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2 1. Introduction

1 Introduction

During the past century, there has been great advancement in the understanding of

the laws of nature at all length scales. General theory of relativity, developed by

Einstein in 1916, revolutionized our understanding of gravity by no longer treating

it as a force, but as the curvature of spacetime itself. At the same time, quantum

mechanics was developed to describe particles, the fundamental building blocks of

matter, at the smallest scales possible, which eventually led to the development of

quantum field theory and the Standard Model of particle physics. Both of these

theories have agreed with experiments to extremely high precision. General relativity

has passed numerous tests concerning large scale objects such as stars and black holes

or even the universe as a whole. On the other hand, the Standard Model appears

to be unbreakable with our current particle experiments. Nevertheless, this is not

the end of the story, because these two descriptions of Nature are fundamentally

incompatible, which is against our aspiration of a unified theory of everything.

The search for a unified description of standard model and general relativity

has a long history. Such a description, a quantum theory of gravity, is sometimes

called the holy grail of physics. It would unify the three forces of the standard

model, electromagnetic, strong and weak forces, with gravity. The unification is made

difficult by the fact that at high energies, general relativity cannot be quantized by the

traditional rules of quantum field theory, which is the language of the Standard Model.

The conversion of a classical theory to a quantum one was not a problem for example

in the case of electromagnetism, because the quantum theory produced is sensical and

produces finite predictions when treated properly. However for general relativity, the

treatment that worked for electromagnetism is no longer enough, because we obtain

too many infinities than we are able to handle. Hence something completely new is

required to quantize gravity.

The quantization is achieved by string theory, which is a vast generalization of

the framework of quantum field theory. Traditional quantum field theories describe

point particles that propagate in spacetime tracing out one dimensional lines, world-

lines, that intersect each other representing interactions. In string theory, the point

particles are replaced by two dimensional extended objects, strings, which at large

scales act like particles so that string theory agrees with all known physics at low

energy scales. Instead of worldlines, the strings trace out smooth two dimensional

manifolds, worldsheets, when propagating in spacetime. The worldsheets solve mul-

tiple problems: ultraviolet divergences are absent in string theory, because the sharp

particle interaction vertices are smoothed out, but most notably, quantization of the

worldsheet leads to a theory of quantum gravity in spacetime, which does not happen

by quantizing the one dimensional worldlines of quantum field theory.

Because string theory is a theory of quantum gravity, spacetime is no longer

fundamental, but emerges from the dynamics of the strings in suitable limits. A

model built within string theory might contain multiple limits that describe different

classical spacetimes and, in general, there is no classical spacetime at all. Making

sense of how gravity and spacetime emerge is a complicated task, however, there has

been substantial progress made in terms of dualities.

A duality can be thought of as a dictionary, which translates mathematical lan-

guage between two a priori different theories. The duality maps physical quantities

from one theory to another usually in a very non-trivial manner. Regardless, the exis-

tence of a duality implies that the theories are equivalent, even if they look completely

different. They both describe the same physical phenomenon, but the information
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is encoded in different ways so that one of the theories might be more suitable to

extract physically meaningful information than the other. For example in some limit,

the relevant calculations might get increasingly complex in one of the theories, while

in the other they get simpler. Therefore dualities provide a useful tool in the study

of physical systems.

In 1997, Maldacena discovered a duality relating a string theory to a conformal

field theory (CFT), which became known as the AdS/CFT correspondence [1]. Theo-

ries related by an AdS/CFT correspondence live in different dimensional spacetimes:

string theory lives in a curved anti-de Sitter (AdS) space (the bulk), while the CFT

lives on its flat boundary, whose dimension compared to the bulk AdS is smaller by

one. But what makes the duality so useful, is that string theory includes gravity,

while the CFT does not. This means that quantum gravity is somehow encoded

in the structure of the CFT! The duality is made more tolerable in a special limit

of the CFT, in which the string theory reduces to classical general relativity in an

AdS background with its curvature obeying Einstein’s equations. Therefore using the

AdS/CFT dictionary that relates certain CFT quantities to classical geometric quan-

tities in general relativity, we are able to study how classical gravity emerges from

quantum gravity. The key concept in this endeavor has turned out to be quantum

entanglement.

In 1973, before the revolutions of string theory, Bekenstein argued based on a

thought experiment that the entropy of a black hole in general relativity is propor-

tional to the area of its horizon [2]. The following year, Hawking showed that in

the presence of quantum fields, black holes radiate with a temperature consistent

with Bekenstein’s definition of entropy [3]. Today known as the Bekenstein-Hawking

entropy, its area dependence is counterintuitive, because entropy in classical thermo-

dynamics is an extensive quantity, growing linearly with the volume of the system.

According to the statistical interpretation of entropy due to Boltzmann, the mi-

crostates of the black hole should hence live on its horizon. General relativity does

not actually tell what these fundamental bits of spacetime are, but it appears to be

a thermodynamical description of them.

Ordinary entropy is also extensive in quantum field theories, because they are

local and the same amount of information is contained at each spacetime point. But

quantum field theories also contain a very non-local property called entanglement,

where the fields are correlated across long distances. These correlations can be mea-

sured by entanglement entropy and in 1986 it was shown that entanglement entropy

of quantum fields outside of a black hole, when properly regulated, is proportional to

the horizon area [4]. Therefore entanglement entropy of quantum fields might play a

role in the origin of black hole entropy.

All of these ideas culminated in 2006, when Ryu and Takayanagi proposed that

in the context of AdS/CFT, entanglement entropies of CFT fields living in a closed

subregion are calculated by the area of a minimal surface in general relativity [5, 6].

The result is known as the Ryu-Takayanagi (RT) formula and it is an example of

an entry in the AdS/CFT dictionary. When applied to a thermal state of the CFT,

the minimal surface coincides with a black hole horizon in AdS space, which shows

that Bekenstein-Hawking entropy of an AdS black hole is the same as CFT thermal

entropy. This provides an interpretation for the microstates of an AdS black hole in

terms of the quantum degrees of freedom of the dual CFT.

Area of a minimal surface is a property of classical spacetime so maybe it is

entanglement that builds spacetime. By using the Ryu-Takayanagi formula, van

Raamsdonk analysed the dual geometry and showed that, when the amount of CFT
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entanglement is decreased, the spacetime is stretched like rubber with distances in-

creasing and cross sections decreasing in area [7, 8]. Eventually in the limit of no

entanglement, the spacetime snaps in the middle. Hence it looks like entanglement

is the glue that holds the fabric of spacetime together.

Can we take these ideas one step further to include dynamics of the spacetime

as well? Variations in the entanglement correspond to curvature variations in AdS

space, but do these variations induced by entanglement obey Einstein’s equations

as dictated by general relativity? The answer is yes, at least for linear and second

order perturbations in the geometry [9, 10, 11]. Also the reason why gravity couples

to all kinds of matter equally is a result of the universality of entanglement [12]!

These results inspired a similar derivation of Einstein’s equations in Minkowski and

de Sitter spaces [13], for which there are no known descriptions in terms of a dual

field theory. A comprehensive review of these results and the required preliminaries

is the topic of this thesis.

2 Entanglement entropy in quantum field theories

Originally entropy was defined in terms of thermodynamical quantities to describe a

macroscopical system. It was shown that the entropy of an isolated system cannot

decrease, a fact, which became known as the second law of thermodynamics. At

the end of the 19th century, Boltzmann introduced the famous statistical interpreta-

tion of entropy in terms of the number of microstates available for the system.1 In

a thermodynamical system, there is a large variety of microstates corresponding to

the same macroscopic configuration and entropy measures the number of these mi-

crostates. A macroscopic observer cannot keep track of the microstates and entropy

is a measure of this ignorance. The second law of thermodynamics is therefore only

a statisical result, true for a large number of particles, and violations are suppressed

exponentially.

The original Boltzmann definition of entropy is based on the microcanonical en-

semble describing an isolated system, whose microstates are all assumed to be equally

probable. It is more common that the system is not fully isolated, but interacts with

its environment by exchanging heat. When such a system reaches equilibrium, it is

described by the canonical ensemble, where larger system energies are exponentially

less likely according to the Boltzmann distribution. The uniform distribution of the

isolated system is no longer applicable due to the random interactions between the

system and its environment. Entropy in the canonical ensemble is measured by the

Gibbs entropy, which generalizes Boltzmann entropy to arbitrary probability distri-

butions.2

An analogous situation appears in the description of two quantum systems. The

combined system is described by a state vector living in a tensor product space built

from the Hilbert spaces of the individual systems. There are always entanglement

correlations between the two systems due to the tensor product structure of the

Hilbert space. Taking one of the systems to be the environment and tracing it out,

we obtain an effective description for the second system. In the effective description,

the entanglement correlations are ignored analogously to the environment interactions

in the canonical ensemble and to measure these correlations, one defines an analogous

entropy called entanglement entropy. Entanglement entropy is von Neumann entropy,

1Boltzmann entropy is given by S = logW (kB = 1), where W is the number of microstates of

the system.
2Gibbs entropy of a probability distribution pi is defined as S = −

∑
i pi log pi, which reduces to

the Boltzmann entropy given a uniform distribution pi = 1/W .
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which is just Gibbs entropy in the language of quantum theory.3

2.1 Definition of entanglement entropy

To formally define entanglement entropy, we need to introduce the concept of a den-

sity matrix, which introduces classical probabilities into the description of a quantum

system. Consider a quantum system and let the states |Φi〉 span its Hilbert space H.

Suppose the system is in a mixed state with pi being the probability of the state |Φi〉.
The mixed state can be described in terms of a density matrix ρ, which is defined

such that the expectation values take the form

〈O〉 = Tr(Oρ) =
∑
i

pi〈Φi|O|Φi〉, (2.1)

where O is the observable being measured. The probabilities appear as the eigenval-

ues of the density matrix:

ρ =
∑
i

pi|Φi〉〈Φi|. (2.2)

When the system is known to be in a pure state |Φ〉, the density matrix is simply the

projection operator

ρ = |Φ〉〈Φ| (2.3)

and (2.1) reduces to the ordinary quantum expectation value 〈Φ|O|Φ〉.
Consider now a quantum field theory (QFT) on a discrete lattice so that the

continuum description follows simply by taking the lattice spacing to zero. Suppose

we now divide the lattice into two subregions A and its complement Ac. As a local

theory, the Hilbert space of the theory factorizes into the spaces of the subregions:4

H = HA ⊗HAc . (2.4)

If the corresponding spaces are spanned by states |φi〉 and |φci 〉, then an arbitrary

pure state in H can be expanded as

|Φ〉 =
∑
i,j

cij |φi〉 ⊗ |φcj〉,
∑
i,j

|cij |2= 1. (2.5)

In general |Φ〉 does not factorize into a product state, which is the origin of quantum

entanglement between the two regions A and Ac. Because of the entanglement, the

state of A is not purely determined by |φi〉 and additional information of the state

of the complement is required. We can apply the above formalism of mixed states to

encode the entanglement correlations in a special density matrix called the reduced

density matrix ρA. It is defined by tracing out the degrees of freedom of Ac in the

full density matrix (2.3):

ρA = TrAc ρ ≡
∑
i

〈φci |ρ|φci 〉. (2.6)

Now quantum the expectation value of an operator OA supported in A can be cal-

culated as

〈Φ|OA ⊗ 1Ac |Φ〉 = Tr(OAρA). (2.7)

3Von Neumann entropy is defined via a density matrix ρ as S = −Tr(ρ log ρ) (see section 2.1).
4In gauge theories, the factorization does not exist in general due to degrees of freedom associated

to pairs of lattice points.
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The amount of entanglement correlations is measured with von Neumann entropy

SA = −Tr(ρA log ρA) = −
∑
i

λi log λi, (2.8)

where λi are the eigenvalues of ρA, the entanglement spectrum. The entropy is a non-

negative quantity SA ≥ 0 and vanishes only in the case of no entanglement (when A
is in a pure state). Hence SA is called entanglement entropy (EE) of A.

By taking the lattice spacing to zero, we obtain a continuum QFT, where en-

tanglement entropy is now a divergent quantity. In [4, 14] spherically symmetric

subregions were analyzed and it was shown that the leading order divergence of en-

tanglement entropy is proportional to the area of the boundary of the sphere. Later it

was proven [15] that the area law extends to regions A of arbitrary shape. Formally5

SA = γ
Area[∂A]

ad−2
+ . . . (2.9)

where d is the dimension of the spacetime, γ is a theory dependent constant (except

in 2-dimensions (2.29)) and a is the UV cutoff, which corresponds to the lattice

spacing. This result is physically intuitive, because as a local theory, most of the

entanglement between the two regions is concentrated across the sharp boundary.

The leading term is corrected by other divergent terms, whose structure is dependent

on whether the dimension d is even or odd [16]. The expansion can be determined

by holographic methods.6 From this expression it is clear that entanglement entropy

violates the traditional extensivity of thermal entropy and is a candidate for the

Bekenstein-Hawking entropy of a black hole. However, taming the divergence is a

non-trivial task and would require knowledge of quantum gravitational physics in the

UV.

Inequalities and the entanglement first law

EE satisfies a number of inequalities when calculated for various combinations of

different subregions {Ai}, which factor the Hilbert space as H = ⊗iHAi . For two

regions (i = 1, 2) we have the inequality

|SA1 − SA2 | ≤ SA1∪A2 ≤ SA1 + SA2 . (2.10)

The right inequality is called subadditivity and it shows that EE is not an extensive

quantity in general. Subadditivity is automatically true in QFTs according to the

area law (2.9). The left inequality is called the Araki-Lieb -inequality [17]. Together

these inequalities imply classical monotonicity i.e. EE does not decrease as the spatial

size of the system is increased.

For three subregions (i = 1, 2, 3) EE satisfies strong subadditivity

SA1∪A2 + SA2∪A3 ≥ SA2 + SA1∪A2∪A3 (2.11)

for which the proof can be found in [18]. Strong subadditivity plays an important

role in various proofs regarding entanglement entropy. In a holographic context, it

provides a motivation for the correctness of the Ryu-Takayanagi formula discussed

in section 3.2.

5Area refers to the volume of the codimension two surface ∂A. In this case, it is (d−2)-dimensional.
6See section 3.2.
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We can also compare the entropies of different states in H. Given two normalized

density matrices ρ and σ corresponding to two states, we can define relative entropy,

which is a non-negative quantity and vanishes only when ρ = σ [19, 20]:

S(ρ‖σ) = Tr(ρ log ρ)− Tr(ρ log σ) ≥ 0. (2.12)

We define the modular Hamiltonian K implicitly via

σ =
1

Z
e−K , (2.13)

where Z = Tr(e−K) is the partition function ensuring normalization. By adding and

subtracting a term Tr(σ log σ) in (2.12) we can write it as

S(ρ‖σ) = Tr(ρ log ρ)− Tr(σ log σ)− Tr(ρ log σ) + Tr(σ log σ)

= − [−Tr(ρ log ρ) + Tr(σ log σ)]

+ [Tr(ρK) + Tr(ρ logZ)− Tr(σK)− Tr(σ logZ)]

= −[S(ρ)− S(σ)] + [Tr(ρK)− Tr(σK)]

= ∆〈K〉 −∆S ≥ 0, (2.14)

where the terms involving logZ cancel due to the normalization Tr ρ = Trσ = 1.

Consider a one parameter family of density matrices ρλ such that ρ0 = σ (λ can

take both positive and negative values). By calculating the relative entropy for small

λ, the positivity condition (2.12) amounts to

d

dλ
S(λ)

∣∣∣∣
λ=0

≥ 0, (2.15)

where S(λ) = −Tr(ρλ log ρλ). Relative entropy vanishes only at λ = 0 so S(λ) has

a local minimum at that point. Therefore for small differences the inequality (2.14)

reduces to the equality:

δS = δ〈K〉. (2.16)

This result is known as the entanglement first law as it resembles the first law of

thermodynamics:

δS = (1/T )δQ. (2.17)

The role of heat is played by the modular Hamiltonian, while with our conventions

the inverse temperature is equal to one. Regardless, there is no deep relationship

between the two and (2.16) is simply taken as a mathematical identity.

The derivation of entanglement first law above only required two different density

matrices ρ and σ that lie infinitesimally close to each other so that ρ can result

from all kinds of perturbations to the initial density matrix σ, the simplest being a

perturbation to the state itself. Other examples include a perturbation of the shape of

the spatial region or even a perturbation of the underlying Lagrangian of the theory.

2.2 Calculation of entanglement entropies

Consider a QFT on a d-dimensional globally hyperbolic Lorentzian manifold.7 Let

Σ be the Cauchy slice of time t = x0 = 0 and let A ⊂ Σ be a spatial region on the

slice (A∪Ac = Σ).8 We want to explicitly calculate the vacuum state entanglement

7The global hyperbolicity ensures the existence of a Cauchy slice at each instant of time.
8We will denote the coordinates by xµ = (t, ~x) with µ = 0, 1, . . . , d− 1.
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τ+

τ−

Φ+

Φ−

(a)

Φ+ = Φ−

(b)

A
φ+

φ−

(c)

φ−
φ+

τ

(d)

Figure 1: Visualization of the Euclidean functional integrals in terms of their inte-

gration manifolds [24]. The manifold (a) for (2.18) is simply the space bounded by

the Cauchy slices at τ±. In the partition function (2.19), the initial and final Cauchy

slices are identified, which corresponds to gluing them together to form a cylinder

(b) with circumference β. The manifold (c) for the thermal reduced density matrix

(2.20) is obtained by removing A along the line of indentification. The vacuum den-

sity matrix is then obtained by integrating over the unwinded cylinder (d) with A
cut out at τ = 0.

entropy of a spatial subregion A ∈ Σ in flat spacetime. The formula (2.8) cannot

be utilized directly as it involves the logarithm, but luckily there exists a method

known as the replica trick [21, 22], which circumvents the problem. The method we

present here only applies to states that have time reflection symmetry and additional

constructions are needed to cover time evolving states as well (see [23] for a review

of these methods).

First we need an expression for the reduced density matrix ρA in the field vacuum

state. Consider a transition amplitude between two states |Φ±〉 defined at times τ±
in the Euclidean description (β = τ+ − τ−):9

〈Φ+|e−βH |Φ−〉 =
1

Z

∫ Φ(Σ,τ+)=Φ+

Φ(Σ,τ−)=Φ−

DΦ e−IE [Φ]. (2.18)

Here IE is the Euclidean action and Φ(Σ, τ) = Φ(~x, τ), ~x ∈ Σ. The prefactor Z is

the partition function and it is given as the trace of (2.18):

Z =

∫
Φ(Σ,τ−)=Φ(Σ,τ+)

DΦ e−IE [Φ]. (2.19)

We recognize ρβ = e−βH as the density matrix of a thermal state with inverse tem-

perature β. To obtain the reduced density matrix ρA,β of the thermal state, we trace

over the complement as defined in (2.6):

〈φ+|ρA,β|φ−〉 =
1

Z

∫ Φ(A,τ+)=φ+

Φ(A,τ−)=φ−,Φ(Ac,τ−)=Φ(Ac,τ+)
DΦ e−IE [Φ]. (2.20)

This integral can be visualized as a cylinder of circumference β with a cut at {A, τ =

0}. The boundary conditions are given at both sides of the cut, see figure 1c.

By taking the limit β →∞ in (2.20), we get the reduced density matrix ρA of a

vacuum state. This has the effect of unwinding the cylinder, see figure 1d. The cut

remains at τ = 0 with boundary conditions now given in the limits τ → 0±:

〈φ+|ρA|φ−〉 =
1

Z

∫ Φ(A,0−)=φ+

Φ(A,0+)=φ−

DΦ e−IE [Φ], (2.21)

9Throughout this thesis we set ~ = c = kB = 1.
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Figure 2: The replica surface B3 with a cyclic Z3 symmetry.

where Z is now the β →∞ limit of the original partition function. This is the desired

formula for the reduced density matrix.

To proceed, we define Rényi entropies

S
(n)
A =

1

1− n log TrρnA (2.22)

for each natural number n such that entanglement entropy is the limit n→ 1:

SA = lim
n→1

S
(n)
A . (2.23)

Using this formula, the entanglement entropy can be obtained via an analytic contin-

uation to non-integer values of n and some arguments can be given that the extension

is unique [42].

Now comes the replica trick. The trace in (2.22) can be expanded as:

TrρnA =

∫
Dφ1〈φ1|ρnA|φ1〉 (2.24)

=

∫
Dφ1 . . .

∫
Dφn 〈φ1|ρA|φ2〉〈φ2|ρA|φ3〉 . . . 〈φn|ρA|φ1〉. (2.25)

On the right hand side we have n copies of the matrix element (2.21). Substituting

the path integral expression gives

TrρnA =
1

Z[B1]n

∫
Bn
DΦ e−IE [Φ] =

Z[Bn]

Z[B1]n
, (2.26)

where Z[Bn] is the partition function on the replica surface Bn and B1 is simply

the original manifold in figure 1d without the cut. Therefore Z[B1] = Z0 as used in

equation (2.21). The replica surface consists of n copies of the manifolds 1d cyclically

glued together at the cuts A and is depicted in figure 2.

The power of the formula (2.26) is that it requires only the calculation of a

partition function Z[Bn], which is not a simple task either, but can be done in some

2-dimensional conformal field theories. The replica trick becomes extremely useful

in the context of AdS/CFT, where it is used to prove results regarding holographic

entanglement entropy.

Replica trick in conformal field theories

A conformal field theory (CFT) is a QFT, which is symmetric under conformal trans-

formations. A conformal transformation is a coordinate transformation x→ x′ that

transforms the metric by an overall coordinate dependent factor:

g′µν(x′) = Ω2(x)gµν(x). (2.27)
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Conformal transformations stretch distances, but preserve the angles between vectors.

The conformal group naturally contains the isometries of Minkowski space, the

Poincaré group, as a subgroup. In addition, there are two additional generators that

generate dilatations (scale transformations) and special conformal transformations.

In dimension d = p+q > 2, the conformal algebra is isomorphic to SO(p+1, q+1),10

while in dimension d = 1 + 1, the conformal algebra is the infinite dimensional Witt

algebra [25].

In 2-dimensional CFTs one can explicitly calculate entanglement entropy of an

interval [−R,R] in the CFT thermal state of inverse temperature β using the replica

trick. A thermal density matrix is the same as a vacuum density matrix on an

Euclidean cylinder, which is periodic in the Euclidean time coordinate. In the case

of CFT2, the cylinder can be conformally mapped to a plane, which allows the use

of the replica trick. One can show [21, 22] that TrρnA in (2.26) transforms as a two-

point function of a primary operator with a known scaling dimension. Conformal

symmetry completely fixes the form of the correlator, which leads to the entropy

SA,β =
c

3
log

(
β

πa
sinh

πL

β

)
. (2.28)

where c is the central charge of the CFT, L = 2R and a is the UV cutoff. At large

temperatures (L/β � 1) the thermal nature of the state dominates and the entropy

becomes extensive SA,β ∼ L. In the zero temperature limit β → ∞, we obtain the

vacuum entanglement entropy

SA =
c

3
log

L

a
. (2.29)

The form of the entropy is universal, same in all CFTs, and it only depends on

the value of the central charge. Universality is a general property of entanglement

entropies of ball-shaped regions, which will be discussed in section 3.3.

2.3 Modular flows in CFTs

In relativistic QFTs, entanglement entropy SA is not uniquely associated with A ∈ Σ,

but instead we can always find another spacelike slice Σ′ with a subregion A′ such

that SA = SA′ [28]. Such regions have the same boundary ∂A = ∂A′ and share

the same domain of dependence D[A′] = D[A].11 Hence entanglement entropy is

a wedge operator: an operator, which is not uniquely associated with the Hilbert

space of field states in A, but with the Hilbert space of field states in D[A]. The

reduced density matrices ρA, ρA′ act on this wedge space and they are related by a

unitary transformation ρA′ = UρAU
†. The transformation U is a representation of a

spacetime transformation that maps points of D[A] into each other. The generator

of U is called the modular Hamiltonian KA:

U(η) = eiKAη. (2.30)

This transformation is a symmetry of the algebra of operators OA acting on the

Hilbert space of D[A]: the expectation values 〈OA〉 = Tr(ρAOA) are invariant un-

der (2.30), which follows from the cyclicity of the trace. For example entangle-

ment entropy SA = −〈log ρA〉 is invariant. In addition, the correlation functions

of two operators of the algebra satisfy the condition 〈O1(i)O2〉 = 〈O2O1〉, where

10The signature is taken to be (p, q).
11The domain of dependence D[A] of A (or the causal diamond of A) is the region of spacetime,

whose points are causally connected to A. In other words, a point p is in D[A] if there exists a

timelike curve connecting p to a for all a ∈ A.
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O1(i) = U(i)O1U(−i). This is known as the KMS (Kubo-Martin-Schwinger) pe-

riodicity relation and it implies that the expectation values have a formal thermal

character, which is apparent in the definition of the modular Hamiltonian:

ρA =
1

Z
e−KA . (2.31)

In general, the modular Hamiltonian is a highly non-local operator, but if it generates

a symmetry of the theory, it takes a local form. Then it also generates a local

spacetime flow, called modular flow, and the norm of the generating vector field

vanishes on the boundary ∂D[A]. To derive the local expression, we start by recalling

the functional integral formula for the vacuum density matrix (2.21). It can be written

as a flow in an Euclidean time coordinate s with the boundary values s± at τ = 0∓:

〈φ+|ρA|φ−〉 =
1

Z

∫ Φ(A,s+)=φ+

Φ(A,s−)=φ−

DΦ e−IE [Φ]. (2.32)

If the flow in s is generated by an operator KA on the Hilbert space, we can write

ρA =
1

Z
P exp

(
−
∫ s+

s−

dsKA(s)

)
, (2.33)

where P denotes path ordering in s. Given that the theory is symmetric under the

flow in s, the operator KA is conserved and therefore independent of s so that (2.33)

reduces to the expression (2.31) with

KA = (s+ − s−)KA. (2.34)

The flow along s is the Wick rotated modular flow (η = is), which in the Lorentzian

signature is denoted by xµ(η). Now the modular Hamiltonian can be written in a

local form

KA =

∫
A′
dΣµ ζνATµν , ζµA = (s+ − s−)

dxµ

dη
, (2.35)

where ζµA is the vector field generating the modular flow, Tµν is the stress-energy

tensor of the theory and A′ is an arbitrary spacelike surface s.t. D[A′] = D[A]. On

the t = 0 slice this can be written as

KA =

∫
A
dd−1x ζ0

AT00(x). (2.36)

For local flows the thermal character of ρA becomes physical, because for observers

moving along the coordinate lines of the modular flow, the modular Hamiltonian

(2.35) is simply the Hamiltonian. The corresponding inverse temperature of the

observed thermal fluctuations is given by the coefficient s+ − s−.

Modular flow of a ball-shaped region

Consider the half-space AR = {x ∈ R1,d−1 |x1 > 0, t = 0} of flat spacetime R1,d−1 in

the CFT vacuum state. The Bisognano-Wichmann theorem [26] states that for this

region the modular Hamiltonian is local and the modular flow is generated by the

boost generator

ζR = 2π(x1∂t + t∂1). (2.37)

Boosts correspond to rotations in Euclidean signature (see figure 3), which explains

the factor of 2π = s+ − s− corresponding to a full rotation. In addition the modular
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AR
x1

x0

(a)

Σ
′ (s)

s
AR

x1

τ

(b)

Figure 3: Half space modular flows (red) in (a) Lorentzian and (b) Euclidean signa-

tures.

flow preserves the entangling surface located at x1 = 0. The modular Hamiltonian is

(with the normalization Z = 1)

ρR = e−KR , KR = 2π

∫
x1>0

dd−1xx1T00(x). (2.38)

The boost generator is one of the Killing vectors of R1,d−1, which means that an

arbitrary Lorentz invariant QFT is actually symmetric under the flow. Now the

thermal character of the density matrix is just the familiar Unruh effect [27]. To find

the temperature, transform to the Rindler coordinates (η, z):

t = z sinh (η/R)

x1 = z cosh (η/R), (2.39)

where R is just a constant with dimension of length. The Rindler coordinates

parametrize the Rindler wedge D[AR] and the coordinate lines of constant z are

hyperbolas. An observer with constant acceleration a in the direction x1 travels

along the hyperbola (x1)2 − t2 = 1/a2. Hence the Rindler coordinates define the

rest frame of the accelerating observer and the proper time is given by η. In the

Euclidean picture, the hyperbola of the observer corresponds to a circle of radius 1/a

and of circumference 2π/a. To ensure the correct periodicity of the Euclidean Rindler

coordinates, we must set R = 1/a. Now in the rest frame of the observer, the boost

generator takes the simple form ζR = (2πR)∂η = (2π/a)∂η (generator of translations

in proper time) and as was prescribed above, the inverse of the coefficient is identified

as the Unruh temperature T = a/2π.

In the case of a CFT, the above result for the half-space can be used to obtain

the modular Hamiltonian of a ball-shaped region in the CFT vacuum state. This

is done by applying a conformal transformation due to Casini, Huerta and Myers

(CHM) [28], which can be decomposed as follows [23]. In spherical coordinates, the

metric of Minkowski space is:

ds2 = −dt2 + dr2 + r2dΩ2
d−2. (2.40)

A ball-shaped region B(R, 0) of radius R (centered at the origin) is the region with

r = |~x| ≤ R. Consider the conformal transformation

t =
R sinh (η/R)

coshu+ cosh (η/R)
, r =

R sinhu

coshu+ cosh (η/R)
, (2.41)
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(a)

(b)

Figure 4: The CHM map (a) ⇒ (b)

where η is to be identified with the Rindler time coordinate and u ≥ 0 is a radial co-

ordinate. This transformation maps the metric (2.40) to the metric of the Lorentzian

hyperbolic cylinder Hd−1 × R

ds2 = Ω2
[
−dη2 +R2(du2 + sinh2 u dΩ2

d−2)
]

(2.42)

with the conformal factor

Ω2 =
1

[coshu+ cosh (η/R)]2
. (2.43)

The double cone D[B] = {r + t ≤ R} ∩ {r − t ≤ R} gets mapped to the entirety of

the cylinder and the complement of the ball is sent to infinity.

By writing the metric of the hyperbolic cylinder (2.42) in Poincaré coordinates

(see Appendix A), the metric becomes the metric of Rindler space (2.39) with a = 1/

R:

ds2 =
R2Ω2

z2

[
−z

2dη2

R2
+ dz2 +

d−2∑
i=2

(dxi)2

]
. (2.44)

The Poincaré coordinates cover half of the hyperbolic space, the Poincaré patch,

which corresponds to the Rindler wedge D[AR]. Thus we have established a confor-

mal map from the double cone D[B] to D[AR] and the corresponding operators are

mapped to each other.

We can identify the generator of the Rindler modular flow to be the boost gener-

ator ζR = 2πR∂η as before. By inverting the conformal transformations, we can map

this back to the generator of the ball modular flow, which in spherical coordinates is

ζB = 2π

[(
R2 − t2 − r2

2R

)
∂t −

tr

R
∂r

]
. (2.45)

This vector field again preserves the entangling surface located at r = R. The boost

generator is a Killing vector of Minkowski space, but the (2.45) is not a Killing vector,

but only a conformal Killing vector. In other words, the boost generator is mapped

to another generator of conformal symmetry, but in this case the new generator no

longer generates a symmetry of the Minkowski spacetime. Using (2.36), the modular

Hamiltonian of the ball becomes

KB = 2π

∫
r≤R

dd−1x
R2 − r2

2R
T00(x). (2.46)
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We can also use the CHM map to obtain an alternative interpretation for the vacuum

entanglement entropy SB of the ball. The generator ζB of of the ball modular flow is

mapped to the time evolution generator 2πR∂η on the hyperbolic cylinder. Therefore

the reduced density matrix ρB of the ball is mapped to a density matrix of a thermal

state on Hd−1. These two density matrices are related by a unitary transformation

that represents the conformal map in the Hilbert space. It is easy to see that en-

tanglement entropy is invariant under unitary transformations of the density matrix,

which means that the vacuum entanglement entropy of the ball is exactly equal to

thermal entropy on Hd−1

SB = Sβ(Hd−1) (2.47)

with inverse temperature proportional to the radius of the ball β = 2πR. This result

has an interesting interpretation in terms of the AdS/CFT correspondence, which we

discuss in section 3.2.

3 AdS/CFT and holographic entanglement entropy

AdS/CFT correspondence is a conjectured duality between a string theory and a

conformal field theory. The term covers a large number of dualities between various

string theories and CFTs, but they all share the same characteristics. The string

theory lives on a (d+ 1)-dimensional anti-de Sitter (AdS) spacetime, while the CFT

lives on a lower dimensional d-dimensional flat spacetime. The string theory is a

theory of quantum gravity and the CFT is an ordinary field theory without gravity.

The duality states that the two theories are actually equivalent, even though their

mathematical formalisms are different. In particular, the gravitational degrees of

freedom of the string theory are implicitly encoded in the structure of the CFT.

To study how classical features of the string theory are encoded in the CFT, one

must introduce coarse-graining on the CFT such that the string theory reduces to

its low energy limit: a QFT coupled to classical gravity. These holographic CFTs,

that are dual to classical gravity, are believed to contain large number of degrees

of freedom (large-N) and to be strongly coupled. In the large-N limit of the CFT,

the string dual is dominated by an effective classical string action that decouples

to general relativity in the strong coupling limit of the CFT. The decoupling is due

to the weak/strong nature of the AdS/CFT correspondence, which also makes the

duality very useful in the study of different problems.

The setup of the two theories lies in the heart of the duality: the string theory

lives in the bulk of the AdS space, while the CFT lives on its flat boundary. Dif-

feomorphisms in the bulk are elements of AdS isometry group SO(2, d) that acts as

conformal transformations on the d-dimensional boundary. This interplay between

diffeomorphisms and conformal transformations is the reason why a diffeomorphism

invariant classical gravity can be dual to a conformally symmetric theory. One can

also use these symmetries to prove dualities between certain classical bulk geometries

and CFT states. The simplest example is the CFT vacuum state, which is invariant

under arbitrary bulk induced conformal transformations so that the bulk dual of the

CFT vacuum state must be pure AdS spacetime. Small excitations then correspond

to deformations of the AdS spacetime.

There are other ways to find spacetimes that correspond to various CFT states

by using the holographic dictionary. For example a CFT thermal state can be shown

to be dual to the AdS black hole with horizon surface gravity set by the state tem-

perature. This result is of great interest, because it apparently solves the black hole

information loss paradox: the CFT evolution is unitary, which means that the black
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hole evolution should be as well. Regardless, it is hard to study how exactly the

paradox is avoided and is currently an unsolved problem.

AdS/CFT is traditionally formulated in the Euclidean picture by using the par-

tition functions of the two theories [29, 30]. The idea is that the CFT generating

functional is directly related to the string theory partition function and the CFT

correlation functions are sourced by the boundary values of bulk fields with the same

spin. For example the CFT stress-energy tensor operator is sourced by the metric

and CFT scalar operators by scalar fields in the bulk. This duality allows one to

calculate CFT correlations functions by solving equations of motion in the bulk.

More complicated entries in the holographic dictionary have been discovered. The

most important one for our purposes is the duality betweem entanglement entropy

of a CFT spatial region and the area of a bulk minimal surface. This result is known

as the Ryu-Takayanagi formula [5, 6] and is reviewed in section 3.2.

3.1 AdS/CFT correspondence

We will give a brief mathematical overview of the AdS/CFT correspondence [31, 24].

AdSd+1 space is the maximally symmetric solution of the Einstein’s equations with a

negative cosmological constant. It can be realized as a (d+1)-dimensional hyberbola

−X2
−1 −X2

0 +X2
1 + . . .+X2

d = −`2 (3.1)

embedded in a flat R2,d spacetime with the metric

ds2 = −dX2
−1 − dX2

0 + dX2
1 + . . .+ dX2

d . (3.2)

The hyperbola (3.1) is invariant under SO(d, 2) transformations of the embedding

space, which makes it the isometry group of AdS space.

The whole AdS space is covered by global coordinates (ρ, τ,Ωi):

X−1 = ` cosh ρ cos τ (3.3)

X0 = ` cosh ρ sin τ (3.4)

Xi = ` sinh ρΩi (3.5)

with the ranges (ρ ≥ 0, 0 ≤ τ < 2π). Here Ωi parametrize the unit sphere Sd−1

(
∑

i Ω2
i = 1). The resulting metric is

ds2 = `2(− sinh2 ρ dτ2 + cosh2 ρ dρ2 + ρ2 dΩ2
d−1), (3.6)

where dΩd−1 is the metric on Sd−1. AdS space defined this way as an embedding

is periodic in the time coordinate τ that parametrizes the circle over the timelike

coordinates X−1 and X0. Therefore it contains closed timelike curves. We can

circumvent this problem by considering the universal covering, which has the above

metric (3.6), but with the range of τ unbounded. It is this universal cover that is

actually referred to as AdS space. The cover has a timelike boundary at spatial

infinity ρ→∞, which becomes obvious in the coordinates tan θ = sinh ρ (0 ≤ θ < π/

2):

ds2 =
`2

cos2 θ
(−dτ2 + dθ2 + sin2 θ dΩ2

d−1). (3.7)

The boundary is now located at θ = π/2 and has the topology of Sd−1×R. From this

metric it is clear that AdS space is conformally equivalent to a patch of Sd×R (only

a patch since θ ∈ [0, π/2[ and not [0, π]) and can hence be depicted as a cylinder in

figure 5.
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Figure 5: Conformal diagram of AdSd+1.

For large values of the coordinates in the hyperbola (3.1), the right hand side can be

neglected. This defines the AdS boundary as the surface

−X2
−1 −X2

0 +X2
1 + . . .+X2

d = 0 (3.8)

subject to an additional scaling relation

(X−1, X0, Xi) ∼ λ(X−1, X0, Xi), λ > 0. (3.9)

The scaling relation is the formal statement that the surface does not care how

large the coordinates actually are. Embedding this surface into to the ambient space

(3.2), we see that it is equivalent to d-dimensional Minkowski space and that the

scaling relation compactifies the space. Therefore the boundary is the conformal

compactification of Minkowski space [29] and the action of SO(2, d) on it is the same

as the action of the conformal group [32].

The AdS/CFT correspondence is usually formulated in the Euclidean picture,

where the bulk AdS space is Euclidean hyperbolic space. In bulk global coordinates

the boundary has a topology of the sphere Sd. However, a bulk coordinate transfor-

mation can induce a boundary conformal transformation that changes the boundary

topology up to a scaling of the metric, which can be removed due to conformal in-

variance of the CFT. Hence patches of the same bulk geometry can be encoded by

a CFT on boundaries with different topology. For example Sd can be conformally

mapped to Rd so that the CFT vacuum states defined on these spaces are both dual

to the same bulk geometry (pure AdS), but the Sd vacuum is dual to the bulk as a

whole (covered by global coordinates), while the Rd vacuum is only dual to a finite

patch (the Poincaré patch).

At large-N limit of the CFT, the string theory is dominated by an on-shell classical

action, which in general is a supergravity action. At strong-coupling, the action is

the Einstein-Hilbert action

IEH =
1

16πGN

∫
dd+1x

√−g
[
d(d− 1)

`2
+R

]
, (3.10)

which is corrected by higher curvature terms at weaker coupling [23].

Solving Einstein’s equations in AdS space is a bit different, because it is not

globally hyperbolic due to the timelike boundary at spatial infinity. To have a well

posed initial value problem, it is not enough to specify initial values on the bulk

Cauchy slice, but we also need to set boundary conditions on the boundary. In fact,

because Einstein’s equations are second order in the metric, the solutions require two
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boundary conditions: the boundary metric and its dth-order derivative respect to the

radial coordinate. Fefferman and Graham showed [33, 34, 31] that a general solution

can be written as

ds2 = Gabdx
adxb =

`2

z2
(dz2 +Gµν(z, x)dxµdxν), (3.11)

where z ≥ 0 is a radial coordinate with boundary at z = 0 and xµ are the boundary

coordinates.12 They showed that the bulk metric Gµν(z, x) can be expanded as a

Taylor series in z starting from the boundary:

Gµν(z, x) = gµν(x) + z2h(2)
µν (x) + z4h(4)

µν (x) + . . .+ zdh(d)
µν (x) + . . . . (3.12)

The functions h
(k)
µν (x) for k 6= d are determined by Einstein’s equations, but the

boundary geometry gµν(x) and the term h
(d)
µν (x) are fixed as boundary conditions [34].

It follows from the Einstein’s equations that for flat boundary geometry gµν(x) = ηµν ,

all the higher-order terms h
(k)
µν (x) vanish, resulting in pure AdS geometry in Poincaré

coordinates:

ds2 =
`2

z2
(dz2 + ηµνdx

µdxν). (3.13)

These coordinates cover half of the AdS space, the Poincaré patch.

In the limit of strong CFT coupling, the string theory can be described as in

Euclidean quantum gravity [35]: the string partition function ZSTR[B] is a functional

integral over all bulk geometries that asymptote to the boundary geometry B, which

was set as a boundary condition. AdS/CFT correspondence is the statement that

this partition function is equal to the CFT partition function ZCFT[B] defined on the

boundary geometry:

ZSTR[B] ≡ ZCFT[B]. (3.14)

This leads to a relationship between the generating functional of the CFT and the

string partition function [29]. Given the bulk metricGab(z, x) in Poincaré coordinates,

it is written as 〈
exp

(
−
∫
ddx gµν(x)Tµν(x)

)〉
CFT

≡ ZSTR[B], (3.15)

where Tµν(x) is the stress-energy tensor of the CFT and Gµν(0, x) = gµν(x), which

is the metric of B. The asymptotic bulk metric acts as a source that can used

to generate the CFT n-point functions of the stress-energy tensor from the string

partition function. The same idea works for fields of arbitrary spin, in particular, a

scalar field in the bulk sources correlation functions of CFT scalar operators on the

boundary.

In the classical limit, the string partition function is dominated by the on-shell

classical action

ZSTR[B] ' e−IEH[M], (3.16)

where M is a solution of the Einstein’s equations such that ∂M = B. In this saddle

point approximation, we can explicitly calculate the CFT 1-point function 〈Tµν〉.
When the bulk geometry M has a vanishing Weyl tensor, the boundary geometry is

conformally flat, which picks a specific vacuum state of the CFT. The result is [34]:

〈Tµν〉 =
d `d−1

16πGN
h(d)
µν . (3.17)

12The boundary coordinates are denoted by xµ = (t, ~x), µ = 0, 1, . . . , d−1, and the full set of AdS

coordinates by xa = (xµ, z), a = 0, 1, . . . , d with xd = z.
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This result can also be derived using the Ryu-Takayanagi formula [10]. The vanishing

of h
(d)
µν (x), as in (3.13), therefore implies that the CFT is in a vacuum state 〈Tµν〉 = 0.

This verifies the argument based on symmetry: pure AdS space is dual to the CFT

vacuum state.

The classical limit of the string theory was obtained in the N → ∞ limit of the

CFT. Therefore 1/N basically acts as an effective Planck’s constant ~eff ∼ 1/N tuning

the quantum corrections of the classical gravity theory. The classical contribution

O(N) is of order 1/GN in the bulk theory, which can be seen at the level of the

action (3.10) and in the stress-energy tensor (3.17). The corrections in the gravity

theory come in powers of GN and the first order quantum correction, which is of order

O(1) in GN, comes in the form of quantum matter fields that couple to the classical

spacetime geometry

ZSTR[M] ' e−IEH[M]ZM [M], (3.18)

where ZM is the partition function of the quantum matter fields on the classical

geometryM. Therefore the leading 1/N -correction to the CFT stress-energy 1-point

function (3.17) comes from the bulk field stress-energy:

〈Tµν〉 =
d `d−1

16πGN
h(d)
µν + C〈T bulk

µν 〉. (3.19)

Here C is a field independent constant that is not relevant to us.

3.2 Holographic Entanglement Entropy

Entanglement entropy is an example of a CFT quantity that has a classical bulk

dual in the AdS/CFT correspondence. In 2006, Ryu and Takayanagi (RT) proposed

[5, 6] that for static geometries, entanglement entropy of boundary spatial region is

calculated as the area of a minimal surface in the bulk. They showed that for the CFT

vacuum and thermal states, the area matches exactly with the formulas (2.29) and

(2.28). This remarkable result was a year later generalized to general time dependent

spacetimes by Hubeny, Rangamani and Takayanagi (HRT) [36], which generalized

the minimal surface to an extremal surface with smallest area.

Consider a holographic CFTd on the boundary B of an asympotically AdSd+1

spacetime M. Let Σ ⊂ B be a boundary Cauchy slice and let A ⊂ Σ be a spatial

region. Hubeny, Rangamani and Takayangi proposed that the entropy SA can be

calculated as the area of an extremal bulk codimension two surface anchored at the

boundary.13 The proposal states that

SA = min
EA∈RA

Area[EA]

4GN
(3.20)

The set RA consists of bulk codimension two extremal surfaces EA that have the

following properties:

(i) The surface is connected to the boundary: ∂EA ⊂ ∂M = B.

(ii) The surface EA has the same boundary as A: ∂EA = ∂A.

(iii) The surface EA is homologous to A: ∃ΣA ⊂M s.t. ∂ΣA = EA ∪ A.

13By an extremal surface we mean that the surface is a local extremum of the area functional

(3.24). Area refers to the volume of the bulk codimension two surface which in the case of AdSd+1

is (d− 1)-dimensional.
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Figure 6: A spatial slice with a Ryu-Takayanagi surface Ã of a boundary spatial

region A in AdS4/CFT3.

If we denote the extremal surface EA ∈ RA that has the smallest area by Ã, we get

the HRT formula:

SA =
Area[Ã]

4GN
. (3.21)

The surface Ã will be referred to as the HRT surface.

In general, there is no unique extension of the boundary Cauchy slice Σ to the

bulk. Instead, there is a whole family of bulk Cauchy slices, the FRW wedge [23],

whose points are spacelike separated from Σ. Therefore the extremal surfaces EA ∈
RA lie somewhere inside this FRW wedge. But suppose the bulk geometry is static

(the CFT state is static), meaning that ∂t is also a bulk Killing vector. Then one can

naturally extend the boundary foliation, defined by ∂t, to the bulk in a unique fashion.

In such a situation, all of the extremal surfaces corresponding to a boundary region lie

on a single bulk Cauchy slice [36]. The homology requirement is then automatically

satisfied (ΣA is a subset of the bulk Cauchy slice) and the problem reduces to finding

the minimal surface anchored at ∂A. This is the original Ryu-Takayanagi proposal

[5, 6] and it is also applicable at a moment of time reflection symmetry. Then the

minimal surface Ã is simply referred to as the RT surface.

The RT formula is a highly non-trivial result and should not be taken for granted.

Both sides of the RT formula are divergent and it might seem impossible to regulate

it consistently. Luckily, consistency is ensured by the UV/IR duality of the AdS/CFT

correspondence. Consider a scale transformation xµ → λxµ on the boundary. The

CFT state is of course symmetric, meaning that the corresponding bulk geometry

(3.11) must be as well. The invariance of (3.11) requires that the radial coordinate

transforms in the same way z → λz. A transformation with small positive λ maps

physics of the CFT to the UV, while on the bulk side everything is mapped to large

scales (small z, large ρ), which is the UV/IR duality. The duality allows us to regulate

the infinite area of the HRT surface and the UV divergence of CFT entanglement

entropy at the same time, because there is a relation between the UV and IR cutoffs

a = ρ0. The regulated terms in the RT formula then always agree.

The above matching of the divergences is already suggestive that the proposal

might be correct. More evidence comes from the fact that the areas of the HRT

surfaces satisfy the strong subadditivity inequality. One can also explicitly calculate

areas of extremal surfaces of various subregions in different CFT states and the

results can be compared with pure field theoretic calculations. Both the RT and
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the HRT proposal have passed multiple non-trivial checks. In fact, both the RT

proposal [37, 38] and the HRT proposal [39] have been proven. See the book [23] for

a comprehensive review of all of these topics.

The RT formula captures the classical N →∞ contribution to the entanglement

entropy SA by calculating a purely classical bulk quantity, the area. The leadingO(1)-

correction to the entanglement entropy can be calculated by considering quantum

matter fields in the bulk. Faulkner, Lewkowycz and Maldacena (FLM) proposed [40]

that the leading correction is due to the entanglement of the bulk fields over the RT

surface Ã in the semi-classical approximation. Their proposal states that

SA =
Area[Ã]

4GN
+ SQ +O(GN) (3.22)

SQ = Sbulk
ΣA + . . . (3.23)

where Sbulk
ΣA

is the bulk entanglement entropy of region ΣA that is bounded by the

RT surface and the boundary region: ∂ΣA = Ã ∪ A. The role of the extra terms in

SQ (denoted by the ellipsis) is to cancel the UV divergences in the bulk entanglement

entropy. Therefore the leading order correction to CFT entanglement entropy in 1/N

is given by bulk entanglement entropy!

The proposal is not completely new [41, 42]. In the context of black hole entropy,

it has been argued that the leading correction is due to the entanglement of quantum

fields across the horizon. The FLM formula can be seen as a generalization of these

arguments to arbitrary RT surfaces. In addition, it provides a microscopic interpre-

tation in terms of the dual CFT, which is absent in the black hole considerations.

The presence of AdS/CFT also ensures that the counter terms in SQ exactly cancel

the divergences of Sbulk
ΣA

, because the bulk theory should be a UV finite theory of

quantum gravity. The FLM formula can be proven analogously to the RT formula by

extending the boundary replica construction to the bulk, but also keeping the bulk

matter field contribution in the string partition function as in (3.18).

Entanglement entropy of a ball-shaped region

Calculating entanglement entropy of a boundary ball B(R, ~x0) in the CFT vacuum

state provides a nice example of the use of the HRT formula. The vacuum state is

static so it is enough to apply the RT proposal and calculate the bulk minimal surface

anchored to ∂B. In general, the bulk codimension-2 surface can be parametrized by

σi so that the embedding Poincaré coordinates are (z(σ), t = 0, xi(σ)). We choose

the parametrization σi = xi giving the bulk surface as the function z(~x). The area

functional is given by

Area =

∫
dd−1x

√
h (3.24)

where h is the determinant of the induced metric on the surface (sum over repeated

is understood):14

h = det

[
`2

z2

(
δij +

∂z

∂xi
∂z

∂xj

)]
=

(
`

z

)2d−2(
1 +

∂z

∂xi
∂z

∂xi

)
. (3.25)

Given the boundary condition z(~x) = 0, when |~x − ~x0| = R, the Euler-Lagrange

equations can be solved to give:

z2 + |~x− ~x0|2 = R2. (3.26)

14The determinant can be calculated as a product of eigenvalues. In this case, there is only a

single eigenvalue with degeneracy d − 1. The eigenvalue of a dyadic matrix Mij = aiaj is easy to

find: Mijaj = (aiaj)aj = (ajaj)ai.
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Figure 7: The spatial boundary Rd−1 can be compactified to Sd−1 by a conformal

transformation. The hemisphere B̃ is mapped to a surface with least area, because

it divides the sphere in half.

Hence in Poincaré coordinates, the RT surface is a bulk hemisphere B̃(R, ~x0) (see

figure 7a). Entanglement entropy of the ball is now obtained as the area of the

hemisphere.

The result that the minimal surface is a hemisphere can also be obtained via

a conformal transformation, which compactifies the boundary Rd−1 to Sd−1. The

hemisphere is mapped to the surface that divides the sphere exactly in half and

therefore having the least area [12] (see figure 7).

In 2-dimensions, given the relation between the central charge c of the CFT and

the bulk parameters

c =
3

2

`

GN
, (3.27)

the area of the RT surface exactly reproduces the formula (2.29) for the vacuum

entanglement entropy of a closed interval [−R,R], which was the β →∞ limit of the

entanglement entropy of a thermal state (2.28). We can also reproduce the thermal

state entropy by finding the corresponding dual geometry. The thermal state can

be calculated by considering a vacuum CFT on a cylinder, which is periodic in the

Euclidean time coordinate. Therefore the corresponding dual geometry must also

be periodic in the Euclidean time coordinate. This is a property of black holes and

indeed, the correct dual of a CFT thermal state in 2-dimensions is the 3-dimensional

BTZ black hole [43, 44]. The temperature of the black hole is also determined by

the periodicity of the Euclidean time coordinate. By calculating the ball RT surface

in the BTZ geometry, one can explicitly show that the RT formula reproduces the

result (2.28). The RT surface of the ball reaches out to the black hole horizon,

which produces the dominating extensive behaviour of the entropy (2.28) at large

temperature.

The relation between thermal states and black holes extends to vacuum entan-

glement entropy of higher dimensional balls. We saw in section 2.3 using the CHM

map (2.41) that the CFT vacuum entanglement entropy of a ball is equal to ther-

mal entropy on hyperbolic space Hd−1. The bulk diffeomorphism inducing the CHM

map on the boundary takes the initial bulk metric in global coordinates (3.6), which

asymptotes to spherical coordinates on the boundary, to the metric

ds2 = −ρ
2 − `2
R2

dη2 +
`2

ρ2 − `2dρ
2 + ρ2(du2 + sinh2 u dΩ2

d−2). (3.28)

At large and constant ρ this is

ds2 =
ρ2

R2

[
−dη2 +R2(du2 + sinh2 u dΩ2

d−2)
]
, (3.29)

so that the metric (3.28) indeed asymptotes to the hyperbolic cylinder metric (2.42)

on the boundary. This is the metric of AdS-Rindler space: pure AdS space written
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in the coordinates of a uniformly accelerating observer and it is also a special case of

the general hyperbolic black hole metric (see Appendix A). The black hole (Rindler)

horizon is located at ρ = ` and has the topology of Hd−1, which coincides with the RT

surface B̃ in Poincaré coordinates. In other words, the RT surface exactly matches

with the black hole horizon Hd−1, because the entropy is completely of thermal nature.

In the AdS-Rindler coordinates, the ball vacuum entanglement entropy is thus given

by (we emphasize the vacuum by adding a superscript)

S
(0)
B =

Area[Hd−1]

4GN
, (3.30)

where area again refers to the volume of Hd−1. We have established that the vac-

uum entanglement entropy of a ball is given as the Bekenstein-Hawking entropy of

hyperbolic AdS black hole.

3.3 Higher curvature theories and ball universality

In the strong coupling limit of the large-N CFT, the string theory decouples to

classical general relativity, but at weaker CFT coupling, the Einstein-Hilbert action

is corrected by terms of higher order in curvature. These higher curvature theories

of gravity in the AdSd+1 bulk have an action of the form

IHC =
1

16πGN

∫
dd+1x

√−g
[
d(d− 1)

`2
+R+ f(Riem)

]
, (3.31)

where f(Riem) contain the higher curvature terms as contractions and covariant

derivatives of the Riemann tensor.

On the CFT side at weaker coupling, one has corrections to the strongly coupled

ball vacuum entanglement entropy. For any CFT in the vacuum state, it is calculated

via the RT formula as the area of the horizon of a black hole (3.30). Now, because

the corrections in the bulk come in the form of higher curvature terms, what is the

classical geometric quantity that replaces area in the RT formula to produce the

correct ball entanglement entropy in arbitrary CFT states? The answer is given

by Wald entropy. In the paper [45], Wald proposed that the black hole entropy

can be identified as a horizon integral of the Noether charge associated with the

horizon generator. The integral is known as the Wald entropy functional and it

can be extended to arbitrary theories of gravity with a diffeomorphism invariant

Lagrangian (see section 4.1 for a review). Therefore the Wald functional provides

a good candidate to generalize area functional to higher curvature theories, because

in Einstein gravity, it reduces to the area functional. It turns out to be the correct

generalization to calculate entanglement entropies of boundary ball-shaped regions,

which is enough for our purposes.15

In Einstein gravity, the Wald functional is the area functional up to some param-

eter a∗d, which is proportional to the single dimensionless parameter `d−1/GN of the

Einstein-Hilbert action. To match with (3.30), the parameter must be [28]

a∗d =
πd/2

Γ(d/2)

`d−1

8πGN
. (3.32)

15Given a CFT dual to a higher curvature theory of gravity in the bulk, the entanglement entropy

of an arbitrary region (not just a ball) is calculated by a functional, which consists of the Wald func-

tional plus additional terms proportional to the extrinsic curvature of the minimal surface [46]. The

surface is obtained by minimizing this generalized functional as in the Ryu-Takayanagi prescription.

For a boundary ball-shaped region, the hemisphere is still a minimal surface, because its extrinsic

curvatures vanish and it minimizes the Wald functional. Thus for a ball-shaped region, the extension

to the Wald functional is enough to correctly calculate the entanglement entropies.
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This is known as the parameter that normalizes the universal part of the ball entan-

glement entropy, which is the vacuum entanglement entropy. As showed by (2.29)

in 2-dimensions and (3.30) in general, the vacuum entropy is universal, which means

that it has the same form in all CFTs. Of course not all CFTs are dual to Ein-

stein gravity in the bulk, but ball entanglement entropies are not able to distinguish

whether it is Einstein gravity or not and more complicated boundary regions would

be required.

What about ball entanglement entropies calculated near the CFT vacuum state?

More accurately, what kind of dual gravity theory is needed to reproduce CFT en-

tanglement entropies via the generalized RT formula for perturbations of the vacuum

state? It turns out that the CFT entanglement entropy is universal for second or-

der perturbations of the CFT vacuum state as well, but the entropies cannot be

calculated by Einstein gravity, but higher curvature terms (3.31) are needed. The

universality up to second order can be seen as follows [11, 48].

Consider the action IE of an arbitrary CFT and a perturbation to its vacuum

state sourced by the linearized bulk metric:

IE = I
(0)
E + λ

∫
ddxT (x), (3.33)

where T = δg(1)µνTµν is the CFT stress-energy tensor contracted by the boundary

value of the linearized bulk metric and I
(0)
E is the action corresponding to the vacuum

state. Based on the AdS/CFT correspondence, the bulk metric can be expressed in

terms of the bulk-to-boundary propagator K and the boundary stress-energy one-

point function [48]:

δg(1)
µν (z, x) =

∫
D[B]

dd−1x′K(z, x;x′)〈Tµν(x′)〉. (3.34)

Now expand the ball entanglement entropy up to second order in λ:

SB = a∗dS
(0)
B + λδS

(1)
B + λ2δS

(2)
B , (3.35)

where we have explicitly written the vacuum normalization a∗d. The first order term

is linear and the second order term is quadratic in the linearized bulk metric δg(1).

Using the formula (3.34), we can thus write it schematically as [11]

SB = a∗dS
(0)
B + λ

∫
K

(1)
B (x)〈T (x)〉+

λ2

CT

∫ ∫
K

(2)
B (x1, x2)〈T (x1)〉〈T (x2)〉, (3.36)

where CT is the constant that normalizes the CFT two-point function 〈TµνTρσ〉.
Therefore up to second order in the deformation parameter λ, the ball entanglement

entropy depends only on two parameters: a∗d and CT . In other words, these parame-

ters completely normalize the universal part of the ball entanglement entropy up to

second order.

This result has implications for the dual gravity theory, which must correctly

produce the ball entanglement entropies via the generalized RT formula with the

Wald functional. In particular, Einstein gravity cannot reproduce the entropy for

arbitrary values of a∗d and CT , because the Einstein-Hilbert action only contains a

single dimensionless parameter, which is already fixed by the vacuum normalization

(3.32). Therefore Einstein gravity is the correct dual of the CFT only if CT is

proportional to a∗d as well. Explicitly the condition can be written as

a∗d =
πd(d− 1)

Γ(d+ 2)
CT ≡ C̃T . (3.37)
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For CFTs with C̃T 6= a∗d, the dual gravity theory must contain an additional dimen-

sionless parameter to account for C̃T . A plethora of dimensionless parameters are

available in higher curvature theories of gravity, where at each order one new dimen-

sionful parameter is introduced. The simplest example to calculate ball entropies up

to second order is the quadratic Gauss-Bonnet gravity with one additional parame-

ter. At higher order perturbations of the vacuum state, one must keep the additional

higher curvature terms in the gravity action to reproduce the ball entanglement en-

tropies at second order via the generalized RT formula.

4 Einstein’s equations from entanglement entropy

The RT formula relates boundary entanglement entropies to areas of minimal sur-

faces in classical geometry. The minimal surfaces probe different regions of the bulk

spacetime depending on the boundary region in question. The shape of the classi-

cal geometry is thus encoded in the entanglement structure of the dual CFT and it

should be possible to reconstruct the bulk geometry purely from the entanglement

information. But we know from AdS/CFT correspondence that at strong coupling,

the bulk geometry obeys Einstein’s equations, or more generally at weaker coupling,

the equations of motion of a higher curvature gravity theory. Therefore under pertur-

bations of the CFT state, the entanglement structure should change in a special way

to induce geometry perturbations that obey the correct equations of motion. This

is a highly non-trivial statement and we should not expect it to hold for arbitrary

CFTs. However, the entanglement entropy of a ball-shaped region is universal up

to second order perturbations of the CFT vacuum state and it is controlled by the

parameters a∗d and C̃T as shown in section 3.3. If the correct equations of motion

are induced by the entanglement structure, deducing them from ball entropies should

thus be possible up to second order at least, because the entropy is the same in all

CFTs.

The strategy is to consider small perturbations of the CFT vacuum state and the

corresponding change in the ball entanglement entropy, which at linear order obeys

the entanglement first law. The first law can be translated to bulk language giving

a constraint on the metric perturbation. Linear perturbations were first analysed

in 2014 by explicitly calculating the change in the hemisphere area, from which

linearized Einstein’s equations around the AdS background were obtained [9]. In a

follow-up paper [10], the result was extended to higher curvature theories of gravity

by the use of the generalized RT formula with the Wald functional. The derivation is

based on Iyer-Wald formalism [45, 49] and it allows one to consider all the theories of

gravity simultaneously, while making the key aspects of the derivation clear. These

derivations only give the linearized equations of motion without matter, because

the RT formula only contains the gravitational N → ∞ contribution. The correct

semi-classical matter coupling at the linearized level was quickly obtained by using

the FLM formula [12], where the O(1)-correction is included as bulk entanglement

entropy.

At higher orders, one can no longer utilize the first law, but instead the whole

non-linear expression for relative entropy is required. First order calculation is also

simpler, because the first law does not depend on the explicit form of the perturbation

and applies to arbitrary linear perturbations. At second order, one must explicitly

construct a state perturbation that also corresponds to a classical bulk dual. Regard-

less of these additional difficulties, Einstein’s equations can be shown to be obeyed by

second order perturbations using the RT formula [11]. Their derivation only applies

to perturbations with C̃T = a∗d, which in section 3.3 was argued to be the necessary
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condition for Einstein gravity to be the correct bulk dual. The derivation was quickly

extended to higher curvature theories of gravity by using the generalized RT formula

leading to the correct equations of motion for arbitrary second order perturbations,

including the C̃T 6= a∗d case as well [50]. In the upcoming sections, we focus on the

derivation of Einstein gravity, but provide the necessary tools for the generalization

to higher curvature theories as well.

4.1 Iyer-Wald formalism and the black hole first law

In this section, we review how the black hole entropy can be defined as a Noether

charge associated to the horizon generator [45, 49]. The Noether charge is given by

Wald entropy and it can be defined for an arbitrary diffeomorphism invariant theory

of gravity. On-shell variations of the Wald entropy can be written in terms of a

variation of an asymptotic energy quantity: the black hole first law. It is analogous to

the first law of thermodynamics and it will be of central importance in the derivation

of linearized Einstein’s equations in the next section.

Suppose we are working on a (d+ 1)-dimensional background spacetime and let

L = Lε (4.1)

be the Lagrangian (d+ 1)-form of a diffeomorphism invariant theory of gravity, such

as a higher curvature theory, which includes matter fields. The form ε is the volume

form16

ε =
1

(d+ 1)!
εa1...ad+1

dxa1 ∧ . . . ∧ dxad+1 . (4.3)

Under a general variation of the metric, the Lagrangian varies as (the contractions

with the metric are left implicit)17

δL = Egδg + dΘ(g, δg), (4.4)

where Eg = Egabε
ab = 0 are the gravitational equations of motion with matter and

Θ is the boundary term, which is a function of the components of the metric. In

particular, under a diffeomorphism generated by a vector field ξa, the variation is the

Lie derivative δξL, which can be written as18

δξL = d(ξ ·L). (4.5)

Here ξ ·L denotes the contraction of ξa with the first index of L.

A diffeomorphism is a local symmetry of the theory, so according to Noether’s

theorem there is a corresponding conserved current Ja[ξ], whose Hodge dual is written

as:

J [ξ] = Θ(g, δξg)− ξ ·L. (4.6)

By the virtue of (4.4) and (4.5), it is indeed conserved on-shell:

dJ [ξ] = −Egδξg = 0. (4.7)

16We also use:

εa =
1

d!
εaa2...addx

a2 ∧ . . . ∧ dxad , εab =
1

(d− 1)!
εaba3...ad−1dx

a3 ∧ . . . ∧ dxad−1 . (4.2)

17One could also vary respect to the matter fields and that adds an additional term proportional

to the corresponding equations of motion.
18This follows from the identity δξL = ξ · dL + d(ξ · L) by using the fact that L is a top form

dL = 0.
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Therefore we can find a charge (d− 1)-form Q such that

J [ξ] = dQ[ξ], on-shell. (4.8)

Off-shell we must include an additional term

J [ξ] = dQ[ξ] + ξaCa (4.9)

that vanishes on-shell Ca = 2Egabε
b.

In the phase space of the gravity theory, the flow along ξ is generated by a

HamiltonianHξ and its variation along the corresponding phase space flow is governed

by Hamilton’s equations

δHξ = Ω (δg, δξg) , (4.10)

where δg is a perturbation of the metric and δHξ is the change of the Hamiltonian

under this perturbation. The symplectic form can be written as an integral over a

Cauchy surface Σ:

Ω (δg, δξg) =

∫
Σ
ω (δg, δξg) . (4.11)

Here ω is the symplectic current form:

ω (δg, δξg) = δΘ(g, δξg)− δξΘ(g, δg). (4.12)

Clearly the current form ω vanishes if δg is generated by the Killing vector field

δg = δξg. In other words, the Hamiltonian generating translations along ξ is constant

along its flow lines δξHξ = 0. These are in accordance with the standard definitions

of symplectic geometry.

Suppose the initial geometry, the geometry before the diffeomorphism, is a so-

lution of the equations of motion Egab = 0. Then we can calculate the variation by

combining (4.4) and (4.6) as:19

ω (δg, δξg) = δJ [ξ]− d(ξ ·Θ(g, δg)). (4.13)

By writing the current in terms of the Noether charge (4.9) and using Stoke’s theorem,

we get ∫
Σ
ω (δg, δξg) =

∫
∂Σ

(δQ[ξ]− ξ ·Θ(g, δg)) +

∫
Σ
ξaδCa. (4.14)

This is usually written in terms of a form

χ = δQ[ξ]− ξ ·Θ(g, δg) (4.15)

as ∫
Σ
ω (δg, δξg) =

∫
∂Σ
χ+

∫
Σ
ξaδCa. (4.16)

Consider now a black hole spacetime, where the horizon Ã of the black hole is a

bifurcation Killing horizon generated by some vector field ξA.20 The region outside

of the black hole is denoted by ΣA, whose boundary ∂ΣA is the union of the black

hole horizon Ã and the asymptotic infinity A. Wald proposed [45] that the entropy

19δJ = δΘ− ξ · δL = δΘ− ξ · (Egδg + dΘ) = δΘ− (δξΘ− d(ξ ·Θ)) = ω + d(ξ ·Θ).
20A Killing horizon is a null surface, on which the norm of a Killing vector vanishes. A bifurcation

Killing horizon is the intersection of the future and past Killing horizons, where all the components

of the Killing vector vanish.
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of the black hole can be identified as the horizon integral of the conserved charge

Q[ξA]:

SWald
A =

2π

κ

∫
Ã
Q[ξA], (4.17)

where κ is the surface gravity of the horizon and it is usually normalized to 2π. Using

the fact that the horizon is a bifurcation surface it was shown in [49] that the Wald

entropy can also be written as (κ = 2π)

SWald
A = −2π

∫
Ã

√
hP abcdnabncd, P abcd =

∂L
∂Rabcd

, (4.18)

where h is the induced metric on the horizon and nab is the binormal of the horizon

normalized such that nabnab = −2. This is the Wald entropy functional mentioned in

section 3.3. The equivalence of (4.17) and the functional (4.18) also holds for small

perturbations of the geometry. In Einstein gravity (3.10)

P abcd =
1

16πGN
gacgbd (4.19)

so that

SWald
Einstein = − 1

8GN

∫ √
hnabnab =

1

4GN

∫ √
h (4.20)

is the Bekenstein-Hawking entropy proportional to the area functional.

In the paper [49], Iyer and Wald also analysed the dynamics of the black hole and

constructed the black hole first law, which relates the variation of the Wald entropy

to he variation of the canonical energy at asymptotic infinity. Formally it states that

(κ = 2π)

δSWald
A = δE[ξA] (4.21)

for first order on-shell perturbations of the background spacetime. The quantity

E[ξA] is the canonical energy of the black hole and it is defined as the conserved

charge corresponding to diffeomorphisms along ξA at the asymptotic infinity A (not

to be confused with the symbol Egab denoting the equations of motion). The variation

of the canonical energy can be defined via the on-shell Hamiltonian (4.16) as:

δE[ξA] =

∫
A
χ. (4.22)

If there exists a form B such that Θ = δB, then we can use (4.15) to write

E[ξA] =

∫
A
Q[ξA]− ξA ·B (4.23)

For a static asymptotically flat black hole in general relativity, ξA is the time evolution

generator ∂t at asymptotic infinity and E[ξA] can be shown to be equal to the ADM

mass of the black hole [49].21

To prove the black hole first law (4.21), note that the variation of the Wald

entropy (4.17) can also be written in terms of χ as

δSWald
A =

∫
Ã
χ, (4.24)

21See [49] also for explicit formulas for L, Θ, Q, J and E[∂t] in general relativity.



28 4. Einstein’s equations from entanglement entropy

because ξA vanishes on the bifurcation horizon Ã. For on-shell perturbations, Hamil-

ton’s equations (4.16) can thus be written as∫
ΣA

ω(δg, δξAg) =

∫
∂ΣA

χ =

∫
A
χ−

∫
Ã
χ = δE[ξA]− δSWald

A . (4.25)

Because ξA is a Killing vector and δξAg = 0, then ω(δg, δξAg) = 0 as well [49], which

gives us the black hole first law (4.21).

For off-shell perturbations we need to keep the additional term in (4.16), leaving

us with

δSWald
A − δE[ξA] = −

∫
ΣA

ξaAδCa = −2

∫
ΣA

ξaAδE
g
abε

b. (4.26)

In Einstein gravity this takes the form

δArea[Ã]

4GN
− δE[ξA] = −2

∫
ΣA

ξaAδE
g
abε

b, (4.27)

which will be used in the next section.

4.2 Einstein’s equations at first order

Consider a ball-shaped region B(R, 0) on the flat boundary of AdSd+1 written in

Poincaré coordinates. Let |Φ(ε)〉 be a one parameter family of CFT states such that

the vacuum state is located at ε = 0. We assume that in the vicinity of the vacuum,

the states correspond to different classical bulk geometries M(ε) without matter

fields, because we are working in the N →∞ limit of the CFT. At this order, we do

not need to specify the explicit form of the states. The metric of M(ε) is expanded

as

g(ε) = g(0) + εδg(1) + ε2δg(2) + . . . , (4.28)

where g(0) is the metric of pure AdS, which is dual to the CFT vacuum state. The

ball density matrix is expanded similarly:

ρB(ε) = ρ
(0)
B + εδρ

(1)
B + ε2δρ

(2)
B + . . . . (4.29)

The relative entropy respect to the vacuum state is given by

S(ρB‖ρ(0)
B ) = ∆(〈KB〉 − SB). (4.30)

Differentiating with respect to ε:

d

dε
(〈KB〉 − SB) =

d

dε
S(ρB‖ρ(0)

B ). (4.31)

The left hand side can be translated to bulk language

d

dε
(Egrav

B − Sgrav
B ) =

d

dε
S(ρB‖ρ(0)

B ), (4.32)

where in Einstein gravity, the dual of entanglement entropy is given by the RT formula

Sgrav
B =

Area[B̃(ε)]

4GN
. (4.33)

Here B̃(ε) is the bulk extremal surface of the ball in the geometry M(ε).



4. Einstein’s equations from entanglement entropy 29

The ball modular Hamiltonian can be translated to bulk language using the ex-

pression (2.46) involving the stress-energy tensor:

〈KB〉 = 2π

∫
B
dd−1x

R2 − r2

2R
〈Ttt(x)〉. (4.34)

The Poincaré invariance and scale invariance of the CFT imply the conservation law

∂µ〈Tµν〉 = 0 and tracelesness 〈Tαα〉 = 0. Using the correspondence (3.17) between

the boundary stress-energy tensor and the zd-coefficient of the Fefferman-Graham

expansion (3.12), these conditions translate to

∂µh
(d)µν = 0, h(d)α

α = 0. (4.35)

In particular, the second constraint implies h
(d)
tt = h

(d)
ii with summation over the

repeated index. Now expressing the stress-energy expectation value using the bulk

metric (3.17), we get the gravitational analog in Einstein gravity:

Egrav
B =

d `d−1

16GNR

∫
B
dd−1x (R2 − r2)h

(d)
ii (x). (4.36)

Equation (4.32) is now a constraint on the bulk geometry (4.28).

We can expand (4.32) around the vacuum state ε = 0. At first order, relative

entropy vanishes giving the bulk dual of the CFT entanglement first law (2.16)

δ(1)Sgrav
B − δ(1)Egrav

B = 0, (4.37)

where δ(1) = d/dε|ε=0. For first order perturbations of the geometry, the change in

the area of B̃(ε) only comes from the change in the metric and not from the change

in the coordinate location of B̃(0), because B̃(0) is an extremum by definition. Thus

we get
δ(1)Area[B̃(0)]

4GN
− δ(1)Egrav

B = 0. (4.38)

The hemisphere B̃(0) is a bifurcation horizon of a bulk Killing vector ξB, which is the

canonical extension of the boundary conformal Killing vector ζB (2.45). In Poincaré

coordinates:

ξB = 2π

[(
R2 − z2 − t2 − r2

2R

)
∂t −

t

R
(z∂z + r∂r)

]
, (4.39)

where r is the boundary radial coordinate.

One can check that its norm vanishes on B̃(0) and that it asymptotes to ζB (2.45)

on the boundary. Together the horizon B̃(0) and the boundary ball B bound the bulk

spatial region ΣB (∂ΣB = B̃ ∪B), which makes up the AdS-Rindler patch presented

in figure 8.

Equation (4.38) looks like the black hole first law (4.27) applied to the Killing

horizon B̃(0) and indeed it turns out that the energy quantities match:

δ(1)Egrav
B = δ(1)E[ξB]. (4.40)

This can be verified by a direct calculation as follows.

The perturbation of the bulk AdS metric in Poincaré coordinates can be written

as

ds2 =
`2

z2

(
dz2 + ηµνdx

µdxν + zdHµν(z, x)dxµdxν
)
. (4.41)
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~x

z

Figure 8: The AdS-Rindler patch (yellow) in Poincaré coordinates. The flow ξB is

drawn in red and it asymptotes to the ball modular flow ζB on the boundary.

On the boundary, the perturbation Hµν coincides with the Fefferman-Graham coeffi-

cient h
(d)
µν , which induces the boundary stress-energy tensor. Now in the AdS-Rindler

slice ΣB at t = 0, the form χ (4.15) can be written as [10]:

χ|ΣB=
zd

16πGN

{
εt z

[(
2πz

R
+
d

z
ξtB + ξtB∂z

)
Hii

]
+ εt i

[(
2πxi

R
+ ξtB∂i

)
Hjj −

(
2πxj

R
+ ξtB∂j

)
Hij

]}
(4.42)

with summation over i, j. On the corresponding boundary slice, we have explicitly

Hij(0, x) = h
(d)
ij (x), ξtB =

π

R
(R2 − r2). (4.43)

The volume forms are proportional to (`/z)d−1 so that all the terms in (4.42) vanish

at z = 0 expect for the second term, which is independent of z. Therefore (4.42)

reduces to

χ|B=
d `d−1

16GNR
(R2 − r2)h

(d)
ii (x) dd−1x (4.44)

that matches with (4.36).

We are now finally able to write the bulk first law (4.37) using the black hole first

law (4.27) extended to off-shell perturbations:

δ(1)Area[B̃(0)]

4GN
− δ(1)Egrav

B = −2

∫
ΣB

ddx ξtBδE
(1)
tt , (4.45)

where we have expanded Einstein’s equations in ε:

δEgab = εδE
(1)
ab + ε2δE

(2)
ab + . . . . (4.46)

Now it is obvious that if Einstein’s equations hold at first order, namely δE
(1)
tt = 0,

the bulk entanglement first law holds as well. We can also reverse the implication,

because the bulk first law (4.37) implies

− 2

∫
ΣB

ddx ξtBδE
(1)
tt = 0 (4.47)
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for balls B(R, ~x0) of arbitrary radius and position (generalizes the radial coordinate

as r → |~x − ~x0|). This is enough to make the integrand vanish [10], which gives the

time-time component of linearized Einstein’s equations at each bulk point:

δE
(1)
tt = 0. (4.48)

If on the boundary we boost to an arbitrary Lorentz frame with a d-velocity uµ, we

get uµuνδE
(1)
µν = 0. This holds for arbitrary vectors uµ so we get Einstein’s equations

along the boundary directions

δE(1)
µν = 0. (4.49)

The remaining components δE
(1)
zµ = 0 and δE

(1)
zz = 0 arise as constraint equations

from the identity

dχ|∂M= 0, (4.50)

which follows from the conservation and tracelessness of the CFT stress-energy tensor

[10]. All in all, we have established full equivalence between the entanglement first

law and linearized Einstein’s equations in the bulk.

Now that we have derived vacuum linearized Einstein’s equations in the N →∞
limit of the CFT using the RT formula, it is natural to consider what kind of effects

the 1/N -corrections have on the result. In section 3.1, we showed that the O(1)-

correction of the CFT requires one to include semi-classical effects in the bulk. Thus

one expects that the correction introduces a semi-classical matter coupling term,

proportional to the bulk stress-energy 〈T bulk
ab 〉, in the linearized Einstein’s equations.

This is exactly what happens [12].

The bulk quantum effects cause corrections to both sides in the bulk first law

(4.37). The leading correction to the variation δ(1)Sgrav
B is captured by the FLM

proposal (3.22) as the variation of the bulk entanglement entropy of the surface ΣB:

δ(1)Sgrav
B =

δ(1)Area[B̃(0)]

4GN
+ δ(1)Sbulk

ΣB
. (4.51)

The counter-terms that render the bulk entanglement entropy finite (3.23) are in-

dependent of the geometry and are thus cancelled in the above variation (they only

depend on the regulator of the entanglement entropy).

According to AdS/CFT, the CFT state includes information of both the bulk

geometry and the state of the matter fields. Therefore under the perturbation of the

CFT state, the variation of Sbulk
ΣB

is due to the following effects:

(i) Variation in the bulk metric and the deformation of the initial extremal surface

B̃(0).

(ii) Variation in the state of the bulk quantum fields.22

The geometric effects (i) vanish: the variation of the bulk metric, while keeping B̃(0)

fixed, has no effect on the bulk entanglement, because it does not affect the state of

the fields directly. In addition at first order, the deformation of B̃(0) does not have

an effect either, because ΣB is an extremum of the bulk entropy functional Sbulk
ΣB

.

The reason for this is that as a function of the bulk UV cutoff, the leading term

of the bulk entanglement entropy is proportional to the area of B̃(0), which is an

22The quantum field variation does not contain graviton contribution as it would lead to double

counting.
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extremum. Another way to see this is by symmetry: the hemisphere can be mapped

to a surface that divides the bulk in half (see figure 7).

The only source of variation in the bulk entanglement is due to the variation of

the state (ii), which follows the entanglement first law. The modular flow of ΣB is

given by ξB (4.39) so the modular Hamiltonian has the form:

Kbulk
ΣB

=

∫
ΣB

ddx ξtBT
bulk
tt . (4.52)

Therefore according to entanglement first law:

δ(1)Sbulk
ΣB

=

∫
ΣB

ddx ξtB〈δT (1)
tt 〉, (4.53)

where we have expanded

T bulk
ab = εδT

(1)
ab + . . . . (4.54)

Next we need the quantum correction to δ(1)Egrav
B in the first law (4.37). According

to (4.34), this amounts to finding corrections to the CFT 1-point function 〈Tµν〉. In

section 3.1, we derived the result (3.19) that the leading correction is proportional to

the bulk stress-energy tensor 〈T bulk
ab 〉. Based on locality, it is natural that it vanishes

at infinity: 〈T bulk
ab 〉|B= 0. Therefore the semi-classical effects add no corrections to

δ(1)Egrav
B .

We have shown that the only correction to the boundary entanglement first law

is given by bulk entanglement first law (4.53). Therefore solving SWald
B from (4.51)

and recalling the off-shell black hole first law (4.27), we get(
δ(1)Sgrav

B −
∫

ΣB

ddx ξtB〈δT (1)
tt 〉
)
− δ(1)Egrav

B = −2

∫
ΣB

ddx ξtBδE
(1)
tt . (4.55)

Using the bulk first law (4.37), we get∫
ΣB

ddx ξtB

(
δE

(1)
tt −

1

2
〈δT (1)

tt 〉
)

= 0. (4.56)

Again, because this holds for arbitrary balls, we have

δE
(1)
tt −

1

2
〈δT (1)

tt 〉 = 0, (4.57)

which is exactly the time-time component of the linearized Einstein’s equations with

a semi-classical matter coupling (the factor of 1/2 is necessary). The rest of the

components can be derived as before.

The result has deep implications. It shows that the universality of gravity, the

fact that gravity couples to all kinds of matter equally, is a result of the universality

of quantum entanglement. Since everything in nature is encoded in a Hilbert space,

entanglement does not depend on the type of matter and is therefore universal. At

least these facts are related in the context of AdS/CFT, but whether they are con-

nected generally is not known. There have been recent attempts to generalize these

ideas for example in [13], which we discuss in section 5.1, and in [51].

The definition of entanglement entropy for gauge fields is problematic, because

the Hilbert space cannot be expressed as a tensor product of the spaces of the two

regions. This might produce problems for the above derivation, when there are gauge

fields present in the bulk, because then one is unable to define bulk entanglement
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entropy.23 However in [52] it was shown that the gauge effects cancel for relative

entropy. Therefore the variation δSbulk
ΣB

is perfectly defined even for gauge fields and

the derivation goes through. This is expected, because there are no problems in doing

standard semi-classical gravity in the presence of gauge fields.

The power of using the Iyer-Wald formalism to derive the linearized Einstein’s

equations above, is that the derivation also extends to higher curvature theories of

gravity. In higher curvature theories, the variation of the ball entanglement entropies

are calculated by the generalized RT formula

δ(1)Sgrav
B = δ(1)SWald

B + δ(1)Sbulk
ΣB

(4.58)

with the Wald functional replacing the area funtional of Einstein gravity. One can

also show [10] that the equivalence δ(1)Egrav
B = δ(1)E[ξB] extends to these theories

as well. Therefore the formula (4.26) combined with the bulk first law (4.37) implies

linearized higher curvature equations of motion with semi-classical matter coupling

as in Einstein gravity above.

4.3 Einstein’s equations at second order

We will now extend the above analysis to second order perturbations of the bulk

metric as presented in [11]. The strategy is to expand relative entropy (4.32) up

to second order in ε and then apply Iyer-Wald formalism with Einstein’s equations

Egab expanded similarly. At first order the form of the state perturbations does not

matter, because the entanglement first law is true for arbitrary small perturbations.

However at second order, we must explicitly specify a one-parameter family of states

that reduce to the vacuum state at ε = 0. The states considered are chosen to have

the form:

〈Φ+|Φλ(ε)〉 =

∫
Φ(Σ,0)=Φ+

DΦ exp

[
−
∫ 0

−∞
dτdd−1~x (LCFT + λα(x; ε)Oα(x))

]
.

(4.59)

Recall the notation τ for the Euclidean time coordinate and Σ for the τ = 0 Cauchy

slice. The operators Oα(x) are CFT primary operators (including stress-energy ten-

sor) and all the ε dependence is in the deformation parameter λα(x; ε) = ελα(x) +

O(ε2) (summation over α is implied). At ε = 0 the lambdas vanish so that the

path integral reduces to the vacuum state.24 Therefore the above class of states are

perturbations of the CFT vacuum state. The states are dual to quantum matter

fields and coherent graviton fields in the bulk, leading to classical bulk geometry

with semi-classical coupling to matter.

We want to apply Iyer-Wald formalism to connect CFT relative entropy to Ein-

stein’s equations in the bulk. There is an apparent problem however, because the

coordinate location of the bulk minimal surface B̃(0) is shifted at second order, mean-

ing it no longer is a bifurcation horizon of the Killing vector ξB. This problem can be

avoided by choosing a specific gauge for the perturbation δg(1) called the Hollands-

Wald gauge. The gauge is defined such that the coordinate location of B̃(0) in

unchanged and that the vector field ξB in the original AdS coordinates stays as a

23Gauge fields could arise when the CFT has a global symmetry, which gets lifted to a local

symmetry in the bulk. It is generally argued that a theory of quantum gravity does not posses global

symmetries.
24A thermal state is a result of integration over a cylinder with radius given by the inverse temper-

ature β (see section 2.2). Vacuum state is then a result of unwinding the cylinder (β →∞) leading

to the half-space integral. The lambdas are also assumed to vanish sufficiently rapidly as τ → 0 to

produce finite energy states [11].
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Killing vector field along B̃(0) under the perturbation [11]. The fact that such a

gauge exists is non-trivial and details can be found in [53, 54].

Now that we have fixed the gauge, the extremal surface B̃(0) is still a bifurcation

horizon at second order. As we showed in the last section, we then have δEgrav
B =

δE[ξB], which allows us to write (4.32) as

d

dε

(
E[ξB]− Area[B̃(0)]

4GN

)
=

d

dε
S(ρB‖ρ(0)

B ). (4.60)

In the phase space formulation, the Hamilton’s equations were given by (4.14) that

can be written in our current notation in Einstein gravity as:∫
ΣB

ω

(
g,
dg

dε
, δξBg

)
=

d

dε

(
E[ξB]− Area[B̃(0)]

4GN

)
+

∫
ΣB

ξaBδCa. (4.61)

Combining with (4.60) we get

d

dε
S(ρB‖ρ(0)

B ) =

∫
ΣB

ω

(
g,
dg

dε
, δξBg

)
−
∫

ΣB

2ξaBδE
g
abε

b. (4.62)

Expanding both sides to first order in ε, we find that δg(1) obeys linearized Einstein’s

equations with matter as we showed before (4.57). Expanding up to second order we

get

δ(2)S(ρB‖ρ(0)
B ) =

∫
ΣB

ω
(
g(0), δg(1), δξBδg

(1)
)
−
∫

ΣB

2ξaB

(
δE

(2)
ab −

1

2
δT

(2)
ab

)
εb.

(4.63)

with the notation

δ(2)S(ρB‖ρ(0)
B ) ≡ 1

2

d2

dε2
S(ρB‖ρ(0)

B )|ε=0. (4.64)

Here the second order contribution to the bulk stress-energy tensor T bulk
ab is a result

of the matter fields sourcing the primary operators in the states (4.59).

The second order variation of relative entropy can be calculated directly in the

CFT. The result of the calculation is [11]:

δ(2)S(ρB‖ρ(0)
B ) =

C̃T
a∗d

∫
ΣB

ω
(
g(0), δg(1),LξBδg(1)

)
, (4.65)

where a∗d is the normalization of the universal part of vacuum entanglement entropy

(3.32) and C̃T is the normalization of the stress-energy tensor two point function

(3.37). Assuming that C̃T = a∗d and combining with (4.63), we get

−
∫

ΣB

2ξaB

(
δE

(2)
ab −

1

2
δT

(2)
ab

)
εb = 0, (4.66)

which applied to all balls as before implies that the metric obeys Einstein’s equations

at second order:

δE
(2)
ab −

1

2
δT

(2)
ab = 0. (4.67)

Rest of the components follow in the same way as before.

We have established the following result: a state perturbation of a holographic

CFT with C̃T = a∗d is dual to a metric perturbation in the bulk obeying Einstein’s

equations at second order. This result is in agreement with the earlier discussion

on the universality of the ball shaped region, where Einstein gravity was argued to

produce correct ball entanglement entropies if C̃T = a∗d. Therefore to extend the

above derivation to CFTs with C̃T 6= a∗d, one must consider higher curvature theories

in the bulk. This was done in [50] to derive the correct equations of motion.
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5 Einstein’s equations in other spacetimes

We have now seen how classical gravity emerges from the entanglement structure of

the CFT in the AdS/CFT correspondence. This begs the question whether gravity

also emerges from entanglement in spacetimes other than AdS, namely, in other max-

imally symmetric spaces. Of course, there is no known dual field theory description

for gravity in Minkowski or de Sitter space so to derive Einstein’s equations, one

needs to make assumptions on the quantum gravitational degrees of freedom in the

UV. The ideas from AdS/CFT were put to use, when Jacobson introduced his maxi-

mum vacuum entanglement hypothesis (MVEH) that he applied to derive Einstein’s

equations, with semi-classical matter coupling, in any maximally symmetric space

[13]. The hypothesis states that the lowest energy state of quantum gravity is in en-

tanglement equilibrium, where the total entanglement entropy of a small geodesic ball

is maximized. The equilibrium holds locally for balls centered at arbitrary spacetime

points, which leads to Einstein’s equations everywhere in the spacetime.

MVEH is motivated by an on-shell classical result in general relativity known as

the first law of causal diamond mechanics. It states that the addition of matter energy

to a geodesic ball decreases the area of the ball boundary at fixed volume. This first

law is analogous to the black hole first law and can be derived from the phase space

formulation using the Iyer-Wald formalism of section 4.1. Hence a generalization of

entanglement equilibrium to higher curvature theories of gravity is possible [55].

5.1 Einstein’s equations from entanglement equilibrium

We start by considering a geodesic ball B of radius R at a point p in d-dimensional flat

Minkowski space.25 Suppose we are working in the semi-classical limit of quantum

gravity, where matter fields are quantum, but gravity is classical. In this limit, the

quantum gravity Hilbert space is assumed to factorize into two components that are

associated with UV and IR degrees of freedom of the theory:

H = HUV ⊗HIR. (5.1)

We can now define entanglement entropies SUV and SIR by tracing out the other

component. The mutual information between the UV and IR degrees of freedom is

taken to be negligible so that the total entanglement entropy is a simple sum

SB = SUV + SIR. (5.2)

The IR entropy is associated with entanglement of quantum matter fields across the

ball boundary, while the UV entropy is due to unknown quantum gravity degrees of

freedom and it is taken to satisfy the familiar area law

SUV = ηA, (5.3)

where A is the area of ∂B and the constant η is the area density of vacuum entangle-

ment entropy, which is assumed to be rendered finite by quantum gravitational effects.

Jacobson’s maximum vacuum entanglement hypothesis is the following statement:

When the geometry and the state of the matter fields are simultaneously

varied from maximal symmetry, the total entanglement entropy SB in a

small geodesic ball is maximal at fixed volume.

25A geodesic ball of radius R is defined as the set of points, whose geodesic distance from p is R.
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Figure 9: Causal diamond D[B] of a geodesic ball.

The variation of geometry is classical, while the matter field variation is a varia-

tion in the quantum state. Maximal symmetry refers to the underlying spacetime

being maximally symmetric. Formally MVEH states that under arbitrary off-shell

variations of geometry and matter fields, δSB vanishes:

δSUV + δSIR = 0, (5.4)

where the area variation of ∂B is taken at fixed volume

δSUV = ηδA|V . (5.5)

These ingredients are enough to derive Einstein’s equations as follows. The area

variation of the geodesic ball at fixed volume is given by [13]

δA|V = − Ωd−2R
d

2(d2 − 1)
R, (5.6)

where R = R ij
ij is the spatial Ricci scalar of the perturbed spacetime and Ωd−2 is the

volume of a (d−2)-dimensional unit sphere. Note that this is a full non-perturbative

change in the area. The Ricci scalar can be written in terms of the Einstein tensor

as

R = 2G00. (5.7)

This holds when the background spacetime is flat, but we want to consider an arbi-

trary maximally symmetric space (MSS), with a curvature scale Λ, as a background.

At linear order in Λ, which is enough for small balls, the area variation respect to a

MSS is obtained by replacing G00 → G00 −GMSS
00 , where GMSS

ab = −Λgab. The result

is

δSUV = −ηΩd−2R
d

d2 − 1
(G00 + Λg00). (5.8)

The IR entanglement entropy follows the familiar entanglement first law

δSIR = δ〈KB〉, (5.9)

To proceed, we need assume that the matter fields are conformal so that the modular

Hamiltonian KB is given by the familiar result (2.46). Suppose that the radius R of

the geodesic ball is smaller than the curvature scale of the spacetime, but larger than

the excitation length of the quantum fields to have a well defined entropy. Then the

stress-energy tensor of the CFT is approximately constant inside the ball:

δSIR =
Ωd−2R

d

d2 − 1
δ〈T00(p)〉. (5.10)
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Substituting the expressions (5.8) and (5.10) to the MVEH (5.4) gives

G00 + Λg00 =
2π

η
〈T00〉. (5.11)

This is the time-time component of the Einstein’s equations at the center of the ball

if we identify η = 1/4GN. Rest of the components are obtained by reproducing the

calculation in all Lorentz frames. Because the derivation can be repeated for small

balls at arbitrary points p, the Einstein’s equations hold everywhere.

The above derivation is only applicable in the case of conformally symmetric

fields, because of the use of the expression (5.10) for SIR. Jacobson proposed [13]

that it could be extended to QFTs with a conformal UV fixed point by the addition

of a scalar:

δSIR =
Ωd−2R

d

d2 − 1
(δ〈T00〉+ δ〈X〉). (5.12)

It was suggested that the scalar could be proportional to the trace of the stress-

energy tensor, whose expectation value vanishes in CFTs. Holographic calculations

in AdS/CFT have been done to check this proposal by considering perturbations to

the conformal action by some scalar operator. The proposal works for some scal-

ing dimensions ∆ of the scalar operator, but the operators with ∆ < d/2 produce

terms that dominate in the small radius limit violating the proposal [56, 57]. The

problem could be avoided if, for example, MVEH only applies to linearized pertur-

bations around the vacuum. This is also suggested by the fact that there exists

non-perturbative families of CFT states that contain the vacuum state, but have a

finite energy density with the same entanglement entropy.26 For such states MVEH

would be meaningless, because the change in the entanglement entropy is zero. In

addition, MVEH applied to higher curvature theories of gravity only produces the

equations of motion at the linearized level [55].

The constraint of taking the variation of SUV at fixed volume is motivated by the

first law of causal diamond mechanics, which is a classical on-shell statement about

the spacetime dynamics within the geodesic ball [13]. Consider a simultaneous on-

shell variation of the metric and the classical matter fields. According to Hamilton’s

equations (4.16) derived in section 4.1, the on-shell variation of the Hamiltonian

generating the flow along ζB is given by Wald entropy

δHζB =

∫
∂B
δQ[ζB] = δSWald

B . (5.13)

In contrast to the black hole first law, the left hand side does not vanish, because ζB
is not a pure Killing vector of Minkowski space, but only a conformal Killing vector.

In Einstein gravity, the Wald entropy is proportional to the area of ∂B, while the

Hamiltonian can be calculated from the explicit expression for ω [13]. The gravita-

tional contribution to ω is proportional to the volume variation δV of the ball so that

the gravitational part of (5.13) contains η(δA − δV ) up to a constant in δV . Turns

out that this constant has just the right value so that the expression becomes area

variation at fixed volume δA|V . On the other hand, the matter contribution to ω is

proportional to the matter stress-energy and therefore the first law of causal diamond

mechanics states that the addition of matter energy to the diamond decreases the

area of the boundary at fixed volume [13]:

δA|V
4GN

+ δEζB = 0, (5.14)

26An example of such a family is given by coherent states [58].
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where EζB =
∫
ddx ζBTtt is the conformal boost energy resulting from matter. So

we see that a similar expression to MVEH holds on-shell classically and this is the

reason why Einstein’s equations can be derived by reversing the argument.

Entanglement equilibrium can also be extended to higher curvature theories of

gravity [55]. The strategy is to replace the area of the ball by the corresponding

Wald functional of the theory, but now one also needs a “generalized volume”, which

is taken to be fixed under the variation of the Wald functional. The generalized

volume is obtained from the first law of causal diamond mechanics (5.13) applied

to higher curvature theories and it is denoted by W . Entanglement equilibrium is

assumed as before, but this time δSUV = δSWald
B |W .27 For small balls, the correct

equations of motion are obtained, but only at the linearized level, because the higher

curvature terms are encoded at larger distance scales. Therefore one would hope

that by increasing the radius of the ball, higher order corrections could be obtained.

Turns out that this is not possible [55], because the Riemann normal coordinates,

that parametrize the geodesics radiating from the center, contain terms second order

in curvature at larger radius. These terms are exactly what the equations of motion

would contain at the same order, breaking the perturbative expansion. It is suggested

that this implies a break down of the effective field theory description.

5.2 Comparison with holography and discussion

There are some similarities between the holographic derivation of Einstein’s equa-

tions reviewed in section 4 and the derivation of this section based on entanglement

equilibrium. The vanishing of the total entanglement entropy of a geodesic ball is

analogous to the bulk first law in AdS/CFT (the bulk dual of CFT entanglement

first law), which was applied in the bulk region bounded by the RT surface (the

AdS-Rindler patch). In both cases, semi-classical matter coupling follows from the

entanglement of fields inside the region being considered, but the Einstein’s equa-

tions itself are obtained differently. Entanglement equilibrium yields full non-linear

Einstein’s equations, while in holography, the equations are only obtained pertur-

batively. A geodesic ball is a well defined notion at all orders and that is why we

are able to calculate the area variation (5.6) non-perturbatively, leading to the full

non-linear equations. In holography, we do not have a non-perturbative constraint

on the geometry, but only a perturbative expansion obtained from relative entropy

(4.31).

The main difference when comparing Jacobson’s derivation to holography is the

absence of a dual theory. In Jacobson’s derivation, the area law for the UV entropy

is simply taken as an assumption, which supposedly captures the macroscopic be-

haviour of the UV degrees of freedom. In the holographic context, the interpretation

of the area law for the hemisphere is perfectly clear and is given by the entanglement

entropy of the dual CFT. There is also η that must be rendered finite by quan-

tum gravitational effects. The mechanisms responsible should be similar to how the

bulk entanglement entropy is rendered finite in the FLM formula (3.22), because its

leading order divergence is also proportional to area. The entanglement equilibrium

hypothesis is also taken as an assumption, which is of course well motivated by the

first law of causal diamond mechanics, but it cannot be derived from a more funda-

mental principle. In holography the situation is again the opposite, because the bulk

first law is dual to the entangelent first law of the CFT.

27There are ambiguities in the definitions that modify the Wald functional and generalized volume

by terms SJKM and WJKM [59]. Nevertheless, the variation with the new functionals δ(SWald
B +

SJKM)|W ′ with W ′ = W +WJKM yields the correct linearized equations of motion.
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In Jacobson’s derivation the shape of the geodesic ball and the conformal sym-

metry of the matter fields are essential, because together they produce the correct

factor in the stress-energy tensor that cancels against the area variation in (5.11).

It is the explicit form of the ball modular Hamiltonian of the conformal fields that

produce the correct matter coupling in the Einstein’s equations. In the holographic

derivation, the fields do not need to be conformal, because the canonical extension ξB
of the boundary conformal Killing vector to the bulk is a real Killing vector of AdS

space. Therefore entanglement first law can be applied regardless of the symmetries

of the theory, when calculating the variation of bulk entanglement entropy in (4.53).

For completeness we also mention an older 1995 paper by Jacobson [60], where

he derives Einstein’s equations as an equation of state. It is based on local Rindler

horizons, for which one defines an entropy satisfying an area law. Matter energy is

included as an integral of heat flux through the future horizon and it is assumed

to follow a Clasius relation. The variation of the horizon entropy is taken to be

equal to the variation of the matter entropy in the Clasius relation, leading to Ein-

stein’s equations as a local equilibrium constraint. See appendix B for details. This

“thermodynamical” derivation is entirely classical, but has some similarities with the

derivations of this thesis. However, the derivations based on entanglement above are

much better motivated and it is not really even clear what kind of entropy one is

calculating in the thermodynamical case [61].

6 Summary

In this thesis, we reviewed how Einstein’s equations can be derived up to second order

metric perturbations from the AdS/CFT correspondence. We started by introducing

the concept of entanglement entropy and relative entropy in quantum field theories.

Entanglement entropy of a spatial subregion can be calculated using the replica trick

by means of a functional integral over a replicated surface. The method produces

a universal entanglement entropy for two dimensional conformal field theories in

thermal states. Thermal entanglement entropies also result from the vacuum state,

when moving along non-inertial worldlines that generate a symmetry of the theory.

In particular for a ball-shaped region in the CFT vacuum state, the entanglement

entropy is equivalent to thermal entropy on a hyperbolic space.

We then moved on to the AdS/CFT correspondence, which is a duality between a

string theory in the bulk of AdS space and a conformal field theory on its boundary.

When the CFT is strongly coupled and has a large number of degrees of freedom, the

string theory reduces to general relativity with quantum corrections being quantum

fields that couple semi-classically. Entanglement entropy of the CFT is calculated

via the Hubeny-Ryu-Takayanagi formula as the area of an extremal surface in the

bulk, to which the leading correction is given by bulk entanglement entropy. For a

boundary ball-shaped region in the CFT vacuum state, the formula reproduces the

universal nature of the entanglement entropy, which is normalized by two parameters

up to second order perturbations around the vacuum in any number of dimensions.

Variation of the ball entanglement entropy around the CFT vacuum state follows

the entanglement first law. By using the Ryu-Takayanagi formula and other results

from AdS/CFT, the first law can be translated to the bulk, where it acts as a con-

straint on the bulk geometry. This constraint is equivalent to linearized Einstein’s

equations around AdS space. Semi-classical matter coupling is obtained by including

the leading quantum correction, bulk entanglement entropy, in the RT formula. At

second order the CFT first law is no longer enough, but instead the expression for

relative entropy has to be used and expanded to second order, giving a second order
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constraint on the bulk geometry. As a result, Einstein’s equations at second order

are obtained, but only for specific subset of perturbations. We discussed how these

derivations can naturally be extended to higher curvature theories of gravity as well.

Last we reviewed how Einstein’s equations can be derived from the maximum

vacuum entanglement hypothesis. Total entanglement entropy of a geodesic ball is

defined as a sum of UV and IR entropies of the quantum gravity Hilbert space.

The UV entropy is assumed to follow an area law, while the IR entropy is normal

entanglement entropy of the quantum matter fields. The hypothesis states that the

total entanglement entropy of a small geodesic ball is maximized, which gives the full

non-linear Einstein’s equations inside the ball. Entanglement equilibrium is assumed

to hold locally at every point, leading to Einstein’s equations everywhere in the

spacetime. The derivation is inspired by the analogs in AdS/CFT and we discussed

their differences.
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Appendix A

Useful metrics

1 Poincaré metric

AdSd+1 and Euclidean AdS space Hd+1 (hyperbolic space) are defined as the embed-

ding of

±X2
0 +X2

1 + . . .+X2
d −X2

d+1 = −`2 (1.1)

in the Rd,2 ambient spacetime

ds2 = ±dX2
0 + dX2

1 + . . .+ dX2
d − dX2

d+1. (1.2)

AdSd+1 corresponds to the minus sign and Hd+1 to the plus sign in the coefficient of

dX2
0 above. Let

u = Xd +Xd+1 (1.3)

v = Xd −Xd+1 (1.4)

t = X0/u (1.5)

xi = Xi/u, i = 1, . . . , d− 1. (1.6)

With these coordinates, the hyperbola (1.1) becomes:

uv + u2(±t2 + ~x2) = −`2. (1.7)

We can solve for v and substitute it to the transformed ambient metric (1.2). The

result is:

ds2 =
`2

u2
du2 + u2(±dt2 + d~x2). (1.8)

By defining z = `/u with z ≥ 0, we get the Poincaré metric

ds2 =
`2

z2
(dz2 ± dt2 + d~x2) (1.9)

with the minus sign being AdSd+1 and plus sign Hd+1.

2 Hyperbolic blackhole metric

The metric of a general hyperbolic AdSd+1 black hole is [23]

ds2 = − `
2

R2
f(ρ)dη2 +

1

f(ρ)
dρ2 + ρ2(du2 + sinh2 u dΩ2

d−2), (2.1)
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where

f(ρ) =
ρ2

`2
− 1− ρd−2

+

ρd−2

(
ρ2

+

`2
− 1

)
. (2.2)

The temperature of the black hole is given by

T =
`

4πR

(
d ρ+

`2
− d− 2

ρ+

)
(2.3)

Here ρ+ corresponds to the the black hole mass and it fixes the radial location of the

horizon f(ρ+) = 0. AdS-Rindler space is the special case of (2.1) that is isometric to

pure AdS. The Rindler horizon was shown to have an inverse temperature β = 2πR,

which is obtained from (2.3) by setting ρ+ = `. This corresponds to

f(ρ) =
ρ2

`2
− 1 (2.4)

giving the AdS-Rindler metric (3.28).
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Appendix B

Einstein’s equations as an

equation of state

The Einstein’s equations imply the existence of a black hole entropy, which must

be proportional to the area of the horizon, while the surface gravity determines the

temperature. Without worrying about the microscopical degrees of freedom that

the entropy describes, one could use the thermodynamical relationships and maybe

derive Einstein’s equations. This would allow us to view the Einstein’s equations as

an equation of state between the thermodynamical variables. Such a viewpoint was

taken by Jacobson [60] to show that the Einstein’s equations can indeed be derived

as an equilibrium relation.

The idea is to consider the local Rindler horizon of a spacetime point p (the space

is locally flat) and analyze the thermodynamical heat that flows through a spacelike

2-surface element P, which is a thin strip extending from the horizon. In analogy

with black hole entropy, a similar entropy can be defined for the Rindler horizon.

There are subtleties however, because the Rindler horizon has an infinite area so

that one instead looks at an infinitesimal piece of the horizon. The horizon has an

Unruh temperature T = a/2π and it is assumed that the change in entropy follows

the familiar equation

δS = ηδA, (0.1)

where η is a finite constant and A is the area of the spacelike area element P. In

analogy with black hole entropy, the constant is taken to be η = 1/4GN. Then we

assume the first law like relation between the horizon entropy and a heat quantity:

δQ = TdS. (0.2)

The heat Q is defined as the energy that flows through the domain of dependence

of the Rindler horizon as measured by the Rindler observer. The horizon focuses

the energy flow depending on how it is deformed so that the two equations (0.1)

and (0.2) act as constraint on the curvature of the geometry at p. Turns out that

this constraint is exactly the null components of Einstein’s equations as we will show

next. Applying the constraint at all points p then gives the equations everywhere in

the spacetime.

The observer is assumed to hover near the horizon, meaning that the calculations

are done in the infinite acceleration limit. In this limit, the boost generator ζµ (2.37),

which generates the wordline of the observer, approximately also generates the local

Rindler horizon of P. Denoting the future horizon of P by H, the total heat measured

by the observer can be defined in terms of the energy-momentum flux ζνTµν through
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the past horizon:

δQ =

∫
H
dΣµ ζνTµν . (0.3)

Let λ ∈ R be an affine parameter that vanishes at P and increases in the future

direction. Then near P we can approximate ζµ = −aλkµ and dΣµ = dλdAkµ with

kµ being a tangent vector of H. With these explicit formulas (0.3) becomes

δQ = −a
∫
H
dλdAλTµνk

µkν . (0.4)

The heat flow is assumed to travel along null geodesics that pass through the horizon

H. The change in the area of P is proportional to the expansion θ of these geodesics:

δA =

∫
H
dλdA θ. (0.5)

Raychaudhuri equation is an equation, which relates the rate of change of the ex-

pansion to the spacetime curvature. Near p the null geodesics approximately travel

along kµ so the affine parameter of the geodesics is λ. Integrating the Raychaudhuri

equation gives for small λ:

θ = −λRµνkµkν . (0.6)

The area variation becomes

δA = −
∫
H
dλdAλRµνk

µkν . (0.7)

The first law relation (0.2) is now equivalent to

Rµνk
µkν =

2π

η
Tµνk

µkν (0.8)

for arbitrary null kµ, which implies Rµν + fgµν = Tµν for some function f , because

gµνk
µkν vanishes. Using the Bianchi identity this is equivalent to Einstein’s equations

at p:

Gµν + Λgµν = 8πGNTµν (0.9)

with Λ identified as the cosmological constant.

This derivation can also be extended to higher curvature theories of gravity [62].

The strategy is to replace the area of P by the corresponding Wald functional of

the theory. The key difference is that one is no longer able to use the Raychaudhuri

equation in the derivation, but one instead uses the fact that for an exact Killing

vector ζµ:

∇µ∇ν ζρ = Rσµνρ ζσ. (0.10)

In our case, the ζµ as defined above is only an approximate Killing vector in the

a→∞ limit and the identity (0.10) is taken to hold approximately. This is analogous

to the approximation above that ζµ = −aλkµ.
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