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Resumo

Os fatores de fase geométricos e topológicos têm sido objeto de grande interesse em

diferentes áreas da f́sica. Nas teorias de gauge não-Abelianas, essas quantidades foram

usadas no estudo de propriedades, como, por exemplo, o confinamento de quarks na

cromodinâmica quântica. No contexto da mecânica quântica, a fase geométrica aparece

na evolução de um sistema cuja Hamiltoniana é dependente do tempo, e é de fundamental

importância no contexto da gravitação. Os fatores de fase também foram usados para se

obter uma descrição da teoria independente de gauge. Nesta tese usamos o fator de fase nas

teorias da gravitação de Einstein e Kaluza-Klein para investigar o efeito Aharonov-Bohm,

caracterizar globalmente alguns espaços-tempos e estudar o aparecimento da fase de Berry

e suas relações com os parâmetros que caracterizam os espaços-tempos considerados.

Investigamos também, como o fator de fase no espaço-tempo de Kerr-Newman com defeito

cônico, depende da rotação e da presença do defeito.



Fatores de Fase Geométricos e Topológicos em

Gravitação

José Gomes de Assis

25 de Maio de 2010
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Conclusões 147

Abstract

The geometric and topological phase factors have drawn considerable interest in

different areas of physics. In the non-Abelian gauge theories they have been used in

connection with the problem of confinement of quarks in quantum cromodinamic. In

quantum mechanics, the geometric phase of the wave function describing the evolution of

a system with time-dependent Hamiltonian has fundamental importance. In the context

of gravity, some investigations concerning these phases were done in connection and with

the description of this theory in a way independent of gauge. In this thesis we use these

phases in Einstein and Kaluza-Klein theories of gravity in order study the Aharonov-Bohm

effect, characterize globally some spacetime, to study the appearance of Berry phase and

its relation with the parameters characterizing the spacetime under consideration. We also

perform the computations of the phase factor for the gravitational field corresponding to

the Kerr-Newman metric with a conical defect, showing how the phase depends on the

rotation and on the presence of the defect.



Introdução

Os problemas relacionados com o aparecimento e as propriedades das fases em

mecânica quântica tem uma longa história e pode ser remetida ao início dos anos 20

quando da introdução dos números complexos em mecânica quântica. De fato, alguns

anos antes Schrödinger publicou um trabalho [1] em que introduziu o fator de fase

exp(− ie
~

H
C

Aμdx
μ), com base na teoria de Weiy [2]. Este fator está associado à fase da

função de onda de partículas carregadas no campo de um solenóide, no efeito Aharonov-

Bohm eletromagnético [3].

Em 1975, Wu e Yang [4] chamaram a atenção para o fato de que a quantidade física

que possui relevância no eletromagnetismo não é a intensidade de campo, Fμν, nem o

potencial vetor, Aμ, e sim o fator de fase, que é um número complexo e possui diferentes

valores para cada contorno diferente do ponto de vista topológico. Eles resumiram suas

observações dizendo que [4]:

- O tensor intensidade de campo, Fμν , subdescreve o eletromagnetismo, o que é

confirmado pelo efeito Aharonov-Bohm.

- A fase − ie
~

H
Aμdx

μ sobredescreve o eletromagnetismo, pois, experimentalmente, não

se pode distinguir entre dois casos em que a diferença de fase é 2π ou múltiplo de 2π.

- O eletromagnetismo é completamente descrito pelo fator de fase, que contém a

necessária e duficiente informação acerca dos fenômenos eletromagnéticos.

A formulação do eletromagnetismo usando o fator de fase foi generalizada para o caso de

campos de gauge não-Abelianos [4]. Neste caso, o fator de fase tornou-se mais importante,

pois, o tensor intensidade de campo subdescreve os campos de gauge mesmo em regiões

simplesmente conexas. No contexto das teorias de gauge não-Abelianas foi evidenciada a

importância do fator de fase no estudo de propriedades a grandes distâncias [5], e como
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conseqüência disto, a formulação [6] dessas teorias em termos do fator de fase tem sido

objeto de grande interesse.

A propriedade de invariância de gauge do fator de fase (loop deWilson) permite, então,

fazer uma formulação da teoria de modo a eliminar qualquer referência aos gauges [7].

Assim, o formalismo diferencial das teorias de gauge pode ser reformulado em termos de

um formalismo integral [8] no qual o fator de fase dependente do contorno desempenha

um papel fundamental.

A extensão do formalismo do fator de fase para a teoria da gravitação foi considerada,

inicialmente, por Mandelstam [9], que estabeleceu várias equações envolvendo o fator de

fase (variável de contorno), e também por Yang [8], Menskii [10] e Voronov eMakeenko[11].

No início dos anos 80, Berry [12] descobriu que se a evolução de um dado Hamiltoniano

é determinado por um conjunto de parâmetros dependentes do tempo, então, a mudança

de fase da função de onda, na evolução cíclica do sistema, isto é, sob condições periódicas,

possui propriedades geométricas, e a mudança de fase não depende da evolução do sistema

(que é admitido ser suficientemente longo para ser considerado adiabático), e sim, é

determinada pelas propriedades geométricas do espaço dos parâmetros. De fato, essa

mudança de fase pode ser interpretada como a condição de transporte paralelo [13] dos

vetores de estado do sistema quântico no espaço de Hilbert.

Várias generalizações da fase de Berry tem sido feitas, como, por exemplo, considerar a

evolução cíclica de sistemas degenerados [14] (caso não-Abeliano), e não exigir a condição

da adiabaticidade [15], bem como considerar a fase de Berry para um sistema quântico

evoluindo em um campo gravitacional [16],[17] e [18], ou no contexto cosmológico[19].

Em física, dois tipos de fases despertam interesse. Um tipo é a fase geométrica que é

determinada pela estrutura geométrica ao longo de uma curva, bem como da conexão que

é usada para o transporte paralelo ao longo desta curva. No contexto da fase de Berry,

a natureza geométrica significa que o fator de fase depende somente da curva no espaço

dos estados quânticos-trajetória no espaço de Hilbert, que é conhecido como espaço de

Hilbert projetivo. Em particular, a fase geométrica é independente da parametrização da

curva no espaço projetivo de Hilbert.

O outro tipo é a fase topológica, a qual é invariante pela deformação contínua e suave de
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curva escolhida. Este fato não ocorre para fases geométricas, em geral. Fases topológicas

deste tipo forman um subconjunto de todas as fases geométricas.

O efeito Aharonov-Bohm [3] tem sido discutido por mais de quarenta anos e ainda

continua a ser visto como um assunto de grande interesse em várias áreas da física [20].

Este efeito tem sido investigado experimentalmente [21]. No contexto de física da matéria

condensada, o efeito Aharonov-Bohm tem sido largamente estudado na teoria de defeitos

em sólidos [22], [23].

A

existência do efeito gravitacional Aharonov-Bohm no espaço-tempo quadridimensional da

corda cósmica é bem conhecido e foi investigado por diversos autores [24],[25] e [26]. Nesta

tese, estendemos esse estudo para várias configurações de campo gravitacional, tanto no

contexto da teoria de Einstein, quanto na de Kaluza-Klein, e também investigamos esses

dois tipos de fase nesses contextos.

No primeiro capítulo, apresentamos uma revisão matemática sobre temas importantes

para a compreensão dos estudos feitos nesta tese. O fator de fase, tanto em teorias de

gauge, quanto em gravitação tem uma grande importância nesse estudos, daí a ênfase dada

a este objeto e ao efeito Aharonov-Bohm eletromagnético e seu análogo gravitacional. A

revisão termina por apresentar uma correspondência entre os termos usados em teorias

de gauge e espaços fibrados.

No segundo capítulo, verificamos que a transformação de holonomia para curvas no

plano perpendicular ao cilindro de matéria com rotação depende do momento angular

da fonte, apesar de esta grandeza não afetar o tensor de curvatura, na aproximação de

campo fraco, em que o cilindro gira lentamente de modo que os termos proporcionais ao

quadrado do momento angular são desprezíveis. Esta dependência do fator de fase com

uma grandeza que não afeta a curvatura da região acessível a partícula denominamos de

efeito Aharonov-Bohm gravitacional generalizado. Também determinamos o fator de fase

associado à corda quiral e à multicorda quiral e estabelecemos a caractrerização global do

espaço-tempo de N cordas com uma delas dotada de um boost. Mostramos que no caso

da corda com rotação, o fator de fase é um elemento do grupo de Poincaré, e que este

fato está associado à existência de um sistema de coordenadas plano. Este resultado não
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pode ser generalizado para um espaço-tempo qualquer. Obtemos uma generalização da

solução de monopolo, calculamos os fatores de fase e mostramos que eles satisfazem às

relações de Mandelstam.

Ressaltamos, no capítulo 3, a importância da fase de Berry em diversos ramos da

física, exibimos a sua dedução para um sistema que evolui adiabaticamente com o tempo,

caracterizando-a como um objeto puramente geométrico, pois, depende fundamentalmente

das curvas fechadas no espaço de parâmetros dos sistemas considerados. Além do

mais, apresentamos um resumo dos estudos que vem sendo feitos sobre fase geométrica,

no sentido de generalizações para campos de gauge não-Abelianos e para aproximação

adiabática relativística. Encontramos a fase de Berry adquirida por uma partícula escalar

quântica nos espaços-tempos da corda quiral e da multicorda quiral, do cilindro com

rotação e em universos isotrópicos.

No capítulo 4, apresentamos uma breve revisão da teoria penta-dimensional Abeliana

de Kaluza-Klein e utilizamos as transformações de holonomias, em diversos espaço-

tempos, como os associados ao solenóide e monopolo global, à corda e multicorda quiral

magnética, para estudar aspectos globais destes espaço-tempos.

Apresentamos um tratamento unificado dos efeitos Aharonov-Bohm eletromagnético

e gravitacional. O resultado final nos fornece os efeitos eletromagnético e gravitacional

separado e simultaneamente. A parte gravitacional é caracterizada pelos parâmetros α, J t

e Jz; e a eletromagnética pelo fluxo Φ. O aparecimento desses efeitos de forma combinada

é uma conseqüência do esquema de unificação da teoria de Kaluza-Klein.

No capítulo 5, apresentamos, inicialmente, algumas considerações sobre a obtenção da

métrica de Kerr, que é a única solução estacionária das equações de Einstein no vazio

correspondente a um buraco negro com rotação. A seguir, calculamos os fatores de fase

para várias curvas no espaço-tempo de Kerr contendo um defeito cônico (corda cósmica)

e exibimos o efeito da rotação na expressão da holonomia total. Particularizamos esses

resultados para o espaço-tempo de Schwarzschild com defeito.

Para finalizar, apresentamos as conclusões sobre os resultados constantes desta tese.
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Capítulo 1

Resultados Básicos

1.1 Introdução.

Nosso objetivo neste primeiro capítulo, é fornecer alguns resultados que serão

importantes para o entendimento da estrutura matemática a ser usada. Vamos iniciar

nossa fundamentação matemática pelo conceito de Variedades Diferenciáveis e nos

estenderemos até o conceito de Fibrados e em particular, o de Fibrado Principal, conexões

em Fibrados. Os conceitos aqui apresentados não têm o rigor matemático que são

apresentados na literatura própria do assunto, pois estamos fazendo uma simples revisão.

Estes conceitos são encontrados nos bons livros de Geometria Diferencial e Riemanniana

e nos compêndios de Geometria e Topologia Algébrica [27]. Apresentaremos também

um paralelo entre teorias de gauge e teoria de fibrados, e o conceito de fator de fase.

Discutiremos o efeito Aharonov-Bohm eletromagnético e seu análogo gravitacional.

1.2 Variedades diferenciáveis.

O primeiro passo a ser dado na construção da teoria geral da relatividade é deixar o

espaço Euclidiano e o sistema de coordenadas Cartesianas. Contudo, a partir da nossa

experiência do mundo real queremos construir uma estrutura que, localmente, seja um

espaço-tempo quadrimensional. Este objeto é chamado de variedade quadridimensional.

Por uma questão de conveniência, não vamos restringir as definições ao espaço de quatro
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dimensões. Iremos trabalhar em um espaço de n-dimensões.

Uma variedade diferenciávelM de classe C∞, de n dimensões, é um conjunto de pontos

juntamente com famílias de pares {(Ui, ϕi)}, onde i é um índice que assume determinados

valores, podendo inclusive assumir valores em um conjunto infinito. Essas famílias devem

satisfazer às seguintes condições:

(i) {Ui} são conjuntos abertos que cobrem M , isto é,
S
i

Ui = M , e ϕi é um

homeomorfismo (ϕi e ϕ
−1
i são contínuas) de Ui em um aberto U 0

i de Rn.

(ii) Dados Ui e Uj tais que Ui ∩ Uj 6= ∅, a aplicação ψij = ϕiϕ
−1
j de ϕj(Ui ∩ Uj) para

ϕi(Ui ∩ Uj) é de classe C∞.

O par (Ui, ϕi), para um valor fixo de i é chamado de carta, enquanto a família {(Ui, ϕi)}

é chamada de atlas. O subconjunto Ui é chamado de vizinhaça de coordenadas, enquanto

ϕi é a função coordenada, ou simplesmente coordenada. A coordenada ϕi é representada

por n funções {x1(p), ...., xn(p)}, p ∈ M , e o conjunto {xμ(p)} é também chamado de

coordenadas.

Uma métrica Riemanniana em uma variedade diferenciável M é uma lei que faz

corresponder a cada pomto p ∈M um produto interno < · >p, (forma bilinear simétrica

definida positiva ) em Tp(M) (espaço tangente de M em p), que varia diferencialmente

no seguinte sentido: Se x é um sistema de coordenadas locais em torno de p, com

x(x1, x2 . . . xn) = q ∈ x(U0) e ∂
∂xi
(q) = dx(0, . . . , 1, . . . , 0), então,

<
∂

∂xμ
· · · ∂

∂xν
>q≡ gμν(x

1, . . . , xn), (1.1)

é uma função diferenciável na vizinhança U de M.

Outra maneira de exprimir a diferenciabilidade da métrica Riemanniana é dizer que

para todo par (X,Y ) de campos de vetores diferenciáveis em U , a função < X,Y >

é difenciável em U. Uma variedade diferenciável com uma dada métrica Riemanniana

chama-se uma variedade Riemanniana. Se < V, V 0 > = 0 para qualquer V 0 ∈ T (M),

então V = 0 e < V, V 0 > =< V 0, V >, ∀ V, V 0 ∈ Tp(M), e dizemos que M é uma

variedade pseudo-Riemanniana.
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Sejam M e N variedades Riemannianas, elas são ditas difeomórficas se existir uma

aplicação C∞, f : M → N com inversa também de classe C∞. Se duas variedades forem

difeomórficas, então, elas terão a mesma estrutura diferencial.

Dizemos que f é uma isometria se:

< X,Y >p= < dfp(X), dfp(Y ) >f(p) , ∀p ∈M e X,Y ∈ Tp(M). (1.2)

Se U é uma vizinhança em M e f : U → f(U) ⊂ N satisfaz a equação eq.(1.2), então f é

chamada de isometria local.

Um exemplo de variedade Riemanniana é o Rn, com ∂
∂xi
≡ ei = (0, ..., 1, ..., 0). A

métrica é dada por < ei, ej > = δij. Rn é chamado espaço Euclidiano de dimensão n e a

geometria Riemanniana deste espaço é a métrica Euclidiana.

Dizemos que uma métrica gμν(x) é uma forma invariante se efetuada uma mudança

de variável x→ x0 temos

gμν(x) = g0μν(x), ∀x ∈M. (1.3)

Se sob tal mudança de variável gμν(x) se transforma como

gμν(x) =
∂x0ρ

∂xμ
∂x0σ

∂xν
gρσ(x

0), (1.4)

e a mudança x→ x0 é dita uma isometria.

1.3 Formas diferenciais.

Um tensor do tipo (q, r) é um objeto multilinear, o qual mapeia q elementos de

T ∗p (M)(espaço dual do Tp(M)) e r elementos de Tp(M) em um múmero real. Denotamos

o conjunto dos tensores tipo (q, r) em p ∈ M , por T q
r,p(M). Um elemento de T q

r,p(M) é

escrito em termos da base { ∂
∂xμi

} na forma

T = T μ1...μq
ν1...νr

∂

∂xμ1
· · · ∂

∂xμq
dxν1 · · · dxνr , (1.5)

vemos assim que T é um funcional linear de ⊗qT ∗p (M) ⊗rTp(M) em R.

A operação de simetria em um tensor ω ∈ T 0r,p(M) é definida por

Pω(V1, ..., Vr) ≡ ω(VP (1), ..., VP (r)), (1.6)
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aonde Vi ∈ TpM e P é um elemento de Sr, grupo de simetria de ordem r. Se P for uma

simetria de ω em todos os pontos da variedade, então P é chamada simetria de ω ou

transformação de simetria de ω. Quando P é uma simetria da métrica, dizemos que P é

uma isometria. Uma r-forma diferencial é um tensor totalmente antissimétrico do tipo

(0, r). Denotamos o espaço vetorial das r-formas em p ∈ M por Ωr
p(M), cuja base é o

produto exterior ∧, de r-formas

dxμ1 ∧ dxμ2 ∧ ... ∧ dxμr =
X
P∈Sr

sgn(P )dxμP (1) ⊗ dxμP (2) ...⊗ dxμP (r), (1.7)

que é um elemento ω ∈ Ωr
p(M), sendo expandido como

ω =
1

r!
ωμ1μ2···μrdx

μ1 ∧ dxμ2 ∧ ... ∧ dxμr , (1.8)

onde ωμ1μ2···μr são totalmente antissimétricos e dx
1∧dxμ2 ∧ ...∧dxμr forma uma base para

Ωr
p(M) que é um espaço de dimensão n!/r!(n − r)!. Podemos associar a cada ponto da

variedade uma r-forma, definindo assim, um campo de formas Ωr
p(M).

O produto exterior de uma q-forma por uma r-forma é uma aplicação

∧ : Ωq
p(M)×Ωr

p(M)→ Ωq+r
p (M),

que satisfaz as seguintes propriedades:

(i) ζ ∧ ζ = 0 se ζ ∈ Ωq
p(M) e q é impar;

(ii) ζ ∧ ξ = (−1)qrξ ∧ ζ, com ζ ∈ Ωq
p(M) e ξ ∈ Ωr

p(M);

(iii) (ζ ∧ ξ) ∧ φ = ζ ∧ (ξ ∧ φ) com ζ ∈ Ωq
p(M) , ξ ∈ Ωr

p(M) e φ ∈ Ωs
p(M).

Portanto, dada uma q-forma ζ e uma r-forma ξ, o produto ζ ∧ ξ é uma (q + r)-forma

definida por

(ζ ∧ ξ)μ1...μq+r =
(q + r)!

q!r!
ζ [μ1...μqξμq+1...μq+r].

Se ω = 1
r!
ωμ1μ2···μr

dx1 ∧ dxμ2 ∧ ... ∧ dxμr for uma r-forma, define-se a derivada exterior de

ω como sendo a aplicação dr : Ωr(M)→ Ωr+1(M) dada por

drω =
1

r!

µ
∂

∂xν
ωμ1 ...μr

¶
dxν ∧ dxμ1 ∧ ... ∧ dxμr . (1.9)
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Vamos apresentar o exemplo mais simples e mais conhecido de formas que é a 1-forma.

Uma 1-forma em uma variedade M é uma aplicação

φ : Tp(M)→ R

(X,Y ) /→ φ(aX + bY ) = aφ(X) + bφ(Y )

Notemos que φ(X) e φ(Y ) pertencem ao dual, T ∗p (M), portanto φ(X) =
P
i

fidxi onde

{dxi} é uma base para T ∗p (M). Sejam φ =
P
i

fidxi e ω =
P
i

gidxi duas 1-formas. Então,

(i) φ+ ω =
P
i

(f + g)dxi, é uma 1-forma;

(ii) dxi ∧ dxj = 0 se i = j e dxi ∧ dxj = −dxj ∧ dxi

;

(iii) dφ =
P
i

dfi ∧ dxi, é uma 2-forma;

(iv) Se h e t são funções, então,

1. d(ht) = dh.t+ hdt;

2. d(hφ) = dh ∧ φ+ h ∧ dφ;

3. d(φ ∧ ω) = dφ ∧ ω − φdω.

Vamos exibir alguns exemplos de cálculo com 1-forma. Primeiramente consideremos

φ = xdx− ydy e ϕ = zdx+ xdz, então,

φ ∧ ϕ = (xdx− ydy) ∧ (zdx+ xdz)

= xzdxdx+ x2dxdz − yzdydx− yxdydz.

Mas dx ∧ dx = 0, e dy ∧ dx = −dx ∧ dy, portanto, temos que

φ ∧ ϕ = yzdx ∧ dy + x2dx ∧ dz − xydy ∧ dz,

que é uma 2-forma.

Considerando a 1-forma θ = zdy, então

θ ∧ φ ∧ ϕ = yz2dydxdy + x2zdydxdz − xyzdydydz.
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Como dy ∧ dx ∧ dy e dy ∧ dy ∧ dz contém cada uma, uma repetição, portanto são nulas,

logo

θ ∧ φ ∧ ϕ = −x2zdxdydz,

que é uma 3-forma.

Consideremos agora a 2-forma η = ydxdz + xdydz. Segue que

θ ∧ η = (x2 + y2)dxdydz.

Vamos considerar também que φ = xydx+ x2dz, então

dφ = d(xy) ∧ dx+ d(x2) ∧ dz

= (ydx+ xdy) ∧ dx+ 2xdxdz

= −xdxdy + 2xdxdz.

Uma q-forma ζ é dita fechada se dζ = 0, e é dita exata se ζ = dξ para alguma

(q − 1)−forma. Portanto, todas as formas exatas são fechadas. Como exemplo, vamos

considerar o campo vetorial covariante Aμ do campo eletromagnético. O tensor campo

eletromagnético Fμν é uma 2-forma definida por

F = dA,

ou

Fμν=2∂[μAν] = ∂μAν − ∂νAμ,

onde ∂μ ≡ ∂/∂xμ.

Pela identidade de Bianchi ∂[ρFμν] = 0 ou dF = 0, que é uma consequência de d2A = 0.

A equação dF = 0 corresponde a duas das equações de Maxwell.

Com a operação de derivação de uma q-forma, construímos uma aplicação

f : Ωq
p(M)→ Ωq+1

p (M).

Considere o subespaço Λq
p(M) de Ω

q
p(M), que consiste das formas exatas, isto é, formas

diferenciais ζ tal que dζ = 0. O espaço Λq
p(M) contém o subespaço ∆q

p(M) que consiste

de todas as q-formas exatas em Ωq
p(M), isto é, de todas as formas diferenciais em Ωq

p(M)

que podem ser escritas como dξ em termos de uma (q−1)-forma. Defina o espaço vetorial

W q
p (M) =

Λq
p(M)

∆q
p(M)

,
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constituído por todas as formas fechadas de modulo exatas.

Dizemos que W q
p (M) é o espaço vetorial da q-ésima cohomologia de Rham. Ele tem

dimensão aq = dimΛq
p(M) − dim∆q

p(M), que é chamada o q-ésimo número de Betti da

variedade M e é um invariante topológico. A característica de Euler da variedade é dada

por X =
nP

q=0

(−1)qaq.

1.4 Grupos e álgebras de Lie.

Os grupos de Lie constituem uma classe especial de variedades diferenciáveis. Eles têm

a estrutura de uma variedade diferenciável e além do mais são grupos com a operação de

grupo que é diferenciável.

Um grupo de Lie G é uma variedade diferenciável que possui estrutura de grupo, isto

é, tem uma operação definida, B tal que

(i)
B : G×G→ G

(g, g0)→ g ∗ g0
(fechamento);

(ii) a identidade e, e o inverso g−1de qualquer g ∈ G, pertencem a G e são diferenciáveis.

Um exemplo de variedade grupo de Lie é o R+, com a operação multiplicação.

A ação de um grupo de Lie G sobre uma variedade M é uma aplicação diferenciável

η : G×M →M

tal que:

(i) η(e, p) = p, ∀p ∈M,onde e é a identidade de G;

(ii) η(g, η(g0, p)) = η(gg0, p), com g, g0 ∈ G.

Seja G um grupo Lie, a ação à esquerda de G (translação à esquerda de G) é o

mapeamento

Lg : G→ G, (1.10)

definido por Lg(x) = gx, x ∈ G . Este mapeamento induz a aplicação

L∗g : Tx(G)→ Tgx(G), (1.11)
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definida por L∗g(X) = Y ,com Y ∈ Tgx(G).

Um campo vetorial X tal que L∗g(X)|x = X|gx é dito invariante à esquerda de M . Seja

G(G) o conjunto de todos esses campos vetoriais (espaço vetorial). De maneira análoga

define-se a invariância à direita(Dg : G→ G), definida por Dg(x) = xg em G.

Sejam H um espaço de Hilbert e GL(H) o conjunto das transformações lineares

invertíveis e G um grupo. A representação de G em H é um homomorfismo de grupos,

ρ : G→ GL(H).

g → ρ(g) linear

A aplicação

ψ : G(G)→ Te(G), (1.12)

definida por ψ(X) = X(e), é um isomorfismo entre espaços vetoriais, e daí

dimG(G) = dimTe(G) = dimG. (1.13)

Necessitamos deste fato para que tenhamos G(G) como uma álgebra de Lie, a qual é uma

versão infinitesimal de G. A vantagem da álgebra de Lie é que ela é um objeto algébrico

com estrutura linear, a qual sempre determina G localmente.

Seja V um espaço vetorial real de dimensão finita. V é uma álgebra de Lie se existe

o produto •

• : V × V → V

(x, y)→ [x, y]
(1.14)

tal que:

(i) [ax+ bx0, y] = a [x, y] + b[x0, y], (•) é bilinear

(ii) [x, y] = − [y, x], (•) é antissimétrico

(iii) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0, (•) satisfaz a identidade de Jacobi.

Como exemplo de álgebra de Lie temos o espaço de todos os campos vetorias de M ,

X (M) munido com o parêntese de Lie [X,Y ] = XY − Y X.
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Dado um grupo de Lie G podemos construir sua álgebra de Lie (via campos laterais à

esquerda) da seguinte maneira. Consideremos G(G) munindo-o com o parênteses de Lie

[X,Y ] = Xμ∂μY
ν − Y ν∂μX

ν . (1.15)

Assim G(G) é a álgebra de Lie de G.

Seja {Ei}ni=1 uma base de G(G), daí:

(i) [Ei, Ej] = EiEj −EjEi ∈ G(G);

(ii) [Ei, Ej] = Ck
ijEk, (o comutador de dois campos vetorias à esquerda é também um

campo vetorial à esquerda), onde Ck
ij são as constantes de estrutura do grupo de Lie

sujeitas às condições

1. Ck
ij = −Ck

ji;

2. Cs
ijC

m
ks + Cs

kiC
m
js + Cs

jkC
m
is = 0 (identidade de Jacobi).

Exibiremos agora alguma relações entre grupo e álgebra de Lie.

(i) Cada grupo de Lie está associado a uma única álgebra de Lie.

(ii) Cada álgebra de Lie define um único grupo de Lie local.

(iii) Dada uma álgebra de Lie G(G) associada a G, corresponde um único grupo de Lie

G simplesmente conexo, denominado de cobertura universal de G. G é localmente

isomorfo a G, via projeção p : G→ G. Esta é uma propriedade global do grupo de

Lie.

Observemos que um grupo de Lie é Abeliano se somente se Ck
ij = 0, ∀i,j,k. O subgrupo

H de G é normal em G se e somente se os geradores hi de H satisfazem a relação

[Ei, hj] = Ck
ijhk. (1.16)

Toda subalgebra Gi de uma álgebra G de um grupo de Lie G, gera localmente, um

subgrupo. Uma subálgebra com base {Ni}ri=1satisfazendo a eq.(1.15) gera um subgrupo

normal.

13



Seja

ϕ : R→ G,

um homomorfismo de grupos de Lie Abelianos. O conjunto {ϕ(t); t ∈ R} é um subgrupo

de G, chamado de grupo a 1-parâmetro. Demonstra-se que dado um grupo de Lie G,

para qualquer X ∈ G,6= 0, existe um único subgrupo a 1-parâmetro de G o qual é a

transformação infinitesimal de X. Formalmente a álgebra de Lie G pode ser definida

como as direções tangentes em G, pois G ∼=Te(G). Esta é uma maneira mais simples e

direta de definir a álgebra de Lie. Assim cada elemento ζ ∈ G é um vetor tangente a G e

podemos considerar curvas em G tendo ζ como vetor tangente. Dentre essas curvas existe

uma única curva g(t), a qual é também um subgrupo de G tal que :

(i) g (t1 + t2) = g(t1) · g(t);

(ii) g(0) = 1, g(t)−1 = g(−t).

Notemos que g é um grupo a 1-parâmetro. Assim qualquer subgrupo a 1-parâmetro

determina um vetor tangente

ζ =
d

dt
g(t)|t=0 em G. (1.17)

A correspondência entre ζ e g(t) é g(t) = exp(tζ). A razão desta notação é que no caso

de GL = GL(n,R) temos

g(t) =
∞X
n=0

(tζ)n

n!
(1.18)

e, portanto podemos identificar G = GL(n,R ) com M (n, n) (espaço das matrizes

quadradas n× n).

Seja V um espaço vetorial real. A representação da Álgebra de Lie G em V é uma

aplicação

ρ : G →LG(V )

A→ ρ(A),

tal que:

(i) ρ(αA+ βB) = αρ(A) + βρ(B);

(ii) ρ[A,B] = ρ(A)ρ(B)− ρ(B)ρ(A).
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Seja {A1, A2, . . . , An} uma base para G = G1 ⊕ G2 ⊕ . . . ⊕ Gn, com Gi0s sub-álgebras

de G, onde cada Gi é um ideal de G, e seja Cij a inversa da matriz não-singular da forma

bilinear simétrica

< Ai, Aj > = tr[ρ(Ai)ρ(Bi)]. (1.19)

Vamos construir o operador C =
nP

i,j=1

Cijρ(Ai)ρ(Bj), que é chamado de operador de

Casimir da representação ρ. Então, tem-se que;

(i) [C,A] = 0, ∀ A ∈ G, ou seja C comuta com qualquer elemento de G

(ii) [C, g] = 0, ∀ g ∈ G.

De (i) e (ii) conclui-se que C é um múltiplo da identidade.

Seja η a ação de um grupo G sobre a variedade M , cada elemento g de G induz uma

transformação

ηg : M →M

x→ gx,
(1.20)

definida por ηg(x) = η(g, x). Notemos que ηe(x) = x, isto é, ηe é a aplicação identidade

e que ηg1g2(x) = η(g1g2, x). Daí demonstra-se que o conjunto

H = {ηg :M →M} (1.21)

é um grupo que é isomorfo a G. Devido a este isomorfismo, H é denotado de grupo de

transformações de G. Quando a variedade grupo de LieG é de dimensão r (dimH=dimG),

o grupo de transformações é dito ser de r-parâmetros.

Neste caso se ηg (x) = x, ∀x ∈ M, isto implica que g = e ou ηg (x) = x1 se g 6= e.

Dizemos que ηg é efetiva, daí quando G é efetivo sobreM , dimG = r e denotamos o grupo

das transformações por Gr.

Se x0 é um ponto fixo de M , define-se a órbita de x0 sobre G, como sendo

Ox0 = {x = ηg(x0) = gx0,∀g ∈ G} ⊂M, (1.22)

que é uma subvariedade de M .

Um grupo G é dito transitivo sobre a variedade M se dados dois pontos x, y de

M existe pelo menos um ηg ∈ H tal que ηg(x) = y. Se ηg é única dizemos que G é
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simplesmente transitivo, caso contrário dizemos que G é multiplamente transitivo sobre

M . Quando G é transitivo sobre M , então Ox0 = M e se G é multiplamente transitivo,

então G atua efetivamente.

O fato de de um grupo Gr ser transitivo, simplesmente transitivo ou intransitivo,

depende da variedade órbita sobre a qual fazemos Gr atuar.

O conjunto dos elementos g ∈ G que deixam x0 ∈M fixo, isto é,

Ix0 = {g ∈ G; ηg(x0) = x0}, (1.23)

constitui um subgrupo de G, denominado de grupo de isotropia de x0. Notemos que Ix0

é um subgrupo normal de G. Portanto, podemos definir o grupo quociente G/Ix0 que é

também um grupo de Lie chamado de Espaço Homogêneo. Se M = R3 e G = SO(3) e

H = SO(2) então G/H = S2.

Consideremos agora o mapeamento

Ux : G→ Ox

g → Ux(g) = xg,
(1.24)

que induz a aplicação

(Ux)∗ : T (G)→ T (Ox), (1.25)

a qual, em particular, levará os campos invariantes à esquerda de G em campos vetoriais

tangentes à órbita. Mostra-se que esta aplicação independe da escolha do ponto e que ela

pode ser estendida a toda variedade M que contem Ox, ou seja podemos definir campos

vetoriais sobre toda variedade M . Como (Ux)∗[X,Y ] = [(Ux)∗X, (Ux)∗Y ] para quaisquer

X, Y em T (G), é claro que tais campos imagens formarão uma álgebra de Lie, com as

mesmas constantes de estrutura da álgebra de Lie dos campos invariantes à esquerda de

G. Se denotarmos por {Xi}ri=1 os campos vetoriais emM , obtidos pela aplicação de (Ux)∗
à base {Ei}ri=1 de G(G), então {Xi}ri=1 é uma base para T (Gr).

1.5 Grupos de isometrias.

Dentre todos os grupos de transformções de uma variedade Riemaniana M , do ponto

de vista da Relatividade Geral, um mais importante é o grupo de isometrias ou grupo
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de movimento, que estudaremos suscitamente agora. Para tanto precisamos de alguns

conceitos como derivada de Lie e campos de Killing.

Vamos iniciar nossa discussão considerando a transformação de coordenadas em M

exμ = exμ(ε;xν), (1.26)

onde

xμ = exμ(0;xν). (1.27)

e ε é um parâmetro. A equação eq.(1.26) descreve um conjunto de transformações a

1-parâmetro xμ → exμ, que sob o ponto de vista infinitesimal pode ser escrita na forma
exμ = xμ + εξμ(x), (1.28)

onde ε é um parâmetro infinitesimal e ξμ(x) é um campo de vetores contravariantes, o

qual será definido por

ξμ(x) =

∙
∂exμ
∂ε

¸
ε=0

(1.29)

Define-se a derivada de Lie de um campo escalar φ em relação ao campo vetorial ξμ(x)

como sendo

Lξφ(x) = lim
ε→0

φ(ex)− eφ(x̃)
ε

= ξμ(x)
∂φ

∂xμ
= < ξ,∇φ > . (1.30)

Para um campo tensorial T, ela é definida por

LξT (x) = lim
ε→0

T (ex)− eT (x̃)
ε

. (1.31)

A derivada de Lie para um vetor contravariante V α em relação a ξ é

LξV
α = ξβ∇βV

α − V β∇βξ
α, (1.32)

e para um vetor covariante Vα é

LξVα = ξμ∇μVα + Vμ∇αξ
μ. (1.33)

Para um tensor covariante de segunda ordem Tμν ,a derivada de Lie é dada por

LξTμν = ξρ
∂Tμν
∂xρ

+ Tμρ
∂ξρ

∂xν
+ Tρν

∂ξρ

∂xμ
(1.34)

= ξρ∇ρTμν + Tμρ∇νξ
ρ + Tρν∇μξ

ρ.
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Em particular, a derivada de Lie do tensor métrico gμν é

Lξgμν = ∇μξν +∇νξμ, (1.35)

pois a derivada covariante do tensor métrico é nula.

Dado gμν de um espaço-tempo, gμν é invariante quando

Lξgμν(x) = 0, (1.36)

e neste caso, a transformação dada pela eq.(1.24) é uma isometria. Das equações (1.31) e

(1.32) temos

∇μξν +∇νξμ = 0, (1.37)

que é a equação de campos de Killing. A solução ξμ(x) da equação anterior é chamada

de vetor de Killing, que forma o espaço vetorial gerado por ξμ(x). Se o espaço-tempo

tem solução de Killing dizemos que ele é simétrico, caso contrário dizemos que ele é

não-simétrico .

Sejam ξi e ξj campos de Killing distintos, então o comutador
£
ξi, ξj

¤
é um campo de

Killing. Como os vetores de Killing constituem um espaço vetorial, temos

£
ξi, ξj

¤
= Ck

ijξk, (1.38)

onde Ck
ij são constantes e, evidentemente, satisfazem as propriedades do parênteses de

Lie e consequentemente, os campos Killing formam uma álgebra de Lie para o grupo de

isometrias.

Considere o grupo Gr simplesmente transitivo sobre uma dada órbita Ox ≡M. Neste

caso a aplicação dada pela eq.(1.23) é um isomorfismo que induz a aplicação na eq.(1.25),

que leva campos invariantes à direita de G nos correspondentes campos invariantes deM .

Sobre a variedade órbita de x, pela ação do grupo G, podemos construir a métrica

ds2 = g(Xi, Xj)ω
iωj = gijω

iωj (1.39)

onde ωi(XJ) = δij, ou seja ωi são 1-formas correspondentes aos campos invariantes à

esquerda sobre Ox ≡M . Usando os resultado de derivada de Lie para campos tensoriais
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e o fato de que [Ei,Ej] = 0, temos
£
Xi, ξj

¤
= 0. Logo podemos dotar a variedade M de

uma métrica

dl2 = g(ξi, ξj)eωieωj = egijeωieωj, (1.40)

onde eωi(ξj) = δij.

As simetrias de uma variedade espaço-tempo são expressas pela invariância da métrica

sob o transporte de Lie. O conjunto de todas as isometrias formam, um grupo de Lie

de transformações da variedade considerada. Este espaço-tempo pode ter no máximo 10

campos de Killing linearmente independentes, pois o número dos campos ζ, satisfaz a

equação 0 ≤ ζ ≤ n(n+1)
2
, n = dimM , ou seja um grupo G10 de movimento. O espaço-

tempo de Minkowski é um exemplo de uma variedade quadrimensional que possui um

grupo de isometriaG10, o grupo de Poincaré, que tem um subgrupoG6(grupo de Lorentz).

1.6 Fibrados.

Nesta seção introduziremos as definições básicas de fibrado, fibrado principal, fibrado

associado e espaço projetivo.

Sejam

• E uma variedade diferenciável de classe C∞

• R uma relação de equivalência em E tal que:

(i) o espaço quociente M = E/R = {x, x classe de equivalência de x, x ∈ M} é uma

variedade diferenciável de dimensão n;

(ii) a projeção π : E →M , (π(x) = x) é C∞ e tem posto n.

• F uma variedade de classe C∞;

• G um grupo de Lie que atua em F à esquerda.

A estrutura de fibrado diferenciável em E é a sêxtupla (E, π, M , F , Ψ, G), onde

Ψ = {Ψα}α é uma família de difeomorfismos satisfazendo às seguintes propriedades

(i) se {Uα}α∈I é uma cobertura aberta de M , então ∀x ∈ M , ∃ Uα(x) e ∃ Ψα ∈ Ψ tal

que

Ψα : Uα × F → π−1(Uα) e π ◦Ψα(x, y) = x,∀(x, y) ∈ Uα × F (1.41)

19



(Uα,Ψα)α∈I é a representação de coordenadas para E. A função ψα é chamada de

trivialização local.

(ii) ∀ (Uα,Ψα)α∈I ,

Ψα,x : F → Fx = {y ∈ E;π(y) = x}

com Ψα,x(y) = Ψα(x, y) é bijetora para y ∈ F e x ∈ Uα.

Seja M um fibrado. Uma seção s : M → E é a aplicação suave a qual satisfaz a

πs = idM . Notemos que para x ∈ M, e então s(x) = s|x ∈ Fx. O conjunto das seções de

M é denotado por Γ(M,E). Se U ⊂M , dizemos que s é uma seção local.

Em particular, se x ∈ Uα∩Uβ, o difeomorfismo tij(x) = Ψ−1i,x ◦Ψj,x : F → Fx ∈ G, onde

tij é chamado de função de transição e Fx é chamado de fibra sobre x ∈M , Fx = π−1(x),

∀x ∈M , que é uma subvariedade fechada de E.

O espaço cobertura de uma variedade diferenciável é um exemplo de Fibrado mais

comum. Se tij = Identidade, o fibrado é dito trivial, isto é, M é contraída a um ponto

(Mé simplesmente conexa). Um tipo de Fibrado fundamental para a gravitação e teorias

de gauge é o Fibrado Principal, que num certo sentido é a generalização geométrica da

noção de grupos de Lie.

Um Fibrado Principal sobre M com grupo G, consiste de uma variedade diferenciável

P e da ação Rgp, do grupo G em P satisfazendo a

(i)
Rgp : P ×G→ P

(p, g)→ Rgp = p · g

(ii) M = P/R, onde R = {(p1, p2) ∈ P × P ;∃g ∈ G; p1.g = p2} e M é conhecido

como espaço órbita. π−1(x) = {pg; g ∈ G, π(p) = x} é a fibra de x sobre P com

π : P →M a projeção diferenciável;

(iii) P é um Fibrado localmente trivial sobre M , isto é, para qualquer x ∈ M , existe

U ⊂ P e um difeomorfismo ϕ : π−1(U)→ U×G, definido por ϕ(p) = (π(p), ϕ(p)) =

ϕ(p).g ∀g ∈ G.

O Fibrado Principal é denotado por P (M,G), frequentemente chamado simplesmente

de fibrado.
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Um outro exemplo de fibrados é o Espaço Projetivo, conceito que vamos apresentar

agora.Considere o Rn+1 − {0} e definamos a relação de equivalência, ∼ , em Rn+1 − {0}

por,

x, y ∈ Rn+1 − {0}, x ∼ y ⇔ ∃λ ∈ R−{0}; y = λx(yi = λxi, 0 ≤ i ≤ n).

O conjunto das classes de equivalência dada por ∼ e denotado por

P n(R) = [Rn+1 − {0}] / ∼, (1.42)

é chamado de Espaço Projetivo de dimensão n sobre R.

Como a aplicação

π : Rn+1 − {0}→ P n

x→ π(x) = [x] = x
(1.43)

é sobrejetiva, a cada classe de equivalência [x] ∈ P n associa-se a reta

λx := {λxi;λ ∈ R∗} = π−1(π(x)). (1.44)

Assim P n(R) é o conjunto de todas as retas que passam pela origem de Rn+1, sendo,

portanto, um espaço topológico de Hausdorff compacto e conexo, admitindo uma estrutura

de variedade n-diferenciável. Este conjunto pode ser pensado como o espaço quociente da

esfera unitária Sn = {x ∈ Rn+1; |p| = 1} pela relação de equivalência definida por

x ∼ y ⇐⇒ x, y ∈ Sn ⇒ y = ±x. (1.45)

Com efeito, cada reta que passa pela origem determina na esfera dois pontos antípodas e

a correspondência assim obtida é, evidentemente, biunívoca e sobrejetiva, logo Pn(R) =

Sn/ ∼.

O espaço projetivo complexo P n(C) é definido por P n(C) = S2n+1/ ∼ onde ∼é a relação

∼ : x, y ∈ S2n+1, x ∼ y ⇐⇒ ∃λ ∈ C ; x = λy, y 6= 0, |λ| = 1, (1.46)

e S2n+1 = {x ∈ Cn+1; kxk = 1}. A projeção π : S2n+1 → P n(C) define a classe de

equivalência [z] = {λ · z;λ ∈ S1} ∼= S1. Assim a relação ∼ decompõe a esfera em S2n+1

como reunião de círculos dois a dois disjuntos, sendo cada um deles um ponto no espaço

projetivo complexo que são as fibras.
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Dado um caminho C em P n existe um único levantamento C em S2n+1 e se C é fechado,

então, o leventamento pode não ser fechado, mas se C é fechado então C é fechado.

Dado um fibrado principal P (M,G), podemos construir o fibrado associado como

segue: sejaG atuando na variedade F à esquerda. Define-se a ação de g ∈ G em P×F por

(u, f) → (ug, g−1f) onde u ∈ P e f ∈ F. Então, o fibrado associado (E, π,M,G,F, P ) é

uma clase de equivalência P×F/G na qual dois pontos (u, f) e (ug, g−1f) são identificados.

Considere o caso em que F é um espaço vetorial V de dimensão k . Seja ρ a

representação k-dimensional de G. O vetor fibrado associado P ×ρ V é definido pela

identificação dos pontos (u, v) e (ug, ρ(g)−1v) de P × V , onde u ∈ P , g ∈ G e v ∈ V .

1.7 Conexões em fibrados.

Vamos fazer, inicialmente, uma revisão sobre conexões em uma variedade Riemaniana

M . Vamos indicar por X(M) o conjunto dos campos vetoriais de classe C∞ e por D(M)

o anel das funções C∞ definidas em M .

Uma conexão afim ∇, em uma variedade diferenciável M é uma aplicação

∇ : X(M)× X(M)→ X(M)

(X,Y ) →∇XY,
(1.47)

que satisfaz às seguintes propriedades:

(i) ∇fX+gYZ = f∇XZ + g∇YZ

(ii) ∇X(Y + Z) = ∇XY +∇XZ

(iii) ∇X(fY ) = f∇XY +X(f)Y, onde X, Y , Z ∈ X(M) e f , g ∈ D(M).

Demonstra-se que se M é uma variedade diferenciável com uma conexão afim ∇, então,

existe uma única lei que associa a um campo vetorial V ao longo da curva diferenciável

C : I ⊂ R→M um outro campo vetorial DV
dt

ao longo de C,denominado derivada

covariante de V ao longo de C, tal que:

(i) D
dt
(V +W ) = DV

dt
+ DW

dt
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(ii) D
dt
(fV ) = df

dt
V + f DV

dt

(iii) Se V é induzido por um campo de vetores Y ∈ X(M) V (t) = Y (C(t)), entao

DV
dt
= ∇dc/dtY .

A noção de derivada covariante tem várias consequências importantes. Ela tornou claro

que as idéias básicas de geodésica e curvatura poderiam ser definidas em situações mais

gerais que a de variedades Riemanianas. É suficiente para isto que se possa definir uma

noção de derivação de campos de vetores com certas propriedades, como a variedade sendo

dotada de uma conexão afim. Isto estimulou a criação de várias estruturas geométricas

mais gerais que a Geometria Riemaniana. Assim como a geometria Euclidiana métrica

é um caso particular da geometria afim, mais geralmente, da geometria projetiva, a

Geometria Riemaniana é um caso particular de estruturas geométricas mais gerais.

Seja S ⊂ R3 uma superfície, C : I → S uma curva parametrizada em S, e V : I → R3

um campo de vetores tangentes a S ao longo de C. O vetor dV
dt
(t), t ∈ I, não pertence,

em geral, ao plano tangente TC(t)(S). Daí, vê-se que a noção de derivada de um campo

vetorial não é , portanto, uma noção da geometria de S. Para contornar tal incoveniente,

surgiu a noção de derivada covariante.

Como vimos, conexão afim é um conceito local. Escolhendo um sistema de coordenadas

(x1, ..., xn) em torno de um ponto p ∈ M e escrevendo X =
P
i

xiXi, Y =
P
j

yjXj, onde

Xi = ∂\∂xi, teremos

∇XY =
X
k

ÃX
ij

xiyjΓ
k
ij +X(yk)

!
Xk, (1.48)

onde ∇XiXj =
P
k

ΓkijXk, e Γkij são os símbolos de Christoffel da conexão.

Seja M uma variedade diferenciável com uma conexão afim ∇. Um campo vetorial V

ao longo de uma curva C : I → M é chamado paralelo quando DV
dt
= 0, ∀t ∈ I. Se C é

diferencável e V0 é um vetor tangente aM em C(t0), t0 ∈ I, e então existe um único campo

de vetores paralelo V ao longo de C tal que V (t0) = V0. V (t) é chamado de transporte

paralelo de V (t0) ao longo de C. Se M é uma variedade diferenciável com uma conexão

afim ∇ e uma métrica Riemaniana < . >, a conexão é dita compatível com a métrica,

quando para toda curva diferenciável C e quaisquer pares de campos de vetores paralelos
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X, Y ao longo de C, tivermos < X,Y > = constante. Mostra-se que uma conexão afim

∇ em variedade Riemanniana M é compatível com a métrica se e só se

X < Y,Z > = < ∇XY, Z > + < Y,∇XZ > X,Y,Z ∈ X (M), (1.49)

e ∇ é simétrica quando

∇XY −∇YX = [X,Y ]. (1.50)

Quando a conexão afim for compatível com a métrica e simétrica ao mesmo tempo,

dizemos que ∇ é uma conexão de Levi-Civita (ou Riemanniana) de M .

Seja P (M,G) um fibrado principal. A conexão em P é a única separação do espaço

tangente TuP , u ∈ P nos espaços vertical VuP e horizontal HuP tal que;

(i) TuP = HuP ⊕ VuP ;

(ii) um campo vetorial suave X em P separa-se em

X = XH +XV , XH ∈ HuP e XV ∈ VuP ;

(iii) HugP = Rg ·HuP , ∀u ∈ P , g ∈ G.

Vamos construir VuP , para tanto considere u ∈ P (M,G) e π−1(p) = F , a fibra de

p ∈ M . VuP é um subespaço de TuP que é tangente à fibra. Tome A ∈ G(álgebra de

Lie associada ao grupo G) e defina Rexp(tA)u = u exp(tA), como π(u) = π(u exp(tA) = p,

então a curva u exp(tA) ∈ F . Define-se o vetor A# ∈ TuP por A#f(u) = d
dt
f(u exp(tA)|0,

f : P → R, suave.

Notemos que A# é tangente a F em u daí A# ∈ VuP . Como a aplicação

# : G →VuP

A→ A#,
(1.51)

é um isomorfismo, então, G ≈ VuP .

Seja P (M,G) um fibrado principal e seja γ : [0, 1]→ M uma curva em M . A curva

bγ : [0, 1] → P é dito um leventemento horizontal de γ se πbγ = γ e o vetor tangente a

bγ(t) pertence sempre Hγ(t)P . Demonstra-se que se γ é uma curva e u0 ∈ π−1(γ(0)), então

existe um único leventamento horizontal bγ em P tal que bγ(0) = u0.
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Define-se a conexão de 1-forma, ω ∈ G⊗TP ∗(ação da álgebra sobre o espaço tangente

dual de P ) como sendo é a projeção do TuP sobre a componente vertical VuP ≈ G, tal

que

(i) ω(A#) = A ∈ G

(ii) R∗gω = Aadg−1ω(X) = g−1ωu(X)g;u ∈ P

Notemos que HuP = {X ∈ TuP ;ω(X) = 0} = kerω, e que ω é definida de F em F,

que leva A em A#.

1.8 Conexão local de 1-forma e potencial de gauge.

Seja {Ui} cobertura aberta de M e σi : Ui → π−1(Ui) uma função suave, chamada

seção local. A conexão local de 1-forma é definida como sendo o pullback (de 1-forma)

Ai = σ∗iω ∈ G ⊗⊗1(Ui).

Das 1-formas locais que satisfazem a relação

Aj=t
−1
ij Aitij + t−1ij dtij, (1.52)

pode-se construir a G-valued 1-forma ω sobre P . Como P é não-trivial, não admite seção

global, o pullback Ai = σ∗iω existe apenas localmente. Em termos de teorias de gauge

Aμ define o potencial de gauge(discutiremos sobre este assunto na próxima seção), e a

conexão Aμ define o potencial vetorial. A conexão Aμ difere do potencial vetor Aμ por

um fator da álgebra de Lie, Aμ=iAμ..

A forma local F da curvatura Ω é definida por F = σ∗iΩ , e σ seção local definida na

carta U de M . F é expressa em termos do potencial de gauge A como

F =dA+A ∧A, (1.53)

onde d é a derivada exterior em M . Atuando em vetores de T (M), temos

F(X,Y ) = dA(X,Y ) + [A(X),A(Y )]. (1.54)
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Em cada carta U onde as coordenadas são xμ = ϕ(p), seja A = Aμdx
μ (Aμ ∈ G) e

F = 1
2
Fμνdx

μ ∧ dxν, então a expresão de F torna-se

Fμν = ∂μAν − ∂νAμ + [Aμ,Aν]. (1.55)

Como Aμ e Fμν são funções G -valued, elas podem ser expandidas em termos das base

{Tα} de G como

Aμ = Aα
μTα, Fμν = Fα

μνTα com [Tα, Tβ] = fγαβTγ. (1.56)

Podemos agora construir o levantamento horizontal bγ e definir o conceito de transporte
paralelo em fibras.

Seja Ui uma carta a qual contém γ e considere a seção σi sobre Ui. Se existe

um leventamento horizontal bγ, podemos expressá-lo como bγ(t) = σi(γ(t))tij(t), onde

tij(t)(função de transição) é entendida como ti(γ(t)) ∈ G. Sem perda de generalidade,

podemos tomar a seção como sendo tal que σi(γ(0)) = bγ(0), isto é ti(0) = e. Seja X um

vetor tangente a γ(t) em γ(0). Então, bX = bγ∗X é tangente a bγ em u0 = bγ(0). Como o
vetor tangente bX é horizontal, ele satisfaz ω( bX) = 0. Da eq.(1.52) temos

bX = t−1i (t)σi∗Xti(t) +
£
t−1i dti(X)

¤#
. (1.57)

Aplicando ω a ambos os lados a eq.(1.57), obtemos

dti(t)

dt
= −ω(σi∗X)ti(t), (1.58)

que possui uma única solução. Como ω(σi∗X) = σ∗iω(X) = Ai(X), temos

dti(t)

dt
= −Ai(X)ti(t), (1.59)

e a solução formal com ti(0) = e é dada por

ti(γ(t)) = P exp

⎛⎝− tZ
0

Aiμ
dxμ

dt
dt

⎞⎠
= P exp

Ã
−
Z γ(t)

γ(0)

Aiμ(γ(t))dx
μ

!
, (1.60)

onde P é o operador ordenação ao longo do caminho γ(t). O levantamento horizontal é

expresso por bγ(t) = σi(γ(t))ti(γ(t)).
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Seja γ : [0, 1]→M , uma curva. Considere um ponto u0 ∈ π−1(γ(0)). Existe um único

levantamento bγ(t) de γ(t) através de u0, e existe um único ponto u1 = bγ(1) ∈ π−1(γ(1)).

O ponto u1 é chamado de transporte paralelo de u0 ao longo da curva bγ. Isto define a
aplicação

Γ(bγ) : π−1(γ(0))→ π−1(γ(1)) (1.61)

tal que u0 → u1.

Esta aplicação comuta com a ação à direita Rg, g ∈ G, isto é,

RgΓ(bγ) = Γ(bγ)Rg ∀u0 ∈ π−1(γ(0)). (1.62)

Se a forma local dada pela eq.(1.60) for empregada, temos

u1 = σi(1)P exp

Ã
−
Z γ(t)

γ(0)

Aiμ(γ(t))dx
μ

!
. (1.63)

Com a estrutura matemática apresentada, podemos definir o conceito de Holonomia,

objeto matemático ao qual dedicaremos grande atenção nesta tese.

Sejam P (M,G) um fibrado principal e γ : [0, 1] → M uma curva cujo levantamento

horizontal através de u0 ∈ π−1(γ(0)) é bγ. Vamos considerar a aplicação Γ(bγ) tal que
u0 = bγ(0) e bγ(1) = u1. Sejam α, β : [0, 1] → M , duas curvas com α(0) = β(0) = p0

e α(1) = β(1) = p1 e bα, bβ seus respectivos levantamentos tais que bα(0) = bβ(0) = u0.

Então, bα(1) não é necessariamente igual a bβ(1). Isto mostra que se considerarmos a curva
γ : [0, 1] → M tal que p = γ(0) = γ(1), temos bγ(0) 6= bγ(1), em geral. A curva γ define

a transformação τγ : π
−1(p) → π−1(p) na fibra. Esta transformação satisfaz a relação

τγ(ug) = τγ(u)g. Notemos que τγ não só depende da curva, mas também da conexão.

Esta função recebe o nome de variável de contorno. Vemos assim que existe um único

elemento g ∈ G tal que

gu0 = u1,

onde g é a transformação de holonomia.

Tome um ponto u ∈ P com π(u) = p e considere o conjunto das curvas

Cp(M) = {γ : [0, 1]→M ; γ(0) = γ(1) = p}.
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O conjunto dos elementos

Φu ≡ {g ∈ G ; τγ(u) = ug, γ ∈ Cp(M)} (1.64)

é um subgrupo do grupo G e é chamado de grupo de holonomia.

1.9 Teorias de gauge.

Há evidências de que as interações da narureza sejam descritas pelas chamadas Teorias

de Gauge. A universalidade do princípio de gauge, ou melhor, a estrutura comum das

interações fundamentais representa um passo significativo no sentido de se formular uma

única teoria que incorpore todas as interações, ou seja unifica-las, bem como no sentido

de geometrizá-las, pois as estruturas de gauge são essencialmente geométricas.

Em 1919, H. Weyl [2] tentou unificar a gravitação e o eletromagnetismo através

do uso do conceito geométrico de espaço-tempo dependente da mudança de escala.

Posteriormente, o próprio Weyl deu uma descrição do eletromagnetismo como uma teoria

de gauge numa forma que se aproxima da atual (formalismo diferencial).

O princípio de invariância de gauge local para as interações entre cargas elétricas foi

generalizado, para o caso não-Abeliano, por Yang e Mills [28]. Posteriormente, Utiyama

[29] construiu uma teoria de gauge para um grupo de simetria arbitrário.

Fisicamente, a busca da invariância ou simetrias globais é justificável pelo fato de que

a toda simetria contínua da Lagrangiana corresponde a uma lei de conservação (Teorema

de Noether). Como exemplo de simetria temos a invariância por transformação gerais

de coordenadas implicando na construção da Relatividade Geral, a simetria de gauge

Abeliana local implicando na construção do eletromagnetismo e a simetria de gauge não-

Abeliana acarretando nos campos não-Abelianos. Dois fatos fundamentais que motivaram

a construção de teorias não-abelianas foram a descoberta de que a força entre os núcleos

possui curto alcance e a independência da intensidade da força nuclear com as cargas dos

núcleos, e que levam à formulação da simetria de spin isotópico.
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1.9.1 Eletromagnetismo como uma teoria de gauge.

O eletromagnetismo clássico pode ser formulado inteiramente em termos do tensor

campo eletromagnético Fμν(x). Por exemplo, dado Fμν(x) em um ponto x, podemos

determinar, usando a equação de Lorentz, como uma partícula carregada colocada em x

irá mover-se. Isto não é mais verdade na teoria quântica; Fμν(x), neste contexto, não é

adequado para descrever os efeitos eletromagnéticos sobre a função de onda de um életron,

conforme foi demonstrado[3].

A teoria de Maxwell do eletromagnetismo é descrita pelo grupo de gauge U(1) que é

Abeliano e uni-dimensional. Como o espaço baseM é o espaço-tempo quadri-dimensional

de Minkowski, o fibrado P (M,U(1)) é trivial, ou seja P = R4 × U(1), com potencial de

gauge A = Aμdx
μ, e o campo de gauge F =dA, que em componentes

Fμν =
∂Aν

∂xμ
− ∂Aμ

∂xν
. (1.65)

O campo de gauge F satisfaz a identidade de Bianchi

dF = F ∧A−A ∧F = 0,

que pode ser escrita na forma

∂λFμν + ∂νFλμ + ∂μFνλ = 0. (1.66)

Sendo Fμν ≡ iFμν, e se identificamos o campo elétrico E e magnético B como Ei = Fi0 e

Bi =
1
2
εijkFjk, a eq.(1.66) reduz-se para às duas equações homogênas de Maxwell

∇∧ E + ∂B/∂t = 0 (1.67)

∇.B = 0.

Para determinar a dinâmica, temos que especificar a ação. A ação de Maxwell, δM [A], é

um funcional de A dado por

δM [A] = −
1

4

Z
R4

FμνFμνdx4 =
1

4

Z
R4

FμνF
μνdx4. (1.68)
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Pela variação de δM [A] com relação a A obtemos a equação do movimento

∂μFμν = 0 (1.69)

e desta equação se deduz o segundo grupo de equações de Maxwell

∇ ·E = 0 (1.70)

∇×B − ∂E

∂t
= 0.

No estudo do eletromagnetismo clássico, os campos elétricos e magnéticos (Fμν) são de

muita importância, e o potencial vetor �A e o potencial escalar Φ = A0 são secundários. Na

teoria quântica, no entanto, existe uma variedade de situações em que Fμν não é suficiente

para descrever a teoria e usa-se o fator de fase construido a partir do quadrivetor potencial

Aμ = (A0, A) na sua descrição. Um desses exemplos é o conhecido efeito Aharonov-Bohm

[3] eletromagnético, que é uma manifestação invariante de gauge do fator de fase.

Como o problema é essencialmente em duas dimensões, vamos considerar a regiãoM = R2,

onde o solenóide está na origem. O fibrado principal é P (M,U(1)) e o fibrado associado

é E = PXρC, com U(1) atuando em C. E é um fibrado linear complexo sobre M , onde

a seção é a função de onda ψ.

Vamos definir a 1-forma A =iA = iAμdx
μ assumindo valores na na álgebra de Lie.

A derivada covariante associada com a conexão local é D = d+A, com A = (−yΦ
2πr2

, xΦ
2πr2

)

onde Φ =
R
S

BdS, é o fluxo.

Como dA = F = 0, esta conexão é localmente plana. Considerando o círculo unitário S1

que envolve o solenóide, parametrizando-o por eiθ (0 ≤ θ ≤ 2π) e escrevendo a conexão

em S1 como

A = i
Φ

2π
dθ, (1.71)

temos que ao transportarmos paralelamente a quantidade ψ ao longo de S1, com relação

à conexão local, obtemos

Dψ(θ) = (d+
iθ

2π
dθ)ψ(θ) = 0, (1.72)

cuja solução é ψ(θ) = e
−iΦθ
2π .
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Este efeito pode ser descrito por um tratamento puramente matemático [30], mostrando-

se que a representação unitária do grupo de cobertura do grupo Euclidiano E2 do plano

é um bom modêlo matemático para o efeito Aharonov-Bohm.

Uma outra forma de escrever o efeito Aharonov-Bohm é idealizando uma configuração

que envolve um solenóide e partículas teste incidentes confinadas a uma região sem

curvatura de gauge(sem campo eletromagnético) M , que pode ser considerada como um

plano menos a origem (R2 − {0}) e é multiplamente conexa. A múltipla conectividade

de M é necessária para a observação do efeito Aharonov-Bohm, pois toda conexão plana

(isto é, com curvatura nula) definida numa região simplesmente conexa é trivial. Em

outras palavras, em um espaço que não seja simplesmente conexo, existe um potencial

de gauge não-trivial com a intensidade do campo de gauge nula. Podemos trabalhar com

um espaço multiplamente conexo M através de seu espaço de cobertura, em particular o

espaço de cobertura universal M̃ . Temos que M = M̃/Γ, onde Γ é um grupo discreto de

difeomorfismos de M̃. Funções definidas univocamente em M podem ser levantadas para

funções constantes sobre as fibras em M̃ . Levantando-se as curvas de M para M̃ , vemos

que o levantamento de uma conexão não-trivial em M é trivial em M̃.

Deve ser notado que a transformação de gauge S̃(x̃) de Ãμ(x̃) = 0 no espaço de

cobertura universal M̃ pode ocorrer em três diferentes formas, a saber [31]:

(i) A primeira é quando S̃(x̃) é constante sobre as fibras e portanto, pode ser projetada

numa transformação de gauge univocamente definida em M . Neste caso, não há

efeito Aharonov-Bohm.

(ii) A segunda é quando S̃(x̃) não é projetável, mas dá origem a um campo projetável tal

que Ãμ(x̃) = S̃(x̃)∂̃μS̃
−1(campo de gauge trivial). Isto resulta no efeito Aharonov-

Bohm em M. Neste caso a transformação de gauge S̃(x̃) em M̃ não é constante

sobre as fibras, o que resulta em um fator de fase não-trivial conectando dois pontos

quaisquer de cada fibra, o que é necessário para observar o efeito Aharonov-Bohm.

(iii) A terceira é quando S̃(x̃) é uma transformação de gauge não projetável e o campo

de gauge puro Ãμ(x̃) = S̃(x̃)∂̃μS̃
−1 também não é projetável.
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1.9.2 Teoria de Yang-Mills.

A observação de que a interação forte é independente das cargas elétricas dos núcleos

(novo princípio de simetria), permitiu estender a invariância de gauge para além dos

limites do eletromagnetismo, e levou à proposição de que a interação forte pode ser

descrita por uma teoria de gauge análoga à eletrodinâmica. Para tanto é introduzido

em cada ponto do espaço de Minkowski um espaço interno complexo de duas dimensões.

As bases espinoriais do espaço interno, denotada por ηap, atuam sobre os elementos do

grupo de simetrias

SU(2) = {A ∈M(2× 2) ; A−1 = A†, detA = 1},

que é uma cobertura compacta para O(3). O grupo SU(2) é o grupo de gauge local da

teoria. A teoria de Yang-Mills falhou na sua proposta original de estabelecer uma teoria

para as interações fortes, porém, ela estabeleceu os fundamentos da moderna teoria de

gauge não-Abeliana.

Vamos considerar a teoria de gauge do SU(2) definida no R4. O fibrado que decreve

tal teoria de gauge é P ( R4, SU(2)). Como R4 é trivial, o potencial de gauge (conexão na

fibra) é

A = Aα
μTαdx

μ, (1.73)

onde α = 1, 2, 3, representa o índice interno, Tα ≡ σα/2i são os geradores da álgebra de

Lie, G(SU(2)) do SU(2) e σα são as matrizes de Pauli.

O campo de gauge é

F ≡ dA+A ∧A =1
2
Fμνdx

μ ∧ dxν, (1.74)

onde

Fμν = ∂μAν − ∂νAμ + [Aμ, Aν] = Fα
μνTα,

com

Fα
μν = ∂μAνα − ∂νAμα + εαβμAμβAνγ.

O campo de gauge satisfaz a identidade de Bianchi DF = dF + [A,F ] = 0. A ação de
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Yang-Mills é

δYM [A] ≡ −
1

4

Z
M

tr(FμνFμν) =
1

2

Z
M

tr(F∧∗F), (1.75)

sendo que a variação com relação a Aμ nos fornece a equação DμFμν = 0 ou DαF = 0.

Este procedimento da teoria de Yang-Mills pode ser usado para construir uma teoria de

gauge para um grupo interno qualquer. Para isto precisamos do potencial (conexão)

Γμ(x) = Aα
μ(x)Tα,

onde Tα são os geradores da álgebra de Lie do grupo de gauge e Aα
μ(x) são as conexões

de 1-forma com derivada Dμ ≡
¡

∂
∂xμ

+ iΓμ
¢
ϕ e os campos de gauge

Fα
μν = ∂νA

α
μ − ∂μA

α
ν + Cα

lmA
β
μA

γ
ν , (1.76)

onde Cα
lm são sa constantes que satisfazem a relação [Tα, Tβ] = iCα

αβTα.

Existe um formalismo que generaliza o formalismo integral (global) para campos de

gauge apresentado por Feynman [32], utilizado na Mecânica Quântica em variedades

multiplamente conexas, o qual demonstra que o formalismo diferencial apresentado

por Weyl não descreve totalmente o eletromagnetismo. O formalismo das integrais de

trajetória considera uma curva C em M e seu leventamento horizontal C 0 no fibrado

principal P (M,G), que é simplesmente conexo, portanto, totalmente integrável, depois

retornado à variedade M pela projeção π : P →M.

O que vamos apresentar a seguir corresponde a uma breve revisão de pioneiros

trabalhos sobre teoria de gauge não-Abeliana usando o formalismo integral [33]. O ponto

básico é que o eletromagnetismo pode ser descrito por um fator de fase não-integrável,

fato discutido por Dirac, Peierls e outros, isto é, dependente do caminho. O formalismo

apresentado por Yang eWu tem a vantagem de descrever intrinsicamente e completamente

o eletromagnetismo e as teorias gauges não-Abelianas.

Seja M uma variedade e x = (xμ), μ = 1, . . . n um ponto de M e considere um grupo

de gauge G (Abeliano ou não), o qual é um grupo de Lie com geradores Xk(k = 1, . . .) .

O fator de fase dependente do caminho UAB, é um elemento do grupo G associado com o

caminho AB entre os pontos A e B na variedade, satisfazendo as seguintes propriedades:
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(i) UABC = UABUBC com AB e BC são partes de AC

(ii) UA(A+dx) = I + bkμ(x)Xkdx
μ.

A função bkμ(x) é definida na variedade e é chamada de potencial de gauge e UAB será

chamado de fator de fase de gauge.

Consideremos agora um paralelogramo infinitessimal de lados dx e dx0. Então UABCDA

pode ser calculado por multiplicação de quatro fatores de fase de (ii), o que resulta em

UABCDA = I + fkμνXkdx
μdxν ,

onde

fkμν =
∂bkμ
∂xν
− ∂bkν

∂xμ
− biμb

j
νC

k
ij = −fkνμ, (1.77)

sendo Ci
kj definida por XkXi −XjXk = Ci

kjXi, e fkμν é chamado de campo de gauge.

Para um elemento ξ da álgebra de Lie de G, isto é, ξ ∈ G, no formalismo de conexões

em fibrados, o deslocamento paralelo de ξ em g(t) ∈ F é identificado como sendo a conexão

local de 1-forma ou melhor o potencial de gauge. Assim,

ξ ≡ tiA
k
i Tk ≡ Ai, {TK} é uma base de G.

Portanto, g(t) = exp(Ai) = exp(A k
i dx

i). Da propriedade (i) temos que

g(
∞X
i=0

ti) =
∞Y
i=0

(exp tiA
k
i dx

i) = exp(
∞X
i=0

tiA
k
i dx

i) (1.78)

Identificando
∞P
i=0

tiA
k
i dx

i ≡
1R
0

Aidx
i, temos

g(
∞X
i=0

ti) = exp

⎛⎝ 1Z
0

Aidx
i

⎞⎠ . (1.79)

Como exp
µ
1R
0

Aidx
i

¶
está em F , definimos o fator de fase como sendo,

UBA = P exp(

BZ
A

Γμdx
μ), (1.80)
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onde AB é o caminho que liga os pontos, A (inicial) e B (final),Γμ a conexão na fibra

ou potencial de gauge e P ordena o produto das matrizes exp
R
Γμ. No caso do efeito

Aharonov-Bohm temos a conexão Γθdθ = iΦ
2π
dθ. Então,

U(2π,0) = exp(

2πZ
0

iΦ

2π
dθ) (1.81)

que é o fator de fase.

Podemos resumir as considerações apresentadas dizendo que Fμν subdescreve o

eletromagnetismo, enquanto o conhecimento de
H
Aμdx

μ para um dado contorno fechado

sobredescreve o eletromagnetismo. O eletomagnetismo é corretamente descrito pelo fator

de fase exp
£
ie
~c

H
Aμdx

μ
¤
. O fator de fase para uma curva qualquer, não necessariamente

fechada é dado por

UBA = exp

⎡⎣i e
~c

BZ
A

Aμdx
μ

⎤⎦ . (1.82)

Se Fμν = 0, ele é independente das deformações da curva entre os pontos A e B, mas, em

geral, depende da curva. Então, associado à cada curva entre os pontos A e B, temos um

fator de fase não-integrável, no sentido de depender da curva.

Se considerarmos a transformação de gauge

ψ → ψ0 = eiαψ = S−1ψ, (1.83)

então,

UBA → U 0
BA = S−1(B)UBAS(A) (1.84)

onde S(B) = e−iαB .

A transformação de gauge do fator de fase envolve a função S calculada nos pontos

extremos da curva. Para uma curva fechada, S(B) = S(A), de modo que UBA permanece

inalterado. Portanto, podemos afirmar que o eletromagnetismo é uma manifestação

invariante de gauge do fator de fase não-integrável.

Algumas aplicações na gravitação serão vistas nos capítulos 2 e 3 desta tese.

Apresentaremos agora um paralelo entre os conceitos em teoria de campos de gauge e

a teoria sobre fibrados. A translação desse conceitos é dada na Tabela 1.1.
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Terminologia de teoria de gauge Terminologia de espaços fibrados

espaços de fatores de fase espaços de fibrado

campos de gauge fibrados

espaço tempo espaço base

gauge(ou gauge global) coordenada principal

tipo de gauge fibrado principal

potencial de gauge bkμ conexão no fibrado principal

intensidade de campo fkμν curvatura na conexão

transformação de gauge função de transição tij

fator de fase transporte paralelo

eletromagnetismo conexão em P = R4 × U(1)

campos de gauge de spin isotópico conexão em P (R4, SU(2))

eletromagnetismo sem monopolos conexão trivial em P = R4 × U(1)

eletromagnetismo com monopolos conexão não trivial em P = R4 × U(1)

Tabela 1.1: Correspondência entre os termos usados em teorias de gauge e espaços fibrados
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A situação é semelhante no caso de teorias de gauge não-Abelianas, exceto pelo fato

de que neste caso o tensor Fμν(x) é inadequado para descrever a teoria, mesmo de

nível puramente clássico. O fator de fase torna-se mais importante neste caso, pois o

tensor intensidade de campo subdescreve a teoria mesmo em uma região simplesmente

conexa. Novamente, o que descreve a teoria exatamente não é Fμν(x), nem Aμ(x), mas a

generalização não-Abeliana do fator de fase dado por

UBA(C) = P exp

⎡⎣i e
~c

BZ
A

Aμdx
μ

⎤⎦ , (1.85)

onde, agora, como Aμ(x) em geral não comuta, tem que ser feito um ordenamento,

simbolizado por P , ao longo da curva.

Amatriz UBA(C) que toma valores no grupo de gaugeG, possui significado geométrico.

Ela representa a matriz de transporte paralelo da teoria. Devido a esta interpretação

parece natural considerar UBA(C) como uma quantidade mais fundamental do que Aμ(x),

que depende da escolha do gauge do que Fμν(x), já que neste caso podemos ter famílias

de Aμ(x)
0s que não estão relacionadas por uma transformação de gauge e que fornecem o

mesmo tensor intensidade de campo [4].

1.10 Fator de fase em gravitação e o efeito Aharonov-

Bohm gravitacional.

Como vimos na seção anterior, no formalismo do espaço de contornos para teorias

de gauge [9] os campos dependem dos caminhos ao invés dos pontos do espaço-tempo.

A quantidade fundamental que surge nesse formalismo é o fator de fase [4] (variável de

contorno), o qual descreve exatamente a dinâmica de um dado sistema físico, como por

exemplo, a de um sistema correspondente a um elétron (quântico) interagindo com um

campo eletromagnético.

A extensão do formalismo do espaço de contornos para a teoria da gravitação

foi primeiramente considerada por Mandelstam [9] o qual estabeleceu varias equações

envolvendo as variáveis de contorno, e também por Yang [8], Voronov a Makeenko [11]
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e Bollini et al [82] que calcularam a variável de contorno para várias curvas no campo

gravitacional correspondente ao espaço-tempo de Kerr.

Os fatores de fase na teoria da gravitação são matrizes que representam o transporte

paralelo ao longo de curvas no espaço-tempo com uma conexão afim dada. Elas estão

conectadas com a transformação de holonomia linear que é determinada pela métrica

e contém importantes informações topológicas. Esses objetos matemáticos contêm

informações bastante interessantes. Por exemplo, como os vetores mudam quando são

transportados em torno de um curva fechada. Essa mudança é uma medida de quanto o

espaço-tempo se desvia do espaço-tempo de Minkowski, do ponto de vista global.

Suponha que temos um vetor vμ em um ponto Q da curva fechada C. Então, podemos

gerar o vetor v̄ μ em Q ao transportarmos vμ paralelamente ao longo da curva. O vetor

assim obtido é, em geral, diferente do vetor transportado. Neste caso, podemos associar

ao ponto Q e à curva C uma aplicação linear Uμ
ν de tal modo que para qualquer vetor

vμ em Q, o vetor v̄μ em Q, resultante do transporte paralelo de vμ ao longo da curva C,

é dado por v̄μ = Uμ
ν v

ν. A aplicação linear Uμ
ν é chamada transformação de holonomia

associada com o ponto Q e à curva C. Se escolhermos uma base de tétradas {eaμ(x)} e um

parâmetro λ ∈ [0, 1] para a curva C tal que C(0) = C(1) = Q, então, em se transportando

o vetor vα paralelamente à curva C, de C(λ) para C(λ + dλ), as componentes do vetor

sofrem a mudança δvμ =Mμ
ν [x(λ)] v

νdλ, ondeMμ
ν é uma aplicação linear que depende

das tétradas, da conexão afim do espaço-tempo e do valor de λ, e que toma um vetor

tangente em um ponto Q e o transporta paralelamente ao longo da curva C de volta ao

ponto Q. Segue, portanto, que a transformação de holonomia Uμ
ν é dada pelo produto

ordenado das matrizes correspondentes às N aplicações lineares como

Uμ
ν (C) = lim

N→∞

NY
i=1

∙
δμν +

1

N
Mμ

ν [x(λ)]|λ= i
N

¸
. (1.86)

Podemos escrever a aplicação linear Uμ
ν dada pela eq.(1.86) como

UL(C) = P exp

⎛⎝Z
C

M

⎞⎠ , (1.87)

onde L significa linear e P é o operador que ordena o produto das N aplicações ao longo

da curva C. A eq.(1.87) será entendida como uma abreviação do lado direito da eq.(1.86)
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e define a holonomia. Note que seMμ
ν é independente de λ, então segue da eq.(1.87) que

Uμ
ν é dado por U

μ
ν = (expM)μν . Usando o formalismo métrico, a eq.(1.87) pode ainda ser

escrita

UL(C) = P exp(

ZZ
D

Rλ
μνρdx

μdxν), (1.88)

onde D é o disco limitado por C e Rλ
μνρ é o tensor de Riemann. Também podemos

expressar o fator de fase por

UBA(C) = P exp[

BZ
A

Γaμbx(λ)
dxμ

dλ
dλ], (1.89)

onde Γaμb é a conexão tetrádica e A e B são os pontos inicial e final da curva C. Portanto,

associado a cada curva C, de um ponto A a outro ponto B, temos o fator de fase dado

pela eq.(1.89). Em outras palavras, o fator de fase é, por construção, uma função da curva

C e dos pontos inicial e final da curva. Da definição de Uμ
ν segue também que sob uma

transformação de coordenadas x→ y, essa quantidade se transforma da seguinte maneira

Uμ
ν (x, x

0)→ Uμ
ν (x, x

0)

µ
∂yα

∂xμ

¶
x

µ
∂xν

∂yβ

¶
x0
. (1.90)

Para uma curva fechada, essa transformação tem a forma U → ΩUΩ−1, e portanto não

afeta o traço de U(C). A quantidade UBA(C) pode ser expandida da seguinte maneira

UBA(C) = P exp(
BR
A

Γμdx
μ)

= I +
H
C

dxμΓμ(x) +
1
2
P
H
C

dxμ
H
C

dyνΓμ(x)Γν(y) + . . . ,
(1.91)

com Γμ sendo os símbolos de Christoffel ou conexão tétradica [35]. Da eq.(1.89) podemos

obter a quantidade invariante

W (C) = Tr[P exp(

BZ
A

Γaμbx(λ)
dxμ

dλ
dλ)], (1.92)

onde Tr é o traço. A quantidade W (C) é conhecida como loop de Wilson gravitacional e

nos traz informações acerca das propriedades geométricas e topológicas do espaço-tempo.

Na teoria métrica da gravitação, o campo gravitacional está relacionado ao tensor de

curvatura de Riemann não-nulo. No entanto, em situações em que o espaço-tempo possui

topologia não-trivial, efeitos globais do campo gravitacional devem ser considerados.
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Um desses efeitos corresponde ao análogo gravitacional do efeito Aharonov-Bohm

eletromagnético, e que consiste no seguinte: partículas restritas a se mover em regiões

onde o tensor de curvatura de Riemann não dependem do momento angular (por exemplo,

no caso do cilindro com rotação que iremos tratar no próximo capítulo), podem exibir

efeitos gravitacionais associados ao momento angular. Outras situações semelhantes são

apresentadas e discutidas na literatura. Em geral, o efeito Aharonov-Bohm gravitacional

pode ser caracterizado pelo fato de a partícula exibir efeitos gravitacionais mesmo estando

restrita a se mover em uma região de curvatura nula [36],[26].

O efeito Aharonov-Bohm gravitacional pode ser entendido em termos do fator de fase

gravitacional P exp
¡R

Γμdx
μ
¢
. O transporte paralelo de vetores e espinores ao longo de

uma curva fechada que envolve a região de curvatura diferente de zero resulta em uma

fase que não é igual a identidade. Este resultado pode ser entendido em termos dos

aspectos globais (topologia não-trivial) do espaço-tempo. Portanto, o efeito Aharonov-

Bohm gravitacional mostra que a topologia influencia o comportamento de um dado

sistema físico. Enquanto o efeito Aharonov-Bohm eletromagnético é de natureza quântica,

o análogo gravitacional é puramente clássico. Esta generalização do efeito Aharonov-

Bohm para o caso gravitacional foi estudado por vários autores [37]

Em conclusão, podemos dizer que o fator de fase P exp
¡
ie
~c

R
Aμdx

μ
¢
tem um papel

fundamental na descrição de efeitos globais no eletromagnetismo e em outras teorias

de gauge. A intensidade de campo Fμν = ∇[μAν] subdescreve o eletromagnetismo

em situações onde os aspectos globais (topologia não-trivial) são levados em conta.

Basicamente, Fμν é uma 2-forma fechada (dF = 0), no entanto a topologia impede que

ela seja globalmente exata (F 6= dA): há, portanto, uma descontinuidade na conexão de

gauge 1-forma A, ou equivalentemente uma segunda classe de cohomologia não-trivial.

Na gravitação o fator de fase também é importante, especialmente na descrição de

situações onde a topologia é não-trivial, bem como na formulação da gravitação numa

abordagem que independe de coordenadas, o que pode ser fundamental na construção de

uma teoria quantizada de campo gravitacional.

Neste primeiro capítulo apresentamos uma revisão matemática sobre temas

importantes para a comprensão dos estudos feitos nesta tese. O fator de fase tanto em
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teorias de gauge quanto em gravitação tem uma grande importância nesse estudos, daí

a ênfase dada a este objeto e ao efeito Aharonov-Bohm eletromagnético e seu análogo

gravitacional.
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Capítulo 2

Holonomias, Efeito Aharonov-Bohm

Gravitacional e Caracterização

Global do Espaço-Tempo Cônico.

2.1 Introdução.

Neste capítulo vamos calcular os fatores de fase para algumas curvas em diferentes

espaços-tempos, tais como o correspondente ao cilindro com rotação [26], monopolo global

generalizado, a corda quiral[38] e multicorda quiral [39].

No caso do cilindro com rotação vamos aplicar o fator de fase para mostrar a existência

do efeito Aharanov-Bohm [3] gravitacional. Para o caso da corda cósmica quiral vamos

determinar a holonomia e generalizar para o sistema formado por N cordas quirais e

estudar os aspectos globais do espaço-tempo correspondente a esta configuração. No

espaço-tempo gerado por um monopolo global generalizado vamos calcular os fatores de

fase e mostrar que eles obedecem as relações de Mandelstam [9].
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2.2 Variável de contorno no espaço-tempo do cilindro

de matéria com rotação.

Nesta seção estamos interessados em estudar o análogo gravitacional [34] do efeito

Aharonov-Bohm eletromagnético, no seguinte sentido geral: um vetor ou um espinor que

é transportado em uma região onde a curvatura não depende de um certo parâmetro,

como o momento angular, no caso que iremos tratar, pode exibir um efeito gravitacional,

associado com este parâmetro, adquirindo um fator de fase que depende do mesmo, de

modo que as componentes do vetor transportado dependem do momento angular sem que

o tensor de curvatura de Riemann possua dependência com o momento angular.

Como fonte do campo gravitacional, vamos considerar uma casca cilíndrica infinita e

com massa, a qual rotaciona em torno do seu eixo. O elemento de linha correspondente

a esta situação, na aproximação de campo fraco, é dado por [11]

ds2 = −(1− a/2)dt2 + (1 + a/2)(dr2 + r2dφ2 + dz2) + 2b(r)dtdφ (2.1)

onde m é a densidade linear de massa e j = m'r0 é a densidade linear do momento-

angular, com ' sendo a velocidade angular e r0 o raio da casca cilíndrica. Esta solução

aproximada é justificada em um domínio onde |a(r)| = |−4Φ| << 1, sendo Φ o potencial

Newtoniano gerado pela delgada casca cilíndrica com massa e b(r) é uma função de r, e é

dada por b(r) = 4j
h
r2

r20
Θ(r0 − r) +Θ(r − r0)

i
, com j sendo o momento angular da fonte.

Como o campo gravitacional é considerado fraco, podemos escrever o tensor métrico

correspondente à eq.(2.1) na forma gμν = ημν + hμν , onde ημν = ημν = diag(−1, 1, 1, 1) e

hμν é dado pelas identificações óbvias. Neste caso, o tensor de Riemann é dado por

Rαμβν = (
1

2
hαν,μβ + hμβ,αν − hμν,αβ − hαβ,μν), (2.2)

onde a vírgula denota derivação.

Usando a expressão dada pela eq.(2.2) podemos verificar que a curvatura fora da

casca cilíndrica de matéria não depende do momento angular da mesma, no limite da

aproximação linear. Isto significa que o campo gravitacional fraco associado com uma

casca cilíndrica de matéria que gira lentamente não é afetado pelo momento angular da

fonte.
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Agora, vamos calcular as transformações de holonomia para uma curva qualquer no

plano xy, que é perpendicular ao cilindro. Para tanto, vamos, primeiramente, calcular as

conexões tetrádicas.

Definindo as 1-formas
ω0 = (1− a/4)dt+ bdφ,

ω1 = (1 + a/4)dr,

ω2 = (1 + a/4)rdφ,

ω3 = (1 + a/4)dz

(2.3)

e usando a equação de estrutura de Cartan,

dωa = −ωa
b ∧ ωb = e

(a)
μ||νdx

νdxμ,

obtemos as seguintes conexões tetrádicas

Γ2μ1dx
μ = [1− 2m(1− a/4)] dφ = −Γ1μ2dxμ,

Γ3μ1dx
μ = −2m/r(1− a/4)dz = −Γ1μ3dxμ,

Γ0μ1dx
μ = 2m/r(1− a/4)dt = Γ1μ0dx

μ,

(2.4)

onde a(r) = −8m ln(r/r0) e b(r) = 4m'r0.

Vamos considerar primeiramente curvas fechadas quaiaquer, no plano perpendicular ao

cilindro, com centro na origem e valores fixos de t e z. Então, neste caso, temos

Γμdx
μ = Γφdφ, (2.5)

com Γφ dado por

Γφ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 Aφ 0

0 −Aφ 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.6)

onde Aφ = [1− 2m(1− a/4)].

Como Γφ independe de φ, a holonomia linear para esta curva é

UL = P exp(

2πZ
0

Γφdφ) = exp(2πΓφ) (2.7)

= I +
Γφ
Aφ

sen(2πAφ) +
Γ2φ
A2φ
[1− cos(2πAφ)],

44



onde usamos o fato que (Γφ)
3 = −Γφ. Portanto, na forma matricial a holonomia linear é

dada por

UL(C) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 cos 2πAφ sen2πAφ 0

0 −sen2πAφ cos 2πAφ 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ = exp(−2πiAφJ12), (2.8)

com J12 sendo o gerador de rotações em torno do eixo z.

Vamos, agora, calcular o fator de fase no caso em que o caminho é uma translação na

direção z, (dt = dr = dφ = 0). Neste caso temos

Γμdx
μ = Γzdz, (2.9)

com

Γz =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 Az

0 0 0 0

0 −Az 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.10)

sendoAz = 2mr−1(1−a/4). Como Γz é independente de z, para o contorno correspondente

ao segmento que vai de z1 ate z2, U(C) é dado simplesmente por

Uz1z2(C) = exp

⎛⎝ z2Z
z1

Γzdz

⎞⎠ = exp[−iAz(z2 − z1)]J13, (2.11)

onde J13 é o gerador de rotação em torno do eixo y.

Para uma translação no tempo, temos

Γμdx
μ = Γtdt,

com Γt sendo dado por

Γt =

⎛⎜⎜⎜⎜⎜⎜⎝
0 At 0 0

At 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.12)
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onde At = 2mr−1(1− a/4). Portanto, para a translação no tempo o fator de fase é

Ut1t2(C) = exp(−iAt(t2 − t1))J14, (2.13)

onde J14 é o gerador de boost na direção 0x. Note que a holonomia linear não depende

do momento angular da fonte.

Agora, vamos calcular a holonomia translacional, a qual esta associada com o momento

angular conforme veremos a seguir. Para isto, vamos escrever o elemento de linha dado

pela eq.(2.1), na seguinte forma

ds2 = −[(1− a/4)dt− bdφ]2 + (1 + a/2)(dr2 + r2dφ2 + dz2). (2.14)

Quando circundamos a casca cilíndrica ao longo do círculo de um ponto de coordenadas

(t, x, y, z) até o de coordenadas (t0, x0, y0, z0), o vetor coluna (t,x) transportado

paralelamente ao longo do círculo torna-se (t0,x0). Esses vetores relacionam-se pelas

seguintes relações

t0 = (1− a/4)t− 2πb,

x0 = x cos(2πAφ) + ysen(2πAφ),

y0 = −xsen(2πAφ) + y cos(2πAφ),

z0 = z,

(2.15)

onde Aφ = [1− 2m(1− a/4)].

A transformação dada pela eq.(2.15) pode ser posta na forma de multiplicação de matrizes

homogêneas dada por: sejaMA
B uma matriz pertencente ao espaço das matrizesM(5×5)

com A, B variando de 0 até 4. Vamos tomarMυ
μ como sendo a matriz associada a rotação

a qual é dada pela eq.(2.8), M0
0 = −a/4, M0

4 = 2πb e o outros elementos são todos nulos,

isto é, ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0

x0

y0

z0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (−iAφJ12 + i

a

4
M + ibM 0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

x

y

z

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.16)
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onde

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
e M 0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 i

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

e tais que [M,M 0] = 0, M3 = −M e M 0 3 = −M .

Logo podemos expresar a holonomia total como sendo

U(C) = exp(
aπ

2
iM + 2πibM 0) exp(−2πiAφJ12) (2.17)

= exp(−2πiAφJ12 +
aπ

2
iM + 2πibM 0),

onde estamos considerando a representação em cinco dimensões dos geradores de rotações.

Portanto, se considerarmos o transporte paralelo de um vetor ao longo de um círculo

em torno de um cilindro, após este processo ele adquire um fator de fase dado pela

eq.(2.17), a qual depende do momento angular, que não contribui para a curvatura na

aproximação de campo fraco. Esta dependência da fase de uma quantidade (momento

angular) que não afeta a curvatura, chamamos de efeito Aharonov-Bohm gravitacional

generalizado.

O fato de que um atributo da fonte (momento angular) está codificado no fator de fase,

que é uma quantidade global, pois depende das curvas sobre as quais ele é calculado,

e não esta codificado no tensor de curvatura de Riemann, que é uma quantidade local,

evidencia a importância daeastrutura topológica do espaço-tempo na descrição da física

de um dado sistema.

2.3 Variáveis de contorno no espaço-tempo de um

monopolo global generalizado.

O modelo considerado por Barriola e Vilenkin [34] e que dá origem à solução do

monopolo global é descrito pela Lagrangiana

L = 1

2
∂μΦ

a∂μΦa − 1
4
λ(ΦaΦa − η2)2, (2.18)
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sendo Φa(a = 1, 2, 3) um tripleto de campos escalares. O modelo tem uma simetria global

O(3) que é espontaneamente quebrada em U(1). A configuração de campos que descreve

o monopolo é

Φa = ηf(r)xa/r, (2.19)

onde xaxa = r2.

Para determinar o campo gravitacional gerado por um monopolo global, vamos

considerar a métrica mais geral, esfericamente simétrica, e que pode ser escrita na forma

ds2 = −B(r)dt2 +A(r)dr2 + r2(dθ2 + sen2θdφ2). (2.20)

As equações de movimento para Φa no espaço-tempo correspondente ao elemento de linha

dado por eq.( 2.20) se reduzem a uma equação para f(r) e que é dada por [34]

1

A
f 00 +

∙
2

Ar
+
1

2B

µ
B

A

¶0¸
f 0 − 2f

r2
− λη2f(f2 − 1) = 0, (2.21)

onde a vírgula indica derivada em relação à coordenada radial.

As componentes do tensor energia-momento são

T t
t = −η

2f

2A

02

− η2f2

r2
− 1
4
λη4(f2 − 1)2 (2.22)

T r
r =

η2f

2A

02
− η2f2

r2
− 1
4
λη4(f2 − 1)2

T θ
θ = T φ

φ = −
η2f2

2A
− 1
4
λη4(f2 − 1)2

Para resolver as equações de Einstein para o tensor energia-momento dado por (2.22),

Barriola e Vilenkin admitiram que f = 1 fora do núcleo do monopolo. Neste caso

T t
t = T r

r = −η2/r2 e T θ
θ = T φ

φ = 0. Na realidade, f = 1 não resolve a equação (2.21), a

menos que o termo de O(1/r2) seja desprezado. Com esta aproximação, a solução obtida

é [34]

ds2 = −(1− 8πη2 − 2m
r
)dt+ (1− 8πη2 − 2m

r
)−1dr2 + r2(dθ2 + sen2θdφ2). (2.23)

Para obter uma solução correta até o termo de O(1/r2), vamos considerar f(r) =

1− 1/λη2r2. Mantendo-se os termos até O(1/r4) no tensor energia-momento, as equações
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de Einstein tomam a seguinte forma

1

r2
− 1

Br2
+

1

B2r

dB

dr
= 8π(

1

λr4
− η2

r2
), (2.24)

1

r2
− 1

Br2
+

1

ABr

dA

dr
= 8π(

1

λr4
− η2

r2
),

8π

λr4
=

1

2B2r

dB

dr
− 1

2AB

d2A

dr2
− 1

2ABr

dA

dr
+

1

4AB2

µ
dA

dr

¶µ
dB

dr

¶
+

1

4A2B

µ
dA

dr

¶2
A solução destas equações até O(1/r4) é dada por

A = B−1 = 1− 8πη2 − 2m/r − 8π/λr2). (2.25)

Portanto, o elemento de linha para o monopolo global generalizado é

ds2 = −(1− 8πη2 − 2m
r
− 8π

λr2
)dt+ (1− 8πη2 − 2m

r
− 8π

λr2
)−1dr2 + (2.26)

r2(dθ2 + sen2θdφ2),

onde o m é uma constante de integração que está asociada à massa, η é um parâmetro

relacionado com a escala de quebra de simetria e λ é a constante de acoplamento.

Considerando as 1-formas definidas por

ω0 =
√
Adt,

ω1 = 1/
√
Adr,

ω2 = rdθ,

ω3 = rsenθdφ,

(2.27)

e usando as equacões de estrutura de Cartan, dωa = −ωa
b∧ωb = e

(a)
μ||νdx

νdxμ, determinamos

as seguintes conexões tetrádicas

Γ0μ1dx
μ = (−m/r2 + 8π/λr3)dt = Γ1μ0,

Γ2μ1dx
μ =

√
Adθ = −Γ1μ2dxμ,

Γ3μ1dx
μ =

√
Asenθdφ = −Γ1μ3dxμ,,

Γ3μ2dx
μ = cos θdφ = −Γ2μ3dxμ.

(2.28)

Se considerarmos o círculo com centro na origem, com r, θ e t fixos, das expressões para

as conexões tetrádicas, obtemos que

Γμdx
μ = Γφdφ,
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onde

Γφ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 −A

0 0 0 −D

0 A D 0

⎞⎟⎟⎟⎟⎟⎟⎠ = −iAJ13 − iDJ23, (2.29)

sendo A = A1/2senθ = (1 − 8πη2 − 2m/r − 8π/λr2)1/2senθ, D = cos θ e J13 e J23 os

geradores de rotações em torno dos eixos y e x, respectivamente. Como Γφ é independente

de φ, a transformação de holonomia para círculos,com φ ∈ [0, 2π] é dada por

U(C) = P exp

⎛⎝ 2πZ
0

Γφdφ

⎞⎠ = exp [2πΓφ] . (2.30)

Para θ = π/2, e usando o fato de que a matriz Γφ satisfaz a seguinte propriedade

(Γφ)
3 = −A2Γφ = −AΓφ, o fator de fase para este caso é dado por

U(C) = I +
Γφ
A sen(2πA) +

µ
Γφ
A

¶2
[1− cos(2πA)]. (2.31)

Na forma matricial o fator de fase U(C) torna-se

U(C) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 cos 2πA1/2 0 −sen2πA1/2

0 0 1 0

0 sen2πA1/2 0 cos 2πA1/2

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.32)

Consideremos, agora, a curva r(s), θ(s) contida no plano meridiano. Neste caso, temos

Γsds =

µ
Γθ

dθ

ds
+ Γr

dr

ds

¶
. (2.33)

Da equação (2.19) concluimos que Γr = 0 e que

Γθ = i
√
A

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ = −i
√
AJ12, (2.34)

onde J12 é o gerador de rotações em torno do eixo-z.
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Como Γθ é independente de θ, então, o fator de fase para uma curva qualquer no plano

meridiano é dado por

Uθ1θ2(C) = exp
h
i
√
A(θ2 − θ1)J12

i
, (2.35)

que representa a rotação de um ângulo
√
A(θ2 − θ1) em torno do eixo z.

Para finalizar os cálculos de holonomias nesse espaço-tempo, vamos considerar a

translação no tempo. E neste caso, temos que

Γμdx
μ = Γtdt,

sendo

Γt = i
m

r2

⎛⎜⎜⎜⎜⎜⎜⎝
0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ = i
m

r2
J10 (2.36)

onde J10 é o gerador de boost na diração 0x. Portanto, o fator de fase para este caso é

Ut2t1(C) = exp(i
√
AJ10)(t2 − t1).

Usando resultados anteriores para fatores de fase podemos escrever a expressão geral

para o fator de fase U(C), o qual é escrito como

U(C) = P exp

µ
− i

2

Z
Γabμ (x)Jabdx

μ

¶
(2.37)

onde Jab são os geradores do grupo de Lorentz SO(3, 1) e Γabμ são as conexões tetrádicas

apropriadas. Deste resultado concluímos que o fator de fase correspondente a curvas no

espaço-tempo do monopolo global generalizado é o homomorfismo que mapeia uma dada

classe de curvas homotópicas nos elementos do grupo de Lorentz.

Das equações (2.32) e (1.92) obtemos o seguinte resultado para o loop de Wilson

W (C) = 2[1 + cos(2πA1/2)]. (2.38)

Finalizaremos esta seção mostrando que loop de Wilson satisfaz as relações de

Mandelstam. Como Γφ dada pela eq.(2.29) é função apenas de r para θ fixo, então
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W (C) é também função somente de r. Portanto temos que

∂W

∂r
=

∂

∂r
{2[1 + cos 2π(1− 8πη2 − 2m/r − 8π/λr2)1/2]} (2.39)

= −2πsen(2πA1/2)A−1/2(m/r2 + 8π/λr3),

∂W

∂θ
= 0.

Da expresão para o tensor de curvatura para o monopolo global generalizado, temos

Ra
13b = −A−1/2(m/r2 + 8π/λr3)

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Ra
23b = 2mr−1

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 −1

0 0 0 0

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

onde a e b são índices tetrádicos. Em particular, para ∆φ = 2π, podemos verificar que

∂W

∂r
=

2πZ
0

dφTr(R13U) = 2πTr(R13U), (2.40)

∂W

∂θ
= 0

As equações acima são casos particulares de

∂W

∂xν
=

I
dsTr{RμνU(C)}

dyμ

ds
, (2.41)

que correspondem à relação de Mandelstam. Portanto, o loop de Wilson para as curvas

consideradas no espaço-tempo do monopolo global generalizado satisfaz a relação de

Mandelstam. [9].

2.4 Transformações de holonomia no espaço-tempo

de uma corda quiral.

Em coordenadas cilíndricas a métrica para a corda cósmica quiral é dada por [38]
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ds2 = −
¡
dt+ 4J tdφ

¢2
+ dr2 + α2r2dφ2 + (dz + 4Jzdφ)2 (2.42)

onde r ≥ 0 e φ ∈ [0, 2π]. Esta é a solução mais geral, estacionária, e que depende de três

parâmetros. O parâmetro J t representa o momento angular da corda; 2Jz/π é o análogo

do vetor de Burgers da dislocação e α = 1− 4μ, onde μ é a densidade linear de massa da

corda. Geometricamente, a métrica dada por (2.42) pode ser obtida retirando-se um fator

angular do espaço-tempo de Mimkowski, fazendo-se um boost em uma das faces e depois

colocando-se as mesmas.Com J t = Jz = 0 a métrica resultante representa o espaço-tempo

da corda cósmica [40]. Para Jz = 0 , α 6= 1 e J t 6= 0, temos a métrica correspondente a

corda com rotação [41]

Agora, vamos escrever a eq.(2.42) como ds2 = ηabω
aωb, onde as 1-formas ωa(a =

0, 1, 2, 3) são dadas por

ω0 = dt+ 4J tdφ,

ω1 = cosφdr − αrsenφdφ,

ω2 = senφdr + αr cosφdφ,

ω3 = dz + 4Jzdφ.

(2.43)

Para esta escolha das tédradas, obtemos as seguinte conexões tetrádicas não-nulas

−Γ1μ2dxμ = Γ2μ1dx
μ = −(1− α)dφ. (2.44)

Notemos que a conexões tetrádicas não dependem dos parâmetros J t e Jz,mas tão somente

de α, que está associado a densidade linear de massa da corda quiral.

A métrica da corda quiral pode ser colocada na forma de Minkowski com a seguinte

mudança de coordenadas

T = t+ J tφ (2.45)

θ = αφ

Z = z + Jzφ.

Da mudança na coordenada temporal, vemos que há uma singularidade no tempo análoga

ao defeito produzido pela massa no caso estático. É importante notar que para t constante,

quando φ atinge o valor 2π, que deve ser identificado com φ = 0, a coordenada T
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sofre uma alteração de 8πJ t, de modo a presevar a univocidade. O mesmo acontece

com a coordenada Z que é alterada por 8πJz. Portanto, o espaço cônico em torno da

corda quiral possui uma singularidade com deficiência angular 8πμ, e além disto, possui

uma alteração nas direções t e z proporcionais, respectivamente, a 8πJ t e 8πJz. Então,

quando circulamos o cone quiral para t = constante e z = constante, voltamos ao mesmo

ponto, porém, com alterações em t e z, proporcionais ao momento angular e à torção,

respectivamente.

Primeiramente, vamos considerar um círculo C no equador (dr = dt = dz = 0). Então

a holonomia linear é dada por

U(C) = exp

⎛⎝ 2πZ
0

Γφdφ

⎞⎠ = e−8πiμJ12 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 cos 8πμ sen8πμ 0

0 −sen8πμ cos 8πμ 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.46)

onde J12 é o gerador de rotações em torno do eixo z. Este resultado não depende de J t

nem de Jz, e portanto, a holonomia linear não distingue a métrica da corda quiral para

diferentes valores de J te Jz.

A partir deste resultado vemos que quando um vetor é transportado paralelamente

em torno de um cone quiral situado na origem, este vetor adquire uma fase que vem da

holonomia linear a qual é dada por exp(−8iπμJ12). Mas, sabemos que existem saltos

nas coordenadas t e z, e portanto, a holonomia total deve conter estas informações.

Como o espaço-tempo fora da corda quiral é localmente plano, podemos descrever as

soluções analíticas em termos de partes do espaço-tempo com a métrica de Minkowski,

mas conectadas por condições adicionais que dão conta dos saltos nas coordenadas t

e z. No presente caso existe um sistema de coordenadas localmente plano, e então,

podemos assumir a estrutura helicoidal do tempo adotada no caso da gravitação em

(2 + 1)-dimensões[42]. Note que a generalização dessa estrutura para o caso geral de

(3+1)-dimensões não pode ser admitida simplesmente, pois, esta estrutura helicoidal é

dependente da existência de coordenadas localmente planas. No caso em consideração a

estrutura helicoidal pode ser admitida, pois existem coordenadas localmente planas.

Então, para se estabelecer as condições vamos considerar a situação em que circundamos
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a corda cósmica quiral ao longo de um círculo C partindo de um ponto (t,x) para um

ponto (t0,x0). Então, em virtude dos saltos nas coordenadas t e z, os vetores coluna (t,x)

e (t0,x0) estão relacionados pelas equações

t0 = t+ 8πJ t,

x0 = cos(8πμ)x+ sen(8πμ)y,

y0 = −sen(8πμ)x+ cos(8πμ)y,

z0 = z + 8πJz

(2.47)

ou, na forma matricial⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0

x0

y0

z0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 8πJ t

0 cos(8πμ) sen(8πμ) 0 0

0 −sen(8πμ) cos(8πμ) 0 0

0 0 0 1 8πJz

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

x

y

z

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.48)

Introduzindo as matrizes

M0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
e M3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 i

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

podemos escrever a eq.(2.48) como⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0

x0

y0

z0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= exp(−8iπJ tM0) exp(−8iπJzM3) exp(−8iπμJ12)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

x

y

z

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.49)

onde consideramos a representação de J12 em 5-dimensões. Da eq.(2.49) podemos extrair a

parte translacional da holonomia total a qual é dada por exp(−8iπJ tM0) exp(−8iπJzM3).

O fator de fase que atua em (t,x) no caso considerado tomando as circunstâncias

especiais de existência de coordenadas localmente planas, em que podemos identificar o
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espaço tangente com a própria variedade, nos permite tratar o ponto (t,x) como um vetor

e como consequência a matriz produto da eq.(2.49) como a matriz de transporte paralelo.

Essa identificação não é possível no caso da não existência de um sistema de coordenadas

localmente plano, e portanto, não pode ser generalizada para qualquer espaço-tempo.

A eq.(2.49) é a expressão exata para a holonomia para círculos no espaço-tempo da

corda cósmica quiral. Definindo XA = (xμ, 1), podemos usar as condições dadas pelas

equações eq.(2.47) como XA =MA
BX

B, as quais diz que os pontos (t,x) e (t0,x0) ao longo

do percurso são relacionados pela fase dada pela eq.(2.49), que depende dos parâmetros

α, J t e Jz que caracterizam a métrica.

O primeiro fator na eq.(2.49) corresponde a uma translação no tempo ao qual pode

ser dada a seguinte interpretação. Suponha que um interferômetro circula a corda

quiral. Então, o deslocamento de 8πEJ t no tempo corresponde a uma mudança de

fase de dois feixes de luz que circulam a corda cósmica quiral ao longo da mesma curva

e em direções opostas. Esta mudança de fase é conhecida como efeito Sagnac [43] e

representa um análogo gravitacional do efeito Aharonov-Bohm da eletrodinâmica. O

segundo fator corresponde a uma translação espacial e tem o seguinte significado físico

[44]. Considerando que o feixe de partículas é espalhado tenha uma componente z do

momento igual a k, então, este fator dá a mudança de fase 8πkJz,devido ao acoplamento

do momento linear da partícula com a torção.

Portanto, quando transportamos um vetor ao longo de círculo no espaço-tempo da corda

cósmica quiral, ele adquire uma fase que depende de α(ou μ), Jz e J t os quais impedem

que a matriz de transporte paralelo(fator de fase) seja igual à identidade. Este efeito está

associado exclusivamente ao fato de a topologia do espaço-tempo em questão ser não-

trivial. Este é um exemplo do efeito Aharonov-Bohm gravitacional. [37], [3]. Este efeito

foi obtido classicamente e está associado com a transformação de holonomia não-trivial

para círculos no plano-xy. Como neste caso a geometria é localmente plana, a mudança de

fase adquirida pelo vetor quando transportado paralelamente em torno de fonte pode ser

vista como devido ao acoplamento da energia-momento com as propriedades geométricas

e topológicas do espaço-tempo, gerado pela corda cósmica quiral.

Vamos considerar o caso particular em que J t = Jz = 0, e que corresponde a uma
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corda cósmica. Neste caso, a transformação de holonomia para curvas fechadas situadas no

plano perpendicular ao da corda é dasda por U(C) = exp(−8πiμJ12). De um modo geral,

podemos verificar que [41]U(C) = exp(− i
2

R
Γabμ (x)Jabdx

μ), onde Jab são os geradores do

grupo de Lorentz SO(1, 3).

No caso em que J t 6= 0 e Jz = 0, temos que o fator de fase é dado por

U(C) = exp(−8πiJ tM0) exp(−8πμJ12). (2.50)

Podemos reescrever a eq.(2.50) em termos dos geradores do grupo de Poincaré da seguinte

forma

U(C) = P exp

⎡⎣− i

2

Z
C

(e(a)μ Pa +
1

2
Γabμ Jab)dx

μ

⎤⎦ , (2.51)

onde introduzimos os geradores de translações Pμ = −i ∂
∂xμ

devido a translação temporal.

Portanto, no caso estacionário os fatores de fase correspondentes a curvas fechadas em

torno da corda cósmica com rotação [41] são elementos do grupo de Poincaré ISO(1, 3).

O fato do grupo de holonomia, neste caso, ser o ISO(1, 3) ao invés do SO(1, 3) parece

interessante e sugere um importante paralelo com a gravitação de Einstein em (2 + 1)-

dimensões. É importante observar que o fato de os fatores de fase serem elementos do

grupo de Poincaré está intimamente associado à existência de um sistema de coordenadas

localmente plano. Portanto, esta estrutura não pode ser simplesmente admitida como

válida no caso geral de um espaço-tempo em (3 + 1)-dimensões.

A gravitação em (2+1)-dimensões é equivalente a uma teoria de gauge de Chern-

Simons [45]com grupo ISO(1, 2), na qual a tríade eμ(a) corresponde ao grupo de gauge, e

portanto faz sentido pensar em um fator de fase envolvendo eμ(a). Há uma correspondente

teoria em (3+1)-dimensões? (Há estudos tentando construir uma teoria de gauge do

grupo ISO(1, 3) em (3+1)-dimensões, mas, tanto quanto sabemos, não há uma versão

convincente dessa teoria que trate as tétradas com campos de gauge ordinários). Porém,

a existência de um sistema de coordenadas localmente plano em alguns casos específicos

em (3+1)-dimensões, nos permite construir a teoria de Einstein nessa dimensão como

uma teoria de gauge do grupo de Poincaré, e portanto, nesses casos faz sentido construir

o fator de fase na forma dada pela eq.(2.51), sendo e(a)μ e Γabμ os potenciais de gauge.
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Portanto, no caso da corda cósmica com rotação existe um fator extra na fase

quando comparado ao caso sem rotação. Então, por exemplo, quando um feixe de luz

de comprimento de onda λ descreve uma circunferência de raio R em torno da corda

girante, a fase da luz é alterada pela quantidade 8πJ/λ, quando compara com o caso

sem momento angular. Este efeito é um análogo gravitacional do efeito Aharonov-Bohm

eletromagnético, mas, neste caso, ele é de natureza puramente clássica.

No caso em que J t 6= 0 mas Jz = 0, isto é, a corda cósmica girante, sugere

um tratamento geométrico para a o caso do potencial solenoidal infinito. O solenóide

infinito possui uma singularidade do tipo da corda cósmica com rotação, ou seja existe

uma 1-forma Aμ, com discontinuidade do tipo das coordenadas polares (0, 0,Φ/r). A

mudança do eletomagnetismo para a gravitação é feita usando a seguinte correspondência

na aproximação de campo fraco: e ↔ m, Aμ ↔ hμ(
1
2
h00, h0i). Daí, o espaço-tempo

correspondente ao potencial A = (0, 0,Φ/r) é dado por

ds2 = −dt2 + dr2 + r2dφ2 + dz2 − 2Φdφdt (2.52)

onde Φ ≡ fluxo magnético/2πe.

Da equação eq.(2.51), concluímos que a holonomia total para círculo neste espaço-tempo

é dada por

U(C) = exp[−8πi(ΦM0)].

Esta fase é diferente da unidade, em geral, e então, temos o efeito Aharonov-Bohm.

2.5 Fatores de fase no espaço-tempo de N cordas

quirais.

Vamos, nesta seção, determinar a holonomia no espaço-tempo gerado por por N

cordas cósmicas quirais localizadas nos pontos r = ri, com i = 1, 2, . . . , N , e situadas

paralelamente ao eixo z[39]. A métrica associada ao espaço-tempo gerado por uma corda

quiral dada pela eq.(2.42) pode ser escrita da seguinte forma

ds2 = −(dt+ 4J tdφ)2 + r−8μ(dr2 + r2dφ2) + (dz + 4Jzdφ)2 (2.53)
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Se considerarmos um sistema Cartesiano de coordenadas x = r cosφ, y = rsenφ, a equação

(2.53) fica dada por

ds2 = −(dt+ 4J txdy − ydx

r2
)2 + e−4V (dx2 + dy2) + (dz + 4Jzxdy − ydx

r2
)2, (2.54)

com V = 2μ ln r.

A generalização da métrica de uma corda quiral para a de N cordas quirais paralelas

ao eixo z, pode ser obtida com as seguintes trocas [39]

J txdy − ydx

r2
→

NX
i=0

J t
i

(x− xi)dy − (y − yi)dx

|r− ri|2
(2.55)

Jz xdy − ydx

r2
→

NX
i=0

Jz
i

(x− xi)dy − (y − yi)dx

|r− ri|2

2μ ln r →
NX
i=0

μi ln
£
r2 − 2rri cos(φ− φi) + r2i

¤
.

Portanto, o espaço-tempo gerado por N cordas quirais possui elemento de linha dado por

ds2 = −
∙
dt+

NP
i=1

Ai(W
1
i dy −W 2

i dx)

¸2
+ e−4V (dx2 + dy2)+∙

dz +
NP
i=1

Bi(W
1
i dy −W 2

i dx)

¸2
,

(2.56)

onde Ai = 4J
t
i e Bi = 4J

z
i , com J t

i e J
z
i correspondendo ao momento angular e torção da

i-ésima corda quiral, respectivamente, e W 1
i e W

2
i dados por

W 1
i =

x− xi

|r− ri|2
, W 2

i =
y − yi

|r− ri|2
(2.57)

Considerando o caso em que J t
i = Jz

i = 0, teremos o espaço-tempo de N cordas

cósmicas (múltiplas cordas). Quando um vetor é transportado paralelamente ao longo de

uma curva fechada qualquer no plano-xy, no espaço-tempo da múltipla corda cósmica,

este adquire uma fase dada por [46]

U(C) = exp

⎛⎝ 2πZ
0

Γφdφ

⎞⎠ = e−8πiμ̃J12 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 cos 8πμ̃ sen8πμ̃ 0

0 −sen8πμ̃ cos 8πμ̃ 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.58)

onde μ̃ =
NP
i=1

mi.
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Portanto, os vetores coluna (t,x) e (t0,x0) são relacionados por

⎛⎜⎜⎜⎜⎜⎜⎝
t0

x0

y0

z0

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 cos 8πμ̃ sen8πμ̃ 0

0 −sen8πμ̃ cos 8πμ̃ 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
t

x

y

z

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.59)

Como no caso da múltipla corda, o espaço-tempo da multi corda quiral é também

localmente plano, fora das localizações das fontes. Portanto, podemos usar as mesma

condições dadas pela eq.(2.59), exceto as concernentes às coordenadas t e z. Essas

condições são expressas relacionando-se os pontos (t,x) e (t0,x0) como segue:

t0 = t+ 8πJ̃ t,

x0 = cos(8πμ̃)x+ sen(8πμ̃)y,

y0 = −sen(8πμ̃)x+ cos(8πμ̃)y,

z0 = z + 8πJ̃z,

(2.60)

onde J̃ t =
NP
i=1

J t
i e J̃

z =
NP
i=1

Jz
i e consideramos como curvas as circunferências no plano-xy.

A transformação dada pela equação eq.(2.60) pode ser posta na forma de produtos de

matrizes da seguinte forma: seja MB
A uma matriz 5-dimensional, com A,B = 0, . . . , 4.

Tomemos Mμ
ν como sendo a matriz associada a rotação U(C) = exp(−8πμ̃J12), e

M0
4 = 8πJ̃

t, M3
4 = 8πJ̃

z, M0
4 =M1

4 =M4
4 = 1, temos então que;⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0

x0

y0

z0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 8πJ̃ t

0 cos 8πμ̃ sen8πμ̃ 0 0

0 −sen8πμ̃ cos 8πμ̃ 0 0

0 0 0 1 8πJ̃z

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

x

y

z

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.61)

que pode ser posta na forma,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0

x0

y0

z0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= exp

h
8πiJ̃ tM0

i
exp

h
8πiJ̃zM3

i
exp [−8πiμ̃J12]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

x

y

z

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.62)
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onde M0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
e M3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A equação eq.(2.62) é a expressão exata para a holonomia, para círculos no espaço-tempo

da multicorda quiral.

Podemos calcular as holonomias para circunferências no espaço-tempo de N cordas

quirais no contexto da teoria de Einstein-Cartan [39]. Neste caso temos que as conexões

espinoriais são dadas por

Γ1μ2dx
μ = 2(

∂V

∂x
dy − ∂V

∂y
dx) = −Γ2μ1dxμ, (2.63)

que em coordenadas cilindricas (x0 = t, x1 = r, x2 = φ, x3 = z) pode ser escrita na forma

Γ1μ2dx
μ = −2

r

∂V

∂φ
dr − (1− 2r∂V

∂r
)dφ = −Γ2μ1dxμ. (2.64)

Agora, considere a mesma circunferência do cálculo anterior. Neste caso U(2π,0)(C) é dado

por

U(2π,0)(C) = exp(

2πZ
0

Γφdφ) = exp

"
−8πi(

NX
j=1

μj)J12

#
, (2.65)

onde

Γφ = i{1− 4
NX
j=1

μj
R[R− ri cos(φ− φi)]

[R2 − 2Rri cos(φ− φi) + r2i ]
}J12,

sendo R o raio da circunferência.

Deste resultado, vemos que, no contexto da teoria Einstein-Cartan, a transformação de

holonomia não contém informações sobre o momento angular e a torção. Portanto, o

conceito de holonomia pode ser usado para distinguir as conexões nos contextos das teorias

de Einstein e de Einstein-Cartan.

Analisando a eq.(2.65), concluimos que o fator de fase adquirido por um vetor ao ser

transportado no espaço-tempo de N cordas quirais é afetado somente pelas cordas que

estão circuladas pela curva ao longo da qual o vetor é transportado.

A existência de coordenadas localmente planas no espaço-tempo nos permite

considerar a matriz MA
B como a matriz do transporte paralelo. Então podemos dizer que
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quando transportamos um vetor ao longo de um círculo neste espaço-tempo ele adquire

uma fase que depende de μi, J
t
i , J

z
i apesar do espaço-tempo ser localmente plano. Este

efeito é próprio da não-trivialidade da topologia do espaço-tempo em questão, e o análogo

gravitacional do efeito Aharonov-Bohm eletromagnético.

2.6 Caracterização global do espaço-tempo N cordas

quirais.

Como uma aplicação da transformação de holonomia vamos estudar [46] do ponto de

vista global, o espaço-tempo de uma configuração de N cordas cósmicas quirais localizadas

nos pontos aj, j = 1, 2, . . . , N . Para tanto vamos usar o resultado que somente a

corda envolvida pela curva contribui para o fator de fase adquirido por um vetor quando

transportado paralelamente no espaço-tempo de múltiplas cordas quirais [38].

Se transportamos um vetor x paralelamente, ao longo de um círculo que circunda uma

corda quiral obtemos o seguinte vetor após esse processo

x(1) = U1x, (2.66)

onde U1 é obtido de

Uk = exp(−8iπJ t
kM0) exp(−8iπJz

kM3) exp(−8iπμkJ12) (2.67)

para k = 1.

Agora, vamos considerar um sistema de duas cordas quirais, uma em a1 = 0 (origem) e a

outra em a2. Se transportarmos paralelamente o vetor x ao longo do círculo em torno da

corda cósmica 2, o vetor resultante é dado por U2x. Transportando paralelamente este

vetor resultante ao longo do círculo que circunda a corda cósmica 1, teremos um novo

vetor resultante qur é dado por

x(2) = b1,2 + U1U2x, (2.68)

onde b1,2 = U1(1− U2)a2 e U2 é dado pela eq.(2.67) para k = 2.
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Vamos considerar um sistema com três cordas. Neste caso temos

x(3) = b1,2,3 + U1U2U3x, (2.69)

onde b1,2,3 = U1(1− U2)a2 + U1U2(1− U3)a3.

É facil generalizar este resultado para um sistema de N cordas cósmicas, localizadas em

a1,a2, . . .aN . O vetor x(N), obtido após o transporte paralelo do vetor x é dado pela

expresão

x(N) = b1,2,...N + U1U2 . . . UNx, (2.70)

onde b1,2,...,N−1 = U1(1−U2)a2+U1U2(1−U3)a3+. . .+U1U2 . . . UN−2(1−UN)aN−1UN−1(1−

UN)aN e UN é dado pela eq.(2.67) para k = N . Então, um vetor x transportado

paralelemente em um campo de N cordas quirais adquire uma fase dada por U1U2 · · ·UN e

do ponto de vista global, o sistema comporta-se como uma simples corda com as condições

dadas pela eq.(2.70) sendo satisfeitas.

Agora considere um sistema de duas cordas quirais uma movendo-se com relação a

outra. Considere a corda cósmica 1, localizada na origem, e a corda cósmica 2, localizada

em a2 movendo-se com relação à primeira com velocidade v2. Esta corda pode ser vista

como a corda que sofre um boost. Então, se transportarmos paralelamente o vetor x ao

longo do círculo em torno da corda cósmica 2, obtemos

x(2) = a2 + L2U2L
−1
2 (x− a2), (2.71)

com

L2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosh γ2 senhγ2 0 0 0

senhγ2 cosh γ2 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.72)

onde γ2 é o parâmetro de boost tal que kv2k = taghγ2. Este boost corresponde a mudança

de coordenadas Lx e sob esta mudança o fator de fase U transforma-se como LUL−1. Se

transportamos paralelamente o vetor x(2) ao longo do círculo, em torno da corda cósmica

1, o vetor resultante é

x(1) = U1[a2 + L2U2L
−1
2 (x− a2)]. (2.73)
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Então, vemos que se o vetor é paralelamente transportado em torno das cordas 1 e

2, ele adquire uma fase dada por U1L2U2L−12 . Este resultado pode ser generalizado no

sentido de considerar N-1 cordas cósmica localizada em a1, a2, . . . aN−1 e a N-ésima com

um boost. Neste caso temos

x(N) = b1,2,...N + U1U2 . . . UN−1LNUNL
−1
N x. (2.74)

Portanto, quando um vetor é transportado paralelamente em torno dessas N cordas

quirais, ele adquire a fase

U1U2 . . . UN−1LNUNL
−1
N , (2.75)

onde LN é dada pela eq.(2.72) com γ2 → γN .

Vamos considerar uma única corda quiral que se comporta como este sistema. Esta

corda pode ser considerada como estando submetida a um boost dado por

L(φ, γ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L00 L01 L02 L03 L04

L10 L11 L12 L13 L14

L20 L21 L22 L23 L24

L30 L31 L32 L33 L34

L40 L41 L42 L43 L44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.76)

onde

L00 = cosh γ, L01 = cosφ sinh γ, L02 = sinφ sinh γ, L03 = 0, L04 = 0

L10 = cosφ sinh γ, L11 = 1− cos2 φ(1− cosh γ), L12 = − cosφ sinφ(1− cosh γ)

L13 = 0, L14 = 0, L20 = senφ cosh γ, L21 = − cosφ sinφ(1− cosh γ),

L22 = 1− sen2φ(1− cosh γ), L23 = 0, L24 = 0

L30 = 0, L31 = 0, L32 = 0, L33 = 1, L34 = 0

L40 = 0, L41 = 0, L42 = 0, L43 = 0, L44 = 1.

A forma L(φ, γ) decore do fato que toda transformação de Lorentz homogenea pode

ser decomposta da seguinte forma:

L(φ, γ) = R(φ)L(0, γ)S(φ),
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onde R(φ) e S(φ) são rotações puras. Assim, se fizermos o transporte paralelo de um

vetor x ao longo de curvas fechadas em cujo centro geométrico se encontra uma corda

cósmica quiral com densidade de massa μ, momento angular J t e parâmetro de deslocação

Jz, obtemos o seguinte vetor após este processo

xN+1 = L
£
a+ UL−1(x− a)

¤
, (2.77)

onde a é a posição da corda quiral que é equivalente ao sistema de cordas.

Igualando as fases adquiridas pelo vetor x em ambos os casos, temos

U1U2 . . . UN−1LNUNL
−1
N = LUL−1. (2.78)

Esta é a equação fundamental e corresponde exatamente às identidade de Bianchi

usadas em [47]. No caso particular de duas partículas que colidem (N = 2), no contexto

da gravitação em (2+1)-dimensões. Tomando o traço da eq.(2.78) obtemos o seguinte

resultado [46]

cosφ = cosφN cos(
N−1X
j=1

φj)− cosh γN sinφN sin(
N−1X
j=1

φj) + (2.79)

sinh2 γN
2

(cosφN − 1)
"
cos(

N−1X
j=1

φj)− 1
#

onde φj = 8πμj e φ = 8πμ.

Esta é a relação entre a deficiência angular do espaço-tempo da corda quiral que equivale,

do ponto vista global, ao sistema de N cordas e a deficiência angular destas N cordas

quirais envolvidas. Se consideramos as outras componentes da eq.(2.78), obtemos as

equações [46]

cos(
N−1X
j=1

φj) sinh γNJ
t
N = J t cosφ sinh γ, (2.80)

sin(
N−1X
j=1

φj) sinh γNJ
t
N = J t cosφ sinh γ,

NX
j=1

J t
j = Jz,

J t
N cosh γN +

N−1X
j=1

J t
j = cosh γNJ

t,
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que relacionam os parâmetros associados à corda cósmica quiral, que é equivalente ao

sistema de N cordas quirais, com os parâmetros que caracterizam essas cordas.

Agora considere o caso particular da corda cósmica estática (J t = Jz = 0). Neste caso

as componentes da velocidade da corda cósmica equivalente são

vx = cot

µ
N−1P
i=1

φi

¶
vy e vy = sinh γN/ cot

µ
N−1P
i=1

φi

¶
coshγN + tgφN

.

Se considerarmos N = 2, temos a seguinte relação entre as massas e a velocidade da

segunda corda

cos 4πμ3 = (cos 4πμ1)(cos 4πμ2)− sin(4πμ1)(sin 4πμ2) cosh γ2. (2.81)

Neste caso particular /(N = 2) também podemos obter de eq.(2.78) o seguinte resultado

para as componentes da velocidade da corda cósmica quiral que equivale ao sistema de

duas cordas, e que são dadas por

vx = (cot 4πm1)vy,

vy = sinh γ2/[cot(4πm1) cosh γ2 + tan(4πm2)].

As equaçõe (2.79) e (2.80) são as relações entre a deficiências angulares, momentos

angulares e os parâmetros de deslocação associados ao sistema de N cordas quirais e as

quantidades associadas com uma simples corda quiral que é equivalente, do ponto de

vista global, a este sistema. Dessas equações podemos estabelecer todos os diferentes

casos de corda estática e corda cósmica com rotação bem como os casos correspondentes

em gravitação em três dimensões.

Os resultados para o cone estático podem ser particularizados para a gravitação em

(2+1)-dimensões, bastando para isto trocar μ(densidade de massa da corda) porm(massa

da partícula) e tomar a seção z = constante. Neste caso obtemos uma descrição para a

gravitação em (2+1)-dimensões usando o fator de fase que é equivalente à descrição dada

usando o cálculo de Regge.[47]

Verificamos, neste capítulo, que a transformação de holonomia para curvas no plano

perpendicular ao cilindro de matéria com rotação depende do momento angular da fonte,
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apesar de que esta grandeza não afeta o tensor de curvatura, na aproximação de campo

fraco em que o cilindro gira lentamente de modo que os termos proporcionais ao quadrado

do momento angular são desprezíveis. Esta dependência do fator de fase com uma

grandeza que não afeta a curvatura da região acessivel a partícula denominamos de efeito

Aharonov-Bohm gravitacional generalizado.

Encontramos uma solução para as equações de Einstein que coresponde a uma

generalização do monopolo global, de Barriola e Vilenkin [34], e então, usando as variáveis

de contorno calculamos o fator de fase para várias curvas no espaço-tempo do monopolo,

e mostramos que o loop de Wilson gravitacional satisfaz à relação de Mandelstam. Ainda

neste capítulo calculamos para curvas no espaços-tempos de uma corda quiral e no da

para multicorda quiral, para diversas curvas. Finalizamos o capítulo apresentando uma

caracterização para o espaço-tempo de multicordas quirais paralelas, sendo que uma delas

posui uma velocidade em relação as demais. Mostramos, então, que do ponto de vista

global o espaço-tempo de multicordas quirais equivale ao de uma única corda quiral

com relações apropriadas entre os parâmetros (massa, momento angular e rotação) que

caracterizam o sistema de cordas e o que lhe equivale.
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Capítulo 3

Fases de Berry em Gravitação

3.1 Introdução.

Recentemente, a fase quântica geométrica (fase de Berry) tem sido um tópico de grande

interesse. Berry mostrou [12] a existência de um fator de fase durante uma evolução

adiabática dos estados de um dado sistema quântico. Essencialmente, essa fase está

associada ao fato de que a função de onda do sistema guarda a informação sobre como ele

evoluiu. O termo geométrico significa que o fator de fase depende somente da curva no

espaço dos estados quânticos, ou seja, ele é uma transformação de holonomia no espaço de

parâmetros, e é independente, portanto, da parametrização da curva no espaço projetivo

de Hilbert.

A fase de Berry foi generalizada de modo a incluir campos de gauge não-Abelianos

[14], e nesse contexto, para sistemas evoluindo ciclicamente e sem estarem submetidos à

restrição da adiabaticidade [15].

Na física, temos vários exemplos de sistemas em que o comportamento é especificado a

menos de uma fase. A fase total adquirida pela função de onda de um sistema quântico em

evolução cíclica ou não-cíclica contém duas partes, a fase dinâmica e a fase geométrica. A

primeira esta associada à Hamiltoniana do sistema, e a segunda depende, simplesmente,

da curva no espaço gerado pelos estados do sistema.

Estudos mostram a importância da fase geométrica em várias áreas da física, tal como

o efeito Hall quântico[48], efeito Jan-Teller,[49] e muitos outros tópicos de interesse da
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física molecular[50] da óptica quântica[51] e da gravitação e cosmologia[19][16][18].

No contexto da gravitação e cosmologia foram feitos ultimamente alguns trabalhos [52]

concernentes a investigação da fase de Berry. Em particular, Cai e Papini [17] obtiveram

a generalização covariante da fase de Berry e amplicaram esses resultados para problemas

envolvendo campos gravitacionais fracos. Recentemente Corichi e Pierri [16] estudaram

o comportamento de uma partícula escalar quântica em uma classe de espaços-tempos

estacionários e investigaram a fase adquirida por esta partícula quando transportada ao

longo de um caminho fechado nas proximidades de uma corda cósmica girante, resultado

também apresentado em [53], com outra abordagem.

Neste capítulo, apresentaremos a fase de Berry para uma partícula escalar no espaço-

tempo de uma corda cósmica quiral que é uma generalização do trabalho de Corichi e

Pierri e apresentaremos também a fase de Berry para o espaço-tempo da multicordas

quirais, cilindro com rotação e em um universo isótropico e concluíremos apresentando a

fase geométrica em modelos cosmologicos espacialmente homogêneos.

3.2 Fase de Berry.

Em mecânica quântica definimos a função de onda a menos de uma fase, que

usualmente é desprezada. No entanto, Berry [12] observou que adicionalmente a essa fase,

que é desprezada existe uma outra que aparece quando o sistema evolui adiabáticamente,

e que guarda informações sobre a evolução do sistema. Nesta seção vamos descrever a

obtenção da fase de Berry para sistemas quânticos que evoluem adiabaticamente.

Para deduzir a fase de Berry, vamos considerar um sistema quântico com Hamiltoniana

H(R), a qual depende dos parâmetros Ri, que coletivamente vamos escrever como

R = (R1, R2, . . . Rn). Suponha que R varia adiabaticamente com o tempo, R = R(t).

A equação de Schrödinger torna-se, então

H(R(t)) | ψ(t) > = i
d

dt
| ψ(t) > . (3.1)

Admitindo que, o sistema em t = 0, está no n-éssimo auto-estado, isto é, | ψ(0) > =

| n,R(0) >, onde

H(R(0)) | n, ψ(0) > = En(R(0)) | n,R(0) > (3.2)

69



e que < n,R(t) | n,R(t) > = 1 e que os auto-valores En(R) de H(R) sejam não-

degenerados, podemos perguntar qual será dos estados | ψ(t) >, no tempo t.

Se escolhermos

| ψ(t) > = exp

µ
−i
Z t

o

dsEn(R(s)

¶
| n,R(t) >, (3.3)

verificamos que o estado normalizado | n,R(t) > satisfaz a equação

H(R(t)) | n, ψ(t) > = En(R(t)) | n,R(t) >, (3.4)

mas não satisfaz a equação eq.(3.1). Vamos, então introduzir uma fase extra γn(t) na

função de onda dada pela eq.(3.3), de modo que a função de onda modificada é

| ψ(t) > = exp[iγn(t)− i

Z t

o

dsEn(R(s)] | n,R(t) > . (3.5)

colocando a 3.5 na eq.(3.1) obtém-se

dγn(t)

dt
= i < n,R(t) | d

dt
| n,R(t) > (3.6)

de onde concluímos que

γn(t) = i

Z t

0

< n,R(s) | d

ds
| n,R(s) > ds (3.7)

= i

Z R(t)

R(0)

< n, |∇R | n,R > dR

onde ∇R é o gradiente no R-espaço, comhecido como espaço de parâmetros. Notemos

que γn(t) é real. Supondo que o sistema executa um loop no R-espaço, R(0) = R(T )

para T > 0, temos

γn(t) = i

Z T

0

< n,R(s) | d

ds
| n,R(s) > ds (3.8)

= i

Z R(T )

R(0)

< n,R |∇R | n,R > dR

Para R(0) = R(T ), a expressão eq.(3.8) parece anular-se, no entanto, o integrando

não é necessariamente uma derivada total e portanto γn(t) pode não ser nulo. A fase

γn(t) é a conhecida fase de Berry. O significado geométrico da fase de berry foi dado em

[13] como representando o transporte paralelo (transformação de holonomia no espaço dos
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parâmetros) dos estados do sistema ao longo de uma curva no espaço projetivo de Hilbert,

com respeito a uma conexão obtida do produto interno no espaço de Hilbert.Se tomarmos

o traço do fator de fase eiγn obteremos o loop de Wilson no espaço de parâmetros.

Considerando, M a variedade que descreve o espaço de parâmetros R = (Ri) e que

para cada ponto R ∈ M, o n-éssimo auto-estado normalizado da Hamiltoniana H(R),

estado quântico | n,R > não pode ser distinguido de eiφ | n,R >, então um estado físico

pode ser expresso por uma classe de equivalência

[| R >] := {g | R > ; g ∈ U(1)}. (3.9)

Assim, temos o fibrado principal P (M,U(1)) sobre M , cuja projeção é dada por π(g |

R >) = | R >. Usando a teoria das conexões em fibrados, apresentada no capítulo 1

desta tese, e fixando a fase de | R >, para cada ponto R ∈M , seja σ(R) =| R > a seção

local sobre a carta U de M. A triviliação local é dada por φ−1(| R >) = (R, e) e a ação à

direita

φ−1(| R > g) = (R, e)g = (R, g). (3.10)

Agora a estrutura de fibrado está definida, e podemos apresentar a conexão de Berry

denotada por

AμdR
μ := < R | (dR) > = −(d < R | R > (3.11)

onde d = ∂
∂RμdR

μ é a derivada exterior no R-espaço. A curvatura ou campo de gauge de

Berry é

F = dA = (∂ < R |
∂Rμ

)(
∂ | R >

∂Rν
)dRμ ∧ dRν (3.12)

Assim, a fase de Berry está associada a holonomia da conexão eq.(3.11) em P (M,U(1)),

pois se tomarmos a seção σ(R) =| R > sobre a carta U deM , seja R : [0, 1]→M a curva

em U, o levantamento horizontal de R(t) com a conexão eq.(3.11) é bR(t) = σ(R(t))g(R(t))

onde g(R(0)) é o elemento identidade de U(1). O elemento do grupo satisfaz

dg(t)

dt
= g(t)−1 = − < R(t) | d

dt
| R(t) > . (3.13)

como g(t) = exp(iγ(t)) temos idγn(t)
dt

= − < R(t) | d
dt
| R(t) > daí,

η(1) = i

Z 1

0

< R(s) | d

ds
| R(s) > ds = i

I
c

< R | d | R > (3.14)
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ComoR(0) = R(1), logo | R(0) >=| R(1) >. Então exp(iγ(t)) é tratada como holonomia,

que é um objeto geométrico e

bR(1) = exp(−I
c

< R | d | R >)· | R(0) > .

Como U(1) é um grupo abeliano, então a fase de Berry é abeliana.

Anandan e Stodolsky [54] deram um tratamento de grupo para a fase fase de Berry

e apresentaram uma interpretação associada com o ângulo sólido de uma determinada

variedade, comprovando assim o caráter geométrico da fase de Berry.

Em física molecular, o movimento de elétrons é estudado na aproximação adiabática,

tratando a posição do núcleo como um parâmetro externo dependente do tempo. Como

as energias envolvidas no movimento nuclear são muito menores do que a dos elétrons,

estudamos as equações para o núcleo em um dado autoestado.

Um recente interesse no teorema adiabático teve inicio com uma obsevação feita por

Berry [12] de que o teorema adiabático clássico deixa de lado uma importante contribuição

que pode ser interpretada como uma fase geométrica no espaço dos parâmetros.

A derivação da fase de Bery no formalismo Hamiltoniano parte da seguinte equação

de Schrödinger

H(R,P; r,p)ψ = (Tnuc.(P) + h(R; r,p))ψ(R,P; r,p) = Eψ(R,P; r,p), (3.15)

onde R,P e r,p denotam as variáveis nucleares e eletrónicas, respectivamente, e Tnuc.

é a energia cinética do núcleo. A função de onda é expandida em termos da base de

autofunções da Hamiltoniana h como

ψ(R, r) =
X
n

Φn(R)ϕn(R; r) (3.16)

isto é, a função de onda eletrônica ϕn(R; r) a equação

h(R, r)ϕn(R; r) = εn(R)ϕn(R; r). (3.17)

Integrando a eq.(3.15) sobre os modos eletrônicos, temos

(
X
n

< ϕn |
1

2M
∇2R | ϕn > +εn(R)δmn)Φ(R) = EΦ(R) (3.18)
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Se o operador de energia cinética não atuar sobre a coordenada R das funções de

onda eletrônica ϕn(R; r) a decomposição dada pela eq.(3.16) separará completamente

a eq.(3.15). Para analizar essa dependencia vamos reescrever o termo da eq.(3.18) como

< ϕm |
1

2M
∇2R | ϕn > Φ =

X
k

(δmk∇R − iAmk(R))(δkn∇R − iAkn(R))Φ, (3.19)

onde introduzimos a notação

Amn(R) =<ϕm | i∇R | ϕn > . (3.20)

Considere primeiramente o caso de um estado eletrônico ϕn não-degenerado. Então, para

m 6= n podemos diferenciar a identidade h | ϕn > = εn | ϕn > para obter

Amn(R) =<ϕm |
i∇h
'mn

| ϕn > (3.21)

onde 'mn = εn − εm é a frequência de Bohr para a diferença de energia considerada. A

aproximação de Bohr-Oppenheimer é aplicável no caso em que o denominador assume

grandes valores, o que suprime a contribuição dos elementos fora da diagonal. Sob esta

condição, temos que

Amn(R)δ = δmnAn(R) (3.22)

An(R) = < ϕn | i∇R | ϕn >,

sendo An(R) a conexào de Berry. Esta contribuição para o Hamiltoniano efetivo

do sistema foi desconsiderada, por acreditar-se erroneamente que poderíamos eliminar

An(R) por uma possível redefinição da base para a eq.(3.16) da seguinte forma

ϕn(R; r)→ e−iλn(R)ϕn(R, r). (3.23)

Ao invés disto, Am(R) se transforma como um potencial de gauge

Am(R)→ An(R) +∇Rλn(R). (3.24)

Neste caso o Hamiltoniano nuclear efetivo é dado por

Heff(P,R) = −
1

2M
(P−An(R))

2 + εn(R). (3.25)
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Note que, em particular, quando as funções de onda eletrônica ϕn(R, r) são reais e

unívocas em R, a conexão de Berry se anula.

Quando os N níveis de energia são degenerados, as condições acima são generalizadas

facilmente, como uma matriz Amn, do tipo N ×N,substituindo An. A arbitrariedade da

eq.(3.16) com respeito a escolha de uma base no espaço degenerado envolve, agora, uma

matriz U(N) ao invés da exponencial na eq.(3.23) e Amn(m,n− 1, 2, ...N) se transforma

como uma conexão não-abeliana de U(N).

3.3 Fase de Berry não-Abeliana.

O trabalho de Berry [12] sobre fase adiabática geométrica, inspirou generalização da

mesma no sentido de considerar o caso dos campos de gauge não-Abeliano [14], levando

em conta a posibilidade da evolução adiabática de um sistema quântico com estados

degenerados e que não considera a adiabáticidade do sistema mas sim a evolução cíclica

do mesmo. Vamos apresentar a seguir o modelo resumidamente.

Por definição um estado (um elemento do espaço de Hilbert projetivo P ), de um

sistema quântico cuja dinâmica é governada pela equação de Schrödinger,

i∂ψ(t)

∂t
= H(t)ψ(t), (3.26)

é dito cíclico com período T se ele é um auto-vetor do operador evolução temporal

U(T ) = P exp(−i
Z T

0

H(t)dt) (3.27)

onde P é o operador ordenação temporal. O auto-vetor correspondente ao estado inicial

ψ(0) satisfaz a equação

| ψ(T ) > = U(T ) | ψ(0) > = eiα(T ) | ψ(0) > (3.28)

com α(T ) ∈ C (ou R)

Se a Hamiltoniana H for um operador auto-adjunto, então α ∈ R e consequentemente

| ψ(T ) > e | ψ(0) > diferem por um fator de fase. Em geral α(T ) pode ser expresso como

a soma de uma parte dinâmica e outra geométrica.
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Consideremos o subespaço

H0 = {| ψ(T ) > ∈ H;< ψ | ψ > = 1}, (3.29)

do espaço de Hilbert H.

Seja π : H0 → P a aplicação projeção definida por

π(| ψ(T ) >) := {| ψ0 > ; | ψ0 > = eiα(T ) | ψ(T ) > ,α(T ) ∈ R} (3.30)

que é uma classe de equivalência em H0, ou seja uma fibra em P = H0/π(| ψ >), espaço

projetivo que representa o espaço de todos os estados físicos distintos. Lembremos que

H0 tem uma estrutura de fibrado principal sobre P.

Considerando | ψ(T ) > em H0 satisfazendo as equações eq.(3.1) e eq.(3.28), com

α(T ) ∈ R , | ψ(t) > define uma curva C : [0, T ] → H0 com bC = π(C) (levantamento

horizontal de C em P) sendo uma curva fechada em P. Por outro lado qualquer curva C

pode definir a função Hamiltoniana H(T ) satisfazendo a equação eq.(3.1). Vamos admitir

a dependência temporal da Hamiltoniana, isto é, Ĥ(t) = Ĥ [R(t)] por intermedio do

conjunto de parâmetros R(t) = (R1(t), R2(t), . . . Rn(t)). que correspondem a coordenadas

no espaço de parâmetros. Seja En(t) = En [R(t)], isto é,

bH[R(t)]ψn[R(t)] = En[R(t)]ψn[R(t)], (3.31)

com o grau de degenerescência de En independente de R.

Considerando o teorema adiabático podemos escrever

ψ(t) = U(t)ψn(0) ' eiαn(t)ψn(t), (3.32)

onde ψn(t) = ψn[R(t)]. Se En(t) = En [R(t)] possui grau de degenerescência N , então

ψn(t) pertence ao subespaço degenerado de dimensão N (auto-espaço associado) Hn de

H0, αn é uma matriz N ×N dependente do tempo.

Admitindo a validade do teorema adiabático e substituindo (3.32) na eq.(3.26) obtemos

[14]

eiαn(t) = exp[−i
Z t

0

En(t
0)dt0]P exp[i

Z C(t)

C(o)

Aμ] (3.33)
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com P indicando um operador de ordenamento ao longo da curva e

AIJ
μ [R] = i < ψI

n[R], dψ
J
n[R] >, (3.34)

com os índices I e J rotulando as degenerescências e {ψI
n[R]} sendo uma base ortonormal

para Hn e < . > o seu produto interno. Notemos ainda que AIJ
μ ∈ U(N), o fibrado

espectral associado a ao N-ésimo auto-espaço.

Se a Hamiltoniana for periódica, isto é, para uma curva fechada C, então, de acordo

com a eq.(3.32) ψn[R(0)] = ψn[R(T )] é um auto-vetor de estado cíclico. Neste caso,

o primeiro fator em (3.33) é a fase dinâmica, eo segundo fator é a fase geométrica, e

corresponde ao fator de fase não-abeliano. Na obtenção da fase geométrica não-Abeliana

[15]. Porém, se a adiabaticidade for usada para implementar o movimento, então, afasse

geométrica é a mesma de Berry. Notemos também que a fase de Berry é reobitida quando

H0 é adiabática.

3.4 Fase de Berry para um sistema relativístico.

Recentemente Corichi e Pierri [16] consideraram o comportamento de uma partícula

escalar satisfazendo a equação de Klein-Gordon em uma classe de espaços-tempos

estacionários, em particular no caso da corda cósmica com momento angular. Eles

investigaram a existência da fase gravitacional do tipo Aharanov-Bohm induzida neste

espaço-tempo. Para isto consideraram a equação de Klein-Gordon com acoplamento

mínimo dada por

(¤−m2)Ψ = 0, (3.35)

onde ¤ = 1√−g∂μ (∂
√−ggμν∂ν) e m é a massa da partícula.

O elemento de linha para os espaços-tempos estacionários foi considerado como tendo

a forma

ds2 = −V 2(dt−Aidx
i)2 + hijdx

idxj, (3.36)

onde V,Ai e hij são funções em uma superfície de Cauchy Σ, cujas coordenadas são

xi(i = 1, 2, 3), e portanto essas funções não dependem do tempo, e Ai(x
i) é tal que

∂[iAj] = 0.
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Para o elemento de linha dado pela eq.(3.36), a equação de Klein-Gordon toma a

seguinte forma

[¤̇+ hijAiAj∂
2
0 + 2h

ijAj∂0∂j +
1

V
√
h
∂i(h

ijAjV
√
h∂0)−m2]Ψ = 0, (3.37)

onde ¤̇ é o d0Alembertiano da métrica estática, hij é o inverso de hij e h = det(hij).

Como os espaços-tempos são independentes do tempo, então, as soluções de (3.37) podem

ser escritas como

Ψ(t, x) = e−iEtΦ(x). (3.38)

Substituindo (3.38) na equação (3.37) encontramos uma equação para Φ(x), cuja solução

pode ser escrita em termos de Φ0 que é solução de (¤̇−m2)Φ0 = 0, como segue

Φ(x) =

⎡⎢⎣exp(iE xZ
x0

Aidx
i)

⎤⎥⎦Φ0, (3.39)

onde o termo exp(iE
xR
x0

Aidx
i) é conhecido como fator de Dirac.

Um caso particular dos espaços-tempos cujos elementos de linha são dados por (3.36) é

o da corda cósmica commomento angular. Neste caso, o elemento de linha em coordenadas

cilíndricas (t, r, φ, z) é dado pela eq.(3.36) com [16]

V 2 = 1 (3.40)

Ai = −4J t∇iΦ

hij = ∇ir∇jr + (αr)
2∇iφ∇jφ+∇iz∇jz,

onde J t é o momento angular da corda e α = 1− 4μ, com μ sendo a densidade linear de

massa. Neste caso da corda com rotação, a solução de equação de Klein-Gordon é dada

por

Ψ(t, r, φ, z) = [e−iEte
−4iJtE

φ

φ0

dφ

]Φ0(r, φ, z), (3.41)

com Φ0(r, φ, z) sendo a solução da equação de Klein-Gordon no espaço da corda cósmica

estática.

Portanto, podemos relacionar a solução da eq.(3.37) com a solução de uma equação mais

simples que é (¤̇ −m2)ψ = 0, através do fator de Dirac. Esta possibilidade também é
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uma característica da função de onda associada ao efeito Aharonov-Bohm eletromagnético.

Neste caso,a solução da equação de Schrödinger para uma partícula carregada, colocada

na região exterior ao solenóide que contém um fluxo Φ pode ser construída a partir da

solução sem fluxo através do fator exp(i
H
Aidx

i) que é precissamente a transformaçào de

holonomia associada à conexão U(1) devido ao fluxo. Vamos, então usar o fator Dirac

e relacionar o efeito Aharonov-Bohm com a holonomia associada a uma dada conexão

seguindo a sugestão de Berry de que o efeito Aharonov-Bohm é um caso particular da

fase de Berry[12]. Assim sendo, considere uma partícula carregada, com carga q, no

interior de uma caixa de modo que a função de onda Ψn(r) seja diferente de zero somente

no interior da mesma. Sejam Ri as componentes do vetor R que localiza o centro da

caixa em relação ao solenóide. Quando não há potencial magnético, as funções de onda

possuem a forma Ψn(r−R), com energias En independente de Ri.

Com fluxo diferente de zero, as funções de onda < n | R > são obtidas do fator de Dirac

dento da caixa através da relação

< n | R > = exp

⎛⎝iq

rZ
R

dr0A(r0)

⎞⎠Ψn(r −R). (3.42)

Logo, o fator de fase geométrico pode ser calculado a partir de

< n,R |∇R | n,R > =
R
d3rΨ∗(r −R)[−qA(R)Ψn(r −R) +∇RΨn(r −R)

= −iqA(R),
(3.43)

o que implica, usando (3.8) que

γ(C) = q

I
A(R)dR = qΦ. (3.44)

Vamos apresentar, agora, o formalismo de duas componentes e sua relação com a fase

geométrica no regime adiabático [53].Para isto, considere um campo escalar complexo

φ definido em um espaço globalmente hiperbólico (M, g) = (R×⊀, g) satisfazendo a

equação de Klein-Gordon eq.(3.35). Podemos expressar a eq.(3.35) na forma

∂20Φ+ D̂1(∂0Φ) + D̂2Φ = 0, (3.45)
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onde

D̂1 ≡
1

g00
[2g0i∂i − gμνΓ0μν ], (3.46)

D̂2 ≡
1

g00
[gij∂i∂j − gμνΓiμν∂i −m2.

Podemos representar a equação (3.45), usando o formalismo de duas componentes, na

forma

i
∂Ψ

∂t
= ĤΨ, (3.47)

sendo Ψ =

⎛⎝ u

v

⎞⎠ com

u ≡ 1√
2
(Φ+

∂Φ

∂t
), (3.48)

v ≡ 1√
2
(Φ− ∂Φ

∂t
)

e

Ĥ ≡ i

2

⎛⎝ 1− D̂1 − D̂2 −1 + D̂1 − D̂2

1 + D̂1 + D̂2 −1− D̂ + D̂2

⎞⎠ . (3.49)

Agora, considere o problema de auto-valores para Ĥ. Denotamos os auto-valores e os

auto-vetores por En e Ψn, ou seja,

ĤΨn = EnΨn, (3.50)

temos que

Ψn =
1√
2

⎛⎝ 1− iEn

1 + iEn

⎞⎠Φn, (3.51)

com Φn satisfazendo a equação

(D̂2 − iEnD̂1 −E2
n)Φn = 0, (3.52)

e tal que Φn pertence ao espaço de HilbertHt = L2(Σt) das funções de quadrado integrável

definidas sobre as hipersuperfícies tipo-espaço Σt, com métrica Riemanniana.

Suponha que:

1. D̂1 = 0;
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2. D̂2 é o auto-adjunto com respeito ao produto interno em Ht;

3. D̂2 possui um especto discreto;

4. durante a evolução do sistema En 6= Em se m 6= n;

5. En é um auto-valor não-degenerado de H, e E2
n é um auto-valor não-degenerado de

D̂2.

Então, para m 6= n < Φn | ∂Φn
∂t

> = < Φm | D̂2Φn > /(E2
n − E2

m), e na aproximação

adiabática relativística a solução inicial da equação de Klein-Gordon é

Ψ(0) = eiαn(0)Ψn(0) + eiα−n(0)Ψ−n(0), (3.53)

com n ≥ 0 e α±n(0) ∈ C, cuja evoluçào é dada por

Ψ(t) ∼ eiαn(t)Ψn(t) + e−iα−n(t)Ψn(t),

onde a fasae total α±n(t) é dada por α±n(t) =[αn(0) + α−n(0)] /2 + γn(t) + δ±n(t), sendo

α±n(0) constantes arbitrárias, γn(t) a fase geométrica e δ±n(t) a fase dinâmica. A fase

geométrica é dada por

γn(t) =

R(t)Z
R(0)

Aμ[R], (3.54)

onde

Aμ[R] ≡ i < Φn[R] | d | Φn[R] > = i < Φn[R] |
∂

∂Ra
| Φn[R] > dRa (3.55)

é a conexão 1-forma de Berry, R = (R1, R2, . . . Rn) são os parâmetros do sistema e d

representa a derivada exterior com respeito a Ra.

Suponha que En tenha degenerescência de grau N . Então, a condição para a

validade da aproximação adiabática torna-se < ΦI
n | ∂ΦJn

∂t
> ∼ 0, para todo m 6= n e

I, J = 1, 2, . . . N. Neste caso, para um contorno fechado, a fase de Berry é dada por

γn(t) =

I
AIJ

μ , (3.56)

onde

AIJ
μ = i < ΦI

n[R] | d | ΦJ
n[R] > . (3.57)
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Portanto, no caso relativístico podemos usar o formalismo de duas componentes,

transformando, assim, a equação de Klein-Gordon na de Schrödinger, e determinamos

a fase de Berry seguindo o procedimento original[16], e tratando os casos degenerados e

não-degenerados.

3.5 Fase de Berry no espaço-tempo da corda cósmica

quiral.

Nesta seção vamos proceder analogamente ao tratamento dado por Corichi e Pierri [16]

para a obtenção da fase geométrica associada a uma partícula escalar quântica, induzida

pela corda cósmica quiral. O elemento de linha que descreve tal espaço-tempo é dado

pela eq.(2.42)

O comportamento da partícula quântica escalar é descrito pela equação covariante

de Klein-Gordon (eq.(3.35)). Portanto, vamos considerar a equação de Klein-Gordon na

métrica dada pela eq.(2.42) que pode ser escrita na forma

{∂2t −
1

r
∂r(r∂r)−

1

α2r2
[(4J t∂t − ∂φ)

2 + (4Jz∂z − ∂φ)
2]+

32J tJz∂t∂z + α2r2(∂2z −m2)]}ψ(t, r, φ, z) = 0 (3.58)

Como o espaço-tempo da corda cósmica quiral é tempo independente simétrico sobre

translações ao longo do eixo-z, então a solução da eq.(3.58) pode ser escrita na forma

ψn(t, r, φ, z) = e−iEnteiknzϕn(r, φ), (3.59)

onde En são autovalores de energia e kn são os vetores de onda na direção z. Usando o

método do fator de Dirac, podemos escrever ϕn como [18]

ϕn(r, φ) = exp

µ
−4i

Z φ

φ0

(EnJ
t − knJ

z)dφ

¶
ϕ0(r, φ) (3.60)

com ϕ0(r, φ), sendo a solução da equação∙
1

r
∂r(r∂r) +

1

α2r2
∂2φ − (m2 −E2

n −K2
n)

¸
ϕ0(t, r, φ, z) = 0, (3.61)
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que é a equação de Klein-Gordon na métrica eq.(2.42) para J t = Jz = 0,que

corresponde à corda cósmica. Desta forma, determinamos a solução de uma equação

mais complicada,eq.(3.58 a partir da solução de uma equação mais simples (eq.(3.61)).

Vamos, agora, investigar a fase de Berry no espaço-tempo da corda cósmica quiral.

Para este caso, o ângulo de fase geométrico com rotação depende dos níveis de energia,

justamente como no caso da corda cósmica com rotação [53]. Portanto, cada autovalor

diferente, rotulado por n,adquire fases geométricas diferentes, e como consequência, o

tratamento apropriado deste problema é obtido usando a generalização não-abeliana [53]

da fase de Berry.

Para calcular esta fase vamos confinar o sistema quântico em uma caixa perfeitamente,

refletora onde os pacotes de onda são não nulos no interior da caixa e são dados pela

superposição de diferentes auto-funções. O vetor que localizado a caixa em relação

ao defeito é chamado de R. Este vetor é orientado a partir da origem do sistema de

coordenadas(onde se localiza o defeito) para o centro da caixa. Vamos chamar de Ri as

componentes de R, dadas por Ri = (R0, φ0, z0) e tal que R0 > 4J t/α. Esta condição

imposta a R0 nos leva a dois problemas: a multivaluação das auto-funções e a existência

de curvas fechadas tipo-tempo.

Da equações eq.(3.59) e eq.(3.60) concluímos que se J t = Jz = 0, a função de onda

tem a forma ϕn = (x−R), onde x localiza a partícula relativamente ao centro da caixa.

Se considerarmos J t 6= 0 e Jz 6= 0, então a função de onda é sensível a estes parâmetros e

pode ser obtida pelo fator de fase de Dirac dado pela equação eq.(3.60), dentro da caixa.

Vamos transportar a caixa em torno da curva fechada C que envolve o defeito. Como o

espaço-tempo é axialmente simmetrico, podemos transportar a caixa ao longo do campo

vetorial de Killing Ra = ( ∂
∂φ
)a.

Devido a degenerescência dos autovalores de energia, para calcular a fase de Berry, é

necessário o uso da versão não-abeliana da conexão correspondente [53] dada por

AIJ
n = < ϕI

n(x−R) | ∇Rϕ
J
n(x−R) > (3.62)

onde I e J representam os níveis de degenerescência.
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Vamos utilizar o produto interno dado por

< Ψ,Ψ0 > = i

Z
dSa(Ψ0∇aΨ̄− Ψ̄∇aΨ

0), (3.63)

na expressão anterior e fazer uso do fator fase de Dirac, obtermos [18] a seguinte conexão

de Berry

AIJ
n = < ϕI

n(x−R) | ∇Rϕ
J
n(x−R) > (3.64)

= i

I
Σ

dSϕ∗In (xi −Ri)[4(knJ
z −EnJ

t)ϕJ
n(xi −Ri) +

−∇Rϕ
J
n(xi −Ri)],

onde dS = αrdrdφdz.

Calculando a integral obtemos o resultado

< ϕI
n(x−R) | ∇Rϕ

J
n(x−R) > = −4i(EnJ

t − knJ
z)δIJ.. (3.65)

Então, a fase de Berry é

γn(C) = 8π(EnJ
t − knJ

z), (3.66)

onde os níveis I, J e δIJ.

foram omitidos.

Este resultado generaliza os obtidos por Corichi e Pierri [16] e Ali Mostafazadeh [53]

para o caso da corda cósmica girante. Como foi enfatizado em [16], este efeito pode

ser observado por uma interferência da função de onda associada com à partícula na

caixa transportada e um outra correspondendo a partícula na caixa que segue órbitas que

coincidem com campos de Killing tipo-tempo, ta.

Fazendo uso do espaço-tempo correspondente a um solenóide cujo potencial é dado

por A =(0, 0,Φ/r) vamos considerar o elemento de linha dado pela eq.(2.52), cujo tensor

métrico na representação matricial é

gμν =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 0 Φ 0

0 1 0 0

Φ 0 r2 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ e gμν =

⎛⎜⎜⎜⎜⎜⎜⎝
−r2/(r2 + Φ2) 0 Φ/(r2 + Φ2) 0

0 1 0 0

Φ/(r2 + Φ2) 0 1/(r2 + Φ2) 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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e portanto, g = det(gμν) = −(r2 + Φ2).

A equação de Klein-Gordon neste espaço-tempo é dada por

{ ∂
2

∂t2
− 1

r

∂

∂r
− ∂2

∂r2
− 1

r2
[−8Φ ∂

∂t

∂

∂φ
+ r2

∂2

∂z2
+

∂2

∂φ2
− r2m2]}Ψ = 0. (3.67)

Escrevendo Ψ = e−iEtψn(r, φ, z) e substituindo na equação eq.(3.67), obtemos

{−E2 − 1
r

∂

∂r
− ∂2

∂r2
− 1

r2
[8ΦiE

∂

∂φ
+ r2

∂2

∂z2
+

∂2

∂φ2
− r2m2]}ψn = 0. (3.68)

Vamos tomar, agora, Ψn = exp(iξφ)ϕn(r, φ, z). Colocando esta expressão na equação

(3.68), determinamos que ξ = −4EΦ e que ϕn satisfaz a equação

{ ∂
2

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂φ2
+

∂2

∂z2
−m2 +E2}ϕn = 0 (3.69)

A equação (3.69) pode ser obtida de (3.68) fazendo Φ = 0 e trocando ψn por ϕn. Usando

o método do fator de fase de Dirac podemos escrever

ϕn(r, z) = exp

Ã
−4i

I φ

φ0

EΦdφ

!
ϕ0(r, z), (3.70)

com ϕ0(r, z) satisfazendo a equação

{ ∂
2

∂r2
+
1

r

∂

∂r
+ (E2 −m2)}ψ0(t, r, φ, z). (3.71)

E usando o fator de Dirac eq.(3.70) e as mesma condições anteriores concluimos que a

conexão de Berry é dada por

< ϕI
n(x−R) | ∇Rϕ

J
n(x−R) > = −4iEΦδIJ.,

e portanto, a fase geométrica é

γn(C) = 8πEΦ, (3.72)

que depende do acoplamento entre a energia da partícula e o fluxo do campo magnético.

3.6 Fase de Berry no espaço-tempo das N cordas

quirais.

Nesta seção vamos calcular a fase de Berry quântica associada com uma partícula

escalar no espaço-tempo das N cordas quirais paralelas, cujo elemento de linha é dado

84



pela equação (2.56). Neste caso, o cálculo direto do fator de Dirac via solução da equação

de Klein-Gordon é complicado. Diante desta dificuldade vamos usar o fato de que o fator

de fase adquirido por um vetor quando transportado paralelamente no espaço-tempo

correspondente a multi corda quiral é afetado somente pela corda que eatá situada no

interior da curva ao longo da qual o vetor é transportado paralelamente [55]. Portanto

calcularemos o fator de Dirac para duas, três e assim sucessivamente até N cordas quirais.

Primeiramente consideremos o sistema formado por duas cordas quirais, uma localizada

em r1 e a outra em r2. Efetuamos o transporte da caixa que contém a partícula, ao longo

de uma curva fechada C1 em torno da corda quiral 1. Neste caso, o fator de Dirac é

idêntico ao dado pela equação eq.(3.60), que vamos escreve-lo como

ϕ1n(r, φ) = exp

µ
−4i

Z φ

φ0

(EnJ
t
1 − knJ

z
1 )dφ

¶
ϕ0(r, φ) (3.73)

Agora, vamos transportar o estado ϕ1n(r, φ) em torno da corda quiral localizada em r2, ao

longo da curva C2. Desta forma, obteremos o seguinte resultado

ϕ2n(r, φ) = exp

µ
−4i

Z φ

φ0

(EnJ
t
2 − knJ

z
2 )dφ

¶
ϕ1n(r, φ). (3.74)

Substituindo a equação eq.(3.74) em eq.(3.73), obtemos

ϕ1,2n (r, φ) = exp{−4i
£
(J t
2 + J t

1)En − (Jz
2 + Jz

1 )kn
¤ Z φ

φ0

dφ}.ϕ0(r, φ). (3.75)

A generalização deste resultado para N cordas quirais localizadas em r1, r2, . . . rN é dada

por

ϕ1,2,...Nn (r, φ) = exp{−4i
"

NX
j=1

(J t
jEn − Jz

j kn)

#Z φ

φ0

dφ}.ϕ0(r, φ). (3.76)

Da eq.(3.76) podemos extrair a conexão de Berry que dada por [18]

AIJ
n = −4i

NX
j=1

(J t
jEn − Jz

j kn)dR
2δI,J , (3.77)

onde R2 é o ângulo polar associado com o centro da caixa. Desta forma a fase de Berry é

γn(C) = i

I
C

AIJ
n = 8π

NX
j=1

(J t
jEn − Jz

j kn). (3.78)

Por conveniência omitimos os índices I e J correspondentes a autovalores distintos. Este

resultado dá a fase de Berry associada a partícula em uma caixa que é deslocada sobre

um circuito C que contorna o sistema formado por N cordas quirais.
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3.7 Fase geométrica no espaço-tempo do cilindro de

matéria com rotação.

Conforme vimos no capítulo anterior, o elemento de linha correspondente ao espaço-

tempo gerado por um cilindro de matéria com rotação é

ds2 = −(1− a/2)dt2 + (1 + a/2)(dr2 + r2dφ2 + dz2) + 2bdtdφ, (3.79)

onde a(r), b(r) e Φ foram definidos anteriormente.

Vamos considerar a partícula quântica escalar imersa neste campo gravitacional

clássico. Seu comportamento é descrito pela equação covariante de Klein-Gordon que

é dada por

{(1 + a)
∂2

∂t2
− 2b

r2
∂2

∂φ∂t
− 1

r

∂

∂r
(r

∂

∂r
)− 1

r2
∂2

∂φ2
−

∂2

∂z2
+

m2(2 + a)

2
}Ψ = 0, (3.80)

pode ser escrita na forma da equação (3.45), ou seja,

Ψ̈+ D̂1Ψ̇+ D̂2Ψ = 0 (3.81)

onde o ponto significa derivada com relação ao tempo.

Neste caso, temos que

D̂1 = − 1

(1 + a)r2
∂

∂φ
, (3.82)

D̂2 = − 1

(1 + a)

∙
∂

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂φ2
+

∂2

∂z2
− (2 + a)

2
m2

¸
.

A equação generalizada de autovetores [53]

(D̂2 − iEnD̂1 −E2
n)Φn = 0 (3.83)

torna-se, então,

0 = { ∂

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂φ2
+

∂2

∂z2
− (2 + a)

2
m2 (3.84)

−2ibEn

r2
∂

∂φ
+ (1 + a)E2

n}Φn.
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Vamos considerar o ansatz Φn = exp(iξφ)ϕn, e a eq.(3.84) toma a forma

{ ∂

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂φ2
+

∂2

∂z2
− (2 + a)

2
m2 +

1

r2
(2iξ − 2biEn)

∂

∂φ
+

1

r2
(−ξ2 ++3bEnξ) + (1 + a)E2

n}ϕn = 0, (3.85)

de onde temos que ξ = bEn e que ϕn satisfaz a equação

{ ∂

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂φ2
+

∂2

∂z2
− (2 + a)

2
m2 + (1 + a)E2

n}ϕn = 0. (3.86)

Notemos que ξ = bEn é a contribuição extra, na fase produzida pelo efeito da rotação

do cilindro, e que ϕn determina os auto-valores da Hamiltoniana para o cilindro sem

rotação de mesma densidade de massa. Como D̂1 anula-se e D̂2 é auto-adjunto, então, a

Hamiltoniana é auto-adjunta, logo com autovalores reais, daí ∂
∂Ri = 0, isto é, não depende

de Ri.

Portanto, a solução é

ψ(t, r, φ, z) = e−iEntΦ(r, φ, z),

com

Φ(r, φ, z) = exp
³
ibEn

R φ
φ0
dφ
´
ϕn(r, φ, z).

(3.87)

Utilizando o mesmo procedimento para o cálculo da fase geométrica no espaço-tempo da

corda cósmica quiral, encotramos a conexão de Berry

AIJ
μ = < ϕI

n(x−R) | ∇Rϕ
J
n(x−R) > (3.88)

= i

I
Σ

dS{ϕ∗In (x−R)[biEnϕ
J
n(x−R) +

∂

∂Ri
ϕJ
n(x−R)dRi]}

= biEnδI,JdR
2

onde S = rdrdφdz.

Assim, a fase de Berry para o cilindro com rotação é

γn(C) = i

Z 2π

0

AIJ
μ = −2πbEn, (3.89)

onde C é o círculo que envolve o cilindro.

Poderiamos ter feito este cálculo da mesma forma que nos casos anteriores mas

resolvemos utilizar o processo apresentado por Ali [53] para exibir outro método para

o cálculo de fase de Berry.

87



3.8 Fase geométrica em um universo isotrópico.

Sistemas físicos quânticos em espaços-tempos curvos têm recebido muita atenção ao

longo dos tempos. Recentemente, tem sido dada atenção ao comportamento de sistemas

atômicos em espaços-tempos curvos[56] e, em especial, os efeitos sobre esses sistemas

devido a algumas configurações do campo gravitacional com topologia não-trivial [57].

Como o campo gravitacional se acopla universalmente com todos os campos, é interessante

formular uma teoria quântica no espaço-tempo curvo. Dessa forma, podemos descrever

a interação de uma partícula quântica com um campo gravitacional clássico, como por

exemplo, estudar o efeito da curvatura do espaço-tempo sobre o átomo de hidrogênio [58].

Em particular, um sistema que tem atraído considerável interesse é o oscilador

harmônico com frequência e (ou) massa variando com o tempo (ou ambos

simultâneamente), colocado no espaço-tempo curvo. Este sistema tem chamado a atenção

por causa de sua conexão com outros sistemas em diferentes áreas de física tais como física

de plasma [59], gravitação [60] e óptica quântica [61], por exemplo.

A conexão da cosmologia com alguns processos em óptica quântica também tem

despertado alguma atenção. Neste contexto, Berger [62] construiu uma representação

de estado coerente para um campo escalar minimamente acoplado para o campo

gravitacional. Resentemente, foi usada a linguagem da óptica quântica [63] para auxiliar a

existência de estados comprimidos no contexto da cosmologia, bem como foi apresentada

uma abordagem usando estados coerentes [64] com o objetivo de quantizar a teoria de

Einstein-Yang-Mills.

Nesta seção vamos utilizar o processo adotado em [65] que permite estudar o

comportamento de uma partícula escalar colocada em um universo anisotrópico com a

topologia do 3-toros.

Vamos consider um espaço-tempo anisotrópico cuja hipersuperfície tipo-espaço possui

a topologia de um 3-toros. Neste caso, o elemento de linha é dado por

ds2 = −N2dt2 + gijdx
idxj, (3.90)

onde N = N(t) e gij = gij(t) é a métrica da hipersuperfície tipoespaço ortogonal à

direção t. Exigindo-se que x, y, z ∈ [0, 2π], então, esse espaço-tempo tem a topologia de
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um 3-toros.

A equação de Klein-Gordon, que governa o movimento de uma partícula escalar, tem

a forma covariante dada por (3.35), e no espaço-tempo dado pelo elemento de linha (3.90)

toma a forma

q̈(t) + γ(t)q̇(t) + ω2(t)q(t) = 0, (3.91)

onde

γ(t) =
d

dt
[lnm(t)] , (3.92)

m(t) =
√
gN−10,

ω2(t) = N2(t)(gijkikj +m2)

com q(t) sendo a amplitude do campo para o modo môdelo caracterizado por ki.

Notemos que a equação eq.(3.91) é a equação clássica para o oscilador harmônico

paramétrico, isto é, com frequência e massa dependetes do tempo.

A equação eq.(3.91) pode ser obtida via a Hamiltoniana

H(t) =
p2

2m(t)
+
1

2
m(t)ω2(t)q2(t) (3.93)

para o modo ki(i = 1, 2, 3),comm(t) e ω2(t) definidos anteriormente e p sendo o momento

conjugado a q. Para quantizar este sistema, impomos a cada modo do campo a relação

[q, p] = i~. Assim a equação de Schrödinger

i~
∂

∂t
ψ = H(t)ψ, (3.94)

onde H(t) é dada por por

H(t) = − 1

2m(t)

∂2

∂q2
+
1

2
m(t)ω2(t)q2(t) (3.95)

que é a versão quântica da Hamiltoniana dada pela eq.(3.93).

Vamos, agora, considerar a situação mais geral possivel, tomando o espaço-tempo,

no qual a equação de Klein-Gordon toma da equação de um oscilador harmômico

generalizado, cuja Hamiltoniana é dada por

H(t) =
1

2

£
X(t)q2 + Y (t)(q.p+ p.q) + Z(t)p2

¤
, (3.96)
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onde os parâmetros variam lentamente com o tempo. O sistema caracterizado pela

eq.(3.96) possui um invariante associado, dado por

I(t) =
1

2
{
µ
q

ρ

¶2
+ [ρ(p+

Y

Z
q)− q

Z
ρ̇]2}, (3.97)

com

İ(t) ≡ i[H, I] +
∂I(t)

∂t
= 0, (3.98)

sendo ρ(t) um c-número solução da equação auxiliar

1

ρ

d

dt
(
ρ̇

Z
)−

∙
d

dt
(
Y

Z
)− XZ − Y 2

Z
+

Z

ρ4

¸
= 0 (3.99)

e o ponto significa a derivada com relação ao tempo.

Os auto-valores de I(t) são definidos por

I(t) =| λn, t > = λn | λn, t > (3.100)

onde λn = λn(t) = −(n + 1
2
). O sistema descrito pela Hamiltoniana dada pela eq.(3.96)

desenvolve-se de acordo com a equação de Schrödinger, cujas soluções são

| ψ(q, t) > = eiαn(t) | λn; t >,

| ψ(q, t) > =
P
n

Cne
iαn(t) | λn; t >,

(3.101)

com Cn sendo independente do tempo e αn(t) correspondendo a uma fase, a qual pela

teoria de Lewis e Riesenfeld [66] é dada por

αn(t) = −(1 +
n

2
)

Z t

0

dt0
Z(t0)

ρ2(t0)
. (3.102)

Utilizando o conceito de ação efetiva, Γ [X(t), Y (t), Z(t)], no contexto da teoria de campos,

temos que

eiΓ[X,Y,Z] =

Z
Dp(t)Dq(t) exp{i

Z t2

t1

dt [pġ −H(p, q,X, Y, Z]}, (3.103)

onde a integração é feita sobre todos os caminhos satisfazendo q(T ) = q(0) e T →

∞, sugerindo uma adiabaticidade cíclica fechada. Podemo calcular a ação efetiva Γ

utilizando o propagador de Feynman, K(q2, t2; q1, t1), na presença de um campo externo

(X(t), Y (t), Z(t)) por um caminho similar com as condições q(t1) = q1 e q(t2) = q2 .
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Estamos interessados especificamente na contribuição da curva, isto é, no traço da parte

diagonal do propagador de Feynman no q-espaço, isto é,

G(T ) = eiΓ[X,Y,Z] = trK

=
R∞
−∞ dqK(q, T ; q, 0)

=
P
n

eiαn(t) < λn, 0 | λn, T >

(3.104)

onde αn(t) é um fator de fase e a eq.(3.104) é uma função de onda do tipo da eq.(3.101),

para uma escolha especial de Cn0s.

Considerando que os parâmetros externos (X,Y,Z) fazem uma excursão adiabática

durante o tempo T no espaço de parâmetros, isto é, (X,Y, Z)(0) = (X,Y, Z)(T ), e que

no limite adiabático ρ̇ da equação eq.(3.99) é desprezível, temos

Z

ρ2
= ωD

∙
1− Z

ω2D

d

dt
(Y/Z)

¸1/20
, (3.105)

onde ωD =
√
XZ − Y 2, com XZ > Y 2. Expandindo com relação a Z

ω2D

d
dt
(Y/Z) << 1,

obtemos
Z

ρ2
=

∙
1− Z

2ω2D

d

dt
(Y/Z)

¸
= ωD −

Z

2ωD

d

dt

µ
Y

Z

¶
(3.106)

Portanto, fase total que é dada por

αn(T ) = −(1 +
n

2
)

Z T

0

f(t0)dt0, (3.107)

onde f(t) = ωD − Z
2ωD

d
dt

¡
Y
Z

¢
, pode ser escrita como

αn(T ) = −(1 + n

2
)

Z T

0

ωDdt
0 + (1 +

n

2
)

Z T

0

Z

2ωD

d

dt

µ
Y

Z

¶
dt0 (3.108)

= −(1 + n

2
)

Z T

0

ωDdt
0 + (1 +

n

2
)

I
C

dR
Z

2ωD
∇R

µ
Y

Z

¶
,

onde R = (X,Y, Z). A primeira integral corresponde a fase dinâmica e à segunda a fase

geométrica fase de Berry,

γg(C) = (1 +
n

2
)

I
C

dR
Z

2ωD
∇R

µ
Y

Z

¶
. (3.109)

Sob o ponto de vista convencional (não-adiabático) a fase dinâmica obtida sobre um

período é

γd =

Z T

0

< ψn(t
0) | H | ψn(t

0) > dt0 (3.110)

=
1

2
(n+

1

2
)

Z T

0

|ρ̇|2 + 2Y Re(ρ̇.ρ∗) + Z.X. |ρ|2

β(t0)
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onde β(t0) = Im(ρ(t0).ρ̇∗(t0) = λ/m(t0), λ ∈ R.

Portanto, a fase de Berry não-adiabática é dada por [15]

γn(C) = αn(T ) + γd (3.111)

= (n+
1

2
)

Z T

0

"
−β(t

0)

|ρ|2
+
|ρ̇|2 + 2Y Re(ρ̇ρ∗) + ZX |ρ|2

β(t0)

#
.

Vamos voltar ao início desta seção, onde tínhamos o espaço-tempo no qual a equação

de Klein-Gordon tem a forma dada pela eq.(3.91), e que pode ser obtida da Hamiltoniana

dada pela eq.(3.93)

Comparando as equações (3.93) e (3.96), verificamos que Y (t) = 0 e portanto, a

fase geométrica obtida da da eq.(3.109) é nula. Considerando o caso particular em que

m(t) = m(constante) e ω = ω(t) temos a equação clássica do movimento

q̈ + ω2(t)q = 0, (3.112)

com equação auxiliar

ρ̈+ ω2(t)ρ− 1

ρ3
= 0. (3.113)

Portanto, a fase de Berry adiabática é nula e a não-adiábatica é [67]

ϕB = −
1

2
(n+

1

2
)

Z T

0

[ρ(t0)ρ̈(t0)− ρ̇(t0)] dt0 (3.114)

onde ρ é a solução da equação eq.(3.113).

3.9 Fase de Berry em modelos cosmológicos

espacialmente homogêneos.

Em recente trabalho Ali Mostafazadeh [19] utilizou o formalismo de duas

componentes(ver seção 3.4) na obtenção da fase de Berry, no caso dos modelos

espacialmente homogêneos. Nesse cálculo foram usados os grupos de simetrias asociados

ao espaço-tempo, segundo a classificação de Bianchi [68].

Vamos consider um espaço-tempo espacialmente homogêneo associado com o grupo

de Lie, G, isto é, M = R×G. O elemento de linha asociado a este espaço-tempo é

ds2 = gμνω
μων = −dt2 + gijω

iωj , (3.115)
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onde ωi são as 1-formas invariantes e gij = gij(t) são as componentes espaciais da métrica.

Para estudar a fase geometrica adiabática associada ao espaço-tempo considerado, temos

que introduzir os operadores [53] definidos (ver seção 3.4) por

D̂1 = gijΓ0ij,

D̂2 = −∆t +m2,

∆t = gij∇i∇j = gijXiXj − Γkijk,

(3.116)

onde Xa são os operadores associados com o campo vetorial dual ωi e ∆t é o Laplaciano

em Σt(hipersuperfície tipo-espaço), ∇i é a derivada covariante correspondente à conexão

Riemanniana, e

Γγαβ =
1

2
gγδ(gδα,β + gβδ,α − gαβ,δ + g�αC

�
δβ − g�βC

�
δα −

1

2
Cγ
αβ (3.117)

com gαβ,γ := Xγgαβ e C
γ
αβ são as constantes de estrutura que satisfazem a relação

[Xα,Xβ] = −Cγ
αβXγ (3.118)

com X0 =
∂
∂t
.

Demonstra-se que a contribuição de D̂1 é nula. Logo a equação de autovalores

geralizada eq.(3.83) torna-se;

(D̂2 −E2
n)Φn = −(∆t +E2

n −m2)Φn = 0. (3.119)

Vemos assim, que o operador D̂2 é essencialmente o operador∆t sobre Σt,e é auto-adjunto.

Isto garante que as auto-funções Φn são ortogonais e os autovalores E2
n são reais.

A análise da função Φn é equivalente a estudar os autovalores do Laplaciano sobre

a variedade tri-dimensional Σt. O problema se resume, então, a estudar o espectro de

∆t. Vamos relembrar algumas propriedades gerais do Laplaciano para uma variedade

Riemanniana Σ, finita, compacta ou onde as auto-funções têm suporte compacto, isto é,

as auto-funções se anulam na fronteira de Σ:

(i) O espectro de ∆ é um subconjunto discreto infinito de R+.

(ii) Os autovalores são não-degenerados ou finitamente degenerado.
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(iii) Existe um conjunto ortonormal de auto-funções o qual forma uma base para

L2(Σ) (funções de quadrado integrável).

(iv) Se Σ é compacta, então o primeiro auto-valor é zero o qual é não-degenerado, sendo

o auto-espaço associado o conjunto das funções constantes.

Se Σ é não compacta mas as auto-funções tem suporte compacto({f : Σ→ Σ; f(x) =

0,∀x ∈ ∂Σ}), então o primeiro auto-valor é positivo.

Notemos que para modelos cosmológicos espacialmente homogêneos, os campos

vetorias invariantes Xa produz em uma representação dos geradores Gr de G, com L2(Σ)

sendo o espaço de representação. Assim, podemos ver o Laplaciano ∆t como (uma

representação de ) um elemento da cobertura álgebra de Lie de G. Portanto, ∆t comuta

com qualquer operador de Casimir Cλ e consequentemente tem o mesmo conjunto de

autovetores de Cλ.

A seguir, vamos utilizar essas idéis para apresentar três exemplos correspondentes aos

tipos Bianchi I, VIII e IX.

3.9.1 Bianchi tipo I.

Para este caso temos Cγ
αβ = 0,∀α, β, γ = 1, 2, 3 e

Campos de Killing Geradores 1-formas

ξ1 = ∂1 X1 = ∂1 ω1 = dx1

ξ2 = ∂2 X2 = ∂2 ω2 = dx2

ξ3 = ∂3 X3 = ∂3 ω3 = dx3

com dω1 = dω2 = dω3 = 0.

Neste caso G é abeliano, pois da eq.(3.118), temos [Xi,Xj] = 0, com i, j = 1, 2, 3.

Logo os Xa comutam com o operador de Casimir Cλ, daí as auto-funções de ∆t as Φn

são independentes de t. Portanto as conexões de Berry eq.(3.34) são nulas, logo a fase de

Berry é a trivial, isto é, o sistema não apresenta a fase de Berry.
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3.9.2 Bianchi tipo VIII.

Para este tipo de espaço-tempo temos :

C1
23 = −C1

32 = −1

C2
31 = −C2

13 = 1

C3
12 = −C3

21 = 1

ξ1 =
1

2
e−x

2

∂1

ξ2 = ∂3

ξ3 =
1

2
e−x

3

∂1 −
1

2

h
ex

2

+ (x2)2e−x
3
i
∂2 − x2e−x

3

∂3

X1 =
1

2

£
1 + (x1)2

¤
∂1 +

1

2

£
1− 2x1x2

¤
∂2 − x1∂3

X2 = −x1∂1 + x2∂2 + ∂3

X3 =
1

2

£
1− (x1)2

¤
∂1 +

1

2

£
2x1x2 − 1

¤
∂2 + x1∂3

ω1 = dx1 +
£
1 + (x1)2

¤
dx2 +

£
x1 − x2 − (x1)2x2

¤
dx3

ω2 = 2x1dx2 + (1− 2x1x2)dx3

ω3 = dx1 +
£
(x1)2 − 1

¤
dx2 + [x1 + x2 − (x1)2x2]dx3

e dω1 = ω2 ∧ ω3, dω2 = ω3 ∧ ω1, dω3 = ω1 ∧ ω2

Notemos que neste caso, Gr = SO(2, 1) ≈ SU(1, 1)/Z2, SU(1, 1) é o grupo de

cobertura de SO(2, 1) que é topologicamente isomorfo à pseudo-esfera Λ2, que não é

compacta e portanto não admite uma cobertura universal. Lembremos que a pseudo-

esfera é a superfície

Λ2 = {(x1, x2, x3) ;−(x2)2 + (x2)2 + (x2)2 = 1, com x1, x2, x3 ∈ R}

que tem de curvatura Gaussiana constante e negativa k = −1.

Fazendo a mudança de variável (x1, x2, x3)→ (r, θ, φ) onde

x1 = cosh θ

x2 = senhθ cosφ

x3 = senhθsenφ

r = 1

(3.120)
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com θ ∈ [0, π] e φ ∈ [0, 2π], temos a métrica associada a variedade cujo elemento de linha

é dado por

ds2 =
dr2

1− r2
+ r2(dθ2 + sen2θdφ2)2. (3.121)

A pseudo-esfera Λ2 é analiticamente equivalente aos três espaços Riemanniano:

(i) O disco de Poincaré: D = {z = a+ ib = reiφ; r < 1, φ ∈ [0, 2π]}

(ii) O plano superior de Poincaré : U = {z = a+ ib; a, b ∈ R , b > 0}

(iii) O hiperbolóide de duas folhas que uma superfície aberta e plana. Portanto a fase

de Berry é trivial.

Um exemplo de simetria SU(1, 1) é o oscilador paramétrico que estudamos

anteriormente. Com o objetivo de exemplificar o método apresentado, vamos apresentar

o mesmo resultado sob este ponto de vista. Sabemos que a Hamiltoniana para o sistema

é

H(t) =
1

2

£
X(t)q2 + Y (t)(q.p+ p.q) + Z(t)p2

¤
(3.122)

Introduzindo a seguinte representação para os geradores da álgebra de Lie de SU(1, 1),

J1 =
1

4
(q2 − p2), J2 =

1

4
(pq + qp) e J3 =

1

4
(q2 + p2), (3.123)

com [Ji, Jj] = �kijJk gij = diag(−1,−1, 1), sendo �ijk o tensor antisimétrico usual (�ijk = 1).

O valor do operador de Casimir

Cλ = J iJi = −J21 − J22 + J23 , (3.124)

na representação acima mencionada é

Cλ = −
3

16
=: l(l + 1), (3.125)

com soluções l = −3/4 e l = −1/4. Da teoria geral [69] segue que o espectro de J3 para

uma representação limitada inferiormente temos os autovalores

km = −l +m , m ∈ N, (3.126)
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onde l = −1/4,−3/4. Isto pode ser expresso na forma

kn =
1

2
(n+ 1/2), n ∈ N, (3.127)

que corresponde aos autovalores da Hamiltoniana eq.(3.96) obtidos em [70] e dados por

En =
1

2
(n+ 1/2), n ∈ N . (3.128)

O que mostra a ausência da fase geometrica e a presença da fase dinâmica no sistema,

como de se esperar.

3.9.3 Bianchi tipo IX.

Neste caso G = SO(3) ≈ S3 ≈ SU(2)/Z2 , onde SU(2) é o grupo de cobertura,

que é compacto, e portanto é uma cobertura universal. Sejam J1, J2 e J3 os geradores

imfinitessimais de de SO(3) com

[Ji, Jj] = i�kijJk (3.129)

onde �ijk é o tensor de Levi-Civita. O operador de Casimir é

J2 =
X
a

J2a , (3.130)

e os vetores de Killing são dados por ξa = iJa.

Para o cálculo de fase de Berry para este caso faz-se necessário um estudo mais

aprofundado dos sistemas que apresentam tal simetria, para tanto veja os trabalhos Hu

[71] onde ele encontra fase de Berry não trivial, e Ali [19].onde são apresentadas situações

tendo e não tendo fase de Berry trivial.

Neste capítulo, além de resaltarmos a importância da fase de Berry em diversos

ramos da física exibimos a sua dedução para um sistema que evolui adiabaticamente

com o tempo, caracterizando-a como um objeto puramente geométrico, pois, depende

fundamentalmente das curvas fechadas nos espaços-tempos considerados. Além do mais,

apresentamos um resumo dos estudos que vem sendo feitos sobre fase geométrica, no

sentido de generalizações para campos de gauge não-Abelianos e para aproximação
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adiabática relativística. Calculamos a fase de Berry para uma partícula escalar no espaço-

tempo de uma corda cósmica quiral que é uma generalização do trabalho de Corichi e Pierri

e calculamos, também, a fase de Berry para os espaços-tempos das multicordas quirais,

do cilindro com rotação e em um universo isótropico . Finalmente, apresentamos a fase

geométrica em alguns modelos cosmológicos espacialmente homogêneos.
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Capítulo 4

Caracterização Global do

Espaço-Tempo, Efeito Gravitacional

Aharonov-Bohm e Fase de Berry na

Teoria de Kaluza-Klein.

4.1 Introdução.

Umas das linhas de pesquisa da física teórica moderna consiste na formulação de

uma teoria que forneça a unificação da gravitação com as outras interações da natureza.

Uma das primeiras teorias com o objetivo de estabelecer a unificação da gravitação e

do eletromagnetismo foi sugerida por Kaluza [72] que postulou a existência de uma

quinta dimensão para o espaço-tempo, que possui a natureza das demais coordenadas

espaciais. Posteriormente Klein [73] estendeu as idéias de Kaluza, justificando a hipótese

da independência da métrica com respeito à dimensão suplementar e o fato de que essa

dimensão não é observável. Para isto, ele postulou que o espaço-tempo tem a topologia

do produto M4 × S1, sendo M4 o espaço-tempo 4-dimensional e S1 um círculo de

raio a parametrizado pela quinta coordenada X : 0 ≤ X ≤ L. Ele supôs que existe

uma isometria definida por um vetor de Killing do tipo espaço o que significa que o

espaço-tempo é homogêneo na quinta direção, e supos também que o raio a é pequeno
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e que a dimensão estra não é observada. Também foi mostrado dentro do contexto

dessas extensão da teoria da Relatividade Geral de Einstein como ambas, gravitação e

eltromagnetismo podem ser tratados de forma similar - no sentido que ambos são descritas

como partes de umamétrica em cinco-dimensões. Nessa teoria, as transformações de gauge

eletromagnéticas são interpretadas como transformações de coordenadas na dimensão

extra, a qual preserva a forma da métrica de Kaluza-Klein.

Mais recentemente, foi demonstrado porWeinberg [74] e Salam [75], como as interações

fracas e eletromagnéticas podem ser unificadas em uma teoria de gauge, não-abeliana com

grupo de gauge SU(2)×U(1). É natural pensar que também é possível incluir a interação

forte numa grande teoria de unificação (GUT) no contexto de uma teoria de gauge com

grupo de SU(5), como no modelo de Georgi e Glashow [76].

Uma generalização natural da idéia de Kaluza-Klein, a qual incorpora os campos de

gauge não-abelianos, é considerar a teoria das altas dimensões (d > 5), na qual os campos

de gauge farão parte da métrica, do mesmo modo como o campos eletromagnéticos na

teoria de Kaluza-Klein. O interese em teorias com altas dimensões está associado ao

advento da supergravidade. Neste contexto, idéias tais como redução da dimensão[77] e

compactificação [78] do espaço possuem um papel relevente.

A idéia original da teoria de Kaluza [72] é que o espaço-tempo é realmente penta-

dimensional. Ele postulou que o elemento de linha é dado por

ds2 = ĝAB(x, y)dx
AdxB

= gμν(x)dx
μdxν + (dX + kAμ(x)dx

μ)2
(4.1)

onde X é a coordenada espacial adicional, com 0 ≤ X ≤ L, variando sobre um intervalo

finito e sendo periódico. O tensor ĝAB é o tensor métrico do espaço em 5-dimensões,

que consideramos com a assinatura (−1, 1, 1, 1, 1) e com coordenadas (t, x1, x2, x3, X),

A,B = 0, 1, 2, 3, 5 e μ, ν = 0, 1, 2, 3. Daí a variedade penta-dimensional, é localmente, da

forma M4 × S1 onde M4 é a variedade 4-dimensional corespondente ao espaço-tempo e

gμν é a métrica de M4, que não tem dependência com a variável X.

O quadrivetor Aμ(x) corresponde ao campo eletromagnético é independente de X. A

constante k possui unidade de (massa)−1 ou comprimento, o que torna o termo kAμ(x)

adimensional. o que facilitar as interpretações subsequentes de Aμ como campo de gauge
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eletromagnetico em 4-dimensões o qual tem unidade de massa.

Vamos agora estudar as transformações de coordenadas que preservam a forma do

elemento de linha de Kaluza-Klein. Primeiramente, por causa do comportamento do

quadrivetor o Aμ , ds2 será invariante por uma mudança de coordenadas xμ → x0μ(xν)

em M4 somente. Vamos condiderar a mudança na quinta coordenada da forma

X → X 0 = F (X,xμ). (4.2)

Então,

dyX → dX 0 =
∂F

∂X
dX +

∂F

∂xμ
dxμ.

A invariância de ds2 impõe a restrinção ∂F
∂X
= 1, pois de outra forma o último termo de

eq.(4.1) necessariamente mudaria. Com esta restrinção a eq.(4.2), torna-se

X 0 = X + f(xμ). (4.3)

Segue então que a mudança Aμ(x)→ A0μ(x) pela transformação dada por (4.3),resultará

dX + kAμ(x)dx
μ → dX + k

∙
A0μ(x) + k−1

∂f(x)

∂xμ

¸
dxμ. (4.4)

Para ds2 ser invariante exigimos que Aμ(x)→ A0μ(x)−k−1
∂f(x)
∂xμ

, que é uma transformação

de gauge para campos vetoriais. Logo, na teoria de Kaluza-Klein, a transformações da

coordenada espacial extra é interpretada como uma transformação de gauge.

Da eq.(4.1), as componentes da métrica podem ser lidas na forma matricial e podemos

escrever gμ̂ν̂ como

ĝAB =

⎛⎝ gμν − k2AμAν −kAμ

−kAν −1

⎞⎠ . (4.5)

As componentes ĝμ̂ν̂ da matriz inversa são facilmente calculadas via ĝμ̂ν̂ ĝμ̂ν̂ = δμ̂ν̂ , e temos

o resultado

ĝAB =

⎛⎝ gμν −kAμ

−kAμ −1 + k2AλAλ

⎞⎠ . (4.6)

As componentes da métrica nas eqs.(4.5) e (4.6) foram tomadas em relação a uma base

, na qual {dx, dX} são as 1-formas. A base dual { ∂
∂xμ

, ∂
X
} forma uma base do espaço

tangente. No entanto, existe uma outra escolha que torna mais conveniente os cálculos,
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pois torna a métrica diagonal. Esta base é chamada de base de levantamento horizontal

e é obtida considerando-se
θ̂
μ
= dxμ

θ̂
5
= dX + kAμ(x)dx

μ
(4.7)

como bases de 1-forma. Daí

ĝAB =

⎛⎝ gμν 0

0 1

⎞⎠ . (4.8)

A de vetores eμ̂ os quais são duais à θ̂
μ
são dadas por

êμ =
∂

∂xμ
− kAμ(x)

∂

∂X
, (4.9)

ê5 =
∂

∂X
.

Logo, obtém-se os seguintes resultados

[êμ, êν ] = −kFμν(x)
∂

∂X
, (4.10)

[êμ, ê5] = 0,

onde

Fμν(x) =
∂

∂xμ
Aν(x)−

∂

∂xν
Aμ(x). (4.11)

Agora é possível encontrar o tensor de curvatura.

Os coeficientes de conexões não-nulos são dados por [79]

Γ̂μνλ = 1
2
[∂λgμν + ∂νgμλ − ∂μgλν] = Γνμλ

Γ̂μν5 = Γ̂μ5ν =
1
2
kFμν

Γ̂5μν = −1
2
kFμν .

(4.12)

onde Γμνλ são as componentes da conexão na variedade 4-dimensional. O escalar de

curvatura é

R̂ = R̂AB
AB = R̂AB

AB + 2R̂
μ5
μ5. (4.13)

As componentes do tensor de curvatura podem ser obtidas usando-se as eqs.(4.12),

resultando em

R̂λ
σμν = Rλ

σμν +
1

4
k2F λ

νFσμ −
1

4
k2F λ

μFσν −
1

2
k2F λ

σFμν, (4.14)

R̂λ
5μ5 =

1

4
k2F λ

τF
τ
μ,
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onde Rλ
σμν é o tensor de curvatura construído com a métrica de M4 e suas derivadas. A

contração dos índices em (4.14) fornecem os seguintes resultados

R̂μν
μν = R− 3

4
k2F μνFμν, (4.15)

R̂μ5
μ5 =

1

4
k2F μνFμν.

onde R = Rμν
μν. . Substituindo esses resultados na eq.(4.13) obtemos o escalar de curvatura

R̂ = R− 1
4
k2F μνFμν. (4.16)

Como R̂ é um escalar, ele é independente da escolha da base, e a eq.(4.16) é um resultado

geral.

Na versão original da teoria de Kaluza-Klein, a ação básica em cinco-dimensões para

a ação gravitacional de Einstein-Hilbert é:

IEH = (16πL)
−1
Z

d5x
p
ĝ[R̂− 2Λ], (4.17)

onde ĝ = det(ĝμ̂ν̂) = −det(gμν), e Λ é uma constante cosmológica. Quando a forma da

métrica de Kaluza-Klein é usada, o integrando da eq.(4.17), não tem dependência em X,

logo a equação pode ser posta na forma

IEH = (16πL)
−1
Z

d4x
√
g[R− 2Λ− 1

4
k2F μνFμν ]. (4.18)

Temos, então, a ação de Einstein-Maxwell com a identificação k = 16π.

Em virtude do recente interesse no formalismo de Kaluza-Klein, na pespectiva de

se construir uma teoria que unifica as interações fundamentais, nos parece interessante

calcular os fatores de fase para algumas configurações do campo gravitacional, e

especialmente, estudar novos aspectos do efeito Aharonov-Bohm eletromagnético e

gravitacional e da caracterização global do espaço-tempo envolvendo certas configurações.

Para atingir esses objetivos vamos usar os fatores de fase no espaço-tempo de cinco

dimensões, e estudar os efeitos eletromagnéticos e gravitacionais de uma maneira

unificada.

Vamos agora apresentar alguns resultados sobre fatores de fase, na teoria de Kaluza-

Klein, nos espaços-tempo de um solenóide, do monopolo global, e de uma corda quiral.
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Usaremos as transformações de holonomia no espaço-tempo da multicorda quiral para

estudar os aspectos globais deste espaço-tempo. Também calcularemos a fase de Berry

associada a uma partícula escalar quântica nos espaços-tempos da corda magnética quiral

e de múltiplas cordas magnéticas quirais.

4.2 Holonomias associadas ao solenóide em Kaluza-

Klein.

A métrica em 5-dimensões correspondente a solução estática das equações de Kaluza-

Klein do solenóide com simetria cilíndrica é dada por [80]

ds2 = −dt2 + dr2 + dz2 +
r2dφ2

1 + 4πB0r2
+ (4.19)

(1 + 4πG0B0r
2)

∙
±
√
4πB0r

2dφ

1 + 4πB0r2
+ dX

¸2
,

onde B0 é a intensidade do campo magnético no eixo do solenóide. Notemos que desse

elemento de linha podemos, facilmente, escrever a métrica quadri-dimensional, o campo

escalar, e os potenciais eletromagnéticos como sendo

gμν = diag(−1, 1, r2

1 + 4πB0r2
, 1), (4.20)

Φ2 = 1 + 4πB0r
2,

Aμ = (0,
±1
2
B0r

2

1 + 4πB0r2
, 0, 0).

Note que para 4πB0r2 << 1, esses potenciais são precisamente os potenciais obtidos na

eletrodinâmica clássica para um solenóide cilíndrico no gauge de Lorentz.

Considerando o limite r→ 0, tomemos α =
√
4πB0, assim, a eq.(4.19) torna-se

ds2 = −dt2 + dr2 + dz2 +
r2dφ2

1 + α2r2
+ (1 + α2r2)

∙
αr2dφ

1 + α2r2
+ dX

¸2
. (4.21)

Tomando as 1-formas

ω0 = dt,

ω1 = dr,

ω2 = rdφ(1 + α2r2)−1/2,

ω3 = dz,

ω5 = (1 + α2r2)1/2 [αr2(1 + α2r2)−1dφ+ dX] ,

(4.22)
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obtemos os coeficientes não-nulos da conexões pentrádicas

Γ2μ1dx
μ = (1 + α2r2)−3/2dφ = −Γ1μ2dxμ, (4.23)

Γ4μ1dx
μ =

2αr + α3r3

(1 + α2r2)3/2
dφ− α2r

(1 + α2r2)1/2

(1− αr)
dX = −Γ1μ5dxμ.

Tomando o contorno C como sendo a curva onde dr = dt = dz = 0, daí temos o único

coeficiente pentrádico não-nulo,

Γμdx
μ = Γφdφ. (4.24)

Da eq.(4.23) obtemos que

Γφ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 A 0 B

0 −A 0 0 0

0 0 0 0 0

0 −B 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.25)

onde A = −(1 + α2r2)−3/2 e B = −2αr + α3r3(1 + α2r2)−3/2.

Como Γφ tem a propriedade (Γφ)
3 = −(A2+B2)Γφ, definamos Aφ por Aφ = (A+B)

1/2.

Assim, a holonomia para a curva considerada é

U(C) = exp

⎡⎣ 2πZ
0

Γφdφ

⎤⎦ = exp(2πΓφ) (4.26)

= I +
Γφ
Aφ

sen(2πAφ) + (
Γφ
Aφ
)2 [1− cos(2πAφ)] ,

que é não-trivial.

Notemos que a contribuição da quinta componente é percebida pela variável de contorno,

apesar da holonomia ter a mesma forma que a quadri-dimensional.

4.3 Fatores de fase no espaço-tempo do monopolo

global na teoria de Kaluza-Klein

O elemento de linha para o espaço-tempo associado a um monopolo global na teoria

de Kaluza-Klein foi obtido por Sen e Baneejee [81], e é dado por

ds2 = −A(R)dτ 2 +B(R)dR2 +R(R)(dθ2 + sen2θdφ2) + C(R)dψ, (4.27)
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onde A(R) = [1− 8πη2 − 2M/R]
a, B(R) = [1− 8πη2 − 2M/R]

−(a+b), R(R) =

R2 [1− 8πη2 − 2M/R]
1−a−b e C(R) = [1− 8πη2 − 2M/R]

be os parâmetros a e b obedecem

a seguinte relação de consistência a2 + b2 + ab = 1.

Para o caso particular de a = 1 e b = 0, a equação (4.27) torna-se

ds2 = −Adτ 2 +A−1dR2 +R2(dθ2 + sen2θdφ2) + dψ2, (4.28)

onde A = [1− 8πη2 − 2M/R] , e M é o parâmetro de massa e η é um parâmetro

relacionado com a escala na qual a simetria é quebrada.

Fazendo a seguinte mudança de coordenadas

τ → t = βτ,

R → r = β−1R,

M → m = β−3M,

ψ → ψ,

onde β2 = 1− 8πη2, o elemento de linha dado pela equação (4.28), torna-se

ds2 = −(1− 2m/r)dt2 + (1− 2m/r)−1dr2 + β2r2(dθ2 + sen2θdφ2) + dψ2. (4.29)

Escolhendo as seguintes péntadas

ω0 = A1/2dt,

ω1 = A−1/2dr,

ω2 = βrdθ,

ω3 = βrsenθdφ,

ω5 = dψ,

(4.30)

onde A = (1− 2m/r).

Usando a equação de estrutura de Cartan dωa + ωa
c ∧ ωc

b = 0( com os índices pentádricos

iguais a 0, 1, 2, 3, 5) encontramos as seguintes conexões, não nulas,

Γ0μ1dx
μ = −m/r2dt = −Γ1μ0dxμ (4.31)

Γ2μ1dx
μ = βA1/2dθ = −Γ1μ2dxμ

Γ3μ1dx
μ = βA1/2senθdφ = −Γ1μ3dxμ

Γ3μ2dx
μ = β cos θdφ = −Γ2μ3dxμ
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Vamos inicialmente considerar círculos centrados na origem com valores fixos de r, θ e t.

Neste caso, da eq.(4.31) temos

Γμdx
μ = Γφdφ,

onde

Γφ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 βA1/2senθ 0

0 0 0 β cos θ 0

0 −βA1/2senθ −β cos θ 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.32)

= iβA1/2(r)senθJ13 − iβ cos θJ23,

sendo J13 e J23 os geradores de rotação em cinco dimensões, em torno dos eixos y e x,

respectivamente.

Como Γφ é independente de φ, então o fator de fase é

U(C) = P exp

∙I
Γμdx

μ

¸
= exp

∙I
Γφdφ

¸
= eΓφ(φ2−φ1). (4.33)

Em particular, para θ = π/2, os elementos não-nulos da matriz dada pela eq.(4.32) são

βA1/2senθ = β(1− 2m/r)1/2, (4.34)

β cos θ = 0.

Notemos que Γφ satisfaz a relação (Γφ)
3 = −β2A = −β2(1 − 2m/r)Γφ = −A2φΓφ,

(Aφ = β(1− 2m/r)1/2), o que acarreta que o fator de fase para este caso é

U(C) = I +
Γφ
Aφ

senAφ(φ2 − φ1) +

µ
Γφ
Aφ

¶2
[1− cosAφ(φ2 − φ1)] . (4.35)

Tomando o traço para um círculo completo, temos que o loop de Wilson gravitacional é

W (C) = Tr(U(C)) = 2(
3

2
+ cos 2πAφ). (4.36)

Vamos calcular o fator de fase para a curva r(s), θ(s) contida no plano meridiano.

Necessitamos calcular, então,

Γsds = (Γθθ̇ + Γrṙ)ds (4.37)
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onde, da eq.(4.31) temos

Γs =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 βA1/2(r) 0 0

0 −βA1/2(r) 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.38)

Mas,

P exp

∙Z
Γsds

¸
= exp

∙Z
Γsds

¸
, (4.39)

pois as matrizes comutam para diferentes valores de s. A propriedade dada pela eq.(4.39)

é válida para qualquer curva contida em um plano arbitário contendo a origem. Em

particular, para a curva meridiana, ṙ = 0, θ̇ = 1, obtemos

Γs = Γθ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 βA1/2(r) 0 0

0 −βA1/2(r) 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ibA1/2(r)J12, (4.40)

onde J12 é o gerador de rotaçòes em torno do eixo-z, na representação pentadimensional.

Portanto, o fator será dado por

U(0,2π)(C) = I +
Γθ
Aθ

sen(2πAθ) +

µ
Γθ
Aθ

¶2
[1− cos(2πAθ)] , (4.41)

onde Aθ = Aφ. E o loop de Wilson é

W (C) = Tr(U(C)) = 2(
3

2
+ cos 2πAφ). (4.42)

Para um segmento radial obtemos a partir da eq.(4.31), com θ̇ = 0 e ṙ = 1, que o fator

de fase é trivial ou seja U = I.

Para uma translação no tempo, temos que

Γμdx
μ = Γtdt,

108



com Γt sendo dada por

Γt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 m/r2 0 0 0

m/r2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −im

r2
J04, (4.43)

onde J04 é o gerador de boost na direção z. Portanto o fator de fase é

U(t1t2)(C) = Γtsenh[m/r2(t2 − t1)] + Γ2t cosh[m/r2(t2 − t1)]. (4.44)

Agora, vamos definir a variação angular e estabelecer sua ligação com a transformação

de holonomia. A variação angular é um número e a transformação de holonomia é

um conjunto de aplicações lineares(uma para cada ponto e para cada curva fechada).

Devemos obter, então, das aplicações lineares um número, a variação angular no transporte

paralelo.Para obter uma dada transformação linear, vamos considerar um ponto sobre a

curva C. Então, UA
B definido por (4.37) é a transformação de holonomia associada com o

ponto p ∈ C, cuja relação com a variação angular X é dada por

UA
A = cosXA. (4.45)

Se considerarmos um círculo equatorial e o índice A=1, então eq.( 4.45) nos dá

cosX1 = cos 2πAφ, |X1| = |2πAφ + 2πn| .

Quando m→ 0 temos que X1 → 0, logo, n = −1, daí

|X1| = 2π |Aφ − β| = 2πβ |A−1| . (4.46)

Como esta métrica é tipo Schwarzschild [82]) o ângulo correspondente é¯̄
X S
¯̄
= 2π |Aφ − β| = 2πβ |A−1| (4.47)

Notemos que quando r = 2m(raio de Schwarzschild) temos Aφ = 0 e X S
1 = 2πβ. Notemos

também que para A = 4 , cosX4 = 1 → X4 = 0, logo a coordenada ψ não influência no

transporte paralelo do vetor V A, ficando a influência por conta das outras coordenadas

espaciais.
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Com o intuito de estabelecer a relações de Mandelstam vamos utilizar a segunda

equação de estrutura de Cartan; Ra
b = dωa + ωa

c ∧ ωc
b e as conexões de 1-forma dada pela

eq.(4.31) para estabelecer as componentes do tensor de Ricci e em seguida determinamos

que as expressões para o tensor de curvatura, que são dadas na forma matricial por

R̂A
13B = βmsenθr−2(1− 2m/r)−1/2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0

0 0 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.48)

e

R̂A
23B = 2βmr−1senθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 1 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.49)

(A,B são índices pentrádicos).

Verificamos, então que as relações de Mandelstam para um círculo equatorial (θ = π/2 e

∆φ = 2π) são satisfeitas e são dadas por

∂W

∂r
=

2πZ
0

dφTr(R̂13U) = 2πTr(R̂13U) = −2πβ
m

(1− 2m/r)1/2r2
sen(2πAφ), (4.50)

∂W

∂θ
=

2πZ
0

dφTr(R̂23U) = 2πTr(R̂23U) = 0.

onde W (C) é dado pela equação eq.(4.42).

Usando estes resultados para o fator de fase podemos concluir que novamente a

expressão geral para U(C) é

U(C) = P exp

µ
− i

2

Z
ΓABC (x)JABdx

C

¶
, (4.51)

como elemento do grupo SO(4, 1).

Estes resultados podem ser particularizados para o monopolo global [83] retomamos

a hipersuperfície ψ =constante. Neste caso, os fatoes de fase são elementos do grupo de

Lorentz SO(3, 1).
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4.4 Fatores de fase no espaço-tempo de uma corda

quiral magnética.

O elemento de linha correspondente a corda cósmica quiral magnetica na teoria de

Kaluza-Klein é dada por [84]

ds2 = −
¡
dt+ 4J tdφ

¢2
+ dr2 + α2r2dφ2 + (dz + 4Jzdφ)2 + (dX +

Φ

2π
dφ)2. (4.52)

Os parâmetros J t, Jz e Φ são tratados como momento, torção e fluxo através da corda,

respectivamente. Para Φ = 0 ela representa o espaço-tempo gerado pela corda cósmica

quiral na teoria de Kaluza-Klein.

Vamos considerar o caso no qual J t = Jz = Φ = 0. Isto corresponde ao caso da corda

cósmica [85]. Sobre este ponto de vista vamos calcular a transformação de holonomia

para uma curva qualquer no plano-xy a partir dos resultados [46] correspondentes ao caso

da corda cósmica quiral em 4-dimensões. Como já mostramos, quando transportamos um

vetor paralelamente em torno de uma corda cósmica, ao longo de uma curva qualquer no

plano-xy, iniciando e terminando na origem, o vetor adquire uma fase que é dada por

U(C) = exp

⎛⎝ 2πZ
0

Γφdφ

⎞⎠ = e−8πiμJ12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 cos 8πμ sen8πμ 0 0

0 sen8πμ cos 8πμ 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.53)

onde J12 é o gerador de rotações na (representação em 5-dimensões) em torno do eixo-z.

Então, quando circulamos uma corda cósmica, partimos de um ponto (t,x) para um ponto

(t0,x0), os vetores coluna (t,x) e (t0,x0) relacionam-se pela equação⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0

x0

y0

z0

X 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 cos 8πμ sen8πμ 0 0

0 −sen8πμ cos 8πμ 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

x

y

z

X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.54)
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Como o espaço-tempo fora da corda cósmica é localmente plano, podemo descrever a

solução analítica em termos da métrica do espaço-tempo de Minkowski, mas conectados

por algumas condições as quais são dadas pela eq.(4.54).

O elemento de linha correspondente a corda cósmica quiral magnética pode ser posta

na forma de Minkowski

ds2 = −dT 2 + dR2 +Rdθ2 + dZ2 + dX2, (4.55)

através da mudança de coordenadas

t = T − J tφ

φ = θ/α

r = R

z = Z − Jzφ

x = X − Φ
2π
φ.

(4.56)

Como no caso da corda cósmica, o espaço-tempo exterior à corda quiral magnética é

localmente plano, e podemos descrevê-lo em termos do espaço-tempo munido com a

métrica de Minkowski, agora conectado por condições as quais são as mesma do caso

da corda cósmica, com a condição extra para as coordenadas t, z e X. Essas condições

são expressas pela relação entre os pontos (t,x) e ( t0,x0) ao longo das fronteiras dadas

pela eq.(4.55), levando em conta as condições adicionais dadas pelas equações de eq.(4.56).

As transformações dadas pelas eqs.(4.55) e (4.56) podem ser postas na forma de

multiplicação de matrizes homogêneas da seguinte maneira: seja MB
A uma matriz hexa

dimensional, com A e B tomando os valores A,B = 0, 1, 2, 3, 5, 6. Tomemos Mμ
ν como

sendo a matriz de rotação dada pela eq.(4.53), M0
6 = 8πJ

z, M3
6 = 8πJ

t,M4
6 = Φ,M0

6 =

M1
6 =M6

3 = 0 e M
6
6 = 1, temos então, que⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0

x0

y0

z0

X 0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 8πJ t

0 cos 8πμ sen8πμ 0 0 0

0 −sen8πμ cos 8πμ 0 0 0

0 0 0 1 0 8πJz

0 0 0 0 1 Φ

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

x

y

z

X

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.57)
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Considerando as matrizes

M0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 i

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, M3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 i

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
e

M5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Podemos escrever a equação (4.57) na forma

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0

x0

y0

z0

X 0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= exp [−i8πJzM3] exp

£
−i8πJ tM0

¤
exp [−iΦM5] exp [−8iπmJ12]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

x

y

z

X

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.58)

No presente caso, existe um sistema de coordenadas localmente plano e portanto podemos

assumir a interpretação usual para o tempo comestrutura geométrica helicoidal. Note que

a generalização desta estrutura para o espaço-tempo com quatro ou mais dimensões, cinco,

neste caso, não pode ser simplesmente admitida pois, tal estrutura depende da existência

de um sistema de coordenadas localmente plano.

Da equação (4.58) podemos obter a transformação de holonomia para a corda cósmica

(J t = Jz = Φ = 0), para a corda girante (Jz = Φ = 0) e para a corda de fluxo magnético

(J t = Jz = 0). Neste caso temos o seguinte elemento de linha

ds2 = −dt2 + dz2 + dr2 + α2r2 + (dX +
Φ

2π
dφ)2. (4.59)

Usando a decomposição usual de Kaluza-Klein para a métrica em 5-dimensões, podemos
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mostrar que a métrica eq.(4.51) representa a corda de fluxo magnético com campo

longitudinal

Bz = k−1Φδ(2)(r) (4.60)

onde k é a constante de Kaluza. O vetor potencial Aφ = k−1 Φ
2π
é gauge puro, exceto sobre

eixo-z.

Notemos que o último fator que aparece na eq.(4.58) é próprio da presença adicional

da quinta dimensão e esta associação ao efeito Aharonov-Bohm eletromagnético. Os

outros três fatores estão associados com o espaço-tempo quadri-dimensional e leva em

conta os efeitos gravitacionais usuais. Portanto, ainda da eq.(4.58) podemos concluir

que quando transportamos um vetor ao longo de uma curva que circunda a corda, o vetor

transportado adquire um fator de fase não-nulo. Esta fase não-trivial é uma expressão dos

efeitos Aharonov-Bohm eletromagnético e gravitacional, combinados que aparecem como

consequência da unificação de Kaluza-Klein. Este efeito deve ser entendido em termos dos

aspectos globais do espaço-tempo em combinação e possui natureza puramente clássica.

4.5 Fatores de fase no espaço-tempo de múltiplas

cordas quirais magnéticas.

Primeiramente, vamos usar a solução de Azreg-Ainou e Clément [84] para uma corda

quiral em teoria de Kaluza-Klein para obtermos a generalização para o caso de N cordas

quirais paralelas em teoria de Kaluza-Klein. Se considerarmos o sistema Cartesiano de

coordenadas x = r cosφ, y = rsenφ, podemos escrever o elemento de linha dado pela

eq.(4.52) como

ds2 = −(dt+ 4J txdy − ydx

r2
)2 + e−4V (dx2 + dy2) + (4.61)

(dz − 4Jzxdy − ydx

r2
)2 + (dX +

Φ

2π

xdy − ydx

r2
)2

com V = 2μ ln r.

A generalização da corda quiral para a multicorda quiral foi obtida [86] pela introdução

dos parâmetros μi, J
t
i , J

z
i e Φi com i = 1, 2, . . . , N definido em cada corda quiral localizada
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nos pontos r = ri do plano z = 0. O métrica resultante tem a forma da eq.(4.61) com as

seguintes mudanças:

J txdy − ydx

r2
→

NX
i=0

J t
i

(x− xi)dy − (y − yi)dx

|r− ri|2
(4.62)

Jz xdy − ydx

r2
→

NX
i=0

Jz
i

(x− xi)dy − (y − yi)dx

|r− ri|2

Φ

2π

xdy − ydx

r2
→

NX
i=0

Φi

2π

(x− xi)dy − (y − yi)dx

|r− ri|2

V = 2m ln r→
NX
i=0

mi ln
£
r2 − 2rri cos(φ− φi) + r2i

¤
.

Portanto, o elemento de linha para o espaço-tempo gerado pelas N cordas quirais na

teoria de Kaluza-Klein pode ser escrita como

ds2 = −
"
dt+

NX
i=1

Ai(W
1
i dy −W 2

i dx)

#2
+ e−4V (dx2 + dy2) + (4.63)"

dz +
NX
i=1

Bi(W
1
i dy −W 2

i dx)

#2
+

"
dX +

NX
i=1

Ci(W
1
i dy −W 2

i dx)

#
onde Ai = 4J t

i , Bi = 4Jz
i e Ci =

Φi
2π
. Com J t

i , J
z
i e Φi correspondendo ao momento

angular, torsão e fluxo da i-ésima corda quiral, respectivamente, sendo W 1
i e W 2

i são

dados por

W 1
i =

x− xi

|r− ri|2
, W 2

i =
y − yi

|r− ri|2
. (4.64)

Vamos, agora, considerar o caso em que Φi = 0. Sabemos que isto corresponde a

multiplas cordas cósmicas quirais. Como é conhecido do capítulo 3, seção 5, um vetor

transportado paralelamente ao longo de uma curva qualquer no plano-xy, que inicia e

termina na origem,em torno da multicorda cósmica quiral, e adquire uma fase dada por

U(C) = exp

⎛⎝ 2πZ
0

Γφdφ

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 8πJ̃ t

0 cos 8πμ̃ sen8πμ̃ 0 0

0 −sen8πμ̃ cos 8πμ̃ 0 0

0 0 0 1 8πJ̃z

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.65)

onde μ̃ =
NP
i=1

μ̃i, J̃
t =

NP
i=1

J̃ t
i e J̃

z =
NP
i=1

J̃z
i .
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Como o espaço-tempo fora da multicorda cósmica quiral é localmente plano, podemos

descrever a solução analítica puramente em termos do espaço-tempo com a métrica de

Minkowski, mas conectada pelas seguintes condições⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0

x0

y0

z0

X 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 cos 8πμ̃ sen8πμ̃ 0 0

0 −sen8πμ̃ cos 8πμ̃ 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

x

y

z

X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.66)

que relacionam os pontos (t,x) e (t0,x0), ao longo das bordas. Como no caso da múltipla

corda, o espaço-tempo da multicorda quiral magnética é também plano, e podemos usar

as mesma condições com exceção as concernentes as coordenadas t, z eX. Essas condições

são expressas relacionando-se os pontos (t,x) e (t0,x0) como segue:

t0 = t− 8πJ̃ t,

x0 = cos(8πμ̃)x+ sen(8πμ̃)y,

y0 = −sen(8πμ̃)x+ cos(8πμ̃)y,

z0 = z − 8πJ̃z,

X 0 = X − Φ,

(4.67)

onde consideramos como caminhos círculos no plano-xy.

A transformação dada pela equação (4.67) pode ser posta na forma de produtos

de matrizes homogêneas como foi feito na seção anterior. Tomemos Mμ
ν como sendo

a matriz de rotação U(C) = exp(−8πμ̃J12) e M0
6 = 8πJ̃ t, M3

6 = 8πJ̃z M4
6 = Φ̃,

M0
6 =M1

6 =M6
3 = 0 e M

6
6 = 1, temos então, que⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0

x0

y0

z0

X 0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 8πJ̃ t

0 cos 8πμ̃ sen8πv 0 0 0

0 −sen8πμ̃ cos 8πμ̃ 0 0 0

0 0 0 1 0 8πJ̃z

0 0 0 0 1 Φ̃

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

x

y

z

X

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.68)
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que pode ser posta na forma;⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0

x0

y0

z0

X 0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= exp

h
i8πJ̃zM3

i
exp

h
i8πJ̃ tM0

i
exp

h
−iΦ̃M4

i
exp [−8iπV J12]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

x

y

z

X

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.69)

onde

M0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 i

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, M3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 i

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
e

M5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 i

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A equação eq.(4.69) é a expessão exata para a holonomia, para círculos no espaço-

tempo da multicorda quiral magnética. Somente as cordas envolvidas pela curva contribui

para o fator de fasse.

A existência de coordenadas localmente planas neste espaço-tempo nos permite

considerar a eq.(4.69) como a matriz de transporte paralelo. Então, podemos dizer que

quando transportamos um vetor ao longo de um círculo neste espaço-tempo ele adquire

uma fase que depende de μi, J
t
i , J

z
i e Φi. Este efeito está associado a topologia não-trivial

do espaço-tempo em questão, e representa uma combinação dos efeitos Aharonov-Bohm

eletromagnético e gravitacional, no contexto da teoria unificada de Kaluza-Klein.
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4.6 Caracterização global da multicorda quiral

magnética.

Como mais uma aplicação da transformação de holonomia vamos estudar, do ponto de

vista global, o espaço-tempo de uma configuração de N cordas cósmicas quirais magnéticas

localizadas nos pontos aj, j = 1, 2, . . . , N . Para tanto vamos usar o resultado que diz que

somente a corda envolvida pela curva contribui para o fator de fase adquirido por um

vetor quando transportado paralelamente no espaço-tempo de múltiplas cordas quirais

magnéticas. Vamos proceder de maneira análoga como foi feito no cápitulo 2.

Se transportamos um vetor x paralelemente em torno de um círculo que circunda uma

corda quiral temos o seguinte vetor resultante

x(1) = U1x (4.70)

onde U1 é obtido de [86]

Uk = exp(−8iπJ t
kM0) exp(−8iπJz

kM3) exp(−8iπmkJ12) exp(−iΦkM5), (4.71)

pondo k = 1.

Agora, vamos considerar um sistema de duas cordas quirais, uma em a1 = 0(origem) e

a outra em a2. Se transportarmos o vetor x ao longo do círculo em torno da corda cósmica

2, o vetor resultante é dado por U2x. Transportando paralelamente este vetor resultante

ao longo do círculo que circunda a corda cósmica 1, teremos o novo vetor resultante

x(2) = b1,2 + U1U2x (4.72)

onde b1,2 = U1(1−U2)a2. A expressão para U2 é dada pela equação eq.(4.71) com k = 2.

Se considerarmos um sistema com três cordas, temos

x(3) = b1,2,3 + U1U2U3x (4.73)

onde b1,2,3 = U1(1− U2)a2 + U1U2(1− U)a3.

É facil generalizar este resultado para um sistema de N cordas cósmicas, localizadas

em a1,a2, . . .aN . O vetor x(N) obtido após o transporte paralelo do vetor x é dado pela
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expresão

x(N) = b1,2,...N + U1U2 . . . UNx (4.74)

onde b1,2,...,N−1 = U1(1−U2)a2+U1U2(1−U3)a3+. . .+U1U2 . . . UN−2(1−UN)aN−1UN−1(1−

UN)aN e UN é dado pela equação eq.(4.71) com k = N . Então, um vetor x transportado

paralelamente no campo gravitacional gerado por de N cordas quirais adquire uma fase

dada por U1U2 · · ·UN e do ponto de vista global, este sistema comporta-se como uma

simples corda com as condições dadas pela eq.(4.74)

Agora, considere um sistema de duas cordas quirais com uma movendo-se com relação

a outra. Considere a corda 1, localizada na origem, e a corda 2, localizada em a2 movendo-

se com relação a primeira com velocidade v2. Esta corda pode ser vista como uma corda

submetida a boost. Então, se transportarmos um vetor x percorrer ao longo do círculo

em torno da corda 2, temos

x(2) = a2 + L2U2L
−1
2 (x− a2), (4.75)

com

L2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosh γ2 senhγ2 0 0 0 0

senhγ2 cosh γ2 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.76)

onde γ2 é o parâmetro de boost tal que kv2k = tghγ2. Este boost corresponde a mudança

de coordenadas Lx e sob esta mudança o fator de fase U transforma-se como LUL−1.

Se transportamos paralelamente o vetor x(2) ao longo do círculo, em torno da corda 1, o

vetor resultante é dado por

x(1) = U1(a2 + L2U2L
−1
2 (x− a2)). (4.77)

Então, vemos que se o vetor é paralelamente transportado no campo das cordas 1 e 2,

ele adquire a fase dada por U1L2U2L−12 . Este resultado pode ser generalizado no sentido

de considerar N-1 cordas cósmicas localizadas em a1,a2, . . . aN−1 e a N-ésima com um
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boost. Nesse caso, temos

x(N) = b1,2,...N + U1U2 . . . UN−1LNUNL
−1
N x. (4.78)

Portanto, quando um vetor é paralelamente transportado em torno dessas N cordas

quirais, adquire a fase

U1U2 . . . UN−1LNUNL
−1
N , (4.79)

onde LN é dada pela eq.(4.76) com γ2 → γN .

Vamos considerar uma simples corda quiral que se comporta como este sistema. Esta

corda pode ser considerada como estando submetida a um boost dado por

L(φ, γ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L00 L01 L02 L00 L04 L05

L10 L11 L12 L13 L14 L15

L20 L21 L22 L23 L24 L25

L30 L31 L32 L33 L34 L35

L40 L41 L42 L43 L44 L45

L50 L51 L52 L53 L54 L55

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.80)

onde

L00 = cosh γ, L01 = cosφ sinh γ, L02 = sinφ sinh γ, L03 = 0, L04 = 0, L05 = 0

L10 = cosφ sinh γ, L11 = 1− cos2 φ(1− cosh γ), L12 = − cosφ sinφ(1− cosh γ),

L13 = 0, L14 = 0, L15 = 0, L20 = senφ cosh γ, L21 = − cosφ sinφ(1− cosh γ),

L22 = 1− sen2φ(1− cosh γ), L23 = 0, L24 = 0, L25 = 0

L30 = 0, L31 = 0, L32 = 0, L33 = 1, L34 = 0, L35 = 0

L40 = 0, L41 = 0, L42 = 0, L43 = 0, L44 = 1, L45 = 0

L50 = 0, L51 = 0, L52 = 0, L53 = 0, L54 = 0, L55 = 1

A forma L(φ, γ) decore do fato que toda transformação de Lorentz homogênea pode

ser decomposta da seguinte maneira

L(φ, γ) = R(φ)L(0, γ)S(φ),

onde R(φ) e S(φ) são rotações. Assim, se fizermos o transporte paralelo de um vetor x ao

longo das curvas fechadas, em cujos centros localiza-se uma corda temos o seguinte vetor
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após este processo

xN+1 = L
£
a+ UL−1(x− a)

¤
, (4.81)

onde a é a posição da corda quiral que é equivalente ao sistema de cordas.

Igualando as fases geométricas adquiridas pelo vetor x em ambos os casos, temos

U1U2 . . . UN−1LNUNL
−1
N = LUL−1. (4.82)

Tomando o traço da eq.(4.82) obtemos o seguinte resultado [86]

cosφ = cosφN cos(
N−1X
j=1

φj)− cosh γN sinφN sin(
N−1X
j=1

φj) + (4.83)

sinh2 γN
2

(cosφN − 1)
"
cos(

N−1X
j=1

φj)− 1
#

onde φj = 8πμj e φ = 8πμ.

Esta é a relação entre a deficiência angular do espaço-tempo resultante e a deficiência

angular do espaço-tempo associado às N cordas quirais. Se consideramos as outras

componentes da eq.(4.83), obtemos as equações

J t cosφ sinh γ = cos(
N−1X
j=1

φj) sinh γNJ
t
N , (4.84)

−J t sinφ sinh γ = sin(
N−1X
j=1

φj) sinh γNJ
t
N ,

Jz =
NX
j=1

Jz
j ,

cosh γNJ
t =

NX
j=1

Φj,

Φ =
NX
j=1

Φj,

que relacionam os parâmetros associados com a corda cósmica quiral, que é equivalente ao

sistema N de cordas quirais, com os parâmetros que caracterizam essas cordas. Portanto,

do ponto de vista global temos uma equivalência entre uma simple corda cósmica quiral

magnética e N cordas quirais magnéticas, sendo que a ultima está submetida um boost,

desde que as relações dadas pela euações (4.83) e (4.84) sejam satisfeitas.
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4.7 Fase de Berry na teoria de Kaluza-Klein.

Nesta seção vamos considerar a fase de Berry associada a uma partícula escalar

quântica induzida pelo espaço-tempo de uma corda cósmica quiral magnética, no contexto

da teoria pentadimensional de Kaluza-Klein. A dinâmica da partícula quântica escalar

neste espaço-tempo, cujo elemento de linha é dado pela eq.(4.52) é dascrita pela seguinte

equação Klein-Gordon, com acoplamento mínimo, dado por

{∂2t −
1

r
∂r(r∂r)−

1

α2r2
[∂φ − 4J t∂t − 4Jz∂z

− Φ

2π
∂X]2 −m2}ψ(t, r, φ, z,X) = 0. (4.85)

Agora, vamos proceder de maneira análoga ao que foi feito no capítulo anterior. A solução

desta equação pode ser escrita como

ψ(t, r, φ, z,X) = e−iEnteiknzeiQXϕ(r, φ). (4.86)

Substituindo a eq.(4.86) na eq.(4.85), obtemos

{1
r
∂r(r∂r) +

1

αr2

∙
∂φ − 4iEnJ

t − 4iknJz − ΦQ

2π

¸2
+E2

n −K2
n −Q2 +m2}ϕ(r, φ) = 0. (4.87)

Para este caso, o fator de fase de Dirac é dado por

ϕn(r, φ) = exp{[−4i(EnJ
t − knJ

z)− iQ
Φ

2π
]

Z φ

φ0

dφ}ϕ0(r, φ) (4.88)

Considere que a partícula está em uma caixa localizada a uma distancia Ri da corda.

Então, a conexão de Berry associada a esta situação é dada por

AI,J
n = [−4i(EnJ

t − knJ
z)− iQ

Φ

2π
]dR2δI,J (4.89)

Portanto , a fase geometrica para este problema é

γn(C) = 8π[EnJ
t −KnJ

z] +QΦ (4.90)

Notemos que para J t = Jz = 0 obtemos a fase quântica de Berry correspondente ao

efeito Aharonov-Bohm eletromagnético [12]; para Jz = 0 e Φ = 0 temos a fase geométrica
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gravitacional de Corrichi e Pierri [16]. Para Φ = 0, reobtemos os resultados do capítulo

anterior.

Agora, vamos generalizar os estes resultados para o espaço-tempo gerado por múltiplas

cordas cósmicas quirais magnéticas na teoria de Kaluza-Klein, cujo elemento de linha é

dado pela eq.(4.63) .

Vamos adotar o mesmo procedimento usado no caso do espaço-tempo da multicorda

quiral e calcular o fator de fase de Dirac para uma, duas,...,N cordas. Para uma corda, o

método do fator de fase de Dirac nos fornece a seguinte expressão

ϕ1n(r, φ) = exp{[−4i(EnJ
t
1 − knJ

z
1 )− iQ

Φ1
2π
]

Z φ

φ0

dφ}ϕ0(r, φ). (4.91)

Agora, transportando o estado ϕ1n(r, φ) em torno da segunda corda, localizada em r2 , ao

longo da curva C2, temos o seguinte resultado

ϕ2n(r, φ) = exp{[−4i(EnJ
t
2 − knJ

z
2 )− iQ

Φ2
2π
]

Z φ

φ0

dφ}ϕ1(r, φ). (4.92)

Substituindo a equação eq.(4.91) em eq.(4.92), obtemos o seguinte resultado

ϕ2n(r, φ) = exp{[−4i(En(J
t
2 + J t

1)− kn(J
z
2 + Jz

1 ) (4.93)

−iQ(Φ2 + Φ1)

2π
]

Z φ

φ0

dφ}ϕ1(r, φ).

A generalização deste resultado para N cordas quirais magnéticas localizadas em

r1, r2, . . . , rN segue por analogia com os dos resultados anteriores, e é dado por

ϕ1,2,...Nn (r, φ) = exp{[−4i(
NX
j=1

(J t
jEn − Jz

j kn))−
iQ

2π

NX
j=1

Φi]

Z φ

φ0

dφ}.ϕ0(r, φ). (4.94)

Usando o resultado dado pela equação (4.94) e o mesmo procedimento das seções

anteriores, segue que

γn(C) = i

I
C

AIJ
n =

NX
j=1

[8π(J t
jEn − Jz

j kn) +QΦj], (4.95)

que é a fase geométrica quântica de Berry para uma partícula quântica escalarno espaço-

tempo gerado por N cordas quirais magnéticas na da teoria de Kaluza-Klein.

Sumarizando, apresentamos neste capítulo uma breve revisão da teoria penta-

dimensional Abeliana de Kaluza-Klein e utilizamos as transformações de holonomias, em
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diversos espaço-tempos para estudar aspectos globais destes espaço-tempos. No caso do

solenóide, notamos que a contribuição da quinta componente é percebida pela holonomia

quando circundamos o solenóide pela curva onde dr = dt = dz = 0,apesar da holonomia

ter a mesma forma que a quadri-dimensional, e no caso do monopolo global estabelecemos

a variação angular que é relacionada com a transformação de holonomia. No caso da

corda quiral magnética demonstramos que a fase é não-trivial, e que é uma expressão

dos efeitos Aharonov-Bohm eletromagnético e gravitacional combinados, que aparece

como consequência da unificação de Kaluza-Klein. Para o caso das multicordas quirais

magnéticas calculamos a holonomia e obtivemos um resultado análogo, em que os efeitos

eletromagnético e gravitacional aparecem simultaneamente e de maneira independente.

Apresentamos a caracterização global para o espaço-tempo de multicordas, sendo que

uma delas está submetida a um boost. Finalizamos este capítulo calculando a fase de

Berry associada a uma partícula escalar quântica, induzida pelos espaços-tempos de uma

corda cósmica quiral magnética e o de N cordas quirais magnéticas na teoria de Kaluza-

Klein.
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Capítulo 5

Fatores de Fase no Espaço-Tempo de

Kerr-Newman com um defeito

Cônico.

5.1 Introdução.

A holonomia linear clássica não é suficiente para distinguir espaços-tempos com e

sem rotação [87], e portanto, para se calcular a holonomia correspondente a curvas

em espaços-tempos gerados por corpos em rotação é necessário considerar também a

holonomia translacional que é propocional ao momento angular da fonte. No caso em que

há torção, e que não iremos considerar, faz-se necessário calcular também a holonomia

translacional de modo a se obter a expressão correta correspondente à holonomia total.

As transformações de holonomia ao longo de uma dada curva não é um invariante por

difeomorfismo. No caso particular em que a curva é aberta, o transporte paralelo não só

depende da trajétoria, como também das coordenadas dos pontos extremos da curva.

Introduzimos, como nos capítulos anteriores, o formalismo de tétradas e obtemos a

holonomia linear por uma integração direta da conexão espinorial. No caso da holonomia

translacional, adotamos o conceito de desenvolvimento de curva sobre uma variedade [88]

Neste capítulo calculamos os fatores de fase para diferentes curvas no espaço-tempo de

Kerr-Newman com um defeito cônico (corda cósmica). A presença deste altera a isometria
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original do espaço-tempo, informação esta que podemos extrair da estrutura do fator de

fase. Alguns casos particulares como os dos espaços-tempos de Kerr, Lense-Thirring

e Schawzchild, serão também considerados. Os resultados obtidos em Kerr corrigem

cálculos feitos anteriormente [82], em que não foi considerada na holonomia total a parte

translacional e sim somente a parte linear dessa quantidade.

5.2 Buraco negro carregado e com rotação.

As soluções de Schwarzschild e Reissner-Nordstrom foram originalmente obtidas entre

1915-1916, logo após o advento da Relatividade Geral. Elas surgiram cinquenta anos antes

da determinação da métrica associada ao espaço-tempo gerado por um corpo com rotação,

obtido primeiramente por Kerr. A razão para tal dificuldade é que um corpo girando

apresenta duas isometrias: uma axial e outra translacional no tempo. Por outro lado, a

simetria esférica deste problema torna os cálculos mais simples. Agora, temos que resolver

as equações de Einstein no vazio com mais funções arbitrárias, quando comparadas, por

exemplo, com o caso de Schwarzschild.

Inicialmente, a grande contribuição para o entendimento da solução de Kerr veio de

trabralhos sobre a classificação das métricas de Einstein (soluções de Rμν = Λgμν) via

propriedades algébricas do tensor de Weyl. Esta classificação é chamada de Petrov, e é

dela que vem que a solução de Kerr que é um tipo algebricamente especial, tipo D. Isto

significa que existe um família de geodésicas não-nulas com vetores tangentes kμ tais que

Cμνρ[σ kλ]k
νkρ ≡ 0,

∗Cμνρ[σ kλ]k
νkρ ≡ 0,

(5.1)

onde ∗Cμνρσ =
1
2
εμνλτC

λτ
ρσ. Esta condição toma uma forma mais simples se decompusermos

Rμνρσ, em suas componentes espinoriais. Neste caso, a condição torna-se uma restrinção

sobre o número de autovalores distintos da forma espinorial de Cμνρσ.

Mais recentemente [89] um método com mais motivação física para gerar a solução de

Kerr foi apresentado.

Lembremos que qualquer problema dinâmico para uma dada Hamiltoniana possui a

forma equivalente de Hamilton-Jacobi. Tais equivalências são usadas para tratar equações
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de onda, por exemplo. Este assunto teve grande destaque no início deste século, e muitos

trabalhos foram feitos sobre o assunto. Uma maneira equivalente de resolver a equação do

movimento de um sistema Hamiltoniano é encontrar a solução da equação de Hamilton-

Jacobi

H

µ
∂S

∂xi
, xi
¶
+

∂S

∂t
= 0, (5.2)

onde H(pj, x
i) é a Hamiltoniana. Embora exista alguma sutileza em definir a

Hamiltoniana para geodésicas, elas satisfazem a equação de Hamilton-Jacobi

∂S

∂λ
+ gμν

∂S

∂xμ
∂S

∂xν
= 0, (5.3)

onde λ é um parâmetro afim.

Para resolver o problema geodésico tem-se que encontrar a solução da eq.(5.3) e tentar

escrevê-la separando-a da seguinte forma

S(xi, λ) = f(λ) + g0(x
0) + g1(x

1) + . . .+ gn−1(x
n−1). (5.4)

As métricas para as quais isto é possível e nas quais consegue-se separar as variáveis

nas equações de Klein-Gordon ou Schrödinger foram classificadas [90], há algum tempo.

Mostrou-se, então, que a métrica de Kerr é uma dessas, e portanto pode-se usa o

argumento para métricas nas quais a equação de Hamilton-Jacobi é separável.

Por volta de 1900, mostrou-se que a equação de Hamilton-Jacobi é separável para uma

equação do movimento com n-variáveis, se somente se, existem n soluções algebricamente

independentes - cada uma correspondendo a uma constante de separação. Além do mais

para o problema geodésico essas soluções algebricamente independentes ou são lineares

ou quadráticas no momento; gμν dx
ν

dλ
. Essas correspondem aos vetores de Killing, ξμ ou

tensores de Killing do tipo (0,2), ξμν, e tomam a forma

ξμ
dxμ

dλ
= constante, (5.5)

ou

ξμν
dxμ

dλ

dxν

dλ
= constante. (5.6)

Um tensor de Killing do tipo (0, n) é um tensor simétrico ξμ1...μn tal que

∇(νξμ1...μn) ≡ 0. (5.7)
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Obviamente a métrica, gμν , é um tensor de Killing, e o produto simetrizado ξ
(1)
(μ1

ξ(2)μ2
. . . ξ

(n)
μn)

de n vetores de Killing ξ(1), .., ξ(n), é também um tensor de Killing. Um tensor de Killing

automaticamente nos fornece uma solução geodésica

ξμ1...μn
dxμ1

dλ

.

· · · dx
n

dλ
= constante. (5.8)

Como o buraco negro com rotação tem apenas dois vetores de Killing, ξt = ∂/∂t e

ξφ = ∂/∂φ e

gμν
dxμ

dλ

dxν

dλ
= constante, (5.9)

então existe uma segunda solução, quadrática, a qual pode ser obtida explicitamente por

separação de variáveis da equação de Hamilton-Jacobi. De uma forma ou de outra as

equações geodésicas de movimento são completamente solúveis em termos das primeiras

integrais do movimento.

A generalização da métrica de Kerr para a métrica gerada por uma distribuição esférica

de matéria e carregada parece ser direta. Esta métrica é as vezes chamada de Kerr-

Newman, com carga q, massa m e momento angular por unidade de massa a e é expressa

por

ds2 = Σ
£
∆−1dr2 + dθ2

¤
+ (r2 + a2)sen2θdφ2 − dt2

+Σ−1(2mr − q2)(asen2θdφ− dt)2,
(5.10)

onde Σ(r, θ) ≡ r2 + a2 cos2 θ e ∆(r) ≡ r2 − 2mr + a2 + q2.

Esta métrica é a solução para as equações de Einstein com um campo eletromagnético

como fonte. O campo eletromagnético pode ser determinado do seguinte potencial de

gauge

Aμ = −
qr

Σ
(1, 0, 0,−asen2θ), (5.11)

nas coordenadas (t, r, θ, φ). Da expressão para Aμ, encontramos que

Aμdx
μ = −qr

Σ
(dt− asen2θdφ). (5.12)
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Portanto, Fμν é dado por

1
2
Fμνdx

μ ∧ dxν = qΣ−2(r2 − a2 cos2 θ)dr ∧ (dt− asen2θdφ)

+2Σ−2a2qrsenθ cos θdt ∧ dθ

+2aqrΣ−2(r2 + a2)senθ cos θdθ ∧ dφ
1
2
Fμνdx

μ ∧ dxν = qΣ−2(r2 − a2 cos2 θ)dr ∧ (dt− asen2θdφ)

+2aqrΣ−2senθ cos θdθ ∧ [(r2 + a2)dφ− adt] .

(5.13)

Para r suficientemente grande, tem-se que

1
2
Fμνdx

μdxν ∼ q/r2dr ∧ (dt− asen2θdφ)+

2aqr−1senθ cos θdθ ∧ dφ+O( 1
r3
)

(5.14)

O termo q/r2dr ∧ dt corresponde ao campo Coulombiano gerado pela carga q, e o termo

2aqr−1senθ cos θdθ ∧ dφ corresponde ao momento de dipolo magnético.

É conveniente introduzir dois vetores nulos, lμ e nμ, cujas componentes são

lμ =

µ
r2 + a2

∆
, 1, 0,

a

∆

¶
, (5.15)

nμ =

µ
r2 + a2

2Σ
,
−∆
2Σ

, 0,
a

2Σ

¶
.

satisfazendo as seguintes relações

lμlμ = 0, n
μnμ = 0, l

μlμ = −1. (5.16)

Pode-se definir, então, o seguinte tensor de Killing

ξμν = 2Σl(μnν) + r2gμν . (5.17)

A métrica dada pela eq.(5.10) é estacionária e axialmente simétrica, e portanto, possui

os seguintes vetores de Killing

ξμ = (1, 0, 0, 0),

ημ = (0, 0, 0, 1).
(5.18)

Portanto, ξμν , ξμ, η
μ e gμν nos fornecem um conjunto de soluções independentes necessário

para resolver o problema geodésico completamente [91].

Vamos agora exibir algumas propriedades físicas da métrica dada pela equação

eq.(5.10). Obviamente para a = 0, a métrica reduz-se à solução de Reissner-Nordstrom.
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Primeiramente vamos discutir o horizonte de eventos no espaço-tempo de Kerr. A

métrica tem uma singularidade aparente quando ∆ = 0. O problema recai sobre três

casos, distintos: m2. > a2, m2 = a2 e m2 < a2. No último caso, não há horizonte de

eventos, mas somente uma singularidade em r = 0. Uma tal solução é considerada não-

física, e é usualmente excluída.

A solução extrema de Kerr, comm = a é uma solução intermediária entre m2 < a2 e a

solução física com m2. > a2. Quando m2 = a2 existe um horizonte de eventos em r = m.

Iremos nos concentrar no caso m2. > a2. Aqui existem dois horizontes de eventos um em

r = r+ e outro em r = r− , onde

r± = m±
√
m2 − a2. (5.19)

Temos que provar que r+ e r− são horizontes de eventos, e não simplesmente pontos

de singularidade da métrica ou da variedade. Primeiramente para provar que eles são

horizontes temos que mostrar que são superfícies nulas. Isto significa que uma curva

não-tipo-espaço dirigida para o futuro pode atravessá-lo somente em uma direção.

Considere a superfície r = constante, logo dr = 0, então, nesta superfície

ds2 = Σdθ2 + (r2 + a2)sen2θdφ2 − dt2 +
2mr

Σ
(asen2θdφ− dt)2. (5.20)

Se ∆ = 0, então r2 + a2 = 2mr e

ds2 = Σdθ2 +
sen2θ

Σ
[adt− (r2 + a2)dφ]2. (5.21)

Esta métrica é degenerada, isto é , ela tem um autovalor nulo. De fato, da expresão

acima podemos ver diretamente que a forma diagonal de ds2 na superfície r = r± tem

dois autovalores não nulos. Então, r = r± são de fato hipersuperfícies nulas e são assim

horizontes de eventos.

O comportamento singular do coeficiente de dr2 na eq.(5.10)é precisamente o mesmo

que o das métricas de Schwarzchild e Reissner-Nordstrom. Daí é claro que podemos

resolver o problema da mesma maneira seguindo os observadores em queda livre ou raios

de luz, através de r = r±. Na verdade, a extensão analítica da solução de Kerr na

vizinhaça de r = r± é idêntica à de Reissner-Nordstrom.
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A sutileza na extensão analítica de métrica de Kerr ocorre em r = 0, e está indiretamente

ligada ao fato de ser t uma coordenada mal comportada, e por causa da sua mistura com

φ, o que nos leva naturalmente a substituí-las.

Considere, então, a mudança de coordenadas para (v, r, θ, ψ) onde [92]

dv = dt+ (r2 + a2)∆−1dr,

dψ = dφ+ a∆−1dr.
(5.22)

Neste sistema de coordenadas, a métrica reduz-se a

ds2 = Σdθ2 − 2asen2θdrdψ + 2drdv+

Σ−1 [(r2 + a2)−∆a2senθ] sen2θdψ2−

4aΣ−1mvsen2θdψdv − (1− 2mrΣ−1)dv.2

(5.23)

Notemos que dv e dψ não são tangentes as trajetórias iniciais de raios nulos, e esta

abordagem torna-se difícil por causa da rotação. Na verdade, dt é redefinido para remover

a parte singular de dr.

Isto significa que dφ deve ser redefinida para eliminar outros termos singulares da

métrica. Existe uma importante diferença entre o horizontes de eventos de Kerr e os da

solução de Reissner-Nordstrom. Considere o vetor de Killing tipo-tempo ξμ = (1, 0, 0, 0)

ξμξμ = −
1

Σ

£
∆− a2sen2θ

¤
. (5.24)

Sobre horizonte de eventos, ∆ = 0, e portanto, ξμξμ =
a2

Σ
sen2θ ≥ 0.

O vetor de Killing é nulo somente temos pólos norte e sul, (que não possuem rotação)

e é tipo-espaço no horizonte de eventos. O horizonte de Killing (onde ξμξμ = 0) é dado

por

(r −m)2 = m2 − a2 cos2 θ, (5.25)

e o horizonte de eventos é

(r −m)2 = m2 − a2. (5.26)

Note que o horizonte de Killing encontra-se fora do horizonte de eventos externo e eles

necessariamente se encontram nos pólos. A região entre os horizontes, onde ξμξμ > 0, é

chamada de ergoesfera.
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Talvez o caminho mais interesante de escrever a métrica de Kerr seja na forma

ds2 = Σ
£
∆−1dr2 + dθ

¤
+

sen2θ

Σ

£
(r2 + a2)dφ− adt

¤2 − ∆

Σ

£
asen2θdφ− dt

¤2
. (5.27)

Observe também que para r suficientemente grande a métrica torna-se

ds2 = dr2 + r2(dθ2 + sen2θdφ2)− dt2, (5.28)

e assim este sistema no infinito, reduz-se ao espaço regular de Minskowski em um

referencial sem rotação. É por esta razão que não usamos outra combinação de dφ e

dt como coordenadas.

Um caso particular interessante da métrica de Kerr é quando m = 0, (a 6= 0). Neste caso

ela torna-se

ds2 =

µ
r2 + a2 cos2 θ

r2 + a2

¶
dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2)sen2θdφ2 − dt2. (5.29)

Além disso, quando r → 0

ds2 → cos2 θ[dr2 + a2dθ2] + a2sen2θdφ2 − dt2, (5.30)

que parece uma forma estranha. Para entender esta métrica deve-se primeiro notar que

param = 0 ela deveria tornar-se plana. O limite r→ 0, mostra, então, a natureza bizarra

dessas coordenadas. De fato uma rápida análise mostra que elas são esferóidais, com r =

constante sendo uma superfície elíptica confocal e θ = constante corresponde a superfícies

hiperbolóidais.

Podemos obter a métrica em coordenadas cartesianas fazendo:

x = (r2 + a2)1/2senθsenφ

y = (r2 + a2)1/2senθ cosφ

z = r cos θ.

(5.31)

Então, a métrica de Kerr com m = 0 reduz-se a

ds2 = dx2 + dy2 + dz2 − dt2. (5.32)

Notemos que :

(i) rψ − (x2 + y2 + z2 − a2)r2 − a2z2 = 0
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(ii) r = 0⇔ z = 0, x = asenθsenφ, y = asenθ, isto é um disco.

Retornando ao caso geral da métrica de Kerr com m 6= 0, consideremos o

comportamento dessa métrica em r = 0. Se θ = π/2 (plano equatorial), então Σ = r2

e Σ∆−1 = (1 − 2m/r + a2/r2)−1. Esta solução é muito parecida com a de Reissner-

Nordstrom, e existe uma singularidade na curvatura em r = 0, θ = π/2. Vamos supor,

agora, que nos aproximamos de r = 0 partindo de um dos pólos, por exemplo θ = 0.

Então Σ∆−1 → 1 quando r→ 0, e

ds2 → dr2 + a2dθ2 − dt2. (5.33)

A aparente degenerescência na eq.(5.33) é a mesma de dθ2 + sen2θdφ2 em θ = 0. Não

existe uma sugestão para remover a singularidade. Na verdade, a métrica só apresenta

singularidade em Σ = 0⇔ r = 0 e θ = π/2. O fato de que as coordenadas são colapsadas

em r = 0 implica que não se pode ver o detalhe da estrutura da singularidade. Isto é a

verdade, contudo, e como vimos anteriormente, este problema persiste no caso m = 0. A

resolução na métrica de Kerr é a mesma, pois existe um anel de singularidade no plano

equatorial até a borda do disco definido por r = 0. Algumas sugestões podem ser tiradas

deste fato , olhando o comportamento da métrica de Kerr e a do espaço-tempo plano no

limite quando r → 0, (θ 6= π/2)

ds2 = dr2 + r2(dθ2 + sen2θdφ2)− dt2 → dr2 − dt2 (5.34)

ds2Kerr → dr2 + a2dθ2 − dt2, (5.35)

em θ = 0 ou θ = π. O termo dr2 + a2dθ2 sugere um disco de raio a.

Exatamente como no espaço-plano no limite (m = 0) podemos resolver a estrutura de

singularidade de r = 0 introduzindo um sistema de coordenadas mais apropriado, quase-

cartesiano, definido por

x+ iy = (r + ia)senθ exp i

Z
(dφ+ a∆−1dr) (5.36)

z = r cos θ

t̄ =

Z
[dt+ (r2 + a2)∆−1dr]− r,

que se reduz às coordenadas cartesianas usuais quando m = 0.
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A métrica de Kerr reduz-se, então a

ds2 = dx2 + dy2 + dz2 − dt
2
+ 2mr3(r4 + a2z2)−1 (5.37)

×[(r(xdx+ ydy)− a(xdy − ydx))(r2 + a2)−1 +
zdz

r
+ dt]2

onde r(x, y, z) é obtida implicitamente de r4 − (x+ y2 + z2 − a2)r2 − a2z2 = 0.

A superfície r = constante, corresponde, neste caso, a uma elipse confocal em um

novo sistema de coordenadas construído no plano equatorial. A superfície r = 0, agora,

inscreve-se sobre o disco z = 0, x2 + y2 ≤ a2. Neste sistema RμνρσR
μνρσ sempre diverge

em x2 + y2 = a2, z = 0 (o anel de singularidade). O interior do disco x2 + y2 < a2, z = 0

é perfeitamente regular.

A questão que surge é o que acontece a um observador que cai através da região

regular no centro de um disco.Verifica-se que ele muda de lado continuamente através da

superfície, mas como a continuidade analítica corresponde à continuidade da coordenada

r para valores negativos, ele passa para uma nova região do espaço-tempo. Nesta nova

região r < 0 e desta forma não existe horizontes (como ∆ 6= 0 para r < 0 ). Podemos

pensar em tomar duas cópias do sistema (x, y, z, t) e chamar a segunda de (x0, y0, z0, t0),

com r < 0 e colá-las. Então, diferentes observadores podem migrar entre as regiões r > 0

e r < 0.

A cópia do espaço-tempo para r ≤ 0 é bastante estranha, não existe claramente uma

singularidade em r = 0, exceto para r < 0 contudo pequena, pois dφ é tipo-tempo perto do

anel de singularidade. Portanto os círculos r = constante, θ = constante e t = constante

são linhas tipo-tempo fechadas, e assim existe uma violação da causalidade.

Finalizaremos esta seção afirmando que:

1) As soluções de Schwarzschild, Reissner-Nordstrom, Kerr e Kerr-Newman são

métricas corretas para campos gravitacionais fora de uma distribuição de matéria do

tipo apropriada com simetria esférica, simétria esférica e carga, rotação independente

do tempo, ou rotação independe do tempo e carga, respectivamente. A métrica não

necessariamente tem que corresponder a um buraco negro. Ela poderá ser a métrica

exterior para uma estrela ou planeta.

2) Os teoremas No Hair [93] estabelecem que a métrica de Kerr é a única solução de
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buraco negro estacionário, no vazio, das equações de Einstein. Essencialmente, a métrica

de Kerr é a única de família conhecida com dois parâmetros das soluções das equações

de Einstein no vazio. No entanto, os teoremas os No Hair estabelecem que um buraco

negro estácionario não tem cabelos, o que significa dizer que o campo gravitacional não tem

momentos de multipolo grandes, e sim o momento de monopolo ( determinado pela massa)

e momento de dipolo (determinado pelo momento angular). Eles também mostraram

que um buraco negro estacionário deve, necessariamente, ser axialmente-simétrico, e que

a classe de soluções estacionária no vazio axi-simétricas é necessariamente uma família

de dois parâmetros. Esses dois parâmetros podem estar relacionados pela condição de

contorno da métrica e podem ser interpretadas como a carga e o momento angular do

buraco negro. Uma das contribuições interesantes desses teoremas foi a prova de que

a interseção de dois horizontes de eventos de um buraco negro estacionário com uma

superfície de Cauchy é topologicamente uma 2-esfera. Como a solução de Kerr esgota

todos os possíveis valores desses parâmetros somos levados a concluir que a métrica de

Kerr é a única solução estacionária das equações de Einstein no vazio correspondente a

um buraco negro.

5.3 Holonomias no espaço-tempo de Kerr-Newman

contendo uma corda cósmica.

Nesta seção faremos um estudo no espaço-tempo de Kerr-Newman com uma corda

cósmica, onde calcularemos a holonomias linear e translacional para diferentes curvas.

Particularizaremos os cálculos para os espaço-tempos de Kerr e Lense-Thirring e também

para o de Schwazschild.

As soluções das equações de Einstein podem ser facilmente generalizadas [94] de modo

a incluir defeitos cônicos. Os espaços-tempos correspondentes podem ser constríidos

removendo-se um setor e identificando-se os lados remanescentes, isto é, exigindo-se que o

ângulo azimutal em torno do eixo de simetria varie no intervalo (0, 2πb) , onde o parâmetro

b é uma medida da quantidade que foi retirada do espaço-tempo. Dessa forma temos um

espaço-tempo com uma corda ao longo do eixo de simetria. Em espaços-tempos dessa
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natureza vários estudos tem sido feitos para investigar diferentes aspectos da influência

da corda cósmica sobre determinados sistemas físicos [95].

O espaço-tempo de Kerr-Newman com um defeito cônico (corda cósmica) nas

coordenadas (t, r, θ, φ) é descrito pela métrica

ds2 = −[1− (2mr − q2)Σ−1]dt2 − (2mr − q2)2absen2θdtdφ+∆−1Σdr2

+Σdθ2 + Σ−1[r2 + a2 + (2mr − q2)a2sen2θ]b2sen2θdφ2,
(5.38)

onde a2+ q2 ≤ m2, m é a massa física do buraco negro, q = carga, a = momento angular

por unidade de massa dividido pelo parâmetro de conicidade que é dado por b = 1− 4μ,

μ a densidade linear de massa da corda. As expressões para ∆ e Σ são

∆ ≡ r2 − 2mr + a2 + q2

Σ ≡ r2 + a2 cos2 θ.
Na presença da corda, a energia medida por um observador no infinito eo parâmetro de

massa de Schwarzschild não são idênticos [96]. A massa, bem como o momento angular são

alterados por um fator que corresponde ao inverso do parâmetro de conicidade. No caso

da carga, o teorema de Gauss nos impõe que ela seja dividida também pelo parâmetro de

conicidade. Portanto, os parâmetros m e q que aparecem na eq.(5.38) estão relacionados

com as quantidades físicas, massa e carga e com a densidade linear de massa da corda.

O parâmetro a não é alterado, pois a modificação na massa e no momento angular se

cancelam.

Para calcular o fator de fase (holonomias) para diferentes curvas devemos encontrar as

expressões para as conexões tetrádicas. Vamos, então, introduzir um conjunto de quatro

vetores eμ(a)(a = 0, 1, 2, 3 é o índice tetrádico), que é ortonormal em cada ponto com

respeito à métrica de Minkowski, isto é, gμνe
μ
(a)e

ν
(b) = ηab = diag(−1, 1, 1, 1). Admitindo

que as matrizes eμ(a) possuam inversas, ou seja, que existem as matrizes e
(a)
μ tal que

e
(a)
μ eν(a) = δμν e e

(a)
μ eμ(b) = δab . Vamos definir a seguinte base tetrádica ω

a(1-formas)

ω0 = ∆1/2Σ−1/2dt− ab∆1/2Σ−1/2sen2θdφ,

ω1 = ∆−1/2Σ1/2dr,

ω2 = Σ1/2dθ,

ω3 = −aΣ−1/2senθdt+ (a2Σ−1/2sen2θ + Σ1/2senθ)bdφ.

(5.39)
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Então, no sistema de coordenadas (x0 = t, x1 = r, x2 = θ e x3 = φ), o referencial tetrádico

definido por ωa = e
(a)
μ dxμ é dado por

e
(0)
0 = ∆1/2Σ−1/2, e

(2)
2 = Σ1/2,

e
(0)
3 = −ab∆1/2Σ−1/2sen2θ, e

(3)
0 = −aΣ−1/2senθ,

e
(1)
1 = ∆−1/2Σ1/2, e

(3)
3 = −aΣ−1/2sen2θ + Σ1/2senθ.

Usando as equações de estrutura de Cartan dωa = eaμkνdx
ν ∧ dxμ = −ωa

b ∧ωb, obtemos as

seguintes expressões para as conexões tetrádicas

Γ0μ1dx
μ = −{mΣ−2(r2 − a2 cos2 θ −m−1rq2)dt

+Σ−2absen2θ[(m− r)Σ− 2mr2 + rq2]dφ} = Γ1μ0dx
μ,

Γ0μ2dx
μ = Σ−1ab∆1/2 cos θsenθdφ = Γ2μ0dx

μ,

Γ0μ3dx
μ = a∆−1/2Σ−1rsenθdr − a∆1/2Σ−1 cos θdθ = Γ3μ0dx

μ,

Γ1μ2dx
μ = −a2∆−1/2Σ−1 cos θsenθdr − ∆1/2

Σ
rdθ = −Γ2μ1dxμ,

Γ1μ3dx
μ = −b∆1/2Σ−1rsenθdφ = −Γ3μ1dxμ,

Γ2μ3dx
μ = a cos θΣ−2(2mr − q2)dt−

b cos θΣ−2[Σ(r2 + a2) + (2mr − q2)a2sen2θ]dφ = −Γ3μ2dxμ.

(5.40)

Primeiramente vamos calcular a holonomia linear, dada pela eq.(1.89), no caso em que o

contorno é um círculo com centro na origem com valores fixos de r, θ e t. Neste caso,

Γμdx
μ = Γφdφ (5.41)

( dr = dθ = dt = 0).

Da eq.(5.40) obtemos

Γφ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 A B 0

A 0 0 −C

B 0 0 −D

0 C D 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.42)

onde

A = −abΣ−2sen2θ [Σ(m− r)− 2mr2 + rq2],

B = ab∆1/2Σ−1 cos θsenθ,

C = b∆1/2Σ−1rsenθ,

D = bΣ−2 cos θ [Σ(r2 + a2) + (2mr − q2)a2sen2θ].
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Como Γφ não depende de φ, então, da equação (1.89 ) temos

U(c) = P exp

⎡⎢⎣ φ2Z
φ1

Γφdφ

⎤⎥⎦ = exp [Γφ(φ2 − φ1)] . (5.43)

Em particular para θ = π/2 obtemos

Γφ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 A 0 0

A 0 0 −C

0 0 0 0

0 C 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.44)

onde

A =
ab

r
[1 +m/r − q2/r2] e C =

b∆1/2

r
(5.45)

Notemos que, para, a = 0, r = 2m (raio de Schwarzschild) e q = 0, temos Γφ = 0 e

U ≡Identidade. De eq.(5.44) e eq.(5.45) podemos verificar que

(Γφ)
3 = −(C2 −A2)Γφ = −b2r−2

£
∆− a2(1 +m/r − q2/r2)2

¤
Γφ.

Seja

Aφ =
b

r

£
∆− a2(1 +m/r − q2/r2)2

¤1/2
. (5.46)

Assim,

U = exp[Γφ(φ2 − φ1)] (5.47)

= I +
Γφ

Aφ
sen[Aφ(φ2 − φ1)] +

Γ2φ
A2φ
(1− cos[Aφ(φ2 − φ1)]).

Tomando o círculo equatorial C, e portanto φ2 = 2π e φ1 = 0, a holonomia linear pode

ser colocada na seguinte forma matricial

UL =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 + A2

A2φ
(1− ξ) A

Aφ
ζ 0 −AC

A2φ
(1− ξ)

A
Aφ
ζ ξ 0 −C

Aφ
ζ

0 0 1 0

AC
A2φ
(1− ξ) C

Aφ
ζ 0 1− C2

A2φ
(1− ξ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.48)

onde ξ = cos(2πAφ) e ζ = sen(2πAφ).
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Tomando o traço da eq.(5.10), obtemos o loop de Wilson gravitacional

W (C) = Tr(UL) = Tr exp(2πΓφ) = 2(1 + cos(2πAφ)) (5.49)

Se temos um sistema que apresenta torção, a qual contribui na holonomia total, esta

contribuição é chamada de holonomia translacional . A holonomia translacional tem a

mesma forma da equação eq.(1.88) onde o tensor de Riemann é trocado pelo tensor das

torções [87], isto é,

UT (C) = P (exp

ZZ
D

T a
bcdx

bdxc). (5.50)

No entanto, esta expressão nem sempre é válida, por exemplo, no caso de Kerr-Newman o

sistema não apresenta torção, no entanto, apresenta uma holonomia translacional devido

o momento angular a qual se faz sentir pelo densenvolvimento da curva C, (caminho

equatorial), em M (variedade Riemaniana). O desenvolvimento de curva [88] é um caso

particular de transporte paralelo em fibrados, onde as fibras são os espaços tangentes afins.

A motivação para se definir o desenvolvimento de curvas é bastante simples. Necessitamos

isolar a influência local de geometria de uma variedade da aceleração de uma curva. A

definição dada por Petti [88] é a seguinte:

Dada uma curva C : [0, 1]→M, o desenvolvimento da curva sobre a variedade plana

M 0 é a curva C 0 : [0, 1]→M 0 definida por

D0
uu
0 = A0(s)L [A(s)]−1Duu, (5.51)

com C 0(0) = P 0 e u0(0) = Lu(0), onde P ∈ M , P 0 ∈ M 0. Sendo A : TC(0)M → TC(s)M

o transporte paralelo ao longo da curva C, L : TpM → Tp0M
0 uma isometria, e u e u0

vetores tangentes de C e C 0, respectivamente. D0 e D são as derivadas covariantes em

M 0 e M .

Vamos, então calcular a holonomia translacional, considerando o contorno equatorial

C(s) = (0, r, π/2, 2πs) para s ∈ [0, 1]. O desenvolvimento de C no espaço plano de

Minskowski M 0 nas coordenadas (t0, x0, y0, z0), iniciando em P 0 = (t00, x
0
0, y

0
0, z

0
0), é

C 0(s) = [t0(s), x0(s), y0(s), z0(s)], (5.52)

onde
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t0(s) = k1 · s+ t00,

x0(s) = k2 · [cos(2πvs)− 1] + x00,

y0(s) = k2 · sen(2πvs) + y00,

z0(s) = z00,

,

sendo

k1 =
2πa

v

∙
2m− q2

r
+ (1 +

a2

r2
)(m− q2

r
)

¸
, (5.53)

k2 =
∆1/2

rv2
{r +

∙
a2

r2
(−m+

q2

r

¸
},

com
v = (c22 − c21)

1/2 = Aφ

c1 = − a
r2
(r +m− q2/r),

c2 = ∆1/2/r.

(5.54)

A holonomia translacional [88] associada à curva C é

UT (C) = C 0(1)− C 0(0) = k1 (5.55)

Substituindo as eqs.( 5.53) e (5.54) em (5.55) e tomando o limite 1/r2 → 0 obtemos que

UT (C) = 6πma/r.

Logo a holonomia total U = UL + UT no limite 1/r2 → 0 será

U =

⎛⎜⎜⎜⎜⎜⎜⎝
1 +A+6πma/r Bζ 0 −C

Bζ ξ + 6πma/r 0 −Dζ

0 0 1 + 6πma/r 0

C Dζ 0 1− E+ 6πma/r

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.56)

onde

A =
a2[1 + 2m/r]

[∆− a2(1 + 2m/r)]
(1− ξ); B =

a[1 + 2m/r]

[∆− a2(1 + 2m/r)]1/2
;

C =
a[1 + 2mr]∆1/2

[∆− a2(1 + 2m/r)]
(1− ξ);D =

∆1/2

[∆− a2(1 + 2m/r)]1/2
;

e E =
∆

[∆− a2(1 + 2m/r)]
(1− ξ).

Este resultado completa e generaliza os cálculos feitos em [82], das holonomias para várias

curvas no espaço-tempo de Kerr e que não considera a contribuição advinda da holonomia
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translacional. No caso particular em que a2 → 0, temos o universo de Lense-Thirring com

defeito e neste caso a holonomia total torna-se

U(C) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 + 6πma/r Fζ 0 −F(1− ξ)

Fζ ξ + 6πma/r 0 −ζ

0 0 1 + 6πma/r 0

F(1−ξ) ζ 0 ξ + 6πma/r

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.57)

onde F = a[1 +m/r](r2 − 2mr + q2)−1/2 e Aφ = br−1[1− 2m/r]1/2.

Para o caso da métrica de Schwarzschild (a = 0, b = 1 e q = 0) temos que F = 0 e

a holonomia total para círculos situados em planos paralelos ao equatorial é a holonomia

linear, que é dada por

U(C) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 ξ 0 −ζ

0 0 1 0

0 ζ 0 ξ

⎞⎟⎟⎟⎟⎟⎟⎠ (5.58)

com Aφ = b[1− 2m/r]1/2.

As expressões para as holonomias correspondentes às demais curvas podem ser obtidas

dos resultados de Kerr-Newman fazendo-se a = 0 e q = 0, como veremos mais adiante.

Notemos que o loop deWilson dado pela eq.(1.92) éW (C) = 2(1+ξ) = 2(1+cos 2πAφ),

e que para Aφ = 0, isto implica que r = 2m (raio de Scwarzschild) o loop de Wilson é

W (C) = 4. Esta é uma condição nesessária mas não suficiente para o espaço seja plano.

Mas a curvatura não é nula como sabemos. A curvatura está asociada com a derivada do

loop de Wilson através das equações de Mandelstam [9]

∂W

∂xμ
=

I
dsTr{RνμU}

dyμ

ds
. (5.59)

Como os tensores de curvatura são

Ra
13b = bmsenθr−2(1 − 2m/r)−1/2

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ e
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Ra
23b = 2mbsenθr−1

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

podemos verificar que

∂W

∂r
=

2πZ
0

dφTr(R13U) = 2πTr(R13U),

∂W

∂θ
=

2πZ
0

dφTr(R23U) = 2πTr(R23U),

e portanto W (C) obdece a eq.(5.59), que é conhecida como relação de Mandelstam.

Para evidenciar que a holonomia depende fortemente do caminho tomado, vamos agora

computar a holonomia para uma curva C onde r = r(s) e θ = θ(s), está contida no plano

meridiano. Neste caso, temos que

Γsds =

µ
Γθ

dθ

ds
+ Γr

dr

ds

¶
ds. (5.60)

Da eq.(5.40) obtemos

Γs =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 f

0 0 g 0

0 −g 0 0

f 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (5.61)

onde

f =
arsenθ

∆1/2Σ

dr

ds
− a∆1/2

Σ
cos θ

dθ

ds
,

g =
−a2
∆1/2Σ

cos θsenθ
dr

ds
− ∆1/2

Σ
r
dθ

ds
.

Então,

P exp[

Z
Γsds] = exp[Γsds], (5.62)

pois as matrizes Γs comutam para valores distintos de s. Em particular para a métrica

de Schwarzschild, devido à simetria esférica, a propriedade dada pela eq.(5.62) vale para

qualquer curva contida em um plano arbitrário. Vamos considerar o caso de um círculo
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meridiano dr
ds
= 0 e dθ

ds
= 1. Então, temos

Γs = Γθ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 f

0 0 g 0

0 −g 0 0

f 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (5.63)

onde f = −a∆1/2 cos θ/Σ e g = −∆−1/2r/Σ

E portanto, obtemos

exp[

Z
Γθdθ] =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 exp(α)

0 0 exp(β) 0

0 exp(−β) 0 0

exp(α) 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (5.64)

onde α =
R 2π
0

fdθ e β =
R 2π
0

gdθ.

Fazendo integração por partes determinamos que

U(C) = exp[

Z 2π

0

Γθdθ] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

f 0

⎛⎝ 0 −1

1 0

⎞⎠

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

f 0

⎛⎝ 0 −1

1 0

⎞⎠

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
onde f 0 = exp[2π∆1/2(r2 + a2)−1/2].

Como a matriz U acima tem a propriedade U3 = −U , assim a holonomia linear que

corresponde, neste caso à total, pois a translacional é nula [88], é dada por

UL = I + Usen(2πAθ) + U2(1− cos 2πAθ), (5.65)

onde Aθ = ∆1/2/
√
r2 + a2.

Assim W (C) = Tr(U) = 2(1 + cos 2πAθ). Notemos que para a = 0, q = 0 e b = 1 temos

Aφ = Aθ.

Vamos fazer mais um cálculo de fator de fase considerando o caminho C como sendo

o segmento radial, isto é, dθ
ds
= 0 e dr

ds
= 1. Da eq.(5.40) temos que

Γsds = Γrdr
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e daí usando a eq.(5.60), obtemos

Γr =

⎛⎜⎜⎜⎜⎜⎜⎝
f 0 0 0

0 0 −g 0

0 g 0 0

0 0 0 f

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.66)

onde agora, f = arsenθ∆−1/2Σ−1 e g = a2∆−1/2Σ−1 cos θsenθ. Portanto, o fator de fase

para este caso é dado por

exp[
R r2
r1

Γrdr] =

⎛⎜⎜⎜⎜⎜⎜⎝
exp[

R
fdr] 0 0 0

0 0 exp[−
R
gdr] 0

0 exp[
R
gdr] 0 0

0 0 0 exp[
R
fdr]

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
exp[f 0] 0 0 0

0 0 exp[−g0] 0

0 exp[g0] 0 0

0 0 0 exp[f 0]

⎞⎟⎟⎟⎟⎟⎟⎠ = U(C),

(5.67)

onde f 0 = asenθ
R r2
r1

r∆−1/2Σ−1dr e g0 = a2 cos θsenθ
R r2
r1

∆−1/2Σ−1dr.

Observa-se que para o caso em b = 1 e a = 0, espaço-tempo de Schwarzschild, temos

Γr = 0 e daí, o fator de fase é trivial, para a curva considerada.

Para finalizar vamos fazer o cálculo do fator de fase para uma translação no tempo,

isto é, dr = dθ = dφ = 0. Obtém-se, então, que

Γμdx
μ = Γtdt.

Da eq.(5.40) temos

Γt =

⎛⎜⎜⎜⎜⎜⎜⎝
0 α 0 0

α 0 0 0

0 0 0 β

0 0 −β 0

⎞⎟⎟⎟⎟⎟⎟⎠ = α

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠+ β

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠
= αΓα + βΓβ

(5.68)
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onde α = −mΣ−2 [r2 − a2 cos2 θ − rq2/m] e β = a cos θ−2(2mr − q2)Σ−2.

Como as matrizes Γα e Γβ comutam, então

U(C) = P exp
£R τ
0
Γtdt

¤
= exp [(αΓμ + βΓβ)τ ]

= exp [αΓατ ] exp [βΓβτ ] .

(5.69)

E como (Γα)
3 = Γα e (Γβ)

3 = −Γβ, concluímos que o fator de fase para este caminho é

U = Γαsenhατ + Γβsenβτ + Γ2α coshατ − Γ2β cosβτ . (5.70)

Se considerarmos o caso Schwarzschild e o caminho fechado formado por dois

segmentos radiais(unitários) e dois segmentos temporais de raios r1 e r2, respectivamente,

obtemos a holonomia

U = I + Γαsenh

µ
1

r21
− 1

r22

¶
mτ + Γ2α

∙
cosh

µ
1

r21
− 1

r22

¶
mτ − 1

¸
. (5.71)

Deste resultado podemos calcular o loop de Wilson que é dado por

W (C) = 2

∙
1 + cosh

µ
1

r21
− 1

r22

¶
mτ

¸
. (5.72)

Usando todos esses resultados correspondentes às holonomias no espaço-tempo de

Schwarzschild, podemos escrever uma expressão geral para U(C), que se escreve como

U(C) = P exp

⎛⎝ i

2

Z
C

Γabμ (x)Jabdx
μ

⎞⎠ (5.73)

onde Jab são os geradores do grupo de Lorentz SO(3, 1) e Γ
ab
μ são as conexões tetrádicas.

Dos resultados obtidos neste caso, podemos concluir que as transformações holonômicas

para o espaço-tempo estático, esfericamente simétrico em (3 + 1)-dimensòes, é um

homomorfismo que mapeia a classe de homotopia de todas as curvas considerada sem

rotações e boosts em SO(3, 1). Como os vetores ordinários estão no espaço-tempo tangente

à variedade e para espaços-tempo estáticos não há translações no tempo, então as

transformações que atuam nesse espaço são as transformções de Lorentz e portanto, as

matrizes de transportes paralelo (fatores de fase) são elementos do grupo de Lorentz.

Em geral, os Jab0s geram a representação do grupo de Lorentz que atuam nas quantidades
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transportadas que podem ser vetores ou espinores. No caso de espinores, ao invés do grupo

SO(3, 1) temos o grupo de cobertura deste grupo, e portanto, quando temos férmions os

fatores de fase são elementos do grupo de cobertura do grupo de Lorentz.

Neste capítulo, apresentamos algumas considerações sobre a obtenção da métrica de

Kerr, que é a única solução estacionária das equações de Einstein no vazio correspondente

a um buraco negro com rotação. Fizemos cálculos dos fatores de fase para diferentes

curvas no espaço-tempo de Kerr-Newman contendo uma corda cósmica. E no caso

particular de Kerr, com a curva sendo o círculo equatorial, fizemos uma correção no cálculo

da holonomia, pois acrescentamos a contribuição da parte translacional da holonomia.

Verificamos que as expressões para as holonomias para o espaço-tempo de Schwarzschild

podem ser obtidas dos resultados de Kerr-Newman fazendo-se a = 0 e q = 0. Finalmente,

exprimimos de maneira suscinta a holonomia para um caminho qualquer no espaço-tempo

de Schwarzschild, como um elemento do grupo de Lorentz SO(3, 1).
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Conclusões

Calculamos a transformação de holonomia para curvas no plano perpendicular ao

cilindro de matéria com rotação, emostramos que ela depende do momento angular da

fonte, apesar desta grandeza não afetar o tensor de curvatura, na aproximação de campo

fraco. Esta dependência do fator de fase com uma grandeza que não afeta a curvatura

da região acessível a partícula denominamos de efeito Aharonov-Bohm gravitacional

generalizado.

Encontramos uma solução para as equações de Einstein que corresponde a uma

generalização do monopolo global, de Barriola e Vilenkin [34], e então, usando as variáveis

de contorno calculamos o fator de fase para várias curvas no espaço-tempo do monopolo,

e mostramos que o loop de Wilson gravitacional satisfaz à relação de Mandelstam.

Calculamos ainda, para curvas no espaços-tempos de uma corda quiral e no da para

multicorda quiral, o fator de fase para diversas curvas. Em seguida, apresentamos a

caracterização global para o espaço-tempo de multicordas quirais paralelas, admitindo

que uma delas posui uma velocidade em relação as demais. Mostramos, então, que do

ponto de vista global o espaço-tempo de multicordas quirais equivale ao de uma única

corda quiral com relações apropriadas entre os parâmetros (massa, momento angular e

rotação), os quais caracterizam o sistema de cordas e o que lhe equivale. Esta abordagem

nos fornece uma maneira de entender o espaço-tempo de N cordas, do ponto de vista dos

aspectos globais.

Calculamos a fase de Berry para uma partícula escalar no espaço-tempo de uma corda

cósmica quiral que é uma generalização do trabalho de Corichi e Pierri e calculamos,

também, a fase de Berry para os espaços-tempos das multicordas quirais, do cilindro

com rotação e em um universo isótropico e mostramos como esta fase depende das
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características desses espaços-tempos. Apresentamos também a fase geométrica em alguns

modelos cosmológicos espacialmente homogêneos.

No contexto da teoria de Kaluza-Klein, verificamos que para o caso do solenóide,

a contribuição da quinta componente é percebida pela holonomia quando circundamos o

solenóide pela curva onde dr = dt = dz = 0,apesar da holonomia ter a mesma forma que a

quadri-dimensional. No monopolo global, calculamos as transformações de holonomias, e

mostramos que satisfazem às relações de Mandelstam. No caso da corda quiral magnética,

demonstramos que a fase é não-trivial, e que é uma expressão dos efeitos Aharonov-Bohm

eletromagnético e gravitacional combinados, que aparece como consequência da unificação

de Kaluza-Klein.

Para o caso das multicordas quirais magnéticas calculamos a holonomia e obtivemos

um resultado análogo, em que os efeitos eletromagnético e gravitacional aparecem

simultaneamente e de maneira independente. E apresentamos a caracterização global

para o espaço-tempo de multicordas, sendo que uma delas está submetida a um boost.

Calculamos ainda, a fase de Berry associada a uma partícula escalar quântica, induzida

pelos espaços-tempos de uma corda cósmica quiral magnética e o de N cordas quirais

magnéticas na teoria de Kaluza-Klein, após a generalização da solução no contexto da

teoria de Einstein para a teoria pentadimensional de Kaluza-Klein.

Calculamos os fatores de fase para diferentes curvas no espaço-tempo de Kerr-Newman

contendo uma corda cósmica. E no caso particular de Kerr, com a curva sendo o

círculo equatorial, fizemos uma correção no cálculo da holonomia, pois acrescentamos

a contribuição da parte translacional da holonomia, e exprimimos de maneira suscinta

a holonomia para um caminho qualquer no espaço-tempo de Schwarzschild, como um

elemento do grupo de Lorentz SO(3, 1).
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