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Abstract

In 1998 astronomical observations of distant stars exploding at the ends of

their lives led to the discovery that the expansion of the Universe is acceler-

ating. This is likely to be caused by an intrinsic part of Einstein’s General

Theory of Relativity known as the cosmological constant, but naturalness

issues and the need to improve observational tests have motivated the study

of alternative models of the Universe. The research in this thesis is part

of ongoing efforts to pin down the cause of late-time acceleration by better

understanding these alternatives and their signatures in cosmological obser-

vations.

One such alternative is known as interacting dark energy and would be

caused by additional matter in the Universe, as yet unknown to particle

physics. This would interact with another unknown particle called dark

matter that has been part of the standard model of cosmology since the

1970’s. The first part of this thesis contains a review of works on interacting

dark energy and investigates a particular version of the model which had not

been studied in detail before, placing recent observational constraints on its

parameters.

Another alternative to the cosmological constant is known as modified

gravity, where General Relativity is extended by the addition of new degrees

of freedom. Theories of modified gravity are mathematically related to some

models of interacting dark energy and can appear very similar in cosmological

observations. The second part of this thesis investigates the extent to which

the two can be distinguished using current observational data.
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Chapter 1

Perspectives on ΛCDM

At present the standard cosmological model seems to be resilient to obser-

vational tests. It was 80 years before the effect of Einstein’s Λ was detected

in 1998 [1, 2], but the conclusion that the expansion of the Universe is accel-

erating is now very robust [3]. The Dark Energy Task Force Report [4] laid

out a roadmap to understanding the nature of dark energy, (DE), through

observations. They categorised these efforts into four stages of increasing

sophistication and Stage 3 DE missions such as the Baryon Oscillation Spec-

troscopic Survey and the Dark Energy Survey are now beginning. Eventually,

after two decades of both observational and theoretical efforts, Stage 4 mis-

sions such as the Square Kilometre Array, the Large Synoptic Survey Tele-

scope and the Euclid satellite should provide definitive results on whether or

not the cosmological constant is sufficient to describe the apparent late-time

acceleration of the Universe.

The picture for cold dark matter, (CDM), is less clear however. It is

believed to make up more than five times as much of the Universe as mat-

ter described by the standard model of particle physics, but 80 years after

it was first proposed [5] it is still just inferred through its gravitational ef-

fects. The evidence for dark matter, (DM), is compelling, with astronomical

observations on a range of scales in support of each other, but laboratory

experiments around the world have as yet failed to provide proof of its exis-
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tence. Strictly speaking therefore, the age old question perennially faced by

astronomers of ’more matter or more gravity’ still remains to be answered for

this phenomenon, although the consensus amongst the cosmological commu-

nity has indeed been for many years that DM must be particulate in nature.

It may be of course that with the recent discovery of the Higgs boson the

standard model of particle physics is complete, but there are finetuning issues

within it which make a strong case for the naturalness of extensions such as

supersymmetry or axions.

The same can also be said about the cause of the late-time acceleration.

It could well be either gravitational or material in nature. Indeed the theo-

rised accelerated expansion of the very early Universe known as inflation is

thought to be driven by particle fields. The cosmological constant however

sits comfortably within an accepted theory as a natural part of the frame-

work of General Relativity, (GR). In this introductory chapter we discuss

the issues that surround Λ, the observations that are used to test it and the

possible alternatives that exist.

Chapter 2 presents the basics of perturbation theory as a foundation for

later chapters and Chapter 3 reviews works on a particular alternative to

the cosmological constant called interacting dark energy, (IDE). The study

of IDE forms the basis of this thesis and Chapter 4 is a perturbation analy-

sis of a particular IDE model. The second part of the thesis then considers

the relationship of IDE to modified gravity theories, (MG). Chapter 5 devel-

ops a dual description of two equivalent models and Chapter 6 investigates

the possibility of distinguishing between them using current observations.

Conclusions are then drawn in Chapter 7.

1.1 The Cosmological Constant

The simplest explanation for the observed late-time acceleration is the inclu-

sion in GR of the cosmological constant. A number of works have been unable

to detect any significant deviation from a pure cosmological constant [6, 7, 8],

2



but it may yet be possible to observe such a break from ΛCDM as purpose-

built missions come online and cosmological measurements become even more

precise [9, 10]. For reviews of the subject see [11, 12, 13, 14].

1.1.1 History

The cosmological constant was first mentioned in a footnote in Einstein’s

1916 paper on GR [15]. Under the action of gravity, the Universe would be

expected to collapse, so he later included it in an attempt to describe a static

universe [16], which was in fact still the accepted wisdom until 1929. It may

be this that he called his biggest blunder, because he missed the obvious

instability of a static universe to small variations in density, as shown by

Eddington in 1930 [17].

Although Λ was included in early cosmological models it slipped out of

common use, doubtless due to the lack of observational evidence, and even

Einstein later asserted in an appendix added to the 1945 version of his pop-

ular book on relativity that Λ should be rejected on the grounds of logical

economy [18]. In particular there was no need for its inclusion after the devel-

opment of the Friedmann-Lemâıtre-Robertson-Walker, (FLRW), model [19],

which was perfectly capable of describing the observed expansion of the Uni-

verse [20, 21].

Thus Λ was mostly consigned to the textbooks until the cosmological

community was caught somewhat by surprise by the observation of late-

time acceleration in 1998 [1, 2]. This neatly provided for a flat Universe,

(Ωtotal = 1), winning a Nobel Prize for the teams involved. Cosmic microwave

background, (CMB), data had in fact already shown that the geometry of the

Universe was close to flat and by combining it with large-scale structure data

it could be shown that Ωm ≈ 0.3, (where m stands for matter), suggesting

that Λ might be required to make up the difference [13], but as with DM

only conclusive observations solidified the consensus.
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1.1.2 The place of Λ in GR

The most general second order action for the metric that there is can be

written as,

S =
1

16πG

∫ √
−g(R− 2Λ)d4x, (1.1)

where G is Newton’s constant, g ≡ det(gµν) is the determinant of the space-

time metric gµν , R ≡ Rµ
µ is the Ricci scalar with Rµν being the Ricci tensor

and Λ is the cosmological constant. There is no physical reason why Λ

should be removed, so we are led by the variational principle to Einstein’s

field equations,

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (1.2)

where Tµν is the stress-energy tensor. This is the most general form for

the equations to take and Λ has entered them in a perfectly natural way.

The actual value of Λ could be seen as arbitrary, but there are plenty of

constants throughout physics whose values are set only empirically [22]. A

big bang universe without Λ can recollapse, while a large enough Λ prohibits

structure formation altogether. In this way a small Λ allows matter to have

a greater effect on spacetime than a large Λ would so it can be seen as

the inherent elasticity of spacetime [23]. It has been described as the only

universal length scale in nature [24] and as a functional part of the apparatus

of GR the observational evidence of its existence can even be seen as support

for the theory relative to Newtonian gravity.

1.1.3 Problems

After the observational confirmation of late-time acceleration, focus turned

to the problems associated with Λ. It should be stressed however that there

are no practical issues surrounding its gravitational effects or the cosmology it

produces. There are instead two problems often cited with Λ, one somewhat

philosophical in nature and one associated with Quantum Mechanics, (QM),

which are discussed below.
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Coincidence

One issue with considering Λ to be responsible for the late-time acceleration

is that its energy density has only become comparable to that of matter very

recently in the history of the Universe. The energy density of matter scales

as a−3 with the expansion of the Universe, where a is the scale factor of

the Universe, while the effective energy density of a cosmological constant is

unchanged by the expansion. Λ could in theory have any value at all, so it

can be seen as something of a coincidence that the value it does have leads

to acceleration only now, (and likewise parity between Ωm and ΩΛ), when

we as observers are here to witness it. Indeed the Universe has undergone a

large number of e-folds, (expansion by factors of N = ln(a)), even since the

end of inflation whereas the Universe has only begun accelerating in the last

couple of e-folds [25].

This is known as the coincidence problem and is one of the major moti-

vations for considering alternatives to a simple cosmological constant, with

many models being developed to provide alternative explanations as to why

the acceleration should only begin at late times. Such coincidences do appear

in nature of course, for example the moon is almost exactly the same size in

the sky as the sun. It may even be that given the amount of time needed

for planets to form and for life to appear on them that it’s actually more

likely than not that we should observe similar ΩΛ and Ωm today [26]. The

coincidence is anyway an artefact of the choice of a logarithmic coordinate.

When considered in terms of time, (perhaps a more natural way to consider

coincidence), or the scale factor itself, the coincidence disappears because the

ratio of ΩΛ to Ωm has been greater than one third for about half the age of

the Universe [22, 26], (or since it was roughly half its current size).

Vacuum Energy

Another issue with admitting Λ into GR is that the existence of a driving

force behind the accelerated expansion rate of the Universe has already been

predicted by QM. It could potentially be caused by the vacuum energy den-

5



sity of space, but its approximate value expected from quantum mechanics

is 120 orders of magnitude larger than that observed for Λ. This is known

simply as the cosmological constant problem and can be made more or less

severe depending on where the cut-off of Quantum Field Theory is chosen

to be [22]. Given that GR has yet to be reconciled with QM it may be a

mistake to identify vacuum energy with Λ anyway. Quantum Field Theory

applies only to flat, (Minkowski), spacetimes [22], but GR describes nothing

more than the curvature of spacetime. So whilst the effects of Λ and vacuum

energy are superficially similar, there is simply no way to relate their causes

to one another through a common framework, at least until a method of

quantising spacetime is developed.

In truth, what problem there is has always existed in Quantum Field

Theory. The Universe is clearly not tearing itself apart due to vacuum energy,

but there was no particularly great debate about the issue before 1998 [27],

(although see [28]). The Casimir effect is often cited as proof that that

vacuum energy exists, but this has been criticised, (e.g. by [29]), as it only

demonstrates a change in vacuum energy and says nothing about where the

zero point is. Yet another possibility is that the value of Λ is such that it,

(nearly), cancels the effect of the vacuum energy in the Universe [30], leading

to an effective Λ of the value observed, although this of course suffers from

a fine-tuning problem.

1.2 Observations

This section gives a brief overview of the observational probes which are

used to constrain cosmological parameters and focuses on those important to

DE studies. In particular the disparity between purely geometrical measures

and those which involve an understanding of complex astrophysical processes

highlighted by recent results from the Planck satellite is discussed, whilst

other probes mentioned in later chapters are also introduced.
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1.2.1 CMB and BAO

Observations of the CMB offer a unique view of the early Universe. Space-

based missions such as theWilkinson Microwave Anisotropy Probe, (WMAP), [31]

and Planck [32] are complemented by ground based observations such as the

South Pole Telescope [33] and the Atacama Cosmology Telescope [34]. This

has meant that the angular power spectrum of CMB temperature anisotropies

is well measured from the largest scales to deep within the damping tail. On

their own CMB measurements can provide tight constraints on some cosmo-

logical parameters, such as the effective density parameter of curvature ΩK,

but they are less well suited to measurements of DE and in the background

constraints come only from the shift parameter, which relates Ωm and H(z).

The fluctuations in the coupled photon-baryon fluid in the early Universe

which can be seen in the CMB temperature anisotropies also leave an imprint

in the baryon density field after decoupling, (although this becomes washed

out somewhat with time due to the underlying smooth DM distribution).

The distance that sound waves could have travelled before recombination

creates a characteristic excess of power at particular separations in the large

scale distribution of galaxies which can be calibrated against the CMB to

provide a standard ruler with which to probe the expansion history.

The combination of these baryon acoustic oscillation, (BAO), measure-

ments with CMB data can break the Ωm−ΩΛ degeneracy suffered by the CMB

and partially break the Ωm − w degeneracy, (where w is the DE equation of

state parameter). This allows useful findings to be gleaned from geometrical

measurements alone, the causes of which are better understood theoretically

and which have fewer problems with systematic errors than those made from

observations of more complex astrophysical processes. Interestingly BAO

measurements are now also being made using quasar absorption lines out to

redshifts around 2.3, well into the matter dominated era [35].

The recent Planck data [32], when combined with BAO datasets [36, 37,

38], (and WMAP polarization data), have produced some interesting results.

Ωc, (where c stands for CDM), is slightly higher than expected, while ΩΛ and

7



H0 are slightly lower, but both data sets are in excellent agreement about the

base parameters of ΛCDM. They are also consistent with Λ when allowing

for either a constant or time-varying w 6= −1, with the conclusion being

drawn that “there is no strong evidence that DE is anything other than a

cosmological constant” [32].

1.2.2 SNIa and H0

The original discovery of late-time acceleration came about because of the

realisation that Type-Ia supernovae, (SNIa), could be used as normalisable

standard candles because they all explode at the same mass limit [39]. This

was then made possible by the development of telescope mounted banks of

CCD cameras which could be used to quickly and efficiently identify large

numbers of supernovae, (SNe). SNIa are excellent at constraining models

of DE and are complimentary to both CMB and BAO measurements, but

issues about the use of their data remain, such as the existence of ‘prompt’

and ‘late’ populations, the nature of the progenitors from which they come

and the presence of high luminosity outliers.

Recently a great deal of work has also gone into the determination of H0.

This is especially important for DE studies because the distance measure-

ments made are the first steps on the cosmic distance ladder and also used to

calibrate SNIa magnitude-redshift relations. In particular two recent mea-

surements have found H0 ≈ 74kms−1Mpc−1 [40, 41], but these are in tension

with the lower Planck result of 67.3 at 2.5σ and this tension can not be easily

resolved by varying the parameters of ΛCDM [32]. Future improvements in

the determination of H0 hold great promise, with the possibility of detect-

ing exotic physics if measurements can be made with a 1% accuracy [42],

but until the error bars on these key measurements can be brought down

substantially from today’s levels, their predictions seem likely to carry less

weight than CMB and BAO data.

Recent SNIa measurements also seem to be at odds with Planck results

to some extent. SNe constraints are also geometrical measurements but may
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be clouded by the need to understand complex physical systems better than

we currently do. It has been suggested that some systematic errors remain

unaccounted for in the analysis of their data, so hints of new physics found by

combining CMB and SNIa data should be treated with caution [32]. Indeed

the combination of one recent SNIa dataset with Planck data, (or equally the

H0 measurements mentioned above), leads to a cosmological constant being

disfavoured at 2σ for both constant and variable w models.

1.2.3 Other probes

The number density of cluster-sized DM haloes as a function of halo mass

and redshift can be predicted from N-body simulations. The total masses

of clusters can be found using x-ray spectroscopy, velocity dispersion and

their weak lensing signal, (see below), while their baryon content can be

ascertained using x-ray gas emissions, or Sunyaev-Zel’dovich distortions to

the CMB’s blackbody spectrum. As larger cluster catalogues have become

available, N-body predictions have been able to more accurately constrain

the Universe’s expansion history, (e.g. [43]). The local cluster abundance

constrains the amplitude of the matter power spectrum σ8 and the changes

in abundance with redshift constrain Ωm [44]. The changes in number den-

sity are caused by both geometry and structure growth and constraints from

cluster counts are complimentary to the probes discussed above. X-ray mea-

surements of the baryonic mass within clusters can also be compared to Ωm in

order to estimate the gas mass fraction in clusters and probe the acceleration

of the Universe [45].

Another cosmological probe of increasing relevance is weak lensing, (see

e.g. [46, 47]). This quantifies cosmic shear, the gravitational distortion of

light from distant galaxies and can be studied tomographically to chart the

evolution of DM over time. Like cluster counts it is sensitive to both geometry

and structure growth and can be used to constrain σ8 and Ωm. Techniques

are becoming increasingly sophisticated, [48], but cosmic shear measurements

are extremely hard to make due to image processing issues and systematic
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effects such as galaxy alignment with other galaxies or large scale structures

and a great deal of work needs to be done before the technique is implemented

in future Stage 4 DE missions.

In a similar way to clusters, galaxies can be used to determine the DM

power spectrum. There are more issues with using galaxies however, such as

the need to use a homogeneous sample and the effects of DM-baryon bias,

non-linear evolution and redshift-space distortions, (deviations from the bulk

flow of the Universe due to overdensities). The first of these can be dealt

with by using a particular class of galaxies, such as the luminous red galaxies

used in [49], whilst the final two can be corrected for either analytically or

through numerical modelling. The precise nature of DM-baryon bias is not

well understood however and is simply approximated as being scale indepen-

dent and linear on sufficiently large scales, (where it is nonetheless expected

to be a good approximation). The amplitude of anisotropies in the galaxy

power spectrum due to redshift-space distortions can also be used to learn

about the growth rate of structures [50]

The integrated Sachs-Wolfe, (ISW), effect determines the shape of the

large-scale fluctuations in the CMB. It is caused by changes in gravitational

potentials as the photons pass through them and so is sensitive to the effects

of DE. Ultimately this is of relatively limited use because measurements of

the ISW plateau are hugely affected by cosmic variance, although the effect

can also be measured as a correlation between CMB anisotropies and the

local matter density [51]. Alcock-Paczynski [52] tests use the way the angu-

lar size of objects on the sky varies with redshift to learn about cosmology

and can be applied to e.g. galaxies or quasar pairs. Other observational

constraints come for example from globular cluster limits on the age of the

Universe, big-bang nucleosynthesis, (BBN), for which the DE density must

be sufficiently small at early times so as not to affect nucleosynthesis and

gamma-ray bursts, (GRB’s), which may also be standardisable candles like

SNIa [53].

H(z) data has been found using stellar population models to determine
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the oldest stars in passively evolving galaxies, (those without star formation),

which have good spectroscopic redshifts. The difference in ages between

galaxies then approximates dz/dt, from which H(z) can be calculated [54]. In

a similar way age estimates of passively evolving galaxies or clusters can also

be used along with an estimate for the age of the Universe and assumptions

about their birth and star formation history to derive their lookback times,

(time of observation before the present), which can then be compared to their

redshifts to learn about the expansion history [55].

1.3 Alternatives to ΛCDM

The end of the twentieth century saw enormous leaps forward in our ability

to observe the Universe, but the success of ΛCDM could very well still be

due to the limitations of cosmological observations. For this reason alone it

is worth studying alternatives to the standard cosmological model, so that

they and their differences from ΛCDM can be better tested for. The two

main alternatives at the present time are dark energy, (DE), and MG. Ei-

ther of these could potentially take the place of Λ as the cause of late-time

acceleration. Other possible cause of acceleration also described below seem

unlikely to be the whole story.

1.3.1 Dark energy

One possibility for going beyond Λ is to consider the late-time acceleration as

being due to some unknown substance in the Universe which is then generally

classified under the broad heading of DE. There is now a vast literature on the

subject, most of which is summarised in recent reviews [56, 57, 58, 59, 60, 61],

while courses are also now being taught in cosmology summer schools [62,

63] and textbooks have even begun to appear which are dedicated to the

topic [64, 65].

DE models have predominantly been studied because they are free to ad-

mit some form of evolution and so do not necessarily suffer from the smallness
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and coincidence problems of the cosmological constant. There are a great

variety of possibilities for the precise form that DE may take and so many

works have focused on simply trying to get a handle on its nature by study-

ing purely phenomenological models and just parameterising its evolution

in some way, (see e.g. [66, 67, 68]). Different techniques such as principle

component analysis have been employed to look for the signatures of DE

models in observational data [69, 70] and some have found hints of dynamics

at low redshifts [8, 71, 72] which forthcoming data will be able to give a more

definitive answer on.

DE moves the cause of late-time acceleration to the mass-energy side

of Einstein’s field equations. Models range from simple decaying cosmo-

logical ‘constants’ to inhomogeneous tachyonic interacting holographic DE,

(although not much work has been done on the latter). One model which

became popular soon after 1998 is quintessence. This models DE as a scalar

field and can lead to scaling solutions for simple scalar field potentials, but it

was found that the DE would necessarily have had too much of an influence

at early times leading to a potential conflict with BBN bounds [73]. Scaling

solutions are still possible with quintessence, but require complex potentials

without motivation from particle physics.

A drawback of DE models is that their energy density today is small

compared to what would be expected from an equipartition of energy in

the early Universe. The cosmological constant does not suffer this precise

issue because we only assign an effective ΩΛ to it, when really it lives on the

curvature side of Einstein’s field equations rather than the mass/energy side.

This gives DE models a finetuning problem to solve, again requiring tailored

dynamics, although for sufficiently steep potentials this may be significantly

relieved by quantum effects during inflation [74].

At least with the confirmation of the recent Higgs boson discovery, a

fundamental scalar particle has now been observed in nature for the first time.

Whether it is the only one which exists, at low energies anyway, remains to

be seen. As previously noted, DE models can be modified in many unusual

12



ways, but one natural extension of DE is to allow it to couple to DM non-

gravitationally. Models such as these are known as IDE models and the study

of particular forms and applications of IDE shall form the majority of this

thesis.

1.3.2 Modified gravity

MG theories are extensions or departures from GR, (see [75, 76, 77] for re-

views). Historically, they have been studied since GR’s inception, motivated

by ideas such as the possibility of time-varying constants, theories of ex-

tra dimensions from fundamental particle physics and the possibility that

GR is an approximation to an even more general theory as it was itself

to Newtonian gravity. They include theories with extra scalar, vector or

tensor fields in the gravitational sector such as Scalar-Tensor theory, (STT),

Einstein-Aether, Tensor-Vector-Scalar, and Bimetric theories. Another mod-

ification of gravity is to go beyond second order derivatives of the metric in

the field equations or allow more complex derivative terms such as one finds

in f(R), Horava-Lifschitz gravity, Galileons and Ghost Condensates. Al-

ternatively the motivation to modify gravity can come from the existence

of higher dimensions in a theory such as Kaluza-Klein, Randall-Sundrum,

Dvali-Gabadadze-Porrati, (DGP), or higher co-dimension braneworlds [77].

The primary application of MG in modern cosmology is as an explanation

for late-time acceleration and STT shall be the subject of study in Chapters

5 and 6. The gravitational alternative to particulate DM is known as Mod-

ified Newtonian Dynamics. It was originally very successful and can neatly

replicate the rotation curves of galaxies but the theory was unsuited to its rel-

ativistic description as Tensor-Vector-Scalar theory and became inconsistent

with observations, especially the CMB power spectrum [77].
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1.3.3 Other possibilities

Late-time acceleration might also arise from effects due to structure in the

Universe, (see [78] for a review). These do not appear to be able to explain all

of the acceleration observed but their study is none the less hugely important

as observations become increasingly accurate. There are two types of effect

which are studied and they both involve dropping our basic assumptions

about cosmology to some extent. Dropping the Copernican principle that

we do not live in a special place in the Universe allows for us to be located

at the centre of a large underdensity which could cause an apparent global

acceleration from a relatively local effect, (see e.g. [79]). Also, on scales larger

than around 200 Mpc the Universe appears to be homogeneous, but dropping

the assumption that such inhomogeneities as there are have no effect might

lead to an actual global acceleration caused by a backreaction from structure,

(see e.g. [80]).
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Chapter 2

Cosmological Perturbations

This chapter provides a brief introduction to the formalisms and conventions

underlying cosmological perturbation theory for structure formation at linear

order. It also outlines the procedures used to derive evolution equations

from the GR+ΛCDM action and underpins the analyses in later chapters.

Sections involving metric perturbations are primarily based on [81], whilst

the derivation of the evolution equations draws heavily on [82] and [83].

2.1 Perturbing the Metric

The high degree of non-linearity inherent in GR makes the full theory dif-

ficult to use in anything other than very simplified situations [84]. Conse-

quently the evolution of density fluctuations is studied using perturbation

methods, i.e. identifying a homogeneous isotropic background and studying

small perturbations about that background. GR can then be studied at lin-

ear order in the perturbations, making the system amenable to analysis and

the study of linear perturbations in cosmology is now well developed, see

e.g. [85, 86, 87, 88, 89, 90].

The Copernican principle asserts the homogeneity and isotropy of the

Universe. Assuming that both of these two conditions hold requires that the

geometry of space must have constant curvature [83], (we shall assume a flat
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geometry throughout this thesis). The resulting FLRW metric depends only

on time and may be written as,

gFLRWµν = a2(τ)

(

−1 0

0 δij

)

, (2.1)

where the scale factor of the universe a(τ) is a function of the conformal time

defined by dt = a(τ)dτ and δij is the flat spatial 3-metric. In the application

of linear perturbation theory to GR, the metric tensor gµν is split into the

FLRW metric gFLRWµν and a perturbation metric δgµν which represents small

deviations around the FLRW background and as such depends on both space

and time,

gµν = gFLRWµν + δgµν . (2.2)

This allows for a systematic mathematical decomposition of the perturba-

tions into scalar, vector and tensor parts and small variations in the density

of matter and energy in the Universe can be related to the small perturba-

tions in the geometry of spacetime that they cause. Importantly, the different

modes, (i.e. scalar vector and tensor parts), are decoupled at first order, al-

lowing their evolutions to be studied separately in linear theory [85]. This is

especially useful for the study of structure formation, because although all

three modes have effects on the CMB only the scalar mode produces density

perturbations, which are ultimately what lead to the galaxies and clusters

etc. that we observe today [91].

Perhaps the most elementary approach to describing the different per-

turbation modes is to build the perturbation metric from the ground up,

beginning with its simplest components first. The ‘scalar’ mode can in gen-

eral be fully described using four scalars, (which we shall denote Ψ, B, Φ and

E), along with their derivatives. The one dimensional temporal component

of the metric simply requires the addition of a single scalar,

δg00 = −a22Ψ, (2.3)

where the sign and factor of 2 is a convention chosen to simplify later ex-

pressions, e.g. the GR ’Poisson’ equation, (see Section 2.7). The other zero
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index components can be represented by a vector obtained from taking the

gradient of a scalar, denoted here as B, (if the geometry were not flat it

would be necessary to take the covariant derivative in order that the vector

transformed correctly), so for the scalar mode we have,

δg0i = δgi0 = a2∂iB, (2.4)

The 3-vector ∂iB is necessarily curl-free by virtue of having been obtained

from a scalar, i.e.,

∂[ij]B =
1

2!
(∂i∂jB − ∂j∂iB) = 0. (2.5)

Furthermore, by Helmholtz’s theorem it forms the longitudinal part of some

more general vector, along with a transverse, i.e. divergence-free part, (the

terms longitudinal and transverse come from the two parts being parallel or

perpendicular to the wavevector in Fourier space). Thus a general vector

has effectively been decomposed into these two parts and only that which is

obtainable from a scalar, (the longitudinal part), contributes to the scalar

mode.

Similarly, a tensor can be split into three parts with either two longitudi-

nal indices, two transverse indices or one of each. Thus the remaining spatial

components of the scalar mode are described by the doubly longitudinal part

of a general 3-tensor, it being that which is obtainable from scalars,

δgij = −2a2(Φδij − ∂i∂jE). (2.6)

The vector mode is described here using the vectors Ji and Fi. In order

that it remains decoupled from the scalar mode it is necessarily traceless,

(i.e. divergence free), meaning that it is absent from the purely temporal

component of the perturbation metric in linear theory. It appears in the

other 0-index components as the remaining part of the general 3-vector which

can not be obtained from a scalar, i.e. the transverse counterpart of the

longitudinal 3-vector found in the scalar mode. Including the vector part

then we now have,

δg0i = δgi0 = a2(∂iB − Ji), (2.7)
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where ∂jJiδ
ij = 0. The vector mode also contributes to the spatial 3-metric

as that part of a general 3-tensor which can be obtained from the derivatives

of a transverse vector and corresponds to the singly longitudinal/transverse

part of the tensor, such that we now have,

δgij = a2(−2Φδij + 2∂i∂jE + ∂jFi + ∂iFj). (2.8)

Finally, the tensor mode hij appears only in the spatial 3-metric and is

the remaining part of the general 3-tensor which can not be obtained from

either a scalar or a vector. As such it is the doubly transverse part and is

again necessarily traceless, giving,

δgij = a2(−2Φδij + 2∂i∂jE + ∂jFi + ∂iFj + hij). (2.9)

Hence the most general perturbation metric in linear theory may be written,

δgµν = a2

(

−2Ψ ∂iB − Ji

∂jB − Jj −2Φδij + 2∂i∂jE + ∂jFi + ∂iFj + hij

)

. (2.10)

The perturbation metric constructed above incorporates a combination of

four 3-scalars, two 3-vectors, and a symmetric 3-tensor. The constraints on

these objects are that the 3-vectors Fi and Ji are divergence-free, (reducing

each to have two degrees of freedom), and that the 3-tensor hij is transverse

and traceless, (leaving it with only two degrees of freedom). This gives

the description the ten degrees of freedom required for the ten independent

components of the, (symmetric), perturbation metric tensor.

Only six of these are physical however, and the other four can be elim-

inated by choosing a particular ‘gauge’ to work in. The choice of gauge is

essentially a choice of coordinates to be used for the perturbations relative to

the background, (for which the coordinates remain the same in all gauges).

Gauge choices are made by imposing certain gauge conditions such as setting

parts of δgµν to be zero. The six physical degrees of freedom come from the

two tensor degrees of freedom, (since they are gauge invariant), two vector

degrees of freedom, (in the weak field limit these describe gravitomagnetism,
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i.e. frame dragging and geodetic precession), and two scalar degrees of free-

dom, (describing Newtonian gravity and its GR corrections) [91].

Including the FLRW background gives the full perturbed metric tensor,

gµν = a2

(

−(1 + 2Ψ) ∂iB − Ji

∂jB − Jj (1− 2Φ)δij + 2∂i∂jE + ∂jFi + ∂iFj + hij

)

,

(2.11)

and using gµνg
νλ = δλµ to first order its contravariant form may be found,

gµν = a−2

(

−(1− 2Ψ) ∂iB − J i

∂jB − J j (1 + 2Φ)δij − 2∂i∂jE − ∂jF i − ∂iF j − hij

)

.

(2.12)

The line element for a perturbed spacetime in linear theory can then be

written,

ds2 = a2{ − (1 + 2Ψ)dτ 2 + 2(∂iB − Ji)dτdx
i

+ [(1− 2Φ)δij + 2∂i∂jE + ∂jFi + ∂iFj + hij ]dx
idxj}.

(2.13)

2.2 Gauge Transformation

Having now introduced linear perturbations onto the FLRW background,

the choice of coordinate system used for them has become important. Dif-

ferent sectionings of spacetime can be made through the choice of constant

time hypersurfaces within it. This can greatly simplify analytical problems

and speed up numerical calculations. A general small first order change of

coordinates may be written as,

τ̃ = τ + ξ0(τ, xi), x̃i = xi + ∂iξ(τ, xi) + ξ̂i(τ, xi) (2.14)

where ξ0 is an arbitrary scalar field and defines constant-τ hypersurfaces,

(slicing), while ξ and ξ̂ are a scalar and a divergence free vector respectively

which determine the spatial hypersurfaces, (threading). The total differen-
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tials of these three functions at first order,

dξ0 = ξ̇0dτ̃ + ∂iξ
0dx̃i, (2.15a)

dξ = ξ̇dτ̃ + ∂jξdx̃
j , (2.15b)

dξ̂i =
˙̂
ξidτ̃ + ∂̂jξ

idx̃j , (2.15c)

where dots denote derivatives with respect to conformal time τ , can be used

with the transformation equation, (2.14) to obtain expressions for the coor-

dinate differentials,

dτ = dτ̃ − ξ̇0dτ̃ − ∂iξ
0dx̃i, (2.16a)

dxi = dx̃i − (∂̇iξ +
˙̂
ξi)dτ̃ − (∂i∂jξ + ∂̂jξ

i)dx̃j , (2.16b)

since ξ0(τ, xi) = ξ0(τ̃ , x̃i) and ξ(τ, xi) = ξ(τ̃ , x̃i) to first order. Using Eq. (2.14)

and taking derivatives, the transformation of the scale factor can be found,

a(τ) = a(τ̃)− ξ0ȧ(τ̃ ), (2.17)

which can then be used with Eq. (2.16b) to obtain the line element of the

spacetime incorporating the general gauge transformation to first order,

ds2 = a2(τ̃)
{

−
[

1 + 2(Ψ−Hξ0 − ξ̇0)
]

dτ̃ 2 + 2∂i(B + ξ0 − ξ̇)dτ̃dx̃i

− 2(Ji +
˙̂
ξi)dτ̃dx̃

i +
[

(1− 2Φ + 2Hξ0)δij + 2∂i∂j(E − ξ)

+ 2∂j(Fi − ξ̂i) + hij
]

dx̃idx̃j
}

, (2.18)

where H ≡ ȧ/a. Since the line element is an invariant in general relativity,

this can be compared to the original version, Eq. (2.13) in order to identify

expressions for the perturbations which include a general coordinate trans-
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formation,

Ψ̃ = Ψ−Hξ0 − ξ̇0, (2.19a)

Φ̃ = Φ +Hξ0, (2.19b)

B̃ = B + ξ0 − ξ̇, (2.19c)

Ẽ = E − ξ, (2.19d)

F̃i = Fi − ξ̂i, (2.19e)

S̃i = Si +
˙̂
ξi, (2.19f)

while the tensor perturbation hij is gauge independent.

Physical scalar quantities such as the energy density, pressure, shear etc.,

(see Section 2.4), are ‘spatially gauge invariant’ in that they are defined with

respect to the background, (which depends only on time), so they depend

only on the choice of temporal gauge, or ξ0 [81]. For example, the density

perturbation δρ transforms at first order as,

δ̃ρ = δρ− ξ0ρ̇. (2.20)

Quantities such as the velocity potential v however, relating to vectors de-

rived from them via a spatial gradient ∂iv, (see Section 2.4), are independent

of time but depend on the choice of spatial hypersurfaces. This is because a

different gauge choice is essentially a different choice of coordinates for the

perturbations and if dx is altered, then so must d/dx be. Spatial gradients

are therefore not fixed with respect to the background in the same way as

physical scalars and the velocity potential transforms as,

ṽ = v + ξ̇. (2.21)

2.3 Gauge-Invariant Variables

In general the perturbations are altered by a gauge transformation. This

can lead to the appearance of ‘gauge relics’, i.e. quantities that are simply

artefacts of the transformation and may only be features of the particular
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choice of gauge. These may be misinterpreted as having some real physical

significance and in [88] it was stressed that ‘only gauge-invariant quantities

have any physical meaning’. The use of gauge-independent quantities en-

ables the use of gauge-invariant equations, which do not contain the gauge

transformation variables ξ0, ξ and ξ̂ and so are the same in all gauges. Gauge-

independent variables can then be defined in different gauges and consistently

mixed in the same equations.

There are many different combinations of the scalar perturbations which

eliminate the gauge transformation variables and so there are essentially an

infinite number of possible gauge-invariant variables resulting from them,

since any linear combination can be taken to create a new one. Once defined

however, only two independent gauge-invariant scalar quantities can be con-

structed using only the scalar metric perturbations. This is because there

are four scalar perturbations Ψ, Φ, B and E, two of which can effectively

be eliminated using the scalar gauge functions ξ0 and ξ. For vector pertur-

bations there are two vector functions in the metric, J and F , while only

one is used in the gauge transformation ξ̂i. This means that there is one

independent gauge-invariant vector quantity, which at first order is uniquely

defined as,

J̃i = F̃i = Ji + Ḟi. (2.22)

Tensor perturbations are naturally gauge invariant with there being no ten-

sor component to gauge transformations. Gauge-invariant variables can also

be formed from quantities relating to matter allowing for example the con-

struction of a gauge-invariant density function.

There are therefore two different approaches to eliminating the ambigui-

ties of having gauge freedom. Either a specific gauge choice can be made and

used consistently throughout or a system of gauge-independent variables and

equations can be set up and worked with exclusively. The fixed gauge ap-

proach can allow for clear physical insight and easy application to particular

problems, while the gauge-invariant approach may enable convenient choices

of variables to be made, although it may not be so obvious what the physical
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interpretation of some quantities may be.

2.4 Observables

Observable quantities must be defined with respect to the velocity of ob-

servers. For an exact FLRW universe this would simply be the Hubble flow,

but at the level of the perturbations one must eventually make a choice of

which velocity to consider fundamental as well as choosing which gauge to

work in. For the moment we shall leave the equations general in these re-

spects, although from here on, (and for the rest of the thesis), we shall con-

sider only scalar perturbations. This is because only scalar modes source the

density perturbations which lead to structures in the Universe, with which

we are primarily concerned here, while vector and tensor modes are more

important in for example CMB studies.

Observables are related to the metric perturbations via the perturbed

total 4-velocity uµ, normalised by,

uµuµ ≡ 1. (2.23)

There now remain three independent degrees of freedom in uµ. These can be

represented by the spatial derivative of the velocity potential v, (the choice

of which remains to be specified), defined as,

∂iv ≡ ui

u0
. (2.24)

Using Eq. (2.23), Eq. (2.24) and the components of the metric Eq. (2.11),

the components of uµ can be found,

u0 = a−1(1−Ψ), (2.25a)

ui = a−1∂iv, (2.25b)

u0 = −a(1 + Ψ), (2.25c)

ui = a(∂iB + ∂iv). (2.25d)
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Insight into the physical effects which combine to produce the total 4-velocity

uµ can be gained by decomposing its covariant derivative into irreducible

parts [89],

∇νuµ =
1

3
Θsµν + rµν + σµν − aµuν, (2.26)

where,

Θ ≡ ∇µu
µ, (2.27a)

sµν ≡ gµν + uµuν , (2.27b)

rµν ≡ s αµ s
β
ν (∇βuα −∇αuβ), (2.27c)

σµν ≡
1

2
s αµ s

β
ν (∇βuα +∇αuβ)−

1

3
Θsµν , (2.27d)

aµ ≡ uν∇νuµ, (2.27e)

with sµν being a projection tensor which projects objects into the direction

orthogonal to uµ, while Θ, rµν , σµν and aµ are the expansion scalar, rotation

tensor, shear tensor and acceleration 4-vector respectively. The trace part of

the decomposition is the expansion scalar, which in an unperturbed universe

would be the only non-zero part and related to the Hubble factor by Θ = 3H

with H ≡ (1/a)(da/dt). The rotation rµν is the antisymmetric part, (always

zero for the scalar mode), while the shear σµν is the symmetric trace-free part.

Finally, the acceleration aµ expresses the difference between the direction

of uµ and the direction of the vector field tµ tangential to geodesics, for

which tν∇νtµ = 0 by the geodesic equation. These observables can now be

described in terms of geometrical quantities using Eq. (2.11) and Eq. (2.25),

(see Section 2.6.2 for an example of this in a particular gauge).

2.5 Dynamics of the Metric

In Lagrangian mechanics the equations of motion governing a system are

found by minimising the action,

S =

∫

L(ϑ,∇µϑ)d
4x, (2.28)

24



where ϑ represents the dynamical variables of the system. The appropriate

Euler-Lagrange equations by which this is achieved for a curved spacetime

are,

∂L̂

∂ϑ
−∇µ

(

∂L̂

∂(∇µϑ)

)

= 0, (2.29)

where,

L̂ ≡ L√−g . (2.30)

These equations can be applied when the dynamical variable is for example a

scalar field, but in GR the dynamical variable is the metric gµν , the covariant

derivatives of which vanish. It is therefore necessary to consider the behaviour

of the action under small variations of the metric directly. The total action

for a ΛCDM cosmology, (i.e. the Einstein-Hilbert action plus DM and a

cosmological constant), can be written as,

SΛCDM =
1

16πG

∫

d4x
√
−g(R− 2Λ) + Sm(gµν , ϕ), (2.31)

where Sm is the matter, (and energy), action, with ϕ representing the matter

fields. Varying this action with respect to the metric we have,

δSΛCDM = δS1 + δS2 + δS3 + δSm, (2.32)

where,

δS1 =
1

16πG

∫

d4x
√
−ggµνδRµν , (2.33)

δS2 =
1

16πG

∫

d4x
√−gRµνδg

µν , (2.34)

δS3 =
1

16πG

∫

d4x(R − 2Λ)δ
√
−g. (2.35)

The first of these, δS1 is equivalent to a boundary term at infinity and can

be set to zero, (see [82]), while for the third we must use,

δ
√
−g = −1

2

√
−ggµνδgµν , (2.36)

to find,

δS3 = − 1

16πG

∫

d4x
√−g1

2
gµν(R− 2Λ)δgµν. (2.37)
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We can now use the property of the action that,

δS =

∫

d4x
δS

δgµν
δgµν , (2.38)

and recombine the terms to write,

1√−g
δSΛCDM

δgµν
=

1

16πG
(Rµν −

1

2
gµνR + gµνΛ) +

1√−g
δSm

δgµν
, (2.39)

where we are interested in the stationary point δSΛCDM/δg
µν = 0. Thus, by

defining the stress-energy tensor as,

Tµν ≡ − 2√−g
δSm
δgµν

, (2.40)

the particular form of Sm need not be specified and we arrive at the equations

of motion for the metric, Einstein’s field equations,

Rµν −
1

2
gµνR + Λ = 8πGTµν . (2.41)

2.6 Specific Gauge Choices

There are many different choices of gauge which can be made for different

purposes. Here we shall focus only on the two most commonly used gauges,

the synchronous and Newtonian gauges, used often for numerical calculation

and analytical interpretation respectively, (for a direct comparison of the two

see [90]).

2.6.1 Synchronous

This is the gauge used in the seminal work of Lifshitz on cosmological pertur-

bations [85] and is in fact a family of gauges for which ΨS = BS = 0, where

the subscript S stands for synchronous. Specifying ΨS = 0 implies that the

threading consists of geodesics, while BS = 0 means that the slicing is or-

thogonal to the threading, but there remains a residual gauge freedom since

the threading is not unique. The synchronous gauge was used widely before

the introduction of Bardeen’s gauge-invariant formalism [88] and the gauge is
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completely fixed by specifying the inital conditions of the system [92]. Sub-

tleties involved in doing this historically led to confusion, but in this thesis

we shall simply use the convention adopted in the Code for Anisotropies in

the Microwave Background, (CAMB) [93], a numerical computation code

used for evolving cosmological perturbations forward from the end of infla-

tion which uses the synchronous gauge for computational efficiency. This

means choosing a frame where the DM is initially at rest and indeed remains

so for models without DM interactions.

2.6.2 Newtonian

This is the mathematically simplest gauge choice and has orthogonal slicing

and threading. As well as the ‘Conformal Newtonian’ it is also known as the

longitudinal gauge because it has both the longitudinal part of the vector

mode and the doubly longitudinal part of the tensor mode set to zero. This

means that the spatial part of the metric is isotropic and corresponds to a

choice of spatial hypersurfaces such that the shear in the scalar mode is zero,

making the Newtonian gauge is defined by,

B̃N = ẼN = σ̃N = 0, (2.42)

where the subscript N stands for Newtonian. Comparing these conditions

with Eq’s. (2.19) shows the form of ξ and ξ0 required to fix the gauge, thereby

allowing expressions for the two remaining scalar perturbations to be found,

ΨN = Ψ+
1

a

d

dτ

[

a
(

B − Ė
)]

, (2.43)

ΦN = Φ−H
(

B − Ė
)

. (2.44)

These are the independent gauge-invariant quantities chosen for use by Bardeen

in [88]. The gauge also offers an intuitive understanding of the perturbations,

as ΨN corresponds to a perturbation of the gravitational potential, while ΦN

represents a curvature perturbation.

For the remainder of this chapter we shall drop the subscript N and work

only in the Newtonian gauge. The line element in the Newtonian gauge can
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be written as,

ds2 = a2
[

−(1 + 2Ψ)dτ 2 + (1 + 2Φ)δijdx
idxj

]

. (2.45)

The metric tensor components are then,

g00 = −a2(1 + 2Ψ), (2.46)

gij = a2(1 + 2Φ)δij , (2.47)

g00 = −a−2(1− 2Ψ), (2.48)

gij = a−2(1− 2Φ)δij, (2.49)

which lead to the perturbed Christoffel symbols,

Γ0
00 = H + Ψ̇, (2.50)

Γ0
0i = ∂iΨ, (2.51)

Γ0
ij = [H + 2H(Φ−Ψ) + Φ̇]δij , (2.52)

Γi00 = ∂jΨδ
ij , (2.53)

Γij0 =
(

H + Φ̇
)

δij , (2.54)

Γijk = ∂jΦδ
i
k + ∂kΦδ

i
j − ∂lΦδ

liδkj, (2.55)

The Ricci tensor components and Ricci scalar derived from the above are,

R00 = −3
ä

a
+ 3H2 − 3Φ̈ + ∂i∂

iΨ− 3HΦ̇ + 3HΨ̇, (2.56)

R0i = 2(H∂iΨ− ∂̇iΦ), (2.57)

Rij = [
ä

a
+H2 + 2(

ä

a
+H2)(Φ−Ψ) + Φ̈ + 5HΦ̇−HΨ̇]δij

− ∂i∂jΨ− ∂i∂jΦ− ∂k∂kΦδij , (2.58)

⇒ R = a−2[6
ä

a
+ 6Φ̈− 2∂i∂

iΨ− 4∂i∂
iΦ− 12

ä

a
Ψ+ 18HΦ̇− 6HΨ̇]. (2.59)

We are now in a position to find expressions in the Newtonian gauge for the
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scalar parts of the observable quantities described in Section 2.4,

Θ = a−1[∂i∂
iv + 3H(1−Ψ) + 3Φ̇], (2.60)

rµν = 0, (2.61)

σµν = 0, (2.62)

aµ = ai = ∂iΨ+ ∂iv̇ +H∂iv. (2.63)

2.7 Dynamics of the fluid

The components of the stress-energy tensor Tµν can be modelled as a perfect

fluid,

Tµν = (ρ+ p)uµuν + pgµν , (2.64)

where ρ is the energy density and p the pressure in the background. We can

now define the perturbations in the fluid relative to this to be,

p̄ ≡ p+ δp, (2.65)

ρ̄ ≡ ρ+ δρ ≡ ρ(1 + δ), (2.66)

leading to,

T 0
0 = −ρ(1 + δ), (2.67a)

T 0
i = (ρ+ p)∂iv, (2.67b)

T i0 = −(ρ+ p)∂iv, (2.67c)

T ij = (p+ δp)δij + πij , (2.67d)

where the anisotropic stress πij has been added by hand for generality and

is trace-free, i.e. πii = 0. The evolution equations for the fluid can be ob-

tained using energy-momentum conservation, which follows from the Bianchi

identity [83], (i.e. conservation of the left hand side of Eq. (2.41)),

∇µT
µν = 0. (2.68)

As an illustration of how to find equations for the growth of perturbations in

the fluid, we shall now consider the simple case of a CDM universe not only
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using the Newtonian gauge but also working in the Newtonian regime. In

other words we shall consider only sub-horizon scales, (i.e. smaller than H−1
0 ,

but still large enough to be linear), so that overdensities have grown large

relative to the metric perturbations, (δ ≫ Ψ). Furthermore we restrict our-

selves to late times, where temporal derivatives of the metric perturbations

are negligible relative to spatial ones and we can take Ψ̇ = Φ̇ = 0.

The zeroth component of Eq. (2.68) can be split into the Euler equation

for the background, which is always satisfied anyway,

ρ̇c + 3Hρc = 0, (2.69)

and an independent equation for its perturbation,

ρ̇cδc + ρcδ̇c + ρc∂i∂
ivc + 3Hρcδc = 0, (2.70)

which may be rewritten using the velocity divergence θc = −k2vc = ∂i∂
ivc,

where k is the Fourier mode wavenumber, and the background equation (2.69)

as,

δ̇c = −θc. (2.71)

From the ith component of Eq. (2.68) we have,

ρ̇c∂ivc + ρc(∂iΨ+ ∂iv̇c + 4H∂ivc) = 0. (2.72)

Taking a spatial derivative of this and again substituting for θc gives,

θ̇c = −Hθc − ∂i∂
iΨ. (2.73)

We can now use Eq. (2.71) and Eq. (2.73) to find a velocity independent

second order equation for δc. Taking the time derivative of Eq. (2.71) and

substituting for θ̇c using Eq. (2.73) gives,

δ̈c = −Hδ̇c + ∂i∂
iΨ. (2.74)

This can be further simplified by replacing ∂i∂
iΨ using the GR ‘Poisson’

equation which can be found by first rewriting Eq. (2.41) as,

Rµν = 8πG

(

Tµν −
1

2
Tgµν

)

, (2.75)
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then for the zeroth component of the right hand side of this we have from

Eq’s. (2.67),

T00 −
1

2
Tg00 =

1

2
a2ρc(1 + δc + 2Ψ), (2.76)

while for the left hand side R00 is given by Eq. (2.56). We can now remove

the background terms and take the limits described above, (i.e. δ ≫ Ψ

and Ψ̇ = Φ̇ = 0), to end up with the ‘Poisson’ equation for Newtonian

perturbations in GR,

∂i∂
iΨ = 4πGa2ρcδc. (2.77)

Note that the Newtonian regime therefore demonstrably holds on scales

smaller than the horizon at late times because by the Friedman equation,

(the 00 component of Einstein’s field equations, Eq. (2.41)), 4πGρca
2 = H2,

so we have,

k2Ψ = H2δc, (2.78)

and remembering that at late times δ ≫ Ψ, implies that k ≫ H. Finally,

plugging Eq. (2.77) into Eq. (2.74) we now have the CDM growth equation

in its most convenient form,

δ̈c = −Hδ̇c + 4πGa2ρcδc. (2.79)
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Chapter 3

IDE in the literature

This chapter serves as a summary review of IDE models and research. For

the sake of brevity, unless otherwise of interest, only the latest observational

constraints on the various couplings and parameterisations under consider-

ation shall be reported. Section 3.1 defines what IDE models are and why

they are studied, Section 3.2 frames IDE research in its historical context and

Sections 3.3 to 3.5 summarise articles on the three most commonly studied

forms of interaction types. Section 3.6 describes works on other forms of

coupling, Section 3.7 looks at the wide range of IDE parameterisation stud-

ies, Section 3.8 lists a selection of other IDE related works and Section 3.9

contains a brief discussion of IDE topics.

3.1 An Overview of IDE

It is natural to expect some new physics in the dark sector given the richness

of interactions between species in the standard model of particle physics [94].

Indeed taking dark sector interactions to be zero is an assumption of DE

models. However modelling dark sector interactions is even more speculative

that describing DE or DM themselves, with even less concrete guidance from

particle physics, so studying interactions phenomenologically seems to be the

most sensible approach. The caveat to this is that such studies should be
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carried out in an intelligent way, so that the model does not exhibit behaviour

caused by unphysical features of its design. Only then can light be shed on

which types of model really might lead to unphysical behaviour and which

are in best agreement with observations.

Motivation for IDE models has come from the fact that they can poten-

tially address the cosmological constant and coincidence problems, (e.g. [95,

96]), as well as the fact that they affect structure formation in novel ways

and provide a way to alleviate tensions between the standard non-interacting

model and observations, (e.g. [97]). The extra degree of freedom obtained by

admitting an interaction into the dark sector can however be both a blessing

and a curse as it often causes instabilities in the perturbations which rule

out some models completely.

The requirement resulting from the Bianchi identity that that the total

energy-momentum tensor be conserved leads to an interaction term in the

continuity equations of the DE, (subscript x), and CDM, (subscript c), fluids.

Models of IDE are therefore characterised at the background level by the

energy transfer rate Q,

ρ̇c = −3Hρc −Q, (3.1)

ρ̇x = −3H(1 + w)ρx +Q, (3.2)

where dots denote derivatives with respect to conformal time τ , H = da/dτ

and w = px/ρx is the DE equation of state parameter. There are predomi-

nantly three forms of Q which have been studied in the literature;

Q ∝ ψ̇ρA, (3.3)

Q ∝ HρA, (3.4)

Q = aΓρA, (3.5)

where A = x, c or total and Γ is a constant. From here on these shall generally

be referred to as the ψ̇, H and Γ couplings. The first of these defines a scalar

field model of IDE, but note that in the literature this is generally denoted

by φ, whereas here we use ψ because in later chapters φ is used to denote the
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gravitational scalar field of MG theories. The other two have been studied

in both scalar field and fluid models and in addition to the forms above

all three have been studied using linear and quadratic combinations of the

energy densities.

We can define an effective DE equation of state parameter to be that of

a non-interacting DE with the same ρx(a), i.e.,

weff = w − aQ

3Hρx
. (3.6)

We can see from Eq (3.6) that weff can be dynamical even if w is a constant.

Interestingly weff can be less than −1, or cross −1 during its evolution if

Q > 0, even though w itself is always greater than −1.

Perturbations in multiple interacting fluids were first described in [89] and

later developed in works such as [98], which detailed their evolution in differ-

ent gauges and [99], which separated them into adiabatic and entropy parts

as an aid to studying models of inflation. Interacting models can develop in-

stabilities however and in particular there are two types of instability which

present themselves in IDE. The first is a small scale, adiabatic instability

restricted to the strong coupling regime [100, 101, 102, 103, 104], (originally

noted in the context of coupled neutrinos [105, 106]), caused by a negative

sound speed squared of the effective DM/DE fluid resulting in exponential

growth. The second is large-scale, non-adiabatic and caused by a runaway

DE velocity perturbation [107, 108, 109, 110, 111, 112]. The presence of this

instability depends on the combined sign of the coupling strength and 1+w

and can be avoided in models with variable w.

3.2 Historical Context

Cosmological models with a coupling between matter and a scalar field arise

naturally as alternative descriptions of MG theories such as Brans-Dicke

theory [113, 114] and particle physics theories such as Kaluza-Klein the-

ory [115, 116], (which was discussed by Jordan in relation to his precursor
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to Brans-Dicke theory [117]). Both of these had already been studied for

many years, and even proposed as solutions to the cosmological constant

problem, long before the observation of an apparent late-time acceleration,

e.g. [95, 118, 119]. Models such as these therefore soon became the focus

of much research after 1998, especially due to the additional motivation for

them as simply natural generalisations of the quintessence scalar field models

which quickly grew in popularity [73].

Another source of inspiration for work on IDE was the inflation paradigm,

first discussed in [120] but generally credited to [121] who demonstrated

that it solves the flatness, horizon and monopole problems, although [122]

points out that these were not pressing issues until a solution had been found

for them, (much like the cosmological constant problem). By the late 90’s

this had led to a plethora of scalar field models being studied by cosmolo-

gists [123], including many interacting models, e.g. [124, 125], (see also [126]

and refs. therein), again motivated by both MG and particle physics. The

analytical techniques developed to study these models were all readily appli-

cable to late-time acceleration and the theoretical cosmology community, by

then experts in dealing with scalar fields, very quickly began to explore the

possibilities that IDE had to offer.

Scalar field IDE models with a Q ∝ ψ̇ρc coupling inspired by MG were

soon under study [127, 128], as was a coupling of the form Q ∝ Hρc [126, 96]
along with other particle physics inspired couplings, e.g. [129]. Later however,

the Q ∝ Hρc coupling was criticised for being unnatural as a model of particle

interactions due to the influence of the global parameter H on purely local

physics [130]. An alternative coupling was therefore proposed where the

interactions still varied with ρc but did not depend on H and were instead

characterised only by a constant interaction rate parameter Γ, as had been

previously applied in other particle interaction contexts.

With three different forms of coupling and two physical models, there

was an enormous scope for the investigation of IDE. One could modify the

dependence of the interactions on the fluid energy densities to include DE, or

35



consider quadratic terms, not to mention the fact that each particular choice

of model and interaction could have different types of energy-momentum

transfer at the level of the perturbations. As with the study of DE, the

lack of knowledge about the form of IDE also made parameterisation studies

a good way to gain insight into its evolution and relation to observations.

The subject therefore blossomed and has received a great deal of attention

over the years, although a comprehensive review of the topic remains to be

undertaken.

3.3 Interactions Proportional to ψ̇

In the MG representation a scalar field component of gravity is directly cou-

pled to the metric and the gravitational equations can be very complex. A

conformal transformation can be made however, to a new ‘frame’ where GR

describes gravity but matter becomes coupled to the scalar field, (which is

itself now rescaled and only minimally coupled to gravity). Couplings to

gravity are also common in particle physics theories and the same transfor-

mation can equally well be made. The frame where the scalar field is coupled

to gravity is known as the Jordan frame, (although interestingly both gravity

and matter were coupled to the scalar field in Jordan’s original theory [131]),

while the frame where a scalar couples to matter is called the Einstein frame.

The obstacle to using this sort of model is that the conformal transfor-

mation from the Jordan frame to the Einstein frame usually means that the

scalar field would be coupled to all matter [114], although since relativis-

tic matter has p = ρ/3, its energy-momentum tensor is traceless and so it

remains naturally decoupled, (c.f. Eq’s (2.67) and (5.20)). A coupling to

matter would rule out significant coupling strengths due to constraints from

baryons [132, 133, 134, 135], but there are theories where species-dependent

coupling may be natural [136, 137] and screening mechanisms can be invoked

to deal with local gravity constraints [138, 139, 140].

In the rest of this Section the works discussed all employ some form of
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scalar field model with a ψ̇ term in the coupling between DE and DM. Many

of these are motivated by theories in the Jordan frame, where a general STT

action can be written as,

SSTT =
1

16πG

∫

d4x
√
−g
[

f(φ)R− ω(φ)(∇φ)2 − U(φ)
]

+Sm(gµν , ϕ), (3.7)

where φ is the gravitational scalar field, U(φ) is its self interaction potential

which may or may not be present and f(φ) and ω(φ) are general functions

determined by the particular theory in question, (see [141] for a detailed

description of the most general second order STT action). Such models can

then be translated to the Einstein frame by a conformal transformation, (see

Chapter 5), where they become equivalent to coupled quintessence, which

can broadly be described by the Einstein Hilbert action with a scalar field

and coupled DM,

SIDE =
1

16πG

∫

d4x
√−g

[

R− 1

2
(∇ψ)2 − V (ψ)

]

+ Sc(gµν , ψ, ϕ), (3.8)

where V (ψ) is the scalar field’s potential, Sc(gµν , ψ, ϕ) is the coupled CDM

action and ϕ is the DM field. Varying this action then leads to equations of

motion for the DE and DM backgrounds,

ψ̈ = −2Hψ̇ − a2
∂V (ψ)

∂ψ
+

1

2
C(ψ)a2ρc, (3.9)

ρ̇c = −3Hρc −
1

2
C(ψ)ρcψ̇, (3.10)

where C(ψ) determines the coupling strength and is variously taken as a

constant or a variable function.

3.3.1 Early works

Early studies of ψ̇ IDE, (post 1998), had a constant coupling strength pa-

rameter and many of these were by Luca Amendola. Indeed Amendola is an

author on all of the early works below unless otherwise stated. His first IDE
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paper [127] looked at scaling solutions where ω(φ) ≡ 1 and the dynamics de-

pended only on the relation between f(φ) and U(φ) rather than their actual

forms. This assumed a power law relation between them of the form,

V (φ) = Af(φ)M , (3.11)

which always led to an exponential potential in the Einstein frame as long as

the coupling was strong enough that the kinetic terms of φ in the Lagrangian

could be neglected. The background dynamics were studied but constraints

on the effective time variation of G ruled out accelerated solutions in this

strong coupling regime. Observational limits which applied in the case of the

more general weak coupling case were later found in [142] using Boomerang

CMB data and then [143] combined the newly released WMAP CMB data

with SNIa data to find improved constraints on the coupling strength pa-

rameter.

Another early work by different authors [128] performed a phase plane

analysis of a model motivated by STT, (Brans-Dicke plus a self interaction

potential for the scalar field), in which power law potentials produce scaling

solutions in the Jordan frame, (which are also automatically self similar in

the Einstein frame). Unlike minimally coupled models it was shown to lead

to late-time scaling solutions for w ≈ −1, thus no finetuning was required.

The setup again had ω(φ) ≡ 1 but f(φ) = φ2/8c with c > −3/2 in order to

maintain a positive energy density for ψ in the Eistein frame. The constant c

also determined the strength of the IDE coupling and it was again found that

strong coupling, (in this case where c→ −3/2), needed to be approached in

order to both evade BBN bounds and have a significant DE contribution at

late times.

Around the same time Amendola also presented works on a model with

the simple specification of an exponential potential. In [144] its perturbation

equations were derived and used with CMB and matter power spectrum data

in order to find constraints on the coupling strength. The effects on observ-

ables of viable solutions were discussed in [145] and the coupling strength was

constrained using observations of the CMB and σ8, (an observable measure
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of structure growth). [146] looked at constant couplings with energy trans-

fer from DE to DM which instead of having DM domination followed by

acceleration had a short baryon dominated era followed by DM/DE scaling

regardless of initial conditions. Uniquely this also provided an explanation

for the relative abundances of baryons and DM but matter perturbations

were shown to undergo too much growth during the accelerated regime to be

compatible with both BBN and CMB constraints. A scaling cosmology which

could avoid this problem was described in [147]. It was found by constructing

a coupling function which switched between a low strength coupling initially,

where structure formation is required, and high strength later, where scaling

is desirable.

Amendola quantified the effect of coupling on structure growth and baryon

bias for the exponential potential model in [148], investigating in particular

the unusual property of structure growth during an accelerated phase. This

would only happen for the DM however, since the baryons are not coupled,

showing that baryon bias was potentially a useful test of IDE. Later [149]

used SNIa to show that this model could fit observations with a much earlier

transition to accelerated expansion, while another author showed in [150]

that scaling solutions existed for the constant coupling strength model and

performed a qualitative statefinder diagnosis, (involving the second and third

derivatives of the scale factor).

In [151] Amendola derived first and second order perturbations using a

variable coupling strength and a general potential, the motivation for which

may have been [152] where he subsequently derived the most general La-

grangian which leads to scaling solutions. He showed that the non-existence

of a matter dominated era is a generic feature of such models, thus ruling

out all, (constant coupling strength plus scaling solutions), scalar field La-

grangians previously studied in the literature.
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3.3.2 Later works

Recently the ψ̇ coupling with a variable coupling strength which depends

on the field value ψ, (from here on just called variable coupling), has begun

to be investigated more widely. For example, [153] studied the dynamics

of IDE with an exponential potential and a variable coupling, again related

via a power law as in the early works, which included the particular case

of an interaction proportional to the product of the energy densities. They

showed a late-time stable accelerated attractor to be a generic feature of

the model and constrained its parameters using CMB, BAO and SNIa data.

They found no significant preference over the standard cosmological model

but interestingly they did show that Weak Equivalence Principle constraints,

(on cluster and galactic scales), were stronger than cosmological ones.

Another variable coupling study looked at the effects of IDE with expo-

nential potential and coupling functions on CMB and matter power spec-

tra [154]. Linear perturbations were developed and observational constraints

were found, with BAO data being added in a later paper [155]. A coupling

with an exponential function component was also looked at in the context

of curved geometry in [156]. They found the best fit coupling and poten-

tial parameters from SNIa data, which in a flat universe led to a complex

behaviour where the effective DE equation of state, Eq. (3.6), crossed the

phantom divide twice in the past and once more in future.

Despite now being less well motivated due to its problems with structure

formation, the ψ̇ coupling with constant coupling strength, (from here on

just called constant coupling), is still studied to this day. Indeed one could

always consider it as simply an approximation to a more complex coupling

function which is naturally suppressed at early times. It was still considered

worth testing the model in the search for extra physics in the dark sector

by [157], which used artificial CMB data with CAMB and CosmoMC [158],

a Markov-Chain Monte-Carlo, (MCMC), likelihood distribution analysis pro-

gram which is easily integrable with CAMB, to quantify how much bias ne-

glecting an IDE coupling can introduce into parameter estimates, while [159]
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performed a MCMC analysis to constrain the model using CMB, ISW, SNIa

and BAO data, as well as future forecasts. [160] also studied the background

dynamics of the model, motivated by the conformal transformation of f(R)

modified gravity theories.

A constant coupling was used in [161] to test the ability of cluster counts

and future surveys to constrain ψ̇ IDE. The analysis included non-interacting

DM species and cluster scale inhomogeneities in the DE, both of which were

shown to have significant effects. It was found that oscillations in cluster

number counts at different redshifts could provide a signature of IDE and

that future surveys may be able to detect such effects. A constant coupling

was later used as an example to demonstrate a generic expression in terms

of a model’s coupling function which gives weff in [104]. They then also

showed that the adiabatic instability in the perturbations was stabilised in

the slow-roll regime of models with inverse power law potentials.

Constant couplings were employed in [162] to study the non-linear mat-

ter power spectrum, probably to make effects likely to be generic in IDE

more amenable to analysis. They found a significant scale dependence to the

baryon-DM bias, including around BAO scales, which future surveys could

use to strongly constrain IDE. More recently [163] conducted a phase plane

analysis of a constant coupling model and found an exact scaling solution.

Presumably however, a study of perturbations in this model would rule it

out on the basis of not having a matter dominated era to enable structure

formation as discussed in [152].

A constant coupling was used for simplicity in [164] where constraints

were forecast using a Fisher Matrix analysis for Planck CMB data combined

with Euclid tomographic weak lensing, redshift space distortions and matter

power spectrum results. They showed that a two orders of magnitude im-

provement on the coupling strength parameter β should be achievable. This

finding tallies with [165] which used CMB, (including South Pole Telescope),

SNIa, and BAO data and found a slight peak in the likelihood at β = 0.041,

although β = 0 was still within the 1σ range. They used CAMB and Cos-
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moMC to perform a likelihood analysis and were able to reduce previous

constraints slightly to β ≤ 0.063(0.11) at 63%(95%) confidence level, whilst

forecasting that Planck CMB data should be able to rule definitively on their

finding of the marginal peak in the likelihood.

3.3.3 Particle theory

Couplings are a ubiquitous feature of particle physics and so a great deal of

motivation for work on IDE has come from particle theory. Particle physics

considerations for example led [166] to study coupled quintessence cosmolo-

gies in the context of DE being independently coupled to all species, also

finding BBN constraints on the model. Another work [167] looked at cos-

mologies in a model where the DM is a particle with variable mass, first

proposed in [168], studying the case of DM as the lightest supersymmetric

particle. [169] also examined varying mass DM as a solution to the coinci-

dence problem but found that extreme finetuning of the scalar field poten-

tial’s present day value was needed to obtain viable cosmological parameters

and that a typical age of the universe was around 15 Gyr, thus severely

restricting the model’s parameter space.

The dilaton field is motivated by Kaluza-Klein theory [115, 116] and re-

sembles a STT. It can couple in a species dependent way and a cosmological

constant in the ‘string frame’ can be shown to become a quintessence-like

exponential potential in the physical frame [170]. A Kaluza-Klein theory

inspired scenario, where DE is not only coupled to DM but also to an addi-

tional vector field, first considered in the context of inflation was also used

to find scaling solutions in [171, 172].

In [173] and [174] the authors studied models of interactions in the dark

sector using only scalar fields and considered the possibility of multiple DM

fields. [175] placed observational constraints from CMB, BAO, lookback

time to clusters, and SNIa on a similar model but with a tachyonic DE. A

two scalar field model was also investigated in [176] where they employed a

coupling in the scalar field potentials and generalised the model with a three
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parameter quadratic polynomial part in the DM potential. This setup was

motivated by string theory and they demonstrated the existence of solutions

with transient accelerated expansion, while [100] studied perturbations in

cosmologies containing uncoupled DM, baryons, radiation and interacting

DM/DE, specialising to study the models of [174] and [170].

[177] modelled IDE with a fermionic field plus a scalar field using the

‘First Order formalism’ [178], which relates a scalar fields potential and the

Hubble factor under certain assumptions, to find exact solutions to the equa-

tions of motion. Novel possibilities for producing a viable cosmology were

found, including a scenario where the DM is massless and the DE alters in

character from decelerating the universe at early times to accelerating it a

late times.

Three-form fields can be motivated by string theory and [179] extended

a model of three-form dark energy such that its scalar field component was

covariantly coupled to DM. A dynamical analysis of the background was

performed and the potential for observations to constrain its perturbations

in the Newtonian regime was considered. Axions find motivation as solutions

to finetuning issues in particle physics and [180] investigated coupled axion

DE. An analysis of the model’s dynamics to the level of perturbations was

conducted and observational constraints with BAO, SN, growth rate and H0

data were found, showing that the coupling allows greater deviation from

w = −1 than in the uncoupled model.

String theory can motivate the existence of multiple DM species, but such

theories also have the added justification for their study that we remain ig-

norant about dark sector particle physics, (assuming of course that a particle

cause is to be found). The authors in [181] modelled interactions between a

scalar field and multiple DM fluids with independent but constant coupling

strengths and allowed for interactions of opposite signs. They found that the

background evolution mimics a single fluid with a variable coupling param-

eter, but that multiple fluids should be distinguishable in the perturbations.

Multiple couplings can also serve to hide large coupling values, as was
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highlighted in [182], where the specific case of two DM fluids with the same

coupling strength but opposite signs was studied. The model then had the

same number of free parameters as a single coupled DM fluid scenario and

in [183] N-body simulations of such models were described which produced

effects including ‘mirror’ cosmic structures in the two DM species. In [102]

and [103] the authors considered multiple DM fluids while studying an adi-

abatic instability in coupled scalar field models. They showed that the

instability originates from a negative sound speed squared of the effective

DM/DE fluid resulting in exponential growth on small scales and that it can

be avoided for sufficiently small coupling strengths.

3.3.4 Massive neutrinos

The detection of flavour oscillations in solar and atmospheric neutrinos im-

plies that the particles must have mass. In the context of ΛCDM recent

CMB+BAO limits on the sum of neutrino masses are Σmν < 0.23eV (2σ) [32].

A Fisher Matrix analysis of current and forecast CMB and matter power

spectrum data [184] has shown that constraints on neutrino masses are sig-

nificantly weakened in the case of IDE with energy transfer from DM to DE

and that in turn massive neutrinos can allow for higher coupling strengths

than would otherwise be possible. This is all due to the fact that the two

effects act in opposite directions on the amplitudes of the matter and CMB

power spectra. It was then shown in [185] that uncoupled models with an

inverse power law potential lay beyond 1σ limits when allowing for neutrinos

to have mass. A peak in the likelihood was found for small DE/DM coupling

and a neutrino mass of around 0.3eV. Supergravity-inspired quintessence po-

tentials were more consistent with zero coupling however.

[186] used CMB, BAO, SNIa, BBN, H0 and matter power spectrum data

with CAMB and CosmoMC to study the interplay between neutrino mass

and coupling strength further, whilst also considering constraints from future

neutrino mass experiments. They assumed a neutrino mass of 0.3eV based

on a claimed experimental lower limit of 0.2-0.6eV [187] and found a 7− 8σ
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detection of non-zero coupling with energy transfer from DM to DE. They

also stated that if the KATRIN neutrino mass experiment currently under

construction, which will have a sensitivity down to 200meV (90% confidence

limit) [188], confirms the result, then ΛCDM will be statistically ruled out.

It is certainly clear that whatever the KATRIN result turns out to be it will

be of significant importance for cosmology.

Later [189] looked at the ISW effect in IDE with massive neutrinos, in-

cluding galaxy cross-correlation, and confronted theoretical predictions with

observations, finding that current data could not distinguish between IDE

and ΛCDM. They also showed however that tomographic analysis can im-

prove the distinguishing power and that future surveys might be able to

discriminate between the models.

3.3.5 Halo collapse

IDE introduces novel effects into the gravitational collapse of overdensities.

The competition between background, perturbative and non-linear effects

means that different processes occur at different scales, making the study

of collapsed structures a powerful tool for testing the model. [190] studied

clustering in IDE with energy transfer from DM to DE and found that as

with uncoupled models DE underdensities can form on some scales in the

presence of matter overdensities but that the coupling suppresses the DE

fluctuations.

[97] modified CAMB and CosmoMC to study the halo mass function for

a constant coupling strength model using different potentials. Observations

of high-mass high-redshift clusters had been found to be in tension with

ΛCDM and they showed that energy transfer from DM to DE could solve

this problem. [191] also studied the effects of IDE on the halo mass function,

showing significant effects at the high mass end which invalidate the use

of standard fitting functions. Another interesting recent work on this topic

was [192], which looked at the way in which DM and baryons separate out

due to the interactions during gravitational collapse and showed how it was
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even possible to discriminate between different scalar field potentials.

3.3.6 Simulations

N-body simulations are an important tool in modern cosmology and a number

of high quality IDE simulations have now been performed, although the

subtleties of energy-momentum transfer and how it is handled in the code can

make some models easier to simulate than others. The Γ model, (detailed in

Section 3.5), for example has so far proved prohibitively difficult to implement

in existing N-body codes. The modifications which need to be made to N-

body codes can be seen in Eq. (3.10) and Eq. (3.13). The first of these

amounts to a variation of the DM particle mass or number density so that

ρc scales as,

ρc = ρc,0a
−3 exp

[

−C
2
(ψ − ψ0)

]

, (3.12)

where C is a constant. Meanwhile the effects on the growth of structure, as

determined by the growth equation, (derived later in Section 5.3.5),

δ̈c = −
(

H− 1

2
Cψ̇

)

δ̇c + 4πGa2ρcδc

(

1 +
C2

16πG

)

, (3.13)

can be accounted for by defining effective versions of the Hubble factor and

Newton’s constant,

Heff ≡ H
(

1− Cψ̇

2H

)

, Geff ≡ G

(

1 +
C2

16πG

)

. (3.14)

The first IDE N-body simulations to be performed were reported in [193],

where a study of the halo mass function and density profiles in IDE with an

inverse power law potential and a constant coupling strength were performed.

They found that IDE was not able to resolve tensions between observations

and the theoretically determined Navarro, Frenk and White halo profile [194].

Other early work on IDE simulations in [195] compared the dynamics of

constant coupling IDE with STT. They described the models down to the

level of the perturbations and determined the modifications to standard N-

body codes which would be required in order to encompass them.
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There are however two main authors who have produced large N-body

simulations of IDE, one of whom is Baojiu Li. In [196] Li presented the

formalism for a scalar field model with an exponential coupling strength

and an inverse power law potential motivated by f(R) theory. This was

then implemented in a modified CAMB code and N-body simulations, with

the effects of the model on CMB and matter power spectra being reported

in [197]. It produced little effect on the CMB power spectrum and therefore

required structure formation data to obtain useful observational constraints.

A third paper in the series [198] focused on the species dependent effects of

the coupling and how they show up in large scale and halo bias.

Three more papers by Li then built on these original works; [199] found

amongst other things more high mass halos than for ΛCDM and showed that

the inner density profile of halos is also relatively surpressed, [200] studied the

properties of voids in models with different potentials and showed that voids

generally develop earlier and end up being larger than in ΛCDM, while [201]

considered the relative contributions of different IDE effects on structure

formation.

The other author who has produced large N-body IDE simulations is

Marco Baldi. In [202] he introduced the COupled Dark Energy Cosmolog-

ical Simulations project, (CoDECS), a large set of N-body and hydrody-

namical IDE simulations. These were based on the Gadget-2 code [203] and

their development using less general models was described in [204, 205]. The

introductory paper also looked at the effects of different couplings and po-

tentials on DM-baryon bias and found that for the non-linear matter power

spectrum the redshift evolution of its linear amplitude may be able to break

the degeneracy between coupling strength and σ8.

Following the release of the CODECS simulations Baldi has worked on

a large number of papers investgating their properties. [206] discerned the

effects of coupling on the high redshift inter-galactic medium, observations of

which were used to constrain a constant coupling with competitive limits be-

ing found. [207] showed that baryons and DM are less preferentially aligned
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in IDE than ΛCDM, alleviating tension with observations where a misalign-

ment had been found [208]. [209] studied the spin alignment of galaxy pairs,

and found that a Supergravity inspired potential, which leads to a ‘bounce’

off the w = −1 limit at recent times, creates such an alignment and could

give a signature of IDE, although they found no such feature in SDSS data.

The CoDECS simulations were used in [210] to show that IDE can lead

to high mass clusters at high redshifts and proposed their use as a test of the

model. Then [211] studied the bouncing dark energy mentioned above as an

explanation for the abundance of high mass clusters at high redshifts. The

model was shown to be able to simultaneously account for this observation

plus the standard abundance at the present day and the standard power

spectrum normalisation at the CMB. [212] investigated whether different IDE

models from the simulations could help explain the anomalously high speed

of the bullet cluster by looking for analogous systems in the simulations.

They found that the coupled models all had a higher probability of finding

such a system than ΛCDM.

[213] used CoDECS to quantify the effect of coupling on the clustering of

DM halos and gauge its effect on BAO measurements. BAO were found to be

useful for breaking the degeneracy with σ8 in clustering anisotropy measure-

ments and the halo mass function. [214] then studied the effect of coupling

on DM halo mass accretion and the resulting halo properties such as halo

concentration and subhalo abundance. Recently [215] also used CoDECS to

forecast weak lensing constraints on the model parameters for Euclid and

the Dark Energy Survey and the simulations were employed in [216] to find

the effect of coupling on DM clustering anisotropies and redshift space dis-

tortions. They found that at small scales the degeneracy with σ8 can be

broken and that future surveys should be able to place good constraints on

IDE models.

The same N-body IDE code was used to study time varying couplings [217],

where the effects on structure formation were found to be generally stronger

than for constant couplings, while background effects were weaker. This was
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confirmed by work disentangling linear and non-linear effects in [218], after

some results had been found to be slightly at odds with [61]. This was shown

to have been due to the implementation of different numerical analysis tech-

niques in the codes. It was also used in [219] to consider ψ̇ couplings with a

time dependent part which is a power law of the scale factor. It was found

that couplings where a sudden growth in coupling strength was present which

would otherwise be indistinguishable from ΛCDM, can not fit the rotation

curves of spiral galaxies.

3.4 Interactions Proportional to H
The first work to consider the H coupling in an IDE context was [126],

where it was partly motivated by analogy with dissipative fluids, such as

those with bulk viscosity [220]. The authors compared its dynamics to those

of the ψ̇ coupling to show that other couplings could lead to scaling solutions.

Conversely, Zimdahl, Chimento and Pavon in [96], (all of whom would later

write a number of papers using the coupling), derived the H coupling by

explicitly requiring the existence of a scaling solution.

Although it was originally only considered as a way to study solutions to

the coincidence problem phenomenologically, the H coupling soon became

widely used in a number of different contexts. This was no doubt largely

because it allowed H in the fluid equations to be eliminated via a change of

variable as in the uncoupled and ψ̇ cases, making the system amenable to the

same analyses. In addition it opened up the possibility of using barotropic

fluid models of DE, although it can equally well be applied to scalar fields.

Perturbation studies using this coupling generally neglect perturbations

in H. Such models are not gauge invariant but it was shown in [221] that

the effect of neglecting perturbations in H did not significantly change the

observational constraints on the model. To this end they employed pertur-

bations in the expansion rate of the total fluid, although they noted that this

choice was not unique.
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3.4.1 Constant coupling

Initially only constant couplings were studied, in the same way as for the

ψ̇ coupling. [222] extended the original analysis of [96] to include separate

dissipative effects in the DM and constrained the model’s parameters with

SNIa and BBN data. They also noted that they assumed the coupling to be

negligible during BBN and commented that this could be achieved by simple

addition of an exponential dependence on H to the coupling. Later [223] also

derived statefinder parameters for the model.

A general H coupling which is a linear combination of both the DE and

DM energy densities is often employed in IDE studies. It was used for exam-

ple in [224] to find the conditions required for transition to w < −1 for scalar

field models that give the correct present day DM/DE ratio. [225] used it to

show that the coincidence problem can be alleviated from a finetuning of 96

orders of magnitude in uncoupled DE to 6 orders of magnitude for IDE using

it and pointed out that the coupling leads to standard matter domination,

unlike the ψ̇ coupling. Finetuning and the coincidence problem were looked

at with the linear H coupling in [226] where it was shown that they could at

best only be alleviated and that solutions of the coincidence problem led to

negative energy densities at early times, (which it was noted however can be

a feature of MG theories), whilst more recently [227] found scaling solutions

and constrained the model using SNIa data.

Adiabatic instabilities of perturbations, (see also Section 3.4.6), in the

general linear H coupling, (although as mentioned above perturbations of H
are generally neglected), were analysed in [110], finding that Q ∝ ρx versions

suffered slightly less severely than the Q ∝ ρc case. [109] also studied the

issue and demonstrated that for models with energy transfer from DE to DM

and Q ∝ ρx the curvature perturbation was stable for w < −1 and with a

suitably small coupling strength for w > −1. This was then followed up

in [228] which looked at the stability of density perturbations and found that

for a stable model with w > −1, the effects of interactions could nevertheless

overwhelm the effects of DE perturbations on structure growth.
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The general linear H coupling was extended to include a constant term

in order to replicate more general couplings at late times in [229]. Using

an MCMC analysis they found that Q ∝ ρx couplings were most favoured,

phantom models prefer energy transfer from DM to DE and non-phantom

DE disfavoured non-coupled models. [230] included generalised non-linear H
couplings in their analysis, as well as the Γ coupling, showing that only the

Hρc case can solve the coincidence problem and even then only in a small

area of the parameter space. [231] also used a general linear combination

of the constant H coupling to study the general dynamical behaviour of

interacting two-fluid cosmologies, both for uni-directional and bi-directional

energy transfers.

3.4.2 Variable coupling

Given the need for negligible coupling during BBN it was natural for [232]

to extend the H coupling to include a time dependent free function, (again

designed to produce scaling solutions), and compare it to the simpler case.

They found best fit parameters using H(z) data and studied the behaviour

of both cosmologies. These couplings were also studied in [233] where they

used SNIa, H(z), cluster X-ray gas mass fraction, BAO and CMB data to get

observational constraints and found that the variable function case preferred

energy transfer from DE to DM whilst the opposite was true when the free

function was taken as constant.

Constant and variable couplings were again compared in [234] using SNIa,

CMB and BAO data. They found a slight preference for phantom models

with energy transfer from DM to DE in both cases but with ΛCDM still

within 1σ limits. Then more recently the variable coupling was employed in

the context of DM with a bulk viscosity in [235] where H(z) data was used

to constrain the parameters of the model before its behaviour was compared

to the non-viscous case.

An alternative approach was taken to studying the background cosmol-

ogy of models where the coupling is generalised to admit a time dependent
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coupling strength in [236]. They considered the case of it being a power law

of the scale factor as well as a case where a time derivative of the energy

density was included in addition. Another method was also used in [237]

where they generalised the usual coupling constant in the H model to vary

with time according to two parameters in the same way as the Chevallier-

Polarski-Linder, (CPL), parameterisation of w [238, 239]. Different forms of

parameterisation for w itself were then tested using SNIa, BAO, CMB, H(z)

and x-ray gas mass fraction data. They found w ≈ −1 with energy transfer

from DM to DE during matter domination and DE to DM at late times gave

the best fit.

In [240] the authors parameterised the interaction term in order to de-

rive an analytically soluble toy model designed to exhibit transient acceler-

ation, motivated by evidence that the acceleration may have peaked in the

past [241]. They used observations of SNIa to find constraints on the model’s

parameters when two specific cases of Q ∝ αHρx models with time-varying

α were considered, but degeneracies between parameters did not allow for

significant constraints. In a subsequent paper they tested perturbations in

this model against growth rate data, by paramaterising the interaction per-

turbation and studying its effects quantitatively [242]. The model was found

to be consistent with observations and then more recently it was shown that

the model’s DE perturbations are negligible on scales relevant for structure

formation [243].

3.4.3 Observations

The original H coupling and its generalisation to include a linear depen-

dence on both the DM and DE energy densities is still being confronted with

observations today. In [244] SNIa data was used to constrain background

cosmological parameters in constant and time-varying w models. The SNIa

constraints were then compared to those from the CMB shift parameter,

demonstrating a significant tension between the datasets which was only

made worse by the coupling. Later, [245] also used the CMB shift parameter
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in their analysis, along with BAO, SNIa and lookback time data, finding a

preference for energy transfer from DE to DM. More recently [246] derived

the perturbation equations, (neglecting perturbations of H), for a coupling

formed from a linear combination of the energy densities and found best fit

parameters using CMB, BAO, SNIa and H0. Some cases studied favoured

energy transfer from DE to DM slightly but ΛCDM was always within 1σ.

The simple linear coupling model has been generalised in all manner of

different ways. [247] for example placed observational constraints on linear

H models as well as couplings proportional to the product of the energy

densities. Both constant and time-varying w cases were considered in their

MCMC analysis, which used SNIa, BAO and CMB data. Recently [248]

also employed nonlinear, (and parameterised), forms of the H coupling to

investigate limits on IDE models from the weak gravity conjecture. They

found that in most cases the bounds are looser than those from observations,

although in some cases the theoretically forbidden region does reduce the

observationally allowed parameter space to some degree.

The added complexity of IDE models inevitably weakens constraints and

leads to degeneracies. [249] studied the effect of admitting IDE on param-

eter constraints from the CMB experiments Planck and the European Pho-

ton Imaging Camera, (EPIC), onboard the European space Agency’s X-ray

Multi-Mirror Mission, XMM-Newton. They generated mock data and anal-

ysed it using MCMC techniques, finding that degeneracies led to errors which

were an order of magnitude larger than when no coupling was considered.

Recently [250] studied how to break parameter degeneracies in IDE using a

simple fluid model with a Q ∝ Hρc coupling and a time-varying w. They

carried out a perturbation analysis but neglected perturbations in H. They

commented on the degeneracy between the coupling strength, w and Ωc in

CMB data then compared constraints from fitting to CMB, BAO and SNIa

data.

In recent years GRB’s have begun to be usable as an observational probe

and [251] investigated the ability of GRB’s to constrain couplings in the dark
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sector. They found them to be better than BAO alone but much worse than

the combination of CMB and SNIa data due to the small GRB sample size

available at the time. Using mock GRB data they showed however that they

could be a useful probe of IDE couplings in the future as sample size increases,

not least because the are complementary to CMB constraints in a similar

way to SNIa data. More recently [252] used SNIa, CMB, BAO and new

GRB data to constrain a fluid H coupling model’s parameters via an MCMC

method, reporting marginalised 1σ constraints of Ωm = 0.2886± 0.0135 and

wx = −1.0658±0.0564, with the constant coupling strength parameter where

Q = −αHρc found α = −0.0047 ± 0.0046. This showed a slight preference

for energy transfer from DM to DE and they noted that the GRB data had

helped to eliminate some parameter degeneracies.

3.4.4 Clusters

As has already been mentioned, the study of gravitationally collapsed ob-

jects is a powerful tool for testing and constraining IDE. [253] for example

compared coupled quintessence and Chaplygin Gas models to observations

of cluster Abell 586. Chaplygin gases have an unusual equation of state such

that they behave like matter at early times and a cosmological constant at

late times. They can also be decomposed into an effective two fluid descrip-

tion of DM decaying into a w = −1 DE. They found a model independent

suggestion of interactions due to an apparent violation of the equivalence

principle. This implies a time-varying DM-baryon bias, which should be ob-

servable in large cluster surveys. Recently A1689 was also included in an

analysis of different density profile models [254], with no evidence for inter-

action being found, although this may have be because they had to allow for

large errors.

[255] also found a small preference for energy transfer from DE to DM

from a study of 33 cluster masses. Since the coupling affects DM and not

baryons, comparison of mass estimates from x-rays and weak lensing allowed

constraints on the coupling to be found. It was recognised however that
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unknown systematic errors in the data may be an issue. More clusters were

later added [256], bringing the total to 100, and a 14σ deviation from zero

coupling was found.

The novel features of collapse in IDE are often worthy of study for their

own sake and [257] has studied the qualitative and quantitative effects of

IDE on cluster collapse in different linear H couplings. More recently, [258]

studied the alignment of baryons and DM in clusters for a toy model with a

Q ∝ Hρtotal coupling and used data from [259] to constrain its parameters.

3.4.5 Applications

The H coupling has been used to extend almost every cosmological model

there is, but in the case of DE motivated by the holographic principle [260]

this has been justified from thermodynamical considerations as being a rea-

sonable approximation, given the accuracy of constraints from SNIa [261]. An

early paper on the subject identified the infra-red cutoff of the theory with

the Hubble factor [262], thus suggesting DE of the form ρx = 3c2H2/(8πG),

where c is a constant. Applying this leads to the conclusion any coupling at

all provides scaling solutions and w is just a function of the scaling ratio and

the coupling function. It was then shown that a typical H coupling could

result in a transition of the DE to the phantom regime [263]. The CMB shift

parameter was used along with SN and BAO data to find constraints on the

model in [264], with H0 data later also being included in the analysis [265].

More recently a study of the background dynamics for a tachyonic model of

holographic DE was also investigated in [266].

[267] carried out a dynamical analysis of generalised linear and non-linear

H couplings in a Loop Quantum Cosmology framework and [268] compared

the linear H coupling model with the Γρc coupling in both classical and Loop

Quantum Cosmology settings, highlighting generic features of the different

systems by means of a phase space analysis. In [269] a fluid model with

the H coupling was applied in a fractal cosmology setting (which leads to

additional pressure terms in the fluids) and novel behaviours were found such
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as solutions which oscillate between acceleration and deceleration. They also

studied holographic and scalar field models in the fractal context and found

stable accelerated solutions to be ubiquitous to all three models, although

none of these were scaling solutions.

[270] extended a QCD motivated ’Ghost Dark Energy’ model to include

interactions and placed observational constraints on cosmological parameters

with SN, CMB and BAO data. Later [271] carried out a statefinder diagnosis

including testing a best fit model found using SNIa, H(z), BAO and CMB

data. A similar study was then undertaken in [272] to investigate the crossing

of the model to the phantom regime. [273] studied the background dynamics

of a model with a coupling proportional to the sum of the energy densities

and an unusual equation of state for the DE motivated by wormhole physics

and similar to a Chaplygin gas. More recently, [274] looked at cosmologies

with H coupling between DE and viscous DM, also allowing for curvature,

and found evidence for a crossing of the phantom divide from below for the

effective DE equation of state.

3.4.6 Theory

Thanks to its mathematical simplicity, systems with anH coupling have been

widely used in theoretical works. They are not without their share of prob-

lems however and like all IDE models can suffer from instabilities at the level

of their perturbations. In [275, 276] this was unfortunately overlooked due

to an interaction term being omitted in the pressure perturbation evolution

equation, as pointed out in a work on the same effects in the Γ model [107],

(the error in the equations had also been previously noticed in [100]).

These instabilities were properly categorised in [108, 277, 111] where they

studied perturbations in the general H coupling model with constant w and

defined the ‘doom’ factor,

d =
Q

3Hρx(1 + w)
, (3.15)

which characterises whether they are subject to non-adiabatic large scale
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instabilities at early times. The instability is caused by the effect of coupling

on pressure waves in the DE and the ‘doom’ factor shows up in the pressure

perturbation for constant w models as,

δpx
δρx

= 1 + 3(1− w)(1 + w)(1 + d)
Hθx
k2δx

, (3.16)

where d > 1 leads to the instability [108]. They also used CAMB and

CosmoMC with SNIa, CMB, H0 and H(z) data to show that the best fit

case when Q ∝ ρx has d < 0 and so is free from instabilities. The analysis

of this model was then repeated with updated CMB data in [221] where

they included pertubations of H, which had previously been neglected, and

then [278] forecast parameter constraints for Planck and Euclid. In a novel

analysis for IDE [279] constrained Q ∝ ρc and Q ∝ ρx models with different

parameterisations of w by assuming only a small change in the DE scalar

field. A caveat to the conclusions of this work however is that DE is not

necessarily constrained by slow-roll conditions [280, 281, 282, 283].

Some of the most interesting works on IDE are when realistic physical

descriptions are used to model its behaviour. One attempt to do this was

[284], which used thermodynamics to argue that if an interaction is present

in the dark sector and DE is amenable to a fluid description with a well

defined temperature not far from equilibrium, then the energy transfer must

be from DE to DM, thus supporting the work of [285], (see Section 3.7.2).

In contrast [286] showed that thermodynamics would favour decay from DM

to DE if one of the fluids had a non-zero chemical potential. They then used

the Q ∝ αHρx model to study observational constraints from BAO, CMB

and SNIa and found the decay of DM to DE to be favoured when including

both directions of decay in the analysis, although α = 0 was still within

1σ. Another study of IDE physics was also carried out in [287, 288], which

studied the nature of singularities in coupled fluids.

A more phenomenological work was reported in [289] for a Q ∝ Hρc cou-
pling where the evolution of the scale factor was taken to be an exponential

function. It was shown that while only open and flat universes can cross

w = −1 for the uncoupled case, all three geometries permit w = −1 crossing
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in IDE. Later, [290] modelled DM decaying into a scalar field in a closed uni-

verse parameterised by a power law evolution of the scale factor. They used

CMB, SNIa and BAO data to constrain the parameters of a model with a

coupling strength found previously in [234]. Then more recently, [291] stud-

ied a scalar field model with a complex form of potential that gave transient

acceleration and tried to use the coupling to achieve a standard matter era

as required, but found that the DE still always dominated at early times.

3.5 Interactions Proportional to Γ

In order to provide a more physically realistic model of IDE, a model was

proposed with interactions in the background of the form Γρc, where Γ is con-

stant. This had also been used to describe particle decays in other contexts,

namely; the decay of DM to radiation [292, 293], the decay of the curvaton

field from inflation to radiation [99] and the decay of super-heavy DM to

a quintessence field [294]. The difference from models with interactions af-

fected by the global expansion rate H, is that the physics of the interaction

is only determined locally.

Roy Maartens has been an author on most of the papers which use the Γ

coupling and a number of comparative studies with other couplings have been

carried out. This section shall detail works on the Γ model as a foundation

for an investigation into a particular version of it in the following chapter.

3.5.1 Introducing the Γ model

The ‘Γ’ model was first introduced in [130], where a comparative study was

performed on the background dynamics of all three of the different interaction

types; ψ̇, H and Γ taking Q ∝ ρc. The IDE was modelled as a scalar field with

an exponential potential and since only late-times were being considered the

effects of radiation were neglected. The ψ̇ and H models were studied using

the same simple two-dimensional phase plane as that used for uncoupled

models of quintessence, but the Γ model required the implementation of a
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three-dimensional phase space because it is not possible to eliminate H from

the continuity equations (3.1) and (3.2). This meant the introduction of the

new variable z = H0/(H +H0), which helpfully also compactified the phase

space into a cylinder of unit height and radius, allowing an effective analysis

to be performed.

The study found that while it did not display the accelerated scaling

attractor solutions of the other two models, the Γ model permitted a ΛCDM-

like accelerated attractor for the case of DM decaying to DE, something which

was not present for the other two couplings. This presented a novel approach

to alleviating the coincidence problem, as the model could contain no DE at

early times yet lead to an accelerated universe independent of the initial

conditions.

3.5.2 First constraints

Two follow-up papers to the initial study of its background dynamics [295,

296] aimed to confront the new Γ model of IDE with observations. The

first [295] derived the equations governing the non-standard ISW effect using

a simple fluid model of IDE with a CPL parameterisation of its equation of

state parameter w = w0 + (1 − a)wa. This was possible without a compre-

hensive understanding of perturbations in the model because at linear order

in the Newtonian regime, (i.e. where DE perturbations could be neglected),

the only effects on the growth of structure for a model with Q = aΓρc come

from the modifications to its background. It was found that the interaction

rate Γ was degenerate with both w and σ8 and that strong constraints on Γ

were not possible due to the weakness of the effect.

In the second paper [296] however the effects on weak-lensing bispectrum

tomography were considered, which is a more sensitive observable measure.

Forecasts were made on the possible sensitivity of the proposed Dark Universe

Explorer, (DUNE), experiment, (now part of the EUCLID mission), using

the same setup as before. The analysis showed that a DUNE-like experiment

would be able to either detect or rule out production of the entire DE content
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of the Universe within its age for cases where w ≈ −1.

3.5.3 Instabilities

In order to better understand the dynamics of the new Γ model of interactions

and place tighter observational constraints on its parameters, it was necessary

to construct a covariant description of its perturbations. In the following

chapter this shall be done for a Γ model with Q ∝ ρx, but the method

was presented for the first time in [107], where perturbations for constant-w

fluid models with Q ∝ ρc were developed and a large-scale non-adiabatic

instability in the perturbations was discovered.

The instability was different to those already known about in the ψ̇ and

H models which were small scale, adiabatic and restricted only to the strong

coupling regime. In fact however it was found that this instability did also ex-

ist in the Q ∝ H model but had been missed in previous works [275, 276] due

to an incorrect handling of the energy-momentum transfer. The instability

in both models led to a runaway blow-up of the dark energy velocity per-

turbation early in the radiation era and did not depend significantly on the

choice of energy-momentum transfer four-vector. This could not be avoided

by weakening the coupling as in other cases of IDE instabilities, but allowing

w to vary was instead proposed as a solution.

3.5.4 Generalisation

The next paper to consider the Γ model was another comparative study [297],

this time just with Q ∝ H models and looking at a more general form of

interaction where both DM and DE energy densities could play a role to a

greater or lesser degree. It used a fluid model with a constant DE equation of

state and whilst it was true that both of these models were known to exhibit

the recently discovered instability in the perturbations, the work was still of

interest because there were known to be ways around the instability. For

example, the generalisation to a variable DE equation of state was expected
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to avoid the problem, while it was also true that certain sign combinations

of Γ and w could also be free from instabilities w < −1 models had not been

considered in [107].

There were a number of findings in the paper, including analytical con-

straints on the parameters of the Q ∝ H models. For the Γ model it was

shown that with a non-zero Γcρc term with energy transfer from DE to DM

was required in order to have positive ρx at early times. Furthermore, in

cases with the interaction term Γcρc + Γxρx it was shown to be necessary

that the two interaction rates had opposite signs and Γx > Γc in order to

have a finite and positive DE-DM ratio at late times. It was therefore not

possible to address the coincidence problem via production of DE from DM

as had previously been hoped because the models were not well behaved at

either early or late times.

The only way to avoid these problems in the background was shown to

be to have Γc = 0 with the interactions being proportional to the DE energy

density only. For Γx < 0 energy would pass from DM to DE and the DM

energy density would again become negative at late times, but for Γx > 0 with

energy transfer from DE to DM each fluid could be well behaved throughout.

This would imply a transient period of DE domination and it was shown that

the smaller the interaction rate, the larger the maximum value reached by

the DE-DM ratio before entering a late-time matter dominated epoch. A

study of its perturbations is used to place observational constraints on this

model in Chapter 4.

The next work looking at the Γ model was a study of the effects of such

interactions on structure growth and the weak lensing power spectrum [298].

Once again it considered both cases with interactions proportional to the DM

energy density and those with interactions proportional to the DE energy

density. In each case however the energy-momentum transfer four-vector

in the perturbations was chosen to be parallel to the four-velocity of the

DM, i.e. Qµ = Quµc . One could therefore think of the interaction as a DM

particle decaying and transferring its momentum to the DE. It was shown
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that unlike the Γx = 0 case, the Γc = 0 produces direct modifications to

the DM perturbation equations in addition to the effects from the modified

background evolution. The qualitative effects on observations for each case

were compared to the non-interacting case.

3.5.5 Classification

A useful classification of IDE models was made in the next article to consider

the Γ model [299]. Three types of IDE model were identified, namely; those

which in the Newtonian gauge and the Newtonian regime on sub-hubble

scales leave the DM perturbation equations unchanged, those which modify

the DM density perturbation equation and those which modify the DM ve-

locity equation. Observational tests were then proposed which could could

constrain these different types.

Firstly it was proposed that when interactions show up only in the back-

ground a combination of peculiar velocity and weak lensing measurements

at multiple redshifts could be used to look for deviations from the standard

ρc ∝ a−3 of DM in the non-interacting case. For the other two types it was

shown that it should be possible to use combinations of weak lensing and

peculiar velocity measurements to demonstrate that either the density per-

turbation or the velocity equation was being modified. It was also noted that

the sorts of issues discussed in the paper might be helpful in distinguishing

IDE from MG, since in MG standard DM perturbation equations apply and

there is no apparent violation of the Weak Equivalence Principle.

[300] classified both linear Γ and H coupling models according to their

energy density dependence and energy-momentum transfer type and found

current and future constraints. They discussed the generic features of each

class and separated out effects caused by modifications to the expansion his-

tory from those due to modifications of structure growth. They also discussed

ways of observationally testing for and distinguishing between the different

classes, as well as MG and w(z) models.
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3.5.6 Quadratic couplings

[301] studied the background dynamics of a model equivalent to the Γ cou-

pling, (in fact well before the works discussed in this section), where the

coupling was through a generalised interaction term ραc ρ
β
x. The possibility of

a cyclic DM/DE domination was found and discussed as a possible remedy

for the coincidence problem. [302] studied the same coupling in a two fluid

model where one of the fluids was warm DM. They performed a dynamical

analysis of the background and used SNIa and H(z) data to constrain the

model parameters, finding a phantom DE with energy transfer from DE to

DM and an interaction of the form ρcρx to be the best fit.

The coupling was also modelled as being proportional to the product

of the DM and DE energy densities in [303]. The background dynamics of

cases where w = −1 and w = constant were looked at and for a constant

w < −1 case bounded periodic solutions were found, which provide a natural

mechanism by which the DE might have a small value at the present day. It

was noted however that while the baryon density decreases as usual, the DM

density is periodically increased and remains at a roughly constant level over

multiple cycles. Perturbations in a model with a coupling proportional to the

product of the energy densities and a constant coupling strength were looked

at in [112]. An instability was found but shown to be avoided if w > −1/3

during radiation domination.

Another interesting paper studied the background dynamics of a coupled

quintessence model with an exponential potential using the Γ model nota-

tion [304]. This pointed out that from a physical standpoint it might be more

natural for the interactions to be quadratic in the energy densities and so

considered the general case with Q = Aρ2x+Bρ
2
c+Cρxρc. It found that accel-

erated critical points were possible as long as the potential was flat enough,

but that again no scaling solutions existed. It also found that models with a

ρ2c term do not admit a suitable matter dominated era as required.
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3.5.7 Improved constraints

With the perturbation formalism in place a pair of papers were published [305,

306] aimed at placing better constraints on the Γρc version of the model with

a DE equation of state parameterised via the CPL parameterisation. The

first of these was a study of the initial conditions on the perturbations [305]

and performed a complex matrix calculation method previously developed

for non-interacting DE models with variable w [307]. The follow up pa-

per [306] then implemented these initial conditions in a comprehensive study

of the model’s cosmological parameters using a modified version of CAMB

and CosmoMC. It used SNIa, BAO and CMB data in a MCMC analysis to

place observational constraints on the model’s parameters, including Γ, for

which a 95% confidence limit of −0.23 < Γ/H0 < 0.15 was found.

The same covariant framework for the description of the perturbations

was later employed in [308] to study DM decay, DE decay and a scalar field

model with the ψ̇ coupling. An analysis of the effect on the matter power

spectrum and the ISW was examined and shown to be more subtle than

expected from results found elsewhere using parameterisation methods.

3.6 Other Forms of Couplings

Beyond the three most commonly studied couplings discussed above there are

of course a wide variety of other forms which appear in the literature. Each

of these however are either motivated by some underlying physical theory or

designed with some particular purpose in mind and examples of these two

types of study are given below.

3.6.1 Motivated by theory

Interactions between DE and DM have been studied in the context of QCD

inspired ‘New Agegraphic Dark Energy’ [309]. This was later shown to be

equivalent to an interacting polytropic gas model of DE [310], which itself
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had a statefinder diagnosis performed on it in [311]. Interactions between

scalar fields and also tachyon fields were studied using generalised couplings

derived using Noether symmetry considerations in [312].

[313] studied a coupling motivated by supersymmetry and equivalent to a

particular choice of f(R) gravity model, where the DE scalar field can decay

into hot and cold DM, thus alleviating the coincidence problem. Also, the

general behaviour of a coupling containing an additional ρ̇ term motivated

by string theory has recently been studied [314].

3.6.2 Designed for a purpose

In [315] a complex coupling was derived by requiring that the DE/DM ratio

varies slowly with time around the present day. They assumed energy transfer

from DE to DM and studied both quintessence and tachyonic models. They

found that their models could be compatible with SNIa data but that the

tachyon model then led to excessively high values of Ωm. They then repeated

the analysis in [316], this time including baryons and phantom quintessence

and found that ΛCDM is favoured by statistical measures.

A recent study of fluid IDE with different parameterisations of w found

evidence for a change of sign of the interactions [317]. They performed a

piecewise split of a constant H coupling into different redshift bins and con-

strained each one with SNIa, BAO, CMB and H(z) data in an MCMC anal-

ysis. Data with z > 0.5 preferred energy transfer from DE to DM, whilst

below z = 0.5 the interaction’s sign seemed to oscillate. They argued there-

fore that more flexible parameterisations should be considered and in [318]

a new coupling motivated by this study and designed to change its sign with

the onset of acceleration was proposed,

Q = q(αρ̇A + 3βHρA), (3.17)

where α and β are constants and q is the deceleration parameter. An anal-

ysis of this system’s critical points was then performed, finding a complex

dynamics which includes scaling solutions. The cosmological constraints on
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the parameters of this model from SNIa, BAO and CMB data were then

found in [319] and it was shown that ΛCDM is still more likely according to

a number of statistical measures. [320] also constructed a coupling designed

to change sign as the universe enters late-time acceleration. They showed

that it is consistent with the second law of thermodynamics, (though it was

not derived from an action), and that it can satisfy the CMB shift parameter

constraints.

An extremely general coupling which could include linear and non-linear

terms up to the second time derivative of the energy densities was shown to

be describable as a single fluid in order to demonstrate a correspondence of

IDE with Chaplygin gas models in [321]. More recently the authors also an-

alytically studied the stability of scaling solutions in this framework [322]. A

condition on couplings which avoid adiabatic instabilities was derived in [101]

and found to infer an effective w < −1.

[323] studied a three-form field DE coupled to DM and considered each

of the three common coupling types, (note however that [179] later pointed

out that these could only be considered phenomenological in this context

as they were not derived from a covariant Lagrangian). They compared the

background dynamics of each case but found that none of them could address

the coincidence problem in this framework and so proposed a new scalar field

type coupling with an additional term linear in the field value which leads a

scaling solution.

3.7 Parameterisations of Interactions

Due to the speculative nature of physically motivated forms for IDE couplings

there has been a large amount of work carried out using parameterisations of

the model. There are two main types of parameterisation used in the liter-

ature, works on which are discussed below and referred to by their notation

as the ξ and ǫ parameterisations, before other forms in the literature are also

reviewed.
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3.7.1 The ξ parameterisation

In order to study IDE as a solution to the coincidence problem, the authors

of [324] parameterised the relation between the DE and DM energy densities,

ρx ∝ ρca
ξ, (3.18)

where ξ is a constant parameter. The special cases ξ = 3 and ξ = 0 corre-

spond to ΛCDM and the self-similar solution with no coincidence problem

respectively, so 0 < ξ < 3 would reduce the severity of the coincidence prob-

lem. The work forecast the ability of high redshift SNIa observations, the

application of the Alcock-Paczynski test to quasar pairs, and cluster evolu-

tion to constrain this parameter. They found in particular that the SNAP

mission, (now part of the Joint Dark Energy Mission), should provide par-

ticularly definitive results.

This same power-law parameterisation was used in [325], where they im-

plemented a new technique developed in [326, 327] of using the lookback time

to clusters of galaxies as an observational constraint and found limits on ξ

and w. About the same time [328] specifically implemented the H coupling

in the ξ parameterisation in order to find scaling solutions and analytically

integrated the case of ξ = 1, w = −1 showing that it could alleviate the

coincidence problem.

Soon after this CMB constraints were placed on ξ [329], but the current

constraints on the ξ parameterisation from SNIa, CMB and BAO observa-

tions were found in [330]. They found that ΛCDM was within 1σ of the

best-fit in the w-ξ plane with ξ = 3.06 ± 0.35 at 68.3% confidence limit.

They also presented a theoretical constraint on the redshift at which the

transition to acceleration occurs, showing that in the parameterised ξ model

z(ä = 0) > 0.73 would require interactions. Although not referred to by

the authors, it is interesting to note that work showing that the acceleration

may be slowing also shows that the transition redshift may indeed be slightly

higher than this value [241].
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3.7.2 The ǫ parameterisation

In [331] the authors proposed a parameterisation of decaying vacuum models

with w = −1 via their deviations from the standard background evolution of

CDM,

ρc = ρc,0a
−3+ǫ, (3.19)

where epsilon was taken to be a small positive constant, (since they studied

DE decaying to DM). They found that it was not possible to address the

cosmological constant problem in this model and put constraints on ǫ from

SNIa, CMB and growth rate data.

It was later demonstrated in [285] that in a particle decay context decay

from DE to DM is thermodynamically favoured when both fluids have zero

chemical potential. They then used the ǫ parameterisation to find constraints

from SNIa, CMB and cluster gas mass fraction observations, finding a best

fit of ǫ = 0.11± 0.12 at 94.5% confidence limit, ( 1.5σ deviation from zero),

although they only considered the range ǫ > 0. From then on most studies

using the ǫ parameterisation only considered ǫ ≥ 0, although [332] used a

scalar field model with SNIa, BAO, and H(z) data to constrain ǫ, finding a

very slight preference for energy transfer from DM to DE, (ǫ < 0).

[333] performed a joint statistical analysis of CMB, BAO and SNIa data,

(considering only energy transfer from DE to DM), finding ǫ ≤ 0.09 at 3σ.

However [334] put observational constraints on the same model from SNIa

and BAO data, finding a χ2 best fit of ǫ ≈ 0.5, (although with little statistical

significance). They also performed a statefinder diagnosis and found an ear-

lier transition to acceleration than for uncoupled models. In [335] the growth

of overdensities was studied using the ǫ parameterisation. They showed that

coupling leads to a suppression of the growth rate by a constant amount

and considered the effect on redshift-space distortions and ISW observations

leading to a wrongly inferred growth index γ > 0.55. The ǫ parameterisation

was also used recently in [336] to assess the ability of future H(z) data to

constrain the parameter within the range -0.2 to 0.2 using both numerical

and analytical methods. An accuracy of 1% in H(z) was found to be required
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in order to potentially detect an interaction using H(z) data alone.

3.7.3 Other forms of parameterisation

In [337] solutions to a model with a parameterised coupling between DM

and a tachyonic field which required the ratio of the densities to be constant

at late times were found, while [338] rewrote a Chaplygin Gas model as a

parameterised IDE model when discussing its observable effects on structure

formation. Recently, [339] used a simple parameterisation of the coupling in

order to investigate the potential effect of wrongly assuming that observations

caused by IDE are produced by normal DE and highlighted the ability of IDE

models to exhibit phantom-like effective DE equations of state.

The ǫ parameterisation was extended in [340] to allow for time-varying ǫ.

They performed an analysis using CMB, BAO and SNIa observations and

found no significant evidence of any deviation from ǫ = 0, with both signs

being equally likely, thereby favouring ΛCDM. [341] further generalised the ǫ

and ξ parameterisations to include a wide variety of functional forms, placing

observational constraints on them from SNIa, CMB and BAO data. They

also performed three different statistical tests and in each case found ΛCDM

to be preferred.

3.8 Other Works

3.8.1 Reconstruction of the coupling

[342] reconstructed the interaction term from Chebyshev polynomials, which

are a complete set of orthonormal functions, using SNIa data and found a

preference for a recent change in sign so that there is an energy transfer from

DE to DM at early times and an energy transfer from DM to DE at late times.

They then confirmed their findings by repeating the analysis using not only

SNIa but also BAO, CMB, H(z) and X-ray gas mass fraction data [343].

In a slightly different vein, [344] matched an IDE model to a MG cos-

69



mology by constructing the IDE potential and coupling functions to match

the MG model’s expansion and growth histories in order to highlight the

difficulty of distinguishing between the two. An extension of this work is the

subject of Chapter 6.

3.8.2 Particle theory

In [345] an IDE model was proposed where DM is uncoupled but coexists

with a coupled particle whose mass grows as a function of time, taken to

be neutrinos. They found viable cosmologies but with only small deviations

from ΛCDM which would be difficult to measure. Interactions with standard

model particles are among the topics studied in [346], while other results

include that in addition to the degeneracy of an uncoupled DE+DM system

with a single dark fluid, coupled systems can also be completely degenerate

with a single fluid if the total adiabatic sound speed is equal to zero.

It was proved in [347] that the generalised second law of thermodynamics

holds in a model where DE interacts with both DM and radiation, while [348]

studied interactions in the framework of open systems with irreversible ther-

modynamics due to matter creation/annihilation. They described a coupling

independent method for dealing with pressures arising from particle creation

and decay and demonstrated its application to two particular examples. [349]

studied coupled dilaton/DM scalar fields and realistic cosmologies with ef-

fects on galactic substructure were shown to be possible. A Γρx coupling

was applied to a k-essence model, (quintessence fields with a non-canonical

kinetic term), inspired by Yang-Mills theory in [350] and it was found that

smooth w = −1 crossing was possible but non-coupled models were favoured

by statistical measures.

[351] showed that elastic scattering in the dark sector could be several

orders of magnitude stronger than Thompson scattering as there should be

no effect on background observations and structure formation is only weakly

effected. More recently, [352] considered the effect on CMB anisotropies of

a dark sector coupling analogous to Thompson scattering. They found that
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constraints on the scattering cross section from CMB data, assuming a proton

mass DM particle, are tighter for phantom DE than for cases where w > −1

but when w = −1 no constraints are possible.

3.8.3 Vacuum decay

There have been a large number of works published on the subject of vacuum

decay and it is beyond the scope of this review to cover them all, (see e.g.

refs. in [231]). Instead, a flavour of some of the recent topics of study is

given below.

[353] looked at interacting vacuum energy and showed that thermody-

namics restricts the energy transfer to being from the vacuum to DM. They

then constrained the model’s parameters using the ǫ parameterisation with

SNIa BAO and CMB data. A similar study looked at a parameterisation of

vacuum decay using a power series of H [354], where they also described an

equivalent coupled quintessence model.

[355] recently developed a model of inhomogeneous vacuum energy, which

due to the inhomegeneity necessarily interacts with matter. They showed its

ability to describe any dark energy cosmology and gave the explicit exam-

ple of a Chaplygin gas. [356] meanwhile modelled an interacting vacuum

term using a power law of the DE energy density and found observational

constraints from SNIa, GRB, CMB, BAO and H(z) data. They found that

observations disfavoured regions of the parameter space where the coinci-

dence or cosmological constant problems are alleviated.

3.9 Discussion

The above list shows the wide scope and transferability of IDE models and

techniques in modern cosmology. The rich phenomenology that they pro-

vide can seem like a panacea for any symptom that ΛCDM might display,

but the temptation to overdose on cooked-up medicines should probably be

resisted and holding too much store in the low significance results typical
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Ref. Coupling/ Result

parameterisation

[237] [b0a + be(1− a)]H0(ρx,0 + ρc,0) early - DM → DE, late - DE → DM,

w ≈ −1, (< 1σ)

[246] Hρc, H(ρc + ρx) DE → DM, (< 1σ)

[252] Hρc DM → DE, w < −1, (1σ)

[285] ǫ DE → DM, (1.5σ)

[286] Hρx DM → DE, (< 1σ)

[306] Γρc DE → DM, (< 1σ)

[330] ξ DM → DE, (< 1σ)

[332] ǫ DM → DE, (< 1σ)

[343] reconstruction early - DE → DM, late - DM → DE,

w ≈ −1, (< 1σ)

Table 3.1: Observational constraints on the direction of energy transfer from

a selection of simple models which might be hoped to display a trend.

of IDE studies is likely just as bad. That said, there are a couple of high

significance results which one could point to, namely the massive neutrino

study which found a 7 − 8σ detection of non-zero coupling using neutrino

mass constraints [186] and the study of baryon to DM mass ratios of clusters

which found a 14σ deviation from zero coupling [256]. Unfortunately how-

ever, the directions of energy transfer in these two findings are contradictory.

This is probably no surprise really as they are both such anomalously high

significance results, albeit from novel sources of constraint. Their novelty

could of course also be seen as a reason to distrust them though, with one

from an unconfirmed particle physics result and the other using techniques,

(weak lensing and cluster modelling), which are notoriously difficult to im-

plement. Whilst observational constraints are weakened by the addition of

new parameters, it doesn’t seem unreasonable to hope that as a first approx-

imation a preferred direction of energy transfer might be hinted at by the
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data. Table 3.1 summarises some of the observational constraints on different

IDE models and highlights the variability of results. There are conflicting

results even for the same couplings/parameterisations, doubtless in part due

to the inability of data to constrain the model. After over a decade of work

on the subject there are no trends across different analyses and the two most

significant findings in Table 3.1 are both contradicted by other works using

the same couplings. One might wonder if this is due to a change in the sign

of the coupling in the past and the use of different data sets, but the two

variable sign models are again contradictory and most works just use SNIa,

CMB and BAO as standard anyway.

Ultimately one is forced to return to the issue of the ability of current data

to constrain the model and the fact that as mentioned in Chapter 1, there

are expected to be systematic problems with SNIa and H0 measurements

compare to CMB and BAO data [32]. The question does arise of whether

IDE could give rise to this tension, but the disagreement in Table 3.1 is not

encouraging and for H0 at least, the cosmological effects of IDE are minimal

out to the measurement’s typical redshifts used of z ≈ 0.04 [357].

Theoretical works on instabilities ruled out many early versions [102,

111], but each way around the problems weakened the testability of the

model. The coincidence problem, (real or otherwise), does not seem as easily

soluble with IDE as had originally been hoped. Scaling solutions seem too

disfavoured now [110] and they may not be representative of whatever real

physics underlies the IDE. The best IDE can do then perhaps is to alleviate

the problem, but the trade off for extra complexity may well not be worth it.

Since 1998 a clear understanding of IDE models has been gained. The

hope now must be that Stage 3 and 4 DE experiments will provide more

definitive observations and that H0 measurements are improved in conjunc-

tion with them. Probes such as studies of clusters and DM halos, which

exploit the novel effects that IDE has on structure formation and ground

based results regarding neutrino mass also offer the prospect of producing

useful findings, but at present the results are contradictory.
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Chapter 4

Constraining a Model of

Interacting Dark Energy

This chapter is a study of perturbations in the Q ∝ Γρx model of IDE. The

background cosmology of this model has previously been studied in [297],

while the growth rate and weak lensing signals for a particular version of it

were studied in [298]. In this work the model is studied more generally, with

CAMB and CosmoMC being used to place constraints on its parameters by

employing a combination of different observational probes. Section 4.1 is

concerned with theoretical issues surrounding the model itself, including the

derivation of its perturbation equations. Section 4.2 describes the numerical

analysis and Section 4.3 presents its results, with conclusions then being

drawn in Section 4.4.

4.1 Model Development

In this section issues surrounding the model’s background are discussed, its

perturbation equations are developed and the initial conditions for the model

are determined.
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4.1.1 IDE in the background

For convenience we present again the background continuity equations for an

IDE model characterized by the energy transfer rate Qx = −Qc:

ρ̇c = −3Hρc + aQc, (4.1)

ρ̇x = −3H(1 + w)ρx + aQx, (4.2)

where dots denote derivatives with respect to conformal time τ , H = d ln a/dτ

and w = px/ρx. A simple model for Qx is a linear function in the dark

sector energy densities. IDE with Qx ∝ ρc has been studied in the greatest

detail [130, 295, 296, 107, 297, 298, 299, 305, 306]. However, for constant

w the model suffers from an instability in the perturbations [107]. This

instability arises because the model of DE as a fluid with constant w is non-

adiabatic and can be cured by allowing w to vary in time [305].

Here we study the version with Qx ∝ ρx,

Qx = −Qc = Γρx, (4.3)

where Γ is a constant transfer rate. The strength of the interaction is mea-

sured by |Γ|/H0. Γ > 0 corresponds to energy transfer from DM→DE. This

appears somewhat unnatural, since the energy transfer is proportional to ρx.

For Γ < 0, the interaction can be seen in the background as a decay of DE

into DM, which is a more natural model. The solution of Eq. (4.2) is [297],

ρx = ρx0a
−3(1+w) exp [Γ(t− t0)], (4.4)

which shows that Γ > 0 leads to exponential growth of DE. By Eq. (4.1),

it follows that ρc eventually becomes negative. The model breaks down

if this happens before the current time, which is possible for large Γ/H0.

Observational constraints require Γ/H0 . 1, so that typically the DM density

only becomes negative in the future. In this case, we can treat the model as

a viable approximation, for the past history of the Universe, to some more

complicated interaction that avoids the blow-up of DE in the future. The

DE→DM decay model, with Γ < 0, does not have this problem: both energy
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densities remain positive at all times when evolving forward from physical

initial conditions [297]. Furthermore, the Γ < 0 case includes the possibility

of beginning with no DM present and having it created entirely from the

decay of DE.

We use a phenomenological fluid model for DE, in which we treat w and

the soundspeed cs as arbitrary parameters. This is a commonly used model

for non-interacting DE, where the model is known as wCDM. We impose the

condition w ≥ −1 to avoid ‘phantom’ instabilities that can arise in scalar

field models of DE [358, 359]. The limiting case w = −1 is admitted by the

background equations, but the perturbation equations have singularities (see

below). Therefore we assume,

w > −1, w = const. (4.5)

For completeness, we consider also the w ≤ −1 case in Section 4.2.3. In the

background, the Γ < 0 case appears to be better motivated. However, the

analysis of perturbations (see below) shows that these models suffer from an

instability when w > −1. The Γ > 0 models avoid this instability.

4.1.2 IDE in the perturbations

The critical difference between the background and perturbed IDE is that

there is nonzero momentum transfer in the perturbed universe. As empha-

sised in [107], a model for energy and momentum transfer does not follow

from the background model and a covariant and gauge-invariant approach

is essential to construct a physically consistent model for energy-momentum

transfer.

General IDE

We give a brief summary of the general discussion in [107]. The Friedmann

metric with scalar perturbations in a general gauge is,

ds2 = a2
{

−
(

1 + 2Ψ
)

dτ 2 + 2∂iBdτdx
i

+
[(

1− 2Φ
)

δij + 2∂i∂jE
]

dxidxj
}

. (4.6)
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Each fluid A satisfies an energy-momentum balance equation,

∇νT
µν
A = Q̄µ

A, ΣAQ̄
µ
A = 0, (4.7)

where bars denote physical values, (i.e. the sum of the background plus

the perturbation parts). The second condition expresses conservation of the

total energy-momentum tensor. For dark sector interactions, the energy-

momentum transfer four-vectors satisfy,

Q̄µ
x = −Q̄µ

c . (4.8)

We split Q̄µ
A relative to the total four-velocity uµ, so that,

Q̄µ
A = Q̄Au

µ + F µ
A, Q̄A = QA + δQA, uµF

µ
A = 0, (4.9)

where Q̄A is the energy density transfer rate relative to uµ and F µ
A is the

momentum density transfer rate relative to uµ. To first order,

F µ
A = a−1

(

0, ∂ifA
)

, (4.10)

where fA is the (gauge-invariant) momentum transfer potential.

We choose each uµA and the total uµ as the unique four-velocity with zero

momentum density, i.e.,

T µAνu
ν
A = −ρ̄AuµA, T µν u

ν = −ρ̄uµ, (4.11)

ρ̄A = ρA + δρA, ρ̄ ≡ ΣAρA = ρ+ δρ. (4.12)

Then we have,

uµA = a−1
(

1−Ψ, ∂ivA
)

, uµ = a−1
(

1−Ψ, ∂iv
)

, (4.13)
(

ΣAρ̄A + ΣAp̄A
)

v = ΣA
(

ρ̄A + p̄A
)

vA, (4.14)

where vA, v are the peculiar velocity potentials. Equations (4.9) and (4.13)

imply that,

Q̄A
0 = −a

[

QA

(

1 + Ψ
)

+ δQA

]

, (4.15)

Q̄A
i = a∂i

[

QA

(

v +B
)

+ fA

]

. (4.16)
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The evolution equations for δA ≡ δρA/ρA and the velocity perturbation

θA = −k2(vA +B) are [107]:

δ̇A + 3H(c2sA − wA)δA + (1 + wA)θA

+ 9H2(1 + wA)(c
2
sA − c2aA)

θA
k2

− 3(1 + wA)Φ̇ + (1 + wA)k
2(B − Ė)

=
aQA

ρA

[

Ψ− δA + 3H(c2sA − c2aA)
θA
k2

]

+
a

ρA
δQA, (4.17)

θ̇A +H(1− 3c2sA)θA − c2sA
(1 + wA)

k2δA − k2Ψ

=
a

(1 + wA)ρA

{

QA

[

θ − (1 + c2sA)θA
]

− k2fA

}

. (4.18)

Here csA is the physical soundspeed and caA is the adiabatic soundspeed.

The physical soundspeed is gauge dependant, c2sA = (δpA/δρA)restframe. It

is the fluid’s phase speed and defines the speed at which pressure pertur-

bations propagate through it [360]. The adiabatic soundspeed on the other

hand is defined by c2aA ≡ ṗA/ρ̇A and for constant wA we have c2aA = wA [277].

For an adiabatic fluid, c2sc = c2ac because δp/ṗ = δρ/ρ̇ [361]. The DM fluid

here for example has c2sc = c2ac = wc = 0. By contrast the DE fluid is non-

adiabatic because c2ax = w < 0 is negative and so cax cannot be the physical

soundspeed.

The physical soundspeed for the fluid DE model is instead a phenomeno-

logical parameter. It must be real and non-negative to avoid unphysical

instabilities. We choose csx = 1, which is the soundspeed for quintessence (a

self-consistent model of DE). The analysis is insensitive to the value of csx,

as long as csx is close to one, so that DE does not cluster significantly on

sub-Hubble scales, see [107] for more details.

DM-baryon bias from IDE

In IDE models, the DE exerts a drag on DM but not on baryons. This leads

to a linear DM-baryon bias in the late-time density perturbations, and in
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general also to a velocity difference [299]. For baryons after decoupling,

δ̇b + θb − 3Φ̇ + k2(B − Ė) = 0, θ̇b +Hθb − k2Ψ = 0. (4.19)

Thus for non-interacting DE models,

θc − θb = (θc − θb)i
ai
a
, (4.20)

where i stands for initial. We can choose (θb − θc)i = 0, so that,

θc − θb = 0, δc − δb = (δc − δb)i. (4.21)

Thus in standard DE models, there is no DM-baryon velocity difference, and

any linear density perturbation difference is determined by initial conditions.

For IDE models, the interaction induces a non-constant difference be-

tween δc and δb – which is degenerate with the standard galaxy bias. The

Euler equation for DM is (4.18), with c2sc = wc = 0. This differs from

the standard Euler equation unless k2fc = Q(θ − θc), which follows only

for Q̄µ
c = Q̄cu

µ
c , (see below for another version), regardless of the form of

Q̄c [299]. In those models that modify the Euler equation for DM, there will

also be a velocity bias. Equations (4.17) and (4.18) imply,

(δ̇c − δ̇b) +
aQc

ρc
(δc − δb) + (θc − θb)

=
a

ρc

[

δQc +Qc(Ψ− δb)
]

, (4.22)

(θ̇c − θ̇b) +
(

H +
aQc

ρc

)

(θc − θb)

=
a

ρc

[

− k2fc +Qc(θ − θb)
]

. (4.23)

Thus there will be a velocity bias, unless Q̄µ
c = Q̄cu

µ
c .

Two Choices of Momentum Transfer

The preceding equations are completely general. A choice must now be made

for the energy-momentum transfer in the dark sector. Firstly, the nature of

the background energy transfer suggests that we take,

Q̄x = Γρ̄x = Γρx(1 + δx) = −Q̄c. (4.24)
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Thus we are treating Γ as a universal constant. For the momentum transfer,

the simplest physical choice is that there is no momentum transfer in the rest

frame of either DM or DE [107, 299]. This leads to two types of model, with

energy-momentum transfer four-vectors parallel to either the DM or the DE

four-velocity:

Q̄µ
x = Q̄xu

µ
c = −Q̄µ

c type: Q‖uc , (4.25)

Q̄µ
x = Q̄xu

µ
x = −Q̄µ

c type: Q‖ux . (4.26)

Therefore we have,

Q̄x
µ = aΓρx

[

1 + δx +Ψ, ∂i(vA +B)
]

, (4.27)

where A = c, x for type Q‖uc , Q‖ux . By Eq. (4.16), the momentum transfer

relative to the background frame is,

fx = Γρx(vc − v) = −fc for Q‖uc , (4.28)

fx = Γρx(vx − v) = −fc for Q‖ux . (4.29)

For both the Q‖uc and Q‖ux models, the density perturbation, (continu-

ity), equation (4.17) reduces to,

δ̇c + θc − 3Φ̇ + k2(B − Ė) = aΓ
ρx
ρc

(δc − δx −Ψ), (4.30)

δ̇x + 3H(1− w)δx + (1 + w)θx + 9H2(1− w2)
θx
k2

− 3(1 + w)Φ̇ + (1 + w)k2(B − Ė)

= aΓ
[

Ψ+ 3H(1− w)
θx
k2

]

. (4.31)

The velocity perturbation, (Euler), equations are however different. For the

Q‖uc model, Eq. (4.18) gives,

θ̇c +Hθc − k2Ψ = 0, (4.32)

θ̇x − 2Hθx −
k2δx

(1 + w)
− k2Ψ =

aΓ

(1 + w)

(

θc − 2θx
)

. (4.33)
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For the Q‖ux model:

θ̇c +Hθc − k2Ψ = aΓ
ρx
ρc
(θc − θx), (4.34)

θ̇x − 2Hθx −
k2δx

(1 + w)
− k2Ψ = − aΓθx

(1 + w)
. (4.35)

It follows that the Euler equation for DM in the Q‖uc model has the standard

form, whereas it is modified in the Q‖ux model.

Instability

There is an obvious issue with the Euler equations for DE, (4.33) and (4.35),

as w → −1. Thus we must exclude the value w = −1. This is different from

the problems associated with a dynamical DE model when w crosses −1, in

which case the DE perturbation is well-defined, but at least one more degree

of freedom is required, usually leading to its interpretation as a sign of modi-

fied gravity. Here though, the DE is not dynamical and the DE perturbation

is ill-defined at w = −1, so here we must neglect the perturbations, treating

it instead as an interacting vacuum.

These equations also reveal an instability for w 6= −1 in certain regions

of parameter space. The underlying cause of this instability is the choice of

c2sx = 1, which means that the DE fluid is non-adiabatic, as discussed above.

It is qualitatively similar to the instability first discovered for constant w

IDE in [107], (see also [108, 109, 110, 277, 111] for the case of models with

Γ replaced by αH). This is a DE velocity instability, which then drives an

instability in the DE and DM density perturbations.

On large scales, we can drop the δx and Ψ terms in the DE Euler equations

(4.33) and (4.35). In Eq. (4.33) we can also set θc = 0 by Eq. (4.32). Then

we can integrate to find that,

θx

θ
(Γ=0)
x

= exp

[

−α Γ

1 + w
(t− t0)

]

, (4.36)

where θ
(Γ=0)
x is the DE velocity in the non-interacting case, and α = 2, 1 for
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Q‖uc , Q‖ux . It follows that,

− Γ

(1 + w)
> 0 ⇒ instability. (4.37)

Note that although one can choose a reference frame where θx ≡ 0, the

instability is still present in the velocity difference, which is gauge invariant.

Given the assumption in Eq. (4.5), the stable models must have positive Γ,

i.e.,

w > −1 and Γ > 0 ⇒ no instability, (4.38)

for both Q‖uc and Q‖ux . This defines for us the physically acceptable

models. In Section 4.2.3 we allow for any sign of Γ and 1 + w. In order for

the instability to affect the perturbation evolution significantly by today, the

time scale of growth of θx in Eq. (4.36) should be shorter than the Hubble

time, i.e., the models with,

− Γ

H0(1 + w)
&

{ 1 for Q‖uc ,

2 for Q‖ux .
(4.39)

may not be viable. This tallies with the findings in [108] and the results from

the full parameter scan confirm this numerically (see the excluded wedges

near to w = −1 in Fig. 4.8).

4.1.3 Initial conditions

In synchronous gauge, Ψ = B = 0 and ordinarily the residual gauge freedom

is eliminated by setting θc = 0. For the Q‖ux model the interaction term in

the DM Euler equation (4.34) does not in general allow for θc = 0. However,

since Γ ≃ H0 ≪ H in Eq’s. (4.30)–(4.35), the interactions can be neglected

at early times. Using 3Φ̇ + k2Ė = −h/2, where h is the synchronous gauge

variable [90], the evolution equations used to find the initial conditions for
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the dark sector are,

2δ̇c + ḣ = 0, θ̇c = 0, (4.40)

δ̇x + 3H(1− w)δx + (1 + w)θx

+ 9H2(1− w2)
θx
k2

+ (1 + w)
ḣ

2
= 0, (4.41)

θ̇x − 2Hθx −
k2δx

(1 + w)
= 0. (4.42)

The dominant growing mode solution for h found in [90] leads to the standard

adiabatic initial conditions for DM,

δc i = −1

2
h = −1

2
C(kτ)2, θc i = 0. (4.43)

For DE, we find the leading order solutions, in agreement with [205],

δx i =
C(1 + w)k2τ 2

12w − 14
, θx i =

Ck4τ 3

12w − 14
. (4.44)

4.2 Coding for the Model

A number of different computational analysis techniques were employed in

the study. Here we briefly describe how these were used to perform the

necessary numerical calculations.

4.2.1 Modifying CAMB

The evolution of ΓwCDMmodels was computed numerically using a modified

version of the CAMB Boltzmann code [93], including implementation of the

initial conditions derived in Section 4.1.3. The code was adapted in three

main ways; to allow for the non-standard background evolution caused by

the interactions to evolve the DM velocity perturbation for the Q‖ux model,

(which is ordinarily set to zero), and to suppress perturbations when |1+w| <
0.01 due to the blow up of terms in Eq’s. (4.33) and (4.35) when w → −1

because it was useful to include the w = −1 limit for comparison with ΛCDM.
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The largest modification to the standard program was the additional cod-

ing required to solve the IDE Friedmann equation. In its standard form

CAMB evolves the background using the usual scaling relations for each

component in the Friedmann equation, e.g. ρc ∝ a−3. In the Q ∝ ρx model

Eq. (4.4) describes solutions for ρx(t) but there is no analytical solution for ρc

and CAMB requires the energy densities to be functions of the scale factor a

so that its time derivative can be found, thus requiring that the background

was solved numerically.

This was achieved by using DVERK, the function for solving differen-

tial equations which was already used in CAMB. Normally CAMB solves

the Friedmann equation every time the expansion rate is required, but this

would be too computationally expensive in the non-standard case. Instead

the entire background evolution is solved at a preliminary stage and a set

of splines created which can be quickly and easily accessed to return the

solutions for the dark sector energy densities at any time.

4.2.2 Maple checks

After coding for the new model in CAMB the output data was compared at

late-times against a simulation of the same IDE cosmology in the Newtonian

limit using the symbolic algebra program Maple. At late times the New-

tonian and synchronous gauges are effectively equivalent, allowing a simple

numerical check to be made on the novel coding implemented in the modified

version of CAMB. Fig’s. 4.1 and 4.2 shows two example plots comparing a

numerically solved system written in Maple to CAMB output using the same

input parameter values, with no deviation being detectable between the two

results.

4.2.3 CosmoMC

Using CosmoMC [158] we explored the full parameter space of the ΓwCDM

model, as illustrated in Fig. 4.6. The code was modified to vary the two new
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Figure 4.1: Comparison of δc for a numerically solved Q‖uc cosmology with

Γ/H0 = 0.1 and w = −0.98 written in Maple with output from CAMB

demonstrating good agreement at late times in the Newtonian limit.
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Figure 4.2: Comparison of ρx for a numerically solved Q‖uc cosmology with

Γ/H0 = 0.1 and w = −0.98 written in Maple with output from CAMB

demonstrating good agreement at late times in the Newtonian limit.
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parameters Γ and w and further coding was necessary to ensure that models

with negative DM energy densities were rejected from the MCMC analysis.

Another modification was made because CosmoMC varies a parameter θ =

100 times the ratio of the sound horizon to the angular diameter distance, in

place of H0, as it is more efficient. However the derivation of θ also assumes

a standard background evolution. We therefore chose not to use θ, but to

constrain H0 directly instead.

The Hubble Space Telescope, (HST), prior on H0 assumes a particu-

lar model of ΛCDM for evolving H(z = 0.04) [357] up to the present day

and so has a slight model dependence. Nevertheless, we neglected this ef-

fect due to the low redshift at which the measurement was made. For the

BAO however, the scaling solution for the background used to find the red-

shift of the two data points was replaced by coding to take into account the

non-standard background evolution of the IDE models. This was necessary

because of the relatively high effective redshift of the BAO measurements,

(z = 0.2, 0.35) [362].

4.2.4 Using the SCIAMA supercomputer

Numerical computations were carried out on the SCIAMA High Performance

Computer Cluster which is supported by the ICG, SEPNet and the University

of Portsmouth. This comprises 1000 cores and enabled multiple MCMC

chains to be run simultaneously, before later combining the results to achieve

good statistical accuracy. The ‘makefiles’ of both CAMB and CosmoMC

were adapted for use on SCIAMA and runs were submitted using its job

queuing system. A full MCMC chain could take days to run, so the use of

SCIAMA was invaluable in cutting down the results gathering time required

from months to weeks.
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Figure 4.3: CMB power spectra from the modified CAMB code for 3

Q‖uc models with different values of Γ but identical values of their remaining

parameters (see ΓwCDM A,B,C in Table 4.1).

4.3 Analysis

Here we describe the results of the numerical analysis, including qualitative

effects on the CMB and matter power spectra, the final probability distribu-

tion, best-fit models and the growth of structure.

4.3.1 Effects on the CMB and matter power spectra

Insight into the physical implications of the interaction can be gained by

running the modified CAMB code with fixed input parameters, varying only

the interaction rate Γ. Figure 4.3 shows the CMB power spectrum for three

values of Γ with all other cosmological parameters set to typical values (see

Table 4.1 for details).

Positive Γ describes a transfer of energy from DM to DE, so with fixed

Ωc today, the DM energy density would have been correspondingly greater in

the past than without interactions. Hence the amplitude of the CMB power
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Model Q̄µ
A ∆χ2 Γ/H0 w H0 Ωbh

2 Ωch
2 ns As τrei

ΛCDM best-fit - 0 - −1 69.8 0.0223 0.113 0.960 2.16×10−9 0.0844

ΛCDM69 - 0.774 - −1 69.0 0.0221 0.114 0.958 2.18×10−9 0.0855

ΛCDM70 - −0.0200 - −1 70.0 0.0224 0.112 0.962 2.16×10−9 0.0844

wCDM best-fit - −0.220 - −1.03 70.7 0.0222 0.113 0.960 2.18×10−9 0.0883

ΓwCDM A Q‖uc - 0 −0.98 70.0 0.0226 0.112 0.960 2.10×10−9 0.0900

ΓwCDM B Q‖uc - 0.2 −0.98 70.0 0.0226 0.112 0.960 2.10×10−9 0.0900

ΓwCDM C Q‖uc - 0.4 −0.98 70.0 0.0226 0.112 0.960 2.10×10−9 0.0900

ΓwCDM 1a Q‖uc −0.00830 0.4 −0.95 70.9 0.0222 0.0702 0.961 2.16×10−9 0.0816

ΓwCDM 1b Q‖uc 0.702 0.7 −0.85 70.0 0.0223 0.0311 0.963 2.15×10−9 0.0832

ΓwCDM 2a Q‖ux −0.236 0.4 −0.95 71.0 0.0224 0.0701 0.966 2.19×10−9 0.0870

ΓwCDM 2b Q‖ux −0.0420 0.7 −0.85 70.2 0.0224 0.0305 0.966 2.15×10−9 0.0819

Γ ≥ 0, w ≥ −1 best-fit Q‖uc −0.0522 0.366 −0.964 71.0 0.0224 0.0748 0.963 2.18×10−9 0.0849

Γ ≥ 0, w ≥ −1 best-fit Q‖ux −0.322 0.798 −0.851 70.4 0.0224 0.0194 0.965 2.18×10−9 0.0870

Table 4.1: Cosmological parameters for IDE models with w ≥ −1 and Γ ≥ 0, (see Table 4.2 for more general

constraints).
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Figure 4.4: Total matter power spectra from the modified CAMB code for 3

Q‖uc models with different values of Γ but identical values of their remaining

parameters (see ΓwCDM A,B,C in Table 4.1).

spectrum is decreased and the position of the peaks shifted, since a larger

proportion of DM at early times implies a smaller amount of baryonic matter

and therefore a more significant effect from photon driving before decoupling.

The present-day matter power spectrum for these choices of Γ shows that a

relative increase in the past DM density naturally leads to more structure

formation and an increase in the amplitude of the matter power spectrum,

as shown in Figure 4.4.

4.3.2 Likelihood analysis

The modified CAMB code was integrated into the CosmoMC MCMC code

in order to explore the probability distribution for the parameter space. The

data used in the MCMC analysis were; CMB, (WMAP7 [363]), BAO [362],

HST [357], and SNIa, (SDSS [364]), data, as well as a prior on Ωb from big-

bang nucleosynthesis [365]. Figure 4.5 shows the 68% and 95% likelihood

contours in the w−Γ plane for the two different momentum transfer models
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Figure 4.5: Smoothed 68% and 95% contours of the marginalised probability

distribution for IDE model with Q‖uc (left) and Q‖ux (right) in the range of

stability, w > −1 and Γ ≥ 0. Crosses identify models chosen to be analysed

in more detail (see Table I).

Q‖uc and Q‖ux , where all other parameters have been marginalised over.

The likelihood regions are very similar for the two models since they differ

only in their perturbations and the observations predominantly constrain the

background evolution. The best-fit values for the Q‖uc and Q‖ux models are

different due to the ISW effect on the CMB, and are shown in Table 4.1.

For the Q‖ux model the best-fit value is a genuine global maximum. For the

Q‖uc model however the mean likelihood function of w and Γ is essentially

one-tailed, with the true global maximum lying outside of the region we

consider physical. Indeed the χ2 of this point is close to that of ΛCDM. This

is because Q‖uc models in this region can closely mimic the ISW signature

of ΛCDM.

There is a plane of degeneracy in the Γ−w −Ωc parameter space which

allows for an entire range of possibilities from zero DM at early times to zero

DM at the present day – see Figs. 4.6 and 4.7. The cosmological parameters

of the median and best-fit models from CosmoMC for w = −1 and when the

entire parameter space is considered are shown in Table 4.2.

For Q‖uc models, the ISW creates a preference in the mean likelihood

function for Γ < 0, as was found previously for the Q̄µ
c = Γρ̄cu

µ
c models [306].
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Figure 4.6: 68% and 95% contours of the marginalised probability distribu-

tion for the Q‖uc model (left) and Q‖ux model (right). The dashed lines

cross at the position of ΛCDM, the crosses indicate the best-fits in each case

and the circles indicate the median samples. Note that some areas appear

only due to smoothing of the distributions (see Fig. 4.8).
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Figure 4.7: 68% and 95% contours of the marginalised probability distribu-

tion in the Ωm −w plane for the Q‖uc model (left) and Q‖ux model (right).
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Model Q̄µ
A ∆χ2 Γ/H0 w H0 Ωbh

2 Ωch
2 ns As τrei

w = −1 ΓCDM best-fit Q‖uc −0.146 0.154 −1 70.8 0.0222 0.0974 0.959 2.16×10−9 0.0824

w = −1 ΓCDM best-fit Q‖ux −0.0522 0.0916 −1 70.0 0.0222 0.105 0.959 2.18×10−9 0.0852

all Γ, all w best-fit Q‖uc −0.294 −0.806 −1.23 70.5 0.0222 0.180 0.956 2.17×10−9 0.0822

all Γ, all w best-fit Q‖ux −0.0879 0.302 −0.951 70.1 0.0222 0.0823 0.959 2.18×10−9 0.0879

all Γ, all w median Q‖uc - −1.01 −1.29 70.7 0.0221 0.194 0.956 2.18×10−9 0.0841

all Γ, all w median Q‖ux - −0.578 −1.19 70.7 0.0222 0.164 0.958 2.18×10−9 0.0840

Table 4.2: Cosmological parameters of the median and best-fit samples from CosmoMC for w = −1 and when the

entire parameter space is considered.
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Figure 4.8: Distributions of accepted steps in the MCMC chains for the

models with Q‖uc (left) and Q‖ux (right)

For Q‖ux models however, the best-fit has Γ > 0. This is because the

Q‖ux model has a greater effect on structure growth than the Q‖uc model,

(see Section 4.3.4 below for more details). Despite this the median samples

have Γ < 0 and w < −1 for both theQ‖uc andQ‖ux models. The background

data therefore shows a slight preference for values of Γ < 0 and w < −1. Both

the best-fits and the median samples however are relatively close to ΛCDM,

given the wide range of interaction strengths allowed.

The singularity in the perturbations at w = −1 leads us to impose |1 +
w| < 0.01, so that we can explore the entire parameter space. The w = −1

results are included here to show the proximity of Γ to 0 for these models,

in line with ΛCDM. The effect of the w 6= −1 instability (4.36) is illustrated

in Fig. 4.8. The wedged gaps in the distribution of accepted MCMC chain

steps are given by the boundaries of the instability region, defined by (4.39).

4.3.3 Analysis of the best-fit models

Models ΓwCDM 1a,1b,2a,2b (see Table 4.1) were selected for further study.

CosmoMC was rerun with Γ and w fixed, to obtain the best-fit values of

the other non-derived parameters for input back into CAMB, namely Ωbh
2,

Ωch
2, H0, ns, (scalar spectral index), As, (scalar amplitude), and τrei, (optical
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depth of reionization).

The CMB data is best fit by a particular ISW signal, and the two momen-

tum transfer models differ somewhat in their structure formation histories.

DM in the Q‖ux model receives a change in momentum from the DE pertur-

bations, as expressed by its modified Euler equation (4.32), leading to more

structure growth relative to the Q‖uc model. This means that DE can be

weaker for the Q‖ux model in order to give the same amount of ISW signal

as the Q‖uc model.

Figure 4.9 shows the CMB power spectrum of the best-fit parameter sets

for the chosen values of Γ and w. The only significant difference between the

CMB spectra is in the ISW feature, although this is not very large because

CosmoMC has fit them well to the data from WMAP7. By contrast, there

are dramatic differences between the total matter power spectra at z = 0 for

these models as shown in Fig. 4.10 (see also Fig. 4.11). We chose not to fit the

matter power spectrum to observational data – because the modification to

the growth of matter perturbations δm due to the interactions is degenerate

with the galaxy-DM bias b in observations of galaxy number density fluctua-

tions: δg = bδm. This degeneracy is governed by equations (4.22) and (4.23).

Figure 4.10 does not include any bias.

Note that Ωc can be very small in models with large Γ, since it can be

compensated for by a higher w in order to obtain a sensible H0. This explains

the correlation in the Γ − w plane shown in Fig. 4.5, so the late-time effect

of the DM may be proportionately even greater than one might think at first

glance.

In order to assess the relative merits of these models we have included

the change in χ2 from a ΛCDM baseline. To help put this quantity into

context we have also included two best-fit ΛCDM models with H0 fixed at

69 and 70 km/s/Mpc. The mean likelihoods of the samples vary little in the

direction of the degeneracy in the w − Γ plane. For example, the difference

in ∆χ2 between the Q‖ux best-fit and the ΛCDM best-fit is less than the

difference between the two fixed-H0 ΛCDM models (ΛCDM69 and ΛCDM70
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Figure 4.9: CMB power spectra from the modified CAMB code for the

WMAP7 wCDM best-fit values and the ΓwCDM 1a,1b,2a,2b models cho-

sen from the 95% confidence range for further analysis (see Table 4.1). The

best-fit values of standard cosmological parameters were found using Cos-

moMC. Models 1a,1b have Γ = 0.4H0 and Q‖uc while 2a,2b have Γ = 0.7H0

and Q‖ux .
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Figure 4.10: Total matter power spectra from the modified CAMB code for

the WMAP7 wCDM best-fit values and the ΓwCDM 1a,1b,2a,2b models

chosen from the 95% confidence range for further analysis (see Table 4.1).

The best-fit values of standard cosmological parameters were found using

CosmoMC. Models 1a,1b have Γ = 0.4H0 and Q‖uc while 2a,2b have Γ =

0.7H0 and Q‖ux .
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Figure 4.11: Left: Normalised growth rates for ΛCDM and the same best-fit

models as in Fig’s. 4.9 and 4.10. Right: The same models but showing a

normalised combination of a2ρcδc which is important for the ISW effect.

in Table 4.1).

In Fig. 4.12, we show the effective DE equation of state and the a3-scaled

energy density for DM for the selected models in comparison with ΛCDM.

Interestingly, we find that the weff for the best-fit ΓwCDM models with

w = −0.85 and −0.95 crosses −1 during its evolution, showing a quintom-

like behaviour [366]. Note also that we have focused on the stable Γ > 0

models with w > −1. These models do have a problem of negative DM

energy densities in the future, but we assume that this can be cured by

a more realistic model to which the model is a good approximation where

ρc > 0.

4.3.4 Growth of structure

The combination of similar ISW signatures and large differences in the growth

of structure is unusual – in a ΛCDM cosmology for example, different growth

rates lead to correspondingly dissimilar ISW signatures. The mechanisms be-

hind this are clearest from the growth of DM perturbations in the Newtonian
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Figure 4.12: Comparison with ΛCDM of the effective DE equation of state

(left) and the DM density (right), for the same best-fit models as in Fig’s. 4.9

and 4.10.

limit: on sub-Hubble scales at late-times,

δc ≫ Ψ = Φ, δx = Ψ̇ = Φ̇ = 0, (4.45)

in the Newtonian gauge, (B = 0 = E). The evolution of synchronous gauge

density perturbations in CAMB matches that of perturbations in the Newto-

nian gauge. The ISW effect comes from gravitational potentials determined

by the Poisson equation,

k2Ψ = −4πGa2(ρcδc + ρbδb), (4.46)

and the left panel of Fig. 4.11 shows that there are indeed large differences

between the models in their growth rates at late times. The reason the ISW

effects can remain small for these models is that the non-standard background

evolution, (see Fig. 4.12), can counteract the growth of δc in Eq. (4.46)

and lead to relatively stable gravitational potentials. The right panel of

Fig. 4.11 shows that the relevant combination, a2ρcδc, can remain comparable

for models with very different structure formation histories such as those
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considered here. Note how well the ΓwCDM 1a model mimics the ΛCDM

behaviour of a2ρcδc, effectively leading to the same χ2 (see Table I).

This important feature of IDE models has implications for any cosmo-

logical test which assumes a standard evolution of the DM energy density

during matter domination, such as those for detecting deviations from GR.

It may also be useful for distinguishing between IDE and modified gravity

models [60], which have standard background evolutions.

Using Eq’s. (4.1), (4.2), (4.30), (4.31), (4.32), (4.46) and the Friedmann

equation, H2 = 8πGa2ρ/3, a velocity independent equation of motion for δc

can be derived for the Q‖uc model:

δ̈c +H
(

1− aΓ

H
ρx
ρc

)

δ̇c = 4πGa2
{

ρbδb + ρcδc

[

1 +

2ρ

3ρc

aΓ

H
ρx
ρc

(

2− 3w +
aΓ

H
(

1 +
ρx
ρc

))]}

. (4.47)

Thus the DM perturbations experience effectively different values of H and

G due to the interactions:

Heff

H = 1− aΓ

H
ρx
ρc
, (4.48)

Geff

G
= 1 +

2ρ

3ρc

aΓ

H
ρx
ρc

[

2− 3w +
aΓ

H

(

1 +
ρx
ρc

)]

. (4.49)

The Q‖ux model by contrast has a non-standard Euler equation (4.34),

and there remains a term proportional to θx which can not in general be

neglected:

δ̈c +H
(

1− 2
aΓ

H
ρx
ρc

)

δ̇c = 4πGa2
{

ρbδb + ρcδc

[

1 +

2ρ

3ρc

aΓ

H
ρx
ρc

(

2− 3w +
aΓ

H
)]}

+ aΓ
ρx
ρc
θx. (4.50)

Nevertheless, for stable models θx remains small enough to be negligible and

we can define the deviations from standard growth due to the interactions

via,

Heff

H = 1− 2
aΓ

H
ρx
ρc
, (4.51)

Geff

G
= 1 +

2ρ

3ρc

aΓ

H
ρx
ρc

(

2− 3w +
aΓ

H

)

. (4.52)
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Figure 4.13: Deviations from ΛCDM of the effective Hubble parameter (left)

and effective Newton constant for δc (right), for the same best-fit models as

in Fig’s. 4.9 and 4.10.

These equations show that the differences in momentum transfer lead

to a greater modification to the growth via Heff for the Q‖ux model and

via Geff for the Q‖uc model, as can be seen in Fig. 4.13. It is clear that

DM perturbations in the models with large couplings are already beginning

to grow exponentially at the present day (compare [277, 111, 300, 210]). In

models with Q̄µ
x = Γρ̄cu

µ
c , as studied in [107, 306, 305], there is no interaction

source term in the synchronous gauge version of Eq. (4.30) and so the DM

perturbations are stable.

4.4 Conclusions

We have studied a model of dark sector interactions with an energy transfer

proportional to the DE energy density, and with momentum transfer van-

ishing either in the DM or the DE rest frame. We performed an MCMC

analysis and found the best-fit parameters using a data compilation that

predominantly constrains the background evolution. We found model con-

101



straints to which ΛCDM is a good fit, although parameter degeneracies do

allow for significant interaction rates at the present day and even admit the

two extreme cases of zero DM at early times and zero DM today.

We analysed the growth of structure in this model and found that the

effects of large growth rates on the ISW signature in the CMB can be sup-

pressed by the non-standard background evolution. We also showed that

interactions can greatly enhance growth in these models via effective Hub-

ble and Newton constants, in varying degrees depending on the momentum

transfer.

There appears to be some tension between the background evolution and

structure formation. The CMB, SNIa and BAO data slightly favour inter-

actions, while the growth rate of DM perturbations likely rules out large

interaction rates. There is a degeneracy with galaxy bias, which deserves

further investigation. This would allow the use of the full range of large-

scale structure data and would significantly improve the constraints on the

IDE models considered here.

Interacting models are known to be degenerate with modified gravity

models [64, 344, 299, 300, 335, 367]. It is important to break this degeneracy,

in order to strengthen cosmological tests of GR – currently devised tests

do not incorporate the possibility of a dark sector interaction. The key

distinguishing features of IDE and MG occur in: (1) the late-time anisotropic

stress, i.e. Ψ−Φ; (2) the evolution of the background DM density, ρc(1+z)
−3;

(3) the DM-baryon bias:

MG IDE

Ψ− Φ 6= 0 = 0

ρc(1 + z)−3 = const 6= const

δb − δc = const 6= const

θb − θc = 0 can be nonzero

These features are the basis for breaking the degeneracy. For example, any

difference between the metric potentials can be tested via peculiar velocities,

(a probe of Ψ), weak lensing and ISW, (both sensitive to Ψ + Φ). Whether
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or not it is possible to distinguish between IDE and MG using current ob-

servations is investigated in Chapter 6.
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Chapter 5

Mathematically Equivalent

Models of Interacting Dark

Energy and Modified Gravity

In this chapter we develop the framework required for the study of IDE

and MG which follows. After a brief introduction to conformal equivalence

in Section 5.1 and the historical context in Section 5.2 we demonstrate the

equivalence of the two descriptions mathematically, constructing the per-

turbation equations from two equivalent actions in Section 5.3. Finally the

differences between the evolutions of quantities in the two models are looked

at in Section 5.4

5.1 Conformal Equivalence

STT’s contain an extra gravitational degree of freedom. They describe grav-

ity using not only the metric tensor gµν , but also a gravitational scalar field

φ. These theories can however be described in terms of ‘Einstein’ gravity by

making a suitable conformal transformation to what is known as the Ein-

stein ‘frame’, while STT’s are said to exist in the Jordan frame. The scalar

gravitational component can then be recast as a physical scalar field coupled

104



to matter and GR is regained with the Einstein-Hilbert action.

5.2 Historical Context

An early example of a simple STT was proposed by Brans and Dicke in

1961 [113], (building on work by Jordan [117]). The equivalence to a coupled-

matter system was later shown in [114] and it was noted that each description

has certain advantages over the other. This is because in STT’s the basic

field equations such as the Friedmann equation are more complex than in GR,

while the evolution equations for matter in the Jordan frame are simpler than

in the coupled case.

Over the years there was much debate about the equivalence of these

two frames, in particular their physical equivalence and which of the frames

should be considered as physical, (see [368] for a comprehensive review).

However recent works have explicitly shown the absolute physical equiva-

lence of the Jordan and Einstein frames, (see [369] and references therein),

demonstrating that they are equally valid as physical descriptions.

5.3 The Dual MG/IDE Descriptions

This section demonstrates the conformal equivalence of a STT and an IDE

model by following their construction through from two equivalent actions

to their perturbation equations. In MG theories all matter is generally free

from couplings in the Jordan frame. The evolution of matter therefore sim-

ply obeys the standard evolution equations. This can be thought of as the

distinguishing feature of the Jordan frame, while the distinguishing feature

of the Einstein frame is that the gravity sector is described by GR through

the Einstein-Hilbert action. In IDE however, only the DM couples to DE, so

a transformation to its ‘Jordan frame’ not only removes the Einstein frame

DM coupling, but it also introduces a baryon coupling which was not present

in the Einstein frame.
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This is the setup we shall consider here, the main purpose of which is to

develop the equations for use in a study of the distinguishability of IDE and

MG in Chapter 6, where we assume some sort of screening mechanism to

be effective in the Jordan frame, thus negating baryon constraints. For the

most part therefore we shall focus only on DM and not include the baryon

equations of motion, although some description of points of interest which

this framework presents is given initially.

The total action for the system may be written as,

S = SR+s + Sc + Sb (5.1)

where R, s, c and b stand for Ricci, scalar, CDM and baryons respectively.

We can consider this action in two different representations of spacetime, the

Einstein frame with metric gµν and the Jordan frame with metric g̃µν , linked

by a conformal transformation,

gµν = Gφg̃µν , g̃µν = Gφgµν,
√
−g = (Gφ)2

√

−g̃, (5.2)

with φ being a scalar field. The definitions of the separate actions for a

generalised STT and its IDE counterpart are,

SR+s = SEH + Sψ

=
1

16πG

∫

d4x
√
−gR +

∫

d4x
√−g

[

−1

2
(∇ψ)2 − V (ψ)

]

= SBD + Sφ

=

∫

d4x
√

−g̃
[

φR̃− ω(φ)

φ
(∇̃φ)2 − U(φ)

]

, (5.3)

Sc ≡ Sc(g̃µν , ζ), (5.4)

Sb ≡ Sb(gµν , ς), (5.5)

where BD stands for Brans-Dicke, EH stands for Einstein-Hilbert, ζ and ς de-

note the CDM and baryon matter fields, and ψ is a new, (non-gravitational),

scalar field which exists in the Einstein frame and is related to φ by [370],

φ(ψ) = eC(ψ)ψ, (5.6)
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with the C/ω and V/U connections being [370],

C =

√

16πG

3 + 2ω
, and V =

Ue−2Cψ

16πG
. (5.7)

Note that the CDM and baryon actions Sc and Sb are each defined using the

metric of the frame in which they are free from coupling to the scalar fields.

As mentioned above, (and also shown below), the DM is free from coupling

in the Jordan frame, whilst it couples to the DE ψ in the Einstein frame and

the baryons are free from coupling in the Einstein frame, but couple directly

to the gravitational scalar field in the Jordan frame.

The energy-momentum tensors for the various components must be de-

fined in each frame and along with their transformation rules these are,

T̃ aµν ≡ − 2√−g̃
δSa
δg̃µν

= φT aµν , (5.8)

T aµν ≡ − 2√−g
δSa
δgµν

(5.9)

T̃ µνa = φ3T µνa , (5.10)

T̃a = φ2Ta, (5.11)

T µν =
∑

a

T µνa , (5.12)

where a can be φ, ψ, c or b.

5.3.1 Field equations

Varying the total action with respect to the metrics gives field equations for

the Einstein frame,

Rµν −
1

2
gµνR = 8πGTµν (5.13)

and for the Jordan frame

R̃µν −
1

2
gµνR̃ =

8πG

φ
T̃µν +

1

φ
(∇̃µ∇̃νφ− g̃µν�̃φ)

+
ω(φ)

φ2

[

∇̃µφ∇̃νφ− 1

2
g̃µν(∇̃φ)2

]

− 1

2φ
g̃µνU(φ). (5.14)
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The Euler-Lagrange equations can be used to find the equations of motion

for the scalar fields, eg,

dL̂

dψ
−∇µ

(

∂L̂

∂(∇µψ)

)

= 0, (5.15)

L ≡ √−gL̂, Sψ =

∫

d4xL, (5.16)

giving for ψ,

�ψ − ∂V

∂ψ
=

1

2
C(ψ)Tc, (5.17)

and for φ

R̃ + 2
ω(φ)

φ
�̃φ = −

(

1

φ

∂ω

∂φ
− ω

φ2

)

(∇̃φ)2 + ∂U

∂φ
− 8πG

φ
T̃b, (5.18)

where the baryon term has entered because its action, Eq. (5.5), depends on

gµν = φg̃µν , whereas the DM action, Eq. (5.4), is independent of φ. Taking

the trace of Eq. (5.14) and substituting the result into Eq. (5.18) then gives

a new equation of motion for φ,

�̃φ =
1

2ω(φ) + 3

[

8πGT̃c −
∂ω

∂φ
(∇̃φ)2 + φ

∂U

∂φ
− 2U(φ)

]

. (5.19)

Notice that this causes the baryon term to be cancelled, so the Jordan frame

gravitational scalar field φ does not notice the baryons at all, (except in-

directly through its own coupling to the metric). This makes perfect sense

because the DM’s relationship to φ is determined by its Einstein frame cou-

pling to the DE ψ, whereas for the baryons no such coupling exists to get

translated into the minimal Jordan frame coupling to φ that DM experi-

ences. Instead the baryons couple to φ directly, as can be seen in the Bianchi

identities,

∇̃µT̃
µν
c = 0, ∇µT

µν
c = −1

2
C(ψ)Tc∂

νψ = −∇µT
µν
ψ , (5.20)

∇µT
µν
b = 0, ∇̃µT̃

µν
b =

∂νφ

2φ
T̃b = −∇̃µT̃

µν
φ , (5.21)

where we used a reduced equation of motion for φ, (i.e. not including the

coupling to gravity). The baryons still appear in the Jordan frame field equa-

tions (5.14), so they still feel the same gravity as the DM, but in addition
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they feel an extra force due to their direct interactions with the gravitational

scalar field φ. This is clearly an unusual setup as the gravity, (spacetime),

and matter, (energy), sectors would normally be completely distinct, even in

theories of MG. Indeed the idea of an actual gravitational force is a Newto-

nian one and was superseded by the notion of curvature in GR. This setup

therefore seems more like a particle physics theory, where the gravity sector

is described in terms of particles.

There are tight observational constraints from the solar system on the

coupling of baryons to other species [371, 133] and weaker constraints on

cosmological scales, (see [372] and references therein). It should be possible

to translate these into constraints on φ in this setup and subsequently also

on ψ, but we leave this for other work. Finally, we note that the Jordan

frame baryon coupling would effectively vary only with space in the ‘quasi-

static’ approximation which is often used in MG analyses, (where temporal

derivatives of φ are neglected with respect to spatial ones because the change

in the effective value of Newton’s constant is know to be small at late times).

5.3.2 Scalar field equations of motion

From here on in the derivations we shall not present the equations for baryons

as they are not required for the work which follows in Chapter 6. Further-

more we shall now be concerned with the perturbations and so we shall use

bars to distinguish physical quantities, (i.e. background plus perturbation

parts), from their background averages. The IDE scalar field equation of

motion (5.17) may be written as,

�ψ̄ − ∂V̄

∂ψ
=

1

2
CTc = −1

2
Cρc(1 + δc). (5.22)

For the D’Alembertian of ψ̄ = ψ+ϕ in the Newtonian regime, (Ψ̇ = Φ̇ = 0),

we have,

�ψ̄ = a−2(∂i∂
iϕ− ψ̈ − ϕ̈+ 2Ψψ̈ − 2Hψ̇ + 4HΨψ̇ − 2Hϕ̇), (5.23)
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while the scalar field potential is split up as,

V̄ = V +
∂V

∂ψ
ϕ, ⇒ ∂V̄

∂ψ
=
∂V

∂ψ
+
∂2V

∂ψ2
ϕ. (5.24)

This gives us a background part to the EoM,

ψ̈ = −2Hψ̇ − a2
∂V

∂ψ
+

1

2
Ca2ρc, (5.25)

and a perturbation part,

∂i∂
iϕ = −1

2
Ca2ρcδc, (5.26)

where we have neglected perturbations as small relative to δc and time deriva-

tives as small relative to spatial ones.

For MG, the function ω(φ) is now split into its background and a pertur-

bation as,

ω̄ = ω +
∂ω

∂φ
χ, ⇒ ∂ω̄

∂φ
=
∂ω

∂φ
+
∂2ω

∂φ2
χ, (5.27)

with the potential being split up in the same way,

Ū = U +
∂U

∂φ
χ, ⇒ ∂Ū

∂φ
=
∂U

∂φ
+
∂2U

∂φ2
χ. (5.28)

The D’Alembertian of φ̄ = φ + χ in Eq. (5.19), the equation of motion for

the gravitational scalar field expands to,

�̃φ̄ = a−2(∂i∂
iχ− φ̈− χ̈+ 2Ψφ̈− 2Hφ̇+ 4HΨφ̇− 2Hχ̇). (5.29)

Substituting this in means that in the background we have,

φ̈ = −2Hφ̇ +
a2

2ω + 3

(

8πGρc −
φ̇2

a2
∂ω

∂φ
− φ

∂U

∂φ
+ 2U

)

, (5.30)

and in the perturbations we have,

χ̈ = ∂i∂
iχ− 2Hχ̇+

a2

2ω + 3

[

8πGρcδc −
∂U

∂φ
(2Ψφ− 3χ)

−2φ̇χ̇

a2
∂ω

∂φ
− φ̇2

a2
∂2ω

∂φ2
χ− 4ΨU + φ

∂2U

∂φ2
χ

]

. (5.31)
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If we now apply the quasi-static approximation, χ̇≪ ∂i∂
iχ, and neglect the

terms containing Ψ and χ as being small relative to the δc term, since we

shall only be concerned with late times, we end up with,

∂i∂
iχ ≃ − 8πG

2ω + 3
a2ρcδc. (5.32)

5.3.3 Metric perturbations

The perturbed metric in the Newtonian regime may be written,

ds2 = a2[−(1 + 2Ψ)dτ 2 + (1− 2Φ)γijdx
idxj ]. (5.33)

The 00 component of the Jordan frame ‘Einstein equations’ Eq. (5.14) gives

the background ‘Friedmann equation’,

H2 =
8πG

3φ
a2ρ−H φ̇

φ
+
ω

6

(

φ̇

φ

)2

+
a2

6φ
U., (5.34)

and combining this with the ii component we have the modified acceleration

equation in the background,

ä

a
= −4πG

3φ
a2(3p− ρ)− φ̈

2φ
− ω

6

(

φ̇

φ

)2

+
a2U

3φ
−H φ̇

φ
. (5.35)

The perturbation equations for the modified Brans-Dicke system come

from perturbing the four ‘Einstein equations’ (5.14). We shall here derive

only the ii component as an informative example of how this is done and the

demonstration of a sign error in previous works. To begin with we multiply

the ij component of the Jordan frame field equations (5.14) by gij,

gij(Rij −
1

2
gijR) = gij

{

8πG

φ̄
Tij +

1

φ̄
(∇i∇jφ̄− gij�φ̄)

+
ω̄

φ̄2

[

∇iφ̄∇jφ̄− 1

2
gij(∇φ̄)2

]

− 1

2φ̄
gijŪ

}

. (5.36)

Taking each term in turn, we have for the left hand side,

gij
(

Rij −
1

2
gijR

)

= 6a−2

(

1

2
H2 − ä

a
+ 2

ä

a
Ψ−H2Ψ+ Φ̈

+2HΦ̇ +HΨ̇ +
1

3
∂i∂

iΨ− 1

3
∂i∂

iΦ

)

, (5.37)
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the first term on the right hand side,

gij
8πG

φ̄
Tij = gij

8πG

φ̄
gikT

k
j

= γij
8πG

φ
γik

(

1− χ

φ

)

[

(p+ δp) + πkj
]

= 3
8πG

φ

(

1− χ

φ

)

(p+ δp). (5.38)

the second term on the right hand side,

gij
1

φ̄

(

∇i∇jφ̄− gij�φ̄
)

=
1

φ̄

(

gij∇i∂jφ̄− 3gµν∇µ∇νφ̄
)

=
1

φ̄

[

gij∇i∂jχ− 3(g00∇0∂0φ̄− gij∇i∂jχ)
]

=
1

φ

(

1− χ

φ

)

[

− 3g00(∂0∂0φ̄− Γ0
00∂0φ̄− Γi00∂iχ)

−2gij
(

∂i∂jχ− Γ0
ij∂0χ− Γkij∂kχ

)

]

=
1

φ

(

1− χ

φ

)

{

3a−2(1− 2Ψ)
[

φ̈+ χ̈

−
(

H + Ψ̇
)(

φ̇+ χ̇
)

]

−2a−2(1 + 2Φ)γij{∂i∂jχ
−[H− 2H(Φ + Ψ)− Φ̇]γijχ̇}

}

=
3

a2φ

(

1− χ

φ

)(

φ̈+ χ̈−Hφ̇−Hχ̇−

Ψ̇φ̇− 2Ψφ̈+ 2ΨHφ̇− 2

3
∂i∂

iχ
)

, (5.39)

the third term on the right hand side,

gij
ω̄

φ̄2
[∇iφ̄∇jφ̄− 1

2
gij(∇φ̄)2] =

ω̄

φ̄2

[

gij∇iχ∇jχ

−1

2
gµν(∇µφ̄)(∇νφ̄)

]

= −3

2

ω + χdω
dφ

φ̄2
gµν∇µφ̄∇νφ̄

=
3

2

ω

φ2

(

1− 2
χ

φ

)

(

φ̇2 + 2φ̇χ̇− 2Ψφ̇2
)

+
3χ

2a2
dω

dφ

φ̇2

φ2
, (5.40)
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and the final term on the right hand side,

− gijgij
1

2φ̄
Ū = − 3

2φ

(

1− χ

φ

)(

U +
dU

dφ
χ

)

. (5.41)

Within the complete equation lies the background equation,

H2 − 2
ä

a
=

8πG

φ
pa2 +

φ̈

φ
−H φ̇

φ
+
ω

2

φ̇2

φ2
− a2U

2φ
. (5.42)

which can be removed immediately. Also, there are many terms proportional

to χ/φ on the right hand side which can be eliminated, again using the

background equation, namely,

χ

φ

[

− 3
8πG

φ
− 3φ̈

a2φ
+

3Hφ̇
a2φ

−3
ω

a2

(

φ̇

φ

)2

+
3U

2φ

]

= −3H2

a2
χ

φ
+

6χ

φa2
ä

a
− 3ω

2a2
χ

φ

φ̇2

φ2
.(5.43)

The final result therefore is,

2a−2

(

2
ä

a
Ψ−H2Ψ+ Φ̈ + 2HΦ̇

+HΨ̇ +
1

3
∂i∂

iΨ− 1

3
∂i∂

iΦ

)

=
8πG

φ
δp

+
1

a2φ

(

χ̈−Hχ̇− Ψ̇φ̇

−2Ψφ̈+ 2ΨHφ̇− 2

3
∂i∂

iχ

)

+
ω

φ2

(

φ̇χ̇−Ψφ̇2
)

+
χ

2a2
dω

dφ

φ̇2

φ2

− 1

2φ

dU

dφ
χ

−H2

a2
χ

φ
+

2χ

φa2
ä

a
− ω

2a2
χ

φ

φ̇2

φ2
, (5.44)

which on comparison with Eq. (52) of [373], where Ψs = Ψ, Φs = −Φ and

Xs = χ etc., shows that there is a sign error in their paper, (now also carried
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forward into Eq. (146) of [77]), on the term,

− 2φ′

a2φ

a′

a
Ψs = −2ΨHφ̇

a2φ
, (5.45)

which should have positive sign.

Appropriate limits

In the Newtonian regime we can eliminate time derivatives of the metric

potentials, the quasi-static approximation allows us to eliminate time deriva-

tives of χ relative to its spatial derivatives and at late times overdensities

have grown large relative to other perturbations, leading to a set of vastly

simplified perturbation equations for the metric potentials,

2

a2
∂i∂

iΦ =
8πG

φ
δρ+

∂i∂
iχ

a2φ
, (5.46)

2

a2
(HΨ,i ) = −8πG

φ
(ρ+ p)vi −

Hχ,i
φ

, (5.47)

−a−2(Ψ− Φ),ij =
8πG

φ
πij +

1

a2φ
∂i∂jχ, (5.48)

2

3a2
∂i∂

i(Ψ− Φ) =
8πG

φ
δp− 1

a2φ

2

3
∂i∂

iχ. (5.49)

From here on we explicitly do not include baryons such that δ ≈ δc. In the

Einstein frame we have Ψ = Φ and so the Poisson equation is simply,

∂i∂
iΨ = 4πGa2ρcδc (5.50)

In the Jordan frame however we can combine the metric perturbation equa-

tions and the scalar field perturbation equation to get the Poisson equation’s

equivalent in MG,

∂i∂
iΨ =

4πG

φ
a2ρcδc

(

1 +
1

2ω + 3

)

. (5.51)

For the Einstein frame we may also write the sum of the potentials as,

∂i∂
i(Ψ + Φ) = 8πGa2ρcδc, (5.52)

while in the Jordan frame we find from the above equations,

∂i∂
i(Ψ + Φ) =

8πG

φ
a2ρcδc. (5.53)
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5.3.4 Coupling terms

The covariant description of IDE CDM coupling is defined as,

∇νT
ν
cµ = Q̄µ = Q̄cuµ + F c

µ = (Qc + δQc)uµ + a∂ifc, (5.54)

where uµ is the total four-velocity, as opposed to ucµ, the CDM four-velocity

perturbation, each of which may be written as,

uµc = a−1(1−Ψ, ∂ivc), uµ = a−1(1−Ψ, ∂iv), (5.55)

where v and vc are the total and CDM peculiar velocity potentials respec-

tively. From the above equations we can write the components of the CDM

energy-momentum transfer four-vector Q̄c
µ as,

Q̄c
0 = −a[Qc(1 + Ψ) + δQc], Q̄c

i = a∂i[Qcv + fc], (5.56)

In the IDE/MG model the covariant expression for the coupling is,

∇νT
µν
c = −1

2
CTc∂

µψ̄, (5.57)

=
1

2
C(ρc∂

µψ + ρc∂
µϕ+ δρc∂

µψ), (5.58)

where C is the coupling function. The components of the energy-momentum

transfer four-vector then turn out to be,

Q̄0
c = −1

2
Ca−2ρc[(1 + δc)ψ̇ + ϕ̇], (5.59)

Q̄i
c =

1

2
Ca−2ρc∂

iϕ, (5.60)

Q̄c
0 =

1

2
Cρc[(1 + δc)ψ̇ + ϕ̇], (5.61)

Q̄c
i =

1

2
Cρc∂iϕ. (5.62)

where we have used ∂0ψ = g00ψ̇. Now equating (5.56) and (5.61),

− a[Qc(1 + Ψ) + δQc] =
1

2
Cρc[(1 + δc)ψ̇ + ϕ̇], (5.63)

=
1

2
Cρcψ̇(1 + Ψ)

+
1

2
Cρc(ϕ̇− ψ̇Ψ+ ψ̇δc), (5.64)
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⇒ Qc = −1

2
Ca−1ρcψ̇, δQc = −1

2
Ca−1ρc(ϕ+ ψ̇δc − ψ̇Ψ). (5.65)

In this model we have Q̄µ
c = Q̄cu

µ
ψ, the right hand side of which is,

(Qc + δQc)u
µ
ψ = −1

2
Ca−2ρc(ψ̇ + ϕ̇+ ψ̇δc − 2ψ̇Ψ, ψ̇∂ivψ). (5.66)

Comparing Eq’s. (5.60) and (5.66) we see that,

1

2
Ca−2ρc∂

iϕ = −1

2
Ca−2ρcψ̇∂

ivc, (5.67)

⇒ vψ = −ϕ
ψ̇
. (5.68)

5.3.5 Growth equations

The IDE model CDM coupling terms are,

Q̄c
0 =

1

2
Cρc(ψ̇ + δcψ̇ + ϕ̇), (5.69)

Q̄c
i =

1

2
Ca2ρc∂iϕ, (5.70)

and from energy-momentum conservation we have,

∇νT
ν
c0 = Q̄c

0, (5.71)

∇νT
ν
ci = Q̄c

i . (5.72)

The first of these gives,

ρ̇c + δ̇ρc + ρc∂i∂
ivc + 3Hρc(1 + δc) = −1

2
Cρc(ψ̇ + δcψ̇ + ϕ̇). (5.73)

This has a background part,

ρ̇c + 3Hρc = −1

2
Cρcψ̇, (5.74)

and a perturbation part,

δ̇ρc + ρc∂i∂
ivc + 3Hρcδc = −1

2
Cρc(δcψ̇ + ϕ̇), (5.75)

which may be written using θc = −k2vc = ∂i∂
ivc as,

δ̇c = −θc −
1

2
Cϕ̇. (5.76)
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However the final term of this equation is suppressed by k−2 relative to the

δ′c term, as can be seen from the scalar field equation of motion, ∂i∂
iϕ =

−1
2
Ca2ρcδc, thus giving us,

δ̇c ≃ −θc. (5.77)

The ith component of energy-momentum conservation gives us,

ρ̇c∂ivc + ρc(∂Ψ + ∂iv̇c + 4H∂ivc) =
1

2
Cρc∂iϕ. (5.78)

Taking a spatial derivative of this and again using θc = −k2vc = ∂i∂
ivc and

∂i∂
iϕ = −1

2
Ca2ρcδc we find,

θ̇c = −Hθc − ∂i∂
iΨ+

1

2
Cψ̇θc −

1

4
C2a2ρcδc. (5.79)

We can now use Eq’s. (5.77) and (5.79) to find a velocity independent second

order equation for δc. We first take the time derivative of Eq. (5.77) and

substitute for θ̇c using Eq. (5.79) then use the Poisson equation ∂i∂
iΨ =

4πGa2ρcδc to get the final answer,

δ̈c = −
(

H− 1

2
Cψ̇

)

δ̇c + 4πGa2ρcδc

(

1 +
C2

16πG

)

. (5.80)

5.4 Direct Comparison

It is interesting to consider the differences between the evolutions of quanti-

ties in equivalent IDE and MG models, as described by the preceding frame-

work, (see also [195] for a detailed comparison of their dynamics). The degree

to which a MG model differs from its IDE equivalent naturally depends on

how much φ varies over time. This is governed primarily by the Brans-Dicke

parameter ω but can be enhanced by the MG potential U .

The Jordan frame equivalent of ΛCDM has ω → ∞ so that C = 0

and φ = 1 by Eq. (5.6). There are then no interactions, (again neglecting

baryons), and a constant potential in both frames by Eq. (5.7). In this case

there is no disparity between the models as φ does not evolve. If we allow

for a non-zero constant IDE coupling parameter C however, the cosmology
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evolves significantly differently to its MG counterpart, as shown in Fig. 5.1

for a MG model with ω = 36, (or equivalently C = 6.69 ∗ 10−6). Here we can

see that the expansion and the metric perturbations are different for the two

models, while the energy density and its perturbation, whose evolutions do

not directly depend on φ, remain quite similar.
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Figure 5.1: Evolution of quantities in equivalent IDE and MGmodels showing

that quantities which depend on φ can be greatly altered.
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Chapter 6

The Distinguishability of

Interacting Dark Energy from

Modified Gravity

In this chapter the question of whether it is possible to distinguish between

models of IDE and MG using current observations is investigated. It was

shown previously that the descriptions of these two alternative explanations

for late-time acceleration can be conformally equivalent, but it is of course

also possible for them to be considered separately, motivated by distinct

physical theories. In this case the two models may appear similar observa-

tionally, so the question arises, is it always possible to tell them apart from

each other?

6.1 Introduction

Whilst there have been many studies of ways in which to distinguish between

DE and MG, the question of whether it is possible to tell IDE and MG apart

has not been fully explored. To address this issue we employ the IDE and

MG models derived in Chapter 5 to explore the potential distinguishability

of scalar field IDE from different MG models for a range of parameter values.
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6.1.1 Distinguishing DE and MG

It is always possible to find a DE model with a time varying equation of

state parameter which produces a given expansion history [374, 375, 376],

so in a worst-case scenario a DE model could exactly mimick a MG model’s

expansion history. To break this degeneracy it is necessary to take differences

in the growth of structure into account and a great deal of effort has gone

into distinguishing DE from MG [377, 378, 379, 380, 381, 382, 383, 384, 385,

386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 7, 398, 335, 399,

400, 401, 367]. It has been argued that by finetuning the properties of a DE

model its structure growth can also be made to mimick that of a given MG

theory [402, 403, 404], but by employing suitable combinations of observables

consistency tests can be made which should be able to distinguish between

realistic models [405, 406].

6.1.2 Distinguishing IDE and MG

The works mentioned above focus on minimally coupled DE but they do not

allow for the fact that observations permit significant interactions in the dark

sector [407]. In [344] it was shown that it is possible to match the growth

and expansion histories of MG cosmologies with those of IDE models. IDE

models can look like modifications of GR [300], but they should deviate from

GR+ΛCDM in a manner which is distinct to that of MG [408], so we might

hope to be able to distinguish them observationally.

In the work that follows we revisit an example DGP [409] model from [344]

to examine the observational distinguishability of matched IDE/DGP mod-

els, then extend the matching procedure used to a more general STT model

and again consider whether the matched IDE models can be distinguished

from their MG counterparts observationally. We assume the MG models in

this chapter to be the large scale limit of models to which local constraints

on the gravity theory [133] do not apply due to a screening mechanism such

as the chameleon [138, 139, 140]. Also, the IDE interacts with DM only
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and we are only interested in late-time effects. We therefore need only con-

sider a simple system comprising a metric, scalar field and DM in each case,

neglecting baryons and so from now on we drop the extraneous subscript c.

6.1.3 The IDE and MG models

We shall now rewrite the IDE and MG models from the previous chapter in

terms of the independent variable N ≡ ln(a). Note however that these are

no longer considered as formally equivalent descriptions of the same model,

but are now independent of each other. This means that the ψ/φ, C/ω and

U/V relations in Eq’s. (5.6) and (5.7) no longer apply so that the scalar field

potential V and the DE/DM coupling function C are now taken to be free

functions.

To recap, a general action for a scalar field model of IDE may be written

as,

SIDE =

∫

d4x
√−g

[

R

16πG
− 1

2
(∇ψ)2 − V (ψ)

]

+Sm(gµν , ψ, η), (6.1)

where Sm(gµν , ψ, η) is the matter action, with ψ and η being the IDE and

matter fields respectively. The action for a STT model may be written as,

SSTT =

∫

d4x
√−g

[

φR− ω

φ
(∇φ)2 − U

]

+Sm(gµν , η), (6.2)

where in general ω and U can be functions of the gravitational scalar field

φ, but for our purposes we take them to be constant. The action for the

IDE model, Eq. (6.1), leads to its fluid, scalar field, Friedmann and density
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perturbation equations,

ρ′ = −3ρ− 1

2
Cρψ′, (6.3)

ψ′′ = −
(

2 +
H′

H

)

ψ′ − a2V ′

H2ψ′
+
Ca2ρ

2H2
, (6.4)

H2 =
8πG

3
a2
(

ρ+
H2ψ′

2e2N
+ V

)

, (6.5)

δ′′ = −
(

1 +
H′

H − 1

2
Cψ′

)

δ′ +
3

2
Ωδ

(

1 +
C2

16πG

)

. (6.6)

where primes denote derivatives with respect to N and Ω = 8πG/(3H2). The

acceleration, scalar field and density perturbation equations derived from the

STT action are,

H′ = −H
2

(

Ω̃

φ
+

H′

H
φ′

φ
+
φ′′

φ

)

− Hω
3

(

φ′

φ

)2

+
Ue2N

6Hφ , (6.7)

φ′′ = −
(

2 +
H′

H

)

φ′ +
1

2ω + 3

(

3Ω̃ +
2Ue2N

H2

)

, (6.8)

δ′′ = −
(

1 +
H′

H

)

δ′ +
3Ω̃δ

2φ

(

1 +
1

2ω + 3

)

, (6.9)

where Ω̃ = 8πG/(3φH2) and the final term in Eq. (6.9) could be interpreted

as the standard case but with a time varying gravitational constant [410].

These equations determine the expansion and growth histories for both the

STT and matched IDE models.

6.2 IDE/DGP

In [344] the authors matched a generalised IDE model to a particular choice

of DGP model which had been fitted to observations. They used the IDE

potential and coupling functions to match the DGP expansion and growth

histories respectively. Essentially the evolution of the background CDM den-

sity ρ in the IDE model is determined by the matching of its perturbation

δ ≡ δρ/ρ to that of the DGP model. Below we replicate their results and

extend the analysis to a range of initial conditions before considering the

findings in the context of recent observations.
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6.2.1 Matching

Matching here means constructing an IDE cosmology which has the same

expansion and growth histories as a given MG cosmology. Only the self-

accelerating branch of DGP is considered in [344], such that instead of

Eq. (6.7), the expansion history on the MG side is given by,

Ẽ =

√

Ω̃0 exp[−3 ln(a)] + Ω̃rc +

√

Ω̃rc , (6.10)

where Ẽ = H/H0 and Ω̃rc is a constant. It is clear from this equation that

φ = 1 = constant, so Ω̃rc is the model’s only free parameter, which we take as

the best-fit value of 0.170 found from SN data used in [344]. The constraint

Ẽ(z = 0) = 1 also requires that,

Ω̃0 = 1− 2

√

Ω̃rc , (6.11)

whilst the evolution of the matter is given by,

Ω̃ =
Ω̃0 exp[−3 ln(a)]

Ẽ2
. (6.12)

To begin the matching process with we take the DGP version of Eq. (6.9)

and compare it to the IDE equivalent Eq. (6.6) to find,

κ
1

2
Cψ′δ′ =

3

2
δ

[(

1 +
1

2ω + 3

)

Ω̃− (1 +
C2

16πG
)Ω

]

, (6.13)

where 1
2
C and 1

2ω+3
are equivalent to κQ and 1

3β
from [344], with the function

β = −(1 + Ω̃2)/(1− Ω̃2) and the coupling function C is expressed by,

C2 = 16πG

(

1 + Ω′

Ω
+ 2H′

H

)2

1− H′

H
− 3

2
Ω

. (6.14)

From Eq. (6.3) we see that,

Ω′

Ω
+ 2

H′

H + 1 = −1

2
Cψ′, (6.15)

while taking the derivative of the Friedmann equation (6.5) and then also

using Eq’s. (6.3) and (6.4) gives,

ψ′2 =
1

4πG

(

1− H′

H − 3

2
Ω

)

. (6.16)
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These last two equations now allow us to rewrite Eq. (6.13) as a differential

equation for Ω,

1

2

(

1 +
Ω′

Ω
+ 2

H′

H

)

δ′ = −3

2
δ

[(

1 +
1

2ω + 3

)

Ω̃

−
(

1 +
C2

16πG

)

Ω

]

. (6.17)

The entire system is now fixed and can be solved numerically to find the

matched evolutions of the IDE and DGP models. Eq. (6.17) is quadratic

in Ω′ and so we choose the root which is typically negative initially, (the

alternative branch typically leads to increasing Ω and the limits described

below are reached before the present day). We can solve Eq. (6.9), along

with the root of Eq. (6.17), to find Ω, H, δ and δ′ at any given N . In

this way the freedom in the coupling function C is explicitly used to match

the evolutions of the δ’s, while the freedom in the scalar field potential V

is used implicitly to match the expansion histories via the IDE Friedmann

constraint, Eq. (6.5).

6.2.2 Comparison

Fig. 6.1 shows the evolution of δ and the different background evolutions of

the IDE and DGP density parameters Ω and Ω̃. Also plotted for comparison

is a GR+ΛCDM model chosen to give Ω0 ≈ 0.227, (subscript 0’s denote

present day quantities throughout), in line with recent constraints [363].

Initial conditions are set early in the matter dominated era at z = 1000

and the original example had an initial DGP energy density parameter Ω̃i ≈
1, (subscript i’s denote initial values). The initial IDE density parameter

used was Ωi = 0.995 and in addition to this solution we plot the result of

choosing Ωi = 0.996 and Ωi = 0.997 in Fig. 6.1, but find that there are no

solutions with Ωi &= 0.997, (see below).

Eq. (6.13) is quadratic in Ω′, so to solve it for Ω we must first solve it for

Ω′, but it is not always the case that real roots exist. Using the above initial

conditions, the solutions are initially complex for Ωi ≃ Ω̃i. As Ωi is decreased
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Figure 6.1: Evolution of the density perturbation (left) and the density pa-

rameters (right) for the matched DGP/IDE models, each with a different Ωi,

and a GR+ΛCDM model.

the solutions extend to later times but there are no solutions which reach the

present day for Ωi & 0.997, so there is a limit on how close Ωi can be set to

Ω̃i. This can be seen in Fig. 6.2 where solutions for values of Ωi either side

of this limit are plotted.

This means that there is a limit on how closely one can hope to match

the evolution of the IDE/DGP densities through the choice of the boundary

conditions on Ω. This difference should be evident in any quantity which

depends on the CDM density, for example the sum of the metric potentials.

The perturbed metric in the Newtonian regime may be written,

ds2 = a2[−(1 + 2Ψ)dτ 2 + (1− 2Φ)γijdx
idxj ]. (6.18)

The Poisson equations are for the DGP and IDE models respectively,

∂i∂
iΨ = 4πGa2Ω̃δ

(

1 +
1

3β

)

, ∂i∂
iΨ = 4πGa2Ωδ, (6.19)

while both the DGP and IDE models obey the same evolution equation for

the sum of the metric potentials Ψ and Φ,

∂i∂
i(Ψ + Φ) = 8πGa2ρ̃δ, ∂i∂

i(Ψ + Φ) = 8πGa2ρδ. (6.20)
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Figure 6.2: Solutions of Ω′ in the IDE/DGP setup with initial conditions

either side of the limit in Ωi.

This quantity is plotted in the left-hand panel of Fig. 6.3 as a function of

redshift at late times, making clear the significant distinction arising between

the IDE and DGP models from the restriction on the boundary conditions

for Ω.

6.2.3 Distinguishability

One way of testing for these differences is to parameterise deviations from

the GR+ΛCDM case in Eq’s. (6.19-6.20). One such parameterisation is the

µ− Σ parameterisation [408], (see [412, 413, 414] for discussions of parame-

terisations of MG), defined by,

∂i∂
iΨ = 4πGa2µρ̂δ, (6.21)

∂i∂
i(Ψ + Φ) = 8πGa2Σρ̂δ, (6.22)
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Figure 6.3: Evolution of the sum of the metric potentials normalised at the

present day (left) and the EG parameter (right) for the matched DGP/IDE

models, each with a different Ωi, and a GR+ΛCDMmodel. The observational

measurement is EG = 0.39±0.06(1σ) at an effective redshift of z = 0.3 [411].

where ρ̂ = ρ̂0a
−3 is the standard non-interacting CDM density solution. Com-

paring Eq’s. (6.19-6.20) and (6.21-6.22) therefore we have,

µIDE = ΣIDE =
ρ

ρ̂
, (6.23)

µDGP =

(

1 +
1

3β

)

, ΣDGP = 1. (6.24)

Fig. 6.4 shows results in the µ− Σ plane for the DGP and matched IDE

models, (see [415] for observational constraints on µ and Σ with respect to

the comoving density perturbation ∆ at these two redshifts).

In [416] a bias-free measure of deviations from GR+ΛCDM was con-

structed. This is known as the EG prameter and is defined by,

EG ≡
[

∂i∂
i(Ψ + Φ)

−3H2
0a

−1θ

]

z

, (6.25)

where in the Newtonian regime θ = −δ′. Note however that this relation does

not hold for all IDE models, e.g. the model studied in Chapter 4 [407]. The

128



Figure 6.4: Results in the µ−Σ plane for the three IDE cases and the DGP

cosmology at two different redshifts.

numerator in Eq. (6.25) can be measured from weak lensing observations,

while the denominator can be found from peculiar velocity measurements

and for the models studied here we have,

EDGP
G =

Ω̃0δ

δ′
, (6.26)

EIDE
G =

aH2Ωδ

H2
0δ

′
. (6.27)

The right-hand panel of Fig. 6.3 shows EG at late times for the DGP, IDE and

GR+ΛCDM models along with some recent observational constraints [411].

We can see that although the DGP model is a good fit, even the worst-case

IDE model with boundary conditions as close as possible to those of the DGP

model is disfavoured by observations.

6.3 IDE/STT

Using the same procedure as in the previous section, we can repeat the

analysis for the simple STT model. We consider scenarios where the two
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cosmologies are as closely matched as possible for different parameter values

and then assess their observational distinguishability.

6.3.1 Matching

We solve Eq’s (6.7-6.9) numerically, along with the root of Eq. (6.17), to find

Ω, H, δ, δ′, φ and φ′ at any given N . The initial conditions used are,

Ni = −7, φi = 1, φ′
i = 0,

Hi = 1, δi = ai, δ′i = ai. (6.28)

Ω̃i is chosen so that Ω̃0 is the same as the previously mentioned GR+ΛCDM

model’s present day density parameter when ω → ∞, while Ui is determined

by the choice of Ω̃i due to the ‘Friedmann’ constraint,

Ui =
6H2

i

a2i

(

φi − Ω̃i + φ′
i −

ωφ′2
i

6φi

)

. (6.29)

As in the case of the earlier DGP example there is a limit on how close Ωi

can be to Ω̃i. The solutions of the quadratic Eq. (6.17) are not initially com-

plex for Ωi ≃ Ω̃i as they are for Eq. (6.13) of the DGP setup discussed above.

A similar solution limit on how close Ωi can be set to Ω̃i does exist however

and depends on ω. In addition there is a physical limit which is reached before

this solution limit and prevents the existence of physical IDE counterparts

for those STT cases which deviate most greatly from GR. Similar problems

have also been found in studies of parameterised STT models [380, 399].

The denominator in Eq. (6.14) can be shown to equal ψ′2 using Eq’s. (6.3-

6.5). This decreases and reaches zero when the universe begins to accelerate

and the H′

H
term grows faster than the Ω term decreases. It can then become

negative, which would require ψ′ to be complex and so we take this as a

physical limit. The left hand panel of Fig. 6.5 shows this happening before

the present day for a particular choice of ω and Ωi, while the right hand

panel shows that at the same time solutions for Ω̃′ still exist.

We plot both the ψ′ and Ω′ limits in Fig. 6.6, showing that the smaller

the value of ω, (and so the greater the deviation from GR), the farther Ωi
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Figure 6.5: Left: an example of ψ′2 becoming negative before the present

day in the IDE/STT setup. Right: solutions of Ω′ in the IDE/STT setup

continuing beyond the present day, before which ψ′2 has become negative.

has to be from Ω̃i. The limit beyond which ψ′ becomes complex shows that

it is not possible to find a matched IDE/STT system for ω . 10, contrary to

the statement in [344] that for any given MG model it is always possible to

construct a matched IDE model.

Note that it is possible to finetune φ′
i to be very small and negative so

that the ψ′ limit is avoided, (too much and the STT universe contracts at

late-times). Conversely, taking φ′
i small and positive shifts the limit to much

larger ω making it impossible to find a physical IDE counterpart for cases

with any noticable deviation from GR at all.

The reason that the derivative of the IDE scalar field does not become

complex for the DGP model can be seen from the ‘Friedmann’ equation

of [344] where they define,

E ≡ H

H0
=

√

Ω̃0e−3N + Ω̃rc +

√

Ω̃rc , (6.30)

with Ω̃rc = 0.170. Differentiating this with respect to N and using Ω̃ =
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Figure 6.6: ψ′ and Ω′ limits on Ωi as a function of ω for the IDE/STT system.

Ω̃0e
−3NE−2 leads to,

E ′

E
=
H ′

H
= − 1.5Ω̃

1−
√

Ω̃rc

E

. (6.31)

This quantity varies from about −1.5Ω̃m at early times when E is large,

to roughly −2.5Ω̃ at late times as E → 1. Since Ωm < Ω̃ at all times we

therefore find a condition which is true at all times in the IDE/DGP setup,

(κφ′)2 = −3Ωm − 2
H ′

H
> 0. (6.32)

6.3.2 Comparison

Fig. 6.7 shows results for three different values of ω where in each case Ωi

has been chosen to be as close as possible to Ω̃i in the spirit of representing

a worst-case scenario for distinguishing between the IDE/STT models.

The STT Poisson equation reads,

∂i∂
iΨ =

4πG̃

φ
a2ρ̃δ

(

1 +
1

2ω + 3

)

, (6.33)

while the evolution equation for the sum of the metric potentials in the STT
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Figure 6.7: Evolution of the density perturbation (left) and the density pa-

rameters (right) for the matched STT/IDE models and a GR+ΛCDMmodel.

The models STT11, STT20 and STT100 have ω = 11, ω = 20 and ω = 100

respectively, with IDE11, IDE20 and IDE100 being their matched IDE coun-

terparts. Note that including φ in the definition of Ω̃ would bring the STT

models on the right much closer to the GR+ΛCDM Ω curve. Even then

however Ω̃ > 1 is still possible despite the spacetime being flat because the

sum of the gravitational scalar field terms in the STT ‘Friedmann’ equation

can be negative.
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Figure 6.8: Evolution of the sum of the metric potentials normalised at the

present day (left) and the EG parameter (right) for the matched STT/IDE

models, each with a different Ωi, and a GR+ΛCDM model. The models

STT11, STT20 and STT100 have ω = 11, ω = 20 and ω = 100 respectively,

with IDE11, IDE20 and IDE100 being their matched IDE counterparts. The

observational measurement is EG = 0.39 ± 0.06(1σ) at an effective redshift

of z = 0.3 [411].

model is,

∂i∂
i(Ψ + Φ) =

8πG̃

φ
a2ρ̃δ, (6.34)

where G̃ = Gφ0. This quantity is plotted in the left-hand panel of Fig. 6.8.

6.3.3 Distinguishability

For the STT the µ− Σ parameterisation gives,

µSTT =
φ0

φ

(

1 +
1

2ω + 3

)

, (6.35)

ΣSTT =
φ0

φ
, (6.36)

while for the IDE model it is the same as in Eq’s. (6.23-6.24).
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Figure 6.9: Results in the µ − Σ plane for the three STT cases and their

matched IDE counterparts at two different redshifts.

Fig. 6.9 shows µ − Σ values for the IDE/ST models. For STT we also

have,

ESTT
G =

Ω̃0δ

φδ′
, (6.37)

with the IDE expression as before in Eq. (6.27). The right-hand panel of

Fig. 6.8 shows Ψ + Φ and EG as functions of z at late times for the STT

models and their matched IDE counterparts. Once again the IDE models

lie much farther from the GR+ΛCDM case than their MG counterparts,

with all but that matched to the ω = 100 STT model lying outside of the

observational constraints on EG.

In [417] it was shown that constraints on STT models from cosmic mi-

crowave background, matter power spectrum and local gravity measurements

could be avoided using a chameleon mechanism, leading to only a weak bound

of ω > −1.28. As stated earlier, the model here is considered only as an

effective description on large scales of some underlying physical theory in-

corporating screening of the baryons. Fig. 6.8 shows that such models are

distinguishable from IDE for sufficiently low values of ω.

However, the model is also essentially a Brans-Dicke theory [113] plus a
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cosmological constant, for which lower bounds of ω > 120(2σ) [418], ω >

97.8(2σ) [419] and most recently ω > 177(2σ) [372] have been found, (Note

that [420] give a lower bound of ω > 1000(2σ), but see discussions in [418,

419] and the possible sign error reported in Chapter 5). Fig. 6.8 then shows

that such models which satisfy these constraints can not be distinguished by

the observations.

The addition of supernova data would significantly improve constraints

on ω, but account would need to be taken of local [421] and temporal [422]

variation in the gravitational scalar field φ. In [423] a recovery of GR at late-

times sufficient to allow the use of supernova data was assumed and bounds

of ω > 500−1000 from future data were forecast. If these constraints can be

achieved it will not be possible to distinguish between the matched STT/IDE

models with the EG results we use here, although with new data of course

the EG constraints could also be tightened.

6.4 Conclusions

We have shown that although it is possible to construct an IDE model which

matches the growth and expansion histories of a DGP model fitted to obser-

vations, even in the worst-case scenario, where their density evolutions are as

close as theoretically possible, the matched IDE model can be distinguished

by observations.

For the simple STT model and its matched IDE counterpart we have

calculated a limit on how similar the initial matter densities can be. This

limit depends on the strength of deviation from GR and we find that in cases

which differ significantly from GR+ΛCDM even the worst-case matched IDE

model can be distinguished by observations.

We have also shown that it is not always possible to construct a physical

IDE model which matches the growth and expansion histories of the STT

models and that there is a limit on the deviation from GR, beyond which the

time derivative of the IDE scalar field becomes complex before the present.
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Chapter 7

Conclusions

This thesis has been part of the ongoing endeavour to test ΛCDM and im-

prove our understanding of the Universe. Over the last 15 years Λ has stood

up to the scrutiny of increasingly accurate observational data. CDM has

maintained its consensus of support for even longer, but both of these phe-

nomena shall soon face definitive tests of their true natures. In the case of

the cosmological constant, another decade of work should see Stage 4 ex-

periments pass final judgement on the value of w, while for DM new direct

detection experiments will test the current theoretical paradigm to its limits.

The articles contained within this thesis are just two among hundreds of

published papers on IDE and contribute to a greater understanding of the

model, serving also as templates for future studies. Addressing the coinci-

dence problem has been the motivation for most work on IDE for example.

In many cases the simplest IDE models have been ruled out on theoreti-

cal grounds alone, while observational constraints have shrunk the model

space still further. The viable IDE models that remain, along with param-

eterisations and reconstructions show no trends or compelling features to

recommend them over models with fewer degrees of freedom.

The Q ∝ ρx model had not been studied is detail before, despite being one

of the simplest models of IDE which remains theoretically viable, (and also

one which could potentially describe a real physical system). The placing of
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observational constraints on the model provided a useful map of the models

range of viability. It also demonstrated however the difficulty in constraining

IDE given current data and the gaps in our theoretical understanding, in

particular our lack of knowledge about DM-baryon bias, which prevents us

from reliably using a fully complimentary range of observational probes. A

better understanding of DM-baryon bias will break the degeneracy with σ8

and accurate measurements of neutrino masses will also go some way toward

helping with that. Ultimately perhaps weak-lensing surveys will produce

accurate enough DM maps for us to really get a handle on its relation to

baryons.

An interesting question which has arisen recently and is related to this

piece of work is whether IDE could ease the tension of ΛCDM with the low-

multipole anomaly in the CMB temperature anisotropy power spectrum, re-

cently confirmed by Planck [32]. IDE can in theory drastically alter the slope

of the ISW plateau, but the best-fit models shown in Fig. 4.9 demonstrate

that this may not be possible when fitted to observations. Nevertheless, the

degeneracy of Γ with other parameters seems likely to be able to provide

a significant reduction in the power spectrum at low multipoles while still

retaining virtually the same χ2 as best-fit models with smaller Γ. Further-

more, given the tensions between CMB/BAO and SNIa/H0 data highlighted

by Planck, it would be interesting to undertake a comparative study of dif-

ferent observational probes which looked into all these issues further.

The second paper to come out of this thesis was a more abstract but

nevertheless useful study and led to a couple of particularly interesting find-

ings. The first noteworthy result was that contrary to what had previously

been stated in the literature, it is not always possible to find an IDE model

to fit a given MG model. The second was that some STT models should be

distinguishable from IDE even in a worst case scenario where their expansion

and growth histories are identical.

The long term future of theoretical cosmology seems to be in a return to

‘classical’ methods. A proper understanding of the effects of inhomogeneities
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will be important for any cosmological model, as observations map our Uni-

verse in ever greater detail. The model space will no doubt continue to be

explored and gaps in the literature do need to be filled so that a fully compre-

hensive picture is available for the Stage 4 era. It seems however that until

then at least, there is no reason to believe that the expansion of the Universe

is being driven by anything other than the CC mentioned by Einstein as a

footnote in his original paper on GR nearly 100 years ago [15].

139



Bibliography

[1] Supernova Search Team Collaboration, A. G. Riess et al.,

“Observational evidence from supernovae for an accelerating universe

and a cosmological constant,” Astron.J. 116 (1998) 1009–1038,

arXiv:astro-ph/9805201 [astro-ph].

[2] Supernova Cosmology Project Collaboration, S. Perlmutter

et al., “Measurements of Omega and Lambda from 42 high redshift

supernovae,” Astrophys.J. 517 (1999) 565–586,

arXiv:astro-ph/9812133 [astro-ph].

[3] A. Blanchard, “Evidence for the Fifth Element Astrophysical status

of Dark Energy,” Astron.Astrophys.Rev. 18 (2010) 595–645,

arXiv:1005.3765 [astro-ph.CO].

[4] A. Albrecht, G. Bernstein, R. Cahn, W. L. Freedman, J. Hewitt,

et al., “Report of the Dark Energy Task Force,”

arXiv:astro-ph/0609591 [astro-ph].

[5] F. Zwicky, “Spectral displacement of extra galactic nebulae,”

Helv.Phys.Acta 6 (1933) 110–127.

[6] P. Serra, “No Evidence for Dark Energy Evolution from a global

analysis of cosmological data,” arXiv:1005.2415 [astro-ph.CO].

[7] C. Shapiro, S. Dodelson, B. Hoyle, L. Samushia, and B. Flaugher,

“Will Multiple Probes of Dark Energy find Modified Gravity?,”

Phys.Rev. D82 (2010) 043520, arXiv:1004.4810 [astro-ph.CO].

140

http://dx.doi.org/10.1086/300499
http://arxiv.org/abs/astro-ph/9805201
http://dx.doi.org/10.1086/307221
http://arxiv.org/abs/astro-ph/9812133
http://dx.doi.org/10.1007/s00159-010-0031-3
http://arxiv.org/abs/1005.3765
http://arxiv.org/abs/astro-ph/0609591
http://arxiv.org/abs/1005.2415
http://dx.doi.org/10.1103/PhysRevD.82.043520
http://arxiv.org/abs/1004.4810


[8] S. Nesseris and A. Shafieloo, “A model independent null test on the

cosmological constant,”

Mon.Not.Roy.Astron.Soc. 408 (2010) 1879–1885,

arXiv:1004.0960 [astro-ph.CO].

[9] J. Kratochvil, A. D. Linde, E. V. Linder, and M. Shmakova, “Testing

the cosmological constant as a candidate for dark energy,”

JCAP 0407 (2004) 001, arXiv:astro-ph/0312183 [astro-ph].

[10] M. J. Mortonson, W. Hu, and D. Huterer, “Testable dark energy

predictions from current data,” Phys.Rev. D81 (2010) 063007,

arXiv:0912.3816 [astro-ph.CO].

[11] S. M. Carroll, “The Cosmological constant,” Living Rev.Rel. 4 (2001)

1, arXiv:astro-ph/0004075 [astro-ph].

[12] N. Straumann, “The History of the cosmological constant problem,”

arXiv:gr-qc/0208027 [gr-qc].

[13] T. Padmanabhan, “Cosmological constant: The Weight of the

vacuum,” Phys.Rept. 380 (2003) 235–320,

arXiv:hep-th/0212290 [hep-th].

[14] P. Peebles and B. Ratra, “The Cosmological constant and dark

energy,” Rev.Mod.Phys. 75 (2003) 559–606,

arXiv:astro-ph/0207347 [astro-ph].

[15] A. Einstein, “The Foundation of the General Theory of Relativity,”

Annalen Phys. 49 (1916) 769–822.

[16] A. Einstein, “Cosmological Considerations in the General Theory of

Relativity,” Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1917

(1917) 142–152.

[17] A. Eddington, “On the Instability of Einstein’s Spherical World,”

Mon.Not.Roy.Astron.Soc. 90 (1930) 668–678.

141

http://dx.doi.org/10.1111/j.1365-2966.2010.17254.x
http://arxiv.org/abs/1004.0960
http://dx.doi.org/10.1088/1475-7516/2004/07/001, 10.1088/1475-7516/10299
http://arxiv.org/abs/astro-ph/0312183
http://dx.doi.org/10.1103/PhysRevD.81.063007
http://arxiv.org/abs/0912.3816
http://arxiv.org/abs/astro-ph/0004075
http://arxiv.org/abs/gr-qc/0208027
http://dx.doi.org/10.1016/S0370-1573(03)00120-0
http://arxiv.org/abs/hep-th/0212290
http://dx.doi.org/10.1103/RevModPhys.75.559
http://arxiv.org/abs/astro-ph/0207347
http://dx.doi.org/10.1002/andp.200590044


[18] A. Einstein, The meaning of relativity. Princeton University Press,

New York, 1921.

[19] H. Robertson, “Relativistic Cosmology,”

Rev.Mod.Phys. 5 (1933) 62–90.

[20] V. M. Slipher, “Spectrographic Observations of Nebulae,” Popular

Astronomy 23 (Jan., 1915) 21–24.

[21] E. Hubble, “A Relation

between Distance and Radial Velocity among Extra-Galactic Nebulae,”

Proceedings of the National Academy of Science 15 (Mar., 1929) 168–173.

[22] E. Bianchi and C. Rovelli, “Why all these prejudices against a

constant?,” arXiv:1002.3966 [astro-ph.CO].

[23] N. Dadhich, “On the enigmatic Λ - a true constant of spacetime,”

Pramana 77 (2011) 433–437, arXiv:1006.1552 [gr-qc].

[24] A. S. Eddington, The nature of the physical world. Cambridge

University Press, Cambridge, 1929.

[25] S. M. Carroll, “Dark energy and the preposterous universe,”

arXiv:astro-ph/0107571 [astro-ph].

[26] C. A. Egan, “Dark Energy, Anthropic Selection Effects, Entropy and

Life,” arXiv:1005.0745 [astro-ph.CO].

[27] J. Al-Khalili. Pers. comm.

[28] S. Weinberg, “The Cosmological Constant Problem,”

Rev.Mod.Phys. 61 (1989) 1–23.

[29] R. Jaffe, “The Casimir effect and the quantum vacuum,”

Phys.Rev. D72 (2005) 021301, arXiv:hep-th/0503158 [hep-th].

[30] R. Triay, “Dark Energy: Fiction or reality?,”

AIP Conf.Proc. 1246 (2010) 105–113, arXiv:1004.0091 [gr-qc].

142

http://dx.doi.org/10.1007/s10714-012-1401-0, 10.1103/RevModPhys.5.62
http://dx.doi.org/10.1073/pnas.15.3.168
http://arxiv.org/abs/1002.3966
http://dx.doi.org/10.1007/s12043-011-0163-7
http://arxiv.org/abs/1006.1552
http://arxiv.org/abs/astro-ph/0107571
http://arxiv.org/abs/1005.0745
http://dx.doi.org/10.1103/RevModPhys.61.1
http://dx.doi.org/10.1103/PhysRevD.72.021301
http://arxiv.org/abs/hep-th/0503158
http://dx.doi.org/10.1063/1.3460185
http://arxiv.org/abs/1004.0091


[31] G. Hinshaw, D. Larson, E. Komatsu, D. Spergel, C. Bennett, et al.,

“Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Cosmological Parameter Results,”

arXiv:1212.5226 [astro-ph.CO].

[32] Planck Collaboration Collaboration, P. Ade et al., “Planck 2013

results. XVI. Cosmological parameters,”

arXiv:1303.5076 [astro-ph.CO].

[33] R. Keisler, C. Reichardt, K. Aird, B. Benson, L. Bleem, et al., “A

Measurement of the Damping Tail of the Cosmic Microwave

Background Power Spectrum with the South Pole Telescope,”

Astrophys.J. 743 (2011) 28, arXiv:1105.3182 [astro-ph.CO].

[34] J. L. Sievers, R. A. Hlozek, M. R. Nolta, V. Acquaviva, G. E.

Addison, et al., “The Atacama Cosmology Telescope: Cosmological

parameters from three seasons of data,”

arXiv:1301.0824 [astro-ph.CO].

[35] A. Slosar, V. Irsic, D. Kirkby, S. Bailey, N. G. Busca, et al.,

“Measurement of Baryon Acoustic Oscillations in the Lyman-alpha

Forest Fluctuations in BOSS Data Release 9,”

arXiv:1301.3459 [astro-ph.CO].

[36] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith,

et al., “The 6dF Galaxy Survey: Baryon Acoustic Oscillations and

the Local Hubble Constant,”

Mon.Not.Roy.Astron.Soc. 416 (2011) 3017–3032,

arXiv:1106.3366 [astro-ph.CO].

[37] N. Padmanabhan, X. Xu, D. J. Eisenstein, R. Scalzo, A. J. Cuesta,

et al., “A 2: Methods and Application to the Sloan Digital Sky

Survey,” arXiv:1202.0090 [astro-ph.CO].

143

http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/1303.5076
http://dx.doi.org/10.1088/0004-637X/743/1/28
http://arxiv.org/abs/1105.3182
http://arxiv.org/abs/1301.0824
http://arxiv.org/abs/1301.3459
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://arxiv.org/abs/1106.3366
http://arxiv.org/abs/1202.0090


[38] L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton, et al.,

“The clustering of galaxies in the SDSS-III Baryon Oscillation

Spectroscopic Survey: Baryon Acoustic Oscillations in the Data

Release 9 Spectroscopic Galaxy Sample,”

Mon.Not.Roy.Astron.Soc. 428 (2013) 1036–1054,

arXiv:1203.6594 [astro-ph.CO].

[39] M. Phillips, “The absolute magnitudes of Type IA supernovae,”

Astrophys.J. 413 (1993) L105–L108.

[40] A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson,

et al., “A 3Telescope and Wide Field Camera 3,”

Astrophys.J. 730 (2011) 119, arXiv:1103.2976 [astro-ph.CO].

[41] W. L. Freedman, B. F. Madore, V. Scowcroft, C. Burns, A. Monson,

et al., “Carnegie Hubble Program: A Mid-Infrared Calibration of the

Hubble Constant,” Astrophys.J. 758 (2012) 24,

arXiv:1208.3281 [astro-ph.CO].

[42] S. Suyu, T. Treu, R. Blandford, W. Freedman, S. Hilbert, et al., “The

Hubble constant and new discoveries in cosmology,”

arXiv:1202.4459 [astro-ph.CO].

[43] Planck Collaboration Collaboration, P. Ade et al., “Planck 2013

results. XX. Cosmology from Sunyaev-Zeldovich cluster counts,”

arXiv:1303.5080 [astro-ph.CO].

[44] Z. Haiman, J. J. Mohr, and G. P. Holder, “Clusters in the precision

cosmology era,” arXiv:astro-ph/0103049 [astro-ph].

[45] S. Allen, D. Rapetti, R. Schmidt, H. Ebeling, G. Morris, et al.,

“Improved constraints on dark energy from Chandra X-ray

observations of the largest relaxed galaxy clusters,”

Mon.Not.Roy.Astron.Soc. 383 (2008) 879–896,

arXiv:0706.0033 [astro-ph].

144

http://dx.doi.org/10.1093/mnras/sts084
http://arxiv.org/abs/1203.6594
http://dx.doi.org/10.1088/0004-637X/732/2/129, 10.1088/0004-637X/730/2/119
http://arxiv.org/abs/1103.2976
http://dx.doi.org/10.1088/0004-637X/758/1/24
http://arxiv.org/abs/1208.3281
http://arxiv.org/abs/1202.4459
http://arxiv.org/abs/1303.5080
http://arxiv.org/abs/astro-ph/0103049
http://dx.doi.org/10.1111/j.1365-2966.2007.12610.x
http://arxiv.org/abs/0706.0033


[46] T. Erben, H. Hildebrandt, L. Miller, L. van Waerbeke, C. Heymans,

et al., “CFHTLenS: The Canada-France-Hawaii Telescope Lensing

Survey - Imaging Data and Catalogue Products,”

arXiv:1210.8156 [astro-ph.CO].

[47] C. Heymans, L. Van Waerbeke, L. Miller, T. Erben, H. Hildebrandt,

et al., “CFHTLenS: The Canada-France-Hawaii Telescope Lensing

Survey,” arXiv:1210.0032 [astro-ph.CO].

[48] C. Heymans, E. Grocutt, A. Heavens, M. Kilbinger, T. D. Kitching,

et al., “CFHTLenS tomographic weak lensing cosmological parameter

constraints: Mitigating the impact of intrinsic galaxy alignments,”

arXiv:1303.1808 [astro-ph.CO].

[49] B. A. Reid, W. J. Percival, D. J. Eisenstein, L. Verde, D. N. Spergel,

et al., “Cosmological Constraints from the Clustering of the Sloan

Digital Sky Survey DR7 Luminous Red Galaxies,”

Mon.Not.Roy.Astron.Soc. 404 (2010) 60–85,

arXiv:0907.1659 [astro-ph.CO].

[50] C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, et al., “The

WiggleZ Dark Energy Survey: the growth rate of cosmic structure

since redshift z=0.9,” Mon.Not.Roy.Astron.Soc. 415 (2011) 2876,

arXiv:1104.2948 [astro-ph.CO].

[51] R. G. Crittenden and N. Turok, “Looking for Lambda with the

Rees-Sciama effect,” Phys.Rev.Lett. 76 (1996) 575,

arXiv:astro-ph/9510072 [astro-ph].

[52] C. Alcock and B. Paczynski, “An evolution free test for non-zero

cosmological constant,” Nature 281 (1979) 358–359.

[53] B. E. Schaefer, “Gamma-ray burst hubble diagram to z=4.5,”

Astrophys.J. 583 (2003) L67–L70,

arXiv:astro-ph/0212445 [astro-ph].

145

http://arxiv.org/abs/1210.8156
http://arxiv.org/abs/1210.0032
http://arxiv.org/abs/1303.1808
http://dx.doi.org/10.1111/j.1365-2966.2010.16276.x
http://arxiv.org/abs/0907.1659
http://dx.doi.org/10.1111/j.1365-2966.2011.18903.x
http://arxiv.org/abs/1104.2948
http://dx.doi.org/10.1103/PhysRevLett.76.575
http://arxiv.org/abs/astro-ph/9510072
http://dx.doi.org/10.1086/368104
http://arxiv.org/abs/astro-ph/0212445


[54] J. Simon, L. Verde, and R. Jimenez, “Constraints on the redshift

dependence of the dark energy potential,”

Phys.Rev. D71 (2005) 123001,

arXiv:astro-ph/0412269 [astro-ph].

[55] J. Santos, J. Alcaniz, M. Reboucas, and N. Pires, “Lookback time

bounds from energy conditions,” Phys.Rev. D76 (2007) 043519,

arXiv:0706.1779 [astro-ph].

[56] E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark

energy,” Int. J. Mod. Phys. D15 (2006) 1753–1936,

arXiv:hep-th/0603057.

[57] J. Frieman, M. Turner, and D. Huterer, “Dark Energy and the

Accelerating Universe,”

Ann.Rev.Astron.Astrophys. 46 (2008) 385–432,

arXiv:0803.0982 [astro-ph].

[58] A. Silvestri and M. Trodden, “Approaches to Understanding Cosmic

Acceleration,” Rept.Prog.Phys. 72 (2009) 096901,

arXiv:0904.0024 [astro-ph.CO].

[59] R. R. Caldwell and M. Kamionkowski, “The Physics of Cosmic

Acceleration,” Ann.Rev.Nucl.Part.Sci. 59 (2009) 397–429,

arXiv:0903.0866 [astro-ph.CO].

[60] S. Tsujikawa, “Modified gravity models of dark energy,”

Lect. Notes Phys. 800 (2010) 99–145, arXiv:1101.0191 [gr-qc].

[61] M. Li, X.-D. Li, S. Wang, and Y. Wang, “Dark Energy,”

Commun.Theor.Phys. 56 (2011) 525–604,

arXiv:1103.5870 [astro-ph.CO].

[62] P. Brax, “Gif Lectures on Cosmic Acceleration,”

arXiv:0912.3610 [astro-ph.CO].

146

http://dx.doi.org/10.1103/PhysRevD.71.123001
http://arxiv.org/abs/astro-ph/0412269
http://dx.doi.org/10.1103/PhysRevD.76.043519
http://arxiv.org/abs/0706.1779
http://dx.doi.org/10.1142/S021827180600942X
http://arxiv.org/abs/hep-th/0603057
http://dx.doi.org/10.1146/annurev.astro.46.060407.145243
http://arxiv.org/abs/0803.0982
http://dx.doi.org/10.1088/0034-4885/72/9/096901
http://arxiv.org/abs/0904.0024
http://dx.doi.org/10.1146/annurev-nucl-010709-151330
http://arxiv.org/abs/0903.0866
http://dx.doi.org/10.1007/978-3-642-10598-2_3
http://arxiv.org/abs/1101.0191
http://dx.doi.org/10.1088/0253-6102/56/3/24
http://arxiv.org/abs/1103.5870
http://arxiv.org/abs/0912.3610


[63] R. Bean, “TASI Lectures on Cosmic Acceleration,”

arXiv:1003.4468 [astro-ph.CO].

[64] R. Durrer and R. Maartens, “Dark Energy and Modified Gravity,”

arXiv:0811.4132 [astro-ph].

[65] L. Amendola and S. Tsujikawa, Dark Energy: Theory and

Observations. Cambridge Uni. Press, Cambridge, 2010.

[66] V. Sahni and A. Starobinsky, “Reconstructing Dark Energy,”

Int.J.Mod.Phys. D15 (2006) 2105–2132,

arXiv:astro-ph/0610026 [astro-ph].

[67] R. Crittenden, E. Majerotto, and F. Piazza, “Measuring deviations

from a cosmological constant: A field-space parameterization,”

Phys.Rev.Lett. 98 (2007) 251301,

arXiv:astro-ph/0702003 [astro-ph].

[68] M. Cortes and E. V. Linder, “Old Dark Energy,”

Phys.Rev. D81 (2010) 063004, arXiv:0909.2251 [astro-ph.CO].

[69] R. G. Crittenden, L. Pogosian, and G.-B. Zhao, “Investigating dark

energy experiments with principal components,”

JCAP 0912 (2009) 025, arXiv:astro-ph/0510293 [astro-ph].

[70] C. Clarkson and C. Zunckel, “Direct reconstruction of dark energy,”

Phys.Rev.Lett. 104 (2010) 211301,

arXiv:1002.5004 [astro-ph.CO].

[71] R.-G. Cai, Q. Su, and H.-B. Zhang, “Probing the dynamical behavior

of dark energy,” JCAP 1004 (2010) 012,

arXiv:1001.2207 [astro-ph.CO].

[72] G.-B. Zhao and X.-m. Zhang, “Probing Dark Energy Dynamics from

Current and Future Cosmological Observations,”

Phys.Rev. D81 (2010) 043518, arXiv:0908.1568 [astro-ph.CO].

147

http://arxiv.org/abs/1003.4468
http://arxiv.org/abs/0811.4132
http://dx.doi.org/10.1142/S0218271806009704
http://arxiv.org/abs/astro-ph/0610026
http://dx.doi.org/10.1103/PhysRevLett.98.251301
http://arxiv.org/abs/astro-ph/0702003
http://dx.doi.org/10.1103/PhysRevD.81.063004
http://arxiv.org/abs/0909.2251
http://dx.doi.org/10.1088/1475-7516/2009/12/025
http://arxiv.org/abs/astro-ph/0510293
http://dx.doi.org/10.1103/PhysRevLett.104.211301
http://arxiv.org/abs/1002.5004
http://dx.doi.org/10.1088/1475-7516/2010/04/012
http://arxiv.org/abs/1001.2207
http://dx.doi.org/10.1103/PhysRevD.81.043518
http://arxiv.org/abs/0908.1568


[73] E. J. Copeland, A. R. Liddle, and D. Wands, “Exponential potentials

and cosmological scaling solutions,”

Phys.Rev. D57 (1998) 4686–4690, arXiv:gr-qc/9711068 [gr-qc].

[74] M. Malquarti and A. R. Liddle, “Initial conditions for quintessence

after inflation,” Phys.Rev. D66 (2002) 023524,

arXiv:astro-ph/0203232 [astro-ph].

[75] S. Capozziello and M. De Laurentis, “Extended Theories of Gravity,”

Phys.Rept. 509 (2011) 167–321, arXiv:1108.6266 [gr-qc].

[76] S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified

gravity: from F(R) theory to Lorentz non-invariant models,”

Phys.Rept. 505 (2011) 59–144, arXiv:1011.0544 [gr-qc].

[77] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, “Modified

Gravity and Cosmology,” Phys.Rept. 513 (2012) 1–189,

arXiv:1106.2476 [astro-ph.CO].

[78] T. Buchert, “Dark Energy from Structure: A Status Report,”

Gen.Rel.Grav. 40 (2008) 467–527, arXiv:0707.2153 [gr-qc].

[79] S. February, J. Larena, M. Smith, and C. Clarkson, “Rendering Dark

Energy Void,” Mon.Not.Roy.Astron.Soc. 405 (2010) 2231,

arXiv:0909.1479 [astro-ph.CO].

[80] C. Clarkson and R. Maartens, “Inhomogeneity and the foundations of

concordance cosmology,” Class.Quant.Grav. 27 (2010) 124008,

arXiv:1005.2165 [astro-ph.CO].

[81] K. A. Malik, “Cosmological perturbations in an inflationary

universe,” arXiv:astro-ph/0101563 [astro-ph].

[82] S. M. Carroll, Spacetime and geometry: An introduction to general

relativity. Benjamin Cummings, London, 2004.

148

http://dx.doi.org/10.1103/PhysRevD.57.4686
http://arxiv.org/abs/gr-qc/9711068
http://dx.doi.org/10.1103/PhysRevD.66.023524
http://arxiv.org/abs/astro-ph/0203232
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://arxiv.org/abs/1108.6266
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://arxiv.org/abs/1011.0544
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://arxiv.org/abs/1106.2476
http://dx.doi.org/10.1007/s10714-007-0554-8
http://arxiv.org/abs/0707.2153
http://dx.doi.org/10.1111/j.1365-2966.2010.16627.x
http://arxiv.org/abs/0909.1479
http://dx.doi.org/10.1088/0264-9381/27/12/124008
http://arxiv.org/abs/1005.2165
http://arxiv.org/abs/astro-ph/0101563


[83] R. M. Wald, General Relativity. University Of Chicago Press,

Chicago, 1st ed., June, 1984.

[84] K. A. Malik and D. R. Matravers, “A Concise Introduction to

Perturbation Theory in Cosmology,”

Class.Quant.Grav. 25 (2008) 193001, arXiv:0804.3276 [astro-ph].

[85] E. Lifshitz, “On the Gravitational stability of the expanding

universe,” J.Phys.(USSR) 10 (1946) 116.

[86] E. Lifshitz and I. Khalatnikov, “Investigations in relativistic

cosmology,” Adv.Phys. 12 (1963) 185–249.

[87] R. Sachs and A. Wolfe, “Perturbations of a cosmological model and

angular variations of the microwave background,”

Astrophys.J. 147 (1967) 73–90.

[88] J. M. Bardeen, “Gauge Invariant Cosmological Perturbations,”

Phys.Rev. D22 (1980) 1882–1905.

[89] H. Kodama and M. Sasaki, “Cosmological Perturbation Theory,”

Prog.Theor.Phys.Suppl. 78 (1984) 1–166.

[90] C.-P. Ma and E. Bertschinger, “Cosmological perturbation theory in

the synchronous and conformal Newtonian gauges,”

Astrophys.J. 455 (1995) 7–25,

arXiv:astro-ph/9506072 [astro-ph].

[91] E. Bertschinger, “Cosmological perturbation theory and structure

formation,” arXiv:astro-ph/0101009 [astro-ph].

[92] A. R. Liddle and D. Lyth, Cosmological inflation and large scale

structure. Cambridge University Press, Cambridge, 2000.

[93] A. Lewis, A. Challinor, and A. Lasenby, “Efficient computation of

CMB anisotropies in closed FRW models,”

149

http://dx.doi.org/10.1088/0264-9381/25/19/193001
http://arxiv.org/abs/0804.3276
http://dx.doi.org/10.1007/s10714-007-0448-9
http://dx.doi.org/10.1103/PhysRevD.22.1882
http://dx.doi.org/10.1143/PTPS.78.1
http://dx.doi.org/10.1086/176550
http://arxiv.org/abs/astro-ph/9506072
http://arxiv.org/abs/astro-ph/0101009


Astrophys.J. 538 (2000) 473–476,

arXiv:astro-ph/9911177 [astro-ph].

[94] P. J. E. Peebles, “Phenomenology of the Invisible Universe,”

AIP Conf. Proc. 1241 (2010) 175–182,

arXiv:0910.5142 [astro-ph.CO].

[95] C. Wetterich, “Cosmology and the Fate of Dilatation Symmetry,”

Nucl.Phys. B302 (1988) 668.

[96] W. Zimdahl and D. Pavon, “Interacting quintessence,”

Phys. Lett. B521 (2001) 133–138, arXiv:astro-ph/0105479.

[97] E. R. Tarrant, C. van de Bruck, E. J. Copeland, and A. M. Green,

“Coupled Quintessence and the Halo Mass Function,”

Phys.Rev. D85 (2012) 023503, arXiv:1103.0694 [astro-ph.CO].

[98] J.-c. Hwang and H. Noh, “Cosmological perturbations with multiple

fluids and fields,” Class.Quant.Grav. 19 (2002) 527–550,

arXiv:astro-ph/0103244 [astro-ph].

[99] K. A. Malik, D. Wands, and C. Ungarelli, “Large-scale curvature and

entropy perturbations for multiple interacting fluids,”

Phys. Rev. D67 (2003) 063516, arXiv:astro-ph/0211602.

[100] T. Koivisto, “Growth of perturbations in dark matter coupled with

quintessence,” Phys. Rev. D72 (2005) 043516,

arXiv:astro-ph/0504571.

[101] M. Kaplinghat and A. Rajaraman, “Stable models of

super-acceleration,” Phys.Rev. D75 (2007) 103504,

arXiv:astro-ph/0601517 [astro-ph].

[102] R. Bean, E. E. Flanagan, and M. Trodden, “The Adiabatic Instability

on Cosmology’s Dark Side,” New J. Phys. 10 (2008) 033006,

arXiv:0709.1124 [astro-ph].

150

http://dx.doi.org/10.1086/309179
http://arxiv.org/abs/astro-ph/9911177
http://dx.doi.org/10.1063/1.3462631
http://arxiv.org/abs/0910.5142
http://dx.doi.org/10.1016/0550-3213(88)90193-9
http://dx.doi.org/10.1016/S0370-2693(01)01174-1
http://arxiv.org/abs/astro-ph/0105479
http://dx.doi.org/10.1103/PhysRevD.85.023503
http://arxiv.org/abs/1103.0694
http://dx.doi.org/10.1088/0264-9381/19/3/308
http://arxiv.org/abs/astro-ph/0103244
http://dx.doi.org/10.1103/PhysRevD.67.063516
http://arxiv.org/abs/astro-ph/0211602
http://dx.doi.org/10.1103/PhysRevD.72.043516
http://arxiv.org/abs/astro-ph/0504571
http://dx.doi.org/10.1103/PhysRevD.75.103504
http://arxiv.org/abs/astro-ph/0601517
http://dx.doi.org/10.1088/1367-2630/10/3/033006
http://arxiv.org/abs/0709.1124


[103] R. Bean, E. E. Flanagan, and M. Trodden, “Adiabatic instability in

coupled dark energy-dark matter models,”

Phys. Rev. D78 (2008) 023009, arXiv:0709.1128 [astro-ph].

[104] P. S. Corasaniti, “Slow-Roll Suppression of Adiabatic Instabilities in

Coupled Scalar Field-Dark Matter Models,”

Phys. Rev. D78 (2008) 083538, arXiv:0808.1646 [astro-ph].

[105] N. Afshordi, M. Zaldarriaga, and K. Kohri, “On the stability of dark

energy with mass-varying neutrinos,” Phys.Rev. D72 (2005) 065024,

arXiv:astro-ph/0506663 [astro-ph].

[106] O. E. Bjaelde, A. W. Brookfield, C. van de Bruck, S. Hannestad,

D. F. Mota, et al., “Neutrino Dark Energy – Revisiting the Stability

Issue,” JCAP 0801 (2008) 026, arXiv:0705.2018 [astro-ph].

[107] J. Valiviita, E. Majerotto, and R. Maartens, “Instability in

interacting dark energy and dark matter fluids,”

JCAP 0807 (2008) 020, arXiv:0804.0232 [astro-ph].

[108] M. B. Gavela, D. Hernandez, L. Lopez Honorez, O. Mena, and

S. Rigolin, “Dark coupling,” JCAP 0907 (2009) 034,

arXiv:0901.1611 [astro-ph].

[109] J.-H. He, B. Wang, and E. Abdalla, “Stability of the curvature

perturbation in dark sectors’ mutual interacting models,”

Phys. Lett. B671 (2009) 139–145, arXiv:0807.3471 [gr-qc].

[110] B. M. Jackson, A. Taylor, and A. Berera, “On the large-scale

instability in interacting dark energy and dark matter fluids,”

Phys. Rev. D79 (2009) 043526, arXiv:0901.3272 [astro-ph.CO].

[111] L. L. Honorez and 0. Mena, “Instabilities in dark coupled models and

constraints from cosmological data,”

AIP Conf. Proc. 1241 (2010) 1016–1024,

arXiv:0911.3269 [astro-ph.CO].

151

http://dx.doi.org/10.1103/PhysRevD.78.023009
http://arxiv.org/abs/0709.1128
http://dx.doi.org/10.1103/PhysRevD.78.083538
http://arxiv.org/abs/0808.1646
http://dx.doi.org/10.1103/PhysRevD.72.065024
http://arxiv.org/abs/astro-ph/0506663
http://dx.doi.org/10.1088/1475-7516/2008/01/026
http://arxiv.org/abs/0705.2018
http://dx.doi.org/10.1088/1475-7516/2008/07/020
http://arxiv.org/abs/0804.0232
http://dx.doi.org/10.1088/1475-7516/2009/07/034
http://arxiv.org/abs/0901.1611
http://dx.doi.org/10.1016/j.physletb.2008.11.062
http://arxiv.org/abs/0807.3471
http://dx.doi.org/10.1103/PhysRevD.79.043526
http://arxiv.org/abs/0901.3272
http://dx.doi.org/10.1063/1.3462595
http://arxiv.org/abs/0911.3269


[112] N. A. Koshelev, “On the growth of perturbations in interacting dark

energy and dark matter fluids,”

Gen. Rel. Grav. 43 (2011) 1309–1321, arXiv:0912.0120 [gr-qc].

[113] C. Brans and R. Dicke, “Mach’s principle and a relativistic theory of

gravitation,” Phys.Rev. 124 (1961) 925–935.

[114] R. Dicke, “Mach’s principle and invariance under transformation of

units,” Phys.Rev. 125 (1962) 2163–2167.

[115] T. Kaluza, “On the Problem of Unity in Physics,”

Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1921 (1921)

966–972.

[116] O. Klein, “Quantum Theory and Five-Dimensional Theory of

Relativity. (In German and English),” Z.Phys. 37 (1926) 895–906.

[117] P. Jordan, Schwerkraft und Weltall, vol. 107. Vieweg, Braunschweig,

1955.

[118] J. R. Ellis, S. Kalara, K. A. Olive, and C. Wetterich, “Density

Dependent Couplings and Astrophysical Bounds on Light Scalar

Particles,” Phys.Lett. B228 (1989) 264.

[119] C. Wetterich, “The Cosmon model for an asymptotically vanishing

time dependent cosmological ’constant’,” Astron.Astrophys. 301

(1995) 321–328, arXiv:hep-th/9408025 [hep-th].

[120] A. A. Starobinsky, “Relict Gravitation Radiation Spectrum and

Initial State of the Universe. (In Russian),” JETP Lett. 30 (1979)

682–685.

[121] A. H. Guth, “The Inflationary Universe: A Possible Solution to the

Horizon and Flatness Problems,” Phys.Rev. D23 (1981) 347–356.

152

http://dx.doi.org/10.1007/s10714-010-1113-2
http://arxiv.org/abs/0912.0120
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1103/PhysRev.125.2163
http://dx.doi.org/10.1007/BF01397481
http://dx.doi.org/10.1016/0370-2693(89)90669-2
http://arxiv.org/abs/hep-th/9408025
http://dx.doi.org/10.1103/PhysRevD.23.347


[122] G. F. R. Ellis, “The expanding universe: a history of cosmology from

1917 to 1960.,” in Einstein and the History of General Relativity,

D. Howard and J. Stachel, eds., pp. 367–431. Birkhauser, Boston,

1989.

[123] E. W. Kolb, “Dynamics of the inflationary era,”

arXiv:hep-ph/9910311 [hep-ph].

[124] L. Amendola, D. Bellisai, and F. Occhionero, “Inflationary attractors

and perturbation spectra in generally coupled gravity,”

Phys.Rev. D47 (1993) 4267–4272, arXiv:gr-qc/9303023 [gr-qc].

[125] D. Wands, E. J. Copeland, and A. R. Liddle,

“Exponential Potentials, Scaling Solutions, and Inflation,” in

Texas/PASCOS ’92: Relativistic Astrophysics and Particle

Cosmology, C. W. Akerlof and M. A. Srednicki, eds., vol. 688 of

Annals of the New York Academy of Sciences, p. 647. 1993.

[126] A. P. Billyard and A. A. Coley, “Interactions in scalar field

cosmology,” Phys. Rev. D61 (2000) 083503,

arXiv:astro-ph/9908224.

[127] L. Amendola, “Scaling solutions in general non-minimal coupling

theories,” Phys. Rev. D60 (1999) 043501, arXiv:astro-ph/9904120.

[128] D. J. Holden and D. Wands, “Self-similar cosmological solutions with

a non-minimally coupled scalar field,” Phys. Rev. D61 (2000) 043506,

arXiv:gr-qc/9908026.

[129] S. M. Carroll, “Quintessence and the rest of the world,”

Phys.Rev.Lett. 81 (1998) 3067–3070,

arXiv:astro-ph/9806099 [astro-ph].

[130] C. G. Boehmer, G. Caldera-Cabral, R. Lazkoz, and R. Maartens,

“Dynamics of dark energy with a coupling to dark matter,”

Phys. Rev. D78 (2008) 023505, arXiv:0801.1565 [gr-qc].

153

http://arxiv.org/abs/hep-ph/9910311
http://dx.doi.org/10.1103/PhysRevD.47.4267
http://arxiv.org/abs/gr-qc/9303023
http://dx.doi.org/10.1111/j.1749-6632.1993.tb43950.x
http://dx.doi.org/10.1103/PhysRevD.61.083503
http://arxiv.org/abs/astro-ph/9908224
http://dx.doi.org/10.1103/PhysRevD.60.043501
http://arxiv.org/abs/astro-ph/9904120
http://dx.doi.org/10.1103/PhysRevD.61.043506
http://arxiv.org/abs/gr-qc/9908026
http://dx.doi.org/10.1103/PhysRevLett.81.3067
http://arxiv.org/abs/astro-ph/9806099
http://dx.doi.org/10.1103/PhysRevD.78.023505
http://arxiv.org/abs/0801.1565


[131] Y. Fujii and K. Maeda, The scalar-tensor theory of gravitation.

Cambridge University Press, Cambridge, 2003.

[132] T. Damour, “Gravitation, experiment and cosmology,”

arXiv:gr-qc/9606079 [gr-qc].

[133] C. M. Will, “The Confrontation between general relativity and

experiment,” Living Rev.Rel. 9 (2006) 3,

arXiv:gr-qc/0510072 [gr-qc].

[134] J. Bovy and G. R. Farrar, “Connection between a possible fifth force

and the direct detection of Dark Matter,”

Phys.Rev.Lett. 102 (2009) 101301, arXiv:0807.3060 [hep-ph].

[135] S. M. Carroll, S. Mantry, M. J. Ramsey-Musolf, and C. W. Stubbs,

“Dark-Matter-Induced Weak Equivalence Principle Violation,”

Phys.Rev.Lett. 103 (2009) 011301, arXiv:0807.4363 [hep-ph].

[136] T. Damour, G. Gibbons, and C. Gundlach, “Dark Matter, Time

Varying G, and a Dilaton Field,” Phys.Rev.Lett. 64 (1990) 123–126.

[137] J. Casas, J. Garcia-Bellido, and M. Quiros, “Scalar - tensor theories

of gravity with phi dependent masses,”

Class.Quant.Grav. 9 (1992) 1371–1384,

arXiv:hep-ph/9204213 [hep-ph].

[138] J. Khoury and A. Weltman, “Chameleon cosmology,”

Phys.Rev. D69 (2004) 044026,

arXiv:astro-ph/0309411 [astro-ph].

[139] I. Navarro and K. Van Acoleyen, “f(R) actions, cosmic acceleration

and local tests of gravity,” JCAP 0702 (2007) 022,

arXiv:gr-qc/0611127 [gr-qc].

[140] T. Faulkner, M. Tegmark, E. F. Bunn, and Y. Mao, “Constraining

f(R) Gravity as a Scalar Tensor Theory,”

154

http://arxiv.org/abs/gr-qc/9606079
http://arxiv.org/abs/gr-qc/0510072
http://dx.doi.org/10.1103/PhysRevLett.102.101301
http://arxiv.org/abs/0807.3060
http://dx.doi.org/10.1103/PhysRevLett.103.011301
http://arxiv.org/abs/0807.4363
http://dx.doi.org/10.1103/PhysRevLett.64.123
http://dx.doi.org/10.1088/0264-9381/9/5/018
http://arxiv.org/abs/hep-ph/9204213
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://arxiv.org/abs/astro-ph/0309411
http://dx.doi.org/10.1088/1475-7516/2007/02/022
http://arxiv.org/abs/gr-qc/0611127


Phys.Rev. D76 (2007) 063505,

arXiv:astro-ph/0612569 [astro-ph].

[141] G. W. Horndeski, “Second-order scalar-tensor field equations in a

four-dimensional space,” Int.J.Theor.Phys. 10 (1974) 363–384.

[142] L. Amendola, “Dark energy and the Boomerang data,”

Phys.Rev.Lett. 86 (2001) 196–199,

arXiv:astro-ph/0006300 [astro-ph].

[143] L. Amendola and C. Quercellini, “Tracking and coupled dark energy

as seen by WMAP,” Phys.Rev. D68 (2003) 023514,

arXiv:astro-ph/0303228 [astro-ph].

[144] L. Amendola, “Perturbations in a coupled scalar field cosmology,”

Mon. Not. Roy. Astron. Soc. 312 (2000) 521,

arXiv:astro-ph/9906073.

[145] L. Amendola, “Coupled quintessence,”

Phys. Rev. D62 (2000) 043511, arXiv:astro-ph/9908023.

[146] D. Tocchini-Valentini and L. Amendola, “Stationary dark energy with

a baryon dominated era: Solving the coincidence problem with a

linear coupling,” Phys. Rev. D65 (2002) 063508,

arXiv:astro-ph/0108143.

[147] L. Amendola and D. Tocchini-Valentini, “Stationary dark energy:

The Present universe as a global attractor,”

Phys.Rev. D64 (2001) 043509,

arXiv:astro-ph/0011243 [astro-ph].

[148] L. Amendola and D. Tocchini-Valentini, “Baryon bias and structure

formation in an accelerating universe,” Phys.Rev. D66 (2002) 043528,

arXiv:astro-ph/0111535 [astro-ph].

155

http://dx.doi.org/10.1103/PhysRevD.76.063505
http://arxiv.org/abs/astro-ph/0612569
http://dx.doi.org/10.1007/BF01807638
http://dx.doi.org/10.1103/PhysRevLett.86.196
http://arxiv.org/abs/astro-ph/0006300
http://dx.doi.org/10.1103/PhysRevD.68.023514
http://arxiv.org/abs/astro-ph/0303228
http://dx.doi.org/10.1046/j.1365-8711.2000.03165.x
http://arxiv.org/abs/astro-ph/9906073
http://dx.doi.org/10.1103/PhysRevD.62.043511
http://arxiv.org/abs/astro-ph/9908023
http://dx.doi.org/10.1103/PhysRevD.65.063508
http://arxiv.org/abs/astro-ph/0108143
http://dx.doi.org/10.1103/PhysRevD.64.043509
http://arxiv.org/abs/astro-ph/0011243
http://dx.doi.org/10.1103/PhysRevD.66.043528
http://arxiv.org/abs/astro-ph/0111535


[149] L. Amendola, M. Gasperini, and F. Piazza, “Fitting type Ia

supernovae with coupled dark energy,” JCAP 0409 (2004) 014,

arXiv:astro-ph/0407573 [astro-ph].

[150] X. Zhang, “Statefinder diagnostic for coupled quintessence,”

Phys.Lett. B611 (2005) 1–7, arXiv:astro-ph/0503075 [astro-ph].

[151] L. Amendola, “Linear and non-linear perturbations in dark energy

models,” Phys. Rev. D69 (2004) 103524, arXiv:astro-ph/0311175.

[152] L. Amendola, M. Quartin, S. Tsujikawa, and I. Waga, “Challenges for

scaling cosmologies,” Phys. Rev. D74 (2006) 023525,

arXiv:astro-ph/0605488.

[153] L. Lopez Honorez, O. Mena, and G. Panotopoulos, “Higher-order

coupled quintessence,” Phys.Rev. D82 (2010) 123525,

arXiv:1009.5263 [astro-ph.CO].

[154] S. Lee, G.-C. Liu, and K.-W. Ng, “Constraints on the coupled

quintessence from cosmic microwave background anisotropy and

matter power spectrum,” Phys.Rev. D73 (2006) 083516,

arXiv:astro-ph/0601333 [astro-ph].

[155] S. Lee, G.-C. Liu, and K.-W. Ng, “Effects on the two-point correlation

function from the coupling of quintessence to dark matter,”

Phys.Rev. D81 (2010) 061302, arXiv:0910.2175 [astro-ph.CO].

[156] H. Farajollahi and A. Salehi, “Observational constraint in FRW

cosmology with a nonminimal scalar field-matter coupling,”

arXiv:1207.1642 [gr-qc].

[157] L. Vergani, L. P. Colombo, G. La Vacca, and S. A. Bonometto, “Dark

Matter - Dark Energy coupling biasing parameter estimates from

CMB data,” Astrophys.J. 697 (2009) 1946–1955,

arXiv:0804.0285 [astro-ph].

156

http://dx.doi.org/10.1088/1475-7516/2004/09/014
http://arxiv.org/abs/astro-ph/0407573
http://dx.doi.org/10.1016/j.physletb.2005.02.022
http://arxiv.org/abs/astro-ph/0503075
http://dx.doi.org/10.1103/PhysRevD.69.103524
http://arxiv.org/abs/astro-ph/0311175
http://dx.doi.org/10.1103/PhysRevD.74.023525
http://arxiv.org/abs/astro-ph/0605488
http://dx.doi.org/10.1103/PhysRevD.82.123525
http://arxiv.org/abs/1009.5263
http://dx.doi.org/10.1103/PhysRevD.73.083516
http://arxiv.org/abs/astro-ph/0601333
http://dx.doi.org/10.1103/PhysRevD.81.061302
http://arxiv.org/abs/0910.2175
http://arxiv.org/abs/1207.1642
http://dx.doi.org/10.1088/0004-637X/697/2/1946
http://arxiv.org/abs/0804.0285


[158] A. Lewis and S. Bridle, “Cosmological parameters from CMB and

other data: a Monte- Carlo approach,”

Phys. Rev. D66 (2002) 103511, arXiv:astro-ph/0205436.

[159] J.-Q. Xia, “Constraint on coupled dark energy models from

observations,” Phys. Rev. D80 (2009) 103514,

arXiv:0911.4820 [astro-ph.CO].

[160] R. Giambo and J. Miritzis, “Energy exchange for homogeneous and

isotropic universes with a scalar field coupled to matter,”

Class.Quant.Grav. 27 (2010) 095003, arXiv:0908.3452 [gr-qc].

[161] M. Manera and D. F. Mota, “Cluster number counts dependence on

dark energy inhomogeneities and coupling to dark matter,”

Mon. Not. Roy. Astron. Soc. 371 (2006) 1373,

arXiv:astro-ph/0504519.

[162] F. Saracco, M. Pietroni, N. Tetradis, V. Pettorino, and G. Robbers,

“Non-linear Matter Spectra in Coupled Quintessence,”

Phys.Rev. D82 (2010) 023528, arXiv:0911.5396 [astro-ph.CO].

[163] F. Shojai and A. Shojai, “Non-minimal quintessence: Dynamics and

coincidence problem,” Pramana 77 (Dec., 2011) 1179–1189,

arXiv:1109.2189 [gr-qc].

[164] L. Amendola, V. Pettorino, C. Quercellini, and A. Vollmer, “Testing

coupled dark energy with next-generation large-scale observations,”

Phys.Rev. D85 (2012) 103008, arXiv:1111.1404 [astro-ph.CO].

[165] V. Pettorino, L. Amendola, C. Baccigalupi, and C. Quercellini,

“Constraints on coupled dark energy using CMB data from WMAP

and SPT,” Phys.Rev. D86 (2012) 103507,

arXiv:1207.3293 [astro-ph.CO].

157

http://dx.doi.org/10.1103/PhysRevD.66.103511
http://arxiv.org/abs/astro-ph/0205436
http://dx.doi.org/10.1103/PhysRevD.80.103514
http://arxiv.org/abs/0911.4820
http://dx.doi.org/10.1088/0264-9381/27/9/095003
http://arxiv.org/abs/0908.3452
http://dx.doi.org/10.1111/j.1365-2966.2006.10774.x
http://arxiv.org/abs/astro-ph/0504519
http://dx.doi.org/10.1103/PhysRevD.82.023528
http://arxiv.org/abs/0911.5396
http://dx.doi.org/10.1007/s12043-011-0146-8
http://arxiv.org/abs/1109.2189
http://dx.doi.org/10.1103/PhysRevD.85.103008
http://arxiv.org/abs/1111.1404
http://dx.doi.org/10.1103/PhysRevD.86.103507
http://arxiv.org/abs/1207.3293


[166] S. Lee, K. A. Olive, and M. Pospelov, “Quintessence models and the

cosmological evolution of alpha,” Phys.Rev. D70 (2004) 083503,

arXiv:astro-ph/0406039 [astro-ph].

[167] D. Comelli, M. Pietroni, and A. Riotto, “Dark energy and dark

matter,” Phys. Lett. B571 (2003) 115–120, arXiv:hep-ph/0302080.

[168] G. W. Anderson and S. M. Carroll, “Dark matter with time

dependent mass,” arXiv:astro-ph/9711288 [astro-ph].

[169] U. Franca and R. Rosenfeld, “Age constraints and fine tuning in

VAMP models,” Phys.Rev. D69 (2004) 063517,

arXiv:astro-ph/0308149 [astro-ph].

[170] R. Bean and J. Magueijo, “Dilaton derived quintessence scenario

leading naturally to the late time acceleration of the universe,”

Phys.Lett. B517 (2001) 177–183,

arXiv:astro-ph/0007199 [astro-ph].

[171] M. Thorsrud, D. F. Mota, and S. Hervik, “Cosmology of a Scalar

Field Coupled to Matter and an Isotropy-Violating Maxwell Field,”

JHEP 1210 (2012) 066, arXiv:1205.6261 [hep-th].

[172] M. Thorsrud, “Quintessence with Kaluza-Klein type couplings to

matter and an isotropy-violating vector field,”

arXiv:1303.2469 [gr-qc].

[173] G. R. Farrar and P. J. E. Peebles, “Interacting dark matter and dark

energy,” Astrophys.J. 604 (2004) 1–11,

arXiv:astro-ph/0307316 [astro-ph].

[174] G. Huey and B. D. Wandelt, “Interacting quintessence. The

Coincidence problem and cosmic acceleration,”

Phys.Rev. D74 (2006) 023519,

arXiv:astro-ph/0407196 [astro-ph].

158

http://dx.doi.org/10.1103/PhysRevD.70.083503
http://arxiv.org/abs/astro-ph/0406039
http://dx.doi.org/10.1016/j.physletb.2003.05.006
http://arxiv.org/abs/hep-ph/0302080
http://arxiv.org/abs/astro-ph/9711288
http://dx.doi.org/10.1103/PhysRevD.69.063517
http://arxiv.org/abs/astro-ph/0308149
http://dx.doi.org/10.1016/S0370-2693(01)00966-2
http://arxiv.org/abs/astro-ph/0007199
http://dx.doi.org/10.1007/JHEP10(2012)066
http://arxiv.org/abs/1205.6261
http://arxiv.org/abs/1303.2469
http://dx.doi.org/10.1086/381728
http://arxiv.org/abs/astro-ph/0307316
http://dx.doi.org/10.1103/PhysRevD.74.023519
http://arxiv.org/abs/astro-ph/0407196


[175] S. Micheletti, E. Abdalla, and B. Wang, “A Field Theory Model for

Dark Matter and Dark Energy in Interaction,”

Phys.Rev. D79 (2009) 123506, arXiv:0902.0318 [gr-qc].

[176] O. Bertolami, P. Carrilho, and J. Paramos, “Two-scalar-field model

for the interaction of dark energy and dark matter,”

Phys.Rev. D86 (2012) 103522, arXiv:1206.2589 [gr-qc].

[177] A. Pavan, E. G. Ferreira, S. Micheletti, J. de Souza, and E. Abdalla,

“Exact cosmological solutions of models with an interacting dark

sector,” Phys.Rev. D86 (2012) 103521, arXiv:1111.6526 [gr-qc].

[178] D. Bazeia, C. Gomes, L. Losano, and R. Menezes, “First-order

formalism and dark energy,” Phys.Lett. B633 (2006) 415–419,

arXiv:astro-ph/0512197 [astro-ph].

[179] T. S. Koivisto and N. J. Nunes, “Coupled three-form dark energy,”

arXiv:1212.2541 [astro-ph.CO].

[180] S. Kumar, S. Panda, and A. A. Sen, “Cosmology With

Axionic-quintessence Coupled with Dark Matter,”

Class.Quant.Grav. 30 (2013) 155011,

arXiv:1302.1331 [astro-ph.CO].

[181] A. Brookfield, C. van de Bruck, and L. M. Hall, “New interactions in

the dark sector mediated by dark energy,”

Phys.Rev. D77 (2008) 043006, arXiv:0709.2297 [astro-ph].

[182] M. Baldi, “Multiple Dark Matter as a self-regulating mechanism for

dark sector interactions,” Annalen Phys. 524 (2012) 602–617,

arXiv:1204.0514 [astro-ph.CO].

[183] M. Baldi, “Structure formation in Multiple Dark Matter cosmologies

with long-range scalar interactions,”

arXiv:1206.2348 [astro-ph.CO].

159

http://dx.doi.org/10.1103/PhysRevD.79.123506
http://arxiv.org/abs/0902.0318
http://dx.doi.org/10.1103/PhysRevD.86.103522
http://arxiv.org/abs/1206.2589
http://dx.doi.org/10.1103/PhysRevD.86.103521
http://arxiv.org/abs/1111.6526
http://dx.doi.org/10.1016/j.physletb.2005.12.031
http://arxiv.org/abs/astro-ph/0512197
http://arxiv.org/abs/1212.2541
http://dx.doi.org/10.1088/0264-9381/30/15/155011
http://arxiv.org/abs/1302.1331
http://dx.doi.org/10.1103/PhysRevD.77.043006
http://arxiv.org/abs/0709.2297
http://dx.doi.org/10.1002/andp.201200073
http://arxiv.org/abs/1204.0514
http://arxiv.org/abs/1206.2348


[184] G. La Vacca, S. Bonometto, and L. Colombo, “Higher neutrino mass

allowed if DM and DE are coupled,” New Astron. 14 (2009) 435–442,

arXiv:0810.0127 [astro-ph].

[185] G. La Vacca, J. R. Kristiansen, L. P. L. Colombo, R. Mainini, and

S. A. Bonometto, “Do WMAP data favor neutrino mass and a

coupling between Cold Dark Matter and Dark Energy?,”

JCAP 0904 (2009) 007, arXiv:0902.2711 [astro-ph.CO].

[186] J. Kristiansen, G. La Vacca, L. Colombo, R. Mainini, and

S. Bonometto, “Coupling between cold dark matter and dark energy

from neutrino mass experiments,” New Astron. 15 (2010) 609–613,

arXiv:0902.2737 [astro-ph.CO].

[187] H. V. Klapdor-Kleingrothaus, “First evidence for neutrinoless doubly

beta decay: And world status of double beta experiments,”

arXiv:hep-ph/0512263 [hep-ph].

[188] G. Drexlin, V. Hannen, S. Mertens, and C. Weinheimer, “Current

direct neutrino mass experiments,”

Adv.High Energy Phys. 2013 (2013) 293986.

[189] R. Mainini and D. F. Mota, “ISW-LSS cross-correlation in coupled

Dark Energy models with massive neutrinos,”

Astrophys.J. 744 (2012) 3, arXiv:1011.0083 [astro-ph.CO].

[190] R. Mainini, “Voids and overdensities of coupled Dark Energy,”

JCAP 0904 (2009) 017, arXiv:0903.0574 [astro-ph.CO].

[191] W. Cui, M. Baldi, and S. Borgani, “The halo mass function in

interacting Dark Energy models,” arXiv:1201.3568 [astro-ph.CO].

[192] M. Le Delliou and T. Barreiro, “Interacting dark energy collapse with

matter components separation,” JCAP 1302 (2013) 037,

arXiv:1208.6373 [astro-ph.CO].

160

http://dx.doi.org/10.1016/j.newast.2008.12.004
http://arxiv.org/abs/0810.0127
http://dx.doi.org/10.1088/1475-7516/2009/04/007
http://arxiv.org/abs/0902.2711
http://dx.doi.org/10.1016/j.newast.2010.02.003
http://arxiv.org/abs/0902.2737
http://arxiv.org/abs/hep-ph/0512263
http://dx.doi.org/10.1155/2013/293986
http://dx.doi.org/10.1088/0004-637X/744/1/3
http://arxiv.org/abs/1011.0083
http://dx.doi.org/10.1088/1475-7516/2009/04/017
http://arxiv.org/abs/0903.0574
http://arxiv.org/abs/1201.3568
http://dx.doi.org/10.1088/1475-7516/2013/02/037
http://arxiv.org/abs/1208.6373


[193] A. V. Maccio, C. Quercellini, R. Mainini, L. Amendola, and S. A.

Bonometto, “N-body simulations for coupled dark energy: Halo mass

function and density profiles,” Phys.Rev. D69 (2004) 123516,

arXiv:astro-ph/0309671 [astro-ph].

[194] J. F. Navarro, C. S. Frenk, and S. D. White, “A Universal density

profile from hierarchical clustering,”

Astrophys.J. 490 (1997) 493–508,

arXiv:astro-ph/9611107 [astro-ph].

[195] V. Pettorino and C. Baccigalupi, “Coupled and Extended

Quintessence: theoretical differences and structure formation,”

Phys.Rev. D77 (2008) 103003, arXiv:0802.1086 [astro-ph].

[196] B. Li and H. Zhao, “Structure Formation by Fifth Force I: N-Body

vs. Linear Simulations,” Phys. Rev. D80 (2009) 044027,

arXiv:0906.3880 [astro-ph.CO].

[197] H. Zhao, A. Maccio’, B. Li, H. Hoekstra, and M. Feix, “Structure

Formation by Fifth Force: Power Spectrum from N-Body

Simulations,” Astrophys.J. 712 (2010) L179–L183,

arXiv:0910.3207 [astro-ph.CO].

[198] B. Li and H. Zhao, “Structure Formation by the Fifth Force III:

Segregation of Baryons and Dark Matter,”

Phys. Rev. D81 (2010) 104047, arXiv:1001.3152 [astro-ph.CO].

[199] B. Li and J. D. Barrow, “N-Body Simulations for Coupled Scalar

Field Cosmology,” Phys. Rev. D83 (2011) 024007,

arXiv:1005.4231 [astro-ph.CO].

[200] B. Li, “Voids in Coupled Scalar Field Cosmology,”

Mon.Not.Roy.Astron.Soc. 411 (2011) 2615,

arXiv:1009.1406 [astro-ph.CO].

161

http://dx.doi.org/10.1103/PhysRevD.69.123516
http://arxiv.org/abs/astro-ph/0309671
http://dx.doi.org/10.1086/304888
http://arxiv.org/abs/astro-ph/9611107
http://dx.doi.org/10.1103/PhysRevD.77.103003
http://arxiv.org/abs/0802.1086
http://dx.doi.org/10.1103/PhysRevD.80.044027
http://arxiv.org/abs/0906.3880
http://dx.doi.org/10.1088/2041-8205/712/2/L179
http://arxiv.org/abs/0910.3207
http://dx.doi.org/10.1103/PhysRevD.81.104047
http://arxiv.org/abs/1001.3152
http://dx.doi.org/10.1103/PhysRevD.83.024007
http://arxiv.org/abs/1005.4231
http://arxiv.org/abs/1009.1406


[201] B. Li and J. D. Barrow, “On the Effects of Coupled Scalar Fields on

Structure Formation,” Mon.Not.Roy.Astron.Soc. 413 (2011) 262–270,

arXiv:1010.3748 [astro-ph.CO].

[202] M. Baldi, “The CoDECS project: a publicly available suite of

cosmological N-body simulations for interacting dark energy models,”

Mon.Not.Roy.Astron.Soc. 422 (2012) 1028–1044,

arXiv:1109.5695 [astro-ph.CO].

[203] V. Springel, “The Cosmological simulation code GADGET-2,”

Mon.Not.Roy.Astron.Soc. 364 (2005) 1105–1134,

arXiv:astro-ph/0505010 [astro-ph].

[204] M. Baldi, “Simulations of structure formation in interacting dark

energy cosmologies,” Nucl.Phys.Proc.Suppl. 194 (2009) 178–184,

arXiv:0906.5353 [astro-ph.CO].

[205] G. Ballesteros and J. Lesgourgues, “Dark energy with non-adiabatic

sound speed: initial conditions and detectability,”

JCAP 1010 (2010) 014, arXiv:1004.5509 [astro-ph.CO].

[206] M. Baldi and M. Viel, “The Impact of Coupled Dark Energy

Cosmologies on the High- Redshift Intergalactic Medium,”

Mon. Not. Roy. Astron. Soc. 409 (2010) 89,

arXiv:1007.3736 [astro-ph.CO].

[207] M. Baldi, J. Lee, and A. V. Maccio, “The Effect of Coupled Dark

Energy on the Alignment between Dark Matter and Galaxy

Distributions in Clusters,” Astrophys.J. 732 (2011) 112,

arXiv:1101.5761 [astro-ph.CO].

[208] M. Oguri, M. Takada, N. Okabe, and G. P. Smith, “Direct

measurement of dark matter halo ellipticity from two-dimensional

lensing shear maps of 25 massive clusters,”

162

http://dx.doi.org/10.1111/j.1365-2966.2010.18130.x
http://arxiv.org/abs/1010.3748
http://dx.doi.org/10.1111/j.1365-2966.2012.20675.x
http://arxiv.org/abs/1109.5695
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://arxiv.org/abs/astro-ph/0505010
http://dx.doi.org/10.1016/j.nuclphysbps.2009.07.017
http://arxiv.org/abs/0906.5353
http://dx.doi.org/10.1088/1475-7516/2010/10/014
http://arxiv.org/abs/1004.5509
http://dx.doi.org/10.1111/j.1745-3933.2010.00954.x
http://arxiv.org/abs/1007.3736
http://dx.doi.org/10.1088/0004-637X/732/2/112
http://arxiv.org/abs/1101.5761


Mon.Not.Roy.Astron.Soc. 405 (2010) 2215–2230,

arXiv:1004.4214 [astro-ph.CO].

[209] J. Lee, “The Spin Alignments in Galaxy Pairs as a Test of Bouncing

Coupled Dark Energy,” arXiv:1111.5886 [astro-ph.CO].

[210] M. Baldi and V. Pettorino, “High-z massive clusters as a test for

dynamical coupled dark energy,”

Mon. Not. Roy. Astron. Soc. 412 (2011) L1,

arXiv:1006.3761 [astro-ph.CO].

[211] M. Baldi, “Early massive clusters and the bouncing coupled dark

energy,” Mon.Not.Roy.Astron.Soc. 420 (2012) 430–440,

arXiv:1107.5049 [astro-ph.CO].

[212] J. Lee and M. Baldi, “Can Coupled Dark Energy Speed Up the Bullet

Cluster?,” Astrophys.J. 747 (2012) 45,

arXiv:1110.0015 [astro-ph.CO].

[213] V. D. V. Cervantes, F. Marulli, L. Moscardini, M. Baldi, and

A. Cimatti, “Exploiting the shift of baryonic acoustic oscillations as a

dynamical probe for dark interactions,”

arXiv:1212.0853 [astro-ph.CO].

[214] C. Giocoli, F. Marulli, M. Baldi, L. Moscardini, and R. B. Metcalf,

“Characterizing dark interactions with the halo mass accretion history

and structural properties,” arXiv:1301.3151 [astro-ph.CO].

[215] E. Beynon, M. Baldi, D. J. Bacon, K. Koyama, and C. Sabiu, “Weak

lensing predictions for coupled dark energy cosmologies at non-linear

scales,” Mon.Not.Roy.Astron.Soc. 422 (2012) 3546–3553,

arXiv:1111.6974 [astro-ph.CO].

[216] F. Marulli, M. Baldi, and L. Moscardini, “Clustering and

redshift-space distortions in interacting dark energy cosmologies,”

163

http://dx.doi.org/10.1111/j.1365-2966.2010.16622.x
http://arxiv.org/abs/1004.4214
http://arxiv.org/abs/1111.5886
http://dx.doi.org/10.1111/j.1745-3933.2010.00975.x
http://arxiv.org/abs/1006.3761
http://dx.doi.org/10.1111/j.1365-2966.2011.20048.x
http://arxiv.org/abs/1107.5049
http://dx.doi.org/10.1088/0004-637X/747/1/45
http://arxiv.org/abs/1110.0015
http://arxiv.org/abs/1212.0853
http://arxiv.org/abs/1301.3151
http://dx.doi.org/10.1111/j.1365-2966.2012.20864.x
http://arxiv.org/abs/1111.6974


Mon.Not.Roy.Astron.Soc. 420 (2012) 2377,

arXiv:1110.3045 [astro-ph.CO].

[217] M. Baldi, “Time dependent couplings in the dark sector: from

background evolution to nonlinear structure formation,”

Mon. Not. Roy. Astron. Soc. 411 (2011) 1077,

arXiv:1005.2188 [astro-ph.CO].

[218] M. Baldi, “Clarifying the effects of interacting dark energy on linear

and nonlinear structure formation processes,”

Mon. Not. Roy. Astron. Soc. 414 (2011) 116,

arXiv:1012.0002 [astro-ph.CO].

[219] M. Baldi and P. Salucci, “Constraints on interacting dark energy

models from galaxy Rotation Curves,” JCAP 1202 (2012) 014,

arXiv:1111.3953 [astro-ph.CO].

[220] C. Eckart, “The Thermodynamics of irreversible processes. 3..

Relativistic theory of the simple fluid,” Phys.Rev. 58 (1940) 919–924.

[221] M. B. Gavela, L. Lopez Honorez, O. Mena, and S. Rigolin, “Dark

Coupling and Gauge Invariance,” JCAP 1011 (2010) 044,

arXiv:1005.0295 [astro-ph.CO].

[222] L. P. Chimento, A. S. Jakubi, D. Pavon, and W. Zimdahl,

“Interacting quintessence solution to the coincidence problem,”

Phys. Rev. D67 (2003) 083513, arXiv:astro-ph/0303145.

[223] W. Zimdahl and D. Pavon, “Statefinder parameters for interacting

dark energy,” Gen.Rel.Grav. 36 (2004) 1483–1491,

arXiv:gr-qc/0311067 [gr-qc].

[224] H. M. Sadjadi and M. Alimohammadi, “Cosmological coincidence

problem in interacting dark energy models,”

Phys. Rev. D74 (2006) 103007, arXiv:gr-qc/0610080.

164

http://dx.doi.org/10.1111/j.1365-2966.2011.20199.x
http://arxiv.org/abs/1110.3045
http://dx.doi.org/10.1111/j.1365-2966.2010.17758.x
http://arxiv.org/abs/1005.2188
http://dx.doi.org/10.1111/j.1365-2966.2011.18263.x
http://arxiv.org/abs/1012.0002
http://dx.doi.org/10.1088/1475-7516/2012/02/014
http://arxiv.org/abs/1111.3953
http://dx.doi.org/10.1103/PhysRev.58.919
http://dx.doi.org/10.1088/1475-7516/2010/11/044
http://arxiv.org/abs/1005.0295
http://dx.doi.org/10.1103/PhysRevD.67.083513
http://arxiv.org/abs/astro-ph/0303145
http://dx.doi.org/10.1023/B:GERG.0000022584.54115.9e
http://arxiv.org/abs/gr-qc/0311067
http://dx.doi.org/10.1103/PhysRevD.74.103007
http://arxiv.org/abs/gr-qc/0610080


[225] G. Olivares, F. Atrio-Barandela, and D. Pavon, “Dynamics of

Interacting Quintessence Models: Observational Constraints,”

Phys. Rev. D77 (2008) 063513, arXiv:0706.3860 [astro-ph].

[226] M. Quartin, M. O. Calvao, S. E. Joras, R. R. R. Reis, and I. Waga,

“Dark Interactions and Cosmological Fine-Tuning,”

JCAP 0805 (2008) 007, arXiv:0802.0546 [astro-ph].

[227] M. Cataldo, F. Arevalo, and P. Minning, “On a class of scaling FRW

cosmological models,” JCAP 1002 (2010) 024,

arXiv:1002.3415 [astro-ph.CO].

[228] J.-H. he he, B. Wang, and Y. P. Jing, “Effects of dark sectors’ mutual

interaction on the growth of structures,” JCAP 0907 (2009) 030.

http://arxiv.org/abs/0902.0660.

[229] C. Quercellini, M. Bruni, A. Balbi, and D. Pietrobon, “Late universe

dynamics with scale-independent linear couplings in the dark sector,”

Phys. Rev. D78 (2008) 063527, arXiv:0803.1976 [astro-ph].

[230] X. ming Chen, Y. gui Gong, and E. N. Saridakis, “Phase-space

analysis of interacting phantom cosmology,” JCAP 0904 (2009) 001,

arXiv:0812.1117 [gr-qc].

[231] J. D. Barrow and T. Clifton, “Cosmologies with energy exchange,”

Phys.Rev. D73 (2006) 103520, arXiv:gr-qc/0604063 [gr-qc].

[232] L. P. Chimento, M. I. Forte, and G. M. Kremer, “Cosmological model

with interactions in the dark sector,”

Gen.Rel.Grav. 41 (2009) 1125–1137, arXiv:0711.2646 [astro-ph].

[233] J. Lu, Y. Wu, Y. Jin, and Y. Wang, “Investigate the interaction

between dark matter and dark energy,”

Results in Physics 2 (Jan., 2012) 14–21,

arXiv:1203.4905 [astro-ph.CO].

165

http://dx.doi.org/10.1103/PhysRevD.77.063513
http://arxiv.org/abs/0706.3860
http://dx.doi.org/10.1088/1475-7516/2008/05/007
http://arxiv.org/abs/0802.0546
http://dx.doi.org/10.1088/1475-7516/2010/02/024
http://arxiv.org/abs/1002.3415
http://dx.doi.org/10.1088/1475-7516/2009/07/030
http://arxiv.org/abs/0902.0660
http://dx.doi.org/10.1103/PhysRevD.78.063527
http://arxiv.org/abs/0803.1976
http://dx.doi.org/10.1088/1475-7516/2009/04/001
http://arxiv.org/abs/0812.1117
http://dx.doi.org/10.1103/PhysRevD.73.103520
http://arxiv.org/abs/gr-qc/0604063
http://dx.doi.org/10.1007/s10714-008-0694-5
http://arxiv.org/abs/0711.2646
http://dx.doi.org/10.1016/j.rinp.2012.02.001
http://arxiv.org/abs/1203.4905


[234] Z.-K. Guo, N. Ohta, and S. Tsujikawa, “Probing the Coupling

between Dark Components of the Universe,”

Phys. Rev. D76 (2007) 023508, arXiv:astro-ph/0702015.

[235] G. M. Kremer and O. A. Sobreiro, “Bulk viscous cosmological model

with interacting dark fluids,” Braz.J.Phys. 42 (2012) 77–83,

arXiv:1109.5068 [gr-qc].

[236] X.-m. Chen, Y. Gong, E. N. Saridakis, Y. Gong, and E. N. Saridakis,

“Time-dependent interacting dark energy and transient acceleration,”

arXiv:1111.6743 [astro-ph.CO].

[237] Y.-H. Li and X. Zhang, “Running coupling: Does the coupling

between dark energy and dark matter change sign during the

cosmological evolution?,” Eur. Phys. J. C71 (2011) 1700,

arXiv:1103.3185 [astro-ph.CO].

[238] M. Chevallier and D. Polarski, “Accelerating universes with scaling

dark matter,” Int.J.Mod.Phys. D10 (2001) 213–224,

arXiv:gr-qc/0009008 [gr-qc].

[239] E. V. Linder, “Strong gravitational lensing and dark energy

complementarity,” Phys. Rev. D 70 no. 4, (Aug, 2004) 043534.

[240] J. C. Fabris, B. Fraga, N. Pinto-Neto, and W. Zimdahl, “Transient

cosmic acceleration from interacting fluids,” JCAP 1004 (2010) 008,

arXiv:0910.3246 [astro-ph.CO].

[241] A. Shafieloo, V. Sahni, and A. A. Starobinsky, “Is cosmic acceleration

slowing down?,” Phys.Rev. D80 (2009) 101301,

arXiv:0903.5141 [astro-ph.CO].

[242] C. Z. Vargas, W. S. Hipolito-Ricaldi, and W. Zimdahl, “Perturbations

for transient acceleration,” JCAP 1204 (2012) 032,

arXiv:1112.5337 [astro-ph.CO].

166

http://dx.doi.org/10.1103/PhysRevD.76.023508
http://arxiv.org/abs/astro-ph/0702015
http://dx.doi.org/10.1007/s13538-011-0051-0
http://arxiv.org/abs/1109.5068
http://arxiv.org/abs/1111.6743
http://dx.doi.org/10.1140/epjc/s10052-011-1700-8
http://arxiv.org/abs/1103.3185
http://dx.doi.org/10.1142/S0218271801000822
http://arxiv.org/abs/gr-qc/0009008
http://dx.doi.org/10.1103/PhysRevD.70.043534
http://dx.doi.org/10.1088/1475-7516/2010/04/008
http://arxiv.org/abs/0910.3246
http://dx.doi.org/10.1103/PhysRevD.80.101301
http://arxiv.org/abs/0903.5141
http://dx.doi.org/10.1088/1475-7516/2012/04/032
http://arxiv.org/abs/1112.5337


[243] W. Zimdahl, C. Vargas, and W. Hipólito-Ricaldi, “Interacting dark

energy and transient accelerated expansion,”

arXiv:1302.1347 [astro-ph.CO].

[244] L. Amendola, G. Camargo Campos, and R. Rosenfeld, “Consequences

of dark matter-dark energy interaction on cosmological parameters

derived from SNIa data,” Phys.Rev. D75 (2007) 083506,

arXiv:astro-ph/0610806 [astro-ph].

[245] C. Feng, B. Wang, E. Abdalla, and R.-K. Su, “Observational

constraints on the dark energy and dark matter mutual coupling,”

Phys.Lett. B665 (2008) 111–119, arXiv:0804.0110 [astro-ph].

[246] J.-H. He, B. Wang, and E. Abdalla, “Testing the interaction between

dark energy and dark matter via latest observations,”

Phys. Rev. D83 (2011) 063515, arXiv:1012.3904 [astro-ph.CO].

[247] J.-H. He and B. Wang, “Effects of the interaction between dark

energy and dark matter on cosmological parameters,”

JCAP 0806 (2008) 010, arXiv:0801.4233 [astro-ph].

[248] X. Chen, B. Wang, N. Pan, and Y. Gong, “Constraining the

interacting dark energy models from weak gravity conjecture and

recent observations,” Phys. Lett. B695 (2011) 30–36,

arXiv:1008.3455 [astro-ph.CO].

[249] M. Martinelli, L. Lopez Honorez, A. Melchiorri, and O. Mena,

“Future CMB cosmological constraints in a dark coupled universe,”

Phys.Rev. D81 (2010) 103534, arXiv:1004.2410 [astro-ph.CO].

[250] X.-D. Xu, J.-H. He, and B. Wang, “Breaking parameter degeneracy in

interacting dark energy models from observations,”

Phys. Lett. B701 (2011) 513–519,

arXiv:1103.2632 [astro-ph.CO].

167

http://arxiv.org/abs/1302.1347
http://dx.doi.org/10.1103/PhysRevD.75.083506
http://arxiv.org/abs/astro-ph/0610806
http://dx.doi.org/10.1016/j.physletb.2008.05.066
http://arxiv.org/abs/0804.0110
http://dx.doi.org/10.1103/PhysRevD.83.063515
http://arxiv.org/abs/1012.3904
http://dx.doi.org/10.1088/1475-7516/2008/06/010
http://arxiv.org/abs/0801.4233
http://dx.doi.org/10.1016/j.physletb.2010.11.032
http://arxiv.org/abs/1008.3455
http://dx.doi.org/10.1103/PhysRevD.81.103534
http://arxiv.org/abs/1004.2410
http://dx.doi.org/10.1016/j.physletb.2011.06.043
http://arxiv.org/abs/1103.2632


[251] T. Barreiro, O. Bertolami, and P. Torres, “Gamma-Ray Bursts and

Dark Energy - Dark Matter interaction,”

Mon.Not.Roy.Astron.Soc. 409 (2010) 750–754,

arXiv:1004.4562 [astro-ph.CO].

[252] Y. Pan, S. Cao, Y. Gong, K. Liao, and Z.-H. Zhu, “Testing the

interaction model with cosmological data and gamma-ray bursts,”

Phys.Lett. B718 (2013) 699–703, arXiv:1211.0184 [astro-ph.CO].

[253] O. Bertolami, F. Gil Pedro, and M. Le Delliou, “Dark Energy-Dark

Matter Interaction and the Violation of the Equivalence Principle

from the Abell Cluster A586,” Phys.Lett. B654 (2007) 165–169,

arXiv:astro-ph/0703462 [ASTRO-PH].

[254] O. Bertolami, F. Gil Pedro, and M. Le Delliou, “Testing the

interaction of dark energy to dark matter through the analysis of

virial relaxation of clusters Abell Clusters A586 and A1689 using

realistic density profiles,” Gen.Rel.Grav. 44 (2012) 1073–1088,

arXiv:1105.3033 [astro-ph.CO].

[255] E. Abdalla, L. R. W. Abramo, J. L. Sodre, and B. Wang, “Signature

of the interaction between dark energy and dark matter in galaxy

clusters,” Phys. Lett. B673 (2009) 107–110,

arXiv:0710.1198 [astro-ph].

[256] E. Abdalla, L. R. Abramo, and J. C. de Souza, “Signature of the

interaction between dark energy and dark matter in observations,”

Phys.Rev. D82 (2010) 023508, arXiv:0910.5236 [gr-qc].

[257] J.-H. He, B. Wang, E. Abdalla, and D. Pavon, “The Imprint of the

interaction between dark sectors in galaxy clusters,”

JCAP 1012 (2010) 022, arXiv:1001.0079 [gr-qc].

[258] C. Pellicer, E. G. Ferreira, D. C. Guariento, A. A. Costa, L. L. Graef,

et al., “The role of Dark Matter interaction in galaxy clusters,”

168

http://dx.doi.org/10.1111/j.1365-2966.2010.17344.x
http://arxiv.org/abs/1004.4562
http://dx.doi.org/10.1016/j.physletb.2012.11.002
http://arxiv.org/abs/1211.0184
http://dx.doi.org/10.1016/j.physletb.2007.08.046
http://arxiv.org/abs/astro-ph/0703462
http://dx.doi.org/10.1007/s10714-012-1327-6
http://arxiv.org/abs/1105.3033
http://dx.doi.org/10.1016/j.physletb.2009.02.008
http://arxiv.org/abs/0710.1198
http://dx.doi.org/10.1103/PhysRevD.82.023508
http://arxiv.org/abs/0910.5236
http://dx.doi.org/10.1088/1475-7516/2010/12/022
http://arxiv.org/abs/1001.0079


Mod.Phys.Lett. A27 (2012) 1250144,

arXiv:1102.5113 [astro-ph.CO].

[259] J. Lee, “The Misalignments between Matter and Galaxy Distributions

in Triaxial Clusters: A Signature of a Possible Fifth Force?,”

arXiv:1008.4620 [astro-ph.CO].

[260] G. ’t Hooft, “Dimensional reduction in quantum gravity,”

arXiv:gr-qc/9310026 [gr-qc].

[261] B. Wang, C.-Y. Lin, D. Pavon, and E. Abdalla, “Thermodynamical

description of the interaction between dark energy and dark matter,”

Phys.Lett. B662 (2008) 1–6, arXiv:0711.2214 [hep-th].

[262] D. Pavon and W. Zimdahl, “Holographic dark energy and cosmic

coincidence,” Phys.Lett. B628 (2005) 206–210,

arXiv:gr-qc/0505020 [gr-qc].

[263] B. Wang, Y. gui Gong, and E. Abdalla, “Transition of the dark

energy equation of state in an interacting holographic dark energy

model,” Phys. Lett. B624 (2005) 141–146, arXiv:hep-th/0506069.

[264] Q. Wu, Y. Gong, A. Wang, and J. Alcaniz, “Current constraints on

interacting holographic dark energy,” Phys.Lett. B659 (2008) 34–39,

arXiv:0705.1006 [astro-ph].

[265] C. Feng, B. Wang, Y. Gong, and R.-K. Su, “Testing the viability of

the interacting holographic dark energy model by using combined

observational constraints,” JCAP 0709 (2007) 005,

arXiv:0706.4033 [astro-ph].

[266] A. Rozas-Fernandez, D. Brizuela, and N. Cruz, “Interacting

holographic tachyon model of dark energy,”

Int.J.Mod.Phys. D19 (2010) 573, arXiv:1002.2929 [gr-qc].

169

http://dx.doi.org/10.1142/S0217732312501441
http://arxiv.org/abs/1102.5113
http://arxiv.org/abs/1008.4620
http://arxiv.org/abs/gr-qc/9310026
http://dx.doi.org/10.1016/j.physletb.2008.01.074
http://arxiv.org/abs/0711.2214
http://dx.doi.org/10.1016/j.physletb.2005.08.134
http://arxiv.org/abs/gr-qc/0505020
http://dx.doi.org/10.1016/j.physletb.2005.08.008
http://arxiv.org/abs/hep-th/0506069
http://dx.doi.org/10.1016/j.physletb.2007.10.061
http://arxiv.org/abs/0705.1006
http://dx.doi.org/10.1088/1475-7516/2007/09/005
http://arxiv.org/abs/0706.4033
http://dx.doi.org/10.1142/S0218271810016580
http://arxiv.org/abs/1002.2929


[267] K. Xiao and J.-Y. Zhu, “Dynamical behavior of interacting dark

energy in loop quantum cosmology,”

Int.J.Mod.Phys. A25 (2010) 4993–5007, arXiv:1006.5377 [gr-qc].

[268] S. Li and Y. Ma, “Dark Energy Interacting with Dark Matter in

Classical Einstein and Loop Quantum Cosmology,”

Eur.Phys.J. C68 (2010) 227–239, arXiv:1004.4350 [astro-ph.CO].

[269] O. Lemets and D. Yerokhin, “Interacting dark energy models in

fractal cosmology,” arXiv:1202.3457 [astro-ph.CO].

[270] A. Sheykhi and M. Sadegh Movahed, “Interacting Ghost Dark Energy

in Non-Flat Universe,” Gen.Rel.Grav. 44 (2012) 449–465,

arXiv:1104.4713 [hep-th].

[271] M. Malekjani and A. Khodam-Mohammadi, “Statefinder diagnosis

and the interacting ghost model of dark energy,”

Astrophys.Space Sci. 343 (2013) 451–461,

arXiv:1202.4154 [gr-qc].

[272] M. Malekjani, “Statefinder description of interacting generalized

QCD ghost dark energy,” In. J. Mod. Phys D 22 (2013) 1350084,

arXiv:1212.4673 [gr-qc].

[273] M. Jamil, “A Single model of interacting dark energy: Generalized

phantom energy or generalized Chaplygin gas,”

Int.J.Theor.Phys. 49 (2010) 144–151, arXiv:0912.4468 [hep-th].

[274] H. Amirhashchi, A. Pradhan, and H. Zainuddin, “Interacting

Two-Fluid Viscous Dark Energy Models In Non-Flat Universe,”

Res.Astron.Astrophys. 13 (2013) 129–138,

arXiv:1210.4637 [astro-ph.CO].

[275] G. Olivares, F. Atrio-Barandela, and D. Pavon, “Observational

constraints on interacting quintessence models,”

170

http://dx.doi.org/10.1142/S0217751X10050585
http://arxiv.org/abs/1006.5377
http://dx.doi.org/10.1140/epjc/s10052-010-1338-y
http://arxiv.org/abs/1004.4350
http://arxiv.org/abs/1202.3457
http://dx.doi.org/10.1007/s10714-011-1286-3
http://arxiv.org/abs/1104.4713
http://dx.doi.org/10.1007/s10509-012-1230-3
http://arxiv.org/abs/1202.4154
http://arxiv.org/abs/1212.4673
http://dx.doi.org/10.1007/s10773-009-0187-7
http://arxiv.org/abs/0912.4468
http://dx.doi.org/10.1088/1674-4527/13/2/001
http://arxiv.org/abs/1210.4637


Phys.Rev. D71 (2005) 063523,

arXiv:astro-ph/0503242 [astro-ph].

[276] G. Olivares, F. Atrio-Barandela, and D. Pavon, “Matter density

perturbations in interacting quintessence models,”

Phys. Rev. D74 (2006) 043521, arXiv:astro-ph/0607604.

[277] L. L. Honorez, “Non-adiabatic instability in coupled dark sectors,”

arXiv:0905.2352 [astro-ph.CO].

[278] F. De Bernardis, M. Martinelli, A. Melchiorri, O. Mena, and

A. Cooray, “Future weak lensing constraints in a dark coupled

universe,” Phys. Rev. D84 (2011) 023504,

arXiv:1104.0652 [astro-ph.CO].

[279] G. Izquierdo and D. Pavon, “Limits on the parameters of the

equation of state for interacting dark energy,”

Phys.Lett. B688 (2010) 115–124, arXiv:1004.2360 [astro-ph.CO].

[280] S. A. Bludman, “Tracking quintessence would require two cosmic

coincidences,” Phys.Rev. D69 (2004) 122002,

arXiv:astro-ph/0403526 [astro-ph].

[281] M. Capone, C. Rubano, and P. Scudellaro, “Slow rolling, inflation,

and quintessence,” Europhys.Lett. 73 (2006) 149–155,

arXiv:astro-ph/0607556 [astro-ph].

[282] E. V. Linder, “The paths of quintessence,”

Phys.Rev. D73 (2006) 063010,

arXiv:astro-ph/0601052 [astro-ph].

[283] R. N. Cahn, R. de Putter, and E. V. Linder, “Field Flows of Dark

Energy,” JCAP 0811 (2008) 015, arXiv:0807.1346 [astro-ph].

[284] D. Pavon and B. Wang, “Le Chatelier-Braun principle in cosmological

physics,” Gen.Rel.Grav. 41 (2009) 1–5, arXiv:0712.0565 [gr-qc].

171

http://dx.doi.org/10.1103/PhysRevD.71.063523
http://arxiv.org/abs/astro-ph/0503242
http://dx.doi.org/10.1103/PhysRevD.74.043521
http://arxiv.org/abs/astro-ph/0607604
http://arxiv.org/abs/0905.2352
http://dx.doi.org/10.1103/PhysRevD.84.023504
http://arxiv.org/abs/1104.0652
http://dx.doi.org/10.1016/j.physletb.2010.03.087
http://arxiv.org/abs/1004.2360
http://dx.doi.org/10.1103/PhysRevD.69.122002
http://arxiv.org/abs/astro-ph/0403526
http://dx.doi.org/10.1209/epl/i2005-10350-5
http://arxiv.org/abs/astro-ph/0607556
http://dx.doi.org/10.1103/PhysRevD.73.063010
http://arxiv.org/abs/astro-ph/0601052
http://dx.doi.org/10.1088/1475-7516/2008/11/015
http://arxiv.org/abs/0807.1346
http://dx.doi.org/10.1007/s10714-008-0656-y
http://arxiv.org/abs/0712.0565


[285] J. S. Alcaniz and J. Lima, “Interpreting cosmological vacuum decay,”

Phys.Rev. D72 (2005) 063516,

arXiv:astro-ph/0507372 [astro-ph].

[286] S. Pereira and J. Jesus, “Can Dark Matter Decay in Dark Energy?,”

Phys.Rev. D79 (2009) 043517, arXiv:0811.0099 [astro-ph].

[287] S. Cotsakis and G. Kittou, “Singularities in cosmologies with

interacting fluids,” Phys.Lett. B712 (2012) 16–21,

arXiv:1202.1407 [gr-qc].

[288] S. Cotsakis and G. Kittou, “Limits of isotropic universes with

interacting fluids,” arXiv:1302.4345 [gr-qc].

[289] H. Amirhashchi, A. Pradhan, and B. Saha, “An Interacting

Two-Fluid Scenario for Dark Energy in FRW Universe,”

Chin. Phys. Lett. 28 (2011) 039801, arXiv:1011.3940 [gr-qc].

[290] B. Gumjudpai and K. Thepsuriya, “Scalar field power-law cosmology

with spatial curvature and dark energy-dark matter interaction,”

Astrophys.Space Sci. 342 (2012) 537–547,

arXiv:1207.2920 [astro-ph.CO].

[291] W. Cui, Y. Zhang, and Z. Fu, “Transient Accelerating Scalar Models

with Exponential Potential,” arXiv:1303.2315 [astro-ph.CO].

[292] R. Cen, “Decaying cold dark matter model and small-scale power,”

Astrophys.J. 546 (2001) L77–L80,

arXiv:astro-ph/0005206 [astro-ph].

[293] M. Oguri, K. Takahashi, H. Ohno, and K. Kotake, “Decaying cold

dark matter and the evolution of the cluster abundance,”

Astrophys.J. 597 (2003) 645–649,

arXiv:astro-ph/0306020 [astro-ph].

172

http://dx.doi.org/10.1103/PhysRevD.72.063516
http://arxiv.org/abs/astro-ph/0507372
http://dx.doi.org/10.1103/PhysRevD.79.043517
http://arxiv.org/abs/0811.0099
http://dx.doi.org/10.1016/j.physletb.2012.04.057
http://arxiv.org/abs/1202.1407
http://arxiv.org/abs/1302.4345
http://dx.doi.org/10.1088/0256-307X/28/3/039801
http://arxiv.org/abs/1011.3940
http://dx.doi.org/10.1007/s10509-012-1180-9
http://arxiv.org/abs/1207.2920
http://arxiv.org/abs/1303.2315
http://dx.doi.org/10.1086/318861
http://arxiv.org/abs/astro-ph/0005206
http://dx.doi.org/10.1086/378490
http://arxiv.org/abs/astro-ph/0306020


[294] H. Ziaeepour, “Quintessence From The Decay of a Superheavy Dark

Matter,” Phys. Rev. D69 (2004) 063512, arXiv:astro-ph/0308515.

[295] B. M. Schaefer, “The integrated Sachs-Wolfe effect in cosmologies

with coupled dark matter and dark energy,”

Mon.Not.Roy.Astron.Soc. 388 (2008) 1403–1408,

arXiv:0803.2239 [astro-ph].

[296] B. M. Schaefer, G. A. Caldera-Cabral, and R. Maartens, “Constraints

on the decay of dark matter to dark energy from weak lensing

bispectrum tomography,” arXiv:0803.2154 [astro-ph].

[297] G. Caldera-Cabral, R. Maartens, and L. A. Urena-Lopez, “Dynamics

of interacting dark energy,” Phys. Rev. D79 (2009) 063518,

arXiv:0812.1827 [gr-qc].

[298] G. Caldera-Cabral, R. Maartens, and B. M. Schaefer, “The Growth of

Structure in Interacting Dark Energy Models,”

JCAP 0907 (2009) 027, arXiv:0905.0492 [astro-ph.CO].

[299] K. Koyama, R. Maartens, and Y.-S. Song, “Velocities as a probe of

dark sector interactions,” JCAP 0910 (2009) 017,

arXiv:0907.2126 [astro-ph.CO].

[300] L. L. Honorez, B. A. Reid, O. Mena, L. Verde, and R. Jimenez,

“Coupled dark matter-dark energy in light of near Universe

observations,” JCAP 1009 (2010) 029,

arXiv:1006.0877 [astro-ph.CO].

[301] G. Mangano, G. Miele, and V. Pettorino, “Coupled quintessence and

the coincidence problem,” Mod.Phys.Lett. A18 (2003) 831–842,

arXiv:astro-ph/0212518 [astro-ph].

[302] N. Cruz, G. Palma, D. Zambrano, and A. Avelino, “Interacting warm

dark matter,” arXiv:1211.6657 [astro-ph.CO].

173

http://dx.doi.org/10.1103/PhysRevD.69.063512
http://arxiv.org/abs/astro-ph/0308515
http://dx.doi.org/10.1111/j.1365-2966.2008.13521.x
http://arxiv.org/abs/0803.2239
http://arxiv.org/abs/0803.2154
http://dx.doi.org/10.1103/PhysRevD.79.063518
http://arxiv.org/abs/0812.1827
http://dx.doi.org/10.1088/1475-7516/2009/07/027
http://arxiv.org/abs/0905.0492
http://dx.doi.org/10.1088/1475-7516/2009/10/017
http://arxiv.org/abs/0907.2126
http://dx.doi.org/10.1088/1475-7516/2010/09/029
http://arxiv.org/abs/1006.0877
http://dx.doi.org/10.1142/S0217732303009940
http://arxiv.org/abs/astro-ph/0212518
http://arxiv.org/abs/1211.6657


[303] S. Z. W. Lip, “Interacting Cosmological Fluids and the Coincidence

Problem,” Phys. Rev. D83 (2011) 023528,

arXiv:1009.4942 [gr-qc].

[304] C. G. Boehmer, G. Caldera-Cabral, N. Chan, R. Lazkoz, and

R. Maartens, “Quintessence with quadratic coupling to dark matter,”

Phys. Rev. D81 (2010) 083003, arXiv:0911.3089 [gr-qc].

[305] E. Majerotto, J. Valiviita, and R. Maartens, “Adiabatic initial

conditions for perturbations in interacting dark energy models,”

Mon. Not. Roy. Astron. Soc. 402 (2010) 2344–2354,

arXiv:0907.4981 [astro-ph.CO].

[306] J. Valiviita, R. Maartens, and E. Majerotto, “Observational

constraints on an interacting dark energy model,”

Mon. Not. Roy. Astron. Soc. 402 (2010) 2355–2368,

arXiv:0907.4987 [astro-ph.CO].

[307] M. Doran, C. M. Muller, G. Schafer, and C. Wetterich,

“Gauge-invariant initial conditions and early time perturbations in

quintessence universes,” Phys.Rev. D68 (2003) 063505,

arXiv:astro-ph/0304212 [astro-ph].

[308] W. J. Potter and S. Chongchitnan, “A gauge-invariant approach to

interactions in the dark sector,” JCAP 1109 (2011) 005,

arXiv:1108.4414 [astro-ph.CO].

[309] H. Wei and R.-G. Cai, “A New Model of Agegraphic Dark Energy,”

Phys.Lett. B660 (2008) 113–117, arXiv:0708.0884 [astro-ph].

[310] K. Karami and A. Abdolmaleki, “Reconstructing interacting new

agegraphic polytropic gas model in non-flat FRW universe,”

Astrophys.Space Sci. 330 (2010) 133, arXiv:1010.4294 [hep-th].

[311] M. Malekjani, A. Khodam-Mohammadi, and M. Taji, “Statefinder

diagnostic and w − w′ analysis for interacting polytropic gas dark

174

http://dx.doi.org/10.1103/PhysRevD.83.023528
http://arxiv.org/abs/1009.4942
http://dx.doi.org/10.1103/PhysRevD.81.083003
http://arxiv.org/abs/0911.3089
http://dx.doi.org/10.1111/j.1365-2966.2009.16140.x
http://arxiv.org/abs/0907.4981
http://dx.doi.org/10.1111/j.1365-2966.2009.16115.x
http://arxiv.org/abs/0907.4987
http://dx.doi.org/10.1103/PhysRevD.68.063505
http://arxiv.org/abs/astro-ph/0304212
http://dx.doi.org/10.1088/1475-7516/2011/09/005
http://arxiv.org/abs/1108.4414
http://dx.doi.org/10.1016/j.physletb.2007.12.030
http://arxiv.org/abs/0708.0884
http://dx.doi.org/10.1007/s10509-010-0362-6
http://arxiv.org/abs/1010.4294


energy model,” Int.J.Theor.Phys. 51 (2012) 3141–3151,

arXiv:1201.0589 [gr-qc].

[312] R. C. de Souza and G. M. Kremer, “Dark Sector from Interacting

Canonical and Non-Canonical Scalar Fields,”

Class.Quant.Grav. 27 (2010) 175006, arXiv:1006.3146 [gr-qc].

[313] E. Abdalla, L. Graef, and B. Wang, “A Model for Dark Energy

decay,” arXiv:1202.0499 [gr-qc].

[314] M. Khurshudyan, “A Dark Energy Model interacting with Dark

Matter described by an effective EoS,” arXiv:1302.1220 [gr-qc].

[315] S. del Campo, R. Herrera, and D. Pavon, “Soft coincidence in late

acceleration,” Phys.Rev. D71 (2005) 123529,

arXiv:astro-ph/0506482 [astro-ph].

[316] S. del Campo, R. Herrera, G. Olivares, and D. Pavon, “Interacting

models of soft coincidence,” Phys.Rev. D74 (2006) 023501,

arXiv:astro-ph/0606520 [astro-ph].

[317] R.-G. Cai and Q. Su, “On the Dark Sector Interactions,”

Phys.Rev. D81 (2010) 103514, arXiv:0912.1943 [astro-ph.CO].

[318] H. Wei, “Cosmological Evolution of Quintessence and Phantom with

a New Type of Interaction in Dark Sector,”

Nucl.Phys. B845 (2011) 381–392, arXiv:1008.4968 [gr-qc].

[319] H. Wei, “Cosmological Constraints on the Sign-Changeable

Interactions,” Commun.Theor.Phys. 56 (2011) 972–980,

arXiv:1010.1074 [gr-qc].

[320] C.-Y. Sun and R.-H. Yue, “New Interaction between Dark Energy

and Dark Matter Changes Sign during Cosmological Evolution,”

Phys.Rev. D85 (2012) 043010, arXiv:1009.1214 [gr-qc].

175

http://dx.doi.org/10.1007/s10773-012-1195-6
http://arxiv.org/abs/1201.0589
http://dx.doi.org/10.1088/0264-9381/27/17/175006
http://arxiv.org/abs/1006.3146
http://arxiv.org/abs/1202.0499
http://arxiv.org/abs/1302.1220
http://dx.doi.org/10.1103/PhysRevD.71.123529
http://arxiv.org/abs/astro-ph/0506482
http://dx.doi.org/10.1103/PhysRevD.74.023501
http://arxiv.org/abs/astro-ph/0606520
http://dx.doi.org/10.1103/PhysRevD.81.103514
http://arxiv.org/abs/0912.1943
http://dx.doi.org/10.1016/j.nuclphysb.2010.12.010
http://arxiv.org/abs/1008.4968
http://dx.doi.org/10.1088/0253-6102/56/5/29
http://arxiv.org/abs/1010.1074
http://dx.doi.org/10.1103/PhysRevD.85.043010
http://arxiv.org/abs/1009.1214


[321] L. P. Chimento, “Linear and nonlinear interactions in the dark

sector,” Phys.Rev. D81 (2010) 043525,

arXiv:0911.5687 [astro-ph.CO].

[322] L. P. Chimento,

“Exactly solved models of interacting dark matter and dark energy,”

in American Institute of Physics Conference Series, J. Alcaniz,

S. Carneiro, L. P. Chimento, S. Del Campo, J. C. Fabris, J. A. S.

Lima, and W. Zimdahl, eds., vol. 1471 of American Institute of

Physics Conference Series, pp. 30–38. Oct., 2012.

arXiv:1204.5797 [gr-qc].

[323] T. Ngampitipan and P. Wongjun, “Dynamics of three-form dark

energy with dark matter couplings,” JCAP 1111 (2011) 036,

arXiv:1108.0140 [hep-ph].

[324] N. Dalal, K. Abazajian, E. E. Jenkins, and A. V. Manohar, “Testing

the cosmic coincidence problem and the nature of dark energy,”

Phys.Rev.Lett. 87 (2001) 141302,

arXiv:astro-ph/0105317 [astro-ph].

[325] I. Ferreras, A. Melchiorri, and D. Tocchini-Valentini, “Using bright

ellipticals as dark energy cosmic clocks,”

Mon.Not.Roy.Astron.Soc. 344 (2003) 257,

arXiv:astro-ph/0302180 [astro-ph].

[326] L. M. Krauss and B. Chaboyer, “New globular cluster age estimates

and constraints on the cosmic equation of state and the matter

density of the universe,” arXiv:astro-ph/0111597 [astro-ph].

[327] I. Ferreras, A. Melchiorri, and J. Silk, “How old is the universe?

Setting new constraints on the age of the universe,”

Mon.Not.Roy.Astron.Soc. 327 (2001) L47,

arXiv:astro-ph/0105384 [astro-ph].

176

http://dx.doi.org/10.1103/PhysRevD.81.043525
http://arxiv.org/abs/0911.5687
http://dx.doi.org/10.1063/1.4756808
http://arxiv.org/abs/1204.5797
http://dx.doi.org/10.1088/1475-7516/2011/11/036
http://arxiv.org/abs/1108.0140
http://dx.doi.org/10.1103/PhysRevLett.87.141302
http://arxiv.org/abs/astro-ph/0105317
http://dx.doi.org/10.1046/j.1365-8711.2003.06843.x
http://arxiv.org/abs/astro-ph/0302180
http://arxiv.org/abs/astro-ph/0111597
http://dx.doi.org/10.1046/j.1365-8711.2001.04979.x
http://arxiv.org/abs/astro-ph/0105384


[328] W. Zimdahl and D. Pavon, “Scaling cosmology,”

Gen.Rel.Grav. 35 (2003) 413–422,

arXiv:astro-ph/0210484 [astro-ph].

[329] D. Pavon, S. Sen, and W. Zimdahl, “CMB constraints on interacting

cosmological models,” JCAP 0405 (2004) 009,

arXiv:astro-ph/0402067 [astro-ph].

[330] Y. Chen, Z.-H. Zhu, J. Alcaniz, and Y. Gong, “Using A

Phenomenological Model to Test the Coincidence Problem of Dark

Energy,” Astrophys.J. 711 (2010) 439–444,

arXiv:1001.1489 [astro-ph.CO].

[331] P. Wang and X.-H. Meng, “Can vacuum decay in our universe?,”

Class.Quant.Grav. 22 (2005) 283–294,

arXiv:astro-ph/0408495 [astro-ph].

[332] F. Costa, J. Barboza, E.M., and J. Alcaniz, “Cosmology with

interaction in the dark sector,” Phys.Rev. D79 (2009) 127302,

arXiv:0905.0672 [astro-ph.CO].

[333] J. Jesus, R. Santos, J. Alcaniz, and J. Lima, “New coupled

quintessence cosmology,” Phys.Rev. D78 (2008) 063514,

arXiv:0806.1366 [astro-ph].

[334] M. de Campos, “Observational consequences of a dark interaction

model,” Braz.J.Phys. 40 (2010) 398, arXiv:0912.1143 [gr-qc].

[335] F. Simpson, B. M. Jackson, and J. A. Peacock, “Unmodified

Gravity,” Mon. Not. Roy. Astron. Soc. 411 (Feb., 2011) 1053–1058,

arXiv:1004.1920 [astro-ph.CO].

[336] P. Ferreira, J. Carvalho, and J. Alcaniz, “Probing interaction in the

dark sector,” Phys.Rev. D87 (2013) 087301,

arXiv:1212.2492 [astro-ph.CO].

177

http://dx.doi.org/10.1023/A:1022369800053
http://arxiv.org/abs/astro-ph/0210484
http://dx.doi.org/10.1088/1475-7516/2004/05/009
http://arxiv.org/abs/astro-ph/0402067
http://dx.doi.org/10.1088/0004-637X/711/1/439
http://arxiv.org/abs/1001.1489
http://dx.doi.org/10.1088/0264-9381/22/2/003
http://arxiv.org/abs/astro-ph/0408495
http://dx.doi.org/10.1103/PhysRevD.79.127302
http://arxiv.org/abs/0905.0672
http://dx.doi.org/10.1103/PhysRevD.78.063514
http://arxiv.org/abs/0806.1366
http://arxiv.org/abs/0912.1143
http://dx.doi.org/10.1111/j.1365-2966.2010.17734.x
http://arxiv.org/abs/1004.1920
http://dx.doi.org/10.1103/PhysRevD.87.087301
http://arxiv.org/abs/1212.2492


[337] R. Herrera, D. Pavon, and W. Zimdahl, “Exact solutions for the

interacting tachyonic - dark matter system,”

Gen.Rel.Grav. 36 (2004) 2161–2169,

arXiv:astro-ph/0404086 [astro-ph].

[338] M. Bento, O. Bertolami, and A. A. Sen, “The Revival of the unified

dark energy - dark matter model?,” Phys.Rev. D70 (2004) 083519,

arXiv:astro-ph/0407239 [astro-ph].

[339] P. Avelino and H. da Silva, “Effective dark energy equation of state in

interacting dark energy models,” Phys.Lett. B714 (2012) 6–10,

arXiv:1201.0550 [astro-ph.CO].

[340] F. Costa and J. Alcaniz, “Cosmological consequences of a possible

Λ-dark matter interaction,” Phys.Rev. D81 (2010) 043506,

arXiv:0908.4251 [astro-ph.CO].

[341] H. Wei, “Revisiting the Cosmological Constraints on the Interacting

Dark Energy Models,” Phys.Lett. B691 (2010) 173–182,

arXiv:1004.0492 [gr-qc].

[342] F. C. Solano and U. Nucamendi, “Reconstruction of the interaction

term between dark matter and dark energy using SNe Ia,”

JCAP 1204 (2012) 011, arXiv:1109.1303 [astro-ph.CO].

[343] F. C. Solano and U. Nucamendi, “Reconstruction of the interaction

term between dark matter and dark energy using SNe Ia, BAO,

CMB, H(z) and X-ray gas mass fraction,”

arXiv:1207.0250 [astro-ph.CO].

[344] H. Wei and S. N. Zhang, “How to distinguish dark energy and

modified gravity?,” Phys.Rev.D 78 (2008) 023011.

http://arxiv.org/abs/0803.3292.

178

http://dx.doi.org/10.1023/B:GERG.0000038630.55301.ca
http://arxiv.org/abs/astro-ph/0404086
http://dx.doi.org/10.1103/PhysRevD.70.083519
http://arxiv.org/abs/astro-ph/0407239
http://dx.doi.org/10.1016/j.physletb.2012.06.063
http://arxiv.org/abs/1201.0550
http://dx.doi.org/10.1103/PhysRevD.81.043506
http://arxiv.org/abs/0908.4251
http://dx.doi.org/10.1016/j.physletb.2010.06.038
http://arxiv.org/abs/1004.0492
http://dx.doi.org/10.1088/1475-7516/2012/04/011
http://arxiv.org/abs/1109.1303
http://arxiv.org/abs/1207.0250
http://arxiv.org/abs/0803.3292


[345] L. Amendola, M. Baldi, and C. Wetterich, “Quintessence cosmologies

with a growing matter component,” Phys.Rev. D78 (2008) 023015,

arXiv:0706.3064 [astro-ph].

[346] A. Aviles and J. L. Cervantes-Cota, “The dark degeneracy and

interacting cosmic components,” Phys. Rev. D84 (2011) 083515,

arXiv:1108.2457 [astro-ph.CO].

[347] M. Jamil, E. N. Saridakis, and M. Setare, “Thermodynamics of dark

energy interacting with dark matter and radiation,”

Phys.Rev. D81 (2010) 023007, arXiv:0910.0822 [hep-th].

[348] T. Harko and F. S. Lobo, “Irreversible thermodynamic description of

interacting dark energy - dark matter cosmological models,”

Phys. Rev. D87 (2013) 044018, arXiv:1210.3617 [gr-qc].

[349] J. Beyer, S. Nurmi, and C. Wetterich, “Coupled dark energy and dark

matter from dilatation anomaly,” Phys. Rev. D84 (2011) 023010,

arXiv:1012.1175 [astro-ph.CO].

[350] M. Tong, Y. Zhang, and Z. Fu, “Crossing w = −1 by a single scalar

field coupling with matter and the observational constraints,”

Class.Quant.Grav. 28 (2011) 055006,

arXiv:1101.5199 [astro-ph.CO].

[351] F. Simpson, “Scattering of Dark Matter and Dark Energy,”

Phys. Rev. D82 (2010) 083505, arXiv:1007.1034 [astro-ph.CO].

[352] X.-D. Xu, B. Wang, and E. Abdalla, “The signature of the scattering

between dark sectors in large scale cosmic microwave background

anisotropies,” Phys.Rev. D85 (2012) 083513,

arXiv:1112.1128 [astro-ph.CO].

[353] F. Costa, J. Alcaniz, and D. Jain, “An interacting model for the

cosmological dark sector,” Phys.Rev. D85 (2012) 107302,

arXiv:1204.3066 [astro-ph.CO].

179

http://dx.doi.org/10.1103/PhysRevD.78.023015
http://arxiv.org/abs/0706.3064
http://dx.doi.org/10.1103/PhysRevD.84.083515
http://arxiv.org/abs/1108.2457
http://dx.doi.org/10.1103/PhysRevD.81.023007
http://arxiv.org/abs/0910.0822
http://dx.doi.org/10.1103/PhysRevD.87.044018
http://arxiv.org/abs/1210.3617
http://dx.doi.org/10.1103/PhysRevD.84.023010
http://arxiv.org/abs/1012.1175
http://dx.doi.org/10.1088/0264-9381/28/5/055006
http://arxiv.org/abs/1101.5199
http://dx.doi.org/10.1103/PhysRevD.82.083505
http://arxiv.org/abs/1007.1034
http://dx.doi.org/10.1103/PhysRevD.85.083513
http://arxiv.org/abs/1112.1128
http://dx.doi.org/10.1103/PhysRevD.85.107302
http://arxiv.org/abs/1204.3066


[354] F. Costa, J. Lima, and F. Oliveira, “Decaying Vacuum Cosmology

and its Scalar Field Description,” arXiv:1204.1864 [astro-ph.CO].

[355] J. De-Santiago, D. Wands, and Y. Wang, “Inhomogeneous and

interacting vacuum energy,” arXiv:1209.0563 [astro-ph.CO].

[356] V. Poitras, “Constraints on Λ(t)-cosmology with power law

interacting dark sectors,” JCAP 1206 (2012) 039,

arXiv:1205.6766 [astro-ph.CO].

[357] A. G. Riess, L. Macri, S. Casertano, M. Sosey, H. Lampeitl, et al., “A

Redetermination of the Hubble Constant with the Hubble Space

Telescope from a Differential Distance Ladder,”

Astrophys.J. 699 (2009) 539–563, arXiv:0905.0695 [astro-ph.CO].

[358] R. R. Caldwell, “A Phantom Menace?,”

Phys. Lett. B545 (2002) 23–29, arXiv:astro-ph/9908168.

[359] C. Deffayet, O. Pujolas, I. Sawicki, and A. Vikman, “Imperfect Dark

Energy from Kinetic Gravity Braiding,” JCAP 1010 (2010) 026,

arXiv:1008.0048 [hep-th].

[360] A. J. Christopherson and K. A. Malik, “The non-adiabatic pressure in

general scalar field systems,” Phys.Lett. B675 (2009) 159–163,

arXiv:0809.3518 [astro-ph].

[361] I. Huston and A. J. Christopherson, “Calculating Non-adiabatic

Pressure Perturbations during Multi-field Inflation,”

Phys.Rev. D85 (2012) 063507, arXiv:1111.6919 [astro-ph.CO].

[362] W. J. Percival, S. Cole, D. J. Eisenstein, R. C. Nichol, J. A. Peacock,

et al., “Measuring the Baryon Acoustic Oscillation scale using the

SDSS and 2dFGRS,”

Mon.Not.Roy.Astron.Soc. 381 (2007) 1053–1066,

arXiv:0705.3323 [astro-ph].

180

http://arxiv.org/abs/1204.1864
http://arxiv.org/abs/1209.0563
http://dx.doi.org/10.1088/1475-7516/2012/06/039
http://arxiv.org/abs/1205.6766
http://dx.doi.org/10.1088/0004-637X/699/1/539
http://arxiv.org/abs/0905.0695
http://dx.doi.org/10.1016/S0370-2693(02)02589-3
http://arxiv.org/abs/astro-ph/9908168
http://dx.doi.org/10.1088/1475-7516/2010/10/026
http://arxiv.org/abs/1008.0048
http://dx.doi.org/10.1016/j.physletb.2009.04.003
http://arxiv.org/abs/0809.3518
http://dx.doi.org/10.1103/PhysRevD.85.063507
http://arxiv.org/abs/1111.6919
http://dx.doi.org/10.1111/j.1365-2966.2007.12268.x
http://arxiv.org/abs/0705.3323


[363] WMAP Collaboration Collaboration, E. Komatsu et al.,

“Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Cosmological Interpretation,”

Astrophys.J.Suppl. 192 (2011) 18,

arXiv:1001.4538 [astro-ph.CO].

[364] R. Kessler, A. Becker, D. Cinabro, J. Vanderplas, J. A. Frieman,

et al., “First-year Sloan Digital Sky Survey-II (SDSS-II) Supernova

Results: Hubble Diagram and Cosmological Parameters,”

Astrophys.J.Suppl. 185 (2009) 32–84,

arXiv:0908.4274 [astro-ph.CO].

[365] S. Burles, K. M. Nollett, and M. S. Turner, “Big bang nucleosynthesis

predictions for precision cosmology,” Astrophys.J. 552 (2001) L1–L6,

arXiv:astro-ph/0010171 [astro-ph].

[366] B. Feng, X.-L. Wang, and X.-M. Zhang, “Dark Energy Constraints

from the Cosmic Age and Supernova,”

Phys. Lett. B607 (2005) 35–41, arXiv:astro-ph/0404224.

[367] H. Ziaeepour, “Discrimination between Lambda-CDM, quintessence,

and modified gravity models using wide area surveys,”

Phys.Rev. D86 (2012) 043503, arXiv:1112.6025 [astro-ph.CO].

[368] V. Faraoni, E. Gunzig, and P. Nardone, “Conformal transformations

in classical gravitational theories and in cosmology,” Fund.Cosmic

Phys. 20 (1999) 121, arXiv:gr-qc/9811047 [gr-qc].

[369] N. Deruelle and M. Sasaki, “Conformal equivalence in classical

gravity: the example of ’veiled’ General Relativity,”

arXiv:1007.3563 [gr-qc].

[370] Y. Bisabr, “Cosmic Acceleration in Brans-Dicke Cosmology,”

Gen.Rel.Grav. 44 (2012) 427–435, arXiv:1110.3421 [gr-qc].

181

http://dx.doi.org/10.1088/0067-0049/192/2/18
http://arxiv.org/abs/1001.4538
http://dx.doi.org/10.1088/0067-0049/185/1/32
http://arxiv.org/abs/0908.4274
http://dx.doi.org/10.1086/320251
http://arxiv.org/abs/astro-ph/0010171
http://dx.doi.org/10.1016/j.physletb.2004.12.071
http://arxiv.org/abs/astro-ph/0404224
http://dx.doi.org/10.1103/PhysRevD.86.043503
http://arxiv.org/abs/1112.6025
http://arxiv.org/abs/gr-qc/9811047
http://arxiv.org/abs/1007.3563
http://dx.doi.org/10.1007/s10714-011-1281-8
http://arxiv.org/abs/1110.3421


[371] B. Bertotti, L. Iess, and P. Tortora, “A test of general relativity using

radio links with the Cassini spacecraft,” Nature 425 (2003) 374.

[372] A. Avilez and C. Skordis, “Cosmological constraints on Brans-Dicke

theory,” arXiv:1303.4330 [astro-ph.CO].

[373] R. Nagata, T. Chiba, and N. Sugiyama, “Observational consequences

of evolution of primordial fluctuations in scalar - tensor cosmology,”

Phys.Rev. D66 (2002) 103510,

arXiv:astro-ph/0209140 [astro-ph].

[374] S. Capozziello, V. F. Cardone, and A. Troisi, “Reconciling dark

energy models with f(R) theories,” Phys.Rev. D71 (2005) 043503,

arXiv:astro-ph/0501426 [astro-ph].

[375] S. Nojiri and S. D. Odintsov, “Modified f(R) gravity consistent with

realistic cosmology: From matter dominated epoch to dark energy

universe,” Phys.Rev. D74 (2006) 086005,

arXiv:hep-th/0608008 [hep-th].

[376] Y.-S. Song, W. Hu, and I. Sawicki, “The Large Scale Structure of

f(R) Gravity,” Phys.Rev. D75 (2007) 044004,

arXiv:astro-ph/0610532 [astro-ph].

[377] E. V. Linder, “Cosmic growth history and expansion history,”

Phys.Rev. D72 (2005) 043529,

arXiv:astro-ph/0507263 [astro-ph].

[378] M. Ishak, A. Upadhye, and D. N. Spergel, “Probing cosmic

acceleration beyond the equation of state: Distinguishing between

dark energy and modified gravity models,”

Phys.Rev. D74 (2006) 043513,

arXiv:astro-ph/0507184 [astro-ph].

[379] L. Knox, Y.-S. Song, and J. A. Tyson, “Distance-redshift and

growth-redshift relations as two windows on acceleration and

182

http://dx.doi.org/10.1038/nature01997
http://arxiv.org/abs/1303.4330
http://dx.doi.org/10.1103/PhysRevD.66.103510
http://arxiv.org/abs/astro-ph/0209140
http://dx.doi.org/10.1103/PhysRevD.71.043503
http://arxiv.org/abs/astro-ph/0501426
http://dx.doi.org/10.1103/PhysRevD.74.086005
http://arxiv.org/abs/hep-th/0608008
http://dx.doi.org/10.1103/PhysRevD.75.044004
http://arxiv.org/abs/astro-ph/0610532
http://dx.doi.org/10.1103/PhysRevD.72.043529
http://arxiv.org/abs/astro-ph/0507263
http://dx.doi.org/10.1103/PhysRevD.74.043513
http://arxiv.org/abs/astro-ph/0507184


gravitation: Dark energy or new gravity?,”

Phys.Rev. D74 (2006) 023512,

arXiv:astro-ph/0503644 [astro-ph].

[380] S. Nesseris and L. Perivolaropoulos, “Evolving newton’s constant,

extended gravity theories and snia data analysis,”

Phys.Rev. D73 (2006) 103511,

arXiv:astro-ph/0602053 [astro-ph].

[381] D. Polarski, “Dark Energy: Beyond General Relativity?,”

AIP Conf.Proc. 861 (2006) 1013–1018,

arXiv:astro-ph/0605532 [astro-ph].

[382] T. Chiba and R. Takahashi, “A Consistency Relation in Cosmology,”

Phys.Rev. D75 (2007) 101301,

arXiv:astro-ph/0703347 [astro-ph].

[383] A. F. Heavens, T. Kitching, and L. Verde, “On model selection

forecasting, Dark Energy and modified gravity,”

Mon.Not.Roy.Astron.Soc. 380 (2007) 1029–1035,

arXiv:astro-ph/0703191 [astro-ph].

[384] D. Huterer and E. V. Linder, “Separating Dark Physics from Physical

Darkness: Minimalist Modified Gravity vs. Dark Energy,”

Phys.Rev. D75 (2007) 023519,

arXiv:astro-ph/0608681 [astro-ph].

[385] E. V. Linder, “Theory Challenges of the Accelerating Universe,”

J.Phys.A A40 (2007) 6697, arXiv:astro-ph/0610173 [astro-ph].

[386] J.-P. Uzan, “The acceleration of the universe and the physics behind

it,” Gen.Rel.Grav. 39 (2007) 307–342,

arXiv:astro-ph/0605313 [astro-ph].

[387] S. Wang, L. Hui, M. May, and Z. Haiman, “Is modified gravity

required by observations? an empirical consistency test of dark

183

http://dx.doi.org/10.1103/PhysRevD.74.023512
http://arxiv.org/abs/astro-ph/0503644
http://dx.doi.org/10.1103/PhysRevD.73.103511
http://arxiv.org/abs/astro-ph/0602053
http://dx.doi.org/10.1063/1.2399692
http://arxiv.org/abs/astro-ph/0605532
http://dx.doi.org/10.1103/PhysRevD.75.101301
http://arxiv.org/abs/astro-ph/0703347
http://dx.doi.org/10.1111/j.1365-2966.2007.12134.x
http://arxiv.org/abs/astro-ph/0703191
http://dx.doi.org/10.1103/PhysRevD.75.023519
http://arxiv.org/abs/astro-ph/0608681
http://dx.doi.org/10.1088/1751-8113/40/25/S14
http://arxiv.org/abs/astro-ph/0610173
http://dx.doi.org/10.1007/s10714-006-0385-z
http://arxiv.org/abs/astro-ph/0605313


energy models,” Phys.Rev.D 76 (2007) 063503.

http://arxiv.org/abs/0705.0165.

[388] K. Yamamoto, D. Parkinson, T. Hamana, R. C. Nichol, and Y. Suto,

“Optimizing future imaging survey of galaxies to confront dark

energy and modified gravity models,” Phys.Rev. D76 (2007) 023504,

arXiv:0704.2949 [astro-ph].

[389] V. Acquaviva, A. Hajian, D. N. Spergel, and S. Das, “Next

Generation Redshift Surveys and the Origin of Cosmic Acceleration,”

Phys.Rev. D78 (2008) 043514, arXiv:0803.2236 [astro-ph].

[390] L. Amendola, M. Kunz, and D. Sapone, “Measuring the dark side

(with weak lensing),” JCAP 0804 (2008) 013,

arXiv:0704.2421 [astro-ph].

[391] I. Laszlo and R. Bean, “Nonlinear growth in modified gravity theories

of dark energy,” Phys.Rev. D77 (2008) 024048,

arXiv:0709.0307 [astro-ph].

[392] Y. Wang, “Differentiating dark energy and modified gravity with

galaxy redshift surveys,” JCAP 0805 (2008) 021.

http://arxiv.org/abs/0710.3885.

[393] W. Hu, “Acceleration from Modified Gravity: Lessons from Worked

Examples,” Nucl.Phys.Proc.Suppl. 194 (2009) 230–238,

arXiv:0906.2024 [astro-ph.CO].

[394] P. Wu, H. Yu, and X. Fu, “A parametrization for the growth index of

linear matter perturbations,” JCAP 0906 (2009) 019.

http://arxiv.org/abs/0905.3444.

[395] S. Baghram and S. Rahvar, “Structure formation in f(R) gravity: A

distinguishing probe between the dark energy and modified gravity,”

JCAP 1012 (2010) 008, arXiv:1004.3360 [astro-ph.CO].

184

http://dx.doi.org/10.1103/PhysRevD.76.063503
http://arxiv.org/abs/0705.0165
http://dx.doi.org/10.1103/PhysRevD.76.023504, 10.1103/PhysRevD.76.129901
http://arxiv.org/abs/0704.2949
http://dx.doi.org/10.1103/PhysRevD.78.043514
http://arxiv.org/abs/0803.2236
http://dx.doi.org/10.1088/1475-7516/2008/04/013
http://arxiv.org/abs/0704.2421
http://dx.doi.org/10.1103/PhysRevD.77.024048
http://arxiv.org/abs/0709.0307
http://dx.doi.org/10.1088/1475-7516/2008/05/021
http://arxiv.org/abs/0710.3885
http://dx.doi.org/10.1016/j.nuclphysbps.2009.07.086
http://arxiv.org/abs/0906.2024
http://dx.doi.org/10.1088/1475-7516/2009/06/019
http://arxiv.org/abs/0905.3444
http://dx.doi.org/10.1088/1475-7516/2010/12/008
http://arxiv.org/abs/1004.3360


[396] S. Chen and J. Jing, “Improved parametrization of the growth index

for dark energy and DGP models,” Phys.Lett. B685 (2010) 185–189,

arXiv:0908.4379 [gr-qc].

[397] D. Huterer, “Weak lensing, dark matter and dark energy,”

Gen.Rel.Grav. 42 (2010) 2177–2195,

arXiv:1001.1758 [astro-ph.CO].

[398] F. Simpson and J. A. Peacock, “Difficulties Distinguishing Dark

Energy from Modified Gravity via Redshift Distortions,”

Phys.Rev. D81 (2010) 043512, arXiv:0910.3834 [astro-ph.CO].

[399] S. Lee, “Constraints on scalar-tensor theories of gravity from

observations,” JCAP 1103 (2011) 021,

arXiv:1012.2646 [astro-ph.CO].

[400] E. Jennings, C. M. Baugh, and S. Pascoli, “Testing gravity using the

growth of large scale structure in the Universe,” Astrophys.J. 727

(2011) L9, arXiv:1011.2842 [astro-ph.CO].

[401] Y. Wang, “Observational Probes of Dark Energy,”

AIP Conf.Proc. 1458 (2011) 285–300,

arXiv:1201.2110 [astro-ph.CO].

[402] M. Kunz and D. Sapone, “Dark Energy versus Modified Gravity,”

Phys.Rev.Lett. 98 (2007) 121301,

arXiv:astro-ph/0612452 [astro-ph].

[403] E. Bertschinger and P. Zukin, “Distinguishing modified gravity from

dark energy,” Phys.Rev.D 78 (2008) 024015.

http://arxiv.org/abs/0801.2431.

[404] D. Sapone, “Dark Energy in Practice,”

Int.J.Mod.Phys. A25 (2010) 5253–5331,

arXiv:1006.5694 [astro-ph.CO].

185

http://dx.doi.org/10.1016/j.physletb.2010.01.061
http://arxiv.org/abs/0908.4379
http://dx.doi.org/10.1007/s10714-010-1051-z
http://arxiv.org/abs/1001.1758
http://dx.doi.org/10.1103/PhysRevD.81.043512
http://arxiv.org/abs/0910.3834
http://dx.doi.org/10.1088/1475-7516/2011/03/021
http://arxiv.org/abs/1012.2646
http://arxiv.org/abs/1011.2842
http://dx.doi.org/10.1063/1.4734419
http://arxiv.org/abs/1201.2110
http://dx.doi.org/10.1103/PhysRevLett.98.121301
http://arxiv.org/abs/astro-ph/0612452
http://arxiv.org/abs/0801.2431
http://dx.doi.org/10.1142/S0217751X10050743
http://arxiv.org/abs/1006.5694


[405] B. Jain and P. Zhang, “Observational Tests of Modified Gravity,”

Phys.Rev. D78 (2008) 063503, arXiv:0709.2375 [astro-ph].

[406] Y.-S. Song and K. Koyama, “Consistency test of general relativity

from large scale structure of the Universe,” JCAP 0901 (2009) 048,

arXiv:0802.3897 [astro-ph].

[407] T. Clemson, K. Koyama, G.-B. Zhao, R. Maartens, and J. Valiviita,

“Interacting Dark Energy – constraints and degeneracies,”

Phys.Rev. D85 (2012) 043007, arXiv:1109.6234 [astro-ph.CO].

[408] Y.-S. Song, L. Hollenstein, G. Caldera-Cabral, and K. Koyama,

“Theoretical Priors On Modified Growth Parametrisations,”

JCAP 1004 (2010) 018, arXiv:1001.0969 [astro-ph.CO].

[409] G. Dvali, G. Gabadadze, and M. Porrati, “4-D gravity on a brane in

5-D Minkowski space,” Phys.Lett. B485 (2000) 208–214,

arXiv:hep-th/0005016 [hep-th].

[410] B. Boisseau, G. Esposito-Farese, D. Polarski, and A. A. Starobinsky,

“Reconstruction of a scalar tensor theory of gravity in an accelerating

universe,” Phys.Rev.Lett. 85 (2000) 2236,

arXiv:gr-qc/0001066 [gr-qc].

[411] R. Reyes, R. Mandelbaum, U. Seljak, T. Baldauf, J. E. Gunn, et al.,

“Confirmation of general relativity on large scales from weak lensing

and galaxy velocities,” Nature 464 (2010) 256–258,

arXiv:1003.2185 [astro-ph.CO].

[412] L. Pogosian, A. Silvestri, K. Koyama, and G.-B. Zhao, “How to

optimally parametrize deviations from general relativity in the

evolution of cosmological perturbations,”

Phys.Rev.D 81 (2010) 104023. http://arxiv.org/abs/1002.2382.

186

http://dx.doi.org/10.1103/PhysRevD.78.063503
http://arxiv.org/abs/0709.2375
http://dx.doi.org/10.1088/1475-7516/2009/01/048
http://arxiv.org/abs/0802.3897
http://dx.doi.org/10.1103/PhysRevD.85.043007
http://arxiv.org/abs/1109.6234
http://dx.doi.org/10.1088/1475-7516/2010/04/018
http://arxiv.org/abs/1001.0969
http://dx.doi.org/10.1016/S0370-2693(00)00669-9
http://arxiv.org/abs/hep-th/0005016
http://dx.doi.org/10.1103/PhysRevLett.85.2236
http://arxiv.org/abs/gr-qc/0001066
http://dx.doi.org/10.1038/nature08857
http://arxiv.org/abs/1003.2185
http://dx.doi.org/10.1103/PhysRevD.81.104023
http://arxiv.org/abs/1002.2382


[413] T. Baker, P. G. Ferreira, C. Skordis, and J. Zuntz, “Towards a fully

consistent parameterization of modified gravity,”

Phys. Rev. D 84 (2011) 124018. http://arxiv.org/abs/1107.0491.

[414] J. Zuntz, T. Baker, P. Ferreira, and C. Skordis, “Ambiguous tests of

general relativity on cosmological scales,” Apr., 2012.

http://arxiv.org/abs/1110.3830.

[415] G.-B. Zhao, T. Giannantonio, L. Pogosian, A. Silvestri, D. J. Bacon,

K. Koyama, R. C. Nichol, and Y.-S. Song, “Probing modifications of

general relativity using current cosmological observations,”

Phys.Rev.D 81 (2010) 103510. http://arxiv.org/abs/1003.0001.

[416] P. Zhang, M. Liguori, R. Bean, and S. Dodelson, “A discriminating

probe of gravity at cosmological scales,”

Phys.Rev.Lett. 99 (2007) 141302.

http://arxiv.org/abs/0704.1932.

[417] S. Tsujikawa, K. Uddin, S. Mizuno, R. Tavakol, and J. Yokoyama,

“Constraints on scalar-tensor models of dark energy from

observational and local gravity tests,” Phys.Rev. D77 (2008) 103009,

arXiv:0803.1106 [astro-ph].

[418] V. Acquaviva, C. Baccigalupi, S. M. Leach, A. R. Liddle, and

F. Perrotta, “Structure formation constraints on the

Jordan-Brans-Dicke theory,” Phys.Rev. D71 (2005) 104025,

arXiv:astro-ph/0412052 [astro-ph].

[419] F. Wu and X. Chen, “Cosmic microwave background with

Brans-Dicke gravity II: constraints with the WMAP and SDSS data,”

Phys.Rev. D82 (2010) 083003, arXiv:0903.0385 [astro-ph.CO].

[420] R. Nagata, T. Chiba, and N. Sugiyama, “WMAP constraints on

scalar- tensor cosmology and the variation of the gravitational

187

http://dx.doi.org/10.1103/PhysRevD.84.124018
http://arxiv.org/abs/1107.0491
http://arxiv.org/abs/1110.3830
http://dx.doi.org/10.1103/PhysRevD.81.103510
http://arxiv.org/abs/1003.0001
http://dx.doi.org/10.1103/PhysRevLett.99.141302
http://arxiv.org/abs/0704.1932
http://dx.doi.org/10.1103/PhysRevD.77.103009
http://arxiv.org/abs/0803.1106
http://dx.doi.org/10.1103/PhysRevD.71.104025
http://arxiv.org/abs/astro-ph/0412052
http://dx.doi.org/10.1103/PhysRevD.82.083003
http://arxiv.org/abs/0903.0385


constant,” Phys.Rev. D69 (2004) 083512,

arXiv:astro-ph/0311274 [astro-ph].

[421] T. Clifton, D. F. Mota, and J. D. Barrow, “Inhomogeneous gravity,”

Mon.Not.Roy.Astron.Soc. 358 (2005) 601,

arXiv:gr-qc/0406001 [gr-qc].

[422] E. Gaztanaga, E. Garcia-Berro, J. Isern, E. Bravo, and I. Dominguez,

“Bounds on the possible evolution of the gravitational constant from

cosmological type Ia supernovae,” Phys.Rev. D65 (2002) 023506,

arXiv:astro-ph/0109299 [astro-ph].

[423] V. Acquaviva and L. Verde, “Observational signatures of

Jordan-Brans-Dicke theories of gravity,” JCAP 0712 (2007) 001,

arXiv:0709.0082 [astro-ph].

188

http://dx.doi.org/10.1103/PhysRevD.69.083512
http://arxiv.org/abs/astro-ph/0311274
http://dx.doi.org/10.1111/j.1365-2966.2005.08831.x
http://arxiv.org/abs/gr-qc/0406001
http://dx.doi.org/10.1103/PhysRevD.65.023506
http://arxiv.org/abs/astro-ph/0109299
http://dx.doi.org/10.1088/1475-7516/2007/12/001
http://arxiv.org/abs/0709.0082

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Declaration
	Acknowledgements
	Dissemination
	Abbreviations
	Definitions and Notation
	Perspectives on LambdaCDM
	The Cosmological Constant
	History
	The place of Lambda in GR
	Problems

	Observations
	CMB and BAO
	SNIa and The Hubble Parameter
	Other probes

	Alternatives to LambdaCDM
	Dark energy
	Modified gravity
	Other possibilities


	Cosmological Perturbations
	Perturbing the Metric
	Gauge Transformation
	Gauge-Invariant Variables
	Observables
	Dynamics of the Metric
	Specific Gauge Choices
	Synchronous
	Newtonian

	Dynamics of the fluid

	IDE in the literature
	An Overview of IDE
	Historical Context
	Interactions Proportional to the scalar field velocity
	Early works
	Later works
	Particle theory
	Massive neutrinos
	Halo collapse
	Simulations

	Interactions Proportional to the Hubble factor
	Constant coupling
	Variable coupling
	Observations
	Clusters
	Applications
	Theory

	Interactions Proportional to Gamma
	Introducing the Gamma model
	First constraints
	Instabilities
	Generalisation
	Classification
	Quadratic couplings
	Improved constraints

	Other Forms of Couplings
	Motivated by theory
	Designed for a purpose

	Parameterisations of Interactions
	The xi parameterisation
	The epsilon parameterisation
	Other forms of parameterisation

	Other Works
	Reconstruction of the coupling
	Particle theory
	Vacuum decay

	Discussion

	Constraining a Model of Interacting Dark Energy
	Model Development
	IDE in the background
	IDE in the perturbations
	Initial conditions

	Coding for the Model
	Modifying CAMB
	Maple checks
	CosmoMC
	Using the SCIAMA supercomputer

	Analysis
	Effects on the CMB and matter power spectra
	Likelihood analysis
	Analysis of the best-fit models
	Growth of structure

	Conclusions

	Mathematically Equivalent Models of Interacting Dark Energy and Modified Gravity
	Conformal Equivalence
	Historical Context
	The Dual MG/IDE Descriptions
	Field equations
	Scalar field equations of motion
	Metric perturbations
	Coupling terms
	Growth equations

	Direct Comparison

	The Distinguishability of Interacting Dark Energy from Modified Gravity
	Introduction
	Distinguishing DE and MG
	Distinguishing IDE and MG
	The IDE and MG models

	IDE/DGP
	Matching
	Comparison
	Distinguishability

	IDE/STT
	Matching
	Comparison
	Distinguishability

	Conclusions

	Conclusions
	Bibliography

