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“Let me tell you something you already know. The world ain’t all sunshines and

rainbows. It’s a very mean and nasty place, and I don’t care how tough you are,

it’ll beat you to your knees and keep it there permanently if you let it. You, me or

nobody is gonna hit as hard as life. But it ain’t about how hard you hit. It’s about

how hard you can get hit, and keep moving forward. How much you can take, and

keep moving forward. That’s how winning is done! Now, if you know what you’re

worth, then go out and get what you’re worth. But you gotta be willing to take the

hits. And not pointing fingers saying you ain’t what you wanna be because of him,

or her, or anybody. Cowards do that, and that ain’t you! You’re better than that!”

Rocky Balboa
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RESUMO

Nesta tese, discutimos em detalhes a técnica das Regras de Soma da QCD

(RSQCD) e suas aplicações em sistemas hadrônicos situados na região de massa

do charmônio. Em particular, calculamos a massa, as constantes de decaimento e

acoplamento, bem como a largura de decaimento dos estados Y (4260), Y (3940) e

Z+
c (3900). Além disso, consideramos a existência do parceiro estranho deste último,

o Z+
cs(3970), e calculamos sua largura de decaimento de modo a prever seu valor em

futuros experimentos. Usamos modelos ditos exóticos para descrever tais estados.

Para o Y (4260) e o Y (3940) usamos correntes de mistura charmônio - tetraquarks.

Para os estados carregados usamos uma corrente de tetraquarks. Como resultado

das aplicações das RSQCD nesses sistemas, obtivemos valores de massa e largura

compatíveis com os valores experimentais medidos pelas colaborações BESIII, Belle,

Babar e CLEO-c. Dessa forma, podemos afirmar que os modelos utilizados fornecem

uma boa interpretação para esses estados.

Investigamos também, aplicando técnicas de teorias efetivas, os estados carre-

gados Z+
c (4025) e novamente o Z+

c (3900), além dos estados no setor do bottom

Z+
b (10610) e Z+

b (10650). Usamos as Lagrangianas da Simetria Oculta de Calibre

Local (HGS) e também as regras da Simetria de Spin do Quark Pesado (HQSS) para

determinarmos as interações DD̄∗, D∗D̄∗, BB̄∗ e B∗B̄∗ via troca de mésons veto-

riais pesados e devido à troca de dois píons correlacionados e não correlacionados

entre si. Determinamos o potencial para cada interação e, com isso, procuramos por



pólos na solução da matriz T na equação de Bethe-Salpeter, cujo kernel é dado pelo

potencial. Como resultado desses estudos, obtivemos para as interações no setor

do charme, estados ligados cuja massa e largura estão em razoável acordo com os

estados carregados Z+
c (4025) e Z+

c (3900). Para as interações no setor do bottom,

obtemos um estado fracamente ligado próximo do limiar de massa BB̄∗ cuja largura

e massa são compatíveis com a estrutura Z+
b (10610) observada pela Colaboração

Belle. Obtivemos um cusp no limiar de massa B∗B̄∗ próximo do valor da estrutura

Z+
b (10650).

Palavras-Chave: Regras de Soma da QCD, Física de Hádrons, Mésons, Charmônio, Estados
Exóticos, Massa, Largura.



ABSTRACT

In this thesis, we discuss in details the QCD Sum Rules (QCDSR) technique and

its application to the study of hadronic systems situated in the charmonium mass

region. In particular, we applied QCDSR to calculate hadronic properties such as

the mass, the coupling contants as well as the total decay width of the Y (4260),

Y (3940) and Z+
c (3900) charmoniumlike states. We have also predicted the decay

width of the strange partner of the Z+
c (3900), called Z+

cs(3970), to be searched in

future experiments. In order to describe these states, we used exotic models. For

Y (4260) and Y (3940) states we used mixed charmonium-tetraquarks interpolating

currents. For the charged states we used tetraquark currents. As a result of the

application of QCDSR to these systems, we obtained masses and decay widths

in good agreement with the experimental values measured by BESIII, Babar, and

CLEO-c collaborations. Therefore, the currents we used within QCDSR approach

provide a good interpretation for these states.

Furthermore, applying effective field theories techniques, we also investigated the

charged states Z+
c (4025) and Z+

c (3900), in addition to Z+
b (10610) and Z+

b (10650)

in the bottom sector. Specifically, we used hidden local symmetry Lagrangians

(HGS) together with heavy quark spin symmetry rules (HQSS) in order to study the

interactions DD̄∗, D∗D̄∗, BB̄∗ and B∗B̄∗ by means of the heavy vector exchange

and also from the exchange of two pions, interacting and noninteracting among

themselves. We obtained the potencial for each interaction, then we used them as



a kernel of the Bethe-Salpeter equation in order to look for poles in the T -matrix.

Our aim was to relate these poles with the charmoniumlike states of interest. As

a result, in the charm sector, we obtained bound states whoses masses and widths

are in a good agreement with the charged states we have studied. With respect

to the bottom sector, we have found a loosely bound state very close to the BB̄∗

threshold with mass and width compatible with the structure Zb(10610) observed

by Belle colaboration. We have obtained a cusp in the B∗B̄∗ threshold very close to

the mass of the Z+
b (10650) state.

Palavras-Chave: QCD Sum Rules, Hadron Physics, Mesons, Charmonium, Exotic States,
Mass, Width.
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CAPÍTULO 1

PARTE I: APLICAÇÕES DAS REGRAS DE SOMA DA

QCD

1.1 Introdução

A Teoria de calibre não-Abeliana chamada Cromodinâmica Quântica, QCD (do

inglês Quantum CromoDynamics), tem tido bastante êxito na descrição dos proces-

sos na física de hádrons, isto é, processos onde as partículas fundamentais interagem

fortemente. Logo, acredita-se que a QCD seja a teoria fundamental das interações

fortes. A QCD possui duas importantes características: liberdade assintótica e o

confinamento. A liberdade assintótica permite-nos descrever fenômenos por meio

de quarks e glúons considerando-os aproximadamente livres em processos de altas

energias, onde o acoplamento torna-se pequeno o suficiente, viabilizando o uso de

técnicas de teoria de perturbação. Nesse regime perturbativo, altas energias, a QCD

está bem consolidada e testada com uma precisão de 1%.

Por outro lado, no regime de baixas energias, o acoplamento se torna grande,

devido ao caráter não-abeliano da interação, de tal maneira que a aplicação dos

métodos de teoria de perturbação torna-se inviável. Assim, os processos nesse re-

gime são dominados por efeitos não-perturbativos dificultando o cálculo do espectro

hadrônico a partir da QCD.



4 Parte I: Aplicações das Regras de Soma da QCD

Com a finalidade de resolver o problema do espectro, muitos modelos baseados

na QCD foram propostos como alternativa. Ao longo dos anos, com o aumento do

poder tecnológico, os experimentos foram ganhando mais robustez de tal maneira

que muitos novos hádrons foram descobertos, e com isso, a necessidade de um modelo

para explicar suas propriedades tornou-se cada vez mais imprescindível. Dentre os

modelos propostos, o modelo de quarks [1, 2] foi o mais bem sucedido, e muitas

propriedades tais como massa, constantes de decaimento e propriedades estáticas

dos hádrons foram satisfatoriamente descritas [3].

O modelo de quarks, permitiu encaixar a maioria dos hádrons descobertos expe-

rimentalmente numa classificação bastante simples. De acordo com ele, os hádrons

podem ser classificados como Mésons ou Bárions, onde a diferença entre eles se dá

de acordo com a configuração de quarks. Os Mésons são compostos de um par quark

anti-quark, enquanto os Bárions são configurações de três quaks. Ambas configu-

rações devem ser estados singletos de cor para que as partículas, isto é, os hádrons

sejam observáveis físicos.

Muito embora o modelo de quarks tenha oferecido por muito tempo uma des-

crição satisfatória e elegante para os hádrons, além de ter permitido classificá-los

de um modo simples, o cenário atual da espectroscopia vêm se tornando mais intri-

gante uma vez que com o aparecimento de máquinas cada vez mais potentes, muitas

colaborações experimentais estão observando novos hádrons com propriedades que o

modelo de quarks não consegue explicar. Esses novos hádrons chamados de estados

XY Z, estão situados na região de massa dos estados do charmônio, isto é, estados

mesônicos cuja configuração de quarks envolve um quark e anti-quark charm, cc̄.

Desde 2003 uma quantidade cada vez mais crescente de novos estados no inter-

valo de massa do charmônio vêm sendo observados pelas colaborações Belle, Babar,

nas Fábricas de B, e mais recentemente pelas Colaborações BESIII no Beijing Spec-

trometer e LHCb no CERN. Nas fábricas de B (a PEPII no SLAC, EUA, a KEK

no Japão e BES na China), que são colisores e− e+ operando com energia de centro

de massa da ordem de 10 GeV, o espectro do charmônio pôde ser reproduzido e

os novos estados do charmônio foram produzidos de diferentes maneiras. A seguir



1.1 Introdução 5

mencionamos algumas delas.

Uma das maneiras de se produzir estados do charmônio ocorre via decaimento do

méson B. As fábricas de B, produzem pares de mésons BB̄. Em 50% dos casos, os

mésons B decaem através do processo: B → K (cc̄), permitindo assim que estados

do charmônio sejam produzidos. Esse processo pode ser facilmente entendido a nível

de quarks, segundo a Fig. 1. O quark b, após a emissão de um bóson W−, converte-

se em um quark charm, c. Aproximadamente em metade dos casos, o bóson W−

materializa-se num par sc̄, isto é, num quark estranho, s, acompanhado de um anti-

quark charm, c̄. Dessa forma, metade dos decaimentos do méson B resultam em

pares de quark e anti-quark charm, isto é, cc̄.

W−

b

q̄

c̄

s

c

q̄

Figura 1.1: Processo de produção do charmônio, cc̄, via decaimento do méson B.

Outro mecanismo de produção de charmônio nas Fábricas de B parte diretamente

da colisão e+ e−, onde um arranjo experimental é feito de modo que ou o elétron e−

ou o pósitron e+ emita um fóton, γ, altamente energético antes da colisão, reduzindo

dessa forma a energia de centro de massa da colisão. Um esquema desse mecanismo,

chamado ISR, do inglês Initial State Radiation, está ilustrado na Fig. 1.2. Em

particular, quando a energia do fóton emitido está no intervalo entre 4000 e 5000

MeV, o processo de aniquilação acontece com energia que corresponde ao intervalo de

massa dos estados do charmônio. Dessa forma, através do mecanismo ISR, é possível

produzir estados do charmônio com números quânticos JPC = 1−−, onde J, P e C

são o momento angular total, a paridade e a conjugação de carga, respectivamente,

do estado produzido.

Uma outra maneira de produção de charmônio se dá através da fusão de dois
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e−

e+

γISR

c

c̄γ∗

Figura 1.2: Processo de produção do charmônio, cc̄, via ISR (Initial State Radia-
tion).

fótons. Um esquema pode ser visto na Fig. 1.3. Nesse processo, o elétron e−,

e o pósitron e+ emitem fótons que em seguida interagem produzindo estados com

números quânticos JPC = 0−+, 0++, 2++ e 2−+ [4]. Foi através desse processo que a

Colaboração CLEO confirmou a existência do estado do charmônio η′c em 2004 [5].

γ

γ

c

c̄

Figura 1.3: Processo de produção do charmônio, cc̄, via fusão de dois fótons.

Finalmente, estados do charmônio podem surgir através do processo chamado

produção de duplo-charm, de acordo com a Fig. 1.4.

c

c̄

J/ψ

γ

e−

e+

Figura 1.4: Processo de produção do charmônio, cc̄, via produção de duplo charm.

Na Tabela 1.1, apresentamos alguns desses mésons observados pelas colaborações

mencionadas anteriormente.
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Tabela 1.1: Estados do tipo do charmônio medidos nas fábricas de B. Na segunda coluna
estão listados os mecanismos de produção de acordo com o processo, isto é, de cima para
baixo: decaimento do méson B, em seguida processo ISR, fusão de dois fótons, e finalmente
duplo charm. Na terceira e quarta colunas, respectivamente, estão listados os modos de
decaimento e as Colaborações experimentais.

Estado Modo de Produção Modo de Decaimento Experimento

X(3872) B → KX(3872) J/ψππ Belle [6], Babar[7]
Y (4140) B → K Y (4140) J/ψφ CDF[8]
Y (3930) B → K Y (3930) J/ψω Belle[9]
Y (4260) e+e− → γISR Y (4260) J/ψππ Babar
Y (4360) e+e− → γISR Y (4260) J/ψππ BaBar[10], Belle[11]
Y (4660) e+e− → γISRX(4660) ψ′ππ Belle[11]
X(3915) γγ → X(3915) J/ψω Belle[9], BaBar[12]
X(4350) γγ → X(4350) J/ψφ Belle[13]
Z(3930) γγ → Z(3930) J/ψω Belle[14]
X(3940) e+e− → X(3940)J/ψ D∗D̄ J/ψ Belle[15]
X(4160) e+e− → X(4160)J/ψ D∗D̄∗ J/ψ Belle[15]

Alguns poucos estados listados na Tabela 1.1 encaixam-se no espectro do charmô-

nio como um simples cc̄. Por exemplo, da Tabela somente o X(3915) pode ser en-

tendido como uma estrutura usual do charmônio. Uma estrutura convencional do

charmônio acima do limiar de massa de dois mésons charmosos, 2MD, deve decair

em pares de mésons D. Contudo, a maioria dos estados da Tabela 1.1 é observado

no decaimento em J/ψ acompanhado por píons. Além disso, as previsões dos mo-

delos de potencial para a massa e modos de decaimento estão em desacordo com

os das estruturas da Tabela 1.1. Isso desencadeou uma intensa discussão a respeito

da constituição de quarks desses estados, e por conta das características menciona-

das acima, eles tem sido considerados estados exóticos. Na linguagem dos hádrons,

um estado exótico está associado a uma configuração de quarks que não pode ser

entendida como estados quark-antiquark ou de três quarks.

Embora o modelo de quarks classifique os hádrons como mésons ou bárions, a

QCD não proíbe a existência de estados de quarks que vão além dessas configurações,

como por exemplo, estados com quatro quarks, chamados de tetraquarks, desde que

tal configuração tenha carga de cor nula, isto é, o estado deve ser singleto de cor.
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Com a proliferação dos estados XY Z desde 2003 e as dificuldades de encaixá-los

no espectro do charmônio como um simples cc̄, a discussão a respeito da natureza

exótica desses estados tornou-se cada vez mais constante e vêm atraindo cada vez

mais atenção dos teóricos. O entendimento da estrutura dos estados XY Z bem

como de seus mecanismos de produção e decaimento, é extremamente desafiador.

E pode ser a resposta definitiva a respeito da confirmação da existência de estados

exóticos.
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Figura 1.5: Distribuição de massa invariante do par π+J/ψ, isto é, Minv(π
+J/ψ),

no processo e+e− → π+π−J/ψ.

Na tentativa de explicar propriedades dos estados XY Z muitos modelos foram

propostos pelos teóricos: tetraquarks, moléculas, híbridos, hadro-charmônio e glue-

balls. A configuração de tetraquarks se dá de duas maneiras: uma considera quatro

quarks com carga de cor nula, formando uma espécie de sacola de um par de di-

quark, qq, e anti-diquark, q̄q̄ [17]. A outra seria uma interpretação molecular, isto

é, os quatro quarks formam pares de mésons interagindo de modo a formarem um

estado ligado semelhante à confirguração do deutério já que a maioria dos estados

XY Z possuem valores de massa próxima do limiar méson-méson [18, 19, 20]. Outras

configurações possíveis são o hadro-charmônio [21] e o charmônio híbrido [22].

Apesar das propriedades da maioria dos estados XY Z não serem explicadas pelo

modelo de quarks não se tem ainda uma resposta conclusiva se os estados XY Z são

de fatos exóticos ou não. Um bom indício da existência de estados exóticos que não

A Figura 1.5 foi extraída da Ref. [16].
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deixaria dúvidas, seria a observação de estados carregados na região de massa do

charmônio, pois, como não se pode ter uma configuração cc̄ com carga elétrica, um

estado com carga teria obrigatoriamente uma configuração exótica. Em 2008, a Co-

laboração Belle mediu um estado do tipo do charmônio com massa m = 4433±2±2

MeV e largura Γ = 45+18+30
−13−13 MeV denominado Z+(4430) [23]. Este seria o primeiro

estado XY Z com carga elétrica, e portanto, um forte candidato a exótico. Porém,

a Colaboração BaBar não encontrou nenhum sinal condizente com este estado, e

portanto, para o Z+(4430) se estabelecer como um estado exótico, carecia de con-

firmação experimental por parte das demais colaborações. No entanto, foi somente

em 2013 e 2014 que as colaborações Belle e LHCb respectivamente confirmaram a

observação do Z+(4430) além de seus prováveis números quânticos JP , iguais a 1+.

Além do Z+(4430), mais dois estados carregados também foram observados pela

Colaboração Belle em 2008, o Z+(4051) e o Z+(4248) [24]. Entretanto, nenhum

deles foi de fato confirmado pelas demais colaborações.

No entanto, o cenário mudou quando em 2013 a Colaboração BESIII anunciou

a observação de uma estrutura carregada com massa no entorno de 3900 MeV após

análise da distribuição de massa invariante do par J/ψπ±, Minv(J/ψπ
±) no canal de

decaimento Y (4260) → J/ψπ+π−, como mostra a Fig. 1.5 [16]. Essa estrutura foi

denominada de Zc(3900), e foi ao mesmo tempo também observada pela Colaboração

Belle [25] e pelos autores da Ref. [26] usando os dados da Colaboração CLEO-c.
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Figura 1.6: Distribuição de massa invariante do par D0D∗− no processo e+e− →
π±(DD̄∗)∓.
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Posteriormente, a Colaboração BESIII ao estudar o canal e+e− → π±(DD̄∗)∓

observou dois picos associados à distribuição de massa invariante dos pares D0D∗−

e D+D̄∗0 mostrados, respectivamente nas Figs. 1.6 e 1.7 [27]. Esses picos, segundo

a Colaboração BESIII estão associados a uma estrutura carregada, Z±c (3885), cuja

massa e largura são M = 3883.9 ± 4.5 MeV e Γ = 24.8 ± 12 MeV. Alguns teóricos

acreditam que o Z±c (3900) e o Z±c (3885) possam ser o mesmo estado vistos em canais

diferentes.
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Figura 1.7: Distribuição de massa invariante do par D+ D̄∗0 no processo e+e− →
π±(DD̄∗)∓.

Portanto, os estados XY Z são alvo de intensa investigação experimental nos

laboratórios espalhados pelo mundo, sua natureza como tetraquarks, moléculas de

mésons, híbridos, hadro-charmônio, glueballs reacendeu o debate sobre a existência

de estados exóticos uma vez que, como mencionado anteriormente, a QCD não

proíbe o aparecimento desses estados na natureza. Entendê-los será um importante

passo na compreensão do espectro da QCD. Com o objetivo de encaixá-los em algum

modelo exótico, muitas técnicas de cálculo foram empregadas para testar se através

de um ou outro modelo, propriedades desses estados como massa, mecanismos de

produção, largura de decaimento dentre outras, pudessem ser reproduzidas. Dentre

essas técnicas as mais comuns são as Regras de Soma da QCD, QCD na Rede e

Teorias Efetivas. Dentre essas, acredita-se que a QCD na rede possa nos dar a

solução final para o problema do espectro, no entanto, ela ainda está dando seus

As Figs. 1.6 e 1.7 foram extraídas da Ref. [27].
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primeiros passos, e ainda não se tem resultados significativos com relação aos estados

XY Z.

Nesta tese utilizamos as Regras de Soma da QCD para estudar esses sistemas

ditos exóticos. O método das regras de soma da QCD foi originalmente proposto

por Shifman, Vainshtein e Zakharov. A idéia da técnica das regras de soma da

QCD é aproximar o problema do estado fundamental na QCD partindo do lado

da liberdade assintótica, ou seja, começar com pequenas distâncias, regime de altas

energias, e se encaminhar para grandes distâncias, baixas energias, onde os efeitos

de confinamento se tornam importantes, a liberdade assintótica deixa de valer e

as ressonâncias aparecem como reflexo do fato de que os quarks e glúons estão

permanentemente confinados dentro dos hádrons. Os efeitos não perturbativos,

devidos ao vácuo físico, são introduzidos através dos condensados de quarks e glúons.

A introdução desses efeitos e o uso da transformada de Borel é que permite estender

o domínio padrão da QCD perturbativa para valores de Q2 da ordem da massa do

nucleon.

Esta tese está dividida em duas partes, onde vamos investigar alguns dos estados

ditos XY Z, que são possíveis estados exóticos do charmônio. Na Parte I, aplicamos

a técnica das Regras de Soma da QCD para extraírmos as propriedades hadrônicas

tais como a massa e constante de acoplamento e, a partir desta, obtemos a largura

de decaimento dos estados Z+
c (3900), Z+

cs(3970), Y (4260) e Y (3940). Na Parte II,

fazemos uso de técnicas de Teorias Efetivas para investigarmos a geração dinâmica

de ressonâncias e estados ligados a partir das interações DD̄∗, D∗D̄∗, BB̄∗ e B∗B̄∗.

Nosso objetivo nessa parte é associar tais estados dinamicamente gerados com os

estados Z+
c (4025), Z+

c (3900), Z+
b (10610) e Z+

b (10650). Para isso, organizamos este

manuscrito da seguinte maneira: no Capítulo 2, introduzimos a técnica das Regras

de Soma da QCD, discutindo em detalhes os principais aspectos dela. Além disso,

discutimos como aplicar essa técnica no cálculo de observáveis, em particular, a

massa, constante de decaimento, constante de acoplamento e a largura de decai-

mento de sistemas hadrônicos. Em seguida no Capítulo 3, aplicando as RSQCD,

discutimos os resultados obtidos para a massa e a largura dos estados Z+
c (3900) e
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seu parceiro estranho, o Z+
cs(3970), considerando-os como estados tetraquarks. No

Capítulo 4, os mesmos observáveis são discutidos agora para os sistemas Y (4260) e

o Y (3940) supondo que eles sejam descritos por uma mistura charmônio-tetraquark.

As considerações finais a respeito dessa parte são o conteúdo do Capítulo 5. Uma

breve introdução sobre as técnicas de Teorias Efetivas é feita no Capítulo 6, enfa-

tizando o uso das Lagrangianas da Simetria Oculta de Calibre Local (HGS) para o

estudo das interações PV e V V , isto é, entre mésons pseudo-escalares e vetoriais e

vetoriais com vetoriais, respectivamente. Os resultados sobre as interações no setor

do charme DD̄∗ e D∗D̄∗ são apresentados no Capítulo 7. Em seguida, no Capítulo 8

mostramos a extensão desses resultados para o setor do bottom e, com isso, investi-

gamos as interações BB̄∗ e B∗B̄∗. Finalmente, nossas considerações finais a respeito

desses estudos formam o conteúdo do Capítulo 9.



CAPÍTULO 2

REGRAS DE SOMA DA QCD

Neste capítulo vamos introduzir em detalhes a técnica das Regras de Soma da

QCD, discutindo seus pontos principais, suas vantagens e desvantagens. O objetivo

é extrair observáveis hadrônicos tais como massa, constantes de decaimento, fatores

de forma e constantes de acoplamento, para investigar, nos próximos capítulos, os

novos estados descobertos pelas colaborações experimentais na região de massa do

charmônio.

2.1 Introdução

A técnica das Regras de Soma da QCD, RSQCD, foi desenvolvida pelos físicos

Shifman, Vainshtein e Zakharov em 1978 [28], e consiste numa técnica analítica de

cálculo não-perturbativo, isto é, ela leva em conta os aspectos da QCD na região de

baixas energias, na ordem da escala do tamanho do hádron, Rhad ≈ 1/ΛQCD, onde

o uso de teoria de perturbação torna-se inviável. As RSQCD conectam observáveis

hadrônicos com parâmetros da QCD. Isso ocorre por meio do uso de relações de

dispersão que conectam intervalos distintos de momento dos hádrons. Com isso,

podemos extrair informações a respeito de propriedades de sistemas hadrônicos tais

como massa, acoplamento, fatores de forma e constantes de decaimento. Inicial-

mente, tais propriedades eram obtidas somente para mésons, e sua extensão para
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bárions foi feita por Ioffe três anos depois [29]. Existem na literatura muitos livros

[30, 31, 32, 33] e artigos diversos de revisão discutindo os aspectos iniciais [34, 35],

extensões para outros tipos de sistemas envolvendo a matéria nuclear [36, 37], e

aplicações das RSQCD em sistemas leves e pesados [38, 39, 40, 41].

Especificamente, o método está apoiado no Princípio da Dualidade Quark-Hádron.

Segundo esse princípio, existe uma região emQ2 (momento Euclideano) onde há uma

equivalência entre duas diferentes abordagens na descrição de um hádron. Tal dife-

rença reside nos graus de liberdade considerados: em uma delas, leva-se em conta

os graus de liberdade da QCD, isto é, os campos de quarks e glúons, enquanto que

na outra, os hádrons fazem o papel de campos fundamentais. À primeira damos

o nome de Lado da OPE, do inglês Operator Product Expansion, devido ao uso da

Expansão em Produto de Operadores de Wilson, enquanto a última é comumente

chamada de Lado Fenomenológico.

Uma das vantagens das Regras de Soma reside em ser uma técnica analítica,

que contempla simultaneamente os aspectos da QCD em altas e baixas energias,

isto é, podemos fazer uso do ferramental teórico da QCD perturbativa, enquanto

os aspectos não-perturbativos do vácuo da QCD aparecem como parâmetros, por

construção. Além disso, não existem parâmetros adicionais a serem levados em conta

se comparada à outras técnicas de cálculo não-perturbativo, como é o caso da Teoria

de Perturbação Quiral, CHPT (Chiral Perturbation Theory). Contudo, uma das

desvantagens das RSQCD está no uso de algumas aproximações durante o cálculo da

função de correlação tanto do Lado da QCD quanto do Lado Fenomenológico. Como

consequência, isso acarreta um acúmulo de fontes de incerteza. Abaixo listamos

algumas dessas fontes [42]

• Truncamento da OPE;

• Fatorização dos operadores de dimensões superiores;

• Seleção do intervalo na massa de Borel para o estabelecimento da equivalência

entre os Lados da OPE e Fenomenológico.

Ao longo deste capítulo vamos discutir em mais detalhes sobre as aproximções



2.2 A função de correlação nas Regras de Soma 15

e, por conseguinte, as incertezas nas RSQCD. A seguir vamos discutir o papel da

função de correlação, que é o ponto de partida do cálculo de qualquer parâmetro

hadrônico em Regras de Soma da QCD.

2.2 A função de correlação nas Regras de Soma

As funções de correlação tem um papel muito importante em Teoria Quântica

de Campos, TQC, pois, ela é o ponto de partida para o cálculo de observáveis físicos

tais como seções de choque e larguras de decaimento. No caso de uma função de

correlação de dois pontos, ela é definida como

〈0|T{φ(x)φ(y)}|0〉 , (2.1)

onde T representa o ordenamento temporal entre os campos, enquanto |0〉 representa
o estado fundamental da teoria interagente que nas RSQCD, denota o vácuo da QCD.

A interpretação física da função de correlação está associada à amplitude para uma

partícula ou uma excitação propagar-se de um ponto y até x. Considere o diagrama

da Fig. 2.1, onde o estado inicial e final representam um hádron H, composto de dois

quarks, com momento q. A amplitude associada ao diagrama da Fig. 2.1 é típica

de uma função de correlação de dois pontos, que em RSQCD é usada para calcular

massa (em nosso exemplo, a massa do hádron H) e constante de decaimento, e é

definida por

0 x

H(q) H(q)

Figura 2.1: Diagrama representando a amplitude calculada pela função de correlação
de dois pontos.

Π(q) = i

∫
d4x eiq·x〈0|T{j(x) j†(0)}|0〉 , (2.2)
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onde q representa o quadrimomento total e j(x) é a chamada corrente interpolante.

A corrente, por construção, é definida de tal maneira a descrever a estrutura do

hádron em termos dos números quânticos dele bem como seu conteúdo de quarks.

Em geral, os números quânticos a que ela se refere são o momento angular total,

J , a paridade, P , e a conjugação de carga, C, usualmente denotados por JPC . Por

exemplo, o méson J/ψ possui JPC = 1−−, e a corrente interpolante que descreve

sua estrutura mesônica bem como seu conjunto de números quânticos é

jµ(x) = c̄a(x)γµca(x) , (2.3)

onde “a” representa o índice de cor, e γµ as matrizes de Dirac, enquanto ca(x)

representa o campo spinorial associado com o quark charm. Essa corrente representa

uma estrutura com conteúdos de quarks cc̄, o mesmo do méson J/ψ.

Na técnica das Regras de Soma a função de correlação pode ser calculada em

dois níveis diferentes: a nível fenomenológico e a nível de QCD. A nível fenomeno-

lógico, os hádrons são considerados como campos básicos e a corrente interpolante

é o operador que cria e aniquila o hádron descrito por ela. É neste nível onde pa-

râmetros fenomenológicos como massa, constante de decaimento e acoplamento dos

hádrons são introduzidos no cálculo. Esse nível é chamado de Lado Fenomenológico.

A nível de QCD, a corrente interpolante é definida em termos dos campos de quarks

e glúons, que são agora os graus de liberdade fundamentais. Através do uso da Ex-

pansão em Produto de Operadores de Wilson (OPE) podemos lidar com a estrutura

complexa do vácuo da QCD de tal modo que os aspectos não-perturbativos dela são

parametrizados por valores esperados no vácuo (VEV). Estes VEV’s são chamados

de condensados, e mais adiante entraremos em mais detalhes a respeito disso. Esse

nível é chamado de Lado da OPE ou QCD. A Regra de Soma é obtida quando igua-

lamos ambas descrições da função de correlação, e como é do Lado Fenomenológico

que estão os parâmetros hadrônicos, podemos extrair dessa igualdade seus valores

em termos do ferramental técnico da QCD.
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2.3 A OPE: expansão em produto de operadores

O cálculo da função de correlação usando os campos de quarks e glúons como

graus de liberdade é feito a partir da Expansão em Produto de Operadores locais

(OPE). A OPE foi originalmente formulada pelo físico Kenneth G. Wilson [43] em

1969 de modo a descrever analiticamente a estrutura do vácuo da QCD. Ela define

muito bem a separação entre as contribuições da física de curto e longo alcance.

Considere a função de correlação abaixo,

Π(q) = i

∫
d4x eiq·x〈0|T{j(x) j†(0)}|0〉 , (2.4)

Note que os operadores j(x) e j†(0) estão definidos em pontos distintos do espaço-

tempo. Podemos expandir o produto temporalmente ordenado acima em termos de

um conjunto completo de operadores locais, ou seja, a função de correlação definida

pela Eq. (2.4) pode ser expandida da seguinte maneira

i

∫
d4x eiq·x〈0|T{j(x) j†(0)}|0〉 =

∞∑
d=0

Cd(q
2) 〈Ôd〉 , (2.5)

onde 〈Ôd〉 = 〈0|Ôd(0)|0〉, d é a dimensão das funções Cd(q2) e dos operadores locais

Ôd(0). As funções Cd(q2) são chamadas de coeficientes de Wilson, e é nelas que

está contida a informação a respeito da física de curto alcance, e por esta razão,

podem ser obtidos perturbativamente. Por outro lado, os operadores locais Ôd(0)

descrevem a física não-perturbativa, isto é, os aspectos não-perturbativos do vácuo

da QCD, e são esses operadores que dão origem aos condensados. Explicitamente,

a soma no lado direito da Eq. (2.5) até a dimensão seis é escrita como:

i

∫
d4x eiq·x〈0|T{j(x) j†(0)}|0〉︸ ︷︷ ︸

ΠOPE(q2)

= C0(q2)1̂ + C3(q2)〈q̄q〉+ C4(q2)〈g2
sG

2〉

+ C5(q2)〈q̄Gq〉+ C6〈q̄qq̄q〉 . (2.6)

Os coeficientes, C0(q2), C1(q2), ..., são inteiramente determinados pela estrutura do

produto de operadores. Isto é, a escolha de uma dada corrente descrevendo a es-
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trutura de quarks de um hádron expecífico determina completamente essas funções.

Isso implica que diferentes partículas com mesmo conjunto de números quânticos,

isto é, descritos pela mesma corrente, possuem as mesmas funções Cd(q2). Os VEV’s

denotados acima por 〈q̄q〉, 〈g2
sG

2〉, 〈q̄Gq〉, 〈q̄qq̄q〉, são os condensados que seriam nu-

los no vácuo perturbativo e, portanto, num cálculo perturbativo somente o operador

unitário na expansão da Eq. (2.6) contribuiria. Esses condensados são chamados,

respectivamente, condensado de quarks, condensado de glúons, condensado misto e

condensado de quatro quarks. Nas Regras de Soma, eles são os condensados mais

conhecidos e de mais baixa dimensão. Escritos explicitamente, temos

〈q̄q〉 = 〈0| : q̄(0)q(0) : |0〉 ,

〈g2
sG

2〉 = 〈0| : g2
s G

A
µν(0)GAµν(0) : |0〉 ,

〈q̄Gq〉 = 〈0| : q̄(0)gsσµνG
Aµν(0)q(0) : |0〉 ,

〈q̄qq̄q〉 = 〈0| : q̄(0)q(0)q̄(0)q(0) : |0〉 . (2.7)

Como veremos adiante, esses condensados que parametrizam os efeitos não-perturbativos

do vácuo da QCD, surgem naturalmente na OPE. Seus valores não podem ser obti-

dos simplesmente de cálculos analíticos e, portanto, recorremos a métodos indiretos

para obtê-los. Por exemplo, o valor numérico do condensado de quarks, denotado

por 〈q̄q〉, é estimado usando a hipótese de Corrente Axial Parcialmente Conservada

- PCAC, do inglês Partially Conserved Axial Current [44], através da equação

〈q̄q〉 = − m2
πf

2
π

2(mu +md)
, (2.8)

onde mπ e fπ representam a massa e a constante de decaimento do píon, respecti-

vamente, enquanto mu e md, as massas dos quarks u e d. Portanto, inserindo os

valores para esses parâmetros, isto é, mπ = 138 MeV, fπ = 132 MeV, emu+md ≈ 14

MeV na Eq. (2.8), obtemos

〈q̄q〉 = −(0.228 GeV)3 . (2.9)
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Agora, vamos mostrar como calcular os coeficientes de Wilson e mostrar também

como os condensados surgem no cálculo da OPE. Uma maneira de calcular os ter-

mos dessa expansão é através do uso do Teorema de Wick. Segundo esse teorema,

para um produto temporalmente ordenado de dois operadores de campo como, por

exemplo, qa(x) e q̄b(0), com os q’s representando campos fermiônicos, temos

〈0|T{q̄a(x)qb(0)}|0〉 = 〈0p|T{qa(x)q̄b(0)}|0p〉+ 〈0| : qa(x)q̄b(0) : |0〉 , (2.10)

com |0p〉 representando o vácuo perturbativo, enquanto |0〉 está associado ao vácuo

da teoria interagente. O símbolo “ : : ” denota o produto normal, isto é, o produto

onde os operadores de aniquilação estão à direita dos operadores de criação. No vá-

cuo perturbativo o segundo termo do lado direito da Eq. (2.10) seria nulo. Contudo,

estamos supondo que o vácuo físico, isto é, o vácuo da QCD contém efeitos onde tal

produto se torna diferente de zero. O primeiro termo do lado direito de (2.10) é a

definição de propagador perturbativo, isto é,

SPab = 〈0|T{qa(x)q̄b(0)}|0〉 . (2.11)

Com isso, a Eq. (2.10) pode ser reescrita como

Sab(x) = SPab(x) + 〈0| : qa(x)q̄b(0) : |0〉 . (2.12)

O cálculo da OPE é feito no regime de curtas distâncias e, com isso, podemos

expandir em torno de x = 0 o produto normal no segundo termo da Eq. (2.12),

obtendo

: qa(x)qb(0) : = : qa(0)q̄b(0) : +xµ : (∂µqa(x)|x=0) q̄b(0) :

+
1

2
xµ xν : (∂µ ∂νqa(x)|x=0) q̄b(0) : +... . (2.13)

O condensado de quarks será dado pelo termo dominante da expansão após cal-

cularmos o valor esperado no vácuo da QCD, isto é (mais detalhes são dados nas
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Refs. [45, 46, 47, 48, 49, 50])

〈0| : qa(0)q̄b(0) : |0〉 = − 1

12
〈q̄q〉δab . (2.14)

Podemos também considerar o segundo termo da expansão acima, obtendo

xµ 〈0| : (∂µqa(x)|x=0) q̄b(0) : |0〉 =
1

48
mq〈q̄q〉/x . (2.15)

Esses termos ditos não-perturbativos acrescentam correções ao propagador perturba-

tivo SPab(x). Portanto, no cálculo da função de correlação no Lado da OPE, devemos

levar em conta o propagador perturbativo e o não-perturbativo, este último com

origem no segundo termo da Eq. (2.12). Dessa forma, ambas contribuições da fí-

sica de curto e longo alcance são consideradas. Logo abaixo escrevemos a expressão

completa do propagador para quarks leves(q = u, d, s) utilizado nas RSQCD, e os

detalhes do cálculo pode ser encontrado nas Refs. [49, 45, 46, 47],

Sqab(x) =
i δab

2π2 x4
/x− mqδab

4π2 x2

− tAab g G
A
µν

32π2

[ i
x2

(/xσµν + σµν/x)−mqσ
µν ln(−q2)

]
− δab〈q̄q〉

12
+
i δab
48

mq〈q̄q〉 /x−
x2δab
26 3
〈q̄gσ.Gq〉

+
i x2δab
27 32

mq 〈q̄gσ.Gq〉 . (2.16)

Em geral, o propagador para os quarks leves, q = u, d, s, é escrito no espaço das

coordenadas, enquanto o propagador para os quarks pesados, SQab(p) com Q = c, b,

é por conveniência expresso no espaço dos momentos, dado por

SQab(p) =
i δab (/p+mQ)

p2 −m2
Q

− i tAabgG
A
µν [σµν(/p+mQ) + (/p+mQ)σµν)]

(p2 −m2
Q)2

. (2.17)

A representação diagramática de cada um dos termos dos propagadores definidos

nas Eqs. (2.16) e (2.17) pode ser vista no Apêndice A. Através dessa representação

podemos organizar o cálculo da OPE, construindo através deles os diagramas rele-
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vantes seguindo uma ordem ditada pela dimensão dos coeficientes de Wilson bem

como de seus respectivos operadores locais. O cálculo desses diagramas permitem

obtermos os coeficientes de Wilson (Cd(q2)) da expansão.

Para entendermos o papel desses propagadores no cálculo da OPE, tomemos

como exemplo uma corrente mesônica do tipo j(x) = q̄a(x)O qa(x), onde q(x) é

o campo de quarks leves enquanto O pode assumir qualquer uma das matrizes

O = 1, γµ, γ5, γµγν , γµγ5. Substituindo essa corrente na função de correlação de

dois pontos, temos

Π(q) = i

∫
d4x eiq·x〈0|T{(q̄a(x)Oqa(x)) (q̄b(0)O′qb(0))}|0〉 . (2.18)

O produto temporalmente ordenado pode ser escrito da seguinte maneira:

〈0|T{(q̄a,i(x)Oijqa,j(x)) (qb,l(0)O′lmq̄b,m(0))}|0〉 = OijO′lmSqab,jl(x)Sqba,mi(−x)

= Oij Sqab,jl(x)O′lm Sqba,mi(−x)

= Tr[OSqab(x)O′Sqba(−x)] ,

(2.19)

onde “i, j, l, m” são índices de Dirac e Sqab(x) é o propagador completo, isto é, a soma

do propagador perturbativo com o não-perturbativo para quarks leves, definido pela

Eq. (2.16). Com isso a função de correlação de dois pontos fica,

Π(q) = i

∫
d4x eiq·xTr[OSqab(x)O′Sqba(−x)] . (2.20)

Portanto, para escrevermos a expansão (2.6) para a função de dois pontos (2.20),

devemos calcular os coeficientes Cd(q2) de cada ordem da OPE até a dimensão

desejada. Para isso, a cada ordem na OPE usamos o termo do propagador completo

correspondente a ela e, através da representação diagramática dele, construímos

os diagramas que contribuem para o cálculo de cada coeficiente. Por exemplo, o

primeiro termo da expansão (2.6), que corresponde ao operador unitário Ô0 = 1̂,

é o chamado termo perturbativo. Para obtermos seu coeficiente de Wilson C0(q2),
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substituímos em (2.20) o termo perturbativo do propagador dado pela Eq. (2.16).

Dessa forma, temos

ΠOPE(q) = i

∫
d4x eiq·xTr[OSPab(x)O′SPba(−x)] . (2.21)

De acordo com a representação diagramática do propagador perturbativo (ver Apên-

0 x

q

q

Figura 2.2: Diagrama correspondente ao coeficiente C0(q2) associado ao termo per-
turbativo.

dice A), podemos construir o diagrama da Fig. 2.2 que contribui para o cáculo de

C0(q2). Para obtermos este coeficiente, vamos considerar por exemplo que O = γµ,

portanto, substituindo explicitamente o propagador perturbativo (neste exemplo,

tomamos mq = 0), obtemos

Πpert(q) =

[
− 12i

(2π2)2

∫
d4x

eiq·x

(x2)4
(2xµxν − x2gµν)︸ ︷︷ ︸

C0(q2)

]
1̂ . (2.22)

Resolvendo a integral acima (consultar Apêndice C), chegamos ao resultado abaixo

C0(q2) =
1

16π2
(q4gµν + q2qµqν) log(−q2) + P (q2) , (2.23)

onde P (q2) é um polinômio que não contribui para o cálculo uma vez que, como

veremos mais adiante, estamos interessados na parte imaginária de C0(q2), o que

é possível graças à presença do termo log(−q2). Além disso, como será discutido

na Seção 2.5, a aplicação da Transformada de Borel em polinômios em q2 resulta

em zero. Analogamente, podemos obter o coeficiente da ordem seguinte C3(q2)

(dimensão 3). Neste caso, temos duas contribuições: uma segue da substituição do
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Figura 2.3: Diagramas correspondentes ao coeficiente C3(q2) do condensado de
quarks 〈q̄q〉.

termo perturbativo do propagador (2.16) em Sqab(x) da Eq. (2.20), e o termo em

(2.16) associado ao condensado de quarks em Sqab(−x). Substituindo o termo do

propagador que corresponde ao condensado de quarks em Sqab(x), e em Sqab(−x) o

termo perturbativo, temos a segunda contribuição possível. Ambas situações estão

ilustradas pelos diagramas da Fig. 2.3. Explicitamente, temos

Π〈q̄q〉(q) =

[
3i

24π2

∫
d4x

eiq·x

(x2)2

(
Tr[γµ/xγν ] + Tr[γµγν/x]︸ ︷︷ ︸

C3(q2)

)]
〈q̄q〉 . (2.24)

Neste caso, o coeficiente C3(q2) é igual a zero, o que acontece por que o traço

contém um número ímpar de matrizes de Dirac. Seguindo os passos descritos acima,

podemos obter os outros coeficientes de Wilson até a ordem desejada na OPE usando

a representação diagramática de cada termo do propagador para construírmos os

diagramas que contribuem no cálculo desses coeficientes. Na Fig. 2.4, mostramos a

OPE para a função de dois pontos com os coeficientes representados em termos dos

diagramas.

2.3.1 O Lado da OPE ou QCD

Uma vez obtidos todos os coeficientes até a dimensão escolhida, uma maneira

de facilitar a comparação com o Lado Fenomenológico e também acessar as con-

tribuições do estado fundamental do sistema estudado, é escrevermos a função de

correlação em termos de uma relação de dispersão, isto é,

ΠOPE(q2) =

∫ ∞
smin

ds
ρOPE(s)

s− q2
+ termos de subtração , (2.25)
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+ + ×〈q̄Gq〉 + . . .+ +

+ + ×〈g2sG2〉 ++

= ×1̂+ + ×〈q̄q〉 +

Figura 2.4: OPE para a função de dois pontos, Eq. (2.20): o primeiro termo cor-
responde ao termo perturbativo que é dado pelo produto entre o coeficiente C0(q2)
(representado pelo diagrama) e o operador 1̂. Em seguida, temos o condensado de
quarks, dado pelo coeficiente C3(q2) (os dois diagramas seguintes ao primeiro) vezes
o operador 〈q̄q〉, e assim por diante até o condensado misto.

onde smin está associado ao quadrado da soma das massas dos quarks que formam

a estrutura do hádron estudado. Os termos de subtração serão eliminados após

aplicarmos uma transformada chamada de Transformada de Borel cujos detalhes

serão dados mais adiante ainda neste capítulo. A função ρOPE(s) é definida como

a soma das contribuições dos coeficientes e dos respectivos operadores, isto é, dos

condensados tal que

ρOPE(q2) =
1

π
Im[ΠOPE(q2)] . (2.26)

2.4 O Lado Fenomenológico

Como dito anteriormente, no Lado Fenomenológico a própria corrente interpo-

lante representa o campo básico, isto é, ela é o campo fundamental que cria e aniquila

o hádron que ela representa. A exemplo da seção anterior, também podemos escre-

ver uma relação espectral para a função de correlação no Lado Fenomenológico que

será comparada com a relação espectral obtida para o Lado da OPE. Tomemos como

exemplo, a função de dois pontos Eq. (2.2) com a corrente j(x) representando um há-
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dron escalar, que após aplicarmos a definição de produto temporalmente ordenado,

pode ser reescrita como,

Π(q) = i

∫
d4x eiq·x{〈0|θ(x0)j(x) j†(0)|0〉+ 〈0|θ(−x0)j†(0) j(x)|0〉} . (2.27)

Dado que os hádrons criados pela corrente j(x) formam um conjunto completo,

temos a seguinte relação de completeza

1̂ =
∑
h

∫
d3 ~p

(2π)3

1

2 p0

|H(p)〉〈H(p)| , (2.28)

onde p é o quadrimomento do hádron H. A soma engloba o estado fundamental

bem como todos os seus estados ressonantes. Substituindo a relação de completeza

acima, Eq. (2.28), entre as correntes na Eq. (2.27), temos

Π(q) = i

∫
d4x eiq·x

∑
h

∫
d3 ~p

(2 π)3

1

2 p0

{θ(x0)〈0|j(x)|H(p)〉〈H(p)|j†(0)|0〉

+ θ(−x0)〈0|j†(0)|H(p)〉〈H(p)|j(x)|0〉} . (2.29)

Podemos simplificar a expressão acima usando o operador translação U = eip·x, que

relaciona as correntes j(x) e j(0), através da seguinte igualdade

j(x) = eip·x j(0) e−ip·x . (2.30)

Com isso, a Eq. (2.29) pode ser reescrita como,

Π(q) = i

∫
d4x eiq·x

∑
h

∫
d3~p

(2 π)2

1

2 p0

{θ(x0) e−ip·x + θ(−x0) eip·x}︸ ︷︷ ︸
i∆F (x)

× |〈0|j(0)|H(p)〉|2 , (2.31)
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onde ∆F (x) é o propagador de Feynman, isto é,

∫
d3~p

(2 π)2

1

2 p0

{θ(x0) e−ip·x + θ(−x0) eip·x}︸ ︷︷ ︸
i∆F (x)

= i

∫
d4p

(2π)4

e−ip·x

p2 − E2
h + i ε

. (2.32)

Neste ponto, é conveniente introduzirmos a seguinte identidade,

∫ ∞
0

ds δ(s− E2
h) = 1 , (2.33)

em que a variável de integração s assume todos os valores do espectro de energia do

hádron. Com isso, a Eq. (2.31) fica

Π(q) = −
∫ ∞

0

ds

∫
d4x eiq·x

∑
h

∆F (x)|〈0|j(0)|H(p)〉|2 δ(s− E2
h)

= −
∫ ∞

0

ds
∑
h

∫
d4p
|〈0|j(0)|H(p)〉|2
p2 − s+ i ε

δ(p− q) δ(s− E2
h)

= −
∫ ∞

0

ds

∫
d4p

∑
h

|〈0|j(0)|H(p)〉|2 δ(s− E2
h)︸ ︷︷ ︸

ρ(s)

δ(p− q)
p2 − s+ i ε

=

∫ ∞
0

ds
ρ(s)

s− q2 − i ε , (2.34)

onde a função ρ(s) definida acima é a densidade espectral.

Em geral, nas RSQCD, estamos interessados em extrair as informações a res-

peito do estado fundamental e, neste ponto, é importante enfatizar que a densidade

espectral, ρ(s), usualmente pode ser separada em um pólo bem definido, que repre-

senta a massa do estado fundamental do hádron, e numa série de estados excitados

associados ao contínuo de ressonâncias com massas maiores que a do pólo. Logo, a
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densidade espectral, ρ(s), é escrita como

ρ(s) = |〈0|j(0)|H0(p0)〉|2 δ(s−m2
H0

) +
∑
h6=H0

|〈0|j(0)|H(p)〉|2 δ(s− E2
H)

= λ2 δ(s−m2
H0

) +
∑
h6=H0

|〈0|j(0)|H(p)〉|2︸ ︷︷ ︸
ρcont(s)θ(s−s0)

= λ2 δ(s−m2
H0

) + ρcont(s)θ(s− s0) , (2.35)

onde m2
H0

é a massa do estado fundamental, ρcont(s) é a densidade espectral definida

para o contínuo, s0 o parâmetro que determina o valor a partir do qual o contínuo de

ressonâncias contribui para a função de correlação, e λ parametriza o acoplamento

da corrente com o estado fundamental H0. Substituindo a Eq. (2.35) na Eq. (2.34),

obtemos

Π(q2) =
λ2

m2
H0
− q2

+

∫ ∞
0

ds
ρcont(s)

s− q2
. (2.36)

Antes de escrevermos a expressão final da função de correlação para o Lado Feno-

menológico, costuma-se fazer a a seguinte aproximação

ρcont(s) = Θ(s− s0)ρOPE(s) , (2.37)

onde se introduz o parâmetro s0 que é definido como o limiar do contínuo. Com

isso, o Lado Fenomenológico, Πfen(q2) finalmente pode ser escrito como

Πfen(q2) =
λ2

m2
H0
− q2

+

∫ ∞
s0

ds
ρOPE(s)

s− q2
. (2.38)

É esta equação que será comparada com a Eq. (2.25), isto é, com a função de

correlação calculada no Lado da OPE.
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2.5 A Transformada de Borel

Uma vez obtidos os Lados da OPE e Fenomenológico, segundo o Princípio da

Dualidade Quark-Hádron, ambas descrições são equivalentes, isto é, ΠOPE = Πfen,

e como resultado dessa igualdade, extraímos os parâmetros hadrônicos de interesse.

No entanto, essa igualdade não é exata, pois, ao longo do cálculo da função de cor-

relação em ambos os lados, algumas aproximações foram feitas como, por exemplo,

a Eq. (2.37), onde o termo associado à contribuição do contínuo de ressonâncias

da densidade espectral do Lado Fenomenológico é considerado como sendo igual ao

da OPE. Ainda no Lado Fenomenológico, estamos interessados em extrair as pro-

priedades associadas ao estado fundamental e, para isso, é necessário diminuir a

importância da contribuição do contínuo. Por outro lado, dado que a OPE é uma

expansão, e que em geral, ela é válida exatamente no regime de altas energias, te-

mos que garantir que a expansão seja ainda válida num intervalo intermediário em

q2, para efeito de comparação com o Lado Fenomenológico. Em outras palavras,

devemos garantir que as contribuições dos termos de dimensões mais altas sejam

suficientemente pequenas para que possamos justificar o truncamento da série, ga-

rantindo deste modo, a convergência da OPE até a dimensão utilizada no cálculo.

Portanto, através da Transformada de Borel [28, 34, 51], podemos lidar com tais pro-

blemas tornando a igualdade entre ambos os lados mais precisa. A Transformada

de Borel é definida como

β[Π(Q2)] = Π(M2) = lim
Q2, n→∞
Q2

n
= M2

(Q2)n+1

n!

(
− ∂

∂Q2

)n
Π(Q2) , (2.39)

com a razão Q2/n fixa enquanto n e Q2 →∞, e Q2 = −q2 é o momento no espaço

euclidiano. M2 é uma variável introduzida no cálculo chamada de massa de Borel.

Em geral, os termos de subtração no segundo termo do lado direito da Eq. (2.25),

são polinômios em Q2. O efeito da Transformada de Borel em tais termos é

β[(Q2)k] = 0 , para k > 0 , (2.40)
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dessa forma, eliminamos os termos de subtração que surgem como efeito do processo

de renormalização. Dado que a OPE é uma soma na dimensão dos coeficientes,

denotados por dCd e na dimensão do respectivos operadores, dÔd , a dimensão da

função de correlação, d, será dada pela soma d = dCd + dÔd , logo, à medida em que

termos de dimensão mais alta são levados em conta na expansão, a dimensão dos

coeficientes diminui, assumindo inclusive dimensões negativas. Esses coeficientes são

proporcionais a 1/(Q2)k e, aplicando a Transformada de Borel à eles, obtemos

β
[ 1

(Q2)k

]
=

1

(k − 1)!

( 1

M2

)k−1

. (2.41)

Como podemos notar, a Transformada de Borel introduz uma supressão fatorial,

reduzindo dessa forma, a importância dos termos de dimensões superiores, por con-

seguinte, melhorando a convergência da OPE.

Por outro lado, na função de correlação no Lado Fenomenológico, há a presença

do termo 1/(s+Q2). A Transformada de Borel desse termo resulta

β
[ 1

(s+Q2)k

]
= e−s/M

2

. (2.42)

Note que desse resultado, termos com alto momento são suprimidos exponencial-

mente, reforçando dessa maneira, a contribuição do pólo em relação ao contínuo.

Portanto, após a aplicação da Transformada de Borel em ambas as descri-

ções da função de correlação, podemos fazer uso da igualdade entre elas, isto é,

β[Πfen(M2)] = β[ΠOPE(M2)], de modo a extrair, com mais precisão, o parâmetro

hadrônico de interesse.

2.6 Massa nas RSQCD

Aplicando a Transformada de Borel nas Eqs. (2.36) e (2.25), podemos usar o

Princípio da Dualidade Quark-Hádron, obtendo assim, a seguinte Regra de Soma
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dada pela igualdade

λ2 e−m
2
H0
/M2

+

∞∫
s0

ds ρOPE(s) e−s/M
2

=

∞∫
smin

ds ρOPE (s)e−s/M
2

. (2.43)

Podemos reescrever o lado direito da Eq. (2.43) do seguinte modo

∞∫
smin

ds ρOPE (s)e−s/M
2

=

s0∫
smin

ds ρOPE (s)e−s/M
2

+

∞∫
s0

ds ρOPE (s)e−s/M
2

, (2.44)

com a finalidade de cancelar os termos iguais da igualdade em (2.43), isto é, os

termos cujas integrais possuem limites
∞∫
s0

. Após os cancelamento de tais termos, a

Eq. (2.43) pode ser reescrita como

λ2 e−m
2
H0
/M2

=

s0∫
smin

ds ρOPE (s)e−s/M
2

. (2.45)

Derivando ambos os lados de (2.45) com respeito a 1/M2, resulta

m2
H0
λ2 =

s0∫
smin

ds s ρOPE (s)e−s/M
2

. (2.46)

Assim, para extraírmos a massa, mH0 , dividimos a Eq. (2.46) pela Eq. (2.45), ob-

tendo deste modo, uma equação para a massa do hádron, dada por

m2
H0

=

s0∫
smin

ds s ρOPE (s)e−s/M
2

s0∫
smin

ds ρOPE(s)

. (2.47)

Uma vez obtida a massa, podemos substituir o valor na Eq. (2.45) de modo a extrair

o valor de λ.
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2.7 A Janela de Borel e a Estabilidade das RSQCD

Como dito anteriormente, o Princípio da Dualidade Quark-Hádron afirma que

para uma dada região em Q2 podemos igualar os Lados da OPE e Fenomenológico

de modo a extrair o parâmetro hadrônico de interesse. Devido à Transformada de

Borel, o quadrimomento Q2 →M2 e, portanto, a região que devemos procurar para

estabelecermos a comparação entre as duas descrições da função de correlação, é

aquela definida pela massa de Borel. À essa região em M2 onde podemos garantir

a confiabilidade das RSQCD damos o nome de Janela de Borel. Ela é composta de

um valor mínimo, Mmin e um máximo, Mmax. A seguir vamos apresentar alguns

critérios que nos permite determiná-los.

2.7.1 O valor mínimo da massa de Borel, Mmin

O valor mínimo da massa de Borel está associado com o valor para o qual ainda

podemos garantir a convergência da OPE. Portanto, o valor mínimo da massa de

Borel será definido como o valor abaixo do qual a OPE apresenta problemas de

convergência. Como exemplo, considere a OPE obtida para o sistema que representa

a mistura Charmonium-Tetraquark que será estudado no Capítulo 4, ilustrada na

Fig. 2.5 como função da massa de Borel. O primeiro termo está dividido pela

soma das contribuições de todos os termos até dimensão oito. Já o segundo, está

somado pela contribuição seguinte na OPE, e também dividido por todos os termos

novamente até dimensão oito, e assim por diante, até que se chegue na dimensão

desejada.

Note que pela Fig. 2.5, para valores abaixo de M2
B = 2, 0 GeV, a adição de

cada novo termo da OPE não contribui cada vez menos como acontece para o outro

extremo do gráfico, isto é, não apresenta um padrão de convergência. Portanto, para

fixarmos o valor mínimo da massa de Borel, M2
min, em geral é adotado o seguinte

critério definido pela equação∣∣∣∣∣OPE somada até dim n-1(M2
Bmin)

contribuição total(M2
Bmin)

∣∣∣∣∣ = 0.85 , (2.48)
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Figura 2.5: Convergência da OPE para o sistema formado pela mistura
Charmonium-Tetraquark. Cada plot está associado com as contribuições relati-
vas iniciando com a contribuição pertubativa (linhas com círculo), e cada uma das
outras linhas representam a contribuição relativa após adicionarmos um condensado
a mais na expansão: +〈q̄q〉 (linha ponto-tracejada), +〈G2〉 (traço longo), +〈q̄gσ.Gq〉
(linha pontilhada), +〈q̄q〉2 (linha tracejada) e +〈q̄q〉〈q̄gσ.Gq〉 (linha sólida).

ou seja, a contribuição do condensado de dimensão mais alta é menor ou igual à 15%

da contribuição total. Note pela Fig. 2.5, que esse critério é satisfeito para valores

de M2
B ≥ 2, 4 GeV, logo, o valor mínimo da massa de Borel é fixado em M2

B = 2, 4

GeV.

2.7.2 O valor máximo da massa de Borel, Mmax

Como o objetivo das RSQCD é extrair informações a respeito do pólo, é crucial

que a integral definindo a relação de dispersão seja dominada pela contribuição

do pólo em relação ao contínuo. No caso da função de dois pontos, por exemplo,

podemos testar a dominância do pólo partindo da Eq. (2.25), separando os limites
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de integração da seguinte maneira,

Π(q2)polo =

s0∫
smin

ds
ρOPE(s)

s− q2
+ termos de subtração , (2.49)

Π(q2)cont =

∞∫
s0

ds
ρOPE(s)

s− q2
+ termos de subtração . (2.50)

Como já sabemos, os termos de subtração são eliminados após aplicarmos uma

Transformada de Borel, o que resulta em

β
[
Π(q2)polo

]
=

s0∫
smin

ds ρOPE(s) e−s/M
2

, (2.51)

β
[
Π(q2)cont

]
=

∞∫
s0

ds ρOPE(s) e−s/M
2

. (2.52)

Feito isso, podemos avaliar as contribuições do pólo e do contínuo separadamente

definindo

Pólo =

s0∫
smin

ds ρOPE(s) e−s/M
2

s0∫
smin

ds ρOPE(s) e−s/M2 +
∞∫
s0

ds ρOPE(s) e−s/M2

, (2.53)

enquanto para o contínuo temos

Contínuo =

∞∫
s0

ds ρOPE(s) e−s/M
2

s0∫
smin

ds ρOPE(s) e−s/M2 +
∞∫
s0

ds ρOPE(s) e−s/M2

. (2.54)

Na Fig. 2.6, podemos ver como exemplo, as Eqs. (2.53) e (2.54) plotadas como

função da massa de Borel, na figura denotada por M2
B, para a estrutura Y (4260)

estudada no Capítulo 4.

Como estamos interessados em selecionar um valor máximo da massa de Borel

em que valores abaixo dele garantam que as contribuições do pólo sejam maiores
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Figura 2.6: Contribuição do pólo, Eq. (2.53), representada pela linha sólida e a
contribuição do contínuo, Eq. (2.54), linha pontilhada para a estrutura Y (4260) es-
tudada na Capítulo 4 como uma mistura Charmonium-Tetraquark. As contribuições
se igualam para M2 = 2, 90 GeV.

que as do contínuo, definimos M2
max como sendo o valor onde ambas contribuições

se igualam, pois, a partir desse valor, as contribuições do contínuo dominam. É

seguindo esse critério que fixamos o valor máximo do intervalo da Janela de Borel.

2.7.3 A estabilidade do parâmetro hadrônico com M 2

Definida a Janela de Borel, podemos garantir que dentro desse intervalo na massa

de Borel, o parâmetro hadrônico de interesse seja ele a massa ou a constante de

acoplamento, possui dependência mínima em M2. De fato, a massa de Borel é

um parâmetro que é introduzido nas RSQCD devido à Transformada de Borel, e

não há nenhuma razão física para que, por exemplo, a massa do hádron estudado

via RSQCD dependa desse parâmetro. Em qualquer cálculo em RSQCD os critérios

estabelecidos acima devem ser satisfeitos para que se possa obter uma regra de soma

confiável. Nas condições ideais, isto é, caso a OPE não fosse truncada e tampouco

tívessemos assumido as aproximações de caráter fenomenológico, não deveria haver

qualquer dependência da massa com a massa de Borel. Portanto, o papel da Janela

de Borel nas RSQCD é de fato garantir que o parâmetro hadrônico calculado seja o

mais independente possível de M2, caracterizando uma regra de soma confiável.
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2.8 A Constante de Acoplamento e a Largura nas

RSQCD

A largura de decaimento de um processo onde uma partícula A decai em outras

duas partículas B e C, isto é, A→ B C é obtida integrando a equação

dΓ =
1

mA

1

4 π2
|M|2 d2(P S) , (2.55)

onde mA é a massa da partícula que decai, enquanto d2(PS) é o espaço de fase

diferencial invariante de Lorentz de duas partículas dado por

d2(PS) = d4pBd
4pCδ

4(pA − pB − pC)δ4(p2
B −m2

B)δ4(p2
C −m2

C)θ(pB)0θ(pC)0 ,

(2.56)

em que pA, pB e pC são os quadrimomentos das partículas A, B e C, respectivamente.

mA, mB e mC são as massas dessas partículas. Na Eq. (2.55), M é a amplitude

invariante cuja forma é determinada a partir da regra de Feynman obtida de uma

dada densidade de Lagrangiana L descrevendo o vértice de interação. A amplitude

invariante é proporcional à constante de acoplamento gABC no vértice. Assim, para

obtermos o valor da largura de decaimento Γ de um processo A→ B C, temos que

saber o valor dessa constante. É neste ponto que entra a técnica das RSQCD

no cálculo de larguras de decaimento. Sendo as partículas A, B e C hádrons,

partindo da função de três pontos também chamada função de vértice, podemos

determinar através das RSQCD o valor da constante de acoplamento entre eles e,

consequentemente, o valor da largura de decaimento do processo onde o hádron A

decai em outros dois B e C.

2.9 A função de correlação de três pontos

Para determinarmos a constante de acoplamento via RSQCD, temos primeira-

mente que definir a função de três pontos para o vértice, como o da Fig. 2.7, em que
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os hádrons H1, H2 e H3 acoplam-se no vértice indicado pelo ponto na figura.

H1(p) H2(p
′)

H3(q)

Figura 2.7: Vértice de interação entre os hádrons H1, H2 e H3, onde p, p′ e q
representam os quadrimomentos associados a cada um deles, respectivamente.

Supondo que jH1(x), jH2(y) e jH3(0) são as correntes interpolantes para os há-

drons em questão, a função de correlação de três pontos no caso ilustrado pela

Fig. 2.7, é escrita como

Π(p, p′, q) =

∫
d4x

∫
d4y eip

′·x eiq·y 〈0|T{jH3(x) jH2(y)j†H1
(0)}|0〉 . (2.57)

O mesmo raciocínio desenvolvido anteriormente para a função de dois pontos no que

diz respeito ao Lado da OPE é válido para o caso da função de três pontos.

2.9.1 Lado da OPE para a função de três pontos

Considere, por exemplo, que as correntes interpolantes dos hádrons H1, H2 e H3

são dadas por

jH1 = q̄2
aΓ1Q

1
a ,

jH2 = q̄3
bΓ2Q

1
b ,

jH3 = q̄2
cΓ3q

3
c , (2.58)

onde q representa o campo spinorial de quarks leves enquanto Q representa o dos

quarks pesados. O sabor de ambos os campos é denotado por um dos índices 1, 2 ou

3. Os índices a, b e c são índices de cor. Γ1, Γ2 e Γ3 podem assumir qualquer uma

das matrizes 1, γµ, γ5, iγµγ5, σµν dependendo do tipo de hádron que ela descreve.

Por exemplo, se Γ1 = γµ, a corrente jH1 descreve um hádron vetorial. Para Γ1 = γ5,
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temos jH1 descrevendo um hádron pseudo-escalar. Logo, o caráter vetorial, escalar,

pseudo-escalar ou axial das correntes interpolantes jH1 , jH2 e jH3 segue diretamente

da escolha de seus respectivos Γ’s. Dado que essas correntes possuem índices de

Lorentz que seguem da escolha dos Γ’s, a estrutura tensorial da função de três

pontos é dada pelo conjunto dos índices de Lorentz dessas correntes. Definidas as

correntes, podemos substituí-las na Eq. (2.57), obtendo

Π(p, p′, q) =

∫
d4x

∫
d4y eip

′·x eiq·y 〈0|T{q̄2
c,i(x)Γ3,ij q

3
c,j(x)q̄3

b,k(y)Γ2,klQ
1
b,l(y)

× q̄2
a,m(0)Γ1,mnQ

1
a,n(0)}|0〉 , (2.59)

onde a exemplo do caso para a função de dois pontos, Eq. (2.19), i, j, k, l, ... são

índices de Dirac. Portanto, usando o Teorema de Wick para calcularmos o ordena-

mento temporal e a definição de propagador dada pela Eq. (2.11), a Eq. (2.59) pode

ser reescrita como

Π(p, p′, q) = −
∫
d4x

∫
d4y eip

′·x eiq·y Tr
[
Sq2ac(−x)Γ3S

q3
cb (x− y)Γ2S

Q1

ba (y)Γ1

]
.(2.60)

A função de três pontos acima corresponde a um diagrama como o da Fig. 2.8. Uma

vez escrita na forma acima, Eq. (2.60), podemos escrever a OPE para a função de

três pontos determinando seus coeficientes de Wilson e com isso, determinar o Lado

da QCD na Regra de Soma. Analogamente ao que fizemos para o caso da função de

0

y

x

Q1 q3

q2

Figura 2.8: Diagrama representado pela função de correlação de três pontos dada
na Eq. (2.60).

dois pontos, os coeficientes de Wilson são determinados substituindo na Eq. (2.60) o
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propagador completo usado nas RSQCD. Dessa forma, uma série de diagramas que

nos auxiliam nos cálculos desses coeficientes podem ser construídos. Na Fig. 2.9,

mostramos a OPE para a função de três pontos, Eq. (2.60), em termos dos diagramas

construídos a partir dos propagadores (2.16) e (2.17), seguindo a ordem na OPE.

= ×1̂+ + ×〈q̄q〉 +

+ +
×〈q̄Gq〉 + . . .+

+

+ +
×〈g2sG2〉 ++

Figura 2.9: OPE para a função de três pontos, Eq. (2.60): o primeiro termo cor-
responde ao termo perturbativo, dado pelo produto entre o coeficiente C0(q2) e o
operador 1̂, em seguida, temos o condensado de quarks, dado pelo coeficiente C3(q2)
vezes o operador 〈q̄q〉, e assim por diante.

Quando estudamos decaimento de sistemas mesônicos ditos exóticos, a corrente

interpolante (a jH1 de nossa discussão acima, por exemplo) possui uma estrutura

do tipo Tetraquarks ou Molecular e com isso, os diagramas da Fig. 2.9 assumem

uma forma completamente diferente. Os diagramas agora são como os da Fig 2.10.

Apesar da diferença entre a forma desses diagramas, os da Fig. 2.10 são construídos

da mesma maneira que os anteriores. A diferença entre eles se dar em virtude da

presença de um propagador a mais na função de três pontos para o novo caso. Para

mostrar isso, considere agora que a corrente interpolante jH1 definida na Eq. (2.58)

tenha a seguinte forma

jH1 = [Q̄2
aΓ1q

3
a][q̄

3
dΓ
′
1Q

1
d] . (2.61)
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Substituindo a nova expressão para a corrente jH1 na Eq. (2.57) com as definições

× 1̂ + + ×〈q̄q〉+=

×〈g2sG2〉+ + ++ ++

×〈q̄Gq〉++++ ++

+

Figura 2.10: OPE para a função de três pontos, Eq. (2.60): o primeiro termo cor-
responde ao termo perturbativo, dado pelo produto entre o coeficiente C0(q2) e o
operador 1̂, em seguida, temos o condensado de quarks, dado pelo coeficiente C3(q2)
vezes o operador 〈q̄q〉, e assim por diante.

de jH2 e jH3 dadas pela (2.58), novamente aplicando o Teorema de Wick e usando

também a Eq. (2.11), a função de três pontos agora assume a seguinte forma

Π(p, p′, q) =

∫
d4x

∫
d4y eip

′·x eiq·y Tr
[
Γ3S

q3
ca(x)Γ1S

Q2
ac (−x)

]
× Tr

[
Γ2S

Q1

bd (y)Γ′1S
q3
db(−y)

]
, (2.62)

onde temos o produto de dois traços de dois propagadores cada. A presença de um

propagador a mais na função de três pontos em comparação com a Eq. (2.60) altera

a forma do diagrama: o propagador Sq3ca(x) no primeiro traço em (2.62) indica a

propagação de 0 a x do quark q3, enquanto SQ2
ac (−x) representa a propagação do

quark pesado Q2 de x até 0. Esse primeiro traço constitui a primeira “pétala” do

diagrama. Por outro lado, no segundo traço temos os propagadores SQ1

bd (y), onde o

quark Q1 é propagado de 0 a y, e Sq3db(−y) indicando a propagação do quark q3 de y

até 0. Estes dois últimos constituem a segunda pétala do diagrama.

Por simplicidade, neste caso, estamos considerando Q2 em vez de q2.
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2.9.2 Lado Fenomenológico da função de três pontos

Para o Lado Fenomenológico, a função de três pontos para o vértice da Fig. 2.7

é dada por

Πfen(p, p′, q) = 〈0|T{jH3(p
′) jH2(q) j

†
H1

(p)}|0〉 . (2.63)

Inserindo um conjunto completo de estados hadrônicos entre os operadores de cor-

rente na Eq. (2.63), podemos reescrevê-la como

Πfen(p, p′, q) = 〈0|jH3(p
′)|H3(p′)〉 i

p′2 −m2
H3

〈H3(p′)|jH2(q)|H1(p)〉

× i

p2 −m2
H1

〈H1(p)|j†H1
(p)|0〉 . (2.64)

Em geral, os elementos de matrizes acima como o 〈0|jH3|H3(p′)〉, por exemplo, são

parametrizados em termos da constante de acoplamento ou pela massa ou ainda

do produto entre elas e, dependendo da natureza da corrente interpolante, também

pelo vetor de polarização. As parametrizações usuais para mésons vetoriais, pseudo-

escalares, axiais e axiais-vetoriais, respectivamente, são

〈0|jVµ |V 〉 = mV fV εµ ,

〈0|jP5 |P 〉 = fP
m2
P

mq

,

〈0|jAµ |A〉 = ifP pµ ,

〈0|jAµ |A〉 = mAfAεµ , (2.65)

onde εµ, pµ são respectivamente os vetores de polarização e quadrimomento dos

mésons que eles representam enquanto mq é a massa do quark leve. Para o elemento

de matriz 〈H3(p′)|jH2(q)|H1(p)〉, podemos usar a “crossing symmetry” para reescrevê-

lo como 〈0|jH2|H1(p)H3(−p′)〉. Com isso, inserimos um conjunto completo entre o
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operador de corrente jH2(q) e o ket |H1(p)H3(−p′)〉, obtendo

〈H3(p′)|jH2(q)|H1(p)〉 = 〈0|jH2|H2(q)〉 i

q2 −m2
H2

〈H2(q)|H3(−p′)H1(p)〉

= 〈0|jH2|H2(q)〉 i

q2 −m2
H2

〈H2(q)H3(p′)|H1(p)〉 , (2.66)

onde o elemento de matriz 〈H2(q)H3(p′)|H1(p)〉 representa a transição H1 → H2H3,

logo, ele está relacionado com a amplitude M mencionada na Seção 2.8. Para

calcular esse elemento de matriz devemos conhecer a Lagrangiana que descreve a

interação entre os hádrons H1, H2 e H3. Via de regra, a amplitude M é dada

em termos da constante de acoplamento definida na Lagrangiana bem como do

produto dos quadrimomentos dos hádrons com os índices de Lorentz do correlator.

Genericamente podemos escrevê-la como

〈H2(q)H3(p′)|H1(p)〉 = gH1H2H3(q
2)f(p2, p′2, q2)Ti , (2.67)

onde Ti representa as estruturas tensoriais já mencionadas anteriormente. Definimos

acima o fator de forma em lugar da constante de acoplamento, todavia, esta pode

ser obtida diretamente daquele. Ela é definida como o valor do fator de forma no

valor da massa do hádron, isto é, gH1H2H3(Q
2 = −m2

H2
). A função de três pontos

nas RSQCD fornecem resultados válidos numa região de Q2 positiva. Portanto, para

atingirmos a posição do pólo na região Q2 < 0, devemos extrapolar os resultados

das RSQCD para essa região. Isso é feito por meio de uma função válida em todo

o domínio de Q2, que representa o fator de forma, que reproduz os resultados das

RSQCD em sua região de validade. Ao longo dos próximos capítulos, discutiremos

um pouco mais sobre esse procedimento. Portanto, substituindo (2.66) na Eq. (2.64)

e levando em conta a (2.67), obtemos

Πfen =
fH1 fH2 fH3f(p2, p′2, q2)gH1H2H3(q

2)

(p2 −m2
H1

)(p′2 −m2
H3

)(q2 −m2
H2

)︸ ︷︷ ︸
Πfeni (p2,p′2,q2)

Ti

= Πfen
i (p2, p′2, q2)Ti , (2.68)
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onde adotamos a seguinte parametrização genérica para os elementos de matrizes

〈0|jH3|H3(p′)〉 = fH1

〈H2(q)|jH2|0〉 = fH2

〈H1(p)|j†H1
|0〉 = fH3 . (2.69)

Na Eq. (2.68), explicitamos somente a contribuição do pólo para a função de três

pontos no Lado Fenomenológico. Por outro lado, podemos escrevê-la em termos

de uma dupla relação de dispersão e, por meio de modelos para a função espetral

ρ(s, u, q2), podemos levar em conta alguns efeitos da contribuição dos estados do

contínuo. Nesta Tese, vamos seguir o modelo proposto pelos autores da Ref. [35].

Segundo eles, a dupla relação de dispersão para a Eq. (2.57) no Lado Fenomenológico

é dada por

Πfen =

∫
ds

∫
du

ρ(s, u,Q2)

(s− p2) (u− p′2)
, (2.70)

onde a função ρ(s, u, q2) tem a seguinte forma

ρ(s, u, q2) = a δ(s−m2
H1

)δ(s−m2
H3

) + b δ(s−m2
H1

)θ(u− u0)

+ c δ(u−m2
H3

)θ(s− s0) + ρcont(s, u,Q2)θ(s− s0)θ(u− u0) ,

(2.71)

onde s0 já foi definido anteriormente e u0 também representa o limiar do contínuo

associado com o hádron H3. A definição de ρ na Eq. (2.71) leva em conta algumas

situações cinemáticas. O primeiro termo representa a situação em que os hádrons

H1 e H3 estão no estado fundamental, enquanto H2 está fora da camada de massa,

com quadrimomento EuclidianoQ2 arbitrário. A situação representada pelo segundo

termo é aquela em que o hádron H1 novamente encontra-se no estado fundamen-

tal, porém, o hádron H3 não, de modo que somente suas excitações encontram-se

no vértice. Situação contrária à esta é descrita no terceiro termo, onde somente

as excitações de H1 tomam parte no vértice, enquanto H3 agora, está no estado
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fundamental. Finalmente, o último termo está associado com a situação em que

todos os hádrons H1, H2 e H3 estão excitados. Portanto, substituindo a Eq. (2.71)

e identificando a nesta equação como o pólo dado na Eq. (2.68), obtemos

Πfen =
fH1 fH2 fH3f(p2, p′2, q2)gH1H2H3(q

2)

(p2 −m2
H1

)(p′2 −m2
H3

)(q2 −m2
H2

)
Ti

− 1

4 π2

[
1

m2
H1
− p2

∞∫
u0

du
b(u, q2)

(u− p′2)

+
1

m2
H3
− p′2

∞∫
s0

ds
c(s, q2)

(s− p2)

]
Ti +

∞∫
s0

ds

∞∫
u0

du
ρconti (s, u, q2)

(s− p2)(u− p′2)
,

(2.72)

O segundo e o terceiro termos da Eq. (2.72) representam as chamadas transições

pólo-contínuo [35, 52]. As funções b(s, q2) e c(s, q2) são funções desconhecidas que

contribuem para as transições pólo-contínuo dos hádrons H1 e H3, respectivamente.

Elas podem ser determinadas adotando um modelo como o utilizado na Ref. [47].

Nos trabalhos descritos nesta tese, definimos essas transições através de uma função

B(Q2) que após a aplicação da Transformada de Borel é suprimida pela exponencial

e−s0/M
2 , onde s0 é o limiar do contínuo definido no caso da função de dois pontos.

2.9.3 A Regra de Soma

Determinados os lados Fenomenológico e da OPE, podemos obter a seguinte

Regra de Soma, numa dada estrutura tensorial Ti

Πfen
i (p2, p′2, q2) = ΠOPE

i (p2, p′2, q2) . (2.73)

Nas aplicações das RSQCD a serem discutidas ao longo dos próximos capítulos, os

sistemas de interesse são aqueles nos quais um dos hádrons envolvidos no vértice

é descrito por uma corrente com estrutura exótica. Como consequência disso, a

função invariante ΠOPE
i é função somente dos quadrimomentos p′2 e q2. Neste caso,
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a Regra de Soma fica

Πfen
i (p2, p′2, q2) = ΠOPE

i (p′2, q2) , (2.74)

onde de um lado temos uma função de três variáveis, o Lado Fenomenológico, en-

quanto do outro, no Lado da OPE, temos uma função de apenas duas. Para tornar

a relação acima possível, devemos encontrar um vínculo de tal modo que o Lado

Fenomenológico seja função das variáveis p′2 e q2. Via de regra, nos próximos ca-

pítulos vamos estabelecer a relação p2 = p′2 como esse vínculo. Dessa forma temos

uma Regra de Soma em que ambos os lados apresentam funções somente dos qua-

drimomentos p′2 e q2.

Uma vez estabelecido o vínculo acima, podemos aplicar uma Transformada de

Borel para melhorar o casamento entre os Lados Fenomenológico e da OPE. Dado

que da Regra de Soma na Eq. (2.74) desejamos extrair o fator de forma gH1H2H3(Q
2)

como função de Q2, onde Q2 = −q2, a única variável que nos sobra é p2, logo,

aplicamos uma única Transformada de Borel no momento p2 em ambos os lados da

Regra de Soma (2.74) e, dessa forma, obtemos

fH1 fH2 fH3f(P 2, Q2)gH1H2H3(Q
2)

(Q2 +m2
H2

)

(
e−m

2
H1
/M2 − e−m2

H2
/M2
)

+B(Q2)e−s0/M
2

= ΠOPE
i (M2, Q2) .

(2.75)

Como resultado do modelo para os estados do contínuo discutidos na seção ante-

rior, a Transformada de Borel no termo que representa as transições pólo-contínuo

adiciona o fator de supressão e−s0/M2 . Para determinamos uma equação para o fa-

tor de forma, devemos usar a Eq. (2.75) e sua derivada com relação a 1/M2 para

eliminarmos B(Q2) dessas equações e, dessa forma, isolando gH1H2H3(Q
2). Obtemos

gH1H2H3(Q
2) =

(Q2 +m2
H2

)
[
s0ΠOPE

i (M2, Q2) + ∂
∂(1/M2)

ΠOPE
i (M2, Q2)

]
fH1

fH2
fH3

(m2
H1
−m2

H3
)

[
e−m

2
H1
/M2

(s0 −m2
H1

)− e−m2
H3
/M2

(s0 −m2
H3

)
] . (2.76)
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A Eq. 2.76 é resolvida numericamente.

A constante de acoplamento é definida como o valor do fator de forma no pólo

do hádron fora da camada de massa, isto é, gH1H2H3 = gH1H2H3(Q
2 = −m2

H3
). O

valor Q2 = −m2
H3

está fora do domínio de validade das RSQCD, e para contornar

esse problema, determinamos o fator de forma segundo uma função que fita os dados

numéricos do lado direito da Eq. (2.75). Dessa forma, extrapolamos tal função para

fora do domínio das RSQCD.
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CAPÍTULO 3

ESTADOS EXÓTICOS DO CHARMÔNIO

Como já mencionamos anteriomente no capítulo introdutório desta tese, a idéia

de estado exótico não é nova. Ela surgiu no fim dos anos 70 quando Jaffe, utilizando

o modelo de sacola do MIT, propôs a existência de uma partícula denominada H [53].

Na Ref. [54] os autores propuseram a existência de moléculas hadrônicas formadas

por mésons charmosos. No entanto, por conta da falta de resultados experimentais

devido às limitações tecnológicas (os maquinários experimentais disponíveis até en-

tão, se limitavam à energias, em geral abaixo de 4 GeV), a idéia de estados exóticos

permaneceu adormecida entre os teóricos. Como sabemos, já se conheciam todos os

possíveis nove estados do Charmônio situados abaixo da linha de 4 GeV desde 1975,

quase um ano após a descoberta experimental do J/ψ. Com o avanço da tecnologia,

o advento de máquinas experimentais mais poderosas possibilitou observar todos

esses nove estados do Charmônio, além de se poder realizar medidas acima do nível

energético disponível anteriormente. Com isso, uma série de novos estados foram

medidos na região de massa do Charmônio. Devido ao insucesso do modelo tradi-

cional, a idéia de estados exóticos ganhou corpo e força nesses últimos anos, entre

os teóricos principalmente, após o anúncio da descoberta de um estado carregado,

chamado Z+
c (3900) [16]. Logo após o anúncio da descoberta do Z+

c (3900), a cola-

boração Belle [25] também encontrou um sinal que dizia respeito ao mesmo estado

medido pela BESIII. Portanto, o Z+
c (3900) tornou-se o primeiro estado exótico me-
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dido e confirmado experimentalmente por mais de uma colaboração experimental, e

fortaleceu novamente a discussão de modelos exóticos.

Neste capítulo vamos apresentar os resultados da aplicação das RSQCD para

o cálculo da massa e da largura de decaimento do Z+
c (3900), usando um modelo

exótico tipo Tetraquark como opção possível para reproduzir essas propriedades.

Fazemos também uma extensão desse estudo para prever a possível existência de

seu parceiro estranho, proposto na Ref. [55]. Tal parceiro estranho é definido aqui

como Z+
cs.

3.1 O estado carregado Z+
c (3900)

O estado Z+
c (3900) foi observado pela colaboração BESIII no espectro de massa

invariante, Minv(J/ψ π
±) no canal de decaimento do Y (4260), isto é, Y (4260) →

J/ψ π+ π− [16]. O mesmo sinal também foi confirmado pela colaboração Belle [25]

bem como pela análise dos dados da colaboração CLEO-c [26]. É interessante ressal-

tar que, antes de sua constatação experimental, ele foi previsto teoricamente usando

um mecanismo chamado Initial Single Pion Emission, ou simplesmente ISPE [56].

Tal mecanismo, é baseado no decaimento de estados excitados do Charmônio. No

caso específico do Z+
c , um estado excitado do Charmônio, o Y (4260), decai nos

mésons D∗ e D̄ com baixo momento após a emissão de um píon carregado. Da inte-

ração entre esses mésons, um J/ψ e um píon são produzidos como produto final de

decaimento. O processo está ilustrado na Fig 3.1 [56]. Do cálculo da distribuição de

massa invariante do par J/ψ− π+, os autores observaram um pico associado à uma

estrutura carregada no limiar de massa do D∗D̄/D̄∗D. Essa estrutura carregada

seria mais tarde batizada como Z+
c .

A importância desse estado não se limita apenas à certeza experimental da exis-

tência de um estado exótico, mas além disso, abre caminho para a busca de ou-

tros novos estados carregados no setor do Botomônio. Como exemplo, considere a

Fig. 3.2, onde uma comparação entre o espectro do Charmônio e Botomônio está

Esse esquema organizacional dos estados do Charmônio e Botomônio foi proposto na Ref. [57].



3.1 O estado carregado Z+
c (3900) 49

Y

π−

π+D∗+

D̄∗ J/ψ
D∗

Figura 3.1: Esquema do mecanismo ISPE: o méson Y (4260) emite um píon deixando-
o com baixo momento, e em seguida, decai nos mésons D∗ e D̄ cuja interação produz
um Charmônio e um píon.

esquematizada num intervalo de massa onde o Z+
c (3900) está situado.

As linhas horizontais representam a posição energética nos espectros, isto é, a

massa dos estados, enquanto as quatro linhas verticais estão associadas com as dife-

renças entre as massas dos estados. Em particular, a posição na figura ocupada pelo

Z+
c (3900) foi prevista em [56]. Anos mais tarde, os mesmos autores notaram que a

diferença de massa correspondente à primeira excitação radial no setor do Charmô-

nio, isto é, MΨ(2S)−MΨ(1S) = 590 MeV era numericamente similar à diferença entre

o Z+(4430) e o X(3872), MZ+(4430) −MX(3872) = 560 MeV. Com isso, concluíram

que o Z+(4430) deveria ser a primeira excitação radial do Z+
c (3900), que na época

ainda não tinha sido observado. Da Fig. 3.2, extrapolando essas diferenças entre

as massas para o setor do Botomônio, os autores da Ref. [57] foram levados a supor

que o Z+
b (10610) poderia ser encaixado como uma possível excitação radial de um

novo estado, o X+
b , ainda não observado experimentalmente. A predição e posterior

confirmação experimental do Z+
c (3900) leva-nos à acreditar realmente na existência

do X+
b , que deve servir como motivação para a busca de novos estados carregados e

seus parceiros neutros no setor do bottom.

Dentre os modelos propostos para estudar a estrutura bem como as proprieda-

des do Z+
c , vamos somente discutir o modelo de Tetraquarks que foi inicialmente

proposto em [17].
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Figura 3.2: Níveis de energia nos espectros do Charmônio e Botomônio na região
de massa de interesse. As massas estão em MeV. O Z+

c (3900) é considerado como
o parceiro carregado do X(3872). Nas duas colunas à direita estão configurações
análogas para o setor do bottom, onde os estados Xb(?) e X+

b (?) estão propostos.

3.1.1 Corrente Tetraquark

Para a estrutura Z+
c , o conjunto de números quânticos associados com o isospin,

paridade G, momento angular total, paridade e conjugação de carga, IG(JPC), é

igual a 1+(1+−). Portanto, a corrente Tetraquark que se acopla a esse conjunto de

números quânticos é definida como

jα =
iεabcεdec√

2
[(uTa Cγ5cb)(d̄dγαCc̄Te )− (uTa Cγαcb)(d̄dγ5Cc̄

T
e )] , (3.1)

onde a, b, c ... são índices de cor, enquanto C é a matriz de conjugação de carga.

3.1.2 Massa do Z+
c (3900)

Definida a corrente interpolante com os números quânticos do Z+
c , podemos

calcular a função de correlação de dois pontos, e com isso obter um valor para a

massa da estrutura Tetraquark. A finalidade é comparar esse valor com o resultado

experimental da massa do Z+
c , e com isso poder concluir se o Z+

c pode ser associado
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a um estado Tetraquark.

As RSQCD já foram usadas para obter a massa de uma estrutura Tetraquark com

o conjunto de números quânticos do X(3872), 1++. Isso foi feito na Ref. [58] e um

ótimo acordo com o valor experimental foi obtido em relação à massa do X(3872).

Como a única diferença entre as correntes de Tetraquark para o X(3872) e o Z+
c é o

sinal negativo na Eq. (3.1) (conjugação de carga), isso implica que o mesmo cálculo

em RSQCD, também pode ser usado para o Z+
c (3900) dada a proximidade entre os

valores experimentais de suas massas. Além disso, em geral, cálculos de massa em

RSQCD não possuem precisão menor do que centenas de MeV, logo não teríamos

precisão para diferenciar entre as massas do X(3872) e do Z+
c (3900).

Dada a corrente Tetraquark definida pela Eq. (3.1) podemos, dentro da incer-

teza inerente ao cálculo em RSQCD, descrever a massa do Z+
c (3900) supondo-o um

estado Tetraquark. Contudo, para uma conclusão mais ampla a respeito de que essa

configuração possa de fato explicar a estrutura do Z+
c (3900), temos que considerar

também se, com esta mesma corrente, podemos obter a largura total de decaimento

desse estado.

A seguir, vamos discutir em detalhes o cálculo da largura de decaimento do

Z+
c (3900) em todos os canais possíveis, de modo a investigar se o valor obtido é

compatível com o valor experimental da largura desse estado.

3.2 Largura do Z+
c (3900)

Como discutido em detalhes no Capítulo 2, com as Regras de Soma é possível

calcular o acoplamento do estado estudado com os estados resultantes num processo

de decaimento. Portanto, vamos calcular nesta seção os acoplamentos do Z+
c (3900),

descrito pela corrente dada pela Eq. (3.1). Os possíveis canais que esse estado pode

decair são:

• Z+
c → J/ψπ+;

• Z+
c → ηcρ

+;
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• Z+
c → D+D̄∗0;

• Z+
c → D̄0D∗+.

Nas seções que seguem, vamos explicitar o cálculo para cada um deles e no final

obter o valor da largura total.

3.2.1 Largura do canal Z+
c → J/ψ π+

J/ψ(p′)Z+
c (p)

π+(q)

Figura 3.3: Vértice Z+
c J/ψ π

+.

A função de três pontos associada ao vértice ilustrado na Fig. 3.3 é dada por

Πµνα(p, p′, q) =

∫
d4xd4y eip

′.x eiq.yΠµνα(x, y), (3.2)

com Πµνα(x, y) = 〈0|T [jψµ (x)jπ5ν(y)j†α(0)]|0〉, onde p = p′ + q. Nesta equação, as

correntes jψµ (x) e jπ5ν(y), estão associadas com os mésons J/ψ e π+, respectivamente.

Para o píon π+, temos

jπ5ν = d̄aγ5γνua, (3.3)

enquanto a corrente para o J/ψ é definida por

jµ(x) = c̄a(x)γµca(x) . (3.4)

O próximo passo é determinar os Lados da OPE e Fenomenológico da Eq. (3.2).

Vamos começar pelo Lado Fenomenológico da Regra de Soma.

3.2.2 Lado Fenomenológico

Neste caso, a função de três pontos pode ser reescrita como,
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Πfen
µνα(p, p′, q) =

〈0|jψµ |J/ψ(p′)〉〈π(q)|jπ5ν |0〉〈Zc(p)|j†α|0〉
(p2 −M2

Zc
)(p′2 −M2

J/ψ)(q2 −M2
π)
〈J/ψ(p′)π(q)|Zc(p)〉+ . . . ,

(3.5)

onde “ . . ."representam as ressonâncias de ordens superiores, isto é, os estados exci-

tados. Parametrizando os elementos de matrizes da Eq. (3.5) como,

〈0|jψµ |J/ψ(p′)〉 = mψfψεµ(p′),

〈0|jπ5ν |π(q)〉 = iqνFπ,

〈Zc(p)|jα|0〉 = λZcε
∗
α(p) , (3.6)

podemos simplificá-la, obtendo dessa forma a equação abaixo,

Π(phen)
µνα (p, p′, q) =

λZcmψfψFπ qνεµ(p′)ε∗α(p)

(p2 −m2
Zc

)(p′2 −m2
ψ)(q2 −m2

π)
〈J/ψ(p′)π(q)|Zc(p)〉+ · · · . (3.7)

A generalização do elemento de matriz 〈J/ψ(p′)π(q)|Zc(p)〉 presente na Eq. (3.7),

considerando o píon fora da camada de massa, é definido como o fator de forma,

gZcψπ(q2), e neste caso, é dado por [59]

〈J/ψ(p′)π(q)|Zc(p)〉 = gZcψπ(q2)ε∗λ(p
′)ελ(p) . (3.8)

Logo, a Eq. (3.7) pode ser reescrita como

Π(phen)
µνα (p, p′, q) =

λZcmψfψFπ gZcψπ(q2)qν
(p2 −m2

Zc
)(p′2 −m2

ψ)(q2 −m2
π)(

−gµλ +
p′µp

′
λ

m2
ψ

)(
−gλα +

pαp
λ

m2
Zc

)
+ · · · . (3.9)

A Eq. (3.9) representa o Lado Fenomenológico da Regra de Soma para o processo

em questão.
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3.2.3 Lado da OPE

Neste caso, substituímos na função de três pontos, Eq. (3.2), as correntes defini-

das pelas Eqs. (3.1), (3.4), (3.3) e, dessa forma, obtemos a seguinte expressão

Πµνα(p, p′, q) =
−i√

2 (2π)4

∫
d4y

∫
d4k eiq·yTr

[
Sc(k − p′)γµSc(k)

×
(
γ5S

q(y)γνγ5S
q(−y)γα + γαS

q(y)γνγ5S
q(−y)γ5

)]
. (3.10)

Como mencionado na Seção 3.1, estamos considerando o Z+
c (3900) como um

Tetraquark com uma estrutura complexa de cor. Desse modo, para garantirmos que

a corrente dada pela Eq. (3.1) descreva um Tetraquark genuíno, temos que considerar

somente os diagramas no Lado da OPE como o da Fig. 3.4. Nesse diagrama, temos

uma linha de glúons conectando a pétala superior associada ao J/ψ com a inferior

representando o píon e, portanto, dizemos que tais partes estão conectadas pela troca

de cor. Por essa razão, diagramas como o da Fig. 3.4 são chamados de diagramas

conectados por cor ou simplesmente diagramas CC. Caso não houvesse uma linha de

glúon conectando as pétalas do diagrama, implicaria que os estados finais estariam

presentes no estado inicial, ou seja, a corrente possuiria componentes associadas ao

J/ψ e ao π+, sendo portanto, uma corrente do tipo molécula. Assim, somente o

diagrama da Fig. 3.4 e possíveis permutações, não mostradas na figura, contribuem

no cálculo da OPE. Neste caso, vamos escrever a Regra de Soma no pólo do píon.

Isso implica em desprezar a sua massa na Eq. (3.9). Dessa forma, a Regra de

Soma será dada identificando no Lado da OPE as estruturas tensoriais cujos termos

contenham o fator 1/q2. Somente as estruturas qνgµα e qνp′µp′α possuem tais termos.

Desde que uma boa estabilidade é obtida para regras de soma nas estruturas com o

maior número de quadrimomentos, a OPE na estrutura qνp′µp′α é dada por

Π(OPE) =
〈q̄gσ.Gq〉
12
√

2π2

1

q2

∫ 1

0

dα
α(1− α)

m2
c − α(1− α)p′2

. (3.11)

Assim, identificando a mesma estrutura tensorial, qνp′µp′α, no Lado Fenomeno-

lógico e, aplicando uma Transformada de Borel em P 2 = P 2 ′ → M2, obtemos a
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Figura 3.4: Diagrama conectado por cor contribuindo para o Lado da OPE da regra
de soma.

seguinte Regra de Soma

A
(
e−m

2
ψ/M

2 − e−m2
Zc
/M2
)

+B e−s0/M
2

=

〈q̄gσ.Gq〉
12
√

2π2

∫ 1

0

dα e
−m2

c
al(1−α)M2 , (3.12)

onde A é definido como,

A =
gZcψπλZcfψFπ (m2

Zc
+m2

ψ)

2m2
Zc
mψ(m2

Zc
−m2

ψ)
, (3.13)

enquanto B representa as transições pólo-contínuo como já discutido no capítulo

anterior.

Diferentemente do que foi discutido no final da Subseção 2.9.3, onde comentamos

que o acoplamento é obtido determinando antes uma lei de função, isto é, o fator

de forma descrevendo os pontos da Regra de Soma, podemos extrair a constante de

acoplamento direto da Eq. (3.12). Isso pode ser feito por que estamos trabalhando

no pólo do píon, isto é, em q2 = 0, logo, gZcψπ(0) = gZcψπ. Para isso, temos que

determinar quais valores devem A e B assumir para que a igualdade da Eq. (3.12)

seja satisfeita. Dessa maneira, uma vez obtido o valor de A, usamos a Eq. (3.13) para

obtermos gZcψπ. Na Fig. 3.5, mostramos o resultado da comparação entre ambos os

lados da Eq. (3.12) para A = 1.46 × 10−4 GeV5 e B = −8.44 × 10−4 GeV5. Além

disso, usamos para as massas e constantes de decaimento dos mésons J/ψ e π os
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valores mψ = 3.1 GeV, Fψ = 0.405 GeV, mπ = 138 MeV e fπ = 131.52 MeV. O

valor do acoplamento méson-corrente, λZc , é igual a λZc = (1.5± 0.3)× 10−2 GeV5 e

pode ser encontrado na Ref. [58]. Portanto, substituindo o valor de A na Eq. (3.13),

obtemos o seguinte valor para o acoplamento

2 2.2 2.4 2.6 2.8 3

M
2
(GeV

 2
)
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Figura 3.5: Os pontos nessa figura representam o lado direito da Eq. (3.12) escrita
como função da massa de Borel para ∆s0 = 0.5 GeV. Por outro lado, a linha sólida
representa o fit desses pontos da regra de soma.

gZcψπ = (3.89± 0.56) GeV . (3.14)

Esse valor corrobora com o valor obtido em [60], onde os autores, baseados em

argumentos dimensionais, obtiveram gZcψπ = 3.9 GeV. Obtida a constante de aco-

plamento, podemos calcular a largura de decaimento, que neste caso é dada por

[60]

Γ(Z+
c (3900)→ J/ψπ+) =

p∗(mZc ,mψ,mπ)

8πm2
Zc

×1

3
g2
Zcψπ

(
3 +

(p∗(mZc ,mψ,mπ))2

m2
ψ

)
, (3.15)

onde

p∗(a, b, c) =

√
a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2

2a
. (3.16)



3.2 Largura do Z+
c (3900) 57

Dessa forma, a largura de decaimento para o canal Z+
c → J/ψ π+, resulta em

Γ(Z+
c (3900)→ J/ψπ+) = (29.1± 8.2) MeV. (3.17)

3.2.4 Largura do canal Z+
c → ηc ρ

+

Nesta subseção, vamos considerar o decaimento Z+
c (3900) → ηc ρ

+. Analoga-

mente ao que foi apresentado na seção anterior, temos que escrever a função de

vértice. Para o canal considerado, a função de vértice é obtida da Eq. (3.2) usando

Πµα(x, y) = 〈0|T [jηc5 (x)jρµ(y)j†α(0)]|0〉 com

jηc5 = ic̄aγ5ca, e jρµ = d̄aγµua. (3.18)

Nesse caso o Lado Fenomenológico será

Π(phen)
µα (p, p′, q) =

−iλZcmρfρfηcm
2
ηc gZcηcρ(q

2)

2mc(p2 −m2
Zc

)(p′2 −m2
ηc)(q

2 −m2
ρ)(

−gµλ +
qµqλ
m2
ρ

)(
−gαλ +

pαp
λ

m2
Zc

)
+ · · · , (3.19)

onde usamos as seguintes definições:

〈0|jρµ|ρ(q)〉 = mρfρεµ(q),

〈0|jηc5 |ηc(p′)〉 =
fηcm

2
ηc

2mc

. (3.20)

No Lado da OPE, consideramos os diagramas conectados por cor do mesmo tipo

ilustrados na Fig. 3.4. Novamente escolhemos a estrutura com mais momento, neste

caso, p′αqµ, e com isso, temos:

Π(OPE) =
−imc〈q̄gσ.Gq〉

48
√

2π2

1

q2

∫ 1

0

dα
1

m2
c − α(1− α)p′2

. (3.21)
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Lembrando que p = p′ + q, isolando a estrutura qµp′α na Eq. (3.19) e fazendo uma

transformada de Borel em P 2 = P ′2 →M2, obtemos a Regra de Soma:

C
(
e−m

2
ηc
/M2 − e−m2

Zc
/M2
)

+D e−s0/M
2

=

Q2 +m2
ρ

Q2

mc〈q̄gσ.Gq〉
48
√

2π2

∫ 1

0

dα
e

−m2
c

al(1−α)M2

α(1− α)
, (3.22)

com Q2 = −q2 e

C =
gZcηcρ(Q

2)λZcmρfρfηcm
2
ηc

2mcm2
Zc

(m2
Zc
−m2

ηc)
, (3.23)

enquanto D, a exemplo da subseção anterior, representa as transições pólo-contínuo.

Usamos os valores experimentais para mρ, fρ, mηc [61] e extraímos fηc da ref. [62].

O valor do condensado está na Tabela 3.1:

mρ = 0.775 GeV, mηc = 2.98 GeV,

fρ = 0.157 GeV, fηc = 0.35 GeV. (3.24)

Analogamente ao que foi feito no capítulo anterior, podemos usar a Eq. (3.22) e sua
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Figura 3.6: Resultados da Regra de Soma para o fator de forma gZcηcρ(Q2) como
função de Q2 e da massa de Borel para ∆s0 = 0.5 GeV.
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derivada com respeito a M2 para eliminarmos D da Eq. (3.22) e com isso isolarmos

gZcηcρ(Q
2). A Fig. 3.6 mostra gZcηcρ(Q

2) como uma função de M2 e Q2. Como

dito anteriormente, o parâmetro a ser extraído via regras de soma dever ser o mais

independente possível da massa de Borel. Analisando a Fig. 3.6, podemos ver que

o fator de forma é independente da massa de Borel no intervalo 4.0 ≤ M2 ≤ 10.0

GeV2. Os quadrados na Fig. 3.7 mostram a dependência com Q2 do fator de forma
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Figura 3.7: Resultados da Regra de Soma para gZcηcρ(Q2), como função de Q2, para
∆s0 = 0.5 GeV (quadrados). A linha sólida representa a parametrização dos pontos
da regra de soma pela curva da Eq. (3.25). O símbolo “×’ no gráfico representa a
posição do valor da constante de acoplamento.

gZcηcρ(Q
2), obtida para M2 = 5.0 GeV2. Para outros valores da massa de Borel,

no intervalo 4.0 ≤ M2 ≤ 10.0 GeV2, os resultados são equivalentes. Desde que a

constante de acoplamento é definida como o valor do fator de forma no pólo do

méson, isto é, Q2 = −m2
ρ, temos que extrapolar o fator de forma para uma região

de Q2 onde a Regra de Soma não é mais válida. Isso pode ser feito parametrizando

os pontos da Regra de Soma para gZcηcρ(Q2) usando um curva exponencial:

gZcηcρ(Q
2) = g1e

−g2Q2

, (3.25)
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com g1 = 4.83 GeV e g2 = 5.6 × 10−3 GeV−2. Na Fig. 3.7, a linha representa o fit

dos pontos da Regra de Soma para ∆s0 = 0.5 GeV, usando a Eq. (3.25). O valor da

constante de acoplamento, gZcηcρ, também está representado na figura pelo símbolo

“×”. Temos:

gZcηcρ = gZcηcρ(−m2
ρ) = (4.85± 0.81) GeV. (3.26)

A incerteza na constante de acoplamento dada acima vem de variações nos seguintes

parâmetros: s0, λZc emc. O valor da constante de acoplamento obtido acima é maior

que o valor estimado na Ref. [60] cujo valor é igual a 3.9 GeV. Portanto, inserindo o

valor da constante de acoplamento obtida na Eq. (3.26) e os correspondentes valores

para as massas na Eq. (3.15), obtemos o valor da largura de decaimento para o canal

Zc → ηcρ
+,

Γ(Z+
c (3900)→ ηcρ

+) = (27.5± 8.5) MeV. (3.27)

3.2.5 Largura do canal Z+
c → D+D̄∗0

Finalmente, vamos calcular a largura do canal Z+
c (3900)→ D+D̄∗0. Nesse caso,

a função de vértice é definida pela Eq. (3.2) com o termo

Πµα(x, y) = 〈0|T [jD
∗

µ (x)jD5 (y)j†α(0)]|0〉, (3.28)

onde

jD5 = id̄aγ5ca, e jD
∗

µ = c̄aγµua. (3.29)

Usando as seguintes definições

〈0|jD∗µ |D∗(p′)〉 = mD∗fD∗εµ(p′),

〈0|jD5 |D(q)〉 =
fDm

2
D

mc

, (3.30)
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obtemos o Lado Fenomenológico, neste caso dado por

Π(fen)
µα (p, p′, q) =

−iλZcmD∗fD∗fDm
2
D gZcDD∗(q

2)

mc(p2 −m2
Zc

)(p′2 −m2
D∗)(q

2 −m2
D)

×
(
−gµλ +

p′µp
′
λ

m2
D∗

)(
−gλα +

pαp
λ

m2
Zc

)
+ · · · . (3.31)

No Lado da OPE consideramos novamente os diagramas conectados por cor. Na

estrutura p′αp′µ, temos:

Π(OPE) =
−imc〈q̄gσ.Gq〉

48
√

2π2

[
1

m2
c − q2

∫ 1

0

dα
α(2 + α)

m2
c − (1− α)p′2

− 1

m2
c − p′2

∫ 1

0

dα
α(2 + α)

m2
c − (1− α)q2

]
. (3.32)

Isolando a estrutura p′µp′α na Eq. (3.31) e aplicando uma Transformada de Borel
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Figura 3.8: Resultados da Regra de Soma dada pela Eq. (3.33) para o fator de forma
gZcDD∗(Q

2) como função de Q2 e M2 para ∆s0 = 0.5 GeV.
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em P 2 = P ′2 →M2, obtemos:

1

Q2 +m2
D

[
E
(
e−m

2
D∗/M

2 − e−m2
Zc
/M2
)

+ F e−s0/M
2
]

=

mc〈q̄gσ.Gq〉
48
√

2π2

[
1

m2
c +Q2

∫ 1

0

dα
α(2 + α)

1− α e
−m2

c
α(1−α)M2

− e−m
2
c/M

2

∫ 1

0

dα
α(2 + α)

m2
c + (1− α)Q2

]
, (3.33)

com

E =
gZcDD∗(Q

2)λZcfD∗fDm
2
D

mcmD∗(m2
Zc
−m2

D∗)
. (3.34)

O valores para mD and mD∗ usados nesse trabalho foram extraídos do PDG [61]

enquanto os valores de fD e fD∗ foram retirados da Ref. [41]:

mD = 1.869 GeV, fD = (0.18± 0.02) GeV,

mD∗ = 2.01 GeV, fD∗ = (0.24± 0.02) GeV. (3.35)

Na Fig. 3.8 mostramos o gZcDD∗(Q2), como função de M2 e Q2. Uma boa estabili-

dade em M2 pode ser obtida no intervalo 2.2 ≤M2 ≤ 2.8 GeV2.
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Figura 3.9: Resultado das RSQCD para gZcDD∗(Q
2), como função de Q2, para

∆s0 = 0.5 GeV (quadrados). A linha sólida dar a parametrização dos resultados das
RSQCD através da Eq. (3.25) com os valores de g1 e g2 obtidos para este caso.
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Fixando M2 = 2.6 GeV2 mostramos na Fig. 3.9, através dos quadrados, a de-

pendência em Q2 do fator de forma, gZcDD∗(Q2). Novamente, para extraírmos a

constante de acoplamento, fitamos os pontos da Regra de Soma, Eq. (3.33), usando

uma curva exponencial, Eq. (3.25), com g1 = 1.733 GeV e g2 = 0.076 GeV−2. A linha

sólida na Fig. 3.9 mostra o resultado do fit para ∆s0 = 0.5 GeV, usando Eq. (3.25)

com os novos valores de g1 e g2. Desse modo, a constante de acoplamento para o

vértice Z+
c D

+D̄∗0 é igual a:

gZcDD∗ = gZcDD∗(−m2
D) = (2.5± 0.3) GeV. (3.36)

A incerteza na constante de acoplamento acima vem de variações nos parâmetros:

s0, λZc , fD, fD∗ e mc. Esse valor obtido para a constante está novamente em

excelente acordo com o valor estimado pelos autores da Ref. [60]. Novamente usando

a Eq. (3.15) com esse valor da constante e as mudanças triviais nas massas, o valor

da largura para esse canal é igual a

Γ(Z+
c → D+D̄∗0) = (3.2± 0.7) MeV. (3.37)

3.2.6 Largura de decaimento total do Z+
c

Podemos sumarizar os resultados obtidos para as constantes de acoplamento bem

como para as larguras de decaimento dos canais considerados na Tabela 3.2.6:

Tabela 3.2.6: Constantes de acoplamentos e larguras de decaimento nos diferentes

canais.

Vértice constante de acoplamento (GeV) largura (MeV)

Z+
c (3900)J/ψπ+ 3.89± 0.56 29.1± 8.2

Z+
c (3900)ηcρ

+ 4.85± 0.81 27.5± 8.5

Z+
c (3900)D+D̄∗0 2.5± 0.3 3.2± 0.7

Z+
c (3900)D̄0D∗+ 2.5± 0.3 3.2± 0.7

Portanto, a largura total da estrutura Z+
c (3900) é a soma das larguras parciais
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obtidas acima. Com isso, temos

Γ = (63.0± 18.1)MeV. (3.38)

Esse valor está em excelente acordo com os dois valores experimentais: Γ =

(46± 22) MeV da BESIII [16], e Γ = (63± 35) MeV da Colaboração BELLE [25].

Portanto, considerando o Z+
c (3900) como um estado de Tetraquark, podemos

explicar sua massa bem como sua largura de decaimento.

3.3 O estado carregado Z±cs(3970)

O relativo sucesso do poder preditivo do mecanismo ISPE [56], após a confirma-

ção experimental do Z+
c , impulsionou os seus autores a novas previsões de estados

carregados no decaimento dos estados excitados do Charmônio, desta vez no setor

estranho. Para que essa extensão do ISPE para o caso estranho seja feita, os píons

no produto final de decaimento dos estados excitados do Charmônio dão lugar aos

káons, isto é,

Ψi → J/ψK+K− ,

onde Ψi representa os estados excitados do Charmônio, como o Ψ(3770), Ψ(4040),

Ψ(4160) e o Y (4660). Segundo os autores, isso equivale a categorizar os píons e os

káons como partículas quirais, e por isso batizaram esse novo mecanismo de Initial

Single Chiral Particle Emission, ISChPE [55]. Em particular, nesse novo mecanismo

um estado excitado do Charmônio decai, através da emissão de um káon, nos mésons

D∗s e D∗ com baixo momento, os quais interagem entre si por meio da troca de um

méson D∗, resultando finalmente em um J/ψ e nos káons K+ e K−. O processo

é o mesmo da Fig. 3.1 com os káons em vez dos píons. Pelo cálculo do espectro

de massa invariante do par J/ψ − K+, os autores obtiveram um pico próximo ao

limiar de massa do DsD̄
∗/D∗sD̄. Esse pico estaria, segundo eles, associado a uma

nova estrutura carregada, o Z±cs,2 que seria o parceiro estranho do Z+
c .

Caso seja confirmada experimentalmente a existência do Z±cs, essa estrutura deve
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possuir os seguintes canais de decaimento:

Z+
cs → J/ψK+ ,

Z+
cs → ηcK

∗+ ,

Z+
cs → D̄∗0D+

s ,

Z+
cs → D̄0D∗+s .

(3.39)

Com as RSQCD é possível calcular a largura de decaimento de todos os canais

mencionados acima. Além disso, considerando o Z+
cs como um parceiro estranho

do Z+
c , é bem possível que aquele estado seja também melhor descrito por uma

corrente Tetraquark. Uma vez que existe a possibilidade desse estado ser medido

experimentalmente pela Colaboração BESIII, uma previsão acerca da largura de

decaimento total do Z+
cs enriquece a quantidade de informações teóricas bem como

seria um importante teste para o poder preditivo das RSQCD.

Portanto, nas próximas seções apresentamos em detalhes o cálculo da largura de

decaimento do Z+
cs nos canais acima usando as RSQCD. Para isso, a exemplo do

Z+
c , usamos uma corrente Tetraquark.

3.3.1 Massa do Z+
cs(3970)

Uma massa igual à do estado Z+
cs(3970) foi obtida via RSQCD na Ref. [63], onde

os autores consideraram uma corrente molecular do tipo DsD̄
∗ com JP = 1+. Em

particular, a massa obtida, após considerar do Lado da OPE as contribuições até

dimensão oito, é igual a MDsD̄∗ = 3.96± 0.10 GeV. Este valor está bem próximo do

limiar de massa do par de mésons DsD̄
∗ igual a MDsD̄∗ = 3975.26 MeV.

Em nosso cálculo, a exemplo do estudo anterior para o Z+
c (3900), vamos con-

siderar uma corrente Tetraquark. Assim, sua massa pode ser obtida a partir da

Regra de Soma do Z+
c (3900), substituindo a massa do quark leve pela massa do

quark estranho, s, nas densidades espectrais. Ao adicionarmos a massa do quark

estranho à Regra de Soma, o efeito será uma leve alteração na massa obtida cujo
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valor é MZcs = 3.96 ± 0.10 GeV. Esse valor é compatível ao obtido em [63] usando

uma corrente molecular e então vamos chamar esse estado de Z+
cs(3970).

3.4 Largura do Z+
cs(3970)

A corrente interpolante de Tetraquark para esse caso, é obtida da Eq. (3.1)

substituindo o campo associado ao antiquark d pelo do antiquark estranho, obtendo

dessa forma a seguinte expressão

jα =
iεabcεdec√

2
[(uTa Cγ5cb)(s̄dγαCc̄Te )− (uTa Cγαcb)(s̄dγ5Cc̄Te )] . (3.40)

Portanto, essa é a corrente interpolante que será utilizada para o cálculo da função

de três pontos nos canais mencionados acima.

3.4.1 Largura do canal Z+
cs → J/ψK+

A função de três pontos associada ao vértice Z+
c J/ψK

+ é dada por

Πµνα(p, p′, q) =

∫
d4x d4y eip

′.x eiq.y Πµνα(x, y), (3.41)

onde Πµνα(x, y) = 〈0|T [jψµ (x)jK5ν(y)j†α(0)]|0〉. A corrente jK5ν(y) representa o káon e

é definida como

jK5ν(y) = s̄a(y)γ5γνua(y) . (3.42)

O Lado Fenomenológico é dado por

Π(fen)
µνα (p, p′, q) =

λZcsmψfψFK gZcsψK(q2)qν
(p2 −m2

Zcs
)(p′2 −m2

ψ)(q2 −m2
K)

(
−gµλ +

p′µp
′
λ

m2
ψ

)

×
(
−gλα +

pαp
λ

m2
Zcs

)
+ · · · , (3.43)
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onde no cálculo utilizamos as seguintes parametrizações:

〈0|jψµ |J/ψ(p′)〉 = mψfψεµ(p′),

〈0|jK5ν |K(q)〉 = iqνFK ,

〈Zcs(p)|jα|0〉 = λZcsε
∗
α(p). (3.44)

Como já discutido anteriormente, a constante de acoplamento é obtida do ele-

mento de matriz 〈J/ψ(p′)K(q)|Zcs(p)〉, sendo este calculado diretamente da densi-

dade de Lagrangiana abaixo

L = gZcsψKZ
µ
csψµK̄ + cc. (3.45)

Com isso, obtemos

〈J/ψ(p′)K(q)|Zcs(p)〉 = gZcsψK(q2)ε∗λ(p
′)ελ(p), (3.46)

onde εα(p), εµ(p′) são os vetores de polarização dos mésons Z+
cs e J/ψ, respectiva-

mente.

No Lado da OPE, novamente consideramos os diagramas conectados por cor

semelhante ao ilustrado na Fig. 3.4 pela mesma razão discutida para o caso do

Z+
c (3900). Além disso, neste caso, a exemplo do que foi feito anteriomente para o

canal Z+
c → J/ψπ+, vamos trabalhar no pólo do káon, o que consiste em desprezar

sua massa na Eq. (3.43), enquanto do Lado da OPE levamos em conta as contribui-

ções com o fator 1/q2. Com isso, das estruturas tensoriais que possuem tal fator, a

qν p
′
µ p
′
α também é a que possui mais momento. Portanto, nessa estrutura obtemos

a seguinte expressão para o Lado da OPE

Π(OPE) =
(〈q̄gσ.Gq〉+ 〈s̄gσ.Gs〉)

24
√

2π2

1

q2

∫ 1

0

dα
α(1− α)

m2
c − α(1− α)p′2

. (3.47)

Obtidos os Lados Fenomenológico e da OPE, podemos escrever a Regra de Soma

para este caso identificando a estrutura qν p′µ p′α no Lado Fenomenológico, e após
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uma Transformada de Borel em ambos os lados, obtemos

A
(
e−m

2
ψ/M

2 − e−m2
Zcs

/M2
)

+B e−s0/M
2

=
(〈q̄gσ.Gq〉+ 〈s̄gσ.Gs〉)

24
√

2π2

∫ 1

0

dα e
−m2

c
α(1−α)M2 ,

(3.48)

onde s0 é o limiar do contínuo para o Zcs:
√
s0 = (4.5± 0.1) GeV [63], e

A =
gZcsψKλZcsfψFK (m2

Zcs
+m2

ψ +m2
K)

2m2
Zcs
mψ(m2

Zcs
−m2

ψ)
. (3.49)

O valor de FK presente na equação acima pode ser extraído do PDG [61] cujo valor é

igual a FK = (0.16±0.02) GeV. O acoplamento méson corrente, isto é, λZcs foi obtido

da Regra de Soma para a função de dois pontos na Ref. [63]: λZcs = (1.8±0.2)×10−2

GeV5.

Em virtude de termos escrito a Regra de Soma acima no pólo do káon, podemos

seguir o mesmo procedimento usado para o caso do vértice Z+
c J/ψπ

+, e extrair

a constante de acoplamento gZcsJ/ψK diretamente da Eq. (3.48), determinando os

valores de A e B para os quais essa mesma equação seja satisfeita. Dessa forma, os

valores de A e B onde a igualdade entre ambos os lados da Eq. (3.48) é satisfeita

são: A = (1.28 ± 0.02) × 10−4 GeV5 e B = −(1.03+0.31
−0.23) × 10−3 GeV5. A Fig. 3.10,

mostra a comparação entre esses lados para os valores de A e B dados acima.

Tabela 3.1: Valores das massas dos quarks e dos condensados.

Parâmetros Valores
mc(mc) (1.23± 0.05) GeV√

s0 (4.5± 0.1) GeV
〈q̄q〉 −(0.23± 0.03)3 GeV3

〈q̄gσ.Gq〉 m2
0〈q̄q〉 GeV5

m2
0 (0.8± 0.1) GeV2

〈s̄s〉 0.8〈q̄q〉 GeV3

〈s̄gσ.Gs〉 m2
0〈s̄s〉 GeV5

〈g2
sG

2〉 (0.88± 0.25) GeV4

Substituindo o valor de A na Eq. (3.49), obtemos o seguinte valor para a cons-
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Figura 3.10: Os pontos representam o lado direito da Eq. (3.48), como função da
massa de Borel para

√
s0 = 4.5 GeV. A curva sólida representa o lado esquerdo da

mesma equação obtida para A = (1.28±0.02)×10−4 GeV5 e B = −(1.03+0.31
−0.23)×10−3

GeV5.

tante de acoplamento gZcsJ/ψK

gZcsψK = (2.58± 0.30) GeV, (3.50)

onde para estimarmos o erro levamos em conta variações em s0, λZcs , 〈q̄q〉 e na

massa do quark charm cujos valores estão na Tabela 3.1. A largura de decaimento

para esse canal é dada pela Eq. (3.15) com as mudanças triviais para as massas e a

constante de acoplamento para o caso atual. Logo, temos

Γ(Z+
cs → J/ψK+) =

p∗(mZcs ,mψ,mK)

8πm2
Zcs

1

3
g2
ZcsψK

(
3 +

(p∗(mZcs ,mψ,mK))2

m2
ψ

)
.

(3.51)

Aqui, a massa do Z+
cs é tomada como (3.97 ± 0.08) GeV, que vem do cálculo em

regras de soma. Portanto, a Equação (3.51) fornece o seguinte valor para a largura

de decaimento do canal em questão

Γ(Z+
cs → J/ψK+) = (11.2± 3.5) MeV. (3.52)

Note que, neste caso, a constante de acoplamento gZcsJ/ψK é menor que gZcJ/ψπ
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obtida anteriormente para o caso do Z+
c (3900) no canal Z+

c → J/ψπ+. Uma razão

para isso, é a presença do condensado de quark-estranho na OPE para o caso atual,

que resulta ser menor do que o condensado 〈q̄q〉 presente no caso do Z+
c (3900).

3.4.2 Largura do canal Z+
cs → ηcK

∗+

Para este caso, a função de três pontos é obtida substituindo

Πµα(x, y) = 〈0|T [jηc5 (x)jK
∗

µ (y)j†α(0)]|0〉 , (3.53)

na Eq. (3.41) e usando jK∗µ = s̄aγµua como a corrente associada ao méson K∗. Con-

siderando também para este caso somente diagramas conectados por cor, obtemos

a seguinte expressão, na estrutura p′µ qα, para o Lado da OPE

Π(OPE) =
−imc(〈q̄gσ.Gq〉+ 〈s̄gσ.Gs〉)

96
√

2π2

1

q2

∫ 1

0

dα
1

m2
c − α(1− α)p′2

. (3.54)

O Lado Fenomenológico é obtido usando

〈0|jK∗µ |K∗(q)〉 = mK∗fK∗εµ(q),

〈0|jηc5 |ηc(p′)〉 =
fηcm

2
ηc

2mηc

, (3.55)

e com isso, obtemos

Π(fen)
µα (p, p′, q) =

−iλZcsmK∗fK∗fηcm
2
ηc gZcsηcK∗(q

2)

2mc(p2 −m2
Zcs

)(p′2 −m2
ηc)(q

2 −m2
K∗)

×
(
−gµλ +

qµqλ
m2
K∗

)(
−gλα +

pαp
λ

m2
Zc

)
+ · · · . (3.56)
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Isolando a estrutura p′µ qα na Eq. (3.56), e igualando-a com a Eq. (3.54) obtemos,

após aplicarmos uma Transformada de Borel, a seguinte Regra de Soma

C
(
e−m

2
ηc
/M2 − e−m2

Zcs
/M2
)

+D e−s0/M
2

=
Q2 +m2

K∗

Q2

mc(〈q̄gσ.Gq〉+ 〈s̄gσ.Gs〉)
96
√

2π2

×
∫ 1

0

dα
e

−m2
c

α(1−α)M2

α(1− α)
, (3.57)

enquanto C está definido abaixo em termos do fator de forma

C =
gZcsηcK∗(Q

2)λZcsmK∗fK∗fηcm
2
ηc

2mcm2
Zcs

(m2
Zcs
−m2

ηc)
. (3.58)

Para esse caso, vamos obter um fator de forma em vez de calcular a constante
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Figura 3.11: Resultados das RSQCD para o fator de forma gZcsηcK∗(Q2) como função
de Q2 e M2 para

√
s0 = 4.5 GeV.

de acoplamento diretamente da Regra de Soma, Eq. (3.57). Para isso, isolamos

gZcsηcK∗(Q
2) na mesma equação seguindo o mesmo procedimento discutido no Ca-

pítulo 2. Como já vimos em casos anteriores, para determinarmos o fator de forma

temos que determinar uma região de estabilidade em M2 para garantirmos a depen-

dência do fator de forma gZcsηcK∗(Q2) somente em Q2. Na Fig. 3.11, mostramos a

curva 3D de gZcsηcK∗(Q2) como função de Q2 eM2. Note que, a dependência somente
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em Q2 é obtida no intervalo 4.0 ≤M2 ≤ 10.0 GeV2. Para extrapolarmos o fator de

2 3 4 5 6
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3.0

3.5

4.0
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Z+ cs

 
c K

*+
 (G
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)
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Figura 3.12: Resultado numérico das RSQCD para gZcsηcK∗(Q2), como função de
Q2 representado pelos quadrados, para

√
s0 = 4.5 GeV. A curva sólida dar a para-

metrização dos resultados das RSQCD através da Eq. (3.59).

forma para o pólo do méson K∗, devemos obter uma curva para o fator de forma

que reproduza os resultados das RSQCD dentro desse intervalo de estabilidade em

M2. Considerando uma curva monopolar, isto é,

gZcsηcK∗(Q
2) =

g1

g2 +Q2
, (3.59)

os pontos da Regra de Soma são reproduzidos para g1 = 78.35 GeV−2 e g2 = 24.3

GeV. Logo, extrapolando a função monopolar para Q2 = −m2
K∗ , obtemos o seguinte

valor para a constante de acoplamento gZcsηcK∗

gZcsηcK∗ = (3.4± 0.3) GeV , (3.60)

onde a incerteza foi obtida levando em conta as variações em s0, λZcs , 〈q̄q〉 e mc. Da

Eq. (3.51) com as devidas mudanças nas massas para o caso atual, obtemos

Γ(Z+
cs → ηcK

∗+) = (10.8± 6.2)MeV . (3.61)
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3.4.3 Largura do canal Z+
cs → D+

s D̄
∗0

Partindo da função de três pontos

Πµνα(p, p′, q) =

∫
d4x d4y eip

′.x eiq.y 〈0|T{jDs5 (x) jD
∗

µ (y) j†α(0)}|0〉 , (3.62)

onde jDs5 = is̄aγ5ca e jD∗µ = c̄aγµua, são as correntes associadas com os mésons Ds e

D∗, respectivamente, obtemos para o Lado Fenomenológico a seguinte expressão

Π(fen)
µα (p, p′, q) =

−iλZcsmD∗fD∗fDsm
2
Ds

gZcsD∗Ds(q
2)

(mc +ms)(p2 −m2
Zcs

)(p′2 −m2
D∗)(q

2 −m2
Ds

)

×
(
−gµλ +

p′µp
′
λ

m2
D∗

)(
−gλα +

pαp
λ

m2
Zcs

)
+ · · · . (3.63)

Como nos casos anteriores, vamos aqui levar em conta também somente os diagramas

conectados por cor como o da Fig. 3.4. Com isso, na estrutura p′µp′α temos a seguinte

expressão para o Lado da OPE

Π(OPE) =
−imc

48
√

2π2

[
〈s̄gσ.Gs〉
m2
c − q2

∫ 1

0

dα
α(2 + α)

m2
c − (1− α)p′2

− 〈q̄gσ.Gq〉
m2
c − p′2

∫ 1

0

dα
α(2 + α)

m2
c − (1− α)q2

]
. (3.64)

Portanto, identificando a estrutura p′µp′α no Lado Fenomenológico e aplicando uma

Transformada de Borel nas Eqs. (3.64) e (3.63), obtemos a Regra de Soma abaixo

1

Q2 +m2
Ds

[
E
(
e−m

2
D∗/M

2 − e−m2
Zcs

/M2
)

+ F e−s0/M
2
]

=

mc

48
√

2π2

[
〈s̄gσ.Gs〉
m2
c +Q2

∫ 1

0

dα
α(2 + α)

1− α e
−m2

c
α(1−α)M2

− 〈q̄gσ.Gq〉e−m2
c/M

2

∫ 1

0

dα
α(2 + α)

m2
c + (1− α)Q2

]
, (3.65)

onde definimos E como sendo igual a

E =
gZcsDsD∗(Q

2)λZcsfD∗fDsm
2
Ds

(mc +ms)mD∗(m2
Zcs
−m2

D∗)
. (3.66)
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A Fig. 3.13 mostra a dependência do fator de forma, definido na Regra de Soma

na Eq. (3.65), em função de M2 e Q2. Através dessa figura, no intervalo 2.75 ≤
M2 ≤ 3.25 GeV2 uma boa estabilidade em relação àM2 é garantida. Portanto, para

qualquer valor de M2 fixado dentro desse intervalo, obtemos uma independência do

fator de forma em relação à massa de Borel M2. Seguindo o mesmo procedimento

que no caso anterior, a curva representando o fator de forma que melhor reproduz

os resultados da Regra de Soma dentro do intervalo de estabilidade é dada por
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Figura 3.13: Resultados da Regra de Soma para o fator de forma gZcsD∗Ds(Q2) como
função de Q2 e M2 para

√
s0 = 4.5 GeV.

gZcsDsD∗(Q
2) = g1e

−g2Q2

. (3.67)

Com g1 = 0.94 GeV e g2 = 0.09 GeV−2. Com isso, ao extrapolarmos o fator de forma

gZcsDsD∗(Q
2) para o pólo da massa do méson Ds, isto é, gZcsDsD∗(Q2 = −m2

Ds
),

obtemos

gZcsDsD∗ = (1.4± 0.3) GeV, (3.68)
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e com esse valor para a constante de acoplamento do vértice em questão, obtemos a

largura de decaimento do canal Z+
cs → D+

s D̄
∗ cujo valor é igual a

Γ(Z+
cs → D+

s D̄
∗0) = (1.5± 1.5) MeV. (3.69)

A Regra de Soma para o canal Z+
cs → D̄0D∗+s é facilmente obtida substituindo as

massas dos mésons D+
s e D̄0, respectivamente pelas massas dos mésons D∗+s e D̄0.

Seguindo a mesma análise acima, obtemos o seguinte valor para a constante de

acoplamento gZcsD∗sD,

gZcsD∗sD = gZcsD∗sD(−m2
D) = (1.4± 0.4) GeV . (3.70)

Com isso, o valor da largura de decaimento para esse canal será

Γ(Z+
cs → D∗+s D̄0) = (1.4± 1.4) MeV . (3.71)

3.4.4 Largural de decaimento total do Z+
cs

A exemplo do estado Z+
c (3900), na Tabela 3.4.4 sumarizamos os resultados ob-

tidos para as constantes de acoplamento bem como para as larguras de decaimento

dos canais considerados:

Tabela 3.4.4: Constantes de acoplamentos e larguras de decaimento nos diferentes

canais de decaimento do estado Z+
cs.

Vértice constante de acoplamento (GeV) largura (MeV)

Z+
cs J/ψK

+ 2.58± 0.30 11.2± 3.5

Z+
cs ηcK

∗+ 3.4± 0.3 10.8± 6.2

Z+
csD

+
s D̄

∗0 1.4± 0.3 1.5± 1.5

Z+
cs D̄

0D∗+s 1.4± 0.4 1.4± 1.4

Portanto, a largura de decaimento total do estado Z+
cs(3970) será a soma das

larguras parciais dispostas na Tabela 3.4.4. Com isso, obtemos

ΓZcs = (24.9± 12.6) MeV . (3.72)
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Comparando esse valor com o obtido para o Z+
c (3900) e considerando o Z+

cs(3970)

como o seu parceiro estranho, observamos que a largura deste último é bem menor.

Como mencionamos anteriormente, uma das razões para isso reside no fato das

OPE’s para os canais do caso estranho serem menores que as dos canais do Z+
c ; isso

ocorre em virtude do condensado de quarks 〈s̄s〉 ser menor que 〈q̄q〉.



CAPÍTULO 4

CANDIDATOS A EXÓTICOS DO CHARMÔNIO

A mistura entre os estados de dois (Charmônio) e quatro quarks (Tetraquarks

ou molécula) para o cálculo em Regras de Soma da QCD é implementada a nível de

correntes, isto é, temos que definir uma corrente interpolante, jµ, que seja composta

por uma corrente associada ao Charmônio e uma outra relacionada à molécula ou

ao Tetraquark, possuindo os números quânticos JPC do estado que se pretende

descrever com essa corrente. Neste capítulo, vamos usar as correntes de mistura

Charmônio - Tetraquark com 1−− e Charmônio - Molécula com 0++ para descrever,

respectivamente, a massa e a largura de decaimento dos estados Y (4260) e Y (3940).

4.1 A corrente interpolante da mistura Charmônio

- Tetraquark

A componente associada ao Charmônio da corrente mista, jµ, é definida pela

corrente vetorial denotada por j
′(2)
µ ,

j
′(2)
µ (x) = c̄a(x)γµca(x), (4.1)
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enquanto a componente correspondente ao Tetraquark, j(4)
µ , é definida como

j(4)
µ (x) =

εabcεdec√
2

[
[qTa (x)Cγ5cb(x)][q̄d(x)γµγ5Cc̄Te (x)] +

+[qTa (x)Cγ5γµcb(x)][q̄d(x)γ5Cc̄Te (x)]
]
, (4.2)

onde a, b, c, ... estão associados aos índices de cor e C é a matriz de conjugação

de carga. A exemplo das Refs. [64, 52], vamos multiplicar a Eq. (4.1) pelo fator

〈q̄q〉/
√

2, onde 〈q̄q〉 é o condensado de quarks . A finalidade disso é deixar a Eq. (4.1)

com a mesma dimensão da Eq. (4.2). Portanto, a componente do Charmônio é

reescrita como

j(2)
µ =

1√
2
〈q̄q〉 j ′(2)

µ . (4.3)

Deste modo, a corrente mista Charmônio - Tetraquark, jµ com JPC = 1−−, associada

ao Y(4260) é definida como

jµ(x) = cos(θ) j(2)
µ (x) + sin(θ) j(4)

µ (x), (4.4)

onde θ representa o ângulo de mistura.

Estabelecida a corrente mista, podemos usá-la para calcular a massa dessa mis-

tura, usando as Regras de Soma da QCD, e verificar se existe um ângulo para o qual

a massa calculada seja igual ao valor experimental da massa do Y(4260).

4.2 O Estado Y (4260)

4.2.1 Massa do Y (4260)

Como vimos no Capítulo 2, o ponto de partida para o cálculo da massa de um

estado hadrônico, através da técnica das Regras de Soma da QCD, é a função de

2-pontos, que para o caso atual é definida como

Πµν(q) = i

∫
d4x eiq·x〈0| T [jµ(x)j†ν(0)] |0〉, (4.5)
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onde jµ é a corrente dada pela Eq. (4.4).

Substituindo a corrente dada pela Eq. (4.4) na função de 2-pontos, Eq. (4.5),

obtemos o Lado da OPE dado por

ΠOPE
µν (q) = i

∫
d4x eiq·x

{
1

2
〈q̄q〉2 cos2 θ Π22

µν + sin2 θ Π44
µν

+
1√
2
〈q̄q〉 sin θ cos θ

[
Π24
µν + Π42

µν

]}
. (4.6)

As funções Π22
µν e Π44

µν são, respectivamente, as funções de correlação do J/ψ e

do Tetraquark [cq][c̄q̄]. A primeira já foi calculada na Ref. [34]. Assim, devemos

calcular as demais contribuições: Π44
µν além de Π24

µν e Π42
µν cujas expressões estão

escritas abaixo:

Π24
µν = 〈0| T [j(2)

µ (x)j(4)†
ν (0)] |0〉

=
εabcεdec√

2

{
Tr
[
Scfd(x) γ5C Sq

T

be (0) Cγ5γν S
c
af (−x) γµ

]

+ Tr
[
Scfd(x) γνγ5C Sq

T

be (0) Cγ5 S
c
af (−x) γµ

]}
, (4.7)

Π42
µν = 〈0| T [j(4)

µ (x)j(2)†
ν (0)] |0〉

=
εabcεdec√

2

{
Tr
[
Scbf (x) γν S

c
fe(−x) γµγ5C Sq

T

ad(0) Cγ5

]

+ Tr
[
Scbf (x) γν S

c
fe(−x) γ5C Sq

T

ad(0) Cγ5γµ

]}
, (4.8)

onde Scfd(x) é o propagador de quarks pesados, isto é, o propagador do quark charm,

enquanto Sq
T

be (x) é o propagador de quarks leves e o superescrito T em Sq
T
(0) sig-

nifica o transposto do propagador. Em geral, o propagador de quarks pesados nas

equações acima é escrito no espaço dos momentos via Transformada de Fourier, isto

é,

Scfd(p) =

∫
d4p

(2 π)4
e−ip·x Scfd(x) , (4.9)
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enquanto mantemos o propagador de quarks leves no espaço das coordenadas. Nesse

lado, trabalhamos em ordem dominante em αs nos operadores e consideramos as

contribuições dos condensados até dimensão-8 na OPE. Portanto, após uma Trans-

formada de Borel, obtemos a seguinte expressão para a estrutura tensorial gµν

ΠOPE(M2
B) =

〈q̄q〉2
2

cos2(θ) Π22
1 (M2

B) + sin2(θ) Π44
1 (M2

B)

+
〈q̄q〉√

2
sin(θ)cos(θ)

[
Π24

1 (M2
B) + Π42

1 (M2
B)

]
, (4.10)

onde

Π22
1 (M2

B) =

s0∫
4m2

c

ds e−s/M
2
Bρ22

pert(s) + Π22
〈G2〉(M

2
B),

(4.11)

Π44
1 (M2

B) =

s0∫
4m2

c

ds e−s/M
2
B

(
ρ44
pert(s) + ρ44

〈q̄q〉(s) + ρ44
〈G2〉(s) + ρ44

〈q̄Gq〉(s) + ρ44
〈q̄q〉2(s)+

+ ρ44
〈8〉

)
+ Π44

〈8〉(M
2
B), (4.12)

Π24
1 (M2

B) =

s0∫
4m2

c

ds e−s/M
2
Bρ24
〈q̄q〉(s) + Π24

〈q̄Gq〉(M
2
B). (4.13)

Abaixo seguem as expressões das densidades espectrais, ρ(s), presentes nas Eqs. (4.11)

- (4.13) para o Charmônio e Tetraquark bem como as densidades obtidas para os

termos mistos, Π24
1 (M2

B) e Π42
1 (M2

B). As contribuições destes dois últimos são iguais.
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Para o Charmônio temos [34]

ρ22
pert(s) =

s〈q̄q〉2
23π2

(1 + 2m2
c/s)

√
1− 4m2

c/s,

(4.14)

Π22
〈G2〉(M

2
B) = −〈g

2
sG

2〉〈q̄q〉2
3 · 26π2

1∫
0

dα
{

2 +
m2
c(1− 7α− 2α2)

α(1− α)2M2
B

+

+
4m4

c

M4
B(1− α)3

}
e
− m2

c
M2
B
α(1−α) .

(4.15)

Por outro lado, as expressões para o Tetraquark são:

ρ44
pert(s) = − 1

3 · 210π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
F 3(1− α− β)×

(
2m2

c(1− α− β)2 −

−3F (1 + α + β)

)
, (4.16)

ρ44
〈q̄q〉(s) = 0, (4.17)

ρ44
〈G2〉(s) = − 〈g

2
sG

2〉
32 · 211π6

αmax∫
αmin

dα

α

1−α∫
βmin

dβ

β3

[
2m4

cα(1− α− β)3 − 3m2
cF (1− α− β)×

×
(
2α2 + α(8 + 3β) + β(1 + β)− 2

)
+ 6F 2β(1− 2α− 2β)

]
, (4.18)

ρ44
〈q̄Gq〉(s) = − 〈q̄Gq〉

3 · 27π4

{
3mc

αmax∫
αmin

dα

α2

1−α∫
βmin

dβ

β
F

[
α2 − α(1 + β)− 2β2

]
+

+ms

αmax∫
αmin

dα

[
16m2

c + 2H

(
1− α
α

)
−

1−α∫
βmin

dβ

β

(
m2
c ×

×(9− 3α− 5β) + 7F

)]}
, (4.19)
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ρ44
〈q̄q〉2(s) =

s〈q̄q〉2
32 · 24π2

(1− 16m2
c/s)

√
1− 4m2

c/s (4.20)

ρ44
〈8〉(s) = −〈q̄q〉〈q̄Gq〉

3 · 25π2

αmax∫
αmin

dα α(5− 6α) (4.21)

Π44
〈8〉(M

2
B) = −m

2
c〈q̄q〉〈q̄Gq〉
3 · 24π2

1∫
0

dα

[
α2 − 2m2

c

M2
Bα(1− α)

]
e
− m2

c
M2
B
α(1−α) . (4.22)

Em todas as expressões acima, usamos as seguintes definições:

F = (α + β)m2
c − αβs, (4.23)

H = m2
c − α(1− α)s, (4.24)

e os limites de integração são:

αmin =
1−

√
1− 4m2

c/s

2
, (4.25)

αmax =
1 +

√
1− 4m2

c/s

2
, (4.26)

βmin =
αm2

c

(sα−m2
c)
. (4.27)

Parametrizando o acoplamento do estado vetorial Y com a corrente definida pela

Eq. (4.4) da seguinte maneira

〈0|jµ(x)|Y 〉 = λY εµ, (4.28)

onde εµ é o vetor de polarização e λY é o parâmetro definido na Seção 2.4 do Capítulo

2, o Lado Fenomenológico da Eq. (4.5), após aplicarmos uma Transformada de Borel,

pode ser escrito da seguinte maneira

Πfen(M2
B) = λ2

Y e
−M2

Y /M
2
B +

∞∫
s0

ρOPE(s) e−s/M
2
B , (4.29)
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onde MY é a massa da mistura enquanto o segundo termo do lado direito da Eq.

(4.29), representa as contribuições dos estados do contínuo de ressonâncias a partir

do limiar do contínuo, denotado por s0 [35]. Da igualdade entre as Eqs. (4.10) e

(4.29) obtemos a seguinte Regra de Soma,

λ2
Y e
−M2

Y /M
2
B =
〈q̄q〉2

2
cos2(θ) Π22

1 (M2
B) + sin2(θ) Π44

1 (M2
B)

+
〈q̄q〉√

2
sin(θ)cos(θ)

[
Π24

1 (M2
B) + Π42

1 (M2
B)

]
. (4.30)

Uma vez determinada a regra de soma, para determinarmos a massa, seguimos os

passos descritos na Seção 2.6 derivando a Eq. (4.30) com respeito a 1/M2
B e dividindo

o resultado pela Eq. (4.30). Desta forma, obtemos

M2
Y = −

dK(M2
B ,θ)

d(1/M2
B)

K(M2
B, θ)

, (4.31)

onde

K(M2
B, θ) ≡ 〈q̄q〉2

2
cos2(θ)Π22

1 (M2
B) + sin2(θ)Π44

1 (M2
B) +

+ 〈q̄q〉√
2
sin(θ)cos(θ)

[
Π24

1 (M2
B) + Π42

1 (M2
B)

]
.

Assim, a massa da mistura Charmônio-Tetraquark é obtida, resolvendo a Eq. (4.31)

numericamente.

4.2.2 Análise numérica

Na Tabela 4.1 listamos os valores das massas dos quarks e condensados que

utilizamos na análise numérica. Para uma comparação consistente com resultados

obtidos por outros trabalhos envolvendo regras de soma da QCD, os valores listados

nessa tabela são os mesmos usados nas Refs. [33, 38, 58, 65, 66, 67, 68, 69, 70, 71].

Como descrito no Capítulo 2 na Seção 2.7, garantimos um certo grau de confia-

bilidade para a Regra de Soma, se for possível estabelecermos uma Janela de Borel.

A Janela de Borel é determinada impondo que a Regra de Soma satisfaça aos cri-
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Tabela 4.1: Valores das massas dos quarks e dos condensados.

Parâmetros Valores
mc(mc) (1.23± 0.05) GeV
〈q̄q〉 −(0.23± 0.03)3 GeV3

〈q̄gσ.Gq〉 m2
0〈q̄q〉

m2
0 (0.8± 0.1) GeV2

〈g2
sG

2〉 (0.88± 0.25) GeV4

térios: convergência da OPE, dominância do pólo sobre o contínuo e a estabilidade

da massa.

A Janela de Borel é caracterizada por um valor mínimo e um máximo de M2
B.

Para estabelecermos o valor mínimo da Janela de Borel, devemos analisar a conver-

gência da OPE. Sabemos que o cálculo de todos os termos da OPE é impraticável,

logo, a série deve ser truncada. Portanto, é necessário garantir sua convergência

para que o cálculo faça sentido.

Na Figura 4.1, segue o gráfico das contribuições relativas de todos os termos da

OPE até dimensão 8. Tais contribuições foram calculadas para o valor do ângulo

de mistura, θ, no intervalo 52.50 ≤ θ ≤ 53.50. Além disso, observamos que para

valores de θ fora desse intervalo, não podemos garantir a convergência da OPE. Para

fixarmos o valor mínimo,M2
Bmin, da Janela da Borel, vamos adotar o critério definido

pela Eq. (2.48). Assim, na Fig. 4.1 a contribuição do condensado de dimensão mais

alta é menor ou igual a 15% da contribuição total para M2
B ≥ 2.4 GeV2. Com esse

critério obtemos o valor mínimo da massa de Borel M2
Bmin = 2.4 GeV2.

Para fixarmos o valor máximo, de acordo com a Seção 2.7.2, temos de analisar

a dominância do pólo sobre o contínuo. Na Figura 4.2, podemos ver ambas as

contribuições em função de M2
B. Assim, para M2

B ≤ 2.90 GeV2 a contribuição do

pólo é sempre maior que a do contínuo. Deste modo, o máximo da Janela será

M2
Bmax = 2.90 GeV2. Portanto, a Janela de Borel é: 2.4 ≤M2

B ≤ 2.90 GeV2.

Uma vez determinada a Janela de Borel, podemos calcular a massa do estado

fundamental através da Eq. (4.31) cuja solução numérica está mostrada na Fig. 4.3,

como função de M2
B. Dessa figura podemos ver que existe uma boa estabilidade
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Figura 4.1: A convergência da OPE na região 2.0 ≤M2
B ≤ 6.0 GeV2 para

√
s0 = 4.70

GeV. Plotamos as contribuições relativas começando com a contribuição pertuba-
tiva (linhas com círculo), e cada uma das outras linhas representam a contribui-
ção relativa após adicionarmos um condensado a mais na expansão: +〈q̄q〉 (linha
ponto-tracejada), +〈G2〉 (traço longo), +〈q̄gσ.Gq〉 (linha pontilhada), +〈q̄q〉2 (linha
tracejada) e +〈q̄q〉〈q̄gσ.Gq〉 (linha sólida).

da massa do estado fundamental, na Janela de Borel determinada, representada na

figura pelo símbolo “×”.

Variando o valor do limiar do contínuo no intervalo
√
s0 = 4.70 ± 0.10 GeV, o

ângulo de mistura em 52.50 ≤ θ ≤ 53.50 e para os outros parâmetros, consideramos

os intervalos como indicado na Tabela 4.1, obtemos:

MY = (4.26± 0.13) GeV, (4.32)

que está em excelente acordo com a massa experimental do Y(4260).

Determinada a massa da mistura Charmônio-Tetraquark, podemos usar esse

valor na Eq. (4.10) para estimar o parâmetro que representa o acoplamento méson-

corrente, definido na Eq. (4.28). Usamos os mesmos valores de s0, θ e da Janela de
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Figura 4.2: Contribuição do pólo (dividida pela contribuição total, isto é, pólo
mais contínuo), representada pela linha sólida e a contribuição do contínuo, linha
pontilhada, para

√
s0 = 4.70 GeV.

Borel usados anteriormente no cálculo da massa. O valor obtido é

λY = (2.00± 0.23)× 10−2 GeV5. (4.33)

Podemos interpretar o parâmetro λY como a medida da intensidade do acopla-

mento entre a corrente e o estado hadrônico. É interessante ressaltar que o valor

de λY na Eq. (4.33), tem a mesma ordem de magnitude do acoplamento obtido

para o X(3872) [52], onde os autores o estudaram como uma mistura Charmônio -

molécula.

4.3 A Largura de Decaimento do Estado Y (4260)

Como discutido no Capítulo 2, a técnica das RSQCD pode também ser usada

para calcular constantes de acoplamento e fatores de forma. Em particular, na Ref.

[41] os autores determinaram alguns fatores de forma e constantes de decaimento

para vários vértices envolvendo mésons charmosos. Nesta seção, usaremos as Regras
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Figura 4.3: Massa como função de M2 for
√
s0 = 4.60 GeV (linha pontilhada),√

s0 = 4.70 GeV (linha sólida),
√
s0 = 4.80 GeV (tracejado longo). O símbolo “x”

indicam a Janela de Borel válida.

de Soma da QCD para calcular o fator de forma, e consequentemente, a constante

de acoplamento associada aos vértices Y J/ψσ e Y J/ψf0(980), a fim de obtermos

uma estimativa para a largura de decaimento do processo Y → J/ψππ. Nesse canal,

estamos levando em conta que os píons vem dos estados intermediários σ e f0(980).

Y (p) J/ψ(p′)

σ(q)

Figura 4.4: Vértice definido pelos mésons Y , J/ψ e σ com seus respectivos quadri-
momentos.

Começamos pelo cálculo da constante de acoplamento associada ao vértice Y J/ψσ
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definido pela Fig 4.4. A função de 3-pontos associada a este vértice é definida como

Πµν(p, p
′, q) =

∫
d4xd4yeip

′·xeiq·yΠµν(x, y), (4.34)

com p = p′ + q e Πµν(x, y) dado por

Πµν(x, y) = 〈0|T{jψµ (x)jσ(y)jY †ν (0)}|0〉. (4.35)

As correntes interpolantes aparecendo na Eq. (4.35) são as correntes associadas

com o J/ψ, σ e Y (4260), respectivamente. As correntes para o J/ψ e Y foram

definidas pelas Eqs. (4.1) e (4.4). Para o méson σ, temos

jσ(x) =
1√
2

(
ūa(x)ua(x) + d̄a(x)da(x)

)
. (4.36)

Embora há trabalhos em QCD na rede [72] e conjecturas [73] que tratam o méson

σ como Tetraquarks, em Regras de Soma, a descrição de mésons escalares leves como

estruturas desse tipo apresentam alguns problemas [74] na convergência da OPE,

o que implica numa impossibilidade na determinação de uma Janela de Borel com

estabilidade. Portanto, para nosso propósito vamos assumir o σ como sendo uma

estrutura qq̄.

Substituindo as correntes definidas pelas Eq. (4.1), (4.4) e (4.36), na Eq. (4.34),

obtemos

Πµν(p, p
′, q) =

∫
d4x

∫
d4y eip

′·x eiq·y

[
Π(c̄c)
µν (x, y) + Π(4q)

µν (x, y)

]
, (4.37)

onde Π
(c̄c)
µν (x, y) e Π

(4q)
µν (x, y) são as contribuições da parte do Charmônio e Tetra-

quark respectivamente, e são dadas por:

Π(c̄c)
µν (x, y) =

〈q̄q〉√
2
cos θ〈0|T{jψµ (x) jσ j(2)†

ν (0)} , (4.38)

Π(4q)
µν (x, y) = sen θ〈0|T{jψµ (x) jσ j(4q)†

ν (0)} . (4.39)
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A Eq. (4.38) contribui para a Eq. (4.34) somente com diagramas desconectados e,

por conta disso, não a consideraremos no cálculo dos diagramas que contribuem para

o Lado da OPE da Eq. (4.34). Logo, somente a Eq. (4.39) contribuirá para a função

de três pontos. Portanto, usando o Teorema de Wick e contraindo os campos de

quarks em termos dos quais a Eq. (4.39) está escrita, a Eq. (4.34) pode ser reescrita

como

Πµν(p, p
′, q) =

εabcεdec

(2π)4
√

2

∫
d4y

∫
d4k eiq·y Tr

[
Scea′(k − p′)γµSca′b(k)

×
(
γ5 CSq

T

b′a(y)CCSqTdb′(−y)Cγαγ5 − γαγ5CSq
T

b′a(y)CCSqTdb′(−y)Cγ5

)]
,

(4.40)

onde usamos o propagador de quarks pesados no espaço dos momentos. Através

dos propagadores definidos no Apêndice A, podemos construir os diagramas que

contribuem para o Lado da OPE da Eq. (4.40). Na Fig. 4.5 estão ilustrados somente

os diagramas com contribuições não-nulas para a estrutura tensorial p′ν qµ. Essa

estrutura, comparada com as demais, é a que contribui com mais termos na OPE,

até dimensão 5 (condensado misto). Calculando os diagramas da Fig. 4.5 usando as

integrais do Apêndice B e, em seguida, aplicando a Transformada de Borel (P 2 →
M2), obtemos a seguinte expressão para o Lado da OPE

Π(OPE)(M2, Q2) =
sen(θ)

3 24
√

2π2

1∫
0

dαe
−m2

c
α(1−α)M2 ×

×
{mc〈q̄gσ.Gq〉

Q2

[2α(1− α)− 1

α(1− α)

]
− 〈g

2
sG

2〉
25π4

}
.

(4.41)

O Lado Fenomenológico pode ser obtido usando as definições abaixo

〈0|jψµ |J/ψ(p′)〉 = mψfψεµ(p′),

〈0|jσ|σ(q)〉 = Aσ,
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〈Y (p)|jYν |0〉 = λY ε
∗
ν(p), (4.42)

na Eq. (2.72) e com isso, o Lado Fenomenológico da função de 3-pontos, Eq. (4.34)

resulta em:

Π(phen)
µν (p, p′, q) =

λYmψfψAσ gY ψσ(q2)

(p2 −m2
Y )(p′2 −m2

ψ)(q2 −m2
σ)

(4.43)

×((p′ · p)gµν − p′νqµ − p′νp′µ) + · · · ,

onde os pontos denotam as contribuições de todos os possíveis estados excitados já

discutidos no Capítulo 2. Neste ponto, o fator de forma, gY ψσ(q2), é introduzido

como a generalização do elemento de matriz, 〈J/ψσ|Y 〉, na camada de massa, para

a situação onde o méson σ é off-shell (fora da camada de massa), de acordo com a

equação abaixo

〈J/ψσ|Y 〉 = gY ψσ(q2)(p′ · p ε∗(p′) · ε(p)− p′ · ε(p) p · ε∗(p′)). (4.44)

Essa relação pode ser determinada a partir da densidade de lagrangiana efetiva que

descreve a interação entre dois mésons vetoriais e um escalar, dada por

L = igY ψσVαβA
αβ σ , (4.45)

onde Vαβ = ∂αYβ − ∂βYα e Aαβ = ∂αψβ − ∂βψα, são os campos tensoriais associados

com o Y e o J/ψ, respectivamente.

Tomando o limite p′2 = p2 = −P 2, obtemos a seguinte regra de soma, após apli-

carmos uma transformada de Borel no Lado Fenomenológico, e igulando-a com a

Eq. (4.41):

λYAσmψfψ
(m2

Y −m2
ψ)

gY ψσ(Q2)
(
e−m

2
ψ/M

2 − e−m2
Y /M

2
)

+B(Q2) e−s0/M
2

= (Q2 +m2
σ)Π(OPE)(M2, Q2),

(4.46)
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Figura 4.5: Diagramas que contribuem para o Lado da OPE na estrutura p′νqµ.

onde Q2 = −q2, e a função B(Q2) foi introduzida para considerarmos as transições

pólo-contínuo, que não são suprimidas quando fazemos apenas uma transformada de

Borel [35, 52, 75, 76]. Observe que na Eq. (4.41) temos um fator sen(θ), isso reforça

o fato que somente a componente de Tetraquarks da corrente na Eq. (4.4) contribui

para a função de 3-pontos e, consequentemente para o acoplamento Y → J/ψσ.

Na Eq. (4.46), mψ e fψ representam, respectivamente, a massa e a constante

de decaimento do J/ψ e mσ a massa do méson σ. Seus valores são: mψ = 3.1

GeV, fψ = 0.405 GeV [61], e mσ = 0.478 GeV [77], que é o valor médio do intervalo

considerado para a massa do σ na Ref. [61]. Os parâmetros λY e Aσ estão associados

com o acoplamento dos estados Y e σ com as correntes definidas pelas Eqs. (4.28)

e (4.42), respectivamente. O valor de λY é dado pela Eq. (4.33), enquanto Aσ foi

determinado na Ref. [78] cujo valor é Aσ = 0.197 GeV2.

A Eq. (4.46) é a versão da Eq. (2.75) para o caso em estudo. Dado que quere-

mos estudar a dependência de gY ψσ(Q2) com Q2 para obtermos o fator de forma,

devemos isolar gY ψσ(Q2) no lado esquerdo da Eq. (4.46). Para isso, similarmente ao

que fizemos para obter a massa da mistura, MY , usamos a Eq. (4.46) e sua deri-

vada com respeito à 1/M2, para eliminar B(Q2) dessas equações de modo a obter

uma expressão para gY ψσ(Q2). Portanto, derivando a Eq. (4.46) e isolando B(Q2),
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obtemos

−s0B(Q2) e−s0/M
2

= (Q2 +m2
σ)Π

′(OPE)(M2, Q2) +

+gY ψσ(Q2)K
(
m2
ψe
−mψ2/M2 −m2

Y e
−m2

Y /M
2
)
, (4.47)

onde K ≡ λY Aσmψfψ
(m2

Y −m
2
ψ)

e Π
′(OPE)(M2, Q2) = ∂Π(OPE)

∂(1/M2)
. Dividindo a Eq. (4.47) pela Eq.

(4.46) e isolando gY ψσ(Q2), obtemos a seguinte equação

gY ψσ(Q2) =
(Q2 +m2

σ)
[
Π
′(OPE)(M2, Q2) + s0Π(OPE)(M2, Q2)

]
K
[
(s0 −m2

ψ)e−m
2
ψ/M

2 − (s0 −m2
Y )e−m

2
Y /M

2
] . (4.48)

Portanto, para determinarmos o fator de forma gY J/ψσ(Q2), associado ao vértice

Y → J/ψσ, temos que resolver a Eq. (4.48) numericamente. Na próxima seção,

vamos discutir a solução dessa equação para alguns valores de Q2 e M2.

4.3.1 Análise Numérica

A Figura 4.6 apresenta a solução numérica da Eq. (4.48), obtida em função de

Q2 e de M2. Analogamente ao caso da massa, devemos determinar uma região em

M2, onde o fator de forma seja independente da Massa de Borel, isto é, o fator de

forma deve ser estável em M2.

Observamos na Figura 4.6, que gY ψσ(Q2) é estável para valores deM2 no intervalo

7.0 ≤M2 ≤ 10.0 GeV2, para todos os valores de Q2. Isso quer dizer que dentro desse

intervalo, podemos garantir que o fator de forma gY ψσ(Q2) seja somente função de

Q2. Na Figura 4.7, temos gY ψσ(Q2) como função de Q2, para M2 = 8.0 GeV2.

A constante de acoplamento é definida como o valor do fator de forma no pólo da

massa do méson off-shell, isto é, gY ψσ(Q2 = −m2
σ). Entretanto, observe na Figura

4.7 que o valor Q2 = −m2
σ está fora do domínio onde a regra de soma é válida. Para

contornar esse problema, vamos assumir que o fator de forma obedeça à alguma lei
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Figura 4.6: Curva 3D de gY ψσ(Q2) para alguns valores de Q2 e M2.

de função, por exemplo, à forma monopolar

gY ψσ(Q2) =
g1

g2 +Q2
. (4.49)

Com isso, determinamos os valores de g1 e g2 para os quais os pontos da regra

de soma, representados na Figura 4.7 por quadrados, sejam fitados por essa curva.

Assim, podemos extrapolar os valores do fator de forma para pontos fora do domínio

de validade das regras de soma. Fizemos o fit para
√
s0 = 4.74 GeV. Os valores de

g1 e g2 para os quais a curva dada pela Eq. (4.49) fitam os resultados da regra de

soma são

g1 = (0.58 ± 0.04) GeV; g2 = (4.71 ± 0.06) GeV2. (4.50)

A curva representada pela linha sólida na Figura 4.7, mostra que a parametrização

dada pela Eq. (4.49) reproduz com precisão os resultados da regra de soma, no

intervalo 2.0 ≤ Q2 ≤ 4.0, GeV2 onde a validade da regra de soma é garantida.

O valor da constante de acoplamento é obtido substituindo Q2 = −m2
σ na Eq.



94 Candidatos a Exóticos do Charmônio

(4.49) com os valores de g1 e g2 dados pela Eq. (4.50). Obtemos:

gY ψσ = gY ψσ(−m2
σ) = (0.13± 0.01) GeV−1. (4.51)
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Figura 4.7: Resultado das regras de soma para gY ψσ(Q2), como função de Q2, para√
s0 = 4.76 GeV (quadrados). A linha sólida representa a curva parametrizada pela

Eq. (4.49) obtida fitando os pontos obtidos via regras de soma.

O erro no valor da constante de acoplamento calculada acima é estimado levando-

se em conta variações em s0 no intervalo 4.6 ≤ s0 ≤ 4.8 GeV2, e no ângulo de mistura

no intervalo 52.50 ≤ θ ≤ 53.50.

Na Tabela 4.2, listamos alguns valores da constante de acoplamento e os cor-

respondentes fatores de forma calculados para os valores de
√
s0 considerados em

nossos cálculos.

Uma vez determinado o fator de forma, e por conseguinte, a constante de aco-

plamento, podemos estimar a largura de decaimento para o processo Y → J/ψππ,

assumindo que os píons presentes no estado final sejam resultantes do decaimento

do méson σ.
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Tabela 4.2: Parametrização monopolar dos pontos da regra de soma, para diferentes
valores de

√
s0.

√
s0 (GeV) gY ψσ(Q2) (GeV−1) gY ψσ(Q2 = −m2

σ) (GeV−1)
4.6 0.53

Q2+4.77
0.12

4.7 0.57
Q2+4.71

0.13
4.8 0.63

Q2+4.66
0.14

4.3.2 Estimando a Largura do processo Y → J/ψππ

A largura de decaimento do processo Y → J/ψσ → J/ψππ é dada por

dΓ

ds
(Y → J/ψππ) =

1

8πM2
Y

|M|2
M2

Y −m2
ψ + s

2M2
Y

Γσ(s)mσ

π

p(s)

(s−m2
σ)2 + (mσΓσ(s))2

,

(4.52)

com p(s) dado por

p(s) =

√
λ(M2

Y ,m
2
ψ, s)

2mY

, (4.53)

onde λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc. Γσ(s) é a largura do méson σ fora

da camada de massa [77]:

Γσ(s) = Γ0σ

√
λ(s,m2

π,m
2
π)

λ(m2
σ,m

2
π,m

2
π)

m2
σ

s
, (4.54)

onde Γ0σ é o valor experimental para a largura de decaimento do méson σ em dois

píons: Γ0σ = (0.4− 0.7) GeV [61].

A amplitude invariante ao quadrado é obtida a partir do elemento de matriz

dado pela Eq. (4.44). Assim, temos

|M|2 = g2
Y ψσ(s)f(mY ,mψ, s), (4.55)

onde gY ψσ(s) é o fator de forma do vértice Y J/ψσ, dado pela Eq. (4.49) usando
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s = −Q2, e

f(mY ,mψ, s) =
1

3

(
m2
Ym

2
ψ +

1

2
(m2

Y +m2
ψ − s)2

)
.

Dessa forma, a largura de decaimento para o processo Y (4260)→ J/ψππ é dada

por

Γ =
mσ

16π2M4
Y

∫ (MY −mψ)2

(2mπ)2
ds g2

Y ψσ(s)Γσ(s)(M2
Y −m2

ψ + s)f(MY ,mψ, s)×

× p(s)

(s−m2
σ)2 + (mσΓσ(s))2

. (4.56)

Levando em conta as variações em s0, θ, Γ0σ e mσ nos mesmos intervalos men-

cionados anteriormente, obtemos das Eqs. (4.51) - (4.56) o seguinte valor para a

largura

Γσ(Y → J/ψππ) = (1.0± 0.4) MeV. (4.57)

A seguir, vamos aplicar o procedimento discutido acima para determinar a lar-

gura do mesmo processo, supondo agora que os píons venham de um outro estado

intermediário, o f0(980).

4.3.3 O Fator de Forma e o Acoplamento do Vértice Y J/ψf0(980)

Até o momento, discutimos o cálculo da largura de decaimento do processo Y →
J/ψππ supondo que os píons resultavam do méson sigma como estado intermediário.

Entretanto, os píons podem também vir do estado intermediário f0(980). Nesta

seção, vamos determinar o fator de forma e a constante de acoplamento para o

vértice Y J/ψf0(980).

Como discutido anteriormente, para determinarmos o fator de forma e conse-

quentemente, a constante de acoplamento via regras de soma, temos que calcular a

função de 3-pontos que, para este caso, tudo o que temos que fazer é substituir na

Eq. (4.34) a corrente interpolante do méson σ pela corrente do f0(980). A exemplo
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do méson σ, vamos também considerar o f0(980) como um estado quark-antiquark

com uma componente estranha. Deste modo, a corrente interpolante associada ao

f0(980) é

jf0 = cos(α)s̄s+
sin(α)√

2
(ūu+ d̄d). (4.58)

A corrente acima, Eq. (4.58), foi usada nas Refs. [79, 80, 81] para estudar di-

ferentes decaimentos hadrônicos dos mésons D’s em f0(980). O valor de α usado

nesses trabalhos é ≈ 370 que é o mesmo valor que vamos usar em nossos cálculos.

Como a corrente definida para o Y , Eq. (4.4), não tem conteúdo de quark es-

tranho, o primeiro termo da corrente na Eq. (4.58) não contribui para a função de

vértice do processo considerado. Além disso, comparando esse termo com a corrente

definida para o σ, Eq. (4.36), a única diferença entre elas é o fator sen(α). Como

consequência, o Lado da OPE da função de vértice para esse processo, será igual ao

do caso da subseção anterior multiplicado por sen(α).

No Lado Fenomenológico, temos que substituir mσ por mf0 , e Aσ por Af0 , onde

Af0 = 〈0|jf0 |f0(980)〉 foi calculado na Ref. [81] e o valor obtido foi Af0 = (0.19 ±
0.02)GeV2. Para a massa do f0, estamos usando mf0 = (990± 20)MeV [61].

Na TabeIa 4.3, listamos os valores da constante de acoplamento, gY ψf0(980), e os

correspondentes fatores de forma, calculados para diferentes valores de
√
s0.

Tabela 4.3: Valores da constante de acoplamento, gY ψf0(980), e seus correspondentes
fatores de forma, para diferentes valores de

√
s0.

√
s0 (GeV) gY ψf0(Q

2) (GeV−1) gY ψf0(Q
2 = −m2

f0
) (GeV−1)

4.6 0.28
Q2+2.06

0.26
4.7 0.29

Q2+2.09
0.26

4.8 0.29
Q2+2.12

0.26

Para estimar a largura de decaimento do processo Y → J/ψππ, considerando

que os píons no estado final venham do méson f0(980) usamos a Eq. (4.56), e subs-

tituímos os parâmetros relacionados com o σ pelos do f0(980). Com isso, obtemos:

Γf0(Y → J/ψππ) = (3.1± 0.2) MeV . (4.59)
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Deste modo, a largura de decaimento no canal Y → J/ψππ considerando os proces-

sos Y → J/ψσ e Y → J/ψf0 é:

Γ(Y → J/ψππ) = (4.1± 0.6) MeV, (4.60)

que é consistente com o limite inferior dado na Ref. [82]: Γ(Y → J/ψππ) > 509

KeV.

Podemos também dar uma estimativa da largura de decaimento do processo Y →
J/ψKK, que também foi observado [83]. Para isso, basta substituir na Eq. (4.54) os

parâmetros relacionados ao píon e ao méson σ pelos parâmetros do méson f0(980)

e do K. Usando mK = (493.677± 0.016) MeV [61] e a Eq. (4.56) com os fatores de

forma gY ψf0 listados na Tabela III e tomando as variações em
√
s0, θ e Γ0f0 , obtemos

o seguinte valor para a largura de decaimento do processo Y → J/ψKK:

Γf0(Y → J/ψKK) = (1.3± 0.4) MeV. (4.61)

O valor experimental da largura de decaimento do Y (4260), Γexp ≈ (95 ± 14)

MeV [61], é o valor da largura total, ou seja, é o resultado da soma das larguras

parciais de todos os possíveis canais de decaimento. Neste estudo usamos as regras de

soma da QCD para calcular o valor da largura somente para os canais Y → J/ψππ

e Y → J/ψKK. Para efeito de comparação, necessitamos da largura de todos

os possíveis canais de decaimento do Y (4260). Certamente, com a corrente mista

definida pela Eq. (4.4), o principal canal de decaimento do Y deve ser em mésons

D, devido principalmente à componente do Charmônio na corrente mista. Contudo,

com a técnica das regras de soma não é possível obter informações da largura desses

canais em mésons D, isso por que as regras de soma só fornecem resultados que

dizem respeito ao estado fundamental. Portanto, considerando a contribuição da

componente do Charmônio na corrente mista, Eq. (4.4), só é possível estudar o

decaimento do J/ψ que está abaixo do limiar energético para decair em mésons D.
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Considerando os limites superiores para as razões de ramificação

B(Y (4260)→ X)

B(Y (4260)→ J/ψππ),
(4.62)

onde X = DD̄, DD̄∗ e D∗D̄∗, divulgadas pelas colaborações BaBar[84] e CLEO [85]

cujos valores podem ser vistos na Tabela 4.4, podemos observar que a largura obtida

na Eq. (4.60), para o canal Y → J/ψππ, é consistente com a largura experimental

de decaimento total do Y (4260). Isso, implica que existe a possibilidade de que o

Y (4260) possa ser interpretado como uma mistura Charmônio - Tetraquark.

Tabela 4.4: Limites superiores para as razões de ramificação, Eq. (4.62), medidas
pelas colaborações CLEO-c e BaBar.

Estado Final X B(Y (4260)→X)
B(Y (4260)→J/ψππ)

DD̄ < 4.0
D∗D̄ < 45
D∗D̄∗ < 11

4.4 O Estado Y (3940)

A exemplo do que foi feito na Seção 4.1, vamos escrever uma corrente interpolante

representando uma mistura, neste caso entre o estado do Charmônio χc0 e a molécula

D∗D̄∗ com JPC = 0++, definida do seguinte modo

j(x) = a cos θ jχc0 (x) + sin θ j
D∗D∗ (x) , (4.63)

onde θ novamente representa o ângulo de mistura enquanto a = −〈q̄q〉/
√

2. As

correntes interpolantes associadas ao méson χc0 e à molécula D∗D̄∗ são definidas,

respectivamente, como

jχc0 (x) = c̄a(x)ca(x) , (4.64)

j
D∗D∗ (x) = (q̄a(x)γµca(x)) (c̄b(x)γµqb(x)) . (4.65)
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Definida a corrente de mistura, passamos agora ao cálculo da massa da estrutura

descrita por ela.

4.4.1 A Massa da Mistura χc0-D
∗D̄∗

A função de dois pontos para a mistura descrita pela corrente (4.63) é dada por

Π(q) = i

∫
d4x eiq·x 〈0|T{j(x) j†(0)}|0〉

= i

∫
d4x eiq·x

{
〈q̄q〉2

2
cos2 θΠχc0(x) + sen2 θΠD∗D̄∗(x)

− 〈q̄q〉√
2
cos θ sen θ

[
Πmix(x) + Π∗mix(x)

]}
, (4.66)

onde Πχc0(x) e ΠD∗D̄∗(x) são as funções de correlação associadas ao méson χc0 e a

molécula D∗D̄∗, respectivamente, e foram calculadas nas Refs. [86, 34]. As funções

de correlação Πmix(x) e Π∗mix(x) são as funções que temos que calcular e estão

associadas com a parte de mistura. Explicitamente, temos

Πmix(x) = 〈0|T{jχc0(x) j†
D∗D̄∗

(0)}|0〉 ,

= Tr[Sqab(0) γµ S
c
bd(−x)Scda(x)γµ] , (4.67)

Π∗mix(x) = 〈0|T{jD∗D̄∗(x) j†χc0(0)}|0〉 ,

= Tr[Sqab(0) γµ S
c
bd(x)Scda(−x)γµ] , (4.68)

onde Sq(x) e Sc(x) são os propagadores dos quarks leve e charm, respectivamente.

No Lado da OPE, novamente trabalhamos em ordem dominante em αs, e levamos

em conta os condensados até dimensão oito. Com isso, obtemos para esse lado a

seguinte expressão

ΠOPE =

∞∫
4mc2

ρOPE(s)

s− q2
, (4.69)
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onde a densidade espectral ρOPE(s) é igual a

ρOPE(s) =
1

2
〈q̄q〉2cos2θ ρχc0 (s) + sin2θ ρ

D∗D∗ (s)

− 〈q̄q〉√
2

sin θ cos θ ρ
mix

(s) , (4.70)

onde as contribuições associadas com o méson χc0, isto é, ρχc0 (s) estão escritas abaixo

[34]

ρpert
χc0

(s) = −3m2
c

8π2
v

(
4− 1

x

)
,

ρ〈G
2〉

χc0
(s) =

gG

25 π2M2
B

v

(
2 +

2

x
− m2

c/M
2
B

x2

)
,

ρgG
χc0

(s) = − gGG

3 · 27 π2M4
B

v

x

[
49 +

6

x
+ (x−m2

cτ) ,

×
(

28 +
49

x
+

3

x2

)]
, (4.71)

enquanto para a molécula D∗D̄∗, ρD∗D̄∗(x), temos [86]

ρpert
D∗D∗

(s) =
m8
c

5 · 212π6

[
v

(
480 +

1460

x
− 274

x2
− 38

x3
+

1

x4
,

)
+120Lv

(
8x− 1− 6 Log(x)− 8

x
+

2

x2

)
− 1440L+

]
,

(4.72)

ρ〈q̄q〉
D∗D∗

(s) =
m5
c〈q̄q〉

64π4

[
v

(
6− 5

x
− 1

x2

)
+6Lv

(
2x−2+

1

x

)]
,

(4.73)
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ρ〈G
2〉

D∗D∗
(s) =

m4
cgG

3 · 210π6

[
v

(
6− 5

x
− 1

x2

)
+6Lv

(
2x−2+

1

x

)]
,

(4.74)

ρ〈q̄Gq〉
D∗D∗

(s) =
3m3

c〈q̄Gq〉
128π4

(v
x
− 2Lv

)
,

(4.75)

ρ〈q̄q〉
2

D∗D∗
(s) =

m2
c ρ〈q̄q〉2
4π2

v ,

(4.76)

ρgG
D∗D∗

(s) =
m2
cgGG

3 · 212π6

[
v

(
6− 25

x
+

1

x2

)
+6Lv

(
2x+2+

1

x

)]
,

(4.77)

ρ〈8〉
D∗D∗

(s) = −〈q̄q〉〈q̄Gq〉
8π2

v

(
m4
c/M

4
B

x

)
. (4.78)

Finalmente, para o termo de mistura, ρmix(s), temos

ρ
〈q̄q〉
mix(s) =

m2
c〈q̄q〉
4π2

v

(
4− 1

x

)
,

ρ
〈q̄Gq〉
mix (s) = 0 . (4.79)
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Nas expressões acima, usamos as seguintes definições abaixo

x = m2
c/s (4.80)

v =
√

1− 4x (4.81)

Lv = Log
(

1 + v

1− v

)
(4.82)

L+ = Li2
(

1 + v

2

)
− Li2

(
1− v

2

)
. (4.83)

Usando a parametrização 〈0|j|Y 〉 = λ na Eq. (2.38), obtemos o Lado Fenome-

nológico, isto é,

Πfen(q) =
λ2
Y

M2
Y − q2

+

∞∫
s0

ds
ρcont(s)

s− q2
. (4.84)

Uma vez calculada a OPE e o Lado Fenomenológico, podemos agora usar a

Eq. (2.47) para determinarmos a massa da mistura.

Análise Numérica

Na Fig. 4.8 mostramos os plots para cada um dos termos da OPE. Essas con-

tribuições foram obtidas para o ângulo de mistura no intervalo 71.00 ≤ θ ≤ 81.00.

Fora desse intervalo a convergência da OPE não pode ser mais garantida. O critério

definido pela Eq. (2.48) é satisfeito para valores de M2
B acima de 2.40 GeV2, e por

isso, fixamos esse valor como o mínimo da Janela de Borel, isto é, M2
Bmin = 2.40

GeV2.

Na Fig. 4.9 mostramos as curvas associadas com as contribuições do pólo e do

contínuo. Note que, tais contribuições se tornam iguais quando M2
B = 2.70 GeV2,

logo, esse valor será o máximo da Janela de Borel.

Obtida a Janela de Borel, podemos agora determinar a massa da mistura χc0 −
D∗D̄∗. Na Fig. 4.10, mostramos as curvas para a massa da mistura χc0−D∗D̄∗ como

função da massa de Borel para três valores de s0 no intervalo 4.30 ≤ s0 ≤ 4.50, onde

os parênteses em cada curva indicam a Janela de Borel em cada caso. Portanto,
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Figura 4.8: Convergência da OPE na região 1.7 ≤ M2
B ≤ 3.8 GeV2 para

√
s0 =

4.40 GeV and θ = 76.00. Estão plotadas as contribuições relativas iniciando com
a contribuição perturbativa (linhas com círculos), e cada uma das outras linhas
representam as contribuições relativas após a adição de um condensado a mais na
expansão: +〈q̄q〉 (linha tracejada), + 〈G2〉 (linha pontilhada), +〈q̄Gq〉 (linha ponto-
tracejada),+〈q̄q〉2+〈g3G3〉 (linha com triângulos) and 〈q̄q〉 · 〈q̄Gq〉 (linha sólida).

considerando as incertezas apontadas na Tabela 4.1, obtemos

MY = (3.95± 0.11) GeV . (4.85)

Essa valor é compatível com a massa experimental da estrutura Y (3940) obser-

vada pela Colaboração BELLE em [87]. Portanto, do ponto de vista das RSQCD, o

estado escalar formado pela mistura χc0−D∗D̄∗ é um bom candidato para explicar o

estado Y (3940). Uma vez obtida a massa, podemos usar esse resultado para estimar

o valor de λ cujo valor é

λY = (2.1± 0.6)× 10−2 GeV5. (4.86)

Dado que a corrente definida na Eq. (4.63) descreve a massa do estado Y (3940),

podemos testar se, com a mesma corrente, podemos determinar a largura de decai-

mento desse estado.
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Figura 4.9: A curva sólida está associada com a contribuição do pólo, enquanto a
linha pontilhada representa a contribuição do contínuo. Em ambas as curvas foram
usados os seguintes valores para s0 e θ:

√
s0 = 4.40GeV and θ = 76.00.

4.5 Largura de decaimento do Y (3940)

O estado Y (3940) decai nos seguintes canais:

Y (3940)→ J/ψ ω ,

Y (3940)→ D D̄ ,

Y (3940)→ γ γ . (4.87)

Nas próximas subseções, vamos calcular os acoplamentos da corrente de mistura

Eq. (4.63) com os mésons acima, de modo a estimar a largura total e comparar com

o valor experimental da largura do estado Y (3940). Vamos iniciar esse estudo pelo

canal Y → J/ψ ω.

4.5.1 Estimando a Largura do canal Y → J/ψ ω

A função de três pontos para o vértice Y → J/ψ ω, com os quadrimomentos

definidos de acordo com a Fig. 4.11, é definida como

Πµν(p, p
′, q) =

∫
d4x

∫
d4y eip

′·x eiq·y
(

Πχc0ωψ
µν (x, y) + ΠD∗D∗ωψ

µν (x, y)
)
, (4.88)
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s0 = 4.50GeV (linha tracejada). Os parênteses

indicados em cada curva representa a Janela de Borel.
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Figura 4.11: Vértice Y → J/ψ ω.

onde Πχc0ωψ
µν (x, y) é a contribuição para a Eq. (4.88) associada com o acoplamento

entre os mésons χc0, J/ψ e ω,

Πχc0ωψ
µν (x, y) = 〈0|T{jψµ (x) jων (y) j†χc0(0)}|0〉 . (4.89)

Essa contribuição surge da componente a cos θ jχc0(x) da corrente definida pela

Eq. (4.63). Na Eq. (4.89), jων (y) é a corrente interpolante associada ao méson ω,

definida como

jων (y) =
1

6

(
ūb(y)ub(y) + d̄c(y)dc(y)

)
. (4.90)
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As correntes interpolantes associadas ao mésons J/ψ e ω já foram definidas pelas

Eqs. (4.1) e (4.65), respectivamente. Analogamente ao caso da Seção 4.3, a com-

ponente Πχc0ωψ
µν (x, y) da função de três pontos dada pela Eq. (4.88) não contribui

com diagramas conectados. Somente a componente associada com o acoplamento

da molécula D∗D̄∗ com os mésons J/ψ e ω, isto é, o termo ΠD∗D∗ωψ
µν (x, y) contribui

para a Eq. (4.88). Explicitamente, ele é dado por

ΠD∗D∗ωψ
µν (x, y) = 〈0|T{jψµ (x) jων (y) j†D∗D∗(0)}|0〉 , (4.91)

onde jD∗D∗(x) já foi definida pela Eq. (4.65). Portanto, substituindo as correntes

definidas pelas Eqs. (4.1), (4.65) e (4.90) na Eq. (4.88), obtemos

Πµν(p, p
′, q) = −

∫
d4x

∫
d4y eip

′·x eiq·y Tr[Scb′a(−x)γµS
c
ae(x)γαSqea′(−y)γνS

q
a′b′(y)γα],

(4.92)

onde Scab(x) é o propagador do quark charm e, como dissemos anteriormente, ele é

escrito no espaço dos momentos, assim, a equação acima assume a forma

Πµν(p, p
′, q) = −

∫
d4x

∫
d4y

∫
d4p1

(2π)4

∫
d4p2

(2π)4
eip
′·x eiq·y ei(p

′−p1−p2)·x

× Tr[Scb′a(p2)γµS
c
ae(p1)γαSqea′(−y)γνS

q
a′b′(y)γα] . (4.93)

Integrando em x, obtemos δ(p′ − p1 − p2), que após nova integração, desta vez em

p2 e definindo p1 ≡ k, simplificamos a Eq. (4.93), dada agora por

Πµν(p, p
′, q) = − 1

(2π)4

∫
d4y

∫
d4k eiq·y Tr[Scb′a(p2)γµS

c
ae(p1)γαSqea′(−y)γνS

q
a′b′(y)γα] .

(4.94)

Assim, de posse da Eq. (4.94), podemos calcular a OPE até dimensão sete, isto
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é,

ρ(s,Q2) = ρpert(s,Q2) + ρ〈q̄q〉(s,Q2) + ρ〈G
2〉(s,Q2) + ρ〈q̄Gq〉(s,Q2) + ρ〈q̄q〉〈G

2〉(s,Q2) ,

(4.95)

com

ρpert(s,Q2) = ρ〈q̄q〉(s,Q2) = 0 , (4.96)

ρ〈G
2〉(s,Q2) = − 〈g

2
sG

2〉
32 · 210 π4

1∫
0

dα δ

[
s− m2

c

α(1−α)

]
× (3− 3α + α2) , (4.97)

ρ〈q̄Gq〉(s,Q2) =
mc〈q̄Gq〉
72π2Q2

1∫
0

dα δ

[
s− m2

c

α(1−α)

]
,

ρ〈q̄q〉〈G
2〉(s,Q2) =

mc〈q̄q〉〈g2
sG

2〉
33 · 25π2Q4

1∫
0

dα δ

[
s− m2

c

α(1−α)

]

× (1− 3α(1− α))

α(1− α)
. (4.98)

Portanto, após aplicarmos a Transformada de Borel, o Lado da OPE da Eq. (4.88)

será

ΠOPE(M2
B, Q

2) = sin θ

+∞∫
4m2

c

ds e−s/M
2
B ρ(s,Q2) , (4.99)

com ρ(s,Q2) dado pela Eq. (4.95).

Usando as parametrizações abaixo,

〈0| jψµ |J/ψ(p′)〉 = Mψfψ εµ(p′),

〈0| jων |ω(q)〉 = Mωfω εν(q), (4.100)

〈Y (p)| jD∗D∗ |0〉 = λY ,
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ondeMψ,Mω, fψ, fω, εµ(p′) e εν(q) são, respectivamente, as massas, as constantes de

decaimento e os vetores de polarização dos mésons J/ψ e ω, o Lado Fenomenológico

fica

Πfen
µν (p, p′, q) =

λY Mψfψ Mωfωεµ(p′) εν(q)

(p2 −M2
Y )(p′2 −M2

ψ)(q2 −M2
ω)
〈ω(q) J/ψ(p′)|Y (p)〉 .

(4.101)

Para calcularmos o elemento de matriz 〈ω(q) J/ψ(p′)|Y (p)〉, considere a densidade

de Lagrangiana LY ωψ descrevendo a interação entre Y e os mésons J/ψ e ω,

LY ωψ = i gY ωψ Y Vαβ ψ
αβ , (4.102)

onde Vαβ = ∂αVβ − ∂βVα e ψαβ = ∂αψβ − ∂βψα. Assim, o elemento de matriz será

〈ω(q) J/ψ(p′)|Y (p)〉 = gY ωψ

{
[p′ · ε∗(q)][q · ε∗(p′)]− (p′ · q)[ε∗(p′) · ε∗(q))]

}
.

(4.103)

Substituindo esse resultado na Eq. (4.101), e sabendo que

∑
pol.

εµ(p′)ε∗ν(p
′) = −gµν +

p′µp
′
ν

M2
ψ

,

∑
pol.

εµ(q)ε∗ν(q) = −gµν +
qµqν
M2

ω

, (4.104)

o Lado Fenomenológico finalmente pode ser reescrito como

Πfen
µν (p, p′, q) =

λY Mψfψ Mωfω gYψω(q2)

(p2 −M2
Y )(p′2 −M2

ψ)(q2 −M2
ω)

×
[
qµp
′
ν − (p′ · q)gµν

]
+ · · · . (4.105)

Portanto, na estrutura p′νqµ, após aplicarmos uma Transformada de Borel, obtemos
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a seguinte Regra de Soma,

λYMωfωMψfψ gYψω(Q2)

(M2
Y −M2

ψ)(Q2 +M2
ω)

(
e−M

2
Y /M

2
B − e−M2

ψ/M
2
B

)
+H(Q2) e−s0/M

2
B = ΠOPE(M2

B, Q
2) ,

(4.106)

onde Q2 = −q2, e a função H(Q2) representa as transições pólo-contínuo [52, 35, 75].

Seguindo a estratégia realizada na Seção 4.3, podemos derivar uma equação para

g
Y ψω

(Q2) como a Eq. (4.48) e, com isso, estudar a dependência de g
Y ψω

(Q2) com Q2

numericamente.

Na análise numérica usamos os valores experimentais das massas dos mésons

e constantes de decaimento: Mψ = 3.10GeV, fψ = 0.405GeV, Mω = 0.782 GeV,

fω = 0.046 GeV. Para a massa do Y (3940) também usamos o valor experimental

medido pela Colaboração Belle [87], enquanto o valor de λY usado é dado pela

Eq. (4.86).
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Figura 4.12: Fator de forma g
Yψω

(Q2) como função do momento Q2 bem como da
massa de Borel M2

B.

Na Fig. 4.12 podemos ver o comportamento de g
Yψω

(Q2) em função do momento

Q2 e também da massa de Borel M2
B. Devemos selecionar uma região em M2

B na

qual o fator de forma seja o mais independente possível da massa de Borel, e pela
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figura, isso ocorre no intervalo 1.8 GeV2 ≤ M2
B ≤ 4.0 GeV2. Portanto, esse é o

intervalo no qual podemos garantir a confiabilidade da Regra de Soma dada pela

Eq. (4.106) bem como a dependência de g
Yψω

(Q2) somente com o momento Q2.

Na Fig. 4.13 está plotada a dependência de g
Yψω

(Q2) como função somente do

momento Q2. A exemplo do que foi feito para o caso do Y (4260), parametrizamos

os pontos representando a dependência do fator de forma com Q2 na Fig. 4.13 por

uma lei de função, de modo a extrapolarmos o seu valor no pólo da massa do méson

ω, pois dessa forma obtemos a constante de acoplamento. Usando a parametrização

monopolar, temos

g
Yψω

(Q2) =
g1

g2 +Q2
, (4.107)

cujo fit para as constantes g1 e g2 resulta nos seguintes valores:

g1 = (4.0 ± 1.0) GeV;

g2 = (7.4 ± 0.2) GeV2. (4.108)
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Figura 4.13: Dependência de g
Yψω

(Q2), com Q2 para
√
s0 = 4.40 GeV (pontos). A

curva representada pela linha sólida é a parametrização dessa dependência através
da Eq. (4.107).
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Portanto, o valor da constante de acoplamento g
Yψω

será

g
Yψω

= g
Yψω

(−M2
ω) = (0.58 ± 0.14) GeV−1. (4.109)

Obtido o valor da constante de acoplamento, podemos estimar o valor da largura

de decaimento para o processo Y → J/ψω, isto é, Γ(Y → J/ψω), dada pela equação

ΓY (3940)→J/ψ ω =
g2
Yψω

3

p(MY ,Mω,Mψ)

8πM2
Y

×
(
M2

ψM
2
ω +

1

2
(M2

Y −M2
ψ −M2

ω)2

)
, (4.110)

onde

p(a, b, c) ≡
√
a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2

2a
. (4.111)

Substituindo o valor de g
Yψω

na Eq. (4.110), obtemos

ΓY (3940)→J/ψ ω = (1.7 ± 0.6) MeV. (4.112)

Esse resultado é menor do que a largura total experimental do estado Y (3940),

porém, é consistente com o limite inferior estabelecido para o processo estabelecido

nas Refs. [87, 88, 89]: Γ > 1 MeV. Tal valor também é da mesma ordem dos valores

obtidos para o mesmo processo nas Refs. [90, 91].

4.5.2 Estimando a Largura do canal Y → D D̄

Como discutido no fim da Seção 4.3.3, o principal decaimento de uma corrente

mista possuindo uma componente de Charmônio seria num par de mésons D’s.

Entretanto, como enfatizamos várias vezes no Capítulo 2, a técnica das RSQCD nos

permite extrair somente informações a respeito do estado fundamental, isto é, no

caso atual, informações a respeito do méson χc0, que está abaixo do limiar energético

para decair num par de mésons D. Por outro lado, a componente associada com a

molécula D∗D̄∗ também não permite o decaimento no par DD̄.
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4.5.3 Estimando a Largura do canal Y → γ γ

A função de três pontos neste caso é definida como

Πµν(p, p
′, q) =

∫
d4x

∫
d4y eip

′·x eiq·y 〈0|T{jγµ(x)jγν (y)j†(0)}|0〉 , (4.113)

onde jγµ(x) é a corrente interpolante para o fóton cuja expressão é igual a

jγµ =
2

3
e
(
ūaγµua + c̄aγµca

)
− 1

3
e
(
d̄aγµda + s̄aγµsa

)
. (4.114)

Substituindo a Eq. (4.114) e a Eq. (4.63) na Eq. (4.113), o Lado da OPE pode

ser escrito como

ΠOPE(M2
B, Q

2) =
8

3
e2

[
ΠOPE
J/ψ ω(M2

B, Q
2) + ΠOPE

γγ (M2
B, Q

2)

]
, (4.115)

onde ΠOPE
J/ψ ω(M2

B, Q
2) é a expressão obtida para a OPE na seção anterior dada pela

Eq. (4.99), enquanto a expressão para ΠOPE
γγ (M2

B, Q
2) até dimensão sete nos con-

densados possui a seguinte forma

ΠOPE
γγ (M2

B, Q
2) = sin θ

(
Πpert
γγ (M2

B ,Q
2) + Π〈q̄q〉γγ (M2

B ,Q
2) + Π〈G

2〉
γγ (M2

B ,Q
2)

+ Π〈q̄Gq〉γγ (M2
B ,Q

2) + Π〈q̄q〉〈G
2〉

γγ (M2
B ,Q

2)

)
, (4.116)

com



114 Candidatos a Exóticos do Charmônio

Πpert
γγ (M2

B ,Q
2) = Π〈q̄q〉γγ (M2

B ,Q
2) = 0 ,

Π〈G
2〉

γγ (M2
B ,Q

2) = − 〈g
2
sG

2〉
32 ·210 π4

[
1− 2m2

c/Q
2

vQ
Log

(
vQ+1

vQ−1

)]

Π〈q̄Gq〉γγ (M2
B ,Q

2) =
mc〈q̄Gq〉
72π2Q2

[
1− 2m2

c/Q
2

vQ
Log

(
vQ+1

vQ−1

)]

Π〈q̄q〉〈G
2〉

γγ (M2
B ,Q

2) = − mc〈q̄q〉〈g2
sG

2〉
33 ·25 π2M2

B Q
2

[
3−2

(
vQ−

m2
c/Q

2

vQ

)
× Log

(
vQ+1

vQ−1

)]
(4.117)

onde vQ =
√

1 + 4m2
c/Q

2.

O Lado Fenomenológico será

Πfen
µν (p, p′, q) = −e

2 λY g
Yγγ

(q2)

(p2 −M2
Y )

×
[
qµp
′
ν − (p′ · q)gµν

]
+ · · · , (4.118)

onde os momentos p′ e q estão associados com os dois fótons no vértice. Portanto,

na estrutura tensorial p′ν qµ, obtemos a seguinte Regra de Soma

e2λY g
Yγγ

(Q2)e−M
2
Y /M

2
B + F (Q2) e−s0/M

2
B = ΠOPE(M2

B, Q
2), (4.119)

onde, a exemplo do caso anterior, definimos a função F (Q2) para lidar com as tran-

sições pólo-contínuo. Novamente para estudarmos o comportamento de g
Yγγ

(Q2),

temos de resolver a Eq. (4.119) numericamente.

A Fig. 4.14 mostra a dependência de g
Yψω

(Q2) com o momento Q2 e com a massa

de BorelM2
B. Note que, uma boa estabilidade com a massa de Borel é obtida para o

fator de forma no intervalo 4.0 GeV2 ≤M2
B ≤ 7.0 GeV2 e, portanto, é nessa região

que devemos estudar o comportamento de g
Yψω

(Q2) como função do momento. Para
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Figura 4.14: Fator de forma g
Yγγ

(Q2) como função do momento Q2 e da massa de
Borel M2

B.

isso, utilizamos novamente uma parametrização monopolar, Eq. (4.107), dos pontos

da Fig. 4.15, onde neste caso, os valores de g1 e g2 são: g1 = (0.08 ± 0.05)GeV e

g2 = (3.13 ± 0.22)GeV2. O resultado da extrapolação da curva representada pela

linha sólida para Q2 = 0 está indicada pelo símbolo “×” na Fig. 4.15, e neste ponto

o fator de forma g
Yψω

(Q2 = 0) dá o seguinte valor para a constante de acoplamento

g
Yγγ

= (0.025± 0.010)GeV−1 . (4.120)

A largura de decaimento para o processo Y → γ γ é dada por [92]:

ΓY (3940)→γγ =
π

4
α2
emM

3
Y g

2
Yγγ

, (4.121)

onde αem ' 1/137 é a constante de estrutura fina. Substituindo o valor da constante

de acoplamento obtido acima na Eq. (4.121), obtemos a largura de decaimento do

processo Y → γ γ,

ΓY (3940)→γγ = (1.6± 1.3)KeV. (4.122)

Tomando o produto entre os valores das larguras dadas pelas Eq. (4.112) e (4.122),

isto é, ΓY→γγ×ΓY→J/ψ ω, podemos comparar com os valores experimentais divulgados
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Figura 4.15: Dependência de g
Yγγ

(Q2) com Q2 para
√
s0 = 4.40 GeV (pontos).

Novamente, a linha sólida representa o fit dos pontos da Regra de Soma obtidos
resolvendo numericamente a Eq. (4.119). O valor do acoplamento em Q2 = 0 está
indicado na figura pelo símbolo ×.

pelas Colaborações BABAR [93] e Belle [94],

ΓY (3940)→γγ × ΓY→J/ψ ω ∼ O(103)KeV2 . (4.123)

Esse resultado é consistente em magnitude com os valores medidos pelas Colabora-

ções citadas acima. Com isso, dado que com a corrente mista Eq. (4.63), obtemos

para o ângulo de mistura igual a θ = (76.0 ± 5.0)0, um valor de massa consistente

com o experimental para a estrutura Y (3940), podemos afirmar que o estado em

questão pode ser explicado, sob a perspectiva das RSQCD, como sendo uma mistura

entre os estados χc0 −D∗D̄∗.



CAPÍTULO 5

CONCLUSÃO

Nesta Parte I da tese, apresentamos a técnica das Regras de Soma da QCD

(RSQCD), discutindo em detalhes seus principais aspectos. Em particular, mos-

tramos como utilizá-la para extrair propriedades de sistemas hadrônicos tais como

massa, constantes de decaimento e acoplamento. Com a informação desta última,

podemos obter também a largura de decaimento. Com essa finalidade, aplicamos as

RSQCD para investigar alguns estados observados pelas Colaborações BESIII, Belle

e BaBar. Embora esses estados estejam situados na região de massa do Charmônio,

a maioria deles não pode ser entendida como simples estados cc̄, desafiando nosso

entendimento do espectro da QCD. Esses estados são chamados XY Z e são fortes

candidatos a estados exóticos. Particularmente, calculamos a massa, as constantes

de decaimento e acoplamento além da largura de decaimento dos estados Z+
c (3900),

Z+
cs(3970), Y (4260) e Y (3940) em seus possíveis canais.

Para o estado carregado Z+
c (3900) usamos um modelo de Tetraquark. Como

mencionado no Capítulo 2, para sistemas cujo conteúdo de quarks e números quânti-

cos JP sejam os mesmos, isto é, sistemas descritos pela mesma corrente interpolante,

os cálculos das RSQCD fornecerão os mesmos resultados para as densidades espec-

trais e, portanto, a mesma regra de soma. Como consideramos o estado Z+
c (3900) o

parceiro de isospin do X(3872), ambos possuem o mesmo conjunto JP , logo, a regra

de soma do X(3872) é a mesma para o Z+
c (3900). Dessa forma, para testarmos
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se o modelo Tetraquarks, que fornece um resultado para a massa, compatível com

o experimento, calculamos a largura de decaimento dessa estrutura nos possíveis

canais de decaimento: Z+
c → J/ψπ+, Z+

c → ηcρ
+ e Z+

c → D+D̄∗. Para isso, no

Lado da OPE para a regra de soma em todos esses canais, consideramos somente

contribuição dos diagramas como os da Fig. 3.4, chamados de diagramas conectados

por cor. Dessa forma, garantimos que o estado de Tetraquark descrito pela corrente

interpolante esteja associado a um Tetraquark genuíno. Como resultado, obtivemos

uma largura total de decaimento igual a ΓZc = (63.0 ± 18.0) MeV. Este valor é

compatível com os valores de largura do Z+
c observados pelas Colaborações BESIII

e Belle cujos valores medidos são, respectivamente, iguais a ΓBESIIIZc
= (46 ± 22)

MeV [16] e ΓBelleZc
= (63± 35) MeV [25].

Além do estado Z+
c (3900) baseado na predição da Ref. [56], onde os autores

afirmam que deve haver o parceiro estranho do Z+
c , chamado de Z+

cs, calculamos

a possível largura de decaimento desse estado descrito também por uma corrente

tipo Tetraquarks de modo a predizermos seu valor em futuras buscas experimen-

tais. Analogamente ao caso do Z+
c , no Lado da OPE, levamos em conta somente

diagramas conectados por cor. Com isso, as larguras de decaimento nos seguintes

canais foram calculadas: Z+
cs → J/ψK+, Z+

cs → ηcK
∗+ e Z+

cs → D+
s D̄

∗. Assim,

a largura total de decaimento desse estado, obtida dentro das RSQCD, é igual a

ΓZcs = 24.9±12.6 MeV. Este valor é menor que a largura do Z+
c , devido ao valor do

condensado de quarks estranhos (〈s̄s〉) ser menor que o condensado de quarks leves

〈q̄q〉.

Além de usarmos uma corrente Tetraquarks para descrever a massa e a largura

desses estados, usamos também um modelo que leva em conta a ideia de mistura en-

tre as componentes de Charmônio com Tetraquarks e também com Moléculas. Dessa

forma, através de uma corrente que mistura Charmônio com Tetraquarks, determi-

namos a massa e a largura da estrutura Y (4260). Em particular, observamos que

para um ângulo de mistura dentro do intervalo 52.50 ≤ θ ≤ 53.50 conseguimos ga-

rantir a convergência da OPE e assim, garantimos também a confiabilidade da regra

de soma para a massa cujo valor MY (4260) = (4.26± 0.13) MeV está em bom acordo
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com o valor experimental desse estado. Calculamos sua largura de decaimento em

J/ψππ considerando que os píons venham dos mésons σ e f0(980). A largura obtida

nos permite afirmar que a corrente interpolante suporta a interpretação do Y (4260)

como uma mistura Charmônio-Tetraquarks.

Ainda usando a idéia de mistura, investigamos também a massa e a largura do

estado Y (3940) com uma corrente misturando componentes do estado do Charmônio

ηc com a molécula D∗D̄∗. Para a massa, obtemos o valor MY (3940) = (3.95 ± 0.11)

MeV, em ótimo acordo com o valor experimental. Esse valor é obtido para valores

do ângulo de mistura no intervalo 71.00 − 81.00. Fora deste intervalo não é possível

garantirmos a convergência da OPE. Calculamos a largura nos canais Y → γγ cujos

valores foram: Γγγ = (1.6 ± 1.3) KeV e ΓJ/ψω = (1.7 ± 0.6) MeV. O resultado

obtido para o produto ΓJ/ψω × Γγγ ≈ O(103) KeV2 está em razoável acordo com

dados experimentais. Com isso, podemos dizer que a corrente de mistura ηc - D∗D̄∗

suporta a interpretação desse estado como tal.
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CAPÍTULO 6

PARTE II: APLICANDO TEORIAS EFETIVAS

6.1 Introdução

Nos capítulos anteriores, mencionamos a aplicação das Regras de Soma da QCD

como um dos ferramentais técnicos utilizados para abordar os sistemas ditos exó-

ticos na região de massa do Charmônio. Por outro lado, mencionamos também no

Capítulo 1, a técnica de Teorias Efetivas atualmente muito usada para investigar os

estados na região de massa do Charmônio. O emprego dessas técnicas para estudar

interações entre mésons, bárions e mésons com bárions vêm muito antes do surgi-

mento dos estados XY Z. Em muitos dos sistemas nos quais tais técnicas foram

utilizadas foi possível observar que a interação entre os hádrons são suficientemente

fortes e atrativas para a geração de estados ligados e ressonâncias. Estados formados

mediante essas interações são ditos dinamicamente gerados. O uso de Lagrangianas

Quirais combinadas com técnicas de unitariedade aplicada em canais acoplados le-

vam à chamada abordagem Quiral Unitária. Como resultado, um relativo sucesso foi

obtido na descrição de interações entre hádrons e muitas das predições para resso-

nâncias e estados ligados foram verificadas experimentalmente (na Ref. [95] podemos

encontrar uma revisão mais detalhada a respeito disso).

Em particular, muitas moléculas de mésons no setor charmoso foram estudadas

[96, 97, 98, 99, 100, 101, 102, 103, 104, 105]. Especificamente, um dos elementos
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que tem permitido esse progresso principalmente no setor de quarks pesados é a

Simetria de Spin do Quark Pesado, da sigla em inglês HQSS. A QCD prediz que

todos os tipos de interações de spin podem ser desprezadas para quarks infinitamente

massivos e assim, para quarks pesados, a dinâmica é invariante sobre transformações

arbitrárias em seus spins. Essa independência no spin do quark pesado é a essência

do HQSS, e leva a muitas predições no que diz respeito as propriedades de partículas

com conteúdo de quarks pesados. Entretanto, a HQSS não determina a interação,

ela simplesmente impõe vínculos, de modo que somos levados a utilizar informações

experimentais ou usar modelos para determinarmos a interação.

O uso de modelos dinâmicos se apresenta como abordagem alternativa, permi-

tindo o uso de dados empíricos para vincularmos a interação. Neste sentido, o uso

de Lagrangianas Quirais tem se tornado comum na investigação de propriedades de

sistemas com quarks leves. Contudo, sua extrapolação para o setor de quarks pesa-

dos se torna complicada bem como a incorporação de mésons vetoriais. Por outro

lado, as Lagrangianas obtidas da abordagem chamada Simetria Oculta de Calibre

Local (do inglês local Hidden Gauge Symmetry HGS), aparece como uma ótima

alternativa para lidarmos com sistemas no setor de quarks pesados. Ela introduz

explicitamente no modelo interações de mésons vetoriais pesados. A informação

extraída dessas Lagrangianas é a mesma das Lagrangianas Quirais até a ordem se-

guinte à dominante sobre a premissa da Dominância do Méson Vetorial (Vector

Meson Dominance) [106]. Essa característica é muito bem vinda quando trabalha-

mos no setor de quarks pesados, por que a independência de spin do quark pesado

(HQSS) coloca no mesmo nível, por exemplo, os mésons D e D∗ bem como o B e B∗,

e dessa forma, podemos lidar com eles simultaneamente. Um outro bônus do uso

da HGS segue do fato da Lagragiana Quiral em ordem dominante poder ser obtida

pela troca de mésons vetoriais entre as partículas interagentes. No setor de SU(3),

esses mésons são o ρ, ω, φ e K∗. No setor do charme ou beleza, os mésons D e B

contém um quark leve e na interação são esses quarks leves que são as partículas

trocadas com número quânticos de mésons vetoriais, e a analogia com a interação

no setor leve se torna aparente.
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Além disso, o fato da HGS respeitar a HQSS é bastante relevante, em virtude dela

se tornar um método mais preditivo mesmo que alguma fenomenologia adicional seja

ainda necessária para regularizar os loops da teoria. A interação pela abordagem

HGS permite atacarmos muitos problemas onde a fenomenologia é escassa, como é

o caso para o setor de beleza.

Uma das predições do uso combinado dessas técnicas, HGS e HQSS, foi a exis-

tência do estado DD̄ em [107]. Esse estado foi chamado de X(3700) e suporte

experimental pode ser encontrado na reação e+e− → J/ψDD̄ [108]. Através da

HQSS, podemos imediatamente especular a existência de um estado análogo para o

BB̄. Similarmente, as degenerescências do B e B∗ bem como do D e D∗ de acordo

com a HQSS, indicam que os estados BB̄∗, B∗B̄∗, DD̄∗ e D∗D̄∗ possam existir.

Portanto, no que concerne a isso, combinamos as Lagrangianas da Simetria Oculta

de Calibre Local com as técnicas da Simetria de Spin do Quark pesado para in-

vestigarmos possíveis ressonâncias dinamicamente geradas nessas interações e, com

isso, tentar relacioná-las com os estados do tipo do Charmônio Zc(3900), Zc(3885)

e Zc(4025) além dos estados Zb(10610) e Zc(10650) no setor do bottom. Assim, nos

próximos capítulos vamos descrever alguns resultados obtidos para esses sistemas.

Esses estudos foram realizados durante o estágio de doutorado sanduíche do autor no Instituto
de Física Corpuscular, IFIC, na Universidade de Valência, UV, Espanha, ES.
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CAPÍTULO 7

ESTUDO DAS INTERAÇÕES DD̄∗ E D∗D̄∗

As interações entre mésons pseudo-escalares e vetoriais, envolvendo quarks pesa-

dos, podem ser estudadas através das Lagrangianas da abordagem chamada simetria

oculta de calibre HGS. A interação DD̄∗ é um exemplo. Além disso, devido à pre-

sença de quarks pesados, segundo a Simetria de Spin de Quark pesado (Heavy Quark

Spin Symmetry), no limite mQ →∞, onde mQ representa a massa do quark pesado,

a interação se torna independente do spin bem como do sabor. Por conta disso, te-

mos uma relação direta entre os sistemas DD̄∗ (D∗D̄∗) e BB̄∗ (B∗B̄∗) de tal modo

que as amplitudes obtidas para o sistema DD̄∗ (D∗D̄∗) podem ser extrapoladas

para o caso BB̄∗ (B∗B̄∗), simplesmente trocando a massa do méson pseudo-escalar

(vetorial) nas expressões das amplitudes.

Neste capítulo vamos mostrar em detalhes os resultados obtidos nos trabalhos

[109, 110], nos quais estudamos as interações DD̄∗ e D∗D̄∗, usando as Lagrangi-

anas da abordagem HGS de modo a obter as amplitudes para todos os processos

relevantes. A idéia básica é usar as amplitudes obtidas através das Lagrangianas

HGS como kernel da equação de Bethe-Salpeter, e procurar por estados ligados ou

ressonâncias de modo a relacioná-los com os estados carregados com charm oculto

Zc(3900), Zc(3885), Zc(4025), recentemente descobertos pelas Colaborações BESIII,

BaBar, D0 e CLEO-c.
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7.1 As Lagrangianas da simetria oculta de calibre

local

As Lagrangianas HGS são obtidas do formalismo que é internamente consis-

tente e útil para lidar com sistemas de mésons vetoriais [111]. Nesse formalismo

os mésons vetoriais são os bósons de calibre dinâmicos de uma simetria oculta lo-

cal que transformam-se, no calibre unitário, de acordo com a realização não-linear

da simetria quiral [112]. O formalismo possui a vantagem de reproduzir natural-

mente as propriedades do méson ρ bem como universalidade, a relação de KSFR

(Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin), o teorema Weinberg-Tomozawa a

respeito do espalhamento π − ρ [113, 112] e a dominância do méson vetorial.

Nesse formalismo, a Lagrangiana é

L = L(1) + L(2) , (7.1)

onde L(1) é dada por

L(1) =
1

4
f 2
π〈DµUD

µU † + χU † + χ† U〉 , (7.2)

enquanto L(2) é escrita como

L2 = −1

4
〈VµνV µν〉+

1

2
M2

V 〈(Vµ −
i

g
Γµ)2〉 , (7.3)

onde 〈...〉 representa o traço sobre as matrizes SU(3), e χ é a matriz de massa. A

derivada covariante, Dµ, é definida como

DµU = ∂µU − ieQAµU + ieUQAµ , (7.4)

com Q = diag(2,−1,−1)/3, enquanto e = −|e|, é a carga do elétron, e Aµ o campo

do fóton. U representa a matriz quiral,

U = ei
√

2P/fπ , (7.5)
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onde fπ está associado com a constante de decaimento do píon: fπ = 93 MeV. P e Vµ

são as matrizes SU(3) para os mésons pseudo-escalares e vetoriais, respectivamente,

dadas por

Vµ =


ω√
2

+ ρ0√
2

ρ+ K∗+

ρ− ω√
2
− ρ0√

2
K∗0

K∗− K̄∗0 φ


µ

, (7.6)

P =


η√
3

+ η′√
6

+ π0
√

2
π+ K+

π− η√
3

+ η′√
6
− π0
√

2
K0

K− K̄0 − η√
3

+
√

2
3
η′

 . (7.7)

Para mostrar a consistência do formalismo, vamos partir da Lagrangiana L(1) na Eq.

(7.1), e extrair a Lagrangiana para os mésons pseudo-escalares. Para isso, temos que

expandir a matriz quiral U na ordem mais baixa e substituí-la em L(1) para obter

L̃(1) =
1

12f 2
π

〈[P, ∂µP ]2 +MP 4〉 , (7.8)

onde M = diag(m2
π, m

2
π, 2M2

K − m2
π). Note que a Eq. (7.8) é a bem conhecida

Lagrangiana quiral para os mésons pseudo-esscalares na ordem mais baixa. Como

um outro exemplo, seguindo os mesmo passos anteriores, podemos extrair da L(1),

a Lagrangiana que representa o acoplamento entre dois mésons pseudo-escalares e o

fóton,

Lγ PP = −i eAµ〈Q[P, ∂µP ]〉 , (7.9)

que no formalismo em questão será cancelada com o termo extra vindo da L2, de

tal modo que o fóton acopla-se com os pseudo-escalares via troca de méson vetorial,

que é característico da VMD (do inglês Vector Meson Dominance). Em L2, a Eq.

(7.1), Vµν está definida como

Vµν = ∂µVν − ∂νVµ + ig[Vµ, Vν ] , (7.10)
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com

Γµ =
1

2
[u†(∂µ − ieQAµ)u+ u(∂µ − ieQAµ)u†] , (7.11)

onde u2 = U . A constante de acoplamento g aparecendo na Eq. (7.10) está relaci-

onada à fπ e à massa dos mésons vetoriais, MV , através da igualdade g = MV /fπ,

que é uma das formas da relação KSFR. Após a expansão do termo [Vµ− i
g

Γµ]2 até

dois mésons pseudo-escalares, encontramos

[
Vµ −

i

g
Γµ

]2

=
(
Vµ −

e

g
QAµ −

e

2g f 2
π

PQAµP +
e

4g f 2
π

P 2QAµ

+
e

4g f 2
π

QAµP
2 − i

4g f 2
π

[P, ∂µP ]2
)2

, (7.12)

de onde obtemos as Lagrangianas de interação entre os mésons pseudo-escalares (P),

vetoriais (V) e o fóton (γ):

LV γ = −M2
V

e

g
Aµ〈V µQ 〉 (7.13)

LV γPP =
eM2

V

4gf 2
π

Aµ〈V µ(QP 2 + P 2Q− 2PQP ) 〉 , (7.14)

LV PP = −i M
2
V

4gf 2
π

〈V µ[P, ∂µP ] 〉 , (7.15)

LγPP = ieAµ〈Q[P, ∂µP ] 〉 , (7.16)

LPPPP = − 1

8f 2
π

〈 [P, ∂µP ] 〉 . (7.17)

O termo na Eq. (7.16) cancela exatamente o termo na Eq. (7.9), como dito

acima. Por outro lado, o termo da Eq. (7.17) tem a mesma estrutura que o termo

que contém as derivadas na Eq. (7.8), e é um termo que adicionado ao termos L̃(1)

da Eq. (7.8), tem como consequência a quebra da simetria quiral na Lagrangiana

quiral. No entanto, esse termo é cancelado pela troca de mésons vetoriais entre os

mésons pseudo-escalares que resulta da Lagrangiana Eq. (7.15), LV PP , no limite

q2/M2
V → 0, onde q é o momento do méson vetorial trocado. Isso já foi observado

na Ref. [112]. Do termo 〈VµνV µν〉 na Lagrangiana L2, obtemos o acoplamento entre
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três mésons vetoriais que será muito útil nos cálculos a serem detalhados mais tarde.

Tal Lagrangiana é dada por

L3V = ig〈 (V µ∂νVµ − ∂νVµV µ)V ν 〉 . (7.18)

7.2 Lagrangianas da HGS e as interações D∗D̄∗ e

DD̄∗

Após a discussão sobre as Lagrangianas HGS, vamos usá-las para calcular as

interações D∗D̄∗ e DD̄∗ devido à troca de mésons na combinação de isospin I =

1. Para esse próposito, as Lagrangianas HGS que serão úteis para descrever essas

interações são LV PP , dada pela Eq. (7.15), a L3V , Eq. (7.18), e as Lagrangianas

associadas às interações de quatro mésons (termo de contato). O objetivo ao calcular

as interações D∗D̄∗ e DD̄∗ devido à troca de mésons, é determinar a fonte dessas

interações.

Os esforços para explicar com precisão a dinâmica permitindo uma interação

com isospin I = 1 entre mésons, tanto para sistemas com charm oculto bem como

bottom oculto, é realmente desafiador. Para explicar o porquê, vamos considerar a

interação D+D̄∗0 que está representada na Fig. 7.1. Dessa figura, podemos ver que

�

�

���

�� ��

���

��

��

Figura 7.1: Diagrama de Feynman ilustrando a troca de um par qq̄. Um par dd̄ do
vértice superior da figura é forçado a se converter num par uū no vértice inferior,
evidenciando um mecanismo proibido pela Regra de OZI.
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a troca de méson leve é proibido pela Regra de OZI (Okubo-Zweig-Iizuka), desde

que troca de um par dd̄ é forçado a ser convertido num estado uū. Em virtude

disso, pode-se trocar um par cc̄, porém, pagamos um preço neste mecanismo que é o

fato do propagador de um méson vetorial pesado ser muito suprimido. Isso torna a

interação mais fraca bem como diminui as possibilidades do sistema ser atrativo. A

mesma situação se passa com a troca de mésons pseudo-escalares e, pode-se mostrar

que no limite de massas iguais para os mésons pseudo-escalares, a contribuição dos

mésons π, η, η′ pode ser desprezada. No caso em que tomamos as massas como

sendo diferentes teremos um cancelamento parcial, porém, o mecanismo é muito

suprimido.

Está claro que devemos superar a restrição imposta pela Regra de OZI. Uma

possibilidade para essa finalidade seria forçar a troca de objetos com mais de dois

quarks. A troca de um σ ou f0(500) seria uma opção que na Teoria Unitária Quiral

aparecem como um estados moleculares ππ and KK̄ [114, 115, 116, 117], respecti-

vamente, tendo portanto, dois quarks e dois anti-quarks. A troca de um méson σ

tem sido comum no estudo de potenciais fenomenológicos para a interação nucleon-

nucleon [118], mas uma nova perspectiva do ponto de vista teórico é oferecido quando

considera-se a troca de dois píons correlacionados, isto é, interagindo entre si [119].

7.2.1 Contribuição devido a troca de um méson vetorial

Neste caso, os canais de interesse são aqueles com os números quânticos de

charme, C = 0, estranheza, S = 0 e isospin I = 1. No caso da interação D∗D̄∗, os

canais relevantes são: D∗D̄∗ e ρ J/ψ. No caso DD̄∗, estamos interessados nos canais

com paridade G positiva, a saber: (DD̄∗ + cc)/
√

2, ηc ρ e π J/ψ.

O caso D∗D̄∗

Na descrição dessa interação, a Lagrangiana a ser utilizada será aquela dada pelo

primeiro termo da Eq. (7.3) que descreve a interação entre os mésons vetoriais. Dois

tipos diferentes de interação podem ser derivados dessa Lagrangiana: um associado

“cc” significa o complexo conjugado.
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à interação de contato, vindo do termo [Vµ, Vν ],

L(c) =
g2

2
〈VµVνV µV ν − VνVµV µV ν〉 , (7.19)

e o que descreve o vértice envolvendo três mésons vetoriais, que é dada Eq. (7.18).

A lagrangiana L(3V ) produz a interação V V → V V por meio da troca de um méson

vetorial. Somente consideramos o caso com J = 2, desde que esse é o único canal de

spin onde a interação está associada a um potencial atrativo para o canal D∗D̄∗ →
D∗D̄∗.

Na Ref. [120], além do canal ρJ/ψ, que é o mais importante após o D∗D̄∗, os

canais ρω e ρφ foram também considerados. No entanto, os limiares de energia

desses canais estão situados em energias muito menores do que a massa do estado

que estamos tentando descrever de modo que, caso fossem incluídos, não afetaria os

resultados de forma significativa.

As expressões desses potenciais são dadas pelas equações abaixo incluindo os

termos de contato e de troca de méson vetorial [109],

tD∗D̄∗→D∗D̄∗ = −g2
D + g2

D

(2m2
ωm

2
ρ +m2

J/ψ(−m2
ω +m2

ρ))(4m
2
D∗ − 3s)

4m2
J/ψm

2
ωm

2
ρ

, (7.20)

tD∗D̄∗→ρJ/ψ = −2ggD + ggD
2m2

D∗ +m2
J/ψ +m2

ρ − 3s

m2
D∗

, (7.21)

onde mρ, mω e mJ/ψ são as massas dos mésons ρ, ω e J/ψ, respectivamente. A

constante gD = mD∗/(2fD), usada na Ref. [120], é análoga à constante de acopla-

mento g para mésons leves, com fD = 206/
√

2 = 145.66 MeV. No entanto, como

discutiremos abaixo, podemos usar os vínculos impostos pela simetria de spin de

quark pesado para fornecer um acoplamento mais adequado.

Na Ref. [121], os autores relacionaram o vértice D∗Dπ com o K∗Kπ também

para o termo de Weinberg-Tomozawa, que estamos considerando agora, baseado na

troca de mésons vetoriais. A transição D∗D̄∗ → D∗D̄∗ é agora mediada pela troca

do méson J/ψ (cc̄) em analogia com a troca do φ em K∗K̄∗ → K∗K̄∗. As regras da

HQSS [122], podem ser obtidas da aproximação de impulso (impulse approximation)
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a nível de quarks assumindo os quarks s e c como espectadores. Assim, dado o fator

de normalização (2ω)−1/2 dos campos a nível de mésons, existe um fator ωD∗/ωK∗

entre o vértices D∗D∗J/ψ e K∗K∗φ. Como o vértice K∗K∗φ é proporcional a ωK∗ ,

segue que o vértice D∗D∗J/ψ terá o mesmo coeficiente de proporcionalidade mul-

tiplicado por ωD∗ , que é o resultado da aplicação de SU(4) nesse caso. Note que

o termo associado à troca de méson vetorial na Eq. (7.20) no limiar D∗D̄∗, por

simplicidade, resulta em g2
D
m2
D∗

m2
J/ψ

, com mω = mρ. Por consistência, também levamos

em conta o termo de contato no potencial de transição dado pela Eq. (7.21), que

é menor do que o termo correspondente ao J/ψ. O uso do novo acoplamento terá

como consequência a redução da energia de ligação do estado com I = 1 em relação

ao encontrado na Ref. [120].

Os dois potenciais estão plotados nas Figs. 7.2 e 7.3 como funções da energia do

centro de massa
√
s.
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Figura 7.2: Potencial tD∗D̄∗→D∗D̄∗ como função da energia do centro de massa
√
s.

O caso DD̄∗

Nesse caso, as Lagrangianas definidas pelas Eq. (7.15) e (7.18) podem também

serem usadas para calcularmos os vértices da interação PV → PV através da troca

de méson vetorial. As amplitudes relevantes a essa transição já foram calculadas

pelos autores das Refs. [100, 123]. Em particular, os autores estavam interessados

com ressonâncias axial-vetorial dinamicamente geradas. Aqui, realizamos a extensão
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Figura 7.3: Potencial tD∗D̄∗→ρJ/ψ como função da energia do centro de massa
√
s.

dessas amplitudes para a interação DD̄∗ no canal de isospin I = 1, com o resultado

projetado em onda-s. Explicitamente, temos [123]

Vij(s) = −~ε ~ε
′

8f 2
π

Cij
[
3s− (M2 +m2 +M ′2 +m′2)− 1

s
(M2 −m2)(M ′2 −m′2)

]
,

(7.22)

onde as massas M (M ′) e m (m′) na Eq. (7.22) correspondem ao méson vetorial

incial (final) e ao méson pseudo-escalar inicial (final), respectivamente. Os índices i

e j representam o canais PV incial e final, a saber: (DD̄∗ + cc)/
√

2, ηc ρ e π J/ψ.

No caso de paridade G positiva, teremos uma matriz 3× 3 para os coeficientes Cij,

Cij =


−ψ 2

√
2
3
γ 2

√
2
3
γ

2
√

2
3
γ 0 0

2
√

2
3
γ 0 0

 , (7.23)

com γ =
(
mL
mH

)2

e ψ = −1
3

+ 4
3

(
mL
m′H

)2

. Os parâmetros mL, mH e m′H são escolhidos

para terem a mesma ordem de magnitude das massas do méson leve, do mésons

vetorial charmoso e do J/ψ. Portanto, escolhemos mL = 800, mH = 2050 MeV, e

m′H = 3000 MeV, os mesmos valores usados na Ref. [100]. Os fatores γ e ψ levam

em conta a supressão devido à troca de um méson vetorial pesado. No caso de

paridade G negativa, somente um canal está presente cujo coeficiente na Eq. (7.22)

é C = −ψ. Na linguagem da troca de mésons vetoriais isso implica que um J/ψ
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é trocado. O potencial dado pela Eq. (7.22) segue da expressão (p1 + p′1)(p2 +

p′2), que é aproximadamente igual a (p 0
1 + p′ 0

1 )(p 0
2 + p′ 0

2 ). Em [121], os autores

mostraram que essa interação, de Weinberg-Tomozawa, deve implementar o fator

(p0
1/mK∗)(p

0
2/mK∗) multiplicando o valor de SU(3), que origina-se da implementação

da HQSS. A interação usada automaticamente incorpora esse fator, assim nenhuma

mudança é necessária em relação ao que foi feito em [100].

Os potenciais de transição Vij são mostrados nas Figs. 7.4, 7.5 e 7.6.
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Figura 7.4: Potencial VDD̄∗→DD̄∗ como função da energia do centro de massa
√
s.
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Figura 7.5: Potencial VDD̄∗→ηCρ como função da energia do centro de massa
√
s.

A Eq. (7.22) define o potencial V que deve ser usado no kernel da equação de

Bethe-Salpeter em canais acoplados. Como já mencionado, o objetivo é procurar

por pólos (ressonâncias ou estados ligados) na matriz de transição T , que resultam

dinamicamente da interação DD̄∗.
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Figura 7.6: Potencial VDD̄∗→πJ/ψ como função da energia do centro de massa
√
s.

7.2.2 A Matriz T

As amplitudes discutidas na seção anterior fornecem o potencial ou kernel a ser

usado na equação de Bethe-Salpeter em canais acoplados,

T = (1− V G)−1V , (7.24)

onde V representa o potencial, que no caso D∗D̄∗ é uma matriz 2×2 cujos elementos

são as amplitudes definidas pelas Eq. (7.20) e (7.21), respectivamente, associadas

com os canais D∗D̄∗ and ρ J/ψ. Por outro lado, no caso DD̄∗, V é uma matriz

3×3 e seus elementos são as amplitudes dadas pela Eq. (7.22) com Cij definido pela

Eq. (7.23), associada com os canais DD̄∗, ηc ρ e π J/ψ.

Na Eq. (7.24), G é uma matrix diagonal com elementos dados pela função de

loop de dois mésons Gl, para cada canal l:

Gl = i

∫
d4q

(2π)4

1

q2 −m2 + iε

1

(q − P )2 −M2 + iε
, (7.25)

ondem é a massa do méson pseudo-escalar (no caso da interaçãoDD̄∗) ou do vetorial

(no caso D∗D̄∗), enquantoM é a massa do méson vetorial envolvido no loop no canal

l. Na Eq. (7.25), P representa o quadrimomento total dos mésons. A integral da

Eq. (7.25) possui uma divergência logarítmica e deve ser regularizada com um cutoff

no espaço dos momentos ou usando regularização dimensional. Usando o método
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com cutoff, temos

Gl =

~qmax∫
0

d3q

(2π)3

ω1 + ω2

2ω1ω2

1

(P 0)2 − (ω1 + ω2)2 + iε
, (7.26)

onde ω1 =
√
m2 + ~q 2 and ω2 =

√
M2 + ~q 2 e ~qmax é um parâmetro livre. Ao utli-

zarmos o método de regularização dimensional, existe uma escala µ e uma constante

de subtração αl atuando como parâmetros livres. Explicitamente,

Gl =
1

16π2
(αl + log

m2

µ2
+
M2 −m2 + s

2s
log

M2

m2
+

p√
s

(log
s−M2 +m2 + 2p

√
s

−s+M2 −m2 + 2p
√
s

+ log
s+M2 −m2 + 2p

√
s

−s−M2 +m2 + 2p
√
s

)) .

(7.27)

com p = |~p| representando o tri-momento dos mésons no sistema de referência do

laboratório.

Por questão de comparação dos diferentes potenciais obtidos, é interessante lem-

brarmos que a Eq. (7.24) regularizada através do cutoff na Eq. (7.26), pode ser obtida

da equação de Lippman-Schwinger usando um potencial no espaço dos momentos

[124]

V (~q, ~q ′) = V θ(qmax − |~q |)θ(qmax − |~q ′|) . (7.28)

Assim, tomando ~q ≈ 0 para uma partícula externa, ~q ′ assume o papel do mo-

mento transferido nos diagramas de loop, e então V , como uma função de ~q ′, per-

manece contante até o valor assumido por ~qmax, onde vai a zero acima deste valor.

O resultado associado com a solução da equação de Bethe-Salpeter com as

Eq. (7.20), (7.21) e (7.22) usadas como kernel, será discutido em detalhes mais

adiante.
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7.2.3 Troca de dois píons correlacionados

Troca de dois píons correlacionados na interação D∗D̄∗

Para calcularmos a contribuição para a interação D∗D̄∗ devido à troca de dois

píons, ou σ, devemos levar em conta todos os diagramas ilustrados na Fig. 7.7. Cada

D∗+
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π0

π0

π0

π0

D̄∗0

D̄∗0

D̄0

a)

D∗+

D∗+
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π−
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D̄∗0

D−
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D∗+
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D̄∗0

D̄−
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Figura 7.7: A interação ππ em ordem mais baixa no canal de isospin I = 1 para
D∗D̄∗ → D∗D̄∗.

diagrama na Fig. 7.7 contém quatro vértices PPV envolvendo um méson vetorial D∗

(D̄∗) e dois pseudo-escalares, isto é, o píon e o mésonD (D̄). O cálculo desses vértices

é facilmente realizado com as Lagrangianas da HGS já discutidas na Seção 7.1, e

dadas pela Eq. (7.15). O círculo cinza no cruzamento das linhas representando os

píons indicam a amplitude de espalhamento ππ. Usando a Lagrangiana da Eq. (7.15)

podemos escrever os vértices da seguinte maneira

− itPPV = −ig C(pD + pπ)µε
µ
V , (7.29)

onde pD e pπ são so quadrimomentos dos mésons D e do píon, respectivamente,

enquanto εV é o vetor de polarização do méson D∗ no vértice. A amplitude do

processo pode ser escrita como

− itσ = −i V 2 3

2
tI=0
ππ→ππ , (7.30)
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onde V é a contribuição para o diagrama dos loops triangulares. Os detalhes passo

a passo da derivação dessa equação pode ser encontrada nas Refs. [109, 110]. A

expressão para tI=0
ππ→ππ aparecendo no lado direito da Eq. (7.30) é dada por [119]

tI=0
ππ→ππ = − 1

f 2

s− m2
π

2

1 + 1
f2

(s− m2
π

2
)G(s)

, (7.31)

onde G(s) é a função de dois loops, convenientemente regularizada [119],

G(s) = i

∫
d4q

(2π)4

1

q2 −m2
π + iε

1

(P − q)2 −m2
π + iε

, (7.32)

com P igual ao momento do sistema composto pelos dois píons e P 2 = s.

Temos que calcular o fator V que surge na Eq. (7.30) relacionada, como já men-

cionamos anteriormente, ao loop triangular, ilustrado na Fig. 7.8. Por simplicidade,

p′1

p

p1

p− p′1

p− p1

Figura 7.8: Vértice triangular da troca de dois píons.
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usamos um sistema de referência de Breit. Logo, temos

p1 ≡ (p0
1, ~q/2) ,

p′1 ≡ (p′ 0
1 ,−~q/2) ,

p ≡ (p0, ~p ) ,

(7.33)

onde ~q é o tri-momento transferido no processo. Desde que não existe troca de

energia, s = −~q 2. É também útil definir a variável q ≡ (0, ~q ). Assim, por meio

da Eq. (7.29) tendo em mente que já fatorizamos de V o coeficiente C, podemos

escrever a expressão de V como

V = ig̃2

∫
d4p

(2π)4
εµ(2p− p1)µε′ν(2p− p′1)ν

1

p2 −m2
D + iε

× 1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

,

(7.34)

com mD a massa do méson D. A integral na Eq. (7.34) possui divergência logarít-

mica. Como na Ref. [119], a regularização é feita por meio de um cutoff no espaço

intermediário de estados (~pmax = 2 GeV) bem como pelo uso de um fator de forma.

De modo a manter a integração em p0 simples, usamos o produto de fatores de forma

da seguinte maneira

F = F1(~p+
~q

2
)F2(~p− ~q

2
) =

Λ2

Λ2 + (~p+ ~q
2
)2

Λ2

Λ2 + (~p− ~q
2
)2
, (7.35)

com Λ = 1 GeV.

Desde que εµ pµ1 = 0 e ε′ν p′ν1 = 0, a Eq. (7.34) pode ser reescrita como

V = 4ig̃2

∫
d4p

(2π)4
εµ p

µε′ν p
ν 1

p2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

F

(p− p′1)2 −m2
π + iε

.

(7.36)

A integral na Eq. (7.36) é simétrica com respeito a p1 e p′1, logo, nos permite derivar
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a estrutura do resultado da integração, que será do tipo

V = εµε
′
ν(ag

µν + b(pµ1p
ν
1 + p′µ1 p

′ν
1 ) + c(pµ1p

′ν
1 + p′µ1 p

ν
1)) . (7.37)

Na última expressão, devido à condição de Lorentz (εµpµ1 e ε′νp′ν1 ), somente termos

agµν e cp′µ1 pν1 sobrevivem. Todavia, para calculá-los, devemos manter toda a estru-

tura. Tomando o traço da Eq. (7.36) e multiplicando a equação por (p1µp1ν+p′1µp
′
1ν)

e (p1µp
′
1ν + p′1µp1ν), obtemos um sistema de três equações. Resolvendo esse sistema,

encontramos as expressões dos três coeficientes na Eq. (7.37), todavia, como já dis-

semos, estamos interessados somente em

a =
−Y m2

D∗ + Z(p1p
′
1) +X(m4

D∗ − (p1p
′
1)2)

2(m4
D∗ − (p1p′1)2)

,

c =
−3Y m2

D∗(p1p
′
1) +X(m4

D∗ − (p1p
′
1)2) + Z(m4

D∗ + 2(p1p
′
1)2)

2(m4
D∗ − (p1p′1)2)2

,

(7.38)

onde

X = 4g̃2I1 + 4g̃2m2
DI2 ,

Y = 8g̃2p0 2
1 I1 + 8g̃2I3 ,

Z = 8g̃2p0 2
1 I1 + 8g̃2I4 .

(7.39)

As quatro integrais nas equações acima, I1, I2, I3 e I4, correspondem às seguintes

expressões abaixo:

I1 =

∫
d4p

(2π)4

1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

F ,

I2 =

∫
d4p

(2π)4

1

p2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

F ,

I3 =

∫
d4p

(2π)4

(~p 2 +m2
D)p0 2

1 + (~p ~q
2
)2

p2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

F ,

I4 =

∫
d4p

(2π)4

(~p 2 +m2
D)p0 2

1 − (~p ~q
2
)2

p2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

F .

(7.40)
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Após integrarmos em dp0, que pode ser feita usando o Teorema de Cauchy, obtemos

I1 =

∫
d3p

(2π)3

ω1 + ω2

2ω1ω2

1

−~q 2 − (ω1 + ω2)2
F ,

I2 =

∫
d3p

(2π)3

1

2ED

1

2ω1

1

ω2

1

ω1 + ω2

ω1 + ω2 + ED −mD∗

ED + ω1 −mD∗ − iε
1

ED + ω2 −mD∗ − iε
F ,

I3 =

∫
d3p

(2π)3

1

2ED

1

2ω1

1

ω2

1

ω1 + ω2

ω1 + ω2 + ED −mD∗

ED + ω1 −mD∗ − iε
(~p 2 +m2

D)p0 2
1 + (~p ~q

2
)2

ED + ω2 −mD∗ − iε
F ,

I4 =

∫
d3p

(2π)3

1

2ED

1

2ω1

1

ω2

1

ω1 + ω2

ω1 + ω2 + ED −mD∗

ED + ω1 −mD∗ − iε
(~p 2 +m2

D)p0 2
1 − (~p ~q

2
)2

ED + ω2 −mD∗ − iε
F ,

(7.41)

onde ω1 =
√

(~p+ ~q/2)2 +m2
π, ω2 =

√
(~p− ~q/2)2 +m2

π e ED =
√
~p 2 +m2

D são

as energias dos dois píons e do méson D participantes do loop, respectivamente,

enquanto mD∗ é a massa do méson vetorial D∗. Desde que a massa do méson D é

grande, tomamos a componente de energia positiva do propagador [(p0−ED)2ED]−1,

simplificando a integração.

Podemos agora voltar ao potencialD∗D̄∗ no espaço dos momentos, cuja expressão

final, de acordo com as Eq. (7.30) e Eq. (7.31), é dada por

tσ(~q) = V 2 3

2

1

f 2

~q 2 + m2
π

2

1−G(−~q 2) 1
f2

(~q 2 + m2
π

2
)
, (7.42)

com

V = εµε
′
ν(ag

µν + cp′µ1 p
ν
1) , (7.43)

e a e c derivados usando as Eqs. (7.38), (7.39) e (7.41).

Desde que estamos assumindo os momentos inciais ~p1 e ~p1
′ pequenos, se com-

parados com suas massas, podemos tomar ε0 ≡ 0 e somente a combinação aεε′

permanece. O outro vértice possuirá uma estrutura semelhante. Assim, temos a

combinação

ε
(1)
i ε

(2)
j ε

(3)
i ε

(4)
j , (7.44)

com 1 + 2→ 3 + 4.

ε
(1)
i ε

(2)
j ε

(3)
i ε

(4)
j ≡ P(0) + P(1) + P(2) , (7.45)
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onde P(0), P(1) e P(2) são os operadores de projeção de spin definidos abaixo como

[125]

P(0) =
1

3
εiεiεjεj ,

P(1) =
1

2
(εiεjεiεj − εiεjεjεi) ,

P(2) =
1

2
(εiεjεiεj + εiεjεjεi)−

1

3
εiεiεjεj .

(7.46)

A intensidade de tσ(~q ), removendo gµνεµεν , fornece a intensidade do potencial

com troca de píons para o spin J = 2. O potencial tσ como função do momento

transferido ~q está plotado na Fig. 7.9. É essa contribuição que será comparada

com as contribuições devido à troca de mésons vetoriais pesados e de dois píons

não correlacionados, esta última discutida na próxima seção. Desta comparação

determinamos qual delas é a principal fonte da interação D∗D̄∗.

500 1000 1500 2000
q@MeVD

0.5
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Figura 7.9: Potencial tσ como função do momento transferido no processo.

Troca de píons correlacionados na interação DD̄∗

Os diagramas contribuindo para esse processo estão mostrados na Fig. 7.10.

Neste caso, o procedimento para o cáculo da amplitude é análogo ao caso D∗D̄∗,

todavia, o loop triangular será diferente agora por conta do caráter pseudo-escalar

do méson D e, por essa razão, temos dois fatores V , que chamaremos de VA e VB,
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Figura 7.10: Interação ππ na ordem mais baixa no canal I = 1 para DD̄∗ → DD̄∗.

um para cada loop na amplitude. Dessa forma, a amplitude é escrita como

−itσ = −i VA VB
3

2
tI=0
ππ→ππ , (7.47)

onde tI=0
ππ→ππ, foi dada na Eq. (7.31). Os loops triangulares VA e VB estão ilustrados

na Fig. 7.11. Para calcularmos VA e VB, adotamos novamente o sistema de referência

p′1

p

p1

p− p′1

p− p1

p′1

p

p1

p− p′1

p− p1

A) B)

Figura 7.11: Vértices triangulares para a troca de dois píons, VA in Fig. A) e VB na
Fig. B).



144 Estudo das Interações DD̄∗ e D∗D̄∗

de Breit, onde obtemos

VA = ig2

∫
d4p

(2π)4
εµ(2p− p1)µε′ν(2p− p′1)ν

1

p2 −m2
D + iε

× 1

(p− p1)2 −m2
π + iε

F

(p− p′1)2 −m2
π + iε

(7.48)

e

VB = ig2

∫
d4p

(2π)4
εµ(p− 2p1)µεν(p− 2p′1)ν

1

p2 −m2
D∗ + iε

× 1

(p− p1)2 −m2
π + iε

F

(p− p′1)2 −m2
π + iε

,

(7.49)

com mD e mD∗ , as massas do mésons D e D∗, respectivamente. Similarmente ao

caso anterior, usamos o fator de forma definido na Eq. (7.35), com Λ = 1 GeV, e

um cutoff no espaço de estados intermediários (~pmax = 2 GeV), para regularizar as

integrais nas Eq. (7.48) e (7.49) que são logaritmamente divergentes.

Usando as condições de Lorentz εµ pµ1 = 0 e ε′ν p′ν1 = 0, a expressão final para VA

possui a seguinte forma

VA = εµε
′
ν(ag

µν + cp′µ1 p
ν
1) , (7.50)

onde a e c são as mesmas expressões como no caso da interação D∗D̄∗ com as

mudanças triviais nas massas.

No caso de VB, obtemos

VB = g2I1 + g2

[
2(m2

D −m2
π)− 4p1p

′
1 −

(m2
D −m2

π)2

m2
D∗

+m2
D∗

]
I5

− 2g2

[
1 +

m2
D −m2

π

m2
D∗

]
I6 + g2 1

m2
D∗
I7 ,

(7.51)

onde

I5 =

∫
d3p

(2π)3

1

2EV

1

2ω1

1

ω2

1

ω1 + ω2

ω1 + ω2 + EV −mD

EV + ω1 −mD

F

EV + ω2 −mD

,

I6 =

∫
d3p

(2π)3

1

2EV

F

ω1

ω1 + EV
p0 2

1 − (ω1 + EV )2
,

I7 =

∫
d3p

(2π)3

F

2EV
,

(7.52)
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com EV =
√
~p 2 +m2

D∗ .

O potencial tσ
DD̄∗

da Eq. (7.47) como função do momento transferido ~q está

plotado na Fig. 7.12
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Figura 7.12: Potencial tσ
DD̄∗

como função do momento transferido no processo.

7.2.4 Troca de dois píons não correlacionados

O caso D∗D̄∗

Os únicos diagramas da Fig. 7.7 que contribuem para esse caso são a) e d). O

cálculo da amplitude é completamente análogo ao caso da interação via troca de dois

píons correlacionados discutido anteriormente. Usando as expressões para os vértices

dados pela Eq. (7.29), podemos diretamente escrever a amplitude do processo como

sendo igual a

t =
5

4
g̃4 1

15

∫
d3p

(2π)3
(4~p 2 − ~q 2

4
)2 (εiεlεiεl + εiεiεlεl + εiεlεlεi)F

2 1

ω1 + ω2

1

2ω1ω2

× 1

E2
D

(
1 +

ED + ω1 + ω2 − p0
1

p0
1 − ω1 − ED + iε

+
ED + ω1 + ω2 − p0

1

p0
1 − ω2 − ED + iε

)
1

p0
1 − ω1 − ED + iε

× 1

p0
1 − ω2 − ED + iε

.

(7.53)



146 Estudo das Interações DD̄∗ e D∗D̄∗

A combinação dos vetores de polarização aparecendo na Eq. (7.53) pode ser reescrita

em termos dos operadores de projeção do spin definidos na Eq. (7.46) como

εiεlεiεl + εiεiεlεl + εiεlεlεi = 5P(0) + 2P(2) . (7.54)

Assim, a expressão final da amplitude é dada por

t =
5

4
g̃4 A

15

∫
d3p

(2π)3
(4~p 2 − ~q 2

4
)2 F 2 1

ω1 + ω2

1

2ω1ω2

1

4E2
D

1

p0
1 − ω1 − ED + iε

× 1

p0
1 − ω2 − ED + iε

(
1 +

ED + ω1 + ω2 − p0
1

p0
1 − ω1 − ED + iε

+
ED + ω1 + ω2 − p0

1

p0
1 − ω2 − ED + iε

)
,

(7.55)

onde A = 0 para o caso J = 0 e A = 2 para o caso de J = 2. A amplitude t nos

dois casos é mostrada nas Figs. 7.13 e 7.14.
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Figura 7.13: Potencial tππ para a troca de píons não interagentes no caso J = 0.

O caso DD̄∗

Finalmente, vamos considerar a contribuição para a interação DD̄∗ resultante

da troca de dois píons não interagentes entre si. Somente os diagramas a) e d) da

Fig. 7.10 contribuem para o processo. O cálculo da amplitude é semelhante ao caso

anterior, todavia, lembramos agora que temos um propagador para o méson D e

um outro para o D∗. Assim, com os momentos definidos na Fig. 7.15, obtemos a
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Figura 7.14: para a troca de píons não interagentes no caso J = 2.

seguinte expressão para a amplitude

t =
5

4
ig4

∫
d4p

(2π)4
εµ(2p1 − p)µεν(2p′1 − p)νε′α(2p− 2p′1 + p2)αε′′β(2p− p′1 − p1 + p2)β

× F 2

p2 −m2
D∗ + iε

1

(p− p′1 + p2)2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

1

(p− p′1)2 −m2
π + iε

,

(7.56)

onde ε é o vetor de polarização associado ao méson vetorial participante no loop tri-

angular, enquanto ε′ e ε′′ correspondem aos dos mésons vetoriais nas pernas externas

dos diagramas. Novamente, levamos em conta a parte positiva dos propagadores dos

p1

p′1

p

p− p′1

p− p1

p′2

p2

p− p′1 + p2

Figura 7.15: Momentos na troca de dois píons na transição DD̄∗ → DD̄∗.

mésons D e D∗, enquanto para os vetores externos assumimos que o tri-momento
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é pequeno, assim ε0 ≡ 0. Também estamos assumindo que 4~p 2 � ~q 2/4. Assim,

aplicando a condição de completeza para o vetor de polarização, podemos reescrever

a Eq. (7.56) como

t =
5

4
ig4 1

2
~ε ′ ~ε ′′

∫
d4p

(2π)4
(~p 2 − ~q 2)

[
(4~p 2 − ~q 2

4
)− 1

~q 2

[
(2~p ~q )2 − ~q 4

4

]]
F 2

× 1

p2 −m2
D∗ + iε

1

(p− p′1 + p2)2 −m2
D + iε

1

(p− p1)2 −m2
π + iε

× 1

(p− p′1)2 −m2
π + iε

.

(7.57)

Integrando em dp0, obtemos

t = −5

4
g4 1

2
~ε ′ ~ε ′′

∫
d3p

(2π)3
(~p 2 − ~q 2)

[
(4~p 2 − ~q 2

4
)− 1

~q 2

[
(2~p ~q )2 − ~q 4

4

]]
F 2

ω1 + ω2

1

2ω1ω2

× 1

2ED

1

2EV
[ω2

1 + ω2
2 + ω1ω2 − (ω1 + ω2)(2p0

1 − EV − ED) + (p0
1 − EV )(p0

1 − ED)]

× 1

p0
1 − ω1 − EV + iε

1

p0
1 − ω1 − ED + iε

1

p0
1 − ω2 − EV + iε

1

p0
1 − ω2 − ED + iε

.

(7.58)

O potencial t está plotado na Fig. 8.10 como função do momento trocado.
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Figura 7.16: Potencial t para a troca de píons não interagentes como função do
momento transferido no processo.
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7.3 Geração dinâmica de ressonâncias nos sistemas

D∗D̄∗ e DD̄∗

Após obtermos as amplitudes para todos os processos contribuindo para as in-

terações D∗D̄∗ e DD̄∗, vamos estimar a intensidade de cada potencial. A razão

para isso é tornar possível uma comparação entre os potenciais devido às trocas

de dois píons interagindo e não interagindo entre si, e de mésons vetoriais, para

investigarmos qual desses potenciais contribui mais para as interações em questão.

Especificamente, a comparação é feita calculando a intensidade de todos os poten-

ciais através da integral

∫
V (q)d3q , (7.59)

onde V representa as amplitudes obtidas nas seções anteriores. Uma vez determi-

nada qual delas é a principal fonte da interação, vamos utilizá-las como kernel da

equação de Bethe-Salpeter. A finalidade disso, é calcular a matriz de transição para

todos os canais relevantes. Para isso, em todos os casos usamos a fórmula resultante

da regularização dimensional para a função de loop G, dada pela Eq. (7.27), com

as constantes de subtração para cada canal. Para obtermos valores razoáveis para

as constantes de subtração em cada canal considerado, procedemos da seguinte ma-

neira: tomamos um valor para o cutoff ~qmax, em seguida encontramos a constante de

subtração que fornece, no limiar de massa, a mesma função G obtida com o método

do cutoff.

7.3.1 A interação D∗D̄∗ e o estado do tipo do charmônio

Zc(4025)

Vamos comparar as intensidades dos potenciais usando a Eq. (7.59). Podemos

ver que a intensidade da transição D∗D̄∗ → ρ J/ψ devido à troca de mésons vetoriais

pesados é muito maior que a intensidade obtida para o potencial da troca de píons

em todo o intervalo de momento. Se integrarmos
∫
d3qV (~q) até |~q| = 100 MeV
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em ambos os casos, encontramos a integral dez vezes maior no caso da transição

D∗D̄∗ → ρ J/ψ, e assim, concluímos que o potencial devido à troca mésons vetoriais

é a principal fonte da interação D∗D̄∗.

Agora, vamos investigar a matriz de transição T para os dois canais para valores

de
√
s no entorno de 4000 MeV. A Fig. 7.17, mostra |T11|2, onde o subscrito 11 indica

que estamos considerando a transição do canal D∗D̄∗ nele mesmo, como função da

energia do centro de massa. Usamos a regularização dimensional para a função G

(Eq. (7.27)), escolhendo α1 = −2.3 e α2 = −2.6 como constantes de subtração e

µ = 1000 MeV. Isso é equivalente a usarmos um cutoff igual a |~qmax| = 960 MeV.

Com essa escolha dos parâmetros, obtemos um pico ao redor do valor
√
s = 3998

MeV, com uma largura Γ ' 90 MeV. Esse valor está 19 MeV abaixo do limiar de

massa dos mésons D∗D̄∗. A energia de ligação é menor do que a obtida em [120].

Isso ocorre por que usamos g para o acoplamento, no lugar de gD, como justificado

na Ref. [121].

3600 3800 4000 4200
s !MeV"

100 000

#T11
2

Figura 7.17: |T11|2 como função de
√
s.

Os valores das constantes de subtração αi, ou o cutoff usados foram obtidos da

análise dos resultados na Ref. [126]. É interessante analisar o que acontece quando

o valor do cutoff diminui. Na Fig. 7.18, mostramos |T11|2 para diferentes valores

do cutoff. Note que quando |~qmax| diminui, o pico em |T11|2 se move em direção

ao limiar e, com isso, sua intensidade também diminui. Para |~qmax| = 700 MeV,
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3600 3800 4000 4200
s @MeVD

100 000
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2

Figura 7.18: |T11|2 como função de
√
s, para diferentes valores do cut off |~qmax|.

De cima para baixo temos, qmax = 960, 900, 850, 800, 750, 700, 650, 600, 550, 500
MeV.

podemos observar um cusp, que permanece mesmo quando |~qmax| assume valores

menores que 700 MeV. Entretanto, a intensidade de |T11|2 no pico é fraca e, com

isso, já não é possível a produção de um aumento na distribuição de massa invariante

do par D∗D̄∗, como foi observado pela Colaboração BESIII em [127]. Note também

que para valores |~qmax| ' 800 MeV, como na Ref. [128, 129], ainda encontramos um

estado ligado de poucos MeV’s. Por outro lado, valores maiores de |~qmax| deveriam
produzir uma ligação tão grande a ponto de contradizer os resultados da análise feita

na Ref. [126]. Assim, considerando as incertezas em nosso modelo, podemos afirmar

que estamos obtendo um estado ligado de D∗D̄∗, ou mesmo um estado virtual, no

intervalo 3990−4000 MeV (decaindo em J/ψ), com largura de decaimento da ordem

de 100 MeV. Cabe ainda observar que mesmo quando o pólo na região do estado

ligado se aproxima do limiar e desaparece, ele se converte em um estado virtual

com um pico característico de um cusp. Numa análise experimental, isso pode ser

visualizado como um pico próximo ao limiar de massa.

O estudo descrito acima, complementa o da Ref. [126], onde o pico observado

no espectro de D∗D̄∗, na reação e+e− → (D∗D̄∗)±π± que levou a Colaboração

experimental a reportar a existência do estado com JP = 1+ chamado Zc(4025),

foi reinterpretado como um possível estado ligado D∗D̄∗ com 2+ e isospin I =
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1. Tanto a massa quanto a largura que obtivemos usando o modelo acima, são

compatíveis com os resultados da Ref. [126]. Assim, podemos afirmar que o estado

que encontramos em nossa abordagem pode fornecer uma explicação natural dos

resultados experimentais da Colaboração BESIII na Ref. [127].

7.3.2 A interação DD̄∗ e os estados Zc(3900) e Zc(3885)

Similarmente ao caso anterior, devemos comparar a intensidade dos potenciais

que contribuem para a interação em questão. Somando as contribuições devido à

troca de dois píons, interagentes e não interagentes, obtemos o valor
∫
V (~q)d3q '

−112 GeV3. Para o caso devido a troca de mésons vetoriais, a intensidade é igual

a
∫
V (~q)d3q ' −433 GeV3. Portanto, comparando esses valores, concluímos que a

principal fonte para a interação DD̄∗ segue do potencial devido à troca de mésons

vetoriais.

Investigamos a forma da matriz T usando o potencial de troca de mésons ve-

toriais para valores de
√
s ao redor de 3900 MeV. Na Fig. 7.19, podemos observar

o comportamento de |T11|2 (onde o subscrito 11 indica a transição DD̄∗ → DD̄∗)

como função da energia do centro de massa, para o caso 1+(1+−). Para calcularmos

a função G, usamos a expressão obtida da regularização dimensional, Eq. (7.27),

com os seguintes valores para as constantes de subtração: α1 = −1.28, α2 = −1.57 e

α3 = −1.86. Para µ usamos o valor 1500 MeV, sugerido na Ref. [124]. Essa escolha

equivale a usarmos um cutoff igual a |~qmax| = 770 MeV. Da Fig. 7.19, podemos notar

um pico bem pronunciado em
√
s = 3872 MeV, com uma largura aproximadamente

igual a Γ ' 40 MeV.

Na Fig. 7.20, mostramos a dependência da posição do pico com o cutoff. |T11|2

está plotada como função de
√
s para valores da constante de subtração correspon-

dentes aos cutoffs 700, 750, 770, 800 and 850 MeV. Os correspondentes valores do

pico podem ser visualizados na Tab. 7.1. Dela concluímos que para valores mais

altos do cutoff, obtemos uma energia de ligação maior para o estado associado ao

pico. A largura varia no intervalo 40− 50 MeV.

Levamos também em conta não somente a variação no cutoff, mas a variação
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do parâmetro Λ no fator de forma no intervalo 700 − 1200 MeV. Essas variações,

tanto no cutoff como no valor de Λ, são equivalentes a multiplicarmos o potencial,

usado como kernel na Bethe-Salpeter, por um fator dentro do intervalo de 0.6 a 1.4.

Os cálculos foram feitos usando os valores médios das massas dos mésons D e D̄∗.

É interessante notar que as energias obtidas estão todas no entorno do limiar de

massa igual a 3076 MeV. A seguir, discutimos se existem pólos associados aos picos

observados na Fig. 7.20.

Para buscarmos pólos na matriz T , movemos para o plano complexo extrapo-

lando a amplitude para valores complexos da energia. Para isso, nos canais que estão

abertos, necessitamos da expressão para a função de loop na segunda superfície de

Riemann, dada por [123]

GII
i (
√
s) = GI

i (
√
s) + i

p

4π
√
s

Im(p) > 0 , (7.60)

onde GI
i (
√
s) é dada pela Eq. (7.27). Na Fig. 7.21, mostramos a figura para |T11|2

na segunda superfície de Riemann, no valor do cutoff igual a |~qmax| = 770 MeV. Um

pólo, correspondendo a um estado com (
√
s+ iΓ/2) = (3878 + i23) é perfeitamente

visível.

Baixando o valor do cutoff de modo a ainda obtermos pólos no plano complexo,

mas para valores de |~qmax| < 700 MeV, os pólos desparecem embora ainda se possa

obter um efeito de cusp na amplitude, com consequências experimentais nas seções

de choque. À essa situação é que referimos como a obtenção de pólo virtual.

Observamos que em todos os casos os estados que obtemos produzem picos no

entorno do limiar de massa do DD̄∗ igual a 3876 MeV.

qmax MeV
√
s MeV

700 3875
750 3873
770 3872
800 3869
850 3867

Tabela 7.1: Posição do pico de |T |2 correspondentes aos diferentes valores de |~qmax|.
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Figura 7.19: |T |2 como função de
√
s.
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Figura 7.20: |T |2 como função de
√
s para valores de cut off |~qmax| iguais a 850, 800,

770, 750 e 700 MeV. O pico se move para a esquerda do gráfico à medida que o valor
do cut off aumenta.

Portanto, podemos afirmar que de acordo com nossa abordagem, encontramos

um estado com massa no intervalo 3869− 3875 MeV e largura de 40 MeV no canal

de isospin I = 1 e paridade G positiva. Esse estado é um parceiro de isospin do

X(3872). Assim, desse estudo mostramos que os dados da Colaboração BESIII em

[27] são compatíveis, com uma pequeno desvio na massa, com os do estado obtido

teoricamente da interação DD̄∗. Assim, os resultados aqui descritos oferecem uma

boa explicação para o estado observado em [27], em termos de um estado fracamente
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Figura 7.21: |T |2 na segunda superfície de Riemann para a transição DD̄∗ → DD̄∗

com IG(JPC) = 1+(1+−).

ligado DD̄∗(D̄D∗) decaindo nos canais ηcρ e πJ/ψ.

A questão que permance agora é se esse estado reconfirmado pela nossa aborda-

gem deve ser o mesmo estado observado pela Colaboração BESIII [130] chamado de

Zc(3900), ou o Zc(3894) observado pela Colaboração Belle [131] ou ainda, o Zc(3886)

medido pela CLEO [132]. Dadas as incertezas tanto nas massas como nas larguras

em todos esses experimentos, é bastante provável que essas colaborações estejam

observando o mesmo estado, embora outras opções não sejam descartadas até o mo-

mento. Em qualquer caso podemos afirmar que dado um único canal DD̄∗ com um

potencial independente da energia, não podemos produzir uma ressonância acima

do limiar igual a 3875.87 MeV [133]. Um estado com massa igual a 3900 MeV não

poderia ser facilmente interpretado como um estado molecular DD̄∗(D̄D∗). Como

discutido anteriormente, o estado mais natural seria aquele com massa mais baixa.
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CAPÍTULO 8

ESTUDO DAS INTERAÇÕES BB̄∗ E B∗B̄∗

Para estudarmos os estados BB̄∗ and B∗B̄∗, seguimos a mesma abordagem do

capítulo anterior. Para isso, temos que extender os cálculos para o settor do bottom.

Isso é feito simplesmente trocando as massas dos mésons D e D∗ por B e B∗, res-

pectivamente, em todas as expressões para as amplitudes calculadas no Capítulo 7.

Nesse setor, as interações BB̄∗ e B∗B̄∗ para I = 1 via troca de mésons leves também

são proibidas pela regra de OZI (Okubo-Zweig-IIzuka). Na Fig. 8.1, mostramos um

diagrama ilustrando a interação B+B̄∗0. Para que essa interação possa ocorrer via

troca de mésons leves, um estado dd̄ deve ser convertido em um estado uū e isso

não é permitido pela regra de OZI.

B+

B̄∗0

b

b̄

u

d̄d̄

u

Figura 8.1: Diagrama representando o processo B+B̄∗0 → B+B̄∗0 através da troca
de um méson qq̄.
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Por conta disso, consideraremos processos permitidos pela regra de OZI para

I = 1. Analogamente ao que fizemos no capítulo anterior, calculamos as interações

em questão considerando que elas também ocorram via troca de píons e pela troca

de mésons vetoriais. Como dito anteriormente, podemos usar as expressões para as

amplitudes já calculadas fazendo as mudanças apropriadas nas massas.

8.1 As interações BB̄∗ e B∗B̄∗ via troca de mésons

vetoriais pesados

Os canais de interesse são aqueles com B = 0, S = 0 e isospin I = 1. No caso

B∗B̄∗, eles são:

• B∗B̄∗;

• ρΥ.

Por outro lado, para o caso BB̄∗, estamos interessados na combinação com paridade

G positiva. Assim, os canais para esse caso são:

• (BB̄∗ + cc)/
√

2;

• ηb ρ;

• πΥ.

8.1.1 O caso B∗B̄∗

Considere a reação B∗B̄∗ → B∗B̄∗. Seguimos os mesmos passos descritos na

Ref. [120], onde os autores estavam interessados no sistema D∗D̄∗. Em nosso caso,

os diagramas com as devidas substituições da massa do méson D∗ pela do méson

B∗, estão ilustrados na Fig. 8.2. Com isso, a amplitude obtida na combinação de

isospin I = 1 é dada por

tI=1
B∗B̄∗→B∗B̄∗ = g2

[
2M2

ρM
2
ω +M2

Υ(−M2
ω +M2

ρ )

2M2
ΥM

2
ωM

2
ω

]
(k1 + k3) · (k2 + k4)ε1iε2jε

i
3ε
j
4 . (8.1)
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B∗+(k1, ǫ1)

B∗−(k2, ǫ2) B∗−(k4, ǫ4)

B∗+(k3, ǫ3)

B∗−(k2, ǫ2) B∗0(k4, ǫ4)

B∗+(k1, ǫ1) B∗0(k3, ǫ3) B∗0(k1, ǫ1) B∗0(k3, ǫ3)

B̄∗0(k2, ǫ2) B̄∗0(k4, ǫ4)

ρ0, ω,Υ(k1 − k3, ǫ
(0)) ρ+(k1 − k3, ǫ

(0)) ρ0, ω,Υ(k1 − k3, ǫ
(0))

Figura 8.2: Diagramas que contribuem para o processo B∗B̄∗ → B∗B̄∗ devido à
troca de mésons vetoriais.

onde MΥ, Mρ e Mω são as massas dos mésons Υ, ρ e ω, respectivamente. Para que

possamos escrever a amplitude acima em termos de suas componentes de spin 0, 1 e

2, devemos usar os projetores P(0), P(1) e P(2), definidos na Eq. (7.46). Em termos

desses projetores, a combinação dos vetores de polarização aparecendo na Eq. (8.1)

é igual a

ε1µε2νε
µ
3ε
ν
4 = P(0) + P(1) + P(2). (8.2)

Portanto, substituindo a Eq. (8.2) na Eq. (8.1), obtemos a seguinte expressão para

a amplitude projetada em onda-s,

tI=1,S=0,1,2

B∗B̄∗→B∗B̄∗ = −g2 + g2

[
2M2

ρM
2
ω +M2

Υ(−M2
ω +M2

ρ )

4M2
ΥM

2
ωM

2
ρ

]
(4M2

B∗ − 3s) , (8.3)

onde s está associado à energia do centro de massa do sistema B∗B̄∗. Na Eq. (8.3)

incluímos também o termo de contato calculado na Ref. [120].

Considere agora o canal B∗B̄∗ → ρΥ. Os diagramas contribuindo para essa inte-

ração via troca de mésons vetoriais estão ilustrados na Fig. 8.3. A amplitude na base

de isospin I = 1 para as componentes de spin S = 0, 2 em onda-s, correspondendo

aos diagramas da Fig. 8.3 além do termo de contato é escrita como

tI=1,S=0,2

B∗B̄∗→ρΥ
= −2g2 + g2

[
2M2

B∗ +M2
Υ +M2

ρ − 3s

M2
B∗

]
. (8.4)

A componente de spin S = 1 é nula em consequência do cancelamento das contri-

buições dos termos onde os mésons ρ0 e Υ são intercambiados nos diagramas. A
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transição diagonal é nula em nossa abordagem além de não ser permitida pela regra

de OZI.

B∗+(k1, ǫ1) ρ0(k3, ǫ3)

B∗−(k2, ǫ2) Υ(k4, ǫ4)

B∗+(k1 − k3, ǫ
(0))

ρ0(k3, ǫ3)B∗0(k1, ǫ1)

B̄∗0(k2, ǫ2)
Υ(k4, ǫ4)

B̄∗0(k1 − k3, ǫ
(0))

Figura 8.3: Diagramas contribuindo para o canal B∗B̄∗ → ρΥ.

As Eq. (8.3) e (8.4) serão utilizadas como kernel da equação de Bethe-Salpeter.

8.1.2 O caso BB̄∗

Nesse caso, a amplitude definida pela Eq. (7.22) também é válida para os mésons

B, com as massas associadas aos mésons dos canais de interesse para o sistema BB̄∗.

Isto é,

Vij(s) = −~ε ~ε
′

8f 2
π

Cij
[
3s− (M2 +m2 +M ′2 +m′2)− 1

s
(M2 −m2)(M ′2 −m′2)

]
,

onde os índices i e j representam os canais V P inicial e final, que nesse caso agora

são (BB̄∗ + cc)/
√

2, ηb ρ e πΥ.

Os elementos de matriz Cij são dados por uma matriz 3× 3, que na combinação

BB̄∗ de paridade G positiva, é definida como

Cij =


−ψ

√
2γ

√
2γ

√
2γ 0 0
√

2γ 0 0

 , (8.5)

onde γ =
(
mL
mH

)2

e ψ =
(
mL
mH′

)2

. Estes fatores são definidos de modo a levar em

conta a supressão devido à troca de mésons vetoriais pesados. No que diz respeito

aos parâmetros mL, mH and mH′, a exemplo do capítulo anterior, seus valores são

escolhidos para terem a mesma ordem de magnitude das massas dos mésons vetoriais
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leves e pesado: mL = 800, mH = 5000 MeV e mH′ = 9000 MeV. Note que, neste

caso, os elementos ψ e γ da matriz Cij são diferentes daqueles do caso DD̄∗.

8.1.3 A contribuição da troca de píons para as interações BB̄∗

e B∗B̄∗

O potencial devido à troca de píons correlacionados em alguns casos fornece uma

contribuição importante para a interação. Seguindo a mesma idéia aplicada para as

interações DD̄∗ e D∗D̄∗, substituímos as massas dos mésons D e D∗ pelas massas

dos mésons B e B∗, respectivamente. Como resultado disso, obtemos

− itσB∗B̄∗ = −i V 2 3

2
tI=0
ππ→ππ , (8.6)

onde tI=0
π π→π π é a amplitude isoescalar para a interação π π já definida anteriormente

na Eq. (7.31). Novamente, na Eq. (8.6), V é o fator que leva em conta as contri-

B∗+

B∗+

B+

π0

π0

π0

π0

B̄∗0

B̄∗0

B̄0

a)

B∗+

B∗+

B+

π0

π0

π−

π−

B̄∗0

B̄∗0

B−

b)

B∗+

B∗+

B0

π−

π−

π0

π0

B̄∗0

B̄∗0

B̄0

c)

B∗+

B∗+

B0

π−

π−

π−

π−

B̄∗0

B̄∗0

B̄−

d)

Figura 8.4: Diagramas contribuindo para a interação de dois píons na combinação
I = 1 para o processo B∗B̄∗ → B∗B̄∗.

buições provenientes dos loops triangulares dos diagramas. Detalhes da derivação

desse fator foram mencionados no capítulo anterior. A amplitude associada com a

troca de píons interagentes para esse caso é:
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0 500 1000 1500 2000
0

1

2
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4

5

q HMeVL

t Σ

Figura 8.5: Potencial tσ
B∗B̄∗

como função do momento transferido no processo.

tσB∗B̄∗(~q) = a2 3

2

[
1

f 2

~q 2 + m2
π

2

1−G(−~q 2) 1
f2

(~q 2 + m2
π

2
)

]
(P(0) + P(1) + P(2)) . (8.7)

Na Fig. 8.5, podemos ver o gráfico do potencial tσ
B∗B̄∗

, Eq. (8.7), como função do

momento transferido ~q.

B+

B+

B∗+

π0

π0

π0

π0

B̄∗0

B̄∗0

B̄0

a)

B+

B+

B∗+

π0

π0

π−

π−

B̄∗0

B−

b)

B+

B+

B∗0

π−

π−

π0

π0

B̄∗0

B̄∗0

B̄0

c)

B+

B+

B∗0

π−

π−

π−

π−

B̄∗0

B̄∗0

B̄−

d)

B̄∗0

Figura 8.6: Diagramas contribuindo para a interação via troca de dois píons intera-
gentes, para o processo BB̄∗ → BB̄∗ com I = 1.

A seguir, vamos considerar o mesmo mecanismo agora para o caso BB̄∗. O
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potencial tσ
BB̄∗

é dado por

− itσBB̄∗ = −i V V̄
3

2
tI=0
ππ→ππ , (8.8)

onde V̄ é a mesma expressão dada pela Eq. (7.51) com as devidas mudanças nas

massas. O gráfico do potencial tσ
BB̄∗

é dado na Fig. 8.7.

0 500 1000 1500

-1000

-800

-600

-400

-200

0

q HMeVL

t
Σ

B
B
*

Figura 8.7: Potentcial tσ
BB̄∗

como função do momento transferido no processo.

8.1.4 A troca de dois píons não correlacionados

Os píons para esse caso não interagem entre si, logo, somente os diagramas a)

e b) das Figs. 8.4 e 8.6 contribuem para as interações B∗B̄∗ e BB̄∗. A amplitude

pode ser reescrita em termos de suas componentes de spin como

tB
∗B̄∗

π π =
5

4
g4
B

A

15

∫
d3p

(2π)3
(4~p 2 − ~q 2

4
)2 F 2 1

ω1 + ω2

1

2ω1ω2

1

4E2
B

1

p0
1 − ω1 − EB + iε

× 1

p0
1 − ω2 − EB + iε

(
1 +

EB + ω1 + ω2 − p0
1

p0
1 − ω1 − EB + iε

+
EB + ω1 + ω2 − p0

1

p0
1 − ω2 − EB + iε

)
,

(8.9)

onde A = 5 está associado com o spin J = 0, enquanto A = 2 está relacionado

à componente J = 2. ω1 =
√

(~p+ ~q/2)2 +m2
π, ω2 =

√
(~p− ~q/2)2 +m2

π sãos as

energias dos píons, e EB(~p ) =
√
~p 2 +m2

B é a energia do méson B.
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Figura 8.8: Potencial tB∗B̄∗ππ para a troca de píons não interagentes no caso J = 0.
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Figura 8.9: Potencial tB∗B̄∗ππ para a troca de píons não interagentes no caso J = 2
(linha tracejada).
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Nas Figs. 8.8 e 8.9, podemos ver a amplitude para os dois casos de spin como

função do momento transferido.

Para os caso BB̄∗, encontrarmos

tBB̄
∗

π π = −5

4
g4
B

1

2
~ε ′ ~ε ′′

∫
d3p

(2π)3
(~p 2 − ~q 2)

[
(4~p 2 − ~q 2

4
)− 1

~q 2

[
(2~p ~q )2 − ~q 4

4

]]
× F 2

ω1 + ω2

1

2ω1ω2

1

2EB

1

2EV
[ω2

1 + ω2
2 + ω1ω2 − (ω1 + ω2)(2p0

1 − EB∗ − EB)

+ (p0
1 − EB∗)(p0

1 − EB)]
1

p0
1 − ω1 − EB∗ + iε

1

p0
1 − ω1 − EB + iε

× 1

p0
1 − ω2 − EB∗ + iε

1

p0
1 − ω2 − EB + iε

,

(8.10)

onde EB∗(~p ) =
√
~p 2 +m2

B∗ é a energia do méson B∗. O gráfico da amplitude tπ π
BB̄∗

como função do momento transferido pode ser visto na Fig. 8.10.

500 1000 1500 2000
q@MeVD
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-2

-1

0

1

2

t

Figura 8.10: Potencial tπ π
BB̄∗

para a troca de píons não interagentes como função do
momento transferido no processo.

8.2 Resultados

Discutimos no capítulo anterior a comparação entre as contribuições associadas

com a troca de píons, interagentes e não interagentes, com a da troca de méson ve-

torial, calculando a integral dada pela Eq. (7.59). Aqui, seguiremos uma estratégia

um pouco diferente de modo a levarmos em conta os diferentes potenciais. Calcu-

laremos a intensidade para todos os potenciais e em seguida, somamos todos eles.
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Figura 8.11: Comparação entre os potenciais tB∗B̄∗→B∗B̄∗ (linha tracejada pequena,
Eq. (8.3), troca de méson vetorial), tσ(ππ)

B∗B̄∗
(linha pontilhada, Eq. (8.7)), tB∗B̄∗ππ para

J = 0 (linha ponto-tracejada, Eq. (8.9)) e J = 2 (linha sólida), como funções do
momento transferido no processo.

0 500 1000 1500 2000

-1000

-800

-600

-400

-200

0

q HMeVL

t

Figura 8.12: Comparação entre os potenciais tBB̄∗→BB̄∗ (linha sólida, Eq. (7.22)),
t
σ(ππ)

BB̄∗
(linha tracejada, Eq. (7.47)), tBB̄∗ππ (linha pontilhada, Eq. (8.10)) como funções

do momento transferido no processo.
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Então, convertemos a soma em um potencial efetivo semelhante ao potencial devido

à troca de mésons vetoriais do tipo

Veffθ(qmax − |~q |)θ(|~qmax| − |~q ′|) , (8.11)

onde |~qmax| é o máximo momento transferido usado nos loops na Eq. (7.26) (ver

Eq. (7.28)) com ω1 e ω2 funções apropriadas para o caso com bottom, tal que∫
q<qmax

d3q Veff é igual à soma
∫
d3q Vi (q). Assim, o potencial será esse potencial

efetivo adicionado ao potencial da troca de mésons vetoriais. Ambos são do tipo

definido pela Eq. (7.28) e podem ser usados na equação de Bethe-Salpeter com a

mesma função G regularizada com o cutoff |~qmax|.
Por outro lado, o valor da intensidade depende do valor do limite superior da

integral
∫
d3q V (q). Por essa razão, calculamos o potencial efetivo Vef usando valores

desse limite para o potencial da troca de méson leve variando de 700 até 1100 MeV

para ambas interações B∗B̄∗ e BB̄∗. Ao mudarmos o limite superior na
∫
d3q Vi (q),

introduzimos uma incerteza grande no potencial efetivo. A intensidade do potencial,

somando Vef com o potencial da troca de méson vetorial, pode resultar em um fator

de 2.4 a 14.5 vezes o potencial da troca de méson vetorial para o caso B∗B̄∗ com

J = 0, enquanto para J = 2 encontramos um fator 1.2 − 5.2. Para o caso BB̄ o

fator varia entre 30 e 64.

A seguir estudamos a forma do elemento |T11|2 da matriz T para ambos os

caso, isto é, para B∗B̄∗ e BB̄∗. Como veremos, ambos os casos apresentam um

pico pronunciado e as grandes incertezas no potencial não afetam drasticamente sua

posição.

8.2.1 O caso BB̄∗

Nesse caso, estudamos a matriz T para os canais: BB̄∗, ηb ρ e πΥ. Calculamos

a matriz de transição entre esses canais para os valores de
√
s no entorno de 10600

MeV. Para fazermos isso, usamos a fórmula da regularização dimensional para a

função de loop G, dada pela Eq. (7.27), com |~qmax| = 700 MeV, para o qual obtemos
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Figura 8.13: |T11|2 como função da energia do centro de massa
√
s para o caso BB̄∗.

Cada curva está associada à um limite de integração: 700 MeV, 800 MeV, 900 MeV,
1000 MeV, 1100 MeV. O pico é deslocado da direita para a esquerda quando o limite
de integração aumenta.

os seguintes valores das constantes de subtração αBB̄∗ = −2.79, αηbρ = −3.56 e

απΥ = −3.78.

Ao contrário do que fizemos no capítulo anterior, onde as variações do pico da

matriz T resultavam das mudanças no valor de |~qmax|, no caso atual variamos o

valor do limite superior da integral
∫
d3q V (~q) usada para estimarmos o potencial

efetivo Vef . A razão disso segue da pequena influência que a mudança em |~qmax|
exerce na posição do pico, quando comparada com o mesmo efeito variando o limite

superior da integral. Na Fig. 8.13 mostramos a curva de |T11|2, que é elemento

da matriz T que descreve a transição BB̄∗ → BB̄∗, para diferentes valores do

limite de integração. Como podemos ver, a posição do pico move-se na direção

de energias mais altas dentro do intervalo 10587 − 10601 MeV, quando o valor do

limite de integração diminui. Esses valores da posição do pico estão muito próximos

daqueles observados pela Colaboração Belle: MZb(10610) = (10608.4±2.0) MeV. Vale

notar também que ambos os canais ηb ρ e πΥ estão abertos, o que indica a largura

entre 1.6 e 3 MeV. Neste caso, o valor observado pela Colaboração Belle é igual a

ΓZb(10610) = (15.6± 2.5) MeV.
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8.2.2 O caso B∗B̄∗
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Figura 8.14: |T11|2 como função da energia do centro de massa
√
s para o caso B∗B̄∗

(J = 0). Cada curva está associada à um limite de integração: 700 MeV, 800 MeV,
900 MeV, 1000 MeV, 1100 MeV. O pico é deslocado de baixo para cima quando o
valor do cut off cresce.

Aqui temos dois canais: B∗B̄∗ e ρΥ. Novamente, para a função de loop G

usamos a fómula de regularização dimensional com µ = 1500 MeV. Os valores das

constantes de subtração são αB∗B̄∗ = −2.79 e αρΥ = −3.56. Estes valores equivalem

a um cutoff igual a |~qmax| = 700 MeV.

A Fig. 8.14 mostra a forma da transição diagonal B∗B̄∗ como função da energia

do centro de massa
√
s para diferentes valores do limite de integração. O pico

corresponde a um estado com spin J = 0. O caso com J = 2 pode ser visto na

Fig. 8.15. Vale ressaltar que, de acordo com a Eq. (8.4), não existe contribuição na

matriz T na transição B∗B̄∗ → ρΥ para J = 1. Assim, nesse caso, B∗B̄∗ segue com

um único canal.

Dessas figuras podemos observar que as variações no limite de integração não

causam efeitos na posição do pico, como já havíamos notado para o caso BB̄∗.

É interessante observar que embora estamos admitindo uma grande incerteza no

potencial, sempre encontramos uma estrutura para o pico em |T11|2, correspondendo
claramente a um cusp. Chamar isso de um estado ressonante ou não é uma questão



170 Estudo das Interações BB̄∗ e B∗B̄∗

10 400 10 500 10 600 10 700 10 800 10 900 11 000

0

2000

4000

6000

8000

10 000

s MeV

T
1
1

2

Figura 8.15: |T11|2 como função da energia do centro de massa
√
s para o caso B∗B̄∗

(J = 2). Cada curva está associada à um valor do limite de integração, a saber: 700
MeV, 800 MeV, 900 MeV, 1000 MeV, 1100 MeV.

de critério. Vale dizer que o estado a0(980) aparece nos experimentos (ou em teorias)

[134, 135] como um cusp e ainda assim é considerado como uma ressonância. De

nossos resultados, obter um cusp em |T11|2 nesse caso, corrobora com trabalhos

anteiores [136, 137].

Por uma questão de completeza, repetimos o cálculo considerando o caso para o

spin igual a J = 1. Neste caso, temos um único canal, isto é,

T11 =
t̃B∗B̄∗→B∗B̄∗

1− t̃B∗B̄∗→B∗B̄∗ GB∗B̄∗
, (8.12)

onde GB∗B̄∗ é a função de loop, Eq. (7.27), para o canal B∗B̄∗, enquanto t̃B∗B̄∗→B∗B̄∗

é potencial de troca de mésons vetoriais B∗B̄∗ → B∗B̄∗ já definido pela Eq. (8.3)

mais a contribuição de Vef devido à troca de dois píons interagentes.

Na Fig. 8.16, mostramos a curva para |T11|2 como função da energia do centro

de massa do sistema. Observe que, temos um pico em 10650 MeV, que é o limiar

de massa do par B∗B̄∗. Novamente, obtemos um cusp na amplitude que não corres-

ponde a um estado ligado. Situação semelhante acontece se aumentarmos o valor

de t̃B∗B̄∗→B∗B̄∗ por um fator de 1.5 para levarmos em conta as incertezas. O valor



8.2 Resultados 171

10 500 10 550 10 600 10 650 10 700 10 750 10 800

70

72

74

76

78

s @MeVD

ÈT
1

1

2

Figura 8.16: |T11|2 como função da energia do centro de massa
√
s quando somente o

canal B∗B̄∗ é considerado (J = 1). Cada curva está associada aos seguintes valores
do cut off qmax: 700, 800, 900, 1000 e 1100 MeV. O pico é deslocado de baixo para
cima quando o valor do cut off cresce.

de |T11|2 cresce porém o cusp permance como se pode ver na Fig. 8.16.

Como conclusão podemos dizer que encontramos um estado ligado BB̄∗, nos

casos de spin J = 0 e J = 2, com massa no intervalo 10587 − 10601 MeV muito

próxima da massa experimental do estado Zb(10610) que é igual a 10608 MeV. Por

outro lado, o caso do spin J = 1 somente pode ser considerado como um problema

de canal único sem levarmos em conta o canal ρΥ. Como resultado, encontramos

um cusp ao redor do valor 10650 MeV como pode ser visto na Fig. 8.16 corroborando

com as Refs. [136, 137].
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CAPÍTULO 9

CONCLUSÃO

Na Parte II desta tese, usamos as Lagrangianas da Simetria Oculta de Calibre

Local (HGS) bem como as regras da Simetria de Spin do Quark Pesado (HQSS) para

investigarmos as interações PV (DD̄∗) entre mésons pseudo-escalares (P) e vetoriais

(V) além de interações VV (D∗D̄∗) entre mésons vetoriais. Em particular, essas

interações foram investigadas via trocas de mésons vetoriais pesados e dois píons

correlacionados e não correlacionados entre si. Isso por que interações via troca de

mésons vetoriais e pseudo-escalares leves não são permitidas pela Regra de Okubo-

Zweig-Iizuka (OZI) para isospin I = 1. Determinamos as amplitudes de transições

em canais acoplados para determinarmos o potencial da interação. Usamos esse

potencial na equação de Bethe-Salpeter para calcularmos a matriz T unitarizada,

usando a função de loop G dimensionalmente regularizada com uma constante de

subtração para cada canal. A finalidade disso é procurar pólos na matriz T de modo

a associá-los a ressonâncias ou estados ligados e atribuí-los como interpretações aos

estados exóticos do Charmônio, em particular, aos estados Z+
c (3900), Z+

c (4025) no

setor de massa do Charmônio além dos estados Z+
b (10610) e Z+

b (10650) no setor do

bottom.

No caso das interações DD̄∗ e D∗D̄∗, embora a contribuição devido à troca

de mésons vetoriais pesados seja pequena, ela ainda é maior que a contribuição

da troca de píons, e suficientemente grande para gerar dinamicamente estruturas
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moleculares próximas aos limiares de massa DD̄∗ e D∗D̄∗. Dos nossos resultados

podemos afirmar que a interação DD̄∗, com paridade G positiva, gera um estado

com massa no intervalo 3869 − 3875 MeV e largura igual a 40 MeV. Esse estado,

em nosso formalismo, é um parceiro de isospin do X(3872), corroborando com o

estudo da Parte I, no qual usamos as RSQCD, onde a corrente interpolante possuía

JP = 1+, para descrevê-lo como um estado Tetraquarks. Por outro lado, da interação

D∗D̄∗ encontramos um estado com massa 3990− 4000 MeV e largura 100 MeV com

números quânticos IG = 1− e JPC = 2++. Acreditamos que esse estado forneça uma

explicação para o estado Zc(4025) observado pela Colaboração BESIII em [138].

Aplicamos o mesmo formalismo para as interações BB̄∗ e B∗B̄∗ no setor do

bottom. Como resultado, encontramos um estado com massa 10587 − 10601 MeV

muito próxima do valor experimental do estado Zb(10610), observado pela Colabo-

ração Belle. A interação B∗B̄∗ sempre fornece um cusp, indepentemente do valor

de spin considerado, no limiar de massa.



APÊNDICE A

PROPAGADORES

A.1 Propagadores associados com quarks leves

Os diagramas abaixo estão associados com os propagadores de quark leve (q =

u, d e s). Os três últimos diagramas (não-fatoráveis) devem ser tratados com cui-

dado, pois devem sempre aparecer associados a um termo pertubativo de glúons em

outro propagador, noqual devemos omitir gsGn
ab(0).
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i /x δab
2π2x4

(A.1)

−mq δab
4π2x2

(A.2)

−δab
12
〈q̄q〉 (A.3)

i /x δab
48

mq〈q̄q〉 (A.4)

−x
2 δab

3 · 26
〈q̄gsσGq〉 (A.5)

ix2 /x δab
32 · 27

mq〈q̄gsσGq〉 (A.6)

−i(/xσµν + σµν/x) tnab
3 · 29 π2 x2

〈g2
sG

2〉 (A.7)

−σµν t
n
ab

3 · 26
〈q̄gsσGq〉 (A.8)

i(/xσµν + σµν/x) tnab
3 · 28

mq〈q̄gsσGq〉 (A.9)
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A.2 Propagadores associados com quarks pesados

Os diagramas a seguir estão associados com os propagadores de quarks pesados.

i(/p+mc) δab

p2 −m2
c

(A.10)

−i t
n
abgsG

n
µν(0)

4

[
/pσµν + σµν/p + 2mcσ

µν

(p2 −m2
c)

2

]
(A.11)

i δab
12

[
p2 +mc/p

(p2 −m2
c)

4

]
mc〈g2

sG
2〉 (A.12)
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APÊNDICE B

ALGUMAS RELAÇÕES USADAS EM REGRAS DE

SOMA

B.1 Calculando os Traços

No cálculo da função de correlação pelo Lado da OPE, calculamos alguns traços

envolvendo matrizes de Dirac. Abaixo segue uma lista das relações que facilitam o

cálculo dos traços que surgem no cálculo da função de correlação.

Tr{1̂} = 4 (B.1)

Tr{γµγν} = 4gµν (B.2)

Tr{γ5} = 0 (B.3)

Tr{γµγνγ5} = 0 (B.4)

Tr{γµγνγργσ} = 4(gµνgρσ − gµρgνσ + gµσgνρ) (B.5)
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Tr{σµν} = 0 (B.6)

Traço de número ímpar de matrizes de Dirac = 0. (B.7)

B.2 Transformadas de Fourier

∫
d4p

/pe−ipx

p2 + iε
= /x

8π2

x4
, (B.8)

∫
d4p

e−ipx

p2 + iε
= i

4π2

x2
, (B.9)

∫
d4p

/pe−ipx

(p2 + iε)2
= /x

2π2

x2
, (B.10)

∫
d4p

e−ipx

(p2 + iε)2
= −iπ2ln(−x2), (B.11)

B.3 Álgebra das Matrizes de Dirac

As matrizes de Dirac na representação de Pauli são:

γ0 =

 1̂ 0

0 −1̂

 , γi =

 0 σi

−σi 0

 ,

onde σi são as matrizes de Pauli. As matrizes de Dirac satisfazem as seguintes

propriedades:

{γµ, γν} = 2gµν (B.12)

γ0 = γ0T = γ0† (B.13)
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γ0γµγ0† = γµ†. (B.14)

γµγ
µ = 4 (B.15)

De acordo com as definições abaixo:

C = iγ2γ
0 (B.16)

σµν =
i

2
[γµ, γν ] (B.17)

γ5 = iγ0γ1γ2γ3 (B.18)

Kµν(x) = /xσµν + σµν/x (B.19)

obtemos as seguintes relações

C−1 = CT = C† = −C (B.20)

CγTµC
−1 = −γµ (B.21)

CσTµνC
−1 = −σµν (B.22)

CKT
µν(x)C−1 = Kµν(x) (B.23)

Kµν(x)Kµν(x) = 24x2 (B.24)
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{γµ, γ5} = 0 (B.25)

σµνγ
ασµν = 0 (B.26)

σµνσ
µν = 12 (B.27)

B.4 Parametrização de Schwinger (γ)

1

(m2 − p2)n
=

1

Γ(n)

∞∫
0

dγγn−1e−γ((m2−p2) (B.28)



APÊNDICE C

INTEGRAIS

C.1 Integrais no Momento

As integrais no momento a serem resolvidas são:

∫
d4p

e−ipx

(p2 −m2)n
; (C.1)

∫
d4p

pµe
−ipx

(p2 −m2)n
. (C.2)

Usando (B.28) a (C.1) é reescrita como

∫
d4p

e−ipx

(p2 −m2)n
= (−1)n

∫
d4pe−ipx

∫
dα
αn−1

Γ(n)
e−α(m2−p2). (C.3)

Passando para o espaço euclidiano por meio de uma rotação de Wick, temos
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∫
d4p

e−ipx

(p2 −m2)n
=

(−1)ni

Γ(n)

∞∫
0

dααn−1e−αm
2

∫
d4pee

−αp2e+xpe (C.4)

=
(−1)niπ2

Γ(n)

∞∫
0

dα

α3−n e
−αm2+ x2

4α .

Agora vamos resolver a integral dada por (C.2). Novamente, aqui usamos (B.28),

com isso obtemos:

∫
d4p

pµe
−ipx

(p2 −m2)n
= (−1)n

∫
d4ppµe

−ipx

∞∫
0

dβ
βn−1

Γ(n)
e−β(m2−p2). (C.5)

Podemos reescrever a integral em p em termos de uma derivada, da seguinte maneira:

∫
d4p

pµe
−ipx

(p2 −m2)n
=

(−1)ni

Γ(n)

∞∫
0

dββn−1e−βm
2 ∂

∂xµ

[ ∫
d4peβp

2−ipx
]
. (C.6)

Podemos transformá-la numa integral gaussiana aplicando uma rotação de Wick,

deste modo obtemos

∫
d4p

pµe
−ipx

(p2 −m2)n
=

(−1)n+1

Γ(n)

∞∫
0

dββn−1e−βm
2 ∂

∂xµ

[ ∫
d4pe−βp

2
e+pex

]
(C.7)

=
(−1)n+1π2

2Γ(n)

∞∫
0

dβ

β3−n e
−βm2 ∂

∂xµ

[
ex

2/4β
]
.

Portanto,

∫
d4p

pµe
−ipx

(p2 −m2)n
=

(−1)n+1π2

2Γ(n)

∞∫
0

dβ

β4−nxµe
−βm2+x2/4β. (C.8)
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C.2 A Integral In

In é uma integral do tipo

∫
d4x

eiqx+
x2(α+β)

4αβ

(x2)n
. (C.9)

Indo para o espaço euclidiano via rotação de Wick, obtemos

∫
d4x

eiqx+
x2(α+β)

4αβ

(x2)n
= −i

∫
d4xe

e−iqexe+
x2e(α+β)

4αβ

(−1)n(x2)n
. (C.10)

O denominador da equação acima (x2)n pode ser reescrito em termo de uma integral

do tipo

1

(x2)n
=

1

(n− 1)!

∞∫
0

dδe−δx
2

δn−1. (C.11)

Assim, substituindo-o no segundo membro de (C.10) segue

In =
(−1)n−1i

(n− 1)!

∞∫
0

dδδn−1e−δx
2
e

∫
d4xee

−iqexe−
x2e(α+β)

4αβ . (C.12)

Vamos definir a variável ω como sendo igual a ω = δ + 1
4α

+ 1
4β
. Completando o

quadrado obtemos uma integral gaussiana. Logo,

In =
(−1)n−1i

(n− 1)!

∞∫
0

dδδn−1e−
q2e
4ω

∫
d4xee

−b(xe+ iqe
2b

)2︸ ︷︷ ︸
integral gaussiana

(C.13)

=
(−1)n−1iπ2

(n− 1)!

∞∫
0

dδ
δn−1

ω2
e−

q2e
4ω .
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Finalmente fazendo a seguinte mudança de variável: δ = 1
4γ
, obtemos

In =
(−1)n−1iπ2

4n−2(n− 1)!

∞∫
0

dγ

γn−1

α2β2

(αβ + βγ + γα)2
e−

αβγq2e
αβ+βγ+γα . (C.14)

C.3 A Integral Inmkl

A integral Inmkl é dada por

Inmkl =

∞∫
0

dαdβdγ

αnβmγk
e−m

2
c(α+β)− αβγq2e

αβ+βγ+γα

(αβ + βγ + γα)l
. (C.15)

Podemos reescrevê-la da seguinte maneira:

Inmkl =

∞∫
0

dαdβdγ

αnβmγk+l

e−m
2
c(α+β)− αβγq2e

αβ/γ+βγ+γα

(αβ/γ + β + α)l
. (C.16)

Fazendo a mudança de variáveis: α = α
′ , β = β

′ e αβ
γ

= γ
′ , temos:

Inmkl =

∞∫
0

dα
′
dβ
′
dγ
′

α′n+k+l−1β ′m+k+l−1

γ
′l+k−2

(α′ + β ′ + γ′)l
e
−m2

c(α
′
+β
′
)− α

′
β
′
γ
′
q2e

α
′
+β
′
+γ
′ . (C.17)

Inserindo a identidade

1 =

∞∫
0

dλδ[λ− (α
′
+ β

′
+ γ

′
)], (C.18)

obtemos

Inmkl =

∞∫
0

dα
′
dβ
′
dγ
′

α′n+k+l−1β ′m+k+l−1

γ
′l+k−2

(α′ + β ′ + γ′)l
e
−m2

c(α
′
+β
′
)− α

′
β
′
γ
′
q2e

α
′
+β
′
+γ
′

∞∫
0

dλδ[λ−(α
′
+β

′
+γ

′
)].
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Vamos fazer uma mudança de escala do tipo abaixo, omitindo o símbolo nas variá-

veis: α = λα, β = λβ e γ = λγ, assim, resulta que

Inmkl =

∞∫
0

dαdβdγdλδ[1− (α + β + γ)]

αn+k+l−1βm+k+l−1λn+m+k+2l−2

γl+k−2

(α + β + γ)l
e−m

2
c(α+β)− αβγq2e

α+β+γ . (C.19)

Integrando na variável γ por meio da delta, chegamos ao resultado abaixo

Inmkl =

1∫
0

dαdβ θ(1− α− β)

αn+k+l−1βm+k+l−1
(1− α− β)l+k−2

∞∫
0

dλ
e−λ[m2

c(α+β)+αβqe]

λn+m+k+2l−2
. (C.20)

C.4 A Integral Inλ

A integral Inλ é uma integral do tipo

Inλ =

∫
dλ

λn
e−λf , (C.21)

onde f é uma função positiva. Considere inicialmente a integral

I0
λ =

∞∫
0

dλe−λf =
1

f
. (C.22)

Podemos reescrevê-la da seguinte maneira

∞∫
0

dλe−λf = − ∂

∂f

∞∫
0

dλ

λ
e−λf . (C.23)

Desse modo, ao integrarmos em f ambos os membros, obtemos

I1
λ =

∞∫
0

dλ

λ
e−λf = −

∫
df

∞∫
0

dλe−λf (C.24)

= −
∫
df

f

= −lnf + c.
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Que é o resultado para a integral (C.21) para n = 1. Note que a divergência está

na constante c. Entretanto, nas Regras de Soma da QCD estamos interessado na

parte imaginária das integrais. Seguindo o raciocínio, encontramos o resultado para

n = 2

I2
λ =

∞∫
0

dλ

λ2
e−λf =

∫
dflnf (C.25)

= f lnf − f + cte.

Novamente, estamos interessados na parte f lnf visto que somente ela pode ter

parte imaginária. Prosseguindo agora para n = 3, n = 4 e n = 5, temos

I3
λ =

∞∫
0

dλ

λ3
e−λf = −f

2lnf

2
+ ... (C.26)

I4
λ =

∞∫
0

dλ

λ4
e−λf =

f 3lnf

3!
+ ... (C.27)

I5
λ =

∞∫
0

dλ

λ5
e−λf = −f

4lnf

4!
+ ... (C.28)

Com isso, por indução chegamos ao resultado abaixo

Inλ =

∞∫
0

dλ

λn
e−λf =

(−1)n

(n− 1)!
fn−1lnf +O(fn). (C.29)

Com as integrais acima, podemos usá-las para integrar as demais que surgem
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nas RSQCD. Abaixo, apresentamos um resumo delas

∫
d4xd4p1d

4p2 e
i(q−p1−p2)·x

(p2
1 −m2

c)
n(p2

2 −m2
c)
m

=
−24π6i

(n− 1)!(m− 1)!(3− n−m)!

×
∫ 1

0

dαH2−n−m(α)

α1−n(1− α)1−m logH(α) .

(C.30)

∫
d4xd4p1d

4p2 e
i(q−p1−p2)·x

(p2
1 −m2

c)
n(p2

2 −m2
c)
m

(p1 · p2) =
24iπ6(−1)n+m

(n− 1)!(m− 1)!

∫ 1

0

dαH2−n−m

α1−n(1− α)1−m logH(α)

×
(

2H(α)(−1)4−n−m

(3− n−m)!
+
α(1− α)Q2(−1)−n−m

(3− n−m)!

)
,

(C.31)

∫
d4xd4p1d

4p2 e
i(q−p1−p2)·x

(p2
1 −m2

c)
n(p2

2 −m2
c)
m

(p1µp2ν) =
23iπ6

(n− 1)!(m− 1)!(3− n−m)!

×
∫ 1

0

dα

α1−n(1− α)1−mH
3−n−m(α)logH(α) .

(C.32)

∫
d4y eiq·yyµ

(y2)n
=

(−1)n25−2nπ2

(n− 1)!(n− 2)!
(q2)n−3qµ[1 + (n− 2)log(−q2)] , (C.33)

∫
d4k

1

(k2 −m2
c)
m[(k − p′)2 −m2

c ]
k

=
−iπ2

(m− 1)!(k − 1)!(2−m− k)!

×
∫ 1

0

dαH ′2−m−k(α)

α1−m(1− α)1−k log(H ′(α)) .

(C.34)

C.5 Exemplo do cálculo de Diagramas

Vamos mostrar como utilizamos as integrais acima para obtermos as densidades

espectrais no Lado da OPE. Como exemplo consideramos a densidade espectral
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dada pela Eq. (4.13). Para isso, subsituímos as Eq. (A.3) e Eq. (A.10) na Eq. (4.8),

obtendo

Π24
µν =

−〈q̄q〉
12
√

2(2π)8

∫
d4xd4p1d

4p2
eiqx−i(p1+p2)x

(p2
1 −m2

c)(p
2
2 −m2

c)
Tr
[
( /p1 +mc)γν( /p2 −mc)γµ

]
× εabcεdecδfdδbeδaf , (C.35)

Resolvendo o traço podemos reescrever a equação acima como

Π24
µν =

−4〈q̄q〉√
2(2π)8

∫
d4xd4p1d

4p2
eiqx−i(p1+p2)x

(p2
1 −m2

c)(p
2
2 −m2

c)

(
2p1µp2ν − gµν(m2

c + p1 · p2)

)
.

(C.36)

Portanto, usando as Eq. (C.30), (C.31) e (C.32), obtemos na estrutura gµν a seguinte

expressão

Π24 = − 〈q̄q〉
22π2

∫ 1

0

dαα(1− α)Q2logH(α). (C.37)

A densidade espectral ρ24(s) é obtida da parte imaginária da Eq. (C.37), logo,

ρ24(s) =
〈q̄q〉
22π2

∫ αmax

αmin

dαα(1− α)Q2 . (C.38)

que após a integração em dα, é escrita como

ρ24(s) = − 〈q̄q〉
23π2

s(1 + 2m2
c/s)

√
1− 4m2

c

s
. (C.39)

Como exemplo de cálculo de diagramas correspondente à função de três pontos,

vamos calcular a Eq. (3.21). A integral a ser calculada é dada por

mc〈q̄Gq〉
96
√

2π6

∫
d4y

eiq·y

(y2)2

∫
d4k

p′µ
(k2 −m2

c)((k − p′)2 −m2
c)

2
. (C.40)

Usando a Eq. (??) fazendo n = 2, resolvemos a integral em y enquanto para a
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integral em k, usamos a Eq. (C.34) tomando m = 1 e k = 2, resultando em

mc〈q̄Gq〉
96
√

2π6

∫
d4y

eiq·y

(y2)2

∫
d4k

p′µ
(k2 −m2

c)((k − p′)2 −m2
c)

2
= −imc〈q̄Gq〉

48
√

2π2

1

q2

×
∫ 1

0

dα
1

m2
c − α(1− α)p′2

.

(C.41)
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