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Resumo

Os fatores de fase geométricos e topoldgicos tém sido objeto de grande interesse em
diferentes dreas da fSica. Nas teorias de gauge nao-Abelianas, essas quantidades foram
usadas no estudo de propriedades, como, por exemplo, o confinamento de quarks na
cromodindmica quantica. No contexto da mecénica quéntica, a fase geométrica aparece
na evolucao de um sistema cuja Hamiltoniana é dependente do tempo, e é de fundamental
importancia no contexto da gravitacao. Os fatores de fase também foram usados para se
obter uma descrigao da teoria independente de gauge. Nesta tese usamos o fator de fase nas
teorias da gravitacao de Einstein e Kaluza-Klein para investigar o efeito Aharonov-Bohm,
caracterizar globalmente alguns espagos-tempos e estudar o aparecimento da fase de Berry
e suas relagoes com os pardmetros que caracterizam os espagos-tempos considerados.
Investigamos também, como o fator de fase no espaco-tempo de Kerr-Newman com defeito

codnico, depende da rotacao e da presenca do defeito.
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Abstract

The geometric and topological phase factors have drawn considerable interest in
different areas of physics. In the non-Abelian gauge theories they have been used in
connection with the problem of confinement of quarks in quantum cromodinamic. In
quantum mechanics, the geometric phase of the wave function describing the evolution of
a system with time-dependent Hamiltonian has fundamental importance. In the context
of gravity, some investigations concerning these phases were done in connection and with
the description of this theory in a way independent of gauge. In this thesis we use these
phases in Einstein and Kaluza-Klein theories of gravity in order study the Aharonov-Bohm
effect, characterize globally some spacetime, to study the appearance of Berry phase and
its relation with the parameters characterizing the spacetime under consideration. We also
perform the computations of the phase factor for the gravitational field corresponding to
the Kerr-Newman metric with a conical defect, showing how the phase depends on the

rotation and on the presence of the defect.



Introducao

Os problemas relacionados com o aparecimento e as propriedades das fases em
mecanica quantica tem uma longa histéria e pode ser remetida ao inicio dos anos 20
quando da introducao dos mimeros complexos em mecénica quantica. De fato, alguns
anos antes Schrodinger publicou um trabalho [1] em que introduziu o fator de fase
exp(—% § A,dz"), com base na teoria de Weiy [2]. Este fator estd associado a fase da
funcao dg onda de particulas carregadas no campo de um solenéide, no efeito Aharonov-
Bohm eletromagnético [3].

Em 1975, Wu e Yang [4] chamaram a atengao para o fato de que a quantidade fisica
que possui relevancia no eletromagnetismo nao ¢ a intensidade de campo, F,,, nem o
potencial vetor, A, e sim o fator de fase, que ¢ um nimero complexo e possui diferentes
valores para cada contorno diferente do ponto de vista topolégico. Eles resumiram suas
observagoes dizendo que [4]:

- O tensor intensidade de campo, F,,, subdescreve o eletromagnetismo, o que é
confirmado pelo efeito Aharonov-Bohm.

- A fase —% ¢ A, dx# sobredescreve o eletromagnetismo, pois, experimentalmente, nao
se pode distinguir entre dois casos em que a diferenca de fase é 27 ou muiltiplo de 27.

- O eletromagnetismo é completamente descrito pelo fator de fase, que contém a
necessdria e duficiente informagao acerca dos fenomenos eletromagnéticos.

A formulacao do eletromagnetismo usando o fator de fase foi generalizada para o caso de
campos de gauge nao-Abelianos [4]. Neste caso, o fator de fase tornou-se mais importante,
pois, o tensor intensidade de campo subdescreve os campos de gauge mesmo em regioes
simplesmente conexas. No contexto das teorias de gauge nao-Abelianas foi evidenciada a

importancia do fator de fase no estudo de propriedades a grandes distancias [5], e como



conseqiiéncia disto, a formulagao [6] dessas teorias em termos do fator de fase tem sido
objeto de grande interesse.

A propriedade de invariancia de gauge do fator de fase (loop de Wilson) permite, entao,
fazer uma formulagao da teoria de modo a eliminar qualquer referéncia aos gauges [7].
Assim, o formalismo diferencial das teorias de gauge pode ser reformulado em termos de
um formalismo integral [8] no qual o fator de fase dependente do contorno desempenha
um papel fundamental.

A extensao do formalismo do fator de fase para a teoria da gravitacao foi considerada,
inicialmente, por Mandelstam [9], que estabeleceu vérias equagdes envolvendo o fator de
fase (varidvel de contorno), e também por Yang [8], Menskii [10] e Voronov e Makeenko[11].

No inicio dos anos 80, Berry [12] descobriu que se a evoluc¢ao de um dado Hamiltoniano
¢ determinado por um conjunto de pardmetros dependentes do tempo, entao, a mudanca
de fase da funcao de onda, na evolucao ciclica do sistema, isto é, sob condigoes periddicas,
possui propriedades geométricas, e a mudanca de fase nao depende da evolugao do sistema
(que é admitido ser suficientemente longo para ser considerado adiabédtico), e sim, é
determinada pelas propriedades geométricas do espago dos parametros. De fato, essa
mudanga de fase pode ser interpretada como a condigao de transporte paralelo [13] dos
vetores de estado do sistema quantico no espaco de Hilbert.

Virias generalizagoes da fase de Berry tem sido feitas, como, por exemplo, considerar a
evolugao ciclica de sistemas degenerados [14] (caso ndo-Abeliano), e nao exigir a condi¢ao
da adiabaticidade [15], bem como considerar a fase de Berry para um sistema quéntico
evoluindo em um campo gravitacional [16],[17] e [18], ou no contexto cosmoldgico[19].

Em fisica, dois tipos de fases despertam interesse. Um tipo é a fase geométrica que é
determinada pela estrutura geométrica ao longo de uma curva, bem como da conexao que
é usada para o transporte paralelo ao longo desta curva. No contexto da fase de Berry,
a natureza geométrica significa que o fator de fase depende somente da curva no espago
dos estados quanticos-trajetéria no espaco de Hilbert, que é conhecido como espaco de
Hilbert projetivo. Em particular, a fase geométrica é independente da parametrizacao da
curva no espago projetivo de Hilbert.

O outro tipo é a fase topoldgica, a qual é invariante pela deformacao continua e suave de



curva escolhida. Este fato nao ocorre para fases geométricas, em geral. Fases topolégicas
deste tipo forman um subconjunto de todas as fases geométricas.

O efeito Aharonov-Bohm [3] tem sido discutido por mais de quarenta anos e ainda
continua a ser visto como um assunto de grande interesse em vérias dreas da fisica [20].
Este efeito tem sido investigado experimentalmente [21]. No contexto de fisica da matéria
condensada, o efeito Aharonov-Bohm tem sido largamente estudado na teoria de defeitos
em solidos [22], [23].

A
existéncia do efeito gravitacional Aharonov-Bohm no espago-tempo quadridimensional da
corda césmica ¢ bem conhecido e foi investigado por diversos autores [24],[25] e [26]. Nesta
tese, estendemos esse estudo para varias configuragoes de campo gravitacional, tanto no
contexto da teoria de Einstein, quanto na de Kaluza-Klein, e também investigamos esses
dois tipos de fase nesses contextos.

No primeiro capitulo, apresentamos uma revisao matematica sobre temas importantes
para a compreensao dos estudos feitos nesta tese. O fator de fase, tanto em teorias de
gauge, quanto em gravitacao tem uma grande importéancia nesse estudos, daf a énfase dada
a este objeto e ao efeito Aharonov-Bohm eletromagnético e seu andlogo gravitacional. A
revisao termina por apresentar uma correspondéncia entre os termos usados em teorias
de gauge e espagos fibrados.

No segundo capitulo, verificamos que a transformacao de holonomia para curvas no
plano perpendicular ao cilindro de matéria com rotacao depende do momento angular
da fonte, apesar de esta grandeza nao afetar o tensor de curvatura, na aproximagao de
campo fraco, em que o cilindro gira lentamente de modo que os termos proporcionais ao
quadrado do momento angular sao despreziveis. Esta dependéncia do fator de fase com
uma grandeza que nao afeta a curvatura da regiao acessivel a particula denominamos de
efeito Aharonov-Bohm gravitacional generalizado. Também determinamos o fator de fase
associado a corda quiral e & multicorda quiral e estabelecemos a caractrerizacao global do
espago-tempo de N cordas com uma delas dotada de um boost. Mostramos que no caso
da corda com rotacao, o fator de fase é um elemento do grupo de Poincaré, e que este

fato estd associado a existéncia de um sistema de coordenadas plano. Este resultado nao



pode ser generalizado para um espago-tempo qualquer. Obtemos uma generalizacao da
solucao de monopolo, calculamos os fatores de fase e mostramos que eles satisfazem as
relacoes de Mandelstam.

Ressaltamos, no capitulo 3, a importancia da fase de Berry em diversos ramos da
fisica, exibimos a sua dedugao para um sistema que evolui adiabaticamente com o tempo,
caracterizando-a como um objeto puramente geométrico, pois, depende fundamentalmente
das curvas fechadas no espago de parametros dos sistemas considerados. Além do
mais, apresentamos um resumo dos estudos que vem sendo feitos sobre fase geométrica,
no sentido de generalizacoes para campos de gauge nao-Abelianos e para aproximacao
adiabdtica relativistica. Encontramos a fase de Berry adquirida por uma particula escalar
quantica nos espacos-tempos da corda quiral e da multicorda quiral, do cilindro com
rotagao e em universos isotrépicos.

No capitulo 4, apresentamos uma breve revisao da teoria penta-dimensional Abeliana
de Kaluza-Klein e utilizamos as transformacoes de holonomias, em diversos espago-
tempos, como os associados ao solendide e monopolo global, & corda e multicorda quiral
magnética, para estudar aspectos globais destes espaco-tempos.

Apresentamos um tratamento unificado dos efeitos Aharonov-Bohm eletromagnético
e gravitacional. O resultado final nos fornece os efeitos eletromagnético e gravitacional
separado e simultaneamente. A parte gravitacional é caracterizada pelos parametros «, J*
e J?; e a eletromagnética pelo fluxo ®. O aparecimento desses efeitos de forma combinada
é uma conseqiiéncia do esquema de unificacao da teoria de Kaluza-Klein.

No capitulo 5, apresentamos, inicialmente, algumas consideragoes sobre a obtencao da
métrica de Kerr, que ¢ a tnica solucao estaciondria das equagoes de Einstein no vazio
correspondente a um buraco negro com rotacao. A seguir, calculamos os fatores de fase
para vérias curvas no espago-tempo de Kerr contendo um defeito conico (corda césmica)
e exibimos o efeito da rotacao na expressao da holonomia total. Particularizamos esses
resultados para o espaco-tempo de Schwarzschild com defeito.

Para finalizar, apresentamos as conclusoes sobre os resultados constantes desta tese.



Capitulo 1

Resultados Basicos

1.1 Introducao.

Nosso objetivo neste primeiro capitulo, é fornecer alguns resultados que serao
importantes para o entendimento da estrutura matemdtica a ser usada. Vamos iniciar
nossa fundamentacao matemdtica pelo conceito de Variedades Diferencidveis e nos
estenderemos até o conceito de Fibrados e em particular, o de Fibrado Principal, conexoes
em Fibrados. Os conceitos aqui apresentados nao tém o rigor matemdtico que sao
apresentados na literatura prépria do assunto, pois estamos fazendo uma simples revisao.
Estes conceitos sao encontrados nos bons livros de Geometria Diferencial e Riemanniana
e nos compéndios de Geometria e Topologia Algébrica [27]. Apresentaremos também
um paralelo entre teorias de gauge e teoria de fibrados, e o conceito de fator de fase.

Discutiremos o efeito Aharonov-Bohm eletromagnético e seu anédlogo gravitacional.

1.2 Variedades diferenciaveis.

O primeiro passo a ser dado na construcao da teoria geral da relatividade é deixar o
espago Euclidiano e o sistema de coordenadas Cartesianas. Contudo, a partir da nossa
experiéncia do mundo real queremos construir uma estrutura que, localmente, seja um
espago-tempo quadrimensional. Este objeto é chamado de variedade quadridimensional.

Por uma questao de conveniéncia, nao vamos restringir as definicoes ao espaco de quatro



dimensoes. Iremos trabalhar em um espago de n-dimensoes.

Uma variedade diferenciavel M de classe C*°, de n dimensoes, é um conjunto de pontos
juntamente com familias de pares {(U;, ¢;)}, onde ¢ ¢ um indice que assume determinados
valores, podendo inclusive assumir valores em um conjunto infinito. Essas familias devem
satisfazer as seguintes condigoes:

(i) {Ui} sao conjuntos abertos que cobrem M, isto ¢, JU; = M, e ¢; é um

(2
homeomorfismo (y; e ¢; ' sdo continuas) de U; em um aberto U de R™.

(i) Dados U; e U; tais que U; N U; # 0, a aplicagao i = %%—1 de @j(Ui A U;) para
©;(U; NUj) é de classe C*°.

O par (U, ), para um valor fixo de i é chamado de carta, enquanto a familia {(U;, ;) }
é chamada de atlas. O subconjunto U; é chamado de vizinhaca de coordenadas, enquanto
©,; € a funcao coordenada, ou simplesmente coordenada. A coordenada ¢, é representada
por n fungoes {z!(p),.....,2"(p)}, p € M, e o conjunto {z*(p)} ¢ também chamado de
coordenadas.

Uma métrica Riemanniana em uma variedade diferencidavel M ¢é uma lei que faz
corresponder a cada pomto p € M um produto interno < - >,, (forma bilinear simétrica
definida positiva ) em 7,(M) (espago tangente de M em p), que varia diferencialmente
no seguinte sentido: Se x ¢ um sistema de coordenadas locais em torno de p, com

x(zt,2?. .. 2") = g€ x(U) e -Z(¢q) = dx(0,...,1,...,0), entdo,

Ozt
0 0 n
<@...%>ngﬂy(xl,...,x ), (1.1)

¢ uma funcao diferencidvel na vizinhanga U de M.

Outra maneira de exprimir a diferenciabilidade da métrica Riemanniana é dizer que
para todo par (X,Y) de campos de vetores diferencidveis em U, a funcdo < X,V >
é difencidvel em U. Uma variedade diferencidvel com uma dada métrica Riemanniana
chama-se uma variedade Riemanniana. Se < V.V’ > = 0 para qualquer V' € T(M),
entdo V =0e < V,V' > =< V|V > V V,V' € T,(M), e dizemos que M ¢ uma

variedade pseudo-Riemanniana.



Sejam M e N variedades Riemannianas, elas sao ditas difeomérficas se existir uma
aplicagao C*°, f : M — N com inversa também de classe C'°. Se duas variedades forem
difeomorficas, entao, elas terao a mesma estrutura diferencial.

Dizemos que f é uma isometria se:
< XY >,= <dfp(X),dfp,(Y) >pp), VpEMe X, Y € T,(M). (1.2)

Se U é uma vizinhanga em M e f: U — f(U) C N satisfaz a equagao eq.(1.2), entao f é

chamada de isometria local.

Um exemplo de variedade Riemanniana é o R™, com 8% =e¢ = (0,..,1,...,0). A
métrica é dada por < e;,e; > = J;;. R” é chamado espaco Euclidiano de dimensao n e a
geometria Riemanniana deste espago é a métrica Euclidiana.

Dizemos que uma métrica g,,(x) é uma forma invariante se efetuada uma mudanca

de varidvel + — 2’ temos
9 () = g,,,(7), Vo € M. (1.3)
Se sob tal mudanca de varidvel g, (x) se transforma como

ox'? 0x'°

(@) = S (@), (14)

e a mudanca r — 2’ é dita uma isometria.

1.3 Formas diferenciais.

Um tensor do tipo (¢,r) é um objeto multilinear, o qual mapeia ¢ elementos de

T (M)(espago dual do T},(M)

e r elementos de T,,(M) em um muimero real. Denotamos

o conjunto dos tensores tipo (¢,7) em p € M, por 7,2 (M). Um elemento de 7,9,(M) é
escrito em termos da base {57 } na forma
0 0
= TH1--H _ Yiooodxtr
T =T, oy Y dz dz"", (1.5)

vemos assim que 7' é um funcional linear de @77 (M) ®"T,(M) em R.

A operagao de simetria em um tensor w € 7,9 (M) ¢ definida por

Pw(‘/lw"v‘/;‘) EW(VP(].)?"‘?VP(T))’ (16)

7



aonde V; € T,M e P é um elemento de S,, grupo de simetria de ordem r. Se P for uma
simetria de w em todos os pontos da variedade, entao P é chamada simetria de w ou
transformacao de simetria de w. Quando P é uma simetria da métrica, dizemos que P é
uma isometria. Uma r-forma diferencial é um tensor totalmente antissimétrico do tipo
(0,7). Denotamos o espago vetorial das r-formas em p € M por Q;(M ), cuja base é o
produto exterior A, de r-formas

dx" Ndat2 NN dat = Z sgn(P)dxtr® @ dxHr® ... @ dzhr), (1.7)

PeS,

que é um elemento w € Q;(M ), sendo expandido como

1

Y F%luz..#rda:m Adxt2 A LA dat (1.8)

onde wy, ,, . sdo totalmente antissimétricos e dz' Adz#2 A ... Adx#r forma uma base para
Q7 (M) que é um espago de dimensdo n!/r!(n —r)!. Podemos associar a cada ponto da
variedade uma r-forma, definindo assim, um campo de formas €27 (M).

O produto exterior de uma ¢-forma por uma r-forma é uma aplicacao
A QE(M) x QO (M) — QI (M),
que satisfaz as seguintes propriedades:
(i) (AC=0se (€ QM) e q éimpar;
(i) (AE=(=1TEAC, com ¢ € QI(M) e ¢ € Q(M);
(iii) (CAEAP=CA(ENP) com (€ QUM) , &€ Q(M)edeQs(M).

Portanto, dada uma ¢-forma ¢ e uma r-forma &, o produto { A £ é uma (q + r)-forma

definida por

(g +n)!
(C /\ £)M1--~Nq+r - q!r! C[”l"'ﬂq£l”'q+1...uq+r} :

1

Sew =+
r

Wiy i, dx' Adx#2 A ... A dz*r for uma r-forma, define-se a derivada exterior de
i

w como sendo a aplicacao d, : Q" (M) — Q"1(M) dada por

T\ g

1
dyw = ( 0 > dx” Ndx! AN datr. (1.9)

8



Vamos apresentar o exemplo mais simples e mais conhecido de formas que é a 1-forma.

Uma 1-forma em uma variedade M é uma aplicacao

¢: T,(M)—R
(X,Y) = ¢(aX +bY) = ap(X) + bp(Y)
Notemos que ¢(X) e ¢(Y') pertencem ao dual, 77 (M), portanto ¢(X) = 3 fidz; onde

{dz;} é uma base para T;(M). Sejam ¢ = Z fidr; e w = Zgidxi duas 1-formas. Entao,

(i) ¢+w=>(f+ g)dz;, ¢ uma l-forma,

(ii) dx; ANdz; =0sei=jedr; Ndr; = —dx; Adzi
(iii) d¢ = >_df; A dz;, ¢ uma 2-forma;
(iv) Se h et sdo fungoes, entao,

1. d(ht) = dh.t + hdt;

2. d(h¢) = dh A ¢+ h A do;

3. d(p Nw) =dp N w — pdw.

Vamos exibir alguns exemplos de cdlculo com 1-forma. Primeiramente consideremos

¢ = xdr — ydy e p = zdx + xdz, entao,

oAy = (xdr —ydy) A (zdx + xdz)
= rzdvdx + v?dzdz — yzdydr — yrdydz.
Mas dx A dx =0, e dy A dv = —dz A\ dy, portanto, temos que

A @ =yzdr Ady + 22dx A\ dz — zydy A dz,

que é uma 2-forma.

Considerando a 1-forma 6 = zdy, entao

ON G N @ =y dydrdy + 2°2dydrdz — xyzdydydz.



Como dy A dx A dy e dy A\ dy A dz contém cada uma, uma repeticao, portanto sao nulas,
logo
GNP N@=—xzdedydz,

que é uma 3-forma.

Consideremos agora a 2-forma 1 = ydrdz + xdydz. Segue que
O An= (2% +y*)drdydz.

Vamos considerar também que ¢ = xydx + 2?dz, entdo
d¢ = d(zy) Adzx + d(x?) Ndz
= (ydz + zdy) A dx + 2xdxdz
= —xdzdy + 2zdxdz.
Uma g¢-forma ¢ ¢é dita fechada se d( = 0, e ¢é dita exata se ( = d¢ para alguma
(¢ — 1)—forma. Portanto, todas as formas exatas sao fechadas. Como exemplo, vamos
considerar o campo vetorial covariante Au do campo eletromagnético. O tensor campo

eletromagnético F,,, ¢ uma 2-forma definida por
F =dA,

ou

Fuw=20,, A, = 0, A, — 0, Ay,

onde 0, = 0/0x".
Pela identidade de Bianchi 9),F,,; = 0 ou dF = 0, que ¢ uma consequéncia de d*A = 0.
A equagao dF = 0 corresponde a duas das equagoes de Maxwell.

Com a operagao de derivacao de uma g¢-forma, construimos uma aplicagao
[ (M) — Qg*l(M).

Considere o subespago AZ(M) de Q¢(M), que consiste das formas exatas, isto ¢, formas
diferenciais ¢ tal que d¢ = 0. O espago A%(M) contém o subespago AZ(M) que consiste
de todas as g-formas exatas em Qg(M ), isto é, de todas as formas diferenciais em Qg(M )

que podem ser escritas como d¢ em termos de uma (g — 1)-forma. Defina o espago vetorial
_ Ag(M )
Ap(M)’

W (M)

p
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constituido por todas as formas fechadas de modulo exatas.
Dizemos que W} (M) € o espago vetorial da ¢-ésima cohomologia de Rham. Ele tem
dimensao a, = dim AZ(M) — dim Af(M), que é chamada o g-ésimo nimero de Betti da

variedade M e é um invariante topoldgico. A caracteristica de Euler da variedade é dada
n

por X = > (—1)%a,.

q=0

1.4 Grupos e dlgebras de Lie.

Os grupos de Lie constituem uma classe especial de variedades diferencidveis. Eles tém
a estrutura de uma variedade diferencidvel e além do mais sao grupos com a operacao de
grupo que é diferencidvel.

Um grupo de Lie G é uma variedade diferencidvel que possui estrutura de grupo, isto

é, tem uma operacao definida, x tal que

*: GxG—=G
(i) (fechamento);

(9.9) —g*d

(ii) aidentidade e, e o inverso g~'de qualquer g € G, pertencem a G e sao diferencidveis.

Um exemplo de variedade grupo de Lie é o R™, com a operacao multiplicacao.

A acdo de um grupo de Lie GG sobre uma variedade M é uma aplicagao diferencidvel
n:GxM—M
tal que:
(i) n(e,p) = p, Vp € M,onde e é a identidade de G;

(ii) n(g,n(9',p)) = n(gg',p), com g, ¢’ € G.

Seja G um grupo Lie, a agdo a esquerda de G (translagdo a esquerda de G) é o
mapeamento

L,:G— G, (1.10)

definido por L,(z) = gz, € G . Este mapeamento induz a aplicagao

L, : Tu(G) — Ty (G), (1.11)

*g
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definida por L, (X) = Y,com Y € T, (G).

Um campo vetorial X tal que L, (X)|, = X|,, ¢ dito invariante & esquerda de M. Seja

|
G(G) o conjunto de todos esses campos vetoriais (espago vetorial). De maneira andloga
define-se a invariancia & direita(D, : G — G), definida por D,(z) = zg em G.

Sejam H um espago de Hilbert e GL(H) o conjunto das transformagoes lineares

invertiveis e G um grupo. A representacao de G em H é um homomorfismo de grupos,

p: G— GL(H).
g — p(g) linear

A aplicacao
v :G(G) — T(G), (1.12)

definida por 1(X) = X(e), ¢ um isomorfismo entre espagos vetoriais, e daf

dimG(G) = dim 7, (G) = dim G. (1.13)

Necessitamos deste fato para que tenhamos G(G) como uma dlgebra de Lie, a qual é uma
versao infinitesimal de G. A vantagem da dlgebra de Lie é que ela é um objeto algébrico
com estrutura linear, a qual sempre determina G localmente.

Seja V' um espago vetorial real de dimensao finita. V' é uma &dlgebra de Lie se existe
o produto e

o: VXV -V
(1.14)
(z,y) = [z, 9]

tal que:

(i) [az +b2',y] = afr,y] + b[2', y], (o) & bilinear
(ii) [x,y] = — [y, z], (8) é antissimétrico
(iil) [=, [y, 2]] + [2, [z, y]] + [y, [z, x]] = 0, (e) satisfaz a identidade de Jacobi.

Como exemplo de dlgebra de Lie temos o espago de todos os campos vetorias de M,

X (M) munido com o paréntese de Lie [X,Y] = XY — Y X.

12



Dado um grupo de Lie G podemos construir sua dlgebra de Lie (via campos laterais a

esquerda) da seguinte maneira. Consideremos G(G) munindo-o com o parénteses de Lie
X,Y] = X"9,Y" — Y"9,X". (1.15)

Assim G(G) ¢é a algebra de Lie de G.
Seja {E;}_; uma base de G(G), dai:

(i) [Ei Ej] = E;E; — E;E; € G(G);

(ii) [E;, Ej] = C}Ey, (o comutador de dois campos vetorias a esquerda é também um
campo vetorial & esquerda), onde ij sao as constantes de estrutura do grupo de Lie

sujeitas as condigoes

1. Cf = =C5;

it

2. C5CM + Cf

J {2

CTe + C3,Clt = 0 (identidade de Jacobi).
Exibiremos agora alguma relagoes entre grupo e dlgebra de Lie.

(i) Cada grupo de Lie esta associado a uma tnica dlgebra de Lie.
(ii) Cada dlgebra de Lie define um tnico grupo de Lie local.

(iii) Dada uma dlgebra de Lie G(G) associada a G, corresponde um tnico grupo de Lie
G simplesmente conexo, denominado de cobertura universal de G. G é localmente
isomorfo a G, via projecdo p : G — G. Esta ¢ uma propriedade global do grupo de

Lie.

Observemos que um grupo de Lie é Abeliano se somente se C’i’“j =0, Vi,7,k. O subgrupo

H de G é normal em G se e somente se os geradores h; de H satisfazem a relagao
[Ei, hj] = Cfihy,. (1.16)

Toda subalgebra G; de uma &lgebra G de um grupo de Lie (G, gera localmente, um
subgrupo. Uma subdlgebra com base {N;}_;satisfazendo a eq.(1.15) gera um subgrupo

normal.
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Seja
v:R—G,

um homomorfismo de grupos de Lie Abelianos. O conjunto {p(t);t € R} é um subgrupo
de G, chamado de grupo a 1-parametro. Demonstra-se que dado um grupo de Lie G,
para qualquer X € G,# 0, existe um unico subgrupo a 1l-pardmetro de G o qual é a
transformacao infinitesimal de X. Formalmente a &dlgebra de Lie G pode ser definida
como as diregoes tangentes em G, pois G =T,(G). Esta é uma maneira mais simples e
direta de definir a dlgebra de Lie. Assim cada elemento ( € G é um vetor tangente a G e
podemos considerar curvas em G tendo ¢ como vetor tangente. Dentre essas curvas existe

uma tdnica curva ¢(t), a qual é também um subgrupo de G tal que :

(i) g(t1 +1t2) = g(t1) - g(t);

Notemos que g é um grupo a 1-parametro. Assim qualquer subgrupo a 1-pardmetro

determina um vetor tangente

d

C:%Q

(t),_, em G. (1.17)

A correspondéncia entre ( e g(t) é g(t) = exp(t(). A razao desta notacdo é que no caso

de GL = GL(n,R) temos

n!

gty =" e (1.18)

n=

e, portanto podemos identificar G = GL(n,R ) com M (n,n) (espago das matrizes
quadradas n x n).
Seja V um espago vetorial real. A representacio da Algebra de Lie G em V ¢ uma
aplicacao
p: G—LG(V)
A — p(A),
tal que:

(i) plaA+ BB) = ap(A) + Bp(B);

(ii) p[A, Bl = p(A)p(B) — p(B)p(A).
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Seja {A1, As,..., A, } uma base para G =G, ® G & ... & G, com G, sub-dlgebras
de G, onde cada G; ¢ um ideal de G, e seja C¥ a inversa da matriz nao-singular da forma

bilinear simétrica

Vamos construir o operador C' = Y CYp(A;)p(B;), que é chamado de operador de
ij=1
Casimir da representacao p. Entao, tem-se que;

(i) [C,A] =0,V A € G, ou seja C comuta com qualquer elemento de G
(ii) [C,g] =0,V g€G.

De (i) e (ii) conclui-se que C' é um muiltiplo da identidade.
Seja 1 a acao de um grupo G sobre a variedade M, cada elemento g de G induz uma

transformacao
: M —-M
K (1.20)

T — gz,
definida por n,(z) = n(g,z). Notemos que 7,(x) = z, isto &, 7, é a aplicagao identidade

e que 1,,,,(z) = 1(g192, ¥). Daf demonstra-se que o conjunto
H={y,:M— M} (1.21)

¢ um grupo que ¢é isomorfo a GG. Devido a este isomorfismo, H é denotado de grupo de
transformagoes de G. Quando a variedade grupo de Lie G é de dimensao r (dimH=dimG),
o grupo de transformacoes é dito ser de r-parametros.

Neste caso se 7, (x) = x, Vo € M, isto implica que g = e ou My (x) = x1 se g # e.
Dizemos que 7, ¢ efetiva, daf quando G ¢ efetivo sobre M, dimG = r e denotamos o grupo
das transformacgoes por G,.

Se ¢ é um ponto fixo de M, define-se a 6rbita de xy sobre G, como sendo
Oy = {x = ny(20) = gr0,Y9 € G} C M, (1.22)

que é uma subvariedade de M.
Um grupo G é dito transitivo sobre a variedade M se dados dois pontos z, y de

M existe pelo menos um 7, € H tal que n,(z) = y. Se n, é tnica dizemos que G &
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simplesmente transitivo, caso contrario dizemos que GG é multiplamente transitivo sobre
M. Quando G é transitivo sobre M, entao O,, = M e se G é multiplamente transitivo,
entao G atua efetivamente.

O fato de de um grupo G, ser transitivo, simplesmente transitivo ou intransitivo,
depende da variedade érbita sobre a qual fazemos G, atuar.

O conjunto dos elementos g € G que deixam zy € M fixo, isto &,

L, = {9 € Giny(x0) = w0}, (1.23)

constitui um subgrupo de (G, denominado de grupo de isotropia de xy. Notemos que I,
¢ um subgrupo normal de G. Portanto, podemos definir o grupo quociente G/I,, que ¢é
também um grupo de Lie chamado de Espago Homogéneo. Se M = R3 e G = SO(3) e
H = SO(2) entao G/H = S

Consideremos agora o mapeamento

U,: G- 0O,
(1.24)
9 — Us(9) = zg,
que induz a aplicagao
Us)s : T(G) = T(O,), (1.25)

a qual, em particular, levard os campos invariantes a esquerda de G em campos vetoriais
tangentes a orbita. Mostra-se que esta aplicagao independe da escolha do ponto e que ela
pode ser estendida a toda variedade M que contem O,, ou seja podemos definir campos
vetoriais sobre toda variedade M. Como (U, )«[X,Y]| = [(Us.)«X, (U;).Y] para quaisquer
X, Y em T(G), é claro que tais campos imagens formarao uma algebra de Lie, com as
mesmas constantes de estrutura da dlgebra de Lie dos campos invariantes a esquerda de
G. Se denotarmos por {X;}I_, os campos vetoriais em M, obtidos pela aplicacao de (U ).

a base {E;}7_, de G(G), entao {X;}!_; é uma base para T(G,).

1.5 Grupos de isometrias.

Dentre todos os grupos de transformgoes de uma variedade Riemaniana M, do ponto

de vista da Relatividade Geral, um mais importante é o grupo de isometrias ou grupo
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de movimento, que estudaremos suscitamente agora. Para tanto precisamos de alguns
conceitos como derivada de Lie e campos de Killing.

Vamos iniciar nossa discussao considerando a transformagao de coordenadas em M
=Tt (e;x"), (1.26)

onde

t =7H(0;2"). (1.27)

e £ ¢ um pardmetro. A equacdo eq.(1.26) descreve um conjunto de transformagoes a

1-parametro z* — T, que sob o ponto de vista infinitesimal pode ser escrita na forma
ot = at 4 e (x), (1.28)

onde € é um parametro infinitesimal e £*(z) é um campo de vetores contravariantes, o
qual serd definido por
oxt
e = %] (1.29)
Oe | ._,
Define-se a derivada de Lie de um campo escalar ¢ em relacao ao campo vetorial £ (x)

como sendo

¢(x) — o(%) 99 _

Leote) = lim T2 g0 22 = <6 96> (1.30)
Para um campo tensorial T ela é definida por
LT (x) = lli% w (1.31)
A derivada de Lie para um vetor contravariante V* em relagao a £ é
LV =PV Ve — VPV e, (1.32)
e para um vetor covariante V, ¢
LV, =&V, Vo +V, V8 (1.33)

Para um tensor covariante de segunda ordem 7}, ,a derivada de Lie é dada por

oT,, ocr o&P
P M -2 -
oxP + 1P Ov +pr83:“

= gpva/w + Tupvvgp + prvufp.

LT, = &

(1.34)
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Em particular, a derivada de Lie do tensor métrico g, €
Eﬁguu = vugu + vuf,u (1‘35>

pois a derivada covariante do tensor métrico é nula.

Dado g,,, de um espagco-tempo, g¢,, ¢ invariante quando
Legu(x) =0, (1.36)

e neste caso, a transformacao dada pela eq.(1.24) é uma isometria. Das equagoes (1.31) e
(1.32) temos
Vﬂgll + vugu - O, (137)

que ¢ a equagao de campos de Killing. A solugao {,(7) da equagdo anterior ¢ chamada
de vetor de Killing, que forma o espaco vetorial gerado por & u(x) Se o espago-tempo
tem solucao de Killing dizemos que ele é simétrico, caso contrdrio dizemos que ele é
nao-simétrico .

Sejam &; e §; campos de Killing distintos, entdao o comutador [{i, £ j] é um campo de

Killing. Como os vetores de Killing constituem um espaco vetorial, temos

onde C’fj sao constantes e, evidentemente, satisfazem as propriedades do parénteses de
Lie e consequentemente, os campos Killing formam uma &dlgebra de Lie para o grupo de
isometrias.

Considere o grupo G, simplesmente transitivo sobre uma dada érbita O, = M. Neste
caso a aplicagdo dada pela eq.(1.23) é um isomorfismo que induz a aplica¢ao na eq.(1.25),
que leva campos invariantes a direita de GG nos correspondentes campos invariantes de M.

Sobre a variedade 6rbita de x, pela agao do grupo G, podemos construir a métrica
ds* = g(X;, X;)w'w! = gijw'ew’ (1.39)

onde w'(X;) = 5}, ou seja w' sdo 1-formas correspondentes aos campos invariantes a

esquerda sobre O, = M. Usando os resultado de derivada de Lie para campos tensoriais
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e o fato de que [E; Ej] = 0, temos [Xi,fj] = 0. Logo podemos dotar a variedade M de
uma métrica
dI? = (&, §,)0'& = g, @'@ (1.40)
onde &' (¢;) = &%
As simetrias de uma variedade espago-tempo sao expressas pela invariancia da métrica
sob o transporte de Lie. O conjunto de todas as isometrias formam, um grupo de Lie
de transformagoes da variedade considerada. Este espaco-tempo pode ter no maximo 10
campos de Killing linearmente independentes, pois o nimero dos campos (, satisfaz a

w, n = dim M, ou seja um grupo Gp9 de movimento. O espaco-

equagao 0 < ¢ <
tempo de Minkowski ¢ um exemplo de uma variedade quadrimensional que possui um

grupo de isometria G, 0 grupo de Poincaré, que tem um subgrupo Gg(grupo de Lorentz).

1.6 Fibrados.

Nesta secao introduziremos as defini¢oes bésicas de fibrado, fibrado principal, fibrado
associado e espaco projetivo.

Sejam

e F/ uma variedade diferencidvel de classe C'*°

e 1R uma relacao de equivaléncia em E tal que:

(i) o espago quociente M = E/R = {T, T classe de equivaléncia de =,z € M} é uma

variedade diferencidvel de dimensao n;
(ii) a projecao m: E — M, (w(x) =) é C> e tem posto n.

e F uma variedade de classe C*°;
e (G um grupo de Lie que atua em F' a esquerda.
A estrutura de fibrado diferencidvel em E é a séxtupla (E, m, M, F, ¥, (), onde

U ={¥,}, é uma familia de difeomorfismos satisfazendo as seguintes propriedades

(i) se {Us}aer € uma cobertura aberta de M, entdo Va € M, 3 U,(z) e 3 ¥, € U tal
que

Uy : Uy X F— 7Y U,) emoV,(x,y) =x,V(r,y) €Uy X F (1.41)
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(Uay ¥y )aer € a representacao de coordenadas para E. A funcgdo v, é chamada de

trivializacao local.

(11) V (Uom \Ija)aeb
Voo : F—F,={ye E;n(y) =z}

com V¥, .(y) = Yu(z,y) é bijetora paray € F e x € U,.

Seja M um fibrado. Uma secao s : M — FE é a aplicagao suave a qual satisfaz a
ms = idy. Notemos que para x € M, e entao s(x) = s, € F,. O conjunto das secdes de
M & denotado por I'(M, E). Se U C M, dizemos que s é uma segao local.

Em particular, se x € U,NUp, o difeomorfismo ¢;;(z) = \IJ;’Q}O\I’J-,% : F'— F, € G, onde
t;; € chamado de fungao de transicdo e F), é chamado de fibra sobre z € M, F, = 7 (x),
Vo € M, que é uma subvariedade fechada de E.

O espaco cobertura de uma variedade diferencidvel é um exemplo de Fibrado mais
comum. Se t;; = Identidade, o fibrado ¢ dito trivial, isto ¢, M ¢ contraida a um ponto
(Mé simplesmente conexa). Um tipo de Fibrado fundamental para a gravitacao e teorias
de gauge ¢é o Fibrado Principal, que num certo sentido é a generalizacao geométrica da
nogao de grupos de Lie.

Um Fibrado Principal sobre M com grupo G, consiste de uma variedade diferencidvel

P e da acao Ry, do grupo G' em P satisfazendo a

. Ryp: PxG—P
1 (P.9) = Rogp =19
(i) M = P/R, onde R = {(p1,p2) € P x P;3g € G; p1.g = p2} e M & conhecido
como espago orbita. 7 '(z) = {pg;g € G,7(p) = x} ¢ a fibra de = sobre P com

m: P — M a projecao diferencidvel;

(iii) P é um Fibrado localmente trivial sobre M, isto é, para qualquer x € M, existe

U C P e um difeomorfismo ¢ : 7~ 1(U) — U x G, definido por ¢(p) = (7(p), ¢(p)) =

¢(p).g Vg € G.

O Fibrado Principal é denotado por P(M, G), frequentemente chamado simplesmente

de fibrado.
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Um outro exemplo de fibrados é o Espago Projetivo, conceito que vamos apresentar
agora.Considere o R"™ — {0} e definamos a relagdo de equivaléncia, ~ , em R"** — {0}
por,

r,y €ER"™ {0}, 2~y INER-{0};y = dx(y' = \2',0 < i < n).
O conjunto das classes de equivaléncia dada por ~ e denotado por
P"(R) = [R™ —{0}] / ~, (1.42)

¢ chamado de Espaco Projetivo de dimensao n sobre R.

Como a aplicacao
m: R —{0} - P

(1.43)
r—om(x)=[z]=T
é sobrejetiva, a cada classe de equivaléncia [x] € P™ associa-se a reta
At = { A\ \ € R*} = 71 (x(x)). (1.44)

Assim P"(R) ¢ o conjunto de todas as retas que passam pela origem de R™!  sendo,
portanto, um espaco topolégico de Hausdorff compacto e conexo, admitindo uma estrutura
de variedade n-diferencidvel. Este conjunto pode ser pensado como o espaco quociente da

esfera unitdria S™ = {z € R"*!; |p| = 1} pela relagao de equivaléncia definida por
r~y<=z,yesS =y==+ur (1.45)

Com efeito, cada reta que passa pela origem determina na esfera dois pontos antipodas e

a correspondéncia assim obtida é, evidentemente, biunivoca e sobrejetiva, logo P*(R) =
St/ ~.

O espago projetivo complexo P"(C) ¢ definido por P"(C) = S*"*!/ ~ onde ~¢ a relagao
~omy eSSt o vy INeCi =Xy, y#£0, [N =1, (1.46)

e Sl = {z € C"™;|jz|]| = 1}. A projecao 7 : S — P"(C) define a classe de
equivaléncia [z] = {\- z; A € S'} = S'. Assim a relagao ~ decompde a esfera em S?"!
como reuniao de circulos dois a dois disjuntos, sendo cada um deles um ponto no espaco

projetivo complexo que sao as fibras.
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Dado um caminho C' em P™ existe um tnico levantamento C' em S?"*! e se C' ¢ fechado,
entdo, o leventamento pode néo ser fechado, mas se C' é fechado entdo C é fechado.
Dado um fibrado principal P(M,G), podemos construir o fibrado associado como
segue: seja G atuando na variedade F' & esquerda. Define-se a acao de g € G em P x F por
(u, f) — (ug,g7'f) onde u € P e f € F. Entao, o fibrado associado (E,, M,G, F,P) ¢é
uma clase de equivaléncia Px F'/G na qual dois pontos (u, f) e (ug, g~ ' f) sao identificados.
Considere o caso em que F é um espago vetorial V' de dimensao k . Seja p a
representagao k-dimensional de G. O vetor fibrado associado P x, V' ¢ definido pela

identificagao dos pontos (u,v) e (ug, p(g)*v) de Px V,ondeu € P,ge Gev e V.

1.7 Conexoes em fibrados.

Vamos fazer, inicialmente, uma revisao sobre conexoes em uma variedade Riemaniana
M. Vamos indicar por X(M) o conjunto dos campos vetoriais de classe C*>° e por ® (M)
o anel das fungoes C*° definidas em M.

Uma conexao afim V, em uma variedade diferencidvel M é uma aplicacao

Y X(M) x X(M) — X(M)
(X7 Y) - VXY7

(1.47)

que satisfaz as seguintes propriedades:

(1) fo+gyZ = fVXZ + gVyZ
(i) Vx(Y+2) =VxY +VxZ

(iii) Vx(fY) = fVxY + X(f)Y,onde X, Y, Ze X(M) e f , g € D(M).

Demonstra-se que se M é uma variedade diferencidvel com uma conexao afim V, entao,

existe uma tnica lei que associa a um campo vetorial V' ao longo da curva diferencidvel

] Y

=~ ao longo de C,denominado derivada

C : I C R—M um outro campo vetoria

covariante de V' ao longo de C, tal que:
i) B(v+w)=2Lr 4 2%
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(i) 2(fV) =2V + f2¢

(iii) Se V é induzido por um campo de vetores Y € X(M) V(t) = Y(C(t)), entao
_}5/ = vdc/dt}/-

A nocao de derivada covariante tem vérias consequéncias importantes. Ela tornou claro
que as idéias basicas de geodésica e curvatura poderiam ser definidas em situacoes mais
gerais que a de variedades Riemanianas. E suficiente para isto que se possa definir uma
nocao de derivacao de campos de vetores com certas propriedades, como a variedade sendo
dotada de uma conexao afim. Isto estimulou a criacao de vérias estruturas geométricas
mais gerais que a Geometria Riemaniana. Assim como a geometria FEuclidiana métrica
é um caso particular da geometria afim, mais geralmente, da geometria projetiva, a
Geometria Riemaniana é um caso particular de estruturas geométricas mais gerais.

Seja S C R3 uma superficie, C' : I — S uma curva parametrizada em S, e V : I — R3
um campo de vetores tangentes a S ao longo de C. O vetor ﬂ(t), t € I, nao pertence,
em geral, ao plano tangente T () (S). Dai, vé-se que a nocao de derivada de um campo
vetorial nao é , portanto, uma nocao da geometria de S. Para contornar tal incoveniente,
surgiu a nogao de derivada covariante.

Como vimos, conexao afim é um conceito local. Escolhendo um sistema de coordenadas
(x1,...,2,) em torno de um ponto p € M e escrevendo X = Z X, Y = ZyJX onde

X; = 0\Ox;, teremos

VxY = Z (Z 2y T+ X (y )) Xp, (1.48)

onde Vx, X; = > T Xy, e I} s@o os simbolos de Christoffel da conexao.

Seja M uma li/arieda,de diferencidvel com uma conexao afim V. Um campo vetorial V'
ao longo de uma curva C' : I — M é chamado paralelo quando % =0,vVtel SeCé
diferencével e V) é um vetor tangente a M em C'(ty), tg € I, e ent@o existe um tnico campo
de vetores paralelo V' ao longo de C' tal que V (ty) = Vp. V/(¢) é chamado de transporte
paralelo de V(o) ao longo de C. Se M ¢é uma variedade diferencidgvel com uma conexao

afim V e uma métrica Riemaniana < . >, a conexao é dita compativel com a métrica,

quando para toda curva diferencidvel C' e quaisquer pares de campos de vetores paralelos
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X, Y ao longo de C, tivermos < X,Y > = constante. Mostra-se que uma conexao afim

V em variedade Riemanniana M é compativel com a métrica se e s6 se
X<Y,Z> = <VxY,Z>+<Y,VxZ>X)Y, Z e X(M), (1.49)

e V é simétrica quando

VxY — VyX = [X,Y]. (1.50)

Quando a conexao afim for compativel com a métrica e simétrica ao mesmo tempo,
dizemos que V é uma conexao de Levi-Civita (ou Riemanniana) de M.
Seja P(M,G) um fibrado principal. A conexdo em P é a tnica separagao do espago

tangente T, P, u € P nos espacos vertical V,, P e horizontal H, P tal que;
(i) T,P=H,P&®V,P;
(ii) um campo vetorial suave X em P separa-se em
X=X14+ XV X2 ecHPeX"ecV,P;
(ii) H,P=R,-H,P ,Yue P, g€ G.

Vamos construir V,, P, para tanto considere v € P(M,G) e 7 '(p) = F, a fibra de
p € M. V,P é um subespago de T,,P que é tangente a fibra. Tome A € G(dlgebra de
Lie associada ao grupo G) e defina Rexpia)u = wexp(tA), como m(u) = m(uexp(tA) = p,
entao a curva uexp(tA) € F. Define-se o vetor A# € T, P por A% f(u) = & f(uexp(tA),,,

f: P — R, suave.

Notemos que A% ¢ tangente a F' em u dai A* € V,, P. Como a aplicacao

#. G—-V,P

Y (1.51)
- J

¢ um isomorfismo, entao, G ~ V, P.

Seja P(M,G) um fibrado principal e seja 7 : [0,1] — M uma curva em M . A curva
7 :10,1] — P ¢é dito um leventemento horizontal de v se 77 = 7 e o vetor tangente a
7(t) pertence sempre Hy ) P. Demonstra-se que se v é uma curva e ug € 7 *((0)), entdo

existe um tnico leventamento horizontal 7 em P tal que 7(0) = uy.
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Define-se a conexao de 1-forma, w € GRT P*(agao da dlgebra sobre o espago tangente
dual de P) como sendo é a projecao do T, P sobre a componente vertical V, P ~ G, tal
que

(i) wA*)=Aeg
(ii) Rjw = Aad, ,w(X) =g 'w,(X)g;u € P

Notemos que H,P = {X € T, P;w(X) = 0} = kerw, e que w ¢é definida de F' em F,

que leva A em A%.

1.8 Conexao local de 1-forma e potencial de gauge.

Seja {U;} cobertura aberta de M e o; : U; — 7 '(U;) uma fungao suave, chamada
segao local. A conexao local de 1-forma é definida como sendo o pullback (de 1-forma)
A = oiw € G @Y U).

Das 1-formas locais que satisfazem a relacao
A=t Aitiy + t; dt g, (1.52)

pode-se construir a G-valued 1-forma w sobre P. Como P é nao-trivial, nao admite se¢ao
global, o pullback A; = 0w existe apenas localmente. Em termos de teorias de gauge
A, define o potencial de gauge(discutiremos sobre este assunto na préxima secdo), e a
conexao A, define o potencial vetorial. A conexao A, difere do potencial vetor A, por
um fator da algebra de Lie, A,=iA,, .

A forma local F da curvatura €2 é definida por F = 02 , e 0 segao local definida na

carta U de M. F é expressa em termos do potencial de gauge A como
F=dA+ANA, (1.53)
onde d é a derivada exterior em M. Atuando em vetores de T' (M), temos

F(X,Y) =dA(X,Y) + [A(X), A(Y)). (1.54)
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Em cada carta U onde as coordenadas sao z# = ¢(p), seja A = A,dz" (A, € G) e

F = %]—"de“ A dz¥, entao a expresao de F torna-se

Fuw = 0p Ay, — 0, A, + [Ay, A (1.55)

Como A, e F,, sao fungoes G -valued, elas podem ser expandidas em termos das base

{T,} de G como
A, = ATo, Fu = F,,To com T, 1] = f(zﬁTA,. (1.56)

Podemos agora construir o levantamento horizontal 7 e definir o conceito de transporte
paralelo em fibras.

Seja U; uma carta a qual contém 7 e considere a secao o; sobre U;. Se existe
um leventamento horizontal 7, podemos expressé-lo como 7(t) = o;(y(t))t;;(t), onde
t;j(t)(fungao de transigdo) é entendida como ¢;(7y(t)) € G. Sem perda de generalidade,
podemos tomar a se¢do como sendo tal que ;(7(0)) = 7(0), isto é ¢;(0) = e. Seja X um
vetor tangente a y(t) em ~(0). Entao, X =7,X é tangente a 7 em ug = ~(0). Como o

vetor tangente X ¢ horizontal, ele satisfaz w(X) = 0. Da eq.(1.52) temos
X = 67 () Xt,(t) + [t dt:(X)] 7 (1.57)

Aplicando w a ambos os lados a eq.(1.57), obtemos

dt;(t)
dt

= —W(O'z‘*X>ti(t), (158)

que possui uma tnica solugao. Como w(c;,X) = ofw(X) = A;(X), temos

dti(t)
at

—A;(X)ti(t), (1.59)

e a solugao formal com t;(0) = e é dada por
¢ i
L) = Pexp | — / A
0

v(t)
= Pexp —/ A (y(t))dx ], (1.60)
7(0)
onde P é o operador ordenagao ao longo do caminho v(t). O levantamento horizontal é
expresso por y(t) = o;(7(t))t:(7(t))-

26



Seja 7 : [0,1] — M, uma curva. Considere um ponto uy € 7 !(7(0)). Existe um tinico
levantamento (t) de (t) através de ug, e existe um tnico ponto u; = J(1) € 7= (y(1)).
O ponto u; é chamado de transporte paralelo de uy ao longo da curva 7. Isto define a
aplicacao

L@) 71 (y(0)) — 7~ (v(1)) (1.61)

tal que ug — 4.

Esta aplicacao comuta com a acao a direita Ry, g € G, isto ¢,
R,L(7) =T () Ry Yuo € 7' (7(0)). (1.62)
Se a forma local dada pela eq.(1.60) for empregada, temos

y(t

)
uy = o;(1)Pexp <— Aw(’y(t))dx“> . (1.63)

7(0)

Com a estrutura matemadtica apresentada, podemos definir o conceito de Holonomia,
objeto matemadtico ao qual dedicaremos grande atencao nesta tese.

Sejam P(M,G) um fibrado principal e 7 : [0,1] — M uma curva cujo levantamento
horizontal através de ug € 7 !((0)) ¢ 7. Vamos considerar a aplicagao I'(y) tal que
up = 7(0) e (1) = wy. Sejam a, S : [0,1] — M, duas curvas com «(0) = S(0) = po
e a(l) = 5(1) =p eaq, 3 seus respectivos levantamentos tais que a(0) = E(O) = Up.
Entao, a(1) nao é necessariamente igual a B(l) Isto mostra que se considerarmos a curva
v :[0,1] — M tal que p = v(0) = (1), temos 7(0) # 7(1), em geral. A curva 7 define
a transformagao 7., : 7 1(p) — 7 '(p) na fibra. Esta transformagao satisfaz a relagao
7,(ug) = 7,(u)g. Notemos que 7., ndo s6 depende da curva, mas também da conexao.
Esta fungao recebe o nome de varidvel de contorno. Vemos assim que existe um tinico

elemento g € G tal que

guo = Uq,

onde g é a transformagao de holonomia.

Tome um ponto u € P com 7(u) = p e considere o conjunto das curvas

Cp(M) = {7 :[0,1] = M;~4(0) = ~(1) = p}.
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O conjunto dos elementos
¢, ={g€CG;7,(u) =ug, veC,(M)} (1.64)

¢ um subgrupo do grupo G e é chamado de grupo de holonomia.

1.9 Teorias de gauge.

H4 evidéncias de que as interagoes da narureza sejam descritas pelas chamadas Teorias
de Gauge. A universalidade do principio de gauge, ou melhor, a estrutura comum das
interacoes fundamentais representa um passo significativo no sentido de se formular uma
unica teoria que incorpore todas as interacoes, ou seja unifica-las, bem como no sentido
de geometriza-las, pois as estruturas de gauge sao essencialmente geométricas.

Em 1919, H. Weyl [2] tentou unificar a gravitagdo e o eletromagnetismo através
do uso do conceito geométrico de espago-tempo dependente da mudanca de escala.
Posteriormente, o préprio Weyl deu uma descricao do eletromagnetismo como uma teoria
de gauge numa forma que se aproxima da atual (formalismo diferencial).

O principio de invaridncia de gauge local para as interagoes entre cargas elétricas foi
generalizado, para o caso nao-Abeliano, por Yang e Mills [28]. Posteriormente, Utiyama
[29] construiu uma teoria de gauge para um grupo de simetria arbitrario.

Fisicamente, a busca da invaridncia ou simetrias globais é justificavel pelo fato de que
a toda simetria continua da Lagrangiana corresponde a uma lei de conservagao (Teorema
de Noether). Como exemplo de simetria temos a invaridncia por transformacao gerais
de coordenadas implicando na construcao da Relatividade Geral, a simetria de gauge
Abeliana local implicando na construcao do eletromagnetismo e a simetria de gauge nao-
Abeliana acarretando nos campos nao-Abelianos. Dois fatos fundamentais que motivaram
a construcao de teorias nao-abelianas foram a descoberta de que a forca entre os nticleos
possui curto alcance e a independéncia da intensidade da forca nuclear com as cargas dos

nicleos, e que levam a formulacao da simetria de spin isotépico.
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1.9.1 Eletromagnetismo como uma teoria de gauge.

O eletromagnetismo classico pode ser formulado inteiramente em termos do tensor
campo eletromagnético F,,(x). Por exemplo, dado F,,(z) em um ponto x, podemos
determinar, usando a equagao de Lorentz, como uma particula carregada colocada em z
ird mover-se. Isto nao é mais verdade na teoria quantica; F,, (), neste contexto, ndo é
adequado para descrever os efeitos eletromagnéticos sobre a funcao de onda de um életron,
conforme foi demonstrado|3].

A teoria de Maxwell do eletromagnetismo é descrita pelo grupo de gauge U(1) que é
Abeliano e uni-dimensional. Como o espaco base M é o espago-tempo quadri-dimensional
de Minkowski, o fibrado P(M,U(1)) ¢ trivial, ou seja P = R* x U(1), com potencial de

gauge A = A,dz", e o campo de gauge F =d.A, que em componentes

Fow = ‘Z’;: - %. (1.65)
O campo de gauge F satisfaz a identidade de Bianchi
dF =FNA-ANF =0,
que pode ser escrita na forma
NFuw + 0, Fx, + 0, F,n = 0. (1.66)

Sendo F,, = iF},, e se identificamos o campo elétrico E e magnético B como E; = Fj, e

B, = %aijjk, a eq.(1.66) reduz-se para as duas equagoes homogénas de Maxwell

VANE+0B/ot = 0 (1.67)

V.B = 0.

Para determinar a dindmica, temos que especificar a agdo. A agao de Maxwell, d,,[A], é

um funcional de A dado por

1 1
OulA] = —1 / FuFda = - / Fyp M da?, (1.68)
R4

R4
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Pela variagao de d,/[.A] com relagao a A obtemos a equagdo do movimento
OuFuw =0 (1.69)

e desta equacao se deduz o segundo grupo de equacoes de Maxwell

V-E =0 (1.70)
oF
B—— = 0.
V x 5 0

No estudo do eletromagnetismo cldssico, os campos elétricos e magnéticos (F},,) s@o de

muita importancia, e o potencial vetor Aeo potencial escalar & = Ay sao secundérios. Na
teoria quantica, no entanto, existe uma variedade de situacoes em que F),, nao ¢ suficiente
para descrever a teoria e usa-se o fator de fase construido a partir do quadrivetor potencial
A, = (Ao, A) na sua descricao. Um desses exemplos é o conhecido efeito Aharonov-Bohm
[3] eletromagnético, que é uma manifestagao invariante de gauge do fator de fase.
Como o problema, é essencialmente em duas dimensoes, vamos considerar a regiao M = R2,
onde o solendide estd na origem. O fibrado principal ¢ P(M,U(1)) e o fibrado associado
¢ F = PX,C, com U(1) atuando em C. E é um fibrado linear complexo sobre M, onde
a secao é a fungao de onda 1.

Vamos definir a 1-forma A =iA = iA,dz" assumindo valores na na dlgebra de Lie.

—yd zd )
2nr2) 2mr?

A derivada covariante associada com a conexao local ¢ D = d + A, com A = (
onde ® = [ BdS, ¢ o fluxo.

S
Como dA = F = 0, esta conexao & localmente plana. Considerando o circulo unitdrio S*
que envolve o solendide, parametrizando-o por e (0 < § < 27) e escrevendo a conexao
em S! como

@
A= i—db, (1.71)

temos que ao transportarmos paralelamente a quantidade 1) ao longo de S*, com relagao

a conexao local, obtemos

Di(0) = (d+ %d@)@b(@) o, (1.72)

cuja solugao é 1 (0) = e
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Este efeito pode ser descrito por um tratamento puramente matematico [30], mostrando-
se que a representacao unitdria do grupo de cobertura do grupo Euclidiano £? do plano
¢ um bom modélo matematico para o efeito Aharonov-Bohm.

Uma outra forma de escrever o efeito Aharonov-Bohm é idealizando uma configuragao
que envolve um solendide e particulas teste incidentes confinadas a uma regiao sem
curvatura de gauge(sem campo eletromagnético) M, que pode ser considerada como um
plano menos a origem (R? — {0}) e é multiplamente conexa. A muiltipla conectividade
de M é necessdria para a observacao do efeito Aharonov-Bohm, pois toda conexao plana
(isto &, com curvatura nula) definida numa regido simplesmente conexa é trivial. Em
outras palavras, em um espago que nao seja simplesmente conexo, existe um potencial
de gauge nao-trivial com a intensidade do campo de gauge nula. Podemos trabalhar com
um espac¢o multiplamente conexo M através de seu espaco de cobertura, em particular o
espaco de cobertura universal M. Temos que M = M /T, onde T" é um grupo discreto de
difeomorfismos de M. Funcoes definidas univocamente em M podem ser levantadas para
funcoes constantes sobre as fibras em M. Levantando-se as curvas de M para M, vemos
que o levantamento de uma conexao nao-trivial em M é trivial em M.

Deve ser notado que a transformacio de gauge S(#) de A,(#) = 0 no espago de

cobertura universal M pode ocorrer em trés diferentes formas, a saber [31]:

(i) A primeira é quando S(Z) é constante sobre as fibras e portanto, pode ser projetada
numa transformacao de gauge univocamente definida em M. Neste caso, nao ha

efeito Aharonov-Bohm.

(ii) A segunda é quando S(%) néo é projetével, mas d4 origem a um campo projetavel tal
que A,(7) = S(#)0,S*(campo de gauge trivial). Isto resulta no efeito Aharonov-
Bohm em M. Neste caso a transformacio de gauge S (Z) em M néo é constante
sobre as fibras, o que resulta em um fator de fase nao-trivial conectando dois pontos

quaisquer de cada fibra, o que é necessario para observar o efeito Aharonov-Bohm.

(iii) A terceira ¢ quando S(Z) ¢ uma transformacio de gauge nio projetdvel e o campo

de gauge puro A,(7) = 5‘(:%)5“5”1 também nao ¢é projetdvel.
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1.9.2 Teoria de Yang-Mills.

A observacao de que a interagao forte é independente das cargas elétricas dos niicleos
(novo principio de simetria), permitiu estender a invariancia de gauge para além dos
limites do eletromagnetismo, e levou & proposicao de que a interacao forte pode ser
descrita por uma teoria de gauge andloga & eletrodindmica. Para tanto é introduzido
em cada ponto do espago de Minkowski um espaco interno complexo de duas dimensoes.
As bases espinoriais do espago interno, denotada por 7, atuam sobre os elementos do

grupo de simetrias
SU(2)={AeM(2x2); A=Al detA=1},

que é uma cobertura compacta para O(3). O grupo SU(2) é o grupo de gauge local da
teoria. A teoria de Yang-Mills falhou na sua proposta original de estabelecer uma teoria
para as interagoes fortes, porém, ela estabeleceu os fundamentos da moderna teoria de
gauge nao-Abeliana.

Vamos considerar a teoria de gauge do SU(2) definida no R*. O fibrado que decreve
tal teoria de gauge ¢ P( R* SU(2)). Como R* ¢ trivial, o potencial de gauge (conexao na
fibra) é

A= AT, dz", (1.73)

onde o = 1,2, 3, representa o indice interno, T, = 0,/2i sdo os geradores da &lgebra de
Lie, G(SU(2)) do SU(2) e 0, sao as matrizes de Pauli.

O campo de gauge é
F= dA—I—A/\A:%}"de“ A dz, (1.74)

onde

Fw = O4Ay — 0,4, + [Ay, A)] = FO T,

com

F/?V = aMAVOé - al/Aua + EQBMAMBAVW-

O campo de gauge satisfaz a identidade de Bianchi DF = dF + [A,F] = 0. A agdo de
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Yang-Mills é
1 1
dymlA] = —Z/”(fwf””) = §/tr(f/\*7-‘), (1.75)

M M
sendo que a variagao com relagao a A, nos fornece a equagao D, F"” =0 ou D*F = 0.

Este procedimento da teoria de Yang-Mills pode ser usado para construir uma teoria de

gauge para um grupo interno qualquer. Para isto precisamos do potencial (conexao)
Ly(z) = AL(x)To,

onde T}, sao os geradores da &dlgebra de Lie do grupo de gauge e Afj(x) Sa0 as conexoes

_0_
Oxh

de 1-forma com derivada D, = ( + z'Fu) © e os campos de gauge

Fg, = 0,A7, — 0, A7 + C’ﬁnAfjAZ, (1.76)

onde Cfy, sao sa constantes que satisfazem a relagao [1i,, Ts] = iCq5T, .

Existe um formalismo que generaliza o formalismo integral (global) para campos de
gauge apresentado por Feynman [32], utilizado na Mecanica Quéntica em variedades
multiplamente conexas, o qual demonstra que o formalismo diferencial apresentado
por Weyl nao descreve totalmente o eletromagnetismo. O formalismo das integrais de
trajetéria considera uma curva C' em M e seu leventamento horizontal C’ no fibrado
principal P(M,G), que é simplesmente conexo, portanto, totalmente integravel, depois
retornado a variedade M pela projecao m: P — M.

O que vamos apresentar a seguir corresponde a uma breve revisao de pioneiros
trabalhos sobre teoria de gauge nao-Abeliana usando o formalismo integral [33]. O ponto
bésico é que o eletromagnetismo pode ser descrito por um fator de fase nao-integrével,
fato discutido por Dirac, Peierls e outros, isto é, dependente do caminho. O formalismo
apresentado por Yang e Wu tem a vantagem de descrever intrinsicamente e completamente
o eletromagnetismo e as teorias gauges nao-Abelianas.

Seja M uma variedade e x = (2*),u = 1,...n um ponto de M e considere um grupo
de gauge G (Abeliano ou nao), o qual é um grupo de Lie com geradores Xi(k =1,...) .
O fator de fase dependente do caminho Uap, é um elemento do grupo G associado com o

caminho AB entre os pontos A e B na variedade, satisfazendo as seguintes propriedades:
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(i) Uape = UapUpc com AB e BC' sao partes de AC
(ii) UA(A+d:c) =1+ bﬁ(l’)Xdeu

A funcao bﬁ(x) ¢ definida na variedade e é chamada de potencial de gauge e Usp serd
chamado de fator de fase de gauge.
Consideremos agora um paralelogramo infinitessimal de lados dx e dx’. Entao Uagcpa

pode ser calculado por multiplicacao de quatro fatores de fase de (ii), o que resulta em
Uipcpa =1+ /lfVXkdl““d$V,
onde

b ab’; B obk
me Qv Oxk

— b b Cl = —f) (1.77)

v

sendo C,ij definida por X, X; — X; X}, = C’,ini, e /’jy ¢ chamado de campo de gauge.
Para um elemento £ da dlgebra de Lie de G, isto &, £ € G, no formalismo de conexoes

em fibrados, o deslocamento paralelo de £ em g(t) € F' ¢ identificado como sendo a conexao

local de 1-forma ou melhor o potencial de gauge. Assim,
£= tiAka = A;,{Tx} é uma base de G.
Portanto, g(t) = exp(A;) = exp(A ¥dx?). Da propriedade (i) temos que

9> _t:) = [[(expt:Afda’) = exp() _ t: Afdar’) (1.78)
=0

i=0 i=0
o0 1
Identificando Y ¢;A¥dz’ = [ A;da’, temos
i=0 0
- 1
Q(Zti) = exp /Aidxi . (1.79)
i=0

0

1
Como exp ( i Aidxi) estd em F', definimos o fator de fase como sendo,
0

B
Upa = Pexpl / T da), (1.80)
A
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onde AB ¢é o caminho que liga os pontos, A (inicial) e B (final),I', a conexao na fibra
ou potencial de gauge e P ordena o produto das matrizes exp [T',. No caso do efeito
Aharonov-Bohm temos a conexao ['ydf = %dé’. Entao,
2
1P

U(QT‘—,O) = exp(/ gde) (181)

0
que é o fator de fase.

Podemos resumir as consideracoes apresentadas dizendo que Fj,, subdescreve o
eletromagnetismo, enquanto o conhecimento de f A,dz" para um dado contorno fechado
sobredescreve o eletromagnetismo. O eletomagnetismo é corretamente descrito pelo fator
de fase exp [% $ Audx’“‘]. O fator de fase para uma curva qualquer, nao necessariamente

fechada é dado por
B

Upa = exp i— /Audx“ . (1.82)
he
A
Se F,, = 0, ele ¢ independente das deformagoes da curva entre os pontos A e B, mas, em

geral, depende da curva. Entao, associado a cada curva entre os pontos A e B, temos um
fator de fase nao-integravel, no sentido de depender da curva.

Se considerarmos a transformagcao de gauge
b — = e = SNy, (1.83)

entao,

Upa — Upy = S H(B)UpaS(A) (1.84)

onde S(B) = e~@5.

A transformacao de gauge do fator de fase envolve a fungao S calculada nos pontos
extremos da curva. Para uma curva fechada, S(B) = S(A), de modo que U4 permanece
inalterado. Portanto, podemos afirmar que o eletromagnetismo é uma manifestacao
invariante de gauge do fator de fase nao-integravel.

Algumas aplicacoes na gravitacao serao vistas nos capitulos 2 e 3 desta tese.
Apresentaremos agora um paralelo entre os conceitos em teoria de campos de gauge e

a teoria sobre fibrados. A translacao desse conceitos é dada na Tabela 1.1.
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Terminologia de teoria de gauge Terminologia de espacos fibrados

espacos de fatores de fase espacos de fibrado
campos de gauge fibrados
espago tempo espago base
gauge(ou gauge global) coordenada principal
tipo de gauge fibrado principal
potencial de gauge bij conexao no fibrado principal
intensidade de campo /fy curvatura na conexao
transformacao de gauge funcao de transicao t;;
fator de fase transporte paralelo
eletromagnetismo conexao em P =R* x U(1)
campos de gauge de spin isotépico conexao em P(R*, SU(2))
eletromagnetismo sem monopolos conexao trivial em P = R* x U(1)

eletromagnetismo com monopolos | conexao nao trivial em P = R* x U(1)

Tabela 1.1: Correspondéncia entre os termos usados em teorias de gauge e espacos fibrados
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A situacao é semelhante no caso de teorias de gauge nao-Abelianas, exceto pelo fato
de que neste caso o tensor F),,(z) é inadequado para descrever a teoria, mesmo de
nivel puramente cldssico. O fator de fase torna-se mais importante neste caso, pois o
tensor intensidade de campo subdescreve a teoria mesmo em uma regiao simplesmente
conexa. Novamente, o que descreve a teoria exatamente nao ¢ F,, (x), nem A,(x), mas a

generalizacao nao-Abeliana do fator de fase dado por
B
Upa(C) = Pexp i%//ludx“ , (1.85)
A

onde, agora, como A,(r) em geral ndo comuta, tem que ser feito um ordenamento,
simbolizado por P, ao longo da curva.

A matriz Up4(C') que toma valores no grupo de gauge G, possui significado geométrico.
Ela representa a matriz de transporte paralelo da teoria. Devido a esta interpretagao
parece natural considerar Up4(C') como uma quantidade mais fundamental do que A,,(z),
que depende da escolha do gauge do que F),,(z), j& que neste caso podemos ter familias
de A, (x)'s que ndo estdo relacionadas por uma transformacao de gauge e que fornecem o

mesmo tensor intensidade de campo [4].

1.10 Fator de fase em gravitacao e o efeito Aharonov-

Bohm gravitacional.

Como vimos na se¢ao anterior, no formalismo do espago de contornos para teorias
de gauge [9] os campos dependem dos caminhos ao invés dos pontos do espago-tempo.
A quantidade fundamental que surge nesse formalismo ¢é o fator de fase [4] (varidvel de
contorno), o qual descreve exatamente a dindmica de um dado sistema fisico, como por
exemplo, a de um sistema correspondente a um elétron (quantico) interagindo com um
campo eletromagnético.

A extensao do formalismo do espago de contornos para a teoria da gravitacao
foi primeiramente considerada por Mandelstam [9] o qual estabeleceu varias equagoes

envolvendo as varidveis de contorno, e também por Yang [8], Voronov a Makeenko [11]
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e Bollini et al [82] que calcularam a varidvel de contorno para vérias curvas no campo
gravitacional correspondente ao espaco-tempo de Kerr.

Os fatores de fase na teoria da gravitagao sao matrizes que representam o transporte
paralelo ao longo de curvas no espaco-tempo com uma conexao afim dada. Elas estao
conectadas com a transformacao de holonomia linear que é determinada pela métrica
e contém importantes informacoes topoldgicas. Esses objetos matemadticos contém
informacoes bastante interessantes. Por exemplo, como os vetores mudam quando sao
transportados em torno de um curva fechada. Essa mudanca é uma medida de quanto o
espago-tempo se desvia do espaco-tempo de Minkowski, do ponto de vista global.

Suponha que temos um vetor v* em um ponto ) da curva fechada C'. Entao, podemos
gerar o vetor v * em () ao transportarmos v* paralelamente ao longo da curva. O vetor
assim obtido é, em geral, diferente do vetor transportado. Neste caso, podemos associar
ao ponto ) e & curva C' uma aplicagao linear U# de tal modo que para qualquer vetor
v* em (), o vetor v* em @, resultante do transporte paralelo de v* ao longo da curva C,
é dado por v* = Ukv”. A aplicagao linear U} é chamada transformacao de holonomia
associada com o ponto @) e & curva C'. Se escolhermos uma base de tétradas {ef.(z)} e um
parametro A € [0, 1] para a curva C' tal que C'(0) = C(1) = @, entdo, em se transportando
o vetor v® paralelamente & curva C, de C(\) para C(A + d\), as componentes do vetor
sofrem a mudanga dv* = M [x(\)]v”dA, onde M¥ ¢ uma aplicagdo linear que depende
das tétradas, da conexao afim do espago-tempo e do valor de A, e que toma um vetor
tangente em um ponto ) e o transporta paralelamente ao longo da curva C' de volta ao
ponto (). Segue, portanto, que a transformagao de holonomia U} é dada pelo produto

ordenado das matrizes correspondentes as N aplicacoes lineares como
al 1
(0 = Jim 11 B Mg | (1.86)
Podemos escrever a aplicagao linear U* dada pela eq.(1.86) como
UL(C) = Pexp / M, (1.87)
C

onde L significa linear e P é o operador que ordena o produto das N aplicacoes ao longo

da curva C. A eq.(1.87) serd entendida como uma abreviagao do lado direito da eq.(1.86)
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e define a holonomia. Note que se M* é independente de A, entdo segue da eq.(1.87) que

U} & dado por U = (exp M)". Usando o formalismo métrico, a eq.(1.87) pode ainda ser

escrita
UL(C) = Pexp( / / R, dztdz"), (1.88)
D
onde D ¢é o disco limitado por C' e R);Wp ¢ o tensor de Riemann. Também podemos
expressar o fator de fase por
B
" dzt
Upa(C) = Pexp| Fubx()\)ﬁd)\], (1.89)
A

onde I'}; ¢ a conexao tetradica e A e B sao os pontos inicial e final da curva C'. Portanto,
associado a cada curva C', de um ponto A a outro ponto B, temos o fator de fase dado
pela eq.(1.89). Em outras palavras, o fator de fase é, por construgao, uma funcao da curva
C' e dos pontos inicial e final da curva. Da definicao de U# segue também que sob uma

transformacao de coordenadas x — ¥, essa quantidade se transforma da seguinte maneira

Uz, 2') — Uk(z, 2') (%) (ng> | (1.90)

Para uma curva fechada, essa transformacao tem a forma U — QUQ ™!, e portanto nao

afeta o traco de U(C'). A quantidade Upa(C) pode ser expandida da seguinte maneira

B
Upa(C) = Pexp(f T, dz")
A (1.91)
=TI+ ¢§darT () + 3P ¢ dat § dy" T, (z)Lu(y) + ...,
c c C
com I', sendo os simbolos de Christoffel ou conexao tétradica [35]. Da eq.(1.89) podemos

obter a quantidade invariante

W(C) = Tr[Pexp( / szx(k)%dk)], (1.92)

onde T'r é o trago. A quantidade W (C') é conhecida como loop de Wilson gravitacional e
nos traz informacoes acerca das propriedades geométricas e topoldgicas do espago-tempo.

Na teoria métrica da gravitagao, o campo gravitacional estd relacionado ao tensor de
curvatura de Riemann nao-nulo. No entanto, em situagoes em que o espago-tempo possui

topologia nao-trivial, efeitos globais do campo gravitacional devem ser considerados.
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Um desses efeitos corresponde ao andlogo gravitacional do efeito Aharonov-Bohm
eletromagnético, e que consiste no seguinte: particulas restritas a se mover em regioes
onde o tensor de curvatura de Riemann nao dependem do momento angular (por exemplo,
no caso do cilindro com rotacdo que iremos tratar no préximo capitulo), podem exibir
efeitos gravitacionais associados ao momento angular. Outras situagoes semelhantes sao
apresentadas e discutidas na literatura. Em geral, o efeito Aharonov-Bohm gravitacional
pode ser caracterizado pelo fato de a particula exibir efeitos gravitacionais mesmo estando
restrita a se mover em uma regiao de curvatura nula [36],[26].

O efeito Aharonov-Bohm gravitacional pode ser entendido em termos do fator de fase
gravitacional P exp ( f r #da:“) . O transporte paralelo de vetores e espinores ao longo de
uma curva fechada que envolve a regiao de curvatura diferente de zero resulta em uma
fase que nao é igual a identidade. Este resultado pode ser entendido em termos dos
aspectos globais (topologia nao-trivial) do espago-tempo. Portanto, o efeito Aharonov-
Bohm gravitacional mostra que a topologia influencia o comportamento de um dado
sistema fisico. Enquanto o efeito Aharonov-Bohm eletromagnético é de natureza quéntica,
o andlogo gravitacional é puramente cldssico. FEsta generalizagao do efeito Aharonov-
Bohm para o caso gravitacional foi estudado por varios autores [37]

Em conclusao, podemos dizer que o fator de fase P exp (;l—i i Audx“) tem um papel
fundamental na descricao de efeitos globais no eletromagnetismo e em outras teorias
de gauge. A intensidade de campo F,, = V|, A, subdescreve o eletromagnetismo
em situagoes onde os aspectos globais (topologia nao-trivial) sao levados em conta.
Basicamente, F,, ¢ uma 2-forma fechada (dF = 0), no entanto a topologia impede que
ela seja globalmente exata (F # dA): hé, portanto, uma descontinuidade na conexao de
gauge 1-forma A, ou equivalentemente uma segunda classe de cohomologia nao-trivial.

Na gravitacao o fator de fase também é importante, especialmente na descricao de
situagoes onde a topologia é nao-trivial, bem como na formulacao da gravitacao numa
abordagem que independe de coordenadas, o que pode ser fundamental na construcao de
uma teoria quantizada de campo gravitacional.

Neste primeiro capitulo apresentamos uma revisao matemadtica sobre temas

importantes para a comprensao dos estudos feitos nesta tese. O fator de fase tanto em
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teorias de gauge quanto em gravitacao tem uma grande importéncia nesse estudos, daf
a énfase dada a este objeto e ao efeito Aharonov-Bohm eletromagnético e seu andlogo

gravitacional.
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Capitulo 2

Holonomias, Efeito Aharonov-Bohm
Gravitacional e Caracterizacao

Global do Espaco-Tempo Conico.

2.1 Introducao.

Neste capitulo vamos calcular os fatores de fase para algumas curvas em diferentes
espagcos-tempos, tais como o correspondente ao cilindro com rotagao [26], monopolo global
generalizado, a corda quiral[38] e multicorda quiral [39].

No caso do cilindro com rotagao vamos aplicar o fator de fase para mostrar a existéncia
do efeito Aharanov-Bohm [3] gravitacional. Para o caso da corda césmica quiral vamos
determinar a holonomia e generalizar para o sistema formado por N cordas quirais e
estudar os aspectos globais do espaco-tempo correspondente a esta configuracao. No
espago-tempo gerado por um monopolo global generalizado vamos calcular os fatores de

fase e mostrar que eles obedecem as relagoes de Mandelstam [9)].
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2.2 Variavel de contorno no espaco-tempo do cilindro

de matéria com rotacao.

Nesta segao estamos interessados em estudar o andlogo gravitacional [34] do efeito
Aharonov-Bohm eletromagnético, no seguinte sentido geral: um vetor ou um espinor que
é transportado em uma regiao onde a curvatura nao depende de um certo parametro,
como o momento angular, no caso que iremos tratar, pode exibir um efeito gravitacional,
associado com este parametro, adquirindo um fator de fase que depende do mesmo, de
modo que as componentes do vetor transportado dependem do momento angular sem que
o tensor de curvatura de Riemann possua dependéncia com o momento angular.

Como fonte do campo gravitacional, vamos considerar uma casca cilindrica infinita e
com massa, a qual rotaciona em torno do seu eixo. O elemento de linha correspondente

a esta situacao, na aproximagao de campo fraco, é dado por [11]
ds® = —(1 —a/2)dt* + (14 a/2)(dr? + r2d¢* + dz*) + 2b(r)dtde (2.1)

onde m ¢é a densidade linear de massa e j = mwry é a densidade linear do momento-
angular, com w sendo a velocidade angular e ry o raio da casca cilindrica. Esta solucao
aproximada ¢ justificada em um dominio onde |a(r)| = |—4®P| << 1, sendo ® o potencial
Newtoniano gerado pela delgada casca cilindrica com massa e b(r) é uma funcdo de r, e é
dada por b(r) = 45 [%@(ro —7r)+0O(r— ro)] , com j sendo o momento angular da fonte.
Como o campo gravitacional é considerado fraco, podemos escrever o tensor métrico
correspondente & eq.(2.1) na forma g,, = N + Iy, onde n, = " = diag(—1,1,1,1) e

h,. € dado pelas identificacoes 6bvias. Neste caso, o tensor de Riemann ¢ dado por

1
Rapsy = (Ghawus + Myup av = Py, ap = g v ), (2.2)

onde a virgula denota derivagao.

Usando a expressao dada pela eq.(2.2) podemos verificar que a curvatura fora da
casca cilindrica de matéria nao depende do momento angular da mesma, no limite da
aproximagao linear. Isto significa que o campo gravitacional fraco associado com uma
casca cilindrica de matéria que gira lentamente nao é afetado pelo momento angular da

fonte.
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Agora, vamos calcular as transformacoes de holonomia para uma curva qualquer no
plano xy, que é perpendicular ao cilindro. Para tanto, vamos, primeiramente, calcular as
conexoes tetradicas.

Definindo as 1-formas
(1 —a/4)dt + bde,
V= (1+a/4)dr,
w (1+a/4)dr 2.3)
(1+a/4)rdo,
wd= (1+a/d)dz

e usando a equagao de estrutura de Cartan,

a__ _, .a b (a) v o
dw® = —wy Aw” = e, dr”ds”,

obtemos as seguintes conexoes tetradicas
I2da* = [1—2m(l —a/4)|dp = T ydx*,
I dat = —2m/r(1 — a/4)dz = =T | zdat, (2.4)
I dat = 2m/r(1 —a/4)dt =T dxt,

onde a(r) = —8mln(r/ry) e b(r) = 4mwr.

Vamos considerar primeiramente curvas fechadas quaiaquer, no plano perpendicular ao

cilindro, com centro na origem e valores fixos de t e z. Entao, neste caso, temos

[ydat =T 4do, (2.5)
com I'y dado por
0 0 0 0
0 0 A, O
F¢ - ) (26)
0 -4, 0 O
0 0 0 0

onde Ay = [1 —2m(1 — a/4)].
Como I', independe de ¢, a holonomia linear para esta curva é

2

U, = Pexp( / I,do) = exp(27T,) (2.7)
0
F2
= I+ &sen(%rA(b) + —(g[l — cos(2mA,)],
A, i
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onde usamos o fato que (I'y)* = —T'4. Portanto, na forma matricial a holonomia linear ¢

dada por

1 0 0

0 COSQ?TA¢ sen2mA,

UL(C) = = exp(—27TiA¢J12), (28)

0 —sen2mAy COSQ?TA¢
0 0 0

= o O O

com Ji2 sendo o gerador de rotagoes em torno do eixo z.
Vamos, agora, calcular o fator de fase no caso em que o caminho é uma translacao na

diregdo z, (dt = dr = d¢ = 0). Neste caso temos

I,da" =T.dz, (2.9)
com
0O 0 0 0
0O 0 0 A
T, = , (2.10)
0O 0 0 O
0 A, 0 O

sendo A, = 2mr~'(1—a/4). ComoT', é independente de z, para o contorno correspondente
ao segmento que vai de z; ate z3, U(C') é dado simplesmente por

22

U.y0(C) = exp / Iudz | = expl~id.(z — 2)] i (2.11)

21
onde Ji3 é o gerador de rotacao em torno do eixo y.

Para uma translagao no tempo, temos

Fudx“ = Ptdt,
com ['; sendo dado por
0 A 00
A 0 0 0
I, = , (2.12)
0 0 0O
0 0 0O
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onde A; = 2mr—!(1 — a/4). Portanto, para a translagdao no tempo o fator de fase ¢
Un1,(C) = exp(—iA¢(t2 — 11)) 14, (2.13)

onde Jy4 é o gerador de boost na direcao 0z. Note que a holonomia linear nao depende
do momento angular da fonte.

Agora, vamos calcular a holonomia translacional, a qual esta associada com o momento
angular conforme veremos a seguir. Para isto, vamos escrever o elemento de linha dado

pela eq.(2.1), na seguinte forma
ds® = —[(1 — a/4)dt — bdg]* + (1 + a/2)(dr® + r2d¢* + d2?). (2.14)

Quando circundamos a casca cilindrica ao longo do circulo de um ponto de coordenadas

(t,z,y,z) até o de coordenadas (t',2',y',z'), o vetor coluna (t,x) transportado
, / .

paralelamente ao longo do circulo torna-se (t',x’). Esses vetores relacionam-se pelas

seguintes relacoes
t'= (1—a/4)t —2mb,
2= wcos(2mAy) + ysen(2wAy),
(2mAy) + ysen(2mAy) (2.15)
y = —xsen(2mAy) + ycos(2mAy),
2=z,
onde Ay = [1 —2m(1 — a/4)].
A transformagao dada pela eq.(2.15) pode ser posta na forma de multiplicagao de matrizes

homogéneas dada por: seja Mz uma matriz pertencente ao espaco das matrizes M (5 x 5)

com A, B variando de 0 até 4. Vamos tomar M, como sendo a matriz associada a rotagao

a qual é dada pela eq.(2.8), M = —a/4, M) = 27b e o outros elementos sdao todos nulos,
isto é,
t t
x’ x
J | = (—idg g + z‘%M +ibM) | (2.16)
2 z
1 1
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onde

0 — 000 00000
00 000 00000
M=]100 000]|eM=]00000 ]|,

00 000 0000 ¢

00 000 00000
e tais que [M, M| =0, M3 = —M e M'3 = —M.
Logo podemos expresar a holonomia total como sendo

UC) = exp(%z’]\/[—}—27TibM')eXp(—27riA¢J12) (2.17)

= eXp(—QWiAd,JlQ + %ZM + QWibM,),

onde estamos considerando a representacao em cinco dimensoes dos geradores de rotagoes.
Portanto, se considerarmos o transporte paralelo de um vetor ao longo de um circulo
em torno de um cilindro, apds este processo ele adquire um fator de fase dado pela
eq.(2.17), a qual depende do momento angular, que nao contribui para a curvatura na
aproximagao de campo fraco. Esta dependéncia da fase de uma quantidade (momento
angular) que nao afeta a curvatura, chamamos de efeito Aharonov-Bohm gravitacional
generalizado.
O fato de que um atributo da fonte (momento angular) esta codificado no fator de fase,
que é uma quantidade global, pois depende das curvas sobre as quais ele é calculado,
e nao esta codificado no tensor de curvatura de Riemann, que é uma quantidade local,
evidencia a importancia daeastrutura topolégica do espaco-tempo na descricao da fisica

de um dado sistema.

2.3 Variaveis de contorno no espaco-tempo de um

monopolo global generalizado.

O modelo considerado por Barriola e Vilenkin [34] e que dd origem & solucao do

monopolo global é descrito pela Lagrangiana
1 1 9\
L= 5@@”8"@“ — ZA((ID‘“I)“ —n°)%, (2.18)
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sendo ®%(a = 1,2,3) um tripleto de campos escalares. O modelo tem uma simetria global
O(3) que é espontaneamente quebrada em U(1). A configuragao de campos que descreve
o0 monopolo é
Ot =nf(r)x®/r, (2.19)
onde z%x® = 712
Para determinar o campo gravitacional gerado por um monopolo global, vamos

considerar a métrica mais geral, esfericamente simétrica, e que pode ser escrita na forma
ds? = —B(r)dt* + A(r)dr? + r*(d6* 4 sen*0d¢?). (2.20)

As equacoes de movimento para ®* no espago-tempo correspondente ao elemento de linha

dado por eq.( 2.20) se reduzem a uma equagao para f(r) e que ¢ dada por [34]

. 2 1 (B\" . 2f _
—f+lA—+ﬁ<Z>1 - M- =0, (2.21)

onde a virgula indica derivada em relacao & coordenada radial.

As componentes do tensor energia-momento sao

2f/2 2f2 1
! = — (A —1)? 2.22
2f/2 2 r2
SR/ A o R SN VRCREY
o= o o (=)
2 r2
0 <z>__77f _1 47002 132
T = T)=—%3 — (-1

Para resolver as equagoes de Einstein para o tensor energia-momento dado por (2.22),
Barriola e Vilenkin admitiram que f = 1 fora do micleo do monopolo. Neste caso
Ti=Tr = —n?/r2eTf = T(f = 0. Na realidade, f = 1 nao resolve a equagao (2.21), a
menos que o termo de O(1/7?) seja desprezado. Com esta aproximagao, a solugao obtida

é [34]
2m 2m, 2 2
ds® = —(1 — 8mn* — T)dt + (1 — 87 — 7) dr? +r2(d6* + sen®0d¢?).  (2.23)

Para obter uma solugao correta até o termo de O(1/r?), vamos considerar f(r) =

1 — 1/ n?r% Mantendo-se os termos até O(1/r*) no tensor energia-momento, as equagoes
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de Einstein tomam a seguinte forma

1 1 1dB 1

- - 4= = _ - _ 1 2.24
r2  Br?2  B2rdr 87T(A7"4 7“2)’ ( )
11 1 dA 1 P
- S Qp(— L
r2  Br? + ABr dr 7T(A7"4 7“2)’

8_7T 1 @ _ 1 d?A B 1 ﬁ
Ard 2B%2r dr  2AB dr?  2ABr dr

L (dAY (dBY | 1 (dAY?
4AB2 \ dr dr 4A2B \ dr

A solucao destas equagoes até O(1/r*) é dada por

A=B"1=1-8m?—2m/r —8r/\r?). (2.25)

Portanto, o elemento de linha para o monopolo global generalizado é

2m 8 2m 8
2 1 g 4Mm  om _ g 4Mm  om
ds* = —(1—8mn pal )dt + (1 — 8mn s v

) ldr* + (2.26)

r2(d6? + sen*0de?),

onde o m é uma constante de integragao que estd asociada & massa, 7 € um pardmetro
relacionado com a escala de quebra de simetria e A é a constante de acoplamento.

Considerando as 1-formas definidas por

WO = VAdt,
wl = 1/\/Zd7’,

(2.27)
w? =rdd,
w? = rsenfdo,
e usando as equacoes de estrutura de Cartan, dw® = —wiAwb = el(jl)ydx”dx“, determinamos

as seguintes conexoes tetradicas

[%dat = (—m/r® +8n/Ar?)dt =T,
2 da" = /Adf = —T},dat,

I[3,da" =/ Asenfdg = —T,da',
[3,dat = cosOdg = —T2%dat.

(2.28)

Se considerarmos o circulo com centro na origem, com r, 6 e t fixos, das expressoes para

as conexoes tetrddicas, obtemos que
I'ydx! =Tydo,
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onde

00 0 O
00 0 —-A , .
F¢> = = —Z.AJlg - ’LDJ23, (229)
0 0 0 —D
0 A D 0

sendo A = AY2senf = (1 — 87n? — 2m/r — 87/ Ar?)Y2send, D = cosf e Ji3 e Ja3 08
geradores de rotacoes em torno dos eixos y e x, respectivamente. Como I'y, ¢ independente
de ¢, a transformagao de holonomia para circulos,com ¢ € [0, 27| é dada por

27
U(C) = Pexp /F¢d¢ = exp [27[y]. (2.30)

0
Para 0 = 7/2, e usando o fato de que a matriz I', satisfaz a seguinte propriedade

(Ty)? = —A’Ty = —AL',, o fator de fase para este caso € dado por

uc)=1+ %sen@mﬁl) + (%)2 (1 — cos(2mA)]. (2.31)

Na forma matricial o fator de fase U(C') torna-se

1 0 0 0
0 cos2rAY?2 0 —sen2wAY/2

U(C) = . (2.32)
0 0 1 0

0 sen2wAY? 0 cos2mAl/?

Consideremos, agora, a curva r(s), 6(s) contida no plano meridiano. Neste caso, temos

do dr
r =|Ty—+TI,— . 2.
st ( edS + rd8> ( 33)

Da equacao (2.19) concluimos que I'; = 0 e que

Ty =iVA = —iVAJp, (2.34)

o o o O
o = O O
o |
—_
o o o O

onde Ji5 é o gerador de rotacoes em torno do eixo-z.
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Como I'y é independente de ), entao, o fator de fase para uma curva qualquer no plano
meridiano é dado por

Up,0,(C) = exp [i\/Z(QQ — 0| (2.35)

que representa a rotacdo de um angulo v A(0s — 6;) em torno do eixo z.
Para finalizar os cédlculos de holonomias nesse espago-tempo, vamos considerar a

translacao no tempo. E neste caso, temos que
]_—\de,u, = Ptdt,

sendo

.m
= Zﬁjlﬂ (236)

\E\J
[aw]
] [aw] [a)
[aw] o O
] [a] o O

0 0

onde Jig é o gerador de boost na diragao Ox. Portanto, o fator de fase para este caso é
Usyi, (C) = exp(ivVAJro)(ta — t1).

Usando resultados anteriores para fatores de fase podemos escrever a expressao geral

para o fator de fase U(C'), o qual é escrito como

U(C) = Pexp (—% / FZb(x)Jabdx"> (2.37)

onde J,;, sdo os geradores do grupo de Lorentz SO(3,1) e I' Zb sao as conexoes tetradicas
apropriadas. Deste resultado concluimos que o fator de fase correspondente a curvas no
espaco-tempo do monopolo global generalizado é o homomorfismo que mapeia uma dada
classe de curvas homotoépicas nos elementos do grupo de Lorentz.

Das equacoes (2.32) e (1.92) obtemos o seguinte resultado para o loop de Wilson
W(C) = 2[1 + cos(2m AY?)]. (2.38)

Finalizaremos esta secao mostrando que loop de Wilson satisfaz as relacoes de

Mandelstam. Como I'y dada pela eq.(2.29) é funcdo apenas de r para 6 fixo, entdo
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W(C') é também fungao somente de r. Portanto temos que

86_1/:1/ = %{2[1 + cos 21 (1 — 8mn? — 2m/r — 8/ \r?) 2]} (2.39)
= —27rsen(27TAl/2)A’1/2(m/7“2 + 87/ Ard),

ow

0 "

Da expresao para o tensor de curvatura para o monopolo global generalizado, temos

000 O
0 0 —1
Ry = —A~Y2(m/r? 4 8/ r?) ,
000 O
010 0
000 O
000 —1
RS,y = 2mr™! ,
000 O
001 0
onde a e b sao indices tetradicos. Em particular, para A¢ = 27, podemos verificar que
8W 2w
W = /d¢T7’(R13U) = 27TT7"(R13U), (240)
0
ow
— =0
00

As equacgoes acima sao casos particulares de

ow dyt
8ajy = dSTT{RM,/U<O) %, (241)

que correspondem a relagao de Mandelstam. Portanto, o loop de Wilson para as curvas
consideradas no espaco-tempo do monopolo global generalizado satisfaz a relacao de

Mandelstam. [9].

2.4 Transformacoes de holonomia no espaco-tempo

de uma corda quiral.

Em coordenadas cilindricas a métrica para a corda césmica quiral é dada por [38]
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ds® = — (dt + 4J'dg)* + dr? + o*r2d¢?® + (dz + 4J7dg)? (2.42)

onde r >0 e ¢ € [0,2r]. Esta é a solu¢ao mais geral, estaciondria, e que depende de trés
parametros. O parametro J' representa o momento angular da corda; 2J7 /7 é o andlogo
do vetor de Burgers da dislocacao e « = 1 — 4u, onde p é a densidade linear de massa da
corda. Geometricamente, a métrica dada por (2.42) pode ser obtida retirando-se um fator
angular do espago-tempo de Mimkowski, fazendo-se um boost em uma das faces e depois
colocando-se as mesmas.Com J! = J* = ( a métrica resultante representa o espago-tempo
da corda césmica [40]. Para J* =0, a # 1 e J* # 0, temos a métrica correspondente a
corda com rotacao [41]
Agora, vamos escrever a eq.(2.42) como ds? = n,w?°, onde as 1-formas w®(a =

0,1,2,3) sdo dadas por

WO =dt+4Jtdg,

w! = cos ¢dr — arsengdo,

w? = sengdr + ar cos ¢do,

W =dz+4J%dg.

(2.43)

Para esta escolha das tédradas, obtemos as seguinte conexoes tetrddicas nao-nulas
—Dlydat =T2 dat = —(1 — a)dg. (2.44)

Notemos que a conexoes tetradicas nao dependem dos pardmetros J! e J?, mas tao somente
de «, que estd associado a densidade linear de massa da corda quiral.
A métrica da corda quiral pode ser colocada na forma de Minkowski com a seguinte

mudanca de coordenadas

T = t+J (2.45)
0 = ao
Z = z+4 J%.

Da mudanca na coordenada temporal, vemos que hd uma singularidade no tempo andloga
ao defeito produzido pela massa no caso estédtico. E importante notar que para t constante,

quando ¢ atinge o valor 27, que deve ser identificado com ¢ = 0, a coordenada T
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sofre uma alteracao de 87J', de modo a presevar a univocidade. O mesmo acontece
com a coordenada Z que é alterada por 87.J?. Portanto, o espago conico em torno da
corda quiral possui uma singularidade com deficiéncia angular 87p, e além disto, possui
uma alteracao nas direcoes t e z proporcionais, respectivamente, a 87.J¢ e 87.J%. Entao,
quando circulamos o cone quiral para t = constante e z = constante, voltamos ao mesmo
ponto, porém, com alteracoes em t e z, proporcionais ao momento angular e a torcao,
respectivamente.

Primeiramente, vamos considerar um circulo C' no equador (dr = dt = dz = 0). Entao

a holonomia linear é dada por

1 0 0

2

U(C) =exp /F¢d¢ _ o-Sminz _

0

0 cos8mu sen8mu (2.46)

0 —sen8mu cos8mu

0 0 0

- o O O

onde Ji» é o gerador de rotagoes em torno do eixo z. Este resultado nao depende de J*
nem de J?, e portanto, a holonomia linear nao distingue a métrica da corda quiral para
diferentes valores de J'e J~.

A partir deste resultado vemos que quando um vetor é transportado paralelamente
em torno de um cone quiral situado na origem, este vetor adquire uma fase que vem da
holonomia linear a qual é dada por exp(—8imuJi2). Mas, sabemos que existem saltos
nas coordenadas t e z, e portanto, a holonomia total deve conter estas informacoes.
Como o espago-tempo fora da corda quiral é localmente plano, podemos descrever as
solucoes analiticas em termos de partes do espago-tempo com a métrica de Minkowski,
mas conectadas por condicoes adicionais que dao conta dos saltos nas coordenadas t
e z. No presente caso existe um sistema de coordenadas localmente plano, e entao,
podemos assumir a estrutura helicoidal do tempo adotada no caso da gravitacao em
(2 4+ 1)-dimensoes[42]. Note que a generalizacdo dessa estrutura para o caso geral de
(341)-dimensoes nao pode ser admitida simplesmente, pois, esta estrutura helicoidal é
dependente da existéncia de coordenadas localmente planas. No caso em consideracao a
estrutura helicoidal pode ser admitida, pois existem coordenadas localmente planas.

Entao, para se estabelecer as condigoes vamos considerar a situagao em que circundamos
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a corda césmica quiral ao longo de um circulo C' partindo de um ponto (¢,x) para um

ponto (¢, x’). Entao, em virtude dos saltos nas coordenadas ¢ e z, os vetores coluna (t,x)

e (t',x’) estao relacionados pelas equagoes

ou, na forma matricial

t/

Introduzindo as matrizes

0000 ¢ 0000
00 00O 0000
My=00000]eMs=]000O
000O0O0 0 00O
000O0O 0000
podemos escrever a eq.(2.48) como
Y
o
y | = exp(—8imJ* My) exp(—8imJ* Ms) exp(—8imp.Ji2)
o
1

' =t+8xnJ",

/

¥ = cos(8mp)r + sen(8mu)y,

Yy = —sen(8mp)z + cos(8mu)y,

2 =z+8nJ?

1 0 0 0 8rJ
0 cos(8ru) sen(8wu) O 0

0 —sen(8mu) cos(8rp) 0 0

0 0 0 1 8nJ*
0 0 0 0 1

1

(2.47)

(2.48)

Y

(2.49)

onde consideramos a representacao de .J;3 em 5-dimensoes. Da eq.(2.49) podemos extrair a

parte translacional da holonomia total a qual é dada por exp(—8im.J* M) exp(—8imJ* M3).

O fator de fase que atua em (¢,x) no caso considerado tomando as circunstancias

especiais de existéncia de coordenadas localmente planas, em que podemos identificar o
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espago tangente com a prépria variedade, nos permite tratar o ponto (¢, x) como um vetor
e como consequéncia a matriz produto da eq.(2.49) como a matriz de transporte paralelo.
Essa identificacao nao é possivel no caso da nao existéncia de um sistema de coordenadas
localmente plano, e portanto, nao pode ser generalizada para qualquer espago-tempo.

A eq.(2.49) é a expressao exata para a holonomia para circulos no espago-tempo da
corda césmica quiral. Definindo X4 = (z#,1), podemos usar as condigoes dadas pelas
equacoes eq.(2.47) como X4 = M4 XP, as quais diz que os pontos (¢,x) e (¢, x') ao longo
do percurso s@o relacionados pela fase dada pela eq.(2.49), que depende dos parametros
a, J' e J? que caracterizam a métrica.

O primeiro fator na eq.(2.49) corresponde a uma translacdo no tempo ao qual pode

ser dada a seguinte interpretacao. Suponha que um interferometro circula a corda
quiral. Entao, o deslocamento de 87FEJ' no tempo corresponde a uma mudanca de
fase de dois feixes de luz que circulam a corda césmica quiral ao longo da mesma curva
e em diregoes opostas. Esta mudanga de fase é conhecida como efeito Sagnac [43] e
representa um andlogo gravitacional do efeito Aharonov-Bohm da eletrodindmica. O
segundo fator corresponde a uma translagao espacial e tem o seguinte significado fisico
[44]. Considerando que o feixe de particulas é espalhado tenha uma componente z do
momento igual a k, entao, este fator d4 a mudanca de fase 87kJ* ,devido ao acoplamento
do momento linear da particula com a torcao.
Portanto, quando transportamos um vetor ao longo de circulo no espago-tempo da corda
c6smica quiral, ele adquire uma fase que depende de a(ou i), J* e J* os quais impedem
que a matriz de transporte paralelo(fator de fase) seja igual & identidade. Este efeito estd
associado exclusivamente ao fato de a topologia do espago-tempo em questao ser nao-
trivial. Este ¢ um exemplo do efeito Aharonov-Bohm gravitacional. [37], [3]. Este efeito
foi obtido classicamente e estd associado com a transformagao de holonomia nao-trivial
para circulos no plano-xry. Como neste caso a geometria é localmente plana, a mudanga de
fase adquirida pelo vetor quando transportado paralelamente em torno de fonte pode ser
vista como devido ao acoplamento da energia-momento com as propriedades geométricas
e topoldgicas do espago-tempo, gerado pela corda césmica quiral.

Vamos considerar o caso particular em que J* = J* = 0, e que corresponde a uma
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corda cosmica. Neste caso, a transformacao de holonomia para curvas fechadas situadas no
plano perpendicular ao da corda é dasda por U(C') = exp(—8mipJi2). De um modo geral,
podemos verificar que [41]U(C) = exp(—4% [ T%(z)Jopdz*), onde Jq sdo os geradores do
grupo de Lorentz SO(1, 3).

No caso em que J' # 0 e J* = 0, temos que o fator de fase é dado por
U(C) = exp(—8miJ' My) exp(—8mpuJ12). (2.50)

Podemos reescrever a eq.(2.50) em termos dos geradores do grupo de Poincaré da seguinte

forma
/l: a 1 a
U(C) = Pexp ~3 /(e& )P, + §FﬂbJab)dx“ , (2.51)
c
onde introduzimos os geradores de translacoes P, = —i% devido a translacao temporal.

Portanto, no caso estaciondrio os fatores de fase correspondentes a curvas fechadas em
torno da corda césmica com rotacao [41] sdo elementos do grupo de Poincaré 1SO(1,3).
O fato do grupo de holonomia, neste caso, ser o ISO(1,3) ao invés do SO(1,3) parece
interessante e sugere um importante paralelo com a gravitagdo de Einstein em (2 + 1)-
dimensoes. E importante observar que o fato de os fatores de fase serem elementos do
grupo de Poincaré estd intimamente associado a existéncia de um sistema de coordenadas
localmente plano. Portanto, esta estrutura nao pode ser simplesmente admitida como
valida no caso geral de um espago-tempo em (3 + 1)-dimensdes.

A gravitagdo em (241)-dimensoes é equivalente a uma teoria de gauge de Chern-
Simons [45]com grupo ISO(1,2), na qual a triade e’(‘a) corresponde ao grupo de gauge, e
portanto faz sentido pensar em um fator de fase envolvendo e’(‘a). H& uma correspondente
teoria em (3+1)-dimensées? (H4 estudos tentando construir uma teoria de gauge do
grupo 1SO(1,3) em (3+1)-dimensoes, mas, tanto quanto sabemos, ndo hd uma versao
convincente dessa teoria que trate as tétradas com campos de gauge ordinarios). Porém,
a existéncia de um sistema de coordenadas localmente plano em alguns casos especificos
em (3+1)-dimensoes, nos permite construir a teoria de Einstein nessa dimensao como
uma teoria de gauge do grupo de Poincaré, e portanto, nesses casos faz sentido construir

o fator de fase na forma dada pela eq.(2.51), sendo eff) e FZ” os potenciais de gauge.
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Portanto, no caso da corda césmica com rotacao existe um fator extra na fase
quando comparado ao caso sem rotagao. Entao, por exemplo, quando um feixe de luz
de comprimento de onda A descreve uma circunferéncia de raio R em torno da corda
girante, a fase da luz é alterada pela quantidade 87J/\, quando compara com o caso
sem momento angular. Este efeito é um andlogo gravitacional do efeito Aharonov-Bohm
eletromagnético, mas, neste caso, ele é de natureza puramente cléssica.

No caso em que J' # 0 mas J* = 0, isto é, a corda coésmica girante, sugere
um tratamento geométrico para a o caso do potencial solenoidal infinito. O solendide
infinito possui uma singularidade do tipo da corda césmica com rotagao, ou seja existe
uma 1-forma A,, com discontinuidade do tipo das coordenadas polares (0,0, ®/r). A
mudanca do eletomagnetismo para a gravitacao ¢ feita usando a seguinte correspondéncia
na aproximagao de campo fraco: e < m, A, < hu(%hoo,hm). Dai, o espago-tempo

correspondente ao potencial A = (0,0, ®/r) é dado por
ds? = —dt?* + dr? + r’d¢* + dz* — 2®dpdt (2.52)

onde ¢ = fluxo magnético/2me.
Da equagao eq.(2.51), concluimos que a holonomia total para circulo neste espago-tempo
é dada por

U(C) = exp|—8mi(PMp)].

Esta fase ¢é diferente da unidade, em geral, e entao, temos o efeito Aharonov-Bohm.

2.5 Fatores de fase no espaco-tempo de N cordas
quirais.

Vamos, nesta secao, determinar a holonomia no espago-tempo gerado por por N
cordas césmicas quirais localizadas nos pontos r =r;, com + = 1,2,..., N, e situadas
paralelamente ao eixo z[39]. A métrica associada ao espago-tempo gerado por uma corda

quiral dada pela eq.(2.42) pode ser escrita da seguinte forma
ds® = —(dt +4J'de)* + r~®(dr® + r’d¢?) + (dz + 4J7d¢)? (2.53)

o8



Se considerarmos um sistema Cartesiano de coordenadas z = r cos ¢, y = rsen¢, a equagao
(2.53) fica dada por

dy — yd dy —yd
ds? = —(dt + 4thyr#)2 + eV (dz® 4+ dy?) + (dz + 4:]2%)2, (2.54)

com V =2ulnr.
A generalizacao da métrica de uma corda quiral para a de N cordas quirais paralelas

ao eixo z, pode ser obtida com as seguintes trocas [39]

xdy — ydx dy (y — yi)dz
Ji=—= - Jt 2.55
T Z R (2:55)
Lxdy — ydx L Ydy — (y — y;)dx
J 3 — Z J; r ri|2

2ulnr — Z’ui In [r? — 2rr; cos(¢p — ¢;) +17] .

i=0
Portanto, o espaco-tempo gerado por N cordas quirais possui elemento de linha dado por
N 2
ds* = — {dt + > A(Wihdy — I/Vfdm)J + eV (dz? + dy*)+
i=1

(2.56)
[dz + ﬁvj B,(Widy — Wfdx)] ,

i=1
onde A; = 4J! e B; = 4J7, com J! e J? correspondendo ao momento angular e torgao da

i-ésima corda quiral, respectivamente, e W} e W2 dados por

wle 7% p2_ YU (2.57)

B N 1
Considerando o caso em que J! = J? = 0, teremos o espago-tempo de N cordas
césmicas (multiplas cordas). Quando um vetor é transportado paralelamente ao longo de
uma curva fechada qualquer no plano-zy, no espaco-tempo da muiltipla corda césmica,

este adquire uma fase dada por [46]

1 0 0

2

U(O) = exp /F¢d¢ — 6—87ri/1J12 —

0

0 cos8mi  sen8m (2.58)

0 —sen8mi cos8miji
0 0 0

- o O O

N
onde i = > m;.

=1
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Portanto, os vetores coluna (t,x) e (t',x’) sdo relacionados por

' 1 0 0 0 t
x 0 cos8mji sen8xwji 0 x
_ : s (2.59)
Yy 0 —sen8mp cos8mjii 0 Yy
2z 0 0 0 1 z

Como no caso da mmiltipla corda, o espago-tempo da multi corda quiral é também
localmente plano, fora das localizagoes das fontes. Portanto, podemos usar as mesma
condigbes dadas pela eq.(2.59), exceto as concernentes as coordenadas t e z. Essas

condigoes sao expressas relacionando-se os pontos (¢,x) e (t/,x") como segue:

t'= t+8rJ!,
' = cos(8wji)x + sen(8xi)y,
(8f1) (8mi)y (2.60)
Yy = —sen(8nfi)x + cos(87f)y,
2= z+8nJ,

onde J¢ = ]ZV: Jle J? = fj J? e consideramos como curvas as circunferéncias no plano-zy.
A transforirr:lzlmgéo dada ;):ella equagao eq.(2.60) pode ser posta na forma de produtos de
matrizes da seguinte forma: seja M¥ uma matriz 5-dimensional, com A, B = 0,...,4.
Tomemos M}! como sendo a matriz associada a rotagdo U(C) = exp(—8mfiJi2), €

MO = 8rJt, M} = 8rJ*, M? = M} = M} =1, temos entio que;

t’ 1 0 0 0 8rJt t
x 0 cos8mpn  sen8mjip 0 0 x
y | =1 0 —sen8nii cos8nii 0 0 Yy (2.61)
2 0 0 0 1 8tJ° z
1 0 0 0 0 1 1
que pode ser posta na forma,
' t
x x
y | =exp |:87Tith0i| exp |:87Tl'sz3i| exp [=8mifiJia] | y (2.62)
2 z
1 1
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0000 —i 0000 O
0000 O 0000 O
onde Mo=10 000 0 |[eMs=|0000 0
0000 O 0000 —i
0000 O 0000 O
A equacao eq. (2 62) a expressao exata para a holonomia, para circulos no espaco-tempo

da multicorda quiral.

Podemos calcular as holonomias para circunferéncias no espaco-tempo de N cordas
quirais no contexto da teoria de Einstein-Cartan [39]. Neste caso temos que as conexdes
espinoriais sao dadas por

oV 19)%
1 wo__ . — T2 iz
I)ydx _2(—axd o dx) = -T2, da*, (2.63)

que em coordenadas cilindricas (z° = ¢, x' = r, 22 = ¢, 2® = 2) pode ser escrita na forma

I qdet = —%a—‘;dr —(1— 27“88—‘7{)0@ = —I7 dat. (2.64)

Agora, considere a mesma circunferéncia do cédlculo anterior. Neste caso Uar ) (C) & dado

por
2

N
U0 (C) = exp(/ ['ydp) = exp [—SM(Z ,uj)Jm] : (2.65)
0 J=1

onde

R —ricos(¢ — ¢;)]
Iy=1d{1—- 42,% Qer cos(d —3,) + ]}J12,

sendo R o raio da mrcunferenma.
Deste resultado, vemos que, no contexto da teoria Einstein-Cartan, a transformacgao de
holonomia nao contém informacoes sobre o momento angular e a tor¢ao. Portanto, o
conceito de holonomia pode ser usado para distinguir as conexoes nos contextos das teorias
de Einstein e de Einstein-Cartan.

Analisando a eq.(2.65), concluimos que o fator de fase adquirido por um vetor ao ser
transportado no espago-tempo de N cordas quirais é afetado somente pelas cordas que
estao circuladas pela curva ao longo da qual o vetor é transportado.

A existéncia de coordenadas localmente planas no espaco-tempo nos permite

considerar a matriz M# como a matriz do transporte paralelo. Entdo podemos dizer que
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quando transportamos um vetor ao longo de um circulo neste espago-tempo ele adquire

uma fase que depende de p,, J!

7, J7 apesar do espaco-tempo ser localmente plano. Este

efeito é préprio da nao-trivialidade da topologia do espaco-tempo em questao, e o andlogo

gravitacional do efeito Aharonov-Bohm eletromagnético.

2.6 Caracterizacao global do espaco-tempo N cordas
quirais.

Como uma aplicacao da transformagao de holonomia vamos estudar [46] do ponto de
vista global, o espago-tempo de uma configuragao de N cordas césmicas quirais localizadas
nos pontos a;, j = 1,2,...,N. Para tanto vamos usar o resultado que somente a
corda envolvida pela curva contribui para o fator de fase adquirido por um vetor quando
transportado paralelamente no espago-tempo de muiltiplas cordas quirais [38].

Se transportamos um vetor x paralelamente, ao longo de um circulo que circunda uma

corda quiral obtemos o seguinte vetor apds esse processo
xV = Uyx, (2.66)
onde U; é obtido de
U = exp(—8imJi My) exp(—8im J; M3) exp(—8im iy, J12) (2.67)

para k = 1.

Agora, vamos considerar um sistema de duas cordas quirais, uma em a; = 0 (origem) e a
outra em ay. Se transportarmos paralelamente o vetor x ao longo do circulo em torno da
corda césmica 2, o vetor resultante é dado por Usx. Transportando paralelamente este
vetor resultante ao longo do circulo que circunda a corda césmica 1, teremos um novo

vetor resultante qur é dado por
X(2) = b172 + U1U2X, (268)

onde by 5 = U (1 — Us)az e Us é dado pela eq.(2.67) para k = 2.
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Vamos considerar um sistema com trés cordas. Neste caso temos
X(3) = b17273 + U1U2U3X, (269)

onde by o3 = Uy(1 — Uz)ag + U Us(1 — Us)ag.

E facil generalizar este resultado para um sistema de N cordas césmicas, localizadas em
a;,a,,...ay. O vetor x\N), obtido apés o transporte paralelo do vetor x é dado pela
expresao

X(N) = b1,2,...N + U1U2 . UNX, (27())

onde by s y_1 = Ui(1-Uz)ag+U Ux(1-Us)ag+...+U Uy ... Un_2(1=Un)an_1Un_1(1—
Un)ay e Uy é dado pela eq.(2.67) para k = N. Entdo, um vetor x transportado
paralelemente em um campo de N cordas quirais adquire uma fase dada por U Us - - - Uy €
do ponto de vista global, o sistema comporta-se como uma simples corda com as condicoes
dadas pela eq.(2.70) sendo satisfeitas.

Agora considere um sistema de duas cordas quirais uma movendo-se com relagao a
outra. Considere a corda césmica 1, localizada na origem, e a corda césmica 2, localizada
em a; movendo-se com relacao a primeira com velocidade v,. Esta corda pode ser vista
como a corda que sofre um boost. Entao, se transportarmos paralelamente o vetor x ao

longo do circulo em torno da corda césmica 2, obtemos

x®) = ay + LUy Ly (x — ay), (2.71)
com
coshvy, senhvy, 0 0 0
senhy, coshvy, 0 0 O
Ly = 0 0 100 [, (2.72)
0 0 010
0 0 0 01

onde 7, é o parametro de boost tal que ||v|| = tagh~y,. Este boost corresponde a mudanca
de coordenadas Lx e sob esta mudanca o fator de fase U transforma-se como LUL™!. Se
transportamos paralelamente o vetor x(® ao longo do circulo, em torno da corda césmica
1, o vetor resultante é

xW = Uylag + LoUs Ly H(x — ay)). (2.73)
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Entao, vemos que se o vetor é paralelamente transportado em torno das cordas 1 e
2, ele adquire uma fase dada por U;LyUsL;*. Este resultado pode ser generalizado no
sentido de considerar N-1 cordas césmica localizada em a;, as,...ay_1 e a N-ésima com

um boost. Neste caso temos

X(N) = b172 N+ UU;. .. UN—lLNUNLJ_VlX' (2'74)

geee

Portanto, quando um vetor é transportado paralelamente em torno dessas N cordas

quirais, ele adquire a fase

UrUy ... .Ux 1 LNUnNLy, (2.75)

onde Ly ¢ dada pela eq.(2.72) com vy — vy
Vamos considerar uma inica corda quiral que se comporta como este sistema. Esta

corda pode ser considerada como estando submetida a um boost dado por

Loy Lor Loz Loz Loa
Lio Lin Lz Lz Ly
L(¢,v)=| Ly Ln Ly Ly Ly | (2.76)
Lo L31 Lsp Lz Lag
Lao Laz Ly Lug Lug

onde

Loy = cosh~y, Ly = cos ¢sinh~y, Loy = sin ¢sinh~y, Loz =0, Loy =0

Ly = cos¢sinhy, Li; =1 — cos® ¢(1 — cosh), L1g = — cos ¢sin¢(1 — cosh )
Liz = 0, L1y =0, Lyg = sen¢coshy, Ly; = — cos ¢psin ¢(1 — cosh ),

Lyy = 1—sen®¢(1 —coshy),Log =0, Loy =0

Ly = 0,L31=0,L3=0,L33 =1, L3s =0

L40 - Oa L41 - 07 L42 - 07 L43 - 07 L44 =1

A forma L(¢,~) decore do fato que toda transformacao de Lorentz homogenea pode

ser decomposta da seguinte forma:

L(¢,v) = R(¢)L(0,7)S(9),
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onde R(¢) e S(¢) sao rotagoes puras. Assim, se fizermos o transporte paralelo de um
vetor x ao longo de curvas fechadas em cujo centro geométrico se encontra uma corda
césmica quiral com densidade de massa p, momento angular J! e parametro de deslocacao

J#, obtemos o seguinte vetor apds este processo
x"t'=La+ UL ' (x—a)], (2.77)

onde a é a posicao da corda quiral que é equivalente ao sistema de cordas.

Igualando as fases adquiridas pelo vetor x em ambos os casos, temos
UUs...Uv_1LyUnLyt = LUL™. (2.78)

Esta é a equacao fundamental e corresponde exatamente as identidade de Bianchi
usadas em [47]. No caso particular de duas particulas que colidem (N = 2), no contexto
da gravitacdo em (2+1)-dimensdes. Tomando o trago da eq.(2.78) obtemos o seguinte

resultado [46]

N-1 N-1
CosSp = cosdy COS(Z ¢;) — coshyy sin ¢y sin(z ¢;) + (2.79)
=1 =1
sinh? 7y phly
T(cos oy — 1) COS(Z ¢;) — 1
j=1

onde ¢; = 8wy, e ¢ = dmp.

Esta ¢é a relacao entre a deficiéncia angular do espago-tempo da corda quiral que equivale,
do ponto vista global, ao sistema de N cordas e a deficiéncia angular destas N cordas
quirais envolvidas. Se consideramos as outras componentes da eq.(2.78), obtemos as

equagoes [46]

=

-1

cos( Qﬁj)sinthJ]tv = J'cos ¢sinh~, (2.80)

Z <.
Lol

sin( Y ¢;)sinhyyJy = J'cos¢gsinhy,

j=1
N
=T,
j=1
N-1
J}fvcoshﬂquLZJ; = coshyyJ',
j=1
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que relacionam os pardmetros associados & corda césmica quiral, que é equivalente ao
sistema de N cordas quirais, com os parametros que caracterizam essas cordas.
Agora considere o caso particular da corda césmica estética (J* = J* = 0). Neste caso

as componentes da velocidade da corda césmica equivalente sao

N-1 N-1
v, = cot (Z qﬁi) vy, e v, =sinhyy/ cot (Z qﬁi) cos hyy +tgon
i=1 =1

Se considerarmos N = 2, temos a seguinte relacao entre as massas e a velocidade da

segunda corda
cos 4y = (cos 4y )(cos 4mps) — sin(4mpy ) (sin 47y ) cosh 7,. (2.81)

Neste caso particular (/N = 2) também podemos obter de eq.(2.78) o seguinte resultado
para as componentes da velocidade da corda césmica quiral que equivale ao sistema de

duas cordas, e que sao dadas por

v, = (cotdmmy)v,,

v, = sinhvy,/[cot(4mmy) coshy, + tan(4dmms)].

As equagoe (2.79) e (2.80) sao as relagoes entre a deficiéncias angulares, momentos
angulares e os pardmetros de deslocacao associados ao sistema de N cordas quirais e as
quantidades associadas com uma simples corda quiral que é equivalente, do ponto de
vista global, a este sistema. Dessas equagoes podemos estabelecer todos os diferentes
casos de corda estdtica e corda césmica com rotacao bem como os casos correspondentes
em gravitacao em trés dimensoes.

Os resultados para o cone estdtico podem ser particularizados para a gravitagao em
(241)-dimensoes, bastando para isto trocar p(densidade de massa da corda) por m(massa
da particula) e tomar a se¢do z = constante. Neste caso obtemos uma descrigdo para a
gravitagao em (2+1)-dimensoes usando o fator de fase que ¢ equivalente & descricao dada
usando o célculo de Regge.[47]

Verificamos, neste capitulo, que a transformacao de holonomia para curvas no plano

perpendicular ao cilindro de matéria com rotacao depende do momento angular da fonte,
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apesar de que esta grandeza nao afeta o tensor de curvatura, na aproximacao de campo
fraco em que o cilindro gira lentamente de modo que os termos proporcionais ao quadrado
do momento angular sao despreziveis. Esta dependéncia do fator de fase com uma
grandeza que nao afeta a curvatura da regiao acessivel a particula denominamos de efeito
Aharonov-Bohm gravitacional generalizado.

Encontramos uma solugao para as equagoes de Einstein que coresponde a uma
generalizagao do monopolo global, de Barriola e Vilenkin [34], e entao, usando as varidveis
de contorno calculamos o fator de fase para vdrias curvas no espaco-tempo do monopolo,
e mostramos que o loop de Wilson gravitacional satisfaz a relacao de Mandelstam. Ainda
neste capitulo calculamos para curvas no espacos-tempos de uma corda quiral e no da
para multicorda quiral, para diversas curvas. Finalizamos o capitulo apresentando uma
caracterizagao para o espago-tempo de multicordas quirais paralelas, sendo que uma delas
posui uma velocidade em relacao as demais. Mostramos, entao, que do ponto de vista
global o espago-tempo de multicordas quirais equivale ao de uma tnica corda quiral
com relagoes apropriadas entre os parametros (massa, momento angular e rotagao) que

caracterizam o sistema de cordas e o que lhe equivale.
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Capitulo 3

Fases de Berry em Gravitacao

3.1 Introducao.

Recentemente, a fase quantica geométrica (fase de Berry) tem sido um tépico de grande
interesse. Berry mostrou [12] a existéncia de um fator de fase durante uma evolugao
adiabdatica dos estados de um dado sistema quéantico. Essencialmente, essa fase estd
associada ao fato de que a funcao de onda do sistema guarda a informacao sobre como ele
evoluiu. O termo geométrico significa que o fator de fase depende somente da curva no
espaco dos estados quéanticos, ou seja, ele é uma transformacao de holonomia no espaco de
parametros, e é independente, portanto, da parametrizacao da curva no espaco projetivo
de Hilbert.

A fase de Berry foi generalizada de modo a incluir campos de gauge nao-Abelianos
[14], e nesse contexto, para sistemas evoluindo ciclicamente e sem estarem submetidos a
restricao da adiabaticidade [15].

Na fisica, temos véirios exemplos de sistemas em que o comportamento é especificado a
menos de uma fase. A fase total adquirida pela funcao de onda de um sistema quantico em
evolucao ciclica ou nao-ciclica contém duas partes, a fase dindmica e a fase geométrica. A
primeira esta associada a Hamiltoniana do sistema, e a segunda depende, simplesmente,
da curva no espaco gerado pelos estados do sistema.

Estudos mostram a importancia da fase geométrica em vérias dreas da fisica, tal como

o efeito Hall quantico[48], efeito Jan-Teller,[49] e muitos outros tépicos de interesse da
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fisica molecular[50] da 6ptica quantica[51] e da gravitacao e cosmologia[19][16][18].

No contexto da gravitagao e cosmologia foram feitos ultimamente alguns trabalhos [52]
concernentes a investigagao da fase de Berry. Em particular, Cai e Papini [17] obtiveram
a generalizacao covariante da fase de Berry e amplicaram esses resultados para problemas
envolvendo campos gravitacionais fracos. Recentemente Corichi e Pierri [16] estudaram
o comportamento de uma particula escalar quantica em uma classe de espacos-tempos
estaciondrios e investigaram a fase adquirida por esta particula quando transportada ao
longo de um caminho fechado nas proximidades de uma corda césmica girante, resultado
também apresentado em [53], com outra abordagem.

Neste capitulo, apresentaremos a fase de Berry para uma particula escalar no espaco-
tempo de uma corda césmica quiral que é uma generalizacdo do trabalho de Corichi e
Pierri e apresentaremos também a fase de Berry para o espaco-tempo da multicordas
quirais, cilindro com rotagao e em um universo isétropico e concluiremos apresentando a

fase geométrica em modelos cosmologicos espacialmente homogéneos.

3.2 Fase de Berry.

Em mecénica quantica definimos a funcao de onda a menos de uma fase, que
usualmente é desprezada. No entanto, Berry [12] observou que adicionalmente a essa fase,
que é desprezada existe uma outra que aparece quando o sistema evolui adiabaticamente,
e que guarda informacoes sobre a evolucao do sistema. Nesta secao vamos descrever a
obtencao da fase de Berry para sistemas quénticos que evoluem adiabaticamente.

Para deduzir a fase de Berry, vamos considerar um sistema quéntico com Hamiltoniana
H(R), a qual depende dos parametros R’, que coletivamente vamos escrever como
R = (RY, R?,...R"). Suponha que R varia adiabaticamente com o tempo, R = R(t).

A equagao de Schrodinger torna-se, entao

d

HR@®)) [ ¢(t) > =iz [9(t) >. (3.1)

Admitindo que, o sistema em ¢t = 0, est4 no n-éssimo auto-estado, isto &, | 1(0) > =
| n, R(0) >, onde
H(R(0)) | n,9(0) > = EL(R(0)) | n, R(0) > (3.2)
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e que < n,R(t) | n,R(t) > = 1 e que os auto-valores E,(R) de H(R) sejam nao-
degenerados, podemos perguntar qual serd dos estados | ¢ (t) >, no tempo t¢.

Se escolhermos

t
(Wt > —exp (—z’ / dsEn(R(s)) L R(E) >, (3.3)

verificamos que o estado normalizado | n, R(t) > satisfaz a equagao
HR(t)) [n,y(t) > = Eo(R(t)) | n,R(t) >, (3.4)

mas nao satisfaz a equagao eq.(3.1). Vamos, entao introduzir uma fase extra =, (t) na

fungao de onda dada pela eq.(3.3), de modo que a funcdo de onda modificada é

L9 > = expliv, (t) — i / dsE,(R(s)] | m R(t) > . (3.5)

colocando a 3.5 na eq.(3.1) obtém-se

dy,(t) . d
g =< n, R(t) | o | n, R(t) > (3.6)
de onde concluimos que
’ d
v(t) = i / <nR(s) | o | n.R(s) > ds (3.7)
0

R(t)
= z/ <n, |Vg|n,R>dR
R(0)

onde V5 é o gradiente no R-espago, comhecido como espaco de parametros. Notemos
que 7v,(t) é real. Supondo que o sistema executa um loop no R-espaco, R(0) = R(T)

para 7' > 0, temos

() = i /0 <n R(s)| [ R(s) > ds (3.8)

R(T)
= z/ <n,R|Vg|n,R>dR
R(0)

Para R(0) = R(T'), a expressao eq.(3.8) parece anular-se, no entanto, o integrando
nao é necessariamente uma derivada total e portanto v, (t) pode ndo ser nulo. A fase
v, (t) € a conhecida fase de Berry. O significado geométrico da fase de berry foi dado em

[13] como representando o transporte paralelo (transformagao de holonomia no espago dos

70



parametros) dos estados do sistema ao longo de uma curva no espaco projetivo de Hilbert,
com respeito a uma conexao obtida do produto interno no espaco de Hilbert.Se tomarmos
o traco do fator de fase e”» obteremos o loop de Wilson no espaco de parametros.
Considerando, M a variedade que descreve o espaco de parametros R = (R') e que
para cada ponto R € M, o n-éssimo auto-estado normalizado da Hamiltoniana H(R),
estado quantico | n, R > nao pode ser distinguido de €*® | n, R >, entao um estado fisico

pode ser expresso por uma classe de equivaléncia
IR>]:={g|R> ;9€U)} (3.9)

Assim, temos o fibrado principal P(M,U(1)) sobre M, cuja projecao é dada por 7(g |

R >) = | R >. Usando a teoria das conexoes em fibrados, apresentada no capitulo 1

desta tese, e fixando a fase de | R >, para cada ponto R € M, seja o(R) =| R > a secao

local sobre a carta U de M. A triviliacdo local ¢ dada por ¢ (| R >) = (R, ¢) e a acdo &
direita

¢$(|R>g)=(Re)g=(R,9g). (3.10)

Agora a estrutura de fibrado estd definida, e podemos apresentar a conexao de Berry

denotada por

A dR* = <R|(dR)> =—(d<R|R> (3.11)
onde d = aza«zu dR" ¢é a derivada exterior no R-espago. A curvatura ou campo de gauge de
Berry é

O<R|, O|R>
=dA = dR* N dR" A2
F=dA= () (S5 )aRe A dR (312)

Assim, a fase de Berry estd associada a holonomia da conexao eq.(3.11) em P(M, U(1)),
pois se tomarmos a segdo o(R) =| R > sobre a carta U de M, seja R : [0,1] — M a curva
em U, o levantamento horizontal de R(t) com a conexao eq.(3.11) é ﬁ(t) =o(R(t))g(R(t))

onde g(R(0)) é o elemento identidade de U(1). O elemento do grupo satisfaz

dil—(tt) =g(t)'=—-<R()| % | R(t) > . (3.13)
como ¢(t) = exp(iy(t)) temos idv#(t) =— < R(t)| £ | R(t) > dai,
n(l):i/01<R(s)]d%|R(s)>ds:i7{<R|d]R> (3.14)

C
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Como R(0) = R(1), logo | R(0) > =| R(1) >. Entao exp(ivy(t)) é tratada como holonomia,
que é um objeto geométrico e

~

3(1):exp<—7§<3|d1R>)-|R(0)>.

(&
Como U(1) é um grupo abeliano, entao a fase de Berry ¢ abeliana.

Anandan e Stodolsky [54] deram um tratamento de grupo para a fase fase de Berry
e apresentaram uma interpretacao associada com o dngulo sélido de uma determinada
variedade, comprovando assim o cardter geométrico da fase de Berry.

Em fisica molecular, o movimento de elétrons é estudado na aproximacao adiabética,
tratando a posicao do micleo como um parametro externo dependente do tempo. Como
as energias envolvidas no movimento nuclear sao muito menores do que a dos elétrons,
estudamos as equagoes para o niicleo em um dado autoestado.

Um recente interesse no teorema adiabdtico teve inicio com uma obsevagao feita por
Berry [12] de que o teorema adiabético classico deixa de lado uma importante contribuicao
que pode ser interpretada como uma fase geométrica no espaco dos parametros.

A derivacao da fase de Bery no formalismo Hamiltoniano parte da seguinte equagao

de Schrodinger
H(R,P;r,p)Y = (Thue.(P) + h(R;r,p))Y (R, P;r,p) = EY(R, P;r, p), (3.15)

onde R, P e r,p denotam as varidveis nucleares e eletronicas, respectivamente, e T),,..
é a energia cinética do ntcleo. A funcao de onda é expandida em termos da base de

autofungoes da Hamiltoniana h como
Y(R,r) =Y P,(R)g,(R;1) (3.16)
isto é, a funcao de onda eletronica ¢, (R;r) a equagao
hR, )¢, (R;r) = en(R)p,(R; ). (3.17)
Integrando a eq.(3.15) sobre os modos eletronicos, temos
(3 <0 | =2 | o, > +eu(R)S,,)(R) = EO(R) (3.18)
- n oM R n mn
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Se o operador de energia cinética nao atuar sobre a coordenada R das funcoes de
onda eletronica ¢, (R;r) a decomposi¢ao dada pela eq.(3.16) separard completamente

a eq.(3.15). Para analizar essa dependencia vamos reescrever o termo da eq.(3.18) como
1 ‘ .
<m | 53 VR ]P0 > = zk:@mkvR — iAmk(R)) (0 Vi — 1Ak (R))®,  (3.19)
onde introduzimos a notacao

Considere primeiramente o caso de um estado eletronico ¢,, nao-degenerado. Entao, para
m # n podemos diferenciar a identidade h | ¢, > = &, | ¢,, > para obter
tVh

wmn

An(R) =<g,, | | o, > (3.21)

onde w,,, = &, — &, € a frequéncia de Bohr para a diferenca de energia considerada. A
aproximacao de Bohr-Oppenheimer é aplicdvel no caso em que o denominador assume
grandes valores, o que suprime a contribuicao dos elementos fora da diagonal. Sob esta

condicao, temos que

A (R = 6mnAL(R) (3.22)
sendo A,(R) a conexao de Berry. Esta contribuigdo para o Hamiltoniano efetivo

do sistema foi desconsiderada, por acreditar-se erroneamente que poderiamos eliminar

A,,(R) por uma possivel redefini¢ao da base para a eq.(3.16) da seguinte forma
¢, (R;r) = e *® (R 1). (3.23)
Ao invés disto, A,,(R) se transforma como um potencial de gauge
A,(R)— A (R)+ Vg (R). (3.24)

Neste caso o Hamiltoniano nuclear efetivo é dado por

H.¢(P,R) = —ﬁ(P — A, (R))® +e,(R). (3.25)
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Note que, em particular, quando as fungoes de onda eletronica ¢,(R,r) sdo reais e
univocas em R, a conexao de Berry se anula.

Quando os N niveis de energia sao degenerados, as condi¢oes acima sao generalizadas
facilmente, como uma matriz A,,,, do tipo N x N,substituindo A,,. A arbitrariedade da
eq.(3.16) com respeito a escolha de uma base no espago degenerado envolve, agora, uma
matriz U(N) ao invés da exponencial na eq.(3.23) e A,,,,(m,n —1,2,...N) se transforma

como uma conexao nao-abeliana de U(N).

3.3 Fase de Berry nao-Abeliana.

O trabalho de Berry [12] sobre fase adiabdtica geométrica, inspirou generalizacao da
mesma no sentido de considerar o caso dos campos de gauge nao-Abeliano [14], levando
em conta a posibilidade da evolucao adiabdtica de um sistema quéntico com estados
degenerados e que nao considera a adiabdticidade do sistema mas sim a evolucao ciclica
do mesmo. Vamos apresentar a seguir o modelo resumidamente.

Por definigdo um estado (um elemento do espaco de Hilbert projetivo P ), de um

sistema quéntico cuja dindmica é governada pela equagao de Schrodinger,

i00(t)
L0 = H (), (3:26)

é dito ciclico com periodo T se ele é um auto-vetor do operador evolugao temporal
T
U(T) = Pexp(—i / H(t)dt) (3.27)
0

onde PP é o operador ordenagao temporal. O auto-vetor correspondente ao estado inicial

1(0) satisfaz a equacao
[9(T) > =U(T) [ $(0)> =D [4(0) > (3.28)

com «(T) € C (ou R)
Se a Hamiltoniana H for um operador auto-adjunto, entao v € R e consequentemente
| (T) > e | ¥(0) > diferem por um fator de fase. Em geral a(T") pode ser expresso como

a soma de uma parte dindmica e outra geométrica.
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Consideremos o subespaco
Hy ={|¢(T) > eH<y|v> =1}, (3.29)

do espaco de Hilbert H.

Seja m: Hy — P a aplicagao projecao definida por
w(| (1) >) ={[¢' > ;[ ¢' > =D |[(T) > ,a(T) € R} (3.30)

que é uma classe de equivaléncia em Hy, ou seja uma fibra em P = Hy/7(] ¢ >), espago
projetivo que representa o espaco de todos os estados fisicos distintos. Lembremos que
Hy tem uma estrutura de fibrado principal sobre P.

Considerando | ¥(T') > em H, satisfazendo as equagbes eq.(3.1) e eq.(3.28), com
a(T) € R, | ¥(t) > define uma curva C : [0,7] — Hy com C = 7(C) (levantamento
horizontal de C' em P) sendo uma curva fechada em P. Por outro lado qualquer curva C'
pode definir a fungdo Hamiltoniana H(T") satisfazendo a equagao eq.(3.1). Vamos admitir
a dependéncia temporal da Hamiltoniana, isto ¢, H(t) = H[R(t)] por intermedio do
conjunto de parametros R(t) = (R'(t), R%(t),... R"(t)). que correspondem a coordenadas

no espacgo de parametros. Seja E,(t) = E, [R(t)], isto é,
HIR(®)|, [R()] = En[R(1)], [R()], (3.31)

com o grau de degenerescéncia de F),, independente de R.

Considerando o teorema adiabdtico podemos escrever

U(t) = Ut)1, (0) = e O, (8), (3.32)

onde ,,(t) = ¥,[R(t)]. Se E,(t) = E,[R(t)] possui grau de degenerescéncia N, entao
Y, (t) pertence ao subespaco degenerado de dimensdo N (auto-espago associado) H, de
Hy, o, ¢ uma matriz N x N dependente do tempo.
Admitindo a validade do teorema adiabdtico e substituindo (3.32) na eq.(3.26) obtemos
[14]

)

t
) =eoli [ B Peni [ 4 (333)
0 o
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com P indicando um operador de ordenamento ao longo da curva e
1J . I J
A [R] =i <4y [R], dyy, [R] >, (3.34)

com os fndices I e J rotulando as degenerescéncias e {1’ [R]} sendo uma base ortonormal
para H,, e < . > o seu produto interno. Notemos ainda que A{;’ € U(N), o fibrado
espectral associado a ao N-ésimo auto-espago.

Se a Hamiltoniana for periddica, isto é, para uma curva fechada C', entao, de acordo
com a eq.(3.32) ¢,[R(0)] = ¢,[R(T)] é um auto-vetor de estado ciclico. Neste caso,
o primeiro fator em (3.33) é a fase dindmica, eo segundo fator é a fase geométrica, e
corresponde ao fator de fase nao-abeliano. Na obtencao da fase geométrica nao-Abeliana
[15]. Porém, se a adiabaticidade for usada para implementar o movimento, entao, afasse
geométrica é a mesma de Berry. Notemos também que a fase de Berry é reobitida quando

H, é adiabatica.

3.4 Fase de Berry para um sistema relativistico.

Recentemente Corichi e Pierri [16] consideraram o comportamento de uma particula
escalar satisfazendo a equacao de Klein-Gordon em uma classe de espacos-tempos
estaciondrios, em particular no caso da corda césmica com momento angular. FEles
investigaram a existéncia da fase gravitacional do tipo Aharanov-Bohm induzida neste
espaco-tempo. Para isto consideraram a equacao de Klein-Gordon com acoplamento
minimo dada por

(d—m)¥ =0, (3.35)

onde OJ = \/%—gﬁu (0y/—9g9""'0,) e m & a massa da particula.
O elemento de linha para os espacos-tempos estaciondrios foi considerado como tendo

a forma

d52 = —V2(dt - AZdZEZ)2 + hijdxidxja (336)

onde V,A; e h;; sao funcoes em uma superficie de Cauchy X, cujas coordenadas sao
2(i = 1,2,3), e portanto essas fungdes nao dependem do tempo, e A;(z') é tal que

8 Az = 0.
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Para o elemento de linha dado pela eq.(3.36), a equagao de Klein-Gordon toma a

seguinte forma

[0+ R A; A;02 + 217 A;000; + VL\/Eai(hijAjv\/an) —m?|¥ =0, (3.37)

onde [J ¢ o d’Alembertiano da métrica estética, h"/ ¢ o inverso de hy; e h = det(hy;).
Como os espagos-tempos sao independentes do tempo, entdo, as solugoes de (3.37) podem

ser escritas como

U(t, ) = e F1d(z). (3.38)

Substituindo (3.38) na equagao (3.37) encontramos uma equagao para ®(z), cuja solugao

pode ser escrita em termos de @4 que é solugao de (D — m?)®y = 0, como segue

O(r) = exp(iE/Aidxi) Dy, (3.39)

X0

onde o termo exp(iE [ A;dx') é conhecido como fator de Dirac.
X0
Um caso particular dos espagos-tempos cujos elementos de linha sao dados por (3.36) é
o da corda césmica com momento angular. Neste caso, o elemento de linha em coordenadas

cilindricas (t,r, ¢, z) € dado pela eq.(3.36) com [16]

V=1 (3.40)
A = —4J'V®

hij = VZ‘T'VJ‘T -+ (OKT')ZVZ'¢VJ‘¢ + Viszz,

onde J!' é o momento angular da corda e &« = 1 — 4y, com p sendo a densidade linear de
massa. Neste caso da corda com rotagao, a solucao de equacao de Klein-Gordon é dada

por

, f4thEj(éd¢>
U(t,r,d,2) =[eHe 0 [Dy(r,0,2), (3.41)

com Py (r, ¢, z) sendo a solugao da equagao de Klein-Gordon no espago da corda césmica
estatica.
Portanto, podemos relacionar a solucao da eq.(3.37) com a solugdo de uma equacao mais

simples que é (D — m?)y) = 0, através do fator de Dirac. Esta possibilidade também ¢é
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uma caracteristica da fungao de onda associada ao efeito Aharonov-Bohm eletromagnético.
Neste caso,a solu¢ao da equagao de Schrédinger para uma particula carregada, colocada
na regiao exterior ao solendide que contém um fluxo ® pode ser construida a partir da
solugao sem fluxo através do fator exp(i § A;dz’) que é precissamente a transformagao de
holonomia associada & conex@ao U(1) devido ao fluxo. Vamos, entao usar o fator Dirac
e relacionar o efeito Aharonov-Bohm com a holonomia associada a uma dada conexao
seguindo a sugestao de Berry de que o efeito Aharonov-Bohm é um caso particular da
fase de Berry[12]. Assim sendo, considere uma particula carregada, com carga ¢, no
interior de uma caixa de modo que a fungao de onda ¥, (r) seja diferente de zero somente
no interior da mesma. Sejam R; as componentes do vetor R que localiza o centro da
caixa em relacao ao solendide. Quando nao h& potencial magnético, as fungoes de onda
possuem a forma ¥, (r — R), com energias F,, independente de R;.

Com fluxo diferente de zero, as fungoes de onda < n | R > sao obtidas do fator de Dirac

dento da caixa através da relacao
<n|R>=exp iq/dr’A(r') U, (r — R). (3.42)
R

Logo, o fator de fase geométrico pode ser calculado a partir de

<n,R|Vy|nR> =[d&r¥*(r— R)[—qA(R)¥,(r — R) + Vg¥,(r — R)

(3.43)
= _ZqA(R)a
o que implica, usando (3.8) que
v(C) = q%A(R)dR = q®. (3.44)

Vamos apresentar, agora, o formalismo de duas componentes e sua relacao com a fase
geométrica no regime adiabético [53].Para isto, considere um campo escalar complexo
¢ definido em um espago globalmente hiperbdlico (M, g) = (R x 4, g) satisfazendo a

equagao de Klein-Gordon eq.(3.35). Podemos expressar a eq.(3.35) na forma

2D + D1(9,®) + Dy® = 0, (3.45)
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onde

B 1 i v

D, = F[2g0 9 — g" T, ), (3.46)
. 1 . ,

D2 = W[g”&-@j — g’“’FLV@ — m2.

Podemos representar a equagao (3.45), usando o formalismo de duas componentes, na

forma

i— = HU, (3.47)
sendo ¥ = com

0P

1
= —(o+ — 4
w= (@), (3.43)
1 0P
= —(¢— —
v \/5( 5 )
. i(1-Di—Dy —1+D,—D
HE% 1 2 1 2 (3.49)

1+D,+Dy —1—D+ D,
Agora, considere o problema de auto-valores para H. Denotamos os auto-valores e os

auto-vetores por F, e ¥,,, ou seja,

HVY, =FE,¥,, (3.50)
temos que
AR B P (3.51)
n \/5 1 + ZEn ny .
com ®,, satisfazendo a equagao
(Dy —iE,Dy — E2)®, =0, (3.52)

e tal que @,, pertence ao espaco de Hilbert H; = L?(3;) das fungoes de quadrado integravel
definidas sobre as hipersuperficies tipo-espaco Y;, com métrica Riemanniana.

Suponha que:
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2. Dyé0 auto-adjunto com respeito ao produto interno em Hy;
3. Dy possui um especto discreto;
4. durante a evolugao do sistema E,, # FE,, se m # n;

5. E, & um auto-valor nao-degenerado de H, e E? é um auto-valor nao-degenerado de

~

Ds.

Entdo, para m # n < &, | &= > = < &, | D,®, > /(E? — E2,), e na aproximagio

adiabdtica relativistica a solugao inicial da equagao de Klein-Gordon é

T(0) = O, (0) + e Ow_ (0), (3.53)
comn >0 e as,(0) € C, cuja evolugao ¢ dada por

W(t) ~ e, (1) + e O, (¢),

onde a fasae total a,(t) é dada por ai,(t) =[a,(0) + a—,(0)] /2 4+ 7, (t) + 04, (%), sendo
a1,(0) constantes arbitrarias, v, (f) a fase geométrica e d1,(t) a fase dinamica. A fase

geométrica é dada por

R(t)
alt) = / AR, (3.54)
R(0)
onde
AR =i < ®,[R] | d| B[R] > =i < ®[R]| % | ®,[R] > dR® (3.55)

¢ a conexao 1-forma de Berry, R = (R', R? ... R") sao os parametros do sistema e d
representa a derivada exterior com respeito a R°.
Suponha que FE, tenha degenerescéncia de grau N. Entao, a condicao para a

0®;
ot

validade da aproximagdo adiabdtica torna-se < ®! | > ~ 0, para todo m # n e

I,J=1,2,...N. Neste caso, para um contorno fechado, a fase de Berry é dada por

Va(t) = f{ Al (3.56)

onde

Al =i <®L[R] | d| ®)[R] > . (3.57)
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Portanto, no caso relativistico podemos usar o formalismo de duas componentes,
transformando, assim, a equacgao de Klein-Gordon na de Schrodinger, e determinamos
a fase de Berry seguindo o procedimento original[16], e tratando os casos degenerados e

nao-degenerados.

3.5 Fase de Berry no espaco-tempo da corda césmica

quiral.

Nesta segao vamos proceder analogamente ao tratamento dado por Corichi e Pierri [16]
para a obtencao da fase geométrica associada a uma particula escalar quantica, induzida
pela corda césmica quiral. O elemento de linha que descreve tal espaco-tempo é dado
pela eq.(2.42)

O comportamento da particula quéntica escalar é descrito pela equagao covariante
de Klein-Gordon (eq.(3.35)). Portanto, vamos considerar a equagao de Klein-Gordon na

métrica dada pela eq.(2.42) que pode ser escrita na forma

1 1
{07 — ;&(r&) e [(4J'0, — 04)% + (4J70. — 04)°|+
32J' T2 0,0, + o®r*(0? — mA)|}(t, 7, ¢, 2) = 0 (3.58)

Como o espaco-tempo da corda césmica quiral é tempo independente simétrico sobre

translagoes ao longo do eixo-z, entao a soluc¢ao da eq.(3.58) pode ser escrita na forma

onde F, sao autovalores de energia e k, sao os vetores de onda na dire¢ao z. Usando o

método do fator de Dirac, podemos escrever ¢,, como [18§]

¢
o, (1, ®) = exp (—42’ / (B, J' — knJZ)dgb) oo(r 6) (3.60)
com (T, ¢), sendo a solucao da equagao
Lo.ro L o ‘- EX-K; t =0 3.61
;T(TT)—i_W gﬁ_(m_ n n) 900(7T’¢7Z>_ ) ( )
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que é a equagao de Klein-Gordon na métrica eq.(2.42) para J* = J* = 0,que
corresponde a corda césmica. Desta forma, determinamos a solugao de uma equagao
mais complicada,eq.(3.58 a partir da solugao de uma equagao mais simples (eq.(3.61)).

Vamos, agora, investigar a fase de Berry no espaco-tempo da corda césmica quiral.
Para este caso, o angulo de fase geométrico com rotacao depende dos niveis de energia,
justamente como no caso da corda césmica com rotacao [53]. Portanto, cada autovalor
diferente, rotulado por mn,adquire fases geométricas diferentes, e como consequéncia, o
tratamento apropriado deste problema é obtido usando a generaliza¢do nao-abeliana [53]
da fase de Berry.

Para calcular esta fase vamos confinar o sistema quantico em uma caixa perfeitamente,
refletora onde os pacotes de onda sao nao nulos no interior da caixa e sao dados pela
superposicao de diferentes auto-fungoes. O vetor que localizado a caixa em relacao
ao defeito é chamado de R. Este vetor é orientado a partir da origem do sistema de
coordenadas(onde se localiza o defeito) para o centro da caixa. Vamos chamar de R; as
componentes de R, dadas por R; = (Rg, ¢y, 20) € tal que Ry > 4J'/a. Esta condic¢ao
imposta a Ry nos leva a dois problemas: a multivaluacao das auto-fungoes e a existéncia
de curvas fechadas tipo-tempo.

Da equagoes eq.(3.59) e eq.(3.60) concluimos que se J* = J* = 0, a fun¢do de onda
tem a forma ¢, = (x — R), onde x localiza a particula relativamente ao centro da caixa.
Se considerarmos J! # 0 e J* # 0, entao a funcao de onda é sensivel a estes parametros e
pode ser obtida pelo fator de fase de Dirac dado pela equagao eq.(3.60), dentro da caixa.
Vamos transportar a caixa em torno da curva fechada C' que envolve o defeito. Como o
espago-tempo ¢é axialmente simmetrico, podemos transportar a caixa ao longo do campo
vetorial de Killing R* = (8%)“.

Devido a degenerescéncia dos autovalores de energia, para calcular a fase de Berry, é

necessario o uso da versao nao-abeliana da conexao correspondente [53] dada por
Al = <ol(x—R) | Vrg)(x—R) > (3.62)

onde [ e J representam os niveis de degenerescéncia.
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Vamos utilizar o produto interno dado por
<O ¥ > = i/dSa(\I/'Va\Tl R AVA N (3.63)

na expressao anterior e fazer uso do fator fase de Dirac, obtermos [18] a seguinte conexao

de Berry

A = <eu(x—R)|Vrg,(x—R) > (3.64)

— i%d&pff(xi — R)[4(knJ? — E,J)e! (2 — R) +
3
—V ey (z; — Ri),
onde dS = ardrdodz.

Calculando a integral obtemos o resultado

<ox—R)| Vrpl(x—R) > = —4i(E,J" — k,J*)51J.. (3.65)

Entao, a fase de Berry é

1 (C) = 87 (B — ki J?), (3.66)

onde os niveis I,.J e 61.J.
foram omitidos.

Este resultado generaliza os obtidos por Corichi e Pierri [16] e Ali Mostafazadeh [53]
para o caso da corda césmica girante. Como foi enfatizado em [16], este efeito pode
ser observado por uma interferéncia da funcao de onda associada com & particula na
caixa transportada e um outra correspondendo a particula na caixa que segue érbitas que
coincidem com campos de Killing tipo-tempo, t°.

Fazendo uso do espaco-tempo correspondente a um solendide cujo potencial é dado
por A =(0,0,®/r) vamos considerar o elemento de linha dado pela eq.(2.52), cujo tensor

métrico na representacao matricial é

-1 0 @& 0 —r2/(r*+®%) 0 ®/(r*+d%) 0

0 1 0 O . 0 1 0 0
G = eg" = :

® 0 r2 0 O/(r*+®%) 0 1/(r*+®?) 0

0 0 0 1 0 0 0 1
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e portanto, g = det(g,,) = —(r* + ®?).
A equagao de Klein-Gordon neste espago-tempo é dada por

> 10 9* 1 0 0 5 0 0?

e [ 8P P = — PP} U =0, ,
T i e r R ol A (3.67)
Escrevendo ¥ = e~*F!4), (r, ¢, 2) e substituindo na equagdo eq.(3.67), obtemos
1o 9* 1 0 82 02
2 t9 _ 9 22
{-B%—- 5 57 [8<I>2E8¢ +ri— + e [}, =0. (3.68)

Vamos tomar, agora, ¥, = exp(i{¢)p, (r,d,z). Colocando esta expressdo na equacao
(3.68), determinamos que £ = —4E® e que ¢, satisfaz a equacao

0? 10 1 92 0?
ﬁJFF@_JF 28¢ +__m2+E2}30n:O (3'69)

A equacao (3.69) pode ser obtida de (3.68) fazendo ® = 0 e trocando v,, por ¢,,. Usando

o método do fator de fase de Dirac podemos escrever

¢
0, (1, 2) = exp (—42’7{ E@d(b) wo(r, 2), (3.70)

com ,(r, z) satisfazendo a equagao

2 10
52 + ey + (E? —m*) (L, r, b, 2). (3.71)

E usando o fator de Dirac eq.(3.70) e as mesma condi¢oes anteriores concluimos que a

conexao de Berry é dada por
<ol(x—R)|Vrpl(x—R) > = —4iE®d;,

e portanto, a fase geométrica é

Vn(C) = 8TED, (3.72)

que depende do acoplamento entre a energia da particula e o fluxo do campo magnético.

3.6 Fase de Berry no espaco-tempo das N cordas
quirais.

Nesta secao vamos calcular a fase de Berry quéntica associada com uma particula

escalar no espaco-tempo das N cordas quirais paralelas, cujo elemento de linha é dado
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pela equagao (2.56). Neste caso, o célculo direto do fator de Dirac via solucao da equagao
de Klein-Gordon ¢é complicado. Diante desta dificuldade vamos usar o fato de que o fator
de fase adquirido por um vetor quando transportado paralelamente no espago-tempo
correspondente a multi corda quiral é afetado somente pela corda que eatd situada no
interior da curva ao longo da qual o vetor ¢ transportado paralelamente [55]. Portanto
calcularemos o fator de Dirac para duas, trés e assim sucessivamente até N cordas quirais.
Primeiramente consideremos o sistema formado por duas cordas quirais, uma localizada
em r; e a outra em 7. Efetuamos o transporte da caixa que contém a particula, ao longo
de uma curva fechada C7 em torno da corda quiral 1. Neste caso, o fator de Dirac é

idéntico ao dado pela equagao eq.(3.60), que vamos escreve-lo como

¢
A1) = exp (—42' /¢ (Bt — w@dqs) 2o(r.9) (3.73)

Agora, vamos transportar o estado ¢l (r, ¢) em torno da corda quiral localizada em r,, ao

longo da curva C,. Desta forma, obteremos o seguinte resultado

¢
(1. 6) = oxp (—4z' [ - m;)m) ) (3.74)

®o
Substituindo a equagao eq.(3.74) em eq.(3.73), obtemos

G2(r, ) = exp{—4i [(Ji+ T Ey — (J5 + J7)k] / 06}.00(r, ). (3.75)

A generalizacao deste resultado para N cordas quirais localizadas em 71,79, ... 7y € dada

por
N

¢
Z n— Jik )]/(b do}.o(r, d). (3.76)

o2 N (1, ¢) = exp{—4i

Da eq.(3.76) podemos extrair a conexao de Berry que dada por [1§]
AL — —422 (JLE, — Jik,)dR?6; 5, (3.77)
onde R? ¢ o angulo polar associado com o centro da caixa. Desta forma a fase de Berry é

N
7, (C) =i 7{ AL =87 (1 Ey — Jiky). (3.78)
C j=1

Por conveniéncia omitimos os indices I e J correspondentes a autovalores distintos. Este
resultado da a fase de Berry associada a particula em uma caixa que é deslocada sobre

um circuito C' que contorna o sistema formado por N cordas quirais.
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3.7 Fase geométrica no espaco-tempo do cilindro de

matéria com rotacao.

Conforme vimos no capitulo anterior, o elemento de linha correspondente ao espaco-

tempo gerado por um cilindro de matéria com rotacao é
ds? = —(1 —a/2)dt* + (1 + a/2)(dr? + r?de* + dz*) + 2bdtdo, (3.79)

onde a(r), b(r) e ® foram definidos anteriormente.
Vamos considerar a particula quantica escalar imersa neste campo gravitacional
cldssico. Seu comportamento é descrito pela equagao covariante de Klein-Gordon que

é dada por

1+ )8_2_2_5 o2 _1o, ﬁ)_la_g_
Vorr T 12agat  ror” or' 2o

7 N m?(2 + a)
022 2

W =0, (3.80)
pode ser escrita na forma da equacao (3.45), ou seja,
U+ Dy + Dy =0 (3.81)

onde o ponto significa derivada com relagao ao tempo.

Neste caso, temos que

R 1 9,

- _ .82
Dy (1+a)r?0¢’ (3.82)
R 2 2
b 1 [0 10 18 & (@+aq )

(1+a) |02 70r 12002 022 2

A equagao generalizada de autovetores [53]
(Dy —iE,Dy — E*)®, =0 (3.83)

torna-se, entao,

o 19 18 9 (2+4a) ,
0 = ﬁ—i_;E—Fﬁ@T&—i_@_Tm (3’84)

2ibE, O )
- a¢+(1+a)E”}q)”’
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Vamos considerar o ansatz ®,, = exp(i€p)p,,, € a eq.(3.84) toma a forma

o 10 1 & (2+4a) , 1, 0
PRy v v A e G 0 s

1

ﬁ(—@ + 4+3bE ) + (1 +a)EX g, =0, (3.85)

de onde temos que £ = bE, e que ¢, satisfaz a equagao

9 10 18 & (2+a

o i Ty T 2

Notemos que ¢ = bFE, é a contribuicao extra, na fase produzida pelo efeito da rotagao

m? + (14 a)E%}p, = 0. (3.86)

do cilindro, e que ¢, determina os auto-valores da Hamiltoniana para o cilindro sem

rotagao de mesma densidade de massa. Como D; anula-se e D, é auto-adjunto, entao, a

0

Hamiltoniana ¢ auto-adjunta, logo com autovalores reais, daf 57

de Rz

= 0, isto é, nao depende

Portanto, a solucao é
Ut g,2) = e FR(r ¢, 2),
com (3.87)
O(r,¢,z) =  exp (ibEn f(j; dgb) o, (r, 0, 2).

Utilizando o mesmo procedimento para o cdlculo da fase geométrica no espaco-tempo da

corda cosmica quiral, encotramos a conexao de Berry

AlY = <ol(x=R)| Vrel(x—R) > (3.88)
= j'{ dS{p(x —R)[biE,o!(x — R) + %%{(x —R)dR}
P
= biE,0; jdR?

onde S = rdrdpdz.

Assim, a fase de Berry para o cilindro com rotagao é
2
7, (C) =i /O Al = —2mbE,, (3.89)

onde C' é o circulo que envolve o cilindro.
Poderiamos ter feito este calculo da mesma forma que nos casos anteriores mas
resolvemos utilizar o processo apresentado por Ali [53] para exibir outro método para

o célculo de fase de Berry.
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3.8 Fase geométrica em um universo isotrépico.

Sistemas fisicos quanticos em espacos-tempos curvos tém recebido muita atencao ao
longo dos tempos. Recentemente, tem sido dada atencao ao comportamento de sistemas
atomicos em espagos-tempos curvos[56] e, em especial, os efeitos sobre esses sistemas
devido a algumas configuragdes do campo gravitacional com topologia nao-trivial [57].
Como o campo gravitacional se acopla universalmente com todos os campos, é interessante
formular uma teoria quéntica no espago-tempo curvo. Dessa forma, podemos descrever
a interacao de uma particula quantica com um campo gravitacional cldssico, como por
exemplo, estudar o efeito da curvatura do espago-tempo sobre o dtomo de hidrogénio [58].

Em particular, um sistema que tem atraido considerdvel interesse é o oscilador
harmoénico com frequéncia e (ou) massa variando com o tempo (ou ambos
simultaneamente), colocado no espago-tempo curvo. Este sistema tem chamado a atengao
por causa de sua conexao com outros sistemas em diferentes areas de fisica tais como fisica
de plasma [59], gravitagao [60] e 6ptica quéantica [61], por exemplo.

A conexao da cosmologia com alguns processos em Optica quantica também tem
despertado alguma atengdo. Neste contexto, Berger [62] construiu uma representagao
de estado coerente para um campo escalar minimamente acoplado para o campo
gravitacional. Resentemente, foi usada a linguagem da 6ptica quantica [63] para auxiliar a
existéncia de estados comprimidos no contexto da cosmologia, bem como foi apresentada
uma abordagem usando estados coerentes [64] com o objetivo de quantizar a teoria de
Einstein-Yang-Mills.

Nesta secdo vamos utilizar o processo adotado em [65] que permite estudar o
comportamento de uma particula escalar colocada em um universo anisotrépico com a
topologia do 3-toros.

Vamos consider um espaco-tempo anisotréopico cuja hipersuperficie tipo-espago possui

a topologia de um 3-toros. Neste caso, o elemento de linha ¢ dado por
ds* = —N?dt* + g;;da'da’ (3.90)

onde N = N(t) e g;; = ¢;;(t) é a métrica da hipersuperficie tipoespaco ortogonal a

diregao t. Exigindo-se que z,y, z € [0, 27|, entdo, esse espago-tempo tem a topologia de
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um J3-toros.
A equagao de Klein-Gordon, que governa o movimento de uma particula escalar, tem
a forma covariante dada por (3.35), e no espago-tempo dado pelo elemento de linha (3.90)

toma a forma

G(t) +(8)q(t) +w(t)q(t) =0, (3.91)
onde
d
1) = = [m(t)], (3.92)

m(t) = \/§N71I7
Wit = NQ(t)(gijk:ikj—i-mQ)

com ¢(t) sendo a amplitude do campo para o modo modelo caracterizado por k;.
Notemos que a equacdo eq.(3.91) é a equacao cldssica para o oscilador harmoénico
paramétrico, isto €, com frequéncia e massa dependetes do tempo.
A equagao eq.(3.91) pode ser obtida via a Hamiltoniana
2

Hp) = 5L T+ %m(t)uﬂ(t)q?(t) (3.93)

para o modo k;(i = 1,2,3),com m(t) e w?(t) definidos anteriormente e p sendo o momento
conjugado a q. Para quantizar este sistema, impomos a cada modo do campo a relagao

[q,p] = ih. Assim a equagao de Schrédinger

.0
Zﬁaﬁ/J = H(t)y, (3.94)
onde H(t) é dada por por
1 9 1

que é a versao quantica da Hamiltoniana dada pela eq.(3.93).
Vamos, agora, considerar a situacao mais geral possivel, tomando o espacgo-tempo,
no qual a equagao de Klein-Gordon toma da equagao de um oscilador harmoémico

generalizado, cuja Hamiltoniana é dada por

H(t) == [X()¢* + Y () (gp+p-9) + Z()p°] (3.96)

DN —
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onde os pardmetros variam lentamente com o tempo. O sistema caracterizado pela

eq.(3.96) possui um invariante associado, dado por

10 =5((2) + o+ 50 - £, (3.97
I(t)=i[H, I+ ag_it) =0, (3.98)

sendo p(t) um c-niimero solugao da equagao auxiliar

1d, p ayYy. XzZ-Y* Z
— (=) - |=(5)————+—=| =0 3.99
Py 2l v 7 (3.99)
e o ponto significa a derivada com relacao ao tempo.
Os auto-valores de (t) sdo definidos por
I(t) =| Ayt > =Xy | Ayt > (3.100)

onde A\, = \,(t) = —(n + 3). O sistema descrito pela Hamiltoniana dada pela eq.(3.96)

desenvolve-se de acordo com a equacao de Schridinger, cujas solucoes sao

| (g, t) > =e® | N1t >,

. 3.101
| (g, t) > =3 Cren® | Nt >, ( )

com (), sendo independente do tempo e «,(t) correspondendo a uma fase, a qual pela

teoria de Lewis e Riesenfeld [66] ¢ dada por

_ n, [t Z({t)
ou(t) = ~(1 +3) /0 i (3.102)

Utilizando o conceito de agao efetiva, I' [ X (t), Y (¢), Z(t)], no contexto da teoria de campos,
temos que

to
TV — | Dp(t) Dg(t) expli / dt [pg — H(p,q. X, Y, Z]}, (3.103)
t

1

onde a integragdo ¢ feita sobre todos os caminhos satisfazendo ¢(T) = ¢(0) e T —
00, sugerindo uma adiabaticidade ciclica fechada. Podemo calcular a acao efetiva I’
utilizando o propagador de Feynman, K (q2,t2;q1,%1), na presenca de um campo externo

(X(t),Y(t), Z(t)) por um caminho similar com as condigdes q(t1) = ¢1 e q(t2) = qo -
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Estamos interessados especificamente na contribuicao da curva, isto é, no trago da parte
diagonal do propagador de Feynman no g-espaco, isto é,
G(T) =eTXY2 = rK

= %, dakK (¢, T 4,0) (3.104)

=S en® < )\, 0]\, T >
onde a,(t) é um fator de fase e a eq.(3.104) é uma fungao de onda do tipo da eq.(3.101),
para uma escolha especial de C,.

Considerando que os parametros externos (X,Y,7) fazem uma excursao adiabdtica

durante o tempo 7' no espago de parametros, isto ¢, (X,Y, Z)(0) = (X,Y, Z)(T), e que

no limite adiabdtico p da equagao eq.(3.99) é desprezivel, temos

— = 1-—=—=(Y/Z 1
p2 WD[ w2D dt( / )] ) (3 05)
onde wp = VXZ —Y?2 com XZ > Y2 Expandindo com relacio a %% Y/Z) << 1,
obtemos
Z Z d Z d (Y
Z 1= (Y/2)| = S 3.106
p? { Qw%dt( / )} “P T o dt (Z) ( )
Portanto, fase total que é dada por
n (T
0u(T) = ~(1+5) / I (3.107)
0
onde f(t) =wp — %% (%), pode ser escrita como
n, " n, (" Z d (Y
2(T) = —(1+ = dt' + (1 + = —— = | d 1
an(T) (+2)/pr +(+2)02wat(Z) (3.108)

n, [* , n Z Y
_ _(1+§>/0 wat+(1+§)]§dR%VR (E)
C

onde R = (X,Y, Z). A primeira integral corresponde a fase dindmica e & segunda a fase

geométrica fase de Berry,

7,(C) = (1+ g)de%vR (;) - (3.109)

Sob o ponto de vista convencional (ndo-adiabético) a fase dindmica obtida sobre um

perfodo é

T
Yo = / <nt) | H | o (t) > dt (3.110)

1 3)/T 101> 4 2Y Re(p.p*) + Z.X. |p|?
0

A ()
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onde B(t') = Im(p(t').p* (') = \/m(t'), A € R.

Portanto, a fase de Berry nao-adiabética ¢ dada por [15]

(€)= an(T) + 74 (3.111)
o N T8 1R 4 2Y Re(pp) + ZX |of
-3, [|m2 3(0) '

Vamos voltar ao inicio desta secao, onde tinhamos o espago-tempo no qual a equagao
de Klein-Gordon tem a forma dada pela eq.(3.91), e que pode ser obtida da Hamiltoniana
dada pela eq.(3.93)

Comparando as equagoes (3.93) e (3.96), verificamos que Y () = 0 e portanto, a
fase geométrica obtida da da eq.(3.109) é nula. Considerando o caso particular em que

m(t) = m(constante) e w = w(t) temos a equagao classica do movimento
G+ w(t)g =0, (3.112)

com equacao auxiliar

1
p+w?(t)p— = =0. (3.113)

PR
Portanto, a fase de Berry adiabdtica é nula e a ndo-adidbatica é [67]

1

e5 = =5+ [ o)) = ) ar (3114)

onde p é a solugao da equacao eq.(3.113).

3.9 Fase de Berry em modelos cosmolégicos

espacialmente homogéneos.

Em recente trabalho Ali Mostafazadeh [19] utilizou o formalismo de duas
componentes(ver se¢do 3.4) na obtencao da fase de Berry, no caso dos modelos
espacialmente homogéneos. Nesse calculo foram usados os grupos de simetrias asociados
ao espago-tempo, segundo a classificagao de Bianchi [68].

Vamos consider um espago-tempo espacialmente homogéneo associado com o grupo

de Lie, G, isto é, M = RxG. O elemento de linha asociado a este espago-tempo é
ds* = guw'w” = —dt* + g;w'e’, (3.115)
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onde w' sao as 1-formas invariantes e g;; = ¢;;(t) s2o as componentes espaciais da métrica.
Para estudar a fase geometrica adiabdtica associada ao espago-tempo considerado, temos

que introduzir os operadores [53] definidos (ver se¢ao 3.4) por

N, — T0

D, = gJFija

Dy =—A,+m?, (3.116)
Ay =g9ViV; = gV X X; = Ty,

onde X, sao os operadores associados com o campo vetorial dual w’ e A; é o Laplaciano
em 3, (hipersuperficie tipo-espago), V; é a derivada covariante correspondente & conexao

Riemanniana, e

1

€ € 1
FZ[B = §gvé(gaa,,6 + 9,35704 - ga,@,& + gEaCJB — geﬁc’é—a —

5% (3.117)

COM oy = X Gap € C’zﬁ sao as constantes de estrutura que satisfazem a relacao

(X, X5] = —Cl, X, (3.118)

-9
com Xo = 5.
Demonstra-se que a contribuicao de D; é nula. Logo a equacao de autovalores

geralizada eq.(3.83) torna-se;
(Dy — E2)®, = —(Ay + E2 —m?)®,, = 0. (3.119)

Vemos assim, que o operador D, é essencialmente o operador A, sobre ¥;,e é auto-adjunto.
Isto garante que as auto-fungoes ®,, sao ortogonais e os autovalores E?2 sao reais.

A anélise da funcao ®,, é equivalente a estudar os autovalores do Laplaciano sobre
a variedade tri-dimensional ;. O problema se resume, entao, a estudar o espectro de
A;. Vamos relembrar algumas propriedades gerais do Laplaciano para uma variedade
Riemanniana 3, finita, compacta ou onde as auto-funcoes tém suporte compacto, isto é,

as auto-fungoes se anulam na fronteira de 3:

(i) O espectro de A é um subconjunto discreto infinito de R¥.

(ii) Os autovalores sdo nao-degenerados ou finitamente degenerado.
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(iii) Existe um conjunto ortonormal de auto-fun¢oes o qual forma uma base para

L£2(X) (fungoes de quadrado integrdvel).

(iv) Se X é compacta, entao o primeiro auto-valor é zero o qual é nao-degenerado, sendo

o auto-espaco associado o conjunto das fungoes constantes.

Se ¥ ¢ ndo compacta mas as auto-funcoes tem suporte compacto({f : ¥ — X; f(x) =
0,Vz € 0¥}), entdo o primeiro auto-valor é positivo.

Notemos que para modelos cosmolégicos espacialmente homogéneos, os campos
vetorias invariantes X, produz em uma representagao dos geradores G, de G, com £?(X)
sendo o espago de representacdo. Assim, podemos ver o Laplaciano A; como (uma
representagao de ) um elemento da cobertura édlgebra de Lie de G. Portanto, A; comuta
com qualquer operador de Casimir C'\ e consequentemente tem o mesmo conjunto de
autovetores de C'.

A seguir, vamos utilizar essas idéis para apresentar trés exemplos correspondentes aos

tipos Bianchi I, VIII e IX.

3.9.1 Bianchi tipo I.

Para este caso temos C’gﬁ =0,Va,8,v=1,2,3 ¢

Campos de Killing Geradores 1-formas

&1 =0 Xi=0 wl = dx!
52 = 82 X2 = 82 w? = dx?
§3 = 03 Xs=0; w?=da?

com dw' = dw? = dw? = 0.

Neste caso G é abeliano, pois da eq.(3.118), temos [X;, X;] = 0, com 7,5 = 1,2, 3.
Logo os X, comutam com o operador de Casimir C, dai as auto-fungoes de A; as P,
sao independentes de t. Portanto as conexoes de Berry eq.(3.34) sdo nulas, logo a fase de

Berry é a trivial, isto é, o sistema nao apresenta a fase de Berry.
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3.9.2 Bianchi tipo VIII.

Para este tipo de espago-tempo temos :
0213 = _C§2 =-1
C§1 - —0123 =1
C§2 = _Cg)l =1

§ = %Q_IQal

§ = 05

&y = %e_mgﬁl - % [6”2 + (xQ)Qe_“’g} Oy — 22e ™ 0y
X, = % [1+ (z")?] o+ % [1—22'2%] 0, — 205

Xy = —2'01+ 20, + 05

Xy = g [1- @] 0+ 20 ~1] 0+ 20,

w' = da' 4 [1+ (¢")?] dz® + [z' — 2® — (2')%2?] do?
w? = 2z'd2® 4 (1 — 22'2?)da?

w' = da'+ [(2")? — 1] d2? + [z + 27 — (21)*2%)da?

e dw! = W Aw?, dw? = w3 Aw!, dw? = wr A w?

Notemos que neste caso, G, = SO(2,1) ~ SU(1,1)/Z,, SU(1,1) é o grupo de

cobertura de SO(2,1) que ¢ topologicamente isomorfo a pseudo-esfera A%, que nao ¢

compacta e portanto nao admite uma cobertura universal. Lembremos que a pseudo-

esfera é a superficie

A? = {(z1, 29, 23) ; —(2?)* + (2%)* + (2?)® = 1,com 2!, 27, 2° € R}

que tem de curvatura Gaussiana constante e negativa k = —1.

Fazendo a mudanca de varidvel (x!, 2% %) — (1,0, ¢) onde

x! = cosh

2?2 = senhf cos ¢
2 = senhfseng
r =1
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com § € [0, 7] e ¢ € [0, 27], temos a métrica associada a variedade cujo elemento de linha

¢ dado por
dr?

ds® =
§ 1—1r2

+72(d6? + sen®0d¢?)?. (3.121)

A pseudo-esfera A? é analiticamente equivalente aos trés espacos Riemanniano:
(i) O disco de Poincaré: D = {z =a+ib=re?;r <1,¢ € [0, 27]}
(ii) O plano superior de Poincaré : U = {z = a +ib;a,b € R ;b > 0}

(iii) O hiperboldide de duas folhas que uma superficie aberta e plana. Portanto a fase

de Berry ¢ trivial.

Um exemplo de simetria SU(1,1) é o oscilador paramétrico que estudamos
anteriormente. Com o objetivo de exemplificar o método apresentado, vamos apresentar
o mesmo resultado sob este ponto de vista. Sabemos que a Hamiltoniana para o sistema
é

H(t) = [X(t)q2 +Y(t)(qgp+pq) + Z(t)pﬂ (3.122)

DN | —

Introduzindo a seguinte representacao para os geradores da algebra de Lie de SU(1,1),

1

1 1
=@ =) Jo = 7(pa+ap) e Js = 2@ +p°), (3.123)

com [J;, J;] = efij gi; = diag(—1,—1,1), sendo €, o tensor antisimétrico usual (¢;;; = 1).

O valor do operador de Casimir
Cn=J"Jj=—J; —J3 + J2, (3.124)

na representacao acima mencionada é

Ch = =2 — (14 1), (3.125)
16
com solugoes | = —3/4 e | = —1/4. Da teoria geral [69] segue que o espectro de J3 para

uma representacao limitada inferiormente temos os autovalores

km=—l+m,meN, (3.126)
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onde [ = —1/4,—3/4. Isto pode ser expresso na forma
1
kn=5(n+1/2),n€eN, (3.127)
que corresponde aos autovalores da Hamiltoniana eq.(3.96) obtidos em [70] e dados por
1
Ey=3(n+1/2),neN. (3.128)

O que mostra a auséncia da fase geometrica e a presenca da fase dinamica no sistema,

como de se esperar.

3.9.3 Bianchi tipo IX.

Neste caso G = SO(3) ~ S ~ SU(2)/Zy , onde SU(2) é o grupo de cobertura,
que é compacto, e portanto é uma cobertura universal. Sejam .Ji, Jo e J3 os geradores

imfinitessimais de de SO(3) com
[Ji, J;) = i€l (3.129)
onde €;;; ¢ o tensor de Levi-Civita. O operador de Casimir é

=Y 02 (3.130)

e os vetores de Killing sao dados por £, = iJa.

Para o cédlculo de fase de Berry para este caso faz-se necessario um estudo mais
aprofundado dos sistemas que apresentam tal simetria, para tanto veja os trabalhos Hu
[71] onde ele encontra fase de Berry nao trivial, e Ali [19].onde sao apresentadas situacoes
tendo e nao tendo fase de Berry trivial.

Neste capitulo, além de resaltarmos a importancia da fase de Berry em diversos
ramos da fisica exibimos a sua deduc@o para um sistema que evolui adiabaticamente
com o tempo, caracterizando-a como um objeto puramente geométrico, pois, depende
fundamentalmente das curvas fechadas nos espacos-tempos considerados. Além do mais,
apresentamos um resumo dos estudos que vem sendo feitos sobre fase geométrica, no

sentido de generalizacbes para campos de gauge nao-Abelianos e para aproximacao
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adiabdtica relativistica. Calculamos a fase de Berry para uma particula escalar no espago-
tempo de uma corda césmica quiral que é uma generaliza¢ao do trabalho de Corichi e Pierri
e calculamos, também, a fase de Berry para os espagos-tempos das multicordas quirais,
do cilindro com rotacao e em um universo isétropico . Finalmente, apresentamos a fase

geométrica em alguns modelos cosmolégicos espacialmente homogéneos.
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Capitulo 4

Caracterizacao (Global do
Espaco-Tempo, Efeito Gravitacional
Aharonov-Bohm e Fase de Berry na

Teoria de Kaluza-Klein.

4.1 Introducao.

Umas das linhas de pesquisa da fisica tedrica moderna consiste na formulagao de
uma teoria que fornega a unificacao da gravitagdo com as outras interacées da natureza.
Uma das primeiras teorias com o objetivo de estabelecer a unificacao da gravitacao e
do eletromagnetismo foi sugerida por Kaluza [72] que postulou a existéncia de uma
quinta dimensao para o espago-tempo, que possui a natureza das demais coordenadas
espaciais. Posteriormente Klein [73] estendeu as idéias de Kaluza, justificando a hipétese
da independéncia da métrica com respeito & dimensao suplementar e o fato de que essa
dimensao nao é observavel. Para isto, ele postulou que o espacgo-tempo tem a topologia
do produto M* x S!, sendo M* o espaco-tempo 4-dimensional e S!' um circulo de
raio a parametrizado pela quinta coordenada X : 0 < X < L. Ele supos que existe
uma isometria definida por um vetor de Killing do tipo espaco o que significa que o

espaco-tempo é homogéneo na quinta direcao, e supos também que o raio a é pequeno
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e que a dimensao estra nao é observada. Também foi mostrado dentro do contexto
dessas extensao da teoria da Relatividade Geral de Einstein como ambas, gravitacao e
eltromagnetismo podem ser tratados de forma similar - no sentido que ambos sao descritas
como partes de uma métrica em cinco-dimensoes. Nessa teoria, as transformacoes de gauge
eletromagnéticas sao interpretadas como transformacoes de coordenadas na dimensao
extra, a qual preserva a forma da métrica de Kaluza-Klein.

Mais recentemente, foi demonstrado por Weinberg [74] e Salam [75], como as interagoes

fracas e eletromagnéticas podem ser unificadas em uma teoria de gauge, nao-abeliana com
grupo de gauge SU(2) x U(1). E natural pensar que também ¢é possivel incluir a interacao
forte numa grande teoria de unificagdo (GUT) no contexto de uma teoria de gauge com
grupo de SU(5), como no modelo de Georgi e Glashow [76].
Uma generalizacao natural da idéia de Kaluza-Klein, a qual incorpora os campos de
gauge nao-abelianos, é considerar a teoria das altas dimensoes (d > 5), na qual os campos
de gauge farao parte da métrica, do mesmo modo como o campos eletromagnéticos na
teoria de Kaluza-Klein. O interese em teorias com altas dimensoes estd associado ao
advento da supergravidade. Neste contexto, idéias tais como redugao da dimensao[77] e
compactificacao [78] do espago possuem um papel relevente.

A idéia original da teoria de Kaluza [72] é que o espago-tempo é realmente penta-
dimensional. Ele postulou que o elemento de linha é dado por

ds? = gap(x,y)dxida? (1)

= g (z)dztdz” 4+ (dX + kA, (z)dxH)?

onde X é a coordenada espacial adicional, com 0 < X < L, variando sobre um intervalo
finito e sendo periédico. O tensor gap € o tensor métrico do espago em 5-dimensoes,
que consideramos com a assinatura (—1,1,1,1,1) e com coordenadas (t,z!, 2% z3, X),
A, B=0,1,2,3,5e u,v =0,1,2,3. Daf a variedade penta-dimensional, é localmente, da
forma My x S! onde M, é a variedade 4-dimensional corespondente ao espaco-tempo e
9w € a métrica de My, que nao tem dependéncia com a varidvel X.
O quadrivetor A,(x) corresponde ao campo eletromagnético ¢ independente de X. A
constante k possui unidade de (massa)™' ou comprimento, o que torna o termo kA, (x)

adimensional. o que facilitar as interpretacoes subsequentes de A, como campo de gauge
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eletromagnetico em 4-dimensoes o qual tem unidade de massa.

Vamos agora estudar as transformagoes de coordenadas que preservam a forma do
elemento de linha de Kaluza-Klein. Primeiramente, por causa do comportamento do
quadrivetor o A, , ds? serd invariante por uma mudanga de coordenadas x# — /(")

em M, somente. Vamos condiderar a mudanca na quinta coordenada da forma

X — X' '=F(X,2"). (4.2)
Entao,
oF oF
X —dX' = —dX + —da".
dy d 8Xd + 8x#d9§

variAnc . s OF _ . s
A invariancia de ds? impoe a restrincao gﬁ? 1, pois de outra forma o ltimo termo de

eq.(4.1) necessariamente mudaria. Com esta restrin¢ao a eq.(4.2), torna-se
X' =X+ f(a). (4.3)

Segue entao que a mudanga A, () — A}, (7) pela transformagao dada por (4.3),resultard

_,0f(x
dX + kA, (z)da" — dX +k | A (2) + k 1% dat. (4.4)
Para ds® ser invariante exigimos que A, (z) — A/ (x)—k™! 97) | que é uma transformacao

Oxk

de gauge para campos vetoriais. Logo, na teoria de Kaluza-Klein, a transformagoes da
coordenada espacial extra é interpretada como uma transformacao de gauge.
Da eq.(4.1), as componentes da métrica podem ser lidas na forma matricial e podemos

escrever ¢;p Como
9w — K*ALA, —EkA,
—kA, -1

gap = (4.5)

As componentes §"” da matriz inversa sao facilmente calculadas via §* gz, = d%, e temos

o resultado

: g kA
i = : (4.6)
—kAr —1 4+ Kk*AMNA,

As componentes da métrica nas eqs.(4.5) e (4.6) foram tomadas em relagdo a uma base

o 0

, na qual {dz,dX} sao as 1-formas. A base dual {57, %

} forma uma base do espago

tangente. No entanto, existe uma outra escolha que torna mais conveniente os cdlculos,
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pois torna a métrica diagonal. Esta base é chamada de base de levantamento horizontal

e é obtida considerando-se

0" = da"
~5 (4.7)
0 =dX+ kA, (x)dz*
como bases de 1-forma. Daf
) G O
gan=| " (4.8)
0 1
A de vetores e; os quais sao duais & 0" sdo dadas por
. 0 0
G = o kAE) 55 (4.9)
. 0
s = —.
° 0X
Logo, obtém-se os seguintes resultados
A 0
e 6] = _kFW(x)a_X’ (4.10)
[élm é5] = 0,
onde
F _ 9 A 0 A 4.11
@) = 5 A (@) = 5= Au(0). (1.11)
Agora é possivel encontrar o tensor de curvatura.
Os coeficientes de conexoes nao-nulos sado dados por [79)
fuuA - % [a)\g/w + 3u9/u - 8ug)\u] - FVM)\
fqu = fu51/ = %kFMV (412>
U5 = —1kF.,

onde I',,\ sao as componentes da conexao na variedade 4-dimensional. O escalar de
curvatura é

k= RAL = RAL, +2R". (4.13)
As componentes do tensor de curvatura podem ser obtidas usando-se as eqs.(4.12),

resultando em

A 1 1 1
R)(\J'ul/ = RAO’;,LV + Zk2FiF0H« - ij2Fi>Fa'V - §k2F2\-ij, (414)
. 1
A _ 2 o\ T
R5,u5 - Zk FTFW
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onde R’ ,, ¢ o tensor de curvatura construido com a métrica de M, e suas derivadas. A

contracao dos indices em (4.14) fornecem os seguintes resultados

3

R = R—ZkQFWFW, (4.15)
A 1
Ry = K" F.

onde R = R/, . Substituindo esses resultados na eq.(4.13) obtemos o escalar de curvatura
» 1 2 pv
R:R_Zk FME,,. (4.16)

Como R é um escalar, ele é independente da escolha da base, e a eq.(4.16) é um resultado
geral.
Na versao original da teoria de Kaluza-Klein, a acao bédsica em cinco-dimensoes para

a acao gravitacional de Einstein-Hilbert é:

Ion = (167L)"! / /Gl — 2A], (4.17)

onde § = det(g;s) = —det(guw), € A é uma constante cosmoldgica. Quando a forma da
métrica de Kaluza-Klein é usada, o integrando da eq.(4.17), ndo tem dependéncia em X,
logo a equacao pode ser posta na forma

1

n K F™F,,). (4.18)

Ipg = (167L)7! / d*z\/g[R — 2A —

Temos, entao, a acao de Einstein-Maxwell com a identificacao k = 16m.

Em virtude do recente interesse no formalismo de Kaluza-Klein, na pespectiva de
se construir uma teoria que unifica as interacoes fundamentais, nos parece interessante
calcular os fatores de fase para algumas configuracoes do campo gravitacional, e
especialmente, estudar novos aspectos do efeito Aharonov-Bohm eletromagnético e
gravitacional e da caracterizagao global do espaco-tempo envolvendo certas configuragoes.
Para atingir esses objetivos vamos usar os fatores de fase no espaco-tempo de cinco
dimensoes, e estudar os efeitos eletromagnéticos e gravitacionais de uma maneira
unificada.

Vamos agora apresentar alguns resultados sobre fatores de fase, na teoria de Kaluza-

Klein, nos espagos-tempo de um solenéide, do monopolo global, e de uma corda quiral.
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Usaremos as transformacoes de holonomia no espago-tempo da multicorda quiral para
estudar os aspectos globais deste espaco-tempo. Também calcularemos a fase de Berry
associada a uma particula escalar quantica nos espagos-tempos da corda magnética quiral

e de miltiplas cordas magnéticas quirais.

4.2 Holonomias associadas ao solendide em Kaluza-

Klein.

A métrica em 5-dimensoes correspondente a solugao estatica das equagoes de Kaluza-

Klein do solenéide com simetria cilindrica é dada por [80]

7a2 d 2
_rdy
1+ 47 Byr?

+/47 Byr? ?
7 Bor®de x| .
1+ 47 Bor?

ds* = —dt* +dr* +dz* + (4.19)

(1 + 47TG()B()T'2)

onde By ¢ a intensidade do campo magnético no eixo do solendide. Notemos que desse
elemento de linha podemos, facilmente, escrever a métrica quadri-dimensional, o campo

escalar, e os potenciais eletromagnéticos como sendo

7"2

vy = diag(—1,1, —————.1), 4.20
gM Zag( 1 +47TB0T2 ) ( )
®*> = 1+4rwByr?,
:tlB[)’f‘2
A, = (0,—2——0,0).
a ( "1+ 47Byr?’ )

Note que para 47 Byr? << 1, esses potenciais sdo precisamente os potenciais obtidos na
eletrodindmica cléssica para um solenéide cilindrico no gauge de Lorentz.

Considerando o limite r — 0, tomemos a = v/47 By, assim, a eq.(4.19) torna-se

ds* = —dt* + dr* + dz* + % + (14 a®r?) l% - dX} 2 : (4.21)
Tomando as 1-formas
WO =dt,
wt =dr,
w? =rdo(l + a?r?)71/2, (4.22)
WP o=dz,

W’ = (1+ )2 [ar?(1 + o?r?)~ Yo + dX],
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obtemos os coeficientes nao-nulos da conexoes pentradicas

[2da" = (14a?7?)"%2d¢ = —T',dat, (4.23)
201 4+ a’r3 (14 a?r?)1/2
4 _ 2 _ 1
Fﬂldl'u = md¢ — deX = —Pu5dl'u.

Tomando o contorno C' como sendo a curva onde dr = dt = dz = 0, daf temos o tinico

coeficiente pentrdadico nao-nulo,

T,da" = Tydo. (4.24)
Da eq.(4.23) obtemos que
0 0 0 0 0
0 0 A0 B
Tg=]10 -4 00 0 [, (4.25)
0 0 0 0 0
0 -B 0 0 0

onde A= —(1+a?r?) ™32 e B= —2ar + a’r3(1 + o?r?)73/2.
Como I'y tem a propriedade (T'y)* = —(A%4B*)T'y, definamos A, por A, = (A+B)"/2.

Assim, a holonomia para a curva considerada é

2

UC) = exp /F¢d¢ = exp(2nTy) (4.26)
0
_ . Le Loyory
= [+ —sen(2mAy) + (=) [1 — cos(2mA,)],
Ay Ay
que é nao-trivial.

Notemos que a contribuicao da quinta componente é percebida pela varidvel de contorno,

apesar da holonomia ter a mesma forma que a quadri-dimensional.

4.3 Fatores de fase no espaco-tempo do monopolo

global na teoria de Kaluza-Klein

O elemento de linha para o espago-tempo associado a um monopolo global na teoria

de Kaluza-Klein foi obtido por Sen e Baneejee [81], e é dado por
ds? = —A(R)d7? + B(R)dR* + R(R)(d6* + sen*0d¢?) + €(R)dy, (4.27)
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onde A(R) = [1—8mp®—2M/R]", B(R) = [1—8m?—2M/R """ RR) =
R2[1 — 8?2 —2M/R]" " " e ¢(R) = [1 — 8712 — 2M/R]’e 0s pardmetros a e b obedecem
a seguinte relacao de consisténcia a? + b* +ab = 1.

Para o caso particular de a =1 e b = 0, a equagao (4.27) torna-se
ds? = —Adr* + AT'dR? + R*(d6? + sen®0d¢?) + di?, (4.28)

onde A = [1—8mn?>—2M/R], e M ¢ o parametro de massa e n ¢ um parametro
relacionado com a escala na qual a simetria é quebrada.

Fazendo a seguinte mudanca de coordenadas
T — t=pr,
R — r=p/"'R,
M — m=p873M,
Y o= 9,
onde 3? = 1 — 871, o elemento de linha dado pela equacio (4.28), torna-se

ds®* = —(1 —2m/r)dt* + (1 — 2m/r)tdr? + B*r*(d6® + sen®0d¢®) + dip®. (4.29)

Escolhendo as seguintes péntadas

W = AYV2qt,

wt = AY2dr,

w? = Brdd, (4.30)
w? = Brsendde,

w’ = dy,

onde A = (1—2m/r).
Usando a equagao de estrutura de Cartan dw® + w? A wi = 0( com os indices pentddricos

iguais a 0, 1,2, 3,5) encontramos as seguintes conexoes, nao nulas,

Fgl dz"

—m/rdt = —Ioda (4.31)
[2dat = BAYdY = —Tpyda

ledm“ = BAY?2senfdg = —F}lgdx“

FiQdm“ = [cosldp = —Fi3dx“
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Vamos inicialmente considerar circulos centrados na origem com valores fixos de 7,6 e t.

Neste caso, da eq.(4.31) temos

T, da" = Tydo,
onde
0 0 0 0 0
0 0 0 BAY2send 0
'y =10 0 0 Bcos® 0 (4.32)
0 —BAY2senf —fcosd 0 0
0 0 0 0 0

iﬂA1/2(r)sen9J13 — 13 cos 0.Jo3,

sendo Ji3 e Joz os geradores de rotagao em cinco dimensoes, em torno dos eixos y e z,
respectivamente.

Como I';, ¢ independente de ¢, entao o fator de fase é

U(C) = Pexp [% Fudx“} = exp [% Fd)dqb} — elo(@2=01) (4.33)

Em particular, para § = 7/2, os elementos ndo-nulos da matriz dada pela eq.(4.32) sao

BAY2senf = B(1 —2m/r)'/2, (4.34)
Becost = 0.
Notemos que I'y satisfaz a relagao (T';)® = —BPA= —p*(1 — 2m/r)[y = — ATy,

(Ay = B(1 —2m/r)'/?), o que acarreta que o fator de fase para este caso é

r

UC) = 1+ Zesendlo = o)+ (32) -cosdofon =], (439

Tomando o traco para um circulo completo, temos que o loop de Wilson gravitacional é

W(C) = Tr(U(C) = 205 + cos2rAy). (4.36)

Vamos calcular o fator de fase para a curva r(s), 6(s) contida no plano meridiano.

Necessitamos calcular, entao,

Tyds = (Dgf + T,7)ds (4.37)
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onde, da eq.(4.31) temos

0 0 0 0 0
0 0 BAY2(r) 0 0
Lo=1 0 —BAY2(r) 0 00 (4.38)
0 0 0 0 0
0 0 0 0 0

Mas,

Pexp l / Psds} — exp l / Fsds} | (4.39)

pois as matrizes comutam para diferentes valores de s. A propriedade dada pela eq.(4.39)
¢ valida para qualquer curva contida em um plano arbitdrio contendo a origem. Em

particular, para a curva meridiana, r = 0, # = 1, obtemos

0 0 0 00
0 0 BAYV2(r) 0 0

[y=Tg=| 0 —BAV2(r) 0 0 0 | =ibAY2(r)Jiz, (4.40)
0 0 0 00
0 0 0 00

onde Ji5 é o gerador de rotagoes em torno do eixo-z, na representacao pentadimensional.

Portanto, o fator sera dado por

r o>
Utan)(C) = T + =Lsen(2nAg) + [ =2 ) [1 — cos(2mAy)] (4.41)
, Ay Af
onde Ay = Ay. E o loop de Wilson ¢
W(C) = Tr(U(C)) = 2(% 4 cos2mAy). (4.42)

Para um segmento radial obtemos a partir da eq.(4.31), com 6 =0er =1, queo fator
de fase é trivial ou seja U = I.

Para uma translacao no tempo, temos que

T, dz" = Tydt,
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com I'; sendo dada por

0 m/r> 000
m/r> 0 0 0 0
L= o 0 o000 :—i%JM, (4.43)
0 0 000
0 0 000

onde Jy4 é o gerador de boost na dire¢ao z. Portanto o fator de fase é
Ultat)(C) = Tysenhm/r*(ty — t1)] + T'f cosh[m/r?(t2 — t1)]. (4.44)

Agora, vamos definir a variacao angular e estabelecer sua ligagdo com a transformagao
de holonomia. A variacao angular é um nimero e a transformagao de holonomia é
um conjunto de aplicagoes lineares(uma para cada ponto e para cada curva fechada).
Devemos obter, entao, das aplicacoes lineares um niimero, a variacao angular no transporte
paralelo.Para obter uma dada transformacao linear, vamos considerar um ponto sobre a
curva C. Entao, U3 definido por (4.37) ¢ a transformagao de holonomia associada com o

ponto p € C, cuja relagao com a variagao angular X é dada por
U4 = cos Xy. (4.45)
Se considerarmos um circulo equatorial e o indice A=1, entao eq.( 4.45) nos da
cos Xy = cos2mAy, |Xi| =|2mAs + 2mn|.

Quando m — 0 temos que X; — 0, logo, n = —1, dai

| X1 | =27 | Ay — B] =215 |A—1]. (4.46)
Como esta métrica ¢ tipo Schwarzschild [82]) o dngulo correspondente é

|X5| =2 |Ag — B| = 273 |A-1| (4.47)

Notemos que quando 7 = 2m(raio de Schwarzschild) temos A, = 0 e X} = 273. Notemos
também que para A =4, cosXy =1 — Ay = 0, logo a coordenada ) nao influéncia no
transporte paralelo do vetor V4, ficando a influéncia por conta das outras coordenadas

espaciais.
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Com o intuito de estabelecer a relagoes de Mandelstam vamos utilizar a segunda
equacao de estrutura de Cartan; R = dw® 4+ w? A wj e as conexoes de 1-forma dada pela
eq.(4.31) para estabelecer as componentes do tensor de Ricci e em seguida determinamos

que as expressoes para o tensor de curvatura, que sao dadas na forma matricial por

0 0100
0 00 0O
Riyp = Bmsenfr>(1—=2m/r)™* | —1 0 0 0 0 |, (4.48)
0 0000
0 00 0O
e
0 0 00O
0 0 100
Risp =28mr~senf | 0 =1 0 0 0 (4.49)
0 0 00O
0 0 00O

(A, B sao indices pentréddicos).
Verificamos, entao que as relagoes de Mandelstam para um circulo equatorial (§ = /2 e

A¢ = 27) sao satisfeitas e sdo dadas por

27

aW A A m

W = /d¢T’I“(R13U) = 27TT’I“(R13U) = —271'5(1 — 2m/r)1/2r2 S€7’L(27TA¢), (450)
0

6W 2m

W = /d¢TT(ﬁ23U) = 27TTT(§23U) =0.
0

onde W (C) é dado pela equagio eq.(4.42).
Usando estes resultados para o fator de fase podemos concluir que novamente a

expressao geral para U(C') é

U(C) = Pexp (—% / FéB(x)JAdeC> : (4.51)

como elemento do grupo SO(4,1).
Estes resultados podem ser particularizados para o monopolo global [83] retomamos

a hipersuperficie ) =constante. Neste caso, os fatoes de fase sao elementos do grupo de

Lorentz SO(3,1).
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4.4 Fatores de fase no espaco-tempo de uma corda
quiral magnética.

O elemento de linha correspondente a corda césmica quiral magnetica na teoria de

Kaluza-Klein ¢ dada por [84]

ds* = — (dt + 4Jtdg25)2 + dr® + o?r¥de® + (dz + 4J7dp)* + (dX + %dgb)?. (4.52)
Os parametros J¢, J? e ® sao tratados como momento, torcao e fluxo através da corda,
respectivamente. Para & = 0 ela representa o espaco-tempo gerado pela corda césmica
quiral na teoria de Kaluza-Klein.

Vamos considerar o caso no qual J! = J?* = ® = (. Isto corresponde ao caso da corda
cosmica [85]. Sobre este ponto de vista vamos calcular a transformacao de holonomia
para uma curva qualquer no plano-zy a partir dos resultados [46] correspondentes ao caso
da corda césmica quiral em 4-dimensoes. Como jd mostramos, quando transportamos um
vetor paralelamente em torno de uma corda césmica, ao longo de uma curva qualquer no

plano-zy, iniciando e terminando na origem, o vetor adquire uma fase que é dada por

1 0 0 00
o 0 cos8mp sen8mp 0 0
U(C) = exp /P¢>d¢ =e ¥ = | 0 sen8tu cos8tu 0 0 |, (4.53)
‘ 0 0 0 10
0 0 0 01

onde J5 é o gerador de rotagoes na (representagdo em 5-dimensées) em torno do eixo-z.
Entao, quando circulamos uma corda césmica, partimos de um ponto (¢, x) para um ponto

(t',x'), os vetores coluna (t,x) e (t',x’) relacionam-se pela equagao

v 1 0 0 00 t

x 0 cos8ru sen8rp 0 0 x

y | =] 0 —sen8ru cos8ru 0 0 y (4.54)
Z 0 0 0 10 z

X' 0 0 0 01 X
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Como o espaco-tempo fora da corda césmica é localmente plano, podemo descrever a
solugao analitica em termos da métrica do espaco-tempo de Minkowski, mas conectados
por algumas condigbes as quais sao dadas pela eq.(4.54).

O elemento de linha correspondente a corda césmica quiral magnética pode ser posta

na forma de Minkowski
ds®* = —dT? + dR* + Rd0? + dZ* + dX?, (4.55)

através da mudanca de coordenadas

t= T—J¢

o= b/a

r= R (4.56)
2= Z—=J

r= X—-2

—24.
Como no caso da corda césmica, o espago-tempo exterior a corda quiral magnética é
localmente plano, e podemos descrevé-lo em termos do espacgo-tempo munido com a
métrica de Minkowski, agora conectado por condigoes as quais sao as mesma do caso
da corda césmica, com a condicao extra para as coordenadas t,z e X. Essas condigoes
sdo expressas pela relagdo entre os pontos (t,x) e (#',x’) ao longo das fronteiras dadas
pela eq.(4.55), levando em conta as condigoes adicionais dadas pelas equagoes de eq.(4.56).

As transformacoes dadas pelas eqs.(4.55) e (4.56) podem ser postas na forma de
multiplicagdo de matrizes homogéneas da seguinte maneira: seja M% uma matriz hexa
dimensional, com A e B tomando os valores A, B = 0,1,2,3,5,6. Tomemos M} como
sendo a matriz de rotagdo dada pela eq.(4.53), M{ = 8x.J*, M3 = 8nJ!, My = &, M =

Mg = ME=0e M§ =1, temos entao, que

t 1 0 0 0 0 8nJ t
x 0 cos8ru sen8wtu 0 0 0O x
Yy _ 0 —sen8mu cos8ru 0 0 0 Yy (4.57)
2 0 0 0 1 0 8nJ? z
X' 0 0 0 01 & X
1 0 0 0 00 1 1
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Considerando as matrizes

00 0O0O0 < 000O0O0O O
000O0O0O O 000O0O0O© O
000O0O0O 000O0O0O O
MO = s M3 = (§
000O0O0O 00000 <
00 0O0O0O O 000O0O0O O
000O0O0O© O 000O0O0O O
00 0O0O0O O
00 0O0O0O O
000O0O0O O
My = . Podemos escrever a equacao (4.57) na forma
000O0O0O
00000 <
t t
x x
Y - o . . Y
= exp [—i87J* Ms] exp [—i8mJ" M| exp [—i®Ms] exp [—8imm.Jya]
2! z
X’ X
1 1

(4.58)
No presente caso, existe um sistema de coordenadas localmente plano e portanto podemos
assumir a interpretagao usual para o tempo comestrutura geométrica helicoidal. Note que
a generalizagao desta estrutura para o espaco-tempo com quatro ou mais dimensoes, cinco,
neste caso, nao pode ser simplesmente admitida pois, tal estrutura depende da existéncia
de um sistema de coordenadas localmente plano.
Da equagao (4.58) podemos obter a transformacao de holonomia para a corda césmica
(Jt = J* = ® =0), para a corda girante (J* = ® = 0) e para a corda de fluxo magnético
(Jt = J* = 0). Neste caso temos o seguinte elemento de linha

0% = —di? + 42 1 dr? 4 0 4 (AX + o). (4.59)
T

Usando a decomposicao usual de Kaluza-Klein para a métrica em 5-dimensoes, podemos
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mostrar que a métrica eq.(4.51) representa a corda de fluxo magnético com campo
longitudinal

B* = k106 (r) (4.60)

onde k ¢ a constante de Kaluza. O vetor potencial A, = k‘1% ¢é gauge puro, exceto sobre
eixo-z.

Notemos que o tltimo fator que aparece na eq.(4.58) é préprio da presenga adicional
da quinta dimensao e esta associacao ao efeito Aharonov-Bohm eletromagnético. Os
outros trés fatores estao associados com o espago-tempo quadri-dimensional e leva em
conta os efeitos gravitacionais usuais. Portanto, ainda da eq.(4.58) podemos concluir
que quando transportamos um vetor ao longo de uma curva que circunda a corda, o vetor
transportado adquire um fator de fase nao-nulo. Esta fase nao-trivial é uma expressao dos
efeitos Aharonov-Bohm eletromagnético e gravitacional, combinados que aparecem como
consequéncia da unificacao de Kaluza-Klein. Este efeito deve ser entendido em termos dos

aspectos globais do espaco-tempo em combinagao e possui natureza puramente cléssica.

4.5 Fatores de fase no espaco-tempo de miiltiplas

cordas quirais magnéticas.

Primeiramente, vamos usar a solu¢ao de Azreg-Ainou e Clément [84] para uma corda
quiral em teoria de Kaluza-Klein para obtermos a generalizacao para o caso de N cordas
quirais paralelas em teoria de Kaluza-Klein. Se considerarmos o sistema Cartesiano de
coordenadas x = rcos¢, y = rseng, podemos escrever o elemento de linha dado pela

eq.(4.52) como

gt xdy — ydx

ds* = —(dt+4 - 2+ e (da? + dy?) + (4.61)

xdy — ydx Exdy — ydx)2

(d2 = 4T —— )? + (dX +

2 72

com V =2ulnr.
A generalizacao da corda quiral para a multicorda quiral foi obtida [86] pela introdugao

dos parametros y,, J!, J7 e ®; comi =1,2,..., N definido em cada corda quiral localizada

17 %
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nos pontos r = r; do plano z = 0. O métrica resultante tem a forma da eq.(4.61) com as

seguintes mudancas:

N
xdy — ydx (x —xi)dy — (y — yi)dz
72 ; ! |I‘ — I‘il2 ( )
N
xdy — ydx (x —xi)dy — (y — yi)dz
N
7"2 ; % |r . ri|2
® xdy — ydx i ®; (v — a;)dy — (y — y;)dw
Binliucder AR Aol —t
2 12 c 2 -1’
N
V = 2mlnr — Zmi In [7’2 — 2rr;cos(¢ — ¢;) + rﬂ .
=0

Portanto, o elemento de linha para o espaco-tempo gerado pelas N cordas quirais na

teoria de Kaluza-Klein pode ser escrita como
N 2
dt + Z Ai(Wlhdy — Widz)| + eV (dz* + dy?) + (4.63)

i=1

ds? = —

2

N
+|dX +) Cy(Wldy — Wida)

=1

N
dz+ Y Bi(W}'dy — W}dzx)

=1

onde A; = 4J!, B; = 4J7 e C; = 2i. Com J! , J? e ®; correspondendo ao momento

angular, torsao e fluxo da i-ésima corda quiral, respectivamente, sendo W} e W2 sdo

dados por

VVz‘lz x_xiw I/Vz?: y_yiQ' (4-64)
Ir — 1y |r — 1y

Vamos, agora, considerar o caso em que ®; = 0. Sabemos que isto corresponde a
multiplas cordas césmicas quirais. Como é conhecido do capitulo 3, se¢ao 5, um vetor
transportado paralelamente ao longo de uma curva qualquer no plano-xy, que inicia e

termina na origem,em torno da multicorda césmica quiral, e adquire uma fase dada por

1 0 0 0 8tJt
o 0 cos8min  sen8mp 0 0
U(C) = exp /F¢>d</5 =1 0 —sen8wp cos8mpp 0 0 (4.65)
0 0 0 0 1 8rJ°
0 0 0 0 1
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Como o espago-tempo fora da multicorda césmica quiral é localmente plano, podemos
descrever a solugao analitica puramente em termos do espaco-tempo com a métrica de

Minkowski, mas conectada pelas seguintes condigoes

t 1 0 0 0 0 t
x’ 0 cos8mji sen8wjip 0 0 x
y | =1 0 —sen8rii cos8rii 0 O y (4.66)
2! 0 0 0 10 z
X' 0 0 0 01 X

que relacionam os pontos (¢,x) e (t',x’), ao longo das bordas. Como no caso da miltipla
corda, o espaco-tempo da multicorda quiral magnética é também plano, e podemos usar
as mesma condigoes com excecao as concernentes as coordenadas ¢, z e X. Essas condigoes

sdo expressas relacionando-se os pontos (¢,x) e (¢',x") como segue:

= t—8nJt,

¥’ = cos(8ni)x + sen(8mii)y,

y' = —sen(8mji)x + cos(8mf)y, (4.67)
Y= z—8r1J7,
X' = X-0,

onde consideramos como caminhos circulos no plano-zy.

A transformacdo dada pela equagao (4.67) pode ser posta na forma de produtos
de matrizes homogéneas como foi feito na se¢ao anterior. Tomemos M} como sendo
a matriz de rotacio U(C) = exp(—8mjiJip) e M = 8rJ!, M = 8r.J* M{ = &,
MY = Mi = M$ =0e M§ =1, temos entao, que

t 1 0 0 00 8t t
x 0 cos8mjp sen8wv 0 0 0 x
Yy _ 0 —sen8nfi cos8xj 0 0 O~ Y (4.68)
2 0 0 0 1 0 8nJ? z
X' 0 0 o 01 & X
1 0 0 0 0 0 1 1
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que pode ser posta na forma;

¢ t
x T
Y . . . Y
— exp [istZMg} exp [isttMo} exp [—z‘@M4] exp [~8inV 1] (4.69)
2 z
X’ X
1 1
onde
00000 i 000000
000000 000000
000000 000000
MO = s Mg = (§]
000000 00000 i
000000 000000
000000 000000
000000
000000
000000
My =
000000
00000 i
000000

A equagao eq.(4.69) é a expess@o exata para a holonomia, para circulos no espago-
tempo da multicorda quiral magnética. Somente as cordas envolvidas pela curva contribui
para o fator de fasse.

A existéncia de coordenadas localmente planas neste espaco-tempo nos permite
considerar a eq.(4.69) como a matriz de transporte paralelo. Entao, podemos dizer que
quando transportamos um vetor ao longo de um circulo neste espaco-tempo ele adquire
uma fase que depende de y;, J! , J7 e ®;. Este efeito estd associado a topologia nao-trivial
do espago-tempo em questao, e representa uma combinagao dos efeitos Aharonov-Bohm

eletromagnético e gravitacional, no contexto da teoria unificada de Kaluza-Klein.
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4.6 Caracterizacao global da multicorda quiral
magnética.

Como mais uma aplicacao da transformacao de holonomia vamos estudar, do ponto de
vista global, o espago-tempo de uma configuracao de N cordas césmicas quirais magnéticas
localizadas nos pontos a;, j = 1,2, ..., N. Para tanto vamos usar o resultado que diz que
somente a corda envolvida pela curva contribui para o fator de fase adquirido por um
vetor quando transportado paralelamente no espaco-tempo de mmiltiplas cordas quirais
magnéticas. Vamos proceder de maneira andloga como foi feito no cépitulo 2.

Se transportamos um vetor x paralelemente em torno de um circulo que circunda uma

corda quiral temos o seguinte vetor resultante
xV = Uyx (4.70)
onde U; ¢é obtido de [86]
Uy = exp(—8imJ; My) exp(—8imJ; Ms) exp(—8immyJ12) exp(—i®y Ms), (4.71)

pondo k£ = 1.

Agora, vamos considerar um sistema de duas cordas quirais, uma em a; = 0(origem) e
a outra em ay. Se transportarmos o vetor x ao longo do circulo em torno da corda césmica
2, o vetor resultante é dado por U;x. Transportando paralelamente este vetor resultante

ao longo do circulo que circunda a corda césmica 1, teremos o novo vetor resultante
X(2) = b1,2 + U1U2X (472)

onde by 5 = Uy(1 — Us)as. A expressao para U, ¢ dada pela equacao eq.(4.71) com k = 2.

Se considerarmos um sistema com trés cordas, temos
x®) = b3+ U1UsUsx (4.73)

onde b17273 = Ul(l — Ug)ag + U1U2(1 — U)ag.
E facil generalizar este resultado para um sistema de N cordas césmicas, localizadas

em aj,as,...ay. O vetor x™) obtido apés o transporte paralelo do vetor x é dado pela
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expresao

xM =byy x4+ UUs... Uyx (4.74)

onde by n_1 = Ui(1-Us)ag+U Us(1—-Us)ag+.. . +U Us ... Uy_o(1-Uy)ay-_1Un—-1(1—
Un)ay e Uy é dado pela equagao eq.(4.71) com k = N. Entao, um vetor x transportado
paralelamente no campo gravitacional gerado por de N cordas quirais adquire uma fase
dada por U;Us---Uy e do ponto de vista global, este sistema comporta-se como uma
simples corda com as condigoes dadas pela eq.(4.74)

Agora, considere um sistema de duas cordas quirais com uma movendo-se com relagao
a outra. Considere a corda 1, localizada na origem, e a corda 2, localizada em a, movendo-
se com relacao a primeira com velocidade v,. Esta corda pode ser vista como uma corda
submetida a boost. Entao, se transportarmos um vetor x percorrer ao longo do circulo

em torno da corda 2, temos

X(2) =as + LQUQL;I(X - 8.2), (475)
com
coshvy, senhvy, 0 0 0 O
senhy, coshy, 0 0 0 O
0 0 1 000
Ly, = (4.76)
0 0 0100
0 0 0010
0 0 0001

onde 7, é o parametro de boost tal que ||va|| = tghv,. Este boost corresponde a mudanga
de coordenadas Lx e sob esta mudanca o fator de fase U transforma-se como LUL™.
Se transportamos paralelamente o vetor x®) ao longo do circulo, em torno da corda 1, o

vetor resultante é dado por
xV = Uy (ag + LUy Ly H(x — ay)). (4.77)

Entao, vemos que se o vetor é paralelamente transportado no campo das cordas 1 e 2,
ele adquire a fase dada por U, LyUs Ly *. Este resultado pode ser generalizado no sentido

de considerar N-1 cordas césmicas localizadas em aj,as,...ay_; e a N-ésima com um
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boost. Nesse caso, temos

xM =byy y+UUs.. .Uy 1 LyUxLy'x. (4.78)

geee

Portanto, quando um vetor é paralelamente transportado em torno dessas N cordas

quirais, adquire a fase

UrUs ... Uy_1LyUxLy, (4.79)

onde Ly ¢ dada pela eq.(4.76) com vy — 7y

Vamos considerar uma simples corda quiral que se comporta como este sistema. Esta

corda pode ser considerada como estando submetida a um boost dado por

onde

LOO
Lo
LlS
L22
L30
L40

L50

LOO LOI L02 LOO L04 L05

L(¢,v) = , (4.80)

cosh vy, Lo; = cos ¢ sinhy, Loy = sin¢sinh vy, Los =0, Loy =0,Ly; =0
cos ¢psinhy, L1; = 1 — cos® ¢(1 — cosh ), L1p = — cos ¢sin ¢(1 — cosh ),
0, Li4 =0, L5 =0, Loy = sen¢g coshy, Ly; = — cos ¢sin ¢(1 — cosh ),

1 — sen¢(1 — coshy), Lyz = 0, Loy =0, L5 =0

0,031y =0,L30=0,L33 =1, L3y =0,L35=0

0, Lygy =0, Lygs=0, Lyg=0,L4y=1,L45 =0

0,Ls51 =0,L52 =0,L53 =0, L54 =0, Ls5 =1

A forma L(¢,~) decore do fato que toda transformacao de Lorentz homogénea pode

ser decomposta da seguinte maneira

L(¢,7) = R(¢)L(0,7)5(9),

onde R(¢) e S(¢) sdo rotagoes. Assim, se fizermos o transporte paralelo de um vetor x ao

longo das curvas fechadas, em cujos centros localiza-se uma corda temos o seguinte vetor
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apos este processo

x"*'=Lla+ UL ' (x—a)], (4.81)

onde a é a posicao da corda quiral que é equivalente ao sistema de cordas.

Igualando as fases geométricas adquiridas pelo vetor x em ambos os casos, temos
UUs ... Uy_1LNnUnLy = LUL™ (4.82)

Tomando o trago da eq.(4.82) obtemos o seguinte resultado [86]

N-1 N-1
CosSp = cosdy COS(Z ¢;) — coshyy sin ¢ sin(z ¢;) + (4.83)
=1 =1
sinh? 7y =
T(cos oy — 1) COS(Z ¢;) — 1
j=1

onde ¢; = 8wy, e ¢ = dmp.
Esta é a relagao entre a deficiéncia angular do espago-tempo resultante e a deficiéncia
angular do espago-tempo associado as N cordas quirais. Se consideramos as outras

componentes da eq.(4.83), obtemos as equagoes

N-1
J'cosgsinhy = cos( )y ¢;)sinhyyJy, (4.84)
j=1
N-1
—J'singsinhy = sin() ¢;)sinhyyJy,
j=1
N
o= >
j=1
N
coshyyJ! = Zq)j,
j=1
N
e = ) 9,
j=1

que relacionam os parametros associados com a corda césmica quiral, que é equivalente ao
sistema N de cordas quirais, com os parametros que caracterizam essas cordas. Portanto,
do ponto de vista global temos uma equivaléncia entre uma simple corda césmica quiral
magnética e N cordas quirais magnéticas, sendo que a ultima estd submetida um boost,

desde que as relagoes dadas pela euagoes (4.83) e (4.84) sejam satisfeitas.
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4.7 Fase de Berry na teoria de Kaluza-Klein.

Nesta secao vamos considerar a fase de Berry associada a uma particula escalar
quéntica induzida pelo espaco-tempo de uma corda césmica quiral magnética, no contexto
da teoria pentadimensional de Kaluza-Klein. A dindmica da particula quantica escalar
neste espago-tempo, cujo elemento de linha é dado pela eq.(4.52) é dascrita pela seguinte

equacao Klein-Gordon, com acoplamento minimo, dado por

1 1
{(12 — ;&(T&) — W[a(z) — 4Jt3t — 4J283
¢ 2 2
—%8)(] —m}(t,r, ¢,2,X) =0. (4.85)

Agora, vamos proceder de maneira analoga ao que foi feito no capitulo anterior. A solucao
desta equacao pode ser escrita como
Ut 0,2, X) = e Prle2e W p(r, ). (4.86)
Substituindo a eq.(4.86) na eq.(4.85), obtemos
1 1 dQ1?
—Ur T ) _4.Ent_4.nz__
{ra(ra)+m2 O0p — 4iE,J" — 4ik,J 27T}
+E2 — K2 — Q*+m?*}p(r, ) = 0. (4.87)

Para este caso, o fator de fase de Dirac é dado por

d ¢
(1, 0) = expl[ B k) i) [ dojantro) sy

Considere que a particula estd em uma caixa localizada a uma distancia R; da corda.

Entao, a conexao de Berry associada a esta situacao é dada por
1,J : t NP 2
Ayt = [—4i(E,J" — Kk, J?) — ZQ2—]dR Or,7 (4.89)
T
Portanto , a fase geometrica para este problema é
v, (C) = 87[E,J" — K, J*] + Q® (4.90)

Notemos que para J' = J* = 0 obtemos a fase quantica de Berry correspondente ao

efeito Aharonov-Bohm eletromagnético [12]; para J* = 0 e ® = 0 temos a fase geométrica
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gravitacional de Corrichi e Pierri [16]. Para ® = 0, reobtemos os resultados do capitulo
anterior.

Agora, vamos generalizar os estes resultados para o espago-tempo gerado por miltiplas
cordas césmicas quirais magnéticas na teoria de Kaluza-Klein, cujo elemento de linha é
dado pela eq.(4.63) .

Vamos adotar o mesmo procedimento usado no caso do espaco-tempo da multicorda
quiral e calcular o fator de fase de Dirac para uma, duas,...,/N cordas. Para uma corda, o

método do fator de fase de Dirac nos fornece a seguinte expressao

¢
£h(r:0) = exp{ (Bt — ) =032 [ dojen(ro) (o)

Agora, transportando o estado ¢! (r, ¢) em torno da segunda corda, localizada em ry , a0

longo da curva Cs, temos o seguinte resultado

on(r,¢) = exp{[—4i(EnJy — knJ5) —iQ / do}e'(r (4.92)
Substituindo a equagao eq.(4.91) em eq.(4.92), obtemos o seguinte resultado

pu(r.0) = exp{[—4i(E,(J;+ J}) — kn(J5 + J5) (4.93)

~igU )y [ ) 0).

A generalizacao deste resultado para N cordas quirais magnéticas localizadas em

ri,72, ...,y segue por analogia com os dos resultados anteriores, e é dado por
N ’LQ é
o N (r, ¢) = exp{[~4i(Y_(JTE, — Jikn)) — Z @] / do}.po(r,d).  (4.94)
j=1 2 J=1 %o

Usando o resultado dado pela equagao (4.94) e o mesmo procedimento das segoes

anteriores, segue que
N
C)=i f A =N I8 (T En — J7kn) + Q®;), (4.95)
=1

que é a fase geométrica quantica de Berry para uma particula quantica escalarno espago-
tempo gerado por N cordas quirais magnéticas na da teoria de Kaluza-Klein.
Sumarizando, apresentamos neste capitulo uma breve revisao da teoria penta-

dimensional Abeliana de Kaluza-Klein e utilizamos as transformacoes de holonomias, em
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diversos espaco-tempos para estudar aspectos globais destes espago-tempos. No caso do
solendide, notamos que a contribuicao da quinta componente é percebida pela holonomia
quando circundamos o solendide pela curva onde dr = dt = dz = 0,apesar da holonomia
ter a mesma forma que a quadri-dimensional, e no caso do monopolo global estabelecemos
a variacao angular que é relacionada com a transformacao de holonomia. No caso da
corda quiral magnética demonstramos que a fase é nao-trivial, e que é uma expressao
dos efeitos Aharonov-Bohm eletromagnético e gravitacional combinados, que aparece
como consequéncia da unificacao de Kaluza-Klein. Para o caso das multicordas quirais
magnéticas calculamos a holonomia e obtivemos um resultado andlogo, em que os efeitos
eletromagnético e gravitacional aparecem simultaneamente e de maneira independente.
Apresentamos a caracterizagao global para o espaco-tempo de multicordas, sendo que
uma delas estd submetida a um boost. Finalizamos este capitulo calculando a fase de
Berry associada a uma particula escalar quantica, induzida pelos espagos-tempos de uma
corda césmica quiral magnética e o de N cordas quirais magnéticas na teoria de Kaluza-

Klein.
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Capitulo 5

Fatores de Fase no Espaco-Tempo de
Kerr-Newman com um defeito

Conico.

5.1 Introducao.

A holonomia linear cldssica nao é suficiente para distinguir espagos-tempos com e
sem rotagdo [87], e portanto, para se calcular a holonomia correspondente a curvas
em espacos-tempos gerados por corpos em rotacao é necessario considerar também a
holonomia translacional que é propocional ao momento angular da fonte. No caso em que
h& torcao, e que nao iremos considerar, faz-se necessdrio calcular também a holonomia
translacional de modo a se obter a expressao correta correspondente & holonomia total.
As transformacoes de holonomia ao longo de uma dada curva nao é um invariante por
difeomorfismo. No caso particular em que a curva é aberta, o transporte paralelo nao sé
depende da trajétoria, como também das coordenadas dos pontos extremos da curva.

Introduzimos, como nos capitulos anteriores, o formalismo de tétradas e obtemos a
holonomia linear por uma integracao direta da conexao espinorial. No caso da holonomia
translacional, adotamos o conceito de desenvolvimento de curva sobre uma variedade [88]

Neste capitulo calculamos os fatores de fase para diferentes curvas no espaco-tempo de

Kerr-Newman com um defeito conico (corda césmica). A presenca deste altera a isometria
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original do espago-tempo, informacao esta que podemos extrair da estrutura do fator de
fase. Alguns casos particulares como os dos espacos-tempos de Kerr, Lense-Thirring
e Schawzchild, serao também considerados. Os resultados obtidos em Kerr corrigem
célculos feitos anteriormente [82], em que nao foi considerada na holonomia total a parte

translacional e sim somente a parte linear dessa quantidade.

5.2 Buraco negro carregado e com rotacao.

As solugoes de Schwarzschild e Reissner-Nordstrom foram originalmente obtidas entre
1915-1916, logo apés o advento da Relatividade Geral. Elas surgiram cinquenta anos antes
da determinagao da métrica associada ao espago-tempo gerado por um corpo com rotagao,
obtido primeiramente por Kerr. A razao para tal dificuldade é que um corpo girando
apresenta duas isometrias: uma axial e outra translacional no tempo. Por outro lado, a
simetria esférica deste problema torna os cédlculos mais simples. Agora, temos que resolver
as equagoes de Einstein no vazio com mais fungoes arbitrédrias, quando comparadas, por
exemplo, com o caso de Schwarzschild.

Inicialmente, a grande contribuicao para o entendimento da solucao de Kerr veio de
trabralhos sobre a classificacdo das métricas de Einstein (solucées de R, = Ag,,) via
propriedades algébricas do tensor de Weyl. Esta classificagao é chamada de Petrov, e é
dela que vem que a solugao de Kerr que é um tipo algebricamente especial, tipo D. Isto

significa que existe um familia de geodésicas nao-nulas com vetores tangentes k* tais que

Chwplo ka k" kP
*Cuvplo kn Kk

0,
(5.1)
0,

onde *Clppe = %qw ATC);TU. Esta condi¢ao toma uma forma mais simples se decompusermos
R0, €m suas componentes espinoriais. Neste caso, a condi¢ao torna-se uma restrincao
sobre o nimero de autovalores distintos da forma espinorial de C),, .

Mais recentemente [89] um método com mais motivagao fisica para gerar a solugao de
Kerr foi apresentado.

Lembremos que qualquer problema dindmico para uma dada Hamiltoniana possui a

forma equivalente de Hamilton-Jacobi. Tais equivaléncias sao usadas para tratar equacoes
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de onda, por exemplo. Este assunto teve grande destaque no inicio deste século, e muitos
trabalhos foram feitos sobre o assunto. Uma maneira equivalente de resolver a equagao do

movimento de um sistema Hamiltoniano é encontrar a solucao da equacao de Hamilton-

as .\ as

onde H(pj,z') é a Hamiltoniana. Embora exista alguma sutileza em definir a

Jacobi

Hamiltoniana para geodésicas, elas satisfazem a equacao de Hamilton-Jacobi

95 w9595
ox "I o

(5.3)

onde A é um parametro afim.
Para resolver o problema geodésico tem-se que encontrar a solugao da eq.(5.3) e tentar

escrevé-la separando-a da seguinte forma
S’ N) = fFN) +g0(2”) + gu(z') + .. 4 gna (2" 7). (5.4)

As métricas para as quais isto é possivel e nas quais consegue-se separar as varidveis
nas equagoes de Klein-Gordon ou Schrédinger foram classificadas [90], hd algum tempo.
Mostrou-se, entao, que a meétrica de Kerr é uma dessas, e portanto pode-se usa o
argumento para métricas nas quais a equagao de Hamilton-Jacobi é separdvel.

Por volta de 1900, mostrou-se que a equacao de Hamilton-Jacobi é separavel para uma
equacao do movimento com n-varidveis, se somente se, existem n solucoes algebricamente
independentes - cada uma correspondendo a uma constante de separacao. Além do mais

para o problema geodésico essas solucoes algebricamente independentes ou sao lineares

ou quadrdticas no momento; gﬂ,,df—/\”. Essas correspondem aos vetores de Killing, &, ou
tensores de Killing do tipo (0,2), & ,,, e tomam a forma
Az
fM% = constante, (5.5)
ou
dz* dx”
ISW% dx)\ = constante. (5.6)
Um tensor de Killing do tipo (0,n) é um tensor simétrico £ o, tAlque
V) =0 (5.7)
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(n)

Obviamente a métrica, g,,,, ¢ um tensor de Killing, e o produto simetrizado £ 8)1 ffi) L€ )

de n vetores de Killing €V, .., €™ é também um tensor de Killing. Um tensor de Killing

automaticamente nos fornece uma solucao geodésica

dxt dx™
v = constante. (5-8)

5“1"“‘“W d\

Como o buraco negro com rotagao tem apenas dois vetores de Killing, &, = 9/0t e

§¢ = 8/8¢ (§

dz* dx”
Gy = constante, (5.9)
entao existe uma segunda solucao, quadrética, a qual pode ser obtida explicitamente por
separacao de varidveis da equagao de Hamilton-Jacobi. De uma forma ou de outra as
equacgoes geodésicas de movimento sao completamente soliiveis em termos das primeiras
integrais do movimento.

A generalizacao da métrica de Kerr para a métrica gerada por uma distribuicao esférica
de matéria e carregada parece ser direta. Esta métrica é as vezes chamada de Kerr-

Newman, com carga ¢, massa m e momento angular por unidade de massa a e é expressa

por
ds® =% [A7rdr? +d6®] + (r? + a®)sen®0d¢® — di? (5.10)
+X712mr — ¢?)(asen?0dg — dt)?,
onde X(r,0) = r2 + a®cos?0 e A(r) = r? — 2mr + a® + ¢°.
Esta métrica é a solucao para as equacoes de Einstein com um campo eletromagnético
como fonte. O campo eletromagnético pode ser determinado do seguinte potencial de

gauge

A, = —%(1, 0,0, —asen2d), (5.11)

nas coordenadas (t, 7,6, ¢). Da expressao para A,, encontramos que

A, da" = —%(dt — asen?0dg). (5.12)
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Portanto, F},, ¢ dado por

TFdot Ndr” = ¢E72(r? — a® cos? 0)dr A (dt — asen®0do)

+2¥2a%grsenf) cos Odt A db

+2aqrE2(r? + a?) senf cos 0dl A do (5.13)
sFudat Ndr” = ¢E72(r? — a® cos? 0)dr A (dt — asen®0do)

+2aqrX2senf cos 0dO A [(r? + a®)d¢ — adt] .

Para r suficientemente grande, tem-se que

TFdatds” ~ q/rdr A (dt — asen0de)+

(5.14)
2aqr~'send cos 0dO A do + O(=5)

O termo q/r?dr A dt corresponde ao campo Coulombiano gerado pela carga ¢, e o termo
2aqr~tsent cos 0dH A d¢ corresponde ao momento de dipolo magnético.

E conveniente introduzir dois vetores nulos, [* e n*, cujas componentes sao

r? + a? a
" = ———-,,1,0,— 1
( A ) 707 A) ) (5 5)
r?+a® -A o«
J7 I -
" ( 63> ’22’0’22>'
satisfazendo as seguintes relacoes
", =0, nfn, =0, ", =—-1. (5.16)

Pode-se definir, entao, o seguinte tensor de Killing
S/u/ - 22[(#”1/) + T2.guu- (517)

A métrica dada pela eq.(5.10) é estaciondria e axialmente simétrica, e portanto, possui

os seguintes vetores de Killing
k= 1(1,0,0,0),
: ( ) (5.18)
n* = (0,0,0,1).
Portanto, &,,,,, £,,, 7" € g,,, nos fornecem um conjunto de solugoes independentes necessario
para resolver o problema geodésico completamente [91].

Vamos agora exibir algumas propriedades fisicas da métrica dada pela equacgao

eq.(5.10). Obviamente para a = 0, a métrica reduz-se a solu¢ao de Reissner-Nordstrom.
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Primeiramente vamos discutir o horizonte de eventos no espago-tempo de Kerr. A
métrica tem uma singularidade aparente quando A = 0. O problema recai sobre trés

2 = a? e m? < a® No tltimo caso, nao hé horizonte de

casos, distintos: m? > a?, m
eventos, mas somente uma singularidade em » = 0. Uma tal solucao é considerada nao-
fisica, e é usualmente excluida.

A solucao extrema de Kerr, com m = a é uma solucgao intermedidria entre m? < a? e a
solucao fisica com m?* > a%. Quando m? = a? existe um horizonte de eventos em r = m.

Iremos nos concentrar no caso m* > a?. Aqui existem dois horizontes de eventos um em

r =r, eoutro em r = r_ , onde
re =m+vVm?2— a2 (5.19)

Temos que provar que 7, e r_ sao horizontes de eventos, e nao simplesmente pontos
de singularidade da métrica ou da variedade. Primeiramente para provar que eles sao
horizontes temos que mostrar que sao superficies nulas. Isto significa que uma curva
nao-tipo-espaco dirigida para o futuro pode atravessid-lo somente em uma direcao.

Considere a superficie r = constante, logo dr = 0, entao, nesta superficie
2 2 2 2 20 7 42 o | 2mr 2 2
ds* = Xd0* + (r* + a”)sen“0d¢” — dt* + T(asen Ode — dt)=. (5.20)

Se A =0, entdao r? + a? = 2mr e

sen?6

ds? = Xdb* + [adt — (r* + a*)d¢]*. (5.21)

Esta métrica é degenerada, isto é , ela tem um autovalor nulo. De fato, da expresao
acima podemos ver diretamente que a forma diagonal de ds? na superficie r = r4 tem
dois autovalores nao nulos. Entao, »r = r4 sao de fato hipersuperficies nulas e sao assim
horizontes de eventos.

O comportamento singular do coeficiente de dr? na eq.(5.10)é precisamente o mesmo
que o das métricas de Schwarzchild e Reissner-Nordstrom. Dai é claro que podemos
resolver o problema da mesma maneira seguindo os observadores em queda livre ou raios
de luz, através de r = r,. Na verdade, a extensao analitica da solu¢ao de Kerr na

vizinhaga de r = r, ¢ idéntica a de Reissner-Nordstrom.
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A sutileza na extensao analitica de métrica de Kerr ocorre em r = 0, e estd indiretamente
ligada ao fato de ser t uma coordenada mal comportada, e por causa da sua mistura com
¢, 0 que nos leva naturalmente a substitui-las.

Considere, entao, a mudanga de coordenadas para (v,r,0,1) onde [92]

dv =dt + (r* + a*)A™dr,

(5.22)
dy = de+ aA~dr.

Neste sistema de coordenadas, a métrica reduz-se a

ds* = Ydb? — 2asen?0drdy + 2drdv+
SH(r? + a?) — Aa®send] sen®0di)® — (5.23)
4a¥ " 'musen®0dipdv — (1 — 2mrE—1)dv .2

Notemos que dv e diy» nao sao tangentes as trajetdrias iniciais de raios nulos, e esta
abordagem torna-se dificil por causa da rotacao. Na verdade, dt é redefinido para remover
a parte singular de dr.

Isto significa que d¢ deve ser redefinida para eliminar outros termos singulares da
métrica. Existe uma importante diferenca entre o horizontes de eventos de Kerr e os da

solugao de Reissner-Nordstrom. Considere o vetor de Killing tipo-tempo £ = (1,0, 0, 0)

e — _Lia_
e, = > [A — a’sen?)] . (5.24)

Sobre horizonte de eventos, A = 0, e portanto, "¢, = %senQQ > 0.

O vetor de Killing é nulo somente temos polos norte e sul, (que ndo possuem rotagao)
e é tipo-espago no horizonte de eventos. O horizonte de Killing (onde "¢ p = 0) é dado
por

(r —m)®> =m? — a®cos? 0, (5.25)

e o horizonte de eventos é

(r —m)®> =m? —d>. (5.26)

Note que o horizonte de Killing encontra-se fora do horizonte de eventos externo e eles
necessariamente se encontram nos pélos. A regido entre os horizontes, onde "¢, > 0, é

chamada de ergoesfera.

131



Talvez o caminho mais interesante de escrever a métrica de Kerr seja na forma

sen?6

ds> = X [A~'dr® + db] +

A
[(r* + a*)d¢ — adt] g 5 lasen*0d¢ — dt] 2 (5.27)
Observe também que para r suficientemente grande a métrica torna-se
ds? = dr® + r?(d6® + sen®0d¢?) — di?, (5.28)

e assim este sistema no infinito, reduz-se ao espaco regular de Minskowski em um
referencial sem rotacdo. E por esta razio que ndo usamos outra combinacio de d¢ e
dt como coordenadas.

Um caso particular interessante da métrica de Kerr ¢ quando m = 0, (a # 0). Neste caso
ela torna-se

e 72 + a? cos? 0
r2 4+ a?

> dr? + (r* + a® cos® 0)d0” + (r* + a*)sen®0de* — dt*>.  (5.29)
Além disso, quando r — 0
ds® — cos? O[dr® + a*df?] + a®sen0d¢® — dt?, (5.30)

que parece uma forma estranha. Para entender esta métrica deve-se primeiro notar que
para m = 0 ela deveria tornar-se plana. O limite » — 0, mostra, entao, a natureza bizarra
dessas coordenadas. De fato uma rdapida analise mostra que elas sao esferéidais, com r =
constante sendo uma superficie eliptica confocal e # = constante corresponde a superficies
hiperboléidais.

Podemos obter a métrica em coordenadas cartesianas fazendo:

r= (r?+a?)?senfseng
y= (r*+a?)/%send cos ¢ (5.31)
z = rcosf.

Entao, a métrica de Kerr com m = 0 reduz-se a
ds? = da® + dy* + dz* — dt*. (5.32)

Notemos que :

i) rp— (2 + 9>+ 22 —a®)r* —a?22 =0
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(ii) r =0 & 2 =0, z = asenfseng, y = asend, isto é um disco.

Retornando ao caso geral da métrica de Kerr com m # 0, consideremos o
comportamento dessa métrica em r = 0. Se § = 7/2 (plano equatorial), entao 3 = r?
e A7 = (1 —2m/r + a*/r?)~1. Esta solugdo é muito parecida com a de Reissner-
Nordstrom, e existe uma singularidade na curvatura em r = 0, § = 7/2. Vamos supor,
agora, que nos aproximamos de » = 0 partindo de um dos pdlos, por exemplo 0 = 0.

Entao XA™! — 1 quando r — 0, e
ds* — dr? + a*do* — dt*. (5.33)

A aparente degenerescéncia na eq.(5.33) é a mesma de df® + sen?0d¢* em 0 = 0. Nao
existe uma sugestao para remover a singularidade. Na verdade, a métrica s6 apresenta
singularidade em X =0 < r =0e 6 = 7/2. O fato de que as coordenadas sao colapsadas
em r = 0 implica que nao se pode ver o detalhe da estrutura da singularidade. Isto é a
verdade, contudo, e como vimos anteriormente, este problema persiste no caso m = 0. A
resolucao na métrica de Kerr ¢ a mesma, pois existe um anel de singularidade no plano
equatorial até a borda do disco definido por » = 0. Algumas sugestoes podem ser tiradas
deste fato , olhando o comportamento da métrica de Kerr e a do espaco-tempo plano no

limite quando r — 0, (0 # 7/2)
ds® = dr® + r*(d6® + sen*0d¢®) — dt* — dr?® — dt* (5.34)

ds2,,, — dr® + a*d9* — dt*, (5.35)

em =0 ouf =m. O termo dr? + a*df?* sugere um disco de raio a.
Exatamente como no espago-plano no limite (m = 0) podemos resolver a estrutura de
singularidade de r = 0 introduzindo um sistema de coordenadas mais apropriado, quase-

cartesiano, definido por

r+iy = (r+ia)senfexpi /(d¢ +aAtdr) (5.36)

z = rcosf

t = /[dt + (r* +a*)Atdr] — 1,
que se reduz as coordenadas cartesianas usuais quando m = 0.
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A métrica de Kerr reduz-se, entao a

ds? = da? +dy® + d2? — dE° + 2mr® (1t + a?2%) 7! (5.37)

x[(r(zdx + ydy) — a(xdy — ydz))(r* + a®) ™t + z%lz + dt)?

onde r(z,y, z) ¢ obtida implicitamente de r* — (x + y? + 22 — a®)r? — a?22 = 0.

A superficie r = constante, corresponde, neste caso, a uma elipse confocal em um
novo sistema de coordenadas construido no plano equatorial. A superficie r = 0, agora,
inscreve-se sobre o disco z = 0, 2% 4 3% < a?. Neste sistema R,pe R*P sempre diverge
em z° + y? = a?, 2 = 0 (o anel de singularidade). O interior do disco z% + y? < a?, z =0
é perfeitamente regular.

A questao que surge é o que acontece a um observador que cai através da regiao
regular no centro de um disco. Verifica-se que ele muda de lado continuamente através da
superficie, mas como a continuidade analitica corresponde & continuidade da coordenada
r para valores negativos, ele passa para uma nova regiao do espaco-tempo. Nesta nova
regiao r < 0 e desta forma nao existe horizontes (como A # 0 para r < 0 ). Podemos
pensar em tomar duas copias do sistema (x,y, 2,t) e chamar a segunda de (2/,y/, 2/ ,f/),
com r < 0 e cold-las. Entao, diferentes observadores podem migrar entre as regioes r > 0
er <0.

A coépia do espago-tempo para r < 0 é bastante estranha, nao existe claramente uma
singularidade em r = 0, exceto para r < 0 contudo pequena, pois d¢ é tipo-tempo perto do
anel de singularidade. Portanto os circulos r = constante, § = constante e ¢ = constante
sao linhas tipo-tempo fechadas, e assim existe uma violacao da causalidade.

Finalizaremos esta secao afirmando que:

1) As solugbes de Schwarzschild, Reissner-Nordstrom, Kerr e Kerr-Newman sao
métricas corretas para campos gravitacionais fora de uma distribuicao de matéria do
tipo apropriada com simetria esférica, simétria esférica e carga, rotacao independente
do tempo, ou rotacao independe do tempo e carga, respectivamente. A métrica nao
necessariamente tem que corresponder a um buraco negro. Ela poderd ser a métrica
exterior para uma estrela ou planeta.

2) Os teoremas No Hair [93] estabelecem que a métrica de Kerr é a tnica solucao de
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buraco negro estaciondrio, no vazio, das equacoes de Einstein. Essencialmente, a métrica
de Kerr é a tnica de familia conhecida com dois parametros das solucoes das equacoes
de Einstein no vazio. No entanto, os teoremas os No Hair estabelecem que um buraco
negro estacionario nao tem cabelos, o que significa dizer que o campo gravitacional nao tem
momentos de multipolo grandes, e sim 0 momento de monopolo ( determinado pela massa)
e momento de dipolo (determinado pelo momento angular). Eles também mostraram
que um buraco negro estaciondrio deve, necessariamente, ser axialmente-simétrico, e que
a classe de solugoes estaciondria no vazio axi-simétricas é necessariamente uma familia
de dois parametros. Esses dois parametros podem estar relacionados pela condicao de
contorno da métrica e podem ser interpretadas como a carga e o momento angular do
buraco negro. Uma das contribuicoes interesantes desses teoremas foi a prova de que
a intersecao de dois horizontes de eventos de um buraco negro estaciondrio com uma
superficie de Cauchy é topologicamente uma 2-esfera. Como a solucao de Kerr esgota
todos os possiveis valores desses parametros somos levados a concluir que a métrica de
Kerr ¢ a tnica solucao estaciondria das equacoes de Einstein no vazio correspondente a

um buraco negro.

5.3 Holonomias no espaco-tempo de Kerr-Newman

contendo uma corda césmica.

Nesta secao faremos um estudo no espaco-tempo de Kerr-Newman com uma corda
c6smica, onde calcularemos a holonomias linear e translacional para diferentes curvas.
Particularizaremos os cédlculos para os espago-tempos de Kerr e Lense-Thirring e também
para o de Schwazschild.

As solugoes das equagoes de Einstein podem ser facilmente generalizadas [94] de modo
a incluir defeitos conicos. Os espagos-tempos correspondentes podem ser constriidos
removendo-se um setor e identificando-se os lados remanescentes, isto é, exigindo-se que o
angulo azimutal em torno do eixo de simetria varie no intervalo (0, 27b) , onde o parametro
b é uma medida da quantidade que foi retirada do espaco-tempo. Dessa forma temos um

espago-tempo com uma corda ao longo do eixo de simetria. Em espacos-tempos dessa
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natureza varios estudos tem sido feitos para investigar diferentes aspectos da influéncia
da corda césmica sobre determinados sistemas fisicos [95].
O espago-tempo de Kerr-Newman com um defeito conico (corda césmica) nas

coordenadas (t,r,0, ¢) é descrito pela métrica

ds? = —[1— 2mr — ¢>)X7Ydt? — (2mr — ¢?)2absen®0dtde + A~ Sdr?
+Xd0* + X7 r? 4 a? + (2mr — ¢%)a®sen?0)b?sen?0dp?, (5.38)
onde a? + ¢*> < m?, m é a massa fisica do buraco negro, ¢ = carga, a = momento angular
por unidade de massa dividido pelo pardmetro de conicidade que é dado por b =1 — 4,
i a densidade linear de massa da corda. As expressoes para A e Y sao
A =7 —2mr+a®+ ¢

Y =124 a’cos?h.

Na presenca da corda, a energia medida por um observador no infinito eo parametro de
massa de Schwarzschild nao sao idénticos [96]. A massa, bem como o momento angular sao
alterados por um fator que corresponde ao inverso do parametro de conicidade. No caso
da carga, o teorema de Gauss nos impoe que ela seja dividida também pelo parametro de
conicidade. Portanto, os parametros m e ¢ que aparecem na eq.(5.38) estao relacionados
com as quantidades fisicas, massa e carga e com a densidade linear de massa da corda.
O pardmetro a nao é alterado, pois a modificacao na massa e no momento angular se
cancelam.

Para calcular o fator de fase (holonomias) para diferentes curvas devemos encontrar as
expressoes para as conexoes tetrddicas. Vamos, entao, introduzir um conjunto de quatro
vetores e’{a)(a = 0,1,2,3 é o indice tetrddico), que é ortonormal em cada ponto com
respeito a métrica de Minkowski, isto é, guye?a)el(’b) =, = diag(—1,1,1,1). Admitindo

que as matrizes e‘(‘a) possuam inversas, ou seja, que existem as matrizes e,(f) tal que

e,(f)e(”a) = e el e(py = 0y Vamos definir a seguinte base tetrédica w®(1-formas)

WO = AV2S120t — abAY2E 1 25en20dg,

w' = ATY2EY2y,

w? =YY,

WP = —aX 7V 2senfdt + (a?L7Y2sen?0 + XY 2send)bdep.

(5.39)
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Entao, no sistema de coordenadas (z° = ¢, 2! = r, 2% = 0 e 2> = ¢), o referencial tetradico

definido por w® = e{dz* ¢ dado por

e(()0) _ A1/2Z*1/2, 652) _ 21/2’
e = —abAV2E 1256020, P = —ax"2senb),
el) = A-1/251/2 ) = —ax12sen?0 + SV 2send.
Usando as equagoes de estrutura de Cartan dw® = enpde” ANdat = —wi A w®, obtemos as

seguintes expressoes para as conexoes tetradicas

[0 dat = —{mX7?(r? — a®cos® 0 — m~'rq?)dt
+X2absen?0[(m — )% — 2mr? 4 r¢?lde} = I )gda*,

Do dat = S tabAY? cos Osenfdp = T2y dat,

Dadat = aA™25 rsenfdr — aAY2S ™! cos 0df = T3 dat,

[lodet = —a? A28 cos Osenfdr — A;/27"d9 = T dat,

[gdat = —bAY2S rsenfdp = —I3, dat,

[2ydat = acos 0572 (2mr — ¢*)dt—

beos X 2[8(r? + a?) + (2mr — ¢*)a’sen®0]dp = I, da*

(5.40)

Primeiramente vamos calcular a holonomia linear, dada pela eq.(1.89), no caso em que o

contorno é um circulo com centro na origem com valores fixos de r,0 e t. Neste caso,

I, dat =Tyde (5.41)
(dr = df = dt = 0).
Da eq.(5.40) obtemos
0 A B 0
A0 0 —-C
Ty = , (5.42)
B 0 0 -D
0 C D 0

onde
A= —ab¥2sen?0 [S(m — 1) — 2mr? + rq¢?],
B = abA?Y71 cos fsendb,
C = bAY2E 1 rsend,
D =0b3X"2cos 0 [X(r?* + a®) + (2mr — ¢*)a*sen?d)].
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Como I'y nao depende de ¢, entao, da equagdo (1.89 ) temos

o
Ue) = Pexp | [ Tudo| =exp[Lo(o,~ 6,). (5.43)
ot

Em particular para 6§ = 7/2 obtemos

0 A0 O
A0 0 —C
Ty = , (5.44)
0 0 0 O
0O C o0 0
onde
bAL/2
A:a?b[l—l—m/r—cf/rQ] eC = . (5.45)

Notemos que, para, a = 0, r = 2m (raio de Schwarzschild) e ¢ = 0, temos I', = 0 e

U =Identidade. De eq.(5.44) e eq.(5.45) podemos verificar que

(T,)* = —(C? = ATy = =b*r 2 [A —a®(1+m/r — ¢*/r?)*] T

Seja
A, = 2 [A—a(1+m/r—¢?/r*)?]"2. (5.46)
Assim,
U = exp[ly(dy — ¢)] (5.47)
- I el o)+ Z—%u — cos{Ag(n — ).

Tomando o circulo equatorial C', e portanto ¢, = 27 e ¢; = 0, a holonomia linear pode

ser colocada na seguinte forma matricial

L+ 4:(1-8) ¢ 0 —5(1-¢)
A =C
Uy, = A6 ¢ 0 A4 , (5.48)
0 0 1 0
F1-9 £C01-50-9

onde & = cos(2mAy) e ( = sen(2mAy).
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Tomando o trago da eq.(5.10), obtemos o loop de Wilson gravitacional
W(C)=Tr(UL) =Trexp(2nl'y) = 2(1 + cos(2mAy)) (5.49)

Se temos um sistema que apresenta torgao, a qual contribui na holonomia total, esta
contribuicao é chamada de holonomia translacional . A holonomia translacional tem a
mesma forma da equagao eq.(1.88) onde o tensor de Riemann é trocado pelo tensor das
torgoes [87], isto é,

Ur(C) = P(exp / / T dxbdx"). (5.50)

No entanto, esta expressao nem sempre é vélida, por exemplo, no caso de Kerr-Newman o
sistema nao apresenta tor¢ao, no entanto, apresenta uma holonomia translacional devido
o momento angular a qual se faz sentir pelo densenvolvimento da curva C, (caminho
equatorial), em M (variedade Riemaniana). O desenvolvimento de curva [88] é um caso
particular de transporte paralelo em fibrados, onde as fibras sao os espacos tangentes afins.
A motivagao para se definir o desenvolvimento de curvas é bastante simples. Necessitamos
isolar a influéncia local de geometria de uma variedade da aceleracao de uma curva. A
defini¢ao dada por Petti [88] é a seguinte:

Dada uma curva C': [0, 1] — M, o desenvolvimento da curva sobre a variedade plana

M' é a curva C" : [0,1] — M’ definida por
D' = A'(s)L[A(s)] " Dyu, (5.51)

com C'(0) = P" e v/(0) = Lu(0), onde P € M, P' € M'. Sendo A : ToqoyM — T M
o transporte paralelo ao longo da curva C, L : T,M — T,M’' uma isometria, e u e u’
vetores tangentes de C' e C' ', respectivamente. D’ e D sao as derivadas covariantes em
M'e M.

Vamos, entao calcular a holonomia translacional, considerando o contorno equatorial
C(s) = (0,r,7/2,2ws) para s € [0,1]. O desenvolvimento de C' no espaco plano de

2

Minskowski M’ nas coordenadas (', 2,4/, 2’), iniciando em P’ = (t{, xy, yh, 24), €

C'(s) = [t'(s), 2'(s), ¥'(s), 2 ()], (5.52)
onde
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t,(S) = kl -5+ té,
2'(s) = k- [cos(2mvs) — 1] + g,

Y

(
y'(s) = ky-sen(2mvs) + yp,
(

Z'(s) =z,
sendo
21a q> a® q?
k1 - [m T+(+T2)(m T) : (5.53)
AL/2 a2 7
e = St [om+ S

com
V= (G- = A,

1 = —7%(7‘—1—m—q2/7”), (554)
Co = A1/2/’I“.

A holonomia translacional [88] associada a curva C' é
Ur(C)=C"(1) = C'(0) = ky (5.55)

Substituindo as egs.( 5.53) e (5.54) em (5.55) e tomando o limite 1/r* — 0 obtemos que
Ur(C) = 6mma/r.

Logo a holonomia total U = U, + Ur no limite 1/r? — 0 serd

1+ A+6mma/r B¢ 0 -C
B +6 0 -D
U= ¢ &+ Gmmar ¢ . (5.56)

0 0 1+ 6mma/r 0

C D¢ 0 1 —E+ 6mma/r
onde
a1+ 2m/r] o a[l 4+ 2m/r] ‘
A= [A —a?(1+2m/r)] (1-8); B= [A — a2(1 + 2m/r)]1/?’
1/2 1/2
C— a[l + 2mr]A (1— €)= A

[A—a?(1+ 2m/r)]1/2;

- ).

[A —a?(1+2m/r)]
A
A zm

Este resultado completa e generaliza os cdlculos feitos em [82], das holonomias para vérias

ek =

curvas no espaco-tempo de Kerr e que nao considera a contribuicao advinda da holonomia
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translacional. No caso particular em que a®> — 0, temos o universo de Lense-Thirring com

defeito e neste caso a holonomia total torna-se

1+ 6mma/r FC 0 —F(1-¢)
U(C) = F¢ £ + 6mma/r 0 —C | (5.57)
0 0 1+ 6mma/r 0
F(1-¢) ¢ 0 £ + 6mma/r

onde F = a[l +m/r](r? — 2mr + ¢*)"V% e Ay = br—[1 — 2m/r]*/2.
Para o caso da métrica de Schwarzschild (¢ =0, b =1 e ¢ = 0) temos que F =0 e
a holonomia total para circulos situados em planos paralelos ao equatorial é a holonomia

linear, que é dada por

1 00 O

U(C) = 0¢0 = (5.58)
001 O
0 ¢ 0 ¢

com Ay = b[1 — 2m/r]'/2.
As expressoes para as holonomias correspondentes as demais curvas podem ser obtidas
dos resultados de Kerr-Newman fazendo-se a = 0 e ¢ = 0, como veremos mais adiante.
Notemos que o loop de Wilson dado pela eq.(1.92) ¢ W(C) = 2(1+§) = 2(1+cos 21 Ay),
e que para Ay = 0, isto implica que 7 = 2m (raio de Scwarzschild) o loop de Wilson é
W(C) = 4. Esta é uma condicao nesessédria mas nao suficiente para o espaco seja plano.
Mas a curvatura nao é nula como sabemos. A curvatura estd asociada com a derivada do

loop de Wilson através das equagoes de Mandelstam [9)

ow dy*
Como os tensores de curvatura sao
0O 010
0O 0 0 O
R{s, = bmsenfr=2(1  —  2m/r)"Y? e
-1 0 0 0
0O 0 0 O
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0 0 00
0 0 10
RS, = 2mbsenfr 1 :
0 -1 00
0 0 00
podemos verificar que
ow
5 = /d¢Tr Ry3U) = 2nTr(R13U),
0
aa—I;V = /d¢TT(R23U) = 27TT’I“(R23U),
0

e portanto W (C') obdece a eq.(5.59), que é conhecida como relagdo de Mandelstam.
Para evidenciar que a holonomia depende fortemente do caminho tomado, vamos agora
computar a holonomia para uma curva C' onde r = r(s) e § = 6(s), estd contida no plano

meridiano. Neste caso, temos que

db dr
r r I,— . .
sds = ( 075 + ds) ds (5.60)
Da eq.(5.40) obtemos
0 0 0 f
0 O 0
r, = g (5.61)
0 —g 0
f0 00
onde
. arsenf dr alA'/? Hd_e
T AT ds x ds
. —a? o edr ATER
9= Ry cossenf—- SR
Entao,
Pexp[/ [yds] = exp[['sds], (5.62)

pois as matrizes I'y comutam para valores distintos de s. Em particular para a métrica
de Schwarzschild, devido & simetria esférica, a propriedade dada pela eq.(5.62) vale para

qualquer curva contida em um plano arbitrario. Vamos considerar o caso de um circulo
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meridiano % =0e % = 1. Entao, temos
0 0 0 f
0 O 0
=Ty = g (5.63)
0 —g 0 0
f 0 00
onde f = —aAY2cosf/S e g = —A"V2r /%
E portanto, obtemos
0 0 0 exp(«)
0 ex 0
exp| / Tydf] = p(5) (5.64)
0 exp(—0) 0 0
exp(a) 0 0 0
onde = [7" fdf e B = [T gdf.
Fazendo integracao por partes determinamos que
0 1 1 0
0 -1 0 —1
2r f’ f’
UuC) = exp[/ Tydf) = 1 0 ~ 1 0
0
1 0 0 1
onde f' = exp[2rAY2(r? + a?)71/?].
Como a matriz U acima tem a propriedade U3 = —U , assim a holonomia linear que
corresponde, neste caso a total, pois a translacional é nula [88], ¢ dada por
Up = I+ Usen(2nAg) + U*(1 — cos 21 Ay), (5.65)

onde Ag = AY2/\/r2 + a2,
Assim W(C) =Tr(U) = 2(1 4 cos2mAp). Notemos que para a =0, =0 e b = 1 temos
A, = Ayp.
Vamos fazer mais um cdlculo de fator de fase considerando o caminho C' como sendo
do

o segmento radial, isto ¢, = =0 e % = 1. Da eq.(5.40) temos que

I'yds =T',.dr
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e daf usando a eq.(5.60), obtemos

f0 0 O
00 —g 0
T, = : (5.66)
0g 0 0
00 0 f

onde agora, f = arsenfA~2E "1 e g = a?A~Y28 ! cosfsend. Portanto, o fator de fase

para este caso é dado por

expl [ fdr] 0 0 0
o 0 0 exp[— [ gdr] 0
Pl Trr] = 0 expl [ gdr] Of 0
0 0 0 expl [ fdr]
(5.67)
exp[f] 0 0 0
_ 0 0 exp|—¢'] 0 _uo),
0 exp|d/] 0 0
0 0 0 exp|f’]

onde [’ = asend f:lz rATY25 " dr e ¢’ = a®cosfsend f:lz A2y,

Observa-se que para o caso em b =1 e a = 0, espago-tempo de Schwarzschild, temos
I', = 0 e dai, o fator de fase é trivial, para a curva considerada.

Para finalizar vamos fazer o calculo do fator de fase para uma translacao no tempo,

isto é, dr = df = d¢ = 0. Obtém-se, entao, que

[, dat =Tdt.
Da eq.(5.40) temos
0O a 0 O 0100 00 0 O
a 0 0 0 1 000 00 0 O
Ft: = +/8
00 0 p 0 00O 00 0 1 (5.68)
00 —35 0 0 00O 00 -1 0
—OzPa—i-ﬁPg



onde a = —mYE2[r? — a?cos? 0 — rq?/m] e B = acos O 2(2mr — ¢*) L2

Como as matrizes I',, e '3 comutam, entao
U(C) = Pexp [y Iudt]

=exp[(al', + BL3)7] (5.69)
= exp [al',7] exp [BLs7] .

E como (T',)* =T, e (I'y)* = —I', concluimos que o fator de fase para este caminho ¢
U = Lysenhat + Tgsenft + I cosh ar — I' cos 57 (5.70)

Se considerarmos o caso Schwarzschild e o caminho fechado formado por dois
segmentos radiais(unitdrios) e dois segmentos temporais de raios r e r, respectivamente,

obtemos a holonomia

1 1 1 1
U=1+T,senh (—2 - —2> mr + T2 {cosh (—2 - —2) mT — 1} : (5.71)
T2 T T

Deste resultado podemos calcular o loop de Wilson que ¢ dado por

W(C) =2 [1 + cosh (% _ ri%) mT} | (5.72)

Usando todos esses resultados correspondentes as holonomias no espago-tempo de

Schwarzschild, podemos escrever uma expressao geral para U(C'), que se escreve como
U(C) = Pexp % / I () Japdat (5.73)

C

onde J,, sao os geradores do grupo de Lorentz SO(3,1) e I'} sao as conexdes tetradicas.
Dos resultados obtidos neste caso, podemos concluir que as transformacoes holondémicas
para o espago-tempo estdtico, esfericamente simétrico em (3 + 1)-dimensoes, ¢ um
homomorfismo que mapeia a classe de homotopia de todas as curvas considerada sem
rotagoes e boosts em SO(3,1). Como os vetores ordindrios estao no espago-tempo tangente
a variedade e para espacos-tempo estdaticos nao h&d translagoes no tempo, entao as
transformacoes que atuam nesse espaco sao as transformcoes de Lorentz e portanto, as
matrizes de transportes paralelo (fatores de fase) sdo elementos do grupo de Lorentz.

Em geral, os J,,s geram a representacao do grupo de Lorentz que atuam nas quantidades
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transportadas que podem ser vetores ou espinores. No caso de espinores, ao invés do grupo
SO(3,1) temos o grupo de cobertura deste grupo, e portanto, quando temos férmions os
fatores de fase sao elementos do grupo de cobertura do grupo de Lorentz.

Neste capitulo, apresentamos algumas consideragoes sobre a obtencao da métrica de
Kerr, que ¢ a tnica solugao estaciondria das equacoes de Einstein no vazio correspondente
a um buraco negro com rotagao. Fizemos cdlculos dos fatores de fase para diferentes
curvas no espaco-tempo de Kerr-Newman contendo uma corda césmica. E no caso
particular de Kerr, com a curva sendo o circulo equatorial, fizemos uma correcao no cédlculo
da holonomia, pois acrescentamos a contribuicao da parte translacional da holonomia.
Verificamos que as expressoes para as holonomias para o espaco-tempo de Schwarzschild
podem ser obtidas dos resultados de Kerr-Newman fazendo-se a = 0 e ¢ = 0. Finalmente,
exprimimos de maneira suscinta a holonomia para um caminho qualquer no espago-tempo

de Schwarzschild, como um elemento do grupo de Lorentz SO(3,1).
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Conclusoes

Calculamos a transformacao de holonomia para curvas no plano perpendicular ao
cilindro de matéria com rotacao, emostramos que ela depende do momento angular da
fonte, apesar desta grandeza nao afetar o tensor de curvatura, na aproximacao de campo
fraco. Esta dependéncia do fator de fase com uma grandeza que nao afeta a curvatura
da regiao acessivel a particula denominamos de efeito Aharonov-Bohm gravitacional
generalizado.

Encontramos uma solucao para as equacoes de Einstein que corresponde a uma
generaliza¢ao do monopolo global, de Barriola e Vilenkin [34], e entao, usando as varidveis
de contorno calculamos o fator de fase para vidrias curvas no espaco-tempo do monopolo,
e mostramos que o loop de Wilson gravitacional satisfaz & relagao de Mandelstam.
Calculamos ainda, para curvas no espacos-tempos de uma corda quiral e no da para
multicorda quiral, o fator de fase para diversas curvas. Em seguida, apresentamos a
caracterizagao global para o espago-tempo de multicordas quirais paralelas, admitindo
que uma delas posui uma velocidade em relacao as demais. Mostramos, entao, que do
ponto de vista global o espaco-tempo de multicordas quirais equivale ao de uma tnica
corda quiral com relagbes apropriadas entre os parametros (massa, momento angular e
rotagao), os quais caracterizam o sistema de cordas e o que lhe equivale. Esta abordagem
nos fornece uma maneira de entender o espago-tempo de N cordas, do ponto de vista dos
aspectos globais.

Calculamos a fase de Berry para uma particula escalar no espaco-tempo de uma corda
c6ésmica quiral que é uma generalizacao do trabalho de Corichi e Pierri e calculamos,

também, a fase de Berry para os espacos-tempos das multicordas quirais, do cilindro

com rotacdo e em um universo isétropico e mostramos como esta fase depende das
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caracteristicas desses espagos-tempos. Apresentamos também a fase geométrica em alguns
modelos cosmolégicos espacialmente homogéneos.

No contexto da teoria de Kaluza-Klein, verificamos que para o caso do solendide,
a contribuicao da quinta componente é percebida pela holonomia quando circundamos o
solendide pela curva onde dr = dt = dz = 0,apesar da holonomia ter a mesma forma que a
quadri-dimensional. No monopolo global, calculamos as transformacoes de holonomias, e
mostramos que satisfazem as relacoes de Mandelstam. No caso da corda quiral magnética,
demonstramos que a fase é nao-trivial, e que é uma expressao dos efeitos Aharonov-Bohm
eletromagnético e gravitacional combinados, que aparece como consequéncia da unificacao
de Kaluza-Klein.

Para o caso das multicordas quirais magnéticas calculamos a holonomia e obtivemos
um resultado andlogo, em que os efeitos eletromagnético e gravitacional aparecem
simultaneamente e de maneira independente. E apresentamos a caracterizacao global
para o espago-tempo de multicordas, sendo que uma delas estd submetida a um boost.
Calculamos ainda, a fase de Berry associada a uma particula escalar quéantica, induzida
pelos espagos-tempos de uma corda césmica quiral magnética e o de N cordas quirais
magnéticas na teoria de Kaluza-Klein, apds a generalizagao da solugao no contexto da
teoria de Einstein para a teoria pentadimensional de Kaluza-Klein.

Calculamos os fatores de fase para diferentes curvas no espago-tempo de Kerr-Newman
contendo uma corda césmica. E no caso particular de Kerr, com a curva sendo o
circulo equatorial, fizemos uma correcao no cédlculo da holonomia, pois acrescentamos
a contribuicao da parte translacional da holonomia, e exprimimos de maneira suscinta
a holonomia para um caminho qualquer no espaco-tempo de Schwarzschild, como um

elemento do grupo de Lorentz SO(3,1).
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