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Abstract

Over the last decades, heavy ions collisions experiments at CERN and BNL have offered
an unique window to study QCD under hot and dense conditions. In such high energy
events a new state of matter, the Quark Gluon Plasma, is formed and a big effort has
been made towards exploring its properties, which are intimately related to the origins of
the Universe and the fundamental nature of ordinary matter.

This thesis is embedded in the effort towards a higher precision and improved physical
description of high energy QCD processes relevant for heavy ion physics. In a first section,
we explore a novel analytic treatment of in-medium single parton evolution, the key
theoretical tool of jet quenching. In a second chapter, we propose a novel strategy to
simulate high energy scattering processes using a digital quantum computer. Finally,
we lay the first stones for the simulation of a full medium induced parton cascade using
quantum simulation techniques.

Keywords : Jet Quenching, High Energy QCD, Quantum Simulation.
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Resumen

Durante las últimas décadas, los experimentos de colisiones de iones pesados en el CERN y
BNL han ofrecido una ventana única para estudiar QCD en condiciones cálidas y densas.
En eventos de tan alta enerǵıa se forma un nuevo estado de la materia, el plasma de
quarks y gluones, y se ha realizado un gran esfuerzo para explorar sus propiedades, que
están ı́ntimamente relacionadas con los oŕıgenes del Universo y la naturaleza fundamental
de la materia ordinaria.

Esta tesis está integrada en el esfuerzo hacia una mayor precisión y una descripción
f́ısica mejorada de los procesos QCD de alta enerǵıa relevantes para la f́ısica de iones
pesados. En una primera sección, exploramos un tratamiento anaĺıtico novedoso de la
evolución de partón único en medio, la herramienta teórica clave de jet quenching. En un
segundo caṕıtulo, proponemos una estrategia novedosa para simular procesos de dispersión
de alta enerǵıa utilizando una computadora cuántica digital. Finalmente, colocamos las
primeras piedras para la simulación de una cascada de partones inducida por lo medio,
utilizando técnicas de simulación cuántica.

Palabras clave: Jet Quenching, QCD de alta enerǵıa, simulación cuántica
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Resumo

Durante as últimas décadas, experimentos de colisión de ións pesados no CERN e BNL
ofreceron unha xanela única para estudar a QCD en condicións de alta temperatura e
densidade. Netes eventos de tan alta enerx́ıa, fórmase un novo estado da materia, o
plasma de quarks e gluóns, e un gran esforzo está a ser realizado para explorar as súas
propiedades, que están intimamente relacionadas coas orixes do Universo e coa natureza
fundamental da materia ordinaria.

Esta tese está integrada no esforzo cara a unha maior precisión e unha mellor de-
scrición dos procesos de QCD de alta enerx́ıa relevantes para a f́ısica dos ións pesados.
Na primeira parte da tese exploramos un novidoso tratamento anaĺıtico da evolución no
medio dun único partón, a ferramenta teórica clave do jet quenching. Na segunda parte,
propomos unha nova estratexia para simular procesos de dispersión de alta enerx́ıa me-
diante un ordenador cuántico dixital. Por último, colocamos as primeiras pedras para
a simulación dunha fervenza de partóns inducida polo medio, empregando técnicas de
simulación cuántica.

Palabras chave: Jet Quenching, QCD de alta enerx́ıa, simulación cuántica
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Extended Abstract

Since its formulation in the second half of the last century, QCD has been one of the most
successful physical theories ever devised. In the most recent decades, the study of QCD
has been pushed towards exploring extreme density and temperature conditions, where
new states of matter can be found. Indeed, the formation of the Quark Gluon Plasma
(QGP), a hot and dense state of matter composed by free quarks and gluons interacting
strongly, has been observed both at LHC and RHIC, and is one of the greatest scientific
findings of the last one hundred years.

Besides offering a way to probe the nature of the confinement/deconfinement phase
transition and other fundamental properties of QCD, the study of the QGP is also ex-
pected to shed a new light on the first microseconds of our Universe and thus it is a
promising avenue to find new fundamental physics. Nonetheless, the QGP formed in ex-
periments is so short lived that not even light is fast enough to probe its dynamics. As
such, probes generated in the same events from which the QGP emerges have to be used
in order to indirectly extract the characteristics of the medium.

In this thesis, we study the dynamics of hard parton probes that have to transverse
the QGP, giving rise to particle jets. The modifications of the jets’ properties with respect
to the vacuum benchmark due to the presence of the QGP medium is referred to as jet
quenching. The first section of this thesis is dedicated to improving the theoretical and
phenomenological description of jet quenching.

• Jet quenching beyond the multiple soft and single hard divide: We study
the physics of multiple scattering of a hard parton in a background field. In the
last two decades, the studies of this problem, which form the basis of jet quenching
phenomenology, have been either divided into the regime of multiple soft interac-
tions with the medium, a single hard interaction or relied on numerical routines. In
this thesis, we review a recent proposal to merge the single hard and multiple soft
approaches into a single theoretical framework. In particular, we will show that the
theoretically formulation of this approach is well formulated to all orders in pertur-
bation theory and that it can be used either to study medium induced radiation or
momentum broadening effects.

Although having access to probes of the QGP is useful, first principle simulations of
high energy QCD processes also provide a way to study the QGP and many other aspects
of QCD. Unfortunately, it is well known that the simulation of QCD, and quantum field
theories (QFTs) in general, is not feasible in classical computers. However, over the
last years a great interest and rapid development has been witnessed in using quantum
computers to simulate the dynamics of complex theories like QFTs. Although current
approaches are still highly constrained by the current hardware capabilities, it is hoped
that in the coming decades quantum computing might lead to the exploration of physics
currently inaccessible to classical methods. In a second section of this thesis, we introduce
a novel strategy to simulate QFTs in a digital quantum computer.
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• High energy scattering in a digital quantum computer: We study high
energy scattering in scalar �4 theory in a digital quantum computer, using a digiti-
zation in part motivated by the parton model picture of high energy QCD. Although
such an approach is still far from allowing a meaningful simulation to be done in
current hardware, it provides a formulation of the problem much closer to the one
typically used in high energy physics.

Finally, quantum interference effects, so critical to have a complete picture of jet
quenching, are mostly absent from classical Monte Carlo jet quenching simulations, in
favor of a probabilistic and factorizable picture which allows for an easier treatment of
multiple radiation sources. Although such approaches have been very successful and
constitute the backbone of jet quenching phenomenology, being able to explore the full
quantum nature of medium induced parton showers would be of invaluable importance.
This is the final topic explored in this thesis.

• Towards the quantum simulation of jet quenching: We present a simple
quantum simulation strategy to study the dynamics of a single particle propagating
inside a QCD medium, while ignoring the formation of induced radiation. This
constitutes the first step towards the simulation of medium induced parton showers,
capturing their full quantum nature, which can in principle be efficiently explored
using a quantum computer, but well beyond the capabilities of any classical method.

2



1
Introduction

In this brief chapter, we provide a broad introduction to the two topics to be further ex-
plored in this thesis. The first subject is Quantum Chromodynamics (QCD), the Quantum
Field Theory (QFT) that describes the strong interaction. The second topic is Quantum
Computing (QC), which relates to the interest of exploring the quantum world to perform
computations.

1.1 The Basics of QCD

The origins and the QCD Lagrangian

QCD is perhaps the most remarkable Quantum Field Theory which can be experimentally
tested [14].

The pre-QFT origins of QCD1 can be traced back to the works of Gell-Mann, Zweig
and others on particle spectroscopy [16–18]. In the so called Gell-Mann’s Eightfold
Way [17] one could understand the every increasing zoo of particles produced in par-
ticle physics experiments of the time in terms of the irreducible representations of the
SU(3)flavor group. This assumed that hadronic matter was formed by more elementary
particles, corresponding to the QCD quarks, which had 1/2-spin and could have three
different flavors. At the time, there were two big issues with this proposal i) some states,
like the ∆++ and Ω� baryons [19,20], seemed to violate the Spin-Statistics theorem ii) the

1See [15] for an historical review of QCD by one of its major contributors.
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introduced new fundamental particles seemed illusive and had never been experimentally
observed.

The first of these two problems was solved by introducing yet another quantum num-
ber: color [21]. On top of the spin and flavor content, these elementary particles also
carried a SU(3)color charge and could combine such that observable states were white, i.e.
had no net color charge. The second problem was solved by realizing that there must be
some strong attractive interaction between fundamental particles, which ensures that at
low energies fundamental particles can not exist alone. Such an interaction suggests the
existence of a gauge boson, latter corresponding to the QCD gluon.

In the modern QFT formulation, QCD corresponds to a SU(3)color Yang-Mills the-
ory [22] coupled to matter composed of 1/2-spin particles transforming in the fundamental
representation of SU(3)color. The massive fermions correspond to quarks, while the mass-
less gauge bosons are referred to as gluons. The QCD Lagrangian can be written as [23–27]

LQCD = LDirac + Lgauge . (1.1)

The matter content is described by a Dirac Lagrangian

LDirac =
X

f

q̄fi (x) [i�
uDµ(x)�mf ]ij q

f
j (x) , (1.2)

where qfi (x) stands for the quark fermion field, with color index i 2 {1, 2, 3} (in the
fundamental color representation), flavor f 2 {u, d, s, c, b, t} and mass mf . Also, �µ are
the Dirac gamma matrices and, as usual, q̄ = q†�0. The covariant derivative Dµ ensures
that the full Lagrangian is invariant under local gauge transformations and reads

Dµ(x) = @µ � igAa
µ(x)t

a , (1.3)

where g is the strong coupling constant, Aa
µ the (gluon) gauge field with adjoint color

index a 2 {1, 2, · · · , 8} and ta are the SU(3)color in the fundamental representation.
The pure gauge field content of the QCD Lagrangian can be compactly written in

terms of the gauge field tensor F a
µ⌫

Lgauge = �1

4
F a
µ⌫F

aµ⌫ , (1.4)

which is itself given by

F a
µ⌫ = @µA

a
⌫ � @⌫A

a
µ + gfabcAb

µA
c
⌫ . (1.5)

Here fabctc = �i[ta, tb] are the color group structure constants. We choose generators of
the fundamental representation of the color group to be given by 2ta = �a, where �a are
the eight Gell-Mann matrices [23, 24].

4



1 Introduction

Finally, to construct the Feynman QCD rules one needs to make the gauge depen-
dence explicit, so that the propagator for the gluon field can be defined. This can be done
by applying the Fadeev-Popov identity trick [28], leading to two additional terms in La-
grangian: one containing the gauge condition, thus breaking gauge symmetry, and a term
containing the Fadeev-Popov ghost field that cancels non-physical degrees of freedom. In
this thesis, we will always work in the light cone gauge, where A+ = (A0 + A3)/

p
2 = 0,

and thus the ghost field can be integrated out. The Feynman rules can then be easily
obtained from the resulting generating function using standard methods [23, 24].

The running of the coupling, factorization and DIS

Perhaps one of the most remarkable features of QCD is the running in energy of its cou-
pling, which evolves in exactly the opposite way compared to gravity or electrodynamics.
At small distances (large energies), quarks and gluons behave almost as free particles.
This feature, usually referred too as asymptotic freedom [27,29], implies that the coupling
in this regime must be small and standard perturbation theory techniques must be appli-
cable. On the other hand, as the relevant energy scale decreases, the coupling grows up
to the point where interactions are so strong that quarks and gluons can not break free
from each other. In this regime of confinement, hadrons are the physical QCD degrees of
freedom.

The origin of this striking behavior of QCD can be traced back to the fact the color
gauge group is non-Abelian. Expanding out Eq. (1.1), and comparing to Quantum Elec-
trodynamics (QED), which has a U(1)Y Abelian gauge symmetry, one finds extra three
and four gluon vertices, due to the last term in Eq. (1.5) which is absent in QED. At the
level of the running of the coupling ↵s(Q

2) = g2(Q2)/(4⇡), this results that at one loop
order the coupling evolves as [27, 30]

↵s(Q
2) =

1

� log Q2

Λ2
QCD

, (1.6)

where ΛQCD ⇡ 200MeV is the scale separating the strong and weakly coupled regimes, of
the order of the (inverse) typical size of a hadron, � = (11Nc�2nf )/(12⇡), with Nc = 3 the
number of colors and nf the number active light flavors. We thus see that for large values
of the relevant energy scale in the problem, Q2, the coupling vanishes and the theory is
that of free QCD, where the physical degrees of freedom are quarks and gluons, while
when Q2 ! Λ2

QCD the coupling diverges and the theory is not amenable to perturbative
treatment. This behavior has not only been theoretically predicted, but it has also been
experimentally verified to a very high degree of accuracy (see Fig. 1.1), constituting one
of the major successes of QCD.

The above scaling of the coupling with the energy scale is crucial to understand high
energy scattering of hadrons. At very short distances, where Q2 � Λ2

QCD, the coupling
is small and perturbation theory is applicable. At such scales, scattering must occur at
spatial scales⇠ 1/Q ⌧ 1/ΛQCD where this last scale is roughly the typical size of a hadron.
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Figure 1.1: The running of ↵s, with a comparison between the result obtained from the
renormalization group evolution and experimental results obtained from different physical
processes. Figure taken from [1] under a Creative Commons license.

Thus, hard scattering must be amenable to a description based on the quark and gluon
degrees of freedom deep inside different hadrons. Additionally, when scattering hadrons,
their structure, which can not be described perturbatively, should be independent of the
particular details of the collision (i.e. hadrons’ structure is universal). One is then lead to
conclude that a full scattering event can be written as a convolution of soft universal terms
associated to the non-perturbative structure of the hadrons and hard pieces which detail
the microscopic local interactions between quarks and gluons. This property is called
factorization and, although it has only been proven theoretically to hold for a small class
of events [31,32], it provides a good description of data. In particular, if one is interested
to know the cross-section for obtaining, for example, the hadronic final state C (and some
other state X) from the collision of two other hadrons A and B, assuming the process is
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factorizable amounts to writing (schematically)

�A+B!C+X = fA
a (xa, Q

2)⌦ fB
b (xb, Q

2)⌦ �̂a+b!c(xa, xb, Q
2,↵s(Q

2))⌦DC
c (xc, Q

2) . (1.7)

Here, fA
a is a parton distribution function (PDF), corresponding (at leading order) to

the probability of finding parton a, i.e. a quark or a gluon, inside hadron A with en-
ergy fraction fraction xa, while DC

c is a fragmentation function (FF) encapsulating the
hadronization of parton c to the hadron C. Both these objects can only be described
non-pertubatively, unlike the partonic cross-section �̂. The scale Q2, connecting the hard
and soft contributions is arbitrary, meaning that different choices for this scale must lead
to the same cross-section. Therefore, one can devise a renormalization group equation
describing the evolution of the PDFs and FFs with Q2. Thus, first extracting them from
data that at some energy scale allows one to access the distributions at any other scale.
This evolution in energy is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) equations [33–35]. They are applied to extract PDFs and FFs at different en-
ergy ranges in so called global analyses, which are only possible due to the universality
property mentioned above.

The QCD factorization theorems are crucial to study the high energy processes ex-
perimentally explored at the Large Hadron Collider (LHC) at CERN, the Relativistic
Heavy Ion Collider (RHIC) and future Electron Ion Collider (EIC) at Brookhaven Na-
tional Laboratory (BNL). The paradigmatic example of a QCD high energy scattering
experiment is Deep Inelastic Scattering (DIS), consisting on scattering a highly energetic
electron off a hadron, producing new hadronic final states. As pointed out by Bjorken
and Feynman [36,37], at high energies DIS can be understood as the scattering of an off-
shell photon probe, with momentum q, emitted by the incoming electron on the pointlike
partons forming the hadron, which has momentum P . This partonic picture portrays the
hadron as a collection of loosely bound partons (quarks and gluons), whose motion is
aligned with that of the parent hadron, and each parton carries an energy fraction xi of
the total energy of the hadron. Then, the kinematical variable

xBJ ⌘
Q2

2Pµqµ
, (1.8)

with Q2 = �q2 � Λ2
QCD the photon’s virtuality, can be identified with the energy fraction

carried by the struck parton, i.e. x = xBJ = k0/P 0, with k the parton’s momentum.
An important consequence of the emergent parton description of high energy QCD

scattering is the formation of a clear spacetime picture for the scattering process. Indeed,
in the rest frame of the hadron, it is easily realized that there is a clear separation of
scales, between the photon-hadron interaction time and the time over which the probe
remains in a coherent partonic state. In this frame, one can parametrize qµ = (q0, 0, 0, q3)
and P µ = (Mh, 0, 0, 0) (with Mh the hadron mass), such that one obtains

q0 =
Q2

2Mhx
� Q , (1.9)
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with the relevant longitudinal scale being [23, 38]

⌧0 ⇠
q0

Q2
⇠ 2

Mhx
⌘ ⌧Ioffe , (1.10)

where ⌧Ioffe is the so called Ioffe time [39,40]. This (large) coherence scale over which the
photon state is frozen should be compared to the typical interaction time ⌧I ⇠ 1/Q, which
comes from the fact Q is the relevant hard scale in the problem. Thus, DIS (and high
energy scattering in general) can be viewed, in this parton picture, as the photon instantly
probing a region of transverse size ⇠ 1/Q of the hadrons wavefunction, which for a fixed
x is given by the direct product of single particle Fock states. This construction goes
beyond the formal S–matrix formulation of scattering, where at high energies one would
expect that the probe could explore arbitrarily high occupation number states of the
hadron wavefunction, since the energy gap between states with different particle number
vanishes at high energy. This is however not the case in QCD due to the appearance of
extra physical scales such as ⌧I and ⌧Ioffe. In chapter 5 we present a strategy for (quantum)
simulating high energy scattering processes, partially motivated by the emergent partonic
picture of QCD at high energies.

QCD hard probes in a medium

One of the ultimate goals of the QCD physics program is to understand the QCD phase
diagram. As pointed out many decades ago [41, 42], collisions evolving heavy nucleus
allow the exploration of phase diagram regions where matter exists in a deconfined and
dense state, the so called Quark Gluon Plasma (QGP). Thus, such experiments offer an
unique opportunity to explore aspects such as the confined/deconfined phase transition,
properties of the early universe and more generally extract the QCD equation of state.
Experimentally, it is however not possible to directly extract the physical properties of
the QGP since it is very short lived; rather one makes use of self-generated indirect probes
which are sensitive to the underlying medium.

One of the most successful and interesting probes of the QGP are jets, particularly
due to their capability of resolving the time evolution of the medium [43, 44] and to the
excellent benchmarking possible with respect to in-vacuum jets [45, 46].

As in vacuum, in-medium processes are still assumed to be factorizable [47, 48], and
thus the study of jet evolution in a background medium is still modular. The major
differences to the case of jets being produced in cleaner hadron collisions lies in the
fact that PDFs must be updated to nuclear PDFs (nPDFs), which now describe the
non-perturbative structure of the colliding nucleus. The hard scattering partonic cross-
sections are assumed to be unchanged, since such processes take place on scales ⇠ 1/Q,
where medium effects are negligible. Finally, the modification of the jet structure will
show up in a new fragmentation pattern, due to the final state interaction between the
jets produced in the hard scattering event and the underlying medium produced in the
same event. The modification of jets due to final state interactions with a background

8
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medium is referred to as jet quenching, first proposed by Bjorken as a way to study the
properties of the QGP [49] and first experimentally observed at RHIC [50].

The ultimate goal of the jet quenching physics program, which has been active for
the last decades, is to successfully connect the underlying local probe-medium physics to
the observed fragmentation pattern of jets. From a phenomenological/theoretical point of
view, medium induced jet modifications are built up from studying the medium modifica-
tions to a single hard propagating parton, which can either result in the modification of its
four-momenta or the production of medium induced radiation. Thus, the main theoretical
effort has been in computing the differential probabilities associated with these two types
of processes. In chapter 2, we review some of the key aspects of jet quenching theory, and
discuss the elastic and radiative effects which dominate jet quenching phenomenology.
This sets the stage for chapter 3, where such effects are studied beyond commonly used
analytic single hard vs. multiple soft approximations. In chapter 6, we give the first steps
towards quantum simulating jet quenching, which, if possible, could in principle allow
for a complete treatment of quantum effects absent from traditional classical simulation
routines [51–57].

1.2 The Basics of Digital Quantum Computing

The necessity to have quantum computers to simulate some physical systems was first
recognized by Feynman [58] in the 1980’s. This observation was immortalized by the now
famous quote

I’m not happy with all the analyses that go with just the classical theory, be-
cause nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical.

The successful application of quantum computation techniques requires three ingre-
dients: efficient quantum algorithms, reliable quantum devices and the identification of
physical problems where the quantum advantage is critical. The first point relates to
designing algorithms that do not violate the laws of quantum mechanics and can outper-
form their classical counterparts while the second point relates to the necessity to have
controllable quantum devices one can use to perform computations. We proceed to briefly
discuss some aspects of these two points in the following sections.

Regarding the last point, quantum computing has shown to be an essential tool in
areas as distinct as physics, chemistry, finance, machine learning and many others [59–63].
In this thesis our interest is in the application of quantum computing techniques to i)
explore the dynamics of high energy scattering in QFT ii) take the first steps towards
the full quantum simulation of jet quenching. While i) has been a topic of interest in the
high energy physics community for already some time, first initiated by [64, 65], ii) has
not been explored so far. We further discuss these topics in detail in chapters 5 and 6,
respectively.

9
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Quantum algorithms

Quantum computing aims at exploring the possibility of controlling quantum systems in
order to perform computations more efficiently than their classical counterpart. Naively,
the so called quantum advantage quantum algorithms enjoy over classical ones is funda-
mentally related to the possibility to represent information in terms of highly entangled
quantum states, e.g.

| i / c10010 |10010i+ c10011 |10011i+ · · · , (1.11)

where each c is a numerical coefficient, and due to the fact that quantum mechanics is
linear, which leads to efficient ways of implementing logical gate operations, e.g.

U | i / c10010U |10010i+ c10011U |10011i+ · · · , (1.12)

where U is an operator. If one were to mimic such a state representation in a classical
device, the number of bits (or some other basic form of representing information) would
be exponentially larger than the number of quantum basic information units. On top of
this, implementing a gate operation would also entail the application of an exponential
number of basic operators, leading to less trivial implementations.

On the other hand, quantum algorithms are constrained by the laws of quantum
mechanics, and thus not all operations possible in the classical setting find a quantum
analog. Combined with the fact that classical algorithms have been developed for a
long time, these perhaps justifies why so few quantum algorithms which can outperform
classical ones are known. Fundamentally, algorithmic design for quantum devices requires
using a quantum way of thinking, in order to take advantage of the properties of Quantum
Mechanics. This is of course estranged to the usual (classical) intuition, and thus the
design of quantum strategies requires a great deal of ingenuity.

To the present day, three big classes of quantum algorithms (which can outperform
their classical counterparts) are known.

• Quantum factoring: The most famous factoring algorithm is Shor’s algorithm [66],
which is exponentially faster than its classical counterpart. Essentially, quantum
factoring aims at determining with high accuracy (and probability) the eigenvalues
of a target operator. In short, the factoring problem can be stated as: given an
unitary U and a state |�i such that

U |�i = ei� |�i , (1.13)

find �. For applications of QC, it is easily realized that factoring algorithms are
critical in order to, for example, extract the expectation value of observables. Indeed,
in chapter 5, we will make use of the quantum Phase Estimation Algorithm [67]
(PEA), which is a factoring algorithm, in order to extract the momentum and
energy of states being produced in high energy scattering experiments.

10
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• Quantum search: Search algorithms are based on the work by Grover [68] and have
a quadratic speed up over classical algorithms. The search problem can formulated
as: given x 2 {0, 1, 2, · · · , N}, and U such that

U |xi =
(

� |xi , if x = x0;

|xi , else,
(1.14)

find x0. A generalization of Grover’s algorithm is the Amplitude Amplification (AA)
algorithm [69], which given a state |�i = cos(↵) | i+sin(↵) | ?i, where h | ?i = 0,
the AA algorithm gives a way to prepare the state cos((2n + 1)↵) | i + sin((2n +
1)↵) | ?i, for some positive integer n. Thus, this algorithm allows one boost the
probability of preparing the state | i; as we will show in chapter 5, the partition of
the Hilbert into orthogonal sub-spaces is natural when discussing kinematical cuts
of the phase space associated to the states produced in a scattering experiment.
Thus, generalizations of the AA algorithm are useful for amplifying the probability
of producing states in the desired region of phase space.

• Quantum simulation: The possibility to simulate Nature using controllable quan-
tum devices was first pointed out by Feynman and Manin [58,70] and then further
developed by Lloyd [71]. The quantum simulation algorithm is essentially a map
between a hermitian but not necessarily unitary operator H (a Hamiltonian) and
the associated unitary U = exp(�iHt) (the time evolution operator). For physical
Hamiltonians, one can always write H =

P

k Hk, where each Hk only acts on a local
sub-space of the full Hilbert, and thus quantum simulation boils down to finding
an efficient and accurate way of implementing U using this decomposition. This
algorithm is the main focus of chapter 4, where we give a more detailed discussion.
The quantum simulation algorithm is applied in chapters 5 and 6, to simulate high
energy scattering and the evolution of a energetic parton in a dense QCD medium.

• One to unite them all: Recently, it was realized that in fact all these quite differ-
ent algorithms can be viewed as particular cases of a more general framework [72].
Although we will not further discuss this topic in this thesis, it is too much of a
remarkable result not to be mentioned.

Physical realizations of a quantum computer

In the previous section, the treatment of the states storing information neglected their
physical origin, e.g. when (loosely) writing |1i or |0i we missed to detail the Hilbert space
where these states live. Typically, when discussing quantum algorithms manipulating
quantum bits, they can be theoretically treated as if they were the spin state along the z
direction of a 1/2-spin particle. Nonetheless, these logical states do not have to correspond
to the spin state of a physical fermionic particle, rather they are usually engineered from
other more complex quantum systems. Typically the choice of the system must obey Di
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Vincenzo’s criteria [73]2, which essentially state that the system chosen should be scalable,
have a long enough coherence times and quantum bits and quantum operations can be
implemented3. In addition, preparing the system in a fiducial state and the capability of
measuring it in a specific basis must also be required, so that one can perform controllable
computations.

Selecting the correct quantum system to provide a physical realization of a quantum
computer is a difficult task. For example, an array of 1/2-spin particles could in principle
be used to represent an array of quantum bits, with an external magnetic field being
used to control the state of each spin. However, in reality the spin-field coupling is weak
and thus it would be hard to control such a system. On top of that, spins will also
have couplings between themselves which can not be ignored and they can also couple
to the environment. As such, more elaborate constructions are necessary. Indeed, many
realizations of a digital quantum computer exist4 each with its merits and disadvantages.

We consider here, for illustration, a simplified picture of two popular physical realiza-
tions of a quantum computer: cavity QED [75] and circuit QED [76,77]. In the simplest
possible terms, in these approaches there is a cavity which stores a spatially well local-
ized monochromatic electromagnetic mode. In addition to the cavity, there is an atom
(transmon) which can be modeled as a two level system, with a coupling to the mode in
the cavity. The system evolves accordingly to the Jaynes–Cummings Hamiltonian [78,79],
which treats the cavity modes as a quantum harmonic oscillator, the atom (transmon) as
a 1/2-spin and includes a atom-cavity interaction term. Thus, one can picture the system
as is depicted in Fig. 1.2.

In the first scenario, a), one considers several atoms interacting with the cavity, each
storing a quantum bit of information. In this case, adding more atoms increases the
amount of information being stored, with the atom-cavity coupling allowing the imple-
mentation of different quantum gates. On the other hand, one can instead use the cavity
to solely store the information of the system and the atom to implement transformations
on the system state. In this case, multiple quantum bits can be constructed by tensoring
together several cavities.

A simple realization of a quantum logical bit of information is immediate to formulate
in this latter case. If {|0i , |1i , |2i , |3i , |4i} is the set of the lowest occupation eigenstates
of the cavity mode, then one can define the logical states |0iL and |1iL as [80]

|0iL =
1p
2
(|0i+ |4i) , |1iL = |2i , (1.15)

which is a particularly interesting encoding, since in case the photon number drops, the
parity of the state changes and thus the logical qubit is protected against such types of
quantum errors.

2We review some of the criteria in chapter 4.
3In this thesis we are only considering digital quantum computers, although many analog strategies

have also been considered.
4A further discussion on the currently available realizations, although interesting, and their properties

goes well beyond the aims of this section, we refer the reader to [74].
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1 Introduction

Figure 1.2: Here the band represents the different electromagnetic modes of the cavity
(which are analogous to the energy modes of a harmonic oscillator) while the two level
system denotes the atom (transmon) coupled to the cavity. In a) one couples many atoms
together, each being a two level system working effectively as a quantum bit. In this case,
the cavity allows to implement different quantum gate operations. In the opposite case,
b), the cavity modes store the digital information, while the two-level system allows one
to perform operations on them.

In the next chapters of this thesis, we will use quantum computing as a tool to explore
high energy QFT/QCD physics. As such, we keep the discussion on the details related
to QC up to the level necessary for the applications considered. As a consequence, some
QC aspects, such as the physical realization of qubits or the detailed implementation of
common quantum algorithms, are not further discussed.

In chapter 4 we give a more detailed review of the quantum circuit model, typically
used to represent the implementation of quantum algorithms. In addition, we provide a
brief introduction to the quantum simulation algorithm. The results from that chapter
are then used in QCD/QFT applications in chapters 5 and 6.

1.3 Objectives and Methodology

To finalize this introductory section, and to comply with the new regulations for doctoral
studies of the University of Santiago de Compostela, we include here as two separate
sections the global objectives of this thesis and the summary of the methodologies em-
ployed, that have been already mentioned above and that will be fully developed in the
corresponding chapters.

13
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1.3.1 Objectives

The objective of this thesis are the following:

1. Formal aspects of the Improved Opacity Expansion: We extend the Im-
proved Opacity Expansion framework beyond the first non-trivial order to explore
its properties in the asymptotic regions and thus ensure that this framework has a
solid formal basis;

2. Efficient quantum simulation of QFTs: We set the goal to introduce a new
approach to simulate �4 scalar QFT in a quantum computer, essential for future
studies of more complex QFTs as QCD;

3. First principle formulation of parton evolution in a QCD background in
a quantum computer: We aim at providing the key ingredients for describing the
evolution of jets in a medium. Our focus will be single parton evolution, neglecting
particle branching.

1.3.2 Methodology

The topics explored in this thesis cover two different subfields of physics: one is concerned
with QCD and, in general, QFT; the other is related to quantum digital computation and
its applications. As such, we borrow different analytical tools and techniques from both
these areas in order to reach the goals set in the previous section. In more detail, the
methods used can be divided as:

1. Perturbative QCD and other aspects of QFT: The first part of this thesis
requires the usage of perturbative QCD techniques. In addition, formal aspects
related to path integral representations are used.

2. Digital quantum computation elements: In a second part, we make use of
elements of digital quantum computing.

The first method is used to study the first objective in this thesis. The second and
third objectives require the usage of QFT and quantum computing methods.

14



2
Hard parton propagation in a QCD

medium

Based on the discussion in chapter 1, we now proceed to study the propagation of a high
energy parton in the presence of an underlying strong classical gluon field. The goal of
this chapter is to introduce the results that form the basis for the work shown in chapters
3 and 6. Since all the information in this chapter is part of the common knowledge of the
jet quenching community, we will try to put more focus on the underlying physics, rather
than provide extremely rigorous and longer derivations of the results, which can be easily
found in the literature (see [81–83] for some recent reviews).

In what follows, we assume that the medium is weakly-coupled, consisting of a collec-
tion of static scattering centers. This assumption is necessary to ensure that perturbative
techniques are applicable. In addition, since we are not interested in exploring different
spacetime profiles for the medium, we take it to be a homogeneous and static slab (plasma
brick model).

For energetic jets/probes, the relevant mechanism for transporting energy from the
large energy scale corresponding to the initial parton energy p+ � |p| down to the medium
temperature scale |p| � T & ΛQCD is medium induced radiation [81, 84–88]. This is in
contrast with the low energy regime, where collisional energy loss [49,89] dominates. Al-
though, several formalisms exist to describe how the probe propagates in the medium
(mainly differing on details such as the exact treatment of the medium; see [90] for a
detailed comparison between models) in this thesis we focus on the approaches by Baier,
Dokshitzer, Mueller, Peigné, Schiff – Zakharov [91–98], with the respective phenomeno-
logical implementation by Armesto, Salgado, Wiedemann [99,100], BDMPS-Z/ASW, and



João Lourenço Henriques Barata

the one by Gyulassy, Levai, Vitev – Wiedemann [101,102] (GLV/W). With respect to the
GLV/W approach, W provided an all order result in the number of scatterings, which
in the limit of soft momentum exchanges reduces to the BDMPS-Z/ASW result, once
resummed. Thus, one can recover the GLV/W result using the BDMPS-Z/ASW formal-
ism. As such, we devote this section to introduce the BDMPS-Z/ASW formalism (more
inline with more modern treatments; see for example [103–106]) and latter discuss which
physical regions are better captured by the different approaches.

In particular, we will first consider eikonal parton propagation in the medium, which
allows to define the first object we wish to study further below: the single particle mo-
mentum broadening distribution. We then introduce next-to-eikonal corrections to the
phases, allowing the probe to do a random walk in transverse space and study how branch-
ing takes place in-medium. All these results are summarized in a set of effective in-medium
jet quenching Feynman rules. We conclude the chapter by reviewing the typical solutions
for the medium induced energy gluon spectrum.

Some results introduced in this chapter, related to the in-medium scattering potential
models, overlap with [2, 6].

2.1 Eikonal propagation

As a first step, we consider the simplest case of an energetic quark1, originated from a
hard (in-medium) scattering process, which then propagates inside a medium of length L
before entering the vacuum. As mentioned previously in chapter 1, we assume that hard
and soft processes can be factorized, and thus we will ignore the details of the initial state
hard matrix element.

We want to construct the effective in-medium (massless) quark propagator in the
eikonal limit, i.e. ignoring power corrections O(p2/p+). In this limit, it turns out to be
simple to compute the in-medium propagator, taking into account multiple soft gluon
exchanges between probe and medium. The resummed S matrix taking into account all
possible n gluon exchanges is given by

S =
1X

n=0

Sn , (2.1)

where Sn is the S matrix for n scatterings in the medium, with n = 0 the vacuum solution.
The diagrams contributing for n = 1, 2 and generic n are given in Fig. 2.1.

The first non-trivial contribution comes at n = 1, where the hard probe scatters once
in the field, leading to a single field insertion ⇠ Aµ(x) · t. S1 can be written using the
standard Feynman rules for QCD [23,24,38] (see Fig. 2.1)

S1 =

ˆ

x

eiq·xAµ(x) · t ū(pf )(ig�
µ)u(pf � q) , (2.2)

1The case for a gluon is analogous, and can be obtained from the quark result by adjusting the color
factors.
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2 Hard parton propagation in a QCD medium

Figure 2.1: Diagrammatic representation of the contributions to S1 (top left), S2 (top
right) and Sn (bottom). For the generic case, we have highlighted the decomposition
used in Eq. (2.13) to simplify the Dirac algebra. Blue lines (color online) denote the hard
parton vacuum propagator with the respective momentum given above and the yellow
vertical lines denote the field insertion at position xi.

where
´

x
=

´

d4x, q = pf � pi is the momentum transfer with the medium and we
contracted the color indices. In the eikonal limit, the large component of the quark
momentum is p+f � |pf | (see appendix 2.A),

pµf = (p+f ,pf , p
�
f ) ⇡

 

p+f ,pf ,
p2
f

2p+f

!

. (2.3)

Thus, in this highly-boosted regime, the propagation of this almost on-shell quark occurs
over the future pointing light-cone, along the + direction. As a consequence, the quark is
only sensitive to physics occurring locally at x� = 0. Thus, we can simplify the spacetime
dependence of the background field to Aµ(x+,x, x�) ⇡ Aµ(x+,x, 0) ⌘ Aµ(x+,x). Also,
in this boosted regime and recalling that we always consider the light-cone gauge A+ = 0,
the framework to describe the parton evolution is the same as the one used in saturation
physics [38,107,108], and thus all the ensuing results can be seen as a particular application
of Light Cone Perturbation Theory (LCPT) [109,110]. The advantage of working on the
light-front will become evident in the following sections.

With these approximations, the physics in x� becomes frozen and the corresponding
integral can be easily performed. Furthermore, at high energies the Dirac structure of the
above amplitude simplifies considerably. This can be seen directly from the LCPT Dirac
matrix elements [38, 110] or by using Gordon’s identity [23, 24]

ū(q)�µu(p) = ū(q)

⇢
(q + p)µ

2m
� 1

2
[�µ, �⌫ ]

(q � p)⌫
2m

�

u(p) , (2.4)

and recalling that ū�(p)ū�(p) = 2m ��� and using u(pf � q) ⇡ u(pf ). We then obtain

1

2

X

��

ū�(pf )(ig�
µ)u�(pf � q) ⇡ 2igpµf , (2.5)
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where we averaged over the initial spin and summed over final state spin. Finally, only
the A� component of the field survives, since the transverse component couples to the
small components of p. We then obtain

S1 = 2p+f (2⇡)�(p
+
f � p+i )

ˆ

x

e�i(pf�pi)·x

ˆ

x+

igA�(x+,x) · t , (2.6)

where light-one energy is explicitly conserved. The scattering matrix S2 can be computed
similarly and reads (see Fig. 2.1)

S2 =

ˆ

x,y,p

eix·(pf�p)eiy·(p�pi)(ig)2Aµ(x) · tA⌫(y) · t ū(pf )�
µ

i/p

p2 + i"
�⌫u(pi) , (2.7)

where p is an internal momentum. The Dirac structure can be easily simplified in the
eikonal limit

1

2

X

�,�

ū�(p)�µ/p�
⌫u�(p) = p⌫ ū�(p)�µu�(p) = (2pµ)(2p⌫) . (2.8)

where in the intermediate step we used the commutation relation of the gamma matrices
and then used the massless Dirac equation /pu(p) = 0. In addition, the x� and y� integrals
are also easy to perform and lead to the conservation of the + component of momentum.
We can thus write

S2 = (2p+f )
2(ig)2

ˆ

~x,~y,p

A�(x) · tA�(y) · t
i

p2 + i"
e�i~p·(~x�~y)ei~x·~pf e�i~y·~pi , (2.9)

where we have not explicitly written the delta functions (2⇡)2�(p+f � p+)�(p+ � p+i ) im-
posing conservation of the + component of the momentum and in the phases we used
~p · ~x = p�x+ � p ·x and ~x = (x+,x) (see appendix 2.A). The only non-trivial integration
is over p�, for which we get
ˆ

dp�

2⇡

e�ip�(x+�y+)

2p+
1

p� � p2

2p+
+ i"0

=
�i

2p+
e
�i p2

2p+
(x+�y+)

✓(x+ � y+) ⇡ �i

2p+
✓(x+ � y+) ,

(2.10)

where we used Cauchy’s theorem, closing the path on the lower half plane (and included
the �1 due to the path index) and in the last line we have used the eikonal approximation
to neglect the exponential factor. It is easy to observe that the remaining p integral gives
a delta function (2⇡)2�(2)(x�y) while the p+ integration removes one of the energy delta
functions (that are not written explicitly above) to yield an overall conservation factor
(2⇡)�(p+f � p+i ). We thus obtain

S2 = 2p+f (2⇡)�(p
+
f � p+i )(ig)

2

ˆ

x

e�i(pf�pi)·x

ˆ

x+,y+
✓(x+ � y+)A�(x+,x) · tA�(y+,x) · t

= 2p+f (2⇡)�(p
+
f � p+i )

ˆ

x

e�i(pf�pi)·x
1

2!
P


ˆ

x+

ig A�(x+,x) · t

�2

,

(2.11)
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2 Hard parton propagation in a QCD medium

where we again neglect any energy suppressed contributions to the phases and in the last
step introduced the path ordering operator P using the identity

ˆ

x+
1 ,x+

2 ,···x+
n

✓(x+
n � x+

n�1)✓(x
+
n�1 � x+

n�2) · · · ✓(x
+
2 � x+

1 ) =
1

n!
P

✓
ˆ

x+

◆n

. (2.12)

The remaining step is to show that given Sn then one can obtain Sn+1 iteratively. Clearly
the only complicated step is to deal with the more evolved Dirac algebra, but this
also turns out to be simple. We first recall that in the massless limit one has /p =
P

� u
�(p)ū�(p), thus in general case with n insertions (and also true for n = 2 situation

above) one would have (see Fig. 2.1)

1

2

X

�,�

ū�(p)�µ/p�
⌫
/p�

↵ · · · u�(p)

=
1

2

X

�,�

X

hsi
ū�(p)�µus1(p)ūs1(p)�⌫us2(p)ūs2(p)�↵ · · · u�(p)

=(2p+)n ,

(2.13)

where hsi denotes the sum over all spinor indices pairs and in the last step we have applied
the Gordon identity multiple times and anticipated that only the + component survives.
More rigorously, each momentum should have a different label, but at leading order it
can be dropped. The integrations over the internal momenta follow as before and at the
end one can always write Sn as

Sn = 2p+f (2⇡)�(p
+
f � p+i )

ˆ

x

e�i(pf�pi)·x
1

n!
P


ˆ

x+

ig A�(x+,x) · t

�n

, (2.14)

so that the full S matrix reads

S = 2p+f (2⇡)�(p
+
f � p+i )

ˆ

x

e�i(pf�pi)·x P exp


ˆ L

0

dx+ ig A�(x+,x) · t

�

⌘ 2p+f (2⇡)�(p
+
f � p+i )

ˆ

x

e�i(pf�pi)·x W(L,x) .

(2.15)

where in the last line we introduced the Wilson line, in the fundamental representation,
along the + direction and at x in the transverse plane. It resums the multiple t-channel
gluon exchanges between the medium and the hard parton and we assumed that propa-
gation started at a time x+ = 0 and ended at x+ = L. Thus, we learn that, up to factors,
the S matrix is the Fourier transform of the Wilson line.

The above formula deserves some comments.

1. The overall 2p+ factor in Eq. (2.15) implies that the in-medium effective rules must
include a 1/(2p+) pre-factor.
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2. The multiple p� integrations generate phases⇠ p2
i /(2p

+)(x+
i+1�xi) we neglected due

to the apparent power suppression in energy. Nonetheless, the remaining integra-
tions in the transverse and longitudinal momenta are not kinematically restricted,
and thus the phase could become important. This would (parametrically) be rele-
vant once

p2
i

2p+
L ⇠ 1 , (2.16)

where we used that x+
i+1 � x+

i ⇠ L. Thus as long as p2

2p+
L ⌧ 1, with p here some

typical transverse scale, the phases can be neglected. The factor2 t�1
f ⌘ p2

2p+
, when

associated to a particle being radiated with transverse momentum p and energy
p+, is the typical quantum formation time for the particle to be resolved [111] (put
on-shell). This leads one to conclude that the eikonal approximation is insufficient
to study medium-induced radiation, since it always requires that tf � L, i.e. the
gluon is never resolved in the times scales it takes to traverse the medium. This is
not the most relevant region for jet quenching phenomenology, and thus one needs
to consider next-to-eikonal corrections to the in-medium propagator in order to
capture the scenario where the gluon is resolved by the medium. This is done in
section 2.4.

2.2 Medium averages

When computing any observable, in the eikonal limit, one needs to deal with the combi-
nation of several Wilson lines. On top of that, in the previous section all the calculations
were done for a fixed configuration of the background field. Thus, to extract meaningful
cross-sections, one needs to perform an average over all possible field configurations, the
so called medium average, for the relevant combination of W operators.

It is common to find the averaging procedure done in two different ways. The first,
which is extensively used for example in the GLV/W approach (see also [112]), is to write
the field Aµ as a Fourier superposition of the individual fields generated by the several
scattering centers in the medium, i.e. Aµ(p) =

P

i e
ipxiaµi (p). The form of aµi can be

calculated for a given model for the in-medium interaction cross-section [38, 101, 113].
Then, in the limit of a large number of uncorrelated centers, the summation can be
replaced by a spatial integral that results in an average over all positions.

Another approach, which leads to the same end results, is to consider that the back-
ground field Aµ is generated by a classical ensemble of color charges ⇢3. In the highly

2A simple way to see this is to realize that if a particle propagates for a time t then (classically) it
would be seen at a transverse position x ⇠ θt, with θ its emission angle. To linear order x ⇠ tθ ⇠ tk/k+.
Using the Heisenberg uncertainty principle k · x ⇠ 1, one obtains t ⇠ k+/k2. See also the discussion
related to the Ioffe time in chapter 1.

3The fact that the field is classical is justified by the small value of the coupling and in accordance
with the previous chapter.
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2 Hard parton propagation in a QCD medium

boosted frame considered, and in the light-cone gauge, the color current must take the
form [38,114]

J µa = �µ�⇢a(x+,x) , (2.17)

along the � light-cone direction. Indeed, in the A+ = 0 gauge (similar arguments also
follow in the Lorentz gauge [38,115]), one can obtain this result directly from the covariant
conservation of the color current

DµJ
µ ⌘ @µJ

µ � ig[Aµ,J
µ] = @+J � =

@

@x�J
� = 0 , (2.18)

and the (pure gauge) transverse field component can be taken to be zero [81, 108, 116].
Eq. (2.18) ensures that the current is well localized in around x� = 0. Physically, this
means that color charges do not rescatter on the field they self generate, leading to a
clear separation between the degrees of freedom associated with the color current and the
ones associated with the gauge field. In this sub-gauge choice, the Yang-Mills equations
simplify considerably and lead to a Poisson law for the gauge field [107,108]

@2xA
�a(x+,x) = �g⇢a(x+,x) , (2.19)

which is easily solved to give

A�a(x+,x) = g

ˆ

y

ˆ

k

eik·(x�y)

k2 ⇢a(x+,y) = g

ˆ

k

eik·x

k2 ⇢
a(x+,k) . (2.20)

In the Mclerran-Venugopalan (MV) model [117–119], one further treats the classical
color charges stochastically, assuming that they obey a Gaussian distribution, as a con-
sequence of the central limit theorem and recognizing that in a dense system the field is
generated due to the incoherent combination of a large number of uncorrelated sources.
This is of course a very simple picture, but it satisfies the constraints that the overall color
charge should be zero and describes an isotropic medium. This can be easily verified by
extracting the field auto-correlators, which can be done using standard methods [120].

A simple outline of the calculation goes as follows. The probability to generate the
field configurations ⇢ (we will drop spacetime indices in most of what follows to simplify
notation) is given in the Gaussian ansatz by

Prob[⇢] / exp



�
ˆ

x

ˆ

x+

⇢ · ⇢

2n(x+)

�

, (2.21)

where n dx+ ⇠ g2 is the density of color charges in the transverse plane in an infinitesimal
longitudinal slice of time and the factor 2 is chosen to have the usual normalization. The
overall normalization is fixed by requiring that

´

D⇢Prob[⇢] = 1. We can thus define the
generating function Z[J ]

Z[J ] =

ˆ

D⇢Prob[⇢] exp

✓
ˆ

~x

J · ⇢

◆

, (2.22)
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where as usual taking the nth functional derivative with respect to J at J = 0 gives

�nZ[J ]

(�J)n

�
�
�
�
�
J=0

=

ˆ

D⇢Prob[⇢]⇢n ⌘ h⇢a1(x+
1 ,x1)⇢

a2(x+
2 ,x2) · · · ⇢

an(x+
n ,xn)i , (2.23)

where the spacetime and color indices were only made explicit in the last term. Since the
integrations are Gaussian, Eq. (2.22) is easily simplified

Z[J ] =

ˆ

D⇢ exp

✓

�
ˆ

x,x+

1

2n
[⇢ · ⇢� 2nJ · ⇢]

◆

= exp

✓
ˆ

x,x+

n

2
J · J

◆

, (2.24)

thus we learn by taking the first derivative that

h⇢a1(x+
1 ,x1)i = n(x+

1 )JZ[J ]J=0 = 0 , (2.25)

which physically corresponds to the statement that the net color charge is zero. The
two-point correlator gives

h⇢a1(x+
1 ,x1)⇢

a2(x+
2 ,x2)i = n(x+

1 )�
a1,a2�(x+

1 � x+
2 )�(x1 � x2) , (2.26)

where we already removed all terms proportional to J . As mentioned above, this is the
mathematical equivalent of stating that correlations between charges are local in color
and spacetime, with an isotropic profile in the transverse plane.

It is easy to realize that higher order odd correlators always vanish, while even correla-
tors only have a single non-vanishing component which can be written as the sum over all
permutations of two-point correlators. In the literature devoted to the study of stochastic
systems [120] this prescription for the correlators is typically referred to as white noise.
In addition, one can show that strategy followed in, for example, the GLV/W approach
recovers Eqs. (2.25) and (2.26) [121,122].

Combining Eqs. (2.20) and (2.26), one obtains

hA�a1(x+
1 ,x1)A

�a2(x+
2 ,x2)i = g2n(x+

1 )�
a1,a2�(x+

1 � x+
2 )�(x1 � x2) , (2.27)

where

�(x) =

ˆ

q

e�iq·x

q4
, (2.28)

which is just the Fourier transform of the Coulomb potential. In the presence of a back-
ground however, this potential is naturally regulated in the infrared by the medium Debye
mass mD, such that the integration in q is bounded from below by this scale. The way �
is regulated is model dependent and typically done using some phenomenological model4.
For the independent scattering picture we developed in the previous section to be valid
one must require that the free mean path of the parton inside the medium, �, satisfies

4The regulator could already have been introduced in Eq. (2.19) by adding a mass term. As we will
argue, the exact way the regularization of γ is done is not important at leading order in x.

22



2 Hard parton propagation in a QCD medium

L � � � 1/mD, otherwise one can not ignore the color correlations between different
scattering centers, where the above arguments are no longer valid.

Using Eq. (2.27), one can easily extract the many point correlator of Wilson lines,
which appear when computing observables. Due to linearity, the Gaussian form still holds
for higher order correlators of W and it is sufficient to work up to quadratic order in the
fields. We thus find for the two-point function

TrhW†(y)W(x)i
Nc

= P

⌧

1� g2

2

ˆ

x+,y+
TrA(x+,y) · tA(y+,y) · t

�g2

2

ˆ

x+,y+
TrA(x+,x) · tA(y+,x) · t+ g2

ˆ

x+,y+
A(y+,y) · tA(x+,x) · t

�
1

Nc

+O(hA4i)

=P

✓

1 + g4CF

ˆ

x+

n(x+)(�(y � x)� �(0))

◆

=exp

✓

�g4CF

ˆ

x+

n(x+)

ˆ

q

1� e�iq·(y�x)

q4

◆

,

(2.29)

where we used CF = 1
Nc
Tr(tata) = 4

3
and in the last step we re-exponentiated the lin-

earized solution, which is valid due to the iterative structure of the Wilson line shown
in the previous section and the Gaussian approximation. In practice, and as mentioned
above, the Coulomb singularity gets regularized by providing some model for the local
interactions. One usually introduces the so called dipole cross-section � [85, 105]

TrhW(y)†W(x)i
Nc

= exp

✓

�CF

ˆ

x+

�(y � x, x+)

◆

, (2.30)

where

�(x, x+) = g4n(x+)

ˆ

q

�
1� e�iq·x

�
�̄(q) , (2.31)

where �̄ is a regularized form for �. It is constrained to reproduce the ultraviolet Coulomb
behavior.

The dipole cross-section, already entails both virtual and real contributions; the first
correspond to the factor 1 in Eq. (2.29), which are unable to resolve the dipole transverse
dimensions, while the real terms depend on the dipole size |y�x|. The advantage of this
treatment of real and virtual contributions in the same footing should be contrasted with
the treatment for example followed in [101, 123], which requires the explicit calculation
and resummation of both virtual and real terms.

2.3 Momentum broadening

The results from the previous two sections are enough to study the leading order (↵0
s)

medium effect: momentum broadening. From a theoretical point of view, this effect can
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be studied at the level of the single particle broadening distribution P(k, L)

P(k, L) =

ˆ

x

e�ik·x exp

✓

�CR

ˆ L

0

dx+ �(x, x+)

◆

, (2.32)

which is easily related to the the relevant partonic cross-section [85]. Although not being
a physical observable, the broadening probability is a key theoretical piece to describe full
in-medium jet evolution in phenomenological Monte-Carlo models [51,52] and can be also
found in saturation physics models [124].

Here we assumed that the parton is in a color representation R. The P(k, L) distribu-
tion gives the probability for the parton to acquire a transverse momentum k due to the
propagation in the medium for a time L and it is normalized to unity since �(0) = 0. A
more physical understanding of the broadening distribution can be gained by considering
the related kinetic form. This is easily obtained by taking the derivative of Eq. (2.32)
with respect to L

@

@L
P(k, L) = CR

ˆ

q

Γ(q, L) [P(k � q, L)� P(k, L)] , (2.33)

where Γ(q, x+) = g4n(x+)�(q) is the (model dependent) scattering kernel. This kinetic
equation is open to a simple physical interpretation. The probability to observe a particle
in the momentum mode k, due to a small time evolution, is equal to the probability of
starting with a particle with momentum k � q that acquires momentum q due to the
interaction with the medium. Since the process must be conservative, i.e. the probability
of finding the particle

´

k
P(k, L) must be conserved, one also needs to take into account

the states which start with k and diffusive to some other momentum mode.
To go further, one needs to know the form of the in-medium scattering cross-section,

encapsulated by Γ. In jet quenching phenomenology, usually two models for the medium
are considered. In terms of Γ these are given as follows:

1. Hard Thermal Loop (HTL) model [125]: When the background is modeled as
a thermally equilibrated QCD plasma, then one can use HTL theory to compute
the interaction rate Γ. It reads

Γ
HTL(q) =

g2m2
DT

q2 (q2 +m2
D)

, (2.34)

where m2
D(T )=(1+ nf

6
)g2T 2 is the Debye mass of the medium and here we give the

leading order dependence on the medium temperature T and number of active light
flavors nf .

2. Gyulassy-Wang (GW) model [113]: Another model, based on perturbative
QCD, assumes that the medium is formed by an ensemble of static centers with
an Yukawa potential. At leading order, the scattering potential reads

Γ
GW(q) =

g4n

(q2 + µ2)2
, (2.35)
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where now the infrared regulator is µ ⌘ µGW, which is the Yukawa screening mass.
This form for Γ is a direct consequence of the fact that the t-channel gluons ex-
changed between the medium and the parton have a large transverse component,
thus when squaring the amplitude one obtains the squared gluon propagator.

Both these models agree in the ultraviolet (UV), behaving as 1/q4. However in the
infrared (IR) the GW model predicts a constant value for the scattering rate (since the
probe is not able to resolve scales smaller than 1/µ) while the HTL model predicts that
Γ ⇠ q�2. Below we will show nonetheless that one can create a map between all possible
physical models and an universal Γ, with deviations only becoming important when the
dipole size becomes large than 1/µ.

In this thesis we will always consider the so called plasma brick model, which assumes
that the medium is a static and homogeneous slab of size L, with all its evolution frozen.
This means that n(x+) = nΘ(L � x+) and the time integrations become trivial. In this
simple case the broadening distribution is given by

P(k, L) =

ˆ

k

e�ix·ke�v(x)L ⌘
ˆ

k

e�ix·kS(x, L) , (2.36)

where we refer to v(x) = CR�(x) as the (scattering) potential

v(x) = CR

ˆ

q

�
1� e�iq·x

�
Γ(q) , (2.37)

where the time dependence is implicit. Assuming the GW model, it reads

vGW(x) =
q̂0
µ2

(1� µ|x|K1(µ|x|)) , (2.38)

where we introduced the bare jet quenching parameter q̂0, which is given by

q̂0 = 4⇡↵2
sCRn . (2.39)

For the HTL model the calculation is slightly more evolved but still possible. One obtains

vHTL(x) =
2q̂0
m2

D

✓

K0(mD|x|) + log

✓
mD|x|

2

◆

+ �E

◆

, (2.40)

where in this case we define the jet quenching parameter as

q̂0 = ↵sCRm
2
DT . (2.41)

The details on the derivation of these formulas can be found in [2, 6] and are replicated
in appendix 3.A. In the above formulas K0 and K1 are Bessel functions, �E = 0.577(2) is
the Euler-Mascheroni constant and T is the plasma temperature.
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One subtle point is that the broadening probability is not well defined for these
potentials. This is because at large values of the dipole size x (i.e. at small k) the GW
and HTL potentials do not grow sufficiently fast, such that exp(�v(x)L) is not integrable
in the Fourier sense (see Fig. 2.2 right). In fact, they asymptotically saturate so that one
gets an undesired delta function, related to a no-broadening contribution. Therefore, in
these cases we update the definition of the broadening probability to be given by

P(k, L) =

ˆ

x

(S(x, L)� S(1, L))e�ix·k , (2.42)

where it is easy to see that the extra term removes the undesired singular contribution
proportional to �(2)(k). The cost of using this definition is that the normalization has to
be altered, as can be verified

ˆ

k

P(k, L) = 1� exp(�v(1)L) . (2.43)

This is just expressing the fact that the broadening probability only takes into account
contributions where there is a modification of the particle’s momentum. Nonetheless,
for all practical purposes it turns out that this extra term has very little impact on any
numerical results, since v(1)L can be a reasonably large number.

Although the Fourier pair of the broadening distribution, S(x, L), is known exactly
in the two above models, the distribution itself does not admit a closed form expression.
However, in many applications it is common to expand the potentials in powers of the
dipole size µ2x2 (m2

Dx
2); we shall refer to this as the Twist (T) expansion, with the first

terms being the leading twist (LT) contribution and so on. This choice of nomenclature,
inspired by [126], is used to distinguish this expansion, which beyond LT order generates
non-universal and model dependent contributions, from the universal expansion scheme
to be detailed in the next chapter.

Expanding Eqs. (2.38) and (2.40) to LT order we obtain

vGW(x) =
q̂0
4
x2 log

✓
4e1�2�E

x2µ2

◆

+O(q̂0x
4µ2) , (2.44)

and

vHTL(x) =
q̂0
4
x2 log

✓
4e2�2�E

x2m2
D

◆

+O(q̂0x
4m2

D) . (2.45)

We thus observe that at this leading logarithmic (LL)5 order both potentials have the
same functional form. In fact, it is easily realized that this must be the functional form
of any physical potential, by noticing that for |k| � µ one has

ˆ

x

e�ik·xx2n log

✓
1

Q2x2

◆

= i2n4⇡
(2n+ 1)!

k2n+2 , (2.46)

5We use the LT and LL notations interchangeably, referring to the expansion of the in-medium po-
tentials to first order.
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which for n = 1 implies that ⇠ x2 log(x2) is nothing but the Fourier pair of a microscopic
Coulomb potential. Since all physical potentials must be of the Coulomb form in the UV,
this implies that at LT (LL) accuracy one can construct an universal potential vLT, and
a map between this potential and any model. The universal potential is defined as

vLT(x) =
q̂0
4
x2 log

✓
1

x2µ2
?

◆

. (2.47)

Here the infrared scale µ? should be seen as the physical screening mass of the system. The
importance of having this prescription is that it allows for a systematic and well calibrated
comparison between calculations employing different models for the non-perturbative part
of the potential. In fact, if this is not done then there is no meaningful way of doing model
comparisons, since there is a priori no good reason to take µ = mD, for example. In the
literature (see for example [127]), this last prescription is indeed the typical procedure,
i.e. to fix the mass regulators to be the same in all models and the comparison between
models is done by just updating the functional form. As was noted in [127] (see also
Fig. 2.2 left), even though the difference between the GW and HTL is small at the level
of the potential v, it can become important at the observable level. This type of analysis is
however not completely correct, since in fact the physics being described is not the same,
and thus one should not expect to observe similar results at the observable level. Said in
another way, the prescription µ = mD does not lead to the same physical description.

Thus, to circumvent this issue, we propose a LT accuracy map between the mass
regulator in each model and the universal scale µ?. This is the statement that whatever
the model one chooses, the physics being observed should be the same. Of course, one
might find that to describe some medium the obtained mass is unphysical (too large or
too small). This simply implies that the medium can not be reasonably described by that
model. The map between the GW and HTL to the physical scale is given by

µ2
? =

8

>><

>>:

µ2

4
e�1+2�E for the GW model

m2
D

4
e�2+2�E for the HTL model

, (2.48)

where implicitly m2
D = eµ2.

It is interesting to go to NLT accuracy and study how large these contributions can
be. The NLT contribution to the GW and HTL models reads

vGW
NLT(x) =

q̂0x
4µ2

64
log

✓
16e5�4�E

x4µ4

◆

, (2.49)

and

vHTL
NLT (x) =

q̂0x
4m2

D

128
log

✓
16e6�4�E

x4m4
D

◆

. (2.50)
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At this order, we observe that there is no consistent way to construct a map between
different models; this is a consequence that starting at NLT order the expansion explicitly
depends on the infrared scale, unlike the LT order. Nonetheless, even in this case one can
construct an universal LT + NLT potential

vLT+NLT(x) =
q̂0x

2

4
log

✓
1

µ2
?x

2

◆

+
q̂0x

4µ2
?

c1
log

✓
c2

µ4
?x

4

◆

⌘ vLT(x) + vNLT(x) , (2.51)

where the constants c1 and c2 are model dependent. Using the map given by Eq. (2.48),
they read for the GW and HTL models

cGW
1 = 64

µ2

µ2
?

, cGW
2 = 16e5�4�E

µ4

µ4
?

, (2.52)

cHTL
1 = 128

m2
D

µ2
?

, cHTL
2 = 16e6�4�E

m4
D

µ4
?

. (2.53)

In Fig. 2.2 (right) we plot the GW and HTL potentials (Eqs. (2.38) and (2.40)) comparing
to the LT/LL accuracy forms (Eqs. (2.44) and (2.45)) with and without using the map
given in Eq. (2.48). We clearly observe that up to the scale x ⇠ 1/mD, using the universal
map we provide, the GW and HTL agree considerably well. This is compared to the more
usual prescription µ = mD [127], which even for small dipoles sizes gives a considerable
difference between the models.

With all these considerations regarding the scattering potential, we can construct the
LT S(x, L) function as

SLT(x) = exp



�1

4
Q2

s0 x
2 log

1

x2µ2
?

�

. (2.54)

where we introduced the bare saturation scale Q2
s0 = q̂0L.

So far the only simplifications we have made relates to the fact that smaller dipoles
give the dominant contribution to momentum broadening and it is natural to power
expand in the dipole size. Nonetheless, it is still impossible to express the PLT distribution
in a closed form. The second set of simplifications one can adopt are related to the energy
of the probe. From Eq. (2.54) one observes that the dipole size x2 ⇠ 1/k2 competes with
the saturation scale Q2

s0. In the case where the transverse momentum acquired by the
probe is much larger than the saturation scale of the medium, k2 � Q2

s0, one expects
that the dominant contribution comes from a single hard scattering, rather than due to
multiple soft parton-medium interactions. Indeed, in this case we can expand SLT in a
Taylor series to give

SLT(x)
�
�
�
|x|⌧1/Qs0

= 1� 1

4
Q2

s0 x
2 log

1

x2µ2
?

+O
�
x4Q4

s0

�
. (2.55)
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Figure 2.2: Plot of the potential v for the HTL and GW models, with the normalization
m2

D

q̂0
and |x| given in units of the Debye mass mD. Left: Dashed curves correspond to

the HTL model, the dash-dotted lines give the GW model potential when µGW = mD

and the full lines correspond to the GW model solution in the Leading Logarithmic (LL)
approximation (full thin curve) and for the full potential (full crosser line) when one makes
use of the matching proposed in Eq. (2.48). The LL curves for both the HTL and GW
model show that this approximation breaks down when |x| ⇠ 1

mD
, as expected. Figure

taken from [2]. Right: The full HTL and GW potentials at large dipole sizes, where the
evolution in the dipole size is slow.

The first term can be neglected since it does not contribute to P and we see that the
broadening distribution is proportional to the dipole cross-section, i.e. it is dominated by
a single hard (SH) scattering. We define the corresponding broadening distribution as

PSH(k, L) = �1

4
Q2

s0

ˆ

x

e�ix·k x2 log
1

x2µ2
?

=
1

4
Q2

s0
~r2

k

4⇡

k2 = 4⇡
Q2

s0

k4 , (2.56)

where we used the n = 0 case of Eq. (2.46) and as expected we recover a hard Coulomb
1/k4 tail.

On the other end, when k2 ⌧ Q2
s0, the logarithm in Eq. (2.54) is slowly varying with x

and can be regulated by a large momentum scale Q2 ⇠ Q2
s0, making the integrations in P

Gaussian and allowing to resum all orders in the effective saturation scale Q2
s = Q2

s0 log
Q2

µ2
?
.

The broadening distribution reads in this case

PMS(k, L) =

ˆ

x

e�
1
4
x2Q2

s e�ix·k =
4⇡

Q2
s

e
� k2

Q2
s . (2.57)

Here MS stands for multiple soft, since Q2
s0 � µ2

? =) � ⇠ L/� ⇠ Q2
s0/µ

2
? � 1, where �

is easily recognized to be the medium opacity. In this approximation, the net momentum
transfer is due to the multiple scatterings of the probe in the medium, � � 1, and the
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soft approximation comes from neglecting the logarithm in Eq. (2.54), suppressing large
momentum transfers.

In chapter 3 section 3.2, we go beyond this dicotomic description between MS and
SH broadening distributions, providing a closed form solution that includes both the SH
and MS results. Although the full LT broadening distribution can be easily computed
numerically, the previous simpler forms are sometimes preferable since, for example, they
speed up numerical calculations or allow for an analytic treatment.

2.4 Next-to-eikonal propagation and branching

So far, we have worked in the eikonal approximation, where terms O(p2/p+) are neglected.
However, as argued at the end of section 2.1, to study processes where medium induced
radiation is produced, one needs to go beyond eikonal accuracy in order for radiation to
be resolved. Capturing all order corrections to the eikonal result in a systematic manner
is a difficult problem; see for example [128–130] and references therein, focused on next-
to-eikonal accuracy calculations.

For the present discussion, from the previous sections, it should be clear that the
minimal but most important correction one should implement is at the level of the phase
structure, which was drastically simplified before. In particular, we will not neglect next-
to-eikonal phases generated from the integration over the � component of momenta.
However, next-to-eikonal corrections appearing anywhere but in the phases are neglected.

The only important simplification we took was in Eq. (2.10), where now we do not
neglect the phase factor but rather keep it. Recall that, as we outlined, for multiple field
insertions after simplifying the Dirac algebra the momentum integrations decouple and it
is thus sufficient just to consider the lowest order contribution. Keeping this new phase
term, the integration over transverse momenta gets modified and reads (with x+�y+ > 0)

GF (x, x
+;y, y+) ⌘

ˆ

p

e
�i p2

2p+
(x+�y+)

eip·(x�y) =
p+

2⇡i(x+ � y+)
e
i p

+

2
(x�y)2

(x+�y+) , (2.58)

where we introduced GF which can be recognized as the free propagator for a single par-
ticle moving in two dimensions between space time points (y, y+) and (x, x+); a perhaps
more enlightening way of seeing this is by inseting back the p� integration

1

2p+
GF (x, x

+;y, y+)Θ(x+ � y+) =

ˆ

p�,p

i

p2 + i"
e�i~p·(~x�~y) , (2.59)

which shows that indeed GF is the Fourier transform of the (retarded) propagator (where
again we also have the extra 2p+ factor).

Going back to the eikonal case, we see that each p integral in the generic n case would
give rise to a delta function which eliminated one of the momentum integrations. In the
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next-to-eikonal case, between each field insertion one inserts a free propagator, thus Sn

must be of the form

Sn /
n+1Y

i=1

ˆ

~xi

Θ(x+
i � x+

i�1)GF (xi, x
+
i ;xi�1, x

+
i�1)(igA

�(xi, x
+
i ) · t) , (2.60)

where the overall constants and energy conservation are not included, (x0, x
+
0 ) ⌘ (y, y+) is

the initial position, (xn+1, x
+
n+1) ⌘ (x, x+) is the final position and the final field insertion

should be set (igA�(xn+1, x
+
n+1) · t) ! 1, see Fig. 2.3.

Figure 2.3: Diagrammatic representation Sn given in Eq. (2.60).

Up to linear order in the fields (in accordance to the above discussion when expanding
the Wilson lines), it is easily recognized the full S matrix can be written in terms of a
path integral [131]

S = 2p+f (2⇡)�(p
+
f � p+i )

ˆ

x

e�i(pf ·x�pi·y)

ˆ r(x+)=x

r(y+)=y

Dr(s+) exp

 

ip+f
2

ˆ L

0

ds


dr

ds+

�2
!

W(L, r) ,

(2.61)

starting at (y, y+) and with endpoint at (x, x+). This form for the S matrix indicates
that when doing perturbation theory for processes fully embedded in the medium, one
should consider exactly the same diagrams as in the vacuum case, but use instead for the
propagator between vertices

1

2p+
G(x, x+;y, y+) , (2.62)

where G denotes either the vacuum propagator GF , the eikonal propagator W or the
next-to-eikonal propagator

G(x, x+;y, y+|p+) =

ˆ r(x+)=x

r(y+)=y

Dr(s+) exp

 

ip+

2

ˆ L

0

ds


dr

ds+

�2
!

W(L, r) . (2.63)

Since G is an unitary time evolution operator, it obeys a simple composition law, which
in a basis free form reads

G(x+; y+) = G(x+; z+)G(z+; y+) . (2.64)
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Projecting to the position basis and inserting the identity operator
´

z
|zi hz|, we obtain

hx|G(x+; y+) |yi ⌘ G(x, x+;y, y+) =

ˆ

z

G(x, x+; z, z+)G(z, z+;y, y+) , (2.65)

which is sometimes referred to as the Chapman-Kolmogorov composition law in the con-
text of stochastic systems [120], and it just says that at any time the particle must be
situated at some spatial point. This could also have been directly obtained from the
partition of the above path integral.

Finally, we have so far only considered the case where the parton propagates fully
inside the medium. However, one is typically interested in partons being produced inside
a medium and emerging out of it after a finite amount of time has passed. Therefore, we
consider now the case where the parton leaves the medium at (z, L), and then undergoes
some further branching in the vacuum at (x, x+). Using Eqs. (2.59) and (2.65) and
recalling that the extra splitting will introduce an energy-momentum conservation delta
function, the relevant object to consider is

ˆ

~x

ei~p·~xG(x, x+;y, y+) =

ˆ

~x

ei~p·~x
ˆ

z

GF (x, x
+; z, L)G(z, L;y, y+)

=

ˆ

~x

ei~p·~x
ˆ

z

ˆ

~p0

2p+0i

p02 + i"
e�i~p0·(~x�~z)G(z, L;y, y+)

=
2p+i

p2 + i"

ˆ

z

e�i ~p·~zG(z, L;y, y+) .

(2.66)

In conclusion, one can decouple vacuum and in-medium propagators by using a mixed
representation: vacuum propagators follow the usual momentum prescription, while in-
medium propagators are more conveniently written in configuration space. Additionally,
we see that each medium-vacuum crossing adds a 2p+ contribution.

To complete the set of effective Feynman rules for in-medium propagation, one needs
to describe in-medium branching. Locally, one assumes that all splitting processes are the
same as in vacuum. The only important difference comes from the fact that in vacuum
the momentum out off a vertex is the same as the measured momentum, while in the
medium this is no longer true in general.

First, it is convenient to rewrite the splitting matrix elements just in terms of their
transverse components. These are the only terms that matter for any practical calculation,
since as illustrated in the previous sections, only the transverse modes are dynamical6.
We consider the leading branching processes: g ! g + g and q ! q + g, ignoring the
energy suppressed four gluon vertex and all other processes easily obtained by similarity
transformations.

In the pure gluonic case, using standard Feynman rules, and considering an incoming
state with momentum k1 and color a and outgoing gluon with momenta k2 and k3 (and

6The results that follow are easily derived in LCPT [110].
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color indices b and c, respectively), the vertex reads (see Fig. 2.5)

V abc ,↵�� = �gfabc((k1 + k3)
�g↵� + (k2 � k3)

↵g�� � (k2 + k1)
�g↵�) ⌘ �gfabc

Γ
↵�� . (2.67)

In the light-cone gauge, propagating modes have "+(k) = 0, which when combined with
the constraints

"(k)�µk
µ = 0 , "�µ(k)"

�?µ(k) = ���,�0

, (2.68)

yield

"�(k) =

✓

0,
ε� · k

k+
, ε�

◆

, (2.69)

where the transverse polarization vector can be written (in a circular polarization form)
as ε±1 = (1,±i)/

p
2, such that ε�? · ε�

0
= ��,�

0
. Contracting Γ↵�� with the respective

polarization vectors we obtain (dropping helicity indices)

Γ
↵��"↵(k1)"

�(k2)"
�(k3) = 2(k1 ·"2)("1 ·"3)+2(k2 ·"1)("2 ·"3)� (k1+k2) ·"3("1 ·"2) , (2.70)

where · here means contraction on all four-momentum components, with "µ(kn) ⌘ "n and
we used k1 = k2 + k3. Defining the energy fractions zk+

1 = k+
2 and (1� z)k+

1 = k+
3 , with

the explicit decomposition for the momenta and polarizations given above, after some
simple algebra one finds that the only non-vanishing components of the vertex are given
by

V abc
ijl = 2gfabc


k
l�ij

(1� z)
+

k
j�il

z
� k

i�jl
�

, (2.71)

where we have introduced the relative transverse momentum of the splitting k ⌘ k2�zk1.
In the case of the q ! q+g splitting, one essentially follows a similar calculation, now

taking into account the Dirac structure. The calculation is made simpler by considering an
incoming quark with momentum pi = (p+i ,0, 0) that splits into a gluon with momentum
k and a quark with momentum p, and adjust for the most generic case by introducing k

at the end. The vertex is defined as (see Fig. 2.5)

V a
s0,s,�(p, k, pi) = ūs(p)igt

a/"�(k)us0(pi) . (2.72)

and we already anticipate that s = s0, as seen before. Again we define zp+i = k+ and (1�
z)p+i = p+ and we decompose the Dirac structure in right/left (R/L) handed components,
with ε+1 = εR and ε�1 = εL. Using the typical decomposition of the gamma matrices in
this component basis [23, 24]

�µ =

✓
0 �µ

�̄µ 0 ,

◆

(2.73)

with �µ 2 {1, �x, �y, �y}, �̄µ 2 {1,��x,��y,��y}, with �x,y,z the x, y, z Pauli matrices
and noticing that the splitting is collinear (i.e. k = �p), after some lengthy algebra one
obtains

V a
s0,s,�(p, k, pi) = � 2gta�s,s

0

z
p
1� z

�
�s,� + (1� z)�s,��

�
k · ε� , (2.74)
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where in the general case one should replace k ! k ⌘ k � zpi.
Finally, the vertex structure in-medium needs to be altered since the measured mo-

mentum is not k; rather it only matches the momentum off the vertex if the particles
propagate eikonally. Following the logic above, we consider now the q ! q + g branching
but with the outgoing quark scattering once before exiting the medium. It should be
clear that including more field insertions will not qualitatively change the solution since,
as outlined above, each new insertion factorizes from the other ones. In this case, the
matrix element is proportional to (see Fig. 2.4)

/
ˆ

x,xb,p

⇥
ū(pf ) /A(x) · tus(p)

⇤ i

p2 + i"

⇥
ūs(p)/"(k)t

bu(pi)
⇤
eix(pf�p)eixb(p+k�pi) . (2.75)

The second [ . ] was computed above and is proportional to the vector k(1� z)� zp, the

Figure 2.4: Diagram used to explicitly show how to modify the vertex structure in the
medium. Gluons are given by red lines and quark by blue lines.

relative transverse momentum of the vertex. The first term in k is not relevant for the
present calculation since the outgoing gluon propagates as in vacuum, and thus the only
important piece remaining involves

/
ˆ

xb

eixb(k�pi)

ˆ

x,p

⇥
ū(pf ) /A(x) · tus(p)

⇤ i

p2 + i"
eip(xb�x)eixpfp . (2.76)

The itegration over p� can be performed as in section 2.1, yielding at next-to-eikonal
accuracy a transverse integration

/
ˆ

p

pe
i p2

2p+
(x+�x+

b
)
e�ip·(x�xb)Θ(x+ � x+

b ) =

ˆ

p

(�i@xb
)e

i p2

2p+
(x+�x+

b
)
e�ip·(x�xb)Θ(x+ � x+

b )

= (�i@xb
)GF (x, x

+;xb, x
+
b )Θ(x+ � x+

b ) ,

(2.77)

where the derivative is understood to only act on GF , but not on the Fourier phase we
omitted. Thus, we see that one must replace, in the vertex, the transverse vectors by
derivate operators, which are just the position space representation of the momentum
operator p = �i@x.
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2 Hard parton propagation in a QCD medium

This is perhaps better realized starting from a coordinate free form and taking into
account multiple field insertions in all legs. The matrix element should be proportional
to

/
ˆ

x+
b

G(L; x+
b )V (x+

b )G(x+
b ; x

+
i )G

A(L; x+
b ) (2.78)

where GA denotes the in-medium gluon propagator, in the adjoint color representation.
Projecting to a position basis we obtain

/
ˆ

x+
b
,xb,z,y

G(xb, x
+
b ;xi, x

+
i ) hxb|V (x+

b ) |y, ziG(x, L; z, x+
b )G

A(xg, L;y, x
+
b ) , (2.79)

where we have ignored additional integrations on the external outgoing states. Inserting
the q ! q + g vertex (ignoring pre-factors), we obtain

/
ˆ

x+
b
,xb

G(xb, x
+
b ;xi, x

+
i )(�i) [@z � z@y]

y=xb

z=xb
G(x, L; z, x+

b )G
A(xg, L;y, x

+
b ) . (2.80)

The above effective Feynman rules for jet quenching are summarized in Fig. 2.5. We
omitted rules which are common to standard perturbative calculations. Also, one must
integrate over the vertices spacetime arguments as well over any remaining explicit space-
time position dependence, which is easily deduced by writing any amplitude in a free basis
and projecting to the configuration space, as we outlined before.

Finally, we would like to note that the form in Eq (2.63) implies that G is the Green’s
function of a Schrodinger equation

✓

i@t +
@2x
2!

+ gA�(t,x) · T

◆

G(t,x; 0,y) = i�(t)�(x� y) , (2.81)

which will make use of in chapter 6. Also, the eikonal limit where G ! W , is obtained
by neglecting the term containing @x in the previous equation.
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Figure 2.5: Effective Feynman rules for jet quenching. Left: Propagator structure de-
pending on the end and starting point, valid for both gluons and quarks and for eikonal or
next-to-eikonal propagation. The momentum appearing in the integrals refer to the final
or initial state momentum. Notice that the + component is always conserved. Right:
Branching rules with quarks denoted by blue lines and gluons by red lines. On top, we
highlight that in the case of extra non-eikonal propagation one must update the transverse
structure, with the splitting occurring at position w.

2.5 Medium induced gluon energy spectrum

Equipped with the set of rules outlined in the previous sections, one can compute more
interesting observables. Arguably, the most important observable for jet quenching phe-
nomenology at this level is the medium induced radiation spectrum7. To study the ra-
diation pattern, we consider the propagation of a hard (eikonal) parton (in color repre-
sentation R) that emits a soft gluon with transverse momentum k and energy !; in the
present approach this leads to the BDMPS-Z/ASW result (see Fig. 2.6). This can be
generalized to the case where the emitter is not eikonal [103, 105] (see also [132] for the
GLV approach).

In this thesis, we only consider the energy spectrum, integrating over the gluon trans-
verse momentum k. In Fig. 2.6, we outline the single diagram contributing to spectrum,
with the choice that the branching time in the amplitude t1 is smaller than the branching
time in the conjugate amplitude t2. Although one can directly apply all the rules detailed
in the previous section to compute the spectrum8, one can obtain the general form of the

7As for the broadening distribution, the radiation spectrum is strictly speaking not an observable.
8We do not do this in this thesis since the exact derivation, even with the effective Feynman, is still

quite lengthy and unimportant for what follows. Derivations following similar notation and strategy to
the one we outlined can be found, for example, in [104,105,133,134].
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2 Hard parton propagation in a QCD medium

spectrum by direct inspection of the diagrams shown in Fig. 2.6.

Due to the time locality of the medium averages (see previous section 2.2) one can
analyze the process by splitting it into three different regions: (0, t1), (t1, t2) and (t2, L).
In the first time region, the initial hard parton propagates eikonally at the same trans-
verse position both in amplitude and conjugate amplitude, and thus the respective dipole
Tr(W†W) = Nc

9. In the last time step, when both gluons have been emitted, the sys-
tem evolution is dominated by the dynamics of the gluon dipole (where the emitter plays
no role). Clearly in this last step, only broadening effects matter, but since broadening
conserves energy and only shuffles the momentum modes, after integrating over k all con-
tributions from this sector vanish. Thus one expects the only non-trivial contribution to
come from the middle section.

Here, the gluon contributes with a propagator G. The other contribution is easily
obtained for the case of an initial quark by using Eq. (2.65) to split the propagators into
each region and the relation between fundamental U and adjoint W Wilson lines [83,135]

W†ab(x) = Wba(x) = 2Tr[tbU †(x)taU(x)] , (2.82)

such that by a quick analysis of the color flow one finds that the middle sector gives a
term proportional to Tr(GW†).

The overall factors must be ↵s (one emission), CR (the strength of the emission) and
2< to take into account all time orderings. There must be an ordered integration in t1
and t2 and the vertices in the eikonal limit must generate a differential operator with
respect to the gluon. Also, on dimensional grounds the spectrum must be proportional to
1/!2. Finally, the integrations can run beyond the medium length L, and thus in its full
generality the spectrum will include (divergent) vacuum-like pieces which one can remove
by subtracting the vacuum version of the operator Tr(GW†).

Indeed, an exact calculation of the spectrum leads to so called Zakharov formula [94,
102] (see also [136])

!
dI

d!
=
↵sCR

!2
2<

ˆ 1

0

dt2

ˆ t2

0

dt1 ∂x · ∂y [K(x, t2;y, t1)�K0(x, t2;y, t1)]x=y=0 , (2.83)

where the gluon frequency is assumed much smaller than the initial energy of the initiating
parton10. This is in agreement with the direct analysis of the diagrams.

The branching kernel K(x, t2;y, t1) =
1

N2
c�1

Tr(G(x, t2;y, t1|!)W
†(0, t2�t1))

11 is given
in the path integral formalism by

K(x, t2;y, t1) =

ˆ x

y

Dr(t) exp


i!

2

ˆ t2

t1

dt ṙ2 �
ˆ t2

t1

dt v(x� y, t)

�

, (2.84)

9Here all propagators, except for this region, are in the adjoint representation.
10In what follows, we will use ᾱ = αsCR/π.
11Here we denote light-cone times x+ and t.
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Figure 2.6: Structure of the diagrams contributing to the medium induced energy spec-
trum, in the soft gluon approximation. The top figure represents the amplitude diagram
and the bottom figure represents conjugate amplitude diagram with the choice t2 > t1,
as in the text. In the bottom, we sketch the color structure associated with each time
slice, where all objects are taken to be in the adjoint representation. We note that the
structure of the last time slice is only valid for the energy spectrum and in the soft gluon
limit. Note that the transverse position of the quark lines should match in amplitude and
conjugate, so that the result is inclusive with respect to it, while the endpoints of the
gluons do not match in both terms.

where we used Eqs. (2.30) and (2.63). The vacuum case K0 was already considered in
Eq. (2.58)

K0(x, t2;y, t1) =
!

2⇡i(t2 � t1)
e
i!
2

(x�y)2

(t2�t1) . (2.85)

In what follows, we make use of the fact that K is the Green’s function to a Schrodinger
equation with an imaginary potential v(x) (see Eq. (2.37) with CR = CA)



i@t2 +
∂

2
x

2!2
+ iv(x)

�

K(x, t2;y, t1) = i�(x� y)�(t2 � t1) . (2.86)

We see that indeed v enters as an imaginary potential, leading to a non-unitary time
evolution of the system. Evolution does not preserve probabilities since when obtaining
v(x) one performs a classical average over the configurations of the background field.
Therefore, large dipoles sizes, where v is large, are exponentially suppressed in favor of
small dipoles that can resolve the structure of the medium.

In general, solutions to Eq. (2.86) are not known. Nonetheless, there are two special
cases, most relevant for jet quenching phenomenology, where one can solve the spectrum
analytically. We detail such approaches in what follows. Numerical methods to solve
Eq. (2.86) exactly also exist and have been the topic of great interest in recent years [3,
4, 137–139].
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2 Hard parton propagation in a QCD medium

BDMPS-Z/ASW

The first case we explore is the situation where one takes v(x) = vMS(x) and corresponds
to the BDMPS-Z/ASW model. In this case, Eq. (2.86) can be solved exactly since the
potential is harmonic. This spectrum takes into account multiple soft interactions between
the medium and probe, at the cost, as detailed above, of neglecting the exact form of the
potential, effectively missing the physics associated to large momentum transfers. Thus
the BDMPS-Z/ASW solution captures the multiple soft scattering regime.

An explicit form for K can be found directly by applying the steepest descent ap-
proximation to Eq. (2.84) (which in this case is exact because the potential is quadratic,
see [103, 131]). We consider instead an equivalent method, essentially based on solving
the path integral by considering fluctuations around the classical path [131], which was
first introduced, in the jet quenching language, in [140]. In the MS approximation, one
can write Eq. (2.86) as



i@t2 +
@2x
2!2

� !Ω2(t2)

2
x2

�

KHO(x, t2;y, t1) = i�(x� y)�(t2 � t1) , (2.87)

with

Ω(t) =
1� i

2

s

q̂0(t) log
Q2

µ2
?

!
, (2.88)

where Q is the UV cutoff introduced for the MS prescription and here we consider the
universal IR model, with a regulator µ?. The subscript HO denotes that the potential is
harmonic. Formally, the solution to Eq. (2.87) is given by [92,103,131,140,141]

KHO(x, t2;y, t1) =
!

2⇡iS(t2, t1)
exp

(

@t2S(t2, t0)x
2 � @t1S(t2, t1)y

2 � (@sS(t2, s)s=t2

� @sS(s, t1)s=t1)x · y

)

,

(2.89)

where the function S satisfies

d2

d2t
+ Ω

2[t]

�

S(t, t0) = 0 , S(t0, t0) = 0 , @tS(t, t0)t=t0 = 1 . (2.90)

It is well known from the theory of linear ordinary differential equations that any given
solution can be written as a linear combination of a complete and orthogonal set of other
solutions. Since this is a second order equation we take the orthogonal solution to the
harmonic equation to satisfy


d2

d2t
+ Ω

2[t]

�

C(t, t0) = 0 , C(t0, t0) = 1 , @tC(t, t0)t=t0 = 0 , (2.91)
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with C(t, s) = @sS(s, t) = �@sS(t, s), where we used the fact that S is odd in the ar-
guments. These solutions are related by the determinant of the Wronskian matrix (W ),
giving

W = C(t, s)@tS(t, s)� @tC(t, s)S(t, s) = 1 , (2.92)

where we used the initial conditions above. In particular, we obtain the useful formula

@t
C(t, s)

S(t, s)
= �C(t, s)@tS(t, s)� @tC(t, s)S(t, s)

S2(t, s)
= � 1

S2(t, s)
. (2.93)

With these results, Eq. (2.89) can be written as

KHO(x, t2;y, t1) =
!

2⇡iS(t2, t1)
exp


i!

2S(t2, t1)

�
C(t1, t2)x

2 + C(t2, t1)y
2 � 2x · y

 
�

.

(2.94)
Finally, S and C can always be written as linear combinations of other solutions to the
equations of motion. In particular, for the time order t > t1 > t0 any solution in (t, t1) can
be written as a superposition of solutions in (t, t0). Using the above boundary conditions,
one finds [140]

S(t, t1) = C(t1, t0)S(t, t0)� S(t1, t0)C(t, t0) ,

C(t, t1) = �@t1C(t1, t0)S(t, t0) + @t1S(t1, t0)C(t, t0) ,
(2.95)

where it is explicit that S is odd. Taking t = +1, t1 = s > L and t0 = L, and using the
fact that the vacuum solutions (Ω = 0) read S(t, s) = t� s and C(t, s) = 1, one sees that
the first term dominates, leading to the handy formula

C(1, s)

S(1, s)
= �@sC(s, L)

C(s, L)
= Ω

2(s)
S(s, L)

C(s, L)
, (2.96)

where the last equality only holds if C is even. In the next section, we also make use of
the notation C(t, s) = Ct,s and C(t2, t1) = C2,1.

In the case of the plasma brick model we consider in this thesis, the S and C functions
satisfy inside the medium

S(t, t0) =
1

Ω
sin(Ω(t� t0)) , C(t, t0) = cos(Ω(t� t0)) , (2.97)

so that the propagator reads

KHO(x, t;y, t1) =
!Ω

2⇡i sin(Ω(t� t1))
exp


i!Ω

2 sin(Ω(t� t1))

�
cos(Ω(t� t1)) (x

2 + y2)� 2x · y
 
�

,

(2.98)
where one can explicitly take the limit Ω ! 0 and obtain Eq. (2.85).
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With the above discussion, one can directly compute the emission spectrum. Using
Eq. (2.94) in Eq. (2.83), one finds12

!
dIHO

d!
= �2↵̄<


ˆ 1

0

dt2

ˆ t2

0

dt1
1

S2(t2, t1)
� 1

(t2 � t1)2

�

. (2.99)

One can cancel the explicit collinear divergence between medium and vacuum contribu-
tions using the above properties of the S and C functions

!
dIHO

d!
= �2↵̄<


ˆ 1

0

dt1
C(t1, t1)

S(t1, t1)
� C(1, t1)

S(1, t1)
� 1

t1 � t1

�

= 2↵̄<

ˆ 1

0

dt1
C(1, t1)

S(1, t1)

�

= 2↵̄<

ˆ 1

0

dt1 � @t1C(t1, L)

C(t1, L)

�

= 2↵̄ logC(0, L) ,

(2.100)

which in the brick case reduces to

!
dIHO

d!
= 2↵̄ log | cos(ΩL)| . (2.101)

The scale ΩL /
p

!c/!, where !c ⌘ 1
2
q̂0 log

⇣
Q2

µ2
?

⌘

L2 = 1
2
q̂L2 is the typical frequency of

gluons with a formation time of the order of the medium length, controls the behavior of
the spectrum. The limiting behaviors, for small and large frequencies read

!
dILO

d!
= 2↵̄

8

>><

>>:

r
!c

2!
, ! ⌧ !c

1

12

⇣!c

!

⌘2

, ! � !c

. (2.102)

Thus we observe that the spectrum is dominated by soft gluons with ! ⌧ !c, while hard
modes are power suppressed.

The form of this spectrum is intrinsically related to the QCD Landau-Pomerantchuk-
Migdal (LPM) effect [142–144]. One way to see this is to recall that the formation time
of the gluon, i.e. the typical time it takes to put it on-shell (to be quantum mechanically
resolved) is given by (see section 2.1)

tf ⌘ 2!

k2 . (2.103)

During a time interval t, the gluon can acquire an extra transverse momentum component
due to interactions with the medium of the order

k2 ⇠ q̂tf , (2.104)

12In what follows, we denote the BDMPS-Z/ASW either using HO or LO.
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thus equating the previous identities one obtains t2f ⇠ !/q̂, and the formation time is only
a function of the gluon frequency and the medium properties. The radiation spectrum
must be proportional to the number of gluon whose emission is resolved inside the medium.
Thus one expects that in the regime where the gluon frequency is smaller than !c (which
from above we observe that tf (!c) = L) that

!
dI

d!
/ ↵s

L

tf
⇠ ↵s

r
!c

!
, (2.105)

Thus, we observe that when 1/µ? < tf < L, different scattering centers act coherently,
leading to a suppression of harder gluons. In addition, one notices that the transverse
momentum acquired during the branching k2 ⇠

p
q̂! is smaller than the saturation scale

Q2
s = q̂L13. Thus, in this regime of highly localized branchings (tf < L) the splitting can

be seen as being almost collinear, with the gluons being transported to the large angle
region due to final state broadening [51,85].

In the previous argument, we have also assumed that tf � � (recall � is the mean free
path). In the regime where each scattering in the medium is responsible for the formation
of a soft gluon � ⇠ tf , the BDMPS-Z/ASW spectrum is no longer valid, but rather the
correct behavior is captured by the incoherent Bethe-Heitler (BH) spectrum [146]. In this
regime, each scattering acts as a single radiation source, and thus one obtains

!
dI

d!
/ ↵s

L

�
⇠ ↵sNscat. , (2.106)

leading to a flat spectrum in energy, corresponding to the incoherent superposition ofNscat.

single scattering contributions, with the momentum transfer of the order k2 ⇠ q̂0� ⇠ µ2
?.

In terms of the gluon frequency, the BH regime is only reached when the gluon frequency

is smaller than ⇠ �µ2
? =

µ4
?

q̂0
⌘ !BH

14.

GLV/W

The second approach to solving Eq. (2.83) consists in expanding K order by order in
opacity, i.e. adding a single scattering at the time. At leading order in opacity, the
spectrum is dominated by a single large momentum transfer, due to tails present in the
full form for v(x). As mentioned before, this regime was first explored by GLV/W. Since

13In fact, this observation gives a way to estimate the arbitrary cut-off scale Q2 [145]. In the regime
ω < ωc it is natural to identify Q2 ⇠ k2 ⇠

p
q̂ω =

p

q̂0ω logQ2/µ2
?
. In the regime ω > ωc, the UV

regulator should be controlled by the saturation scale Q2 ⇠ Q2
s ⇠ q̂L = q̂0L log q̂0L/µ

2
?
, where notice

that the logarithm becomes energy independent. In the BDMSP-Z/ASW model this is however a sort of
educated parametric estimate rather than a necessary condition one should impose. In the next chapter,
we will show that when merging the MS and SH regimes under a single framework, the determination of
Q2 becomes critically important.

14Notice that in the definition of ωBH we used q̂0 instead of q̂, unlike the definition for ωc. For reasons
that will become obvious in the next chapter, it is convenient to define ωc also with q̂0; the exact numerical
value of this scale is not of extreme importance and thus logarithmic difference is not critical.
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then, the calculation as been extended beyond ninth order in opacity [147], at a cost of
extremely cumbersome computations.

Here we followW’s approach, which obtains the GLV result from the BDMPS-Z/ASW
formalism used so far. The kernel obeys a simple Dyson-like relation [131]

K(x, x+;y, y+) = K0(x, x
+;y, y+)�

ˆ

z

ˆ x+

y+
dtK0(x, x

+; z, t)v(z, t)K(z, t;y, y+) ,

(2.107)
where each iteration introduces a scattering off the field followed by vacuum-like evolution,
similar to the all order derivations detailed in the previous sections. Plugin in Eq. (2.83)
and after some algebra one finds that the energy spectrum can be written as15

!
dI

d!
=
↵̄q̂0L

2

!

ˆ 1

0

dx
1

x+ y

x� sin(x)

x2
. (2.108)

Here y = µ2L/(2!) and we also alert that µ is the GW infrared scale, since the GLV/W
result is usually derived assuming this form for the medium. Here the relevant cut scale
is !̄c =

1
2
µ2L ⌧ q̂0L, so that one obtains

!
dIGLV/W

d!
= ↵̄

q̂0L

µ2

8

>><

>>:

log
µ2L

2!
, ! ⌧ !̄c

⇡

4

✓
µ2L

2!

◆

, ! � !̄c

. (2.109)

One can see that at small frequencies the spectrum predicted by GLV/W (to first opacity
order) does not capture the expected correct behavior, based on the previous heuristic
discussion. Of course, this is expected since coherence effects between different scatterings
centers are not fully taken into account at this fixed order.

Let us now consider the regime ! � !c, where tf � L. In this case, the medium is
seen as a single hard scattering center. The first condition can be written as k2 � !

L
and

the second one imposes that k2 must be much larger than the saturation scale. Thus,
using the LT form for the potential v, the spectrum reduces to

!
dI

d!
/ ↵s

ˆ 1

p
!/L

d|k|
|k|

k4 ⇠ ↵s
!c

!
, (2.110)

as predicted by the GLV/W result, but not the BDMPS-Z/ASW result since it misses
the 1/k4 tail.

15A detailed derivation can be found in [141]. In the following chapter, we will present a similar
calculation, which reduces to this result in a special limit. Thus, to not over extend this section, we refer
the reader to the next chapter.
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Beyond BDMPS-Z/ASW vs GLV/W Similar to the discussion in section 2.3, we
see that the full energy spectrum is sectioned intro three regions, without any analytic
approach being able to describe them all correctly in a closed form (see Fig. 2.7). For
jet quenching phenomenology, the BH sector is not relevant, but it is important to have
control over the contributions coming either from the BDMPS-Z/ASW or GLV/W regions.
Thus, having an approach that encapsulates both these regimes would be of extreme
importance.

Figure 2.7: Heuristic depiction of the medium induced radiation spectrum, in accordance
with the discussion in the main text. In the bottom, we give a simplified depiction of the
local medium-probe interactions controlling the dominant physics in each region.

In the next chapter, we introduce a new approach [141,148] that interpolates between
the BDMPS-Z/ASW and GLV/W solutions, based on Molière’s theory of multiple scat-
tering [149, 150]. In particular, we expand this program, so far either named Improved
Opacity Expansion (IOE) or, more deservedly, Molière (M), beyond first order in
opacity and show that it can be generalized to momentum broadening in a simple man-
ner.

2.A Light-cone coordinates and notation

In this appendix we clarify some of the notation and conventions used.
We always work in the light-cone gauge with A+ = 0 and the parton being a right-

mover. The four-vector aµ = (a0, a1, a2, a3) is written in light-cone coordinates as aµ =
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(a+,a, a�), with
p
2a+ = a0+a3,

p
2a� = a0�a3 and a = (a1, a2). We sometimes denote

~a = (a+,a) if a is a spacetime point and ~a = (a�,a) if a denotes a particle’s momentum.
With this choice ~x · ~p = x+p� �x · p. To simplify notation we also denote xµp

µ = x · p in
the main text, when obvious.

The metric tensor ⌘µ⌫ , for the ordering x = (x+,x, x�), reads

⌘µ⌫ =

0

B
B
@

0 0 0 1
0 �1 0 0
0 0 �1 0
1 0 0 0

1

C
C
A

. (2.111)

This implies that the product of two four-vectors is given by

aµbµ = a+b� + a�b+ � a · b . (2.112)

A particular case of the previous identity is k2 = 0 =) k� = k2/(2k+), which we
use extensively. We also recall that a+ = a�, since the metric is not diagonal. Also,
the medium L differs by a factor of

p
2 from the medium length measured in cartesian

coordinates (which is what one would naturally call the length of the medium).
Position space integrals are represented, per dimension as,

´

x
⌘

´1
�1 dx, or with

omitted boundaries if they are evident. Momentum space integrals then read
´

p
=

´1
�1(2⇡)�1dp.

2.B Dipole cross-section in the GW and HTL mod-

els: useful integrals

Combining Eqs. (2.34) and (2.35) with Eq. (2.31) and recalling that v(x) = CR�(x), one
concludes that the computation of the GW and HTL potentials boils down to solving

ˆ 1

0

du
u

(u2 + b2) (u2 + a2)
(1� J0(ux)) , (2.113)

with b = a = µ and b = 0 for the GW model, a = mD for HTL, see Eq. (2.37).
This integral can be done explicitly as follows. Separating the denominators we obtain

1

(a2 � b2)

ˆ 1

0

du


u

(u2 + b2)
� u

(u2 + a2)

�

(1� J0(ux)) , (2.114)

which is simplified using the identities
ˆ 1

0

du


u

(u2 + a2)

�

J0(xu) = K0(ax) , (2.115)

and
ˆ 1

0

du
u

(u2 + b2) (u2 + a2)
=

log a2 � log b2

2(a2 � b2)
. (2.116)
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These yield

ˆ 1

0

du
u

(u2 + b2) (u2 + a2)
(1� J0(ux)) =

1

(a2 � b2)
[K0(ax)�K0(bx) + log a� log b] .

(2.117)
Taking a = b, one obtains the GW result

ˆ 1

0

du
u

(u2 + a2)2
(1� J0(ux)) =

1

2a2
[1� axK1(ax)] , (2.118)

while for b = 0 and for small dipoles sizes, where K0(bx) ⇡ � log(bx/2)� �E, one obtains

ˆ 1

0

du
1

u (u2 + a2)
(1� J0(ux)) =

1

a2
[K0(ax) + log(ax/2) + �E] , (2.119)

which is the result quoted in the main text.
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3
Aspects of the Improved Opacity

Expansion/Molière approach

In this chapter, we introduce the Improved Opacity Expansion/Molière (IOE/M) frame-
work [141, 148–150] to compute the medium induced radiation spectrum and the mo-
mentum broadening distribution. We first explore the structure of the energy spectrum
beyond first order in opacity. Then, we apply the same scheme to compute the single
particle broadening probability P , such that the end result can describe both the MS and
SH regimes.

The work presented in this chapter is based on [2, 6].

3.1 The all order structure of the IOE/M gluon en-

ergy spectrum

In this section, we apply the IOE/M framework to compute the gluon energy spectrum.
Before, let us first review the mains aspects of this approach.

3.1.1 General remarks on the IOE/M approach

The first step in the IOE/M strategy is to work with the LT potential v(x), thus ignor-
ing small corrections (in the twist expansion introduced before), and to split it using a
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matching scale Q2 as

vLT(x) =
q̂0
4
x2 log

✓
1

x2µ2
?

◆

=
q̂0
4
x2

⇢

log
Q2

µ2
?

+ log
1

Q2x2

�

⌘ vMS(x) + �v(x) , (3.1)

where the time dependence is implicit. This splitting does not change the potential but it
allows to identify a first piece which is just the MS potential with an ultraviolet regulator
Q and a remaining piece �v that has the information regarding the tail behavior of v.
This splitting becomes useful if one wants to treat �v as a perturbative parameter, which
is valid as long as

log
1

x2Q2
⌧ log

Q2

µ2
?

=) Q2 � µ2
? . (3.2)

One can then see that at small frequencies, ! ⌧ !c, �v becomes a perturbation around
vMS, while at large frequencies, one can not neglect �v, but rather the dominant physical
picture is set by taking v = �v.

Eq. (3.2) is so far the only condition on Q. It indeed matches the BDMPS-Z/ASW
prescription to regulate the logarithm, and thus when trying to extract information from
data, this scale always introduces a certain degree of ambiguity, since although it is natural
to take Q to be the largest/most relevant energy scale in problem, there is no theoretical
constraint on possible numerical pre-factors1. Although this also seems to be the case
in the IOE/M approach we will show that in fact Q can not be a constant scale and it
must obey a transcendental equation. This extra constraint comes from requiring that
observables can not depend on the matching scale.

The second, and more ingenious step of the IOE/M framework, is to promote in
Eq. (2.107) K0 ! KHO and replace v by �v. This corresponds to doing the traditional
opacity expansion, but instead of in between each scattering the parton propagating as in
vacuum, one resums all soft gluon exchanges into the harmonic propagator and includes
the hard part of the potential perturbatively. Then the Dyson equation for K now reads

K(x, x+;y, y+) = KHO(x, x
+;y, y+)�

ˆ

z

ˆ x+

y+
ds KHO(x, x

+; z, s)�v(z, s)K(z, s;y, y+) .

(3.3)
In the limit ! � !c, one has that KHO ! K0 and the physics is dominated by hard
scatterings in the medium. Thus, in this limit one expects that this expansion recovers
the GLV/W result. On the other end, when ! ⌧ !c, higher order terms when expanding
this equation will give sub-leading contributions in energy, and thus K ! KHO, i.e. one
should recover the BDMPS-Z/ASW result.

In conclusion, the IOE/M is formally very similar to the GLV/W approach, but
instead of expanding around the vacuum solution, one expands around the harmonic

1Indeed, in the original formulation of the IOE/M approach it was used Q2 ⇠
p
q̂ω, with the dressed

jet quenching parameter defined as q̂ = q̂0 log
Q2

µ2
?

. This choice is discussed in further at the end of this

section.
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3 Aspects of the Improved Opacity Expansion/Molière approach

solution. Naturally, one then expects that both the MS and SH regime are already
encoded in this strategy. In [148], it was attempted to also include the BH regime, but
as shown in [4], the obtained result it not correct. The main issue seems to be that
expanding around the harmonic solution, automatically rules out the possibility of going
to the multiple incoherent scattering regime. This aspect of the IOE/M strategy deserves
a more in-depth study.

3.1.2 Medium induced energy spectrum in the IOE/M approach

Formally, the energy spectrum in the IOE/M framework can be recast as

!
dI

d!
= !

dIHO=LO

d!
+ !

dINLO

d!
+ · · · = !

dILO

d!
+

1X

m=1

!
dIN

mLO

d!
. (3.4)

We use the nomenclature NnLO, but this should not be confused with the more traditional
use of these terms in the context of higher loop order calculations, which is not the case of
the present calculation. In particular, the LO result is the BDMPS-Z/ASW result, NLO
corresponds to m = 1 hard scatterings, and so on.

Expanding out the Dyson equation (Eq. (3.3)) and inserting it into Eq. (2.83) we
obtain that the mth term in the series reads (for m > 1)

!
dIN

mLO

d!
= (�1)m

↵̄⇡

!2
2<


ˆ 1

0

dt2

ˆ t2

0

dt1

ˆ

z1

ˆ

z2

· · ·

ˆ

zm

ˆ t2

t1

dsm

ˆ sm

t1

dsm�1 · · ·

ˆ s2

t1

ds1

⇥ ∂x · ∂y KHO(x, t2; zm, sm)�v(zm, sm)KHO(zm, sm; zm�1, sm�1)�v(zm�1, sm�1)

⇥KHO(zm�1, sm�1; zm�2, sm�2) · · ·⇥KHO(z1, s1;y, t1)

�

x=y=0

,

(3.5)

where we ordered the times of each scattering center from t1 to t2 in increasing order of
the sub-index, running from 1 to m. The transverse position of the ith scattering center zi

is also ordered from the first scattering center (z1) to the last one (zm). The two external
propagators can be integrated using the following useful identity

ˆ x+

0

ds @yKHO(x, x
+;y, s)y=0 = �!

2

2⇡

ˆ x+

0

ds
x

S2(x+, s)
exp

✓

� i!

2

C(s, x+)

S(s, x+)

◆

=
!

i⇡

x

x2
exp

✓

�i
!

2

C(0, x+)

S(0, x+)
x2

◆

,

(3.6)

where we used the properties of the S and C functions detailed in the previous chapter
and neglected infinite frequency terms. A similar identity holds for the other integral in
time [141]

ˆ 1

z+
ds @xKHO(x, s; z, z

+)x=0 =
!

i⇡

z

z2
exp

✓

i
!

2

C(1, z+)

S(1, z+)
z2

◆

. (3.7)
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Taking the convolution of the time integrations to the form

ˆ 1

0

dt2

ˆ t2

0

dt1

ˆ t2

t1

dsm

ˆ sm

t1

dsm�1 · · ·

ˆ s2

t1

ds1 =

=

ˆ 1

0

ds1

ˆ 1

s1

ds2 · · ·

ˆ 1

sm�1

dsm

ˆ 1

sm

dt2

ˆ s1

0

dt1 ,

(3.8)

the two above identities can be directly applied, leaving only dependencies on the times
and position of the intermediate scatterings. Then introducing the exact representation
for the remaining KHO (see Eq. (2.94)), after some algebra one eventually obtains

!
dIN

mLO

d!
=

↵̄q̂m0
23m�2⇡m

<
 

z1 · zm

z2
1z

2
m

� mY

j=1

 

zj

ˆ L

sj�1

dsj z
2
j log

✓
1

Q2z2
j

◆

⇥ �j+1,j exp
⇥
k2
jz

2
j

⇤
exp [��j+1,jzj+1 · zj]

�

,

(3.9)

where we use the prescriptions: s0 = 0, �m+1,m = 1 and zm+1 = 0. The factor depending
on zm and z1 outside the product should be understood to be integrated over (i.e. the
factor enters the z1 and zm integrals; this is denoted by the slashed integral symbol).
The factor ⇡m comes from the m factors of KHO present in the general formula and the
factor q̂m0 is due to the presence of m �v terms. The 23m appears as a combination of the
KHO normalization factors and the terms in �v. In addition, we introduced the following
functions

k2
j =

i!

2


Cj,j�1

Sj,j�1

+
Cj+1,j

Sj+1,j

�

, (3.10)

with the boundary properties C1,0 = C1,1 and Cm+1,m = Cm,0 and the same for the S
function. Also

�k,j =
i!

Sk,j

. (3.11)

Eq. (3.9) is hard to compute analytically beyond m = 2, due to the angular integrations.
Nonetheless, for the present calculation it is enough to work at m = 2 order and one does
not even have to fully simplify the NNLO solution to get the results we seek.

NLO contribution

Setting m = 1, one recovers the result obtained in [141]

!
dINLO

d!
=
↵̄q̂0
2⇡

<

ˆ

z

ˆ L

0

ds log

✓
1

Q2z2

◆

exp
⇥
k2(s)z2

⇤
�

, (3.12)

with

k2(s) =
i!

2


C1,0

S1,0

+
C2,1

S2,1

�

=
i!

2


C1,s

S1,s

+
Cs,0

Ss,0

�

, (3.13)
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where in the last step we rewrote the time dependence in terms of the variables appearing
in Eq. (3.12). This expression can be easily simplified by using the identity

ˆ 1

0

du log

✓
1

u

◆

e�bu =
1

b
(log(b) + �E) , (3.14)

to eliminate the integration over z. This gives

!
dINLO

d!
=

1

2
↵̄q̂0<


ˆ L

0

ds
�1

k2(s)

✓

log

✓

�k2(s)

Q2

◆

+ �E

◆�

, (3.15)

which is the final result obtained in [141]2. As argued above, this term should become
dominant at large energies and recover the GLV/W result. Let us then follow the same
procedure as for the BDMPS-Z/ASW and GLV/W spectra and compute the asymptotic
form.

When ! ! 0, one gets that k2(s) ! �!Ω. The NLO term then reduces to

lim
!!0

!
dINLO

d!
=
↵̄

2
q̂0<


ˆ L

0

2

(1� i)
p
!q̂

✓

log

✓
(1� i)

p
!q̂

2Q2

◆

+ �E

◆�

=
↵̄

2

✓
q̂0
q̂

◆r

q̂L2

!



�E + log

✓ p
!q̂p
2Q2

◆

+
⇡

4

�

⇠ !
dILO

d!

✓
q̂0
q̂

◆

,

(3.16)

where q̂0
q̂
⇠ log�1

⇣
Q2

µ2
?

⌘

= log�1
⇣p

q̂!
µ2
?

⌘

, is the formal expansion parameter of the series,

corresponding to ratio between the hard and soft scales in the problem. Here we have
used that

Q2 =

s

q̂0! log
Q2

µ2
?

⇡
s

q̂0! log

p
q̂0!

µ2
?

, (3.17)

which emerges from noting that the natural large scale in the MS regime is Q2 ⇠ hk2i.
Here we defne the dressed jet quenching parameter q̂ ⌘ q̂0 log

Q2

µ2
?
. We discuss more the

importance of this choice below.
Thus, as long as the hard Q2 and soft µ2

? scales are sufficiently well separated, then
the IOE/M expansion is meaningful. Interestingly, we observe in Eq. (3.16) that at small
frequencies the spectrum reduces back to the LO form, with a pre-factor.

At high energies, k2(s) ! i!
2s
. Using this in Eq. (3.15), we obtain

lim
!!1

!
dINLO

d!
⇠ ↵̄q̂0

⇡

4

L2

2!
=
↵̄q̂0L

µ?2

⇡

4

!̄c

!
=
⇡

4
� ↵̄

!̄c

!
, (3.18)

which matches the asymptotic behavior of GLV/W result. We introduced the medium
opacity � ⌘ q̂0L

µ?2 that becomes larger the denser the system is. Notice that unlike the

BDMPS-Z/ASW result that decays as !�2, this term is power enhanced and thus domi-
nates the ! � !c region of the spectrum.

2In [141, 148] there is an incorrect � sign. This slightly changes the spectrum in the soft region, but
does not change the result qualitatively.
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NNLO contribution and beyond

Let us now try to see what is the formal structure of the IOE/M spectrum, i.e. if its
features do not get spoiled at higher orders. Taking m = 2 in Eq. (3.9), and integrating
over the angles one obtains

!
dINNLO

d!
= � ↵̄

4
<


q̂20

ˆ L

0

ds2

ˆ L

s2

ds1 �s1,s2

ˆ

z1z2

log

✓
1

Q2z21

◆

log

✓
1

Q2z22

◆

z21z
2
2

⇥ ek
2
1z

2
1ek

2
2z

2
2J1(z1z2�s1,s2)

�

,

(3.19)

and we introduced the simplified notation

k2
1 =

i!

2

✓
C1,2

S1,2

+
C1,1

S1,1

◆

, k2
2 =

i!

2

✓
C1,2

S1,2

+
C2,0

S2,0

◆

, �s1,s2 ⌘ � =
i!

S1,2

. (3.20)

As before, we now consider the asymptotic forms of this contribution to the spectrum.
At high energies, ! � !c, such that ! ! 1 ⌘ Ω ! (1� i)⇥ 0 and k1, k2 and � can

be simplified using that in this regime Csa,sb ! 1 and Ssa,sb ! sa � sb, giving

� ! i!

s1 � s2
, k2

1 !
i!

2(s1 � s2)
, k2

2 !
i!

2

s1
s2(s1 � s2)

. (3.21)

We (naively) expand the Bessel function in Eq. (3.19), assuming for now that all the inte-
grals are convergent so that one can formally swap the summation and integral symbols.
We obtain

!
dINNLO

d!
= � ↵̄

8
q̂20<


ˆ L

0

ds2

ˆ L

s2

ds1

1X

n=0

(�1)n

n!(n+ 1)!
�2(n+1)

✓
1

4

◆n

⇥
ˆ

z1z2

log

✓
1

Q2z21

◆

log

✓
1

Q2z22

◆

z2n+3
1 z2n+3

2 ek
2
1z

2
1ek

2
2z

2
2

�

.

(3.22)

The integrals in the positions can be performed using the following identity

ˆ

x

log

✓
1

Q2x2

◆

x2n+3ek
2x2

=
(n+ 1)!

2

✓

� 1

k2

◆n+2

log

✓

� k2

Q2E (n+ 2)

◆

, (3.23)

where E (n) = exp( (n)),  (n) = Γ0(n)/Γ(n) and Γ is the gamma function. After some
simple algebra one obtains

!
dINNLO

d!
=

!

32
q̂20=


ˆ L

0

ds2

ˆ L

s2

ds1
�

S12

✓
1

k2
1k

2
2

◆2 1X

n=0

(�1)n(n+ 1)

4n
�2n

⇥
✓

1

k2
1k

2
2

◆n

log

✓

� k2
1

Q2E (n+ 2)

◆

log

✓

� k2
2

Q2E (n+ 2)

◆�

.

(3.24)
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For this expression to make sense the series must be convergent. For this to happen, we
analyse the terms depeding on n, namely

⇠ n+ 1

4n

✓
�2

k2
1k

2
2

◆n

 (n+ 2) (n+ 2)
n�1⇠ n

✓
�2

4k2
1k

2
2

◆n

log2(n) . (3.25)

One clearly sees that this can only lead to a convergent series if �2

4k21k
2
2
is under control. In

the high energy limit this expression reduces to

n

✓
�2

4k2
1k

2
2

◆n

log2(n) ⇠
✓
s2
s1

◆n

n log2(n) , (3.26)

which leads to a convergent series, since s2 < s1. However, as one takes into account energy
suppressed contributions, it becomes clear that the series should diverge as ! ! !c, thus
we now restrict ourselves to ! � !c.

Using the high energy approximation, Eq. (3.24) reduces to

lim
!!1

!
dINNLO

dLd!
=

↵̄

2!2
q̂20<


ˆ L

0

ds2

⇣s2
L

⌘2

(L� s2)
2

1X

n=0

(�1)n(n+ 1)
⇣s2
L
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✓

�i
!

2(L� s2)Q2E (n+ 2)

◆

log

✓

�i
!L

2s2(L� s2)Q2E (n+ 2)

◆�

,

(3.27)

where the real part can be easily extracted

lim
!!1

!
dINNLO

dLd!
=

↵̄

2!2
q̂20
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ˆ L

0

ds2

⇣s2
L

⌘2

(L� s2)
2

1X

n=0

(�1)n(n+ 1)
⇣s2
L
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⇥
✓

log

✓
!

2(L� s2)Q2E (n+ 2)

◆

log

✓
!L

2s2(L� s2)Q2E (n+ 2)

◆

� ⇡2

4

◆�

.

(3.28)

In the previous two equations, we have considered the rate rather than the energy spec-
trum. In general, this simplification is not allowed, since the derivative operator does not
commute with the limit, this is however not the case at high energies, where the depen-
dence on L is always trivial (see [4] for a more rigorous treatment of this aspect, giving
the same solution).

At leading order in the logarithms ⇠ log( !
Q2L

), enhanced by an energy factor, we
obtain

lim
!!1

!
dINNLO

dLd!
=
↵̄L3

2!2
q̂20
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0

du u2(1� u)2
1X

n=0
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⇥ log

✓
!
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◆
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◆
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L
�
⇣ !̄c

!

⌘2

log2
✓

!

Q2L

◆

,

(3.29)
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where we neglected all the terms that do get a double logarithm enhancement and nu-
merical factors coming from the remaining series and integral. Remarkably we observe
that the structure observed at NLO continues: the spectrum is again proportional to the
opacity (the explicit L dependence here appears since we are considering the rate), but
now the spectrum scales with ⇠ (!c/!)

2, at the same order of the LO term. Thus, in this
kinematic region, the NLO term becomes dominant and gives the leading order behavior
that matches GLV/W. The remaining logarithmic dependence, that we observe to change
from order to order, is slowly evolving with ! and so does not dominate.

This pattern holds to higher orders in the expansion. This is easily recognized by
noticing that each order in the IOE/M expansion will contribute with a term proportional

to �v(x) ⇠ x2 log
⇣

1
x2Q2

⌘

, where x is the transverse position of the vertex. Each x

is conjugate to some transverse momentum k (see Eqs. (3.19) and (3.21)). In the high

energy limit, k2 ⇠ !
L
, thus each new vertex introduces a suppression factor⇠ !̄c

!
log

⇣
!

LQ2

⌘

,

which leads to an order by order power suppression.

To make this statement more rigorous, one would need to construct the formal series
for the high frequency limit of the spectrum, by expanding the k’s and �’s functions in
powers of 1/!. However, a simple analysis suffices to see that indeed the NLO term dom-
inates. First, when Q2 = µ2

?, one recovers the traditional opacity expansion [102]. In the
more general case, this is no longer true. However, consider as an example the terms scal-
ing as (!c/!)

2. In addition to the contribution of the NNLO term as shown in Eq. (3.29)
and the first term in the high energy expansion of the LO term (see Eq. (2.102)), one
needs to consider the next order term in the expansion of the NLO contribution. The

NNLO term has a double logarithm of the form log2
⇣

!
LQ2

⌘

, the LO log2
⇣

Q2

µ?2

⌘

and the

NLO is easily realized that has a sub-leading energy term with a logarithmic coefficient

log
⇣

Q2

µ?2

⌘

log
⇣

!
LQ2

⌘

. Summing all contributions, the logarithmic dependence in Q2 van-

ishes. However, we note that the leading NLO term is always independent of Q2, since
there is no analogous term in the all order expansion of the LO piece, thus ensuring that
the NLO is always the (power) dominant contribution to the spectrum when ! � !c.

In Fig. 3.1 (left) we present the numerical computation of the LO, NLO (already
shown in [141]) and the NNLO terms in the IOE. In addition, we present the GLV spec-
trum. The NNLO term is obtained by direct numerical implementation of Eq. (3.24), and
thus this result is only valid for sufficiently large ! (in this case, we summed the first 11
terms of the series; see Fig. 3.1 (right) for the comparison of different truncation values).

The numerical results depict exactly what was argued before. At large !, the NLO
term becomes the dominant contribution to the spectrum. The NNLO at LO lines become
almost parallel at large !, thus showing that these two terms give the same asymptotic
contribution (this is not strictly true, since they will differ by sub-leading logarithmic
terms). Moreover, we also notice that the actual numerical values assumed by the NNLO
curve are at their best only an order of magnitude smaller than the NLO contribution.
This shows, that for practical purposes, in this regime, the NLO truncation already offers
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an excellent approximation to the full spectrum, and sub-leading corrections do not change
the behavior of the IOE/M spectrum.

To sum up, in the high energy spectrum the spectrum takes the form

!
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d!
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d!
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⌘3
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,
(3.30)

where one understands that each term is expanded to leading order in !c

!
, thus preventing

us from writing a strict equality.
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Figure 3.1: Left: LO, NLO and NNLO contributions to the spectrum, compared to the
GLV/W spectrum, in the high frequency regime (! & !c). We take ↵̄ = 1 and use the
following set of numerical parameters: q̂0 = 0.1 GeV3, µ? = 0.2 GeV and L = 6 fm.
The same parameters are used for the remainder of this section, unless otherwise stated
and in all plots !c is defined using q̂0. Figure taken from [2]. Right: The NNLO term
computed using Eq. (3.24), changing the cut-off (N) on the summation of the series. We
consider N= 5, N= 10, N= 20 and N=30. The plots that follow in the rest of this paper
use N= 10, since it shows an extremely good convergence and small computational time.

Now let us consider the opposite limit when !BH ⌧ ! ⌧ !c, where the lower bound
avoids entering the single soft scattering region, which is not properly described in the
IOE/M. Also, formally the BDMPS-Z/ASW solution diverges (slowly) in this regime
and thus one must introduce a cut-off scale; the main challenge boils down to the proper
treatment of this divergence at each order in the expansion which becomes somewhat more
intricate starting at NNLO order. Nonetheless, the correct treatment of the divergences
leads the self-consistency of the IOE/M approach and reveals an interesting IR structure,
unlike the ultraviolet behavior studied above.

Formally we are taking the limit ! ! 0 ⌘ Ω ! (1�i)⇥1, while keeping logQ2/µ2 �
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1. Using the limiting forms

lim
!/!c!0

Ω
cos(Ωx)

sin(Ωx)
= iΩ , lim

!/!c!0
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Ω

sin(Ωx)

cos(Ωx)
= � i

Ω
, (3.31)

one can simplify the spectrum significantly. We note however that these limits can not
be taken straightforwardly on the functions depending on the time difference s1� s2 ⌘ ⌧ .
The support for such functions will be roughly order of the formation time of the gluon,
s1 � s2 ⇠ tf , while Ω ⇠ 1

tf
, thus if one naively applied the above identities one would

obtain a divergent result. So the full time dependence is kept in those cases. Thus, in the
spectrum, we replace the phases by
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with � unchanged. This leads to
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Changing now the integration variables (s1, s2) ! (s1, ⌧) and using that ⌧ ⇠ tf , one
can further simplify the spectrum. Firstly, since the support of the ⌧ integral is highly
localized, the sensitivity to the upper bound should be small, and thus one can replace
L�s1 ! 1 (which is consistent that at small frequencies tf ⌧ L), eliminating one of the

time integrations. Secondly, we rescale ⌧ ! t =
q

q̂
4!
⌧ , in order to factor out all physical

scales. Finally, we perform the Wick-rotation �iT = (1�i)t, so that the remaining phases
no longer have a complex argument. The net result of all these operations is
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(3.34)

with U =
�
q̂!
4

�1/4
z1 and V =

�
q̂!
4

�1/4
z2, and where the U and V integrals span the entire

real positive axis and the time integral goes up to L. This formula is almost in a simple
enough form, except for the

p
q̂!/Q2 dependence. However, we recall that at leading

order in energy Q2 ⇠
p
q̂!, and thus with this choice and using
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one finally obtains

lim
!/!c!0
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Interestingly, we observe that in the small frequency limit and using Q2 =
p
!q̂ ⌘ Q2

c

the NNLO term reduces to the LO form, multiplied by the expansion parameter (squared
since it is the second order term in the expansion). This is unlike the high energy limit,
where we saw that the NLO term was (power) enhanced compared to all other orders. In
particular, this result means that the spectrum seems to take a rather simple all order
form, namely

lim
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(3.37)

where the LO term is understood to be taken in the small frequency limit and the ci,0
coefficients (where i indicates the power of the logarithmic coefficient) are real numbers
computable order by order in perturbation theory. Although we did not find a generic
formula that generates them, this is not relevant for the ensuing argument. A major

difference between the logarithms log
⇣

Q2
c

µ2
?

⌘

, compared with ⇠ log! found in the high

energy limit, is that they can become large and thus require an all order treatment, while
at large energies the strict ordering in powers of energy prevented this from happening.
In practice, this means that one must be more careful about the previous expansion, in
particularly with respect to how the matching scale is fixed.

Let us explore this question more in depth. If Q is left free, one would have obtained
the more general result
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(3.38)
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where again all the numeric coefficients are computable order by order. Here the notation
for the coefficients ci,j introduced above becomes evident: the first index denotes the

power of the expansion in log
⇣

Q2
c

µ2
?

⌘

, while the second index indicates the dependence on

the slower log
⇣p

q̂!
Q2

⌘

.

In this form of the spectrum, it seems that the full dependence on Q2 is unwieldy.
However, we know that resuming all orders must yield an expression which is independent
of Q2, because as shown before the dependence on this scale is not physical, but only
emerges since we are truncating the IOE/M scheme at a fixed order in perturbation
theory. Taking into account all orders is trivial in this limit, since all orders scale with

the LO solution, which itself depends on Q2. Thus, the net effect of the series in log
⇣

Q2
c

µ2
?

⌘

multiplying the LO spectrum is to cancel this fictitious dependence on the matching scale.
This implies that, the full spectrum must take the form

lim
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where in the second equality we introduced the W function which resums all orders, and
the denominator logarithm cancels explicitly with the implicit logarithm in the LO term.
The final equality, makes this explicit, with the only scales being q̂0/! and

p
q̂!/µ2

? � 1
(recall ! � !BH). Again, we reiterate that this results follows from the invariance of
the spectrum with respect to Q2, and can also be obtained by just requiring that the
derivative of the full spectrum with respect to logQ2/µ2

? is vanishing.
The practical net effect of noticing the invariance of the spectrum with respect to Q2

and that all orders scale with the LO solution, with some logarithmic enhancement, is to
generate the all order equation obeyed by Q2, we have advertised in the beginning of this
section. Let us detail how to construct such an equation.

Going back to Eq. (3.38), let us suppose that Q2 can be fixed, as in the BDMPS-
Z/ASW approach, to some fixed energy scale, namely Q2 ⌘ q̂0L. Then, the logarithms

scaling with Q2

µ2
?
are fixed and the evolution with ! is encoded in the logarithms that

appear in the numerators. This means that at small enough !, but still ! > !BH,

NmLO/LO ⇠ logm
⇣p

!q̂
Q2

⌘

& 1, and thus the series will diverge in the infrared. This is not

a physical divergence, but rather a fictitious divergence introduced due to the incorrect

choice for the matching scale, so that ! ⇠ q̂0L
2/ log

⇣
Q2

µ2
?

⌘

> !BH ⇠ q̂�2, the series is not

well defined since the LO term is constant but all other orders strongly diverge. Thus,
unlike the BDMPS-Z/ASW prescription, the matching scale plays an important role in
getting the physically meaningful spectrum.

A way to remove this divergence is of course to take Q2 ⌘ Q2(!). More concretely,
one wants the numerators to remain finite, and thus the natural choice for the matching
scale is Q2 ⌘ Q2

c(!) ⇠
p
!q̂, which should guarantee convergence up to around ! ⇠ !BH.

With this choice the numerator logarithms only give small finite contributions to the
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spectrum and non-trivial cancellations between different orders in the IOE lead to that
at a given truncation, the spectrum only depends on the concrete choice made for Q2

c

in the first neglected truncated contribution. Again, one quickly realizes that this is the
order by order (perturbative) form of requiring that the full spectrum is independent on
the matching scale. If different choices of Qc lead to the difference between the respective
spectrums be of the order of the largest considered power in logQ2/µ2

?, then the overall
spectrum would depend on Q2. We make this observation now evident both analytically
in Eq. (3.40) and numerically in Fig. 3.2.

First, consider that we take Q2 ⌘ a2Q2
c , where a is dimensionless factor that rescales

Q2
c =

p
!q̂. Then, to leading logarithmic accuracy, Eq. (3.38) becomes
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where we neglected the a in the logarithmic correction in the NLO term, since it is easily
seen that it only contributes at higher orders. Thus, with the truncation at the NNLO
order, we see that different choices for Q2 contribute only at NNLO order, but not NLO.
This is easily seen to generalize to all orders due to the structure of the spectrum in the
IR.

Perhaps more illuminating is to repeat the same exercise but by numerically evaluating
the spectrum. In Fig. 3.2 we compute the spectrum at NLO accuracy, fixing the scale
Q2 ⌘ Q2

c and then varying it by factors of 2. At low energies, we observe that although
the LO and NLO terms change dramatically as the choice for the matching scale varies,
we observe that the overall LO+NLO spectrum remains roughly the same, in accordance
with the previous discussion. Also, compared to the case where one sets the matching to
a constant value, we observe that the spectrum does not have any divergence, as long as
! > !BH. Another important remark is that the choice for Q2 shows that the interpolation
between the BDMPS-Z/ASW (multiple soft) and GLV/W (single hard) regimes is not
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Figure 3.2: Calculation of the IOE at NLO accuracy, while fixing the matching scale

Q2 = Q2
c =

p
q̂! and varying this by Q2

c ! 2Q2
c or Q

2
c ! 1

2
Q2

c , where q̂ = q̂0 log
⇣

Q2
0

µ2

⌘

and

Q2
0 = q̂0L. Figure taken from [2].

trivial, i.e. one can not just fix a scale below/above which the appropriate spectrum is
selected.

Another important aspect is to understand the importance of the NNLO term as the
ratio between the large and small scales in the problem, Q2/µ2

?, evolves. This measures
the sensitivity of the spectrum to the BH frequency !BH ⇠ µ4

?/q̂0. Clearly if Q2 ! µ2
?

(or equivalently ! ! !BH), the series diverges order by order, in accordance with our
initial assumptions. To make this study more systematic beyond this limiting case, we
take Eq. (3.37), normalizing to the LO result, obtaining
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with � = log (Q2
c/µ

2
?) =

1
2
log(!/!BH). Comparing the NNLO term to the LO+NLO piece

boils down to studying

Q2
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µ?2
= exp
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r
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where ↵ ⌘ NNLO
1+NLO

gives the percentile contribution of the NNLO term compared to the
LO+NLO (up to NNNLO corrections). This relation can be written just in term of the
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gluon frequency scales (using !BH ⌘ µ4
?/q̂0 and Q2/µ2

? =
p

!/!BH), to give

! = exp

 

�0.508 + 0.004

r

16129 +
7256

↵

!

!BH , (3.43)

where we only take the root which is physically meaningful. If ↵ = 1%, ! � 18.83 !BH;
↵ = 10%, ! � 1.98 !BH and ↵ = 50%, ! � 1.21 !BH, where the inequality is due to the fact
that we are only looking at the lower bound, below which the ratio NNLO/(1 + NLO)
exceeds the value of ↵. The evolution in ↵ is rather fast, ensuring that roughly after
O(10!BH), the obtained spectrum is already quite accurate and insensitive to the infrared
details.

This aspect was perhaps better elucidated in recent results from parallel efforts to
compute the single gluon emission spectrum exactly, by solving the associated Boltzmann
equation [3,4]. In Fig. 3.3, we reproduced one of the numerical results shown in [4], where
the IOE/W approach is compared against the exact solution for the spectrum. One can
clearly see that at roughly ⇠ 10!BH the spectrum breaks down, inline with our estimates.
In addition, the work done in [4] confirms the analytic behavior of the full spectrum is
identical in the two regions explored in this chapter, thus showing that the LO+NLO
accuracy spectrum provides a good approximation to the spectrum, going beyond the
BDMPS-Z/ASW and GLV/W limitations.

In summary, in the soft regime, the full spectrum can be written as

!
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!
, (3.44)

where the effective transport coefficient is calculated to NNLO in the IOE/M framework
to give
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and the matching scale is determined by the transcendental relation

Q2
c =

s

q̂0 ! log

✓
Q2

c

µ?2

◆

. (3.46)

3.1.3 A brief summary

Fig. 3.4 summarizes the findings presented in this section. At large frequencies ! � !c,
the NLO contribution to the IOE/M spectrum dominates, matching the GLV/W result.
The NNLO and LO terms are seen to contribute at the same power suppressed order. At
small frequencies !BH ⌧ ! ⌧ !c, the dominant term is the LO contribution, with the
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Figure 3.3: Comparison between the full emission spectrum (Full) computed in [3,4], the
IOE/W result up to NLO and the GLV/W results. The gray band denotes the BH region,
where the IOE is not valid. Figure taken from [5], with !c0 = q̂0L

2. See reference for the
values used for the physical constants.

NNLO term giving a small correction. As a consequence, one finds that truncating the
IOE/M series at NLO accuracy gives a good approximation to the full emission spectrum,
outperforming the GLV/W and BDMPS-Z/ASW solutions.

In Fig. 3.4 we have used the matching scale Q2
c , thus ensuring that the spectrum is

well behaved at small frequencies; at large frequencies the form of the matching is less
relevant. In particular, this shows that the matching between the GLV/W and BDMPS-
Z/ASW regions is not straightforward, but rather it requires a detailed treatment to avoid
fake divergences in the spectrum. More importantly, the study shown in this chapter
guarantees that the IOE/M is well defined at higher orders in opacity and is thus a
legitimate analytic strategy to compute the medium induced gluon spectrum.
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Figure 3.4: Comparison between BDMPS-Z/ASW, GLV/W and IOE/M up to NNLO
accuracy in the MS and SH frequency domain. The NNLO term is computed in the
asymptotic regions and matched at ! ⇠ !c. Figure taken from [2].

3.2 IOE/M approach to momentum broadening

The IOE/M approach can also be applied to momentum broadening. More generally,
one can apply the IOE to any n-point function made out of propagators G, as long as a
Dyson-like relation is known for such objects and there is a closed form solution in the
MS regime.

The discussion in this section follows from the results in section 2.3. Here we will
work mainly at LT accuracy, but we study the contributions coming from the NLT terms.

3.2.1 IOE/M broadening distribution at LT accuracy

We again consider the decomposition given in Eq. (3.1) and apply it directly to Eq. (2.54).
Expanding in powers of �v results in the following LT momentum broadening distribution

PLT(k, L) =
1X
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ˆ
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4nn!
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x2Q2
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(3.47)
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where we note that the IOE/M scheme results in an expansion in powers of ⇠ Q2
s0x

2 �
µ2
?x

2. Here we define the dressed saturation scale equivalently to the Qc
3 scale introduced

in the previous sections

Q2
s ⌘ hk2ityp = q̂0L log

Q2

µ2
?

, (3.48)

which trivially relates to the matching scale

Q2 = aQ2
s , (3.49)

where we always take a = 1 in what follows, corresponding to Molière’s prescription [149].
Although other values for a were studied, they do not seem to lead to any better numerical
results. Additionally, in the previous section we showed that varying a only leads to sub-
leading contributions. We also define the effective jet quenching parameter

Q2
s = q̂0L log

aQ2
s

µ2
?

, (3.50)

with the bare jet quenching parameter q̂0, associated to the bare saturation scale Q2
s0 =

q̂0L.

It is easy to check that truncating Eq. (3.47) still preserves
´

k
P(k) = 1, since all

terms but the LO vanish once integrated over k and x. Formally, the series is divergent.
However, one must recall that this divergence is in the full LT case also present if the
potential is not regulated in the infrared. Thus, the regulation of the integral translates
into a truncaton of the series, n < nmax ⇠ Q2

s0/µ
2
?, with higher order terms being divergent

(see [126] for a similar conclusion). As for the gluon spectrum, the expansion parameter
is given by

� ⌘ q̂0
q̂

=
1

log(Q2/µ2
?)

⌧ 1 . (3.51)

The momentum distribution P can be formally recast as

(4⇡)�1Q2
s P(k, L) ⌘ f (x,�) =

1X

n=0

�nf (n)(x) , (3.52)

where x ⌘ k2/Q2
s. The LO term reads

f (0) = (4⇡)�1 Q2
s I1(x) = e�x , (3.53)

3If one wants to merge broadening and the energy spectrum, a sensible prescription to select either Qc

or Qs has to be made, see [151,152]. Importantly, Qs is independent of energy, and thus this prescription
does not cancel any divergences at small frequencies.
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while the NLO contribution gives [149]

�f (1) = � 1

16⇡
Q2

s0Q
2
s

ˆ

x

e�ix·ke�
1
4
Q2

sx
2

x2 log
1

x2Q2

=
Q4

s

16⇡
�~r2

k

ˆ

x

e�ix·ke�
1
4
Q2

sx
2

log
1

x2Q2

=
�Q2

s

4⇡

@

@x
x
@

@x
I2(x, a)

= �∆x e
�x (Ei (x)� log(4x a)) ,

(3.54)

where we used the reduced Laplacian operator ∆x ⌘ @x(x @x) and ~r2
k = 4/Q2

s∆x with
x ⌘ k2/Q2

s. The special integrals I1(x) and I2(x, a) are detailed in appendix 3.A. Putting
all LO and NLO contributions together, we recover Molière’s [149, 150] formula (derived
in QED)

PLO+NLO(k, L) =
4⇡

Q2
s

e�x
n

1� �
�
ex � 2 + (1� x)

�
Ei (x)� log(4x a)

� �o

, (3.55)

with x ⌘ k2

Q2
s
.

By construction, for k2 ⌧ Q2
s, we recover the MS solution, which is flat in k2. In the

opposite limit, when k2 � Q2
s, the LO term decays exponentially and is thus suppressed.

The typical momentum transfer due to this piece is then hk2ityp⇠Q2
s, in accordance with

previous discussions.
The NLO piece can be simplified in the high energy limit using the (divergent) asymp-

totic expansion x ! 1, Ei(x) ⇡ ex(1/x+ 1/x2 + 2/x3), which reduces the NLO to

PNLO(k, L)
�
�
�
k2�Q2

s0

= 4⇡
Q2

s0

k4 +O

✓
Q4

s0

k6

◆

. (3.56)

This is exactly the asymptotic SH behavior seen in section 2.3 (Eq. (2.56)), encoding the
hard 1/k4 Coulomb tail. As for the energy spectrum, the LO term is suppressed in the
distribution tail, and thus the NLO becomes the dominant contribution. In the opposite
limit, for small momentum transfers we have that the NLO piece reduces to

PNLO(k, L)
�
�
�
k2⌧Q2

s0

=
4⇡�

Q2
s

log(4 a e1��E) , (3.57)

which, up to logarithms, is just the MS solution suppressed by a power of �, analogous
to the behavior we observed for the gluon spectrum in the previous section, ensuring that
LO+NLO contribution is well behaved.

In conclusion, using the LO+NLO terms in the IOE/M scheme to compute P , one
is capable of capturing the correct physics at small and large k, thus outperforming the
MS and SH approximations. This can be seen in Fig. 3.5 left, where we plot the LO,
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NLO and LO+NLO terms, comparing to the full solution using the GW model. We
take a small value for � = 0.1, so that the we are well within the region of validity of
the IOE/M scheme. As detailed, we observe that the LO+NLO solution qualitatively
captures the correct behavior of the full distribution, while the LO (MS) term completely
fails to describe the hard tail, leading to a too strong suppression of the tails.

In Fig. 3.5 (right), we study the behavior of the IOE/M framework as � increases,
also including the NNLO (numerically computed) corrections to estimate how significant
they are. The values of � explored correspond roughly to the values at LHC, RHIC and
the future EIC, in increasing order. We observe that at � = 0.2 there are already 40%
deviations with respect to the exact result, and thus at higher values one expects the
IOE/M approach require higher order corrections beyond NLO. Indeed, in the bottom
panel we observe that including the NNLO term leads to a significant improvement of
the results. This seems to be in contradiction with the findings of the previous sections,
where we found NNLO corrections to the energy spectrum to be suppressed by at least an
order of magnitude. We recall however that the broadening and energy spectrum depend
on different two-point functions, and such a direct comparison is not entirely meaningful.
For the best choice for � = 0.1, we observe that at NLO the IOE/M solution is already
quite close to the full GW result, with the larger deviations coming from the regions
which will contribute less to any integrated quantities. We see however, that at small k
there is a constant deviation with respect to the GW model, which in the MS approach is
never present since one can adjust Q2 (not a matching scale) in that case to reproduce the
exact results in the small k region; this deviation is nonetheless not extremely relevant in
practice.

3.2.2 The role of NLT terms in the IOE/M expansion

In the previous section, we have fixed the accuracy of the expansion at NLO in the IOE/M
scheme and at LT in the expansion of the dipole cross-section. In this section, we explore
the contributions due to NLT contributions, making use of the discussion introduced in
section 2.3. We recall that these are two competing expansions, one in powers of Q2

s0x
2

and the other in powers of µ2
?x

2, thus one expects that the twist expansion plays a minor
role. In this section we fix Q2

s = Q2
s0 = 4.8 GeV2, so that we are only sensitive to the

infrared corrections due to the NLT term.

Using the LT+NLT form for the dipole cross-section introduced in section 2.3, we
first compare the LT+NLT broadening distributions to the full GW and HTL results, see
Fig. 3.6. As shown in appendix 3.C, at large values of the IR regulator, the LT map fails
to reproduce the exact result. This is due to the fact that in such cases � is large and thus
higher orders in the IOE/M expansion need to be taken into account. We note that for
both models the LT+NLT result is remarkably close the LT one, thus ensuring a minimal
dependence on the IR details of each potential (recall that the NLT contribution is not
universal, see section 2.3). Thus, this suggests that jet quenching phenomenology should
have little sensitivity to the non-perturbative model dependent details of the scattering
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Figure 3.5: Left: Momentum broadening probability distribution obtained from the
IOE/M scheme (LO,NLO and LO+NLO contributions), compared to the full GW model
solution. Here we take �=0.1 corresponding to (Q2

s0=30 GeV2, m2
D=0.13 GeV2). In this

and following figures kT ⌘ |k|. Right, Top: ratio between the LO+NLO result and the
exact GW for � = 0.1, 0.15, 0.2. Right Bottom: same but for the LO+NLO+NNLO
result. � = 0.15, 0.2 corresponds to (Q2

s0 = 4 GeV2, m2
D = 0.3 GeV2), (Q2

s0 = 4 GeV2,
m2

D=0.5 GeV2), respectively. Figures taken from [6].

potentials. We note however that the GW comparison leads to a larger discrepancy
between the LT and LT+NLT curves. This can be traced back to the fact that we fix mD

and the use the universal map to generate the respective µ. This map is only valid at LT
accuracy and thus, it is expected that larger deviations occur in the GW result.

Finally, we incorporate the NLT expansion into the IOE/M approach by shifting the
expansion point vMS(x) ! vMS(x) + vNLT(x) and continue treating �v(x) as a pertur-
bation. An analytic treatment Eq. (3.47) to NLO is possible if one also notices that the
NLT corrections are always small when compared to the NLO ones, and thus one can also
keep track of corrections up to linear order in µ2

?. The respective broadening distribution
is given by

PNLO+�NLT(k, L) = �∆x I2(x, a)�
32�µ2

?

c1Q2
s

∆
2
x I2

✓

x,
µ2
?p

c2Q2
s

◆

, (3.58)

where �NLT denotes that we also expand to linear order the non-universal contribution.
Notice that P is no longer just a function of �, but it depends explicitly on µ2

? and
the coefficients c1 and c2 (see section 2.3), thus showing that indeed the result is model
dependent. In Fig. 3.7 we compare the LO+NLO+NLT4 distribution P to the GW (top)
and HTL (bottom) exact results. We clearly observe that the effect of including the NLT

4Here we do not use the linearized version δNLT, although it was numerically checked that the differ-
ence to the figure shown is negligible.
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Figure 3.6: Ratio between the LT (solid) and NLT expansions to the full GW (top) and
HTL (bottom) potentials for different values of m2

D. The orange, dashed line in the top
panel fully overlaps with the reference black line denoting unity. Figure taken from [6].

contribution is always smaller than 3%, only becoming relevant for already relatively large
values of mD. This confirms the small dependence on the infrared modeling, although
the agreement at small |k| to the exact solution increases by including the NLT term, as
expected.

3.2.3 Broadening distribution in the IOE/M approach at LHC,
RHIC and EIC

In this final section, we apply the IOE/M scheme at NLO accuracy, in the parameter
region to be explored at LHC, RHIC and EIC. We fix the medium length L = 6 fm
roughly corresponding to the radius of both Pb and Au nuclei. For RHIC and LHC, we
use the same temperature estimate as the one in [153], and we assume the medium can
be described by the HTL model (the temperature is fixed, with no time evolution). The
saturation scale Q2

s0 is then deduced using q̂0 = 18⇡↵2
sT

3, where we take ↵s = 1/⇡. For
the EIC, the HTL model can not be directly applied since the medium is not thermal5.
The relevant scale probed the propagating parton is size of the nucleons, we take to be
of order 1/ΛQCD. Thus, in the GW model, one obtains that µ = ΛQCD = 200MeV and
using the estimate provided in [154] in the context of Color Glass Condensate physics,

5We note however that at LT order there is no difference between the GW and HTL models, and thus
one could simply consider one of them.
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Figure 3.7: Comparison between HTL/GW to LO+NLO+NLT broadening distributions
for different values of m2

D. Figure taken from [6].

we obtain q̂0L = 0.35GeV2, similar to the values used in [155]. The values used in result
shown in Fig. 3.8 are detailed in table 3.1.

Table 3.1: Relevant parameters for the three different setups.

Collider T [MeV] m2
D [GeV2] Q2

s[GeV2] q̂ [GeV2/fm] �

LHC 470 1.33 120.2 20.03 0.15
RHIC 360 0.78 51.5 8.58 0.16
Collider µ[MeV] µ2

?[GeV2] Q2
s[GeV2] q̂ [GeV2/fm] �

EIC 200 0.01 1.8 0.29 0.2

For the LHC results, we observe that the IOE/M approximation captures the GW
solution up to a 5% accuracy at |k| > 20 GeV, while the LO term fails to describe this
region. The universal map between potentials leads to minimal differences between the
GW and HTL models, as expected for this set-up. In the IR, we see that for |k| <
1 GeV there is a ⇠ 20% deviation for the LO+NLO term that gets greatly improved
by the LO+NLO+NNLO term, as observed in the previous sections. Around the peak
there is a 15% deviations to the exact solution, which get improved when adding the
NNLO term. We note that although these fluctuations disappear in the case of the LO
approach (by adjusting Q2), this is at the cost of losing the hard tail, which is physically
meaningful. Plus, for a phenomenological application, this fluctuations will not dominate
the physics or the uncertainty of the result. Similar results are found for RHIC, the
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Figure 3.8: Results obtained for the expected parameters selection at LHC (left), RHIC
(center) and EIC (right), see table 3.1. For LHC and RHIC, we plot the momentum dis-
tribution for the GW and HTL models, and for the LO, LO+NLO and LO+NLO+NNLO
terms in the IOE/M approach (top). The middle panel shows the ratio between the GW
and HTL models using the universal map in Eq. 2.48 and the bottom panel shows the
LO+NLO (orange) and LO+NLO+NNLO (purple) to the GW result. For EIC, the leg-
end is the same, except we do not provide a comparison to the GW model. Figure taken
from [6].

most important difference being a more noticeable distinction between the GW and HTL
results, due the to larger � value. For the EIC set-up we find a dressed saturation scale
Q2

s = 1.8GeV2, justifying the application of the GW model and perturbation theory.
Although the value the saturation scale is significantly smaller, so is the IR scale, due to
the fact that the expected medium is not a thermal plasma but rather a dense cold gluonic
system. Thus, we observe that although the value for � is slightly larger, its evolution is
slow. Nonetheless, the application of the IOE/M approach is less successful in this set-up
and it is better suited for only semi-quantitative analysis.

3.2.4 A brief summary

In this section we have shown that using the IOE/M approach to computing the single
particle momentum broadening distribution leads at NLO accuracy to a closed form ex-
pression that captures both the MS and SH regimes. The major result of this section,
Eq. (3.55), was already known to Molière 70 years ago (in the QED context), and it is
surprising that for so long phenomenological studies either focus on the MS, SH regimes
or treat the problem exactly. A downside of the IOE/M approach is that it requires a big
separations between the hard (Q2

s) and soft (µ2
?) scales in the problem. We observed that

this is well satisfied in the LHC and RHIC regimes, but it does not hold so well for EIC
conditions.

A secondary result in the previous study was the realization that non-perturbative and
model dependent contributions to the broadening distribution seem to have a very small
effect, specially when compared with higher order contributions in the IOE/M scheme.
The reason for this is the fact that the IOE/M is an expansion in Q2

s0x
2, while the model
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dependent contributions come from an expansion in µ2
?x

2. Thus, if one uses the map
given in Eq. (2.48), a meaningful and controllable comparison between models for the
in-medium scattering cross-sections is possible, unlike previous approaches [127].

3.A Useful integrals to compute the NLO broadening

term in the IOE/M approach

In this appendix, we compute the two Fourier integrals used to compute the single particle
broadening distribution in the IOE/M scheme. They read

I1 =

ˆ

x

e�ix·k e�
1
4
Q2

s x
2

, (3.59)

and

I2 =

ˆ

x

e�ix·k e�
1
4
Q2

s x
2

log
1

Q2x2
. (3.60)

I1 is trivial to obtain since it is Gaussian

I1(x) =
4⇡

Q2
s

e�x . (3.61)

with x = k2/Q2
s. I2 requires one to decompose the logarithm as the sum of two indefinite

integrals

log
1

x2Q2
= � lim

✏!0

ˆ 1

✏

dt

t

⇣

e�t � e�x2Q2t
⌘

. (3.62)

This representation is particularly useful since it reduces the computation of a hard inte-
gral to the sum of two Gaussian integrations. Using a = Q2/Q2

s

I2 = �I1

ˆ 1

✏

dt

t
e�t +

ˆ 1

✏

dt

t

ˆ

x

e�ix·ke�
1
4
( 1+4at)Q2

sx
2

= �I1

ˆ 1

✏

dt

t
e�t +

4⇡

Q2

ˆ 1

✏

dt

t(1 + 4at)
e
� k2

(1+4at)Q2
s .

(3.63)

Performing the change of variables u + x = x/(1 + 4at), the last integral in Eq. (3.63)
yields

�e�x

ˆ �4ax✏

�x

du

u
e�u = e�x [Ei(x)� Ei(4ax✏)] . (3.64)

Taking the limit ✏! 0, the first term in Eq. (3.63) and the last term in Eq. (3.64) combine
to give

�
ˆ 1

✏

dt

t
e�t � Ei(4ax✏) = Ei(✏)� Ei(4ax✏) = � log 4ax +O(✏) , (3.65)

where we used that Ei(✏) ' �E+log ✏, with �E = 0.577(2) the Euler-Mascheroni constant.
Putting back in the I1 overall factor, one obtains the exression in the main text

I2(x, a) = I1(x)
h

Ei(x)� log 4ax
i

. (3.66)
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3.B Kinetic formulation of momentum broadening

In the main text, the momentum broadening distribution was computed by solving the
associated kinetic equation in Fourier space. Nonetheless, we observed that the kinetic
formulation somehow better displays the underlying physics, and thus it would be inter-
esting to see how it simplifies in the MS, SH and IOE/M solutions.

One can write Eq. (2.33) as

@

@L
P(k, L) = �

ˆ

q

v(q)P(k � q, L) . (3.67)

In the SH regime, this equation can be solved iteratively and only the first iteration
contributes. It reads in that case

PSH(k, L) = �
ˆ

q

v(q)(2⇡)2�(2)(k � q) , (3.68)

which is satisfied by Eq. (2.56).
When multiple soft effects become important, one can neglect the slow logarithms

which only become important in the tails of the distribution, and thus v(x) ⇠ x2. This
reduces Eq. (3.67) to a diffusion (Fokker-Planck) equation, with q̂ the diffusion parameter,

@

@L
PMS(k, L) =

q̂

4
~r2

kP
MS(k, L) , (3.69)

which can be easily shown to reproduce the solution in the main text.
In the IOE/M approach, one expects to recover the diffusion equation at leading

order. Since formally, the broadening distribution can be written as a series in �, one
can expand Eq. (3.67). This leads to a hierarchy of (trivially) coupled diffusion equations
with a source term. Using Eqs. (3.1) and (3.47) combined with Eq. (3.67), leads to (i � 1)

@

@L
PNiLO(k, L) =

Q2
s

4L
~r2

kP
NiLO(k, L) +

4⇡Q2
s0

L

ˆ

q

1

q4
PNi�1LO(k � q, L) , (3.70)

with the leading order term satisfying Eq. (3.69). Eq. (3.70), besides its interesting coupled
structure, offers no clear computational advantage over the approach followed in the main
text.

3.C Universal map between GW and HTL at the

level of the broadening distribution

In this appendix we study the quality of the LT map between the GW and HTL model
introduced in section 2.3 at the level of the broadening distribution. Here we fix mD and
use the universal map given in Eq. (2.48) to obtain the respective µ; we then compute
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Figure 3.9: Ratio between PHTL(k, L) and PGW(k, L) as a function of the Debye mass
m2

D for Q2
s0=4.8 GeV2. Figure taken from [6].

the broadening distributions for the GW and HTL models. In Fig. 3.9, we show the ratio
of the respective distributions, and we observe that for small values of the masses the
universal map works well. When the mD tends to the large momentum scale Qs0, then
the mapping becomes worse, as expected. Notice, that at small |k| one observes a ⇠ 10%
deviation, in accordance with the fact that this is a LT (small dipole) map. These results
agree with the ones shown in the previous chapter.

73



João Lourenço Henriques Barata

74



4
Digital quantum computing for

quantum simulation

In this chapter we introduce the quantum circuit model [156] and respective notation. This
is followed by an overview of the quantum simulation algorithm [58,70,71]. This chapter
is primarily aimed at introducing the main concepts and notation used in chapters 5
and 6, and more detailed and complete discussion can be found in relevant books and
reviews [74, 157].

4.1 Quantum bits and quantum gates

In this section we introduce the usual notation and basic results found in quantum com-
puting.

In classical digital computation, the smallest object that can hold any information is
called a bit. A bit can be in either one of two states – 0 or 1 – and the only non-trivial
operation that one can perform on a bit is the negation operation: 1 ! 0 and 0 ! 1.
Although bits are represented in the real world by, for example, the discrete values of
tension in an electrical wire, we consider them as purely mathematical objects in this
thesis.

In the quantum world, bits get promoted to quantum bits or qubits for short. As bits,
qubits can be in a (pure) state |0i or |1i, but since they are quantum, in general a bit | i
can be written as a superposition of the two basis states

| i = ↵ |0i+ � |1i , (4.1)
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where ↵ and � are complex numbers and the only constraint is that |↵|2 + |�|2 = 1,
which follows from the fact the Quantum Mechanics (QM) is unitary. Like classical bits,
qubits can also be represented in physical devices, for example, as combinations of the
discrete eigenstates of a harmonic oscillator (see chapter 1). Although we do not discuss
the physical realizations of qubits, it is convenient to think of a qubit as a 1/2-spin, where
the usual convention in quantum computing1 is that the state |0i = |"i = [1, 0]T and
|1i = |#i = [0, 1]T are the eigenstates of the spin operator Sz.

As is well known in QM, any transformation done to a single qubit can be decom-
posed as a linear combination of Pauli operators with unity, i.e. {1, �x, �y, �z}. In the
computational basis, i.e. in the {|0i , |1i} basis, these gates (operators) read

1 =

✓
1 0
0 1

◆

, �x =

✓
0 1
1 0

◆

, �y =

✓
0 �i
i 0

◆

, �z =

✓
1 0
0 �1

◆

. (4.2)

It is also useful to introduce the two following gates (operators)

H =
1p
2

✓
1 1
1 �1

◆

, S =

✓
1 0
0 i

◆

, (4.3)

where the first gate is usually referred to as Hadamard gate and the second as phase
gate. Finally, since we are interested in quantum simulation, which requires at some level
the implementation of the exponential of some of the previous operators, we recall that
the exponential of the Pauli matrices is easily computed by writing the exponential map
explicitly. One obtains for �z

Rz(✓) ⌘ exp

✓

�i
✓

2
�z

◆

=

 

e�i ✓
2 0

0 ei
✓
2

!

. (4.4)

The other two rotation matrices are easily obtained from this one by noticing that

H�xH = �z , HS†�ySH = H�xH = �z . (4.5)

Then we have, for example,

Rx(✓) ⌘ exp

✓

�i
✓

2
�x

◆

= exp

✓

�i
✓

2
H�xH

◆

= H exp

✓

�i
✓

2
�z

◆

H = HRz(✓)H . (4.6)

The usefulness of this formula will become apparent later. In conclusion and unlike
the classical counterpart, where the only single bit operation is the NOT operation, the
quantum scenario allows for an infinite set of discrete transformations to be performed
on a single qubit.

Another difference with respect to the classical case is the act of measurement. In
the classical world, one is able to measure the bit at any moment without disrupting the

1Not the usual convention in QM [158].
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stored state. In the quantum world this is no longer true, due to the special character
of the act of measurement in QM. In particular, if a qubit is measured its state will
collapse to either |0i or |1i, with the probability of such transitions occurring given by
the coefficient associated to each basis state. Since the output state is always classical,
and it is not usually used for any further operations (although it can be used to control
classical operations), one can consider the qubit after measurement as being a classical
bit.

Finally, similar to the classical case, one can represent the set of operations acting on
a single qubit state via a circuit representation, inherited from Penrose’s diagrammatic
calculus. One can show that such a model is complete, in the sense that any possible
operation can be represented [74]. In Fig. 4.1, we introduce the usual notation for denoting
the single qubit operations. Notice that the incoming state comes from the left (to a
reader) and the output state leaves through the right. This is unlike the matrix notation
where the order is reversed (i.e. matrices act on vectors coming from the right). Thus,
when going from a matrix to a circuit representation one needs to reverse the order of the
operations.

Figure 4.1: Circuit notation for single qubit operations. We introduce an fictitious input
state, denoted by | i, just to highlight how the operations act, i.e. from left to right.
Qubits are denoted by single lines, while classical bits are denoted by double lines.

The generalization of the previous results to a multi-(qub)bit system is immediate. It
is enough to detail the two (qu)bit scenario, while larger systems can always be written
in terms of single or two (qu)bit operations.

In the classical scenario, with two bits the state space is span by {00, 01, 10, 11}.
There are many operations that use two bits; here we consider the NAND gate, which
given two inputs, outputs the negation of the logical adding operation. It is possible to
show that any multi-bit operation can be decomposed just in terms of NAND gates; in
this sense the NAND gate is an universal gate [159].
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In the quantum world, there is also a large variety of two-qubits gates. In this case,
the Hilbert space is spanned by the computational basis states {|00i , |01i , |10i , |11i},
where our notation implicitly means |abi = |ai ⌦ |bi, i.e. extra qubits can be added via a
tensor product of the respective Hilbert spaces. Thus, in this case the single qubit gate
U should explicitly read U ⌦ 1. We only employ this explicit but heavy notation when
operations are not completely clear.

The prototypical two-qubit gate is the CNOT gate, where the C stands for controlled
and the NOT operation is nothing but the application of �x. In the computational basis,
the CNOT gate is given by

CNOT =

0

B
B
@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

C
C
A

, (4.7)

i.e. it applies the single qubit operation �x only when the input state is of the form |10i
or |11i. One can generalize this and define a generalized controlled gate CU , as applying
the single qubit gate U , depending on the value of the input qubit. Usually, if one wants
to apply the gate on the target qubit when the control is in the state |1i, then one uses
a• on the control qubit line, with a vertical line down to the controllable gate. On the
other hand, if one wants to activate the gate if the control qubit is in the state |0i, then
one uses the symbol � = �x• �x. This notation can be extended to circuits with more
qubits, where one can have more than one control qubit at a time and also act on more
than one target qubit. Such gates can always be written in terms of CNOT and the single
qubits gates [74], i.e. the set formed by the CNOT and single qubit gates is universal.
It is however easily realized that decomposing any multi-qubit gate in terms of CNOT
and single qubit gates is not efficient, since it will require an exponential number of such
basic gates2. Nonetheless, one can show that a discrete set of gates can approximate any
circuit constructed using CNOT and single qubit unitaries, with only a sub-exponential
overhead in the number of gates. This result is one of the most important results in
quantum computing and is known as the Solovay-Kitaev theorem [161]. An advantage of
using a discrete set of gates (versus a continuum set of gates) is that fault tolerance and
quantum error correction techniques can be easily applied, since they also require discrete
sets of gates to correct an infinite set of errors [160].

Coming back to the classical scenario, a natural question is if one can construct a
NAND quantum gate. It is easily realized that it is impossible to construct such a gate
since all operations in QM have to be unitary. This requires that every gate maps each
input to a different output. In the case of the classical NAND gate this is not possible
because the inputs 00, 01 and 10 are mapped to the same output. Thus, only reversible
classical gates have a quantum analog. Also, as a corollary, there can be no universal gate
analog to the classical NAND in the quantum context.

2In such implementations, fault-tolerance and efficient quantum error correction is also not guaran-
teed [160].
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Figure 4.2: Left: Diagrammatic representation of the two-qubit operator 1⌦ U . Right:
Generic CU operation, where the gate U is only applied if the control qubit is in the
state |1i.

Other two important examples of classical operations which are not allowed in the
quantum context are the FANIN and FANOUT classical gates. The first operation, takes
two inputs and merges them into a single bit output; the second gate does the opposite
by splitting a single input bit to two bits, each holding a copy of the input. A quantum
FANIN operation would clearly not be possible since we are mapping larger (finite) Hilbert
spaces to smaller ones, the FANOUT operation is forbidden by the so called no-cloning
theorem of QM [74], which is just a consequence of unitarity. Another type of operation
which is also forbidden are FEEDBACKs, where forward information in the circuit can
loop back to a previous point in the circuit. This is forbidden because QM is linear, and
clearly FEEDBACK operations are not linear, see Fig. 4.3.

Figure 4.3: FANIN, FANOUT and FEEDBACK diagrammatic representations, which are
not allowed by QM.

With the above definitions and concepts (with the respective extension to higher
qubits systems), we can give the notion of quantum computer that we use in the rest of
this thesis.

A quantum computer is a physical device which can be theoretically represented using
the circuit model. In addition, we require that a quantum computer satisfies the following
conditions [73]:

1. It is a quantum device where one can recognize the different qubits, the couplings
between each of them and the system Hamiltonian. For our purposes, we consider
that there is no limit on the number of qubits and that each qubit is coupled to
all other qubits. We also do not care about the details of the system natural time
evolution, and assume that one can implement an universal set of gates.
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2. The underlying Hilbert space for nQ qubits has dimension 2nQ , where we assume
that the Hilbert space is always finite dimensional. The computational basis is
defined as being given by states of the form |x1x2 · · · xnQ

i = |xi, where xi 2 {0, 1}
and the tensor product corresponds to the binary decomposition of the number x.
One also assumes that the fiducial state |x = 0i can always be prepared.

3. One is able to perform single qubit measurements in the computational basis. Cou-
pled with the hypothesis that an universal set of quantum gates can be implemented,
then one can measure in different basis, by doing the adequate set of transformations
between different basis.

4. We finally require that there is a sea of qubits, which largely surpasses the number
of qubits necessary to run a certain circuit. In particular, this means if an algo-
rithm needs auxiliary qubits – referred to as ancilla qubits – to perform a side step
calculation, then we assume that such qubits are always available. We also assume
that ancillas can be used more than once, provided adequate erasure procedures are
implemented.

4.2 The quantum simulation algorithm

In the previous section, we gave the basic elements of the quantum circuit model, which
effectively define the theoretical representation for a quantum computer. Let us now apply
the above definitions and concepts to quantum simulation.

The quantum simulation algorithm tries to simulate the time evolution of a complex
and inaccessible quantum system, by using an simpler and accessible quantum system. In
practice, one wants to simulate dynamics of the target system according to the Schrodinger
equation

i@t | i = H | i , (4.8)

whose formula solution for a time independent Hamiltonian is

| (t)i = exp (�iHt) | (0)i , (4.9)

where | (0)i is the initial condition of the system at time t = 0.

One way to simulate the dynamics of the system would be to construct an initial state
| (0)i and then solve the differential equation given in Eq. (4.8). However, this would
require solving an exponential number of equations, and it would therefore in general
require an exponential time to solve the problem. However, Eq. (4.9) tells us that instead
of solving a set of differential equations, one can simply construct an approximation to
the time evolution operator exp (�iHt) of the target system in the quantum computer.
Since this is an unitary operator, based on the previous section, we know that in principle
an efficient implementation of such an operator could exist.
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Another important observation is that for physical systems, the form ofH is restricted
by, for example, symmetry or other physical criteria. Thus, the class of physical Hamilto-
nians is much smaller than the full space of Hamiltonians. In particular, the Hamiltonians
we are interested can always be written as

H =
X

i

Hi , (4.10)

where each Hi only acts on a sub-space of the full Hilbert space. Indeed, we know, for
example, that interactions in a physical system are always local, and thus one expects
that the respective Hamiltonian reflects this property. We note however that this is a
basis dependent statement; for example in a momentum basis the interaction terms are
highly delocalized (since they are roughly the Fourier pair of a local term), and thus their
implementation would not be efficient.

Even assuming the form in Eq. (4.10), it is not trivial to implement the time evolution
operator, unless for all i 6= k one has that [Hi, Hk] = 0, which is not typically the case.
However the Baker–Campbell–Hausdorff (BCH) formula tells us that for any operators A
and B, one has that

eiAteiBt = eiAt+iBt� t2

2
[A,B] +O(t3) , (4.11)

thus truncating at order t2

eiAteiBt ⇡ eiAt+iBt . (4.12)

Identifying the exponent on the right hand side with �iHt, this gives a formula to ap-
proximate the time evolution operator. Here A and B should be seen as local Hermitian
operators, which are easier to implement than the Hamiltonian, since they only act on
sub-spaces of the full Hilbert space.

However, the error for such a formula is t2

2
[A,B], which grows quadratically in time,

and thus if the simulation time is large, than the error becomes of the order of the first
order term we track. A generalization of the BCH formula to solve this issue consists in
subdividing the simulation time into n small evolution steps. This leads to the famous
Trotter formula [162]

lim
n!1

⇣

ei
At
n ei

Bt
n

⌘n

= ei(A+B)t , (4.13)

which holds since in an infinitesimal step all operators commute to linear order.
The leading order approximation to the Trotter formula is known as first order

Trotter-Suzuki formula [163, 164] and reads

ei(A+B)t =
⇣

ei
At
n ei

Bt
n

⌘n

+O

✓
t2

n2

◆

(4.14)

The previous equation says that the full Hamiltonian can be implemented by slicing time
in n small steps. In each step, all operators commute and thus one can implement the
infinitesimal time evolution operator as a product of several (simpler) time evolution
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operators. The error of such an approximation is quadratic in the infinitesimal time
step3. Although higher order product formulas can be constructed [163, 164], we will
consider only the first order Trotter-Suzuki formula in this thesis. Although recent ef-
forts have lead to more efficient and accurate ways of implementing the time evolution
operator [72, 167, 168], it turns out that for many applications, due to the characteristics
of physical Hamiltonians, the Trotter-Suzuki approximation works remarkably well. An-
other advantage of this strategy, compared to some of the most recent approaches, is that
it allows to explore the symmetries and properties of the underlying Hamiltonian directly,
leading to a very straightforward way to simulate the desired system.

With the above considerations we can outline the steps involved in the quantum
simulation algorithm.

1. Input: The Hamiltonian H =
P

i Hi describing the dynamics of the target system,
where we assume H is given in terms of local Hamiltonians Hi. In addition, one
needs a template for the initial state of the system | (0)i.

2. Encoding/Digitization: In a digital quantum computer, one will need a map
between the degrees of freedom of the target system and the qubits in the quantum
computer. In addition, one needs to find a decomposition of the local Hamiltonians
Hi in terms of basic gate operations.

3. Initial State Preparation: Given the template and an initial fiducial state |0i,
one performs |0i ! | ̃(0)i, where the tilde denotes that this is the discrete version
of the physical state | (0)i.

4. Time evolution: Once the initial state is prepared, one time evolves it using an
approximation to the exact time evolution operator.

5. Measurement: After the time evolution step is performed, one extracts the in-
formation of the system by measuring the adequate qubits, typically according to
some protocol.

6. Output: In this thesis we are interested in outputs corresponding to the expectation
value of operators, i.e. given the final state | ̃(t)i we want h ̃(t)|V | ̃(t)i.

It is useful here to give a typical example of simulating local Hamiltonians, which
we will use in the next chapter. Suppose first that one has a one-qubit system which
evolves according to the Hamiltonian H = �z. Then, supposing | ̃(0)i = |0i, the time
evolution operator is simply Rz(2t). If we had instead two qubits, then the straightforward
generalization of the Hamiltonian is H = �z⌦�z, which is not immediately exponentiated.

3One can find a detailed discussion on Trotter-Suzuki formulas and their accuracy and exact error
bounds in [165]. Such estimates are important for implementation in Noisy Intermediate-Scale Quantum
(NISQ) [166] devices.
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The usual trick is to notice that the Hamiltonian simply measures the parity of the
state, i.e.

�z⌦�z |00i = |00i , �z⌦�z |01i = � |01i , �z⌦�z |10i = � |10i , �z⌦�z |11i = |11i .
(4.15)

Thus, if the qubits have different parity one has to change the phase by a �1 factor.
One can implement such a time evolution operator as detailed in Fig. 4.4. The initial
two CNOT gates determine the parity of the input, determining the sign of the phase.
The last two gates erase the action of the initial parity determination, erasing all the
information from the ancilla qubit. This symmetric structure is typically found every
time one needs to erase a previous operation.

Figure 4.4: Implementation of the time evolution operator associated to he Hamiltonian
H = �z ⌦ �z.

This strategy is easily seen to generalize to larger qubit systems. Using Eqs. (4.5) and
(4.6), one realizes that if instead of �z one had, for example, �x, then on the line of the
corresponding qubit one would previously apply a Hadamard gate (and respectively one
at the end), so that it suffices to know how to exponentiate the �z gate. The importance
of this strategy is that it gives a brute force way of implementing any local Hamiltonian.
For example, in the harmonic quantum oscillator the number operator ⇠ a†a can be easily
mapped to a spin system, corresponding to the operator ⇠ S+S�. It is well known [158]
that the raising S+ and lowering S� 1/2-spin operators can always be written in terms
of Pauli matrices. Thus, expanding out S+S� into a sum of products of Pauli operators
one could easily apply the above algorithm. However, it is also clear that, for a generic
operator, the number of local operators one needs to implement can be exponentially
large, thus this brute force approach to implementing the time evolution operator is
usually not adequate and smarter strategies need to be found. Nonetheless, for NISQ era
implementations, the overhead due to using this strategy is typically small and thus it is
useful in practice.
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4.A The (symmetric) quantum Fourier transform al-

gorithm

In this appendix we introduce the quantum Fourier transform [74] (qFT) and the sym-
metric quantum Fourier transform [10] algorithms. Although the qFT is not strictly
necessary to quantum simulate a system, it is nonetheless useful in order to transform
between different basis, where implementing the time evolution operator might be more
convenient. More importantly, the qFT will play an important role in the next chapters.

Given a register with nQ qubits and denoting a generic state as

|xi = |

nQ�1
X

i=0

xi2
ii , (4.16)

with xi 2 {0, 1}, the qFT algorithm performs the following operation

|xi ! 1p
2nQ

2
nQ�1X

k=0

e
2⇡i xk

2
nQ |ki . (4.17)

To construct the circuit implementing this operation one just needs to realize that the
exponents can be written as (up to terms leading to trivial phases)

xk

2nQ
= (x0 + 2x1 + 4x2 + · · ·+ 2nQ�1xnQ�1)(k0 + 2k1 + 4k2 + · · ·+ 2nQ�1knQ�1)

1

2nQ

= k0

⇣xnQ�1

2
+

xnQ�2

4
+ · · ·+

x0

2nQ

⌘

+ k1

⇣xnQ�2

2
+

xnQ�3

4
+ · · ·+

x0

2nQ�1

⌘

+ · · ·+ knQ�1
x0

2
.

(4.18)

Thus one can rewrite Eq. (4.17) explicitly as

|xi = |0i+ e
2⇡i

✓

xnQ�1

2
+

xnQ�2

4
+···+

x0

2
nQ

◆

|1ip
2

⌦ |0i+ e
2⇡i

✓

xnQ�2

2
+

xnQ�3

4
+···+

x0

2
nQ�1

◆

|1ip
2

⌦

⌦ · · ·⌦ |0i+ e2⇡i
x0
2 |1ip

2
.

(4.19)

Introducing the single qubit gate operator Rt ⌘ diag(1, exp{�2⇡i/2t})4, one can easily
realize that the qFT is implemented by the circuit shown in Fig. 4.5.

4This definition differs from the typical one [74].

84



4 Digital quantum computing for quantum simulation

Figure 4.5: Implementation of the quantum Fourier transform algorithm.

The symmetric qFT is defined as

|xi ! 1p
2nQ

2
nQ�1

2X

k=� 2
nQ�1

2

e
2⇡i xk

2
nQ |ki . (4.20)

It is obtained from the standard qFT by subtracting the x dependent phase exp(�2⇡i (2
nQ�1)x

2
nQ+1 )

to each state |ki. This can be implemented by an overall phase shift applied before the
standard qFT, as shown in Fig. 4.6.

Figure 4.6: Implementation of the symmetric quantum Fourier transform algorithm. Here
M = 2nQ � 1.
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5
Quantum simulating scattering of �4

scalar theory in d + 1 dimensions

In this chapter we introduce a new strategy towards quantum simulating scattering in �4

scalar QFT in d + 1 dimensions, following the seminal work of Jordan, Lee and Preskill
(JLP) [64, 65]. The fundamental difference between these two approaches lies on the
encoding/digitization of the QFT. Thus, after setting up the familiar picture of high
energy scattering [23, 24], we review JLP’s approach and introduce our strategy. After,
we detail the several steps involved in a quantum simulation algorithm (see previous
chapter), presenting how our strategy might be realized, while comparing to JLP and its
implementation [10].

This chapter is based on [7].

5.1 Setting up the problem: high energy scattering

Let us first revisit the formulation of scattering experiments in the QFT context. The
relevant object to consider is the S-matrix, which relates in/out asymptotic states

S�↵ ⌘ hΨout
� |Ψin

↵ i , (5.1)

where |Ψin
↵ i is an asymptotic in-state and |Ψout

� i an asymptotic out-state, both being time
independent eigenstates of the full Hamiltonian H.

We assume that the Hamiltonian of the system can always be written as a sum of a
free part H0 and an interacting potential V , i.e. H = H0 + V . If the energy spectrum
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is continuous, then if at early/late times the state is described by an eigenstate of the
free Hamiltonian with energy E, H0 |�↵i = E↵ |�↵i, then there must exist an eigenstate
of the full Hamiltonian satisfying H |Ψ↵i = (H0 + V ) |Ψ↵i = E↵ |Ψ↵i. This leads to the
Lippmann-Schwinger equation [169,170],

|Ψin/out
↵ i = |�↵i+G0V |Ψin/out

↵ i = (V � V G0V )�1V |�↵i , (5.2)

with G�1
0 = E↵ �H0 + i". This equation formally gives the connection between the free

wave-function and the system wave-function in the full theory. As usual, one can isolate
the scattering terms from the non-scattering terms

S�↵ = �↵� � 2⇡i �(E↵ � E�)T�↵ , (5.3)

where the T�matrix is the object entering the calculation of physical cross-sections [23,
24]. It is formally defined by the condition T |�↵i = V |Ψ↵i, which in components reads

T�↵ = h��|V |Ψout
↵ i = hΨin

� |V |�↵i = hΨin
� |(V � V G0V )|Ψout

↵ i . (5.4)

Squaring the previous expression

|T�↵|
2 = hΨin

↵ | (V � V G0V )|Ψout
� ihΨout

� |(V � V G0V )† |Ψin
↵ i , (5.5)

and inserting the necessary kinematical pre-factors gives an exact way to compute any
cross-section. In practice, the operator V � V G0V is not known exactly or in a closed
form, and thus one either makes uses of perturbation theory to expand Eq. (5.2) order
by order in the potential (similar to usual QM perturbation theory) [170] or one can
use variational/numerical approaches [169, 171, 172]. Although quantum formulations of
such algorithms have been considered [173], we proceed by using the Schrodinger picture,
where the time dependence is put in the system state.

In the Schrodinger picture, one assumes that the asymptotic states are eigenstates of
H0, i.e. |Ψin

g (�1)i = |�g(�1)i and |Ψout
g (+1)i = |�g(+1)i. A state in this picture is

related to the respective state in the Heisenberg picture via time dependent wave-packets

|Ψin/out
g (t)i ⌘

ˆ

d↵ g(↵)e�iE↵t |Ψin/out
↵ i , (5.6)

and

|�g(t)i ⌘
ˆ

d↵ g(↵)e�iE↵t |�↵i . (5.7)

The Lippmann-Schwinger equation can be written for these time dependent states as

|Ψin/out
g (t)i =|�g(t)i+

ˆ 1

0

dT e±i(H0⌥i✏)T V |Ψin/out
g (t⌥ T )i , (5.8)
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where V (T ) ⌘ V e�✏|T | can be seen as adiabatically turning on the interaction to obtain
|Ψin(t)i from the initial condition |�g(�1)i. Thus, the formulation of scattering in the
Schrodinger picture, tells us that one can prepare an initial eigenstate of the free Hamil-
tonian in the infinite past and then slowly turn-on the interactions such that after a finite
amount of time one has prepared the eigenstate of the full Hamiltonian with the same
eigenvalue. Then, one time evolves this state according to the full time evolution operator
(thus allowing for interactions to occur) until the wave-packet of the final state has been
obtained.

With this more abstract discussion in mind, let us introduce the theory we want to
study: real scalar �4 theory in d spatial dimension. The Hamiltonian reads

H̄ =

ˆ

ddx
h⇡2

x

2
+

1

2
(r�x)

2 +
m2

2
�2
x +

�

4!
�4
x

i

, (5.9)

where m and � are the (bare) mass and quartic coupling, and r is the spatial gradient
operator in d dimensions. The Heisenberg field operators are1

�x =

ˆ

ddp

(2⇡)d
1

p
2!p

h

ap + a†�p

i

eip·x , (5.10)

satisfying the canonical commutation relations [�x, ⇡y] = i.�(d)(x� y). The annihilation
(creation) operators ap (a†p) are momentum-space Fock operators, corresponding to a

set of harmonic oscillators with frequency !p =
p

p2 +m2 and commutation relations

[ap, a
†
k] = (2⇡)d�(d)(p� k), [ap, ak] = [a†p, a

†
k] = 0.

To study these theory in a digital quantum computer, one needs to discretize the
degrees freedom so that the infinite dimensional Hilbert space of the QFT can be mapped
to the finite Hilbert space where the qubits live. We begin by discretizing the theory
in space, by introducing a lattice with V ⌘ Nd

s sites (Ns per dimension), such that the
(dimensionless) Hamiltonian H̄ can be written as

H ⌘ asH̄ =
X

n

h1

2
⇡2
n +

1

2
(r�n)

2 +
m2

2
�2
n +

�

4!
�4
n

i

, (5.11)

where m = mas, � = � a4�d
s are dimensionless bare mass and coupling parameters, as

the lattice spacing and n = (n1, . . . , nd), ni 2 [0, Ns � 1] labels a point x = nas on
the lattice. We will likewise define a momentum space lattice vector q = (q1, . . . , qd),
qi 2 [�Ns

2
, Ns

2
� 1]. The lattice field operators read

�n =
1p
V

X

q

1
p

2!q

h

aq + a†�q

i

ei2⇡n·q/Ns , ⇡n =
�ip
V

X

q

r
!q

2

h

aq � a†�q

i

ei2⇡n·q/Ns .

(5.12)

1In this chapter, unlike previous ones, the usage of · is applied to denote any contraction indices,
regardless of dimension. From the context, it should be easy for a reader to deduce what each contraction
denotes.
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Here we have introduced the lattice volume V = Nd
s and the dimensionless energy factor

!q = !q a
�1
s is the dimensionless energy. We use the same notation for continuous and

discrete Fock operators and respective indices, which should not create any confusion
taken into context.

Even with this digitization, it is clearly seen that that for each lattice point the
associated Hilbert space is infinite dimensional. Therefore, another discretization step is
necessary in order to have a finite dimensional Hilbert space. We now detail the approach
of JLP and an alternative strategy.

Field based picture: Jordan-Lee-Preskill approach

The approach of JLP consists in noticing that after discretizing the full Hilbert space H
into a spatial lattice one can focus on a single spatial position, since H =

N

x Hx. For
each position, the associated Hilbert space has infinite dimensions. Also, after spatial
discretization, the field operator �(x) gets replaced by Nd

s local field operators �x, which
are defined in terms of a coherent basis for each position: �̂x |xi = �x |xi or by their
Fourier conjugate ⇡̂x |xi = ⇡x |xi. Therefore, if one further imposes a truncation in
the local operator basis for each x, i.e. �x can only take values between [�min.,�max.]
(respectively for ⇡), than the full Hilbert space becomes finite dimensional.

With these discretizations, it easy to compute the number of necessary qubits. If the
maximum value for the field � at each position is N�, and if one dedicates a register of
qubits for each x to store the value of the field, then one would need in total O(V log2 N�)
qubits. Thus, we see that increasing the size of the spatial lattice leads to a linear increase
in the number of necessary qubits, while allowing for the field to take larger values at each
position only grows logarithimically. A diagrammatic representation of JLP discretization
is given in Fig. 5.1.

Particle based picture

Another way of decomposing the Hilbert space, first suggested in [174] and then imple-
mented in [7], is to first decompose H in single particle sectors H =

N1
l=0 H

l, where to
each sector we reserve a register to represent either the momentum or the position of the
particle in a binary basis. Single particle states are defined as

|piphys ⌘
p

2!pa
†
p|vaci , (5.13)

which satisfy the relativistic normalization condition hp|kiphys = 2!p �
(3)(p � k), where

|vaci denotes the Fock vacuum.
In addition, we reserve an extra qubit for each sector to denote whether the particle

exists or if the state is in the single particle vacuum |Ωi(l). Then, each particle sector is
spanned by the single particle vacuum and the collection of occupied states, i.e.

Hl = span{|Ωi(l), {|qi(l)}} , (5.14)
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5 Quantum simulating scattering of �4 scalar theory in d+ 1 dimensions

Figure 5.1: A simple example of JLP’s digitization strategy. Here the light blue square
outlines the region fo the Hilbert space represented in the quantum computer, where
the spatial lattice terminates at x = 5 and the maximum field value is �x = 8. Three
lattice points were highlighted, with each vertical line being represented in the quantum
computer by an array (register) of ⇠ log2(8) qubits, storing the value of the field operator.

|qi denotes the occupied states in a momentum representation. For the same reason in
JLP’s approach one could choose between |�i or |⇡i basis, here one can also opt between

a position |xi(l) or momentum |qi(l) basis.
In more detail, each register requires N ⌘ log2 V+1 qubits, to represent a relativistic

particle state with momentum q = (q1, . . . ,qd), reading

|qi(l) ⌘
�
�q1, . . . ,qdi

�
� "

↵
, (5.15)

where one qubit | "i denotes that the single-particle state is occupied. Furthermore,
since position and momentum states are signed, we choose to represent the value of
momentum/position by reserving a single qubit to denote the sign and multi-qubit register
to hold the absolute value (per dimension)

|qii ⌘ |sii||qi|i . (5.16)

where each component requires (N �1)/d qubits, si = sign(qi) is the sign (one qubit) and
|qi| the absolute value (abs). We define an empty single-particle state as a state where
abs, sign and occupation number qubits are all in the | #i state,

|Ωi(l) ⌘ | #⌦d·Nabs

, #⌦d, #i , (5.17)
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and the full vacuum is defined as |vaci =
N

l |Ωi(l).
It is easily realized that one needs Nabs = N�1

d
� 1 = log2 (V/2

d)
d

qubits to represent
the absolute value of the momentum/position per dimension, with an extra qubit per
dimension to store the sign and an overall qubit per single particle sector to store the
occupancy. In the approach we take, there is an ambiguity in representing the state of
zero momentum or at the spatial origin, thus one must avoid such a point. Another way
to avoid this issue would be to use complement-two digitization, which is the usual way
to digitally represent signed numbers. Although this encoding avoids the issues with the
doubling of the zero state, it would require a non-trivial modification of standard gate
operations (such as the qFT), and is therefore undesirable. The discretization approach
described is diagrammatically represented in Fig. 5.2.

Figure 5.2: A simple example of the single particle approach to discretizing the Hilbert
space. The blue square denotes the subspace captured in the quantum computer, while
the dotted line denotes the values of the occupancy qubit. Here we consider that one can
have at most 4 single-particle states. Each one of them can be in the single vacuum or up
to position x = 2. If we had included the sign qubit, then a mirror image with respect to
the vacuum vertical line, would appear to the left.

We can now compare the representation of the full state of the system |Ψi in these
two discretizations. In the JLP basis, this would be given by

|Ψi =
VY

i=1

ˆ 1

�1
d�iΨ(�1, · · · ,�V) |�1 · · ·�Vi , (5.18)
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5 Quantum simulating scattering of �4 scalar theory in d+ 1 dimensions

with the limits of integrations replaced by finite boundaries, once the local Hilbert space
at each position is truncated and by sums after discretization. In the single particle basis,
this would simply read

|Ψi =
1O

l=1

| i(l) , (5.19)

where, after discretizaion, each component can be written as (in a momentum represen-
tation)

| i(l) = a0|Ωi(l) +
X

q

aq|qi(l) , (5.20)

with |a0|
2 +

P

q |aq|
2 = 1. Notice that the normalization hq|q0i = �q,q0 of these basis

states differs from the usual relativistic normalization, with |qi = |piphys/
p
2!q.

The final digitization step comes from replacing 1 in the previous product by a
single particle sector cut-off M , i.e. the maximum number of particle at any given point
in the simulation, which we discuss below. An important question is how to define the
full momentum space Fock operators in terms of the single particle sector Fock operators.
These can be defined as

aq ⌘ lim
M!1

1p
M

M�1X

l=0

a(l)q , (5.21)

with a
(l)
q , a

(l)†
q denoting chains of spin raising and lowering operators for each q, and

(a
(l)†
q )2 = (a

(l)
q )2 = 0. However, once the Hilbert space in the number of single particle

sectors, it is easily realized that this definition implies that the Fock operators do not obey
the usual canonical relations. Nonetheless, for sufficiently large M , much larger than the
typical occupancy of a momentum state, the bosonic commutation algebra is realized.

To observe this, let us give a small example. The single particle Fock operators
can be represented as products of spin raising (lowering) operators S± = 1/2(�x ± i�y).
Besides having to obey the canonical commutation relations and the being vanishing
when squared, they also must satisfy a

(i)†
q |Ω(i)i = |q(i)i, which provides a simple way to

explicitly construct such operators. Fixing N = 4 qubits per register and d = 1, and
working in a momentum basis, the particle can have momentum q 2 [�7/2, 7/2]. We
have that

| ± 1/2i ⌘ | ##; " / #; "i , | ± 3/2i ⌘ | #"; " / #; "i ,
| ± 5/2i ⌘ | "#; " / #; "i , | ± 7/2i ⌘ | ""; " / #; "i , (5.22)

and the empty state |Ωi = | ##; #; #i. By direct inspection one has that the single particle
momentum Fock operators read

a
(i)†
�1/2 ⌘ S+

0 , a
(i)†
�3/2 ⌘ S+

2 S
+
0 , a

(i)†
�5/2 ⌘ S+

3 S
+
0 , a

(i)†
�7/2 ⌘ S+

3 S
+
2 S

+
0 , (5.23)

93



João Lourenço Henriques Barata

where a
(i)†
+|q| = S+

1 a
(i)†
�|q|, and we label 0 as the occupancy qubit and 1 the sign qubit

and lowest digit in the abs register 2 and 3 the highest value digit. The position space
representation is identical. Using this map, it is simple to check that a

(i)†
q |Ω(i)i = |q(i)i

and (a
(i)†
q )2 = (a

(i)
q )2 = 0, so that Eq. (5.21), at finite M , implies

[aq, a
†
q] =

1

M

M�1X

i=0

h

{a(i)q , a(i)†q }� 2a(i)†q a(i)q

i

= 1 +O
⇣
nq

M

⌘

, (5.24)

where 1 is a unit matrix in the space spanned by |qi and |Ωi, as well as [aq, a†q0 ] = O(nq/M)
where nq is the occupation number of the mode q. Thus, as long as M is much larger
than the occupancy of a given momentum mode, then the canonical relations hold.

An important point is that not all available states are physical. For example, states
with occupation |#i but finite q are unphysical and are excluded. Thus, one must ensure
that any operation acting on the system never connects physical and unphysical states.
Also, any physical state needs to be Bose-symmetric. Although, as is known from con-
ventional QFT calculations, Bose-symmetry only leads to overall combinatorial factors, it
turns out, as we detail below, that simulating the symmetrized wave-functions is easier,
since the free Hamiltonian is diagonal in the Bose-symmetrized basis.

Finally, we can compare this basis with the one from JLP. This approach requires
O(M log2 V) qubits, so unlike JLP it scales logarithimically with the simulation volume.
Thus, for dilute systems where M ⌧ V , this approach seems preferable to JLP. In partic-
ular, it seems ideal for scattering at high energy in QCD, where the number of partons is
not large, but they can explore widely separated momentum modes. Here we recall, that
although at high energy it would seem that one can generate arbitrarily large numbers
of particles (i.e. to go from a n particle sector to a n + 1 particle costs an infinitesimal
amount of energy), we recall that in theories like QCD, other scales become important.
This point was already made for DIS in chapter 1, where we saw the emergence of the Ioffe
time scale, much larger than the typical interaction time scale. In addition, at high ener-
gies a partonic description of QCD emerges, where the above time scales fix the relevant
number of degrees of freedom.

5.2 The quantum algorithm

As outlined in the previous chapter, given the above digitization of the QFT in terms of
a spin chain/qubits, we are now in position to outline the several steps of the quantum
simulation algorithm, already introduced. Here we will focus on the implementation of
the single particle basis approach, and a broad comparison to JLP’s approach is provided.

The implementation of the quantum simulation algorithm is depicted in Fig. 5.3. We
give a detail discussion of each component in the following sections.
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5 Quantum simulating scattering of �4 scalar theory in d+ 1 dimensions

Figure 5.3: Diagrammatic representation for the overall quantum strategy to simulate a
scattering process. One initially prepares a collection of wave packets (A) in the free theory
that are then evolved to wave packets of the full theory. These are then time evolved
according to the full Hamiltonian (B), after which one applies a sensible measurement
protocol to extract the physical cross-sections (C). On top of this, one must relate the
bare and renormalized parameters of the theory, which is done via a linear map, to be
discussed. Figure taken from [7].

5.2.1 Initial state preparation

Initial state preparation, unlike the JLP approach, is remarkably simple in the single
particle basis. It can be divided in the following steps.

1. Prepare n ⌧ M wave-packets in the free theory, centered around x = 0 and p = 0.
The parameter n stands for the typical number of initial state particles, thus n ⇠ 2.
In case one would like to prepare two colliding proton states then the lowest value
would be n ⇠ 6.

2. Each wave-packet is characterized by position and momentum space widths (∆x,∆p)2.
We require that ∆x ⇠ 1/m, so that the wave-packet is macroscopically well re-
solved. Although considering Gaussian wave-packets is sufficient, in fact the par-
ticular shape of the wave-packet is not important as long as it decays (at least)
exponentially at the asymptotic regions.

3. After each wave-packets is prepared, one displaces the wave-packets in position and
momentum space to the correct initial conditions. In the typical case n = 2, one
would locate one of the wave-packets at spatial position L � 1 and with the initial
particle momentum p, while the other wave-packet would be located at �L, with
momentum ⇠ �p. In a more generic case, the only condition one should require is
that the supports of different wave-packets do not overlap.

2These are related by the Heisenberg relation.
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4. The next step consists in Bose-symmetrizing the wave-packets. In the single particle
basis, as we will show below, this is particularly simple since occupied and vacuum
states form the computational basis.

5. Finally, the wave-packets must be let to evolve by slowly turning on the coupling
and linearly displacing the parameters from the bare to the dressed values. After
this process is concluded, one has prepared the initial state wave-packets in the full
theory.

Let us now detail each of these steps. Wave-packets comprised of single-particle states
|qi, located at the origin (x̄i, p̄i) = (0, 0), can be written as

|Ψi = 1p
V

X

q

Ψq|qi , (5.25)

where we have dropped the (l) super-index to simplify notation. Here Ψq is a real,
positive and strongly localized distribution. The exact shape of Ψq is not relevant, as
long as it decays sufficiently fast in the asymptotic regions, and we assume that its width
∆p (|∆x| ⇠ |∆p|�1) is order m.

To generate such a distribution we assume that we have access to a fiducial state
corresponding to a register representing a single particle in the vacuum state |Ωi (see
(5.17)). Several algorithms [175–177] exist that can exactly load such a template distri-
bution, as long as it is integrable, but they require an exponential number of basic gate
operations (i.e. they require at least O(V) gate operations). In the present case, the fact
that the exact shape of the distribution is not critically important means that a simpler
algorithm can be implemented which only requires a logarithmic large number of basic
operations.

In d = 1 the algorithm can be easily detailed3. The first step consists in flipping the
occupation qubit using a �x gate and the sign qubit by a Hadamard gate

|Ωi = | #⌦Nabs

, #, #i �x,H���! 1p
2

h

| #⌦Nabs

, ", "i+ | #⌦Nabs

, #, "i
i

. (5.26)

This splits the state into a negative and positive branch, so that in what follows the
algorithm can be applied in each branch independently. Considering the positive branch,
the remaining Nabs ⇠ log2(Ns) qubits get rotated by an angle ✓k = ⇡/4� ✏k,

| #i(k) ! cos(✓k)| #i(k) + sin(✓k)| "i(k) . (5.27)

where k 2 [0, Nabs � 1] and ✏k 2 [0, ⇡/4). Thus for each |#i(k) the state gets a cos(✓k)

coefficient, while each |"i(k) receives a sin(✓k) contribution; an illustrative example of the
algorithm can be found in appendix 5.A.

3It is easily extended to higher dimensions.
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Once each wave-packet has been prepared we displace them, such that they are widely
separated from each other and their centers are set accordingly with the kinematics of the
problem. This operation is achieved by using the translation operator Tn (Tq) in position
space (momentum space), defined as

Tn|qi = e�i 2⇡n·q/Ns |qi , Tn|Ωi = |Ωi , (5.28)

where x = nas and n = (n1, . . . nd). The translation operator can be written as a

combination of several one-dimensional translation operators, Tn ⌘
Nd

k=1 T
(k)
nk , each of

which can be further decomposed in terms of the composition of single step translations,
i.e. T

(k)
nk = (T

(k)
1 )nk ( T

(k)
nk = (T

(k)†
1 )|nk|) if nk > 0 (nk < 0). Therefore, it is enough to

know how to implement T
(k)
1 .

In Fig. 5.4 (a) we first detail the generic form of the translation operator in d =
1. Notice that one has two gates since depending on the sign of the momentum, the
translation operator acts differently. This is taken into account by the control qubits.
In Fig. 5.4 (b) we illustrate the implementation of the T

(k)
1 (dropping the label k, since

we consider d = 1) operator in terms of basic gate operations. Here we introduced the
gate Rt ⌘ diag(1, exp{�2⇡i/2t}), and the particular decomposition of the single step
translation operator in terms of this basic gate follows from the binary decomposition of
the phase in Eq. (5.28). The construction for the Fourier pair operator Tq is done using
exactly the same circuit, after one has changed from |qi ! |ni.

By iterative composition of the above operators, the full translation operator can be
constructed in d dimensions. Since one has to apply these operations for each occupied
particle register and in each dimension, the overall number of basic gate operations is
O(M log(V))4, where we assume that the lattice is sufficiently large, such that one never
reaches the boundaries, where the treatment would fail.

Once the initial state wave-packets have been prepared and translated to the ade-
quate initial positions, the state being stored |Ψii is comprised by M � n ⇡ M empty
particle registers and the remaining registers storing the translated wave-packets. The
state explicitly reads

|�i ⌘ |Ψ0,Ψ1, . . .Ψn�1,Ω, . . . ,Ω, . . . i . (5.29)

The ordering of the individual particle registers is arbitrary, and all permutations are
physically equivalent. Combining them all into a single equidistributed state corresponds
to preparing the Bose-symmetrized state from the un-symmetrized one in Eq. (5.29). It
is convenient to work with Bose-symmetrized states since, as it will become apparent in
the next section, the Hamiltonian action becomes easier to compute when acting on the
sub-space of Bose-symmetrized states. Thus, we want to prepare the state

|�Bi ⌘
1p
N

X

P

P̂ |�i , (5.30)

4In fact, it one should replace M by n ⌧ M , but this difference is not important since this cost is
already sub-leading.
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Figure 5.4: (a) Translation operator for d = 1, where we abbreviate T ⌘ T
(1)
n1 = (T

(1)
1 )|n1|

for n1 > 0 and (T
(1)†
1 )|n1| for n1 < 0. A white (black) circle indicates control by the | "i

(| #i) state. (b) Single step translation operator decomposition in terms of basic single
qubit gates. Figure taken from [7].

where P̂ is the Bose permutation operator and N = M !/(M � n)! is the number of Bose
permutations.

To get |�Bi from |�i we present an algorithm that consists in introducing an ancilla
register which generates a set of code words (binary numbers), each corresponding to a
set of SWAP operations one has to apply on the physical particle registers. We discuss
this algorithm in detail in appendix 5.A; here we detail the almost trivial case of n = 1,
M = 2, where the set of necessary operations would read

|Ψ,Ωi|0i H�! |Ψ,Ωi 1p
2

⇥
|0i+ |1i

⇤ CSWAP����! 1p
2

⇥
|Ψ,Ωi|0i+ |Ω,Ψi|1i

⇤

CNOT���! 1p
2

⇥
|Ψ,Ωi+ |Ω,Ψi

⇤
|0i = |�Bi .

(5.31)

The generic case is similar to this simple example, however in general the algorithm is
stochastic since N is not an integer power of two. Thus one will generate extra states
that need to be eliminated using non-unitary operations. This is discussed in depth in the
appendix associated to this section. Apart from this point, the general algorithm does
not differ much from the example given here.

In a final step, after symmetrization is completed, one would slowly turn-on the
interaction such that the analogous wave-packets of the full theory are prepared. We
discuss how the turn-on is performed further in the renormalization section, but we would
like to point out that while doing this Bose-symmetry is not broken and more importantly
the previously empty registers start to get populated, since the wave-function in the full
theory will consist of a superposition of different Fock space’s contributions5.

This algorithm can be contrasted with the one presented by JLP [64, 65]. In this
case, one would first prepare a non-interacting vacuum Gaussian state (using an adequate

5We note that in the QCD/DIS context it would be natural to identify the turn-on time τ0 with the
Ioffe time. The algorithm is however agnostic to these details and thus we refrain from further discussing
this topic, already detailed above.
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Figure 5.5: Implementation of the time evolution operator, here given for a single Trotter
step �. Here S denotes the squeezing transformation and qFT the quantum Fourier
transform. Figure taken from [7].

algorithm to load the Gaussian template). In a second step, a Trotter-Suzuki scheme
is applied to provide an unitary realization of the action of the Fock operators on the
vacuum state. These operators can be parametrized as a linear combination of �x and
⇡x, with the exact form of the linear combination determining the form of the final wave-
packet. In addition, Bose-symmetry is ensured by the explicit construction of the field
operators6. Thus our approach differs from JLP’s mainly on the fact that the vacuum is a
computational basis state in our approach and Bose-symmetrization has to be explicitly
imposed in our case. In addition, no Trotter-Suzuki scheme is needed in our construction.

5.2.2 Time evolution

Once the initial state in the full theory is prepared one can time evolve it, allowing
for interactions to occur. As mentioned in the previous chapter, we consider a first
order Trotter-Suzuki scheme, with N� = (t� t0)/� steps to implement the time evolution
operator,

U(t, t0) ⌘ e�iH(t�t0) =
�
e�iH�

�N� +O(�2) = (e�iHI�e�iH0�)N� +O(�2) ⌘ (UIU0)
N� +O(�2) .

(5.32)

Here we split the evolution operator in a non-interacting piece U0 ⌘ exp {�iH0�} and an
interacting one UI ⌘ exp{�iHI�}, where H0 is given by the quadratic terms and HI by
the �4 interaction term in Eq. (5.11). The free part of the evolution operator is naturally
implemented in momentum basis, while, due to the locality of interactions, the interacting
piece is more naturally implemented in the position basis. Thus, we implement each term
in these two different basis, performing a basis transformation in between, consisting in
the application of squeezing operation and Fourier transform. This approach is detailed
in Fig. 5.5, and we now proceed to detail each step in more detail. Further discussion is
provided in appendices 5.B, 5.C and 5.D.

6It is difficult to give a more quantitative discussion, since the original proposal [64, 65] is itself only
given at a rather conceptual level, unlike our construction.
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Figure 5.6: Quantum circuit implementing U0. It required O(Mpoly log(V)) basic gate
operations and 2` ancilla qubits. Double lines indicate particle registers (including |q|,
sign and occupation number qubits). Figure taken from [7].

Free part U0

The infinitesimal time evolution operator U0 is given by

U0 ⌘ exp
�
� i�

X

q

!q a
†
qaq

 
= exp

�
� i�

M

X

q

!q

⇥
M�1X

i=0

a(i)†q a(i)q +
M�1X

i 6=j=0

a(i)†q a(j)q

⇤ 
.

(5.33)

where U0 is diagonal in the momentum space representation, and Bose-symmetrization
has been explicitly taken into account. A simple calculation leads that the application of
U0 to a state gives rise to a phase

U0 | i = e�
i�
M

P

q
!qnq(1+nΩ)| i = S1+nΩ

' | i , (5.34)

where S' ⌘ exp{�i �
M
'}, ' ⌘ P

n̄ !qnq is the total energy of all occupied states, and
nq (nΩ) the number of registers with momentum q (empty registers), while !q is the
continuum dispersion relation. The factor nq(1+nΩ) is a consequence of the decomposition
in the last equality in Eq. (5.33), where we split the operator a†qaq into a diagonal term
{i, i} and a off-diagonal contribution {i, j}. The diagonal term only gives a phase if
the state is occupied, thus accounting for the 1 contribution to the phase in the last
equality in Eq. (5.34). The off-diagonal piece only contributes if i is an empty register
and j is occupied (or vice-versa). Although by itself this term swaps the content of the
two registers (and thus leading to a non-diagonal action of U0) it is easy to show that
since we are working with Bose-symmetric state, the overall action of U0 is diagonal7.
The number of times one can get such a phase is given by the number of combinations
between each occupied state and all empty registers; i.e. nΩ. In Fig. 5.6 we illustrate the
circuit implementing U0 (see Eq. (5.34)).

The idea is to first compute the phase ', storing it in an ancilla register (quantum
memory) using 2` ancilla qubits. See Fig. 5.7 for the sub-circuit performing this operation
and the discussion in appendix 5.B. In the diagram shown, the circuit ! that computes

7This makes clear why it is advantageous to work with Bose-symmetrized states.
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Figure 5.7: Quantum sub-circuit that computes and stores ' in memory. As mentioned
in the text and respective appendix, ! is an (arithmetic) oracle computing !(q) given
an input |qi, and += is the quantum-addition circuit [8, 9]. The ⌅ symbol appearing
in the gate += denotes that the associated register is an input. The relevant particle
register input for the ! gates is denoted by (small) black boxes accordingly. Figure
taken from [7].

!q is treated as a quantum “oracle”. The number of ancilla registers 2` is determined
by the precision with which we wish to compute !q from q, which should be similar to
the number of qubits necessary to realize q in one dimension, i.e. ` ⇠ O(log(V)/d). The
number of gate operations included in ! is O(poly log(V)).

In a second step, once ' is stored in memory, one applies O(M) diagonal phase
rotations S1+nΩ

' . The details of this operation are discussed in appendix 5.B. Finally, one

clears the memory register, leading to a total of O(M) += and ! gates. Thus, the
overall gate complexity of the circuit implementing U0 is O(M poly log(V)), per Trotter
step8.

Squeezing Transformation

As mentioned above, after applying U0 in each infinitesimal time step, one must perform
a transformation from the single-particle representation in momentum space to position
space. In relativistic theories, these two spaces are not simply related by a Fourier trans-
form9, rather one must perform a squeezing operation [179] followed by a (quantum-)
Fourier transformation.

This construction can be formulated as follows. The position space Fock operators

8In essence, the algorithm introduced here was first proposed by Zalka [178], in a somewhat simpler
form.

9This is can be seen from, for example, the relation

|xi = φx |Ωi =
ˆ

ddp

(2π)d
eip·x
p

2Ep

a†
−p |Ωi ,

where the energy factor prevents the last relation to be a direct Fourier transform.
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are given by

an ⌘ 1p
2

�
�n + i⇡n

�
, a†n ⌘ 1p

2

�
�n � i⇡n

�
, (5.35)

with the commutation relations [an, a
†
n0 ] = �n,n0 , and the single-particle decomposition

an ⌘
P

i a
(i)
n /

p
M , a†n ⌘

P

i a
(i)†
n /

p
M .

Let us introduce the Fourier conjugate operators Aq of an as

an ⌘ 1p
V

X

q

Aq e
i2⇡n·q/Ns , (5.36)

with an analogous relation holding for the Hermitian conjugate pairs. The {Aq} operators
are related [179] to the momentum space Fock operators aq, a

†
q by

Aq ⌘ 1

2

⇥
!
� 1

2
q + !

1
2
q

⇤
aq +

1

2

⇥
!
� 1

2
q � !

1
2
q

⇤
a†�q , (5.37)

and an analogous relation for the Hermitian conjugate. This transformation is known in
the literature [180–182] to be a (two-mode) squeezing transform. In appendix 5.C we show
that the momentum space Fock operators can be obtained by a similarity transformation
involving the squeezing operator S

Aq = SaqS
†, A†

q = Sa†qS
†, (5.38)

where S ⌘ Q

q Sq and

Sq ⌘ exp
�
� zq[a

†
qa

†
�q � a�qaq]

 
, (5.39)

is an unitary operator with zq ⌘ 1
2
log(!q). Thus, implementing the circuit for Eq. (5.39),

followed by a qFT, gives the correct transformation between single particle sectors in
position and momentum space, which we proceed to detail.

The circuit implementing Sq is given in Fig.5.9, which is simply a decomposition over
all V momentum modes. A further step consists in factoring, for each q, the squeezing
operator into M(M�1)/2 squeezing operators over particle pairs i 6= j, i, j = 0, . . .M�1.
This decomposition is used within a Trotter-Suzuki scheme with an error O([nqzq/M ]2),
where nq is the occupation number of the mode q of the state the operator acts on. This
leads to a decomposition with O(M2V) terms

S =
Y

q,hi 6=ji
Sq,ij , (5.40)

where

Sq,ij ⌘ exp
�
� zq

M
[a(i)†q a

(j)†
�q � a

(j)
�qa

(i)
q ]
 
. (5.41)
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Figure 5.8: Squeezing operator S decomposition in terms of squeezing operators acting on
single momentu modes S =

Qq=qV�1
q=q0

Sq. The Trotter error in this factorization in zero,
since the Fock operators of different momentum modes always commute. Figure taken
from [7].

Figure 5.9: Decomposition of Sq into M(M�1)/2 pair-wise squeezing operators Sq,ij with
i 6= j. Note that each operator is even in {i, j} and thus Sq,ij(zq)Sq,ji(zq) = Sq,ij(2zq).
Figure taken from [7].

The circuit decomposition is given in Fig. 5.9.
Using the mapping between spin raising and lowering operators and the creation and

annihilation operators detailed in section 5.1, Sq,ij can be written as

Sq,ij ⌘ exp
�
� i

zq
M
�
y
q,ij

 
, (5.42)

where �y
q,ij ⌘ (�i)[a

(i)†
q a

(j)†
�q � a

(j)
�qa

(i)
q ]. In the matrix representation of the N occupation

and momentum qubits spanning {|qi ⌦ |� qi , |Ωi ⌦ |Ωi}, this can be written as

�
y
q,ij =

0

B
B
B
@

0 . . . 0 �i

0
. . . 0

...
. . .

...
i 0 . . . 0

1

C
C
C
A

⌘ �
y
N
. (5.43)
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We note that N here depends on the pair {i, j} and on q, and it stands for the effective
dimension of the associated spin space, depending on the decomposition in terms of spin
operators.

Implementing Eq. (5.42) can be done using a strategy similar to the one mentioned
in section 4.2. First, one transforms Eq. (5.43) to a block-diagonal form �

y
N
, using the

binary increment operator IN (I1 = �x, see appendix 5.C)

I†
N
�
y
N
IN =

0

B
B
B
@

0 . . . . . . 0
... 0 0
...

. . . i
0 0 �i 0

1

C
C
C
A

⌘ �̃
y
N
. (5.44)

It is easy to notice that this operator satisfies the recursion law

�̃
y
N
=

1

2
(1� �z)⌦ �̃

y
N�1 , (5.45)

where �̃y
1 = ��y. Expanding this relation we obtain

�̃
y
N
=
h NO

i=2

1

2
(1� �z)

i

⌦ �̃
y
1 . (5.46)

The operator (1 � �z) is diagonal, thus one only needs to diagonalize �̃
y
1 = ��y =

�S̄H�zHS̄†, which follows from Eq. (4.5)10. The end results then reads

Sq,ij =IN (1⌦ . . . 1⌦HS̄†)R
h zq
M

i

(1⌦ . . . 1⌦ S̄H) I†
N
, (5.47)

where R[ zq
M
] ⌘ exp{i zq

M

⇥
⌦N

i=2
1
2
[1� �z]i

⇤
⌦�z} is a simple controlled (diagonal) �z-rotation.

This construction is depicted in Fig. 5.10.
Overall, the implementation of the squeezing transformation entails O(M2V poly log(V))

elementary gate operations (per Trotter step). The poly log(V) contribution comes from
the complexity of the bit increment IN and controlled z-rotation R(zq/M). The M2 factor
is due to the loop over pairs of particle registers, while V is due to the decomposition in
the momentum modes q.

Quantum Fourier Transform

The next step is to apply the quantum Fourier Transform algorithm, following Eq. (5.36).
This can be done using the algorithm implementation discussed in appendix 4.A, but
adjusting for the specific characteristic of our digitization. The qFT algorithm is only
applied if the particle register is occupied and it needs to be applied once per dimension

10Notice that here S̄ denotes the phase gate, to avoid confusion with the squeezing operator S.

104



5 Quantum simulating scattering of �4 scalar theory in d+ 1 dimensions

Figure 5.10: Circuit implementation of Sq,ij, using the bit-increment operator IN and the
diagonal single qubit rotation exp{i zq

M
�z}. The circuit involves N qubits that make up

(�i)[a
(i)†
q a

(j)†
�q � a

(j)
�qa

(i)
q ]. Figure taken from [7].

and per register. In addition, since we are dealing with signed integers, we should consider
instead the symmetric qFT algorithm introduced in [10].

To apply this transformation, we first bring the states (see Eqs. (5.14) and (5.20)) to
the standard form for the symmetric qFT. This is done by first rotating the sign qubits,
and then using them as controls (i.e. deciding if the number is positive or negative) over
the qubits storing the absolute value. This operation is detailed in Fig. 5.11 and it requires
O(Mpoly log (V)) elementary gate operations.

Interaction part UI

Once the transformation to the single-particle position space basis has been performed,
one can apply the UI evolution operator, using the locality of interactions.

The �4 interaction term can be decomposed into V Trotter steps per time step, leading
to

UI = exp {�i�
X

n

�

4!
�4
n} =

Y

n

exp{�i
��

4!
�4
n} ⌘

Y

n

UI,n , (5.48)

where UI,n is a decomposition over V positions. To implement each one of these operators,

we use that the field operator can be written as �n ⌘ PM�1
i=0 �

(i)
n /

p
M , where

�(i)
n ⌘ a

(i)
n + a

(i)†
np

2
=

1p
2

0

B
B
B
@

0 . . . 0 1

0
. . . 0

...
. . .

...
1 0 . . . 0

1

C
C
C
A

⌘ 1p
2
�x
N
, (5.49)

with �x
N
the N-qubit operator decomposition of �

(i)
n , comprised of the qubits that span

{|ni, |Ωi}, as outlined in section 5.1. Thus we observe that the strategy to follow should
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Figure 5.11: Depiction on how to transform the digitized states to the form suitable to
apply the symmetric qFT algorithm [10]. In (a) we represent the basis states in the
convention used in the main text, where the last qubit is considered to be the sign qubit.
In a first step, one applies the �x gate to the sign qubit in order for it to be in the usual
quantum computing convention. Then, one interprets the sign qubit as the first qubit
which acts as a control: if it is in the state |1i, one rotates all the remaining qubits (b).
This last step orders the positive branch correctly and brings it to the form considered
in [10]. After applying the symmetric qFT, one reverses this operation to go back to the
basis used in the main text.

be similar to the one employed for the squeezing operator. We again write the evolution
operator in terms of a diagonal one as

UI,n ⌘ VnU
diag
I,n V †

n , (5.50)

where Udiag
I,n is given by

Udiag
I,n ⌘ e�i∆

P

hi,j,k,li �
(i) diag
n �

(j) diag
n �

(k) diag
n �

(l) diag
n , (5.51)

with ∆ ⌘ ��/(96M2) and Vn ⌘ QM�1
i=0 V

(i)
n . The diagonalizing matrix is easily seen to be

similar to the one found for the squeezing operator, but now with respect to �x, i.e.

V (i)
n = IN(1⌦ . . . 1⌦H) , (5.52)

where similar to the discussion for the squeezing operator one has that �
(i) diag
n ⌘ V

(i)†
n �

(i)
n V

(i)
n ,

which can be decomposed as �
(i) diag
n =

N

j
1
2
(1� �z)j ⌦ �z.

In Fig. 5.12 we outline the implementation of UI,n. The operator U
diag
I,n can be imple-

mented using the techniques detailed in section 4.2. Although one can obtain Udiag
I,n by
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Figure 5.12: Circuit implementing UI,n. Figure taken from [7].

summing over hi, j, k, li in Eq. (5.51), this is in general a difficult task. In general, this
summation can be simplified to considering only five distinct cases: either the four par-
ticle’s indices match, three indices match, two indices match, two pairs of indices match
independently or they all differ, leading to a small number of operators that need to be
exponentiated. Besides this, one also needs to take into account all the combinatorial
factors; in appendix 5.D we exemplify this exercise for the simple case of M = 4 and
n = �1/2, and provide further discussion for the generic case.

The implementation of UI involves O(M4V poly log(V)) elementary gate operations,
where the M4 dependence originates from the loop over four-tuples of particle registers.
We expect that this bound can be lowered down to O(M), provided a smarter way of deal-
ing with the combinatorics is found. As for the squeezing operator, there is a dependence
in V due to the loop over all position modes, each entailing an additional computation
requiring O(poly log(V)) gate operations. Thus, this section of the algorithm gives the
dominant cost to the implementation of the time evolution operator. Compared to JLP’s
proposal (see [10] for the explicit implementation of the time evolution operator) we see
that indeed the scaling with V is the same; this a consequence of the brute force approach
used to implement the algorithms in terms of Pauli gates. To obtain a more meaningful
comparison, one would require a comparative numerical study, where one also has to take
into account that the comparison depends on the exact scattering process at study. In
addition, issues related, for example, with quantum error correction [74, 183] have to be
taken into account in such comparisons in currently available devices. A particularly rel-
evant error that can occur, consists in mapping the physical and unphysical spaces (i.e.
map Bose-symmetric states to an un-symmetrized ones), whose probability of occurring
grows with M . This question is somewhat similar to problems found in quantum simu-
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lation of gauge theories [184–188], and thus one hopes that some techniques used in that
area can be employed for our digitization.

5.2.3 Measurement

In this section we detail the measurement protocols to be applied once the time evolved
state has been prepared. The wave-function of the system can be written in the most
general form as

|Ψ(t)i =
X

`

↵`(t)|Ψ`i ⌘
X

basis states

↵(q,q0,... )(t)
p

N(q,q0,... )(t)

⇥
|q,q0, . . . ,Ωi+ symm.

⇤
, (5.53)

where we introduced the unknown coefficients ↵(q,q0,... )(t), ‘symm’ denotes Bose-symmetric
permutations and N(q,q0,... ) ⌘ M !/[nΩ!

Q

q nq!] is a generalization of the Bose-symmetric
factorN introduced in section 5.2.1 for theM single-particle registers, now also accounting
for the possibility of degenerate momenta among particle registers.

When measuring all the qubits from the particle registers, the wave-function will
collapse to a state with well defined particle number for every mode q with probabil-
ity |↵(q,q0,... )|

2. This is to be contrasted with JLP’s procedure, where particle number
measurement requires additional gate operations. We would like to emphasize that the
above wave-function does not guarantee that the different particles are well separated
and localized, thus one might want to further evolve the state for a time ⌧f , during which
interactions are slowly turn-off (mirroring initial state preparation), until the final states
are well separated.

If one measures all the qubits in the particle registers available, then up to kinematical
factors, this defines the differential cross-section

ddn�

ddp0 . . . d
dpn

, (5.54)

of n =
P

q nq particles for a given outcome. This shows that running the quantum
algorithm is equivalent to accumulating events in a particle physics experiment, with the
output requiring a classical analysis in both cases. However, on a quantum computer
one has direct access to more integrated quantities more straightforwardly than in a
experimental set-up, since the full physical information is stored in |Ψi and different
measurement protocols can extract different information from this state. For example,
measuring only the occupancy qubits, one obtains the integrated cross-section

�n ⌘
ˆ

ddp0 . . . d
dpn

ddn�

ddp0 . . . d
dpn

. (5.55)

In theories where particles are described by more discrete quantum numbers, such as
electric charge, spin or color, the occupancy qubit (which in this case works as a quantum
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number to distinguish the vacuum from other states) would be replaced by a register
tracking all values of the different quantum numbers. Measuring only these array would
give rise to integrated cross-sections, as in this example.

Another advantage of using a quantum computer is the fact that phase space cuts can
be applied directly at the quantum level, and not on the post-classical analysis of data. A
simple example would be to restrict the particles’ momenta to a region p 2 [pmin,pmax].
This can be done by employing 2d auxiliary registers (of size log2(V)) set to kinematic
bounds pmin/max in d dimensions. Then, using a quantum comparator circuit [189–191]
(using log2(V) ancilla qubits and O(log(V)) gate operations), one can determine if the
register stores a momentum within the above region or not. The result would be stored in
2d ancilla qubits with outcome |11i⌦d if the momentum is within the kinematical range,
thus splitting the Hilbert space into two non-overlapping regions, with a tag identify-
ing each state. The application of techniques such as (Oblivious) Amplitude Amplifica-
tion [192–195] could, in principle, then be used to bias the system towards being within
the allowed phase space.

In general, it might not be possible to adiabatically go from an eigenstate of the free
theory to that of the full theory. This is the case in QCD, where the eigenstates of the
full theory are hadrons (bound states) and not the quarks and gluons. The transition
between the free and confine phases is important in the hadronization stage of the scat-
tering experiment [196–199]. In �4 scalar, for example, it is also known that for d < 4
there exists a phase transition [200–202]. In case the free and full theory are not adiabat-
ically connected, one omits the time ⌧f , during which there was a turn-off interactions,
and one should keep the interaction time ⌧I long enough to include the physical time it
takes to form such a bound state. This issue is also present JLP approach and a compar-
ison between both approaches would require a numerical analysis, trying to recover the
continuum limit.

Once bound states are sufficiently separated, one can proceed s before and measure
their respective quantum numbers. An example, consists in extracting the expectation
value of the momentum operator, which is defined as

P i
Ṽp

⌘
ˆ

Ṽp

ddppi a†pap , (5.56)

where i = 1, . . . , d and Ṽp stands for a region in momentum space. Since the final
state is an eigenstate of the momentum operator (since the final state should corre-
spond to a bound state with well defined momenta) one could extract the momen-
tum expectation value by employing strategies based on the phase estimation algorithm
(PEA) [74, 203–206]. The PEA algorithm makes uses of repeated applications of the
operator U ⌘ exp (�iP i

Ṽp

), giving with a probability (within precision ") the expecta-

tion value hP i
Ṽp

i, requiring an extra O(log("�1)) ⇠ O(log(V)/d) ancilla qubits, taking the

precision to be the same as the one used for the momentum discretization. It requires
O(log("�1)) applications of the controlled-U gate, which can be easily constructed fol-
lowing the discussion regarding the free time evolution operator implementation, with a
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quantum comparator being employed to verify if the physical state is within Ṽp. The
same construction can be extended to the energy operator

HṼp
⌘
ˆ

Ṽp

ddpHp =

ˆ

Ṽp

ddpH0,p +

ˆ

Ṽp

ddpHI,p , (5.57)

where H0,p and HI,p are the Fourier transforms of the Hamiltonian densities H0,x and
HI,x, with H0 =

´

ddxH0,x and HI =
´

ddxHI,x. Again one can apply the PEA to
estimate expectation value of this operator; a more detailed discussion on the extraction
of this expectation value can be found in [7].

5.2.4 Renormalization

In this section we detail how to take into account renormalization in the single-particle
basis strategy we adopted. Essentially this amounts to employing the renormalization
group (RG) procedure in the Hamiltonian formalism, which in the present case is similar to
the one found in classical lattice computations in the (Euclidean) path integral formalism.
This approach differs from the perturbative strategy employed by JLP. We note however
that a perturbative approach, solely from a computational standpoint, is perhaps not a
suitable procedure since it requires one to perform classical computations as complex as
the ones being simulated in the quantum computer.

We begin by formulating the renormalization procedure in the operator formalism [207],
which amounts to finding and effective Hamiltonian with a UV cutoff. These are of course
related to the lattice discretization and the respective truncation of the Hilbert space due
to the digitization. Here we outline the formulation of the RG procedure in the operator
formalism for single-particle strategies, which has been extensively studied [208–210].

We recall that the computational basis corresponds to the eigenbasis of the free Hamil-
tonian H0 (and the full Hamiltonian if there they are addiabatically connected). One can
write the full Hamiltonian in a such a basis as

H =

✓
Hll Hlh

Hhl Hhh

◆

, (5.58)

where we implicitly introduced a cut-off energy scale Λ, with the matrix elements in this
representation are between states with energies E =

P

p !pnp, either below (l) or above

(h). From this Hamiltonian we would like to define an effective Hamiltonian Heff , where
(l) and (h) can not communicate. Such a RG transformation can be written as

Heff ⌘ THT † , (5.59)

where T ⌘ exp (i⌘) block-diagonalizes H. Then it is easily seen that if one is below the
scale Λ, in the diagonal basis Heff

ll defines an effective field theory.
To do this one, one needs to determine T (⌘). This can be done perturbatively, by

applying the Schrieffer-Wolf transformation [211] (see appendix 5.E), giving the elements
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of Heff order by order in �. As mentioned, this is however not the desired approach since,
as outlined in appendix 5.E , the computational complexity of such calculation grows
factorially with � and also breaks down if there is a phase transition.

In our algorithm, a non-perturbative formulation of the RG can nonetheless be fol-
lowed. First, we recall that renormalization enters in the algorithm when turning-on
interaction after the initial state preparation algorithm is finished, as shown in Fig. 5.3.
Renormalization enters in the determination of

�(⌧0) = �ren , m(⌧0) = mren , (5.60)

The intermediate time theories H(t) = H(�(t),m(t)) at t < ⌧0, including the initial values

�(0) = 0 , m(0) = m0 , (5.61)

are not renormalized because there is simply no physical renormalization for them. In-
stead, one simply works with a linear interpolation

�(t) = �ren
t

⌧0
, m(t) = m0

�
1� t

⌧0

�
+mren t

⌧0
, (5.62)

for t 2 [0, ⌧0] and constant thereafter, where m0 can be taken to be the bare quark mass
in QCD.

The renormalized values for the bare parameters �(t) and m(t) at t � ⌧0 can be
obtained by computing a static property and then use the result as the input for the
computation of a scattering process. This can be done non-perturbatively following the
strategy commonly found in lattice calculations

1. Compute a static physical quantity for a given as and M . Then, repeat the calcu-
lation adjusting the bare parameters �,m so that the physical value is reproduced
for that as and M . Algorithms to implement this procedure [203–206,212–217] can
be adapted to the single-particle approach.

2. The previous step is repeated for a different as,M towards the continuum limit, i.e.
as ! 0 and M ! 1, along the line of constant physics. The determination of this
path should be determined using a minimization procedure.

3. Once one has obtained the values of the renormalized parameters for several (as,M)
points, the quantum scattering algorithm is run using the obtained values. Notice
that this also includes the renormalization of operators measured in section 5.2.3,
hOeffi, which in the simplest case read O = ZOeff , where Z can be determined as
the other parameters.

4. Finally, one extrapolates the expectation values obtained to the continuum limit,
which is known to be a computationally demanding task even in a quantum com-
puter.
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5.3 A brief summary

In this chapter, we introduced a novel strategy to quantum simulate high energy scat-
tering problems. The main idea was the decomposition of the Hilbert space in terms of
single-particle sub-spaces, which when truncated allow one to simulate processes up to M
particles. With the additional discretization of phase space into a lattice with volume V ,
the algorithm requires O(M logV) qubits, thus ideally suited for dilute systems that can
explore a large lattices.

Elementary gate operations Ancilla qubits

Initial State preparation O(Mn log (V))
psuccess = 1 [exact⇤] log(M !/(M � n!)) [exact⇤]

psuccess > 1/2 [probabilistic⇤] O(log(M n)) [probabilistic⇤]

Time Evolution

Free part U0 O(Mpoly log (V) t) O(log (V)/d)
Squeezing transform S O(M2Vpoly log (V) t) 0

quantum Fourier transform O(Mpoly log (V) t) 0
Interaction part UI O(M4Vpoly log (V) t) O(log(V)/d)

Total O(M4Vpoly log (V) t) O(log(V)/d)

Measurement
Particle number 0 0

Momentum density O(M poly log (V)) (PEA⇤⇤) O(log(V)/d)
Energy density O(M4Vx poly log (V)) (PEA

⇤⇤) O(log(V)/d)

Table 5.1: Gate and ancilla cost in order to implement the algorithm introduced in this
chapter. We recall the notation used: number of particle registers M , volume V , occupied
registers in initial state n, dimension d, Trotter time steps t. (⇤) If log2(M !/(M � n))
is not an integer, the initial state is prepared with probability psuccess > 1/2, depending
only on M and n. (⇤⇤) Measurements of (localized) energy and momentum densities are
via the phase estimation algorithm (PEA) [203–206]. The cost estimate for the localized
energy density includes a factor Vx ⇢ V denoting a small sub-volume of the total V .

In table 5.1 we detail the gate and ancilla cost associated to each section of the
algorithm. The dominant cost to the number of basic gate operations comes from the
time evolution section associated with the interacting Hamiltonian. Nonetheless, we note
that this cost is comparable with the one in JLP’s approach [10,64,65], thus we see either
no clear advantage/disadvantage when using our discretization strategy. However, for
initial state preparation we were able to provide a complete and explicit algorithm, scaling
logarithmically with the volume. In addition, compared to JLP’s approach, measurement
is conceptually much closer to what is done experimentally. In particular, we showed that
one can devise simple and cost free protocols to extract different cross-sections, possibly
more efficiently than what is done experimentally.

5.A Details of state preparation

In this appendix we give some details and simple examples on the algorithms necessary for
the initial state preparation. We discuss first the algorithm to prepare a single localized
wave-packet in the free theory and then discuss the Bose-symmatrization algorithm.
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As mentioned in the main text, the first steps of the wave-packet preparation algo-
rithm consist in splitting the positive and negative branches and flipping the occupation
qubit. Assuming that d = 1, as in the main text, and that all these two operations have
already been performed, we can solely focus on the positive branch and only act on the
qubits storing the absolute value for the momentum.

The fiducial state in this case is simply Nabs ⌘ 2nQ qubits in the state |0i11. Applying
the procedure detailed in the main text, each one gets rotated by an angle

|0i ! cos ✓k|0i+ sin ✓k|1i (5.63)

for all k = 0, . . . , nQ � 1 qubits. As mentioned in the main text, each |1i acquires a sine
and each |0i acquires a cosine. The full state after the transformation, for nQ qubits, can
be written as

|0, 0, · · · , 0i !
2
nQ�1X

p=0

(
nQ�1
Y

k=0

�
cos(1�pk)(✓k) sin

(pk)(✓k)
�

)

|pi =
2
nQ�1X

p=0

 p|pi ⌘ |Ψi , (5.64)

where |pi here stands for the nQ qubits storing the absolute value of a single particle
momenta and pk 2 {0, 1}.

Thus one can see that providing the adequate map between k and ✓k, one can load
different distributions on to the produced state. The most straightforward one is to set
all the angles to the same value up to some k, after which they all vanish. This generates
a square wave function, which although it is well localized in momentum space, it is not
well localized in position space (the Fourier pair decays as ⇠ 1/x, i.e. sub-exponentially).
Thus, this particular solution is not desirable. It is however not difficult to come up
with better solutions, by noticing that large momentum values are associated to binary
numbers where the higher digits are all 1’s, while smaller numbers all have higher digits
equaling 0’s. Thus, it is natural to require that the larger angles for the ✓k occur for small
values of k, while larger values for k are dominated by smaller angles. With this in mind,
we give here three simple polynomial examples, explicitly reading

✓lineark =
⇡

4
� ✏+

2✏� ⇡
4

nQ � 1
k ,

✓
quadratic
k =

⇡

4
� ✏+

⇣

2✏� ⇡

4
� c0(nQ � 1)2

⌘ k

nQ � 1
+ c0k

2 ,

✓cubick =
⇡

4
� ✏+

⇣

2✏� ⇡

4
� c1(nQ � 1)2 � c2(nQ � 1)3

⌘ k

nQ � 1
+ c1k

2 + c2k
3 .

(5.65)

Here the ci parameters are adjusted such that the resulting distribution is smoothed (in the
sense of having less and smaller peaks); for the numerical results we took c0 = �0.01325,
c1 = �0.0195, c2 = 0.0005905, the numerical regulator ✏ = 0.015 and nQ = 10. These

11Here we use the inverted basis with respect to the main text
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maps are fixed at the initial point p = 0 where ✓0 = ⇡/4 � ✏ and ✓nQ�1 = ✏ is the
smallest possible value. In Fig. 5.13 we illustrate the generated distributions, comparing
to an exponentially decaying function ⇠ exp(�p/�). Indeed, we see that even these
low ordered polynomials, easily derived by hand, already give rise to a well localized
distribution, at the cost of losing some control over its shape. In particular, we observe
that while increasing the degree of the polynomial map, the bumpy profile of  p gets
smoother, thus in practice one is hopeful that designing a more sophisticated numerical
routine (going further than the polynomial maps shown) could lead to much smoother
distributions. Finally, notice that this approach only requires nQ qubits, unlike [175,176]
which uses exponentially many more resources.

250 500 750 1000
momentum p (dimension less units)

10−5

10−3

10−1

am
p
lit
u
d
e
ψ
p ∼ exp(−p/σ)

linear

quadratic

cubic

Figure 5.13: Induced distributions for  p (see Eq. (5.64)) using the polynomial maps
detailed in the text. To guide the eye, we provided the profile of an off-set decaying
exponential distribution, with � = 100. Figure taken from [7].

Let us now discuss the Bose-symmetrization algorithm introduced in the main text.
The idea of the algorithm consists in starting with an un-symmetrized state and then,
using an auxiliary register, generate a code that symmetrizes the initial state. The idea of
the code is to associate each Bose permutation to a binary number (the code) represented
in the ancilla register; knowing the associated word is tantamount to knowing which
permutations to do in order to generate the correct state. Finally, once the desired state
has been generated, one erases the ancilla register. The exact algorithm depends on M
and n, but the generic structure can be described as

1. Apply Hadamard gates to all the ancilla registers, so that all possible code words
are generated. In general, this will generate more states than the number of desired
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5 Quantum simulating scattering of �4 scalar theory in d+ 1 dimensions

Bose permutations.

2. Define a code that relates each one of the states in the ancilla register to a set of
operations. Each code word details a SWAP operation between different particle
registers. After the correct number of SWAP operations has been generated, one
should have generated at least one of the Bose permutations of the un-symmetrized
initial state, but usually not in equal probabilities.

3. In order to be a Bose-symmetric state, all permutations must equally likely, thus
one must eliminate the extra states via non-unitary measurements of extra ancillas,
preceded by an adequate detection algorithm.

4. Once all extra states are eliminated, one needs to erase the ancilla register; this can
in principle be done using only a small number of qubits of the particle registers as
controls.

The algorithm is best illustrated by giving the first non-trivial example, for n = 2 initial
wave packets in M = 3 registers, starting from a state |Ω,Ψ1,Ψ0i. The target state is

1p
6

h

|Ω,Ψ1,Ψ0i+ |Ω,Ψ0,Ψ1i+ |Ψ0,Ψ1,Ωi+ |Ψ1,Ψ0,Ωi+ |Ψ0,Ω,Ψ1i+ |Ψ1,Ω,Ψ0i
i

.

(5.66)
Unlike the (next to) trivial example in the main text, in this case the number of possible
Bose permutation for this M and n is not a power of two. Thus, we consider an ancilla
register with s = 3 ancilla qubits. Applying a Hadamard gate to each qubit we obtain a
Bell superposition with 23 = 8 states. Thus from the initial state |Ω,Ψ1,Ψ0i |0, 0, 0i, we
obtain the state

1p
8

h

|Ω,Ψ1,Ψ0i |0, 0, 0i+ |Ω,Ψ0,Ψ1i |0, 0, 1i+ |Ψ0,Ψ1,Ωi |1, 0, 0i+ |Ψ1,Ψ0,Ωi |1, 0, 1i

+ |Ψ0,Ω,Ψ1i (|0, 1, 1i+ |1, 1, 0i) + |Ψ1,Ω,Ψ0i (|0, 1, 0i+ |1, 1, 1i)
i

.

(5.67)

As we mentioned in the generic algorithmic description above, the code implemented
has already generated all the possible permutation terms in the Bose-symmetric wave-
function, but the states |Ψ0,Ω,Ψ1i and |Ψ1,Ω,Ψ0i are now twice as likely as any other
state12.

These extra states can be eliminated by adding an additional ancilla |0i, and flipping
it to |1i if the code word is either |1, 1, 1i or |1, 1, 0i (i.e. |1, 1,�i), which can be done
using a CCNOT gate. Then if the ancilla is measured and one observes the state |1i, the

12For a more interested reader the code used was to swap the nearest particle registers according to
the following rule, for an ordered triplet |abci: if |001i, swap b and c; if |010i, swap a and b; if |100i, swap
a and c, else apply the same rules always following them from left to right.
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algorithm has failed and one needs to restart. If instead one observes the state |0i, then
one has produced the state given in Eq. (5.66).

A natural question is how likely is the algorithm to be successful. In this case, it
is easily realized that the probability of success is psuccess = 6/8. In fact, it is easy to
realize that although the number of basic gate operations depends on the number of
measurements on needs to perform in order to eliminate the undesired states, psuccess
only depends on M and n. In the case of the previous example, one could instead of
just performing a single measurement have performed two separate measurements, each
eliminating a single state (but never more than two measurements). In that case, assuming
that measurements are independent, one would obtain that psuccess = (7/8)⇥ (6/7) = 6/8.
In general, one obtains that

psuccess =
N

2s
>

1

2
, (5.68)

where N = M !/(M � n)! is the number of Bose-permutations and s an integer such that
2s is the closest power of two to N from above, s = dlog2(M !/(M � n)!)e = O(log(Mn)).
In other words, the probability of success is simply the ratio the number of desired states
to the total possible number of states. In Fig. 5.14 we show the evolution of psuccess for
two values of n with M . We observe that for M � 1 (which one must require in order
for the single particle to be applicable) there is a quasi-periodic behavior where certain
values of M maximize the probability of preparing the correct initial state. Thus, with
only a small extra cost, it is always possible to increase M such that the probabilistic
approach we detailed is highly reliable. We also note that the probability of success is
always larger than one half.

As mentioned above, the final step of the algorithm consists in erasing the information
from the ancilla register. For the case n = 2, this can be done by using the occupation
number and sign qubit, since the initial state wave-packets are prepared in at ±L and
with opposite sign momenta. For cases with more initial state wave-packets, one would
need to use r qubits per register to distinguish the different wave-packets. However,
since the initial states have to be widely separated r has to always be much smaller
than log2 N

d
s , and the cost of un-computing the ancillas would change from O(Mn), to

⇠ O(Mnr) ⌧ O(Mn log(V)). After detecting which ancilla qubits are in the state |1i, one
resets them to the state |0i. There will be s0  s of such ancillas, and one can always
choose them much smaller than s with the appropriate code. Thus their contribution to
the algorithm cost is sub-leading.

Overall, the algorithm requires s Hadamard gates to prepare the ancilla register, and
O(2s logV) ⇠ O(Mn logV) controlled SWAP operations. The final un-computation step
requires O(Mn) operations. This leads to a net O(Mn logV) gate complexity.
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Figure 5.14: Probability of preparing the correct Bose symmetric state psuccess as a function
of the number for single particle registers M , for n = 2 (top) and n = 6 (bottom) initial
single particle states. Dashed lines denote values for M which maximize psuccess, and the
color graduation tens towards green when the probability is maximized and to red when
it approaches the lower bound of 1/2. Figure taken from [7].

5.B Details of the kinetic term

In this appendix we discuss some of the gates necessary to implement the time evolution
operator U0, particularly the energy gate ! and the phase gate S

1+nΩ

'

The gate ! takes as an input two registers, one of which is a particle register |qi and
the other an ancilla register of l qubits in the state |0i⌦l, implementing the transformation
|qi⌦|0⌦li ! |qi⌦|!qi. The function !q (for any q) is a simple arithmetic operation, thus
provided classical and quantum algorithms exist to implement such an operation [218–222]
and ensuring that |Ωi, !Ω = 0, ! can be treated as a quantum oracle13.

The implementation of S
1+nΩ

'
, consists in the application of the (single control) gate

S' 1 + nΩ times. In Fig. 5.15 we detail how one applies the single gate S' the correct

amount of times. The idea is that the 1 contribution is a global phase, while the remaining
nΩ applications can be done by looping over all M particle registers and activating the
phase gate if the control is an empty state. We recall that this precise numerical factor
comes from the fact that each occupied state gives rise to a phase, but off-diagonal states

13By quantum oracle, one can read a quantum black-box, whose inner workings are disregarded.
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involving an empty and occupied state also give rise to a phase.

Figure 5.15: Circuit implementing S
1+nΩ

'
, necesary to implement U0. Figure taken

from [7].

Finally, the single phase gate S' takes the state | i ⌦ |'i to exp
�
�i �

M
'
�
| i ⌦ |'i.

It can be implemented using the conditional single qubit phase shift gate C� [74, 223],

which is given in the computational basis by

C� ⌘
✓
1 0
0 ei�

◆

, (5.69)

where � = � �
M
2d (0  d  l � 1) chosen accordingly to the binary decomposition of '.

Putting together multiple C� , with the correct phase, gives rise to S' .

5.C Details of the squeezing transformation

In this appendix we show that the squeezing operator S indeed satifies Eq. (5.37). First,
note that

SaqS
† =

Y

p,p0

e�zp(a
†
pa

†
�p�a�pAp)aqe

z0p(a
†

p0
a†
�p0

�a�p0ap0 ) . (5.70)

Using the fact that ap and a†p obey the canonical commutation relations, Eq. (5.70) takes
the form

eXaqe
�X =

1X

k=0

1

k!
[X, [X, . . . [X, aq]]
| {z }

k times

. . . ] , (5.71)

where X ⌘ �zq(a
†
qa

†
�q � a�qaq). Using the identities

[X, aq] = zqa
†
�q , [X, a†�q] = zqaq , (5.72)

it follows directly that for zq < 0

eXaqe
�X =

1X

k=0

(zq)
2k

(2k)!
aq +

1X

k=0

(zq)
2k+1

(2k + 1)!
a†�q = cosh(zq)aq +

zq
|zq|

sinh(zq)a
†
�q . (5.73)
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In the main text, we introduced the bit increment operator IN, in order to implement
the squeezing operator in terms of single momentum mode and particle pairing operators.
The bit increment operator performs the transformation |ji ! |j + 1 (mod 2N)i, where
|ji = |j0, j1, · · · , jN�2, jN�1i and ji 2 {0, 1} for any i. We detail how this operator can
be constructed using multiple controlled �x gates in Fig. 5.16, although more efficient
constructions can be found in more recent work [224]. The idea of the implementation
shown relies on the fact that unit increments in a binary basis consist in consecutively
flipping all qubits, |0i ! |1i and |1i ! |0i, while tracking the input qubit with an ancilla
qubit prepared in the state |1i. This is only flipped to |0i after one has preformed the
transformation |0i ! |1i on the main register. After this operation, all future flipping
operations are prevented. This operation is implemented by the circuit to the left of
the vertical red line in Fig. 5.16. In a last step (to the right of the red line), one un-
computes the ancilla back to the state |1i via a single �x gate, with the boundary case
|1, 1, · · · , 1i ⌦ |1i ! |0, 0, · · · , 0i ⌦ |1i taken into account by the last gate in the circuit
depicted.

Figure 5.16: Circuit implementing the bit increment operator IN, introduced by Kaye [11,
12]. The number of elementary quantum gate operations required scales as O(N2) for
N � 3, leading to the polylogarithm scaling. Figure taken from [7].

5.D Details of the interaction term

In this appendix, we construct the operator Udiag
I,n , for the simplest case of n = �1/2 and

M = 4, and discuss how the generalize it to all n and M .
In this simple case, �

(i) diag
�1/2 = �z acting on the occupancy qubit of the register i (see

Eq. (5.23)). Also, for M = 4, Udiag
I,�1/2 acts only on the respective occupancy qubits of the

four particle registers. Using the fact that (�z)2 = 1, we obtain

Udiag
I,�1/2 ⌘ exp

(

�i∆
2X

s=0

cs,�1/2Os,�1/2

)

. (5.74)
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Here we distinguish three types of operator: O0,�1/2 = 1⌦4, O1,�1/2 = (�z)⌦4 and O2,�1/2 =
PΣ(1⌦1⌦�z⌦�z). The coefficients can be computed after taking into account all possible
combinations giving rise to each operator and read: c0,�1/2 = 4!(4 + 12), c1,�1/2 = 4! and

c2,�1/2 = 4!(2+1). The operator PΣ(X̂), represents the sum over all possible permutations

of X̂, in the tensor product. By itself, each Os,�1/2 is simply a product of Pauli matrices,
and following the discussion in chapter 4, it can be easily implemented.

The generalization of Eq. (5.74) to arbitrary n (and M) requires replacing �z by its
higher dimensional analogue, given in section 5.2.2. For M > 4 one has to repeat the
algorithm for all M(M � 1)(M � 2)(M � 3)/4! ⇠ O(M4) possible four-tuples formed out
of M registers.

5.E Details of the renormalization procedure

In this appendix, we begin by discussing the RG construction at weak coupling. In this
regime, Eq. (5.59) can be expanded in � as

Heff = H + [i⌘, H] +
1

2!
[i⌘[i⌘, H]] + · · · = H0 +HI + [i⌘, H0] + [i⌘, HI ] +

1

2
[i⌘, [i⌘, H0]] +O(�3) ,

(5.75)

where H = H0 + HI and HI ⇠ O(�), ⌘ ⇠ O(�). We label eigenstates H0|↵, ii =
E↵,i|↵, ii, where ↵ = l, h denote low and high energy sectors. To block-diagonalize H
such that h↵, i|Heff |�, ji = 0 if ↵ 6= �, we require that the diagonal elements of i⌘ vanish,
h↵, i|i⌘|↵, ji = 0, and we set h↵, i|i⌘|�, ji = h↵, i|HI |�, ji/(E↵,i � E�,j) for ↵ 6= �. With
this, the off-diagonal elements of Heff cancel to O(�2). In this case, Heff = H0 + HI +
1
2
[i⌘, HI ] +O(�3), with the low energy matrix elements given by

hl, i|Heff |l, ji = hl, i|H|l, ji+ 1

2

X

k

hl, i|HI |h, kihh, k|HI |l, ji
h 1

El,i � Eh,k

+
1

El,j � Eh,k

i

.

(5.76)

The same transformation applies to any operator Oeff = TOT †, which can be expressed
as hl, i|Oeff |l, ji = hl, i|O|l, ji + hl, i|∆O|l, ji. For the matrix elements for an observable
diagonal in the eigenbasis of H0 (such as particle number), this reads

hl, i|∆O|l, ji =
X

k

nhl, i|HI |h, ki
El,i � Eh,k

hh, k|HI |l, ji
Eh,l � El,j

1

2
[Ol

j +Ol
i]�

hl, i|HI |h, ki
Eh,k � El,j

Oh
k

hh, k|HI |l, ji
El,i � Eh,k

o

,

(5.77)

where we abbreviated hl, i|O|l, ji ⌘ Ol
i�ij. The procedure outlined can in principle be

continued to arbitrary order O(�n). See [7] for the case where the operator is not diagonal
in the H0 eigenbasis.
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5 Quantum simulating scattering of �4 scalar theory in d+ 1 dimensions

To generalize the renormalization procedure beyond weak coupling, one may use
Wegner’s formulation of an infinitesimal operator renormalization group [207] whereby
states inside an energy shell of width � around the cutoff Λ are integrated: H(Λ� n�) =
T (n)H(Λ)T †(n) with T (n) = exp(i⌘(n)), H(Λ�N�) = Heff after a number of RG stepsN ,
and ⌘(n) = [Hd(n), H(n)]. Here Hd(n) is the diagonal part of the Hamiltonian obtained
after n  N steps. The Hamiltonian H(Λ ! 1) is usually not known, and in practice
one starts from an ansatz for Heff

ll at finite Λ and takes the continuum limit.
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6
Towards the quantum simulation of

jet quenching

In this chapter we take the first steps towards the quantum simulation of in-medium
jet evolution. We focus on providing a strategy to quantum simulate the evolution of a
parton (a quark) in the presence of a background field, allowing for modifications to its
momentum to occur, but neglecting the possibility of it emitting radiation. In addition,
we show that this strategy is capable of recovering the q̂ parameter.

This chapter is based on [13].

6.1 Parton evolution in the Hamiltonian formulation

Our strating point is Eq. (2.81), which describes the effective in-medium scalar propagator
of the quark up to next-to-eikonal accuracy. In particular, it is easily observed that this
is the propagator for a single particle evolving under a potential gA�1 in two-dimensional
Quantum Mechanics. Equivalently, the single particle evolution is determined by the
non-relativistic Hamiltonian [81]

H(t) =
p2

2!
+ gA�(t,x) · T = HK +HA(t) , (6.1)

where ! is the quark energy, playing the role of a mass and p is (quark) momentum

operator. In the strict eikonal limit, where p2

!
! 0, the kinetic term drops out and the

1Here, we use A to denote the background field, unlike previous chapters. Also, we denote the color
generators by T in order to avoid confusion with the time variable t.
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evolution leads to the state acquiring a field dependent phase, as mentioned previously.
The respective time evolution operator can be written as

U(t, 0) ⌘ T exp



�i

ˆ t

0

dsH(s)

�

, (6.2)

with T time time ordering operator. This operator acts on the Hilbert space of single free
particle particle in two dimensions, such that an initial state | 0i at time t = 0 is related
to the state | ti via

| ti = U(t, 0)| 0i . (6.3)

The Hilbert spanned can be conveniently spanned by the position eigenvectors |xi or by
their Fourier pair |pi. It is natural to consider these two basis since p̂ |pi = p |pi and
Â�a(t, x̂) |xi = A�a(t,x) |xi, where we used the hats to highlight the difference between
operators and c-numbers; we also used the fact that the quark-medium interaction is
localized in position space (and conversely highly delocalized in momentum space).

With this formulation of parton evolution in the medium, and using the results from
chapter 4, we can provide a strategy to quantum simulate the quark evolution.

6.2 A quantum strategy to simulate in-medium evo-

lution

Let us first summarize the several steps involved in the quantum simulation algorithm,
which are summarized in Fig. 6.1.

1. Input – i) Template distribution to be loaded as an initial state | 0i ii) A list of m
field configurations A� with the associated weights pA� , storing the probability of
generating each configuration;

2. Encoding – Map between the degrees of freedom of the quantum system and the
qubits;

3. Initial state preparation – Preparation of | 0i;

4. Time evolution – Implementation of Eq. (6.3);

5. Measurement – Retrieving physical information by measuring the qubits, accord-
ing to a sensible protocol.

6. Output – For each field configuration the algorithm will output the expected value
of a random variable �, which should be then medium-averaged over all m configu-
rations.

The implementation is very similar to the one provided in chapter 5.
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6 Towards the quantum simulation of jet quenching

Figure 6.1: Overview of the circuit implementation of the quantum simulation algorithm
detailed in the main text. Above each line we provide the state being store in the circuit;
the ⌅ denotes that the time evolution gates parameters are to be determined from the
field A. Figure taken from [13].

Encoding

We discretize the problem in a two-dimensional lattice, such that |xi = |asni, with as the
spatial lattice spacing and n = (n1, n2) a two component dimensionless transverse vector,
where each component can take integer values between 0 and Ns � 1. The reciprocal
momentum space lattice allows one to write the momentum vectors as |pi = |adqi and
ad =

2⇡
asNs

the momentum space lattice spacing, with q = (q1, q2) a two dimensional vector
with each component also taking integer values between 0 and Ns � 1. In the ensuing
discussion we restrict ourselves to latices only spanning positive values of x and p.

The Hamiltonian can be written in terms of a dimensionless Hamiltonian H = Has
(see appendix 6.A for the details)

H =
P 2

2E
+ gA(t,X) · T = HK +HA(t) , (6.4)

where P̂ |qi = q |qi and X̂ |ni = n |ni are the dimensionless position and momentum

operators. In addition, A(t,n) · T = asA
�(t, asn) · T and E = N2

s!as
4⇡2 is the dimensionless

energy factor. In what follows, position and momentum vectors are assumed to be given
in this dimensionless basis.

The mapping to the qubits is immediate: for each spatial dimension we employ a
register with nQ qubits, such that any component of the vector can be decomposed in
a binary basis, using the convention introduced in chapter 4. Position and momentum
space vectors are related by a standard qFT.

Initial state preparation

The preparation of an initial wave packet in position or momentum space can be done
using the techniques detailed in chapter 5. In this chapter we are mainly interested in
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the case where the initial state corresponds to a quark with transverse momentum p = 0,
which can always be achieved (theoretically) by rotating the reference frame.

We would like notice that, there are however many situations where exactly preparing
|p = 0i is not possible (for example the detailed encoding might not include this point as
was the case in chapter 5) or one might be interested in studying initial state effects on
the observe momentum distribution.

Time evolution

The time evolution operator in Eq. (6.2) can be written in terms of the dimensionless
Hamiltonian H and L0 ⌘ L/as

U(L0, 0) ⌘ T exp

"

�i

ˆ L0

0

dtH(t)

#

, (6.5)

where we highlight that time has been made dimensionless by dividing by the spatial
lattice spacing as

2.
Unlike the cases explored in chapters 4 and 5, in this case the Hamiltonian is time

dependent due to the background field. As such, the Trotter-Suzuki formula is not valid.
Nonetheless, time evolution controlled by time dependent Hamiltonians can still be quan-
tum simulated easily. In this chapter we are not so concerned with providing an optimized
implementation, but rather give an overall strategy. As such, we use the simplest product
formula [225], decomposing U as

U(L0, 0) ⇡
NtY

kt=1

⇢

exp



�iHK
L0

Nt

�

exp



�iHA

✓

kt ·
L0

Nt

◆
L0

Nt

��

⌘
NtY

kt=1

{UK("t)UA(kt · "t, "t)} ,

(6.6)
where we have sliced time into Nt steps, each with a length "t ⌘ L0/Nt. In each time
step, the evolution operator is split into a short evolution according to HK , followed by
an evolution in time with HA. Notice that during the time interval (kt · "t, (kt + 1) · "t)
the field A is taken to be constant, leading to the constraint that "�1

t � ||@tHA(t)||; there
exist algorithms [225] which circumvent this constraint, as well as other strategies (see for
example [194,226–228]) to quantum simulate time dependent Hamiltonians with expected
higher precision.

Similar to the previous chapter, we can now focus solely on the evolution during the
ktht time slice, and similar to the previous chapter, we choose to time evolve according
to HK in the momentum basis, while the evolution according to HA is done in position
space, due to the locality of interactions. This is illustrated in Fig. 6.2.

The action of UK is diagonal in the |pi basis

UK("t) |pi = exp
⇣

�i
"t

2E
p2
⌘

|pi , (6.7)

2In general, one could choose another length scale to make time dimensionless, leading to the appear-
ance of a ratio between as and said scale.
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Figure 6.2: Outline of the implementation of the time evolution operator U in the kth
t

time step. Figure taken from [13].

thus one only needs to implement a circuit which generates a state dependent phase,
similar to the case in the previous chapter and [178]; see appendix 6.B.

After performing the qFT, one has to compute the action of UA in the |xi basis

UA(kt · "t, "t) |xi = exp(�ig"tA(kt · "t,x)) |xi , (6.8)

where, for now, we assume that the quark is a color singlet; see section 6.3 for details on
how to deal with non-trivial color evolution.

In principle, one could again use a strategy similar to the one used to implement
UK . However, this assumes that one could construct Nt oracles which quantum compute
A(kt ·"t,x) for every x in each time slice. Since in general one does not have a closed form
expression or a simple numerical routine to compute the field values, such an approach
might not be possible. A more realistic approach would consist in first computing the
field values for spacetime points, which requires O(Nt ⇥ N2

s ) classical evaluations of the
field, and thus it would defeat the purpose of the strategy outlined so far. Nonetheless, in
practice a small number of qubits nQ is needed to have a sufficiently good discretization
(see section 6.4), and thus the actual number of field evaluations could in practice be
performed by a classical computer.

Once one has evaluated all the relevant field values, they are stored in a classical mem-
ory and loaded onto the circuit as parameters to the basic gates implementing Eq. (6.8);
see appendix 6.B. Clearly the implementation of the operator UA would greatly benefit
from native implementations of quantum diagonal gates, where each entry exponentiates
a circuit input [229]3.

After performing this operation and transforming back to the momentum basis, this
block is iterated until kt = Nt.

3Quantum strategies to simulate the time evolution of the background field could also be coupled to
our strategy. This could in principle simplify the implementation of UA.
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Measurement

Given the final state | Li =
P

q  
q
L |qi one could measure all the 2nQ qubits and obtain

the probabilities | q
L|

2 for every q and reconstruct the underlying probability distribution.
However, such a strategy requires an exponentially large number of measurements. One
can however, design more efficient protocols which give access to relevant physical infor-
mation. In this section, we assume that the initial condition of the quark is p = 0. In
this case the coefficients | q

L|
2 are directly related to the single particle broadening distri-

bution; see appendix 6.C. To be more exact, this is only true after performing an average
over all pA field configurations, which can be done at the end of the algorithm. Thus, for
each of the m field configurations one runs the algorithm the necessary number of times
to extract the expectation value of some variable classical � (to be detailed below) and
then performs a medium average, reading

h�iM =
1

Pm
i=1 pA(i)

mX

i=1

pA(i)h�i(i)QM , (6.9)

where i runs over all possible medium configurations and h.iM denotes the average over
field configurations while h.iQM denotes the (quantum mechanical) expectation value. As
mentioned above, this procedure can be replaced by a parallel circuit where the dynamics
of the gauge field are simulated. The numerical value for m depends on field fluctuations,
that are typically assumed to follow the MV model prescription [117–119, 230, 231]. We
note however that in our approach, one is not constrained to assume the MV model,
nor does one need to explicitly construct any field correlator. In addition, due to the
formal similarities between jet quenching and saturation physics [133], the physical origin
of A�, either generated from hot and dense Quark Gluon Plasma, the initial glasma [114]
or from cold nuclear matter, is not constrained. Also, our approach should be able to
explore the evolution of the jet quenching parameter q̂, both in time and in orthogonal
spatial directions [232]. The only practical constraint is that the larger the background
field fluctuations become, the larger m must be, leading to a linear increase in cost for
running the full algorithm.

Let us then consider the case for a single field configuration and how to extract q̂ for
that A�. First, we add an ancilla qubit to the circuit and perform the Hadamard test
detailed in Fig. 6.3.

We first transform the ancilla by the Hadamard gate H = H†, and then apply a
unitary transformation V on the physical state if the ancilla is in the state |1i. We then
reverse the transformation applied on the ancilla and measure the qubit. We associate
the measured value to a random variable � which takes the values �1 if we observe the
state |0i and +1 if the state |1i is generated. The ancilla can be either prepared in the
state |0i or in the superposition 1/

p
2(|0i + i |1i). This strategy is not unique, but it is

particularly simple and inexpensive.
One can show that if the ancilla is in the initial state |0i (see 6.D), then

h�iQM ⌘ h L|V + V † | Li = < h L|V | Li . (6.10)
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Figure 6.3: Detailed measurement strategy. Figure taken from [13].

On the other hand, if the ancilla is prepared in the state 1/
p
2(|0i+ i |1i), we have that

h�iQM = = h L|V | Li , (6.11)

which when combined give access to both the real and imaginary parts of the expectation
value of the unitary operator V .

Let us consider first the case where V = V↵ = exp(i↵P 2). Then

< h L|V↵ | Li = hcos(↵P 2)iQM , (6.12)

and

= h L|V↵ | Li = hsin(↵P 2)iQM , (6.13)

from which one extracts hei↵P 2iQM, by definition. We also have that

hei↵P 2iQM = 1 +
1X

k=1

i↵k

k!
hh2kii , (6.14)

where hh2kii ⌘ hP 2kiQM corresponds to the expectation value of the 2k power of the
momentum operator. When initial state effects are absent, a2dhh2ii = q̂L, where we
inserted a2d to get the correct dimensions. Furthermore, one can choose ↵ such that, for
small enough ↵, only linear variations are relevant

hei↵P 2iQM ⇡ 1 + i
↵

a2d
q̂L ! hsin(↵P 2)iQM ⇡ ↵

a2d
q̂L . (6.15)

Notice that the left hand side corresponds to a quantity extracted from the quantum
computer, while the right hand side is written in terms of the jet quenching parameter.

If one goes to higher orders in ↵, then one is sensitive to the even moments of the
momentum distribution. One can imagine varying ↵ and from the observed evolution
retrieving the hh2kii moments via a numerical fit. Of course, such a strategy, on top of

129



João Lourenço Henriques Barata

the additional polynomial cost in m, would increase the cost of running the algorithm by
the number of ↵ values to be explored.

If one is only interested in extracting q̂, one could consider the unitary V = exp(iF (P 2)),
with F (P 2) = arccos(P 2). Then, for the case where the ancilla is initially set to |0i, we
obtain

hXiQM = h L| cos(arccos(P
2)) | Li = hh2ii . (6.16)

Such a arithmetic oracle should be available, see references and discussion in chapter 5.

6.3 Treating color evolution

Let us now consider the case where the quark is in the fundamental representation of the
color group. An immediate consequence is that HA now has a non-trivial color structure,
i.e. A · T = AaT a = 1

2
Aa�a, where �a denotes the eight Gell-Mann matrices. To deal

with this modification, we further split the time evolution operator to take the form
U = UK ·UA1 ·UA2 · · ·UA8 and we track the color of the quark by adding a new register with
two qubits, which stores the color state of the quark. In particular we use the following
map between the logical and physical states: |0, 0i ⌘ |redi = |Ri, |0, 1i ⌘ |greeni = |Gi,
|1, 0i ⌘ |bluei = |Bi and |1, 1i ⌘ |W i, with the latter state not being physical and
therefore absent from any calculation.

We now detail how to implement HA1 , with the other values of a following analogous
implementations. The first Gell-Mann matrix is given by

�1 =

0

@

0 1 0
1 0 0
0 0 0

1

A !

0

B
B
@

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

1

C
C
A

⌘ �̃1 , (6.17)

where in the second step we have embedded �1 into the two qubit Hilbert space. The
action of �̃1 is to color rotate the quark state between the |Ri and |Gi states. One can
diagonalize the above matrix using a control Hadamard gate CH

CH =

0

B
B
@

1/
p
2 1/

p
2 0 0

1/
p
2 �1/

p
2 0 0

0 0 1 0
0 0 0 1

1

C
C
A

, (6.18)

such that we can write HA1 , in kth
t time interval, in terms of a diagonal operator (here we

drop all spacetime dependence for clarity)

e�
ig"t
2

A1⌦�̃1 = (1⌦ CH)e�
ig"t
2

A1⌦�̃Z

(1⌦ CH) . (6.19)
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and we used the extended Pauli operator �̃Z = diag(1,�1, 0, 0)4. Finally, to compute the
exponential of the tensor product we notice that

e�i
g"t
2

A1⌦�̃Z

|xi ⌦ |ci =
X

n

(�ig"t)
n

2nn!
(A1(X)�̃Z)n |xi |ci = |xi

X

n

(�ig"tA
1(x))n

2nn!
(�̃Z)n |ci ,

(6.20)

where |ci denotes the two qubits register storing the state of the quark in color space.
From the previous equation it is easy to observe that only |0, 0i and |0, 1i states result in a
phase, the former with a �i pre-factor and the latter with a +i; the circuit implementation
of Eq. (6.19) is given in Fig. 6.4.

Figure 6.4: Implementation of the (infinitesimal) time evolution operator generated by
HA1 .

An important consequence of including non-trivial color evolution is the fact that the
final and initial state are differential in color. Therefore, when preparing the state one
has to set colors either according to some initial state prescription or in an equitative way.
Conversely, in the measurement protocol the output must be color averaged, which can
be performed classically5.

6.4 Numerical estimates for the circuit parameters

Finally, let us estimate the necessary resources needed in order to implement this algo-
rithm, based on the discussion in chapters 2 and 3.

4To be more precise, this definition takes σ̃Z to be non-unitary, unlike σZ . This is done, in order to
ensure that only the |Ri and |Gi states transform non-trivially.

5This is not necessary if the qubits storing the color information are not measured.

131



João Lourenço Henriques Barata

When traversing a dense medium of length L, the quark will acquire an average
transverse momentum of the order of the saturation scale, hp2i ⇠ q̂L ⌘ Q2

s. L is roughly
of the order of the nuclear radius of heavy elements, like Pb or Au, which we take to be L ⇠
O(10 fm) = O(50GeV�1), for experimental set-ups such as the LHC, RHIC or the EIC.
In addition, to bridge these experimental conditions, we assume that O(0.1GeV2fm�1) 
q̂  O(10GeV2fm�1) [6,153,155]. The saturation scale Q2

s is then approximately bounded
by Q2

s ⇠ O(1� 100GeV2).
Setting the ultraviolet momentum cutoff induced by the digitization pmax. to be much

larger than the saturation scale Qs, we obtain

|pmax.| ⇡
2⇡

as
� O(1� 10GeV) , (6.21)

thus
as ⌧ O(1� 10GeV�1) = O(0.1� 1 fm) . (6.22)

Conversely, we require that the momentum space discretization is neither to coarse nor
to fine. A simple way to ensure this is to impose

µ < ad < Qs ⇠
µ

Qs

<
1

Ns

< 1 , (6.23)

where typically µ ⇠ O(0.1� 1GeV) [6, 113,125]. Recalling that Ns = 2nQ , we obtain

1 < Ns < 100 () 0 < nQ < 7 . (6.24)

Thus, one roughly needs O(27 = 128) states per dimension to adequately discretize the
theory. In practice this number will have to be larger since the correct energy ratio should
be µ/|pmax.|, which here we took |pmax.| = Qs, such that the peak of the broadening
distribution is well captured. Even so, one would expect that (roughly) nQ < 20 or
Ns < O(106).

The longitudinal scales also impose a constraint on the circuit parameters. We recall
that in the multiple soft scattering approximation, one requires that � is much larger
than the typical correlation length in the medium 1/µ, ensuring that there are no color
correlations between different scatterings centers. This condition can be written as

1 � �

L
� 1

µL
. (6.25)

The opacity of the medium, �med. ⌘ L/� [101, 102], can be identified with �med. ⇠ Nt =
L0/"t, leading to

1  Nt ⌧ µL =) 1  Nt ⌧ O(100) . (6.26)

The remaining circuit parameter that directly depends on the physics one wants to
explore is m, the number of field configurations to be generated. As alluded above, the
numerical value for m intrinsically depends on the model/prescription for the gauge field
and its fluctuations, and therefore it is tied to the underlying physical origin of this field.
As such, we are not able to give an estimate for it, without assuming some model.
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6.5 A brief summary

In this chapter we have introduced a simple algorithm to quantum simulate parton propa-
gation inside the medium. This allowed us to extract the jet quenching parameter q̂. The
algorithm requires 2nQ+l qubits (assuming one can re-use ancillas) and O(Nt⇥polylogNs)
basic gate operations. However, there is an underlying classical cost coming from the
m⇥Nt ⇥N2

s evaluations of the gauge field. This is the major drawback of our strategy,
since it is not guaranteed that the classical evaluations of A can be performed efficiently.
Additionally, there is an overall additional polynomial cost in the measurement section,
if one decides to scan several values of ↵.

The strategy used is a classical-quantum hybrid one, already explored in other stud-
ies [233–235] and being a promising avenue for near term applications. Nonetheless, sim-
ulating momentum broadening, which is a (classical) ↵0

s effect, is by itself not interesting
since it is easily calculable using standard techniques. Nonetheless, the formulation of a
full medium induced cascade is of great interest and simulating single particle broadening
constitutes a first step in this direction. Also, recent interest has sparked the design of
quantum circuits to simulate hard probe’s evolution in the medium [235], using an open
quantum system formulation. This is set-up is however not fully developed in the context
of jet quenching (see however [236, 237]). This is unlike our approach, formulated well
within the BDMPS-Z/ASW framework.

Going beyond ↵0
s effects amounts to include Eqs. (2.71) and (2.74) in the Hamiltonian

H [81]. Nonetheless, this entails having an efficient way of simulating branching processes
using a quantum computer which, as far as we are aware, is not currently known, at least in
the way we formulate the problem. If this is possible and one can simulate both broadening
and in-medium branching effects, then such an approach could physically outperform
classical Monte Carlo simulations, which can not treat multi-particle interference effects
exactly. Further work is necessary to determine if this is feasible or not in the near future.

6.A Discretization and encoding details

In this appendix we give the details on the discretization of the quantum mechanical
system considered in the main text and the map to the qubits available in the quantum
computer.

Taking a two dimensional lattice, with lattice spacing as and Ns sites per dimension,
we can write |xi = |asni and |pi = |adni, with ad = 2⇡

Nsas
. These two basis are related

by

|pi =
ˆ

x

e�ip·x|xi ! a2s
X

n

e�2⇡i q·n
Ns |nasi , (6.27)
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|xi =
ˆ

p

eip·x|pi ! a2d
(2⇡)2

X

q

e2⇡i
q·n
Ns |qadi , (6.28)

where
´

x
=

´

d2x and
´

p
=

´

(2⇡)�2d2p and we provide the discretized version of the
Fourier integrals. Using that

hx|pi = e�ip·x ! e�2⇡in·q
Ns , (6.29)

one can show that

hx|yi = �(2)(x� y) =
�n,m

a2s
, (6.30)

hp|ki = (2⇡)2�(2)(k � p) = (2⇡)2
�qk,qp

a2d
, (6.31)

where we used the closure identity
X

n

e2⇡i
n·q
Ns = N2

s �q,0 . (6.32)

We define the dimensionless basis states

|ni = as |xi , |qi = ad
2⇡

|pi , (6.33)

which satisfy hn|mi = �n,m, hqp|qki = �qp,qk and hn|qi = N�1
s exp(�2⇡iN�1

s n · q). The
Fourier transforms now read

|ni = 1
p

N2
s

X

q

e2⇡i
q·n
Ns |qi , (6.34)

|qi = 1
p

N2
s

X

n

e�2⇡i q·n
Ns |ni . (6.35)

It is natural to introduce the operators P = p/ad andX = x/as, satisfying X̂ |ni = n |ni
and P̂ |qi = q |qi. Inserting this operator definitions into Eq. (6.1), one can extract the
dimensionless Hamiltonian H = asH, given in Eq. (6.4).

The map to the 1/2-spin registers in the quantum computer is achieved by decom-
posing each component of the vector n = (n1, n2) in the binary basis, e.g.

n1 =
2
nQ�1X

i=0

n
(i)
1 2i , (6.36)

where n
(i)
1 2 {0, 1} and we assume that there are nQ qubits available, such that 2nQ = Ns is

total number of possible states. If n
(i)
1 = 0 then we associate a qubit in the state |"i = |0i

to it; conversely if n
(i)
1 = 1 we assign |#i = |1i. Eqs. (6.34) and (6.35), correspond to

standard qFTs. The extension to include signed values of x and p can be done following
chapter 5.
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6.B Time evolution details

In this appendix we detail the circuit implementation of UK and UA in one spatial dimen-
sion, without loss of generality.

The strategy considered to implement UK was first discussed in [178]. Starting from
a state |pi one generates exp(�isKp

2) |pi, with sK = "t/(2E) a pure real number. This
operation can be implemented by i) adding an ancilla register with l qubits all in state |0i
ii) assuming that a quantum black-box (quantum oracle) can be constructed that given
|pi outputs |F (p)i = |p2i. Regarding the first point, the value of l solely depends on
the numerical accuracy one wants to represent p2 in a binary basis, roughly l � nQ, see
chapter 5.

We perform the following set of operations

|pi⌦|0i⌦l a1�! |pi⌦|F (p)i a2�! exp(�isKF (p)) |pi⌦|F (p)i a3�! exp(�isKF (p)) |pi⌦|0i⌦l .
(6.37)

In a first step –a1– one applies the quantum oracle, with input |pi and stores the output
F (p) in the ancilla register. In step a2 one performs a transformation of the form

|xi ! exp(�isKx) |xi , (6.38)

with sK a real number and |xi denotes the binary decomposition, with l qubits, of an
integer number. This exponentiation operation can always be performed by applying l
single qubit gates Rj(") = diag(1, e�isK2j), taking into account that x can be decomposed
as

x =
lX

j=0

xj2
j , (6.39)

where xj 2 {0, 1}. Acting on a single qubit the above operator has non-zero matrix ele-
ments h0|Rj(sK) |0i = 1 and h1|Rj(sK) |1i = exp(�isK2

j). Coupling l of such operators
with increasing values of j

R(sK) ⌘ R0(sK)⌦R1(sK)⌦ · · ·⌦Rl(sK) , (6.40)

results in a multi-qubit operator implementing the desired transformation, i.e. R(sK) |xi =
exp(�isKx) |xi.

The final step – a3 – consists in erasing the ancilla register back to the state |0i⌦l,
which can be achieved by applying the Hermitian conjugate circuit used in step a1.

In the implementation of UA, one is handed a list of Nt ⇥ N2
s values, describing the

field values at all the relevant spacetime points. Stringing together 2nQ single qubit gates
R↵,� ⌘ diag(exp(i↵), exp(i�)), which can be written as the product of the exponential of
the �x Pauli gate and the Rj gates, UA can be implemented. In one spatial dimension
and for nQ = 1 and for the kth

t time slice, one would obtain ↵kt = �g✏tA(kt · "t,0) and
�kt = �g"A(kt · "t,1), where the sub-index denotes the time slice and there are only
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two spatial lattice points (|0i and |1i). If we now consider nQ = 2, the respective time
evolution operator would be obtained by

R↵,� ⌦R�,� =

0

B
B
@

ei(↵+�) 0 0 0
0 ei(↵+�) 0 0
0 0 ei(�+�) 0
0 0 0 ei(�+�)

1

C
C
A

, (6.41)

for each time slice. By solving the associated system of linear equations, one can map
{↵, �, �, �} to {A(x)}, which can be done offline for any t in a classical computer.

6.C Relation between | Li and the single particle mo-

mentum distribution

The single particle broadening distribution, introduced in section 2.3, gives the probability
of observing a quark with momentum k due to interactions with the medium for a time
L

P(k, L) =
1

Nc

ˆ

x,y

e�ik·(x�y)TrhW(x, L)W†(y, L)iM , (6.42)

where W(x) is a Wilson line operator along the future pointing light-cone at a transverse
position x, which can be written in the gauge choice employed in the main text as

W(x) = T exp

✓

ig

ˆ L

0

dtA�(t,x) · T

◆

. (6.43)

Notice that here we have not assumed that the transverse profile of the medium is isotropic
and thus the dependence on x and y.

It is not difficult to check that, in the strict eikonal limit, where H = HA, the circuit
detailed in the main text mirrors the P distribution. For clarity, we ignore the details in
the implementation of the time evolution operator and we assume that the initial state is
that of a quark with zero transverse momentum | 0i = |p = 0i.

In this scenario the circuit simplifies significantly since all but an initial and a final
qFT cancel out and the system state transforms as

|0i qFT�! 1
p

N2
s

X

x

|xi UA�! 1
p

N2
s

X

x

UA(L,x) |xi
qFT†

�! 1

N2
s

X

q

"
X

x

UA(L,x)e
2⇡ix·q

Ns

#

|qi .

(6.44)
The probability of measuring the state |ki, Pk, is simply given by

Pk =
1

(N2
s )

2

X

x,y

e2⇡i
k(x�y)

Ns U †
A(L,y)UA(L,x) . (6.45)
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Averaging over all field configurations and noting that W(x) = U †
A(x) we obtain

Pk =
1

(N2
s )

2

X

x,y

e2⇡i
k(x�y)

Ns hW(y, L)W†(x, L)iM , (6.46)

which is just the discretized version of the single particle broadening distribution P(k, L),
as expected (ignoring the color average, which can be performed as detailed in section 6.3).
Also, since P is a probability

´

k
P(k, L) = 1, which is trivially true in the discrete version.

6.D Measurement details

In this appendix we provide some details on the measurement protocol outlined in the
main text. Taking the initial ancilla state to be |0i

|0i | Li H�! 1p
2
(|0i+ |1i) | Li V�! 1p

2
(|0i | Li+ |1iV | Li)

H�! 1

2
[(1 + V ) |0i | Li+ (1� V ) |1i | Li] .

(6.47)

Then the expectation value for the random variable � reads

h�iQM =
+1

4
| | Li+ V | Li |2 +

(�1)

4
| | Li � V | Li |2 =

1

2
hV + V †iQM , (6.48)

which is equivalent to the expression in the main text.
The case where the initial ancilla state is 1/

p
2(|0i + i |1i), which can be easily gen-

erated from the pure state |0i, reads

1p
2
(|0i+ i |1i) | Li H V�! 1

2
((1 + i) |0i | Li+ (1� i) |1iV | Li)

H�! 1p
8
[((1 + i) + (1� i)V ) |0i | Li+ ((1 + i)� (1� i)V ) |1i | Li] .

(6.49)

Then the expectation value for � reads

h�iQM =
i

2
hV † � V iQM , (6.50)

as indicated in the main text.
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Summary and Conclusions

The main focus of this thesis was on i) establishing the IOE/M framework as a suitable
scheme for jet quenching analytic studies beyond the MS vs SH divide, commonly found
in the literature ii) proposing a novel strategy to quantum simulate high energy scattering
in digital quantum computers iii) taking the first steps towards the quantum simulation
of full medium induced parton showers.

In chapter 3, we first studied the IOE/M scheme applied to the medium induced
gluon energy spectrum beyond NLO accuracy, focusing on the asymptotic regions where
the correct/expected physical picture becomes clear. This study was done by tracking all
the leading logarithmic dependencies, which are important to fully control the behavior
of the spectrum. A particularly relevant side result was the construction of the LT map
given in Eq. (2.48), which allows for meaningful comparison between different medium
models.

At high energies, we confirmed the NLO term recovers the results from GLV/W, while
higher order terms are power suppressed in energy. In fact, we explicitly checked that
the LO and NNLO terms contributed at the same order in the high energy expansion,
and when combined with sub-leading NLO terms, the dependence on the matching scale
disappeared. This provided i) a check that indeed the matching scale vanishes once all
orders are taken into account ii) the NLO leading energy term, which is independent of the
matching scale, is always the dominant contribution. In conclusion, the goal of recovering
the GLV/W solution, using the IOE/M approach, at high energies is never spoiled.

On the other hand, at small frequencies we observed that the spectrum has a much
richer structure. The most important message one should take is that the spectrum in this
region reduces to the BDMPS-Z/ASW result with a renormalized jet quenching parameter

q̂eff(Qc) = q̂0 log

✓
Q2

c

µ2
?

◆
2

41 +
1.016

log
⇣

Q2
c

µ2
?

⌘ +
0.316

log2
⇣

Q2
c

µ2
?

⌘ +O

✓

log�3

✓
Q2

c

µ2
?

◆◆
3

5 ,

and unlike the BDMPS-Z/ASW result, the matching scale must obey

Q2
c =

s

q̂0 ! log

✓
Q2

c

µ2
?

◆

,

which prevents the appearance of fake diverges and provides a prescription to glue the
MS and SH regimes. Very broadly, these results are a consequence of requiring that the
spectrum is invariant under variations of the matching scale Q2.

In a second study, we applied the IOE/M approach to momentum broadening. We
observed that, as expected, this framework is able to capture the full broadening distribu-
tion, although the scheme only seems numerically reasonable at LHC or RHIC energies.
Nonetheless, for many studies having a simple formula including both the SH and MS
regimes will certainly be important.
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In the future, we plan to study the fully differential gluon spectrum [5,238], thus con-
cluding the application of the IOE/M framework to the standard quantities which form
the basis of jet quenching phenomenology. In fact, recently the broadening and energy
spectrum results discussed in this thesis have already been applied in a full phenomeno-
logical jet quenching study [152], thus showing that the results presented in this thesis
are already relevant for direct applications. Another avenue in which the application of
IOE/M seems promising is in finding signals for the presence of quasi-particle scattering
centers in the QGP [239,240]. This could be applied either in studies of dijet asymmetry
or using novel sub-structure observables [241,242]. Although the former has been explored
for a longer period of time, the signal for the presence of hard scattering centers directly
competes with underlying event and other contributions uncorrelated with the dijet pair,
and thus one expects it to be experimentally hard to pin down. On the other hand, the
latter approach seems more promising since jet substructure observables sensitive to hard
scattering should be less contaminated by other contributions.

In a second section of this thesis, we have introduced a novel strategy to quantum
simulate high energy scattering in �4 theory. Although this is a toy theory, many of
the problems faced in more complicated theories already emerge in this case, and thus it
provides a good starting point. The major advantage of our approach, which is partially
motivated by the emergent partonic picture of QCD at high energies, compared to the
seminal work of Jordan, Lee and Preskill [10, 64, 65], lies on the fact that the number of
qubits only scales logarithmically with the lattice volume (and linearly with the number
of particles). Thus, for scattering problems, where typically the number of particle is
small but the phase space is large, it is natural to consider this approach. In addition, the
basis used matches the perturbative Feynman diagrammatic calculus picture, so familiar
to high energy physicists. Thus, the interpretation and implementation of our approach
seems more straightforward and natural, especially if compared to perturbative QFT
approaches. In addition, we have shown that our algorithm directly mirrors scattering
events at the LHC or RHIC, and the act of measuring the qubits is analogous to the
experimental measurement protocols. On top of this, we showed that, in principle, a
quantum computer can in fact outperform the experimental set-up, since one has full
control over the final state of the system.

In a next step, we plan to perform a numerical study focusing on the simplest case of
d = 1 spatial dimensions. Using exact diagonalization numerical packages, we will study
how well the spectrum of the theory can be reproduced in the interacting theory at finite
� for given lattice discretization and M , similar to the JLP associated study [10]. Our
strategy can also be classically computed for the case of M = 2 in d = 1 dimensions with
Ns = 8 (16) lattice sites, which could serve to test the resilience of the algorithm against
quantum errors. In a final step, one could implement the resulting circuit in a quantum
hardware, although even correctly preparing the initial state of the system would be a
notable achievement. Perhaps more interestingly, one could look for simpler problems
where the single particle strategy might be already applied in quantum hardware. An
example of this could be the extension of our strategy to quantum simulate jet quenching,
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where the single particle picture is natural to consider.
In the last topic treated in this thesis, we have presented a simple algorithm to

simulate single particle momentum broadening in a digital quantum computer, with the
intention of extending this program in the future to a full in-medium parton shower.
This effort is inline with recent interest in applying quantum computers to study high
energy and nuclear physics phenomenology [62, 63, 235, 243–246]. If in the future one
is able to efficiently implement a circuit simulating a full medium induced shower, then
it is expected that, physics wise, the resulting algorithm outperforms current classical
approaches [51,52]. This is nonetheless still a wide open question and it is not even clear
if it can be done in near to mid term hardware, if ever. In addition, one must always keep
in mind that due to the special character of the act of measurement in quantum mechanics,
even if such a quantum algorithm exists, it will certainly not be able to outperform its
classical counterparts in all tasks. Rather, depending on what the precise question of
interest is, a quantum strategy might make sense or not.
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Resumo

QCD é a teoŕıa que describe a forza forte, unha das interaccións fundamentais e un dos
piares do modelo estándar de f́ısica de part́ıculas. Esta teoŕıa detalla as interaccións entre
quarks e gluóns, que son as part́ıculas fundamentais que constitúen os hadróns que forman
a maioŕıa da materia ordinaria.

As propiedades máis importantes da QCD poden entenderse do comportamento da
súa constante de acoplo ↵s. A baixas enerx́ıas ou grandes separacións o acoplamento é
grande e, polo tanto, quarks e gluóns non poden existir libremente. Pola contra, estes
están fortemente soldados entre si e, como consecuencia, nas escalas macro nas que ex-
perimentamos a natureza, forman obxectos neutros en cor que compoñen a maior parte
da masa observable no Universo: os hadróns. Non obstante, a medida que aumentamos
a enerx́ıa ou miramos máis profundamente dentro dos hadróns, o acoplamento efectivo
diminúe e hai unha transición de fases entre as fases confinante e desconfinada da teoŕıa.
De feito, a enerx́ıas asintóticamente grandes o acoplamiento desaparece garantindo que
os quarks e os gluóns se comporten libremente. Neste réxime de liberdade asintótica as
técnicas de teoŕıa da perturbación son aplicables e axeitadas para a caracterización dos
correspondentes fenómenos f́ısicos, dado que o acoplamento é pequeno. Por outra banda, a
baixas enerx́ıas, as contribucións non perturbativas tórnanse importantes e son necesarios
outros enfoques, como os cálculos de lattice.

Ao estudar a dispersión de alta enerx́ıa dos hadróns, a separación anterior entre
unha f́ısica branda (soft) e dura (hard) é extremadamente útil. Permite descompor o
proceso de dispersión en dúas compoñentes factorizadas, por unha banda a estrutura non
perturbativa dos hadróns está codificada en funcións de distribución universais, como as
funcións de distribución partónica e, por outra banda, os procesos hard, que teñen lugar
entre entre os quarks e gluons e que poden ser calculados perturbativamente. Aı́nda
que a estrutura de hadróns non é perturbativa, pódense aplicar métodos de grupo de
renormalización para que se poida predicir a estrutura destes obxectos á escala de enerx́ıa
relevante. Isto proporciona un xeito de determinar o contido de quark e gluón dos hadróns,
dada unha mostra de datos inicial. Por outra banda, os procesos de dispersión dura
pódense calcular empregando métodos tradicionais de teoŕıa da perturbación.

Ademais das colisións de hadróns individuais (normalemente protóns) a alta enerx́ıa,
que normalmente se consideran eventos moi limpos, pódese explorar o diagrama de fase
da QCD facendo colisionar obxectos máis grandes como os núcleos de ouro ou chumbo.
Nestes casos, a densidade e a presión da enerx́ıa son tales que se forma un novo estado da
materia, o Quark Gluon Plasma. Isto corresponde a un estado desconfinado da materia,
que se comporta como un ĺıquido perfecto ás enerx́ıas dos colisionadores actuais, e onde os
graos fundamentais de liberdade son os quarks e gluóns libres ás enerx́ıas asintóticas. O
estudo do QGP é de extrema importancia para o desenvolvemento da f́ısica fundamental,
desde aspectos relacionados coas propiedades do QCD como a súa ecuación de estado
ou a natureza do Universo inicial. Para describir as colisións de núcleos onde se forma
o QGP, asúmese que a factorización citada anteriormente entre procesos f́ısicos soft e
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hard é áında válida. As principais diferenzas, con respecto ao caso hadrónico, son que
as compoñentes soft describen agora a estrutura non perturbativa de obxectos compostos
por moitos hadróns, que en xeral non é a suma incoherente das súas compoñentes, e o
feito de que os estados finais dos procesos duros se modifican debido á interacción co QGP
subxacente producido durante o evento.

Nesta tese, estudamos a modificación que se produce nos estados finais debido á inter-
acción co medio. En particular, consideramos a modificación que a presenza dun mediu
induce no chuveiro de part́ıculas procedentes de partóns hard. Este efecto, coñecido como
jet quenching, leva á desviación das part́ıculas dentro do jet e á produción de radiación
bremsstrahlung debido ás interaccións co medio. Normalmente, isto leva ao alargamento
da estrutura do jet, mentres que os modos de radiación máis suaves desv́ıanse a ángulos
máis grandes, termalizándose finalmente unha vez que alcanzan a escala t́ıpica de temper-
atura do medio. Como consecuencia, o núcleo interno do jet ampĺıase lixeiramente pero
leva unha porcentaxe maior da enerx́ıa global do cono.

Dende o punto de vista teórico, a descrición do chuveiro de partóns inducidos polo
medio baséase na descrición da evolución no medio dun partón individual. Na orde ↵0

s, a
interacción entre o partón e o medio leva á modificación do impulso do partón, mentres
que na orde ↵s, a interacción do medio partón leva á produción de radiación inducida.
O estudo anaĺıtico destes observables realizouse tradicionalmente no réxime onde domina
unha única dispersión dura co medio ou no réxime oposto onde as dispersións suaves
múltiples, que poden actuar de forma coherente, son o efecto f́ısico dominante. Non
obstante, as condicións experimentais que se exploran actualmente non se atopan dentro
de ningún destes réximes. Como consecuencia, ter un marco unificado que abrangue tanto
o sector dominado por un scattering duro como aquel dominado por multiples scatterings
soft é necesario para unha fenomenolox́ıa de jet quenching precisa.

Nunha primeira parte desta tese, exploramos tal enfoque denominado Expansión da
Opacidade Mellorada (Improved Opacity Expansion (IOE)), demostrando que de feito
describe adecuadamente o espectro de gluóns inducido polo medio a todas as ordes. Ade-
mais, estendemos este marco para o cálculo do alargamento (broadening) da distribución
de momentos de part́ıculas individuais.

No caṕıtulo 3, estudamos primeiro o esquema IOE/M aplicado ao espectro de enerx́ıa
do gluón inducido polo medio máis alá da precisión de NLO, centrándonos nas rexións
asintóticas onde a imaxe f́ısica correcta/esperada queda clara. Este estudo f́ıxose seguindo
todas as dependencias logaŕıtmicas principais, que son importantes para controlar comple-
tamente o comportamento do espectro. Un resultado secundario especialmente relevante
foi a construción do mapa LT indicado na Eq.(2.48), que permite unha comparación
significativa entre diferentes modelos medios.

A altas enerx́ıas, confirmamos que o termo NLO recupera os resultados de Giulassy-
Levai-Vitev-Wiedemann (GLV/W), mentres que os termos de orde superior son suprim-
idos. De feito, comprobamos explicitamente que os termos LO e NNLO contribúen á
mesma orde na expansión a alta enerx́ıa e que, cando se combinaron con termos NLO
sub-dominantes, a dependencia da escala de matching desapare. Isto proporciona i) unha
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comprobación de que a escala de it matching desaparece unha vez que se teñen en conta
todas as ordes; ii) o termo NLO dominante en enerx́ıa, que é independente da escala de
matching, é sempre a contribución dominante. En conclusión, o obxectivo de recuperar a
solución GLV/W, utilizando o enfoque IOE/M, a altas enerx́ıas nunca se estraga.

Por outra banda, a pequenas frecuencias observamos que o espectro ten unha estru-
tura moito máis rica. A mensaxe máis importante que debemos levar é que o espectro
desta rexión redúcese ao resultado Baier-Dokshitzer-Mueller-Peigné-Schiff-Zakharov/Armesto-
Salgado-Wiedemann (BDMPS-Z/ASW) cun parámetro de jet quenching renormalizado.
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o que impide a aparición de falsas diverxencias e proporciona unha prescrición para colar
os réximes MS e SH. En liñas xerais, estes resultados son consecuencia de requirir que o
espectro sexa invariante baixo variacións da escala de matching Q2. Un xeito expĺıcito de
comprobalo é esixir que o espectro de emisións teña unha derivada cero con respecto a
Q2, o que de feito leva á escala anterior Qc.

Nun segundo estudo, aplicamos o enfoque IOE/M para broadening de momento. Ob-
servamos que, como era de esperar, este marco é capaz de captar a distribución de broad-
ening completa, áında que o esquema só parece numéricamente razoable nas enerx́ıas de
LHC ou RHIC. Non obstante, para moitos estudos ter unha fórmula sinxela que inclúa os
réximes SH e MS certamente será importante. Un punto relevante que hai que destacar
é que o IOE/M deixa claro por que o resultado SH non é capaz de captar o compor-
tamento gaussiano de baixo momento. Como se detalla no texto principal, para obter
a contribución hard hai que expandir a distribución de broadening completa en termos
dunha serie asintótica. É ben sabido que tales series non son únicas, a diferenza das
series de Taylor, senón que poden corresponder a moitas funcións diferentes. Isto im-
plica indirectamente que, traballando cunha representación en serie, o resultado perde a
conexión coa función orixinal que deu lugar a este comportamento asintótico e, por tanto,
a solución gaussiana está ausente. No IOE/M, con todo, o comportamento gaussiano está
sempre inclúıdo polo termo LO, resolvendo aśı este problema co enfoque máis tradicional
de expansión da opacidade.

No futuro, planeamos estudar o espectro do gluón completamente diferencial [5,238],
conclúındo aśı a aplicación do marco IOE/M ás cantidades estándar que forman a base
da fenomenolox́ıa de jet quenching. De feito, recentemente os espectros de broadening
e de enerx́ıa discutidos nesta tese foron aplicados nun estudo fenomenolóxico completo
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de jet quenching [152], mostrando aśı xa que os nosos resultados son relevantes para
aplicacións prácticas. Outra v́ıa na que a aplicación de IOE / M semella prometedora
consiste en atopar sinais para a presenza de centros de dispersión de cuasi-part́ıculas no
QGP [239, 240]. Isto podeŕıa aplicarse en estudos de asimetŕıa de dijets ou utilizando
novos observables de subestructura de jets [241, 242]. Aı́nda que o primeiro leva sendo
explorado durante algún tempo, o sinal da presenza de centros de dispersión dura com-
pite directamente co evento subxacente e outras contribucións sen correlación co par de
dijets sendo, polo tanto, unha detección dif́ıcil desde o punto de vista experimental. Por
outra banda, o segundo enfoque parece máis prometedor xa que os observables de sub-
estruturas de jets sensibles á dispersión dura debeŕıan estar menos contaminadas por
outras contribucións.

Aı́nda que a imaxe factorizada introducida anteriormente é útil para simular proce-
sos de dispersión hadrónica e nuclear a altas enerx́ıas empregando métodos estándar de
Teoŕıa Cuántica de Campos , os desenvolvementos recentes noutras áreas abriron a posi-
bilidade de explorar novas formas de simular eses procesos, posiblemente de xeito máis
eficiente e capaz para extraer nova información. Se na última década os avances se teñen
centrado moito, por exemplo, na aplicación dos resultados da aprendizaxe automática,
nos últimos anos xurdiu un grande interese polas técnicas de computación cuántica. A
aparente vantaxe que podeŕıa traer a computación cuántica é que, para algúns problemas,
os ordenadores cuánticos son exponencialmente máis rápidos que calquera contraparte
clásica. Ademais, como o nome indica, a natureza cuántica destes dispositivos convérteos
en candidatos naturais para simular a natureza no seu nivel máis fundamental.

A diferenza da imaxe factorizada comentada anteriormente, a simulación completa de
procesos de dispersión de alta enerx́ıa pode implementarse naturalmente nun dispositivo
cuántico usando o algoritmo de simulación cuántica. Este algoritmo, aplicado a este tipo
de procesos, consistiŕıa esencialmente en preparar un estado inicial correspondente aos
hadróns que colisionan e logo evolucionar o sistema completo baixo o QCD hamiltoniano.
Como tal, ten en conta (non perturbativamente) procesos tanto duros como suaves, a costa
de perder algún control anaĺıtico. Aı́nda que o mesmo algoritmo podeŕıa, en principio,
implementarse nunha computadora clásica, o gran tamaño do espazo de Hilbert necesario
para capturar a dinámica, requiriŕıa unha cantidade exponencial de recursos e tempo de
execución para poder calcular calquera proceso. Por outra banda, a implementación de
algoritmos cuánticos adoita ser complicada xa que difire significativamente do caso clásico,
debido á unitaridade da mecánica cuántica e o rol especial que a medida posúe no mundo
cuántico. Como tal, é necesario moito enxeño para deseñar estes algoritmos.

Nunha segunda sección desta tese, introducimos unha nova estratexia para simular
cuánticamente a dispersión de alta enerx́ıa na teoŕıa �4. Aı́nda que se trata dun toy-
model, moitos dos problemas enfrontados en teoŕıas máis complicadas xa xorden neste
caso e, polo tanto, proporciona un bo punto de partida. Ademais, isto representa un
primeiro paso para realizar, algún d́ıa unha simulación dunha teoŕıa como QCD, que seŕıa
extremadamente interesante. A maior vantaxe do noso enfoque, que está parcialmente
motivado pola imaxe partónica emerxente de QCD a altas enerx́ıas, en comparación co
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traballo fundamental de Jordan, Lee e Preskill [10, 64, 65], reside no feito que o número
de qubits só se escala logaritmicamente co volume da lattice (e linealmente co número de
part́ıculas). Aśı, para problemas de dispersión, onde normalmente o número de part́ıculas
é pequeno pero o espazo de fase é grande, é natural considerar este enfoque. Ademais,
a base empregada coincide coa imaxe perturbativa do cálculo diagramático de Feynman,
tan familiar para os f́ısicos de altas enerx́ıas. Aśı, a interpretación e implementación do
noso enfoque parece máis directa e natural, especialmente se se compara con enfoques de
TCC perturbativa. Ademáis, demostramos que o noso algoritmo reflicte directamente os
eventos de dispersión no LHC ou RHIC, e que a acción de medir os qubits é análoga aos
protocolos de medida experimentais. Ademais diso, demostramos que, en principio, unha
computadora cuántica pode superar de feito á configuración experimental, xa que se ten
un control total sobre o estado final do sistema.

Nun seguinte paso, planeamos realizar un estudo numérico enfocando no caso máis
sinxelo de d = 1 dimensións espaciais. Usando paquetes numéricos de diagonalización
exacta, estudaremos a calidade coa que se pode reproducir o espectro da teoŕıa a �

finita para unha discretización de lattice dada e M similar ao estudo JLP [10]. A nosa
estratexia tamén se pode calcular de xeito clásico para o caso de M = 2 en d = 1
dimensións con Ns = 8 (16) nodos de lattice, o que podeŕıa servir para comprobar a
resistencia do algoritmo fronte a erros cuánticos. Nun último paso, podeŕıa implementarse
o circúıto resultante nun hardware cuántico, áında que incluso preparar correctamente o
estado inicial do sistema seŕıa un logro notable. Quizais máis interesante podeŕıa ser
buscar problemas máis sinxelos onde unha estratexia para unha única part́ıcula podeŕıa
xa aplicarse en hardware cuántico. Un exemplo disto podeŕıa ser a extensión da nosa
estratexia para simular cuánticamente o jet quenching, onde é natural ter en conta a
imaxe dunha única part́ıcula.

Finalmente, áında que o algoritmo de simulación cuántica pódese aplicar para simular
a dinámica completa da dispersión de alta enerx́ıa e a correspondente teoŕıa cuántica de
campos, como se comentou anteriormente, a implementación destas estratexias en dispos-
itivos cuánticos áında está demasiado lonxe para levar a novos resultados significativos
nun futuro próximo. Non obstante, os algoritmos cuánticos xa poden proporcionar infor-
mación sobre QCD (e outras teoŕıas) aplicándoos a problemas máis espećıficos, que son
menos esixentes en termos de recursos. Volvendo á discusión sobre o chuveiro de partóns
inducidos polo medio, os resultados da presente tese téñense centrado na evolución dun
único partón no medio. Non obstante, está claro que tal enfoque non inclúe os efec-
tos de interferencia entre múltiples part́ıculas, xa que se trata de correccións puramente
cuánticas que non están presentes na imaxe do partón único a calquera orde. Como con-
secuencia, as estratexias cuánticas aplicadas a estes procesos máis sinxelos xa introducen
unha clara vantaxe f́ısica e permitiŕıan calibrar os efectos moito máis alá do rango dos
métodos clásicos.

No último tema tratado nesta tese, presentamos un algoritmo sinxelo para simular
o broadening de momento dunha única part́ıcula nun ordenador cuántico dixital, coa in-
tención de estender este programa no futuro a un chuveiro de partóns completo. Este
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esforzo está en liña co recente interese en aplicar computadores cuánticos para estudar
a fenomenolox́ıa da f́ısica de alta enerx́ıa e nuclear [62, 63, 235, 243–246]. Se nun futuro
fosemos quen de implementar de forma eficiente un circúıto simulando de maneira com-
pleta un chuveiro inducido polo medio, entón agárdase que, desde o punto de vista f́ısico,
o algoritmo resultante supere os enfoques clásicos actuais [51, 52]. Non obstante, áında
é unha pregunta aberta e nin sequera está claro se se pode facer nun hardware a curto
ou medio prazo, ou se se chegará a facer algunha vez. Ademais, sempre hai que ter en
conta que, debido ao carácter especial do acto de medición na mecánica cuántica, áında
que exista un algoritmo cuántico seguro, non será capaz de superar aos seus homólogos
clásicos en todas as tarefas. Pola contra, dependendo de cal é a cuestión de interese, unha
estratexia cuántica pode ter sentido ou non.
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