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A little known symmetry group of Brans-Dicke gravity in the presence of conformally
invariant matter (including electrovacuo) is used as a solution-generating technique,

starting from a known solution as a seed. This novel technique is applied to generate, as
examples, new spatially homogeneous and isotropic cosmologies, a 3-parameter family of
spherical time-dependent spacetimes conformal to a Campanelli-Lousto geometry, and a
family of cylindrically symmetric geometries.
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1. Introduction

Scalar-tensor gravity is the prototype theory alternative to general relativity (GR).

The main motivation to modify gravity comes from cosmology: to explain the

present acceleration of the universe, the GR-based ΛCDM model introduces a com-

pletely ad hoc dark energy.1 Modifying gravity is an alternative.2,3 The most pop-

ular approach is metric f(R) gravity, which is an ω = 0 Brans-Dicke (BD) theory

(with a potential) in disguise. But this is not the only fundamental motivation: all

attempts to quantize gravity introduce corrections to GR, consisting of quadratic

terms in the curvature (giving rise to Starobinsky inflation4), scalar fields, or non-

local terms (for example, the low-energy limit of bosonic string theory is an ω = −1

BD theory5,6). What is more, Dirac’s idea of varying fundamental “constants” of

physics7 is partially realized in scalar-tensor gravity, where the scalar degree of free-

dom φ ∼ G−1 is dynamical. More recently, with quantum gravity in mind, it has

been found that generalized BD solutions describe asymptotically Lifschitz black

holes.8

When available, analytic solutions provide insight into various aspects of a the-

ory, but they are relatively rare in scalar-tensor gravity. Therefore, it is valuable
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to find new solution-generating techniques. We explore a new one based on a

1-parameter symmetry group of BD theory. As an application, we found three

new families of solutions of BD theory with potential V ∝ φβ , and of f(R) = Rn

gravity.9 They include Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmolo-

gies with power-law or exponential scale factor; spherical, time-dependent, asymp-

totically FLRW solutions; and axially symmetric (cosmic string-like) geometries.

2. Symmetry Group of Brans-Dicke Theory

The action of vacuum BD theory with a potential

SBD =

∫
d4x
√−g

[
φR − ω

φ
gab∇aφ∇bφ− V (φ)

]
(1)

is invariant in form under the transformation (gab, φ)→
(
g̃ab, φ̃

)
, where

g̃ab = Ω2gab = φ2αgab , (2)

φ̃ = φ1−2α , α �= 1/2 (3)

and where we follow the notation of Ref.10. Using the standard transformation

properties under conformal transformations

g̃ab = Ω−2gab ,
√
−g̃ = Ω4√−g , (4)

R̃ = Ω−2

(
R− 6�Ω

Ω

)
, (5)

one obtains

R = φ2αR̃− 6α(1− α)

(1− 2α)2
φ6α−2g̃ab∇̃aφ̃∇̃bφ̃+

6α

1− 2α
φ4α−1�̃φ̃ . (6)

The last term contributes only a total divergence to
√−g φR in the action (1),

6α

1− 2α

√
−g̃ �̃φ̃ =

6α

1− 2α
∂μ

(√
−g̃ g̃μν∂ν φ̃

)
(7)

and the BD action (1) then becomes

SBD =

∫
d4x
√
−g̃
{
φ̃R̃−

[
ω

(1− 2α)2
+

6α(1− α)

(1− 2α)2

]

· g̃
ab

φ̃
∇̃aφ̃∇̃bφ̃− φ̃

−4α
1−2α V (φ)

}
. (8)

By redefining the BD coupling and the potential according to

ω̃(ω, α) =
ω + 6α(1 − α)

(1 − 2α)2
, (9)

Ṽ (φ̃) = φ̃
−4α
1−2αV

(
φ̃

1
1−2α

)
, (10)
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we write

SBD =

∫
d4x
√
−g̃
[
φ̃R̃− ω̃

φ̃
g̃ab∇̃aφ̃∇̃bφ̃− Ṽ (φ̃)

]
, (11)

i.e., the action (1) is invariant in form. The transformations (3) form a 1-parameter

Abelian group.11,12

A special case is given by a power-law potential V (φ) = V0φ
n, which becomes

Ṽ (φ̃) = V0φ̃
ñ with ñ = n−4α

1−2α (and is invariant if n = 2).

2.1. Electrovacuum Brans-Dicke theory

Electrovacuum BD theory is described by the action

SBD =

∫
d4x
√−g

[
φR− ω

φ
gab∇aφ∇bφ− V (φ)− 1

4
F abFab

]
; (12)

since F̃ab = Fab and
√−g F abFab =

√−g̃ F̃ abFab, also
√−gL(m) remains invariant

under the transformations (3).

2.2. Conformally invariant matter

For simplicity, let us use now the field equations

Rab − 1

2
gabR =

8π

φ
Tab +

ω

φ2

(
∇aφ∇bφ− 1

2
gabg

cd∇cφ∇dφ
)

+
1

φ
(∇a∇bφ− gab�φ)− V

2φ
gab , (13)

�φ =
1

2ω + 3

[
8πT

φ
+ φ

dV

dφ
− 2V

]
. (14)

The symmetry transformation (3) gives

�̃φ̃ =
1

2ω̃ + 3

[
8π

1− 2α
φ̃

−4α
1−2αT + φ̃

dṼ

dφ̃
− 2Ṽ

]
(15)

and the field equations are conformally invariant only if T = 0. Moreover,

R̃ab − 1

2
g̃abR̃ =

8π

φ̃
1

1−2α

Tab +
ω̃

φ̃2

(
∇̃aφ̃∇̃bφ̃− 1

2
g̃abg̃

cd∇̃cφ̃∇̃dφ̃
)

+
1

φ̃

(
∇̃a∇̃bφ̃− g̃ab�̃φ̃

)
− Ṽ

2φ̃
g̃ab (16)

where T̃ab = Ω−2 Tab, so the first term in the right hand side becomes 8πT̃ab/φ̃ and

it is invariant. Hence, the field equations are invariant for arbitrary V (φ) but only

for conformally invariant matter.
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3. Example: Brans-Dicke Cosmology

In the case of FLRW cosmology, the Lagrangian reduces to a point-like one, but the

symmetry (3) is not a Noether nor a Hojman symmetry. Moreover, the classical

symmetry is broken by Wheeler-DeWitt quantization in minisuperspace: quantum

effects cause an anomalous symmetry breaking similar to that occuring in condensed

matter systems.13

This time our “seed” is14,15

ds2 = −dt2 + S2(t)

(
dr2

1− kr2 + r2dΩ2
(2)

)
(17)

with power-law scale factor S(t). We have vacuum BD theory with V ≡ 0 and

S(t) = S0t
p , (18)

φ(t) = φ0t
q . (19)

The symmetry transformation yields

ds̃2 = −t2αqdt2 + S2
0t

2(p+αq)

(
dr2

1− kr2 + r2dΩ2
(2)

)
; (20)

we introduce a new time τ with t = (αq + 1)
1

αq+1 τ
1

αq+1 , then the new solution is

recast in the form

ds̃2 = −dτ2 + S̃2
0τ

2(p+αq)
αq+1

(
dr2

1− kr2 + r2dΩ2
(2)

)
, (21)

φ̃(τ) = (αq + 1)
q(1−2α)
αq+1 φ1−2α

0 τ
q(1−2α)
αq+1 , (22)

or S̃(τ) = S̃0τ
p̃, φ̃(τ) = φ̃0τ

q̃ with

p̃ =
p+ αq

αq + 1
, q̃ =

q(1 − 2α)

αq + 1
, (23)

S̃0 = (αq + 1)
p+αq
αq+1 S0 , φ̃0 = (αq + 1)

q(1−2α)
αq+1 φ1−2α

0 . (24)

4. A New Family of Spherical Time-Dependent Solutions

Begin now from a special case of a family of spherical, time-dependent solutions of

vacuum BD gravity conformal to the Fonarev16 spacetime of GR17

ds2 = −A(r)
1√

1+4d2
(2d− 1√

|2ω+3| ) e
4dat(2d− 1√

|2ω+3| )dt2

+ e
2at(1− 2d√

|2ω+3| )
[
A(r)

−1√
1+4d2

(2d+ 1√
|2ω+3| )dr2

+A(r)
1− 1√

1+4d2
(2d+ 1√

|2ω+3| )r2dΩ2
(2)

]
, (25)

φ(t, r) = φ0 e
4dat√
|2ω+3|A(r)

1√
|2ω+3|(1+4d2) , (26)
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where A(r) = 1 − 2m/r, V (φ) = V0φ
β , β = 2

(
1− d√|2ω + 3|

)
. Our “seed” is

the special case with a �= 0 and with time dependence eliminated by the parameter

choice

d =
(

2
√
|2ω + 3|

)−1

=
√
|2ω + 3|/2 (27)

simultaneously, which gives ω = −1 (this is the low-energy limit of the bosonic

string, so presumably this solution has a stringy analogue). The scalar field remains

time-dependent, β = 1, and V (φ) = V0φ (corresponding to a cosmological constant).

Then

ds2 = −dt2 +A(r)−
√
2dr2 +A(r)1−

√
2r2dΩ2

(2) , (28)

φ(t, r) = φ0 e2atA(r)1/
√
2 , (29)

which is a special case17 of the Campanelli-Lousto geometry.18 The symmetry trans-

formation (3) applied to this seed now generates a new solution with

Ṽ (φ̃) = V0 φ̃
1−4α
1−2α , ω̃ =

6α(1− α) − 1

(1− 2α)2
(30)

given by

ds̃2 = −e4αatA(r)α
√
2dt2 + e4αat

[
A(r)−

√
2(1−α)dr2

+A(r)1−
√
2(1−α)r2dΩ2

(2)

]
, (31)

φ̃(t, r) = φ̃0 e2a(1−2α)tA(r)
1−2α√

2 , φ̃0 = φ1−2α
0 . (32)

If a �= 0, we can define the new time τ = e2αat

2αa to obtain

ds̃2 = −A(r)α
√
2dτ2 + (2αaτ)2

[
A(r)−

√
2(1−α)dr2 +A(r)1−

√
2(1−α)r2dΩ2

(2)

]
,

(33)

φ̃(τ, r) = φ∗ τ
1−2α

α A(r)
1−2α√

2 , φ̃∗ =
[
(2αa)

1/α
φ0

]1−2α

. (34)

If m → 0, or for r 	 m, this geometry reduces to a spatially flat FLRW universe

with linear scale factor S(τ) = 2αaτ and the scalar field

φ̃(τ, r) = φ∗ τ
1−2α

α (35)

acts asymptotically as a perfect fluid with P = −ρ/3.

5. Conclusions

The 1-parameter Abelian symmetry group formed by the transformations (2) and

(3) as α varies offers a new solution-generating technique for (electro)vacuum BD

gravity with a potential V (φ). The symmetry transformation (3) introduces one

new parameter α in addition to those already present in the seed solution. We have
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found a new 2-parameter family of spherical time-dependent, asymptotically FLRW

solutions and also new FLRW solutions with power-law (or exponential9) scale

factor. New cylindrical (cosmic string-like) solutions have also been found and they

are reported in Ref.9.

By using the BD representation of f(R) gravity, it can be shown that these new

solutions are also solutions of f(R) = Rn theory.9 The mathematical technique

exposed does not, of course, guarantee that the new solutions are physically inter-

esting, but it constitutes a new tool. Future work will explore new applications of

the solution-generating technique presented here.
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