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Konstantin Konrad Christoph Eder

Super Cartan geometry and 
loop quantum supergravity

Superstring theory and loop quantum gravity (LQG) are promising approaches towards the

formulation of a quantum theory of gravity. Superstring theory aims at unification of all fundamental 

forces of nature, predicting supersymmetry and even higher spacetime dimensions. LQG, on the 

other hand, takes a more conservative viewpoint by proposing new quantization techniques that 

take seriously the central principles of general relativity.

The goal of this work is to relate ideas from LQG and superstring theory by combining LQG with 

the concept of supersymmetry. To achieve this, the mathematical apparatus for a mathematically 

rigorous description of the underlying geometric structures of supergravity theories, i.e., super-

symmetric extensions of Einstein’s theory of gravity, will be developed.  Among other things, this 

approach leads to a reformulation of the theory in which (part of) supersymmetry manifests itself 

in terms of a gauge symmetry.

Using the interpretation of supergravity in terms of a super Cartan geometry, the Holst variant of 

the MacDowell-Mansouri action for (extended) AdS supergravity in D=4 for arbitrary values of the 

Barbero-Immirzi parameter - a free parameter of the theory - will be derived. Moreover, it will be 

demonstrated that these actions provide unique boundary terms that ensure local supersymmetry 

invariance at boundaries. 

The chiral case is special: The action is invariant under an enlarged gauge symmetry, the boundary 

theory is a topological super Chern-Simons theory, and a chiral connection emerges that is the 

natural generalization of the Ashtekar connection to the supersymmetric context. Making use of 

the enlarged gauge symmetry, a quantization of the theory generalizing standard tools of LQG 

will be proposed. 

These results provide a starting point for applications in the context of supersymmetric black 

holes and quantum cosmology. There, the enhanced gauge symmetry proves to be a promising 

tool which in the future may shed a lot of insights on how to relate results from these different 

approaches.
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Abstract

The present thesis is dedicated to questions at the interface of the perhaps currently
best known approaches toward quantum gravity, namely loop quantum gravity and
superstring theory. Combining gravity with the principle of local supersymmetry leads
to supergravity which, in certain cases, turns out to arise in terms of a low-energy limit of
superstring theory. In this thesis, we want to deal with mathematical and physical aspects
of (extended) supergravity theories in four spacetime dimensions and applications in
the framework of loop quantum gravity such as quantum dynamics, boundary theory
as well as classical and quantum cosmology.

To this end, in the beginning, we will study a mathematically rigorous approach toward
geometric supergravity also commonly known as the Castellani-D’Auria-Fré approach
by introducing the notion of a super Cartan geometry in an enriched category of super-
manifolds. In fact, considering enriched categories turns out to be mandatory in order to,
among other things, consistently implement the anticommutative nature of (classical)
fermionic fields in mathematical physics. Furthermore, within this category, we will
study mathematical aspects of super gauge theory and fiber bundle theory and analyze
the parallel transport map associated to super connection forms.

We then turn towards applications of these methods in the framework of loop quantum
gravity. First, the canonical analysis of pure 𝐷 = 4, N = 1 Holst supergravity will
be performed using real Asthekar-Barbero variables and the existing formalism for
the Hilbert space, representation, etc. A compact expression for the so-called SUSY
constraint operator will be derived. Moreover, in this context, we will propose a specific
regularization procedure and derive explicit expressions for its action on spin network
states. This is important to investigate the dynamics in the quantum theory and to find
physical states.

Next, the Cartan geometric approach toward (extended) supergravity in the presence
of boundaries will be discussed. In particular, based on newer developments in this
field, we will derive the Holst variant of the MacDowell-Mansouri action forN = 1
andN = 2 pure anti-de Sitter supergravity in 𝐷 = 4 for arbitrary Barbero-Immirzi
parameters. This action plays a crucial role if one imposes supersymmetry invariance
at the boundary. We will also discuss the chiral limit of the theory, which turns out
to possess some very special properties such as the manifest invariance of the resulting
action under an enlarged gauge symmetry. Moreover, we will show that demanding
supersymmetry invariance at the boundary yields a unique boundary term corresponding
to a super Chern-Simons theory with OSp(N |2) gauge group. These results provide a
step towards the quantum description of supersymmetric black holes in the framework
of loop quantum gravity.

vii



Abstract

Using the observations made in the chiral theory, we will finally study a class of symmetry
reduced models ofN = 1 chiral supergravity. In fact, the enlarged gauge symmetry
turns out to be essential as it allows for nontrivial fermionic contributions in the sym-
metry reduced super Ashtekar connection even if one imposes spatial isotropy. We
will then also quantize the theory in terms of representations of a graded variant of
the holonomy-flux *-algebra which yields a natural state space. Finally, the remaining
dynamical constraints will be implemented in the quantum theory. For a certain subclass
of these models, we show explicitly that the (graded) commutator of the supersymmetry
constraints exactly reproduces the classical Poisson relations. In particular, the trace
of the commutator between the so-called left and right SUSY constraint reproduces
the Hamilton constraint operator. Finally, we consider the dynamics of the theory
and compare it to a quantization using standard variables and standard minisuperspace
techniques.

viii



Zusammenfassung

Die vorliegende Arbeit widmet sich Fragen, die sich im Schnittbereich der vielleicht
derzeit bekanntesten Ansätze zur Quantengravitation befinden, nämlich der Schleifen-
quantengravitation und der Superstringtheorie. Die Kombination der Gravitation mit
dem Prinzip der lokalen Supersymmetrie führt zur Supergravitation, die sich in be-
stimmten Fällen als ein Niederenergie-Limes der Superstringtheorie herausstellt. In
dieser Arbeit wollen wir uns mit mathematischen und physikalischen Aspekten (erwei-
terter) Supergravitationstheorien in vier Raumzeitdimensionen und Anwendungen im
Rahmen der Schleifenquantengravitation wie der Quantendynamik, der Randtheorie
sowie der klassischen und Quantenkosmologie beschäftigen.

Zu diesem Zweck werden wir zu Beginn einen mathematisch rigorosen Ansatz zur
geometrischen Supergravitation untersuchen, der auch allgemein als Castellani-D’Auria-
Fré-Ansatz bekannt ist, indem wir den Begriff einer Super-Cartan-Geometrie in einer
angereicherten Kategorie von Supermannigfaltigkeiten einführen. Tatsächlich erweist
sich die Betrachtung angereicherter Kategorien als zwingend notwendig, um u.a. die
antikommutative Natur (klassischer) fermionischer Felder in der mathematischen Physik
konsistent zu implementieren. Darüber hinaus werden wir innerhalb dieser Kategorie
mathematische Aspekte der Super-Eichtheorie und Faserbündeltheorie untersuchen
und den, zu Super-Zusammenhangsformen assoziierten, Paralleltransport analysieren.

Als nächstes wenden wir uns Anwendungen dieser Methoden im Rahmen der Schleifen-
quantengravitation zu. Zunächst wird die kanonische Analyse der reinen𝐷 = 4,N = 1
Holst-Supergravitation unter Verwendung reeller Asthekar-Barbero-Variablen sowie
des bestehenden Formalismus für den Hilbertraum, der Darstellung etc. durchgeführt.
Es wird ein kompakter Ausdruck für den sogenannten SUSY-Constraint-Operators
abgeleitet. Darüber hinaus werden wir in diesem Zusammenhang ein spezifisches Re-
gularisierungsverfahren vorschlagen und explizite Ausdrücke für dessen Wirkung auf
Spin-Netzwerk-Zuständen herleiten. Dies ist wichtig, um die Dynamik in der Quanten-
theorie zu untersuchen und physikalische Zustände zu identifizieren.

Als nächstes wird der Cartan-geometrische Ansatz zur (erweiterten) Supergravitation in
Gegenwart von Rändern diskutiert. Insbesondere werden wir, basierend auf neueren
Entwicklungen in diesem Feld, die Holst-Variante der MacDowell-Mansouri-Wirkung
für die reineN = 1 undN = 2 Anti-de Sitter-Supergravitation in 𝐷 = 4 für beliebige
Barbero-Immirzi-Parameter herleiten. Diese Wirkung spielt eine entscheidende Rolle,
wenn man Supersymmetrie-Invarianz am Rand fordert. Wir werden auch den chiralen
Grenzwert der Theorie diskutieren, der einige sehr spezielle Eigenschaften besitzt, wie
zum Beispiel die manifeste Invarianz der resultierenden Wirkung unter einer erweiterten
Eichsymmetrie. Außerdem werden wir zeigen, dass die Forderung nach Supersymmetrie-
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Zusammenfassung

Invarianz am Rand einen eindeutigen Randterm ergibt, der einer Super-Chern-Simons-
Theorie mit OSp(N |2)-Eichgruppe entspricht. Diese Ergebnisse stellen einen Schritt
in Richtung einer Quantenbeschreibung von supersymmetrischen Schwarzen Löchern
im Rahmen der Schleifenquantengravitation dar.

Unter Verwendung der Beobachtungen, die in der chiralen Theorie gemacht wurden,
werden wir schließlich eine Klasse Symmetrie-reduzierter Modelle derN = 1 chiralen
Supergravitation untersuchen. Tatsächlich erweist sich die erweiterte Eichsymmetrie als
essentiell, da sie nicht-triviale fermionische Beiträge im Symmetrie-reduzierten Super-
Ashtekar-Zusammenhang erlaubt, selbst bei Forderung räumlicher Isotropie. Sodann
wenden wir uns der Quantisierung der Theorie unter Studium der Darstellung einer
gradierten Variante der Holonomie-Fluss *-Algebra zu, die einen natürlichen Zustands-
raum ergibt. Schließlich werden die dynamischen Constraints in der Quantentheorie
implementiert. Für eine bestimmte Unterklasse dieser Modelle zeigen wir explizit, dass
der (gradierte) Kommutator der SUSY-Constraints die klassischen Poisson-Relationen
exakt reproduziert. Insbesondere reproduziert die Spur des Kommutators zwischen dem
sogenannten Links- und Rechts-SUSY-Constraint den Hamilton-Constraint-Operator.
Schließlich betrachten wir die Dynamik der Theorie und vergleichen sie mit einer Quan-
tisierung unter Verwendung von Standardvariablen und Standard-Minisuperspace-
Techniken.
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1. Introduction

1.1. Quantum gravity
According to our current understanding of the fundamemtal laws of nature, the physics
of the macro- and microcosm is described in terms of two fundamental theories namely
the general theory of relativity (or general relativity for short) and quantum field theory
(QFT), respectively. General relativity, gradually discovered by Einstein, and published
in its final form in 1915, led to a completely new understanding of gravity. It is based on
the revolutionary idea that gravity is not just a force but the incarnation of geometry of
space and time. Despite its huge successes and numerous experimental verifications inter
alia achieved over the past decade, there also exist various phenomena which indicate its
incompleteness. For instance, as an immediate consequence of the theory, singularities
appear in the interior of black holes which turn out to be physically inconsistent. More-
over, cosmological models unavoidably lead to infinite energy densities as one follows
the evolution equations of general relativity backwards in time from the present state of
the universe. Since the curvature radius close to the singularities becomes smaller than
Planck length

𝑙𝑝 =

√︂
ℏ𝐺

𝑐3
(1.1)

this strongly suggests, that such a theory needs a unification of both general relativity
and quantum theory, that is, a quantum theory of gravity.

One possible candidate for such a theory is string theory. According to string theory,
it is expected that all fundamental particles can be understood as certain excitations of
one-dimensional strings. Also the graviton, i.e. the hypothetical fundamental particle
mediating the gravitational interaction, is part of the spectrum of closed strings. Hence,
this gave a first hint towards unification of the four fundamental forces of nature. How-
ever, it turns out that a consistent theory incorporating fermionic particle species and
excluding negative mass states requires the incorporation of supersymmetry (SUSY) and
even higher spacetime dimensions. As a consequence, it follows from supersymmetry
that there exist five possible versions of a superstring theory, two of them, called IIA-
and IIB-superstring theory, containing the same low-energy particle spectrum as certain
one-dimensional compactifications of the unique maximal 11-dimensional supergravity
theory. Moreover, there are various duality relations connecting the different string the-
ories. Since its original discovery, superstring theory attained a lot of interest and many
intriguing results have been achieved such as a consistent microscopic description of the
entropy of supersymmetric (charged) black holes [6–13] or a possible concrete realization
of the holographic principle via the famous AdS/CFT-correspondence [14–16].
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1. Introduction

Another approach towards the formulation of a theory of quantum gravity which the
present thesis will be focused on is loop quantum gravity (LQG) (see e.g. [17, 18] and
references therein). Loop quantum gravity is a program originally based on canonical
quantization of variables introduced by Sen, Ashtekar, Immirzi and Barbero [19–22]
for Einstein gravity. These variables have the remarkable property that they embed
the phase space of gravity in that of Yang-Mills theory. It was pointed out in [23] that
all these variables can be obtained from an action that differs from the Palatini action
of first-order Einstein gravity by a certain topological term defined by an operator on
the Lie algebra of the structure group. This modification of the gravitational action
is thus one of the foundations of the theory. While LQG is much less ambitious then
string theory in terms of unification, it has very interesting results to its credit, such as
a kinematical representation that carries a unitary representation of spatial diffeomor-
phisms explicitly incorporating the important principle of background independence
in general relativity [17, 24–27], quantization of spatial geometry [28–32], as well as a
path integral formulation in terms of so-called spin foams (see, e.g., [33, 34] and refer-
ences therein). Moreover, within this theory, a consistent microscopic description of
the black hole entropy for various physical four-dimensional (charged) black holes has
been achieved [35–45]. Finally, adapting techniques from the full theory to a symmetry
reduced setting, dynamical cosmological [46–48] (see also references in [49–51]) and
black hole models [52–58] have been developed that are able to resolve the singularities
one encounters in the classical theory.

1.2. The topic of this thesis
The present thesis is devoted to the question of how to bring together the two different
approaches towards a formulation of a quantum theory of gravity, namely superstring
theory and LQG, and to relate results and ideas achieved in these different theories. To
this end, we will combine standard quantization techniques of LQG with the concept
of supersymmetry. This also brings LQG closer to ideas of unification. In fact, even
without consideration of string theory, there are hints that a unification of the gauge
theory sector and gravity necessitate some form of SUSY. Supersymmetry is a new kind
of symmetry that arose in the context of the famous results of Coleman-Mandula [59]
and Haag-Lopuszanski-Sohnius [60] who were looking for symmetries of interacting
QFTs that can have a nontrivial mixture with spacetime symmetries. As a consequence, it
turns out that supersymmetries form a certain kind of Lie algebras (𝔤, [·, ·]) that carry an
internal Z2-grading 𝔤 = 𝔤0 ⊕ 𝔤1 also called Lie superalgebras that split into even and odd
part 𝔤0 and 𝔤1 also referred to as the bosonic and fermionic part of 𝔤, respectively, where
generators of the latter turn out transform as spin- 12 fermions. Consequently, according
to Wigner’s classification theorem (see for instance [61] for a mathematical sophisticated
approach), this implies that QFTs incorporating this new kind of symmetry necessarily
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need to contain an equal number of bosonic and fermionic degrees of freedom. Thus,
supersymmetry yields a unified description of bosonic and fermionic particle species,
that is, both force and matter particles, and therefore seems to be a natural candidate for
the search for a unified field theory.

Combining the principle of local supersymmetry with gravity leads to supergravity
(SUGRA). As mentioned above, supergravity theories also naturally arise in terms of
low-energy limits of certain superstring theories. In the framework of LQG, the study of
supergravity theories also has a long history. For instance, in [62], Jacobson introduced
a chiral variant of the realN = 1 Poincaré supergravity action using Ashtekar’s self-
dual connection variables which soon after has been extended by Fülöp [63] to anti-de
Sitter supergravity including a cosmological constant. Canonical supergravity with real
Asthekar-Barbero has been considered in [64, 65]. Generalizations to higher spacetime
dimensions have been studied by Bodendorfer et al. [66–69] introducing new kind of
variables different but similar to those of Ashekar-Barbero as usually applied in LQG in
the context of four spacetime dimensions.

In this thesis, we want to investigate various physical and mathematical aspects of classical
supergravity and study applications in the framework of LQG and loop quantum
cosmology (LQC). To this end, we will focus on (extended) supergravity theories in
𝐷 = 4 spacetime dimensions. In particular, we are interested in a reformulation of the
corresponding canonical theory such that it preserves as much as possible the geometrical
structure underlying SUGRA. In this context, we will also talk about an appropriate
description of boundary theories in the framework of supergravity which are compatible
with the principle local supersymmetry.

For this purpose, in Chapter 3, we will study a mathematically rigorous approach towards
geometric supergravity. In fact, supergravity turns out to have a very intriguing geomet-
rical interpretation allowing to store all the physical degrees of freedom of the theory
in a single connection. As a consequence, SUGRA attains a structure quite similar to
Yang-Mills gauge theories. This is the starting point of the so-called group geometric
approach to SUGRA initiated by Ne’eman and Regge [70] and further developed by
Castellani-D’Auria-Fré [71, 72] to include extended and higher dimensional supergravity
theories. In the following, we want to study this approach in a mathematically rigorous
manner using and extending tools in supergeometry discussed in detail in Chapter 2 and
which results have been published in [1]. In particular, we will introduce an appropriate
notion of a super Cartan geometry that consistently incorporates the anticommutative
nature of (classical) fermionic fields which turns out to be a crucial property in the
context of supergravity. In fact, as we will see, in order to resolve the fermionic degrees
of freedom, this requires the inclusion of an additional parametrizing supermanifold
leading to the concept of so-called relative supermanifolds. This is based on an idea first
formulated by Schmitt in [73] and developed more systematically in [74, 75]. Interest-
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ingly, as will be explained in detail in Section 3.6, within this formalism, it turns out
that one can provide a concrete link to the description of (classical) anticommutative
fermionic fields in perturbative algebraic QFT (pAQFT) [76, 77].

Furthermore, working in the category of relative supermanifolds, we will construct and
analyze the parallel transport map associated to super connection 1-forms defined on
parametrized principal super fiber bundles. Moreover, explicit expressions of this map
will be derived which will be useful for concrete physical applications to be discussed in
Chapter 5 as well as Chapter 6. Finally, the induced parallel transport map corresponding
to induced covariant derivatives on associated super vector bundles will be discussed.
In this context, we will also relate our results to similar constructions on super vector
bundles in the algebro-geometric approach in [78, 79].

We then turn next towards applications of these methods to loop quantum supergravity
(LQSG). To this end, in Chapter 4, we will first address the canonical analysis of 𝐷 =

4, N = 1 Poincaré supergravity using real Ashtekar-Barbero variables starting with
the corresponding Holst action of supergravity as first introduced by Tsuda [65]. In
particular, we will work with half-densitized fermionic fields. Furthermore, a compact
expression of the so-called SUSY constraint will be derived. The SUSY constraint plays
a major role in canonical supergravity theories, akin to the role of the Hamiltonian
constraint in non-supersymmetric generally covariant theories governing the dynamics
of the theory. The canonical analysis of Poincaré supergravity with real Asthekar-Barbero-
variables has been studied the first time in [64, 65]. However, these considerations did
not include a full consistent treatment of half-densitized fermionic fields as proposed by
Thiemann in [80] in order to solve the reality conditions to be satisfied by the Rarita-
Schwinger field. The canonical analysis in arbitrary higher spacetime dimensions has
been considered in [67]. But, for𝐷 = 4, the variables used there turn out to be different
from the standard ones usually applied in LQG.

We will then devote ourselves to the proper implementation of the SUSY constraint
operator in the quantum theory which, so far, has not been considered in the literature.
To this end, we will propose a specific regularization procedure adapted to the classical
SUSY constraint and derive for the first time a compact expression of the corresponding
constraint operator using loop quantum gravity methods. Moreover, explicit expressions
of the action of the resulting operator will be obtained. This is important as it is the
first step on the way of analyzing the Dirac algebra generated by supersymmetry and
Hamiltonian constraint in the quantum theory and for finding physical states in the
full theory. We also discuss some qualitative properties of such solutions of the SUSY
constraint. The results have been published in [2].

Chapter 5 is then devoted to classical and quantum description of (extended) anti-de
Sitter supergravity theories in𝐷 = 4 spacetime dimensions. In particular, in this context,
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we will address the question of how to properly include boundary terms to the theory
that are compatible with local supersymmetry at the boundary. This is important as this
provides a first step towards the description of inner boundaries in the framework of
LQSG as well as applications in the quantum description of supersymmetric black holes.
This, among other things, may open up the possibility to compare results of entropy
computations in LQG and superstring theory and thus to gain deeper insights into
the relationship between these different approaches. To this end, adapting techniques
developed in [81–83] to the case of a finite Barbero-Immirzi parameter 𝛽, we will consider
the most general ansatz of boundary terms that are compatible with the symmetries
of the bulk Lagrangian and such that the full theory is invariant under SUSY at the
boundary. In this way, it turns out that the boundary term, at least in the cases of
N = 1 andN = 2 extended SUGRA, is in fact uniquely fixed by this requirement and
the resulting action of the full theory acquires an intriguing structure taking the form
a Yang-Mills-type action where the contraction over internal indices of the structure
group given by theN -extended super anti-de Sitter group OSp(N |4) is carried out via
a 𝛽-deformed inner product. The results have been published in [3].

We then also consider the chiral limit of the theory corresponding to a purely imaginary
Barbero-Immirzi parameter 𝛽 = ±𝑖. This limit turns out have interesting properties
such as, in particular, the manifest invariance of the resulting action under an enlarged
gauge symmetry given by the orthosymplectic supergroup OSp(N |2)C for both cases
N = 1 andN = 2. In particular, it follows that the boundary theory which, as explained
above, is uniquely fixed by the requirement of SUSY invariance at the boundary, takes the
form of a super Chern-Simons action with gauge supergroup OSp(N |2)C. Moreover,
the equations of motion (EOM) of the full theory yield boundary conditions coupling
bulk and boundary degrees of freedom which turn out to be in complete analogy to the
classical bosonic theory.

For N = 1 and without consideration of the boundary theory, the existence of an
enlarged gauge symmetry of the chiral theory has been first observed by Fülöp in the
seminal paper [63] while studying the constraint algebra generated by the Gauss and left
SUSY constraint. In this way, it turns out that the constraint algebra has the structure
of a graded Lie algebra leading to some kind of a graded generalization of Ashtekar’s
self-dual variables also called the super Asthekar connection. Using the Cartan geometric
description of AdS supergravity, we will provide a conceptual and geometric explanation
of the observations of [63] studying the chiral structure of the underlying super anti-de
Sitter algebra yielding an interpretation of the super Ashtekar connection in terms of a
generalized super Cartan connection. Using this connection, this paves the way towards a
new approach to non-perturbative quantum supergravity in which parts of SUSY as
well as the underlying geometrical structure of covariant SUGRA are kept manifest.
In fact, as seen in Chapter 4, the canonical formulation of SURGA theories using real

5



1. Introduction

variables generically yield very complicated constraints which themselves, when going
over to the quantum theory, are plagued by quantization ambiguities. This also makes
any attempts to compare LQG with other approaches to quantum gravity much more
difficult. However, this turns out to be resolved, at least partially, in the context of
the chiral theory since, by quantizing this theory adapting tools of standard LQG, the
left-handed part of the SUSY constraint is already implemented in a manifest way by
simply imposing gauge invariance.

Explicitly making use of the gauge-theoretic structure of the canonical chiral theory, we
will derive a graded analog of the classical holonomy-flux algebra in a mathematically
rigorous way. To this end, we will, in particular, employ the parallel transport map as
constructed in Chapter 2 induced by the super Ashtekar connection. As a consequence,
in order to consistently incorporate the anticommutative nature of the fermionic fields,
besides embedded graphs, it follows that the corresponding inductive family is labeled
by an additional parametrization supermanifold. These results provide a mathematically
consistent framework to study the manifest approach to loop quantum supergravity.
In fact, existing results in this direction [63, 84–86] are rather formal and do not take
into account the issue of how to consistently model the anticommuative nature of
the (classical) fermionic fields. Based on these observations, we will then sketch the
quantization of the theory adapting techniques from standard LQG. As we will see, the
resulting kinematical state space carries a structure which shares many similarities with
the kinematical Hilbert space obtained via the standard quantization scheme in LQG
coupled to fermions [67, 80, 87].

In Chapter 6, we will finally go over to the application of the results obtained in the
previous chapter in the framework of spatially symmetry reduced models and quantum
cosmology which results have been published in [4]. For this purpose, we will first
develop the theory of symmetry reduced super connections forms providing a general
scheme towards symmetry reduction of supersymmetric field theories with local gauge
symmetry associated to a gauge supergroup. These methods will then be used in the
context of chiralN = 1 supergravity. More precisely, we exploit the enlarged OSp(1|2)C-
gauge symmetry of the theory and derive a general class of homogenenous and isotropic
super connection forms. In fact, the enlarged gauge symmetry turns out to be crucial
to allow for isotropic connections that contain nontrivial fermionic contributions.
Moreover, the fermionic part of the connection turns out to coincide with the ansatz as
derived by other means by D’Eath et al. in [88–90].

These results will then be used to derive symmetry reduced expressions for the constraints
of the canonical chiral theory and study the constraint algebra. Moreover, mimicking
the standard procedure in loop quantum cosmology and using the explicit form of
the super holonomies as derived in Chapter 2, we will motivate the graded holonomy-
flux algebra of the symmetry reduced classical theory. In this context, it follows, using
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the symmetry reduced form of the reality conditions, that the graded algebra can be
equipped with a consistent *-relation. The quantum theory is then constructed choosing
a Ashtekar-Lewandowski-type representation of the *-algebra. As it turns out, requiring
the representation to define an even morphism of graded *-algebras already fixes uniquely
the inner product on the graded kinematical Hilbert space extending and generalizing
results obtained in the context of the purely bosonic theory in [91]. We will then finally
also study the dynamics of the resulting quantum theory. In particular, for a specific
subclass of the symmetry reduced models, we will show explicitly that the essential part
of the quantum constraint algebra exactly reproduces the classical Poisson relations.
More precisely, we will show that the anticommutator between the so-called left and
right SUSY constraint operator exactly reproduces the Hamiltonian constraint operator.
As a last step, we will consider the semi-classical limit of the theory and compare the
results with those obtained by different means in [88–90].

In the following, the thesis is subdivided into two parts: The first two chapters deal with
the mathematical rigorous approach toward geometric supergravity and, in this context,
introduce essential mathematical methods such as the category of relative supermanifolds
as well as bundles, connection forms and Cartan geometries defined in this category.
Moreover, the parallel transport map will be constructed. The second part, treated
in the Chapters 4-6, then focuses on physical applications in the framework of loop
quantum supergravity. There, many mathematical details will be dropped in order to
simplify the notation and to make it easier accessible for the reader. In particular, we
will not explicitly mention the underlying parametrization supermanifold except in
Section 5.5 as well as Sections 6.3 and 6.5.1 in the context of the construction of the
graded holonomy-flux algebra and the symmetry reduction of chiral supergravity where
the parametrization turns out be essential.

A list of important symbols as well as an overview of our choice of conventions con-
cerning indices, physical constants etc. used in the main text can be found in the List of
symbols, notations and conventions.
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2. Supergeometry

2.1. Introduction
Over the last fifty years, many different approaches have been developed in order to
formulate the notion of a supermanifold. The first and probably most popular one
is the so-called algebro-geometric approach introduced by Berezin, Kostant and Leites
[92,93] which borrows techniques from algebraic geometry. It is based on the interesting
observation that ordinary smooth manifolds can equivalently be described in terms of
the structure sheaf of smooth functions defined on the underlying topological space. In
this framework, it follows that supersmooth functions 𝑓 are locally of the form

𝑓 = 𝑓∅ + 𝑓1𝜃1 + . . . + 𝑓𝑛𝜃𝑛 + . . . + 𝑓1· · ·𝑛𝜃1 · · · 𝜃𝑛 (2.1)

where 𝜃 𝑖 for 𝑖 = 1, . . . , 𝑛 are anticommuting Grassmann variables and, for any ordered
multi-index 𝐼 of length ≤ 𝑛, 𝑓𝐼 is an ordinary smooth function. This approach is very
elegant and, in particular, avoids the introduction of superfluous (unphysical) degrees
of freedom. Nevertheless, its definition turns out to be very abstract since, roughly
speaking, points in this framework are implicitly encoded in the underlying structure
sheaf of supersmooth functions. This makes this approach less accessible for physicists
for concrete applications.

Hence, another approach to supermanifolds, the so-called concrete approach, was initiated
by DeWitt [94] and Rogers [95, 96], and studied even more systematically by Tuynman
in [97], defining them similar to ordinary smooth manifolds in terms of a topological
space of points, i.e., a topological manifold that locally looks a flat superspace (see
Appendix C for a brief review). However, as it turns out, this definition has various
ambiguities in formulating the notion of a point which, in contrast to the algebro-
geometric approach, leads to too many unphysical degrees of freedom.

It was then found by Molotkov [98] and further developed by Sachse [99, 100] that
both approaches can be regarded as two sides of the same coin. In that framework, at
least in the finite-dimensional setting, it follows that Rogers-DeWitt supermanfolds can
be interpreted in terms of a particular kind of a functor constructed out of a algebro-
geometric supermanifold. This functorial intepretation then resolved the ambiguities
arising in the Rogers-DeWitt approach and also opened the way towards a generalization
of the theory to infinite-dimensional supermanifolds.

Another caveat, both in the algebraic and Rogers-DeWitt approach, is the appropriate
description of anticommuting fermionic fields. In fact, it turns out that the pullback
of superfields to the underlying ordindary smooth manifold are purely commutative
(bosonic). In fact, roughly speaking, restricting a generic supersmooth function 𝑓
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to the body of a supermanifold amounts to setting 𝜃 𝑖 = 0 in the expansion (2.1) so
that 𝑓 reduces to an ordinary smooth function 𝑓∅ which, in particular, is commutative
(bosonic). This seems, however, incompatible in various constructions in physics. For
instance, in the Castellani-D’Auria-Fré approach [71, 72], a geometric approach to super-
gravity (see Section 3.4), by the so-called rheonomy principle, physical degrees of freedom
are supposed to be completey determined by their pullback.

Furthermore, as we will also see in Section 2.7.1, from a mathematical point of view, this
issue also appears in the context of the parallel transport map corresponding to super
connection 1-forms. In fact, it follows that in the ordinary category of supermanifolds,
both in the algebraic and concrete approach, the parallel transport cannot be used in
order to compare different fibers of the bundle, in contrast to the classical theory. A
resolution has been proposed by Schmitt [73]. There, motivated by the Molotkov-Sachse
approach to supermanifold theory [98, 99], superfields on parametrized supermanifolds
are considered. Since, a priori, this additional parametrizing supermanifold is chosen
arbitrarily, one then has to ensure that these superfields transform covariantly under
change of parametrization. This idea has been studied rigorously for instance by Hack
et. al. in [101] considering relative supermanifolds which are well-known in the algebraic
approach [74] (see also [75]). As it turns out, superfields on these supermanifolds
indeed have the required properties, i.e., in the sense of Molotkov-Sachse, they behave
functorially under change of parametrization. Moreover, as we will show explicitly later
in Section 2.2, in this framework, it follows that fermionic fields have the interpretation in
terms of functionals on supermanifolds which is in strong similarity to other approaches
such as in the context of pAQFT [76, 77].

In this chapter, we want to provide the mathematical rigorous foundations for the
study of gauge theories on (relative) supermanifolds. In particular, we will study the
parallel transport map corresponding to super connection forms defined on (relative)
principal super fiber bundles. The parallel transport map, or the associated holonomies,
have been considered in the context of covariant derivatives on super vector bundles
in the algebro-geometric approach in [78, 79]. The theory of super fiber bundles and
connection forms in the concrete approach has been developed in [97]. In the algebraic
category, a precise definition of principal bundles and connection forms has been given
in [102]. In what follows, we will generalize the considerations of [97] to the relative
category and, in particular, define super connection forms on relative principal super
fiber bundles. We will then use this formalism in order to construct the corresponding
parallel transport map and study some of its important properties. Moreover, we will
analyze the precise relation between the algebraic and concrete approach and show
explicitly that both approaches are in fact equivalent. To this end, we will employ the
functor of points technique which will be discussed in detail in Section 2.2. Moreover,
studying the induced parallel transport map on associated super vector bundles, this
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enables us to compare the results with those obtained in [78, 79] in the algebraic setting.
For an investigation of the geodesic flow on super Riemannian manifolds see [103].

The structure of this chapter is as follows: At the beginning, we will give a detailed
introduction to the theory of supermanifolds and super Lie groups and establish a
concrete link between these various approaches via the functor of points prescription.
Then, in Section 2.4, we will summarize various important aspects of super fiber bundle
theory in the concrete approach to supermanifold theory. To this end, we will mostly
follow [97]. However, in contrast to [97], we will use the concept of formal bundle
atlases which is very well-known in the classical theory (see e.g. [104, 105] and references
therein) and turns out to be even applicable in the context of supermanifolds. In Section
2.5, we will then introduce the concept of relative supermanifolds and define principal
connections and super connection one-forms. In Section 2.6, we will compare the theory
of principal bundles and connection forms both in the algebraic and concrete approach
and show that both approaches are equivalent. These results will then be used in the last
Sections 2.7.1 and 2.7.2 in order to construct the parallel transport map. Moreover, for a
particular subclass of super Lie groups, a concrete formula for this map will be derived
making it easier accessible for physical applications.

A list of important symbols as well as an overview of our choice of conventions concern-
ing indices, physical constants etc. can be found in the List of symbols, notations and
conventions.

2.2. Three roads towards a theory of supermanifolds
2.2.1. Algebro-geometric supermanifolds

In the following, let us briefly review the basic definition of algebro-geometric super-
manifolds. For a review of the Rogers-De Witt approach to supermanifold theory, we
refer to Appendix C. The algebro-geometric approach is based on the observation that
ordinary smooth manifolds can equivalently be described in terms of locally ringed
spaces. To this end, one notes that any smooth manifold canonically yields the locally
ringed space (𝑀,𝐶∞

𝑀
) which is locally isomorphic to some (𝑉 ,𝐶∞R𝑛 |𝑉 ) with𝑉 ⊆ R𝑛

open. In fact, it turns that all smooth manifold 𝑀 can be described this way. That is,
if (𝑀,O𝑀 ) is a locally ringed space with O𝑀 a sheaf on 𝑀 such that (𝑀,O𝑀 ) is
locally isomorphic to some (𝑉 ,𝐶∞R𝑛 |𝑉 ) with𝑉 ⊆ R𝑛 open. Then, 𝑀 can be given the
structure of smooth manifold in a unique way such that O𝑀 � 𝐶∞𝑀 . Even more, it
follows that both categories are in fact equivalent (for a proof see, e.g., [117]).

Based on this idea, one defines supermanifolds as some sort of locally super ringed
spaces generalizing appropriately the notion of a smooth function. Hence, a so-called
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supersmooth function or superfield 𝑓 on the superspaceR𝑚 |𝑛 = R𝑚 ⊕ R𝑛 is defined as a
function of the form

𝑓 =
∑︁
𝐼

𝑓𝐼 𝜃
𝐼 (2.2)

with 𝑓𝐼 ordinary smooth functions onR𝑚 for any ordered multi-index 𝐼 = (𝑖1, . . . , 𝑖𝑘)
of length 0 ≤ |𝐼 | = 𝑘 ≤ 𝑛 such that 𝑖1 < 𝑖2 < . . . < 𝑖𝑘 where 𝜃 𝐼 := 𝜃 𝑖1 · · · 𝜃 𝑖𝑘 with
𝜃 𝑖𝑗 being odd Grassmann-variables. In the following, we will follow very closely [106] for
the definition of algebro-geometric supermanifolds and the construction of the functor
of points (see also Appendix A for our choice of conventions in super linear algebra as
well as Appendix B for summary of important aspects of category theory and algebraic
geometry). Therefore, we will omit most of the proofs.

Definition 2.2.1. An algebro-geometric supermanifold of dimension (𝑚, 𝑛) is a locally
super ringed spaceM = (𝑀,O𝑀 ) that is locally isomorphic to the superspaceR𝑚 |𝑛.
More precisely, (𝑀,O𝑀 ) consists of a topological space 𝑀 which is Hausdorff and
second countable as well as a sheaf O𝑀 over 𝑀 of super commutative rings called
structure sheaf such that, for any 𝑥 ∈ 𝑀 , the stalk O𝑀,𝑥 is a local super ring. Moreover,
for 𝑥 ∈ 𝑀 , there exists an open neighborhood𝑈 ⊂ 𝑀 of 𝑥 as well as an isomorphism
𝜙𝑈 = ( |𝜙𝑈 |, 𝜙♯𝑈 ) of ordinary locally ringed spaces

𝜙𝑈 = ( |𝜙𝑈 |, 𝜙♯𝑈 ) : (𝑈 ,O𝑀 |𝑈 ) → (|𝜙𝑈 | (𝑈 ), 𝐶∞R𝑚 | |𝜙𝑈 | (𝑈 ) ⊗
∧
[𝜃1, . . . , 𝜃𝑛])

(2.3)
such that 𝜙♯

𝑈
: 𝐶∞R𝑚 | |𝜙𝑈 | (𝑈 ) ⊗

∧ [𝜃1, . . . , 𝜃𝑛] → O𝑀 |𝑈 , in addition, is an even
morphism of sheaves of superalgebras. The tuple (𝑈 , 𝜙𝑈 ) is called a local chart or
superdomain around 𝑥. A family {(𝑈𝛼 , 𝜙𝛼)}𝛼∈Υ of charts is called an atlas of (𝑀,O𝑀 )
if
⋃
𝛼∈Υ𝑈𝛼 = 𝑀 .

A morphism 𝑓 = ( |𝑓|, 𝑓♯) : (𝑀,O𝑀 ) → (𝑁 ,O𝑁 ) of algebro-geometric super-
manifolds is a morphism of the underlying ordinary locally ringed spaces such that
𝑓♯ : O𝑁 → 𝑓∗O𝑀 also is an even morphism of superalgebras. Algebro-geometric
supermanifolds together with morphisms between them form a category SManAlg called
the category of algebro-geometric supermanifolds.

Remark 2.2.2. Choosing a chart (𝑈 , 𝜙𝑈 ) of an algebro-geometric supermanifold
(𝑀,O𝑀 ), this induces local coordinates (𝑡♯𝑖 , 𝜃 ♯𝑗 ) onM|𝑈 := (𝑈 ,O𝑀 |𝑈 ) via 𝑡♯𝑖 :=
𝜙
♯

𝑈
(𝑡 𝑖) and 𝜃 ♯𝑗 := 𝜙♯

𝑈
(𝜃𝑗 ) ∀𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑚 where dim (𝑀,O𝑀 ) =

(𝑚, 𝑛). Moreover, any function 𝑓 ∈ O𝑀 |𝑈 is of the form

𝑓 =
∑︁
𝐼

𝑓𝐼 𝜃
♯𝐼 (2.4)

12



2.2. Three roads towards a theory of supermanifolds

where, for any ordered mulit-index 𝐼 = (𝑖1, . . . , 𝑖𝑘) of length 0 ≤ 𝑘 ≤ 𝑛, 𝜃 ♯𝐼 :=
𝜃 ♯𝑖1 · · · 𝜃 ♯𝑖𝑘 and 𝑓𝐼 = 𝜙

♯

𝑈
( 𝑔𝐼 ) for some smooth function 𝑔𝐼 ∈ 𝐶∞( |𝜙𝑈 | (𝑈 )).

Any supermanifold naturally contains an ordinary smooth manifold as a submanifold.
To see this, for any algebro-geometric supermanifoldM = (𝑀,O𝑀 ) and𝑈 ⊂ 𝑀
open, consider the set J𝑀 (𝑈 ) := {𝑓 ∈ O𝑀 (𝑈 ) | 𝑓 is nilpotent}. It then follows that
J𝑀 (𝑈 ) is an ideal in O𝑀 (𝑈 ) yielding another sheaf𝑈 ↦→ J𝑀 (𝑈 ). Hence, one can
construct the quotient sheaf O𝑀/J𝑀 whose sections locally have the structure of an
ordinary smooth functions. This yields a locally ringed space

𝑀0 := (𝑀,O𝑀/J𝑀 ) (2.5)

which is a submanifold and has the structure of an ordinary smooth manifold. Before we
continue, let us mention a central result in the theory of algebro-geometric supermani-
folds as it will appear quite frequently in the discussion in what follows. It states that mor-
phisms are uniquely characterized via the pullback of a basis of global sections. To this
end, recall that, for a section 𝑓 ∈ O(M) := O𝑀 (𝑀 ), the value 𝑓(𝑥) ≡ ev𝑥 (𝑓) of 𝑓 at
𝑥 ∈ 𝑀 is defined as the unique real number such that 𝑓− 𝑓(𝑥) is not invertible in any
open neighborhood of 𝑥 in 𝑀 . This induces a morphism ev𝑥 ∈ HomSAlg (O(M),R)
defined as

ev𝑥 (𝑓) := 𝑓(𝑥), ∀𝑓 ∈ O(M) (2.6)

called the evaluation morphism at 𝑥 ∈ 𝑀 .

Theorem 2.2.3 (Global Chart Theorem [106]). LetM = (𝑀,O𝑀 ) be an algebro-
geometric supermanifold andU𝑚 |𝑛 = (𝑈 ,𝐶∞

𝑈
) ⊆ R𝑚 |𝑛 be a superdomain with𝑈 ⊆

R𝑚 open. There is a bijective correspondence between supermanifold morphisms 𝜓 :
M → U𝑚 |𝑛 and tuples (𝑡♯𝑖 , 𝜃 ♯𝑗 ) of global sections of O𝑀 with 𝑡♯𝑖 even and 𝜃 ♯𝑗 odd,
𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛, such that (𝑡♯1(𝑥), . . . , 𝑡♯𝑚 (𝑥)) ∈ 𝑈 ∀𝑥 ∈ 𝑀 .

Proof. It follows that, if 𝜙 : M →N is a morphism of supermanifolds, then 𝜙♯ ( 𝑔) (𝑦)
= 𝑔 ( |𝜙| (𝑦)) for any 𝑔 ∈ O(N) and 𝑦 ∈ 𝑁 where N = (𝑁 ,O𝑁 ). It is clear, by
restricting the global sections 𝑡 𝑖 and 𝜃𝑗 of R𝑚 |𝑛 to the superdomainU𝑚 |𝑛, that their
respective pullback 𝑡♯𝑖 := 𝜓 ♯ (𝑡 𝑖) and 𝜃 ♯𝑗 := 𝜓 ♯ (𝜃𝑗 ) w.r.t. a morphism 𝜓 : M →
U𝑚 |𝑛 indeed satisfy the properties as stated in the theorem. The inverse direction follows
from the local triviality property of supermanifolds. □

Example 2.2.4 (The split functor (see also Example C.11)). Typical examples of a super-
manifolds are obtained via their strong relationship to vector bundles. Let𝑉 → 𝐸

𝜋→

13



2. Supergeometry

𝑀 be a real vector bundle over an𝑚-dimensional manifold with typical fiber given by a
vector space𝑉 of dimensional 𝑛. This naturally yields a locally ringed space setting

S(𝐸, 𝑀 ) := (𝑀, Γ(∧𝐸∗)) (2.7)

where Γ(∧𝐸∗) denotes the space of of smooth sections of the exterior bundle
∧
𝐸∗.

Since Γ(∧𝐸∗) � ∧
Γ(𝐸)∗ naturally carries a Z2-grading, it follows that it has the

structure of a sheaf of local super rings, that is, S(𝐸, 𝑀 ) defines an algebro-geometric
supermanifold of dimension (𝑚, 𝑛) also called a split supermanifold. A morphism
(𝜙, 𝑓) : (𝐸, 𝑀 ) → (𝐹 , 𝑁 ) between two vector bundles induces a morphism S(𝜙, 𝑓) :
S(𝐸, 𝑀 ) → S(𝐹 , 𝑁 ) between the corresponding split supermanifolds. Hence, this
yields a functor

S : VectR → SManAlg (2.8)

from the category of real vector bundles to the category of algebro-geometric super-
manifolds which we call the split functor. In case that the vector bundle (𝐸, 𝑀 ) =
(𝑀 ×𝑉 , 𝑀 ) is trivial, S(𝐸, 𝑀 ) will be called globally split and we also simply write
S(𝑉 , 𝑀 ) ≡ S(𝐸, 𝑀 ). It is a general result due to Batchelor [107] that any algebro-
geometric supermanfold is isomorphic to a split supermanifold of the form (2.7), i.e.,
(2.8) is surjective on objects. However, the split functor is not full, i.e., not every mor-
phism 𝑓 : S(𝐸, 𝑀 ) → S(𝐹 , 𝑁 ) between split manifolds arises from a morphism
between the respective vector bundles (𝐸, 𝑀 ), (𝐹 , 𝑁 ) ∈ Ob(VectR). Hence, the
structure of morphisms between supermanifolds, in general, turns out to be much
richer than for ordinary vector bundles. This is of utmost importance in modelling for
instance supersymmetry transformations to be discussed in Section 3.4.

As a next step, we want to describe a relation between algebro-geometric and Rogers-
DeWitt supermanifolds. A very elegant way in describing this relationship is given by the
so-called functors of point approach. It is a general technique in algebraic geometry which
can be used in order to give, a priori, very abstract objects a more concrete reinterpretation
making proofs much easier in certain instances. As explained already in the introduction
to this chapter, a general “issue” concerning algebro-geometric supermanifolds is the
lack of points. In fact, in contrast to ordinary smooth manifolds, the points of the
underlying topological space do not suffice to uniquely characterize the sections of the
structure sheaf. As it turns out, this can be cured by studying the morphisms between
them.

Definition 2.2.5. LetM be an algebro-geometric supermanifold. The functor of points
ofM is defined as the covariant functorM : SManop

Alg → Set on the opposite category
SManop

Alg associated toM which on objects T ∈ Ob(SManAlg) is defined as

M(T) := Hom(T ,M) (2.9)

14



2.2. Three roads towards a theory of supermanifolds

also called the T -point ofM and for morphisms 𝑓 ∈ Hom(T ,S), the corresponding
morphismM(𝑓) ∈ Hom(M(S),M(T)) is given by

M(𝑓) : M(S) → M(T), 𝑔 ↦→ 𝑔 ◦ 𝑓 (2.10)

Hence, the functor of points ofM coincides with the partial Hom-functor ℎM :=
Hom(M, · ) on SManop

Alg.

If 𝜙 : M →N is a morphism between algebro-geometric supermanifolds, this yields a
map 𝜙T : M(T) → N(T ) between the associatedT -points by setting 𝜙T (𝑓) := 𝜙◦𝑓
∀𝑓 ∈ M(T ) = Hom(T ,M). By definition, it then follows that for any morphism
𝑓 : S → T one has

N(𝑓) ◦ 𝜙T ( 𝑔) = 𝜙T ( 𝑔) ◦ 𝑓 = 𝜙 ◦ 𝑔 ◦ 𝑓 = 𝜙S ◦M(𝑓) ( 𝑔) (2.11)

∀𝑔 ∈ M(T ), that is, the following diagram is commutative

M(T)
M(𝑓) //

𝜙T
��

M(S)
𝜙S
��

N(T )
N(𝑓) // N(S)

Hence, a morphism 𝜙 : M → N induces a natural transformation between the
associated functor of points. This poses the question whether all natural transformations
arise in this way. This is an immediate consequence of the following well-known lemma.

Lemma 2.2.6 (Yoneda Lemma). Let C be a category and 𝐹 : C → Set be a functor.
Then, for any object 𝑋 ∈ Ob(C), the assignment 𝜂 ↦→ 𝜂𝑋 (id𝑋 ) yields a bijective
correspondence between natural transformations 𝜂 : Hom(𝑋 , · ) → 𝐹 and the set
𝐹 (𝑋 ) ∈ Ob(Set).

Applied to our concrete situation, this implies that for the functor of points ℎM :
SManop

Alg → Set and ℎN : SManop
Alg → Set associated to algebro-geometric superman-

ifoldsM andN , one has a bijective correspondence between natural transformations
between ℎM and ℎN and elements in Hom(N , · ) (M) = Hom(M,N). In particular,
the supermanifoldsM andN are isomorphic iff the associated functor of points are
naturally isomorphic.

We next want to find an equivalent description of the T -points of an algebro-geometric
supermanifoldM purely in terms of global sections of the structure sheafO𝑀 . Consider
therefore the set SpecR(O(M)) := HomSAlg (O(M),R) called the real spectrum of
O(M) = O𝑀 (𝑀 ). Since, a morphism 𝜙 : O(M) → R in the real spectrum is always

15



2. Supergeometry

surjective, it follows that the kernel ker(𝜙) yields a maximal ideal in O(M), i.e., an
element of the maximal spectrum

MaxSpecR(O(M)) := {𝐼 ⊂ O(M)| 𝐼 is a maximal ideal} (2.12)

In fact, it follows that all maximal ideals in O(M) are of this form. This is a direct
consequence of the super version of the classical “Milnor’s exercise” [106].

Proposition 2.2.7 (Super Milnor’s exercise). For an algebro-geometric supermanifold
M all the maximal ideals in O(M) are of the form 𝔍𝑥 := ker(ev𝑥 : O(M) → R) for
some 𝑥 ∈ 𝑀 , where ev𝑥 ∈ HomSAlg (O(M),R) is the evaluation morphism at 𝑥 (Eq.
(2.6)).

Proof. Let 𝐼 ⊂ O𝑀 be a maximal ideal. On 𝑀0 := (𝑀,O𝑀/J𝑀 ) consider the the
subset 𝑗 ♯ (𝐼 ) ⊆ 𝐶∞(𝑀0) of 𝐶∞(𝑀0), where 𝑗 ♯ : O𝑀 → O𝑀/JM � 𝐶∞𝑀0

is the
pullback of the canonical embedding 𝑗 : 𝑀0 ↩→M. Since 𝑗 ♯ is a surjective morphism
of super rings and 1 ∉ 𝐼 , it follows that 𝑗 ♯ (𝐼 ) is a maximal ideal in 𝐶∞(𝑀0). By the
classical Milnor’s exercise, we thus have 𝑗 ♯ (𝐼 ) := ker(ev𝑥 : 𝐶∞(𝑀0) → R) for some
𝑥 ∈ 𝑀 . Hence, 𝐼 ⊆ 𝔍𝑥 implying 𝐼 = 𝔍𝑥 by maximality of 𝐼 . □

Hence, according to Prop. 2.2.7, we are allowed to identify the real spectrum with
MaxSpecR(O(M)) and even obtain a bijection Ψ : 𝑀

∼−→ SpecR(O(M)) via

𝑀 ∋ 𝑥 ∼↦→ (ev𝑥 : O(M) → R) ∈ SpecR(O(M))
∼↦→ ker(ev𝑥) ∈ MaxSpecR(O(M))

(2.13)
We want to define a topology on SpecR(O(M)) such that Ψ becomes a homeomor-
phism. To this end, note that any section 𝑓 ∈ O(M) canonically induces a morphsim
𝜙𝑓 : SpecR(O(M)) → R by setting

𝜙𝑓(ev𝑥) := ev𝑥 (𝑓) = 𝑓(𝑥) (2.14)

Hence, let us endow SpecR(O(M)) with the Gelfand topology which is defined as the
coarsest topology such that the maps 𝜙𝑓 for all 𝑓 ∈ O(M) are continuous. A basis of
this topology is generated by open subsets of the form

𝜙−1
𝑓
(𝐵𝜖 (𝑥0)) = {ev𝑥 ∈ SpecR(O(M))| | (ev𝑥 − ev𝑥0) (𝑓) | < 𝜖} (2.15)
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2.2. Three roads towards a theory of supermanifolds

for some 𝑓 ∈ O(M) and 𝐵𝜖 (𝑥0) ⊂ 𝑀 an open ball of radius 𝜖 around 𝑥0 ∈ 𝑀 . It
then follows immediately that the map Ψ : 𝑀

∼−→ SpecR(O(M)) is continuous w.r.t.
this topology, since

Ψ−1(𝜙−1
𝑓
(𝐵𝜖 (𝑥0))) = |𝑓|−1(𝐵𝜖 (𝑓(𝑥0))) (2.16)

is open in 𝑀 as |𝑓| : 𝑀 → R is continuous. In fact, Ψ is even a homeomorphism. To
see this, consider a closed subset 𝑋 ⊆ 𝑀 and let𝔭𝑋 be the ideal in O(M) defined as
the set of all sections 𝑓 ∈ O(M) vanishing on 𝑋 . Using a partition of unity argument,
it follows that

𝑋 = {𝑥 ∈ 𝑀 | 𝑓(𝑥) = 0, ∀𝑓 ∈ 𝔭𝑋 } (2.17)

and thus
Ψ(𝑋 ) =

⋂
𝑓∈𝔭𝑋

𝜙−1
𝑓
({0}) (2.18)

i.e., Ψ(𝑋 ) is closed in SpecR(O(M)) proving that Ψ is indeed a homeomorphism.

Theorem 2.2.8. LetM andN be algebro-geometric supermanifolds. Then, their exists a
bijective correspondence between the set Hom(M,N) of morphisms of algebro-geometric
supermanifolds and the set HomSAlg (O(N),O(M)) of superalgebra morphisms between
the superalgebras of global sections of the respective structure sheaves.

Sketch of Proof. One direction is immediate, i.e., that the pullback of a supermanifold
morphism 𝜙 : M →N induces a morphism 𝜙♯ : O(N) → O(M) of the respective
structure sheaves. The proof of the inverse direction uses a standard tool in algebraic
geometry called localization of rings. See [106] for more details. □

Hence, according to this theorem, in the following, we will identify the T -pointM(T)
of an algebro-geometric supermanifoldM with Hom(O(M),O(T )). For instance,
let us consider the T -points R𝑚 |𝑛(T ) = Hom(O(R𝑚 |𝑛),O(T )) of the superspace
R𝑚 |𝑛. By the Global Chart Theorem 2.2.3, this set can be identified with

R𝑚 |𝑛(T ) � {(𝑡1, . . . , 𝑡𝑚, 𝜃1, . . . , 𝜃𝑛) | 𝑡 𝑖 ∈ O(T )0, 𝜃𝑗 ∈ O(T )1}
= O(T )𝑚0 ⊕ O(T )𝑛1 = (O(T ) ⊗ R𝑚 |𝑛)0 (2.19)

For J (T ) := {𝑓 ∈ O(T )| 𝑓 is nilpotent} the ideal of nilpotent sections of O(T ),
this yields the canonical projection 𝜖 : O(T ) → O(T )/J (T ) � 𝐶∞(𝑇0) with𝑇0
defined via (2.5) which can be extended to the body map

𝜖𝑚,𝑛 : (O(T ) ⊗ R𝑚 |𝑛)0 → 𝐶∞(𝑇0)𝑚 (2.20)

17



2. Supergeometry

In the following, we want to restrict to a subclass of supermanifolds T ∈ SManAlg
for which𝐶∞(𝑇0) � R, i.e., for which the underlying topological space𝑇 = {∗} just
consists of a single point. Hence, it follows that T � ({∗},Λ𝑁 ) = R0 |𝑁 for some
𝑁 ∈ N0.

Definition 2.2.9. An algebro-geometric supermanifold T is called a superpoint if the
underlying topological space𝑇 only consists of a single point. The subclass of super
points form a full subcategory SPoint of SManAlg called the category of superpoints.

Proposition 2.2.10 (see [98, 99]). Let Gr be the category of (finite-dimensional) Grass-
mann algebras whose objects are given by equivalence classes of Grassmann algebras
Λ𝑁 ∈ Ob(Gr), 𝑁 ∈ N0, and for Λ𝑁 ,Λ𝑁 ′ ∈ Ob(Gr), HomGr(Λ𝑁 ,Λ𝑁 ′) is given
by the set of superalgebra morphisms between Grassmann algebras. Then, the assignment

Grop → SPoint, Λ𝑁 ↦→ ({∗},Λ𝑁 ) (2.21)
(𝜙 : Λ𝑁 → Λ𝑁 ′) ↦→ (id{∗}, 𝜙)

yields an equivalence of categories. □

In the following, we will therefore identify superpoints with finite-dimensional Grass-
mann algebras. From (2.19), it follows for 𝑁 ∈ N0

R𝑚 |𝑛(Λ𝑁 ) � (Λ𝑁 ⊗ R𝑚 |𝑛)0 =: Λ𝑚,𝑛
𝑁

(2.22)

with Λ𝑚,𝑛
𝑁

the superdomain of dimension (𝑚, 𝑛) (see Definition C.1). We equip Λ𝑚,𝑛
𝑁

with the coarsest topology such that the body map 𝜖𝑚,𝑛 : Λ𝑚,𝑛
𝑁
→ R𝑚 is continuous,

the so-called DeWitt-topology. Hence, in this way, it follows that R𝑚 |𝑛(Λ𝑁 ) can be
identified with a trivial supermanifold in the sense of Rogers-DeWitt.

2.2.2. Algebro-geometric and 𝐻∞ supermanifolds: An equivalence of
categories

With these preliminaries, in the following, we are ready to describe a concrete link
between the algebro-geometric and Rogers-DeWitt approach using the functor of points
technique. To this end, we first show that smooth functions on R𝑚 |𝑛(Λ𝑁 ) � Λ𝑚,𝑛

𝑁

can be described in terms of natural transformations between functor of points.

More precisely, by the Global Chart Theorem 2.2.3, a section 𝑓 ∈ O(R𝑚 |𝑛) can be
identified with a morphism 𝑓 : R𝑚 |𝑛 → R1 |1. According to (2.11), this in turn induces
a natural transformation 𝑓T : R𝑚 |𝑛(T ) → R1 |1(T ) between the respective functor of
points. Sticking to Grassmann algebras, we want to find an explicit form of 𝑓Λ𝑁 . To this
end, let (𝑥, 𝜉 ) ∈ Λ𝑚,𝑛

𝑁
which we can identify with a morphism 𝑔 : R0 |𝑁 → R𝑚 |𝑛 such
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that 𝑔♯ (𝑡 𝑖) = 𝑥 𝑖 and 𝑔♯ (𝜃𝑗 ) = 𝜉 𝑗 ∀𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛. It then follows again
from Theorem 2.2.3 that 𝑓Λ𝑁 (𝑥, 𝜉 ) can be identified with an element of Λ1,1

𝑁
≡ Λ𝑁

whose even and odd part is given by 𝑔♯ (𝑓♯ (𝑡)) and 𝑔♯ (𝑓♯ (𝜃)), respectively, where 𝑡
and 𝜃 denote the global sections of O(R1 |1). Thus, expanding 𝑓 =

∑
𝐼 𝑓𝐼 𝜃

𝐼 , this yields

𝑓Λ𝑁 (𝑥, 𝜉 ) = 𝑔♯ (𝑓♯ (𝑡)) + 𝑔♯ (𝑓♯ (𝜃)) =
∑︁
𝐼 , 𝐽

1
𝐽 !
𝜕𝐽 𝑓𝐼

��
| 𝑔 | 𝑠( 𝑔

♯ (𝑡)) 𝐽 ( 𝑔♯ (𝜃))𝐼

=
∑︁
𝐼 , 𝐽

1
𝐽 !
𝜕𝐽 𝑓𝐼 (𝜖𝑚,𝑛(𝑥)) 𝑠(𝑥) 𝐽 𝜉 𝐼 =:

∑︁
𝐼

G(𝑓𝐼 ) (𝑥)𝜉 𝐼 (2.23)

where 𝑠(𝑥) := 𝑥 − 𝜖𝑚,𝑛(𝑥) is the soul map and

G(𝑓𝐼 ) (𝑥) :=
∑︁
𝐽

1
𝐽 !
𝜕𝐽 𝑓𝐼 (𝜖𝑚,𝑛(𝑥)) 𝑠(𝑥) 𝐽 (2.24)

is called the Grassmann-analytic continuation of 𝑓𝐼 or simply its G-extension. Functions
of the form (2.23) are precisely supersmooth functions in the sense of Rogers-DeWitt!
In the standard literature, they are also called of class 𝐻∞ (see Appendix C). As a
result, Λ𝑚,𝑛

𝑁
together with functions of the form (2.23) yields a Rogers-DeWitt or 𝐻∞

supermanifold. The assignment

HomSManAlg (R𝑚 |𝑛,R1 |1) → 𝐻∞(Λ𝑚,𝑛
𝑁
) (2.25)

𝑓 ↦→ 𝑓Λ𝑁

is clearly surjective but in general not injective unless 𝑁 ≥ 𝑛. We next want to extend
these considerations from superspaces to arbitrary algebro-geometric supermanifolds.
To this end, we make the following definition.

Definition 2.2.11. For 𝑁 ∈ N, the functor H𝑁 : SManAlg → Sets is defined on
objectsM ∈ Ob(SManAlg) via

H𝑁 (M) :=M(Λ𝑁 ) = Hom(O(M),∧R𝑁 ) (2.26)

and on morphisms 𝑓 : M →N according to

H𝑁 (𝑓) : Hom(O(M),∧R𝑁 ) → Hom(O(N),∧R𝑁 ), 𝜙 ↦→ 𝜙 ◦ 𝑓♯ (2.27)

The setM(Λ𝑁 ) contains the real spectrum SpecR(O(M)) = Hom(O(M),R) =
M(R) as a proper subset. According to Prop. 2.2.7 (see also (2.13)), this set can be
identified with 𝑀 and thus, in particular, naturally inherits a topology. Using this
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property, we again introduce the DeWitt-topology onM(Λ𝑁 ) to be coarsest topology
such that the projection1

B : M(Λ𝑁 ) → SpecR(O(M)) � 𝑀, 𝜓 ↦→ 𝜖 ◦ 𝜓 (2.28)

is continuous.

Proposition 2.2.12. Let𝑈 ⊆ 𝑀 be an open subset of the underlying topological space
𝑀 of an algebro-geometric supermanifoldM. Let us identify 𝑈 via Ψ : 𝑀 →
SpecR(O(M)), 𝑥 ↦→ ev𝑥 with an open subset in the real spectrum. Then, it follows
that the open subsets B−1(𝑈 ) inM(Λ𝑁 ) are given by

B−1(𝑈 ) = {𝜓 : O(M) → Λ𝑁 | 𝜖 ◦ 𝜓 = ev𝑥 for some 𝑥 ∈ 𝑈 } (2.29)

In particular, one has B−1(𝑈 ) =M|𝑈 (Λ𝑁 ) withM|𝑈 := (𝑈 ,O𝑀 |𝑈 ).

Proof. The first assertion is immediate, since 𝜓 ∈ B−1(𝑈 ) if and only if 𝜖 ◦𝜓 ∈ Ψ(𝑈 ),
i.e., 𝜖 ◦ 𝜓 = ev𝑥 for some 𝑥 ∈ 𝑈 . To prove the last one, note that, by Theorem 2.2.8,
one can identify a superalgebra morphism 𝜓 : O(M) → Λ𝑁 with the pullback of
a supermanifold morphism 𝜙 := ( |𝜙|, 𝜙♯) : R0 |𝑁 = ({∗},Λ𝑁 ) → M. For any
𝑓 ∈ O(M), 𝜖(𝜙♯ (𝑓)) is defined as the unique real number such that 𝜙♯ (𝑓) − 𝜖(𝜙♯ (𝑓))
is not invertible. This is precisely the definition of the value of a section of Λ𝑁 at {∗},
i.e., 𝜖(𝜙♯ (𝑓)) = 𝜙♯ (𝑓) ({∗}) = 𝑓( |𝜙| ({∗})). Since, 𝜖 ◦ 𝜙♯ = ev𝑥 for some 𝑥 ∈ 𝑀 , this
yields 𝑓( |𝜙| ({∗})) = ev𝑥 (𝑓) = 𝑓(𝑥) for any 𝑓 ∈ O(M) which implies |𝜙| ({∗}) = 𝑥.
Note that 𝜙♯ is a morphism of sheaves and thus, in particular, commutes with restrictions.
Hence, if, for 𝑓 ∈ O(M), there exists an open neighborhood 𝑥 ∈𝑉 such that 𝑓|𝑉 = 0,
then 𝜙♯ (𝑓) = 0. That is, 𝜙♯ is uniquely determined by the induced stalk morphism
𝜙
♯
𝑥 : OM,𝑥 → Λ𝑁 . From this, it is immediate to see that any 𝜓 ∈ M|𝑈 (Λ𝑁 ) =

Hom(O𝑀 (𝑈 ),Λ𝑁 ) can trivially be extended to a morphism 𝜓 : O(M) → Λ𝑁
satisfying 𝜖 ◦ 𝜓 = ev𝑥 for some 𝑥 ∈ 𝑈 , i.e., 𝜓 ∈ B−1(𝑈 ). Conversely, it follows that
any morphism in B−1(𝑈 ) arises in this way. This proves the last assertion. □

By the local property, for any 𝑥 ∈ 𝑀 , there exists an open subset 𝑥 ∈ 𝑈 ⊆ 𝑀

such thatM|𝑈 is isomorphic to a superdomainU𝑚 |𝑛 which is a submanifold of the
superspaceR𝑚 |𝑛. Applying the functor (2.26) and using Prop. 2.2.12, we thus obtain an
isomorphism

B−1(𝑈 ) =M|𝑈 (Λ𝑁 ) → U𝑚 |𝑛(Λ𝑁 ) ⊆ R𝑚 |𝑛(Λ𝑁 ) (2.30)

1 In caseM is simply given by the superspaceR𝑚 |𝑛, this coincides with the body map (2.20).
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2.2. Three roads towards a theory of supermanifolds

i.e., a local superchart ofM(Λ𝑁 ). By (2.23), it follows immediately that the transition
map between two local supercharts defines a 𝐻∞-smooth function. As a consequence,
M(Λ𝑁 ) indeed carries the structure of a 𝐻∞ supermanifold. Hence, it follows that the
Λ-points of an algebro-geometric supermanfold naturally define supermanifolds in the
sense of Rogers-DeWitt (or more generallyA-manifolds in the sense of Tuynman [97]).
Moreover, the corresponding topological space B(M(Λ𝑁 )) = SpecR(O(M)) has the
structure of an ordinary𝐶∞ manifold.

Remark 2.2.13. Just for sake of completeness, note that eachM ∈ Ob(SManAlg) gives
rise to the obvious functor

M : Gr→ Top (2.31)

which maps Grassmann algebras Λ to Λ-pointsM(Λ). This leads to the interpretation
of a supermanifold in the sense of Molotkov-Sachse [98–100].

Similar to (2.25), for any𝑈 ⊆ 𝑀 open, one obtains a map

O𝑀 (𝑈 ) � Hom(M|𝑈 ,R1 |1) → 𝐻∞(M|𝑈 (Λ𝑁 )) = B∗𝐻∞M(Λ𝑁 ) (𝑈 ) (2.32)

𝑓 ↦→ 𝑓Λ𝑁

which is generally surjective but injective iff 𝑁 ≥ 𝑛. In particular, one can show that it
defines a morphism of sheaves, i.e., it commutes with restrictions.

Consider next a 𝐻∞ supermanifoldK ∈ Ob(SMan𝐻∞). ToK , one can associate the
body B(K) defined as the subset ofK given by

B(K) := {𝑥 ∈ K| 𝑓(𝑥) ∈ R, ∀𝑓 ∈ 𝐻∞(K)} (2.33)

which, by definition, has the structure of an ordinary smooth manifold. This can be
extended to morphisms 𝑓 : K → L between 𝐻∞ supermanifolds setting2 B(𝑓) :=
𝑓|B(K) : B(K) → B(L) yielding a functor B : SMan𝐻∞ → Man called the body
functor. In case K is given by a Λ𝑁 -pointM(Λ𝑁 ) of an algebro-geometric super-
manifoldM ∈ Ob(SManAlg) with odd dimension bounded by 𝑁 , one can iden-
tify B(K) with the real spectrum SpecR(O(M)) justifying the notation. To see this,
note that, in this case, (2.32) implies that smooth functions on K are given by natu-
ral transformations 𝑓Λ𝑁 induced by morphisms 𝑓 ∈ Hom(M,R1 |1). For 𝜙 ∈ K =

Hom(O(M),Λ𝑁 ), 𝑓Λ𝑁 (𝜙) can be identified with the element 𝜙 ◦ 𝑓♯ ∈ Λ𝑁 . Hence,
𝜙 ∈ B(N) ⇔ 𝑓Λ𝑁 (𝜙) ∈ Hom(O(R1 |1),R) � R ∀𝑓 ∈ Hom(M,R1 |1) if and only if
𝜙 ∈ Hom(O(M),R), that is, iff 𝜙 is contained in the real spectrum SpecR(O(M)).

2 Note that 𝑓(B(K)) ⊆ B(L) so that 𝑓|B(K) : B(K) → B(L) is indeed well-defined. In fact, for any
𝑔 ∈ 𝐻∞ (L) and 𝑥 ∈ B(K), it follows 𝑔 (𝑓(𝑥)) = ( 𝑔 ◦ 𝑓) (𝑥) ∈ R as 𝑔 ◦ 𝑓 is smooth and therefore
𝑓(𝑥) ∈ B(L).
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To any 𝐻∞ supermanifoldK , one can associate the locally ringed space

A(K) := (B(K),B∗𝐻∞K ) (2.34)

which has the structure of an algebro-geometric supermanifold. A morphism 𝑓 : K →
L between 𝐻∞ supermanifoldsK andL canonically induces a morphism

A(𝑓) = (𝑓|B(K) , 𝑓∗) : A(K) → A(L) (2.35)

between the corresponding algebro-geometric supermanifolds, where 𝑓∗ denotes the
ordinary pullback of smooth functions. Hence, this yields a functor

A : SMan𝐻∞ → SManAlg (2.36)

Let us restrict H𝑁 to the full subcategory SManAlg,𝑁 ⊂ SManAlg,𝑁 of algebro- geomet-
ric supermanifolds with odd dimension bounded by 𝑁 . Then, based on the previous
observations, if follows A(H𝑁 (M)) �M for anyM ∈ Ob(SManAlg,𝑁 ). In fact, we
have the following.

Theorem 2.2.14. The functor A ◦ H𝑁 : SManAlg,𝑁 → SManAlg,𝑁 is naturally
equivalent to the identity functor id : SManAlg,𝑁 → SManAlg,𝑁 .

Proof. We have to show that the following diagrams are commutative

𝑀
|𝑓| //

Ψ
��

𝑁

Ψ
��

SpecR(O(M)) // SpecR(O(N))

O𝑀
𝑓♯ //

�

��

𝑓∗O𝑀
�

��
B∗𝐻∞N(Λ𝑁 )

H𝑁 (𝑓)∗ // 𝑓∗(B∗𝐻∞M(Λ𝑁 ) )

for anyM,N ∈ Ob(SManAlg,𝑁 ) and morphisms 𝑓 = ( |𝑓|, 𝑓♯) : M →N where, in
the diagram on the left, the lower arrow is given by the restriction of H𝑁 (𝑓) to the real
spectrum SpecR(O(M)). That the left diagram commutes follows immediately, since,
by Def. (2.27), we have

H𝑁 (𝑓) (evx) = ev𝑥 ◦ 𝑓♯ = ev |𝑓| (𝑥) (2.37)

for any 𝑥 ∈ 𝑀 . To see the commutativity of the right diagram, note that, by identifying
𝑔 ∈ O(N) with a morphism 𝑔 : N → R1 |1, the pullback 𝑓♯ ( 𝑔) is given by the
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2.3. Super Lie groups and Lie superalgebras

morphism 𝑔 ◦ 𝑓 : M → R1 |1. Moreover, identifying 𝜙 ∈ M(Λ𝑁 ) with a morphism
𝜙 : R0 |𝑁 →M, we have H𝑁 (𝑓) (𝜙) = 𝑓 ◦ 𝜙. Thus, this yields

H𝑁 (𝑓)∗( 𝑔Λ𝑁 ) (𝜙) = 𝑔Λ𝑁 (H𝑁 (𝑓) (𝜙))
= 𝑔 ◦ 𝑓 ◦ 𝜙 = 𝑓♯ ( 𝑔) ◦ 𝜙 = (𝑓♯ ( 𝑔))Λ𝑁 (𝜙) (2.38)

for any 𝑔 ∈ O(N) and 𝜙 ∈ M(Λ𝑁 ). This proves the theorem. □

Conversely, it is immediate to see that H𝑁 ◦ A is naturally equivalent to the identity
functor on the full subcategory SMan𝐻∞,𝑁 of 𝐻∞ supermanifolds with odd dimen-
sion bounded by 𝑁 (see also [95, 108]). Thus, the functors H𝑁 : SManAlg,𝑁 →
SMan𝐻∞,𝑁 and A : SMan𝐻∞,𝑁 → SManAlg,𝑁 provide an equivalence of categories.

To summarize, any algebro-geometric supermanfold induces a functor of the form (2.31)
assigning Grassmann algebras to the corresponding 𝐻∞ supermanifold. Moreover,
in case that the number of odd generators of the Grassmann algebra is large enough,
via (2.26), one even obtains an equivalence of categories which allows one to uniquely
reconstruct the underlying algebro-geometric supermanifold. For this reason, many
constructions on algebro-geometric supermanifolds can equivalently be performed on
the corresponding 𝐻∞ supermanifolds (in fact, we will mainly do so in what follows
as 𝐻∞ manifolds are often easier to handle for applications in physics). However, the
choice of a particular Grassmann algebra is completely arbitrary and therefore tends
to introduce superfluous (physical) degrees of freedom. Consequently, any definition
made on a𝐻∞ supermanifold should not depend on a particular choice of a Grassmann
algebra but, in the sense of Molotkov-Sachse, behave functorially under the change of
Grassmann algebras. In the following, working with a particular 𝐻∞ supermanifold
M, we will only assume that the number of odd generators of the Grassmann algebra Λ
over whichM is modeled is large enough, i.e., greater than the odd dimension ofM.3

2.3. Super Lie groups and Lie superalgebras
Super Lie groups and their corresponding algebras play a prominent role in context
of supergravity, in particuular, in the framework of the Cartan geometric approach
which will be discussed in detail in Chapter 3. In the following, let us recall very briefly
the main definition of super Lie groups in the algebraic category and their associated
super Lie algebras as well as the relation to their corresponding 𝐻∞ counterparts (see,
e.g., [106] for an introduction to super Lie groups in the algebraic category as well as [96]

3 For this reason, in the standard literature, one typically chooses the infinite-dimensional Grassmann
algebra Λ∞ generated by infinite number of Grassmann-generators which may be obtained as an
inductive limit of the finite-dimensional ones. Also in this case, one can show that the category of
algebro-geometric and 𝐻∞ supermanifolds modeled over Λ∞ are indeed equivalent [95, 108].
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2. Supergeometry

in the Rogers-DeWitt approach). We will then turn quickly towards important examples
which will be of central interest in the context of physical applications.

Definition 2.3.1 (see [106]). An algebro-geometric super Lie group G := (𝐺,O𝐺) is an
algebro-geometric supermanifold G ∈ Ob(ManAlg) together with three morphisms

𝜇 : G × G → G, 𝑖 : G → G, 𝑒 : R0 |0 → G (2.39)

called multiplication, inverse and neutral element, respectively, satisfying the following
commutative diagrams

G × G × G
𝜇×id //

id×𝜇

��

G × G

𝜇

��
G × G

𝜇 // G

G × G
𝜇

""
G

⟨id,𝑖 ⟩
<<

𝑒̂ //

⟨𝑖,id⟩ ""

G

G × G
𝜇

<<

G × G
𝜇

""
G

⟨id,𝑒̂⟩
<<

id //

⟨𝑒̂,id⟩ ""

G

G × G
𝜇

<<

(2.40)

where 𝑒̂ denotes the composition of the neutral element 𝑒 : R0 |0 → G with the
unique morphism G → R0 |0. Moreover, for two morphisms 𝜙 and 𝜓 : G → G,
⟨𝜙, 𝜓 ⟩ : G → G is defined as the morphism (𝜙 × 𝜓 ) ◦ 𝑑G with 𝑑G the diagonal map
𝑑G : G → G × G.

Definition 2.3.2. Let G = (𝐺,O𝐺) be an algebro-geometric super Lie group. A
smooth vector field or derivation 𝑋 ∈ Der(O𝐺) on the function sheaf O𝐺 is called left-
resp. right-invariant if

1 ⊗ 𝑋 ◦ 𝜇♯ = 𝜇♯ ◦ 𝑋 resp. 𝑋 ⊗ 1 ◦ 𝜇♯ = 𝜇♯ ◦ 𝑋 (2.41)

Definition 2.3.3. The super Lie algebra (or Lie superalgebra) 𝔤 of an algebro-geometric
super Lie group G = (𝐺,O𝐺) is defined as the sub super Lie algebra of left-invariant
vector fields on G where the Lie bracket [·, ·] on 𝔤 is defined via the graded commutator
of vector fields, i.e.,

[𝑋 ,𝑌 ] := 𝑋 ◦𝑌 − (−1) |𝑋 | |𝑌 |𝑌 ◦ 𝑋 (2.42)

for any homogeneous 𝑋 ,𝑌 ∈ 𝔤.
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2.3. Super Lie groups and Lie superalgebras

Remark 2.3.4. Trivially, any left-invariant vector field 𝑋 ∈ 𝔤 on an algebro-geometric
super Lie group G = (𝐺,O𝐺) defines a tangent vector at the identity 𝑋𝑒 ∈ 𝑇𝑒 (𝐺,O𝐺),
that is, a linear derivation 𝑋𝑒 : O𝐺,𝑒 → R on the stalk O𝐺,𝑒 by evaluation 𝑋𝑒 := 𝑒♯ ◦ 𝑋 .
Conversely, any tangent vector 𝑌𝑒 ∈ 𝑇𝑒 (𝐺,O𝐺) canonically induces a left-invariant
vector field 𝑌 ∈ 𝔤 via 𝑌 := 1 ⊗ 𝑌𝑒 ◦ 𝜇♯. In fact, using associativity of the group
multiplication, it follows

1 ⊗ 𝑌 ◦ 𝜇♯ = 1 ⊗ (1 ⊗ 𝑌𝑒 ◦ 𝜇♯) ◦ 𝜇♯ = 1 ⊗ 1 ⊗ 𝑌𝑒 ◦ 1 ⊗ 𝜇♯ ◦ 𝜇♯

= 1 ⊗ 1 ⊗ 𝑌𝑒 ◦ 𝜇♯ ⊗ 1 ◦ 𝜇♯ = 𝜇♯ ◦ (1 ⊗ 𝑌𝑒 ◦ 𝜇♯) = 𝜇♯ ◦𝑌 (2.43)

Hence, in this way, this yields an isomorphism of super vector spaces such that we may
identify 𝔤 � 𝑇𝑒 (𝐺,O𝐺). For this reason, if not stated otherwise, we will not specify
whether a super Lie algebra element 𝑋 ∈ 𝔤 is viewed as a left-invariant vector field or as
a tangent vector at the identity.

Remark 2.3.5. In Definition 2.3.3, the sub super Lie algebra of left-invariant vector fields
was taken for the definition of the super Lie algebra of an algebro-geometric super Lie
group G = (𝐺,O𝐺). On the other hand, we could also have taken the right-invariant
vector fields as these form a sub super Lie algebra, as well. In the following, we will
denote this super Lie algebra by 𝔤𝑅.

Next, we want to turn to the notion of super Lie groups in the category of Rogers-
DeWitt supermanifolds which is more or less in complete analogy to the standard theory
of ordinary smooth manifolds.

Definition 2.3.6. A 𝐻∞ super Lie group G is a 𝐻∞ supermanifold together with
two morphisms 𝜇 : G × G → G and 𝑖 : G → G called multiplication and inverse,
respectively, as well as an element 𝑒 ∈ G called neutral element such that, after applying
the forgetful functor SMan𝐻∞ → Set, (G, 𝜇, 𝑖, 𝑒) defines an ordinary group in the
category Set.

It is clear by functoriality that, given an algebro-geometric super Lie groupG = (𝐺,O𝐺),
the corresponding Λ𝑁 -points G(Λ𝑁 ) = H𝑁 (G) with 𝑁 greater than the odd dimen-
sion of G have the structure of 𝐻∞ super Lie groups. Conversely, a 𝐻∞ super Lie
group G naturally induces a corresponding algebro-geometric super Lie group A(G) =
(B(G), 𝐻∞G ). In this context, it is important to note that the neutral element 𝑒 ∈ G
of a 𝐻∞ super Lie group G is an element of the body4 such that the pullback induces

4 In fact, since B(𝑖) = 𝑖 |B(G) , it follows that, for any 𝑔 ∈ B(G), one has 𝑔−1 = 𝑖 ( 𝑔) = B(𝑖) ( 𝑔) ∈
B(G). Thus, since B(𝜇) = 𝜇|B(G) , we have in particular 𝑔 · 𝑔−1 = 𝑒 ∈ B(G). This also demonstrates
that B(G) in fact defines an ordinary Lie group.
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a morphism 𝑒∗ ≡ ev𝑒 : 𝐻∞(G) → R, i.e., an element of the real spectrum 𝑒∗ ∈
SpecR(𝐻∞(G)). Thus, in this way, we obtain an equivalence of categories between
algebro-geometric and 𝐻∞ supermanifolds. Again, in what follows, we will mainly
work in the 𝐻∞ category as these objects are often easier to handle.

Definition 2.3.7. The super Lie algebra 𝔤 of a 𝐻∞ super Lie group G is defined as the
super Lie algebra of left-invariant vector fields on the corresponding algebro-geometric
super Lie group A(G). Furthermore, we define the super Lie module Lie(G) as the
tangent space Lie(G) := 𝑇𝑒G.

Remark 2.3.8. According to Remark 2.3.4, one can identify 𝔤 = 𝑇𝑒A(G). Since, left-
invariant vector fields induce a homogeneous basis on the tangent spaces and Lie(G)
defines a super Λ-module with Λ the underlying Grassmann algebra over which G is
modeled as a 𝐻∞ supermanifold, one thus has

Lie(G) = Λ ⊗ 𝔤 (2.44)

Hence, in particular, if follows that Lie(G) defines a super Λ-vector space with distin-
guished basis represented by smooth left-invariant vector fields.

Finally, let us briefly mention a very important equivalent characterization of super Lie
groups in terms of so-called super Harish Chandra pairs. It turns out that super Lie
groups G (concrete or algebraic) have a relatively simple structure: They are completely
determined by the data (𝐺, 𝔤) consisting of underlying topological space 𝐺 and the
super Lie algebra 𝔤 and a certain representation of𝐺 on 𝔤.

In the algebraic category, this correspondence remains rather implicit (for an abstract
proof see for instance [106]). In the 𝐻∞ category, however, a very concrete proof of this
correspondence has been given in [97]. As we will see, this theorem will also turn out to
be quite useful in constructing invariant measures on super Lie groups to be discussed
in Section 5.5.2 in the context of loop quantization of chiral supergravity. It provides a
concrete relation between a super Lie group G and the data (B(G), 𝔤). More precisely,
one has the following:

Theorem 2.3.9 (Super Harish-Chandra pair (after [97, 109])). Let G be a 𝐻∞ super Lie
group with body𝐺 := B(G). Then, G is globally split, that is, it is diffeomorphic to the
split supermanifold S(𝔤1, 𝐺) � S(𝐺) × (𝔤1 ⊗ Λ)0 associated to the trivial vector bundle
𝐺 × 𝔤1 → 𝐺 via the canonical mapping

Φ : S(𝔤1, 𝐺) → G (2.45)
( 𝑔, 𝑋 ) ↦→ 𝑔 · exp(𝑋 )
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In particular, it follows that there exists a unique super Lie group structure on S(𝔤1, 𝐺)
such that (2.45) turns into a morphism of super Lie groups. Hence, any 𝐻∞ super Lie group
is uniquely determined via (2.45) by the data (𝐺, 𝔤) called a super Harish Chandra pair
consisting of its body𝐺 as well as the super Lie algebra 𝔤 = 𝔤0 ⊕ 𝔤1.

It is interesting to note that, in [110], it has been shown in the Molotkov-Sachse approach
that such a correspondence via (2.45) even holds in the case of infinite-dimensional
(Fréchet) super Lie groups. With these preparations, let us next turn towards important
examples which will play a central role in the geometric approach to supergravity as well
as in the context of loop quantum supergravity.

Example 2.3.10 (The super translation groupT 1,3 |4). Let (𝜅R,ΔR) be the real Majorana
representation of Spin+(1, 3) (see Section 4.2). Consider the trivial vector bundle bundle
R1,3 ×ΔR → R1,3 over Minkowski spacetime (R1,3, 𝜂). Applying the split functor, this
then yields a split supermanifold

R1,3 |4 := S(ΔR,R1,3) � Λ4,4 (2.46)

also called super Minkowski spacetime with Λ4,4 the superdomain of dimension (4,4)
(Def. C.1). On this supermanifold, we define the map

𝜇 : Λ4,4 × Λ4,4 → Λ4,4 (2.47)
((𝑥, 𝜃), (𝑦, 𝜂)) ↦→ (𝑧, 𝜃 + 𝜂)

where 𝑧𝐼 := 𝑥 𝐼 +𝑦𝐼− 1
4 (𝐶𝛾

𝐼 )𝛼𝛽𝜃 𝛼𝜂𝛽 for 𝐼 = 0, . . . , 3with𝐶 is the charge conjugation
matrix and 𝛾 𝐼 the gamma matrices of 4𝐷 Minkowski spacetime satisfying the Clifford
algebra relations

[𝛾𝐼 , 𝛾 𝐽 ]+ = 2𝜂𝐼 𝐽 (2.48)

where 𝜂 ≡ (𝜂𝐼 𝐽 ) = diag(− + ++) is the Minkowski metric (see Section 4.2). It follows
immediately that 𝜇 is smooth and associative. In particular, R1,3 |4 equipped with 𝜇
defines a super Lie group with neutral element 𝑒 = (0, 0) and inverse 𝑖 : Λ4,4 →
Λ4,4, (𝑥, 𝜃) ↦→ (−𝑥,−𝜃) (note that 𝐶𝛾 𝐼 is symmetric for 𝐼 = 0, . . . , 3). From now
on, let us denote this super Lie group by T 1,3 |4 and call it the super translation group.
To derive the corresponding super Lie algebra, note that the comultiplication is given by

𝜇∗(𝑥 𝐼 ) = 𝑥 𝐼 ⊗ 1 + 1 ⊗ 𝑥 𝐼 − 1
4
(𝐶𝛾 𝐼 )𝛼𝛽𝜃 𝛼 ⊗ 𝜃 𝛽 (2.49)

𝜇∗(𝜃 𝛼) = 𝜃 𝛼 ⊗ 1 + 1 ⊗ 𝜃 𝛼 (2.50)
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The super Lie module of the super translation group takes the form

𝑇𝑒T 1,3 |4 =: Λ ⊗ 𝔱1,3 |4 � spanΛ

{
𝜕

𝜕𝑥 𝐼

����
𝑒

,
𝜕

𝜕𝜃 𝛼

����
𝑒

}
(2.51)

so that a homogeneous basis of left-invariant vector fields is given by 𝑃𝐼 :=
(
1 ⊗ 𝜕

𝜕𝑥 𝐼

��
𝑒

)
◦

𝜇∗ and𝑄𝛼 :=
(
1 ⊗ 𝜕

𝜕𝜃 𝛼

��
𝑒

)
◦ 𝜇∗ for 𝐼 = 0, . . . , 3 and 𝛼 = 1, . . . , 4. Hence, their action

on the coordinate functions yields

𝑄𝛼 (𝑥 𝐼 ) =
1
4
(𝐶𝛾 𝐼 )𝛼𝛾 𝜃 𝛾 , 𝑄𝛼 (𝜃 𝛽) = 𝛿

𝛽
𝛼

𝑃𝐼 (𝑥 𝐽 ) = 𝛿 𝐽𝐼 , 𝑃𝐼 (𝜃 𝛼) = 0 (2.52)

so that the vector fields can explicitly be written in the form

𝑄𝛼 =
𝜕

𝜕𝜃 𝛼
+ 1
4
(𝐶𝛾 𝐼 )𝛼𝛽𝜃 𝛽

𝜕

𝜕𝑥 𝐼
, 𝑃𝐼 =

𝜕

𝜕𝑥 𝐼
(2.53)

Using these identities, we can compute the corresponding (graded) commutation rela-
tions which yields

[𝑄𝛼 , 𝑄𝛽] =
1
2
(𝐶𝛾 𝐼 )𝛼𝛽𝑃𝐼 , [𝑄𝛼 , 𝑃𝐼 ] = 0 and [𝑃𝐼 , 𝑃 𝐽 ] = 0 (2.54)

Example 2.3.11 (Super Poincaré group). The super Poincaré group in 𝐷 = 4,N = 1 is
defined as the semi-direct product

ISO(R1,3 |4) = T 1,3 |4 ⋊Φ S(Spin+(1, 3)) (2.55)

where Φ : S(Spin+(1, 3)) → GL(T 1,3 |4) is the representation of the purely bosonic
super Lie group S(Spin+(1, 3)) on the super translation groupT 1,3 |4 obtained by apply-
ing the split functor on the group representation

Spin+(1, 3) ∋ 𝑔 ↦→ diag(𝜆+( 𝑔), 𝜅R( 𝑔)) ∈ GL(R1,3 ⊕ ΔR) (2.56)

of Spin+(1, 3) on the super vector spaceR1,3 ⊕ΔR with 𝜆+ : Spin+(1, 3) → SO+(1, 3)
the universal covering map where ΔR is viewed as a purely odd super vector space. The
super Lie algebra 𝔦𝔰𝔬(R1,3 |4) is generated by the (bosonic) infinitesimal spacetime trans-
lations 𝑃𝐼 and Lorentz transformations 𝑀𝐼 𝐽 , 𝐼 , 𝐽 = 0, . . . , 3, and four fermionic
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Majorana generators𝑄𝛼 , 𝛼 = 1, . . . , 4. It follows that, in addition to (2.54), the nonva-
nishing (graded) commutation relations are given by

[𝑀𝐼 𝐽 , 𝑄𝛼] =
1
2
𝑄𝛽 (𝛾𝐼 𝐽 )

𝛽
𝛼 , and [𝑃𝐼 , 𝑄𝛼] = 0 (2.57)

One can equip the super translation group T 1,3 |4 (or super Minkowski spacetime)
with a smooth super metric S (see Def. 2.3.12 below) setting S (𝑃𝐼 , 𝑃 𝐽 ) = 𝜂𝐼 𝐽 and
S (𝑄𝛼 , 𝑄𝛽) = 𝐶𝛼𝛽 . By definition, it then follows that S is invariant under the Adjoint
representation of Spin+(1, 3) on T 1,3 |4. Moreover, ISO(R1,3 |4) can be identified with
the super isometry group of super Minkowski spacetime.

Definition 2.3.12 (after [97, 109]). (i) A (homogeneous) super bilinear form S of
parity |S | ∈ Z2 on a free super Λ-moduleV is a right bilinear map S : V ×
V → ΛC, ΛC := Λ ⊗ C, which satisfies S (V𝑖 ,V𝑗 ) ⊆ (ΛC) |S |+𝑖+𝑗 and is
graded symmetric, i.e.,

S (𝑣, 𝑤) = (−1) |𝑣 | |𝑤 |S (𝑤, 𝑣) (2.58)

for all homogeneous 𝑣, 𝑤 ∈ V. Let𝑉 := V/N withN := {𝑣 ∈ V| ∃𝑎 ∈ Λ :
𝑎 ≠ 0 and 𝑎𝑥 = 0} the subset of nilpotent vectors. A super bilinear form S is
called smooth, if S (𝑉 ,𝑉 ) ⊆ C. An even super bilinear form S : V×V → ΛC

is called a super metric if it is non-degenerate, that is, for any 𝑣 ∈ 𝑉 with 𝑣 ≠ 0,
there exists 𝑤 ∈ 𝑉 such that 𝜖(S (𝑣, 𝑤)) ≠ 0 where 𝜖 : ΛC → C is the body
map.

(ii) A (homogeneous) super sesquilinear form S of parity |S | ∈ Z2 on a free superΛ-
moduleV is a right sesquilinear map S : V×V → ΛC (i.e., linear in the second
and anti-linear in the first argument) satisfying S (V𝑖 ,V𝑗 ) ⊆ (ΛC) |S |+𝑖+𝑗 and
is graded Hermitian, i.e.,

S (𝑣, 𝑤) = (−1) |𝑣 | |𝑤 |S (𝑤, 𝑣) (2.59)

for all homogeneous 𝑣, 𝑤 ∈ V. A super sesquilinear form S is called smooth, if
S (𝑉 ,𝑉 ) ⊆ C with𝑉 := V/N . An even non-degenerate super sesquilinear
form S : V × V → ΛC is called a super Hermitian metric or super scalar
product.

Remark 2.3.13. From the smoothness requirement of a super bilinear form S , it
follows immediately that S |𝑉×𝑉 defines a graded symmetric bilinear form on the super
vector space𝑉 /N in the sense of [111], i.e., S (𝑉𝑖 ,𝑉𝑗 ) = 0unless 𝑖+𝑗 = |S |. Moreover,
S |𝑉0×𝑉0 is symmetric and S |𝑉1×𝑉1 is antisymmetric. If S is furthermore even and
non-degenerate then so is S |𝑉×𝑉 which implies that𝑉1 is necessarily even-dimensional.
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Moreover, one can always find a homogeneous basis (𝑒𝑖 , 𝑓𝑗 ) of𝑉 (resp.V) such that,
w.r.t. this basis, S takes the form (

1𝑚 0
0 𝐽2𝑛

)
(2.60)

where dim𝑉0 = 𝑚 and dim𝑉1 = 2𝑛 and 𝐽2𝑛 is the standard symplectic structure on
R2𝑛 given by

𝐽2𝑛 :=

(
0 1𝑛

−1𝑛 0

)
(2.61)

We will call (2.60) the standard representation of S .

Example 2.3.14 (The general linear supergroup GL(V) (see also [97])). For a finite-
dimensional super Λ-vector spaceV =𝑉 ⊗ Λ with dim𝑉 = 𝑚|𝑛, the general linear
supergroup GL(V) is defined as the open subset Aut(V) ⊂ End𝑅 (V) of (right
linear) automorphisms ofV. Choosing a real homogeneous basis (𝑒𝑖)𝑖 ofV, we may
identify End𝑅 (V) � Λ𝑚

2+𝑛2,2𝑚𝑛 yielding (𝑚 + 𝑛)2 smooth coordinate functions
𝑥 𝑖
𝑗

: End𝑅 (V) → Λ mapping an endomorphism 𝐴 ∈ End𝑅 (V) to its coordinates
𝑥 𝑖
𝑗
(𝐴) ∈ Λ such that 𝐴 = 𝑥 𝑖

𝑗
(𝐴) 𝑒𝑖 ⊗ 𝑒𝑗 with (𝑒𝑖 ⊗ 𝑒𝑗 )𝑖,𝑗 the corresponding real

homogeneous basis of End
𝑅
(V) � V ⊗ V∗ where (𝑒𝑖)𝑖 denotes the right dual basis

ofV∗ satisfying 𝑒𝑖 (𝑒𝑗 ) = 𝛿 𝑖
𝑗

. Note that, here and in the following, we will strictly
distinguish between the coordinates 𝑥 𝑖

𝑗
(𝐴) of an endomorphism 𝐴 ∈ End𝑅 (V)

and its matrix coefficients 𝐴𝑖
𝑗

w.r.t. the real homogenous basis (𝑒𝑖)𝑖 ofV such that
𝐴 = 𝑒𝑖 ⊗ 𝐴𝑖𝑗 𝑒

𝑗 , with the relation being given by

𝐴𝑖𝑗 = ℭ |𝑒𝑖 | (𝑥 𝑖𝑗 (𝐴)) ⇔ 𝑥 𝑖𝑗 (𝐴) = ℭ |𝑒𝑖 | (𝐴𝑖𝑗 ) (2.62)

where the involution ℭ : Λ→ Λ is defined as ℭ(𝜆) = (−1) |𝜆 |𝜆 for any homogeneous
𝜆 ∈ Λ. In general, these are equivalent iff 𝐴 has purely real coordinates. Let 𝐴, 𝐵 ∈
End𝑅 (V) be two endomorphisms. The coordinates of the composition 𝐴 ◦ 𝐵 are then
given by

𝑥 𝑖𝑗 (𝐴 ◦ 𝐵) = ℭ |𝑒𝑖 | ((𝐴 ◦ 𝐵 𝑖𝑗 )) = ℭ |𝑒𝑖 | (𝐴𝑖
𝑘
· 𝐵𝑘𝑗 )

= ℭ |𝑒𝑖 | (𝐴𝑖
𝑘
)ℭ |𝑒𝑖 | (𝐵𝑘𝑗 ) = ℭ |𝑒𝑖 | (𝐴𝑖

𝑘
)ℭ |𝑒𝑖 |+ |𝑒𝑘 | (ℭ |𝑒𝑘 | (𝐵𝑘𝑗 ))

= 𝑥 𝑖
𝑘
(𝐴) · ℭ |𝑒𝑖 |+ |𝑒𝑘 | (𝑥𝑘𝑗 (𝐵)) (2.63)

Let us now restrict to the subset GL(V) = Aut(V) ⊂ End𝑅 (V) of (even) auto-
morphisms ofV. Since GL(V) is given by the open subset B−1(GL(𝑉0) × GL(𝑉1))
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of End𝑅 (V), this implies that GL(V) defines a 𝐻∞ supermanifold of dimension
dim GL(V) = (𝑚2 + 𝑛2, 2𝑚𝑛) and body B(GL(V)) = GL(𝑉0) ×GL(𝑉1). Restrict-
ing the global derivations 𝜕𝑥 𝑖

𝑗
on End𝑅 (V), defined via 𝜕𝑥 𝑖

𝑗
𝑥𝑘
𝑙
= 𝛿 𝑘

𝑖
𝛿
𝑗

𝑙
for 𝑖, 𝑗 , 𝑘, 𝑙 =

1, . . . , 𝑚+𝑛, to GL(V), the tangent bundle𝑇GL(V) can be identified with GL(V)×
End

𝑅
(V), the identification being given by

𝑇GL(V) ∋ 𝑋𝑔 ↦→ ( 𝑔, ⟨𝑋𝑔 |d𝑥 𝑖𝑗 ⟩ 𝑒𝑖 ⊗ 𝑒
𝑗 ) ∈ GL(V) × End

𝑅
(V) (2.64)

The general linear supergroup GL(V) forms an abstract group with multiplication 𝜇
defined by the composition of endomorphisms. By (2.63), it follows that for 𝑔, ℎ ∈
GL(V) one has

𝑥 𝑖𝑗 ( 𝑔 ◦ ℎ) = (−1)
( |𝑒𝑖 |+ |𝑒𝑘 |) ( |𝑒𝑘 |+ |𝑒𝑗 |) 𝑥 𝑖

𝑘
( 𝑔) · 𝑥𝑘𝑗 (ℎ) (2.65)

since 𝑥𝑘
𝑗
(ℎ) is homogeneous with parity |𝑥𝑘

𝑗
(ℎ) | = |𝑒𝑘 | + |𝑒𝑗 | as ℎ is even. Hence, the

coordinates of 𝜇( 𝑔, ℎ) = 𝑔 ◦ ℎ for any 𝑔, ℎ ∈ GL(V) consists of a sum of products
of coordinate functions of 𝑔 and ℎ and thus 𝜇 is of class 𝐻∞ implying that GL(V)
defines a 𝐻∞ super Lie group with super Lie module Lie(GL(V)) =: Λ ⊗ 𝔤𝔩(V)
isomorphic to End

𝑅
(V). By (2.65), the comultiplication 𝜇∗ : 𝐻∞(GL(V)) →

𝐻∞(GL(V))⊗̂𝐻∞(GL(V)) takes the form

𝜇∗(𝑥 𝑖𝑗 ) = (−1)
( |𝑒𝑖 |+ |𝑒𝑘 |) ( |𝑒𝑘 |+ |𝑒𝑗 |) 𝑥 𝑖

𝑘
⊗ 𝑥𝑘𝑗 (2.66)

Using (2.66), let us derive the Lie bracket on Lie(GL(V)). To do so, for𝑌 ∈ 𝔤𝔩(V),
we have to compute the corresponding left-invariant vector field𝑌 𝐿 := (1 ⊗ 𝑌 ) ◦ 𝜇∗.
Applying it on coordinate functions 𝑥 𝑖

𝑗
yields

𝑌 𝐿 (𝑥 𝑖𝑗 ) = (1 ⊗ 𝑥
𝑚
𝑛 (𝑌 )𝜕𝑥𝑚𝑛 ) ◦ 𝜇

∗(𝑥 𝑖𝑗 )

= 𝑌 𝑚𝑛 (1 ⊗ 𝜕𝑥𝑚𝑛 )
(
(−1) ( |𝑒𝑖 |+ |𝑒𝑘 |) ( |𝑒𝑘 |+ |𝑒𝑗 |) 𝑥 𝑖

𝑘
⊗ 𝑥𝑘𝑗

)
= (−1) ( |𝑒𝑖 |+ |𝑒𝑘 |) ( |𝑒𝑘 |+ |𝑒𝑗 |)𝑌 𝑚𝑛 (−1) ( |𝑒𝑚 |+ |𝑒𝑛 |) ( |𝑒𝑖 |+ |𝑒𝑘 |) 𝑥 𝑖𝑘 𝛿

𝑘
𝑚𝛿

𝑛
𝑗

= 𝑥 𝑖
𝑘
𝑌 𝑘𝑗 (2.67)

where we used that 𝑌 has purely real coordinates such that 𝑥 𝑖
𝑘
(𝑌 ) = 𝑌 𝑖

𝑘
∀𝑖, 𝑗 =

1, . . . , 𝑚 + 𝑛. Hence,
𝑌 𝐿 = (𝑥 ◦𝑌 ) 𝑖𝑗 𝜕𝑥 𝑖

𝑗
(2.68)

31



2. Supergeometry

Using (2.68), we find for commutator between two left-invariant vector fields𝑌 𝐿, 𝑍𝐿
corresponding to𝑌 , 𝑍 ∈ 𝔤𝔩(V)

[𝑌 𝐿, 𝑍𝐿] = 𝑌 𝐿𝑍𝐿 − (−1) |𝑌 | |𝑍 |𝑍𝐿𝑌 𝐿

= 𝑥 𝑖
𝑘
𝑌 𝑘𝑗 𝜕𝑥 𝑖

𝑗
(𝑥𝑚

𝑙
𝑍 𝑙𝑛𝜕𝑥𝑚𝑛 ) − (−1)

|𝑌 | |𝑍 |𝑥 𝑖
𝑘
𝑍𝑘𝑗 𝜕𝑥 𝑖

𝑗
(𝑥𝑚

𝑙
𝑌 𝑙𝑛 𝜕𝑥𝑚𝑛 )

= 𝑥 𝑖
𝑘
(𝑌 𝑘𝑗 𝑍

𝑘
𝑛 − (−1) |𝑌 | |𝑍 |𝑍𝑘𝑗𝑌

𝑘
𝑛 )𝜕𝑥 𝑖𝑛

= (𝑥 ◦ [𝑌 , 𝑍]) 𝑖𝑗 𝜕𝑥 𝑖
𝑗
= [𝑌 , 𝑍]𝐿 (2.69)

that is, via the identification (2.64), the commutator on Lie(GL(V)) coincides with
the standard commutator on End

𝑅
(V).

Definition 2.3.15. A super matrix Lie group is an embedded 𝐻∞ super Lie subgroupG
of the general linear supergroup GL(V) = Aut(V) on some finite-dimensional super
Λ-vector spaceV.

Example 2.3.16 (The super unitary group). On the super Λ-vector spaceV =𝑉 ⊗ Λ
with𝑉 = C𝑚 |𝑛, we consider a smooth Hermitian super metric ℎ : V × V → ΛC

which, when restricted to𝑉 , takes the form

ℎ |𝑉×𝑉 :=

(
1 0
0 𝑖1

)
(2.70)

The super unitary group U(𝑚|𝑛) is defined as the subgroup of the general group GL(V)
≡ GL(𝑚|𝑛,ΛC) consisting of all those group elements preserving ℎ. That is, 𝑔 ∈
GL(𝑚|𝑛,ΛC) defines an element of U(𝑚|𝑛) if and only if

ℎ( 𝑔𝑣, 𝑔𝑤) = ℎ(𝑣, 𝑤), ∀𝑣, 𝑤 ∈ V (2.71)

It follows that U(𝑚|𝑛) defines an embedded super Lie subgroup of GL(𝑚|𝑛,ΛC), i.e.
super matrix Lie group, with Lie superalgebra 𝔲(𝑚|𝑛) given by (see e.g. [112])

𝔲(𝑚|𝑛) = {𝑋 ∈ 𝔤𝔩(𝑚|𝑛,ΛC) | ℎ(𝑋𝑣, 𝑤) + (−1) |𝑋 | |𝑣 |ℎ(𝑣, 𝑋𝑤) = 0} (2.72)

In the literature, for a matrix 𝑋 ∈ 𝔤𝔩(𝑚|𝑛,ΛC), one defines its super adjoint 𝑋 ∗ ∈
𝔤𝔩(𝑚|𝑛,ΛC) via

ℎ(𝑋𝑣, 𝑤) = (−1) |𝑋 | |𝑣 |ℎ(𝑣, 𝑋 ∗𝑤) (2.73)
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As can be checked by direct computation, this implies that the super adjoint is given
by 𝑋 ∗ = 𝑖 |𝑋 |𝑋 † with 𝑋 † the ordinary adjoint of 𝑋 regarded as a morphism between
(ungraded) vector spaces. Hence, by (2.73), it follows that 𝑋 ∈ 𝔲(𝑚|𝑛) iff

𝑋 ∗ = −𝑋 (2.74)

From (2.74), one deduces that a generic element 𝑋 ∈ 𝔲(𝑚|𝑛) has to be of the form

𝑋 =

(
𝐴 𝐶

−𝑖𝐶† 𝐵

)
(2.75)

with 𝐴 ∈ 𝔲(𝑚) and 𝐵 ∈ 𝔲(𝑛) and some arbitrary 𝑛 ×𝑚matrix𝐶 . Thus, 𝔲(𝑚|𝑛) is a
real super vector space of dimension𝑚2+𝑛2 |2𝑚𝑛 and bosonic subalgebra𝔲(𝑚)⊕𝔲(𝑛).
Since we will come back to this example later in Chapter 5, in what follows, let us focus
on the special case𝑚, 𝑛 = 1. According to (2.75), the Lie superalgebra 𝔲(1|1) of the
super unitary group U(1|1) is generated by the real homogeneous basis

𝑋1 =

(
𝑖 0
0 0

)
, 𝑋2 =

(
0 0
0 𝑖

)
Θ1 =

(
0 1
−𝑖 0

)
, Θ2 =

(
0 𝑖

−1 0

)
(2.76)

which satisfy the following graded commutation relations

[𝑋1,Θ1] = Θ2, [𝑋1,Θ2] = −Θ1, [𝑋𝑖 , 𝑋𝑗 ] = 0
[𝑋2,Θ1] = −Θ2, [𝑋2,Θ2] = Θ1, [Θ𝑖 ,Θ𝑗 ] = −2𝛿𝑖𝑗 (𝑋1 + 𝑋2)

(2.77)

for 𝑖, 𝑗 = 1, 2. For later purposes, let us discuss the equivalent characterization of
the supergroup U(1|1) in terms of the super Harish-Chandra pair (U(1)2, 𝔲(1|1)).
By Theorem 2.3.9, it follows that U(1|1) is diffeomorphic to the split supermanifold
S(𝔲(1|1)1,U(1)2) � S(U(1))2 × (Λ ⊗ 𝔲(1|1)1)0 via

Φ : S(𝔲(1|1)1,U(1)2) → U(1|1),
(
𝑔,𝑌

)
↦→ 𝑔 · exp(𝑌 ) (2.78)

The exponential can be computed rather quickly yielding5

exp
(
𝜉Θ1 + 𝜂Θ2

)
= exp (

(
0 𝜓

𝑖𝜓 0

)
) =

(
1 + 𝑖

2𝜓𝜓 𝜓

𝑖𝜓 1 − 𝑖
2𝜓𝜓

)
(2.79)

5 Note that, in contrast to the non-graded case, the matrix representation of an endomorphism 𝐴 ∈
End𝑅 (V) on a super Λ-vector spaceV is not left linear. More precisely, according to Example 2.3.14,
for 𝜆 ∈ Λ, one has (𝜆𝐴) 𝑖

𝑗
= ℭ |𝑒𝑖 | (𝜆)𝐴𝑖

𝑗
. This explains the additional minus sign involved in the

matrix representation of 𝜉Θ1 + 𝜂Θ2 in Eq. (2.79).
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where we set 𝜓 := 𝜉 + 𝑖𝜂. Hence, the diffeomorphism takes the explicit form

Φ

((
𝑥 0
0 𝑦

)
, 𝜉Θ1 + 𝜂Θ2

)
=

(
𝑥𝐴 𝑥𝜓

𝑖𝑦𝜓 𝑦𝐴−1

)
(2.80)

with 𝐴 := 1 + 𝑖2𝜓𝜓 . Moreover, if 𝑥 := 𝑥11 , 𝑦 := 𝑥22 and 𝜃1 := 𝑥12 as well as 𝜃2 := 𝑥21
denote the global coordinate functions as defined in Example 2.3.14, this yields

Φ∗(𝑥) = 𝑥𝐴, Φ∗(𝜃1) = 𝑥𝜓 , Φ∗(𝜃2) = −𝑖𝑦𝜓 , Φ∗(𝑦) = 𝑦𝐴−1 (2.81)

Example 2.3.17 (The orthosymplectic supergroup). Let (V,S ( · , · )) be a super Λ-
vector spaceV =𝑉 ⊗ Λ equipped with a smooth super metric S : V ×V → ΛC.
The orthosymplectic supergroup OSp(V) is defined as the super Lie subgroup of the
general linear supergroup GL(V) consisting of all those group elements preserving S ,
i.e., 𝑔 ∈ OSp(V) if and only if

S ( 𝑔𝑣, 𝑔𝑤) = S (𝑣, 𝑤), ∀𝑣, 𝑤 ∈ V (2.82)

It follows from the “Stabilizer Theorem” (see e.g. Prop. 5.13 in [97] or Prop. 8.4.7.
in [106] in the pure algebraic setting) that OSp(V) defines a super matrix Lie group
with corresponding super Lie algebra

𝔬𝔰𝔭(V) := {𝑋 ∈ 𝔤𝔩(V)|S (𝑋𝑣, 𝑤) + (−1) |𝑋 | |𝑣 |S (𝑣, 𝑋𝑤) ∀𝑣, 𝑤 ∈𝑉 } (2.83)

If (𝑒𝑖 , 𝑓𝑗 ) is homogeneous basis ofV such that S acquires the standard representa-
tion (2.61), the orthosymplectic super Lie group is also simply denoted by OSp(𝑚|2𝑛).
Accordingly. the bosonic sub super Lie algebra takes the form 𝔬𝔰𝔭(𝑚|2𝑛)0 = 𝔰𝔬(𝑚) ⊕
𝔰𝔭(2𝑛).

In the following, we want to construct a graded generalization for the isometry group
SO(2, 3) of anti-de Sitter spacetime AdS4.6 To this end, we consider the following Lie
algebra representation of 𝔰𝔬(2, 3): Let 𝛾 𝐼 , 𝐼 = 0, . . . , 3, be the gamma matrices of 4𝐷

6 Recall from Appendix E, Corollary E.8, that the four-dimensional anti-de Sitter spacetime AdS4 is
defined as the pseudo hyperbolic space H41 (𝐿) defined as an embedded submanifold of the semi-
Riemannian manifoldR2,3 equipped with the metric (𝜂𝐴𝐵 ) = diag(− + + + −)

H41 (𝐿) := {𝑥 ∈ R2,3 | 𝜂𝐴𝐵 𝑥𝐴𝑥𝐵 = −𝐿2} (2.84)

with 𝐿 the so-called anti-de Sitter radius
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Minkowski spacetime (see Example 2.3.10 and Section 4.2). Similar as in [113, 114], we
define totally antisymmetric matrices Ξ𝐴𝐵 , 𝐴, 𝐵 = 0, . . . , 4, via

Ξ𝐼 𝐽 :=
1
2
𝛾 𝐼 𝐽 :=

1
4
[𝛾 𝐼 , 𝛾 𝐽 ]− as well as Ξ4𝐼 := −𝛾 𝐼4 :=

1
2
𝛾 𝐼 (2.85)

where indices are raised and lowered w.r.t. the metric (𝜂𝐴𝐵) = diag(− + + + −). These
satisfy the following commutation relations

[Ξ𝐴𝐵 ,Ξ𝐶𝐷] = 𝜂𝐵𝐶Ξ𝐴𝐷 − 𝜂𝐴𝐶Ξ𝐵𝐷 − 𝜂𝐵𝐷Ξ𝐴𝐶 + 𝜂𝐴𝐷Ξ𝐵𝐶 (2.86)

and thus provide a representation of 𝔰𝔬(2, 3). Indeed, choosing a real representation
of the gamma matrices, it follows that the charge conjugation matrix𝐶 is of the form
𝐶 = −𝑖 𝐽4 with 𝐽4 the standard symplectic structure given by (2.61) for 𝑛 = 2 and, by
the symmetry properties of the gamma matrices, one has

(𝐶Ξ𝐴𝐵)𝑇 = 𝐶Ξ𝐴𝐵 (2.87)

Hence, theΞ𝐴𝐵 generate the Lie algebra 𝔰𝔭(4) of the universal covering group Sp(4,R)
of SO(2, 3). Thus, a candidate for the graded extension of the anti-de Sitter group
withN -fermionic generators is given by the orthosymplectic Lie group OSp(N |4). We
therefore chooseV = (ΛC)N|4 as super vector space equipped with the bilinear form

Ω =

(
1 0
0 𝐶

)
(2.88)

The algebra 𝔬𝔰𝔭(N |4) is then generated by all 𝑋 ∈ 𝔤𝔩(V) satisfying

𝑋 𝑠𝑇Ω +Ω𝑋 = 0 (2.89)

where 𝑋 𝑠𝑇 denotes the super transpose of 𝑋 . Writing 𝑋 in the block form

𝑋 =

(
𝑋11 𝑋12

𝑋21 𝑋22

)
(2.90)

(2.89) is equivalent to

𝑋𝑇11 = −𝑋 , (𝐶𝑋22)𝑇 = 𝐶𝑋22, 𝑋12 = −𝑋𝑇21𝐶 (2.91)
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and therefore, in particular, 𝑋11 ∈ 𝔰𝔬(N) and 𝑋22 ∈ 𝔰𝔭(4). Thus, following [115],
based on the above observation, we set

𝑀𝐴𝐵 :=

(
0 0
0 Ξ𝐴𝐵

)
and 𝑇 𝑟 𝑠 :=

(
𝐴𝑟 𝑠 0
0 0

)
(2.92)

as generators for the bosonic sub super Lie algebras 𝔰𝔭(4) and 𝔰𝔬(N), respectively,
where (𝐴𝑟 𝑠) 𝑝𝑞 := 2𝛿 [𝑟𝑝 𝛿

𝑠]
𝑞 , 𝑝, 𝑞, 𝑟, 𝑠 = 1, . . . ,N . For the fermionic generators, we

set [115]

𝑄𝑟𝛼 :=

(
0 −𝑒𝛼 ⊗ 𝑒𝑟

𝑒𝛼 ⊗ 𝑒𝑇𝑟 0

)
(2.93)

where (𝑒𝛼)𝛽 := 𝛿𝛼𝛽 and (𝑒𝛼)𝛽 := 𝐶𝛼𝛽 . It then follows by direct computation that

[𝑀𝐴𝐵 , 𝑄
𝑟
𝛼] = 𝑄𝑟𝛽 (Ξ𝐴𝐵)

𝛽
𝛼 and [𝑇 𝑝𝑞, 𝑄𝑟𝛼] = 𝛿 𝑞𝑟𝑄

𝑝
𝛼 − 𝛿 𝑝𝑟𝑄

𝑞
𝛼 (2.94)

In order to compute the Lie bracket between two fermionic generators, one can use
the Fierz identity 2(𝑒𝛼𝑒𝛽 + 𝑒𝛽𝑒𝛼) = 𝛾𝐼 (𝐶𝛾 𝐼 )𝛼𝛽 + 1

2 𝛾 𝐽 𝐼 (𝐶𝛾
𝐼 𝐽 )𝛼𝛽 (see Eq. (4.8)) where

the sum terminates after second order in the gamma matrices as the higher rank gamma
matrices are antisymmetric with respect to the charge conjugation𝐶 . Thus, one finds

[𝑄𝑟𝛼 , 𝑄 𝑠𝛽] = 𝛿
𝑟 𝑠 (𝐶Ξ𝐴𝐵)𝑀𝐴𝐵 − 𝐶𝛼𝛽𝑇 𝑟 𝑠 (2.95)

Defining 𝑃𝐼 := Ξ4𝐼 and reintroducing the cosmological constant Λcos = −3/𝐿2 with
𝐿 the anti-de Sitter radius by rescaling 𝑃𝐼 → 𝑃𝐼 /𝐿, 𝑄𝑟𝛼 → 𝑄𝑟𝛼/

√
2𝐿 as well as

𝑇 𝑟 𝑠 → 𝑇 𝑟 𝑠/2𝐿, one finally ends up with the following (graded) commutation relations

[𝑀𝐼 𝐽 , 𝑄
𝑟
𝛼] =

1
2
𝑄𝑟
𝛽
(𝛾𝐼 𝐽 )

𝛽
𝛼 (2.96)

[𝑃𝐼 , 𝑄𝑟𝛼] = −
1
2𝐿
𝑄𝑟
𝛽
(𝛾𝐼 )

𝛽
𝛼 (2.97)

[𝑇 𝑝𝑞, 𝑄𝑟𝛼] =
1
2𝐿
(𝛿 𝑞𝑟𝑄 𝑝

𝛼 − 𝛿 𝑝𝑟𝑄
𝑞
𝛼) (2.98)

[𝑄𝑟𝛼 , 𝑄 𝑠𝛽] = 𝛿
𝑟 𝑠 1
2
(𝐶𝛾 𝐼 )𝛼𝛽𝑃𝐼+𝛿 𝑟 𝑠

1
4𝐿
(𝐶𝛾 𝐼 𝐽 )𝛼𝛽𝑀𝐼 𝐽 − 𝐶𝛼𝛽𝑇 𝑟 𝑠 (2.99)

which is the form we will use in what follows. Performing the Inönü-Wigner contraction,
i.e., taking the limit 𝐿 →∞, one reobtains the super Poincaré algebra (cf. Def. 2.3.11).
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2.4. Super fiber bundles

2.4. Super fiber bundles
The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

In this section, we want to give a detailed account on super fiber bundles in the category
of 𝐻∞ supermanifolds as this will provide us with the necessary mathematical tools
needed in the subsequent chapters (see Appendix C for a review on 𝐻∞ supermanifold
theory and our choice of conventions; for a relation to algebro-geometric supermanifolds
see Section 2.2 as well as Section 2.6 below). If not stated explicitly otherwise, in what
follows, we will always work in the category of 𝐻∞ supermanifolds so that smoothness
and related notions are always referred to this particular category. Let us start with the
basic definition of a super fiber bundle.

Definition 2.4.1 (Super fiber bundle). A super fiber bundle (E, 𝜋 ,M, F ), also simply
denoted by F → E 𝜋→M, consists of supermanifolds E,M and F called total space,
base and typical fiber, respectively, as well as a smooth surjective map 𝜋 : E → M,
called projection, satisfying the local triviality property: For any 𝑝 ∈ E there exists an
open subset𝑈 ⊂ M which is an open neighborhood of 𝜋 ( 𝑝) and a homeomorphism
𝜙 : 𝜋−1(𝑈 ) → 𝑈 × F called local trivialization such that the following diagram
commutes

𝜙 : 𝜋−1(𝑈 ) //

𝜋

��

𝑈 × F

pr1
yy

𝑈

i.e. pr1 ◦ 𝜙 = 𝜋 where pr1 denotes the projection onto the first factor.

Proposition 2.4.2. Let F → E 𝜋→ M be a super fiber bundle. Then B(F ) →
B(E) 𝜋̄→ B(M), with 𝜋̄ := B(𝜋 ) and B : SMan𝐻∞ → Man the body functor, defines
a smooth fiber bundle in the category Man of ordinary𝐶∞-smooth manifolds.

Proof. This is an immediate consequence of Prop. C.10 as well as the fact that B :
SMan𝐻∞ → Man is a functor. □

Definition 2.4.3. LetM andF be supermanifolds, E an abstract set and 𝜋 : E →M
a surjective map.

(i) Let𝑈 ⊂ M be open and 𝜙 : 𝜋−1(𝑈 ) → 𝑈 × F a bijective map such that
pr1 ◦ 𝜙 = 𝜋

��
𝜋−1 (𝑈 ) , then (𝑈 , 𝜙𝑈 ) is called a formal bundle chart.
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(ii) A family {(𝑈𝛼 , 𝜙𝛼)}𝛼∈Υ of formal bundle charts is called a (smooth) formal
bundle atlas of E (w.r.t. 𝜋 ) iff {𝑈𝛼}𝛼∈Υ is an open covering ofM and for any
𝛼, 𝛽 ∈ Υ with𝑈𝛼 ∩𝑈𝛽 ≠ ∅, the transition functions

𝜙𝛽 ◦ 𝜙−1𝛼 : (𝑈𝛼 ∩𝑈𝛽) × F → (𝑈𝛼 ∩𝑈𝛽) × F (2.100)

are smooth.

Theorem 2.4.4. LetM and F be supermanifolds of dimensions dimM = (𝑚, 𝑛) and
dimF = ( 𝑝, 𝑞), respectively, E an abstract set and 𝜋 : E → M a surjective map. Let
furthermore {(𝑈𝛼 , 𝜙𝛼)}𝛼∈Υ be a smooth formal bundle atlas of E (w.r.t. 𝜋 ). Then, there
exists a unique topology and smooth structure on E such that E becomes a supermanifold
of dimension dim E = (𝑚 + 𝑝, 𝑛 + 𝑞) and (E, 𝜋 ,M, F ) a super fiber bundle which is
locally trivial w.r.t. the bundle atlas {(𝑈𝛼 , 𝜙𝛼)}𝛼∈Υ.

Proof. We define a topology on E by declaring a subset𝑂 ⊆ E to be open if and only if
for any 𝛼 ∈ Υ the image

𝜙𝛼 (𝑂 ∩ 𝜋−1(𝑈𝛼)) ⊆ 𝑈𝛼 × F (2.101)

is an open subset inM × F (note that this condition is mandatory in order for 𝜙𝛼 to
define a homeomorphism). Since the formal bundle charts are bijective, it follows imme-
diately that arbitrary unions and finite intersections of open sets are open. Moreover,
the empty set and E are open as well, so that this indeed defines a topology on E.

By intersection, one may assume that the {𝑈𝛼}𝛼 are coordinate neighborhoods ofM.
Let then {(𝑈𝛼 , 𝜑𝛼)}𝛼∈Υ and {(𝑉𝛽, 𝜓𝛽)}𝛽∈Σ be smooth atlases ofM andF , respectively.
For (𝛼, 𝛽) ∈ Υ × Σ we define open sets𝑊𝛼𝛽 := 𝜙−1𝛼 (𝑈𝛼 ×𝑉𝛽) ⊆ E as well as bijective
maps

𝜃𝛼𝛽 := (𝜑𝛼 × 𝜓𝛽) ◦ 𝜙𝛼 : 𝑊𝛼𝛽 → 𝜑𝛼 (𝑈𝛼) × 𝜓𝛼 (𝑉𝛽) ⊆ Λ𝑚+𝑝,𝑛+𝑞 (2.102)

For (𝛼′, 𝛽′) ∈ Υ × Σ such that𝑊𝛼𝛽 ∩𝑊𝛼′𝛽′ ≠ ∅, it then follows

𝜃𝛼′𝛽′ ◦ 𝜃−1𝛼𝛽 = (𝜑𝛼′ × 𝜓𝛽′) ◦ 𝜙𝛼′ ◦ 𝜙
−1
𝛼 ◦ (𝜑−1𝛼 × 𝜓−1𝛽 ) (2.103)

on 𝜃𝛼𝛽 (𝑊𝛼𝛽 ∩𝑊𝛼′𝛽′), which is smooth by definition of a formal bundle atlas. Hence,
{(𝑊𝛼𝛽, 𝜃𝛼𝛽)} defines a smooth atlas of E turning it into a proto 𝐻∞ supermanifold
(see Def. C.4) of dimension dim E = (𝑚 + 𝑝, 𝑛 + 𝑞).

Let𝑈 ⊆ M be open. Then, for any 𝛼 ∈ Υ, 𝜙𝛼 (𝜋−1(𝑈 ) ∩ 𝜋−1(𝑈𝛼)) = 𝜙𝛼 (𝜋−1(𝑈 ∩
𝑈𝛼)) = (𝑈 ∩𝑈𝛼) × F is open in𝑈𝛼 × F and thus 𝜋−1(𝑈 ) ⊆ E is open proving that

38



2.4. Super fiber bundles

𝜋 : E −→M is continuous. To see that is also smooth, let (𝛼, 𝛽) ∈ Υ×Σ and 𝛼′ ∈ Υ
such that𝑈𝛼′ ∩𝑈𝛼 ≠ ∅. It follows

𝜑𝛼′ ◦ 𝜋 ◦ 𝜃−1𝛼𝛽 = 𝜑𝛼′ ◦ pr1 ◦ (𝜑
−1
𝛼 ×𝜓−1𝛽 ) : 𝜑𝛼 (𝑈𝛼′ ∩𝑈𝛼) ×𝜓𝛽 (𝑉𝛽) → 𝜑𝛼 (𝑈𝛼′ ∩𝑈𝛼)

(2.104)
which is obviously smooth. It remains to show that E is in fact a 𝐻∞ supermanifold,
i.e., B(E) is a second countable Hausdorff topological space.

To prove that it is Hausdorff, consider first 𝑝, 𝑞 ∈ B(E) with B(𝜋 ) ( 𝑝) ≠ B(𝜋 ) (𝑞).
Since B(M)×B(F ) is Hausdorff by assumption, there are open subsets B(𝜋 ) ( 𝑝) ∈ 𝑈𝑝
and B(𝜋 ) (𝑞) ∈ 𝑈𝑞 in B(M)×B(F )with𝑈𝑝∩𝑈𝑞 ≠ ∅. Since, B(𝜋 ) : B(E) → B(M)
is smooth, these yield disjoint open subsets 𝑝 ∈ B(𝜋 )−1(𝑈𝑝) and 𝑞 ∈ B(𝜋 )−1(𝑈𝑞)
in B(E) separating 𝑝 and 𝑞. If B(𝜋 ) ( 𝑝) = B(𝜋 ) (𝑞), consider 𝛼 ∈ Υ with 𝑝, 𝑞 ∈
B(𝜋 )−1(B(𝑈𝛼)), where B(𝜙) : B(𝜋 )−1(B(𝑈𝛼)) → B(𝑈𝛼) ×B(F ) is the correspond-
ing bundle chart on the body which, in particular, defines a homeomorphism. Let
then𝑉𝑝,𝑉𝑞 ⊂ B(F ) be disjoint open subsets with B(𝜙) ( 𝑝) ∈𝑉𝑝 and B(𝜙) (𝑞) ∈𝑉𝑞 .
This then finally yields disjoint open subsets 𝑝 ∈ B(𝜙)−1(B(𝑈𝛼) × 𝑉𝑝) and 𝑞 ∈
B(𝜙)−1(B(𝑈𝛼)×𝑉𝑞) in B(E) seperating 𝑝 and 𝑞. This shows that B(E) is indeed Haus-
dorff. That B(E) is also second countable follows similarly using that B(M) × B(F ) is
second countable. Hence, this proves that E indeed defines a 𝐻∞ supermanifold and
that (E, 𝜋 ,M, F ) is a super fiber bundle. □

Example 2.4.5 (Pullback bundle). Given a smooth map 𝑓 : N → M between
supermanifolds and a super fiber bundle (E, 𝜋 ,M, F ), one can construct a new bundle
by setting

𝑓∗E := {(𝑥, 𝑝) ∈ N × E| 𝑓(𝑥) = 𝜋 ( 𝑝)} ⊆ N × E (2.105)

as total space together with the projection

𝜋𝑓 : 𝑓∗E → N , (𝑥, 𝑝) ↦→ 𝑥 (2.106)

that is, fibers overM are pulled back w.r.t. 𝑓 to fibers overN . Let {(𝑈𝛼 , 𝜙𝛼)}𝛼∈Υ be a
smooth bundle atlas onE. For 𝛼 ∈ Υ, define the map𝜓𝛼 : 𝑓∗E ⊇ 𝜋−1

𝑓
(𝑈𝛼) → 𝑈𝛼×F

via
𝜓𝛼 (𝑥, 𝑝) := (𝑥, pr2 ◦ 𝜙𝛼 ( 𝑝)) (2.107)

It is clear by definition that 𝜓𝛼 is bijective and fiber-preserving. Moreover, for 𝛼, 𝛽 ∈ Υ
with𝑈𝛼 ∩𝑈𝛽 ≠ ∅, we compute

𝜓𝛽 ◦ 𝜓−1𝛼 (𝑥, 𝑝) = 𝜓𝛽 (𝑥, 𝜙−1𝛼 (𝑓(𝑥), 𝑝)) = (𝑥, pr2 ◦ 𝜙𝛽 ◦ 𝜙
−1
𝛼 (𝑓(𝑥), 𝑝)) (2.108)

∀(𝑥, 𝑝) ∈ (𝑈𝛼∩𝑈𝛽)×F and thus is smooth. It follows that {(𝑈𝛼 , 𝜓𝛼)}𝛼∈Υ satisfies the
properties of a formal bundle atlas so that, by Theorem 2.4.4, (𝑓∗E, 𝜋𝑓,N , F ) has the
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structure of a super fiber bundle called the pullback bundle of E w.r.t. 𝑓. The pullback
bundle defines the pullback in the category of super fiber bundles. More precisely, it
satisfies the following universal property: Given super fiber bundles E 𝜋E→ M and
Q

𝜋Q→ N as well as a smooth bundle morphism (𝜙, 𝑓) : (Q,N) → (E,M), there
exists a unique amooth bundle morphism (𝜙, idN) : (Q,N) → (𝑓∗E,N) such that
the following diagram commutes

𝑓∗E E

N M

Q

pr2

𝜋𝑓

𝑓

𝜋E

𝜙

𝜋Q

𝜙

(2.109)

In fact, 𝜙 has to be of the form 𝜙 : 𝑄 ∋ 𝑞 ↦→ (𝜋Q (𝑞), 𝜙(𝑞)) and therefore is smooth.

We next consider a particular subclass of super fiber bundles whose typical fiber carries
the structure of a super Λ-vector space (see also [97]).

Definition 2.4.6 (Super vector bundle). A super vector bundle of rank𝑚|𝑛 is a super
fiber bundleV → E 𝜋→M such that

(i) the typical fiber is a super Λ-vector spaceV of dimension dimV = 𝑚|𝑛.

(ii) for each 𝑥 ∈ M, the fibers E𝑥 := 𝜋−1({𝑥}) have the structure of free super
Λ-modules.

(iii) there exists a smooth bundle atlas {(𝑈𝛼 , 𝜙𝛼)}𝛼∈Υ of E such that, for each 𝛼 ∈ Υ,
the induced map

𝜙𝛼,𝑥 : E𝑥 →V (2.110)
𝑣𝑥 ↦→ pr2 ◦ 𝜙𝛼 (𝑣𝑥)

∀𝑥 ∈ 𝑈𝛼 is a (right linear) isomorphism of super Λ-modules.

A super vector bundle of rank 1|1 is also called a super line bundle.

Lemma 2.4.7 (after [97]). LetV andW be super Λ-vector spaces,M a supermanifold
and 𝜙 : M×V →W a smooth map such that 𝜙( 𝑝, · ) : V →W ∈ End

𝑅
(V,W)
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2.4. Super fiber bundles

is a right linear map for any 𝑝 ∈ M. Then, there exists a unique smooth map 𝜓 : M →
End

𝑅
(V,W) such that 𝜓 ( 𝑝) (𝑣) = 𝜙( 𝑝, 𝑣) for any 𝑝 ∈ M, 𝑣 ∈ V .

Proof. Let (𝑒𝑖)𝑖=1,...,𝑛 and (𝑓𝑗 )𝑗=1,...,𝑚 be real homogeneous bases ofV andW, respec-
tively, and (𝑓𝑗 )𝑗=1,...,𝑚 the corresponding right dual basis ofW∗ := Hom

𝑅
(W,Λ).

Since 𝑒𝑖 are body points and 𝑓𝑗 : W → Λ are smooth, the maps 𝜙𝑗
𝑖

:= 𝑓𝑗 ◦ 𝜙( · , 𝑒𝑖) :
M → Λ are of class 𝐻∞ for any 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚. Hence, we can
define a smooth map 𝜓 : M → End

𝑅
(V,W) via 𝜓 ( 𝑝) := 𝑓𝑗 ⊗ 𝜙

𝑗

𝑖
( 𝑝)𝑒𝑖 ∀𝑝 ∈ M

which, by construction, satisfies 𝜓 ( 𝑝) (𝑣) = 𝜙( 𝑝, 𝑣) for any 𝑣 ∈ V. That 𝜓 is unique
is immediate. □

Remark 2.4.8. Given a super vector bundleV → E →M and local trivializations
(𝑈𝛼 , 𝜙𝛼) and (𝑈𝛽, 𝜙𝛽), this yields the map

pr2 ◦ (𝜙𝛼 ◦ 𝜙
−1
𝛽
) : (𝑈𝛼 ∩𝑈𝛽) × V → V (2.111)

which, in particular, is linear in the second argument. Thus, using Lemma 2.4.7, this
yields a smooth map

𝑔𝛼𝛽 : 𝑈𝛼 ∩𝑈𝛽 → GL(V) (2.112)

satisfying 𝑔𝛼𝛽 (𝑥)𝑣 = pr2 ◦ (𝜙𝛼 ◦ 𝜙−1𝛽 ) (𝑥, 𝑣), that is, 𝑔𝛼𝛽 (𝑥) = 𝜙𝛼,𝑥 ◦ 𝜙−1𝛽,𝑥 , which we
will call transition maps.

Proposition 2.4.9 (after [97]). There is a one-to-one correspondence between local triv-
ializations of a super vector bundleV → E 𝜋→M and families (𝑋𝑖)𝑖 of smooth local
sections 𝑋𝑖 : 𝑈 → E of E,𝑈 ⊂ M open, such that (𝑋𝑖𝑥)𝑖 defines a homogeneous basis
of the super Λ-module E𝑥 ∀𝑥 ∈ 𝑈 .

Proof. Let (𝑈 , 𝜙𝑈 ) be a local trivialization of E. If (𝑒𝑖)𝑖 is a real homogeneous of the
super Λ-vector spaceV, define 𝑋𝑖𝑥 ≡ 𝑋𝑖 (𝑥) := 𝜙−1

𝑈
(𝑥, 𝑒𝑖) ∀𝑥 ∈ 𝑈 . Since the 𝑒𝑖 are

body points, it follows that the 𝑋𝑖 define smooth local sections of E and (𝑋𝑖𝑥)𝑖 is a
homogeneous basis of E𝑥 ∀𝑥 ∈ 𝑈 . Conversely, if (𝑋𝑖)𝑖 is a family of smooth local
sections 𝑋𝑖 : 𝑈 → E of E such that, for any 𝑥 ∈ M, (𝑋𝑖𝑥)𝑖 defines a homogeneous
basis of E𝑥 ∀𝑥 ∈ 𝑈 , consider the map

𝜓 : 𝑈 ×V → 𝜋−1(𝑈 ) ⊆ E, (𝑥, 𝑣𝑖 𝑒𝑖) ↦→ 𝑣𝑖𝑋𝑖𝑥 (2.113)

By definition, 𝜓 is bijective, smooth and an isomorphism of super Λ-modules on each
fiber. Hence, it remains to show that has a smooth inverse. To see this, following
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2. Supergeometry

[97], let (𝑊, 𝜙𝑊 ) be a local trivialization of E with𝑈 ∩𝑊 ≠ ∅. Then, 𝜙𝑊 ◦ 𝜓 :
(𝑈 ∩𝑊 ) × V → (𝑈 ∩𝑊 ) × V is of the form

𝜙𝑊 ◦ 𝜓 (𝑥, 𝑣) = (𝑥, 𝑣𝑖𝜙
𝑗

𝑖
(𝑥)𝑒𝑗 ) (2.114)

with smooth coefficients 𝜙 𝑗
𝑖

:= ⟨pr2 ◦ 𝜙𝑊 ( · , 𝑒𝑖) | 𝑖𝑒⟩ defining an invertible matrix
which has a smooth inverse yielding a smooth inverse of 𝜙𝑊 ◦ 𝜓 . But, as 𝜙𝑊 is a
diffeomorphism, this implies that𝜓 is a local diffeomorphism and hence admits a smooth
inverse 𝜓−1 : 𝜋−1(𝑈 ) → 𝑈 ×V providing a local trivialization of E. □

Corollary 2.4.10 (after [97]). A super vector bundleV → E 𝜋→ M is trivial if and
only if there exists a family (𝑋𝑖)𝑖 of smooth global sections 𝑋𝑖 ∈ Γ(E) of E such that
(𝑋𝑖𝑥)𝑖 defines a homogeneous basis of the super Λ-module E𝑥 ∀𝑥 ∈ M. □

Example 2.4.11 (The dual vector bundle). Recall that, to a super Λ-moduleV, one
can associate its corresponding left dual V∗ defined as the super Λ-module V∗ :=
Hom

𝐿
(V,Λ). Analogously, one defines the right dualV∗ := Hom

𝑅
(V,Λ). Thus,

given a super vector bundleV → E 𝜋→M, we can construct the corresponding left
dual bundle as follows. As total space, we set

E∗ :=
∐
𝑥∈M

E∗ 𝑥 (2.115)

together with the surjective map

𝜋 E∗ : E∗ →M, E∗ 𝑥 ∋ 𝑇𝑥 ↦→ 𝑥 (2.116)

Let {(𝑈𝛼 , 𝜙𝛼)}𝛼∈Υ be a smooth bundle atlas on E. Then, for any 𝛼 ∈ Υ, define the
map

𝜙∗𝛼 : E∗ ⊇ 𝜋−1E∗ (𝑈𝛼) → 𝑈𝛼 × V∗ (2.117)

𝑇𝑥 ↦→ (𝑥, 𝜙∗𝛼 (𝑇𝑥))

where 𝜙∗𝛼 (𝑇𝑥) ∈ V∗ is defined as ⟨𝑣 |𝜙∗𝛼 (𝑇𝑥)⟩ := ⟨⟨𝑣 |𝜙−1𝛼,𝑥⟩ |𝑇𝑥⟩ ∀𝑣 ∈ V. It follows
that 𝜙∗𝛼 is bijective, fiber-preserving and an isomorphism of super Λ-modules on each
fiber. The inverse is given by

𝜙∗−1𝛼 : 𝑈𝛼 × V∗ → 𝜋−1E∗ (𝑈𝛼), (𝑥, ℓ ) ↦→ (𝜙
−1
𝛼 )∗ℓ𝑥 ∈ E∗ 𝑥 (2.118)
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2.4. Super fiber bundles

where ⟨𝑣𝑥 | (𝜙−1𝛼 )∗ℓ𝑥⟩ := ⟨⟨𝑣𝑥 |𝜙𝛼,𝑥⟩ |ℓ ⟩ ∀𝑣𝑥 ∈ E𝑥 , 𝑥 ∈ M. For 𝛼, 𝛽 ∈ Υ with𝑈𝛼 ∩
𝑈𝛽 ≠ ∅, the transition function 𝜙∗

𝛽
◦ 𝜙∗−1𝛼 : (𝑈𝛼 ∩𝑈𝛽) × V∗ → (𝑈𝛼 ∩𝑈𝛽) × V∗

takes the form

𝜙∗
𝛽
◦ 𝜙∗−1𝛼 (𝑥, ℓ ) = 𝜙∗𝛽 ((𝜙

−1
𝛼 )∗ℓ𝑥) = (𝑥, 𝜙∗𝛽 ((𝜙

−1
𝛼 )∗ℓ𝑥)) (2.119)

Choosing a real homogeneous basis (𝑒𝑖)𝑖 ofV, the r.h.s. of (2.119) becomes

⟨𝑒𝑖 |𝜙∗𝛽 ((𝜙
−1
𝛼 )∗ℓ𝑥)⟩ = ⟨⟨𝑒𝑖 |𝜙−1𝛽,𝑥⟩ |(𝜙

−1
𝛼 )∗ℓ𝑥)⟩ = ⟨⟨𝑒𝑖 |𝜙−1𝛽,𝑥 ⋄ 𝜙𝛼,𝑥⟩ |ℓ ⟩ (2.120)

= ( 𝑔𝛼𝛽)
𝑠𝑇 𝑗

𝑖
(𝑥)ℓ𝑗

with “𝑠𝑇 ” denoting super transposition, for any 𝑥 ∈ 𝑈𝛼 and thus is smooth. Hence,
it follows that {(𝑈𝛼 , 𝜙∗𝛼)}𝛼∈Υ defines a formal bundle atlas of E∗ so that, by Theorem
2.4.3, V∗ → E∗ →M has the structure of a super vector bundle called the left dual
super vector bundle of E. Analogously, one defines the right dual super vector bundle
V∗ → E∗ →M of E.

SupposeV → E 𝜋→M is a super vector bundle and (𝑋𝑖)𝑖 a family of smooth local
sections 𝑋𝑖 : 𝑈 → E of E over𝑈 ⊆ M open such that, for any 𝑥 ∈ 𝑈 , (𝑋𝑖𝑥)𝑖 defines
a homogeneous basis of the super Λ-module E𝑥 . According to Prop. 2.4.9, this yields a
local trivialization (𝑈 , 𝜙𝑈 ) of E with the inverse given by

𝜙−1𝑈 : 𝑈 ×V → 𝜋−1(𝑈 ) ⊆ E, (𝑥, 𝑣𝑖 𝑒𝑖) ↦→ 𝑣𝑖𝑋𝑖𝑥 (2.121)

with (𝑒𝑖)𝑖 a real homogeneous basis ofV. By (2.118), this in turn induces a local local
trivialization (𝑈 , 𝜙∗

𝑈
) of the left dual bundle E∗ with inverse

𝜙∗−1𝑈 : 𝑈 × V∗ → 𝜋−1E∗ (𝑈 ), (𝑥, ℓ ) ↦→ (𝜙
−1)∗ℓ𝑥 ∈ E∗ 𝑥 (2.122)

Hence, if ( 𝑒𝑖 )𝑖 denotes the corresponding left dual basis of V∗ satisfying ⟨𝑒𝑖 | 𝑒𝑗 ⟩ = 𝛿
𝑗

𝑖
,

again by Prop. 2.4.9, this yields a family ( 𝜔𝑖 )𝑖 of smooth local sections 𝜔𝑖 ∈ Γ𝑈 ( E∗ )
of E∗ given by

𝜔𝑖 := 𝜙∗−1𝑈 ( · , 𝑒
𝑖 ) (2.123)

such that, for any 𝑥 ∈ 𝑈 , ( 𝜔𝑖 𝑥 )𝑖 defines a homogeneous basis of the corresponding left
dual super Λ-module E∗ 𝑥 . Evaluation on the 𝑋𝑖 then yields

⟨𝑋𝑖𝑥 | 𝜔
𝑗

𝑥 ⟩ = ⟨𝑋𝑖𝑥 | (𝜙−1𝑈 )
∗ 𝑒
𝑗
𝑥 ⟩ = ⟨⟨𝑋𝑖𝑥 |𝜙𝑈 ,𝑥⟩ | 𝑒𝑗 ⟩ = ⟨⟨⟨𝑒𝑖 |𝜙−1𝑈 ,𝑥⟩ |𝜙𝑈 ,𝑥⟩ | 𝑒

𝑗 ⟩

= ⟨⟨𝑒𝑖 |𝜙−1𝑈 ,𝑥 ⋄ 𝜙𝑈 ,𝑥⟩ | 𝑒
𝑗 ⟩ = ⟨𝑒𝑖 | 𝑒𝑗 ⟩ = 𝛿

𝑗

𝑖
(2.124)

∀𝑥 ∈ 𝑈 , that is, ⟨𝑋𝑖 | 𝜔𝑗 ⟩ = 𝛿
𝑗

𝑖
∀𝑖, 𝑗 . Hence, we have established the following.
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Proposition 2.4.12. LetV → E 𝜋→M be a super vector bundle, (𝑋𝑖)𝑖=1,...,𝑛 a family
of local sections 𝑋𝑖 : 𝑈 → E of E over 𝑈 ⊆ M open such that, for any 𝑥 ∈ 𝑈 ,
(𝑋𝑖𝑥)𝑖 defines a homogeneous basis of the super Λ-module E𝑥 . Then, there exists a family
( 𝜔𝑖 )𝑖,...,𝑛 of smooth local sections 𝜔𝑖 ∈ Γ𝑈 ( E∗ ) of the corresponding left dual super vector
bundle V∗ → E∗ →M such that ( 𝜔𝑖 𝑥 )𝑖 defines a homogeneous basis of E∗ 𝑥 ∀𝑥 ∈ 𝑈
and are dual in the sense that

⟨𝑋𝑖 | 𝜔𝑗 ⟩ = 𝛿
𝑗

𝑖
(2.125)

∀𝑖, 𝑗 = 1, . . . , 𝑛 □

Example 2.4.13 (Maurer-Cartan form). Given a super Lie group G, one can choose a
real homogeneous basis (𝑋𝑖𝑒)𝑖 of the super Lie module Lie(G) ≡ 𝑇𝑒G = Λ⊗𝔤. It then
follows that the corresponding left-invariant vector fields (𝑋𝑖)𝑖 induce a homogeneous
basis of the tangent module 𝑇𝑔G at any 𝑔 ∈ G. Thus, via Prop. 2.4.12, this in turn
induces a basis ( 𝜔𝑖 )𝑖 of smooth 1-forms 𝜔𝑖 ∈ Ω1(M) := Γ( 𝑇M∗ ), that is, smooth
sections of the left dual cotangent bundle 𝑇M∗ . It follows immediately from the left-
invariance of the 𝑋𝑖 that the 1-forms 𝜔𝑖 are also left-invariant.

The Maurer-Cartan form onG is defined as the Lie(G)-valued1-form 𝜃MC ∈ Ω1(G, 𝔤)
:= Ω1(G) ⊗ 𝔤 given by

𝜃MC := 𝜔𝑖 ⊗ 𝑋𝑖 (2.126)

By definition, the Maurer-Cartan form is left-invariant. Moreover, using the generalized
tangent map (see Definition 2.5.9 in Section 2.5), it follows that one can also write
(𝜃MC) 𝑔 = 𝐿 𝑔−1∗ ∀𝑔 ∈ G where 𝐿 𝑔 := 𝜇G ( 𝑔, ·) (resp. 𝑅𝑔 := 𝜇G (·, 𝑔)) denotes the
left (resp. right) translation on G w.r.t. 𝑔 ∈ G.

Example 2.4.14 (Tensor product of super vector bundles). LetV → E → M and
Ṽ → Ẽ →M be super vector bundles. Set

E ⊗ Ẽ :=
∐
𝑥∈M
E𝑥 ⊗Λ Ẽ𝑥 (2.127)

together with the surjective map

𝜋⊗ : E ⊗ Ẽ → M, E𝑥 ⊗ Ẽ𝑥 ∋ 𝑣𝑥 ↦→ 𝑥 (2.128)

Let {(𝑈𝛼 , 𝜙𝛼)}𝛼∈Υ and {(𝑉𝛼′ , 𝜙𝛼′)}𝛼′∈Σ be smooth bundle atlases of E and Ẽ, respec-
tively. For (𝛼, 𝛼′) ∈ Υ × Σ with𝑈𝛼,𝛼′ := 𝑈𝛼 ∩𝑉𝛼′ ≠ ∅, define

𝜓𝛼,𝛼′ : E ⊗ Ẽ ⊇ 𝜋−1⊗ (𝑈𝛼,𝛼′) → 𝑈𝛼,𝛼′ × (V ⊗Λ Ṽ) (2.129)

𝑣𝑥 ⊗ 𝑤𝑥 ↦→ (𝑥, (𝜙𝛼 ⊗ 𝜙𝛼′) (𝑣𝑥 ⊗ 𝑤𝑥))
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Then, {(𝑈𝛼,𝛼′ , 𝜓𝛼,𝛼′)} (𝛼,𝛼′) ∈Υ×Σ defines a formal bundle atlas of E ⊗ Ẽ turningV ⊗
Ṽ → E ⊗ Ẽ 𝜋⊗→ M into a super vector bundle called the tensor product super vector
bundle.

Definition 2.4.15 (Principal super fiber bundle). A principal super fiber bundle is a
super fiber bundle G → P 𝜋→M such that

(i) the typical fiber is a super Lie group G.

(ii) the total space P is equipped with a smooth G-right action Φ : P × G → P
preserving the fibers, that is, 𝜋 ◦Φ = 𝜋 ◦pr1, or explicitly, 𝑝 · 𝑔 := Φ( 𝑝, 𝑔) ∈ P𝑥
∀𝑔 ∈ G and 𝑝 ∈ P with 𝜋 ( 𝑝) = 𝑥 ∈ M.

(iii) there exists a smooth bundle atlas {(𝑈𝛼 , 𝜙𝛼)}𝛼∈Υ ofP such that, for each 𝛼 ∈ Υ,
the bundle chart 𝜙𝛼 : 𝜋−1(𝑈𝛼) → 𝑈𝛼 × G is G-equivariant, i.e.

𝜙𝛼 ◦Φ = (id × 𝜇G) ◦ (𝜙𝛼 × idG) (2.130)

where𝑈𝛼 × G is equipped with the standard G-right action id × 𝜇G : (𝑈𝛼 ×
G) × G → 𝑈𝛼 × G, ((𝑥, 𝑔), 𝑔 ′) ↦→ (𝑥, 𝑔 𝑔 ′).

Proposition 2.4.16. Let G → P 𝜋P→M be a principal super fiber bundle, then the orbit
space P/G equipped with the quotient topology can be given the structure a supermanifold
such that P/G is canonically isomorphic toM and the body B(P/G) is isomorphic to
B(P)/B(G) in the sense of ordinary smooth manifolds. Moreover, the sheaf 𝐻∞P/G of
smooth functions on P/G is canonically isomorphic to the quotient sheaf

𝐻∞P /𝐻
∞
G : P/G ⊃ 𝑈 → (𝐻∞P /𝐻

∞
G ) (𝑈 ) := {𝑓 ∈ 𝐻

∞(𝜋−1(𝑈 )) |Φ∗(𝑓) = 𝑓⊗1G}
(2.131)

where 𝜋 : P → P/G is the canonical projection.

Proof. Since 𝜋P ◦ Φ = 𝜋P ◦ pr1, 𝜋P is constant on G-orbits. Hence, by universal
property of the quotient, there exists a unique continuous map 𝜋̂ : P/G →M such
that the following diagram commutes

P 𝜋P //

𝜋

��

M

P/G
𝜋̂

77

It follows immediately that 𝜋̂ is bijective. Moreover, since 𝜋P is open as a bundle map, it
follows, by definition of the quotient topology, that 𝜋̂ is a homeomorphism. Choosing

45



2. Supergeometry

an atlas {(𝑈𝛼 , 𝜙𝛼)}𝛼∈Υ onM, this yields a corresponding atlas {(𝑉𝛼 , 𝜓𝛼)}𝛼∈Υ ofP/G
by setting𝑉𝛼 := 𝜋̂−1(𝑈𝛼) and 𝜓𝛼 := 𝜙𝛼 ◦ 𝜋̂ : 𝑉𝛼 → 𝜙𝛼 (𝑈𝛼) ⊂ Λ𝑚,𝑛 ∀𝛼 ∈ Υ, where
dimM = (𝑚, 𝑛). In this way, P/G becomes a supermanifold diffeomorphic toM via
𝜋̂ . By Prop. 2.4.2, B(G) → B(P) → B(M) defines a ordinary smooth principal fiber
bundle over B(M) with structure group B(G). Hence, arguing as above, one concludes
that B(P)/B(G) is canonically diffeomorphic to B(M). To summarize, we have the
isomorphism

B(P/G)
B( 𝜋̂ )
−→ B(M) �−→ B(P)/B(G) (2.132)

Finally, let𝑈 ⊆ P/G be an open subset and 𝑓 ∈ 𝐻∞(𝜋−1(𝑈 )) a smooth map with
Φ∗(𝑓) = 𝑓 ⊗ 1G . Then, 𝑓 is constant on G-orbits such that, by the universal property
of the quotient, there exists a unique continuous map 𝑓̃ : 𝑈 → Λ with 𝑓̃ ◦ 𝜋 = 𝑓. By
definition of the differential structure on P/G, it follows immediately that 𝑓̃ is smooth,
i.e., 𝑓̃ ∈ 𝐻∞(𝑈 ). Conversely, if 𝑔 ∈ 𝐻∞(𝑈 ), then 𝑔 ′ := 𝜋∗ 𝑔 = 𝑔 ◦ 𝜋 |𝜋−1 (𝑈 ) ∈
𝐻∞(𝜋−1(𝑈 )) satisfying Φ∗( 𝑔 ′) = Φ∗ ◦ 𝜋∗( 𝑔) = (𝜋 ◦ Φ)∗( 𝑔) = (𝜋 ◦ pr1)∗( 𝑔) =
pr∗1 ◦ 𝜋∗( 𝑔) = 𝑔 ′ ⊗ 1G , i.e., 𝑔 ′ ∈ (𝐻∞P /𝐻

∞
G ) (𝑈 ). This closes the prove of the above

proposition. □

Proposition 2.4.17 (after [97]). There is a one-to-one correspondence between local triv-
ializations of a principal super fiber bundle G → P 𝜋→ M and smooth local sections
𝑠 ∈ Γ𝑈 (P) of P for any𝑈 ⊆ M open.

Proof. If (𝑈 , 𝜙𝑈 ) is a local trivialization of P, the map 𝑠 : 𝜋−1(𝑈 ) ∋ 𝑝 ↦→ 𝑠(𝑥) :=
𝜙−1
𝑈
(𝑥, 𝑒) ∈ P𝑥 defines, as 𝑒 ∈ B(G), a smooth local section of P over𝑈 . Conversely,

if 𝑠 ∈ Γ𝑈 (P) is a smooth local section of P over𝑈 ⊆ M, consider the map

𝜓 : 𝑈 × G → 𝜋−1(𝑈 ), (𝑥, 𝑔) ↦→ Φ(𝑠(𝑥), 𝑔) (2.133)

Then, 𝜓 defines a smooth fiber-preserving and G-equivariant map which, in particular,
is bijective, as the G-right action Φ : P × G → P on P is free and transitive. That the
inverse is also smooth follows as in proof of Prop. 2.4.9. □

Example 2.4.18 (The frame bundle F (E)). Given a super vector bundleV → E 𝜋→
M, one can construct a new bundle as follows. For any 𝑥 ∈ M we define a frame at 𝑥
as an isomorphism of super Λ-modules 𝑝𝑥 : V → E𝑥 . Let F (E)𝑥 denote the set of
all frames at 𝑥 ∈ M. We set

F (E) :=
∐
𝑥∈M

F (E)𝑥 (2.134)
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together with the surjective map

𝜋F : F (E) → M, F (E)𝑥 ∋ 𝑝𝑥 ↦→ 𝑥 ∈ M (2.135)

Furthermore, we introduce a GL(V)-right action on F (E) via

Φ : F (E) × GL(V) ↦→ F (E) (2.136)
( 𝑝𝑥 , 𝑔) ↦→ ( 𝑝𝑥 ◦ 𝑔)𝑥

It follows that Φ is fiber-preserving, i.e., Φ( 𝑝𝑥 , 𝑔) ∈ F (E)𝑥 ∀𝑝𝑥 ∈ F (E)𝑥 , 𝑔 ∈
GL(V) and 𝑥 ∈ M, and therefore is also free and transitive on each fiber. Let
{(𝑈𝛼 , 𝜙𝛼)}𝛼∈Υ be a smooth bundle atlas on E. Then, for any 𝛼 ∈ Υ and 𝑥 ∈ 𝑈𝛼 ,
the induced map 𝜙−1𝛼,𝑥 : V → E𝑥 canonically yields a frame at 𝑥. Hence, let us define
the new map

𝜓𝛼 : 𝑈𝛼 × GL(V) → 𝜋−1F (𝑈𝛼) ⊆ F (E) (2.137)
(𝑥, 𝑔) ↦→ Φ(𝜙−1𝛼,𝑥 , 𝑔)

This map is bijective with inverse 𝜓−1𝛼 ( 𝑝𝑥) = (𝑥, 𝜙𝛼,𝑥 ◦ 𝑝𝑥) ∀𝑝𝑥 ∈ F (E)𝑥 , 𝑥 ∈ 𝑈𝛼
(note that indeed 𝜙𝛼,𝑥 ◦ 𝑝𝑥 ∈ GL(V)). Let 𝛼, 𝛽 ∈ Υ with𝑈𝛼 ∩𝑈𝛽 ≠ ∅, the transition
function 𝜓−1

𝛽
◦ 𝜓𝛼 : (𝑈𝛼 ∩𝑈𝛽) × GL(V) → (𝑈𝛼 ∩𝑈𝛽) × GL(V) then takes the

form

𝜓−1
𝛽
◦ 𝜓𝛼 (𝑥, 𝑔) = 𝜓−1𝛽 (Φ(𝜙

−1
𝛼,𝑥 , 𝑔)) = (𝑥, 𝜙𝛽,𝑥 ◦ 𝜙−1𝛼,𝑥 ◦ 𝑔)

= (𝑥, 𝑔𝛽𝛼 (𝑥) ◦ 𝑔) (2.138)

∀(𝑥, 𝑔) ∈ (𝑈𝛼 ∩𝑈𝛽) × GL(V) and thus is smooth. Hence, we have constructed an
appropriate formal bundle of F (E) such that GL(V) → F (E) 𝜋→ M turns into
a principal super fiber bundle with structure group GL(V) and GL(V)-right action
Φ : F (E) × GL(V) ↦→ F (E), called the frame bundle of E.

Definition 2.4.19. Given a supermanifold, the frame bundle F (M) ofM is defined
as the frame bundle F (M) ≡ F (𝑇M) of the associated tangent bundle𝑇M.

Proposition 2.4.20 (Associated fiber bundle). Let G → P 𝜋P→M be a principal super
fiber bundle with G-right action Φ : P × G → P. Let furthermore 𝜌 : G × F → F
be a smooth left action of G on a supermanifold F . On P × F consider the map

Φ× : (P × F ) × G → P × F , (( 𝑝, 𝑣), 𝑔) ↦→ (Φ( 𝑝, 𝑔), 𝜌( 𝑔−1, 𝑣)) (2.139)
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Then, Φ× defines an effective smooth G-right action on P × F . Let E := P ×𝜌 F :=
(P × F )/G be the corresponding coset space and 𝜋E : E →M be defined as

𝜋E : E →M (2.140)
[ 𝑝, 𝑣] ↦→ 𝜋P ( 𝑝)

Then, E can be equipped with the structure of a supermanifold such that 𝜋E is a smooth
surjective map and (E, 𝜋E ,M, F ) turns into a super fiber bundle, called the super fiber
bundle associated to P w.r.t. the G-left action 𝜌 on F .

Proof. It is immediate that Φ× : (P × F ) × G → P × F defines a smooth G-right
action. That it also is effective follows from the fact that Φ : P × G → P is effective.
Let {(𝑈𝛼 , 𝜙𝛼)}𝛼∈Υ be a smooth bundle atlas of G → P 𝜋P→M. For 𝛼 ∈ Υ define

𝜙×𝛼 : 𝜋−1E (𝑈𝛼) → 𝑈𝛼 × F (2.141)
[ 𝑝, 𝑣] → (𝜋P ( 𝑝), 𝜌(pr2 ◦ 𝜙𝛼 ( 𝑝), 𝑣))

which is well-defined as 𝜌 is a G-left action on F . Moreover, 𝜙×𝛼 is a bijection with
inverse (𝜙×𝛼)−1 : 𝑈𝛼 × F → 𝜋−1E (𝑈𝛼), (𝑥, 𝑣) ↦→ [𝜙

−1
𝛼 (𝑥, 𝑒), 𝑣]. For 𝛼, 𝛼′ ∈ Υ with

𝑈𝛼 ∩𝑈𝛼′ ≠ ∅, it follows

𝜙×
𝛽
◦ (𝜙×𝛼)−1(𝑥, 𝑣) = (𝑥, 𝜌(pr2 ◦ 𝜙𝛽 ◦ 𝜙

−1
𝛼 (𝑥, 𝑒), 𝑣)) (2.142)

∀(𝑥, 𝑣) ∈ (𝑈𝛼 ∩𝑈𝛽) × F , and thus 𝜙×
𝛽
◦ (𝜙×𝛼)−1 is smooth as pr2 ◦ 𝜙𝛽 ◦ 𝜙−1𝛼 is smooth

and 𝑒 ∈ B(G) is a body point. Thus, the family {(𝑈𝛼 , 𝜙×𝛼)}𝛼∈Υ defines a formal bundle
atlas of E (w.r.t. 𝜋E) and hence induces a topology and smooth supermanifold structure
on E such that (E, 𝜋E ,M, F ) becomes a super fiber bundle. □

Proposition 2.4.21. Under the conditions of Prop. 2.4.20, the canonical projection

𝜋 : P × F → E = P ×𝜌 F (2.143)

is a smooth bundle map, i.e., P × F 𝜋→ P ×𝜌 F carries the structure of a super fiber
bundle with typical fiber G. As a consequence, 𝜋 is an open submersion and the topology
on E defined via the construction in the proof of Theorem 2.4.4 coincides with the quotient
topology.
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Proof. First, let us show that 𝜋 is continuous. Therefore, if𝑈 ⊆ E is open, by definition
of the topology on E, for any 𝛼 ∈ Υ,𝑈 ∩ 𝜋−1E (𝑈𝛼) is of the form𝑈 ∩ 𝜋−1E (𝑈𝛼) =
(𝜙×𝛼)−1(𝑈𝛼) with𝑈𝛼 ⊆ 𝑈𝛼 × F open. Then,

𝜋−1(𝑈 ) = 𝜋−1
(⋃
𝛼∈Υ

𝑈 ∩ 𝜋−1E (𝑈𝛼)
)
=

⋃
𝛼∈Υ

𝜋−1((𝜙×𝛼)−1(𝑈𝛼))

=
⋃
𝛼∈Υ
(𝜙×𝛼 ◦ 𝜋 )−1(𝑈𝛼) (2.144)

and hence 𝜋−1(𝑈 ) ⊆ P × F is open proving that 𝜋 is continuous. That it is smooth
can be checked by direct computation.

Next, to see that is in fact a bundle map, i.e., P × F 𝜋→ P ×𝜌 F carries the structure
of a super fiber bundle, let us define an atlas {(𝜋−1E (𝑈𝛼), 𝜙𝛼)}𝛼∈Υ of locally trivializing
bundle charts as follows. For 𝛼 ∈ Υ, the map 𝜙𝛼 : 𝜋−1(𝜋−1E (𝑈𝛼)) = 𝜋

−1
P (𝑈𝛼) × F →

𝜋−1E (𝑈𝛼) × G is obtained via the following commutative diagram

𝜋−1P (𝑈𝛼) × F
𝜙𝛼×idF
�

//

𝜙𝛼

��

𝑈𝛼 × G × F

id𝑈𝛼×Θ�

��
𝜋−1E (𝑈𝛼) × G 𝑈𝛼 × F × G(𝜙×)−1×idG

�oo

where Θ : G × F → F × G is the diffeomorphism given by Θ( 𝑔, 𝑣) := ( 𝜌( 𝑔, 𝑣), 𝑔)
∀( 𝑔, 𝑣) ∈ G×F and thus 𝜙𝛼 ( 𝑝, 𝑣) = ( [ 𝑝, 𝑣], pr2◦𝜙𝛼 ( 𝑝)) ∀( 𝑝, 𝑣) ∈ 𝜋−1(𝜋−1E (𝑈𝛼)).
It follows that 𝜙𝛼 is a diffeomorphism preserving the fibers, i.e., pr1 ◦ 𝜙𝛼 = 𝜋 and thus
indeed defines a local trivialization.

That 𝜋 : P × F → E = P ×𝜌 F is an open map follows by a standard argument
using the fact that it is a bundle map and thus locally coincides with the projection pr1
which is open. It remains to show that the topology on E coincides with the quotient
topology. Obviously, any open subset𝑈 ⊆ E is also open w.r.t. the quotient topology
as 𝜋 is continuous. Conversely, if𝑈 ⊆ E is a subset of E such that 𝜋−1(𝑈 ) ⊆ P × F
is open, it follows from 𝜋 (𝜋−1(𝑈 )) = 𝑈 that𝑈 is open, as well. Hence, this proves
the proposition. □

Corollary 2.4.22. Let G → P 𝜋P→M be a principal super fiber bundle with structure
group G and 𝜌 : G → GL(V) be a representation of G on a finite-dimensional super
Λ-vector spaceV which induces the smooth G-left action 𝜌 : G ×V → V, ( 𝑔, 𝑣) ↦→
𝜌( 𝑔, 𝑣) ≡ 𝜌( 𝑔)𝑣 onV . Then, the associated fiber bundle E := P ×𝜌 V can be given the
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structure of a super vector bundle where, for each 𝑥 ∈ M, the fiber E𝑥 = P𝑥 ×𝜌 V carries
the structure of a free super Λ-module via

𝑎[ 𝑝, 𝑣] + 𝑏[ 𝑝, 𝑤] := [ 𝑝, 𝑎𝑣 + 𝑏𝑤] (2.145)

∀[ 𝑝, 𝑣], [ 𝑝, 𝑤] ∈ E𝑥 , 𝑎, 𝑏 ∈ Λ and Z2-grading

(E𝑥)0 := {[ 𝑝, 𝑣] ∈ E𝑥 | 𝑣 ∈ V0}, (E𝑥)1 := {[ 𝑝, 𝑣] ∈ E𝑥 | 𝑣 ∈ V1} (2.146)

The bundleV → E → M is called the super vector bundle associated to P w.r.t. the
representation 𝜌. □

Corollary 2.4.23. Let G → P 𝜋P→ M be a principal super fiber bundle with G-right
action Φ : P × G → P and let 𝜌 : G → GL(V) be a representation of G on a
finite-dimensional super Λ-vector spaceV . Let 𝐻∞(P,V)G be the subspace of smooth
G-equivariant functions on P with values inV defined as

𝐻∞(P,V)G := {𝑓 ∈ 𝐻∞(P,V)| 𝑓( 𝑝 · 𝑔) = 𝜌( 𝑔−1) (𝑓( 𝑝)), ∀𝑝 ∈ P, 𝑔 ∈ G}
(2.147)

Let E := P ×𝜌V be the associated super vector bundle. Then, there exists an isomorphism
of super vector spaces given by

Ψ : 𝐻∞(P,V)G → Γ(E), 𝑓 ↦→ (Ψ(𝑓) : 𝜋P ( 𝑝) ↦→ [ 𝑝, 𝑓( 𝑝)]) (2.148)

Proof. For 𝑓 ∈ 𝐻∞(P,V)G define the smooth map 𝑓̂ : P → E via 𝑓̂( 𝑝) :=
[ 𝑝, 𝑓( 𝑝)], ∀𝑝 ∈ P. By construction, this yields Φ∗( 𝑓̂) = 𝑓̂ ⊗ 1G , that is, 𝑓̂ is constant
onG-orbits. Thus, according to Prop. 2.4.16, this induces a smooth map Ψ(𝑓) : M →
E satisfyingΨ(𝑓)◦𝜋P = 𝑓̂and, in particular, is fiber-preserving. Hence,Ψ(𝑓) ∈ Γ(E).
Conversely, suppose one has given a smooth section 𝑋 ∈ Γ(E). For any 𝑝 ∈ P, we
define the bijective map [ 𝑝] : V → E𝑥 , 𝑣 ↦→ [ 𝑝, 𝑣] with 𝑥 := 𝜋P ( 𝑝). Hence, let us
define a map 𝑓 : P → V via 𝑓( 𝑝) = [ 𝑝]−1(𝑋 (𝑥)), ∀𝑝 ∈ P𝑥 . By construction, it
then follows 𝑓( 𝑝 · 𝑔) = 𝜌( 𝑔−1) (𝑓( 𝑝)) for any 𝑔 ∈ G. To see that it is smooth, let us
choose a local section 𝑠 : 𝑈 → P of the principal super fiber bundle P with𝑈 ⊆ M
open which, in turn, induces a local trivialization 𝜓 : P ⊇ 𝜋−1P (𝑈 ) → 𝑈 × G of P
as well as smooth sections 𝑠𝑖 : 𝑈 → E of the associated super vector bundle E via
𝑠(𝑥) := [𝑠(𝑥), 𝑒𝑖] ∀𝑥 ∈ 𝑈 where (𝑒𝑖)𝑖 is a real homogeneous basis ofV . By Prop. 2.4.9,
this induces a local trivialization 𝜙 : E ⊇ 𝜋−1E (𝑈 ) → 𝑈 ×V of E over𝑈 . It is then
easy to see that there exists a smooth map 𝑣 : 𝑈 →V such that 𝑋 (𝑥) = [𝑠(𝑥), 𝑣(𝑥)]
∀𝑥 ∈ 𝑈 . Then, it follows that 𝑓 ◦ 𝜓−1(𝑥, 𝑔) = 𝜌( 𝑔−1, 𝑣(𝑥)) ∀(𝑥, 𝑔) ∈ 𝑈 × G
which is obviously smooth proving that indeed 𝑓 ∈ 𝐻∞(P,V)G . This shows that Ψ
is bijective. That Ψ is linear and preserves the grading is immediate. □
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Example 2.4.24 (Vector bundles as associated bundles). LetV → E 𝜋→M be a super
vector bundle. The general linear supergroup GL(V) acts in a trivial way onV via the
so-called fundamental representation

𝜌 ≡ id : GL(V) → GL(V), 𝑔 ↦→ 𝑔 (2.149)

This yields the associated super vector bundle F (E) ×𝜌 V. Consider the map

F (E) ×𝜌 V → E (2.150)

[ 𝑝𝑥 , 𝑣] → (𝑣𝑖𝑋𝑖𝑥)𝑥

where we have chosen a real homogeneous basis (𝑒𝑖)𝑖 ofV and set 𝑋𝑖𝑥 := 𝑝𝑥 (𝑒𝑖) ∀𝑖.
It is immediate that (2.150) is smooth and well-defined, fiber-preserving as well as an
isomorphism of superΛ-modules on each fiber. Hence, it indeed defines an isomorphism
of super vector bundles. This shows that each super vector bundle is associated to a
principal super fiber bundle.

This construction also yields a new characterization of the (left) dual super vector
bundle V∗ → E∗ →M as follows. A representation 𝜌 : G → GL(V) of a super Lie
group on a super Λ-vector space yields a representation 𝜌∗ : G → GL( V∗ ) on the
corresponding left dual super Λ-vector space V∗ via

𝜌∗ ( 𝑔)ℓ : 𝑣 ↦→ ⟨𝑣 | 𝜌∗ ( 𝑔)ℓ ⟩ := ⟨⟨𝑣 | 𝜌( 𝑔−1)⟩ |ℓ ⟩ (2.151)

∀𝑔 ∈ G, ℓ ∈ V∗ and 𝑣 ∈ V, called the left dual representation of G. In our case, i.e.,
G = GL(V) and 𝜌 ≡ id, this yields the associated super vector bundle F (E) × 𝜌∗ V∗ .
In fact, in turns out that this bundle is isomorphic to the left dual super vector bundle
via

F (E) × 𝜌∗ V∗ → E∗ (2.152)

[ 𝑝𝑥 , ℓ ] → (𝑖𝑋𝑥 ℓ𝑖)𝑥

where, for any 𝑥 ∈ M, ( 𝑋𝑖 𝑥 )𝑖 denotes the left dual basis of (𝑋𝑖𝑥)𝑖 in E∗ 𝑥 .

Corollary 2.4.25. LetH → P 𝜋P→M be a principal super fiber bundle with structure
groupH andH -right action Φ : P × H → H . Let 𝜆 : H → G be a morphism of
super Lie groups and 𝜌𝜆 := 𝜇G ◦ (𝜆 × idG) : H × G → G the induced smooth left
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action ofH on G. Then, the associated fiber bundle P ×H G := P ×𝜌𝜆 G can be given
the structure of a principal super fiber bundle with structure group G and G-right action

Φ̃ : (P ×H G) × G → P ×H G (2.153)
( [ 𝑝, 𝑔], ℎ) ↦→ [ 𝑝, 𝜇G ( 𝑔, ℎ)]

Furthermore, let 𝜄 : P → P×HG be defined as 𝜄( 𝑝) := [ 𝑝, 𝑒] ∀𝑝 ∈ P, then 𝜄 is smooth,
fiber-preserving andH -equivariant in the sense that 𝜄 ◦Φ = Φ̃ ◦ ( 𝜄 × 𝜆). Moreover, if
𝜆 : H ↩→ G is an embedding, then 𝜄 is an embedding.

Proof. First, let us show that Φ̃ : (P ×H G) × G → P ×H G is a smooth G-right
action with respect to which the local trivializations 𝜙×𝛼 are G-equivariant. To see that is
continuous, consider the smooth map Φ′ : (P × G) × G → P ×H G, (( 𝑝, 𝑔), ℎ) ↦→
[ 𝑝, 𝜇G ( 𝑔, ℎ)]. Since Φ′ is constant on G-orbits it follows from Prop. (2.4.21), i.e., the
topology on E coincides with the quotient topology, that this induces a continuous
map Φ̃ : (P ×H G) × G → P ×H G such that the following diagram commutes

(P × G) × G Φ′ //

𝜋×idG
��

P ×H G

(P ×H G) × G
Φ̃

55

That Φ̃ is smooth can be checked by direct computation. Furthermore, for a locally
trivializing bundle chart 𝜙×𝛼 : 𝜋−1E (𝑈𝛼) → 𝑈𝛼 × G, we compute

𝜙×𝛼 ◦ Φ̃( [ 𝑝, 𝑔], ℎ) = (𝜋P ( 𝑝), 𝜌(pr2 ◦ 𝜙𝛼 ( 𝑝), 𝜇G ( 𝑔, ℎ)))
= (id × 𝜇G) (𝜋P ( 𝑝), 𝜌(pr2 ◦ 𝜙𝛼 ( 𝑝), 𝑔)), ℎ)
= (id × 𝜇G) ◦ 𝜙×𝛼 ( [ 𝑝, 𝑔], ℎ) (2.154)

and hence 𝜙×𝛼 ◦ Φ̃ = (id × 𝜇G) ◦ 𝜙×𝛼 as required.

Finally, let us consider the map 𝜄 : P → P ×H G, 𝑝 ↦→ [ 𝑝, 𝑒]. Since 𝜄 = 𝜋 ◦ 𝜄P
is a composition of the canonical projection 𝜋 as well as the embedding 𝜄P : P →
P × {𝑒} ⊂ P × G, it follows that 𝜄 is smooth. That 𝜄 is fiber-preserving is immediate
and for ( 𝑝, ℎ) ∈ P × H it follows 𝜄 ◦ Φ( 𝑝, ℎ) = [Φ( 𝑝, ℎ), 𝑒] = [ 𝑝, 𝜌𝜆 (ℎ, 𝑒)] =
[ 𝑝, 𝜇G (𝑒, 𝜆(ℎ))] = Φ̃ ◦ ( 𝜄 × 𝜆) ( 𝑝, ℎ), that is, 𝜄 isH -equivariant. To prove the last
assertion, if 𝜆 : H ↩→ G is an embedding, it follows that 𝜄 is injective. Moreover,
since 𝜋 is an open submersion, 𝜄 is a homeomorphism onto its image. To see that it is
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an immersion and thus an embedding, let {(𝑈𝛼 , 𝜙×𝛼)}𝛼∈Υ be a smooth bundle atlas of
P ×𝜌𝜆 G induced by a smooth bundle atlas of P. Then, for 𝛼 ∈ Υ, this yields

𝜙×𝛼 ◦ 𝜄( 𝑝) = (𝜋P ( 𝑝), 𝜆(pr2 ◦ 𝜙𝛼 ( 𝑝))) = (id × 𝜆) ◦ 𝜙𝛼 ( 𝑝) (2.155)

∀𝑝 ∈ P. But, since 𝜙𝛼 is a diffeomorphism and id×𝜆 : P×H → P×G an embedding
the claim follows. □

Definition 2.4.26. Under the assumptions of Corollary 2.4.25, the associated principal
super fiber bundle P ×H G := P ×𝜌𝜆 G is called the 𝜆-extension of P. If 𝜆 : H ↩→ G
is an embedding, P ×H G will also simply be called the G-extension of P. In the latter
case, we also simply write P[G] := P ×H G.

Definition 2.4.27. LetG → P 𝜋P→M be a principal super fiber bundle with structure
group G and 𝜆 : H −→ G a morphism of super Lie groups. AH -bundleH → Q

𝜋Q→
M overM is called a 𝜆-reduction of P, if there exists a smooth map Λ : Q −→ P such
that the following diagram commutes

Q ×H //

Λ×𝜆

��

Q

Λ

��

𝜋Q

  
M

P × G // P
𝜋P

>>

(2.156)

i.e. Λ is fiber-preserving andH -equivariant in the sense that Λ ◦ΦQ = ΦP ◦ (Λ × 𝜆)
with ΦQ : Q × H → Q and ΦP : P × G → P the super Lie group actions on Q
and P, respectively.

Corollary 2.4.28. Under the assumptions of Corollary 2.4.25, theH -bundle P is a 𝜆-
reduction of the G-bundle P ×H G. □

2.5. S-relative super connection forms
The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

One of the main issues when working in the standard category of supermanifolds, both
in the 𝐻∞ or the algebraic category, is that superfields on the body of a supermanifold
only contain commuting (bosonic) degrees of freedom, that is, there are no anticom-
muting (fermionic) field configurations on the body. This, however, turns out to be
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incompatible with various constructions in physics, such as in the geometric approach
to supergravity. In the Castellani-D’Auria-Fré approach to supergravity [71, 72] (see
Section 3.4), for instance, one has the so-called rheonomy principle stating that physical
fields are completely fixed by their pullback to the body manifold.

This can be cured by factorizing a given supermanifoldM by an additional parametrizing
supermanifoldS and studying superfields onS ×M. One is then interested in a certain
subclass of such superfields which depend as little as possible on this additional super-
manifold making them covariant in a specific sense under a change of parametrization.
This idea is based on a proposal formulated already by Schmitt in [73] which is motivated
by the functorial approach to supermanifold theory according to Molotkov [98] and
Sachse [99, 100]. This approach also recently found application in context of super-
conformal field theories on super Riemannian surfaces [75, 116] as well as in context of
the local approach to super quantum field theories (QFT) [101]. Moreover, as will be
explained in more detail later in Section 3.6, the description of fermionic fields turns out
to be quite similar to considerations in perturbative algebraic QFT [76, 77].

In the following, we will adopt the terminology of [101] introducing the notion of a
relative supermanifold. However, unlike [101], in order to study fermionic fields, we
will not restrict to superpoints as parametrizing supermanifolds. We will then define
principal connections and connection 1-forms on parametrized supermanifolds. These
results will then be applied in Section 2.7.2 for the construction of the parallel tansport
map.

Definition 2.5.1. LetS andM be supermanifolds. The pair (S ×M, prS) with prS :
S×M → S the projection onto the first factor is called aS-relative supermanifold also
denoted byM/S . The supermanifoldS is called parametrizing supermanifold or simply
parametrization. A morphism 𝜙 : M/S → N/S betweenS-relative supermanifolds is
a morphism 𝜙 : S ×M → S ×N of supermanifolds preserving the projections, i.e.,
the following diagram is commutative

S ×M
𝜙 //

prS ##

S × N

prS{{
S

Hence, 𝜙(𝑠, 𝑝) = (𝑠, 𝜙(𝑠, 𝑝)) ∀(𝑠, 𝑝) ∈ S ×M with 𝜙 := prN ◦ 𝜙 : S ×M → N .
This yields a category SMan/S called the category ofS-relative supermanifolds.

The following proposition gives a different characterization of morphism betweenS-
relative supermanifolds.
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Proposition 2.5.2 (after [101]). LetM/S ,N/S ∈ Ob(SMan/S) be S-relative super-
manifolds. Then, the map

𝛼S : HomSMan/S (M/S ,N/S) → HomSMan𝐻∞ (S ×M,N) (2.157)

(𝜙 : S ×M → S ×N) ↦→ (prN ◦ 𝜙 : S ×M → N)

is a bijection with the inverse given by

𝛼−1S : HomSMan𝐻∞ (S ×M,N) → HomSMan/S (M/S ,N/S) (2.158)

(𝜓 : S ×M → N) ↦→ ((idS × 𝜓 ) ◦ (𝑑S × idM) : S ×M → S ×N)

with 𝑑S : S → S × S the diagonal map. □

Let 𝜆 : S → S′ be a morphism between parametrizing supermanifolds, we will also call
such a morphism a change of parametrization. Then, any smooth map 𝜙 : S′×M → N
can be pulled back via 𝜆 to a morphism 𝜆∗𝜙 := 𝜙 ◦ (𝜆 × idM) : S ×M → N . Using
2.158, this yields the map [101]

𝜆∗ : HomSMan/S′ (M/S′ ,N/S′) → HomSMan/S (M/S ,N/S) (2.159)

𝜙 ↦→ 𝛼−1S (𝛼S′ (𝜙) ◦ (𝜆 × idM))

Hence, explicitly, for 𝜙 : M/S′ → N/S′ , 𝜆∗(𝜙) reads

𝜆∗(𝜙) (𝑠, 𝑝) = (𝑠, prN ◦ 𝜙(𝜆(𝑠), 𝑝)) (2.160)

∀(𝑠, 𝑝) ∈ S ×M. The following proposition demonstrates that the set of morphisms
between relative supermanifolds is functorial in the parametrizing supermanifold and
thus indeed has the required properties under change of parametrization.

Proposition 2.5.3 (after [101]). The assignment

SMan→ Set : Ob(SMan) ∋ S ↦→ HomSMan/S (M/S ,N/S) ∈ Ob(Set)
(𝜆 : S → S′) ↦→ 𝜆∗ (2.161)

defines a contravariant functor on the category SMan𝐻∞ of 𝐻∞ supermanifolds. More-
over, the map 𝜆∗ associated to the morphism 𝜆 : S → S′ preserves compositions, i.e.,
𝜆∗(𝜙 ◦ 𝜓 ) = 𝜆∗(𝜙) ◦ 𝜆∗(𝜓 ) for any 𝜓 : M →N and 𝜙 : N → L

Proof. This is an immediate consequence of the identities (2.157), (2.158) and (2.159).
Alternatively, one may directly prove this proposition using the explicit formula (2.160)
valid in the 𝐻∞ category. □
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Definition 2.5.4. (i) LetM/S ∈ Ob(SMan/S) be aS-relative supermanifold and
𝑝 ∈ M/S a point, that is, a tuple 𝑝 ≡ (𝑠, 𝑥) inS ×M. A tangent vector 𝑋𝑝 at 𝑝
is defined as a tangent vector 𝑋𝑝 ∈ 𝑇𝑝 (S ×M) satisfying

𝑋𝑝 (𝑓 ⊗ 1) = 0, ∀𝑓 ∈ 𝐻∞(S) (2.162)

The collection of tangent vectors at 𝑝 defines a superΛ-sub module of𝑇𝑝 (S×M)
denoted by𝑇𝑝 (M/S) which we call the tangent module ofM/S at 𝑝. A smooth
vector field 𝑋 ∈ 𝔛(M/S) onM/S is a smooth section 𝑋 ∈ 𝔛(S × M) of
the tangent bundle of S ×M such that 𝑋𝑝 ∈ 𝑇𝑝 (M/S) for any 𝑝 ∈ S ×M.
The vector fields onM/S form a super 𝐻∞(S ×M)-sub module 𝔛(M/S) of
𝔛(S ×M) isomorphic to 𝐻∞(S) ⊗ 𝔛(M).

(ii) A cotangent vector 𝜔𝑝 at 𝑝 ∈ M/S is defined a left linear morphism 𝜔𝑝 :
𝑇𝑝 (M/S) → Λ. A 1-form 𝜔 onM/S is a left linear morphism of super𝐻∞(S×
M)-modules 𝜔 ∈ Hom

𝐿
(𝔛(M/S), 𝐻∞(S ×M)). The set Ω1(M/S) of S-

relative 1-forms onM/S defines a super𝐻∞(S×M)-sub module ofΩ1(S×M)
isomorphic to Ω1(M) ⊗ 𝐻∞(S).

(iii) Analogously, one defines 𝑘-forms 𝜔 ∈ Ω𝑘 (M/S) onM/S , 𝑘 ∈ N, as skew-
symmetric 𝑘-left linear morphisms 𝜔 ∈ Hom

𝑎,𝐿
(𝔛(M/S)𝑘, 𝐻∞(S ×M)) of

super 𝐻∞(S × M)-modules. For 𝑘 = 0, we set Ω0(M/S) ≡ 𝐻∞(S × M).
Operations on forms, such as the exterior and interior derivative as well as Lie
derivative can be defined as in the non-relative setting (see e.g. [74, 97, 102, 117]).
For instance, given a 1-form 𝜔 ∈ Ω1(M/S) and homogeneous 𝑋 ∈ 𝔛(M/S),
the interior derivative is given by 𝜄𝑋 (𝜔) := ⟨𝑋 |𝜔⟩ and similarly for arbitrary
𝑘-forms. The Lie derivative is then defined via the (graded) Cartan formula
𝐿𝑋 := d ◦ 𝜄𝑋 + 𝜄𝑋 ◦ d. Moreover, one has the important identity

[𝐿𝑋 , 𝜄𝑌 ] ≡ 𝐿𝑋 ◦ 𝜄𝑌 − (−1) |𝑋 | |𝑌 | 𝜄𝑌 ◦ 𝐿𝑋 = 𝜄[𝑋 ,𝑌 ] (2.163)

for any homogeneous 𝑋 ,𝑌 ∈ 𝔛(M/S).

(iv) For a super Λ-moduleV, we denote by Ω𝑘 (M/S ,V) := Ω𝑘 (M/S) ⊗ V the
super 𝐻∞(S ×M)-module ofV-valued 𝑘-forms onM/S . In case,V is given
by the super Lie module Lie(G) = Λ ⊗ 𝔤 of a Lie group G, we simply write
Ω𝑘 (M/S , 𝔤) := Ω𝑘 (M/S) ⊗ 𝔤. Operations on Ω𝑘 (M/S) such as exterior,
interior or Lie derivative are extended in a straightforward way to Ω𝑘 (M/S ,V).
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Definition 2.5.5. (i) Consider a principal super fiber bundle G → P 𝜋→M with
G-right action Φ : P × G → P as well as a parametrizing supermanifold S.
Taking products, this yields a fiber bundle

S × P
𝜋S
��

Goo

S ×M

with projection 𝜋S := idS × 𝜋 and G-right action ΦS := idS × Φ : (S ×
P) × G → S × P. By construction, 𝜋S defines a morphism of S-relative
supermanifolds. Moreover, ΦS satisfies 𝜋S ◦ΦS = 𝜋S ◦ prS×P as well as

ΦS ◦ (ΦS × id) = ΦS ◦ (id × 𝜇) (2.164)

We will call such a group action a G-right action ofS-relative supermanifolds.
Hence, this yields a fiber bundle G → P/S

𝜋S→M/S in the category SMan/S of
S-relative supermanifolds which will be called aS-relative principal super fiber
bundle.

(ii) LetV → E 𝜋→M be a super vector bundle. Similarly as above, taking products,
this yields a fiber bundleV → E/S

𝜋S→ M/S in the category SMan/S with
typical fiber given by a super Λ-vector spaceV which will be called aS-relative
super vector bundle. A smooth section 𝑋 ∈ Γ(E/S) of the S-relative super
vector bundle E/S is given by morphisms 𝑋 : M/S → E/S of S-relative
supermanifolds satisfying 𝜋S ◦ 𝑋 = id.

Remark 2.5.6. LetM/S ∈ Ob(SMan/S) be aS-relative supermanifold. Choosing a
local coordinate neighborhood ofM, it is immediate to see that for any (𝑠, 𝑝) ∈ M/S ,
the tangent module𝑇( 𝑠, 𝑝) (M/S) is isomorphic to𝑇𝑝M via𝑇𝑝M ∋ 𝑋𝑝 ↦→ 1 ⊗ 𝑋𝑝 ∈
𝑇( 𝑠, 𝑝) (M/S). On S ×M consider the assignment𝑇 (M/S) : S ×M ∋ (𝑠, 𝑝) ↦→
𝑇( 𝑠, 𝑝) (M/S) which defines a subbundle of𝑇 (S ×M) and which we call the tangent
bundle ofM/S . On the other hand, according to Definition 2.5.5 (ii), one can also
consider the S-relative super vector bundle (𝑇M)/S . Together with the previous
observation, we obtain an isomorphism

(𝑇M)/S
∼→ 𝑇 (M/S), (𝑠, 𝑋𝑝) ↦→ (1 ⊗ 𝑋 ) ( 𝑠, 𝑝) ∈ 𝑇( 𝑠, 𝑝) (M/S) (2.165)

Moreover, via this identification, it follows that smooth vector fields onM/S can be
identified with smooth sections 𝑋 ∈ Γ((𝑇M)/S) of theS-relative super vector bundle
(𝑇M)/S . In a similar way, it follows that S-relative 1-forms onM/S can be identi-

57



2. Supergeometry

fied with smooth sections 𝜔 ∈ Γ(( 𝑇M∗ )/S) of the S-relative super vector bundle
( 𝑇M∗ )/S .

As in the ordinary theory of principal fiber bundles and gauge theory in physics, connec-
tions and connection 1-forms play a very central role. To implement these notions in the
category of relative supermanifolds, we first have to introduce the notion of a geometric
distribution.

Definition 2.5.7. A smooth geometric distribution E of rank 𝑘 |𝑙 on aS-relative super-
manifoldM/S is an assignment

E : M/S ∋ 𝑝 ↦→ E 𝑝 ⊆ 𝑇𝑝 (M/S) (2.166)

mapping each point 𝑝 ∈ M/S to a super Λ-sub module E 𝑝 of𝑇𝑝 (M/S) of dimension
𝑘 |𝑙 such that, for any 𝑝 ∈ M/S , there exists 𝑝 ∈ 𝑈 ⊆ S × M open as well as a
family (𝑋𝑖)𝑖=1,...,𝑘+𝑙 of smooth vector fields 𝑋 ∈ 𝔛(𝑈 ) onS ×M such that 𝑋𝑖 (𝑞) ∈
𝑇𝑞 (M/S) ∀𝑞 ∈ 𝑈 and (𝑋𝑖 (𝑞))𝑖 defines a homogeneous basis of E𝑞 .

Lemma 2.5.8 (a generalization of [97]). LetM/S be a S-relative supermanifold of
dimension (𝑚, 𝑛) andW → F/S → N/S be aS-relative super vector bundle of rank
𝑘 |𝑙. Let (𝜙, 𝑔) : 𝑇M/S → F/S a (even, right linear) morphism of S-relative super
vector bundles such that 𝜙 𝑝 : 𝑇𝑝M/S → (F/S) 𝑔 ( 𝑝) is surjective ∀𝑝 ∈ M/S . Then

ker(𝜙) :=
∐
𝑝∈M/S

ker(𝜙 𝑝 : 𝑇𝑝M/S → (F/S) 𝑔 ( 𝑝) ) (2.167)

defines a smooth geometric distribution of rank (𝑚 − 𝑘) | (𝑛 − 𝑙) onM/S .

Proof. The following proof is a generalization of the proof in the ordinary𝐻∞ category
as given in [97]. For an arbitrary but fixed 𝑝0 ∈ M/S , let (𝑈/S , 𝜓𝑈 ) and (𝑉/S , 𝜓 ′𝑉 ) be
local trivializations of𝑇M/S and F/S , respectively, such that 𝑝0 ∈ 𝑈/S andS ×𝑈 ⊂
𝑔−1(S×𝑉 ). Consider the map 𝜙𝑉𝑈 := 𝜓 ′

𝑉
◦𝜙◦𝜓−1

𝑈
: 𝑈/S×Λ𝑚 |𝑛 →𝑉/S×W. Since

𝜙 is a right linear super vector bundle morphism, pr2 ◦ 𝜙𝑉𝑈 ( 𝑝, · ) : Λ𝑚 |𝑛 →W ∈
End𝑅 (Λ𝑚 |𝑛,W) is a right linear map∀𝑝 ∈ 𝑈/S . Hence, there exists a (unique) smooth
map 𝜙𝑉𝑈 : S × 𝑈 → End𝑅 (Λ𝑚 |𝑛,W) such that 𝜙𝑉𝑈 ( 𝑝)𝑣 = pr2 ◦ 𝜙𝑉𝑈 ( 𝑝, 𝑣)
∀( 𝑝, 𝑣) ∈ (S ×𝑈 ) × Λ𝑚 |𝑛. Thus, w.r.t. a real homogeneous basis (𝑒𝑖)𝑖=1,...,𝑚+𝑛 and
(𝑓𝑗 )𝑗=1,...,𝑘+𝑙 of Λ𝑚 |𝑛 andW, respectively, this yields

𝜙𝑉𝑈 ( 𝑝, 𝑣) = ( 𝑔 ( 𝑝), 𝑓𝑗𝜙
𝑗

𝑉𝑈 𝑖
( 𝑝)𝑣𝑖) (2.168)
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Since 𝜙 𝑝 : 𝑇𝑝M/S → (F/S) 𝑔 ( 𝑝) is surjective, the rank of the super matrix 𝜙 𝑗

𝑉𝑈 𝑖
( 𝑝)

has to be 𝑘 |𝑙 ∀𝑝 ∈ S ×𝑈 . Hence, after reordering the real homogeneous basis (𝑒𝑖)𝑖 ,
we may assume that the sub super matrix (𝜙 𝑟

𝑉𝑈 𝑖
( 𝑝0))𝑖,𝑟=1,...,𝑘+𝑙 is invertible. Hence,

there exists𝑈 ′ ⊂ S ×𝑈 open such that (𝜙 𝑟
𝑉𝑈 𝑖
( 𝑝))𝑖,𝑟=1,...,𝑘+𝑙 is invertible ∀𝑝 ∈ 𝑈 ′.

As taking the inverse of super matrices is smooth, the inverse matrix (ℎ𝑖𝑟 ( 𝑝))𝑖,𝑟=1,...,𝑘+𝑙
of (𝜙 𝑟

𝑉𝑈 𝑖
( 𝑝)) ∀𝑝 ∈ 𝑈 ′ defines a smooth right linear map fromW to Λ𝑚 |𝑛.

For 𝑖 ′ = 𝑘 + 𝑙, . . . , 𝑚 + 𝑛, set

𝑠𝑖′ ( 𝑝) := 𝜓−1𝑈
(
𝑝, 𝑒𝑖′ − 𝑒𝑖ℎ𝑖𝑟 ( 𝑝)𝜙 𝑟

𝑉𝑈 𝑖′ ( 𝑝)
)

(2.169)

∀𝑝 ∈ 𝑈 ′. Then, since 𝜙 is homogeneous, it follows that 𝑠𝑖′ ∈ 𝔛(𝑈 ), 𝑖 ′ = 𝑘+𝑙, . . . , 𝑚+
𝑛 define smooth vector fields on𝑈 ′ such that 𝑠𝑖′ ( 𝑝) ∈ 𝑇𝑝M/S ∀𝑝 ∈ 𝑈 ′ and (𝑠𝑖′ ( 𝑝))𝑖′
is a homogeneous basis of ker(𝜙) 𝑝. Hence, this proves that ker(𝜙) defines a smooth
geometric distribution of rank (𝑚 − 𝑘) | (𝑛 − 𝑙) onM/S . □

Before we proceed with the definition of vertical and horizontal distributions as well
as connection forms on principal super fiber bundles, let us first note a very important
fact concerning partial evaluation of smooth maps defined on supermanifolds. More
precisely, note that, in the𝐻∞ category, the space of smooth functions defines aR-vector
space. Thus, it follows that, given a smooth map 𝜙 : M × N → L between 𝐻∞
supermanifolds as well as a point 𝑞 ∈ N , the map

𝜙𝑞 := 𝜙(·, 𝑞) : M → L (2.170)

in general, will not be of class 𝐻∞, unless 𝑔 ∈ B(N).7 However, following [97], one
can still associate a tangent map to 𝜙𝑞 even if 𝑞 is not an element of the body. More
precisely, one makes the following definition.

Definition 2.5.9. Let 𝜙 : M ×N → L be a smooth map between supermanifolds
and 𝑞 ∈ N be an arbitrary but fixed point. Using the identification 𝑇 (M × N) �
𝑇 (M) ×𝑇N , the generalized tangent map 𝜙𝑞∗ : 𝑇𝑝M → 𝑇𝜙( 𝑝,𝑞)L of 𝜙𝑞 ≡ 𝜙(·, 𝑞)
at 𝑝 ∈ M is defined as

𝜙𝑞∗(𝑋𝑝) ≡ 𝐷 𝑝𝜙𝑞 (𝑋𝑝) := 𝐷 ( 𝑝, 𝑔)𝜙(𝑋𝑝, 0𝑞) (2.171)

7 Note that the set smooth functions on a 𝐻∞ supermanifold is aR-vector space. For a general product
supermanifoldM ×N , one has 𝐻∞ (M × N) � 𝐻∞ (M) ⊗ 𝐻∞ (N) . If then 𝑓 ⊗ 𝑔 is a smooth
function onM×N , it follows that 𝑓⊗ 𝑔 (·, 𝑝) = 𝑓 · 𝑔 ( 𝑝) ∈ 𝐻∞ (M) ⇔ 𝑔 ( 𝑝) ∈ R⇔ 𝑝 ∈ B(N).
In fact, this has its explanation in the algebraic category since, due to super Milnor’s exercise (Prop. 2.2.7),
the real spectrum Hom(O(M),R) is given by the set of morphisms ev 𝑝 : O(M) → R associated to
points 𝑝 on the underlying topological space of an algebro-geometric supermanifold.
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for any 𝑋𝑝 ∈ 𝑇𝑝M. In a similar way, one defines the generalized tangent map 𝜙 𝑝∗ for
𝑝 ∈ M.

Definition 2.5.10. Let 𝜓 : M × N → L and 𝜙 : K × L → P be smooth maps
between supermanifolds and 𝑝 ∈ K and 𝑞 ∈ M arbitrary fixed points. Then, the
generalized tangent map (𝜙 𝑝 ◦ 𝜓𝑞)∗ of the map 𝜙 𝑝 ◦ 𝜓𝑞 = 𝜙( 𝑝, 𝜓 (𝑞, · )) : N → P is
defined, according to 2.5.9, as the generalized tangent map (𝜙×(id×𝜓 )) ( 𝑝,𝑞)∗ associated
to (𝜙 × (id × 𝜓 )) ( 𝑝,𝑞) : N → P.

Proposition 2.5.11. Let 𝜓 : M × N → L and 𝜙 : K × L → P be smooth maps
between supermanifolds and 𝑝 ∈ K and 𝑞 ∈ M arbitrary fixed points. Then,

(𝜙 𝑝 ◦ 𝜓𝑞)∗ = 𝜙 𝑝∗ ◦ 𝜓𝑞∗ (2.172)

Proof. For 𝑋𝑔 ∈ 𝑇𝑔N , 𝑔 ∈ N , we compute

(𝜙 𝑝 ◦ 𝜓𝑞)∗(𝑋𝑔) := (𝜙 × (id × 𝜓 )) ( 𝑝,𝑞)∗(𝑋𝑔) = 𝐷(𝜙 × (id × 𝜓 )) (0( 𝑝,𝑞) , 𝑋𝑔)
= 𝐷𝜙(𝐷(id × 𝜓 ) (0( 𝑝,𝑞) , 𝑋𝑔))
= 𝐷𝜙(0𝑝, 𝐷𝜓 (0𝑞, 𝑋𝑔))
= 𝜙 𝑝∗ ◦ 𝜓𝑞∗(𝑋𝑔) (2.173)

□

Definition 2.5.12. Let ΦS : M/S × G → M/S be a smooth right action of a
super Lie group G on aS-relative supermanifoldM/S . A fundamental tangent vector
𝑋𝑝 ∈ 𝑇𝑝M/S at 𝑝 ∈ M/S associated to 𝑋 ∈ Lie(G) = 𝑇𝑒G is defined as

𝑋𝑝 := (ΦS) 𝑝∗(𝑋 ) ∈ 𝑇𝑝M/S (2.174)

where we made use of the generalized tangent map. In case 𝑋 ∈ 𝔤, this yields a smooth
vector field 𝑋 ∈ 𝔛(M/S) which can equivalently be written as

𝑋 = (1 ⊗ 𝑋𝑒) ◦Φ∗S (2.175)

and which is called the fundamental vector field generated by 𝑋 .

Definition 2.5.13. Let G → P/S
𝜋S→M/S be aS-relative principal super fiber bundle.

The vertical tangent module V𝑝 of P/S at a point 𝑝 ∈ P/S is a super Λ-sub module of
the tangent module𝑇𝑝P/S defined as

V𝑝 := ker(𝐷 𝑝𝜋S) (2.176)
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Lemma 2.5.14. Let ΦS : M/S × G → M/S be a smooth right action of a super Lie
group G on aS-relative supermanifoldM/S . Then, for 𝑋 ∈ Lie(G) = 𝑇𝑒G, one has

(ΦS) 𝑔∗𝑋𝑝 = �Ad𝑔−1𝑋 𝑝· 𝑔 , ∀𝑝 ∈ P/S , 𝑔 ∈ G (2.177)

with �Ad𝑔−1𝑋 𝑝· 𝑔 the fundamental tangent vector associated to Ad𝑔−1𝑋 ∈ Lie(G) at
𝑝 · 𝑔 ∈ M/S . Here, Ad : G → GL(Lie(G)) denotes the Adjoint representation of G
with pushforward ad := Ad∗ : Lie(G) → End

𝑅
(Lie(G)), 𝑋 ↦→ [𝑋 , ·] given by the

adjoint representation of Lie(G).

Proof. By Prop. 2.5.11, we find

(ΦS) 𝑔∗𝑋𝑝 = (ΦS) 𝑔∗ ◦ (ΦS) 𝑝∗(𝑋 ) = ((ΦS) 𝑔 ◦ (ΦS) 𝑝)∗(𝑋 )
= (ΦS ◦ (ΦS × id)) ( 𝑝, · , 𝑔)∗(𝑋 )
= (ΦS ◦ (id × 𝜇)) ( 𝑝, · , 𝑔)∗(𝑋 )
= (ΦS) 𝑝∗ ◦ 𝑅𝑔∗(𝑋 ) (2.178)

Since 𝑅𝑔∗ = 𝐿 𝑔∗ ◦ 𝐿 𝑔−1∗ ◦ 𝑅𝑔∗ = 𝐿 𝑔∗ ◦ Ad𝑔−1 , it thus follows

(ΦS) 𝑔∗𝑋𝑝 = (ΦS) 𝑝∗ ◦ 𝐿 𝑔∗ ◦ 𝐿 𝑔−1∗ ◦ 𝑅𝑔∗(𝑋 )

= (ΦS) 𝑝· 𝑔∗ ◦ Ad𝑔−1 (𝑋 ) = �Ad𝑔−1𝑋 𝑝· 𝑔 (2.179)

as claimed. □

Proposition 2.5.15. LetG → P/S →M/S be aS-relative principal super fiber bundle
with right-action ΦS : P/S × G → P/S . For any 𝑝 ∈ P/S , one has

V𝑝 = {𝑋𝑝 | 𝑋 ∈ Lie(G)} (2.180)

i.e., the vertical tangent module V𝑝 is generated by the fundamental tangent vectors at
𝑝. In particular, the assignment V : M/S ∋ 𝑝 ↦→ V𝑝 defines a smooth geometric
distribution of rank dim𝔤 called the vertical tangent bundle which is right-invariant in
the sense that (ΦS) 𝑔∗V𝑝 = V𝑝· 𝑔 ∀𝑔 ∈ G.

Proof. For any 𝑝 ∈ P/S , let 𝑠 : 𝑈/S → P/S be a smooth local section of P/S with
𝜋S ( 𝑝) ∈ S × 𝑈 ⊆ S × M open. Then, 𝜋S ◦ 𝑠 = id implies 𝜋S∗ ◦ 𝑠∗ = id and
thus 𝐷 𝑝𝜋S : 𝑇𝑝M/S → 𝑇𝜋S ( 𝑝)P/S is surjective. Since, 𝐷 𝑝𝜋S is homogeneous,
it follows that V𝑝 = ker𝐷 𝑝𝜋S is a super Λ-sub module of 𝑇𝑝 (P/S) of dimension
dim V𝑝 = dim𝑇𝑝P/S − dim𝑇𝜋S ( 𝑝)M/S = dim Lie(G) ∀𝑝 ∈ P/S .
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For 𝑋 ∈ 𝑇𝑒G = Lie(G), the associated fundamental tangent vector 𝑋𝑝 at 𝑝 ∈ P/S is
given by 𝑋𝑝 = (ΦS) 𝑝∗𝑋 . By definition of the generalized tangent map, this yields

𝐷 𝑝𝜋S (𝑋𝑝) = 𝐷 𝑝𝜋S ◦ 𝐷 ( 𝑝,𝑒)ΦS (0𝑝, 𝑋 )
= 𝐷 ( 𝑝,𝑒) (𝜋S ◦ΦS) (0𝑝, 𝑋 )
= 𝐷 ( 𝑝,𝑒) (𝜋S ◦ pr1) (0𝑝, 𝑋 ) = 0 (2.181)

i.e., 𝑋𝑝 ∈ V𝑝. As Φ𝑝∗ : 𝑇𝑒G ↦→ 𝑇𝑝P/S is an even and injective map of super Λ-
modules, it follows from the observation above that it is an isomorphism onto V𝑝
proving (2.180).

To prove the last assertion, let (𝑋𝑖)𝑖 be a real homogeneous basis of 𝑇𝑒G and 𝑋 =

1 ⊗ 𝑋 ◦Φ∗S the associated smooth fundamental vector fields on P/S . Then, (𝑋𝑖 ( 𝑝))𝑖
is a homogeneous basis of V𝑝 ∀𝑝 ∈ P/S and thus V : M/S ∋ 𝑝 ↦→ V𝑝 defines a
smooth geometric distribution of rank dim𝔤. It remains to show that V is indeed right-
invariant, that is, (ΦS) 𝑔∗V𝑝 = V𝑝· 𝑔 ∀𝑔 ∈ G. Therefore, if 𝑋𝑝 ∈ V𝑝 with 𝑋 ∈ Lie(G),
it follows from Lemma 2.5.14

(ΦS) 𝑔∗𝑋𝑝 = �Ad𝑔−1𝑋 𝑝· 𝑔 ∈ V𝑝· 𝑔 . (2.182)

Since (ΦS) 𝑔∗ ◦ (ΦS) 𝑔−1∗ = id, the claim follows. □

Definition 2.5.16. Let G → P/S
𝜋→M/S be aS-relative principal super fiber bundle

with right-action ΦS : P/S × G → P/S . A principal connection (à la Ehresmann)
H on P/S is a smooth geometric distribution H : P/S ∋ 𝑝 ↦→H𝑝 ⊂ 𝑇𝑝 (P/S) of
horizontal tangent modules on P/S of rank dimM such that H𝑝 ⊕ V𝑝 = 𝑇𝑝 (P/S)
and H is right-invariant in the sense that

(ΦS) 𝑔∗H𝑝 = H𝑝· 𝑔 (2.183)

∀𝑝 ∈ P/S , 𝑔 ∈ G.

Definition 2.5.17. Let G → P/S → M/S be a S-relative principal super fiber
bundle and H : P/S → 𝑇 (P/S) a principal connection on P/S . A tangent vector
𝑋𝑝 ∈ 𝑇𝑝 (P/S) at 𝑝 ∈ P/S is called horizontal or vertical if 𝑋𝑝 ∈ H𝑝 or 𝑋𝑝 ∈ V𝑝,
respectively. Analogously, one defines horizontal and vertical vector fields.

Remark 2.5.18. Since, H𝑝 ⊕ V𝑝 = 𝑇𝑝 (P/S) ∀𝑝 ∈ P/S , this induces projections
pr
ℎ

and pr
𝑣

on𝑇 (P/S) onto the horizontal and vertical tangent modules. As H and
V define smooth geometric distributions, it clear that, for any smooth vector field
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𝑋 ∈ Γ(𝑇P/S), the projections pr
ℎ
◦ 𝑋 and pr

𝑣
◦ 𝑋 define smooth horizontal and

vertical vector fields, respectively.

We finally come to an equivalent characterization of principal connections in terms of
kernels of particular 1-forms defined on (relative) principal super fiber bundles. These
so-called super connection 1-forms yield a generalization of the well-known gauge fields
playing a prominent role in ordinary gauge theory in physics.

Definition 2.5.19. A super connection 1-formA on theS-relative principal super fiber
bundle G → P/S

𝜋S→ M/S is an even Lie(G)-valued 1-formA ∈ Ω1(P/S , 𝔤) such
that

(i) ⟨𝑋 |A⟩ = 𝑋 ∀𝑋 ∈ 𝔤

(ii) (ΦS)∗𝑔A = Ad𝑔−1 ◦ A ∀𝑔 ∈ G.

where, in condition (ii), the generalized tangent map was used (see Def. 2.5.9).

Theorem 2.5.20 (a generalization of [97]). For aS-relative principal super fiber bundle
G → P/S →M/S , there is a one-to-one correspondence between principal connections
and connection 1-forms on P/S . More precisely,

(i) if H : P/S ∋ 𝑝 ↦→H𝑝 is a principal connection onP/S , thenA ∈ Ω1(P/S , 𝔤)0
defined via

⟨(𝑋𝑝,𝑌𝑝) |A 𝑝⟩ := 𝑋 (2.184)

∀(𝑋𝑝,𝑌𝑝) ∈ H𝑝 ⊕ V𝑝 = 𝑇𝑝P, 𝑝 ∈ P/S and 𝑋 ∈ Lie(G), defines a connection
1-form on P/S .

(ii) ifA ∈ Ω1(P/S , 𝔤)0 is a connection 1-form on P/S , then the assignment

H : P/S ∋ 𝑝 ↦→ ker(A 𝑝) ⊂ 𝑇𝑝 (P/S) (2.185)

defines a principal connection on P/S

Proof. (i) We have to show thatA as defined via (2.185) satisfies the conditions (i)
and (ii) in 2.5.19 of a super connection 1-form on P/S . First, to see thatA indeed
defines a smooth even Lie(G)-valued 1-form on P/S , i.e.,A ∈ Ω1(P/S , 𝔤)0, let
(𝑋𝑖)𝑖 be a homogeneous basis of 𝔤 ⊂ Lie(G) = 𝑇𝑒G. Consider the components
A𝑖 := A ⋄ 𝑋𝑖 ∀𝑖 with ( 𝑋𝑖 )𝑖 the corresponding left dual basis of Lie(G)∗ .

According to Remark 2.5.18, if 𝑋 ∈ 𝔛(P/S) is a smooth vector field, we can
decompose 𝑋 into vertical and horizontal parts via 𝑋 = pr

𝑣
◦ 𝑋 + pr

ℎ
◦ 𝑋 =:

𝑋𝑣 + 𝑋ℎ. Since 𝑋𝑣 and 𝑋ℎ are smooth, it follows that A𝑖 is smooth iff ⟨𝑋𝑣 | A𝑖 ⟩
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and ⟨𝑋ℎ | A𝑖 ⟩ are smooth for any 𝑋 and thus iff A𝑖 is smooth when restricted
to smooth vertical and horizontal vector fields. The fundamental vector fields 𝑋𝑖
generated by 𝑋𝑖 define global smooth vertical vector fields such that (𝑋𝑖 ( 𝑝))𝑖 is
a homogeneous basis of V𝑝 ∀𝑝 ∈ P/S . By definition ofA, we have

⟨𝑋𝑖 | A𝑗 ⟩ = 𝛿𝑗
𝑖
∀𝑖, 𝑗 (2.186)

which is smooth and thusA is smooth on vertical vector fields. Finally, since H is
a smooth geometric distribution, for any 𝑝 ∈ P/S , there exists a 𝑝 ∈ 𝑈𝑝 ⊆ S×P
open as well as a family (𝑌𝑖)𝑖 of smooth horizontal vector fields on𝑈𝑝 such that
(𝑌𝑖 (𝑞))𝑖 is a homogeneous basis of H𝑞 ∀𝑞 ∈ 𝑈𝑝. Since ⟨𝑌𝑖 |A⟩ = 0 and thus
is smooth, it follows thatA is also smooth on horizontal vector fields. Hence,
indeedA ∈ Ω1(P/S , 𝔤). ThatA has to be even is immediate.

It remains to show thatA in fact satisfies the conditions (i) and (ii). By definition,
(i) is immediate. Moreover, by right-invariance of H , it suffices to show (ii) for
vertical tangent vectors. Hence, let 𝑋𝑝 ∈ V𝑝 ⊂ 𝑇𝑝 (PS) with 𝑋 ∈ Lie(G).
Using Lemma 2.5.14, we compute

⟨(ΦS) 𝑔∗𝑋𝑝 |A 𝑝 𝑔⟩ = ⟨�Ad𝑔−1𝑋 𝑝· 𝑔 |A 𝑝 𝑔⟩ = Ad𝑔−1𝑋 = Ad𝑔−1 ⟨𝑋𝑝 |A 𝑝⟩
(2.187)

This shows thatA defines a principal connection 1-form on P/S .

(ii) Conversely, forA ∈ Ω1(P/S , 𝔤)0 a principal connection 1-form on P/S , we
have to show that H : P/S ∋ 𝑝 ↦→ ker(A 𝑝) ⊂ 𝑇𝑝 (P/S) defines a principal
connection on P/S . To this end, similar as in [97], consider the map

𝑇 (P/S) → (P × Lie(G))/S , 𝑇𝑝P ∋ 𝑋𝑝 ↦→ ( 𝑝, ⟨𝑋𝑝 |A 𝑝⟩) (2.188)

from 𝑇 (P/S) to the trivial S-relative super vector bundle Lie(G) → (P ×
Lie(G))/S → P/S . By Remark 2.5.6, we can identify 𝑇 (P/S) with the S-
relative super vector bundle (𝑇P)/S . Hence, it follows that (2.188) defines a
smooth even and surjective, asA is even and surjective, morphism ofS-relative
super vector bundles. Hence, by Lemma 2.5.8, the kernel of (2.188), which coin-
cides with H , defines a smooth geometric distribution. To see that it is right-
invariant, note that, by condition (ii), for 𝑝 ∈ P/S and 𝑋𝑝 ∈ H𝑝 = ker(A 𝑝),
we have

⟨(ΦS) 𝑔∗𝑋𝑝 |A 𝑝· 𝑔⟩ = Ad𝑔−1 ⟨𝑋𝑝 |A 𝑝⟩ = 0 (2.189)

and thus (ΦS) 𝑔∗𝑋𝑝 ∈ H𝑝· 𝑔 .

□
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We finally want to define the notion of a covariant derivative and curvature 2-forms cor-
responding to super connection forms defined on relative principal super fiber bundles.

Definition 2.5.21. Let G → P/S → M/S be a S-relative principal super fiber
bundle and A ∈ Ω1(P/S , 𝔤)0 a super connection 1-form on P/S . The linear map
𝐷 (A) : Ω𝑘 (P/S ,V) → Ω𝑘+1(P/S ,V) defined as

⟨𝑋0, . . . , 𝑋𝑘 |𝐷 (A)𝜔⟩ := ⟨pr
ℎ
◦ 𝑋0, . . . , pr

ℎ
◦ 𝑋𝑘 |d𝜔⟩ (2.190)

for smooth vector fields 𝑋𝑖 ∈ 𝔛(P/S), 𝑖 = 0, . . . , 𝑘, is called the covariant derivative
induced byA where pr

ℎ
: 𝑇P/S → H := kerA denotes the projection onto the

horizontal tangent modules induced byA.

An important subclass of vector-valued forms on (relative) principal super fiber bundles
is provided by forms that transform covariantly in a specific sense under gauge trans-
formaions. This is the content of the following definition. One then asks the question,
whether one can define a derivative on such forms so that the transformation property
is preserved. As we will see, it follows that the covariant derivative induced by super
connections forms indeed has the right properties.

Definition 2.5.22. LetG → P/S →M/S be aS-relative principal super fiber bundle
withG-right actionΦ : P/S×G → P/S and 𝜌 : G → GL(V) be a representation of
G on a superΛ-vector spaceV . A 𝑘-form 𝜔 onP/S with values inV is called horizontal
of type (G, 𝜌), symbolically 𝜔 ∈ Ω𝑘

ℎ𝑜𝑟
(P/S ,V) (G, 𝜌) , if 𝜔 vanishes on vertical tangent

vectors and
Φ∗𝑔𝜔 = 𝜌( 𝑔)−1 ◦ 𝜔, ∀𝑔 ∈ G (2.191)

Proposition 2.5.23 (a generalization of [97]). Let G → P/S →M/S be aS-relative
principal super fiber bundle andA ∈ Ω1(P/S , 𝔤)0 a super connection 1-form on P/S .
Let 𝜔 ∈ Ω𝑘

ℎ𝑜𝑟
(P/S ,V) (G, 𝜌) be a horizontal 𝑘-form on P/S of type (G, 𝜌). Then, the

induced covariant derivative 𝐷 (A) takes the form

𝐷 (A)𝜔 = d𝜔 + 𝜌∗(A) ∧ 𝜔 (2.192)

where the (𝑘 + 1)-form 𝜌∗(A) ∧ 𝜔 on P/S is defined as

⟨𝑋0, . . . , 𝑋𝑘 | 𝜌∗(A) ∧ 𝜔⟩

:=
𝑘∑︁
𝑖=0
(−1)𝑘−𝑖+

∑𝑖−1
𝑙=0 |𝑋𝑖 | |𝑋𝑙 | 𝜌∗( 𝜄𝑋𝑖A)(⟨𝑋0, . . . , 𝑋𝑖 , . . . , 𝑋𝑘 |𝜔⟩) (2.193)
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In particular, 𝐷 (A)𝜔 ∈ Ω𝑘+1
ℎ𝑜𝑟
(P/S ,V) (G, 𝜌) , i.e., 𝐷 (A) induces a covariant derivative

on the subspace of horizontal forms of type (G, 𝜌).

Proof. That 𝐷 (A)𝜔 defines a horizontal form of type (G, 𝜌) if 𝜔 does, follows imme-
diately from the right-invariance of the horizontal distribution which implies pr

ℎ
◦

(ΦS) 𝑔 = (ΦS) 𝑔 ◦ pr
ℎ
∀𝑔 ∈ G where ΦS : P/S × G → P/S denotes the G-right

action on P/S .

To prove (2.192), it is sufficient to show equality when evaluating (2.192) on smooth
horizontal and vertical vector fields 𝑋𝑖 , 𝑖 = 0, . . . , 𝑘. Moreover, if 𝑋 is vertical, it suffices
to assume that is a fundamental vector field 𝑋 = 𝑌 generated by some𝑌 ∈ 𝔤. In case all
𝑋𝑖 are vertical, then it is clear that both sides in (2.192) trivially vanish by horizontality.
If all 𝑋𝑖 are horizontal, then (2.193) simply vanishes asA vanishes on horizontal vector
fields proving equality also in this case. Next, assume that at least two vector fields are
vertical. Then, note that if 𝑋 for some 𝑋 ∈ 𝔤 is a fundamental vector field and𝑌 ∗ is
horizontal then [𝑋 ,𝑌 ∗] is also horizontal. In fact, according to Prop. 2.6.10, we have
𝐿
𝑋
A = −ad𝑋 ◦ A such that, following [97], this yields

⟨[𝑋 ,𝑌 ∗] |A⟩ = 𝑋 ⟨𝑌 ∗ |A⟩ − (−1) |𝑋 | |𝑌 | ⟨𝑌 ∗ |𝐿
𝑋
A⟩

= ad𝑋 ◦ ⟨𝑌 ∗ |A⟩ = 0 (2.194)

Hence, again, both sides in (2.192) vanish as 𝜔 is horizontal andA vanishes on horizontal
vector fields. It thus remains to consider the case where at least one vector field is vertical.
Thus, suppose 𝑋 is a fundamental vector field generated by 𝑋 ∈ 𝔤 and𝑌𝑖 are horizontal
∀𝑖 = 1, . . . , 𝑘. By definition, the left-hand side of (2.192) simply vanishes. On the other
hand, following precisely the same steps as in the proof of Prop. 2.6.10 to be discussed
in Appendix F, it follows that 𝐿

𝑋
𝜔 = −𝜌∗(𝑋 ) ◦ 𝜔. This yields

(−1)𝑘 ⟨𝑋 ,𝑌1 . . . ,𝑌𝑘 |𝑑𝜔⟩ = (−1)
∑𝑘
𝑖=1 |𝑋 | |𝑌𝑖 | ⟨𝑌1, . . . ,𝑌𝑘 |𝐿𝑋 𝜔⟩

= −𝜌∗(𝑋 ) (⟨𝑌1, . . . ,𝑌𝑘 |𝜔⟩) (2.195)

where identity (2.163) was used. Moreover, using Definition (2.193), we get

⟨𝑋 ,𝑌1 . . . ,𝑌𝑘 | 𝜌∗(A) ∧ 𝜔⟩
= (−1)𝑘 𝜌∗( 𝜄𝑋A)(⟨𝑌1, . . . ,𝑌𝑘 |𝜔⟩) = 𝜌∗(𝑋 ) (⟨𝑌1, . . . ,𝑌𝑘 |𝜔⟩) (2.196)

proving that the right-hand side of (2.192) vanishes, as well. □

Definition 2.5.24. Let 𝛼 ∈ Ω𝑘 (M/S , 𝔤) and 𝛽 ∈ Ω𝑙 (M/S , 𝔤) be a 𝑘- resp. 𝑙-
form on a S-relative supermanifoldM/S with values in a super Lie module Lie(G)
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corresponding to a super Lie group G. The 𝑘 + 𝑙-form [𝛼 ∧ 𝛽] ∈ Ω𝑘+𝑙 (M/S , 𝔤) is
then defined via

[𝛼 ∧ 𝛽] := 𝛼𝑖 ∧ ℭ |𝑒𝑖 | (𝛽𝑗 ) ⊗ [𝑒𝑖 , 𝑒𝑗 ] (2.197)

where we have expanded 𝛼 = 𝛼𝑖 ⊗ 𝑒𝑖 and 𝛽 = 𝛽𝑖 ⊗ 𝑒𝑖 w.r.t. a homogeneous basis
(𝑒𝑖)𝑖 of 𝔤. Here, the involution ℭ : Λ → Λ is defined as ℭ(𝜆) = (−1) |𝜆 |𝜆 for any
homogeneous 𝜆 ∈ Λ.

Remark 2.5.25. For 𝜔 ∈ Ω𝑘
ℎ𝑜𝑟
(P/S , 𝔤) (G,Ad) , it follows that

𝐷 (A)𝜔 = d𝜔 + [A ∧ 𝜔] (2.198)

To see this, let us consider the case 𝑘 = 1. By direct computation, it then follows

⟨𝑋 ,𝑌 | [A ∧ 𝜔]⟩ =𝜄𝑋 ◦ 𝜄𝑌
(
A 𝑖 ∧ ℭ |𝑒𝑖 | (𝜔𝑗 )

)
⊗ [𝑒𝑖 , 𝑒𝑗 ]

=

(
(−1) ( |𝑒𝑖 |+ |𝑌 |) |𝑋 | ⟨𝑌 |A 𝑖⟩ ⟨𝑋 |ℭ |𝑒𝑖 | (𝜔𝑗 )⟩

−(−1) |𝑒𝑖 | |𝑌 | ⟨𝑋 |A 𝑖⟩ ⟨𝑌 |ℭ |𝑒𝑖 | (𝜔𝑗 )⟩
)
⊗ [𝑒𝑖 , 𝑒𝑗 ]

= − [⟨𝑋 |A⟩ , ⟨𝑌 |𝜔⟩] + (−1) |𝑋 | |𝑌 | [⟨𝑌 |A⟩ , ⟨𝑋 |𝜔⟩]
= ⟨𝑋 ,𝑌 |ad(A) ∧ 𝜔⟩ (2.199)

Hence, indeed, [A ∧ 𝜔] = ad(A) ∧ 𝜔.

Definition 2.5.26. LetA ∈ Ω1(P/S , 𝔤)0 be a super connection 1-form on aS-relative
principal super fiber bundle G → P/S →M/S . The horizontal 2-form

𝐹 (A) := 𝐷 (A)A ∈ Ω2
ℎ𝑜𝑟
(P/S , 𝔤) (G,Ad) (2.200)

is called the curvature ofA.

Proposition 2.5.27. LetA ∈ Ω1(P/S , 𝔤)0 be a super connection 1-form on aS-relative
principal super fiber bundle G → P/S →M/S . Then,

(i) 𝐹 (A) = dA + [A ∧ A]

(ii) 𝐷 (A)𝐹 (A) = 0 (Bianchi identity)

Proof. The first identity can be shown similarly as in the proof of Prop. 2.5.23 by apply-
ing both sides separately on horizontal and vertical vector fields.
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To show the Bianchi identity, let us decomposeA = A 𝑖 ⊗ 𝑒𝑖 with (𝑒𝑖)𝑖 a real homoge-
neous basis of 𝔤. Then,

d𝐹 (A) = 1
2

d[A ∧ A] = (−1) |𝑒𝑖 | |𝑒𝑗 | 1
2

(
dA 𝑖 ∧ A𝑗 − A 𝑖 ∧ dA𝑗

)
⊗ [𝑒𝑖 , 𝑒𝑗 ]

=
1
2

(
A𝑗 ∧ dA 𝑖 − (−1) |𝑒𝑖 | |𝑒𝑗 |A 𝑖 ∧ dA𝑗

)
⊗ [𝑒𝑖 , 𝑒𝑗 ] = −[A ∧ dA]

(2.201)

Thus, it follows that d𝐹 (A) vanishes when evaluating it on horizontal vector fields.
But, since 𝐷 (A)𝐹 (A) = pr

ℎ
⋄ d𝐹 (A) (see Eq. (A.8)), the claim follows. □

2.6. Graded principal bundles and graded connections
The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

In Section 2.2, a precise link between the algebro-geometric approach and Rogers-
DeWitt approach has been discussed (see also [95, 108] as well as [98, 99] in the context
of the categorial approach). In the following, we want to show in which sense super
principal fiber bundles and connection forms in the category of algebro-geometric
supermanifolds SManAlg as given in [102] can be related to the respective formulation
in the 𝐻∞ category. Just for notational simplication, only in this section, we will call
objects and morphisms in the category SManAlg with the addition graded to distinguish
them from their respective 𝐻∞ counterparts. However, we have to emphasize that the
definition of graded manifolds as chosen here is different from the original definition
as given by Berezin-Kostant-Leites [92, 93] using the notion of finite duals, the latter
being much more general (see also [106] for a comparison). Also, in this section, we
are considering trivial parametrizing supermanifolds S = {∗}. The generalization to
nontrivial parametrizing supermanifolds is straightforward, though with the addition
graded is a bit cumbersome.

Definition 2.6.1. A right action of a graded Lie group G = (𝐺,O𝐺) on a graded
manifoldM = (𝑀,O𝑀 ) is a morphism Φ : (𝑀,O𝑀 ) × (𝐺,O𝐺) → (𝑀,O𝑀 ) of
graded manifolds such that8

Φ♯ ◦ (Φ♯ ⊗ 1) = Φ♯ ◦ (1 ⊗ 𝜇♯G), (1 ⊗ 𝑒♯G) ◦Φ
♯ = 1 (2.202)

8 By the “Global Chart Theorem”, Theorem 2.2.3, it follows that a morphism between graded manifolds
is uniquely determined by its pullback. Hence, in the following, we will often state certain properties of
morphisms that only involve the corresponding pullback.
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where 𝜇♯G and 𝑒♯G denote the pullback of the group multiplication 𝜇G : G × G → G
onG as well as its neutral element 𝑒G : R0 |0 → G. Analogously, one defines a left action
of (𝐺,O𝐺) on (𝑀,O𝑀 ) as a morphism Φ : (𝐺,O𝐺) × (𝑀,O𝑀 ) → (𝑀,O𝑀 ) of
graded manifolds such that

Φ♯ ◦ (1 ⊗ Φ♯) = Φ♯ ◦ (𝜇♯G ⊗ 1), (𝑒♯G ⊗ 1) ◦Φ
♯ = 1 (2.203)

The following definition is a particular variant of the definition of graded principal
bundles given in [102].

Definition 2.6.2 (after [102]). A graded principal bundle over a graded manifold
(𝑀,O𝑀 ) consists of a graded manifold (𝑃,O𝑃 ) as well as a right actionΦ : (𝑃,O𝑃 )×
(𝐺,O𝐺) → (𝑃,O𝑃 ) of a graded Lie group (𝐺,O𝐺) on (𝑃,O𝑃 ) such that

(i) the quotient (𝑃/𝐺,O𝑃/O𝐺) exists as a graded manifold isomorphic to (𝑀,O𝑀 )
and the canonical projection 𝜋 : (𝑃,O𝑃 ) → (𝑃/𝐺,O𝑃/O𝐺) is a submersion

(ii) (𝑃,O𝑃 ) satisfies the local triviality property: For any 𝑝 ∈ 𝑀 , there exists an
open neighborhood𝑈 ⊆ 𝑀 of 𝑝 as well as an isomorphism 𝜙 : (𝑉 ,O𝑀 |𝑉 ) →
(𝑈 ×𝐺,O𝑀 |𝑈 ⊗̂𝜋O𝐺) of graded manifolds, where𝑉 := | 𝜄◦𝜋 |−1(𝑈 ) ⊆ 𝑃 with
𝜄 the isomorphism 𝜄 : (𝑃/𝐺,O𝑃/O𝐺)

∼→ (𝑀,O𝑀 ), such that 𝜙 is (𝐺,O𝐺)-
equivariant, that is,

Φ♯ ◦ 𝜙♯ = (𝜙♯ ⊗ 1) ◦ (1 ⊗ 𝜇♯G) (2.204)

Remark 2.6.3. As demonstrated in Section 2.2, using the functor of points technique,
there exists an equivalence of categories given by two functors A : SMan𝐻∞,𝑁 →
SManAlg,𝑁 and H𝑁 : SManAlg,𝑁 → SMan𝐻∞,𝑁 where, for a given Grassmann alge-
braΛ ≡ Λ𝑁 , both categories have to be restricted to the subcategories of supermanifolds
with odd dimensions bounded by the number𝑁 of generators inΛ (this can be avoided
choosing instead the infinite-dimensional Grassmann algebra Λ∞, see e.g. [95, 108]). If
M is a 𝐻∞ supermanifold, the corresponding graded manifold A(M) is defined as

A(M) := (B(M),B∗𝐻∞M) (2.205)

with B∗𝐻∞M the pushforward sheaf B(M) ⊇ 𝑈 ↦→ B∗𝐻∞M (𝑈 ) := 𝐻∞(B−1(𝑈 )).
On the other hand, for any graded manifoldK = (𝐾,O𝐾 ), the corresponding 𝐻∞
supermanifold is defined as the Λ-point

H𝑁 (K) := HomSAlg (O(K),Λ) (2.206)

69



2. Supergeometry

As it turns out, these functors, in particular, preserve products. In fact, for instance, con-
sider two 𝐻∞ supermanifoldsM andN , then 𝐻∞(M ×N) � 𝐻∞(M)⊗̂𝜋𝐻∞(N)
where the completion is taken w.r.t. the Grothendiek’s 𝜋 -topology. Moreover, one has
B(M × N) = B(M) × B(N) which yields A(M × N) � A(M) × A(N). On the
other hand, for given graded manifoldsK andL, the corresponding Λ-point is given by
H𝑁 (K × L) = HomSAlg (O(K)⊗̂𝜋O(L),Λ). Given morphisms 𝜙 : O(K) → Λ
and 𝜓 : O(L) → Λ, this yields a morphism ⟨𝜙 ⊗ 𝜓 ⟩ : O(K)⊗̂𝜋O(L) → Λ which
on elementary tensors is defined as

⟨𝜙 ⊗ 𝜓 ⟩ (𝑓 ⊗ 𝑔) := 𝜙(𝑓)𝜓 ( 𝑔) (2.207)

Conversely, given a morphism Ψ : O(K)⊗̂𝜋O(L) → Λ, we can define morphims
𝜙 : O(K) → Λ and 𝜓 : O(L) → Λ setting 𝜙(𝑓) := Ψ(𝑓 ⊗ 1) and 𝜓 ( 𝑔) :=
Ψ(1 ⊗ 𝑔). Hence, this yields an isomorphism between Λ-points H𝑁 (K × L) �
H𝑁 (K) × H𝑁 (L). To summarize, it follows that A and H𝑁 can be extended to
monoidal functors between monoidal categories.

Proposition 2.6.4. There is a bijective correspondence between graded principal bundles
and 𝐻∞-principal super fiber bundles. More precisely,

(i) if G → P 𝜋P→ M is a 𝐻∞-principal super fiber bundle with structure group G,
then A(P) = (B(P),B∗𝐻∞P ) has the structure of a graded principal bundle over
the graded manifold A(M) = (B(M),B∗𝐻∞M).

(ii) if (𝑃,O𝑃 ) is a graded principal bundle over a graded manifold (𝑀,O𝑀 ), then
H𝑁 (𝐺,O𝐺) → H𝑁 (𝑃,O𝑃 ) → H𝑁 (𝑀,O𝑀 ) for a suitably large 𝑁 ∈ N
has the structure of a 𝐻∞-principal super fiber bundle with bundle map 𝜋̃ :=
H𝑁 ( 𝜄 ◦ 𝜋 ) = H𝑁 ( 𝜄) ◦ H𝑁 (𝜋 ) : H𝑁 (𝑃,O𝑃 ) → H𝑁 (𝑀,O𝑀 ), where 𝜋 :
(𝑃,O𝑃 ) → (𝑃/𝐺,O𝑃/O𝐺) is the canonical projection and 𝜄 the isomorphism
𝜄 : (𝑃/𝐺,O𝑃/O𝐺)

∼→ (𝑀,O𝑀 ).

Proof. This is an immediate consequence of Remark 2.6.3 as well as Prop. 2.4.16. □

Hence, this proposition demonstrates that the categorical equivalence between graded
and 𝐻∞ supermanifolds even carries over to principal super fiber bundles. Next, we
want to show that connection 1-forms defined on these bundles are in fact in one-to-one
correspondence.

Definition 2.6.5. Let (𝑀,O𝑀 ) be a graded manifold and 𝔤 be a super Lie alge-
bra. A 𝔤-valued differential form 𝜔 on (𝑀,O𝑀 ) is an element of Ω•(𝑀,O𝑀 , 𝔤) ≡
Ω•(𝑀,O𝑀 ) ⊗ 𝔤.
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Definition 2.6.6. Let (𝐺,O𝐺) be a graded Lie group with super Lie algebra 𝔤. The
morphism

Ad : 𝐺 → GL(𝔤), Ad𝑔 (𝑋 ) := (ev 𝑔 ⊗ 𝑋 ⊗ ev 𝑔−1) ◦ (1 ⊗ 𝜇♯) ◦ 𝜇♯ (2.208)

∀𝑋 ∈ 𝔤, is called the Adjoint representation of𝐺 on 𝔤.

Definition 2.6.7. Let (𝑃,O𝑃 ) be a graded principal bundle over a graded manifold
(𝑀,O𝑀 ) and right actionΦ : (𝑃,O𝑃 ) × (𝐺,O𝐺) → (𝑃,OP) of a graded Lie group
(𝐺,O𝐺) on (𝑃,O𝑃 ). A graded connection 1-form 𝜔 on (𝑃,O𝑃 ) is an even 𝔤-valued
1-form 𝜔 ∈ Ω1(𝑃,O𝑃 , 𝔤)0 such that

(i) ⟨𝑋 |𝜔⟩ = 𝑋 ∀𝑋 ∈ 𝔤 and 𝑋 := 1 ⊗ 𝑋 ◦ Φ∗ ∈ Der(O(P)) the associated
fundamental vector field

(ii) Φ∗𝑔𝜔 = Ad𝑔−1 ◦ 𝜔 ∀𝑔 ∈ 𝐺 and 𝐿
𝑋
𝜔 = −ad𝑋 ◦ 𝜔 ∀𝑋 ∈ 𝔤

Here, for 𝑔 ∈ 𝐺, Φ𝑔 : (𝑃,O𝑃 ) → (𝑃,O𝑃 ) is the isomorphism of graded manifolds
induced by the pullback morphism Φ♯

𝑔 := (1 ⊗ ev 𝑔) ◦Φ♯ : O𝑃 → O𝑃 . Moreover, for
homogeneous 𝑋 ∈ 𝔤, ad𝑋 ◦ 𝜔 is defined as

⟨𝑍 |ad𝑋 ◦ 𝜔⟩ = (−1) |𝑍 | |𝑋 |ad𝑋 ⟨𝑍 |𝜔⟩ (2.209)

for any homogeneous 𝑍 ∈ Der(O(P)).

In order to provide a link between graded and 𝐻∞-super connection 1-forms, the
following lemma will play a central role. It is based on the equivalent characterization of
super Lie groups in terms of the corresponding super Harish-Chandra pair (B(G), 𝔤),
Theorem 2.3.9.

Lemma 2.6.8. Given a 𝐻∞-super Lie group as a well as a smooth map 𝐹 ∈ 𝐻∞(G).
Then, 𝐹 vanishes identically on G if and only if 𝑋 𝐹 |B(G) ≡ 0 for all 𝑋 ∈ U(𝔤) (and
thus in particular 𝐹 |B(G) ≡ 0) withU(𝔤) the universal enveloping algebra of 𝔤.

Proof. One direction is clear, so suppose that for some smooth function 𝐹 ∈ 𝐻∞(G),
𝑋 𝐹 |B(G) ≡ 0 for all 𝑋 ∈ U(𝔤). By the super Harish Chandra theorem, G can
be identified with the globally split super Lie group S(𝔤,B(G)) � G0 × (𝔤1 ⊗ Λ1)
associated to the trivial vector bundle B(G) × 𝔤 → B(G). Hence, there exist odd
functions 𝜃 𝛼 ∈ 𝐻∞(G), 𝛼 = 1, . . . , 𝑛, 𝑛 = dim𝔤1, such that any 𝑓 ∈ 𝐻∞(G) is of
the form

𝑓 =
∑︁
𝐼

S(𝑓𝐼 )𝜃 𝐼 (2.210)
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with S(𝑓𝐼 ) the (generalized) Grassmann extension of smooth functions 𝑓𝐼 ∈ 𝐶∞(B(G))
for any ordered multi-index 𝐼 of length ≤ 𝑛. Hence, 𝐹 can be written in the form

𝐹 =
∑︁
𝐼

S(𝐹𝐼 )𝜃 𝐼 (2.211)

for some 𝐹𝐼 ∈ 𝐶∞(B(G)). It then follows from the assumptions that for 1 ∈ U(𝔤),
𝐹 ( 𝑔) = 0 = 𝐹∅ ( 𝑔) for any body point 𝑔 ∈ B(G), that is, 𝐹∅ ≡ 0.

Let 𝜕𝛼 be the derivations on 𝐻∞(G) satisfying 𝜕𝛼𝜃 𝛽 = 𝛿
𝛽
𝛼 , (𝑋𝑖)𝑖 be a homogeneous

basis of smooth left-invariant vector fields 𝑋𝑖 ∈ 𝔤∀𝑖 onG and, according to Prop. 2.4.12,
( 𝜔𝑖 )𝑖 the corresponding smooth left-invariant 1-forms satisfying ⟨𝑋𝑗 | 𝜔𝑖 ⟩ = 𝛿 𝑖𝑗 . Then,
𝜕𝛼 can be written in the form 𝜕𝛼 = ⟨𝜕𝛼 | 𝜔𝑖 ⟩ 𝑋𝑖 with ⟨𝜕𝛼 | 𝜔𝑖 ⟩ ∈ 𝐻∞(G) ∀𝛼 = 1, . . . , 𝑛
and 𝑖. As a consequence, for each multi-index 𝐼 , 𝜕𝐼 := 𝜕𝛼1 · · · 𝜕𝛼𝑘 with 𝑘 = |𝐼 | is
a 𝐻∞(G)-linear expansion of elements inU(𝔤). Hence, by hypothesis, this implies
0 = 𝜕𝐼 𝐹 ( 𝑔) = (−1)𝑘 (𝑘−1)/2𝐹𝐼 ( 𝑔) for any body point 𝑔 ∈ B(G), i.e., 𝐹𝐼 ≡ 0, and
therefore 𝐹 ≡ 0 as claimed. □

Remark 2.6.9. It is clear that Lemma 2.6.8 equally holds if one replacesU(𝔤) by the
respective right-invariant counterpartU(𝔤𝑅), i.e., the universal enveloping algebra of
the super Lie algebra 𝔤𝑅 of smooth right-invariant vector fields on G.

Proposition 2.6.10. Let G → P 𝜋P→ M be a 𝐻∞ principal super fiber bundle with
G-right action Φ : P ×G → P . A smooth even Lie(G)-valued 1-formA ∈ Ω1(P, 𝔤)0
is a connection 1-form on P if and only if

(i) ⟨𝑋 |A⟩ = 𝑋 ∀𝑋 ∈ 𝔤 and 𝑋 := 1 ⊗ 𝑋 ◦ Φ∗ ∈ Γ(𝑇P) the associated smooth
fundamental vector field

(ii) Φ∗𝑔A = Ad𝑔−1 ◦ A ∀𝑔 ∈ B(G) and 𝐿
𝑋
A = −ad𝑋 ◦ A ∀𝑋 ∈ 𝔤.

Proof. The proof of this proposition is a bit lengthy and technical as one always has
to care about smoothness in the various construction since 𝐻∞-smoothness is not
preserved under partial evaluation. Therefore, we have moved it to Appendix F. □

Proposition 2.6.11. There is a bijective correspondence between graded connection 1-forms
on graded principal bundles and 𝐻∞-smooth super connection 1-forms on 𝐻∞ principal
super fiber bundles.

Proof. This is an immediate consequence of Prop. 2.6.4 and 2.6.10 as well as Remark
2.6.3. □
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2.7. Parallel transport map
The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

2.7.1. Preliminaries and first construction

In this section, we want to derive the parallel transport map corresponding to super
connection forms. To this end, at the beginning, we want restrict to trivial parametrizing
supermanifoldsS = {∗}. This will provide us already with the main ideas behind the
construction and, at the same time, points out the necessity of the parametrization. The
generalization to the relative category will then be considered in the subsequent section.
The following proposition plays a central role.

Proposition 2.7.1. Let Φ : M × G →M be a smooth right action of a super Lie group
G on a supermanifoldM. Then,

𝐷 ( 𝑝, 𝑔)Φ(𝑋𝑝,𝑌𝑔) = Φ𝑔∗(𝑋𝑝) + �𝜃MC(𝑌𝑔) 𝑝· 𝑔 (2.212)

at any ( 𝑝, 𝑞) ∈ M × G and tangent vectors 𝑋𝑝 ∈ 𝑇𝑝M, 𝑌𝑔 ∈ 𝑇𝑔G, where 𝜃MC ∈
Ω1(G, 𝔤) is the Maurer-Cartan form on G (see Example 2.4.13).

Proof. The proof is very similar to the classical theory of ordinary smooth manifolds.
One only has to care about smoothness. We will therefore employ the notion of the
generalized tangent map. By linearity, we have

𝐷 ( 𝑝, 𝑔)Φ(𝑋𝑝,𝑌𝑔) = 𝐷 ( 𝑝, 𝑔)Φ(𝑋𝑝, 0𝑔) + 𝐷 ( 𝑝, 𝑔)Φ(0𝑝,𝑌𝑔) = Φ𝑔∗(𝑋𝑝) +Φ𝑝∗(𝑌𝑔)
(2.213)

Since𝑌𝑔 = 𝐿 𝑔∗ ◦ 𝐿 𝑔−1∗(𝑌𝑔) = 𝐿 𝑔∗(𝜃MC(𝑌𝑔)) by definition of the Maurer-Cartan
form, this yields, using Prop. 2.5.11 and that Φ defines a right action,

Φ𝑝∗(𝑌𝑔) = Φ𝑝∗ ◦ 𝐿 𝑔∗(𝜃MC(𝑌𝑔)) = (Φ𝑝 ◦ 𝐿 𝑔)∗(𝜃MC(𝑌𝑔))
= (Φ ◦ (id × 𝜇)) ( 𝑝, 𝑔)∗(𝜃MC(𝑌𝑔)) = (Φ ◦ (Φ × id)) ( 𝑝, 𝑔)∗(𝜃MC(𝑌𝑔))
= Φ𝑝· 𝑔∗(𝜃MC(𝑌𝑔)) (2.214)

which implies Φ𝑝∗(𝑌𝑔) = �𝜃MC(𝑌𝑔) 𝑝· 𝑔 by definition of the fundamental tangent vector.
□

Before we state the main definition of this section concerning the horizontal lift of
smooth paths on supermanifolds, let us briefly recall the notion of a local flow of a
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smooth vector field. In the super category, one needs to distinguish between even and
odd vector fields whose corresponding local flows turn out to possess different properties.
In what follows, we want to focus on odd vector fields as these seem to be rarely discussed
in the literature. In contrast to the classical theory, it follows that the corresponding local
flow depends on two parameters (𝑡, 𝜃) given by both an even and odd parameter 𝑡 and
𝜃 , respectively. These define elements of the superdomain Λ1,1 which can be given the
structure of a super Lie group also called the super translation group with multiplication
defined via (𝑡, 𝜃) · (𝑠, 𝜂) = (𝑡 + 𝑠 + 𝜃𝜂, 𝜃 + 𝜂) ∀(𝑡, 𝜃), (𝑠, 𝜂) ∈ Λ1,1.

Definition 2.7.2. Let 𝑋 ∈ Γ(𝑇M)1 be an odd smooth vector field on a supermanifold
M, 𝑓 : M → M a smooth map and 𝑡0 ∈ Λ1,1 a body point. A smooth map
𝜙𝑋 : I ×𝑈 → 𝑉 , with𝑈 ,𝑉 ⊂ M open and 𝑡0 ∈ I ⊂ Λ1,1 an open (connected)
super interval, is called a local flow of 𝑋 around 𝑡0 with initial condition 𝑓, if 𝜙𝑋 satisfies

(D ⊗ 1) ◦ (𝜙𝑋 )∗ = 𝑋 ◦ 𝜙𝑋 (2.215)

as well as 𝜙𝑋(𝑡0,0) := 𝜙𝑋 (𝑡0, 0, · ) = 𝑓 on𝑈 , whereD denotes the right-invariant vector
fieldD := 𝜕𝜃 + 𝜃 𝜕𝑡 on Λ1,1. If, in particular, I = Λ1,1 and𝑈 =𝑉 =M, 𝜙𝑋 is called
a global flow.

Proposition 2.7.3. Let 𝑋 ∈ Γ(𝑇M)1 be an odd smooth vector field on a supermanifold
M and 𝑓 : M → M a smooth map, then, for any body point 𝑡0 ∈ Λ1,1, 𝑋 admits a
local flow 𝜙𝑋 around 𝑡0 with initial condition 𝑓.

Proof. See for instance [78] for a proof in the pure algebraic setting using the concept
of functor of points. □

Corollary 2.7.4. If 𝜙𝑋 is a local flow of an odd smooth vector field 𝑋 , then

𝜙𝑋(𝑡,𝜃) ◦ 𝜙
𝑋
( 𝑠,𝜂) = 𝜙

𝑋
(𝑡+𝑠+𝜃𝜂,𝜃+𝜂) (2.216)

whenever both sides are defined.

Proof. We give an algebraic proof of this proposition. To this end, consider the smooth
maps

Φ1 : (𝑡, 𝜃 , 𝑠, 𝜂, 𝑝) ↦→ (𝑡 + 𝑠 + 𝜃𝜂, 𝜃 + 𝜂, 𝜙𝑋(𝑡+𝑠+𝜃𝜂,𝜃+𝜂) ( 𝑝)) (2.217)

Φ2 : (𝑡, 𝜃 , 𝑠, 𝜂, 𝑝) ↦→ (𝑡 + 𝑠 + 𝜃𝜂, 𝜙𝑋(𝑡,𝜃) (𝜙( 𝑠,𝜂) ( 𝑝))) (2.218)
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defined on some open subsets ofΛ1,1×Λ1,1×M. It then follows that both maps satisfy

(D ⊗ 1) ◦Φ∗𝑖 = Φ∗𝑖 ◦ (D ⊗ 1 + 1 ⊗ 𝑋 ), ∀𝑖 = 1, 2 (2.219)

For instance, since Φ1 = (id × 𝜙𝑋 ) ◦ (𝑑 × id) ◦ (𝜇 × id), with 𝑑 the diagonal map on
Λ1,1, it follows from the right-invariance ofD as well asD◦𝑑∗ = 𝑑∗◦ (D ⊗1+1⊗D)

(D ⊗ 1) ◦Φ∗𝑖 = (D ⊗ 1) ◦ (𝜇∗ ⊗ 1) ◦ (𝑑∗ ⊗ 1) ◦ (1 ⊗ 𝜙𝑋 ∗)
= (𝜇∗ ◦ D ⊗ 1) ◦ (𝑑∗ ⊗ 1) ◦ (1 ⊗ 𝜙𝑋 ∗)
= (𝜇∗ ⊗ 1) ◦ (𝑑∗ ⊗ 1) ◦ (D ⊗ 1 + 1 ⊗ D) ◦ (1 ⊗ 𝜙𝑋 ∗)
= (𝜇∗ ⊗ 1) ◦ (𝑑∗ ⊗ 1) ◦ (D ⊗ 𝜙𝑋 ∗ + 1 ⊗ (𝜙𝑋 ∗ ◦ 𝑋 ))
= Φ∗1 ◦ (D ⊗ 1 + 1 ⊗ 𝑋 ) (2.220)

and similarly for Φ2. Hence, Φ𝑖 for 𝑖 = 1, 2 both define local flows of the odd vector
fieldD ⊗ 1 + 1 ⊗ 𝑋 with the initial condition Φ𝑖 (0, 0, · ) = (id × 𝜙𝑋 ) ◦ (𝑑 × id).
By uniqueness, it thus follows that they have to coincide on the intersection of their
domains. □

Definition 2.7.5. Let P 𝜋→ M be a principal super fiber bundle and H ⊂ 𝑇P a
principal connection on P. Let I ⊆ Λ1,1 be a super interval and 𝛾 : I → M be a
smooth map also called a path onM. Then, a smooth path 𝛾ℎ𝑜𝑟 : Λ1,1 ⊇ I → P on
P is called a horizontal lift of 𝛾 , if 𝜋 ◦ 𝛾ℎ𝑜𝑟 = 𝛾 and (𝛾ℎ𝑜𝑟 )∗D ⊂ (𝛾ℎ𝑜𝑟 )∗H .

The following theorem provides the existence of horizontal lifts of paths defined on
supermanifolds. Since, the zero element 0 ∈ I of a super interval defines a body point
and paths are supposed to be smooth, it is important to note that the initial values of
both the path and its horizontal lift need to be body points, as well. Moreover, as will
be proven below, in order to obtain a nontrivial parallel transport map, one necessarily
needs to consider smooth paths depending on both even and odd parameters. However,
as will be discussed in the subsequent Section 2.7.2, this can be remedied considering
instead relative supermanifolds.

Theorem 2.7.6. LetA ∈ Ω1(P, 𝔤)0 be a super connection 1-form on a principal super
fiber bundle G → P 𝜋→M overM defining a principal connection H ⊂ 𝑇P on P.
Then, for any smooth path 𝛾 : Λ1,1 ⊇ 𝜖−11,1( [0, 1]) → M on the supermanifoldM and
any body point 𝑝 ∈ B(P), there exists a unique horizontal lift 𝛾ℎ𝑜𝑟𝑝 : 𝜖−11,1( [0, 1]) → P
of 𝛾 such that 𝛾ℎ𝑜𝑟𝑝 (0) = 𝑝.
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If, in particular, the path is bosonic, i.e., 𝛾 : Λ0 ⊇ 𝜖−11,0( [0, 1]) → M the horizontal lift
𝛾ℎ𝑜𝑟𝑝 : 𝜖−11,0( [0, 1]) → P of 𝛾 is given by

𝛾ℎ𝑜𝑟𝑝 = S(B(𝛾)ℎ𝑜𝑟𝑝 ) (2.221)

where B(𝛾)ℎ𝑜𝑟𝑝 is the (unique) horizontal lift of B(𝛾) through 𝑝 ∈ 𝑃 := B(P) to the
ordinary principal bundle 𝑃 where the principal connection 𝐻 ⊂ 𝑇 𝑃 on 𝑃 is induced by
the ordinary connection 1-form 𝐴 := B(A) ∈ Ω1(𝑃, 𝔤0).

Proof. Using a gluing argument, it suffices to show that, for any local trivialization
neighborhood 𝜋−1(𝑈 ) ⊂ P of P with𝑈 ⊂ M open and im 𝛾 ∩𝑈 ≠ ∅, there exists
a horizontal lift 𝛾ℎ𝑜𝑟 : I −→ P of 𝛾 with I = 𝛾−1(𝑈 ). Hence, in the following,
let us assume that 𝛾 is contained within a local trivialization neighborhood of P, i.e.,
there is a local section 𝑠 : 𝑈 → P of P such that im 𝛾 ⊂ 𝑈 . Let I = 𝜖−11,1( [0, 1]) and
𝛿 := 𝑠 ◦ 𝛾 . A horizontal lift then has to be of the form 𝛾ℎ𝑜𝑟 := Φ ◦ (𝛿 × 𝑔) for some
smooth function 𝑔 : Ĩ → G defined on some open subset Ĩ ⊆ I. By Prop. 2.7.1, this
yields

D𝛾ℎ𝑜𝑟 (𝑡, 𝜃) = 𝐷 (𝛿 (𝑡,𝜃) , 𝑔 (𝑡,𝜃))Φ(D𝛿,D 𝑔) = Φ𝑔 (𝑡,𝜃)∗(D𝛿) + �𝜃MC(D 𝑔)𝛾ℎ𝑜𝑟 (𝑡,𝜃)
(2.222)

Hence, 𝛾ℎ𝑜𝑟 defines a horizontal lift of 𝛾 if and only if

0 = ⟨D𝛾ℎ𝑜𝑟 (𝑡, 𝜃) |A⟩ = Ad𝑔 (𝑡,𝜃)−1 ⟨D𝛿 |A⟩ + ⟨D 𝑔 |𝜃MC⟩
= 𝐿 𝑔 (𝑡,𝜃)−1∗(𝑅𝑔 (𝑡,𝜃)∗ ⟨D𝛿 |A⟩ + D 𝑔) (2.223)

But, since the pushforward of the left translation is an isomorphism of tangent modules,
this equivalent to

D 𝑔 (𝑡, 𝜃) = −𝑅𝑔 (𝑡,𝜃)∗ ⟨D𝛿 (𝑡, 𝜃) |A⟩ = −𝑅𝑔 (𝑡,𝜃)∗A𝛾 (𝑡, 𝜃) (2.224)

where we setA𝛾 (𝑡, 𝜃) := ⟨D𝛿 (𝑡, 𝜃) |A⟩ = ⟨D𝛾 (𝑡, 𝜃) |𝑠∗A⟩. Hence, the claim follows
if we can show that (2.224) admits a smooth solution on all ofI, i.e., Ĩ = I. To see this,
let us define the vector field

𝑍 : I × G → 𝑇 (I × G) � Λ2 ×𝑇G
(𝑠, 𝜂, 𝑔) ↦→ (𝜂, 1,−𝐷 (𝑒, 𝑔) 𝜇G (A𝛾 (𝑠, 𝜂), 0𝑔)) (2.225)

SinceA𝛾 and the zero section 0 : G → 𝑇G, 𝑔 ↦→ 0𝑔 are both of class 𝐻∞, it follows
that 𝑍 defines a smooth section of the tangent bundle of the supermanifold I × G. In
particular, asA is even andD is odd,A𝛾 (𝑡, 𝜃) defines an odd derivation ∀(𝑡, 𝜃) ∈ I
and therefore 𝑍 is an odd vector field. Hence, by Prop. (2.7.3), there exists a smooth
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function 𝐹 : Λ1,1 ⊇ 𝜖−11,1(𝐼 ) → Λ1,1 × G, (𝑡, 𝜃) ↦→ (ℎ(𝑡, 𝜃), 𝑔 (𝑡, 𝜃)), with smooth
functions ℎ and 𝑔 defined on some interval 𝜖−11,1(𝐼 ) with 𝐼 = [0, 𝛿 ′), 0 < 𝛿 ′ < 1, such
that

D𝐹 (𝑡, 𝜃) = 𝑍𝐹 (𝑡,𝜃) (2.226)

with the initial condition 𝐹 (0, 0) = (0, 0, 𝑒). Since ℎ : (𝑡, 𝜃) ↦→ ℎ(𝑡, 𝜃) ∈ Λ1,1 has to
be of the form ℎ(𝑡, 𝜃) = (𝑎(𝑡), 𝜃𝑏(𝑡)) with smooth functions 𝑎, 𝑏 : 𝜖−11,0(𝐼 ) → Λ0, it
follows thatDℎ(𝑡, 𝜃) = (𝜃 𝜕𝑡𝑎(𝑡), 𝑏(𝑡)). Hence, by definition of the vector field 𝑍 ,
the differential equation (2.226) yields 𝑏 ≡ 1 and 𝜕𝑡𝑎 = 𝑏 ≡ 1 such that, by the initial
condition, it follows ℎ(𝑡, 𝜃) = (𝑡, 𝜃). Thus, (2.226) becomes

D𝐹 (𝑡, 𝜃) = (𝜃, 1,D 𝑔 (𝑡, 𝜃)) = (𝜃, 1,−𝐷 (𝑡,𝜃 , 𝑔 (𝑡,𝜃)) 𝜇G (A𝛾 (𝑡, 𝜃), 0𝑔 (𝑡,𝜃) ))
(2.227)

That is, 𝑔 : 𝜖−11,1(𝐼 ) → G defines a smooth solution of (2.224) with initial condition
𝑔 (0, 0) = 𝑒.

It remains to show that 𝑔 can be extended to all ofI. To this end, sinceI×{𝑒} ⊂ I×G
is compact, there exists finitely many open subsets𝑈𝑖 ⊂ I and𝑉𝑖 ⊂ G, 𝑖 = 1, . . . , 𝑛,
such that

⋃𝑛
𝑖=1𝑈𝑖 = I and 𝑒 ∈ 𝑉𝑖 ∀𝑖 = 1, . . . , 𝑛, as well as smooth maps 𝜙𝑍

𝑖
:

𝜖−11,1((−𝛿𝑖 , 𝛿𝑖)) ×𝑈𝑖 ×𝑉𝑖 → I × G, 0 < 𝛿𝑖 < 1 ∀𝑖 = 1, . . . , 𝑛, such that 𝜙𝑍
𝑖

defines
a local flow of 𝑍 . If we set 𝛿 := min{𝛿 ′, 𝛿𝑖}𝑖=1,...,𝑛 > 0 and𝑉 :=

⋂𝑛
𝑖=1𝑉𝑖 ∋ 𝑒, we

may glue the 𝜙𝑍
𝑖

to get a local flow 𝜙𝑍 : 𝜖−11,1((−𝛿, 𝛿)) × I ×𝑉 → I × G. Hence,
let us choose 𝑡𝑖 ∈ [0, 1], 𝑖 = 0, . . . , 𝑚, such that 0 =: 𝑡0 < 𝑡1 < . . . < 𝑡𝑚 := 1 and
|𝑡𝑖 − 𝑡𝑖−1 | < 𝛿 ∀𝑖 = 1, . . . , 𝑚. Set I𝑖 := 𝜖−11,1( [𝑡𝑖 , 𝑡𝑖−1]) for 𝑖 = 1, . . . , 𝑚.

By assumption, we know that 𝑔 is well-defined on I1. Hence, let us next consider the
path 𝐺 : I2 → I × G defined as 𝐺 (𝑠, 𝜃) = 𝜙𝑍( 𝑠,𝜃) (𝑡1, 0, 𝑒) which is well-defined by
definition ofI2. Similarly as above, it follows that𝐺 has to be of the form𝐺 (𝑠, 𝜃) = (𝑠+
𝑡1, 𝜃 , 𝑏(𝑠, 𝜃)) withD𝑏(𝑠, 𝜃) = −𝑅𝑏 ( 𝑠,𝜃)∗A𝛾 (𝑠 + 𝑡1, 𝜃). If we then define𝐺 ′(𝑠, 𝜃) :=
(𝑠 + 𝑡1, 𝜃 , 𝑏(𝑠, 𝜃) · 𝑔 (𝑡1, 0)) on I2, it follows (note that 𝐺 ′ is smooth as 𝑔 (𝑡1, 0) is a
body point)

D𝐺 ′(𝑠, 𝜃) = (𝜃, 1, 𝑅𝑔 (𝑡1,0)∗D𝑏(𝑠, 𝜃)) = (𝜃, 1,−𝑅𝑔 (𝑡1,0)∗𝑅𝑏 ( 𝑠,𝜃)∗A𝛾 (𝑠 + 𝑡1, 𝜃))
= (𝜃, 1,−𝑅𝑏 ( 𝑠,𝜃) · 𝑔 (𝑡1,0)∗A

𝛾 (𝑠 + 𝑡1, 𝜃)) = 𝑍𝐺′ ( 𝑠,𝜃) (2.228)

That is, 𝐺 ′ defines an integral curve of 𝑍 through 𝐺 ′(0, 0) = (𝑡1, 0, 𝑔 (𝑡1, 0)). Thus,
let us define the smooth path 𝑔̃ : I1 ∪ I2 → G via

𝑔̃ (𝑡, 𝜃) :=

{
𝑔 (𝑡, 𝜃), if (𝑡, 𝜃) ∈ I1
𝑏(𝑡 − 𝑡1, 𝜃) · 𝑔 (𝑡1, 0), if (𝑡, 𝜃) ∈ I2

(2.229)
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It then follows that 𝑔̃ is smooth and defines a solution of (2.224). We have thus found
an extension of 𝑔 to I1 ∪ I2. Hence, by induction, it follows that 𝑔 can be extended to
all of I.

To prove the last claim note that, by pulling backA to the bosonic sub supermanifold
P0 := S◦B(P),A only takes values in the even super Lie sub moduleΛ⊗𝔤0 = Lie(G0).
Hence, on P0,A can be reduced to a super connection 1-form on the principal super
fiber bundle G0 → P0 |M0 →M0. The claim now follows immediately. □

2.7.2. Parallel transport map revisited

As we have seen in the last section, in the ordinary theory of principal super fiber bundles,
in order to obtain a nontrivial parallel transport map, one necessarily has to consider
smooth paths depending on both even and odd parameters. But, still, due to smoothness,
the endpoints at which the parallel transport map is constructed have to be points on
the body of a supermanifold. Hence, it is important to emphasize that, in the ordinary
category of supermanifolds, one cannot use the parallel transport map to compare points
on different fibers of a super fiber bundle!

As we will see in what follows, a resolution is given considering instead super connections
forms on parametrized super fiber bundles. At the same time, this also allows us to
include (anticommutative) fermionic degrees of freedom on the body of a supermanifold
which is of utmost importance in context of the geometric approach to supergravity to be
discussed in Chapter 3. In this framework, it moreover suffices to consider (parametrized)
paths depending solely on an even time parameter. The generalization to both even and
odd parameters can be obtained along the lines of the previous section.

Definition 2.7.7. LetM/S be aS-relative supermanifold. A (smooth) path 𝛾 onM/S
is a smooth map 𝛾 : S×I →M/S withI ⊆ Λ1,0 a super interval which will mostly be
assumed to be of the form I ≡ 𝜖−11,0( [0, 1]). Let 𝑓, 𝑔 : S →M be smooth functions.
A smooth path 𝛾 : 𝑓→ 𝑔 between 𝑓 and 𝑔 is a smooth path 𝛾 : S × I →M/S on
M/S such that 𝛾0 := 𝛾 (·, 0) = 𝑓 and 𝛾1 := 𝛾 (·, 1) = 𝑔 .

Definition 2.7.8. Let G → P/S
𝜋S→M/S be aS-relative principal super fiber bundle

and 𝛾 : S × I →M/S a smooth path. Given a super connection 1-formA on P/S ,
a smooth path 𝛾ℎ𝑜𝑟 : S × I → P on P/S is called a horizontal lift of 𝛾 w.r.t. A if
𝜋 ◦ 𝛾ℎ𝑜𝑟 = 𝛾 and ⟨(1 ⊗ 𝜕𝑡 )𝛼−1S (𝛾

ℎ𝑜𝑟 ) (𝑠, 𝑡) |A⟩ = 0 ∀(𝑠, 𝑡) ∈ S × I.

Proposition 2.7.9. LetA ∈ Ω1(P/S , 𝔤)0 be a super connection 1-form on theS-relative
principal super fiber bundle G → P/S

𝜋S→M/S as well as 𝛾 : S × I →M a smooth
path. Let furthermore 𝑓 : S → P be a smooth map. Then, there exists a unique
horizontal lift 𝛾ℎ𝑜𝑟 : S × I →M of 𝛾 w.r.t.A such that 𝛾ℎ𝑜𝑟 ( · , 0) = 𝑓.
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Proof. The proof of this proposition is similar as in Theorem 2.7.6. Let us therefore only
sketch the most important steps. Again, it suffices to assume that 𝛾 is contained within
a local trivialization neighborhood of P/S , i.e., there exists an open subset𝑈 ⊆ M and
a smooth morphism 𝑠 : 𝑈/S :=M/S |S×𝑈 → P/S ofS-relative supermanifolds such
that 𝜋S ◦ 𝑠 = id𝑈/S and im 𝛾 ⊆ 𝜋−1S (S ×𝑈 ). Furthermore, w.l.o.g., we can assume that
𝑠( · , 𝛾 ( · , 0)) = 𝑓. In fact, suppose this would not be the case. Then, since the super
Lie groupG acts transitively on each fiber of the underlying principal super fiber bundle
P, there exists a unique map 𝑔 ′ : S ×𝑈 → G with ΦS (𝑠( · , 𝛾 ( · , 0)), 𝑔 ′) = 𝑓. Since
𝑠( · , 𝛾 ( · , 0)), 𝑓 as well as the inverse operation in the super Lie group G are of class
𝐻∞, it follows immediately that 𝑔 ′ is also smooth. Hence, replacing 𝑠 by ΦS (𝑠, 𝑔 ′) the
map thus obtained will have the required properties.

Set 𝛿 := 𝑠 ◦ (id× 𝛾) : I/S → P/S . It follows that a horizontal lift has to be of the form
𝛾ℎ𝑜𝑟 := ΦS ◦ (𝛿× 𝑔) for some smooth function 𝑔 : S×Ĩ → G defined on some open
subset Ĩ ⊆ I. Using Prop. 2.7.1, one finds that ⟨(1 ⊗ 𝜕𝑡 )𝛼−1S (𝛾

ℎ𝑜𝑟 ) (𝑠, 𝑡) |A⟩ = 0 if
and only if

(1 ⊗ 𝜕𝑡 ) 𝑔 (𝑠, 𝑡) = −𝑅𝑔 ( 𝑠,𝑡)∗ ⟨(1 ⊗ 𝜕𝑡 )𝛿 (𝑠, 𝑡) |A⟩ = −𝑅𝑔 ( 𝑠,𝑡)∗A𝛾 (𝑠, 𝑡) (2.230)

whereA𝛾 (𝑠, 𝑡) := ⟨(1 ⊗ 𝜕𝑡 )𝛿 (𝑠, 𝑡) |A⟩ = ⟨(1 ⊗ 𝜕𝑡 )𝛼−1S (𝛾) (𝑠, 𝑡) |𝑠
∗A⟩ with the ini-

tial condition 𝑔 ( · , 0) = 𝑒. Hence, the claim follows if one can show that (2.230) admits
a smooth solution with Ĩ = I. Therefore, consider the even smooth vector field

𝑍̃ : (S × I) × G → 𝑇 (S × I) ×𝑇G
(𝑠′, 𝑡 ′, 𝑔) ↦→ (0𝑠′ , 1,−𝐷 (𝑒, 𝑔) 𝜇G (A𝛾 (𝑠′, 𝑡 ′), 0𝑔)) (2.231)

It follows that there exists a smooth local solution 𝐹 : 𝑈 ′→ (S×I)×G,𝑈 ′ ⊂ S×I
open, of the equation

𝜕𝑡𝐹 (𝑠, 𝑡) = 𝑍̃𝐹 ( 𝑠,𝑡) (2.232)

with the initial condition 𝐹 ( · , 0) = ( · , 0, 𝑒). Moreover, 𝐹 has to be of the form
𝐹 (𝑠, 𝑡) = (𝑠, 𝑡, 𝑔 (𝑠, 𝑡)) for some smooth function 𝑔 : 𝑈 ′→ G such that 𝑔 ( · , 0) = 𝑒
and

𝜕𝑡𝐹 (𝑠, 𝑡) = (0𝑠, 1, (1 ⊗ 𝜕𝑡 ) 𝑔 (𝑠, 𝑡)) = (0𝑠, 1,−𝐷 (𝑒, 𝑔) 𝜇G (A𝛾 (𝑠, 𝑡), 0𝑔)) (2.233)

that is, 𝑔 is a solution of (2.230) proving that a local smooth solution indeed exists.
Remains to show that 𝑔 can be extended to all ofS × I.

Therefore, one can proceed as in the proof of Theorem 2.7.6. In fact, restricting on
compact subsets and gluing local solutions together, it follows that, for any 𝑠0 ∈ S, there
exists an open neighborhood 𝑠0 ∈𝑉 ⊂ S as well as a smooth map 𝑔𝑠0 : 𝑉 × I → G
such that𝑉 is contained in a compact subset and 𝑔𝑠0 is a solution of (2.230) with
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𝑔 ( · , 0) = 𝑒. Thus, by uniqueness of solutions of differential equations, these maps can
be glued together yielding a global solution 𝑔 : S × I → G of (2.230). □

Remark 2.7.10. For a smooth map 𝑓 : S →M, one can consider the pullback super
fiber bundle

𝑓∗P = {(𝑠, 𝑝) | 𝑓(𝑠) = 𝜋 ( 𝑝)} ⊂ S × P (2.234)

over S. A smooth section 𝜙 : S → 𝑓∗P of the pullback bundle is then of the form
𝜙(𝑠) = (𝑠, 𝜙(𝑠)) ∀𝑠 ∈ S with 𝜙 : S → P a smooth map satisfying 𝜋 ◦ 𝜙 = 𝑓. Hence,
we can identify

Γ(𝑓∗P) = {𝜙 : S → P| 𝜋 ◦ 𝜙 = 𝑓} (2.235)

Definition 2.7.11. Under the conditions of Prop. 2.7.9, the parallel transport map in
P/S along 𝛾 w.r.t. the connectionA is defined as

PA
S,𝛾 : Γ(𝛾∗0P) → Γ(𝛾∗1P) (2.236)

𝜙 ↦→ 𝛾ℎ𝑜𝑟𝜙 ( · , 1)

where, for Γ(𝛾∗0P) ∋ 𝜙 : S → P, 𝛾ℎ𝑜𝑟
𝜙

is the unique horizontal lift of 𝛾 with respect
toA such that 𝛾ℎ𝑜𝑟

𝜙
( · , 0) = 𝜙.

Given a change of parametrization 𝜆 : S → S′, this induces the pullback 𝜆∗ :
𝐻∞(S′) → 𝐻∞(S), 𝑓 ↦→ 𝜆∗𝑓 = 𝑓 ◦ 𝜆 on the respective function sheaves. Since the
super 𝐻∞(S ×M)-module 𝔛(M/S) of smooth vector fields onM/S is isomorphic
to 𝐻∞(S) ⊗ 𝔛(M), this yields the morphism

𝜆∗ ≡ 𝜆∗ ⊗ 1 : 𝔛(M/S′) → 𝔛(M/S) (2.237)
𝑓 ⊗ 𝑋 ↦→ 𝜆∗𝑓 ⊗ 𝑋

Moreover, from Ω1(M/S) � Ω1(M) ⊗ 𝐻∞(S) we obtain the morphism

𝜆∗ ≡ 1 ⊗ 𝜆∗ : Ω1(M/S′) → Ω1(M/S) (2.238)
𝜔 ⊗ 𝑓 ↦→ 𝜔 ⊗ 𝜆∗𝑓

By definition, it then follows

⟨𝜆∗𝑋 |𝜆∗A⟩ = 𝜆∗ ⟨𝑋 |A⟩ (2.239)
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In fact, since (2.239) is a local property, let us choose a local coordinate neighborhood
such that 𝑋 and 𝜔 can be locally expanded in the form 𝑋 = 𝑓𝑖 ⊗ 𝑋𝑖 and 𝜔 = 𝜔𝑗 ⊗ 𝑔𝑗
with 𝑋𝑖 and 𝜔𝑗 smooth vector fields and 1-forms onM, respectively. We then compute

⟨𝜆∗𝑋 |𝜆∗A⟩ = ⟨𝜆∗𝑓𝑖 ⊗ 𝑋𝑖 |𝜔𝑗 ⊗ 𝜆∗ 𝑔𝑗 ⟩ = 𝜆∗𝑓𝑖 ⟨𝑋𝑖 |𝜔𝑗 ⟩ 𝜆∗ 𝑔𝑗

= 𝜆∗ ⟨𝑓𝑖 ⊗ 𝑋𝑖 |𝜔𝑗 ⊗ 𝑔𝑗 ⟩ = 𝜆∗ ⟨𝑋 |A⟩ (2.240)

The following proposition summarizes some important properties of the parallel trans-
port map such as the functoriality under composition of paths as well as covariance
under change of parametrization demonstrating the independence of the choice of a
particular parametrizing supermanifold.

Proposition 2.7.12. The parallel tansport map enjoys the following properties:

(i) PA
S is functorial under compositions of paths, that is, for smooth paths 𝛾 : S ×

I →M and 𝛿 : S × I →M onM/S , one has

PA
S,𝛾◦𝛿 = PA

S,𝛾 ◦PA
S,𝛿 (2.241)

(ii) PA
S,𝛾 is covariant under change of parametrization in the sense that if 𝜆 : S → S′

is a morphism of supermanifolds, then the diagram

Γ(𝑓∗P)
PA
S′,𝛾 //

𝜆∗

��

Γ( 𝑔∗P)

𝜆∗

��
Γ((𝑓 ◦ 𝜆)∗P)

P𝜆∗A
S,𝜆∗𝛾 // Γ(( 𝑔 ◦ 𝜆)∗P)

(2.242)

is commutative for any smooth path 𝛾 : 𝑓→ 𝑔 onM/S′ .

Proof. The functoriality property of the parallel transport map under the composition
of paths is an immediate consequence of Eq. (2.230) or (2.232) and the uniqueness of
solutions of differential equations once fixing the inital conditions. In fact, this implies
(𝛾◦𝛿)ℎ𝑜𝑟 = 𝛾ℎ𝑜𝑟◦𝛿ℎ𝑜𝑟 yielding (2.241) by Definition (2.236). To prove covariance under
change of parametrization, notice that for a supermanifold morphism 𝜆 : S → S′,
one has (1 ⊗ 𝜕𝑡 )𝜆∗𝛾ℎ𝑜𝑟 = 𝜆∗((1 ⊗ 𝜕𝑡 )𝛾ℎ𝑜𝑟 ) so that, by Definition (2.159), it follows

(1 ⊗ 𝜕𝑡 )𝛼−1S (𝜆
∗𝛾ℎ𝑜𝑟 ) = 𝜆∗((1 ⊗ 𝜕𝑡 )𝛼−1S′ (𝛾

ℎ𝑜𝑟 )) (2.243)
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and thus

⟨(1 ⊗ 𝜕𝑡 )𝛼−1S (𝜆
∗𝛾ℎ𝑜𝑟 ) |𝜆∗A⟩ = ⟨𝜆∗((1 ⊗ 𝜕𝑡 )𝛼−1S′ (𝛾

ℎ𝑜𝑟 )) |𝜆∗A⟩
= ⟨(1 ⊗ 𝜕𝑡 )𝛼−1S′ (𝛾

ℎ𝑜𝑟 ) |A⟩ = 0 (2.244)

according to (2.239). Since 𝜆∗𝛾ℎ𝑜𝑟
𝜙
( · , 0) = 𝜙 ◦ 𝜆 = 𝜆∗𝜙 and 𝜋 ◦ 𝜆∗𝛾ℎ𝑜𝑟

𝜙
= 𝜆∗𝛾 , by

uniqueness, this yields 𝜆∗𝛾ℎ𝑜𝑟
𝜙

= (𝜆∗𝛾)ℎ𝑜𝑟
𝜆∗𝜙

and therefore

P𝜆∗A
S,𝜆∗𝛾 (𝜆

∗𝜙) = (𝜆∗𝛾)ℎ𝑜𝑟
𝜆∗𝜙 ( · , 1) = 𝜆

∗𝛾ℎ𝑜𝑟𝜙 ( · , 1) = 𝜆
∗(PA

S′,𝛾 (𝜙)) (2.245)

∀𝜙 ∈ Γ(𝑓∗P) proving the commutativity of the diagram (2.242). □

Definition 2.7.13. A global gauge transformation 𝑓 on theS-relative principal super
fiber bundle G → P/S → M/S is a morphism 𝑓 : P/S → P/S of S-relative
supermanifolds which is fiber-preserving and G-equivariant, i.e., 𝜋S ◦ 𝑓 = 𝜋S and
𝑓 ◦ ΦS = ΦS ◦ (𝑓 × id). The set of global gauge transformations on P/S will be
denoted by G (P/S).

Proposition 2.7.14. There exists a bijective correspondence between the set G (P/S) of
global gauge transformations on theS-relative principal super fiber bundleG → P/S →
M/S and the set

𝐻∞(S × P,G)G := {𝜎 : S × P → G| 𝜎 ◦ΦS = 𝛼𝑔−1 ◦ 𝜎 } (2.246)

via
𝐻∞(S × P,G)G ∋ 𝜎 ↦→ ΦS ◦ (id × 𝜎 ) ◦ 𝑑S×P ∈ G (PS) (2.247)

In particular, global gauge transformations are super diffeomorphisms on P/S and
G (P/S) forms an abstract group under composition of smooth maps.

Proof. The proof of this proposition is almost the same as in the classical theory. Hence,
let us only show that the map 𝜎𝑓 ∈ 𝐻∞(S × P,G)G corresponding to a global gauge
transformation 𝑓 ∈ G (P/S) such that 𝑓(𝑠, 𝑝) = (𝑠, 𝑝) · 𝜎𝑓(𝑠, 𝑝) ∀(𝑠, 𝑝) ∈ S × P
is indeed of class 𝐻∞. To this end, choose a local trivialization (𝑈 , 𝜙𝑈 ) of P and set
𝜙𝑈 := id×𝜙𝑈 : 𝜋−1S (S×𝑈 ) → (S×𝑈 )×G. On the local trivialization neighborhood,
𝑓 is then of the form

𝜙𝑈 ◦ 𝑓 ◦ 𝜙−1𝑈 ((𝑠, 𝑥), 𝑔) = ((𝑠, 𝑥), 𝜎 (𝑠, 𝑥, 𝑔)) (2.248)

for some smooth function 𝜎 : (S ×𝑈 ) × 𝐺 → G. Hence,

𝜎𝑓 ◦ 𝜙−1𝑈 ((𝑠, 𝑥), 𝑔) = 𝜇G ( 𝑔
−1, 𝜎 (𝑠, 𝑥, 𝑔)) (2.249)
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on (S × 𝑈 ) × G proving that 𝜎𝑓 is smooth. That global gauge transformations are
diffeomorphisms and G (P/S) forms an abstract group now follows immediately from
the respective properties of 𝐻∞(S × P,G)G . □

Proposition 2.7.15. LetA ∈ Ω1(P/S , 𝔤)0 be aS-relative super connection 1-form and
𝑓 ∈ G (P/S) a global gauge transformation on theS-relative principal super fiber bundle
G → P/S

𝜋S→M/S . Then,

(i) 𝑓∗A ∈ Ω1(P/S , 𝔤)0 is a connection 1-form and, in particular,

𝑓∗A = Ad𝜎−1
𝑓
◦ A + 𝜎 ∗

𝑓
𝜃MC (2.250)

(ii) the diagram

Γ( 𝑔∗P)
PA
S,𝛾 //

𝛼S◦𝑓◦𝛼−1S
��

Γ(ℎ∗P)

𝛼S◦𝑓◦𝛼−1S
��

Γ( 𝑔∗P)
P

𝑓∗A
S,𝛾 // Γ(ℎ∗P)

is commutative for any smooth path 𝛾 : 𝑔 → ℎ onM/S .

Proof. First, let us show that 𝑓∗A is aS-relative connection 1-form onP/S . To this end,
since 𝑓 is G-equivariant, it follows that fundamental vector fields 𝑋 on P/S associated
to 𝑋 ∈ 𝔤 satisfy

𝑓∗𝑋 = 1 ⊗ 𝑋 ◦Φ∗S ◦ 𝑓
∗ = 1 ⊗ 𝑋 ◦ 𝑓∗ ⊗ 1 ◦ΦS

= 𝑓∗ ◦ 1 ⊗ 𝑋 ◦Φ∗S = 𝑓∗ ◦ 𝑋 (2.251)

which yields
⟨𝑋 |𝑓∗A⟩ = ⟨𝑓∗𝑋 |A𝑓( · )⟩ = 𝑓∗ ⟨𝑋 |A⟩ = 𝑋 (2.252)

∀𝑋 ∈ 𝔤. Moreover,

(ΦS)∗𝑔 (𝑓∗A) = (𝑓 ◦ΦS)∗A = 𝑓∗((ΦS)∗𝑔A) = Ad𝑔−1 ◦ 𝑓∗A (2.253)

This proves that 𝑓∗A ∈ Ω1(P/S , 𝔤)0 indeed defines a connection 1-form on P/S .
Next, applying Prop. 2.7.1, we find

𝑓∗(𝑋𝑝) = 𝐷 𝑝 (ΦS ◦ (id × 𝜎𝑓)) (𝑋𝑝, 𝑋𝑝) = 𝐷 ( 𝑝,𝜎𝑓 ( 𝑝))ΦS (𝑋𝑝, 𝐷 𝑝𝜎𝑓(𝑋𝑝))
= (ΦS)𝜎𝑓 ( 𝑝)∗ (𝑋𝑝) + [𝜃MC(𝐷 𝑝𝜎𝑓(𝑋𝑝))]∼

(2.254)
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∀𝑋𝑝 ∈ 𝑇𝑝 (P/S), 𝑝 ∈ P/S , and thus

⟨𝑋𝑝 |𝑓∗A 𝑝⟩ = ⟨𝐷 𝑝𝑓(𝑋𝑝) |A𝑓( 𝑝)⟩ = ⟨(ΦS)𝜎𝑓 ( 𝑝)∗ (𝑋𝑝) |A⟩ + ⟨𝐷 𝑝𝜎𝑓(𝑋𝑝) |𝜃MC⟩
= Ad𝜎𝑓 ( 𝑝)−1 ⟨𝑋𝑝 |A 𝑝⟩ + ⟨𝑋𝑝 |𝜎 ∗𝑓 𝜃MC⟩ (2.255)

which yields (2.250). To prove the last assertion, let 𝛾ℎ𝑜𝑟
𝑓,𝜙

: S × P → P for any
𝜙 ∈ Γ( 𝑔∗P) be the unique horizontal lift of the smooth path 𝛾 : 𝑔 → ℎ w.r.t. A
through 𝛼S (𝑓 ◦ 𝛼−1S (𝜙)) ∈ Γ( 𝑔

∗P). Set

𝛾̃𝜙 := 𝛼S (𝑓−1 ◦ 𝛼−1S (𝛾
ℎ𝑜𝑟
𝑓,𝜙
)) : S × P → P (2.256)

Then, 𝛾̃𝜙 is a smooth path on P/S with 𝛾̃𝜙 ( · , 0) = 𝜙 and

⟨(1 ⊗ 𝜕𝑡 ) 𝛾̃𝜙 |𝑓∗A⟩ = ⟨(1 ⊗ 𝜕𝑡 )𝛼−1S (𝛾
ℎ𝑜𝑟
𝑓,𝜙
) |A⟩ = 0 (2.257)

so that 𝛾̃𝜙 coincides with the unique horizontal lift of 𝛾 w.r.t. 𝑓∗A through 𝜙. □

Example 2.7.16. We want to give an explicit local expression of the parallel transport
map as derived above making it more accessible for concrete applications in the context
of quantum supergravity to be discussed in Chapter 5 and 6. To this end, let us assume
that G is a super matrix Lie group, i.e., an embedded super Lie subgroup of the general
linear supergroup GL(V) on a super Λ-vector space V (Def. 2.3.15). In this case,
the pushforward 𝑅𝑔∗ of the right translation for any 𝑔 ∈ G then just coincides with
the right multiplication by the super matrix 𝑔 . Hence, let 𝛾 : S × I → M be a
smooth path which is contained within a local trivialization neighborhood of P/S and
𝑠 : 𝑈/S :=M/S |S×𝑈 → P/S the corresponding smooth section. Then, Eq. (2.230) in
the proof of Prop. 2.7.9 reads

(1 ⊗ 𝜕𝑡 ) 𝑔 (𝑠, 𝑡) = −A𝛾 (𝑠, 𝑡) · 𝑔 (𝑠, 𝑡) (2.258)

withA𝛾 (𝑠, 𝑡) := ⟨(1 ⊗ 𝜕𝑡 )𝛼−1S (𝛾) (𝑠, 𝑡) |𝑠
∗A⟩. Furthermore, suppose that𝑈 defines a

local coordinate neighborhood ofM. The 1-form 𝑠∗A onS ×𝑈 can then be expanded
in the form

𝑠∗A = d𝑥𝜇A ( 𝑠)𝜇 + d𝜃 𝛼A ( 𝑠)𝛼 (2.259)

with smooth even and odd functionsA ( 𝑠)𝜇 andA ( 𝑠)𝛼 onS ×𝑈 , respectively. This yields

A𝛾 (𝑠, 𝑡) =: ¤𝑥𝜇A ( 𝑠)𝜇 (𝑠, 𝑡) + ¤𝜃 𝛼A ( 𝑠)𝛼 (𝑠, 𝑡) (2.260)
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Hence, the solution of Eq. (2.258) with the initial condition 𝑔 ( · , 0) = 1 takes the form

𝑔 (𝑠, 𝑡) = P exp
(
−

∫ 𝑡

0
d𝑡 ′ ¤𝑥𝜇A ( 𝑠)𝜇 (𝑠, 𝑡 ′) + ¤𝜃 𝛼A ( 𝑠)𝛼 (𝑠, 𝑡 ′)

)
(2.261)

where P exp(. . .) denotes the usual path-ordered exponential. This is the most gen-
eral local expression of the parallel transport map corresponding to aS-relative super
connection 1-form. This form is used for instance in [118] in the discussion about the
relation between super twistor theory andN = 4 super Yang-Mills theory (see also [79]).
Note that in caseS = {∗} is a single point, the odd coefficients in (2.261) become zero so
that this expression just reduces to the parallel transport map of an ordinary connection
1-form on a principal fiber bundle in accordance with Theorem 2.7.6.

By definition, 𝑔 [A] := 𝑔 (·, 1) defines a smooth map 𝑔 [A] : S → G from the
parametrizing supermanifoldS to the gauge group G. As explained in detail in Section
2.2 (see also Section 2.6), there exists an equivalence of categories A : Man𝐻∞ →
ManAlg between the category Man𝐻∞ of 𝐻∞ supermanifolds and the category ManAlg
of algebro-geometric supermanifolds. Using this equivalence, it thus follows

𝐻∞(S,G) � HomSManAlg (A(S),A(G)) (2.262)

Hence, 𝑔 [A] can be identified with a A(S)-point of A(G). This coincides with the
results of [78] and [79] where the parallel transport induced by covariant derivatives on
super vector bundles in the pure algebraic setting has been considered. It was found that
the parallel transport map has the interpretation in terms of T -points of a general linear
supergroup.

Example 2.7.17. Finally, let us restrict to a subclass of smooth paths onM/S obtained
via the lift of smooth paths 𝛾 : I →M on the bosonic sub supermanifold9M0 ofM
defined as the split supermanifoldM0 := S(B(M)). AS-relative connection 1-form
A ∈ Ω1(P/S , 𝔤) induces via pullback along the inclusion 𝜄 : S ×M0 ↩→ S×M aS-
relative super connection 1-form 𝜄∗A on the pullback bundleG → 𝜄∗P/S → (M0)/S .
Let

𝜄∗A = pr
𝔤0
◦ 𝜄∗A + pr

𝔤1
◦ 𝜄∗A =: 𝜔 + 𝜓 (2.263)

be the decomposition of 𝜄∗A according to the even and odd part of the super Lie algebra
𝔤 = 𝔤0⊕𝔤1. Since 𝜔 ∈ Ω1( 𝜄∗P/S , 𝔤0)0 � Ω1(P|M0 , 𝔤0)0⊗𝐻∞(S)0, it follows that 𝜔
can be reduced to aS-relative super connection 1-form on theS-relative principal super
fiber bundle G0 → (P0)/S → (M0)/S which will be denoted by the same symbol.
Hence, 𝜔 gives rise to a parallel transport map P𝜔

S,𝛾 along 𝛼S (id× 𝛾) : S ×I →M0.

9 In [97, 109] this is also called the G-extension of B(M) as this can be viewed as a generalization of the
ordinary G-extension of smooth functions (Eq. (C.2))
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Suppose that 𝛾 is contained within a local tirvialization neighborhood of P0 and let
𝑠 : 𝑈/S → (P0)/S be the corresponding local section with 𝑈 ⊂ M0 open. Let
𝑔 [A] : S × I → G be the solution of the parallel transport equation (2.230) ofA

𝜕𝑡 𝑔 [A](𝑠, 𝑡) = −𝑅𝑔 [A] ( 𝑠,𝑡)∗A𝛾 (𝑠, 𝑡) (2.264)

with the initial condition 𝑔 ( · , 0) = 𝑒, where

A𝛾 := ⟨1 ⊗ 𝜕𝑡 𝛾 |𝑠∗A⟩ = ⟨1 ⊗ 𝜕𝑡 𝛾 |𝑠∗𝜔⟩ + ⟨1 ⊗ 𝜕𝑡 𝛾 |𝑠∗𝜓 ⟩ =: 𝜔𝛾 + 𝜓 𝛾 (2.265)

Furthermore, let 𝑔 [𝜔] : S × I → G0 be the solution of the corresponding paral-
lel transport equation of 𝜔. Set 𝑔 [𝜓 ] := 𝑔 [𝜔]−1 · 𝑔 [A] : S × I → G. Using
𝜕𝑡 ( 𝑔 [𝜔]−1) = −𝐿 𝑔 [𝜔]−1∗𝑅𝑔 [𝜔]−1∗ (𝜕𝑡 𝑔 [𝜔]) = 𝐿 𝑔 [𝜔]−1∗𝜔𝛾 , it then follows

𝜕𝑡 𝑔 [𝜓 ] = 𝐷𝜇G (𝜕𝑡 ( 𝑔 [𝜔]−1), 𝜕𝑡 𝑔 [A]) = 𝑅𝑔 [A]∗𝐿 𝑔 [𝜔]−1∗𝜔𝛾 − 𝐿 𝑔 [𝜔]−1∗𝑅𝑔 [A]∗A𝛾

= −𝑅𝑔 [A]∗𝐿 𝑔 [𝜔]−1∗𝜓 𝛾 = −𝑅𝑔 [𝜓 ]∗𝑅𝑔 [𝜔]∗𝐿 𝑔 [𝜔]−1∗𝜓 𝛾

= −𝑅𝑔 [𝜓 ]∗Ad𝑔 [𝜔]−1 (𝜓 𝛾 ) (2.266)

that is, 𝑔 [𝜓 ] is the solution of the equation

𝜕𝑡 𝑔 [𝜓 ] = −𝑅𝑔 [𝜓 ]∗Ad𝑔 [𝜔]−1 (𝜓 𝛾 ) (2.267)

For a super matrix Lie group G, the solution of (2.267) can be explicitly written as

𝑔 [𝜓 ] (𝑠, 𝑡) = Pexp
(
−

∫ 𝑡

0
d𝜏 (Ad𝑔 [𝜔]−1𝜓 𝛾 ) (𝑠, 𝜏)

)
(2.268)

such that

𝑔 [A](𝑠, 𝑡) = 𝑔 [𝜔] (𝑠, 𝑡) · Pexp
(
−

∫ 𝑡

0
d𝜏 (Ad𝑔 [𝜔]−1𝜓 𝛾 ) (𝑠, 𝜏)

)
(2.269)

As a consequence, if 𝛾 is closed loop onM0, in this gauge, the super Wilson loop takes
the form

𝑊𝛾 [A] = str

(
𝑔𝛾 [𝜔] · Pexp

(
−

∮
𝛾

Ad𝑔𝛾 [𝜔]−1𝜓
( 𝑠)

))
: S → G (2.270)

where 𝜓 ( 𝑠) := 𝑠∗𝜓 . It follows from Prop. 2.7.15 that𝑊𝛾 [A] is invariant under local
gauge transformations. In fact, 𝑔𝛾 [A] transforms as

𝑔𝛾 [A](𝑠) → 𝜙(𝑠) · 𝑔𝛾 [A](𝑠) · 𝜙(𝑠)−1, ∀𝑠 ∈ S (2.271)
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for some smooth function 𝜙 : S → G. Hence, due to cyclicity of the supertrace,
(2.270) is indeed invariant. Finally, by Prop. 2.7.12 (ii) the super Wilson loop is also
invariant under change of parametrizations. That is, if 𝜆 : S′→ S is a supermanifold
morphism, then

𝜆∗𝑊𝛾 [A] =𝑊𝛾 [𝜆∗A] : S′→ G (2.272)

Thus, due these properties,𝑊𝛾 [A] can be regarded as a fundamental physical quantity
according to [73].

As explained in Example 2.7.16, the parallel transport map corresponding to super
connection 1-forms on relative principal super fiber bundles shares many properties
with the parallel transport map as studied in the pure algebraic setting in [78, 79] in the
context of covariant derivatives on super vector bundles. To make this link even more
precise, let us start with an equivalent characterization of horizontal forms in terms of
forms with values in the associated bundle.

Proposition 2.7.18. Let G → P/S
𝜋S→ M/S be a S-relative principal super fiber

bundle and 𝜌 : G → GL(V) be a representation of G on a super Λ-vector spaceV .
Then, there exists an isomorphism between Ω𝑘

ℎ𝑜𝑟
(P/S ,V) (G, 𝜌) and Ω𝑘 (M/S , E/S) �

Ω𝑘 (M/S) ⊗ E/S , i.e., 𝑘-forms onM/S with values in the associated S-relative super
vector bundle E/S := (P ×𝜌 V)/S .

Proof. For 𝑘 = 0, this is straightforward generalization of Corollary 2.4.23. For gen-
eral 𝑘 ∈ N, suppose 𝜔 is a horizontal 𝑘-form on P/S of type (G, 𝜌). Choose a local
trivialization 𝑠 : 𝑈/S → P/S with𝑈 ⊆ M open. On𝑈/S , we then define a 𝑘-form
𝜔 ∈ Ω𝑘 (M/S , E/S) as follows

⟨𝑋1, . . . , 𝑋𝑘 |𝜔⟩ := [𝑠, ⟨𝑋1, . . . , 𝑋𝑘 |𝑠∗𝜔⟩] (2.273)

for any smooth vector fields 𝑋𝑖 on M/S , 𝑖 = 1, . . . , 𝑘. By horizontality and G-
equivariance of 𝜔, it is then immediate to see that 𝜔 is indeed well-defined and indepen-
dent of the choice of a local section. The inverse direction follows similarly. □

Definition 2.7.19. Under the assumptions of Prop. 2.7.18, on Ω(M/S , E/S), the
exterior covariant derivative dA : Ω𝑘 (M/S , E/S) → Ω𝑘+1(M/S , E/S) induced by
A is defined via

dA𝜔 := 𝐷 (A)𝜔 (2.274)

for any 𝜔 ∈ Ω𝑘
ℎ𝑜𝑟
(P/S ,V) (G, 𝜌) . For 𝑘 = 0, we also write dA ≡ ∇(A) .
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2. Supergeometry

Definition 2.7.20. Under the assumptions of Prop. 2.7.18, let 𝑓 : S → M be a
smooth map. As in Remark 2.7.10, for the pullback bundle 𝑓∗E, we have

Γ(𝑓∗E) = {𝜙 : S → E| 𝜋E ◦ 𝜙 = 𝑓} (2.275)

By definition, any 𝜙 ∈ Γ(𝑓∗E) is of the form 𝜙 = [𝜙0, 𝑣] with 𝜙0 ∈ Γ(𝑓∗P). Hence,
let 𝛾 : S × I → M be a smooth path onM/S . The connection 1-formA on P/S
then induces a parallel transport map P E,A

S,𝛾 on E/S along 𝛾 via

P E,A
S,𝛾 : Γ(𝛾∗0 E) → Γ(𝛾∗1 E), 𝜙 = [𝜙0, 𝑣] ↦→ [PA

S,𝛾 (𝜙0), 𝑣] (2.276)

with PA
S the parallel transport map induced byA as defined via Def. 2.7.11.

The following proposition, together with Prop. 2.5.23 giving an explicit form of the
exterior covariant derivative on horizontal forms, provides a link between the parallel
transport on associated S-relative super vector bundles and the parallel transport on
algebraic super vector bundles as constructed in [78, 79].

Proposition 2.7.21. Under the assumptions of Prop. 2.7.18, letA ∈ Ω1(P/S , 𝔤)0 be a
super connection 1-form on theS-relative principal super fiber bundleG → P/S →M/S
and P E,A

S the induced parallel transport map on the associatedS-relative super vector
bundle. Let furthermore 𝛾 : S × I →M be a smooth path onM/S and 𝑒 ∈ Γ(E/S) a
smooth section which is covariantly constant along 𝛾 w.r.t.A, i.e.,

⟨(1 ⊗ 𝜕𝑡 ) 𝛾̂ |∇(A) 𝑒⟩ = 0 (2.277)

∀(𝑠, 𝑡) ∈ S × I with 𝛾̂ := 𝛼−1S (𝛾). Then, the pullback of 𝑒 along the path 𝛾 is given by
𝛾̂∗𝑒 = [𝛾ℎ𝑜𝑟

𝜙
, 𝑣] with [𝜙, 𝑣] =: 𝑒 ◦ 𝛾̂ (·, 0) ∈ Γ(𝛾∗0 E) and 𝛾ℎ𝑜𝑟

𝜙
is the unique horizontal

lift through 𝜙. In particular,

𝛾̂∗1 𝑒 = P E,A
S,𝛾 ( 𝛾̂

∗
0 𝑒) (2.278)

Proof. By locality, it suffices to assume that the claim holds on a local trivilization neigh-
borhood. Hence, w.l.o.g. suppose that 𝛾 is contained within a local trivialization neigh-
borhood of P/S induced by a local section 𝑠 : 𝑈/S → P/S . With respect to this
trivialization, the section 𝑒 is then of the form 𝑒 = [𝑠, 𝑣] with 𝑣 : S × 𝑈 → V a
smooth map. Using (2.273), it then immediately follows by definition of the covariant
derivative that

⟨(1 ⊗ 𝜕𝑡 ) 𝛾̂ |∇(A) 𝑒⟩ = [𝛿, (1 ⊗ 𝜕𝑡 )𝑣̂ + 𝜌∗(A𝛾 )𝑣̂] (2.279)
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whereA𝛾 := ⟨(1 ⊗ 𝜕𝑡 ) 𝛾̂ |𝑠∗A⟩, 𝛿 := 𝑠 ◦ 𝛾̂ : I/S → P/S and 𝑣̂ = 𝑣 ◦ 𝛾̂ such that
𝑣̂(·, 0) = 𝑣0. Hence, 𝑒 is covariantly constant along 𝛾 iff

(1 ⊗ 𝜕𝑡 )𝑣̂ + 𝜌∗(A𝛾 )𝑣̂ = 0 (2.280)

On the other hand, consider the smooth path 𝑒(𝑠, 𝑡) := [𝛾ℎ𝑜𝑟
𝜙
(𝑠, 𝑡), 𝑣0] ∀(𝑠, 𝑡) ∈ S×I.

By the proof of Prop. 2.7.9, w.r.t. to the chosen local trivialization, the horizontal lift
takes the form 𝛾𝜙 = ΦS (𝛿, 𝑔) with 𝑔 : S × I → G a smooth map satisfying

(1 ⊗ 𝜕𝑡 ) 𝑔 (𝑠, 𝑡) = −𝑅𝑔 ( 𝑠,𝑡)∗A𝛾 (𝑠, 𝑡) (2.281)

together with the initial condition 𝑔 (·, 0) = 𝑒. Hence, this yields 𝑒 = [ΦS (𝛿, 𝑔), 𝑣0] =
[𝛿, 𝑣̂] with 𝑣̃ := 𝜌( 𝑔)𝑣0 : S × I → V. Taking the partial time derivative of 𝑣̃, this
then yields, together with 𝜌 ◦ 𝑅𝑔 = 𝑅𝜌 ( 𝑔) ◦ 𝜌 ∀𝑔 ∈ G,

(1 ⊗ 𝜕𝑡 )𝑣̃(𝑠, 𝑡) = 𝐷 𝑔 ( 𝑠,𝑡) 𝜌((1 ⊗ 𝜕𝑡 ) 𝑔 (𝑠, 𝑡))𝑣0 = −𝐷𝑒 ( 𝜌 ◦ 𝑅𝑔 ( 𝑠,𝑡) ) (A𝛾 )𝑣0
= −𝑅𝜌 ( 𝑔 ( 𝑠,𝑡))∗( 𝜌∗(A𝛾 ))𝑣0 = −𝜌∗(A𝛾 ) 𝜌( 𝑔 (𝑠, 𝑡))𝑣0
= −𝜌∗(A𝛾 )𝑣̃(𝑠, 𝑡) (2.282)

where, in the second line, we used that the pushforward of the right translation on
GL(V) can be identified with the ordinary right group multiplication. Since, 𝑣̃(·, 0) =
𝑣0 it thus follows from the uniqueness of solutions of differential equations once fixing
the initial conditions that 𝑣̃ = 𝑣̂ onS × I. This proves the proposition. □

2.8. Discussion
In this chapter, we have studied the theory of super fiber bundles, in particular, principal
super fiber bundles and super connection forms defined on them. We studied these
objects mainly in the Rogers-DeWitt category extending the seminal work of Tuynman
[97] to relative supermanifolds defining objects in enriched categories. To this end, at the
beginning, we discussed some important aspects of supermanifold theory and established
a concrete link between various different approaches to this subject via the functor of
points prescription. We also used this technique in order to provide a link to the theory
of principal super fiber bundles and super connection forms in the algebro-geometric
approach [102] and showed that both approaches are in fact equivalent.

We then studied the parallel transport map induced by super connection 1-forms. A
generic issue in both the algebro-geometric and concrete approach is the lack of (anti-
commutative) fermionic degrees of freedom on the body of a supermanifold. From a
mathematical point of view, this implies that the parallel transport map cannot be used
to compare points on different fibers of the bundle in contrast to the classical theory. A
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resolution is given by considering relative supermanifolds as studied, e.g., in [74, 101] and
which is rooted in the Molotkov-Sachse approach to supermanifold theory [98–100]. In
this chapter, a rigorous mathematical account on this subject was given. In particular,
we defined and analyzed super connection 1-forms on relative principal super fiber
bundles. Finally, the parallel transport map was constructed in this enriched category. It
follows that the parallel transport map indeed has the right properties as it provides an
isomorphism between the fibers of the underlying relative principal super fiber bundle.
Moreover, it behaves functorially under composition of (parametrized) paths and, in
particular, transforms covariantly under change of parametrization.

Finally, the induced parallel transport map on associated super vector bundles was
considered. In this context, among other things, we established a link to similar con-
structions in the algebraic approach [78,79] studying the parallel transport map induced
by covariant derivatives on super vector bundles.

We will use these results in the following chapters. On the one hand, in Chapter 3, a
mathematically rigorous approach towards geometric supergravity will be established.
In this context, we will work in the category of relative supermanifolds. Again, this
turns out to be mandatory in order to resolve the fermionic degrees of freedom of the
theory. On the other hand, we will need the parallel transport map in Chapter 5 as well as
Chapter 6 in a symmetry reduced setting in order to construct the graded holonomy-flux
algebra of chiral supergravity. To this end, in Example 2.7.17, for a particular choice of a
gauge, we derived an explicit expression of the parallel transport map in which bosonic
and fermionic degrees of freedom are separated as far as possible.

There are many possible and interesting extensions of the present formalism. For
instance, it would be desirable to generalize it to include higher gauge theories which typ-
ically arise in context of higher dimensional supergravity theories. To this end, one needs
to generalize the theory of higher principal super fiber bundles and super connection
forms defined on them as studied for instance in [119, 120] to the relative category. Finally,
there is quite some recent interest in the description of boundary charges [121–124]. This
has been addressed for instance in context of AdS supergravity in [125]. There, among
other things, it was found that a consistent treatment of (supersymmetric) boundary
charges may be possible in the context of the geometric approach to supergravity (see
Section 3.4). It would therefore be very interesting to generalize the Iyer-Wald’s Noether
charge formalism [126] to supergravity which, in particular, explicitly takes into account
the underlying supersymmetry of the theory. This may be achieved generalizing the
work of Prahbu [127] to field theories defined on principal super fiber bundles.
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3.1. Introduction
Soon after the first discovery of supergravity in 1976 by Freedman, Ferrara and van
Nieuwenhuizen [128], Ne’eman and Regge studied a new geometric approach based on
the ideas of Cartan of a purely geometric interpretation of gravity [70]. In this theory,
now commonly known as Cartan geometry, gravity arises by considering the underlying
symmetry groups of flat Minkowski spacetime, i.e., a Klein geometry consisting of the
isometry group given by the Poincaré group and the Lorentz group as stabilizer subgroup
of a particular spacetime event. Gravity is then obtained by deforming this flat initial
data in a particular way by studying a certain kind of connection forms, called Cartan
connections, taking values in the Lie algebra of the isometry group of the flat model. This
Cartan geometric approach gives gravity a very clear geometric interpretation and even
allows the inclusion of matter fields via Kaluza-Klein reduction of higher dimensional
pure gravity theories leading for instance to Einstein-Yang-Mills theories. However, it still
has some limitations as, for instance, it does not include fermionic fields. This changes in
case of supersymmetry as graded Lie algebras, by definition, naturally include fermionic
generators. It was then realized extending Cartan geometry to the super category that
this in fact leads to supergravity. The fermion field, given by the superpartner of the
graviton field, then arises from the odd components of a super Cartan connection taking
values in the graded extension of the Poincaré algebra. Besides, this description also yields
a geometric interpretation of supersymmetry transformations in terms of infinitesimal
superdiffeomorphisms.

These ideas were studied more systematically and developed even further by Castellani-
D’Auria-Fré [71, 72] to include extended and higher dimensional supergravity theories.
Moreover, generalizing the Maurer-Cartan equations to include higher 𝑝-form gauge
fields which naturally appear in higher dimensions, such as the supergravity𝐶 -field in
the unique maximal 𝐷 = 11,N = 1 supergravity theory, then lead to the concept of
free graded differential algebras (FDA). These type of algebras then turned out to have a
rigorous geometric interpretation in higher category theory describing the higher gauge
fields as components of a higher Cartan connection [129, 130].

In this chapter, we want to provide a mathematically rigorous approach towards geo-
metric supergravity introducing the notion of a super Cartan geometry. However, the
problem of modeling anticommuting classical fermion fields, which is crucial in the
context of supersymmetry, turns out to be by far non-straightforward. This seems to
be usually ignored in the physical literature. Again, motivated from algebraic geometry,
this problem has an intriguing resolution using the concept of enriched categories as
studied in detail in Chapter 2 and used for instance for the construction of the parallel
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transport map. We will then see that pure 𝐷 = 4,N = 1 Poincaré supergravity arises
naturally in this framework. For an interesting approach which is different from the
present one, using the notion of integral forms see [131, 132, 220].

Later, in Chapter 5, these considerations will be extended, though with slightly less
mathematical rigor, to include pureN -extended (Holst-)AdS SUGRA in 𝐷 = 4 for
N = 1, 2 as well as a discussion about the appropriate description of boundary theories
compatible with SUSY. Moreover, we will use this geometric formulation in Section
5.4.1 in context of chiral supergravity in order to give a geometric interpretation of the
super Asthekar connection in terms of a generalized super Cartan connection. This
provides a conceptual explanation for the observation of Fülöp [63]. As we will see, this
connection appears quite naturally when studying the chiral structure of the underlying
supersymmetry algebra corresponding to the super Klein geometry and is rooted in
the special properties of the (bosonic) self-dual variables and even survives in case of
extended supersymmetry.

The structure of this chapter is as follows: First, in Section 3.2, we will review the
geometrical interpretation of gravity in terms of a Cartan geometry. In Section 3.3 We
will then introduce the notion of a (metric reductive) super Cartan geometry in the
framework of enriched categories and discuss some of its properties such as their strong
relation to Yang-Mills gauge theories. This formulation will subsequently be used in
Section 3.4 in order to give a geometric interpretation of N = 1, 𝐷 = 4 Poincaré
supergravity.

As an interesting application, we will use this geometric approach in Section 3.5 to
discuss global symmetries in supergravity and to describe Killing spinors in terms of
odd Killing vector fields on super Riemannian manifolds induced by metric reductive
super Cartan geometries. These play a prominent role in context of supersymmetric
black holes. Finally, in Section 3.6, we will sketch a concrete link between the description
of anticommuting fermionic fields in context of enriched categories as well as in the
framework of pAQFT [76, 77] demonstrating the strong relation between these two
approaches.

A list of important symbols as well as an overview of our choice of conventions concern-
ing indices, physical constants etc. can be found in the List of symbols, notations and
conventions.

3.2. Review: Gravity as Cartan geometry
In this section, mostly following [133], we want to review the interpretation of gravity in
terms of a Cartan geometry as this will serve a starting point for a very elegant approach
to supergravity as described in detail in Section 3.4 and a derivation of a super analog
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of Asthekar’s connection discussed in Section 5.4. For a more detailed introduction to
Cartan geometry see, e.g., [134–136]. For more details on the relation between Cartan
geometry and general relativity we refer to [133] (see also [137] for a nice exposition).

In his famous Erlangen program, Klein studied the idea of classifying the geometry of
space via the underlying group of symmetries. For instance, one can consider Minkowski
spacetime (R1,3, 𝜂) and study the corresponding Lie group ISO(R1,3) of isometries
which is isomorphic to the Poincaré groupR1,3⋊SO+(1, 3). If one then chooses a specific
spacetime event 𝑝 ∈ R1,3, one can consider the corresponding stabilizer subgroup
SO+(1, 3) which preserves that point. Since the isometry group acts transitively onR1,3,
it follows that Minkowski spacetime can be described in terms of the coset space

R1,3 � ISO(R1,3)/SO+(1, 3) (3.1)

Hence, the collection of spacetime events can equivalently be described in terms of
the underlying symmetry groups. A similar kind of reasoning applies in case of the
other maximally symmetric homogeneous spacetimes such as de Sitter of anti-de Sitter
spacetime (see Appendix E, Corollary E.8) playing a central role in general relativity and
cosmology. Hence, one makes the following definition (see also [133, 134]):

Definition 3.2.1. A Klein geometry is a pair (𝐺, 𝐻 ) consisting of a Lie Group𝐺 and
an embedded Lie subgroup 𝐻 ↩→ 𝐺 such that𝐺/𝐻 is connected.

Given a Klein geometry (𝐺, 𝐻 ), the coset space 𝐺/𝐻 has the structure of principal
𝐻 -bundle

𝐺

𝜋

��

𝐻oo

𝐺/𝐻

Moreover, on𝐺, there exists a canonical 𝔤-valued 1-form given by the Maurer-Cartan
form 𝜃MC ∈ Ω1(𝐺, 𝔤) (cf. Example 2.4.13) which, choosing a basis of left-invariant
vector fields 𝑋𝑖 ∈ 𝔤, 𝑖 = 1, . . . , dim𝔤, is defined as

𝜃MC = 𝑋𝑖 ⊗ 𝜔𝑖 (3.2)

where 𝜔𝑖 ∈ Ω1(𝐺) is the corresponding dual basis of left-invariant one-forms on
𝐺 satisfying 𝜔𝑖 (𝑋𝑗 ) = 𝛿 𝑖𝑗 . It follows by definition that the Maurer-Cartan form is
𝐺-equivariant, i.e.1

𝑅∗𝑔 𝜃MC = Ad𝑔−1 ◦ 𝜃MC (3.3)

1 This can be seen directly using the equivalent definition in terms of the left-translation 𝜃MC (𝑋𝑔 ) =
𝐿 𝑔−1∗𝑋𝑔 .
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∀𝑔 ∈ 𝐺 with 𝑅𝑔 : 𝐺 → 𝐺 denoting the right translation on𝐺. By definition, 𝜃MC
maps left-invariant vector fields to themselves, i.e., 𝜃MC(𝑋 ) = 𝑋𝑒 ∀𝑋 ∈ 𝔤 and, as a
consequence, yields an isomorphism 𝜃MC : 𝑇𝑔𝐺 → 𝔤 of vector spaces at any 𝑔 ∈ 𝐺.
Moreover, it satisfies the Maurer-Cartan structure equation

d𝜃MC +
1
2
[𝜃MC ∧ 𝜃MC] = 0 (3.4)

As seen above, standard examples of Klein geometries (𝐺, 𝐻 ) arising in physics are given
by the Minkowski spacetime (ISO(R1,3), SO+(1, 3)), de Sitter (SO(1, 4), SO+(1, 3))
or anti-de Sitter spacetime (SO(2, 3), SO+(1, 3)), respectively. These have in common
that the Lie algebra 𝔤 of𝐺 can be split into Ad(𝐻 )-invariant subspaces 𝔤 = 𝔥 ⊕ 𝔤/𝔥
with 𝔥 the Lie algebra of 𝐻 . Moreover, on the moduli space 𝔤/𝔥 there exists a canonical
Ad(𝐻 )-invariant bilinear form. In this case, the Klein geometry is called metric and
reductive [133]. Hence, we see that flat spacetime can equivalently be described in terms
of a Klein geometry. Based on this observation, Cartan formulated a theory now known
as Cartan geometry which can be interpreted as a deformed Klein geometry such as
gravity is a deformed version of flat Minkowski spacetime (see also [133, 134]):

Definition 3.2.2. A metric reductive Cartan geometry (𝜋 : 𝑃 → 𝑀, 𝐴; 𝜂) modeled
on a metric reductive Klein geometry (𝐻,𝐺; 𝜂) is a principal fiber bundle 𝐻 → 𝑃 →
𝑀 with structure group 𝐻 together with a 𝔤-valued 1-form 𝐴 ∈ Ω1(𝑃, 𝔤) on 𝑃 called
Cartan connection such that

(i) 𝐴𝑝 (𝑋𝑝) = 𝑋 ∀𝑋 ∈ 𝔥 = 𝑇𝑒𝐻 , 𝑝 ∈ 𝑃

(ii) Φ∗
ℎ
𝐴 = Adℎ−1 ◦ 𝐴∀ℎ ∈ 𝐻

(iii) the map 𝐴𝑝 : 𝑇𝑝𝑃 → 𝔤 defines an isomorphism of vector spaces for any 𝑝 ∈ 𝑃

where the last condition is also called the Cartan condition.

Given a metric reductive Cartan geometry (𝜋 : 𝑃 → 𝑀, 𝐴; 𝜂), one can split the
Cartan connection 𝐴 by projecting it according to the decomposition 𝔤 = 𝔥 ⊕ 𝔤/𝔥 of
the Lie algebra of𝐺 yielding

𝐴 = pr
𝔤/𝔥 ◦ 𝐴 + pr

𝔥
◦ 𝐴 =: 𝑒 + 𝜔 (3.5)

with 1-forms 𝜔 ∈ Ω1(𝑃, 𝔥) and 𝑒 ∈ Ω1(𝑃, 𝔤/𝔥) with the latter also referred to as the
soldering form. Due to the conditions (i) and (ii) of the Cartan connection, it follows
immediately that 𝜔 defines an ordinary principal connection 1-form in the sense of
Ehresmann. Let H := ker(𝜔) be the induced horizontal distribution on the tangent
bundle𝑇 𝑃 . If 𝑋 ∈ V is a (vertical) fundamental vector field generated by 𝑋 ∈ 𝔥, one
has 𝐴(𝑋 ) = 𝑋 = 𝜔(𝑋 ) and thus 𝑒(𝑋 ) = 0. Hence, since 𝔤/𝔥 defines a 𝐻 -invariant
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e

Figure 1.: Pictorial representation of a Cartan geometry. The soldering form provides a local identification of
tangent spaces on the spacetime manifold (left) with tangent spaces on the flat model (right) corresponding
to the Klein geometry.

subspace, together with condition (ii), this immediately implies that the soldering form
is horizontal of type (𝐻,Ad), i.e. 𝑒 ∈ Ω1

ℎ𝑜𝑟
(𝑃, 𝔤/𝔥) (𝐻,Ad) . In fact, the soldering form

even provides an identification of the principal bundle 𝑃 as a 𝐻 -reduction of the frame
bundle F (𝑀 ) explaining its name (see also Figure 1). To see this, following [136], note
that 𝑒−1𝑝 := (𝑒 𝑝 |H𝑝

)−1 for any 𝑝 ∈ 𝑃 defines an isomorphism on 𝔤/𝔥 and 𝜔𝑝 |H𝑝
is an

isomorphism onto𝑇𝜋 ( 𝑝)𝑀 so that 𝐷 𝑝𝜋 ◦ 𝑒−1𝑝 : 𝔤/𝔥 ∼→ 𝑇𝜋 ( 𝑝)𝑀 is a linear frame at
𝜋 ( 𝑝). Hence, this yields a map

𝜄 : 𝑃 → F (𝑀 ), 𝑝 ↦→ 𝐷 𝑝𝜋 ◦ 𝑒−1𝑝 (3.6)

By condition (ii), we haveΦ∗
ℎ
𝑒 𝑝 (𝑌𝑝) = 𝑒 𝑝ℎ (𝐷 𝑝Φℎ (𝑌𝑝)) = Adℎ−1 (𝑒 𝑝 (𝑌𝑝)) ∀𝑌𝑝 ∈ 𝑇𝑝𝑃

and ℎ ∈ 𝐻 and therefore

𝑒−1
𝑝ℎ

= 𝐷 𝑝Φℎ ◦ 𝑒−1𝑝 ◦ Ad𝑔 (3.7)

from which we obtain

𝜄( 𝑝 · ℎ) = 𝐷 𝑝ℎ𝜋 ◦ 𝑒−1𝑝ℎ = 𝐷 𝑝ℎ𝜋 ◦ 𝐷 𝑝Φℎ ◦ 𝑒−1𝑝 ◦ Adℎ = 𝜄( 𝑝) ◦ Adℎ (3.8)

∀𝑝 ∈ 𝑃, ℎ ∈ 𝐻 . That is, 𝜄 : 𝑃 → F (𝑀 ) is 𝐻 -equivariant and fiber-preserving
so that 𝑃 defines a 𝐻 -reduction of the frame bundle w.r.t. the group morphism Ad :
𝐻 → GL(𝔤/𝔥). Moreover, it follows that 𝜄 induces an isomorphism [136] (denoted by
the same symbol)

𝜄 : 𝑃 ×Ad 𝔤/𝔥
∼−→ 𝑇𝑀 (3.9)

[( 𝑝, 𝑋 )] ↦−→ 𝐷 𝑝𝜋 (𝑒−1𝑝 (𝑋 ))

between the associated vector bundle 𝑃 ×Ad 𝔤/𝔥 and the tangent bundle of 𝑀 .
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To a Cartan connection 𝐴 one associates the Cartan curvature 𝐹 (𝐴) ∈ Ω2(𝑃, 𝔤)
according to

𝐹 (𝐴) := d𝐴 + 1
2
[𝐴 ∧ 𝐴] (3.10)

In case of a “flat” Klein geometry, the Cartan connection is given by the Maurer-Cartan
form (3.2) which satisfies the structure equation (3.4), i.e., the Cartan curvature is identi-
cally zero. Thus 𝐹 (𝐴) indicates the deviation of a Cartan geometry from a flat Klein
geometry [136]. In fact, one can prove that a Cartan geometry modeled on the Klein
geometry (𝐺, 𝐻 ) is locally isomorphic to the homogeneous model (𝐺 → 𝐺/𝐻, 𝜃MC)
if and only if the associated Cartan curvature vanishes (for a proof see, e.g., [134, 135]).

Decomposing 𝐹 (𝐴) according to the decomposition 𝔤 = 𝔥 ⊕ 𝔤/𝔥 of the Lie algebra,
one obtains

𝐹 (𝐴) = pr
𝔥
◦ 𝐹 (𝐴) + pr

𝔤/𝔥 ◦ 𝐹 (𝐴) = 𝐹 (𝜔) +Θ
(𝜔) + 1

2
[𝑒 ∧ 𝑒] (3.11)

where
𝐹 (𝜔) = 𝐷 (𝜔)𝜔 = d𝜔 + 1

2
[𝜔 ∧ 𝜔] (3.12)

is the curvature of the connection 1-form 𝜔 and

Θ(𝜔) := 𝐷 (𝜔) 𝑒 = d𝑒 + [𝜔 ∧ 𝑒] (3.13)

is the corresponding torsion 2-form. To see that (3.13) in fact encodes the torsion of the
connection, one may proceed similar as in [136] and note that 𝜔 induces a connection
on the associated vector bundle 𝑃 ×Ad 𝔤/𝔥 and thus, via (3.9), an affine connection
∇ ≡ ∇(𝜔) : Γ(𝑇𝑀 ) → Γ(𝑇 ∗𝑀 ⊗ 𝑇𝑀 ) on the tangent bundle. For vector fields
𝑋 ,𝑌 ∈ Γ(𝑇𝑀 ), it is given by

(∇𝑋𝑌 )𝑥 = 𝜄( [ 𝑝, 𝑋 ℎ𝑜𝑟 𝑒(𝑌 ℎ𝑜𝑟 )]) (3.14)

for any 𝑥 ∈ 𝑀 and 𝑝 ∈ 𝑃 with 𝜋 ( 𝑝) = 𝑥 where 𝑋 ℎ𝑜𝑟 ,𝑌 ℎ𝑜𝑟 denote the horizontal
lifts of 𝑋 and𝑌 , respectively.2 Moreover, in general, given a representation 𝜌 : 𝐻 →
GL(𝑉 ) of 𝐻 on a vector space𝑉 , there exists an isomorphism

Ω𝑘
ℎ𝑜𝑟
(𝑃,𝑉 ) (𝐻,𝜌) ∼→ Ω𝑘 (𝑀, 𝑃 ×𝜌𝑉 ), 𝜔 ↦→ 𝜔 (3.15)

2 Recall from Def. 2.5.17 in the ungraded case, for a vector field 𝑋 ∈ Γ(𝑇𝑀 ), the corresponding
horizontal lift 𝑋 ℎ𝑜𝑟 ∈ Γ(𝑇 𝑃 ) is a vector field on 𝑃 which is horizontal, i.e., 𝑋 ℎ𝑜𝑟𝑝 ∈ H𝑝 ∀𝑝 ∈ 𝑃 , and

satisfies 𝐷 𝑝𝜋 (𝑋 ℎ𝑜𝑟 ) = 𝑋𝜋 ( 𝑝) .
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between𝑉 -valued 𝑘-forms of type (𝐻, 𝜌) and 𝑘-forms with values in the associated
bundle 𝑃 ×𝜌𝑉 . Hence, we can associate toΘ(𝜔) a 2-formΘ(𝜔) ∈ Ω2(𝑀, 𝑃 ×Ad 𝔤/𝔥),
which, applying (3.9), yields another form 𝜄 ◦Θ(𝜔) ∈ Ω2(𝑀 ) ⊗ Γ(𝑇𝑀 ). For vector
fields 𝑋 ,𝑌 ∈ Γ(𝑇𝑀 ), we then compute

𝜄 ◦Θ(𝜔) (𝑋𝑥 ,𝑌𝑥) = 𝜄 ◦ [ 𝑝, d𝑒(𝑋 ℎ𝑜𝑟 ,𝑌 ℎ𝑜𝑟 )]
= 𝜄 ◦ [ 𝑝, 𝑋 ℎ𝑜𝑟 𝑒(𝑌 ℎ𝑜𝑟 ) −𝑌 ℎ𝑜𝑟 𝑒(𝑋 ℎ𝑜𝑟 ) − 𝑒( [𝑋 ℎ𝑜𝑟 ,𝑌 ℎ𝑜𝑟 ])]
= ∇𝑋𝑌 − ∇𝑌 𝑋 − 𝐷 𝑝𝜋 ( [𝑋 ,𝑌 ]ℎ𝑜𝑟 ) = 𝑇 ∇ (𝑋𝑥 ,𝑌𝑥) (3.16)

for any 𝑥 ∈ 𝑀 and 𝑝 ∈ 𝑃 such that 𝜋 ( 𝑝) = 𝑥. Hence, Θ(𝜔) indeed encodes the
torsion of the associated affine connection ∇ on the tangent bundle of 𝑀 .

With all these observations, let us now make contact to general relativity. As seen already
at the beginning, flat Minkowski spacetime can be described in terms of the metric Klein
geometry (ISO(R1,3), SO+(1, 3); 𝜂). Hence, we consider gravity as a metric reductive
Cartan geometry (𝑃 → 𝑀, 𝐴; 𝜂) modeled on the metric reductive Klein geometry
(ISO(R1,3), SO+(1, 3); 𝜂) where SO+(1, 3) → 𝑃

𝜋→ 𝑀 is a principal bundle with
structure group SO+(1, 3) and 𝐴 ∈ Ω1(𝑃, 𝔦𝔰𝔬(R1,3)) is a Cartan connection.

By (3.6), we know that 𝑃 defines a SO+(1, 3)-reduction of the frame bundle F (𝑀 ) of
𝑀 . As such, it induces a Lorentzian metric 𝑔 ∈ Γ(𝑇 ∗𝑀 ⊗ 𝑇 ∗𝑀 ) on 𝑀 which, for
vector fields 𝑋 ,𝑌 ∈ Γ(𝑇𝑀 ), is defined as [133, 137]

𝑔 (𝑋𝑥 ,𝑌𝑥) := 𝜂( 𝜄−1𝑝 (𝑋𝑥), 𝜄−1𝑝 (𝑌𝑥)) (3.17)

∀𝑝 ∈ 𝑃𝑥 , 𝑥 ∈ 𝑀 . Note that 𝑔 is in fact well-defined, i.e., independent of the choice of
𝑝 ∈ 𝑃𝑥 , since 𝜄 is equivariant and 𝜂, by definition, is a bilinear form invariant under the
Adjoint representation of SO+(1, 3) onR1,3. Hence,𝑀 is in fact a Lorentzian manifold
and 𝑃 can be identified with the bundle FSO(𝑀 ) of Lorentz frames on 𝑀 .

Let 𝑒𝐼 for 𝐼 = 0, . . . , 3be defined via 𝑒 =: 𝑒𝐼 𝑃𝐼 . Given a local section 𝑠 : 𝑀 ⊃ 𝑈 → 𝑃

of the bundle, the corresponding pullback then induces 1-forms (denoted by the same
symbol for convenience) 𝑒𝐼 ≡ 𝑠∗𝑒𝐼 ∈ Ω1(𝑈 ) which satisfy

𝑔𝜇𝜈 = 𝜂(𝑠∗𝑒𝜇, 𝑠∗𝑒𝜈) = 𝑒𝐼𝜇𝑒
𝐽
𝜈 𝜂𝐼 𝐽 (3.18)

i.e. (𝑒𝐼 )𝐼 defines a local co-frame on 𝑀 with the corresponding frame fields being given
by 𝑒𝐼 := 𝑠∗ 𝜄(𝑃𝐼 ). With these ingredients, we can define an action on 𝑀 via

𝑆 (𝐴) = 1
4𝜅

∫
𝑀

𝑠∗(𝐹 (𝜔)𝐼 𝐽 ∧ 𝑒𝐾 ∧ 𝑒𝐿)𝜖𝐼 𝐽 𝐾 𝐿 (3.19)
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3. Supergravity and super Cartan geometry

where 𝜅 = 8𝜋𝐺. This action precisely coincides with the first-order Palatini action of
pure Einstein gravity. As we see, the whole theory including the underlying geometrical
structure of the spacetime is completely encoded in the Cartan connection.

Following [133], there also exists another version of action (3.19) which depends on the
Cartan connection in a more explicit way. This requires a nonvanishing cosmological
constant which we take as negative for convenience (for a positive cosmological constant
this in fact completely analogous (see, e.g., [133])). To this end, let us consider a Cartan
geometry modeled on the Klein gravity (SO(2, 3), SO+(1, 3)) corresponding to anti-de
Sitter space. Since then [𝑃𝐼 , 𝑃 𝐽 ] = 1

𝐿2
𝑀𝐼 𝐽 with 𝐿 the anti-de Sitter radius (see Example

2.3.17), it follows that the Lorentzian part of the Cartan curvature acquires an additional
contribution depending on the soldering form yielding

𝐹 (𝐴)𝐼 𝐽 = 𝐹 (𝜔)𝐼 𝐽 + 1
𝐿2 𝑒

𝐼 ∧ 𝑒 𝐽 (3.20)

One can then define the so-called MacDowell-Mansouri action as follows [133, 138]

𝑆MM(𝐴) =
𝐿2

8𝜅

∫
𝑀

𝑠∗(𝐹 (𝐴)𝐼 𝐽 ∧ 𝐹 (𝐴)𝐾𝐿)𝜖𝐼 𝐽 𝐾 𝐿 (3.21)

which, in particular, solely depends on the curvature of the Cartan connection and thus
has the structure of a Yang-Mills-type action. Expanding (3.21) using (3.20), it follows
that the term quadratic in 𝐹 (𝜔) is given by the well-known Gauss-Bonnet term an thus
is purely topological. Hence, it follows that, up to boundary terms, (3.21) indeed leads
back to first-order Einstein gravity with a nontrivial cosmological constant.

3.3. Super Cartan geometry
The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

As discussed in the previous section, gravity has a very elegant geometrical interpretation
in terms of a Cartan geometry modeled on the Klein geometry corresponing to flat
Minkowski, de Sitter or anti-de Sitter spacetime. As it turns out, this description also
carries over to the super category providing a geometrical foundation of supergravity.
This is the starting point of the Castellani-D’Auria-Fré approach to supergravity [71,
72]. However, in order to obtain nontrivial fermionic degrees of freedom as well as
supersymmetry transformations on the body of a supermanifold, in the following, we
will define the notion of super Cartan geometry using the concept of enriched categories.
In [101], super Cartan structures on supermanifolds were introduced and also lifted
trivially to Cartan structures in the relative category. However, a precise definition of
super Cartan geometries on (nontrivial) relative principal super fiber bundles in the
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framework of enriched categories has not been given so far in the mathematical literature.
For a motivation of super Cartan geometry, let us consider first the “flat” case given by a
super Klein geometry3.

Definition 3.3.1. A super Klein geometry is a pair (G,H) consisting of a super Lie
Group G and an embedded super Lie subgroupH ↩→ G.

Remark 3.3.2. Suppose one has given a pair (G,H) of super Lie groups withH ↩→ G
an embedded super Lie subgroup. By definition of the DeWitt topology, G/H is
connected iff B(G/H) � B(G)/B(H) is connected, that is, iff (B(G),B(H)) is a
Klein geometry.

As shown in [109], as in the classical theory, a super Klein geometry (G,H) canonically
induces super fiber bundle with typical fiberH via

G
𝜋

��

Hoo

G/H

together with the naturalH -right action Φ : G ×H → G on G. HenceH → G 𝜋→
G/H has the structure of a principalH -bundle. Let (𝑋𝑖)𝑖 be a homogeneous basis
of 𝔤 and ( 𝜔𝑖 )𝑖 the associated left dual basis (see Prop. 2.4.12) of left-invariant 1-forms
𝜔𝑖 ∈ Ω1(G) on G satisfying ⟨𝑋𝑖 | 𝜔𝑗 ⟩ = 𝛿

𝑗

𝑖
, ∀𝑖, 𝑗 = 1, . . . , 𝑛. By Example 2.4.13, the

Maurer-Cartan form 𝜃MC ∈ Ω1(G, 𝔤) on G is then given by

𝜃MC = 𝜔𝑖 ⊗ 𝑋𝑖 (3.22)

By definition, the fundamental vector fields on G correspond to the subspace of left-
invariant vector fields 𝑋 ∈ Lie(H). Hence, it follows immediately from (3.22) that
⟨𝑋 |𝜃MC⟩ = 𝑋𝑒 ∀𝑋 ∈ Lie(H). Moreover, this also implies that the map (𝜃MC) 𝑔 :
𝑇𝑔G → 𝑇𝑒G is an isomorphism of super Λ-modules for any 𝑔 ∈ G (and even an
isomorphism of super Λ-vector spaces if 𝑔 ∈ B(G)). Finally, since the right action on
G essentially coincides with the restriction of the group multiplication, this yields

𝑅∗
ℎ
𝜃MC = Adℎ−1 ◦ 𝜃MC (3.23)

3 All the following definitions will be formulated in the𝐻∞ category. However, they can also be extended
to the algebraic category without major changes (cf. Section 2.6)
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∀ℎ ∈ H , where 𝑅∗
ℎ

denotes the generalized pullback w.r.t. the right translation
𝑅ℎ := Φ(·, ℎ), on G w.r.t. ℎ ∈ H (cf. Definition 2.5.9). This motivates the following
definition.

Definition 3.3.3 (Super Cartan geometry). A super Cartan geometry (𝜋S : P/S →
M/S ,A) modeled on a super Klein geometry (G,H) is a S-relative principal super
fiber bundleH → P/S →M/S with structure groupH together with a smooth even
Lie(G)-valued 1-formA ∈ Ω1(P/S , 𝔤)0 on P/S called super Cartan connection such
that

(i) ⟨𝑋 |A⟩ = 𝑋 , ∀𝑋 ∈ 𝔥

(ii) (ΦS)∗ℎA = Adℎ−1 ◦ A, ∀ℎ ∈ H

(iii) for any 𝑠 ∈ B(S), the pullback ofA w.r.t. the induced embedding 𝜄P : P ↩→
S × P, 𝑝 ↦→ (𝑠, 𝑝) yields an isomorphism 𝜄∗PA 𝑝 : 𝑇𝑝P → Lie(G) of free
super Λ-modules for any 𝑝 ∈ P

where the last condition will be called the super Cartan condition. If (iii) is not satisfied,
A will be called a generalized super Cartan connection.

Remark 3.3.4. Note that, by definition, it follows that condition (iii) for a super Cartan
connectionA is preserved under change of parametrization. In fact, let 𝜆 : S′→ S
be a smooth map. Then, since 𝜆 |B(S′) ⊆ B(S), it follows that the pullback 𝜆∗A also
satisfies (iii).

Definition 3.3.5. A super Cartan geometry (𝜋S : P/S → M/S ,A) modeled on a
super Klein geometry (G,H) is called

(i) reductive if the super Lie algebra 𝔤 of G admits a decomposition of the form
𝔤 = 𝔤/𝔥 ⊕ 𝔥 with 𝔥 the super Lie algebra ofH and 𝔤/𝔥 a super vector space
such that the corresponding super Λ-vector space Λ ⊗ 𝔤/𝔥 is invariant w.r.t. the
Adjoint action ofH on Lie(G).

(ii) metric if it is reductive and if the super Λ-vector space Λ ⊗ 𝔤/𝔥 admits a smooth
super metric (Def. 2.3.12) that is invariant w.r.t. the Adjoint action ofH .

Definition 3.3.6. ForM a supermanifold, consider the right dual tensor product
super vector bundle (𝑇M ⊗ 𝑇M)∗. A smooth section 𝑔 ∈ ΓC((𝑇M ⊗ 𝑇M)∗) �
Hom𝑅 (Γ(𝑇M)2, 𝐻∞(M) ⊗ C) is called a super metric onM, if 𝑔𝑥 for any 𝑥 ∈ M
defines a super metric on the tangent module 𝑇𝑥M. Thus, for any homogeneous
smooth vector fields 𝑋 ,𝑌 ∈ Γ(𝑇M), 𝑔 (𝑋 ,𝑌 ) = (−1) |𝑋 | |𝑌 | 𝑔 (𝑌 , 𝑋 ) and the map
Γ(𝑇M) ∋ 𝑋 ↦→ 𝑔 (𝑋 , ·) ∈ Γ(𝑇M∗) is an isomorphism. Thus, 𝑔 defines a super
metric in the sense of [139].
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Remark 3.3.7. Let 𝑔 be a super metric on a supermanifoldM. Similar as in Remark
2.3.8, it follows that, if 𝑝 ∈ B(M) is a body point, the tangent moduleV𝑝 := 𝑇𝑝M
has the structure of a super Λ-vector spaceV𝑝 = Λ ⊗𝑉𝑝 with the super vector space𝑉𝑝
consisting of derivations 𝑋𝑝 ∈ 𝑇𝑝M satisfying

𝑋𝑝 (𝑓) ∈ R, ∀𝑓 ∈ 𝐻∞(M) (3.24)

Hence, it follows that𝑉𝑝 can be identified with the tangent space𝑇𝑝A(M) of the cor-
responding algebro-geometric supermanifold A(M) (cf. Remark 2.3.4). By definition,
any 𝑋𝑝 ∈𝑉𝑝 arises from the restriction of a local smooth vector field onM to 𝑝. Con-
sequently, as 𝑔 is smooth and 𝑝 is a body point, it follows that 𝑔𝑝 (𝑉𝑝,𝑉𝑝) ⊆ C, that is,
𝑔𝑝 is smooth according to Definition 2.3.12.

Proposition 3.3.8. Let (𝜋S : P/S →M/S ,A) be a super Cartan geometry modeled
on a super Klein geometry (G,H). Let pr

𝔥
: Lie(G) → Lie(H) denote the projection of

Lie(G) onto the super Lie sub module Lie(H). Then, pr
𝔥
◦ A ∈ Ω1(P/S , 𝔥)0 defines a

super connection 1-form on P/S . Let the super Cartan geometry, in addition, be reductive
and pr

𝔤/𝔥 denote the projection of Lie(G) onto the super Λ-vector space Λ ⊗ 𝔤/𝔥. Then,

𝐸 := pr
𝔤/𝔥 ◦ A (3.25)

called super soldering form or supervielbein, defines an even horizontal Λ ⊗ 𝔤/𝔥-valued
1-form on P/S of type (H ,Ad).

Proof. That 𝜔 := pr
𝔥
◦A defines a super connection 1-form in the sense of Ehresmann

is immediate by condition (i) and (ii) of a super Cartan connection. Furthermore, if
the Cartan geometry is reductive, Λ ⊗ 𝔤/𝔥 defines a Ad(H)-invariant super Λ-module.
Hence, by condition (ii) of a super Cartan connection, the super soldering form 𝐸

yields a well-definedH -equivariant 1-form on P/S . To see that is horizontal, let 𝑋 be a
fundamental vector field on P/S generated by 𝑋 ∈ 𝔥. Then, by condition (i), it follows

𝑋 = ⟨𝑋 |A⟩ = ⟨𝑋 |𝜔⟩ + ⟨𝑋 |𝐸⟩ = 𝑋 + ⟨𝑋 |𝐸⟩ (3.26)

Hence, ⟨𝑋 |𝐸⟩ = 0 proving that 𝐸 is horizontal. □

Proposition 3.3.9. Let (𝜋S : P/S →M/S ,A) be a reductive super Cartan geometry
modeled on a super Klein geometry (G,H) with super Cartan connectionA. Let 𝐸 :=
pr

𝔤/𝔥 ◦ A be the super soldering form as defined in Prop. 3.3.8. Let 𝜄P : P ↩→ S × P
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furthermore be an embedding. Then, the pullback 𝜃 := 𝜄∗P𝐸 ∈ Ω
1
ℎ𝑜𝑟
(P,Λ⊗𝔤/𝔥) (H,Ad)

defines a non-degenerate 1-form and induces a smooth map4

𝜄 : P → F (M), 𝑝 ↦→ 𝐷 𝑝𝜋 ◦ 𝜃−1𝑝 (3.27)

which is fiber-preserving andH -equivariant in the sense that 𝜄 ◦Φ = Ψ ◦ ( 𝜄 × Ad) with
Ad : H → GL(Λ ⊗ 𝔤/𝔥) the Adjoint action and Φ and Ψ the group right actions on
P and F (M), respectively. In particular, P defines aH -reduction of the frame bundle
F (M).

Proof. By the previous proposition, it is clear that 𝜃 defines a horizontal 1-form on P
of type (H ,Ad). Let H := ker( 𝜄∗P𝜔) be the horizontal distribution induced by the
pullback of the super connection 1-form 𝜔 := pr

𝔥
◦ A. Then, by the super Cartan

condition (iii) in Def. 3.3.3, it follows that 𝜃 𝑝 : H𝑝 → Λ ⊗ 𝔤/𝔥, for any 𝑝 ∈ P, yields
an isomorphism of free super Λ-modules. Moreover, the pushforward of the bundle
projection induces an isomorphism 𝐷 𝑝𝜋 : H𝑝

∼→ 𝑇𝑝M. Hence, this in turn induces
an isomorphism

𝐷 𝑝𝜋 ◦ 𝜃−1𝑝 : Λ ⊗ 𝔤/𝔥→ 𝑇𝑝M (3.28)

that is, a linear frame at 𝑝. It thus remains to show that (3.27) indeed defines a H -
reduction of F (M). To this end, note that, by condition (ii) for a super Cartan con-
nection, we have 𝜃 (Φℎ∗(𝑌𝑝)) = Φ∗

ℎ
𝜃 (𝑌𝑝) = Adℎ−1 (𝜃 (𝑌𝑝)) ∀𝑌𝑝 ∈ 𝑇𝑝P and ℎ ∈ H .

Hence, this yields

𝜄( 𝑝 · ℎ) = 𝐷 𝑝ℎ𝜋 ◦ 𝜃−1𝑝ℎ = 𝐷 𝑝ℎ𝜋 ◦ 𝐷 𝑝Φℎ ◦ 𝜃−1𝑝 ◦ Adℎ = 𝜄( 𝑝) ◦ Adℎ (3.29)

which proves that 𝜄 isH -equivariant. □

Remark 3.3.10. Under the assumptions of Prop. 3.3.9, let 𝜄 : P → S × P be
an embedding and suppose P is trivial, i.e., P � M × G with respect to a global
trivialization 𝑠 : M → P. Let (𝑒𝑖)𝑖 be a homogeneous basis of the quotient super vector
space 𝔪 := 𝔤/𝔥. This in turn induces a (homogeneous) basis (𝑠𝑖)𝑖 of global sections
𝑠𝑖 := [𝑠, 𝑒𝑖] of the associated super vector bundle E := P ×H V withV := Λ ⊗ 𝔪.
This yields an isomorphism

Ω1(M,V∗) → Ω1(M, E) � Ω1
ℎ𝑜𝑟
(P,V) (H,Ad)

𝜔 ↦→ 𝜔𝑖 𝑠𝑖 (3.30)

4 Note that, in this definition, the soldering form 𝜃 is regarded as right linear morphism which is possible
as 𝜃 is even.

102



3.3. Super Cartan geometry

It thus follows from condition (iii) of a super Cartan connection that, via (3.30), the
pullback 𝜄∗𝐸 ∈ Ω1

ℎ𝑜𝑟
(P,V) induces a non-degenerate 1-form 𝐸̃ ∈ Ω1(M,V∗).

Consequently, the pair (M, 𝐸̃) defines super Cartan structure in the sense of [101].
Conversely, if (M, 𝐸̃) is a super Cartan structure with 𝐸̃ ∈ Ω1(M,V) being non-
degenerate, one can use (3.30) to get a non-degenerate 1-form 𝐸 ∈ Ω1

ℎ𝑜𝑟
(P,V) which

can be lifted trivially to aS-relative 1-form1⊗ 𝐸 ∈ Ω1
ℎ𝑜𝑟
(P/S ,V) satisfying the super

Cartan condition (iii). Hence, definition (3.3.3) provides a generalization of super Cartan
structures in the sense of [101] to a generalized notion of super Cartan connections on
nontrivialS-relative principal super fiber bundles.

Corollary 3.3.11. Let (𝜋S : P/S → M/S ,A) be a metric reductive super Cartan
geometry modeled on a super Klein geometry (G,H) with a super Cartan connectionA
and smooth super metric S on Λ ⊗ 𝔤/𝔥. Let 𝜃 := 𝜄∗P𝐸 ∈ Ω

1(P,Λ ⊗ 𝔤/𝔥) (H,Ad) be
the pullback of the super soldering form to the principal super fiber bundle P w.r.t. an
embedding 𝜄P : P ↩→ S×P. For any 𝑥 ∈ M, consider the map 𝑔𝑥 : 𝑇𝑥M×𝑇𝑥M →
ΛC defined as

𝑔 (𝑋𝑥 ,𝑌𝑥) := S (𝜃 𝑝 (𝑋 ∗𝑝), 𝜃 (𝑌 ∗𝑝 )) (3.31)

for any 𝑝 ∈ P𝑥 and 𝑋 ∗𝑝 ,𝑌 ∗𝑝 ∈ 𝑇𝑝P the unique horizontal tangent vectors such that
𝐷 𝑝𝜋 (𝑋 ∗𝑝) = 𝑋𝑥 and 𝐷 𝑝𝜋 (𝑌 ∗𝑝 ) = 𝑌𝑥 . Then, 𝑔𝑥 is a well-defined super metric on𝑇𝑥M
for any 𝑥 ∈ M. In particular, the assignment 𝑔 : M ∋ 𝑥 ↦→ 𝑔𝑥 defines a smooth super
metric onM.

Proof. Since 𝐷 𝑝𝜋 : H𝑝

∼→ 𝑇𝑝M is an isomorphism of super Λ-modules for any
𝑝 ∈ P, where H := ker( 𝜄∗P𝜔) is the horizontal distribution induced by the pullback
of the super connection 1-form 𝜔 := pr

𝔥
◦ A., it is clear that, for any tangent vectors

𝑋𝑥 ,𝑌𝑥 ∈ 𝑇𝑥M, the horizontal lifts 𝑋 ∗𝑝 ,𝑌 ∗𝑝 ∈ 𝑇𝑝P exist and are unique. Moreover, as
𝜃 𝑝 is a right linear isomorphism of super Λ-modules, it is clear that 𝑔𝑥 defines a super
metric on𝑇𝑥M once we have shown that 𝑔𝑥 is well-defined. To this end, let 𝑝′ ∈ P𝑥 be
another point on the fiber over 𝑥. Then, there exists 𝑔 ∈ P such that 𝑝′ = 𝑝 · 𝑔 . By
uniqueness, it follows 𝑋 ∗𝑝· 𝑔 = Φ𝑔∗𝑋𝑝 and𝑌 ∗𝑝· 𝑔 = Φ𝑔∗𝑌𝑝. Thus,

𝜃 𝑝′ (𝑋 ∗𝑝′) = 𝜃 𝑝· 𝑔 (Φ𝑔∗𝑋𝑝) = Ad𝑔−1 (𝜃 𝑝 (𝑋 ∗𝑝)) (3.32)

and similarly for𝑌 ∗. Thus, as S is Ad(H)-invariant, it follows that 𝑔𝑥 is indeed well-
defined. To see that 𝑔 : M ∋ 𝑥 ↦→ 𝑔𝑥 is smooth, let 𝑠 : M ⊇ 𝑈 → P be a local
section and (𝑒𝑖)𝑖 be a homogeneous basis of 𝔤/𝔥. Then, on𝑈 , the super metric is given
by

𝑔 (𝑋 ,𝑌 ) = S (𝑠∗𝜃 (𝑋 ), 𝑠∗𝜃 (𝑌 )) = (−1) ( |𝑒𝑖 |+ |𝑋 |) |𝑒𝑗 |S𝑖𝑗 (𝑠∗𝜃) (𝑋 ) 𝑖 (𝑠∗𝜃) (𝑌 )𝑗
(3.33)
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3. Supergravity and super Cartan geometry

where S𝑖𝑗 := S (𝑒𝑖 , 𝑒𝑗 ) ∈ C as S is smooth and we have made the expansion
𝑠∗𝜃 (𝑋 ) = 𝑒𝑖 ⊗ (𝑠∗𝜃) (𝑋 ) 𝑖 with (𝑠∗𝜃) (𝑋 ) 𝑖 smooth functions on𝑈 and similarly for
𝑠∗𝜃 (𝑌 ). Thus, it follows that 𝑔 (𝑋 ,𝑌 ) ∈ 𝐻∞(𝑈 ) ⊗ C proving that 𝑔 is smooth. □

The following proposition demonstrates the strong link between super Cartan connec-
tions and Ehresmann connections defined on associated (S-relative) principal super fiber
bundles (for a discussion in the category of ordinary smooth manifolds see, e.g., [140]).
In physics, this thus provides a concrete relation between Cartan geometries and Yang-
Mills gauge theories. This is due to the fact that, by definition, both type of connections
turn out to be already fixed uniquely on vertical vector fields, i.e., vector fields tangent
to the fibers of the underlying principal super fiber bundles. Indeed, on vertical fields,
both connections are related to the Maurer-Cartan forms on the respective structure
groups. Using this observation, one then arrives at the following.

Proposition 3.3.12. Let H → P/S → M/S be a S-relative principal super fiber
bundle with structure groupH as well as (G,H) a super Klein geometry. Then, there is
a bijective correspondence between generalized super Cartan connections in Ω1(P/S , 𝔤)0
and super connection 1-forms in Ω1(P/S ×H G, 𝔤)0 with P/S ×H G := (P ×H G)/S
the G-extension of P/S .

Proof. The following proof is a generalization of the proof given in [140] to the super
category. One direction is immediate, i.e., given aS-relative super connection 1-formA
onP/S ×H G, the pullback 𝜄∗A w.r.t. the embedding 𝜄 := id× 𝜄 : P/S → P/S ×H G,
with 𝜄 as defined in Corollary 2.4.25, yields a generalized super Cartan connection on
P/S according to Def. 3.3.3. Conversely, supposeA ∈ Ω1(P/S , 𝔤)0 is a generalized
super Cartan connection. Let 𝜋̂ : P/S × G → P/S ×H G be the canonical projection.
If Φ̂S denotes the G-right action on P/S ×H G, it follows that the fundamental vector
fields are given by

𝑌[ 𝑝, 𝑔 ] = (Φ̂S) [ 𝑝, 𝑔 ]∗(𝑌𝑒) = 𝐷 ( [ 𝑝, 𝑔 ],𝑒)Φ̂S (0[ 𝑝, 𝑔 ] ,𝑌 )
= 𝐷 ( [ 𝑝, 𝑔 ],𝑒)Φ̂S (𝐷 ( 𝑝, 𝑔) 𝜋̂ (0𝑝, 0𝑔),𝑌 ) = 𝐷 ( 𝑝, 𝑔,𝑒) (Φ̂S ◦ (𝜋̂ × id)) (0𝑝, 0𝑔 ,𝑌 )
= 𝐷 ( 𝑝, 𝑔,𝑒) (𝜋̂ ◦ (id × 𝜇G)) (0𝑝, 0𝑔 ,𝑌 ) = 𝐷 ( 𝑝, 𝑔) 𝜋̂ (0𝑝, 𝜇G (0𝑔 ,𝑌 ))
= 𝐷 ( 𝑝, 𝑔) 𝜋̂ (0𝑝, 𝐿 𝑔∗𝑌 ) = 𝐷 ( 𝑝, 𝑔) 𝜋̂ (0𝑝, 𝐿 𝑔∗𝑌 ) (3.34)

for any𝑌 ∈ Lie(G) and 𝑝 ∈ P/S , 𝑔 ∈ G, where the generalized tangent map was used
at various stages. Furthermore, for any 𝑋𝑝 ∈ 𝑇𝑝 (P/S), one has

𝐷 ( 𝑝, 𝑔) 𝜋̂ (𝑋𝑝, 0𝑔) = 𝐷 ( 𝑝, 𝑔) 𝜋̂ (𝑋𝑝, 𝐷 ( 𝑔,𝑒) 𝜇G (0𝑔 , 0𝑒))
= 𝐷 ( 𝑝, 𝑔,𝑒) (𝜋̂ ◦ (id × 𝜇G)) (𝑋𝑝, 0𝑔 , 0𝑒)
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3.3. Super Cartan geometry

= 𝐷 ( 𝑝, 𝑔,𝑒) (𝜋̂ ◦ (Φ̂/S × id)) (𝑋𝑝, 0𝑔 , 0𝑒)
= 𝐷 ( 𝑝· 𝑔,𝑒) 𝜋̂ ((Φ̂/S) 𝑔∗𝑋𝑝, 0𝑒)
= 𝜄∗((ΦS) 𝑔∗𝑋𝑝) (3.35)

∀( 𝑝, 𝑔) ∈ P/S × G. Hence, this yields

𝐷 ( 𝑝, 𝑔) 𝜋̂ (𝑋𝑝,𝑌𝑔) = 𝐷 ( 𝑝, 𝑔) 𝜋̂ (𝑋𝑝, 0𝑔) + 𝐷 ( 𝑝, 𝑔) 𝜋̂ (0𝑝,𝑌𝑔)
= 𝜄∗((ΦS) 𝑔∗𝑋𝑝) + 𝐷 ( 𝑝, 𝑔) 𝜋̂ (0𝑝, 𝐿 𝑔∗ ◦ 𝐿 𝑔−1∗(𝑌𝑔))

= 𝜄∗((ΦS) 𝑔∗𝑋𝑝) + �⟨𝑌𝑔 |𝜃MC⟩ [ 𝑝, 𝑔 ] (3.36)

Therefore, if there exists a super connection 1-form 𝜄∗A whose pullback under 𝜄 is given
byA, then it necessarily has to be of the form

⟨𝐷 ( 𝑝, 𝑔) 𝜋̂ (𝑋𝑝,𝑌𝑔) | 𝜄∗A [ 𝑝, 𝑔 ]⟩ = Ad𝑔−1 ⟨𝑋𝑝 |A 𝑝⟩ + ⟨𝑌𝑔 |𝜃MC⟩ (3.37)

In particular, as 𝜋̂ is a submersion, it is uniquely determined by (3.37). Hence, it remains
to show that 𝜄∗A as given by via (3.37) is in fact well-defined and provides a super
connection 1-form on P/S ×H G.

To see that it is well-defined, note that, for any ( 𝑝, 𝑔) ∈ P/S ×G, the kernel of𝐷 ( 𝑝, 𝑔) 𝜋̂
is given by {(𝑌𝑝,−𝑅𝑔∗𝑌 ) |𝑌 ∈ Lie(H)} ⊂ 𝑇𝑝 (P/S) ×𝑇𝑔G5. This yields

⟨(𝑌𝑝,−𝑅𝑔∗𝑌 ) | 𝜄∗A [ 𝑝, 𝑔 ]⟩ = Ad𝑔−1 ⟨𝑌𝑝 |A 𝑝⟩ − ⟨𝑅𝑔∗𝑌 |𝜃MC⟩
= Ad𝑔−1 (𝑌 ) − 𝐿 𝑔−1∗ ◦ 𝑅𝑔∗(𝑌 ) = 0 (3.38)

∀𝑌 ∈ Lie(H). Finally, to see that is independent of the choice of a representative of
[ 𝑝, 𝑔] ∈ P/S ×H G, we compute ∀ℎ ∈ H

⟨𝐷 ( 𝑝ℎ,ℎ−1 𝑔) 𝜋̂ ((Φ̂S)ℎ∗𝑋𝑝, 𝐿ℎ−1∗𝑌𝑔) | 𝜄∗A [ 𝑝ℎ,ℎ−1 𝑔 ]⟩
= Ad(ℎ−1 𝑔)−1 ⟨(Φ̂S)ℎ∗𝑋𝑝 |A 𝑝ℎ⟩ + ⟨𝐿ℎ−1∗𝑌𝑔 |𝜃MC⟩
= Ad𝑔−1 ⟨𝑋𝑝 |A 𝑝⟩ + 𝐿 (ℎ−1 𝑔)−1∗ ◦ 𝐿ℎ−1∗(𝑌𝑔)
= Ad𝑔−1 ⟨𝑋𝑝 |A 𝑝⟩ + ⟨𝑌𝑔 |𝜃MC⟩
= ⟨𝐷 ( 𝑝, 𝑔) 𝜋̂ (𝑋𝑝,𝑌𝑔) | 𝜄∗A [ 𝑝, 𝑔 ]⟩ (3.39)

5 This may be checked by direct computation using the local trivializations {(𝜋−1E (𝑈𝛼), 𝜙𝛼)}𝛼∈Υ of the
bundle 𝜋 : P × G → P ×H G as defined in the proof of Prop. 2.4.21.
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This shows that 𝜄∗A is in fact well-defined. To see that it is also G-equivariant, we
compute

⟨(Φ̂S)ℎ∗𝐷 ( 𝑝, 𝑔)𝜋 (𝑋𝑝,𝑌𝑔) | 𝜄∗A [ 𝑝, 𝑔ℎ]⟩
= ⟨𝐷 ( 𝑝, 𝑔,ℎ) (Φ̂S ◦ (𝜋̂ × id)) (𝑋𝑝,𝑌𝑔 , 0ℎ) | 𝜄∗A [ 𝑝, 𝑔 ]⟩
= ⟨𝐷 ( 𝑝, 𝑔,ℎ) (𝜋̂ ◦ (id × 𝜇G)) (𝑋𝑝,𝑌𝑔 , 0ℎ) | 𝜄∗A [ 𝑝, 𝑔ℎ]⟩
= ⟨𝐷 ( 𝑝, 𝑔ℎ) 𝜋̂ (𝑋𝑝, 𝑅ℎ∗𝑌𝑔) | 𝜄∗A [ 𝑝, 𝑔ℎ]⟩
= Ad( 𝑔ℎ)−1 ⟨𝑋𝑝 |A 𝑝⟩ + ⟨𝑅ℎ∗𝑌𝑔 |𝜃MC⟩
= Adℎ−1 (Ad𝑔−1 ⟨𝑋𝑝 |A 𝑝⟩) + 𝐿 ( 𝑔ℎ)−1∗ ◦ 𝑅ℎ∗(𝑌𝑔)
= Adℎ−1 (Ad𝑔−1 ⟨𝑋𝑝 |A 𝑝⟩ + ⟨𝑌𝑔 |𝜃MC⟩)
= Adℎ−1 ⟨𝐷 ( 𝑝, 𝑔) 𝜋̂ (𝑋𝑝,𝑌𝑔) | 𝜄∗A [ 𝑝, 𝑔 ]⟩ (3.40)

Finally, for𝑌 ∈ Lie(G), it follows

⟨𝑌[ 𝑝, 𝑔 ] | 𝜄∗A [ 𝑝, 𝑔 ]⟩ = ⟨𝐷 ( 𝑝, 𝑔) 𝜋̂ (𝑋𝑝, 𝐿 𝑔∗𝑌 ) | 𝜄∗A [ 𝑝, 𝑔 ]⟩ = ⟨𝐿 𝑔∗𝑌 |𝜃MC⟩ = 𝑌 (3.41)

Hence, this proves that 𝜄∗A ∈ Ω1(P/S ×H G, 𝔤)0 is a well-defined super connection
1-form on P/S ×H G. □

3.4. Supergravity as super Cartan geometry and the
Castellani-D’Auria-Fré approach

The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

With these preparations, let us turn next to supergravity. We want to describe 𝐷 = 4,
N = 1Poincaré supergravity as a metric reductive super Cartan geometry (𝜋S : P/S →
M/S ,A) modeled on the super Klein geometry (G,H) = (ISO(R1,3 |4), Spin+(1, 3))
corresponding to super Minkowski spacetime (see Example 2.3.10 and 2.3.11). Here and
in the following, for notational simplification, we will often identify Spin+(1, 3) with
the corresponding bosonic split super Lie group S(Spin+(1, 3)). Let us split the super
Cartan connection according to the decomposition 𝔤 = 𝔤/𝔥⊕ 𝔥 of the super Lie algebra
of G yielding

A = pr
𝔤/𝔥 ◦ A + pr

𝔥
◦ A =: 𝐸 + 𝜔 (3.42)

with 𝐸 the supervielbein. According to Prop. 3.3.8, 𝜔 defines a super connection 1-form
in the sense of Ehresmann (Definition 2.5.19) whereas the supervielbein provides an even
horizontal 1-form of type (H ,Ad), i.e., 𝐸 ∈ Ω1

ℎ𝑜𝑟
(P/S ,Λ ⊗ 𝔤/𝔥) (H,Ad)

0 .
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Let 𝑠 ∈ B(S) and 𝜄P : P → S × P : 𝑝 ↦→ (𝑠, 𝑝) be a smooth embedding. This
induces a smooth horizontal 1-form 𝜄∗P𝐸 on P which, by the super Cartan condition,
is non-degenerate. Furthermore, it follows that 𝜄∗P𝜔 ∈ Ω

1(P, 𝔥)0 defines an ordinary
super connection 1-form on P. According to Prop. 3.3.9, this induces aH -equivariant
morphism between P and the frame bundle F (M) via

P → F (M), 𝑝 ↦→ 𝐷 𝑝𝜋 ◦ 𝐸−1𝑝 (3.43)

where, for any 𝑝 ∈ P, 𝐷 𝑝𝜋 ◦ 𝐸−1𝑝 : (𝔤/𝔥) ⊗ Λ
∼→ 𝑇𝜋 ( 𝑝)𝑀 is an isomorphism of

free super Λ-modules. Hence, P defines aH -reduction of F (M). Applying the body
functor, this in turn induces a Spin+(1, 3)-reduction 𝑃 := B(P) → F (𝑀 ) of the
frame bundle of the body 𝑀 := B(M). That is, the body carries a spin structure.
Moreover, it follows thatM has the same dimension as the super vector space 𝔤/𝔥 =: 𝔱
where

𝔱 ≡ 𝔱1,3 |4 := R1,3 ⊕ ΔR (3.44)

denotes the super Lie algebra of the super translation group T 1,3 |4 (Example 2.3.10).
Hence, the supervielbein can be further split in the following way

𝐸 = pr
𝔱
◦ A =: 𝑒 + 𝜓 =: 𝑒𝐼 𝑃𝐼 + 𝜓 𝛼𝑄𝛼 (3.45)

with 𝜓 ∈ Ω1(P/S ,ΔR) and 𝑒 ∈ Ω1(P/S ,R1,3) defining even horizontal 1-forms of
type (Spin+(1, 3),Ad) called the Rarita-Schwinger field and co-frame, respectively. As a
consequence, the super Cartan connection takes the form

A = 𝑒𝐼 𝑃𝐼 +
1
2
𝜔𝐼 𝐽𝑀𝐼 𝐽 + 𝜓 𝛼𝑄𝛼 (3.46)

The super Cartan curvature of the super Cartan connectionA is defined as

𝐹 (A) = dA + 1
2
[A ∧ A] = dA + 1

2
(−1) |𝑇𝐴 | |𝑇𝐵 |A𝐴 ∧ A𝐵 ⊗ [𝑇𝐴, 𝑇𝐵] (3.47)

w.r.t. a homogeneous basis (𝑇𝐴)𝐴, 𝐴 ∈ (𝐼 , 𝐼 𝐽 , 𝛼), of the super Porincaré algebra
𝔦𝔰𝔬(R1,3 |4) (Example 2.3.11) where the minus sign in (3.47) appears due to the (anti)
commutation of𝑇𝐴 andA𝐵 . It then follows from [𝑀𝐼 𝐽 , 𝑃𝐾 ] = 𝜂𝐼 𝐾 𝑃 𝐽 − 𝜂 𝐽 𝐾 𝑃𝐼 as
well as (2.96)-(2.99) that the components of 𝐹 (A) in the translational part of the super
Lie algebra, also called the supertorsion, take the form

𝐹 (A)𝐼 = d𝑒𝐼 + 𝜔𝐼 𝐽 ∧ 𝑒
𝐽 + 1

4
((−1) |𝑄𝛼 | |𝑄𝛽 |𝜓 𝛼 ∧ 𝜓 𝛽 ⊗ [𝑄𝛼 , 𝑄𝛽])𝐼

= Θ(𝜔) 𝐼 − 1
4
𝜓 ∧ 𝛾 𝐼𝜓 (3.48)
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since (−1) |𝑄𝛼 | |𝑄𝛽 | = −1, with Θ(𝜔) is the torsion 2-form associated to the spin connec-
tion 𝜔. For the spinorial components, we find

𝐹 (A)𝐼 𝐽 = d𝜔𝐼 𝐽 + 𝜔𝐼𝐾 ∧ 𝜔
𝐾 𝐽 =: 𝐹 (𝜔)𝐼 𝐽 (3.49)

with 𝐹 (𝜔) the curvature of 𝜔. Finally, for the odd part, we immediately obtain

𝐹 (A) 𝛼 = d𝜓 𝛼 + 1
4
𝜔𝐼 𝐽 (𝛾𝐼 𝐽 ) 𝛼𝛽 ∧ 𝜓

𝛽 = 𝐷 (𝜔)𝜓 𝛼 (3.50)

with 𝐷 (𝜔)𝜓 = d𝜓 + 𝜅R∗(𝜔) ∧ 𝜓 the exterior covariant derivative in the Majorana
representation.

With these preliminary considerations, let us finally state the action of 𝐷 = 4,N = 1
Poincaré supergravity. It can be derived from the MacDowell-Mansouri action of anti-
de Sitter supergravity to be discussed in a more general context in Section 5.2 (see Eq.
(5.3)) performing the Inönü-Wigner contraction, i.e., considering the limit 𝐿 → ∞
with 𝐿 the anti-de Sitter radius corresponding to a vanishing cosmological constant (see
also [138, 141]). Let 𝑃 → 𝑀 be the underlying ordinary Spin+(1, 3)-bundle obtained
after applying the body functor. Choosing a local section 𝑠 : 𝑀 ⊃ 𝑈 → 𝑃 ⊂ P, it
follows that the action takes the form

𝑆N=1(A) = 1
2𝜅

∫
𝑀

𝑠∗L (3.51)

with Langrangian L ∈ Ω4
ℎ𝑜𝑟
(P/S) defining a horizontal form on P/S given by

L :=
1
2
𝐹 (𝜔)𝐼 𝐽 ∧ 𝑒𝐾 ∧ 𝑒𝐿𝜖𝐼 𝐽 𝐾 𝐿 + 𝑖𝜓 ∧ 𝛾∗𝛾𝐼𝐷 (𝜔)𝜓 ∧ 𝑒𝐼 (3.52)

In what follows, we want to study the local symmetries of the Lagrangian of Poincaré
supergravity. To this end, we will adapt the “group-geometric” approach of Castellani-
D’Auria-Fré. Before we proceed, however, we need to make some preparations.

Definition 3.4.1. LetH → P/S →M/S be aS-relative principal super fiber bundle.
On P/S , the set of infinitesimal automorphisms is defined as

𝔞𝔲𝔱(P/S) = {𝑋 ∈ Γ(𝑇P/S) | (ΦS)ℎ∗𝑋 = 𝑋 , ∀ℎ ∈ H} (3.53)

Since the generalized tangent map commutes with the commutator between smooth
vector fields, it follows that 𝔞𝔲𝔱(P/S) defines a proper super Lie subalgebra of the super
Lie algebra Γ(𝑇P/S) of smooth sections of the tangent bundle of P/S .
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Suppose 𝑋 ∈ Γ(𝑇M/S) is a smooth vector field. As the restriction of the bundle
projection to the horizontal distribution H := ker(𝜔) induced by the Ehresmann
connection 𝜔 yields an isomorphism to the tangent bundle ofM/S , it follows that there
exists a unique horizontal lift 𝑋 ∗ ∈ Γ(𝑇P/S) such that 𝑋 ∗𝑝 ∈ H𝑝 and 𝜋S∗𝑋 ∗ = 𝑋 .
Then, by uniqueness, it follows (ΦS) 𝑔∗𝑋 ∗ = 𝑋 ∗ since 𝜋S ◦ ΦS = 𝜋S ◦ pr1. The
horizontal lift thus defines an infinitesimal automorphism on P/S . Moreover, it follows
that we can identify Γ(𝑇P/S) ⊂ 𝔞𝔲𝔱(P/S) with smooth horizontal vector fields on
P/S . Let us next consider the vertical counterpart.

Definition 3.4.2. The set𝔤𝔞𝔲(P/S) of vertical infinitesimal automorphisms or infinites-
imal gauge transformations is defined as the subset of 𝔞𝔲𝔱(P/S) given by

𝔤𝔞𝔲(P/S) = {𝑋 ∈ 𝔞𝔲𝔱(P/S) | 𝑋𝑝 ∈ V𝑝, ∀𝑝 ∈ P/S} (3.54)

Again, since the generalized tangent map preserves the commutator, it follows that the
commutator between infinitesimal gauge transformations is again an infinitesimal gauge
transformation. Thus, 𝔤𝔞𝔲(P/S) defines a proper super Lie subalgebra of 𝔞𝔲𝔱(P/S).

Together with Proposition 2.7.18, we obtain the following.

Proposition 3.4.3. There exists an isomorphism between infinitesimal gauge transforma-
tions 𝔤𝔞𝔲(P/S) andH -equivariant smooth functions onS × P with values in Lie(H)
via

Γ(Ad(P/S)) � 𝐻∞(S × P, Lie(H))H ∼→ 𝔤𝔞𝔲(P/S) (3.55)
𝑓 ↦→ 𝑋 : 𝑝 ↦→ 𝐷 ( 𝑝,𝑒)ΦS (0𝑝, 𝑓( 𝑝)) (3.56)

where Ad(P/S) := (P ×Ad Lie(H))/S is the Adjoint bundle.

Remark 3.4.4. Note that, according to Prop. 2.7.14, one can identify global gauge trans-
formations on G (P/S) with the set 𝐻∞(S × P,H)H which forms an abstract group
via pointwise multiplication. Taking pointwise derivatives, this suggests that one may
thus interpret 𝔤𝔞𝔲(P/S) as the super Lie algebra of the group of global gauge transfor-
mations G (P/S) if one may be able to equip it with a smooth supermanifold structure.
An explicit proof, however, requires the study of infinite-dimensional supermanifolds
(see for instance [99, 100, 110] for recent results in this direction).

With these preparations, let us discuss the local symmetries of Poincaré supergravity.
Since, the Lagrangian L is pulled back to the body 𝑀 = B(M) of the base super-
manifoldM, we only have to require that L is invariant after restriction to the bosonic
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subbundle P0 of P defined as P0 := S(B(P)). Hence, let 𝑋 ∈ 𝔞𝔲𝔱(P/S) be an
infinitesimal automorphism. We say that 𝑋 defines a local symmetry iff

𝛿𝑋L |P0 := 𝜄∗P0 (𝐿𝑋L ) = d𝛼 (3.57)

for some smooth 3-form 𝛼 ∈ Ω3((P0)/S). In order to compute the variation of the
Lagrangian, one has to determine the variations of the individual field components. To
this end, note that the super Cartan connection induces an isomorphism

A : 𝔞𝔲𝔱(P/S) → 𝐻∞(S × P, Lie(G))H , 𝑋 ↦→ ⟨𝑋 |A⟩ (3.58)

from the super Lie algebra of infinitesimal automorphisms to the super Lie algebra of
H -equivariant smooth functions with values in Lie(G). In fact, for any 𝑋 ∈ 𝔞𝔲𝔱(P/S),
we have (ΦS)ℎ∗𝑋 = 𝑋 ∀ℎ ∈ H which implies

⟨𝑋 |A⟩ ( 𝑝 · ℎ) = ⟨𝑋𝑝 | (ΦS)∗ℎA⟩ = Adℎ−1 ⟨𝑋 |A⟩ ( 𝑝) (3.59)

Hence, it follows that the variation of the super Cartan connection takes the form

𝛿𝑋A := 𝐿𝑋A = 𝜄𝑋 𝐹 (A) + 𝐷 (A) ( 𝜄𝑋A) (3.60)

where, according to Remark 2.5.25, 𝐷 (A) ( 𝜄𝑋A) = d( 𝜄𝑋A) + [A ∧ 𝜄𝑋A]. To see
this, choosing a homogeneous basis (𝑇𝐴)𝐴 of 𝔤, a direct calculation yields (setting
|𝐴| ≡ |𝑇𝐴 |)

𝜄𝑋 [A ∧ A] = (−1) |𝐴 | |𝐵 | 𝜄𝑋 (A𝐴 ∧ A𝐵) ⊗ [𝑇𝐴, 𝑇𝐵]
= (−1) |𝐴 | |𝐵 | ( 𝜄𝑋A𝐴 ∧ A𝐵 − (−1) |𝐴 | |𝑋 |A𝐴 ∧ 𝜄𝑋A𝐵) ⊗ [𝑇𝐴, 𝑇𝐵]
= (−1) ( |𝐴 |+ |𝑋 |) |𝐵 |A𝐵 ∧ 𝜄𝑋A𝐴 ⊗ [𝑇𝐵 , 𝑇𝐴]
− (−1) ( |𝐵 |+ |𝑋 |) |𝐴 |A𝐴 ∧ 𝜄𝑋A𝐵

= −2[A ∧ 𝜄𝑋A] (3.61)

which immediately gives (3.60). Since L is obviously invariant under global Spin+(1, 3)-
gauge transformations by definition, i.e., it is horizontal, it follows that any 𝑋 ∈
𝔤𝔞𝔲(P/S), in particular, defines a local symmetry of the Lagrangian without even
pulling it back to P0. That is, we have

𝛿𝑋L = 0, ∀𝑋 ∈ 𝔤𝔞𝔲(P/S) (3.62)

Since the Cartan curvature 𝐹 (A) is horizontal, this furthermore implies that the curva-
ture contribution to the variations (3.60) of the Cartan connection vanish in general
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iff 𝑋 ∈ 𝔤𝔞𝔲(P/S). In this case, the variation of the connection takes the form of an
ordinary infinitesimal gauge transformation.

On the other hand, this is not immediately the case if 𝑋 is horizontal and the curvature
contributions do not vanish a priori. Let us briefly explain how these are treated in the
Castellani-D’Auria-Fré approach to supergravity and how this approach may be related
to the present formalism (for a detailed introduction to this fascinating subject see for
instance [71, 72, 142] as well as [131, 132, 220] using the concept of integral forms).

The horizontal vector fields can be subdivided into two different categories. In fact, note
that the super Poincaré algebra splits into threeH -equivariant subspaces 𝔦𝔰𝔬(R1,3 |4) =
R1,3 ⊕𝔰𝔭𝔦𝔫+(1, 3) ⊕ΔR so that one can decompose𝐻∞(S×P, Lie(G))H � Γ(E/S)
according to

E := ER1,3 ⊕ E𝔰𝔭𝔦𝔫 ⊕ EΔR (3.63)

where, for instance, EΔR := P ×Ad (Λ ⊗ ΔR) denotes the associated super vector
bundle corresponding to the real Majorana representation on ΔR. Horizontal vector
fields then correspond to sections of the bundle ER1,3 ⊕ EΔR . In the Castellani-D’Auria-
Fré approach, horizontal vector fields corresponding to ER1,3 are typically referred to as
infinitesimal spacetime translations while those corresponding to EΔR are associated to
supersymmetry transformations. In general, they do not provide local symmetries of
the Lagrangian. In the Castellani-D’Auria-Fré approach, one then tries to resolve this
by appropriately fixing the curvature contributions (or rather their pullback to P0) to
the variations of the connection. These are typically referred to as the horizontality and
rheonomy conditions. However, this cannot be done arbitrarily as, for instance, one has
to ensure consistency with the Bianchi identity 𝐷 (A)𝐹 (A) = 0.

To explain this in a bit more detail, following [142], note that the Lie derivative of the
Lagrangian 𝐿𝑋L = d( 𝜄𝑋L ) + 𝜄𝑋 dL picks up an additional exact form so that, after
pulling back to P0, condition (3.57) can be written in the equivalent form

( 𝜄𝑋 dL ) |P0 = d𝛼′ (3.64)

for some 𝛼′ ∈ Ω3((P0)/S). In order to compute the variation of the Lagrangian,
one observes that its exterior derivative can be completely re-expressed in terms of the
components (3.48) of the super Cartan curvature. In fact, exploiting the manifest
Spin+(1, 3)-invariance of the Lagrangian, it follows that

dL =𝐹 (𝜔)𝐼 𝐽 ∧ 𝐷 (𝜔) 𝑒𝐾 ∧ 𝑒𝐿𝜖𝐼 𝐽 𝐾 𝐿 + 𝑖𝐷 (𝜔)𝜓 ∧ 𝛾∗𝛾𝐼𝐷 (𝜔)𝜓 ∧ 𝑒𝐼

− 𝑖𝜓 ∧ 𝛾∗𝛾𝐼𝐷 (𝜔)𝐷 (𝜔)𝜓 ∧ 𝑒𝐼 − 𝑖𝜓 ∧ 𝛾∗𝛾𝐼𝐷 (𝜔)𝜓 ∧ 𝐷 (𝜔) 𝑒𝐼
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=𝐹 (A)𝐼 𝐽 ∧ 𝐹 (A)𝐾 ∧ 𝑒𝐿𝜖𝐼 𝐽 𝐾 𝐿 + 𝑖 𝜌̄ ∧ 𝛾∗𝛾𝐼 𝜌 ∧ 𝑒𝐼

+ 1
4
𝐹 (𝜔)𝐼 𝐽 ∧ 𝜓 ∧ 𝛾𝐾𝜓 ∧ 𝑒𝐿𝜖𝐼 𝐽 𝐾 𝐿 −

1
4
𝐹 (𝜔) 𝐽 𝐾 ∧ 𝜓 ∧ 𝛾∗𝛾 𝐽 𝐾𝜓 ∧ 𝑒𝐼

− 𝑖𝜓 ∧ 𝛾∗𝛾𝐼 𝜌 ∧ 𝐹 (A)𝐼 − 𝑖 𝜌̄ ∧ 𝛾∗𝛾𝐼𝜓 ∧ 𝜓 ∧ 𝛾 𝐼𝜓 (3.65)

where we set 𝜌𝛼 := 𝐹 (A) 𝛼 and used the relation 𝜓 ∧ 𝛾∗𝛾𝐼 𝜌 = 𝜌̄ ∧ 𝛾∗𝛾𝐼𝜓 . Moreover,
in the second equality, we made use of the Bianchi identity

𝐷 (𝜔)𝐷 (𝜔)𝜓 = 𝜅R∗(𝐹 (𝜔)) ∧ 𝜓 =
1
4
𝐹 (𝜔)𝐼 𝐽 ∧ 𝛾𝐼 𝐽𝜓 (3.66)

Using the relation 𝜓 𝛾∗𝛾𝐼 𝛾 𝐽 𝐾𝜓 = −𝜓 𝛾∗𝛾 𝐽 𝐾 𝛾𝐼𝜓 which gives

𝜓 ∧ 𝛾∗𝛾𝐼 𝛾 𝐽 𝐾𝜓 =
1
2
𝜓 ∧ 𝛾∗ [𝛾𝐼 , 𝛾 𝐽 𝐾 ]+𝜓 = 𝑖 𝜖𝐼 𝐽 𝐾 𝐿𝜓 ∧ 𝛾𝐿𝜓 (3.67)

it follows that the third and forth term in the second equality of (3.65) exactly cancel.
Furthermore, due to the Fierz identity 𝛾𝐼𝜓 ∧𝜓 ∧ 𝛾 𝐼𝜓 = 0, it follows that (3.64) reduces
to

dL =𝐹 (A)𝐼 𝐽 ∧ 𝐹 (A)𝐾 ∧ 𝑒𝐿𝜖𝐼 𝐽 𝐾 𝐿 + 𝑖 𝜌̄ ∧ 𝛾∗𝛾𝐼 𝜌 ∧ 𝑒𝐼 − 𝑖𝜓 ∧ 𝛾∗𝛾𝐼 𝜌 ∧ 𝐹 (A)𝐼
(3.68)

Thus, indeed, the exterior derivative of the Lagrangian can be solely expressed in terms
of the curvature of the super Cartan connection.

Let us consider variations of the Lagrangian which correspond to supersymmetry trans-
formations. Thus, let 𝑋 ∈ Γ(EΔR/S )0 be an even smooth vector field and 𝜖 := ⟨𝑋 |A⟩
be the corresponding Spin+(1, 3)-equivariant function. The contraction of (3.68) with
𝑋 then takes the form

𝜄𝑋 dL =𝜄𝑋 𝐹 (A)𝐼 𝐽 ∧ 𝐹 (A)𝐾 ∧ 𝑒𝐿𝜖𝐼 𝐽 𝐾 𝐿 + 𝐹 (A)𝐼 𝐽 ∧ 𝜄𝑋 𝐹 (A)𝐾 ∧ 𝑒𝐿𝜖𝐼 𝐽 𝐾 𝐿
+ 2𝑖 𝜌̄ ∧ 𝛾∗𝛾𝐼 ( 𝜄𝑋 𝜌) ∧ 𝑒𝐼 − 𝑖 𝜖 ∧ 𝛾∗𝛾𝐼 𝜌 ∧ 𝐹 (A)𝐼

+ 𝑖 𝜖 ∧ 𝛾∗𝛾𝐼 ( 𝜄𝑋 𝜌) ∧ 𝐹 (A)𝐼 + 𝑖𝜓 ∧ 𝛾∗𝛾𝐼 𝜌 ∧ 𝜄𝑋 𝐹 (A)𝐼 (3.69)

Thus, when pulled back to the bosonic subbundle P0, we see that condition (3.64) for a
local symmetry is satisfied if

𝜄𝑋 𝐹 (A)𝐼 = 0, 𝜄𝑋 𝐹 (A) 𝛼 = 0, 𝜄𝑋 𝐹 (A)𝐼 𝐽 ∧ 𝑒𝐾 𝜖𝐼 𝐽 𝐾 𝐿 = −𝑖 𝜌̄𝛾∗𝛾𝐿𝜖 (3.70)
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where, here and in the following, the pullback to P0 is always implicitly assumed. As
can be checked by direct computation, the last condition in (3.70) is solved by

𝜄𝑋 𝐹 (A)𝐼 𝐽 = −
𝑖

4

(
𝜖𝐼 𝐽 𝐾 𝐿 𝜌̄𝐾𝐿𝛾∗𝛾𝑀 𝜖 𝑒

𝑀 + 𝜖𝐾𝐿𝑀 [𝐼 𝜌̄𝐾𝐿𝛾∗𝛾𝑀 𝜖 𝑒 𝐽 ]
)
=: 𝜃 𝐼 𝐽

𝐾
𝜖 𝑒𝐾

(3.71)
where we set 𝜌 =: 1

2 𝜌𝐼 𝐽 𝑒
𝐼 ∧ 𝑒 𝐽 . Thus, to summarize, it follows that even smooth

vector fields 𝑋 ∈ Γ(EΔR/S )0 define local symmetries of the Lagrangian provided that
their contraction with the super Cartan curvature satisfy the conditions (3.70) and (3.71)
also called the rheonomy conditions. Inserting these conditions into the general formula
(3.60), it follows that the supersymmetry transformations of the individual components
of the super Cartan connection take the form

𝛿𝑋 𝑒
𝐼 =

1
2
𝜖𝛾 𝐼𝜓 , 𝛿𝑋𝜓 = 𝐷 (𝜔) 𝜖 and 𝛿𝑋 𝜔

𝐼 𝐽 = 𝜃
𝐼 𝐽

𝐾
𝜖 𝑒𝐾 (3.72)

Note again that, by definition, 𝑋 ∈ Γ(EΔR/S )0 implies ⟨𝑋 |𝜔⟩ = 0, that is, 𝑋 is horizontal.
Hence, in this framework, supersymmetry transformations have the interpretation in
terms of superdiffeomorphisms on the base supermanifoldM. Of course, one still needs
to check whether the rheonomy conditions are in fact compatible with the Bianchi
identity. As it turns out, this is indeed the case provided that the basic fields satisfy
their equations of motion. Thus, in this framework, it follows that supersymmetry
transformations can be interpreted in terms of superdiffeomorphisms only when applied
on solutions of the field equations [142]. For general field configurations, this will no
longer be the case. In this case, one needs to add additional fields, so-called auxilary fields,
to the theory. For more details on this subject, the interested reader may be referred
to [142] and references therein.

Remark 3.4.5. Let us emphasize that, technically, the existence of a nonvanishing
𝜖 := ⟨𝑋 |A⟩ ∈ 𝐻∞(S × P,Λ ⊗ ΔR)H0 for 𝑋 ∈ Γ(EΔR/S )0 when pulled back to the
body of P relies crucially on the additional parametrizing supermanifold S. Hence,
working in the relative category resolves both, nontrivial anticommuting fermionic fields
as well as supersymmetry transformations on the body of a supermanifold.

In the Cartan geometric framework, there also exists another kind of variation of the
Lagrangian which arises from the lift of the Cartan connection to an Ehresmann con-
nection on the associated bundle. More precisely, one can consider the G-extension
P[G]/S := (P ×H G)/S with respect to which P/S defines aH -reduction via the
embedding

𝜄 : P/S → P[G]/S , 𝑝 ↦→ [ 𝑝, 𝑒] (3.73)
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By Prop. 3.3.12, the Cartan connection can be lifted to an Ehresmann connection Â on
the associated bundle in a unique way such that 𝜄∗Â = A. Again, this connection can
be decomposed in the following way

Â =: 𝑒𝐼 𝑃𝐼 +
1
2
𝜔̂𝐼 𝐽𝑀𝐼 𝐽 + 𝜓 𝛼𝑄𝛼 (3.74)

In fact, it follows that the Lagrangian L can also be lifted uniquely to a horizontal form
L̂ ∈ Ω4

ℎ𝑜𝑟
(P[G]/S) on the associated bundle which, using (3.74), is explicitly given

by

L̂ =
1
2
𝐹 (𝜔̂)𝐼 𝐽 ∧ 𝑒𝐾 ∧ 𝑒𝐿𝜖𝐼 𝐽 𝐾 𝐿 + 𝑖 ˆ̄𝜓 ∧ 𝛾∗𝛾𝐼𝐷 ( 𝜔̂)𝜓 ∧ 𝑒𝐼 (3.75)

It is clear that, via the embedding (3.73), the bosonic subbundle P0 (or body 𝑃 ) can be
identified with the bosonic subbundle (or body) of the G-extension P[G]. Thus, given
a local section 𝑠 : 𝑀 → 𝑃 ⊂ P[G], the action 𝑆N=1(A) as defined via (3.51) turns
out to be equivalent to

𝑆N=1(Â) :=
∫
𝑀

𝑠∗L̂ (3.76)

Consider then an infinitesimal automorphism of the form 𝑋 ∈ 𝔤𝔞𝔲(P[G]/S)0 such
that 𝜖 := ⟨𝑋 |Â⟩ ∈ 𝐻∞(S×P[G],Λ⊗ΔR)G0 . We say that 𝑋 defines a local symmetry
of the Lagrangian (3.75) provided that

( 𝜄𝑋 dL̂ ) |P0 = d𝛼′ (3.77)

for some 3-form 𝛼′ ∈ Ω3(P[G]/S). The variations 𝛿𝑋 Â := 𝐿𝑋 Â of the individual
components of the connection take the form

𝛿𝑋 𝑒
𝐼 =

1
2
𝜖𝛾 𝐼𝜓 , 𝛿𝑋𝜓 = 𝐷 ( 𝜔̂) 𝜖 and 𝛿𝑋 𝜔̂

𝐼 𝐽 = 0 (3.78)

Thus, in contrast to the previous considerations, it follows that the curvature now
does not enter to the field variations as the infinitesimal automorphism 𝑋 is vertical,
i.e., it is a local gauge transformation, not a superdiffeomorphism. Comparing with
(3.72), when pulled back toP0, one observes that this yields precisely the supersymmetry
transformation for the supervielbein 𝐸 as found in the previous prescription while the
variation of the spin connection is altered.

The variation of the Lagrangian can be computed following the same steps as before
which, when pulled back to P0, leads to a similar expression for 𝜄𝑋 dL̂ as in (3.69) just
replacing all the fields by their respective hatted counterparts. However, as 𝑋 is vertical,
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this implies that the curvature contributions of the form 𝜄𝑋 𝐹 (Â) are identically zero.
Thus, in this case, we end up with

( 𝜄𝑋 dL̂ ) |P0 = (−𝑖 𝜖 ∧ 𝛾∗𝛾𝐼 𝜌 ∧ 𝐹 (A)𝐼 ) |P0 (3.79)

Hence, as we see, it follows that 𝑋 indeed provides a local symmetry of the theory
provided that the supertorsion constraint 𝐹 (A)𝐼 = 0 is satisfied which is equivalent
to requiring that 𝜔 satisfies its field equations (see also [128, 143]). This observation
will in fact play a crucial role in the context of chiral supergravity to be discussed in
Section 5.4. There, it turns out that a certain subclass of local gauge transformations
𝑋 ∈ 𝔤𝔞𝔲(P[G]/S)0 provides a local symmetry of the theory, even without pulling back
the Lagrangian toP0 and, in particular, without requiring 𝜔 to satisfy its field equations.
Thus, in this framework, in follows that (at least a certain sublcass of) supersymmetry
transformations have the interpretation in terms of true gauge transformations.

3.5. Application: Killing vector fields and Killing spinors
The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

In this section, we want to discuss an interesting application of the Cartan geometric
interpretation of supergravity. More precisely, We want to describe global symmetries of
supergravity theories in terms of Killing vector fields on the underlying super Rieman-
nian manifold which arises from a metric reductive super Cartan geometry. This has
important applications in the description of supersymmetric black holes in supergravity.

Let (𝜋S : P/S →M/S ,A) be a metric and reductive super Cartan geometry mod-
eled on a super Klein geometry (G,H) with super Cartan connectionA and smooth
Ad(H)-invariant super metric S defined on Λ ⊗ 𝔤/𝔥. For sake of simplicity, let us
assume thatS is a superpoint, i.e., the body just consists of a single point B(S) = {∗}.
From a physical perspective, the necessity of the choice of a nontrivial parametriz-
ing supermanifold S is based on the requirement of nonvanishing (anticommuting)
fermionic degrees of freedom on the body of a supermanifold. The structure of the
underlying base supermanifoldM in the Cartan geometric framework, however, is
encoded in the super soldering form 𝐸 = pr

𝔤/𝔥 ◦ A when restricted on bosonic con-
figurations (see also the discussion in Section 3.6 below). In fact, let H = ker(𝜔 |B(S) )
be the horizontal distribution induced by pullback of the Ehresmann connection
𝜔 := pr

𝔥
◦A to B(S). By the super Cartan condition, it then follows that the restriction

𝜃 := 𝐸 |B(S) ∈ Ω1(P,Λ ⊗ 𝔤/𝔥) yields an isomorphism

𝜃 𝑝 : H𝑝 → Λ ⊗ 𝔤/𝔥 (3.80)
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3. Supergravity and super Cartan geometry

of free super Λ-modules at any 𝑝 ∈ P. Horizontal vector fields on P are in one-
to-one correspondence with smooth vector fields on the base supermanifoldM. If
𝑋 ∈ Γ(𝑇M) is a smooth vector field and 𝑋 ∗ its horizontal lift, then 𝑋 ∗, in particular,
defines an infinitesimal bundle automorphism. By H -equivariance, it follows that
⟨𝑋 ∗ |𝜃⟩ defines aH -equivariant smooth function onM with values in Λ ⊗ 𝔤/𝔥. Thus,
to summarize, we have an isomorphism

𝜃 : Γ(𝑇M) ∼→ 𝐻∞(P,Λ ⊗ 𝔤/𝔥)H , 𝑋 → ⟨𝑋 ∗ |𝜃⟩ (3.81)

Since the super Cartan geometry is metric, according to Corollary 3.3.11, the super
soldering form 𝜃 induces a super metric 𝑔 onM which, w.r.t. any local section 𝑠 ∈ Γ(P)
of the principal super fiber bundle, takes the form

𝑔 = (−1) |𝑒𝑖 | |𝑒𝑗 |S𝑖𝑗 (𝑠∗𝜃) 𝑖 ⊗ (𝑠∗𝜃)𝑗 (3.82)

where we have chosen a homogeneous basis (𝑒𝑖)𝑖 of 𝔤/𝔥 and set S𝑖𝑗 := S (𝑒𝑖 , 𝑒𝑗 ) ∈ C.
With respect to this metric, the base (M, 𝑔) has the structure of a super Riemannian
manifold. We now want to introduce the super analog of an infinitesimal isometry on a
super Riemannian manifold.

Definition 3.5.1. Let (M, 𝑔) be a super Riemannian manifold. A smooth vector field
𝑋 ∈ Γ(𝑇M) is called a Killing vector field if 𝑔 is constant along the flow generated by
𝑋 , that is,

𝐿𝑋 𝑔 = 0 (3.83)

Since 𝐿 [𝑋 ,𝑌 ] = [𝐿𝑋 , 𝐿𝑌 ] for any smooth vector fields 𝑋 and𝑌 , Killing vector fields
form a super Lie subalgebra 𝔨(M, 𝑔) of Γ(𝑇M).

In the supergeometric framework, Killing vector fields 𝑋 ∈ 𝔨(M, 𝑔) fall into two
categories depending on their grading. In context of the super Cartan geometry, we will
call an odd Killing vector field 𝑋 ∈ 𝔨(M)1 a Killing spinor. To explain its name, let
us consider for example the super Cartan geometry corresponding toN = 1 Poincaré
supergravity and let 𝑋 ∈ 𝔨(M)1 be a odd Killing vector field. Via the super soldering
form, this then corresponds to an odd smooth function

𝜖 := 𝐻∞(P,Λ ⊗ 𝔱)Spin+ (1,3)
1 � Γ(P ×Spin+ (1,3) Λ ⊗ 𝔱)1 (3.84)

with 𝔱 = R1,3 ⊕ ΔR the super Lie algebra of the super translation group T 1,3 |4. If one
restricts to the bosonic sub supermanifoldM0 this then implies that 𝜖 defines a section
of the associated spinor bundle, that is, it defines a Majorana spinor. Thus, Killing
spinors of the super Riemannian geometry, induced by the metric reductive Cartan
geometry, are associated to Majorana spinors.
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Note that odd Killing vector fields on a supermanifold vanish when pulled back to
the underlying bosonic supermanifoldM0 := S(B(M)). Thus, they define trivial
infinitesimal isometries of the bosonic Riemannian manifold (M0, 𝑔0) with 𝑔0 the
even part of the supermetric 𝑔 . Neverthless, existence of Killing spinors, in general, may
still impose strong restrictions on the structure of the underlying bosonic geometry. In
fact, given two Killing spinors 𝑋 ,𝑌 ∈ 𝔨(M, 𝑔)1 their (graded) commutator [𝑋 ,𝑌 ] ∈
𝔨(M, 𝑔)0 defines an even Killing vector field which can be nonvanishing when pulled
back to the bosonic submanifold.

To illustrate this, let us consider the homogeneous super Cartan geometry (𝜋 : G →
G/H , 𝜃MC) given by the super Klein geometry (G,H) = (OSp(1|4), Spin+(1, 3))
corresponding to super anti-de Sitter spaceM := G/H (see Example 2.3.17) where
𝜃MC denotes the Maurer-Cartan form on G. On 𝔬𝔰𝔭(1|4), we can define a smooth
Ad-invariant super metric S induced by the supertrace str on Mat(1|4,ΛC) setting

S (𝑋 ,𝑌 ) := −str(𝑋 ·𝑌 ), ∀𝑋 ,𝑌 ∈ Lie(G) (3.85)

This yields an orthogonal decomposition of 𝔬𝔰𝔭(1|4) = R1,3 ⊕ 𝔰𝔭𝔦𝔫+(1, 3) ⊕ ΔR into
Ad(H)-invariant subspaces generated by momenta and Lorentz transformations 𝑃𝐼 and
𝑀𝐼 𝐽 , respectively, as well as four Majorana charges𝑄𝛼 such that S (𝑃𝐼 , 𝑃 𝐽 ) = 𝐿2𝜂𝐼 𝐽
and S (𝑄𝛼 , 𝑄𝛽) = 1

𝐿
𝐶𝛼𝛽 . Thus, on 𝔤/𝔥 = R1,3 ⊕ ΔR, S takes the form

S =

(
𝐿2𝜂 0
0 1

𝐿
𝐶

)
(3.86)

Let furthermore,
𝐸 := pr

𝔤/𝔥 ◦ 𝜃MC =: 𝑒𝐼 𝑃𝐼 + 𝜓 𝛼𝑄𝛼 (3.87)

be the super soldering form which induces a super metric 𝑔 on G/H via (3.82). Accord-
ing to Definition 3.4.1, an infinitesimal automorphism 𝑋 ∈ 𝔞𝔲𝔱(G) needs to satisfy

𝑅ℎ∗𝑋 = 𝑋 , ∀ℎ ∈ H (3.88)

Thus, in particular, it follows that infinitesimal automorphisms are provided by right-
invariant vector fields onG. In fact, it follows that right-invariant vector fields are Killing
vector fields of the induced super Riemannian geometry (M, 𝑔). To see this, note that
for right-invariant and left-invariant vector fields 𝑋 and𝑌 on the super Lie group G,
respectively, it follows that

⟨𝑌 |𝐿𝑋 𝐸⟩ = (−1) |𝑋 | |𝑌 | (𝑋 ⟨𝑌 |𝐸⟩ − ⟨[𝑋 ,𝑌 ] |𝐸⟩)
= (−1) |𝑋 | |𝑌 |𝑋 ⟨𝑌 |𝐸⟩ = 0 (3.89)
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3. Supergravity and super Cartan geometry

since left- and right-invariant vector fields commute6 and ⟨𝑌 |𝐸⟩ is constant by left-
invariance. But, since, at any 𝑔 ∈ G, the left-invariant vector fields yield a homogeneous
basis of 𝑇𝑔G, this implies 𝐿𝑋 𝐸 = 0 so that, by (3.82), 𝑋 is indeed a Killing vector
field. According to our definition above, odd right-invariant vector fields define Killing
spinors which can be identified with 𝔤1 = ΔR, that is, they are Majorana spinors. Let
𝜖 := 𝜖𝛼𝑄𝛼 ∈ 𝔤1 be such a spinor. Using (3.60) and 𝐿𝑋 𝐸 = 0 for any right-invariant
vector field 𝑋 , it then follows in particular (note that the super Cartan curvature vanishes
by the Maurer-Cartan equation (3.4) which equally holds also in the super category)

𝐿𝜖𝑅𝜓 = 𝐷 (𝜔) 𝜖′ − 1
2𝐿
𝑒𝐼 𝛾𝐼 𝜖

′ = 0 (3.91)

where we set 𝜖′ := 𝜄𝜖𝑅𝐸 . Spinors satisfying an equation of the form (3.91) are called
twistor spinors [144]. Thus, we see that odd Killing vector fields of the super Riemannian
manifold (M, 𝑔) correspond to twistor spinors.

Next, let 𝜖, 𝜂 ∈ 𝔤1 be two Majorana spinors and 𝜖𝑅, 𝜂𝑅 be the corresponding right-
invariant vector fields. Since the commutator of two right-invariant vector fields is again
right-invariant, the bilinear 𝐾 ∗ := [𝜖𝑅, 𝜂𝑅] again defines a Killing vector field. Using,
[𝜖𝑅, 𝜂𝑅] = −[𝜖, 𝜂]𝑅, it follows

𝐾 ∗ = −𝜖𝛾 𝐼 𝜂𝑃𝑅𝐼 −
1
4𝐿
𝜖𝛾 𝐼 𝐽 𝜂𝑀𝑅

𝐼 𝐽 (3.92)

As𝐾 ∗ is purely bosonic, its pushforward𝐾 := 𝜋∗𝐾 ∗ defines, in general, a nonvanishing
Killing vector field on the bosonic semi-Riemannian manifold (M0, 𝑔0), i.e., ordinary
𝐷 = 4 AdS spacetime.

Remark 3.5.2. Much more generally, in the algebraic framework, in [144], it was shown
that for the split supermanifold S(𝐸R, 𝑀 ) associated to a Majorana bundle 𝐸R×𝑀 →
𝑀 with 𝑀 spin, odd Killing vector fields of the corresponding super Riemannian
geometry precisely correspond to twistor spinors. Its highly suggestive that any super
Cartan geometry corresponding to Poincaré supergravity is of this form. More precisely,
the principal super fiber bundle may be of the form P → S(𝐸R, 𝑀 ) with P a spin-
reduction of the frame bundle F (S(𝐸R, 𝑀 )). This is supported by the fact that the
super soldering form induces frame fields on the base supermanifold which are of the
form as stated in [144].

6 A direct proof is given using the algebraic Definition 2.3.2. Let 𝑋 and𝑌 be homogeneous right- and
left-invariant vector fields on G, respectively. Then,

𝑌 ◦𝑋 = 1⊗𝑌𝑒◦𝜇∗◦𝑋 = 1⊗𝑌𝑒◦𝑋 ⊗1◦𝜇∗ = (−1) |𝑋 | |𝑌 |𝑋 ◦1⊗𝑌𝑒◦𝜇∗ = (−1) |𝑋 | |𝑌 |𝑋 ◦𝑌 (3.90)
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Remark 3.5.3. In physics, Killing spinors appear by studying consistency conditions
for the bosonic background of solutions of supergravity theories. For instance, let us
consider a super Cartan geometry corresponding toN = 1, 𝐷 = 4 AdS supergravity.
As will be discussed in detail in Chapter 5, the super Cartan connection is again of the
form (3.46) and the supersymmetry transformations of the individual field components
are given by

𝛿𝜖𝑒
𝐼 =

1
2
𝜖𝛾 𝐼𝜓 , 𝛿𝜖𝜓 = 𝐷 (𝜔) 𝜖 − 1

2𝐿
𝑒𝐼 𝛾𝐼 𝜖 and 𝛿𝜖𝜔𝐼 𝐽 =

1
2𝐿
𝜖𝛾 𝐼 𝐽𝜓 (3.93)

One may then be interested in the structure of the bosonic background of a general
solution of the SUGRA field equations. As will be argued in Section 3.6 below, based on
the considerations in algebraic QFT [76, 77], the parametrizing supermanifoldS may
be interpreted as the field configuration space. Bosonic (c-valued) field configurations
taking values in the ordinary complex numbers are then encoded in the body B(S). But,
if one then pulls back the field variations (3.93) to the underlying spacetime manifold
B(M), the fermionic fields, as being anticommutative, simply vanish. Hence, if the
bosonic background solutions are required to be consistent with supersymmetry, there
has to exist a nontrivial spinor field 𝜖 such that

𝐷 (𝜔) 𝜖 − 1
2𝐿
𝑒𝐼 𝛾𝐼 𝜖 = 0 (3.94)

Thus, again, this leads back to the Killing spinor equation (3.91).

3.6. On the role of the parametrizing supermanifold
The content of this section has been reproduced from [1], with slight changes to account
for the context of this thesis with the permission of AIP Publishing.

As we have frequently observed in the previous sections as well as Chapter 2, among
other things, studying parametrized supermanifolds is mandatory in order to incorporate
nontrivial fermionic degrees of freedom on the body of a supermanifold. For instance,
for the action 𝑆N=1(A) corresponding to Poincaré supergravity (Eq. (3.51) and (3.52)),
one has

𝑆N=1(A) =
∫
𝑀

𝑠∗L ∈ 𝐻∞(S)0 (3.95)

that is, the action defines an even smooth map on the underlying parametrizing super-
manifoldS. IfS would be trivial, this then implies that the fermionic fields contained
in the action would simply drop off, that is, the action reduces the standard action of
ordinary Einstein gravity.
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3. Supergravity and super Cartan geometry

It follows from the definition of super connection forms on parametrized super fiber
bundles that all physical quantities transform covariantly under change of parametriza-
tion. More precisely, let 𝜆 : S′→ S be a change of parametrization. Then, the super
Cartan connectionA transforms viaA → 𝜆∗A (see Eq. (2.238)) so that for the action
of the theory it follows

𝑆N=1(A) → 𝑆N=1(𝜆∗A) = 𝜆∗𝑆N=1(A) ∈ 𝐻∞(S′)0 (3.96)

This may be regarded as the mathematical realization of the physical requirement that
the physical theory should not depend on a particular choice of a parametrizing super-
manifold.

In what follows, we want to further analyze the structure of field configuration space of
Poincaré supergravity and work out explicitly the relation to pAQFT [76, 77]. However,
let us emphasize that a full consistent treatment requires the study of infinite-dimensional
supermanifolds. Hence, in the following, we will only sketch the main ideas behind
such a link.

Choosing a reference connection, the configuration space of the theory can be identified
with Ω1(M/S ,Ad(P/S))0. Since, by the rheonomy principle [72], we are actually only
dealing with the pullback of super connections on the body of the supermanifold, in
what follows, it suffices restrict on forms defined on the body 𝑀 := B(M) so that, for
a specific choice of parametrizationS, the configuration space C of the theory can be
taken to be

C := (𝐻∞(S) ⊗Ω1(𝑀, 𝑃 ×Ad 𝔤))0 = 𝐻∞(S)0 ⊗ 𝐹0 ⊕ 𝐻∞(S)1 ⊗ 𝐹1 (3.97)

where 𝐹 denotes the infinite-dimensional Z2-graded vector space given by

𝐹 := Ω1(𝑀, 𝐸) = Ω1(𝑀, 𝐸0) ⊕Ω1(𝑀, 𝐸1) (3.98)

Here, 𝐸 := 𝑃 ×Ad 𝔤 is the associated bundle which itself carries the structure of a
super vector space with even and odd part respectively given by 𝐸0 = 𝑃 ×Ad 𝔤0 and
𝐸1 = 𝑃 ×Ad 𝔤1 with 𝐸1 the spinor bundle of Majorana fermions. For Φ ∈ C it follows
that, for any 𝑠 ∈ S, Φ(𝑠) defines an element of the superspace

𝐹 (Λ) := (𝐹 ⊗ Λ)0 = 𝐹0 ⊗ Λ0 ⊕ 𝐹1 ⊗ Λ1 (3.99)

where Λ is the Grassmann algebra over which S is modeled as a 𝐻∞ supermanifold.
Hence, in this sense, it follows that one can identify the configuration space C with the
space of 𝐻∞-smooth functions onS with values in the superspace 𝐹 (Λ).
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So far, our consideration was based on the choice of a particular parametrizing superman-
ifoldS. However, as explained at the beginning of this section, by definition of super
connection forms defined on parametrized principal super fiber bundles, all the above
constructions behave covariantly under change of parametrization. Due to this property,
one may ask the question, whether there exists a particular choice of a parametrization S,
possibly infinite-dimensional, such that any field configuration associated to some finite
S can be obtained via pullback. Hence, S should be suitably large enough to encode all
the configurations associated toS-parametrized field theories withS finite.

In fact, this idea has been first studied by Schmitt in [73] where, in this context, a theory
of infinite-dimensional analytic supermanifolds has been developed. In the following,
we want to sketch this idea using the Molotkov-Sachse approach to supermanifold
theory [98, 99], more precisely locally convex supermanifolds as considered in [110], as
this seems to be the more established approach to this subject. In fact, as already outlined
in the introduction, the Moltokov-Sachse approach can be regarded as a generalization of
the correspondence between finite-dimensional algebro-geometric and Rogers-De Witt
supermanifolds via the functor of points prescription to the case of infinite dimensions.
This is actually one of the reasons why we have focused on the Rogers-DeWitt approach
in this work.

To find a suitable candidate for S, note that, for any Λ ∈ Ob(Gr), the superspace 𝐹 (Λ)
can be endowed with the structure of a locally convex space by choosing a particular
locally convex topology on 𝐹 and extending it to 𝐹 (Λ) using the product topology. In
this way, the assignment Ob(Gr) ∋ Λ ↦→ 𝐹 (Λ) induces a functor

(𝐹 : Gr→ Top) ∈ TopGr (3.100)

from the category of superpoints to the category Top of topological spaces. Hence,
𝐹 defines a supermanifold (more precisely, a superdomain) in the sense of Molotkov-
Sachse [98, 99, 110].

Next, note that the parametrizing supermanifold S, as a 𝐻∞ supermanifold, can be
regarded as a Λ-point S ≡ S(Λ) of a particular algebro-geometric supermanifold S.
On the other hand, via the functor of points prescription, S itself induces a functor
S : Gr → Top and thus yields a Molotkov-Sachse supermanifold (for a proof see,
e.g., [99]). Hence, if we do not focus on a particular Grassmann algebra, according to
the discussion above, we may identify the configuration space C with (SC∞(S)⊗̂𝐹 )0,
i.e., smooth functions (in the sense of Molotkov-Sachse) onS with values in 𝐹 . We now
make the important assumption that this space can be identified withSC∞(S, 𝐹 ), that
is, the space smooth maps between the infinite-dimensional supermanifoldsS and 𝐹 .
Note that this would be trivially the case, if 𝐹 were finite-dimensional.
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Hence, in this case, it follows that any Φ ∈ C can be identified with a morphism 𝜇Φ :
S → 𝐹 . But, note that 𝜇Φ ≡ 𝜇∗Φ(𝑥𝐹 ) with 𝑥

𝐹
:= id : 𝐹 → 𝐹 the identity morphism.

Hence, any field configuration Φ associated to a particular parametrizing supermanifold
S can be obtained via pullback of 𝑥

𝐹
w.r.t. a (unique) morphism 𝜇Φ : S → 𝐹 . As

in [73], we may therefore call 𝑥
𝐹

a fundamental coordinate and the morphism 𝜇Φ the
classifying morphism of the field configuration Φ. Hence, to summarize, based on these
observations, this suggests setting S := 𝐹 . With slight abuse of terminology, in what
follows, we will also often refer to S as a configuration space.

As shown in [110], similar to the finite-dimensional case, it turns out that any smooth
function 𝑓 ∈ SC∞(𝐹 ) ≡ SC∞(𝐹 ,R1 |1) on 𝐹 can be uniquely described in terms
of a so-called skeleton (𝑓𝑛)𝑛 consisting of smooth maps between locally convex spaces
𝑓𝑛 : 𝐹0 → Alt𝑛(𝐹1,R1 |1), 𝑛 ∈ N0, from 𝐹0 toAlt𝑛(𝐹1,R1 |1), i.e., the space of graded
symmetric𝑛-multilinear smooth functionals on 𝐹1. Thus, we can make the identification

SC∞(𝐹 ,R1 |1) � 𝐶∞(𝐹0,Alt(𝐹1,R1 |1)) (3.101)

It is interesting to note that (3.101) is precisely the field configuration space as considered
in [76, 77] in context of pAQFT. There, among other things, this space has been con-
sidered in order to (classically) consistently incorporate the anticommutative nature of
fermionic fields. As we see, here, it arises quite naturally studying relative supermanifolds.

To make this link to the description of fermionic fields in pAQFT even more precise, let
us choose a mutual local trivialization neighborhood of𝑀 and the vector bundle 𝐸 . Let
(𝑒𝐴)𝐴 with 𝐴 ∈ {𝐼 , 𝛼} be a corresponding homogeneous basis of local sections of 𝐸 .
Decomposing the fundamental coordinate 𝑥

𝐹
w.r.t. the homogeneous basis (𝑒𝐴)𝐴 and

evaluating on coordinate differentials 𝜕𝜇 | 𝑝 at any point 𝑝 ∈ 𝑀 , it follows that the odd
components induce smooth functionals Ψ𝛼

𝜇 ( 𝑝) ∈ (𝐹1) ′, with (𝐹1) ′ = Γ′(𝑇 ∗𝑀 ⊗ 𝐸1)
the topological dual of 𝐹1, via Ψ𝛼

𝜇 ( 𝑝) := pr
𝛼
◦ ⟨𝜕𝜇 | 𝑝 |𝑥𝐹 (·)⟩ such that

Ψ𝛼
𝜇 ( 𝑝) : 𝐹1 → R0 |1 � R, 𝜓 ↦→ 𝜓 𝛼𝜇 ( 𝑝) (3.102)

Thus, it follows that, in this framework, fermionic fields are described in terms of odd
evaluation functionals on the configuration space. This is exactly the interpretation of
(classical) anticommutative fermionic fields in pAQFT [76, 77]. Given two fermionic
fields Ψ𝛼

𝜇 ( 𝑝) and Ψ𝛽
𝜈 ( 𝑝) at the same point 𝑝 ∈ 𝑀 , their product is defined via the

ordinary wedge product yielding the bilinear map

Ψ𝛼
𝜇 ( 𝑝)Ψ

𝛽
𝜈 ( 𝑝) ≡ Ψ𝛼

𝜇 ( 𝑝) ∧ Ψ
𝛽
𝜈 ( 𝑝) = −Ψ

𝛽
𝜈 ( 𝑝) ∧ Ψ𝛼

𝜇 ( 𝑝) (3.103)

so that, in this sense, the fermionic fields are indeed anticommutative.
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3.7. Discussion
In this chapter, we have studied the geometric approach to supergravity. To this end, we
provided the mathematical foundations for the formulation of super Cartan geometries.
A crucial ingredient for supersymmetry is the anticommutative nature of fermionic
fields. However, as we have seen, modeling anticommuting classical fermion fields
turns out to be by far non-straightforward. Again, a resolution is given considering
enriched categories as studied in detail in Chapter 2 based on standard techniques in
algebraic geometry. This procedure requires the choice of an additional parametrizing
supermanifold which encodes the fermionic degrees of freedom. Since the choice is
arbitrary, one needs to ensure that physical quantities behave functorially under a change
of parametrization. This property follows naturally, if one works in the category of
relative supermanifolds. This also reflects the interpretation of supermanifolds in the
sense of Molotkov-Sachse [98,99] in terms of a functor Gr→ Top assigning Grassmann
algebras to Rogers-DeWitt supermanifolds (see Remark 2.2.13).

Having formulated the notion of a super Cartan geometry in the framework of enriched
categories, we then turned towards applications in context of supergravity. More pre-
cisely, we considered 𝐷 = 4,N = 1 Poincaré supergravity as a metric reductive super
Cartan geometry and analyzed local symmetries of this model. In this context, we also
discussed a possible embedding of the Castellani-D’Auria-Fré approach to supergrav-
ity [71, 72, 131, 132, 142] into the present formalism. In this framework, it follows that,
under certain conditions on the fields as well as the on the individual components on
super Cartan curvature associated to the super Cartan connection, supersymmetry
transformations have the interpretation in terms of infinitesimal superdiffeomorphisms
along the odd directions of the underlying base supermanifold.

Alternatively, using the Cartan geometric description as well as the strong link between
super Cartan connections and Ehresmann connections as provided in detail in Section
3.3, it follows that supersymmetry transformations can also be interpreted in terms of
gauge transformations on an associated principal super fiber bundle. This interpretation
will in fact play an important role in explaining the manifest enlarged gauge symmetry
of the chiral theory to be discussed in Section 5.4.

Finally, Killing vector fields on super Riemannian manifolds arising from metric reduc-
tive super Cartan geometries were discussed. In this context, odd Killing vector fields
were identified with Killing spinors typically arising as consistency conditions for the
bosonic background of solutions of supergravity with supersymmetry.

Furthermore, using the functorial dependence of the supergravity action as well as the
resulting configuration space of the theory on the underlying parametrization super-
manifold, we sketched a concrete link to the description of anticommutative (classi-
cal) fermionic fields in pAQFT. More precisely, by adapting the idea of [73] to the
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3. Supergravity and super Cartan geometry

Molotkov-Sachse approach to supermanifold theory a kind of infinite-dimensional uni-
versal parametrization supermanifold was constructed such that any field configuration
defined on a finite-dimensional parametrization can be obtained via pullback. Fermionic
fields on this universal parametrization supermanifold then turn out to be described in
terms of evaluation functionals on configuration space in complete analogy to pAQFT.

There are many possible and interesting extensions of the present formalism, both from
the mathematical and physical perspective. On the one hand, It would be interesting to
see how extended supergravity theories can be described via super Cartan geometries in
the framework of enriched categories as presented here. The case of pureN = 2, 𝐷 = 4
AdS SUGRA will be discussed in Section 5.3. In this context, it would also be very
interesting to compare the present formalism to other approaches towards geometric
formulations of supergravity theories [131, 132, 145].

On the other hand, it would be also interesting to generalize the formalism to include
higher dimensional supergravity theories. Higher dimensional supergravity theories
typically involve higher gauge fields. Connection forms on higher principal bundles are
studied for instance in [119,120]. It would be very interesting to see how these approaches
can be related. As will be discussed in Chapter 5.4, the Cartan geometric approach
to supergravity leads to an intriguing geometric structure of the corresponding chiral
theory. Hence, generalizing this formalism to supergravity theories with extended SUSY
or even higher spacetime dimensions may also have important applications in LQG.
Among other things, the geometric approach may lead to a very natural quantization
scheme of higher gauge fields in the framework of LQG. For an interesting treatment
of higher gauge fields in a complementary approach that does not keep a part of the
supersymmetry manifest but can handle higher dimensional SUGRA theories see [68].
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4. Loop quantum supergravity and the
quantum SUSY constraint

4.1. Introduction
The content of this chapter has been reproduced with permission from [2], with slight
changes to account for the context of this thesis. Copyright (2021) by the American
Physical Society.

About ten years after the discovery of supergravity, Jacobson [62] introduced a chiral
variant of the realN = 1 Poincaré supergravity action using Ashtekar’s self-dual connec-
tion variables. Soon after, Fülöp [63] extended this theory to anti-de Sitter supergravity
including a cosmological constant where he also pointed out some interesting remnant
supersymmetric structure in the resulting Poisson algebra between the Gauss and left
SUSY constraint. This paved the way towards a new approach to non-perturbative
supergravity in which parts of SUSY were kept manifest.1 In particular, this was more
intensively studied by Gambini and Pullin et al. [84] as well as Ling and Smolin [85, 86],
where the notion of super spin networks first appeared. Later it was also considered by
Livine and Oeckl [147] in the spinfoam approach to quantum gravity.

Canonical supergravity with real Asthekar-Barbero variables was for the first time con-
sidered by Tsuda [65] where a generalization of the chiralN = 1 supergravity action
to arbitrary real Barbero-Immirzi parameters was found. In parallel, Sawaguchi [64]
constructed the phase space in terms of real Ashtekar-Barbero variables by performing a
canonical transformation of the ADM phase space. However, as mentioned already in
the main introduction, these considerations did not include a fully consistent treatment
of half-densitized fermionic fields as proposed by Thiemann in [80] in order to solve the
reality conditions to be satisfied by the Rarita-Schwinger field. Generalizations in the
classical setting have been studied for instance in [148], where Holst actions for extended
𝐷 = 4 supergravity theories have been constructed.

Finally, these considerations have been extended to higher spacetime dimensions by
Bodendorfer et al. [67, 68] based on a new method discovered by the same authors
in [69] allowing them to construct Ashekar-Barbero type variables in case of more
general spacetime dimensions going beyond the limitations of the variables usually
applied in LQG. Since, we are not working in higher dimensions, we use the standard
Ashtekar connection, shifted by some torsion terms. These are slightly different variables
for the gravitational field than [67, 68]. However, [67] uses half-densitized variables for

1 For an earlier approach to the canonical quantization of supergravity using ADM variables (in which
this manifest part of SUSY is absent) see [146].
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4. Loop quantum supergravity and the quantum SUSY constraint

the Rarita-Schwinger field, and it introduces an ingenious technique for dealing with its
Majorana-nature, which we will also employ.

In this work, we will be mainly interested in the N = 1, 𝐷 = 4 case, in particular,
in the implementation of the SUSY constraint in the quantum theory. In the chiral
approach, Jacobson studied the classical Poisson algebra generated by the left and right
SUSY constraints which maintain the right balance between fermionic and bosonic
degrees of freedom. In particular, it was shown that the Poisson bracket among the
SUSY constraints generates the Hamiltonian constraint which is in fact a generic feature
in canonical supergravity theories. Similar results obtained in [64] using real Ashtekar
variables supported this hypothesis showing that, on the constrained surface of gauge-
and diffeomorphism-invariant states, the Poisson bracket between the SUSY constraints
is indeed proportional to the Hamiltonian constraint.

This has interesting consequences implying that the SUSY constraint is superior to
the Hamiltonian constraint in the sense that the solutions of the SUSY constraint
immediately are solution of the latter. Hence, in case of presence local supersymmetry,
the SUSY constraint plays a similar role as the Hamiltonian constraint in ordinary field
theories. In fact, it has been conjectured early on that the SUSY constraint could be
understood as the “square root” of the Hamilton constraint, in the same sense and
with the same resulting simplifications as the relation between Dirac and Klein-Gordon
operator [149–151]. This is precisely what makes its study in LQG particularly interesting.
However, an explicit implementation of the SUSY constraint in the quantum theory
has not been considered so far in the literature. In fact, the SUSY constraint turns out to
have a different structure than the Hamiltonian constraint which also requires special
care for its regularization. As a result, its implementation in the quantum theory leads
to an operator which has a different structure than the Hamiltonian constraint operator.
It would be interesting to check by computing the commutators, in which sense these
operators can be related to each other. This may also fix some of the quantization
ambiguities. In fact, for a certain subclass of symmetry reduced models, we will explicitly
show in Chapter 6 that such a strong relationship can indeed be maintained in the
quantum theory. It would be of great interest to see whether these results can be extended
to the full theory.

The structure of this chapter is as follows: At the beginning, in Section 4.2, we will review
very briefly some important aspects about Clifford algebras and Majorana spinors. We
will use this opportunity to fix our notation and conventions as well as to collect impor-
tant identities used in the main part of this chapter. In Section 4.3, we will subsequently
discuss the canonical analysis of the Holst action of 𝐷 = 4, N = 1 Poincaré super-
gravity as introduced in [65] filling in some details concerning half-densitized fermion
fields. We will finally derive a compact expression of the supersymmetry constraint that
will be used for the implementation in the quantum theory. The quantization of the
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Rarita-Schwinger field will be discussed in detail in Section 4.5.1 following the proposal
of [67] performing an appropriate extension of the canonical phase space. We will also
use this occasion to point out some interesting mathematical structure underlying the
usual quantization scheme of fermion fields in LQG also discussed in more detail in
Section 5.5.4 in the context of the manifestly supersymmetric approach to quantum
supergravity.

Finally, in Section 4.5.2, we will turn to the quantization of the SUSY constraint in the
quantum theory. In particular, an explicit expression of the quantum SUSY constraint
will be derived using a specific adapted regularization scheme. In this way, we will
also find some explicit formulas for its action on spin network states which may be of
particular interest in order to find relations to the standard quantization scheme of
Hamiltonian constraint. In Section 4.5.3, possible solutions of the SUSY constraint
will be discussed on a qualitative level showing that general solutions may indeed be
supersymmetric in the sense that they need to contain both fermionic and bosonic
degrees of freedom.

As already explained at the end of the main introduction of this thesis in Chapter
1, in the following, we will drop many mathematical details such as the underlying
parametrization supermanifold in order to simplify the notation and to make the fol-
lowing discussion easier accessible for the reader.

A list of important symbols as well as an overview of our choice of conventions concern-
ing indices, physical constants etc. can be found in the List of symbols, notations and
conventions.

4.2. Some notes on Clifford algebras and Majorana spinors
In this section, we will only recall some essential aspects of Clifford algebras and Majo-
rana spinors. To this end, we will mainly follow the mathematical exposition in [104],
although our conventions are those in [152].

Let (R𝑠,𝑡 , 𝜂) be the inner product space where 𝜂 is a symmetric bilinear form of signature
(𝑠, 𝑡), i.e., with respect to the standard basis {𝑒𝐼 } of R𝑠,𝑡 , 𝐼 = 0, . . . , 𝐷 − 1 with
𝐷 := 𝑠 + 𝑡 , one has

𝜂(𝑒𝐼 , 𝑒𝐼 ) =
{
−1, for 𝐼 = 0, . . . , 𝑠 − 1
+1, for 𝐼 = 𝑠, . . . , 𝐷 − 1

(4.1)

and 𝜂(𝑒𝐼 , 𝑒 𝐽 ) = 0 for 𝐼 ≠ 𝐽 . In case 𝑠 = 1, 𝜂 is also called the𝐷-dimensional Minkowski
metric. The Clifford algebra Cl(R𝑠,𝑡 , 𝜂) is an associative algebra over the reals with unit
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4. Loop quantum supergravity and the quantum SUSY constraint

1 generated defined via 𝐷 elements 𝛾𝐼 ∈ Cl(R𝑠,𝑡 , 𝜂) called gamma matrices satisfying
the anticommutation relations

[𝛾𝐼 , 𝛾 𝐽 ]+ = 2𝜂𝐼 𝐽 (4.2)

It follows that Cl(R𝑠,𝑡 , 𝜂) is real vector space of dimension dim Cl(R𝑠,𝑡 , 𝜂) = 2𝐷
spanned by the unit 1 together with elements of the form

𝛾𝐼1𝐼2 · · ·𝐼𝑘 := 𝛾[𝐼1 𝛾𝐼2 · . . . · 𝛾𝐼𝑘 ] (4.3)

for 𝑘 = 1, . . . , 𝐷, where the bracket denotes antisymmetrization. A basis of the Clifford
algebra is provided by the set

{1, 𝛾 𝐼 , 𝛾 𝐼1𝐼2 , 𝛾 𝐼1 · · ·𝐼𝐷 } (4.4)

where 𝐼1 < 𝐼2 < . . . < 𝐼𝑟 with 0 ≤ 𝑟 ≤ 𝐷 also referred to as the rank of 𝛾 𝐼1 · · ·𝐼𝑟 .
It follows that the 𝛾 𝐼1 · · ·𝐼𝑟 can be subdivided into two sub classes of symmmetric and
antisymmetric elements. More precisely, there exists a unitary matrix 𝐶 called charge
conjugation matrix such that, w.r.t. that matrix, the basis elements satisfy

(𝐶𝛾 𝐼1 · · ·𝐼𝑟 )𝑇 = −𝑡𝑟𝐶𝛾 𝐼1 · · ·𝐼𝑟 (4.5)

for certain 𝑡𝑟 ∈ {±1}. The coefficients 𝑡𝑟 are fixed by the choice of 𝑡0 and 𝑡1 via 𝑡2 = −𝑡0,
𝑡3 = −𝑡1 and 𝑡𝑟+4 = 𝑡𝑟 .

In concrete applications, we will usually work in Lorentzian signature, i.e., 𝑠 = 1 and
𝑡 = 𝐷 − 1. In this case, for even spacetime dimensions 𝐷, a useful formula which will
often be used in the main text interrelating elements of the form (4.3) of different rank
𝑟 is given by the following

𝛾 𝐼1𝐼2 · · ·𝐼𝑟 𝛾∗ = (−𝑖)
𝐷
2 +1 1
(𝐷 − 𝑟)! 𝜖

𝐼𝑟 𝐼𝑟−1 · · ·𝐼1 𝐽1 · · · 𝐽𝐷−𝑟 𝛾 𝐽1 · · · 𝐽𝐷−𝑟 (4.6)

for 0 ≤ 𝑟 ≤ 𝐷 where 𝛾∗ denotes the unique highest rank Clifford algebra element also
commonly denoted by 𝛾∗ ≡ 𝛾𝐷+1 defined as

𝛾∗ := (−𝑖) 𝐷2 +1𝛾0𝛾1 . . . 𝛾𝐷−1 (4.7)

Moreover, 𝜖𝐼1 · · ·𝐼𝐷 = −𝜖
𝐼1 · · ·𝐼𝐷 denotes the completely antisymmetric symbol in 𝐷

spacetime dimensions with the convention 𝜖01· · ·𝐷−1 = 1. Finally, another important
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identity that we will frequently use is given by the Fierz rearrangement formula which,
in case of even spacetime dimensions 𝐷, states that

𝑀 =
1

2𝐷/2

𝐷∑︁
𝑟=0

1
𝑟 !
𝛾𝐼1 · · ·𝐼𝑟 tr(𝛾 𝐼𝑟 · · ·𝐼1𝑀 ) (4.8)

for an arbitrary𝐷×𝐷-matrix𝑀 . The Clifford algebra has the structure of a graded alge-
bra via the decomposition Cl(R𝑠,𝑡 , 𝜂) = Cl(R𝑠,𝑡 , 𝜂)0 ⊕ Cl(R𝑠,𝑡 , 𝜂)1 where Cl(R𝑠,𝑡 , 𝜂)𝑖
for 𝑖 = 0 or 1 is the subalgebra generated by elements of the form (4.3) containing an
even resp. odd number of elements 𝛾𝐼 . The even part Cl(R𝑠,𝑡 , 𝜂)0 contains a subset
Spin+(𝑠, 𝑡) which turns out to have the structure of a Lie group. In particular, it follows
that this Lie group defines a universal covering of the orthochronous pseudo-orthogonal
group SO+(𝑠, 𝑡) together with a covering map

𝜆+ : Spin+(𝑠, 𝑡) → SO+(𝑠, 𝑡) (4.9)

In case of Minkowski spacetime in 𝐷 = 4, Spin+(1, 3) is isomorphic to SL(2,C). The
Lie algebra 𝔰𝔭𝔦𝔫+(𝑠, 𝑡) of Spin+(𝑠, 𝑡) is generated by the elements

𝑀𝐼 𝐽 :=
1
2
𝛾𝐼 𝐽 (4.10)

In this work, we are mainly concerned about four spacetime dimensions. In fact, most
of the computations do not require a specific representation of the Clifford algebra.
However, in Section 4.5.1, it will be worthwhile to choose a representation in which
the gamma matrices are explicitly real which is also referred to as the real or Majorana
representation of the gamma matrices. For instance, in case𝐷 = 4, a concrete realization
of such a representation is provided by (for a discussion in case of arbitrary even spacetime
dimensions see, e.g., [152])

𝛾0 =

(
0 −1
1 0

)
, 𝛾1 =

(
1 0
0 −1

)
, 𝛾2 =

(
0 𝜎1

𝜎1 0

)
and 𝛾3 =

(
0 𝜎3

𝜎3 0

)
(4.11)

where 𝜎𝑖 , 𝑖 = 1, 2, 3 denote the ordinary Pauli matrices satisfying the product relation

𝜎𝑖 𝜎𝑗 = 𝛿𝑖𝑗1 + 𝑖 𝜖 𝑘
𝑖𝑗 𝜎𝑘 (4.12)

On the other hand, in context of the quantization of the SUSY constraint to be dis-
cussed in Section 4.5.2, it will prove particularly beneficial to work instead in a chiral
representation or Weyl representation. This will also play a prominent role in the context
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of self-dual variables as discussed in detail in Chapter 5 and 6. In this representation, the
gamma matrices take the form

𝛾𝐼 =

(
0 𝜎𝐼

𝜎̄𝐼 0

)
and 𝛾∗ =

(
1 0
0 −1

)
(4.13)

where 𝜎𝐼 := (−1, 𝜎𝑖) and 𝜎̄𝐼 := (1, 𝜎𝑖). It follows that, in this representation, the
generators (4.10) of 𝔰𝔭𝔦𝔫+(1, 3) then take the form

𝑀𝐼 𝐽 =
1
2
𝛾𝐼 𝐽 =

1
4

(
𝜎𝐼 𝜎̄𝐽 − 𝜎𝐽 𝜎̄𝐼 0

0 𝜎̄𝐼 𝜎𝐽 − 𝜎̄𝐽 𝜎𝐼

)
(4.14)

Moreover, they satisfy well-known Lie algebra relations

[𝑀𝐼 𝐽 , 𝑀𝐾𝐿] = 𝜂 𝐽 𝐾𝑀𝐼 𝐿 − 𝜂𝐼 𝐾𝑀 𝐽 𝐿 − 𝜂 𝐽 𝐿𝑀𝐼 𝐾 + 𝜂𝐼 𝐿𝑀 𝐽 𝐾 (4.15)

The charge conjugation matrix 𝐶 is given by 𝐶 = 𝑖 𝛾3𝛾1 and, according to (4.5) with
𝑡0 = 1 and 𝑡2 = −1, satisfies the symmetry relations

𝐶𝑇 = −𝐶, (𝐶𝛾𝐼 )𝑇 = 𝐶𝛾𝐼 ⇔ 𝛾𝑇𝐼 = −𝐶𝛾𝐼𝐶−1 and (𝐶𝛾𝐼 𝐽 )𝑇 = 𝐶𝛾𝐼 𝐽 (4.16)

Next, let us briefly say something about Majorana representations and Majorana spinors.
Let 𝜅 : Spin+(𝑠, 𝑡) → GL(Δ𝐷) be the complex Dirac representation (for a detailed
account on complex Dirac representations in arbitrary spacetime dimensions see for
instance [104] and references therein). A Majorana representation is then defined as
an induced representation on a real subspace of the complex vector space Δ𝐷 . More
precisely:

Definition 4.2.1. The complex spinor representation 𝜅 is called Majorana if it admits a
real structure 𝜎 , i.e. a complex antilinear map 𝜎 : Δ𝐷 → Δ𝐷 such that 𝜎 is Spin+(𝑠, 𝑡)-
equivariant

𝜎 ◦ 𝜅 ( 𝑔) = 𝜅 ( 𝑔) ◦ 𝜎 (4.17)

∀𝑔 ∈ Spin+(𝑠, 𝑡) and 𝜎 is involutive 𝜎 2 = idΔ𝐷 .
The real structure defines a proper real Spin+(𝑠, 𝑡)-invariant subspace

ΔR := {𝜓 ∈ Δ𝐷 | 𝜎 (𝜓 ) = 𝜓 } (4.18)

ofΔ𝐷 of real dimension dimRΔR = dimCΔ𝐷 . Moreover, due to Spin+(𝑠, 𝑡)-equivariance,
it induces a real sub representation

𝜅R : Spin+(𝑠, 𝑡) → GL(ΔR) (4.19)
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of the complex Dirac representation of Spin+(𝑠, 𝑡) on ΔR called the Majorana represen-
tation of Spin+(𝑠, 𝑡).

Choosing a basis ofΔ𝐷 , one can write the condition 𝜓 = 𝜎 (𝜓 ) equivalently in the form

𝜓 ∗ = 𝐵𝜓 (4.20)

which is also often referred to as the Majorana condition in the literature where 𝐵 is a
complex matrix satisfying 𝐵∗𝐵 = 1. This matrix is related to the charge conjugation
matrix𝐶 via 𝐵 = 𝑖𝑡0𝐶𝛾

0 where 𝑡0 ∈ {±1} depends on the signature and the dimension
of the spacetime. In the case of Minkowski spacetime in four spacetime dimensions, one
usually sets 𝑡0 = 1 in which case the charge conjugation matrix is given by𝐶 = 𝑖 𝛾3𝛾1

and therefore, in the chiral representation,

𝐵 = 𝛾0𝛾1𝛾3 =

(
0 −𝑖𝜎2
𝑖𝜎2 0

)
(4.21)

For a Dirac fermion 𝜓 = ( 𝜒, 𝜙)𝑇 , the Majorana condition (4.20) then reads

𝜓 ∗ = 𝐵𝜓 ⇔ 𝜒 = −𝑖𝜎2𝜙∗ or 𝜙 = 𝑖𝜎2 𝜒
∗ (4.22)

In the Majorana representation (4.11), one has𝐶 = 𝑖 𝛾0 so that, in this case, the matrix
𝐵 reduces to the identity matrix 𝐵 = 1. Hence, it follows that the Majorana condition
(4.20) is equivalent to 𝜓 ∗ = 𝜓 , that is, in the Majorana representation the Majorana
spinor 𝜓 is explicitly real.

Finally, by convention, the gamma matrices 𝛾𝐼 are defined to have the natural index
position (𝛾𝐼 ) 𝛼𝛽 whereas spinors are denoted by 𝜓 𝛼 . On the other hand, the conjugate
spinor 𝜓 := 𝜓𝑇𝐶 , by definition, has the natural index position 𝜓𝛼 ≡ 𝜓𝛼 . Indices are
raised and lowered w.r.t. C𝛼𝛽 := (𝐶−1𝑇 ) 𝛼𝛽 and C𝛼𝛽 := 𝐶𝛼𝛽 with the convention

𝜓 𝛼 = C𝛼𝛽𝜓𝛽 and 𝜓𝛼 = 𝜓
𝛽C𝛽𝛼 (4.23)

In the Weyl representation for 𝐷 = 4, the individual 2-component Weyl spinors con-
tained in the Dirac (resp. Majorana) spinor 𝜓 𝛼 are denoted by 𝜓 𝐴 and 𝜓𝐴′ , respectively,
such that 𝜓 𝛼 = (𝜓 𝐴, 𝜓𝐴′)𝑇 . Since𝐶 = diag(𝑖 𝜖, 𝑖 𝜖) with 𝜖 := 𝑖𝜎2 the completely anti-
symmetric symbol which itself carries the index structure 𝜖𝐴𝐵 and 𝜖𝐴′𝐵′ , respectively,
in accordance with (4.23) up to global factor of ±𝑖, primed and unprimed Weyl spinor
indices are raised and lowered via

𝜓𝐴 = 𝜓 𝐵 𝜖𝐵𝐴 and 𝜓 𝐴 = 𝜖𝐴𝐵𝜓𝐵 (4.24)
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and analogously for primed indices. With respect to chiral spinorial indices, 𝜎𝐼 and 𝜎̄𝐼
are written as 𝜎 𝐴𝐴′

𝐼
and 𝜎̄𝐼 𝐴′𝐴. These can be used to map the internal indices 𝐼 of the

co-frame 𝑒𝐼 to spinorial indices setting

𝑒𝐴𝐴
′

𝜇 = 𝑒𝐼𝜇𝜎
𝐴𝐴′

𝐼 (4.25)

Due to 𝜖𝜎𝑖 𝜖 = 𝜎𝑇𝑖 , one has the useful formula

𝜎𝐼 𝐴𝐴′ = 𝜎
𝐵𝐵′

𝐼 𝜖𝐵𝐴𝜖𝐵′𝐴′ = −𝜎̄𝐼 𝐴′𝐴 (4.26)

Using (4.26), it is easy to see that

𝜎 𝐼
𝐴𝐴′𝜎

𝐴𝐴′

𝐽 = −2𝛿 𝐼𝐽 (4.27)

Finally, in view of the canonical analysis of chiral supergravity to be discussed in detail
in Chapter 6, let us mention that in a 3+1-decomposition 𝑀 � R × Σ of the four
dimensional spacetime 𝑀 , one considers the spinor-valued one-forms 𝑒𝐴𝐴′𝑎 which are
related to the spatial metric 𝑞 on Σ according to

2𝑞𝑎𝑏 = −𝑒𝑎𝐴𝐴′𝑒𝐴𝐴
′

𝑏
(4.28)

with 𝑎 = 1, 2, 3. These, together with the future-directed unit normal vector field 𝑛𝐴𝐴′

which is normal to the time slices Σ𝑡 and satisfies

𝑛𝐴𝐴′𝑒
𝐴𝐴′
𝑎 = 0 and 𝑛𝐴𝐴′𝑛

𝐴𝐴′ = 2 (4.29)

form a basis of spinors with one primed and one unprimed index. On then has the
following important identities

𝑛𝐴𝐴′𝑛
𝐴𝐵′ = 𝛿𝐵

′

𝐴′ (4.30)

𝑛𝐴𝐴′𝑛
𝐵𝐴′ = 𝛿𝐵

𝐴
(4.31)

𝜎𝑖 𝐴𝐴′𝜎
𝐴𝐵′
𝑗 = −𝛿𝑖𝑗 𝛿𝐵

′

𝐴′ − 𝑖 𝜖
𝑘

𝑖𝑗 𝑛𝐴𝐴′𝜎
𝐴𝐵′

𝑘
(4.32)

𝜎𝑖 𝐴𝐴′𝜎
𝐵𝐴′
𝑗 = −𝛿𝑖𝑗 𝛿𝐵𝐴 + 𝑖 𝜖

𝑘
𝑖𝑗 𝑛𝐴𝐴′𝜎

𝐵𝐴′

𝑘
(4.33)

4.3. Holst action for Supergravity in 𝐷 = 4 and its 3 + 1
decomposition

Recall from Section 3.4 that Poincaré supergravity in 𝐷 = 4 withN = 1 supersymme-
try can be described geometrically as a super Cartan geometry modeled on the super
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Klein geometry (ISO(R1,3 |4), Spin+(1, 3)) with ISO(R1,3 |4) the super Poincaré group
(Example 2.3.11) with super Lie algebra

𝔦𝔰𝔬(R1,3 |4) = R1,3 ⊕ 𝔰𝔭𝔦𝔫+(1, 3) ⊕ ΔR (4.34)

The super Cartan connection A = 𝑒𝐼 𝑃𝐼 + 1
2𝜔

𝐼 𝐽𝑀𝐼 𝐽 + 𝜓 𝛼𝑄𝛼 splits into the spin
connection 𝜔 ∈ Ω1(𝑃, 𝔰𝔭𝔦𝔫+(1, 3)), the soldering form 𝑒 ∈ Ω1

ℎ𝑜𝑟
(𝑃,R1,3) as well

as the Rarita-Schwinger field 𝜓 ∈ Ω1
ℎ𝑜𝑟
(𝑃,ΔR) with 𝑃

𝜋→ 𝑀 the underlying spin
structure.2

For the purpose of describing supergravity in the context of LQG, we take the Holst
action ofN = 1 Poincaré supergravity as stated in [65] which, adapted to our conven-
tions and written in a coordinate-free form, reads3 (see also Section 5.2.1)

𝑆N=1H (𝑒, 𝜔, 𝜓 ) = 1
2𝜅

∫
𝑀

Σ𝐼 𝐽 ∧ (𝑃𝛽 ◦ 𝐹 (𝜔))𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿

+ 𝜅𝑒𝐼 ∧ 𝜓 ∧ 𝛾𝐼
1 + 𝑖 𝛽𝛾∗

𝛽
𝐷 (𝜔)𝜓 (4.35)

where 𝜅 = 8𝜋𝐺 and 𝐷 (𝜔)𝜓 := d𝜓 + 𝜅R∗(𝜔) ∧ 𝜓 denotes the exterior covariant
derivative of 𝜓 and

(𝑃𝛽 ◦ 𝐹 (𝜔))𝐼 𝐽 := 𝑃𝛽
𝐼 𝐽

𝐾 𝐿
𝐹 (𝜔)𝐾𝐿 with 𝑃𝛽

𝐼 𝐽

𝐾 𝐿
:=

1
2

(
𝛿 𝐼[𝐾 𝛿

𝐽

𝐿] −
1
2𝛽
𝜖
𝐼 𝐽

𝐾 𝐿

)
(4.36)

with 𝛽 the Barbero-Immirzi parameter which is either assumed to be real, i.e., 𝛽 ∈ R× =
R\{0}, in case of real variables, or purely imaginary, i.e., 𝛽 = ±𝑖 in case of the chiral
theory. In this chapter, we are mostly interested in the case of real variables. The chiral
theory will be discussed in detail in the following Chapter 5. In (4.35), 𝐹 (𝜔) = d𝜔+𝜔∧𝜔
is the associated curvature of 𝜔 and

Σ := 𝑒 ∧ 𝑒 ∈ Ω2
ℎ𝑜𝑟
(𝑃, 𝔰𝔭𝔦𝔫+(1, 3)) (4.37)

Note that, in the action (4.35), we have implicitly chosen a local section 𝑠 : 𝑀 ⊃
𝑈 → 𝑃 of the bundle so that the differential forms appearing the action are implicitly
assumed to be pulled back to respective differential forms on 𝑀 . One needs to ensure
that the equations of motion resulting from (4.35) are independent on the choice of the
Barbero-Immirzi parameter and, at second order, are equivalent to those of ordinary

2 Recall that the spin structure arises as the body of the principal super fiber bundle corresponding to the
super Cartan geometry.

3 For convenience, the factor 1/
√
𝜅 will be absorbed in the Rarita-Schwinger field.
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N = 1 Poincaré supergravity. To this end, one has to the vary (4.35) with respect to the
spin connection 𝜔. As this is rarely done explicitly in the literature, let us perform the
variation for a general matter contribution. That is, we consider an action 𝑆 of the form
𝑆 = 𝑆H + 𝑆H-matter, where 𝑆H is the standard Holst action of pure first-order Einstein
gravity and 𝑆H-matter is some Holst-like modification of the matter contribution such
that the resulting equations of motion remain unchanged.

First, let us consider the Holst term of pure gravity

𝑆H =
1
2𝜅

∫
𝑀

Σ𝐼 𝐽 ∧ (𝑃𝛽 ◦ 𝐹 (𝜔))𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 =:
1
2𝜅

∫
𝑀

⟨Σ ∧ 𝑃𝛽 ◦ 𝐹 (𝜔)⟩ (4.38)

where ⟨· ∧ ·⟩ : Ω2(𝑀, 𝔰𝔭𝔦𝔫+(1, 3)) × Ω2(𝑀, 𝔰𝔭𝔦𝔫+(1, 3)) → R is the extension
of the Adjoint invariant bilinear form on 𝔰𝔭𝔦𝔫+(1, 3) to 𝔰𝔭𝔦𝔫+(1, 3)-valued forms on
𝑀 . Let us then consider a variation of connection 𝜔 + 𝛿𝜔. The variation of 𝐹 (𝜔)
is then given by 𝛿 𝐹 (𝜔) = 𝐷 (𝜔)𝛿𝜔. Since 𝑃𝛽 ◦ 𝐷 (𝜔)𝛿𝜔 = 𝐷 (𝜔) (𝑃𝛽 ◦ 𝛿𝜔) and
⟨Σ ∧ 𝐷 (𝜔) (𝑃𝛽 ◦ 𝛿𝜔)⟩ = − ⟨𝐷 (𝜔)Σ ∧ 𝑃𝛽 ◦ 𝛿𝜔⟩ up to a total derivative [105], this
yields

𝛿 𝑆H =
1
2𝜅

∫
𝑀

⟨𝐷 (𝜔)Σ ∧ 𝑃𝛽 ◦ 𝛿𝜔⟩ = −
1
2𝜅

∫
𝑀

𝐷 (𝜔)Σ𝐼 𝐽 ∧ (𝑃𝛽 ◦ 𝛿𝜔)𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿
(4.39)

Using (4.15), it follows

𝐷 (𝜔)Σ𝐼 𝐽 = d(𝑒𝐼 ∧ 𝑒 𝐽 ) + 1
4
𝜔𝐼 𝐽 ∧ Σ𝐾𝐿 ⊗ [𝑀𝐼 𝐽 , 𝑀𝐾𝐿] 𝐼 𝐽

= d𝑒𝐼 ∧ 𝑒 𝐽 − 𝑒𝐼 ∧ d𝑒 𝐽 + 𝜔𝐼𝐾 ∧ Σ
𝐾 𝐽 + 𝜔 𝐽

𝐾
∧ Σ𝐼 𝐾

= Θ𝐼 ∧ 𝑒 𝐽 − 𝑒𝐼 ∧Θ 𝐽 (4.40)

with Θ𝐼 ≡ Θ(𝜔) 𝐼 = d𝑒𝐼 + 𝜔𝐼
𝐾
∧ 𝑒𝐾 the components of the associated torsion 2-form

Θ(𝜔) . Inserting (4.40) into (4.39), this yields

𝛿 𝑆H = − 1
𝜅

∫
𝑀

Θ𝐼 ∧ 𝑒 𝐽 ∧ (𝑃𝛽 ◦ 𝛿𝜔)𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿

= − 1
2𝜅

∫
𝑀

𝜖𝑀𝑁 𝐽𝑂 𝜖𝐼 𝐽 𝐾 𝐿Θ𝐼
𝜇𝜈𝑒

𝜇

𝑀
𝑒𝜈
𝑁
(𝑃𝛽 ◦ 𝛿𝜔𝜌)𝐾𝐿𝑒

𝜌

𝑂
dvol𝑀

= − 1
2𝜅

∫
𝑀

3!𝛿 [𝑀
𝐼
𝛿𝑁𝐾 𝛿

𝑂 ]
𝐿
Θ𝐼
𝜇𝜈𝑒

𝜇

𝑀
𝑒𝜈
𝑁
(𝑃𝛽 ◦ 𝛿𝜔𝜌)𝐾𝐿𝑒

𝜌

𝑂
dvol𝑀

= − 1
𝜅

∫
𝑀

𝑃𝛽
𝐾 𝐿

𝐼 𝐽
(2Θ𝜌

𝜌𝜇𝑒
𝜇

𝐾
𝑒𝜈
𝐿
+Θ𝜈

𝜇𝜌𝑒
𝜇

𝐾
𝑒
𝜌

𝐿
)𝛿𝜔𝐼 𝐽𝜈 dvol𝑀 (4.41)

134



4.3. Holst action for Supergravity in 𝐷 = 4 and its 3 + 1 decomposition

Hence, including the matter contribution, we find for the variation of the total action

𝛿 𝑆 =

∫
𝑀

− 1
𝜅
𝑃𝛽

𝐾 𝐿

𝐼 𝐽
(2Θ𝜌

𝜌𝜇𝑒
𝜇

𝐾
𝑒𝜈
𝐿
+Θ𝜈

𝜇𝜌𝑒
𝜇

𝐾
𝑒
𝜌

𝐿
)𝛿𝜔𝐼 𝐽𝜈 +

𝛿 𝑆H-matter

𝛿𝜔
𝐼 𝐽
𝜈

𝛿𝜔
𝐼 𝐽
𝜈 dvol𝑀

(4.42)

which vanishes if and only if

𝑃𝛽
𝐾 𝐿

𝐼 𝐽
(2Θ𝜌

𝜌𝐾
𝑒𝜈
𝐿
+Θ𝜈

𝐾 𝐿
) = 𝜅𝑒−1 𝛿 𝑆H-matter

𝛿𝜔
𝐼 𝐽
𝜈

(4.43)

with 𝑒 := det(𝑒𝐼𝜇). Applying the inverse

(𝑃−1
𝛽
) 𝐾𝐿
𝐼 𝐽 =

2𝛽2

1 + 𝛽2

(
𝛿𝐾[𝐼 𝛿

𝐿
𝐽 ] +

1
2𝛽
𝜖 𝐾𝐿
𝐼 𝐽

)
(4.44)

on both sides of (4.43), this gives

2Θ𝜌

𝜌𝐼
𝑒𝜈
𝐽
+Θ𝜈

𝐼 𝐽
= 𝜅𝑒−1(𝑃−1

𝛽
) 𝐾𝐿
𝐼 𝐽

𝛿 𝑆H-matter

𝛿𝜔𝐾𝐿𝜈
(4.45)

This is the most general formula for the equations of motion of the spin connection for
arbitrary matter contributions resulting from the variation of the Holst action. In case
ofN = 1 supergravity, we have

𝛿 𝑆H-matter

𝛿𝜔𝐾𝐿𝜈
= −1

4
𝜖𝜇𝜈 𝜌𝜎𝜓𝜇𝛾𝜎

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝐾𝐿𝜓𝜌 (4.46)

so that

(𝑃−1
𝛽
) 𝐾𝐿
𝐼 𝐽

𝛿 𝑆H-matter

𝛿𝜔𝐾𝐿𝜈
= −

𝛽2

2(1 + 𝛽2) 𝜖
𝜇𝜈 𝜌𝜎𝜓𝜇𝛾𝜎

1 + 𝑖 𝛽𝛾∗
2𝛽

(
𝛾𝐼 𝐽 +

1
2𝛽
𝜖 𝐾𝐿
𝐼 𝐽 𝛾𝐾𝐿

)
𝜓𝜌

(4.47)

Since 𝜖 𝐾𝐿
𝐼 𝐽

𝛾𝐾𝐿 = 2𝑖 𝛾𝐼 𝐽 𝛾∗ by (4.6), this implies

(𝑃−1
𝛽
) 𝐾𝐿
𝐼 𝐽

𝛿 𝑆H-matter

𝛿𝜔𝐾𝐿𝜈
= −

𝛽2

2(1 + 𝛽2) 𝜖
𝜇𝜈 𝜌𝜎𝜓𝜇𝛾𝜎

1 + 𝑖 𝛽𝛾∗
2𝛽

(
𝛾𝐼 𝐽 +

𝑖

𝛽
𝛾𝐼 𝐽 𝛾∗

)
𝜓𝜌

= −
𝛽2

2(1 + 𝛽2) 𝑖 𝜖
𝜇𝜈 𝜌𝜎𝜓𝜇𝛾𝜎 𝛾𝐼 𝐽 𝛾∗

1 + 𝑖 𝛽𝛾∗
2𝛽

1 − 𝑖 𝛽𝛾∗
𝛽

𝜓𝜌

= − 𝑖
4
𝜖𝜇𝜈 𝜌𝜎𝜓𝜇𝛾𝜎 𝛾𝐼 𝐽 𝛾∗𝜓𝜌 (4.48)
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Finally, using 𝜖𝜇𝜈 𝜌𝜎 𝛾𝜎 = 𝑖𝑒𝛾 𝜇𝜈 𝜌𝛾∗, we find

2Θ𝜌

𝜌𝐼
𝑒𝜈
𝐽
+Θ𝜈

𝐼 𝐽
=
𝜅

4
𝜓𝜇𝛾

𝜇𝜈 𝜌𝛾𝐼 𝐽𝜓𝜌 (4.49)

which are exactly the equations of motion of 𝜔 ofN = 1 supergravity, in particular,
completely independent of the Barbero-Immirzi parameter. These can equivalently be
written in the form [152]

Θ𝜌
𝜇𝜈 =

𝜅

2
𝜓𝜇𝛾

𝜌𝜓𝜈 (4.50)

In view of the canonical decomposition of the action, let us rewrite (4.35) in a coordinate-
dependent form which gives

𝑆N=1H =

∫
𝑀

d4𝑥
𝑒

2𝜅
𝑒
𝜇

𝐼
𝑒𝜈
𝐽

(
𝐹 (𝜔)𝐼 𝐽𝜇𝜈 −

1
2𝛽
𝜖
𝐼 𝐽

𝐾 𝐿
𝐹 (𝜔)𝐾𝐿𝜇𝜈

)
+ 𝜖𝜇𝜈 𝜌𝜎𝜓𝜇𝛾𝜎

1 + 𝑖 𝛽𝛾∗
2𝛽

𝐷
(𝜔)
𝜈 𝜓𝜌 (4.51)

As shown above, variation of (4.51) yields the same equation of motion as the standard
action (3.51) of N = 1 Poincaré supergravity. As will be demonstrated explicitly in
Section 5.3.1 in the context of AdS supergravity withN = 2, reinserting the EOM of 𝜔
into the Holst action, the terms proportional to 𝛽−1 together become purely topological
(see also [148]). Hence, the Holst action coincides with the ordinary one provided 𝜔
satisfies its field equations.

The 3 + 1-split of the action (4.51) follows the standard procedure (see for instance [18]
and references therein for a nice review on the canonical analysis of ordinary Einstein
gravity). Since 𝑀 is supposed to be globally hyperbolic, it is diffeomorphic to a foliation
of the formR × Σ, where Σ is a spacelike Cauchy hypersurface. Let 𝜙 : R × Σ→ 𝑀

denote such a diffeomorphism. Then, for a specific time 𝑡 ∈ R, we define the time
slice Σ𝑡 via Σ𝑡 = 𝜙𝑡 (Σ), where 𝜙𝑡 := 𝜙(𝑡, ·) describing the evolution of Σ in 𝑀 .
Furthermore, the flow of the time slices induces a global timelike vector field 𝜕𝑡 which,
on smooth functions 𝑓 ∈ 𝐶∞(𝑀 ), acts via

𝜕𝑡 (𝑓) =
d
d𝑡
(𝑓 ◦ 𝜙𝑡 ) (4.52)

We choose a unit normal vector field 𝑛which is normal to the time slices such that there
exists a lapse function 𝑁 as well as a shift vector field ®𝑁 tangential to the foliation, such
that

𝜕𝑡 = 𝑁𝑛 + ®𝑁 (4.53)

In order to perform the 3+1-split the action (4.51), we have to decompose the covariant
tensors according to the foliation. To this end, following [153], let us define the smooth
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geometric distribution 𝑀 ∋ 𝑝 ↦→ 𝑇
∥
𝑝 𝑀 :=

{
𝑣 ∈ 𝑇𝑝𝑀

�� 𝑔 (𝑛, 𝑣) = 0
}
⊂ 𝑇𝑝𝑀

together with the projection 𝑃 ∥ defined via [153]

𝑃 ∥ : 𝑇𝑝𝑀 −→ 𝑇
∥
𝑝 𝑀

𝑣 ↦−→ 𝑣 + 𝑔 (𝑛, 𝑣)𝑛 (4.54)

∀𝑝 ∈ 𝑀 where 𝑔 denotes the metric on 𝑀 induced by the soldering form, i.e., 𝑔𝜇𝜈 =
𝜂𝐼 𝐽 𝑒

𝐼
𝜇𝑒
𝐽
𝜈 . By duality, this induces a corresponding projection 𝑃∥ on the space of covariant

tensor fields which for any𝑇 ∈ Γ((𝑇 ∗𝑀 )⊗𝑘), 𝑘 ∈ N, is defined as [153]

𝑃∥𝑇 := 𝑇 ◦ 𝑃 ∥ (4.55)

where the projection on the right-hand side acts on each slot such that the contraction of
any index of (𝑃∥𝑇 )𝜇𝜈... with 𝑛𝜌 yields zero. Thus, for instance, in case of the curvature
tensor 𝐹 (𝜔), this yields

𝑃∥𝐹 (𝜔) = 𝐹 (𝜔) − 𝜄𝑛𝐹 (𝜔) ∧ 𝑛♭ (4.56)

where we set 𝑛♭ := 𝑔 (𝑛, ·). As another example, if 𝐿𝜕𝑡 denotes the Lie derivative with
respect to the global timelike vector field 𝜕𝑡 , one finds

𝑃∥𝐿𝜕𝑡 𝜔 = 𝑃∥
(
𝑖𝜕𝑡d𝜔 + d(𝜔(𝜕𝑡 ))

)
= 𝑁 𝑃∥ (𝑖𝑛d𝜔) + 𝑖 ®𝑁 d(𝑃∥𝜔) + 𝑃∥d𝜔𝑡 ) (4.57)

with 𝜔𝑡 := 𝜔(𝜕𝑡 ) which yields the important identity

𝑃∥ (𝑖𝑛d𝜔) = 1
𝑁

(
𝑃∥𝐿𝜕𝑡 𝜔 − 𝑖 ®𝑁 d(𝑃∥𝜔) − 𝑃∥d𝜔𝑡

)
(4.58)

In local coordinates, this reads

𝑛𝜌𝜕[𝜌𝜔𝑎] =
1

2𝑁

(
𝐿𝜕𝑡 𝜔𝑎 − 2𝑁

𝑏𝜕[𝑏𝜔𝑎] − 𝜕𝑎𝜔𝑡
)

(4.59)

where 𝑎, 𝑏 . . . = 1, 2, 3 are local coordinate indices on Σ. With these preparations, we
are ready to perform the 3+1-split of the action functional (4.51). As the canonical
analysis of the purely bosonic term in (4.51) is very well-known [23] (see also [154] for a
nice treatment), let us only comment on some main steps. By (4.56), it follows that the
decomposition of the curvature tensor w.r.t. the unit normal (co)vector field yields

𝑒

2
𝑒
𝜇

𝐼
𝑒𝜈
𝐽
𝑃
𝐼 𝐽

𝐾 𝐿
𝐹 (𝜔)𝐾𝐿𝜇𝜈 =

𝑒

2
𝑒𝑎𝑖 𝑒

𝑏
𝑗𝑃

𝑖𝑗

𝐾 𝐿
𝐹 𝐾𝐿
𝑎𝑏
+ 𝑒𝑒𝜇

𝐼
𝑒𝜈
𝐽
𝑛𝜌𝑃

𝐼 𝐽

𝐾 𝐿
𝐹 𝐾𝐿
𝜌 [𝜇 𝑛𝜈 ] (4.60)
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with 𝐹 𝐾𝐿𝜇𝜈 = 2𝜕[𝜇𝜔𝐾𝐿𝜈 ] + 2𝜔
𝐾
[𝜇 |𝑀 |𝜔

𝑀𝐿
𝜈 ] . Using identity (4.59), the last term in (4.60)

becomes

𝑒𝑒
𝜇

𝐼
𝑒𝜈
𝐽
𝑛𝜌𝑃

𝐼 𝐽

𝐾 𝐿
𝐹 𝐾𝐿
𝜌 [𝜇 𝑛𝜈 ]

= − 𝑁√𝑞𝑛𝜌𝑒𝜇
𝑖

(
𝐹 𝑖0𝜌𝜇 −

1
2𝛽
𝜖 𝑖0
𝑘𝑙
𝐹 𝑘𝑙𝜌𝜇

)
= 𝑁
√
𝑞𝑒𝑎𝑖 𝑃

0𝑖
𝐾 𝐿
𝑛𝜌𝐹 𝐾𝐿𝜌𝑎

=𝑁
√
𝑞𝑒𝑎𝑖 𝑃

0𝑖
𝐾 𝐿

(
2𝑛𝜌𝜕[𝜌𝜔𝐾𝐿𝑎] + 2𝑛

𝜌𝜔𝐾[𝜌 |𝑀 |𝜔
𝑀𝐿
𝑎]

)
=
1
𝛽

√
𝑞𝑒𝑎𝑖 𝐿𝜕𝑡

(
𝛽𝜔0𝑖𝑎 −

1
2
𝜖 𝑖
𝑘𝑙
𝜔𝑘𝑙𝑎

)
− √𝑞𝑒𝑎𝑖 𝑃

0𝑖
𝐾 𝐿
𝜕𝑎𝜔

𝐾𝐿
𝑡

− 2𝑁 𝑏√𝑞𝑒𝑎𝑖 𝑃
0𝑖
𝐾 𝐿
𝜕[𝑏𝜔

𝐾𝐿
𝑎] + 2

√
𝑞𝑒𝑎𝑖 𝑃

0𝑖
𝐾 𝐿
𝑛𝜌𝜔𝐾[𝜌 |𝑀 |𝜔

𝑀𝐿
𝑎]

=
1
𝛽
𝐸 𝑎𝑖 𝐿𝜕𝑡 𝐴

𝛽 𝑖
𝑎 −

1
𝛽
𝐸 𝑎𝑖 𝜕𝑎𝐴

𝑖
𝑡 + 2𝐸 𝑎𝑖 𝑃

0𝑖
𝐾 𝐿
𝜔𝐾𝑡 𝑀𝜔

𝑀𝐿
𝑎

− 𝑁 𝑏𝐸 𝑎𝑖 𝑃
0𝑖
𝐾 𝐿

(
2𝜕[𝑏𝜔𝐾𝐿𝑎] + 2𝜔

𝐾
[𝑏 |𝑀 |𝜔

𝑀𝐿
𝑎]

)
(4.61)

where
𝐴
𝛽 𝑖
𝑎 = Γ𝑖𝑎 + 𝛽𝐾 𝑖

𝑎 and 𝐸 𝑎𝑖 =
√
𝑞𝑒𝑎𝑖 (4.62)

are the usual (real) Ashtekar-Barbero connection and the canonically conjugate (gravita-
tional) electric field, respectively. Here, we set Γ𝑖𝑎 := − 1

2 𝜖
𝑖
𝑘𝑙
𝜔𝑘𝑙𝑎 and 𝐾 𝑖

𝑎 := 𝜔0𝑖𝑎 for the
3𝐷 spin connection onΣ and extrinsic curvature, respectively. Moreover, 𝑞𝑎𝑏 = 𝛿𝑖𝑗 𝑒𝑖𝑎𝑒

𝑗

𝑏

denotes the induced metric on Σ. The canonically conjugate variables (4.62) satisfy the
nonvanishing Poisson brackets

{ 𝐴𝛽 𝑖
𝑎 (𝑥), 𝐸𝑏𝑗 (𝑦)} = 𝜅𝛽𝛿 𝑖𝑗 𝛿

𝑏
𝑎 𝛿
(3) (𝑥, 𝑦) (4.63)

Furthermore, in (4.61), we introduced the Lagrange multiplier 𝐴𝑖𝑡 := − 1
2 𝜖
𝑖
𝑘𝑙
𝜔𝑘𝑙𝑡 +

𝛽𝜔0𝑖𝑡 =: Γ𝑖𝑡 + 𝛽𝐾 𝑖
𝑡 . Since

2𝑃 0𝑖
𝐾 𝐿
𝜔𝐾𝑡 𝑀𝜔

𝑀𝐿
𝑎 =

1
𝛽
𝐴𝑚𝑡 𝜖

𝑖
𝑚𝑛 𝐴

𝛽 𝑛
𝑎 −

1 + 𝛽2

𝛽
𝐾𝑚
𝑡 𝜖

𝑖
𝑚𝑛 𝐾

𝑛
𝑎 (4.64)

the two mid terms in (4.61) can be combined to give, after integration by parts and
dropping a boundary term,

1
𝛽
𝐴𝑖𝑡 𝜕𝑎𝐸

𝑎
𝑖 + 2𝐸

𝑎
𝑖 𝑃

0𝑖
𝐾 𝐿
𝜔𝐾𝑡 𝑀𝜔

𝑀𝐿
𝑎

=𝐴𝑖𝑡
1
𝛽

(
𝜕𝑎𝐸

𝑎
𝑖 + 𝜖

𝑙
𝑖𝑘
𝐴
𝛽 𝑘
𝑎𝐸

𝑎
𝑙

)
−
1 + 𝛽2

𝛽
𝐾𝑚
𝑡 𝜖

𝑖
𝑚𝑛 𝐾

𝑛
𝑎 𝐸

𝑎
𝑖
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=𝐴𝑖𝑡
1
𝛽
𝐷
( 𝐴𝛽 )
𝑎 𝐸 𝑎𝑖 −

1 + 𝛽2

𝛽
𝐾𝑚
𝑡 𝜖

𝑖
𝑚𝑛 𝐾

𝑛
𝑎 𝐸

𝑎
𝑖 (4.65)

For the last term in (4.61) proportional to the shift vector field, it follows [154]

− 𝑁 𝑎𝐸𝑏𝑖 𝑃
0𝑖
𝐾 𝐿

(
2𝜕[𝑎𝜔𝐾𝐿𝑏] + 2𝜔

𝐾
[𝑎 |𝑀 |𝜔

𝑀𝐿
𝑏]

)
= 𝑁 𝑎 1

𝛽
𝐸𝑏𝑖

(
𝐹 ( 𝐴𝛽 ) 𝑖

𝑎𝑏
+ (1 + 𝛽2)𝜖 𝑖

𝑘𝑙
𝐾 𝑘
𝑎 𝐾

𝑙
𝑏

)
(4.66)

with 𝐹 ( 𝐴𝛽 ) 𝑖 = d 𝐴𝛽 𝑖 + 1
2 𝜖
𝑖
𝑗𝑘
𝐴𝛽 𝑗 ∧ 𝐴𝛽 𝑘 the curvature of the Ashtekar-Barbero con-

nection. Finally, following [154], let us comment on the first term appearing in the
decomposition (4.60). Since 𝑒 = 𝑁√𝑞, this can be written in the form

𝑒

2
𝑒𝑎𝑖 𝑒

𝑏
𝑗𝑃

𝑖𝑗

𝐾 𝐿
𝐹 (𝜔)𝐾𝐿

𝑎𝑏
=
𝑁
√
𝑞

2
𝑒𝑎𝑖 𝑒

𝑏
𝑗 (𝐹 (𝜔)

𝑖𝑗

𝑎𝑏
+ 1
𝛽
𝜖
𝑖𝑗

𝑘
𝐹 (𝜔)0𝑘

𝑎𝑏
)

=
𝑁 𝐸 𝑎

𝑖
𝐸𝑏
𝑗

2√𝑞 (𝐹 (Γ) 𝑖𝑗
𝑎𝑏
+ 2𝜔0𝑖[𝑎𝜔

0𝑗
𝑏] +

1
𝛽
𝜖
𝑖𝑗

𝑘
𝐹 (𝜔)0𝑘

𝑎𝑏
) (4.67)

with 𝐹 (Γ) the curvature of the 3𝐷 spin connection Γ. Using

𝐹 (Γ) 𝑖
𝑎𝑏

= 𝐹 ( 𝐴𝛽 ) 𝑖𝑎𝑏 − 2𝛽𝐷
(Γ)
[𝑎 𝐾

𝑖
𝑏] − 𝛽

2𝜖 𝑖
𝑗𝑘
𝐾
𝑗
𝑎 𝐾

𝑘
𝑏

(4.68)

it follows that (4.67) can be written as

𝑒

2
𝑒𝑎𝑖 𝑒

𝑏
𝑗𝑃

𝑖𝑗

𝐾 𝐿
𝐹 (𝜔)𝐾𝐿

𝑎𝑏
= −

𝑁 𝐸 𝑎
𝑖
𝐸𝑏
𝑗

2√𝑞 𝜖
𝑖𝑗

𝑘

(
𝐹 ( 𝐴𝛽 )𝑘𝑎𝑏 − (1 + 𝛽2)𝜖𝑘𝑚𝑛𝐾𝑚

𝑎 𝐾
𝑛
𝑏

(4.69)

−
2(1 + 𝛽2)

𝛽
𝐷
(Γ)
[𝑎 𝐾

𝑘
𝑏]

)
Next, let us decompose the fermionic part of the supergravity action (4.51). Following
[65], since 𝑒0𝑡 = −𝑛♭ (𝜕𝑡 ) = 𝑁 and 𝑒𝑖𝑡 = 𝑁 𝑎𝑒𝑖𝑎, we find

𝜖𝜇𝜈 𝜌𝜎𝜓𝜇𝛾𝜎
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
(𝜔)
𝜈 𝜓𝜌 =𝜖

𝑎𝑏𝑐𝜓𝑡 𝛾𝑎
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
(𝜔)
𝑏
𝜓𝑐

− 𝑁 𝜖𝑎𝑏𝑐𝜓𝑎𝛾0
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
(𝜔)
𝑏
𝜓𝑐

− 𝑁 𝑑𝜖𝑎𝑏𝑐𝜓𝑎𝛾𝑑
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
(𝜔)
𝑏
𝜓𝑐+
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+ 𝜖𝑎𝑏𝑐𝜓𝑎𝛾𝑏
1 + 𝑖 𝛽𝛾∗

2𝛽

(
𝐿𝜕𝑡𝜓𝑐 +

1
4
𝜔
𝐼 𝐽
𝑡 𝛾𝐼 𝐽𝜓𝑐

)
− 𝜖𝑎𝑏𝑐𝜓𝑎𝛾𝑏

1 + 𝑖 𝛽𝛾∗
2𝛽

(
𝜕𝑐𝜓𝑡 +

1
4
𝜔
𝐼 𝐽
𝑐 𝛾𝐼 𝐽𝜓𝑡

)
(4.70)

Hence, taking the left-derivative of kinematical term apearing in (4.70) with respect to
𝜓𝑡 and noticing that fermionic fields are anticommuting, it follows that the momentum
conjugate to 𝜓𝑎 is given by

𝜋 𝑎 = −𝜖𝑎𝑏𝑐𝜓𝑏𝛾𝑐
1 + 𝑖 𝛽𝛾∗

2𝛽
(4.71)

These satisfy the nonvanishing Poisson brackets

{𝜓 𝛼𝑎 (𝑥), 𝜋 𝑏𝛽 (𝑦)} = −𝛿
𝑎
𝑏
𝛿 𝛼
𝛽
𝛿 (3) (𝑥, 𝑦) (4.72)

In particular, according to (4.71), the canonically conjugate momentum 𝜋 𝑎 is related to
𝜓𝑎 via the reality condition

Ω𝑎 := 𝜋 𝑎 + 𝜖𝑎𝑏𝑐𝜓𝑏𝛾𝑐P𝛽 = 0 (4.73)

where we set

P𝛽 :=
1 + 𝑖 𝛽𝛾∗

2𝛽
(4.74)

If we consider the last term in (4.70), it again follows after integration by parts and
dropping a boundary term

−𝜖𝑎𝑏𝑐𝜓𝑎𝛾𝑏
1 + 𝑖 𝛽𝛾∗

2𝛽

(
𝜕𝑐𝜓𝑡 +

1
4
𝜔
𝐼 𝐽
𝑐 𝛾𝐼 𝐽𝜓𝑡

)
=𝜖𝑎𝑏𝑐𝜕𝑐𝜓𝑡

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑏𝜓𝑎

− 1
4
𝜖𝑎𝑏𝑐𝜓𝑡𝜔

𝐼 𝐽
𝑐 𝛾𝐼 𝐽

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑏𝜓𝑎

=𝜓𝑡
1 + 𝑖 𝛽𝛾∗

2𝛽
𝜕𝑎

(
𝜖𝑎𝑏𝑐 𝛾𝑏𝜓𝑐

)
+ 𝜓𝑡

1 + 𝑖 𝛽𝛾∗
2𝛽

1
4
𝜖𝑎𝑏𝑐𝜔

𝐼 𝐽
𝑎 𝛾𝐼 𝐽 𝛾𝑏𝜓𝑐

=𝜓𝑡
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
(𝜔)
𝑎

(
𝜖𝑎𝑏𝑐 𝛾𝑏𝜓𝑐

)
(4.75)
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Let us rewrite (4.75) in terms of the covariant derivative of the Ashtekar connection.
Since

𝜔
𝐼 𝐽
𝑎 𝛾𝐼 𝐽 = 𝜔

𝑖𝑗
𝑎 𝛾𝑖𝑗 + 2𝜔0𝑖𝑎 𝛾0𝑖

= 2𝑖Γ𝑖𝑎𝛾∗𝛾0𝑖 + 2𝐾 𝑖
𝑎 𝛾0𝑖 (4.76)

we find

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜔
𝐼 𝐽
𝑎 𝛾𝐼 𝐽 = −

1 + 𝑖 𝛽𝛾∗
𝑖 𝛽

(
Γ𝑖𝑎𝛾∗𝛾0𝑖 − 𝑖𝐾 𝑖

𝑎 𝛾0𝑖

)
= − 1

𝑖 𝛽

(
Γ𝑖𝑎𝛾∗𝛾0𝑖 − 𝑖𝐾 𝑖

𝑎 𝛾0𝑖 + 𝑖 𝛽Γ𝑖𝑎𝛾0𝑖 + 𝛽𝐾 𝑖
𝑎 𝛾∗𝛾0𝑖

)
= − 1

𝑖 𝛽

(
𝐴
𝛽 𝑖
𝑎 − 𝑖𝐾 𝑖

𝑎 𝛾∗ + 𝑖 𝛽Γ𝑖𝑎𝛾∗
)
𝛾∗𝛾0𝑖

= − 1
𝑖 𝛽

(
𝐴
𝛽 𝑖
𝑎 + 𝑖 𝛽 𝐴

𝛽 𝑖
𝑎𝛾∗ − 𝑖 (1 + 𝛽2)𝐾 𝑖

𝑎 𝛾∗
)
𝛾∗𝛾0𝑖

=
1 + 𝑖 𝛽𝛾∗

2𝛽
2𝑖 𝐴𝛽 𝑖

𝑎𝛾∗𝛾0𝑖 +
1 + 𝛽2

𝛽
𝐾 𝑖
𝑎 𝛾0𝑖 (4.77)

Hence, this yields

1 + 𝑖 𝛽𝛾∗
2𝛽

𝐷
(𝜔)
𝑎 𝜓𝑏 =

1 + 𝑖 𝛽𝛾∗
2𝛽

𝐷
( 𝐴𝛽 )
𝑎 𝜓𝑏 +

1 + 𝛽2

4𝛽
𝐾 𝑖
𝑎 𝛾0𝑖𝜓𝑏 (4.78)

with

𝐷
( 𝐴𝛽 )
𝑎 𝜓𝑏 := 𝜕𝑎𝜓𝑏 +

𝑖

2
𝐴
𝛽 𝑖
𝑎𝛾∗𝛾0𝑖𝜓𝑏 (4.79)

With respect to the chiral representation of the gamma matrices, one has

𝑖

2
𝛾∗𝛾0𝑖 =

(
𝜏𝑖 0
0 𝜏𝑖

)
(4.80)

where 𝜏𝑖 := 1
2𝑖 𝜎𝑖 for 𝑖 = 1, 2, 3 is a basis of generators of 𝔰𝔲(2). Hence, in particular,

in the chiral representation the covariant derivative acts separately on the respective
chiral sub components of the Rarita-Schwinger field. We will use this property later
in Section 4.5.2, when we will study the action of SUSY constraint on spin network
states. Note that the appearance of the term 𝑖

2 𝛾∗𝛾0𝑖 in the covariant derivative in (4.79)
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is not a coincidence, but follows from the identification of 𝔰𝔲(2) as a Lie subalgebra of
𝔰𝔭𝔦𝔫+(1, 3) generated by 𝑀𝑗𝑘 =

1
2 𝛾𝑗𝑘 such that 𝐴𝛽 = − 1

2 𝜖
𝑗𝑘

𝑖
𝐴𝛽 𝑖𝑀𝑗𝑘 which implies

𝜅R∗( 𝐴𝛽 ) = −
1
2
𝐴𝛽 𝑖 𝜖

𝑗𝑘

𝑖
𝜅R∗(𝑀𝑗𝑘) = −

1
4
𝐴𝛽 𝑖 𝜖

𝑗𝑘

𝑖
𝛾𝑗𝑘 =

𝑖

2
𝛾∗𝛾0𝑖 𝐴

𝛽 𝑖 (4.81)

For the derivation of the SUSY constraint, we need to collect the terms in (4.75) pro-
portional to 𝜓𝑡 . Using (4.78), one finds again by integration by parts and eventually
dropping boundary terms

𝜖𝑎𝑏𝑐𝜓𝑡 𝛾𝑎
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
(𝜔)
𝑏
𝜓𝑐 − 𝜖𝑎𝑏𝑐𝜓𝑎𝛾𝑏

1 + 𝑖 𝛽𝛾∗
2𝛽

(
𝜕𝑐𝜓𝑡 +

1
4
𝜔
𝐼 𝐽
𝑐 𝛾𝐼 𝐽𝜓𝑡

)
=𝜓𝑡

(
𝜖𝑎𝑏𝑐 𝛾𝑎

1 + 𝑖 𝛽𝛾∗
2𝛽

𝐷
(𝜔)
𝑏
𝜓𝑐 +

1 + 𝑖 𝛽𝛾∗
2𝛽

𝐷
(𝜔)
𝑎

(
𝜖𝑎𝑏𝑐 𝛾𝑏𝜓𝑐

))
=𝜓𝑡

(
𝜖𝑎𝑏𝑐 𝛾𝑎

1 + 𝑖 𝛽𝛾∗
2𝛽

𝐷
( 𝐴𝛽 )
𝑏

𝜓𝑐 +
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 )
𝑎

(
𝜖𝑎𝑏𝑐 𝛾𝑏𝜓𝑐

)
−
1 + 𝛽2

4𝛽
𝜖𝑎𝑏𝑐𝐾 𝑖

𝑏
𝑒
𝑗
𝑎 𝛾0 [𝛾𝑖 , 𝛾𝑗 ]+𝜓𝑐

)
=𝜓𝑡

(
𝜖𝑎𝑏𝑐 𝛾𝑎

1 + 𝑖 𝛽𝛾∗
2𝛽

𝐷
( 𝐴𝛽 )
𝑏

𝜓𝑐 +
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 )
𝑎

(
𝜖𝑎𝑏𝑐 𝛾𝑏𝜓𝑐

)
−
1 + 𝛽2

2𝛽
𝜖𝑎𝑏𝑐𝐾𝑏𝑎𝛾0𝜓𝑐

)
(4.82)

Hence, the SUSY constraint of the theory takes the form

𝑆 =𝜖𝑎𝑏𝑐 𝛾𝑎
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 )
𝑏

𝜓𝑐 +
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 )
𝑎

(
𝜖𝑎𝑏𝑐 𝛾𝑏𝜓𝑐

)
−
1 + 𝛽2

2𝛽
𝜖𝑎𝑏𝑐 𝛾0𝜓𝑐𝐾𝑏𝑎 (4.83)

For the term proportional to 𝜔𝑡 in (4.70) we compute, using (4.77),

1
4
𝜖𝑎𝑏𝑐𝜓𝑎𝛾𝑏

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜔
𝐼 𝐽
𝑡 𝛾𝐼 𝐽𝜓𝑐 =𝐴

𝑖
𝑡

(
−1
4
𝜖𝑎𝑏𝑐𝜓𝑎𝛾𝑏

1 + 𝑖 𝛽𝛾∗
𝑖 𝛽

𝛾∗𝛾0𝑖𝜓𝑐

)
+
1 + 𝛽2

4𝛽
𝐾 𝑖
𝑡 𝜖
𝑎𝑏𝑐𝜓𝑎𝛾𝑏𝛾0𝑖𝜓𝑐

=𝐴𝑖𝑡

(
− 𝑖
2
𝜋 𝑎𝛾∗𝛾0𝑖𝜓𝑎

)
+
1 + 𝛽2

4𝛽
𝐾 𝑖
𝑡 𝜖
𝑎𝑏𝑐𝜓𝑎𝛾𝑏𝛾0𝑖𝜓𝑐

(4.84)
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so that, combining with (4.65), this yields

𝐴𝑖𝑡𝐺𝑖 =𝐴
𝑖
𝑡

(
1
𝜅𝛽
𝐷
( 𝐴𝛽 )
𝑎 𝐸 𝑎𝑖 −

𝑖

2
𝜋 𝑎𝛾∗𝛾0𝑖𝜓𝑎

)
(4.85)

Hence, the Gauss constraint takes the form

𝐺𝑖 =
1
𝜅𝛽
𝐷
( 𝐴𝛽 )
𝑎 𝐸 𝑎𝑖 −

𝑖

2
𝜋 𝑎𝛾∗𝛾0𝑖𝜓𝑎

=
1
𝜅𝛽
𝐷
( 𝐴𝛽 )
𝑎 𝐸 𝑎𝑖 +

𝑖

2
𝜖𝑎𝑏𝑐𝜓𝑎𝛾∗𝛾0𝛾𝑏𝛾𝑖

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜓𝑐 (4.86)

As fermion fields anticommute, it follows that

𝜖𝑎𝑏𝑐𝜓𝑎𝛾0𝛾𝑑𝑒𝜓𝑐 = 𝜖
𝑎𝑏𝑐𝜓𝑐 𝛾𝑑𝑒𝛾0𝜓𝑎 = −𝜖𝑎𝑏𝑐𝜓𝑎𝛾0𝛾𝑑𝑒𝜓𝑐 = 0 (4.87)

Therefore, combining the last term in (4.84) with the last term in (4.65), this gives

−
1 + 𝛽2

𝛽
𝐾 𝑖
𝑡

(
1
𝜅
𝜖 𝑙
𝑖𝑘
𝐾 𝑘
𝑎 𝐸

𝑎
𝑙
− 1
4
𝜖𝑎𝑏𝑐𝜓𝑎𝛾𝑏𝛾0𝑖𝜓𝑐

)
= −

1 + 𝛽2

𝛽
𝐾 𝑖
𝑡

(
1
𝜅
𝜖 𝑙
𝑖𝑘
𝐾 𝑘
𝑎 𝐸

𝑎
𝑙
+ 1
4
𝜖𝑎𝑏𝑐𝑒𝑏𝑖𝜓𝑎𝛾0𝜓𝑐

)
(4.88)

yielding the second class constraint

𝜖 𝑙
𝑖𝑘
𝐾 𝑘
𝑎 𝐸

𝑎
𝑙
+ 𝜅
4
𝜖𝑎𝑏𝑐𝑒𝑏𝑖𝜓𝑎𝛾0𝜓𝑐 = 0 (4.89)

For the vector constraint, we need to collect terms proportional to the shift vector field
𝑁 𝑎. From (4.66), we deduce, using (4.84),

𝑁 𝑑 1
𝜅𝛽
𝐸𝑏𝑖

(
𝐹 ( 𝐴𝛽 ) 𝑖

𝑑𝑏
+ (1 + 𝛽2)𝜖 𝑖

𝑘𝑙
𝐾 𝑘
𝑑
𝐾 𝑙
𝑏

)
=𝑁 𝑑 1

𝜅𝛽
𝐸𝑏𝑖 𝐹 ( 𝐴𝛽 ) 𝑖𝑑𝑏 +

1 + 𝛽2

4𝜅𝛽
𝑁 𝑑𝐾 𝑘

𝑑
𝜖 𝑖
𝑘𝑙
𝐾 𝑙
𝑏
𝐸𝑏𝑖

=𝑁 𝑑 1
𝜅𝛽
𝐸𝑏𝑖 𝐹 ( 𝐴𝛽 ) 𝑖𝑑𝑏 − 𝑁

𝑑
1 + 𝛽2

4𝛽
𝜖𝑎𝑏𝑐𝐾𝑑𝑏𝜓𝑎𝛾0𝜓𝑐 (4.90)
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On the other hand, (4.70) yields together with (4.78)

− 𝑁 𝑑𝜖𝑎𝑏𝑐𝜓𝑎𝛾𝑑
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
(𝜔)
𝑏
𝜓𝑐

= − 𝑁 𝑑𝜖𝑎𝑏𝑐𝜓𝑎𝛾𝑑
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 )
𝑏

𝜓𝑐 − 𝑁 𝑑
1 + 𝛽2

4𝛽
𝜖𝑎𝑏𝑐𝐾 𝑖

𝑏
𝜓𝑎𝛾𝑑𝛾0𝑖𝜓𝑐

= − 𝑁 𝑑𝜖𝑎𝑏𝑐𝜓𝑎𝛾𝑑
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 )
𝑏

𝜓𝑐 + 𝑁 𝑑
1 + 𝛽2

4𝛽
𝜖𝑎𝑏𝑐𝐾𝑏𝑑𝜓𝑎𝛾0𝜓𝑐 (4.91)

Therefore, the vector constraint is given by

𝐻𝑑 :=
1
𝜅𝛽
𝐸𝑏𝑖 𝐹 ( 𝐴𝛽 ) 𝑖𝑑𝑏 − 𝜖

𝑎𝑏𝑐𝜓𝑎𝛾𝑑
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 )
𝑏

𝜓𝑐 +
1 + 𝛽2

2𝛽
𝜖𝑎𝑏𝑐𝐾[𝑏𝑑]𝜓𝑎𝛾0𝜓𝑐

(4.92)

Finally, using (4.69), we find for the Hamilton constraint of the theory, modulo the
second class constraint,

𝐻 =
𝐸 𝑎
𝑖
𝐸𝑏
𝑗

2𝜅√𝑞 𝜖
𝑖𝑗

𝑘

(
𝐹 ( 𝐴𝛽 )𝑘𝑎𝑏 − (1 + 𝛽2)𝜖𝑘𝑚𝑛𝐾𝑚

𝑎 𝐾
𝑛
𝑏

)
+ 𝜖𝑎𝑏𝑐𝜓𝑎𝛾0

1 + 𝑖 𝛽𝛾∗
2𝛽

𝐷
( 𝐴𝛽 )
𝑏

𝜓𝑐 +
1 + 𝛽2

4𝛽
𝜖𝑎𝑏𝑐𝐾 𝑖

𝑏
𝜓𝑎𝛾0𝑖𝜓𝑐 (4.93)

The form of the constraints as derived in this section are consistent with those found
in [65]. At this point, we have expressed them so far in terms of 𝐴𝛽 , 𝐸, 𝜓 , 𝜋, Γ and 𝐾 .
However, while we can further express 𝐾 as 𝐾 ( 𝐴𝛽 , Γ), Γ is undetermined as of yet. At
the same time we have a further second class constraint, coming from the variation of
the action with respect to

−𝐴𝑖𝑎 = Γ𝑖𝑎 − 𝛽𝐾 𝑖
𝑎 . (4.94)

The 9 components of this constraint, together with the 3 components of (4.89) should
allow us to solve for Γ and 𝐾𝑡 , thus solving the second class constraints. The calculation
is tedious already for Dirac fermions coupled to gravity [155], so we take a shortcut.
The precise expression for 𝐾𝑡 is not relevant for our purposes and the gravitational
contribution to Γ, the torsion-free spin connection, is well known. The fermionic
contribution is simply the spatial component of the contortion tensor 𝐶𝜌𝐼 𝐽 which, using
(4.50), is given by

𝐶 𝑖𝑎 := −𝜖 𝑖𝑗𝑘𝐶𝑎𝑗𝑘 = −
𝜅

8√𝑞 𝜖
𝑏𝑐𝑑𝑒𝑖

𝑑
(𝜓𝑏𝛾𝑎𝜓𝑐 + 2𝜓𝑏𝛾𝑐𝜓𝑎) (4.95)
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This is a function of 𝐸, 𝜓 , 𝜋 . From now on, we always assume that Γ and 𝐾 are
determined by the canonical variables in this way.

4.3.1. Introducing half-densitized fermion fields

As proposed in [80], in order to solve the reality conditions of fermion fields in canonical
quantum gravity, it is worthwhile to go over to half-densitized fermion fields. In the case
of the Rarita-Schwinger field, this amounts to introducing the new fields [64]

𝜙𝑖 = 4
√
𝑞𝑒𝑎𝑖 𝜓𝑎 and 𝜋 𝑖𝜙 =

1
4
√
𝑞
𝑒𝑖𝑎𝜋

𝑎 (4.96)

As both sides have been rescaled by the spatial metric, it is clear that this, a priori, does not
define a canonical transformation. In fact, as we will see in the following, this requires a
redefinition of the Ashtekar connection. Therefore, following the same steps as in [67],
we substitute the transformed fields (4.96) in the symplectic potential which yields∫

R
d𝑡

∫
Σ

d3𝑥
1
𝜅𝛽
𝐸 𝑎𝑖
¤𝐴𝛽 𝑖
𝑎 − 𝜋 𝑎 ¤𝜓𝑎

=

∫
R

d𝑡
∫
Σ

d3𝑥
1
𝜅𝛽
𝐸 𝑎𝑖
¤𝐴𝛽 𝑖
𝑎 −

1
4
√
𝑞
𝐸 𝑎𝑖 𝜋

𝑖
𝜙𝐿𝜕𝑡

(
4
√
𝑞𝐸

𝑗
𝑎 𝜙𝑗

)
=

∫
R

d𝑡
∫
Σ

d3𝑥
1
𝜅𝛽
𝐸 𝑎𝑖
¤𝐴𝛽 𝑖
𝑎 − 𝜋 𝑖𝜙 ¤𝜙𝑖 − 𝜋

𝑖
𝜙𝐸

𝑎
𝑖
¤𝐸𝑗𝑎 𝜙𝑗

=

∫
R

d𝑡
∫
Σ

d3𝑥
1
𝜅𝛽
𝐸 𝑎𝑖
¤𝐴𝛽 𝑖
𝑎 − 𝜋 𝑖𝜙 ¤𝜙𝑖 + 𝜋

𝑖
𝜙
¤𝐸 𝑎𝑖 𝐸

𝑗
𝑎 𝜙𝑗

=

∫
R

d𝑡
∫
Σ

d3𝑥
1
𝜅𝛽
𝐸 𝑎𝑖
¤𝐴𝛽 𝑖
𝑎 − 𝜋 𝑖𝜙 ¤𝜙𝑖 − 𝐸

𝑎
𝑖 𝐿𝜕𝑡

(
𝜋 𝑖𝜙𝐸

𝑗
𝑎 𝜙𝑗

)
=

∫
R

d𝑡
∫
Σ

d3𝑥
1
𝜅
𝐸 𝑎𝑖 𝐿𝜕𝑡

(
𝐴
𝛽 𝑖
𝑎 − 𝜅𝛽𝜋 𝑖𝜙𝐸

𝑗
𝑎 𝜙𝑗

)
− 𝜋 𝑖𝜙 ¤𝜙𝑖 (4.97)

where we have dropped a boundary term from the third to the fourth line. Hence,
transforming the Ashtekar-Barbero connection via

𝐴
𝛽 𝑖
𝑎 → 𝐴

𝛽 ′𝑖
𝑎 = Γ𝑖𝑎 + 𝛽𝐾 ′𝑖𝑎 (4.98)

with

𝐾 ′𝑖𝑎 = 𝐾 𝑖
𝑎 − 𝜅𝜋 𝑖𝜙𝐸

𝑙
𝑎𝜙𝑙 = 𝐾

𝑖
𝑎 +

𝜅

𝑞
𝜖𝑑𝑏𝑐𝑒𝑖

𝑑
𝑒
𝑗

𝑏
𝑒𝑘𝑐 𝑒

𝑙
𝑎𝜙𝑗 𝛾𝑘

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜙𝑙

= 𝐾 𝑖
𝑎 +

𝑖𝜅

2√𝑞 𝜖
𝑖𝑗𝑘𝑒𝑙𝑎𝜙𝑗 𝛾𝑘

1 + 𝑖 𝛽𝛾∗
𝑖 𝛽

𝜙𝑙 (4.99)
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this yields a canonical transformation with the new canonically conjugate pairs (𝐴′𝑖𝑎 , 𝐸 𝑎𝑖 )
and (𝜙𝑖 , 𝜋 𝑖𝜙) and the nonvanishing Poisson brackets

{ 𝐴𝛽 ′𝑖𝑎 (𝑥), 𝐸𝑏𝑗 (𝑦)} = 𝜅𝛽𝛿 (3) (𝑥, 𝑦) and {𝜙𝛼𝑖 (𝑥), 𝜋
𝑗

𝜙 𝛽
(𝑦)} = −𝛿𝑗

𝑖
𝛿 𝛼
𝛽
𝛿 (3) (𝑥, 𝑦)

(4.100)

In the new variables, the reality condition (4.73) takes the form

Ω𝑖 := 𝜋 𝑖𝜙 + 𝜖
𝑖𝑗𝑘𝜙𝑗 𝛾𝑘P𝛽 = 0 (4.101)

which now, in particular, neither depends on the internal triad nor on the spatial metric
simplifying significantly the further canonical analysis. As a next step, we have to refor-
mulate the constraints in the new variables. Since we will mainly be interested in the
explicit form of the SUSY constraint, we will only derive the transformed expressions
of the Gauss and SUSY constraint in what follows. The remaining constraints can be
treated in complete analogy.

4.3.1.1. Gauss constraint

By (4.86), the Gauss constraint takes the form

𝐺𝑖 =
1
𝜅𝛽
𝐷
( 𝐴𝛽 )
𝑎 𝐸 𝑎𝑖 +

𝑖

2
𝜖𝑎𝑏𝑐𝜓𝑎𝛾∗𝛾0𝛾𝑏𝛾𝑖

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜓𝑐

=
1
𝜅𝛽
𝐷
( 𝐴𝛽 )
𝑎 𝐸 𝑎𝑖 +

𝑖

2
𝜖𝑗𝑚𝑘𝜙𝑗 𝛾∗𝛾0𝛾𝑚𝛾𝑖

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜙𝑘 (4.102)

Considering the first part in (4.102), we find

𝐷
( 𝐴𝛽 )
𝑎 𝐸 𝑎𝑖 =𝜕𝑎𝐸

𝑎
𝑖 + 𝜖

𝑛
𝑖𝑚 ( 𝐴

𝛽 ′𝑚
𝑎 + 𝜅𝛽𝜋𝑚𝜙 𝐸

𝑙
𝑎𝜙𝑙)𝐸 𝑎𝑛

=𝐷
( 𝐴𝛽 ′)
𝑎 𝐸 𝑎𝑖 +

𝑖𝜅 𝛽

2
𝜖 𝑙
𝑚𝑖 𝜖

𝑚𝑗𝑘𝜙𝑗 𝛾𝑘
1 + 𝑖 𝛽𝛾∗
𝑖 𝛽

𝜙𝑙

=𝐷
( 𝐴𝛽 ′)
𝑎 𝐸 𝑎𝑖 +

𝑖𝜅 𝛽

2
𝜙𝑖 𝛾𝑘

1 + 𝑖 𝛽𝛾∗
𝑖 𝛽

𝜙𝑘 −
𝑖𝜅 𝛽

2
𝜙𝑙 𝛾𝑖

1 + 𝑖 𝛽𝛾∗
𝑖 𝛽

𝜙𝑙

=𝐷
( 𝐴𝛽 ′)
𝑎 𝐸 𝑎𝑖 +

𝜅

2
𝜙𝑖 𝛾𝑘𝜙

𝑘 −
𝑖𝜅 𝛽

2
𝜙𝑖 𝛾∗𝛾𝑘𝜙

𝑘 +
𝑖𝜅 𝛽

2
𝜙𝑙 𝛾∗𝛾𝑖𝜙

𝑙 (4.103)
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Since 𝛾𝑖 𝛾𝑗 = 𝛿𝑖𝑗 + 𝛾𝑖𝑗 , one has

𝑖

2
𝜖𝑗𝑚𝑘𝜙𝑗 𝛾∗𝛾0𝛾𝑚𝛾𝑖

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜙𝑘 =
1
4
𝜖𝑗𝑚𝑘𝜙𝑗 𝛾0𝛾𝑚𝛾𝑖𝜙𝑘 +

𝑖

4𝛽
𝜖𝑗𝑚𝑘𝜙𝑗 𝛾∗𝛾0𝛾𝑚𝛾𝑖𝜙𝑘

=
1
4
𝜖𝑗𝑚𝑘𝜙𝑗 𝛾0𝛾𝑚𝛾𝑖𝜙𝑘 −

𝑖

4𝛽
𝜖 𝑖𝑗𝑘𝜙𝑗 𝛾∗𝛾0𝜙𝑘

+ 𝑖

4𝛽
𝜖𝑗𝑚𝑘𝜙𝑗 𝛾∗𝛾0𝛾𝑚𝑖𝜙𝑘 (4.104)

By antisymmetry of the fermion fields, it follows

𝜖 𝑖𝑗𝑘𝜙𝑗 𝛾∗𝛾0𝜙𝑘 = 𝜖
𝑖𝑗𝑘𝜙𝑘𝛾∗𝛾0𝜙𝑗 = −𝜖 𝑖𝑗𝑘𝜙𝑗 𝛾∗𝛾0𝜙𝑘 = 0 (4.105)

so that, using 𝛾∗𝛾𝑖𝑗 = −𝑖 𝜖 𝑘
𝑖𝑗
𝛾0𝑘 , we find

𝑖

2
𝜖𝑗𝑚𝑘𝜙𝑗 𝛾∗𝛾0𝛾𝑚𝛾𝑖

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜙𝑘 =
1
4
𝜖𝑗𝑚𝑘𝜙𝑗 𝛾0𝛾𝑚𝛾𝑖𝜙𝑘 −

1
4𝛽
𝜙𝑖 𝛾𝑘𝜙𝑘 +

1
4𝛽
𝜙𝑘𝛾

𝑘𝜙𝑖

=
1
4
𝜖𝑗𝑚𝑘𝜙𝑗 𝛾0𝛾𝑚𝛾𝑖𝜙𝑘 −

1
2𝛽
𝜙𝑖 𝛾𝑘𝜙𝑘

= − 1
4
𝜖
𝑗𝑘

𝑖
𝜙𝑗 𝛾0𝜙𝑘 −

1
2𝛽
𝜙𝑖 𝛾𝑘𝜙𝑘 (4.106)

where from the second to the last line we again used (4.105). Hence, the Gauss constraint
can be written as

𝐺𝑖 =𝐷
( 𝐴𝛽 ′)
𝑎 𝐸 𝑎𝑖 −

1
4
𝜖
𝑗𝑘

𝑖
𝜙𝑗 𝛾0𝜙𝑘 −

𝑖

2
𝜙𝑖 𝛾∗𝛾𝑘𝜙

𝑘 + 𝑖
2
𝜙𝑘𝛾∗𝛾𝑖𝜙

𝑘 (4.107)

In fact, this can be simplified even further. To see this, note that

𝜙𝑗 𝛾∗𝛾𝑘𝛾𝑖 𝛾
(𝑗𝜙𝑘) =

1
2
𝜙𝑗 𝛾∗𝛾𝑘𝛾𝑖 𝛾

𝑗𝜙𝑘 + 1
2
𝜙𝑗 𝛾∗𝛾𝑘𝛾𝑖 𝛾

𝑘𝜙𝑗

=
1
2
𝜙𝑗 𝛾∗𝛾𝑘𝛾𝑖 𝛾

𝑗𝜙𝑘 − 1
2
𝜙𝑗 𝛾∗𝛾𝑖𝜙

𝑗 (4.108)

which, due to 𝛾𝑖 𝛾𝑗 = 2𝛿𝑗
𝑖
− 𝛾𝑗 𝛾𝑖 yields

𝜙𝑗 𝛾∗𝛾𝑘𝛾𝑖 𝛾
(𝑗𝜙𝑘) =𝜙𝑖 𝛾∗𝛾𝑘𝜙

𝑘 − 1
2
𝜙𝑗 𝛾∗𝛾𝑘𝑗 𝛾𝑖𝜙

𝑘 − 𝜙𝑘𝛾∗𝛾𝑖𝜙𝑘

=
𝑖

2
𝜖𝑘𝑙𝑗𝜙𝑘𝛾0𝛾𝑙 𝛾𝑖𝜙𝑗 + 𝜙𝑖 𝛾∗𝛾𝑘𝜙𝑘 − 𝜙𝑘𝛾∗𝛾𝑖𝜙𝑘

= − 𝑖
2
𝜖
𝑘𝑗

𝑖
𝜙𝑘𝛾0𝜙𝑗 + 𝜙𝑖 𝛾∗𝛾𝑘𝜙𝑘 − 𝜙𝑘𝛾∗𝛾𝑖𝜙𝑘 (4.109)

147



4. Loop quantum supergravity and the quantum SUSY constraint

Thus, to summarize, in the new variables, we find that the Gauss constraint can be
written in the following compact form

𝐺𝑖 = 𝐷
( 𝐴𝛽 ′)
𝑎 𝐸 𝑎𝑖 −

𝑖

2
𝜙𝑗 𝛾∗𝛾𝑘𝛾𝑖 𝛾

(𝑗𝜙𝑘) (4.110)

4.3.1.2. Supersymmetry constraint

Finally, we want to express the supersymmetry constraint 𝑆 in the new variables. To this
end, inserting (4.96) as well as (4.98) and (4.99) into (4.83), the first two terms in (4.83)
become

𝜖𝑎𝑏𝑐𝑒𝑖𝑎𝛾𝑖
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 ′)
𝑏

(
1
4
√
𝑞
𝑒
𝑗
𝑐 𝜙𝑗

)
+
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 ′)
𝑎

(
1
4
√
𝑞
𝜖 𝑖𝑗𝑘𝐸 𝑎𝑖 𝛾𝑗𝜙𝑘

)
+
𝑖𝜅 𝛽

2 4
√
𝑞
𝜖 𝑙𝑚𝑛𝜖 𝑖𝑗𝑘

1 − 𝑖 𝛽𝛾∗
2𝛽

𝛾∗𝛾0𝛾𝑚𝛾𝑖𝜙𝑛

(
𝜙𝑗 𝛾𝑘

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜙𝑙

)
−
𝑖𝜅 𝛽

2 4
√
𝑞
𝜖 𝑙𝑚𝑛𝜖 𝑖𝑗𝑘

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾∗𝛾0𝛾𝑖 𝛾𝑚𝜙𝑛

(
𝜙𝑗 𝛾𝑘

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜙𝑙

)
(4.111)

where the second and last line in (4.111) can be summarized as

𝑖𝜅 𝛽

2 4
√
𝑞
𝜖 𝑙𝑚𝑛𝜖 𝑖𝑗𝑘

(
𝜙𝑗 𝛾𝑘

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜙𝑙

) [
1
2𝛽
𝛾∗𝛾0 [𝛾𝑚, 𝛾𝑖]− −

𝑖

2
𝛾0 [𝛾𝑚, 𝛾𝑖]+

]
𝜙𝑛

=
𝑖𝜅

2 4
√
𝑞
𝜖 𝑙𝑚𝑛𝜖 𝑖𝑗𝑘𝛾∗𝛾0𝑚𝑖𝜙𝑛

(
𝜙𝑗 𝛾𝑘

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜙𝑙

)
−
𝜅𝛽

2 4
√
𝑞
𝜖 𝑙𝑛𝑖 𝜖 𝑖𝑗𝑘𝛾0𝜙𝑛

(
𝜙𝑗 𝛾𝑘

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜙𝑙

)
(4.112)

Since 𝛾∗𝛾0𝑚𝑖 = −𝑖 𝜖
𝑝

𝑚𝑖
𝛾𝑝, the first term in the second line of (4.112) takes the form

𝜅

2 4
√
𝑞
𝜖 𝑙𝑚𝑛𝜖

𝑝

𝑚𝑖
𝜖 𝑖𝑗𝑘𝛾𝑝𝜙𝑛

(
𝜙𝑗 𝛾𝑘

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜙𝑙

)
=
𝜅

4
√
𝑞
𝜖 𝑖𝑗𝑘𝛾 𝑙𝜙 [𝑙

(
𝜙𝑖 ]

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘𝜙𝑗

)
(4.113)

Next, let us rewrite the “𝐾 -term” of the supersymmetry constraint (4.83) as

𝜖𝑎𝑏𝑐 𝛾0𝜓𝑐𝐾𝑏𝑎 =
1
4
√
𝑞
𝜖𝑎𝑑𝑐𝑒𝑛𝑐 𝑒𝑎𝑖 𝛾0𝜙𝑛𝐾

𝑖
𝑏
𝑒
𝑗

𝑑
𝑒𝑏𝑗 =

1
4
√
𝑞
𝜖
𝑗𝑛

𝑖
𝛾0𝜙𝑛𝐾

𝑖
𝑏
𝐸𝑏𝑗

= − 𝜅

4 4
√
𝑞
𝜖𝑎𝑏𝑐𝑒𝑛

𝑏
𝛾0𝜙𝑛(𝜓𝑎𝛾0𝜓𝑐) =

𝜅

4 4
√
𝑞
𝜖𝑛𝑗𝑘𝛾0𝜙𝑛(𝜙𝑗 𝛾0𝜙𝑘) (4.114)
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Hence, combining (4.114) with second term in the second line of (4.112), this yields

−
𝜅𝛽

2 4
√
𝑞
𝜖 𝑙𝑛𝑖 𝜖 𝑖𝑗𝑘𝛾0𝜙𝑛

(
𝜙𝑗 𝛾𝑘

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜙𝑙

)
− 𝜅

4 4
√
𝑞

1 + 𝛽2

2𝛽
𝜖𝑛𝑗𝑘𝛾0𝜙𝑛(𝜙𝑗 𝛾0𝜙𝑘)

=
𝑖𝜅 𝛽

4 4
√
𝑞
𝛾0𝜙

𝑘
(
𝜙𝑙 𝛾∗𝛾𝑘𝜙

𝑙
)
+
𝜅𝛽

2 4
√
𝑞
𝛾0𝜙

𝑗

(
𝜙𝑗 𝛾

𝑙
1 + 𝑖 𝛽𝛾∗

2𝛽
𝜙𝑙

)
− 𝜅

4 4
√
𝑞

1 + 𝛽2

2𝛽
𝜖𝑛𝑗𝑘𝛾0𝜙𝑛𝜙𝑗 𝛾0𝜙𝑘

=
𝑖𝜅 𝛽

4 4
√
𝑞
𝛾0𝜙

𝑖

(
𝜙𝑙 𝛾∗𝛾𝑖𝜙

𝑙 − 𝜙𝑖 𝛾∗𝛾𝑙𝜙𝑙 +
𝑖

2
𝜖
𝑗𝑘

𝑖
𝜙𝑗 𝛾0𝜙𝑘

)
+ 𝜅

4 4
√
𝑞
𝛾0𝜙

𝑖
(
𝜙𝑖 𝛾

𝑙𝜙𝑙

)
− 𝜅

8𝛽 4
√
𝑞
𝛾0𝜙𝑖 𝜖

𝑖𝑗𝑘 (𝜙𝑗 𝛾0𝜙𝑘)

= −
𝑖𝜅 𝛽

4 4
√
𝑞
𝛾0𝜙

𝑖
(
𝜙𝑗 𝛾∗𝛾𝑘𝛾𝑖 𝛾

(𝑗𝜙𝑘)
)
+ 𝜅

4 4
√
𝑞
𝛾0𝜙

𝑖
(
𝜙𝑖 𝛾

𝑙𝜙𝑙

)
− 𝜅

8𝛽 4
√
𝑞
𝛾0𝜙𝑖 𝜖

𝑖𝑗𝑘 (𝜙𝑗 𝛾0𝜙𝑘)

(4.115)

where, from the third to the last line, identity (4.109) was used. Since (this can be shown
along the lines of Eq. (4.108) and (4.109))

𝜙𝑖 𝛾
𝑙𝜙𝑙 = −

𝑖

2
𝜖𝑗𝑘𝑙𝜙𝑗 𝛾∗𝛾0𝛾𝑘𝛾𝑖𝜙𝑙 + 𝜙𝑗 𝛾𝑘𝛾𝑖 𝛾 (𝑗𝜙𝑘) (4.116)

and 𝜖 𝑖𝑗𝑘𝜙𝑗 𝛾0𝜙𝑘 = −𝜖𝑗𝑘𝑙𝜙𝑗 𝛾0𝛾𝑘𝛾𝑖𝜙𝑙 , the last line of (4.115) finally takes the form

−
𝑖𝜅 𝛽

4 4
√
𝑞
𝛾0𝜙

𝑖
(
𝜙𝑗 𝛾∗𝛾𝑘𝛾𝑖 𝛾

(𝑗𝜙𝑘)
)
+ 𝜅

4 4
√
𝑞
𝛾0𝜙

𝑖
(
𝜙𝑖 𝛾

𝑙𝜙𝑙

)
− 𝜅

8𝛽 4
√
𝑞
𝛾0𝜙𝑖 𝜖

𝑖𝑗𝑘 (𝜙𝑗 𝛾0𝜙𝑘)

=
𝜅𝛽

2 4
√
𝑞
𝛾0𝜙

𝑖

(
𝜙𝑗 𝛾𝑘

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑖 𝛾
(𝑗𝜙𝑘)

)
+ 𝜅

4 4
√
𝑞
𝛾0𝜙

𝑖

(
𝜖𝑗𝑘𝑙𝜙𝑗 𝛾0

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘𝛾𝑖𝜙𝑙

)
(4.117)

To summarize, we have found the following form of the supersymmetry constraint in
the new variables

𝑆 =𝜖𝑎𝑏𝑐𝑒𝑖𝑎𝛾𝑖
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 ′)
𝑏

(
1
4
√
𝑞
𝑒
𝑗
𝑐 𝜙𝑗

)
+
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 ′)
𝑎

(
1
4
√
𝑞
𝜖 𝑖𝑗𝑘𝐸 𝑎𝑖 𝛾𝑗𝜙𝑘

)
+ 𝜅

4
√
𝑞
𝜖 𝑖𝑗𝑘𝛾 𝑙𝜙 [𝑙

(
𝜙𝑖 ]

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘𝜙𝑗

)
+
𝜅𝛽

2 4
√
𝑞
𝛾0𝜙

𝑖

(
𝜙𝑗 𝛾𝑘

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑖 𝛾
(𝑗𝜙𝑘)

)
+ 𝜅

4 4
√
𝑞
𝛾0𝜙

𝑖

(
𝜖𝑗𝑘𝑙𝜙𝑗 𝛾0

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘𝛾𝑖𝜙𝑙

)
(4.118)
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With an eye towards quantization of this expression, it is useful to rewrite the second
term in (4.118) depending on the covariant derivative of the fermion field. In fact, using
𝛾∗𝛾0𝑖 𝛾𝑘 = −2𝑖 𝜖 𝑙

𝑖𝑘
𝛾𝑙 + 𝛾𝑘𝛾∗𝛾0𝑖 , we find

𝐷
( 𝐴𝛽 ′)
𝑎

(
1
4
√
𝑞
𝜖𝑎𝑏𝑐𝑒𝑘

𝑏
𝛾𝑘𝑒

𝑙
𝑐𝜙𝑙

)
= 𝜕𝑎

(
1
4
√
𝑞
𝜖𝑎𝑏𝑐𝑒𝑘

𝑏
𝛾𝑘𝑒

𝑙
𝑐𝜙𝑙

)
+ 1

4
√
𝑞
𝜖𝑎𝑏𝑐𝑒𝑘

𝑏
𝑒𝑙𝑐 𝐴
𝛽 ′𝑖
𝑎

𝑖

2
𝛾∗𝛾0𝑖 𝛾𝑘𝜙𝑙

= (𝐷 ( 𝐴
𝛽 ′)
𝑎 𝑒𝑘

𝑏
) 1

4
√
𝑞
𝜖𝑎𝑏𝑐 𝛾𝑘𝑒

𝑙
𝑐𝜙𝑙 + 𝜖𝑎𝑏𝑐𝑒𝑘𝑏 𝛾𝑘𝐷

( 𝐴𝛽 ′)
𝑎

(
1
4
√
𝑞
𝑒𝑙𝑐𝜙𝑙

)
(4.119)

so that we can equivalently write (4.118) as follows

𝑆 =𝑖 𝜖𝑎𝑏𝑐𝑒𝑖𝑎𝛾𝑖 𝛾∗𝐷
( 𝐴𝛽 ′)
𝑏

(
1
4
√
𝑞
𝑒
𝑗
𝑐 𝜙𝑗

)
+ 1

4
√
𝑞
𝜖𝑎𝑏𝑐𝑒𝑙𝑐

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘 (𝐷
( 𝐴𝛽 ′)
𝑎 𝑒𝑘

𝑏
)𝜙𝑙

+ 𝜅

4
√
𝑞
𝜖 𝑖𝑗𝑘𝛾 𝑙𝜙 [𝑙

(
𝜙𝑖 ]

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘𝜙𝑗

)
+
𝜅𝛽

2 4
√
𝑞
𝛾0𝜙

𝑖

(
𝜙𝑗 𝛾𝑘

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑖 𝛾
(𝑗𝜙𝑘)

)
+ 𝜅

4 4
√
𝑞
𝛾0𝜙

𝑖

(
𝜖𝑗𝑘𝑙𝜙𝑗 𝛾0

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘𝛾𝑖𝜙𝑙

)
(4.120)

This is the most compact form of the supersymmetry constraint that we will use for
quantization of the theory.

4.4. Anti-de Sitter Supergravity
The canonical analysis of N = 1 anti-de Sitter supergravity in context of the chiral
theory has been studied, for instance, in [63, 84, 85] (see also Section 6.4). For sake of
completeness, let us briefly discuss it in case of arbitrary real Barbero-Immirzi parameters.
As seen in Example 2.3.17, it follows that the isometry group SO(2, 3) of anti-de Sitter
space AdS4 can be extended to a super Lie group withN fermionic generators given
by the orthosymplectic Lie group OSp(N |4). This leads to a supergravity theory with
negative cosmological constant Λcos = − 3

𝐿2
where 𝐿 is the anti-de Sitter radius. As will

be discussed in detail in Section 5.2.1, forN = 1, the Holst action then takes the form

𝑆N=1H-AdS = 𝑆N=1H +
∫
𝑀

d4𝑥
(
−𝑒 1

2𝐿
𝜓𝜇𝛾

𝜇𝜈𝜓𝜈 +
3
𝜅𝐿2 𝑒

)
(4.121)

with 𝑆N=1H the Holst action (4.35) (or (4.51)) ofN = 1 Poincaré supergravity. Since these
additional terms do not depend on the spin connection, it follows immediately that the
variation of (4.121) w.r.t. 𝜔 yields the same equations of motion as in the Λcos = 0 case
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4.5. Quantum theory

and thus, in particular, are again independent of the Barbero-Immirzi parameter. The
3+1-split of the additional terms is straightforward and yields

−𝑒 1
2𝐿
𝜓𝜇𝛾

𝜇𝜈𝜓𝜈 +
3
𝜅𝐿2 𝑒 = −

1
2𝐿
𝑁
√
𝑞

(
2𝜓𝑡 𝛾 𝑡𝑎𝜓𝑎 + 𝜓𝑎𝛾 𝑎𝑏𝜓𝑏

)
+ 𝑁 3

𝜅𝐿2
√
𝑞

(4.122)

as for anticommuting fermionic fields one has 𝜓𝑎𝛾 𝑎𝑡𝜓𝑡 = 𝜓𝑡 𝛾 𝑡𝑎𝜓𝑎. Since 𝑒𝑡
𝑖
= 0 and

𝑒𝑡0 =
1
𝑁

, we find

−𝑒 1
2𝐿
𝜓𝜇𝛾

𝜇𝜈𝜓𝜈 +
3
𝜅𝐿2 𝑒 = −

1
𝐿
𝐸 𝑎𝑖 𝜓𝑡 𝛾

0𝑖𝜓𝑎 + 𝑁
(
1
2𝐿
√
𝑞𝜓𝑎𝛾

𝑎𝑏𝜓𝑏 +
3
𝜅𝐿2
√
𝑞

)
(4.123)

The first term in (4.123) yields an additional contribution to the SUSY constraint whereas
the second term contributes to the Hamiltonian constraint. Hence, it follows that the
SUSY constraint in AdS supergravity takes the form

𝑆 =𝜖𝑎𝑏𝑐 𝛾𝑎
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 )
𝑏

𝜓𝑐 +
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 )
𝑎

(
𝜖𝑎𝑏𝑐 𝛾𝑏𝜓𝑐

)
−
1 + 𝛽2

2𝛽
𝜖𝑎𝑏𝑐 𝛾0𝜓𝑐𝐾𝑏𝑎 −

1
𝐿
𝐸 𝑎𝑖 𝛾

0𝑖𝜓𝑎 (4.124)

which again can be re-expressed in terms of half-densitized fermionic variables.

4.5. Quantum theory
4.5.1. Quantization of the Rarita-Schwinger field

In what follows, we want to discuss the quantization of the fermionic sector of canon-
ical supergravity expressed in terms of real Asthekar-Barbero variables. The quantiza-
tion of the gravitational sector of the theory, including the proper definition of (super)
holonomies and electric fluxes, follows along the lines of Section 5.5.1-5.5.3 by identifying
the underlying super gauge group G of the theory with the purely bosonic super Lie
group G = S(SU(2)) (see also Section 5.5.4).

The quantization of the Rarita-Schwinger field is more subtle than for ordinary Dirac
fermions due to the form (4.101) of the reality conditionΩ𝑖

𝛼 which, however, has already
been drastically simplified using half-densitized fermionic fields since then (4.101) no
longer depends on the triads and the spatial metric. In order to solve this second class
constraint, we follow the standard procedure and compute the corresponding Dirac
brackets for which we have to compute Poisson brackets of the form {Ω𝑖

𝛼 ,Ω
𝑗

𝛽
}. Using
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4. Loop quantum supergravity and the quantum SUSY constraint

(4.101) as well as (4.100), this yields (occasionally omitting the delta distribution 𝛿 (3) for
notational convenience)

{Ω𝑖
𝛼 ,Ω

𝑗

𝛽
} = 𝜖 𝑖𝑘𝑙{𝜙𝑘𝛿 , 𝜋

𝑗

𝛽
}(𝛾𝑙P𝛽)𝛿𝛼 + 𝜖𝑗𝑚𝑛{𝜋 𝑖𝛼 , 𝜙𝑚𝛿 }(𝛾𝑛P𝛽)𝛿𝛽

= −𝜖 𝑖𝑗𝑘𝐶𝛽𝛿 (𝛾𝑘P𝛽)𝛿𝛼 + 𝜖 𝑖𝑗𝑘𝐶𝛼𝛿 (𝛾𝑘P𝛽)𝛿𝛽
= −𝜖 𝑖𝑗𝑘

[
(𝐶𝛾𝑘P𝛽)𝑇𝛼𝛽 − (𝐶𝛾𝑘P𝛽)𝛼𝛽

]
= −𝜖 𝑖𝑗𝑘 (𝐶𝛾𝑘 [P𝛽 + P−𝛽])𝛼𝛽 = 𝑖 𝜖 𝑖𝑗𝑘 (𝐶𝛾∗𝛾𝑘)𝛼𝛽 =: C𝑖𝑗

𝛼𝛽
(4.125)

As we see, the operator P𝛽 has dropped out completely so that, in particular, (4.125) is
independent of the Barbero-Immirzi parameter. Finally, since

{𝜙𝛼𝑖 ,Ω
𝑗

𝛽
} = −𝛿𝑗

𝑖
𝛿 𝛼
𝛽

and {Ω𝑖
𝛼 , 𝜙𝑗 𝛽} = −𝛿 𝑖𝑗𝐶𝛼𝛽 (4.126)

it follows that the graded Dirac brackets for the Rarita-Schwinger field take the form

{𝜙𝛼𝑖 , 𝜙𝑗 𝛽}DB = −{𝜙𝛼𝑖 ,Ω
𝑘
𝛾 }(C−1)

𝛾𝛿

𝑘𝑙
{Ω𝑙

𝛿
, 𝜙𝑗 𝛽} = −((C−1)𝑖𝑗𝐶) 𝛼𝛽 (4.127)

with C−1 the inverse of (4.125) which satisfies (C−1)𝑖𝑗C𝑗𝑘 = 𝛿 𝑘
𝑖
1. As can be checked by

direct computation, this matrix takes the form

(C−1)𝑖𝑗 = −𝛾0
(
1𝛿𝑖𝑗 −

1
2
𝛾𝑖 𝛾𝑗

)
𝐶−1 (4.128)

so that the resulting Dirac brackets can be written as

{𝜙𝛼𝑖 (𝑥), 𝜙𝑗 𝛽 (𝑦)}DB =

((
1𝛿𝑖𝑗 −

1
2
𝛾𝑖 𝛾𝑗

)
𝛾0

) 𝛼
𝛽

𝛿 (3) (𝑥, 𝑦) (4.129)

Note that, since (4.101) does not depend on the internal triads, the Dirac brackets of the
bosonic degrees of freedom (𝐴𝑖𝑎, 𝐸 𝑖𝑎) coincide with the original Poisson brackets. In
particular, the mixed Dirac brackets between bosonic and fermionic degrees of freedom
are still vanishing. For further simplification, we will work in the real representation
(4.11) of the gamma matrices such that Majorana fermions are explicitly real. In this
representation, the charge conjugation matrix is given by𝐶 = 𝑖 𝛾0 and (4.129) yields

{𝜙𝛼𝑖 (𝑥), 𝜙
𝛽

𝑗
(𝑦)}DB =

𝑖

2

(
1𝛿𝑖𝑗 −

1
2
𝛾𝑖 𝛾𝑗

) 𝛼𝛽
𝛿 (3) (𝑥, 𝑦) (4.130)

together with the Majorana condition 𝜙∗
𝑖
= 𝜙𝑖 . Due to the complicated form of

the Dirac bracket (4.130), the implementation of the Rarita-Schwinger field which

152



4.5. Quantum theory

simultaneously also allows a direct solution of the Gauss constraint in the quantum
theory is by far not straightforward. However, in [67], a clever way was found to solve all
these issues simultaneously by appropriately enlarging the phase space. More precisely,
the idea in [67] is to decompose 𝜙𝑖 in its trace part 𝜎 := 𝛾 𝑖𝜙𝑖 and its trace-free part
𝜌𝑖 := 𝜙𝑖 − 1

3 𝛾𝑖 𝜎 w.r.t. to the gamma matrices 𝛾𝑖 such that 𝜙𝑖 = 𝜌𝑖 + 1
3 𝛾𝑖 𝜎 . On the

enlarged phase space, we then impose the Poisson brackets

{𝜌𝛼𝑖 (𝑥), 𝜌
𝛽

𝑗
(𝑦)} = 𝑖𝛿𝑖𝑗 𝛿 𝛼𝛽𝛿 (3) (𝑥, 𝑦) and {𝜎 𝛼 (𝑥), 𝜎 𝛽 (𝑦)} = −9𝑖

2
𝛿𝑖𝑗 𝛿

𝛼𝛽𝛿 (3) (𝑥, 𝑦)
(4.131)

with the remaining brackets being zero such that the Dirac bracket (4.130) is recovered.
Moreover, in order to account for the superfluous degrees of freedom, i.e. the trace-
freeness of 𝜌𝑖 , one has to add the additional secondary constraint Λ := 𝛾 𝑖 𝜌𝑖 = 0 [67].
Using {Λ𝛼 ,Λ𝛽} = 3𝑖𝛿 𝛼𝛽 , this yields the Dirac brackets

{𝜌𝛼𝑖 (𝑥), 𝜌
𝛽

𝑗
(𝑦)}DB = 𝑖

(
𝛿𝑖𝑗 𝛿

𝛼𝛽 − 1
3
(𝛾𝑖 𝛾𝑗 ) 𝛼𝛽

)
𝛿 (3) (𝑥, 𝑦) =: 𝑖P𝛼𝛽

𝑖𝑗
𝛿 (3) (𝑥, 𝑦)

(4.132)
where P𝛼𝛽

𝑖𝑗
is the projection operator onto the subspace of trace-free Rarita-Schwinger

fields, i.e., 𝜌𝑖 = P𝑖𝑗𝜙𝑗 . Due to the fact that, in contrast to (4.130), this indeed defines a
projection now allows for a direct implementation in the quantum theory.

Before we do so, following [80], we first exploit the fact that the 𝜙𝑖 (resp. 𝜌𝑖 and 𝜎 )
are half densities and introduce new Grassmann-valued variables. For later purposes,
in contrast to [80], in view of the regularization of the supersymmetry constraint, we
therefore triangulate the spatial slice Σ by disjoint (again up to common faces, edges
and vertices) tetrahedra Δ𝑖 instead of boxes at countably infinite discrete points 𝑥𝑖 ∈ Σ,
𝑖 ∈ I (|I | = ℵ0), and coordinate volume 𝛿3

𝑖
/6 such that Σ =

⋃
𝑖∈I Δ𝑖 . Here, 𝛿𝑖 > 0

∀𝑖 ∈ I are small positive numbers determining the fineness of the triangulation. Then,
for each 𝑖 ∈ I, we define [80]

𝜃 (𝛿𝑖 ) (𝑥𝑖) :=
∫
Σ

d3𝑦
𝜒𝛿𝑖 (𝑥𝑖 − 𝑦)√︃

𝛿3
𝑖

6

𝜙(𝑦) (4.133)

where 𝜒𝛿𝑖 (𝑥𝑖 − 𝑦) is the characteristic function of the tetrahedron Δ𝑖 centered at 𝑥𝑖 .
These satisfy the bracket relations

{𝜃 (𝛿𝑘)
𝑖
(𝑥𝑘), 𝜃 (𝛿𝑙 )𝑗

(𝑥𝑙)} =
∫
Σ

d3𝑥
𝜒𝛿𝑘 (𝑥𝑘 − 𝑥)√︃

𝛿3
𝑘

6

∫
Σ

d3𝑦
𝜒𝛿𝑙 (𝑥𝑙 − 𝑦)√︃

𝛿3
𝑙

6

{𝜙𝑖 (𝑥), 𝜙𝑗 (𝑦)}DB

=
𝑖

2

(
1𝛿𝑖𝑗 −

1
2
𝛾𝑖 𝛾𝑗

)
𝛿𝑘𝑙

∫
Σ

d3𝑥
𝜒𝛿𝑘 (𝑥𝑘 − 𝑥)
𝛿3
𝑘
/6
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=
𝑖

2

(
1𝛿𝑖𝑗 −

1
2
𝛾𝑖 𝛾𝑗

)
𝛿𝑘𝑙 (4.134)

We then take the continuum limit sup
𝑖∈I{𝛿𝑖} → 0 and set 𝜃𝑖 (𝑥) := lim𝛿𝑥→0 𝜃

(𝛿𝑥 )
𝑖
(𝑥)

∀𝑥 ∈ Σ. Furthermore, setting 𝜃 ( 𝜌)
𝑖
(𝑥) := P𝑖𝑗 𝜃𝑗 (𝑥) as well as 𝜃 (𝜎 ) := 𝛾 𝑖 𝜃𝑗 (𝑥), this

finally yields

{𝜃 ( 𝜌)
𝑖
(𝑥), 𝜃 ( 𝜌)

𝑗
(𝑦)} = 𝑖P𝑖𝑗 𝛿𝑥,𝑦 and {𝜃 (𝜎 ) (𝑥), 𝜃 (𝜎 ) (𝑦)} = −9𝑖

2
1𝛿𝑥,𝑦 (4.135)

together with the Majorana conditions 𝜃 ( 𝜌)
𝑖
(𝑥)∗ = 𝜃 ( 𝜌)

𝑖
(𝑥) and 𝜃 (𝜎 ) (𝑥)∗ = 𝜃 (𝜎 ) (𝑥)

∀𝑥, 𝑦 ∈ Σ. Hence, one ends up with an abstract CAR *-algebra at any point 𝑥 ∈ Σ.
The quantization of the theory can be performed following [67]. In what follows, let us
sketch some basic ideas lying behind this quantization scheme and also point out some
further mathematical structures which have a natural interpretation in the framework
of supergeometry and even naturally arise in the chiral approach. For more details, from
both a mathematical and physical point of view, we refer to Section 5.5.4.

For any point 𝑥 ∈ Σ we choose the supermanifold R0 |𝑁𝑥 := ({𝑥},Λ𝑁 ), also called
a superpoint (Def. 2.2.9), with 𝑁 fermionic generators 𝜃A , with A an index A ∈
{1, . . . , 𝑁 }, whose sections 𝑓 ∈ ΛC

𝑁
:= Λ𝑁 ⊗ C of the complexified function sheaf

take the form
𝑓 =

∑︁
𝐼

𝑓𝐼 𝜃
𝐼 (4.136)

with 𝑓𝐼 ∈ C for all ordered multi-indices 𝐼 of length 0 ≤ |𝐼 | ≤ 𝑁 . On the superspace
one has the standard translation-invariant super scalar product S : ΛC

𝑁
× ΛC

𝑁
→ C

given by the Berezin integral4

S (𝑓| 𝑔) :=
∫
𝐵

d𝜃1 · · · d𝜃𝑁 𝑓̄𝑔, ∀𝑓, 𝑔 ∈ ΛC
𝑁

(4.137)

This gives the space (ΛC
𝑁
,S ) the structure of an indefinite inner product space for

which there exists an endomorphism 𝐽 ∈ End(ΛC
𝑁
) such that S (·| 𝐽 ·) defines a positive

definite scalar product on ΛC
𝑁

. The choice of such an endomorphism 𝐽 is not unique
but is strongly restricted by the implementation of the reality conditions. A standard
choice of a scalar product is given by identifying ΛC

𝑁
� C2

𝑁 and setting

⟨𝑓| 𝑔⟩ :=
∑︁
𝐼

𝑓̄𝐼 𝑔𝐼 (4.138)

4 For a generic section 𝑓 =
∑
𝐼 𝑓𝐼 𝜃

𝐼 ∈ ΛC
𝑁

, the Berezin integral is defined via
∫
𝐵

d𝜃1 · · · d𝜃𝑁 𝑓 :=
𝑓12· · ·𝑁 , i.e., the Berezin integral selects the coefficient of the component of highest degree in 𝜃
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It follows, even for general super Lie groups, that there always exists an endomorphism
𝐽 on ΛC

𝑁
such that5 [109]

⟨·|·⟩ = S (·| 𝐽 ·) (4.139)

Hence, this yields a Hilbert space or, more prescisely, a standard super Hilbert space
ℌ𝑁𝑥 := (ΛC

𝑁
, ⟨·|·⟩) (see Def. 5.5.9 and Remark 5.5.10). On ℌ𝑁𝑥 we define the mul-

tiplication operators 𝜃A as well as odd derivations 𝜕A ≡ 𝜕

𝜕𝜃A for A = 1, . . . , 𝑁
via

𝜃A 𝑓 := 𝜃A 𝑓 and 𝜕A 𝜃
B := 𝛿B

A (4.140)

∀𝑓 ∈ ΛC
𝑁

. As shown in [67], due to the choice of the scalar product (4.138), these
operators are indeed self-adjoint on ℌ𝑁𝑥 . With these ingredients, one can then construct
a faithful representation of the CAR *-algebra (4.135). To this end, one takes the tensor
product Hilbert space ℌ𝑥 := ℌ𝑁𝑥 ⊗ ℌ𝑀𝑥 with 𝑁 = 12 and 𝑀 = 4 and defines

𝜃
( 𝜌) 𝛼
𝑖
(𝑥) := P𝛼𝛽

𝑖𝑗

[√︂
ℏ

2
(𝜃𝑗
𝛽
+ 𝜕𝑗

𝛽
)
]

and 𝜃 (𝜎 ) 𝛼 (𝑥) :=
3
√
ℏ

2
(𝜃 𝛼 + 𝜕 𝛼) (4.141)

on ℌ𝑁𝑥 and ℌ𝑀𝑥 , respectively. By construction, these operators are then self-adjoint
as required by the Majorana conditions and moreover satisfy the anticommutation
relations

[𝜃 ( 𝜌)
𝑖
(𝑥), 𝜃 ( 𝜌)

𝑗
(𝑥)] = ℏP𝑖𝑗 and [𝜃 (𝜎 )

𝑖
(𝑥), 𝜃 (𝜎 ) (𝑥)] = 9ℏ

2
1 (4.142)

The quantized Rarita-Schwinger field on ℌ𝑥 is then given by

𝜃𝑖 (𝑥) := 𝜃 ( 𝜌)
𝑖
(𝑥) + 1

3
𝛾𝑖 𝜃
(𝜎 ) (𝑥) (4.143)

This construction then takes over to a family of points {𝑥1, . . . , 𝑥𝑘} yielding the tensor
product Hilbert space ℌ{𝑥1,...,𝑥𝑘 } :=

⊗𝑘

𝑖=1ℌ𝑥𝑖 . The fermionic Hilbert space ℌ𝑓 is
then obtained as the inductive limit over the corresponding family of Hilbert spaces
ℌ{𝑥1,...,𝑥𝑘 }. As result, the total super Hilbert space ℌLQSG of the theory is given by

ℌLQSG = ℌgrav ⊗ ℌ𝑓 (4.144)

with ℌgrav the Hilbert space of the quantized bosonic degrees of freedom generated by
SU(2) spin network states (see also Section 5.5).

5 For this situation, such an endomorphism has in fact been constructed explicitly in [67], although it
is important to emphasize that their definition of the super scalar product differs from the definition
chosen here.
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4. Loop quantum supergravity and the quantum SUSY constraint

4.5.2. Quantization of the SUSY constraint

4.5.2.1. Part I

Having derived the compact expression (4.120) of the classical supersymmetry constraint
with half-densitized fermionic fields, we next want to find an implementation in the
quantum theory. As stated in [64], the Poisson bracket of the SUSY constraint with
itself should be proportional to the Hamiltonian constraint modulo Gauss and dif-
feomorphism constraint. Hence, in the quantum theory, on the subspace of gauge-
and diffeomorphism-invariant states, it is expected that the commutator of the SUSY
constraint operator reproduces the Hamiltonian constraint operator. This is a very
interesting and important feature in canonical supergravity theories as this provides a
very strong relationship between both operators and thus serves as a consistency con-
dition in the quantum theory. This may also fix some of the quantization ambiguities.
In fact, in the framework of self-dual loop quantum cosmology, for a certain subclass
of symmetry reduced models, it will explicitly be shown in Chapter 6 that this strong
relationship even holds exactly in the quantum theory. More precisely, we will show that
the (graded) commutator between the SUSY constraints exactly reproduces the classical
Poisson relation.

Another point of view is that the SUSY constraint is superior to the Hamiltonian
constraint in the sense that once the SUSY constraint is quantized (or even solved)
this immediately yields the quantization (or solution) of the Hamiltonian constraint
by computing the commutator. For this reason, it is desirable to quantize the SUSY
constraint in a way that does not involve the Hamiltonian constraint. For instance, it
should not depend on the extrinsic curvature as this, via Thiemann’s proposal, would
involve commutators with the Euclidean part of the Hamiltonian. On the other hand,
in order to be able to compare it with the Hamiltonian constraint, it is desirable to
find an as compact expression as possible. In the following, we will propose a specific
quantization scheme of the SUSY constraint that does not involve the Hamiltonian
constraint.

As a first step, let us therefore consider the first part in the classical expression (4.120)
depending on the covariant derivative of the fermionic fields

𝑆 (1) [𝜂] :=
∫
Σ

d3𝑥 𝜂̄𝑖𝜖𝑎𝑏𝑐𝑒𝑖𝑎𝛾𝑖 𝛾∗𝐷
( 𝐴𝛽 )
𝑏

(
1
4
√
𝑞
𝑒
𝑗
𝑐 𝜙𝑗

)
(4.145)

Here and in what follows, in order to simplify the notation, the prime indicating the
transformed Ashtekar connection in case of half-densitized fermionic variables will be
dropped. The expression (4.145) looks quite similar to the Dirac Hamiltonian studied
for instance in [156] with the crucial difference that the conjugate spinor 𝜂̄ in (4.145)
now plays the role a smearing function and thus is not a dynamical variable. Hence, in
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v
s1

s2s3

v'

𝝙
s'3

Figure 2.: A tetrahedron Δ with the edges used for the regularization. The star marks the location of the
fermion operator (source: [2]).

contrast to [156], we cannot change its density weight going over to half-densities for
the regularization as this will change the density weight of the constraint operator as a
whole. Moreover, changing the density weight of the smearing function may change the
constraint algebra which should be avoided. Hence, particular attention is required for
its regularization.

We will proceed in analogy with [157], i.e., we will consider triangulations adapted to a
graph 𝛾 . First, we describe triangulations of the neighborhood of a vertex 𝑣 of 𝛾 that
are labeled by a triplet of edges (𝑒𝐼 , 𝑒 𝐽 , 𝑒𝐾 ) at 𝑣. We will keep track of the fineness of
these triangulations, measured in a fixed fiducial metric around the vertex, in terms of a
parameter 𝛿 > 0.

(i) All edges of the graph are assumed be outgoing in the sense that if 𝑒 is an edge
with vertices 𝑣, 𝑣′ as endpoints, subdivide it into two new edges 𝑒1 and 𝑒2 such
that 𝑒 = 𝑒1 ◦ 𝑒2 and 𝑒1 and 𝑒2 are outgoing at 𝑣 and 𝑣′, respectively.

(ii) Given an edge 𝑒𝐼 incident at a vertex 𝑣, choose a segment 𝑠𝐼 : [0, 1] → Σ of 𝑒𝐼
such that 𝑠𝐼 is also incident and outgoing at 𝑣 and such that it does not include
any other endpoint of the edge 𝑒𝐼 .

(iii) In order to treat all edges of the graph equally, at each vertex 𝑣, let (𝑒𝐼 , 𝑒 𝐽 , 𝑒𝐾 )
be an arbitrary triple of mutually distinct edges incident at the common vertex
𝑣.6 For each triple, we chose corresponding segments (𝑠𝐼 , 𝑠 𝐽 , 𝑠𝐾 ) shorter than
𝛿 . They span a tetrahedron Δ with basepoint 𝑣(Δ) = 𝑣 (see Figure 2), where

6 If the vertex is two-valent, one can adjoin a third edge in an arbitrary manner. However, it will become
clear below that the action of the operator on such vertices is trivial.
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4. Loop quantum supergravity and the quantum SUSY constraint

the missing three edges of Δ are chosen in a diffeomorphism covariant way [157].
Furthermore, we assume that the triple is ordered in such a way that the tangents
of the segments are positively oriented, i.e., det( ¤𝑠𝐼 , ¤𝑠 𝐽 , ¤𝑠𝐾 ) > 0.

(iv) Let (𝑒𝐼 , 𝑒 𝐽 , 𝑒𝐾 ) be a positively oriented triple of edges as in (iii) with corre-
sponding segments (𝑠𝐼 , 𝑠 𝐽 , 𝑠𝐾 ). For any 𝛿 > 0, we introduce another segment
𝑠′
𝐾

: [0, 1] → Σ which is incident and at outgoing at 𝑠𝐼 (1) in such a way, that in
the limit 𝛿 → 0, 𝑠′

𝐾
converges to the segment 𝑠𝐾 (see Figure 2). As it will become

clear in what follows, the end result will not depend on the specific choice of such
an additional edge provided it satisfies the requirements just mentioned.

(v) To obtain a triangulation𝑇 (𝛾, 𝑣, 𝛿 , 𝐼 𝐽 𝐾 ) of a neighborhood of 𝑣, we proceed
as in [157] and construct seven additional (“mirror”) tetrahedra.

We will now write down a regularization of the classical expression (4.145), using some
triangulation 𝑇 (𝛿) of fineness 𝛿 . Let Δ𝑖 be a tetrahedron from this triangulation
spanned by some triplet (𝑠𝐼 , 𝑠 𝐽 , 𝑠𝐾 ) of edges. We will additionally assume that edges
𝑠′
𝐼

have been chosen according to (iv) above. As usual, we apply Thiemann’s trick and
replace the co-frame fields 𝑒𝑖𝑎 by the Poisson bracket of the connection with the volume

2𝑒𝑖𝑎 =
1
𝜅
{ 𝐴𝛽 𝑖

𝑎,𝑉 } =
1
𝜅
{ 𝐴𝛽 𝑖

𝑎,𝑉 (𝑥, 𝛿)} (4.146)

where
𝑉 (𝑥, 𝛿) :=

∫
Σ

d3𝑦 𝜒𝛿 (𝑥, 𝑦)
√︃
𝑞(𝑦) (4.147)

is the volume of the tetrahedron Δ containing 𝑥 ∈ Σ, with 𝜒𝛿 its characteristic function,
such that, in the limit 𝛿 → 0, one has lim𝛿→0

6
𝛿3
𝑉 (𝑥, 𝛿) =

√︁
𝑞(𝑥). Let ℎ𝑠 [ 𝐴𝛽 ]

denote the holonomy induced by 𝐴𝛽 along an arbitrary segment 𝑠 in the triple (see
Equation (5.161) for the case of the purely bosonic super Lie group S(SU(2))). For
𝛿 > 0 small enough, it follows that ℎ𝑠 [ 𝐴𝛽 ] can approximately be written as ℎ𝑠 [ 𝐴𝛽 ] =
1 + 𝛿 ¤𝑠𝑎 𝐴𝛽 𝑖

𝑎𝜏𝑖 + O(𝛿2) such that, using tr(𝜏𝑖𝜏𝑗 ) = − 1
2 𝛿𝑖𝑗 , it follows that

2tr(𝜏𝑖ℎ𝑠 [ 𝐴𝛽 ]{ℎ𝑠 [ 𝐴𝛽 ]−1,𝑉 (𝑥, 𝛿)}) = 𝛿𝑖𝑗 𝛿 ¤𝑠𝑎{ 𝐴
𝛽 𝑗
𝑎 (𝑥),𝑉 (𝑥, 𝛿)} (4.148)

This enables one to express (4.146) in terms of holonomies and fluxes with the latter
implicitly contained in the definition of the volume.

Finally, in order regulate the covariant derivative in (4.168), for any segment 𝑠, let

𝐻𝑠 [ 𝐴𝛽 ] := P exp
(∫
𝑠

𝜅R∗( 𝐴𝛽 )
)

(4.149)
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4.5. Quantum theory

be the holonomy induced by 𝐴𝛽 in the 𝔰𝔲(2)-sub representation of the real Majorana
representation 𝜅R∗ which, according to (4.80), in the chiral representation of the gamma
matrices consists of a direct sum of two spin- 12 representations. Hence, w.r.t. this
representation, 𝐻𝑠 [ 𝐴𝛽 ] = diag(ℎ𝑠 [ 𝐴𝛽 ], ℎ𝑠 [ 𝐴𝛽 ]) is in fact block diagonal. Again, in
the limit of small 𝛿 > 0, the holonomy can approximately be written in the form
𝐻𝑠 [ 𝐴𝛽 ] = 1 + 𝛿 ¤𝑠𝑎 𝑖2 𝛾∗𝛾0𝑖 𝐴

𝛽 𝑖
𝑎 + O(𝛿2) which yields

𝐻𝑠 [ 𝐴𝛽 ] (0, 𝛿)Ψ(𝑠(𝛿)) − Ψ(𝑠(0)) = 𝛿 ¤𝑠𝑎 (0) (𝐷 ( 𝐴
𝛽 )
𝑎 Ψ) (𝑠(0)) (4.150)

whereΨ stands for an arbitrary spinor-valued field defined onΣ. With these preparations,
we are now ready to write down a regularization of (4.145). Given the triangulation
𝑇 (𝛿) of fineness 𝛿 > 0, we set

𝑆
(1)
𝛿
[𝜂] :=

1
6𝜅2

∑︁
Δ𝑖 ∈𝑇 (𝛾,𝛿)

𝜂̄(𝑥𝑖)𝑖 𝜖𝐼 𝐽 𝐾 tr(𝜏𝑗ℎ𝑠𝐼 (Δ𝑖 ) {ℎ−1𝑠𝐼 (Δ𝑖 ) ,𝑉 (𝑥𝑖 , 𝛿)})×

× 𝛾𝑗 𝛾∗ [X𝐾 (𝑠 𝐽 (Δ𝑖)) −X𝐾 (𝑥𝑖)] (4.151)

with

X𝐾 (𝑠 𝐽 (Δ𝑖)) :=
tr(𝜏𝑘ℎ𝑠′

𝐾
(Δ𝑖 ) {ℎ−1𝑠′

𝐾
(Δ𝑖 ) ,𝑉 (𝑠 𝐽 (Δ𝑖), 𝛿)})√︁

𝑉 (𝑠 𝐽 (Δ𝑖), 𝛿)
𝐻𝑠 𝐽 (Δ𝑖 ) 𝜃

𝛿
𝑘
(𝑠 𝐽 (Δ𝑖) (𝛿))

(4.152)
and

X𝐾 (𝑥𝑖) :=
tr(𝜏𝑘ℎ𝑠𝐾 (Δ𝑖 ) {ℎ−1𝑠𝐾 (Δ𝑖 ) ,𝑉 (𝑥𝑖 , 𝛿)})√︁

𝑉 (𝑥𝑖 , 𝛿)
𝜃 𝛿
𝑘
(𝑥𝑖) (4.153)

where in (4.151), for any basepoint 𝑥𝑖 ≡ 𝑣(Δ𝑖), we have chosen a particular triple of
segments (𝑠𝐼 (Δ𝑖), 𝑠 𝐽 (Δ𝑖), 𝑠𝐾 (Δ𝑖)) incident at 𝑥𝑖 and an additional segment 𝑠′

𝐾
such

that the above requirements are satisfied. First, let us show that (4.151) indeed provides a
regularization of (4.145). To this end, we use the fact that, by property (iv), 𝑠′

𝐾
converges

to 𝑠𝐾 in the limit 𝛿 → 0 such that for small 𝛿 , due to (4.150), we can approximately
write

X𝐾 (𝑠 𝐽 (Δ𝑖)) −X𝐾 (𝑥𝑖) ≈ 𝛿2 ¤𝑠𝑏𝐽 (Δ𝑖) ¤𝑠
𝑐
𝐾
(Δ𝑖)𝐷 ( 𝐴

𝛽 )
𝑏

(
{ 𝐴𝛽 𝑘

𝑐 ,𝑉 (𝑥𝑖 , 𝛿)}√︁
𝑉 (𝑥𝑖 , 𝛿)

𝜃 𝛿
𝑘
(𝑥𝑖)

)
(4.154)
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4. Loop quantum supergravity and the quantum SUSY constraint

Recall that, by (4.133), 𝜃 𝛿
𝑖

is defined as

𝜃 𝛿𝑖 (𝑥) =
∫

d3𝑦
𝜒𝛿 (𝑥 − 𝑦)√︃

𝛿3

6

𝜙𝑖 (𝑦) (4.155)

so that, using 𝜕𝑥𝑎 𝜒𝛿 (𝑥 − 𝑦) = −𝜕𝑦𝑎 𝜒𝛿 (𝑥 − 𝑦) [156], it follows that

𝜕𝑥𝑎 𝜃
𝛿
𝑖 (𝑥) = −

∫
Σ

d3𝑦
𝜕𝑦𝑎 𝜒𝛿 (𝑥 − 𝑦)√︃

𝛿3

6

𝜙𝑖 (𝑦) =
∫
Σ

d3𝑦
𝜒𝛿 (𝑥 − 𝑦)√︃

𝛿3

6

𝜕𝑦𝑎𝜙𝑖 (𝑦) (4.156)

Hence, ifB𝑘 (𝑥𝑖) denotes the term inside the covariant derivative of (4.154) depending
on the volume𝑉 (𝑥𝑖 , 𝛿), we can rewrite (4.154) as

𝐷
( 𝐴𝛽 )
𝑎

(
B𝑘 (𝑥𝑖)𝜃 𝛿𝑘 (𝑥𝑖)

)
=(𝜕𝑥𝑎B𝑘) (𝑥𝑖)𝜃 𝛿𝑘 (𝑥𝑖) + B

𝑘 (𝑥𝑖)𝜕𝑥𝑎 𝜃 𝛿𝑘 (𝑥𝑖) + B
𝑘 (𝑥𝑖)

𝑖

2
𝛾∗𝛾0𝑖 𝐴

𝛽 𝑖
𝑎 (𝑥𝑖)𝜃 𝛿𝑘 (𝑥𝑖)

=

∫
d3𝑦

𝜒Δ(𝑥𝑖 − 𝑦)√︃
𝛿3

6

(
(𝜕𝑥𝑎B𝑘) (𝑥𝑖)𝜃 𝛿𝑘 (𝑦) + B

𝑘 (𝑥𝑖)𝜕𝑥𝑎 𝜃 𝛿𝑘 (𝑦)

+B𝑘 (𝑥𝑖)
𝑖

2
𝛾∗𝛾0𝑖 𝐴

𝛽 𝑖
𝑎 (𝑥𝑖)𝜕𝑦𝑎𝜙𝑖 (𝑦)

)
(4.157)

By definition, for small 𝛿 we have𝑉 (𝑥𝑖 , 𝛿) ≈ 𝛿3

6
√︁
𝑞(𝑥𝑖). Hence, approximating the

denominator in B𝑘 (𝑥𝑖) by
√︁
𝛿3/6 4

√︁
𝑞(𝑥𝑖) and inserting it into Eq. (4.157) and finally

using the fact that in the limit 𝛿 → 0 one has 𝜒𝛿 (𝑥𝑖 − 𝑦)/ 𝛿
3

6 → 𝛿 (𝑥𝑖 − 𝑦), (4.151)
becomes

1
24𝜅2

lim
𝛿→0

∑︁
Δ𝑖 ∈𝑇 (𝛾,𝛿)

𝜂̄(𝑥𝑖)𝑖{ 𝐴
𝛽 𝑗
𝑎 (𝑥𝑖),𝑉 (𝑥𝑖 , 𝛿)})𝛾𝑗 𝛾∗𝐷

( 𝐴𝛽 )
𝑏

(
{ 𝐴𝛽 𝑘

𝑐 ,𝑉 (𝑥𝑖 , 𝛿)}
4
√︁
𝑞(𝑥𝑖)

𝜙𝑘 (𝑥𝑖)
)
×

× 𝜖𝐼 𝐽 𝐾 𝛿3 ¤𝑠𝑎
𝐼
(Δ𝑖) ¤𝑠𝑏𝐽 (Δ𝑖) ¤𝑠

𝑐
𝐾
(Δ𝑖) (4.158)

Hence, if we finally use

𝜖𝐼 𝐽 𝐾 𝛿3 ¤𝑠𝑎
𝐼
(Δ𝑖) ¤𝑠𝑏𝐽 (Δ𝑖) ¤𝑠

𝑐
𝐾
(Δ𝑖) = 𝜖𝑎𝑏𝑐𝛿3det( ¤𝑠𝐼 , ¤𝑠 𝐽 , ¤𝑠𝐾 ) (Δ𝑖) = 6𝜖𝑎𝑏𝑐vol(Δ𝑖) (4.159)

Equation (4.158) takes the form of a Riemann sum which in the limit 𝛿 → 0 converges
to a Riemann integral which precisely coincides with expression (4.145). That is, we
found

lim
𝛿→0

𝑆
(1)
𝛿
[𝜂] = 𝑆 (1) [𝜂] (4.160)
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4.5. Quantum theory

Hence, we can use (4.151) as a staring point for the quantization. To this end, we apply
the identity

{ 𝐴𝛽 𝑖
𝑎,

√︁
𝑉 (𝑥, 𝛿)} = 1

2
√︁
𝑉 (𝑥, 𝛿)

{ 𝐴𝛽 𝑖
𝑎,𝑉 (𝑥, 𝛿)} (4.161)

in order to express (4.151) resp. (4.152) purely in terms of Poisson brackets between
holonomies and volume. The corresponding quantum operator is then obtained by
replacing the classical phase space variables by their respective quantum counterparts
and replacing the Poisson bracket by the commutator {·, ·} → 1

𝑖ℏ
[·, ·].

At this point we have to pause, however, since we have to specify the triangulation𝑇 (𝛿)
in adaptation to the graph 𝛾 . To do this, We follow precisely the procedure from [157]:
Triangulations around the vertices are chosen as𝑇 (𝛾, 𝑣, 𝛿 , 𝐼 𝐽 𝐾 ), and the rest of the
space triangulated arbitrarily. Finally, an averaging over 𝐼 , 𝐽 , 𝐾 at each vertex is carried
out. To write out this averaging, we denote by 𝐸 (𝑣) the number of triples at the given
vertex. With this procedure, we end up with

𝑆
(1)
𝛿
[𝜂] := − 1

3ℏ2𝜅2
∑︁

𝑣∈𝑉 (𝛾)

8
𝐸 (𝑣) 𝜂̄(𝑥𝑖)𝑖 𝜖

𝐼 𝐽 𝐾 𝛾𝑗 𝛾∗ [X̂𝐾 (𝑠 𝐽 (Δ)) − X̂𝐾 (𝑥)]×

× tr(𝜏𝑗ℎ𝑠𝐾 (Δ) [ℎ−1𝑠𝐼 (Δ) ,𝑉𝑣]) (4.162)

with

X̂𝐾 (𝑠 𝐽 (Δ)) := tr(𝜏𝑘ℎ𝑠′
𝐾
(Δ) [ℎ−1𝑠′

𝐾
(Δ) ,

√︃
𝑉
𝑠 𝐽 (Δ) ])𝐻𝑠 𝐽 (Δ) 𝜃𝑘 (𝑠 𝐽 (Δ)) (4.163)

and

X̂𝐾 (𝑥) := tr(𝜏𝑘ℎ𝑠𝐾 (Δ) [ℎ−1𝑠𝐾 (Δ) ,
√︃
𝑉
𝑣
])𝜃𝑘 (𝑣) (4.164)

where, for reasons that will become clear below, the first factor in the classical expression
(4.151) depending on the volume has been ordered to the right. Here,𝑉𝑣 denotes the
volume operator at a vertex 𝑣 ∈𝑉 (𝛾) (see the following discussion below).

Note that in (4.162) we have implicitly assumed that the discrete sum over all tetrahedra in
the triangulation collapses to a sum over the vertices of the underlying spin network graph
𝛾 . This is permissible in case of the Ashtekar-Lewandowski volume operator𝑉 ≡𝑉 AL

[31, 32] as this operator acts trivially on planar vertices. However, this also implies that
the operator X̂𝐾 (𝑠 𝐽 (Δ)) in (4.163) becomes trivial as

√︁
𝑉 𝑠 𝐽 (Δ) acts on a vertex with

coplanar tangent vectors. But then X̂𝐾 (𝑠 𝐽 (Δ)) − X̂𝐾 (𝑥) is not a difference operator
and therefore this would not resemble a quantization of a regularized covariant derivative.
A resolution would be to quantize a different classical quantity in which the covariant
derivative operator acts directly on the Rarita-Schwinger field. The regularization can
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4. Loop quantum supergravity and the quantum SUSY constraint

then be performed as described above. However, we would like to keep the SUSY
constraint operator as simple as possible. For this reason, we consider another possibility
ensuring nontriviality of the action of X̂𝐾 (𝑠 𝐽 (Δ)). To this end, let us choose instead
the Rovelli-Smolin variant of the volume operator𝑉 ≡𝑉 RS [29, 31, 158]. This operator is
defined according to [31, 32]

𝑉𝑣𝑇𝛾, ®𝜋, ®𝑚,®𝑛 :=
∑︁

𝑣∈𝑉 (𝛾)

√︃
|𝑞𝑣 |𝑇𝛾, ®𝜋, ®𝑚,®𝑛 (4.165)

for any SU(2) spin network state𝑇𝛾, ®𝜋, ®𝑚,®𝑛 w.r.t. a finite graph 𝛾 with edges 𝑒 ∈ 𝐸 (𝛾)
labeled by irreps 𝑗𝑒 ≡ 𝜋𝑗𝑒 (see Section 5.5.3.3, in particular, Eq. (5.258)). In (4.165), the
operator |𝑞𝑣 | is defined as

|𝑞𝑣 | :=
1
48

∑︁
𝐼≠ 𝐽≠𝐾≠𝐼

|𝑞𝐼 𝐽 𝐾 | :=
1
48

∑︁
𝐼≠ 𝐽≠𝐾≠𝐼

|𝜖𝑖𝑗𝑘 𝐽 𝑖𝐼 𝐽
𝑗

𝐽
𝐽 𝑘
𝐾
| (4.166)

where the sum is taken over all possible triples (𝑒𝐼 , 𝑒 𝐽 .𝑒𝐾 ) of mutually distinct edges
at 𝑣. Moreover, 𝐽 𝑖

𝐼
for 𝑖 = 1, 2, 3 denote the components of the angular momentum

operator 𝐽𝐼 at the edge 𝑒𝐼 (see also Equation 4.212 below). The operator 𝑞𝐼 𝐽 𝐾 can also
be written in the form

𝑞𝐼 𝐽 𝐾 = 𝜖𝑖𝑗𝑘 𝐽
𝑖
𝐼
𝐽
𝑗

𝐽
𝐽 𝑘
𝐾
=
𝑖

4
[( 𝐽𝐼 𝐽 )2, ( 𝐽𝐽 𝐾 )2] (4.167)

with ( 𝐽𝐼 𝐽 )2 := ( 𝐽𝐼 + 𝐽𝐽 )2 the Casimir operator corresponding to the total angular
momentum 𝐽𝐼 𝐽 := 𝐽𝐼 + 𝐽𝐽 . Note that the modulus appears inside the sum. For this
reason, the action of the Rovelli-Smolin volume operator on vertices with coplanar
tangent vectors is in general nontrivial. At first sight, this seems to be a problem as then
the sum in (4.162) would also include basepoints of tetrahedra located inside a given
edge of a spin network graph, i.e., the sum would be a priori infinite. However, due to
our choice of the factor ordering, we will see that this indeed not the case. To this end,
let us consider the operator

Ô := tr
(
𝜏𝑖ℎ𝑒 [ℎ−1𝑒 ,

√︃
𝑉 ]

)
(4.168)

appearing for instance to the right in (4.162) where the holonomy ℎ𝑒 is taken along an
edge 𝑒 incident at a vertex sitting inside a spin network edge and which is transversal
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Figure 3.: Illustrations of the action of 𝑆 (1) [𝜂] on spin network states. The picture on the right shows
the action of the trace operator Ô defined in (4.168) creating a new vertex 𝑣′ by adding a new edge labeled
with spin-1/2. The picture on the left illustrates the action of X̂𝐾 (𝑠 𝐽 (Δ)) in (4.162) which, in contrast
to Ô, creates two new spin-1/2 edges at 𝑣′, one parallel and one transversal to the spin network edge 𝑗
(source: [2]).

to that particular edge (see Figure 3). Given a spin network state Ψ𝛾 ≡ 𝑇𝛾, ®𝜋, ®𝑚,®𝑛, this
operator takes the form

ÔΨ𝛾 = tr
(
𝜏𝑖ℎ𝑒 [ℎ−1𝑒 ,

√︃
𝑉 ]

)
Ψ𝛾 = tr(𝜏𝑖)

√︃
𝑉Ψ𝛾 − tr

(
𝜏𝑖ℎ𝑒

√︃
𝑉 ℎ−1𝑒

)
Ψ𝛾

= −𝜏𝑖 𝐴𝐵ℎ𝑒
𝐵
𝐶

√︃
𝑉 ℎ−1𝑒

𝐶

𝐴Ψ𝛾 (4.169)

where the first term in second equation vanishes due the trace-freeness of the Pauli
matrices. Since, the matrix components of a holonomy ℎ𝑒 [ 𝐴𝛽 ]

𝐴

𝐵 = 𝜋 1
2
(ℎ𝑒 [ 𝐴𝛽 ])

𝐴

𝐵

can be identified with the matrix components of the spin- 12 representation, it follows
that

(ÔΨ𝛾 ) [ 𝐴𝛽 ] = −𝜏𝑖 𝐴𝐵𝜋 1
2
(ℎ−1𝑒 [ 𝐴𝛽 ])

𝐵

𝐶

√︃
𝑉

(
𝜋 1

2
(ℎ𝑒 [ 𝐴𝛽 ])

𝐶

𝐴
Ψ𝛾 [ 𝐴𝛽 ]

)
(4.170)

Hence, according to (4.170), the holonomy ℎ𝑒 adds a new edge to the spin network
graph 𝛾 with spin quantum number 𝑗 = 1

2 (see Figure 3). To evaluate the action of the
volume operator, note that, effectively, the state located at the new created vertex can
symbolically be written in the form

Ψ𝑗12 := | (𝑗1𝑗2)𝑗12,
1
2

; 𝑗𝑚⟩ (4.171)

where 𝑗1 = 𝑗2 = 𝑗 denote the spin quantum numbers of the original spin network edge
coupling to 𝑗12 = 0 (for divalent spin network vertices), 𝑗3 = 1

2 is the spin quantum
number of the new created edge and 𝑗 (resp. 𝑚) denotes the total spin (resp. magnetic)
quantum number. For later purposes, it is worthwhile to keep the computation a bit
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4. Loop quantum supergravity and the quantum SUSY constraint

more general and assume that 𝑗1 and 𝑗2 are not necessarily equal (therefore 𝑗12 does not
have be zero). For the vertex under consideration, the operator (4.167) takes the form

𝑞123 =: 𝑞 =
𝑖

4
[( 𝐽12)2, ( 𝐽23)2] (4.172)

Hence, in order to determine its action on (4.171), we have to perform a recoupling
of angular momenta by coupling 𝑗2 and 𝑗3. This can be done using the Wigner 6-𝑗
symbols which yields

Ψ𝑗12 =
∑︁
𝑗23

(−1)𝑗1+𝑗2+
1
2+𝑗

√︃
(2𝑗12 + 1)

√︃
(2𝑗23 + 1)

{
1
2 𝑗12 𝑗

𝑗1 𝑗23 𝑗2

}
|𝑗1, (𝑗2

1
2
)𝑗23; 𝑗𝑚⟩

(4.173)

In this form, it is particularly easy to compute the action of ( 𝐽12)2 which gives

( 𝐽23)2Ψ𝑗12 =

=
∑︁
𝑗23

(−1)𝑗1+𝑗2+
1
2+𝑗𝑗23(𝑗23 + 1)

√︃
(2𝑗12 + 1)

√︃
(2𝑗23 + 1)

{
1
2 𝑗12 𝑗

𝑗1 𝑗23 𝑗2

}
×

× |𝑗1, (𝑗2
1
2
)𝑗23; 𝑗𝑚⟩

=
∑︁
𝑗23

(−1)𝑗1+𝑗2+
1
2+𝑗𝑗23(𝑗23 + 1)

√︃
(2𝑗12 + 1)

√︃
(2𝑗23 + 1)

{
1
2 𝑗12 𝑗

𝑗1 𝑗23 𝑗2

}
×

×
∑︁
𝑗 ′12

(−1)𝑗1+𝑗2+
1
2+𝑗

√︃
(2𝑗 ′12 + 1)

√︃
(2𝑗23 + 1)

{
1
2 𝑗 ′12 𝑗

𝑗1 𝑗23 𝑗2

}
| (𝑗1𝑗2)𝑗 ′12.

1
2

; 𝑗𝑚⟩

=

√︃
(2𝑗12 + 1)

∑︁
𝑗23,𝑗

′
12

𝑗23(𝑗23 + 1) (2𝑗23 + 1)
√︃
(2𝑗 ′12 + 1)

{
1
2 𝑗12 𝑗

𝑗1 𝑗23 𝑗2

}
×

×
{

1
2 𝑗 ′12 𝑗

𝑗1 𝑗23 𝑗2

}
Ψ𝑗 ′12 (4.174)

where in the last line we have again performed a recoupling by coupling 𝑗1 with 𝑗2. This
immediately yields

( 𝐽12)2 [( 𝐽23)2Ψ𝑗12] =
√︃
(2𝑗12 + 1)

∑︁
𝑗 ′12

𝑗 ′12(𝑗 ′12 + 1)
√︃
(2𝑗 ′12 + 1) ×
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4.5. Quantum theory

×
∑︁
𝑗23

𝑗23(𝑗23 + 1) (2𝑗23 + 1)
{

1
2 𝑗12 𝑗

𝑗1 𝑗23 𝑗2

} {
1
2 𝑗 ′12 𝑗

𝑗1 𝑗23 𝑗2

}
Ψ𝑗 ′12 (4.175)

Remains to evaluate the last term in the commutator of (4.172). In a similar way as above,
one finds

( 𝐽23)2 [( 𝐽12)2Ψ𝑗12] = 𝑗12(𝑗12 + 1) ( 𝐽23)2Ψ𝑗12
=𝑗12(𝑗12 + 1)

√︃
(2𝑗12 + 1)

∑︁
𝑗 ′12

√︃
(2𝑗 ′12 + 1)×

×
∑︁
𝑗23

𝑗23(𝑗23 + 1) (2𝑗23 + 1)
{

1
2 𝑗12 𝑗

𝑗1 𝑗23 𝑗2

} {
1
2 𝑗 ′12 𝑗

𝑗1 𝑗23 𝑗2

}
Ψ𝑗 ′12 (4.176)

Hence, we found

𝑞Ψ𝑗12 =
𝑖

4
[( 𝐽12)2, ( 𝐽23)2]Ψ𝑗12

=
𝑖

4

√︃
(2𝑗12 + 1)

∑︁
𝑗 ′12

√︃
(2𝑗 ′12 + 1)

(
𝑗 ′12(𝑗 ′12 + 1) − 𝑗12(𝑗12 + 1)

)
×

×
∑︁
𝑗23

𝑗23(𝑗23 + 1) (2𝑗23 + 1)
{

1
2 𝑗12 𝑗

𝑗1 𝑗23 𝑗2

} {
1
2 𝑗 ′12 𝑗

𝑗1 𝑗23 𝑗2

}
Ψ𝑗 ′12 (4.177)

In fact, this expression can be further simplified using the identity [159]

∑︁
𝑗23

(2𝑗23 + 1)𝑗23(𝑗23 + 1)
{
𝑗1 𝑗12 𝑗2

𝑗3 𝑗23 𝑗4

} {
𝑗1 𝑗 ′12 𝑗2

𝑗3 𝑗23 𝑗4

}
=
1
2
(−1)𝑗1+𝑗2+𝑗3+𝑗4+𝑗12+𝑗 ′12+1𝑋 (𝑗1, 𝑗4)

1
2

{
𝑗2 𝑗1 𝑗12

1 𝑗 ′12 𝑗1

} {
𝑗3 𝑗4 𝑗12

1 𝑗 ′12 𝑗4

}
+
𝑗1(𝑗1 + 1) + 𝑗4(𝑗4 + 1)

2𝑗12 + 1
𝛿𝑗12𝑗 ′12

(4.178)

with 𝑋 (𝑗1, 𝑗4) := 2𝑗1(2𝑗1 + 1) (2𝑗1 + 2)2𝑗4(2𝑗4 + 1) (2𝑗4 + 2). Due to the difference
appearing in (4.177), it is immediate that the matrix representation of 𝑞 is purely off-
diagonal, i.e., only entries with 𝑗12 ≠ 𝑗 ′12 are nonzero. In this case, (4.178) becomes

∑︁
𝑗23

(2𝑗23 + 1)𝑗23(𝑗23 + 1)
{

1
2 𝑗12 𝑗

𝑗1 𝑗23 𝑗2

} {
1
2 𝑗 ′12 𝑗

𝑗1 𝑗23 𝑗2

}
=

165



4. Loop quantum supergravity and the quantum SUSY constraint

=
1
2
(−1)𝑗1+𝑗2+𝑗+𝑗12+𝑗

′
12+

3
2 𝑋 ( 1

2
, 𝑗2)

1
2

{
𝑗 1

2 𝑗12

1 𝑗 ′12
1
2

} {
𝑗1 𝑗2 𝑗12

1 𝑗 ′12 𝑗2

}
(4.179)

with 𝑋 ( 12 , 𝑗2)
1
2 = 2
√
6
√︁
𝑗2(𝑗2 + 1)

√︁
(2𝑗2 + 1). Furthermore, by the properties of the

6-𝑗 symbols, in order for (4.179) to be nonzero 𝑗 ′12 has to appear in the decomposition
of the tensor product representation 𝑗12 ⊗ 1 � (𝑗12 − 1) ⊗ 𝑗12 ⊗ (𝑗12 + 1), that is
𝑗 ′12 ∈ {𝑗12 − 1, 𝑗12 + 1}. Thus, inserting (4.179) into (4.177), we finally obtain

𝑞Ψ𝑗12 = −
𝑖
√
6

4
(−1)𝑗1+𝑗2+2𝑗12+𝑗+

3
2
√︃
(2𝑗12 + 1)

√︃
𝑗2(𝑗2 + 1)

√︃
(2𝑗2 + 1)× (4.180)

×
∑︁
𝑘∈{±1}

𝑘(2𝑗12 + 𝑘 + 1)
√︃
2𝑗12 + 2𝑘 + 1

{
𝑗 1

2 𝑗12

1 𝑗12 + 𝑘 1
2

}
×

×
{
𝑗1 𝑗2 𝑗12

1 𝑗12 + 𝑘 𝑗2

}
Ψ𝑗12+𝑘

This is the most general form for the action of 𝑞 on a planar vertex with an additional
decoupled edge labeled by spin- 12 . Applying (4.180) to our situation, i.e., 𝑗1 = 𝑗2 =: 𝑗
and 𝑗12 = 0, this yields

𝑞Ψ0 =
3𝑖
√
2

2
(−1)2𝑗+1

√︃
(2𝑗 + 1)

√︃
𝑗 (𝑗 + 1)

{
1
2

1
2 1

0 1 1
2

} {
𝑗 𝑗 1
0 1 𝑗

}
Ψ1

=
3𝑖
√
2

2
(−1)2𝑗+1

√︃
(2𝑗 + 1)

√︃
𝑗 (𝑗 + 1) 1√

6
(−1)2𝑗+1√︁
2𝑗 + 1

√
3
Ψ1

=
𝑖

2

√︃
𝑗 (𝑗 + 1)Ψ1 (4.181)

where we used that [160]{
𝑎 𝑏 𝑐

0 𝑐 𝑏

}
=

(−1)𝑎+𝑏+𝑐√︁
(2𝑏 + 1)

√︁
(2𝑐 + 1)

(4.182)

Similarly, for 𝑗12 = 1, one obtains

𝑞Ψ1 = −
𝑖

2

√︃
𝑗 (𝑗 + 1)Ψ0 (4.183)
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Hence, w.r.t. the subspace spanned by the orthonormal basis Ψ0 and Ψ1, the operator 𝑞
has the following matrix representation

𝑞 =
𝑖

2

√︃
𝑗 (𝑗 + 1)

(
0 1
−1 0

)
(4.184)

from which we can directly deduce that

|𝑞 | =
√︃
𝑞†𝑞 =

1
2

√︃
𝑗 (𝑗 + 1)1 =: 𝐶̃1 (4.185)

Hence, the Rovelli-Smolin volume operator (4.165) acts via multiplication with the
constant factor 𝐶̃

1
2 on the subspace spanned by Ψ0 and Ψ1. This immediately implies

that the action of (4.168) is given by

(ÔΨ𝛾 ) [ 𝐴𝛽 ] = − (𝜏𝑖)𝐴𝐵𝜋 1
2
(ℎ𝑒 [ 𝐴𝛽 ])

𝐵

𝐶

√︃
𝑉

(
𝜋 1

2
(ℎ−1𝑒 [ 𝐴𝛽 ])

𝐶

𝐴
Ψ𝛾 [ 𝐴𝛽 ]

)
= − 𝐶̃ 1

4 tr(𝜏𝑖ℎ𝑒 [ 𝐴𝛽 ]ℎ−1𝑒 [ 𝐴𝛽 ])Ψ𝛾 [ 𝐴𝛽 ] = −𝐶̃
1
4 tr(𝜏𝑖)Ψ𝛾 [ 𝐴𝛽 ] = 0

(4.186)

that is, Ô simply vanishes on these type of edges and therefore is only nonzero in case of
spin network vertices proving that (4.162) is indeed finite also justifying or choice of the
factor ordering. This is in fact different to the situation of the standard regularization
of the Hamiltonian constraint [157] as, e.g, the Euclidean part contains a term of the
form tr(ℎ𝛼ℎ𝑒 [ℎ−1𝑒 ,𝑉 ]) where 𝛼 is a closed loop. In contrast to (4.168), the action of this
operator will then, in general, be nonzero (in fact, as observed in (4.186), the triviality of
the action of Ô mainly arose due to the appearence of the Pauli matrix inside the trace).
At first sight, this may look like a contradiction, as the the commutator of the SUSY
constraint should reproduce the Hamiltonian constraint. However, as already explained
at the beginning of this section, the SUSY constraint is superior to the Hamiltonian
constraint, i.e., once the SUSY constraint is quantized, this yields a quantization of the
Hamiltonian constraint by computing its commutator. Hence, our proposal of the
quantum SUSY constraint provides, at least in principle, another possibility for the
quantization of the Hamiltonian constraint.

It finally remains to the check that the action of the operator X̂𝐾 (𝑠 𝐽 (Δ)) in (4.163)
is nontrivial such that X̂𝐾 (𝑠 𝐽 (Δ)) − X̂𝐾 (𝑥) can indeed be viewed as a quantization
of a regularized covariant derivative. To this end, we have to study the action of 𝑞 on
decoupled product states of the form

| (𝑗 𝑗 )0⟩ ⊗ | 1
2
, 𝑚⟩ ⊗ | 1

2
, 𝑚′⟩ (4.187)
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where | (𝑗 𝑗 )0⟩ is again the gauge-invariant divalent vertex located inside a spin network
edge and | 12 , 𝑚⟩ resp. | 12 , 𝑚

′⟩ are the additional edges with spin- 12 arising from the
holonomies ℎ𝑠′

𝐾
(Δ) resp. 𝐻𝑠 𝐽 (Δ) contained in (4.163) (see Figure 3). Note that, for the

ansatz (4.187), we have implicitly chosen the chiral represenation of the gamma matrices
so that the holonomy 𝐻𝑒 is indeed block diagonal according to the decomposition of
the restricted Majorana representation into a direct sum of two spin- 12 representations.
Hence, this operator does not mix between the two chiral sub representations so that it
suffices to restrict to one particular chiral sector. However, note that for the quantization
of the Rarita-Schwinger field in Section 4.5.1 a representation was chosen in which the
gamma matrices are explicitly real. But, since both representations are related via a
similarity transformations, one can map from one representation to the other.

In order to compute the action of (4.172) on the state (4.187), we first need to couple the
angular momentum 𝑗 corresponding to the one part of the spin network edge 𝑒 that is
incident at the vertex 𝑣 ∈𝑉 (𝛾) under consideration with the spin- 12 quantum number
corresponding to the segment 𝑠′

𝐾
(Δ) that is parallel to that edge. Using again Wigner

6-𝑗 symbols, we find

| (𝑗 𝑗 )0⟩ ⊗ | 1
2
, 𝑚⟩ ⊗ | 1

2
, 𝑚′⟩ = | (𝑗 𝑗 )0, 1

2
;
1
2
𝑚⟩ ⊗ | 1

2
, 𝑚′⟩

=
©­«
∑︁
𝑗23

(−1)2𝑗+1
√︁
2𝑗23 + 1

{
𝑗23 𝑗 1

2

0 1
2 𝑗

}
|𝑗, (𝑗 1

2
)𝑗23,

1
2
𝑚⟩ª®¬ ⊗ | 12 , 𝑚′⟩

=
(−1)2𝑗+1
√
2
√︁
2𝑗 + 1

∑︁
𝑗23

(−1)𝑗+ 12+𝑗23
√︁
2𝑗23 + 1 |𝑗, (𝑗

1
2
)𝑗23,

1
2
𝑚⟩ ⊗ | 1

2
, 𝑚′⟩

=

√︄
𝑗 + 1
2𝑗 + 1 |𝑗, (𝑗

1
2
)𝑗 + 1

2
,
1
2
𝑚⟩ ⊗ | 1

2
, 𝑚′⟩

−

√︄
𝑗

2𝑗 + 1 |𝑗, (𝑗
1
2
)𝑗 − 1

2
,
1
2
𝑚⟩ ⊗ | 1

2
, 𝑚′⟩ (4.188)

This can then be coupled with the remaining spin- 12 quantum number using the well-
known identities

| 1
2
,
1
2
⟩ ⊗ | 1

2
,
1
2
⟩ = |1, 1⟩ , | 1

2
,−1

2
⟩ ⊗ | 1

2
,−1

2
⟩ = |1,−1⟩ (4.189)

and

| 1
2
,±1

2
⟩ ⊗ | 1

2
,∓1

2
⟩ = 1
√
2
|1, 0⟩ ± 1

√
2
|0, 0⟩ (4.190)
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Hence, we have to determine the action of (4.172) on states of the form

Ψ±1
2 ,

1
2 ,𝑗

:= | (𝑗 ± 1
2
𝑗 ) 1

2
,
1
2
, 𝑗 𝑚⟩ , with 𝑗 ∈ {0, 1} (4.191)

The action of 𝑞 on (4.191) now follows directly from the general formula (4.180) setting
𝑗1 = 𝑗 ± 1

2 and 𝑗2 = 𝑗 . Since 𝑗12 = 1
2 in this case, only the 𝑘 = +1-term in the sum of

(4.180) remains yielding

𝑞Ψ±1
2 ,

1
2 ,𝑗

= − 3𝑖
√
3(−1)2𝑗+

1
2±

1
2+𝑗

√︃
𝑗 (𝑗 + 1)

√︃
(2𝑗 + 1)

{
𝑗 1

2
1
2

1 3
2

1
2

}
× (4.192)

×
{
𝑗 ± 1

2 𝑗 1
2

1 3
2 𝑗

}
Ψ 3

2 ,
1
2 ,𝑗

(4.193)

which, according to the first 6𝑗 -symbol appearing in (4.192), will be nonzero if and only
if 𝑗 ∈ 3

2 ⊗
1
2 � 1 ⊕ 2. Hence, in particular, for 𝑗 = 0 this immediately implies

𝑞Ψ±1
2 ,

1
2 ,0

= 0 (4.194)

On the other hand, for 𝑗 = 1, one obtains

𝑞Ψ±1
2 ,

1
2 ,1

=3𝑖
√
3(−1)2𝑗+ 12± 1

2

√︃
𝑗 (𝑗 + 1)

√︃
(2𝑗 + 1)

{
1 1

2
1
2

1 3
2

1
2

}
×

×
{
𝑗 ± 1

2 𝑗 1
2

1 3
2 𝑗

}
Ψ 3

2 ,
1
2 ,1

(4.195)

Using the general formula [160]{
𝑎 𝑗 1

2

1 3
2 𝑗

}
=

{
𝑎 𝑗 3

2

1 1
2 𝑗

}
=

(−1)𝑎+ 32+𝑗

4
√
3
√︁
2𝑗 + 1

√︁
𝑗 (𝑗 + 1)

((
𝑎 + 𝑗 + 5

2

) (
3
2
+ 𝑗 − 𝑎

) (
3
2
+ 𝑎 − 𝑗

) (
𝑎 − 1

2
+ 𝑗

)) 1
2

(4.196)
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it follows for 𝑎 = 1 and 𝑗 = 1
2 {

1 1
2

1
2

1 3
2

1
2

}
= − 1

3
(4.197)

For 𝑎 = 𝑗 + 1
2 one finds{

𝑗 + 1
2 𝑗 1

2

1 3
2 𝑗

}
=
(−1)2𝑗

2
√
3

√︁
𝑗 (2𝑗 + 3)√︁

2𝑗 + 1
√︁
𝑗 (𝑗 + 1)

(4.198)

and finally for 𝑎 = 𝑗 − 1
2{

𝑗 − 1
2 𝑗 1

2

1 3
2 𝑗

}
=
(−1)2𝑗+1

2
√
3

√︁
(𝑗 + 1) (2𝑗 − 1)√︁
2𝑗 + 1

√︁
𝑗 (𝑗 + 1)

(4.199)

Thus, inserting (4.197), (4.198) and (4.199) into (4.195) this yields

𝑞Ψ±1
2 ,

1
2 ,1

=
𝑖𝑎±
2

Ψ 3
2 ,

1
2 ,1

(4.200)

with 𝑎+ :=
√︁
𝑗 (2𝑗 + 3) and 𝑎− :=

√︁
(𝑗 + 1) (2𝑗 − 1). Since 𝑞 is Hermitian, its matrix

representation in the subspace spanned by the orthonormal basis Ψ±1
2 ,

1
2 ,1

and Ψ±3
2 ,

1
2 ,1

thus
takes the form

𝑞 =
𝑖𝑎±
2

(
0 1
−1 0

)
(4.201)

As a consequence, the Rovelli-Smolin volume operator is diagonal on this subspace so
that, in particular, √︃

𝑉 =
4
√︃
|𝑞 | = 4

√︂
𝑎±
2
1 =: 𝐶±1 (4.202)

i.e.
√︁
𝑉 acts as a multiplication operator with the constant factor𝐶±. Let us define

| (𝑗 𝑗 )0, 1
2

;
1
2
𝑚⟩ ⊗ | 1

2
, 𝑚′⟩ = | (𝑗 𝑗 )0⟩ ⊗ | 1

2
, 𝑚⟩ ⊗ | 1

2
, 𝑚′⟩

:=


|0, ↑↑⟩ , for𝑚 = 𝑚′ = 1

2

|0, ↑↓⟩ , for𝑚 = 1
2 , 𝑚

′ = − 1
2

|0, ↓↑⟩ , for𝑚 = − 1
2 , 𝑚

′ = 1
2

|0, ↓↓⟩ , for𝑚 = 𝑚′ = − 1
2
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in order to simply our notation. Using then (4.188), (4.189) and (4.190) as well as (4.202),
we find√︃
𝑉 |0, ↑↑⟩ =

√︄
𝑗 + 1
2𝑗 + 1

√︃
𝑉 |𝑗, (𝑗 1

2
)𝑗 + 1

2
;
1
2
,
1
2
⟩ ⊗ | 1

2
,
1
2
⟩

−

√︄
𝑗

2𝑗 + 1

√︃
𝑉 |𝑗, (𝑗 1

2
)𝑗 − 1

2
;
1
2
,
1
2
⟩ ⊗ | 1

2
,
1
2
⟩

=

√︄
𝑗 + 1
2𝑗 + 1𝐶+ | (𝑗 𝑗 +

1
2
) 1
2
,
1
2

; 1, 1⟩ −

√︄
𝑗

2𝑗 + 1𝐶− | (𝑗 𝑗 −
1
2
) 1
2
,
1
2

; 1, 1⟩

=

√︄
𝑗 + 1
2𝑗 + 1𝐶+ |𝑗, (𝑗

1
2
)𝑗 + 1

2
;
1
2
,
1
2
⟩ ⊗ | 1

2
,
1
2
⟩

−

√︄
𝑗

2𝑗 + 1𝐶− |𝑗, (𝑗
1
2
)𝑗 − 1

2
;
1
2
,
1
2
⟩ ⊗ | 1

2
,
1
2
⟩

=:𝐴1 |+, ↑⟩ ⊗ |↑⟩ − 𝐴2 |−, ↑⟩ ⊗ |↑⟩ (4.203)

and similarly√︃
𝑉 |0, ↓↓⟩ =

√︄
𝑗 + 1
2𝑗 + 1𝐶+ |𝑗, (𝑗

1
2
)𝑗 + 1

2
;
1
2
,−1

2
⟩ ⊗ | 1

2
,−1

2
⟩

−

√︄
𝑗

2𝑗 + 1𝐶− |𝑗, (𝑗
1
2
)𝑗 − 1

2
;
1
2
,−1

2
⟩ ⊗ | 1

2
,−1

2
⟩

=𝐴1 |+, ↓⟩ ⊗ |↓⟩ − 𝐴2 |−, ↓⟩ ⊗ |↓⟩ (4.204)

Finally, using (4.190) and the fact that the action of the volume operator on states with
vanishing total angular momentum 𝑗 = 0 is zero (see Eq. (4.194)), we find for the mixed
spin-components√︃

𝑉 |0, ↓↑⟩ =

=

√︄
𝑗 + 1
2𝑗 + 1

√︃
𝑉 |𝑗, (𝑗 1

2
)𝑗 + 1

2
;
1
2
,−1

2
⟩ ⊗ | 1

2
,
1
2
⟩

−

√︄
𝑗

2𝑗 + 1

√︃
𝑉 |𝑗, (𝑗 1

2
)𝑗 − 1

2
;
1
2
,−1

2
⟩ ⊗ | 1

2
,
1
2
⟩

=
1
√
2

√︄
𝑗 + 1
2𝑗 + 1𝐶+ | (𝑗 𝑗 +

1
2
) 1
2
,
1
2

; 1, 0⟩ − 1
√
2

√︄
𝑗

2𝑗 + 1𝐶− | (𝑗 𝑗 −
1
2
) 1
2
,
1
2

; 1, 0⟩
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=

√︄
𝑗 + 1
2𝑗 + 1

𝐶+
2
( |+, ↑⟩ ⊗ |↓⟩ + |+, ↓⟩ ⊗ |↑⟩)

−

√︄
𝑗

2𝑗 + 1
𝐶−
2
( |−, ↑⟩ ⊗ |↓⟩ + |−, ↓⟩ ⊗ |↑⟩)

=
𝐴1

2
|+, ↑⟩ ⊗ |↓⟩ + 𝐴1

2
|+, ↓⟩ ⊗ |↑⟩ − 𝐴2

2
|−, ↑⟩ ⊗ |↓⟩ − 𝐴2

2
|−, ↓⟩ ⊗ |↑⟩ (4.205)

and analogously√︃
𝑉 |0, ↑↓⟩ =𝐴1

2
|+, ↑⟩ ⊗ |↓⟩ + 𝐴1

2
|+, ↓⟩ ⊗ |↑⟩ − 𝐴2

2
|−, ↑⟩ ⊗ |↓⟩ − 𝐴2

2
|−, ↓⟩ ⊗ |↑⟩

(4.206)

Recall that we want to the determine the action of (4.163) on the spin network state Ψ𝛾 .
We therefore have already derived all necessary ingredients. It only remains to evaluate
the trace appearing in (4.163). For this, in the following remark, let us recall some basic
facts concerning the action of flux operators appearing e.g. in the volume operator (see
also Section 5.5.1).

Remark 4.5.1. In the Asthekar-Lewandowski representation, the quantized (bosonic)
electric flux operator X̂𝑛(𝑆) smeared over two-dimensional surfaces 𝑆 with smearing
function 𝑛 acts on holonomies ℎ𝑒 [ 𝐴𝛽 ] via [18] (see Eq. (5.180) with coupling constant
𝑔 = −𝜅𝛽)

X̂𝑛(𝑆)ℎ𝑒 [ 𝐴𝛽 ] = −
𝑖ℏ𝜅𝛽

4
𝜖(𝑒, 𝑆)𝑛(𝑏(𝑒))ℎ𝑒 [ 𝐴𝛽 ] (4.207)

Since {𝐸𝑛(𝑆), ℎ𝑒 [ 𝐴𝛽 ]−1} = −ℎ𝑒 [ 𝐴𝛽 ]−1{𝐸𝑛(𝑆), ℎ𝑒 [ 𝐴𝛽 ]}ℎ𝑒 [ 𝐴𝛽 ]−1, this yields in case
of a single edge 𝑒 ingoing at 𝑆 ∩ 𝑒

X̂𝑛(𝑆)ℎ𝑒 [ 𝐴𝛽 ]−1 = −ℎ𝑒 [ 𝐴𝛽 ]−1(X𝑛(𝑆)ℎ𝑒 [ 𝐴𝛽 ])ℎ𝑒 [ 𝐴𝛽 ]−1 =
𝑖ℏ𝜅𝛽

4
ℎ𝑒 [ 𝐴𝛽 ]−1𝑛(𝑏(𝑒))

(4.208)
Hence, in case that 𝑓 ≡ 𝑓𝑒 is a cylindrical function w.r.t. a graph consisting of the single
edge 𝑒, this yields

X𝑛(𝑆)𝑓(ℎ𝑒 [ 𝐴𝛽 ]−1) =
𝜕𝑓

𝜕
(
ℎ𝑒 [ 𝐴𝛽 ]−1

)𝐴
𝐵

(ℎ𝑒 [ 𝐴𝛽 ]−1)
(
𝑖ℏ𝜅𝛽

4
ℎ𝑒 [ 𝐴𝛽 ]−1𝑛(𝑏(𝑒))

)𝐴
𝐵

=
𝑖ℏ𝜅𝛽

4
𝑛(𝑏(𝑒))𝑗 d

d𝑡

����
𝑡=0
𝑓(ℎ𝑒 [ 𝐴𝛽 ]−1𝑒𝑡𝜏𝑗 )

=
𝜅𝛽

4
𝑛(𝑏(𝑒))𝑗 (𝑖ℏ𝐿𝑗 𝑓) (ℎ𝑒 [ 𝐴𝛽 ]−1) (4.209)
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with 𝐿𝑗 the left-invariant vector field generated by 𝜏𝑗 ∈ 𝔰𝔲(2), 𝑗 ∈ 1, 2, 3, which is
related to the pushforward representation of the right regular representation

𝜌𝑅 : SU(2) → B(𝐿2(SU(2))), 𝑔 ↦→ ( 𝜌𝑅 ( 𝑔) : 𝑓 ↦→ 𝑓( · 𝑔)) (4.210)

according to

(𝐿𝑗 𝑓) (ℎ) =
d
d𝑡

����
𝑡=0
𝑓(ℎ𝑒𝑡𝜏𝑗 ) = d

d𝑡

����
𝑡=0
𝜌𝑅 (𝑒𝑡𝜏𝑗 ) (𝑓) (ℎ) = 𝜌𝑅∗(𝜏𝑗 )𝑓(ℎ) (4.211)

∀𝑓 ∈ 𝐶∞(SU(2)) and ℎ ∈ SU(2) and extended uniquely to a (unbounded) self-adjoint
operator on 𝐿2(SU(2)), that is,

𝐽 𝑗 := 𝑖ℏ𝜌𝑅∗(𝜏𝑗 ) = 𝑖ℏ𝐿𝑗 (4.212)

For the concrete situation considered here, we are interested in the action on cylindrical
function 𝑓 corresponding to the matrix components of the spin- 12 representation of
SU(2), i.e.

𝑓 = 𝜋 1
2
(ℎ𝑒 [ 𝐴𝛽 ]−1)

𝐴

𝐵
(4.213)

for any 𝐴, 𝐵 ∈ {±}. As it is very well-known, these matrix components generate a
proper invariant subrepresentation of the right regular representation on 𝐿2(SU(2)).
In fact, since for general spin-𝑗

𝜌𝑅 ( 𝑔) (𝜋𝑗 )𝐴𝐵 (ℎ) = 𝜋𝑗 (ℎ 𝑔)
𝐴
𝐵 = 𝜋𝑗 (ℎ)𝐴𝐶 𝜋𝑗 ( 𝑔)

𝐶
𝐵

(4.214)

for any group element 𝑔 ∈ SU(2), it follows that 𝜌𝑅 ( 𝑔)𝑉𝐴 ⊆ 𝑉𝐴 with 𝑉𝐴 :=
spanC

{
(𝜋𝑗 )𝐴𝐵 | 𝐵 ∈ {±}

}
and thus, in particular,

𝐽 𝑗𝑉𝐴 ⊆ 𝑉𝐴, ∀𝐴 ∈ {±} (4.215)

Moreover, for 𝑗 = 1
2 , it follows

𝐽 3(𝜋 1
2
)𝐴𝐵 (ℎ) = 𝑖ℏ

d
d𝑡

����
𝑡=0
𝜋 1

2
(ℎ𝑒𝑡𝜏3)𝐴𝐵 = 𝑖ℏ𝜋 1

2
(ℎ)𝐴

𝐶

d
d𝑡

����
𝑡=0

(
𝑒𝑡𝜏3

)𝐶
𝐵

= 𝑖ℏ𝜋 1
2
(ℎ)𝐴

𝐶
𝜏3
𝐶
𝐵

(4.216)

so that
𝐽 3(𝜋 1

2
)𝐴+ =

ℏ

2
(𝜋 1

2
)𝐴+ and 𝐽 3(𝜋 1

2
)𝐴− = −ℏ

2
(𝜋 1

2
)𝐴− (4.217)
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To summarize, we have

𝜋 1
2
=

(
| 12 ,

1
2 ⟩ |

1
2 ,−

1
2 ⟩

| 12 ,
1
2 ⟩ |

1
2 ,−

1
2 ⟩

)
(4.218)

and, due to (4.214), the rows in (4.218) define 2-dimensional invariant subspaces w.r.t.
the angular momentum operator 𝐽 𝑗 and thus, in particular, w.r.t. the quantized electric
fluxes X̂𝑛(𝑆).

Using the observations of Remark 4.5.1, let us now compute the action of (4.163) on the
spin network state Ψ𝛾 which, for sake of simplicity, we assume to be a product state of
the form Ψ𝛾 = 𝜓𝑏 ⊗ 𝜓𝑓 with 𝜓𝑏 a proper spin network function and 𝜓𝑓 an element of
the fermionic part of the Hilbert space. Using (4.203) as well as (4.218) and (4.214), we
then immediately find√︃

𝑉 ℎ[ 𝐴𝛽 ]−1𝐴+𝐻 ++ 𝜃+𝑖 Ψ𝛾 [ 𝐴𝛽 ] ≡
√︃
𝑉 |0, ↑↑⟩ ⊗ 𝜃+𝑖 𝜓𝑓

=

(
𝐴1ℎ

−1𝐴
+ |+, ↑⟩ − 𝐴2ℎ

−1𝐴
+ |−, ↑⟩

)
⊗ 𝜃+𝑖 𝜓𝑓

(4.219)

On the other hand, we have√︃
𝑉 ℎ[ 𝐴𝛽 ]−1𝐴−𝐻 ++ 𝜃+𝑖 Ψ𝛾 [ 𝐴𝛽 ] ≡

√︃
𝑉 |0, ↓↑⟩ ⊗ 𝜃+𝑖 𝜓𝑓

=

(
𝐴1

2
ℎ−1

𝐴

+ |+, ↓⟩ +
𝐴1

2
ℎ−1

𝐴

− |+, ↑⟩

−𝐴2

2
ℎ−1

𝐴

+ |−, ↓⟩ −
𝐴2

2
ℎ−1

𝐴

− |−, ↑⟩
)
⊗ 𝜃+𝑖 𝜓𝑓

(4.220)

as well as√︃
𝑉 ℎ[ 𝐴𝛽 ]−1𝐴+𝐻 +− 𝜃−𝑖 Ψ𝛾 [ 𝐴𝛽 ] ≡

√︃
𝑉 |0, ↑↓⟩ ⊗ 𝜃−𝑖 𝜓𝑓

=

(
𝐴1

2
ℎ−1

𝐴

+ |+, ↓⟩ +
𝐴1

2
ℎ−1

𝐴

− |+, ↑⟩

−𝐴2

2
ℎ−1

𝐴

+ |−, ↓⟩ −
𝐴2

2
ℎ−1

𝐴

− |−, ↑⟩
)
⊗ 𝜃−𝑖 𝜓𝑓

(4.221)
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and finally√︃
𝑉 ℎ[ 𝐴𝛽 ]−1𝐴−𝐻 +− 𝜃−𝑖 Ψ𝛾 [ 𝐴𝛽 ] ≡

√︃
𝑉 |0, ↓↓⟩ ⊗ 𝜃−𝑖 𝜓𝑓

=

(
𝐴1ℎ

−1𝐴
− |+, ↓⟩ − 𝐴2ℎ

−1𝐴
− |−, ↓⟩

)
⊗ 𝜃−𝑖 𝜓𝑓

(4.222)

If we write for the holonomy

ℎ−1 :=

(
𝛼 𝛽

𝛾 𝛿

)
(4.223)

for some complex coefficients 𝛼, 𝛽, 𝛾, 𝛿 ∈ C, this yields for the action of (4.163)

(X̂ Ψ𝛾 ) [ 𝐴𝛽 ] =

= tr(𝜏𝑖ℎ[ 𝐴𝛽 ]
√︃
𝑉 ℎ[ 𝐴𝛽 ]−1)𝐻 +𝐵 𝜃

𝐵𝜓 [ 𝐴𝛽 ]

= 𝜏𝑖
𝐴
𝐵ℎ

𝐵
𝐶

√︃
𝑉 ℎ−1

𝐶

𝐴𝐻
+
𝐵 𝜓𝑏 ⊗ 𝜃

𝐵
𝑖 𝜓𝑓

= tr(𝜏𝑖ℎ
(
𝐴1𝛼

𝐴1
2 𝛽

𝐴1𝛾
𝐴1
2 𝛿

)
) |+, ↑⟩ ⊗ 𝜃+𝑖 𝜓𝑓 + tr(𝜏𝑖ℎ

(
0 𝐴1

2 𝛼

0 𝐴1
2 𝛾

)
) |+, ↓⟩ ⊗ 𝜃+𝑖 𝜓𝑓

− tr(𝜏𝑖ℎ
(
𝐴2𝛼

𝐴2
2 𝛽

𝐴2𝛾
𝐴2
2 𝛿

)
) |−, ↑⟩ ⊗ 𝜃+𝑖 𝜓𝑓 − tr(𝜏𝑖ℎ

(
0 𝐴2

2 𝛼

0 𝐴2
2 𝛾

)
) |−, ↓⟩ ⊗ 𝜃+𝑖 𝜓𝑓

+ tr(𝜏𝑖ℎ
(
𝐴1
2 𝛽 0
𝐴1
2 𝛿 0

)
) |+, ↑⟩ ⊗ 𝜃−𝑖 𝜓𝑓 + tr(𝜏𝑖ℎ

(
𝐴1
2 𝛼 𝐴1𝛽
𝐴1
2 𝛾 𝐴1𝛿

)
) |+, ↓⟩ ⊗ 𝜃−𝑖 𝜓𝑓

− tr(𝜏𝑖ℎ
(
𝐴2
2 𝛽 0
𝐴2
2 𝛿 0

)
) |−, ↑⟩ ⊗ 𝜃−𝑖 𝜓𝑓 − tr(𝜏𝑖ℎ

(
𝐴2
2 𝛼 𝐴2𝛽
𝐴2
2 𝛾 𝐴2𝛿

)
) |−, ↓⟩ ⊗ 𝜃−𝑖 𝜓𝑓 (4.224)

This can be further simplified using that(
𝐴1𝛼

𝐴1
2 𝛽

𝐴1𝛾
𝐴1
2 𝛿

)
=

(
𝛼 𝛽

𝛾 𝛿

) (
𝐴1 0
0 𝐴1

2

)
= ℎ−1

(
𝐴1 0
0 𝐴1

2

)
(4.225)

and (
0 𝐴1

2 𝛼

0 𝐴1
2 𝛾

)
=

(
𝛼 𝛽

𝛾 𝛿

) (
0 𝐴1

2

0 0

)
= ℎ−1

(
0 𝐴1

2

0 0

)
(4.226)
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as well as (
𝐴1
2 𝛽 0
𝐴1
2 𝛿 0

)
= ℎ−1

(
0 0
𝐴1
2 0

)
(4.227)

such that, for instance,

tr(𝜏𝑖

(
𝐴1𝛼

𝐴1
2 𝛽

𝐴1𝛾
𝐴1
2 𝛿

)
) =


0, for 𝑖 = 1
0, for 𝑖 = 2
𝐴1
4𝑖 , for 𝑖 = 3

(4.228)

and similar for the other traces. Hence, we finally end up with

(X̂ Ψ𝛾 ) [ 𝐴𝛽 ] =
𝐴1

4𝑖
|+, ↑⟩ ⊗ 𝜃+3 𝜓𝑓 +

𝐴1

4𝑖
|+, ↓⟩ ⊗ (𝜃+1 + 𝑖𝜃+2 )𝜓𝑓

−𝐴2

4𝑖
|−, ↑⟩ ⊗ 𝜃+3 𝜓𝑓 −

𝐴2

4𝑖
|−, ↓⟩ ⊗ (𝜃+1 + 𝑖𝜃+2 )𝜓𝑓

+𝐴1

4𝑖
|+, ↑⟩ ⊗ (𝜃−1 − 𝑖𝜃−2 )𝜓𝑓 −

𝐴1

4𝑖
|+, ↓⟩ ⊗ 𝜃−3 𝜓𝑓

−𝐴2

4𝑖
|−, ↑⟩ ⊗ (𝜃−1 − 𝑖𝜃−2 )𝜓𝑓 +

𝐴2

4𝑖
|−, ↓⟩ ⊗ 𝜃−3 𝜓𝑓 (4.229)

and thus

(X̂ Ψ𝛾 ) [ 𝐴𝛽 ] =
𝐴1

4𝑖
|+, ↑⟩ ⊗ (𝜃+3 + 𝜃−1 − 𝑖𝜃−2 )𝜓𝑓 +

𝐴1

4𝑖
|+, ↓⟩ ⊗ (𝜃+1 + 𝑖𝜃+2 − 𝜃−3 )𝜓𝑓

−𝐴2

4𝑖
|−, ↑⟩ ⊗ (𝜃+3 + 𝜃−1 − 𝑖𝜃−2 )𝜓𝑓 −

𝐴2

4𝑖
|−, ↓⟩ ⊗ (𝜃+1 + 𝑖𝜃+2 − 𝜃−3 )𝜓𝑓

(4.230)

where

𝐴1 =

√︄
𝑗 + 1

2(2𝑗 + 1)
(
𝑗 (2𝑗 + 3)

) 1
4 and 𝐴2 =

√︄
𝑗

2(2𝑗 + 1)
(
(𝑗 + 1) (2𝑗 − 1)

) 1
4

(4.231)
As we see, the action of (4.163) is indeed nontrivial as required and, moreover, creates a
new vertex coupled to a fermion. In particular, we see that (4.230) is completely inde-
pendent of the additional segment 𝑠′

𝐾
(Δ) which was needed for the regularization. This

is indeed a good thing as the choice of such an additional segment would be completely
arbitrary and not based on any fundamental principles justifying the assumption made
in (iv) above. Let us make two final remarks about the quantization chosen here.
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4.5. Quantum theory

Remark 4.5.2. We have seen that the properties of the additional edge added at the
new vertex, in the definition of (4.230) are irrelevant for the end result. This property
can have some side effects, however. Consider the situation depicted in Figure 2, and
additionally consider a second tetrahedron spanned by the edge segments 𝑠1, 𝑠2 and a
third segment 𝑡3 along an edge different from 𝑠1, 𝑠2, 𝑠3. Depending on the orientation of
the tangent vectors, the triplet (𝑠1, 𝑠2, 𝑡3) may be either positively or negatively oriented.
However, the action of (4.230) will otherwise be exactly the same in both cases. The
relative orientation of the two triplets enters through the 𝜖 tensor and gives a relative
minus sign in one of the cases. If the orientations differ, the two contributions to the
operator 𝑆 (1) cancel after all. This runs counter to the intuition from the classical theory.
Thus one might consider defining a variant of this operator in which an additional sign
depending on the orientation is introduced in (4.230).

Remark 4.5.3. Another possibility in quantizing the first term in the SUSY constraint
(4.120) would be to choose a different variant in which the covariant derivative acts
directly on the Rarita-Schwinger field involving of course additional contributions due
to the derivation property. That is, one could instead consider an expression of the form

𝑆 ′(1) [𝜂] :=
∫
Σ

d3𝑥 𝜂̄
𝑖

4
√
𝑞
𝜖𝑎𝑏𝑐𝑒𝑖𝑎𝛾𝑖 𝛾∗𝑒

𝑗
𝑐 𝐷
( 𝐴𝛽 )
𝑏

𝜙𝑗 (4.232)

Following the standard procedure, it is then immediate to see that a regularization of
(4.232) is given by (see also Part II below)

𝑆
′(1)
𝛿
[𝜂] =

=
∑︁

Δ𝑖 ∈𝑇 (𝛾,𝛿)
𝜂̄(𝑥𝑖)

1
𝜅2

√︁
𝑉 (𝑥𝑖 , 𝛿)

𝜖𝐼 𝐽 𝐾 tr(𝜏𝑙ℎ𝑠𝐼 (Δ𝑖 ) [ 𝐴𝛽 ]{ℎ𝑠𝐼 (Δ𝑖 ) [ 𝐴𝛽 ]−1,𝑉 (𝑥𝑖 , 𝛿)})×

× 𝛾𝑙 𝛾∗tr(𝜏𝑗ℎ𝑠 𝐽 (Δ𝑖 ) [ 𝐴𝛽 ]{ℎ𝑠 𝐽 (Δ𝑖 ) [ 𝐴𝛽 ]−1,𝑉 (𝑥𝑖 , 𝛿)})×

×
(
𝐻 ( 𝐴𝛽 ) (𝑠𝐾 (Δ𝑖) (𝛿))𝜃 𝛿𝑗 (𝑠𝐾 (Δ𝑖) (𝛿)) − 𝜃

𝛿
𝑗 (𝑥𝑖)

)
(4.233)

For the quantization of (4.233), one can now use either the Ashtekar-Lewandowski
or Rovelli-Smolin volume operator. In both cases, based on our observations above,
the resulting operator will be finite, i.e., only terms involving spin network vertices
contribute. Moreover, one obtains a nontrivial action for the difference operator result-
ing from the last term in (4.233) which is consistent for a regularization of a covariant
derivative.

177



4. Loop quantum supergravity and the quantum SUSY constraint

4.5.2.2. Part II

Next, let us turn to the quantization of the second term in the SUSY constraint (4.120)
depending on the covariant derivative of the frame field

𝑆 (2) [𝜂] :=
∫
Σ

d3𝑥 𝜂̄
1
4
√
𝑞
𝜖𝑎𝑏𝑐𝑒𝑙𝑐

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘 (𝐷
( 𝐴𝛽 )
𝑎 𝑒𝑘

𝑏
)𝜙𝑙 (4.234)

We want to quantize this expression by similar means as in the foregoing section. As
we have recently observed, the implementation of the regularized covariant derivative
in (4.151) yields an operator that creates new vertices. However, according to (4.230),
this new vertex is strongly coupled to the fermion. Hence, in order for this additional
contribution to be nonzero, the presence of a fermion is crucial. One may therefore
expect that the quantization of the covariant derivative in (4.234) by similar means will
lead to vanishing contributions of the operator acting apart from the spin network vertex
which seems to be inconsistent for the regularization of a covariant derivative. For this
reason, let us introduce the total covariant derivative ∇( 𝐴𝛽 ) which acts on both internal
indices and spinor indices. With respect to this covariant derivative, we can write

(𝐷 ( 𝐴
𝛽 )
𝑎 𝑒𝑘

𝑏
)𝜙𝑙 = ∇

( 𝐴𝛽 )
𝑎 (𝑒𝑘

𝑏
𝜙𝑙) − 𝑒𝑘𝑏∇

( 𝐴𝛽 )
𝑎 𝜙𝑙 (4.235)

In the quantum theory, this then has the advantage of creating vertices coupled to
fermion fields and therefore, based on our previous observations, yields nontrivial con-
tributions. Inserting (4.235) into (4.234) yields two terms, one which is very similar to
expression (4.145) replacing the covariant derivative acting on purely spinor indices with
the new total covariant derivative which also acts on internal indices. The implemen-
tation of this quantity can be performed in analogy to the foregoing section. For this
reason, we will not explain the steps in detail. Concerning the second contribution, one
arrives at an expression of the form

𝑆 ′(2) [𝜂] :=
∫
Σ

d3𝑥 𝜂̄
1
4
√
𝑞
𝜖𝑎𝑏𝑐𝑒𝑙𝑐

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘𝑒
𝑘
𝑏
∇( 𝐴

𝛽 )
𝑎 𝜙𝑙 (4.236)

We make the following ansatz for a regularization of (4.236)

𝑆
′(2)
𝛿
[𝜂] =

=
∑︁

Δ𝑖 ∈𝑇 (𝛾,𝛿)
𝜂̄(𝑥𝑖)

−1
6𝜅2

√︁
𝑉 (𝑥𝑖 , 𝛿)

𝜖𝐼 𝐽 𝐾 tr(𝜏𝑙ℎ𝑠𝐾 (Δ𝑖 ) [ 𝐴𝛽 ]{ℎ𝑠𝐾 (Δ𝑖 ) [ 𝐴𝛽 ]−1,𝑉 (𝑥, 𝛿)})×

×
1 + 𝑖 𝛽𝛾∗

2𝛽
𝛾𝑘tr(𝜏𝑘ℎ𝑠 𝐽 (Δ𝑖 ) [ 𝐴𝛽 ]{ℎ𝑠 𝐽 (Δ𝑖 ) [ 𝐴𝛽 ]−1,𝑉 (𝑥, 𝛿)})

(
Y 𝛿
𝑙
(𝑠𝐼 (Δ)) − Y 𝛿

𝑙
(𝑥𝑖)

)
(4.237)
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4.5. Quantum theory

where

Y 𝛿
𝑙
(𝑠𝐼 (Δ)) := 𝐻 ( 𝐴𝛽 ) (𝑠𝐼 (Δ𝑖) (𝛿))𝜃 𝛿𝑙 (𝑠𝐼 (Δ𝑖) (𝛿)) (4.238)

and

Y𝑙 (𝑥𝑖) := 𝜃 𝛿
𝑙
(𝑥𝑖) (4.239)

Here, 𝐻 ( 𝐴𝛽 ) denotes the holonomy induced by the total covariant derivative ∇( 𝐴𝛽 )
which, in the limit of small 𝛿 , satisfies

𝐻 ( 𝐴𝛽 ) (𝑠𝐼 (Δ𝑖) (𝛿))Ψ𝑙 (𝑠𝐼 (Δ𝑖) (𝛿)) − Ψ𝑙 (𝑥𝑖) = 𝛿 ¤𝑠𝐼 (Δ𝑖)𝑎∇
( 𝐴𝛽 )
𝑎 Ψ𝑙 (𝑥𝑖) (4.240)

where Ψ is some spinor-valued co-vector field (w.r.t. internal indices) defined on Σ.
Following the same steps as in the previous section, it can be shown immediately that
for 𝛿 → 0, one obtains

lim
𝛿→0

𝑆
′(2)
𝛿
[𝜂] = lim

𝛿→0

∑︁
Δ𝑖 ∈𝑇 (𝛾,𝛿)

−1
32𝜅2 4

√︁
𝑞(𝑥𝑖)

{𝐴𝑙𝑐 ,𝑉 (𝑥𝑖 , 𝛿)}
1 + 𝑖 𝛽𝛾∗

2𝛽
𝛾𝑘×

× {𝐴𝑘
𝑏
,𝑉 (𝑥𝑖 , 𝛿)}∇( 𝐴

𝛽 )
𝑎 𝜙𝑙 (𝑥𝑖)𝜖𝐼 𝐽 𝐾 𝛿3 ¤𝑠𝑎𝐼 (Δ𝑖) ¤𝑠

𝑏
𝐽 (Δ𝑖) ¤𝑠

𝑐
𝐾
(Δ𝑖) (4.241)

so that, together with (4.159) and (4.146), this yields a Riemann sum so that in the limit
𝛿 → 0 one finally arrives at

lim
𝛿→0

𝑆
′(2)
𝛿
[𝜂] = 𝑆 ′(2) [𝜂] (4.242)

For the quantization of the regularized expression (4.237), we use

1√︁
𝑉 (𝑥, 𝛿)

{𝐴𝑙𝑐 ,𝑉 (𝑥, 𝛿)}{𝐴𝑘𝑏 ,𝑉 (𝑥, 𝛿)} =
16
9
{𝐴𝑙𝑐 ,𝑉 (𝑥, 𝛿)

3
4 }{𝐴𝑘

𝑏
,𝑉 (𝑥, 𝛿) 34 }

(4.243)
and replace Poisson brackets by the respective commutators yielding

𝑆
′(2)
𝛿
[𝜂] :=

=
8

27ℏ2𝜅2
∑︁
𝑣∈𝛾

8
𝐸 (𝑣) 𝜂̄(𝑣)𝜖

𝐼 𝐽 𝐾
1 + 𝑖 𝛽𝛾∗

2𝛽
𝛾𝑘tr(𝜏𝑘ℎ𝑠 𝐽 (Δ) [ 𝐴𝛽 ] [ℎ𝑠 𝐽 (Δ) [ 𝐴𝛽 ]−1,𝑉

3
4
𝑣 ])×

×
(
Ŷ𝑙 (𝑠𝐼 (Δ)) − Ŷ𝑙 (𝑥𝑖)

)
tr(𝜏𝑙ℎ𝑠𝐾 (Δ) [ 𝐴𝛽 ] [ℎ𝑠𝐾 (Δ) [ 𝐴𝛽 ]−1,𝑉

3
4
𝑣 ]) (4.244)
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4. Loop quantum supergravity and the quantum SUSY constraint

with

Ŷ𝑙 (𝑠𝐼 (Δ)) := 𝐻 ( 𝐴𝛽 ) (𝑠𝐼 (Δ) (𝛿))𝜃𝑙 (𝑠𝐼 (Δ) (𝛿)) and Ŷ𝑙 (𝑣) := 𝜃𝑙 (𝑣) (4.245)

In the infinite sum of (4.244) we were again allowed to restrict to the sum over the
vertices of the underlying spin network graph since one of the trace terms was ordered to
the right. By (4.186), this yields vanishing contributions in case that the Rovelli-Smolin
volume operator does not act on a spin network vertex.

4.5.2.3. Part III

Finally, we need to quantize the last three terms in the SUSY constraint (4.120). These
terms are all of very similar structure and, in particular, do not contain any covariant
derivative. Hence, it suffices for instance to consider the last one which we write in the
form

𝑆 (3) [𝜂] :=
∫
Σ

d3𝑥 𝜂̄
𝜅

4 4
√
𝑞
𝛾0𝜙

𝑖

(
𝜖𝑗𝑘𝑙𝜙𝑗 𝛾0

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘𝛾𝑖𝜙𝑙

)
(4.246)

For its regularization, we make the ansatz

𝑆
(3)
𝛿
[𝜂] :=

∑︁
Δ𝑖 ∈𝑇 (𝛾,𝛿)

𝜂̄(𝑥𝑖)
𝜅

4
√︁
𝑉 (𝑥𝑖 , 𝛿)

𝛾0𝜃
𝛿
𝑖 (𝑥𝑖)

(
𝜖𝑗𝑘𝑙 𝜃 𝛿𝑗 (𝑥𝑖)𝛾0

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘𝛾
𝑖 𝜃 𝛿
𝑙
(𝑥𝑖)

)
(4.247)

Due to (4.133), we have

𝜖𝑗𝑘𝑙 𝜃 𝛿𝑗 (𝑥𝑖)𝛾0
1 + 𝑖 𝛽𝛾∗

2𝛽
𝛾𝑘𝛾

𝑖 𝜃 𝛿
𝑙
(𝑥𝑖) (4.248)

=

∫
d3𝑦

∫
d3𝑧

𝜒𝛿 (𝑥𝑖 − 𝑦) 𝜒𝛿 (𝑥𝑖 − 𝑧)
𝛿3/6 𝜖𝑗𝑘𝑙𝜙𝑗 (𝑦)𝛾0

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘𝛾
𝑖𝜙𝑙 (𝑧)

and on the other hand

𝜅

4
√︁
𝑉 (𝑥𝑖 , 𝛿)

𝛾0𝜃
𝛿
𝑖 (𝑥𝑖) =

∫
d3𝑥

𝜒𝛿 (𝑥𝑖 − 𝑥)
𝛿3/6

𝜅

4 4
√︁
𝑞(𝑥𝑖)

𝛾0𝜙𝑖 (𝑥) (4.249)

In the limit 𝛿 → 0, it follows 6
𝛿3
𝜒𝛿 (𝑥𝑖−𝑥) → 𝛿 (𝑥𝑖−𝑥) and moreover 6

𝛿3
𝜒𝛿 (𝑥𝑖− 𝑧) →

𝛿 (𝑥𝑖 − 𝑧) and 𝜒𝛿 (𝑥𝑖 − 𝑦) can be replaced by the Kronecker delta 𝛿𝑥𝑖 ,𝑦 .
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Therefore, in this limit, (4.247) finally becomes

lim
𝛿→0

𝑆
(3)
𝛿
[𝜂] =

= lim
𝛿→0

∑︁
Δ𝑖 ∈𝑇 (𝛾,𝛿)

𝜂̄(𝑥𝑖)
𝜅

4 4
√︁
𝑞(𝑥𝑖)

𝛾0𝜙𝑖 (𝑥𝑖)
(
𝜖𝑗𝑘𝑙𝜙𝑗 𝛾0

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘𝛾
𝑖𝜙𝑙 (𝑥𝑖)

)
vol(Δ𝑖)

=

∫
Σ

d3𝑥 𝜂̄
𝜅

4 4
√
𝑞
𝛾0𝜙

𝑖

(
𝜖𝑗𝑘𝑙𝜙𝑗 𝛾0

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘𝛾𝑖𝜙𝑙

)
= 𝑆 (3) [𝜂] (4.250)

and therefore (4.247) indeed provides an appropriate regularization of (4.246). Its
implementation in the quantum theory is now straightforward yielding

𝑆 (3) [𝜂] :=
𝜅

4

∑︁
𝑣∈𝑉 (𝛾)

8
𝐸 (𝑣) 𝜂̄(𝑣)

√︃
𝑉 −1𝑣 𝛾0𝜃𝑖 (𝑣)

(
𝑖 𝜖𝑗𝑘𝑙 𝜃𝑇𝑗 (𝑣)

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾𝑘𝛾
𝑖 𝜃𝑙 (𝑣)

)
(4.251)

where, in the real representation of the gamma matrices, we used that the charge conjuga-
tion matrix is given by𝐶 = 𝑖 𝛾0. There exist various possibilities for the implementation
of the inverse volume operator𝑉 −1 such that this operator is well-defined and non-
singular. For instance, one can re-express it in terms of a product of Poisson brackets
of the form (4.146). However, for sake of simplicity, let us choose a quantization as
proposed in [161]. There, one quantizes the inverse volume via

𝑉 −1 := lim𝑡→0(𝑉 2 + 𝑡2𝑙6𝑝)−1𝑉 (4.252)

with 𝑙𝑝 the Planck length. This operator then simply vanishes while acting on vertices
with zero volume and therefore provides a suitable regularization.

4.5.3. Solutions of the quantum SUSY constraint

In this last section, we would like to sketch possible solutions of the quantum SUSY
constraint. Going over to the sector of diffeomorphism-invariant states, we are thus
looking for vectors Ψphys ∈ D∗diff (see [18]) such that7

(Ψphys |𝑆 [𝜂]𝜓 ⟩ = 0, ∀𝜓 ∈ ℌLQSG = ℌgrav ⊗ ℌ𝑓, 𝜂 ∈ Γ(𝐸R) (4.253)

7 Actually, working on the dual requires an antilinear representation of the constraint algebra involving
rather the adjoint 𝑆 [𝜂]† of the SUSY constraint. However, since the classical theory, the SUSY constraint
is a real function and thus we could equally quantize the complex conjugate 𝑆 [𝜂] which then yields
𝑆 [𝜂]†.
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Figure 4.: Schematic depiction of the action of the supersymmetry constraint on a 4-valent vertex 𝑣 with
intertwiner 𝐼 . Each sub diagram on the right side of the arrow represents a type of term that is appearing
in the result. The star symbol represents a vertex containing a fermion, and 𝐻 is the new holonomy that
connects a new vertex 𝑣′ to the intertwiner at 𝑣 (source: [2]).

where Γ(𝐸R) denotes the space of smooth sections of the spinor bundle 𝐸R := 𝑃×𝜅RΔR
induced by the Majorana representation on ΔR.

Considering the first part (4.162) of the quantum SUSY constraint studied in Section
4.5.1, this operator creates new vertices coupled to a fermion. A qualitative description of
the action is depicted in Figure 4. Each diagram on the right side of the arrow represents
a type of term that is appearing in the result. Fermions are created both, at the original
vertex 𝑣 and at new vertices 𝑣′ that lie on the edges incident at 𝑣. The creation of fermions
is a generic feature of the quantum SUSY constraint because the conjugate spinor plays
the role of smearing function. In case of an ordinary Dirac fermion, this would mean
that even if, on the right-hand side of (4.253), one initially started with a state 𝜓 in the
pure gravitational sector of the Hilbert state, i.e., an ordinary spin network state without
any fermions, this operator would always create states with nontrivial fermionic degrees
of freedom. But then, any pure gravitational state Ψphys would be a solution of (4.253)
as the inner product between a pure bosonic and fermionic state is always zero by (4.138)
(or (4.139)). This is, however, no longer true in case of Majorana fermions. In fact, as
seen in Section 4.5.1 (see formula (4.141)), due to the Majorana condition, it follows that
the quantization of the Rarita-Schwinger field necessarily involves both multiplication
operators and derivations, i.e., creation and annihilation operators. Therefore, the
quantum SUSY constraint generically both creates and annihilates fermionic degrees of
freedom. As a consequence, pure gravitational states cannot be a solution of (4.253). For
purely fermionic states, the situation is less clear, we can not immediately rule out their
existence. In any case, such solutions of (4.253) would seem to be unphysical.
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4.6. Discussion
In this chapter, we have studied the canonical theory ofN = 1 supergravity in four
spacetime dimensions based on the Holst action of supergravity as first introduced by
Tsuda [65] as well as its extension to the case of a nonvanishing cosmological constant. In
this framework, we considered half-densitized fermion fields as suggested by Thiemann
[80] in order to simplify the reality conditions for the Rarita-Schwinger field. We then
derived a compact expression for the classical SUSY constraint which then served as a
starting point for its implementation in the quantum theory. To this end, following [67],
we quantitzed the Rarita-Schwinger field by appropriately extending the classical phase
space.

With these prerequisites, we turned to the quantitzation of the SUSY constraint which
so far has not been considered in the literature. This is important because the quantum
SUSY constraint in canonical supergravity theories plays a similar role as the quantum
Hamiltonian constraint in quantum gravity theories without local supersymmetry. For
this purpose, we first had to derive a suitable regularization of the continuum expression
guided by the principle that the resulting operator should be as compact as possible. For
the regularization, special care was required. This is mainly due to the fact that, although
the SUSY constraint looks similar to the Dirac Hamiltonian constraint, there is a crucial
difference: The conjugate spinor plays the role of a Lagrangian multiplier. As a result,
one cannot simply follow the standard regularization procedure as the density weight
of the smearing function should be kept fixed in order to not the change the density
weight of the SUSY constraint as a whole. Changing its density weight may change
the resulting quantum algebra and thus its strong relationship to the Hamiltonian
constraint as indicated in the classical regime in [64] in case of real Ashtekar-Barbero
variables. We succeeded in finding an appropriate regularization such the density weight
is maintained.

The resulting operator consists of various different terms one of which arose from
the quantization of the covariant derivative on the fermion field considered in Section
4.5.2. Requiring consistency with the classical theory forced us to choose the Rovelli-
Smolin variant of the volume operator for the quantization of the triads via Thiemann’s
trick. Based on an explicit calculation, it was shown, choosing an appropriate factor
ordering, that the resulting operator was still finite as the sum over the tetrahedra in the
triangulation again restricts to the sum over vertices of the underlying graph. Different
implementations in the quantum theory involving the Ashtekar-Lewandowski volume
operator have also been discussed. For this, a different but equivalent form of the classical
SUSY constraint has to be considered.

As it turns out, the operator thus obtained has an interesting feature as it creates new ver-
tices strongly coupled to fermions. This was shown via explicit computation evaluating
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4. Loop quantum supergravity and the quantum SUSY constraint

its action on generic spin network states. Due to this fact, it is expected that solutions
of the quantum SUSY constraint need to contain both gravity and matter degrees of
freedom as required for supersymmetry. We have seen that the reality condition enforced
on Majorana spinors is important. Whether these solutions indeed contain the same
number of bosons and fermions, however, is still unclear so far and remains a question
for the future. Also it would be highly desirable to study the commutator algebra of the
quantum SUSY constraint. In particular, it would be very interesting to see in which
sense the commutator on diffeomorphism- and gauge-invariant states is related to the
Hamiltonian constraint. In context of the chiral theory, we will study this question
explicitly in Chapter 6 considering a class of symmetry reduced models. In the full
theory, as a first step, one could try to evaluate the commutator of the terms involving
the quantization of the covariant derivative and investigate whether this can be related
to the quantization of the curvature of the connection along loops.
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5. Holst-MacDowell-Mansouri action for
(extended) supergravity with boundaries,
and chiral LQSG

5.1. Introduction
The physics of boundaries, in particular, the interaction between degrees of freedom on
the boundary and those in the bulk play an important role in diverse areas of physics,
from solid state physics to gravity. In the latter area, this is particularly the case for the
horizons of black holes. Bekenstein-Hawking entropy [162, 163] assigns the black hole an
entropy as if there was one bit of information encoded in each Planck unit of its horizon
area, and Hawking radiation looks as if it was perfectly thermal at its surface [164].
The holographic principle as advocated by ’t Hooft, Susskind and others states that
the entire state of the black hole is represented on its surface [165]. In loop quantum
gravity, a picture that is consistent with these holographic ideas emerges partially from
an observation about the classical theory and its boundary at the horizon: If a spacetime
with an inner boundary is considered, and boundary condition are imposed at the inner
boundary consistent with it being an apparent horizon, the symplectic structure attains
a contribution corresponding to a Chern-Simons theory on the horizon [35–39]. In the
quantum theory, the excitations of the gravitational field create defects in the horizon
Chern-Simons theory, thereby changing the size of the state space and account for black
hole entropy [40–44].

Boundary theories in supergravity also play a crucial role in string theory such as in
context of the celebrated AdS𝑑+1/CFT𝑑 conjecture [14–16], a far reaching duality which
attained a lot of interest since its discovery by Maldacena. It describes a duality between
string theory on a 𝑑 + 1 asymptotically anti-de Sitter spacetime and a 𝑑-dimensional
conformal field theory on the boundary such as, most prominently, between type IIB
superstring theory on an AdS5 × 𝑆5 background andN = 4 super Yang-Mills theory
living on the boundary. In the low-energy limit of string theory aka supergravity, this
holographic correspondence has been studied very intensively. There, one observes a one-
to-one correspondence between fields of the bulk supergravity theory satisfying certain
boundary conditions and quantum operators associated to the boundary conformal
field theory.

On the other hand, boundaries in string theory have also recently been explored in [166]
where a specific brane configuration in the framework of type IIB superstring theory has
been considered consisting of a stack of D3 branes on two sides of a NS5 brane where
the worldvolume theory on the D3 branes corresponds to a maximally supersymmetric
Yang-Mills theory with U(𝑛) gauge group. There, it has been observed that the boundary
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theory is described by a super Chern-Simons theory with gauge group given by the super
unitary group U(𝑚|𝑛) and complex Chern-Simons level. But also other configurations
have been considered leading to super Chern-Simons theories with gauge supergroups
OSp(𝑚|𝑛).

In the context of supergravity, there exist various different approaches on the proper
description of boundaries (see e.g. [167–170]). More recently, boundaries in supergravity
have been considered in [81, 83, 171–173] in the framework of the Castellani-D’Auria-
Fré approach [71, 72] (see Section 3.4). There, a systematic approach for 𝐷 = 4 pure
supergravity theories both with and without a cosmological constant has been developed,
by studying the most general class of possible boundary terms that are compatible with
the symmetry of the bulk Lagrangian. By demanding supersymmetry invariance at
the boundary, these boundary terms then turned out to be determined even uniquely.
Moreover, within this formalism, one finds in both cases, i.e., with and without a
cosmological constant, that the associated boundary conditions are not of Dirichlet-
type but require the vanishing of the super curvatures on the boundary. Finally, it
follows that the resulting action of the theory including bulk and boundary degrees of
freedom takes a very intriguing form which, forN = 1 and nontrivial cosmological
constant, exactly reproduces the well-known MacDowell-Mansouri action [138]. In
particular, in this way, a similar structure has been found forN = 1, 𝐷 = 4 Poincaré
supergravity [171] as well asN = 2, 𝐷 = 4 pure AdS supergravity [81].

In this chapter, we want to study the classical theory of boundaries in supergravity
in 𝐷 = 4 using Asthtekar-Barbero variables. There are several reasons why this is an
interesting topic to study. Among other things, it may shed further light on the quantum
description of black holes in loop quantum gravity (LQG) and string theory. We will
not use the formalism of isolated or dynamical horizons ( [174–176] and [177] for an
overview and further literature) as it has not yet been thoroughly studied in the context
of supergravity, and because its boundary conditions seem to not be well-adapted to
the requirement of local supersymmetry at the boundary. Rather, following [81, 83],
we make the condition of local supersymmetry extending to the boundary the guiding
principle for finding appropriate boundary terms and boundary conditions.

As already mentioned in the main introduction in Chapter 1, in the context of LQG,
N = 1 supergravity in terms of self-dual variables has been studied e.g. in [62, 63]. In
particular, in [63], on the kinematical level, a hidden 𝔬𝔰𝔭(1|2) gauge symmetry in the
constraint algebra has been observed which subsequently has been used to formulate
a quantum theory à la LQG by Gambini, Pullin et al. [84] and Ling and Smolin [85]
and in the context of spin foam models in 𝐷 = 3 for instance in [147, 178]. Extended
N = 2, 𝐷 = 4 chiral supergravity has been studied e.g. in [179, 180], and in terms of a
constrained super BF-theory in [181]. Boundaries in supergravity in the framework of
LQG have been discussed using self-dual variables already a long time ago in [86, 182].
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Interestingly, there the authors already seem to suggest that topological terms contained
in the (chiral) MacDowell-Mansouri action may play a role in (quantum) description of
boundaries in supergravity.

In what follows, we want to study this question from a more general perspective fol-
lowing newer developments in the geometric approach [81, 83] and pointing out the
importance of supersymmetry invariance at the boundary and also explicitly including
real Ashtekar-Barbero variables. Moreover, we will start from the original supergravity
Lagrangians instead from constrained field theories. To this end, using the interpretation
of supergravity in terms of a super Cartan geometry, we will derive the Holst modifica-
tion of the MacDowell-Mansouri action for arbitrary Barbero-Immirzi parameter 𝛽 for
N = 1 andN = 2 pure AdS supergravity as derived in [81] which as mentioned above,
by construction, already contains the most general class of boundary terms maintaining
supersymmetry invariance at the boundary. To do so, inspired by [183–185] in the context
of ordinary gravity, we will introduce some kind of a 𝛽-deformed inner product induced
by a 𝛽-dependent operator P𝛽 defined on super Lie algebra-valued differential forms. As
we will see, this approach then also allows for a very elegant and unified discussion of the
chiral limit of the theory. There, it follows that P±𝑖 leads to a projection operator onto a
proper subalgebra of the super anti-de Sitter algebra corresponding to the (complex)
orthosymplectic group OSp(N |2)C. As a consequence, the resulting action becomes
manifestly invariant under OSp(N |2)C leading to the notion of the super Ashtekar
connection. This reveals the underlying enlarged gauge symmetry of the chiral theory
for both cases in a very clear way.

In particular, it follows that the resulting boundary terms correspond to a super Chern-
Simons action with gauge group given by the supergroups OSp(N |2)C and complex
Chern-Simons level. ForN = 1, we will also prove explicitly that the full action is indeed
invariant under left- and right-handed supersymmetry transformations on the boundary
and turns out to be even fixed uniquely by this requirement. Moreover, we will derive
the boundary conditions of the full theory describing the coupling between the bulk and
boundary degrees of freedom. As we will see, these turn out to be in strong analogy to the
standard boundary conditions as usually applied in LQG and, in particular, transform
covariantly under the enlarged gauge symmetry of the chiral theory.

Finally, using the gauge-theoretic structure of the canonical phase space ofN -extended
chiral SUGRA, we will derive a graded analog of the holonomy-flux algebra as well-
known in standard LQG with real variables. This will be done rigorously explicitly
taking into account the parametrization supermanifold required in order to resolve
the fermionic degrees of freedom of the theory and using the parallel transport map
as derived in Chapter 2 induced by the super Ashtekar connection. It follows that the
configuration space of generalized super connections carries an intriguing structure
similar to a Moltokov-Sachse supermanifold which, in case of compact super Lie groups,
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becomes projectively Hausdorff. Based on these observations, we will then sketch the
quantization of the theory choosing a Ashtekar-Lewandowski-type representation of the
superalgebra and introduce the notion of super spin networks as first considered in [84–
86]. Finally, we will compare this quantization scheme with the standard quantization
techniques of LQG coupled to fermions as proposed in [67, 80, 87] and will encounter
many conceptual similarities.

The structure of this chapter is as follows: At the beginning, we recall very briefly some
basic elements of the Cartan geometric approach to N = 1 pure AdS supergravity
and discuss the most general class of possible boundary terms following [81, 83]. We
then define in Section 5.2.1 the Holst-MacDowell-Mansouri action by introducing a
𝛽-dependent operator and corresponding inner product on the underlying superalgebra.
We then repeat this procedure for theN = 2 extended case in the subsequent Sections
5.3 and 5.3.1. In particular, we will extend theN = 2 pure supergravity action as found
in [81] to arbitrary 𝛽 including the most general class of boundary terms compatible
with local supersymmetry. We will then discuss the chiral limit as well as the bound-
ary theory in Section 5.4 and compare our results with those found in [81, 83] using
standard variables. In Section 5.5, we will derive the graded holonomy-flux algebra and
quantize the theory adapting quantization techniques of standard LQG. In Section 5.6,
we will give an outlook on the application of these results to the quantum description
of supersymmetric black holes in chiral LQSG. Finally, in the last Section 5.7, we will
discuss some results on super Peter-Weyl theory considering the supergroups U(1|1)
and SU(1|1).

As already explained in the previous chapter as well as at the end of the main intro-
duction of this thesis in Chapter 1, in the following, we will drop many mathematical
details in order to simplify the notation and to make the following discussion easier
accessible for the reader. In particular, we will not explicitly mention the underlying
parametrization supermanifold except in Section 5.5 in the context of the construction
of the graded holonomy-flux algebra and the quantization of chiral supergravity where
the parametrization turns out be essential.

A list of important symbols as well as an overview of our choice of conventions concern-
ing indices, physical constants etc. can be found in the List of symbols, notations and
conventions.

5.2. GeometricN = 1 supergravity with boundaries
The content of this section has been reproduced from [3], with slight changes to account
for the context of this thesis with the permission of Springer-Nature.
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5.2. GeometricN = 1 supergravity with boundaries

In this section, we want to briefly recall the geometric interpretation ofN = 1 AdS
supergravity in terms of a super Cartan geometry. In particular, following [81], we discuss
the extension of the theory in the presence of boundaries and the implementation of
supersymmetric boundary conditions.

Pure 𝐷 = 4, N = 1 AdS supergravity can be described in terms of a super Car-
tan geometry modeled on the flat super Klein geometry (OSp(1|4),Spin+(1, 3)) corre-
sponding to super anti-de Sitter space (see Example 2.3.17). Using the decomposition
𝔬𝔰𝔭(1|4) = R1,3 ⊕ 𝔰𝔭𝔦𝔫+(1, 3) ⊕ ΔR of the super Lie algebra, with odd part ΔR corre-
sponding to a real Majorana representation of Spin+(1, 3), the super Cartan connection
A of the theory takes the form

A = 𝑒𝐼 𝑃𝐼 +
1
2
𝜔𝐼 𝐽𝑀𝐼 𝐽 + 𝜓 𝛼𝑄𝛼 (5.1)

with 𝑒𝐼 the co-frame, 𝜔𝐼 𝐽 the spin connection and𝜓 𝛼 the Rarita-Schwinger field. More-
over, the horizontal forms contained in the Cartan connection build up the supervielbein
or super soldering form

𝐸 = 𝑒𝐼 𝑃𝐼 + 𝜓 𝛼𝑄𝛼 (5.2)

which provides a local identification of the curved supermanifold with the flat model
given by super AdS4. This is a direct consequence the super Cartan condition (condition
(iii) in Def. 3.3.3). The action of the theory takes the form [141, 142, 152]

𝑆N=1AdS (A) =:
𝐿2

𝜅

∫
𝑀

L

:=
1
2𝜅

∫
𝑀

(
1
2
𝐹 (𝜔)𝐼 𝐽 ∧ 𝑒𝐾 ∧ 𝑒𝐿𝜖𝐼 𝐽 𝐾 𝐿 + 𝑖𝜓 ∧ 𝛾∗𝛾𝐼𝐷 (𝜔)𝜓 ∧ 𝑒𝐼

− 1
4𝐿
𝜓 ∧ 𝛾 𝐼 𝐽𝜓 ∧ 𝑒𝐾 ∧ 𝑒𝐿𝜖𝐼 𝐽 𝐾 𝐿 +

1
4𝐿2 𝑒

𝐼 ∧ 𝑒 𝐽 ∧ 𝑒𝐾 ∧ 𝑒𝐿𝜖𝐼 𝐽 𝐾 𝐿
)

(5.3)

with 𝐹 (𝜔)𝐼 𝐽 = d𝜔𝐼 𝐽 + 𝜔𝐼
𝐾
∧ 𝜔𝐾 𝐽 the curvature of the spin connection 𝜔 and

𝐷 (𝜔)𝜓 = d𝜓 + 1
4𝜔

𝐼 𝐽 𝛾𝐼 𝐽 ∧ 𝜓 the induced exterior covariant derivative. Similar as in
the discussion at the end of Section 3.4, it follows that the underlying supersymmetry of
the theory can be described using the bijective correspondence between super Cartan
connections and Ehresmann connections (Prop. 3.3.12), i.e. ordinary gauge fields playing
a role for instance in Yang-Mills gauge theories, on the associated OSp(1|4)-bundle.
One can then interpret local supersymmetry in terms of local gauge transformations in
the odd direction of the supergroup. In fact, using the (graded) commutation relations
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(2.96)-(2.99), it follows that, under such kind of gauge transformations, the individual
fields transform as

𝛿𝜖𝑒
𝐼 =

1
2
𝜖𝛾 𝐼𝜓 , 𝛿𝜖𝜓

𝛼 = 𝐷 (𝜔) 𝜖𝛼 − 1
2𝐿
𝑒𝐼 (𝛾𝐼 ) 𝛼𝛽 ∧ 𝜖

𝛽, 𝛿𝜖𝜔
𝐼 𝐽 =

1
2𝐿
𝜖𝛾 𝐼 𝐽𝜓

(5.4)

for some Grassmann-odd Majorana spinor 𝜖𝛼 . It then turns out that (5.3) is indeed
invariant under (5.4) provided the spin connection satisfies its field equations.

So far, we have excluded the possibility of boundaries in our discussion. In the presence
of boundaries, it follows that one needs to add additional (topological) boundary terms
in order to maintain functional differentiability of the action functional (5.3). More-
over, in case of supergravity, one is particularly interested in boundary terms which
also ensure invariance of the full action under supersymmetry transformations at the
boundary. It turns out that this requirement strongly restricts the structure of possible
boundary terms to be added to the theory. To this end, following [81], one notes that
the only possible topological terms which are consistent with the symmetries of the bulk
Lagrangian L ≡ Lbulk in (5.3) are of the form

Lbdy =𝐶1𝐹 (𝜔)𝐼 𝐽 ∧ 𝐹 (𝜔)𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 + 𝐶2

(
𝐷 (𝜔)𝜓 ∧ 𝛾∗𝐷 (𝜔)𝜓 (5.5)

+ 𝑖
8
𝜖𝐼 𝐽 𝐾 𝐿𝐹 (𝜔)𝐼 𝐽 ∧ 𝜓 ∧ 𝛾𝐾𝐿𝜓

)
for any constant coefficients𝐶1, 𝐶2. The first term in (5.5) is given by the Gauss-Bonnet
term which is indeed topological. The second term can equivalently be written as

𝐷 (𝜔)𝜓 ∧ 𝛾∗𝐷 (𝜔)𝜓 +
𝑖

8
𝜖𝐼 𝐽 𝐾 𝐿𝐹 (𝜔)𝐼 𝐽 ∧ 𝜓 ∧ 𝛾𝐾𝐿𝜓 = d(𝜓 ∧ 𝛾∗𝐷 (𝜔)𝜓 ) (5.6)

and therefore is also a total derivative. As shown in [81] (see also the discussion in
Section 5.3), if one requires invariance of the full Lagrangian Lfull = Lbulk + Lbdy
under supersymmetry transformations, then the coefficients𝐶1, 𝐶2 are uniquely fixed
to particular values given by 𝐶1 = 1/8 and 𝐶2 = 𝑖/(2𝐿), respectively. We will in fact
show this explicitly in the context of the chiral theory in Section 5.4.2 below. Moreover,
using (5.6) it follows that the full Lagrangian Lfull is that of the MacDowell-Mansouri
action [81, 138, 141], i.e. quadratic in the super Cartan curvature 𝐹 (A) to be defined in
the next section such that

Lfull =
1
4
𝐹 (A)𝐼 𝐽 ∧ 𝐹 (A)𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 +

𝑖

𝐿
𝐹 (A) 𝛼 ∧ 𝐹 (A)𝛿 (𝐶𝛾∗)𝛼𝛿 (5.7)
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To summarize, the boundary terms for 𝐷 = 4,N = 1 AdS supergravity in the presence
of boundaries are uniquely fixed by requirement of supersymmetry invariance at the
boundary, and they are neatly contained in the MacDowell-Mansouri action.

5.2.1. Holst-MacDowell-Mansouri action ofN = 1 SUGRA

The content of this section has been reproduced from [3], with slight changes to account
for the context of this thesis with the permission of Springer-Nature.

In this section, we want to discuss 𝐷 = 4, N = 1 AdS supergravity in the context
of LQG. As in the previous section, we want to explicitly include the possibility of
boundaries in the theory. We therefore need to derive a Holst variant of the MacDowell-
Mansouri action for arbitrary Barbero-Immirzi parameter 𝛽. A derivation of the Holst
action of 𝐷 = 4,N = 1 supergravity via a MacDowell-Mansouri action, by adding a
suitable topological term and treating 𝛽 as kind of a 𝜃 -ambiguity similar to Yang-Mills
theory, has been given in [186] and for the special case of the chiral theory in [187]. Here,
we want to follow the ideas of [183, 184] in the context of classical first-order Einstein
gravity and its reformulation in terms of a constrained BF-theory [185]. As we will show,
these ideas can naturally be extended to supergravity by introducing a 𝛽-deformed inner
product on the superalgebra.

To this end, note that, using the explicit representation of𝔬𝔰𝔭(1|4) as derived in Example
2.3.17, the generators of 𝔰𝔭𝔦𝔫+(1, 3) take the form 𝑀𝐼 𝐽 =

1
2 𝛾𝐼 𝐽 . One can then define

an operator P𝛽 on 𝔰𝔭𝔦𝔫+(1, 3) via

P𝛽 :=
1 + 𝑖 𝛽𝛾∗

2𝛽
: 𝔰𝔭𝔦𝔫+(1, 3) → 𝔰𝔭𝔦𝔫+(1, 3) (5.8)

That this operator indeed leaves the Lie algebra 𝔰𝔭𝔦𝔫+(1, 3) invariant follows from
𝑖 𝛾∗𝛾𝐼 𝐽 =

1
2 𝜖

𝐾𝐿
𝐼 𝐽

𝛾𝐾𝐿 which, moreover, yields the important identity

P𝛽𝛾 𝐼 𝐽 = 𝑖 𝛾∗𝑃𝛽 𝐼 𝐽 𝐾 𝐿𝛾
𝐾𝐿, with 𝑃𝛽

𝐼 𝐽

𝐾 𝐿
=
1
2

(
𝛿 𝐼[𝐾 𝛿

𝐽

𝐿] −
1
2𝛽
𝜖
𝐼 𝐽

𝐾 𝐿

)
(5.9)

Since the odd part of𝔬𝔰𝔭(1|4), in particular, defines a Clifford module, we can naturally
extendP𝛽 to an operator onΔR viaP𝛽𝑄𝛼 = 𝑄𝛿 (P𝛽)𝛿𝛼 . Hence, using the identification
𝔬𝔰𝔭(1|4) � R1,3 ⊕ 𝔰𝔭𝔦𝔫+(1, 3) ⊕ ΔR, one can introduce an operator P𝛽 on the super
Lie algebra (or rather its complexification), by setting

P𝛽 := 0 ⊕ P𝛽 ⊕ P𝛽 : 𝔬𝔰𝔭(1|4) → 𝔬𝔰𝔭(1|4) (5.10)

Using this operator, we can define an inner product on the super Lie algebra. Note first
that a standard Adjoint-invariant inner product on 𝔬𝔰𝔭(1|4) is given by the supertrace
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⟨·, ·⟩ := str. When combined with (5.10), this yields a the corresponding 𝛽-deformed
inner product setting

⟨𝑋 ,𝑌 ⟩𝛽 := str(𝑋 · P𝛽𝑌 ), ∀𝑋 ,𝑌 ∈ 𝔬𝔰𝔭(1|4) (5.11)

which is invariant under Spin+(1, 3) but not under the full supergoup OSp(1|4). Extend-
ing this inner product to an inner product on Ω2(M, 𝔤) withM the underyling super-
manifold (see Section 5.6.1), we can now formulate the Holst-MacDowell-Mansouri
action ofN = 1, 𝐷 = 4 AdS supergravity. It is given by

𝑆N=1H-MM(A) =
𝐿2

𝜅

∫
𝑀

⟨𝐹 (A) ∧ 𝐹 (A)⟩𝛽 (5.12)

where 𝐹 (A) is the Cartan curvature ofA defined as

𝐹 (A) = dA + 1
2
[A ∧ A] = dA + 1

2
(−1) |𝑇𝐴 | |𝑇𝐵 |A𝐴 ∧ A𝐵 ⊗ [𝑇𝐴, 𝑇𝐵] (5.13)

w.r.t. the homogeneous basis (𝑇𝐴)𝐴 of 𝔬𝔰𝔭(1|4), 𝐴 ∈ (𝐼 , 𝐼 𝐽 , 𝛼), where the minus
sign in (5.12) appears due to the (anti)commutation of𝑇𝐴 andA𝐵 . Using the graded
commutation relations (2.96)-(2.99) in caseN = 1 as well as [𝑀𝐼 𝐽 , 𝑃𝐾 ] = 𝜂𝐼 𝐾 𝑃 𝐽 −
𝜂 𝐽 𝐾 𝑃𝐼 , it follows that the translational and Lorentzian sub components of 𝐹 (A) take
the form

𝐹 (A)𝐼 = Θ(𝜔) 𝐼 − 1
4
𝜓 ∧ 𝛾 𝐼𝜓 , 𝐹 (A)𝐼 𝐽 = 𝐹 (𝜔)𝐼 𝐽 + 1

𝐿2Σ
𝐼 𝐽 − 1

4𝐿
𝜓 ∧ 𝛾 𝐼 𝐽𝜓

(5.14)

respectively, with Σ𝐼 𝐽 = 𝑒𝐼 ∧ 𝑒 𝐽 and Θ(𝜔) 𝐼 = d𝑒𝐼 + 𝜔𝐼
𝐽
∧ 𝑒 𝐽 the torsion 2-form

associated to 𝜔. For the odd part of the curvature, we find

𝐹 (A) 𝛼 = 𝐷 (𝜔)𝜓 𝛼 − 1
2𝐿
𝑒𝐼 ∧ (𝛾𝐼 ) 𝛼𝛽𝜓

𝛽 (5.15)

To see that this in fact leads to the Holst action 𝑆N=1H-AdS (Eq. (4.121)) of N = 1 AdS
supergravity, let us expand the action (5.12). If we use (5.14) and (5.15), we find1

⟨𝐹 (A) ∧ 𝐹 (A)⟩𝛽 =
1
4
𝐹 (A)𝐼 𝐽 ∧ 𝐹 (A)𝐾𝐿 ⟨𝑀𝐼 𝐽 , 𝑀𝐾𝐿⟩𝛽
− 𝐹 (A) 𝛼 ∧ 𝐹 (A)𝛿 ⟨𝑄𝛼 , 𝑄𝛿 ⟩𝛽

1 To symplify our notation, we write 𝜓 ∧ 𝛾••𝜓 for the 𝔰𝔭𝔦𝔫+ (1, 3)-valued 2-form with components
𝜓 ∧ 𝛾 𝐼 𝐽 𝜓 .
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= ⟨𝐹 (𝜔) ∧ 𝐹 (𝜔)⟩𝛽 +
2
𝐿2 ⟨Σ ∧ 𝐹 (𝜔)⟩𝛽

− 1
2𝐿
⟨𝐹 (𝜔) ∧ 𝜓 ∧ 𝛾••𝜓 ⟩

𝛽
− 1
2𝐿3 ⟨Σ ∧ 𝜓 ∧ 𝛾

••𝜓 ⟩
𝛽

+ 1
𝐿4 ⟨Σ ∧ Σ⟩𝛽 +

1
𝐿
𝐹 (A) 𝛼 ∧ 𝐹 (A)𝛿 (𝐶P𝛽)𝛼𝛿 (5.16)

where we used that ⟨𝑄𝛼 , 𝑄𝛿 ⟩𝛽 = −
1
𝐿
(𝐶P𝛽)𝛼𝛿 which can be checked by direct compu-

tation using the explicit representation given in Example 2.3.17. Using

⟨𝑀𝐼 𝐽 , 𝑀𝐾𝐿⟩𝛽 = −
𝑖

4
𝑃𝛽

𝑀𝑁

𝐾𝐿
tr(𝛾𝐼 𝐽 𝛾𝑀𝑁 𝛾∗) = 𝑃𝛽𝑀𝑁

𝐾𝐿
𝜖𝐼 𝐽 𝑀𝑁 (5.17)

this yields

⟨𝐹 (𝜔) ∧ 𝐹 (𝜔)⟩𝛽 +
2
𝐿2 ⟨Σ ∧ 𝐹 (𝜔)⟩𝛽 −

1
2𝐿
⟨𝐹 (𝜔) ∧ 𝜓 ∧ 𝛾••𝜓 ⟩

𝛽

− 1
2𝐿3 ⟨Σ ∧ 𝜓 ∧ 𝛾

••𝜓 ⟩
𝛽
+ 1
𝐿4 ⟨Σ ∧ Σ⟩𝛽

= ⟨𝐹 (𝜔) ∧ 𝐹 (𝜔)⟩𝛽 +
2
𝐿2 ⟨Σ ∧ 𝐹 (𝜔)⟩𝛽 −

1
8𝐿
𝐹 (𝜔)𝐼 𝐽∧𝑃𝛽𝐾 𝐿𝑀𝑁

𝜓∧𝛾𝑀𝑁𝜓 𝜖𝐼 𝐽 𝐾𝐿

− 1
8𝐿3Σ

𝐼 𝐽 ∧ 𝑃𝛽𝐾 𝐿𝑀𝑁
𝜓 ∧ 𝛾𝑀𝑁𝜓 𝜖𝐼 𝐽 𝐾 𝐿 +

1
4𝐿4Σ

𝐼 𝐽 ∧ 𝑃𝛽𝐾 𝐿𝑀𝑁
Σ𝑀𝑁 𝜖𝐼 𝐽 𝐾 𝐿

= ⟨𝐹 (𝜔) ∧ 𝐹 (𝜔)⟩𝛽 +
2
𝐿2 ⟨Σ ∧ 𝐹 (𝜔)⟩𝛽 +

𝑖

8𝐿
𝐹 (𝜔)𝐼 𝐽 ∧ 𝜓 ∧ 𝛾∗𝛾𝐾𝐿P𝛽𝜓 𝜖𝐼 𝐽 𝐾 𝐿

+ 𝑖

8𝐿3Σ
𝐼 𝐽 ∧ 𝜓 ∧ 𝛾∗𝛾𝐾𝐿P𝛽𝜓 𝜖𝐼 𝐽 𝐾 𝐿 +

1
8𝐿4Σ

𝐼 𝐽 ∧ Σ𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 (5.18)

On the other hand, we have

1
𝐿
𝐹 (A) 𝛼 ∧ 𝐹 (A)𝛿 (𝐶P𝛽)𝛼𝛿 = ⟨𝐷 (𝜔)𝜓 ∧ 𝐷 (𝜔)𝜓 ⟩𝛽 −

1
𝐿2𝜓 ∧ 𝜸 ∧ P𝛽𝐷 (𝜔)𝜓

− 1
4𝐿3𝜓 ∧ 𝛾𝐼 𝐽P−𝛽𝜓 ∧ Σ

𝐼 𝐽 (5.19)

where we set 𝜸 := 𝑒𝐼 𝛾𝐼 . Adding the Equations (5.18) and (5.19) and again using the
identity 𝜖 𝐾𝐿

𝐼 𝐽
𝛾𝐾𝐿 = 2𝑖 𝛾𝐼 𝐽 𝛾∗ yielding

𝑖

8𝐿3Σ
𝐼 𝐽 ∧ 𝜓 ∧ 𝛾∗𝛾𝐾𝐿P𝛽𝜓 𝜖𝐼 𝐽 𝐾 𝐿 −

1
4𝐿3𝜓 ∧ 𝛾𝐼 𝐽P𝛽𝜓 ∧ Σ

𝐼 𝐽

=
𝑖

8𝐿3𝜓 ∧ 𝛾∗𝛾
𝐾𝐿

[
P𝛽 + P−𝛽

]
𝜓 ∧ Σ𝐼 𝐽 𝜖𝐼 𝐽 𝐾 𝐿 = − 1

8𝐿3𝜓 ∧ 𝛾
𝐾𝐿𝜓 ∧ Σ𝐼 𝐽 𝜖𝐼 𝐽 𝐾 𝐿

(5.20)
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it follows that the Holst-MacDowell-Mansouri action takes the form

𝑆N=1H-MM(A) =
1
2𝜅

∫
𝑀

Σ𝐼 𝐽 ∧ (𝑃𝛽 ◦ 𝐹 (𝜔))𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 − 𝜓 ∧ 𝜸 ∧
1 + 𝑖 𝛽𝛾∗

𝛽
𝐷 (𝜔)𝜓

− 1
4𝐿
𝜓 ∧ 𝛾𝐾𝐿𝜓 ∧ Σ𝐼 𝐽 𝜖𝐼 𝐽 𝐾 𝐿 +

1
4𝐿2Σ

𝐼 𝐽 ∧ Σ𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 + 𝑆bdy

(5.21)

where we wrote (𝑃𝛽 ◦ 𝐹 (𝜔))𝐼 𝐽 = 𝑃𝛽 𝐼 𝐽 𝐾 𝐿𝐹 (𝜔)
𝐾𝐿 . Moreover, 𝑆bdy denotes a bound-

ary term given by

𝑆bdy(A) =
𝐿2

𝜅

∫
𝑀

⟨𝐹 (𝜔) ∧ 𝐹 (𝜔)⟩𝛽 + ⟨𝐷 (𝜔)𝜓 ∧ 𝐷 (𝜔)𝜓 ⟩𝛽 (5.22)

− 1
4𝐿
𝐹 (𝜔)𝐼 𝐽 ∧ 𝜓 ∧ 𝛾𝐼 𝐽P𝛽𝜓

Thus, we see, up to a topological term, (5.12) indeed reduces to the Holst action (4.121)
ofN = 1, 𝐷 = 4 AdS supergravity and which in the limit of a vanishing cosmological
constant, i.e. 𝐿 →∞, yields the respective action (4.35) of Poincaré supergravity. To see
that (5.22) is in fact purely topological, note that, by the Bianchi identity, we have

𝐷 (𝜔)𝐷 (𝜔)𝜓 = 𝜅R∗(𝐹 (𝜔)) ∧ 𝜓 =
1
4
𝐹 (𝜔)𝐼 𝐽 𝛾𝐼 𝐽 ∧ 𝜓 (5.23)

such that by the Spin+(1, 3)-invariance of the inner product, this yields

⟨𝐷 (𝜔)𝜓 ∧ 𝐷 (𝜔)𝜓 ⟩
𝛽
= d⟨𝜓 ∧ 𝐷 (𝜔)𝜓 ⟩

𝛽
+ ⟨𝜓 ∧ 𝐷 (𝜔)𝐷 (𝜔)𝜓 ⟩

𝛽

= d⟨𝜓 ∧ 𝐷 (𝜔)𝜓 ⟩
𝛽
+ 1
4𝐿
𝐹 (𝜔)𝐼 𝐽 ∧ 𝜓 ∧ 𝛾𝐼 𝐽𝜓 (5.24)

Moreover, according to the general discussion in Section 5.6.1 in case of arbitrary (super)
connections, we have

⟨𝐹 (𝜔) ∧ 𝐹 (𝜔)⟩𝛽 = d⟨𝜔 ∧ d𝜔 + 1
3
𝜔 ∧ [𝜔 ∧ 𝜔]⟩

𝛽
(5.25)

Thus, to summarize, it follows that (5.22) can be equivalently be written in the form

𝑆bdy(A) =
𝐿2

𝜅

∫
𝜕𝑀

⟨𝜔 ∧ d𝜔 + 1
3
𝜔 ∧ [𝜔 ∧ 𝜔]⟩

𝛽
+ ⟨𝜓 ∧ 𝐷 (𝜔)𝜓 ⟩

𝛽
(5.26)

and hence, in particular, is nonvanishing in the presence of boundaries. According to the
general discussion in the previous section, this is the most general boundary term one can
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have in the context ofN = 1,𝐷 = 4 anti-de Sitter supergravity in the framework of LQG
if one requires invariance of the full theory under local supersymmetry transformations.

In this context, note that the deformed action (5.12) is invariant under the same SUSY
transformations (5.4) as in the standard theory. In fact, since in the N = 1 case the
SUSY transformations can be regarded as super gauge transformations, it follows that
the transformation of the super Cartan curvature takes the form

𝛿𝜖𝐹 (A) = −[𝜖, 𝐹 (A)] (5.27)

Thus, if we set 𝜌𝛼 = 𝐹 (A) 𝛼 this implies that the variation of the Lagrangian in (5.12)
yields

𝛿𝜖L = − ⟨[𝜖, 𝐹 (A)] ∧ 𝐹 (A)⟩𝛽 − ⟨𝐹 (A) ∧ [𝜖, 𝐹 (A)]⟩𝛽

=
1
4𝐿
𝐹 (A)𝐼 𝐽 ∧ 𝜖𝛾𝐾𝐿 𝜌 𝑃𝛽𝑀𝑁

𝐾𝐿
𝜖𝐼 𝐽 𝑀𝑁 −

1
𝐿2 𝐹 (A)

𝐼 ∧ 𝜌̄P𝛽𝛾𝐼 𝜖

− 1
2𝐿
𝐹 (A)𝐼 𝐽 ∧ 𝜖P𝛽𝛾𝐼 𝐽 𝜌 = −

1
𝐿2 𝐹 (A)

𝐼 ∧ 𝜌̄P𝛽𝛾𝐼 𝜖 (5.28)

Hence, it follows that the Lagrangian of the full 𝛽-deformed action is invariant under
the SUSY transformations, both in the bulk and at the boundary, provided that the
supertorsion constraint 𝐹 (A)𝐼 = 0 is satisfied which is equivalent to requiring that
the spin connection 𝜔 satisfies its equations of motion. As far as the bulk theory is
concerned, this was actually to be expected since, as will be proven explicitly for the
caseN = 2 in Section 5.3.1 below, at second order, the deformed action coincides with
the standard action up to topological terms, so that the SUSY variations are indeed
unaltered.

Due to the deformed inner product appearing in (5.26) the boundary action contains
additional topological terms compared to the standard theory. For instance, writing out
the bosonic contribution in (5.26), this yields

⟨𝐹 (𝜔) ∧ 𝐹 (𝜔)⟩𝛽 =
1
8
𝐹 (𝜔)𝐼 𝐽 ∧ 𝐹 (𝜔)𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 +

1
4𝛽
𝐹 (𝜔)𝐼 𝐽 ∧ 𝐹 (𝜔)𝐼 𝐽 (5.29)

so that the bosonic part of the boundary action splits into the ordinary Gauss-Bonnet
term as in the standard theory as well as an additional topological Pontryagin term. As
discussed in [188], these are in fact the most general boundary terms one can expect in the
pure bosonic theory in case of a finite Barbero-Immirzi parameter which are compatible
with the symmetries of the bulk Lagrangian. The fermionic contribution in (5.26) takes
the form ⟨𝜓 ∧ 𝐷 (𝜔)𝜓 ⟩

𝛽
= 1
𝐿
𝜓 ∧ P𝛽𝐷 (𝜔)𝜓 . Similar to the bulk theory as discussed in

Section 4.3, in the canonical description of the boundary theory, the operatorP𝛽 implies
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that the covariant derivative can be re-rexpressed in terms of the covariant derivative
associated to the (real) Ashtekar-Barbero connection 𝐴𝛽 .

Finally, comparing with Eq. (5.296) in Section 5.6.1, one may suspect that the boundary
action (5.26) almost looks like a super Chern-Simons action. Note, however, that the
deformed inner product is not invariant under the full supergroup OSp(1|4) but only
under the action of its bosonic subgroup so that (5.26), at least in general, will not
correspond to a Chern-Simons action with a supergroup as a gauge group. This is of
course in contrast e.g. to the IH formalism [177], where the IH boundary conditions
imply that the boundary theory is generically described in terms of a Chern-Simons
theory. As we will see however in Section 5.4, this changes drastically in case of the chiral
theory.

5.3. N = 2 pure SUGRA with boundaries
The content of this section has been reproduced from [3], with slight changes to account
for the context of this thesis with the permission of Springer-Nature.

In the ungauged theory, forN = 2, the full 𝑅-symmetry group is given by the unitary
group U(2). But, in case of AdS supergravity, due to the appearence of the so-called Fayet-
Iliopoulos (FI) term, it follows that this group is broken yielding an effective SO(2) �
U(1) gauge symmetry of the theory [81,83,189]. Thus, it follows that pureN = 2,𝐷 = 4
anti-de Sitter supergravity can be described as a super Cartan geometry modeled on
the super Klein geometry (OSp(2|4), SO(2) × Spin+(1, 3)) corresponding to extended
super anti-de Sitter space. In this case, since𝔬𝔰𝔭(2|4) � R1,3⊕𝔰𝔭𝔦𝔫+(1, 3) ⊕Δ2

R⊕𝔲(1),
the super Cartan connectionA takes the form

A = 𝑒𝐼 𝑃𝐼 +
1
2
𝜔𝐼 𝐽𝑀𝐼 𝐽 + 𝐴𝑇 + Ψ𝛼

𝑟 𝑄
𝑟
𝛼 (5.30)

In particular, besides the spin connection 𝜔, the super Cartan connection contains
an additional U(1) gauge field 𝐴 ≡ 𝐴𝑇 also referred to as the graviphoton field with
𝑇 := 𝑇 12 = −𝑇 21. Moreover, the supermultiplet consists of two Majorana gravitinos
which we denote by capital letters Ψ𝑟 , 𝑟 = 1, 2 to simplify notation. In this form, the
𝑅-symmetry index is raised and lowered w.r.t. the Kronecker symbol 𝛿𝑟 𝑠 . On the other
hand, we denote the individual chiral components of the Majorana fermions by lower
case letters 𝜓 𝑟 and 𝜓𝑟 , respectively, where the position of the 𝑅-symmetry index now
explicitly indicates the chirality:

𝜓 𝑟 :=
1 + 𝛾∗

2
Ψ𝑟 , and 𝜓𝑟 :=

1 − 𝛾∗
2

Ψ𝑟 (5.31)
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for 𝑟 = 1, 2 denote the left-handed and right-handed components of the Majorana
fermions, respectively. Similar to theN = 1 case, the horizontal 1-forms combine to the
super soldering form 𝐸 := 𝑒𝐼 𝑃𝐼 + Ψ𝛼

𝑟 𝑄
𝑟
𝛼 which provides a local identification of the

underlying (curved) supermanifoldM with the flat model given by the extended super
anti-de Sitter space. In particular, it induces an isomorphism

𝐸 : Γ(𝑇M) ∼→ Γ(Ad(P)), 𝑋 ↦→ ⟨𝑋 |𝐸⟩ (5.32)

between smooth vector fields onM and sections of the Adjoint-bundleP×Ad𝔬𝔰𝔭(2|4),
where P is the underlying U(1) × Spin+(1, 3) principal super fiber bundle over which
the super Cartan geometry is defined. By the rheonomy principle, the fields are uniquely
fixed by their pullback to the underlying ordinary smooth manifold𝑀 . Hence, choosing
a local section 𝑠 : 𝑀 → 𝑃 ⊂ P of the underlying (bosonic) smooth subbundle 𝑃 , the
action of the theory takes the form

𝑆N=2AdS (A) =
𝐿2

𝜅

∫
𝑀

𝑠∗L (5.33)

where the Lagrangian L is a horizontal form living on the bundle which, when adapted
to our choice of conventions and pulled back to 𝑀 , takes the form2 [81, 83, 189]

𝑠∗L =
1

4𝐿2Σ
𝐼 𝐽 ∧ 𝐹 (𝜔)𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 −

𝑖

2𝐿2 Ψ̄
𝑟 ∧ 𝜸 𝛾∗ ∧ ∇Ψ𝑟

− 1
8𝐿3 Ψ̄

𝑟 ∧ 𝛾𝐾𝐿Ψ𝑟 ∧ Σ𝐼 𝐽 𝜖𝐼 𝐽 𝐾 𝐿 +
1

8𝐿4Σ
𝐼 𝐽 ∧ Σ𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿

+ 𝑖

4𝐿2

(
d𝐴 + 1

4
Ψ̄𝑟 ∧ Ψ𝑠𝜖𝑟 𝑠

)
∧ Ψ̄ 𝑝 ∧ 𝛾∗Ψ𝑞𝜖𝑝𝑞 −

1
4𝐿2 𝐹 ∧★𝐹 (5.34)

where, again, Σ𝐼 𝐽 = 𝑒𝐼 ∧ 𝑒 𝐽 whereas ∇Ψ𝑟 and 𝐹 (resp. ★𝐹 ) are defined via Eq. (5.45)
and (5.46) in Section 5.3.1 below. In contrast to theN = 1 case, supersymmetry trans-
formations no longer have the simple interpretation in terms of gauge transformations
on the associated OSp(2|4)-bundle. Instead, according to the Castellani-D’Auria-Fré
approach (see Section 3.4), one regards them as certain superdiffeomorphisms along
the odd directions of the supermanifold. More precisely, in the presence of boundaries,

2 Due to the appearance of the Hodge-star operator in the Maxwell-kinetic term in the Lagrangian (5.34),
in this form, the Lagrangian can only be defined on the underlying spacetime manifold. This is related to
the lack of top-degree forms on supermanifolds (for an alternative approach towards top-degree forms
on supermanifolds using the concept of integral forms see e.g. [131, 132]). In order to extend (5.34) to the
whole supermanifold, one works in the so-called first-order formalism in the U(1)-sector by introducing
additional fields (auxiliary fields). By solving the equations of motion of these additional fields, one
regains the original action (5.33) (see e.g. [81, 83]).
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SUSY transformations correspond to smooth vector fields 𝑋 ∈ Γ(𝑇M) such that
𝑖𝑋 𝑒

𝐼 = 0 and
𝛿𝑋L |𝑃 = 𝐿𝑋L |𝑃 = (𝑖𝑋 dL + d𝑖𝑋L ) |𝑃 = 0 (5.35)

Recall that the super Cartan connection transforms via Eq. (3.60), i.e.,

𝛿𝑋A = 𝑖𝑋 𝐹 (A) + 𝐷 (A) 𝜖 (5.36)

with 𝜖 := ⟨𝑋 |𝐸⟩. Since 𝑋 is horizontal, the curvature contribution in (5.36), in general,
no longer vanishes in contrast to pure gauge transformations. Moreover, in order for
𝑋 to describe a symmetry of the theory, this imposes constraints on the curvature, the
so-called rheonomy conditions.

Instead of deriving the explicit form of the SUSY transformations of the theory in what
follows (see for instance [72, 81, 83, 189] for more details), let us finally comment on the
possible boundary terms to be added to (5.34) such that local supersymmetry is preserved.
As argued in [81], the most general ansatz for the boundary term which is compatible
with the symmetries of the bulk action (5.34) turns out to be of the form

Lbdy = 𝐶1𝐹 (𝜔)𝐼 𝐽 ∧ 𝐹 (𝜔)𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 + 𝐶2d(Ψ̄𝑟 ∧ 𝛾∗∇Ψ𝑟 ) + 𝐶3d(𝐴 ∧ d𝐴)

for any constant coefficients 𝐶1, 𝐶2 and 𝐶3. Requiring invariance of the full action
Lfull := Lbulk +Lbdy under local supersymmetry, in case of the presence of a nontrivial
boundary 𝜕𝑀 , this imposes the condition

( 𝜄𝑋Lfull) |𝜕𝑀 = 0 (5.37)

As shown in [81], it follows that condition (5.37) uniquely fixes the constants to the
particular values𝐶1 =

1
8 ,𝐶2 =

𝑖
2𝐿 and𝐶3 = 0 yielding

Lbdy =
1
8
𝐹 (𝜔)𝐼 𝐽 ∧ 𝐹 (𝜔)𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 +

𝑖

2𝐿
∇Ψ̄𝑟 ∧ 𝛾∗∇Ψ𝑟 (5.38)

− 𝑖

8𝐿
𝐹 (𝜔)𝐼 𝐽 ∧ Ψ̄𝑟 ∧ 𝛾∗𝛾𝐼 𝐽Ψ𝑟 −

𝑖

4𝐿2 d𝐴 ∧ Ψ̄ 𝑝 ∧ 𝛾∗Ψ𝑞𝜖𝑝𝑞

Moreover, when added to (5.34), one then recognizes that the resulting action Lfull has
a very intriguing structure similar to the MacDowell-Mansouri action ofN = 1 AdS
supergravity as discussed in the previous sections [81, 83].
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5.3.1. Holst action forN = 2 pure SUGRA

The content of this section has been reproduced from [3], with slight changes to account
for the context of this thesis with the permission of Springer-Nature.

We want to derive a Holst variant of the action (5.34) corresponding toN = 2, 𝐷 = 4
AdS supergravity for arbitrary Barbero-Immirzi parameters 𝛽 including the boundary
terms (5.38). We therefore follow the ideas in Section 5.2.1 and introduce a 𝛽-deformed
inner product. To this end, according to the decomposition (5.30) of the super Cartan
connection, let us define an operator P𝛽 : Ω2(𝑀, 𝔤) → Ω2(𝑀, 𝔤) on the space of
differential 2-forms with values in the super Lie algebra 𝔤 := 𝔬𝔰𝔭(2|4) (or rather the
corresponding super Lie module Λ ⊗ 𝔬𝔰𝔭(2|4)) as follows

P𝛽 := 0 ⊕ P𝛽 ⊕ P𝛽 ⊕ P𝛽 ⊕ P𝛽, where P𝛽 :=
1
2𝛽

(
1 + 𝛽★

)
(5.39)

with ★ : Ω𝑝 (𝑀 ) → Ω4−𝑝 (𝑀 ), for 0 ≤ 𝑝 ≤ 4 denoting the Hodge star operator
on the bosonic spacetime manfifold 𝑀 (trivially extended to 𝔤-valued, in fact even
Grassmann-valued, differential forms) which, in case of Lorentzian signature and even
spacetime dimensions, satisfies

★2 |Ω𝑝 (𝑀 ) = (−1) 𝑝+1, ∀0 ≤ 𝑝 ≤ 4 (5.40)

Similar to the general discussion in Section 5.6.1, the operator (5.39) can be used to
introduce an inner product on Ω2(𝑀, 𝔤) setting

⟨· ∧ ·⟩𝛽 : Ω2(𝑀, 𝔤) ×Ω2(𝑀, 𝔤) → Ω4(𝑀 )
(𝜔, 𝜂) ↦→ str(𝜔 ∧ P𝛽𝜂) (5.41)

Using this inner product, we define the Holst-MacDowell-Mansouri action ofN = 2,
𝐷 = 4 AdS supergravity as follows

𝑆N=2H-MM(A) =
𝐿2

𝜅

∫
𝑀

⟨𝐹 (A) ∧ 𝐹 (A)⟩𝛽 (5.42)

with 𝐹 (A) the associated Cartan curvature. Using the commutation relations (2.96)-
(2.99) forN = 2, it follows that the translational components of the curvature take the
form

𝐹 (A)𝐼 = d𝑒𝐼 + 𝜔𝐼 𝐽 ∧ 𝑒
𝐽 + 1

4
((−1) |𝑄𝛼 | |𝑄𝛽 |Ψ𝛼

𝑟 ∧ Ψ
𝛽
𝑠 ⊗ [𝑄𝑟𝛼 , 𝑄 𝑠𝛽])

𝐼

= Θ(𝜔) 𝐼 − 1
4
Ψ̄𝑟 ∧ 𝛾 𝐼Ψ𝑟 (5.43)
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since (−1) |𝑄𝛼 | |𝑄𝛽 | = −1, withΘ(𝜔) the torsion 2-form associated to the spin connection
𝜔. For the Lorentzian components, we find

𝐹 (A)𝐼 𝐽 = d𝜔𝐼 𝐽 + 𝜔𝐼𝐾 ∧ 𝜔
𝐾 𝐽 + 1

2𝐿2 𝑒
𝐼 ∧ 𝑒 𝐽 − 1

2
(Ψ𝛼

𝑟 ∧ Ψ
𝛽
𝑠 ⊗ [𝑄𝑟𝛼 , 𝑄 𝑠𝛽])

𝐼 𝐽

= 𝐹 (𝜔)𝐼 𝐽 + 1
𝐿2Σ

𝐼 𝐽 − 1
4𝐿

Ψ̄𝑟 ∧ 𝛾 𝐼 𝐽Ψ𝑟 (5.44)

Moreover, for the odd part, we obtain, using 𝐴 := 1
2𝐴

𝑟 𝑠𝑇𝑟 𝑠 for the U(1) gauge field,

𝐹 (A) 𝛼𝑟 = 𝐷 (𝜔)Ψ𝛼
𝑟 +

1
2𝐿
𝐴𝜖𝑟 𝑠 ∧ Ψ𝛼𝑠 − 1

2𝐿
𝑒𝐼 ∧ (𝛾𝐼 ) 𝛼𝛽Ψ

𝛽
𝑟

=: ∇Ψ𝛼
𝑟 −

1
2𝐿
𝑒𝐼 ∧ (𝛾𝐼 ) 𝛼𝛽Ψ

𝛽
𝑟 (5.45)

Finally, for the U(1) components, we get

𝐹 :=
1
2
𝐹 (A)𝑟 𝑠𝜖𝑟 𝑠 = d𝐴 + 1

2
Ψ̄𝑟 ∧ Ψ𝑠𝜖𝑟 𝑠 (5.46)

We need to show that action (5.42) is indeed independent of the choice of the Barabero-
Immirzi parameter. That is, we have to prove that the action at second order, i.e. provided
𝜔 satisfies its field equations, reduces to the action (5.34) together with the boundary
term (5.38). This is equivalent to requiring that the supertorsion of A vanishes, i.e.
𝐹 (A)𝐼 = 0, and, when reinserting back into (5.42), all 𝛽-dependent terms become
purely topological.

To this end, let us expand the action (5.42). Using the curvature expressions (5.44)-(5.46)
as well as ⟨𝑇 ,𝑇 ⟩𝛽 = − 1

2𝐿2 , which can be checked by direct computation using the
explicit representation (2.92), we find

⟨𝐹 (A) ∧ 𝐹 (A)⟩𝛽 =
1
4
𝐹 (A)𝐼 𝐽 ∧ 𝐹 (A)𝐾𝐿 ⟨𝑀𝐼 𝐽 , 𝑀𝐾𝐿⟩𝛽

− 𝐹 (A) 𝛼𝑟 ∧ 𝐹 (A)𝛿𝑠 ⟨𝑄𝑟𝛼 , 𝑄 𝑠𝛿 ⟩𝛽 −
1

2𝐿2 𝐹 ∧ P𝛽𝐹

= ⟨𝐹 (𝜔) ∧ 𝐹 (𝜔)⟩𝛽 +
2
𝐿2 ⟨Σ ∧ 𝐹 (𝜔)⟩𝛽

− 1
2𝐿
⟨𝐹 (𝜔) ∧ Ψ̄𝑟 ∧ 𝛾••Ψ𝑟⟩𝛽 −

1
2𝐿3 ⟨Σ ∧ Ψ̄

𝑟 ∧ 𝛾••Ψ𝑟⟩𝛽

+ 1
𝐿4 ⟨Σ ∧ Σ⟩𝛽 +

1
𝐿
𝐹 (A) 𝛼𝑟 ∧ 𝐹 (A)𝛿𝑠 𝛿 𝑟 𝑠 (𝐶P𝛽)𝛼𝛿

− 1
4𝐿2 𝐹 ∧★𝐹 −

1
4𝛽𝐿2 𝐹 ∧ 𝐹 (5.47)
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where

𝐹 ∧ 𝐹 = d𝐴 ∧ d𝐴 + d𝐴 ∧ Ψ̄𝑟 ∧ Ψ𝑠𝜖𝑟 𝑠 +
1
4
Ψ̄𝑟 ∧ Ψ𝑠𝜖𝑟 𝑠 ∧ Ψ̄ 𝑝 ∧ Ψ𝑞𝜖𝑝𝑞 (5.48)

Let us further expand the terms in (5.47) arising form the Lorentzian components of
the curvature which gives

⟨𝐹 (𝜔) ∧ 𝐹 (𝜔)⟩𝛽 +
2
𝐿2 ⟨Σ ∧ 𝐹 (𝜔)⟩𝛽 +

𝑖

8𝐿
𝐹 (𝜔)𝐼 𝐽 ∧ Ψ̄𝑟 ∧ 𝛾∗𝛾𝐾𝐿P𝛽Ψ𝑟 𝜖𝐼 𝐽 𝐾 𝐿

+ 𝑖

8𝐿3Σ
𝐼 𝐽 ∧ Ψ̄𝑟 ∧ 𝛾∗𝛾𝐾𝐿P𝛽Ψ𝑟 𝜖𝐼 𝐽 𝐾 𝐿 +

1
8𝐿4Σ

𝐼 𝐽 ∧ Σ𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿

+ 1
32𝐿2 Ψ̄

𝑟 ∧ 𝛾 𝐼 𝐽Ψ𝑟 ∧ Ψ̄𝑠 ∧ 𝛾𝐼 𝐽P𝛽Ψ𝑠 (5.49)

In contrast to the N = 1 case, an additional Ψ4-order term appears which, in gen-
eral, no longer vanishes since the supermultiplet contains two independent Majorana
fermions. In order to further evaluate this term, let us split the fermionic fields in
their chiral components and use the following important identities stemming from the
Fierz-rearrangement formula (4.8)

𝜓𝑟 ∧ 𝜓𝑠 =
1
2
𝜓𝑠 ∧ 𝜓𝑟 −

1
8
𝛾𝐼 𝐽𝜓𝑠 ∧ 𝛾 𝐼 𝐽𝜓𝑟 (5.50)

𝜓𝑟 ∧ 𝜓 𝑠 =
1
2
𝛾𝐼𝜓

𝑠 ∧ 𝛾 𝐼𝜓𝑟 (5.51)

In this way, we obtain (summation over repeated indices)

Ψ̄𝑟 ∧ 𝛾 𝐼 𝐽Ψ𝑟 ∧ Ψ̄𝑠 ∧ 𝛾𝐼 𝐽Ψ𝑠 =𝜓 𝑟 ∧ 𝛾 𝐼 𝐽𝜓 𝑟 ∧ 𝜓 𝑠 ∧ 𝛾𝐼 𝐽𝜓 𝑠

+ 𝜓𝑟 ∧ 𝛾 𝐼 𝐽𝜓𝑟 ∧ 𝜓𝑠 ∧ 𝛾𝐼 𝐽𝜓𝑠
=4𝜓 𝑟 ∧ 𝜓 𝑠𝜖𝑟 𝑠 ∧ 𝜓 𝑝 ∧ 𝜓 𝑞𝜖𝑝𝑞
+ 4𝜓𝑟 ∧ 𝜓𝑠𝜖𝑟 𝑠 ∧ 𝜓𝑝 ∧ 𝜓𝑞𝜖 𝑝𝑞 (5.52)

where in the second equality we used that

𝜓 𝑟 ∧ 𝜓 𝑠 ∧ 𝜓𝑠 ∧ 𝜓𝑟 = −
1
2
𝜓 𝑟 ∧ 𝜓 𝑠𝜖𝑟 𝑠 ∧ 𝜓𝑝 ∧ 𝜓𝑞𝜖 𝑝𝑞 (5.53)

On the other hand, we have

Ψ̄𝑟 ∧ 𝛾 𝐼 𝐽Ψ𝑟 ∧ Ψ̄𝑠 ∧ 𝛾𝐼 𝐽 𝛾∗Ψ𝑠 =𝜓 𝑟 ∧ 𝛾 𝐼 𝐽𝜓 𝑟 ∧ 𝜓 𝑠 ∧ 𝛾𝐼 𝐽𝜓 𝑠

− 𝜓𝑟 ∧ 𝛾 𝐼 𝐽𝜓𝑟 ∧ 𝜓𝑠 ∧ 𝛾𝐼 𝐽𝜓𝑠
=4Ψ̄𝑟 ∧ Ψ𝑠𝜖𝑟 𝑠 ∧ Ψ̄ 𝑝 ∧ 𝛾∗Ψ𝑞𝜖𝑝𝑞 (5.54)
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Thus, using (5.52) and (5.54), we can rewrite it as follows

1
32𝐿2 Ψ̄

𝑟 ∧ 𝛾 𝐼 𝐽Ψ𝑟 ∧ Ψ̄𝑠 ∧ 𝛾𝐼 𝐽P𝛽Ψ𝑠 =
𝑖

16𝐿2 Ψ̄
𝑟 ∧ Ψ𝑠𝜖𝑟 𝑠 ∧ Ψ̄ 𝑝 ∧ 𝛾∗Ψ𝑞𝜖𝑝𝑞

+ 1
16𝛽𝐿2 (𝜓

𝑟 ∧ 𝜓 𝑠𝜖𝑟 𝑠 ∧ 𝜓 𝑝 ∧ 𝜓 𝑞𝜖𝑝𝑞

+ 𝜓𝑟 ∧ 𝜓𝑠𝜖𝑟 𝑠 ∧ 𝜓𝑝 ∧ 𝜓𝑞𝜖 𝑝𝑞) (5.55)

Hence, if we combine this with the 𝛽-dependent 𝐹 ∧ 𝐹 -term in the expansion (5.47)
given by the expression (5.48), this yields

− 1
4𝛽𝐿2 𝐹 ∧ 𝐹 +

1
32𝐿2 Ψ̄

𝑟 ∧ 𝛾 𝐼 𝐽Ψ𝑟 ∧ Ψ̄𝑠 ∧ 𝛾𝐼 𝐽P𝛽Ψ𝑠

= − 1
4𝛽𝐿2 d(𝐴 ∧ d𝐴) − 1

4𝛽𝐿2 d𝐴 ∧ Ψ̄𝑟 ∧ Ψ𝑠𝜖𝑟 𝑠

+ 𝑖

16𝐿2 Ψ̄
𝑟 ∧ Ψ𝑠𝜖𝑟 𝑠 ∧ Ψ̄ 𝑝 ∧ 𝛾∗Ψ𝑞𝜖𝑝𝑞 −

1
8𝛽𝐿2𝜓

𝑟 ∧ 𝜓 𝑠𝜖𝑟 𝑠 ∧ 𝜓𝑝 ∧ 𝜓𝑞𝜖 𝑝𝑞 (5.56)

The remaining terms in (5.47) can be treated as in theN = 1 case. For sake of complete-
ness, let us repeat them here. Again, notice that

1
𝐿
𝐹 (A) 𝛼𝑟 ∧ 𝐹 (A)𝛿𝑠 𝛿 𝑟 𝑠 (𝐶P𝛽)𝛼𝛿 = ⟨∇Ψ ∧ ∇Ψ⟩𝛽 −

1
𝐿2 Ψ̄

𝑟 ∧ 𝜸 ∧ P𝛽∇Ψ𝑟

− 1
4𝐿3 Ψ̄

𝑟 ∧ 𝛾𝐼 𝐽P−𝛽Ψ𝑟 ∧ Σ𝐼 𝐽 (5.57)

Hence, using 𝜖 𝐾𝐿
𝐼 𝐽

𝛾𝐾𝐿 = 2𝑖 𝛾𝐼 𝐽 𝛾∗, the last term in (5.57) can be combined with the
first term in the second line of (5.49) to give

𝑖

8𝐿3Σ
𝐼 𝐽 ∧ Ψ̄𝑟 ∧ 𝛾∗𝛾𝐾𝐿P𝛽Ψ𝑟 𝜖𝐼 𝐽 𝐾 𝐿 −

1
4𝐿3 Ψ̄

𝑟 ∧ 𝛾𝐼 𝐽P𝛽Ψ𝑟 ∧ Σ𝐼 𝐽

=
𝑖

8𝐿3 Ψ̄
𝑟 ∧ 𝛾∗𝛾𝐾𝐿

[
P𝛽 + P−𝛽

]
Ψ𝑟 ∧ Σ𝐼 𝐽 𝜖𝐼 𝐽 𝐾 𝐿 = − 1

8𝐿3 Ψ̄
𝑟 ∧ 𝛾𝐾𝐿Ψ𝑟 ∧ Σ𝐼 𝐽 𝜖𝐼 𝐽 𝐾 𝐿

(5.58)

Thus, to summarize, it follows that the action (5.42) can be written in the equivalent
form

𝑆N=2H-MM(A) =
1
2𝜅

∫
𝑀

(
1
2
Σ𝐼 𝐽 ∧ 𝐹 (𝜔)𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 − 𝑖Ψ̄𝑟 ∧ 𝜸 𝛾∗ ∧ ∇Ψ𝑟

− 1
4𝐿

Ψ̄𝑟 ∧ 𝛾𝐾𝐿Ψ𝑟 ∧ Σ𝐼 𝐽 𝜖𝐼 𝐽 𝐾 𝐿 +
1

4𝐿2Σ
𝐼 𝐽 ∧ Σ𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿
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+ 𝑖
8
Ψ̄𝑟 ∧ Ψ𝑠𝜖𝑟 𝑠 ∧ Ψ̄ 𝑝 ∧ 𝛾∗Ψ𝑞𝜖𝑝𝑞 −

1
2
𝐹 ∧★𝐹

+ 1
4
𝐹 (𝜔)𝐼 𝐽 ∧ 𝐹 (𝜔)𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 + 𝑖𝐿∇Ψ̄𝑟 ∧ 𝛾∗∇Ψ𝑟

− 𝑖𝐿
4
𝐹 (𝜔)𝐼 𝐽 ∧ Ψ̄𝑟 ∧ 𝛾∗𝛾𝐼 𝐽Ψ𝑟 +

1
𝛽
L𝛽

)
(5.59)

where we have collected all terms depending on the Barbero-Immirzi parameter in the
Lagrangian L𝛽 given by

L𝛽 =
1
2
𝐹 (𝜔)𝐼 𝐽 ∧ 𝐹 (𝜔)𝐼 𝐽 + Σ𝐼 𝐽 ∧ 𝐹 (𝜔)𝐼 𝐽 −

1
4
𝜓 𝑟 ∧ 𝜓 𝑠𝜖𝑟 𝑠 ∧ 𝜓𝑝 ∧ 𝜓𝑞𝜖 𝑝𝑞

− Ψ̄𝑟 ∧ 𝜸 ∧ ∇Ψ𝑟 + 𝐿∇Ψ̄𝑟 ∧ ∇Ψ𝑟 −
𝐿

4
𝐹 (𝜔)𝐼 𝐽 ∧ Ψ̄𝑟 ∧ 𝛾𝐼 𝐽Ψ𝑟

− 1
2

d𝐴 ∧ Ψ̄𝑟 ∧ Ψ𝑠𝜖𝑟 𝑠 −
1
2

d(𝐴 ∧ d𝐴) (5.60)

We have to show that this Lagrangian is indeed topological at second order, i.e. it takes
the form of a boundary term provided the spin connection satisfies its field equations.
For the second line in (5.60), this is an immediate consequence of the identity

𝐿∇Ψ̄𝑟 ∧ ∇Ψ𝑟 =d(𝐿Ψ̄𝑟 ∧ ∇Ψ𝑟 ) + Ψ̄𝑟 ∧ ∇∇Ψ𝑟

=d(𝐿Ψ̄𝑟 ∧ ∇Ψ𝑟 ) +
𝐿

4
𝐹 (𝜔)𝐼 𝐽 ∧ Ψ̄𝑟 ∧ 𝛾𝐼 𝐽Ψ𝑟 +

1
2

d𝐴 ∧ Ψ̄𝑟 ∧ Ψ𝑠𝜖𝑟 𝑠

(5.61)

For the first line, note that the EOM of 𝜔 are equivalent to the supertorsion constraint
𝐹 (A)𝐼 = 0, that is

𝐷 (𝜔) 𝑒𝐼 ≡ Θ(𝜔) 𝐼 =
1
4
Ψ̄𝑟 ∧ 𝛾 𝐼Ψ𝑟 (5.62)

Thus, using (5.62), we can rewrite the last term in the first line of (5.60) as follows

Ψ̄𝑟 ∧ 𝜸 ∧ ∇Ψ𝑟 =
1
2

d(Ψ̄𝑟 ∧ 𝜸 ∧ Ψ𝑟 ) +
1
2
Ψ̄𝑟 ∧ 𝐷 (𝜔) 𝑒𝐼 𝛾𝐼 ∧ Ψ𝑟

=
1
2

d(Ψ̄𝑟 ∧ 𝜸 ∧ Ψ𝑟 ) +
1
8
Ψ̄𝑟 ∧ 𝛾𝐼Ψ𝑟 ∧ Ψ̄𝑠 ∧ 𝛾 𝐼Ψ𝑠

=
1
2

d(Ψ̄𝑟 ∧ 𝜸 ∧ Ψ𝑟 ) +
1
2
𝜓𝑟 ∧ 𝛾𝐼 ∧ 𝜓 𝑟 ∧ 𝜓 𝑠 ∧ 𝛾 𝐼 ∧ 𝜓𝑠

=
1
2

d(Ψ̄𝑟 ∧ 𝜸 ∧ Ψ𝑟 ) −
1
2
𝜓 𝑟 ∧ 𝜓 𝑠𝜖𝑟 𝑠 ∧ 𝜓𝑝 ∧ 𝜓𝑞𝜖 𝑝𝑞 (5.63)
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On the other hand, according to (5.50)-(5.51) and (5.53), we have the important identity

Θ(𝜔) 𝐼 ∧Θ(𝜔)
𝐼

=
1
16

Ψ̄𝑟 ∧ 𝛾𝐼Ψ𝑟 ∧ Ψ̄𝑠 ∧ 𝛾 𝐼Ψ𝑠 = −
1
4
𝜓 𝑟 ∧ 𝜓 𝑠𝜖𝑟 𝑠 ∧ 𝜓𝑝 ∧ 𝜓𝑞𝜖 𝑝𝑞

(5.64)

Hence, the last three terms in the first line of (5.60) can be re-expressed in the following
way

Σ𝐼 𝐽 ∧ 𝐹 (𝜔)𝐼 𝐽 −
1
4
𝜓 𝑟 ∧ 𝜓 𝑠𝜖𝑟 𝑠 ∧ 𝜓𝑝 ∧ 𝜓𝑞𝜖 𝑝𝑞 − Ψ̄𝑟 ∧ 𝜸 ∧ ∇Ψ𝑟

=Σ𝐼 𝐽 ∧ 𝐹 (𝜔)𝐼 𝐽 −Θ(𝜔) 𝐼 ∧Θ(𝜔)𝐼 + 2d(𝑒𝐼 ∧Θ(𝜔)
𝐼
) (5.65)

In fact, this can be simplified even further. To this end, we notice that the first two terms
in equation (5.65) yield the so-called Nieh-Yan toplogical invariant d(𝑒𝐼 ∧Θ(𝜔)

𝐼
) [190].

This is easy to see using the properties of the covariant derivative which immediately
gives3

d(𝑒𝐼 ∧Θ(𝜔)
𝐼
) = 𝐷 (𝜔) 𝑒𝐼 ∧Θ(𝜔)

𝐼
− 𝑒𝐼 ∧ 𝐷 (𝜔)𝐷 (𝜔) 𝑒𝐼

= Θ(𝜔) 𝐼 ∧Θ(𝜔)
𝐼
− Σ𝐼 𝐽 ∧ 𝐹 (𝜔)𝐼 𝐽 (5.66)

Thus, to summarize, we observe that, provided that the spin connection satisfies its field
equations, the Lagrangian (5.60) takes the final form

L𝛽 =
1
2
𝐹 (𝜔)𝐼 𝐽 ∧ 𝐹 (𝜔)𝐼 𝐽 + d

(
𝑒𝐼 ∧Θ(𝜔)

𝐼
+ 𝐿Ψ̄𝑟 ∧ ∇Ψ𝑟 −

1
2
𝐴 ∧ d𝐴

)
(5.67)

and therefore is indeed topological. Moreover, if we subtract this term from the full
action (5.42), it follows that this action finally reduces to

𝑆 (A) = 1
2𝜅

∫
𝑀

(
1
2
Σ𝐼 𝐽 ∧ 𝐹 (𝜔)𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 − 𝑖Ψ̄𝑟 ∧ 𝜸 𝛾∗ ∧ ∇Ψ𝑟

− 1
4𝐿

Ψ̄𝑟 ∧ 𝛾𝐾𝐿Ψ𝑟 ∧ Σ𝐼 𝐽 𝜖𝐼 𝐽 𝐾 𝐿 +
1
𝐿2Σ

𝐼 𝐽 ∧ Σ𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿

3 This can also be checked by direct computation. Indeed,

d(𝑒𝐼 ∧Θ(𝜔)
𝐼
) = d𝑒𝐼 ∧Θ(𝜔)

𝐼
− 𝑒𝐼 ∧ dΘ(𝜔)

𝐼
= d𝑒𝐼 ∧Θ(𝜔)

𝐼
+ 𝜔 𝐽

𝐼
∧ 𝑒𝐼 ∧ d𝑒 𝐽 − 𝑒𝐼 ∧ 𝑒 𝐽 ∧ d𝜔𝐼 𝐽

= d𝑒𝐼 ∧Θ(𝜔)
𝐼
+ 𝜔 𝐽

𝐼
∧ 𝑒𝐼 ∧ d𝑒 𝐽 + 𝜔𝐾 𝐽 ∧ 𝑒

𝐽 ∧ 𝜔 𝐼
𝐾
∧ 𝑒𝐼 − 𝑒𝐼 ∧ 𝑒 𝐽 ∧ 𝐹 (𝜔)𝐼 𝐽

= Θ(𝜔) 𝐼 ∧Θ(𝜔)
𝐼
− Σ𝐼 𝐽 ∧ 𝐹 (𝜔)𝐼 𝐽
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+ 𝑖
2

(
d𝐴 + 1

4
Ψ̄𝑟 ∧ Ψ𝑠𝜖𝑟 𝑠

)
∧ Ψ̄ 𝑝 ∧ 𝛾∗Ψ𝑞𝜖𝑝𝑞 −

1
2
𝐹 ∧★𝐹 +Lbdy

)
(5.68)

with Lbdy given by (5.38) (times 2𝐿−2). Hence, at second order, the Holst action leads
back to the original action ofN = 2, 𝐷 = 4 AdS supergravity as stated in [81, 83] as
required. To summarize, the Holst-MacDowell-Mansouri action can be written in the
form

𝑆N=2H-MM(A) =
1
2𝜅

∫
𝑀

Σ𝐼 𝐽 ∧ (𝑃𝛽 ◦ 𝐹 (𝜔))𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿 − Ψ̄𝑟 ∧ 𝜸
1 + 𝑖 𝛽𝛾∗

𝛽
∧ ∇Ψ𝑟

− 1
4𝐿

Ψ̄𝑟 ∧ 𝛾𝐾𝐿Ψ𝑟 ∧ Σ𝐼 𝐽 𝜖𝐼 𝐽 𝐾 𝐿 +
1
𝐿2Σ

𝐼 𝐽 ∧ Σ𝐾𝐿𝜖𝐼 𝐽 𝐾 𝐿

+ 𝑖
2

(
d𝐴 + 1

4
Ψ̄𝑟 ∧ Ψ𝑠𝜖𝑟 𝑠

)
∧ Ψ̄ 𝑝 ∧ 𝛾∗Ψ𝑞𝜖𝑝𝑞

− 1
4𝛽
𝜓 𝑟 ∧ 𝜓 𝑠𝜖𝑟 𝑠 ∧ 𝜓𝑝 ∧ 𝜓𝑞𝜖 𝑝𝑞 −

1
2
𝐹 ∧★𝐹 + 𝑆bdy (5.69)

with 𝑆bdy a boundary action given by

𝑆bdy(A) =
𝐿2

𝜅

∫
𝜕𝑀

⟨𝜔 ∧ d𝜔 + 1
3
𝜔 ∧ [𝜔 ∧ 𝜔]⟩

𝛽
− 1
4𝛽𝐿2 𝐴 ∧ d𝐴 + ⟨Ψ ∧ ∇Ψ⟩𝛽

(5.70)

In particular, according to the general discussion in Section 5.3, similar to theN = 1 case,
this boundary action is determined uniquely if one requires supersymmetry invariance
of the full action at the boundary.

Again, as in the non-extended case, since the inner product in (5.70) is not invariant
under the full supergroup OSp(2|4) but only under the action of its bosonic subgroup,
the boundary action (5.70), in general, will not correspond to a super Chern-Simons
action (see Section 5.6.1). As we will see in the following section, this changes however
in case of the chiral theory where the boundary theory will generically be described in
terms of a super Chern-Simons theory with gauge supergroup OSp(2|2)C.

Nevertheless, one should emphasize that, at least in context of the standard underformed
theory, one can construct models where this turns out to be true even in case of classical
(real) variables. For instance, in [82], particular falloff conditions for the physical fields
in theN = 2 case where considered leading to a super Chern-Simons theory on the
boundary corresponding to a OSp(2|2) × SO(1, 2) gauge group. This model has also
been studied in [191–193] which turned out to have interesting applications in condensed
matter physics in the description of graphene near the Dirac points.
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Remark 5.3.1. It is interesting to note that, via Definition (5.39) and (5.41), the Barbero-
Immirzi parameter leads to an additional topological term in the U(1) sector of the
theory which is also known as the 𝜃 -term in Yang-Mills theory. Hence, in this sense, the
Barbero-Immirzi parameter literally has the interpretation in terms of a 𝜃 -ambiguity.
This supports the hypothesis of [186]. This may also have interesting consequences for
the quantum theory of the U(1) sector (see Section 5.5 below).

5.4. Chiral supergravity and the super Ashtekar
connection

5.4.1. The super Ashtekar connection

In the previous sections, we have derived the actions ofN -extended𝐷 = 4 anti-de Sitter
supergravity forN = 1, 2 including unique boundary terms considering it geometrically
in terms of a super Cartan geometry. In particular, all the basic entities of the theory
turn out to be completely encoded in the super Cartan connection

A = 𝑒𝐼 𝑃𝐼 +
1
2
𝜔𝐼 𝐽𝑀𝐼 𝐽 +

1
2
𝐴𝑟 𝑠𝑇

𝑟 𝑠 + Ψ𝛼
𝑟 𝑄

𝑟
𝛼 (5.71)

taking values in the super Lie algebra 𝔬𝔰𝔭(N |4) corresponding to the underlying super
Klein geometry.

In 1986 in [20], Ashtekar introduced his self-dual variables which give the canonical
phase space of ordinary gravity the structure of a SL(2,C) Yang-Mills theory. This
construction is based on a particular structure of the internal symmetry algebra. In fact,
the complexification of the Lie algebra of the orthochronous Lorentz group SO+(1, 3)
has a decomposition of the form

𝔰𝔬+(1, 3)C = 𝔰𝔲(2)C ⊕ 𝔰𝔲(2)C � 𝔰𝔩(2,C) ⊕ 𝔰𝔩(2,C) (5.72)

and thus splits into two proper 𝔰𝔩(2,C) subalgebras (viewed as complex Lie algebras
of complex SL(2,C)). This precisely corresponds to the decomposition of the spin
connection 𝜔 into its self-dual 𝐴+ and anti self-dual part 𝐴−, respectively. In this
sense, the self-dual variables can be regarded as chiral sub components of the 4𝐷 spin
connection.

Hence, the natural question arises whether such a construction carries over to the super
category. As we will see in what follows, this will be indeed the case, even for arbitrary
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N ≥ 1. To this end, recall that the Ashtekar variables 𝐴± are defined as the (anti)
self-dual part of the four-dimensional spin connection 𝜔 according to

𝐴± :=
1
2

[
1
2

(
𝜔𝐼 𝐽 ∓ 𝑖

2
𝜖
𝐼 𝐽

𝐾 𝐿
𝜔𝐾𝐿

) ]
𝑀𝐼 𝐽 (5.73)

which takes values in the complexification 𝔰𝔭𝔦𝔫(1, 3)C of the Lie algebra of the spin
double cover Spin+(1, 3) of the orthochronous Lorentz group generated by𝑀𝐼 𝐽 . After
some simple algebra, it follows that

𝐴± =
1
2

[
1
2

(
𝜔𝐼 𝐽 ∓ 𝑖

2
𝜖
𝐼 𝐽

𝐾 𝐿
𝜔𝐾𝐿

) ]
𝑀𝐼 𝐽

=
1
2

(
1
4
𝜖 𝑖
𝑘𝑙
𝜖 𝑚𝑛𝑖 𝜔𝑘𝑙𝑀𝑚𝑛 ∓

𝑖

2
𝜖0𝑖
𝑘𝑙
𝜔𝑘𝑙𝑀0𝑖 ∓

𝑖

2
𝜖 𝐾𝐿
0𝑖 𝜔0𝑖𝑀𝐾𝐿 + 𝜔0𝑖𝑀0𝑖

)
=

(
−1
2
𝜖 𝑖
𝑘𝑙
𝜔𝑘𝑙 ∓ 𝑖𝜔0𝑖

)
1
2

(
−1
2
𝜖 𝑘𝑙𝑖 𝑀𝑘𝑙 ± 𝑖𝑀0𝑖

)
=: 𝐴±𝑖𝑇 ±𝑖 (5.74)

where 𝐴±𝑖 := Γ𝑖 ∓ 𝑖𝐾 𝑖 , 𝑖 = 1, . . . , 3, with Γ𝑖 = − 1
2 𝜖
𝑖
𝑘𝑙
𝜔𝑘𝑙 the 3𝐷 spin connection

and 𝐾 𝑖 = 𝜔0𝑖 the extrinsic curvature (cf. Section 4.3). Moreover,𝑇 ±
𝑖

are given by

𝑇 ±𝑖 =
1
2
( 𝐽𝑖 ± 𝑖 𝐾̃𝑖) (5.75)

with 𝐽𝑖 = − 1
2 𝜖

𝑗𝑘

𝑖
𝑀𝑗𝑘 and 𝐾̃𝑖 = 𝑀0𝑖 , the generators of local rotations and boosts,

respectively. These satisfy the commutation relations

[𝑇 ±𝑖 , 𝑇 ±𝑗 ] = 𝜖 𝑘
𝑖𝑗 𝑇

±
𝑘

(5.76)

and therefore generate the chiral 𝔰𝔩(2,C) subalgebras of 𝔰𝔭𝔦𝔫+(1, 3)C. Since 𝛾0𝑖 =
𝑖
2 𝜖𝑖𝑗𝑘 𝛾

𝑗𝑘𝛾∗, one has the important identity

1
4

(
−𝜖 𝑗𝑘
𝑖
𝛾𝑗𝑘 ± 𝑖 𝛾0𝑖

)
=
𝛾∗ ± 1
2

𝑖

2
𝛾0𝑖 (5.77)

Hence, using (5.77), it immediately follows that the exterior covariant derivative induced
by 𝐴+ (resp. 𝐴−) acts on purely unprimed (resp. primed) spinor indices according to

𝐷 (𝐴
+)𝜓 𝐴 = d𝜓 𝐴 + 𝐴+𝐴𝐵 ∧ 𝜓 𝐵 , and 𝐷 (𝐴

−)𝜓𝐴′ = d𝜓𝐴′ + 𝐴− 𝐵′

𝐴′ ∧ 𝜓𝐵′ (5.78)

respectively, where 𝐴+𝐴𝐵 = 𝐴+𝑖 (𝜏𝑖)𝐴𝐵 and 𝐴− 𝐵′

𝐴′ = 𝐴−𝑖 (𝜏𝑖) 𝐵′

𝐴′ (note that the
second identity in (5.78) can be obtained taking the complex conjugate of the first one).
Hence, focusing for the moment on the self-dual sector, let us consider the chiral sub
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components𝑄𝑟
𝐴

of the Majorana charges𝑄𝑟𝛼 . From (2.96), it then follows, using again
(5.77),

[𝑇 +
𝑘
, 𝑄𝑟

𝐴
] = 𝑄𝑟

𝐵
(𝜏𝑘)𝐵𝐴 (5.79)

that is, the Weyl fermions𝑄𝑟
𝐴

transform in the fundamental representation of𝔰𝔩(2,C) as
to be expected from (5.78). Next, let us consider the anticommutation relations between
two Weyl fermions. In the Weyl representation, recall that the charge conjugation matrix
𝐶 admits a block diagonal form given by𝐶 = diag(𝑖 𝜖, 𝑖 𝜖). From this, we immediately
deduce

(𝐶𝛾 𝐼 𝐽 )𝐴𝐵𝑀𝐼 𝐽 =
𝑖

2

(
𝜖(𝜎 𝐼 𝜎̄ 𝐽 − 𝜎 𝐽 𝜎̄ 𝐼 )

)
𝐴𝐵
𝑀𝐼 𝐽

= 2𝑖 (𝜖𝜎 𝑖)𝐴𝐵𝑀0𝑖 − 𝜖
𝑖𝑗

𝑘
(𝜖𝜎 𝑘)𝐴𝐵𝑀𝑖𝑗

= 2(𝜖𝜎 𝑖)𝐴𝐵
(
𝑖𝑀0𝑖 −

1
2
𝜖
𝑗𝑘

𝑖
𝑀𝑗𝑘

)
= 2(𝜖𝜎 𝑖)𝐴𝐵𝑇 +𝑖 (5.80)

Hence, using (2.99), it follows

[𝑄𝑟
𝐴
, 𝑄 𝑠

𝐵
] = 𝛿 𝑟 𝑠 1

𝐿
(𝜖𝜎 𝑘)𝐴𝐵𝑇 +𝑘 − 𝑖 𝜖𝐴𝐵𝑇

𝑟 𝑠 (5.81)

The 𝑅-symmetry generators𝑇 𝑟 𝑠 do not mix the chiral components of the Majorana
charges 𝑄𝑟𝛼 . Thus, to summarize, we have found that (𝑇 +

𝑖
, 𝑇 𝑟 𝑠, 𝑄𝑟

𝐴
) indeed form a

proper chiral sub super Lie algebra of𝔬𝔰𝔭(N |4)Cwith the graded commutation relations

[𝑇 +𝑖 , 𝑇 +𝑗 ] = 𝜖 𝑘
𝑖𝑗 𝑇

+
𝑘

(5.82)

[𝑇 +𝑖 , 𝑄𝑟𝐴] = 𝑄
𝑟
𝐵
(𝜏𝑖)𝐵𝐴 (5.83)

[𝑄𝑟
𝐴
, 𝑄 𝑠

𝐵
] = 𝛿 𝑟 𝑠 1

𝐿
(𝜖𝜎 𝑖)𝐴𝐵𝑇 +𝑖 − 𝑖 𝜖𝐴𝐵𝑇 𝑟 𝑠 (5.84)

[𝑇 𝑝𝑞, 𝑄𝑟
𝐴
] = 1

2𝐿
(𝛿 𝑞𝑟𝑄 𝑝

𝐴
− 𝛿 𝑝𝑟𝑄𝑞

𝐴
) (5.85)

which precisely coincide with the graded commutation relations of the complex orthosym-
plectic Lie superalgebra 𝔬𝔰𝔭(N |2)C, the extended supersymmetric generalization of the
isometry algebra of 𝐷 = 2 anti-de Sitter space [115]. Performing the Inönü-Wigner con-
traction, i.e., taking the limit 𝐿 →∞, this yields theN -extended 𝐷 = 2 super Poincaré
algebra also often denoted by𝔬𝔰𝔭(N |2)C. Similarly, considering the anti self-dual sector,
one obtains a proper sub super Lie algebra generated by the anti chiral components
(𝑇 −
𝑖
, 𝑇 𝑟 𝑠, 𝑄𝐴′

𝑟 ) which again forms 𝔬𝔰𝔭(N |2)C.

For the construction of the super analog of Ashtekar’s self-dual variables, in what follows,
let us restrict to the casesN = 1, 2 in which case we know that the theory is described
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in terms of the super Cartan connectionA ∈ Ω1(P/S ,𝔬𝔰𝔭(N |4)) (5.71). Based on
the above observations, we then introduce the following graded self-dual variables also
called the super Ashtekar connection

A+ := 𝐴+𝑖𝑇 +𝑖 +
1
2
𝐴𝑟 𝑠𝑇

𝑟 𝑠 + 𝜓 𝐴𝑟 𝑄𝑟𝐴 and A− := 𝐴−𝑖𝑇 −𝑖 +
1
2
𝐴𝑟 𝑠𝑇

𝑟 𝑠 + 𝜓 𝑟
𝐴′𝑄

𝐴′
𝑟

(5.86)
defining S-relative 1-forms on the S-relative principal super fiber bundle SO(N) ×
Spin+(1, 3) → P/S → M/S with values in the chiral sub superalgebra 𝔬𝔰𝔭(N |2)C
which, in the limit of a vanishing cosmological constant, yields theN -extended 𝐷 = 2
super Poincaré algebra.

Remark 5.4.1. The N -extended 𝐷 = 2 super Poincaré algebra has an equivalent
description in terms of a direct sum super Lie algebra sl(2,C) ⊕ C0 |2N , where C0 |2N
is regarded as a purely odd super vector space. Given N copies of the fundamental
representation 𝜌 : 𝔰𝔩(2,C) → End(C2) of𝔰𝔩(2,C), the graded commutation relations
are given by

[(𝑥, 𝑣), (𝑥 ′, 𝑣′)] := ( [𝑥, 𝑥 ′], 𝜌⊕N (𝑥) (𝑣) − 𝜌⊕N (𝑥 ′) (𝑣′)) (5.87)

∀(𝑥, 𝑣), (𝑥 ′, 𝑣′) ∈ sl(2,C) ⊕ C0 |2N . In the mathematical literature, such kind of
superalgebras are usually called generalized Takiff Lie superalgebras [194].

For the rest of this section, let us focus on the chiral case (and the case of nonvanishing
cosmological constant), the considerations forA− are in fact completely analogous. Let
us consider the complexification PC of P defined as the associated super SO(N) ×
Spin+(1, 3)C-bundle

PC := P[SO(N) × Spin+(1, 3)C] (5.88)

via the obvious mapping Spin+(1, 3) ↩→ Spin+(1, 3)C. Due to (5.72), this bundle can
be reduced to a super SO(N) × SL(2,C)-bundle Q ↩→ PC. It follows from the chiral
nature ofA+ that it can be reduced to a well-defined 1-form

A+ ∈ Ω1(Q/S ,𝔬𝔰𝔭(N |2)C)0 (5.89)

which, by construction, satisfies the conditions (i) and (ii) of Def. 3.3.3. Hence, A+
defines a generalized super Cartan connection on the S-relative SO(N) × SL(2,C)-
bundle Q/S . For N = 1, this is precisely the connection as first introduced in [63].
There, this connection arose by studying the constraint algebra of the canonical theory.
Here, we have derived it using the geometrical description of N -extended 𝐷 = 4
supergravity in terms of super Cartan geometry and studying the chiral structure of
the underlying supersymmetry algebra corresponding to the super Klein geometry. In
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particular, we have found that it has the interpretation in terms of a generalized super
Cartan connection on theS-relative SO(N) × SL(2,C)-bundle Q/S .

Thus, using Prop. 3.3.12, we can liftA+ to a super connection 1-form on the associated
OSp(N |2)C-bundle

Q[OSp(N |2)C]/S (5.90)

In this way, it follows that the canonical phase space ofN -extended,𝐷 = 4 supergravity
inherits the structure of a OSp(N |2)C Yang-Mills theory which is complete analogy to
the standard self-dual variables in ordinary first-order gravity.

Remark 5.4.2. Let us emphasize that, since the above construction relied crucially on
the chiral description of the theory, this construction cannot be carried over to real
Barbero-Immirzi parameters! In fact, real 𝛽 requires the consideration of both chiral
components of the Majorana fermions𝑄𝑟𝛼 . But, the anticommutator between𝑄𝑟

𝐴
and

𝑄𝐴′
𝑟 is proportional to 𝑃𝐼 which is related to the soldering form 𝑒 encoded in the dual

electric field (see Section 4.3 or Section 5.4.4 below). Hence, this does not lead to a
proper sub super Lie algebra and the super Ashtekar connection cannot be defined.

5.4.2. N = 1 chiral SUGRA: Chiral Palatini action and super
Chern-Simons theory on the boundary

The content of this section has been reproduced from [3], with slight changes to account
for the context of this thesis with the permission of Springer-Nature.

Having derived the most general form of the Holst action of 𝐷 = 4 AdS supergravity
for the cases N = 1, 2 in the presence of boundaries which also incorporates local
supersymmetry invariance, in what follows, we want to focus on the special case of
an imaginary Barbero-Immirzi parmareter 𝛽 = ±𝑖 andN = 1 (the caseN = 2 will
be discussed in Section 5.4.3 below). As we will see, the resulting theory has many
interesting properties and in fact leads to numerous intriguing structures which seem to
be well-compatible with the underlying supersymmetry.

Hence, in what follows, let us set 𝛽 = −𝑖 (the other case can be treated in complete
analogy). In this case, the operator (5.10) takes the form P𝛽=−𝑖 = 𝑖

1+𝛾∗
2 so that P𝛽=−𝑖 =:

𝑖P+ where, according to the general discussion in the previous section, P+ defines a
projection

P+ : 𝔬𝔰𝔭(1|4)C → 𝔬𝔰𝔭(1|2)C (5.91)

onto a proper sub superalgebra of 𝔬𝔰𝔭(1|4) given by the (complex) orthosymplectic
algebra 𝔬𝔰𝔭(1|2)C corresponding to the superalgebra ofN = 1, 𝐷 = 2 super anti-de
Sitter space (in fact, it turns out that (5.91) even defines a morphism of superalgebras).
It then follows that the inner product (5.11) reduces to the standard inner product
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⟨·, ·⟩ on 𝔬𝔰𝔭(1|2)C given by the supertrace which, in particular, is invariant under the
Adjoint representation of OSp(1|2)C. Applying the projection (5.91) on the super
Cartan connection (5.1), this yields the super Ashtekar connection (5.86) forN = 1

A+ ≡ P+A = 𝐴+𝑖𝑇 +𝑖 + 𝜓 𝐴𝑄𝐴 (5.92)

As discussed in the previous section, the super Ashtekar connection defines a generalized
super Cartan connection, so that, via the correspondence Cartan↔ Ehresmann (Prop.
3.3.12), it gives rise to a proper super connection 1-form on the associated OSp(1|2)C-
bundle. By applying the projection (5.91) on the Cartan curvature (5.13), we then find
for the Lorentzian sub components

(P+𝐹 (A)) 𝑖 = 𝐹 (𝐴+) 𝑖 + 𝑖
𝐿
𝜓 𝐴 ∧ 𝜓 𝐵𝜏 𝑖

𝐴𝐵
+ 1
2𝐿2Σ

𝑖 = 𝐹 (A+) 𝑖 + 1
2𝐿2Σ

𝑖 (5.93)

with 𝐹 (A+) the associated curvature ofA+. Here, Σ𝐴𝐵 = Σ𝑖𝜏 𝐴𝐵
𝑖

denotes the self-
dual part of Σ𝐴𝐴′𝐵𝐵′ := 𝑒𝐴𝐴′ ∧ 𝑒𝐵𝐵′ which, due to antisymmetry, can be decomposed
according to

Σ𝐴𝐴
′𝐵𝐵′ = 𝜖𝐴𝐵Σ𝐴

′𝐵′ + 𝜖𝐴′𝐵′Σ𝐴𝐵 (5.94)

such that Σ𝐴𝐵 := 1
2 𝜖𝐴′𝐵′Σ

𝐴𝐴′𝐵𝐵′ . Moreover, for the chiral odd components, we find

(P+𝐹 (A))𝐴 = 𝐷 (𝐴
+)𝜓 𝐴 + 1

2𝐿
𝜒 𝐴 = 𝐹 (A+)𝐴 + 1

2𝐿
𝜒 𝐴 (5.95)

where we set 𝜒 := −𝜸 ∧ 𝜓 such that 𝜒𝐴 = 𝑒𝐴𝐴′ ∧ 𝜓 𝐴
′ . Thus, defining E := Σ𝑖𝑇 +

𝑖
+

𝐿 𝜒 𝐴𝑄𝐴 which will also be called the super electric field, this yields

P+𝐹 (A) = 𝐹 (A+) + 1
2𝐿2E (5.96)

Inserting this expression into the Holst-MacDowell-Mansouri action (5.12) for 𝛽 = −𝑖,
this gives

⟨𝐹 (A) ∧ 𝐹 (A)⟩𝛽 =𝑖 ⟨(𝐹 (A+) +
1

2𝐿2E) ∧ (𝐹 (A
+) + 1

2𝐿2E)⟩

=
𝑖

𝐿2 ⟨E ∧ 𝐹 (A
+)⟩ + 𝑖

4𝐿4 ⟨E ∧ E⟩ + 𝑖 ⟨𝐹 (A
+) ∧ 𝐹 (A+)⟩

(5.97)

such that

𝑆N=1H-MM(A) =
𝑖

𝜅

∫
𝑀

(
⟨E ∧ 𝐹 (A+)⟩ + 1

4𝐿2 ⟨E ∧ E⟩
)
+ 𝑆bdy (5.98)
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with a boundary term 𝑆bdy taking the form

𝑆bdy(A+) =
𝑖𝐿2

𝜅

∫
𝑀

⟨𝐹 (A+) ∧ 𝐹 (A+)⟩

=
𝑘

4𝜋

∫
𝜕𝑀

⟨A+ ∧ dA+ + 1
3
A+ ∧ [A+ ∧ A+]⟩ (5.99)

where we used Eq. (5.291) in Section (5.6.1) which now holds due to OSp(1|2)C-invariance.
Thus, as we see, in the chiral theory, the Holst-MacDowell-Mansouri action becomes
manifestly OSp(1|2)C gauge-invariant and the boundary term takes the form of a super
Chern-Simons action with gauge supergroup OSp(1|2)C and (complex) Chern-Simons
level 𝑘 = 𝑖4𝜋𝐿2/𝜅 = −𝑖12𝜋/𝜅Λcos with Λcos the cosmological constant.

Finally, for the last part of this section, we want to explicitly show that the full action
(5.98) is indeed invariant under local supersymmetry transformations. To this end, let
us further evaluate the bulk term in (5.98). Using (5.93) and (5.95), we find

⟨E ∧ 𝐹 (A+)⟩ = Σ𝐴𝐵 ∧ 𝐹 (𝐴+)𝐴𝐵 +
𝑖

2𝐿
Σ𝐴𝐵 ∧ 𝜓𝐴 ∧ 𝜓𝐵 + 𝑖 𝜒𝐴 ∧ 𝐷 (𝐴

+)𝜓 𝐴

(5.100)

as well as
⟨E ∧ E⟩ = Σ𝐴𝐵 ∧ Σ𝐴𝐵 + 𝑖𝐿 𝜒𝐴 ∧ 𝜒 𝐴 (5.101)

so that the bulk contribuation in (5.98) can be written in the form

𝑆bulk(A) =
𝑖

𝜅

∫
𝑀

Σ𝐴𝐵 ∧ 𝐹 (𝐴+)𝐴𝐵 + 𝑖 𝜒𝐴 ∧ 𝐷 (𝐴
+)𝜓 𝐴

+ 𝑖

2𝐿
Σ𝐴𝐵 ∧ 𝜓𝐴 ∧ 𝜓𝐵 +

𝑖

4𝐿
𝜒𝐴 ∧ 𝜒 𝐴 +

1
4𝐿2Σ

𝐴𝐵 ∧ Σ𝐴𝐵 (5.102)

This is precisely the form of the action of chiralN = 1, 𝐷 = 4 AdS supergravity as
stated, e.g., in [63, 180] and coincides with the Holst action 𝑆N=1H-AdS (Eq. (4.121)) for the
special case 𝛽 = −𝑖.

In the Weyl representation of the gamma matrices, the Majorana spinor 𝜖 generat-
ing supersymmetry transformations splits into a left- and right-handed Weyl spinor
𝜖 = (𝜖𝐴, 𝜖𝐴′)𝑇 . We will say that transformations associated with the former are left-
handed supersymmetry transformations, whereas the latter will be called right-handed
supersymmetry transformations. According to the general discussion in Section 5.2,
it follows that under left supersymmetry transformations corresponding to some left-
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handed Weyl spinor 𝜖 = (𝜖𝐴, 0)𝑇 , the super Ashtekar connection and super electric
field transform via

𝛿𝜖A+ = 𝐷 (A
+) 𝜖 and 𝛿𝜖E = −[𝜖, E] (5.103)

respectively, and therefore correspond to ordinary OSp(1|2)C-gauge transformations
under which the action (5.98) is manifestly invariant. Note that this is true even off-shell,
i.e. without 𝜔 satisfying its field equation. Thus, in the chiral theory, it follows that a
sub part of the full SUSY transformations becomes a true gauge symmetry of the theory!
It remains to show that the action is invariant under right SUSY transformations corre-
sponding to some (anticommutative) right-handed Weyl spinor 𝜖 = (0, 𝜖𝐴′)𝑇 . In that
case, from (5.4) we deduce

𝛿𝜖𝑒
𝐴𝐴′ = 𝑖𝜓 𝐴𝜖𝐴

′
, 𝛿𝜖𝜓

𝐴 = − 1
2𝐿
𝑒𝐴𝐴

′
𝜖𝐴′ , 𝛿𝜖𝜓𝐴′ = 𝐷

(𝐴−) 𝜖𝐴′ , 𝛿𝜖𝐴
+ = 0

(5.104)
Using (5.104), it follows that the variation of the super electric field takes the form

𝛿𝜖 𝜒𝐴 = 𝑖𝜓𝐴𝜖𝐴′∧𝜓 𝐴
′+𝑒𝐴𝐴′∧𝐷 (𝐴

−) 𝜖𝐴′ = 𝐷
(𝐴+)𝜂𝐴+(𝐷 (𝜔) 𝑒𝐴𝐴′+𝑖𝜓𝐴∧𝜓𝐴′) (5.105)

where, similar as in [180], we introduced 𝜂𝐴 := 𝑒𝐴𝐴′ 𝜖𝐴′ which furthermore yields

𝛿𝜖Σ𝐴𝐵 = 𝑖𝜓 (𝐴 ∧ 𝜂𝐵) (5.106)

In what follows, we want to assume that the self-dual Ashtekar connection 𝐴+ satisfies
its field equations. In this context, it is important to note that the field equations of
both 𝐴+ and 𝜓 𝐴 are altered due to the appearence of additional boundary terms in the
full action. More precisely, if one varies (5.98) w.r.t. the super Ashtekar connectionA+,
one finds that

𝛿 𝑆N=1H-MM(A) =
𝑖

𝜅

∫
𝑀

⟨𝐷 (A+)𝛿A+ ∧ E⟩ + 2𝑖𝐿2

𝜅

∫
𝑀

⟨𝐷 (A+)𝛿A+ ∧ 𝐹 (A+)⟩

=
𝑖

𝜅

∫
𝑀

⟨𝛿A+ ∧ 𝐷 (A+)E⟩ + 𝑖
𝜅

∫
𝜕𝑀

⟨𝛿A+ ∧ [E + 2𝐿2𝐹 (A+)]⟩ = 0

(5.107)

where we have integrated by parts and used the Bianchi identity 𝐷 (A+)𝐹 (A+) = 0.
Hence, the EOM of A+ are unaltered provided that the boundary contribution in
(5.107) vanishes, i.e.

𝐹 (A+)
⇐=

= − 1
2𝐿2 E⇐ (5.108)
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where the arrow denotes the pullback to the boundary. In the following, let us assume
that the boundary condition (5.108) is satisfied. Then, modulo the field equations of
𝐴+ which, as will be discussed in detail in Section 5.4.4 below, turn out to be equivalent
to the EOM of 𝜔, i.e. 𝐷 (𝜔) 𝑒𝐴𝐴′ + 𝑖𝜓𝐴 ∧ 𝜓𝐴′ = 0, it follows that

𝛿𝜖 (Σ𝐴𝐵 ∧ 𝐹 (𝐴+)𝐴𝐵) = 𝛿𝜖Σ𝐴𝐵 ∧ 𝐹 (𝐴+)𝐴𝐵 = 𝑖𝜓 (𝐴 ∧ 𝜂𝐵) ∧ 𝐹 (𝐴+)𝐴𝐵 (5.109)

On the other hand, we have

𝛿𝜖 ( 𝜒𝐴 ∧ 𝐷 (𝐴
+)𝜓 𝐴) =𝐷𝜂𝐴 ∧ 𝐷 (𝐴

+)𝜓 𝐴 − 1
2𝐿
𝜒𝐴 ∧ 𝐷 (𝐴

+)𝜂𝐴

=d(𝜂𝐴 ∧ 𝐷 (𝐴
+)𝜓 𝐴) + 𝜂𝐴 ∧ 𝐷 (𝐴

+)𝐷 (𝐴
+)𝜓 𝐴

− 1
2𝐿
𝜒𝐴 ∧ 𝐷 (𝐴

+)𝜂𝐴

=d(𝜂𝐴 ∧ 𝐷 (𝐴
+)𝜓 𝐴) − 𝜓(𝐴 ∧ 𝜂𝐵) ∧ 𝐹 (𝐴+)𝐴𝐵

− 1
2𝐿
𝜒𝐴 ∧ 𝐷 (𝐴

+)𝜂𝐴 (5.110)

as well as

𝛿𝜖 (Σ𝐴𝐵 ∧ 𝜓𝐴 ∧ 𝜓𝐵) = −
1
𝐿
Σ𝐴𝐵 ∧ 𝜂(𝐴 ∧ 𝜓𝐵) (5.111)

Finally, using 𝛿𝜖 ( 𝜒𝐴 ∧ 𝜒 𝐴) = 2𝜒𝐴 ∧ 𝐷 (𝐴
+)𝜂𝐴 and 𝛿𝜖 (Σ𝐴𝐵 ∧ Σ𝐴𝐵) = 2𝑖Σ𝐴𝐵 ∧

𝜂(𝐴∧𝜓𝐵) , we finally obtain for the variation of the full Lagrangian Lfull in (5.98) under
right-handed SUSY transformations

𝛿𝜖Lfull = 𝑖d(𝜂𝐴 ∧ 𝐷 (𝐴
+)𝜓 𝐴) + 𝛿𝜖Lbdy (5.112)

where, by the Bianchi identity, the variation of the boundary term can be written in the
form

𝛿𝜖Lbdy = 𝐿
2𝛿𝜖 ⟨𝐹 (A+) ∧ 𝐹 (A+)⟩ = 2𝐿2 ⟨𝐷 (A+)𝛿𝜖A+ ∧ 𝐹 (A+)⟩

= 2𝐿2d⟨𝛿𝜖A+ ∧ 𝐹 (A+)⟩ + 2𝐿2 ⟨𝛿𝜖A+ ∧ 𝐷 (A
+)𝐹 (A+)⟩

= 2𝐿2d⟨𝛿𝜖𝜓 ∧ 𝐷 (𝐴
+)𝜓 ⟩ = −𝐿d⟨𝜂 ∧ 𝐷 (𝐴+)𝜓 ⟩ = −𝑖d(𝜂𝐴 ∧ 𝐷 (𝐴

+)𝜓 𝐴).
(5.113)

Thus, when we combine the variations, we see that the variation of the boundary term
cancels exactly with the respective contribution of the bulk Lagrangian, finally yielding

𝛿𝜖Lfull = 0 (5.114)
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This proves that, provided boundary condition (5.108) is satisfied, the full action (5.98)
is indeed invariant under local SUSY transformations at the boundary. Moreover, from
the previous computations, we infer that, in the presence of boundaries, the boundary
contributions (5.99) taking the form of a OSp(1|2)C super Chern-Simons action to
the full action (5.98) are in fact unique if one requires both manifestly OSp(1|2)C-
gauge invariance and invariance under local right-handed SUSY transformations at the
boundary. As we will see in the next sections, these observations even carry over to
supergravity theories with extended supersymmetry.

Remark 5.4.3. As an aside, note that one can introduce a new independent 2-form
fieldB, also simply called the B-field, satisfying the simplicity constraintB := E. In this
way, it then follows that one can rewrite the bulk term in (5.98) in terms of a constrained
super BF-action with a nonvanishing cosmological constant [86, 181, 182].

As a last step, let us briefly comment on the canonical analysis of the theory (see also
Section 5.4.4 below) as well as the boundary conditions which couple the bulk and
boundary degrees of freedom. To this end, we split the full action (5.98) into a bulk and
boundary term such that 𝑆bulk + 𝑆bdy with 𝑆bdy given by (5.99). Similar as above, the
variation of the bulk contribution with respect toA+ then yields

𝛿 𝑆bulk =
𝑖

𝜅

∫
𝑀

⟨𝐷 (A+)𝛿A+ ∧ E⟩ =: dΘ + 𝑖
𝜅

∫
𝑀

⟨𝛿A+ ∧ 𝐷 (A+)E⟩ (5.115)

Here, Θ(𝛿) denotes the pre-symplectic potential inducing the bulk pre-symplectic
structure Ωbulk = dΘ

Ωbulk(𝛿1, 𝛿2) =
2𝑖
𝜅

∫
Σ
⟨𝛿[1A+ ∧ 𝛿2]E⟩ (5.116)

and, as a consequence, (A+, E) (or rather their pullback to Σ) define canonically conju-
gate variables of the canonical phase space. Moreover, from (5.115), we can immediately
read off the Gauss constraint which takes the form

G [𝛼] = 𝑖

𝜅

∫
Σ
⟨𝐷 (A+)E, 𝛼⟩ (5.117)

where 𝛼 denotes a𝔬𝔰𝔭(1|2)C-valued smearing function defined onΣ. As can be checked
by direct computation, the Gauss constraint satisfies the corresponding constraint alge-
bra {G [𝛼],G [𝛽]} = G [[𝛼, 𝛽]] and therefore generates local OSp(1|2)C-gauge trans-
formations. In this context, note that the form (5.117) of the super Gauss constraint,
in general, is only valid in the absence of boundaries. In case of a nontrivial boundary
𝜕𝑀 ≠ ∅, in order to account for functional differentiability, one either needs to assume
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that the smearing function 𝛼 vanishes on the boundary or one has to add an additional
boundary term. In the latter case, it follows that the Gauss constraint is instead given by

G [𝛼] = − 𝑖
𝜅

∫
Σ
⟨E ∧ 𝐷 (A+) 𝛼⟩ + 𝑖

𝜅

∫
Δ
⟨E, 𝛼⟩ (5.118)

withΔ defined asΔ := Σ∩𝜕𝑀 . As already explained above, the boundary contribution
to (5.98) is given by the action corresponding to a OSp(1|2)C super Chern-Simons theory.
As a result, the pre-symplectic structure of the full theory takes the form

ΩΣ (𝛿1, 𝛿2) =
2𝑖
𝜅

∫
Σ
⟨𝛿[1A+ ∧ 𝛿2]E⟩ −

𝑘

2𝜋

∫
Δ
⟨𝛿[1A+ ∧ 𝛿2]A+⟩ (5.119)

Furthermore, the decomposition of the full action into bulk and boundary terms leads to
a matching condition on the boundary between bulk and boundary degrees of freedom.
This is equivalent to requiring consistency with the equation of motion of the full theory,
i.e. 𝛿 𝑆N=1H-MM = 𝛿 𝑆bulk + 𝛿 𝑆bdy = 0 which leads back to boundary condition (5.108). As
we see, this condition arises quite naturally from the requirement of supersymmetry
invariance at the boundary and in fact, based on the previous observations, even turns
out to be unique.

Furthermore, it ensures that the pre-symplectic structure ΩΣ of the full theory is con-
served. More precisely, let Σ𝑖 for 𝑖 = 1, 2 be two Cauchy hypersurfaces and 𝐵 ⊂ 𝜕𝑀 be
a subset of the boundary enclosed by Σ1 and Σ2. Then, since on-shell the pre-symplectic
current of the bulk pre-symplectic structure defines a closed 2-form on field space [195],
by Stokes’ theorem, it follows that

ΩΣ2 (𝛿1, 𝛿2) −ΩΣ1 (𝛿1, 𝛿2)

= − 2𝑖
𝜅

∫
𝐵

⟨𝛿[1A+ ∧ 𝛿2]E⟩ −
2𝑖𝐿2

𝜅

∫
Δ2

⟨𝛿[1A+ ∧ 𝛿2]A+⟩

+ 2𝑖𝐿2

𝜅

∫
Δ1

⟨𝛿[1A+ ∧ 𝛿2]A+⟩ (5.120)

with Δ𝑖 := Σ𝑖 ∩ 𝜕𝑀 for 𝑖 = 1, 2. According to boundary condition (5.108), the
variation of the super electric field E on 𝐵 is given by 𝛿E|𝐵 = −2𝐿2𝛿 𝐹 (A+) |𝐵 =

−2𝐿2𝐷 (A
+)𝛿A+ |𝐵 . Hence, this implies that first term on the right-hand side of Eq.

(5.120) can be written as

− 2𝑖
𝜅

∫
𝐵

⟨𝛿[1A+ ∧ 𝛿2]E⟩ =
2𝑖𝐿2

𝜅

∫
𝐵

d⟨𝛿[1A+ ∧ 𝛿2]A+⟩

=
2𝑖𝐿2

𝜅

∫
Δ2

⟨𝛿[1A+ ∧ 𝛿2]A+⟩ −
2𝑖𝐿2

𝜅

∫
Δ1

⟨𝛿[1A+ ∧ 𝛿2]A+⟩ (5.121)
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Thus, when inserted back into (5.120), it follows immediately that the individual terms
on the right-hand side cancel exactly finally proving that, on shell, ΩΣ2 (𝛿1, 𝛿2) =

ΩΣ1 (𝛿1, 𝛿2), that is, the pre-symplectic structure of the full theory is indeed conserved.

Remark 5.4.4. Note that one can also rewrite the boundary condition (5.108) in the
equivalent form

𝐹 (A+)
⇐=

+ 1
2𝐿2 E⇐ = 0 ⇔ P+𝐹 (A)

⇐=
= 0 (5.122)

according to the identity (5.96). Furthermore, taking the complex conjugate of (5.123)
yields P−𝐹 (A) = 0. Hence, when combined together, this in turn gives

P+𝐹 (A)
⇐=

+ P−𝐹 (A)
⇐=

= 0 ⇔ 𝐹 (A)
⇐=

𝐼 𝐽 = 0 and 𝐹 (A)
⇐=

𝛼 = 0 (5.123)

that is, the curvature associated to the (full) super Cartan connectionA is constrained
to vanish at the boundary. This is precisely the boundary condition as derived in [81] in
context of the non-chiral theory.

Remark 5.4.5. The derivation of the Holst-MacDowell-Mansouri action via the 𝛽-
deformed inner product as described in Section 5.2.1 also gives an elegant approach to the
“double chiral” action as considered e.g. in [86]. One notices that the standard action of
N = 1 AdS SUGRA (modulo boundary terms) arises from (5.12) in the limit 𝛽 →∞.
On the other hand, one has P𝑖 + P−𝑖 = 2P∞ where P±𝑖 = ∓𝑖P∓ with P∓ defining
projections from 𝔬𝔰𝔭(1|4) onto two chiral copies of 𝔬𝔰𝔭(1|2)C. The action 𝑆N=1AdS (A)
ofN = 1 AdS SUGRA (Eq. (5.3)), modulo boundary terms, then decomposes as

2𝑆N=1AdS (A) = 𝑆
N=1,𝛽=+𝑖
H-MM (A) + 𝑆N=1,𝛽=−𝑖H-MM (A) (5.124)

and thus splits into two chiral acions of the form (5.98). These actions can be expressed
in terms of the super Ashtekar connectionsA− andA+, respectively.

5.4.3. N = 2 chiral SUGRA with boundaries

The content of this section has been reproduced from [3], with slight changes to account
for the context of this thesis with the permission of Springer-Nature.

Let us finally consider the chiral limit setting 𝛽 = −𝑖 for the Barbero-Immirzi parameter.
Then, the operator (5.39) takes the form P−𝑖 = 𝑖P+ with

P+ : Ω2(𝑀,𝔬𝔰𝔭(2|4)C) → Ω2(𝑀,𝔬𝔰𝔭(2|2)C) (5.125)
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the projection onto differential forms on the bosonic spacetime manifold with values in
the orthosymplectic subalgebra 𝔬𝔰𝔭(2|2)C. In order to see the underlying OSp(2|2)C-
gauge symmetry of the theory, let us introduce the super Ashtekar connection (5.86)
forN = 2 by projection the super Cartan connection (5.30) onto the chiral subalgebra
yielding

A+ ≡ P𝔬𝔰𝔭 (2 |2)A = 𝐴+𝑖𝑇 +𝑖 + 𝐴𝑇 + 𝜓 𝐴𝑟 𝑄𝑟𝐴 (5.126)

which, according to the general discussion in Section 5.4.1, defines a generalized super Car-
tan connection and therefore yields a proper connection on the associated OSp(2|2)C-
bundle. Applying the projection on the super curvature, we obtain for the Lorentzian
sub components4

(P𝔬𝔰𝔭 (2 |2)𝐹 (A)) 𝑖 = 𝐹 (𝐴+) 𝑖+ 𝑖
𝐿
𝜓 𝐴𝑟 ∧𝜓 𝐵𝑟 𝜏 𝑖𝐴𝐵+

1
2𝐿2Σ

𝑖 = 𝐹 (A+) 𝑖+ 1
2𝐿2Σ

𝑖 (5.127)

with 𝐹 (A+) the curvature ofA+ and Σ𝑖 defined as in theN = 1 case. Moreover, for
the chiral odd components, we find

(P𝔬𝔰𝔭 (2 |2)𝐹 (A))𝐴𝑟 = 𝐷 (𝐴
+)𝜓 𝐴𝑟 +

1
2𝐿
𝐴𝜖𝑟 𝑠 ∧ 𝜓 𝐴𝑠 +

1
2𝐿
𝜒 𝐴𝑟 = 𝐹 (A+)𝐴𝑟 +

1
2𝐿
𝜒 𝐴𝑟

(5.128)
where 𝜒 𝐴𝑟 = −𝑒𝐴𝐴′ ∧ 𝜓 𝑠

𝐴′𝛿𝑟 𝑠 . Finally, for the U(1)-component, we get

P𝔬𝔰𝔭 (2 |2)𝐹 = 𝐹 = 𝐹 + + 𝑖
2
𝜓 𝑟
𝐴′ ∧ 𝜓

𝐴′𝑠𝜖𝑟 𝑠 (5.129)

with 𝐹 + := d𝐴 + 𝑖
2𝜓

𝑟
𝐴
∧ 𝜓 𝐴𝑠𝜖𝑟 𝑠 . To summarize, we can decompose the super Cartan

curvature in the following way

P𝔬𝔰𝔭 (2 |2)𝐹 (A) =: 𝐹 (A+) + 1
2𝐿2 Ẽ (5.130)

where Ẽ is a graded field which (in constrast to E to be defined below), as we would like
to emphasize, does not have a simple transformation behavior as in theN = 1 case under
left-handed supersymmetry transformations. This is due to the fact that, forN = 2,
supersymmetry transformations have to be regarded as superdiffeomorphisms rather
than gauge transformations leading to nontrivial curvature contributions in the SUSY
variations of the super Cartan connection according to the general formula (5.36).

4 We stick to our notation and write𝜓 𝐴𝑟 and𝜓 𝑟
𝐴′

for the chiral and anti chiral components of the Majorana
fermion fields, respectively. The position of the 𝑅-symmetry index for the chiral components stays fixed.
Moreover, we will sum over repeated indices.
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5.4. Chiral supergravity and the super Ashtekar connection

Let us insert (5.130) into (5.42) for 𝛽 = −𝑖 which gives the chiral Holst-MacDowell-
Mansouri action

𝑆N=2H-MM(A) =
𝐿2

𝜅

∫
𝑀

⟨[𝐹 (A+) + 1
2𝐿2 Ẽ] ∧ P+ [𝐹 (A+) + 1

2𝐿2 Ẽ]⟩ (5.131)

For reasons that will become clear in a moment, let us next subtract the topological
term ⟨𝐹 (A+) ∧ 𝐹 (A+)⟩ of the full action (5.131). If we then define the projection
P− := 0 ⊕ 1

2 (1 + 𝑖★) ⊕ 0 projecting onto the anti self-dual part of the U(1)-sub
component of 𝐹 (A+), it follows that the bulk contribution in (5.131) takes the form

𝑆bulk(A) =
𝑖

𝜅

∫
𝑀

−𝐿2 ⟨𝐹 (A+) ∧ P−𝐹 (A+)⟩ + ⟨𝐹 (A+) ∧ P+Ẽ⟩

+ 1
4𝐿2 ⟨Ẽ ∧ P+Ẽ⟩

=
𝑖

𝜅

∫
𝑀

⟨𝐹 (A+) ∧ [P+Ẽ − 𝐿2P−𝐹 (A+)]⟩ + 1
4𝐿2 ⟨Ẽ ∧ P+Ẽ⟩ (5.132)

As it turns out, (5.132) can be rewritten in a very intriguing form. In fact, let us define
E := P+Ẽ − 2𝐿2P−𝐹 (A+) for the super electric field. It then follows that the bulk
action (5.132) is equivalent to

𝑆bulk(A) =
𝑖

𝜅

∫
𝑀

⟨𝐹 (A+) ∧ E⟩ + 1
4𝐿2 ⟨E ∧ E⟩ (5.133)

This follows immediately from the fact that both P+ andP− define projections projecting
onto mutually orthogonal subspaces such that P+ ◦ P− = 0 = P− ◦ P+ which yields
⟨E ∧ E⟩ = ⟨Ẽ ∧ P+Ẽ⟩ + 4𝐿4 ⟨𝐹 (A+) ∧ P−𝐹 (A+)⟩. Hence, the bulk action takes
the form of a Palatini-type action with nontrivial cosmological constant written in chiral
variables and OSp(2|2)C structure group. It is interesting to note that the subtraction
of the CS-topological term from the full action was crucial for this result leading to the
projection P− which is orthogonal to the chiral projection P+.

In order to see that the super electric field E indeed defines the canonical conjugate of
the super Ashtekar connection, let us go back to (5.132) and vary the action with respect
toA+. In this way, it follows

𝛿 𝑆bulk(A) =
𝑖

𝜅

∫
𝑀

⟨𝐷 (A+)𝛿A+ ∧ E⟩ =: dΘ + 𝑖
𝜅

∫
𝑀

⟨𝛿A+ ∧ 𝐷 (A+)E⟩ (5.134)

with pre-symplectic potential Θ(𝛿) inducing the bulk pre-symplectic structure

Ωbulk(𝛿1, 𝛿2) =
2𝑖
𝜅

∫
Σ
⟨𝛿[1A+ ∧ 𝛿2]E⟩ (5.135)
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Thus, indeed, (A+, E) define the fundamental variables of the canonical phase space.
Moreover, as discussed in the previous section, from (5.134), we deduce that the super
Gauss constraint G[𝛼] in the presence of boundaries takes the form

G [𝛼] = − 𝑖
𝜅

∫
Σ
⟨E ∧ 𝐷 (A+) 𝛼⟩ + 𝑖

𝜅

∫
Δ
⟨E, 𝛼⟩ (5.136)

for arbitrary smooth 𝔬𝔰𝔭(2|2)C-valued smearing function 𝛼 defined on Σ. As a con-
sequence, it follows that the super Gauss constraint satisfies the constraint algebra
{G [𝛼],G [𝛽]} = G [[𝛼, 𝛽]]. That is, the Gauss constraint generates local OSp(2|2)C-
gauge transformations. The boundary action of the theory takes the form

𝑆bdy(A+) =
𝑖𝐿2

𝜅

∫
𝑀

⟨𝐹 (A+) ∧ 𝐹 (A+)⟩

=
𝑖𝐿2

𝜅

∫
𝜕𝑀

⟨A+ ∧ dA+ + 1
3
A+ ∧ [A+ ∧ A+]⟩ (5.137)

and thus, in particular, corresponds to the action of a OSp(2|2)C super Chern-Simons
theory with (complex) Chern-Simons level 𝑘 = 𝑖4𝜋𝐿2/𝜅 = −𝑖12𝜋/𝜅Λcos. The pre-
symplectic structure of the full theory is given by

Ω(𝛿1, 𝛿2) =
2𝑖
𝜅

∫
Σ
⟨𝛿[1A+ ∧ 𝛿2]E⟩ −

𝑘

2𝜋

∫
𝜕Σ
⟨𝛿[1A+ ∧ 𝛿2]A+⟩ (5.138)

As in theN = 1 case, due to the splitting of the full action into a bulk and boundary
term, one needs to derive a matching condition relating bulk and boundary degrees of
freedom at the boundary. This is equivalent to requiring consistency with the equation
of motion of the full theory, i.e. 𝛿 𝑆N=2H-MM = 𝛿 𝑆bulk + 𝛿 𝑆bdy = 0. From this we can
immediately read off the boundary condition

E⇐ =
𝑖𝜅𝑘

2𝜋
𝐹 (A+)
⇐=

(5.139)

where, again, the arrow denotes the pullback to the boundary. This condition relates
the super electric field E to the curvature of the super connectionA+ corresponding to
the OSp(2|2)C super Chern-Simons theory living on the boundary.

Remark 5.4.6. Note that boundary condition (5.139) can equivalently be rewritten in
the following form

𝐹 (A+)
⇐=

+ 1
2𝐿2 E⇐ = 0 ⇔ P+𝐹 (A)

⇐=
= 0 (5.140)
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where we used that the U(1)-component Ê of the super electric field can be written as
Ê =

ˆ̃E − 𝐿2(1 + 𝑖★)𝐹 such that

𝐹 + + 1
2𝐿2 Ê = 𝐹 − 1

2
(1 + 𝑖★)𝐹 =

1
2
(1 − 𝑖★)𝐹 (5.141)

Thus, if we take the complex conjugate of (5.140) yielding P−𝐹 (A) = 0, we find that
condition (5.139) is equivalent to

P+𝐹 (A)
⇐=

+ P−𝐹 (A)
⇐=

= 0 (5.142)

that is, the pullback of the curvature components 𝐹 (A)𝐼 𝐽 , 𝐹 (A) 𝛼𝑟 and 𝐹 correspond-
ing to the OSp(2|4) super Cartan connectionA to the boundary are constrained to
vanish at the boundary in accordance with the boundary condition as derived in [81] in
context of the non-chiral theory.

5.4.4. Reality conditions

According to the results of Section 5.4.2 and 5.4.3, the bulk pre-symplectic structure of
chiral supergravity in𝐷 = 4 withN -extended supersymmetry withN = 1, 2 is given by

Ωbulk(𝛿1, 𝛿2) =
2𝑖
𝜅

∫
Σ
⟨𝛿[1A+ ∧ 𝛿2]E⟩ =

𝑖

𝜅

∫
Σ

d3𝑥
(
𝛿1A

+𝐴
𝑎 𝛿2E𝑎𝐴 − 𝛿2A

+𝐴
𝑎 𝛿1E𝑎𝐴

)
(5.143)

where we have made the expansionA+ = A+𝐴𝑇𝐴 w.r.t. the real homogeneous basis
(𝑇𝐴)𝐴 ≡ (𝑇 +𝑖 , 𝑄𝑟𝐴, 𝑇

𝑟 𝑠) of OSp(N |2) and introduced the super electric field E𝑎
𝐴

on
Σ defined as

E𝑎
𝐴

:=
1
2
𝜖𝑎𝑏𝑐T𝐵𝐴E

𝐵

𝑏𝑐
, with T𝐴𝐵 := ⟨𝑇𝐴, 𝑇𝐵⟩ (5.144)

Hence, it follows that the pair (A+𝐴𝑎 , E𝑎𝐴) build up a graded symplectic phase space
with graded Poisson relations

{E𝑎
𝐴
(𝑥),A+𝐵

𝑏
(𝑦)} = 𝑖𝜅𝛿 𝑎

𝑏
𝛿
𝐵

𝐴
𝛿 (3) (𝑥, 𝑦) (5.145)

where we used that pre-symplectic structure Ωbulk defines an even 2-form on the phase
space. As it turns out, these fundamental variables are, however, not fully independent
but need to satisfy certain reality conditions. This is due to the fact that the initial
conditions of the dynamical fields have to chosen in such a way such that their resulting
dynamics as governed by the chiral action (5.98) (resp. (5.133)) are consistent with the
dynamics of the ordinary (real) supergravity theory.
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In what follows, following [62], we want to derive the explicit form of these reality
conditions for the caseN = 1 (the caseN = 2 is similar yielding an additional condition
for the U(1) component of the super electric field E𝑎

𝐴
). To this end, note that the super

electric field decomposes via E𝑎
𝐴
= (𝐸 𝑎

𝑖
,−𝑖𝜋 𝑎

𝐴
) with 𝐸 𝑎

𝑖
=
√
𝑞𝑒𝑎
𝑖

the usual (bosonic)
gravitational electric field conjugate to self-dual Ashtekar connection 𝐴+𝑖 and 𝜋 𝑎

𝐴
the

canonically conjugate momentum of 𝜓 𝐴𝑎 given by

𝜋 𝑎
𝐴
= 𝜖𝑎𝑏𝑐𝜓 𝐴

′

𝑏
𝑒𝑐𝐴𝐴′ (5.146)

These are the reality conditions for the fermionic degrees of the freedom which allow to
re-express the components of the complex conjugate Weyl spinor 𝜓 𝐴′𝑎 in terms of the
fundamental variables. With respect to the canonically conjugate pairs (𝐴+𝑖𝑎 , 𝐸 𝑎𝑖 ) and
(𝜓 𝐴𝑎 , 𝜋 𝑎𝐴) the graded Poisson brackets (5.145) take the form

{𝐸 𝑎𝑖 (𝑥), 𝐴
+𝑗
𝑏
(𝑦)} = 𝑖𝜅𝛿 𝑎

𝑏
𝛿
𝑗

𝑖
𝛿 (3) (𝑥, 𝑦) and {𝜋 𝑎

𝐴
(𝑥), 𝜓 𝐵

𝑏
(𝑦)} = −𝜅𝛿 𝑎

𝑏
𝛿𝐵
𝐴
𝛿 (3) (𝑥, 𝑦)

(5.147)
In order to find the respective reality conditions for the bosonic degrees of freedom, let
us derive the equations of motion of the self-dual Ashtekar connection. Thus, varying
the chiral bulk action (5.102) with respect to 𝐴+, we find

𝐷 (𝐴
+)Σ𝐴𝐵 = dΣ𝐴𝐵 + 𝐴+𝐴𝐶 ∧Σ𝐶𝐵 + 𝐴+

𝐵
𝐶 ∧Σ𝐴𝐶 = −𝑖𝜓𝐴′ ∧𝜓 (𝐴∧ 𝑒𝐵)𝐴

′
(5.148)

If we take the complex conjugate of (5.148) this yields, provided 𝑒 is real, the respective
equations involving 𝐷 (𝐴−)Σ𝐴′𝐵′ . Together with (5.148), this can then be combined to
give the respective equations of motion for Σ𝐴𝐴′𝐵𝐵′ which is equivalent to

𝐷 (𝜔) 𝑒𝐴𝐴
′ ≡ Θ(𝜔)𝐴𝐴

′
= −𝑖𝜓 𝐴 ∧ 𝜓 𝐴′ (5.149)

with Θ(𝜔)𝐴𝐴
′ the torsion two-form associated to the spin connection 𝜔 (written in

spinor indices). Moreover, using the identity

𝐷 (𝜔) (𝐷 (𝜔) 𝑒𝐴𝐴′) = 𝐹 (𝐴+)𝐴𝐵 ∧ 𝑒
𝐵𝐴′ − 𝐹 (𝐴−) 𝐴′

𝐵′ ∧ 𝑒
𝐴𝐵′ (5.150)

it follows, provided again that 𝑒 is real and (5.149) is satisfied, that the imaginary part of
the chiral action (5.102) takes the form

ℑ(Lbulk) = −
1
4𝜅

(
𝑖𝑒𝐴𝐴′ ∧ 𝐷 (𝜔)𝐷 (𝜔) 𝑒𝐴𝐴

′ − 2𝑒𝐴𝐴′ ∧ 𝐷 (𝐴
+)𝜓 𝐴 ∧ 𝜓 𝐴′

+2𝑒𝐴𝐴′ ∧ 𝜓 𝐴 ∧ 𝐷 (𝐴
−)𝜓 𝐴

′
)

=
1
4𝜅
𝑒𝐴𝐴′ ∧ 𝐷 (𝜔) (𝜓 𝐴 ∧ 𝜓 𝐴

′) = − 1
4𝜅

d(𝑒𝐴𝐴′ ∧ 𝜓 𝐴 ∧ 𝜓 𝐴
′) (5.151)
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and thus becomes a pure boundary term. Hence, it follows that, in this way, one indeed
reobtains the field equations of ordinary realN = 1 supergravity. As discussed in detail
in [62], in the canonical description of the theory, it follows that the reality conditions
are equivalent to the requirement that the electric field 𝐸 𝑎

𝑖
(depending on the co-frame

𝑒î) is real and the 3𝐷 spin connection part Γ𝑖 = − 1
2 𝜖
𝑖
𝑗𝑘
𝜔𝑗𝑘 of 𝐴+ satisfies the torsion

equation

𝐷 (Γ) 𝑒𝑖 ≡ d𝑒𝑖 + 𝜖 𝑖
𝑗𝑘
Γ𝑗 ∧ 𝑒𝑘 = Θ(Γ) 𝑖 =

𝑖

2
𝜓 𝐴 ∧ 𝜓 𝐴′𝜎 𝑖

𝐴𝐴′ (5.152)

This equation has the unique solution

Γ𝑖 ≡ Γ𝑖 (𝑒) + 𝐶 𝑖 (𝑒, 𝜓 , 𝜓 ) (5.153)

with Γ𝑖 (𝑒) the torsion-free metric connection

Γ𝑖𝑎 (𝑒) := −𝜖 𝑖𝑗𝑘𝑒𝑏𝑗
(
𝜕[𝑎𝑒𝑏]𝑘 +

1
2
𝑒𝑐
𝑘
𝑒𝑙𝑎𝜕[𝑐𝑒𝑏]𝑙

)
(5.154)

and𝐶 𝑖 the contorsion tensor (Eq. (4.95)) which can be written in the form

𝐶 𝑖𝑎 =
𝑖

4√𝑞 𝜖
𝑏𝑐𝑑𝑒𝑖

𝑑

(
2𝜓 𝐴[𝑎𝜓

𝐴′

𝑏] 𝑒𝑐𝐴𝐴′ − 𝜓
𝐴
𝑏
𝜓 𝐴

′
𝑐 𝑒𝑎𝐴𝐴′

)
(5.155)

Thus, to summarize, the reality conditions for the bosonic degrees of freedom are given
by

𝐴+𝑖𝑎 + (𝐴+𝑖𝑎 )∗ = 2Γ𝑖𝑎 (𝑒) + 2𝐶 𝑖𝑎 (𝑒, 𝜓 , 𝜓 ), 𝐸 𝑎𝑖 = ℜ(𝐸 𝑎𝑖 ) (5.156)

Provided that the initial conditions of the dynamical fields satisfy (5.156) as well as (5.146),
this then ensures that the dynamical evolution remains in the real sector of the complex
phase space, i.e., the phase space of ordinary realN = 1 supergravity.

5.5. The state space of chiral LQSG
5.5.1. The graded holonomy-flux algebra

As observed in the previous sections, reintroducing the underlying parametrizing super-
manifoldS, the phase space of chiral supergravity forN = 1 andN = 2 is described in
terms of the conjugate pair (A+𝐴𝑎 , E𝑎𝐴) consisting of the pullback of the super Ashtekar
connection to Σ/S with Σ a Cauchy slice of the body 𝑀 := B(M) of the underlying
base supermanifoldM as well as the dual super electric field E𝑎

𝐴
.

According to the general discussion in Section 5.4.1, the super Ashtekar connection
defines a super-connection 1-form on the associated OSp(N |2)C-bundle. Thus, the
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phase of the theory turns out to be a graded generalization of the pure bosonic theory.
This suggests to canonically quantize it using standard tools from loop quantum gravity
and generalizing them to the super category. To this end, we first need to derive a graded
analog of classical holonomy-flux algebra encoding the dynamical degrees of freedom
and find a representation which is the starting point for the quantization of theory à la
LQG.

In what follows, we would like to keep the discussion as general as possible and assume
that we are given any locally supersymmetric field theory, such as a Yang-Mills gauge
theory with gauge group given by a supergroupG, such that its corresponding canonical
description results into a canonically conjugate pair (A𝑎, E𝑎𝐴) withA𝐴

𝑎 the pullback
to Σ of a super connection 1-form defined on aS-relative principal G-bundle P/S and
a canonically conjugate momentum E𝑎

𝐴
which is related to a Lie(G)-valued 2-form E

also referred to as the super electric field defined on the bundle via (5.144), that is,

E𝑎
𝐴

:=
1
2
𝜖𝑎𝑏𝑐T𝐵𝐴E

𝐵

𝑏𝑐
(5.157)

Moreover, they satisfy the graded Poisson relations

{E𝑎
𝐴
(𝑠, 𝑥),A𝐵

𝑏
(𝑠, 𝑦)} = 𝑔𝛿 𝑎

𝑏
𝛿
𝐵

𝐴
𝛿 (3) (𝑥, 𝑦) (5.158)

∀𝑥, 𝑦 ∈ Σ and 𝑠 ∈ S for some coupling constant 𝑔 which in the context of chiral
supergravity is given by 𝑔 = 𝑖𝜅. In Eq. (5.157), we have chosen an Ad-invariant super
metric ⟨·, ·⟩ on Lie(G) which is supposed to be non-degenerate and defined T𝐴𝐵 :=
⟨𝑇𝐴, 𝑇𝐵⟩ w.r.t. a real homogeneous basis (𝑇𝐴)𝐴 of 𝔤.

Finally, let us restrict the underlying parametrizing supermanifoldS to be a superpoint,
i.e., its body B(S) = {∗} just consists of a single point such that, according to Prop.
2.2.10, the parametrizing supermanifold can be regarded as an object of the category
Gr. Due to categorial equivalence, in the following, we will interchangeably interpret
supermanifolds as objects of the category of 𝐻∞ or algebro-geometric supermanifolds.
Thus, for instance, ifM and S are regarded as objects in SManAlg, the setM(S) :=
{𝑓 : S → M} of smooth maps between supermanifolds can be identified with the
S-point ofM (see Def. 2.2.5) which itself, sinceS ∈ Gr, carries the structure of a 𝐻∞
supermanifold.

For the construction of the classical algebra, onM/S , let us introduce the path groupoid
P(M/S)whose set of objects Ob(P(M/S)) is defined as theS-pointM(S) and where,
for any objects 𝑔, 𝑓 : S →M, the morphisms HomP(M/S) (𝑓, 𝑔) is defined as the set
of all piecewise smooth paths 𝛾 : 𝑓→ 𝑔 (see Def. 2.7.7). On the other hand, toM/S
one can associate the Atiyah groupoid At(P/S) with objects given by Ob(At(P/S)) =
M(S) and where, for any pair of objects 𝑔, 𝑓 : S → M, the set of morphisms
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HomAt(P/S) (𝑓, 𝑔) consists of smooth maps 𝛼 : Γ(𝑓∗P) → Γ( 𝑔∗P) that are G-
equivariant in the sense that 𝛼(𝑓 · 𝜙) = 𝛼(𝑓) · 𝜙 for anyS-point 𝜙 : S → G.

According to the general discussion in Section 2.7.2, in particular Prop. 2.7.12 and Prop.
2.7.15, it then follows that the parallel transport map PA

S corresponding to the super
connection 1-formA induces a covariant functor

PA
S : P(M/S) → At(P/S), (𝑓

𝛾
→ 𝑔) ↦→ (Γ(𝑓∗P)

PA
S,𝛾
→ Γ( 𝑔∗P)) (5.159)

from the path groupoid to the Atiyah groupoid. Actually, adapting the conventions
chosen in [18], it seems to be convenient to consider the corresponding contravari-
ant counterpart (PA

S )
op : P(M/S) → At(P/S) of (5.159) which to any piecewise

smooth paths 𝑒 : 𝑓→ 𝑔 associates the parallel transport map along the inverse path
𝑒−1 : 𝑔 → 𝑓, that is,

(PA
S )

op(𝑒) := PA
S,𝑒−1 = (P

A
S,𝑒)
−1 : Γ( 𝑔∗P) → Γ(𝑓∗P) (5.160)

such that (PA
S )

op(𝑒′ ◦ 𝑒) = (PA
S )

op(𝑒) ◦ (PA
S )

op(𝑒′). Next, for the canonical
description of the theory, let us to restrict P(M/S) to the subgroupoid P(Σ) of non-
parametrized piecewise ordinary smooth paths5 𝑒 : 𝑥 → 𝑦 between points 𝑥, 𝑦 ∈ Σ on
the Cauchy slice Σ where we identified 𝑥 with the constant map 𝑐𝑥 : S → {𝑥} ⊂ Σ.
This in fact sufficient to resolve the physical degrees of freedom of the theory since,
by the rheonomy principle, the super connection 1-form is uniquely determined by
its pullback to the body of the supermanifold. Actually, as we will see later, for the
construction of the graded holonomy-flux algebra, it turns out to be more convenient
to work in the semianalytic category and thus to assume the edges 𝑒 of a graph to be
piecewise semianalytic (see Remark 5.5.1 below). Moreover, in the following, we want to
work on a local trivialization of the relative principal super fiber bundle which, for sake
of simplicity, we assume to be defined on all of Σ. This is reasonable as, in the quantum
theory, we will restrict to gauge-invariant quantities anyway.

Thus, according to Example 2.7.16, for any smooth path 𝑒 on Σ the parallel transport
map along 𝑒 is uniquely determined by the group-valued map 𝑔𝑒 [A] : S → G as
defined via (2.269). Hence, in turn this implies that the functor (PA

S )
op is uniquely

determined by theS-point

ℎ𝑒 [A] := 𝑔𝑒−1 [A] ≡ 𝑔𝑒 (·, 1)−1 : S → G (5.161)

5 Recall that the split functor S induces an equivalence of categories between the category Man of ordinary
smooth manifolds and the subcategory SMan0 ⊂ SMan of bosonic supermanifolds with trivial odd
dimensions.
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which we call the super holonomy along 𝑒 induced byA. SplittingA =: 𝐴+𝜓 according
to the even and odd part of the super Lie algebra 𝔤 = 𝔤0 ⊕ 𝔤1 with 𝐴 the underlying
bosonic connection, it follows by Example 2.7.17 that (5.161) explicitly takes the form

ℎ𝑒 [A] = 𝑔𝑒−1 [A] = Pexp
(∫
𝑒

Adℎ𝑒 [𝐴]𝜓
)
· ℎ𝑒 [𝐴] (5.162)

with ℎ𝑒 [𝐴] the holonomy of the corresponding bosonic connection 𝐴. Under a local
gauge transformation 𝜙 : S ×M → G, it transforms as

ℎ𝑒 [A] → 𝜙(·, 𝑏(𝑒)) · ℎ𝑒 [𝐴] · 𝜙(·, 𝑓(𝑒))−1 (5.163)

where 𝑏(𝑒) := 𝑒(0) and 𝑓(𝑒) = 𝑒(1) are defined as the beginning and endpoints of the
edge 𝑒, respectively. Using this identification of the parallel transport map in terms of its
holonomies, we may equivalently describe it as a contravariant functor

(PA
S )

op : P(Σ) → G(S), (𝑥 𝑒→ 𝑦) ↦→ (𝑦
ℎ𝑒 [A]−→ 𝑥) (5.164)

from the path groupoid on Σ to the groupoid G(S) where Ob(G(S)) = Σ and, for
any 𝑥, 𝑦 ∈ Σ, the arrows 𝑥 → 𝑦 are labeled byS-points 𝑔 : S → G.

As usal in LQG, for the construction of the classical algebra, in the following we consider
the whole set6 HomCat(P(Σ)op,G(S)), that is, the set of all contravariant functors
𝐻 : P(Σ) → G(S) from the path groupoid to the groupoid G(S). That is, we do
not restrict to those functors arising from the parallel transport map of a smooth super
connection 1-form. For this reason, we will also refer to a such functor𝐻 as a generalized
super connection. Next, we are looking for a different description of the set of generalized
super connections on the whole path goupoid P(Σ) in terms of subsets defined on
supgroupoids 𝑙 (𝛾) generated by finite graphs 𝛾 .

To this end, following [18, 196], we define a graph 𝛾 as a collection of finitely many
piecewise smooth paths 𝑒𝑖 , 𝑖 = 1, . . . , 𝑛, embedded in Σ also called edges such that
𝛾 =

⋃
𝑖 im(𝑒𝑖) and the 𝑒𝑖 are independent in the sense that they at most intersect at

their endpoints also called vertices. For such a graph 𝛾 , let 𝐸 (𝛾) and𝑉 (𝛾) denote the set
of its underlying edges and vertices, respectively. Then, each graph 𝛾 in Σ induces a sub-
groupoid 𝑙 (𝛾) of the path groupoid P(Σ) with objects given by the set of vertices𝑉 (𝛾)
and morphisms generated by finitely many compositions of edges and their inverses.
The collectionL of all such subgroupoids 𝑙 forms a partially ordered setL ≡ (L, ≤)

6 Here, Cat denotes the category of small categories with small categories C as objects and covariant
functors 𝐹 : C → D between small categories as morphisms where a category C is called small if
the collection of objects Ob(C) defines a set (see Appendix B). This category can be even lifted to a
2-category regarding natural transformations 𝜂 : 𝐹 → 𝐺 between functors as 2-morphisms.
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where 𝑙 ≤ 𝑙 ′ for any 𝑙, 𝑙 ′ ∈ L iff 𝑙 is a subgroupoid of 𝑙 ′. Since, we are working in the
semianalytic category, it follows that this partially ordered set, in addition, is directed,
i.e., ∀𝑙, 𝑙 ′ ∈ L, there exists 𝑙 ′′ ∈ L such that 𝑙, 𝑙 ′ ≤ 𝑙 ′′ [18, 196].

Remark 5.5.1. Given two subgroupoids 𝑙, 𝑙 ′ generated by graphs 𝛾 and 𝛾 ′ in Σ, respec-
tively, one may try to define the groupoid 𝑙 ′′ containing 𝑙, 𝑙 ≤ 𝑙 ′′ as the groupoid
generated by the graph 𝛾 ′′ := 𝛾 ∪ 𝛾 ′. For this to be well-defined, one needs to ensure
that the so-constructed graph can again be subdivided into a finite number of edges.
This is equivalent to requiring that two distinct edges only have a finite number of
intersection points. This is generically not the case for arbitrary piecewise smooth edges.
Similar issues arise by trying to consistently implement the (graded) holonomy-flux
algebra, as one needs to ensure that edges only have a finite number of intersections with
2-dimensional surfaces. As it turns out, all these issues can be remedied simultaneously
working instead in the analytic or even semianalytic category (see [18, 196] for more
details; for a definition of analytic supermanifolds see [106]). One thus assumes that
spatial manifold Σ allows for a (semi)analytic structure that is, a maximal smooth atlas so
that transition functions are (semi)analytic. Consequently, (semi)analytic edges and sur-
faces are defined as 1- and 2-dimensional (semi)analytic submanifolds of Σ, respectively.
In the semianalytic case, recall that, roughly speaking, a smooth function (or, more
generally of class𝐶𝑚 with𝑚 > 0) defined on an open subset ofR𝑛 is called semianalytic,
if it locally coincides with an analytic function defined on a slightly larger neighborhood.
Perhaps, this definition can be generalized to the supermanifold category by requiring
smooth functions 𝑓𝐼 appearing in the expansion (C.1) of a 𝐻∞ smooth function 𝑓 to
be semianalytic.

In the following, we would like to show that contravariant functors𝐻 : P(Σ) → G(S)
defined on the whole path groupoid P(Σ) can equivalently be described in terms of
their restrictions 𝐻 |𝑙 on subgroupoids 𝑙 ∈ L. This will also enable us to equip this set
with a topology which, under certain assumptions on the gauge group G, turns out to
be projectively Hausdorff. For this, for any 𝑙 ∈ L, let us define

AS,𝑙 := HomCat(𝑙op,G(S)) (5.165)

It is clear that a contravariant functor 𝐻 on a subgroupoid 𝑙 ≡ 𝑙 (𝛾) generated by a
graph 𝛾 is uniquely determined by its images (𝐻 (𝑒𝑖))𝑖=1,...,𝑛 of the underlying edges 𝑒𝑖 .
Hence, this yields a bijection

AS,𝑙
∼→ G(S) |𝐸 (𝛾) | , 𝐻 ↦→ (𝐻 (𝑒1), . . . , 𝐻 (𝑒𝑛)) (5.166)

Since the S-point G(S) defines a topological space via the DeWitt topology, we can
use (5.166) to induce a topology on AS,𝑙 . In fact, in this way, it follows that AS,𝑙 in
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particular is projectively Hausdorff. In fact, in case thatS corresponds to the Grassmann
algebraR ∈ Ob(Gr), the set

AR,𝑙 := HomCat(𝑙op,G(R)) (5.167)

can be identified with set of ordinary bosonic generalized holonomies on 𝑙 with values
in the bosonic subgroup 𝐺 := B(G) which is Hausdorff. Hence, for this reason, we
may call AR,𝑙 the body of AS,𝑙 . For anyS ∈ Ob(Gr), this induces a projection

AS,𝑙 → AR,𝑙 (5.168)

By definition, AR,𝑙 defines a topological Hausdorff space. Moreover, by construction, it
follows that the topology on AS,𝑙 is the coarsest topology such that projection (5.168) is
continuous. Hence, in this sense, AS,𝑙 indeed defines a projective Hausdorff space.

Next, as in the pure bosonic theory, for any 𝑙, 𝑙 ′ ∈ L with 𝑙 ≤ 𝑙 ′, one has a surjective
mapping

𝑝𝑙 𝑙′ : AS,𝑙′ → AS,𝑙 (5.169)

by simply restricting functors defined on 𝑙 ′ to the subgroupid 𝑙. In this way, one obtains
a projective family (AS,𝑙 , 𝑝𝑙 𝑙′)𝑙,𝑙′∈L (see Def. B.11 (ii)) to which one can associate the
corresponding projective limit

AS := lim
←−

AS,𝑙 := {(𝐻𝑙)𝑙∈L ∈
∏
𝑙∈L

AS,𝑙 | 𝑝𝑙 𝑙′ (𝐻𝑙′) = 𝐻𝑙 ∀𝑙 ≤ 𝑙 ′} (5.170)

which itself naturally inherits a topology via the Tychonoff topology. As in the classical
bosonic theory, one can then prove that via restriction of functors this in fact yields a
bijection

HomCat(P(Σ)op,G(S)) ∼→ AS , 𝐻 → (𝐻 |𝑙)𝑙∈L (5.171)

so that, in this sense, the set of generalized holonomies can also be equipped with a
topology. ForS = R, we obtain the topological space

AR := lim
←−

AR,𝑙 (5.172)

which can be identified with the subset of generalized bosonic connections with values
in 𝐺. Again, by construction, the topology on AS turns out to be coarsest topology
such that the projection

AS → AR (5.173)

is continuous. If furthermore 𝐺 (and thus G) is compact, it follows from (5.166) for
S = R that AR,𝑙 is also compact and Hausdorff for any 𝑙 ∈ L. Therefore, by the
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properties of the Tychnonoff toplogy, this implies that the projective limitAR is compact
and Hausdorff. But, due to (5.173), this then finally shows that AS for any Grassmann
algebraS defines a compact topological space which is projectively Hausdorff.

Remark 5.5.2. It is interesting to note that, since the topological spaces AS transform
covariantly under change of the parametrizing supermanifoldS, they naturally induce
a functor

A : Gr→ Top, S ↦→ AS (5.174)

Moreover, in case G is compact, it follows that the body A(R) = AR in particular
defines a Hausdorff space. Thus, A carries a structure which is intriguingly similar to a
Molotkov-Sachse supermanifold (see Remark 2.2.13).

Using the identification (5.166), for any 𝑙 ≡ 𝑙 (𝛾) ∈ L, let us introduce a set of smooth
functions on AS,𝑙 denoted by Cyl∞(AS,𝑙) such that

Cyl∞(AS,𝑙) � 𝐻∞(G(S) |𝐸 (𝛾) | ,C) � 𝐻∞(G(S),C) ⊗̂𝜋 |𝐸 (𝛾) | (5.175)

where 𝐻∞(G(S),C) := 𝐻∞(G(S)) ⊗ C. Then, for any 𝑙, 𝑙 ′ ∈ L with 𝑙 ≤ 𝑙 ′, the
pullback of the projection (5.169) induces a map 𝑝∗

𝑙 𝑙′
: Cyl∞(AS,𝑙) → Cyl∞(AS,𝑙′).

Thus, this in turn induces an inductive family (Cyl∞(AS,𝑙), 𝑝∗𝑙 𝑙′)𝑙,𝑙′∈L (see Def. B.11
(i)) to which we can associate the corresponding inductive limit

Cyl∞(AS) := lim
−→

Cyl∞(AS,𝑙) :=
∐
𝑙∈L

Cyl∞(AS,𝑙)/∼ (5.176)

which we will call the space of cylindrical functions on AS . In (5.176), for two functions
𝑓𝑙 ∈ Cyl∞(AS,𝑙) and 𝑓𝑙′ ∈ Cyl∞(AS,𝑙′), the equivalence relation is defined via 𝑓𝑙 ∼ 𝑓𝑙′
iff there exists 𝑙, 𝑙 ′ ≤ 𝑙 ′′ such that 𝑝∗

𝑙 𝑙′′
𝑓𝑙 = 𝑝

∗
𝑙′𝑙′′
𝑓𝑙′ .

So far, we have focused on the choice of a particular superpoint S as a parametrizing
supermanifold. According to the general discussion in Section 2.2, in particular Eq.
(2.32), it follows that if the odd dimension ofS is suitably large enough, that is, larger
than the odd dimension of the underlying gauge supergroup S, then the function
sheaf 𝐻∞(G(S)) on the correspondingS-point G(S) is isomorphic to the function
sheaf on G. Hence, here and in what follows, we will always implicitly assume that the
dimension of the parametrizing supermanifoldS is bounded by the odd dimension ofG.
From (5.175), it then follows that the space of cylindrical functions corresponding to two
different parametrizing supermanifolds satisfying this bound will always be isomorphic.

Finally, let us turn to the dual dynamical variables given by the super electric field E.
Since it defines a 2-form, one can smear it over two dimensional surfaces embedded in
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Σ. Hence, let 𝑆 ⊂ Σ be a two-dimensional orientable submanifold which, in addition,
we assume to be semianalytic and 𝑛 : 𝑆 → 𝔤 be a 𝔤-valued smearing function7 defined
on the surface 𝑆 . Then, we can integrate the super electric field over 𝑆 yielding the
Grassmann-valued quantity

E𝑛(𝑆) :=
∫
𝑆

⟨𝑛, E⟩ (5.177)

which w.r.t. a local coordinate neighborhood 𝜙 : R3 ⊃ 𝑈 → 𝜙(𝑈 ) ⊂ Σ of Σ adapted
to 𝑆 such that, for sake of simplicity, 𝑆 ⊂ 𝜙(𝑈 ), explicitly takes the form

E𝑛(𝑆) =
∫
𝑈

𝜙∗ ⟨𝑛, E⟩ =
∫
𝑈

1
2
𝑛𝐴S𝐵𝐴E

𝐵

𝑎𝑏
d𝜙𝑎 ∧ d𝜙𝑏

=

∫
𝑈

d2𝑢
1
2
𝑛𝐴E 𝑐

𝐴
𝜖𝑐𝑎𝑏𝜕𝑢1𝜙

𝑎𝜕𝑢2𝜙
𝑏 (5.178)

Via the graded Poisson bracket, the smeared quantities E𝑛(𝑆) induce derivationsX(𝑆) :
Cyl∞(AS) → Cyl∞(AS) on the space of cylindrical functions which we will call super
electric fluxes. To find an explicit form of these fluxes, let us compute their action on
holonomies corresponding to a smooth connection along certain edges 𝑒. In this case,
we have

X𝑛(𝑆) (ℎ𝑒 [A]) := {E𝑛(𝑆), ℎ𝑒 [A]} (5.179)

In the following, by splitting edges appropriately, let us assume that 𝑒 is adapted to the
surface 𝑆 in the sense that 𝑒 intersects the surface only at a single point and such that 𝑒
starts at 𝑆 , i.e., 𝑒 ∩ 𝑆 = 𝑏(𝑒). Then, performing a specific regularization scheme similar
as in classical theory (see for instance [18]), it follows from the equivalent form (2.261) of
the parallel transport map given in Example 2.7.16, the graded Poisson relation (5.158) as
well as the fact that the super connection 1-formA is even that

X𝑛(𝑆) (ℎ𝑒 [A]) =
𝑔

4
𝜖(𝑒, 𝑆)𝑛𝐴(𝑏(𝑒))𝑇𝐴ℎ𝑒 [A] (5.180)

where 𝜖(𝑒, 𝑆) = +1,−1, 0 if volΣ (𝑣1, 𝑣2, ¤𝑒) is positive, negative or vanishing, respectively,
at 𝑏(𝑒) ∈ 𝑆 for any positive oriented basis (𝑣1, 𝑣2) of𝑇𝑏 (𝑒) 𝑆 with volΣ the volume form

7 One may wonder whether one could allow for a more general class ofS-parametrized Lie(G)-valued
smearing function 𝑛 : S × 𝑆 → Lie(G) defined on 𝑆 . In fact, also in this case one could define flux
operators via the Poisson bracket. However, by the general formula (5.185) to be derived below, this
implies that these operators no longer preserve Cyl∞ (AS) but needs to be replaced by Cyl∞ (AS) ⊗
𝐻∞ (S). In the quantum theory to be discussed in Sec. 5.5.3, this would then require the choice of an
additional inner product on 𝐻∞ (S) so that expectation values become real quantities. However, in
the following, we would like to avoid this additional subtlety.
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on Σ. From this, we can immediately read off the action of the super electric fluxes on
the coordinate functions 𝑥 𝑖

𝑗
: G → Λ as defined in Example 2.3.14 which is given by

X𝑛(𝑆) (𝑥 𝑖𝑗(ℎ𝑒 [A]
+)) =

𝑔

4
𝜖(𝑒, 𝑆)𝑛𝐴(𝑏(𝑒))𝑥 𝑖𝑗

(
𝑇𝐴ℎ𝑒 [A]

)
(5.181)

where, using (2.63), the right-hand side can be written in the form

𝑥 𝑖𝑗

(
𝑇𝐴ℎ𝑒 [A]

)
=𝑥 𝑖

𝑘
(𝑇𝐴)ℭ |𝑒𝑖 |+ |𝑒𝑘 | (𝑥𝑘𝑗 (ℎ𝑒 [A]))

=(−1) ( |𝑒𝑖 |+ |𝑒𝑘 |) ( |𝑒𝑘 |+ |𝑒𝑗 |) (𝑇𝐴) 𝑖𝑘 𝑥
𝑘
𝑗 (ℎ𝑒 [A]) (5.182)

where we used that 𝑥 𝑖
𝑘
(𝑇𝐴) = (𝑇𝐴) 𝑖𝑘 as𝑇𝐴 has purely real resp. complex coordinates.

As it turns out, this can re-expressed in a very intriguing form. To see this, let 𝑅𝐴 =

𝑇𝐴⊗1◦𝜇∗ and 𝐿𝐴 = 1⊗𝑇𝐴◦𝜇∗ be the right- and left-invariant vector field, respectively,
generated by𝑇𝐴. Then, using identity (2.66), its action on the coordinate functions 𝑥 𝑖

𝑗

yields

𝑅𝐴𝑥
𝑖
𝑗 (ℎ𝑒 [A]) =(−1)

( |𝑒𝑖 |+ |𝑒𝑘 |) ( |𝑒𝑘 |+ |𝑒𝑗 |) (𝑇𝐴 ⊗ 1) (𝑥 𝑖𝑘 ⊗ 𝑥
𝑘
𝑗 ) (ℎ𝑒 [A])

=(−1) ( |𝑒𝑖 |+ |𝑒𝑘 |) ( |𝑒𝑘 |+ |𝑒𝑗 |) (𝑇𝐴) 𝑖𝑘 𝑥
𝑘
𝑗 (ℎ𝑒 [A]) (5.183)

Comparing with (5.181), we thus conclude

X𝑛(𝑆) (𝑥 𝑖𝑗(ℎ𝑒 [A])) =
𝑔

4
𝜖(𝑒, 𝑆)𝑛𝐴(𝑏(𝑒))𝑅𝐴𝑥 𝑖𝑗 (ℎ𝑒 [A]) (5.184)

that is, the action of the super electric fluxes on coordinate functions is given by the
action of right-invariant vector fields. Since, the coordinate functions generate the
whole function sheaf 𝐻∞(G), this immediately implies that (5.184) equally holds for
any 𝑓 ∈ 𝐻∞(G). Thus, more generally, if 𝑓𝑙 ∈ [𝑓𝑙] ∈ Cyl∞(AS) is a representative
of an equivalence class of smooth cylindrical functions associated to a subgroupoid
𝑙 ≡ 𝑙 (𝛾) generated by a graph 𝛾 adapted to 𝑆 , this yields

X𝑛(𝑆) (𝑓𝑙) =
𝑔

4

∑︁
𝑒∈𝐸 (𝛾) , 𝑒∩𝑆≠∅

𝜖(𝑒, 𝑆)𝑛𝐴(𝑏(𝑒))𝑅𝑒
𝐴
𝑓𝑙 (5.185)

where we used the identification AS,𝑙 � G(S) |𝐸 (𝛾) | such that 𝑅𝑒
𝐴

denotes the right-
invariant vector field generated by 𝑇𝐴 acting on the copy of G(S) labeled by 𝑒 [18].
Similar as in in the classical non-supersymmetric case, one can prove that the action of
the super electric flux via (5.185) is indeed well-defined, i.e., independent of the choice of
a representative 𝑓𝑙 ∈ [𝑓𝑙] defined w.r.t. a graph adapted to 𝑆 .
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From identity (5.185), we deduce the remarkable property that, for a given graph 𝛾 in Σ
generating the subgroupoid 𝑙 ≡ 𝑙 (𝛾), super electric fluxes corresponding to surfaces 𝑆
which intersect the underlying edges only at their endpoints leave the space Cyl∞(AS,𝑙)
of cylindrical functions onAS,𝑙 invariant. Hence, if𝑉∞(AS,𝑙) denotes the superalgebra
generated by the graded commutator of all such super electric flux operators, on this
graph, we can define the graded holonomy-flux algebra 𝔄

gHF
S,𝑙 via

𝔄
gHF
S,𝑙 := Cyl∞(AS,𝑙) ⋊𝑉∞(AS,𝑙) (5.186)

which, in particular, forms a (infinite-dimensional) super Lie algebra according to

[(𝑓, 𝑋 ), (𝑓′,𝑌 )] := (𝑋 (𝑓′) − (−1) |𝑌 | |𝑓|𝑌 (𝑓), [𝑋 ,𝑌 ]) (5.187)

for any 𝑓, 𝑓′ ∈ Cyl∞(AS,𝑙) and fluxes 𝑋 ,𝑌 ∈ 𝑉∞(AS,𝑙). Here, the parity |𝑋 |
of a homogeneous super electric flux 𝑋 is defined in the usual way regarding it as a
homogeneous derivation on Cyl∞(AS,𝑙). Thus, for instance, in case 𝑋 ≡ X𝑛(𝑆) with
X𝑛(𝑆) defined via (5.185), one has |𝑋 | = |𝑛| with |𝑛| =: 𝑖 ∈ Z2 the parity of the
homogeneous smearing function 𝑛 : 𝑆 → 𝔤𝑖 . More generally, considering all possible
graphs, we define the graded holonomy-flux algebra 𝔄

gHF
S via

𝔄
gHF
S := Cyl∞(AS) ⋊𝑉∞(AS) (5.188)

with𝑉∞(AS) the superalgebra generated by the graded commutator of super electric
fluxes on the inductive limit Cyl∞(AS). Again, it follows that (5.188) forms a super Lie
algebra. In context of the non-supersymmetric theory, this algebra is usually considered
for quantization.

So far, we have not imposed any *-relation on the superalgebras (5.188) resp. (5.187)
so that they form *-algebras. This is, however, necessary in order to identify physical
quantities in terms of self-adjoint elements. In context of chiral supergravity, this may
be achieved by re-expressing the reality conditions, such as (5.156) in the caseN = 1, in
terms of holonomy and flux variables. However, since the reality conditions are highly
non-linear, even in the purely bosonic theory, this turns out to be a nontrivial task.
Hence, in the following, we do not want to comment further on the specific form of
the reality conditions and the *-relations imposed on the graded holonomy-flux algebra.
We will come back to this question in Chapter 6, specifically Sec. 6.6.1, in context of a
symmetry reduced model where we will be able to find an explicit form of the *-relation
induced by the reality conditions.
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5.5.2. Haar measures on super Lie groups and super Hilbert spaces

Before we turn next towards quantization of the theory à la LQG to be discussed in the
subsequent section, let us review some important facts concerning invariant measures
on super Lie groups and the notion of super Hilbert spaces. In the literature, there exist
various different approaches in this direction in both the algebraic or concrete approach
to supermanifold theory. For instance, a first systematic approach in constructing
invariant measures has been developed in the pure algebraic setting a long time ago
in [197, 198]. There, one uses the fact that the function sheaf on a super Lie group, by
its very definition, naturally inherits the structure of a super Hopf algebra. In this way,
invariant measures have been found, e.g., for the series OSp(1|2𝑛) and OSp(2|2𝑛). In
particular, it has been shown that these measures are indeed unique and both left- and
right-invariant. Nevertheless, this construction turns out to be very abstract making it
hardly accessible for concrete computations.

In [112], a more concrete approach has been developed for the construction of invariant
measures for various real super Lie groups using their equivalent description in terms
of super Harish Chandra pairs (see Theorem 2.3.9). In this way, Haar measures have
been derived for the super unitary groups U(𝑚|𝑛), the orthosymplectic supergroups
OSp(𝑚|𝑛) as well as their compact real forms given by the unitary orthosymplectic super-
groups UOSp(𝑚|𝑛) := OSp(𝑚|𝑛) ∩ U(𝑚|𝑛) (see also Section 5.5.3 below). However,
in the algebraic setting, the correspondence between super Lie groups and super Harish-
Chandra pairs, unfortunately, remains rather implicit. In the 𝐻∞ category (or more
generally forA-manifolds), in [97], a concrete algorithm was given constructing invari-
ant Haar measures for arbitrary (real) super Lie groups. This is based on the existence
of a concrete relation between a super Lie group G and the data (B(G), 𝔤) provided
by the diffeomorphism (2.45). This helps significantly in finding concrete formulae for
invariant measures which can directly be used for computations.

Before, we state the basic definition of invariant measures, let us note that many super Lie
groups that we are interested in are in fact non-compact. Hence, we need to integrate over
a particular subclass of smooth functions on a super Lie groupG that have support only
on compact subsets. In this context, a function 𝑓 on G is called of compact support iff
𝑓|B(G) vanishes outside a compact subset of B(G). In the literature, invariant measures
are usually defined involving the pullback of the group multiplication. However, the
pullback, in general, does not preserve compact subsets. Hence, in the following, let us
consider instead the smooth maps Θ𝐿 and Θ𝑅 on G × G defined as

Θ𝐿 := (id × 𝜇) ◦ (𝑑 × id) : G × G → G × G (5.189)
( 𝑔, ℎ) ↦→( 𝑔, 𝜇( 𝑔, ℎ))
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and

Θ𝑅 := (𝜇 × id) ◦ (id × 𝑑) : G × G → G × G (5.190)
( 𝑔, ℎ) ↦→(𝜇( 𝑔, ℎ), ℎ)

respectively. The reason for choosing these maps is based on the fact they are proper
maps, i.e., preimages of compact sets in G × G are compact in G × G (note that this is
true for the group multiplication only in case G is compact). If 𝑋 𝐿 and 𝑋 𝑅 denote left-
and right-invariant vector fields on G, respectively, it is then easy to see that

1 ⊗ 𝑋 𝐿 ◦Θ∗𝑅 = Θ∗𝑅 ◦ (𝑋
𝐿 ⊗ 1 + 1 ⊗ 𝑋 𝐿)

𝑋 𝑅 ⊗ 1 ◦Θ∗𝐿 = Θ∗𝐿 ◦ (𝑋
𝑅 ⊗ 1 + 1 ⊗ 𝑋 𝑅) (5.191)

We are now ready to define invariant measures on super Lie groups.

Definition 5.5.3. Let G be a 𝐻∞ super Lie group and 𝐻∞𝑐 (G,C) := 𝐻∞𝑐 (G) ⊗ C
denote the C-vector space of smooth functions on G with compact support and values
in ΛC. A C-linear map

∫
G : 𝐻∞𝑐 (G,C) → C is called

(i) a left-invariant integral or left-invariant Haar measure of G if

1 ⊗
∫
G
◦Θ∗𝐿 = 1 ⊗

∫
G

(5.192)

(ii) a right-invariant integral or right-invariant Haar measure of G if∫
G
⊗ 1 ◦Θ∗𝑅 =

∫
G
⊗ 1 (5.193)

Moreover,
∫
G is called simply invariant integral or invariant (Haar) measure if it is

both left- and right-invariant.

The following proposition gives an equivalent characterization of invariant Haar mea-
sures using the correspondence between super Lie groups and super Harish-Chandra
pairs. It provides a generalization of Theorem 6 stated in [199] to the case of non-compact
super Lie groups.

Proposition 5.5.4. Let G be a 𝐻∞ super Lie group and
∫
G : 𝐻∞𝑐 (G,C) → C a

C-linear map. Then
∫
G is a left- resp. right-invariant integral if and only if

ev 𝑔 ⊗
∫
G
◦ 𝜇∗ =

∫
G

resp.
∫
G
⊗ ev 𝑔 ◦ 𝜇∗ =

∫
G

(5.194)

234



5.5. The state space of chiral LQSG

for all body points 𝑔 ∈ B(G) as well as∫
G
◦ 𝑋 𝑅 = 0 resp.

∫
G
◦ 𝑋 𝐿 = 0 (5.195)

for all smooth right- resp. left-invariant vector fields 𝑋 𝑅/𝐿 ∈ Γ(𝑇G).

Proof. Let us prove this proposition using Lemma 2.6.8. To do so, in the following, let
us focus on the left-invariant case, the proof for the right-invariant case being similar.

Hence, suppose that
∫
G is a left-invariant integral. Then, applying the evaluation mor-

phism ev 𝑔 for any body point 𝑔 ∈ B(G) on both sides of (5.192) immediately yields
(5.194). On the other hand, using (5.191), the action of a smooth right-invariant vector
field 𝑋 𝑅 ∈ 𝔤𝑅 on (5.192) gives

𝑋 𝑅 ⊗
∫
G
◦Θ∗𝐿 = 1 ⊗

∫
G
◦ 𝑋 𝑅 ⊗ 1 ◦Θ∗𝐿 = 1 ⊗

∫
G
◦Θ∗𝐿 ◦ (𝑋

𝑅 ⊗ 1 + 1 ⊗ 𝑋 𝑅)

= 𝑋 𝑅 ⊗
∫
G
+1 ⊗

(∫
G
◦𝑋 𝑅

)
(5.196)

But, by assumption, we have

𝑋 𝑅 ⊗
∫
G
◦Θ∗𝐿 = 𝑋 𝑅 ⊗

∫
G

(5.197)

Thus, if we compare the right-hand sides of (5.196) and (5.197), this immediately gives
(5.195).

Conversely, assume that (5.194) and (5.195) are satisfied for aC-linear map
∫
G : 𝐻∞𝑐 (G,C)

→ C. To show that this yields (5.192), let us define for any elementary tensors 𝜒 ⊗ 𝑓 ∈
𝐻∞(G)𝑐 ⊗̂𝜋𝐻∞𝑐 (G) two smooth functions 𝐹𝜒⊗𝑓, 𝐺𝜒⊗𝑓 ∈ 𝐻∞𝑐 (G) via 𝐹𝜒⊗𝑓 := 1 ⊗∫
G Θ∗

𝐿
( 𝜒 ⊗ 𝑓) and 𝐺𝜒⊗𝑓 := 𝜒

∫
G 𝑓. By (5.194), it follows that for any body point

𝑔 ∈ B(G)

𝐹𝜒⊗𝑓( 𝑔) = ev 𝑔𝐹𝜒⊗𝑓 = ev 𝑔 ⊗
∫
G
Θ∗𝐿 ( 𝜒 ⊗ 𝑓) = 𝜒 ( 𝑔)

∫
G
𝜇∗𝑔 (𝑓)

= 𝜒 ( 𝑔)
∫
G
𝑓 = 𝐺𝜒⊗𝑓( 𝑔) (5.198)

for any 𝜒, 𝑓 ∈ 𝐻∞𝑐 (G), where 𝜇𝑔 := 𝜇( 𝑔, · ) which is smooth as 𝑔 has real coordinates.
Hence, as both 𝐹𝜒⊗𝑓 and𝐺𝜒⊗𝑓 are smooth for any 𝜒, 𝑓 ∈ 𝐻∞𝑐 (G), the claim follows
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by Lemma 2.6.8 if we can show that 𝑋 𝐹𝜒⊗𝑓|B(G) = 𝑋𝐺𝜒⊗𝑓|B(G) for all 𝑋 ∈ U(𝔤𝑅).
For 1 ∈ U(𝔤𝑅) this follows from (5.198) above. So, let 𝑋 𝑅 ∈ 𝔤𝑅 for which we compute

𝑋 𝑅𝐹𝜒⊗𝑓 = 𝑋
𝑅 ⊗

∫
G
Θ∗𝐿 ( 𝜒 ⊗ 𝑓) = 1 ⊗

∫
G
Θ∗𝐿 (𝑋

𝑅 𝜒 ⊗ 𝑓 + (−1) |𝑋 | | 𝜒 | 𝜒 ⊗ 𝑋 𝑅𝑓)

= 𝐹𝑋 𝑅 𝜒⊗𝑓 + (−1) |𝑋 | | 𝜒 |𝐹𝜒⊗𝑋 𝑅𝑓 (5.199)

Hence, for 𝑔 ∈ B(G) a body point, this implies, together with (5.198) above,

𝑋 𝑅𝐹𝜒⊗𝑓( 𝑔) = 𝐹𝑋 𝑅 𝜒⊗𝑓( 𝑔) + (−1) |𝑋 | | 𝜒 |𝐹𝜒⊗𝑋 𝑅𝑓( 𝑔)

= 𝐺𝑋 𝑅 𝜒⊗𝑓( 𝑔) + (−1) |𝑋 | | 𝜒 |𝐺𝜒⊗𝑋 𝑅𝑓( 𝑔) = (𝑋 𝑅 𝜒) ( 𝑔)
∫
G
𝑓 (5.200)

where, in the last step, condition (ii) was used. Thus, 𝑋 𝑅𝐹𝜒⊗𝑓|B(G) = 𝑋 𝑅𝐺𝜒⊗𝑓|B(G) .
Following the same steps as before, by induction, it is then easy to see that 𝑋 𝐹𝜒⊗𝑓( 𝑔) =
𝑋𝐺𝜒⊗𝑓( 𝑔) for any body point 𝑔 ∈ B(G) and 𝑋 ∈ U(𝔤𝑅). Hence, by Lemma 2.6.8,
we have 𝐹𝜒⊗𝑓 = 𝐺𝜒⊗𝑓 ∀𝜒 ⊗ 𝑓 ∈ 𝐻∞𝑐 (G × G) so that

∫
G indeed defines a left-invariant

integral. □

Remark 5.5.5. Identifying a super Lie group G with its corresponding super Harish-
Chandra pair (𝐺, 𝔤) with𝐺 := B(G). one can define the left and right regular represen-
tation 𝜌𝐿 and 𝜌𝑅 of G in terms of pairs of morphisms 𝜌𝐿/𝑅 ≡ (| 𝜌𝐿/𝑅 |, 𝜌𝐿/𝑅∗) with
| 𝜌𝐿/𝑅 | : 𝐺 → Aut(𝐻∞𝑐 (G,C)) defined as

( | 𝜌𝐿 | ( 𝑔)𝑓) (ℎ) := 𝑓( 𝑔−1ℎ) and ( | 𝜌𝑅 | ( 𝑔)𝑓) (ℎ) := 𝑓(ℎ 𝑔) (5.201)

∀𝑔 ∈ 𝐺 as well as super Lie algebra morphisms 𝜌𝐿/𝑅∗ : 𝔤→ End
𝑅
(𝐻∞𝑐 (G,C)) given

by
𝜌𝐿∗(𝑋 ) := −𝑋 𝑅 and 𝜌𝑅∗(𝑋 ) := 𝑋 𝐿 (5.202)

∀𝑋 ∈ 𝔤. Hence, by Prop. 5.5.4, it follows that
∫
G : 𝐻∞(G,C) → C defines a left- resp.

right-invariant integral iff it is invariant under the left resp. right regular representation
of G.

Integrals on supermanifolds can be formulated in terms of Berezinian densities (see
[200–202] for more details). A Berezinian density on a supermanfoldM is defined
as a smooth section Γ𝑐 (Ber(M)) with compact support of the Berezin line bundle8

Ber(M) := F (M)×BerΛCwhich is a bundle associated to the frame bundle F (M) via

8 In the case of an ordinary𝐶∞ manifold 𝑀 of dimension 𝑛, these can be identified with sections of the
exterior bundle

∧𝑛𝑇 ∗𝑀 , i.e., top-degree forms Ω𝑛 (𝑀 ) on 𝑀 . This, however, is no longer true in
the case of supermanifolds as there a graded notion of a top-degree form turns out not to exist.
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the one-dimensional dual representation GL(𝑚|𝑛,Λ) ∋ 𝐴 ↦→ Ber(𝐴)−1 ∈ Aut(ΛC)
where dimM = (𝑚, 𝑛). For a super Lie group G, it then follows that a Berezinian
density 𝜈 ∈ Γ𝑐 (Ber(G)) induces a left-invariant integral iff its trivial extension 𝜈 on
G × G satisfies [109]

Θ∗𝐿𝜈 = 𝜈 (5.203)

We will also refer to a Berezinian density satisfiying (5.203) as a left-invariant (Haar)
measure onG. To construct such an invariant measure note that, for any super Lie group
G, the tangent bundle𝑇G is always trivializable with a global frame 𝔭 ∈ Γ(F (G))
induced by a homogeneous basis (𝑒𝑖 , 𝑓𝑗 ) of left-invariant vector fields 𝑒𝑖 , 𝑓𝑗 ∈ 𝔤 on
G, 𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛 with dimG = (𝑚, 𝑛). In particular, this yields a
global section 𝜈𝔤 := [𝔭, 1] ∈ Γ(Ber(G)) of the associated Berezin line bundle which,
by construction, automatically defines a left-invariant Haar measure. With respect to
local coordinates (𝑥, 𝜉 ) on G, we can write 𝔭 = (𝜕𝑥 𝑖 , 𝜕𝜉𝑗 ) · 𝑋 where 𝑋 denotes the
matrix representation of the left-invariant vector fields w.r.t. the induced coordinate
derivatives. Thus, in local coordinates, the density 𝜈𝔤 then takes the form

𝜈𝔤 = [(𝜕𝑥 𝑖 , 𝜕𝜉𝑗 ) · 𝑋 , 1] = [(𝜕𝑥 𝑖 , 𝜕𝜉𝑗 ), Ber(𝑋 )−1] (5.204)

To find an explicit expression for 𝑋 , one can then use the equivalent description of
G in terms of the corresponding super Harish-Chandra pair (𝐺, 𝔤) via identification
(2.45). This requires an intense use of the Baker-Campbell-Hausdorff formula and
thus involves various powers of the (right) adjoint representation ad𝑅 : Lie(G) →
End𝑅 (Lie(G)), 𝑋 ↦→ [𝑋 , ·]. As shown in [109], the matrix representation then takes
the form

𝑋 (𝑥, 𝜉 ) =
(
𝐶 (𝑥) 𝐶 (𝑥) · 𝐻 (𝜉 )
𝐴(𝜉 ) 𝐵 (𝜉 )

)
(5.205)

where 𝐶 (𝑥) as well as 𝐻 (𝜉 ), 𝐴(𝜉 ) and 𝐵 (𝜉 ) are submatrices depending purely on
even and odd coordinates, respectively, and which are defined via

ad𝑅 (𝑣) (𝑒𝑖) =: 𝑓𝑗 𝐴(𝜉 )
𝑗

𝑖
, 𝑏+(ad𝑅 (𝑣))𝑓𝑗 =: 𝑓𝑘𝐵 (𝜉 )𝑘𝑗

and ℎ(ad𝑅 (𝑣))𝑓𝑗 = 𝑒𝑖𝐻 (𝜉 ) 𝑖𝑗 (5.206)

with 𝑣 := 𝑓𝑗 𝜉 𝑗 ∈ (𝔤1 ⊗ Λ)0 and real functions

𝑏+(𝑡) :=
𝑡 cosh(𝑡)
sinh(𝑡) = 1 + 1

3
𝑡2 − 1

45
𝑡4 + . . . , ℎ(𝑡) :=

𝑒𝑡 − 1
𝑒𝑡 + 1 =

1
2
𝑡 − 1

24
𝑡3 + . . .

(5.207)
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Moreover,𝐶 (𝑥) is determined via the matrix representation of the even left-invariant
vector fields 𝑒𝑖 via

𝑒𝑖 | ( 𝑔,𝑣) = 𝜕𝑥𝑗𝐶
𝑗

𝑖
(𝑥) + 𝜕𝜉𝑘𝐴

𝑘
𝑖 (𝜉 ) (5.208)

In particular, when restricting to the body,𝐶 can be identified with the matrix represen-
tation of the left-invariant vector fields on𝐺. The left-invariant integral on S(𝔤1, 𝐺) for
smooth functions 𝑓 ∈ 𝐻∞𝑐 (S(𝔤1, 𝐺)) � 𝐶∞𝑐 (𝐺) ⊗

∧
𝔤∗1 then takes the form [109]∫

G
𝑓𝜈𝔤 =

∫
d𝑛𝑥

∫
𝐵

d𝑛𝜉 𝑓(𝑥, 𝜉 )Ber(𝑋 )−1(𝑥, 𝜉 )

=

∫
d𝑛𝑥 𝐶 (𝑥)−1

∫
𝐵

d𝑛𝜉
det 𝐵 (𝜉 )

det(1 − 𝐻 (𝜉 )𝐵 (𝜉 )−1𝐴(𝜉 )) 𝑓(𝑥, 𝜉 )

=:
∫
𝐺

d𝜇𝐻 ( 𝑔)
∫
𝐵

d𝑛𝜉 Δ(𝜉 )𝑓( 𝑔, 𝜉 ) (5.209)

where 𝜇𝐻 is the induced left-invariant Haar measure on 𝐺 and
∫
𝐵

denotes the usual
Berezin integral on

∧
𝔤∗1. Hence, the derivation of the invariant integral on G boils

down to the choice of an invariant Haar measure on the body𝐺 as well as the derivation
of the density Δ(𝜉 ) in the Berezin integral which, according to (5.206) and (5.207), only
involves the computation of the matrix representation of the adjoint representation on
the super Lie algebra 𝔤.

Example 5.5.6 (Invariant Haar measure on OSp(1|2)C). Let us apply the algorithm
outlined above to compute the invariant Haar measure on the complex orthosymplec-
tic group OSp(1|2)C. In case of the real orthosymplectic group, this has been done
explicitly already in [109] and in the algebraic category in [112]. Using the explicit matrix
representation of the generators (𝑇 +

𝑖
, 𝑄𝐴) as resulting from (2.92) and (2.93), by The-

orem 2.45, it follows that we can identify OSp(1|2)C with the split super Lie group
S(𝔬𝔰𝔭(1|2)1, SL(2,C)) according to

Φ( 𝑔, 𝑣) = 𝑔 exp(𝜉 𝐴𝑄𝐴) = 𝑔 ·
©­­­«
1 − 𝑖𝜉 +𝜉 − −𝑖𝜉 − −𝑖𝜉 +

−𝜉 + 1 + 𝑖
2 𝜉
+𝜉 − 0

−𝜉 − 0 1 + 𝑖
2 𝜉
+𝜉 −

ª®®®¬ (5.210)

for 𝑔 ∈ SL(2,C) and 𝜉 𝐴 ∈ ΛC1 for 𝐴 ∈ {±}. For the derivation of the Haar measure,
let us introduce a new real homogeneous basis ( 𝐽3, 𝐽±,𝑉±) of 𝔬𝔰𝔭(1|2)C defining

𝐽± := −𝑖 (𝑇 +1 ± 𝑖𝑇 +2 ), 𝐽3 := 𝑖𝑇 +3 , 𝑉± := ±
√
𝐿

2
(𝑖 − 1)𝑄± (5.211)
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From (5.82)-(5.85), it follows that the commutators among the even generators satisfy

[ 𝐽3, 𝐽±] = ± 𝐽±, [ 𝐽+, 𝐽−] = 2 𝐽3 (5.212)

which are the standard commutation relations of 𝔰𝔩(2,C). For the remaining commuta-
tors, we find

[ 𝐽3,𝑉±] = ±
1
2
𝑉±, [ 𝐽∓,𝑉±] =𝑉∓, [ 𝐽±,𝑉±] = 0 (5.213)

[𝑉±,𝑉±] = ±
1
2
𝐽±, [𝑉+,𝑉−] = −

1
2
𝐽3 (5.214)

These are precisely the graded commutation relations of real OSp(1|2) as stated for
instance in [109]. Using the commutation relations above, it then follows immediately
that the matrix representation of ad𝑅 (𝜃 𝐴𝑉𝐴) is given by

ad𝑅 (𝜃 𝐴𝑉𝐴) =

©­­­­­­­­«

0 0 0 − 1
2 𝜃
− − 1

2 𝜃
+

0 0 0 1
2 𝜃
+ 0

0 0 0 0 − 1
2 𝜃
−

1
2 𝜃
+ 𝜃− 0 0 0

− 1
2 𝜃
− 0 𝜃+ 0 0

ª®®®®®®®®¬
(5.215)

Hence, it follows from (5.206) as well as (5.208), using ad(𝜃 𝐴𝑉𝐴)𝑛 = 0 for 𝑛 ≥ 3,

(
1 𝐻

𝐴 𝐵

)
=

©­­­­­­­­«

1 0 0 − 1
4 𝜃
− − 1

4 𝜃
+

0 1 0 1
4 𝜃
+ 0

0 0 1 0 − 1
4 𝜃
−

1
2 𝜃
+ 𝜃− 0 1 − 1

4 𝜃
+𝜃− 0

− 1
2 𝜃
− 0 𝜃+ 0 1 − 1

4 𝜃
+𝜃−

ª®®®®®®®®¬
(5.216)

Actually, for the derivation of (5.209), it has been implicitly assumed that the super Lie
group defines a real supermanifold. Hence, we need to view OSp(1|2)C as a real super
Lie group. A homogeneous basis of the realification of 𝔤 := 𝔬𝔰𝔭(1|2)C (resp. Lie(G) :=
𝔤 ⊗ ΛC) is then given by ( 𝐽3, 𝐽±,𝑉±) ∪ (𝑖 𝐽3, 𝑖 𝐽±, 𝑖𝑉±). Let R : End

𝑅
(Lie(G)) →

End
𝑅
(Lie(G)R) be the morphism which identifies any 𝑋 ∈ End

𝑅
(Lie(G)) with the

corresponding real endomorphism R(𝐴) on the realification Lie(G)R. For the density
Δ ≡ Δ(𝜉 , 𝜉 , 𝜂, 𝜂̄) in the Berezin integral, we then compute

Δ =
det(R(𝐵))

det(R(1 − 𝐻 · 𝐵−1 · 𝐴)) =
(
1 + 1

4
𝜃+𝜃−

) (
1 + 1

4
𝜃+𝜃−

)
(5.217)
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Hence, it follows that the invariant integral for any smooth function 𝑓 ∈ 𝑉 :=
𝐶∞𝑐 (SL(2,C),C) ⊗∧[𝜃 𝐴, 𝜃 𝐴′] is given by∫

OSp(1 |2)C
𝑓𝜈𝔤 =

∫
SL(2,C)

d𝜇𝐻 ( 𝑔, 𝑔̄)
∫
𝐵

d𝜇(𝜃, 𝜃) 𝑓( 𝑔, 𝑔̄, 𝜃 , 𝜃) (5.218)

with d𝜇𝐻 an invariant Haar measure on SL(2,C) and

d𝜇(𝜃, 𝜃) := d𝜃 𝐴d𝜃 𝐴
′
(
1 + 1

4
𝜃+𝜃−

) (
1 + 1

4
𝜃+𝜃−

)
(5.219)

Finally, let us introduce the notion of a super Hilbert space. As already mentioned in the
introduction, there are indeed many different approaches in formulating such a notion.
Since, in this work, we are mainly interested in applications to LQSG, we would like to
consider super vector spaces𝑉 given by the space𝑉 := 𝐻∞(G,C) of smooth functions
on super Lie groups G equipped with the super scalar product S (see Def. 2.3.12 (ii))
induced by the invariant Haar measure

∫
G on G such that

S (𝑓| 𝑔) :=
∫
G
𝑓̄𝑔 (5.220)

Unfortunately, it turns out that the induced super scalar product as defined via (5.220)
will be in general indefinite yielding an indefinite inner product space (𝑉 ,S ). Hence,
at least a priori, the super scalar product cannot be used in order to extend𝑉 to a (super)
Hilbert space. However, as shown in [109], one can always find an, not necessarily
unique, endomorphism 𝐽 : 𝑉 →𝑉 such that

⟨·|·⟩ 𝐽 := S (·| 𝐽 ·) (5.221)

defines a positive definite inner product on𝑉 . Moreover, S turns out to be continuous
w.r.t. the topology induced by ⟨·|·⟩ 𝐽 on𝑉 .

Definition 5.5.7. A pre-super Hilbert space is a triple (ℌ,S , 𝐽 ) consisting of a super
vector space ℌ = ℌ0 ⊕ ℌ1 together with a super scalar product S on ℌ as well as
an endomorphism 𝐽 : ℌ → ℌ such that the sesquilinear form ⟨·|·⟩ 𝐽 as defined via
(5.221) yields a positive definite inner product on ℌ, i.e., (ℌ, ⟨·|·⟩ 𝐽 ) defines a ordinary
pre-Hilbert space and S is continuous w.r.t. the topology induced by ⟨·|·⟩ 𝐽 .

A pre-super Hilbert space (ℌ,S , 𝐽 ) is called a super Hilbert space if (ℌ, ⟨·|·⟩ 𝐽 ) defines
a Hilbert space in the category of ordinary vector spaces, that is, if ℌ, regarded as an
ungraded vector space, is complete w.r.t. the topology induced by ⟨·|·⟩ 𝐽 .
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An interesting subclass of (pre-)super Hilbert spaces is provided by triples (ℌ,S , 𝐽 )
where the endormorphism 𝐽 : ℌ → ℌ satisfies additional properties yielding the
notion of a super Krein space (for a definition of Krein spaces in the ungraded case see
e.g. [203]).

Definition 5.5.8 (a reformulation of [204,205]). A (pre-)super Hilbert space (ℌ,S , 𝐽 )
is called a super Krein space if the endomorphism 𝐽 : ℌ → ℌ defines a fundamental
symmetry, i.e., if it satisfies 𝐽 4 = 1 as well as S ( 𝐽 𝑣 | 𝐽 𝑤) = S (𝑣 |𝑤) ∀𝑣, 𝑤 ∈ ℌ.

Following [205], given a super Krein space (ℌ,S , 𝐽 ), the fundamental symmetry
induces a decomposition of ℌ in the form

ℌ = ℌ[1] ⊕ ℌ[𝑖 ] ⊕ ℌ[−1] ⊕ ℌ[−𝑖 ] (5.222)

with ℌ[𝑖𝑘 ] := ker( 𝐽 − 𝑖−𝑘1) such that

S (𝑣 |𝑣) ∈ 𝑖𝑘R≥0,∀homogeneous 𝑣 ∈ ℌ[𝑖𝑘 ] (5.223)

which we also refer to as a super Krein decomposition. Conversely, it is clear that any
decomposition of the form (5.222) naturally induces a fundamental symmetry 𝐽 : ℌ→
ℌ via

𝐽 := (𝑃[1] − 𝑖𝑃[𝑖 ]) − (𝑃[−1] − 𝑖𝑃[−𝑖 ]) (5.224)

where 𝑃[𝑖𝑘 ] : ℌ→ ℌ[𝑖𝑘 ] denotes the projection onto the subspaceℌ[𝑖𝑘 ] . In the special
case ℌ[−1] = {0} = ℌ[−𝑖 ] , this leads back to original definition of super Hilbert spaces
typically used in the literature [61, 74, 206]. The corresponding fundamental symmetry
𝐽 ≡ 𝐽0 then acquires the standard form [205]

𝐽0𝑣 := (−1) |𝑣 |𝑣, ∀homogeneous 𝑣 ∈ ℌ (5.225)

Definition 5.5.9. A (pre-)super Hilbert space (ℌ,S , 𝐽 ) is called standard if it is a super
Krein space and if the fundamental symmetry 𝐽 is of the standard form 𝐽 ≡ 𝐽0 (5.225).

Remark 5.5.10. By definition, it follows that any super vector space𝑉 equipped with a
positive definite inner product ⟨·|·⟩ : 𝑉 ×𝑉 → C such that (𝑉 , ⟨·|·⟩) is an ordinary
pre-Hilbert space naturally induces a corresponding standard pre-super Hilbert space
(𝑉 ,S , 𝐽0) with super scalar product S defined as S := ⟨·| 𝐽 −10 ·⟩. Hence, there exists
a one-to-one correspondence between standard (pre-)super Hilbert spaces and ordinary
(pre-)Hilbert spaces where the underlying vector space carries an additional Z2-grading.

Example 5.5.11. In the following, let us analyze the structure of inner product space
(𝑉 ,S ) with𝑉 := 𝐻∞(U(1|1),C) the super vector space of smooth functions on
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super Lie group U(1|1) (see Example 2.3.16) equipped with a super scalar product S
induced by the invariant Haar measure on U(1|1) defined via (5.220).

To this end, we first need to find an explicit form of the invariant Haar measure of U(1|1).
In the algebraic setting, this has been discussed already in [112]. Here, we want to rederive
it applying the concrete algorithm outlined above and originally developed in [109]
using the super Harish-Chandra isomorphism (2.45). Hence, let𝑌 := 𝜉Θ1 + 𝜂Θ2 with
𝜉 , 𝜂 ∈ Λ1. Using (2.77), it follows that the adjoint representation ad𝑌 acquires the
following matrix representation

ad𝑌 =

©­­­­­­«
0 0 −2𝜉 −2𝜂
0 0 −2𝜉 −2𝜂
−𝜂 𝜂 0 0
𝜉 −𝜉 0 0

ª®®®®®®¬
(5.226)

which yields

ad2𝑌 =

©­­­­­­«
4𝜉 𝜂 −4𝜉 𝜂 0 0
4𝜉 𝜂 −4𝜉 𝜂 0 0
0 0 0 0
0 0 0 0

ª®®®®®®¬
(5.227)

as well as ad𝑛𝑌 = 0 for 𝑛 ≥ 3. Thus, from this, we deduce

(
12 𝐻

𝐴 𝐵

)
=

©­­­­­­«
1 0 −𝜉 −𝜂
0 1 −𝜉 −𝜂
−𝜂 𝜂 1 0
𝜉 𝜉 0 1

ª®®®®®®¬
(5.228)

so that the density takes the form

Δ(𝜉 , 𝜂) = det 𝐵
det(12 − 𝐻𝐵−1𝐴)

≡ 1 (5.229)

Thus, to summarize, up to a constant rescaling, the invariant integral
∫

U(1 |1) : 𝑉 → C
on the super Lie group U(1|1) is given by∫

U(1 |1)
𝑓 :=

∫
U(1)×U(1)

d𝜇𝐻
∫
𝑖d𝜓d𝜓 𝑓 (5.230)
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for any 𝑓 ∈𝑉 . Moreover, using (5.230), we can introduce a corresponding super scalar
product S : 𝑉 ×𝑉 → C on𝑉 via

S (𝑓| 𝑔) =
∫

U(1 |1)
𝑓̄𝑔 (5.231)

As it turns out, the tuple (𝑉 ,S ) can be equipped with the structure of a pre-super
Hilbert space such that, after completion, the resulting super Hilbert space has the
structure of a super Krein space. In fact, defining 𝑣± := 1 ∓ 𝑖𝜓𝜓 as well as 𝑤+ := 𝜓
and𝑤− := 𝜓 it follows that S (𝑣± |𝑣±) = ±2 and S (𝑤± |𝑤±) = ±𝑖 with all remaining
combinations being zero. Since, the constant unit function 1 on U(1|1) can be written
in the form 1 = 1

2 (𝑣+ + 𝑣−), this implies∫
U(1 |1)

1 = 0 (5.232)

that is, the constant unit function is not normalizable. Let us then define the super
vector spaces

𝑉± := 𝐶∞(U(1)2,C)𝑣± ∪ 𝐶∞(U(1)2,C)𝑤± (5.233)

This yields the super Krein decomposition

𝑉 =𝑉+ ⊕𝑉− (5.234)

which is precisely of the form (5.222). Thus, following the standard procedure, we can
complete (𝑉 ,S ) to a super Hilbert space. To do so, let 𝑃 𝑖± : 𝑉 → (𝑉±)𝑖 for 𝑖 ∈ Z2
denote the projections onto the homogeneous subspaces (𝑉±)𝑖 and 𝐽 : 𝑉 → 𝑉 the
fundamental symmetry defined by

𝐽 := (𝑃 0
+ − 𝑖𝑃 1

+ ) − (𝑃 0
− − 𝑖𝑃 1

−) (5.235)

Then, this induces a inner product ⟨·, ·⟩ 𝐽 : 𝑉 ×𝑉 → C on𝑉 setting

⟨𝑓| 𝑔⟩
𝐽

:= S (𝑓| 𝐽 𝑔), ∀𝑓, 𝑔 ∈𝑉 (5.236)

which, by construction, is positive definite. In fact, for a general smooth function
𝑓 ∈ 𝑉 = 𝐶∞(U(1)2,C) ⊗ Λ2 of the form 𝑓 = 𝑓∅ + 𝑓1𝜓 + 𝑓2𝜓 + 𝑓12𝜓𝜓 one can
decompose 𝑓 = 1

2 (𝑓∅ + 𝑖𝑓12)𝑣++
1
2 (𝑓∅− 𝑖𝑓12)𝑣−+ 𝑓1𝑤++ 𝑓2𝑤−. According to Definition

(5.235), it then immediately follows that

⟨𝑓| 𝑔⟩
𝐽
=

∑︁
𝐼

⟨⟨𝑓𝐼 | 𝑔𝐼 ⟩⟩ (5.237)
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where ⟨⟨·|·⟩⟩ denotes the ordinary positive definite inner product on 𝐶∞(U(1)2,C)
induced by the unique normalized invariant Haar measure 𝜇𝐻 on U(1) × U(1). Thus,
this immediately implies that the completion of𝑉 w.r.t. the induced topology takes the
form

ℌ :=𝑉
∥· ∥

= 𝐿2(U(1)2, d𝜇𝐻 ) ⊗ ΛC2 (5.238)

Moreover, by construction, it follows that S is continuous so that it can be extended
uniquely to ℌ yielding the super Hilbert space (ℌ, ⟨·|·⟩ 𝐽 ,S ) which, in particular,
carries the structure of a super Krein space.

5.5.3. Loop quantization

5.5.3.1. General Scheme

With these preparations, let us finally turn towards the quantization of the theory adapt-
ing techniques from standard LQG. Again, in order to keep our considerations as general
as possible, before focusing on the loop quantization of chiral supergravity, let us first dis-
cuss the general quantization scheme and suppose we are given a graded holonomy-flux
algebra 𝔄gHF

S as constructed in Section 5.5.1 based on a general gauge supergroup G. At
this point, let us, however, emphasize that the final picture will remain rather incomplete.
This is mainly due to the additional difficulties arising in the supersymmetric setting
such as the indefiniteness of inner products induced by invariant integrals as well as
their non-normalizability which is crucial in order to implement cylindrical consistency.
Finally, in context of chiral supergravity to be discussed below, one needs to deal with the
non-compactness of the gauge group and solve reality conditions which, even in case of
the bosonic self-dual theory, still remains an open problem. Hence, in the following, we
will only sketch the main idea behind the construction pointing out various difficulties
arising along the way and discuss their possible resolutions.

For the quantization of the theory, we are looking for a faithful (grading preserving)
morphism of superalgebras

𝜋S : 𝔄
gHF
S → Op(DS ,ℌS) (5.239)

mapping from 𝔄
gHF
S to the space Op(DS ,ℌS) of (un)bounded operators𝑇 : DS ⊆

dom(𝑇 ) → ℌS on a super Hilbert space ℌS ≡ (ℌS ,S , 𝐽 ) with domain dom(𝑇 )
containing a dense graded subspaceDS ⊂ ℌS . Moreover, we require the representation
to transform covariantly under change of parametrization S. In fact, as we will see
below, provided that S is large enough, the resulting quantum theory is completely
independent of the choice of parametrization.
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Following the standard procedure in the purely bosonic theory, for the quantization,
we choose a Ashtekar-Lewandowski-type representation of 𝔄gHF

S . To this end, for any
subgroupoid 𝑙 ≡ 𝑙 (𝛾) ∈ L generated by a graph 𝛾 ⊂ Σ, let us consider the super vector
space𝑉S.𝑙 := Cyl∞(AS,𝑙). On𝑉S,𝑙 we then define the representation of 𝔄gHF

S,𝑙 via

𝜋S (𝑓𝑙) := 𝑓𝑙 , 𝜋S (X𝑛(𝑆)) := 𝑖ℏX𝑛(𝑆) (5.240)

where 𝑓𝑙 acts as a multiplication operator by 𝑓𝑙 . Using the identification (5.175), we can
define a super scalar product S𝑙 on𝑉S,𝑙 choosing an invariant Haar measure

∫
G(S)

on the 𝐻∞ super Lie group G(S) which, via factorization, induces an invariant Haar
measure on G(S) |𝐸 (𝛾) | yielding

S𝑙 ( 𝑔𝑙 |𝑓𝑙) :=
∫
G(S) |𝐸 (𝛾 ) |

𝑓̄𝑙 𝑔𝑙 (5.241)

for any 𝑓𝑙 , 𝑔𝑙 ∈ 𝑉S,𝑙 . As a next step, one then needs to check that the super scalar
product as defined via (5.241) is indeed cylindrically consistent, i.e., independent of the
choice of a graph 𝛾 . More precisely, given a graph 𝛾 ′ with 𝑙 (𝛾) ≤ 𝑙 (𝛾 ′) =: 𝑙 ′, one
needs to check that

S𝑙′ ( 𝑝∗𝑙 𝑙′𝑓𝑙 | 𝑝
∗
𝑙 𝑙′ 𝑔𝑙) = S𝑙 (𝑓𝑙 | 𝑔𝑙) (5.242)

∀𝑓𝑙 , 𝑔𝑙 ∈𝑉S,𝑙 . To do so, it suffices to consider the following three distinct cases: (1) 𝛾 ′
arises from 𝛾 by adding a new edge not contained in 𝛾 , (2) an edge in 𝛾 can be written
as a composition of two distinct edges in 𝛾 ′, (3) 𝛾 ′ arises from 𝛾 by inversion of the
orientation of an edge.

As in the non-supersymmetric setting, consistency under these three cases turns out
to be equivalent to requiring that the family of super scalar products (S𝑙)𝑙 as defined
via (5.241) are both left- and right-invariant and that the constant unit function 1 :
G(S) → C, 𝑔 → 1 is contained in 𝐻∞(G(S),C) and is normalized, i.e.,∫

G(S)
1 = 1 (5.243)

In fact, it follows that the last condition imposes severe restrictions on the super Lie
group. On the one hand, as in the bosonic case, existence of the unit function implies
that the super Lie group G(S) is compact which, by the DeWitt topology, is equivalent
to requiring that the bodyG(R) is compact. While, in the bosonic theory, this condition
is sufficient in order to ensure normalizability of the unit function, this, however, turns
out to be no longer the case in the supersymmetric setting. We have indeed encountered
an explicit example in Example 5.5.11 (see Eq. (5.232)). As shown in [198], requiring∫
G(S) 1 to be different from zero implies that the finite-dimensional representations
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of G(S) are completely reducible which, for super Lie groups, is satisfied only in rare
special cases. Nevertheless, there exists interesting candidates where all these conditions
are satisfied such as, for instance, the unitary orthosymplectic group UOSp(1|2) defined
as the intersection

UOSp(1|2) = OSp(1|2) ∩ U(1|2) (5.244)

In particular, it defines a compact subgroup of OSp(1|2) and thus may be even of
interest in context of chiral supergravity.

Hence, in the following, let us assume that the underlying super Lie groupG(S) indeed
satisfies all these conditions. It then follows that the family of super scalar products
(S𝑙)𝑙 can be lifted consistently to a super scalar product S on the inductive limit

𝑉S := lim
−→
𝑉S,𝑙 (5.245)

Thus, under these assumptions, we end up with an indefinite inner product space
(𝑉S ,S ). For the quantum theory, we then finally need to extend𝑉S to a Hilbert space.
To this end, for any 𝑙 ∈ L, one can apply the general results of [109] and construct an
endomorphism 𝐽𝑙 : 𝑉S,𝑙 →𝑉S,𝑙 such that the induced inner product

⟨·|·⟩ 𝐽𝑙 := S (·| 𝐽𝑙 ·) (5.246)

is positive definite which can then be used in order to complete to𝑉S,𝑙 to a Hilbert space

ℌS,𝑙 :=𝑉
∥· ∥ 𝐽𝑙
S (5.247)

and, in particular, S𝑙 turns out to be continuous w.r.t. the induced topology. Thus,
in this way, we indeed obtain a family of super Hilbert spaces (ℌS,𝑙 ,S𝑙 , 𝐽𝑙). As a final
and crucial step in the quantization scheme, we need to ask the question whether the
family of inner products (5.246) can be lifted consistently to well-defined inner product
⟨·|·⟩ 𝐽 := S (·| 𝐽 ·) induced by an endomorphism 𝐽 : ℌS → ℌS on the inductive limit

ℌS := lim
−→

ℌS,𝑙 (5.248)

This, in general, turns out to be a difficult question to answer as the choice of endo-
morphisms 𝐽𝑙 , a priori, is by far not unique. A sufficient criterion for this to be possible
would be the existence of a choice of a family ( 𝐽𝑙)𝑙 which commute with the pullbacks
of the graph projections, i.e.,

𝑝∗
𝑙 𝑙′ 𝐽𝑙 = 𝐽𝑙′ 𝑝

∗
𝑙 𝑙′ (5.249)

since then the cylindrical consistency of the induced inner product is indeed trivially
satisfied. However, this condition seems to be rather restrictive. For an example of such a
family of endomorphisms satisfying this condition see Section 5.5.4 below. Alternatively,
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one may try to find a suitable basis of the indefinite inner product spaces (𝑉S,𝑙 ,S𝑙),
such as a super spin network type basis (see Section 5.5.3.3), which can then be used
in order to construct a canonical endomorphism 𝐽𝑙 for any 𝑙 ∈ L. One then finally
needs to check, whether the induced positive inner products are indeed cylindrically
consistent. For the construction of such a basis, one needs a Peter-Weyl-type theorem
for super Lie groups stating that matrix coefficients of irreducible finite-dimensional
representations of the underlying super Lie group provide, at least in a specific sense,
an orthonormal basis of the indefinite inner product spaces (𝑉S,𝑙 ,S𝑙). Results in this
direction have been studied for instance in [207] in context of UOSp(1|2). Interestingly,
the basis constructed there seems to have almost the same properties as in the SU(2)
case and therefore seem to be suitable in order to find such an endomorphism 𝐽 .

Remark 5.5.12. Ultimately, one may follow a completely different strategy applying the
methods of [208]. There, introducing a particular kind of topology on 𝐻∞ super Lie
groups different from the DeWitt topology, the authors of [208] are able to identify the
underlying supermanifold with a corresponding ordinary real manifold. This approach
then allows one to construct invariant integrals which, in particular, turn out to be
positive definite. However, this construction depends crucially on the choice of the
underlying Grassmann algebra. From the functor of points perspective, this means
that one needs to make a particular choice of the parametrizing supermanifold S. A
suggestive candidate would be to choose the infinite-dimensional Grassmann algebraΛ∞
as it arises in terms of an inductive limit of the family of finite-dimensional Grassmann
algebras.

5.5.3.2. Application: Chiral supergravity

Having sketched the general strategy to canonically quantize field theories with gauge
symmetry given by a supergroup in the framework LQG, we finally want to apply it in
the context of chiral supergravity. However, there, one runs into several problems as
the underlying gauge supergroups given by the (complex) orthosymplectic supergroups
OSp(N |2)C are non-compact. Moreover, one also needs to deal with the consistent
implementation of the reality conditions as one is still dealing with a complex theory.
An interesting and elegant possibility to solve the reality conditions would be to be
adapt the ideas of [209] and to introduce some kind of a Wick rotation on the phase
space so that the complex theory arises from an Euclidean counterpart corresponding
to a real Barbero-Immirzi parameter 𝛽 ∈ {±1} via a Wick transformation. However,
the resulting gauge group given by the real orthosymplectic supergroup OSp(N |2)
is still non-compact. Adapting ideas in context of the purely bosonic theory (see for
instance [210–214] and references therein for recent advances in this direction), this may
be solved by going over instead to their corresponding compact form given by unitary
orthosymplectic group UOSp(N |2) = OSp(N |2) ∩U(N |2). As already mentioned
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in the previous section, for the special caseN = 1, besides compactness, this group has
very useful properties such as the existence of an invariant Haar measure with respect to
which, in particular, the unit function is normalizable which is important in context
of loop quantization in order to implement cylindrical consistency. Nevertheless, this
last property turns out to be no longer satisfied in case of extended supersymmetry
corresponding to higherN > 1.

Anyway, since, we want to explicitly include the extended caseN = 2, in what follows,
we will not discuss the question of how to impose cylindrical consistency and instead
work on a single graph 𝛾 in Σ. As argued in [213], we may therefore assume that the
graph under consideration is at least suitably fine enough to resolve the topology of Σ.
Let 𝔄cLQSG

S,𝛾 := 𝔄
gHF
S,𝑙 (𝛾) denote the graded holonomy-flux algebra w.r.t. the graph 𝛾 and

underlying gauge group given by OSp(N |2)C. The quantization of the theory then
corresponds to a representation

𝜋S,𝛾 : 𝔄
cLQSG
S,𝛾 → Op(DS,𝛾 ,ℌcLQSG

S,𝛾 ) (5.250)

of 𝔄cLQSG
S,𝛾 on a super Hilbert space ℌcLQSG

S,𝛾 . To construct this representation, as pre-
Hilbert space, we consider the super vector space𝑉S,𝛾 := Cyl∞(AS,𝑙 (𝛾) ) which, accord-
ing to (5.175), can be identified with

𝐻∞(G(S) |𝐸 (𝛾) | ,C) � 𝐻∞(G(S),C)⊗𝜋 |𝐸 (𝛾) | (5.251)

or a suitable subspace thereof, if one restricts, for instance, to holomorphic functions as
naturally arising from super holonomies induced by the super Ashtekar connection (see
discussion below). The representation of the algebra on this vector space is then defined
via (5.240). For the super scalar product S on𝑉S,𝛾 we make the ansatz

S (𝑓| 𝑔) :=
∫
G(R)

d𝜇𝐻 ( 𝑔, 𝑔̄)
∫
𝐵

d𝜇(𝜃, 𝜃) 𝜌( 𝑔, 𝑔̄, 𝜃 , 𝜃) 𝑓̄𝑔 (5.252)

with d𝜇𝐻 the invariant Haar measure on the body G(R) = SL(2,C) and the measure
d𝜇(𝜃, 𝜃) in the Berezin integral which, in caseN = 1, is given by expression (5.219).
Here, 𝜌 ≡ 𝜌( 𝑔, 𝑔̄, 𝜃 , 𝜃) denotes an additional density which has been chosen in order
to deal with the non-compactness of the group. In this context, note that, generically,
the matrix coefficients of the super holonomies (5.162), as part of the underlying algebra
and thus of the resulting state space in the quantum theory, are functions of the form

𝑓 =
∑︁
𝐼

𝑓𝐼𝜓
𝐼 = 𝑓∅ + 𝑓𝐴𝜓 𝐴 +

1
2
𝑓+−𝜓𝐴𝜓

𝐴 (5.253)
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with 𝑓𝐼 Grassmann extensions of holomorphic functions on SL(2,C). But, by Liou-
ville’s theorem, if required to be nontrivial, general functions of this kind cannot be of
compact support. This is of course problematic in context of integration theory and thus
for the proper definition of the inner product. Hence, either one excludes holomorphic
functions already in the definition of the classical algebra or the measure on SL(2,C) is
changed appropriately by introducing a density 𝜌 which is of compact support. We will
study the last possibility in the following chapter in the context of symmetry reduced
models. There, the measure turns out to be in fact distributional. In particular, we will
see that this will also enable us to exactly implement the reality conditions (5.156). In
context of the full theory with ordinary self-dual variables, this idea also been studied
in [215] considering a specific subclass of the full reality conditions where it was found
that the resulting density imposes a gauge-fixing onto the compact subgroup SU(2) of
SL(2,C). Maybe, these results can be extended to the supersymmetric setting possibly
involving the unitary orthosymplectic group UOSp(1|2) which, as explained above, has
many interesting properties quite analogous to the purely bosonic theory.

Ultimately, for the construction of the super Hilbert space, we have to choose an endo-
morphism 𝐽 : 𝑉S,𝛾 →𝑉S,𝛾 such that the induced inner product ⟨·|·⟩ 𝐽 := S (·| 𝐽 ·) is
positive definite. The choice of such an endomorphism is, of course, not unique but
strongly restricted by the correct implementation of the reality conditions (see Section
(5.5.4) or (6.6.2) in context of symmetry reduced models). Using this inner product, we
can then complete𝑉S,𝛾 to a Hilbert space ℌcLQSG

S,𝛾 so that finally end up with the super

Hilbert space (ℌcLQSG
S,𝛾 ,S , 𝐽 ).

5.5.3.3. Super spin networks and the super area operator

Having constructed the Hilbert space representation of the classical algebra underlying
canonical chiral supergravity, we next have to select the proper subspace of physical states
consisting of states in ℌ

cLQSG
S,𝛾 that are annihilated by the operators corresponding to

the constraints of the canonical classical theory given by the super Gauss, the right SUSY
and the diffeomorphism constraint, respectively, as well as the Hamiltonian constraint.
In the following, let us only focus on the super Gauss constraint. The other constraints
will be discussed in the context of the reduced theory in Section 6.4 below. In fact, the
particular advantage of the loop representation as studied in this section is the rather
straightforward implementation of the super Gauss constraint (5.118) (resp. (5.136) for
N = 2) in the quantum theory implying invariance of physical states under local gauge
transformations.
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To this end, recall that the super Gauss constraint in the bulk theory, modulo boundary
terms, takes the form

G [𝛼] = − 𝑖
𝜅

∫
Σ
⟨𝐷 (A+) 𝛼 ∧ E⟩ = − 𝑖

𝜅

∫
Σ

d3𝑥 (𝐷 (A
+)

𝑎 𝛼𝐴)E𝑎
𝐴
=: − 𝑖

𝜅
E(𝐷 (A+) 𝛼)

(5.254)
and thus resembles the definition of a super electric flux but smeared over a three-
dimensional region instead of two-dimensional surfaces. Thus, for the corresponding
operator in the quantum theory, we may set

Ĝ [𝛼] :=
ℏ

𝜅
{E(𝐷 (A+) 𝛼), ·} (5.255)

Following the same steps as in the purely bosonic theory, it is then immediate to see that
the super Gauss constraint operator takes the form

Ĝ [𝛼] = 𝑖ℏ
2

∑︁
𝑣∈𝑉 (𝛾)

𝛼𝐴(𝑣)


∑︁
𝑒∈𝐸 (𝛾) ,𝑏 (𝑒)=𝑣

𝑅𝑒
𝐴
−

∑︁
𝑒∈𝐸 (𝛾) ,𝑓(𝑒)=𝑣

𝐿𝑒
𝐴

 (5.256)

In particular, due to its structure, the super Gauss constraint has a well-defined action
on the super Hilbert space as it takes the standard form of a super electric flux operator
and maps cylindrical functions to cylindrical functions. For a generic state 𝑓 ∈ ℌcLQSG

S,𝛾
to be physical, this then yields the condition

Ĝ [𝛼]𝑓 = 0 (5.257)

that is, according to (5.256) and Remark (5.5.5), physical states have to be invariant under
both the left- and right-regular representation of G(S).

In standard loop quantum gravity, one considers a typical class of states satisfying the
constraint equation (5.257) given by the so-called spin network states. These states are
constructed via contraction of matrix coefficients of irreducible representations of the
underlying gauge group. In fact, in case that the bosonic group is compact, it follows that
these type of states form an orthonormal basis of the entire Hilbert space. This follows
from the well-known Peter-Weyl theorem which is valid for compact bosonic groups.
However, in case of general super Lie groups such a general statement, unfortunately,
is not known. Nevertheless, the finite-dimensional irreducible representations of the
orthosymplectic series OSp(N |2) forN = 1, 2 are well-known and have been intensively
studied in the literature (for a summary see Appendix D). In particular, for the case
N = 1, it follows that these type of representations form a subcategory which is closed
under tensor product. In fact, the same applies to the extended case N = 2 if one
restricts to a particular subclass of the so-called typical representations (see [216, 217] for
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Figure 5.: A pictorial representation of a super spin network state for the caseN = 2. In contrast to the
standard quantization scheme of fermions in LQG, the fermions are smeared over the one-dimensional
edges of the graph which are labeled by admissible representations 𝜋 (𝑗,𝑞) ∈ Padm of the supergroup
OSp(2|2) with isospin 𝑗 and charge quantum number 𝑞.

more details). We may call these kind of representations admissible in what follows.
Thus, restricting to admissible representations, one can construct invariant states which
lead to the notion of super spin network states. ForN = 1, these have been studied for
instance in the References [84, 85]. For the rest of this section, let us briefly sketch the
main idea behind their construction explicitly including the extended caseN = 2.

To this end, letPadm denote the set of equivalence classes of admissible finite-dimensional
irreducible representations of OSp(N |2)withN = 1, 2. For any subset ®𝜋 := {𝜋𝑒}𝑒∈𝐸 (𝛾)
⊂ Padm, we then define the cylindrical function𝑇𝛾, ®𝜋, ®𝑚,®𝑛 ∈ Cyl∞(AS,𝛾 ) via

𝑇𝛾, ®𝜋, ®𝑚,®𝑛 :=
∏
𝑒∈𝐸 (𝛾)

(𝜋𝑒)𝑚𝑒𝑛𝑒 (5.258)

also called a gauge-variant super spin network state where, for any edge 𝑒 ∈ 𝐸 (𝛾),
(𝜋𝑒)𝑚𝑒𝑛𝑒 denote certain matrix coefficients of the representation 𝜋𝑒 ∈ Padm. By defini-
tion, it then follows from the general transformation law (5.163) of a super holonomy
under local gauge transformations, that, at each vertex 𝑣 ∈ 𝑉 (𝛾), the state (5.258)
transforms under the following tensor product representation of G(S)

𝜋 ′𝑣 := ©­«
⊗
𝑒∈𝐼 (𝑣)

𝜋𝑒
ª®¬ ⊗ ©­«

⊗
𝑒∈𝐹 (𝑣)

𝜋∗𝑒
ª®¬ (5.259)

where 𝜋∗𝑒 ∈ Padm denotes the right dual representation corresponding to 𝜋𝑒 . Here,
𝐼 (𝑣) and 𝐹 (𝑣) are defined as subsets of 𝐸 (𝛾) consisting of all edges 𝑒 ∈ 𝐸 (𝛾) which are
beginning or ending at the vertex 𝑣 ∈𝑉 (𝛾), respectively. Hence, in order to construct
gauge-invariant states, at each vertex 𝑣 ∈ 𝑉 (𝛾), we have to assume that the trivial
representation 𝜋0 appears in the decomposition of the product representation (5.259),
i.e., 𝜋0 ∈ 𝜋 ′𝑣 ∀𝑣 ∈𝑉 (𝛾). For any 𝑣 ∈𝑉 (𝛾), we can then choose an intertwiner 𝐼𝑣 which
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contracted with the state (5.259) project onto the trivial representation at any vertex. As
a consequence, the resulting state transforms trivially under local gauge transformations
and thus indeed forms a gauge-invariant state which we call a (gauge-invariant) super
spin network state (see Figure 5).

On the super Hilbert space ℌcLQSG
S,𝛾 , one can introduce a gauge-invariant quantity in

analogy to the area operator in ordinary LQG. More precisely, since the super electric field
E defines a Lie(G)-valued 2-form, for any oriented (semianalytic) surface 𝑆 embedded
in Σ, one can define the graded or super area gAr(𝑆) via

gAr(𝑆) :=
∫
𝑆

∥E∥ (5.260)

where, generalizing the considerations in [45, 218, 219] in the context of the purely
bosonic theory to the supersymmetric setting, the norm ∥E∥ is a 2-form on 𝑆 defined
as follows: Let 𝜄𝑆 : 𝑆 ↩→ Σ denote the embedding of the surface 𝑆 in Σ. Since, 𝜄∗

𝑆
E

defines a 2-form on 𝑆 , it follows that there exists a unique Lie(G)-valued function
E𝑆 : S × 𝑆 → Lie(G) such that 𝜄∗

𝑆
E = E𝑆 vol𝑆 . The norm ∥E∥ is then given by

∥E∥ :=
√︁
⟨E𝑆 , E𝑆⟩ (5.261)

For the special caseN = 1, it follows that the expression (5.260) coincides with the super
area as considered in [85]. Note that, in case that the parametrizing supermanifold is
trivialS = {∗}, the super area reduces, up to numerical factors, to the standard area of
𝑆 in Riemannian geometry.

By definition, the quantity (5.260) solely depends on the super electric field which defines
a phase space variable. Thus, we can implement it in the quantum theory. To do so,
we first need to perform an appropriate regularization. Following [45], let us therefore
assume that the surface 𝑆 intersects the graph 𝛾 only in its vertices and is contained
within a single coordinate neighborhood (𝑈 , 𝜙𝑈 ) of Σ adapted to 𝑆 . Furthermore,
letU𝜖 = {𝑈𝑖}𝑖 be a partition of𝑈 of fineness 𝜖 > 0 such that 𝑆 is covered by the
𝑆𝑈𝑖 := 𝜙𝑈 (𝑈𝑖). Then, for 𝜖 > 0, we define

gAr
𝜖
(𝑆) :=

∑︁
𝑉 ∈U𝜖

∥E(𝑆𝑉 )∥ ≡
∑︁
𝑉 ∈U𝜖

√︃
T 𝐴𝐵X𝐵 (𝑆𝑉 )X𝐴(𝑆𝑉 ) (5.262)

whereX𝐴(𝑆𝑉 ) denotes the super electric flux operator smeared over 𝑆𝑉 with smearing
function 𝑛 : 𝑆 → 𝔤 satisfying 𝑛𝐵 ≡ 1 for 𝐵 = 𝐴 and 𝑛𝐵 = 0 otherwise. In the limit
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𝜖 → 0, this then implies gAr(𝑆) = lim𝜖→0 gAr
𝜖
(𝑆). Using this regularization, we can

define the super area operator as follows

ĝAr(𝑆) = lim
𝜖→0

ĝAr
𝜖
(𝑆), ĝAr

𝜖
(𝑆) =

∑︁
𝑉 ∈U𝜖

√︃
T 𝐴𝐵X̂𝐵 (𝑆𝑉 )X̂𝐴(𝑆𝑉 ) (5.263)

Next, let us derive an explicit formula for its action on super spin network states. To
this end, following again [45] in the context of purely bosonic theory, we compute

T 𝐴𝐵X̂𝐵 (𝑆𝑉 )X̂𝐴(𝑆𝑉 ) =
(
ℏ𝜅

4

)2
T 𝐴𝐵 ©­«

∑︁
𝑒∩𝑆𝑉 ≠∅

𝜖(𝑒, 𝑆𝑉 )𝑅𝑒𝐵
ª®¬ ©­«

∑︁
𝑒∩𝑆𝑉 ≠∅

𝜖(𝑒, 𝑆𝑉 )𝑅𝑒𝐴
ª®¬

=

(
ℏ𝜅

4

)2
T 𝐴𝐵

(
𝑅in
𝐵 − 𝑅

out
𝐵

) (
𝑅in
𝐴
− 𝑅out

𝐴

)
=

(
ℏ𝜅

4

)2
T 𝐴𝐵

(
2𝑅in

𝐵𝑅
in
𝐴
+ 2𝑅out

𝐵
𝑅out
𝐴

−
(
𝑅in
𝐵 + 𝑅

out
𝐵

) (
𝑅in
𝐴
+ 𝑅out

𝐴

))
=: −

(
ℏ𝜅

4

)2
(2Δ𝐼 + 2Δ𝐹 − Δ𝐼∪𝐹 ) (5.264)

with 𝑅in
𝐴
=

∑
𝑒 ingoing 𝑅

𝑒
𝐴

and 𝑅out
𝐴

=
∑
𝑒 outgoing 𝑅

𝑒
𝐴

. Moreover, Δ := −T 𝐴𝐵𝑅𝐵𝑅𝐴

denotes the super Laplace-Beltrami operator of the super Lie group G.

With these preliminary considerations, let us compute the action of the super area
operator on a (gauge-invariant) super spin network𝑇𝛾, ®𝜋, ®𝑚,®𝑛 for the special caseN = 1.
Suppose that the surface 𝑆 intersects the graph 𝛾 in a single divalent vertex 𝑣 ∈𝑉 (𝛾) so
that, at this vertex, one has Δ𝐼 = Δ𝐹 as well as Δ𝐼∪𝐹 = 0. Using the results of Section
D.1, up to numerical factors, we then find

ĝAr(𝑆)𝑇𝛾, ®𝜋, ®𝑚,®𝑛 ∝ 𝑖 𝑙2𝑝

√︄
𝑗

(
𝑗 + 1

2

)
𝑇𝛾, ®𝜋, ®𝑚,®𝑛 (5.265)

with 𝑗 the spin quantum number labeling the edge 𝑒 ∈ 𝐸 (𝛾) that intersects the vertex
𝑣. This coincides with the results of [85].

5.5.4. Comparison: Quantization of fermions in standard LQG

In the following, we would like to point out various similarities between the quantization
of the combined boson-fermion system in chiral LQSG exploiting the enlarged gauge
symmetry of the theory and the standard quantization scheme in the framework of loop
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quantum gravity using real Asthekar-Barbero variables [67, 80]. To this end, following
[80,156] and explicitly taking into account the underlying parametrization supermanifold
S, let us assume we are given a canonical system of anticommuting half-densitized
fermion fields 𝜃 𝐴 (cf. Section 4.3.1), 𝐴 ∈ {±}, defined on Σ and canonically conjugate
momentum 𝜋𝐴 satisfying the anti-Poisson relations

{𝜋𝐴(𝑠, 𝑥), 𝜃𝐵 (𝑠, 𝑦)} = −𝛿𝐵𝐴𝛿
(3) (𝑥, 𝑦) (5.266)

∀𝑥, 𝑦 ∈ Σ and 𝑠 ∈ S together with certain reality conditions relating the momentum
𝜋 to the corresponding complex conjugate Weyl spinor 𝜃 . In the standard literature,
matter fields in loop quantum gravity are quantized by discretizing them over a finite
number of points. As we will see below, the classical algebra has in fact an interesting
interpretation in context ofS-parametrized field theories studying smooth functions
on supermanifolds arising from the functor of points prescription.

To explain this in a bit more detail, in what follows, for a graph 𝛾 in Σ and a finite set of
points {𝑥𝑖}𝑖 ⊂ Σ, let us define a generalized graph Γ := 𝛾 ∪ {𝑥𝑖}𝑖 . Again, it follows
that the collection of all such generalized graphs forms a partially ordered directed set by
defining

Γ ≤ Γ′ :⇔ 𝑙 (𝛾) ≤ 𝑙 (𝛾 ′) and {𝑥𝑖}𝑖 ⊆ {𝑥 ′𝑗 }𝑗 (5.267)

for Γ = 𝛾 ∪ {𝑥𝑖}𝑖 and Γ′ = 𝛾 ′∪ {𝑥 ′
𝑗
}𝑗 . To a generalized graph Γ = 𝛾 ∪ {𝑥𝑖}𝑖 , we then

associate the set A𝑃
S,Γ of pointed generalized super connections via

A𝑃
S,Γ := HomCat(𝑙 (𝛾)op,G(S)) ×

𝑘∏
𝑖=1
C
0 |2
𝑥𝑖 (S) (5.268)

where, for any 𝑥 ∈ Σ, C0 |2𝑥 denotes the superpoint C0 |2𝑥 := ({𝑥},ΛC2 ). In Definition
(5.268), the first factor corresponds to the bosonic degrees of freedom given by the set
AS,𝛾 := HomCat(𝑙 (𝛾)op,G(S)) of generalized bosonic connections on the graph 𝛾
with the underlying gauge gauge group given by the purely bosonic super Lie group
S(SU(2)) which, as usual, we will identify with 𝐺 := SU(2) to simplify notation.
Moreover, the second factor encodes the fermionic degrees of freedom. In this context,
note that, fixing a spatial point 𝑥 ∈ Σ, it follows that the fermionic fields 𝜃 𝐴 induce
S-points 𝜃 𝐴(𝑥) ≡ 𝜃 𝐴(·, 𝑥) ∈ C0 |2𝑥 (S). Using the isomorphism (5.166) in case of a
purely bosonic super Lie group, this implies

A𝑃
S,Γ �

(
𝐺 |𝐸 (𝛾) | ×

𝑘∏
𝑖=1
C
0 |2
𝑥𝑖

)
(S) =:M(S) (5.269)
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that is,A𝑃
S,Γ can be identified with theS-point of a split supermanifoldM (see Example

2.2.4). Hence, using this identification, we define the space Cyl∞(A𝑃
S,Γ) of generalized

cylindrical functions on A𝑃
S,Γ in terms complex smooth functions on the 𝐻∞ super-

manifoldM(S), i.e.,

Cyl∞(A𝑃
S,Γ) := 𝐻∞(M(S),C) � 𝐶∞(𝐺 |𝐸 (𝛾) | ,C) ⊗

𝑘⊗
𝑖=1

ΛC
𝑁
(𝑥𝑖) (5.270)

where, for the last identity, it has been implicitly assumed that the parametrization
supermanifoldS is suitably large enough. It follows immediately from the definition
that, given two generalized graphs Γ and Γ′ with Γ ≤ Γ′, the pullbacks 𝑝∗

𝑙 𝑙′
of the

morphisms 𝑝𝑙 𝑙′ : AS,𝑙′ → AS,𝑙 as defined via (5.169) can be extended to morphisms
𝑝∗ΓΓ′ on generalized cylindrical functions, i.e.,

𝑝∗ΓΓ′ : Cyl∞(A𝑃
S,Γ) → Cyl∞(A𝑃

S,Γ′) (5.271)

satisfying the compatibility condition 𝑝∗Γ′Γ′′ ◦ 𝑝
∗
ΓΓ′ = 𝑝

∗
ΓΓ′′ for all Γ ≤ Γ′ ≤ Γ′′. Thus,

in this way, it follows that (Cyl∞(A𝑃
S,Γ), 𝑝

∗
ΓΓ′) defines an inductive family to which we

can associate its corresponding inductive limit

Cyl∞(A𝑃

S) := lim
−→

Cyl∞(A𝑃
S,Γ) (5.272)

For a generalized graph Γ = 𝛾 ∪ {𝑥𝑖}𝑖 , we define𝑉∞(A𝑃
S,Γ) as the space𝑉∞(A𝑃

S,Γ) ≡
𝑉∞(AS,𝑙 (𝛾) ) of (bosonic) electric fluxes X𝑛(𝑆) acting on cylindrical functions on
AS,𝑙 (𝛾) via the Poisson bracket with the smeared (bosonic) electric flux 𝐸𝑛(𝑆) associated
to the gravitational electric field 𝐸 𝑖𝑎. Hence, again, it follows that electric fluxes leave
the generalized graph unchanged so that they can be lifted consistently to electric fluxes
𝑉∞(A𝑃

S) on the inductive limit. For the classical algebra, we then set

𝔅S := Cyl∞(A𝑃

S) ⋊𝑉∞(A
𝑃

S) (5.273)

It follows that 𝔅S has the structure of a semi-direct Lie superalgebra with graded Lie
bracket [·, ·] defined via

[(𝑓, 𝑋 ), ( 𝑔,𝑌 )] := (𝑋 ( 𝑔) −𝑌 (𝑓), [𝑋 ,𝑌 ]) (5.274)

where we used that the electric fluxes, by definition, are bosonic. By implementing the
reality conditions, it follows that 𝔅S even forms a *-algebra. As in the context of chiral
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supergravity, in order to quantize the theory, we are looking for a representation of 𝔅S
on a super Hilbert spaceℌS , that is, a grading preserving morphism of Lie superalgebras

𝜋S : 𝔅S → Op(DS ,ℌLQSG
S ) (5.275)

from 𝔅S to the space of unbounded operators on the super Hilbert space ℌS mutually
defined on a common dense (graded) domainDS .

To find a possible candidate for the super Hilbert space, for any generalized graph
Γ ∪ {𝑥𝑖}𝑖 , let us consider the super vector space𝑉S,Γ := Cyl∞(A𝑃

S,Γ). Using the
isormorphism (5.270), for elementary tensors of the form 𝑓𝑙 (𝛾)⊗𝜃 𝐴(𝑥𝑖) ∈ Cyl∞(A𝑃

S,Γ),
we then set

𝜋S (𝑓𝑙 (𝛾) ⊗ 𝜃 𝐴(𝑥𝑖)) := 𝑓𝑙 (𝛾) ⊗ 𝜃 𝐴(𝑥𝑖) (5.276)

where 𝑓𝑙 (𝛾) as well as 𝜃 𝐴(𝑥𝑖) act in terms of multiplication operators in the obvious way.
For the electric fluxes, we set

𝜋S (X𝑛(𝑆)) := 𝑖ℏ{𝐸𝑛(𝑆), ·} (5.277)

It is then immediate to see that the operators as defined via (5.276) and (5.277) indeed
satisfy the correct graded commutation relations. Next, we need to extend𝑉S,Γ to a
super Hilbert space. To do so, note that the super scalar product has to be chosen in
such a way so that it is invariant under local gauge transformations. If 𝜆 : S × Σ→ 𝐺

denotes such a local gauge transformation, this induces an action on the supermanifold
M(S) via

𝜆 ▷ ({ 𝑔𝑒}, {𝜃 (𝑥𝑖)}𝑖) := ({𝜆(𝑏(𝑒)) 𝑔𝑒𝜆(𝑓(𝑒))−1}, {𝜆(𝑥𝑖) · 𝜃 (𝑥𝑖)}) (5.278)

Hence, as a possible candidate for the super scalar product S ′
Γ , we may set

S ′
Γ (𝑓Γ | 𝑔Γ) :=

∫
𝐺 |𝐸 (𝛾 ) |

d |𝐸 (𝛾) |𝜇𝐻
∫
𝐵

dΘ 𝑓̄Γ 𝑔Γ (5.279)

with 𝜇𝐻 the invariant Haar measure of𝐺 and where dΘ is defined as the product mea-
sure dΘ := dΘ(𝑥1) · · · dΘ(𝑥𝑘) with dΘ(𝑥𝑖) := d𝜃 𝐴(𝑥𝑖)d𝜃 𝐴

′ (𝑥𝑖). It then follows
that this super scalar product indeed invariant under the action (5.278). However, S ′

Γ
turns out to be not cylindrically consistent, i.e., it cannot be lifted consistently on the
inductive limit as the unit is not normalized. To fix this, recall that the representation
given by (5.276) and (5.277) also has to preserve the *-relations imposed by the reality
conditions. Interestingly, this turns out to be in fact equivalent to choosing a Krein
completion of the indefinite inner product space (𝑉S,Γ,S ′

Γ). For instance, for a gen-
eralized graph of the form Γ = 𝛾 ∪ {𝑥} with 𝑥 ∈ Σ a single point, it follows that one
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can always find a fundamental symmetry 𝐽Γ ≡ 𝐽 : 𝑉S,Γ →𝑉S,Γ such that the induced
inner product

⟨·|·⟩Γ := S ′
Γ (·| 𝐽 ·) (5.280)

takes the form
⟨𝑓𝛾 , 𝑔𝛾 ⟩Γ =

∑︁
𝐼

⟨⟨𝑓𝑙 (𝛾) ,𝐼 | 𝑔𝑙 (𝛾) ,𝐼 ⟩⟩ (5.281)

where we have expanded 𝑓Γ =
∑
𝐼 𝑓𝑙 (𝛾) ,𝐼 𝜃

𝐼 (𝑥) and similarly for 𝑔Γ and ⟨⟨·|·⟩⟩ denotes
the standard inner product on 𝐿2(𝐺) induced by the unique invariant Haar measure
on 𝐺. As discussed already in a similar context in Section 4.5.1, this inner product is
indeed invariant under local gauge transformations. Moreover, it is positive definite and
correctly implements the reality conditions. For a general graphΓ = 𝛾∪{𝑥1, . . . , 𝑥𝑘}, we
can then set 𝐽Γ := 𝐽 ⊗𝑘 . By construction, it follows that the induced inner product of the
form (5.280) is again positive definite, gauge-invariant and solves the reality conditions.
Moreover, by definition, the fundamental symmetry satisfies

𝑝∗ΓΓ′ 𝐽Γ = 𝐽Γ′ 𝑝
∗
ΓΓ′ (5.282)

for any generalized graphs Γ ≤ Γ′. Thus, since the unit is also normalized w.r.t. ⟨·|·⟩Γ,
this implies that the inner product can be lifted consistently to a positive definite inner
product ⟨·|·⟩ on the inductive limit𝑉S := lim→𝑉S,Γ. Using this inner product, we can
then complete𝑉S, to a Hilbert space

ℌS :=𝑉
∥· ∥
S (5.283)

so that, in this way, we end up with a standard super Hilbert space (ℌS , ⟨·|·⟩) (see Def.
5.5.9 and Remark 5.5.10) onto which the representation as defined via (5.276) and (5.277)
can be lifted consistently and uniquely to a representation of the classical algebra𝔅S . By
definition, it follows that the super Hilbert space (5.283) has the tensor product structure

ℌS � ℌS,grav ⊗ ℌS,𝑓 (5.284)

withℌS,grav andℌS,𝑓 the (super) Hilbert spaces associated to the bosonic and fermionic
degrees of freedom, respectively, where ℌS,grav is defined via (5.248) according to the
construction in Section 5.5.3 with super Lie group given by S(SU(2)).

Thus, to summarize, in the context of the standard quantization scheme of the gravity-
fermion system in the framework LQG based on real Ashtekar-Barbero variables, one
can construct a representation of the classical algebra that respects cylindrical consistency
and, in particular, correctly implements the reality conditions.
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5.6. The boundary theory
5.6.1. The super Chern-Simons action

Having discussed the quantization of the bulk theory of chiral supergravity in Section
5.5.3, in what follows, let us finally very briefly comment on the boundary theory. To
this end, in this section, let us first recall the basic definition and structure of the super
Chern-Simons action which, as we observed in Section 5.4, naturally appears, in fact
even uniquely, as a boundary term in chiral supergravity in the presence of boundaries.
An outlook on possible applications in the context of chiral LQSG such as the quantum
description of supersymmetric black holes and black hole entropy will be given in Section
5.6.2 below. For more details on Chern-Simons theory with supergroup as a gauge group,
let us refer to [166] as well as [220] studying the super Chern-Simons action in the
geometric approach using integral forms. More details on integral forms and related
concepts can be found, e.g., in [131, 132]. For notational simplification, in what follows,
we will not explicitly mention the underlying parametrizing supermanifold.

Before we state the super Chern-Simons action, we need to introduce invariant inner
products. Let G be a Lie supergroup. By the Super Harish-Chandra Theorem 2.3.9, the
super Lie group has the equivalent characterization in terms of the super Harish-Chandra
pair (𝐺, 𝔤)with𝐺 := B(G) the body and𝔤 the super Lie algebra ofGwith𝔤0 = Lie(𝐺).
According to Def. 2.3.12, a super metric on 𝔤 is a bilinear map ⟨·, ·⟩ : 𝔤 × 𝔤→ C that
is non-degenerate and graded-symmetric, i.e. ⟨𝑋 ,𝑌 ⟩ = (−1) |𝑋 | |𝑌 | ⟨𝑌 , 𝑋 ⟩ for any
homogeneous 𝑋 ,𝑌 ∈ 𝔤. Moreover, it is called Ad-invariant, if

⟨Ad𝑔𝑋 ,Ad𝑔𝑌 ⟩ = ⟨𝑋 ,𝑌 ⟩ ∀𝑔 ∈ 𝐺 (5.285)

and
⟨[𝑍, 𝑋 ],𝑌 ⟩ + (−1) |𝑋 | |𝑍 | ⟨𝑋 , [𝑍,𝑌 ]⟩ = 0 (5.286)

for all homogeneous 𝑋 ,𝑌 , 𝑍 ∈ 𝔤. This can be extended to a bilinear form ⟨· ∧ ·⟩ :
Ω𝑝 (N , 𝔤) ×Ω𝑞 (N , 𝔤) → Ω𝑝+𝑞 (N) on differential forms on a supermanifoldN with
values in the super Lie module Lie(G) = Λ ⊗ 𝔤 (Def. 2.5.4). To this end, first note that
the sheaf Ω•(N , 𝔤) carries the structure of a Z × Z2-bigraded module, where, for any
𝜔 ∈ Ω𝑝 (N , 𝔤)𝑖 , the parity 𝜖(𝜔) is defined as

𝜖(𝜔) := ( 𝑝, 𝑖) ∈ Z × Z2 (5.287)

where we will also write |𝜔 | := 𝑖 for the underlying Z2-grading. For homogeneous
Lie(G)-valued differential forms 𝜔 ∈ Ω𝑝 (N , 𝔤) and 𝜂 ∈ Ω𝑞 (N , 𝔤), we then set

⟨𝜔 ∧ 𝜂⟩ := (−1) |𝐴 | ( |𝜂 |+ |𝐵 |)𝜔𝐴 ∧ 𝜂𝐵 ⟨𝑇𝐴, 𝑇𝐵⟩ (5.288)
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where we have chosen a real homogeneous basis (𝑇𝐴)𝐴 of𝔤 and simply wrote |𝐴| := |𝑇𝐴 |
for the parity. A direct calculation yields

⟨𝜔 ∧ 𝜂⟩ := (−1) |𝐴 | ( |𝜂 |+ |𝐵 |)𝜔𝐴 ∧ 𝜂𝐵 ⟨𝑇𝐴, 𝑇𝐵⟩
= (−1) 𝑝𝑞 (−1) |𝐴 | |𝜂 | (−1) ( |𝜔 |+ |𝐴 |) ( |𝜂 |+ |𝐵 |)𝜂𝐵 ∧ 𝜔𝐴 ⟨𝑇𝐵 , 𝑇𝐴⟩
= (−1) 𝑝𝑞 (−1) |𝜔 | |𝜂 | ⟨𝜂 ∧ 𝜔⟩ (5.289)

Finally, let us derive an important identity which plays a central role in many calculations.
Using the Ad-invariance (5.286), one obtains

⟨𝜔 ∧ [𝜂 ∧ 𝜉 ]⟩
=(−1) |𝐴 | ( |𝜂 |+ |𝜉 |+ |𝐵 |+ |𝐶 |) (−1) |𝐵 | ( |𝜉 |+ |𝐶 |)𝜔𝐴 ∧ 𝜂𝐵 ∧ 𝜉 𝐶 ⟨𝑇𝐴, [𝑇𝐵 , 𝑇𝐶 ]⟩
=(−1) |𝐴 | ( |𝜂 |+ |𝜉 |+ |𝐵 |+ |𝐶 |) (−1) |𝐵 | ( |𝜉 |+ |𝐶 |)𝜔𝐴 ∧ 𝜂𝐵 ∧ 𝜉 𝐶 ⟨[𝑇𝐴, 𝑇𝐵], 𝑇𝐶 ⟩
=(−1) |𝐴 | ( |𝜂 |+ |𝐵 |) ⟨𝜔𝐴 ∧ 𝜂𝐵 ⊗ [𝑇𝐴, 𝑇𝐵] ∧ 𝜉 ⟩
= ⟨[𝜔 ∧ 𝜂] ∧ 𝜉 ⟩ (5.290)

As we have seen in Section 5.4, the super Chern-Simons action naturally appears as a
boundary term in the chiral limit of the Holst-MacDowell-Mansouri action of super-
gravity. In fact, as observed in [86, 182], the super Chern-Simons action also arises as a
boundary term by describing supergravity as a so-called (generalized) constrained topo-
logical field theory. In the chiral limit, we have shown, in particular, that this action is
even uniquely fixed if one imposes supersymmetry invariance at the boundary.

To state this action, in what follows, letA be a super connection 1-form and 𝐹 (A) =
dA + 1

2 [A ∧ A] its corresponding curvature. Then, one has

⟨𝐹 (A) ∧ 𝐹 (A)⟩ = d⟨A ∧ 𝐹 (A) − 1
6
A ∧ [A ∧ A]⟩ (5.291)

so the term in the exterior derivative is a natural generalization of the Chern-Simons
3-form to the present context. To prove (5.291), note that

d⟨A ∧ 𝐹 (A) − 1
6
A ∧ [A ∧ A]⟩

= ⟨dA ∧ dA + 1
2

dA ∧ [A ∧ A] − A ∧ [dA ∧A]⟩ − 1
6

d⟨A ∧ [A ∧ A]⟩

= ⟨dA ∧ dA + 1
3

dA ∧ [A ∧ A] − 2
3
A ∧ [dA ∧A]⟩ (5.292)

which directly leads to (5.291) using ⟨A ∧ [dA ∧A]⟩ = − ⟨A ∧ [A ∧ dA]⟩ =

− ⟨[A ∧ A] ∧ dA⟩ which is an immediate consequence of identity (5.290). In the
following, suppose that the body of the supermanifoldN which, following the standard
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conventions in the LQG literature, will be denoted by 𝐻 is three-dimensional. Then,
according to (5.291), the super Chern-Simons action is defined as follows

𝑆CS(A) :=
𝑘

4𝜋

∫
𝐻

⟨A ∧ dA + 1
3
A ∧ [A ∧ A]⟩ (5.293)

where 𝑘 is referred to as the level of the Chern-Simons theory. Let us decomposeA =

pr
𝔤0
◦ A + pr

𝔤1
◦ A =: 𝐴 + 𝜓 w.r.t. the even and odd part of the super Lie algebra

𝔤 = 𝔤0 ⊕ 𝔤1. Inserting this into (5.293), this gives

⟨A ∧ 𝐹 (A)⟩ = ⟨𝐴 ∧ 𝐹 (𝐴) + 1
2
𝐴 ∧ [𝜓 ∧ 𝜓 ]⟩ + ⟨𝜓 ∧ (d𝜓 + [𝐴 ∧ 𝜓 ])⟩ (5.294)

On the other hand, using ⟨𝜓 ∧ [𝐴 ∧ 𝜓 ]⟩ = ⟨𝜓 ∧ [𝜓 ∧ 𝐴]⟩ = ⟨[𝜓 ∧ 𝜓 ] ∧ 𝐴⟩ accord-
ing to (5.290), we find

⟨A ∧ [A ∧ A]⟩ = ⟨𝐴 ∧ [𝐴 ∧ 𝐴] + 𝐴 ∧ [𝜓 ∧ 𝜓 ]⟩ + 2 ⟨𝜓 ∧ [𝐴 ∧ 𝜓 ]⟩
= ⟨𝐴 ∧ [𝐴 ∧ 𝐴] + 𝐴 ∧ [𝜓 ∧ 𝜓 ]⟩ + 2 ⟨𝐴 ∧ [𝜓 ∧ 𝜓 ]⟩
= ⟨𝐴 ∧ [𝐴 ∧ 𝐴] + 3𝐴 ∧ [𝜓 ∧ 𝜓 ]⟩ (5.295)

Thus, we can rewrite (5.293) in the following way

𝑆CS(A) = 𝑆CS(𝐴) +
𝑘

4𝜋

∫
𝐻

⟨𝜓 ∧ 𝐷 (𝐴)𝜓 ⟩ (5.296)

with 𝑆CS(𝐴) the Chern-Simons action of the bosonic connection 𝐴 and 𝐷 (𝐴) the
associated exterior covariant derivative.

5.6.2. Towards black hole entropy in LQSG – an outlook

In the following, let us derive the canonical decomposition of the super Chern-Simons
action (5.293) defined on a three-dimensional smooth manifold 𝐻 . To to do so, we can
proceed similarly as in Section 4.3. Hence, following [221], for 𝑡 ∈ R, let Δ𝑡 denote
the 2-dimensional time slices in the foliation of 𝐻 along the integral flow of the global
time (null) vector field 𝜕𝑡 . Furthermore, let 𝑃 ∥ be the projection which projects any
smooth vector field 𝑋 ∈ 𝔛(𝐻 ) onto the subspace of smooth vector fields lying in the
kernel of d𝑡 , i.e., d𝑡 (𝑃 ∥ (𝑋 )) = 0 with 𝑃 ∥ (𝑋 ) := 𝑋 − d𝑡 (𝑋 )𝜕𝑡 . This in turn induces
a projection 𝑃∥ on the space of covariant tensor fields𝑇 according to

𝑃∥𝑇 := 𝑇 ◦ 𝑃 ∥ (5.297)
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where 𝑃 ∥ on the r.h.s. acts on each slot. For the derivation of the canonical decomposi-
tion, let us write

A← := 𝑃∥A (5.298)

in order to distinguish the projection 𝑃∥A from its covariant counterpart. Hence,
settingA0 := A(𝜕𝑡 ), this yields

A = A←+A0d𝑡 (5.299)

On the other hand, it is immediate to see that

dA = dA←− 𝑖𝜕𝑡dA ∧ d𝑡 (5.300)

A coordinate-free form of the time derivative of the connection along the timelike vector
field 𝜕𝑡 is given by

¤A← := 𝑃∥𝐿𝜕𝑡A = 𝑃∥ (dA0 + 𝑖𝜕𝑡dA) (5.301)

Hence, combining (5.301) with (5.300) and using (5.299), it is immediate to see that the
Chern-Simons 3-form can be written in the following way

⟨A ∧ dA + 1
3
A ∧ [A ∧ A]⟩ = d𝑡 ∧

(
⟨−A←∧

¤A←⟩ + 2 ⟨A0𝐹 (A←)⟩ − d⟨A0A←⟩
)

(5.302)

Thus, if we drop the arrow below the pulled back connection in order to simplify
notation, we find that the 2+1-split of the super Chern-Simons action takes the form

𝑆CS(𝐴) =
𝑘

4𝜋

∫
R

d𝑡
∫
Δ𝑡
⟨−A ∧ ¤A + 2A0𝐹 (A) − d(A0A)⟩ (5.303)

As a consequence, the pre-symplectic structure of the canonical theory is given by

ΩCS(𝛿1, 𝛿2) = −
𝑘

2𝜋

∫
Δ
⟨𝛿[1A ∧ 𝛿2]A⟩ (5.304)

for variations 𝛿A ∈ 𝑇AΔ where AΔ denotes the space of smooth super connection 1-
forms on the inducedG-principal bundle E := P|Δ overΔ (or rather the corresponding
bosonic split supermanifold S(Δ)). Since the difference of two super connections defines
an even horizontal 1-form of type (G,Ad), it follows that𝑇AAΔ at anyA ∈ AΔ can be
identified with𝑇AAΔ � Ω1(Δ,Ad(E))0. For the graded Poisson bracket, one obtains

{A𝐴
𝑎 (𝑥),A

𝐵

𝑏
(𝑦)} = −2𝜋

𝑘
S 𝐴𝐵 𝜖𝑎𝑏𝛿

(2) (𝑥, 𝑦) (5.305)
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where S 𝐴𝐵 denotes the matrix components of the inverse super metric satisfying
S𝐶𝐴S

𝐶𝐵 = 𝛿
𝐵

𝐴
. Moreover, from the split action (5.303), we can read off the constraint

F [𝛼] :=
𝑘

2𝜋

∫
Δ
⟨𝛼𝐹 (A)⟩ (5.306)

which imposes the condition 𝐹 (A) = 0, that is, the curvature of the super connection
on Δ is constrained to vanish. For this reason, F [𝛼] is also referred to as the flatness
constraint. Actually, since the curvature contains a term involving an exterior derivative,
the flatness constraint (5.306), in general, turns out to be not functionally differentiable.
In case that Δ has a nontrivial boundary 𝜕Δ which, in the context of two dimensions,
we will refer to as the corner of Δ, one needs to require that the smearing function in
(5.306) satisfies the condition 𝛼 |𝜕Δ ≡ 0.

In the framework of LQG, singularities on the boundary typically arise from the inter-
section of the boundary with spin network states. Assuming that the spin network edges
piercing the boundary have some infinitesimal but nonzero width, this induces infinites-
imal holes at the punctures on the boundary, such that, at each puncture, 𝜕Δ becomes
nontrivial and topologically equivalent to a 1-dimensional circle. As a consequence, this
gives rise to new physical degrees of freedom on the boundary which are localised on the
corner 𝜕Δ. In the context of LQG, this was first observed in [222] and discussed more
expansively, e.g., in [122–124, 195, 223]. As argued in [222], based on a general proposal
formulated in [224, 225], these new degrees of freedom may also account for black hole
entropy and thus may play a crucial role in the quantum description of the black holes.
In fact, it turns out that these contain the physical degrees of freedom associated to the
Hilbert spaces of conformal blocks which are usually considered in the context of black
hole entropy computations in LQG.

While we have not yet been able to complete the definition of the Hilbert space for
chiral LQSG, extrapolating from what we have it seems that all these observations carry
over quite naturally to the context of the quantum description of chiral supergravity
withN -extended supersymmetry. In that case, we have described in Section 5.5 how
the quantum excitations of the bulk degrees of freedom are represented by super spin
network states associated to the gauge supergroup OSp(N |2)C. On the other hand,
in Section 5.4, we have determined that the boundary theory is described in terms of a
OSp(N |2)C super Chern-Simons theory. Hence, it follows that, due to the quantization
of super electric fluxes in the bulk, super spin network states induce singularities on
the boundary. To see this, note that the Gauss constraint Gfull [𝛼] of the full theory
including both bulk and boundary degrees of freedom is given by the sum of the Gauss
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constraint (5.118) (resp. (5.136) forN = 2) in the bulk as well as the flatness constraint
(5.306) on the boundary, that is,

Gfull [𝛼] = −
𝑖

𝜅

∫
Σ
⟨𝐷 (A+) 𝛼 ∧ E⟩ + 𝑖

𝜅

∫
Δ
⟨𝛼[E − 𝑖𝜅𝑘

2𝜋
𝐹 (A+)]⟩ (5.307)

for any Lie(G)-valued smearing function 𝛼. For a given finite graph 𝛾 embedded in Σ,
we define the Hilbert space ℌfull,𝛾 w.r.t. 𝛾 of the full theory as the tensor product

ℌfull
𝛾 = ℌ

cLQSG
𝛾 ⊗ ℌCS

𝛾 (5.308)

with ℌ
cLQSG
𝛾 the Hilbert space of the quantized bulk degrees of freedom as constructed

in Section 5.5.3 and ℌCS
𝛾 the Hilbert space corresponding to the quantized super Chern-

Simons theory on the boundary.

As a next step, in order to implement the full Gauss constraint (5.307) in the quantum
theory, we have to regularize it over the graph 𝛾 . To this end, at each puncture 𝑝 ∈ P𝛾 :=
𝛾 ∩ Δ, let us choose a disk 𝐷𝜖 ( 𝑝) on Δ around 𝑝 with radius 𝜖 > 0 and set

E[𝛼] ( 𝑝) := lim
𝜖→0

∫
𝐷𝜖 ( 𝑝)

⟨𝛼, E⟩ , 𝐹 [𝛼] ( 𝑝) := lim
𝜖→0

∫
𝐷𝜖 ( 𝑝)

⟨𝛼, 𝐹 (A+)⟩ (5.309)

By definition, these quantities (or suitable functions thereof) can be promoted to well-
defined operators in the quantum theory. Thus, it follows that the Gauss constraint
operator of the full theory takes the form

Ĝfull [𝛼] = Ĝ [𝛼] − ℏ𝜅−1
∑︁
𝑝∈P𝛾

(
Ê [𝛼] − 𝑖𝜅𝑘

2𝜋
𝐹 [𝛼]

)
( 𝑝) (5.310)

with Ĝ [𝛼] the Gauss constraint operator acting on the bulk Hilbert space given by
(5.256). Assuming that the smearing function 𝛼 vanishes on the boundary, the full
constraint operator (5.307) reduces to the bulk Gauss constraint Ĝ [𝛼] implying gauge-
invariance of the quantum state in the bulk. As a consequence, from (5.310), one obtains
the additional constraint equation

1 ⊗ 𝐹𝐴( 𝑝) = −
2𝜋 𝑖
𝜅𝑘
Ê𝐴( 𝑝) ⊗ 1 (5.311)

at each puncture 𝑝 ∈ P𝛾 . Note that, by definition, Ê𝐴( 𝑝) can be related to the
quantized super electric flux via Ê𝐴( 𝑝) = lim𝜖→0 X̂𝐴(𝐷𝜖) and thus, according to
(5.185), acts in terms of right- resp. left-invariant vector fields. Hence, from (5.311), we
deduce that the Hilbert space of the quantized boundary degrees of freedom corresponds
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Figure 6.: A pictorial representation of a supersymmetric black hole in chiral LQSG. The super spin
network states induce non-trivial Chern-Simons degrees of freedom (black circles) at the intersection points
(punctures) with the boundary which can account for black hole entropy. In the case that the super spin
network edges have some infinitesimal but nonzero width, these punctures are blown up to disks leading
to new physical degrees of freedom living on the corner and which are associated to superconformal field
theories.

to the Hilbert space of a quantized super Chern-Simons theory on Δ with punctures
P𝛾 (see Figure 6). This leads to the well-known (super)conformal blocks. In the pure
bosonic theory, these play an important role in the context of the computation of the
black hole entropy.

As already outlined above, in [222], an alternative route in describing the entropy of black
hole has been studied. More precisely, assuming that the edges piercing the boundary
are of infinitesimal but nonzero width, this induces infinitesimal holes localized at the
punctures on the boundary which then gives rise to new physical degrees of freedom
that are localised at the corner 𝜕Δ.

In the following, let us describe these new degrees of freedom in the context of chiral
supergravity. To this end, generalizing the discussion in [195] in context of the bosonic
theory to the super category, let us consider the following quantities defined on the
canonical phase space of the super Chern-Simons theory

O[𝛼] := − 𝑘
2𝜋

∫
Δ
⟨𝛼𝐹 (A+)⟩ + 𝑘

2𝜋

∫
𝜕Δ
⟨𝛼A+⟩

=
𝑘

2𝜋

∫
Δ
⟨d𝛼 ∧ A+ − 1

2
𝛼[A+ ∧ A+]⟩ (5.312)

where 𝛼 denotes an arbitrary Lie(G)-valued smearing function on Δ. In case that
𝛼 vanishes on the corner, this quantity reduces to the flatness constraint (5.306), i.e.,

264



5.6. The boundary theory

O[𝛼] ≡ F [𝛼] if 𝛼 |𝜕Δ = 0. Computing the graded Poisson bracket between O[𝛼] and
the super connection, one finds

{O[𝛼],A+𝐴𝑎 } = 𝐷 (A
+)

𝑎 𝛼𝐴 (5.313)

This is in fact immediate to see using (5.305). For instance, direct calculation yields

{ 𝑘
2𝜋

∫
Δ
⟨d𝛼 ∧ A+⟩ ,A+𝐴𝑎 (𝑥)}

=
𝑘

2𝜋

∫
Δ

d2𝑦 𝜖𝑏𝑐S𝐶𝐵𝜕𝑏 𝛼
𝐵 (𝑦){A+𝐶𝑐 (𝑦),A

+𝐴
𝑎 (𝑥)} = 𝜕𝑎𝛼𝐴(𝑥) (5.314)

On the other hand, one has

− 𝑘

4𝜋
{
∫
Δ
⟨𝛼[A+ ∧ A+]⟩ ,A+𝐴𝑎 (𝑥)} = [A+𝑎 , 𝛼]𝐴(𝑥) (5.315)

which, together with (5.314), directly gives (5.313). With these preparations, let us next
compute the Poisson algebra among the O[𝛼]. Using identity (5.313), it follows for
arbitrary smearing functions 𝛼 and 𝛽 that

{O[𝛼],O[𝛽]} = 𝑘

2𝜋

∫
Δ
(−1) |𝛼 | |𝛽 | ⟨d𝛽 ∧ 𝐷 (A+) 𝛼 − 𝛽[A+ ∧ 𝐷 (A+) 𝛼])⟩

= − 𝑘
2𝜋

∫
Δ
⟨𝐷 (A+) 𝛼 ∧ 𝐷 (A+) 𝛽⟩ (5.316)

Since 𝐷 (A+)𝐷 (A+) 𝛽 = [𝐹 (A+), 𝛽], one has

⟨𝐷 (A+) 𝛼 ∧ 𝐷 (A+) 𝛽⟩ = d⟨𝛼𝐷 (A+) 𝛽⟩ − ⟨𝛼[𝐹 (A+), 𝛽]⟩
= ⟨d𝛼 ∧ d𝛽⟩ − d⟨[𝛼, 𝛽]A+⟩ + ⟨[𝛼, 𝛽]𝐹 (A+)⟩ (5.317)

Thus, inserting (5.317) into (5.316) and assuming that 𝛼 is vanishes on the corner 𝜕Δ, it
follows

{F [𝛼],O[𝛽]} = F [[𝛼, 𝛽]] ≃ 0 (5.318)

where we used that [𝛼, 𝛽] |𝜕Δ = 0. Thus, it follows thatO[𝛼] weakly Poisson commutes
with the flatness constraint. That is, O[𝛼] defines a weak Dirac observable. Moreover,
for smearing functions 𝛼 and and 𝛽 with 𝛼 |𝜕Δ = 𝛽 |𝜕Δ, one has

O[𝛼] − O[𝛽] = O[𝛼 − 𝛽] ≡ −F [𝛼 − 𝛽] ≃ 0 (5.319)
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Hence, it follows that the observables O[𝛼] are localized on the corner. Furthermore,
by (5.316) and (5.317), they satisfy the following graded Poisson relations

{O[𝛼],O[𝛽]} = O[[𝛼, 𝛽]] + 𝑘

2𝜋

∫
𝜕Δ
⟨d𝛼, 𝛽⟩ (5.320)

Since, the last term on the right-hand side of Equation (5.320) is completely field-
independent, it, in particular, Poisson commutes with all the corner observables O[𝛼].
Thus, it follows that the Poisson algebra among theO[𝛼] is indeed closed up to a central
term.

In this context, recall that, given an Abelian (bosonic) Lie algebra 𝔞, a central extension
of a super Lie algebra 𝔤 (not necessarily finite-dimensional) by 𝔞 is defined as a short
exact sequence [226]

0→ 𝔞 → 𝔥
𝜋→ 𝔤→ 0 (5.321)

with 𝔥 a super Lie algebra such that [𝔞, 𝔥] = 0 and 𝜋 : 𝔥→ 𝔤 an even surjective super
Lie algebra morphism yielding the identification 𝔥/𝔞 � 𝔤.

In our concrete situation, at each puncture, 𝜕Δ is topologically equivalent to a 1-
dimensional circle. Thus, in this case, it follows that a basis of smearing functions
𝛼 is given by functions 𝛼𝐴

𝑁
of the form

𝛼
𝐴

𝑁
|𝜕Δ := 𝑒𝑖𝑁 𝜃𝑇 𝐴, 𝛼

𝐴

𝑁
|Δ\𝜕Δ ≡ 0 (5.322)

where 𝜃 ∈ [0, 2𝜋 ] denotes the angle coordinate parametrizing the circle, 𝑁 ∈ Z and
(𝑇 𝐴)𝐴 is a homogeneous basis of 𝔬𝔰𝔭(N |2)C. From (5.320), it then follows that the
corresponding corner observables 𝑞𝐴

𝑁
:= O[𝛼𝐴

𝑁
] satisfy the Poisson relations

{𝑞𝐴
𝑀
, 𝑞
𝐵

𝑁
} = 𝑓𝐴𝐵

𝐶
𝑞
𝐶

𝑀+𝑁 + 𝑁𝛿𝑀+𝑁 ,0(𝑇
𝐴, 𝑇 𝐵) (5.323)

where (𝑇 𝐴, 𝑇 𝐵) := 𝑖𝑘 ⟨𝑇 𝐴, 𝑇 𝐵⟩ and 𝑓𝐴𝐵
𝐶

denote the structure coefficients defined
via

[𝑇 𝐴, 𝑇 𝐵] = 𝑓𝐴𝐵
𝐶
𝑇 𝐶 (5.324)

Interestingly, (5.324) are precisely the graded commutation relations of a Kac-Moody
superalgebra corresponding to the affinization of 𝔬𝔰𝔭(N |2)C [226]. It follows via the
so-called Sugawara construction, that the generators of the Kac-Moody superalgebra can
be used in order to generate representations of the super Virasoro algebra [227]. Thus,
to conclude, the singularities induced by the intersection of super spin networks with
the boundary give rise to new physical degrees of freedom living on the corner which are
associated to superconformal field theories and which, in analogy to [222] in context of
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the bosonic theory, may also account for black hole entropy and hence may play a role
in the quantum description of supersymmetric black holes in the framework of LQG.

5.7. Some results on super Peter Weyl theory
In the standard quantization program of LQG, spin network states play a very prominent
role as they provide a quite useful basis of the resulting Hilbert space of the theory. This is
based on the famous Peter-Weyl theorem stating that, in context of compact Lie groups
𝐺, the matrix coefficients of the, necessarily finite-dimensional, unitary irreducible
representations of 𝐺 automatically define an orthonormal basis of the Hilbert space
𝐿2(𝐺) induced by the unique normalized invariant Haar measure on𝐺.

Unfortunately, such a strong statement seems, in general, no to be available in the
context of super Lie groups. This may be related to the fact that finite-dimensional
representations of compact super Lie groups turn out to be not necessarily reducible in
contrast to the classical setting. There exist, however, some partial results in this direction
stating that the matrix coefficients of the finite-dimensional representations of a super
Lie groupG form a dense subspace of the super vector space 𝐻∞(G,C) w.r.t. a suitable
topology (see for instance [228] for a general discussion as well as [229, 230] considering
the special cases G = S1 |1 and G = SU(1|1)). But, in the context of LQG, we are rather
interested in an “integral version” of the Peter-Weyl theorem, i.e., we would like to know
whether the matrix coefficients also provide, at least in a specific sense, an orthonormal
basis of the induced super Hilbert space. As mentioned already in Section 5.5.3, first
results in this direction have been discussed in [207] where a Peter-Weyl-type basis for the
unitary orthosymplectic group UOSp(1|2) has been constructed. This is based crucially
on the fact that the underyling bosonic group is compact and, in particular, that the
unit function is normalizable.

Hence, the question arises whether similar results also hold true if one considers more
general compact super Lie groups for which the unit function is not normalizable
and thus, as a consequence, finite-dimensional representations are not necessarily fully
reducible. In the following, we want to address this question by considering a “sim-
pler” example given by the super unitary group U(1|1) (see Example 5.5.11). To this
end, adapting techniques developed in [230] in the context of the sub super Lie group
SU(1|1) := { 𝑔 ∈ U(1|1) | Ber( 𝑔) = 1}, we first analyze the finite-dimensional rep-
resentations and, in particular, determine and classify irreducible representations of
U(1|1). Hence, suppose that

𝜋 : U(1|1) → GL(V) (5.325)

is an irreducible representation of U(1|1) on some finite-dimensional super Λ-vector
spaceV = 𝑉 ⊗ Λ with𝑉 complex. Then, let us restrict to the bosonic super Lie
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subgroup U(1|1)0 � S(U(1))2. As it is well known, the irreducible representations of
U(1) are given by {(𝜋𝑚,𝑉𝑚)}𝑚∈Z where𝑉𝑚 � C and 𝜋𝑚 : U(1) → GL(1,C), 𝑧 ↦→
𝑧𝑚 ∀𝑚 ∈ Z. Accordingly, the irreducible representations of U(1) × U(1) are given by
{(𝜋𝑚,𝑛,𝑉𝑚,𝑛)}𝑚,𝑛∈Z with𝑉𝑚,𝑛 :=𝑉𝑚 ⊗𝑉𝑛 � C and

𝜋𝑚,𝑛 : U(1) → GL(1,C), 𝑧 ↦→ 𝑧𝑚+𝑛 (5.326)

∀𝑚, 𝑛 ∈ Z. Hence, by applying the split functor, it follows immediately that the
corresponding complete family of inequivalent irreducible representations of U(1|1)0 is
given by {(S(𝜋𝑚,𝑛),V(𝑚,𝑛) ,0)}𝑚,𝑛∈Z ∪ {(S(𝜋𝑚,𝑛),V0,(𝑚,𝑛) )}𝑚,𝑛∈Z whereV(𝑚,𝑛) ,0 :=
𝑉𝑚,𝑛 ⊗ Λ andV0,(𝑚,𝑛) := Π𝑉𝑚,𝑛 ⊗ Λ ∀𝑚, 𝑛 ∈ Zwith Π : SVec→ SVec the parity
functor, i.e., Π𝑉𝑚,𝑛 is regarded as a purely odd super vector space. Thus, this leads to a
decomposition ofV of the form

V �
⊕
(𝑚,𝑛) ∈Z2

𝑘𝑚,𝑛V(𝑚,𝑛) ,0 ⊕
⊕
( 𝑝,𝑞) ∈Z2

𝑙𝑝,𝑞V0,( 𝑝,𝑞) (5.327)

with multiplicities 𝑘𝑚,𝑛, 𝑙𝑝,𝑞 ∈ N0, (𝑚, 𝑛), ( 𝑝, 𝑞) ∈ Z2. In order to find the irre-
ducible submodule, note that, as U(1|1) is connected (in the DeWitt-topology) and
𝜋 is supposed to be irreducible, it follows that the pushforward representation 𝜋∗ :
Lie(U(1|1)) → End

𝑅
(V) is also irreducible. Hence, in what follows, let us look

for irreducible representations of the corresponding super Lie module. To this end,
after complexification, let us consider the super Lie algebra elements Θ± := Θ1 ± 𝑖Θ2
satisfying the following graded commutation relations

[𝑋1,Θ±] = ∓𝑖Θ±, [𝑋2,Θ±] = ±𝑖Θ±, [Θ±,Θ±] = 0
[Θ+,Θ−] = −4𝑋 := −4(𝑋1 + 𝑋2) (5.328)

Let (𝑚, 𝑛) ∈ Z2 with 𝑘𝑚,𝑛 ≠ 0 and choose a nonzero vector 𝑣 ∈ 𝑘𝑚,𝑛V(𝑚,𝑛) ,0. Let
𝑣− := 𝜋C∗ (Θ−)𝑣 and 𝑣+ := 𝜋C∗ (Θ+)𝑣 where 𝜋C∗ denotes the complification of the push-
forward representation 𝜋∗. Using the commutation relations (5.328), it is immediate to
see that 𝑣− ∈ 𝑙𝑚+1,𝑛−1V0,(𝑚+1,𝑛−1) , 𝑣+ ∈ 𝑙𝑚−1,𝑛+1V0,(𝑚−1,𝑛+1) as well as 𝜋C∗ (Θ−)𝑣− = 0
and 𝜋C∗ (Θ+)𝑣+ = 0. Set 𝑣′ := 𝜋C∗ (Θ+)𝑣− ∈ 𝑘𝑚,𝑛V(𝑚,𝑛) ,0. Then, again by (5.328), it
follows that

𝜋C∗ (Θ−)𝑣′ = 𝜋C∗ (Θ−)𝜋C∗ (Θ+)𝑣− = −4𝑖 (𝑚 + 𝑛)𝑣− (5.329)

Finally, we compute

𝜋C∗ (Θ−)𝑣+ = 𝜋C∗ (Θ−)𝜋C∗ (Θ+)𝑣 = −4𝜋C∗ (𝑋 )𝑣 − 𝜋C∗ (Θ+)𝜋C∗ (Θ−)𝑣
= −4𝑖 (𝑚 + 𝑛)𝑣 − 𝑣′ (5.330)
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Hence, we found that there exists an invariant submodule of the form

2V(𝑚,𝑛) ,0 ⊕ V0,(𝑚+1,𝑛−1) ⊕ V0,(𝑚−1,𝑛+1) (5.331)

generated by the vectors (𝑣, 𝑣′, 𝑣−, 𝑣+). In fact, this submodule can be reduced even
further. To see this, similar as in [230] in the context of the sub super Lie group SU(1|1),
consider the submoduleV(𝑚,𝑛) � V(𝑚,𝑛) ,0 ⊕ V0,(𝑚−1,𝑛+1) generated by the vectors
(𝑤1, 𝑤2) given by 𝑤1 := 𝜋C∗ (Θ−)𝑣+ and 𝑤2 := 2𝑖

√︁
𝑖 (𝑚 + 𝑛)𝑣+. By definition, it is

then immediate to see that this submodule is also invariant under U(1|1) and that, w.r.t.
that basis, 𝜋∗(Θ1) and 𝜋∗(Θ2) are given by

𝜋∗(Θ1) =
(

0 𝑖
√︁
𝑖 (𝑚 + 𝑛)

𝑖
√︁
𝑖 (𝑚 + 𝑛) 0

)
, 𝜋∗(Θ2) =

(
0 −

√︁
𝑖 (𝑚 + 𝑛)√︁

𝑖 (𝑚 + 𝑛) 0

)
(5.332)

and hence 𝜋 is in fact irreducible on V(𝑚,𝑛) . Let us denote this representation by
(𝜋(𝑚,𝑛) ,V(𝑚,𝑛) ).

Finally, let us consider the submoduleV ′(𝑚,𝑛) � V(𝑚,𝑛) ,0 ⊕ V0,(𝑚+1,𝑛−1) generated
by the vectors (𝑤′1, 𝑤′2) given by 𝑤′1 := 𝑣′ = 𝜋C∗ (Θ+)𝑣− and 𝑤′2 := 2𝑖

√︁
𝑖 (𝑚 + 𝑛)𝑣−.

Again, it follows by direct computation thatV ′(𝑚,𝑛) defines an irreducible submodule
of 𝜋 and that 𝜋∗(Θ1) and 𝜋∗(Θ2) have the following matrix representation

𝜋∗(Θ1) =
(

0 𝑖
√︁
𝑖 (𝑚 + 𝑛)

𝑖
√︁
𝑖 (𝑚 + 𝑛) 0

)
, 𝜋∗(Θ2) =

(
0

√︁
𝑖 (𝑚 + 𝑛)

−
√︁
𝑖 (𝑚 + 𝑛) 0

)
(5.333)

We denote this representation by (𝜋 ′,V ′(𝑚,𝑛) ). In fact, it turns out that (𝜋 ′(𝑚,𝑛) ,V
′
(𝑚,𝑛) )

can be related to the irreducible representation (𝜋(𝑚+1,𝑛−1) ,V(𝑚+1,𝑛−1) ) via the odd
intertwining map

𝐹 : V ′(𝑚,𝑛) →V(𝑚+1,𝑛−1) , 𝑤
′
1 ↦→ 𝑖

√︁
𝑖 (𝑚 + 𝑛)𝑤2 (5.334)

𝑤′2 ↦→ 𝑖
√︁
𝑖 (𝑚 + 𝑛)𝑤1

such that 𝜋(𝑚+1,𝑛−1) ◦ 𝐹 = 𝐹 ◦ 𝜋 ′(𝑚,𝑛) . Usually, in the mathematical literature, the
intertwining map between two equivalent or isomorphic representations is defined as
an even bijective morphism between super Λ-vector spaces. Thus, in this sense, the
representations (𝜋 ′(𝑚,𝑛) ,V

′
(𝑚,𝑛) ) and (𝜋(𝑚+1,𝑛−1) ,V(𝑚+1,𝑛−1) ) would be inequivalent.

However, since these representations do not generate new matrix coefficients, we will
follow rather [109] and regard these representations also as equivalent (cf. Remark 4.4
in [109]). Thus, we arrive at the following result which provides an extension of the
results obtained in [230] in the context of SU(1|1):
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Theorem 5.7.1. The irreducible representations of U(1|1) are, up to isomorphism, given
by {(𝜋(𝑚,𝑛) ,V(𝑚,𝑛) )}𝑚,𝑛∈Z withV(𝑚,𝑛) = V(𝑚,𝑛) ,0 ⊕ V0,(𝑚−1,𝑛+1) � (ΛC)1,1 and
𝜋(𝑚,𝑛) (𝑋 ), for 𝑔 ∈ U(1|1) in the form (2.80), given by

𝜋(𝑚,𝑛) ( 𝑔) =
(
𝑥𝑚𝑦𝑛(1 + 𝑖

2 (𝑚 + 𝑛)𝜓𝜓 ) 𝑥𝑚𝑦𝑛𝑖
√︁
𝑖 (𝑚 + 𝑛)𝜓

−𝑥𝑚−1𝑦𝑛+1𝑖
√︁
𝑖 (𝑚 + 𝑛)𝜓 𝑥𝑚−1𝑦𝑛+1(1 − 𝑖

2 (𝑚 + 𝑛)𝜓𝜓 )

)
(5.335)

Moreover, the corresponding pushforward representation 𝜋(𝑚,𝑛)∗ : Lie(U(1|1)) →
End

𝑅
(V(𝑚,𝑛) ) of the super Lie module Lie(U(1|1)) = Λ ⊗ 𝔲(1|1) takes the form

𝜋(𝑚,𝑛)∗(𝑋1) =
(
𝑖𝑚 0
0 𝑖 (𝑚 − 1)

)
, 𝜋(𝑚,𝑛)∗(𝑋2) =

(
𝑖𝑛 0
0 𝑖 (𝑛 + 1)

)
(5.336)

for the even generators 𝑋1, 𝑋2 ∈ 𝔲(1|1)0 as well as

𝜋(𝑚,𝑛)∗(Θ1) =
(

0 𝑖
√︁
𝑖 (𝑚 + 𝑛)

𝑖
√︁
𝑖 (𝑚 + 𝑛) 0

)
(5.337)

𝜋(𝑚,𝑛)∗(Θ2) =
(

0 −
√︁
𝑖 (𝑚 + 𝑛)√︁

𝑖 (𝑚 + 𝑛) 0

)
(5.338)

for the odd generators Θ1,Θ2 ∈ 𝔲(1|1)1.

Proof. The following proof is inspired by the proof of Theorem 4.4 in [230] where an
explicit form of the irreducible representations of the super Lie group SU(1|1) is derived
(see also Remark 5.7.3 below). Recall from Equation (2.80) in Example 2.3.16, that, under
the super Harish-Chandra isomorphism Φ, a generic group element 𝑔 ∈ U(1|1) can be
written in the form

𝑔 =

(
𝑥𝐴 𝑥𝜓

𝑖𝑦𝜓 𝑦𝐴−1

)
(5.339)

with 𝑥, 𝑦 ∈ S(U(1)), 𝜓 ∈ Λ1 and 𝐴 = 1 + 𝑖
2𝜓𝜓 . Let us then try to split 𝑔 in the

following way

𝑔 =

(
𝑡 0
0 1

) (
1 0
0 𝑠

) (
1 𝛼

𝑖 𝛼 1

) (
1 𝑖 𝛽

𝛽 1

)
(5.340)

for certain coefficients 𝑡, 𝑠 ∈ Λ0 and 𝛼, 𝛽 ∈ Λ1. This yields the equation(
𝑥𝐴 𝑥𝜓

𝑖𝑦𝜓 𝑦𝐴−1

)
=

(
𝑡 (1 + 𝛼𝛽) 𝑡 (𝛼 + 𝑖 𝛽)
𝑖 𝑠(𝛼 − 𝑖 𝛽) 𝑠(1 − 𝛼𝛽)

)
(5.341)
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from which we can immediately read off 𝑡 = 𝑥 and 𝑠 = 𝑦 as well as 𝛼 = ℜ(𝜓 ) and
𝛽 = ℑ(𝜓 ). By (5.336), we then deduce

𝜋(𝑚,𝑛)

(
𝑥 0
0 1

)
=

(
𝑥𝑚 0
0 𝑥𝑚−1

)
, 𝜋(𝑚,𝑛)

(
1 0
0 𝑦

)
=

(
𝑦𝑛 0
0 𝑦𝑛+1

)
(5.342)

Moreover, by (5.337) and (5.338), it follows that

𝜋(𝑚,𝑛)

(
1 𝛼

𝑖 𝛼 1

)
= 𝜋(𝑚,𝑛)

(
𝑒𝛼Θ1

)
= 𝑒𝛼𝜋(𝑚,𝑛)∗ (Θ1)

=

(
1 𝑖

√︁
𝑖 (𝑚 + 𝑛)𝛼

−𝑖
√︁
𝑖 (𝑚 + 𝑛)𝛼 1

)
(5.343)

as well as

𝜋(𝑚,𝑛)

(
1 𝑖 𝛽

𝛽 1

)
= 𝜋(𝑚,𝑛)

(
𝑒𝛼Θ2

)
= 𝑒𝛼𝜋(𝑚,𝑛)∗ (Θ2)

=

(
1 −

√︁
𝑖 (𝑚 + 𝑛)𝛽

−
√︁
𝑖 (𝑚 + 𝑛)𝛽 1

)
(5.344)

Using (5.340), this then immediately yields (5.335). □

Corollary 5.7.2. Let {(𝜋(𝑚,𝑛) ,V(𝑚,𝑛) )}𝑚,𝑛∈Z be the irreducible representations of U(1|1)
as stated in Theorem 5.7.1. Then, the coefficient functions (𝜋(𝑚,𝑛) ) 𝑖𝑗 , 𝑖, 𝑗 = 1, 2, for any
𝑚, 𝑛 ∈ Z are orthogonal w.r.t. the super scalar product S as defined via (5.231). More
precisely, they satisfy the following identities

S ((𝜋(𝑚,𝑛) )11 , (𝜋(𝑚,𝑛) )11) = −(𝑚 + 𝑛)𝛿𝑚,𝑝𝛿𝑛,𝑞 (5.345)
S ((𝜋(𝑚,𝑛) )22 , (𝜋(𝑚,𝑛) )22) = (𝑚 + 𝑛)𝛿𝑚,𝑝𝛿𝑛,𝑞
S ((𝜋(𝑚,𝑛) )12 , (𝜋(𝑚,𝑛) )12) = −𝑖 |𝑚 + 𝑛|𝛿𝑚,𝑝𝛿𝑛,𝑞
S ((𝜋(𝑚,𝑛) )21 , (𝜋(𝑚,𝑛) )21) = 𝑖 |𝑚 + 𝑛|𝛿𝑚,𝑝𝛿𝑛,𝑞

with all remaining combinations being zero.
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Proof. This follows immediately by direct computation using the explicit form (5.335)
of the matrix coefficients and the invariant Haar measure (5.230). For instance, we find

S ((𝜋(𝑚,𝑛) )11 , (𝜋(𝑚,𝑛) )11) =
∫ 2𝜋

0

d𝜙
2𝜋
𝑒𝑖 ( 𝑝−𝑚)𝜙

∫ 2𝜋

0

d𝜙′

2𝜋
𝑒𝑖 (𝑞−𝑛)𝜙

′×

×
∫
𝐵

𝑖d𝜓d𝜓
(
1 + 𝑖

2
(𝑚 + 𝑛)𝜓𝜓

) (
1 + 𝑖

2
( 𝑝 + 𝑞)𝜓𝜓

)
=𝛿𝑚,𝑝𝛿𝑛,𝑞

∫
𝐵

𝑖d𝜓d𝜓
(
1 + 𝑖 (𝑚 + 𝑛)𝜓𝜓

)
= − (𝑚 + 𝑛)𝛿𝑚,𝑝𝛿𝑛,𝑞 (5.346)

On the other hand, we have

S ((𝜋(𝑚,𝑛) )12 , (𝜋(𝑚,𝑛) )12) =
∫ 2𝜋

0

d𝜙
2𝜋
𝑒𝑖 ( 𝑝−𝑚)𝜙

∫ 2𝜋

0

d𝜙′

2𝜋
𝑒𝑖 (𝑞−𝑛)𝜙

′×

×
∫
𝐵

𝑖d𝜓d𝜓
√︃
(𝑚 + 𝑛) ( 𝑝 + 𝑞)𝜓𝜓

= − |𝑚 + 𝑛|𝛿𝑚,𝑝𝛿𝑛,𝑞
∫
𝐵

𝑖d𝜓d𝜓 𝜓𝜓

= − 𝑖 |𝑚 + 𝑛|𝛿𝑚,𝑝𝛿𝑛,𝑞 (5.347)

The rest follows similarly. □

In Example 5.5.11, we have constructed a super Hilbert space (ℌ, ⟨·|·⟩ 𝐽 ,S ) associated
to the indefinite inner product space (𝑉 ,S ) with𝑉 := 𝐻∞(U(1|1),C) and S the
super scalar product induced by the invariant Haar measure on U(1|1) defined via (5.231)
performing a Krein completion. According to Corollary 5.7.2, it follows that the matrix
coefficients of the finite-dimensional irreducible representations of U(1|1) indeed have
the expected properties as they are normalizable up to signs and factors of ±𝑖 and are
mutually orthogonal, i.e., they induce an orthonormal system in the super Krein space.
However, they do not form a basis of ℌ. To see this, note that the labels (𝑚, 𝑛) ∈ Z2
of the irreducible representations 𝜋(𝑚,𝑛) need to satisfy the condition𝑚 + 𝑛 ≠ 0. As a
consequence, the constant unit function 1 on U(1|1) as well as elementary functions of
the form 𝑥𝑚𝑦−𝑚 or 𝑥𝑚𝑦−𝑚𝜓 etc. with𝑚 ∈ Z are not contained in the corresponding
subspace generated by these matrix coefficients. The remaining coefficients can be
obtained, for instance, considering tensor product representations of the form

𝜋(𝑚,0) ⊗ 𝜋(0,−𝑚) (5.348)

with𝑚 ∈ Z\ {0}. These correspond to representations of U(1|1) with respect to which
the bosonic generator 𝑋 = 𝑋1 + 𝑋2 of the diagonal subgroup U(1) ⊂ U(1) × U(1)
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is trivially represented. By definition, they are orthogonal to the matrix coefficients of
the irreps 𝜋(𝑚,𝑛) . In particular, together with the trivial representation, it follows that
this in fact provides a (overcomplete) set of elementary functions whose corresponding
complex linear span is dense inℌ. Note, however, that representations corresponding to
the zero eigenvalue of 𝑋 are generically not semisimple. This has been discussed, e.g., in
the context of SU(1|1) in [230]. This is a phenomenon occuring in the supersymmetry
setting and is directly related to the normalizability of the unit function leading to a
classification of finite-dimensional representations into so-called typical and atypical
representations.

Remark 5.7.3. Restricting the irreducible representations 𝜋(𝑚,𝑛) of the super unitary
group U(1|1) with (𝑚, 𝑛) ∈ Z2 and𝑚 + 𝑛 ≠ 0 as listed in Theorem 5.7.1 to the sub
super Lie group SU(1|1) which corresponds to the choice 𝑥 = 𝑦 in (2.80), it follows
that these exactly reproduces the irreps 𝜋𝑘 := 𝜋(𝑚,𝑛) |SU(1 |1) with 𝑘 := 𝑚 + 𝑛 ∈ Z \ {0}
as derived in [230]. Again, it follows that the corresponding matrix coefficients are
normalizable and mutually orthogonal thus inducing an orthonormal system on a super
Krein space. Since the representation label 𝑘 needs to be nonvanishing, it follows that
the constant unit function 1 on SU(1|1) as well as functions of the form 𝜓 , 𝜓 and 𝜓𝜓
are not contained in the complex linear span of the matrix coefficients of 𝜋𝑘 . As above,
it follows that the remaining coefficients arise from finite-dimensional representations
of SU(1|1) w.r.t. which the bosonic generator 𝑋 is trivially represented.

Let 𝜋0 denote such a representation and Θ̂𝑖 := 𝜋0∗(Θ𝑖) for 𝑖 = 1, 2 and 𝑋 := 𝜋0∗(𝑋 ).
Then, since 𝑋 ≡ 0, it follows from (2.77) that

Θ̂2
𝑖 = 0 for 𝑖 = 1, 2 and Θ̂1Θ̂2 = −Θ̂2Θ̂1 (5.349)

That is, 𝜋0 can be identified with a representation of the Grassmann algebraΛ2 generated
by two Grassmann variables 𝜃𝑖 , 𝑖 = 1, 2. A natural candidate of such a representation
would be the standard representation on Λ2 itself via left multiplication setting Θ̂𝑖 = 𝜃𝑖

for 𝑖 = 1, 2. With respect to the homogeneous basis (1, 𝜃1𝜃2, 𝜃1, 𝜃2) of Λ2, it follows
that Θ̂𝑖 acquire the following matrix representations

Θ̂1 =

©­­­­­­«
0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0

ª®®®®®®¬
, Θ̂2 =

©­­­­­­«
0 0 0 0
0 0 −1 0
0 0 0 0
1 0 0 0

ª®®®®®®¬
(5.350)
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Hence, for 𝑔 ∈ SU(1|1) of the form (2.80) with 𝑥 = 𝑦, this gives

𝜋0( 𝑔) = (1 + 𝜉 Θ̂1) (1 + 𝜂Θ̂2) =

©­­­­­­«
1 0 0 0
−𝜉 𝜂 1 −𝜂 𝜉

−𝜉 0 1 0
−𝜂 0 0 1

ª®®®®®®¬
(5.351)

which precisely yields the remaining matrix coefficients.

5.8. Discussion
In this chapter, we have addressed several questions concerning the classical description
of (extended) supergravity theories in 𝐷 = 4 in terms of a new type of action we called
Holst-MacDowell-Mansouri action, in the presence of boundaries. For a special choice
of the Barbero-Immirzi parameter, one obtains a description in terms of chiral Ashtekar-
type variables in which case the theory has many interesting properties and which seem
to be of particular relevance for applications in LQG. In particular, we considered the
question of how to properly include boundary terms in the theory. This is crucial as the
standard treatment of inner boundaries in (super)gravity theories expressed in terms of
(real) Ashtekar-Barbero variables is based on the isolated horizon (IH) formalism which,
so far, does not take into account local supersymmetry invariance at the boundary.9

Hence, we have followed a different route using new developments in the geometric
approach to supergravity. More precisely, following [81, 83], we have discussed the most
general ansatz of possible boundary terms to be added to the bulk action ofN = 1 and
N = 2 pure Holst-AdS supergravity in 𝐷 = 4. [81, 83] show that the boundary terms
are fixed uniquely if one requires invariance of the full action under supersymmetry
transformations at the boundary. Moreover, it follows that the resulting action in both
cases acquires a very intriguing form extending the well-known MacDowell-Mansouri
action [138] even to supergravity theories with extended supersymmetry [81, 83].

Based on these results, we have derived a Holst variant of the MacDowell-Masouri action
including topological terms for arbitrary Barbero-Immirzi paramters 𝛽 for the cases
N = 1, 2. To this end, inspired by ideas of [183–185] in context of ordinary first-order
Einstein gravity, we introduced a 𝛽-deformed inner product defined via a 𝛽-dependent
operator P𝛽 acting on super Lie algebra-valued forms. We have then shown that the
resulting action is indeed independent of the Barbero-Immirzi parameter at second

9 In fact, the standard boundary conditions arising in this formalism even seem to break local supersym-
metry.
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order, i.e. provided that the spin connection satisfies its field equations, in the sense that
all 𝛽-dependent terms become purely topological.

Moreover, for this result to be true, in caseN = 2, we have seen that this required the
inclusion of an additional 𝛽-dependent topological term to the Maxwell-kinetic term
in the Lagrangian corresponding to the graviphoton field which is commonly known
as a 𝜃 -term in Yang-Mills theory. Hence, this supports the hypothesis as discussed e.g.
in [186], that the Barbero-Immirzi parameter has to be regarded as kind of a 𝜃 -ambiguity.
We have then studied the boundary terms arising from the Holst action. However,
these boundary terms in general turn out to not correspond to a (super) Chern-Simons
theory. This is, of course, in contrast to the results in context of ordinary gravity studying
non-supersymmetric isolated horizon (IH) boundary conditions with Ashtekar-Barbero
variables. There, one finds that, generically, the boundary theory is described via Chern-
Simons theories. Nevertheless, one should emphasize that one can construct models
where this turns out to be true even in the supersymmetric case. For instance, in [82, 191],
for classical variables, particular falloff conditions for the physical fields in the N =

2 case where considered leading to a super Chern-Simons theory on the boundary
corresponding to a OSp(2|2) × SO(1, 2) gauge group. Hence, it is highly suggestive
that similar models can also be constructed using real Ashtekar variables. This remains
as a task for future investigation.

We have then turned towards the chiral limit of the theory corresponding to an imaginary
𝛽 = ±𝑖 and have seen that the resulting theory has many interesting properties. On
the one hand, it follows that the chiral action in both cases, i.e. N = 1 andN = 2,
can be written in a way such that it is manifestly invariant under an enlarged gauge
symmetry corresponding to the (complex) orthosymplectic group OSp(N |2)C leading
to the notion of a super Ashtekar connection. This generalizes and extends previous
results obtained e.g. in [63, 84, 86, 179, 181]. In particular, it follows that the boundary
action takes the form a super Chern-Simons action with OSp(N |2)C as a gauge group.
This confirms the prescient works [35, 86, 182] that saw a close connection between
(super)gravity in the bulk and Chern-Simons theory on the boundary. ForN = 1, we
have also shown that, at the boundary, the full action is indeed invariant under both left-
and right-handed supersymmetry transformations. In fact, we have even proven this for
arbitrary 𝛽 in the end of Section 5.2.1. We could show explicitly that this requirement
fixes the CS-term as the unique boundary term. In this context, we derived boundary
conditions that couple bulk and boundary degrees of freedom. These turned out to
be in strong similarity to the standard boundary conditions as typically considered in
LQG as they imply coupling between the super electric field and the curvature of the
super Ashtekar connection. In fact, similar boundary conditions have been encountered
in [86, 182] forN = 1 describing supergravity as a (generalized) constrained topological
field theory. In this present work, however, they have been derived starting from the
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full (unconstrained) supergravity Lagrangian adapted to LQG for both casesN = 1
andN = 2 obtained as the chiral limit of the Holst-MacDowell-Mansouri action and
including a discussion about the uniqueness of the boundary theory. Moreover, we
were able to show that the boundary conditions are equivalent to the requirement that
the chiral projections of the super Cartan curvature vanishes at the boundary which is
consistent with the results obtained in [81] in the non-chiral theory. In the future, it
would be interesting to investigate how the definition of IH have to be extended to the
supersymmetric context to rederive the boundary conditions as studied in this chapter.
Isolated horizons in the context of supergravity have been studied in [231]. There,
however, one focuses on the purely bosonic sector and thus does not take fermionic
degrees of freedom into account.

Using the structure of the chiral theory, in Section 5.5, we derived a graded analog of
the holonomy-flux algebra. We have done this in a mathematically rigorous manner
working in the category of enriched supermanifolds and using the parallel transport as
constructed in Chapter 2. It follows that the functorial dependence on the underly-
ing parametrization supermanifoldS leads to an intriguing structure of the set AS of
generalized super connections which is in strong similarity to Molotkov-Sachse super-
manifolds. Moreover, in case that the underlying gauge supergroup is compact, it follows
that AS is projectively Hausdorff.

Based on these observations, we sketched the quantization of the theory adapting stan-
dard tools of ordinary LQG with real variables. Moreover, for both casesN = 1, 2, we
constructed spin network states as particular kind of states in the corresponding super
Hilbert space which forN = 1 have been considered in [84–86]. However, the final
picture remained incomplete due to certain difficulties related to the indefiniteness of the
Haar measure on supergroups, the non-compactness of the gauge group OSp(N |2)C as
well as the open question of how to solve reality conditions. For this reason, in what
follows, we will consider a symmetry-reduced model in Chapter 6. In fact, there, we
will see that all these issues can be solved consistently. This gives hope that something
similar could be achieved for the full theory. Finally, so far, it is not clear whether the
spin network states provide a basis of the super Hilbert space as in case of standard
LQG. This is due to the lack of a general (integral version of a) Peter-Weyl theorem for
(compact) super Lie groups which has been studied only for rare special cases (see for
instance [207, 228–230]). We therefore considered the special example U(1|1) generaliz-
ing the results of [230] obained for the SU(1|1) case to get an idea how such a theorem
may look like in context of super Lie groups. In fact, such a generalization turns out to
be non-straightforward due to the existence of so-called atypical representations. This
has to be studied further in the future.

Ultimately, in Section 5.5.4, we compared this quantization scheme with the standard
quantization scheme of LQG coupled to fermions [67,80,87] and observed many similar-
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ities. Among other things, it follows that the functorial dependence on the parametriza-
tion supermanifold requires a Berezin-type measure for the fermionic degrees of freedom
in the inner product which is the usual measure considered in LQG. Moreover, the
implementation of the reality condition selects a particular endormorphism 𝐽 which is
part of the definition of a super Hilbert space.

There are of course numerous open questions one should address in the future. For
instance, this geometric approach to supergravity appears quite powerful in the appro-
priate description of boundaries as well as the correct implementation of locally super-
symmetric boundary conditions. Moreover, as shown in [81], in this way one arrives
at a very intriguing structure of the supergravity Lagrangian even in case of extended
supersymmetry. It would be very interesting to see how these results could be extended
to higherN > 2, or even matter coupled supergravity theories. Moreover, as we have
demonstrated in this chapter, this approach seems to be well-adapted to similar ques-
tions in LQG and may shed further light on the particularity of the (graded) self-dual
variables as well as their possible generalizations to extended SUGRA theories.

On the other hand, these results provide a first step toward the quantum description
of boundaries in supergravity in the framework of LQG and possible applications in
the context of supersymmetric black holes. This requires a deeper understanding of
Chern-Simons theories with supergroup as a gauge group. Super Chern-Simons theories
are also of quite recent interest in context of string theory [166]. As explained in the
introduction, there, one observes for certain brane configurations that the boundary
theory is described in terms of a super Chern-Simons theory with gauge group including
e.g. the supergroups OSp(𝑚|𝑛) and U(𝑚|𝑛). We suspect that a deeper analysis of super
Chern-Simons theories in the framework of LQG may also shed further light on the
relation between the quantum description of boundary theories in string theory and
LQG.
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6. Supersymmetric minisuperspace models in
self-dual loop quantum cosmology

6.1. Introduction
As we have seen in Chapter 5, for both casesN = 1, 2, the action of chiral 𝐷 = 4 AdS
supergravity withN -extended supersymmetry takes a very intriguing form of a chiral
Palatini-type action which is manifestly invariant under an enlarged OSp(N |2)C-gauge
symmetry. As far as the bulk theory is concerned, this structure also carries over to the
limit 𝐿 → ∞ corresponding to a vanishing cosmological constant in which case the
enlarged gauge symmetry corresponds to theN -extended super Poincaré group in𝐷 = 2.
Based on these observations, in Section 5.5, a graded variant of the well-known holonomy-
flux algebra was derived. Moreover, we sketched the quantization of the theory adapting
standard tools of ordinary LQG with real variables. The final picture, however, remained
incomplete due to various subtleties associated with cylindrical consistency as well as, in
particular, the consistent solution of complicated reality conditions.

For this reason, in the following, we want to consider a symmetry reduced model of chiral
N = 1, 𝐷 = 4 supergravity and investigate whether all these difficulties encountered
in the full theory can be solved consistently. Furthermore, this will also provide a first
approach to study implications of supersymmetry in the framework of loop quantum
cosmology. Moreover, studying self-dual variables is of course an interesting topic in itself
and our model will extend previous considerations by Wilson-Ewing [91] by including
fermions and supersymmetry.

For this model, we apply a particular ansatz for the fermion fields as proposed by D’Eath
et al. [88–90]. As we demonstrate in Section 6.5, by explicitly making use of the enlarged
gauge symmetry observed in the chiral theory, this ansatz can be justified considering
homogeneous isotropic super connection forms. The precise mathematical framework
for studying these kind of connections systematically will be developed in Section 6.3.
With this ansatz, we symmetry reduce the chiral action and derive the reduced left and
right supersymmetry constraints as well as the Hamiltonian constraint. Moreover, it will
be shown that the essential part of the constraint algebra in the classical theory closes.
In particular, the (graded) Poisson bracket between the left and right supersymmetry
constraint reproduces the Hamiltonian constraint modulo the right SUSY constraint.
In Section 6.6, we will then go over to the quantum theory and construct the kinematical
Hilbert space of loop quantum supercosmology. To this end, we will motivate the state
space studying the super holonomies induced by the super Ashtekar connection. In this
way, in Section 6.6.1, we derive a symmetry reduced variant of the graded holonomy-flux
algebra (5.188) (resp. Eq, (5.186) in case of a fixed graph) as constructed in context of
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the full theory in Section 5.5.1. The quantization of this theory is then performed, by
considering representations of this algebra on a super Hilbert space in Section 6.6.2.
Since these representations are required to be grading preserving, this automatically
yields the correct statistics for the bosonic and fermionic degrees of freedom. Finally, we
study the implementation of the reality conditions.

In Section 6.6.4 we implement the dynamical constraints in the quantum theory given
by the SUSY constraints and Hamiltonian constraint. For a certain subclass of these
models, we will show that the (graded) commutator of the supersymmetry constraints
exactly reproduces the classical Poisson relations. In particular, the trace of the commu-
tator between the left and right supersymmetry constraint reproduces the Hamilton
constraint. The requirement of this closure fixes some of the quantization ambiguities.
In Section 6.6.5, we study the semi-classical limit of the theory in which quantum correc-
tions arising from quantum geometry are supposed to be negligible. We derive the form
of the left and right SUSY constraint in this limit and study their respective solutions.
These solutions are then compared to other solutions obtained by different means in
the literature. We close with a discussion and outlook in Section 6.7.

Again, let us note that in the following we will drop many mathematical details in order
to simplify the notation and to make the following discussion easier accessible for the
reader. In particular, we will not explicitly mention the underlying parametrization
supermanifold except in Section 6.3 and 6.5.1 in context of the symmetry reduction of
chiral supergravity where the parametrization turns out be essential.

A list of important symbols as well as an overview of our choice of conventions concern-
ing indices, physical constants etc. can be found in the List of symbols, notations and
conventions.

6.2. Preliminaries: Homogeneous isotropic cosmology
Before going over to the general discussion of symmetry reduction of field theories with
local supersymmetry and its applications to chiral supergravity as well as supercosmology
in the framework of LQG, in this section, we would like to briefly review some important
aspects of the celebrated Friedmann-Lemaître-Robertson-Walker (FLRW) models in
cosmology which will play a central role in the main part of this chapter. To this end, we
will mainly follow [232].

Increasing observational evidence supports the hypothesis that the universe averaged
over large scales can regarded as almost perfectly homogeneous and isotropic meaning
that the universe at each point in space and each direction looks the same. Thereby,
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the universe is modeled in terms of a smooth globally hyperbolic Lorentzian manifold
(𝑀, 𝑔) of the form

𝑀 = 𝐼 × Σ (6.1)

with 𝐼 some open interval in R and where the fiducial spacelike Cauchy hypersurface Σ
is supposed to be connected. Moreover, the universe contains a perfect fluid generated
by the galaxies that move along integral curves

𝛾𝑝 : 𝐼 → 𝑀, 𝑡 → (𝑡, 𝑝) (6.2)

at any 𝑝 ∈ Σ of the global timelike vector field𝑈 := 𝜕𝑡 . Since the global time may be
identified with the proper time of the comoving galaxies, the corresponding velocity
vector field is supposed to satisfy 𝑔 (𝑈 ,𝑈 ) = −1. Moreover, one assumes that the
relative motion of the galaxies can be neglected such that Σ𝑡 at any time 𝑡 ∈ 𝐼 can be
regarded as a common restspace of the galaxies leading to an ansatz for the metric of the
form

𝑔 = −d𝑡2 + 𝑞 (6.3)

with 𝑞 ≡ 𝑞(𝑡) the Riemannian metric on the Cauchy slice Σ𝑡 . Since 𝑀 is supposed
to be isotropic, this means that for any 𝑥 = (𝑡, 𝑝) ∈ 𝑀 and 𝑣, 𝑣′ ∈ 𝑇𝑝Σ𝑡 , there exists
a local isometry 𝜙 on 𝑀 of the form 𝜙 = id × 𝜙Σ also referred to an isotropy isometry
with 𝜙Σ a local isometry on Σ such that 𝜙(𝑥) = 𝑥 and

𝐷𝑥𝜙(𝑣) = 𝑣′ (6.4)

Thus, it follows that the group ISO𝑥 (𝑀 ) of local isometries at 𝑥 ∈ 𝑀 contains a
subgroup which is isomorphic to the full rotation group SO(3) inR3. Let 𝐾 (𝑡) denote
the sectional curvature (Def. E.1) of the Cauchy slice Σ𝑡 . Since, 𝐾 (𝑡) ◦ 𝜙∗ = 𝐾 (𝑡) for
any local isometry 𝜙 on Σ𝑡 , it follows immediately from the isotropy condition (6.4)
that the sectional curvature 𝐾 (𝑡) 𝑝 is constant at any 𝑝 ∈ Σ𝑡 . But, as 𝑀 , and hence Σ𝑡 ,
is supposed to be connected, it follows from Schur’s Lemma (see, e.g., [233], Theorem
6.7) that 𝐾 (𝑡) is actually constant on all of Σ𝑡 , that is, Σ𝑡 for any 𝑡 ∈ 𝐼 is of constant
curvature.

Next, one wants to relate Cauchy slices Σ𝑡 corresponding to different times 𝑡 ∈ 𝐼 . For
this purpose, for 𝑠, 𝑡 ∈ 𝐼 , one considers the natural diffeomorphism 𝜇𝑠𝑡 : Σ𝑠 → Σ𝑡
defined as 𝜇𝑠𝑡 (𝑠, 𝑝) = (𝑡, 𝑝) ∀𝑝 ∈ Σ. Using the fact that 𝜇𝑠𝑡 commutes with isotropy
isometries, one concludes that 𝜇𝑠𝑡 , in fact, defines a homothety such that

𝜇∗𝑠𝑡𝑞𝑡 = ℎ(𝑠, 𝑡)2𝑞𝑠 (6.5)

for some smooth function ℎ ≡ ℎ(𝑠, 𝑡). Thus, this implies that the sectional curvatures
associated to different time slices are related via ℎ(𝑠, 𝑡)2𝐾 (𝑡) = 𝐾 (𝑠) so that, in partic-
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ular, the sectional curvatures do not change sign as ℎ never becomes zero. As argued
in [232], exploiting this property together with (6.5) as well as appropriately rescaling
the metric on Σ, one can construct a function 𝑎(𝑡) called scale factor such that the
embedding 𝜄𝑡 : Σ→ Σ𝑡 of the fiducial Cauchy surface Σ into the time slice Σ𝑡 for any
𝑡 ∈ 𝐼 defines a homothety with scale factor 𝑎(𝑡)2. Thus, in particular, in this way, it
follows that the metric 𝑞𝑡 on Σ𝑡 takes the form 𝑞𝑡 = 𝑎(𝑡)2 𝑞̊ with 𝑞̊ the fiducial metric
on Σ so that, for the spacetime metric 𝑔 , one obtains

𝑔 = −d𝑡2 + 𝑎(𝑡)2 𝑞̊ (6.6)

That is, the spacetime manifold 𝑀 takes the form of a warped product manifold 𝑀 =

𝐼 ×𝑎 Σ.

As we have seen, the isotropy assumption turns out to be a quite strong condition
imposing strong restrictions on the geometric structure of the spacetime manifold. In
fact, as argued in [234], the requirement that the group of local isometries contains the
rotation group as a subgroup already implies that the spatial slice Σ (and thus Σ𝑡 for
any 𝑡 ∈ 𝐼 by (6.6)) is homogeneous. Homogeneity implies that the group ISO(Σ) of
(global) isometries of (Σ, 𝑞̊) acts transitively on Σ via the canonical left action

ISO(Σ) × Σ→ Σ, (𝜙, 𝑝) ↦→ 𝜙( 𝑝) (6.7)

Hence, if 𝐻 := ISO(Σ) and 𝐻𝑝 := {𝜙 ∈ 𝐻 | 𝜙( 𝑝) = 𝑝} � SO(3) denotes the
isotropy subgroup at some point 𝑝 ∈ Σ, one can make the identification Σ � 𝐻/𝐻𝑝.
Thus, it follows thatΣ has the structure of a Klein geometry (𝐻, 𝐻𝑝) which canonically
induces the corresponding (homogeneous) Cartan geometry (𝐻 → 𝐻𝑝, 𝜃

(𝐻 )
MC ) with

𝜃
(𝐻 )
MC ∈ Ω1(𝐻, 𝔥) the Maurer-Cartan form on the Lie group 𝐻 with Lie algebra 𝔥

satisfying the Maurer-Cartan structure equation

d𝜃 (𝐻 )MC +
1
2
[𝜃 (𝐻 )MC ∧ 𝜃

(𝐻 )
MC ] = 0 (6.8)

Let 𝜃 := pr
𝔥/𝔥𝑝 ◦ 𝜃

(𝐻 )
MC with 𝔥𝑝 := Lie(𝐻𝑝) be the corresponding soldering form.

Via (3.9), it follows that 𝜃 induces a one-to-one correspondence between metrics on
Σ and Ad-invariant metrics on 𝔥/𝔥𝑝. Moreover, according to the general discussion
in Section 3.5, we know that horizontal automorphisms on 𝐻 given by right-invariant
vector fields 𝑋 𝑅 ∈ 𝔞𝔲𝔱(𝐻 ) with 𝑋 ∈ 𝔥 satisfy 𝐿𝑋 𝑅 𝜃 = 0 so that the corresponding
pushforward 𝜋∗𝑋 𝑅 ∈ 𝔛(Σ) defines a Killing vector field of the induced Riemannian
geometry. Let (𝑋𝐼 )𝐼 be a basis of the Lie algebra 𝔥 with structure coefficients 𝐶 𝐾

𝐼 𝐽
.
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Since, [𝑋 𝑅,𝑌 𝑅] = −[𝑋 ,𝑌 ]𝑅 it follows that the corresponding Killing vector fields
𝜉𝐼 := 𝑋 𝑅

𝐼
satisfy the commutation relations

[𝜉𝐼 , 𝜉 𝐽 ] = −𝐶 𝐾
𝐼 𝐽 𝜉𝑘 (6.9)

Remark 6.2.1. Note that, by antisymmetry, we can define𝐶𝐾𝐿 := 1
2𝐶

𝐾
𝐼 𝐽

𝜖𝐼 𝐽 𝐿 which
itself can be split into a symmetric and antisymmetric part

𝐶𝐾𝐿 = 𝐶 (𝐾𝐿) + 𝐶 [𝐾𝐿] =: 𝑛𝐾𝐿 + 𝜖𝐾𝐿𝑀 𝑎𝑀 (6.10)

Moreover, as 𝑛𝐾𝐿 is symmetric, one can perform a change of basis such that it acquires
the diagonal form 𝑛𝐼 𝐾 = 𝑛(𝐾 )𝛿𝐾𝐿 (no summation over 𝐾 ). Hence, it follows that
the structure of the homogeneous manifold Σ is encoded in the coefficients (𝑛𝐼 , 𝑎 𝐽 ).
This leads to the well-known Bianchi classification of homogeneous spacetimes (see,
e.g., [235] for more details).

Since the fiducial Cauchy surface Σ defines a homogeneous Riemannian manifold, it
follows, in particular, that Σ is complete (see Remark 9.37 in [232]). Finally, by possibly
going over from Σ to its universal Riemannian covering manifold, one may assume
that Σ is also simply connected. Hence, this implies that Σ defines a simply connected
and complete Riemannian manifold of constant curvature 𝑘 = −1, 0 or +1, that is,
it defines a simply connected space form (see Definition E.4). But, by Theorem E.5
and Corollary E.7, this in turn implies that Σ is isometric isomorphic to a standard
hyperquadric given by the hyperbolic spaceH3, Euclidean spaceR3 or three-sphere S3,
respectively, depending on the curvature 𝑘.

Definition 6.2.2. A Friedmann-Lemaître-Robertson-Walker (FLRW) model is a
Lorentzian spacetime manifold 𝑀 which has the structure of a warped product mani-
fold of the form

𝑀 � 𝐼 ×𝑎 Σ (6.11)

with scale factor 𝑎(𝑡) and fiducial spacelike Cauchy surface Σ of constant sectional
curvature 𝑘 = −1, 0, +1 isometric isomorphic to a standard hyperquadricH3,R3 or S3.

6.3. Symmetry reduction in supersymmetric field theories
Since, chiral supergravity contains an enlarged gauge symmetry corresponding to a gauge
supergroup, it seems suggestive to exploit this symmetry in order to construct symmetry
reduced models by generalizing the notion of invariant connection 1-forms to the super
category. The following discussion will provide a solid basis for the construction of
(spatially) symmetry reduced models in the context of supersymmetric field theories. A
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respective discussion in the context of ordinary (bosonic) connection 1-forms defined
on smooth principal fiber bundles can be found, e.g., in [236] (see also [235] for a
nice introduction to this subject in the non-supersymmetric setting). We will use the
following results in Section 6.5 to study minisuperspace models in the framework of
loop quantum cosmology with local supersymmetry.

To this end, let us consider a general 𝐻∞ supermanifoldM as well as a super Lie group
H which, in the most situations of interest, will correspond to the super Lie group
of isometries of a super Riemannian manifold (M, 𝑔) (in fact, in most casesM will
be a purely bosonic supermanifold corresponding to an ordinary smooth manifold).
Suppose,H acts from the left onM, i.e., there exists a smooth map

𝑓 : H ×M →M (6.12)

such that

𝑓 ◦ (idH × 𝑓) = 𝑓 ◦ (𝜇H × id) and 𝑓𝑒 (𝑥) = 𝑥 ∀𝑥 ∈ M (6.13)

Furthermore, we assume thatH acts transitively onM. Hence, if 𝑥 ∈ B(M) is a body
point andH𝑥 is the stabilizer subgroup ofH , one can identifyM � H/H𝑥 which we
want to do in what follows. The left action ofH is then given by its standard action on
the coset spaceH/H𝑥 which still will be denoted by 𝑓.

Let G → P 𝜋→ H/H𝑥 be a principal super fiber bundle overH/H𝑥 with structure
group G and G-right action Φ : P × G → P. We want to the ask the question about
the existence of aH -left action 𝑓̂ : H × P → P on P such that 𝑓̂ is a G-equivariant
bundle automorphism on P projecting to the left multplication ofH onH/H𝑥 , i.e.,

𝑓̂ ◦ (idH ×Φ) = Φ ◦ ( 𝑓̂× idG) and 𝜋 ◦ 𝑓̂ = 𝑓 ◦ (idH × 𝜋 ) (6.14)

Therefore, applying the forgetful functor SMan𝐻∞ → Set, we consider the set of
abstract group homomorphisms 𝜆 : H𝑥 → G. On this set, we introduce the equiva-
lence relation

𝜆 ∼ 𝜆′ :⇔ ∃ 𝑔 ∈ G : 𝜆′ = Ad𝑔 ◦ 𝜆 (6.15)

which yields the set of conjugacy classes Conj(H𝑥 → G) of abstract group homo-
morphisms. An equivalence class [𝜆] ∈ Conj(H𝑥 → G) will be called smoothly
admissible, if it contains a 𝐻∞-smooth super Lie group homomorphism as a represen-
tative. The set of such smoothly admissible conjugacy classes yields a proper subset
Conj(H𝑥 → G)∞ ⊂ Conj(H𝑥 → G).

Proposition 6.3.1. There exists a bijective correspondence between equivalence classes of
principalG-bundles overH/H𝑥 admitting anH -left action which isG-equivariant and
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projects to the standard left multiplication ofH on the coset spaceH/H𝑥 and smoothly
admissible conjugacy classes [𝜆] ∈ Conj(H𝑥 → G)∞ of group homomorphisms 𝜆 :
H𝑥 → G.

Proof. Suppose 𝜆 : H𝑥 → G is a smooth representative of a smoothly admissible
conjugacy class of super Lie group homomorphisms. Consider then the associated
principal supper fiber bundleH ×𝜆 G with structure group G. OnH × G, we define
the smooth left action

H × (H × G) → H × G, (𝜙, (𝜓 , 𝑔)) ↦→ (𝜙 ◦ 𝜓 , 𝑔) (6.16)

Since, (𝜙 ◦ (𝜓 ◦ 𝜙′), 𝜆(𝜙′)−1( 𝑔)) = ((𝜙 ◦ 𝜓 ) ◦ 𝜙′, 𝜆(𝜙′)−1( 𝑔)) ∀𝜙, 𝜙′, 𝜓 ∈ H
and 𝑔 ∈ G, it follows that (6.16) is constant on G-orbits so that (6.16) induces a well-
defined smoothH -left action onH ×𝜆 G which is G-equivariant and projects to the
multiplication ofH onH/H𝑥 .

Conversely, let 𝑓̂ : H × P → P be a H -left action on P. Let 𝑝 ∈ B(P) be an
element of the body. Since, the G-right action on P is transitive on each fiber and 𝑓̂ is
fiber-preserving, for any 𝜙 ∈ H𝑥 , there exists a unique 𝜆(𝜙) ∈ G such that

𝑓̂𝜙 ( 𝑝) = Φ𝜆 (𝜙) ( 𝑝) (6.17)

Moreover, since 𝑝 ∈ B(P), the mapH → P, 𝜙 ↦→ 𝑓𝜙 ( 𝑝) is of class 𝐻∞ proving that
the map 𝜆 : H𝑥 → G, 𝜙 ↦→ 𝜆(𝜙) is smooth. By G-equivariance (6.14), it follows for
𝜙, 𝜓 ∈ H𝑥

𝑓̂𝜙◦𝜓 ( 𝑝) = 𝑓𝜙 (𝑓𝜓 ( 𝑝)) = 𝑓𝜙 (Φ𝜆 (𝜓 ) ( 𝑝)) = Φ𝜆 (𝜓 ) (𝑓𝜙 ( 𝑝)) = Φ𝜆 (𝜙)◦𝜆 (𝜓 ) ( 𝑝)
= Φ𝜆 (𝜙◦𝜓 ) ( 𝑝) (6.18)

implying 𝜆(𝜙 ◦ 𝜓 ) = 𝜆(𝜙) ◦ 𝜆(𝜓 ), i.e.. 𝜆 is indeed a super Lie group homomorphism.
If 𝑝′ ∈ P is any other point, then, again by transitivity, there exists 𝑔 ∈ G with
Φ𝑔 ( 𝑝) = 𝑝′. Hence,

𝑓̂𝜙 ( 𝑝′) = Φ𝑔 ( 𝑓̂𝜙 ( 𝑝)) = ΦAd
𝑔−1𝜆 (𝜙) ( 𝑝

′) (6.19)

with Ad𝑔−1 ◦ 𝜆 in the same equivalence class as 𝜆. Finally, letH ×𝜆 G be the associated
principal G-bundle with smoothH -left action as constructed in the first part of this
proof. For 𝑝 ∈ B(P) a body point, consider the map

H ×𝜆 G → P, [𝜙, 𝑔] ↦→ Φ𝑔 (𝑓𝜙 ( 𝑝)) (6.20)
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By (6.14), it follows immediately that (6.20) is well-defined and in fact yields an isomor-
phism of principal super fiber bundles. □

Proposition (6.3.1) provides a complete classification of principal super fiber bundles
admitting such a smooth left action by equivalence classes of smooth super Lie group
morphisms 𝜆 : H𝑥 → G. We next want to study connections on P that are invariant
under this left action. Since,M is typically an ordinary smooth manifold and we would
like to include fermionic degrees of freedom in our discussion, we go over to the category
of relative supermanifolds. Hence, let us add a parametrizing supermanifoldS. We lift
all objects and morphisms to the relative category in the obvious way. If P := H ×𝜆 G
is a principal super fiber bundle as in Prop. (6.3.1), it follows that P/S = H/S ×𝜆 G. A
S-relative super connection 1-formA ∈ Ω1(P/S , 𝔤)0 will be calledH -invariant, if

( 𝑓̂S)∗𝜙A = A ∀𝜙 ∈ H (6.21)

with 𝑓̂S : H × P/S → P/S the lift of the left multiplication 𝑓S : H ×H/S →H/S :
(𝜙, (𝑠, 𝜓 )) ↦→ (𝑠, 𝜙 ◦ 𝜓 ) to a smoothH -left action on P/S defined via (cf. proof of
Prop. 6.3.1)

𝑓̂S ◦ (idH × 𝜋̂ ) = 𝜋̂ ◦ (𝑓S × idG) (6.22)

with 𝜋̂ : H/S × G → H/S ×𝜆 G = P/S the canonical projection.

Proposition 6.3.2. Let P := H ×𝜆 G be the associated principal super fiber bundle
induced by a smooth super Lie group homomorphism 𝜆 : H𝑥 → G. TheH -invariant
super connection 1-forms on P/S are in one-to-one correspondence to smooth maps Ξ ∈
𝐻∞(S,Hom𝐿 (Lie(H), Lie(G))) from the parametrizing supermanifoldS to even left
linear super Lie algebra homomorphisms Hom𝐿 (Lie(H), Lie(G)) satisfying

Ξ(𝑠)
��
Lie(H𝑥 ) = 𝜆∗ (6.23)

and
Ad𝜙−1 ⋄Ξ(𝑠) = Ξ(𝑠) ⋄Ad𝜆 (𝜙)−1 on Lie(H) (6.24)

∀𝑠 ∈ S and 𝜙 ∈ H𝑥 .

Proof. In the following, let 𝜄 : H/S → P/S be the smooth map defined via 𝜄(𝑠, 𝜙) :=
[(𝑠, 𝜙), 𝑒] and ΦS denote the G-right action on P/S . SupposeA ∈ Ω1(P/S , 𝔤)0 is
aH -invariant super connection 1-form. Consider thenAH := 𝜄∗A ∈ Ω1(H/S , 𝔤)0.
Since 𝜄 ◦ 𝑓S = 𝑓̂S ◦ (idH × 𝜄) by (6.22), it follows from theH -invariance ofA that

(𝑓S)∗𝜙AH = 𝜄∗(( 𝑓̂S)∗𝜙A) = 𝜄∗A = AH (6.25)
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i.e.,AH is left-invariant w.r.t. to the standard left-multiplication onH . As a conse-
quence,AH is uniquely determined by its restrictionAH |𝑇𝑒H : S ×𝑇𝑒H → Lie(G).
As this map is left linear in the second argument it follows similarly as in the proof of
Lemma 2.4.7 that it defines an even smooth mapAH |𝑇𝑒H : S → Hom𝐿 (Lie(H),
Lie(G))0. Moreover, since the Maurer-Cartan form 𝜃

(H)
MC |𝑇𝑒H : 𝑇𝑒H → Lie(H) on

𝑇𝑒H is the identity, it follows that

AH (𝑠) = 𝜃 (H)MC ⋄Ξ(𝑠) ∀𝑠 ∈ S (6.26)

on𝑇𝑒H for some smooth map Ξ ∈ 𝐻∞(S,Hom𝐿 (Lie(H), Lie(G))). It follows by
left-invariance that (6.26) indeed holds on all ofH .

Remains to proof that Ξ satisfies the properties (6.23) and (6.24) of the proposition. To
this end, for 𝑋 ∈ Lie(H𝑥), we compute

𝜄∗(1 ⊗ 𝑋 ) 𝑝 = 𝐷 ( 𝑝,𝑒G) 𝜋̂ (0𝑠, 𝑋𝜙, 0𝑒G ) = 𝐷 ( 𝑝,𝑒G) 𝜋̂ (0𝑝, 𝜆∗(𝑋 ))

= �𝜆∗(𝑋 ) [ 𝑝,𝑒G ] (6.27)

∀𝑝 = (𝑠, 𝜙) ∈ H/S , where in the second equality we used that the kernel of 𝜋̂∗ is given
by

ker𝐷 ( 𝑝, 𝑔) 𝜋̂ = {(1 ⊗ 𝑌𝑝,−𝑅𝑔∗𝜆∗(𝑋 )) |𝑌 ∈ Lie(H𝑥)} (6.28)

Using (6.27), this yields

𝜆∗(𝑋 ) = ⟨�𝜆∗(𝑋 ) |A⟩ = ⟨(1 ⊗ 𝑋 ) 𝑝 |AH⟩
= ⟨⟨𝑋𝜙 |𝜃 (H)MC ⟩ |Ξ(𝑠)⟩ = ⟨𝑋 |Ξ(𝑠)⟩ (6.29)

∀𝑋 ∈ Lie(H𝑥). Finally, since 𝜄 ◦ (idS × 𝑅𝜙) = (ΦS)𝜆 (𝜙) ◦ 𝜄 with 𝑅𝜙 the right
translation onH w.r.t. 𝜙 ∈ H𝑥 , it follows that

⟨𝑋 |Ad𝜙−1 ⋄Ξ(𝑠)⟩ = ⟨Ad𝜙−1 ⟨𝑋 |𝜃 (H)MC ⟩ |Ξ(𝑠)⟩ = ⟨⟨𝑅𝜙∗𝑋 |𝜃
(H)
MC ⟩ |Ξ(𝑠)⟩

= ⟨𝑅𝜙∗𝑋 |𝜃 (H)MC ⋄Ξ(𝑠)⟩ = ⟨𝑅𝜙∗ |AH (𝑠)⟩ = Ad𝜆 (𝜙)−1 ⟨𝑋 |AH (𝑠)⟩
= ⟨𝑋 |Ξ(𝑠) ⋄Ad𝜆 (𝜙)−1⟩ (6.30)

∀𝑋 ∈ Lie(H) as required. Conversely, suppose one has given a smooth map Ξ ∈
𝐻∞(S,Hom𝐿 (Lie(H), Lie(G))) satisfying (6.23) and (6.24) above. We have to show
that there indeed exists a unique super connection 1-formA ∈ Ω1(P/S , 𝔤)0 such that
𝜄∗A(𝑠) = 𝜃 (H)MC ⋄Ξ(𝑠) for any 𝑠 ∈ S. This, in fact, follows along the lines of the proof
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of Prop. 3.3.12. As there, one can show that, ifA exists, it necessarily has to be of the
form

⟨𝐷 ( 𝑝, 𝑔) 𝜋̂ (𝑋𝑝,𝑌𝑔) |A [ 𝑝, 𝑔 ]⟩ = Ad𝑔−1 ⟨𝑋𝑝 |𝜃 (H)MC ⋄Ξ(𝑠)⟩ + ⟨𝑌𝑔 |𝜃
(G)
MC ⟩ (6.31)

Moreover, as 𝜋̂ is a submersion, it is uniquely determined by (6.31). One then concludes
that this indeed provides a well-defined super connection 1-form on P/S . □

Remark 6.3.3. Note that if 𝜆 : H0 → G is a group morphism corresponding to a left
action of a bosonic super Lie groupH0, i.e., a split super Lie group corresponding to
an ordinary smooth symmetry group, then 𝜆 only takes values in the bosonic super Lie
subgroupG0 := S(B(G)) ofG. Thus, it follows that condition (6.12) only encodes super
connections that are invariant under purely bosonic gauge transformations. This can be
cured by considering a more general class of smoothH -left actions 𝑓̂ : H×P/S → P/S
on theS-relative principal super fiber bundle P/S that are not merely trivial extensions
ofH -left actions on P as considered above and which project to the left multiplication
onH/S , i.e.,H × H/S → H/S : (𝜙, (𝑠, 𝜓 )) ↦→ (𝑠, 𝜙 ◦ 𝜓 ). It then follows that a
classification of these type of actions is given by smooth maps of the form 𝜆′ : S×H𝑥 →
G satisfying

𝜆′(𝑠, 𝜙 ◦ 𝜓 ) = 𝜆′(𝑠, 𝜙) ◦ 𝜆′(𝑠, 𝜓 ) (6.32)

∀(𝑠, 𝜙), (𝑠, 𝜓 ) ∈ S × H𝑥 . Condition (6.21) for a H -invariant super connection 1-
form then again leads to (6.23) as well as (6.24), straightforwardly generalized to S-
parametrized group morphisms 𝜆′ : S × H𝑥 → G. In particular, since 𝜆′ now
explicitly depends on the parametrization, it follows, in case that the symmetry group
H is purely bosonic, that 𝜆′ can take values in the odd part of the gauge supergroup G.
Hence, in this way, one can model super connection 1-forms which are invariant under
the spatial symmetry group up to super gauge transformations. In fact, as we will see in
Section 6.5.1, this will play an important role in deriving symmetry reduced connections
that contain nontrivial fermionic degrees of freedom.

6.4. Canonical decomposition of chiralN = 1 supergravity
From here on, the content of this chapter has been reproduced from [4], with (slight)
changes to account for the context of this thesis with the permission of Springer-Nature.

The canonical phase space of the chiral theory including a discussion about the reality
conditions has been partially addressed already in Section 5.4.4. Here, in view of the
symmetry reduction of the theory to be discussed in the subsequent sections, in what
follows, let us summarize some of the most important facts and continue with the
canonical analysis of the theory, in particular, with the derivation of the constraints.
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Using the general results obtained in Section 4.3 and 4.4 for the special case 𝛽 = −𝑖, it
follows that the chiral action (5.102) takes the form

𝑆
N=1,𝛽=−𝑖
H-AdS (𝑒,A+) =

∫
R

d𝑡
∫
Σ

d3𝑥
(
𝑖

𝜅
𝐸 𝑎𝑖 𝐿𝜕𝑡 𝐴

+𝑖
𝑎 − 𝜋 𝑎𝐴𝐿𝜕𝑡𝜓

𝐴
𝑎

− 𝐴+𝑖𝑡 𝐺𝑖 + 𝑁 𝑎𝐻𝑎 + 𝑁𝐻 + 𝜓 𝑆
) (6.33)

where, for later convenience, we have absorbed the factor 1/
√
𝜅 in the Rarita-Schwinger

field. Here, 𝜋 𝑎
𝐴

is the canonically conjugate momentum of 𝜓 𝐴𝑎 which is related to the
corresponding complex conjugate 𝜓 𝐴′𝑎 via the reality condition

𝜋 𝑎
𝐴
= 𝜖𝑎𝑏𝑐𝜓 𝐴

′

𝑏
𝑒𝑐𝐴𝐴′ (6.34)

Furthermore, 𝐸 𝑎
𝑖
=
√
𝑞𝑒𝑎
𝑖

is the electric field conjugate to 𝐴+𝑖𝑎 . The canonical pairs
(𝐴+𝑖𝑎 , 𝐸 𝑎𝑖 ) and (𝜓 𝐴𝑎 , 𝜋 𝑎𝐴) build up a graded symplectic phase space with the nonvanish-
ing Poisson brackets

{𝐸 𝑖𝑎 (𝑥), 𝐴
+𝑗
𝑏
(𝑦)} = 𝑖𝜅𝛿𝑗

𝑖
𝛿 (3) (𝑥, 𝑦) and {𝜋 𝑎

𝐴
(𝑥), 𝜓 𝐵

𝑏
(𝑦)} = −𝛿 𝑎

𝑏
𝛿𝐵
𝐴
𝛿 (3) (𝑥, 𝑦)

(6.35)
Recall from Section 4.4 that, for arbitrary 𝛽, the SUSY constraint is given by

𝑆 =𝜖𝑎𝑏𝑐 𝛾𝑎
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 )
𝑏

𝜓𝑐 +
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 )
𝑎

(
𝜖𝑎𝑏𝑐 𝛾𝑏𝜓𝑐

)
−
1 + 𝛽2

2𝛽
𝜖𝑎𝑏𝑐 𝛾0𝜓𝑐𝐾𝑏𝑎 −

1
𝐿
𝐸 𝑎𝑖 𝛾

0𝑖𝜓𝑎 (6.36)

In context of the chiral theory, let us bring this constraint in another form rewriting the
second term in (6.36). To this end, using anticommutativity of the fermionic fields, it
follows that

𝜓𝑡
1 + 𝑖 𝛽𝛾∗

2𝛽
𝐷
( 𝐴𝛽 )
𝑎

(
𝜖𝑎𝑏𝑐 𝛾𝑏𝜓𝑐

)
=𝜖𝑎𝑏𝑐

[
𝜓𝑡
1 + 𝑖 𝛽𝛾∗

2𝛽
𝜕𝑎

(
𝛾𝑏𝜓𝑐

)
+ 𝑖
2
𝐴
𝛽 𝑖
𝑎𝜓𝑡

1 + 𝑖 𝛽𝛾∗
2𝛽

𝛾∗𝛾0𝑖 𝛾𝑏𝜓𝑐

]
=𝜖𝑎𝑏𝑐

[
−𝜕𝑎

(
𝜓𝑐 𝛾𝑏

) 1 + 𝑖 𝛽𝛾∗
2𝛽

𝜓𝑡 +
𝑖

2
𝐴
𝛽 𝑖
𝑎𝜓𝑐 𝛾𝑏𝛾∗𝛾0𝑖

1 + 𝑖 𝛽𝛾∗
2𝛽

𝜓𝑡

]
=𝐷

( 𝐴𝛽 )
𝑎

(
𝜖𝑎𝑏𝑐𝜓𝑏𝛾𝑐

) 1 + 𝑖 𝛽𝛾∗
2𝛽

𝜓𝑡

= −
(
𝐷
( 𝐴𝛽 )
𝑎 𝜋 𝑎

)
𝜓𝑡 (6.37)
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with 𝐷 ( 𝐴
𝛽 )
𝑎 𝜋 𝑏 = 𝜕𝑎𝜋

𝑏 − 𝑖
2𝜋

𝑏 𝐴
𝛽 𝑖
𝑎𝛾∗𝛾0𝑖 the exterior covariant derivative in the dual

representation. This yields

𝜓𝑡 𝑆 =𝜓𝑡 𝜖
𝑎𝑏𝑐 𝛾𝑎

1 + 𝑖 𝛽𝛾∗
2𝛽

𝐷
( 𝐴𝛽 )
𝑏

𝜓𝑐 − 𝜓𝑡
1
𝐿
𝐸 𝑎𝑖 𝛾

0𝑖𝜓𝑎 −
(
𝐷
( 𝐴𝛽 )
𝑎 𝜋 𝑎

)
𝜓𝑡

−
1 + 𝛽2

2𝛽
𝜖𝑎𝑏𝑐 𝛾0𝜓𝑐𝐾𝑏𝑎 (6.38)

Hence, for 𝛽 = −𝑖, it follows, together with the identity 𝜓𝑡 𝛾0𝑖𝜓𝑎 = −2𝜓 𝐴𝑎 (𝜖𝜏𝑖)𝐴𝐵𝜓 𝐵𝑡
− 2𝜓

𝑡 𝐴′ (𝜖𝜏𝑖)𝐴
′𝐵′𝜓

𝑎𝐵′ , that (6.38) can be split in the form

𝜓 𝑆 = −𝑆𝐿
𝐴
𝜓 𝐴𝑡 − 𝜓𝑡 𝐴′𝑆𝑅𝐴

′
(6.39)

with 𝑆𝐿
𝐴

and 𝑆𝑅𝐴′ the so-called left and right supersymmetry (SUSY) constraints, respec-
tively, given by

𝑆𝐿
𝐴
= 𝐷

(𝐴+)
𝑎 𝜋 𝑎

𝐴
+ 2
𝐿
𝐸 𝑎𝑖𝜓 𝐵𝑎 (𝜖𝜏𝑖)𝐵𝐴 (6.40)

and

𝑆𝑅𝐴
′
= −𝜖𝐴′𝐵′ 𝜖𝑎𝑏𝑐𝑒

𝑎𝐴𝐵′𝐷
(𝐴+)
𝑏

𝜓 𝐴𝑐 +
2
𝐿
𝐸 𝑎𝑖 (𝜖𝜏𝑖)𝐴

′𝐵′𝜓𝑎𝐵′ (6.41)

respectively. According to (6.41), the right SUSY constraint depends on the complex
conjugate Weyl spinor𝜓𝐴′ . In order to re-express it in terms of the fundamental variables,
one can apply the reality condition (6.34). In fact, using (4.30)-(4.33), it follows that

𝜋 𝑎
𝐴
𝑒𝐴𝐴

′
𝑎 = 𝜖𝑎𝑏𝑐𝑒𝑖𝑎𝜓

𝐵′

𝑏
𝑒
𝑗
𝑐 𝜎

𝐴𝐴′
𝑖 𝜎𝑗 𝐴𝐵′

= −√𝑞𝜖 𝑖𝑗𝑘𝑒𝑏
𝑘
𝜓 𝐵

′

𝑏
𝜎 𝐴𝐴

′
𝑖 𝜎𝑗 𝐴𝐵′

= −2𝑖√𝑞𝜓 𝐵′
𝑏
𝑛𝐴𝐵′𝑒

𝑏𝐴𝐴′ (6.42)

such that

−2𝐸 𝑎𝑖 (𝜖𝜏𝑖)𝐴
′𝐵′𝜓𝑎𝐵′ = 2𝐸 𝑎𝑖 (𝜖𝜏𝑖 𝜖)𝐴

′

𝐵′𝜓
𝐵′
𝑎

= −𝑖√𝑞𝜓 𝐵′𝑎 𝑛𝐴𝐵′𝑒𝑎𝐴𝐴
′
=
1
2
𝜋 𝑎
𝐴
𝑒𝐴𝐴

′
𝑎 (6.43)

Together with the identity 𝜖𝑎𝑏𝑐 𝜖 𝑖𝑗𝑘𝐸𝑏𝑗 𝐸
𝑐
𝑘
= 2√𝑞𝑒𝑖𝑎, we can thus rewrite the right super-

symmetry constraint in the equivalent form

𝑆𝑅𝐴
′
= −𝜖 𝑖𝑗𝑘

𝐸𝑏
𝑗
𝐸 𝑐
𝑘

2√𝑞 𝜎
𝐴𝐴′
𝑖

(
2𝜖𝐴𝐵𝐷

(𝐴+)
[𝑏 𝜓 𝐵

𝑐 ] +
1
2𝐿
𝜋 𝑎
𝐴
𝜖𝑎𝑏𝑐

)
(6.44)
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The remaining constraints can be obtained rather quickly using their general form
derived in Section 4.3. For the Gauss and vector constraint, it follows that

𝐺𝑖 =
𝑖

𝜅
𝐷
(𝐴+)
𝑎 𝐸 𝑎𝑖 − 𝜋

𝑎
𝐴
(𝜏𝑖)𝐴𝐵𝜓

𝐵
𝑎 (6.45)

and

𝐻𝑎 :=
𝑖

𝜅
𝐸𝑏𝑖 𝐹 (𝐴+) 𝑖𝑎𝑏 − 𝜖

𝑏𝑐𝑑𝑒𝑎𝐴𝐴′𝜓
𝐴′

𝑏
𝐷
(𝐴+)
𝑐 𝜓 𝐴

𝑑
(6.46)

respectively. The Hamiltonian constraint reads1

𝐻 = −
𝐸 𝑎
𝑖
𝐸𝑏
𝑗

2𝜅√𝑞 𝜖
𝑖𝑗

𝑘
𝐹 (𝐴+)𝑘

𝑎𝑏
− 𝜖𝑎𝑏𝑐𝜓 𝐴′𝑎 𝑛𝐴𝐴′𝐷

(𝐴+)
𝑏

𝜓 𝐴𝑐 (6.47)

+
𝐸 𝑎
𝑖
𝐸𝑏
𝑗

2𝐿√𝑞 𝜖
𝑖𝑗𝑘 (𝜓𝑎𝐴𝑛𝐵𝐴′𝜎 𝐴𝐴

′

𝑘
𝜓 𝐵
𝑏
− 𝜓 𝐴′𝑎 𝑛𝐴𝐴′𝜎 𝐴𝐵

′

𝑘
𝜓𝑏𝐵′) +

3
𝜅𝐿2
√
𝑞

where 𝑛𝐴𝐴′ is the spinor corresponding to the unit normal vector field 𝑛𝜇 orthogonal
to the time slices Σ𝑡 in the 3+1-decomposition.

Remark 6.4.1. Recall that the canonically conjugate momenta 𝐸 𝑖𝑎 and 𝜋 𝐴𝑎 can be
combined to give the super electric field

E𝑎 = (𝐸 𝑎𝑖 ,−𝑖
√
𝜅𝜋 𝑎

𝐴
) (6.48)

As a consequence, it follows that the Gauss𝐺𝑖 and left supersymmetry constraint 𝑆𝑅
𝐴

arise in terms of the even and odd part of the super Gauss constraint (see Eq. (5.117) for
the caseN = 1)

G =
𝑖

𝜅
𝐷
(A+)
𝑎 E𝑎 (6.49)

which generates local OSp(1|2)C-gauge transformations.

Finally, since they will play an important role in what follows, let us recall the reality con-
ditions imposed on the canonical variables in order to recover ordinary real supegravity.
According to (5.151), it follows that, provided 𝑒 is real and 𝐴+ satisfies the field equation
(5.148) (resp. (5.149)), action (6.33) is purely real up to a boundary term. Hence, in the

1 Of course, the vector and Hamiltonian constraint also have to be expressed in terms of the fundamental
variables. This can be done in analogy to the right SUSY constraint. We will do so for the symmetry
reduced expressions in the following section.

291



6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

canonical theory, it follows that the reality conditions are equivalent to the requirement
that the 3𝐷 spin connection part Γ𝑖 of 𝐴+ satisfies the torsion equation

𝐷 (Γ) 𝑒𝑖 ≡ d𝑒𝑖 + 𝜖 𝑖
𝑗𝑘
Γ𝑗 ∧ 𝑒𝑘 = Θ(Γ) 𝑖 =

𝑖𝜅

2
𝜓 𝐴 ∧ 𝜓 𝐴′𝜎 𝑖

𝐴𝐴′ (6.50)

which has the unique solution

Γ𝑖 ≡ Γ𝑖 (𝑒) + 𝐶 𝑖 (𝑒, 𝜓 , 𝜓 ) (6.51)

with Γ𝑖 (𝑒) the torsion-free metric connection

Γ𝑖𝑎 (𝑒) = −𝜖 𝑖𝑗𝑘𝑒𝑏𝑗
(
𝜕[𝑎𝑒𝑏]𝑘 +

1
2
𝑒𝑐
𝑘
𝑒𝑙𝑎𝜕[𝑐𝑒𝑏]𝑙

)
(6.52)

and𝐶 𝑖 the contorsion tensor given by

𝐶 𝑖𝑎 =
𝑖𝜅

4√𝑞 𝜖
𝑏𝑐𝑑𝑒𝑖

𝑑

(
2𝜓 𝐴[𝑎𝜓

𝐴′

𝑏] 𝑒𝑐𝐴𝐴′ − 𝜓
𝐴
𝑏
𝜓 𝐴

′
𝑐 𝑒𝑎𝐴𝐴′

)
(6.53)

Thus, to summarize, the reality conditions for the bosonic degrees of freedom take the
form

𝐴+𝑖𝑎 + (𝐴+𝑖𝑎 )∗ = 2Γ𝑖𝑎 (𝑒) + 2𝐶 𝑖𝑎 (𝑒, 𝜓 , 𝜓 ), 𝐸 𝑎𝑖 = ℜ(𝐸 𝑎𝑖 ) (6.54)

These ensure that, provided the initial conditions satisfy (6.54), the dynamical evolution
remains in the real sector of the complex phase space, i.e., the phase space of ordinary
realN = 1 supergravity.

6.5. The symmetry reduced model
6.5.1. Homogeneous (isotropic) super connection forms

Typically fermions in cosmological models are not compatible with isotropy. However,
in case ofN = 1 supersymmetry, it turns out that there does exist an ansatz for the
gravitino field which is consistent with the requirement of spatial isotropy. This is due
to the intrinsic geometric nature of the Rarita-Schwinger field as well as the underlying
supersymmetry of the theory and, in the context of chiral LQSG, can naturally be
understood in terms of homogeneous (isotropic) super connection forms which we
would like to explain it what follows.

We consider a spatial slice Σ in the spacetime manifold 𝑀 and assume that Σ is homo-
geneous, i.e., the group 𝐻 := ISO(Σ) of isometries of Σ acts transitively on it. Hence,
if 𝐻𝑥 denotes the stabilizer subgroup at some point 𝑥 ∈ Σ, one can identify Σ with the
coset space 𝐻/𝐻𝑥 . Here, in order to compare our results with other results in the litera-
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ture, we are mainly interested in the standard homogeneous isotropic FLRW models, in
particular, in the spatially flat case (𝑘 = 0) and the case with positive spatial curvature
(𝑘 = +1). In both cases the isometry group takes the form of a semi-direct product
𝐻 � 𝑇 ⋊ SO(3) with𝑇 the subgroup of translations acting freely and transitively on
Σ and the isotropy subgroup SO(3).

LetH := S(𝐻 ) be the corresponding bosonic super Lie group. As discussed in detail
in Section 6.3, we are looking for a lift of the standard left action of H on H/H𝑥
to a left action on the S-relative principal OSp(1|2)C-bundle P/S . This turns out
to be equivalent to classifying conjugacy classes of super Lie group morphisms 𝜆 :
H → OSp(1|2)C, Given such a super Lie group morphism and the corresponding
left action 𝑓̂S : H × P/S → P/S , one can study super connection 1-forms which
are invariant w.r.t. the symmetry group, i.e.,H -invariant super connection 1-forms
A+ ∈ Ω1(P/S ,𝔬𝔰𝔭(1|2)C)0 satisfying (6.21). According to Prop. 6.3.2, it follows that
any invariant super connectionA+ is uniquely determined by a (S-parametrized) super
Lie algebra morphism Ξ : 𝔥→ 𝔬𝔰𝔭(1|2)C (and trivially extended to the corresponding
super Lie module Lie(H) = Λ ⊗ 𝔥) satisfying Ξ|Lie(𝐻𝑥 ) = 𝜆∗ and

Ad𝜙−1 ⋄Ξ = Ξ ⋄Ad𝜆 (𝜙)−1 (6.55)

on Lie(H) for any 𝜙 ∈ H𝑥 , such that

𝜄∗A+ = 𝜃 (H)MC ⋄Ξ (6.56)

where 𝜄 : H/S → P/S is an embedding. Here, 𝜃 (H)MC ∈ Ω
1(H , 𝔥) is the Maurer-Cartan

form onH which satisfies the Maurer-Cartan structure equation

d𝜃 (H)MC +
1
2
[𝜃 (H)MC ∧ 𝜃

(H)
MC ] = 0 (6.57)

In case of FLRW, we have𝐻 � 𝑇 ⋊SO(3). Let us first assume thatA+ is homogeneous,
that is,A+ is invariant under the translational subgroup𝑇 of the full symmetry group.
Since𝑇 acts freely and transitively on Σ � 𝑇 , we have𝑇𝑥 � {𝑒} and the only possible
super Lie group morphismΞ : S({𝑒}) → OSp(1|2)C consists of the identity morphism.
Hence, in particular, condition (6.55) is empty and it follows that a homogeneousA+ is
uniquely determined by a (S-parametrized) super Lie algebra morphismΞ : Lie(𝑇 ) →
𝔬𝔰𝔭(1|2)C such that the pullback ofA+ to Σ is given by

A+ = 𝜃 (S(𝑇 ))MC ⋄Ξ =: 𝜙𝑘𝑖𝑇
+
𝑘
𝑒𝑖 + 𝜙𝐴𝑖 𝑄𝐴𝑒𝑖 (6.58)

where, with respect to a basis𝑇𝑖 ∈ Lie(𝑇 ) of Lie(𝑇 ) (not to be confused with chiral
generators𝑇 +

𝑖
of the bosonic subalgebra𝔰𝔩(2,C) of𝔬𝔰𝔭(1|2)C), we set 𝜙𝑖 := ⟨𝑇𝑖 |Ξ⟩. As
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A+ is even, it follows that 𝜙𝑖 are bosonic and 𝜙𝐴 define odd fermion fields. Furthermore,
(𝑒𝑖)𝑖 is the induced basis of fiducial left-invariant one-forms2 on Σ. This is the most
general form of a homogeneous super connection 1-form.

If one requires thatA+, in addition, is isotropic, it then follows that Ξ needs to satisfy
(6.55) on the Lie algebra Lie(𝐻𝑥) � 𝔰𝔬(3) of the isotropy subgroup which infinitesi-
mally reads

⟨ad𝜏𝑖 (𝑇𝑘) |Ξ⟩ = ad𝜆∗ (𝑇 +𝑖 ) ⟨𝑇𝑘 |Ξ⟩ (6.59)

∀𝜏𝑖 ∈ 𝔰𝔬(3) for some super Lie algebra morphism 𝜆∗ : 𝔰𝔬(3) → 𝔬𝔰𝔭(1|2)C. If one
works in the standard category, it follows, as 𝜆∗ is even, that it only takes values in the
even Lie subalgebra 𝔰𝔩(2,C). This corresponds to connections which are invariant
under the spatial isotropy group up to ordinary gauge transformations. Let us focus
first on these type of connections. We will then also consider a more general class below.
Since 𝔰𝔬(3)C = 𝔰𝔩(2,C), it follows that the only nontrivial Lie algebra morphism, via
this identification, is given by the identity morphism, i.e., 𝜆∗ : 𝔰𝔬(3) → 𝔰𝔩(2,C), 𝜏𝑖 ↦→
𝑇 +
𝑖

. Using that the adjoint representation on the translational subgroup is given by
ad𝜏𝑖 (𝑇𝑘) = 𝜖 𝑙

𝑖𝑘
𝑇𝑙 , (6.59) leads to the condition

𝜖 𝑙
𝑖𝑘
𝜙𝑙 = ad𝑇 +

𝑖
(𝜙𝑗
𝑘
𝑇 +𝑗 + 𝜙𝐴𝑘 𝑄𝐴) = 𝜙

𝑗

𝑘
𝜖 𝑚
𝑖𝑗 𝑇 +𝑚 + 𝜙𝐴𝑘 (𝜏𝑖)

𝐵
𝐴
𝑄𝐵 (6.60)

Restricting first on the even subalgebra, it follows immediately that the unique solution
of the bosonic part of the connection has to be of the form

𝜙𝑘𝑖 = 𝑐𝛿
𝑘
𝑖 (6.61)

for some complex, Grassmann-even number 𝑐. This is precisely the form of the isotropic
self-dual Ashtekar connection as used in [91] (see also [235] for the discussion in case of
real variables). Considering next the odd part of the super Lie algebra, one finds that the
only possible solution to (6.60) for the fermionic degrees of freedom requires 𝜙𝐴

𝑖
= 0.

Hence, in this restricted subclass of invariant super connections which are invariant
only up to ordinary gauge transformations, it follows that one cannot make a purely
isotropic ansatz in both bosonic and fermionic degrees of freedom.

For this reason, in what follows, let us consider a wider class of invariant super connec-
tions that are invariant up to gauge and (partial) supersymmetry transformations. To
explain this in a bit more detail, let us focus on the special case of a vanishing cosmo-
logical constant, i.e., 𝐿 → ∞ such that, in this limit, 𝔬𝔰𝔭(1|2)C reduces to the super
Poincaré algebra in 𝐷 = 2 which we denote by 𝔬𝔰𝔭(1|2)C. According to Remark 6.3.3,
super connection forms which are invariant up to OSp(1|2)C-gauge transformations

2 We are adopting the notations in [88, 90] and denote the left-invariant 1-forms by 𝑒𝑖 instead of 𝜔̊𝑖 as
usually done in the LQC literature.
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are then classified by (even) S-parametrized morphisms of super Lie modules of the
form

𝜆∗ : S × (Λ ⊗ 𝔰𝔬(3)) → Λ ⊗ 𝔬𝔰𝔭(1|2)C (6.62)

which, due to the additional parametrization supermanifoldS, can now take values in
all of Lie(OSp(1|2)C) = Λ ⊗ 𝔬𝔰𝔭(1|2)C not just in the bosonic sub module. It then
follows that a more general class of such morphisms are of the form

𝜆𝜃∗ (𝜏𝑖) ≡ 𝜆𝜃∗ (·, 𝜏𝑖) := 𝑇 +𝑖 + 𝜎 𝐴𝐴
′

𝑖 𝜃𝐴′𝑄𝐴 (6.63)

for some Grassmann-odd 𝜃𝐴′ : S → Λ1. It is then immediate to see that this indeed
defines a morphism of super Lie modules, since

[𝜆𝜃∗ (𝜏𝑖), 𝜆𝜃∗ (𝜏𝑗 )] = [𝑇 +𝑖 , 𝑇 +𝑗 ] + 𝜃𝐴′ [𝑇 +𝑖 , 𝑄𝐴]𝜎 𝐴𝐴
′

𝑗 + 𝜃𝐴′ [𝑄𝐴, 𝑇 +𝑗 ]𝜎 𝐴𝐴
′

𝑖

= 𝜖 𝑘
𝑖𝑗 𝑇

+
𝑘
− 𝑖𝜃𝐴′𝑄𝐵 (𝜎[𝑖 𝜎𝑗 ])𝐵𝐴

′

= 𝜖 𝑘
𝑖𝑗 (𝑇

+
𝑘
+ 𝜎 𝐴𝐴′

𝑘
𝜃𝐴′𝑄𝐴) = 𝜖 𝑘

𝑖𝑗 𝜆
𝜃
∗ (𝜏𝑘) (6.64)

The form of the reduced connection again follows from the identity (6.60). Together
with (6.63), it follows that the bosonic components ofA+ need to satisfy

𝜖 𝑙
𝑖𝑘
𝜙𝑚
𝑙
= [𝜆𝜃∗ (𝜏𝑖), 𝜙𝑙𝑘𝑇

+
𝑙
+ 𝜙𝐴

𝑘
𝑄𝐴]𝑚 = 𝜙𝑙

𝑘
𝜖 𝑚
𝑖𝑙

(6.65)

and thus again are of the form (6.61) for some complex, Grassmann-even number 𝑐. For
the fermionic components, this yields

𝜖 𝑙
𝑖𝑘
𝜙𝐴
𝑙
= [𝜆𝜃∗ (𝜏𝑖), 𝜙𝑙𝑘𝑇

+
𝑙
+ 𝜙𝐵

𝑘
𝑄𝐵]𝐴 = 𝜙𝐵

𝑘
[𝑇 +𝑖 , 𝑄𝐵]𝐴 + 𝑐𝜎 𝐵𝐵

′
𝑖 𝜃𝐵′ [𝑄𝐵 , 𝑇 +𝑘 ]

𝐴

= 𝜙𝐵
𝑘
(𝜏𝑖)𝐴𝐵 +

𝑐

2
𝜖 𝑙
𝑖𝑘
𝜎 𝐴𝐴

′

𝑙
𝜃𝐴′ (6.66)

As may be easily checked by direct computation, this is solved by the following ansatz
together with its complex conjugate

𝜙𝐴𝑖 = 𝜎 𝐴𝐴
′

𝑖 𝜓𝐴′ (6.67)

𝜙𝐴
′

𝑖 = 𝜎 𝐴𝐴
′

𝑖 𝜓𝐴 (6.68)

with𝜓𝐴′ := 𝑐𝜃𝐴′ and𝜓𝐴 the corresponding complex conjugate. Interestingly, this is pre-
cisely the ansatz for the Rarita-Schwinger field as proposed by D’Eath at al. in [88–90].
Thus, we see that allowing for these general type of symmetry reduced connections, this
leads to an ansatz that contains nontrivial fermionic contributions. Note, however, that
these are not completely independent. This is due to the fact that this consideration only
describes connections which are invariant up to left-handed supersymmetry transfor-
mations. Hence, for a full treatment, one also has to take right-handed supersymmetry
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transformations into account. Nevertheless, this demonstrates that in order to study
symmetry reduced models with local supersymmetry, one should consider symmetry
reduced connections which are invariant not only up to gauge but, at least in a specific
sense, also supersymmetry transformations.

In the following sections, for the construction of symmetry reduced models, we will use
the ansaetze (6.61) and (6.67) for the even and odd components ofA+, respectively. In
particular, we will allow the fermionic degrees of freedom to be independent from the
bosonic ones. This is, in fact, consistent with the reality conditions. In this context, note
that, making an isotropic ansatz for the bosonic degrees of freedom, this implies that the
reality condition (6.54) which couples bosonic and fermionic degrees of freedom also
has to be isotropic. In particular, the contorsion tensor necessarily has to be of the form

𝐶 𝑖𝑎 ≡ 𝐶𝑒𝑖𝑎 (6.69)

for some real, Grassmann-even number𝐶 . As we will see explicitly in Section 6.5.2, this
turns out to be indeed the case using the ansatz (6.68).

Remark 6.5.1. In fact, one can argue that (6.67) and (6.68) are the most general ansatz
for the fermionic fields consistent with the reality conditions. To this end, one notices
that the Rarita-Schwinger field 𝜓𝑖 := (𝜙𝐴

𝑖
, 𝜙𝑖 𝐴′)𝑇 constructed out of the homogeneous

fermionic components ofA+ can be always split into a trace part 𝜙 := 𝛾 𝑖𝜓𝑖 as well as a
trace-free part 𝜌𝑖 := 𝜓𝑖 − 1

3 𝛾𝑖𝜙 w.r.t. the gamma matrices [67]. As the trace-free part
carries internal indices, it then follows that the contorion tensor will generically not be
of the form (6.69). The trace part, on the other hand, precisely leads back to (6.67) and
(6.68). Thus, in this sense, (6.67) and (6.68) can be regarded as a necessary condition
for odd components ofA+ to provide consistency with the reality condition (6.54) in
case of purely isotropic bosonic degrees of freedom.

6.5.2. Symmetry reduction of the chiral action

Having derived the general ansatz for the bosonic and fermionic degrees of freedom for
homogeneous isotropic cosmology, we want to perform a symmetry reduction of the
action (6.33) and determine the constraints in the symmetry reduced model. To this
end, as already mentioned in the previous section, we are mainly interested in the FLRW
models with positive (𝑘 = 1) and vanishing spatial curvature (𝑘 = 0), respectively. In
the spatially flat case, the translational subgroup𝑇 of the isometry group is Abelian and
a basis (co-frame) of fiducial left-invariant one-forms is obtained as the coefficients of
the Maurer-Cartan form 𝜃

(𝑇 )
MC = 𝑒𝑖𝑇𝑖 .

In the case 𝑘 = +1, Σ is isomorphic to a three-sphere S3 which can be identified with
the Lie group SU(2). Hence, the Maurer-Cartan form of SU(2) yields a canonical basis
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of fiducial left-invariant one-forms 𝜃 (SU(2))
MC = 𝑒𝑖𝜏𝑖 . For both situations, according to

(6.57), the structure equation fulfilled by these sets of 1-forms can be written as

d𝑒𝑖 + 𝑘
2
𝜖 𝑖
𝑗𝑘
𝑒𝑗 ∧ 𝑒𝑘 = 0 (6.70)

where 𝑘 = 1 or 𝑘 = 0 in case of a positive or vanishing spatial curvature. The corre-
sponding fiducial frame fields 𝑒𝑖 dual to the 1-forms 𝑒𝑖 satisfy 𝑒𝑖𝑎𝑒𝑎𝑗 = 𝛿 𝑖

𝑗
and form a basis

of left-invariant vector fields on Σ. The fiducial metric 𝑞̊𝑎𝑏 is related to the co-frame via

𝑞̊𝑎𝑏 = 𝛿𝑖𝑗 𝑒
𝑖
𝑎𝑒
𝑗

𝑏
(6.71)

where, for 𝑘 = 1, as explained in [237] this metric corresponds to a three-sphere of radius
𝑟0 = 2 so that the total volume of Σ is given by𝑉0 = 2𝜋2𝑟30 = 16𝜋2. The co-frame
𝑒𝑖 of a different spatial slice of the spacetime manifold is related to the fiducial one via
rescaling 𝑒𝑖 = 𝑎𝑒𝑖 and similarly for the triad 𝑒𝑖 = 𝑎−1𝑒𝑖 where 𝑎 can be both positive or
negative according to the handedness of the triad. Here and in the following, we will fix
the sign of the internal three-form 𝜖𝑖𝑗𝑘 with the convention 𝜖123 = 1. The volume form
of the spatial slices is then related to the internal 3-form via

√
𝑞𝜖𝑎𝑏𝑐 = 𝜖𝑖𝑗𝑘𝑒

𝑖
𝑎𝑒
𝑗

𝑏
𝑒𝑘𝑐 (6.72)

According to (6.72), due to the conventions made for the internal 3-form, in case of a
positive orientation of the triad, 𝜖𝑎𝑏𝑐 is normalized to one, i.e., 𝜖123 = +1. Consequently,
changing the orientation of the triad then changes the sign of the volume form such
that 𝜖𝑎𝑏𝑐 → −𝜖𝑎𝑏𝑐 under 𝑒𝑖𝑎 → −𝑒𝑖𝑎. Finally, from the definition, it follows

𝜖𝑎𝑏𝑐𝑒𝑖𝑎𝑒
𝑗

𝑏
𝑒𝑘𝑐 = 𝜖

2𝜖 𝑖𝑗𝑘 (6.73)

where 𝜖 indicates the orientation of the triad. For convenience, following [91], we will
keep track of the various sign factors appearing in the computations and therefore do
not set 𝜖2 = 1 at this stage, the reason being that this will simplify the implementation
of the dynamical constraints in the quantum theory.

For the symmetry reduction of the theory, let us fix a fiducial cellV inΣ of finite volume
𝑉0 as measured by (6.71) which will be the whole Σ in case 𝑘 = 1 or a finite proper sub
region in case 𝑘 = 0 where, in the latter case, physics will be insensitive to this choice

due to homogeneity. Furthermore, we introduce a length scale setting ℓ0 :=𝑉
1
3
0 . With
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these definitions, it follows, using ansatz (6.61) for the reduced connection, that the
fundamental variables corresponding to the bosonic degrees of freedom take the form

𝐴+𝑖𝑎 =
𝑐

ℓ0
𝑒𝑖𝑎 and 𝐸 𝑎𝑖 =

𝑝

ℓ 20

√︃
𝑞̊𝑒𝑎𝑖 (6.74)

for some Grasmann-even number 𝑝 which, according to (6.54), needs to satisfy the
reality condition 𝑝 = 𝑝∗. For the fermionic degrees of freedom, we choose the ansatz
(6.67) and (6.68). The symplectic potential in (6.33) then takes the form∫

R
d𝑡

∫
V

d3𝑥
(
𝑖

𝜅
𝐸 𝑎𝑖
¤𝐴+𝑖𝑎 − 𝜋 𝑎𝐴 ¤𝜓

𝐴
𝑎

)
=

∫
R

d𝑡
(
3𝑖
𝜅
𝑝 ¤𝑐 − 𝜋̄ 𝐴′ ¤̄𝜓𝐴′

)
(6.75)

with the canonically conjugate momentum

𝜋̄ 𝐴
′

:= −6𝑖𝑉0 |𝑎|𝜓𝐴𝑛𝐴𝐴
′

(6.76)

Hence, the canonically conjugate variables in the symmetry reduced theory are given by
(𝑐, 𝑝) and (𝜓𝐴′ , 𝜋̄ 𝐴

′) satisfying the nonvanishing graded Poisson brackets

{ 𝑝, 𝑐} = 𝑖𝜅
3

and {𝜋̄ 𝐴′ , 𝜓𝐵′} = −𝛿 𝐴
′

𝐵′ (6.77)

where the complex conjugate𝜓𝐴 of𝜓𝐴′ is related to its canonically conjugate momentum
through the reality condition (6.76). In order to derive the respective reality condition
in the bosonic sector, let us first consider the metric connection part of (6.51) which,
using (6.70), yields

Γ𝑖𝑎 (𝑒) =
𝑘

4
𝜖 𝑖𝑗𝑘𝑒𝑏𝑗

(
2𝜖𝑘𝑚𝑛𝑒𝑚[𝑎𝑒

𝑛
𝑏] + 𝑒

𝑐
𝑘
𝑒𝑙𝑎𝜖𝑙𝑚𝑛𝑒

𝑚
[𝑐 𝑒
𝑛
𝑏]

)
=
𝑘

2
𝑒𝑖𝑎 (6.78)

Finally, for the torsion contribution we compute, using the identities (4.32) and (4.33)
stated in Section 4.2,

𝐶 𝑖𝑎 =
𝑖𝜅

4√𝑞 𝜖
𝑏𝑐𝑑𝑒𝑖

𝑑

(
2𝑒𝐴𝐵

′

[𝑎 𝑒
𝐵𝐴′

𝑏] 𝑒𝑐𝐴𝐴′ − 𝑒
𝐴𝐵′

𝑏
𝑒𝐵𝐴

′
𝑐 𝑒𝑎𝐴𝐴′

)
𝜓𝐵′𝜓𝐵

=
𝑖𝜅𝜖2

4𝑎2
𝜖 𝑖𝑗𝑘𝑒𝑙𝑎

(
𝜎 𝐴𝐵

′

𝑙
𝜎 𝐵𝐴

′
𝑗 𝜎𝑘𝐴𝐴′ − 𝜎 𝐴𝐵

′
𝑗 𝜎 𝐵𝐴

′

𝑙
𝜎𝑘𝐴𝐴′ − 𝜎 𝐴𝐵

′
𝑗 𝜎 𝐵𝐴

′

𝑘
𝜎𝑙 𝐴𝐴′

)
𝜓𝐵′𝜓𝐵

=
𝑖𝜅

2𝑎2
𝑒𝑙𝑎

(
−𝑖𝜎 𝐴𝐵′

𝑙
𝑛𝐴𝐴′𝜎

𝑖𝐵𝐴′ + 𝜖 𝑖𝑗
𝑙
𝜎 𝐵𝐵

′
𝑗

)
𝜓𝐵′𝜓𝐵

=
𝜅

2𝑎2
𝑒𝑖𝑎𝑛

𝐵𝐵′𝜓𝐵′𝜓𝐵 (6.79)
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which, together with (6.76), yields

𝐶 𝑖𝑎 = −
𝑖𝜅

12ℓ0 𝑝
𝑒𝑖𝑎 𝜋̄

𝐴′𝜓𝐴′ (6.80)

Hence, the reality condition (6.54) for self-dual Ashtekar connection in the reduced
theory takes the form

𝑐 + 𝑐∗ = 𝑘ℓ0 −
𝑖𝜅

6𝑝
𝜋̄ 𝐴

′
𝜓𝐴′ (6.81)

which, in particular, is isotropic in the torsion contribution consistent with the isotropic
ansatz for the gravitational degrees of freedom.

Next, we have to compute the constraints in the reduced model. To this end, let us first
consider the Gauss constraint (6.45). It is immediate to see that the first part depending
on the covariant derivative yields a total derivative as the term proportional to the
connection simply drops out due to the isotropic ansatz. Hence, only the fermionic
contribution remains for which, using (6.34), we compute

𝐺𝑖 = −𝜋 𝑎𝐴(𝜏𝑖)
𝐴
𝐵𝜓

𝐵
𝑎 = −𝜖𝑎𝑏𝑐𝑒𝐶𝐴′

𝑏
𝜓𝐶 𝑒𝑐𝐴𝐴′ (𝜏𝑖)𝐴𝐵 𝑒

𝐵𝐶′
𝑎 𝜓𝐶′

= −|𝑎|
√︃
𝑞̊𝜖𝑗𝑘𝑙𝜓𝐶𝜓𝐶′𝜎

𝐶𝐴′
𝑗 𝜎𝑘𝐴𝐴′ (𝜏𝑖)𝐴𝐵 𝜎

𝐵𝐶′

𝑙

= 2𝑖 |𝑎|
√︃
𝑞̊𝜓𝐶𝜓𝐶′𝑛𝐴𝐴′𝜎

𝑙𝐶 𝐴′ (𝜏𝑖)𝐴𝐵 𝜎
𝐵𝐶′

𝑙

= −2𝑖 |𝑎|
√︃
𝑞̊𝜓𝐶𝜓𝐶′𝑛

𝐶𝐷′ (𝜏𝑖) 𝐶′

𝐷′ (6.82)

Hence, inserting (6.82) into the action (6.33), we find∫
R

d𝑡
∫
V

d3𝑥 𝐴𝑖𝑡𝐺𝑖 =
∫
R

d𝑡
1
3
𝐴𝑖𝑡

(
−6𝑖 |𝑎|𝑉0𝜓𝐶𝑛𝐶𝐷

′ (𝜏𝑖) 𝐶′

𝐷′ 𝜓𝐶′
)

(6.83)

so that, due to (6.76), the reduced Gauss constraint can be written in the form

𝐺𝑖 = 𝜋̄
𝐴′ (𝜏𝑖) 𝐵′

𝐴′ 𝜓𝐵′ (6.84)

It is immediate from the homogeneous ansatz that the theory is invariant under diffeo-
morphism transformations. Hence, concerning the vector constraint, one may expect
that (6.46) vanishes identically. However, as can be checked explicitly after some lengthy
calculation, while the purely bosonic term vanishes identically due the isotropic ansatz
for the gravitational degrees of freedom, the fermionic contribution turns out to be
proportional to the Gauss constraint. This is in fact analogous to the full theory, were
the Gauss constraint needs to be substracted from the vector constraint in order to

299



6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

obtain the infinitesimal generator of pure diffeomorphism transformations. Next, let us
turn to the left supersymmetry constraint (6.40) which reads

𝑆𝐿
𝐴
= 𝜕𝑎𝜋

𝑎
𝐴
− 𝜋 𝑎

𝐵
(𝜏𝑖)𝐵𝐴𝐴

+𝑖
𝑎 + 2𝐿−1𝐸 𝑎𝑖𝜓 𝐵𝑎 (𝜖𝜏𝑖)𝐵𝐴 (6.85)

If we drop the total derivative in (6.85), it follows

𝑆𝐿
𝐴
= − 𝑐

ℓ0
𝜖𝑎𝑏𝑐𝑒𝑖𝑎𝜓

𝐴′

𝑏
𝑒𝑐𝐵𝐵′ (𝜏𝑖)𝐵𝐴 + 2

𝑝

ℓ 20 𝐿

√︃
𝑞̊𝑒𝑎𝑖 𝑒𝐵𝐵

′
𝑎 𝜓𝐵′ (𝜖𝜏𝑖)𝐵𝐴

= − 𝑐

ℓ0𝑎2
𝜖𝑎𝑏𝑐𝑒𝑖𝑎𝑒

𝑗

𝑏
𝑒𝑘𝑐 𝜓𝐶 𝜎

𝐶𝐵′
𝑗 𝜎𝑘𝐵𝐵′ (𝜏𝑖)𝐵𝐴 −

𝑖 𝑝

ℓ 20 𝐿

√︃
𝑞̊𝜎 𝑖𝐵𝐵

′ (𝜖𝜏𝑖)𝐵𝐴𝜓𝐵′

=
𝑖 𝜖2𝑐

ℓ0𝑎2
|𝑎|3

√︃
𝑞̊𝜖 𝑖𝑗𝑘𝜖 𝑙

𝑗𝑘
𝑛𝐵𝐵′𝜎

𝐶𝐵′

𝑙
(𝜏𝑖)𝐵𝐴𝜓𝐶 +

3𝑖 𝑝
ℓ 20 𝐿

√︃
𝑞̊𝜓𝐵′ 𝜖

𝐵′𝐴′𝑛𝐴𝐴′

=
3|𝑎|𝜖2
ℓ0

√︃
𝑞̊𝑐𝜓𝐴 +

3𝑖 𝑝
ℓ 20 𝐿

√︃
𝑞̊𝜓𝐵′ 𝜖

𝐵′𝐴′𝑛𝐴𝐴′ (6.86)

which, together with identity (4.31), gives

𝑆𝐿
𝐴
= 3

√︃
𝑞̊𝑛𝐴𝐴′

(
|𝑎|𝜖2𝑐
ℓ0

𝜓𝐵𝑛
𝐵𝐴′ +

𝑖 𝑝

ℓ 20 𝐿
𝜓𝐵′ 𝜖

𝐵′𝐴′
)

(6.87)

Hence, if we insert the reduced expression (6.86) into (6.33), we find∫
R

d𝑡
∫
V

d3𝑥 𝑆𝐿
𝐴
𝜓 𝐴𝑡 =

∫
R

d𝑡
(
|𝑎|𝜖2𝑐
ℓ0

𝑉0𝜓𝐵𝑛
𝐵𝐴′ + 𝑖ℓ0

𝐿
𝑝𝜓𝐵′ 𝜖

𝐵′𝐴′
)
3𝑛𝐴𝐴′𝜓 𝐴𝑡

=

∫
R

d𝑡
(
− 𝜖

2𝑐

ℓ0
6𝑖 |𝑎|𝑉0𝜓𝐵𝑛𝐵𝐴

′ + 6ℓ0
𝐿
𝑝𝜓𝐵′ 𝜖

𝐵′𝐴′
)
𝑖

2
𝑛𝐴𝐴′𝜓

𝐴
𝑡

=:
∫
R

d𝑡
(
𝜖𝑐

ℓ0
𝜋̄ 𝐴

′ + 6ℓ0
𝐿
| 𝑝 |𝜓𝐵′ 𝜖𝐵

′𝐴′
)
𝜖𝜓𝑡 𝐴′ (6.88)

where in the last step the reality condition (6.76) was used. Therefore, in the reduced
theory, left supersymmetry constraint takes the form

𝑆𝐿𝐴
′
=
𝜖𝑐

ℓ0
𝜋̄ 𝐴

′ + 6ℓ0
𝐿
| 𝑝 |𝜓𝐵′ 𝜖𝐵

′𝐴′ (6.89)
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For the right supersymmetry constraint (6.41), we first focus on the term depending on
the covariant derivative which reads

− 𝜖𝐴′𝐵′ 𝜖𝑎𝑏𝑐𝑒
𝑎𝐴𝐵′𝐷

(𝐴+)
𝑏

𝜓 𝐴𝑐 = −𝜖𝐴′𝐵′ 𝜖𝑎𝑏𝑐𝑒
𝑎𝐴𝐵′ (𝜕𝑏𝑒

𝑗
𝑐 𝜎

𝐴𝐶′
𝑗 𝜓𝐶′ + 𝐴

+𝑗
𝑏
(𝜏𝑗 )𝐴𝐶𝜓

𝐶
𝑐 )

= − 𝜖𝐴′𝐵′ 𝜖𝑎𝑏𝑐𝑒𝑖𝑎𝜕𝑏𝑒
𝑗
𝑐 𝜎𝑖 𝐴𝐵′𝜎

𝐴𝐶′
𝑗 𝜓𝐶′ − 𝜖𝐴

′𝐵′ 𝜖𝑎𝑏𝑐
𝑐

ℓ0
𝑒𝑖𝑎𝑒

𝑗

𝑏
𝑒𝑘𝑐 𝜎𝑖 𝐴𝐵′ (𝜏𝑗 )𝐴𝐵 𝜎

𝐵𝐶′

𝑘
𝜓𝐶′

(6.90)

Using again (6.70), this yields

𝑘

2
𝜖
𝑗

𝑘𝑙
𝜖𝐴
′𝐵′ 𝜖𝑎𝑏𝑐𝑒𝑖𝑎𝑒

𝑘
𝑏
𝑒𝑙𝑐 𝜎𝑖 𝐴𝐵′𝜎

𝐴𝐶′
𝑗 𝜓𝐶′ −

𝑐

ℓ0
𝜖𝐴
′𝐵′ 𝜖2 |𝑎|𝜖 𝑖𝑗𝑘𝜎𝑖 𝐴𝐵′ (𝜏𝑗 )𝐴𝐵 𝜎

𝐵𝐶′

𝑘
𝜓𝐶′

= − 3𝑘 |𝑎|𝜖2
√︃
𝑞̊𝜖𝐴

′𝐵′𝜓𝐵′ +
3|𝑎|𝜖2𝑐
ℓ0

√︃
𝑞̊𝜖𝐴

′𝐵′𝜓𝐵′

=
3|𝑎|𝜖2
ℓ0

√︃
𝑞̊𝜖𝐴

′𝐵′ (𝑐 − 𝑘ℓ0)𝜓𝐵′ (6.91)

On the other hand, the term proportional to the cosmological constant gives

2𝐿−1𝐸 𝑎𝑖 (𝜖𝜏𝑖)𝐴
′𝐵′𝜓𝑎𝐵′ =

2𝑝
ℓ 20 𝐿

√︃
𝑞̊𝑒𝑎𝑖 (𝜖𝜏𝑖)𝐴

′𝐵′𝑒𝐶𝐶
′

𝑎 𝜖𝐶′𝐵′𝜓𝐶

=
2𝑝
ℓ 20 𝐿

√︃
𝑞̊(𝜖𝜏𝑖 𝜖)𝐴

′

𝐶′ 𝜎
𝑖𝐶𝐶′𝜓𝐶

=
2𝑝
ℓ 20 𝐿

√︃
𝑞̊(𝜏𝑖) 𝐴′

𝐶′ 𝜎 𝑖𝐶𝐶
′
𝜓𝐶 =

3𝑖 𝑝
ℓ 20 𝐿

√︃
𝑞̊𝜓𝐶𝑛

𝐶𝐴′ (6.92)

where we used that 𝜖𝜏𝑖 𝜖 = 𝜏𝑇𝑖 . To summarize, we found

𝑆𝑅𝐴
′
= 𝜖𝐴

′𝐵′
√︃
𝑞̊

(
3|𝑎|𝜖2
ℓ0
(𝑐 − 𝑘ℓ0)𝜓𝐵′ +

3𝑖 𝑝
ℓ 20 𝐿

𝜓𝐴𝑛
𝐴𝐶′ 𝜖𝐶′𝐵′

)
(6.93)

Inserting (6.93) into the action (6.33), this yields∫
R

d𝑡
∫
V

d3𝑥 𝜓𝑡 𝐴′𝑆𝑅𝐴
′
= −

∫
R

d𝑡 𝜖𝜓 𝐵
′

𝑡

(
3𝑎ℓ 20 (𝑐 − 𝑘ℓ0)𝜓𝐵′ +

3𝑖 | 𝑝 |
ℓ 20 𝐿

𝑉0𝜓𝐴𝑛
𝐴𝐶′ 𝜖𝐶′𝐵′

)
= −

∫
R

d𝑡 𝜖𝜓 𝐵
′

𝑡

(
3𝜖ℓ0

√︃
| 𝑝 | (𝑐 − 𝑘ℓ0)𝜓𝐵′ −

1
2𝐿

√︃
| 𝑝 |𝜋̄𝐶′𝜖𝐶′𝐵′

)
(6.94)

301



6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

so that, in the reduced theory, the right supersymmetry constraint can be written as

𝑆𝑅
𝐴′ = 3𝜖ℓ0

√︃
| 𝑝 | (𝑐 − 𝑘ℓ0)𝜓𝐴′ −

1
2𝐿

√︃
| 𝑝 |𝜋̄ 𝐵′ 𝜖𝐵′𝐴′ (6.95)

Finally, we need to derive the reduced analog of the Hamiltonian constraint. As far as
the purely bosonic term is concerned

𝐻𝑏 = −
𝐸 𝑎
𝑖
𝐸𝑏
𝑗

2𝜅√𝑞 𝜖
𝑖𝑗

𝑘
𝐹 (𝐴+)𝑘

𝑎𝑏
(6.96)

in case of the self-dual approach, a reduced expression is stated in [91]. For sake of
completeness, let us derive it here in full detail. This will also clarify the positions of the
sign factors. Again applying the structure equation (6.70), we find for the curvature of
the self-dual Ashtekar connection

𝐹 (𝐴+)𝑘
𝑎𝑏

=
2𝑐
ℓ0
𝜕[𝑎𝑒

𝑘
𝑏] +

𝑐2

ℓ 20
𝜖𝑘
𝑙𝑚
𝑒𝑙𝑎𝑒

𝑚
𝑏
= −𝑘𝑐

ℓ0
𝜖𝑘
𝑙𝑚
𝑒𝑙𝑎𝑒

𝑚
𝑏
+ 𝑐

2

ℓ 20
𝜖𝑘
𝑙𝑚
𝑒𝑙𝑎𝑒

𝑚
𝑏

such that (6.96) becomes

𝐻𝑏 = −
𝑝2

2𝜅 |𝑎|3
√︃
𝑞̊

(
−6𝑘𝑐
ℓ0
+ 6𝑐2

ℓ 20

)
= − 3𝜖

2

𝜅𝑉0

√︃
| 𝑝 | (𝑐2 − 𝑘ℓ0𝑐)

√︃
𝑞̊ (6.97)

which is exactly the form of the bosonic part of the Hamiltonian constraint as stated
in [91]. Next, let us turn to the fermionic contribution

𝐻𝑓 = −𝜖𝑎𝑏𝑐𝜓 𝐴
′

𝑎 𝑛𝐴𝐴′𝐷
(𝐴+)
𝑏

𝜓 𝐴𝑐 (6.98)

which has in fact a similar form as the right supersymmetry constraint. Following the
steps as before, we compute

𝐻𝑓 = − 𝜖𝑎𝑏𝑐𝜓 𝐴
′

𝑎 𝑛𝐴𝐴′𝐷
(𝐴+)
𝑏

𝜓 𝐴𝑐

= − 𝜖𝑎𝑏𝑐𝜓 𝐵𝑎 𝑒𝐵𝐴
′

𝑎 𝑛𝐴𝐴′ (𝜕𝑏𝑒
𝑗
𝑐 𝜎

𝐴𝐵′
𝑗 𝜓𝐵′ + 𝐴

+𝑗
𝑏
(𝜏𝑗 )𝐴𝐶 𝑒

𝑘
𝑐 𝜎
𝐶𝐶 ′

𝑘
𝜓𝐶′)

=
𝑘

2
𝜖
𝑗

𝑘𝑙
𝜖𝑎𝑏𝑐𝑒𝑖𝑎𝑒

𝑘
𝑏
𝑒𝑙𝑐 (𝜎𝑖 𝜎𝑗 )𝐵𝐵

′
𝜓𝐵𝜓𝐵′ −

𝑐

2𝑖ℓ0
𝜖𝑎𝑏𝑐𝑒𝑖𝑎𝑒

𝑘
𝑏
𝑒𝑙𝑐 (𝜎𝑖 𝜎𝑗 𝜎𝑘)𝐵𝐵

′
𝜓𝐵𝜓𝐵′

=3𝑘𝜖
√︃
𝑞̊𝑛𝐴𝐴

′
𝜓𝐴𝜓𝐴′ −

3𝑐
ℓ0
𝜖

√︃
𝑞̊𝑛𝐴𝐴

′
𝜓𝐴𝜓𝐴′

= − 3𝜖
ℓ0

√︃
𝑞̊(𝑐 − 𝑘ℓ0)𝑛𝐴𝐴

′
𝜓𝐴𝜓𝐴′ (6.99)
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Remains to compute the reduced expression of the cosmological contribution in (6.47).
Some simple algebra reveals

𝐻Λ =

√︃
𝑞̊

𝑝2

2ℓ 40 𝐿 |𝑎|3
𝜖 𝑖𝑗𝑘𝑒𝑎𝑖 𝑒

𝑏
𝑗 (𝜓𝑎𝐴𝑛𝐵𝐴′𝜎 𝐴𝐴

′

𝑘
𝜓 𝐵
𝑏
− 𝜓 𝐴′𝑎 𝑛𝐴𝐴′𝜎 𝐴𝐵

′

𝑘
𝜓𝑏𝐵′) +

√︃
𝑞̊
3|𝑎|3
𝜅𝐿2

=

√︃
𝑞̊
𝜖2 |𝑎|
2𝐿

𝜖̊ 𝑖𝑗𝑘 (𝜎𝐶𝐶′𝑖 𝜖𝐶𝐴𝑛𝐵𝐴′𝜎
𝐴𝐴′

𝑘
𝜎 𝐵𝐷

′
𝑗 𝜓𝐶′𝜓𝐷′

− 𝜎𝐶𝐴′𝑖 𝑛𝐴𝐴′𝜎
𝐴𝐵′

𝑘
𝜎𝐷𝐷

′
𝑗 𝜖𝐷′𝐵′𝜓𝐶𝜓𝐷) +

√︃
𝑞̊
3| 𝑝 | 32
𝑉0𝜅𝐿2

=

√︃
𝑞̊
3𝑖 𝜖2

√︁
| 𝑝 |

ℓ0𝐿
(𝜖𝐶′𝐷′𝜓𝐶′𝜓𝐷′ + 𝜖𝐶𝐷𝜓𝐶𝜓𝐷) +

√︃
𝑞̊
3| 𝑝 | 32
𝑉0𝜅𝐿2 (6.100)

Thus, inserting (6.97), (6.99) and (6.100) into (6.33), we find∫
R

d𝑡
∫
V

d3𝑥 𝑁𝐻 =

∫
R

d𝑡 𝑁

(
−3𝜖

2

𝜅

√︃
| 𝑝 | (𝑐2 − 𝑘ℓ0𝑐) −

𝜖

2
(𝑐 − 𝑘ℓ0)

1√︁
| 𝑝 |
𝑖 𝜋̄ 𝐴

′
𝜓𝐴′

+
3𝑖 𝜖2ℓ 20
𝐿

√︃
| 𝑝 | (𝜖𝐶′𝐷′𝜓𝐶′𝜓𝐷′ + 𝜖𝐶𝐷𝜓𝐶𝜓𝐷) +

3| 𝑝 | 32
𝜅𝐿2

)
(6.101)

Using the reality condition (6.76), one can express the term in the last line of (6.101)
proportional to the complex conjugate 𝜓𝐴 of the fundamental variable 𝜓𝐴′ in terms of
the corresponding canonically conjugate momentum. In fact, direct computation yields

𝜖𝐴′𝐵′ 𝜋̄
𝐴′ 𝜋̄ 𝐵

′
= −36|𝑎|2𝑉 2

0 𝑛
𝐴𝐴′ 𝜖𝐴′𝐵′𝑛

𝐵𝐵′𝜓𝐴𝜓𝐵

= −36| 𝑝 |ℓ 40 𝜖𝐴𝐵𝜓𝐴𝜓𝐵 (6.102)

Hence, it follows that the Hamiltonian constraint in the reduced theory takes the form

𝐻 = − 3𝜖2

𝜅

√︃
| 𝑝 | (𝑐2 − 𝑘ℓ0𝑐) −

𝜖

2
(𝑐 − 𝑘ℓ0)

1√︁
| 𝑝 |
𝑖 𝜋̄ 𝐴

′
𝜓𝐴′ (6.103)

+
3𝑖 𝜖2ℓ 20
𝐿

√︃
| 𝑝 |𝜖𝐶′𝐷′𝜓𝐶′𝜓𝐷′ −

𝜖2

12ℓ 20 𝐿
1√︁
| 𝑝 |
𝜖𝐴′𝐵′ 𝜋̄

𝐴′ 𝜋̄ 𝐵
′ + 3
𝜅𝐿2 | 𝑝 |

3
2

6.5.3. Half densitized fermion fields

As proposed in [80] in case of real Ashtekar variables, in order to simplify the reality
conditions (6.34) for the fermion fields, it is worthwhile to change their density weight
by going over to half-densities (see Section 4.3.1). In the reduced theory, we can do
something similar. According to (6.76), the complex conjugate of 𝜓𝐴′ also depends
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on the scale factor and thus on the momentum conjugate to the reduced connection.
Hence, it is suggestive to introduce the new variables3

𝜙𝐴′ :=
√︁
6|𝑎|𝑉0𝜓𝐴′ =

√
6ℓ0 | 𝑝 |

1
4𝜓𝐴′ (6.104)

𝜋 𝐴
′

𝜙 :=
1√︁

6|𝑎|𝑉0
𝜋̄ 𝐴

′
=

1
√
6ℓ0 | 𝑝 |

1
4
𝜋̄ 𝐴

′
(6.105)

Actually, in contrast to the full theory, we are not changing the effective density weight
of the fermion fields since, due to the ansatz (6.67), the density weight has already been
absorbed in the fiducial co-triad. Nevertheless, these new defined variables have the same
dependence on the scale factor 𝑎 as the half-densitized fields in the full theory (i.e. they
are of order∼ |𝑎| 12 ) which is the reason why we continue to call them half-densities in the
reduced theory. Since the definition of the new fields explicitly involves the scale factor
(and therefore the reduced electric field 𝑝), this, a priori, does not provide a canonical
transformation. In fact, as will become clear in what follows, this also amounts to a
redefinition of the bosonic degrees of freedom.

To this end, let us go back to the symplectic potential (6.75). Inserting the definitions
(6.104) and (6.105), we find after some careful analysis∫
R

d𝑡
(
3𝑖
𝜅
𝑝 ¤𝑐 − 𝜋̄ 𝐴′ ¤̄𝜓𝐴′

)
=

∫
R

d𝑡
(
3𝑖
𝜅
𝑝 ¤𝑐 −

√︁
6|𝑎|𝑉0𝜋 𝐴

′
𝜙 𝐿𝜕𝑡

[
1√︁

6|𝑎|𝑉0
𝜙𝐴′

] )
=

∫
R

d𝑡
(
3𝑖
𝜅
𝑝 ¤𝑐 − 𝜋 𝐴′𝜙 ¤𝜙𝐴′ +

1
2
|𝑎|−1𝜖 ¤𝑎𝜋 𝐴′𝜙 𝜙𝐴′

)
=

∫
R

d𝑡
(
3𝑖
𝜅
𝑝 ¤𝑐 − 𝜋 𝐴′𝜙 ¤𝜙𝐴′ +

1
4
2𝜖𝑎 ¤𝑎
𝜖𝑎2

𝜋 𝐴
′

𝜙 𝜙𝐴′

)
=

∫
R

d𝑡
(
3𝑖
𝜅
𝑝 ¤𝑐 − 𝜋 𝐴′𝜙 ¤𝜙𝐴′ +

1
4
¤𝑝
𝑝
𝜋 𝐴

′
𝜙 𝜙𝐴′

)
=

∫
R

d𝑡
(
3𝑖
𝜅
𝑝𝐿𝜕𝑡

[
𝑐 + 𝑖𝜅

12𝑝
𝜋 𝐴

′
𝜙 𝜙𝐴′

]
− 𝜋 𝐴′𝜙 ¤𝜙𝐴′

)
(6.106)

where in the third line we reinserted the definition 𝑝 = 𝜖𝑎2ℓ 20 and, from the fourth to
the last line, we integrated by parts dropping a boundary term. Hence, according to
(6.106), this suggests to define the transformation of the reduced connection via

𝑐 := 𝑐 + 𝑖𝜅

12𝑝
𝜋 𝐴

′
𝜙 𝜙𝐴′ (6.107)

3 For notational simplification, we will refrain from indicating the new fundamental variables with an
additional bar in what follows. The complex conjugate of 𝜙𝐴′ will then be written as 𝜙𝐴
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6.5. The symmetry reduced model

Since signs matter in what follows, it is instructive to check explicitly that this indeed
provides a canonical transformation. Observing that {𝑐, | 𝑝 |} = {𝑐,

√︁
𝑝2} = 𝜖{𝑐, 𝑝},

direct calculation yields

{𝑐, | 𝑝 | 14𝜓𝐴′} = {𝑐 +
𝑖𝜅

12𝑝
𝜋̄ 𝐵

′
𝜓𝐵′ , | 𝑝 |

1
4𝜓𝐴′}

= {𝑐, | 𝑝 | 14 }𝜓𝐴′ −
𝑖𝜅𝜖

12| 𝑝 | 34
𝜓𝐵′{𝜋̄ 𝐵

′
, 𝜓𝐴′}

=
1

4| 𝑝 | 34
𝜖{𝑐, 𝑝}𝜓𝐴′ +

𝑖𝜅𝜖

12| 𝑝 | 34
𝜓𝐴′ = 0 (6.108)

proving that the Poisson bracket between 𝑐 and 𝜙𝐴′ indeed vanishes. On the other hand,
we have

{𝑐, | 𝑝 |− 1
4 𝜋̄ 𝐴

′} = {𝑐, | 𝑝 |− 1
4 }𝜋̄ 𝐴′ + 𝑖𝜅𝜖

12| 𝑝 | 54
𝜋̄ 𝐵

′{𝜓𝐵′ , 𝜋̄ 𝐴
′}

=
𝑖𝜅𝜖

12| 𝑝 | 54
𝜋̄ 𝐴

′ − 𝑖𝜅𝜖

12| 𝑝 | 54
𝜋̄ 𝐴

′
= 0 (6.109)

and therefore the Poisson bracket between 𝑐 and 𝜋 𝐴′
𝜙

is zero, as well. Hence, this proves
that the transformation of the phase space variables as declared via (6.104), (6.105) as
well as (6.107) indeed provides a canonical transformation.

To summarize, w.r.t. the half-densitized fermion fields, the new canonically conjugate
variables are given by (𝑐, 𝑝) and (𝜙𝐴′ , 𝜋 𝐴

′
𝜙
), respectively, which satisfy the nonvanishing

Poisson brackets
{ 𝑝, 𝑐} = 𝑖𝜅

3
and {𝜋 𝐴′𝜙 , 𝜙𝐵′} = −𝛿 𝐴

′

𝐵′ (6.110)

The complex conjugate 𝜙𝐴 is related to the canonically conjugate momentum 𝜋 𝐴
′

𝜙
via

the simplified reality condition

𝜋 𝐴
′

𝜙 = −𝑖𝜙𝐴𝑛𝐴𝐴
′ ⇔ 𝜙𝐴 = 𝑖𝜋 𝐴

′
𝜙 𝑛𝐴𝐴′ (6.111)

Using (6.107), it follows that the respective reality conditions for the bosonic degrees of
freedom take the form

𝑐 + (𝑐)∗ = 𝑘ℓ0 and 𝑝∗ = 𝑝 (6.112)

In particular, it follows that, in both parity even odd sector, the torsion contribution in
the reality condition of the reduced connection simply drops out! This will drastically
simplify their implementation in the quantum theory as will be studied in detail below.
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Let us rewrite the dynamical constraints in the new fundamental variables. For the
Hamiltonian constraint, one immediately finds

𝐻 = − 3𝜖2

𝜅

√︃
| 𝑝 | (𝑐2 − 𝑘ℓ0𝑐) −

𝜖

2
(𝑐 − 𝑘ℓ0)

1√︁
| 𝑝 |
𝑖𝜋 𝐴

′
𝜙 𝜙𝐴′ (6.113)

+ 𝑖 𝜖
2

2𝐿
𝜖𝐴
′𝐵′𝜙𝐴′𝜙𝐵′ −

𝑖 𝜖2

2𝐿
𝜖𝐴′𝐵′𝜋

𝐴′
𝜙 𝜋

𝐵′
𝜙 +

3
𝜅𝐿2 | 𝑝 |

3
2

where we have implicitly performed the substitution 𝑐 := 𝑐 − 𝑖𝜅
12 | 𝑝 | 𝜋

𝐴′
𝜙
𝜙𝐴′ . The left and

right supersymmetry constraints are given by

𝑆𝐿𝐴
′
= 𝜖𝑐 | 𝑝 | 14 𝜋 𝐴′𝜙 + 𝐿−1 | 𝑝 |

3
4 𝜙𝐵′ 𝜖

𝐵′𝐴′ (6.114)

and
𝑆𝑅
𝐴′ = 3𝜖 | 𝑝 | 14 (𝑐 − 𝑘ℓ0)𝜙𝐴′ − 3𝐿−1 | 𝑝 |

3
4 𝜋 𝐵

′
𝜙 𝜖𝐵′𝐴′ (6.115)

respectively.

Remark 6.5.2. Some comments on parity are in order. Due to our sign conventions
made for the internal three-form 𝜖𝑖𝑗𝑘 , the metric connection (6.78) is even under the
parity transformations 𝑒𝑖𝑎 → −𝑒𝑖𝑎 while the extrinsic curvature 𝐾 𝑖

𝑎 is odd. Hence, 𝑐 does
not have a straightforward behavior under parity transformations. For LQC without
fermions another set of conventions, in which the internal three-form 𝜖𝑖𝑗𝑘 changes sign
under internal parity, is very useful [238]. Under those conventions 𝑐 does transform
in a well-defined way. In the present situation, it turns out that those conventions lead
to unwanted sign factors in the Dirac algebra, effectively breaking supersymmetry. We
suspect that the root of the problem is that the Ashtekar connection has to lift to a
connection on both, the frame bundle and the spin structure, in a consistent way.

For completeness, let us also consider the parity transformations of the fermionic fields.
Since the Rarita-Schwinger field 𝜙 := (𝜙𝐴, 𝜙𝐴′)𝑇 , in particular, is a Majorana fermion,
one would impose a parity transformation of the form4 𝜙→ 𝛾0𝜙 which, in terms of
the fundamental variables, reads

Π(𝜙)𝐴′ := 𝑖𝜋 𝐵
′

𝜙 𝜖𝐵′𝐴′ and Π(𝜋𝜙)𝐴
′

:= −𝑖𝜙𝐵′ 𝜖𝐵
′𝐴′ (6.116)

This yields
Π(𝜋𝜙𝜙) = 𝜙𝐴′𝜋 𝐴

′
𝜙 = −𝜋𝜙𝜙 (6.117)

4 Note that, in the mostly plus convention, (𝛾0)2 = −1. Hence, the parity transformation is not
involutive but acquires an additional phase of the form 𝑒𝑖

𝜋
2 . In fact, one cannot simply redefine the

parity transformation replacing 𝛾0 by 𝑖 𝛾0 since this turns out to be not compatible with the Majorana
condition (4.20), i.e., the transformed field will be no longer a Majorana fermion.
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Hence, it follows that, under these parity transformations, the contorsion tensor is now
parity-even. However, in any case, the reduced connection does not seem to have a
straightforward behavior under parity transformations.

6.5.4. Constraint algebra

We want to study the Poisson relations between the left and the right supersymmtery
constraints. To this end, note that the canonical phase space P turns out to have the
structure of a Poisson supermanifold (see, e.g., [239] for an introduction to Poisson
supermanifolds in the algebro-geometric framework). In fact, for any homogenenous
supersmooth functions 𝑓, 𝑔, ℎ ∈ O(P) on the phase space, one has

{𝑓, 𝑔ℎ} = {𝑓, 𝑔}ℎ + (−1) |𝑓| | 𝑔 | 𝑔{𝑓, ℎ} (6.118)

with |𝑓| ∈ Z2 the parity of 𝑓, i.e., |𝑓| = 0 resp. |𝑓| = 1 if 𝑓 is Grassmann-even resp.
Grassmann-odd. That is, according to (6.118), the Poisson bracket defines a super right
derivation on O(P). Moreover, the Poisson bracket is also graded skew-symmetric, i.e.,
{𝑓, 𝑔} = −(−1) |𝑓| | 𝑔 |{ 𝑔, ℎ}. Using (6.118), this yields

{𝑓𝑔, ℎ} = 𝑓{ 𝑔, ℎ} + (−1) | 𝑔 | |ℎ |{𝑓, ℎ} 𝑔 (6.119)

and therefore it also defines a super left derivation. In fact, it even follows that the
Poisson bracket satisfies a graded analog of the Jacobi identity. Hence, (O(P), {·, ·})
has the structure of a super Lie module.

With these preparations, let us compute the Poisson bracket between the left and right
supersymmetry constraints. To this end, one often needs to compute Poisson brackets
of the form {𝑐, 𝜋 𝐴′

𝜙
} and {𝑐, 𝜙𝐴′} which yields

{𝑐, 𝜋 𝐴′𝜙 } = {𝑐 −
𝑖𝜅

12𝑝
𝜋 𝐵

′
𝜙 𝜙𝐵′ , 𝜋

𝐴′
𝜙 } = −

𝑖𝜅

12𝑝
𝜋 𝐵

′
𝜙 {𝜙𝐵′ , 𝜋 𝐴

′
𝜙 } =

𝑖𝜅

12𝑝
𝜋 𝐴

′
𝜙 (6.120)

as well as

{𝑐, 𝜙𝐴′} = {𝑐 −
𝑖𝜅

12𝑝
𝜋 𝐵

′
𝜙 𝜙𝐵′ , 𝜙𝐴′} =

𝑖𝜅

12𝑝
𝜙𝐵′{𝜋 𝐵

′
𝜙 , 𝜙𝐴′} = −

𝑖𝜅

12𝑝
𝜙𝐴′ (6.121)

Finally, using

{𝑐 − 𝑖𝜅

12𝑝
𝜋 𝐵

′
𝜙 𝜙𝐵′ , 𝑝} = {𝑐, 𝑝} = −

𝑖𝜅

3
(6.122)
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as well as the fact that (O(P), {·, ·}) defines a super Lie module, it follows for the trace
part of the matrix {𝑆𝐿𝐴′ , 𝑆𝑅

𝐵′}, in case of a vanishing cosmological constant,

{𝜖𝑐 | 𝑝 | 14 𝜋 𝐴′𝜙 , 3𝜖 | 𝑝 |
1
4 (𝑐 − 𝑘ℓ0)𝜙𝐴′}

= − 6𝜖2
√︃
| 𝑝 | (𝑐2 − 𝑘ℓ0𝑐) + 3𝜖2{𝑐, | 𝑝 |

1
4 }(𝑐 − 𝑘ℓ0) | 𝑝 |

1
4 𝜋𝜙𝜙

+ 3𝜖2 | 𝑝 | 14 𝑐{| 𝑝 | 14 , 𝑐}𝜋𝜙𝜙 + 3𝜖2
√︃
| 𝑝 |𝜋 𝐴′𝜙 {𝑐, 𝜙𝐴′}(𝑐 − 𝑘ℓ0)

+ 3𝜖2𝑐
√︃
| 𝑝 |{𝜋 𝐴′𝜙 , 𝑐}𝜙𝐴′

= − 6𝜖2
√︃
| 𝑝 | (𝑐2 − 𝑘ℓ0𝑐) −

𝑖𝜅𝜖

4
(𝑐 − 𝑘ℓ0)√︁
| 𝑝 |

𝜋𝜙𝜙

+ 𝑖𝜅𝜖
4

𝑐√︁
| 𝑝 |
𝜋𝜙𝜙 −

𝑖𝜅𝜖

4
(𝑐 − 𝑘ℓ0)√︁
| 𝑝 |

𝜋𝜙𝜙 −
𝑖𝜅𝜖

4
𝑐√︁
| 𝑝 |
𝜋𝜙𝜙

=2𝜅 (𝐻𝑏 + 𝐻𝑓) +
𝑖𝜅𝜖

2
(𝑐 − 𝑘ℓ0)√︁
| 𝑝 |

𝜋𝜙𝜙

=2𝜅𝐻 + 𝑖𝜅

6| 𝑝 | 34
𝜋 𝐴

′
𝜙

(
3𝜖 | 𝑝 | 14 (𝑐 − 𝑘ℓ0)𝜙𝐴′

)
(6.123)

which precisely consists of the sum of the Hamiltonian constraint as well as the right
SUSY constraint in case of a vanishing cosmological constant. For 0 < 𝐿 < ∞, this
yields

{𝜖𝑐 | 𝑝 | 14 𝜋 𝐴′𝜙 + 𝐿−1 | 𝑝 |
3
4 𝜙𝐵′ 𝜖

𝐵′𝐴′ , 3𝜖 | 𝑝 | 14 (𝑐 − 𝑘ℓ0)𝜙𝐴′ − 3𝐿−1 | 𝑝 |
3
4 𝜋 𝐵

′
𝜙 𝜖𝐵′𝐴′}

=2𝜅 (𝐻𝑏 + 𝐻𝑓) +
𝑖𝜅

6| 𝑝 | 34
𝜋 𝐴

′
𝜙

(
3𝜖 | 𝑝 | 14 (𝑐 − 𝑘ℓ0)𝜙𝐴′

)
+ 6𝐿−2 | 𝑝 | 32 + 3𝐿−1𝜖 | 𝑝 | 14 {𝑐, | 𝑝 | 34 }𝜋 𝐴′𝜙 𝜋 𝐵

′
𝜙 𝜖𝐴′𝐵′ − 3𝐿−1𝜖 | 𝑝 |𝜋 𝐴

′
𝜙 {𝑐, 𝜋 𝐵

′
𝜙 }𝜖𝐵′𝐴′

+ 3𝐿−1𝜖 | 𝑝 | 14 {𝑐, | 𝑝 | 34 }𝜙𝐴′𝜙𝐵′ 𝜖𝐵
′𝐴′ + 3𝐿−1𝜖 | 𝑝 |𝜙𝐴′{𝑐, 𝜙𝐵′}𝜖𝐵

′𝐴′

=2𝜅 (𝐻𝑏 + 𝐻𝑓) +
𝑖𝜅

6| 𝑝 | 34
𝜋 𝐴

′
𝜙

(
3𝜖 | 𝑝 | 14 (𝑐 − 𝑘ℓ0)𝜙𝐴′

)
+ 6𝐿−2 | 𝑝 | 32 − 3𝑖𝜅

4𝐿
𝜖2𝜋 𝐴

′
𝜙 𝜋

𝐵′
𝜙 𝜖𝐴′𝐵′ +

𝑖𝜅

4𝐿
𝜖2𝜋 𝐴

′
𝜙 𝜋

𝐵′
𝜙 𝜖𝐵′𝐴′

+ 3𝑖𝜅
4𝐿
𝜖2𝜙𝐴′𝜙𝐵′ 𝜖

𝐴′𝐵′ + 𝑖𝜅
4𝐿
𝜖2𝜙𝐴′𝜙𝐵′ 𝜖

𝐴′𝐵′

=2𝜅𝐻 − 𝑖𝜅
2𝐿
𝜖2𝜋 𝐴

′
𝜙 𝜋

𝐵′
𝜙 𝜖𝐴′𝐵′ +

𝑖𝜅

6| 𝑝 | 34
𝜋 𝐴

′
𝜙

(
3𝜖 | 𝑝 | 14 (𝑐 − 𝑘ℓ0)𝜙𝐴′

)
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=2𝜅𝐻 + 𝑖𝜅

6| 𝑝 | 34
𝜋 𝐴

′
𝜙

(
3𝜖 | 𝑝 | 14 (𝑐 − 𝑘ℓ0)𝜙𝐴′ − 3𝐿−1 | 𝑝 |

3
4 𝜋 𝐵

′
𝜖𝐵′𝐴′

)
(6.124)

so that we found
{𝑆𝐿𝐴′ , 𝑆𝑅

𝐴′} = 2𝜅𝐻 + 𝑖𝜅

6| 𝑝 | 34
𝜋 𝐴

′
𝜙 𝑆

𝑅
𝐴′ (6.125)

Let us emphasize that, in the above calculation, the sign factors 𝜖 depending on the
orientation of the triad matched up exactly to give the algebra (6.125) proving that the
theory is indeed consistent with local supersymmetry in both sectors. Next, we want to
compute the off-diagonal entries of the matrix {𝑆𝐿𝐴′ , 𝑆𝑅

𝐵′}. Following the same steps as
before, we immediately find for 𝐴′ ≠ 𝐵 ′

{𝜖𝑐 | 𝑝 | 14 𝜋 𝐴′𝜙 , 3𝜖 | 𝑝 |
1
4 (𝑐 − 𝑘ℓ0)𝜙𝐵′} = −

𝑖𝜅𝜖

2
(𝑐 − 𝑘ℓ0)√︁
| 𝑝 |

𝜋 𝐴
′

𝜙 𝜙𝐵′ (6.126)

By anticommutativity of fermionic fields, one has 𝜋 𝐴′
𝜙
𝜋𝐶

′
𝜙
𝜖𝐶′𝐵′ = 0 for 𝐴′ ≠ 𝐵 ′ and

similarly for 𝜙. Hence, this yields

{𝜖𝑐 | 𝑝 | 14 𝜋 𝐴′𝜙 + 𝐿−1 | 𝑝 |
3
4 𝜙𝐶′ 𝜖

𝐶′𝐴′ , 3𝜖 | 𝑝 | 14 (𝑐 − 𝑘ℓ0)𝜙𝐵′ − 3𝐿−1 | 𝑝 |
3
4 𝜋𝐷

′
𝜙 𝜖𝐷′𝐵′}

= − 𝑖𝜅𝜖
2
(𝑐 − 𝑘ℓ0)√︁
| 𝑝 |

𝜋 𝐴
′

𝜙 𝜙𝐵′ = −
𝑖𝜅

6| 𝑝 | 34
𝜋 𝐴

′
𝜙

(
3𝜖 | 𝑝 | 14 (𝑐 − 𝑘ℓ0)𝜙𝐵′ − 3𝐿−1 | 𝑝 |

3
4 𝜋𝐶

′
𝜖𝐶′𝐵′

)
(6.127)

such that
{𝑆𝐿𝐴′ , 𝑆𝑅𝐵′} = −

𝑖𝜅

6| 𝑝 | 34
𝜋 𝐴

′
𝜙 𝑆

𝑅
𝐵′ (6.128)

Thus, to summarize, we found that

{𝑆𝐿𝐴′ , 𝑆𝑅𝐵′} =
(
𝜅𝐻 + 𝑖𝜅

6| 𝑝 | 34
𝜋 𝐴

′
𝜙 𝑆

𝑅
𝐴′

)
𝛿 𝐴
′

𝐵′ −
𝑖𝜅

6| 𝑝 | 34
𝜋 𝐴

′
𝜙 𝑆

𝑅
𝐵′ (6.129)

Equation (6.129) provides a very strong relation between the Hamiltonian and super-
symmetry constraint which will play a central role in Section 6.6.4 in the construction
of the physical sector of the kinematical Hilbert space and the study of the resulting
dynamics of the theory.
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6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

6.6. Quantum theory
6.6.1. Construction of the classical algebra

We want to motivate the kinematical Hilbert space in the reduced theory. To this end,
we follow the standard procedure in LQC and compute holonomies along straight edges
of the fiducial cellV which are parallel to integral flows Φ𝑖

𝜏 generated by the basis of
left-invariant vector fields (𝑒𝑖)𝑖 dual to the fiducial co-frame. Choosing the new variables
as constructed in the previous section, we combine them to the super connection Ã+
defined as

Ã+ = 𝐴+ + 𝜓 :=
𝑐

ℓ0
𝑒𝑖𝑇 +𝑖 + ℓ

− 3
2

0 𝜙𝐴′𝑒
𝐴𝐴′𝑄𝐴 (6.130)

where, in the second term, the factor ℓ−
3
2

0 has been included for dimensional reasons. By
definition, it follows

{Ã+𝐴𝑎 , Ã
+𝐵
𝑏
} = 0 (6.131)

for 𝐴, 𝐵 ∈ {𝑖, 𝐴}. Since, in the manifest approach to canoncial loop quantum
supergravity, we have this super connection at our disposal, we would like to moti-
vate the kinematical Hilbert space of the reduced theory studying the corresponding
super holonomies. To this end, for sake of convenience, we will not adapt the con-
ventions of Section 5.5.1 and go back to the original definition of the parallel transport
map regarded as a covariant functor on the path groupoid P(Σ), i.e., let us replace
ℎ𝑒 [Ã+] → ℎ𝑒 [Ã+]−1. Hence, according to Example 2.7.16, it follows that these
holonomies ℎ𝑒 [Ã+] along edges 𝑒 ⊂ Σ embedded in Σ (in case of super matrix Lie
groups such as, in the present situation, OSp(1|2)C) satisfy the differential equation

𝜕𝜏ℎ𝑒 [Ã+] = −𝛼Ã+𝑒ℎ𝑒 [Ã+] (6.132)

with Ã+𝑒 (𝜏) := 𝑒∗Ã+(𝜏) = ¤𝑒𝑎 (𝜏)Ã+𝑎 (𝑒(𝜏)) the pullback of Ã+ w.r.t. 𝑒 and 𝛼 ∈ C
some complex number. For a standard holonomy corresponding to a proper parallel
transport map induced by a super connection 1-form one has 𝛼 = 1. But, following [91],
in view of the solution of the reality conditions in the quantum theory (and thus regain
the solutions of ordinary real N = 1 supergravity) we do not fix this constant to a
specific value at this stage. Adopting the terminology of [91] to the supersymmetric
setting, we will call them generalized super holonomies. As shown in Example 2.7.17,
in a specific gauge, one can decompose the generalized super holonomy in the form
ℎ𝑒 [Ã+] = ℎ𝑒 [𝐴+] · ℎ𝑒 [𝜓 ] with ℎ𝑒 [𝐴+] the generalized (bosonic) holonomy generated
by the bosonic part 𝐴+ of the super connection 1-form, such that Eq. (6.132) turns out
to be equivalent to

𝜕𝜏ℎ𝑒 [𝐴+] = −𝛼𝐴+𝑒ℎ𝑒 [𝐴+] (6.133)
𝜕𝜏ℎ𝑒 [𝜓 ] = −𝛼(Adℎ [𝐴+ ]−1𝜓

𝑒)ℎ𝑒 [𝜓 ] (6.134)
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6.6. Quantum theory

where, for 𝑔 ∈ SL(2,C), the adjoint representation on the odd part of the super Lie
algebra 𝔬𝔰𝔭(1|2)C is given by the fundamental representation of SL(2,C) such that

Ad𝑔𝜓 = 𝜓 𝐴𝑄𝐵 𝑔
𝐵
𝐴
= ( 𝑔𝐵

𝐴
𝜓 𝐴)𝑄𝐵 (6.135)

Let us consider edges 𝛾𝑖 : [0, 𝑏] → Σ, 𝜏 ↦→ 𝛾𝑖 (𝜏) that are parallel along integral flows
Φ𝑖
𝜏 generated by the basis of left-invariant vector fields (𝑒𝑖)𝑖 . We choose 𝜏 as the proper

time (length) as measured w.r.t. fiducial metric 𝑞̊ on Σ. Hence, we can identify 𝑏 = ℓ0.
With respect to 𝛾𝑖 , it immediately follows from (6.133) that ℎ𝑖 [𝐴+] ≡ ℎ𝛾𝑖 [𝐴+] is given
by

ℎ𝑖 [𝐴+] (𝜏) = exp
(
− 𝛼𝑐𝜏
ℓ0
𝑇 +𝑖

)
= cosh

(
𝛼𝜇̊𝑐

2𝑖

)
1 + sinh

(
𝛼𝜇̊𝑐

2𝑖

)
2𝑖𝑇 +𝑖 (6.136)

where we used that in the fundamental representation of OSp(1|2)C one has (𝑇 +
𝑖
)2 =

− 1
41 and set 𝜇̊ := 𝜏

ℓ0
. Inserting (6.136) into (6.134) it follows that the solution of this

equation is given by a path ordered exponential yielding

ℎ𝑖 [𝜓 ] (𝜏) = P exp

(
−

∫ 𝜏

0
d𝜏 ′ 𝛼

(
𝑒
𝛼𝑐𝜏′
ℓ0
𝑇 +
𝑖

)𝐵
𝐴

𝜙𝐴′ 𝜎
𝐴𝐴′
𝑖 𝑄𝐵

)
= 1 −

∫ 𝜏

0
d𝜏 ′ 𝛼ℓ−

3
2

0

(
𝑒
𝛼𝑐𝜏′
ℓ0
𝑇 +
𝑖

)𝐵
𝐴

𝜙𝐴′ 𝜎
𝐴𝐴′
𝑖 𝑄𝐵

+
∫ 𝜏

0
d𝜏 ′

∫ 𝜏 ′

0
d𝜏 ′′𝛼2ℓ−30

(
𝑒
𝛼𝑐𝜏′
ℓ0
𝑇 +
𝑖

)𝐷
𝐶

(
𝑒
𝛼𝑐𝜏′′
ℓ0
𝑇 +
𝑖

)𝐵
𝐴

𝜙𝐶′𝜙𝐴′ 𝜎
𝐶𝐶 ′
𝑖 𝜎 𝐴𝐴

′
𝑖 𝑄𝐷𝑄𝐵

(6.137)

where the sum terminates at second order due to the homogeneity and nilpotency of
the fermionic variables. To see how a typical matrix element in (6.137) looks like, let us
compute the first integral which gives∫ 𝜏

0
d𝜏 ′ 𝛼𝑒

𝛼𝑐𝜏′
ℓ0
𝑇 +
𝑖 =

4ℓ0
𝑐

(
𝑒𝛼𝑐 𝜇̊𝑇

+
𝑖 − 1

)
𝑇 +𝑖 (6.138)

and thus contains terms of the form (6.136) as well as smooth functions onC vanishing
at infinity. If we first consider the purely bosonic contributions to the generalized super
holonomy ℎ[Ã+], it follows that the matrix elements can be equivalently be encoded in
terms of holomorphic functions (or rather their Grassmann extensions) 𝑓 on C of the
form 𝑓(𝑧) = 𝑒𝐶𝑧 with𝐶 ∈ C. In fact, functions of this kind play a special role in group
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6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

theory in mathematics. To this end, consider (C, +) as an additive group. A generalized
character 𝜌 on (C, +) is defined as a group morphism

𝜌 : (C, +) → GL(1,C) � C× (6.139)

This implies that 𝜌(𝑧 + 𝑧′) = 𝜌(𝑧) 𝜌(𝑧′) for any 𝑧, 𝑧′ ∈ C and therefore

𝜌(𝑧 + 𝑧′) − 𝜌(𝑧) = 𝜌(𝑧) 𝜌(𝑧′) − 𝜌(𝑧) = ( 𝜌(𝑧′) − 1) 𝜌(𝑧) (6.140)

Hence, if assume that 𝜌 is differentiable and set𝐶 := 𝜌′(0) ∈ C, it immediately follows
from (6.140)

d
d𝑧
𝜌(𝑧) = 𝐶 𝜌(𝑧) (6.141)

which, due to 𝜌(1) = 𝑒, has the unique solution

𝜌(𝑧) = 𝑒𝐶𝑧 , 𝐶 ∈ C (6.142)

That is, the matrix elements of the bosonic part of the super holonomies can be described
in terms of generalized characters onC as an additive group.

Remark 6.6.1. This is, in fact, in complete analogy to LQC with real variables. There,
it turns out that the matrix elements of holonomies can be encoded in terms ordinary
characters ofR regarded as an additive group, i.e. group morphisms

𝜌 : (R, +) → U(1) ⊂ GL(1,C) (6.143)

The real line (R, +) is the universal covering of U(1) which is compact. Taking the
complexification on both sides of (6.143), this immediately leads to the notion of a
generalized character on the complex plane as introduced above since U(1)C = C×which
is non-compact similarly as the complexification SL(2,C) of SU(2) is non-compact.

The whole set of generalized characters on C is probably too large. In fact, according to
(6.136), since the fiducial length 𝜇̊ℓ0 is a real number, it may be already sufficient to restrict
to generalized characters (6.142) labeled by real numbers𝐶 ∈ R. This corresponds to
the requirement of a purely imaginary 𝛼 ∈ 𝑖R. As we will see in the next section, this
choice is consistent with the reality conditions. Hence, following [91], we will set 𝛼 = 𝑖.
Based on the above observations, in order to construct the algebra corresponding to
the purely bosonic degrees of freedom, we define a subalgebra 𝐻AP(C) ⊂ 𝐻 (C) of the
algebra of holomorphic functions on C, called almost periodic holomorphic functions,
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generated by complex linear combinations of generalized characters of C labeled by real
numbers. That is, a general element𝑇 ∈ 𝐻AP(C) will be of the form

𝑇 (𝑧) =
𝑁∑︁
𝑖=1
𝑎𝑖 𝑒

𝜇𝑖 𝑧 (6.144)

with 𝑎𝑖 ∈ C and 𝜇𝑖 ∈ R. This can be completed to a Fréchet algebra. To this end,
consider the compact exhaustion C =

⋃
𝑛 𝐾𝑛 of the complex plane by the compact

sets 𝐾𝑛 := {𝑧 ∈ C| |𝑧 | ≤ 𝑛}, 𝑛 ∈ N. The space 𝐻 (C) of holomorphic functions
on C can then be given the structure of a locally convex space endowing it with the
topology of uniform convergence on the 𝐾𝑛. In fact, in this way, it turns out that
𝐻 (C) even has the structure of a uniform Fréchet algebra (see [240] and references
therein) via pointwise multiplication of holomorphic functions. As a consequence,
the closure 𝐻AP(C) := 𝐻AP(C) in 𝐻 (C) inherits the structure of a uniform Fréchet
algebra. However, note that it does not define a *-algebra. Regarding the standard
construction of the state space of LQG (or LQC) via cylindrical functions, we would
like to interpret 𝐻AP(C) in terms of (continuous) functions on a group. To this end,
as in case of Banach algebras, one can define the spectrum Spec𝐻AP(C) given by the
set of all nonzero continuous algebra homomorphisms 𝜙 : 𝐻AP(C) → C. Any
𝑓 ∈ 𝐻AP(C) canonically induces a linear map on the spectrum via

𝑓̂(𝜙) := 𝜙(𝑓), ∀𝜙 ∈ Spec𝐻AP(C) (6.145)

called the Gelfand transform of 𝑓. We equip Spec𝐻AP(C) with the Gelfand topology
given by the coarsest topology such that the Gelfand transforms (6.145) are continuous.
Since 𝐻AP(C) is a uniform Fréchet algebra, it follows that Spec𝐻AP(C) is a hemicom-
pact space [240]. As a consequence, the space𝐶 (Spec𝐻AP(C)) of continuous functions
on the spectrum endowed with the compact open topology also has the structure of a
uniform Fréchet algebra. Consider the map

Γ : 𝐻AP(C) → 𝐶 (Spec𝐻AP(C)) (6.146)

𝑓 ↦→ 𝑓̂

called the Gelfand transformation. It is immediate that Γ defines a homomorphism of
algebras. In particular, as 𝐻AP(C) defines a uniform Fréchet algebra, it follows that
Γ defines an injective toplogical algebra homomorphism identifying 𝐻AP(C) with a
closed subalgebra Γ(𝐻AP(C)) of𝐶 (Spec𝐻AP(C)).
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The spectrum naturally carries the structure of an abstract group via pointwise multipli-
cation

Spec𝐻AP(C)) × Spec𝐻AP(C) → Spec𝐻AP(C) (6.147)
(𝜙, 𝜓 ) ↦→ 𝜙 · 𝜓

and unit 1 : 𝐻AP(C) → C, 𝑓 ↦→ 1. Hence, in this way, we can identify 𝐻AP(C)
in terms of functions on a group. This is similar to ordinary LQC with real variables.
However, it is not clear whether this also forms a topological group. This would follow
immediately if, in the definition of 𝐻AP(C), we would have restricted to the subset
of ordinary characters 𝜒 : (C, +) → U(1). In this case, it follows that the spectrum
of the closure has the structure of a (compact, as U(1) compact) topological group,
the so-called Bohr-compactification of the complex plane. We leave it as a task for future
investigations to show whether this is also true for Spec𝐻AP(C).

With these observations, let us go back to the generalized holonomies ℎ[Ã+] of the
super connection. Mimicking the standard procedure of LQC, due to (6.138) as well as
(6.137), we may identify the matrix elements of the generalized holonomies as functions
in

𝐻AP(C) ∪ 𝐶0(C) ⊗
∧[𝜙𝐴′] (6.148)

with𝐶0(C) the space of continuous functions onC that vanish at infinity. Interestingly,
this is very similar to LQC with real variables. In fact, in [241] it has been found that
these type of functions, already in the pure bosonic sector, i.e. 𝜙𝐴′ = 0, arise if one
considers (bosonic) holonomies along more general edges which are not simply straight
edges along integral flows of the left-invariant vector fields but which may also contain
small kinks. Here, we observe that these type of functions appear in the fermionic
components of the super holonomies computed along straight edges.

In what follows, we will consider a simplified model in which, based on the considera-
tions of [242], we will drop functions which are contained in 𝐶0(C). Of course, this
means a drastic simplification of the present model which will also break the manifest
supersymmetry of the theory. However, this is what is normally done in the literature
about canonical minisuperspace models in the framework of supergravity and, as we will
see, this model already has a lot of interesting physical implications. One may come back
to the more general model for future investigations. Hence, for the rest of this chapter,
we will take as the classical algebra of the theory the following super vector space

𝔄 := 𝐻AP(C) ⊗
∧[𝜙𝐴′] (6.149)

which, in particular, has the structure of a super commutative Lie superalgebra. To
this superalgebra, we need to add the algebra generated by the canonically conjugate
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momenta both encoded in the super electric field E = ( 𝑝, 𝜋 𝐴′
𝜙
) (see Remark 6.4.1)

which, following the standard procedure in LQG (and LQC), should be implemented
as a (super) electric flux operator, i.e., in terms of derivations on 𝔄. More precisely, for
any 𝑓 ∈ 𝔄, we define

𝑝(𝑓) ≡ { 𝑝, 𝑓}, 𝜋 𝐴
′

𝜙 (𝑓) ≡ {𝜋 𝐴
′

𝜙 , 𝑓} (6.150)

As the Poisson bracket is a super derivation, it follows that these define elements of the
superalgebra Der(𝔄) of super derivations on 𝔄. Hence, as the total algebra5 𝔄cLQSC of
the classical symmetry reduced theory, we take

𝔄cLQSC := 𝔄 ⊕ Der(𝔄) (6.151)

This again has the structure of a Lie superalgebra. In fact, 𝔄cLQSC defines an ideal w.r.t
the action of the super electric fluxes as defined via (6.150) which, due to the fact the
Poisson defines a super right derivations, in particular, defines a representation of Lie
superalgebras. Hence, we impose a graded Lie bracket on 𝔄cLQSC setting

[(𝑓, 𝑋 ), ( 𝑔,𝑌 )] := (𝑋 ( 𝑔) − (−1) |𝑓| |𝑌 |𝑌 (𝑓), [𝑋 ,𝑌 ]) (6.152)

for any (𝑓, 𝑋 ), ( 𝑔,𝑌 ) ∈ 𝔄cLQSC. So far, 𝔄cLQSC does not define a *-algebra as the
obvious choice of an involution via complex conjugation would lead to anti holomorphic
functions and derivations which, for physical reasons, have not been included into the
definition of 𝔄cLQSC. However, one needs to define an involution in order to classify
physical quantities in terms of self-adjoint elements. For this reason, let us go back to the
reality conditions (6.111) and (6.112). Re-expressing them in terms of the fundamental
variables, we may thus impose a *-relation on 𝔄cLQSC setting

(𝑒𝜇𝑐)★ := 𝑒−𝜇𝑐𝑒𝜇𝑘ℓ0 , 𝑝★ := 𝑝 (6.153)

𝜙★
𝐴

:= 𝑖𝜋 𝐴
′

𝜙 𝑛𝐴𝐴′ , 𝜋★𝐴𝜙 := 𝑖𝜙𝐴′𝑛𝐴𝐴
′

(6.154)

It is immediate to see that this in fact provides an involution on 𝔄cLQSC. For instance,
one has

(𝑒𝜇𝑐)★★ = (𝑒−𝜇𝑐)★𝑒𝜇𝑘ℓ0 = 𝑒𝜇𝑐𝑒−𝜇𝑘ℓ0 𝑒𝜇𝑘ℓ0 = 𝑒𝜇𝑐 (6.155)

On the other hand, it follows

𝜙★★
𝐴′ = −𝑖𝜋

★𝐴
𝜙 𝑛𝐴𝐴′ = 𝜙𝐵′𝑛

𝐴𝐵′𝑛𝐴𝐴′ = 𝜙𝐴′ (6.156)

5 Here, the label “cLQSC” in 𝔄cLQSC refers to chiral loop quantum supercosmology
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as required. Hence, we have constructed a consistent classical Lie *-superalgebra 𝔄cLQSC

of symmetry reduced chiralN = 1 supergravity which may be regarded as the symmetry
reduced counterpart of the graded holonomy-flux algebra as constructed in context of
the full theory in Section 5.5.1.

6.6.2. The kinematical Hilbert space

In order to construct the state space of the symmetry reduced model of chiralN = 1
LQSG, we need to find a representation of the graded holonomy-flux algebra 𝔄cLQSC

on a super Hilbert space. More precisely, we are looking for a faithful Lie *-superalgebra
morphism

𝜋0 : 𝔄cLQSC → Op(D,ℌcLQSC) (6.157)

from 𝔄cLQSC to a subset of possibly unbounded operators on a common dense domain
D of a super Hilbert spaceℌcLQSC such that 𝜋0(𝑋★) = 𝜋0(𝑋 )† and 𝜋0(𝑓★) = 𝜋0(𝑓)†
∀(𝑓, 𝑋 ) ∈ 𝔄cLQSC.

Remark 6.6.2. Requiring 𝜋0 to be faithful, in particular, means that 𝜋0 preserves the
grading. This immediately implies that bosons and fermions automatically satisfy the
correct statistics. This is in fact a direct consequence of the graded structure of𝔄cLQSC and
is rooted in the underlying supersymmetry of the theory since, classically, supersymmetry
requires commuting bosonic and anticommuting fermionic fields.

As an obvious candidate for a pre-super Hilbert space𝑉 , we take

𝑉 := 𝐻AP(C) ⊗
∧[𝜙𝐴′] (6.158)

Following the standard procedure in LQG and LQC, we define a representation of
𝔄cLQSC on this super vector space via

𝑓 := 𝜋0(𝑓) = 𝑓, 𝑝̂ := 𝜋0( 𝑝) := 𝑖ℏ{ 𝑝, ·} = −ℏ𝜅
3

d
d𝑐

(6.159)

𝜋 𝐴
′

𝜙 := 𝜋0(𝜋 𝐴
′

𝜙 ) = 𝑖ℏ{𝜋 𝐴
′

𝜙 , ·} =
ℏ

𝑖

𝜕

𝜕𝜙𝐴′
(6.160)

such that the operators corresponding to 𝑓 ∈ 𝔄cLQSC and the super electric fluxes
𝑝 and 𝜋 𝐴′

𝜙
act as multiplication operators and derivations, respectively. Requiring

commutativity with the involution then implies

𝑒𝜇𝑐
†
= 𝑒−𝜇𝑐𝑒𝜇𝑘ℓ0 , 𝑝̂† = 𝑝̂ (6.161)

𝜙
†
𝐴
= 𝑖𝜋 𝐴

′
𝜙 𝑛𝐴𝐴′ , 𝜋

†𝐴
𝜙

= 𝑖𝜙𝐴′𝑛
𝐴𝐴′ (6.162)
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∀𝜇 ∈ R. This requires a suitable choice of an inner product on𝑉 . Hence, we see that the
proposal of [91, 243] to implement the classical reality conditions in terms of a suitable
inner product follows very naturally if we interpret them as defining equations for a
consistent involution on the classical algebra.

To find such an inner product, let us go back to the full theory. As discussed in detail
in Section 5.5, since the theory has underlying OSp(1|2)C gauge symmetry, a natural
choice of an inner product is given via an invariant measure on OSp(1|2)C as a super
Lie group. The induced inner product then generically consists of ordinary invariant
integral on the bosonic Lie subgroup, i.e., SL(2,C), as well as some variant of a Berezin
integral w.r.t. the odd degrees of freedom. Hence, a natural choice for an inner product
S on𝑉 is given by the super scalar product

S (𝑓| 𝑔) :=
∫

d𝜈 (𝑐, 𝑐)
∫
𝐵

d𝜙𝐴d𝜙𝐴′ 𝑓̄( ¯̃𝑐, 𝜙𝐴) 𝑔 (𝑐, 𝜙𝐴′) (6.163)

where
∫
𝐵

denotes the standard translation-invariant Berezin integral onC0 |2 regarded
as purely odd super vector space. This defines a super scalar product on𝑉 which, a
priori, is indefinite turning (𝑉 ,S ) into an indefinite inner product space. However, it
turns out that this can be completed to a Hilbert space. More precisely, according to the
general discussion in Section 5.5.2, one can always find an endomorphism 𝐽 : 𝑉 →𝑉

such that S (·| 𝐽 ·) defines a positive definite scalar product on𝑉 . This is a standard fact
about invariant measures on super Lie groups proven in [109]. The choice of such an
endomorphism is a priori completely arbitrary but may be fixed by the requirement of a
consistent implementation of the reality conditions (6.162). A typical choice of 𝐽 would
be

𝐽 := exp
(
1
ℏ
𝜙𝐴𝜙𝐴′𝑛

𝐴𝐴′
)

(6.164)

If ⟨·|·⟩ := S (·| 𝐽 ·), it follows that via the identification𝑉 � (𝐻AP(C))⊗4, one has

⟨𝑓| 𝑔⟩ = 1
ℏ2
⟨⟨𝑓∅ | 𝑔 ∅⟩⟩ + 1

ℏ
⟨⟨𝑓+ | 𝑔+⟩⟩ + 1

ℏ
⟨⟨𝑓− | 𝑔−⟩⟩ + ⟨⟨𝑓+− | 𝑔+−⟩⟩ (6.165)

where, for 𝑓 ∈ 𝑉 , we made the decomposition 𝑓 = 𝑓∅ + 𝑓𝐴′𝜙𝐴′ + 1
2 𝑓
+−𝜙𝐴′𝜙

𝐴′ and
⟨⟨·|·⟩⟩ denotes the inner product on 𝐻AP(C), that is,

⟨⟨𝑓𝐼 | 𝑔 𝐼 ⟩⟩ :=
∫

d𝜈 (𝑐, 𝑐) 𝑓̄𝐼 (𝑐) 𝑔 𝐼 (𝑐) (6.166)
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6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

for some ordered multi-index 𝐼 of length 0 ≤ |𝐼 | ≤ 2. As shown in [88, 146], with
respect to this scalar product, one indeed has

𝜙
†
𝐴
= ℏ𝑛𝐴𝐴′

𝜕

𝜕𝜃𝐴′
= 𝑖𝜋 𝐴

′
𝜙 𝑛𝐴𝐴′ (6.167)

and thus the reality condition (6.162) is satisfied. In fact, it turns out that 𝐽 is even
uniquely determined by this requirement.

Finally, we need to implement the reality conditions (6.161) for the bosonic degrees of
freedom. Since the torsion contribution to the reduced connection simply drops off,
this can be done in complete analogy to the matter-free case. Hence, following [91], we
make the following ansatz

⟨⟨𝑓| 𝑔⟩⟩ = lim
𝐷→∞

1
2𝐷

∫ 𝐷

−𝐷
d𝑐𝑅

∫ 𝐷

−𝐷
d𝑐𝐼 𝛿

(
𝑐𝑅 −

𝑘ℓ0

2
)
𝑓̄( ¯̃𝑐) 𝑔 (𝑐) (6.168)

with 𝑓, 𝑔 ∈ 𝐻AP(C) where we made the decomposition 𝑐 = 𝑐𝑅 + 𝑖𝑐𝐼 with 𝑐𝑅, 𝑐𝐼 ∈ R
the real and imaginary part of 𝑐, respectively. Moreover, we have added the spatial
curvature 𝑘 = 0, +1 of the FLRW spacetime in order to treat both cases simultaneously.
Note that, in contrast to [91], we do not have to consider the states with positive and
negative frequency separately. This is due our sign convention made for the internal
3-form 𝜖 𝑖𝑗𝑘 . Of course, the prize to pay is that then 𝑐 does not have a straightforward
behavior under parity transformations in the purely bosonic case. We however made
this choice due to the inclusion of parity-violating fermionic matter degrees of freedom
into the theory.

Let us verify that this indeed correctly implements the reality conditions (6.161). To this
end, note that for elementary states of the form 𝑓 = 𝑒𝜈𝑐 and 𝑔 = 𝑒𝜈′𝑐 one has

⟨⟨𝑓| 𝑔⟩⟩ = lim
𝐷→∞

1
2𝐷

∫ 𝐷

−𝐷
d𝑐𝑅

∫ 𝐷

−𝐷
d𝑐𝐼 𝛿

(
𝑐𝑅 −

𝑘ℓ0

2
)
𝑒 (𝜈+𝜈

′) 𝑐𝑅 𝑒𝑖 (𝜈
′−𝜈) 𝑐𝐼

= 𝑒 (𝜈+𝜈
′) 𝑘ℓ02 lim

𝐷→∞

1
2𝐷

∫ 𝐷

−𝐷
d𝑐𝐼 𝑒𝑖 (𝜈

′−𝜈) 𝑐𝐼 = 𝑒𝜈𝑘ℓ0𝛿𝜈,𝜈′ (6.169)

so that

⟨⟨𝑓|𝑒𝜇𝑘ℓ0 𝑒−𝜇𝑐 𝑔⟩⟩ = 𝑒𝜇𝑘ℓ0 ⟨⟨𝑒𝜈𝑐 |𝑒 (𝜈′−𝜇) 𝑐⟩⟩ = 𝑒𝜈′𝑘ℓ0𝛿𝜇+𝜈,𝜈′ = ⟨⟨𝑒𝜇𝑐𝑓| 𝑔⟩⟩ (6.170)

∀𝜇 ∈ R. By linearity, it follows that this holds on all of𝑉 so that this indeed provides
an implementation of (6.161). As argued in [91], this choice is in fact unique. Thus, we
have constructed a unique positive definite inner product on𝑉 which we can use to
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6.6. Quantum theory

complete𝑉 to a Hilbert space ℌ := 𝑉
∥· ∥

. This Hilbert space has the tensor product
structure

ℌ = ℌgrav ⊗ ℌ𝑓 = ℌgrav ⊗
∧[𝜙𝐴′] (6.171)

and therefore naturally carries aZ2-grading whereℌgrav is the Hilbert space of the purely
gravitational degrees of freedom obtained via completion of 𝐻AP(C) w.r.t. the inner
product ⟨⟨·|·⟩⟩. Hence, in this way, we end up with a standard super Hilbert space
(ℌ, ⟨·|·⟩) (see Def. 5.5.9). According to (6.169), an orthonormal basis of ℌgrav is given
by the states 𝜓𝜇 ∈ ℌgrav of the form

𝜓𝜇(𝑐) := 𝑒−
𝜇𝑘

2ℓ0 𝑒𝜇𝑐 (6.172)

Since
𝑝̂𝜓𝜇 = −

ℏ𝜅𝜇

3
𝜓𝜇 (6.173)

it follows that these are eigenstates of the bosonic electric flux operator 𝑝̂with eigenvalue
−ℏ𝜅𝜇3 ∈ R. Since 𝑝̂ factorizes as 𝑝̂ ≡ 𝑝̂ ⊗ 1 w.r.t. the tensor product structure (6.171)
of the super Hilbert space ℌ, this implies that 𝑝̂ is a densely defined unbounded and
symmetric operator on ℌ with spectrum contained in the reals, that is, 𝑝̂ is self-adjoint.
Hence, we have successfully implemented all the reality conditions (6.161) and (6.162)
on the Hilbert space ℌ.

6.6.3. Solution of the residual Gauss constraint

We finally have to implement the remaining kinematical constraint given by the residual
Gauss constraint (6.84) given by

𝐺𝑖 = 𝜋
𝐴′
𝜙 (𝜏𝑖) 𝐵′

𝐴′ 𝜙𝐴′ (6.174)

imposing invariance of the fermionic degrees of freedom under local SL(2,C) gauge
transformations. Note that, due to the hybrid ansatz, it solely depends on the fermionic
degrees of freedom as the bosonic variables have been chosen to be isotropic. For the
quantization of this constraint, we order 𝜋𝜙 to the right so that this yields

𝐺𝑖 = (𝜏𝑖) 𝐵′

𝐴′ 𝜙𝐵′𝜋
𝐴′
𝜙 (6.175)

We then require that kinematical states are annihiliated by𝐺𝑖 . Writing 𝑓 = 𝑓∅+𝑓𝐴′𝜙𝐴′+
1
2 𝑓
+−𝜙𝐴′𝜙

𝐴′ for a general state 𝑓 ∈ ℌ, it follows immediately from the definition that
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6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

purely bosonic states 𝑓 ≡ 𝑓∅ ∈ ℌ are solutions of the constraint equation. For a fully
occupied state 𝑓 ≡ 𝑓+−𝜙𝜙 ∈ ℌ, it follows

𝐺𝑖𝑓
+−𝜙𝜙 = −𝑖ℏ𝑓+−(𝜏𝑖) 𝐵′

𝐴′ 𝜙𝐵′𝜙𝐷′ 𝜖
𝐴′𝐷′ = 𝑖ℏ𝑓+−𝜏 𝐵

′𝐷′
𝑖 𝜙𝐵′𝜙𝐷′

= 𝑖ℏ𝑓+−𝜏 (𝐵
′𝐷′)

𝑖
𝜙𝐵′𝜙𝐷′ = 0 (6.176)

as the fermions are anticommutative while 𝜖𝜏 is symmetric. On the other hand, for a
single fermionic state 𝑓 ≡ 𝑓𝐴′𝜙𝐴′ , one immediately finds for 𝑖 = 3 that𝐺3𝑓

𝐴′𝜙𝐴′ = 0
if and only if 𝑓𝐴′ = 0 ∀𝐴′. Hence, solutions to the Gauss constraint are given by
kinematical states 𝑓 ∈ ℌ of the form

𝑓 = 𝑓∅ + 1
2
𝑓+−𝜙𝐴′𝜙

𝐴′ (6.177)

which is in fact in complete analogy with the results obtained via the approach of D’Eath
et al. in [88, 90]. States of the form (6.177) form the kinematical Hilbert space which we
denote by ℌcLQSC. This completes the construction of the kinematical Hilbert space
ℌcLQSC of chiral loop quantum cosmology with localN = 1 supersymmetry.

6.6.4. The SUSY constraints and the quantum algebra

Having constructed the kinematical Hilbert space of the theory and successfully imple-
mented all the reality conditions, we finally need to determine the physical states. To this
end, note that, according to the constraint algebra (6.129), the SUSY constraints generate
the Hamiltonian constraint. This is a particular property of the canonical description
of fields theories with local supersymmetry. This means that, if the SUSY constraints
have been succesfully implemented in the quantum theory such that (6.129) holds in
the quantum theory, then these are superior to the Hamiltonian constraint in the sense
that, once they are solved, this automatically leads to the solution of the latter. More
precisely, if Ψ ∈ ℌcLQSC with 𝑆𝐿𝐴′Ψ = 0 = 𝑆𝑅

𝐵′Ψ ∀𝐴
′, 𝐵 ′, then

0 = [𝑆𝐿𝐴′ , 𝑆𝑅𝐵′]Ψ = 𝐻Ψ (6.178)

This is an important feature in canonical quantum supergravity and the Poisson relation
(6.129) poses strong reglementations on the quantization of the constraints and therefore
may fix also some of the quantization ambiguities. In Chapter 4, the (quantum) SUSY
constraint has been investigated in the full theory of LQG with real variables. However,
the precise relation to the Hamiltonian constraint via studying the quantum algebra has
not been considered yet, due to the complexity of the resulting quantum operators. This
changes in the symmetry reduced setting where we will be able to study the quantum
algebra in detail.
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6.6. Quantum theory

In order to implement the SUSY constraints on ℌcLQSC, we have to regularize the
connection 𝑐 in the classical expressions, as it not represented as a well-defined operator
in the quantum theory. Following [91], as typically done in LQC, one therefore fixes
some minimal length ℓ𝑚 which is of the order of the Planck length and which arises from
quantum geometry in the full theory. The connection 𝑐 will then be approximated via
generalized holonomies 𝑒𝜇𝑐 computed along paths of that minimal length ℓ𝑚. According
to (6.136), the proper length 𝜏 as measured by the generalized holonomy 𝑒𝜇𝑐 w.r.t. the
fiducial metric 𝑞̊ is given by 𝜏 = 𝜇̊ℓ0 = 2𝜇ℓ0. The physical length as measured w.r.t. the
metric 𝑎2 𝑞̊ is then given by 𝜏 |𝑎| = 2𝜇

√︁
| 𝑝 | which we require to be the minimal length

ℓ𝑚 from quantum geometry. Hence, this yields

𝜇 =
𝜆𝑚√︁
| 𝑝 |

(6.179)

where we set 𝜆𝑚 := ℓ𝑚/2. A regularization of the connection 𝑐 in terms of these
generalized holonomies is then given by

𝑐 =

√︁
| 𝑝 |

2𝜆𝑚

(
𝑒𝜆𝑚 𝑐/
√
| 𝑝 | − 𝑒−𝜆𝑚 𝑐/

√
| 𝑝 |

)
(6.180)

To study the action of the corresponding operator in the quantum theory, we introduce
the new classical variables

𝛽 :=
𝑐√︁
| 𝑝 |

and 𝑉 := 𝜖 | 𝑝 | 32 (6.181)

which satisfy the classical Poisson bracket

{𝛽,𝑉 } = − 𝑖𝜅
2

(6.182)

and thus defines a canonically conjugate pair. From this, it follows

{𝑒𝜆𝑚 𝛽,𝑉 } =
∞∑︁
𝑘=1

(𝜆𝑚)𝑘
𝑘!
{𝛽𝑘,𝑉 } = − 𝑖𝜅𝜆𝑚

2
𝑒𝜆𝑚 𝛽 (6.183)

On ℌcLQSC, let us introduce the states

|𝑉 ⟩ := 𝑒
𝑘𝜇(𝑉 )
2ℓ0 𝜓𝜇(𝑉 ) , with 𝜇(𝑉 ) := − 3

ℏ𝜅
sign(𝑉 ) |𝑉 | 23 (6.184)

for𝑉 ∈ Rwhere 𝜓𝜇 is the orthonormal basis of ℌgrav as defined via (6.172). The states
(6.184) are eigenstates of the volume operator𝑉 := 𝜖 | 𝑝̂ | 32 with eigenvalue𝑉 . Note that
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6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology

they are normalized only in case of vanishing spatial curvature. We will however use
them for both cases as the action of the holonomy operators on these states is much
simpler [91]. According to (6.183), it follows6

𝑉

(
𝑒𝜆𝑚 𝛽 |𝑉 ⟩

)
= [𝑉 , 𝑒𝜆𝑚 𝛽] |𝑉 ⟩ +𝑉 𝑒𝜆𝑚 𝛽 |𝑉 ⟩ =

(
𝑉 − ℏ𝜅𝜆𝑚

2

)
𝑒𝜆𝑚 𝛽 |𝑉 ⟩ (6.185)

Setting 𝑣 := 4
ℏ𝜅
𝑉 , we thus obtain

𝑒𝜆𝑚 𝛽 |𝑣⟩ = |𝑣 − 2𝜆𝑚⟩ (6.186)

For the implementation of the SUSY constraints (6.114) and (6.115) as well as the Hamil-
tonian constraint (6.113), we exploit quantization ambiguities to quantize expressions of
the form 𝜖𝑐 in the most symmetric way. In fact, as we will see, symmetric ordering will
lead to a correct implementation of the classical constraint algebra (6.129). Hence, using
the regularization (6.180), for the quantum analog of 𝜖𝑐, we take

𝜖𝑐 =

√︁
| 𝑝 |

2𝜆𝑚
(N− − N+) (6.187)

where
N± :=

1
2

(
𝑒∓𝜆𝑚 𝑐/

√
| 𝑝 | 𝜖 + 𝜖𝑒∓𝜆𝑚 𝑐/

√
| 𝑝 |

)
(6.188)

Due to (6.186), the action of these operators on volume eigenstates are given by

N± |𝑣⟩ =
1
2
(
sign(𝑣) + sign(𝑣 ± 2)

)
|𝑣 ± 2𝜆𝑚⟩ (6.189)

and thusN− |𝑣⟩ resp.N+ |𝑣⟩ vanishes in case 𝑣 ∈ (0, 2𝜆𝑚) resp. 𝑣 ∈ (−2𝜆𝑚, 0). Next,
we have to implement the classical quantity 𝑖𝜙𝐴′

𝜙
𝜙𝐴′ which appears, for instance, in

Eq. (6.107) relating the reduced connections 𝑐 and 𝑐 after having performed a canonical
transformation to half-densitized fermionic fields. Sticking again to symmetric ordering,
we define

Θ̂ :=
𝑖

2
(𝜋 𝐴′𝜙 𝜙𝐴′ − 𝜙𝐴′𝜋 𝐴

′
𝜙 ) = ℏ − 𝑖𝜙𝐴′𝜋 𝐴

′
𝜙 (6.190)

By definition, it follows that Θ̂ is self-adjoint, since, due to reality conditions (6.162),(
𝑖𝜙𝐴′𝜋

𝐴′
𝜙

)†
= −𝑖𝜋†𝐴

𝜙
𝜙
†
𝐴
= 𝑖𝜙𝐵′𝜋

𝐶′
𝜙 𝑛

𝐴𝐵′𝑛𝐴𝐶′ = 𝑖𝜙𝐴′𝜋
𝐴′
𝜙 (6.191)

6 As common in the LQC literature, for notational simiplification, we will drop hats indicating (bosonic)
operator expressions in what follows
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Moreover, Θ̂ annihilates states with one single fermionic excitation, that is, Θ̂𝜙𝐴′ = 0.
In fact, Θ̂ is related to the particle number operator 𝑁 via 𝑁 = 1 − 1

ℏ
Θ̂, where 𝑁

counts the number of fermionic excitations in a quantum state. Using (6.190) as well as
(6.187), it follows that the quantum analog of (6.107) takes the form

𝜖𝑐 = 𝜖𝑐 − 𝜅𝜖

12𝑝
𝑖

2
(𝜋 𝐴′𝜙 𝜙𝐴′ − 𝜙𝐴′𝜋 𝐴

′
𝜙 )

=
𝑔

1
3 |𝑣 | 13
2𝜆𝑚

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)

(6.192)

where we used that | 𝑝 | = (2𝜋𝐺ℏ) 23 |𝑣 | 23 =: 𝑔
2
3 |𝑣 | 23 . To implement the dynamical

constraints in the quantum theory, for sake of simplicity, we want to restrict to the
special case 𝑘 = 0 and 𝐿 → ∞, i.e., vanishing spatial curvature and cosmological
constant. This will simplify the derivation of the quantum algebra and also indicate
very clearly how the classical algebra can be maintained in the quantum theory. The
case with nonvanishing spatial curvature will be discussed in the following section in
the context of the semi-classical limit of the theory.

If we use symmetric ordering, it follows that the Hamiltonian constraint operator in the
quantum theory can be defined in the following way

𝐻 = −
3𝑔

4𝜅𝜆2𝑚
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 12

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 14

− 1
8𝜆𝑚
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 |− 1

4 Θ̂

− 1
8𝜆𝑚
|𝑣 |− 1

2 |𝑣 | 14 𝑖𝜋 𝐴′𝜙
(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 14 𝜙𝐴′ (6.193)

The bosonic part of 𝐻 is almost the same as in [91]. However, unlike [91], we did not
change the overall power of the rescaled volume operator by redefining the lapse function
𝑁 . This is due to the fact that the Hamiltonian constraint should be related to the
SUSY constraints via a quantum analog of (6.129). Hence, redefining the Hamiltonian
constraint requires a redefinition of the SUSY constraints which may then change the
resulting quantum algebra which we would like avoid.

Note that each of the two fermionic contributions in (6.193) indeed yield half of 𝐻𝑓
in the classical limit ℏ→ 0 in which case the terms |𝑣 | 14 and |𝑣 |− 1

4 simply cancel each
other. Moreover, in the last line of (6.193), the term |𝑣 |− 1

4 on the left-hand side of the
bracket has been regularized replacing it by the equivalent expression |𝑣 |− 1

2 |𝑣 | 14 for 𝑣 ≠ 0.
In this way, it follows that the Hamiltonian constraint is well-defined by acting on all
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states |𝑣⟩ with 𝑣 ≠ 0. In fact, suppose 𝐻 acts on the state |𝑣⟩ = |2⟩, then this state will
mapped to zero volume state |0⟩ by the shift operatorN− which will subsequently be
annihilated by |𝑣 | 12 . A similar kind of reasoning applies to the sector with 𝑣 < 0. Hence,
the Hamiltonian has a well-defined action on the states |𝑣⟩ = |±2⟩. As will become clear
in what follows, this kind of regularization of the Hamiltonian constraint operator is not
imposed artificially but turns out to be even mandatory if one requires consistency with
the classical Poisson relation (6.129). Therefore, let us implement the SUSY constraints
in the quantum theory. If we stick to symmetric ordering, this immediately gives

𝑆𝐿𝐴
′
=
𝑔

1
2

2𝜆𝑚
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 14 𝜋 𝐴′𝜙 (6.194)

for the left supersymmetry constraint as well as

𝑆𝑅
𝐴′ =

3𝑔 1
2

2𝜆𝑚
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 14 𝜙𝐴′ (6.195)

for the right supersymmetry constraint. By definition, these operators are both well-
defined while acting on states |𝑣⟩ with 𝑣 ≠ 0. For the computation of the quantum
algebra among the SUSY constraints, we have to calculate various commutators of the
form [Θ̂, 𝜋 𝐴′

𝜙
] and [Θ̂, 𝜙𝐴′] which are given by

[Θ̂, 𝜋 𝐴′𝜙 ] = ℏ𝜋 𝐴
′

𝜙 and [Θ̂, 𝜙𝐴′] = −ℏ𝜙𝐴′ (6.196)

Thus, using (6.196), we find that the trace part of the operator-valued matrix [𝑆𝐿𝐴′ , 𝑆𝑅
𝐵′]

is given by

[𝑆𝐿𝐴′ , 𝑆𝑅
𝐴′] =

=
3𝑔
4𝜆2𝑚
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 12

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 14 [𝜋 𝐴′𝜙 , 𝜙𝐴′]

+
3𝑔
4𝜆2𝑚
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 14

[
𝜋 𝐴

′
𝜙 , |𝑣 |

1
4

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 14

]
𝜙𝐴′

−
3𝑔
4𝜆2𝑚
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 14

[
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 14 , 𝜙𝐴′

]
𝜋 𝐴

′
𝜙

=2𝑖ℏ𝜅𝐻𝑏 −
𝜅

8𝜆𝑚
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 |− 1

4 [𝜋 𝐴′𝜙 , Θ̂]𝜙𝐴′

+ 𝜅

8𝜆𝑚
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 |− 1

4 [Θ̂, 𝜙𝐴′]𝜋 𝐴
′

𝜙
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=2𝑖ℏ𝜅
(
𝐻𝑏 −

1
8𝜆𝑚
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 |− 1

4 Θ̂
)

=2𝑖ℏ𝜅𝐻 − ℏ𝜅

4𝜆𝑚 |𝑣 |
1
2
𝜋 𝐴

′
𝜙

(
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 14 𝜙𝐴′

)
(6.197)

that is

[𝑆𝐿𝐴′ , 𝑆𝑅
𝐴′] = 2𝑖ℏ𝜅𝐻 − ℏ𝜅

6𝑔 1
2 |𝑣 | 12

𝜋 𝐴
′

𝜙 𝑆
𝑅
𝐴′ (6.198)

which is precisely the quantum analog of (6.125). To compute the off-diagonal entries
of [𝑆𝐿𝐴′ , 𝑆𝑅

𝐵′] note that, by definition, the right SUSY constraint operator 𝑆𝑅
𝐵′ creates

a fermionic state 𝜙𝐵′ . On the other hand, 𝑆𝐿𝐴′ annihilates a fermionic state labelled
with 𝐴′. Hence, if [𝑆𝐿𝐴′ , 𝑆𝑅

𝐵′] acts on a fermionic vacuum state 𝑓 ≡ 𝑓∅ ∈ ℌcLQSC,
this immediately gives for 𝐴′ ≠ 𝐵 ′

[𝑆𝐿𝐴′ , 𝑆𝑅𝐵′]𝑓
∅ = 𝑆𝐿𝐴

′ (𝑆𝑅𝐵′𝑓
∅) = 0 =

ℏ𝜅

6𝑔 1
2 |𝑣 | 12

𝜋 𝐴
′

𝜙 (𝑆𝑅𝐵′𝑓
∅) (6.199)

On the other hand, in case 𝑓 ≡ 𝑓+−𝜙𝜙 ∈ ℌcLQSC is a fully occupied state, it follows

[𝑆𝐿𝐴′ , 𝑆𝑅𝐵′]𝑓 = −𝑆
𝑅
𝐵′ (𝑆

𝐿𝐴′𝑓+−𝜙𝜙) = 0 =
ℏ𝜅

6𝑔 1
2 |𝑣 | 12

𝜋 𝐴
′

𝜙 (𝑆𝑅𝐵′𝑓) (6.200)

since 𝑆𝑅
𝐵′ (𝑆

𝐿𝐴′𝑓+−𝜙𝜙) ∝ (𝜙𝐵′)2 = 0 for 𝐴′ ≠ 𝐵 ′ by anticommutativity of the
fermions. Hence, to summarize, we found that the quantum algebra between the left
and right supersymmetry constraint on ℌcLQSC takes the form

[𝑆𝐿𝐴′ , 𝑆𝑅𝐵′] =
(
𝑖ℏ𝜅𝐻 − ℏ𝜅

6𝑔 1
2 |𝑣 | 12

𝜋𝐶
′

𝜙 𝑆
𝑅
𝐶′

)
𝛿 𝐴
′

𝐵′ +
ℏ𝜅

6𝑔 1
2 |𝑣 | 12

𝜋 𝐴
′

𝜙 𝑆
𝑅
𝐵′ (6.201)

and thus exactly reproduces the classical Poisson relation (6.129). This also justifies the
symmetric ordering chosen for the Hamiltonian constraint. This is in fact a standard
quantization scheme used in LQC [244] and follows here requiring consistency with
the SUSY constraints.

As a final step, one needs to find physical states in ℌcLQSC annihilated by the constraint
operators in order to study the dynamics of the theory. As already explained above, to
this end, it suffices to solve the SUSY constraints as, via (6.201), this immediately leads
to a solution of the Hamiltonian constraint. However, in order to introduce a relational
clock, one cannot simply add a scalar field to the theory as usually done in LQC. This is
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due to the fact that ordinary scalar fields will not contribute to the SUSY constraints
leading to inconsistent dynamics according to (6.201). Hence, instead, one needs to
consider local supersymmetric matter coupled to supergravity, i.e., scalar fields with
additional spin- 12 matter fields.

Remark 6.6.3. Let us briefly comment on the dynamics of the classical theory and
the suitability of fermionic fields as relational clocks (see also Remark 6.6.4 below).
It is an immediate consequence of supersymmetry that classical fermionic fields have
to be anticommuting. This may be regarded as the classical limit of the well-known
spin-statistics theorem in quantum field theory. As a result, the fermionic fields are
odd Grassmann-valued functions on phase space and thus, in particular, are nilpotent.
Recall that, generally, any Grassmann number has an ordinary real- (resp. complex-)
valued scalar coefficient at lowest order, i.e., its body. These are the numbers one has
access to in classical experiments. However, as fermionic fields are Grassman-odd, it
follows that their body has to be zero. For this reason, fermionic fields do not serve as
good “clocks” in cosmology even at the classical level.

Taking the body of the chiral supergravity action (5.102), the fermionic contributions
immediately drop off due to nilpotency leading back to the standard chiral Palatini
action of first-order Einstein gravity with cosmological constant. Hence, classically, one
may interpret this limit in terms of the evolution of fermions on the classical bosonic
background. Nevertheless, one may consider instead bosonic quantities (or rather their
expectation values) derived from the fermionic fields. For instance, one can consider the
current 𝐽0 := 𝑖𝜋 𝐴′

𝜙
𝜙𝐴′ or the associated fermionic energy density 𝜌𝑓 which, in case of

a vanishing cosmological constant, is related to the current via7 𝜌𝑓 ∼ 𝐽 20 /𝑎6. Further
bosonic quantities, in case of a nonvanishing cosmological constant, are given by the, in
general complex, currents 𝐽𝜙 := 𝑖 𝜖𝐴′𝐵′𝜙𝐴′𝜙𝐵′ and 𝐽𝜙 := −𝑖 𝜖𝐴′𝐵′𝜋 𝐴

′
𝜙
𝜋 𝐵

′
𝜙

, respectively.
The classical Hamiltonian constraint may then be written as

𝐻 = − 3𝜖2

𝜅

√︃
| 𝑝 | (𝑐2 − 𝑘ℓ0𝑐) −

𝜖

2
√︁
| 𝑝 |
(𝑐 − 𝑘ℓ0) 𝐽0 −

𝜖2

𝐿
ℜ( 𝐽𝜙) +

3
𝜅𝐿2 | 𝑝 |

3
2

However, in the classical theory and without coupling it to additional locally super-
symmetric matter fields, it turns out to be hard to find nontrivial solutions of this pure
graviton-gravitino model with nontrivial fermion currents which lead to a non-static
dynamical universe (this is mainly due to the constraints imposed by the SUSY and

7 Probably, the easiest way to see this is to use the Hamiltonian constraint 𝐻 = 0 from which one
can read off the imaginary part 𝑐𝐼 = ℑ(𝑐) of the symmetry reduced Ashtekar connection. Since
¤𝑎 = {𝑎, 𝐻 } = 𝑐𝐼 this yields an expression for the Hubble parameter ¤𝑎/𝑎 which, via the Friedmann

equation for a homogeneous isotropic universe, is related to the fermionic energy density via ( ¤𝑎/𝑎)2 =
𝜅 𝜌𝑓/3 − (𝑘ℓ0)2/4𝑎2.
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Hamiltonian constraints on the initial conditions). This coincides with the observations
in [88,90], where it is argued that this pure graviton-gravitino model has to be considered
quantum theoretically. Hence, for various reasons, it is desirable to study the system
coupled to further locally supersymmetric matter fields. According to the discussions
in [88], this may in fact lead to very interesting dynamics.

Remark 6.6.4. As already argued in previous remark, even in the classical theory,
fermionic fields do not serve as good relational clocks. One may then consider instead
derived bosonic quantities such as the fermionic current 𝐽0 which in the quantum theory,
up to ordering ambiguities, is represented by the fermionic particle number operator
𝑁 = 1− 1

ℏ
Θ̂. However, this operator has pure discrete spectrum consisting of the three

eigenvalues {0, 1, 2}. Hence, in the quantum theory, this quantity also does not serve
as a good relational clock. Alternatively, one may use 𝑝 as a clock. The fermionic state
then becomes a function of this “gravitational” time. We will do something like this in
the discussion of the semi-classical limit in Section 6.6.5 below.

Based on the observations in Remark 6.6.3 and 6.6.4, we leave it as a task for future
investigations to study the full dynamics of the theory including local supersymmetric
matter fields as a relational clock. Nevertheless, one can already make some qualitative
statements concerning the singularity resolution. In fact, according to (6.194) and (6.195),
by acting with the quantum SUSY constraints, irrespective of the number of fermionic
excitations, the volume eigenstates |𝑣⟩ = |±2⟩ are mapped to the zero volume state |0⟩ or
|±4⟩ by the shift operatorsN±. The zero volume state is then subsequently annihilated
by the volume operator |𝑣 | 14 . Moreover, states |𝑣⟩ with 𝑣 ∈ (0, 2𝜆𝑚) are annihilated
by N− whereas states |𝑣⟩ with 𝑣 ∈ (−2𝜆𝑚, 0) are mapped to zero by N+. Hence, it
follows that the vacuum state decouples from the dynamics and accordingly the cosmic
singularity is resolved in this model.

6.6.5. The semi-classical limit

So far, for the derivation of the quantum algebra (6.201), we have restricted to the special
case of a vanishing spatial curvature and vanishing cosmological constant. In order to
compare our model with other supersymmetric minisuperspace models in the literature,
we next want to consider the case of a positive spatial curvature, i.e., 𝑘 = 1, and study the
semi-classical limit of the theory. As observed already in the previous section, in order to
ensure consistency with classical Poisson algebra, it is worthwhile to choose a symmetric
ordering for the dynamical constraints. Hence, we define

𝑆𝐿𝐴
′
=
𝑔

1
2

2𝜆𝑚
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 14 𝜋 𝐴′𝜙 (6.202)
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for the left supersymmetry constraint which is equivalent to (6.195) and respectively

𝑆𝑅
𝐴′ =

3𝑔 1
2

2𝜆𝑚
|𝑣 | 14

(
(N− − N+) −

𝜅𝜆𝑚

6𝑔 |𝑣 | Θ̂
)
|𝑣 | 14 𝜙𝐴′ − 3𝜖 𝑔

1
6 |𝑣 | 16 ℓ0𝜙𝐴′ (6.203)

for the right supersymmetry constraint. Since 𝑆𝑅
𝐵′ and 𝑆𝐿𝐴′ for 𝐴′ ≠ 𝐵 ′ create resp.

annihilate fermions with opposite quantum numbers, as in the previous section, it
is immediate to see that on the subspace of gauge invariant states the commutator
[𝑆𝐿𝐴′ , 𝑆𝑅

𝐵′] simply vanishes such that

[𝑆𝐿𝐴′ , 𝑆𝑅𝐵′] =
ℏ𝜅

6𝑔 1
2 |𝑣 | 12

𝜋 𝐴
′

𝜙 𝑆
𝑅
𝐴′ = 0 (6.204)

on ℌcLQSC for 𝐴′ ≠ 𝐵 ′as required. The trace part can then be considered as a defining
equation of the Hamiltonian constraint. We will not derive an explicit expression of
Hamiltonian constraint in what follows. Instead, we want to turn to the semi-classical
limit of the theory. To this end, note that the minimal length 𝜆𝑚 (resp. ℓ𝑚) should
arise from quantum geometry of the full theory of self-dual LQG. More precisely, it
should be related to the discrete spectrum of the area operator in terms of the square
root of the minimal possible area eigenvalue. Hence, following [29, 91], this suggests
that 𝜆2𝑚 = 16

√
3𝜋𝐺ℏ.

In this section, we are interested in the limit in which effects from quantum geometry are
negligible, that is, in which case the quantum area spectrum becomes nearly continuous.
Hence, we consider the limit 𝜆𝑚 → 0.

Since the SUSY constraints are superior to the Hamiltonian constraint in canonical
quantum supergravity, it suffices to find the semi-classical solutions to (6.202) and
(6.203). Hence, let us consider a state Ψ ∈ ℌcLQSC of the form

Ψ =
∑︁
𝑣

𝜓 (𝑣) |𝑣⟩ +
(∑︁
𝑣

𝜓 ′(𝑣) |𝑣⟩
)
⊗ 𝜙𝐴′𝜙𝐴

′
(6.205)

with certain coefficients 𝜓 (𝑣), 𝜓 ′(𝑣) ∈ C which we assume to correspond to at least
once continuously differentiable functions 𝜓 : 𝑣 ↦→ 𝜓 (𝑣) and 𝜓 ′ : 𝑣 ↦→ 𝜓 ′(𝑣) on
some open subset ofR>0 where we have restricted to the sector of positive volume. It
follows that Ψ is a physical state if and only if 𝑆𝐿𝐴′Ψ = 0 = 𝑆𝑅

𝐵′Ψ∀𝐴
′, 𝐵 ′. Concerning
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the right supersymmetry constraint, this yields, using the fact that Θ̂ annihilates states
with one single fermionic excitation,

𝑆𝑅
𝐴′Ψ =

3𝑔 1
2

2𝜆𝑚

∑︁
𝑣

(
|𝑣 | 14 |𝑣 − 2𝜆𝑚 |

1
4𝜓 (𝑣) |𝑣 − 2𝜆𝑚⟩ − |𝑣 |

1
4 |𝑣 + 2𝜆𝑚 |

1
4𝜓 (𝑣) |𝑣 + 2𝜆𝑚⟩

−3𝑔 1
6 |𝑣 | 16 ℓ0𝜓 (𝑣) |𝑣⟩

)
⊗ 𝜙𝐴′

=
3𝑔 1

2

2𝜆𝑚

∑︁
𝑣

[ (
|𝑣 + 2𝜆𝑚 |

1
4 |𝑣 | 14𝜓 (𝑣 + 2𝜆𝑚) − |𝑣 − 2𝜆𝑚 |

1
4 |𝑣 | 14𝜓 (𝑣 − 2𝜆𝑚)

)
|𝑣⟩

− 3𝑔 1
6 |𝑣 | 16 ℓ0𝜓 (𝑣)

]
|𝑣⟩ ⊗ 𝜙𝐴′ (6.206)

where we have performed an index shift in order to obtain the last line. Hence, setting
𝐹 (𝑣) := |𝑣 | 14𝜓 (𝑣), it follows that Ψ is a solution to the right SUSY constraint operator
if and only if 𝐹 satisfies the difference equation

𝐹 (𝑣 + 2𝜆𝑚) − 𝐹 (𝑣 − 2𝜆𝑚)
4𝜆𝑚

=
ℓ0

2
1

𝑔
1
3 |𝑣 | 13

|𝑣 | 14𝜓 (𝑣) = ℓ0
2

1
𝑔

1
3 |𝑣 | 13

𝐹 (𝑣) (6.207)

Thus, in the limit where effects from quantum geometry are negligible, one can approxi-
mate the difference on the l.h.s. of Eq. (6.207) by a derivative yielding

𝐹 ′(𝑣) = lim
𝜆𝑚→0

𝐹 (𝑣 + 2𝜆𝑚) − 𝐹 (𝑣 − 2𝜆𝑚)
4𝜆𝑚

=
ℓ0

2
1

𝑔
1
3 |𝑣 | 13

𝐹 (𝑣) (6.208)

which after separating variables and integrating on both sides gives

ln 𝐹 (𝑣) = 3ℓ0
4𝑔

1
3
|𝑣 | 23 = 3𝑎2𝑉0

𝜅ℏ
+ 𝐶 (6.209)

where𝐶 is some constant fixed by the initial conditions. Hence, it follows that in the
semi-classical limit the unique solution to the right SUSY constraint, up to a constant
multiple, is given by

𝐹 (𝑣) = exp
(
3𝑎2𝑉0
𝜅ℏ

)
⇔ 𝜓 (𝑣) = |𝑣 |− 1

4 exp
(
3𝑎2𝑉0
𝜅ℏ

)
(6.210)

Finally, the solution 𝑆𝐿𝐴′Ψ = 0 to the left SUSY constraint are obtained following the
same steps as before which yields 𝜓 ′(𝑣) = |𝑣 |− 1

4 . Hence, we found a general solution of
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the quantum SUSY constraints in the semi-classical limit 𝜆𝑚 → 0 in which effects from
quantum geometry are negligible take the form

𝐶 |𝑣 |− 1
4 exp

(
3𝑎2𝑉0
𝜅ℏ

)
+ 𝐷 |𝑣 |− 1

4 𝜙𝐴′𝜙
𝐴′ (6.211)

with some constant coefficients𝐶, 𝐷 ∈ C. For 𝐷 = 0 the exponential term is exactly
the semi-classical state as found in [88, 90] and, as will be explained in more detail below,
turns out to be a Hartle-Hawking state of the theory. In the present case, the additional
correction term |𝑣 |− 1

4 arises from the symmetric ordering chosen for the definition
of the quantum SUSY constraints and thus is simply a quantization ambiguity. In
fact, if the regularized connection in (6.203) would have been ordered to the right in
front of the volume operator |𝑣 | 14 , then this term would not appear as a correction to
(6.211). Moreover, in [88, 90], in contrast to the present situation, the exponential term
appears in the maximally fermion occupied state. This is simply due to the fact that
there 𝜙𝐴′ has been implemented as a derivation whereas 𝜙𝐴 and thus 𝜋 𝐴′

𝜙
is quantized

as a multiplication operator. Since this choice and the choice made here just correspond
to two different representations of the CAR *-algebra, they are simply related via a
Bogoliubov transformation.

More precisely, in [88, 90], one considers a semi-classical approximation of the Hartle-
Hawking wave function

Ψ :=
∫
C
D[𝑒𝐼𝜇]D[𝜓 𝐴𝜇 ]D[𝜓 𝐴

′
𝜇 ] exp

(
−1
ℏ
𝐼

)
(6.212)

with 𝐼 the Euclidean action and C a class of four-dimensional metrics and fermionic
matter fields satisfying certain prescribed boundary conditions on a given surface. It
is then argued, under certain assumptions on the initial conditions and provided that,
in the reduced setting, 𝜙𝐴′ is quantized as a multiplication operator, a semi-classical
approximation of (6.212) is indeed proportional to (6.211) in case 𝐷 = 0.

6.7. Discussion
In this chapter we have quantized a class of symmetry reduced models ofN = 1 super-
gravity using self-dual variables. We have tried to keep the supersymmetry manifest as
far as possible, and used ideas and techniques from loop quantum gravity. In particular:

■ We reduced the full theory to a homogeneous and quasi-isotropic one and showed
that the essential part of the constraint algebra in the classical theory closes.

■ We calculated the elementary super holonomies in the reduced theory and showed
that they can be obtained from simple building blocks which form a superalgebra.
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■ We found a representation of the graded holonomy-flux algebra of the symmetry
reduced theory on a super Hilbert space that satisfies the reality conditions. The
residual Gauss constraint can be implemented and selects a sub super Hilbert
space.

■ The supersymmetry constraints and the Hamiltonian constraint can be imple-
mented. Choosing the ordering appropriately reproduces the relevant part of the
(super) Dirac algebra of the classical theory.

■ We showed that the zero volume state decouples from the dynamics, hence the
classical singularity is resolved in this sense.

■ In the limit of sending the area gap to zero, a part of the solution space obtained
in another approach is recovered.

We would like to highlight the following points.

As pointed out in Section 5.5, some of the apparent difficulties with quantizing the
full chiral theory while maintaining manifest supersymmetry are the necessity of a
non-compact structure group, the complicated reality conditions, the fact that Haar
measures on quantum groups are typically not positive definite, and the complicated
constraints. However, one can take some encouragement from the fact that in the model
we considered, these problems turned out to be solvable. In particular, reality conditions
select a suitable measure and lead to a Hilbert space that is very close to the one used in
standard LQC coupled to fermions. For the bosonic sector this was already observed
in [91], but here we see that it extends to the fermions as well. Similarly, the closure of
the constraint algebra actually reduces the quantization ambiguities and thus is a helpful
criterion in the process of writing down the quantum theory.

We started with a theory with manifest supersymmetry but ended with one where parts
of it live on in the constraint algebra, but it is not manifest anymore. It is interesting to
see where this change happened. Note that (6.137) still contains (the matrix elements
of) a super holonomy, i.e., an element of the relevant supergroup and covariant under
supersymmetry transformations. For simplicity, and to obtain a result that can be
compared to standard LQC, we then considered an algebra of “building blocks” for the
matrix elements. But these lack the fine tuning between odd and even degrees of freedom
that is necessary for supersymmetry. In the future, it would be interesting to make a
different choice here, and use the methods of Section 5.5 (resp. Section 5.5.3) to quantize
the super holonomies directly on a suitable space of functions on the supergroup.

Another point that we would like to note is that both orientations of the triad are treated
on an equal footing throughout the work. In fact, factors of sign(det(𝑒𝑖𝑎)) enter in many
places and are important for the consistency of the theory in both sectors. However,
as we have discussed in Section 6.6.4, the dynamics as we have written it does not mix
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the two sectors. It appears that parity does not act in a well-defined way on 𝑐 (resp. 𝑐)
and hence in the theory. We will leave it to future investigation if there is a way to make
parity a well-defined operation in these models.

We have seen that the dynamics of the system resolves the classical singularity in the
sense that the zero volume quantum state decouples. We leave it as a task for future
investigations to study the full dynamics of the theory including local supersymmetric
matter fields as a relational clock. We expect that this would lead to the appearance of
bounce cosmologies as in the non-supersymmetric models of LQC [48, 245, 246].

Finally, while we have seen that some solutions to the constraints have similar behavior
to those of D’Eath et al. [88, 90] in a certain limit, there are also profound differences,
such as the nature of the states and quantum constraint equations. Moreover, we seem
to see the Hartle-Hawking state, but not the wormhole state of D’Eath et al. This shows
that the use of chiral variables and the quantization principles of LQG have interesting
implications that should be understood better in the future.
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In this final chapter, let us summarize the results obtained in this work and outline
possible future research projects.

7.1. Summary of the results
One primary goal of this work has been to develop a mathematically rigorous approach
to classical and quantum supergravity. To achieve this, we decided to follow the “group
geometric” approach also commonly known as the Castellani-D’Auria-Fré approach to
supergravity. This seems to be the most appropriate for the context of LQG. We tried to
put this formalism on a mathematically rigorous foundation. To this end, in Chapter 2,
we gave a detailed account of supermanifold and super fiber bundle theory. The focus
has mainly been on the Rogers-DeWitt approach as this approach seems to be easier for
direct physical applications, although a concrete link to the Berezin-Kostant-Leites and
Molotkov-Sachse approach has also been established.

Within this formalism, we constructed the parallel transport map corresponding to
super connection forms defined on principal super fiber bundles. In the context of
the Berezin-Kostant-Leites approach, the parallel transport map associated to covariant
derivatives on super vector bundles has been studied in [78, 79]. As it turns out, in
the ordinary category of supermanifolds SMan, the parallel transport map, in general,
does not provide an isomorphism between the different fibers of a super fiber bundle
which is in complete contrast to the classical theory of smooth manifolds. A resolution
is given by adding a parametrization supermanifold S and hence by the enriched or
relative category SMan/S . As a result, within this category, it follows that the parallel
transport PA

S,𝛾 induced by a super connection 1-formA along a path 𝛾 indeed defines
an isomorphism between the fibers over the boundary of the path. In particular, it
follows that PA

S,𝛾 transforms covariantly under change of parametrization S′ → S.
In fact, generically, it follows from the definition of the relative category, that physical
quantities are well-behaved under change of parametrization. This can be regarded as
the mathematical realization of the physical requirement that physics should not depend
on a particular choice of S. Interestingly, exploiting this property, one can provide a
concrete link to the description of anticommutative fermionic fields in pAQFT [76, 77].
This is based on an idea first formulated by Schmitt in [73] and which, in the context of
the Molotkov-Sachse approach, has been sketched explicitly in Section 3.6.

Finally, in the case of super matrix Lie groups G, for a particular choice of a gauge,
we derived an explicit form of the parallel transport map along paths 𝛾 embedded in
the underlying bosonic sub supermanifold which turned out to be particularly useful
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for direct physical applications studied later in this work. It is represented by the S-
parametrized G-valued map 𝑔𝛾 [A] : S × I → G given by

𝑔𝛾 [A](𝑠, 𝑡) = 𝑔𝛾 [𝜔] (𝑠, 𝑡) · Pexp
(
−

∫ 𝑡

0
d𝜏 (Ad𝑔𝛾 [𝜔]−1𝜓

𝛾 ) (𝑠, 𝜏)
)

(7.1)

where 𝜔 and 𝜓 denote the bosonic and fermionic part of the super connection A,
respectively, such thatA = 𝜔 + 𝜓 and 𝑔𝛾 [𝜔] corresponds to the parallel transport
map associated to 𝜔. When evaluated at the endpoints of the path 𝛾 , this yields a map
𝑔𝛾 [A] ≡ 𝑔𝛾 [A](·, 1) : S → G, that is, an S-point 𝑔𝛾 [A] ∈ G(S) of the general-
ized supergroup G(S) which, provided thatS is suitably large enough, itself carries the
structure of a Rogers-DeWitt supermanifold. In case that the paramaterization super-
manifold S is absent, 𝜓 becomes trivial so that (7.1) reduces to the parallel transport
map of the ordinary bosonic connection 𝜔. Hence, the parametrization is necessary in
order to resolve the fermionic degrees of freedom of the theory.

Next, in Chapter 3, we turned to the application of these methods for the purpose of
a mathematically rigorous approach towards geometric supergravity. To this end, we
introduced the notion of a super Cartan geometry in analogy of the purely bosonic
theory. Again, in order to consistently resolve the fermionic degrees of freedom of the
theory, it follows that one needs to work within enriched categories. A super Cartan
geometry is mainly described in terms of a 1-formA called super Cartan connection
defined on aS-relative principal super fiber bundle P/S which, e.g., forN = 1 splits in
the form

A = 𝑒𝐼 𝑃𝐼 +
1
2
𝜔𝐼 𝐽𝑀𝐼 𝐽 + 𝜓 𝛼𝑄𝛼 (7.2)

and thus encodes all the physical degrees freedom of the theory. We then embedded the
Castellani-D’Auria-Fré approach into the present formalism and discussed the Cartan
geometric approach toN = 1,𝐷 = 4 Poincaré supergravity. In this approach, it follows
that when certain conditions are imposed on the physical fields, then supersymmetry
transformations can be described in terms of a particular subclass of superdiffeomor-
phisms on the base supermanifold of the bundle. In fact, using the Cartan geometric
interpretation, it follows, using the strong relation between Cartan connections and
Ehresmann connections, that SUSY transformations can also be interpreted as infinites-
imal gauge transformations on associated bundles. This observation turned out to be
important in the context of the chiral theory studied later in Chapter 5 as, there, it
follows that half of the supersymmetry appears as a group of gauge transformations.

We then also extended the formalism to include a nontrivial cosmological constant and
extended supersymmetry, yielding a geometric description ofN -extended pure anti-de
Sitter-supergravity theories withN = 1, 2. In this context, we also explicitly included the
possibility of the existence of a nontrivial boundary. Moreover, in view of applications
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in the framework of LQG, we also considered a finite Barbero-Immirzi parameter 𝛽. To
this end, we adapted the techniques developed in [81–83], and asked the question: What
is the general boundary term consistent with the symmetries of the bulk action and such
that the full action (including both bulk and boundary contributions) is invariant under
SUSY transformations at the boundary. In the limit 𝛽 → ∞, this question has been
answered in [81] with the result that the boundary theory is in fact uniquely fixed by the
requirement of SUSY-invariance at the boundary. In particular, it follows that the full
action acquires a very intriguing form given by a MacDowell-Mansouri-type action in
both casesN = 1, 2. In case of a finite Barbero-Immirzi parameter, we have shown that
the Holst action of pureN = 1, 2 AdS supergravity in the presence of boundaries can
again be written in the Yang-Mills-like form

𝑆NH-MM(A) =
𝐿2

𝜅

∫
𝑀

⟨𝐹 (A) ∧ 𝐹 (A)⟩𝛽 (7.3)

with 𝐹 (A) the curvature of super Cartan connectionA encoding the physical degrees
of freedom of the theory. However, here, ⟨·, ·⟩𝛽 denotes a Spin+(1, 3)-invariant inner
product on Ω2(M/S , 𝔤) induced by a 𝛽-dependent operator

P𝛽 : Ω2(M/S , 𝔤) → Ω2(M/S , 𝔤) (7.4)

where 𝔤 := 𝔬𝔰𝔭(N |4) denotes the super Lie algebra of the super anti-de Sitter group
OSp(N |4). In particular, forN = 2, we have shown that the restriction of (7.4) to
the 𝔲(1) subalgebra of 𝔤 is given by P𝛽 |𝔲 (1) =

(
1 + 𝛽★

)
/2𝛽. As a consequence, the

boundary theory acquires an additional U(1)-contribution depending on 𝛽 also known
as the 𝜃 -term in Yang-Mills theory. Hence, in this framework, it follows that 𝛽 literally
has the interpretation of the 𝜃 parameter of the 𝜃 -ambiguity of QED.

The chiral limit of the theory corresponding to the choices 𝛽 = ±𝑖 is special. In this case,
the full action remains manifestly invariant under an enlarged gauge symmetry given by
the (complex) orthosymplectic supergroup OSp(N |2)C which is a chiral subgroup of
the complexified super anti-de Sitter group. More precisely, for bothN = 1 andN = 2,
the chiral action can be re-written in the form

𝑆
N,𝛽=−𝑖
H-MM (A) =

𝑖

𝜅

∫
𝑀

(
⟨𝐹 (A+) ∧ E⟩ + 1

4𝐿2 ⟨E ∧ E⟩
)
+ 𝑆bdy(A+) (7.5)

withA+ the chiral subpart ofA defining a generalized super Cartan connection and E
is called the super electric field.A+ is a generalization of the Ashtekar connection [20]
to the context of supergravity, and hence we called it the super Ashtekar connection. A
further sign that the chiral case is quite special came when considering the action (7.3) in
the presence of boundaries. In this case, the unique boundary action takes the form of a
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super Chern-Simons action 𝑆bdy(A+) ≡ 𝑆CS(A+)with gauge supergroup OSp(N |2)C
and complex Chern-Simons level. This extends results obtained in [63, 84–86, 182] by
including extended supersymmetryN = 2, real Barbero-Immirzi parameters as well as a
general discussion about boundary theory and the role of supersymmetry.

In the canonical theory, it follows that (A+, E) defines a canonically conjugate pair
building up a graded symplectic phase space. Using this fact together with the parallel
transport map as derived in Chapter 2, we then constructed a graded analog of the
well-known holonomy-flux algebra. In this context, we found that the configuration
space of generalized super connections can be identified with the limit of a projective
family AS,𝛾 which, besides finite graphs 𝛾 embedded in the spatial Cauchy slices of the
bosonic sub supermanifold as in the classical non-supersymmetric theory, are labeled
by the additional parametrization supermanifold S. Moreover, by construction, the
projective family is well-behaved under change of parametrization. More precisely, in
case of a finite subgraph 𝛾 ′ ⊂ 𝛾 and parametrizationS′ withS′ ⊂ S, one obtains the
following commutative diagram

AS,𝛾 //

��

AS,𝛾′

��
AS′,𝛾 // AS′,𝛾′

(7.6)

Based on these observations, we then sketched the quantization of the theory by choosing
an Ashtekar-Lewandowski-type representation of the graded holonomy-flux algebra on
a super Hilbert space. However, the final picture remained rather incomplete due to
several difficulties related to the implementation of cylindrical consistency due to the
non-compactness of the gauge group, as well as due to the indefiniteness of the inner
products induced by the Haar measures on supergroups. At least for the special case
N = 1, a possible resolution seems to be given by considering the compact real form
UOSp(1|2) of OSp(1|2) as there, according to [207], a Peter-Weyl-type basis seems to
exist which has similar properties as for SU(2). Of course, ultimately, one needs to solve
reality conditions as, a priori, one is dealing with a complex theory. But, even in case of
the purely bosonic theory, this remains a rather open problem.

We also compared this manifestly supersymmetric approach with the standard quan-
tization techniques of LQG coupled to fermions using real variables [67, 80, 87]. We
therefore introduced the notion of pointed generalized super connections and derived
a graded holonomy-flux-type algebra. The resulting picture then turned out to share
many similarities with the manifest approach. In particular, in this framework, it follows
that the all the previously mentioned difficulties can be solved consistently.
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Finally, in Chapter 5, we applied these methods to study a class of symmetry reduced
models ofN = 1,𝐷 = 4 supergravity. We exploited the enlarged gauge symmetry of the
chiral theory and studied super connection 1-forms that are homogeneous and isotropic
up to local super gauge transformations. We found that such an invariant connection
can be written in the form

A+ = 𝑐𝑒𝑖𝑇 +𝑖 + 𝜓𝐴′𝑒𝐴𝐴
′
𝑄𝐴 (7.7)

for some Grassmann-even and -odd numbers 𝑐 and 𝜓𝐴′ , respectively. Interestingly,
the fermionic part of (7.7) precisely coincides with the ansatz of the gravitino field as
proposed by D’Eath et al. in [88–90]. In fact, we have argued that this is the most
general ansatz which is consistent with the reality conditions assuming homogeneity of
the bosonic degrees of freedom. Using the form (7.7) of the invariant super Ashtekar
connection, we then performed a symmetry reduction of the chiral theory and derived
symmetry reduced expressions of the constraints with explicit consideration of parity.
In particular, we studied the constraint algebra and showed that the essential part given
by the graded Poisson bracket between the left and right SUSY constraints indeed closes
and reproduces the Hamiltonian constraint.

We then turned to the quantization of the theory. Following the standard procedure
in loop quantum cosmology in studying the holonomies (7.1) induced by the super
Ashtekar connection (7.7), we defined a symmetry reduced variant of the graded holo-
nomy-flux algebra. Moreover, we were able to express the symmetry reduced form of the
reality conditions in terms of adjointness relations that gave the algebra the structure of a
Lie *-superalgebra. For the quantization, we then chose an Ashtekar-Lewandowski-type
representation of the algebra on a super Hilbert space. Following the ideas of [91] in the
context of the purely bosonc theory, we were able to solve the reality conditions and
obtained a unique inner product.

As a next step, we implemented the dynamical constraints in the quantum theory and, at
least for a specific subclass of the symmetry reduced models under consideration, studied
explicitly the quantum constraint algebra. It turned out that imposing conistency with
the classical Poisson relations required a symmetric ordering in the definition of the
constraint operators in accordance with [244] in the context of the non-supersymmetric
theory. This also fixed some of the quantization ambiguities. In this way, we found that
the anticommutator between the left and right SUSY constraint operators 𝑆𝐿𝐴′ and
𝑆𝑅
𝐴′ takes the form

[𝑆𝐿𝐴′ , 𝑆𝑅𝐵′] =
(
𝑖ℏ𝜅𝐻 − ℏ𝜅

6𝑔 1
2 |𝑣 | 12

𝜋𝐶
′

𝜙 𝑆
𝑅
𝐶′

)
𝛿 𝐴
′

𝐵′ +
ℏ𝜅

6𝑔 1
2 |𝑣 | 12

𝜋 𝐴
′

𝜙 𝑆
𝑅
𝐵′ (7.8)

which, in particular, exactly reproduces the classical Poisson relations.
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In Section 6.6.5, we considered the semi-classical limit of the theory assuming that
physical implications of the quantum area gap can be neglected. In this limit, we found
that a subclass of physical states Ψphys annihilated by the dynamical constraints are of
the form

Ψphys ∼ exp
(
3𝑎2𝑉0
𝜅ℏ

)
(7.9)

where the right-hand side exactly corresponds to a state as derived by D’Eath et al.
[88–90] using standard variables and standard minisuperspace techniques. This state is
a stationary action-type approximation of the symmetry reduced Hartle-Hawking state.
However, another physical state with different initial conditions (“wormhole state”)
obtained there turns out to be not part of the physical Hilbert space in the present
formalism. This shows that chiral variables have interesting properties that should be
explored further in the future.

Finally, in the context of the full theory, we derived a compact expression of the clas-
sical SUSY constraint in Chapter 4 using real Ashtekar-Barbero variables. There, an
implementation of this constraint in the quantum theory has been discussed proposing
a specific regularization scheme. In particular, explicit expressions for its action on
spin network states have been derived. These results provide a starting point for the
computation of the commutator of the SUSY constraint in the full theory and to check
whether a similar strong relation between the SUSY constraint and Hamilton operator
such as (7.8) can also be obtained in the full theory. In particular, it would be interesting
to see whether this also fixes some of the quantization ambiguities.

7.2. Future research
As outlined already in the previous chapters, there exist many interesting and important
research directions in which the present work could be developed further in the near
future. In the following, let us give a short summary of, in our opinion, some of the
most important points:

Black hole entropy: In Chapter 5, adapting the techniques developed in [81–83], the
most general form of the boundary action compatible with local supersymmetry
for N -extended AdS supergravity in 𝐷 = 4 with N = 1, 2 has been derived
including a finite Barbero-Immirzi parameter. In the chiral limit, this boundary
action turns out to take the form of a super Chern-Simons action. The quan-
tization of the bulk theory adapting tools from standard LQG has also been
sketched in Section 5.5.3. As a next step, it would be very interesting to use these
results to study the quantum theory of supersymmetric (charged) black holes
in the framework of LQG, in particular, for the special case N = 2 (see also
Section 5.6.2). Supersymmetric black holes play a very prominent role in super-
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string theory. There, a derivation of the black hole entropy consistent with the
Bekenstein-Hawking area law for a specific class of supersymmetric (charged)
extremal black holes has been achieved [6–13].

It would be interesting to see whether similar results can be obtained in the
framework of LQG and, in particular, whether these results could be related to
the superstring computations. Perhaps, the recent results of [166] may help to
provide such a link. There, for specific string-brane configurations, it has been
observed that the boundary theory also carries the structure of a super Chern-
Simons theory. In any case, all these observations suggest that this requires a
deeper understanding of super Chern-Simons theories and its relation to both
LQG and superstring theory.

Hilbert space of chiral LQSG: Related to the previous point, it would be highly desir-
able to complete the construction of the super Hilbert space of chiral LQSG as
outlined in Section 5.5.3. In this context, one needs to find a way to consistently
implement cylindrical consistency and to deal with the additional difficulties aris-
ing in the supersymmetric context related to the indefiniteness of Haar measures
on super Lie groups. Furthermore, one has to solve reality conditions which, even
in the purely bosonic self-dual theory, is an open problem. As we have seen in
Chapter 6 in the context of symmetry reduced models, there, the problem of
indefiniteness and reality conditions can indeed be solved consistently implying
that the measure has to be distributional. Perhaps, these results can be extended
to the full theory. In fact, recent developments in the framework of the full bosnic
self-dual theory [215] also suggest that the reality conditions (at least some subclass
thereof) can be solved by choosing the measure appropriately. Moreover, the mea-
sure induces a gauge fixing to the compact subgroup SU(2) of SL(2,C). Maybe,
these results can be generalized to the supersymmetric setting. In particular, it
would be interesting to see whether this leads to a gauge fixing to the unitary
orthosymplectic group UOSp(N |2) which, at least for the special caseN = 1,
has very similar properties as its corresponding bosonic counterpart SU(2).

SUGRA withN > 2: It would be interesting to extend the present considerations to
include supergravity theories in the presence of boundaries with higher super-
symmetryN ≥ 3 in 𝐷 = 4 and even higher spacetime dimensions. In particular,
it would be interesting to see whether also there the boundary theory turns out to
be fixed uniquely if one imposes SUSY-invariance at the boundary and whether
the resulting action of the full theory again acquires an intriguing geometrical
form similarly as for the casesN = 1, 2. Moreover, one needs to check whether
the fascinating structures observed in the chiral theory also carry over to higher
N .
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In this context, the special case of maximalN = 8, 𝐷 = 4 SUGRA would be of
particular interest due to interesting results suggesting its perturbative finiteness
[247–250]. One may note thatN = 8 SUGRA can be derived via Kaluza-Klein
compactification from the unique maximalN = 1, 𝐷 = 11 SUGRA which,
as discovered in [129, 130], can be described geometrically in terms of a higher
super Cartan geometry. On the other hand, Ashtekar-Barbero-type variables for
arbitrary higher spacetime dimensions have been derived in [67–69]. Hence, it
would be interesting to see whether these variables, at least in a certain limit, can
be described geometrically similarly as in the context of chiral SUGRA in 𝐷 = 4
forN = 1, 2.

Hamiltonian dynamics: In the recent papers [251, 252], a new approach has been pro-
posed to study the Hamiltonian dynamics in canonical general relativity expressed
in terms of self-dual variables by introducing the notion of a generalized gauge
covariant Lie derivative. Expressed in this way, the Hamiltonian dynamics acquire
an intriguing simple structure which may considerably simplify the correspond-
ing dynamics in the quantum theory. Moreover, the authors suggest that this
approach may provide a concrete link to the double copy pattern that relates
structures in gravitational theory to that of Yang-Mills with double the number
of fields.

In fact, double copy ideas have intensively been studied in the context of perturba-
tive quantum supergravity, in particular, in the context of maximalN = 8,𝐷 = 4
SUGRA [247–250], in order to simplify calculations of scattering amplitudes.
Thus, it would be very interesting to know whether this alternative description
of the Hamiltonian dynamics can also be extended to (chiral) supergravity. Pre-
liminary calculations suggest that this may indeed be possible. This might help to
implement double copy ideas to non-perturbative quantum supergravity.

Dynamics in LQSC: In Chapter 6, the classical and quantum theory of a class of
symmetry reduced models of chiralN = 1, 𝐷 = 4 SUGRA has been studied.
Moreover, it has been argued in Section 6.6.4, due to symmetric ordering of the
dynamical constraints, that the big bang singularity is resolved in the quantum
theory. However, it was not possible to develop an approximate spacetime picture
confirming a bouncing geometry, since the Rarita-Schwinger field, as being a
fermionic field, cannot be used as a relational clock. Since, in the context of locally
supersymmetric field theory, the dynamics is governed by the SUSY constraint(s),
this thus requires the inclusion of further locally supersymmetric matter fields to
the theory which may then serve as relational clocks. It would be interesting to
understand how locally supersymmetric matter enters to the constraints and how,
also in this framework, the strong relationship between the dynamical constraints
as observed in Section 6.6.4 can be maintained in the quantum theory.
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Finally, it would be interesting to see how these results can be compared to
the results of standard homogeneous isotropic models in (self-dual) LQC. In a
sense, local supersymmetry simplifies the conisderations as the SUSY constraint(s)
already correspond to a kind of a “square root” of the Hamiltonian constraint
operator.

etc. etc.
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Appendix

A. Super linear algebra
This section, following [97, 106], is meant to fix some terminology of important aspects
in super linear algebra used in the main text. Therefore, we will exclusively focus on
Z2 grading as these are commonly used in physics in the context of (supersymmetric)
field theories modeling commuting bosonic and anticommuting fermionic fields. For
more details on this fascinating subject, the interested reader may be referred to the great
references of [97, 106].

Definition A.1. A Z2-graded or simply super vector space𝑉 is a vector space over a field
K (K = R orC) of the form

𝑉 =𝑉0 ⊕𝑉1 (A.1)

together with a map | · | :
⋃
𝑖∈Z2𝑉𝑖 → Z2 called parity map such that |𝑣 | := 𝑖 ∀𝑣 ∈𝑉𝑖 .

Elements in𝑉𝑖 are called homogeneous with parity 𝑖 ∈ Z2. If the dimension of𝑉0 and
𝑉1 are given by dim𝑉0 = 𝑚 and dim𝑉1 = 𝑛, respectively, then the dimension of𝑉 is
denoted by dim𝑉 = 𝑚|𝑛.

A morphism 𝜙 : 𝑉 → 𝑊 between super vector spaces is a linear map between
vector spaces preserving the parity, i.e., 𝜙(𝑉𝑖) ⊆𝑊𝑖 for 𝑖 ∈ Z2. The set of such super
vector space morphisms is denoted by Hom(𝑉 ,𝑊 ). In case𝑉 =𝑊 , we also write
End(𝑉 ) := Hom(𝑉 ,𝑉 ).

Remark A.2. Instead of just looking at parity preserving morphisms between super
vector spaces𝑉 and𝑊 , one can also consider all possible linear maps between the
underlying vector spaces. This yields the internal Hom(𝑉 ,𝑊 ) which has the structure
of a super vector space with the even and odd part Hom(𝑉 ,𝑊 )0 and Hom(𝑉 ,𝑊 )1
given by the parity preserving and parity reversing linear maps between𝑉 and𝑊 ,
respectively. Hence, Hom(𝑉 ,𝑊 )0 coincides with Hom(𝑉 ,𝑊 ) in definition A.1.

Example A.3. A trivial but also very important example of a super vector space is given
by R𝑚 |𝑛 := R𝑚 ⊕ R𝑛 (or, more generally K𝑚 |𝑛 for K ∈ {R,C}) called superspace
of dimension 𝑚|𝑛. In fact, any super vector space𝑉 = 𝑉0 ⊕ 𝑉1 is isomorphic to a
superspace. If dim𝑉 = 𝑚|𝑛, let {𝑒𝑖}𝑖=1,...,𝑚+𝑛 be a basis of𝑉 such that {𝑒𝑖}𝑖=1,...,𝑚 is a
basis of𝑉0 and {𝑒𝑗 }𝑗=𝑚,...,𝑚+𝑛 is a basis of𝑉1. Such a basis is called a homogeneous basis
of 𝑉 . Then,𝑉 is isomorphic, as a super vector space, to the superspaceR𝑚 |𝑛.
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Definition A.4. A superalgebra 𝐴 is a super vector space 𝐴 = 𝐴0 ⊕ 𝐴1 together with
a bilinear map𝑚 : 𝐴 × 𝐴→ 𝐴 such that

𝑚(𝐴𝑖 , 𝐴𝑗 ) =: 𝐴𝑖 · 𝐴𝑗 ⊆ 𝐴𝑖+𝑗 ∀𝑖, 𝑗 ∈ Z2 (A.2)

The superalgebra 𝐴 is called super commutative if

𝑎 · 𝑏 = (−1) |𝑎 | |𝑏 |𝑏 · 𝑎 (A.3)

for all homogeneous 𝑎, 𝑏 ∈ 𝐴.

Definition A.5. Let 𝐴 be a superalgebra. A super left 𝐴-moduleV is a super vector
space which, in addition, has the structure of a left 𝐴-module such that

𝐴𝑖 · V𝑗 ⊆ V𝑖+𝑗 ∀𝑖, 𝑗 ∈ Z2 (A.4)

A morphism 𝜙 : V → W between super left 𝐴-modules is a map between the
underlying super vector spaces such that 𝜙(𝑎·𝑣) = 𝑎𝜙(𝑣) ∀𝑎 ∈ 𝐴, 𝑣 ∈ V . Analogously,
one defines a super right 𝐴-modules and morphisms between them.

Remark A.6. Given super left 𝐴-moduleV one can also turn it into a super right
𝐴-module setting

𝑣 · 𝑎 := (−1) |𝑣 | |𝑎 |𝑎 · 𝑣 (A.5)

for homogeneous 𝑎 ∈ 𝐴 and 𝑣 ∈ V. For this reason, in the following, we will simply
say super 𝐴-module if we do not want to specify whether it should be regarded as a
super left or right 𝐴-module. IfV andW are super commutative super 𝐴-modules,
their tensor productV ⊗W is defined viewingV as a left andW as a right 𝐴-module.

Given a super left 𝐴-modulesV andW we denote the set of left 𝐴-module morphisms
𝜙 : V →W by Hom𝐿 (V,W) (and similarly Hom𝑅 (V,W) for right 𝐴-module
morphisms). As in remark A.2, instead of just looking at parity preserving morphisms,
one can also consider all possible linear maps 𝜙 : V → W between the underlying
vector spaces satisfying

𝜙(𝑎 · 𝑣) = 𝑎𝜙(𝑣), ∀𝑣 ∈ V, 𝑎 ∈ 𝐴 (A.6)

This again yields an internal Hom
𝐿
(V,W) which has the structure of a super right

𝐴-module with Hom
𝐿
(V,W)0 = Hom𝐿 (V,W). In caseV =W, we also write

End
𝐿
(V) := Hom

𝐿
(V,V) with End𝐿 (V) = End

𝐿
(V)0 and likewise for right
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linear morphisms End
𝑅
(V) := Hom

𝑅
(V,V). As usual, we denote the evaluation of

a morphism 𝜙 ∈ Hom
𝐿
(V,W) at 𝑣 ∈ V by

⟨𝑣 |𝜙⟩ ∈ W (A.7)

This has the advantage that one does not need to care about signs due to super commu-
tativity after right multiplication with elements 𝑎 ∈ 𝐴, i.e., ⟨𝑣 |𝜙𝑎⟩ = ⟨𝑣 |𝜙⟩ 𝑎 ∀𝑎 ∈ 𝐴,
𝑣 ∈ V. Finally, let us define via 𝜙 ⋄ 𝜓 ∈ Hom

𝐿
(V,W ′) the composition of two left

linear morphisms 𝜙 : Hom
𝐿
(V,W) and 𝜓 : Hom

𝐿
(W,W ′) given by

⟨𝑣 |𝜙 ⋄ 𝜓 ⟩ := ⟨⟨𝑣 |𝜙⟩ |𝜓 ⟩ , ∀𝑣 ∈ V (A.8)

which, by definition, is well-behaved under right multiplication.

Definition A.7. For 𝐴 a superalgebra, a super 𝐴-Lie module (or super Lie algebra or
Lie superalgebra if 𝐴 = K) is a super 𝐴-module 𝐿 with a bilinear map 𝑚 ≡ [·, ·] :
𝐿 × 𝐿 → 𝐿, also called the (Lie) bracket, that is graded skew-symmetric, i.e.,

[𝑎, 𝑏] = −(−1) |𝑎 | |𝑏 | [𝑏, 𝑎] (A.9)

and satisfies the graded Jacobi identity

[𝑎, [𝑏, 𝑐]] + (−1) |𝑎 | ( |𝑏 |+ |𝑐 |) [𝑏, [𝑐, 𝑎]] + (−1) |𝑐 | ( |𝑎 |+ |𝑏 |) [𝑐, [𝑎, 𝑏]] = 0 (A.10)

for all homogeneous 𝑎, 𝑏, 𝑐 ∈ 𝐿.

Example A.8. (i) If𝑉 is a vector space (finite- or infinite-dimensional), then the
exterior algebra

∧
𝑉 :=

⊕∞
𝑘=0

∧𝑘𝑉 also called Grassmann algebra naturally
defines a superalgebra with even and odd part given by (∧𝑉 )0 :=

⊕∞
𝑘=0

∧2𝑘𝑉

and (∧𝑉 )1 :=
⊕∞

𝑘=0
∧2𝑘+1𝑉 , respectively. The Grassmann algebra is super

commutative, associative and unital with unit 1 ∈ R =
∧0𝑉 .

(ii) For 𝐴 a superalgebra, the tensor product 𝐴𝑚 |𝑛 := 𝐴 ⊗ K𝑚 |𝑛 defines a super
𝐴-module with grading (𝐴𝑚 |𝑛)0 = 𝐴0 ⊗ K𝑚 ⊕ 𝐴1 ⊗ K𝑛 and (𝐴𝑚 |𝑛)1 =

𝐴0 ⊗ K𝑛 ⊕ 𝐴1 ⊗ K𝑚.

Definition A.9. A super 𝐴-moduleV is called free if it contains a homogeneous basis
{𝑒𝑖}𝑖=1,...,𝑚+𝑛 for some 𝑚, 𝑛 ∈ N0 such that any element 𝑣 ∈ V can be written in
the form 𝑣 = 𝑎𝑖 𝑒𝑖 with coefficients 𝑎𝑖 ∈ 𝐴 ∀𝑖 = 1, . . . , 𝑚 + 𝑛. Equivalently,V is a
free super super 𝐴-module iff it is isomorphic to 𝐴𝑚 |𝑛 = 𝐴 ⊗ K𝑚 |𝑛. In this case, the
dimension ofV will be denoted by dimV = 𝑚|𝑛.
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Definition A.10. (i) LetV be a free super 𝐴-module. Two homogeneous bases
{𝑒𝑖}𝑖 and {𝑓𝑗 }𝑗 ofV are called equivalent if they are related to each other by
scalar coefficients, i.e., there exists real or complex numbers 𝑎 𝑗

𝑖
∈ K such that

𝑒𝑖 = 𝑎
𝑗

𝑖
𝑓𝑗 ∀𝑖.𝑗 (for a proof that this indeed defines an equivalence relation

see [97]).

(ii) A free super 𝐴-moduleV together with a distinguished equivalence class [(𝑒𝑖)𝑖]
of homogeneous bases ofV is called a super 𝐴-vector space. A representative
(𝑒𝑖) ∈ [(𝑒𝑖)𝑖] will be called a real resp. complex homogeneous basis ofV. A
morphism 𝜙 : V →W between super 𝐴-vector spaces is a morphism of super
𝐴-modules such that 𝜙maps the equivalence class of bases ofV to the real resp.
complex vector space spanned by the equivalence class of bases ofW.

Remark A.11. IfV is a super 𝐴-vector space with equivalence class [{𝑒𝑖}𝑖] of homo-
geneous bases ofV, thenV � 𝐴 ⊗𝑉 with𝑉 the super vector space spanned by {𝑒𝑖}𝑖
which, in particular, is independent on the choice of a representative of that equivalence
class. Hence, the choice of such an equivalence class yields a well-defined super vector
space𝑉 also called the body ofV. On the other hand, ifV is a free super 𝐴-module,
one can always choose a homogeneous basis {𝑒𝑖}𝑖 ofV such thatV becomes a super
𝐴-vector space w.r.t. the equivalence class [{𝑒𝑖}𝑖]. However, such a choice may not be
canonical and various different bases exist which are not related by scalar coefficients.

B. Categories, sheaves and locally ringed spaces
This chapter is meant to summarize some important aspects of category theory and
algebraic geometry as this abstract language turns out to play a crucial role in properly
defining the notion of a supermanifold and related concepts. Moreover, we will use this
opportunity in order to fix some terminology used in the main part of this work. To this
end, we will mainly follow Reference [253]. We start with the definition of the notion of
a category.

Definition B.1. A category C consists of a collection Ob(C) of objects and, for each
pair of objects 𝑋 ,𝑌 ∈ Ob(C), of a set Hom(𝑋 ,𝑌 ) ≡ HomC (𝑋 ,𝑌 ) of morphisms
(or arrows) 𝑓 : 𝑋 → 𝑌 together with a law of composition

Hom(𝑌 , 𝑍) ×Hom(𝑋 ,𝑌 ) → Hom(𝑋 , 𝑍)
( 𝑔, 𝑓) ↦→ 𝑔 ◦ 𝑓 (B.1)

for any objects 𝑋 ,𝑌 , 𝑍 ∈ Ob(C) such that the following conditions are satisfied:

(i) The composition of morphisms is associative.
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(ii) For all 𝑋 ∈ Ob(C) there is a (unique) morphism id𝑋 ∈ Hom(𝑋 , 𝑋 ) called
identity-morphism such that for any morphisms 𝑓 ∈ Hom(𝑋 ,𝑌 ) and 𝑔 ∈
Hom(𝑌 , 𝑋 ), 𝑓 ◦ id𝑋 = 𝑓 and id𝑋 ◦ 𝑔 = 𝑔 .

In case 𝑋 = 𝑌 , a morphism 𝑓 : 𝑋 → 𝑌 is also called an endomorphism. If 𝑓 : 𝑋 → 𝑌

is invertible, i.e., there exists 𝑔 : 𝑌 → 𝑋 with 𝑔 ◦ 𝑓 = id𝑋 and 𝑓 ◦ 𝑔 = id𝑌 , then 𝑓 is
also called an isomorphism.

Definition B.2. A category C is called small if the collection of objects Ob(C) forms
a set. A small category C is called a groupoid if any morphism 𝑓 : 𝑋 → 𝑌 between
objects 𝑋 ,𝑌 ∈ Ob(C) is invertible.

In the following, let us give some important examples of categories. In fact, we will
encounter various further examples in the main text.

Example B.3. (i) the category Set of sets with sets 𝑋 as objects and maps 𝑓 : 𝑋 →
𝑌 between sets as morphisms

(ii) the category Grp of groups with groups𝐺 as objects and group morphisms 𝜙 :
𝐺 → 𝐻 as morphisms

(iii) the category Ring of rings with rings 𝑅 as objects and ring morphisms 𝜙 : 𝑅→
𝑅′ as morphisms

(iv) the category Mod𝑅 of 𝑅-modules with 𝑅 a ring with 𝑅-modules 𝑀𝑅 as objects
and 𝑅-module morphisms 𝜙 : 𝑀𝑅 → 𝑁𝑅 as morphisms

(v) the category Top of toplogical spaces with topological spaces 𝑋 as objects and
continuous maps 𝐹 : 𝑋 → 𝑌 between topological spaces as morphisms

(vi) the category Man of real smooth manifolds with smooth manifolds 𝑀 as objects
and smooth maps 𝑓 : 𝑀 → 𝑁 between manifolds as morphisms.

(vii) Real smooth vector bundles (𝐸, 𝑀 ) (or 𝐸 → 𝑀 ) together with smooth vector
bundle morphisms (𝜙, 𝑓) : (𝐸, 𝑀 ) → (𝐹 , 𝑁 ), i.e., smooth maps 𝜙 : 𝐸 → 𝐹

and 𝑓 : 𝑀 → 𝑁 such that the diagram

𝐸
𝜙 //

𝜋𝐸

��

𝐹

𝜋𝐹

��
𝑀

𝑓 // 𝑁

is commutative and 𝜙𝑥 : 𝐸𝑥 → 𝐹𝑓(𝑥) , 𝑥 ∈ 𝑀 , is linear on each fiber, form the
category VectR of real smooth vector bundles.
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(viii) the category Cat of all small categories with small categories as objects and functors
(see Definition B.4 below) between small categories as morphisms.

(ix) To any category C, one can assign the corresponding opposite category Cop con-
sisting of the same collection of objects Ob(Cop) = Ob(C) and, for each objects
𝑋 ,𝑌 ∈ Ob(Cop), the set of morphisms HomCop (𝑋 ,𝑌 ) := HomC (𝑌 , 𝑋 ).

Definition B.4. Let C,D be categories. A covariant functor 𝐹 : C → D from
the category C to the categoryD is a map that assigns to each object 𝑋 ∈ Ob(C) an
object 𝐹 (𝑋 ) ∈ Ob(D) and to each morphism 𝑓 ∈ HomC (𝑋 ,𝑌 ) in C a morphism
𝐹 (𝑓) ∈ HomD (𝐹 (𝑋 ), 𝐹 (𝑌 )) such that

(i) 𝐹 (id𝑋 ) = id𝐹 (𝑋 ) for all 𝑋 ∈ C.

(ii) 𝐹 (𝑓 ◦ 𝑔) = 𝐹 (𝑓) ◦ 𝐹 ( 𝑔) for composable morphisms 𝑔 and 𝑓 in C.

A contravariant functor 𝐹 : C → D between the category C to the category D is
defined as a covariant functor 𝐹 : Cop → D on the opposite category Cop. Hence,
roughly speaking, a contravariant functor reverses the arrows.

Definition B.5. A (covariant) functor 𝐹 : C → D between categories C andD is
called

(i) faithful resp. full if, for any pair of objects 𝑋 ,𝑌 ∈ Ob(C), the induced map

𝐹 : HomC (𝑋 ,𝑌 ) → HomD (𝐹 (𝑋 ), 𝐹 (𝑌 )), 𝑓 ↦→ 𝐹 (𝑓) (B.2)

between the sets HomC (𝑋 ,𝑌 ) and HomD (𝐹 (𝑋 ), 𝐹 (𝑌 )) is injective resp. sur-
jective.

(ii) fully faithful if it is both full and faithful, i.e., the induced map (B.2) is bijective.

Definition B.6. Let 𝐹 : C → D and 𝐺 : C → D be two (covariant) functors
between categories C andD. A functor morphism or natural transformation 𝜂 : 𝐹 →
𝐺 between 𝐹 and𝐺 is a collection of morphisms 𝜂𝑋 : 𝐹 (𝑋 ) → 𝐺 (𝑋 ), 𝑋 ∈ Ob(C),
such that for any morphism 𝑓 ∈ HomC (𝑋 ,𝑌 ), the following diagram commutes

𝐹 (𝑋 )
𝐹 (𝑓) //

𝜂𝑋

��

𝐹 (𝑌 )
𝜂𝑌

��
𝐺 (𝑋 )

𝐺 (𝑓) // 𝐺 (𝑌 )

If the morphisms 𝜂𝑋 : 𝐹 (𝑋 ) → 𝐺 (𝑋 ) are isomorphisms for any object 𝑋 ∈ C, then
𝜂 : 𝐹 → 𝐺 is called a natural isomorphism. In this case, the functors 𝐹 and𝐺 are called
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equivalent or isomorphic. Finally, two categories C andD are called equivalent if there
exists functors 𝐹 : C → D and𝐺 : D → C such that the functors𝐺 ◦ 𝐹 : C → C
and 𝐹 ◦ 𝐺 : D → D are equivalent to the identity functors idC : C → C and
idD : D → D, respectively. In this case, the functor 𝐹 (or𝐺) is called an equivalence
of categories.

Example B.7. (i) The base functor b : VectR → Man is the full functor from
the category of real smooth vector bundles to the category of smooth manifolds
which on objects is defined via b(𝐸, 𝑀 ) := 𝑀 and on morphisms (𝜙, 𝑓) :
(𝐸, 𝑀 ) → (𝐹 , 𝑁 ) is given by b(𝜙, 𝑓) := 𝑓. Thus, the base functor associates
to each vector bundle the corresponding base and to vector bundle morphism
the underlying morphism between the bases.

(ii) The inclusion functor i : Man→ VectR is the faithful functor from the category
of real smooth manifolds to the category of real smooth vector bundles which
associates to a smooth manifold 𝑀 the trivial vector bundle i(𝑀 ) := ({0}, 𝑀 )
and to a smooth function 𝑓 : 𝑀 → 𝑁 the vector bundle morphism i(𝑓) :=
(0, 𝑓) : ({0}, 𝑀 ) → ({0}, 𝑁 ). Since b ◦ i = idMan, the base functor defines
a (left) inverse to the inclusion functor and yields an equivalence of categories
restricting VectR to the subcategory VectR,0 ⊂ VectR of real smooth vector
bundles of rank 0.

We next turn towards the definition of a (pre)sheaf which can be regarded as a general-
ization of the concept of function spaces on topological spaces which are consistent in
a certain sense under restriction to open subsets. This is crucial since supermanifolds
in the algebraic sense are defined using sheaves of supercommuting rings, which play
the role of algebras of (coordinate) functions on supermanifolds. To this end, for a
topological space 𝑋 , let us define the category Opn(𝑋 ) of open subsets of 𝑋 with objects
Ob(Opn(𝑋 )) given by the collection of open subsets𝑈 ⊆ 𝑋 and, for each pair of
open subsets𝑈 ,𝑉 ⊆ 𝑋 , the set of morphisms Hom(𝑈 ,𝑉 ) defined as

Hom(𝑈 ,𝑉 ) :=

{
{𝜄𝑈 ,𝑉 : 𝑈 ↩→𝑉 } if𝑈 ⊆ 𝑉
∅ if𝑈 ⊈ 𝑉

where, for𝑈 ⊆ 𝑉 , 𝜄𝑈 ,𝑉 : 𝑈 ↩→𝑉 denotes the standard inclusion of𝑈 in𝑉 .

Definition B.8. Let 𝑋 be a topological space. A presheaf F of sets (resp. rings, groups,
modules, super rings, . . . ) on a topological space 𝑋 is defined as a contravariant functor

F : Opn(𝑋 ) → C (B.3)
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from the category Opn(𝑋 ) of open subsets of 𝑋 to the category C with C given by
the category Set of sets (resp. Ring, Grp, Mod𝑅, super rings SRing,. . . ). Hence, the
presheaf F assigns to any open subset𝑈 ⊆ 𝑋 an object F (𝑈 ) in the category C and
to any two open subsets𝑈 ,𝑉 ⊆ 𝑋 with𝑈 ⊆ 𝑉 a morphism 𝜌𝑈 ,𝑉 := F ( 𝜄𝑈 ,𝑉 ) :
F (𝑉 ) → F (𝑈 ) called restriction morphism such that

(i) 𝜌𝑈 ,𝑈 = id : F (𝑈 ) → F (𝑈 ) ∀𝑈 ⊆ 𝑋 open

(ii) 𝜌𝑈 ,𝑉 ◦ 𝜌𝑉 ,𝑊 = 𝜌𝑈 ,𝑊 : F (𝑊 ) → F (𝑈 ) for open subsets𝑈 ⊆ 𝑉 ⊆𝑊 of
𝑋 .

The presheaf F is called a sheaf if, in addition, for any open subset𝑈 ⊆ 𝑋 and open
covering {𝑈𝛼}𝛼∈Υ of𝑈 the following conditions are satisfied

(i) if 𝑓, 𝑔 ∈ F (𝑈 ) and 𝜌𝑈𝛼 ,𝑈 𝑓 = 𝜌𝑈𝛼 ,𝑈 𝑔 ∀𝛼 ∈ Υ, then 𝑓 = 𝑔 .

(ii) if {𝑓𝛼}𝛼∈Υ is a family of sections 𝑓𝛼 ∈ F (𝑈𝛼), 𝛼 ∈ Υ, with 𝜌𝑈𝛼∩𝑈𝛽 ,𝑈 𝑓𝛼 =

𝜌𝑈𝛼∩𝑈𝛽 ,𝑈 𝑔𝛼 ∀𝛼, 𝛽 ∈ Υ, then there exists a (unique) 𝑓 ∈ F (𝑈 ) such that
𝜌𝑈𝛼 ,𝑈 𝑓 = 𝑓𝛼 ∀𝛼 ∈ Υ.

In other words, a preasheaf F is a sheaf, if the following short sequence

F (𝑈 ) →
∏
𝛼∈Υ
F (𝑈𝛼) ⇒

∏
𝛼,𝛼′∈Υ

F (𝑈𝛼 ∩𝑈𝛼′) (B.4)

is exact for any open subset 𝑈 ⊆ 𝑋 where the arrows are defined by the obvious
restriction morphisms.

Definition B.9. A morphism 𝜙 between (pre)sheaves F and G on a topological space
𝑋 is a natural transformation 𝜙 : F → G between the respective covariant functors
F : Opn(𝑋 )op → C and G : Opn(𝑋 )op → C with C given by the category Set
(resp. Ring, Grp, Mod𝑅, SRing,. . . ). That is, a morphism of (pre)sheaves is a collection
of morphisms 𝜙𝑈 : F (𝑈 ) → G(𝑈 ) (in the respective category),𝑈 ⊆ 𝑋 open, such
that ∀𝑈 ⊆ 𝑉 ⊆ 𝑋 open, the following diagram commutes

F (𝑉 )
𝜙𝑉 //

𝜌𝑈 ,𝑉

��

G(𝑉 )
𝜌𝑈 ,𝑉

��
F (𝑈 )

𝜙𝑈 // G(𝑈 )

Moreover, 𝜙 is called an isomorhism if it defines a natural isomorphism between the
respective functors, i.e., 𝜙𝑈 : F (𝑈 ) → G(𝑈 ) is an isomorphism ∀𝑈 ⊆ 𝑋 open.
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Remark B.10. A typical example of a preasheaf is the presheaf 𝐶∞
𝑀

of smooth real-
valued functions on a smooth manifold 𝑀 (or even just continuous functions on
topological spaces) which assign an open subset𝑈 ⊆ 𝑀 to the set𝐶∞(𝑈 ) of smooth
functions on𝑈 and to two open subsets𝑈 ⊆ 𝑉 ⊆ 𝑀 the restriction map𝐶∞(𝑉 ) ∋
𝑓 ↦→ 𝑓|𝑈 ∈ 𝐶∞(𝑈 ). Since smoothness is a local property, it follows that 𝐶∞

𝑀
is also

a sheaf. In the main text, in particular in Chapter 2, we will also encounter further
examples of sheaves in the super category. There, the sheaf property (B.4) turns out to
be important as, for instance, it allows to extend statements proven locally to the whole
supermanifold. There exist various (trivial) examples showing that not every presheaf is
in fact a sheaf. However, it turns out that every presheaf can be extended uniquely to a
sheaf using a procedure called sheafification (see [253] for more details).

Next, let us introduce the notion of a inductive and projective family. These play a
crucial role in the context of preasheaves and sheaves and also in the framework of loop
quantum (super)gravity for the definition of the (graded) holonomy-flux algebra to be
discussed in Section 5.5.1. Let (𝐼 , ≤) be a partially ordered index set equipped with a
binary relation ≤ called preorder satisfying reflexivity and transitivity, that is, 𝑖 ≤ 𝑖
∀𝑖 ∈ 𝐼 and

𝑖 ≤ 𝑗 and 𝑗 ≤ 𝑘 ⇒ 𝑖 ≤ 𝑘, for 𝑖, 𝑗 , 𝑘 ∈ 𝐼 (B.5)

Moreover, we require 𝐼 to be nonempty and directed in the sense that

∀𝑖, 𝑗 ∈ 𝐼 ∃𝑘 ∈ 𝐼 : 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑘 (B.6)

Definition B.11. Let (𝑋𝑖)𝑖∈𝐼 be a family of objects in the category Set (resp. Ring,
Grp, Mod𝑅, SRing,. . . ) together with

(i) morphisms (in the respective category) 𝑝𝑖𝑗 : 𝑋𝑖 → 𝑋𝑗 for any 𝑖, 𝑗 ∈ 𝐼 with
𝑖 ≤ 𝑗 satisfying 𝑝𝑖 𝑖 = id as well as the compatibility condition

𝑝𝑗𝑘 ◦ 𝑝𝑖𝑗 = 𝑝𝑖𝑘, ∀𝑖, 𝑗 , 𝑘 ∈ 𝐼 with 𝑖 ≤ 𝑗 ≤ 𝑘 (B.7)

then (𝑋𝑖 , 𝑝𝑖𝑗 )𝑖,𝑗 ∈𝐼 is called an inductive system.

(ii) morphisms (in the respective category) 𝑝𝑖𝑗 : 𝑋𝑗 → 𝑋𝑖 for any 𝑖, 𝑗 ∈ 𝐼 with
𝑖 ≤ 𝑗 satisfying 𝑝𝑖 𝑖 = id as well as the compatibility condition

𝑝𝑖𝑗 ◦ 𝑝𝑗𝑘 = 𝑝𝑖𝑘, ∀𝑖, 𝑗 , 𝑘 ∈ 𝐼 with 𝑖 ≤ 𝑗 ≤ 𝑘 (B.8)

then (𝑋𝑖 , 𝑝𝑖𝑗 )𝑖,𝑗 ∈𝐼 is called a projective system.

Definition B.12. (i) Let (𝑋𝑖 , 𝑝𝑖𝑗 )𝑖,𝑗 ∈𝐼 be an inductive system of objects in the
category C. An object 𝑋 ∈ Ob(C) together with morphisms 𝑝𝑖 : 𝑋𝑖 → 𝑋
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is called an inductive limit of (𝑋𝑖 , 𝑝𝑖𝑗 )𝑖,𝑗 ∈𝐼 if it satisfies the following universal
property: For any𝑌 ∈ Ob(C) and morphisms 𝑔𝑖 : 𝑋𝑖 → 𝑌 , 𝑖 ∈ 𝐼 , such that
𝑔𝑖 = 𝑔𝑗 ◦ 𝑝𝑖𝑗 ∀𝑖 ≤ 𝑗 there exists an unique morphism 𝑔 : 𝑋 → 𝑌 such that
𝑔𝑖 = 𝑔 ◦ 𝑝𝑖 ∀𝑖 ∈ 𝐼 .

It follows from the universal property that an inductive limit, if it exists, will be
unique and will be often denoted by

𝑋 =: lim
−→

𝑋𝑖 (B.9)

(ii) Let (𝑋𝑖 , 𝑝𝑖𝑗 )𝑖,𝑗 ∈𝐼 be a projective system objects in the category C. An object
𝑋 ∈ Ob(C) together with morphisms 𝑓𝑖 : 𝑋 → 𝑋𝑖 is called a projective limit of
(𝑋𝑖 , 𝑝𝑖𝑗 )𝑖,𝑗 ∈𝐼 if it satisfies the following universal property: For any𝑌 ∈ Ob(C)
and morphisms 𝑔𝑖 : 𝑌 → 𝑋𝑖 , 𝑖 ∈ 𝐼 , such that 𝑔𝑖 = 𝑝𝑖𝑗 ◦ 𝑔𝑗 ∀𝑖 ≤ 𝑗 there
exists an unique morphism 𝑔 : 𝑌 → 𝑋 such that 𝑔𝑖 = 𝑝𝑖 ◦ 𝑔 ∀𝑖 ∈ 𝐼 .

It follows from the universal property that a projective limit, if it exists, will be
unique and will be often denoted by

𝑋 =: lim
←−

𝑋𝑖 (B.10)

Proposition B.13. Let (𝑋𝑖 , 𝑝𝑖𝑗 )𝑖,𝑗 ∈𝐼 be an inductive (resp. a projective) system, then
the inductive (resp. projective) limit exists in the category Set, Ring, Grp, Mod𝑅 and
SRing.

Sketch of proof. In case (𝑋𝑖 , 𝑝𝑖𝑗 )𝑖,𝑗 ∈𝐼 defines an inductive system of objects in the cate-
gory Set, one may define the inductive limit 𝑋 as the quotient

𝑋 ≡ lim
−→

𝑋𝑖 :=
∐
𝑖∈𝐼

𝑋𝑖
/
∼ (B.11)

where two elements 𝑥𝑖 ∈ 𝑋𝑖 and 𝑥𝑗 ∈ 𝑋𝑗 with 𝑖, 𝑗 ∈ 𝐼 are defined as equivalent, in
symbol 𝑥𝑖 ∼ 𝑥𝑗 , iff there exists 𝑘 ∈ 𝐼 with 𝑖, 𝑗 ≤ 𝑘 such that 𝑝𝑖𝑘 (𝑥𝑖) = 𝑝𝑗𝑘 (𝑥𝑗 ).
Using the compatibility condition of the morphisms 𝑝𝑖𝑗 : 𝑋𝑖 → 𝑋𝑗 it is easy to see that
this indeed defines an equivalence relation. For any 𝑖 ∈ 𝐼 , the canonical embeddings
𝑋𝑖 ↩→ ∐

𝑘 𝑋𝑘 induce maps 𝑝𝑖 : 𝑋𝑖 → 𝑋 . It then follows 𝑋 together with the
morphisms 𝑝𝑖 indeed satisfies the properties of an inductive limit in the category Set.

In case that the 𝑋𝑖 carry additional structure, i.e., they define objects in the category
Ring, Grp, Mod𝑅 or SRing one can apply a standard procedure and use the morphisms
𝑝𝑖𝑗 and 𝑓𝑖 to extend these additional structures to the inductive limit 𝑋 as defined via
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(B.11) so that 𝑋 in fact defines an object in the respective category (see [253] for more
details).

The projective case is simpler. More precisely, if (𝑋𝑖 , 𝑝𝑖𝑗 )𝑖,𝑗 ∈𝐼 defines a projective
system, one may define the corresponding projective limit 𝑋 as the subset

𝑋 ≡ lim
←−

𝑋𝑖 := {(𝑥𝑖)𝑖 ∈
∏
𝑖∈𝐼

𝑋𝑖 | 𝑝𝑖𝑗 (𝑥𝑗 ) = 𝑥𝑖 ∀𝑖 ≤ 𝑗 } (B.12)

of the cartesian product
∏
𝑖 𝑋𝑖 . Restricting the canonical projections

∏
𝑘 𝑋𝑘 → 𝑋𝑖 to

the subset 𝑋 , this induces maps 𝑝𝑖 : 𝑋 → 𝑋𝑖 which, in particular, automatically define
morphisms in the respective category. By construction, it then follows immediately
that 𝑋 together with the morphisms 𝑝𝑖 indeed satisfies the properties of a projective
limit. □

Let 𝑋 be a topological space and 𝑥 ∈ 𝑋 an arbitrary but fixed point. Then, 𝑥 induces a
partially ordered set (U𝑥 , ≤) of open subsets𝑈 ⊆ 𝑋 with 𝑥 ∈ 𝑈 where𝑈 ≤ 𝑉 :⇔
𝑈 ⊆ 𝑉 for𝑈 ,𝑉 open in 𝑋 . Given a presheaf F on a topological space 𝑋 and 𝑥 ∈ 𝑋 ,
this yields an inductive system (F (𝑈 ), 𝑝𝑈𝑉 := 𝜌𝑉 ,𝑈 )𝑈 ,𝑉 ∈U𝑥 . With these preparations,
we can define the following.

Definition B.14. Let F be a presheaf on a topological space 𝑋 and 𝑥 ∈ 𝑋 an arbitrary
but fixed point. The stalk F𝑥 of F at 𝑥 is defined as the inductive limit

F𝑥 := lim
−→
F (𝑈 ) (B.13)

of the inductive system (F (𝑈 ), 𝑝𝑈𝑉 )𝑈 ,𝑉 ∈U𝑥 .

Proposition B.15. Let 𝜙 : F → G be a morphism of presheaves on a topological space
𝑋 . Then, for any 𝑥 ∈ 𝑋 , there exists a unique morphism 𝜙𝑥 : F𝑥 → G𝑥 between the
stalks at 𝑥 such that the following diagram commutes

F (𝑈 )
𝜙𝑈 //

��

G(𝑈 )

��
F𝑥

𝜙𝑥 // G𝑥

(B.14)

Proof. Composing 𝜙𝑈 with the morphism 𝑝𝑈 : G(𝑈 ) → G𝑥 for any𝑈 ⊆ 𝑋 open,
it follows that the resulting morphisms 𝜓𝑈 := 𝑝𝑈 ◦ 𝜙𝑈 : F (𝑈 ) → G𝑥 satisfy

𝜓𝑈 ◦ 𝑝𝑉𝑈 = 𝑝𝑈 ◦ 𝜙𝑈 ◦ 𝜌𝑈 ,𝑉 = 𝑝𝑈 ◦ 𝜌𝑈 ,𝑉 ◦ 𝜙𝑉 = 𝑝𝑈 ◦ 𝑝𝑉𝑈 ◦ 𝜙𝑉 = 𝑝𝑉 ◦ 𝜙𝑉 = 𝜓𝑉

(B.15)
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for any𝑈 ⊆ 𝑉 open. Hence, by universal property of the inductive limit, there exists
an unique morphism 𝜙𝑥 : F𝑥 → G𝑥 such that

𝑝𝑈 ◦ 𝜙𝑈 = 𝜙𝑥 ◦ 𝑝𝑈 (B.16)

∀𝑥 ∈ 𝑈 ⊆ 𝑋 open, that is, such that the diagram (B.14) commutes. □

Before, we finally turn towards the introduction of the notion of a locally ringed space, let
us prove an important proposition stating that a morphism between sheaves is uniquely
characterizeed in terms of its restrictions on a certain base of open subsets of the under-
lying topological space. This allows to extend local data to a global object. An example
of such a base of open subsets that we will typically be interested in are local coordinate
neighborhoods on a (super)manifold. The result of the following proposition has been
implicitly used in the arguments of the Reference [95]. In the following, we want to
state it more formally and give an explicit proof.

Definition B.16. Let 𝑋 be a topological space. A base of the topology of 𝑋 is a system
𝔅 of open subsets of 𝑋 such that

(i) 𝑈 ,𝑉 ∈ 𝔅⇒ 𝑈 ∩𝑉 ∈ 𝔅

(ii) every open subset of 𝑋 is a union of subsets from 𝔅.

Lemma B.17. Let F and G be sheaves of sets (resp. rings, modules, super rings,. . . ) on a
topological space 𝑋 and𝔅 be a base of the topology of 𝑋 . Furthermore, let𝐾 := {𝐾𝑈 }𝑈 ∈𝔅
be collection of morphisms 𝐾𝑈 : F (𝑈 ) → G(𝑈 ) commuting with restrictions, i.e.
𝜌𝑈 ,𝑉𝐾𝑉 = 𝐾𝑈 𝜌𝑈 ,𝑉 for𝑈 ,𝑉 ∈ 𝔅 with𝑈 ⊂ 𝑉 . Then, 𝐾 can uniquely be extended to
a sheaf morphism 𝐾̄ : F → G such that 𝐾̄𝑈 = 𝐾𝑈 for all𝑈 ∈ 𝔅.

Proof. It is clear, by the uniqueness property of sheaves, that such an extension of 𝐾 ,
provided it exists, will be unique. Hence, we only have to prove its existence. To this
end, let𝑊 ⊆ 𝑋 be an arbitrary open subset. Then, there exists a collection {𝑈𝛼}𝛼∈Υ
of open subsets in 𝔅 such that𝑊 =

⋃
𝛼∈Υ𝑈𝛼 . For 𝑓 ∈ F (𝑊 ), consider the sections

𝑓̃𝛼 := 𝐾𝑈𝛼 𝜌𝑈𝛼 ,𝑊 𝑓 ∈ G(𝑈𝛼), 𝛼 ∈ 𝑈𝛼 . Since

𝑓̃𝛼 |𝑈𝛼∩𝑈𝛽 = 𝜌𝑈𝛼∩𝑈𝛽 ,𝑈𝛼𝐾𝑈𝛼 𝜌𝑈𝛼 ,𝑊 𝑓 = 𝐾𝑈𝛼∩𝑈𝛽 𝜌𝑈𝛼∩𝑈𝛽 ,𝑊 𝑓

= 𝜌𝑈𝛼∩𝑈𝛽 ,𝑈𝛽𝐾𝑈𝛽 𝜌𝑈𝛽 ,𝑊 𝑓 = 𝑓̃𝛽 |𝑈𝛼∩𝑈𝛽 (B.17)

∀𝛼, 𝛽 ∈ Υ, by the sheaf property ofG, there exists a unique 𝑓̃ ∈ G(𝑊 ) with 𝑓̃|𝑈𝛼 = 𝑓̃𝛼
∀𝛼 ∈ Υ. We define the map 𝐾̄𝑊 : F (𝑊 ) → G(𝑊 ) by setting 𝐾̄𝑊 (𝑓) := 𝑓̃
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∀𝑓 ∈ F (𝑊 ). Let𝑈 ∈ 𝔅 with𝑈 ⊂𝑊 , then {𝑈 ∩𝑈𝛼}𝛼∈Υ is an open covering of𝑈 .
Since

𝜌𝑈∩𝑈𝛼 ,𝑊 𝐾̄𝑊 (𝑓) = 𝜌𝑈∩𝑈𝛼 ,𝑈𝛼 𝜌𝑈𝛼 ,𝑊 𝐾̄𝑊 (𝑓) = 𝜌𝑈∩𝑈𝛼 ,𝑈𝛼 𝑓̃𝛼
= 𝜌𝑈∩𝑈𝛼 ,𝑈𝛼𝐾𝑈𝛼 ( 𝜌𝑈𝛼 ,𝑊 𝑓) = 𝐾𝑈∩𝑈𝛼 ( 𝜌𝑈∩𝑈𝛼 ,𝑊 𝑓)
= 𝜌𝑈∩𝑈𝛼 ,𝑈𝐾𝑈 ( 𝜌𝑈 ,𝑊 𝑓) (B.18)

∀𝛼 ∈ Υ, this shows, by the uniqueness property of sheaves, that 𝜌𝑈 ,𝑊 𝐾̄𝑊 (𝑓) =

𝐾𝑈 ( 𝜌𝑈 ,𝑊 𝑓) ∀𝑓 ∈ F (𝑊 ). In particular, this implies that the definition of 𝐾̄𝑊 is
independent on the choice of a covering {𝑈𝛼} of𝑊 . Finally, the uniqueness property
also yields that 𝐾̄𝑊 defines a morphism in the respective category.

It follows that the collection 𝐾̄ := {𝐾̄𝑊 }𝑊 indexed by open subsets𝑊 ⊆ 𝑋 defines
a morphism of sheaves 𝐾̄ : F → G. Indeed, let𝑉 ,𝑊 ⊆ 𝑋 be open subsets with
𝑉 ⊂𝑊 and {𝑈𝛼}𝛼∈Υ be an open covering of𝑉 with𝑈𝛼 ∈ 𝔅 ∀𝛼 ∈ Υ. Then, for
𝑓 ∈ F (𝑊 ), we compute

𝜌𝑈𝛼 ,𝑉 𝜌𝑉 ,𝑊 𝐾̄𝑊 (𝑓) = 𝜌𝑈𝛼 ,𝑊 𝐾̄𝑊 (𝑓) = 𝐾𝑈𝛼 𝜌𝑈𝛼 ,𝑊 𝑓 = 𝜌𝑈𝛼 ,𝑉 𝐾̄𝑉 ( 𝜌𝑉 ,𝑊 𝑓) (B.19)

for any 𝛼 ∈ Υ, so that, again by the uniqueness property, we can conclude 𝜌𝑉 ,𝑊 𝐾̄𝑊 (𝑓)
= 𝐾̄𝑉 ( 𝜌𝑉 ,𝑊 𝑓) proving that 𝐾̄ is a morphism of sheaves. Hence 𝐾̄ defines the unique
extension of 𝐾 . □

Definition B.18. A locally ringed space is a pair (𝑋 ,O𝑋 ) consisting of a topological
space 𝑋 as well as a sheafO𝑋 of rings on 𝑋 called structure sheaf such that, for any 𝑥 ∈ 𝑋 ,
the stalk O𝑋 ,𝑥 is a local ring.1 A morphism 𝑓 = ( |𝑓|, 𝑓♯) : (𝑋 ,O𝑋 ) → (𝑌 ,O𝑌 ) of
locally ringed spaces consists of a continuous map |𝑓| : 𝑋 → 𝑌 between topological
spaces as well as a morphism 𝑓♯ : O𝑌 → 𝑓∗O𝑋 of sheaves of rings on𝑌 called pullback
such that, ∀𝑥 ∈ 𝑋 , the induced morphism 𝑓

♯
𝑥 : O𝑌 ,𝑓(𝑥) → O𝑋 ,𝑥 (see Def. B.14 and

Prop B.15) is local, i.e., 𝑓♯𝑥 maps the maximal ideal of O𝑌 ,𝑓(𝑥) to the maximal ideal of
O𝑋 ,𝑥 . Here, 𝑓∗O𝑌 is a sheaf over 𝑋 called the pushforward of O𝑌 w.r.t. 𝑓 given by
𝑓∗O𝑌 (𝑈 ) := O𝑌 (𝑓−1(𝑈 )),𝑈 ⊆ 𝑋 open.

Example B.19. A smooth manifold𝑀 naturally induces a locally ringed space (𝑀,𝐶∞
𝑀
)

with 𝐶∞
𝑀

the sheaf of smooth functions on 𝑀 . For each 𝑥 ∈ 𝑀 , the maximal ideal
of the stalk 𝐶∞

𝑀,𝑥
is given by 𝐼𝑥 := {[𝑓]𝑥 ∈ 𝐶∞𝑀,𝑥

| 𝑓(𝑥) = 0 , 𝑓 ∈ [𝑓]𝑥}. Moreover,
choosing a local coordinate neighborhood𝑈 of 𝑀 , it follows that (𝑈 ,O𝑀 |𝑈 ) is iso-
morphic to the locally ringed space (𝑉 ,𝐶∞R𝑛 |𝑉 ) where𝑉 ⊆ R𝑛 is an open subset of R𝑛.

1 an ideal 𝔪 of a ring 𝑅 is called maximal if 𝑅/𝔪 is a field. A ring is called local if it has a unique maximal
ideal.
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In fact, it follows that smooth manifolds are uniquely characterized by this property.
More precisely, it follows that there exists an equivalence of categories between Man
and the category of locally ringed spaces that are locally isomorphic to the flat model
(𝑉 ,𝐶∞R𝑛 |𝑉 ) with𝑉 ⊆ R𝑛 open (see, e.g., [117, 253] for more details).

C. Rogers-DeWitt supermanifolds
In this section, we want to briefly review the basic definition of 𝐻∞ supermanifolds in
the Rogers-DeWitt approach in order to fix some terminology used in the main text.
We mostly follow the standard References [94, 96, 97].

Definition C.1. Let Λ be a Grassmann algebra (finite- or infinite-dimensional) and
Λ𝑚,𝑛 := Λ𝑚0 × Λ𝑛1 be the superdomain of dimension (𝑚, 𝑛) for any𝑚, 𝑛 ∈ N0. On
Λ𝑚,𝑛 one has the body map given by the projection 𝜖𝑚,𝑛 : Λ𝑚,𝑛 → R𝑚 onto the real
subspaceR𝑚. We equip Λ𝑚,𝑛 with the DeWitt-topology defined as the coarsest topology
such that the body map is continuous. For any open subset 𝑈 ⊆ R𝑚, a function
𝑓 : 𝜖−1𝑚,𝑛(𝑈 ) → Λ is called (𝐻∞-)smooth, if there exists ordinary real smooth functions
𝑓𝐼 ∈ 𝐶∞(𝑈 ) for any ordered multi-index 𝐼 of length 0 ≤ |𝐼 | ≤ 𝑛, such that

𝑓(𝑥, 𝜃) =
∑︁
𝐼

G(𝑓𝐼 ) (𝑥)𝜃 𝐼 (C.1)

∀(𝑥, 𝜃) ∈ 𝜖−1𝑚,𝑛(𝑈 ) where G(𝑓𝐼 ) is the so-called Grassmann analytic continuation or
simply Grassmann extension of 𝑓𝐼 defined as

G(𝑓𝐼 ) (𝑥) :=
∑︁
𝐽

1
𝐽 !
𝜕𝐽 𝑓𝐼 (𝜖𝑚,𝑛(𝑥)) 𝑠(𝑥) 𝐽 (C.2)

where the sum runs over all unordered multi-indices 𝐽 , 𝑠(𝑥) := 𝑥 − 𝜖𝑚,𝑛(𝑥) is the soul
of 𝑥 ∈ Λ𝑚0 and

𝜕𝐼 :=
𝜕 |𝐼 |

𝜕𝑥 𝐼
≡ 𝜕 |𝐼 |

𝜕𝑥
𝑖1
1 · · · 𝜕𝑥

𝑖𝑘
𝑘

(C.3)

for some multi-index 𝐼 = (𝑖1, . . . , 𝑖𝑘).

Remark C.2. Following [97], a topological space 𝑀 together with a 𝐶∞-smooth
structure will be called a proto 𝐶∞ manifold. That is, a proto 𝐶∞ manifold is just an
ordinary smooth manifold without requiring the underlying topological space to be
Hausdorff and second countable.

Definition C.3. LetM be a topological space. A local superchart onM is defined as
a pair (𝑈 , 𝜙𝑈 ) that consists of an open subset𝑈 ⊆ M as well as a homeomorphism
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𝜙𝑈 : 𝑈 → 𝜙𝑈 (𝑈 ) ⊆ Λ𝑚,𝑛 onto an open subset of the superdomain Λ𝑚,𝑛. A
(𝑚, 𝑛)-dimensional 𝐻∞-smooth atlas onM is a family {(𝑈𝛼 , 𝜙𝛼)}𝛼∈Υ of supercharts
𝜙𝛼 : 𝑈𝛼 → 𝜙𝛼 (𝑈𝛼) ⊆ Λ𝑚,𝑛, 𝛼 ∈ Υ, ofM such that

⋃
𝛼∈Υ𝑈𝛼 = M and the

supercharts are smoothly compatible. That is, for any 𝛼, 𝛽 ∈ Λ with𝑈𝛼 ∩𝑈𝛽 ≠ ∅, the
transition functions

𝜙𝛽 ◦ 𝜙−1𝛼 : 𝜙𝛼 (𝑈𝛼 ∩𝑈𝛽) → 𝜙𝛽 (𝑈𝛼 ∩𝑈𝛽) (C.4)

are of class 𝐻∞. An atlas onM is called maximal if any superchart (𝑈 , 𝜙𝑈 ) ofM that
is smoothly compatible with any superchart of the given atlas is already contained in
this atlas.

Definition C.4. A proto 𝐻∞ supermanifold of dimension (𝑚, 𝑛) is a topological space
M furnished with a (𝑚, 𝑛)-dimensional 𝐻∞-smooth atlas.

Definition C.5. LetM and N be proto 𝐻∞ supermanifolds. A continuous map
𝑓 : M → N is called smooth if, for any local charts (𝑈 , 𝜙𝑈 ) and (𝑉 , 𝜓𝑉 ) ofM and
N , respectively, with𝑈 ∩ 𝑓−1(𝑉 ) ≠ ∅, the map

𝜓𝑉 ◦ 𝑓 ◦ 𝜙−1𝑈 : 𝜙𝑈 (𝑈 ∩ 𝑓−1(𝑉 )) → 𝜓𝑉 (𝑉 ) (C.5)

is of class 𝐻∞.

Definition C.6. LetM be a proto𝐻∞ supermanifold of dimension dimM = (𝑚, 𝑛)
with maximal atlas

{
(𝑉𝛼 , 𝜓𝛼)

}
𝛼∈Γ. OnM, one can introduce an equivalence relation

∼ via (for a proof that this indeed defines an equivalence relation see [96])

𝑝 ∼ 𝑞 :⇔ ∃𝛼 ∈ Γ : 𝑝, 𝑞 ∈𝑉𝛼 and 𝜖𝑚,𝑛(𝜓𝛼 ( 𝑝)) = 𝜖𝑚,𝑛(𝜓𝛼 (𝑞)) (C.6)

It immediately follows from the definition that, for any 𝑝 ∈ M, there exists a unique
element B( 𝑝) ∈ M such that 𝑝 ∼ B( 𝑝) and 𝑓( 𝑝) ∈ R ∀𝑓 ∈ 𝐻∞(M) which we call
its body representative. This yields a proper subset

B(M) := { 𝑝 ∈ M| 𝑓( 𝑝) ∈ R ,∀𝑓 ∈ 𝐻∞(M)} (C.7)

called the body ofM, together with a surjective map B : M → B(M), 𝑝 ↦→ B( 𝑝)
called the body map where elements 𝑝 ∈ B(M) will also be referred to as body points
ofM. For any smooth map 𝑓 : M → N between 𝐻∞ supermanifolds, one has
𝑓(B(M)) ⊆ B(N). Hence, the body map can be extended to morphisms setting
B(𝑓) := 𝑓|B(M) : B(M) → B(N). This yields a functor B : SMan𝑝𝑟𝑜𝑡𝑜,𝐻∞ → Set
which we call the body functor.
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Lemma C.7. Let 𝑝 ∈ M be a point on a proto 𝐻∞ supermanifoldM and ∼ the
equivalence relation as in definition C.6. Then, any other point 𝑞 ∈ M in the equivalence
class of 𝑝 will be contained in an arbitrary small open neighborhood𝑈 of 𝑝 inM.

Proof. Let 𝑝 ∈ 𝑈 be an open neighborhood of 𝑝 inM and (𝑉𝛼 , 𝜓𝛼) a coordinate
neighborhood of 𝑝 with 𝑞 ∈ 𝑉𝛼 . Then, 𝑝 ∈ 𝑈 ∩𝑉𝛼 and 𝜓𝛼 (𝑈 ∩𝑉𝛼) is open in
Λ𝑚,𝑛 so that, by the definition of the DeWitt-topology, there is a 𝑈̃ ⊂ R𝑚 open with
𝜓𝛼 (𝑈 ∩𝑉𝛼) = 𝜖−1𝑚,𝑛(𝑈̃ ). As 𝑝 ∼ 𝑞 we have 𝜖𝑚,𝑛(𝜓𝛼 (𝑞)) = 𝜖𝑚,𝑛(𝜓𝛼 ( 𝑝)) ∈ 𝑈̃ and
thus 𝜓𝛼 (𝑞) ∈ 𝜓𝛼 (𝑈 ∩𝑉𝛼). But, since 𝜓𝛼 is injective this implies 𝑞 ∈ 𝑈 ∩𝑉𝛼 and
therefore 𝑞 ∈ 𝑈 . □

Lemma C.8. LetM be a proto 𝐻∞ supermanifold and𝑈 ,𝑉 ⊆ M open subsets inM.
Then𝑈 ⊆ 𝑉 ⇔ B(𝑈 ) ⊆ B(𝑉 ) and thus, in particular,𝑈 = 𝑉 ⇔ B(𝑈 ) = B(𝑉 ).
Moreover, any open subset𝑈 ⊆ M is of the form𝑈 = B−1(𝑊 ) with𝑊 open in B(M)
(in fact𝑊 = B(𝑈 )) which can be thought of as a generalization of the DeWitt-topology.

Proof. It is clear that𝑈 ⊆ 𝑉 implies B(𝑈 ) ⊆ B(𝑉 ). Hence, suppose that B(𝑈 ) ⊆
B(𝑉 ). Then 𝑥 ∈ 𝑈 yields B(𝑥) ∈ B(𝑈 ) ⊆ B(𝑉 ) such that there exists 𝑦 ∈ 𝑉 with
𝑥 ∼ 𝑦. But, by Lemma C.7, this implies 𝑥 ∈𝑉 and thus indeed𝑈 ⊆ 𝑉 . Next, for any
open subset𝑈 ⊆ M define𝑈 ′ := B−1(B(𝑈 )) yielding𝑈 ⊆ 𝑈 ′. For any 𝑥 ∈ 𝑉 one
has B(𝑥) ∈ B(𝑉 ) = B(𝑈 ). Thus, similarly as above, this implies 𝑥 ∈ 𝑈 as𝑈 is open
and therefore𝑈 ′ ⊆ 𝑈 , that is,𝑈 ′ = 𝑈 . □

Definition C.9. A 𝐻∞ supermanifoldM is a proto 𝐻∞ supermanifold whose body
B(M), equipped with the trace toplogy, defines a second countable Hausdorff topolog-
ical space and thus defines an ordinary𝐶∞-smooth manifold. Supermanifolds together
with smooth maps between them form a category SMan𝐻∞ called the category of 𝐻∞

supermanifolds.

Proposition C.10. Let 𝑓 : M →N be a smooth map between 𝐻∞ supermanifoldsM
andN . Then, 𝑓 is surjective if and only if B(𝑓) : B(M) → B(N) is surjective.

Proof. Let 𝑀 := B(N) and 𝑁 := B(N). If 𝑓 is surjective, it follows B(𝑓) (𝑀 ) =
B(𝑓(M)) = B(N) = 𝑁 and thus B(𝑓) is surjective. Conversely, if B(𝑓) be surjective,
it follows from 𝑁 = B(𝑓) (𝑀 ) = B(𝑓(M)) that B(𝑓(M)) is open and thus 𝑓(M)
is open inN implying B(𝑓(M)) = B(𝑓) (𝑀 ) = 𝑁 = B(N). Hence, by Lemma C.8,
this yields 𝑓(M) = N , that is, 𝑓 is surjective. □

Example C.11. To any vector bundle𝑉 → 𝐸 → 𝑀 with dim𝑉 = 𝑛 and dim𝑀 = 𝑚,
it follows that one can associate a 𝐻∞ supermanifold S(𝐸, 𝑀 ) of dimension (𝑚, 𝑛)
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called the split supermanifold2 Moreover, any morphism (𝜙, 𝑓) : (𝐸, 𝑀 ) → (𝐹 , 𝑁 )
between two vector bundles induces a morphism S(𝜙, 𝑓) : S(𝐸, 𝑀 ) → S(𝐹 , 𝑁 )
between the corresponding split supermanifolds. Hence, this yields a functor

S : VectR → SMan𝐻∞ (C.8)

between the category of real vector bundles to the category of 𝐻∞ supermanifolds
which we call the split functor. It is a general result due to Batchelor [107] that any
algebro-geometric supermanfold is isomorphic to a split supermanifold, i.e., (C.8) is
surjective on objects. However, the split functor is not full, i.e., not every morphism
𝑓 : S(𝐸, 𝑀 ) → S(𝐹 , 𝑁 ) between split manifolds arises from a morphism between
the respective vector bundles (𝐸, 𝑀 ), (𝐹 , 𝑁 ) ∈ Ob(VectR). Hence, the structure of
morphisms between supermanifolds in general turns out to be much richer than for
ordinary vector bundles.

A smooth manifold 𝑀 can be identified with the trivial vector bundle 𝑀 × {0} → 𝑀 ,
i.e., one has the inclusion functor i : Man→ VectR such that i(𝑀 ) := (𝑀 ×{0}, 𝑀 )
and i(𝑓) := (0, 𝑓) for any 𝑀 ∈ Ob(Man) and morphisms 𝑓 ∈ HomMan(𝑀, 𝑁 ).
Combined with the split functor, this yields another functor

S ≡ S ◦ i : Man→ SMan𝐻∞ (C.9)

mapping an ordinary smooth manifold 𝑀 to a supermanifold S(𝑀 ) with trivial odd
dimensions, also called a bosonic supermanifold. Conversely, given a bosonic super-
manifoldM, it follows that the corresponding split supermanifoldM0 := S(B(M)) is
isomorphic toM. Hence, in this way, one obtains an equivalence of categories between
bosonic supermanifolds and ordinary𝐶∞-smooth manifolds.

D. Irreducible representations of OSp(N |2)
In the following, let us summarize some main results about finite-dimensional irreducible
representations of the orthosymplectic Lie supergroups OSp(N |2) forN = 1, 2 which
play a role in the chiral description of the pure AdS supergravity theories in𝐷 = 4 to be
discussed in Chapter 5. To this end, we will discuss the representation theory on the level
of corresponding Lie superlalgebras 𝔬𝔰𝔭(N |2). The respective representations of the
underlying supergroup can be obtained using the super Harish-Chandra isomorphism
(2.45).

2 the explicit construction turns out to be a bit technical via Grassmann extensions of transition func-
tions (see e.g. [97]). Alternatively, the split supermanifold may be obtained via the functor of points
prescription applied to the algebro-geometric supermanifold (𝑀, Γ(∧𝐸∗)) (see Example 2.2.4 for
more details).
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D.1. Representation theory of OSp(1|2)
The finite-dimensional irreducible representations of 𝔬𝔰𝔭(1|2) are discussed in various
references. Here, we follow [207, 216, 254, 255]. Starting from the general definition
(5.82)-(5.85) of 𝔬𝔰𝔭(N |2) for N = 1 generated by (𝑇 +

𝑖
, 𝑄𝐴) with 𝑖 ∈ {1, 2, 3} and

𝐴 ∈ {±}, one can arrive at the Cartan-Weyl basis ( 𝐽3, 𝐽±,𝑉±) of the superalgebra setting

𝐽± := −𝑖 (𝑇 +1 ± 𝑖𝑇 +2 ), 𝐽3 := 𝑖𝑇 +3 , 𝑉± := ±
√
𝐿

2
(𝑖 − 1)𝑄± (D.1)

It then follows from (5.82)-(5.85) that the commutators among the even generators satisfy

[ 𝐽3, 𝐽±] = ± 𝐽±, [ 𝐽+, 𝐽−] = 2 𝐽3 (D.2)

which are the standard commutation relations of 𝔰𝔩(2,C). For the remaining commuta-
tors, it follows

[ 𝐽3,𝑉±] = ±
1
2
𝑉±, [ 𝐽∓,𝑉±] =𝑉∓, [ 𝐽±,𝑉±] = 0 (D.3)

[𝑉±,𝑉±] = ±
1
2
𝐽±, [𝑉+,𝑉−] = −

1
2
𝐽3 (D.4)

The quadratic Casimir operator𝐶2 which commutes with all the generators of the super
Lie algebra 𝔬𝔰𝔭(1|2) takes the form [216]

𝐶2 = ®𝐽 2 +𝑉+𝑉− −𝑉−𝑉+ (D.5)

where ®𝐽 := ( 𝐽1, 𝐽2, 𝐽3)𝑇 with 𝐽1 := 1
2 ( 𝐽+ + 𝐽−) and 𝐽2 = 1

2𝑖 ( 𝐽+ − 𝐽−). A finite-
dimensional representation of 𝔬𝔰𝔭(1|2) is a grading preserving superalgebra morphism

𝜋 : 𝔬𝔰𝔭(1|2) → 𝔤𝔩(𝑉 ) (D.6)

with 𝔤𝔩(𝑉 ) ≡ End(𝑉 ) the super Lie algebra of endomorphisms on a finite-dimensional
super vector space𝑉 = 𝑉0 ⊕ 𝑉1. By restriction, each irreducible representation of
𝔬𝔰𝔭(1|2) induces a corresponding (reducible) representation of the bosonic subalgebra.
Let ( 𝜌𝑗 ,𝑊 𝑗 ) with 𝑗 ∈ 1

2N0 denote the finite-dimensional irreducible representations
of 𝔰𝔩(2,C). Set

𝑉 𝜆,𝑗 := Π𝜆𝑊 𝑗 (D.7)

whereΠ : SVec→ SVec denotes the parity functor on the category SVec of (real) super
vector spaces which, on objects R𝑚 |𝑛 ∈ Ob(SVec), is defined as Π(R𝑚 |𝑛) := R𝑛 |𝑚.
Thus,𝑉 𝜆,𝑗 for 𝜆 = 0 resp. 𝜆 = 1 is regarded as a purely even resp. odd super vector
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space. It follows that finite-dimensional irreducible representations of 𝔬𝔰𝔭(1|2) are of
the form (𝜋𝑗 ,𝑉 𝑗 ) with

𝑉 𝑗 :=𝑉 𝜆,𝑗 ⊕𝑉 𝜆+1,𝑗−1 (D.8)

for 𝑗 ∈ 1
2N0. A homogeneous basis of the super vector space is provided by states of the

form
|𝑗, 𝑗 , 𝑚, 𝜆⟩ , |𝑗, 𝑗 − 1, 𝑚, 𝜆 + 1⟩ (D.9)

with 𝑚 the magnetic quantum number which, in the former case, takes values 𝑚 ∈
{−𝑗,−𝑗 + 1, . . . , 𝑗 } and, in the latter,𝑚 ∈ {−𝑗 + 1,−𝑗 + 2, . . . , 𝑗 − 1}. Hence, in
particular, it follows that (𝜋𝑗 ,𝑉 𝑗 ) has (ungraded) dimension 4𝑗 + 1. The irreducible
representations are classified by the quadratic Casimir operator (D.5) which, when
restricted to the representation spaces (D.8), is given by

𝐶2 = 𝑗

(
𝑗 + 1

2

)
1 (D.10)

The equivalence classes of irreducible representations of the form (𝜋𝑗 ,𝑉 𝑗 ) with 𝑗 ∈
1
2N0 form a subcategory which is closed under tensor product. In order to derive the
Clesch-Gordan decomposition of the tensor product of two such representations, one
needs to define a suitable inner product on the representation space w.r.t. which the
operators representing the generators 𝐽𝑖 are self-adjoint and two inequivalent irreps are
orthogonal. For the Lie superalgebra 𝔬𝔰𝔭(1|2), it follows that this requires a generaliza-
tion of the adjointness relation in a suitable sense leading to the notion of a so-called
grade star representation [216, 254]. It follows that, given two irreducible representations
(𝜋𝑗1 ,𝑉 𝑗1) and (𝜋 𝐽2 ,𝑉 𝑗2), the tensor product representation decomposes as [216]

𝜋𝑗1 ⊗ 𝜋𝑗2 =
𝑗1+𝑗2⊕

𝑗= |𝑗1−𝑗2 |
𝜋𝑗 (D.11)

which almost looks like as in the bosonic theory with the crucial difference that the direct
sum runs over all positive half-integers 𝑗 satisfying the inequality |𝑗1−𝑗2 | ≤ 𝑗 ≤ 𝑗1+𝑗2.

D.2. Representation theory of OSp(2|2)
In this section, we follow the References [216, 217] to discuss the finite irreducible
representations of 𝔬𝔰𝔭(2|2). Again, starting from the general definition (5.82)-(5.85) of
𝔬𝔰𝔭(N |2) for the special caseN = 2 generated by (𝑇 +

𝑖
, 𝑇 12, 𝑄𝑟

𝐴
) with 𝑖 ∈ {1, 2, 3},

𝐴 ∈ {±} and 𝑟 = 1, 2, one can arrive at the Cartan-Weyl basis ( 𝐽3, 𝐽±, 𝑄,𝑉 𝑟
± ) of the

361



Appendix

superalgebra setting𝑄 := 𝑖𝐿𝑇 12 also called charge together with (5.211) for the bosonic
generators and

𝑉 1
± := ±

√
𝐿

2
(𝑖 − 1) (𝑄1

± − 𝑖𝑄2
±) and 𝑉 2

± := ±
√
𝐿

2
(𝑖 − 1) (𝑄1

± + 𝑖𝑄2
±) (D.12)

for the fermionic generators, respectively. The nontrivial commutation relations among
the even generators are again given by (D.2) corresponding to the Lie algebra𝔰𝔩(2,C)⊕C
which is the complexification of the corresponding compact real form 𝔰𝔲(2) ⊕ 𝔲(1).
The mixed commutators between even and odd generators are given by

[ 𝐽3,𝑉 𝑟
± ] = ±

1
2
𝑉 𝑟
± , [ 𝐽∓,𝑉 𝑟

± ] =𝑉 𝑟
∓ , [ 𝐽±,𝑉 𝑟

± ] = 0 (D.13)

[𝑄,𝑉 1
± ] =

1
2
𝑉 1
± , [𝑄,𝑉 2

± ] = −
1
2
𝑉 2
± (D.14)

and, finally, for the odd generators, one obtains

[𝑉 𝑟
± ,𝑉

𝑟
± ] = [𝑉 𝑟

± ,𝑉
𝑟
∓ ] = 0, [𝑉 1

± ,𝑉
2
± ] = ± 𝐽±, [𝑉 1

± ,𝑉
2
∓ ] = − 𝐽3 + 𝑄 (D.15)

These are precisely the graded commutation relations as stated for instance in [216, 217].
The superalgebra admits two Casimir operators which commute with all the generators
given by the quadratic and cubic Casimir operators𝐶2 and𝐶3, respectively. For instance,
the quadratic Casimir operator takes the form [216]

𝐶2 = ®𝐽 2 − 𝑄2 + 1
2
(𝑉 1
+𝑉

2
− −𝑉 1

−𝑉
2
+ −𝑉 2

+𝑉
1
− −𝑉 2

−𝑉
1
+ ) (D.16)

where, again, ®𝐽 := ( 𝐽1, 𝐽2, 𝐽3)𝑇 . Let ( 𝜌 (𝑗,𝑞) ,𝑊 (𝑗,𝑞) ) with 𝑗 ∈ 1
2N0 and 𝑞 ∈ C denote

the finite-dimensional irreducible representations of the bosonic subalgebra 𝔰𝔩(2,C) ⊕
C. The finite-dimensional representations of 𝔬𝔰𝔭(2|2) are more complicated than
for the non-extended case 𝔬𝔰𝔭(1|2). In fact, the representation fall into two different
categories called typical and atypical representations [216]. The typical representations
(𝜋 (𝑗,𝑞) ,𝑉 (𝑗,𝑞) ) labeled by isospin 𝑗 ∈ 1

2N0 and charge quantum number 𝑞 ∈ Cwith
𝑗 ≠ ±𝑞 are irreducible and classified by the Casimir operators𝐶2 and𝐶3. They consist
of four 𝔰𝔩(2,C) ⊕ Cmultiplets such that, up to parity (see discussion below),

𝑉 (𝑗,𝑞) =𝑊 (𝑗,𝑞) ⊕𝑊 (𝑗− 1
2 ,𝑞−

1
2 ) ⊕𝑊 (𝑗− 1

2 ,𝑞+
1
2 ) ⊕𝑊 (𝑗−1,𝑞) (D.17)

with homogeneous basis given by states of the form

|𝑞, 𝑗 , 𝑚⟩ , |𝑞 − 1
2
, 𝑗 − 1

2
, 𝑚⟩ , |𝑞 + 1

2
, 𝑗 − 1

2
, 𝑚⟩ , |𝑞, 𝑗 − 1, 𝑚⟩ (D.18)
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Consequently, the typical representation has (ungraded) dimension 8𝑗 . When applied
on the states (D.18), the Casimir operators respectively take the form𝐶2 = 𝑗

2 − 𝑞2 and
𝐶3 = 𝑞(𝑗 2 − 𝑞2).

On the other hand, in case of the atypical representations (𝜋 (𝑗,𝑞) ,𝑉 (𝑗,𝑞) ) corresponding
to the special cases 𝑗 = ±𝑞, it follows that the Casimir operators simply vanish and
therefore cannot be used for their classification. The atypical representations fall into
two subcategories, the so-called atypical irreducible and the atypical not fully reducible
ones. While the latter are more complicated to describe (see e.g. [216, 217] for more
details) the former type of representations split into two 𝔰𝔩(2,C) ⊕ Cmultiplets of the
form

𝑉 (𝑗,±𝑗 ) =𝑊 (𝑗,±𝑗 ) ⊕𝑊 (𝑗− 1
2 ,±𝑗±

1
2 ) (D.19)

and therefore have ungraded dimension 4𝑗 + 1.

Finally, let us discuss the Clebsch-Gordan decomposition of the tensor product of
two irreducible representations of 𝔬𝔰𝔭(2|2). To this end, one needs to introduce an
inner product on the representations spaces such that the operators corresponding to
the bosonic generators 𝑖𝑇 +

𝑖
and𝑄 are self-adjoint and w.r.t. which two inequivalent

irreducible representations are orthogonal. In contrast to theN = 1-case, it turns out
that, provided that 𝑞 ∈ R and ±𝑞 ≥ 𝑗 , one can in fact introduce a positive definite
inner product satisfying all the above mentioned requirements such that the irreducible
representation become so-called star representations [216, 254]. In particular, due to this
property, it follows that the Clebsch-Gordan decomposition does not depend on the
choice of parity of the subspaces appearing in the definition (D.17).

Moreover, it follows that equivalence classes of typical representations (𝜋 (𝑗,𝑞) ,𝑉 (𝑗,𝑞) )
with 𝑞 ∈ R and ±𝑞 ≥ 𝑗 form of subcategory which is closed under tensor product.
More precisely, given two such irreducible typical representations 𝜋 (𝑗1,𝑞1) and 𝜋 (𝑗2,𝑞2) ,
the corresponding tensor product representations decomposes as [216]

𝜋 (𝑗1,𝑞1) ⊗ 𝜋 (𝑗2,𝑞2) =
𝑗1+𝑗2⊕

𝑗= |𝑗1−𝑗2 |
𝜋 (𝑗,𝑞1+𝑞2) ⊕

𝑗1+𝑗2− 1
2⊕

𝑗= |𝑗1−𝑗2 |+ 12

𝜋 (𝑗,𝑞1+𝑞2+
1
2 )

⊕
𝑗1+𝑗2− 1

2⊕
𝑗= |𝑗1−𝑗2 |+ 12

𝜋 (𝑗,𝑞1+𝑞2−
1
2 ) ⊕

𝑗1+𝑗2−1⊕
𝑗= |𝑗1−𝑗2 |+1

𝜋 (𝑗,𝑞1+𝑞2) (D.20)

where the index 𝑗 in the direct sums runs in integer steps.
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E. Space forms
In this section, following closely [232], we review the basic definition of the so-called
space forms which can be thought of as the simplest possible models of semi-Riemannian
manifolds. As will be demonstrated frequently in the main text, these type of manifolds
turn out to have very important applications in general relativity and cosmology.

Before we start with the main definition, we first need to introduce the sectional curvature
𝐾 of a semi-Riemannian manifold.

Definition E.1. Let (𝑀, 𝑔) be a semi-Riemannian manifold. A two-dimensional
subspace Π ⊂ 𝑇𝑝𝑀 of the tangent space at 𝑝 ∈ 𝑀 is called non-degenerate if 𝑔 |Π is
non-degenerate. This is equivalent to saying that, for any bases (𝑣, 𝑤) of Π, one has
𝑄 (𝑣, 𝑤) ≠ 0 where

𝑄 (𝑣, 𝑤) := ⟨𝑣, 𝑣⟩ ⟨𝑤, 𝑤⟩ − ⟨𝑣, 𝑤⟩2 (E.1)

Let Π ⊂ 𝑇𝑝𝑀 be a two-dimensional non-degenerate subspace of the tangent space at
𝑝 ∈ 𝑀 . For any bases (𝑣, 𝑤) of Π, the sectional curvature 𝐾 (Π) of Π is defined as

𝐾 (Π) = ⟨𝑅(𝑣, 𝑤)𝑣, 𝑤⟩
𝑄 (𝑣, 𝑤) (E.2)

where 𝑅 ∈ Γ((𝑇 ∗𝑀 )3) ⊗ Γ(𝑇𝑀 ) denotes the Riemann curvature tensor correspond-
ing to the Levi-Civita connection ∇ ≡ ∇𝐿𝐶 of (𝑀, 𝑔).

Proof. We have to prove that (E.2) is independent of the choice of a basis (𝑣, 𝑤) of the
non-degenerate tangent plane Π. To this end, let (𝑣, 𝑤) and (𝑥, 𝑦) be two bases of Π.
Then, there exists an invertible matrix 𝐴 of rank two such that (𝑣, 𝑤) = (𝑥, 𝑦)𝐴𝑇 . By
the symmetry properties of𝑄 as well as the Riemann curvature tensor, it is immediate
to see that ⟨𝑅(𝑣, 𝑤)𝑣, 𝑤⟩ = det 𝐴2 ⟨𝑅(𝑥, 𝑦)𝑥, 𝑦⟩ and 𝑄 (𝑣, 𝑤) = det 𝐴2𝑄 (𝑥, 𝑦).
Hence, this proves the independence of (E.2) on the choice of a basis. □

Definition E.2. A semi-Riemannian manifold (𝑀, 𝑔) is called of constant curvature,
if the sectional curvature is constant, i.e., there exists some real number𝐶 ∈ R such that
𝐾 (Π) = 𝐶 for any non-degenerate tangent plane Π.

Proposition E.3. For a semi-Riemannian manifold (𝑀, 𝑔) of constant curvature
𝐶 ∈ R, the Riemann curvature tensor 𝑅 takes the form

𝑅(𝑋 ,𝑌 )𝑍 = 𝐶 (⟨𝑍, 𝑋 ⟩𝑌 − ⟨𝑍,𝑌 ⟩ 𝑋 ) (E.3)

for any vector fields 𝑋 ,𝑌 , 𝑍 ∈ Γ(𝑇𝑀 ).
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Proof. At 𝑝 ∈ 𝑀 , consider the map

𝐹 : (𝑇𝑝𝑀 )4 → R, (𝑣, 𝑤, 𝑥, 𝑦) ↦→ 𝐶 (⟨𝑣, 𝑥⟩ ⟨𝑦, 𝑤⟩ − ⟨𝑣, 𝑦⟩ ⟨𝑥, 𝑤⟩) (E.4)

such that 𝐹 (𝑣, 𝑤, 𝑣, 𝑤) = 𝐶𝑄 (𝑣, 𝑤). Hence, for a non-degenerate tangent plane gener-
ated by the basis (𝑣, 𝑤), this yields

𝐾 (Π) ≡ 𝐶 =
𝐹 (𝑣, 𝑤, 𝑣, 𝑤)
𝑄 (𝑣, 𝑤) (E.5)

implying Δ(𝑣, 𝑤, 𝑣, 𝑤) = 0 where Δ : (𝑇𝑝𝑀 )4 → R is defined as Δ(𝑣, 𝑤, 𝑥, 𝑦) :=
⟨𝑅(𝑣, 𝑤)𝑥, 𝑦⟩ − 𝐹 (𝑣, 𝑤, 𝑥, 𝑦). Using an approximation argument, it is easy to see
that this implies Δ(𝑣, 𝑤, 𝑣, 𝑤) = 0 for any, i.e., not necessarily linearly independent
tangent vectors 𝑣, 𝑤 ∈ Π. Then, via polarization, that is, considering the quantity
Δ(𝑣, 𝑤 + 𝑥, 𝑣, 𝑤 + 𝑥) = 0 and exploiting the symmetry properties induced by the
Riemann curvature tensor and𝑄 , one concludes that Δ ≡ 0 yielding (E.3). □

Definition E.4. A semi-Riemannian manifold is called complete if any maximal geodesic
is defined on the entire real line. A complete connected semi-Riemannian manifold of
constant curvature is called a space form.

Theorem E.5. A simply connected space form is uniquely determined, up to isometry, by
the triple (𝑑, 𝜈, 𝐶) consisting of its dimension, index and curvature, respectively.

Sketch of Proof. One direction is immediate. So suppose that 𝑀 and 𝑁 are two semi-
Riemannian manifolds with same dimension, index and curvature. This immediately
implies that for arbitrary but fixed points 𝑝 ∈ 𝑀 and 𝑞 ∈ 𝑁 , there exists a linear isom-
etry 𝐿 : 𝑇𝑝𝑀 → 𝑇𝑞𝑁 satisfying ⟨𝐿(𝑣), 𝐿(𝑤)⟩ = ⟨𝑣, 𝑤⟩ ∀𝑣, 𝑤 ∈ 𝑇𝑝𝑀 . Moreover,
since the curvature is constant, it follows in particular that 𝐿 preserves the curvature.
By Theorem 8.17 in [232], there thus exists a unique semi-Riemannian covering map3

𝜙 : 𝑀 → 𝑁 such that 𝐷 𝑝𝜙 = 𝐿. Since both 𝑀 and 𝑁 are supposed to simply
connected, this implies that 𝜙 is in fact an isometry. □

Definition E.6 (Hyperquadrics). For 𝑑 ≥ 2 and 0 ≤ 𝜈 ≤ 𝑑 − 1 let (R𝑑+1𝜈 , 𝜂) be the
𝑑 + 1-dimensional Minkowski spacetime with Minkowski metric 𝜂 with index 𝜈. Then

(i) the 𝑑-dimensional (pseudo) sphere S𝑑𝜈 (𝑟) of radius 𝑟 > 0 inR𝑑+1𝜈 is defined as

S𝑑𝜈 (𝑟) := {𝑥 ∈ R𝑑+1𝜈 | 𝜂(𝑥, 𝑥) = 𝑟2} (E.6)

3 A smooth map 𝜙 : 𝑀 → 𝑁 between smooth manifolds 𝑀 and 𝑁 is called a covering map if it is
surjective and for any 𝑝 ∈ 𝑀 there exists a connected open neighborhood 𝑝 ∈ 𝑈 ⊂ 𝑁 such that 𝜙
defines a diffeomorphism onto𝑈 on each connected component of 𝜙−1 (𝑈 ).
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(ii) the 𝑑-dimensional (pseudo) hyperbolic space H𝑑𝜈 (𝑟) of radius 𝑟 > 0 in R𝑑+1
𝜈+1 is

defined as
H𝑑𝜈 (𝑟) := {𝑥 ∈ R𝑑+1𝜈+1 | 𝜂(𝑥, 𝑥) = −𝑟2} (E.7)

Corollary E.7 (Hopf). Up to isometry, the complete simply connected 𝑑-dimensional
Riemannian manifolds of constant curvature𝐶 are given by

the sphere S𝑑 (𝑟) if𝐶 = 1/𝑟2

the Euclidean spaceR𝑑 if𝐶 = 0

the hyperbolic spaceH𝑑 (𝑟) if𝐶 = −1/𝑟2

Corollary E.8. Up to isometry, the complete simply connected 𝑑-dimensional Lorentzian
spacetime manifolds of constant curvature𝐶 are given by

the de Sitter space dS𝑑 ≡ S𝑑1 (𝑟) if𝐶 = 1/𝑟2 and 𝑑 ≥ 3

Minkowski spaceR1,𝑑−1 if𝐶 = 0

the universal anti-de Sitter space ÃdS𝑑 ≡ H̃𝑑1 (𝑟) if𝐶 = −1/𝑟2

where 𝑀 denotes the universal covering of a smooth semi-Riemannain manifold 𝑀 .

F. Proof of Proposition 2.6.10
Proof. Since, for any 𝑝 ∈ P, the map Φ𝑝∗ : Lie(G) → V𝑝 ⊂ 𝑇𝑝P is an isomorphism
of free super Λ-modules andA ∈ Ω1(P, 𝔤)0 is linear, condition (i) in Definition 2.5.19
of a connection 1-form and condition (i) of Proposition 2.6.10 are equivalent. In the
following, we can thus restrict on condition (ii).

Hence, supposeA ∈ Ω1(P, 𝔤)0 is a connection 1-form on P. Then, by restriction
on body points, the first part of condition (ii) is immediate, i.e., Φ∗𝑔A = Ad𝑔−1 ◦ A
for all 𝑔 ∈ B(G). For the second part, let us extend A to a smooth Lie(G)-valued
1-form Ã ∈ Ω1(Lie(G)0×P, 𝔤) on Lie(G)0×P by setting ⟨(𝑍, 𝑍 ′) |Ã⟩ := ⟨𝑍 ′ |A⟩
∀(𝑍, 𝑍 ′) ∈ 𝑇 (Lie(G)0 × P) � Lie(G) ×𝑇P. Moreover, we consider the extended
G-right action Φ̃ : (Lie(G)0 × P) × G → Lie(G)0 × P on Lie(G)0 × P defined via
Φ̃((𝑌 , 𝑝), 𝑔) := (𝑌 ,Φ( 𝑝, 𝑔)). It is then immediate to see that that condition (ii) in
Definition 2.5.19 of a connection 1-form is equivalent to

Φ̃∗𝑔Ã = Ad𝑔−1 ◦ Ã, ∀𝑔 ∈ G (F.1)
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Consider the even smooth vector field Z̃ ∈ Γ(𝑇 (Lie(G)0 × P)) given by

Z̃(𝑋 , 𝑝) := (0𝑌 , 𝐷 ( 𝑝,𝑒)Φ(0𝑝,𝑌𝑒)) = (0𝑌 ,𝑌𝑝)

∀(𝑌 , 𝑝) ∈ Lie(G)0 × P parametrizing the (not necessarily 𝐻∞-smooth) fundamental
vector fields on P. The flow 𝜙Z̃ : Λ0 × (Lie(G)0 × P) → Lie(G)0 × P of Z̃ is of
the form 𝜙

Z̃
𝑡 (𝑌 , 𝑝) = (𝑌 ,Φ( 𝑝, 𝑒𝑡𝑌 )) = Φ̃𝑒𝑡𝑌 (𝑌 , 𝑝). Using ( [97], Prop. V.7.27), (F.1)

then yields

⟨(0𝑌 , 𝑍 𝑝) |𝐿Z̃Ã (𝑌 , 𝑝)⟩ =
𝜕

𝜕𝑡

����
𝑡=0
⟨(0𝑌 , 𝑍 𝑝) | ((𝜙Z̃𝑡 )∗Ã) (𝑌 , 𝑝)⟩

=
𝜕

𝜕𝑡

����
𝑡=0
⟨(0𝑌 , 𝑍 𝑝) | (Φ∗𝑒𝑡𝑌A) (𝑌 , 𝑝)⟩

=
𝜕

𝜕𝑡

����
𝑡=0

Ad𝑒−𝑡𝑌 ⟨(0𝑌 , 𝑍 𝑝) |Ã (𝑌 , 𝑝)⟩

= −ad𝑌 ⟨𝑍 𝑝 |A 𝑝⟩ (F.2)

∀(𝑋 , 𝑝) ∈ Lie(G)0 × P and smooth homogeneous 𝑍 ∈ Γ(𝑇P). On the other hand,
one has

⟨(0𝑌 , 𝑍 𝑝) |𝐿Z̃Ã (𝑌 , 𝑝)⟩ = Z̃(𝑌 , 𝑝) ⟨(0, 𝑍) |Ã⟩ − ⟨[Z̃, (0, 𝑍)] (𝑌 , 𝑝) |Ã (𝑌 , 𝑝)⟩

= 𝑌𝑝 ⟨𝑍 |A⟩ − ⟨[Z̃, (0, 𝑍)] (𝑌 , 𝑝) |Ã (𝑌 , 𝑝)⟩ (F.3)

for any (𝑌 , 𝑝) ∈ Lie(G)0×P. If𝑌 = 𝑋 ∈ 𝔤0 ⊆ Lie(G)0, it follows [Z̃, (0, 𝑍)] (𝑋 , 𝑝) =
[𝑋 , 𝑍] 𝑝 yielding

𝑋𝑝 ⟨𝑍 |A⟩ − ⟨[𝑋 , 𝑍] 𝑝 |A 𝑝⟩ = ⟨𝑍 𝑝 |𝐿𝑋A 𝑝⟩ (F.4)

and thus ⟨𝑍 𝑝 |𝐿𝑋A 𝑝⟩ = ⟨𝑍 𝑝 | − ad𝑋 ◦ A 𝑝⟩ ∀𝑝 ∈ P. Since this holds for any smooth
homogeneous vector field 𝑍 , this implies

𝐿
𝑋
A = −ad𝑋 ◦ A, for 𝑋 ∈ 𝔤0 (F.5)

On the other hand, if𝑌 = 𝜏𝑋 with 𝑋 ∈ 𝔤1 and 𝜏 ∈ Λ1, it follows [Z̃, (0, 𝑍)] (𝑌 , 𝑝) =
𝜏 [𝑋 , 𝑍] 𝑝 such that

𝜏𝑋𝑝 ⟨𝑍 |A⟩ − 𝜏 ⟨[𝑋 , 𝑍] 𝑝 |A 𝑝⟩ = (−1) |𝑍 |𝜏 ⟨𝑍 𝑝 |𝐿𝑋A 𝑝⟩ (F.6)
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and therefore 𝜏 ⟨𝑍 𝑝 |𝐿𝑋 ′A 𝑝⟩ = −(−1) |𝑍 |𝜏ad𝑋 ⟨𝑍 𝑝 |A 𝑝⟩ = 𝜏 ⟨𝑍 𝑝 | − ad𝑋 ◦ A 𝑝⟩
∀𝑝 ∈ P. Since this holds for any 𝜏 ∈ Λ1, we thus have

𝐿
𝑋
A = −ad𝑋 ◦ A, for 𝑋 ∈ 𝔤1 (F.7)

Conversely, supposeA ∈ Ω1(P, 𝔤)0 satisfies the conditions (i) and (ii) of the above
Proposition. For any smooth homogeneous vector field 𝑍 ∈ Γ(𝑇P) consider the
Lie(G)-valued 𝐻∞-smooth functions 𝐹𝑍 , 𝐺𝑍 ∈ 𝐻∞(G × P) ⊗ Lie(G) defined as

𝐹𝑍 ( 𝑔, 𝑝) := ⟨𝑍 𝑝 |Φ∗𝑔A 𝑝⟩ = ⟨𝐷 ( 𝑝, 𝑔)Φ(𝑍 𝑝, 0𝑔) |A 𝑝· 𝑔⟩ (F.8)

as well as
𝐺𝑍 ( 𝑔, 𝑝) := Ad𝑔−1 ⟨𝑍 𝑝 |A 𝑝⟩ (F.9)

∀( 𝑔, 𝑝) ∈ G × P. Since 𝐻∞(G × P) � 𝐻∞(G)⊗̂𝜋𝐻∞(P), it follows from Lemma
2.6.8 thatA defines a connection 1-form on P if and only if we can show

(𝑋 ⊗ 1)𝐹𝑍 ( 𝑔, 𝑝) = (𝑋 ⊗ 1)𝐺𝑍 ( 𝑔, 𝑝) (F.10)

∀𝑝 ∈ P and body points 𝑔 ∈ B(G) as well as 𝑋 ∈ U(𝔤) and smooth homogeneous
vector fields 𝑍 ∈ Γ(𝑇P). For 𝑋 = 1 ∈ U(𝔤), this is an immediate consequence of the
first part of condition (ii).

Using the extension Ã ∈ Ω1(Lie(G)0 × P, Lie(G)) ofA on Lie(G)0 × P as well as
the G-right action Φ̃ : (Lie(G)0 × P) × G → Lie(G)0 × P as defined above, we may
extend 𝐹𝑍 and𝐺𝑍 to𝐻∞-smooth functions 𝐹𝑍 and 𝐺̃𝑍 on Lie(G)0×G×P by setting

𝐹𝑍 (𝑌 , 𝑔, 𝑝) : = ⟨Φ̃𝑔∗(0𝑌 , 𝑍 𝑝) |ÃΦ̃(𝑌 , 𝑝, 𝑔)⟩ = ⟨𝐷 (𝑌 , 𝑝, 𝑔)Φ̃(0𝑌 , 𝑍 𝑝, 0𝑔) |ÃΦ̃(𝑌 , 𝑝, 𝑔)⟩

= ⟨𝐷 ( 𝑝, 𝑔)Φ(𝑍 𝑝, 0𝑔) |A 𝑝· 𝑔⟩ = 𝐹𝑍 ( 𝑔, 𝑝) (F.11)

as well as

𝐺̃𝑍 (𝑌 , 𝑔, 𝑝) := Ad𝑔−1 ⟨(0𝑌 , 𝑍 𝑝) |Ã (𝑌 , 𝑝)⟩ = Ad𝑔−1 ⟨𝑍 𝑝 |A 𝑝⟩ = 𝐺𝑍 ( 𝑔, 𝑝) (F.12)

∀(𝑌 , 𝑔, 𝑝) ∈ Lie(G)0 × G × P. LetZ𝐿 ∈ Γ(𝑇 (Lie(G)0 × G)) be the 𝐻∞-smooth
homogeneous vector field on Lie(G)0 × G defined asZ𝐿

(𝑌 , 𝑔) := (0𝑌 , 𝐷 ( 𝑔,𝑒) 𝜇(0𝑔 ,𝑌𝑒))
∀(𝑌 , 𝑔) ∈ Lie(G)0 × G. Similarly as above, using the explicit form of the flow 𝜙𝐿 of
Z𝐿 , this yields

((𝜙𝐿𝑡 )∗𝐹𝑍 ) (𝑌 , 𝑔, 𝑝) = ⟨Φ̃𝑔𝑒𝑡𝑌 ∗ (0𝑌 , 𝑍 𝑝) |ÃΦ̃(𝑌 , 𝑝, 𝑔 ·𝑒𝑡𝑌 )⟩

= ⟨Φ̃𝑒𝑡𝑌 ∗ ◦ Φ̃𝑔∗(0𝑌 , 𝑍 𝑝) |ÃΦ̃(𝑌 , 𝑝, 𝑔 ·𝑒𝑡𝑌 )⟩
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= ⟨(0𝑌 ,Φ𝑔∗𝑍 𝑝) | (𝜙Z̃𝑡 )∗Ã𝜙Z̃𝑡 (𝑌 , 𝑝· 𝑔)
⟩ (F.13)

Taking the derivative, we thus conclude

(𝑌 ⊗ 1)𝐹𝑍 ( 𝑔, 𝑝) =
𝜕

𝜕𝑡

����
𝑡=0
⟨(0𝑌 ,Φ𝑔∗𝑍 𝑝) | (𝜙Z̃𝑡 )∗Ã𝜙Z̃𝑡 (𝑌 , 𝑝· 𝑔)

⟩

= ⟨(0𝑌 ,Φ𝑔∗𝑍 𝑝) |𝐿Z̃Ã (𝑌 , 𝑝· 𝑔)⟩ (F.14)

Following exactly the same steps as above, one then concludes

(𝑋 ⊗ 1)𝐹𝑍 ( 𝑔, 𝑝) = (−1) |𝑍 | |𝑋 | ⟨Φ𝑔∗𝑍 𝑝 |𝐿𝑋A 𝑝· 𝑔⟩ , ∀homogeneous 𝑋 ∈ 𝔤
(F.15)

For𝐺𝑍 we proceed similarly and compute

((𝜙𝐿𝑡 )∗𝐺̃𝑍 ) (𝑌 , 𝑔, 𝑝) = Ad( 𝑔𝑒𝑡𝑌 )−1 ⟨(0𝑌 , 𝑍 𝑝) |Ã (𝑌 , 𝑝)⟩
= Ad𝑒−𝑡𝑌 (Ad𝑔−1 ⟨𝑍 𝑝 |A 𝑝⟩) = Ad𝑒−𝑡𝑌 (𝐺𝑍 ( 𝑔, 𝑝)) (F.16)

which yields

(𝑌 ⊗ 1)𝐹𝑍 ( 𝑔, 𝑝) =
𝜕

𝜕𝑡

����
𝑡=0

Ad𝑒−𝑡𝑌 (𝐺𝑍 ( 𝑔, 𝑝)) = −ad𝑌𝐺𝑍 ( 𝑔, 𝑝)

= −ad𝑌 (Ad𝑔−1 ⟨𝑍 𝑝 |A 𝑝⟩) (F.17)

Hence, it follows for ∀𝑋 ∈ 𝔤

(𝑋 ⊗ 1)𝐺𝑍 ( 𝑔, 𝑝) = −ad𝑋 (Ad𝑔−1 ⟨𝑍 𝑝 |A 𝑝⟩) (F.18)

∀𝑔 ∈ G, 𝑝 ∈ P. If 𝑔 ∈ B(G) is a body point this, together with condition (ii), yields

(𝑋 ⊗ 1)𝐺𝑍 ( 𝑔, 𝑝) = −ad𝑋 (Ad𝑔−1 ⟨𝑍 𝑝 |A 𝑝⟩) = −ad𝑋 ⟨Φ𝑔∗𝑍 𝑝 |A 𝑝· 𝑔⟩
= (−1) |𝑍 | |𝑋 | ⟨Φ𝑔∗𝑍 𝑝 |𝐿𝑋A 𝑝· 𝑔⟩ = (𝑋 ⊗ 1)𝐹𝑍 ( 𝑔, 𝑝) (F.19)

proving (F.10) in case 𝑋 ∈ 𝔤. Next, let𝑌 ◦ 𝑋 ∈ U(𝔤) with homogeneous𝑌 , 𝑋 ∈ 𝔤.
In a similar way as above, one finds

(𝑌 ◦ 𝑋 ⊗ 1)𝐹𝑍 ( 𝑔, 𝑝) = (−1) |𝑍 | ( |𝑋 |+ |𝑌 |) ⟨Φ𝑔∗𝑍 𝑝 |𝐿𝑌 𝐿𝑋A 𝑝· 𝑔⟩ (F.20)

as well as

(𝑌 ◦ 𝑋 ⊗ 1)𝐺𝑍 ( 𝑔, 𝑝) = (𝑌 ⊗ 1)ad𝑋 ◦ 𝐺𝑍 ( 𝑔, 𝑝)
= (−1) |𝑋 | |𝑌 |ad𝑋 ((𝑌 ⊗ 1)𝐺𝑍 ( 𝑔, 𝑝))
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= (−1) |𝑋 | |𝑌 |ad𝑋 ◦ ad𝑌 ◦ 𝐺𝑍 ( 𝑔, 𝑝)
= (−1) |𝑋 | |𝑌 |ad𝑋 ◦ ad𝑌 (Ad𝑔−1 ⟨𝑍 𝑝 |A 𝑝⟩) (F.21)

∀𝑔 ∈ G, 𝑝 ∈ P. Taking the Lie derivative on both sides of the second part of condition
(ii), one obtains

𝐿
𝑌
𝐿
𝑋
A = −𝐿

𝑌
(−ad𝑋 ◦A) = −(−1) |𝑋 | |𝑌 |ad𝑋 ◦𝐿𝑌A = (−1) |𝑋 | |𝑌 |ad𝑋 ◦ad𝑌 ◦A

(F.22)
Hence, inserting (F.21) in (F.22) and restricting on body points 𝑔 ∈ B(G), it follows

(𝑌 ◦ 𝑋 ⊗ 1)𝐺𝑍 ( 𝑔, 𝑝) = (−1) |𝑋 | |𝑌 |ad𝑋 ◦ ad𝑌 (Ad𝑔−1 ⟨𝑍 𝑝 |A 𝑝⟩)
= (−1) |𝑋 | |𝑌 |ad𝑋 ◦ ad𝑌 (⟨Φ𝑔∗𝑍 𝑝 |A 𝑝· 𝑔⟩)
= (−1) |𝑍 | ( |𝑋 |+ |𝑌 |) (⟨Φ𝑔∗𝑍 𝑝 | (−1) |𝑋 | |𝑌 |ad𝑋 ◦ ad𝑌 ◦ A 𝑝· 𝑔⟩)
= (−1) |𝑍 | ( |𝑋 |+ |𝑌 |) (⟨Φ𝑔∗𝑍 𝑝 |𝐿𝑌 𝐿𝑋A 𝑝· 𝑔⟩)
= (𝑌 ◦ 𝑋 ⊗ 1)𝐹𝑍 ( 𝑔, 𝑝) (F.23)

proving (F.10) in case𝑌 ◦𝑋 ∈ U(𝔤) with𝑌 , 𝑋 ∈ 𝔤. Thus, by induction, one concludes
that (F.10) holds for any 𝑋 ∈ U(𝔤) and henceA indeed defines a connection 1-form
on P. □
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𝑙𝑝 Planck length, page 1

𝜅 = 8𝜋𝐺 gravitational coupling constant, page 108

𝛽 Barbero-Immirzi parameter, page 133

𝐿, Λcos = −3/𝐿2 anti-de Sitter radius and corresponding cosmological constant,
page 34

ℓ0,𝑉0 fiducial length/volume, page 297

Λ,Λ𝑁 Grassmann algebra, Grassmann algebra of dimension 𝑁 ∈
N0, page 356

ΛC := Λ ⊗ C complexified Grassmann algebra, page 29

Λ𝑚,𝑛 = Λ𝑚0 × Λ𝑛1 superdomain of dimension (𝑚, 𝑛), page 356

K𝑚 |𝑛 superspace of dimension𝑚|𝑛withK = R,C, page 343

𝐴𝑚|𝑛 =: 𝐴 ⊗ K𝑚|𝑛 for 𝐴 a superalgebra andK a field (K = R,C),
page 345

S,S′ parametrization supermanifold, page 54

𝜆 : S → S′ change of parametrization, page 55

𝐼 , 𝐽 , . . . = 0, . . . , 3 local Lorentz indices in 4𝐷, page 129

𝑖, 𝑗 , . . . = 1, 2, 3 local 𝔰𝔲(2) indices, page 137

𝜇, 𝜈, . . . = 0, . . . , 3 local spacetime indices, page 134

𝑎, 𝑏, . . . = 1, 2, 3 local indices on a Cauchy slice Σ, page 137

𝛼, 𝛽, . . . 4𝐷 Dirac/Majorana spinor indices, page 131

𝐴, 𝐵, . . . = +,− left-handed Weyl spinor indices, page 131
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𝐴′, 𝐵 ′, . . . = +,− right-handed Weyl spinor indices, page 131

𝑝, 𝑞, 𝑟, 𝑠, . . . = 1, . . . ,N 𝑅-symmetry index, page 36

𝐼 , 𝐽 , . . . multi-indices (ordered or unordered), page 12

𝜖𝐼 𝐽 𝐾 𝐿 = −𝜖𝐼 𝐽 𝐾 𝐿 completely antisymmetric symbol in 𝐷 = 4 with 𝜖0123 := 1,
page 128

𝜖 𝑖𝑗𝑘 := 𝜖0𝑖𝑗𝑘 completely antisymmetric symbol in 𝐷 = 3 with 𝜖123 = 1,
page 138

𝜖𝐴𝐵 , 𝜖𝐴′𝐵′ completely antisymmetric symbol in the space of left- resp.
right-handed Weyl spinors, page 131

𝜂 Minkowski metric onR1,3, signature (− + ++), page 27

𝜎𝑖 , 𝑖 = 1, 2, 3 Pauli matrices, page 129

𝜏𝑖 := 1
2𝑖 𝜎𝑖 , 𝑖 = 1, 2, 3 generators of 𝔰𝔲(2), page 141

𝐽 𝑖 , 𝑖 = 1, 2, 3 angular momentum operator generated by 𝜏𝑖 ∈ 𝔰𝔲(2), 𝑖 =
1, 2, 3, page 162

𝑃𝐼 , 𝐼 = 0, . . . , 3 infinitesimal spacetime translations, page 28

𝑀𝐼 𝐽 , 𝐼 , 𝐽 = 0, . . . , 3 generators of 𝔰𝔭𝔦𝔫+(1, 3) (infinitesimal Lorentz transforma-
tions), page 28

𝑄𝑟𝛼 fermionic generators of 𝔬𝔰𝔭(N |4), page 36

𝑇 𝑟 𝑠 , 𝑟, 𝑠 = 1, . . . ,N generators of 𝑅-symmetry subgroup of OSp(N |4), page 36

𝑇 ±
𝑖

chiral components of 𝑀𝐼 𝐽 , page 207

[·, ·] graded commutator on a Lie superalgebra, page 24

[·, ·]−, [·, ·]+ (standard) commutator resp. anticommutator on a ring or
associative algebra, page 27

[𝛼 ∧ 𝛽] wedge-product of Lie(G)-valued forms, page 67

{·, ·} graded Poisson bracket, page 221
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{·, ·}DB graded Dirac bracket, page 152

𝛾 𝐼 gamma matrices, page 128

𝛾𝐼1𝐼2 · · ·𝐼𝑘 =: 𝛾[𝐼1 𝛾𝐼2 · . . . · 𝛾𝐼𝑘 ] , page 128

𝛾∗ highest rank Clifford algebra element, page 128

𝛾 path on a (S-relative) supermanifold, page 75

𝛾 finite graph embedded in Σ, page 226

𝛾ℎ𝑜𝑟 horizontal lift of a path 𝛾 , page 75

Γ generalized graph, page 254

𝐸 (𝛾),𝑉 (𝛾) set of edges 𝑒 resp. vertices 𝑣 of a graph 𝛾 , page 226

𝑙 ≡ 𝑙 (𝛾) subgroupoid generated by a finite graph 𝛾 , page 227

𝑝𝑙 𝑙′ surjective mapping from AS,𝑙′ to AS,𝑙 for any subgroupoids
𝑙 ≤ 𝑙 ′, page 228

𝑎 ≡ 𝑎(𝑡) scale factor, page 282

𝐴+, 𝐴− self- resp. anti self-dual Ashtekar connection, page 207

𝐴𝛽 Ashtekar-Barbero connection, page 138

Γ𝑖 , 𝑖 = 1, 2, 3 3𝐷 spin connection, page 138

𝐾 𝑖 , 𝑖 = 1, 2, 3 extrinsic curvature, page 138

A super connection 1-form on aS-relative principal super fiber
bundle, page 63

A (generalized) super Cartan connection, page 100

A+ super Ashtekar connection, page 209

𝜃MC Maurer-Cartan form, page 44

Θ(𝜔) torsion 2-form associated to a connection 1-form 𝜔, page 96

𝐹 (𝜔) curvature of the connection 1-form 𝜔, page 96
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𝐹 (A) curvature of a super connection 1-formA, page 67

𝐹 (A) the super Cartan curvature of a super Cartan connectionA,
page 107

ℎ𝑒 [A] super holonomy along an edge 𝑒 induced by a super connection
1-formA, page 225

𝐻𝑒 [ 𝐴𝛽 ] holonomy induced by 𝐴𝛽 in the 𝔰𝔲(2)-sub representation of
the real Majorana representation 𝜅R∗, page 158

(𝑒𝐼 ), (𝑒𝐼 ), 𝐼 = 0, . . . , 3 (local) frame and co-frame on a 4𝐷 Lorentzian manifold,
page 97

(𝑒𝑖), (𝑒𝑖), 𝑖 = 1, 2, 3 basis of fiducial vector fields resp. left-invariant one-forms on
fiducial Cauchy slice Σ of a FLRW model, page 294

𝑒 soldering form, page 94

𝑒 := det(𝑒𝐼𝜇) with 𝑒𝐼 a local co-frame, page 135

𝑒 edge of a graph 𝛾 , page 226

𝑏(𝑒), 𝑓(𝑒) beginning and endpoints of an edge 𝑒 ∈ 𝐸 (𝛾), page 226

Σ spacelike Cauchy hypersurface in a globally hyperbolic space-
time manifold, page 136

Σ := 𝑒 ∧ 𝑒 𝔰𝔭𝔦𝔫+(1, 3)-valued 2-form generated by the soldering form 𝑒,
page 133

𝐸 𝑎
𝑖

(gravitational) electric field canonically conjugate to the con-
nection 𝐴𝛽 , page 138

𝐸 super soldering form or supervielbein, page 101

E super electric field canonically conjugate toA+, page 211

X𝑛(𝑆) super electric flux smeared over a two-dimensional surface
𝑆 and super Lie algebra-valued smearing function 𝑛 on 𝑆 ,
page 230

𝑉 AL,𝑉 RS Asthekar-Lewandowski resp. Rovelli-Smolin volume operator,
page 161
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(𝑐, 𝑝) symmetry reduced self-dual Asthekar connection and dual
electric field, page 298

(𝜙𝐴′ , 𝜋 𝐴
′

𝜙
) Rarita-Schwinger field and conjugate momentum in symme-

try reduced theory, page 304

𝑐 canonically transformed symmetry reduced self-dual Asthtekar
connection, page 304

𝐶 charge conjugation matrix, page 128

𝐶 𝑖𝑎 contorsion tensor, page 144

P𝛽 𝛽-dependent operator on the super Lie algebra𝔬𝔰𝔭(1|4) (resp.
the space of 2-forms with values in Lie(OSp(2|4))), page 191

P𝛽 , 𝑃𝛽
𝐼 𝐽

𝐾 𝐿
𝛽-dependent operator on 𝔰𝔭𝔦𝔫+(1, 3) , page 191

𝑞𝑎𝑏 pullback metric on Cauchy slice Σ, page 138

𝑞̊𝑎𝑏 fiducial metric on fiducial Cauchy slice Σ of a FLRW model,
page 282

SManAlg category of algebro-geometric supermanifolds (generic objects
denoted byM,N , . . . group objects denoted by G,H , . . .),
page 12

SMan𝐻∞ category of 𝐻∞ supermanifolds (generic objects denoted by
M,N , . . . group objects denoted by G,H , . . .), page 358

SMan/S category of S-relative supermanifolds (objects denoted by
M/S ,N/S , . . .), page 54

Gr category of (finite-dimensional) Grassmann algebras, page 18

G(S) groupoid with points on a Cauchy sliceΣ as objects and smooth
maps 𝑔 : S → G as morphisms, page 226

P(Σ) path groupoid on a Cauchy slice Σ of a globally hyperbolic
spacetime manifold 𝑀 = R × Σ, page 225

B body functor, page 357

S split functor, page 14
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A functor from SMan𝐻∞ to SManAlg mapping a 𝐻∞ super-
manifoldM to the correponding algebro-geometric super-
manifold (B(M),B∗𝐻∞M), page 22

H𝑁 functor from SManAlg to Set mapping an algebro-geometric
supermanifoldM to the Λ𝑁 -pointM(Λ𝑁 ), page 19

Π parity functor, page 360

𝔤 (resp. 𝔤𝑅) super Lie algebra of left-invariant (resp. right-invariant) vector
fields on a super Lie group G, page 24

Lie(G) = Λ ⊗ 𝔤 super Lie module of a 𝐻∞ super Lie group G modeled over a
Grassmann algebra Λ, page 26

GL(V), 𝔤𝔩(V) the general linear supergroup and the corresponding super Lie
algebra on a super Λ-vector spaceV, page 30

GL(𝑚|𝑛,Λ) the general linear supergroup on the super Λ-vector space
R𝑚 |𝑛 ⊗ Λ, page 32

OSp(V), 𝔬𝔰𝔭(V) orthosymplectic supergroup and its corresponding Lie super-
algebra on a super Λ-vector spaceV, page 34

OSp(𝑚|𝑛) orthosymplectic supergroup in standard representation, page 34

U(𝑚|𝑛), 𝔲(𝑚|𝑛) super unitary group and its corresponding super Lie algebra
on the super Λ-vector spaceC𝑚 |𝑛 ⊗ Λ, page 32

UOSp(𝑚|𝑛) unitary orthosymplectic group, page 233

ISO(R1,3|4), 𝔦𝔰𝔬(R1,3|4) super Poincaré group and corresponding super Lie algebra,
page 28

T 1,3|4, 𝔱 ≡ 𝔱1,3|4 super translation group and corresponding super Lie algebra,
page 27

𝔞𝔲𝔱(P/S) infinitesimal automorphisms on P/S , page 108

G (P/S) set of global gauge transformations on aS-relative principal
super fiber bundle P/S , page 82

𝔤𝔞𝔲(P/S) vertical infinitesimal automorphisms or infinitesimal gauge
transformations on P/S , page 109
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𝔨(M, 𝑔) Lie superalgebra of Killing vector field on a super Riemannian
manifold (M, 𝑔), page 116

(M, 𝑔) super Riemannian manifold consisting of a supermanifoldM
and a super metric 𝑔 onM, page 116

F → E 𝜋→M super fiber bundle with total space E, baseM, typical fiber F
and canonical projection 𝜋 : E →M (also simply denoted
byE if base and typical fiber are clear from the context), page 37

F → 𝑓∗E
𝜋𝑓
→ N pullback bundle of F → E 𝜋→M with respect to the mor-

phism 𝑓 : M →N , page 39

V → E 𝜋→M super vector bundle with super Λ-vector spaceV as typical
fiber, page 40

V∗ → E∗ →M left dual super vector bundle, page 43

V∗ → E∗ →M right dual super vector bundle, page 43

G → P 𝜋→M principal super fiber bundle with structure groupG (or simply
G-bundle), page 45

F (E) frame bundle of the super vector bundle E, page 46

F (M) ≡ F (𝑇M) frame bundle of a supermanifoldM, page 47

P ×𝜌 F super fiber bundle associated to the principal super bundle P
w.r.t. a G-left action 𝜌 : G × F → F on a supermanifold F ,
page 47

P[G] ≡ P ×H G G-extension of theH -bundle P, page 53

V → E/S
𝜋S→M/S S-relative super vector bundle, page 57

G → P/S
𝜋S→M/S S-relative principal super fiber bundle, page 57

𝑇𝑝 (M/S) tangent module of theS-relative supermanifoldM/S at 𝑝 ∈
M/S , page 56

H principal connection or Ehresmann connection on aS-relative
principal super fiber bundle P/S , page 62
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V , V𝑝 vertical tangent bundle and vertical tangent module at a point
𝑝 ∈ P/S , page 60

AS,𝑙 set of generalized super connections w.r.t. the subgroupoid 𝑙,
page 227

AS set of generalized super connections, page 228

A𝑃
S,Γ set of pointed generalized super connections on a generalized

graph Γ, page 254

Cyl∞(AS,𝑙) space of smooth cylindrical functions on AS,𝑙 , page 229

Cyl∞(AS) space of cylindrical functions on AS , page 229

Cyl∞(A𝑃
S,Γ) space of generalized cylindrical functions on A𝑃

S,Γ, page 255

Cyl∞(A𝑃

S) space of generalized cylindrical functions on A
𝑃

S , page 255

𝑉∞(AS,𝑙 (𝛾) ) space of super electric fluxes w.r.t. a graph 𝛾 , page 232

𝑉∞(AS) space of super electric fluxes on the inductive limit Cyl∞(AS),
page 232

𝔄
gHF
S,𝑙 (𝛾) graded holonomy-flux algebra w.r.t. a finite graph 𝛾 , page 232

𝔄
gHF
S graded holonomy-flux algebra, page 232

𝔄cLQSC graded holonomy-flux algebra of symmetry reduced theory,
page 315

𝔄
cLQSG
S,𝛾 graded holonomy-flux algebra of chiral LQSG w.r.t. a finite

graph 𝛾 , page 248

(𝜋 : 𝑃 → 𝑀, 𝐴; ⟨·, ·⟩) metric reductive Cartan geometry, page 94

(𝜋S : P/S →M/S ,A) super Cartan geometry, page 100

Padm set of equivalence classes of admissible finite-dimensional rep-
resentations of OSp(N |2),N = 1, 2, page 251

I super interval (connected subset of Λ1,1 or Λ1,0), page 74
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M(T) T -point ofM for algebro-geometric supermanifoldsM,T ,
page 14

O(M) := O𝑀 (𝑀 ) superalgebra of global sections of the structure sheaf O𝑀 of
an algebro-geometric supermanifoldM = (𝑀,O𝑀 ), page 15

MaxSpecR(O(M)) maximal spectrum of O(M), page 16

SpecR(O(M)) real spectrum of O(M), page 16

ℌ ≡ (ℌ,S , 𝐽 ) (pre-)super Hilbert space, page 240

Op(D,ℌ) space of (un)bounded operators𝑇 : D ⊆ dom(𝑇 ) → ℌ on
a super Hilbert space ℌ with domain dom(𝑇 ) containing a
dense graded subspaceD ⊂ ℌ, page 244

Γ(E/S) smooth sections of the S-relative super vector bundle E/S ,
page 57

𝔛(M/S) super 𝐻∞(S ×M)-module of smooth vector fields on aS-
relative supermanifoldM/S , page 56

Hom
𝐿/𝑅 (V,W) super 𝐴-modules of left/right linear morphisms (both parity

preserving and reversing) between super left/right 𝐴-modules
V,W with 𝐴 a superalgebra, page 345

Hom𝐿/𝑅 (V,W) even part of Hom
𝐿/𝑅 (V,W), page 345

End
𝐿/𝑅 (V) := Hom

𝐿/𝑅 (V,V), page 345

V∗ := Hom
𝐿
(V,Λ), left dual of a super Λ-moduleV, page 42

V∗ := Hom
𝑅
(V,Λ), right dual of a superΛ-moduleV , page 42

Ω𝑘 (M/S) super 𝐻∞(S × M)-module of 𝑘-forms on the S-relative
supermanifoldM/S , page 56

Ω𝑘 (M/S ,V) 𝑘-forms onM/S with values in a super Λ-vector space V,
page 56

Ω𝑘 (M/S , 𝔤) 𝑘-forms onM/S with values in the super Lie module Lie(G) =
Λ ⊗ 𝔤 of a super Lie group G, page 56

Ω𝑘
ℎ𝑜𝑟
(P/S ,V) (G, 𝜌) horizontalV-valued 𝑘-forms of type (G, 𝜌), page 65
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Ω𝑘 (M/S , E/S) 𝑘-forms onM/S with values in an associatedS-relative super
vector bundle E/S , page 87

𝐻∞M sheaf of 𝐻∞-smooth functions on a 𝐻∞ supermanifoldM,
page 21

𝐻AP(C) space of almost periodic holomorphic functions on the com-
plex planeC, page 312

𝑇𝛾, ®𝜋, ®𝑚,®𝑛 (gauge-variant) spin network state, page 251

𝛼S isomorphism from the set HomSMan/S (M/S ,N/S) ofS-rela-
tive morphisms to HomSMan𝐻∞ (S ×M,N), page 55

𝜖𝑚,𝑛 : Λ𝑚,𝑛 → R𝑚 body map, page 356∫
G invariant integral on a super Lie group G, page 234∫
𝐵

Berezin integral, page 154

𝐿𝑋 Lie derivative along a smooth vector field 𝑋 ∈ 𝔛(M/S),
page 56

𝜄𝑋 interior derivative w.r.t. a smooth vector field 𝑋 ∈ 𝔛(M/S),
page 56

G(𝑓) Grassmann analytic continuation or Grassmann extension of
a𝐶∞-smooth function 𝑓, page 356

D = 𝜕𝜃 + 𝜃 𝜕𝑡 right-invariant vector field on the super translation group,
page 74

ℭ involution on a super Λ-module, page 67

Ad, ad Adjoint/adjoint representation of a super Lie group G/super
Lie module Lie(G), page 61

𝐷 (A) covariant derivative induced by a super connection 1-formA,
page 65

dA exterior covariant derivative induced byA, page 87

∇(A) exterior covariant derivative induced byA restricted to sec-
tions of an associatedS-relative super vector bundle, page 87
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∇Ψ𝛼
𝑟 covariant derivative of a Majorana spinor with values in the Lie

algebra of the 𝑅-symmetry subgroup of OSp(N |4), page 200

ev𝑥 evaluation morphism at the point 𝑥, page 13

PA
S,𝛾 parallel transport map along a path 𝛾 w.r.t. a super connection

1-formA, page 80

P E,A
S,𝛾 parallel transport map on an associatedS-relative super vector

bundle E/S along a path 𝛾 with respect to a super connection
1-formA, page 88

𝑊𝛾 [A] super Wilson loop along a path 𝛾 induced by a super connec-
tion 1-formA, page 86

S , T super metric resp. Hermitian super metric or super scalar
product, page 29

𝜔 𝑘-form with values on associatedS-relative super vector bun-
dle (P ×𝜌 V)/S corresponding to 𝜔 ∈ Ω𝑘

ℎ𝑜𝑟
(P/S ,V) (G, 𝜌) ,

page 87

𝜙 ⋄ 𝜓 composition of two left linear morphisms 𝜙, 𝜓 , page 345

𝜙T natural transformation between T -points 𝜙T : M(T) →
N(T ) induced by a morphism 𝜙 : M →N , page 15

𝜌𝐿 , 𝜌𝑅 left resp. right regular representation of a super Lie group G,
page 236

𝑋 fundamental vector field generated by 𝑋 ∈ 𝔤, page 60

𝑋𝑝 fundamental tangent vector at a point 𝑝 of aS-relative princi-
pal super fiber bundleP/S generated by 𝑋 ∈ Lie(G), page 60

𝐿 𝑔 , 𝑅𝑔 left resp. right translation on a super Lie groupGw.r.t. 𝑔 ∈ G,
page 44

𝐿𝐴, 𝑅𝐴 left- resp. right-invariant vector field generated by an element
𝑇𝐴 of a real homogeneous basis (𝑇𝐴)𝐴 of a super Lie algebra,
page 231

(𝜅R,ΔR) Majorana representation of Spin+(1, 3), page 130
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List of symbols, notations and conventions

⟨·, ·⟩𝛽 𝛽-deformed inner product induced by P𝛽 , page 192

⟨·|·⟩
𝐽
= S (·| 𝐽 ·) positive definite inner product on a super Hilbert space induced

by the endomorphism 𝐽 : ℌ→ ℌ, page 240

𝜒Δ characteristic function of a Borel set Δ, i.e., 𝜒Δ(𝑥) = 1 if
𝑥 ∈ Δ and 𝜒Δ(𝑥) = 0 if 𝑥 ∉ Δ, page 158
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Super Cartan geometry and  
loop quantum supergravity

Superstring theory and loop quantum gravity (LQG) are promising approaches towards the 

formulation of a quantum theory of gravity. Superstring theory aims at unification of all fundamental 

forces of nature, predicting supersymmetry and even higher spacetime dimensions. LQG, on the 

other hand, takes a more conservative viewpoint by proposing new quantization techniques that 

take seriously the central principles of general relativity.

The goal of this work is to relate ideas from LQG and superstring theory by combining LQG with 

the concept of supersymmetry. To achieve this, the mathematical apparatus for a mathematically 

rigorous description of the underlying geometric structures of supergravity theories, i.e., super-

symmetric extensions of Einstein’s theory of gravity, will be developed.  Among other things, this 

approach leads to a reformulation of the theory in which (part of) supersymmetry manifests itself 

in terms of a gauge symmetry.

Using the interpretation of supergravity in terms of a super Cartan geometry, the Holst variant of 

the MacDowell-Mansouri action for (extended) AdS supergravity in D=4 for arbitrary values of the 

Barbero-Immirzi parameter - a free parameter of the theory - will be derived. Moreover, it will be 

demonstrated that these actions provide unique boundary terms that ensure local supersymmetry 

invariance at boundaries. 

The chiral case is special: The action is invariant under an enlarged gauge symmetry, the boundary 

theory is a topological super Chern-Simons theory, and a chiral connection emerges that is the 

natural generalization of the Ashtekar connection to the supersymmetric context. Making use of 

the enlarged gauge symmetry, a quantization of the theory generalizing standard tools of LQG 

will be proposed. 

These results provide a starting point for applications in the context of supersymmetric black 

holes and quantum cosmology. There, the enhanced gauge symmetry proves to be a promising 

tool which in the future may shed a lot of insights on how to relate results from these different 

approaches.

FAU Forschungen, Reihe B, Medizin, Naturwissenschaft, Technik  40

 ISBN 978-3-96147-529-2


	Cover
	Titlepage
	Contents
	Abstract
	Zusammenfassung
	Publications connected to the thesis
	Acknowledgements
	1. Introduction
	1.1. Quantum gravity
	1.2. The topic of this thesis

	2. Supergeometry
	2.1. Introduction
	2.2. Three roads towards a theory of supermanifolds
	2.2.1. Algebro-geometric supermanifolds
	2.2.2. Algebro-geometric and 𝐻∞ supermanifolds: An equivalence of categories

	2.3. Super Lie groups and Lie superalgebras
	2.4. Super fiber bundles
	2.5. S-relative super connection forms
	2.6. Graded principal bundles and graded connections
	2.7. Parallel transport map
	2.7.1. Preliminaries and first construction
	2.7.2. Parallel transport map revisited

	2.8. Discussion

	3. Supergravity and super Cartan geometry
	3.1. Introduction
	3.2. Review: Gravity as Cartan geometry
	3.3. Super Cartan geometry
	3.4. Supergravity as super Cartan geometry and the Castellani-D’Auria-Fré approach
	3.5. Application: Killing vector fields and Killing spinors
	3.6. On the role of the parametrizing supermanifold
	3.7. Discussion

	4. Loop quantum supergravity and the quantum SUSY constraint
	4.1. Introduction
	4.2. Some notes on Clifford algebras and Majorana spinors
	4.3. Holst action for Supergravity in 𝐷 = 4 and its 3 + 1 decomposition
	4.3.1. Introducing half-densitized fermion fields
	4.3.1.1. Gauss constraint
	4.3.1.2. Supersymmetry constraint


	4.4. Anti-de Sitter Supergravity
	4.5. Quantum theory
	4.5.1. Quantization of the Rarita-Schwinger field
	4.5.2. Quantization of the SUSY constraint
	4.5.2.1. Part I
	4.5.2.2. Part II
	4.5.2.3. Part III

	4.5.3. Solutions of the quantum SUSY constraint

	4.6. Discussion

	5. Holst-MacDowell-Mansouri action for (extended) supergravity with boundaries, and chiral LQSG
	5.1. Introduction
	5.2. Geometric N = 1 supergravity with boundaries
	5.2.1. Holst-MacDowell-Mansouri action of N = 1 SUGRA

	5.3. N = 2 pure SUGRA with boundaries
	5.3.1. Holst action for N = 2 pure SUGRA

	5.4. Chiral supergravity and the super Ashtekarconnection
	5.4.1. The super Ashtekar connection
	5.4.2. N = 1 chiral SUGRA: Chiral Palatini action and super Chern-Simons theory on the boundary
	5.4.3. N = 2 chiral SUGRA with boundaries
	5.4.4. Reality conditions

	5.5. The state space of chiral LQSG
	5.5.1. The graded holonomy-flux algebra
	5.5.2. Haar measures on super Lie groups and super Hilbert spaces
	5.5.3. Loop quantization
	5.5.3.1. General Scheme
	5.5.3.2. Application: Chiral supergravity
	5.5.3.3. Super spin networks and the super area operator

	5.5.4. Comparison: Quantization of fermions in standard LQG

	5.6. The boundary theory
	5.6.1. The super Chern-Simons action
	5.6.2. Towards black hole entropy in LQSG – an outlook

	5.7. Some results on super Peter Weyl theory
	5.8. Discussion

	6. Supersymmetric minisuperspace models in self-dual loop quantum cosmology
	6.1. Introduction
	6.2. Preliminaries: Homogeneous isotropic cosmology
	6.3. Symmetry reduction in supersymmetric field theories
	6.4. Canonical decomposition of chiral N = 1 supergravity
	6.5. The symmetry reduced model
	6.5.1. Homogeneous (isotropic) super connection forms
	6.5.2. Symmetry reduction of the chiral action
	6.5.3. Half densitized fermion fields
	6.5.4. Constraint algebra

	6.6. Quantum theory
	6.6.1. Construction of the classical algebra
	6.6.2. The kinematical Hilbert space
	6.6.3. Solution of the residual Gauss constraint
	6.6.4. The SUSY constraints and the quantum algebra
	6.6.5. The semi-classical limit

	6.7. Discussion

	7. Conclusions and outlook
	7.1. Summary of the results
	7.2. Future research

	Appendix
	A. Super linear algebra
	B. Categories, sheaves and locally ringed spaces
	C. Rogers-DeWitt supermanifolds
	D. Irreducible representations of OSp(N|2)
	D.1. Representation theory of OSp(1|2)
	D.2. Representation theory of OSp(2|2)

	E. Space forms
	F. Proof of Proposition 2.6.10

	List of symbols, notations and conventions
	Bibliography



