(>X), (& Y)] = (X(g) - Y (f), [X,Y]) (5-274)

where we used that the electric fluxes, by definition, are bosonic. By implementing the
reality conditions, it follows that B s even forms a *-algebra. As in the context of chiral
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supergravity, in order to quantize the theory, we are looking for a representation of B s
on a super Hilbert space §.s, that is, a grading preserving morphism of Lie superalgebras

7s: Bs — Op(Ds, Hg¥ ) (5.275)

from Bs to the space of unbounded operators on the super Hilbert space $.s mutually
defined on a common dense (graded) domain Ds.

To find a possible candidate for the super Hilbert space, for any generalized graph
I' U {x;};, let us consider the super vector space Vs = Cyl” (Ag,r). Using the
isormorphism (5.270), for elementary tensors of the form () ® 64(x;) € Cyl® (‘Ag,r)’
we then set

7s(fiy) ® 64(x))) = fi) ® 64 (x:) (5276)

where f; () as well as 64 (x;) actin terms of multiplication operators in the obvious way.
For the electric fluxes, we set

75(Xn(S)) = iP{En(S), -} (5277)

It is then immediate to see that the operators as defined via (5.276) and (5.277) indeed
satisfy the correct graded commutation relations. Next, we need to extend Vg to a
super Hilbert space. To do so, note that the super scalar product has to be chosen in
such a way so that it is invariant under local gauge transformations. If 1 : S X% — G
denotes such a local gauge transformation, this induces an action on the supermanifold

M(S) via
Ao ({geh{0(x)}:) = ({A(0(e) g A(F (€)' {A(x) - 8(x)})  (5.278)

Hence, as a possible candidate for the super scalar product yr', we may set

H(filgn = [

GIED)]

dIED gy /B d® frer (5.279)

with g g the invariant Haar measure of G and where d® is defined as the product mea-
sure d® := dO(xy) - - - dO(x;) with dO(x;) = d64(x,)d84 (x;). It then follows
that this super scalar product indeed invariant under the action (5.278). However, .}
turns out to be not cylindrically consistent, i.e., it cannot be lifted consistently on the
inductive limit as the unit is not normalized. To fix this, recall that the representation
given by (s5.276) and (5.277) also has to preserve the *-relations imposed by the reality
conditions. Interestingly, this turns out to be in fact equivalent to choosing a Krein
completion of the indefinite inner product space (Vsr, -#}). For instance, for a gen-
eralized graph of the form I = y U {x} with x € X a single point, it follows that one
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can always find a fundamental symmetry /r = J : Vg1 — Vs such that the induced
inner product

¢l =7 (5280)

takes the form

o 8)r = D i al i) (5.281)
I

where we have expanded fr = Xf /()1 6L (x) and similarly for grand ((|)) denotes
the standard inner product on L?(G) induced by the unique invariant Haar measure
on G. As discussed already in a similar context in Section 4.5.1, this inner product is
indeed invariant under local gauge transformations. Moreover, it is positive definite and
correctly implements the reality conditions. Forageneral graph I = yU{x1, ..., 53}, we
can then set Jp == J®*. By construction, it follows that the induced inner product of the
form (5.280) is again positive definite, gauge-invariant and solves the reality conditions.
Moreover, by definition, the fundamental symmetry satisfies

prrvJr = Jv pr (5.282)

for any generalized graphs I' < I'. Thus, since the unit is also normalized w.r.t. {:|-),
this implies that the inner product can be lifted consistently to a positive definite inner
product (-|-) on the inductive limit Vs := lim_, Vs r. Using this inner product, we can
then complete Vg, to a Hilbert space
-1l

Hs:=Vs (5.283)
so that, in this way, we end up with a standard super Hilbert space ($.s, (|-)) (see Def.
5.5.9 and Remark 5.5.10) onto which the representation as defined via (5.276) and (5.277)

can be lifted consistently and uniquely to a representation of the classical algebra Bs. By
definition, it follows that the super Hilbert space (5.283) has the tensor product structure

Hs = 5S,grav ® 5S,f (5'2'84)

with §,grav and ;s the (super) Hilbert spaces associated to the bosonic and fermionic
degrees of freedom, respectively, where §.5 g1,y is defined via (5.248) according to the
construction in Section s.5.3 with super Lie group given by S(SU(2)).

Thus, to summarize, in the context of the standard quantization scheme of the gravity-
fermion system in the framework LQG based on real Ashtekar-Barbero variables, one
can construct a representation of the classical algebra that respects cylindrical consistency
and, in particular, correctly implements the reality conditions.
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5.6. The boundary theory
5.6.1. The super Chern-Simons action

Having discussed the quantization of the bulk theory of chiral supergravity in Section
5.5.3, in what follows, let us finally very briefly comment on the boundary theory. To
this end, in this section, let us first recall the basic definition and structure of the super
Chern-Simons action which, as we observed in Section 5.4, naturally appears, in fact
even uniquely, as a boundary term in chiral supergravity in the presence of boundaries.
An outlook on possible applications in the context of chiral LQSG such as the quantum
description of supersymmetric black holes and black hole entropy will be given in Section
5.6.2 below. For more details on Chern-Simons theory with supergroup as a gauge group,
let us refer to [166] as well as [220] studying the super Chern-Simons action in the
geometric approach using integral forms. More details on integral forms and related
concepts can be found, e.g., in [131,132]. For notational simplification, in what follows,
we will not explicitly mention the underlying parametrizing supermanifold.

Before we state the super Chern-Simons action, we need to introduce invariant inner
products. Let G be a Lie supergroup. By the Super Harish-Chandra Theorem 2.3.9, the
super Lie group has the equivalent characterization in terms of the super Harish-Chandra
pair (G, g) with G := B(G) the body and g the super Lie algebra of G with gy = Lie(G).
According to Def. 2.3.12, a super metric on g is a bilinear map (-, -) : g x g — C that
is non-degenerate and graded-symmetric, i.e. (X,Y) = (-)XIYIy X for any
homogeneous X, Y € g. Moreover, it is called Ad-invariant, it

(Ad X,Ad,Y) = (X,Y) VgeG (5.285)

and

(1Z, X1, 7)+ (-)XZlx 1z, vy =0 (5.286)

for all homogeneous X,Y, Z € g. This can be extended to a bilinear form (- A -) :
QP (N,g)xQ1(N,g) = QP (N) on differential forms on a supermanifold N with
values in the super Lie module Lie(G) = A ® g (Def. 2.5.4). To this end, first note that
the sheaf QO° (N, g) carries the structure of a Z X Z,-bigraded module, where, for any
w € QP(N, @), the parity ¢(w) is defined as

e(w) == (p,7) €EZXZy (5.287)

where we will also write |@| := 7 for the underlying Z,-grading. For homogeneous

Lie(G)-valued differential forms w € Q?(N, g) and » € Q7(N, g), we then set

(wAp) = (=1)14171+IBD fyd A ,7§<Té, T3) (5.288)
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where we have chosen a real homogeneous basis (74) 4 of g and simply wrote | 4| := |T4|
for the parity. A direct calculation yields
(A p) = (_1)Ié|(|7|+lﬁl)wé A 77§<T4, Tp)
= (_1)1’7(_1)|é||77|(_1)(|w|+|é|)(|’7|+|£|);7§ A wé(jrﬁ’ Té)
= (-0 (=) (5 A w) (5-289)

Finally, let us derive an important identity which plays a central role in many calculations.
Using the Ad-invariance (5.286), one obtains

(WA [ AED

:(_1)Ié|(|77|+lf|+|§|+lgl)(_1)|§|(If|+lgl)wé A ;7§ A EQ (Ty, [ T3, T¢])

:(_1)Ié|(|77|+lf|+|§|+|£|) (_1)|§|(If|+lgl)wé A ;7§ A EQ [Ty, Ts], Te)

=(-1) |4I(l71+]B1) (wé A ;7§ ® [Ty, Tp] A £)

=([w Ayl AE) (5.290)
As we have seen in Section .4, the super Chern-Simons action naturally appears as a
boundary term in the chiral limit of the Holst-MacDowell-Mansouri action of super-
gravity. In fact, as observed in [86,182], the super Chern-Simons action also arises as a
boundary term by describing supergravity as a so-called (generalized) constrained topo-

logical field theory. In the chiral limit, we have shown, in particular, that this action is
even uniquely fixed if one imposes supersymmetry invariance at the boundary.

To state this action, in what follows, let A be a super connection 1-form and F(A) =
dA + 3 [A A A] its corresponding curvature. Then, one has

(F(A) NF(A)) =d(A AN F(A) - %ﬂ A[ANA]) (5-291)

so the term in the exterior derivative is a natural generalization of the Chern-Simons
3-form to the present context. To prove (5.291), note that

d(A N F(A) - %9{ A LA A AL
:(d&z{/\dﬂ+%dﬂ/\ [ANA] - AN [dﬂ/\ﬂ])—%d(ﬂ/\ [A A A
—(dA A dA + %dﬂ AANA] - gﬂ A [dA A A (5:292)
which directly leads to (5.201) using (A A [dA A AL = — (A A [AAdA) =

—([A A A] A dA) which is an immediate consequence of identity (5.290). In the
following, suppose that the body of the supermanifold N which, following the standard

259



5. Holst-MacDowell-Mansouri action for (extended) supergravity with boundaries, and chiral LQSG

conventions in the LQG literature, will be denoted by / is three-dimensional. Then,
according to (5.291), the super Chern-Simons action is defined as follows

Scs(A) = % L (AANDA + %ﬂ A[ANA]) (5.293)

where £ is referred to as the Jevel of the Chern-Simons theory. Let us decompose A =
pry, © A +pry oA = A+y wr.t the even and odd part of the super Lie algebra
g = go @ 9. Inserting this into (5.293), this gives

CﬂAF(ﬂD=<AA1WA)+%AA[¢A¢D+<¢A(mk+L4A¢D>6@%)

Ontheotherhand, using (¥ A [A A ¥ ]) =¥ A [¢ A A]) ={[¢ A ¥] A A) accord-
ing to (5.290), we find

(AN[ANA]D) =(AN[ANAl+ ANy AY])+20 A [ANY])
=(AN[ANA]+AN[Y AY])+2(AN[¥ AY])
=(AN[ANAI+3AN[¥ AY]) (5.295)

Thus, we can rewrite (5.293) in the following way

Ses() = Ses()+ 5 [ (v n DAy (5296)

with Scs(A) the Chern-Simons action of the bosonic connection A4 and D) the
associated exterior covariant derivative.

5.6.2. 'Towards black hole entropy in LQSG — an outlook

In the following, let us derive the canonical decomposition of the super Chern-Simons
action (5.293) defined on a three-dimensional smooth manifold /. To to do so, we can
proceed similarly as in Section 4.3. Hence, following [221], for ¢ € R, let A; denote
the 2-dimensional time slices in the foliation of /1 along the integral flow of the global
time (null) vector field d;. Furthermore, let P!l be the projection which projects any
smooth vector field X € X (/) onto the subspace of smooth vector fields lying in the
kernel of d¢, i.e., d£(PI(X)) = 0 with PII(X) := X — d¢(X)0,. This in turn induces

a projection P on the space of covariant tensor fields 7" according to

PyT :=To Pl (5.297)
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where Pl on the r.h.s. acts on each slot. For the derivation of the canonical decomposi-
tion, let us write

A = PA (5.298)
H

in order to distinguish the projection Py A from its covariant counterpart. Hence,

setting Ay := A(d;), this yields

A=A+ Ayde (5.299)
&

On the other hand, it is immediate to see that

dA = dﬁ — i dANdL (5.300)

A coordinate-free form of the time derivative of the connection along the timelike vector
field o; is given by
Z‘ := Py Ly A = Py(dA, + 7),dA) (5.301)

Hence, combining (s.301) with (5.300) and using (5.299), it is immediate to see that the
Chern-Simons 3-form can be written in the following way

(ANAA + %ﬂ ALA N A = d A ((—(ﬂ; A ) + 2 (A () ~ & Ao )
(5.302)

Thus, if we drop the arrow below the pulled back connection in order to simplify
notation, we find that the 2+1-split of the super Chern-Simons action takes the form

Scs(A) = % ‘/Rdt/ (~ANA+2AF (A) — d(AyA)) (5.303)

As a consequence, the pre-symplectic structure of the canonical theory is given by

k
Qcs (01, 9) = “on /A (O AN Iy A) (5-304)

for variations 0.A € T .75 where @75 denotes the space of smooth super connection 1-
forms on the induced G-principal bundle & := P | over A (or rather the corresponding
bosonic split supermanifold S(A)). Since the difference of two super connections defines
an even horizontal 1-form of type (G, Ad), it follows that 7'7.275 atany A € /5 can be
identified with T7.27, = Q' (A, Ad(E))o. For the graded Poisson bracket, one obtains

(AL, AP} = - 7439 (3, ) (5305)
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where .42 denotes the matrix components of the inverse super metric satisfying

B . . .
Scas C8 9%, Moreover, from the split action (5.303), we can read off the constraint

7‘-[62] :

% /A (aF(A)) (5-306)

which imposes the condition F/(A) = 0, that is, the curvature of the super connection
on A is constrained to vanish. For this reason, F [ «] is also referred to as the flatness
constraint. Actually, since the curvature contains a term involving an exterior derivative,
the flatness constraint (5.306), in general, turns out to be not functionally differentiable.
In case that A has a nontrivial boundary dA which, in the context of two dimensions,
we will refer to as the corner of A, one needs to require that the smearing function in
(5.306) satisfies the condition 2| s = 0.

In the framework of LQG, singularities on the boundary typically arise from the inter-
section of the boundary with spin network states. Assuming that the spin network edges
piercing the boundary have some infinitesimal but zonzero width, this induces infinites-
imal holes at the punctures on the boundary, such that, at each puncture, dA becomes
nontrivial and topologically equivalent to a 1-dimensional circle. As a consequence, this
gives rise to new physical degrees of freedom on the boundary which are localised on the
corner dA. In the context of LQG, this was first observed in [222] and discussed more
expansively, e.g., in [122-124,195,223]. As argued in [222], based on a general proposal
formulated in [224, 225], these new degrees of freedom may also account for black hole
entropy and thus may play a crucial role in the quantum description of the black holes.
In fact, it turns out that these contain the physical degrees of freedom associated to the
Hilbert spaces of conformal blocks which are usually considered in the context of black
hole entropy computations in LQG.

While we have not yet been able to complete the definition of the Hilbert space for
chiral LQSG, extrapolating from what we have it seems that all these observations carry
over quite naturally to the context of the quantum description of chiral supergravity
with N-extended supersymmetry. In that case, we have described in Section 5.5 how
the quantum excitations of the bulk degrees of freedom are represented by super spin
network states associated to the gauge supergroup OSp(/N|2)c. On the other hand,
in Section 5.4, we have determined that the boundary theory is described in terms of a
OSp(N2)c super Chern-Simons theory. Hence, it follows that, due to the quantization
of super electric fluxes in the bulk, super spin network states induce singularities on
the boundary. To see this, note that the Gauss constraint %[ «] of the full theory
including both bulk and boundary degrees of freedom is given by the sum of the Gauss
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constraint (5.118) (resp. (5.136) for N' = 2) in the bulk as well as the flatness constraint
(5.306) on the boundary, that s,

Granl 2] = —é /z (DY n &)+ % /A (2[& - gﬂfﬁ)]) (5.307)

for any Lie(G)-valued smearing function «. For a given finite graph ¥ embedded in Z,
we define the Hilbert space $11,, w.r.t. y of the full theory as the tensor product

full LQSG CS
Sl = 9P @ §9 (5:308)

with Sf);LQSG the Hilbert space of the quantized bulk degrees of freedom as constructed
in Section 5.5.3 and 5358 the Hilbert space corresponding to the quantized super Chern-

Simons theory on the boundary.

As a next step, in order to implement the full Gauss constraint (5.307) in the quantum
theory, we have to regularize it over the graph y. To this end, at each puncture p € P, :=
y N A, let us choose a disk D, (p) on A around p with radius € > 0 and set

Ela](p) = lim (2,8), Flal(p) = lim (a, F(A"))  (5.309)
I De(p) €0 JIDe(p)

By definition, these quantities (or suitable functions thereof) can be promoted to well-
defined operators in the quantum theory. Thus, it follows that the Gauss constraint
operator of the full theory takes the form

Gen[a] = G a] — b Z

(A ixk ~
PEFy

Ela] - —F[w]) (?) (5.310)

27

—~

with &[] the Gauss constraint operator acting on the bulk Hilbert space given by
(5.256). Assuming that the smearing function « vanishes on the boundary, the full
constraint operator (5.307) reduces to the bulk Gauss constraint q [ 2] implying gauge-
invariance of the quantum state in the bulk. As a consequence, from (5.310), one obtains

the additional constraint equation
= 27i 4
1® F4(p) =—E84(p)®]l (5.311)

at each puncture p € P,. Note that, by definition, g 4(p) can be related to the

quantized super electric flux via g 4(p) = lim. X 4(D¢) and thus, according to
(5.185), acts in terms of right- resp. left-invariant vector fields. Hence, from (s.311), we
deduce that the Hilbert space of the quantized boundary degrees of freedom corresponds
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Figure 6.: A pictorial representation of a supersymmetric black hole in chiral LQSG. The super spin
network states induce non-trivial Chern-Simons degrees of freedom (black circles) at the intersection points
(punctures) with the boundary which can account for black hole entropy. In the case that the super spin
network edges have some infinitesimal but nonzero width, these punctures are blown up to disks leading
to new physical degrees of freedom living on the corner and which are associated to superconformal field
theories.

to the Hilbert space of a quantized super Chern-Simons theory on A with punctures
P, (see Figure 6). This leads to the well-known (super)conformal blocks. In the pure
bosonic theory, these play an important role in the context of the computation of the

black hole entropy.

Asalready outlined above, in [222], an alternative route in describing the entropy of black
hole has been studied. More precisely, assuming that the edges piercing the boundary
are of infinitesimal but nonzero width, this induces infinitesimal holes localized at the
punctures on the boundary which then gives rise to new physical degrees of freedom
that are localised at the corner dA.

In the following, let us describe these new degrees of freedom in the context of chiral
supergravity. To this end, generalizing the discussion in [195] in context of the bosonic
theory to the super category, let us consider the following quantities defined on the
canonical phase space of the super Chern-Simons theory

b ok .
Ola] = —E‘/A@éF(ﬂ ))+g‘/[m(aﬂ )
k
:EA<ddAﬂ+—%%[ﬂ+Aﬂ+]> (5312)

where « denotes an arbitrary Lie(G)-valued smearing function on A. In case that
a vanishes on the corner, this quantity reduces to the flatness constraint (5.306), i.c.,
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Ola] = Fla] if a|ya = 0. Computing the graded Poisson bracket between O[«] and

the super connection, one finds
A +
{0la), A;%) = Do (5313

This is in fact immediate to see using (5.305). For instance, direct calculation yields

op [ @ana), At

k
= A d2y Ebfygabﬂé(y){ﬂjg(y)’ ﬂzé(x)} = 0,04 (x) (5.314)

On the other hand, one has

: .
- [ @A Ay At @ = e e

which, together with (5.314), directly gives (s.313). With these preparations, let us next
compute the Poisson algebra among the O[«]. Using identity (s.313), it follows for
arbitrary smearing functions « and /8 that

{Olal,0[8]} = % /A (-0)"1F1(dg A DV e — BA* A DD )
k . v
- /A (D)4 A DA gy (5.316)

Since D(ﬂ+)D(ﬂ+){8 = [F(AY), 8], one has
(DY) g A DY By = d(a D) B — (a[ F(A), £])
= (da A df) — d([a, B1AT) + ([, BIF(AT))  (5317)

Thus, inserting (5.317) into (5.316) and assuming that « is vanishes on the corner dA, it
follows

{Flal, 0181} = Flla,fl] =0 (5.318)

where we used that [, 8]]ya = 0. Thus, it follows that O[ «] weakly Poisson commutes
with the flatness constraint. That is, O [ «] defines a weak Dirac observable. Moreover,
for smearing functions @ and and 8 with «[ya = 8]y, one has

Ola] -O[B]1 =0[a—fl =-Fla—B] =0 (5-319)
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Hence, it follows that the observables O[ #] are localized on the corner. Furthermore,
by (5.316) and (5.317), they satisfy the following graded Poisson relations

(011, 0181 = Ol £1] + ~- / (da, B) (5320)

Since, the last term on the right-hand side of Equation (5.320) is completely field-
independent, it, in particular, Poisson commutes with all the corner observables O[ «].
Thus, it follows that the Poisson algebra among the O[ «] is indeed closed up to a central
term.

In this context, recall that, given an Abelian (bosonic) Lie algebra a, a central extension
of a super Lie algebra g (not necessarily finite-dimensional) by a is defined as a short
exact sequence [226]

0oa—-h5g—0 (5.321)

with b a super Lie algebra such that [a,h] = 0and 7 : ) — g an even surjective super
Lie algebra morphism yielding the identification h/a = g.

In our concrete situation, at each puncture, dA is topologically equivalent to a 1-
dimensional circle. Thus, in this case, it follows that a basis of smearing functions

.. . A
a is given by functions ay of the form

El’Nﬁ Té,

4 4
aylon : aylaa =0 (5-322)

where & € [0, 27] denotes the angle coordinate parametrizing the circle, N € Z and
(T4) 4 is a homogeneous basis of 0$p(/N|2)c. From (5.320), it then follows that the

corresponding corner observables q% =0 [zx%] satisfy the Poisson relations
(7o) =2 % Toron + Noarano(T4, TE) (5323)

where (T4, T2) .= ik (T4, TLY and f @C denote the structure coefficients defined
via B

(74,72 = F4, T€ (5324)

Interestingly, (5.324) are precisely the graded commutation relations of a Kac-Moody
superalgebra corresponding to the affinization of 0sp(N|2)c [226]. It follows via the
so-called Sugawara construction, that the generators of the Kac-Moody superalgebra can
be used in order to generate representations of the super Virasoro algebra [227]. Thus,
to conclude, the singularities induced by the intersection of super spin networks with
the boundary give rise to new physical degrees of freedom living on the corner which are
associated to superconformal field theories and which, in analogy to [222] in context of
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the bosonic theory, may also account for black hole entropy and hence may play a role
in the quantum description of supersymmetric black holes in the framework of LQG.

s.7.  Some results on super Peter Weyl theory

In the standard quantization program of LQG, spin network states play a very prominent
role as they provide a quite useful basis of the resulting Hilbert space of the theory. This is
based on the famous Peter-Weyl theorem stating that, in context of compact Lie groups
G, the matrix coefficients of the, necessarily finite-dimensional, unitary irreducible
representations of G automatically define an orthonormal basis of the Hilbert space
L*(G) induced by the unique normalized invariant Haar measure on G.

Unfortunately, such a strong statement seems, in general, no to be available in the
context of super Lie groups. This may be related to the fact that finite-dimensional
representations of compact super Lie groups turn out to be not necessarily reducible in
contrast to the classical setting. There exist, however, some partial results in this direction
stating that the matrix coefficients of the finite-dimensional representations of a super
Lie group G form a dense subspace of the super vector space H* (G, C) w.r.t. a suitable
topology (see for instance [228] for a general discussion as well as [229, 230] considering
the special cases G = S! and G = SU(1|1)). But, in the context of LQG, we are rather
interested in an “integral version” of the Peter-Weyl theorem, i.e., we would like to know
whether the matrix coefficients also provide, at least in a specific sense, an orthonormal
basis of the induced super Hilbert space. As mentioned already in Section s.5.3, first
results in this direction have been discussed in [207] where a Peter-Weyl-type basis for the
unitary orthosymplectic group UOSp(1]2) has been constructed. This is based crucially
on the fact that the underyling bosonic group is compact and, in particular, that the
unit function is normalizable.

Hence, the question arises whether similar results also hold true if one considers more
general compact super Lie groups for which the unit function is not normalizable
and thus, as a consequence, finite-dimensional representations are not necessarily fully
reducible. In the following, we want to address this question by considering a “sim-
pler” example given by the super unitary group U(1|1) (see Example s.5.11). To this
end, adapting techniques developed in [230] in the context of the sub super Lie group
SU(1]1) := {g € U(1]1)| Ber(g) = 1}, we first analyze the finite-dimensional rep-
resentations and, in particular, determine and classify irreducible representations of
U(1]1). Hence, suppose that

7z : U(1]1) - GL(V) (5.325)

is an irreducible representation of U(1]1) on some finite-dimensional super A-vector
space V = V' ® A with IV complex. Then, let us restrict to the bosonic super Lie
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subgroup U(1]1)y = S(U(1))%. As it is well known, the irreducible representations of
U(1) are given by {(7,, Vin) } mez where V,, = Cand 7, : U(1) — GL(1,C), z —
2" Vm € Z. Accordingly, the irreducible representations of U(1) x U(1) are given by
{(ﬂm,m Vm,n)}m,nEZ with Vm,n = Vm ® Vn = Cand

Tmn : U(1) = GL(1,C), z +— 27" (5.326)

Vm,n € Z. Hence, by applying the split functor, it follows immediately that the
corresponding complete family of inequivalent irreducible representations of U(1|1)o is
given by {(S(ﬂm,n): (V(m,n),()) }m,nEZ U {(S(ﬂm,n): (VO,(m,n))}m,nEZ where (V(m,n),() =
Vinn ® Aand Vi i,y := 11V, ® AVm, n € Zwith IT : SVec — SVec the parity
functor, i.e., [TV, , is regarded as a purely odd super vector space. Thus, this leads to a
decomposition of “V of the form

V= EB ko Vimmy 0 ® @ LogVo.(p.a) (5:327)

(m,n) €Z? (prq)€Z?

with multiplicities &y,.2, /54 € No, (m,n),(p,q) € Z2. In order to find the irre-
ducible submodule, note that, as U(1]1) is connected (in the DeWitt-topology) and
7 is supposed to be irreducible, it follows that the pushforward representation 7. :
Lie(U(1]1)) — End (V) is also irreducible. Hence, in what follows, let us look
for irreducible representations of the corresponding super Lie module. To this end,
after complexification, let us consider the super Lie algebra elements O, := ©; + /0,
satisfying the following graded commutation relations

[Xl) ®i] $l’®t: [XZa Gi] = il’Gi) [G)i) ei] =0

[0,,0_] = —4X = —4(X; + X) (5.328)

Let (m,n) € Z* with k,,,, # 0 and choose a nonzero vector v € ki, , Vi) 0- Let
v = 7S (O )vand vy := 7 (O, )v where 7 denotes the complification of the push-
forward representation 7. Using the commutation relations (5.328), it is immediate to
seethatv_ € L1, n-1Vo, (me1,0-1)5 V4 € L1041 Vo, (m—-1,n+1) as well as 78O )v_=0
and 75(©,)v, = 0. Set v’ == (O, )v_ € km,nVim,n),0- Then, again by (5.328), it
follows that

7 ()0 = 70 (O) 7wl (L) v = —4i(m + n)v- (5:329)
Finally, we compute

T (O )0, = 72 (O) 7 (O,)v = —47, (X))o — 70 (©,) 7, (O_)o
=—4i(m+n)v -0 (5.330)
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Hence, we found that there exists an invariant submodule of the form

2(V(m,n),O @ (VO,(m+1,n—1) 2] (VO,(m—l,nH) (5-331)

generated by the vectors (v,v’,v_, v,). In fact, this submodule can be reduced even
further. To see this, similar as in [230] in the context of the sub super Lie group SU(1]1),
consider the submodule V(;,..) = Vin,n),0 © Vo,(m-1,n+1) generated by the vectors
(w1, ws) given by wy := 7 (O_)vy and wy := 2{/7(m + n)v,. By definition, it is
then immediate to see that this submodule is also invariant under U(1|1) and that, w.r.t.

that basis, 7, (©1) and 7, (©;) are given by

0 iNi(m+n)
i\i(m+n) 0 Vi(m +n) 0
(5:332)

and hence 7 is in fact irreducible on V{,, ,). Let us denote this representation by
(”(m,n) 5 (v(m,n))

. (O)) = )’ () = 0 —\i(m+n)

Finally, let us consider the submodule (V(’m’n) = Vinn),o ® Vo,(m1,n-1) generated
by the vectors (w{, w}) given by w] := v’ = 7°(©,)v_ and wy = 2iJi(m +n)o_.

Again, it follows by direct computation that (V’ o defines an irreducible submodule
of 77 and that 7, (®1) and 7, (©;) have the followmg matrix representation

@) 0 iNi(m+n) @,) 0 Vi(m + n)
7r* = 5 7r* =
' iNi(m+n) 0 ’ —\i(m+n) 0

(s 333)
We denote this representation by (7', V. ( )) In fact, it turns out that (7r( ot (m n))

can be related to the irreducible representation (7(,.41,1-1)> V(m+1,,-1)) via the odd
intertwining map

F: Vi, = Vonrp-1), wi = iVi(m+n)w, (5:334)

wy > iNi(m+ n)w;

such that 7(,,,41,,-1) 0o F = F o 7r(’m,n). Usually, in the mathematical literature, the
intertwining map between two equivalent or isomorphic representations is defined as
an even bijective morphism between super A-vector spaces. Thus, in this sense, the
representations (7r(’m,n), (V(’m,n)) and (7 (n41,n-1)> Vim+1,n-1)) would be inequivalent.
However, since these representations do not generate new matrix coefficients, we will
follow rather [109] and regard these representations also as equivalent (cf. Remark 4.4
in [109]). Thus, we arrive at the following result which provides an extension of the

results obtained in [230] in the context of SU(1]1):
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Theorem s.7.x. The irreducible representations of U(1|1) are, up to isomorphism, given
by {(”(m,n): (V(m,n))}m,nez with (V(m,n) = (V(m,n),o @ (VO,(m—l,nH) = (Ac)l’l and
T(mn) (X)), for g € U(1|1) in the form (2.80), given by

X"y (14 S(m+n)y) &y ini(m + )y
— Ny NGk g Ty (L= S+ )y P)

Moreover, the corresponding pushforward representation 7 (y z). : Lie(U(1[1)) —
End , (Vion,n)) of the super Lie module Lie(U(1]1)) = A ® w(1|1) takes the form

T(mm) (g) = ( ) (5.335)

Tomme () = " T (Xo) = [ (5:36)
(mn)=\A1) = 0 z'(m B 1) 5 (m,n)x\A2) = 0 l'(}’l + 1) 533
for the even generators X1, Xy € w(1|1)g as well as
0 i\i(m+n)
mn)(©1) = .
7 (m,n) (©1) (zm 0 ) (5 337)
0 —\i(m +n)
m,m)* ©,;) = .
7 (mn)+(©O2) (m 0 ) (5:338)

for the odd generators ©1, ©, € u(1|1);.

Proof. The following proof is inspired by the proof of Theorem 4.4 in [230] where an
explicit form of the irreducible representations of the super Lie group SU(1|1) is derived
(see also Remark 5.7.3 below). Recall from Equation (2.80) in Example 2.3.16, that, under
the super Harish-Chandra isomorphism @, a generic group element g € U(1]1) can be
written in the form

( x4  xy

iyy yA”
withx, y € S(U(1)),¥ € Ajand 4 = 1+ %;h} Let us then try to split ¢ in the

following way
e o)1 o\ [1 a\[1 ip (5340)
£ 0 1)\0 s)\ie 1J\B 1 i

for certain coefficients ¢, s € Ag and &, f € A;. This yields the equation

(5-339)

(5-341)

xAd  xy
iy yA™

[t +af) ta+if)
- is(e—if) s(1-ap)
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from which we can immediately read off # = x and s = y as wellas 2 = R(y) and
B =3(¥). By (5.336), we then deduce

x 0 x™ 0 1 0 " 0
7 (m,n) = FEE 7 (m,n) = +1 (5-342)
0 1 0 x™ 0 vy 0 9

Moreover, by (5.337) and (5.338), it follows that

1 «
7 (m,n) ( : ) = ) ("a@l) = ¢*"nm+(O1)
i 1

1 iNi(m+n)a (34)
- 5-343
—i\i(m+n)a 1
as well as
1
T (m,n) 118 = Tlmm) (60@2) — emr(m,,,)*(Qz)
g 1
1 —Vi(m+n)p
- - (5344)
—\i(m+n)p 1
Using (5.340), this then immediately yields (s.335). O

Corollary s.7.2. Let {(7(m,n)> Vim,n)) Ymnez betheirreducible representations of U(1|1)
as stated in Theorem 5.7.1. Then, the cocfficient functions (70 m)n))"j, i, j = 1,2, for any
m,n € Z are orthogonal w.r.t. the super scalar product /" as defined via (s.231). More
precisely, they satisfy the following identities

I (T mm) 15 (Fmm)'1) = =(m+ 1) dn, 500 g (5-345)
I (T mm) a5 (Fmm))’2) = (1m0 + 7) 3, Oy

S (Tomm) '3 (Fmm)) '3) = =2l + 1|0 0 g

S (T om) 15 (Fomn))?1) = Elm + 1|9, 50 g

with all remaining combinations being zero.
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Proof. This follows immediately by direct computation using the explicit form (s.335)
of the matrix coefficients and the invariant Haar measure (5.230). For instance, we find

27 d ) 27 doé’ . ,
r5”((7[(771,;1))11: (W(m,n))ll) =/ _¢€Z<P_M)¢/ iel(q—n)¢ X
0 0

27 27
x /B idydy (1 +2(m+ nw) (1 + ;<p+qw)
=0m,pOnq /B idydy (1+i(m+n)yy)

=—(m+n) 5m,p3n,q (5-346)

On the other hand, we have

27 d¢ i(p—-m 2 d¢’ i(g—n)d
y((ﬂ(m,n))lz: (”(m,n))lz) =[ ge 2 )¢‘/0 %6 (g=m¢ X

x‘/z'd;kd;} (m+n)(p+q);hk
B

=—|m+ ”|3m,p5n,q z'd%dl} %7}
B
=—i|m+n|dmu,pong (5-347)

The rest follows similarly. ]

In Example s.5.11, we have constructed a super Hilbert space (9, {-|) ; , -#’) associated
to the indefinite inner product space (V, ) with V' := H*(U(1]1),C) and .’ the
super scalar product induced by the invariant Haar measure on U(1|1) defined via (5.231)
performing a Krein completion. According to Corollary 5.7.2, it follows that the matrix
coefficients of the finite-dimensional irreducible representations of U(1|1) indeed have
the expected properties as they are normalizable up to signs and factors of +7 and are
mutually orthogonal, i.e., they induce an orthonormal system in the super Krein space.
However, they do not form a basis of §. To see this, note that the labels (72, ) € Z*
of the irreducible representations 7, ,) need to satisfy the condition 7 + 7 # 0. Asa
consequence, the constant unit function 1 on U(1|1) as well as elementary functions of
the form x™ y™ or ™ y™" 4y etc. with m € Z are not contained in the corresponding
subspace generated by these matrix coefficients. The remaining coefficients can be
obtained, for instance, considering tensor product representations of the form

T(m,0) ® 7(0,~m) (5.348)

with m € Z\ {0}. These correspond to representations of U(1]1) with respect to which
the bosonic generator X = X; + X of the diagonal subgroup U(1) € U(1) x U(1)
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is trivially represented. By definition, they are orthogonal to the matrix coefficients of
the irreps 7(,,, ). In particular, together with the trivial representation, it follows that
this in fact provides a (overcomplete) set of elementary functions whose corresponding
complex linear span is dense in $). Note, however, that representations corresponding to
the zero eigenvalue of X are generically not semisimple. This has been discussed, e.g., in
the context of SU(1|1) in [230]. This is a phenomenon occuring in the supersymmetry
setting and is directly related to the normalizability of the unit function leading to a
classification of finite-dimensional representations into so-called #ypical and atypical
representations.

Remark s.7.3. Restricting the irreducible representations 7(,,,, of the super unitary
group U(1]1) with (m, ) € Z* and m + n # 0 as listed in Theorem 5.7.1 to the sub
super Lie group SU(1|1) which corresponds to the choice x = y in (2.80), it follows
that these exactly reproduces the irreps 7, := 7 () lsu(i|1) Withk := m+n € Z\ {0}
as derived in [230]. Again, it follows that the corresponding matrix coefficients are
normalizable and mutually orthogonal thus inducing an orthonormal system on a super
Krein space. Since the representation label £ needs to be nonvanishing, it follows that
the constant unit function 1 on SU(1|1) as well as functions of the form ¢, ¥ and ¥y
are not contained in the complex linear span of the matrix coefficients of 7. As above,
it follows that the remaining coefficients arise from finite-dimensional representations
of SU(1]1) w.r.t. which the bosonic generator X is trivially represented.

Let 7y denote such a representation and @,~ = 7m0+ (©;) for7 = 1,2 and X = 7ox(X).
Then, since X = 0, it follows from (2.77) that

©2=0fori=1,2and 6,0, = -0,0, (5-349)

Thatis, 7 can be identified with a representation of the Grassmann algebra A generated
by two Grassmann variables &;, 7 = 1, 2. A natural candidate of such a representation
would be the standard representation on A; itself via left multiplication setting ©, =6
for 7 = 1, 2. With respect to the homogeneous basis (1, 81 0,, 71, 2) of Ay, it follows
that © ; acquire the following matrix representations

00 0 0 00 0 0

~ lo 0o o 1 ~ lo o -1 0

Q= , ©,= (5-350)
100 0 00 0 0
00 0 0 10 0 0
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Hence, for ¢ € SU(1]1) of the form (2.80) with & = 7, this gives

1 0o 0 O
m()= ey =| 7T LT
—y 0 0 1

which precisely yields the remaining matrix coefficients.

5.8. Discussion

In this chapter, we have addressed several questions concerning the classical description
of (extended) supergravity theories in D = 4 in terms of a new type of action we called
Holst-MacDowell-Mansouri action, in the presence of boundaries. For a special choice
of the Barbero-Immirzi parameter, one obtains a description in terms of chiral Ashtekar-
type variables in which case the theory has many interesting properties and which seem
to be of particular relevance for applications in LQG. In particular, we considered the
question of how to properly include boundary terms in the theory. This is crucial as the
standard treatment of inner boundaries in (super)gravity theories expressed in terms of
(real) Ashtekar-Barbero variables is based on the isolated horizon (IH) formalism which,
so far, does not take into account local supersymmetry invariance at the boundary.”

Hence, we have followed a difterent route using new developments in the geometric
approach to supergravity. More precisely, following [81, 83], we have discussed the most
general ansatz of possible boundary terms to be added to the bulk action of N' = 1 and
N = 2 pure Holst-AdS supergravity in D = 4. [81,83] show that the boundary terms
are fixed uniquely if one requires invariance of the full action under supersymmetry
transformations at the boundary. Moreover, it follows that the resulting action in both
cases acquires a very intriguing form extending the well-known MacDowell-Mansouri
action [138] even to supergravity theories with extended supersymmetry [81, 83].

Based on these results, we have derived a Holst variant of the MacDowell-Masouri action
including topological terms for arbitrary Barbero-Immirzi paramters £ for the cases
N =1, 2. To this end, inspired by ideas of [183-185s] in context of ordinary first-order
Einstein gravity, we introduced a £-deformed inner product defined via a 2-dependent
operator P acting on super Lie algebra-valued forms. We have then shown that the
resulting action is indeed independent of the Barbero-Immirzi parameter at second

9 In fact, the standard boundary conditions arising in this formalism even seem to break local supersym-
metry.
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order, i.e. provided that the spin connection satisfies its field equations, in the sense that
all £-dependent terms become purely topological.

Moreover, for this result to be true, in case N = 2, we have seen that this required the
inclusion of an additional Z-dependent topological term to the Maxwell-kinetic term
in the Lagrangian corresponding to the graviphoton field which is commonly known
as a f-term in Yang-Mills theory. Hence, this supports the hypothesis as discussed e.g.
in [186], that the Barbero-Immirzi parameter has to be regarded as kind of a #-ambiguity.
We have then studied the boundary terms arising from the Holst action. However,
these boundary terms in general turn out to not correspond to a (super) Chern-Simons
theory. This is, of course, in contrast to the results in context of ordinary gravity studying
non-supersymmetric isolated horizon (IH) boundary conditions with Ashtekar-Barbero
variables. There, one finds that, generically, the boundary theory is described via Chern-
Simons theories. Nevertheless, one should emphasize that one can construct models
where this turns out to be true even in the supersymmetric case. For instance, in [82,191],
for classical variables, particular falloff conditions for the physical fields in the N' =
2 case where considered leading to a super Chern-Simons theory on the boundary
corresponding to a OSp(2]2) x SO(1, 2) gauge group. Hence, it is highly suggestive
that similar models can also be constructed using real Ashtekar variables. This remains
as a task for future investigation.

We have then turned towards the chiral limit of the theory corresponding to an imaginary
B = +i and have seen that the resulting theory has many interesting properties. On
the one hand, it follows that the chiral action in both cases,i.e. N = 1and N = 2,
can be written in a way such that it is manifestly invariant under an enlarged gauge
symmetry corresponding to the (complex) orthosymplectic group OSp(N|2)c leading
to the notion of a super Ashtekar connection. This generalizes and extends previous
results obtained e.g. in [63, 84,86,179,181]. In particular, it follows that the boundary
action takes the form a super Chern-Simons action with OSp(/N|2)c as a gauge group.
This confirms the prescient works [3s, 86, 182] that saw a close connection between
(super)gravity in the bulk and Chern-Simons theory on the boundary. For N' = 1, we
have also shown that, at the boundary, the full action is indeed invariant under both left-
and right-handed supersymmetry transformations. In fact, we have even proven this for
arbitrary 4 in the end of Section s5.2.1. We could show explicitly that this requirement
fixes the CS-term as the unique boundary term. In this context, we derived boundary
conditions that couple bulk and boundary degrees of freedom. These turned out to
be in strong similarity to the standard boundary conditions as typically considered in
LQG as they imply coupling between the super electric field and the curvature of the
super Ashtekar connection. In fact, similar boundary conditions have been encountered
in [86,182] for N' = 1 describing supergravity as a (generalized) constrained topological
field theory. In this present work, however, they have been derived starting from the
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full (unconstrained) supergravity Lagrangian adapted to LQG for both cases N' = 1
and NV = 2 obtained as the chiral limit of the Holst-MacDowell-Mansouri action and
including a discussion about the uniqueness of the boundary theory. Moreover, we
were able to show that the boundary conditions are equivalent to the requirement that
the chiral projections of the super Cartan curvature vanishes at the boundary which is
consistent with the results obtained in [81] in the non-chiral theory. In the future, it
would be interesting to investigate how the definition of IH have to be extended to the
supersymmetric context to rederive the boundary conditions as studied in this chapter.
Isolated horizons in the context of supergravity have been studied in [231]. There,
however, one focuses on the purely bosonic sector and thus does not take fermionic
degrees of freedom into account.

Using the structure of the chiral theory, in Section 5.5, we derived a graded analog of
the holonomy-flux algebra. We have done this in a mathematically rigorous manner
working in the category of enriched supermanifolds and using the parallel transport as
constructed in Chapter 2. It follows that the functorial dependence on the underly-
ing parametrization supermanifold S leads to an intriguing structure of the set A s of
generalized super connections which is in strong similarity to Molotkov-Sachse super-
manifolds. Moreover, in case that the underlying gauge supergroup is compact, it follows
that A is projectively Hausdorft.

Based on these observations, we sketched the quantization of the theory adapting stan-
dard tools of ordinary LQG with real variables. Moreover, for both cases N' = 1, 2, we
constructed spin network states as particular kind of states in the corresponding super
Hilbert space which for N' = 1 have been considered in [84-86]. However, the final
picture remained incomplete due to certain difficulties related to the indefiniteness of the
Haar measure on supergroups, the non-compactness of the gauge group OSp(N|2)c as
well as the open question of how to solve reality conditions. For this reason, in what
follows, we will consider a symmetry-reduced model in Chapter 6. In fact, there, we
will see that all these issues can be solved consistently. This gives hope that something
similar could be achieved for the full theory. Finally, so far, it is not clear whether the
spin network states provide a basis of the super Hilbert space as in case of standard
LQG. This is due to the lack of a general (integral version of a) Peter-Weyl theorem for
(compact) super Lie groups which has been studied only for rare special cases (see for
instance [207,228-230]). We therefore considered the special example U(1|1) generaliz-
ing the results of [230] obained for the SU(1|1) case to get an idea how such a theorem
may look like in context of super Lie groups. In fact, such a generalization turns out to
be non-straightforward due to the existence of so-called atypical representations. This
has to be studied further in the future.

Ultimately, in Section s.5.4, we compared this quantization scheme with the standard
quantization scheme of LQG coupled to fermions [67,80,87] and observed many similar-
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ities. Among other things, it follows that the functorial dependence on the parametriza-
tion supermanifold requires a Berezin-type measure for the fermionic degrees of freedom
in the inner product which is the usual measure considered in LQG. Moreover, the
implementation of the reality condition selects a particular endormorphism J which is
part of the definition of a super Hilbert space.

There are of course numerous open questions one should address in the future. For
instance, this geometric approach to supergravity appears quite powerful in the appro-
priate description of boundaries as well as the correct implementation of locally super-
symmetric boundary conditions. Moreover, as shown in [81], in this way one arrives
at a very intriguing structure of the supergravity Lagrangian even in case of extended
supersymmetry. It would be very interesting to see how these results could be extended
to higher N' > 2, or even matter coupled supergravity theories. Moreover, as we have
demonstrated in this chapter, this approach seems to be well-adapted to similar ques-
tions in LQG and may shed further light on the particularity of the (graded) self-dual
variables as well as their possible generalizations to extended SUGR A theories.

On the other hand, these results provide a first step toward the quantum description
of boundaries in supergravity in the framework of LQG and possible applications in
the context of supersymmetric black holes. This requires a deeper understanding of
Chern-Simons theories with supergroup as a gauge group. Super Chern-Simons theories
are also of quite recent interest in context of string theory [166]. As explained in the
introduction, there, one observes for certain brane configurations that the boundary
theory is described in terms of a super Chern-Simons theory with gauge group including
e.g. the supergroups OSp(72|%) and U(mz|n). We suspect that a deeper analysis of super
Chern-Simons theories in the framework of LQG may also shed further light on the
relation between the quantum description of boundary theories in string theory and
LQG.
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6. Supersymmetric minisuperspace models in
self-dual loop quantum cosmology

6.1. Introduction

As we have seen in Chapter s, for both cases N = 1, 2, the action of chiral D = 4 AdS
supergravity with N -extended supersymmetry takes a very intriguing form of a chiral
Palatini-type action which is manifestly invariant under an enlarged OSp(N[2)c-gauge
symmetry. As far as the bulk theory is concerned, this structure also carries over to the
limit L — oo corresponding to a vanishing cosmological constant in which case the
enlarged gauge symmetry corresponds to the N-extended super Poincaré groupin D = 2.
Based on these observations, in Section 5.5, a graded variant of the well-known holonomy-
flux algebra was derived. Moreover, we sketched the quantization of the theory adapting
standard tools of ordinary LQG with real variables. The final picture, however, remained
incomplete due to various subtleties associated with cylindrical consistency as well as, in
particular, the consistent solution of complicated reality conditions.

For this reason, in the following, we want to consider a symmetry reduced model of chiral
N =1, D = 4 supergravity and investigate whether all these difficulties encountered
in the full theory can be solved consistently. Furthermore, this will also provide a first
approach to study implications of supersymmetry in the framework of loop quantum
cosmology. Moreover, studying self-dual variables is of course an interesting topic in itself
and our model will extend previous considerations by Wilson-Ewing [91] by including
fermions and supersymmetry.

For this model, we apply a particular ansatz for the fermion fields as proposed by D Eath
etal. [88-90]. As we demonstrate in Section 6.5, by explicitly making use of the enlarged
gauge symmetry observed in the chiral theory, this ansatz can be justified considering
homogeneous isotropic super connection forms. The precise mathematical framework
for studying these kind of connections systematically will be developed in Section 6.3.
With this ansatz, we symmetry reduce the chiral action and derive the reduced left and
right supersymmetry constraints as well as the Hamiltonian constraint. Moreover, it will
be shown that the essential part of the constraint algebra in the classical theory closes.
In particular, the (graded) Poisson bracket between the left and right supersymmetry
constraint reproduces the Hamiltonian constraint modulo the right SUSY constraint.
In Section 6.6, we will then go over to the quantum theory and construct the kinematical
Hilbert space of loop quantum supercosmology. To this end, we will motivate the state
space studying the super holonomies induced by the super Ashtekar connection. In this
way, in Section 6.6.1, we derive a symmetry reduced variant of the graded holonomy-flux
algebra (5.188) (resp. Eq, (5.186) in case of a fixed graph) as constructed in context of
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the full theory in Section s.5.1. The quantization of this theory is then performed, by
considering representations of this algebra on a super Hilbert space in Section 6.6.2.
Since these representations are required to be grading preserving, this automatically
yields the correct statistics for the bosonic and fermionic degrees of freedom. Finally, we
study the implementation of the reality conditions.

In Section 6.6.4 we implement the dynamical constraints in the quantum theory given
by the SUSY constraints and Hamiltonian constraint. For a certain subclass of these
models, we will show that the (graded) commutator of the supersymmetry constraints
exactly reproduces the classical Poisson relations. In particular, the trace of the commu-
tator between the left and right supersymmetry constraint reproduces the Hamilton
constraint. The requirement of this closure fixes some of the quantization ambiguities.
In Section 6.6.5, we study the semi-classical limit of the theory in which quantum correc-
tions arising from quantum geometry are supposed to be negligible. We derive the form
of the left and right SUSY constraint in this limit and study their respective solutions.
These solutions are then compared to other solutions obtained by different means in
the literature. We close with a discussion and outlook in Section 6.7.

Again, let us note that in the following we will drop many mathematical details in order
to simplify the notation and to make the following discussion easier accessible for the
reader. In particular, we will not explicitly mention the underlying parametrization
supermanifold except in Section 6.3 and 6.5.1in context of the symmetry reduction of
chiral supergravity where the parametrization turns out be essential.

A list of important symbols as well as an overview of our choice of conventions concern-
ing indices, physical constants etc. can be found in the List of symbols, notations and
conventions.

6.2. Preliminaries: Homogeneous isotropic cosmology

Before going over to the general discussion of symmetry reduction of field theories with
local supersymmetry and its applications to chiral supergravity as well as supercosmology
in the framework of LQG, in this section, we would like to briefly review some important
aspects of the celebrated Friedmann-Lemaitre-R obertson-Walker (FLRW) models in
cosmology which will play a central role in the main part of this chapter. To this end, we
will mainly follow [232].

Increasing observational evidence supports the hypothesis that the universe averaged
over large scales can regarded as almost perfectly homogeneous and isotropic meaning
that the universe at each point in space and each direction looks the same. Thereby,
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the universe is modeled in terms of a smooth globally hyperbolic Lorentzian manifold
(M, g) of the form
M=IxX (6.1)

with 7 some open interval in R and where the fiducial spacelike Cauchy hypersurface
is supposed to be connected. Moreover, the universe contains a perfect fluid generated
by the galaxies that move along integral curves

yp: L —> M, t—(tp) (6.2)

atany p € X of the global timelike vector field U := d;. Since the global time may be
identified with the proper time of the comoving galaxies, the corresponding velocity
vector field is supposed to satisty ¢(U,U) = —1. Moreover, one assumes that the
relative motion of the galaxies can be neglected such that X; at any time ¢ € 1 can be
regarded as a common restspace of the galaxies leading to an ansatz for the metric of the
form

g= —dr? + q (6.3)

with g = ¢(¢) the Riemannian metric on the Cauchy slice ;. Since M is supposed
to be isotropic, this means that for any x = (¢, p) € M and v,v’ € 'Z},Et, there exists
alocal isometry ¢ on M of the form ¢ = id X ¢x also referred to an dsotropy isometry
with ¢ alocal isometry on X such that ¢(x) = x and

Dy¢(v) = v’ (6.4)

Thus, it follows that the group ISO, (A1) of local isometries at x € M contains a
subgroup which is isomorphic to the full rotation group SO(3) in R?. Let K (#) denote
the sectional curvature (Def. E.1) of the Cauchy slice X;. Since, K (¢) o ¢. = K (¢) for
any local isometry ¢ on X, it follows immediately from the isotropy condition (6.4)
that the sectional curvature K (#) , is constant at any p € %;. But, as M, and hence 2,
is supposed to be connected, it follows from Schur’s Lemma (see, e.g., [233], Theorem
6.7) that K (¢) is actually constant on all of %, that is, X, for any ¢ € I is of constant
curvature.

Next, one wants to relate Cauchy slices %, corresponding to difterent times # € /. For
this purpose, for 5, ¢ € I, one considers the natural diffeomorphism g, : =, — %,
defined as (s, p) = (¢, p) Vp € Z. Using the fact that g, commutes with isotropy

isometries, one concludes that g, in fact, defines a homothety such that

toqe = h(s,t)%q; (65)

for some smooth function 4 = h(s, t). Thus, this implies that the sectional curvatures
associated to different time slices are related via 4 (s, £)2K (¢) = K (s) so that, in partic-
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ular, the sectional curvatures do not change sign as / never becomes zero. As argued
in [232], exploiting this property together with (6.5) as well as appropriately rescaling
the metric on Z, one can construct a function 4(¢) called scale factor such that the
embedding ¢, : ¥ — Z; of the fiducial Cauchy surface ¥ into the time slice %, for any
t € I defines a homothety with scale factor a(t)?%. Thus, in particular, in this way, it
follows that the metric g, on =, takes the form g, = 4(#)?4 with 4 the fiducial metric
on X so that, for the spacetime metric ¢, one obtains

g=—d? +a(2)%g (6.6)

That is, the spacetime manifold A1 takes the form of a warped product manifold M =
Ix, 2.

As we have seen, the isotropy assumption turns out to be a quite strong condition
imposing strong restrictions on the geometric structure of the spacetime manifold. In
fact, as argued in [234], the requirement that the group of local isometries contains the
rotation group as a subgroup already implies that the spatial slice ¥ (and thus X, for
any ¢ € I by (6.6)) is homogeneous. Homogeneity implies that the group ISO(Z) of
(global) isometries of (X, §) acts transitively on X via the canonical left action

ISO(Z) XX = Z, (¢, p) = ¢(p) (6.7)

Hence, if H := ISO(X) and H, = {¢ € H|¢(p) = p} = SO(3) denotes the
isotropy subgroup at some point p € X, one can make the identification X = H /H,.
Thus, it follows that X has the structure of a Klein geometry (H, H,) which canonically

induces the corresponding (homogeneous) Cartan geometry (H — H,, 5&1?) with

‘915/5:) € Q!(H,b) the Maurer-Cartan form on the Lie group H with Lie algebra f
satisfying the Maurer-Cartan structure equation

1
dyc +510u¢ A Ol T =0 (63)

Let ¢ := pry /9, © 515/[1? with f), := Lie(H,) be the corresponding soldering form.
Via (3.9), it follows that ¢ induces a one-to-one correspondence between metrics on
¥ and Ad-invariant metrics on §/b,. Moreover, according to the general discussion
in Section 3.5, we know that horizontal automorphisms on A given by right-invariant
vector fields X® € aut(H) with X € satisfy L yz & = 0 so that the corresponding
pushforward 7, X R ¢ X(Z) defines a Killing vector field of the induced Riemannian
geometry. Let (X); be a basis of the Lie algebra b with structure coefhicients C, jK .
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Since, [X®,YR] = —[X, Y]® it follows that the corresponding Killing vector fields
=X [R satisfy the commutation relations

[fl: f]] = _ijka (6.9)

Remark 6.2.1. Note that, by antisymmetry, we can define C KL .- %C 17 K eIJL which
itself can be split into a symmetric and antisymmetric part

CKL = KD 4 CIKLY = KLy (KM, (6.10)

KL is symmetric, one can perform a change of basis such that it acquires

IK — ,(K) 3K L (

Moreover, as n
the diagonal form 7 no summation over K'). Hence, it follows that
the structure of the homogeneous manifold X is encoded in the coeflicients (n!,a 7).
This leads to the well-known Bianchi classification of homogeneous spacetimes (see,

e.g., [235] for more details).

Since the fiducial Cauchy surface = defines a homogeneous Riemannian manifold, it
follows, in particular, that X is complete (see Remark 9.37 in [232]). Finally, by possibly
going over from X to its universal Riemannian covering manifold, one may assume
that X is also simply connected. Hence, this implies that X defines a simply connected
and complete Riemannian manifold of constant curvature ¥ = —1,0 or +1, that is,
it defines a simply connected space form (see Definition E.4). But, by Theorem E.5
and Corollary E.7, this in turn implies that X is isometric isomorphic to a standard
hyperquadric given by the hyperbolic space H?, Euclidean space R? or three-sphere S,
respectively, depending on the curvature 4.

Definition 6.2.2. A Friedmann-Lemaitre-Robertson-Walker (FLRW) model is a
Lorentzian spacetime manifold A4 which has the structure of a warped product mani-
fold of the form

M=]x,% (6.11)

with scale factor (#) and fiducial spacelike Cauchy surface 2 of constant sectional
curvature £ = —1,0, +1 isometric isomorphic to a standard hyperquadric H?, R? or S°.

6.3. Symmetry reduction in supersymmetric field theories

Since, chiral supergravity contains an enlarged gauge symmetry corresponding to a gauge
supergroup, it seems suggestive to exploit this symmetry in order to construct symmetry
reduced models by generalizing the notion of invariant connection 1-forms to the super
category. The following discussion will provide a solid basis for the construction of
(spatially) symmetry reduced models in the context of supersymmetric field theories. A
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respective discussion in the context of ordinary (bosonic) connection 1-forms defined
on smooth principal fiber bundles can be found, e.g., in [236] (see also [235] for a
nice introduction to this subject in the non-supersymmetric setting). We will use the
following results in Section 6.5 to study minisuperspace models in the framework of
loop quantum cosmology with local supersymmetry.

To this end, let us consider a general 7> supermanifold M as well as a super Lie group
H which, in the most situations of interest, will correspond to the super Lie group
of isometries of a super Riemannian manifold (M, g) (in fact, in most cases M will
be a purely bosonic supermanifold corresponding to an ordinary smooth manifold).
Suppose, H acts from the left on M, i.c., there exists a smooth map

f: HXM > M (6.12)

such that

fo(idyxf)=Ffo(uxxid) and fo(x)=x VxeM (6.13)

Furthermore, we assume that # acts transitively on M. Hence, if x € B(M) is a body
point and H, is the stabilizer subgroup of H, one can identifty M = H /H. which we
want to do in what follows. The left action of H is then given by its standard action on

the coset space H /H,, which still will be denoted by £

Let G — P 5 H/H, bea principal super fiber bundle over H /H, with structure
group G and G-rightaction @ : P x G — P. We want to the ask the question about
the existence of a H-left action f : HXP — PonP such that f is a G-equivariant
bundle automorphism on P projecting to the left multplication of H on H /H,, i.e.,

fo(idyx®) =do (fxidg)and 7 o f = f o (idy X 7) (6.14)

Therefore, applying the forgetful functor SMany~ — Set, we consider the set of
abstract group homomorphisms A : H,; — G. On this set, we introduce the equiva-
lence relation

A~2 e 3geG: X =Adgo2 (6.15)

which yields the set of conjugacy classes Conj(H, — &) of abstract group homo-
morphisms. An equivalence class [A] € Conj(H, — G) will be called smoorhly
admissible, if it contains a 1 *-smooth super Lie group homomorphism as a represen-
tative. The set of such smoothly admissible conjugacy classes yields a proper subset

Conj(Hy — G)w C Conj(Hy — G).

Proposition 6.3.1. There exists a bijective correspondence between equivalence classes of

principal G-bundles over H | H; admitting an H-left action which is G-equivariant and
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projects to the standard left multiplication of H on the coset space H [H.; and smoothly
admissible conjugacy classes [A] € Conj(Hy — G)oo of group homomorphisms A
H, — G.

Proof. Suppose 1 : H, — G is a smooth representative of a smoothly admissible
conjugacy class of super Lie group homomorphisms. Consider then the associated
principal supper fiber bundle H X G with structure group G. On ‘H X G, we define

the smooth left action
HX(HxG)—>HxG, (4 (¥, 0) = (poy,g) (6.16)
Since, (g o (¥ 0 ¢'),A(¢)7'(g) = (go¥) o ¢, A¢) " (g) Ve, ¢',¥ € H

and g € G, it follows that (6.16) is constant on G-orbits so that (6.16) induces a well-

defined smooth H-left action on H X G which is G-equivariant and projects to the
multiplication of H on H /H..

Conversely, letf : H X P — P bea H-left action on P. Let p € B(P) be an
element of the body. Since, the G-right action on % is transitive on each fiber and f is
fiber-preserving, for any ¢ € H, there exists a unique 1($) € G such that

fo(p) = @y (p) (6.17)

Moreover, since p € B(), the map H — P, ¢  f5(p) is of class H* proving that
themap A : Hy — G, ¢ — A(¢) is smooth. By G-equivariance (6.14), it follows for
¢ ¥ € Hy

ﬂso;y(]?) = f3(fy(P) = fs(DPay) () = Poy) (f3(P)) = Pogroriy) (2)
= D) (409 (P) (6.18)

implying A(¢ o ¥) = A(¢) o A(¢), i.e.. 1 is indeed a super Lie group homomorphism.
If p” € P is any other point, then, again by transitivity, there exists ¢ € G with
@, (p) = p’- Hence,

f5(2) = O (f(9) = Paa 259 (P) (6.19)

with Adgfl o 1 in the same equivalence class as 1. Finally, let H X, G be the associated
principal G-bundle with smooth H-left action as constructed in the first part of this
proof. For p € B(#) abody point, consider the map

Hx, G- P, (44— Qf(p) (6.20)
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By (6.14), it follows immediately that (6.20) is well-defined and in fact yields an isomor-
phism of principal super fiber bundles. m]

Proposition (6.3.1) provides a complete classification of principal super fiber bundles
admitting such a smooth left action by equivalence classes of smooth super Lie group
morphisms 1 : Hy — G. We next want to study connections on % that are invariant
under this left action. Since, M is typically an ordinary smooth manifold and we would
like to include fermionic degrees of freedom in our discussion, we go over to the category
of relative supermanifolds. Hence, let us add a parametrizing supermanifold S. We lift
all objects and morphisms to the relative category in the obvious way. If P := H X, G
is a principal super fiber bundle as in Prop. (6.3.1), it follows that /s = H;s X, G. A
S-relative super connection 1-form A € Q' (Ps, §)o will be called H-invariant, if

(fs)sA=A VpeH (6.21)

with /‘A:g : HxP)s = Ps thelift of the left multiplication fs : H X H;s — H)s :
(¢, (5,¥)) = (5, ¢ o ¥) to asmooth H-left action on P s defined via (cf. proof of
Prop. 6.3.1)

fs o (idy x #) = # o (fs X idg) (6.22)

with 7 : H)s X G — H;s X) G = P)s the canonical projection.

Proposition 6.3.2. Let P := H X, G be the associated principal super fiber bundle
induced by a smooth super Lie group homomorphism A : Hy — G. The H-invariant
super connection 1-forms on P s are in one-to-one correspondence to smooth maps = €

H>(S,Hom (Lie(H), Lie(G))) from the parametrizing supermanifold S to even left
linear super Lie algebra homomorphisms Hom (Lie(H ), Lie(G)) satisfying
E(J)|Lie(7{x) = Au (6.23)

and
Adg1 0 E(s) = E(s) © Ady(g)-1  on Lie(H) (6.24)

Vs € Sand ¢ € H,.
Proof. In the following, let / : H;s — P be the smooth map defined via i(s, ¢) :=
[(s5,4), ] and @ g denote the G-right action on P/ s. Suppose A € QN (P)s,8)o is

a H-invariant super connection 1-form. Consider then Agy := *A € Q' (H)s, g)o.
Since [ o fs = fs o (idg X 7) by (6.22), it follows from the H-invariance of A that

(fs)3An = I (fs)3A) = I"A = Ay (6.25)
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i.e., Agy is left-invariant w.r.t. to the standard left-multiplication on H. As a conse-
quence, Agy is uniquely determined by its restriction Ag|7,4¢ : S X T;H — Lie(G).
As this map is left linear in the second argument it follows similarly as in the proof of
Lemma 2.4.7 that it defines an even smooth map Ag|7.4¢ : S — Homy (Lie(H),

Lie(G))o. Moreover, since the Maurer-Cartan form ‘915/1(};:{) |74 : TeH — Lie(H) on
1,H is the identity, it follows that

Age(s) = 600 0 Z(s) VseS (6.26)

on T;H for some smooth map = € H*(S, Homy (Lie(H), Lie(G))). It follows by
left-invariance that (6.26) indeed holds on all of H.

Remains to proof that = satisfies the properties (6.23) and (6.24) of the proposition. To
this end, for X € Lie(H,), we compute

B (1® X)) = D067 (05 X, 0e) = D67 (0, 20 (X))
= /‘l* (X) [preg] (6-27)

Vp = (s,¢) € H;s, where in the second equality we used that the kernel of 7, is given
by
ker Dy 7% = {(1 ® Yy, =R 0. du(X))|Y € Lie(H,)} (6.28)

Using (6.27), this yields

Ae(X) = (A (X)[A) = (1 © X) | An)
= ((Xgl 61 12(5)) = (XIE(s)) (6.29)
VX € Lie(Hy). Finally, since 7 o (ids X Rg) = (Ps)(4) ©  with Ry the right
translation on H w.r.t. ¢ € H., it follows that
(X|Adg1 0 Z(s)) = (Adgt (X|IUDY I2(5)) = ((Rpu X |60 ) 12(5))
= (R X100 0 2(5)) = (Rgul Age(s)) = Adyg)1 (X |A(s))
= (X]Z(s) o Adyg)-1) (6.30)
VX € Lie(H) as required. Conversely, suppose one has given a smooth map = €

H>(S,Hom (Lie(H), Lie(G))) satistying (6.23) and (6.24) above. We have to show
that there indeed exists a unique super connection 1-form A € Q! (P)s, §)o such that

PFA(s) = 9;;? ¢ Z(s) forany s € S. This, in fact, follows along the lines of the proof
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of Prop. 3.3.12. As there, one can show that, if A exists, it necessarily has to be of the
form

(Dip)# (Xps Yl A1) = Ad s (|00 0 E(0)) + (IO F)  (631)

Moreover, as 7 is a submersion, it is uniquely determined by (6.31). One then concludes
that this indeed provides a well-defined super connection 1-form on P s. O

Remark 6.3.3. Note thatif A : Hy — G is a group morphism corresponding to a left
action of a bosonic super Lie group Hy, i.e., a split super Lie group corresponding to
an ordinary smooth symmetry group, then 1 only takes values in the bosonic super Lie
subgroup Gy := S(B(G)) of G. Thus, it follows that condition (6.12) only encodes super
connections that are invariant under purely bosonic gauge transformations. This can be
cured by considering a more general class of smooth H-leftactions f : HXP1s = Prs
on the S-relative principal super fiber bundle $; s that are not merely trivial extensions
of H-left actions on % as considered above and which project to the left multiplication
onHs,ie, HxH;s — His : ($,(s5,%)) = (5,6 0 ¢). It then follows that a
classification of these type of actions is given by smooth maps of the form 1" : SXH,, —
G satisfying

2'/(53¢ °© 7/) = (s, ¢) o (s, %) (6.32)

Y(s,9), (s, ¥) € S x H,. Condition (6.21) for a H-invariant super connection 1-
form then again leads to (6.23) as well as (6.24), straightforwardly generalized to S-
parametrized group morphisms 1’ : 8 X H, — G. In particular, since A’ now
explicitly depends on the parametrization, it follows, in case that the symmetry group
‘H is purely bosonic, that A" can take values in the odd part of the gauge supergroup G.
Hence, in this way, one can model super connection 1-forms which are invariant under
the spatial symmetry group up to super gauge transformations. In fact, as we will see in
Section 6.5.1, this will play an important role in deriving symmetry reduced connections
that contain nontrivial fermionic degrees of freedom.

6.4. Canonical decomposition of chiral N' = 1 supergravity

From here on, the content of this chapter has been reproduced from [4], with (slight)
changes to account for the context of this thesis with the permission of Springer-Nature.

The canonical phase space of the chiral theory including a discussion about the reality
conditions has been partially addressed already in Section s5.4.4. Here, in view of the
symmetry reduction of the theory to be discussed in the subsequent sections, in what
follows, let us summarize some of the most important facts and continue with the
canonical analysis of the theory, in particular, with the derivation of the constraints.
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6.4. Canonical decomposition of chiral N = 1 supergravity

Using the general results obtained in Section 4.3 and 4.4 for the special case 8 = —7, it
follows that the chiral action (5.102) takes the form

N_l =7 a 7
SN (e, A" —/dt/d3 ( ELy A% - 75Lo

- AT'G;+ N“H,+ NH+ ¢S

(6.33)

where, for later convenience, we have absorbed the factor 1/+/x in the Rarita-Schwinger
field. Here, 7% is the canonically conjugate momentum of ¥4 which is related to the

corresponding complex conjugate ¥/’ via the reality condition

7 = Eézbc%A oy (6.34)

Furthermore, £4 = 4/ge? is the electric field conjugate to A4%’. The canonical pairs
(44, E?) and (v, 7%) build up a graded symplectic phase space with the nonvanish-

ing Poisson brackets

{(Ei(x), 4 (0} =i/ 0P (x, ) and  {z%(x), y (9)} = —07050O) (x, y)

(6.35)
Recall from Section 4.4 that, for arbitrary 4, the SUSY constraint is given by
1+78y. (o L+iBy.
abe ( A) Ve A [ abe
= a ¢ Da (s
Ry Vet T8 7 ¢)
1+ lgz a0/
- Ve Ky, — —E 7 Va (6.36)

26

In context of the chiral theory, let us bring this constraint in another form rewriting the
second term in (6.36). To this end, using anticommutativity of the fermionic fields, it
follows that

J 1+ zﬂ;f*D(ﬂA) (
t 25
_ 1+ 78y,
zeahc [% +2{@[g7/ aa (}/1,%[) /ZA %‘ zﬂﬂ 7*701719%]

_ 1+78y. ig ;- 1+78y.
da (Ve 7s) 20 %+5ﬁAa%7b}’*}’0z‘ 20 v

n%)

=€ﬂbf

—p' (i) L +2;ﬂ7* v

- (Df,%yrﬂ) v (6:37)
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. 4 ] / . . T
with sz Vb = 0, 7" — %ﬁbﬁA ;;/* : the exterior covariant derivative in the dual
representation. This yields

7 7 abc llg}/* £q -1 a_ 07 £q a
7.8 =grettiy, LT g DL B - (D)
1+ B2
JIHE ek, (6:5)

28 °

Hence, for 8 = —7, it follows, together with the identity Vi vorVa = —2%‘4 (e7;) up¥®
- 21/[14,(67,')‘4’3’1#43,, that (6.38) can be split in the form

U8 =-StyAd — g, p SR (639)

with § j and SR/’ the so-called left and right supersymmetry (SUSY) constraints, respec-
tively, given by

sh=D{" x4+ E% (e7)5.4 (6.40)

and
SRA’ _ _EA’B'eabce D(A+) A + EEai( ‘)A’B’ 7 (6 )
= wap D, % 7 €T} %B, .41

respectively. According to (6.41), the right SUSY constraint depends on the complex
conjugate Weyl spinor %A/. In order to re-express it in terms of the fundamental variables,
one can apply the reality condition (6.34). In fact, using (4.30)-(4.33), it follows that

WZC’AA — abc sz J AA J]AB’
v—eljke e oA o 4
AA
= —21\@% nABfeb (6.42)

such that
—2E(e7)" P Yup = 2B (eie)? %f
- ’ 1 !
= —i\qy;, nype” 27[74 a (6-43)

Together with the identity €, €%/ k E]Z?Ez = 2\/?(32, we can thus rewrite the right super-
symmetry constraint in the equivalent form

brec

’ kT k A*
gRA _ _ez]kﬁa}{qﬂ D( )%] tor 7;Aeﬂ;”) (6.44)

290



6.4. Canonical decomposition of chiral N = 1 supergravity

The remaining constraints can be obtained rather quickly using their general form
derived in Section 4.3. For the Gauss and vector constraint, it follows that

AN
Gy =D Ef - wi(m) yy] (6.45)

and

l' ; - g At
Hy = “EVF(A)), = &“enn i DIy (6.46)

respectively. The Hamiltonian constraint reads’
E“EY
t) i be 7. A A*
H = o€ W = e naa D (647)

szb
7 _] i ’ - g /- 3
+orvS Waansa g M = J nan ol Gop) + 5

207

’ . . . .
4" is the spinor corresponding to the unit normal vector field ## orthogonal
to the time slices %, in the 3+1-decomposition.

where 74

Remark 6.4.1. Recall that the canonically conjugate momenta £ and 72! can be
combined to give the super electric field

& = (Ef, —iVkr?) (6.48)

As a consequence, it follows that the Gauss G; and left supersymmetry constraint 5%
arise in terms of the even and odd part of the super Gauss constraint (see Eq. (s.117) for

the case N = 1) .
¢ =-D"es (6.49)
K

which generates local OSp(1|2)c-gauge transformations.

Finally, since they will play an important role in what follows, let us recall the reality con-
ditions imposed on the canonical variables in order to recover ordinary real supegravity.
According to (5.151), it follows that, provided e is real and 4™ satisfies the field equation
(5.148) (resp. (5.149)), action (6.33) is purely real up to a boundary term. Hence, in the

' Of course, the vector and Hamiltonian constraint also have to be expressed in terms of the fundamental

variables. This can be done in analogy to the right SUSY constraint. We will do so for the symmetry
reduced expressions in the following section.
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canonical theory, it follows that the reality conditions are equivalent to the requirement
that the 3.D spin connection part I'” of A* satisfies the torsion equation

. . . . . K -
DO =de' + ¢ ;T net =01 = VN, (650)
which has the unique solution

I =T"(e) + C'(e, v, ¥) (6.51)

with T (¢) the torsion-free metric connection
rz‘ _ ijk b P} 1 ) P}
a(€) = —€7%¢ | daepy + S Ckeadlces)s (6:52)
and C” the contorsion tensor given by

K ped i (o A A

G = g “e (23#[4%,] ccan =Yy ¥ faAA’) (6.53)
Thus, to summarize, the reality conditions for the bosonic degrees of freedom take the
form

AT+ (A3) = 2T (e) +2CL e, ¥, 9),  Ef = R(Ef) (6:54)

These ensure that, provided the initial conditions satisfy (6.54), the dynamical evolution
remains in the real sector of the complex phase space, i.e., the phase space of ordinary
real N' = 1 supergravity.

6.s. The symmetry reduced model
6.s.1. Homogeneous (isotropic) super connection forms

Typically fermions in cosmological models are not compatible with isotropy. However,
in case of N' = 1 supersymmetry, it turns out that there does exist an ansatz for the
gravitino field which is consistent with the requirement of spatial isotropy. This is due
to the intrinsic geometric nature of the Rarita-Schwinger field as well as the underlying
supersymmetry of the theory and, in the context of chiral LQSG, can naturally be
understood in terms of homogeneous (isotropic) super connection forms which we
would like to explain it what follows.

We consider a spatial slice X in the spacetime manifold A/ and assume that 2 is homo-
geneous, i.e., the group A := ISO(X) of isometries of X acts transitively on it. Hence,
if H,; denotes the stabilizer subgroup at some point x € X, one can identify X with the
coset space /1 / H. Here, in order to compare our results with other results in the litera-
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6.5s. The symmetry reduced model

ture, we are mainly interested in the standard homogeneous isotropic FLRW models, in
particular, in the spatially flat case (¢ = 0) and the case with positive spatial curvature
(k = +1). In both cases the isometry group takes the form of a semi-direct product
H = T > 80(3) with T the subgroup of translations acting freely and transitively on
2 and the isotropy subgroup SO(3).

Let H := S(H) be the corresponding bosonic super Lie group. As discussed in detail
in Section 6.3, we are looking for a lift of the standard left action of H on H /H,
to a left action on the S-relative principal OSp(1|2)c-bundle #/s. This turns out
to be equivalent to classifying conjugacy classes of super Lie group morphisms A :
H — OSp(1|2)c, Given such a super Lie group morphism and the corresponding
left action fs : HXx®P;s — P;s, one can study super connection 1-forms which
are invariant w.r.t. the symmetry group, i.e., H -invariant super connection 1-forms
AT € QN (P)s, 05p(1]2)c), satistying (6.21). According to Prop. 6.3.2, it follows that
any invariant super connection A* is uniquely determined by a (S-parametrized) super
Lie algebra morphism Z : § — 0sp(1|2)c (and trivially extended to the corresponding
super Lie module Lie(H) = A ® b) satisfying Z|pie(zz,) = A« and

Ad¢f1 oZ=E¢ Adﬂ(@—l (6.55)
on Lie(‘H) for any ¢ € H,, such that
rAar=o0cx (6.56)

where?: H;s — P;sisanembedding. Here, ﬁgé) € Q' (H,b) is the Maurer-Cartan
form on H which satisfies the Maurer-Cartan structure equation

H) L
doye +5100¢ A Bye ] =0 (6:57)

In case of FLRW, we have H = 7" =SO(3). Let us first assume that A* is homogeneous,
that is, A" is invariant under the translational subgroup 7" of the full symmetry group.
Since T acts freely and transitively on = = 7', we have T} = {¢} and the only possible
super Lie group morphism Z : S({¢}) — OSp(1|2)c consists of the identity morphism.
Hence, in particular, condition (6.55) is empty and it follows that a homogeneous A* is
uniquely determined by a (S-parametrized) super Lie algebra morphism = : Lie(7") —
05P(1]2)c such that the pullback of A* to X is given by

A= 03 o= = AT 4 $AQ 4 (6.58)

where, with respect to a basis 7; € Lie(7") of Lie(7") (not to be confused with chiral
generators 1" of the bosonic subalgebra s1(2, C) of 05p(1|2)c), weset ¢; == (T;|Z). As
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6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

AT is even, it follows that ;25" are bosonic and ¢A define odd fermion fields. Furthermore,
(é); is the induced basis of fiducial left-invariant one-forms* on 2. This is the most
general form of a homogeneous super connection 1-form.

If one requires that A*, in addition, is isotropic, it then follows that Z needs to satisfy
(6.55) on the Lie algebra Lie(Hy) = $0(3) of the isotropy subgroup which infinitesi-
mally reads

(d (Tp)|Z) = ad), (1) (Ti|Z) (6.59)

V7; € s0(3) for some super Lie algebra morphism 4. : $0(3) — 0sp(1]2)c. If one
works in the standard category, it follows, as A, is even, that it only takes values in the
even Lie subalgebra s1(2,C). This corresponds to connections which are invariant
under the spatial isotropy group up to ordinary gauge transformations. Let us focus
first on these type of connections. We will then also consider a more general class below.
Since $0(3)c = sl(2, C), it follows that the only nontrivial Lie algebra morphism, via
this identification, is given by the identity morphism, i.e., 4, : $0(3) — s1(2,C), 7; —
T'*. Using that the adjoint representation on the translational subgroup is given by
ad, (1) = el.leg, (6.59) leads to the condition

€' 81 =adr (8] T + 87 Q.4) = ¢] e, T+ ()" 1 Qs (6.60)

Restricting first on the even subalgebra, it follows immediately that the unique solution
of the bosonic part of the connection has to be of the form

ok = cok (6.61)

for some complex, Grassmann-even number ¢. This is precisely the form of the isotropic
self-dual Ashtekar connection as used in [91] (see also [235] for the discussion in case of
real variables). Considering next the odd part of the super Lie algebra, one finds that the
only possible solution to (6.60) for the fermionic degrees of freedom requires ¢;4 =0.
Hence, in this restricted subclass of invariant super connections which are invariant
only up to ordinary gauge transformations, it follows that one cannot make a purely
isotropic ansatz in both bosonic and fermionic degrees of freedom.

For this reason, in what follows, let us consider a wider class of invariant super connec-
tions that are invariant up to gauge and (partial) supersymmetry transformations. To
explain this in a bit more detail, let us focus on the special case of a vanishing cosmo-
logical constant, i.e., L — oo such that, in this limit, 0sp(1|2)c reduces to the super
Poincaré algebra in D = 2 which we denote by 0sp(1|2)c. According to Remark 6.3.3,
super connection forms which are invariant up to OSp(1|2)c-gauge transformations

> We are adopting the notations in [88, 90] and denote the left-invariant 1-forms by ¢ instead of &7 as
usually done in the LQC literature.
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are then classified by (even) S-parametrized morphisms of super Lie modules of the
form
A : SX (A®5s0(3)) > A®osp(12)c (6.62)

which, due to the additional parametrization supermanifold S, can now take values in
all of Lie(OSp(1]2)c) = A ® 0sp(1|2)c not just in the bosonic sub module. It then
follows that a more general class of such morphisms are of the form

20(e) =20, m) =T +0446,0Qy (6.63)

for some Grassmann-odd 8 4 : S — A;. Itis then immediate to see that this indeed
defines a morphism of super Lie modules, since
[27(7), 20 (ep)] = [T T+ 6011, Qulo ™ + 6.4 [Qa, T 10/
= ;" Ty - 8.4 Qs(oyi0y) o
= fl-jk(T+ +00404) =€, *28() (6.64)

The form of the reduced connection again follows from the identity (6.60). Together
with (6.63), it follows that the bosonic components of A™ need to satisty

e’ 87 = 120(7), ¢, T + 41 Qa)" = $1e)” (6.65)

and thus again are of the form (6.61) for some complex, Grassmann-even number ¢. For
the fermionic components, this yields

e 81 = (U=, 81T + 40 Q51 = $PIT7, Q61 +¢o G [Q5, T3]
c ’ =
= ¢p (m) g+ eyl o O (6.66)

As may be easily checked by direct computation, this is solved by the following ansatz
together with its complex conjugate

¢ =0/ Yu (6.67)
¢ =y (6.68)

with .4 == ¢8 4 and 4 the corresponding complex conjugate. Interestingly, this is pre-
cisely the ansatz for the Rarita-Schwinger field as proposed by D’Eath at al. in [88—90].
Thus, we see that allowing for these general type of symmetry reduced connections, this
leads to an ansatz that contains nontrivial fermionic contributions. Note, however, that
these are not completely independent. This is due to the fact that this consideration only
describes connections which are invariant up to left-handed supersymmetry transfor-
mations. Hence, for a full treatment, one also has to take right-handed supersymmetry
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transformations into account. Nevertheless, this demonstrates that in order to study
symmetry reduced models with local supersymmetry, one should consider symmetry
reduced connections which are invariant not only up to gauge but, at least in a specific
sense, also supersymmetry transformations.

In the following sections, for the construction of symmetry reduced models, we will use
the ansaetze (6.61) and (6.67) for the even and odd components of A*, respectively. In
particular, we will allow the fermionic degrees of freedom to be independent from the
bosonic ones. This is, in fact, consistent with the reality conditions. In this context, note
that, making an isotropic ansatz for the bosonic degrees of freedom, this implies that the
reality condition (6.54) which couples bosonic and fermionic degrees of freedom also
has to be isotropic. In particular, the contorsion tensor necessarily has to be of the form

Cl=cCé (6.69)

for some real, Grassmann-even number C. As we will see explicitly in Section 6.5.2, this
turns out to be indeed the case using the ansatz (6.68).

Remark 6.5.1. In fact, one can argue that (6.67) and (6.68) are the most general ansatz
for the fermionic fields consistent with the reality conditions. To this end, one notices
that the Rarita-Schwinger field ¢; := (925;4 -y )7 constructed out of the homogeneous
fermionic components of A* can be always split into a trace part ¢ := y’¢; as well asa
trace-free part p; := ¥; — 3y;¢ w.r.t. the gamma matrices [67]. As the trace-free part
carries internal indices, it then follows that the contorion tensor will generically not be
of the form (6.69). The trace part, on the other hand, precisely leads back to (6.67) and
(6.68). Thus, in this sense, (6.67) and (6.68) can be regarded as a necessary condition
for odd components of A™ to provide consistency with the reality condition (6.54) in
case of purely isotropic bosonic degrees of freedom.

6.5.2. Symmetry reduction of the chiral action

Having derived the general ansatz for the bosonic and fermionic degrees of freedom for
homogeneous isotropic cosmology, we want to perform a symmetry reduction of the
action (6.33) and determine the constraints in the symmetry reduced model. To this
end, as already mentioned in the previous section, we are mainly interested in the FLRW
models with positive (£ = 1) and vanishing spatial curvature (£ = 0), respectively. In
the spatially flat case, the translational subgroup 7" of the isometry group is Abelian and
a basis (co-frame) of fiducial left-invariant one-forms is obtained as the coefficients of
the Maurer-Cartan form Q;ATC) =T,

In the case £ = +1, X is isomorphic to a three-sphere S? which can be identified with
the Lie group SU(2). Hence, the Maurer-Cartan form of SU(2) yields a canonical basis
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. . . SU(2 o . .
of fiducial left-invariant one-forms 6’;/[(:( ) = g 7;. For both situations, according to

(6.57), the structure equation fulfilled by these sets of 1-forms can be written as
ST (6.70)
2 Jk 7

where £ = 1 or k = 0 in case of a positive or vanishing spatial curvature. The corre-
sponding fiducial frame fields ¢; dual to the 1-forms ¢’ satisfy ¢, é’j. =9 /l and form a basis
of left-invariant vector fields on . The fiducial metric 4, is related to the co-frame via

Gab = 056 (6.71)

where, for £ = 1, as explained in [237] this metric corresponds to a three-sphere of radius
7o = 2 so that the total volume of X is given by V) = 27[27'3 = 167%. The co-frame
¢’ of a different spatial slice of the spacetime manifold is related to the fiducial one via
rescaling ¢’ = 2" and similarly for the triad ¢; = 27'é; where 4 can be both positive or
negative according to the handedness of the triad. Here and in the following, we will fix
the sign of the internal three-form €ijk with the convention €123 = 1. The volume form
of the spatial slices is then related to the internal 3-form via

. ; k
VG €abe = ez-j/ee;eiff (6.72)

According to (6.72), due to the conventions made for the internal 3-form, in case of a
positive orientation of the triad, €, is normalized to one, i.e., €123 = +1. Consequently,
changing the orientation of the triad then changes the sign of the volume form such
that €, — —€,4, under ¢/, — —e’,. Finally, from the definition, it follows

s“bfeieé ef = e2ell* (6.73)

where € indicates the orientation of the triad. For convenience, following [91], we will
keep track of the various sign factors appearing in the computations and therefore do
not set €2 = 1 at this stage, the reason being that this will simplify the implementation
of the dynamical constraints in the quantum theory.

For the symmetry reduction of the theory, let us fix a fiducial cell V in X of finite volume
Vo as measured by (6.71) which will be the whole  in case # = 1 or a finite proper sub
region in case £ = 0 where, in the latter case, physics will be insensitive to this choice

1
due to homogeneity. Furthermore, we introduce a length scale setting €y := V’. With
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these definitions, it follows, using ansatz (6.61) for the reduced connection, that the
fundamental variables corresponding to the bosonic degrees of freedom take the form

g a i
A = @t and Ef = % geé: (6.74)
0

for some Grasmann-even number p which, according to (6.54), needs to satisfy the
reality condition p = p*. For the fermionic degrees of freedom, we choose the ansatz
(6.67) and (6.68). The symplectic potential in (6.33) then takes the form

/dt/ d3x (iEfA;" - n;’[;kf) = /dt (3—lpc'— 7':‘4’;}/4/) (6.75)
R % K R K

with the canonically conjugate momentum
74 = —6iVp|aly (6.76)

Hence, the canonically conjugate variables in the symmetry reduced theory are given by
(¢, p) and (Y5 74 satisfying the nonvanishing graded Poisson brackets

pr=" ad (# g} =3 (677

where the complex conjugate ¥4 of ;}Ar is related to its canonically conjugate momentum
through the reality condition (6.76). In order to derive the respective reality condition
in the bosonic sector, let us first consider the metric connection part of (6.51) which,
using (6.70), yields

: k ik on L s s - k.,
I''(e) = Ze’ﬂee‘j (Zekmneﬁe’;] +62€i€1mneﬁez]) = Ee‘; (6.78)

Finally, for the torsion contribution we compute, using the identities (4.32) and (4.33)
stated in Section 4.2,

/ K cbed, oAB’ sBA o AB sBA
C; — cd i (26" eb] CoAA —€b €. Cadd WB/wB

4\/— la

ike? ik | { _AB" _BA o AB B AB' _BA 7
_ = 2 Z] 6 (G'Z 0'] T A4 — ] 0'1 O'kAA;—O'j a'k TIAL “kB/VB
_ K o ap iBA | J BB
= 2 ¢, =17 nypc’ € ;kgz;hg

= z—ﬂzeﬂnBB VB VB (6.79)
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which, together with (6.76), yields

. X . o_ -
C = _12€0p€;7r Y (6.80)

Hence, the reality condition (6.54) for self-dual Ashtekar connection in the reduced
theory takes the form

K _
c+c =kt - =71y, (6.81)
6p
which, in particular, is isotropic in the torsion contribution consistent with the isotropic
ansatz for the gravitational degrees of freedom.

Next, we have to compute the constraints in the reduced model. To this end, let us first
consider the Gauss constraint (6.45). It is immediate to see that the first part depending
on the covariant derivative yields a total derivative as the term proportional to the
connection simply drops out due to the isotropic ansatz. Hence, only the fermionic
contribution remains for which, using (6.34), we compute

G; = ~wi(m) s = e & Yeean () pl Yo

loid

o 7kl 7 CA A _B
—lal\ge’ Yy o qran (7)o
2ilal\JdycTonan s A (z) "o

. 3 7 cD’ c’
~2ilal\J§¥cden (7)), (6:82)

Hence, inserting (6.82) into the action (6.33), we find

. 1 . ’ ’ -
/ dt / dPx 4'G; = / dt = A? (—6z'|ﬂ|%;kchD (7)) ¢ ;yc,) (6.83)
R Jv R 3
so that, due to (6.76), the reduced Gauss constraint can be written in the form
G =71(%) % vp (6.84)

It is immediate from the homogeneous ansatz that the theory is invariant under diffeo-
morphism transformations. Hence, concerning the vector constraint, one may expect
that (6.46) vanishes identically. However, as can be checked explicitly after some lengthy
calculation, while the purely bosonic term vanishes identically due the isotropic ansatz
for the gravitational degrees of freedom, the fermionic contribution turns out to be
proportional to the Gauss constraint. This is in fact analogous to the full theory, were
the Gauss constraint needs to be substracted from the vector constraint in order to
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6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

obtain the infinitesimal generator of pure diffeomorphism transformations. Next, let us
turn to the left supersymmetry constraint (6.40) which reads

SE=0,7% — wi(7))? , AT + 2L E“y P (em) g4 (6.85)

If we drop the total derivative in (6.85), it follows

P
§h=——ete Z% ‘epp ()P + 22— > G 88 yp (e7)pa
€0 (L
— _ ¢ Eabc 7 ] k O'CBO' (T) P BO'Z'BB,(ET') Ton
- €Oﬂ2 €s¢, H/C kBB'\%) 4 — €2 q [ BA%B
l€ c
=ﬁ|ﬂ| geke ! ik ngp o ()" A¢C+ \/71/3'6 naw

3|a|e Jicta *m\[ Tpe 4 n g (6.86)

which, together with identity (4.31), gives

2 Z )
Sj = 3\/571/1/1/ (Mlg%anBA 62]; %B/EB 4 ) (6.87)

Hence, if we insert the reduced expression (6.86) into (6.33), we find

/dt/ xSy :/ (Iélle ch &]U;B'EB,A,) 3V
R Jv L

€%c o\ 7
/ dr (-==6ila|Voypn®4 + ]J;#B/eB S naatd
R b L 2

6l - o\ -
/Rdt(;‘ 74 TolplghgfeBA)e%A/ (6.88)

where in the last step the reality condition (6.76) was used. Therefore, in the reduced
theory, left supersymmetry constraint takes the form

’ €C ’ /
SL4 I 74 4 IpWB (6.89)
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For the right supersymmetry constraint (6.41), we first focus on the term depending on
the covariant derivative which reads

A'B’ _abc A4*) 4 A'B’ _ab + 4 ,C
—etPette DIy = —e B ebee (el AP0+ Ay (7)) 9 E)
A'B gab ok
=—¢€ db‘labQ@AB'J Vo — € ﬂf( Z U-ZAB’(Tj) B% Yo
0
(6.90)

Using again (6.70), this yields

k ; '
_Ej/e[EA abcez 611:650}/43/0' %C/ _ A B 2|6l|€ljk0'zAB/(Tj)A %C'
;- 3lale“c [, yp -
=_3k|ﬂ|ef43¢3 , Jlalete \/;e“ B
b

3lale® [T s4p ;

:€—\/;6 ([ — /€€0)¢B’ (691)
0

On the other hand, the term proportional to the cosmological constant gives

. ) o 2 .
2L E (er)) 1Py p = goz—i\/gé‘”(%)A B¢ ecrpye
2p T, A4 _icc
= W\/;(ez'l'e) 4 v

2 e e = 2 iyt

where we used that e7,¢ = TZ.T . To summarize, we found

’ R’ 3 ’
SRA — 614 B \/;( |ﬂ|€ (C _ /€€0)¢B' + ¢AnAC EC’B') (693)

Inserting (6.93) into the action (6.33), this yields

/ dr / $x iy 0 SR
R Vv

_ 37 ’
- / dt ey;” (34(}2(6 — kly) g + (,Z,'p | Voyan© em/)
R

—/R dr e (3e€o 1p1(c - k) g z\/ﬁﬁc’eog,)

(6.94)
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so that, in the reduced theory, the right supersymmetry constraint can be written as

- 1 ’
Sk = 3l | pl(c = ko) - ENHPI#B B (6.95)

Finally, we need to derive the reduced analog of the Hamiltonian constraint. As far as
the purely bosonic term is concerned
E{EY
Hy=—— F(A4* 6.96

b 2 \/— k ( ) ( 9 )
in case of the self-dual approach, a reduced expression is stated in [91]. For sake of
completeness, let us derive it here in full detail. This will also clarify the positions of the
sign factors. Again applying the structure equation (6.70), we find for the curvature of
the self-dual Ashtekar connection

o2 k 2
k kool C b oo [N
F(A+)ab e—& deb + €2€ lmedc‘Zl =——c¢ Zmé’ﬂeZ” + = m

such that (6.96) becomes

= 2K|d|3\/;( A +€02 - KVO\/I}'TI(c MO‘)\/; (6.97)

which is exactly the form of the bosonic part of the Hamiltonian constraint as stated
in [91]. Next, let us turn to the fermionic contribution

Hy = e“l”;k D(A );kc (6.98)

which has in fact a similar form as the right supersymmetry constraint. Following the
steps as before, we compute

Hf - _ Eﬂbfs}A’l’l /D(A+) %A

- _ Eabc BKBA nax (abef %B’ + A ](TJ)Acelea,kCC %C’
ko abc z ! 7 e2be z ’ -
3¢
:3/66\/7 AL %A‘%A/ - 6—06\/7 AL ?A%A’
3¢ [o .
- g—s\/;(c - k&))n’“ Vala (6.99)
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Remains to compute the reduced expression of the cosmological contribution in (6.47).
Some simple algebra reveals

v |4I3
Hy =47 2Ll |3€l]k S Yaans gl — Vi nano Jop) + 77
c€lal i, cor AA _BD' ;5 7
=\/;Y€f (0,7 €canpa oy ;i 6440k
- U'CA/ﬂ IG'AB/G'DD ED /% % )+ |p|2
p 449, 9 D'B'YCYD VKLZ

Yo +ECD¢C¢D) [Vli’ll; (6.100)

3ie 'y
_ i J_(c

Thus, inserting (6.97), (6.99) and (6.100) into (6.33), we find

3 _ _3_62 2 _ _ € L
‘/Rdt[‘/deH—/RdtN( " [pl(c = kbyc) 2([ /e€0)mz7z Va

37 2€2 2
2 P Yo + € Peyp) + = ol

+

) (6.101)

Using the reality condition (6.76), one can express the term in the last line of (6.101)
proportional to the complex conjugate ¥4 of the fundamental variable %A' in terms of
the corresponding canonically conjugate momentum. In fact, direct computation yields

- A" -B 2172, AA BB’
eqpm” w0 ==36|alVin " eppn’” Yavp
4 AB
= =36/ plly e YayB (6.102)
Hence, it follows that the Hamiltonian constraint in the reduced theory takes the form

H=- 3i 21 = o) = (e~ by

iz Y (6.103)

x/|,7|

| p1eC" Y orvp — eap it 7P + |P|z

12€2L \/_

6.5.3. Half densitized fermion fields

3Z€2€2
+

As proposed in [80] in case of real Ashtekar variables, in order to simplify the reality
conditions (6.34) for the fermion fields, it is worthwhile to change their density weight
by going over to half-densities (see Section 4.3.1). In the reduced theory, we can do
something similar. According to (6.76), the complex conjugate of ¥4 also depends
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6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

on the scale factor and thus on the momentum conjugate to the reduced connection.
Hence, it is suggestive to introduce the new variables®

B4 = N6lalVoga = Vobo| pli g (6.104)

’ 1 ’ 1 ’
4 74 = 74 (6.105)

T, = = -
P elally Vb pl

Actually, in contrast to the full theory, we are not changing the effective density weight

of the fermion fields since, due to the ansatz (6.67), the density weight has already been
absorbed in the fiducial co-triad. Nevertheless, these new defined variables have the same
dependence on the scale factor « as the half-densitized fields in the full theory (i.c. they
are of order ~ || 2 ) which is the reason why we continue to call them half-densities in the
reduced theory. Since the definition of the new fields explicitly involves the scale factor
(and therefore the reduced electric field p), this, a priori, does not provide a canonical
transformation. In fact, as will become clear in what follows, this also amounts to a
redefinition of the bosonic degrees of freedom.

To this end, let us go back to the symplectic potential (6.75). Inserting the definitions

|

(6.104) and (6.105), we find after some careful analysis

37 , s 37 ’
dr (— ¢ — 74 A/)z/dt = pé = 6lalVord Ly,
/R P V. i P 074 ,—|ﬂ|V0
~ 3 g 1y
_/Rdt Py ¢A,+2|a| €4 ¢,4)

26616{ ) )

=‘/Rgdt—pc—¢¢'/4+ ¢¢A’
37 2 1 v

=/dt(?lpé—7rf¢,4f+é—1§7rf¢,4/)

=/ ( j22)

where in the third line we reinserted the definition p = 642602 and, from the fourth to

—ux

C+ ¢¢A

;4#5,4/) (6.106)

the last line, we integrated by parts dropping a boundary term. Hence, according to
(6.106), this suggests to define the transformation of the reduced connection via

_ ix p
C.—C+@7f¢ ¢A/ ( .107)

3 For notational simplification, we will refrain from indicating the new fundamental variables with an
additional bar in what follows. The complex conjugate of ¢ 4 will then be written as @ 4
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6.5s. The symmetry reduced model

Since signs matter in what follows, it is instructive to check explicitly that this indeed
provides a canonical transformation. Observing that {c, | p|} = {¢,/p?} = €{c, p},

direct calculation yields

{6, \pli g} = {C+—7f g, 1 P11}

={c, |P|Z}3}A’— gs}B'{ﬁB,,;}A'}
—ele, plour + 3 ;}A' =0 (6.108)
|,17|4 | E
proving that the Poisson bracket between ¢ and ¢ 4 indeed vanishes. On the other hand,
we have
(& 1plia?y = (o Ipl Y2 + 5 'B,{%',ff”q'}
12 p|4
- ke - - txe - # =0 (6.109)
12]p|4 12| p|4

and therefore the Poisson bracket between ¢ and 7[; is zero, as well. Hence, this proves
that the transformation of the phase space variables as declared via (6.104), (6.105) as
well as (6.107) indeed provides a canonical transformation.

To summarize, w.r.t. the half-densitized fermion fields, the new canonically conjugate

variables are given by (¢, p) and (¢ 4/, 7[;4,), respectively, which satisfy the nonvanishing
Poisson brackets

_ ix , /
{p,c} = 35 and {7r¢f4,¢31} =—3§{ (6.110)
The complex conjugate 95 4 is related to the canonically conjugate momentum 77;, via
the simplified reality condition

A cx o AA

Ty = —iPyn o ¢EA = 1'71“;4/71,4,4’ (6.11)

Using (6.107), it follows that the respective reality conditions for the bosonic degrees of
freedom take the form

(+ ()" =kl and p'=p (6.112)

In particular, it follows that, in both parity even odd sector, the torsion contribution in
the reality condition of the reduced connection simply drops out! This will drastically
simplify their implementation in the quantum theory as will be studied in detail below.
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Let us rewrite the dynamical constraints in the new fundamental variables. For the
Hamiltonian constraint, one immediately finds

1
Vizl
ie? ;2

A'B 1€ A B 3 3
+—¢€ Py — —€qpTL Ty + ——|p|?
ALY A AT Sy

3¢? 9 € LA
H=- — |pl(c* — k) — E(C — k) iny Pu (6.113)

. .. o N
where we have implicitly performed the substitution ¢ := ¢ 2051 % ¢ 4. The leftand
right supersymmetry constraints are given by

’ 1 ’ _ 3 ’ g
S = ec|p|47z;4 + L7 pligpp et (6.114)

and

SR = 3¢|p|i(c — kly)g g —3L7"] p|%7ff’63, p (6.115)

respectively.

Remark 6.5.2. Some comments on parity are in order. Due to our sign conventions
made for the internal three-form ¢;;, the metric connection (6.78) is even under the
parity transformations ¢, — —e’, while the extrinsic curvature K is odd. Hence, ¢ does
not have a straightforward behavior under parity transformations. For LQC without
fermions another set of conventions, in which the internal three-form ¢;;; changes sign
under internal parity, is very useful [238]. Under those conventions ¢ does transform
in a well-defined way. In the present situation, it turns out that those conventions lead
to unwanted sign factors in the Dirac algebra, effectively breaking supersymmetry. We
suspect that the root of the problem is that the Ashtekar connection has to lift to a
connection on both, the frame bundle and the spin structure, in a consistent way.

For completeness, let us also consider the parity transformations of the fermionic fields.
Since the Rarita-Schwinger field ¢ := (95‘4 , P )7, in particular, is a Majorana fermion,
one would impose a parity transformation of the form* ¢ — ;/Ogb which, in terms of
the fundamental variables, reads

. B A . B A
II(p) 4 = Ty €p 4 and TI(7y)” = —igpe (6.116)
This yields
A/
[(7myp) = ¢A'7f¢ = -7y (6.117)
4 Note that, in the mostly plus convention, ( ;/0)2 = —1. Hence, the parity transformation is not

Tz ]
involutive but acquires an additional phase of the form ¢’ 2. In fact, one cannot simply redefine the
parity transformation replacing ;/0 by z';/o since this turns out to be not compatible with the Majorana
condition (4.20), i.e., the transformed field will be no longer a Majorana fermion.
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Hence, it follows that, under these parity transformations, the contorsion tensor is now
parity-even. However, in any case, the reduced connection does not seem to have a
straightforward behavior under parity transformations.

6.5.4. Constraint algebra

We want to study the Poisson relations between the left and the right supersymmtery
constraints. To this end, note that the canonical phase space & turns out to have the
structure of a Poisson supermanifold (see, e.g., [239] for an introduction to Poisson
supermanifolds in the algebro-geometric framework). In fact, for any homogenenous

supersmooth functions /', g, b € O(Z?) on the phase space, one has
(£, ghy ={f> gth + (DIl g (£, b} (6.118)

with |f| € Zj the parity of /', i.e,, |[f| = Oresp. |/| = 1if f is Grassmann-even resp.
Grassmann-odd. That is, according to (6.118), the Poisson bracket defines a super right
derivation on O(&?). Moreover, the Poisson bracket is also graded skew-symmetric, i.e.,

{f, gy =-(-1) If1 |g|{g, h}. Using (6.118), this yields

{Fg. by =f{g by +(=D)IEWIF b} g (6.119)

and therefore it also defines a super left derivation. In fact, it even follows that the
Poisson bracket satisfies a graded analog of the Jacobi identity. Hence, (O (), {-,-})

has the structure of a super Lie module.

With these preparations, let us compute the Poisson bracket between the left and right
supersymmetry constraints. To this end, one often needs to compute Poisson brackets

of the form {c, Wf,} and {c, ¢ ¢ } which yields

, ix
{C,ﬂ Y ={c- Ty ¢B, 12]) Ty {¢B, 7'} 12]) ;f (6.120)
as well as
{e, ¢} ={c— _77¢ ¢B yPat = 27;¢B’{7ff, bat= —@gé,q' (6.121)
Finally, using ’ '
{c- %%’?@B'; pr=Hc pt= —% (6.122)
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as well as the fact that (O (), {-, -}) defines a super Lie module, it follows for the trace
part of the matrix {§ L4 ¢ ]];, }, in case of a vanishing cosmological constant,

{€C|p|4 3€|P| (C — k€0)¢A/
= — 6€° |P|(52—MOC)+3€2{c,|p|z}(f—/€€o)|])|%7r¢¢
#3ellpliellpltchmep+ 36 \fIplms (e g} c = ko)

+3€%c Ipl{z;q/, B

= — 662,/ pl(c* — klyc )—ﬂ%zﬁs
V4
+“C_€_C - ¢_iﬁ—(c_k€0)75 ¢_z'£_c T4
N N T B S I K
ixe (c — kb)
=2x(Hy + Hy) + —
—oxH + 6|17’“|37z;’ (3e| plitc- /e&,);zsA,) (6.123)

which precisely consists of the sum of the Hamiltonian constraint as well as the right
SUSY constraint in case of a vanishing cosmological constant. For 0 < L < oo, this

yields
{eclplizd + L7 pligpe® 3¢l pli (c — ko) g = 3L7|pli 7w} epar}
i (3elplt (c - ko))

=2x(Hy + Hr) + K3
6lpl*
+6L7pl +3L 7 el pli{c, |pliYas wl e = 3L el plrf {c, md Yepa
— 1 3 4 —_ ’ 47
+3L7 el pli{c, pl Y papme® @ +3L " elplp e, pp}e”
=2 (Hy + Hy) + —— ' (3¢l pl (c - klo)pr)

Q
6/pl
2 3K 5, g B K 2 _a

+6L" |p|2 L€ 7[¢ ¢€A/B/+4L€ 7f¢ ¢€B’A’

37k 2 A'B 2 A'B’
+ —¢ ’ ’€ + _6 ’ 1€

i ¢A $5 AL € Paps

ix /
=2xH — 627Z'¢A ﬁf 0 —37754 (3€|P|%(f - /€€0)¢A’)
2L 6|p|1
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=2xH + ﬁﬁ;, (3€|p|i(6 —kb)pa - 3L_1|P|%7TB,6&A/) (6.124)
Pl

so that we found

A/SR (6.125)

(ST SRy = ok H + —— 7

6| pl 1
Let us emphasize that, in the above calculation, the sign factors € depending on the
orientation of the triad matched up exactly to give the algebra (6.125) proving that the
theory is indeed consistent with local supersymmetry in both sectors. Next, we want to
compute the off-diagonal entries of the matrix {§ LA g g }. Following the same steps as
before, we immediately find for 4" # B’

{EC|P|47I |, 3¢|p| (C—k&)sﬁB}——%(c\/gO) 5 $p (6.126)

By anticommutativity of fermionic fields, one has 7[;, ﬂg? ecrg = 0for A # B’ and
similarly for ¢. Hence, this yields

{eclplizd + L7\ pli g™ 3¢l pli (c - ko) s = 3L plinl eprp}
ixe (c — k) A i

g (3elpli(c - ko)gn 3L plim  ecr )
(6.127)

such that )
{SLA,a Sg} = —6|ZPK|3 ﬁj/SII;, (6.128)

Thus, to summarize, we found that
LA R X agr|sa _ X _agr
{$¥4, 8} = xH + — T Sy low T Sy (6.129)
6lplt 6lpl’

Equation (6.129) provides a very strong relation between the Hamiltonian and super-
symmetry constraint which will play a central role in Section 6.6.4 in the construction
of the physical sector of the kinematical Hilbert space and the study of the resulting
dynamics of the theory.
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6.6. Quantum theory
6.6.1. Construction of the classical algebra

We want to motivate the kinematical Hilbert space in the reduced theory. To this end,
we follow the standard procedure in LQC and compute holonomies along straight edges
of the fiducial cell V which are parallel to integral flows @~ generated by the basis of
left-invariant vector fields (¢;), dual to the fiducial co-frame. Choosing the new variables
as constructed in the previous section, we combine them to the super connection A*

defined as

-

~ - _ . _3 ’
A=A+ = gié’l TF+0 2006440, (6.130)
0

_3
where, in the second term, the factor €0 ? has been included for dimensional reasons. By
definition, it follows

(A, ALY =0 (6.31)

tor A,B € {7, A}. Since, in the manifest approach to canoncial loop quantum
supergravity, we have this super connection at our disposal, we would like to moti-
vate the kinematical Hilbert space of the reduced theory studying the corresponding
super holonomies. To this end, for sake of convenience, we will not adapt the con-
ventions of Section s.5.1 and go back to the original definition of the parallel transport
map regarded as a covariant functor on the path groupoid P(X), i.e., let us replace
he|A*] = h[AT]™. Hence, according to Example 2.7.16, it follows that these
holonomies b, [A*] along edges ¢ C ¥ embedded in X (in case of super matrix Lie
groups such as, in the present situation, OSp(1|2)c) satisfy the differential equation

o h, [S;{Jr] = —aA*Dh, [3‘{+] (6.132)

with A*(7) = " A*(7) = é*(7) At (e(7)) the pullback of A* wrt.eand a € C
some complex number. For a standard holonomy corresponding to a proper parallel
transport map induced by a super connection 1-form one has « = 1. But, following [o1],
in view of the solution of the reality conditions in the quantum theory (and thus regain
the solutions of ordinary real N' = 1 supergravity) we do not fix this constant to a
specific value at this stage. Adopting the terminology of [91] to the supersymmetric
setting, we will call them generalized super holonomies. As shown in Example 2.7.17,
in a specific gauge, one can decompose the generalized super holonomy in the form
bo[A*] = b [A*] - b. (] with b, [A*] the generalized (bosonic) holonomy generated
by the bosonic part A* of the super connection 1-form, such that Eq. (6.132) turns out
to be equivalent to

0-h, [A~+] = _aAq-fbe [A~+] (6.133)
Orhe[¥] = —a(Ady i1 V) be[§] (6.34)
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where, for g € SL(2, C), the adjoint representation on the odd part of the super Lie
algebra 0sp(1|2)c is given by the fundamental representation of SL(2, C) such that

Adgy = §708g” = (%905 (6.135)

Let us consider edges 7; : [0,6] — Z, 7 +— ¥;(7) thatare parallel along integral flows
@~ generated by the basis of left-invariant vector fields (é;);. We choose 7 as the proper
time (length) as measured w.r.t. fiducial metric § on X. Hence, we can identify & = 6.
With respect to ¥;, it immediately follows from (6.133) that b; [41] = by, [A*]is given
by

b AT (7) = exp (—%TTJr) = cosh( ‘L: ) 1 + sinh ( 2‘3 ) 2iT" (6.136)

where we used that in the fundamental representation of OSp(1|2)c one has (7' )2 =
—i]l and set g := % Inserting (6.136) into (6.134) it follows that the solution of this
equation is given by a path ordered exponential yielding

v act’ B ,
h:[§1(7) = P exp (—/ dT'ac(e b Tf) ¢ 4 714 QB)
0
=1- / dr’ al] 3( mTf) 644 Qg

B
d[T ﬂ[T + 7 ’
+/ dz’ / dz” a?0; ( ) (e b T") popa ot o QpQsp
c 4

(6.137)

where the sum terminates at second order due to the homogeneity and nilpotency of
the fermionic variables. To see how a typical matrix element in (6.137) looks like, let us
compute the first integral which gives

z act’ T+ 4€0 FoT
/ de’ et 7 = 20 (ew ; —]1) T (6.138)
0

c

and thus contains terms of the form (6.136) as well as smooth functions on C vanishing
at infinity. If we first consider the purely bosonic contributions to the generalized super
holonomy A [A*], it follows that the matrix elements can be equivalently be encoded in
terms of holomorphic functions (or rather their Grassmann extensions) / on C of the
form f(z) = ¢“% with C € C. In fact, functions of this kind play a special role in group
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theory in mathematics. To this end, consider (C, +) as an additive group. A generalized
character p on (C, +) is defined as a group morphism

p: (C,+) = GL(1,C) = C* (6.139)
This implies that p(z + 2”) = p(2) p(z’) forany z, g" € C and therefore

plz+2") = p(2) = p(2)p(2") — p(2) = (p(z) = 1)p(2) (6.140)

Hence, if assume that p is differentiable and set C := p’(0) € C, it immediately follows
from (6.140)

d
@P(Z) =Cp(z) (6.141)

which, due to p(1) = ¢, has the unique solution
p(z) =¢%, CeC (6.142)

Thatis, the matrix elements of the bosonic part of the super holonomies can be described
in terms of generalized characters on C as an additive group.

Remark 6.6.1. This is, in fact, in complete analogy to LQC with real variables. There,
it turns out that the matrix elements of holonomies can be encoded in terms ordinary
characters of R regarded as an additive group, i.e. group morphisms

p: (R,+) = U(1) c GL(1,C) (6.143)

The real line (R, +) is the universal covering of U(1) which is compact. Taking the
complexification on both sides of (6.143), this immediately leads to the notion of a
generalized character on the complex plane as introduced above since U(1)c = C* which
is non-compact similarly as the complexification SL(2, C) of SU(2) is non-compact.

The whole set of generalized characters on C is probably too large. In fact, according to
(6.136), since the fiducial length g6 is a real number, it may be already sufficient to restrict
to generalized characters (6.142) labeled by real numbers C € R. This corresponds to
the requirement of a purely imaginary @ € /R. As we will see in the next section, this
choice is consistent with the reality conditions. Hence, following [91], we will set = 7.
Based on the above observations, in order to construct the algebra corresponding to
the purely bosonic degrees of freedom, we define a subalgebra Hap(C) C H (C) of the

algebra of holomorphic functions on C, called almost periodic holomorphic functions,
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generated by complex linear combinations of generalized characters of C labeled by real
numbers. That is, a general element 7" € Hap(C) will be of the form

N
T'(z) = ) aiet* (6.144)

=1

with 2; € Cand p; € R. This can be completed to a Fréchet algebra. To this end,
consider the compact exhaustion C = J,, K, of the complex plane by the compact
sets K, := {2z € C||z| < n}, n € N. The space H(C) of holomorphic functions
on C can then be given the structure of a locally convex space endowing it with the
topology of uniform convergence on the K. In fact, in this way, it turns out that
H (C) even has the structure of a uniform Fréchet algebra (see [240] and references
therein) via pointwise multiplication of holomorphic functions. As a consequence,
the closure H p(C) := Hxp(C) in H(C) inherits the structure of a uniform Fréchet
algebra. However, note that it does not define a *-algebra. Regarding the standard
construction of the state space of LQG (or LQC) via cylindrical functions, we would
like to interpret Hxp(C) in terms of (continuous) functions on a group. To this end,
as in case of Banach algebras, one can define the spectrum Spec H op(C) given by the
set of all nonzero continuous algebra homomorphisms ¢ : Hpp(C) — C. Any
f € H sp(C) canonically induces a linear map on the spectrum via

£($) = $(f), V¢ € Spec Hap(C) (6.145)

called the Gelfand transform of f. We equip Spec H xp(C) with the Gelfand topology
given by the coarsest topology such that the Gelfand transforms (6.145) are continuous.
Since ﬁAp(C) is a uniform Fréchet algebra, it follows that Spec ﬁAp(C) is a hemicom-
pact space [240]. As a consequence, the space C(Spec H p(C)) of continuous functions
on the spectrum endowed with the compact open topology also has the structure of a
uniform Fréchet algebra. Consider the map

[': Hap(C) — C(Spec H xp(C)) (6.146)

Ff
called the Gelfand transformation. It is immediate that I" defines a homomorphism of
algebras. In particular, as H ap(C) defines a uniform Fréchet algebra, it follows that

I' defines an injective toplogical algebra homomorphism identifying H zp(C) with a
closed subalgebra [(H ap(C)) of C(Spec H pp(C)).
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The spectrum naturally carries the structure of an abstract group via pointwise multipli-
cation

Spec ﬁAp(C)) X Spec ﬁAp(C) - SpecﬁAp(C) (6.147)
(p¥) > ¢y

and unit 1 : HAP(C) — C, f +— 1. Hence, in this way, we can identify ﬁAp(C)
in terms of functions on a group. This is similar to ordinary LQC with real variables.
However, it is not clear whether this also forms a topological group. This would follow
immediately if, in the definition of Hap(C), we would have restricted to the subset
of ordinary characters y : (C,+) — U(1). In this case, it follows that the spectrum
of the closure has the structure of a (compact, as U(1) compact) topological group,
the so-called Bobr-compactification of the complex plane. We leave it as a task for future
investigations to show whether this is also true for Spec H pp(C).

With these observations, let us go back to the generalized holonomies h[A*] of the
super connection. Mimicking the standard procedure of LQC, due to (6.138) as well as
(6.137), we may identify the matrix elements of the generalized holonomies as functions

n

Hpp(C) U Co(C) ® A[pa] (6.148)

with Cy(C) the space of continuous functions on C that vanish at infinity. Interestingly,
this is very similar to LQC with real variables. In fact, in [241] it has been found that
these type of functions, already in the pure bosonic sector, i.e. ¢ 4 = 0, arise if one
considers (bosonic) holonomies along more general edges which are not simply straight
edges along integral flows of the left-invariant vector fields but which may also contain
small kinks. Here, we observe that these type of functions appear in the fermionic
components of the super holonomies computed along straight edges.

In what follows, we will consider a simplified model in which, based on the considera-
tions of [242], we will drop functions which are contained in Cy(C). Of course, this
means a drastic simplification of the present model which will also break the manifest
supersymmetry of the theory. However, this is what is normally done in the literature
about canonical minisuperspace models in the framework of supergravity and, as we will
see, this model already has a lot of interesting physical implications. One may come back
to the more general model for future investigations. Hence, for the rest of this chapter,
we will take as the classical algebra of the theory the following super vector space

A = Hap(C) ® N\[gpa] (6.149)

which, in particular, has the structure of a super commutative Lie superalgebra. To
this superalgebra, we need to add the algebra generated by the canonically conjugate
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momenta both encoded in the super electric field & = (p, 7[;4/) (see Remark 6.4.1)
which, following the standard procedure in LQG (and LQC), should be implemented
as a (super) electric flux operator, i.c., in terms of derivations on A. More precisely, for

any f € A, we define
P =ipft = (O == (6.150)

As the Poisson bracket is a super derivation, it follows that these define elements of the
superalgebra Der () of super derivations on 2. Hence, as the total algebras WL of
the classical symmetry reduced theory, we take

ULBC .= A @ Der(A) (6.151)

This again has the structure of a Lie superalgebra. In fact, NALRBC defines an ideal w.r.t
the action of the super electric fluxes as defined via (6.150) which, due to the fact the
Poisson defines a super right derivations, in particular, defines a representation of Lie
superalgebras. Hence, we impose a graded Lie bracket on A€ setting

(£, X), (g, V)] = (X (g) - )Y (£), [X,Y]) (6.152)

forany (f,X),(g,Y) € NLRBC | So far, YLRAC does not define a *-algebra as the
obvious choice of an involution via complex conjugation would lead to anti holomorphic
functions and derivations which, for physical reasons, have not been included into the
definition of ALBC However, one needs to define an involution in order to classify
physical quantities in terms of self-adjoint elements. For this reason, let us go back to the
reality conditions (6.111) and (6.112). Re-expressing them in terms of the fundamental
variables, we may thus impose a *-relation on [eLQSC setting

(e;cc‘)* = e—/,cc’e/,c/efg, P* = (6.153)
¢ = z'nf'nAAf, z;A = z'¢A/nAA’ (6.154)

It is immediate to see that this in fact provides an involution on NLAC For instance,

one has
(6‘“5)** — (e—yc’)*efu/e(o — eyc’e—[u/e(oe‘u/e(o _— (6.155)

On the other hand, it follows

Zt = —Z.W;AnAA/ = ¢anAB nqq = ¢A’ (6156)

5 Here, the label “cLQSC” in ALBC refers to chiral loop quantum supercosmology
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6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

as required. Hence, we have constructed a consistent classical Lie *-superalgebra L€
of symmetry reduced chiral N' = 1 supergravity which may be regarded as the symmetry
reduced counterpart of the graded holonomy-flux algebra as constructed in context of
the full theory in Section s.5.1.

6.6.2. The kinematical Hilbert space

In order to construct the state space of the symmetry reduced model of chiral N = 1
LQSG, we need to find a representation of the graded holonomy-flux algebra 2-5¢
on a super Hilbert space. More precisely, we are looking for a faithful Lie *-superalgebra
morphism

70 QeLRSC Op(D,Sf)CLQSC) (6.157)

from ALRSC 6 2 subset of possibly unbounded operators on a common dense domain
D of a super Hilbert space B such that 7 (X*) = 75(X) " and 7 (f*) =m (]“)Jr
V(f,X) e YLQSC,

Remark 6.6.2. Requiring 7 to be faithful, in particular, means that 7 preserves the
grading. This immediately implies that bosons and fermions antomatically satisfy the
correct statistics. This is in facta direct consequence of the graded structure of ALRBC and
is rooted in the underlying supersymmetry of the theory since, classically, supersymmetry
requires commuting bosonic and anticommuting fermionic fields.

As an obvious candidate for a pre-super Hilbert space V', we take
V= Hpp(C) ® Alg] (6.158)

Following the standard procedure in LQG and LQC, we define a representation of
ALRC on this super vector space via

~ - h

Ferif)=f, Fe=mp)=ibp)=—as (6159
Py ’ ’ 4 a
7[;4 = 7[0(7[54) = l‘b{ﬂj 5 } = ?m (6160)

such that the operators corresponding to £ € ALVBC and the super electric fluxes
p and Wf act as multiplication operators and derivations, respectively. Requiring
commutativity with the involution then implies

-7 — —~
e = e_f“fe‘uk&), F =p (6.161)
o~ ~+A L~ ’
@ = Zﬂf nA4s 7@2 =g ynd (6.162)
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Vu € R. This requires a suitable choice of an inner product on 7. Hence, we see that the
proposal of [91,243] to implement the classical reality conditions in terms of a suitable
inner product follows very naturally if we interpret them as defining equations for a
consistent involution on the classical algebra.

To find such an inner product, let us go back to the full theory. As discussed in detail
in Section s.s, since the theory has underlying OSp(1]2)c gauge symmetry, a natural
choice of an inner product is given via an invariant measure on OSp(1|2)c as a super
Lie group. The induced inner product then generically consists of ordinary invariant
integral on the bosonic Lie subgroup, i.e., SL(2, C), as well as some variant of a Berezin
integral w.r.t. the odd degrees of freedom. Hence, a natural choice for an inner product

& onV is given by the super scalar product

S(flg) = / dv(2,7) /B 61480 FE 3086 ds)  (6163)

where /B denotes the standard translation-invariant Berezin integral on C°/? regarded
as purely odd super vector space. This defines a super scalar product on V” which, a
priori, is indefinite turning (7, .%’) into an indefinite inner product space. However, it
turns out that this can be completed to a Hilbert space. More precisely, according to the
general discussion in Section s.5.2, one can always find an endomorphism / : V' — V
such that.(-| /) defines a positive definite scalar product on V. This is a standard fact
about invariant measures on super Lie groups proven in [109]. The choice of such an
endomorphism is a priori completely arbitrary but may be fixed by the requirement of a
consistent implementation of the reality conditions (6.162). A typical choice of J would

be
J =exp (%95,445,4/71‘4‘4,) (6.164)

If (-|-) :== L (-|] ), it follows that via the identification V' = (Hap(C))®%, one has
(Flg) = 2 APV + 3 (1N +3 (g N+ UF1g)  (6a6s)

where, for f € V', we made the decomposition f = fo + fA'ngA/ + %]”_ ¢A/¢A, and
({+])) denotes the inner product on Hap(C), that s,

(Fhghy = / dv(c, &) FL() g1(0) (6.166)
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for some ordered multi-index 7 of length 0 < |/| < 2. As shown in [88,146], with
respect to this scalar product, one indeed has

N J A
¢A=hnAArE=l7f;nAA/ (6.167)

and thus the reality condition (6.162) is satisfied. In fact, it turns out that / is even
uniquely determined by this requirement.

Finally, we need to implement the reality conditions (6.161) for the bosonic degrees of
freedom. Since the torsion contribution to the reduced connection simply drops off,
this can be done in complete analogy to the matter-free case. Hence, following [91], we
make the following ansatz

b b kly. - .
(flg)) = lim % [ B dér [ . dér d(ér - 70);?(5) (&) (6.168)

with £, ¢ € Hap(C) where we made the decomposition ¢ = ¢g + 7¢7 with ¢z, 7 € R
the real and imaginary part of ¢, respectively. Moreover, we have added the spatial
curvature £ = 0, +1 of the FLRW spacetime in order to treat both cases simultaneously.
Note that, in contrast to [91], we do not have to consider the states with positive and
negative frequency separately. This is due our sign convention made for the internal
3-form €”7*. Of course, the prize to pay is that then ¢ does not have a straightforward
behavior under parity transformations in the purely bosonic case. We however made
this choice due to the inclusion of parity-violating fermionic matter degrees of freedom
into the theory.

Let us verify that this indeed correctly implements the reality conditions (6.161). To this
; "
end, note that for elementary states of the form / = ¢”“ and ¢ = ¢” ¢ one has

1 D D ke() AV yowi =
<<f|g>> = Dhgloo 5D [D dép [D dér 3([’]@ - 7)6(%1} )Er pi (V7)1
N 1 D D\ F Ll
— T dey ! = by (6.169)
D—co 2 _D ’

so that

(flet e g)) = 0 (10 = M09 = (S 1)) (6170)

Ve € R. By linearity, it follows that this holds on all of 7" so that this indeed provides
an implementation of (6.161). As argued in [91], this choice is in fact unique. Thus, we
have constructed a unique positive definite inner product on 7~ which we can use to
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complete V" to a Hilbert space §) := 7”. ”. This Hilbert space has the tensor product

structure
9= Si‘)grav ® g)f = SE’grav ® A [¢A’] (6.171)

and therefore naturally carries a Z;-grading where §gr,y is the Hilbert space of the purely
gravitational degrees of freedom obtained via completion of Hap(C) w.r.t. the inner
product {{-|-)). Hence, in this way, we end up with a standard super Hilbert space
(9, (-[)) (see Det. 5.5.9). According to (6.169), an orthonormal basis of §gray is given
by the states ¥, € Hgray of the form

uk

Yu(C) = ¢ Tt (6.172)
Since
- b
PYu=— 3 Vu (6.173)
it follows that these are eigenstates of the bosonic electric flux operator i)\With eigenvalue
_ bxp

—- € R. Since p factorizesas p = p ® 1 w.r.t. the tensor product structure (6.171)
of the super Hilbert space $, this implies that 2 is a densely defined unbounded and
symmetric operator on $) with spectrum contained in the reals, that is, fis self-adjoint.
Hence, we have successfully implemented all the reality conditions (6.161) and (6.162)

on the Hilbert space $.

6.6.3. Solution of the residual Gauss constraint

We finally have to implement the remaining kinematical constraint given by the residual
Gauss constraint (6.84) given by

G = (5) 4 pr (6174)

imposing invariance of the fermionic degrees of freedom under local SL(2, C) gauge
transformations. Note that, due to the hybrid ansatz, it solely depends on the fermionic
degrees of freedom as the bosonic variables have been chosen to be isotropic. For the
quantization of this constraint, we order 74 to the right so that this yields

Gi= () % pu 7 (6.175)

We then require that kinematical states are annihiliated by G;. Writing £ = f0+f4 ¢ 4+
% ¢ A/gﬁA’ for a general state / € $, it follows immediately from the definition that
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purely bosonic states £ = % € § are solutions of the constraint equation. For a fully

occupied state f = f ¢ € 9, it follows

Gif ¢ = —ibf = (z) 7 pwpre®™ = ibf PP g gy
— Z-bf‘+— TZ_(B,D') ¢B’ ¢D’ =0 (6176)

as the fermions are anticommutative while €7 is symmetric. On the other hand, for a
single fermionic state /' = f A ¢ 4, one immediately finds for 7 = 3 that 53 f 4 ¢ =0
if and only if f 4" = 0VA’. Hence, solutions to the Gauss constraint are given by
kinematical states € § of the form

F=Foe s gap! (6:177)

which is in fact in complete analogy with the results obtained via the approach of D’Eath
et al. in [88, 90]. States of the form (6.177) form the kinematical Hilbert space which we
denote by HLBC This completes the construction of the kinematical Hilbert space
HLRC of chiral loop quantum cosmology with local N’ = 1 supersymmetry.

6.6.4. The SUSY constraints and the quantum algebra

Having constructed the kinematical Hilbert space of the theory and successfully imple-
mented all the reality conditions, we finally need to determine the physical states. To this
end, note that, according to the constraint algebra (6.129), the SUSY constraints generate
the Hamiltonian constraint. This is a particular property of the canonical description
of fields theories with local supersymmetry. This means that, if the SUSY constraints
have been succesfully implemented in the quantum theory such that (6.129) holds in
the quantum theory, then these are superior to the Hamiltonian constraint in the sense
that, once they are solved, this automatically leads to the solution of the latter. More

precisely, it ¥ € HTLBC with SLAY = ¢ = §§,‘I’ VA’, B’, then
0=[SH SRV = HY (6.178)

This is an important feature in canonical quantum supergravity and the Poisson relation
(6.129) poses strong reglementations on the quantization of the constraints and therefore
may fix also some of the quantization ambiguities. In Chapter 4, the (quantum) SUSY
constraint has been investigated in the full theory of LQG with real variables. However,
the precise relation to the Hamiltonian constraint via studying the quantum algebra has
not been considered yet, due to the complexity of the resulting quantum operators. This
changes in the symmetry reduced setting where we will be able to study the quantum
algebra in detail.
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In order to implement the SUSY constraints on $XC, we have to regularize the
connection ¢ in the classical expressions, as it not represented as a well-defined operator
in the quantum theory. Following [91], as typically done in LQC, one therefore fixes
some minimal length ¢, which is of the order of the Planck length and which arises from
quantum geometry in the full theory. The connection ¢ will then be approximated via
generalized holonomies e# computed along paths of that minimal length ¢,,. According
to (6.136), the proper length 7 as measured by the generalized holonomy ¢# w.r.t. the
fiducial metric 4 is given by 7 = @2y = 2uly. The physical length as measured w.r.t. the
metric 224 is then given by 7|a| = Z‘u\/m which we require to be the minimal length
¢, from quantum geometry. Hence, this yields

A
p=—= (6.179)
|2l
where we set A, := 0,,/2. A regularization of the connection ¢ in terms of these

generalized holonomies is then given by

i= @ (elmf/\/m - g_lmf/m) (6.180)

m

To study the action of the corresponding operator in the quantum theory, we introduce
the new classical variables
- ¢ 3
8= = and V :=¢|p|? (6.181)
P

which satisfy the classical Poisson bracket

{(é; Vi= —%C (6.182)

and thus defines a canonically conjugate pair. From this, it follows
Am Kdm 1 5
(e vy = Z( ) V)= —%elmﬂ (6.183)

On HVBC et us introduce the states

kp(V)

ke (V) 3 2
V') :=¢ 20 Yurys with  w(V) = —%sign(V)|V|3 (6.184)

for I € R where Y is the orthonormal basis of 35gmv as defined via (6.172). The states

(6.184) are eigenstates of the volume operator Vi=e¢ |ﬁ|% with eigenvalue 7. Note that
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they are normalized only in case of vanishing spatial curvature. We will however use
them for both cases as the action of the holonomy operators on these states is much
simpler [91]. According to (6.183), it follows®

brl,y,
2

% (elmﬁ |V>) =V, Wy + VB Y = (V - ) MEIV)  (6a8s)

Setting v := 7, we thus obtain

810y = o= 22,,) (6.186)

For the implementation of the SUSY constraints (6.114) and (6.115) as well as the Hamil-
tonian constraint (6.113), we exploit quantization ambiguities to quantize expressions of
the form €¢ in the most symmetric way. In fact, as we will see, symmetric ordering will
lead to a correct implementation of the classical constraint algebra (6.129). Hence, using
the regularization (6.180), for the quantum analog of e, we take

Vizl

€C = m (N_ - N+) (6187)
where )
N; = 2 (eiz’”f/‘/me + eeﬂmc‘/\/m) (6.188)
Due to (6.186), the action of these operators on volume eigenstates are given by
1
N: |v) = E(sign(v) +sign(v £2)) v +24,,) (6.189)

and thus N |v) resp. Ny |v) vanishes in case v € (0, 21,,) resp. v € (=24,,,0). Next,

. . Y . . .
we have to implement the classical quantity 7¢ 5 ¢ 4 which appears, for instance, in
Eq. (6.107) relating the reduced connections ¢ and ¢ after having performed a canonical
transformation to half-densitized fermionic fields. Sticking again to symmetric ordering,
we define

—~ Z. Py -~ S~
® .= 5(7[54 ¢A'_¢A’ﬂ;):h_l¢A/ﬁ; (6190)

By definition, it follows that Ois self-adjoint, since, due to reality conditions (6.162),

T =A ! ~TA T~ 4 LS o~
(z¢,4f7r;54) = —lﬁ; @ = z¢317r¢c w28 0 400 = z¢,4/7r;4 (6.191)

¢ As common in the LQC literature, for notational simiplification, we will drop hats indicating (bosonic)
operator expressions in what follows
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Moreover, © annihilates states with one single fermionic excitation, that i is, @ng 4 =0.
In fact, O is related to the particle number operator NviaN =1 - —@ where N
counts the number of fermionic excitations in a quantum state. Using (6 190) as well as
(6.187), it follows that the quantum analog of (6.107) takes the form

N Y
€c =€ — 127 2 ¢A b4 g )
gl
- zlm (N N+) Ul (6‘192’)
where we used that | p| = (27{Gh)§ |v|% = g§ |U|§ To implement the dynamical

constraints in the quantum theory, for sake of simplicity, we want to restrict to the
special case # = 0 and L — oo, i.c., vanishing spatial curvature and cosmological
constant. This will simplify the derivation of the quantum algebra and also indicate
very clearly how the classical algebra can be maintained in the quantum theory. The
case with nonvanishing spatial curvature will be discussed in the following section in
the context of the semi-classical limit of the theory.

If we use symmetric ordering, it follows that the Hamiltonian constraint operator in the
quantum theory can be defined in the following way

—~ l 1 )’ - 4
H=-0 lz |v|4((N N )|| ((N ~No) = £
Km 1A
- |v|4(<N - N - 28 )|| 6
A ((N No) = oot ®)|v|4¢Af (6193)

The bosonic part of H is almost the same as in [o1]. However, unlike [91], we did not
change the overall power of the rescaled volume operator by redefining the lapse function
N. This is due to the fact that the Hamiltonian constraint should be related to the
SUSY constraints via a quantum analog of (6.129). Hence, redefining the Hamiltonian
constraint requires a redefinition of the SUSY constraints which may then change the
resulting quantum algebra which we would like avoid.

Note that each of the two fermionic contributions in (6.193) indeed yield half of Hy
in the classical limit # — 0 in which case the terms |v|% and |v|_% simply cancel each
other. Moreover, in the last line of (6.193), the term |v|_i on the left-hand side of the

bracket has been regularized replacing it by the equivalent expression || -3 v iforv # 0.
In this way, it follows that the Hamiltonian constraint is well-defined by acting on all
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states [v) with v # 0. In fact, suppose H acts on the state |v) =|2), then this state will
mapped to zero volume state |0) by the shift operator N_ which will subsequently be
annihilated by |v| 2. A similar kind of reasoning applies to the sector with v < 0. Hence,
the Hamiltonian has a well-defined action on the states |v) = |£2). As will become clear
in what follows, this kind of regularization of the Hamiltonian constraint operator is not
imposed artificially but turns out to be even mandatory if one requires consistency with
the classical Poisson relation (6.129). Therefore, let us implement the SUSY constraints
in the quantum theory. If we stick to symmetric ordering, this immediately gives

1

S K 2\ |t
St = |v|4 ((N ~No) - ¢ 6gle] ) o] 7S (6.194)
for the left supersymmetry constraint as well as
. X |~
Sy =57 |v|4 (N = N,) - 6—||® lv]i s (6.195)

for the right supersymmetry constraint. By definition, these operators are both well-
defined while acting on states [v) with v # 0. For the computation of the quantum
algebra among the SUSY constraints, we have to calculate various commutators of the

form [©, ﬁ:f] and [©, 514/] which are given by

(O, 71 =hzf and [0, 4] =—hd 4 (6.196)

Thus, using (6.196), we find that the trace part of the operator-valued matrix [SL4) S 1
is given by

[5“’ 541 =

422 |v|4(<N - Ny) - flvléuz(w M)—%H )|v 7y, ]
|v|4((N SN - 8|z |v|4(<N N - )||4 Y
6¢lvl 6g| vl
KAm i1 Kdm = 1~ <y
o |v|4(<N - Ny) - g|v|® |v|4[|v|4((N_—N+ 6g|v|@)'”""¢ﬂ' 74
—ZZEKHb—wM‘t((N N+)—6L||®)| |_7[AA, A]SgA/

s Ky 2\ s~y
+aglolt ((N - N - oo )|v| 16, 17
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(|v|4((N - No) - 6/1“ )Ivl ¢A’) (6.197)

=27hx (Hb - 8—|v|4 ((N - Ny) - LG)M_“@)
bx

4 mlvl%

=2ibH —

that is

(ST, SR ] = 2ihxH - - h’lcl AA'SR (6.198)
g2lol

which is prec1sely the quantum analog of (6.125). To compute the oft- dlagonal entries
of [ SLA S R] note that, by definition, the right SUSY constraint operator SR 5 creates
a fermionic state @. On the other hand, ST annihilates a fermionic state labelled
with A’. Hence, if [§ g };,] acts on a fermionic vacuum state f = £? € §LUC
this immediately gives for 4" # B’

hx

— 7 (SKFO) (6.199)

[ELA” §II;/]](‘0 — ELA,(ng(D) 0=
6g2|v|2

On the other hand, incase f = f*~¢¢ € HTLBC isa fully occupied state, it follows

[S4,S51f = S (SH g =0= %AAYSJ’;/”) (6.200)
g v

. OR /1 OLA r+— 2 . ..
since Sg(SLA T ¢¢) o« (¢p)* = 0for A’ # B’ by anticommutativity of the
fermions. Hence, to summarize, we found that the quantum algebra between the left
and right supersymmetry constraint on HTRBC takes the form

[ELA,,S\}];]: ibxH — b AC'Sg, 5’4, ?K 1%\;’3\5 (6.201)
6g: 0|7 6g%|v|?

and thus exactly reproduces the classical Poisson relation (6.129). This also justifies the
symmetric ordering chosen for the Hamiltonian constraint. This is in fact a standard
quantization scheme used in LQC [244] and follows here requiring consistency with
the SUSY constraints.

As a final step, one needs to find physical states in §“%€ annihilated by the constraint
operators in order to study the dynamics of the theory. As already explained above, to
this end, it suffices to solve the SUSY constraints as, via (6.201), this immediately leads
to a solution of the Hamiltonian constraint. However, in order to introduce a relational
clock, one cannot simply add a scalar field to the theory as usually done in LQC. This is
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6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

due to the fact that ordinary scalar fields will not contribute to the SUSY constraints
leading to inconsistent dynamics according to (6.201). Hence, instead, one needs to
consider local supersymmetric matter coupled to supergravity, i.e., scalar fields with
additional spin-} matter fields.

Remark 6.6.3. Let us briefly comment on the dynamics of the classical theory and
the suitability of fermionic fields as relational clocks (see also Remark 6.6.4 below).
It is an immediate consequence of supersymmetry that classical fermionic fields have
to be anticommuting. This may be regarded as the classical limit of the well-known
spin-statistics theorem in quantum field theory. As a result, the fermionic fields are
odd Grassmann-valued functions on phase space and thus, in particular, are nilpotent.
Recall that, generally, any Grassmann number has an ordinary real- (resp. complex-)
valued scalar coefficient at lowest order, i.e., its body. These are the numbers one has
access to in classical experiments. However, as fermionic fields are Grassman-odd, it
follows that their body has to be zero. For this reason, fermionic fields do not serve as
good “clocks” in cosmology even at the classical level.

Taking the body of the chiral supergravity action (5.102), the fermionic contributions
immediately drop oft due to nilpotency leading back to the standard chiral Palatini
action of first-order Einstein gravity with cosmological constant. Hence, classically, one
may interpret this limit in terms of the evolution of fermions on the classical bosonic
background. Nevertheless, one may consider instead bosonic quantities (or rather their
expectation values) derived from the fermionic fields. For instance, one can consider the
current Jy := z'ﬁf/ @ 4 or the associated fermionic energy density py which, in case of

a vanishing cosmological constant, is related to the current via” pr ~ J?/a°. Further
bosonic quantities, in case of a nonvanishing cosmological constant, are given by the, in
general complex, currents Jy := ied® ¢4 dp and j¢ = —leqp 71';4, 71';3/, respectively.
The classical Hamiltonian constraint may then be written as

€
2171

However, in the classical theory and without coupling it to additional locally super-

H =3 [l -kt Eo) - SR Sl
== —lpl(c* — kboc) - (e —klo) o — TRU) + 517l

symmetric matter fields, it turns out to be hard to find nontrivial solutions of this pure
graviton-gravitino model with nontrivial fermion currents which lead to a non-static
dynamical universe (this is mainly due to the constraints imposed by the SUSY and

7 Probably, the easiest way to see this is to use the Hamiltonian constraint / = 0 from which one
can read off the imaginary part ¢; = J(c) of the symmetry reduced Ashtekar connection. Since
4 = {a, H} = ¢y this yields an expression for the Hubble parameter 4/ a which, via the Friedmann
equation for a homogeneous isotropic universe, is related to the fermionic energy density via (4/ a)? =

K/Of/?) — (k)2 /442,
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6.6. Quantum theory

Hamiltonian constraints on the initial conditions). This coincides with the observations
in [88,90], where it is argued that this pure graviton-gravitino model has to be considered
quantum theoretically. Hence, for various reasons, it is desirable to study the system
coupled to further locally supersymmetric matter fields. According to the discussions
in [88], this may in fact lead to very interesting dynamics.

Remark 6.6.4. As already argued in previous remark, even in the classical theory,
fermionic fields do not serve as good relational clocks. One may then consider instead
derived bosonic quantities such as the fermionic current _Jy which in the quantum theory,
up to ordering ambiguities, is represented by the fermionic particle number operator
N=1- %é However, this operator has pure discrete spectrum consisting of the three
eigenvalues {0, 1, 2}. Hence, in the quantum theory, this quantity also does not serve
as a good relational clock. Alternatively, one may use p as a clock. The fermionic state
then becomes a function of this “gravitational” time. We will do something like this in
the discussion of the semi-classical limit in Section 6.6.5 below.

Based on the observations in Remark 6.6.3 and 6.6.4, we leave it as a task for future
investigations to study the full dynamics of the theory including local supersymmetric
matter fields as a relational clock. Nevertheless, one can already make some qualitative
statements concerning the singularity resolution. In fact, according to (6.194) and (6.195),
by acting with the quantum SUSY constraints, irrespective of the number of fermionic
excitations, the volume eigenstates |v) = |+2) are mapped to the zero volume state |0) or
|+4) by the shift operators N. The zero volume state is then subsequently annihilated
by the volume operator |U|% Moreover, states |v) with v € (0,241,,) are annihilated
by N_ whereas states |[v) with v € (=21,,,0) are mapped to zero by N;. Hence, it
follows that the vacuum state decouples from the dynamics and accordingly the cosmic
singularity is resolved in this model.

6.6.5. The semi-classical limit

So far, for the derivation of the quantum algebra (6.201), we have restricted to the special
case of a vanishing spatial curvature and vanishing cosmological constant. In order to
compare our model with other supersymmetric minisuperspace models in the literature,
we next want to consider the case of a positive spatial curvature, i.e., £ = 1, and study the
semi-classical limit of the theory. As observed already in the previous section, in order to
ensure consistency with classical Poisson algebra, it is worthwhile to choose a symmetric
ordering for the dynamical constraints. Hence, we define

ol

1 /—lm -~ 1 _
ol [N = A2) = =228 o] i
6glvl

gra _ &

5 (6.202)

327



6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

for the left supersymmetry constraint which is equivalent to (6.195) and respectively

1

-~ 3g5 1 762,
SR, = s - — m
MRl (OARD) oelo

O |v|ids —3ege|v|clod 4 (6.203)

for the right supersymmetry constraint. Since S} and S LA for A’ # B’ create resp.

annihilate fermions with opposite quantum numbers, as in the previous section, it

is immediate to see that on the subspace of gauge invariant states the commutator
= ’ - . .

(ST, S g,] simply vanishes such that

[ELAI,ER,] = %7}\;/3’7{ =0 (6.204)
6g§|u|2

on HTBC for 4" # B'as required. The trace part can then be considered as a defining
equation of the Hamiltonian constraint. We will not derive an explicit expression of
Hamiltonian constraint in what follows. Instead, we want to turn to the semi-classical
limit of the theory. To this end, note that the minimal length 4,, (resp. ¢,,) should
arise from quantum geometry of the full theory of self-dual LQG. More precisely, it
should be related to the discrete spectrum of the area operator in terms of the square
root of the minimal possible area eigenvalue. Hence, following [29, 91], this suggests

that 22, = 16V37 Gh.

In this section, we are interested in the limit in which effects from quantum geometry are
negligible, that is, in which case the quantum area spectrum becomes nearly continuous.
Hence, we consider the limit 1,, — 0.

Since the SUSY constraints are superior to the Hamiltonian constraint in canonical
quantum supergravity, it suffices to find the semi-classical solutions to (6.202) and
(6.203). Hence, let us consider a state ¥ € §€ of the form

Y= y@l)+ (D v @) e sars” (6.205)

with certain coefficients ¥ (v), ¥’ (v) € C which we assume to correspond to at least
once continuously differentiable functions ¥ : v = ¥ (v) and ¢" : v +— ¥’ (v) on
some open subset of R where we have restricted to the sector of positive volume. It

follows that ¥ is a physical state if and only if SLAY =0=5 };‘I’ VA', B'. Concerning
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6.6. Quantum theory

the right supersymmetry constraint, this yields, using the fact that © annihilates states
with one single fermionic excitation,

—~ 3 % 1 1 1 1
S5 =353 (1ollo =22, 9 ) o =~ 22,0) = lolt o + 2y (0) o + 22,)

v

_3g% |U|é€O¢(v) |v)) ® ¢4

(I + 22 10y (0 4 22,0) = [0 = 22 el 0 = 22) ) 1)

- 3gé|u|é€0¢(u)] o) ® ¢ 4 (6.206)

where we have performed an index shift in order to obtain the last line. Hence, setting

F(v) = |v| i ¥ (v), it follows that ¥ is a solution to the right SUSY constraint operator
if and only if F satisfies the difference equation

F(v+21,) - F(v-22, 6 1 1 4
(v ) (v )=—0 —— o1y (v) = =

b1
4lm 2 g§|p|§ 2 g%lz)ﬁ

F(v) (6.207)

Thus, in the limit where effects from quantum geometry are negligible, one can approxi-
mate the difference on the Lh.s. of Eq. (6.207) by a derivative yielding

F(o+2,) - F(v—=2,) é 1
0 42, 2 g%lvlé

F'(v) = llig F(v) (6.208)

which after separating variables and integrating on both sides gives

36
1

4g§

34%V,
xh

2
3

In F(v) =

o] +C (6.209)

where C is some constant fixed by the initial conditions. Hence, it follows that in the
semi-classical limit the unique solution to the right SUSY constraint, up to a constant
multiple, is given by

F<v>=exP(3fbV°) o ¢<u>:|u|iexp(3‘f:;°) (6.210)

Finally, the solution SLAY = 0 to the left SUSY constraint are obtained following the

same steps as before which yields ¥’ (v) = |v|_i . Hence, we found a general solution of
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6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

the quantum SUSY constraints in the semi-classical limit 1, — 0 in which effects from
quantum geometry are negligible take the form
34%V,

kb

Clo| exp( )+D|v|—i¢,4,¢”’ (6.211)
with some constant coefficients C, D € C. For D = 0 the exponential term is exactly
the semi-classical state as found in [88, 90] and, as will be explained in more detail below,
turns out to be a Hartle-Hawking state of the theory. In the present case, the additional
correction term |v|_% arises from the symmetric ordering chosen for the definition
of the quantum SUSY constraints and thus is simply a quantization ambiguity. In
fact, if the regularized connection in (6.203) would have been ordered to the right in
front of the volume operator |v| i , then this term would not appear as a correction to
(6.211). Moreover, in [88,90], in contrast to the present situation, the exponential term
appears in the maximally fermion occupied state. This is simply due to the fact that
there ¢ 4 has been implemented as a derivation whereas ¢ 4 and thus Wf/ is quantized
as a multiplication operator. Since this choice and the choice made here just correspond
to two different representations of the CAR *-algebra, they are simply related via a
Bogoliubov transformation.

More precisely, in [88, 90], one considers a semi-classical approximation of the Hartle-
Hawking wave function

- ’ 1
Y = /C @[gﬁ]@[ﬁ]@[ﬁ] exp (—51) (6.212)

with [ the Euclidean action and C a class of four-dimensional metrics and fermionic
matter fields satisfying certain prescribed boundary conditions on a given surface. It
is then argued, under certain assumptions on the initial conditions and provided that,
in the reduced setting, ¢ 4 is quantized as a multiplication operator, a semi-classical
approximation of (6.212) is indeed proportional to (6.211) in case D = 0.

6.7. Discussion

In this chapter we have quantized a class of symmetry reduced models of N' = 1 super-
gravity using self-dual variables. We have tried to keep the supersymmetry manifest as
far as possible, and used ideas and techniques from loop quantum gravity. In particular:

» We reduced the full theory to a homogeneous and quasi-isotropic one and showed
that the essential part of the constraint algebra in the classical theory closes.

= We calculated the elementary super holonomies in the reduced theory and showed
that they can be obtained from simple building blocks which form a superalgebra.
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= We found a representation of the graded holonomy-flux algebra of the symmetry
reduced theory on a super Hilbert space that satisfies the reality conditions. The
residual Gauss constraint can be implemented and selects a sub super Hilbert
space.

= The supersymmetry constraints and the Hamiltonian constraint can be imple-
mented. Choosing the ordering appropriately reproduces the relevant part of the
(super) Dirac algebra of the classical theory.

= We showed that the zero volume state decouples from the dynamics, hence the
classical singularity is resolved in this sense.

= In the limit of sending the area gap to zero, a part of the solution space obtained
in another approach is recovered.

We would like to highlight the following points.

As pointed out in Section 5.5, some of the apparent difficulties with quantizing the
tull chiral theory while maintaining manifest supersymmetry are the necessity of a
non-compact structure group, the complicated reality conditions, the fact that Haar
measures on quantum groups are typically not positive definite, and the complicated
constraints. However, one can take some encouragement from the fact that in the model
we considered, these problems turned out to be solvable. In particular, reality conditions
select a suitable measure and lead to a Hilbert space that is very close to the one used in
standard LQC coupled to fermions. For the bosonic sector this was already observed
in [91], but here we see that it extends to the fermions as well. Similarly, the closure of
the constraint algebra actually reduces the quantization ambiguities and thus is a helpful
criterion in the process of writing down the quantum theory.

We started with a theory with manifest supersymmetry but ended with one where parts
of it live on in the constraint algebra, but it is not manifest anymore. It is interesting to
see where this change happened. Note that (6.137) still contains (the matrix elements
of) a super holonomy, i.e., an element of the relevant supergroup and covariant under
supersymmetry transformations. For simplicity, and to obtain a result that can be
compared to standard LQC, we then considered an algebra of “building blocks” for the
matrix elements. But these lack the fine tuning between odd and even degrees of freedom
that is necessary for supersymmetry. In the future, it would be interesting to make a
different choice here, and use the methods of Section 5.5 (resp. Section s5.5.3) to quantize
the super holonomies directly on a suitable space of functions on the supergroup.

Another point that we would like to note is that both orientations of the triad are treated
on an equal footing throughout the work. In fact, factors of sign(det(¢’,)) enter in many
places and are important for the consistency of the theory in both sectors. However,
as we have discussed in Section 6.6.4, the dynamics as we have written it does not mix
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6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

the two sectors. It appears that parity does not act in a well-defined way on ¢ (resp. ¢)
and hence in the theory. We will leave it to future investigation if there is a way to make
parity a well-defined operation in these models.

We have seen that the dynamics of the system resolves the classical singularity in the
sense that the zero volume quantum state decouples. We leave it as a task for future
investigations to study the full dynamics of the theory including local supersymmetric
matter fields as a relational clock. We expect that this would lead to the appearance of
bounce cosmologies as in the non-supersymmetric models of LQC [48,24s,246].

Finally, while we have seen that some solutions to the constraints have similar behavior
to those of D’Eath et al. [88, 90] in a certain limit, there are also profound differences,
such as the nature of the states and quantum constraint equations. Moreover, we seem
to see the Hartle-Hawking state, but not the wormhole state of D’Eath et al. This shows
that the use of chiral variables and the quantization principles of LQG have interesting
implications that should be understood better in the future.
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In this final chapter, let us summarize the results obtained in this work and outline
possible future research projects.

7.1.  Summary of the results

One primary goal of this work has been to develop a mathematically rigorous approach
to classical and quantum supergravity. To achieve this, we decided to follow the “group
geometric” approach also commonly known as the Castellani-D’Auria-Fré approach to
supergravity. This seems to be the most appropriate for the context of LQG. We tried to
put this formalism on a mathematically rigorous foundation. To this end, in Chapter 2,
we gave a detailed account of supermanifold and super fiber bundle theory. The focus
has mainly been on the Rogers-DeWitt approach as this approach seems to be easier for
direct physical applications, although a concrete link to the Berezin-Kostant-Leites and
Molotkov-Sachse approach has also been established.

Within this formalism, we constructed the parallel transport map corresponding to
super connection forms defined on principal super fiber bundles. In the context of
the Berezin-Kostant-Leites approach, the parallel transport map associated to covariant
derivatives on super vector bundles has been studied in [78, 79]. As it turns out, in
the ordinary category of supermanifolds SMan, the parallel transport map, in general,
does not provide an isomorphism between the different fibers of a super fiber bundle
which is in complete contrast to the classical theory of smooth manifolds. A resolution
is given by adding a parametrization supermanifold S and hence by the enriched or
relative category SMan, s. As a result, within this category, it follows that the parallel
transport ‘@:37?7 induced by a super connection 1-form A along a path y indeed defines
an isomorphism between the fibers over the boundary of the path. In particular, it
follows that g@? transforms covariantly under change of parametrization S — S.
In fact, generically, it follows from the definition of the relative category, that physical
quantities are well-behaved under change of parametrization. This can be regarded as
the mathematical realization of the physical requirement that physics should not depend
on a particular choice of S. Interestingly, exploiting this property, one can provide a
concrete link to the description of anticommutative fermionic fields in pAQFT [76,77].
This is based on an idea first formulated by Schmitt in [73] and which, in the context of
the Molotkov-Sachse approach, has been sketched explicitly in Section 3.6.

Finally, in the case of super matrix Lie groups G, for a particular choice of a gauge,
we derived an explicit form of the parallel transport map along paths ¥ embedded in
the underlying bosonic sub supermanifold which turned out to be particularly useful
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for direct physical applications studied later in this work. It is represented by the S-
parametrized G-valued map g, [A] : S X I — G given by

G Al 1) = gy [w](s,7) - Pexp (—/0 d7 (Adg, (o)1 ¥7) (5 7) (7.1)

where @ and ¢ denote the bosonic and fermionic part of the super connection A,
respectively, such that A = w + ¥ and g, [w] corresponds to the parallel transport
map associated to @. When evaluated at the endpoints of the path y, this yields a map
oAl = g [A](1) : § - G, thatis, an S-point g, [A] € G(S) of the general-
ized supergroup G(S) which, provided that S is suitably large enough, itself carries the
structure of a Rogers-DeWitt supermanifold. In case that the paramaterization super-
manifold § is absent, ¥ becomes trivial so that (7.1) reduces to the parallel transport
map of the ordinary bosonic connection . Hence, the parametrization is necessary in
order to resolve the fermionic degrees of freedom of the theory.

Next, in Chapter 3, we turned to the application of these methods for the purpose of
a mathematically rigorous approach towards geometric supergravity. To this end, we
introduced the notion of a super Cartan geometry in analogy of the purely bosonic
theory. Again, in order to consistently resolve the fermionic degrees of freedom of the
theory, it follows that one needs to work within enriched categories. A super Cartan
geometry is mainly described in terms of a 1-form A called super Cartan connection
defined on a S-relative principal super fiber bundle # s which, e.g., for N' = 1 splits in

the form )
A 261P1+5wUM1]+%“Qa (7.2)

and thus encodes all the physical degrees freedom of the theory. We then embedded the
Castellani-D’Auria-Fré approach into the present formalism and discussed the Cartan
geometric approach to N' = 1, D = 4 Poincaré supergravity. In this approach, it follows
that when certain conditions are imposed on the physical fields, then supersymmetry
transformations can be described in terms of a particular subclass of superdiffeomor-
phisms on the base supermanifold of the bundle. In fact, using the Cartan geometric
interpretation, it follows, using the strong relation between Cartan connections and
Ehresmann connections, that SUSY transformations can also be interpreted as infinites-
imal gauge transformations on associated bundles. This observation turned out to be
important in the context of the chiral theory studied later in Chapter s as, there, it
follows that half of the supersymmetry appears as a group of gauge transformations.

We then also extended the formalism to include a nontrivial cosmological constant and
extended supersymmetry, yielding a geometric description of N-extended pure anti-de
Sitter-supergravity theories with N' = 1, 2. In this context, we also explicitly included the
possibility of the existence of a nontrivial boundary. Moreover, in view of applications
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in the framework of LQG, we also considered a finite Barbero-Immirzi parameter 4. To
this end, we adapted the techniques developed in [81-83], and asked the question: What
is the general boundary term consistent with the symmetries of the bulk action and such
that the full action (including both bulk and boundary contributions) is invariant under
SUSY transformations at the boundary. In the limit 8 — oo, this question has been
answered in [81] with the result that the boundary theory is in fact uniquely fixed by the
requirement of SUSY-invariance at the boundary. In particular, it follows that the full
action acquires a very intriguing form given by a MacDowell-Mansouri-type action in
both cases N = 1, 2. In case of a finite Barbero-Immirzi parameter, we have shown that
the Holst action of pure N' = 1, 2 AdS supergravity in the presence of boundaries can
again be written in the Yang-Mills-like form

2
S¥henl 0 == [ (P n Fe); (73)

with F'(A) the curvature of super Cartan connection A encoding the physical degrees
of freedom of the theory. However, here, (-, -) 8 denotes a Spin™ (1, 3)-invariant inner

product on Q?(M s, g) induced by a -dependent operator
P;: QO*(M;s,g) —» Q¥ (Mys,0) (7-4)

where g := 0$p(/N'|4) denotes the super Lie algebra of the super anti-de Sitter group
OSp(N4). In particular, for N' = 2, we have shown that the restriction of (7.4) to
the u(1) subalgebra of g is given by Pgly(1y = (1 + 8*) /28. As a consequence, the
boundary theory acquires an additional U(1)-contribution depending on /4 also known
as the f-term in Yang-Mills theory. Hence, in this framework, it follows that 8 literally
has the interpretation of the & parameter of the #-ambiguity of QED.

The chiral limit of the theory corresponding to the choices £ = +7 is special. In this case,
the full action remains manifestly invariant under an enlarged gauge symmetry given by
the (complex) orthosymplectic supergroup OSp(N|2)c which is a chiral subgroup of
the complexified super anti-de Sitter group. More precisely, for both N = Tand N = 2,
the chiral action can be re-written in the form

gﬁg’<ﬂ>__/ (<F(ﬂ+)Aa>+ S(ENE)| + Sy (AT (75)
M

with A* the chiral subpart of A defining a generalized super Cartan connection and &
is called the super electric field. A" is a generalization of the Ashtekar connection [20]
to the context of supergravity, and hence we called it the super Ashtekar connection. A
further sign that the chiral case is quite special came when considering the action (7.3) in
the presence of boundaries. In this case, the unique boundary action takes the form of a
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super Chern-Simons action Spay (A™) = Scs (A™) with gauge supergroup OSp(N[2)c
and complex Chern-Simons level. This extends results obtained in [63,84-86,182] by
including extended supersymmetry N = 2, real Barbero-Immirzi parameters as well as a
general discussion about boundary theory and the role of supersymmetry.

In the canonical theory, it follows that (A*, &) defines a canonically conjugate pair
building up a graded symplectic phase space. Using this fact together with the parallel
transport map as derived in Chapter 2, we then constructed a graded analog of the
well-known holonomy-flux algebra. In this context, we found that the configuration
space of generalized super connections can be identified with the limit of a projective
family A ,, which, besides finite graphs 7 embedded in the spatial Cauchy slices of the
bosonic sub supermanifold as in the classical non-supersymmetric theory, are labeled
by the additional parametrization supermanifold S. Moreover, by construction, the
projective family is well-behaved under change of parametrization. More precisely, in
case of a finite subgraph »” C y and parametrization 8’ with 8’ C S, one obtains the
following commutative diagram

-AS,;/ ﬁ'AS,y’ (7.6)

L

As,, —As

Based on these observations, we then sketched the quantization of the theory by choosing
an Ashtekar-Lewandowski-type representation of the graded holonomy-flux algebra on
a super Hilbert space. However, the final picture remained rather incomplete due to
several difficulties related to the implementation of cylindrical consistency due to the
non-compactness of the gauge group, as well as due to the indefiniteness of the inner
products induced by the Haar measures on supergroups. At least for the special case
N =1, apossible resolution seems to be given by considering the compact real form
UOSp(1]2) of OSp(1]2) as there, according to [207], a Peter-Weyl-type basis seems to
exist which has similar properties as for SU(2). Of course, ultimately, one needs to solve
reality conditions as, a priori, one is dealing with a complex theory. But, even in case of
the purely bosonic theory, this remains a rather open problem.

We also compared this manifestly supersymmetric approach with the standard quan-
tization techniques of LQG coupled to fermions using real variables [67, 80, 87]. We
therefore introduced the notion of pointed generalized super connections and derived
a graded holonomy-flux-type algebra. The resulting picture then turned out to share
many similarities with the manifest approach. In particular, in this framework, it follows
that the all the previously mentioned difficulties can be solved consistently.
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Finally, in Chapter s, we applied these methods to study a class of symmetry reduced
models of N' = 1, D = 4 supergravity. We exploited the enlarged gauge symmetry of the
chiral theory and studied super connection 1-forms that are homogeneous and isotropic
up to local super gauge transformations. We found that such an invariant connection
can be written in the form

A =T+ yué? Qy (7.7)

for some Grassmann-even and -odd numbers ¢ and ¢4, respectively. Interestingly,
the fermionic part of (7.7) precisely coincides with the ansatz of the gravitino field as
proposed by D’Eath et al. in [88-90]. In fact, we have argued that this is the most
general ansatz which is consistent with the reality conditions assuming homogeneity of
the bosonic degrees of freedom. Using the form (7.7) of the invariant super Ashtekar
connection, we then performed a symmetry reduction of the chiral theory and derived
symmetry reduced expressions of the constraints with explicit consideration of parity.
In particular, we studied the constraint algebra and showed that the essential part given
by the graded Poisson bracket between the left and right SUSY constraints indeed closes
and reproduces the Hamiltonian constraint.

We then turned to the quantization of the theory. Following the standard procedure
in loop quantum cosmology in studying the holonomies (7.1) induced by the super
Ashtekar connection (7.7), we defined a symmetry reduced variant of the graded holo-
nomy-flux algebra. Moreover, we were able to express the symmetry reduced form of the
reality conditions in terms of adjointness relations that gave the algebra the structure of a
Lie *-superalgebra. For the quantization, we then chose an Ashtekar-Lewandowski-type
representation of the algebra on a super Hilbert space. Following the ideas of [91] in the
context of the purely bosonc theory, we were able to solve the reality conditions and
obtained a unique inner product.

As a next step, we implemented the dynamical constraints in the quantum theory and, at
least for a specific subclass of the symmetry reduced models under consideration, studied
explicitly the quantum constraint algebra. It turned out that imposing conistency with
the classical Poisson relations required a symmetric ordering in the definition of the
constraint operators in accordance with [244] in the context of the non-supersymmetric
theory. This also fixed some of the quantization ambiguities. In this way, we found that
the anticommutator between the left and right SUSY constraint operators SL4 and
3 5, takes the form

- r - = h P/ R ’ b —~ g~
(524,88 = iheH - ——7C SR | o + ——7{'SK (79)
6g§|y|§ 6g§|z}|§

which, in particular, exactly reproduces the classical Poisson relations.
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In Section 6.6.5, we considered the semi-classical limit of the theory assuming that
physical implications of the quantum area gap can be neglected. In this limit, we found
that a subclass of physical states ¥,y annihilated by the dynamical constraints are of
the form

2
34 V‘)) (7.9)

\Pphys ~ exp ( 7

where the right-hand side exactly corresponds to a state as derived by D’Eath et al.
[88—90] using standard variables and standard minisuperspace techniques. This state is
a stationary action-type approximation of the symmetry reduced Hartle-Hawking state.
However, another physical state with different initial conditions (“wormhole state”)
obtained there turns out to be not part of the physical Hilbert space in the present
formalism. This shows that chiral variables have interesting properties that should be
explored further in the future.

Finally, in the context of the full theory, we derived a compact expression of the clas-
sical SUSY constraint in Chapter 4 using real Ashtekar-Barbero variables. There, an
implementation of this constraint in the quantum theory has been discussed proposing
a specific regularization scheme. In particular, explicit expressions for its action on
spin network states have been derived. These results provide a starting point for the
computation of the commutator of the SUSY constraint in the full theory and to check
whether a similar strong relation between the SUSY constraint and Hamilton operator
such as (7.8) can also be obtained in the full theory. In particular, it would be interesting
to see whether this also fixes some of the quantization ambiguities.

=.2. Future research

As outlined already in the previous chapters, there exist many interesting and important
research directions in which the present work could be developed further in the near
future. In the following, let us give a short summary of, in our opinion, some of the
most important points:

Black hole entropy: In Chapter s, adapting the techniques developed in [81-83], the
most general form of the boundary action compatible with local supersymmetry
for N-extended AdS supergravity in D = 4 with N' = 1, 2 has been derived
including a finite Barbero-Immirzi parameter. In the chiral limit, this boundary
action turns out to take the form of a super Chern-Simons action. The quan-
tization of the bulk theory adapting tools from standard LQG has also been
sketched in Section s.5.3. As a next step, it would be very interesting to use these
results to study the quantum theory of supersymmetric (charged) black holes
in the framework of LQG, in particular, for the special case N' = 2 (see also
Section 5.6.2). Supersymmetric black holes play a very prominent role in super-
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string theory. There, a derivation of the black hole entropy consistent with the
Bekenstein-Hawking area law for a specific class of supersymmetric (charged)
extremal black holes has been achieved [6-13].

It would be interesting to see whether similar results can be obtained in the
framework of LQG and, in particular, whether these results could be related to
the superstring computations. Perhaps, the recent results of [166] may help to
provide such a link. There, for specific string-brane configurations, it has been
observed that the boundary theory also carries the structure of a super Chern-
Simons theory. In any case, all these observations suggest that this requires a
deeper understanding of super Chern-Simons theories and its relation to both
LQG and superstring theory.

Hilbert space of chiral LQSG: Related to the previous point, it would be highly desir-
able to complete the construction of the super Hilbert space of chiral LQSG as
outlined in Section 5.5.3. In this context, one needs to find a way to consistently
implement cylindrical consistency and to deal with the additional difficulties aris-
ing in the supersymmetric context related to the indefiniteness of Haar measures
on super Lie groups. Furthermore, one has to solve reality conditions which, even
in the purely bosonic self-dual theory, is an open problem. As we have seen in
Chapter 6 in the context of symmetry reduced models, there, the problem of
indefiniteness and reality conditions can indeed be solved consistently implying
that the measure has to be distributional. Perhaps, these results can be extended
to the full theory. In fact, recent developments in the framework of the full bosnic
self-dual theory [215] also suggest that the reality conditions (at least some subclass
thereof) can be solved by choosing the measure appropriately. Moreover, the mea-
sure induces a gauge fixing to the compact subgroup SU(2) of SL(2, C). Maybe,
these results can be generalized to the supersymmetric setting. In particular, it
would be interesting to see whether this leads to a gauge fixing to the unitary
orthosymplectic group UOSp(N|2) which, at least for the special case N = 1,
has very similar properties as its corresponding bosonic counterpart SU(2).

SUGRA with N > 2: It would be interesting to extend the present considerations to
include supergravity theories in the presence of boundaries with higher super-
symmetry N > 3in D = 4 and even higher spacetime dimensions. In particular,
it would be interesting to see whether also there the boundary theory turns out to
be fixed uniquely if one imposes SUSY-invariance at the boundary and whether
the resulting action of the full theory again acquires an intriguing geometrical
form similarly as for the cases N' = 1, 2. Moreover, one needs to check whether
the fascinating structures observed in the chiral theory also carry over to higher

N.
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7. Conclusions and outlook

In this context, the special case of maximal N' = 8, D = 4 SUGR A would be of
particular interest due to interesting results suggesting its perturbative finiteness
[247-250]. One may note that N' = 8 SUGR A can be derived via Kaluza-Klein
compactification from the unique maximal N' = 1, D = 11 SUGRA which,
as discovered in [129, 130], can be described geometrically in terms of a higher
super Cartan geometry. On the other hand, Ashtekar-Barbero-type variables for
arbitrary higher spacetime dimensions have been derived in [67-69]. Hence, it
would be interesting to see whether these variables, at least in a certain limit, can
be described geometrically similarly as in the context of chiral SUGRA in D = 4
for N =1,2.

Hamiltonian dynamics: In the recent papers [251,252], a new approach has been pro-

posed to study the Hamiltonian dynamics in canonical general relativity expressed
in terms of self-dual variables by introducing the notion of a generalized gange
covariant Lie derivative. Expressed in this way, the Hamiltonian dynamics acquire
an intriguing simple structure which may considerably simplify the correspond-
ing dynamics in the quantum theory. Moreover, the authors suggest that this
approach may provide a concrete link to the double copy pattern that relates
structures in gravitational theory to that of Yang-Mills with double the number

of fields.

In fact, double copy ideas have intensively been studied in the context of perturba-
tive quantum supergravity, in particular, in the context of maximal N' = 8, D = 4
SUGRA [247-250], in order to simplify calculations of scattering amplitudes.
Thus, it would be very interesting to know whether this alternative description
of the Hamiltonian dynamics can also be extended to (chiral) supergravity. Pre-
liminary calculations suggest that this may indeed be possible. This might help to
implement double copy ideas to non-perturbative quantum supergravity.

Dynamics in LQSC: In Chapter 6, the classical and quantum theory of a class of
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symmetry reduced models of chiral N' = 1, D = 4 SUGRA has been studied.
Moreover, it has been argued in Section 6.6.4, due to symmetric ordering of the
dynamical constraints, that the big bang singularity is resolved in the quantum
theory. However, it was not possible to develop an approximate spacetime picture
confirming a bouncing geometry, since the Rarita-Schwinger field, as being a
fermionic field, cannot be used as a relational clock. Since, in the context of locally
supersymmetric field theory, the dynamics is governed by the SUSY constraint(s),
this thus requires the inclusion of further locally supersymmetric matter fields to
the theory which may then serve as relational clocks. It would be interesting to
understand how locally supersymmetric matter enters to the constraints and how,
also in this framework, the strong relationship between the dynamical constraints
as observed in Section 6.6.4 can be maintained in the quantum theory.



7.2. Future research

Finally, it would be interesting to see how these results can be compared to
the results of standard homogeneous isotropic models in (self-dual) LQC. Ina
sense, local supersymmetry simplifies the conisderations as the SUSY constraint(s)
already correspond to a kind of a “square root” of the Hamiltonian constraint
operator.

etc. etc.
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Appendix

A.  Super linear algebra

This section, following [97,106], is meant to fix some terminology of important aspects
in super linear algebra used in the main text. Therefore, we will exclusively focus on
Zj grading as these are commonly used in physics in the context of (supersymmetric)
field theories modeling commuting bosonic and anticommuting fermionic fields. For
more details on this fascinating subject, the interested reader may be referred to the great
references of [97,106].

Definition A.x. A Zy-graded or simply super vector space V" is a vector space over a field
K (K = R or C) of the form
V="Weh (Au)

together withamap | - | : U,ez, Vi — Z3 called parity map such that [v] := i Vv € 1.
Elements in V; are called homogeneous with parity i € Z,. If the dimension of V and
Vi are given by dim V) = m and dim V] = 7, respectively, then the dimension of V" is

denoted by dim V" = m|n.

A morphism ¢ : V' — IV between super vector spaces is a linear map between
vector spaces preserving the parity, i.e., ¢(V;) € W; for i € Z;. The set of such super
vector space morphisms is denoted by Hom(V, W). In case V' = W, we also write
End(V') := Hom(V, V).

Remark A.2. Instead of just looking at parity preserving morphisms between super
vector spaces V' and I/, one can also consider all possible linear maps between the
underlying vector spaces. This yields the internal Hom(V, 177) which has the structure
of a super vector space with the even and odd part Hom(V", W) and Hom(V, W),
given by the parity preserving and parity reversing linear maps between V" and W/,
respectively. Hence, Hom(V", W), coincides with Hom(V", W) in definition A.1.

Example A.3. A trivial but also very important example of a super vector space is given
by R”!" .= R™ @ R” (or, more generally K”1” for K € {R,C}) called superspace
of dimension mz|x. In fact, any super vector space V' = V @ V; is isomorphic to a
m+n be abasis of V" such that {¢;} =1, isa
basis of Vy and {e g } =t 18 2 basis of V7. Such a basis is called a homogeneous basis

superspace. If dim V" = m|n, let {¢;},—1

.....

of V. Then, V' is isomorphic, as a super vector space, to the superspace R”!".
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Definition A.4. A superalgebra A is a super vector space A = Ay ® A; together with
abilinear map m : 4 X A — A such that

m(Az;A]) = AzAj gAl“*’j Vl',jEZZ (AZ)
The superalgebra A is called super commutative it
a-b= (-1l . 4 (A3)

for all homogeneous a4, b € 4.

Definition A.s. Let 4 be a superalgebra. A super left A-module V is a super vector
space which, in addition, has the structure of a left 4-module such that

A; - (Vj c (V,q_j Vi, ] € Zy (A.4)

A morphism ¢ : V — W between super left 4-modules is a map between the
underlying super vector spaces such that ¢(z-v) = a¢(v) Va € 4,v € V. Analogously,
one defines a super right A-modules and morphisms between them.

Remark A.6. Given super left 4-module V one can also turn it into a super right
A-module setting
voa= (-1l .y (Ass)

for homogeneous 2 € 4 and v € V. For this reason, in the following, we will simply
say super 4-module if we do not want to specify whether it should be regarded as a
super left or right A-module. If V and ‘W are super commutative super 4-modules,

their tensor product V ® ‘W is defined viewing V as a left and ‘W as a right 4-module.

Given a super left 4-modules V and W we denote the set of left 4-module morphisms
¢:V — WbyHom(V, W) (and similarly Homg (V, W) for right A-module
morphisms). As in remark A.2, instead of just looking at parity preserving morphisms,
one can also consider all possible linear maps ¢ : V — W between the underlying
vector spaces satisfying

$la-v)=ap(v), YveV,aecd (A.6)

This again yields an internal Hom ; (V, ‘W) which has the structure of a super right
A-module with Hom, (V, W) = Hom(V, W). In case V = W, we also write
End, (V) := Hom, (V,V) with Endz (V) = End, (V), and likewise for right
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linear morphisms End » (V) := Hom 5 (V, V). As usual, we denote the evaluation of
amorphism ¢ € Hom, (V, W) atv € V by

(v]¢) € W (A7)

This has the advantage that one does not need to care about signs due to super commu-
tativity after right multiplication with elements 2z € A4, ie., (v|¢a) = (v|¢) aVa € 4,
v € V. Finally, let us define via ¢ ¢ ¥ € Hom  (V, W’) the composition of two left
linear morphisms ¢ : Hom , (V, W) and ¢ : Hom, (W, W’) given by

(wlpov) = ({vlp)l¥), VYoeV (A.8)

which, by definition, is well-behaved under right multiplication.

Definition A.7. For A a superalgebra, a super A-Lie module (or super Lie algebra or
Lie superalgebra if A = K) is a super A-module L with a bilinear map m = [-,-] :
L x L — L,also called the (Lie) bracket, that is graded skew-symmetric, i.e.,

[2,b] = —(-1)1IPI[b, 4] (A.9)
and satisfies the graded Jacobi identity
(4, [b,c]] + (=)D 5 [, a]] + (-1 D[ (2,61 =0 (Auo)

for all homogeneous 4, b, ¢ € L.

Example A.8. (i) If J/ is a vector space (finite- or infinite-dimensional), then the
exterior algebra A\ V' := @:’:0 /\k V" also called Grassmann algebra naturally
defines a superalgebra with even and odd part given by (A 7)o := P, NV
and (A V)1 = Py AR respectively. The Grassmann algebra is super

commutative, associative and unital with unit1 e R = A° V.

(i) For A a superalgebra, the tensor product 4 77 = 4 @ KV defines a super
A-module with grading (A" = Ay @ K" & Ay ® K” and (A7), =
Ay @K ® A; @ K.

Definition A.9. A super 4-module V is called free if it contains a homogeneous basis
{ei}i=1,..,m+n for some m,n € Ny such that any element v € V can be written in
the form v = 4’e; with coefficients 2’ € AVi =1,...,m + n. Equivalently, V is a
free super super 4-module iff it is isomorphic to A" = 4 @ K™ 1n this case, the
dimension of V will be denoted by dim V' = m|x.
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Definition A.xo. (i) Let V be a free super 4-module. Two homogeneous bases
{e:}iand {f;}; of V are called equivalent if they are related to each other by

scalar coeficients, i.e., there exists real or complex numbers ozz.] € K such that

e; = al‘j f; Vi.j (for a proof that this indeed defines an equivalence relation
see [97]).

(ii) A free super 4-module V together with a distinguished equivalence class [ (e¢;);]
of homogeneous bases of V is called a super A-vector space. A representative
(e;) € [(e;);] will be called a real resp. complex homogeneous basis of V. A
morphism ¢ : V — W between super A4-vector spaces is a morphism of super
A-modules such that ¢ maps the equivalence class of bases of “V to the real resp.
complex vector space spanned by the equivalence class of bases of ‘W.

Remark A.ax. If V is a super A-vector space with equivalence class [{e;};] of homo-
geneous bases of V, then V = 4 ® I with I/ the super vector space spanned by {¢;};
which, in particular, is independent on the choice of a representative of that equivalence
class. Hence, the choice of such an equivalence class yields a well-defined super vector
space V" also called the body of V. On the other hand, if V is a free super 4-module,
one can always choose a homogeneous basis {¢;}; of V such that V becomes a super
A-vector space w.r.t. the equivalence class [{¢;};]. However, such a choice may not be
canonical and various different bases exist which are not related by scalar coefficients.

B.  Categories, sheaves and locally ringed spaces

This chapter is meant to summarize some important aspects of category theory and
algebraic geometry as this abstract language turns out to play a crucial role in properly
defining the notion of a supermanifold and related concepts. Moreover, we will use this
opportunity in order to fix some terminology used in the main part of this work. To this
end, we will mainly follow Reference [253]. We start with the definition of the notion of
a category.

Definition B.x. A category C consists of a collection Ob(C) of objects and, for each
pair of objects X, Y € Ob(C), of aset Hom(X,Y) = Hom¢ (X, Y) of morphisms

(orarrows) f : X — Y together with a law of composition

Hom(Y, Z) x Hom(X,Y) — Hom(X, Z)
(&f)—gef (B.1)

for any objects X, Y, Z € Ob(C) such that the following conditions are satisfied:

(i) The composition of morphisms is associative.
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(i) Forall X € Ob(C) there is a (unique) morphism idy € Hom(X, X) called
identity-morphism such that for any morphisms f € Hom(X,Y) and ¢ €
Hom(Y, X),f oidy =f andidy o g = g.

Incase X =Y, amorphism f : X — Y isalso called an endomorphism. If f : X — Y
is invertible, i.c., there exists g : ¥ — X with g o f =idy and f o ¢ = idy, then f is

also called an Zsomorphism.

Definition B.2. A category C is called small if the collection of objects Ob(C) forms
a set. A small category C is called a groupoid if any morphism / : X — Y between
objects X, Y € Ob(C) is invertible.

In the following, let us give some important examples of categories. In fact, we will
encounter various further examples in the main text.

Example B.3. (i) the category Set of sezs with sets X as objects and maps f : X —
Y between sets as morphisms

(ii) the category Grp of groups with groups G as objects and group morphisms ¢ :
G — H as morphisms

(iii) the category Ring of 7zngs with rings R as objects and ring morphisms ¢ : R —
R’ as morphisms

(iv) the category Mod g of R-modules with R a ring with R-modules A as objects
and R-module morphisms ¢ : M — Ny as morphisms

(v) the category Top of toplogical spaces with topological spaces X as objects and
continuous maps I : X — Y between topological spaces as morphisms

(vi) the category Man of real smooth manifolds with smooth manifolds A1 as objects
and smooth maps f : M — N between manifolds as morphisms.

(vii) Real smooth vector bundles (£, M) (or £ — M) together with smooth vector
bundle morphisms (¢, /) : (E, M) — (F, N),ie.,smoothmaps¢ : £ — F
andf : M — N such that the diagram

¢

E——=F
MLN

is commutative and ¢ : Ex — Fr(y), ¥ € M, is linear on each fiber, form the
category Vectg of real smooth vector bundles.
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(viii) the category Cat of all small categories with small categories as objects and functors
(see Definition B.4 below) between small categories as morphisms.

(ix) To any category C, one can assign the corresponding opposite category C°P con-
sisting of the same collection of objects Ob(C°P) = Ob(C) and, for each objects
X,Y € Ob(C®P), the set of morphisms Homger (X, Y) := Home (Y, X).

Definition B.4. Let C, D be categories. A covariant functor F : C — D from
the category C to the category D is a map that assigns to each object X € Ob(C) an
object F(X) € Ob(D) and to each morphism /" € Hom¢ (X, Y) in C a morphism
F(f) € Homgp (F(X), F(Y)) such that

(i) F(idy) =idF(x) forall X € C.
(ii) F(f o g)=F(f)o F(g) for composable morphisms g and / in C.

A contravariant functor F : C — D between the category C to the category D is
defined as a covariant functor F : C°P? — D on the opposite category C°P. Hence,
roughly speaking, a contravariant functor reverses the arrows.

Definition B.s. A (covariant) functor F¥ : C — D between categories C and D is
called

(i) faithful resp. full if, for any pair of objects X, Y € Ob(C), the induced map
F : Home(X,Y) — Homgp (F(X), F(Y)), f — F(f) (B.2)
between the sets Home (X, Y') and Homgp (F(X), F(Y)) is injective resp. sur-

jective.

(ii) fully faithful if it is both full and faithful, i.e., the induced map (B.2) is bijective.

Definition B.6. Let F : C —» Dand G : C — D be two (covariant) functors
between categories C and D. A functor morphism or natural transformation y : F —
G between F and G is a collection of morphisms 7y : F(X) — G(X), X € Ob(C),
such that for any morphism /€ Hom¢ (X, Y), the following diagram commutes

F) 2 Fer

| |
G(f)

G(X) L% G(7)

If the morphisms 7y : F(X) — G(X) are isomorphisms for any object X € C, then
y + F — Giscalled a natural isomorphism. In this case, the functors I and G are called
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equivalent or isomorphic. Finally, two categories C and D are called equivalent if there
exists functors /' : C — D and G : D — C such that the functors Go F: C — C
and F o G : D — D are equivalent to the identity functorsidc : C — C and
idp : D — D, respectively. In this case, the functor F (or G) is called an equivalence
of categories.

Example B.7. (i) The base functorb : Vectg — Man is the full functor from
the category of real smooth vector bundles to the category of smooth manifolds
which on objects is defined via b(E, M) := M and on morphisms (4,f) :
(E, M) — (F,N)isgiven by b(¢, ) := f. Thus, the base functor associates
to each vector bundle the corresponding base and to vector bundle morphism
the underlying morphism between the bases.

(i) The énclusion functori: Man — Vecty is the faithful functor from the category
of real smooth manifolds to the category of real smooth vector bundles which
associates to a smooth manifold A the trivial vector bundle i(A1) = ({0}, M)
and to a smooth function / : M — N the vector bundle morphism i(f) :=
(0,/) : ({0}, M) — ({0}, N). Since b 0 i = idman, the base functor defines
a (left) inverse to the inclusion functor and yields an equivalence of categories
restricting Vectg to the subcategory Vectry C Vectr of real smooth vector
bundles of rank 0.

We next turn towards the definition of a (pre)sheaf which can be regarded as a general-
ization of the concept of function spaces on topological spaces which are consistent in
a certain sense under restriction to open subsets. This is crucial since supermanifolds
in the algebraic sense are defined using sheaves of supercommuting rings, which play
the role of algebras of (coordinate) functions on supermanifolds. To this end, for a
topological space X, let us define the category Opn(X) of open subsets of X with objects
Ob(Opn(X)) given by the collection of open subsets U C X and, for each pair of
open subsets U, V' C X, the set of morphisms Hom(U, V") defined as

LUVY fUCY
Hom(U,V):z{{’U’V =V HUC

it ¢V

where, forU C V, 1y : U < V denotes the standard inclusion of U in V.

Definition B.8. Let X be a topological space. A presheaf F of sets (resp. rings, groups,
modules, super rings, ...) on a topological space X is defined as a contravariant functor

¥ : Opn(X) —» C (B.3)
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from the category Opn(X) of open subsets of X to the category C with C given by
the category Set of sets (resp. Ring, Grp, Mod, super rings SRing,...). Hence, the
presheaf 7 assigns to any open subset U € X an object #(U) in the category C and
to any two open subsets U,V € X with U C V' amorphism pyy = F(tyy) :
F (V) = F(U) called restriction morphism such that

(i) pou=id: F(U) —» F(U) VYU C X open

(ii) puyoprw = puw : F(W) — F(U) foropensubsets U € V' C W of
X.

The presheaf ¥ is called a sheaf' if, in addition, for any open subset U C X and open
covering {Up, } ,ex of U the following conditions are satisfied

(i) iff, g € F(U)and py,uf = pu,ugVea € X, thenf = g.

(i) if {f2}zex is a family of sections f, € F(U,), 2 € Y, with /anﬁU{g,Uﬂt =
PU.NUU £ Va,[ € Y, then there exists a (unique) f € F(U) such that
,OU%,U][ = f;‘ VaeX.

In other words, a preasheaf ¥ is a sheaf, if the following short sequence

FU) - [ |73 [ FUNU) (B.4)

aeY a,a’ €Y

is exact for any open subset U C X where the arrows are defined by the obvious
restriction morphisms.

Definition B.9. A morphism ¢ between (pre)sheaves # and G on a topological space
X is a natural transformation ¢ : ¥ — G between the respective covariant functors
F : Opn(X)°? —» Cand G : Opn(X)°? — C with C given by the category Set
(resp. Ring, Grp, Modr, SRing,...). Thatis, a morphism of (pre)sheaves is a collection
of morphisms ¢y : F(U) — G(U) (in the respective category), U € X open, such
that VU C V' C X open, the following diagram commutes

F) e g(1)

pl Lp
du

F(U) —=G(U)

Moreover, ¢ is called an Zsomorbism if it defines a natural isomorphism between the
respective functors, ie., ¢y : F(U) — G(U) is an isomorphism VU C X open.
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Remark B.ro. A typical example of a preasheaf is the presheaf C3 of smooth real-
valued functions on a smooth manifold A1 (or even just continuous functions on
topological spaces) which assign an open subset U € M to the set C*(U) of smooth
functions on U and to two open subsets U € V' € M the restriction map C* (V') 3
f = flu € C*(U). Since smoothness is a local property, it follows that C3; is also
a sheaf. In the main text, in particular in Chapter 2, we will also encounter further
examples of sheaves in the super category. There, the sheaf property (B.4) turns out to
be important as, for instance, it allows to extend statements proven locally to the whole
supermanifold. There exist various (trivial) examples showing that not every presheaf is
in fact a sheaf. However, it turns out that every presheaf can be extended uniquely to a
sheaf using a procedure called sheafification (see [253] for more details).

Next, let us introduce the notion of a inductive and projective family. These play a
crucial role in the context of preasheaves and sheaves and also in the framework of loop
quantum (super)gravity for the definition of the (graded) holonomy-flux algebra to be
discussed in Section s.s.1. Let (1, <) be a partially ordered index set equipped with a
binary relation < called preorder satistying reflexivity and transitivity, thatis, 7 < 7
Vi e land

i<jandj<k=1i<k, fori,j kel (B.s)

Moreover, we require / to be nonempty and directed in the sense that
Vi,jel3dkel:i<kandj<k (B.6)
Definition B.xx. Let (X;);c; be a family of objects in the category Set (resp. Ring,

Grp, Mody, SRing,...) together with

(1) morphisms (in the respective category) p;; : X; — X forany 7, j € I with
{ < jsatisfying p,; = id as well as the compatibility condition

Pk © pij = pirs> Vi, .k € I withi < j < k (B.7)

then (Xy, pij)i,jer is called an inductive system.

(ii) morphisms (in the respective category) p;; : X; — X, forany7, ;j € I with
{ < jsatisfying p;; = id as well as the compatibility condition

pif °© pjk = Pik> Vl',j,/C € [ with7 < ] <k (BS)

then (X;, p;;)i,jer is called a projective system.

Definition B.rz. (i) Let (X, plj) ijel be an inductive system of objects in the
category C. An object X € Ob(C) together with morphisms p; : X; — X
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is called an znductive limit of (X;, pl‘j) ijel if it satisfies the following universal
property: Forany ¥ € Ob(C) and morphisms g; : X; — Y, 7 € I, such that
gi = gj © p; Vi < j there exists an unique morphism g : X — Y such that
gi=gop;Viel.

It follows from the universal property that an inductive limit, if it exists, will be
unique and will be often denoted by

X = lim X; (B.9)

(ii) Let (Xy, pij)i,jer be a projective system objects in the category C. An object
X € Ob(C) together with morphisms f; : X — X; is called a projective limit of
(Xi, pij)s, jer if it satisfies the following universal property: Forany ¥ € Ob(C)
and morphisms g; : ¥ — X;,7 € [,suchthat g; = p;; 0 g; Vi < j there
exists an unique morphism g : ¥ — X such that g; = p; o g Vi € I.

It follows from the universal property that a projective limit, if it exists, will be
unique and will be often denoted by

X =:lim X; (B.10)

Proposition B.13. Let (X, pij);, jer be an inductive (vesp. a projective) system, then
the inductive (vesp. projective) limit exists in the category Set, Ring, Grp, Mod g and
SRing.

Sketch of proof. In case (X;, p;;)i, jer defines an inductive system of objects in the cate-
gory Set, one may define the inductive limit X as the quotient

X =lim X, := UX,-/N (B.m)

iel

where two elements x; € X; and x; € X; with 7, j € I are defined as equivalent, in
symbol x; ~ x, iff there exists £ € [ with 7, j < k such that p;;(x;) = pjx(x;).
Using the compatibility condition of the morphisms p;; : X; — X/ itis easy to see that
this indeed defines an equivalence relation. For any 7 € 7, the canonical embeddings
X; — [l; X} induce maps p; : X; — X. It then follows X together with the
morphisms p; indeed satisfies the properties of an inductive limit in the category Set.

In case that the X; carry additional structure, i.c., they define objects in the category
Ring, Grp, Mod r or SRing one can apply a standard procedure and use the morphisms
p:j and f; to extend these additional structures to the inductive limit X as defined via
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(B.11) so that X in fact defines an object in the respective category (see [253] for more

details).

The projective case is simpler. More precisely, if (X, p,-j)f, jel defines a projective
system, one may define the corresponding projective limit X as the subset

X = l(an Xi=A{(x:); € l_[XzI py(x]) =x; Vi < ]} (B.12)

el

of the cartesian product []; X;. Restricting the canonical projections [, X — X, to
the subset X, thisinduces maps p; : X — X; which, in particular, automatically define
morphisms in the respective category. By construction, it then follows immediately
that X together with the morphisms p; indeed satisfies the properties of a projective
limit. O

Let X be a topological space and x € X an arbitrary but fixed point. Then, x induces a
partially ordered set (U, <) of open subsets U € X withx € U whereU <V :&
U CVforU,V openin X. Given a presheaf # on a topological space X and x € X,
this yields an inductive system (F (U), puv = pr,v)u,veu, - With these preparations,
we can define the following.

Definition B.14. Let F be a presheaf on a topological space X and x € X an arbitrary
but fixed point. The stalk ¥ of F at x is defined as the inductive limit

F = lim 7(U) (B.13)
of the inductive system (¥ (U), pur)u,veu,-
Proposition B.s. Let ¢ : F — G be a morphism of presheaves on a topological space

X. Then, for any x € X, there exists a unigue morphism ¢, : Fr — Gy between the
stalks at x such that the following diagram commautes

F(U) G (U) (Bg)
L
7 G.

Proof. Composing ¢y with the morphism py : G(U) — Gy forany U C X open,
it follows that the resulting morphisms ¥/ := py o ¢y : F(U) — Gy satisty

Yuopru=puoeuopuy =puopuyody =puopruody = prodr =y
(B.15)
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forany U C V" open. Hence, by universal property of the inductive limit, there exists
an unique morphism ¢, : ¥, — G, such that

pu o du =0 pu (B.16)

Vx € U C X open, that is, such that the diagram (B.14) commutes. |

Before, we finally turn towards the introduction of the notion of alocally ringed space, let
us prove an important proposition stating that a morphism between sheaves is uniquely
characterizeed in terms of its restrictions on a certain base of open subsets of the under-
lying topological space. This allows to extend local data to a global object. An example
of such a base of open subsets that we will typically be interested in are local coordinate
neighborhoods on a (super)manifold. The result of the following proposition has been
implicitly used in the arguments of the Reference [95]. In the following, we want to
state it more formally and give an explicit proof.

Definition B.16. Let X be a topological space. A base of the topology of X is a system
B of open subsets of X such that

HU,VeB=>UNVeB

(ii) every open subset of X is a union of subsets from B.

Lemma B.xy. Let F and G be sheaves of sets (vesp. rings, modules, super rings,...) on a
topological space X and B be a base of the topology of X . Furthermore, let K = { Ky }ues
be collection of morphisms Ky : F(U) — G(U) commuting with restrictions, i.e.
puv Ky = Kypuy forU,V € BwithU C V. Then, K can uniquely be extended to
a sheaf morphism K : F — Gsuchthat Ky = Ky forallU € B.

Proof. Itis clear, by the uniqueness property of sheaves, that such an extension of K,
provided it exists, will be unique. Hence, we only have to prove its existence. To this
end, let W C X be an arbitrary open subset. Then, there exists a collection {U, } v
qf open subsets in B such that W = |J,,cy U,. For f € F (W), consider the sections
fa = KUZ,,PUa,Wf € G(U,), a € U,. Since

falv.nus = punusu. Ko, pu.wf = Kuau, pucvsw

= pUnUU KU, pusw f = f:/zluamq; (B.17)

Va, B € Y, by the sheaf property of G, there exists a unique f € G(W) with f lu, = fﬂﬁ
Va € Y. We define the map Kjr : F (W) — G(W) by setting Ky (f) = f
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Vi e F(W).LetU € BwithU c W, then {U N U,} 4e is an open covering of U.

Since

evnu.w K (f) = pueu,u, pu.v K (F) = pucu,u,f
= punu,u, Ku, (pu, w i) = Kunu, (punu,wi)
= punu, uKu (puwf) (B.18)

Va € Y, this shows, by the uniqueness property of sheaves, that PU,WKW (f) =
Ku(puw ) Vf € F(W). In particular, this implies that the definition of Ky is
independent on the choice of a covering {U,, } of 1. Finally, the uniqueness property
also yields that Ky defines a morphism in the respective category.

It follows that the collection K := { Ky }y indexed by open subsets W C X defines
a morphism of sheaves K : F — G.Indeed, let V, W C X be open subsets with
V' W and {U,}xex be an open covering of V" with U, € B Va € Y. Then, for
f € F (W), we compute

eu,v pvw Kw (F) = pu,w Kw (F) = Ku, pu,wf = puvKv(prwf) (Bao)

forany & € Y, so that, again by the uniqueness property, we can conclude py i Ky ()
=Ky ( pv v ) proving that Kisa morphism of sheaves. Hence K defines the unique
extension of K. O

Definition B.x8. A locally ringed space is a pair (X, Ox) consisting of a topological
space X aswell asasheaf Oy of ringson X called structure sheaf such that, forany x € X,
the stalk Oy, is a local ring. A morphism /= (|f|,fﬁ) : (X,0x) — (Y,0y) of
locally ringed spaces consists of a continuous map |f| : X — Y between topological
spaces as well as a morphism £ : Oy — £.Oyx of sheaves of rings on Y called pullback

such that, Vx € X, the induced morphism fxﬁ : Oy)f( x) — Ox x (see Def. B.14 and

Prop B.1s) is local, i.e., f;ﬁ maps the maximal ideal of Oy f(y) to the maximal ideal of
Ox . Here, f.Oy is a sheaf over X called the pushforward of Oy w.r.t. [ given by
£:0y(U) :=Oy(f1(U)),U € X open.

Example B.19. A smooth manifold A naturally induces alocally ringed space (M, C3)
with €55 the sheaf of smooth functions on M. For each x € M, the maximal ideal
of the stalk C; is given by /; := {[f]x € Corl f(x)=0,f € [f]«}. Moreover,
choosing a local coordinate neighborhood U of M, it follows that (U, Or|v) is iso-
morphic to the locally ringed space (V, Cg, |17) where V' € R” is an open subset of R”.

' anideal m of aring R is called maximal if R /m is a field. A ring is called /oca/ if it has a unique maximal

ideal.
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In fact, it follows that smooth manifolds are uniquely characterized by this property.
More precisely, it follows that there exists an equivalence of categories between Man
and the category of locally ringed spaces that are locally isomorphic to the flat model
(V, Cgoly) with V' € R” open (see, e.g., [117, 253] for more details).

C. Rogers-DeWitt supermanifolds

In this section, we want to briefly review the basic definition of H* supermanifolds in
the Rogers-DeWitt approach in order to fix some terminology used in the main text.
We mostly follow the standard References [94, 96, 97].

Definition C.1. Let A be a Grassmann algebra (finite- or infinite-dimensional) and
A= AT X AT be the superdomain of dimension (2, n) for any m, n € Ny. On
A" one has the body map given by the projection €,,,, : A”™” — R™ onto the real
subspace R”. We equip A" with the De Witt-topology defined as the coarsest topology
such that the body map is continuous. For any open subset U C R, a function
f 1€, ,(U) = Adis called (H®-)smooth, if there exists ordinary real smooth functions
f1 € C*(U) for any ordered multi-index 7 of length 0 < || < 7, such that

F(x,8) = ) G(f)(x)6 (C)
I

Y(x,0) € e;,},l( U) where G(f7) is the so-called Grassmann analytic continuation or
simply Grassmann extension of f defined as

G()() 1= D, Fidsfilemn())s(x)) (C2)
i

where the sum runs over all unordered multi-indices /> $(x) 1= X — €p,,(x) is the soul
of x € AJ" and
i Py
o = — =

= L~ 7 ik
0x ox) - ox,

(C3)

for some multi-index I = (71, .. ., 7).

Remark C.2. Following [97], a topological space M together with a C*-smooth
structure will be called a proto C* manifold. That is, a proto C* manifold is just an
ordinary smooth manifold without requiring the underlying topological space to be
Hausdorff and second countable.

Definition C.3. Let M be a topological space. A local superchart on M is defined as
a pair (U, ¢y) that consists of an open subset U C M as well as a homeomorphism
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¢u : U — ¢y(U) € A”" onto an open subset of the superdomain A™”. A
(m, n)-dimensional H *-smooth atlas on M is a family {(Uy, ¢») } »ex of supercharts
bu 2 Uy = ¢, (Uy) € A", 2 € X, of M such that U,y U, = M and the
supercharts are smoothly compatible. That s, for any @, 8 € A with U, N Us # 0, the
transition functz'om

gpoda: $a(UpNUp) — (U, N Up) (C.4)

are of class . An atlas on M is called maximal if any superchart (U, ¢r7) of M that
is smoothly compatible with any superchart of the given atlas is already contained in
this atlas.

Definition C.4. A proto H supermanifold of dimension (2, n) is a topological space
M furnished with a (7, #)-dimensional H *°-smooth atlas.

Definition C.s. Let M and N be proto A supermanifolds. A continuous map
f+ M — Nis called smooth if, for any local charts (U, ¢r7) and (V, ¥7) of M and
N, respectively, with U N f~1(V) # 0, the map

yrofogy s guUNfH(V) — yw(V) (Cs)

is of class H.

Definition C.6. Let M be a proto H* supermanifold of dimension dim M = (m, n)
with maximal atlas {(Va, V) } Jer- On M, one can introduce an equivalence relation
~ via (for a proof that this indeed defines an equivalence relation see [96])

p~q:= dac I: pqE€ V, and fm,n(wa(lb)) = €m,n(¢a(q)) (C.6)

It immediately follows from the definition that, for any p € M, there exists a unique
element B(p) € M such that p ~ B(p) and f(p) € RVf € H* (M) which we call
its body representative. This yields a proper subset

B(M) ={pe M|f(p) eR,Vf e H*(M)} (C7)

called the body of M, together with a surjective map B : M — B(M), p — B(p)
called the body map where elements p € B(M) will also be referred to as body points
of M. For any smooth map /' : M — N between H* supermanifolds, one has
f(B(M)) < B(N). Hence, the body map can be extended to morphisms setting
B(f) = fIBm) : B(M) — B(N). This yields a functor B : SMan s, 7~ — Set
which we call the body functor.
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Lemma C.7. Let p € M be a point on a proto H® supermanifold M and ~ the
equivalence relation as in definition C.6. Then, any other point ¢ € M in the equivalence
class of p will be contained in an arbitrary small open neighborbood U of p in M.

Proof. Let p € U be an open neighborhood of p in M and (V,, ¥,) a coordinate
neighborhood of p with g € V,. Then, p € U NV, and ¢,,(U N V) is open in
A" 50 that, by the definition of the DeWitt-topology, there is a U ¢ R” open with
%zx(U NV, = 6;1{”(0) ASP ~ g we have €m,n(¢a(q)) = Em,n(woc(p)) € Uand
thus ¥,(gq) € ¥,(U NV,). But, since ¥, is injective this impliesg € U NV, and
therefore g € U. O

Lemma C.8. Let M be a proto H™ supermanifold and U,V C M open subsets in M.
Then U CV © B(U) C B(V) and thus, in particular, U =V < B(U) = B(V).
Moreover, any open subset U C M is of the form U = B~ (W) with W open in B(M)
(in fact W = B(U) ) which can be thought of as a generalization of the De Witt-topology.

Proof. Itis clear that U C V implies B(U) C B(V"). Hence, suppose that B(U) C
B(V). Then x € U yields B(x) € B(U) C B(V) such that there exists y € } with
x ~ y. But, by Lemma C.7, this implies x € }" and thus indeed U C V. Next, for any
open subset U € M define U’ := B™(B(U)) yielding U € U’. Forany x € V one
has B(x) € B(V) = B(U). Thus, similarly as above, this implies x € U as U is open
and therefore U’ C U, thatis, U’ = U. m]

Definition C.9. A H*® supermanifold M is a proto * supermanifold whose body
B(M), equipped with the trace toplogy, defines a second countable Hausdorft topolog-
ical space and thus defines an ordinary C*°-smooth manifold. Supermanifolds together
with smooth maps between them form a category SMan gy« called the category of H*
supermanifolds.

Proposition C.ro. Letf: M — N be a smooth map between H™ supermanifolds M
and N. Then, [ is surjective if and only if B(f) : B(M) — B(N) is surjective.

Proof. Let M := B(N) and N := B(N). If f is surjective, it follows B(f) (M) =
B(/(M)) = B(N) = N and thus B(f) is surjective. Conversely, if B(f') be surjective,
it follows from N = B(f) (M) = B(f(M)) that B(f(M)) is open and thus (M)
is open in N implying B(£ (M)) = B(f)(M) = N = B(N). Hence, by Lemma C.8,
this yields /' (M) = N, thatis, f is surjective. O

Example C.ii. ToanyvectorbundleV — E — M withdim V' = nanddim M = m,
it follows that one can associate a > supermanifold S(E, M) of dimension (2, 7)
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called the split supermanifold* Moreover, any morphism (¢, f) : (E, M) — (F,N)
between two vector bundles induces a morphism 8(¢,f) : S(E, M) — S(F,N)

between the corresponding split supermanifolds. Hence, this yields a functor
S : Vectrg — SMang~ (C.8)

between the category of real vector bundles to the category of H* supermanifolds
which we call the split functor. It is a general result due to Batchelor [107] that any
algebro-geometric supermanfold is isomorphic to a split supermanifold, i.c., (C.8) is
surjective on objects. However, the split functor is zot full, i.e., not every morphism
f: S(E, M) — S(F, N) between split manifolds arises from a morphism between
the respective vector bundles (£, M), (F, N) € Ob(Vectr). Hence, the structure of
morphisms between supermanifolds in general turns out to be much richer than for
ordinary vector bundles.

A smooth manifold M can be identified with the trivial vector bundle M x {0} — M,
i.e., one has the inclusion functori: Man — Vectg such thati(M) = (M x {0}, M)
and i(f) = (0, /) forany M € Ob(Man) and morphisms / € Hompmn (M, N).
Combined with the split functor, this yields another functor

S=So0i: Man —» SMang- (C.9)

mapping an ordinary smooth manifold M to a supermanifold $( A1) with trivial odd
dimensions, also called a bosonic supermanifold. Conversely, given a bosonic super-
manifold M, it follows that the corresponding split supermanifold M, := S(B(M)) is
isomorphic to M. Hence, in this way, one obtains an equivalence of categories between
bosonic supermanifolds and ordinary C*-smooth manifolds.

D. Irreducible representations of OSp(N|2)

In the following, let us summarize some main results about finite-dimensional irreducible
representations of the orthosymplectic Lie supergroups OSp(N|2) for N = 1, 2 which
play a role in the chiral description of the pure AdS supergravity theories in D = 4 to be
discussed in Chapter s. To this end, we will discuss the representation theory on the level
of corresponding Lie superlalgebras 0sp(/N|2). The respective representations of the
underlying supergroup can be obtained using the super Harish-Chandra isomorphism

(2.45).

*  the explicit construction turns out to be a bit technical via Grassmann extensions of transition func-

tions (see e.g. [97]). Alternatively, the split supermanifold may be obtained via the functor of points
prescription applied to the algebro-geometric supermanifold (A4, T(AE™)) (see Example 2.2.4 for

more details).
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D.a.  Representation theory of OSp(1]2)

The finite-dimensional irreducible representations of psp(1|2) are discussed in various
references. Here, we follow [207, 216, 254, 255]. Starting from the general definition
(5-82)-(5.85) of 0s5p(N|2) for N' = 1 generated by (77", Q 4) with 7 € {1,2,3} and
A € {+}, one can arrive at the Cartan-Weyl basis (3, /., V+) of the superalgebra setting

L
Joe=—i(T{ £4T}"), Jh=i1, V.= ig(i -1)0Q. (D.)
It then follows from (5.82)-(5.85) that the commutators among the even generators satisfy

B Jel =) [ ]1=2k (D.2)

which are the standard commutation relations of s1(2, C). For the remaining commuta-
tors, it follows

Vel =250 UnVal = Ve, [o?il =0 (D3)
VeVl =z )y V] =2 (D.4)

The quadratic Casimir operator C; which commutes with all the generators of the super
Lie algebra 0sp(1|2) takes the form [216]

Cy=J2+V V. - V.V, (Dss)

Wherej = (1, /0, k)T with J; = %(]Jr + J)and f = %(]Jr — J2). A finite-

dimensional representation of 0$p(1|2) is a grading preserving superalgebra morphism
7 : 0sp(1]2) — gl(V) (D.6)

with gl(V') = End(V") the super Lie algebra of endomorphisms on a finite-dimensional
super vector space V' = Vj @ V;. By restriction, each irreducible representation of
05P(1|2) induces a corresponding (reducible) representation of the bosonic subalgebra.
Let (p/, W7) with j € %NO denote the finite-dimensional irreducible representations
of s1(2, C). Set

VAl = T1AW/ (D.7)

where IT : SVec — SVec denotes the parity functor on the category SVec of (real) super
vector spaces which, on objects R™” ¢ Ob(SVec), is defined as IT(R™!?) .= R*I™.
Thus, V*/ for X = 0 resp. A = 1 s regarded as a purely even resp. odd super vector

360



D. Irreducible representations of OSp(N|2)

space. It follows that finite-dimensional irreducible representations of psp(1|2) are of
the form (77, V' 7) with
Vi=yhs gyl (D.8)

for j € $No. A homogeneous basis of the super vector space is provided by states of the
form

|j)j)m))'>a |j)j_1)m))~+l> (D9)

with 72 the magnetic quantum number which, in the former case, takes values m €
{-/,—j+1,..., j}and,in thelatter, m € {—j +1,—7 +2,..., j — 1}. Hence, in
particular, it follows that (77, /) has (ungraded) dimension 4 7 + 1. The irreducible
representations are classified by the quadratic Casimir operator (D.s) which, when
restricted to the representation spaces (D.8), is given by

C=7j (j + %) 1 (D.10)

The equivalence classes of irreducible representations of the form (#/, /) with ; €
%NO form a subcategory which is closed under tensor product. In order to derive the
Clesch-Gordan decomposition of the tensor product of two such representations, one
needs to define a suitable inner product on the representation space w.r.t. which the
operators representing the generators J; are self-adjoint and two inequivalent irreps are
orthogonal. For the Lie superalgebra 0sp(1]2), it follows that this requires a generaliza-
tion of the adjointness relation in a suitable sense leading to the notion of a so-called
grade star representation [216,254]. It follows that, given two irreducible representations
(771, V) and (72, V' 72), the tensor product representation decomposes as [216]

Jitjz2
7/t @ w/t = @ 7l (D.1x)
J=lia- 1l
which almost looks like as in the bosonic theory with the crucial difference that the direct
sum runs over all positive balf-integers j satistying the inequality | /1 — /2| < 7 < i+ fo.

D.2. Representation theory of OSp(2|2)

In this section, we follow the References [216, 217] to discuss the finite irreducible
representations of 0sp(22). Again, starting from the general definition (5.82)-(s.85) of
05p(N2) for the special case N' = 2 generated by (777, T2, Q") with7 € {1,2,3},
A € {+} and » = 1, 2, one can arrive at the Cartan-Weyl basis (5, /., Q, V) of the
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superalgebra setting Q := 7 L7 '? also called charge together with (s.211) for the bosonic
generators and

VL

2

(7 -1)(QL - zQi) and V72 := iﬂ(z' -1)(Q1 + zQi) (D.12)

V;:Zi 2

for the fermionic generators, respectively. The nontrivial commutation relations among
the even generators are again given by (D.2) corresponding to the Lie algebra s1(2, C) ®C
which is the complexification of the corresponding compact real form su(2) ® u(1).
The mixed commutators between even and odd generators are given by

UVl =25V2, U VZ1=VE LV1=0  (Dx)
QVi1 =32 1QVE) =V (Du1s)

and, finally, for the odd generators, one obtains
VoV =W vil=0, VL,V =k [VLVE=-5+Q (D)

These are precisely the graded commutation relations as stated for instance in [216, 217].
The superalgebra admits two Casimir operators which commute with all the generators
given by the quadratic and cubic Casimir operators C; and Cs, respectively. For instance,
the quadratic Casimir operator takes the form [216]

> 1
Co=JP = Q4 SVE - VIVE - VIV -2V ) (D.16)

where, again,j = (J1, Jo J5)T. Let (,o(f’q), W (79)) with JjE€ %No and g € Cdenote
the finite-dimensional irreducible representations of the bosonic subalgebra s1(2, C) &
C. The finite-dimensional representations of 0$p(2]2) are more complicated than
for the non-extended case 0sp(12). In fact, the representation fall into two different
categories called typical and atypical representations [216]. The typical representations
(w9, 17D labeled by isospin j € %NO and charge quantum number g € C with
J # *q areirreducible and classified by the Casimir operators C; and C3. They consist
of four s1(2, C) & C multiplets such that, up to parity (see discussion below),

VoD = D g -3 g W U-51+1) g g (-19) (D.17)

with homogeneous basis given by states of the form

1 1 1 1
|q,j,77l>, |q_53_]'_5>m>7 |q+57j_§7m>) |q)_]'_l’m> (DIS)
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Consequently, the typical representation has (ungraded) dimension 8 ;. When applied
on the states (D.18), the Casimir operators respectively take the form C; = j — 4% and

G =q(* - 4.

On the other hand, in case of the atypical representations (7 VU 4VE ) corresponding
to the special cases j = +g, it follows that the Casimir operators simply vanish and
therefore cannot be used for their classification. The atypical representations fall into
two subcategories, the so-called atypical irreducible and the atypical not fully reducible
ones. While the latter are more complicated to describe (see e.g. [216, 217] for more
details) the former type of representations split into two $1(2, C) & C multiplets of the

form
v UED = G g W U-ptjxy) (D.19)

and therefore have ungraded dimension 4 7 + 1.

Finally, let us discuss the Clebsch-Gordan decomposition of the tensor product of
two irreducible representations of 0sp(2|2). To this end, one needs to introduce an
inner product on the representations spaces such that the operators corresponding to
the bosonic generators /7" and Q) are self-adjoint and w.r.t. which two inequivalent
irreducible representations are orthogonal. In contrast to the N = 1-case, it turns out
that, provided that 4 € Rand +4 > ;, one can in fact introduce a positive definite
inner product satisfying all the above mentioned requirements such that the irreducible
representation become so-called star representations [216, 254). In particular, due to this
property, it follows that the Clebsch-Gordan decomposition does not depend on the
choice of parity of the subspaces appearing in the definition (D.17).

Moreover, it follows that equivalence classes of typical representations (7r(j 4) 1 ’7))
with g4 € Rand £4 > j form of subcategory which is closed under tensor product.
More precisely, given two such irreducible typical representations 7 (141 and 7 2g2) |
the corresponding tensor product representations decomposes as [216]

Jit)2 jl+j2_%
) g Unds) = @ 2 Ua+e) g @ 7 Usa+gz+d)
J=ljijel J=li=fel+
itk oA
® @ 7 Ud+a=3) g @ 7 0*%)  (D.o)

J=lia-jal+3 J=l=jel+1

where the index ; in the direct sums runs in integer steps.
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E.  Space forms

In this section, following closely [232], we review the basic definition of the so-called
space forms which can be thought of as the simplest possible models of semi-Riemannian
manifolds. As will be demonstrated frequently in the main text, these type of manifolds
turn out to have very important applications in general relativity and cosmology.

Before we start with the main definition, we first need to introduce the sectional curvature
K of a semi-Riemannian manifold.

Definition E.r. Let (M, ¢) be a semi-Riemannian manifold. A two-dimensional
subspace IT C T, M of the tangent space at p € M is called non-degenerate if gl is
non-degenerate. This is equivalent to saying that, for any bases (v, w) of Il, one has
Q(v,w) # 0 where

Q(v,w) = (v,v) (w, w) — (v, w)2 (E.x)

LetIT C Y}M be a two-dimensional non-degenerate subspace of the tangent space at
p € M. For any bases (v, w) of I, the sectional curvature K (I1) of IT is defined as

(R(v,w)v, w)
Q(v,w)

where R € T'((T*M)?) @ T (T M) denotes the Riemann curvature tensor correspond-
ing to the Levi-Civita connection V = VLC of (M, g).

K(II) = (E.2)

Proof. We have to prove that (E.2) is independent of the choice of a basis (v, w) of the
non-degenerate tangent plane I1. To this end, let (v, w) and (x, ) be two bases of IT.
Then, there exists an invertible matrix 4 of rank two such that (v, w) = (x, y) 4 T By
the symmetry properties of Q as well as the Riemann curvature tensor, it is immediate
to see that (R(v,w)v,w) = det A% (R(x, y)x, y) and Q(v,w) = det A*Q(x, y).

Hence, this proves the independence of (E.2) on the choice of a basis. O

Definition E.2. A semi-Riemannian manifold (A, g) is called of constant curvature,
if the sectional curvature is constant, i.e., there exists some real number C € R such that

K (IT) = C for any non-degenerate tangent plane IT.

Proposition E.3. For a semi-Riemannian manifold (M, g) of constant curvature
C € R, the Riemann curvature tensor R takes the form

RX,Y)Z=C(Z,X)Y -(Z,Y)X) (E.3)

for any vector fields X, Y , Z € T'(TM).
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E. Space forms

Proof. At p € M, consider the map
F: (T,M)* - R, (v,w,,y) = C({v,x) (y,w) = (v, y) (x, w)) (E.4)

such that F (v, w, v, w) = CQ(v, w). Hence, for a non-degenerate tangent plane gener-
ated by the basis (v, w), this yields

_ F(Ui Z’UQU’w)

K(I)=C = o000

implying A(v, w, v, w) = 0 where A : (719]1/1)4 — Ris defined as A(v, w, x, y) =
(R(v,w)x, y) — F(v,w,x, y). Using an approximation argument, it is easy to see
that this implies A (v, w, v, w) = 0 for any, i.c., not necessarily linearly independent

(E.s)

tangent vectors v, w € II. Then, via polarization, that is, considering the quantity
A(v,w + x,0,w + x) = 0 and exploiting the symmetry properties induced by the
Riemann curvature tensor and Q, one concludes that A = 0 yielding (E.3). O

Definition E.4. A semi-Riemannian manifold is called complete if any maximal geodesic
is defined on the entire real line. A complete connected semi-Riemannian manifold of
constant curvature is called a space form.

Theorem E.s. A simply connected space form is uniquely determined, up to isometry, by
the triple (d, v, C) consisting of its dimension, index and curvature, respectively.

Sketch of Proof. One direction is immediate. So suppose that A4 and N are two semi-
Riemannian manifolds with same dimension, index and curvature. This immediately
implies that for arbitrary but fixed points p € M and g € N, there exists a linear isom-
etry L : TyM — T, N satisfying (L(v), L(w)) = (v, w) Yo,w € T, M. Moreover,
since the curvature is constant, it follows in particular that L preserves the curvature.
By Theorem 8.17 in [232], there thus exists a unique semi-Riemannian covering map?
¢ : M — N suchthat D,¢ = L. Since both M and N are supposed to simply

connected, this implies that ¢ is in fact an isometry. ]

Definition E.6 (Hyperquadrics). Ford > 2and0 < » < d —1let (R4+1, 77) be the
d + 1-dimensional Minkowski spacetime with Minkowski metric # with index ». Then

(i) the d-dimensional (psendo) sphere S%(r) of radius » > 0 in R%+! is defined as

$4(r) = {x € RI | y(x, x) = r*} (E.6)

3 Asmoothmap ¢ : M — N between smooth manifolds M and N is called a covering map if it is
surjective and for any p € M there exists a connected open neighborhood p € U C N such that ¢
defines a diffeomorphism onto U on each connected component of ¢_1 ).
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(ii) the d-dimensional (pseudo) hyperbolic space He () of radius » > 0in R4t is
defined as
HY(r) = {x € R4| y(x, ) = =%} (E7)

Corollary E.7 (Hopf). Up to isometry, the complete simply connected d-dimensional
Riemannian manifolds of constant curvature C are given by

the sphere Sd(r) ifC=1/r
the Euclidean space R4 fC=0
the hyperbolic space H”Z(r) ifC=-1/ r?

Corollary E.8. Up to isometry, the complete simply connected d-dimensional Lorentzian
spacetime manifolds of constant curvature C are given by

the de Sitter space dS,; = S‘f(r) ifC=1/r*andd >3
Minkowsk: space R4 fC=0
the universal anti-de Sitter space A&’sd = ﬁf(r) ifC=-1/ r?

where M denotes the universal covering of a smooth semi-Riemannain manifold M.

F. Proof of Proposition 2.6.10

Proof. Since, forany p € P, the map @, : Lie(G) — ¥}, C TP is an isomorphism
of free super A-modules and A € Q' (P, §)o is linear, condition (i) in Definition 2.5.19
of a connection 1-form and condition (i) of Proposition 2.6.10 are equivalent. In the
following, we can thus restrict on condition (ii).

Hence, suppose A € Q' (P, ), is a connection 1-form on P. Then, by restriction
on body points, the first part of condition (ii) is immediate, i.c., CD(’;.?{ = Ad 1oA
forall g € B(G). For the second part, let us extend A to a smooth Lie(G)-valued
1-form A € Q' (Lie(G)o X P, g) on Lie(G)o X P by setting ((Z, Z")|A) := (Z'|A)
Y(Z,2") € T(Lie(G)g X P) = Lie(G) X TP. Moreover, we consider the extended
G-right action ®: (Lie(G)o X P) X G — Lie(G)o X P on Lie(G)o X P defined via
d((Y, ), 2) = (Y, D(p, g)). Itis then immediate to see that that condition (ii) in

Definition 2.s5.19 of a connection 1-form is equivalent to

Dy A=Adg10A, VYgeg (F.1)
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E. Proof of Proposition 2.6.10

Consider the even smooth vector field Z € I'(T'(Lie(G)o X P)) given by

Z(X,p) = (0y, D(p,0)P(05, 1)) = (OY,E)

V(Y, p) € Lie(G)o X P parametrizing the (not necessarily /7 *°-smooth) fundamental
vector fields on P. The flow ¢Z : Ny X (Lie(G)o X P) — Lie(G)o X P of Z is of

the form ¢tZ(Y, p) =Y, D(p, et = Ci)fty(Y, p). Using ( [97], Prop. V.7.27), (F.1)
then yields

_ 0 5. . =
(O, Zp)ILz Aw ) = 5| (O, ZI($F) Ay )
t=0

9 ;

=5, (Or ZpI( @y A)r )
t=0

0 .

=5, Ader (0, Zp)| Ay, )

t=0

= —ady (Z,|A,) (F.2)

V(X, p) € Lie(G)o X P and smooth homogeneous Z € I'(7'P). On the other hand,

one has

0y, Z)ILz Ay p) = Zi,p (0, 2)|A) = Z, (0, D)l v, py | Ay )
=Y, (Z|A) = (1 Z, (0, D)) v p) W A(r,py) (F.3)

forany (Y, p) € Lie(@)oxP.IfY = X € gy C Lie(@)o,itfollows [Z, (0, Z2)] (x,p) =
[X, Z] , yielding

X, (Z|AY = ([X, Z] )\ Ap) = (Z | L5 A,) (F.4)

and thus (Z )| L3 A,) = (Z,| —adx o Ap) Vp € P. Since this holds for any smooth
homogeneous vector field Z, this implies

L3A=-ady o A, for X € gy (F.s)

On the other hand, if Y = 7.X with X € g; and 7 € Ay, it follows [2, (0,2)] Y.p) =
T [;X;, Z] p such that

7Xy (ZIA) = T ([ X, Z] | A,) = (1)1 (Z,| L3 A,) (F.6)
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and therefore 7 (Z,| Ly A,) = —(-1)%lzady (Zp|Ap) = 7(Zp| —adx 0 Ay)
Vp € P. Since this holds for any 7 € A4, we thus have

LyA=-ady oA, forX € g; (F.7)

Conversely, suppose A € Q! (P, g), satisfies the conditions (i) and (ii) of the above
Proposition. For any smooth homogeneous vector field Z € I'(T'P) consider the
Lie(G)-valued H*-smooth functions Fz, Gz € H*®(G X P) ® Lie(G) defined as

Fz(g, p) =(Zpl @y Ap) = (D(p,0)P(Zp,0,)|Ap.¢) (E.8)

as well as
G2(g, p) = Adg 1 (Z,\A) (E3)
Y(g, p) € G X P.Since H(G X P) = H*(G)®, H*(P), it follows from Lemma

2.6.8 that A defines a connection 1-form on % if and only if we can show

(X ©1)Fz(g, p) = (X ©1)Gz(g; p) (F.10)

Vp € P and body points g € B(G) as well as X € U(g) and smooth homogeneous
vector fields Z € I'(T'P). For X =1 € U(g), this is an immediate consequence of the
first part of condition (ii).

Using the extension A € Q' (Lie(G)o X P, Lie(G)) of A on Lie(G)y X P as well as
the G-rightaction @ : (Lie(G)o X P) X G — Lie(G)o X P as defined above, we may
extend Fz and Gz to H *-smooth functions Fz and Gz on Lie(G)o X G X P by setting

F2(Y, £ 0) = (D (01, Z)) | Ay p,)) = (D1 g P01, 2 0 A 1, )
= <D(P,g)q)(Zp’ Og)lﬂp'g> = Fz(g, P) (F.xx)

as well as
Go(Y, g, p) = Adgr ((Or, Z)| Ay ) = Ad 1 (Z,lA,) = G2(g, p) (Fz)

V(Y, g,p) € Lie(G)o X G X P. Let ZL e I(T (Lie(G)y X @)) be the H®-smooth
homogeneous vector field on Lie(G)o X G defined as Z(LY o= 0y, D(4,e) (04, ¥2))

V(Y, g) € Lie(G)o X G. Similarly as above, using the explicit form of the flow ¢L of
ZL, this yields

((¢f)*FZ)(Y3 g> [7) = <ci)ge’Y* (OYa Zp)l‘?‘[(i)(Y’P,g.etY)>
= <CD£’Y* © (Dg*(OYJ Zp)l‘?’{(j)(Y,p,g'c‘tY)>
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E. Proof of Proposition 2.6.10

_ VAL R I
S (Or P ZIGT Az ) ()
Taking the derivative, we thus conclude
(Y ®1)Fz( )—i (07, B Z)($7)" A )
202 = 5| O e 28 Az
=0y, P Z YL A v p.g)) (F.i4)

Following exactly the same steps as above, one then concludes

X 1) Fz(g,p) = (-1)1411X1 (PgiZp|L5Ap. ), VYhomogeneous X € g
(F.15)

For Gz we proceed similarly and compute

((¢£)*GZ)(Y’ g ]7) = Ad(ge’Y)’l <(OY, Zp)lﬁ(Y,pﬂ
= Ad, o (Adg (Z)\A,)) = Ador (G2(g, p))  (Fa6)

which yields

0
(Y ® ]I)FZ(g3 P) = E Ade“y(GZ(ga P)) = —adYGZ(g) P)

=0
= —ady (Adg-1 (Z|A,)) (F.r7)
Hence, it follows for VX € g
(X ®@1)Gz(g, p) = —adx (Adg-1 (Zp|Ay)) (F.18)

Vg e @G, peP.If ¢ € B(G) isabody point this, together with condition (ii), yields

(X ® 1)Gz(g, p) = —adx (Ad g1 (Z,Ap)) = —adx (P Zp| Ay )
= ()P D e Z )| Ly Ay ) = (X @ 1) E2(g, p)  (Fa9)

proving (F.10) in case X € g. Next, letY o X € U(g) with homogeneous Y, X € g.

In a similar way as above, one finds
(YoX®1)Er(g, p) = (-1)/AEFYD (D 7| L Lo A, ) (F.20)
as well as

(Yo X ®1)Gz(g, p) = (Y ® 1)ady o Gz(g, p)
= (-1 W ady (Y  1)G2z(g, p))
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= (- Wady o ady o G2 (g, p)
= (-1)"Wady o ady (Ad -1 (Z,|A,)) (F.21)

Vg € G, p € P. Taking the Lie derivative on both sides of the second part of condition
(ii), one obtains

LyLsA= —Ly(—ad)( oA) =—(-1) |X||Y|adX oLy A = (-1) |X||Y|adX oady oA
(F.22)
Hence, inserting (F.21) in (F.22) and restricting on body points ¢ € B(G), it follows

(Y o X ® 1)Gz(g, p) = (=)W ady 0 ady (Ad -1 (Z,|4,))
= (-)"Wady 0 ady (@4 Z,|Ay.))
= (- (@, Z, | (- W ad y 0 ady © A,.,))
= () AT (@ 2| Ly Ly Ay )
=Y oX®1)Iz(g p) (F.23)
proving (F.1o)incase Y o X € U(g) withY, X € g. Thus, by induction, one concludes

that (F.10) holds for any X € U (g) and hence A indeed defines a connection 1-form
onP. |
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Barbero-Immirzi parameter, page 133

anti-de Sitter radius and corresponding cosmological constant,
page 34

fiducial length/volume, page 297

Grassmann algebra, Grassmann algebra of dimension N €
Ny, page 356

complexified Grassmann algebra, page 29
superdomain of dimension (72, 7), page 356
superspace of dimension 72|z with K = R, C, page 343

=: A ® K" for A a superalgebra and K a field (K = R, C),
page 345
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path on a (S-relative) supermanifold, page 75
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subgroupoid generated by a finite graph y, page 227
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[B-dependent operator on spin* (1, 3) , page 191
pullback metric on Cauchy slice %, page 138

fiducial metric on fiducial Cauchy slice X of a FLRW model,
page 282

category of algebro-geometric supermanifolds (generic objects

denoted by M, N, ... group objects denoted by G, H, . . .),
page 12

category of H* supermanifolds (generic objects denoted by
M, N, ... group objects denoted by G, H, . . .), page 358

category of S-relative supermanifolds (objects denoted by
M;s, Nys, . ..), page s4

category of (finite-dimensional) Grassmann algebras, page 18

groupoid with points on a Cauchy slice = as objects and smooth
maps ¢ : S — G as morphisms, page 226

path groupoid on a Cauchy slice X of a globally hyperbolic
spacetime manifold M = R X X, page 225

body functor, page 357

split functor, page 14

375



List of symbols, notations and conventions

A
Hn

I

g (resp. g)
Lie(G) =A®g
GL(V), gl(V)
GL(m|n, )
OSp(V), 0sp(V)
OSp(m|n)

U(m|n), u(m|n)

UOSp(m|n)

ISO(R!31), iso(R1314)

71’3|4,t = 134

aut(Prs)

9 (Ps)

gau(P;s)

376

functor from SMang~ to SManyj, mapping a // super-
manifold M to the correponding algebro-geometric super-

manifold (B(M), B.H ), page 22

functor from SMan |, to Set mapping an algebro-geometric

supermanifold M to the Ay -point M(Ap), page 19
parity functor, page 360

super Lie algebra of left-invariant (resp. right-invariant) vector
fields on a super Lie group G, page 24

super Lie module of a 7 super Lie group G modeled over a
Grassmann algebra A, page 26

the general linear supergroup and the corresponding super Lie
algebra on a super A-vector space V, page 30

the general linear supergroup on the super A-vector space
R @ A, page 32

orthosymplectic supergroup and its corresponding Lie super-
algebra on a super A-vector space V, page 34

orthosymplectic supergroup in standard representation, page 34

super unitary group and its corresponding super Lie algebra
on the super A-vector space C”*1” ® A, page 32

unitary orthosymplectic group, page 233

super Poincaré group and corresponding super Lie algebra,
page 28

super translation group and corresponding super Lie algebra,
page 27

infinitesimal automorphisms on P, s, page 108

set of global gauge transformations on a S-relative principal

super fiber bundle P, s, page 82

vertical infinitesimal automorphisms or infinitesimal gauge
transformations on s, page 109



tM, g)
M, 2)

FoESM

f
F—fE->N
V585 M

Y -5 > M
V'8 ->M

G—>P S M

Z(8)
F(M) = Z(TM)

P X F

PGl =P xXu G
(V—>8/S 1S)/\/(/S
G—Pis Eg>/\/(/3

T,(M;s)

H

List of symbols, notations and conventions

Lie superalgebra of Killing vector field on a super Riemannian

manifold (M, ¢), page 116

super Riemannian manifold consisting of a supermanifold M
and a super metric g on M, page 116

super fiber bundle with total space &, base M, typical fiber F
and canonical projection 7 : & — M (also simply denoted
by & if base and typical fiber are clear from the context), page 37

pullback bundle of ¥ — & 5 M with respect to the mor-
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left dual super vector bundle, page 43
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G-bundle), page 45

frame bundle of the super vector bundle &, page 46
frame bundle of a supermanifold M, page 47
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page 56

k-forms on M s with values in the super Lie module Lie(G) =
A ® g of a super Lie group G, page 56

horizontal V-valued k-forms of type (G, p), page 65
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DA
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k-forms on M s with values in an associated S-relative super
vector bundle &/ s, page 87

sheaf of H*-smooth functions on a A * supermanifold M,

page 21

space of almost periodic holomorphic functions on the com-

plex plane C, page 312
(gauge-variant) spin network state, page 251

isomorphism from the set Homgman, s (M;s, N)s) of S-rela-
tive morphisms to HomgMan , (S X M, N), page ss

body map, page 356
invariant integral on a super Lie group G, page 234
Berezin integral, page 154

Lie derivative along a smooth vector field X € X(M,s),
page 56

interior derivative w.r.t. a smooth vector field X € X(Ms),
page 56

Grassmann analytic continuation or Grassmann extension of
a C*-smooth function f,, page 356

right-invariant vector field on the super translation group,
page 74

involution on a super A-module, page 67

Adjoint/adjoint representation of a super Lie group G/super
Lie module Lie(G), page 61

covariant derivative induced by a super connection 1-form A,

page 65
exterior covariant derivative induced by A, page 87

exterior covariant derivative induced by A restricted to sec-
tions of an associated S-relative super vector bundle, page 87
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covariant derivative of a Majorana spinor with values in the Lie

algebra of the R-symmetry subgroup of OSp(N|4), page 200
evaluation morphism at the point x, page 13

parallel transport map along a path y w.r.t. a super connection

1-form A, page 80

parallel transport map on an associated S-relative super vector

bundle &, s along a path y with respect to a super connection
1-form A, page 88

super Wilson loop along a path y induced by a super connec-
tion 1-form A, page 86

super metric resp. Hermitian super metric or super scalar
product, page 29

k-form with values on associated S-relative super vector bun-
dle (P x, V), s corresponding to w € QIZW (P/s> V)G,
page 87

composition of two left linear morphisms ¢, ¥, page 345

natural transformation between 7 -points ¢4~ : M(7) —
N (7T") induced by a morphism ¢ : M — N, page1s

left resp. right regular representation of a super Lie group G,
page 236
fundamental vector field generated by X € g, page 60

fundamental tangent vector at a point p of a S-relative princi-

pal super fiber bundle P g generated by X' € Lie(G), page 6o
left resp. right translation on a super Lie group G w.r.t. g € G,
page 44

left- resp. right-invariant vector field generated by an element
T4 of a real homogeneous basis (74) 4 of a super Lie algebra,

page 231

Majorana representation of Spin* (1, 3), page 130
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[B-deformed inner product induced by P 8> page 192

positive definite inner product on a super Hilbert space induced

by the endomorphism / : § — $, page 240

characteristic function of a Borel set A, ie., ya(x) = 1if

x € Aand ya(x) = 0if x ¢ A, page 158
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402



Superstring theory and loop quantum gravity (LQG) are promising approaches towards the
formulation of a quantum theory of gravity. Superstring theory aims at unification of all fundamental
forces of nature, predicting supersymmetry and even higher spacetime dimensions. LQG, on the
other hand, takes a more conservative viewpoint by proposing new quantization techniques that
take seriously the central principles of general relativity.

The goal of this work is to relate ideas from LQG and superstring theory by combining LQG with
the concept of supersymmetry. To achieve this, the mathematical apparatus for a mathematically
rigorous description of the underlying geometric structures of supergravity theories, i.e., super-
symmetric extensions of Einstein’s theory of gravity, will be developed. Among other things, this
approach leads to a reformulation of the theory in which (part of) supersymmetry manifests itself
in terms of a gauge symmetry.

Using the interpretation of supergravity in terms of a super Cartan geometry, the Holst variant of
the MacDowell-Mansouri action for (extended) AdS supergravity in D=4 for arbitrary values of the
Barbero-Immirzi parameter - a free parameter of the theory - will be derived. Moreover, it will be
demonstrated that these actions provide unique boundary terms that ensure local supersymmetry
invariance at boundaries.

The chiral case is special: The action is invariant under an enlarged gauge symmetry, the boundary
theory is a topological super Chern-Simons theory, and a chiral connection emerges that is the
natural generalization of the Ashtekar connection to the supersymmetric context. Making use of
the enlarged gauge symmetry, a quantization of the theory generalizing standard tools of LQG
will be proposed.

These results provide a starting point for applications in the context of supersymmetric black
holes and quantum cosmology. There, the enhanced gauge symmetry proves to be a promising
tool which in the future may shed a lot of insights on how to relate results from these different
approaches.
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