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2 1. Introduction

1 Introduction

During the past century, there has been great advancement in the understanding of
the laws of nature at all length scales. General theory of relativity, developed by
Einstein in 1916, revolutionized our understanding of gravity by no longer treating
it as a force, but as the curvature of spacetime itself. At the same time, quantum
mechanics was developed to describe particles, the fundamental building blocks of
matter, at the smallest scales possible, which eventually led to the development of
quantum field theory and the Standard Model of particle physics. Both of these
theories have agreed with experiments to extremely high precision. General relativity
has passed numerous tests concerning large scale objects such as stars and black holes
or even the universe as a whole. On the other hand, the Standard Model appears
to be unbreakable with our current particle experiments. Nevertheless, this is not
the end of the story, because these two descriptions of Nature are fundamentally
incompatible, which is against our aspiration of a unified theory of everything.

The search for a unified description of standard model and general relativity
has a long history. Such a description, a quantum theory of gravity, is sometimes
called the holy grail of physics. It would unify the three forces of the standard
model, electromagnetic, strong and weak forces, with gravity. The unification is made
difficult by the fact that at high energies, general relativity cannot be quantized by the
traditional rules of quantum field theory, which is the language of the Standard Model.
The conversion of a classical theory to a quantum one was not a problem for example
in the case of electromagnetism, because the quantum theory produced is sensical and
produces finite predictions when treated properly. However for general relativity, the
treatment that worked for electromagnetism is no longer enough, because we obtain
too many infinities than we are able to handle. Hence something completely new is
required to quantize gravity.

The quantization is achieved by string theory, which is a vast generalization of
the framework of quantum field theory. Traditional quantum field theories describe
point particles that propagate in spacetime tracing out one dimensional lines, world-
lines, that intersect each other representing interactions. In string theory, the point
particles are replaced by two dimensional extended objects, strings, which at large
scales act like particles so that string theory agrees with all known physics at low
energy scales. Instead of worldlines, the strings trace out smooth two dimensional
manifolds, worldsheets, when propagating in spacetime. The worldsheets solve mul-
tiple problems: ultraviolet divergences are absent in string theory, because the sharp
particle interaction vertices are smoothed out, but most notably, quantization of the
worldsheet leads to a theory of quantum gravity in spacetime, which does not happen
by quantizing the one dimensional worldlines of quantum field theory.

Because string theory is a theory of quantum gravity, spacetime is no longer
fundamental, but emerges from the dynamics of the strings in suitable limits. A
model built within string theory might contain multiple limits that describe different
classical spacetimes and, in general, there is no classical spacetime at all. Making
sense of how gravity and spacetime emerge is a complicated task, however, there has
been substantial progress made in terms of dualities.

A duality can be thought of as a dictionary, which translates mathematical lan-
guage between two a priori different theories. The duality maps physical quantities
from one theory to another usually in a very non-trivial manner. Regardless, the exis-
tence of a duality implies that the theories are equivalent, even if they look completely
different. They both describe the same physical phenomenon, but the information
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is encoded in different ways so that one of the theories might be more suitable to
extract physically meaningful information than the other. For example in some limit,
the relevant calculations might get increasingly complex in one of the theories, while
in the other they get simpler. Therefore dualities provide a useful tool in the study
of physical systems.

In 1997, Maldacena discovered a duality relating a string theory to a conformal
field theory (CFT), which became known as the AdS/CFT correspondence [1]. Theo-
ries related by an AdS/CFT correspondence live in different dimensional spacetimes:
string theory lives in a curved anti-de Sitter (AdS) space (the bulk), while the CFT
lives on its flat boundary, whose dimension compared to the bulk AdS is smaller by
one. But what makes the duality so useful, is that string theory includes gravity,
while the CFT does not. This means that quantum gravity is somehow encoded
in the structure of the CFT! The duality is made more tolerable in a special limit
of the CFT, in which the string theory reduces to classical general relativity in an
AdS background with its curvature obeying Einstein’s equations. Therefore using the
AdS/CFT dictionary that relates certain CF'T quantities to classical geometric quan-
tities in general relativity, we are able to study how classical gravity emerges from
quantum gravity. The key concept in this endeavor has turned out to be quantum
entanglement.

In 1973, before the revolutions of string theory, Bekenstein argued based on a
thought experiment that the entropy of a black hole in general relativity is propor-
tional to the area of its horizon [2]. The following year, Hawking showed that in
the presence of quantum fields, black holes radiate with a temperature consistent
with Bekenstein’s definition of entropy [3]. Today known as the Bekenstein-Hawking
entropy, its area dependence is counterintuitive, because entropy in classical thermo-
dynamics is an extensive quantity, growing linearly with the volume of the system.
According to the statistical interpretation of entropy due to Boltzmann, the mi-
crostates of the black hole should hence live on its horizon. General relativity does
not actually tell what these fundamental bits of spacetime are, but it appears to be
a thermodynamical description of them.

Ordinary entropy is also extensive in quantum field theories, because they are
local and the same amount of information is contained at each spacetime point. But
quantum field theories also contain a very non-local property called entanglement,
where the fields are correlated across long distances. These correlations can be mea-
sured by entanglement entropy and in 1986 it was shown that entanglement entropy
of quantum fields outside of a black hole, when properly regulated, is proportional to
the horizon area [4]. Therefore entanglement entropy of quantum fields might play a
role in the origin of black hole entropy.

All of these ideas culminated in 2006, when Ryu and Takayanagi proposed that
in the context of AdS/CFT, entanglement entropies of CFT fields living in a closed
subregion are calculated by the area of a minimal surface in general relativity [5, 6].
The result is known as the Ryu-Takayanagi (RT) formula and it is an example of
an entry in the AdS/CFT dictionary. When applied to a thermal state of the CFT,
the minimal surface coincides with a black hole horizon in AdS space, which shows
that Bekenstein-Hawking entropy of an AdS black hole is the same as CFT thermal
entropy. This provides an interpretation for the microstates of an AdS black hole in
terms of the quantum degrees of freedom of the dual CFT.

Area of a minimal surface is a property of classical spacetime so maybe it is
entanglement that builds spacetime. By using the Ryu-Takayanagi formula, van
Raamsdonk analysed the dual geometry and showed that, when the amount of CFT
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entanglement is decreased, the spacetime is stretched like rubber with distances in-
creasing and cross sections decreasing in area [7, 8]. Eventually in the limit of no
entanglement, the spacetime snaps in the middle. Hence it looks like entanglement
is the glue that holds the fabric of spacetime together.

Can we take these ideas one step further to include dynamics of the spacetime
as well? Variations in the entanglement correspond to curvature variations in AdS
space, but do these variations induced by entanglement obey Einstein’s equations
as dictated by general relativity? The answer is yes, at least for linear and second
order perturbations in the geometry [9, 10, 11]. Also the reason why gravity couples
to all kinds of matter equally is a result of the universality of entanglement [12]!
These results inspired a similar derivation of Einstein’s equations in Minkowski and
de Sitter spaces [13], for which there are no known descriptions in terms of a dual
field theory. A comprehensive review of these results and the required preliminaries
is the topic of this thesis.

2 Entanglement entropy in quantum field theories

Originally entropy was defined in terms of thermodynamical quantities to describe a
macroscopical system. It was shown that the entropy of an isolated system cannot
decrease, a fact, which became known as the second law of thermodynamics. At
the end of the 19" century, Boltzmann introduced the famous statistical interpreta-
tion of entropy in terms of the number of microstates available for the system.! In
a thermodynamical system, there is a large variety of microstates corresponding to
the same macroscopic configuration and entropy measures the number of these mi-
crostates. A macroscopic observer cannot keep track of the microstates and entropy
is a measure of this ignorance. The second law of thermodynamics is therefore only
a statisical result, true for a large number of particles, and violations are suppressed
exponentially.

The original Boltzmann definition of entropy is based on the microcanonical en-
semble describing an isolated system, whose microstates are all assumed to be equally
probable. It is more common that the system is not fully isolated, but interacts with
its environment by exchanging heat. When such a system reaches equilibrium, it is
described by the canonical ensemble, where larger system energies are exponentially
less likely according to the Boltzmann distribution. The uniform distribution of the
isolated system is no longer applicable due to the random interactions between the
system and its environment. Entropy in the canonical ensemble is measured by the
Gibbs entropy, which generalizes Boltzmann entropy to arbitrary probability distri-

butions.?

An analogous situation appears in the description of two quantum systems. The
combined system is described by a state vector living in a tensor product space built
from the Hilbert spaces of the individual systems. There are always entanglement
correlations between the two systems due to the tensor product structure of the
Hilbert space. Taking one of the systems to be the environment and tracing it out,
we obtain an effective description for the second system. In the effective description,
the entanglement correlations are ignored analogously to the environment interactions
in the canonical ensemble and to measure these correlations, one defines an analogous
entropy called entanglement entropy. Entanglement entropy is von Neumann entropy,

'Boltzmann entropy is given by S = logW (kg = 1), where W is the number of microstates of
the system.

2Gibbs entropy of a probability distribution p; is defined as § = — >, pilog pi, which reduces to
the Boltzmann entropy given a uniform distribution p; = 1/W.
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which is just Gibbs entropy in the language of quantum theory.?

2.1 Definition of entanglement entropy

To formally define entanglement entropy, we need to introduce the concept of a den-
sity matrix, which introduces classical probabilities into the description of a quantum
system. Consider a quantum system and let the states |®;) span its Hilbert space H.
Suppose the system is in a mixed state with p; being the probability of the state |®;).
The mixed state can be described in terms of a density matriz p, which is defined
such that the expectation values take the form

(0) = Tr(0Op) = ZPi(‘I’i\O"I}i% (2.1)

where O is the observable being measured. The probabilities appear as the eigenval-
ues of the density matrix:

p= Zpi|‘1>i><‘1’z‘|- (2.2)

When the system is known to be in a pure state |®), the density matrix is simply the
projection operator
p = |®)(@ (2.3)

and (2.1) reduces to the ordinary quantum expectation value (®|O|®).

Consider now a quantum field theory (QFT) on a discrete lattice so that the
continuum description follows simply by taking the lattice spacing to zero. Suppose
we now divide the lattice into two subregions A and its complement A¢. As a local

theory, the Hilbert space of the theory factorizes into the spaces of the subregions:*

If the corresponding spaces are spanned by states |¢;) and |¢S), then an arbitrary
pure state in H can be expanded as

D) = cijldi) @165), > leylP= 1. (2.5)
i

i’j

In general |®) does not factorize into a product state, which is the origin of quantum
entanglement between the two regions A4 and A°. Because of the entanglement, the
state of A is not purely determined by |¢;) and additional information of the state
of the complement is required. We can apply the above formalism of mixed states to
encode the entanglement correlations in a special density matrix called the reduced
density matriz p4. It is defined by tracing out the degrees of freedom of A° in the
full density matrix (2.3):

pa="Tracp=> (¢5lple5). (2.6)
i
Now quantum the expectation value of an operator O 4 supported in A can be cal-
culated as
(|04 ® 14| P) = Tr(Oapa)- (2.7)
3Von Neumann entropy is defined via a density matrix p as S = —Tr(plog p) (see section 2.1).

4In gauge theories, the factorization does not exist in general due to degrees of freedom associated
to pairs of lattice points.
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The amount of entanglement correlations is measured with von Neumann entropy

Sa=—Tr(palogpa) = —>_ Ailog A, (2.8)

where \; are the eigenvalues of p 4, the entanglement spectrum. The entropy is a non-
negative quantity S4 > 0 and vanishes only in the case of no entanglement (when A
is in a pure state). Hence S4 is called entanglement entropy (EE) of A.

By taking the lattice spacing to zero, we obtain a continuum QFT, where en-
tanglement entropy is now a divergent quantity. In [4, 14] spherically symmetric
subregions were analyzed and it was shown that the leading order divergence of en-
tanglement entropy is proportional to the area of the boundary of the sphere. Later it
was proven [15] that the area law extends to regions A of arbitrary shape. Formally®

A
Sszljj[(;WnL... (2.9)

where d is the dimension of the spacetime, v is a theory dependent constant (except
in 2-dimensions (2.29)) and a is the UV cutoff, which corresponds to the lattice
spacing. This result is physically intuitive, because as a local theory, most of the
entanglement between the two regions is concentrated across the sharp boundary.
The leading term is corrected by other divergent terms, whose structure is dependent
on whether the dimension d is even or odd [16]. The expansion can be determined
by holographic methods.® From this expression it is clear that entanglement entropy
violates the traditional extensivity of thermal entropy and is a candidate for the
Bekenstein-Hawking entropy of a black hole. However, taming the divergence is a
non-trivial task and would require knowledge of quantum gravitational physics in the

UV.

Inequalities and the entanglement first law

EE satisfies a number of inequalities when calculated for various combinations of
different subregions {.A;}, which factor the Hilbert space as H = ®;H 4,. For two
regions (i = 1,2) we have the inequality

1S4, = S| < Sajuss < Say + Sa, (2.10)

The right inequality is called subadditivity and it shows that EE is not an extensive
quantity in general. Subadditivity is automatically true in QFTs according to the
area law (2.9). The left inequality is called the Araki-Lieb -inequality [17]. Together
these inequalities imply classical monotonicity i.e. EE does not decrease as the spatial
size of the system is increased.

For three subregions (i = 1,2,3) EE satisfies strong subadditivity
SA1UA2 + SAzUAS > SA2 + SA1UA2UA3 (211)

for which the proof can be found in [18]. Strong subadditivity plays an important
role in various proofs regarding entanglement entropy. In a holographic context, it
provides a motivation for the correctness of the Ryu-Takayanagi formula discussed
in section 3.2.

® Area refers to the volume of the codimension two surface .A. In this case, it is (d—2)-dimensional.
5See section 3.2.



2. Entanglement entropy in quantum field theories 7

We can also compare the entropies of different states in H. Given two normalized
density matrices p and o corresponding to two states, we can define relative entropy,
which is a non-negative quantity and vanishes only when p = o [19, 20]:

S(pllo) = Tr(plog p) — Tr(plogo) > 0. (2.12)
We define the modular Hamiltonian K implicitly via

o= le*K, (2.13)

where Z = Tr(e~ %) is the partition function ensuring normalization. By adding and
subtracting a term Tr(olog o) in (2.12) we can write it as

S(pllo) = Tr(plog p) — Tr(ologo) — Tr(plog o) 4+ Tr(o logo)
= —[-Tr(plog p) + Tr(o log o)]
+ [Tr(pK) + Tr(plog Z) — Tr(0 K) — Tr(o log Z)]
= —[S(p) - S(0)] + [Tr(pK) — Tx(o )]
=A(K)—-AS >0, (2.14)

where the terms involving log Z cancel due to the normalization Trp = Tro = 1.

Consider a one parameter family of density matrices py such that pg = o (A can
take both positive and negative values). By calculating the relative entropy for small
A, the positivity condition (2.12) amounts to

d
— > 2.1
20| =zo (215)

where S(\) = —Tr(pxlogpy). Relative entropy vanishes only at A = 0 so S(A) has
a local minimum at that point. Therefore for small differences the inequality (2.14)
reduces to the equality:

35S = §(K). (2.16)

This result is known as the entanglement first law as it resembles the first law of
thermodynamics:

§S = (1/T)8Q. (2.17)

The role of heat is played by the modular Hamiltonian, while with our conventions
the inverse temperature is equal to one. Regardless, there is no deep relationship
between the two and (2.16) is simply taken as a mathematical identity.

The derivation of entanglement first law above only required two different density
matrices p and o that lie infinitesimally close to each other so that p can result
from all kinds of perturbations to the initial density matrix o, the simplest being a
perturbation to the state itself. Other examples include a perturbation of the shape of
the spatial region or even a perturbation of the underlying Lagrangian of the theory.

2.2 Calculation of entanglement entropies

Consider a QFT on a d-dimensional globally hyperbolic Lorentzian manifold.” Let
¥ be the Cauchy slice of time t = 20 = 0 and let A C ¥ be a spatial region on the
slice (AU A° = X).® We want to explicitly calculate the vacuum state entanglement

"The global hyperbolicity ensures the existence of a Cauchy slice at each instant of time.
8We will denote the coordinates by z* = (¢, &) with 4 =0,1,...,d — 1.
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T+ (I)Jr ¢
- P ¢+
(a) () (d)

Figure 1: Visualization of the Euclidean functional integrals in terms of their inte-
gration manifolds [24]. The manifold (a) for (2.18) is simply the space bounded by
the Cauchy slices at 74. In the partition function (2.19), the initial and final Cauchy
slices are identified, which corresponds to gluing them together to form a cylinder
(b) with circumference 5. The manifold (c) for the thermal reduced density matrix
(2.20) is obtained by removing A along the line of indentification. The vacuum den-
sity matrix is then obtained by integrating over the unwinded cylinder (d) with A
cut out at 7 = 0.

entropy of a spatial subregion 4 € ¥ in flat spacetime. The formula (2.8) cannot
be utilized directly as it involves the logarithm, but luckily there exists a method
known as the replica trick [21, 22], which circumvents the problem. The method we
present here only applies to states that have time reflection symmetry and additional
constructions are needed to cover time evolving states as well (see [23] for a review
of these methods).

First we need an expression for the reduced density matrix p4 in the field vacuum

state. Consider a transition amplitude between two states |®) defined at times 74
in the Euclidean description (8 = 74 — 7_):°

‘I)(E,T+):q>+
(@ le D ) = ;A(E . Do ¢~ 1el®], (2.18)

Here Ig is the Euclidean action and ®(X,7) = ®(Z,7), £ € ¥. The prefactor Z is
the partition function and it is given as the trace of (2.18):

Z = / Dd e 5%, (2.19)
O(Z,7-)=®(,74)

We recognize pg = e PH as the density matrix of a thermal state with inverse tem-
perature 3. To obtain the reduced density matrix p 4 g of the thermal state, we trace
over the complement as defined in (2.6):

1 [PAT)=¢1 -
(6:lpaslo) = / Poelele (2.20)
DA, )=¢—, P(A°,7_)=D(A°,74)

This integral can be visualized as a cylinder of circumference 5 with a cut at {A,7 =
0}. The boundary conditions are given at both sides of the cut, see figure lc.
By taking the limit 5 — oo in (2.20), we get the reduced density matrix p4 of a

vacuum state. This has the effect of unwinding the cylinder, see figure 1d. The cut
remains at 7 = 0 with boundary conditions now given in the limits 7 — 0%:

1 P(A07)=04 _7 [{)}
(O+]palo-) = / DY 15, (2.21)
Z Joa,0+)=¢_

9Throughout this thesis we set = ¢ = kg = 1.
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A

Figure 2: The replica surface By with a cyclic Zs symmetry.

where Z is now the  — oo limit of the original partition function. This is the desired
formula for the reduced density matrix.

To proceed, we define Rényi entropies

(n) 1

log Trp"y (2.22)
-n

for each natural number n such that entanglement entropy is the limit n — 1:

_ i o)
Sa = lim S, (2.23)

Using this formula, the entanglement entropy can be obtained via an analytic contin-
uation to non-integer values of n and some arguments can be given that the extension
is unique [42].

Now comes the replica trick. The trace in (2.22) can be expanded as:
Tipli = [ Dorlonlonlon (221)
= /D¢1---/D¢n (D11p.ald2)(P2lpalds) - - (dnlpaldr). (2.25)

On the right hand side we have n copies of the matrix element (2.21). Substituting
the path integral expression gives

n_ L ~1pf@) _ Z1Bnl
Trp’y = 7B /Bn Dode = ZiB " (2.26)

where Z[B,] is the partition function on the replica surface B, and B; is simply
the original manifold in figure 1d without the cut. Therefore Z[B;] = Zy as used in
equation (2.21). The replica surface consists of n copies of the manifolds 1d cyclically
glued together at the cuts A and is depicted in figure 2.

The power of the formula (2.26) is that it requires only the calculation of a
partition function Z[B,], which is not a simple task either, but can be done in some
2-dimensional conformal field theories. The replica trick becomes extremely useful
in the context of AdS/CFT, where it is used to prove results regarding holographic
entanglement entropy.

Replica trick in conformal field theories

A conformal field theory (CFT) is a QFT, which is symmetric under conformal trans-
formations. A conformal transformation is a coordinate transformation x — 2’ that
transforms the metric by an overall coordinate dependent factor:

G (@) = (@) g (). (2.27)
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Conformal transformations stretch distances, but preserve the angles between vectors.

The conformal group naturally contains the isometries of Minkowski space, the
Poincaré group, as a subgroup. In addition, there are two additional generators that
generate dilatations (scale transformations) and special conformal transformations.
In dimension d = p+q > 2, the conformal algebra is isomorphic to SO(p+1,¢+1),'°
while in dimension d = 1 4 1, the conformal algebra is the infinite dimensional Witt
algebra [25].

In 2-dimensional CFTs one can explicitly calculate entanglement entropy of an
interval [—R, R] in the CFT thermal state of inverse temperature /3 using the replica
trick. A thermal density matrix is the same as a vacuum density matrix on an
Euclidean cylinder, which is periodic in the Euclidean time coordinate. In the case
of CFTs9, the cylinder can be conformally mapped to a plane, which allows the use
of the replica trick. One can show [21, 22] that Trp" in (2.26) transforms as a two-
point function of a primary operator with a known scaling dimension. Conformal
symmetry completely fixes the form of the correlator, which leads to the entropy

3 ma 8

where c is the central charge of the CFT, L = 2R and a is the UV cutoff. At large
temperatures (L/f > 1) the thermal nature of the state dominates and the entropy
becomes extensive S4 3 ~ L. In the zero temperature limit 8 — oo, we obtain the

Sap= ¢ log (B sinh WL) (2.28)

vacuum entanglement entropy

L

C
= —log —. 2.2
S 5 log (2.29)

The form of the entropy is universal, same in all CFTs, and it only depends on
the value of the central charge. Universality is a general property of entanglement
entropies of ball-shaped regions, which will be discussed in section 3.3.

2.3 Modular flows in CFTs

In relativistic QFTs, entanglement entropy S 4 is not uniquely associated with A € X,
but instead we can always find another spacelike slice ¥’ with a subregion A’ such
that S4 = Su [28]. Such regions have the same boundary 04 = dA" and share
the same domain of dependence D[A’] = D[A].}! Hence entanglement entropy is
a wedge operator: an operator, which is not uniquely associated with the Hilbert
space of field states in A, but with the Hilbert space of field states in D[A]. The
reduced density matrices p 4, p4 act on this wedge space and they are related by a
unitary transformation p 4 = UpUT. The transformation U is a representation of a
spacetime transformation that maps points of D[A] into each other. The generator
of U is called the modular Hamiltonian K 4:

U(n) = etfan, (2.30)

This transformation is a symmetry of the algebra of operators O 4 acting on the
Hilbert space of D[A]: the expectation values (O4) = Tr(p40.4) are invariant un-
der (2.30), which follows from the cyclicity of the trace. For example entangle-
ment entropy S4 = —(logp4) is invariant. In addition, the correlation functions
of two operators of the algebra satisfy the condition (O;(i)O2) = (020;), where

%The signature is taken to be (p, q).

"' The domain of dependence D[A] of A (or the causal diamond of A) is the region of spacetime,
whose points are causally connected to A. In other words, a point p is in D[A] if there exists a
timelike curve connecting p to a for all a € A.
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O1(i) = U(i)O1U(—i). This is known as the KMS (Kubo-Martin-Schwinger) pe-
riodicity relation and it implies that the expectation values have a formal thermal
character, which is apparent in the definition of the modular Hamiltonian:

1
pa = —e KA (2.31)

In general, the modular Hamiltonian is a highly non-local operator, but if it generates
a symmetry of the theory, it takes a local form. Then it also generates a local
spacetime flow, called modular flow, and the norm of the generating vector field
vanishes on the boundary dD[A]. To derive the local expression, we start by recalling
the functional integral formula for the vacuum density matrix (2.21). It can be written
as a flow in an Euclidean time coordinate s with the boundary values s* at 7 = 0F:

1 ¢(A73+):¢+ _I [q)}
(O+lpalo-) = / D e~ 1El®], (2.32)
Z Jo(As_ )=

If the flow in s is generated by an operator K 4 on the Hilbert space, we can write
1 5+
pA = EPeXp <—/ ds ICA(S)>, (2.33)
S—

where P denotes path ordering in s. Given that the theory is symmetric under the
flow in s, the operator K 4 is conserved and therefore independent of s so that (2.33)
reduces to the expression (2.31) with

Kpi= (s —s_)K4. (2.34)

The flow along s is the Wick rotated modular flow (1 = is), which in the Lorentzian
signature is denoted by x*(n). Now the modular Hamiltonian can be written in a

local form
dz*

— 2.35
— (2:35)

Ka= [ a9 ¢, (= (5= 50)
Al
where Cff\ is the vector field generating the modular flow, T},, is the stress-energy
tensor of the theory and A’ is an arbitrary spacelike surface s.t. D[A’] = D[A]. On
the ¢ = 0 slice this can be written as

K4 = /,4 A o Y Too (). (2.36)

For local flows the thermal character of p4 becomes physical, because for observers
moving along the coordinate lines of the modular flow, the modular Hamiltonian
(2.35) is simply the Hamiltonian. The corresponding inverse temperature of the
observed thermal fluctuations is given by the coefficient sy — s_.

Modular flow of a ball-shaped region

Consider the half-space Ag = {x € RV |z! > 0,¢ = 0} of flat spacetime RY4~1 in
the CFT vacuum state. The Bisognano-Wichmann theorem [26] states that for this
region the modular Hamiltonian is local and the modular flow is generated by the
boost generator

(r = 27 (' 0y + t0y). (2.37)

Boosts correspond to rotations in Euclidean signature (see figure 3), which explains
the factor of 2r = s; — s_ corresponding to a full rotation. In addition the modular
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2

(a) (b)

Figure 3: Half space modular flows (red) in (a) Lorentzian and (b) Euclidean signa-
tures.

flow preserves the entangling surface located at 2! = 0. The modular Hamiltonian is
(with the normalization Z = 1)

pr=e€ KR Kp = 277/ d¥ iz 2 Tyo (). (2.38)
z1>0

The boost generator is one of the Killing vectors of R1¥~1 which means that an
arbitrary Lorentz invariant QFT is actually symmetric under the flow. Now the
thermal character of the density matrix is just the familiar Unruh effect [27]. To find
the temperature, transform to the Rindler coordinates (7, z):

t = zsinh (n/R)
zt = zcosh (/R), (2.39)

where R is just a constant with dimension of length. The Rindler coordinates
parametrize the Rindler wedge D[AR] and the coordinate lines of constant z are
hyperbolas. An observer with constant acceleration a in the direction z! travels
along the hyperbola (z')? — 2 = 1/a®. Hence the Rindler coordinates define the
rest frame of the accelerating observer and the proper time is given by 1. In the
Euclidean picture, the hyperbola of the observer corresponds to a circle of radius 1/a
and of circumference 27 /a. To ensure the correct periodicity of the Euclidean Rindler
coordinates, we must set R = 1/a. Now in the rest frame of the observer, the boost
generator takes the simple form (r = (27 R)0, = (27/a)0, (generator of translations
in proper time) and as was prescribed above, the inverse of the coefficient is identified
as the Unruh temperature 7' = a/2.

In the case of a CF'T, the above result for the half-space can be used to obtain
the modular Hamiltonian of a ball-shaped region in the CFT vacuum state. This
is done by applying a conformal transformation due to Casini, Huerta and Myers
(CHM) [28], which can be decomposed as follows [23]. In spherical coordinates, the
metric of Minkowski space is:

ds® = —dt* + dr® + r2dQ3_,. (2.40)
A ball-shaped region B(R,0) of radius R (centered at the origin) is the region with
r = |Z| < R. Consider the conformal transformation

B Rsinh (n/R) . Rsinhu
~ coshu + cosh (n/R)’ ~ coshu + cosh (n/R)’

(2.41)
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Figure 4: The CHM map (a) = (b)

where 7 is to be identified with the Rindler time coordinate and v > 0 is a radial co-
ordinate. This transformation maps the metric (2.40) to the metric of the Lorentzian
hyperbolic cylinder H;_; x R

ds* = Q* [—dn® + R*(du® + sinh® udQ}_,)] (2.42)

with the conformal factor
1

2 _
v [cosh u + cosh (n/R)]Q' (2.43)

The double cone D[B] = {r +t < R} Nn{r —t < R} gets mapped to the entirety of
the cylinder and the complement of the ball is sent to infinity.
By writing the metric of the hyperbolic cylinder (2.42) in Poincaré coordinates

(see Appendix A), the metric becomes the metric of Rindler space (2.39) with a = 1/
R:

2 RQQZ sz’nZ

ds 2 ~ w2

d—2
+d2? + ) (da')?] (2.44)
i=2
The Poincaré coordinates cover half of the hyperbolic space, the Poincaré patch,
which corresponds to the Rindler wedge D[Ag]. Thus we have established a confor-
mal map from the double cone D[B] to D[Ag] and the corresponding operators are
mapped to each other.

We can identify the generator of the Rindler modular flow to be the boost gener-
ator (r = 2w R0, as before. By inverting the conformal transformations, we can map
this back to the generator of the ball modular flow, which in spherical coordinates is

R* — ¢ —¢? t

This vector field again preserves the entangling surface located at r = R. The boost
generator is a Killing vector of Minkowski space, but the (2.45) is not a Killing vector,
but only a conformal Killing vector. In other words, the boost generator is mapped
to another generator of conformal symmetry, but in this case the new generator no
longer generates a symmetry of the Minkowski spacetime. Using (2.36), the modular
Hamiltonian of the ball becomes

R2 _ 7“2
Kp=2n / dily Too (). (2.46)
r<R 2R
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We can also use the CHM map to obtain an alternative interpretation for the vacuum
entanglement entropy Sp of the ball. The generator (p of of the ball modular flow is
mapped to the time evolution generator 2w R, on the hyperbolic cylinder. Therefore
the reduced density matrix pp of the ball is mapped to a density matrix of a thermal
state on Hy_1. These two density matrices are related by a unitary transformation
that represents the conformal map in the Hilbert space. It is easy to see that en-
tanglement entropy is invariant under unitary transformations of the density matrix,
which means that the vacuum entanglement entropy of the ball is exactly equal to
thermal entropy on Hy_1

Sp = Sp(Hg-1) (2.47)

with inverse temperature proportional to the radius of the ball 8 = 2w R. This result
has an interesting interpretation in terms of the AdS/CFT correspondence, which we
discuss in section 3.2.

3 AdS/CFT and holographic entanglement entropy

AdS/CFT correspondence is a conjectured duality between a string theory and a
conformal field theory. The term covers a large number of dualities between various
string theories and CFTs, but they all share the same characteristics. The string
theory lives on a (d + 1)-dimensional anti-de Sitter (AdS) spacetime, while the CFT
lives on a lower dimensional d-dimensional flat spacetime. The string theory is a
theory of quantum gravity and the CFT is an ordinary field theory without gravity.
The duality states that the two theories are actually equivalent, even though their
mathematical formalisms are different. In particular, the gravitational degrees of
freedom of the string theory are implicitly encoded in the structure of the CFT.

To study how classical features of the string theory are encoded in the CFT, one
must introduce coarse-graining on the CFT such that the string theory reduces to
its low energy limit: a QFT coupled to classical gravity. These holographic CFTs,
that are dual to classical gravity, are believed to contain large number of degrees
of freedom (large-N) and to be strongly coupled. In the large-N limit of the CFT,
the string dual is dominated by an effective classical string action that decouples
to general relativity in the strong coupling limit of the CFT. The decoupling is due
to the weak/strong nature of the AdS/CFT correspondence, which also makes the
duality very useful in the study of different problems.

The setup of the two theories lies in the heart of the duality: the string theory
lives in the bulk of the AdS space, while the CFT lives on its flat boundary. Dif-
feomorphisms in the bulk are elements of AdS isometry group SO(2,d) that acts as
conformal transformations on the d-dimensional boundary. This interplay between
diffeomorphisms and conformal transformations is the reason why a diffeomorphism
invariant classical gravity can be dual to a conformally symmetric theory. One can
also use these symmetries to prove dualities between certain classical bulk geometries
and CFT states. The simplest example is the CFT vacuum state, which is invariant
under arbitrary bulk induced conformal transformations so that the bulk dual of the
CFT vacuum state must be pure AdS spacetime. Small excitations then correspond
to deformations of the AdS spacetime.

There are other ways to find spacetimes that correspond to various CFT states
by using the holographic dictionary. For example a CFT thermal state can be shown
to be dual to the AdS black hole with horizon surface gravity set by the state tem-
perature. This result is of great interest, because it apparently solves the black hole
information loss paradox: the CF'T evolution is unitary, which means that the black
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hole evolution should be as well. Regardless, it is hard to study how exactly the
paradox is avoided and is currently an unsolved problem.

AdS/CFT is traditionally formulated in the Euclidean picture by using the par-
tition functions of the two theories [29, 30]. The idea is that the CFT generating
functional is directly related to the string theory partition function and the CFT
correlation functions are sourced by the boundary values of bulk fields with the same
spin. For example the CF'T stress-energy tensor operator is sourced by the metric
and CFT scalar operators by scalar fields in the bulk. This duality allows one to
calculate CFT correlations functions by solving equations of motion in the bulk.

More complicated entries in the holographic dictionary have been discovered. The
most important one for our purposes is the duality betweem entanglement entropy
of a CFT spatial region and the area of a bulk minimal surface. This result is known
as the Ryu-Takayanagi formula [5, 6] and is reviewed in section 3.2.

3.1 AdS/CFT correspondence

We will give a brief mathematical overview of the AdS/CFT correspondence [31, 24].
AdS4y1 space is the maximally symmetric solution of the Einstein’s equations with a
negative cosmological constant. It can be realized as a (d+ 1)-dimensional hyberbola

— X2, - X+ X7+ 4+ X =0 (3.1)
embedded in a flat R%? spacetime with the metric
ds* = —dX?, —dX§ +dX7 +... +dX3. (3.2)

The hyperbola (3.1) is invariant under SO(d,2) transformations of the embedding
space, which makes it the isometry group of AdS space.

The whole AdS space is covered by global coordinates (p, T, ;):

X_1 ={coshpcost (3.3)
Xo=/LcoshpsinT
X; = {sinh p€);

with the ranges (p > 0,0 < 7 < 2m). Here €); parametrize the unit sphere S9!
(3=, 92 =1). The resulting metric is

ds® = (*(—sinh? pdr? 4 cosh? pdp? + p* dQ3_,), (3.6)

where dQq_; is the metric on S, AdS space defined this way as an embedding
is periodic in the time coordinate 7 that parametrizes the circle over the timelike
coordinates X_ 1 and X;. Therefore it contains closed timelike curves. We can
circumvent this problem by considering the universal covering, which has the above
metric (3.6), but with the range of 7 unbounded. It is this universal cover that is
actually referred to as AdS space. The cover has a timelike boundary at spatial
infinity p — oo, which becomes obvious in the coordinates tan = sinhp (0 < 0 < 7/

2):
2 e 2 2 | 2 2
ds* = m(—dT +df” +sin” 0dQ;_,). (3.7)
The boundary is now located at § = 7/2 and has the topology of S4~! x R. From this
metric it is clear that AdS space is conformally equivalent to a patch of S¢ x R (only
a patch since 6 € [0,7/2[ and not [0, 7]) and can hence be depicted as a cylinder in
figure 5.
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Figure 5: Conformal diagram of AdSgy.

For large values of the coordinates in the hyperbola (3.1), the right hand side can be
neglected. This defines the AdS boundary as the surface

X% - X+ XI .+ XE=0 (3.8)
subject to an additional scaling relation

(X_l,X(),Xi) ~ /\(X_l,XQ,XZ‘), A > 0. (39)

The scaling relation is the formal statement that the surface does not care how
large the coordinates actually are. Embedding this surface into to the ambient space
(3.2), we see that it is equivalent to d-dimensional Minkowski space and that the
scaling relation compactifies the space. Therefore the boundary is the conformal
compactification of Minkowski space [29] and the action of SO(2,d) on it is the same
as the action of the conformal group [32].

The AdS/CFT correspondence is usually formulated in the Euclidean picture,
where the bulk AdS space is Euclidean hyperbolic space. In bulk global coordinates
the boundary has a topology of the sphere S?. However, a bulk coordinate transfor-
mation can induce a boundary conformal transformation that changes the boundary
topology up to a scaling of the metric, which can be removed due to conformal in-
variance of the CFT. Hence patches of the same bulk geometry can be encoded by
a CFT on boundaries with different topology. For example S% can be conformally
mapped to R? so that the CFT vacuum states defined on these spaces are both dual
to the same bulk geometry (pure AdS), but the S¢ vacuum is dual to the bulk as a
whole (covered by global coordinates), while the R? vacuum is only dual to a finite
patch (the Poincaré patch).

At large-N limit of the CFT, the string theory is dominated by an on-shell classical
action, which in general is a supergravity action. At strong-coupling, the action is
the Einstein-Hilbert action

Igg = 167Cx /d T\ —g |:£2 + R, (3.10)

which is corrected by higher curvature terms at weaker coupling [23].

Solving Einstein’s equations in AdS space is a bit different, because it is not
globally hyperbolic due to the timelike boundary at spatial infinity. To have a well
posed initial value problem, it is not enough to specify initial values on the bulk
Cauchy slice, but we also need to set boundary conditions on the boundary. In fact,
because Einstein’s equations are second order in the metric, the solutions require two
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boundary conditions: the boundary metric and its d*"-order derivative respect to the
radial coordinate. Fefferman and Graham showed [33, 34, 31] that a general solution
can be written as

62
ds? = Ggpdzdx® = Z—2(dz2 + G (2, x)dztdx”), (3.11)

where z > 0 is a radial coordinate with boundary at z = 0 and z* are the boundary
coordinates.'”> They showed that the bulk metric Guv(z, ) can be expanded as a
Taylor series in z starting from the boundary:

Gu(z,2) = gu(x) + thELQV) (x) + z4h§3,)(a:) +...+ zdhffll,) () +.... (3.12)

The functions hgf,) (x) for k # d are determined by Einstein’s equations, but the
boundary geometry g, () and the term h,(ff,) (x) are fixed as boundary conditions [34].
It follows from the Einstein’s equations that for flat boundary geometry g, () = 7,
all the higher-order terms hl(ﬁ,) (z) vanish, resulting in pure AdS geometry in Poincaré

coordinates: )

1
ds® = ;(sz + nudatdx”). (3.13)

These coordinates cover half of the AdS space, the Poincaré patch.

In the limit of strong CFT coupling, the string theory can be described as in
Euclidean quantum gravity [35]: the string partition function ZgTr[B] is a functional
integral over all bulk geometries that asymptote to the boundary geometry B, which
was set as a boundary condition. AdS/CFT correspondence is the statement that
this partition function is equal to the CFT partition function Zcpr[B] defined on the
boundary geometry:

ZSTR[B] = ZCFT[B]- (3.14)

This leads to a relationship between the generating functional of the CFT and the
string partition function [29]. Given the bulk metric G4 (z, ) in Poincaré coordinates,
it is written as

<exp (- / dia gW(m)T’“’(x)> >cm = Zsmn|Bl, (3.15)

where T"¥(x) is the stress-energy tensor of the CFT and G, (0,z) = g, (), which
is the metric of B. The asymptotic bulk metric acts as a source that can used
to generate the CFT n-point functions of the stress-energy tensor from the string
partition function. The same idea works for fields of arbitrary spin, in particular, a
scalar field in the bulk sources correlation functions of CFT scalar operators on the
boundary.

In the classical limit, the string partition function is dominated by the on-shell

classical action
Zsrr([B] ~ e~ EutM], (3.16)

where M is a solution of the Einstein’s equations such that OM = B. In this saddle
point approximation, we can explicitly calculate the CFT 1-point function (7},,).
When the bulk geometry M has a vanishing Weyl tensor, the boundary geometry is
conformally flat, which picks a specific vacuum state of the CFT. The result is [34]:

dgdfl
T = A,
< " ) 167Gy ¥

12The boundary coordinates are denoted by z* = (t,Z), u = 0,1,...,d — 1, and the full set of AdS
coordinates by z% = (2", 2), a = 0,1,...,d with z¢ = 2.

(3.17)
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This result can also be derived using the Ryu-Takayanagi formula [10]. The vanishing
of h,gdy)(x), as in (3.13), therefore implies that the CFT is in a vacuum state (7},,) = 0.
This verifies the argument based on symmetry: pure AdS space is dual to the CFT

vacuum state.

The classical limit of the string theory was obtained in the N — oo limit of the
CFT. Therefore 1/N basically acts as an effective Planck’s constant fiegr ~ 1/N tuning
the quantum corrections of the classical gravity theory. The classical contribution
O(N) is of order 1/Gy in the bulk theory, which can be seen at the level of the
action (3.10) and in the stress-energy tensor (3.17). The corrections in the gravity
theory come in powers of Gn and the first order quantum correction, which is of order
O(1) in G, comes in the form of quantum matter fields that couple to the classical
spacetime geometry

ZstrIM] = e TenMI 7, (M), (3.18)

where Z); is the partition function of the quantum matter fields on the classical
geometry M. Therefore the leading 1/N-correction to the CFT stress-energy 1-point
function (3.17) comes from the bulk field stress-energy:

dedfl
T.) =
< " ) 167GN

hd) + o(Thtky. (3.19)

Here C is a field independent constant that is not relevant to us.

3.2 Holographic Entanglement Entropy

Entanglement entropy is an example of a CFT quantity that has a classical bulk
dual in the AdS/CFT correspondence. In 2006, Ryu and Takayanagi (RT) proposed
[5, 6] that for static geometries, entanglement entropy of boundary spatial region is
calculated as the area of a minimal surface in the bulk. They showed that for the CFT
vacuum and thermal states, the area matches exactly with the formulas (2.29) and
(2.28). This remarkable result was a year later generalized to general time dependent
spacetimes by Hubeny, Rangamani and Takayanagi (HRT) [36], which generalized
the minimal surface to an extremal surface with smallest area.

Consider a holographic CFT; on the boundary B of an asympotically AdS;41
spacetime M. Let ¥ C B be a boundary Cauchy slice and let A C X be a spatial
region. Hubeny, Rangamani and Takayangi proposed that the entropy S4 can be
calculated as the area of an extremal bulk codimension two surface anchored at the
boundary.'® The proposal states that

Si= min Area[€ 4]

3.20
EAER A 4GN ( )

The set R4 consists of bulk codimension two extremal surfaces £4 that have the
following properties:

(i) The surface is connected to the boundary: €4 C OM = B.
(ii) The surface £4 has the same boundary as A: 0€4 = 0A.

(iii) The surface €4 is homologous to A: 3¥ 4 C M s.t. 0¥ 4 =E4U A.

13By an extremal surface we mean that the surface is a local extremum of the area functional
(3.24). Area refers to the volume of the bulk codimension two surface which in the case of AdSg+1
is (d — 1)-dimensional.
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Figure 6: A spatial slice with a Ryu-Takayanagi surface A of a boundary spatial
region A in AdS;/CFTs.

If we denote the extremal surface £4 € R 4 that has the smallest area by A, we get
the HRT formula:

_ Area[A]

The surface A will be referred to as the HRT surface.

In general, there is no unique extension of the boundary Cauchy slice % to the
bulk. Instead, there is a whole family of bulk Cauchy slices, the FRW wedge [23],
whose points are spacelike separated from Y. Therefore the extremal surfaces £4 €
R 4 lie somewhere inside this FRW wedge. But suppose the bulk geometry is static
(the CFT state is static), meaning that d; is also a bulk Killing vector. Then one can
naturally extend the boundary foliation, defined by 9;, to the bulk in a unique fashion.
In such a situation, all of the extremal surfaces corresponding to a boundary region lie
on a single bulk Cauchy slice [36]. The homology requirement is then automatically
satisfied (X 4 is a subset of the bulk Cauchy slice) and the problem reduces to finding
the minimal surface anchored at d.A. This is the original Ryu-Takayanagi proposal
[5, 6] and it is also applicable at a moment of time reflection symmetry. Then the
minimal surface A is simply referred to as the RT surface.

The RT formula is a highly non-trivial result and should not be taken for granted.
Both sides of the RT formula are divergent and it might seem impossible to regulate
it consistently. Luckily, consistency is ensured by the UV/IR duality of the AdS/CFT
correspondence. Consider a scale transformation z# — Az* on the boundary. The
CFT state is of course symmetric, meaning that the corresponding bulk geometry
(3.11) must be as well. The invariance of (3.11) requires that the radial coordinate
transforms in the same way z — Az. A transformation with small positive A maps
physics of the CFT to the UV, while on the bulk side everything is mapped to large
scales (small z, large p), which is the UV/IR duality. The duality allows us to regulate
the infinite area of the HRT surface and the UV divergence of CFT entanglement
entropy at the same time, because there is a relation between the UV and IR cutoffs
a = pg. The regulated terms in the RT formula then always agree.

The above matching of the divergences is already suggestive that the proposal
might be correct. More evidence comes from the fact that the areas of the HRT
surfaces satisfy the strong subadditivity inequality. One can also explicitly calculate
areas of extremal surfaces of various subregions in different CFT states and the
results can be compared with pure field theoretic calculations. Both the RT and
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the HRT proposal have passed multiple non-trivial checks. In fact, both the RT
proposal [37, 38] and the HRT proposal [39] have been proven. See the book [23] for
a comprehensive review of all of these topics.

The RT formula captures the classical N — oo contribution to the entanglement
entropy S 4 by calculating a purely classical bulk quantity, the area. The leading O(1)-
correction to the entanglement entropy can be calculated by considering quantum
matter fields in the bulk. Faulkner, Lewkowycz and Maldacena (FLM) proposed [40]
that the leading correction is due to the entanglement of the bulk fields over the RT
surface A in the semi-classical approximation. Their proposal states that

Area[A

g, = Areald] | So + O(Gy) (3.22)
4Gy

So =SP4 ... (3.23)

where Sg‘jk is the bulk entanglement entropy of region >4 that is bounded by the
RT surface and the boundary region: 954 = AU A. The role of the extra terms in
S¢ (denoted by the ellipsis) is to cancel the UV divergences in the bulk entanglement
entropy. Therefore the leading order correction to CE'T entanglement entropy in 1/N
is given by bulk entanglement entropy!

The proposal is not completely new [41, 42]. In the context of black hole entropy,
it has been argued that the leading correction is due to the entanglement of quantum
fields across the horizon. The FLM formula can be seen as a generalization of these
arguments to arbitrary RT surfaces. In addition, it provides a microscopic interpre-
tation in terms of the dual CFT, which is absent in the black hole considerations.
The presence of AdS/CFT also ensures that the counter terms in Sg exactly cancel
the divergences of Sg‘;‘lk, because the bulk theory should be a UV finite theory of
quantum gravity. The FLM formula can be proven analogously to the RT formula by
extending the boundary replica construction to the bulk, but also keeping the bulk
matter field contribution in the string partition function as in (3.18).

Entanglement entropy of a ball-shaped region

Calculating entanglement entropy of a boundary ball B(R,Zy) in the CFT vacuum
state provides a nice example of the use of the HRT formula. The vacuum state is
static so it is enough to apply the RT proposal and calculate the bulk minimal surface
anchored to dB. In general, the bulk codimension-2 surface can be parametrized by
o' so that the embedding Poincaré coordinates are (z(o),t = 0,2%(c)). We choose
the parametrization o' = z* giving the bulk surface as the function z(#). The area
functional is given by

Area = /ddlx\/}; (3.24)

where h is the determinant of the induced metric on the surface (sum over repeated
is understood):'*

2 0z Oz AN 0z 0z

Given the boundary condition z(Z) = 0, when | — Zy| = R, the Euler-Lagrange

equations can be solved to give:

2+ % - * = R (3.26)

14The determinant can be calculated as a product of eigenvalues. In this case, there is only a
single eigenvalue with degeneracy d — 1. The eigenvalue of a dyadic matrix M;; = a;a; is easy to
find: Mijaj = (aiaj)a]- = (a]-aj)ai.
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Figure 7: The spatial boundary R%~! can be compactified to S¢ ! by a conformal
transformation. The hemisphere B is mapped to a surface with least area, because
it divides the sphere in half.

Hence in Poincaré coordinates, the RT surface is a bulk hemisphere B(R,Zg) (see
figure 7a). Entanglement entropy of the ball is now obtained as the area of the
hemisphere.

The result that the minimal surface is a hemisphere can also be obtained via
a conformal transformation, which compactifies the boundary R?~! to S9!, The
hemisphere is mapped to the surface that divides the sphere exactly in half and
therefore having the least area [12] (see figure 7).

In 2-dimensions, given the relation between the central charge ¢ of the CFT and

the bulk parameters
3/

‘= 3ay
the area of the RT surface exactly reproduces the formula (2.29) for the vacuum
entanglement entropy of a closed interval [—R, R], which was the 8 — oo limit of the
entanglement entropy of a thermal state (2.28). We can also reproduce the thermal
state entropy by finding the corresponding dual geometry. The thermal state can

(3.27)

be calculated by considering a vacuum CFT on a cylinder, which is periodic in the
Euclidean time coordinate. Therefore the corresponding dual geometry must also
be periodic in the Euclidean time coordinate. This is a property of black holes and
indeed, the correct dual of a CF'T thermal state in 2-dimensions is the 3-dimensional
BTZ black hole [43, 44]. The temperature of the black hole is also determined by
the periodicity of the Euclidean time coordinate. By calculating the ball RT surface
in the BTZ geometry, one can explicitly show that the RT formula reproduces the
result (2.28). The RT surface of the ball reaches out to the black hole horizon,
which produces the dominating extensive behaviour of the entropy (2.28) at large
temperature.

The relation between thermal states and black holes extends to vacuum entan-
glement entropy of higher dimensional balls. We saw in section 2.3 using the CHM
map (2.41) that the CFT vacuum entanglement entropy of a ball is equal to ther-
mal entropy on hyperbolic space Hy_1. The bulk diffeomorphism inducing the CHM
map on the boundary takes the initial bulk metric in global coordinates (3.6), which
asymptotes to spherical coordinates on the boundary, to the metric

2 p> =0 ¢ 2 2( 7,2 2 2
ds? = — 72 dn® + e _pdp + p*(du” + sinh® u dQ23_,). (3.28)
At large and constant p this is
2
P .
ds* = i [fan + R?(du® + sinh? udQZ_Q)] , (3.29)

so that the metric (3.28) indeed asymptotes to the hyperbolic cylinder metric (2.42)
on the boundary. This is the metric of AdS-Rindler space: pure AdS space written
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in the coordinates of a uniformly accelerating observer and it is also a special case of
the general hyperbolic black hole metric (see Appendix A). The black hole (Rindler)
horizon is located at p = ¢ and has the topology of H;_1, which coincides with the RT
surface B in Poincaré coordinates. In other words, the RT surface exactly matches
with the black hole horizon H,_1, because the entropy is completely of thermal nature.
In the AdS-Rindler coordinates, the ball vacuum entanglement entropy is thus given
by (we emphasize the vacuum by adding a superscript)

5 _ ArealF ]

TeNum (3.30)

where area again refers to the volume of Hy_ ;. We have established that the vac-
uum entanglement entropy of a ball is given as the Bekenstein-Hawking entropy of
hyperbolic AdS black hole.

3.3 Higher curvature theories and ball universality

In the strong coupling limit of the large-N CFT, the string theory decouples to
classical general relativity, but at weaker CFT coupling, the Einstein-Hilbert action
is corrected by terms of higher order in curvature. These higher curvature theories
of gravity in the AdS4y1 bulk have an action of the form

1
167GN

Inc =

dd—1 .
/dd+1x V=g [62) + R+ f(Riem)|, (3.31)
where f(Riem) contain the higher curvature terms as contractions and covariant
derivatives of the Riemann tensor.

On the CFT side at weaker coupling, one has corrections to the strongly coupled
ball vacuum entanglement entropy. For any CFT in the vacuum state, it is calculated
via the RT formula as the area of the horizon of a black hole (3.30). Now, because
the corrections in the bulk come in the form of higher curvature terms, what is the
classical geometric quantity that replaces area in the RT formula to produce the
correct ball entanglement entropy in arbitrary CFT states? The answer is given
by Wald entropy. In the paper [45], Wald proposed that the black hole entropy
can be identified as a horizon integral of the Noether charge associated with the
horizon generator. The integral is known as the Wald entropy functional and it
can be extended to arbitrary theories of gravity with a diffeomorphism invariant
Lagrangian (see section 4.1 for a review). Therefore the Wald functional provides
a good candidate to generalize area functional to higher curvature theories, because
in Einstein gravity, it reduces to the area functional. It turns out to be the correct
generalization to calculate entanglement entropies of boundary ball-shaped regions,

which is enough for our purposes.'®

In Einstein gravity, the Wald functional is the area functional up to some param-
eter ajj, which is proportional to the single dimensionless parameter ﬁd_l/ Gn of the
Einstein-Hilbert action. To match with (3.30), the parameter must be [28]

7Td/2 pd—1

I'(d/2) 7Gx’

ay = (3.32)

15Given a CFT dual to a higher curvature theory of gravity in the bulk, the entanglement entropy
of an arbitrary region (not just a ball) is calculated by a functional, which consists of the Wald func-
tional plus additional terms proportional to the extrinsic curvature of the minimal surface [46]. The
surface is obtained by minimizing this generalized functional as in the Ryu-Takayanagi prescription.
For a boundary ball-shaped region, the hemisphere is still a minimal surface, because its extrinsic
curvatures vanish and it minimizes the Wald functional. Thus for a ball-shaped region, the extension
to the Wald functional is enough to correctly calculate the entanglement entropies.
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This is known as the parameter that normalizes the universal part of the ball entan-
glement entropy, which is the vacuum entanglement entropy. As showed by (2.29)
in 2-dimensions and (3.30) in general, the vacuum entropy is universal, which means
that it has the same form in all CFTs. Of course not all CFTs are dual to Ein-
stein gravity in the bulk, but ball entanglement entropies are not able to distinguish
whether it is Einstein gravity or not and more complicated boundary regions would
be required.

What about ball entanglement entropies calculated near the CFT vacuum state?
More accurately, what kind of dual gravity theory is needed to reproduce CFT en-
tanglement entropies via the generalized RT formula for perturbations of the vacuum
state? It turns out that the CFT entanglement entropy is universal for second or-
der perturbations of the CFT vacuum state as well, but the entropies cannot be
calculated by Einstein gravity, but higher curvature terms (3.31) are needed. The
universality up to second order can be seen as follows [11, 48].

Consider the action Ig of an arbitrary CFT and a perturbation to its vacuum
state sourced by the linearized bulk metric:

Ip=19 4 )\/dd:nT(:):), (3.33)

where T = §g(Mm T v is the CFT stress-energy tensor contracted by the boundary
value of the linearized bulk metric and I g)) is the action corresponding to the vacuum
state. Based on the AdS/CFT correspondence, the bulk metric can be expressed in
terms of the bulk-to-boundary propagator K and the boundary stress-energy one-

point function [48]:
o) = [ e K e ) B (3.34)

Now expand the ball entanglement entropy up to second order in A:
Sp = a5SW + 2654 + 22652, (3.35)

where we have explicitly written the vacuum normalization a)j. The first order term
is linear and the second order term is quadratic in the linearized bulk metric 6g™).
Using the formula (3.34), we can thus write it schematically as [11]

su=ais 2 [ KP @) + o [ [ KR e re)me), 630

where Cr is the constant that normalizes the CFT two-point function (7},,7)s).
Therefore up to second order in the deformation parameter A, the ball entanglement
entropy depends only on two parameters: a; and Cr. In other words, these parame-
ters completely normalize the universal part of the ball entanglement entropy up to
second order.

This result has implications for the dual gravity theory, which must correctly
produce the ball entanglement entropies via the generalized RT formula with the
Wald functional. In particular, Einstein gravity cannot reproduce the entropy for
arbitrary values of aj and C7r, because the Einstein-Hilbert action only contains a
single dimensionless parameter, which is already fixed by the vacuum normalization
(3.32). Therefore Einstein gravity is the correct dual of the CFT only if Cp is
proportional to aj; as well. Explicitly the condition can be written as

7d(d — 1)

aq = WC’T = CT. (337)
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For CFTs with Cr # a, the dual gravity theory must contain an additional dimen-
sionless parameter to account for Cr. A plethora of dimensionless parameters are
available in higher curvature theories of gravity, where at each order one new dimen-
sionful parameter is introduced. The simplest example to calculate ball entropies up
to second order is the quadratic Gauss-Bonnet gravity with one additional parame-
ter. At higher order perturbations of the vacuum state, one must keep the additional
higher curvature terms in the gravity action to reproduce the ball entanglement en-
tropies at second order via the generalized RT formula.

4 Einstein’s equations from entanglement entropy

The RT formula relates boundary entanglement entropies to areas of minimal sur-
faces in classical geometry. The minimal surfaces probe different regions of the bulk
spacetime depending on the boundary region in question. The shape of the classi-
cal geometry is thus encoded in the entanglement structure of the dual CFT and it
should be possible to reconstruct the bulk geometry purely from the entanglement
information. But we know from AdS/CFT correspondence that at strong coupling,
the bulk geometry obeys Einstein’s equations, or more generally at weaker coupling,
the equations of motion of a higher curvature gravity theory. Therefore under pertur-
bations of the CF'T state, the entanglement structure should change in a special way
to induce geometry perturbations that obey the correct equations of motion. This
is a highly non-trivial statement and we should not expect it to hold for arbitrary
CFTs. However, the entanglement entropy of a ball-shaped region is universal up
to second order perturbations of the CF'T vacuum state and it is controlled by the
parameters a); and Cr as shown in section 3.3. If the correct equations of motion
are induced by the entanglement structure, deducing them from ball entropies should
thus be possible up to second order at least, because the entropy is the same in all
CFTs.

The strategy is to consider small perturbations of the CFT vacuum state and the
corresponding change in the ball entanglement entropy, which at linear order obeys
the entanglement first law. The first law can be translated to bulk language giving
a constraint on the metric perturbation. Linear perturbations were first analysed
in 2014 by explicitly calculating the change in the hemisphere area, from which
linearized Einstein’s equations around the AdS background were obtained [9]. In a
follow-up paper [10], the result was extended to higher curvature theories of gravity
by the use of the generalized RT formula with the Wald functional. The derivation is
based on Iyer-Wald formalism [45, 49] and it allows one to consider all the theories of
gravity simultaneously, while making the key aspects of the derivation clear. These
derivations only give the linearized equations of motion without matter, because
the RT formula only contains the gravitational N — oo contribution. The correct
semi-classical matter coupling at the linearized level was quickly obtained by using
the FLM formula [12], where the O(1)-correction is included as bulk entanglement
entropy.

At higher orders, one can no longer utilize the first law, but instead the whole
non-linear expression for relative entropy is required. First order calculation is also
simpler, because the first law does not depend on the explicit form of the perturbation
and applies to arbitrary linear perturbations. At second order, one must explicitly
construct a state perturbation that also corresponds to a classical bulk dual. Regard-
less of these additional difficulties, Einstein’s equations can be shown to be obeyed by
second order perturbations using the RT formula [11]. Their derivation only applies
to perturbations with Cp = a};, which in section 3.3 was argued to be the necessary
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condition for Einstein gravity to be the correct bulk dual. The derivation was quickly
extended to higher curvature theories of gravity by using the generalized RT formula
leading to the correct equations of motion for arbitrary second order perturbations,
including the Cp # a; case as well [50]. In the upcoming sections, we focus on the
derivation of Einstein gravity, but provide the necessary tools for the generalization
to higher curvature theories as well.

4.1 Iyer-Wald formalism and the black hole first law

In this section, we review how the black hole entropy can be defined as a Noether
charge associated to the horizon generator [45, 49]. The Noether charge is given by
Wald entropy and it can be defined for an arbitrary diffeomorphism invariant theory
of gravity. On-shell variations of the Wald entropy can be written in terms of a
variation of an asymptotic energy quantity: the black hole first law. It is analogous to
the first law of thermodynamics and it will be of central importance in the derivation
of linearized Einstein’s equations in the next section.

Suppose we are working on a (d + 1)-dimensional background spacetime and let
L = Le (4.1)

be the Lagrangian (d + 1)-form of a diffeomorphism invariant theory of gravity, such
as a higher curvature theory, which includes matter fields. The form e is the volume

form*6

1
€ = m€a1-..ad+1dwal Ao A dx®ert, (4.3)
Under a general variation of the metric, the Lagrangian varies as (the contractions
with the metric are left implicit)'”

0L = E95g + d®O(g,09), (4.4)

where EY9 = Egbe“b = 0 are the gravitational equations of motion with matter and
© is the boundary term, which is a function of the components of the metric. In

particular, under a diffeomorphism generated by a vector field €%, the variation is the

Lie derivative d¢L, which can be written as'®

5L = d(¢ - L). (4.5)

Here & - L denotes the contraction of £€* with the first index of L.

A diffeomorphism is a local symmetry of the theory, so according to Noether’s
theorem there is a corresponding conserved current J*[{], whose Hodge dual is written
as:

J] = ©(g,0¢9) — & L. (4.6)

By the virtue of (4.4) and (4.5), it is indeed conserved on-shell:

dJ[¢] = —E98¢9 = 0. (4.7)

1
5We also use:

1 a a a aqg_
ea:aeaazmaddf 2N ANdT d, Gab:4(d71)!€aba34.4ad,ldm PALNdTtT (42)
170ne could also vary respect to the matter fields and that adds an additional term proportional
to the corresponding equations of motion.
'8 This follows from the identity d¢L = ¢ - dL + d(¢ - L) by using the fact that L is a top form
dL = 0.
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Therefore we can find a charge (d — 1)-form @ such that

J[&] =dQ[¢], on-shell. (4.8)

Off-shell we must include an additional term

J1E] = dQI] + €°C., (4.9)

that vanishes on-shell C, = 2E7,€’.
In the phase space of the gravity theory, the flow along £ is generated by a
Hamiltonian H¢ and its variation along the corresponding phase space flow is governed

by Hamilton’s equations
5He = (39, 0¢9) (4.10)

where dg is a perturbation of the metric and 0 H¢ is the change of the Hamiltonian
under this perturbation. The symplectic form can be written as an integral over a
Cauchy surface 3:

Q(0g,0¢9) = /Ew (09, 0¢g) - (4.11)
Here w is the symplectic current form:
w (69,0¢9) = 0O(g,d¢g) — 0:O(g, dg). (4.12)

Clearly the current form w vanishes if dg is generated by the Killing vector field
0g = 0¢g. In other words, the Hamiltonian generating translations along ¢ is constant
along its flow lines d¢ He = 0. These are in accordance with the standard definitions
of symplectic geometry.

Suppose the initial geometry, the geometry before the diffeomorphism, is a so-

lution of the equations of motion Egb = 0. Then we can calculate the variation by
combining (4.4) and (4.6) as:*’

w (09, 0¢9) = 6J[¢] — d( - ©(g,09)). (4.13)

By writing the current in terms of the Noether charge (4.9) and using Stoke’s theorem,
we get

[ w(G0.6c0) = | (6Qle)~¢-©lg.80)) + [ ¢75C, (414)
X % X
This is usually written in terms of a form

x =0Q[¢] — & O(g,09) (4.15)

as

/Ew(5g,5§9)=/azx+éfac50a- (4.16)

Consider now a black hole spacetime, where the horizon A of the black hole is a
bifurcation Killing horizon generated by some vector field £ 4.2° The region outside
of the black hole is denoted by ¥ 4, whose boundary 0% 4 is the union of the black
hole horizon A and the asymptotic infinity .A. Wald proposed [45] that the entropy

Y5J =60 —¢- 0L =60 — ¢ (E9%g+d®) = 6@ — (6.0 —d(£-©)) = w + d(€- O).

20 A Killing horizon is a null surface, on which the norm of a Killing vector vanishes. A bifurcation
Killing horizon is the intersection of the future and past Killing horizons, where all the components
of the Killing vector vanish.
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of the black hole can be identified as the horizon integral of the conserved charge

Q[EA]:
gypad _ 2 / QléAl, (4.17)
Kk JA

where « is the surface gravity of the horizon and it is usually normalized to 27. Using
the fact that the horizon is a bifurcation surface it was shown in [49] that the Wald
entropy can also be written as (k = 2m)

oL

S,thald = _QWAﬂPadenabncda pebed — ORuped’ (4.18)

where h is the induced metric on the horizon and ng is the binormal of the horizon
normalized such that n®ng, = —2. This is the Wald entropy functional mentioned in
section 3.3. The equivalence of (4.17) and the functional (4.18) also holds for small
perturbations of the geometry. In Einstein gravity (3.10)

1
Pabcd — ac bd 4.19
oG9 (4.19)

so that . .
Wald ab
ald L = 4.2
Shinstein e /\/ﬁn Nab 10n /\/ﬁ (4.20)

is the Bekenstein-Hawking entropy proportional to the area functional.

In the paper [49], Iyer and Wald also analysed the dynamics of the black hole and
constructed the black hole first law, which relates the variation of the Wald entropy
to he variation of the canonical energy at asymptotic infinity. Formally it states that
(k =2m)

6SWeld = §E[€ 4] (4.21)

for first order on-shell perturbations of the background spacetime. The quantity
E[¢4] is the canonical energy of the black hole and it is defined as the conserved
charge corresponding to diffeomorphisms along £ 4 at the asymptotic infinity A (not
to be confused with the symbol Egb denoting the equations of motion). The variation
of the canonical energy can be defined via the on-shell Hamiltonian (4.16) as:

SE[Ea] = / X (4.22)
A
If there exists a form B such that ® = 0 B, then we can use (4.15) to write
Blea) = [ Qical—€4-B (4.23

For a static asymptotically flat black hole in general relativity, £ 4 is the time evolution
generator J; at asymptotic infinity and F[{4] can be shown to be equal to the ADM
mass of the black hole [49].%!

To prove the black hole first law (4.21), note that the variation of the Wald
entropy (4.17) can also be written in terms of x as

aSYH = / X (4.24)
A

21See [49] also for explicit formulas for L, ®, @, J and E[0;] in general relativity.
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because €4 vanishes on the bifurcation horizon A. For on-shell perturbations, Hamil-
ton’s equations (4.16) can thus be written as

/EAw(6g75§Ag):/azAXZ/AX_/AX:(SE[gA}_55«\21\/&1(1' (4.25)

Because &4 is a Killing vector and d¢ ,g = 0, then w(dg,d¢ ,g) = 0 as well [49], which
gives us the black hole first law (4.21).
For off-shell perturbations we need to keep the additional term in (4.16), leaving
us with
SSWHd —SE[tal = — | £40C, =2 | €40E, €. (4.26)
XA Xa

In Einstein gravity this takes the form

dArealA] SE[E4] = —2 EYOEY, €, (4.27)
4GN S

which will be used in the next section.

4.2 Einstein’s equations at first order

Consider a ball-shaped region B(R,0) on the flat boundary of AdSy,; written in
Poincaré coordinates. Let |®(g)) be a one parameter family of CFT states such that
the vacuum state is located at € = 0. We assume that in the vicinity of the vacuum,
the states correspond to different classical bulk geometries M(e) without matter
fields, because we are working in the N — oo limit of the CFT. At this order, we do
not need to specify the explicit form of the states. The metric of M(g) is expanded
as

g(e) = g0 +e6gM + 259 4., (4.28)

where ¢(© is the metric of pure AdS, which is dual to the CFT vacuum state. The
ball density matrix is expanded similarly:

pp(e) = pg) + €5p591) + 525p(32) +.... (4.29)
The relative entropy respect to the vacuum state is given by
S(psleg’) = AUKB) - Sp). (4.30)

Differentiating with respect to e:

@ (Kp) ~ S5) = L S(ollpY) (4.31)

The left hand side can be translated to bulk language

d rav rav d 0
—(BF™ - S5™) = —S(pslleg)), (4.32)

where in Einstein gravity, the dual of entanglement entropy is given by the RT formula

Area[B(e)] .

Sgrav —
B 4Gy

(4.33)

Here B(e) is the bulk extremal surface of the ball in the geometry M(e).
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The ball modular Hamiltonian can be translated to bulk language using the ex-
pression (2.46) involving the stress-energy tensor:

(Kg) = QW/de—lx R 2;; (Ty(z)). (4.34)

The Poincaré invariance and scale invariance of the CFT imply the conservation law
0u,(T*) = 0 and tracelesness (T,) = 0. Using the correspondence (3.17) between
the boundary stress-energy tensor and the z%-coefficient of the Fefferman-Graham
expansion (3.12), these conditions translate to

Ouh D =0, pde =0, (4.35)

In particular, the second constraint implies hgf ) = hl(f)
repeated index. Now expressing the stress-energy expectation value using the bulk

metric (3.17), we get the gravitational analog in Einstein gravity:

with summation over the

grav. _ ded=1
B 16GNR Jp

4z (R — r?)h\P (2). (4.36)

Equation (4.32) is now a constraint on the bulk geometry (4.28).

We can expand (4.32) around the vacuum state ¢ = 0. At first order, relative
entropy vanishes giving the bulk dual of the CFT entanglement first law (2.16)

sWggay _ s pgay — g, (4.37)

where §() = d/de|.—¢. For first order perturbations of the geometry, the change in
the area of B (¢) only comes from the change in the metric and not from the change
in the coordinate location of B(0), because B(0) is an extremum by definition. Thus
we get

6 Area[B(0)]

_ (1) grav __
O s EE™ — . (4.38)

The hemisphere B (0) is a bifurcation horizon of a bulk Killing vector {g, which is the
canonical extension of the boundary conformal Killing vector ¢z (2.45). In Poincaré
coordinates:

2 .2 42 .9
ngszR ZQRt T)at—;(zaz—i—r&,), (4.39)

where r is the boundary radial coordinate.

One can check that its norm vanishes on B(0) and that it asymptotes to (g (2.45)
on the boundary. Together the horizon B(0) and the boundary ball B bound the bulk
spatial region ¥p (0Xp = BU B), which makes up the AdS-Rindler patch presented
in figure 8.

Equation (4.38) looks like the black hole first law (4.27) applied to the Killing
horizon B(0) and indeed it turns out that the energy quantities match:

SHEE™ = (W E¢p]. (4.40)

This can be verified by a direct calculation as follows.

The perturbation of the bulk AdS metric in Poincaré coordinates can be written

as
2

ds?® = % (dz2 + nudatdx” + deW(z, x)dm“dx”) . (4.41)
z
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Figure 8: The AdS-Rindler patch (yellow) in Poincaré coordinates. The flow £p is
drawn in red and it asymptotes to the ball modular flow (g on the boundary.

On the boundary, the perturbation H,, coincides with the Fefferman-Graham coeffi-

cient h,(f,l,), which induces the boundary stress-energy tensor. Now in the AdS-Rindler

slice ¥p at t = 0, the form x (4.15) can be written as [10]:

24 ‘ 2rz d .
- UL ) B,
D e {6 z K i z53+536> ]

2mt 2m

with summation over ¢, j. On the corresponding boundary slice, we have explicitly

d ™

H;j(0,z) = hgj)@), &g = E(R2 —r). (4.43)
The volume forms are proportional to (£/z)9~! so that all the terms in (4.42) vanish
at z = 0 expect for the second term, which is independent of z. Therefore (4.42)

reduces to
d edfl

- 16GNR

x5 (R — r2)n\D (z) d¥ 1o (4.44)

that matches with (4.36).

We are now finally able to write the bulk first law (4.37) using the black hole first
law (4.27) extended to off-shell perturbations:

(1) 3
SDAralBON _ 50) parav _ _y / d'a 55 B, (4.45)
4GN )]

where we have expanded Einstein’s equations in e:

SES, = 6B +26ED) 1 ... (4.46)

Now it is obvious that if Einstein’s equations hold at first order, namely 5Et(t1 ) = 0,
the bulk entanglement first law holds as well. We can also reverse the implication,
because the bulk first law (4.37) implies

—2 / diz LB =0 (4.47)
XB
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for balls B(R, Zj) of arbitrary radius and position (generalizes the radial coordinate
as r — |Z — Zp|). This is enough to make the integrand vanish [10], which gives the
time-time component of linearized Einstein’s equations at each bulk point:

SEY) =0. (4.48)

If on the boundary we boost to an arbitrary Lorentz frame with a d-velocity u”, we
get uHu” 6E,Sly) = 0. This holds for arbitrary vectors u* so we get Einstein’s equations
along the boundary directions
1
SELY) = 0. (4.49)
The remaining components 5E£,1) = 0 and (5E2) = 0 arise as constraint equations
from the identity

dX‘BM: 0, (4.50)

which follows from the conservation and tracelessness of the CF'T stress-energy tensor
[10]. All in all, we have established full equivalence between the entanglement first
law and linearized Einstein’s equations in the bulk.

Now that we have derived vacuum linearized Einstein’s equations in the N — oo
limit of the CFT using the RT formula, it is natural to consider what kind of effects
the 1/N-corrections have on the result. In section 3.1, we showed that the O(1)-
correction of the CFT requires one to include semi-classical effects in the bulk. Thus
one expects that the correction introduces a semi-classical matter coupling term,
proportional to the bulk stress-energy (beulk), in the linearized Einstein’s equations.
This is exactly what happens [12].

The bulk quantum effects cause corrections to both sides in the bulk first law
(4.37). The leading correction to the variation (5(1)SgBraV is captured by the FLM
proposal (3.22) as the variation of the bulk entanglement entropy of the surface ¥p:

6 Area[B(0)]

5(1) S}ggrav — 4G
N

+ o) ghulk, (4.51)

The counter-terms that render the bulk entanglement entropy finite (3.23) are in-
dependent of the geometry and are thus cancelled in the above variation (they only
depend on the regulator of the entanglement entropy).

According to AdS/CFT, the CFT state includes information of both the bulk
geometry and the state of the matter fields. Therefore under the perturbation of the
CFT state, the variation of Sggk is due to the following effects:

(i) Variation in the bulk metric and the deformation of the initial extremal surface
B(0).

(ii) Variation in the state of the bulk quantum fields.??

The geometric effects (i) vanish: the variation of the bulk metric, while keeping B(0)
fixed, has no effect on the bulk entanglement, because it does not affect the state of
the fields directly. In addition at first order, the deformation of B(0) does not have
an effect either, because ¥ p is an extremum of the bulk entropy functional Sg‘gk.
The reason for this is that as a function of the bulk UV cutoff, the leading term
of the bulk entanglement entropy is proportional to the area of B(0), which is an

22The quantum field variation does not contain graviton contribution as it would lead to double
counting.
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extremum. Another way to see this is by symmetry: the hemisphere can be mapped
to a surface that divides the bulk in half (see figure 7).

The only source of variation in the bulk entanglement is due to the variation of
the state (ii), which follows the entanglement first law. The modular flow of ¥p is
given by &g (4.39) so the modular Hamiltonian has the form:

Kpulk = / iz €T, (4.52)
3B

Therefore according to entanglement first law:

sl — [ty (o1, (453)
¥
where we have expanded
Tbulk _ 5T(1)
ab = £ ab 4+ ..., (454)

Next we need the quantum correction to §(V) E&™ in the first law (4.37). According
to (4.34), this amounts to finding corrections to the CFT 1-point function (7},,). In
section 3.1, we derived the result (3.19) that the leading correction is proportional to
the bulk stress-energy tensor (be‘llk). Based on locality, it is natural that it vanishes
at infinity: (beulkHB: 0. Therefore the semi-classical effects add no corrections to
5(1)E%rav'

We have shown that the only correction to the boundary entanglement first law
is given by bulk entanglement first law (4.53). Therefore solving Sy from (4.51)
and recalling the off-shell black hole first law (4.27), we get

<5<1>S§§“ - /E ddxggm;‘jb) —SWEEY = 9 /Z diz e5E. (4.55)
B B

Using the bulk first law (4.37), we get
1
/ dia ¢t (5E§j) - <5T§j)>> = 0. (4.56)
Sp 2

Again, because this holds for arbitrary balls, we have

1
5By — S (6T) =0, (4.57)
which is exactly the time-time component of the linearized Einstein’s equations with
a semi-classical matter coupling (the factor of 1/2 is necessary). The rest of the
components can be derived as before.

The result has deep implications. It shows that the universality of gravity, the
fact that gravity couples to all kinds of matter equally, is a result of the universality
of quantum entanglement. Since everything in nature is encoded in a Hilbert space,
entanglement does not depend on the type of matter and is therefore universal. At
least these facts are related in the context of AdS/CFT, but whether they are con-
nected generally is not known. There have been recent attempts to generalize these
ideas for example in [13], which we discuss in section 5.1, and in [51].

The definition of entanglement entropy for gauge fields is problematic, because
the Hilbert space cannot be expressed as a tensor product of the spaces of the two
regions. This might produce problems for the above derivation, when there are gauge
fields present in the bulk, because then one is unable to define bulk entanglement
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entropy.?> However in [52] it was shown that the gauge effects cancel for relative
entropy. Therefore the variation 555‘;1‘ is perfectly defined even for gauge fields and
the derivation goes through. This is expected, because there are no problems in doing
standard semi-classical gravity in the presence of gauge fields.

The power of using the Iyer-Wald formalism to derive the linearized Einstein’s
equations above, is that the derivation also extends to higher curvature theories of
gravity. In higher curvature theories, the variation of the ball entanglement entropies
are calculated by the generalized RT formula

s g = g ghald 4 5(1) ghulk (4.58)

with the Wald functional replacing the area funtional of Einstein gravity. One can
also show [10] that the equivalence §(VEE™ = §() E[¢p] extends to these theories
as well. Therefore the formula (4.26) combined with the bulk first law (4.37) implies
linearized higher curvature equations of motion with semi-classical matter coupling
as in Einstein gravity above.

4.3 Einstein’s equations at second order

We will now extend the above analysis to second order perturbations of the bulk
metric as presented in [11]. The strategy is to expand relative entropy (4.32) up
to second order in € and then apply Iyer-Wald formalism with Einstein’s equations
EY, expanded similarly. At first order the form of the state perturbations does not
matter, because the entanglement first law is true for arbitrary small perturbations.
However at second order, we must explicitly specify a one-parameter family of states
that reduce to the vacuum state at ¢ = 0. The states considered are chosen to have
the form:

0
D® exp [— / drd® 7 (Lopr + Aa(256) 00 (7)) |
(4.59)

Recall the notation 7 for the Euclidean time coordinate and ¥ for the 7 = 0 Cauchy

(@ By (c) = /

B(X,0)=0,

slice. The operators O, (x) are CET primary operators (including stress-energy ten-
sor) and all the £ dependence is in the deformation parameter A, (z;e) = eAo(x) +
O(£?) (summation over « is implied). At ¢ = 0 the lambdas vanish so that the
path integral reduces to the vacuum state.?* Therefore the above class of states are
perturbations of the CFT vacuum state. The states are dual to quantum matter
fields and coherent graviton fields in the bulk, leading to classical bulk geometry
with semi-classical coupling to matter.

We want to apply Iyer-Wald formalism to connect CFT relative entropy to Ein-
stein’s equations in the bulk. There is an apparent problem however, because the
coordinate location of the bulk minimal surface B(0) is shifted at second order, mean-
ing it no longer is a bifurcation horizon of the Killing vector £g. This problem can be
avoided by choosing a specific gauge for the perturbation dg!) called the Hollands-
Wald gauge. The gauge is defined such that the coordinate location of B’(O) in
unchanged and that the vector field £g in the original AdS coordinates stays as a

23Gauge fields could arise when the CFT has a global symmetry, which gets lifted to a local
symmetry in the bulk. It is generally argued that a theory of quantum gravity does not posses global
symmetries.

24 A thermal state is a result of integration over a cylinder with radius given by the inverse temper-
ature 8 (see section 2.2). Vacuum state is then a result of unwinding the cylinder (8 — oo) leading
to the half-space integral. The lambdas are also assumed to vanish sufficiently rapidly as 7 — 0 to
produce finite energy states [11].
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Killing vector field along B(0) under the perturbation [11]. The fact that such a
gauge exists is non-trivial and details can be found in [53, 54].
Now that we have fixed the gauge, the extremal surface B(0) is still a bifurcation

horizon at second order. As we showed in the last section, we then have (5]5%r W=
JE[¢p], which allows us to write (4.32) as

% (E[ﬁB] - W) = d%S(pBHpg)). (4.60)

In the phase space formulation, the Hamilton’s equations were given by (4.14) that
can be written in our current notation in Einstein gravity as:

dg d Area[B(0)]
—=9 =—|F - %0C,. 4.61
Combining with (4.60) we get
d d
E8nlo) = [ w (0L be0) - [ 2pomne e
E EB dE ZB

Expanding both sides to first order in ¢, we find that 6¢(*) obeys linearized Einstein’s
equations with matter as we showed before (4.57). Expanding up to second order we
get

1
@S (pgllply) =/ w (99,8910, 8¢,69)) —/ 264, (5]3((5) _ 25T£>> &

EB EB
(4.63)
with the notation )
@) ©y_1d (0)
d S(PBHPB ) =3 S(PBHPB )|s=0- (4~64)

2 de?
Here the second order contribution to the bulk stress-energy tensor Tfﬁlk is a result

of the matter fields sourcing the primary operators in the states (4.59).

The second order variation of relative entropy can be calculated directly in the
CFT. The result of the calculation is [11]:

¢
3OSl = o [ w (5,590, Leydg ). (465)
d B

where a} is the normalization of the universal part of vacuum entanglement entropy
(3.32) and Cr is the normalization of the stress-energy tensor two point function
(3.37). Assuming that Cr = a}; and combining with (4.63), we get

1
- / 264, <5Eﬁ) - 25T$)) e =0, (4.66)
XB

which applied to all balls as before implies that the metric obeys Einstein’s equations
at second order: .
(2) 2 _
OB, — §5T ,, = 0. (4.67)

a

Rest of the components follow in the same way as before.

We have established the following result: a state perturbation of a holographic
CFT with Cp = a} is dual to a metric perturbation in the bulk obeying Einstein’s
equations at second order. This result is in agreement with the earlier discussion
on the universality of the ball shaped region, where Einstein gravity was argued to
produce correct ball entanglement entropies if Cr = ay. Therefore to extend the
above derivation to CFTs with Cr # a;, one must consider higher curvature theories
in the bulk. This was done in [50] to derive the correct equations of motion.
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5 Einstein’s equations in other spacetimes

We have now seen how classical gravity emerges from the entanglement structure of
the CFT in the AdS/CFT correspondence. This begs the question whether gravity
also emerges from entanglement in spacetimes other than AdS, namely, in other max-
imally symmetric spaces. Of course, there is no known dual field theory description
for gravity in Minkowski or de Sitter space so to derive Einstein’s equations, one
needs to make assumptions on the quantum gravitational degrees of freedom in the
UV. The ideas from AdS/CFT were put to use, when Jacobson introduced his maxi-
mum vacuum entanglement hypothesis (MVEH) that he applied to derive Einstein’s
equations, with semi-classical matter coupling, in any maximally symmetric space
[13]. The hypothesis states that the lowest energy state of quantum gravity is in en-
tanglement equilibrium, where the total entanglement entropy of a small geodesic ball
is maximized. The equilibrium holds locally for balls centered at arbitrary spacetime
points, which leads to Einstein’s equations everywhere in the spacetime.

MVEH is motivated by an on-shell classical result in general relativity known as
the first law of causal diamond mechanics. It states that the addition of matter energy
to a geodesic ball decreases the area of the ball boundary at fixed volume. This first
law is analogous to the black hole first law and can be derived from the phase space
formulation using the Iyer-Wald formalism of section 4.1. Hence a generalization of
entanglement equilibrium to higher curvature theories of gravity is possible [55].

5.1 Einstein’s equations from entanglement equilibrium

We start by considering a geodesic ball B of radius R at a point p in d-dimensional flat
Minkowski space.?® Suppose we are working in the semi-classical limit of quantum
gravity, where matter fields are quantum, but gravity is classical. In this limit, the
quantum gravity Hilbert space is assumed to factorize into two components that are
associated with UV and IR degrees of freedom of the theory:

H = Hyuv ® Hir. (5.1)

We can now define entanglement entropies Syy and Sig by tracing out the other
component. The mutual information between the UV and IR degrees of freedom is
taken to be negligible so that the total entanglement entropy is a simple sum

Sp = Suv + SIR. (5.2)

The IR entropy is associated with entanglement of quantum matter fields across the
ball boundary, while the UV entropy is due to unknown quantum gravity degrees of
freedom and it is taken to satisfy the familiar area law

Suv = nA4, (5.3)

where A is the area of 9B and the constant 7 is the area density of vacuum entangle-
ment entropy, which is assumed to be rendered finite by quantum gravitational effects.
Jacobson’s maximum vacuum entanglement hypothesis is the following statement:

When the geometry and the state of the matter fields are simultaneously
varied from maximal symmetry, the total entanglement entropy Sp in a
small geodesic ball is maximal at fized volume.

25 A geodesic ball of radius R is defined as the set of points, whose geodesic distance from p is R.
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Figure 9: Causal diamond D|[B] of a geodesic ball.

The variation of geometry is classical, while the matter field variation is a varia-
tion in the quantum state. Maximal symmetry refers to the underlying spacetime
being maximally symmetric. Formally MVEH states that under arbitrary off-shell
variations of geometry and matter fields, §Sp vanishes:

0Suv + 6Smr =0, (5.4)

where the area variation of 0B is taken at fixed volume
0Suv = ndAly. (5.5)

These ingredients are enough to derive Einstein’s equations as follows. The area
variation of the geodesic ball at fixed volume is given by [13]

Qy_o R4

MV e

R, (5.6)

where R = R, jij is the spatial Ricci scalar of the perturbed spacetime and €2;_5 is the
volume of a (d — 2)-dimensional unit sphere. Note that this is a full non-perturbative
change in the area. The Ricci scalar can be written in terms of the Einstein tensor
as

R = 2Gqp. (5.7)

This holds when the background spacetime is flat, but we want to consider an arbi-
trary maximally symmetric space (MSS), with a curvature scale A, as a background.
At linear order in A, which is enough for small balls, the area variation respect to a
MSS is obtained by replacing Ggg — Ggo — G%SS, where GC%SS = —Agqp. The result

1S
d

Q4_oR
0Syv = —n%(Goo + Aggo). (5.8)

The IR entanglement entropy follows the familiar entanglement first law

6Sir = 6(Kp), (5.9)

To proceed, we need assume that the matter fields are conformal so that the modular
Hamiltonian Kp is given by the familiar result (2.46). Suppose that the radius R of
the geodesic ball is smaller than the curvature scale of the spacetime, but larger than
the excitation length of the quantum fields to have a well defined entropy. Then the
stress-energy tensor of the CF'T is approximately constant inside the ball:

Q4o R

e

5(Too(p)). (5.10)
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Substituting the expressions (5.8) and (5.10) to the MVEH (5.4) gives

27
Goo + Agoo = ?<

Too)- (5.11)
This is the time-time component of the Einstein’s equations at the center of the ball
if we identify n = 1/4Gn. Rest of the components are obtained by reproducing the
calculation in all Lorentz frames. Because the derivation can be repeated for small
balls at arbitrary points p, the Einstein’s equations hold everywhere.

The above derivation is only applicable in the case of conformally symmetric
fields, because of the use of the expression (5.10) for Sig. Jacobson proposed [13]
that it could be extended to QFTs with a conformal UV fixed point by the addition

of a scalar:
Qq_oR?

d?—1

It was suggested that the scalar could be proportional to the trace of the stress-

65mm = (6(Tbo) + 3(X)). (5.12)

energy tensor, whose expectation value vanishes in CFTs. Holographic calculations
in AdS/CFT have been done to check this proposal by considering perturbations to
the conformal action by some scalar operator. The proposal works for some scal-
ing dimensions A of the scalar operator, but the operators with A < d/2 produce
terms that dominate in the small radius limit violating the proposal [56, 57]. The
problem could be avoided if, for example, MVEH only applies to linearized pertur-
bations around the vacuum. This is also suggested by the fact that there exists
non-perturbative families of CFT states that contain the vacuum state, but have a
finite energy density with the same entanglement entropy.?® For such states MVEH
would be meaningless, because the change in the entanglement entropy is zero. In
addition, MVEH applied to higher curvature theories of gravity only produces the
equations of motion at the linearized level [55].

The constraint of taking the variation of Syvy at fixed volume is motivated by the
first law of causal diamond mechanics, which is a classical on-shell statement about
the spacetime dynamics within the geodesic ball [13]. Consider a simultaneous on-
shell variation of the metric and the classical matter fields. According to Hamilton’s
equations (4.16) derived in section 4.1, the on-shell variation of the Hamiltonian
generating the flow along (p is given by Wald entropy

0H, = /8 N 0Q[Cp] = 6SKHd, (5.13)

In contrast to the black hole first law, the left hand side does not vanish, because (g
is not a pure Killing vector of Minkowski space, but only a conformal Killing vector.
In Einstein gravity, the Wald entropy is proportional to the area of 0B, while the
Hamiltonian can be calculated from the explicit expression for w [13]. The gravita-
tional contribution to w is proportional to the volume variation §V of the ball so that
the gravitational part of (5.13) contains n(dA — §V') up to a constant in §V. Turns
out that this constant has just the right value so that the expression becomes area
variation at fixed volume dA[y. On the other hand, the matter contribution to w is
proportional to the matter stress-energy and therefore the first law of causal diamond
mechanics states that the addition of matter energy to the diamond decreases the
area of the boundary at fixed volume [13]:

+ 6B, =0, (5.14)

26 An example of such a family is given by coherent states [58].
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where E¢, = [ dx Ty is the conformal boost energy resulting from matter. So
we see that a similar expression to MVEH holds on-shell classically and this is the
reason why Einstein’s equations can be derived by reversing the argument.

Entanglement equilibrium can also be extended to higher curvature theories of
gravity [55]. The strategy is to replace the area of the ball by the corresponding
Wald functional of the theory, but now one also needs a “generalized volume”, which
is taken to be fixed under the variation of the Wald functional. The generalized
volume is obtained from the first law of causal diamond mechanics (5.13) applied
to higher curvature theories and it is denoted by W. Entanglement equilibrium is
assumed as before, but this time dSyy = (55}’3‘]&1‘1]14/.27 For small balls, the correct
equations of motion are obtained, but only at the linearized level, because the higher
curvature terms are encoded at larger distance scales. Therefore one would hope
that by increasing the radius of the ball, higher order corrections could be obtained.
Turns out that this is not possible [55], because the Riemann normal coordinates,
that parametrize the geodesics radiating from the center, contain terms second order
in curvature at larger radius. These terms are exactly what the equations of motion
would contain at the same order, breaking the perturbative expansion. It is suggested
that this implies a break down of the effective field theory description.

5.2 Comparison with holography and discussion

There are some similarities between the holographic derivation of Einstein’s equa-
tions reviewed in section 4 and the derivation of this section based on entanglement
equilibrium. The vanishing of the total entanglement entropy of a geodesic ball is
analogous to the bulk first law in AdS/CFT (the bulk dual of CFT entanglement
first law), which was applied in the bulk region bounded by the RT surface (the
AdS-Rindler patch). In both cases, semi-classical matter coupling follows from the
entanglement of fields inside the region being considered, but the Einstein’s equa-
tions itself are obtained differently. Entanglement equilibrium yields full non-linear
Einstein’s equations, while in holography, the equations are only obtained pertur-
batively. A geodesic ball is a well defined notion at all orders and that is why we
are able to calculate the area variation (5.6) non-perturbatively, leading to the full
non-linear equations. In holography, we do not have a non-perturbative constraint
on the geometry, but only a perturbative expansion obtained from relative entropy
(4.31).

The main difference when comparing Jacobson’s derivation to holography is the
absence of a dual theory. In Jacobson’s derivation, the area law for the UV entropy
is simply taken as an assumption, which supposedly captures the macroscopic be-
haviour of the UV degrees of freedom. In the holographic context, the interpretation
of the area law for the hemisphere is perfectly clear and is given by the entanglement
entropy of the dual CFT. There is also n that must be rendered finite by quan-
tum gravitational effects. The mechanisms responsible should be similar to how the
bulk entanglement entropy is rendered finite in the FLM formula (3.22), because its
leading order divergence is also proportional to area. The entanglement equilibrium
hypothesis is also taken as an assumption, which is of course well motivated by the
first law of causal diamond mechanics, but it cannot be derived from a more funda-
mental principle. In holography the situation is again the opposite, because the bulk
first law is dual to the entangelent first law of the CFT.

2"There are ambiguities in the definitions that modify the Wald functional and generalized volume
by terms Syxm and Wik [59]. Nevertheless, the variation with the new functionals §(S}H*¢ +
Syxm)|wr with W/ = W + Wikw yields the correct linearized equations of motion.
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In Jacobson’s derivation the shape of the geodesic ball and the conformal sym-
metry of the matter fields are essential, because together they produce the correct
factor in the stress-energy tensor that cancels against the area variation in (5.11).
It is the explicit form of the ball modular Hamiltonian of the conformal fields that
produce the correct matter coupling in the Einstein’s equations. In the holographic
derivation, the fields do not need to be conformal, because the canonical extension £p
of the boundary conformal Killing vector to the bulk is a real Killing vector of AdS
space. Therefore entanglement first law can be applied regardless of the symmetries
of the theory, when calculating the variation of bulk entanglement entropy in (4.53).

For completeness we also mention an older 1995 paper by Jacobson [60], where
he derives Einstein’s equations as an equation of state. It is based on local Rindler
horizons, for which one defines an entropy satisfying an area law. Matter energy is
included as an integral of heat flux through the future horizon and it is assumed
to follow a Clasius relation. The variation of the horizon entropy is taken to be
equal to the variation of the matter entropy in the Clasius relation, leading to Ein-
stein’s equations as a local equilibrium constraint. See appendix B for details. This
“thermodynamical” derivation is entirely classical, but has some similarities with the
derivations of this thesis. However, the derivations based on entanglement above are
much better motivated and it is not really even clear what kind of entropy one is
calculating in the thermodynamical case [61].

6 Summary

In this thesis, we reviewed how Einstein’s equations can be derived up to second order
metric perturbations from the AdS/CFT correspondence. We started by introducing
the concept of entanglement entropy and relative entropy in quantum field theories.
Entanglement entropy of a spatial subregion can be calculated using the replica trick
by means of a functional integral over a replicated surface. The method produces
a universal entanglement entropy for two dimensional conformal field theories in
thermal states. Thermal entanglement entropies also result from the vacuum state,
when moving along non-inertial worldlines that generate a symmetry of the theory.
In particular for a ball-shaped region in the CFT vacuum state, the entanglement
entropy is equivalent to thermal entropy on a hyperbolic space.

We then moved on to the AdS/CFT correspondence, which is a duality between a
string theory in the bulk of AdS space and a conformal field theory on its boundary.
When the CFT is strongly coupled and has a large number of degrees of freedom, the
string theory reduces to general relativity with quantum corrections being quantum
fields that couple semi-classically. Entanglement entropy of the CFT is calculated
via the Hubeny-Ryu-Takayanagi formula as the area of an extremal surface in the
bulk, to which the leading correction is given by bulk entanglement entropy. For a
boundary ball-shaped region in the CFT vacuum state, the formula reproduces the
universal nature of the entanglement entropy, which is normalized by two parameters
up to second order perturbations around the vacuum in any number of dimensions.

Variation of the ball entanglement entropy around the CFT vacuum state follows
the entanglement first law. By using the Ryu-Takayanagi formula and other results
from AdS/CFT, the first law can be translated to the bulk, where it acts as a con-
straint on the bulk geometry. This constraint is equivalent to linearized Einstein’s
equations around AdS space. Semi-classical matter coupling is obtained by including
the leading quantum correction, bulk entanglement entropy, in the RT formula. At
second order the CFT first law is no longer enough, but instead the expression for
relative entropy has to be used and expanded to second order, giving a second order
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constraint on the bulk geometry. As a result, Einstein’s equations at second order
are obtained, but only for specific subset of perturbations. We discussed how these
derivations can naturally be extended to higher curvature theories of gravity as well.

Last we reviewed how Einstein’s equations can be derived from the maximum
vacuum entanglement hypothesis. Total entanglement entropy of a geodesic ball is
defined as a sum of UV and IR entropies of the quantum gravity Hilbert space.
The UV entropy is assumed to follow an area law, while the IR entropy is normal
entanglement entropy of the quantum matter fields. The hypothesis states that the
total entanglement entropy of a small geodesic ball is maximized, which gives the full
non-linear Einstein’s equations inside the ball. Entanglement equilibrium is assumed
to hold locally at every point, leading to Einstein’s equations everywhere in the
spacetime. The derivation is inspired by the analogs in AdS/CFT and we discussed
their differences.
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Appendix A

Useful metrics

1 Poincaré metric

AdS441 and Euclidean AdS space Hyyq (hyperbolic space) are defined as the embed-
ding of
EXF+XT+. A+ X XT, =0 (1.1)

in the R%? ambient spacetime

ds® = £dX§ +dXi +...+dX] —dX7,;. (1.2)

AdSg1 corresponds to the minus sign and Hg. 1 to the plus sign in the coefficient of
ng above. Let

u=Xq+ Xap1 (1.3)
v=Xg— Xay1 (1.4)
t= Xo/u (1.5)
=X;i/u, 1=1,...,d—1 (1.6)
With these coordinates, the hyperbola (1.1) becomes:
uv + u? (£t + 72) = -2, (1.7)

We can solve for v and substitute it to the transformed ambient metric (1.2). The
result is:

0 ~
ds? = Edu2 + u? (dt? + di?). (1.8)
By defining z = ¢/u with z > 0, we get the Poincaré metric
2

(
ds? = ?(sz + dt? + di*) (1.9)

with the minus sign being AdSy41 and plus sign Hg, .

2 Hyperbolic blackhole metric

The metric of a general hyperbolic AdS;4; black hole is [23]

b

dp? + p?(du® + sinh? u dQ3_,), 2.1

62
ds® = —ﬁf@)d?ﬁ +
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where

2 d—2 ;2
P P+ j
f(p)_ﬁ_ _pd—2<€2_>' (2.2)
The temperature of the black hole is given by
l dpy d—2
T = — 2.3
dmR ( G P+ ) @3)

Here p4 corresponds to the the black hole mass and it fixes the radial location of the
horizon f(p4) = 0. AdS-Rindler space is the special case of (2.1) that is isometric to
pure AdS. The Rindler horizon was shown to have an inverse temperature 8 = 27 R,
which is obtained from (2.3) by setting p+ = ¢. This corresponds to

flp) =15 -1 (2.4)

giving the AdS-Rindler metric (3.28).
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Appendix B

Einstein’s equations as an
equation of state

The Einstein’s equations imply the existence of a black hole entropy, which must
be proportional to the area of the horizon, while the surface gravity determines the
temperature. Without worrying about the microscopical degrees of freedom that
the entropy describes, one could use the thermodynamical relationships and maybe
derive Einstein’s equations. This would allow us to view the Einstein’s equations as
an equation of state between the thermodynamical variables. Such a viewpoint was
taken by Jacobson [60] to show that the Einstein’s equations can indeed be derived
as an equilibrium relation.

The idea is to consider the local Rindler horizon of a spacetime point p (the space
is locally flat) and analyze the thermodynamical heat that flows through a spacelike
2-surface element P, which is a thin strip extending from the horizon. In analogy
with black hole entropy, a similar entropy can be defined for the Rindler horizon.
There are subtleties however, because the Rindler horizon has an infinite area so
that one instead looks at an infinitesimal piece of the horizon. The horizon has an
Unruh temperature 7 = a/27 and it is assumed that the change in entropy follows
the familiar equation

5S = 1d A, (0.1)

where 7 is a finite constant and A is the area of the spacelike area element P. In
analogy with black hole entropy, the constant is taken to be n = 1/4GN. Then we
assume the first law like relation between the horizon entropy and a heat quantity:

5Q = TdS. (0.2)

The heat @) is defined as the energy that flows through the domain of dependence
of the Rindler horizon as measured by the Rindler observer. The horizon focuses
the energy flow depending on how it is deformed so that the two equations (0.1)
and (0.2) act as constraint on the curvature of the geometry at p. Turns out that
this constraint is exactly the null components of Einstein’s equations as we will show
next. Applying the constraint at all points p then gives the equations everywhere in
the spacetime.

The observer is assumed to hover near the horizon, meaning that the calculations
are done in the infinite acceleration limit. In this limit, the boost generator (* (2.37),
which generates the wordline of the observer, approximately also generates the local
Rindler horizon of P. Denoting the future horizon of P by H, the total heat measured
by the observer can be defined in terms of the energy-momentum flux (7}, through
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the past horizon:

50 = /H AP (VT (0.3)

Let A € R be an affine parameter that vanishes at P and increases in the future
direction. Then near P we can approximate (* = —aAk* and dX* = d\dA k* with
k¥ being a tangent vector of H. With these explicit formulas (0.3) becomes

5Q =—a / XA NT MK (0.4)
H

The heat flow is assumed to travel along null geodesics that pass through the horizon
‘H. The change in the area of P is proportional to the expansion 6 of these geodesics:

5A = / dAIAO. (0.5)
H

Raychaudhuri equation is an equation, which relates the rate of change of the ex-
pansion to the spacetime curvature. Near p the null geodesics approximately travel
along k" so the affine parameter of the geodesics is A. Integrating the Raychaudhuri
equation gives for small A:

0 = —ARK'EY. (0.6)

The area variation becomes

SA = — / ANIA AR, KPEY . (0.7)
H

The first law relation (0.2) is now equivalent to

2
Ry k'k = %ka“k” (0.8)

for arbitrary null k#, which implies R, + fg,, = T, for some function f, because
9w k* k" vanishes. Using the Bianchi identity this is equivalent to Einstein’s equations
at p:

G + Aguy = 8TGNT (0.9)

with A identified as the cosmological constant.

This derivation can also be extended to higher curvature theories of gravity [62].
The strategy is to replace the area of P by the corresponding Wald functional of
the theory. The key difference is that one is no longer able to use the Raychaudhuri
equation in the derivation, but one instead uses the fact that for an exact Killing
vector (*:

ViVl =R, C- (0.10)

In our case, the (* as defined above is only an approximate Killing vector in the
a — oo limit and the identity (0.10) is taken to hold approximately. This is analogous
to the approximation above that (* = —a\k".

45



46

References

[13]

[14]

Juan M. Maldacena. “The Large N Limit of Superconformal Field Theories
and Supergravity”. In: International Journal of Theoretical Physics 38.4 (1999),
pp- 1113-1133. arXiv: hep-th/9711200.

Jacob D. Bekenstein. “Black Holes and Entropy”. In: Physical Review D 7.8
(Apr. 1973), pp. 2333-2346.

S. W. Hawking. “Particle Creation by Black Holes”. In: Commun.Math. Phys.
43 (1975), pp. 199-220.

Luca Bombelli et al. “Quantum Source of Entropy for Black Holes”. In: Physical
Review D 34.2 (July 1986), pp. 373—-383.

Shinsei Ryu and Tadashi Takayanagi. “Holographic Derivation of Entanglement
Entropy from AdS/CFT”. In: Physical Review Letters 96.18 (May 2006). arXiv:
hep-th/0603001.

Shinsei Ryu and Tadashi Takayanagi. “Aspects of Holographic Entanglement
Entropy”. In: Journal of High Energy Physics 2006.08 (Aug. 2006), pp. 045—
045. arXiv: hep-th/0605073.

Mark Van Raamsdonk. “Comments on Quantum Gravity and Entanglement”.
In: arXiw:0907.2939 [gr-qc, physics:hep-th, physics:quant-ph/ (July 2009). arXiv:
0907.2939 [gr-qc, physics:hep-th, physics:quant-ph].

Mark Van Raamsdonk. “Building up Spacetime with Quantum Entanglement”.
In: International Journal of Modern Physics D 19.14 (Dec. 2010), pp. 2429—
2435. arXiv: 1005.3035.

Nima Lashkari, Michael B. McDermott, and Mark Van Raamsdonk. “Gravita-
tional Dynamics From Entanglement "Thermodynamics™. In: Journal of High
Energy Physics 2014.4 (Apr. 2014). arXiv: 1308.3716.

Thomas Faulkner et al. “Gravitation from Entanglement in Holographic CFTs”.
In: Journal of High Energy Physics 2014.3 (Mar. 2014). arXiv: 1312.7856.

Thomas Faulkner et al. “Nonlinear Gravity from Entanglement in Confor-
mal Field Theories”. In: arXiv:1705.03026 [gr-qc, physics:hep-th] (May 2017).
arXiv: 1705.03026 [gr-qc, physics:hep-th].

Brian Swingle and Mark Van Raamsdonk. “Universality of Gravity from En-
tanglement”. In: arXiv:1405.2933 [gr-qc, physics:hep-th] (May 2014). arXiv:
1405.2933 [gr-qc, physics:hep-th].

Ted Jacobson. “Entanglement Equilibrium and the Einstein Equation”. In:
Physical Review Letters 116.20 (May 2016). arXiv: 15605.04753.

Mark Srednicki. “Entropy and Area”. In: Physical Review Letters 71.5 (Aug.
1993), pp. 666-669. arXiv: hep-th/9303048.


http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/0603001
http://arxiv.org/abs/hep-th/0605073
http://arxiv.org/abs/0907.2939
http://arxiv.org/abs/1005.3035
http://arxiv.org/abs/1308.3716
http://arxiv.org/abs/1312.7856
http://arxiv.org/abs/1705.03026
http://arxiv.org/abs/1405.2933
http://arxiv.org/abs/1505.04753
http://arxiv.org/abs/hep-th/9303048

[25]

[26]

[27]

[28]

H. Casini. “Geometric Entropy, Area, and Strong Subadditivity”. In: Classi-
cal and Quantum Gravity 21.9 (May 2004), pp. 2351-2378. arXiv: hep-th/
0312238.

Tatsuma Nishioka, Shinsei Ryu, and Tadashi Takayanagi. “Holographic Entan-
glement Entropy: An Overview”. In: Journal of Physics A: Mathematical and
Theoretical 42.50 (Dec. 2009), p. 504008. arXiv: 0905.0932.

Huzihiro Araki and Elliott H. Lieb. “Entropy Inequalities”. en. In: Communi-
cations in Mathematical Physics 18.2 (June 1970), pp. 160-170.

Elliott H. Lieb and Mary Beth Ruskai. “Proof of the Strong Subadditivity
of Quantum-mechanical Entropy”. In: Journal of Mathematical Physics 14.12
(Dec. 1973), pp. 1938-1941.

Alfred Wehrl. “General Properties of Entropy”. In: Reviews of Modern Physics
50.2 (Apr. 1978), pp. 221-260.

David D. Blanco et al. “Relative Entropy and Holography”. In: Journal of High
Energy Physics 2013.8 (Aug. 2013). arXiv: 1305.3182.

Pasquale Calabrese and John Cardy. “Entanglement Entropy and Quantum
Field Theory”. In: Journal of Statistical Mechanics: Theory and Experiment
2004.06 (June 2004), P06002. arXiv: hep-th/0405152.

Pasquale Calabrese and John Cardy. “Entanglement Entropy and Conformal
Field Theory”. In: Journal of Physics A: Mathematical and Theoretical 42.50
(Dec. 2009), p. 504005. arXiv: 0905.4013.

Mukund Rangamani and Tadashi Takayanagi. “Holographic Entanglement En-
tropy”. In: arXiv:1609.01287 [gr-qc, physics:hep-th, physics:quant-ph] (Sept.
2016). arXiv: 1609.01287 [gr-qc, physics:hep-th, physics:quant-ph].

Mark Van Raamsdonk. “Lectures on Gravity and Entanglement”. In: arXiv:1609.00026

[gr-qc, physics:hep-th, physics:quant-ph/] (Jan. 2017), pp. 297-351. arXiv: 1609.
00026 [gr-qc, physics:hep-th, physics:quant-ph].

Paul Ginsparg. “Applied Conformal Field Theory”. In: arXiv:hep-th/9108028
(Nov. 1988). arXiv: hep-th/9108028.

Joseph J. Bisognano and Eyvind H. Wichmann. “On the Duality Condition
for Quantum Fields”. In: Journal of Mathematical Physics 17.3 (Mar. 1976),
pp- 303-321.

W. G. Unruh. “Notes on Black-Hole Evaporation”. In: Physical Review D 14.4
(Aug. 1976), pp. 870-892.

Horacio Casini, Marina Huerta, and Robert C. Myers. “Towards a Derivation
of Holographic Entanglement Entropy”. In: Journal of High Energy Physics
2011.5 (May 2011). arXiv: 1102.0440.

Edward Witten. “Anti De Sitter Space And Holography”. In: arXiv:hep-th/9802150

(Feb. 1998). arXiv: hep-th/9802150.

S. S. Gubser, I. R. Klebanov, and A. M. Polyakov. “Gauge Theory Correlators
from Non-Critical String Theory”. In: Physics Letters B 428.1-2 (May 1998),
pp. 105-114. arXiv: hep-th/9802109.

Sebastian De Haro, Daniel R. Mayerson, and Jeremy N. Butterfield. “Concep-
tual Aspects of Gauge/Gravity Duality”. In: Foundations of Physics 46.11 (Nov.
2016), pp. 1381-1425. arXiv: 1509.09231.

47


http://arxiv.org/abs/hep-th/0312238
http://arxiv.org/abs/hep-th/0312238
http://arxiv.org/abs/0905.0932
http://arxiv.org/abs/1305.3182
http://arxiv.org/abs/hep-th/0405152
http://arxiv.org/abs/0905.4013
http://arxiv.org/abs/1609.01287
http://arxiv.org/abs/1609.00026
http://arxiv.org/abs/1609.00026
http://arxiv.org/abs/hep-th/9108028
http://arxiv.org/abs/1102.0440
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/1509.09231

[40]

[41]

Jens L. Petersen. “Introduction to the Maldacena Conjecture on AdS/CFT”.
In: International Journal of Modern Physics A 14.23 (Sept. 1999), pp. 3597—
3672. arXiv: hep-th/9902131.

Charles Fefferman and C. Robin Graham. “The Ambient Metric”. In: arXiv:0710.0919
[math] (Oct. 2007). arXiv: 0710.0919 [math].

Sebastian de Haro, Kostas Skenderis, and Sergey N. Solodukhin. “Holographic
Reconstruction of Spacetime and Renormalization in the AdS/CFT Corre-
spondence”. In: Communications in Mathematical Physics 217.3 (Mar. 2001),
pp. 595-622. arXiv: hep-th/0002230.

J. B. Hartle and S. W. Hawking. “Wave Function of the Universe”. In: Physical
Review D 28.12 (Dec. 1983), pp. 2960-2975.

Veronika E. Hubeny, Mukund Rangamani, and Tadashi Takayanagi. “A Covari-
ant Holographic Entanglement Entropy Proposal”. In: Journal of High Energy
Physics 2007.07 (July 2007), pp. 062-062. arXiv: 0705.0016.

Dmitri V. Fursaev. “Proof of the Holographic Formula for Entanglement En-
tropy”. In: Journal of High Energy Physics 2006.09 (Sept. 2006), pp. 018-018.
arXiv: hep-th/0606184.

Aitor Lewkowycz and Juan Maldacena. “Generalized Gravitational Entropy”.
In: Journal of High Energy Physics 2013.8 (Aug. 2013). arXiv: 1304.4926.

Xi Dong, Aitor Lewkowycz, and Mukund Rangamani. “Deriving Covariant
Holographic Entanglement”. In: Journal of High Energy Physics 2016.11 (Nov.
2016). arXiv: 1607.07506.

Thomas Faulkner, Aitor Lewkowycz, and Juan Maldacena. “Quantum Cor-
rections to Holographic Entanglement Entropy”. In: Journal of High Energy
Physics 2013.11 (Nov. 2013). arXiv: 1307.2892.

V. P. Frolov, D. V. Fursaev, and A. I. Zelnikov. “Black Hole Entropy: Off-Shell
vs On-Shell”. In: Physical Review D 54.4 (Aug. 1996), pp. 2711-2731. arXiv:
hep-th/9512184.

Sergey N. Solodukhin. “Entanglement Entropy of Black Holes”. In: Living Re-
views in Relativity 14.1 (Dec. 2011). arXiv: 1104.3712.

Maximo Banados, Claudio Teitelboim, and Jorge Zanelli. “The Black Hole in
Three Dimensional Space Time”. In: Physical Review Letters 69.13 (Sept. 1992),
pp- 1849-1851. arXiv: hep-th/9204099.

Maximo Banados et al. “Geometry of the 241 Black Hole”. In: Physical Review
D 48.4 (Aug. 1993), pp. 1506-1525. arXiv: gr-qc/9302012.

Robert M. Wald. “Black Hole Entropy Is Noether Charge”. In: Physical Review
D 48.8 (Oct. 1993), R3427-R3431. arXiv: gr-qc/9307038.

Xi Dong. “Holographic Entanglement Entropy for General Higher Derivative
Gravity”. In: Journal of High Energy Physics 2014.1 (Jan. 2014). arXiv: 1310.
5713.

Felix M. Haehl. “Comments on Universal Properties of Entanglement Entropy
and Bulk Reconstruction”. In: Journal of High Energy Physics 2015.10 (Oct.
2015). arXiv: 1508.00766.

Matthew J. S. Beach et al. “Entanglement Entropy from One-Point Functions
in Holographic States”. In: Journal of High Energy Physics 2016.6 (June 2016).
arXiv: 1604.05308.

48


http://arxiv.org/abs/hep-th/9902131
http://arxiv.org/abs/0710.0919
http://arxiv.org/abs/hep-th/0002230
http://arxiv.org/abs/0705.0016
http://arxiv.org/abs/hep-th/0606184
http://arxiv.org/abs/1304.4926
http://arxiv.org/abs/1607.07506
http://arxiv.org/abs/1307.2892
http://arxiv.org/abs/hep-th/9512184
http://arxiv.org/abs/1104.3712
http://arxiv.org/abs/hep-th/9204099
http://arxiv.org/abs/gr-qc/9302012
http://arxiv.org/abs/gr-qc/9307038
http://arxiv.org/abs/1310.5713
http://arxiv.org/abs/1310.5713
http://arxiv.org/abs/1508.00766
http://arxiv.org/abs/1604.05308

[55]

[56]

Vivek Iyer and Robert M. Wald. “Some Properties of Noether Charge and a
Proposal for Dynamical Black Hole Entropy”. In: Physical Review D 50.2 (July
1994), pp. 846-864. arXiv: gr-qc/9403028.

Felix M. Haehl et al. “Higher Curvature Gravity from Entanglement in Confor-
mal Field Theories”. In: arXiv:1712.06620 [gr-qc, physics:hep-th] (Dec. 2017).
arXiv: 1712.06620 [gr-qc, physics:hep-th].

ChunJun Cao, Sean M. Carroll, and Spyridon Michalakis. “Space from Hilbert
Space: Recovering Geometry from Bulk Entanglement”. In: Physical Review D
95.2 (Jan. 2017). arXiv: 1606.08444.

Horacio Casini, Marina Huerta, and Jose Alejandro Rosabal. “Remarks on En-
tanglement Entropy for Gauge Fields”. In: Physical Review D 89.8 (Apr. 2014).
arXiv: 1312.1183.

Stefan Hollands and Robert M. Wald. “Stability of Black Holes and Black
Branes”. In: Communications in Mathematical Physics 321.3 (Aug. 2013), pp. 629
680. arXiv: 1201.0463.

Nima Lashkari and Mark Van Raamsdonk. “Canonical Energy Is Quantum
Fisher Information”. In: Journal of High Energy Physics 2016.4 (Apr. 2016),
pp- 1-26. arXiv: 1508.00897.

Pablo Bueno et al. “Entanglement Equilibrium for Higher Order Gravity”. In:
Physical Review D 95.4 (Feb. 2017). arXiv: 1612.04374.

Horacio Casini, Damian A. Galante, and Robert C. Myers. “Comments on Ja-
cobson’s "Entanglement Equilibrium and the Einstein Equation™. In: Journal
of High Energy Physics 2016.3 (Mar. 2016). arXiv: 1601.00528.

Antony J. Speranza. “Entanglement Entropy of Excited States in Conformal
Perturbation Theory and the Einstein Equation”. In: Journal of High Energy
Physics 2016.4 (Apr. 2016). arXiv: 1602.01380.

Madhavan Varadarajan. “A Note on Entanglement Entropy, Coherent States
and Gravity”. In: General Relativity and Gravitation 48.3 (Mar. 2016). arXiv:
1602.00106.

Ted Jacobson. “Black Hole Entropy and Induced Gravity”. In: arXiv:gr-qc/9404039
(Apr. 1994). arXiv: gr-qc/9404039.

Ted Jacobson. “Thermodynamics of Spacetime: The Einstein Equation of State”.
In: Physical Review Letters 75.7 (Aug. 1995), pp. 1260-1263. arXiv: gr-qc/
9504004.

Sean M. Carroll and Grant N. Remmen. “What Is the Entropy in Entropic
Gravity?” In: Physical Review D 93.12 (June 2016). arXiv: 1601.07558.

Maulik K. Parikh and Sudipta Sarkar. “Beyond the Einstein Equation of State:
Wald Entropy and Thermodynamical Gravity”. In: arXiv:0903.1176 [hep-th]
(Mar. 2009). arXiv: 0903.1176 [hep-th].

49


http://arxiv.org/abs/gr-qc/9403028
http://arxiv.org/abs/1712.06620
http://arxiv.org/abs/1606.08444
http://arxiv.org/abs/1312.1183
http://arxiv.org/abs/1201.0463
http://arxiv.org/abs/1508.00897
http://arxiv.org/abs/1612.04374
http://arxiv.org/abs/1601.00528
http://arxiv.org/abs/1602.01380
http://arxiv.org/abs/1602.00106
http://arxiv.org/abs/gr-qc/9404039
http://arxiv.org/abs/gr-qc/9504004
http://arxiv.org/abs/gr-qc/9504004
http://arxiv.org/abs/1601.07558
http://arxiv.org/abs/0903.1176

	
	
	

