
 

Fermionic model of unitary transport of qubits from a black hole

Bogusław Broda *

Department of Theoretical Physics, Faculty of Physics and Applied Informatics,
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Inspired by a recent model of Osuga and Page, we propose an explicitly unitary fermionic toy model for
transferring information from a black hole to the outgoing radiation. The model treats the unitary evolution
as a composition of the Hawking pair creation outside the black hole and of pair annihilation inside the
black hole.
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I. INTRODUCTION

The black hole (BH) information (loss) paradox con-
cerns difficulties around the issue of unitarity of BH
evaporation (for recent reviews see e.g., [1–4]). There
are a lot of approaches proposed to date to analyze and
resolve the paradox—some of them suggest to study
simplified situations embodied in various qubit models
(see e.g., [5–12]). A successful model of BH evolution
should include a description of particle pair production
according to the Hawking prescription, following gradual
evaporation (“vanishing”) of the BH, and it should be
unitary. A model strictly motivated by actual physical
phenomena would certainly be greatly appreciated, but
in fact any model respecting at least general physical laws,
even without any real physical mechanism built in, would
be welcome as a “proof of concept.”
Recently Osuga and Page [12] (inspired by [13]) have

proposed an explicitly unitary toy qubit transport model for
BH evaporation (without firewalls). Another version of the
model (with additional features) has been presented in [14].
In the present paper, building on both models, we propose
yet another toy qubit transport model for BH evaporation,
which is explicitly unitary. Since the model, by assumption,
operates on qubits and the particle pair production scheme
exactly follows the Hawking mechanism for fermions, we
shall work in terms of fermionic modes rather than bosonic
ones. A new and important feature of our present proposal
is explicit incorporation of the (fermionic) Hawking pair
creation mechanism into the chain of unitary processes. In
other words, the global unitary evolution considered is

given by the composition U ¼ U00 ·U0, where U0 corre-
sponds to creation of fermionic pairs outside a BH
according to the Hawking prescription, whereas U00 cor-
responds to annihilation of fermion pairs inside the BH (as
described in [14]).
For the reader’s convenience, we will follow the notation

of [12] (and [14]) as closely as possible.

II. THE TOY MODEL

An initial total quantum state describing a newly formed
(fermionic) BH and “fermionic radiation” in the vacuum
state is assumed in the following (partially product)
form [14] (cf. [12]):

jΨi ¼
X1

q1;q2;…;qN¼0

Aq1q2���qN ⊗
N

k¼1
jqkiak ⊗ jOibkck : ð1Þ

Here Aq1q2���qN are amplitudes for inner BH modes ak,
which encode a quantum state of the BH, and the vacuum
state for fermionic radiation is

jOibkck ≡ j0ibk ⊗ j0ick ; ð2Þ

where the Hawking (fermionic) modes bk and ck are
infalling and outgoing modes, respectively. The same
range of indices (k ¼ 1; 2;…; N) postulated for BH modes
ak and bk, ck pairs is not only a convenient computational
simplification in our model but also it is a physically
justified assumption, at least approximately (see e.g., [14]).
In the language of k-mode blocks, the first step of

(unitary) evolution denoted by U0
k yields the Hawking

(fermion) pair for a single “k” mode, i.e.,

U0
kðjqkiak ⊗ jOibkckÞ ¼ jqkiak ⊗ jH1ibkck ; ð3Þ

where the fermionic Hawking state can be chosen in the
form [cf. Eq. (116) in [15] ]
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jH1ibkck ≡ cosωkj0ibk ⊗ j0ick þ sinωkj1ibk ⊗ j1ick ; ð4Þ

with ωk determined by BH parameter(s).
The total (i.e., for all modes k) U0-evolution yields by

virtue of (3) the total (intermediate) state

jΨ0i ¼
X1

q1;q2;…;qN¼0

Aq1q2���qN ⊗
N

i¼1
jqkiak ⊗ jH1ibkck : ð5Þ

We could possibly consider a slight generalization of the
unitary evolution (3) allowing some unitary transformation
U 0
kjqkiak of the internal BH mode ak on the rhs of (3), but

we ignore this option, because it would merely give rise to a
redefinition of A amplitudes (Aq1q2���qN ↦ A0

q1q2���qN ) in the
final state.
The second step of (unitary) evolution denoted by U00

k
yields particle pair annihilation inside the BH [see [14] and
cf. Eq. (3.3) in [12,13] ], i.e.,

U00
kðjqkiak ⊗ jH1ibkckÞ ¼ jOiakbk ⊗ jqkick ; ð6Þ

where the vacuum state jOiakbk is defined analogously to
(2) (with appropriate replacements of modes).
Consequently, for the entire evolution Uk ≡U00

k · U
0
k we

have

Ukðjqkiak ⊗ jOibkckÞ ¼ jOiakbk ⊗ jqkick ; ð7Þ
and the final total state assumes the form

jΨ00i ¼
X1

q1;q2;…;qN¼0

Aq1q2���qN ⊗
N

k¼1
jOiakbk ⊗ jqkick : ð8Þ

Equation (8) means that all information has been trans-
ferred from a BH to the outgoing radiation, and the BH is in
the vacuum state.
Obviously, the total operators U0, U00, U are the follow-

ing tensor products of the above-defined k-mode operators,

U0 ¼ ⊗
N

k¼1
U0

k; U00 ¼ ⊗
N

k¼1
U00

k; U ¼ ⊗
N

k¼1
U00

k · U
0
k ≡ ⊗

N

k¼1
Uk;

ð9Þ

respectively, and

U0jΨi ¼ jΨ0i; U00jΨ0i ¼ jΨ00i;
UjΨi≡U00 ·U0jΨi ¼ jΨ00i: ð10Þ

III. UNITARY OPERATORS

We shall now explicitly derive the implicitly defined
unitary operators U0

k, U
00
k and Uk. To this end let us first

observe the following elementary fact from linear algebra:
namely, for each pair of orthonormal bases fjEΛig, fjE0

Λig

(hEΛjEΛ0 i ¼ hE0
ΛjE0

Λ0 i ¼ δΛΛ0 ) in a finite dimensional
Hilbert space H we can construct an operator

U ¼
X
Λ
jE0

ΛihEΛj; ð11Þ

which is explicitly unitary. Really, we can easily check that
e.g.,

U† ·U ¼
X
Λ;Λ0

jEΛihE0
ΛjE0

Λ0 ihEΛ0 j ¼
X
Λ;Λ0

δΛΛ0 jEΛihEΛ0 j ¼ I:

ð12Þ
Since the total Hilbert space H is a tensor product of N
k-mode Hilbert spaces Hk, i.e., H ¼⊗N

k¼1 Hk, we can
confine our construction to the single k-mode space
Hk ¼ Hak ⊗ Hbk ⊗ Hck , where dimCHk ¼ 2 · 2 · 2 ¼ 8.
Then, our unitary operators will be defined by three
eight-dimensional orthonormal (k-dependent) bases in Hk.
The first base, fjEΛikg7Λ¼0, assumes the following

standard form:

jE0ik ¼ j0iak ⊗ j0ibk ⊗ j0ick
jE1ik ¼ j0iak ⊗ j0ibk ⊗ j1ick

..

.

jE7ik ¼ j1iak ⊗ j1ibk ⊗ j1ick ð13Þ
(or jEΛik ¼ jΛiakbkck, in short).
The second (τ-dependent) base, fjE0

ΛðτÞikg7Λ¼0, is given
by (for further convenience, we have also included expan-
sions in terms of τ)

jE0
0ðτÞik ¼ j0iak ⊗ ½cosðωkτÞj0ibk ⊗ j0ick

þ sinðωkτÞj1ibk ⊗ j1ick �
≡ j0iak ⊗ jHτibkck
≡ cosðωkτÞjE0ik þ sinðωkτÞjE3ik
¼ jE0ik þ ωkτjE3ik þOðτ2Þ

jE0
1ik ¼ j0iak ⊗ j0ibk ⊗ j1ick ≡ jE1ik

jE0
2ik ¼ j0iak ⊗ j1ibk ⊗ j0ick ≡ jE2ik

jE0
3ðτÞik ¼ j0iak ⊗ ½− sinðωkτÞj0ibk ⊗ j0ick

þ cosðωkτÞj1ibk ⊗ j1ici �
≡ j0iak ⊗ jH⊥

τ ibkck
≡ cosðωkτÞjE3ik − sinðωkτÞjE0ik
¼ jE3ik − ωkτjE0ik þOðτ2Þ

jE0
4ðτÞik ¼ j1iak ⊗ ½cosðωkτÞj0ibk ⊗ j0ick

þ sinðωkτÞj1ibk ⊗ j1ick �
≡ j1iak ⊗ jHτibkck
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≡ cosðωkτÞjE4ik þ sinðωkτÞjE7ik
¼ jE4ik þ ωkτjE7ik þOðτ2Þ

jE0
5ik ¼ j0iak ⊗ j0ibk ⊗ j1ick ≡ jE5ik

jE0
6ik ¼ j0iak ⊗ j0ibk ⊗ j1ick ≡ jE6ik

jE0
7ðτÞik ¼ j1iak ⊗ ½− sinðωkτÞj0ibk ⊗ j0ick

þ cosðωkτÞj1ibk ⊗ j1ick �
≡ j1iak ⊗ jH⊥

τ ibkck
≡ cosðωkτÞjE7ik − sinðωkτÞjE4ik
¼ jE7ik − ωkτjE4ik þOðτ2Þ; ð14Þ

where jH⊥
τ i denotes a Hawking state orthogonal to the

Hawking state jHτi. Since, from a geometrical point of
view, ωk is an angle of rotation in the eight-dimensional
Hilbert space Hk for the k-mode sector, the auxiliary
“time” parameter τ is dimensionless. More precisely, τ is
a scale parameter governing the evolution, and τ ∈ ½0; 1�.
In particular, for τ ¼ 1 the evolution is supposed to be
completed.
The third base, fjE00

ΛðτÞikg7Λ¼0, is given by

jE00
0ik ¼ j0iak ⊗ j0ibk ⊗ j0ick ≡ jE0ik

jE00
1ðτÞik ¼ cos

�
πτ

2

�
j0iak ⊗ j0ibk ⊗ j1ick − sin

�
πτ

2

�
j1iak

⊗ j0ibk ⊗ j0ick
≡ cos

�
πτ

2

�
jE1ik − sin

�
πτ

2

�
jE4ik

¼ jE1ik −
πτ

2
jE4ik þOðτ2Þ

jE00
2ik ¼ j0iak ⊗ j1ibk ⊗ j0ick ≡ jE2ik

jE00
3ik ¼ j0iak ⊗ j1ibk ⊗ j1ick ≡ jE3ik

jE00
4ðτÞik ¼ sin

�
πτ

2

�
j0iak ⊗ j0ibk ⊗ j1ick þ cos

�
πτ

2

�
j1iak

⊗ j0ibk ⊗ j0ick
≡ cos

�
πτ

2

�
jE4ik þ sin

�
πτ

2

�
jE1ik

¼ jE4ik þ
πτ

2
jE1ik þOðτ2Þ

jE00
5ik ¼ j1iak ⊗ j0ibk ⊗ j1ick ≡ jE5ik

jE00
6ik ¼ j1iak ⊗ j1ibk ⊗ j0ick ≡ jE6ik

jE00
7ik ¼ j1iak ⊗ j1ibk ⊗ j1ick ≡ jE7ik: ð15Þ

Now we define (τ-dependent) unitary operators accord-
ing to the recipe (11) as follows:

U0
kðτÞ ¼

X7
Λ¼0

jE0
ΛðτÞikhEΛjk; ð16Þ

U00
kðτÞ ¼

X7
Λ¼0

jE00
ΛðτÞikhE0

ΛðτÞjk; ð17Þ

and

UkðτÞ≡U00
kðτÞ ·U0

kðτÞ¼
X7

Λ;Λ0¼0

jE00
ΛðτÞihE0

ΛðτÞjE0
Λ0 ðτÞihEΛ0 j

¼
X7
Λ¼0

jE00
ΛðτÞihEΛj: ð18Þ

We can easily confirm that for τ ¼ 1 the (explicitly) unitary
operators (16), (17) and (18) act according to the rules (3),
(6) and (7), respectively. For example, for U0

kð≡U0
kð1ÞÞ we

confirm that

U0
kðjqkiak ⊗ jOibkckÞ
¼ U0

kf½ð1 − qkÞj0iak þ qkj1iak � ⊗ jOibkckg

¼
X7
Λ¼0

jE0
Λð1ÞikhEΛjk½ð1 − qkÞjE0ik þ qkjE4ik�

¼ ð1 − qkÞjE0
0ð1Þik þ qkjE0

4ð1Þik ¼ ½ð1 − qkÞj0iak
þ qkj1iak � ⊗ jH1ibkck

¼ jqkiak ⊗ jH1ibkck ; ð19Þ

as expected [see (3)].

IV. PHYSICAL PICTURE

Now, let us determine a corresponding (infinitesimal)
generator Hk (“Hamiltonian”) for the unitary evolution
operator UkðτÞ, i.e.,

UkðτÞ ¼ Ik − iτHk þOðτ2Þ: ð20Þ

To this end we will utilize expansions (in terms of the
time parameter τ) of the bases fjE0

ΛðτÞig and fjE00
ΛðτÞig

given in (14) and (15), respectively, around the standard
base fjEΛig.
To make a comparison to a known case (i.e., to the

fermion squeezing operator [16,17]), let us derive the form
of the generator H0

k for the unitary transformation U0
kðτÞ

(16). By virtue of (16), (14) and (20) (with unprimed
quantities replaced by primed ones) we get

U0
kðτÞ ¼ Ik − iτiωkðjE3ikhE0jk − jE0ikhE3jk

þ jE7ikhE4jk − jE4ikhE7jkÞ þOðτ2Þ: ð21Þ

Introducing the identification,
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j0ixkh0jxk ¼ x̂kx̂
†
k

j0ixkh1jxk ¼ x̂k

j1ixkh0jxk ¼ x̂†k

j1ixkh1jxk ¼ x̂†kx̂k; ð22Þ

for the modes xk ¼ ak; bk; ck (k ¼ 1; 2;…; N), from (21)
we obtain a representation of the operator H0

k in the Fock
space, i.e.,

Ĥ0
k ¼ iωkb̂

†
kĉ

†
k þ H:c:; ð23Þ

where “H.c.” means Hermitian conjugate. The operator
(23) is known as a two-mode fermion squeezing operator,
responsible for creation of fermionic pairs in the framework
of the Hawking effect (see e.g., Sec. 5.2 in [15]).
Let us now derive the generator Hk, and its Fock space

counterpart Ĥk, for the entire evolution UkðτÞ. By virtue of
(18), (15) and (20) we obtain

UkðτÞ ¼ Ik − iτ
iπ
2
ðjE1ikhE4jk − jE4ikhE1jkÞ þOðτ2Þ:

ð24Þ

Implementing the identification (22) we obtain the corre-
sponding Fock space generator (Hamiltonian)

Ĥk ¼
iπ
2
âkb̂kb̂

†
kĉ

†
k þ H:c: ð25Þ

One shouldnote that the operator Ĥk is 4-linear,which should
be contrasted with a bilinear structure of the squeezing
operator (23) and a trilinear structure of the operator
discussed in the context of the Hawking effect in [18].
According to (9) the total Hamiltonian is Ĥ ¼ P

N
k¼1 Ĥk.

Coming back to the global description of the BH unitary
evolution, we would like to draw the reader’s attention to a
possible interpretation, depicted in Fig. 1. Namely, Fig. 1,
in an intuitive way, presents the entire unitary processUk of
qubit transfer from a BH to the outgoing radiation as a
composition of the two processes, U0

k and U00
k , i.e., the

Hawking particle pair creation outside the BH and later
particle pair annihilation inside the BH, respectively. A
Feynman-like diagram/line depicts the transfer of a qubit in
the spirit of a tunneling phenomenon.
Taking into account “reversibility” of unitary processes,

the reader could rightfully expect that at some moment of
the evolution the “reverse” process of a given one should
also occur, and a “reverse diagram” to the one presented
in Fig. 1 should also appear. The unitary transformations
introduced in Sec. III are actually rotations in eight-
dimensional complex vector spaces with rotation angles
proportional to the time parameter τ. Then, if we start from
a vector corresponding to an ak mode and “rotate” it onto a
ck mode, and next we stop the evolution, we effectively

swap one particle for another. If we instead further
continued the evolution we would return to the ak mode
back. Therefore, we have to assume that the proposed
evolution is only valid within a limited period of time τ,
namely τ ∈ ½0; 1�. That limitation could be justified by the
assumption that the evolution is “effective” rather than
“fundamental” in the sense that its temporary form is
determined by the current structure of spacetime and the
distribution of matter. Then, when ak modes become
transformed into ck modes, the situation changes and the
evolution in the proposed form switches off. Moreover, one
should also note that the whole result is influenced be the
initial state of the system, i.e., we start with modes only
inside the black hole, while all other modes are in the
vacuum state. Such an assumption corresponds to the
idealized (model) situation assuming that in the beginning
of the evolution we only deal with a (single) black hole
(represented by ak modes occupied) and empty spacetime
outside the black hole (ck modes empty).

V. FINAL REMARKS

Primarily inspired by a recent paper of Osuga and Page
[12], in particular by their Eq. (3.3), essentially the same as
Eq. (3.3) in [13] (accidental coincidence of the numbers of
the equations!), we have proposed a unitary toy model of
BH evaporation, which is an extension of the model
introduced in [14]. By virtue of the construction the model
is explicitly unitary and it describes transport of qubits from
a BH to the outgoing radiation. For interpretational
simplicity and a more direct relation to particle language,
we have decided to formulate our qubit model in terms of
fermions. As a by-product of our construction, for possible
reference to other models of the Hawking effect and BH
evaporation, besides the global version of the evolution
operator, we have determined its infinitesimal form
(Hamiltonian). In turn the global evolution, involving the
Hawking creation as well as latter annihilation inside the
BH, can intuitively be interpreted as a tunneling phenome-
non as depicted in Fig. 1.

FIG. 1. A Feynman-like diagram/line (the S-shaped thick line
with an arrow) depicts the entire qubit transport processUk, i.e., a
composition of the Hawking particle pair creation U0

k outside the
BH and of particle pair annihilationU00

k inside the BH, in the spirit
of a tunneling phenomenon.
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