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Abstract

WITHIN particle physics the development of a multitude of computational techniques has been

necessary in order to tackle the highly complex problems posed by interacting quantum field

theories. Weak coupling, perturbative expansions – with their well-known graphical representation via

Feynman diagrams – were incredibly successful and brought us to our current understanding of high

energy physics. They remain of central importance today, however, also methods applicable to strongly

coupled, non-perturbative systems are needed to complement our knowledge. The arguably most

important such field theory where both methodologies are needed is quantum chromodynamics (QCD),

which has a coupling decreasing with energy due to renormalization effects, and, for asymptotically

high energies, the theory becomes non-interacting. On the other hand, low energy characteristics

such as mesonic and baryonic bound states – which include properties such as masses of protons and

neutrons – need be studied through non-perturbative computations.

Discretizing spacetime into a regular lattice and simulating QCD on supercomputers has become a

highly successful tool to carry out these non-perturbative computations from first principles. In this

thesis we study in detail time-moments of heavy quark correlators to high precision. These moments

are used in literature to extract the QCD coupling αS (as well as charm and bottom quark masses) by

comparing lattice and perturbative computations, a procedure which requires these observables to be

dominated by energies where both methods may be applied. Scales reachable with lattice calculations

are in practice limited from above by a momentum cutoff of the order of the inverse lattice spacing a−1.

These cutoff effects increase when trying to compute observables at higher energies. At the same time,

perturbation theory contains a truncation error due to the higher order unknown terms. If the first n

terms of the series are known, an error of order O(αn+1
S ) is unavoidable, and such error increases with

decreasing energy. Thus, one is left with a window of energies where the moments method may work,

and a precise assessment of its systematic uncertainties is necessary, since these directly propagate in

numerous particle physics computations, such as Higgs decays to b-quarks or gluons, Z-boson partial

widths as well as having implications in topics such as the electroweak vacuum stability.

Herein, we carry out a quenched study of time moments, where the effect of dynamical quarks

is neglected, and we argue this to give good quantitative (or approximate quantitative) information

about the fully dynamical case. This is of great algorithmic advantage and allows us to reach down to

lattice spacings of a∼ 0.01 fm, a precision currently not reachable in our setup for full QCD in large

volume; we simulate L3×T ∼ (2fm)3×6fm volumes and impose open boundary conditions in time

to avoid the issue of topological freezing present at fine lattice spacing. We compute moments for
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several energies µ of 0.8mcharm ≲ µ ≲ 3.5mcharm, which allows us to study the variation with energy

of the coupling and of the truncation error of these observables. To tackle the large cutoff effects, we

use a non-perturbatively improved Wilson-clover fermion doublet with a twisted mass term, tuned to

maximal twist. Operators appearing in the two-point function are chosen to be pseudoscalar densities,

to avoid the presence of explicit renormalization factors and to have small statistical noise stemming

from the numerical Markov chain Monte Carlo integration. Beyond the coupling itself, we also study

its running to infinite energy, encoded in the Λ-parameter, and the truncation errors therein.

Moments in the time-momentum representation are defined as time integrals of the correlator

weighted with tn. Lower moments are more perturbative than higher ones, yet for n = 4 large cutoff

effects are present and it was necessary to set up a special procedure to reliably extrapolate to the

continuum, currently under further development. From ratios of higher moments, with n = 6, 8, 10,

we could obtain acceptable continuum limit estimates.

Our results, based on ratios of moments R6/R8 and R8/R10, show that the Λ-parameter extracted

has sizeable deviations of order 5% to 10% – depending on the observable – at energy scales of µ ∼
2mcharm ≃ 2.5 GeV (in the MS-scheme) with respect to the latest step-scaling result. An extrapolation

to αS → 0 is possible, but with a considerable slope. These extrapolations include neither higher

orders in αS nor power corrections. Moreover, variations of the perturbative renormalization scale to

estimate the truncation error, quite widespread in the literature and considered to be a rather “safe”

and conservative estimate, definitely seem to undershoot the real size of the errors in the case of

moments. Finally, we note that as expected the above mentioned deviation – encoded in the slope as

one extrapolates αS→ 0 – is larger for R8/R10.

The emerging picture is rather bleak: the less perturbative observable R8/R10 (which has a slower

convergence) is closer to known values, while the more perturbative R6/R8 (with a better behaved

convergence) seems to be farther away from them. As a matter of fact, this study unfortunately does

not help much in settling the recently emerged tension between earlier quenched results and the

aforementioned latest step-scaling result. Caution should be used when using high order perturbation

theory at flavor physics scales for moments of heavy quarks correlators and truncation errors should

not be underestimated.

iv



Zusammenfassung

IM Rahmen der Teilchenphysik war die Entwicklung einer Vielzahl von Rechentechniken notwendig,

um die hochkomplexen Probleme zu lösen, die durch wechselwirkende Quantenfeldtheorien

entstehen. Störungstheoretische Entwicklungen in einer schwachen Kopplung – mit ihrer bekannten

grafischen Darstellung durch Feynman-Diagramme – waren extrem erfolgreich und brachten uns zu un-

serem heutigen Verständnis der Hochenergiephysik. Sie sind auch heute noch von zentraler Bedeutung.

Allerdings werden zusätzlich Methoden benötigt, die auf stark gekoppelte, nicht-störungsbehaftete

Systeme anwendbar sind, um unser Wissen zu ergänzen. Die wohl wichtigste Feldtheorie, in der

beide Methoden benötigt werden, ist die Quantenchromodynamik (QCD), deren Kopplung aufgrund

von Renormierungseffekten mit der Energie abnimmt und die bei asymptotisch hohen Energien nicht

mehr wechselwirkt. Andererseits müssen die Eigenschaften mesonischer und baryonischer gebundener

Zustände bei niedriger Energie – zu denen Eigenschaften wie die Massen von Protonen und Neutronen

gehören – mit Hilfe von nicht-perturbative Berechnungen untersucht werden.

Die Diskretisierung der Raumzeit auf einem regelmäßigen Gitter und die Simulation der QCD auf Su-

percomputern hat sich zu einem sehr erfolgreichen Verfahren entwickelt, um diese nicht-perturbativen

Berechnungen ausgehend von Grundprinzipien durchzuführen. In dieser Arbeit untersuchen wir

im Detail die Zeit-Momente schwerer Quark-Korrelatoren mit hoher Präzision. Diese Momente

werden in der Literatur verwendet, um die QCD-Kopplung αS (sowie die Massen der charm- und

bottom-Quarks) durch den Vergleich von Gitter- und Störungsberechnungen zu extrahieren. Dieses

Verfahren erfordert, dass diese Observablen von Energien dominiert werden, bei denen beide Methoden

angewendet werden können. Die mit Gitterrechnungen erreichbaren Skalen werden in der Praxis

durch einen Impuls-Cutoff in der Größenordnung des inversen Gitterabstandes a−1 nach oben hin

begrenzt. Diese Diskretisierungseffekte nehmen zu, wenn man die Observablen bei höheren Energien

berechnet. Gleichzeitig enthält die Störungstheorie aufgrund der unbekannten Terme höherer Ordnung

einen Trunkierungsfehler. Wenn die ersten n Terme der Reihe bekannt sind, ist ein Fehler der Ord-

nung O(αn+1
S ) unvermeidlich, und dieser Fehler nimmt mit abnehmender Energie zu. Somit bleibt

ein Fenster von Energien übrig, in dem die Momente-Methode funktionieren kann. Eine genaue

Abschätzung ihrer systematischen Unsicherheiten ist notwendig, da diese sich direkt in zahlreichen

Berechnungen der Teilchenphysik auswirken, wie z.B. Higgs-Zerfälle zu b-Quarks oder Gluonen,

Z-Bosonen-Partialbreiten, und auch Auswirkungen auf Themen wie die elektroschwache Vakuumsta-

bilität haben.

Wir führen eine sog. quenched Untersuchung der Zeitmomente durch, bei der der Effekt der
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dynamischen Quarks vernachlässigt wird, und wir argumentieren, dass dies gute quantitative (oder

annährende quantitative) Informationen über den vollständig dynamischen Fall liefert. Dies ist von

großem algorithmischen Vorteil und erlaubt es uns, Gitterabständen von bis zu a∼ 0.01 fm zu erreichen.

Diese Präzision ist derzeit in unserem Setup für die vollständige QCD in großen Volumen nicht

erreichbar. Wir simulieren L3×T ∼ (2fm)3×6fm Volumen und setzen offene Randbedingungen in der

Zeit ein, um das Problem des topologischen Einfrierens zu vermeiden, das bei feinen Gitterabständen

auftritt. Wir berechnen Momente für verschiedene Energien µ von 0.8mcharm ≲ µ ≲ 3.5mcharm, was uns

erlaubt, die Veränderung der Kopplung und des Trunkierungsfehler dieser Observablen bei wechselnder

Energie zu untersuchen. Um die großen Diskretisierungseffekte zu kontrollieren, verwenden wir ein

nicht-perturbativ verbessertes Wilson-Clover-Fermionen-Dublett mit einem twisted mass Term, der

auf maximalen twist eingestellt ist. Die in der Zweipunktfunktion auftretenden Operatoren werden als

pseudoskalare Dichten gewählt, um das Auftreten expliziter Renormierungsfaktoren zu vermeiden

und um ein geringes statistisches Rauschen zu erhalten, das aus der numerischen Markov-Ketten-

Monte-Carlo-Integration stammt. Neben der Kopplung untersuchen wir auch ihren Verlauf bis zur

unendlichen Energie, kodiert im Λ-Parameter, und die darin enthaltenen Trunkierungsfehler.

Momente in der Zeit-Impuls-Darstellung sind als Zeitintegrale des mit tn gewichteten Korrela-

tors definiert. Niedrigere Momente sind perturbativer als höhere, jedoch für n = 4 gibt es große

Diskretisierungseffekte, die es erforderlich machten ein spezielles Verfahren zu entwickeln. Dieses

ist derzeit noch in der Weiterentwicklung und es wird ermöglichen, zuverlässig in das Kontinuum

zu extrapolieren. Aus den Quotienten höherer Momente, mit n = 6, 8, 10, konnten wir akzeptable

Kontinuumsgrenzwertschätzungen erhalten.

Unsere Ergebnisse, die auf den Quotienten der Momente R6/R8 und R8/R10 beruhen, zeigen, dass

der extrahierte Λ-Parameter bei Energieskalen von µ ∼ 2mcharm ≃ 2.5 GeV (im MS-Schema) in Bezug

auf das neueste step-scaling Ergebnis beträchtliche Abweichungen in der Größenordnung von 5% bis

10% – abhängig von der Observable – aufweist. Eine Extrapolation bis αS→ 0 ist möglich, allerdings

mit einer beträchtlichen Steigung. Diese Extrapolationen beinhalten weder höhere Ordnungen in αS

noch Potenzkorrekturen. Darüber hinaus scheinen Variationen der perturbativen Renormierungsskala

zur Abschätzung des Trunkierungsfehlers, die in der Literatur weit verbreitet sind und als “sichere”

und konservative Schätzung gelten, im Fall der Momente definitiv die tatsächliche Größe der Fehler zu

unterschätzen. Schließlich stellen wir fest, dass die oben erwähnte Abweichung – die in der Steigung

bei der αS→ 0 Extrapolation kodiert ist – für R8/R10 erwartungsgemäß größer ist.

Es ergibt sich ein recht düsteres Bild: Die weniger störungsbehaftete Observable R8/R10 (die eine

langsamere Konvergenz aufweist) liegt näher an den bekannten Werten, während die stärker störungs-

behaftete Observable R6/R8 (die eine bessere Konvergenz aufweist) weiter von ihnen entfernt zu sein

scheint. In der Tat ist diese Studie leider nicht in der Lage die kürzlich aufgetretenen Spannungen

zwischen früheren gequenchten Ergebnissen und dem oben erwähnten neuesten step-scaling Ergebnis

zu lösen. Bei der Verwendung der Störungstheorie hoher Ordnung auf den Skalen der Flavor-Physik

für die Momente der Korrelatoren schwerer Quarks ist Vorsicht geboten, da große Trunkierungsfehler

auftreten können.

vi
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1 | Introduction

MUCH time has passed since Einstein’s famous “annus mirabilis” 1905, during which he laid

the interpretative ground stone of what would later become two of the main disciplines of

contemporary theoretical physics: quantum mechanics and special relativity. Over the past century

the key ideas underlying these two theories have been of central importance in building up what

is now our understanding of particle physics. The theoretical effort and workforce necessary to

understand how to explain microscopic phenomena starting off from these two foundational theories

was enormous. A historical perspective is by no means within the scope of the current thesis, here

we will only mention briefly the conclusion of said effort, namely the development of quantum field

theory and especially of gauge theories. In modern language the fundamental entities governing the

microscopic world are relativistic fields which obey the principles of quantum mechanics. It becomes

necessary to consider fields with infinite degrees of freedom to account for phenomena such as particle

creation and annihilation. These fields permeate spacetime and their localized excitations are what one

calls particles. In trying to understand several microscopic phenomena related to light, nuclei, and

radioactivity it was slowly understood what the appropriate theories at the scale of the particle world

were, which today are summarized by the standard model of particle physics (SM). In terms of this

theory, a dazzling amount of properties can be computed to unprecedented accuracy within science.

The standard model of particle physics will be very briefly described in the next section, for now let

us mention much of its conceptual basis has been known for several decades, oftentimes by gaining

insight through the use of perturbative techniques. Nowadays, particle physics, both in its theoretical

and experimental incarnation, has become a mature field which longs for high precision results in the

search for deviations from the SM. Much of the progress during the last decades has been possible not

only thanks to the stunning theoretical, experimental, and mathematical advances, but also because of

the advent of ever-growing computational resources.

It is within this context that the core of this thesis lies. Large scale simulations on supercomputers

have been carried out to study numerically physics of non-perturbative nature, namely the strong

coupling regime of quantum chromodynamics (QCD), one of the fundamental gauge theories within

the SM. One specific method for computing quantum chromodynamics’ coupling αS (also called the

strong coupling), which we will refer to as the moments method, has been thoroughly studied to high

accuracy in order to understand its precision and limitations.



CHAPTER 1 INTRODUCTION

1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

1.1.1. Content of the Theory

The key ideas underlying the SM are the usage of quantized field theory and of gauge symmetry. Here

we will only sketch some features of the latter, necessary for following discussions. The relevant

symmetries are expressed in terms of Lie groups of local transformationsI. Each of these gauge

symmetry transformations is associated to an interaction, i.e. to a gauge field following Bose-Einstein

statistics. They act on the scalar Higgs boson [85] and on matter fields, which follow Fermi-Dirac

statistics. Three symmetries are at play, collectively denoted

GSM = SU(3)⊗SU(2)⊗U(1) , (1.1)

which are associated, respectively, to the strong, the weak and the electromagnetic forceII. The Lie

algebra valued vector potentials generating the groups are the bosonic gauge fields. A very large part

of particle physics consists in studying observables which are gauge invariant, since these symmetries

entail a redundancy in the description, but where one needs to fix the gauge at intermediate steps of the

computation in order to apply the most widespread technique: perturbation theory. We will see later

that it is not necessary to go through gauge fixing or even to use the Lie Algebra valued gauge potential

Aµ(x), since the lattice formulation of QCD will be explicitly gauge invariant and written in terms

of Lie group variables. The matter fields encompassed by the SM come in three generations, as is

necessary for the anomaly cancellation of theories where both gauge invariance and coupling of gauge

bosons to chiral currents are required [73]. Each generation contains leptons, consisting of electron (e),

muon (µ), and tau (τ), each with a neutrino (ν) associated to them, and quark doublets, given by

Q =

(︄
u

d

)︄
,

(︄
c

s

)︄
,

(︄
t

b

)︄
. (1.2)

Here we will not go into the details of the handedness and the related multiplet structure in which these

fields appear within the SM.

All the matter fields interact weakly, all but the neutrino have electrical charge, and the quark fields

are distinguished due to their strong interaction. Moreover, due to the non-Abelian nature of the gauge

group, also interaction between different bosons is possible, as we will see in detail in the case of QCD.

In fig. 1.1 all SM interactions are represented by blue lines connecting the different fields/particles,

represented by darker blobs. Finally, let us mention for completeness the last piece of the puzzle,

namely the Higgs boson, the only scalar present in the SM. Beyond its self-interaction, it interacts with

non-neutrino leptons, with quarks, and with weak bosons, thereby making them massive through the

IWe refer to standard literature, such as [70].
IIThis distinction is somewhat superficial and sloppy, for the sake of exposition. Note that in order to distinguish weak

and electromagnetic forces, one first needs to spontaneously break – in a gauge fixed language – SU(2)⊗U(1)→U(1)em
through a non-zero Higgs field vacuum expectation value, a phenomenon associated to the mass generation and for which we
refer to standard QFT literature such as [136].
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1.1 THE STANDARD MODEL OF PARTICLE PHYSICS

Figure 1.1: Different fields are represented by black blobs, while the blue line connecting two of them represents
the possibility of interacting at lowest order within the Standard Model. Image taken from [161].

celebrated Higgs mechanism, unfolding during electroweak symmetry breaking [158, 85].

1.1.2. The Necessity for Renormalization

Observables in quantum field theory are expressed as expectation values of operators, with a given set

of quantum numbers, acting on an infinite dimensional Hilbert space H of states. In these expectation

values one sums over all possible field configurations leading, in Fourier space, to integrals which

are oftentimes divergent. For instance, in quantum electrodynamics (QED)III, the 1 loop perturbative

correction to the photon propagator with momentum p – chosen here for its similarity to the central

observable we analyze in this thesis, namely the (scalar) vacuum polarization defined in eq. (2.1) – is

˜︁Π(1L)
µν (p,m) =

∫︂
⟨0|T

{︁
Aint

µ (x)Aint
ν (y)

}︁
|0⟩ ei(x−y)·p d4(x− y)

⃓⃓⃓⃓
1L

=
p

p− k

p

k

where the photon fields are in the interacting theory and we are here considering contributions at

leading order. The details are unimportant at this stage, what we want to stress here is the following:

this diagram has a diverging behavior for large k, or, more precisely, for k/m, k/p≫ 1 one has

˜︁Π(1L)
µν (p,m) ∝

∫︂
∞

−∞

tr
{︃

γρkρ +m
k2 +m2 γ

ν
γρ(p− k)ρ +m

(p− k)2 γ
µ

}︃
d4k ∼

k≫1

∫︂
∞

0
k · f (m, p)dk , (1.3)

IIIAs is usual also for perturbative computations, we use here Euclidean signature.
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CHAPTER 1 INTRODUCTION

which contains an ultraviolet divergence for large momentum k. To obtain eq. (1.3) we simply naively

counted the powers of k appearing, i.e. k2 in the numerator, k4 in the denominator, and a k3 factor

from the integration measure when switching to spherical coordinates. In order to make sense of this,

one needs to regularize the integral, i.e. introduce some extra small parameter making the integral

finite. The lattice discretization cuts the propagation of momenta above ∼ a−1 off, but also an arbitrary

(complex) number of dimensions d = 4− ε , typical of dimensional regularization [88], acts as a

regulator. Integrating only up to said cutoff Λ = π/a, one obtains

∫︂
Λ

0
k · f (m, p)dk ∼ Λ

2 F(p,m) , (1.4)

which clearly diverges in the limit a→ 0, Λ→∞. The key idea is to then reparametrize the Lagrangian

so that couplings in it (masses included) are tied to some physical, finite quantity accessible exper-

imentally, a procedure known as renormalization of the theory. One obtains finite integrals upon

removal of the regulator at constant renormalized couplings; these can be both physical, taken from

experimental input, or un-physical, which are still finite at zero regulator, but are not observables. For

instance, in perturbative expansions renormalization requires the introduction of a further unphysical

renormalization scale µ , on which observables cannot depend, so that (renormalized) Lagrangian

parameters that do are not physical, measurable quantities, as in the case of the popular MS-schemes

[88].

Divergences as the ones presented are unavoidable in a quantum mechanical setting, where integrals

over all momenta are present, both perturbatively and not. We discuss further details and implications

of renormalization directly in the lattice setup in Chapter 3.

1.1.3. Perturbative vs Non-Perturbative

Several successful computations in QFT which have shed light into previously not understood phe-

nomena have been carried out in perturbation theory (PT), i.e. as expansions in the small coupling.

An expectation value computed via a path integral [59], where interactions are proportional to some

coupling α of the action S , has the form

⟨O[Φ]⟩= Z −1
∫︂

Φ

D[Φ]O[Φ] exp
{︃

iSfree[Φ]+ iSint[Φ;α]

}︃
, (1.5)

where Φ collectively denotes all possible fields in the theory and Z its partition function. The measure

D[Φ] remains unspecified at this point, but let us mention analogously to the standard quantum

mechanics path integral, where one is summing over all possible trajectories, in QFT one is summing

over all possible field configurations – or quantum fluctuations – with a weight given by the action in

the exponential: the minimum of S corresponds to dominating contribution, the classical configuration.

In PT one expands the action in the path integral around the trivial, non-interacting theory, treating

interactions as small perturbations. This is realized by “taking down” fields present in the interacting

Lagrangian from the exponential and, order by order, inserting them into the operator product O[Φ].

Today weak coupling expansions remain a crucial aspect of almost all QFT studies, while it has become

4
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possible to explore the strong coupling regime, too, where perturbative computations are not feasible.

A key characteristic of renormalization is, indeed, the dependence of the renormalized coupling on a

scale µ , leading to the name of a “running coupling” α(µ). Whether a given theory possesses a weak

coupling regime and for what values of µ is thus a question of central importance. QED processes of

interest in particle physics are dominated by scales at which the coupling is weak. How it changes

with energy is encoded in the βQED(αQED)-function, defined by

βQED(αQED) = µ
d

dµ
αQED(µ)

⃓⃓⃓⃓
αbare

αQED→0
∼ β0 α

2
QED(µ)+β1 α

3
QED(µ)+O(α4

QED(µ)) , (1.6)

where the coefficients {βi} can be calculated in PT. The first two turn out to be positive [68], hence

αQED(µ) grows with energy. This phenomenon was historically called screening, since it appears the

(for instance, electron) charge becomes less and less screened through a sort of vacuum polarization

when going to larger distances, a purely quantum relativistic effect. We stress here this picture is

heuristic and mostly used for illustration and historical purposes, since the charge is not a measurable,

physical observable. Eventually the QED coupling divergesIV, if no other mechanism is considered, a

phenomenon labeled Landau pole [101, 100, 99].

On the other hand, QCD has an exactly opposite behavior, known as asymptotic freedom [74, 140]

(or, in analogy with QED, at times referred to as anti-screening), where the high energy regime is

weakly coupled and the coupling grows with decreasing energy, due to the negative coefficients in the

β -function β0 < 0, β1 < 0. A Landau pole alike problem is avoided completely through the (widely

accepted, yet formally unproven) assumption of color confinement, which claims only “colorless” or

SU(3) neutral states are allowed.

1.2. QUANTUM CHROMODYNAMICS

Quantum chromodynamics is the quantum field theory describing interactions between fields charged

under SU(3), the three charges appearing named colors. As usual, the starting point for defining a field

theory is its Lagrangian density (or, equivalently, its integral over spacetime, the action) given by

LQCD(x) =
1

4g2 Fa
µν(x)F

a
µν(x)+

N f

∑
i=1

ψ i(x)
(︁
/D(x)+mi

)︁
ψi(x), (1.7)

with Euclidean signature and where we define the field strength tensor Fa
µν(x)

V and the covariant

derivative Dµ(x) by ⎧⎨⎩Fa
µν(x) = ∂µAa

ν(x)−∂νAa
µ(x)+ f abcAb

µ(x)A
c
ν(x)

/D(x) = γµDµ(x) = γµ
(︁
∂µ + iAµ(x)

)︁ , (1.8)

IVNote this effect is of great theoretical, but little practical relevance, since the problematic energies are out of reach by
many orders of magnitude.

VWe choose a widespread convention in the lattice field theory literature where Dµ (x) contains no coupling constant
whereas the pure gauge term has an explicit 1/g2; a trivial rescaling of the fields Aµ → gAµ yields the more known standard
QFT textbook convention.
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f abc being the structure constantsVI of su(3), the Lie algebra of the Lie group SU(3). If they do not

vanish, as in the case of non-Abelian (i.e. non-commutative) groups, the presence of two Fµν(x) factors

in eq. (1.7) yields terms with three and four vector potentials. In a perturbatively expanded QCD path

integral, this leads to 3-gluon and 4-gluon vertices, unlike in the case of Abelian field theories such as

QED, where the only interaction is between fermions and gauge bosons. In order for the Lagrangian

density to be invariant for a local (i.e. spacetime dependent) transformation Ω(x) ∈ SU(3) of the

fermion fields, the following need be true

ψ(x) −→ ψ
′(x) = Ω(x)ψ(x) , (1.12)

ψ(x) −→ ψ
′(x) = ψ(x)Ω†(x) , (1.13)

Aµ(x) −→ A′µ(x) = Ω(x)Aµ(x)Ω
†(x)+

(︁
∂µΩ(x)

)︁
Ω

†(x) . (1.14)

In eq. (1.2) we saw the number of quarks present in nature to be N f = 6. Yet, their widely different

masses – although remaining an open problem referred to as (quark) mass hierarchy problem –

conveniently allows for different simplifications and approximations, depending on the physics of

interest. Thanks to the decoupling of heavy fields [7] with mass mh, at some energy E≪mh corrections

in massive renormalization schemes are suppressed by powers of E/mh. For any study at hadronic

energies the top quark, with its mass of mt ≃ 173 GeV, is clearly irrelevant, as is the case also for the

bottom quark (beyond its possible presence in the valence). This is obtainable in (unphysical) mass-

independent schemes, too, where decoupling is equivalent to the matching of theories with different

numbers of quarks at their mass thresholds. This introduces some caveats, since across thresholds the

β -function changes [159, 19]. We will describe more the QCD β -function in Section 2.5, for now let us

only mention it is known in the MS scheme to 5 loops [11, 106, 83, 105] and the mentioned matching

conditions between the N f −1 and N f theory are known to 4 loops [146, 41]. Recent numerical studies

convincingly show that the perturbative matching of charm quarks [8] has a very small effect despite

their rather low mass, and is thus under control at the current target precision. In this way, one can

conveniently study a, say, N f = 3 setup and run to infinite energy while perturbatively matching at

each threshold.

Thus, QCD with its two key mechanisms of asymptotic freedom and confinement can be regarded

as a fundamental theory, consistent and valid at all scales. For energies of O(10)GeV to O(200)GeV

and above (explored for instance at LHC), many QCD computations can be carried out in PT, with

remaining issues being, for instance, the appearance of multiple logs if multiple scales are present

VIOur convention for SU(N) is that of antihermitean group generators. Given

Aµ (x) =
N2−1

∑
a=1

T a Aa
µ (x) , one has (1.9)

[Ta , Tb] =− i fabcTc , tr{Ta Tb}=−
1
2

δab . (1.10)

Also, let us mention from Minkowskian to Euclidean spacetime anti-commutation relations of the γ-matrices change{︁
γµ ,γν

}︁
= 2gµν1spin −→

{︁
γµ ,γν

}︁
= 2δµν1spin , (1.11)

where we used the mostly minus convention for the metric tensor components.
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in the problem, and hadronization [141, 66] effects which need to be taken account via modeling

when comparing to experiment. Moreover, PT is unfit for a thorough treatment of the crucially

important lower energies, which are the natural scale of QCD bound states. The hadronic regime of,

say, O(0.2)GeV to O(2)GeV is characterized by a large coupling, the exact size of which depends

on the renormalization scheme. To cite an example, in [31] at µ ≈ 0.5GeV a value of α ≈ 1.3 was

found, so that the necessity of non-perturbative techniques becomes evident. The tools employed

herein are those of lattice QCD, with which ab-initio calculations in the low energy regime are possible

and which delivered in the past abundant numerical evidence of QCD being valid at all scales. To

conclude, let us mention that small coupling does not automatically imply PT is safe to use, as we

explain thoroughly in Section 2.2.

1.3. MOTIVATION: αS IS A FUNDAMENTAL PARAMETER

The SM contains several fundamental parameters that can only be extracted from comparison with

experimental data. These are inputs to theoretical computations, so that they can be determined from a

set of relations of the form

O exp
i = O th

i

(︂
b⃗
)︂
, where b⃗ = (b1,b2, . . . ,bN) , i = 1,2, . . . ,N , (1.15)

where b⃗ are N generic input parameters. Let us suppose we have some way of computing the N

functions O th
i (b⃗) to a desired level of accuracy for some input b⃗, as well as a measurement of all N

experimental quantities O exp
i . Once this set of equations is solved for b⃗, the fundamental parameters

have been computed; but as simple as this may seem, actually being able to both compute and measure

such observables with controlled errors can be highly challenging.

In the case of pure QCD, the Lagrangian parameters are the renormalized coupling αS and quark

masses mi , i = 1,2, . . . ,N f = 6, for a total of N f +1 = 7. In principle, one way to determine them is

choosing some renormalization scheme X and giving perturbative estimates of O th
i (b⃗X), to then obtain

b⃗X via eq. (1.15). Let us stress in this way any component of b⃗X is only known to the order of the

perturbative expansion used to determine it, which we may call L, so that an intrinsic truncation error

of order O(αL+1) is present.

What is done on the lattice, instead, is employing some hadronic quantities – typical choices being

hadron masses and decay constants, one for the overall scale and N f sensitive to a specific quark’s mass

– which possess the key property of being computable with moderate numerical effort and reasonable

statistical uncertainty. The bare parameters of the lattice theory are tuned in order to reproduce these

N f +1 observable quantitiesVII. Then, after tuning N f +1 parameters, all further dimensionless ratios

are a prediction of the theory. Once the lattice setup is appropriately tuned, one can compute any other

observable and turn eq. (1.15) around: O exp
i may be replaced with lattice results and, by comparing to

the perturbative expression of O th
i , used to extract b⃗X . The only experimental input is then the one

VIITo be more precise, once an overall scale of mass dimension one is defined, what one tunes is the ratio of the remaining
N f mass parameters with it. The scale we actually employ, t0, is introduced in Subsection 3.3.1, whereas how we tune the
mass of the heavy quark is explained in detail in Chapter 5.
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utilized for the lattice parameters’ precise tuning, which has the advantage of being obtained from

independent dedicated studies.

Herein, we will be mostly concerned with determinations of the coupling. Note that the comparison

of lattice and PT results also bypasses issues such as the complicated hadronization corrections [141,

66].

Schemes and Impact In the case of a well defined, finite, dimensionless observable depending on one

scale q only, it is possible to define a non-perturbative coupling as follows. Indicating some physical –

thus automatically gauge invariant, too – observable with B, in PT in an unspecified mass-less scheme

X one has

B(q)
µ→∞∼

L

∑
k=0

p(k)(s)α
k
X(µ)+O(αL+1

X )+O

(︃
1
qδ

)︃
, q = sµ , δ > 0 , (1.16)

where p(1) can be shown to be a pure constant (see footnote I in Subsection 6.1.5) and we allow for a

scale factor s (more about s is explained in Section 2.2). The above suggests the conventionally used

normalization

αB(q) def.
=

B(q)− p(0)

p(1)
µ→∞∼ αX(µ)

{︄
1+

p(2)(s)
p(1)

αX(µ)+O(α2)

}︄
+O(q−δ ) , (1.17)

where the subscript B labels this non-perturbative renormalization scheme. Note the above coupling

definition is non-perturbative and thus valid also at low energies, whereas the relation to the X-scheme

is valid only for high enough energies µ → ∞ and if B is a pure short distance object. The hard-to-

estimate [122] terms q−δ are so called power corrections, which decrease faster than any polynomial in

α for decreasing coupling. Still, avoiding too low energies where PT error estimates are unreliable, as

well as avoiding fits (or removal) of non-perturbative power corrections with complicated data-driven

analyses can help in limiting the introduction of uncontrolled errors.

Since high precision is required in several particle physics computations, it is of great importance

to obtain these fundamental parameters with multiple, independent methods, possibly with distinct

systematic uncertainties and at different scales. In these kind of endeavors it is customary to express

the QCD parameters in terms of the MS-scheme ones, since these are of widespread use in perturbation

theory, and to quote the coupling at the Z-boson pole-mass (fig. 1.2) [165].

Several particle physics problems, even beyond pure QCD ones, depend considerably on the precise

value for the strong coupling. For any cross section or even decay rate depending on some power of

the coupling, the parametric uncertainty on it may play a relevant role at the current levels of precision;

note the majority of processes measured at LHC enter in this category. Among the most important

ones we cite (see also [60]) the partial widths H → bb [12], H → gg [1, 81], the gg-fusion and the

related cross section for the generation of tt [4, 45], the hadronic Z-boson widths [81, 20]. It also plays

a non-negligible role in top width, mass, and Yukawa-coupling computations [86], as well as having

implications in studies about the electroweak vacuum stability [42].
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Figure 1.2: Comparison of αS values from lattice and non-lattice results, figure taken from [6]. The reported
lattice computations are the ones that passed all the criteria stated from the FLAG working group.

Objective of the Thesis: The precise knowledge of the strong coupling with controlled errors is

of major importance for several aspects of particle physics. Lattice QCD computations nowadays

play a central role in this endeavor. Multiple methods to extract the coupling, both on and off the

lattice, act as non-trivial crosschecks, and here we will focus on the moments method (“current two

points” in fig. 1.2). The main focus will be to analyze the main systematic errors within this method,

namely the discretization effects originating from the discrete spacetime lattice and the truncation

errors intrinsically present in perturbation theory. As we will explain in detail, the two are strongly

tied to one another. Our goal herein is to precisely quantify these systematics and to gain a deeper

understanding of the limitations and of the potential present in the moments method. In order to do so,

we will study a simplified setting without any dynamical quarks – a great algorithmic advantage – and

we will argue no fundamental difference is expected in scenarios containing dynamical quarks. Several

high-precision lattice computations have been carried out as part of this project; these, together with

high order perturbative computations present in literature, are used to compute the coupling at different

scales. Our final goal and result is the coupling’s scaling over a range of energies, which allows us

to quantify the truncation error (and thus the asymptotic scaling with αMS(µ) of the ΛRGI-parameter

extracted from moments).
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The structure of the thesis is as follows:

Chapter 2 - We introduce moments and some of their properties in the continuum, focusing on how

to extract fundamental parameters from them and on general aspects of perturbation theory.

Chapter 3 - Here we introduce the lattice discretization along with its main characteristics such

as doubling, scale setting and unavoidable systematic errors. Finally, we speak about our own

setup: twisted mass QCD at maximal twist.

Chapter 4 - First we explain how to simulate lattice gauge theories, what algorithms we used and

how to carry out the statistical error analysis. Critical slowing down is also addressed. Then, we

show two trivial, but nonetheless important, example computations of typical lattice observables:

effective masses and decay constants.

Chapter 5 - We go into depth about our own simulations, starting from our ensembles, describing

how input parameters are tuned and measurements carried out. We give an assessment of the

errors committed during this procedure and show some results related to the tuning, such as

quark current masses and renormalization factors.

Chapter 6 - In the key chapter of the thesis, we present our fundamental physical results: continuum

extrapolations of moments, how to extract the coupling from them and finally the Λ-parameter

and its scaling towards the asymptotic α → 0 region.

Chapter 7 - In the final chapter, we sum up our findings and comment what lessons can be learned

from this project.
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2 | Moments of Heavy Quark Correlators

THE main observables of interest in this thesis are moments of heavy quark correlators, which

have been computed up to O(α3) in perturbation theory [39, 40, 38, 120, 153, 121]. These

observables can then be computed on the lattice as well and from a comparison of the two computations,

the strong coupling and the heavy quark mass can be extracted. “Heavy” quarks refers to masses from

the order of the charm to that of the bottom quark mass, and possibly even beyond. This procedure,

however, contains systematic errors both on the lattice and on the perturbative side, the most important

ones being, respectively, finite lattice spacing effects and truncation errors. These need both to be

studied and understood with care. For now, we start by defining these observables in continuum QCD

and by explaining some of their key properties.

2.1. DEFINITION

Let us define the polarization function of a two-quark operator J(x) in Minkowski spacetime as

˜︁Π(q2,mh) = i
∫︂

d4xeiq·x ⟨0|T
{︁

J†(x)J(0)
}︁
|0⟩ , (2.1)

where we denote by T the time ordering symbol, by q2 the (Minkowskian) norm squared of the

external four-momentum q and by mh the “heavy” mass of the fields appearing in J(x). If the two-

quark operator is Jµ(x) = ψ(x)γµψ(x), this is the standard textbook vacuum polarization of some

vector field. The observable defined in eq. (2.1) contains two relevant energy scales only, namely

mh and q2, since mh ≫ ΛRGI and mh ≫ ml , where ΛRGI is an intrinsic QCD scale discussed later

(Section 2.5), and where ml is the light quark mass, set to zero in perturbation theoryI. There are three

different kinematical regimes [97] in which perturbative computations can be carried out: (1) the low

energy region q2/4m2
h≪ 1, (2) the (Euclidean) high energy region −q2/4m2

h≫ 1, and (3) the quark

pair production threshold q2 ≃ 4m2
h , which can be understood as an expansion in small velocity of

the heavy quark. Throughout this thesis we will study moments of eq. (2.1) related to the low energy

region (1), in the case of the pseudoscalar density

J(x; mh) = imhψh(x)γ5ψh′(x) , (2.2)

IOther even heavier fields, such as top quarks, have masses far above mh and are effectively decoupled, see Section 1.2.
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so that we will directly restrict the discussion to this observable. The extra mh factor makes the operator

J renormalization group invariant in chirally symmetric regularizations (or when a sufficient subset

of chiral symmetry is present, see Subsection 3.5.2). Quark fields have a subscript h and h′ in order

to avoid contractions (in the sense of Wick’s theorem [160]) of the field at the same spacetime point

in eq. (2.1), in lattice jargon to avoid quark disconnected diagrams, which are unfit to be reliably

computed in PT at large distances. A further motivation as to why we are interested in the pseudoscalar

density is of computational nature and will be given in Chapter 4.

The small q2 expansion of eq. (2.1) can be written like

˜︁Π(q2,mh) = q2
Π(q2,mh) = q2 3m2

h
16π2 ∑

k>0
C2k+2 zk , z =

q2

4m2
h
, (2.3)

with some coefficients C2k+2. The moments M2k are defined as

M2k(mh) =

[︄
1
k!

(︃
∂

∂q2

)︃k ˜︁Π(q2,mh)

]︄
q2=0

, (2.4)

namely derivatives of the polarization function w.r.t. the center of mass energy q2, taken in the

q2/4m2
h→ 0 limit. There is only one leftover energy scale, the heavy quark mass, on which they can

depend. They are related to the coefficients C2k via

M2k(mh) =
3

4π2

m4−2k
h
22k C2k . (2.5)

2.2. PERTURBATIVE EXPANSION AND TRUNCATION

The adimensional coefficients C2k can expanded in powers of αS in the (mass-independent) MS-scheme

C2k
α→0∼ C(0)

2k +
L

∑
i=1

α
i
MS(µ)×

{︄
C(i0)

2k +
i−1

∑
j=1

C(i j)
2k log j (︁

µ
2/m2

MS(µ)
)︁}︄

+O(αL+1) , (2.6)

where µ is the perturbation theory renormalization scale and C(i, j)
2k are numerical coefficients known

for 1≤ i≤ L = 3 [121].

For later convenience let us define a scale factor s via

µs
def.
= s×mMS(µs) , (2.7)

so that (2.6) becomes

C2k
α→0∼ C(0)

2k +
3

∑
i=1

α
i
MS(µs)×

{︄
C(i0)

2k +
i−1

∑
j=1

C(i j)
2k log j(s2)

}︄
+O(α4) , (2.8)

where a chosen value of s corresponds in a univocal way to a renormalization scale µs. For the choice

s = 1, one has C(i j)
2k log j(s2) ≡ 0 for 0 < j < i− 1, whereas the importance of the log-part changes
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when s≫ 1 or s≪ 1. The special case s = 1 is labeled m∗

m∗
def.
= mMS(m∗) , (2.9)

since it is used several times throughout this thesis. Note that no µ-dependence is written in C2k, since

in the r.h.s. of eq. (2.6) – at a given order – it cancels out, up to higher terms in α(µ). Thus, in practice,

quite an important, spurious µ-dependence is de facto introduced when the series is truncated.

Before commenting more on this, let us discuss the nature of the series in eq. (2.6). As most series in

quantum field theory, it is an asymptotic series for the coupling α→ 0 with zero radius of convergence.

Divergent, asymptotic series can approximate functions with very good accuracy. In some instances,

even few terms yield a very good approximation, especially if compared to convergent Taylor series

with the same number of terms. However, being divergent, their nature is slightly different from a

convergent series. The definition of an asymptotic series [15] for an observable M (α), taken to be

adimensional for convenience, is given by

M (α)
α→0∼

∞

∑
n=0

cn(s)α(µs)
n ⇐⇒ lim

α→0

⃓⃓⃓⃓
⃓M (α)−

N

∑
n=0

cn(s)α(µs)
n

⃓⃓⃓⃓
⃓= O(αN+1) , ∀N < ∞ , (2.10)

i.e. for any finite, fixed N, the series will approximate M in the limit α → 0 with a given error

O(αN+1) due to the truncation. For any given N, there is a domain in α where the asymptotic series

“behaves well”, but it is not clear a priori what the applicability domain of these asymptotic expansions

is. Conversely, at some fixed value of α where one notices the first few terms of the expansion to

decrease and give thus an accurate result, one knows eventually adding more terms to the sum will

make it diverge – the coefficients will increase in an uncontrolled manner.

If we now take eq. (2.8) for s≪ 1 or s≫ 1 it becomes clear the overall coefficient of α i

C(i)
2k (s) =C(i,0)

2k +
i−1

∑
j=1

C(i, j)
2k log j (︁s2)︁ , (2.11)

increases uncontrollably in size because of the log(s)-term. This then spoils the above explained “good

behavior” of the series, so that µs really needs to stay close to mMS(µs), which sets the natural energy

scale of the moment.

One way oftentimes used to assess the size of the truncated term is the following. Physical

observables cannot depend on the unphysical renormalization scale µ , so there is a relation between

how coefficients and α depend on µ . However, when truncating the series, we mentioned one is

inevitably introducing a spurious µ dependence in the perturbative estimate of the observable. In an

effort to evaluate this systematic error, one can compute the same observable at different values of

s, and then take the spread of results as a further theoretical uncertainty. This procedure may be a

good estimate in some situations, but it is not complete, since knowing C(L)
2k does not mean having any

knowledge about the non-log term C(L+1,0)
2k .

In table 2.1 we report the perturbation theory values of moments RPT
n (z,µs), evaluated at s = 1,

for varying heavy quark mass (see Subsection 3.5.2 for unexplained notation, here it suffices to know:

13



CHAPTER 2 MOMENTS OF HEAVY QUARK CORRELATORS

they are properly normalized, adimensional observables built out of moments evaluated at some mass

scale value z =
√

8t0MRGI, where MRGI is a heavy quark mass defined in eq. (2.33), and
√

t0 is a scale

in fermi used in lattice computations defined in eq. (3.24)). To give an idea of how different error

assessments may vary considerably, for each value 3 different truncation error estimates are reported,

(1) the difference between the last and the second-to-last known term for s = 1, (2) the scale variation

|RPT
n (z,2m∗)−RPT

n (z,m∗)|, and (3) the scale variation |RPT
n (z,m∗)−RPT

n (z,m∗/2)|. The general

picture that emerges is the expected one, i.e. perturbative uncertainties increase at lower energies. The

error estimate (1) always decreases with increasing n or decreasing z, whereas the scale variation is a

bit more complicated. For RPT
4 and RPT

8 the variation below m∗ is much more inaccurate than the one

above it, whereas for RPT
6 the two are comparable. However, let us also mention that (as emphasized in

the recent review [53] for the case of N f = 2+1 moments), anomalously small coefficients may appear

and may lead procedure (1) to estimate significantly smaller errors compared to the scale variation,

procedure (2) and (3).

m∗/mcharm z RPT
4 (z,m∗) RPT

6 (z,m∗) RPT
8 (z,m∗)

3.5 13.5
1.12053 1.04995 1.02292

(299)(150)(568) (208)(37)(19) (190)(5)(75)

2.5 9
1.13700 1.05674 1.02619

(437)(238)(1037) (297)(58)(35) (270)(8)(128)

1.6 6
1.15895 1.06569 1.03056

(677)(401)(2118) (444)(96)(72) (401)(13)(235)

1.2 4.5
1.17962 1.07399 1.03464

(966)(609)(3864) (612)(143)(130) (550)(19)(387)

0.8 3
1.22085 1.09006 1.04262

(1736)(1201)(1103) (1031)(273)(351) (915)(36)(873)

Table 2.1: Comparison of perturbative error Ansätze. The moments themselves RPT
n (defined in eqs. (3.63)

and (3.64)) are computed at µ = m∗ for each z =
√

8t0MRGI or, equivalently, for each m∗/mcharm (z is exact,
whereas for the latter a reference approximate value with no error is reported; note that this ratio is independent
of the scheme). The three errors reported for each z in the second line are, respectively: (1) the difference
between the 3 loop and 4 loop evaluated observable, for s = 1, (2) the scale variation |Rn(z,2m∗)−Rn(z,m∗)|,
and (3) the scale variation |Rn(z,m∗)−Rn(z,m∗/2)|.

2.3. MOMENTS IN POSITION SPACE

The definition given in Section 2.1 is the starting point for all high order perturbative calculations.

However, an equivalent, more convenient expression partially in position space is employed when we

14



2.3 MOMENTS IN POSITION SPACE

compute the moments on the lattice. First, let us note that eq. (2.4) is completely equivalent toII

Mn(mh) =

[︃
1

(n)!

(︃
∂

∂q

)︃n ˜︁Π(q2,mh)

]︃
q=0

, (2.12)

where q =
√︂

q2
0− q⃗2. To explicitly see this, it suffices to apply the derivatives in the above definition

to eq. (2.3). In (2.1) we now explicitly Wick-rotate to Euclidean spacetime, setting, without loss of

generality, qµ = qµ = (q0, 0⃗) and obtaining

q2
0 Π(q2

0,mh) =
∫︂

∞

−∞

d t eitq0

∫︂
d3 x⃗

⟨︁
J†(x; mh)J(0; mh)

⟩︁ def.
=
∫︂

∞

−∞

d t eitq0G(t; mh) , (2.13)

with J(x;mh) as in eq. (2.2), where we indicate by ⟨·⟩ the path integral representation of the two point

function and we define G(t; mh) the resulting time-slice correlator. Since q⃗ = 0⃗, the spatial Fourier

transform acts as a projection to zero spatial momentum. The q0-derivatives will thus act on the

exponential only and one gets

Mn(mh) =
1
n!

(︃
∂

∂ (iq0)

)︃n

(iq0)
2 ˜︁Π(︂(iq0)

2 ; mh

)︂ ⃓⃓⃓⃓⃓
q0=0

=
1
n!

{︃(︃
∂

∂ (iq0)

)︃n ∫︂ ∞

−∞

dt eitq0G(t; mh)

}︃⃓⃓⃓⃓
⃓
q0=0

=
1
n!

∫︂
∞

−∞

dt tnG(t; mh) ,

(2.14)

which we will use, in its discretized version, for lattice computations.

In eq. (2.14) one can perform an operator product expansion (OPE) of the currents’ product, where

the leading term’s divergence is given from simple power counting. Evaluating this at tree-level PT

one gets

J†(x; mh)J(0; mh)
|x|→0∼ 1

|x|6

(︄
c0 + ∑

d>0
cd |x|dO [d]

)︄
, |x|=

√︁
t2 + x⃗2 , (2.15)

where the leading term c0 is a simple constant, since the product of two pseudoscalars has the same

quantum numbers of the identity operator, thus mixing with it. In the above, summing over O [d]

indicates all other higher dimensional operators with the same quantum numbers, which will yield

subleading contributions for small distances. Fourier transforming one obtains

G(t; mh) =
∫︂

d3x
⟨︁
J†(x; mh)J(0; mh)

⟩︁ t→0∼ 1
|t|3

(︃
1+O

(︁
|t|2
)︁)︃

. (2.16)

Noticing the integral in eq. (2.14) is over all t, in order for the integrand to be finite for t → 0, one

requires n≥ 4. Note that the integral over x⃗ does not really invalidate the assumption |x| → 0, since

correlations between the operators at large distances are exponentially suppressed, i.e.

J†(x; mh)J(0; mh)
|x|→∞∼ e−2mh|x| . (2.17)

IINote that the subscript n present here is not the k of previous sections: the finite moment n = 4 here, corresponds to
two ∂/(∂q2) derivatives acting on eq. (2.3), i.e. what is k = 2 there.
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CHAPTER 2 MOMENTS OF HEAVY QUARK CORRELATORS

Figure 2.1: Dependence of t nG(t,a,µtm) on t in fm, which integrated (or, on the lattice, summed) over defines
the moment. This observable is dominated by longer distances as n increases. Different n are normalized so that
all peaks have unit height.

Any connected diagram in PT (see discussion about diagrams after eq. (2.2)) can easily be shown to

have this exp{−2mh|x|}-factor at leading order. Disconnected diagrams, on the other hand, cannot

be reliably computed in PT since these contributions contain massless gluons propagating at large

distances.

Here it is convenient to show lattice data for the integrand of eq. (2.14), which will be precisely

define later (so that it is actually a summand, see eq. (3.57)), where two important observations are

in order: (1) the region in energy/distances dominating the integral is quite low/high, so that sizable

deviations w.r.t. PT may be expected and (2) the observable is dominated by longer distances as n

increases, see figs. 2.1 and 2.2.

2.4. COUPLING AND MASS FROM MOMENTS

Since the perturbative estimate of Mn in eq. (2.5) is a function of mh and α , one can extract these if

some other way of computing Mn is available, up to some truncation error of O(α4), by inverting the

perturbative expansion formula. One way to do this is, of course, by computing the moment on the

lattice, on which we will elaborate much in the rest of the thesis. However, let us mention also another

possibility, namely choosing Jµ(x) = ψ(x)γµψ(x) instead of the pseudoscalar (we skip the details of

the additional Lorentz indices present in eq. (2.1)) and noting in this case

M exp
2k (mh) =

∫︂ ds
s2k R(s,mh) , R(s,mh) =

σe+e−→hh̄(s)
σe+e−→µ+µ−(s)

, (2.18)
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2.4 COUPLING AND MASS FROM MOMENTS

Figure 2.2: Energy and distance scale for lattice moment n = 4, the most perturbative. What is shown is the
integrand as a function of Euclidean time. Contributions to the integral at small energies seem sizable.

where s = q2 is the center of mass energy of the system. Obtaining eq. (2.18) is not trivial, and requires

a dispersion relation to express the vacuum polarization as an integral transform of its imaginary part

(cfr. Kramers-Kronig relations and Sokhotski-Plemelj theorem) and the optical theorem to relate said

imaginary part to a ratio of forward scattering amplitudes [22]. One can thus compute the moment

at mh = mcharm or mh = mbottom from experimental R-ratio data and extract mh and α , but only at the

scale mh itself (or scales close mh, since s cannot be too far from s = 1), whereas on the lattice one

can really freely vary mh – tuning it also to non-physical values – and compute coupling and mass at

different energy scales. This means being able to see the variation of the truncated term in eq. (2.8) as

a function of energy and probe the truncation error and the applicability domain of PT.

To be more specific, in the case of M4, eq. (2.5) is adimensional and only depends on the heavy

quark mass logarithmically, through the coupling. Thus, it can be used to extract the coupling, whereas

for higher moments one can rewrite eq. (2.5) as

mh =

{︃
4π2

3
22k

C2k
M exp

2k

}︃ 1
4−2k

, n = 2k = 6,8, . . . , (2.19)

and use it to extract the heavy quark mass. Also adimensional ratios of higher moments can be defined,

where the strong mass dependence cancels as follows

˜︂M2k
def.
= [M2k]

1
4−2k =⇒

˜︂M2k˜︂M2k+2
= 2

[C2k]
1

4−2k

[C2k+2]
1

2−2k
, n = 2k = 6,8, . . . , (2.20)

so that [˜︃M2k] = −1, ∀n = 2k ≥ 6, and explicit mass factors cancel in the ratio. Given the perturba-

tive expansion for two such moments, their ratio can be re-expanded and, again, only logarithmic
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CHAPTER 2 MOMENTS OF HEAVY QUARK CORRELATORS

dependence on the mass will appear. These ratios can thus be used to extract the coupling, too.

2.5. RENORMALIZATION GROUP INVARIANT PARAMETERS

The fundamental parameters of QCD discussed so far, the coupling α(µ) (or g2(µ), with g2(µ) =

4πα(µ)) and the massesIII mi(µ), are both renormalization scale and scheme dependent. Here we

introduce alternative, convenient parameters called renormalization group invariant parameters, which

beyond being scale independent are either scheme-independent, as in the case of the masses, or exactly

relatable between schemes, as in the case of the Λ-parameter, associated to the coupling. They can

be thought of as integration constants of the renormalization group equations (RGEs), or Callan-

Symanzik equations [154, 34]. These express the independence of a renormalized, physical quantity

GR(p,µ,g(µ),m(µ)), where p is some momentum, on the renormalization scale µ one needs to

introduce in the renormalization procedure. In the case of GR, for a mass-independent renormalization

scheme, they are

µ
d

dµ
GR(p,µ,g(µ),m(µ)) = 0 =⇒

(︁
∂ ln µ +β (g)∂g + τ(g)∂ lnm

)︁
GR = 0 , (2.21)

where the anomalous dimensions β (g) and τ(g) contain the relevant information, namely the running

of the renormalized parameters. They are given by⎧⎪⎪⎨⎪⎪⎩
β (g(µ)) def.

= µ
dg(µ)

dµ
, (2.22)

τ (g(µ)) def.
=

µ

m(µ)

dm(µ)

dµ
, (2.23)

and they dictate how these parameters depend on the unphysical renormalization scale µ . Now, let us

reparametrize the general solution GR in terms of two special solutions, both of mass dimension 1. The

first, is a generic function Λ(µ,g(µ)) with no dependence on momenta and mass, whereas the second

is a generic function M(m(µ),g(µ)), independent of p and (explicitly, at least) of µ . Thus, because of

dimensional reasons, both need to be given by

Λ(µ,g(µ)) = µφg(g) , (2.24)

M(m(µ),g(µ)) = m(µ)φm(g(µ)) , (2.25)

where the φi functions are dimensionless. One obtains

d
dµ

GRGI(Λ,M) = 0 =⇒

{︄(︁
∂ ln µ +β (g)∂g

)︁
Λ = 0 =⇒ (1+β (g)∂g)φg(g) = 0 , (2.26)

(τ(g)∂ lnm +β (g)∂g)M = 0 =⇒ (τ(g)+β (g)∂g)φm(g) = 0 , (2.27)

IIIWe will restrict our discussion from the N f = 6 masses of full QCD to our setup of two mass-degenerate flavors, i.e.
only one mass parameter.
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which can be integrated to obtain the φi(g) functions. To do so, one can expand β and τ in PTIV as

β (g) ∼
g→0
−b0g3−b1g5−b2g7 +O(g9) , (2.28)

τ(g) ∼
g→0
−d0g2−d1g4 +O(g6) , (2.29)

where (in a mass-independent scheme) the first two β -coefficients and the first τ-coefficient are

universal, i.e. scheme independent. Integrating for the coupling one gets

∫︂
∂φg

φg
=−

∫︂
∂g
g

=⇒ Λ

µ
= φg(g)

=
(︁
b0 g2)︁−b1/(2b2

0) e−1/(2b0g2) exp
{︃
−
∫︂ g

0
dx
[︃

1
β (x)

+
1

b0x3 −
b1

b2
0x

]︃}︃
, (2.30)

and, for the mass

∫︂
∂φm

φm
=−

∫︂
∂g

τ(g)
β (g)

=⇒ M
m(µ)

= φm(g)

=
[︁
2b0g2(µ)

]︁− d0
2b0 exp

{︃
−
∫︂ g(µ)

0
dx
[︃

τ(x)
β (x)

− d0

b0x

]︃}︃
, (2.31)

where two things should be noted: (1) the overall factors are a convention and (2) the integral has been

re-written in order to avoid any divergences for x→ 0, since said divergences have been explicitly

integrated and written as prefactors. We can finally define

ΛRGI
def.
= µ(b0g(µ)2)−b1/(2b2

0) exp
{︃
− 1

2b0g(µ)2 −
∫︂ g(µ)

0
dx
[︃

1
β (x)

+
1

b0x3 −
b1

b2
0x

]︃}︃
, (2.32)

MRGI
def.
= m(µ)

[︁
2b0g2(µ)

]︁− d0
2b0 exp

{︃
−
∫︂ g(µ)

0
dx
[︃

τ(x)
β (x)

− d0

b0g

]︃}︃
, (2.33)

where the RGI-subscript indicates that the two parameters, being constants arising from the integration

of the differential equation, are actually independent of the chosen µ at which they are evaluated. Since

any µ yields the same RGI-parameters, also

ΛRGI = lim
µ→∞

µ
(︁
b0 g2(µ)

)︁−b1/(2b2
0) exp

{︃
− 1

2b0g(µ)2

}︃
, (2.34)

MRGI = lim
µ→∞

m(µ)
{︁

2b0g2(µ)
}︁− d0

2b0 , (2.35)

is oftentimes useful, where only the universal perturbative behavior is necessary. From eq. (2.34)

and eq. (2.35) a quick computation shows a scheme change leaves MRGI unchanged, whereas ΛRGI

changes by a factor calculable exactly through a 1 loop computation. Many lattice computations,

among which the present one, evaluate g(µ) (and m(µ)) at a hadronic scale, and then run it with the

IVNote, we expand in PT only for convenience, the final result will depend on universal coefficients only and does not
rely explicitly on this expansion.
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5-loop βMS [83, 105] (and the 4-loop τMS [157, 37]) to infinite energy. From the truncation of the

perturbative series used to determine αMS(µ), one obtains an approximated ΛRGI (or MRGI), with a

leading unknown αn
MS(µ) term for some n. An extrapolation to µ → ∞, or equivalently to αS→ 0, of

the approximated ΛRGI (MRGI) then gets rid of leftover αMS-dependence. Let us stress that given some

value of ΛRGI (or of MRGI) there is a one-to-one correspondence with g (or with m) in some scheme,

once the renormalization scale µ is fixed.

To conclude, one can trade the scheme-dependent running parameters for renormalization group

invariant ones, in terms of which any physical QCD observable may be written. Indeed, in this thesis

we fix the bare mass in our simulations through MRGI, as explained in Subsection 5.4.2. Beyond the

coupling, we compute ΛRGI at several values of the mass scale, in order to see how its truncation errors

vary and whether an extrapolation to infinite energy with controlled errors is feasible. Finally, we

stress that being able to switch to RGI-parameters does not mean perturbative schemes, such as the

MS, become unimportant. Converting to the MS is oftentimes necessary in order to make contact to

PT results in high energy regimes, where its reliability is out of question.
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3 | Lattice Quantum Chromodynamics

HERE we discuss how to discretize quantum chromodynamics, with the goal to obtain a lattice

definition of moments that we can use. We also introduce a few general topics of lattice

computations which will be necessary to explain and justify our setup and choices and to better

understand its possibilities and key mechanisms. Note that in lattice QCD one is simulating a fictitious

world where only the strong interaction and fields interacting through it are present. In the last decade

or so attempts to expand this and to simulate electrically charged hadrons have been carried out with

several methods [135]. Throughout this thesis we will restrict ourselves to the standard setup, where,

taking full QCD as an example, pions in the SU(2) f−triplet are mass degenerate, i.e. neither isospin

breaking nor QED effects are taken into account.

3.1. BASICS OF DISCRETIZING FIELD THEORY

We start by substituting continuous spacetime by a 4-dimensional hyper-cubic lattice with a spacing

between vertices, or sites, denoted by a. A very general property of waves propagating in a lattice

with finite a (in physical units), is the absence of wavelengths below a certain cutoff. As far as QFT’s

ultraviolet divergences, which make regularization and renormalization necessary, emerge from short

wavelength physics, the presence of a cutoff is a natural candidate for a regulator of the theory. It

becomes necessary to understand how to transcribe one-to-one the fundamental degrees of freedom of

QCD, namely the gauge and fermion fields, onto this discrete spacetime. When doing so, one needs to

be careful about preserving some of the key properties of the theory, though. For instance, the lattice

formulation is almost always chosen to preserve gauge invariance, whereas symmetries such as chiral

and rotational symmetry will be broken and then only be restored in the continuum.

The starting point is to note that lattice field theory is formulated in Euclidean spacetime. What

properties and physical information of Minkowskian field theory can be recovered from the Euclidean

one is a non-trivial topic, see for instance [102, 119]. In Euclidean spacetime the path integral – in

contrast to the Minkowskian highly oscillating factor exp [iSM] – contains a term exp [−SE ], which

can be interpreted as a probability weight once properly normalized. One can then attempt to solve

the highly dimensional path integrals with a stochastic approach, namely with Markov Chain Monte

Carlo methods (see Subsection 3.3.2). To start, we define gauge parallel transporters from x to y in the

continuum as

U(y← x) = P exp
{︃

i
∫︂ y

x
Aµ(z)dzµ

}︃
, (3.1)
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where P denotes the path-ordered product. From this definition, the common approach introduced in

[162] consists of assigning fermion fields to sites of the lattice, while the gauge field can be defined as

a parallel transporter along a straight path between two neighboring sites, i.e.

U(x,µ) def.
= U(x+aµ̂ ← x) = exp

{︃
i
∫︂ x+aµ̂

x
Aµ(z)dz

}︃
, (3.2)

where µ̂ is a unit vector in direction µ . Note that Aµ(x) ∈ su(3), whereas U(x,µ) ∈ SU(3), i.e. gauge

fields on the lattice take values in the group rather than in the algebra. One can imagine the gauge

field U(x,µ) to reside on a directed link of the lattice connecting the point x with its neighboring

point x+aµ̂ . These are the fundamental fields in the lattice description and in path integrals they are

integrated over.

3.1.1. Wilson’s Action

Next, we introduce the lattice gauge action, which must reproduce the standard Yang-Mills [166]

action in the continuum limit. Wilson [162] introduced first such an action, namely

SW
def.
=

1
g2

0
∑

x,µ<ν

Re
{︁

tr
[︁
1−U(x)µ,ν

]︁}︁
, (3.3)

U(x)µ,ν
def.
= U(x,µ)U(x+aµ̂,ν)U−1(x+aν̂ ,µ)U−1(x,ν) , (3.4)

where periodic boundary conditions in all directions are imposed. The color-trace of a directed closed

loop built out of gauge links, known as a Wilson loop, is gauge invariant by construction. The simplest

possible Wilson loop is indeed U(x)µ,ν , called plaquette, so that the Wilson action is built of gauge

invariant objects. Actually, the whole lattice approach is manifestly gauge invariant and there is no

need for gauge fixing, unless some perturbative, saddle point expansion of the path integral is carried

out. In this case zero-modes coming from the quadratic part of the action must still be avoided. Thus,

all actions throughout this work are gauge invariant, just like any path integral measure D[Φ], where

the Haar measure (also known as Hurwitz measure) is always intended; note also that the discrete

lattice yields a finite number of integrals, namely it is a method to rigorously define the path integral.

It is a trivial exercise to expand SW in eq. (3.3) for a→ 0 and to see it reproduces SYM, with

corrections in powers of a starting from O(a2).

3.1.2. Recovering Continuum Physics

Lattice simulations are necessarily done at finite a, where the cutoff acts as a regulator. This can be

compared to dimensional regularization, where a continuous small number ε changes the dimensions

from d = 4 to d = 4− ε . The renormalized physics is recovered in the limit a→ 0, where the number

of degrees of freedom becomes infinite – a situation that can clearly not be simulated on a computer.

However, multiple ensembles with decreasing a can be generated, from which the continuum physics

is obtained as an extrapolation.
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Naively sending a→ 0 is not enough to obtain meaningful continuum physics, though, which is

immediate to realize in pure gauge where a is the only dimensionful quantity. Due to dimensional

reasons some generic observable M with mass dimensions has to be given by

M =
f (g0)

a
, (3.5)

for some f (g0). For this to be finite in the limit a→ 0, one needs to tune the bare coupling g0

while varying a, i.e. g0 = g0(a). From M’s independence on a, one can formally write, up to scaling

violations O(a2)

dM
d loga

⃓⃓⃓⃓
g
= O(a2) =

{︃
1
a

∂ f
∂g0

∂g0

∂ loga
− f (g0)

a

}︃⃓⃓⃓⃓
g
=⇒

⎧⎨⎩ βlat(g0)
def.
= − ∂g0

∂ loga

⃓⃓
g ,

f (g0) =− ∂ f
∂g0

βlat(g0) ,
(3.6)

where we introduced the lattice beta-function βlat(g0). It contains the dependence of the bare coupling

on the cutoff and can be shown perturbatively to be related to the β -function of eq. (2.28) [51, 78],

establishing universality of the first two coefficients. This implies the continuum limit to be reached

for g0→ 0. A definition of Λlat [78] analogous to eq. (2.34) can then be given

Λlat
def.
= lim

g0→0

{︃
1
a

exp
(︃

1
−2b0g2

0

)︃(︁
b0g2

0
)︁−b1/(2b2

0)
}︃
, (3.7)

which is a dimensionful parameter surviving the continuum limit, a phenomenon known as dimensional

transmutation [44]. Any dimensionful quantity Mi of, say, mass dimension [Mi] = 1, can be written as

Mi = ΛlatCi , (3.8)

in the continuum limit for some numerical, adimensional constant Ci. Differently stated, there is some

part of parameter space sufficiently close to the continuum where a scaling region is present, in which

all Mi have the same dependence on g0, yielding

Mi

M j
=

Ci

C j

(︁
1+O(a2M2)

)︁
. (3.9)

For SU(Nc), with N f < 11 ·Nc/2, one has that g0 = 0 is a zero of the beta function and corresponds

to the a→ 0 limit. This implies that gcr. = 0 is a critical surface of the lattice theory where correlation

lengths diverge. One can hope to take a meaningful continuum limit only due to this key property of

criticality. Tuning g0 as described is equivalent to the renormalization of the theory.

If one now adds quarks, the same kind of reasoning applies: whilst sending the cutoff to zero all

bare parameters will have to be tuned in order to keep both the renormalized coupling and a set of

renormalized masses fixed, one for each quark flavor. Given some scale – from a theoretical perspective

one has the dimensionful ΛRGI of eq. (2.32) – the masses can be tuned in such a way as to keep, for

instance, their RGI-mass (eq. (2.33)) in units of ΛRGI fixed, although in practical situations mostly

hadronic masses or decay constants that are sensitive to a specific quark are used, as explained in
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CHAPTER 3 LATTICE QUANTUM CHROMODYNAMICS

Section 1.3.

3.2. LATTICE FERMIONS

How to appropriately discretize fermions on the lattice is not obvious and hereafter we will mention a

few salient points, mostly related to Wilson fermions. The most naive fermion lattice action one may

think of is a gauge-link transcription of the action in eq. (1.7), where quark fields are now located at

single lattice points. Possible gauge invariant observables are now not only closed loops of gauge links

multiplied by one another, but also gauge-link strings with quark-antiquark fields at their endpoints.

Starting from discretizing the free fermion action in a straightforward manner (with implicit fermion

species indices, ΨT = (ψ1, ...,ψN f ) and M a diagonal fermion mass matrix)

SF =a4
∑
x

Ψ(x)(DΨ)(x) , D =
3

∑
ν=0

γν

∂ν +∂ ∗ν
2

+M , where (3.10)⎧⎨⎩ (∂νΨ)(x) = Ψ(x+aν̂)−Ψ(x)
a

(∂ ∗ν Ψ)(x) = Ψ(x)−Ψ(x−aν̂)
a

, (3.11)

one can introduce the gauge field by substituting the simple derivative with a gauge covariant derivative

∇ν , depending on the group-valued gauge fields U(x,ν) of eq. (3.2)⎧⎨⎩ (∇νΨ)(x) = U(x,µ)Ψ(x+aν̂)−Ψ(x)
a

(∇∗νΨ)(x) = Ψ(x)−U†(x−aν̂ ,ν)Ψ(x−aν̂)
a

, (3.12)

and again compactly write

SF = a4
∑
x

Ψ(x)DΨ(x) , (3.13)

where D will be referred to as Dirac operator or Dirac matrix; we will indicate the aforementioned

matrix generically with D, specifying its content, where necessary, from case to case.

3.2.1. Doubler Modes

The fermion action eq. (3.10), however, suffers from a non-trivial problem. Each pole of the propagator,

i.e. poles of the inverse of D in Fourier space, represents a particle contained within the theory. Extra

fermion species, so called doublers, are even present in the free theory, where a computation in Fourier

space leads to the following (single) fermion propagator (functions in Fourier space are indicated by

tildes) ˜︁S(p,a,m) = F [D−1] =
m− ia−1

∑
3
µ=0 γµ sin

(︁
apµ

)︁
m2 +a−2 ∑

3
µ=0 sin2(apµ)

, (3.14)
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where F [ f ] is the Fourier transform of f . In the relevant regionI of pµ ∈ (−π/a, π/a] the propagator

correctly shows the physical pole at p = 0, but also further unphysical ones whenever at least one of

its components is π/a. This adds up to 15, or 2d−1, extra poles, d being the number of spacetime

dimensions. Taking a continuum limit of such a theory would thus lead to unphysical results, since the

doubler modes present in the propagator will, for instance, show up in loops and alter the computations.

This result is of general nature and can be avoided only by sacrificing some other key property, a

statement first exposed in [129, 130] and which goes by the name of Nielsen-Ninomiya no-go theorem.

Therein under rather general assumptions it is shown that an equal number of left and right handed

Weyl fermion species has to appear in a lattice discretized theory. This can be proven in several ways,

such as via topological arguments [129, 130] or via differential geometry [65]. We here report the

following version: no massless lattice action (in its first Brillouin zone) can satisfy all of the below

conditions simultaneously:

1. Locality of interactions present in the Dirac operator, which is equivalent to analyticity in the

complex p-plane of the momentum space propagator ˜︁S(p,a,0).

2. Reproduce appropriately a full Dirac fermion, with its left and right components, in the contin-

uum limit, i.e.

lim
a→0

˜︁S(p,a,0) = ˜︁S(p,0,0) =
−i/p
p2 . (3.15)

3. Invariance under continuum chiral symmetry: {γ5, ˜︁S(p,a,0)}= 0.

4. Doubler modes are absent in the first Brillouin zone.

5. Reflection positivity is satisfied, i.e.

˜︁S(p,a,0) = γ0 ˜︁S(︁(−p0, p⃗),a,0
)︁
γ0 , (3.16)

which is necessary in the Euclidean to have unitarity in Minkowskian spacetime, and thus

hermiticity of the Hamiltonian operator (a thorough explanation of this can be found in [131,

132, 133, 134]).

6. Cubic symmetry in the action:

˜︁S(p,a,0) = γi ˜︁S† (Ri(p),a,0)γi , [Ri(p)] j = p j(1−2δi j) . (3.17)

To give an admittedly too simple, yet very intuitive idea of the theorem, one can think in one dimension:

here the key concept greatly simplifies to the trivial notion that a periodic, continuous function must

have an even number of zeros within one period.

Unitarity of the theory, its locality, encoded in the analyticity of the propagator in p, and the correct

continuum limit – i.e. reproducing a continuum Dirac fermion upon removal of the cutoff – cannot

really be renounced. Still, multiple approaches have been developed to utilize lattice discretized

IAlso known as the first Brillouin zone, a primitive cell which contains the relevant information, since periodic functions
within it represent the functional space of interest in the a→ 0 limit.
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CHAPTER 3 LATTICE QUANTUM CHROMODYNAMICS

fermions, either by accepting (a reduced number of 2d/2− 1) doubler modes – as in the case of

staggered fermions [98] – or by eliminating them and thereby having continuum chiral symmetry

breaking.

3.2.2. Wilson Fermions

What Wilson proposed [163] was to introduce an extra term in the action with mass quantum numbers

which would thus explicitly break chiral symmetry (even with massless fermions), but eliminate the

doubler modesII. The explicit form of the Wilson term is

SF = a4
∑
x

Ψ(x)

⎧⎪⎪⎨⎪⎪⎩
3

∑
ν=0

⎛⎜⎜⎝γν

∇ν +∇∗ν
2

− a
2

∇
∗
ν∇ν⏞ ⏟⏟ ⏞

Wilson term

⎞⎟⎟⎠+M

⎫⎪⎪⎬⎪⎪⎭Ψ(x) , (3.18)

which evidently converges to the same continuum action. From the Dirac operator’s Fourier transform

one can obtain the propagator, explicitly computed at TL for twisted mass Wilson fermions in

Appendix C. The inverse propagator, which is more convenient to write, is obtained by setting µtm = 0

in eq. (C.38), giving

˜︁S−1(p,a,m) = m+a−1
3

∑
µ=0

[︁
1− cos

(︁
apµ

)︁
+ iγµ sin

(︁
apµ

)︁]︁
, (3.19)

which now only contains the physical pole in the first Brillouin Zone. It is immediate to see that

continuum chiral symmetry {γ5, ˜︁S(p,a,0)}= 0 is lost, but γ5-hermiticity[︂
γ5 ˜︁S(p,a,m)

]︂†
= γ5 ˜︁S(p,a,m) , (3.20)

is still a symmetry of the theory.

3.3. PROPERTIES OF THE LATTICE THEORY

3.3.1. Scale Setting

As mentioned in the previous section, to extract meaningful physical results, parameters need to be

tuned in order for the ratio of some observables to equate their physical value. Equivalently, one

can think of the lattice as computing dimensionful observables in units of a as a function of the bare

parameters. In order to then extract dimensionful quantities, one needs to fix the scale, namely set a

in physical units. The most natural QCD scale that comes to mind is the mass of some hadron, such

IIA twisted mass term can be added to the Wilson proposal, too, which we will discuss at length in later sections, for we
employed it in this study. Let us mention for completeness that more options exist, most importantly the example of fermions
obeying the Ginsparg-Wilson equation [71], such as overlap fermions [127, 128] or the approximate solution of domain wall
fermions [95]. All of these modify the lattice theory so that it respects some form of exact lattice chiral symmetry [110],
thereby rendering, however, chirality a gauge-field-dependent and non-strictly-local concept.
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3.3 PROPERTIES OF THE LATTICE THEORY

as the proton’s mass mp. However, the scale needs to be computable with controlled errors, since its

uncertainties will propagate into any other dimensionful observable [152]. Multiple hadronic quantities

with small statistical and systematic errors exist. One also does not want the scale’s numerical

computation to be costly and, moreover, a weak quark mass dependence is highly preferable in order

to have an independent tuning of the scale and of quark masses. Altogether, in full QCD, N f + 1

parameters need to be tuned, after which any other ratio of dimensionful observables must be equal to

the corresponding physical value. In our case the number of parameters reduces to two:

1. The scale, which we tune via t0, coming from the so called “gradient flow” scale [111], as

explained in the following.

2. The heavy valence quark mass, the tuning of which is described in Chapter 5.

The scale t0 is defined through observables in a smoothed theory. We start in the continuum by

introducing a field Bµ(t,x), which depends on the spacetime position x and on an additional t, via

Bµ(t,x)
⃓⃓
t=0 = Aµ(x) , (3.21)

∂Bµ(t,x)
∂ t

=− δSYM

δBµ(t,x)
= [Dν ,Gνµ(t,x)] , (3.22)

where one can see the flow time t needs to have mass dimension [t] =−2 and where Gµν(t,x) is the

field strength tensor of Bµ . In leading order perturbation theory it can be seen that eq. (3.22) acts as a

smoothing of gauge fields over a radius of roughly
√

8 t [111]. From here one can define the flowed

action density

E(t,x) =−1
2

tr
{︂

Gµν(t,x)Gµν(t,x)
}︂
, (3.23)

which remarkably is finite in the flowed theory. As shown in [114] through a perturbative analysis

of the 5-dimensional theory, gradient-flow-smoothed observables at t > 0 need no renormalization

beyond the one for the Lagrangian parameters. The continuum limit of the appropriately discretized

version of eq. (3.22) is well defined for an arbitrary gauge invariant quantity based on smoothed gauge

fieldsIII. We are now ready to define t0 through the implicit equation [111]

t2 ⟨E(t,x)⟩
⃓⃓
t=t0

def.
= 0.3 , (3.24)

which can be computed from an integration of eq. (3.22). Note the scale is set through purely gauge

fields and no costly quark propagators are needed, although the scale will have a dependence on N f .

Once
√

8t0/a has been computed, the overall scale of the lattice, or a in fermi, is set once a physical

value for t0 is known. Unlike scales such as hadron masses, for which an experimental value is

available, it is meaningless to think of an experimental measurement of t0 (or of any other gradient

flow scale, such as w0 [26]). Some physically accessible scale is necessary, popular choices being, for

instance, decay constants fπ and fK [29] or the Ω mass mΩ [25]. Simultaneous, precise computations

IIIFor instance, the plaquette does not have the additional additive renormalization term for the a−4 divergence originating
from mixing with the identity.
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of scale ratios within dedicated studies permits the extraction of physical values in fermi for “theory”

scales such as t0.

3.3.2. A Statistical Approach

Lattice simulations are based on Markov chain Monte Carlo [124, 80], a stochastic method to sample

distributions. The appropriately normalized exponential of the Euclidean action exp[−SE ] is treated

as a Boltzmann weight which yields a well defined probability distribution. To evaluate the expectation

value of some gauge invariant operator O , we sample the path integral (in pure gauge for simplicity)

according to

⟨O [U ]⟩=Z −1
∫︂

D [U ]e−SW [U ]O[U ] = lim
N→∞

1
N

N

∑
Un∈P[U ]

O[Un] (3.25)

≈ 1
N

N

∑
Un∈P[U ]

O[Un] , P[U ] = D[U ]e−SW [U ]Z −1 , (3.26)

where Z is the partition function of the theory. This means results are intrinsically of statistical nature

with a statistical error associated to them (for more on this, see Section 4.1).

Here, we can comment on one of the reasons for which we have chosen the pseudoscalar density

as a central observable in this work, as anticipated in eq. (2.2), namely that the pseudoscalar has

statistical fluctuations which are almost independent of Euclidean time. This is in contrast with

operators with other Γ-structures and below we will only briefly sketch the reasoning to understand

this claim. Indicating here the pseudoscalar density (PS) with P(x) = h(x)γ5h′(x) and considering

OPP(x,y) = P†(x)P(y) one can estimate [109]⟨︄
∑
x⃗

OPP(x,y)

⟩︄
|x0−y0|→∞

∝ e−mPS|x0−y0|+ . . . , (3.27)

whereas its variance σ2(OPP) can be written as

σ
2(OPP) =

⟨︄[︄
∑
x⃗

OPP(x,y)

]︄[︄
∑
x′⃗

OPP(x′,y)

]︄⟩︄
−

⟨︄
∑
x⃗

OPP(x,y)

⟩︄2

. (3.28)

The second term is simply the square of the pseudoscalar propagator, while the first one’s influence on

the variance can be guessed by recognizing it also contributes to a π (pion) 4-point function, present in

a ππ propagator. From this one can conclude that the large t asymptotic variance decays like

σ
2(OPP)

|x0−y0|→∞

∝ e−2mPS|x0−y0|+ . . . , (3.29)

so that for asymptotically large t the signal-to-noise ratio is t-independent up to subleading corrections

(see [109] for a simple, introductory explanation). This drastically changes with other Γ-structures

which suffer from problematic signal to noise ratios.
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3.3.3. Systematic Effects of Lattice Computations

Beyond the statistical fluctuations, multiple sources of systematic errors are unavoidably present in

lattice computations, the estimation of which plays a central role in the research field. We list them

here and give a brief overview for clarity.

1. Typical of numerical physics is the tuning of parameters in order to reproduce the physics of

interest, an aspect complicated by renormalization which introduces a non-trivial relationship

between bare, simulation parameters and renormalized quantities related to physical observables.

A detailed description of how this systematic effect was assessed in this work is given in

Section 5.5.

2. As explained in Section 1.2, decoupling permits to simulate QCD without heavier quarks.

However, the effect of quenching light (u, d, and even s) quarks on hadronic observables may be

considerable and might, to some extent, be regarded as a topic no longer of great interest today.

Including light quarks is nowadays feasible with multiple setups, but it has to be kept in mind

simulations carried out in this thesis are fully quenched. What this means precisely as well as

what its consequences might be for the conclusions presented herein are commented upon in the

introduction of Chapter 4.

3. A computer can only consider a finite number of degrees of freedom, implying the necessity

of a finite volume (FV); in most applications one wants it much larger than the other scales of

the problem – rendering it effectively infiniteIV – as is the case in this study. A check of this

for moments in our setup is shown in the discussion of fig. 5.1. In general, FV-effects can be

shown to be exponentially suppressed in mL (a specific computation of FV effects at TL for the

moments can be found in Appendix C.2), where m is the smallest mass that can propagate in the

theory. For the case of full QCD this is given by the light pions, mπ ≃ 140MeV, whereas in the

pure gauge case by much heavier glueballs m0++ ≃ 1730MeV, which greatly ameliorates the

issue of FV-effects.

4. In dynamical simulations a universe with heavier-than-physical pions is thus more convenient,

after which extrapolations to the physical point, i.e. mπ → mphys
π , can be performed. The

interested reader may consult lattice literature or reviews, for instance [57, 76, 87], regarding

this topic of great interest to the lattice community, but not for the specific work at hand.

5. Finally, an extrapolation in the lattice spacing a at which simulations are carried out is necessary.

To reduce the range in which a must be varied (or simply to lessen the extrapolation error), one

oftentimes relies on Symanzik improvement (see [155, 156, 107] or [108, 67] for a pedagogical

introduction): action and operators are modified by irrelevant terms in order to change the

leading discretization effects from O(a) to O(a2), thereby speeding up the approach to the

continuum. A brief description of it and especially of the automatic-O(a) improvement relevant

for twisted mass fermions used in this work, can be found in Appendix A.

IVImportant exceptions exist, such as finite temperature computations or FV renormalization schemes.
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3.4. TWISTED MASS QCD IN THE CONTINUUM

3.4.1. Chiral Symmetry

Before introducing QCD with a chirally twisted mass term, we will briefly summarize some aspects

of the chiral-flavor symmetries of QCD. Let us start with the bare fermionic action of continuum

Euclidean QCD with N f fermions of degenerate mass M

SF =
∫︂

d4xΨ(x)
[︁(︁

/D+M
)︁
1N f

]︁
Ψ(x) . (3.30)

When M ̸= 0 some of the theory’s global flavor symmetries G are explicitly broken

G = SU(N f )L⊗SU(N f )R⊗U(1)V −→ SU(N f )V ⊗U(1)V , (3.31)

where the SU(N f )V transformations (subscript V indicating vector generators) can be written as⎧⎨⎩Ψ′(x) = exp
{︁

iωaT a1spin
}︁

Ψ(x)

Ψ
′
(x) = Ψ(x)exp

{︁
−iωaT a1spin

}︁ , a = 1, . . . , dim [SU(N f )] = N2
f −1 , (3.32)

where T a are the generators of SU(N f ) and ωa parametrize its elements. We explicitly wrote 1spin

to emphasize the vector transformations eq. (3.32) indiscriminately act on L and R (left and right)

components of spinors. The part of the symmetry which mixes L with R at non-zero mass is denoted

by SU(N f )A (for axial vector generators). Its action on spinors is given by⎧⎨⎩Ψ′(x) = exp{iγ5ωaT a}Ψ(x)

Ψ
′
(x) = Ψ(x)exp{iγ5ωaT a}

, a = 1, . . . ,N2
f −1 . (3.33)

Besides the explicit breaking, there is also a spontaneous symmetry breaking at play, i.e. the ground

state is not invariant for the whole symmetry G , even at M = 0. This can be seen, e.g., considering

N f = 2 and the (large) non-degeneracy of the nucleon mass with its negative parity partner, N⋆, as well

as from the large mass gap between the lightest mesons (pions) and the rest of the spectrum. The pions

are the (would be) Goldstone bosons of the broken symmetry, their relatively tiny mass given by the

aforementioned explicit breaking due to the non-zero light quark masses.

3.4.2. Chiral Twist in the Continuum

Let us now simplify the exposition by setting N f = 2 for the rest of this thesis (unless explicitly stated

otherwise), since this is the numerical setup we employedV. One can perform the following global

VWith N f = 2 here we mean we consider a doublet of mass-degenerate valence quarks, since, as explained in Chapter 4,
our ensembles will be generated in the quenched approximation, usually referred to as N f = 0.
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field transformation which is non-anomalous in the N f = 2 case⎧⎨⎩ χ(x) = RωΨ(x)

χ(x) = Ψ(x)Rω

, Rω = exp
{︃
−iω

τ3

2
γ5

}︃
⊂ SU(2)A (3.34)

where χ denote the new, chirally rotated fields. This is trivially equivalent, at a path integral level, to a

change of integration variables. The continuum action for the χ fields will change form, and after a

few lines of algebra one obtains

SF =
∫︂

d4x χ(x)
[︁(︁

/D+mq
)︁
1N f + iµtmγ5τ

3]︁
χ(x) ,

⎧⎨⎩mq = M cosω

µtm = M sinω

, (3.35)

so that tan(ω) = µtm/mq and M =
√︂

m2
q +µ2

tm. This is the continuum form of the twisted mass

QCD (tmQCD) action, introduced in [64], equivalent, of course, to the standard QCD action; we just

performed a change of variables. Advantages of twisted mass are related to the finite cutoff theory and

are discussed later.

Let us explore a few key points of the action in eq. (3.35). It clearly has an additional parameter,

the twist angle ω , with respect to the action in eq. (3.30) (equivalently, there is a second bare mass

parameter, µtm, beyond the standard one). Observables are expectation values of operators, which,

using eq. (3.34), can be related in the two theories through

⟨︁
O[Ψ,Ψ]

⟩︁
(M,0) =Z −1

(M,0)

∫︂
D[Ψ,Ψ,U ]O[Ψ,Ψ]e−SF (M,0)

=
⟨︁
O[R−1

ω χ,χR−1
ω ]
⟩︁
(M,ω)

=Z −1
(M,ω)

∫︂
D[χ,χ,U ]O[R−1

ω χ,χR−1
ω ]e−SF (M,ω) .

(3.36)

With the somewhat redundant notation we want to stress what is in the twisted basis and what is at

ω = 0, to emphasize that at ω ̸= 0 operators, in general, can change form. Fields within a chiral

multiplet have the same transformation rules w.r.t. Rω , implying some correlation function in tmQCD

is given by a linear combination of correlation functions in standard QCD, and vice-versa, yielding

what can be seen as a formal dictionary between the two theories. Hereafter, we are interested in

A ±
µ = Ψγµγ5

τ1± iτ2

2
Ψ , A±µ = χγµγ5

τ1± iτ2

2
χ , (3.37)

V ±µ = Ψγµ

τ1± iτ2

2
Ψ , V±µ = χγµ

τ1± iτ2

2
χ , (3.38)

P± = Ψγ5
τ1± iτ2

2
Ψ , P± = χγ5

τ1± iτ2

2
χ , (3.39)

where curly letters indicate operators at ω = 0, whereas non-curly uppercase letters are written in

terms of fields χ . When taken at ω = π/2, referred to as maximal twist, we have

χ(x)|ω≡π/2 =

(︄
h(x)

h′(x)

)︄
. (3.40)
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This point in parameter space is of central importance, as can be seen by obtaining relations between

the the two theories, namely

P± = P± , (3.41)

A ±
µ = cosω A±µ ∓ isinω V±µ , (3.42)

V ±µ = cosω V±µ ∓ isinω A±µ . (3.43)

For instance, chiral Ward identities [69, 21, 104] (always to be understood as operator insertions) with

the above fixed flavor assignment become⎧⎨⎩ ∂µA ±
µ = 2MP±

∂µV ±µ = 0
−→

⎧⎨⎩ ∂µV±µ =±2i µtm P±

∂µA±µ = 2mq P±
, (3.44)

so that PCAC-mass measurements in the twisted theory, where mq = 0, may be employed as a numerical

check on deviations w.r.t. the ω = π/2 condition; measurements on our ensembles are reported in

Subsection 5.5.2.

One consequence which should be kept in mind when rotating the fields is the non-standard form

of symmetries (see [149, 150]), such as parity and time reversal; the operator defining the moments

is still symmetric w.r.t. physical time-reversal, although in general time reversal and parity are not

symmetries of the full quantum theory at a > 0.

Furthermore, we have shown the relation between physical observables and a given Γ-structure

changes between standard QCD and tmQCD. Take for instance the pion decay constant, tied to the

overlap of the pseudoscalar groundstate with the four-divergence of the axial vector current: in tmQCD

it will be given by the overlap of a pion state with the four-divergence of the vector current. This may

be of great advantage, depending on the renormalization properties of the specific lattice discretization.

3.5. TWISTED MASS AND THE LATTICE

The full fermionic action chosen for this work in terms of bare, chirally rotated field doublets χ is

given by

SF = a4
∑
x

χ(x)

{︄
3

∑
ν=0

(︄
γν

∇ν +∇∗ν
2

− a
2

∇
∗
ν∇ν + csw a

3

∑
µ=0

i
4

σµν F̂µν

)︄
1N f +m01N f + iµtmγ5τ3

}︄
χ(x) .

(3.45)

The factor proportional to cSW is the Sheikholeslami-Wohlert (SW) term [147] necessary for O(a)-

improvement of standard Wilson fermions and which contains: F̂µν , an appropriate discretization

of the field strength tensor, and σµν , a commutator of γ-matrices (we defer the explicit form as well

as some introductory explanation of these details to Appendix A.1). Here it is only crucial to note

its explicit form, as that of Wilson’s term, are the ones conventionally written with standard Wilson

fermions, although we are in the twisted theory. This is a widespread convention, although a priori one
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may also take the standard Wilson action in the physical basis and rotate it, obtaining a non-standard

form for SW and Wilson terms. Furthermore, we stress the SW improvement term is not necessary for

O(a)-improvement, yet it is kept since there is evidence it ameliorates O(a2)-effects [13, 54].

Let us mention the original motivations for introducing the chirally twisted mass terms are several,

among which the absence of zero modes, equivalent to a strictly positive Dirac operator. Writing here

eq. (3.45) as

SF = a4
∑
x

χ(x){DW + iµtmγ5τ3}χ(x) , (3.46)

DW ’s determinant is readily seenVI to be

det{DW + iµtmγ5τ3}=det{γ5 DW + iµtmτ3} (3.47)

=det

(︄
γ5 DW + iµtm 0

0 γ5 DW − iµtm

)︄
= det

{︁
(γ5 DW )2 +µ

2
tm
}︁
> 0 . (3.48)

3.5.1. Renormalization

To show that the dictionary between correlation functions mentioned after eq. (3.36) is not spoiled by

renormalization, it suffices for members of a chiral multiplet to renormalize in the same way and for

renormalization factors to be independent of the angle ω . These properties can be obtained through

the Ginsparg-Wilson regularization and in a mass-independent renormalization scheme. Invoking then

the well established property of universality, one obtains the equivalence of the two theories, though

we remind a rigorous proof of non-perturbative universality remains unknown.

For continuum, renormalized quantities in the Euclidean the following operator identity can be

derived from chiral Ward identities

∂µA ±
µ,R(x) = 2MRP±

R (x) . (3.49)

In terms of the twisted fields we have

A a
µ,R(x) = lim

a→0

{︂
ZA(g0)Aa

µ(x) cosω + ε
3ab ˜︁V b

µ (x) sinω

}︂
, (3.50)

where ˜︁Vµ is the point-split vector current

˜︁V b
µ (x) =

1
2

χ(x)
(︁
γµ −1

)︁ τb

2
Uµ(x)χ(x+aµ̂)+

1
2

χ(x+aµ̂)U†
µ(x)

(︁
γµ +1

)︁ τb

2
χ(x) , (3.51)

which is exactly conserved in standard Wilson theory, i.e. Z˜︁V = 1. Since one is free to choose a

mass-independent renormalization scheme and determine Z-factors in the chiral limit, where all masses

are set to zero, Z˜︁V = 1 still holds. Now, from the vector lattice chiral ward identity with twisted fields

VIWe remind here that DW is γ5-hermitean, i.e. (γ5 DW )† = γ5 DW , or equivalently D†
W = γ5 DW γ5.
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one can, as long as y ̸= x1, ...,xn, obtain the exact lattice identity

∂

∂yµ

⟨︂˜︁V b
µ (y)O(x1, ...,xn)

⟩︂
= 2 µtm ε

dc3
⟨︂

Pd(y)O(x1, ...,xn)
⟩︂
. (3.52)

From eqs. (3.49) and (3.50) one may obtain

ZA ∇
∗
µ A±µ (x) cosω∓ i∇

∗
µ
˜︁V±µ (x) sinω = 2ZP P±(x)

√︂
Z2

µtm
µ2

tm +Z2
m m2

q , (3.53)

where now mq = m0−mcr, which at maximal twist becomes

∓i∇
∗
µ
˜︁V±µ (x) = 2(Zµtm µtm)(ZP P±(x)) , (3.54)

where confronting eq. (3.54) with eq. (3.52) implies the crucial identity

Zµtm ZP = 1 . (3.55)

Any explicit renormalization-related Z prefactor of the maximally twisted moments cancels out,

elucidating one of the key reasons for our choice of discretization. All put together, one obtains⟨︂
∂µA ±

µ,R(x)P
∓(y)

⟩︂
= lim

a→0
2µtm

⟨︁
P±(x)P∓(y)

⟩︁ ⃓⃓
ω=π/2 , (3.56)

where this identity is of particular importance since it avoids the presence of the ZA factor in the

evaluation of decay constants, and we will employ it in Subsection 4.4.2.

3.5.2. Twisted Mass Moments

We are now ready to give our twisted mass, lattice definitionVII of moments, namely

Mn(a,z)
def.
= 2 lim

T,L→∞

(︂a
L

)︂3 T

∑
t=0

atn
L−a

∑
x⃗, y⃗=0

a3 ⟨︁J†(t, x⃗,µtm)J(0, y⃗,µtm)
⟩︁

where (3.57)

J(t, x⃗,µtm) = i µtm h(t, x⃗)γ5 h′(t, x⃗) (3.58)

where we exploited the property of our observable to be invariant for t→−t at maximal twist, like in

the continuum. Note, due to eq. (3.55), no further renormalization constants are present and eq. (3.57)

is finite for n > 3, i.e. once short-time divergences explicitly seen in eq. (2.16) are removed.

All computations present in literature employing the pseudo-scalar density operator make use of

discretizations where explicit renormalization constants are absent, be it staggered fermions [138, 36]

or domain wall fermions [126] (let us mention here also the only twisted mass result by ETMC [93],

which remains unpublished).

Up to now, all collaborations working with moments [3, 36, 126, 138] normalized them by their

VIIOf course, in simulations J(0, y⃗) has to be far enough from boundaries (if present, as in our case, see Subsection 4.2.2)
and the sum over time-slices will be truncated, both to reduce noise and, again, to avoid coming close to boundaries. These
further lattice details will be presented in Section 5.3.
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3.5 TWISTED MASS AND THE LATTICE

finite a tree-level, computed numerically on a lattice alike the one of the non-perturbative computation,

but with all gauge links set to Uµ(x) = 1. We opted for an analytical computation, done both in

finite and infinite volume, detailed in Appendix C. This so called “tree-level improvement” is naively

expected to reduce scaling violations and ameliorate the continuum limit due to the following. Given a

lattice observable B(a,m) – m indicating any energy scale the observable may depend on – its bare

lattice perturbation theory expansion is formally

B(a,m) = B(0)(a,m)+αbareB
(1)(a,m)+O(α2

bare) , (3.59)

which one can divide by B(0)(a,m) obtaining

B(a,m)

B(0)(a,m)
= 1+αbare

B(1)(a,m)

B(0)(a,m)
+O(α2

bare) . (3.60)

Supposing now lattice artefacts to start at order l

B(i)(a,m) = B(i)(0,m)+ p(i)1 al +O(al+1) , ∀i≥ 0 , (3.61)

in eq. (3.60) the leading O(al) effects are naively suppressed by an αbare factor, with leftover O(αbareal)

cutoff effects; for improved observables l = 2.

Let us be specific to moments: their tree-level is

M TL
n (aµtm,L/a) def.

= M
(lat)
n
⃓⃓
g0=0 , (3.62)

which we analytically computed in order to define the following tree-level normalized version of

moments

Rn(a, z) def.
=

⎧⎪⎨⎪⎩
Mn(aMRGI,z)

M TL
n (aµTL

tm ,L/a) , n = 4,(︂
Mn(a,z)

M TL
n (aµTL

tm ,L/a)

)︂ 1
n−4

, n = 6, 8, 10
. (3.63)

This division greatly improves the continuum approach of moments, as can be seen in figs. 3.1a

and 3.1b. However, we glossed over some important details, namely:

1. In eq. (3.61) we supposed the leading cutoff effects to come in powers of a, as is oftentimes done,

but which is known to be an incomplete picture due to the presence of logarithmic dependence

on a [90].

2. Although the correlator indeed has l = 2, this does not suffice to conclude the same for the

moment, an observable integrated over all time distances, including t→ 0 [43].

3. Although the cutoff effects are indeed observed to decrease in absolute size not only for the

correlator, but for moments as well (see section 3.5.2), the tree-level division may enhance the

curvature complicating the functional form of the a-extrapolation, as observed for the n = 4 case

[43] described in Subsection 6.1.2.

Let us conclude the chapter by writing the full, tree-level normalized version of eq. (2.20), which we
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(a) Close to the continuum, a mild improvement can be seen for the ratio R6/R8 at z = 4.5,
one of the lower mass values.

(b) Ratio R8/R10 for z = 9, one of the higher masses: here, a very strong improvement is
immediately noticeable.

Figure 3.1: Comparison of continuum approach for two different tree-level normalizations. In red the moment
divided by the continuum tree-level calculated in infinite volume, whereas blue points have been obtained with a
computation at finite volume and lattice spacing, with the sum over spatial momentum in eq. (C.68) performed
numerically.
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will study in depth in the next chapters in order to extract the coupling, namely

Rn(z,aMRGI)
def.
=

⎧⎨⎩R4(z,aMRGI) n = 4 ,
Rn(z,a)

Rn+2(z,a)
n = 6, 8

, (3.64)

which we again stress is dimensionless and thus only depends on z and aMRGI. Obtaining the

perturbative coefficients of Rn with n > 4, which we refer to as {r̃(i)n }, from {r(i)n , r(i)n+2} poses no

problem and just requires some algebra and a perturbative re-expansion.
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4 | Lattice Computations

LATTICE QCD’s success in multiple applications owes much to its key feature, the possibility of

performing computer simulations for several observables of interest. In these computations

regions of parameter space difficult to access with other methods, for instance when the physical

coupling is large and perturbative expansions become meaningless, can be studied with a systematically

improvable methodology.

Lattice QCD computations are labeled by the number N f of dynamical quark flavors present in the

action, which defines the probability distribution of the generated ensemble of field configurations.

This work has N f = 0, also called quenched theory, meaning the underlying gauge fields are distributed

according to a pure Yang-Mills weight and the costly inversion of the Dirac matrix D is necessary

only for computing quark-related observables, unlike the N f > 0 case where already the ensemble

generation itself requires it. To make this more precise, consider the path integral needed to compute

some observable O [ψ,ψ,U ]

⟨O [ψ,ψ,U ]⟩=Z −1
N f

∫︂
D [ψ,ψ,U ]O[ψ,ψ,U ]e−SW [U ]−SF [U,ψ,ψ] (4.1)

=Z −1
N f

∫︂
D[U ]det{D[U ]} e−SW [U ] ˜︁ON f [U ] (4.2)

N f→0
≃ Z −1

0

∫︂
D[U ]�����det{D[U ]}⏞ ⏟⏟ ⏞

set to 1

e−SW [U ] ˜︁O0[U ] , where (4.3)

ZN f =
∫︂

D[ψ,ψ,U ]e−SW [U ]−SF [U,ψ,ψ] =
∫︂

D[U ]det{D[U ]}e−SW [U ] (4.4)

N f→0
=⇒Z0

def.
=
∫︂

D[U ]�����det{D[U ]}⏞ ⏟⏟ ⏞
set to 1

e−SW [U ] , and (4.5)

˜︁O0[U ] =
1

�����det{D[U ]}⏞ ⏟⏟ ⏞
set to 1

∫︂
D[ψ,ψ]O[ψ,ψ,U ]e−SF [U,ψ,ψ] , (4.6)

so that quark fields present are the ones contained in the observable only, i.e. valence quarks. In

perturbation theory this would amount to setting all internal quark loops to zero. The name “quenching

limit” indeed comes from the equivalence with the infinite quark-mass limit, which means they are

“frozen in place” and cannot propagate. The quenched model is thus expected to better approximate

the full theory the heavier the quenched quark flavor is.

Note that D is a very large, yet sparse, matrix. Each spinor field carries ndof = Nc×dim[RD] indices,

where Nc is the number of colors and RD = (1/2,0)⊕ (0,1/2) (yielding dim[RD] = 4) is the reducible
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Dirac spinor representation. Thus, an action quadratic in these fields has a Dirac matrix of size

dim[D] = (ndof ·V4)× (ndof ·V4), where V4 is the 4 dimensional volume of the lattice. This implies a

very large number of degrees of freedom, for instance with V4 = 324 one has a matrix D with more

than 10 million columns and rows. In most theories, however, since the action is local, D will be a

sparse matrix which is a key advantage for its inversion.

The choice of carrying out this study in the quenched model is due to the algorithmic advantage,

differently stated it becomes cheaper and thus feasible to reach smaller lattice spacings. The main

objective of this work is not computing a value of the coupling competitive w.r.t. other computations,

rather it is to study the two main systematic errors of the moments method for a varying energy range:

the cutoff effects and the truncation error. Regarding the former, the largest source is expected to come

from heavy quarks (up to logarithmic corrections, see [43]), while the latter is determined by two

factors: the unknown coefficient C(4,0)
2n of eq. (2.8) (plus higher order corrections) and by the coupling’s

value and running at a given scale. How the size of the truncated part changes with the scale is, in turn,

encoded in the βMS(αMS)-function; quantitatively put, in the asymptotic region

βMS(αMS)
α→0∼ −β0 α

2
MS(µ)−β1 α

3
MS(µ)+O(α 4) , with (4.7)

[︁
β0, β1

]︁
=

[︃
1

(4π)

(︃
11− 2

3
N f

)︃
,

1
(4π)2

(︃
102− 38

3
N f

)︃]︃
≃

⎧⎨⎩
[︁
0.88, 0.65

]︁
, N f = 0[︁

0.66, 0.33
]︁
, N f = 4

, (4.8)

so that there is strong perturbative indication to expect a very similar behavior, qualitatively but also

quantitatively, between the quenched and the fully dynamical (lattice accessible) case, namely N f = 4.

To conclude, a quenched computation is a well motivated first step into studying the size of the

asymptotic scaling region of moments.

4.1. THE GAMMA-METHOD

Using an approach statistical in nature, as introduced in Subsection 3.3.2, poses the question of how

to practically generate configurations which are statistically (close to) independent. One needs an

algorithm that generates the next configuration in the Markov chain by updating the link variables of the

lattice, but it is in practice unavoidable to have some leftover correlation between subsequent elements,

called auto-correlation. Common approaches to evaluate this effect are the statistical bootstrap and the

jackknife method, combined with some binning procedure. Within the ALPHA collaboration the so

called Γ-metohd is used [164], in which one explicitly tries to compute the auto-correlation function, to

be introduced below. What is explained in [164], with some further improvements discussed in [145],

is implemented in the MATLAB package dobs. Below we give a short description of the Γ-method,

mostly following the above mentioned references.

Given a sample of random values (a1,a2, ...,aN), such as measurements of some primary quantityI

on Monte Carlo generated configurations which are here supposed to be thermalized and in equilibrium,

IIn this context primary quantity refers to the average of a directly measured observable, whereas secondary or derived
quantity refers to a function of several such averages.
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the standard estimators (in this section always indicated by hats) for their expectation value ⟨ai⟩ and

variance σ2
ai =

⟨︁
(ai−⟨ai⟩)2

⟩︁
are

â =
1
N

N

∑
i=1

ai, σ̂
2
a =

1
N−1

N

∑
i=1

(︁
ai− â

)︁2
. (4.9)

Now, the estimator â on a sample of the ensemble is a random variable as well, because its value on

different samples will fluctuate around the “true” value ⟨a⟩ with variance

σ
2
â =

⟨︂(︁
â−⟨a⟩

)︁2
⟩︂
=

1
N2

⟨︄
N

∑
i, j=1

(︁
ai−⟨ai⟩

)︁(︁
a j−⟨a j⟩

)︁⟩︄ def
=

1
N2

N

∑
i, j=1

Γa(i− j) , (4.10)

where ⟨ai⟩= ⟨a j⟩= ⟨a⟩ and Γa(t) is the auto-correlation function (with t = i− j). For uncorrelated

data this reduces to the well-known result σ2
â = σ2

a /N, expressing the N−1/2 decrease in the error

of the estimator. Note that we have assumed â fluctuates around the “true value” ⟨a⟩ in a Gaussian

fashion, which is guaranteed by the central limit theoremII. Let us now introduce the auto-correlation

function for multiple primary quantities, indexed by α and β , again with t = i− j

Γαβ (t) =
⟨︂(︁

ai
α −⟨ai

α⟩
)︁(︁

a j
β
−⟨a j

β
⟩
)︁⟩︂

. (4.11)

Introducing for later notational convenience the deviations ∆α = aα −⟨aα⟩, we can calculate for

correlated data

⟨∆α∆β ⟩=
1

N2

N

∑
i, j=1

Γαβ (i− j)III =
1

N2

t=−N−1

∑
t=−(N−1)

N−|t|

∑
k=1

Γαβ (t) =
N

∑
t=−N

N−|t|
N2 Γαβ (t) (4.12)

=
1
N

Γαβ (0)+
1
N

N

∑
t=−N

Γαβ (t)
(︃

1− |t|
N

)︃
, (4.13)

which we can further elaborate as follows: Γαβ (t) typically has an asymptotic (associated to its slowest

mode) exponential decay with |t| characterized by some scale τexp, the factor 1− t/N can be dropped

for N large enough, i.e. for τexp < |t|< N, whereas for 0 < |t|< τexp the term is extremely close to

unity. Thus, we obtain

⟨∆α∆β ⟩=
1
N

N

∑
t=−N

Γαβ (t)×
(︂

1+O
(︂

τexp

N

)︂)︂
. (4.14)

Now consider a secondary quantity defined as a function of primary quantities, i.e. F = f (⟨aα⟩)
estimated via F̂ = f (âα). Assuming N large enough to have accurate estimates and justifying Taylor

IIThe key idea being that for N → ∞ the properly normalized sum of N independent random variables with finite
expectation value and variance is distributed according to a normal distribution, which acts therefore as an attractor
distribution, even though the individual ai need not be normally distributed.

IIIIn this equality we have changed variables with a mapping of the square [1,N]× [1,N] into [−(N− 1),(N− 1)]×
[1,N−|t|] for convenience.
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expanding around the “true value” ⟨F⟩ we write

F̂ = f (âα)+∑
α

∂ f
∂aα

⃓⃓⃓⃓
aδ

∆̂α +
1
2 ∑

αβ

∂ 2 f
∂aα∂aβ

⃓⃓⃓⃓
aδ

∆̂α ∆̂β + . . . , (4.15)

with ∆̂α = aα − âα and from which follows that the estimator for F is biased unless one is dealing

with a linear f (aα). The bias is usually small compared to statistical errors [164]. The error on the

derived quantity F can then be obtained by

σ
2
F = ⟨(F−⟨F⟩)2⟩ ≃ 1

N ∑
αβ

∂ f
∂aα

⃓⃓⃓⃓
aδ

∂ f
∂aβ

⃓⃓⃓⃓
aδ

∞

∑
t=−∞

Γαβ (t) , (4.16)

which, once we define

vF
def.
= ∑

αβ

∂ f
∂aα

⃓⃓⃓⃓
aδ

∂ f
∂aβ

⃓⃓⃓⃓
aδ

Γαβ (0) , (4.17)

can be rewritten as

τint,F
def.
=

1
2vF

∑
αβ

∂ f
∂aα

⃓⃓⃓⃓
aδ

∂ f
∂aβ

⃓⃓⃓⃓
aδ

∞

∑
t=−∞

Γαβ (t) (4.18)

σ
2
F =2

τint,F

N
vF , (4.19)

where vF is F’s variance in the absence of auto-correlations. This factor is multiplied by the integrated

auto-correlation time 2τint,F , which almost alwaysIV increases the error due to auto-correlation. It

can be thought of as the Monte Carlo time needed to actually produce two configurations which are

independent, meaning N/2τint,F represents an “effective” number of measurements, thereby assessing

the efficiency of the algorithm.

As an estimator for Γ(t)αβ we use

Γ̂(t)αβ

def.
=

1
N− t

N−t

∑
i=1

(ai
α − âα)(ai+t

α − âα) , (4.20)

from which we define

Γ̂F(t)
def.
= ∑

αβ

∂ f
∂aα

⃓⃓⃓⃓
aδ

∂ f
∂aβ

⃓⃓⃓⃓
aδ

Γ̂αβ (t) , (4.21)

for the derived quantity F . It is now trivial do define

v̂F
def.
= Γ̂F(0) , (4.22)

whereas some care must be taken for the integrated auto-correlation time. The sum over t will be

IVIt can happen that ρ(t) = Γ(t)/Γ(0)< 0 for some t, a phenomenon called anti-correlation.
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truncated after W steps, giving

τ̂ int,F
def.
=

1
2v̂F

[︄
Γ̂F(0)+2

W

∑
t=1

Γ̂F(t)

]︄
, (4.23)

where W has to be large enough w.r.t. the decay time τexp introduced above, in order to suppress

the systematic error coming from the truncation itself. This error decays roughly exponentially with

W/τexp. At the same time W needs to be small enough as to not include the t region where the signal

is exponentially suppressed while the noise becomes prominent. The selection of W is carried out in

order to minimize the sum of the absolute value of the two mentioned errors, using approximations

based on [118]. A similar balancing of errors for both simple and jackknife binning, where the bin size

B plays an analogous role to 2W , leads to a an error estimator which has a slightly larger error [164],

whereas with the Γ-method a slightly quicker decay with N is achieved. The root of the disadvantage

of binning methods lies in the systematic error decaying only as an inverse power of B.

4.2. CRITICAL SLOWING DOWN

As described in Section 3.1, lattice QCD’s continuum limit a→ 0 corresponds to g0→ gcritical = 0,

i.e. the lattice theory has a critical surface which is approached for a→ 0. At the critical surface

the correlation lengths in lattice units ξ/a diverge, meaning one can extract finite physical quantities

in the a→ 0 limit. From an algorithmic perspective, though, this means the correlation between

configurations in the Markov chain grows and it becomes computationally more costly to efficiently

update the gauge links so that two subsequent configurations are effectively independent. The auto-

correlation times are non-universal: they depend on the algorithm, on the observable, and on the

chosen discretization. The topological charge Q, which we define below, is known to have large

auto-correlation times [52, 145]. This property is an effect of the strong coupling of Q to slow modes of

the Markov process’ transition matrix and by no means an intrinsic property of the topological charge

itself. How strong a slow mode couples to some observable cannot be known a-priori. Moreover, an

observable’s weak coupling to a slow mode does not necessarily imply no significant contribution to

its statistical error is present.

4.2.1. Topological Charge

Simulating theories on a necessarily finite lattice requires some care in the choice of boundary

conditions; a specific choice may be particularly fruitful depending on the situation. The most common

choice is that of periodic and anti-periodic boundary conditions for, respectively, gauge and fermion

fields. Thus, translation invariance is preserved, which has both theoretical and practical advantages.

One of the main drawbacks of periodic boundary conditions is the emergence of multiple so called

topological sectors, which are disconnected in the continuum limit. These are sets of classical gauge

configurations in different non-trivial homotopy classes, which can be labeled by a winding number,
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commonly called topological charge [14, 79, 142]

Q =
∫︂

d4x
1

32π2 εµνρσ tr
{︁

Fµν(x)Fρσ (x)
}︁
, (4.24)

which can be shown to be integer valued and where Fµν is defined in eq. (1.8). Upon quantization

also discontinuous configurations are present, stemming from the strongly fluctuating gauge fields

in the path integral, so that disconnected field space has to be understood in the classical sense.

Integer valued Q is related to the fact that, given periodic boundary conditions, the relevant quantity to

determine connectedness of classical configurations is the third homotopy group π3 of SU(3), which is

π3(SU(N)) = π3(SU(2)) = Z, ∀N ≥ 2. Integer valued winding numbers also emerge in very simple

cases such as a free quantum mechanical particle on a circle or U(1) gauge theory in d = 2, which are

used to study alternative approaches to avoid the issue of topological freezing [145, 52]. This problem

can be understood as follows: at finite lattice spacing any value for Q is possible, but moving towards

the a→ 0 limit the relative weight of configurations with non-integer valued Q decreases with a high

power of a, rendering the link update – which achieves transitions between sectors – more and more

difficult. Thus, one has the emergence of disconnected sectors in the continuum limit as a dynamical

property of fully quantized, lattice fields, rather than having them stemming from a classical continuity

assumption.

The Atiyah-Singer index theorem [9], which we here only mention for the continuum case (for

a lattice discussion, see [79]), somewhat unexpectedly states a connection between the topological

charge, a quantity defined fully in terms of gauge degrees of freedom, and the number zero modes

of fermion fields. Thus, various lattice definitions are possible and one might be advantageous over

another, depending on the situation. In this study we employ a standard, symmetric gluonic field

tensor definition in terms of a gradient-flow-smoothed plaquette operator (see eq. (3.21) and eq. (3.4)),

namely

Q(t) = a
T−1

∑
x0>0

∑
x⃗

a3 −1
32π224

±4

∑
αβρσ=±1

εαβρσ tr
{︁

U(t,x)α,β U(t,x)ρ σ

}︁
, (4.25)

where εαβρσ = −ε(−α)βρσ and where the x0-sum extrema are due to open boundary conditions,

explained in the following.

4.2.2. Open Boundary Conditions

The effect of using open boundary conditions to ameliorate topological freezing in the case of HMC

and SMD algorithms was studied in [113]. The continuum boundary conditions for the gauge potential

Aµ(x) are periodic in space and

F0k(x)|x0=0 = F0k(x)|x0=T = 0 , k = 1,2,3, (4.26)
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(a) Evolution in simulation time of topological
charge squared Q2(tGF).

(b) Distribution of the topological charge squared
Q2(tGF).

Figure 4.1: Topological charge Q for ensemble sft6.

in time, so that gauge invariance is preserved. Quark fields satisfy

P+ψ(x)|x0=0 = P−ψ(x)|x0=T = 0 , P± = (14± γ0)/2 , (4.27)

ψP−|x0=0 = ψP+|x0=T = 0 , (4.28)

which implies ψψ vanishes at the boundaries and no boundary counterterms will be necessary. With

this setup it has been shown [113] that classical field space is not disconnected into topological sectors

and the topological charge can vary smoothly by “flowing through” the time boundary. In order to

check that we are not affected by topological freezing, we monitor Q2 as a function of simulation time.

We use Q squared, since Q is parity odd and its ensemble average vanishes [145]. In figs. 4.1a and 4.2a

it can be seen for our second and third finest ensembles, where the critical slowing down can be severe

(more plots in Appendix D, figs. D.1 and D.2). Clearly, Q2 varies among a large and non-integer set

of values, although the aforementioned flowing in/out through the (physical) time boundary takes a

non negligible (simulation) time, so that subsequent configurations tend to have somewhat similar

values of Q2. Still, given the small number of configurations the overall distribution of Q2 in figs. 4.1b

and 4.2b is satisfactory enough to claim no significant topological freezing is observed.

Finally, let us mention o.b.c. require an additional factor at the boundary in eq. (3.3), namely

SW
def.
=

1
g2

0
∑

x,µ<ν

w(x,µ)Re
{︁

tr
[︁
1−U(x)µ,ν

]︁}︁
, (4.29)

where w(x,µ) = 1 for all plaquettes of the lattice, except for the ones lying entirely on the boundary

time slice, where w(x,µ) = 1/2.

4.3. COMPUTING CORRELATORS

The computation of a meson correlator on the lattice amounts to:

1. The computation of the quark propagator S(x,y,µtm).

2. The contraction of the propagators in order to form the desired correlator.
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(a) Evolution in simulation time of topological
charge squared Q2(tGF).

(b) Distribution of the topological charge squared
Q2(tGF).

Figure 4.2: Topological charge Q for ensemble sft5.

3. The average over configurations within the ensemble, eq. (3.26).

An efficient way of doing this is by using stochastic noise sources, which we call η , placed at the time

slice of the quark source.

4.3.1. Stochastic Estimation of the Trace

The noise sources are random fields following some distribution, typical choices being U(1) (our

choice), Gaussian, Z2, and which obey

⟨ηi(x⃗)⟩src =0 , i = 1,2, . . .Ns , (4.30)⟨︂
η

†
i (x⃗)η j(y⃗)

⟩︂
src

=δi, jδx⃗,y⃗ , i = 1,2, . . .Ns . (4.31)

They are placed on the source time-slice x0, whereas the sink is located at y0 and we label their distance

in time by t = x0− y0. The inserted noise sources have to be equivalent to a stochastic representation

of 1, i.e. they have to be decoupled from the dynamical fields and cannot affect the physics, while at

the same time computing

G(t,a) = L−3
∑
x⃗, y⃗

C(x,y) = L−3
∑
x⃗, y⃗

⟨︂
h
′
(x)ΓA h(x)h(y)ΓB h′(y)

⟩︂
(4.32)

in a more efficient way. Here we indicate by Γ a generic Dirac matrix structureV. The above, after the

fermionic path integral, can be rewritten in the case of mass degenerate twisted mass Wilson fermions

as

G(t,a) =−L−3
∑
x⃗, y⃗

tr
⟨︁
ΓAS(x,y,−µtm)ΓBS(y,x,µtm)

⟩︁gauge
, (4.33)

where the propagator S is defined by

∑
y

D(x,y)S(y,z,µtm) = ∑
y
[DW (x,y)+ iµtmγ5]S(y,z,µtm) = 1δx,z . (4.34)

VWe refer the reader to the very clear proceedings [109] for more details.
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In eq. (4.33) we have performed the path integral over fermion fields exactly, which corresponds to the

possible Wick contractions [160], usually schematically written as

C(x,y) =Z −1
∫︂

D [ψ,ψ,U ]h
′
(x)ΓA h(x)h(y)ΓB h′(y)e−SW [U ]−SF [U,ψ,ψ] (4.35)

=Z −1
∫︂

D[U ]det{D[U ]} tr
{︁

ΓAS(x,y,−µtm)ΓBS(y,x,µtm)
}︁

e−SW , (4.36)

where, of course, the propagator still depends on gauge fields. Here, also one of the motivations to

choose two different flavors (h, h′) mentioned at the beginning (see eq. (2.2)) becomes clear, namely to

avoid contractions at the same spacetime point which are (1) costly to evaluate and (2) hard to quantify

reliably in perturbation theory.

Since C(x,y) at fixed x0 and y0 contains any possible point on the time slices (point-to-point

correlator), its computation is quite expensive. The noise sources compute efficiently the correlator

between time-slices G(t,a), with sums over space and trace included. This is achieved by defining the

two following stochastic observables⎧⎨⎩ ζx0(u) = ∑v[DW + iγ5µtm]
−1(u,v)ηx0(v)

ξx0(u) = ∑v[DW + iγ5µtm]
−1(u,v)γ5Γ

†
Aηx0(v)

, (4.37)

and computing the time-slice correlator as

G(t,a) =−L−3
∑
y⃗

⟨︂
ξ

†
x0
(y)γ5ΓBζx0(y)

⟩︂noise, gauge
. (4.38)

One can show the equivalence of G(t,a)’s definition with eq. (4.38) by expanding the latter

G(t,a) =−L−3
∑
y⃗

⟨︂
∑
k

η
†
x0
(k)ΓAγ5(γ5 DW γ5− iµtmγ5)

−1(k,y)γ5ΓB× (4.39)

∑
l
(DW + iγ5µtm)

−1(y, l)ηx0(l)
⟩︂noise, gauge

=−L−3
∑
y⃗

⟨︂
∑
k

η
†
x0
(k)ΓA(DW − iµtmγ5)

−1(k,y)ΓB× (4.40)

∑
l
(DW + iγ5µtm)

−1(y, l)ηx0(l)
⟩︂noise, gauge

=−L−3
∑
y⃗,k,l

⟨︂
δk0,x0δl0,x0δk⃗,l⃗ δcolor, spinΓA(DW − iµtmγ5)

−1(k,y)ΓB× (4.41)

(DW + iγ5µtm)
−1(y, l)

⟩︂gauge
,

so that we have obtained G(t,a) as we wrote it in eqs. (4.33) and (4.34).
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4.3.2. Solvers

In order to solve the Dirac equation a variety of algorithms exist [109, 144]. We use the conjugate

gradient [84] on normal equations (CGNE) for most of the computations (a very clear review can be

found in [148]), in which from a γ5-symmetric D the Hermitean operator Q = γ5 D is defined (not to

be confused with the topological charge), so that Q2 = D†D is positive definite. From a Dirac equation

Dψ = η the corresponding system for Q2 can be solved through the conjugate gradient. Now, the

γ5-symmetry defined as

D† = γ5 Dγ5 , (4.42)

is valid for most lattice Dirac operators, such as DW , but not for the (N f = 2 mass degenerate) twisted

Wilson case. However, normal equations on which to apply the CG can still be obtained as above, with

purely positive eigenvalues, since

D†(µtm) = (DW + iµtmγ5τ3)
† = γ5 DW γ5− iµtmγ5τ3 ≡ γ5 D(−µtm)γ5 , (4.43)

already discussed in eq. (3.47). We stress that in theory the zero eigenvalue limit is well defined,

however on a practical level small masses may still be troublesome. For standard CGNE, the iterations

I are expected to scale as I ∼ κ−1/2 = λmax/λmin ∼ (aµtm)
−1, where κ is the condition number of the

matrix Q and λ are its eigenvalues.

However, on larger lattices the computational time scales quite badly, as detailed in table 4.1. The

number of iterations times aµtm is indeed constant (see fig. 4.3), but the time per iteration increases

unexpectedly. The slowdown occurs during the inversion of the Dirac operator, an effect not observed

with the SAP [103, 112] preconditioned GCR solver [10, 58], which instead scales much closer to the

expected behavior. Measurements on the largest lattices (see Chapter 5 for details about configurations

and measurements) were thus carried out with this solver.

Machine Ens. L/a ·T/a aµtm c ·h c·h·aµtm
V4
·106 c·h·

it. ·V4
·108 T/a · L⃗/a|loc.

Super sft7 192 ·480 0.0887 88.8 K 2.316 2.483 20 ·243

MUC sft6 128 ·320 0.1244 8.72 K 1.615 1.702 20 ·162 ·32

Pax11
sft5 96 ·320 0.1717 2.05 K 1.242 1.289 40 ·243

sft4 64 ·192 0.2604 208 1.074 1.094 24 ·163

Pax10 qb649 48 ·144 0.3846 46.4 1.120 1.120 18 ·122 ·24

Pax9 qb628 36 ·108 0.3446 8.28 1.133 1.129 6 ·183

Table 4.1: Comparison of computing time needed for measurement on 1 configuration for most of our ensembles,
with z =

√
8t0MRGI = 9, NS = 16 (for ens. qb628 NS = 8 was used, so the number of c ·h is multiplied by 2),

and c = core, h = hour. The last column reports the size of the local lattices utilized.
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Figure 4.3: The CGNE iterations necessary to reach a target relative precision of ε = 10−12 scale linearly with
the inverse input mass in lattice units, as expected.

4.4. A SIMPLE LATTICE COMPUTATION

Let us start here by presenting two of the most simple lattice observables that can be studied through a

two-point function: the effective mass and the decay constant of a meson. The results here can be used

in order to cross-check the parameter tuning by comparing with known results, which we show later,

in Subsection 5.5.3.

4.4.1. Effective Mass

Since we are interested in vacuum expectation values, we consider the pseudoscalar densities’ correlator

in a finite spatial volume, but with T → ∞. This condition is a good enough approximation if no

boundary effect can be resolved (as discussed in the next chapter, see fig. 5.2). Understanding sums

over space ∑x⃗ as over x,y,z = 0,1a,2a, ...,L−a, we start from

G(x0− y0,a) =
1
L3 ∑

x⃗,y⃗
⟨0| P̂h,h′(x) P̂†

h,h′(y) |0⟩=
1
L3 ∑

x⃗,y⃗
⟨0|eĤx0P̂h,h′(x⃗)e−Ĥx0eĤy0P̂h′,h(y⃗)e−Ĥy0 |0⟩ ,

(4.44)

which by defining t = x0− y0 and by denoting E0 the energy of the vacuum becomes

G(t,a) =
1
L3 ∑

x⃗,y⃗
⟨0| P̂h,h′(x⃗)e−Ĥt P̂†

h,h′(y⃗) |0⟩eE0t . (4.45)
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Inserting the finite-volume completeness relation written in terms of eigenstates of the Hamiltonian (n

labeling all relevant quantum numbers, except for the definite spatial momentum p⃗)

1= ∑
(n,p⃗)

1
2E(n, p⃗)L3 |n, p⃗⟩⟨n, p⃗| , (4.46)

we obtain, relabeling with E(n, p⃗) the energy difference w.r.t. E0

G(t,a) = ∑
x⃗,y⃗

∑
n,p⃗

1
2E(n, p⃗)L6 ⟨0| P̂h,h′(x⃗) |n, p⃗⟩⟨n, p⃗| P̂†

h,h′(y⃗) |0⟩e−t E(n,p⃗)

= ∑
n,p⃗

1
2E(n, p⃗)L6 ∑

x⃗
ei p⃗·x⃗ ⟨0| P̂h,h′(0⃗) |n, p⃗⟩∑

y⃗
e−i p⃗·y⃗ ⟨n, p⃗| P̂†

h,h′(0⃗) |0⟩e−t E(n,p⃗)

= ∑
n

e−E(n,0⃗)

2E(n, 0⃗)

⃓⃓
⟨0| P̂h,h′(0⃗) |n, 0⃗⟩

⃓⃓2
,

(4.47)

where the sum over x⃗ acts as a projection to zero three-momentum. For charm quarks the first excitable

state with the quantum numbers of the pseudoscalar density is the |ηc⟩, thus by analogy with this case

we write |ηh⟩, obtaining for large time separation

G(t,a) ≃
t→∞

e−tmηh

2mηh

⃓⃓
⟨0| P̂h,h′(0⃗) |ηh⟩

⃓⃓2
+O(e−t(mηh+E(1,0⃗))) . (4.48)

We kept all multiplicative factors, since they will be necessary for the decay constant, but in the case

of the effective mass they drop out (which is why we defer the exact details of the lattice, 1-particle

state normalization to the next section) if one takes the following ratio

G(t +a,a)
G(t,a)

t→∞∼ e−amηh −→ mηh

t→∞∼ −1
a

log
(︃

G(t +a,a)
G(t,a)

)︃
, (4.49)

which is expected to plateau after all higher order corrections in eq. (4.48) have decayed. This behavior

is confirmed by our own data, reported in figs. 4.4a and 4.4b. Given the good and clean signal the

plateaus’ extrema were safely selected by eye inspection, leading to a solid result with a controlled

error.

4.4.2. Decay Constant

When dealing with hadron decays, it is natural for the hadronic and the weak scale to appear. These

are quite disparate, with about two orders of magnitude between them. An effective interaction

which couples weak with hadronic currents can then be written down, leading to matrix elements of

local currents between hadronic states: these can be computed non-perturbatively on the lattice. An

important such matrix element defines what is referred to as decay constant of some meson, namely, in

the charmonium case for Minkowskian signature

⟨0| Â±µ (x) |ηc(q)⟩
def.
= i fηcqµe−iq·x , (4.50)
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(a) Second finest lattice, a ≃ 0.015 fm and m/mcharm ≃ 1.6. A large enough plateau before signal deterioration is
present and can be used to extract the mass.

(b) Lattice spacing a≃ 0.030 fm and m/mcharm ≃ 1.2, also here there is a large and stable plateau, with no visible
oscillations beyond the expected Gaussian fluctuations.

Figure 4.4: Behavior of effective pseudoscalar mass, which plateaus for high enough source-sink distance t. As
explained in the text, the signal is good enough for a safe and solid estimate of the plateau region without the
introduction of a complicated estimator for the systematic error.
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where the ± notation is the same of eq. (3.37). Note that the qµ -factor is present as far as it is the only

available quantity with the correct Lorentz vector structure. Taking the four-divergence of eq. (4.50)

one obtains

∂µ ⟨0| Â
±
µ (x) |ηc(q)⟩= fηc q2e−iq·x , q2 = m2

ηc
. (4.51)

Translating the axial vector correlator to the origin we obtain

∂µ ⟨0|eiP̂·xÂ
±
µ (0)e

−iP̂·x |ηc(q)⟩= ∂µ ⟨0| Â
±
µ (0) |ηc(q)⟩e−iq·x = fηcm

2
ηc

e−iq·x , (4.52)

where translation invariance of the interacting vacuum was used.

In eq. (3.49) we mentioned the following operator identity

∂µ Â
±
µ (x) = 2mP̂±(x) , (4.53)

where m is the current quark mass, can be obtained from chiral Ward identities. This was written in the

continuum, whereVI

fηc =
2m
m2

ηc

⟨0| P̂±(0) |ηc(q)⟩ , (4.55)

is equivalent to eq. (4.50). Now, as previously mentioned, with twisted mass fermions at maximal twist,

the axial current will rotate to the vector current so that an exact lattice identity can be established

(see (3.54)), whereas P̂± does not rotate. Putting the pieces together, eq. (4.55) remains valid for the

maximally twisted lattice theory with m→ µtm and without any further renormalization factor such as

ZA (a great advantage w.r.t. standard Wilson fermions). In Euclidean space with correlators projected to

zero three-momentum q⃗≡ 0⃗, so that q2 = q2
0 = m2

ηc
, the decay constant at large source-sink separation

becomes

fηh =
2µtm

m2
ηh

⟨0| P̂h,h′(0⃗) |ηh⟩ ≃
t→∞

2µtm emηh t/2

m2
ηh

√︂
2mηhG(t,a) , (4.56)

for which we show results in figs. 4.5a, 4.5b and D.3. Again, the plateaus’ extrema were selected

arbitrarily without limiting the solidity of our result and obtaining a controlled error.

VI This definition entails a specific one particle state normalization, namely

⟨p⃗, n | q⃗, m⟩=

{︄
2E(n, p⃗)(2π)3δn,mδ 3(p−q) , L = ∞

2E(n, p⃗)L3δn,mδp⃗, q⃗ , L < ∞
, (4.54)

where the 2π or L factors are placed according to the typical physicists’ asymmetric normalization convention of Fourier
transform and antitransform. This means Fourier transforms are normalized by 1, whereas antitransforms by L−3 or (2π)−3.
Moreover, the combination 2Ep⃗ δ 3(p−q), just like d3 p/2Ep⃗, is relativistically invariant. This is also reflected in the field
normalization when expanded in creation and annihilation operators, where a 1/

√︁
2E p⃗ normalization is common (this

also explains the
√

2 factor, appearing naturally when “rotating” from the fundamental/canonical conjugate field pair to
creation/annihilation operators).
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(a) Lattice spacing of a≃ 0.030 fm and m/mcharm ≃ 2.3; a short plateau can be seen, but which is good enough to
reliably extract decay constant also the large mass value and with the coarser lattice.

(b) Lattice spacing a≃ 0.020 fm and m/mcharm ≃ 0.8, the plateau region is very stable and large.

Figure 4.5: Behavior of pseudoscalar decay constant as a function source-sink distance t/a, with a plateau for
large time difference. The Gaussian fluctuations are very small and the plateau is very stable.
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LONG times and large effort is dedicated in lattice QCD to preparing the numerical setup, studying

how to best tune input parameters as well as to assess of what size the errors committed during

this procedure are. This chapter describes how the input parameters for both the generation of gauge

configurations and the measurements carried out were selected, together with an error assessment

related to said choices.

5.1. GAUGE CONFIGURATIONS

Pure gauge theory with the plaquette action is simulated (see table 5.1) with openQCD-1.6 using

HMC [56] for the range β ≤ 6.4956; the exact lattice coupling values are chosen equal to the ones

in [35], in order to use their determination of κc in the N f = 0 theory, found in [82], Table C.1. For

β > 6.5 we use the gauge fields generated by [91] with local updates, which comprised a first pseudo

heat-bath sweep [32] succeeded by several over-relaxation sweeps acting on SU(2) subgroups [46, 28,

2].

The lattice size is L≃ 2fm, with at least T/L ≳ 2 (cfr. table 5.1) to keep sources and sinks far from

the open boundaries. In pure gauge the exponentially suppressed volume effects have a scale given by

the glueball mass m0++ = 1730(50)(80)MeV [125] and, with L≃ 2fm, they are clearly suppressed

since m0++L≃ 17.5≫ 1. This is a quite favorable situation compared to N f > 0, where the effect of

the (much lighter, mπ ≃ 135MeV) pion has to be carefully monitored. It may be propagating around

the torus which arises due to the periodic boundary conditions.

In the quenched theory one might be worried about the analog of the pion, i.e. a pseudoscalar meson

composed of heavy valence quarks. This is not the problematic since our RGI-masses are in the range

1 GeV to 6 GeV, see table 5.4, leading to a meson mass mh,h′ > m0++.

The gradient flow scale t0/a2 is computed employing the standard plaquette definition for the action,

both for the gradient flow in eqs. (3.21) and (3.22) and in the definition of the Lagrangian density E(t).

Other, more symmetric definitions, are known to have smaller discretization effects, but the scale’s

dependence is suppressed since the mass only enters logarithmically into the coupling. Nevertheless,

we compare results with the two definitions of E(t) on our coarsest lattice for R4 – the most short

distance dominated observable – finding a relative difference of ≲ 2%. We are thus confident changing

definition of E(t) does not affect in a significant manner our overall cutoff effects. The first order

gradient flow equations are then solved with a third order Runge-Kutta algorithm, where errors in the
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Run Name β l3× t Ncnfg t0/a2 a[ f m] τint(t0)[cfg] GB
cnfg

q_beta616 6.1628 323×96 128 5.1604(98) 0.071 0.78 1.7

q_beta628 6.2885 363×108 137 7.578(22) 0.059 1.37 2.7

q_beta649 6.4956 483×144 109 13.571(50) 0.044 1.55 8.5

sft4 6.7859 643×192 200 29.390(98) 0.030 1.00 27

sft5 7.1146 963×320 80 67.74(23) 0.020 0.55 152

sft6 7.3600 1283×320 98 124.21(91) 0.015 1.03 360

sft7 7.700 1923×480 31 286.3(4.7) 0.010 – 1,823

Table 5.1: Gauge run details, l = L/a, t = T/a, with plaquette definition for E(t).

step-size are subleading [111].

On our finest lattice, sft7, we do not measure the scale explicitly to save computational resources,

since we are able to precisely reconstruct it as follows. From available Wilson loop measurements

on our ensembles [91], taken similarly to what is described in [55], we (unexplained notation can be

found in the mentioned papers) compute αqq(x,a/r) with x = r/
√

8t0 = 0.25 on ensembles sft1-6.

Extrapolating to the continuum, we then obtain αcont.
qq (0.25) = αqq(0.25,0). Through Wilson loop

measurements on sft7, we can compute the qq-coupling on this ensemble for varying r/a, in order

to interpolate and find a/r∗ defined as αsft7
qq (x,a/r∗)≡ αcont.

qq (0.25). Thanks to the negligible cutoff

effects in αqq already for sft6, from this a we are able to obtain a precise determination of the scale,

through √
8t0
a

⃓⃓⃓⃓
sft7

=

√
8t0
r
· r∗

a
=

1
x

r∗
a
=

1
0.25

· r∗
a
= 47.85(39) , (5.1)

also reported in the last row of table 5.1.

5.2. MEASUREMENTS

The meson two-point functions are measured using the openQCD-1.6-compatible version of mesons,

which implements twisted-mass, Wilson fermionsI, that we set to maximal twist by tuning κ to its

critical value κc as described in Subsection 5.4.1. The non-perturbative, quenched Sheikholeslami-

Wohlert coefficient is taken from (5.15) of [117] (valid ∀β ≥ 6) in order to alleviate O(a2) effects [63,

13, 54]. The zero three-momentum Fourier transform of the fermionic two-point function is evaluated

IWe thank Tomasz Korzec for allowing us to use an updated version of the publicly available code https://github.
com/to-ko/mesons.
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5.3 SOURCE POSITION AND SUM CUTOFF

through stochastic noise sources, see eq. (4.38). The explicit two point function we build is

G(t,a,µtm) = µ
2
tm ∑

x⃗
a3
⟨︃

h(x)γ5h′(x)h
′
(0)γ5h(0)

⟩︃
(5.2)

=−µ
2
tm ∑

x⃗
a3 tr

⟨︂
Sh(x,0; µtm)γ5Sh′(0,x;−µtm)γ5

⟩︂
=−µ

2
tm ∑

x⃗
a3 tr

⟨︂
Sh(x,0; µtm)S

†
h′(x,0; µtm)

⟩︂
,

(5.3)

where Sh(x,0; µtm) is the propagator from 0 to x for an h-quark, xi = 0,1, . . . ,L−a , i = 1,2,3, and we

use Nsrc noise sources (typically around 16, table 5.5) with a U(1) distribution, through which good

statistical precision is reached.

5.3. SOURCE POSITION AND SUM CUTOFF

On the lattice, remembering G(t,a,µtm) = G(−t,a,µtm), moments of the correlator G(t,a,µtm) can

be computed via

Mn(z,a) = lim
L,T→∞

T/2

∑
t=−T/2

at nG(t,a,µtm) = 2 lim
L,T→∞

T/2

∑
t=0

at nG(t,a,µtm) (5.4)

≃ 2 lim
L,T→∞

δ

∑
t=0

at nG(t,a,µtm) , (5.5)

where t = 0 corresponds to the source’s time-slice and the sum is cut off at δ , as far as the exponential

decay of G(t,a,µtm) makes the long distance part of the correlator unimportant for Mn. No significant

variation of the moment or of its statistical error is found when varying the cutoff δ , if one stays in

the region where the sum has saturated (this is true for all runs and masses). As will be explained

in Subsection 5.5.2, through the monitoring of the PCAC-mass it becomes clear the stopping criteria

of our algorithms are inadequate for the depth of the bulk, where the obtained correlator values are

evidently unreliable, as a result of their exponential decay. Thus we select a value δ which ensures our

correlators are not computed in a region were numerical errors may invalidate the result. The criterion

is to select δ smaller than the time-slice at which the PCAC-mass starts showing deviations from its

plateau value. This is well within the region where the sum defining the moments has saturated.

Explicit checks are carried out regarding the size of finite volume effects and the absence of

boundary effects. To study the first, we generate additional ensembles at β = 6.2885, L/a = 36

(and µtm = 0.258459), on which we compute the moments for n = 4, 6, 8, 10, giving the results in

fig. 5.1. Within statistical fluctuations, no significant finite volume effect can be seen. The results in

the L≃ 2.4fm volume agree perfectly with the ones at L≃ 2.1fm.

To understand whether the source is far enough from the boundary, we place it around x0 ≃ 1.00 fm

on a coarse lattice, specifically at x0/a = 16 on the q_beta616 ensemble (32×96 lattice, see table 5.5).

We evaluate the correlator G(t,a,µtm) around the source-slice (see fig. 5.2 and table 5.2) and find no

difference can be resolved up to very close to the boundary, i.e. boundary effects are of the size of the
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Figure 5.1: Moments computed for different number of points L/a, while all other parameters are kept constant.
Normalized by the result at L≃ 2.1fm, the volume used throughout the thesis.

statistical error or smaller in the region x0 ≳ 0.3 fm. Thus to current precision no boundary effects are

seen for our choice of the source position.

t/a 1 2 3 4 5 6 7 8
εd 0.692 1.115 2.056 2.514 1.136 1.028 1.046 0.960

t 9 10 11 12 13 14 15 16
εd 0.953 0.843 0.755 0.721 0.848 0.989 1.160 1.637

t 17 18 19 20 21 22 23 24
εd 2.149 4.072 22.80 3.921 1.873 1.094 0.753 0.494

t 25 26 27 28 29 30 31 32
εd 0.316 0.192 0.112 0.063 0.036 0.021 0.018 0

Table 5.2: Ensemble sft4, z = 3. With d = 2|G(t,a,µtm)−G(−t,a,µtm)|/[G(t,a,µtm)+G(−t,a,µtm)] and ∆d
indicating the statistical error, we show εd = ∆d/d as a function of the distance to the source, placed at x0 = 32,
i.e. t = 32 corresponds to the boundary. Some asymmetry becomes relevant w.r.t. the statistical error for t ≥ 24,
i.e. at 8 time-slices from the boundary.

5.4. MASS TUNING

As introduced in Subsection 3.5.1, maximal twist is achieved by tuning κ to its critical value, so that

then µtm fixes the mass of the computation. How κ is tuned and µtm chosen in order to correspond to a

desired physical mass will be explained in this section.
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Figure 5.2: Visualization of symmetry of correlator around source. Errorbars cannot be seen. Numerically no
difference can be resolved as illustrated in table 5.2.

5.4.1. κc

The Hopping parameters we use can be found in table 5.5. For ensembles with β ≤ 6.4956 they are

directly taken from Table C.1 of [82], where it was tuned by setting the bare mass mPCAC

mPCAC =

⟨︁
∑x⃗∈V3 ∂µAI

µ(x)P(0)
⟩︁

2
⟨︁
∑x⃗∈V3 P(x)P(0)

⟩︁ =

⟨︁
∑x⃗∈V3 ∂0AI

0(x)P(0)
⟩︁

2
⟨︁
∑x⃗∈V3 P(x)P(0)

⟩︁ , AI
µ(x) = Aµ(x)+ cA(g0)∂

∗
µP(x) , (5.6)

to zero. Other definitions, which converge to the same continuum value, are possible. For instance,

from the GMOR relation [69] (valid at linear order in the mass) m2
π is known to be proportional to

the physical, light quark mass. Thus, the difference between mPCAC = 0 and mπ = 0 at finite lattice

spacing is of O(a) (in the improved theory O(a2)), i.e. κc has an O(a2) (with improvement O(a3))

ambiguity. In [82] κc for the above mentioned β -values was computed in the SF-scheme with quenched,

O(a)-improved Wilson fermions in a volume of 2Lmax = 1.436r0, with non-perturbative improvement

of cSW , cA and the 2-loop value of the pure gauge boundary counterterm ct . For sft4 (β = 6.7859)

we take over the value found in figure 5.2 of [94] and we employ a similar strategy for β > 6.7859,

i.e. interpolating the dataII in table 1 of [117]. We try several fit Ansätze, namely interpolations with

polynomials in g2
0 and β , subtracting 1-loop perturbation theory, taken from the same paper. We vary

the smallest power of g0 labeled nmin = 0,1,2, where g2nmin
0 , as well as the range of used points. Given

the four values of κc at β = 6.8, 7.4, 8.0, 9.6, we fit the first 3 points, the last 3 points, and all points,

for each Ansatz. We find good consistency among fits with acceptable χ2 and use their mean value,

reported in table 5.3.

IITherein, κc is again defined as the value where the unrenormalized PCAC-mass vanishes and with: T = 2L, the
non-perturbative cSW and cA, zero boundary gauge fields and angles θk = 0.
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β κc

7.1146 0.134545(24)
7.360 0.1341360(26)
7.700 0.133605(7)

Table 5.3: κc values for high β , taken as mean of several, consistent fit Ansätze. The error reported is half of the
spread of the values, which is slightly larger than the standard deviation of the single result. What error one
chooses is unimportant, as will be described in more detail below, since κ tuning errors are strongly subleading
w.r.t. other error sources.

5.4.2. Twisted Mass Value

Once the hopping parameter is tuned to its critical value, the physical mass depends only on the twisted

mass, up to O(a2). We fix aµtm in order to keep

z def.
=
√︁

8t0 MRGI =

√
8t0
a

aMRGI =

√
8t0
a

MRGI

mSF(µ)ZSF
P (aµ,β )

aµtm , (5.7)

constant (see table 5.4), where
√

t0 = 0.1638(10) fm is taken from [111, 152] for the quenched case.

This defines our line of constant physics. Note that the renormalization constant ZA(β ) is absent at

maximal twist, unlike with standard Wilson fermions. The non-negligible uncertainty of the quenched,

continuum mass ratio MRGI/mSF(µ), of order ε(M/m̄)∼ 1%, is a continuum factor (see [35]) affecting

indiscriminately the tuning at each β . This systematic effect should thus be accounted for directly

in the continuum-extrapolated value of Rn. A precise discussion of this error is deferred to the next

chapter where continuum limits are discussed in detail; for now, notice one can think about this as

being along a constant physics trajectory at fixed z given by

z = z
mSF(µ)

MRGI
=

√
8t0
a

aµtm

ZSF
P (µ)

, (5.8)

which does not affect at all the discussion herein. Used z values can be found in table 5.5, where

the charm RGI quark mass is Mcharm
RGI = 1.654(45)GeV [143] in the quenched approximation (as a

reference, Mcharm
RGI = 1.526(17)GeV is the FLAG world average for NF = 2+1 [123, 167, 126, 137]).

z MRGI [GeV] MRGI/Mcharm
RGI

13.5 5.76 3.48
9 3.84 2.32
6 2.56 1.55

4.5 1.92 1.16
3 1.28 0.77

Table 5.4: Renormalization group invariant mass values used in the measurements, from MRGI = (h̄c)z/
√

8t0
[GeV]. The first column is exact, whereas the other two are to be understood as approximate size statements to
get an idea of the energies at play, their exact value and error being unimportant here.
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β κc cSW Source Position z aµtm Nsrc Nmeas

6.1628 0.13565(1) 1.63567 16
6 0.421422 16 128

4.5 0.316066 8 128
3 0.210711 16 128

6.2885 0.13575(1) 1.569579 18
6 0.344612 8 137

4.5 0.258459 8 137
3 0.172306 16 137

6.4956 0.135590(8) 1.495162 24

13.5 0.576848 16 109
9 0.384566 16 109
6 0.256377 16 109

4.5 0.192283 16 109
3 0.128189 16 109

6.7859 0.135120(5) 1.427724 32

13.5 0.390666 16 100
9 0.260444 16 100
6 0.173629 16 100

4.5 0.130222 16 100
3 0.086815 16 50

7.1146 0.134545(48) 1.376876 54

13.5 0.257536 16 60
9 0.171690 16 80
6 0.114460 16 80

4.5 0.085845 16 80
3 0.057230 16 80

7.3600 0.1341360(52) 1.348577 72

13.5 0.186492 16 49
9 0.124360 16 49
6 0.082907 16 49

4.5 0.062180 16 49
3 0.041453 16 49

7.7000 0.133605(13) 1.317630 108

13.5 0.121474 32 31
9 0.080983 32 31
6 0.053989 32 31

4.5 0.040491 32 31
3 0.026994 32 31

Table 5.5: Input parameters of the measurement runs of meson correlators.

5.4.3. Renormalization and Running Factors

The renormalization factor ZP(aµ,β ) and the running of the mass MRGI/mSF(µ) in [94], which

includes and extends the range of the previous results of [35], are computed at µ = (2Lmax)
−1 ≃

(1.436r0)
−1, where 2Lmax is the largest available volume of this step scaling study (for the methodology

of step scaling, see [115]). In [94] the fit for ZP is valid for 6.0≤ β ≤ 7.0, whereas we reach a higher

value β = 7.70. In order to extend the result and obtain more precise results for ZP and MRGI/m, we

reanalyze the data in [35] at a higher energy scale – twice the one used in the study (or at half the
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lattice extent L) – as explained in the following.

We use as a reference scale µref =(2Lref)
−1, with Lref implicitly defined from uref = g2

SF(Lref/a,g0)=

2.4484, which has a unique solution if one of its arguments is kept fixed and which amounts to half

the spatial extent of [94]. The physical trajectory is identified by choosing some L/a value and then

tuning g0 in order to obtain the desired uref. Let us start by defining

sP(uref)
def.
=

MRGI

m(2Lref)
=

MRGI

m(2−nLref)

m(2−nLref)

m(2Lref)
, (5.9)

where in the last expression the first factor is computed in perturbation theory, with the 2-loop mass

anomalous dimension and 3-loop beta functionIII, whereas the second term is obtained from

m(2−nLref)

m(2Lref)
= σ

−1
P (uref)

n

∏
i=1

σ
−1
P (ui) , ui = σ(ui+1) , i = 1, . . . ,n . (5.10)

The two step scaling functions σ(u) and σP(u) are obtained from a fit of the continuum step scaling

function data as described in Section 5 of [35]. The coupling uref at which the step scaling evolution

starts from is explicitly written in eq. (5.9) since it is an input, whereas ui for i≥ 1 are computed by

inverting the fit for σ(u).

We can now give several ZP definitionsIV

ZP,1(g0)
def.
=

sP(2.4484)
sP(3.48)

·ZSF
P (g0,2L/a)

⃓⃓
2L/a=1.436r0/a , (5.11)

ZP,2(g0)
def.
=

sP(2.4484)
sP(3.48)

·ZSF
P (g0,2L/a)

⃓⃓
g2(L/a,g0)=3.48 , (5.12)

ZP,3(g0)
def.
=

sP(2.4484)
sP(3.48)

·σP(3.48)ZSF
P (g0,2L/a)

⃓⃓
g2(L/a,g0)=2.4484 ,

σP(3.48) = lim
a→0

ΣP(u = 3.48, a/L) ,
(5.13)

ZP,4(g0)
def.
= ZSF

P (g0,2L/a)
⃓⃓
g2(L/a,g0)=2.4484 . (5.14)

Let us mention ZP,3 is reported here because it was used before the sP(u) functions had been computed.

The ZP factors used in our tuning are

ZP,1 for 6.0 < β < 6.5 , (5.15)

ZP,2 for β = 6.7859 (sft4) , (5.16)

ZP,3 for β = 7.1146 (sft5) , (5.17)

ZP,4 for β = 7.36, 7.70 (sft6, sft7) . (5.18)

IIITo check that PT can safely be applied for this factor at µ = 2−nLref, it was also computed with the 1-loop mass
anomalous dimension and 2-loop beta function, finding a relative difference of less than 4 per-mille in all cases we discuss.

IVThe reason for this is that at coarser lattice spacings, at the beginning of the project, we used the reference scale of [94].
For those cases we need an extra ratio of sP to set their scale to the desired one, i.e. µ = (2Lref)

−1.
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Now, for any of the above definitions, z can be written as

z =
√

8t0
a

aµtm
[︁
ZSF

P, i(g0,u)
]︁−1

sP(u)
⃓⃓⃓
u=2.4484

, (5.19)

and in the continuum only the newly obtained

MRGI

mSF(2Lref)
= 1.379(11) , (5.20)

will be used. In fig. 5.3 we show both some ZP values of [35] and the ZP,i at our β values. These have

been obtained by linear fits interpolating the raw values in [35] at µ = µref. The errors originating

from the tuning of previously discussed parameters as well as the ones shown in the just mentioned

plot are the topic of the next section.

5.5. TUNING ERRORS

A physical trajectory is identified by some fixed value of MRGI, but as described after eq. (5.8), we

extrapolate to the continuum for fixed mSF(Lref) and correct with the continuum factor MRGI/mSF(Lref)

only afterwards. In order to evaluate the variation of Rn(aMRGI,z) upon slight mistunings, we Taylor-

expand it around the true value (th = theoretical value) of its parameters, or rather, their logarithm.

This is of advantage, since at maximal twist the factors defining z are all multiplicative, meaning there

is no difference in using z or z. Here, we explain the general approach for computing any of the tuning

errors, but we defer the inclusion of the aforementioned continuum factor and its possible correlation

to other error sources to Subsection 6.1.4. One can write⎧⎨⎩Rn

(︂
b⃗
)︂
= R th

n +∑i
∂Rn
∂ lnbi

⃓⃓⃓
th

∆(lnbi)+O
(︂
(∆b⃗)2

)︂
∂Rn
∂ lnbi

⃓⃓⃓
th
= ∂Rn

∂ lnz
∂ lnz
∂ lnbi

⃓⃓⃓
th

, for b⃗ =
(︂

ZP,
t0
a2 , MRGI/mSF(µ), κ

)︂
(5.21)

where the tuning error squared amounts to

∆
2 (Rn) =

(︁
Rn−R th

n
)︁2

, (5.22)

where correlations beyond those of the Markov chains are taken into account and where we neglect

explicit lattice artefactsV of Rn(aMRGI,z), considering those of z only. The derivatives are evaluated at

the used input values instead of the theoretical one, the difference being subleading in a. The error

related to κ’s tuning needs some special care and will be described in Subsection 5.5.1, for now let us

VWhich amounts to dropping terms like

dlnaR
(1)
n (z, aMRGI) =∂lnzR

(1)
n ∂lna lnz+˂˂˂˂˂˂˂˂

∂lnaR
(1)
n (z, aMRGI)+ . . . , where (5.23)

Rn(z, aMRGI) =R
(0)
n (z, 0)+a2M2

RGI R
(1)
n (z, aMRGI)+O(a4) , (5.24)

where the dropped part is small w.r.t. the leading term in eq. (5.23). This is explicitly checked by quadratically interpo-
lating Rn(z,aMRGI) for 3 different masses and at fixed a > 0, finding minimal, unimportant deviations with the above
approximation.
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note it turns out being orders of magnitude smaller w.r.t. other tuning errors and it is thus neglected.

The log-derivative of the moment is a common, continuum factor which we evaluate numerically at

the scale m∗ (remembering its definition eq. (2.9) and that {r̃(i)n } are the perturbative coefficients of the

adimensional Rn defined in eq. (3.64))

ρ
def.
=

∂Rn

∂ lnz
=

∂

∂ lnz

{︂
1+ r̃(1)n αMS(m∗)+ r̃(2)n α

2
MS(m∗)+ r̃(3)n α

3
MS(m∗)+O(α4)

}︂
=
{︂

βMS(αMS)
(︂

r̃(1)n + r̃(2)n 2αMS(m∗)+ r̃(3)n 3α
2
MS(m∗)+O(α3)

)︂}︂
+O(a2) , (5.25)

yielding, all put together

∆
2 (Rn) = ∑

i

{︃
∂Rn

∂ lnz
∂ lnz
∂ lnbi

⃓⃓⃓⃓
th

∆(lnbi)

}︃2

≃ ρ
2
∑

i

{︃
∂ lnz
∂ lnbi

⃓⃓⃓⃓
th

∆(lnbi)

}︃2

, b⃗ =
(︁
t0/a2, ZP

)︁
. (5.26)

Three pieces are present in eq. (5.26): (1) ρ , with values tabulated in table 5.6, (2) ∂ln t0/a2 lnz, for

which, since t0/a2 and the correlator are measured on the same gauge configurations, non-trivial

correlations need to be taken into account (however, only mild relative effects of order ∼ 10% are

observed, since the scale only enters through the mass tuning), and (3) ∂lnZP lnz, for which some care

is necessary, as we explain in the following. In fig. 5.3 all ZP,i are shown, where the β = 6.7859 points

MRGI/Mcharm
RGI 3.48 2.32 1.55 1.16 0.77

z 13.5 9 6 4.5 3

n = 4 -0.0402 -0.0533 -0.0745 -0.0986 -0.1603

n = 6 -0.0922 -0.1264 -0.1832 -0.2498 -0.4253

n = 8 -0.1080 -0.1504 -0.2227 -0.3093 -0.5445

n = 10 -0.1009 -0.1415 -0.2112 -0.2956 -0.5275

Table 5.6: Values of ρ = ∂Rn/∂ logm∗ for different n and z.

(sft4) obtained at different scales perfectly agree with one another. However, for β = 7.1146 (sft5)

there is quite some discrepancy between ZP,3 (used value, green) and ZP,4 (from the fit of higher β

values, red, considered superior). To compensate for this error, we take the distance between the central

values coming from the two determinations and add its effect on Rn in quadrature as an extra error.

Again, the shift’s coefficient has been obtained through analytical, leading order perturbation theory,

Finally, one more subtlety is present for ZP,1. Once some L/a is chosen the bare coupling g0 is tuned

in order to give L/a = r0/a×0.718(16). The number L/r0 = 0.718 comes from a continuum limit of

L/a×a/r0, where the scale setting is done in large volume. This procedure entails an extra error in

L/r0 that we sum in quadrature to the others. To estimate it we start from

ZP(g0,L/a) = 1+ γ
(1)
P g2

0 log
(︃

L
a

)︃
+O(g4

0) = 1+ γ
(1)
P g2(L/a, g0) log

(︃
L
a

)︃
+O(g4) , (5.27)

where γ
(1)
P = −d0 = −8/(4π2) is the leading order coefficient of the pseudoscalar (up to a sign it
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corresponds in our case to the leading order mass anomalous dimension, since ZPZµtm = 1 holds).

Differentiating we obtain

∂ZP(L/a,g0)

∂ logL
= γ

(1)
P

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂g2(L/a, g0)

∂ logL⏞ ⏟⏟ ⏞
≈g4

log(L/a)+g2(L/a, g0)

⎫⎪⎪⎪⎬⎪⎪⎪⎭+O(g4)

= γ
(1)
P g2(L)+O(g4) , (5.28)

which amounts to

∆(ZP)
⃓⃓
Lmax/r0

=
∂ZP(L/a,g0)

∂ logL
∆(logL)≃ γ

(1)
P g2(L)∆ logL+O(g4) =− 8

4π2 3.48
16
718

+O(u2) .

(5.29)

Upon inclusion of this error, the uncertainty in ZP,1 changes as reported in table 5.7 and it is clear one

must include this factor.

β ZP,1 ∆(ZP,1) ∆(ZP,1|full)

6.0219 0.6254 0.0046 0.0066
6.1628 0.6208 0.0046 0.0066
6.2885 0.6203 0.0048 0.0067
6.4956 0.6147 0.0046 0.0065

Table 5.7: Comparison of ∆(ZP,1) – the error before adding in quadrature the error related to L/r0 – with the
full error ∆(ZP,1|full).

5.5.1. Mistuning of κ

For the full case, out of maximal twist (now the relation between the different parameters is not linear

anymore and we prefer using z̄ for this part), definition eq. (5.8) of z̄ becomes

z̄
(︂

amq,aµtm,
√︁

8t0/a;ZP,SF ,ZA,Z∆m

)︂
=

√
8t0
a

Z−1
P,SF

√︂
(aµtm)2 +(ZAZ∆m amq)2 (5.30)

=

√
8t0
a

Z−1
P,SF

√︂
(aµtm)2 +(ZA amPCAC)2 , (5.31)

where all possible dependencies of z̄ have been written explicitly. In the quenched case the renor-

malization factors ZA and Z∆m can be taken from [116] and from [75], respectively. Let us remind

that the tuning of κ we are following stems from an improved Wilson theory (see Section 5.4.1) in a

Schrödinger functional setup, with no twisted mass. In this section we compute the error committed

when tuning to κc, whereas the residual O(aµR)-effects in κc originating from the discretization of the

twisted mass term will be described in the next section.

65



CHAPTER 5 INPUT PARAMETERS AND MEASUREMENTS

Figure 5.3: Results for different definitions ZP,i used, description in the text. Note how thanks to the re-analysis
of the data in [35], we not only slightly gain in precision for the running factor, but also for ZP at finest lattice
spacings (red points), which are the most important ones for the continuum limit.

In this case we need Rn expanded to second order, since

∂ ln z̄
∂mq

=
Z2

AZ2
∆mmq

µ2
tm +(ZAZ∆mmq)2

mq→0
−→ 0 . (5.32)

The second order expansion is given by

Rn

(︂
b⃗
)︂
= R th

n +∑
bi

∂Rn

∂bi

⃓⃓⃓⃓
th

∆(bi)+
1
2

∂ 2Rn

∂b2
i

⃓⃓⃓⃓
th

∆
2 (bi)+ . . . , (5.33)

where it is immediate to see that for mq→ 0 one term only survives, since

∂ 2Rn

∂m2
q

⃓⃓⃓⃓
th
=

∂Rn

∂ ln z̄
∂ 2 ln z̄
∂m2

q

⃓⃓⃓⃓
th
+
��������∂ 2Rn

∂ ln z̄2

(︃
∂ ln z̄
∂mq

)︃2 ⃓⃓⃓⃓
th
. (5.34)

The derivative w.r.t. κ is given by

1
2

∂ 2Rn

∂κ2

⃓⃓⃓⃓
th
=

1
2

∂Rn

∂ ln z̄
∂ 2 ln z̄
∂m2

q

(︃
∂mq

∂κ

)︃2 ⃓⃓⃓⃓
th
=

∂Rn

∂ ln z̄
Z2

A(β )Z2
∆m(β )

µ2
tm

1
8κ4 , (5.35)

so that as a final estimate for the deviation of Rn, caused by a mistuning of κ , we get

∆
2 (Rn)

⃓⃓
κ
= ρ

2 Z4
A Z4

∆m

64 µ4
tmκ8 (∆κ)4 . (5.36)

For numerically evaluating the above we have, as mentioned before, taken the used input values of
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β , κ , and µtm, since the difference with the “true” value is of subleading order in the lattice spacing.

Computing the moments’ relative error w.r.t. κ via eq. (5.36), it turns out being (at least) about 3-4

orders of magnitude suppressed if compared to the largest error source. It is thus safe to completely

neglect it.

Finally, there is also a systematic error committed by taking the results of [117], since therein κc

was determined at fixed L/a = 16. This means there is a leftover ambiguity in κc, as emphasized in

Section I.2.4.1 of [151] for the analogous case of improvement coefficients. Due to the suppression of

errors in κ , eq. (5.32), this effect will be unimportant. We will nevertheless briefly describe it, since it

will affect the PCAC mass error, used to assess deviations from maximal twist. In perturbation theory

cutoff effects in κ in the improved SF setup are O
(︁
(a/L)3

)︁
. Beyond it, however, the appearance

of non-perturbative length scales may complicate this behavior since a3 effects are equivalent to

O
(︁
(a/L)3 f (L/r)

)︁
deviations, for some unspecified scale r and where f is an unknown function. The

authors of [117] find, when varying L/a = 8→ L/a = 16, that the values for κc agree within 2×10−5.

We take this as a safe estimate which yields a variation in the PCAC massVI of

∆(amPCAC)
⃓⃓
∆κ

syst
c

=
∆κc

2κ2
c
≃ 5.5×10−4 , (5.37)

to be summed in quadrature to other errors when determining the a-dependence of the PCAC mass,

see next section.

5.5.2. Deviations from Maximal Twist

Beyond the error in tuning κ to its critical value at µtm = 0, there is an O(aµtm) effect in mPCAC. This

does not spoil O(a)-improvement, since the operators needed to define the PCAC-mass have opposite

γ5τ1-parity, implying mPCAC is γ5τ1-odd and thus it is an O(a)-effect (see Appendix A.2 for more

details). Here it suffices to point out that for a→ 0 one expects mPCAC to have a linear behavior in a,

which we observe and for which we show results in the following.

To quantify deviations from maximal twist we monitored the bare, improved PCAC-mass as defined

in eq. (5.6), with fixed flavor assignments (i.e. combinations as described in eq. (4.35)). For each mass

some fixed physical (Euclidean) time value x∗0/
√

8t0 can simply be chosen by eye inspection, as long

as it is well within the approximate plateau region for all β values. In some instances at βsft4 = 6.4956

a definitely clean plateau cannot be identified, but this problem is not seen for β > βsft4 and is thus not

important to us, having several smaller lattice spacings at our disposal. We defineVII the PCAC mass

of eq. (5.6) at these values mPCAC(x∗0), represented by vertical lines in figs. 5.4, 5.5 and D.5 to D.7. In

VIExactly which of our values of κc is taken for the numerical evaluation below does not matter; we choose a typical
value, namely κ ≃ 0.135.

VIIThe PCAC relation is an exact identity broken only by lattice artefacts. If some physical scale is varied, such as L/
√

t0
or x0/

√
t0, the coefficients of the leading order discretization effect will change, a difference which however disappears in

the continuum limit. Measuring mPCAC in the time region where excited state contamination of the correlation function is
absent leads to better behaved cutoff effects, but measuring in their presence would not be theoretically wrong (as would be
for the effective mass of Subsection 4.4.1). The big advantage here over some meff, as the one defined in eq. (4.49), is that
no careful estimate of the plateau range and averages therein are necessary.
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Figure 5.4: Bare PCAC mass as a function of Euclidean time (in physical units), for several β values, all at
fixed physical mass M/Mc ≃ 0.77. Close to x0/

√
8t0 = 0 the effect of the boundary can be seen, whereas the

results we use are in the depth of the bulk, on the opposite side of the source time-slice.

Figure 5.5: Bare PCAC mass as a function of Euclidean time (in physical units), for several β values, all at
fixed physical mass M/Mc ≃ 2.32. Close to x0/

√
8t0 = 0 the effect of the boundary can be seen, whereas the

results we use are in the depth of the bulk, on the opposite side of the source time-slice.
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Figure 5.6: Improved PCAC-mass as a function of a/
√

t0, multiple heavy quark mass values; leftover discretiza-
tion effects at small a scale approximately linearly, as expected.

fig. 5.6 one can roughly see the dependence of the PCAC-masses on a is linear, as expected for an odd

operator under γ5τ1-parity and if a is small enough that higher order effects are suppressed.

In figs. 5.7 and 5.8 the improved PCAC-mass as a function of a/
√

t0 is shown, where LiP indicates

a linear fit of i points. Green fits have one degree of freedom less than the blue ones, since they

are constrained to pass through the origin. They are compatible with the 3rd point whereas the

unconstrained, blue curves extrapolated to zero are compatible with passing through the origin.

Therefore linear discretization effects in the PCAC mass are observed as expected, with visible

deviations starting above the a≃ 0.07 fm region for the highest masses.

Having obtained values of the PCAC mass, we can now test whether we can reduce cutoff effects

in the moments. If we change the PCAC mass by an O(aµtm) effect, we might obtain a reduction of

O(a2) corrections. To quantify how big the effect of non-zero PCAC mass is on our observables, we

again Taylor-expand around the true theoretical value, in this case mPCAC = 0. The idea is then to derive

a shift in the moments just like has been done in Subsection 5.5.1, by approximating the derivative of

the moment w.r.t. the log of the mass with a continuum β -function and by then computing the rest

of the derivative explicitly, taken at the input value of the simulation. We did so for R4, expanding to

second order and getting, for the equivalent of eq. (5.35)

1
2

∂ 2R4

∂m2
PCAC

⃓⃓⃓⃓
th
=

1
2

∂R4

∂ ln z̄
∂ 2 ln z̄

∂m2
PCAC

⃓⃓⃓⃓
th
=

1
2

∂R4

∂ ln z̄
Z2

A(β )

µ2
tm

. (5.38)

This leads to R4→ Rshi f t
4 = R4 +∆R4, with

∆R4 = ρ
Z 2

A

(aµtm)
2 ∆

2 (amPCAC) , (5.39)
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Figure 5.7: Linear fits for the improved PCAC-mass as a function of a/
√

t0, expected to be an O(a)-effect at
maximal twist, for a quark mass of z = 9 or m/mcharm ≃ 2.3.

Figure 5.8: Linear fits for the improved PCAC-mass as a function of a/
√

t0, expected to be an O(a)-effect at
maximal twist, for a quark mass of z = 6 or m/mcharm ≃ 1.6.
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Figure 5.9: Shifted R4 obtained from correcting for non-zero PCAC mass at finite lattice spacing via eq. (5.39).

where ∆(amPCAC) is nothing but the measured PCAC-mass. In fig. 5.9 the effect of this shift on the two

highest masses is shown, where it is expected to have the biggest impact, as we observed. However, it

can barely be seen on the coarsest lattices – remember the fourth moment is the one with the largest

discretization effects – and thus does not help in a significant way to tame discretization effects.

5.5.3. Checks on Parameter Tuning

In Section 4.4 we computed the effective mass and the decay constant of a meson, showing some

results for the plateaus of eq. (4.49) and eq. (4.56). These measurements serve as a cross-check of

our input parameters in two ways: firstly, we ensure their continuum limits in figs. 5.10 and D.4 to be

smooth, as expected if the parameters have been tuned consistently along a line of constant physics

and, secondly, we verify the dependence of the decay constant on the mass, once extrapolated to the

continuum (fit parameters given in table 5.8). This dependence, reported in fig. 5.11, has a universal

behavior and can be quantitatively compared to other studies. A quadratic fit of our points is also

shown in the figure, together with the point by [33], showing numerical consistency of the two studies.

z = 13.5 z = 9 z = 6 z = 4.5 z = 3

√
t0 mPS

c2 -6.2(1.1) -4.21(1.2) -6.3(1.3) 2.59(40) 1.38(41)
c1 -5.82(11) -2.30(11) -0.590(12) -1.023((68)) -0.477(73)
c0 6.9894(24) 4.9954(18) 3.6131(23) 2.9201(25) 2.1700(28)

√
t0 fηc

c2 21.3(1.8) 7.1(2.1) -1.5(2.2) 0.16(66) 0.03(46)
c1 1.90(17) 0.51(18) 0.58(19) 0.24(11) 0.102(75)
c0 0.5031(35) 0.4132(25) 0.3440(33) 0.3134(33) 0.2749(24)

Table 5.8: Fit parameters for
√

t0mPS = c0 +c1 a2/t0 +c2 a4/t2
0 and for

√
t0mηc , with analogous notation for ci.
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Figure 5.10: Continuum limits of mPS for all z values show a smooth behavior and validate our tuning was
carried out well. Note, of the point by Calì et al. [33] at a = 0 only the magnitude matters, since their Mc differs
from ours. Whatever value they were to choose, the behavior of (mPS, fηc) in fig. 5.11 would still be universal.

Figure 5.11: Continuum extrapolated decay constant fηc , as throughout the rest of the thesis only considering
(fermion)-connected contributions, as a function of the continuum extrapolated pseudoscalar mass mPS, all in√

t0 units. A quadratic fit of all available masses is compatible with the point by [33], in light blue. A possibly
(very slight) deviation is of no concern, since extrapolating towards the low mass region a bending is expected
(which we are likely not sensitive to at our heavy mass values).
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AFTER a careful and lengthy discussion of several error sources within our lattice simulations,

necessary to obtain controlled and reliable results, we are now ready to finally describe what

physical result we can extract. Starting from the continuum extrapolation of moments, we are then able

to compute the strong coupling by inverting the moments’ perturbative expansion, up to a given order.

This result can then be run (perturbatively) to infinite energy yielding the ΛRGI-parameter, again, to

a given order. In conclusion we here quantitatively answer the following questions: how does this

leftover uncertainty, stemming from the truncation of the perturbative series, change with the scale?

What is the size of deviations at scales of interest to flavor physics? Differently stated, we report here

what we can learn about the applicability domain of asymptotic expansions for the case of integrated

heavy-quark two-point functions, finding this to be quite a difficult topic within the context of precision

physics.

6.1. CONTINUUM LIMITS

As explained in Section 3.1, renormalized continuum physics is obtained as an extrapolation of

computations necessarily restricted to a > 0. The size of cutoff effects in a given observable is related

to how close the relevant energy scales present in the problem are close to the cutoff π/a, although the

precise size is a priori not known. Cutoff effects in moments become larger for increasing mass values

and decreasing n, where particular care needs to be given to the case n = 4. In this section we start

by discussing the effect of the tree-level normalization, giving the full calculation in an appendix for

readability, then show our continuum extrapolations for ratios of moments with n > 4.

6.1.1. The Fourth Moment

Here we only want to briefly sketch – for completeness – what we have realized throughout this research

project for the case n = 4, leaving any further details of this underway effort to future publications (the

interested reader may find a first account of this in [43]).

Symanzik improvement [155, 156] (discussed in Appendix A) describes how correlation functions

at finite, small a depend on the lattice spacing. This is achieved through methods of effective field

theory (EFT) [159] by treating lattice artefacts as if a−1 were a new physics scale of which ordinary

continuum QCD is the low energy theory. We look at the case of O(a)-improved time-slice correlator

GI(t,a), the relevant one for this work, and set a/t≪ 1, [G] = 3. We focus on the region tMRGI≪ 1,
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in which t is thus the only available scale, except for the lattice spacing. This enables powerful

dimensional counting arguments to be employed. The prediction of the aforementioned EFT at leading

order (and thus in absence of any renormalization related logs of the kind studied in [90, 89], which

appear at higher order in the coupling) is

GI(t,a) =G(t,0)+
a2

t5 kL +O(a4)+O(t2M2) , (6.1)

for some constant kL and where higher odd powers of a are absent in our maximal twist case. We are

here interested in small t behavior, i.e. in short distance properties which may give rise to divergences

once integrated. The larger t region of the integral or sum does not have such issues and differences due

to these terms, as ones related to trapezoidal-rule-approximation of the integral, will here be dropped.

For the integrated quantity defining the moment n = 4, with integration extrema a≪ t1 < t2≪M−1
RGI,

one thus obtains

∆M4(t1, t2)
def.
= a

t2

∑
t1

t4G(t,a)−
∫︂ t2

t1
t4G(t,0)dt a≪t1∼ a2

∫︂ t2

t1

kL

t5 t4dt = kLa2[log(t2/a)− log(t1/a)] ,

(6.2)

where we have inserted a factors in the logs. Sum and integral in the above definition being linear

operators, one can trivially split ∆M4(0, t2) = ∆M4(0, t1)+∆M4(t1, t2) only using the above equality

(valid for any a), where ∆M4(0, t2) clearly cannot depend on t1. Thus, such pieces must combine to

form an a2 term with some different constant k′

∆M4(0, t2)∼
[︁
∆M4(0, t1)− kLa2 log(t1/a)

]︁⏞ ⏟⏟ ⏞
≡k′a2

+kLa2 log(t2/a) . (6.3)

Let us stress terms in the above equation have mass dimension −2 and a is the only scale present in

the first part, there simply is no other choice. This shows the presence in the summed observable of a

log-dependence solely due to the sum over small separations, already at leading order; the dimensional

analysis exposed here can be done beyond tree-level [43], but the size of discretization effects is then

determined by an unknown function. The leading order analysis carried out gives quite some insight

into the structure of cutoff effects in integrated correlation functions. This sort of behavior has been

noted before in [77] for lattice studies of the hadronic vacuum polarization [18], which contains an

integral with an analogous short time behavior.

Finally, let us mention that by simple power counting analogous to what is seen in eq. (6.2), higher

moments also have logarithmic a-dependence, but only appearing at higher order terms in the Symanzik

expansion. For instance, when n = 6, two more powers of a are required for dimensional consistency,

meaning a log(a) term does not appear multiplied by a2, as for n = 4, but by a4. The higher the

moment the more log-terms at tree-level of perturbation theory are pushed to higher orders in the

Symanzik expansion.
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Figure 6.1: Comparison of scaling towards the continuum with different scales in the finite L, finite a tree-level
normalization. The choice aµTL

tm = am∗ diminishes the size of cutoff effects in almost all cases.

6.1.2. Effect of Tree-Level Normalization

In Subsection 3.5.2 we argued heuristically why one expects the division of moments by their tree-level

to alleviate cutoff effects, hinting at a possible breakdown of those arguments. Here we explore these

ideas in more detail, looking at the relative freedom in the choice of TL input parameters.

The TL has by definition g0 = 0 and thus, at finite volume, two input parameters are necessary:

aµTL
tm and L/a. For the TL’s computation L/a is set to the values of the non-perturbative simulation,

whereas our choice for the mass requires further comment. One needs aµTL
tm = am+O(g2) with m

any definition of the mass. Instead of the usual choice found in literature aµTL
tm = aµtm(g0), where

aµtm(g0) is the bare twisted mass of the simulation at coupling g0, we notice aµTL
tm = am∗ to be a

much better choice, where m∗ is a renormalized mass, our choice being m∗ = mMS(m∗). In fig. 6.1 the

aµtm(g0) normalization is represented by red diamonds while the am∗ normalization by blue circles;

clearly the latter shows a much flatter scaling towards the continuum.

6.1.3. Dimensionless Ratios of Moments

The ratios introduced in eq. (2.20) are dimensionless by construction, with only a weak logarithmic

dependence on the mass originating in the coupling. To parametrize cutoff effects and then reliably

extrapolate we try out several fit-function Ansätze, as well as varying the range in a of points used for

these fits. Whenever a2M2
RGI > 0.35, we drop those data points. We try continuum limits linear and

quadratic in a2M2
RGI, stressing these are to be understood as functional forms which try to capture the

cutoff effects well, of course with some theoretically motivated structure in them, such as the absence

of odd powers in a (thanks to the γ5τ1 symmetry of twisted mass, see Appendix A.2).

We also compute the goodness-of-fit, or p-value, in order to apply a cut of p > 0.05 to our fit

functions [30]. Fits that do not obey this inequality, are discarded; 2-point linear fits and 3-point

75



CHAPTER 6 RESULTS

quadratic fits (which have zero degrees of freedom and are exact extrapolations) are only used when

no other fit passes the above criteria. We compute the p-value through an upper incomplete Gamma,

function of ndof and χ2
fit, as

p(ndof/2,χ2
fit/2) def.

=
1

Γ(ndof)

∫︂
∞

χ2
fit

tndof−1e−t dt , (6.4)

since to a reasonable approximation our data are uncorrelated. An exception to the above criteria is R8

at M/Mc ≃ 2.3, fig. 6.3b, where we make use of a 5-point quadratic fit with p = 0.035 and a 4-point

one with p = 0.024, since no other fit beyond 2-point linear and 3-point quadratic are usable. Due to a

large relative fluctuation of the 3 points closest to the continuum, fits with zero degrees of freedom

are inappropriate to extrapolate, which prompted the usage of fits with lower p-values. What eq. (6.4)

represents is the probability of having a χ2 ≥ χ2
fit, where we remind the fit parameters are obtained by

minimization of the χ2. The cut can be thought of as follows: too low p-value, say p≤ 0.05, indicates

it is desirable to reject the null hypothesis and discard the fit, with a probability of falsely rejecting

said hypothesis of less than or equal to 5%.

Selecting an Extrapolation: The final result is obtained through the following, quite conservative,

strategy: we quote the extrapolation with the largest statistical uncertainty, to which we add in

quadrature a systematic error obtained from the set of all the fits employed. It consists of half the

spread between largest and smallest accepted extrapolated (a.e.) values, i.e.

∆(z)|c.l. syst. =
1
2

(︂
max
a.e.
{Rn(z,0)}−min

a.e.
{Rn(z,0)}

)︂
(6.5)

thus somehow parametrizing the error committed when choosing a fit Ansatz over another one while

at the same time utilizing the information about cutoff effects contained in all accepted fits.

In figs. 6.2a, 6.3a and D.10 to D.12 our continuum extrapolations for R6/R8 for several fit Ansätze

are given, showing considerable O(a2) lattice artefacts, especially remembering the sensitivity to the

coupling is given by Rn−1, i.e. the distance from 1. As the mass grows, quite an extrapolation may

be needed from the smallest lattice spacing a≃ 0.01 fm, which we remind readers to be only reachable

today in the quenched theory.

Continuum extrapolations of R8/R10 can be found in figs. 6.2b, 6.3b and D.13 to D.15, where cutoff

effects are milder, as expected (the higher n, the more the observable is dominated by long distances,

cfr. fig. 2.1). However, we cannot help but notice quite some curvature is noticeable even at very small

lattice spacings; this seems to be a property of this observable present both in this discretization and in

others, such as with staggered quarks [138, 3].

Results for the continuum extrapolated values will be given in Subsection 6.1.5, since a few more

details need to be discussed first. In table 6.1 we report only the coefficients ci, with i = 1,2,

corresponding to the powers a2i, for two different possible parametrizations of the cutoff effects: as

polynomials in x = (aMRGI)
2 and in x = a2/t0. It becomes clear, simply by comparing their size, that

the relevant scale to consider is the heavy quark mass, especially as z increases as far as there the
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differences become larger.

z = 13.5 z = 9 z = 6 z = 4.5 z = 3

R6/R8

c2 – -0.171(67) -0.280(12) -0.18(0.40) 1.38(41)
c1 – -0.094(13) -0.1072(40) -0.127(41) -0.477(73)
c̄2 – -17.5(6.9) -5.67(24) -1.2(2.6) 1.75(52)
c̄1 – -0.952(13) -0.482(18) -0.32(10) -0.537(82)

R8/R10

c2 0.0229(42) 0.0098(62) 0.033(46) 0.23(19) 0.53(1.52)
c1 -0.0068(18) -0.0023(26) -0.0076(84) -0.027(20) -0.049(70)
c̄2 11.9(2.2) 1.00(64) 0.67(93) 1.5(1.2) 0.67(1.92)
c̄1 -0.155(41) -0.023(26) -0.034(38) -0.068(51) -0.055(79)

Table 6.1: Fit parameters encoding the speed of the continuum approach, i.e. the cutoff effects. Fit functions
are ft0 = c̄0 + c̄1 a2/t0 + c̄2 a4/t2

0 and fMRGI = c0 +c1 a2M2
RGI +c2 a4M4

RGI. Note how the latter is a visibly better
parametrization since the heavy quark mass is the intrinsic scale present in this observable.

6.1.4. Running Error

An approach analogous to the inclusion of tuning errors at finite a, namely that of Taylor expanding

and estimating derivatives analytically, is used for the error component induced by the uncertainty

on MRGI/mSF(Lref). However, as previously pointed out, this is a continuum factor which does not

contain any information useful for the continuum extrapolation and its effect on ∆Rn can be summed

in quadrature to other error sources. Taking the log-derivative of the (perturbatively) re-expanded ratio

eq. (3.64), i.e.

∂

∂ logz
Rn(z) =

∂

∂ logz

[︂
1+ r̃(1)n αMS + r̃(2)n α

2
MS + r̃(3)n α

3
MS +O(α4

MS)
]︂
, (6.6)

where denote by r̃(i)n the i-th perturbative coefficient of Rn [121], i.e. for n = 4 trivially r̃(i)n ≡ r(i)n ,

whereas for n > 4 a re-expansion in αMS(µ) of the ratio Rn/Rn+2 needs to be carried out, so that in this

case r̃(i)n = f (rn,rn+2). This can be carried out with any symbolic computation software, such as Maple

or Mathematica. We also remind the reader that once the perturbative scale is fixed ∂logz = ∂logm∗ ,

thanks to the multiplicative relationship between MRGI and m(m∗). Comments on the correlations

between MRGI/m and ZP can be found in Appendix B.

6.1.5. Results

We are now in the position to give the first physical results of the present work, namely the continuum

extrapolations of adimensional ratios of moments, with all possible error sources included. Note

that these are purely non-perturbative quantities and do not suffer from any perturbative uncertainty,

unlike the coupling we want to extract from them which we therefore discuss in the next section.

The continuum limits are given in table 6.2, together with the corresponding values for αRn . This is

nothing but the non-perturbative, scale-independent coupling in eq. (1.17), defining what we there
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(a) For R6/R8 at intermediate mass, sizable cutoff effects are present, but one can extrapolate
well anyway.

(b) All extrapolation Ansätze agree very well for R8/R10.

Figure 6.2: Continuum limits for mass M/Mc ≃ 1.55, z = 6. Several fit Ansätze are shown. In the gray band on
the left hand side the value and error of the extrapolation for each Ansatz are plotted next to one another for
better visibility.
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(a) At this higher mass quite an extrapolation is necessary for R6/R8.

(b) The extrapolation for R8/R10 , given the fine scale on the y-axis, is under better control,
still here fits with a p-value lower than 0.05 needed to be used.

Figure 6.3: Continuum limits for mass M/Mc ≃ 2.32, z = 9. Several fit Ansätze are shown. In the gray band on
the left hand side the value and error of the extrapolation for each Ansatz can be seen.
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call B-scheme and which will now be labeled Rn-scheme, with n = 6,8. For moments with our

normalization we can thus write

αRn(MRGI) =
Rn−1

r̃(1)n

α→0∼ αMS(µs)+
r̃(2)n (s)

r̃(1)n

α
2
MS(µs)+

r̃(3)n (s)

r̃(1)n

α
3
MS(µs)+O(α4

MS) , (6.7)

where we allow for a scale factor s (just like in eq. (1.16)) and with µs = smMS(µs), as defined in

eq. (2.7). Note two things: (1) once s is fixed, µs and MRGI are in one-to-one correspondence through

eq. (2.33) and (2) no scale factor s enters in the left hand side of eq. (6.7), since for dimensionless

observables such as Rn the first coefficient r̃(1)n is s-independentI. Thus, eq. (6.7) represents an effective

z = 3 z = 4.5 z = 6 z = 9 z = 13.5

R6 = R6/R8 1.0965(12) 1.07708(82) 1.06695(70) 1.05850(81) 1.0526(11)
αR6 0.3221(40) 0.2573(27) 0.2235(23) 0.1953(27) 0.1757(38)

R8 = R8/R10 1.04758(57) 1.03647(40) 1.03151(28) 1.02647(21) 1.02323(26)
αR8 0.3652(44) 0.2799(30) 0.2419(22) 0.2032(16) 0.1788(20)

Table 6.2: Final results for continuum limits – together with corresponding αeff values – with all error sources
taken into account, i.e.: (1) the statistical error, (2) tuning errors related to fixing the mass and stemming
from ZP, t0/a2, the full twist condition (see chapter 5), (3) the extra systematic continuum limit error estimated
via the spread of different fit Ansätze eq. (6.5) as well as (4) the continuum running error factor discussed in
Subsection 6.1.4.

coupling, the magnitude of which indicates whether the renormalization scale is sufficiently high for

the perturbative series to be in its asymptotic regime. This value is one of the crucial parameters

that the authors of the FLAG initiative responsible for the coupling [5, 6] use to judge the quality

of studies, and which they call αeff. The report states, referring to its quality criteria: “To each such

source of error for which systematic improvement is possible we assign one of three coloured symbols:

green star, unfilled green circle [...] or red square”. The strong coupling chapter sets as quantitative

criteria αeff < 0.2 for green star, αeff < 0.4 and at least one point αeff ≤ 0.25 for green circle, and red

square otherwise. Note that a red square in any error source disqualifies a result from being part of the

averages carried out in the report.

Indeed, too large αeff may lead to power-law like, “non-perturbative” effects [122] of the type in

eq. (1.17) and which have an uncontrolled size, as in the case of τ decays [139] (for which αeff ≈ 0.3,

but see also the more recent [17, 16]).

I To see this, simply suppose it to have such dependence and apply a derivative w.r.t. µ , i.e.

Rn =1+ r̃(1)n (s)αMS(µ)+ r̃(2)n (s)α2
MS(µ)+O(α3

MS)
∂log µ

=⇒ (6.8)

∂log µ

=⇒ 0 = βMS(αMS)r̃
(1)
n (s)+αMS(µ)∂log µ r̃(1)n (s)+α

2
MS(µ)∂log µ r̃(2)n (s)+O(α3

MS) (6.9)

∂log µ

=⇒ 0 = αMS(µ)∂log µ r̃(1)n (s)+α
2
MS(µ)

(︂
∂log µ r̃(2)n (s)−β0r̃(1)n (s)

)︂
+O(α3

MS) , (6.10)

where eq. (6.10) has to be valid order by order in αMS, yielding ∂log µ r̃(1)n (s) = 0.
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6.2. EXTRACTING THE QCD COUPLING

After having obtained renormalized, continuum extrapolated results for the moments in infinite volume,

the coupling is extracted by comparing these with the perturbative expression for the moments, as

introduced in Section 2.4. One needs to first choose a perturbative renormalization scale, i.e. fix some

value of s, after which a quick inversion gives αMS(µs).

The scale factor serves as an extra handle one can turn to study the system. Especially, let us remind

the reader a scale variation is oftentimes used in order to estimate the size of the truncation error. How

much such a procedure is under control in the realm of high precision physics is unclear, though, since,

as stressed in the introduction, there is no real knowledge about the s-independent part of the (L+1)-th

coefficient, with L the number of known loops.

6.2.1. Methodology

The key formula for extracting the coupling from any of the measured observables

Rn(z,aMRGI) =

⎧⎨⎩Rn(z,aMRGI) , n = 4 ,
Rn(z,a)

Rn+2(z,a)
, n = 6,8, . . . ,

(6.11)

is simply their perturbative expansion in the MS-scheme. The general perturbative expansion thus

reads

lim
a→0
{Rn(z,aMRGI)}= 1+ r̃(1)n αMS(µs)+ r̃(2)n (s)α2

MS(µs)+ r̃(3)n (s)α3
MS(µs)+O(α4

MS) , (6.12)

which can be inverted once a fixed value of s is chosen, either numerically or iteratively order by order.

The extracted coupling is a function of the mass, which fixes the scale of the observable, and of s,

which fixes the perturbative renormalization scale w.r.t. the above mentioned mass. Once s is fixed, z

(or MRGI) is in one-to-one correspondence with mMS(µs) through eq. (2.33). Inverting this, at a given

z, i.e. once the heavy quark mass is fixed, a choice of s is equivalent to fixing some value for µs. Here

we stress again that any results for the coupling intrinsically have a truncation error, namely

α
extracted
MS (µs) = αMS(µs)+O

(︁
α

4
MS (µs)

)︁
. (6.13)

For clarity, we here remind the reader the full expansion to be

Rn(z,0) = 1+ r̃(1)n αMS(µs)+
(︂

r̃(2,0)n + r̃(2,1)n logs2
)︂

α
2
MS(µs)+

+
(︂

r̃(3,0)n + r̃(3,1)n logs2 + r̃(3,2)n log2 s2
)︂

α
3
MS(µs)+O(α4

MS) , (6.14)

where all coefficients are known [121]. The iterative procedure simply solves for αMS at leading order,

with uncertainty O(α2
MS), then substitutes it into the quadratic equation, obtaining αMS, this time with

uncertainty O(α3
MS

). This can be iterated order by order in the coupling, and since both methods
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give close-to-indistinguishable results, we here report the numerical ones only, found in table 6.3

for different choices of s (for sopt see next sect section). We can see the approach to the asymptotic

z sopt s = 1 s = 1.5 s = 2

R6/R8

13.5 0.1784(40) 0.1749(38) 0.1553(30) 0.1443(26)
9 0.1989(29) 0.1945(27) 0.1705(21) 0.1575(18)
6 0.2287(25) 0.2228(24) 0.1918(17) 0.1756(15)

4.5 0.2650(32) 0.2569(30) 0.2164(21) 0.1963(17)
3 0.3368(49) 0.3234(45) 0.2613(29) 0.2331(23)

R8/R10

13.5 0.1820(21) 0.1680(18) 0.1501(14) 0.1401(12)
9 0.2078(18) 0.1896(15) 0.1671(11) 0.1550(10)
6 0.2498(25) 0.2234(20) 0.1929(15) 0.1772(12)

4.5 0.2925(37) 0.2561(28) 0.2170(20) 0.1976(17)
3 0.3957(63) 0.3280(41) 0.2667(27) 0.2390(22)

Table 6.3: Values of the coupling αMS(µs) extracted from R6/R8 (upper half) and R8/R10 (lower half) at different
heavy quark masses z and values of the the scale parameter s. For sopt see fig. 6.4 and eq. (6.15), numerical
values are sopt = 0.94 for R6/R8 and sopt = 0.78 for R8/R10. The error contains all possible error sources except,
of course, the truncation error, which is what we want to study here, see next section. Also reported the coupling
from R6/R8 at z = 13.5, for completeness, although in that case we were not able to reliably extrapolate to the
continuum.

scaling region as z grows, thanks to QCD’s asymptotic freedom. Also, there seems to be an increase in

precision (also the relative one) as s grows, but note this only reflects a rearrange of terms in different

orders, so that the truncated part will actually turn out (see fig. 6.5) to be larger.

6.2.2. Fastest Convergence

The “Fastest Apparent Convergence” (FAC) or “optimal” scale is defined as the value sopt at which

the first µ-dependent coefficient is zero. Naming the coefficients appearing in eq. (6.7) ci(s) =

r̃(i+1)
n (s)/r̃(1)n , with i = 1,2, the implicit definition is

c1(sopt)
def.
= 0 ⇐⇒ µ = µopt , (6.15)

so that in

αRn(MRGI) = αMS(µs) ·
(︁
1+ c1(s)αMS(µs)+ c2(s)α2

MS(µs)
)︁
+O(α4) , (6.16)

α2 terms disappear, yielding

αRn(MRGI)
α→0∼ αMS(µopt) ·

(︁
1+ c2(sopt)α

2
MS(µopt)

)︁
+O(α4) . (6.17)

For this scale, there is expectation for the spurious µ-dependence introduced in the l.h.s. when

estimating it with the perturbative expansion on the r.h.s. to be weaker, since a considerable part of the

observable is reabsorbed into the leading term, whereas the higher order terms – suppressed by powers

of α – decrease in importance.
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6.2 EXTRACTING THE QCD COUPLING

(a) As expected sopt is not too far from s = 1 and higher for R6 than for R8.

(b) Here sopt is smaller, but still not too far from s = 1; the overall pattern is very similar, but
results more squeezed.

Figure 6.4: Evolution of coefficients ci(s) in eq. (6.16) with scale factor s. Where the red line crosses 0, in green
for visibility, s≡ sopt, at which the second coefficient (blule line) has a global minimum.
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From the above one can easily obtain sopt numerically, as one can see in figs. 6.4a and 6.4b showing

c1(s) and c2(s) for the two different moments’ ratios. We obtain c1(sopt) = 0 at sopt ≃ 1.16 for n = 4,

whereas sopt ≃ 0.94 for R6 and finally sopt ≃ 0.78 for R8. Also, in all three cases we note this

corresponds to a global minimum of c2(sopt) = mins[c2(s)].

6.3. EXTRACTING THE Λ-PARAMETER

We start this section by motivating why our results are presented in terms of the ΛRGI parameter. It

has become customary to quote the coupling’s value at the Z-boson’s mass in the MS scheme [165].

As mentioned towards the end of Section 2.5, the ΛRGI-parameter can be exactly converted between

schemes through a 1-loop computation. This, together with the remarkable 5 loop knowledge of the

βMS function [83, 106, 105], implies the coupling’s uncertainty at the weak scale to be dominated

by the ones of the ΛRGI-parameter, so that it has become customary for lattice practitioners to talk in

terms of this nonperturbatively defined, renormalization group invariant quantity.

6.3.1. Methodology

To compute the ΛMS
RGI-parameter, we take the ratio of eq. (2.32) with eq. (2.33), obtaining

ΛMS
RGI

MRGI
=

µ

mMS(µ)

(︂
b0g2

MS(µ)
)︂−b1/(2b2

0)

(︂
2b0g2

MS
(µ)
)︂−d0/(2b0)

× exp

{︄
− 1

2b0g2
MS

(µ)
−
∫︂ gMS(µ)

0
dx
[︃

1− τMS(x)
βMS(x)

+
1

b0x3 −
b1

b2
0x

+
d0

b0x

]︃}︄
, (6.18)

where βMS and τMS are knownII perturbatively to 5 loops [37, 83] (note, however, if βMS to L loops is

used, τ to L−1 loops is of the same order in the integrand). With the previously introduced rewriting

IINote how β here is not defined through α , but rather through the coupling g of the Lagrangian. Latin bi letters indicate
the expansion coefficients in terms of g and greek βi letters those in terms of α , i.e.

β (α) =
dα

dlnm2
∗
=

1
4π

dg2

dlnm2
∗
=

g
4π

dg
dlnm∗

=
g

4π
β (g) =

1
4π

{︂
−b0g4−b1g6−b2g8 +O

(︂
g10
)︂}︂

(6.19)

=
1

4π

{︂
−b0(4πα)2−b1(4πα)3−b2(4πα)4 +O

(︂
g10
)︂}︂

=−β0α
2−β1α

3−β2α
4 +O

(︂
α

5
)︂
, (6.20)

so that we obtain βi = (4π)i+1bi, for i ≥ 0 , i.e. β⃗ = [11/4π, 102/(4π)2, 2857/(2(4π)3), . . .] . We mostly use g in this
section and will explicitly write α if it is intended.
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of µs = smMS(µs) and in appropriate t0 units we get

√︁
8t0Λ

MS
RGI = z · s ·

(︂
b0g2

MS(µs)
)︂−b1/(2b2

0)

(︂
2b0g2

MS
(µs)

)︂−d0/(2b0)

× exp

{︄
− 1

2b0g2
MS

(µs)
−
∫︂ gMS(µs)

0
dx
[︃

1− τMS(x)
βMS(x)

+
1

b0x3 −
b1

b2
0x

+
d0

b0x

]︃}︄
. (6.21)

The integral is computed numerically as follows: the whole integrand is expanded in a polynomial up

to x5, starting from the asymptotic expression for τMS(x) in the numerator, then the one for βMS(x)

in the denominator, which is further expanded as a geometric series. Thus, one obtains a trivially

integrable polynomial, since the divergences are exactly canceled by the explicit terms (which, we

remind, only depend on universal coefficients). Expanding all of the integrand is a choice that avoids

singular integrand terms, whereas keeping βMS(x) and τMS(x) expanded to all known orders in the

ratio and numerically integrating may lead to numerical cancellation of the singular terms, which

however poses no a-priori problem. We thus straightforwardly evaluate

√︁
8t0Λ

MS
RGI = z · s ·

(︂
b0g2

MS(µs)
)︂−b1/(2b2

0)

(︂
2b0g2

MS
(µs)

)︂−d0/(2b0)

× exp

{︄
− 1

2b0g2
MS

(µs)
− p1

2
g2

MS(µs)−
p2

4
g4

MS(µs)−
p3

6
g6

MS(µs)

}︄
, (6.22)

where the pi are trivially obtained when expanding β and anomalous dimension and thus depend on

higher order, non-universal coefficients of bi and d j, with i≥ 2 and j ≥ 1.

Altogether, for each of the 2 observables under scrutiny we obtain values of the
√

8t0ΛMS
RGI for

varying z, s. We now want to check what the truncation error is in this observable, for which we remind

its definition eq. (2.32) to be

ΛRGI = µ(b0g2)−b1/(2b2
0) exp

{︃
− 1

2b0g2 −
∫︂ g

0
dx
[︃

1
β (x)

+
1

b0x3 −
b1

b2
0x

]︃}︃
. (6.23)

From this equation we can see the sensitivity of ΛRGI on the coupling is given by its leading divergent

contribution for g→ 0. The truncation uncertainty ∆T (αMS) = O
(︂

α4
MS

)︂
of eq. (6.13) in Rn implies,

at leading order, and together withIII

IIITo obtain eq. (6.26) one can simply take the differential RGE

dlog µ =
dg

β (g)

∫︁
−→ log

Λε

µ
=−

∫︂ g

ε

dx
β (x)

d/dg2

−→ d
dg2

Λε

µ
= exp

{︃
−
∫︂ g

ε

dx
β (x)

}︃
· (−1)

2gβ (g)
, (6.24)

where we trivially used Leibniz’s integral rule, i.e.

d
dc

∫︂ b(c)

a(c)
dt f (t,c) =

db
dc

f (b,c)− da
dc

f (a,c)+
∫︂ b(c)

a(c)

∂ f (t,c)
∂c

dt . (6.25)
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Figure 6.5: Values for ΛMS as a function of α2
MS, both as extracted from moment R6/R8, for several values of s.

d
dα2

MS

(︃
Λ

µ

)︃
∼ 1

α2
MS

+ . . . , (6.26)

an asymptotic scaling of ΛRGI as

∆T (Λ) =
d

dαMS

(︃
Λ

µ

)︃
∆T (αMS) =

k
α2

MS

α
4
MS (1+O (αMS)) =⇒ Λ

eff
MS = ΛMS +O

(︁
α

2
MS

)︁
, (6.27)

for some unknown constant k and where we label the extracted ΛRGI-parameter with “eff”, indicating

“effective”. Note that k is the prefactor of the α2
MS term only, beyond which many more contributions

may be present – depending on the energy scale – up and foremost those of higher order in αMS, but

also power corrections (sometimes referred to as non-perturbative corrections, although a clear and

rigorous separation of perturbative and non-perturbative is not achievable).

6.3.2. Results

We thus plot the extracted ΛRGI vs. α2
MS(µs), where both have been obtained from the moments’ ratios

under scrutiny, in figs. 6.5 and 6.6. We do so for three different choices of s and we also plot the result

by [47], valid for α = 0.

First, we start by noticing the truncated part to be quite large at a considerably high energy scale.

The data does point towards values of ΛMS known from other studies, but with a far-from-flat behavior.

As expected, higher moments have a larger deviation w.r.t. the asymptotic α → 0 value, but they can

rely on more precise lattice results – this is nothing more than the statement of the window problem

we are dealing with.

Then, we note some variation with s is present, yet it is not large enough to account for the scaling

86



6.3 EXTRACTING THE Λ-PARAMETER

Figure 6.6: Values for ΛMS as a function of α2
MS, both as extracted from moment R8/R10, for several values of s.

violations. Looking closely at Λeff
MS for equal values of z (or heavy quark mass), e.g. taking the

rightmost point of each color, one can notice varying s changes Λeff
MS a little bit, but really does not

account for the large distance Λeff
MS−ΛMS. Since a difference between s = 1 and sopt is almost absent,

for what follows we decide to use the results at s = 1.

We try to fit linearly in α2 and to extrapolate to α → 0. We do so keeping track of all correlations

that are present between our different data points. We fit like

f (α2) = d0 +d1α
2 , (6.28)

and also try to fit the quadratic term only, setting the constant term to the result by [47], as can be seen

in fig. 6.7. Already by naked eye one may think a fit cubic in αMS to be problematic, nonetheless we

try it obtaining close to indistinguishable extrapolated values, so that we only report the former. The

constrained quadratic fit agrees very well with the unconstrained one, giving reassurance about the

α2-scaling Ansatz as well as supporting evidence of overall consistency. We also plot a dashed, purple

vertical line at the energy scale of twice the charm quark mass as a reference.

Considering the fits in figs. 6.7a and 6.7b, with functional form√︁
8t0Λ

eff
MS(α) =

√︁
8t0ΛMS +d1α

2 , (6.29)

we report the results

[
√︁

8t0ΛMS, d1] =

⎧⎨⎩ [0.6332(246), 0.85(23)] , R6/R8 , range α2 ∈ [0.0378, 0.105]

[0.6003(165), 1.31(17)] , R8/R10 , range α2 ∈ [0.0282, 0.108]
. (6.30)

The values of d1 reflect the expectation of a smaller effect of the truncation error for lower moments,
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(a) Fit for ΛMS as a function of α2
MS

, compared with a fit constrained to pass through
ΛBR of [47], extracted from R6/R8.

(b) Fit for ΛMS as a function of α2
MS

, compared with a fit constrained to pass through
ΛBR of [47], extracted from R8/R10.

Figure 6.7: Main result of this thesis, namely violations to the asymptotic scaling with αMS in the ΛMS
parameter for the two main observables studied, built with appropriate ratios of moments. Plotted against α2

MS,
see eq. (6.27). Also reported, the older FLAG19 [5, 92, 96, 27, 72, 35] average of the quenched Λ-parameter,
which does not contain the very precise result in [47], with which there is some tension.
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although not being able to include the result at highest energy (z = 13.5,M/Mc ≃ 3.5) results in a

larger uncertainty in d1. However, it is important to stress once more that the above fit does not include

(and it is hard to believe it could do so with an acceptable sensitivity) the aforementioned higher order

terms in α and power corrections, introduced in eq. (1.17) and eq. (1.16) and which are present. Once

this caveat about extrapolations and functional form is understood, we still see the fit parameters as an

important result, since as an interpolation they can be used to estimate truncation error at a given value

of α . A full account of the results in figs. 6.5 and 6.6 in a table analogue to the one for α (table 6.3)

can be found in table 6.4.

z sopt s = 1 s = 1.5 s = 2

R6/R8

13.5 0.7471(40) 0.7458(38) 0.7450(30) 0.7548(26)
9 0.6893(29) 0.6878(27) 0.6868(21) 0.6973(18)
6 0.6637(25) 0.6617(24) 0.6603(17) 0.6724(15)

4.5 0.6963(32) 0.6935(30) 0.6914(21) 0.7067(17)
3 0.7279(49) 0.7231(45) 0.7191(29) 0.7400(23)

R8/R10

13.5 0.6597(21) 0.6538(18) 0.6575(14) 0.6707(12)
9 0.6457(18) 0.6381(15) 0.6425(11) 0.6576(10)
6 0.6776(25) 0.6662(20) 0.6719(15) 0.6915(12)

4.5 0.7047(37) 0.6887(28) 0.6957(20) 0.7197(17)
3 0.7729(63) 0.7408(41) 0.7510(27) 0.7851(22)

Table 6.4: Values of Λ
eff
MS

extracted from R6/R8 (upper half) and R8/R10 (lower half) for varying heavy quark
masses z and scale parameter s (for sopt see eq. (6.15)). Also reported the result from R6/R8 at z = 13.5, for
completeness, although in that case we were not able to reliably extrapolate to the continuum.

Finally, we report our full error budget for ΛMS computed from the two observables in fig. 6.8. As

expected the smallest lattice spacing is key to the overall precision and estimating all possible effects

tied to it is of utmost importance to obtain better results. Note that t0 for sft7 is distinguished as far as

it had to be computed separately, while t0 at lower β is included in the ensembles themselves. However,

we also point out that a larger area in the pie chart does not necessarily mean the corresponding error

source to be large, on the contrary: a very precise result on, say, sft7 will have a large weight in

continuum extrapolations and will thus dominate the error budget.

As a final remark, let us mention this error budget should by no means overshadow the key message

that is being stated, namely that the truncation of the perturbative series is a large and hard-to-estimate

systematic effect. In our quenched computation with a really small lattice spacing of a ≃ 0.01 fm,

unreachable otherwise, the largest error one needs to be aware of when trying to extract QCD

parameters with moments of heavy quark correlators appears to be the truncation. This point is

especially important to keep in mind when thinking about the future usage of this method with

dynamical quark flavors: simply decreasing further the lattice spacing (by the reasonable amount to be

expected within the close future) will not suffice to improve the precision of the results while having

truly all systematic errors under control.
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(a) Case R6/R8, given the observable to be dominated by shorter distances the extra systematic error we
assigned to the continuum limit has a bigger role here.

(b) For R8/R10 there is clear dominance of the statistical error of the smallest lattice spacing together with the
precise evaluation therein of t0/a2.

Figure 6.8: Error budget of the extracted ΛMS parameter with linear fit in α2
MS (truncation error excluded, of

course). The area is proportional to the partial squared error of each source. “C.l.spread” indicates the extra
error obtained when taking the spread of continuum extrapolations, see eq. (6.5), ZP(s f t5)−shift is due to the
discrepancy between eq. (5.17) and eq. (5.18), see also green and red point in fig. 5.3, and σ is the running error.
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6.3 EXTRACTING THE Λ-PARAMETER

6.3.3. Comparison to N f = 3 Computations

We here want to remind the reader the discussion around eq. (4.7), where it was explained how the

fully quenched model can arguably give a not only qualitative, but also quantitative insight into the

truncation errors of N f = 3, 4 studies. Here it becomes interesting to carry out a short comparison with

some studies present in the literature.

The only computation that permits a direct comparison with our results, since to the best of our

knowledge only therein moments have been computed for a range of energies, is [137], with its

update [138], done with N f = 3 HISQ- staggered quarks [61]. Direct comparison here really means

commenting their methodology as compared to ours, where it should be noted due to their dynamical

flavors they are restricted to a lower a−1 value which then leads them to parameterize cutoff effects in

complicated ways, leaving more space for uncontrolled continuum extrapolations. Results for ΛMS

are extracted from R4 without addressing the issue of loga [77, 43] corrections to scaling discussed

in Subsection 6.1.1. Moreover, whether topological freezing did play a role in their computations

remains unclear.

In any case, the information at multiple energies is then not used for computing ΛRGI through an

extrapolation, but rather the truncation error is estimated by supposing the first unknown coefficient 5

times larger than the last known one [137] and adding this error source in quadrature to the others. The

quoted final result (blue band of fig. 6.9) is then a weighted average of values obtained at different s

and different heavy quark mass, the error bar chosen in order to contain all central values.

In fig. 6.9 we also plot the value by the ALPHA Collaboration [31] in red and a subset of the points

of [138], those at s = 1 (or µ/mh = 1 in the notation of the paper). The two values, all in all, agree

quite well. It is clear, however, that if the points were to be computed more precisely and the error bars

to decrease, the overall situation could easily change. In any case, an average of results at different s

and heavy quark mass is theoretically not well motivated.

For completeness, we only quote results and strategies used by other collaborations utilizing

moments: [3, 36] introduce Bayesian priors in the analysis, while [126] (as well as [23, 24], which do

not produce lattice results themselves, but rather do an analysis of the ones present in literature) mostly

rely on varying the scale s.
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Figure 6.9: N f = 3 results at s = 1 by [138] (in blue) at different values of α , compared to the α → 0 result (in
red) by the ALPHA Collaboration [31]. For more information, see text.
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7 | Conclusions

IN this work, we have thoroughly studied the behavior of the perturbative, weak coupling expansion of

moments of heavy quark correlators within QCD. In order to reliably extrapolate lattice observables

to the continuum, N f = 0 dynamical quark flavors (the so-called quenched theory) were employed and

lattice spacings down to a≃ 0.01fm were simulated, a size not attainable for this kind of observable

in fully dynamical QCD. With eq. (4.7) we argued why this is a good indicator of what happens in real

QCD, namely because the largest effect of the coupling’s running is due to purely gluonic effects.

From appropriate ratios of moments with n = 6, 8, 10, defined in eq. (3.64), we computed the strong

coupling by inversion of their perturbative expansion known to 4 loops in perturbation theory [121].

This was done for a range of scales from slightly below the mass of the charm all the way to above 3

times the charm mass, thus obtaining the running of the quenched coupling αMS(µ) over a factor 4 in

energy µ .

Our goal was to study the unavoidably present O(α4
MS) truncation uncertainty and its effect in the

determination of the coupling through moments. Since most of the error in αMS(MZ) comes from

ΛMS, we looked at its leftover dependence on αMS due to unknown higher terms, the leading one

being O(α2
MS). One should not erroneously think of the main result of the present work being d1 in

eq. (6.29), as though it represented the unknown higher order coefficient. As already stressed, in our

computation of d1 higher order terms and power corrections are neglected. We rather see the distance

of our points (αMS,Λ
eff
MS) in figs. 6.5 to 6.7 to the known ΛMS values, or ignoring previous knowledge,

simply the non-trivial slope of our points as αMS varies, as the main findings.

Moments of heavy quark correlators seem to be an observable where higher order coefficients of the

perturbative expansion are important at the heavy flavor energy scale and we urge some caution when

using this method and trying to extract the coupling from this observable. These aspects are reflected

in the large cutoff effects we observe, showing a hard-to-tackle window problem for a concurrent

use of perturbative and lattice results. Estimates of the truncation error could be better estimated by

variation of the mass scale and subsequent extrapolations, rather than with coefficient guesswork or by

varying the perturbative scale (what we called the scale factor s).

Unfortunately, this study does not really help with the Λ
(0)
MS

discrepancy discussed in FLAG 21 [6].

This is especially disappointing at a time where renewed interest in precision results for it are mounting

due to ALPHA’s decoupling project [50, 48, 49], which requires Λ
(0)
MS

as an important ingredient.
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As a byproduct of this project, a study of logarithmic contributions in the small t region of integrated

lattice observables – precisely speaking, of two point functions G(t) with kernel K(t), such that

G(t)K(t) ∼ t for small t – has been initiated [77, 43], with possible applications to high precision

lattice computations of the muon g−2 and to smoothed spectral functions.

In general, as a closing remark, one should not forget the asymptotic nature of perturbative expan-

sions, which entails both its applicability domain and the estimation of truncated pieces. Guessing the

size of coefficients should not be customary in nowadays realm of precision physics. Whether at a

given energy one is in the asymptotic regime or not should be verified by varying the physical scale –

not to be confused with the perturbative concept of a renormalization scale – rather than be assumed.

In fig. 6.7 we have been able to vary the scale µ and thus αMS(µ) in a significant range. In this way,

we have verified the size of the truncation directly, finding it to be considerable and larger than claimed

in other studies.

We remind the reader once more that strictly speaking this statement holds for N f = 0. On the other

hand, for N f > 0 the natural assumption is a quantitative, but not qualitative change. Whether in that

case the situation is improved and, if so, by how much, needs to be shown along the lines of our N f = 0

investigation.
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APPENDIX A

SYMANZIK IMPROVEMENT

In this appendix we concisely explain some topics related to Symanzik improvement [155, 156] for com-

pleteness. Whenever we consider an explicit form of some lattice correlator G(t,a) = ⟨O1(x)O2(0)⟩,
it is important to realize it has to reproduce its continuum counterpart for a→ 0. However, at a > 0, a

whole variety of choices in the discretization, of both action and operators Oi appearing in G, are pos-

sible. In statistical field theory language, one can add “irrelevant” (in the sense of higher dimensional),

local operators which change the continuum approach of lattice correlators as a→ 0, with the goal of

speeding this limit up and thus gaining in precision (or in simulation time).

In Subsection 6.1.1 we mentioned the effective field theory (EFT) point of view can be taken to

study cutoff effects present in a given correlator for some action choice. One may imagine the energy

cutoff a−1 as a scale for some new, unknown physics of which continuum QCD is a low energy EFT. In

this framework one may then describe the physics at a scale E≪ a−1 (i.e. towards the continuum limit)

through EFT methods, for instance by adding to the Lagrangian operators of mass dimension 5 with

the correct lattice symmetries and with an extra a factor in front of them. Turning this around, one may

imagine to add appropriately tuned counter-terms to the action in order to avoid the presence of cutoff

effects at a given order in a, where the needed coefficients can be computed in lattice perturbation

theory or through non-perturbative methods, being functions of the bare coupling g0.

Below we briefly sketch some ideas and results in the case of Wilson fermions and then move on

to twisted mass and its much celebrated automatic O(a)-improvement, which we rely a lot on in this

work.

A.1. THE CLOVER TERM

Let us remind here the explicit form of the Wilson fermion action eq. (3.18)

SF = a4
∑
x

Ψ(x)

{︄
3

∑
ν=0

(︃
γν

∇ν +∇∗ν
2

− a
2

∇
∗
ν∇ν

)︃
+M

}︄
Ψ(x) , (A.1)

from which we start. To understand why in the improved action eq. (3.45) (apart from the twisted mass

term, to be discussed later) only one term is present, namely the clover or Sheikholeslami-Wohlert
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term, the strategy (which we only illustrate and state results of) entails:

1. Enumerating a basis of continuum, higher dimensional operators {Bi} with the correct lattice

symmetries.

2. Reducing this basis through field equations.

3. Carrying out a further reduction by reabsorbing some operators in already present parts through

a redefinition of couplings.

4. Finally, one needs to choose a specific discretization of these operators, which will in turn

introduce lattice effects, but which only affect higher orders in a.

After some computations, for 1 one arrives at

B1(x) = iψ(x)σµνFµν(x)ψ(x) , σµν =
i
2
[︁
γµ , γν

]︁
, (A.2)

B2(x) = ψ(x)DµDµψ(x)+ψ(x)
←
Dµ

←
Dµψ(x) , (A.3)

B3(x) = mψ(x) tr{Fµν(x)Fµν}(x) , (A.4)

B4(x) = m
{︂

ψ(x)γµDµψ(x)−ψ(x)
←
Dµγµψ(x)

}︂
, (A.5)

B5(x) = m2
ψ(x)ψ(x) , (A.6)

which can further be reduced. Employing the following equations of motions (i.e. point 2), valid at

tree-level in perturbation theory (but which can be generalized), one obtains

B1−B2 +2B5 = 0 , B4 +2B5 = 0 , (A.7)

which leaves us with Bi, i = 1,3,5. In Section 3 of [104], to which we refer to, it is shown in detail

how B3 and B5 can be reabsorbed appropriately, respectively, in the pure gauge and in the fermion

mass terms (point 3). We are now only left with the Pauli term eq. (A.2), which is the clover term once

an appropriate lattice (point 4) choice F̂µν of the field strength tensor is given. We follow the notation

in [104], i.e.

F̂µν(x) =
1

8a2

{︁
Qµν(x)−Qνµ(x)

}︁
, (A.8)

Qµν(x) =U(x,µ)U(x+aµ̂,ν)U−1(x+aν̂ ,µ)U−1(x,ν)

+U(x,ν)U−1(x−aµ̂ +aν̂ ,µ)U−1(x−aµ̂,ν)U(x−aµ̂,µ)

+U−1(x−aµ̂,µ)U−1(x−aµ̂−aν̂ ,ν)U(x−aµ̂−aν̂ ,µ)U(x−aν̂ ,ν)

+U−1(x−aν̂ ,ν)U(x−aν̂ ,µ)U(x+aµ̂−aν̂ ,ν)U−1(x,µ) . (A.9)

A.2. AUTOMATIC O(a) IMPROVEMENT

In this appendix we briefly discuss a key feature of maximal twist, namely the presence of a finite

transformation Pµtm ⊂ SU(2)A which has the property P2
µtm

= 1, so that an associated parity exists.
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Operators can have a well defined Pµtm - parity and interestingly Pµtm - even (odd) fields are free

from O(a2k+1) effects (O(a2k) effects), meaning even fields are automatically O(a)-improved [62]

whereas odd fields are a pure cutoff effect, i.e. their continuum limit vanishes.

We will not derive this property here, for which we refer the interested reader to the original literature

or to two excellent reviews [62, 150, 149]. Rather, we will show here what the Pµtm symmetry of

correlators used in the present work is. We studied 2-point functions of quark bilinears with fixed

flavor assignment, i.e.

OPP = P±(x)P∓(y) , and OAP = ∂µA±µ (x)P
∓(y) , (A.10)

where P±(x) = P1(x)± iP2(x) and Pc(x) = χ(x)γ5
τc

2 χ(x), with τc referring to the Pauli matrices.

Applying Pµtm on twisted field doublets χT = (h, h′) amounts to

Pµtm :

⎧⎨⎩ χ −→ iγ5τ1χ

χ −→ χiγ5τ1

. (A.11)

If an operator O is even w.r.t. the Pµtm = iγ5τ1 parity it can be shown that δO = 0, i.e. the field

is automatically “O(a)-improved” in the sense that its expectation value on the lattice will have

discretization effects starting from O(a2).

The expectation value of OPP, used to compute moments, will turn out being automatically O(a)-

improved, whereas OAP present in mPCAC and used to monitor the maximal twist condition, will be

shown to be a pure O(a)-effect.

Simplifying notation by dropping momentarily spacetime dependence we have for the pseudoscalar

P± = χγ5
τ1± iτ2

2
χ −→ χiγ5τ1

τ1± iτ2

2
γ5iγ5τ1χ =

−1
2

χγ5(τ1± iτ1τ2τ1)χ , (A.12)

and using trivial properties of the Pauli matrices one can obtain

Pµtm

[︁
P±
]︁
=−P∓ , (A.13)

which for the PS-PS operator yields

Pµtm

[︁
P±(x)P∓(y)

]︁
= P∓(x)P±(y)≡ P±(x)P∓(y)[h↔ h′]≡ P±(x)P∓(y)[µtm→−µtm] , (A.14)

where the dependence on µtm is everywhere quadratic and we thus re-obtain the 2-point function we

started with.

For the axial vector current’s “four-divergence” we similarly obtain

Pµtm

[︁
A±µ
]︁
= A±µ ± (A−µ −A+

µ ) = A∓µ , (A.15)
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which for the A-PS operator OAP means

Pµtm

[︁
∂µA±µ (x)P

∓(y)
]︁
=−∂µA∓µ (x)P

±(y)≡−∂µA±µ (x)P
∓(y)[µtm→−µtm] , (A.16)

thus showing the PCAC mass, build of the above operators, to be an O(a) effect.

This, of course, should not lead to believe automatic O(a)-improvement might be spoiled, since

⟨︁
∂µAa

µ(x)Oeven(y)
⟩︁⏞ ⏟⏟ ⏞

O(a2)

= mPCAC⏞ ⏟⏟ ⏞
O(a)

⟨︁
Pa(x)Oeven(y)

⟩︁⏞ ⏟⏟ ⏞
O(a)

, (A.17)

which clearly shows mPCAC’s leading scaling to be linear, as we showed in figs. 5.6 to 5.8, D.8 and D.9

and discussed in Subsection 5.5.2.
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APPENDIX B

CORRELATION OF ZP WITH MRGI/m

One last points needs a closer look, related to the multiple definitions of ZP employed throughout

the study, and written in eqs. (5.11) to (5.14). We now show that dropping the correlation between

MRGI/mSF(µref) and ZP in eq. (5.26) is a good enough approximation and is thus justified. Too see

this, start by

∆
2Rn =

(︃
∂Rn

∂ lnz

)︃2 3

∑
i, j=1

⟨︃
∂ lnz
∂ lnbi

⃓⃓⃓⃓
th

∆ lnbi
∂ lnz
∂ lnb j

⃓⃓⃓⃓
th

∆ lnb j

⟩︃
. (B.1)

where i= 1,2,3 corresponds to MRGI/mSF ,
√

t0/a, ZSF
P . Taking the logarithm of z’s definition, eq. (5.7),

we have up to higher orders in a

log(z) = log
(︃√

8t0
a

)︃
+ log

(︃
MRGI

mSF(µ)

)︃
− log

(︁
ZSF

P (aµ,β )
)︁
+ log(aµtm) , (B.2)

from which it is clear all derivative terms are equal in modulo for all sources of error. So we really

want to know whether

2
⟨︂

∆(logZP)∆(logMRGI/mSF)
⟩︂ ?
≪
⟨︂

∆(logZP)
⟩︂2

+
⟨︂

∆ log(MRGI/mSF)
⟩︂2

. (B.3)

From the propertyI of the covariance |σ1,2| ≤
√

σ1,1σ2,2 we can try to find an upper limit to the l.h.s. of

eq. (B.3). This inequality is a measure of correlations, its saturation being a signal of strong correlation.

Labeling logZP with “1” and log(MRGI/mSF) with “2”, we study whether

2
√

σ1,1 σ2,2
?
≪ σ1,1 +σ2,2 , (B.4)

holds. Remembering
√

σ2,2 ≃ 0.008 (since we consider logarithms, σ is equal to the relative error)

and reporting
√

σ1,1 in table B.1 we obtain the results in table B.2. Thus, eq. (B.4) does not hold. Still,

if the correlation (l.h.s. of eq. (B.3)) is negative, the error would be smaller than what we claim by

at most ∼ 25%, which we find as acceptable. On the other hand, if it is positive, looking at the last

row of table B.2, we would be underestimating the error squared by at most ∼ 40% and the error by

ISince we indicate by ∆xi = xi− x̄i, we have σi, j = ⟨(xi− x̄i)(x j− x̄ j)⟩.
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β 6.1628 6.2885 6.4956 6.7859 7.1146 7.3600 7.700
√

σ1,1 [10−3] 3.3 4.0 3.3 2.8 1.7 1.8 3.2

Table B.1: Error on logZSF
P , to be confronted with error on MRGI/mSF .

β 6.1628 6.2885 6.4956 6.7859 7.1146 7.3600 7.700

2
√

σ1,1 σ2,2 [10−5] 5.2 6.4 5.3 4.4 2.6 2.9 5.1

σ1,1 +σ2,2 [10−5] 7.4 8.0 7.4 7.1 6.6 6.7 7.4

max effect of correlation, in % 41 45 41 38 28 30 41

Table B.2: Numerical values for the r.h.s. of eq. (B.3), an upper limit for the l.h.s., namely |σ1,2|, and the
correlation’s share of the total error related to ZP and MRGI/m. For ensembles β > 6.5 only an improbable and
unexpectedly strong correlation would impact the error in a significant way.

∼ 20% for β > 6.3, which we also find to be a reasonable approximation, given the overall size of all

error sources.

A larger error on ZP could invalidate the dropping of correlations, but do note only the error on

measured ZP values of [35] in eqs. (5.11) to (5.14) is considered in this discussion. Any sP(u) appearing

in ZP,i definitions, which make ZP’s error larger than what we have written in this section for low β , is

automatically cross-correlated to MRGI/m.
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APPENDIX C

TREE LEVEL OF MOMENTS

In this appendix we work out in detail the somewhat lengthy computations regarding the moments’

tree-level. All is computed in the time-momentum representation, particularly useful when dealing

with lattice computations, and keeping T infinite. In Section C.1 we start with the L = ∞, continuum

case, then move to continuum moments for L < ∞ in order to quantify tree-level finite volume effects

(Section C.2).

Afterwards, we move to the finite lattice spacing theory, detailing first (for completeness) in

Section C.3 how to obtain the propagator, finally developing in Section C.4 all the steps necessary to

obtain the finite a moments at tree-level. We do so first in infinite spatial volume and, to conclude,

give the a > 0 and L < ∞ tree-level expression.

C.1. CONTINUUM CALCULATION

Starting from the definition

Mn =
∫︂

∞

−∞

dt tn
∫︂

d3 #”x ⟨0|T
{︁

J†(x)J(0)
}︁
|0⟩ (C.1)

where the current is J(x) = imh h(x)γ5h′(x), and defining the free quark propagator Sa,b
f (x) in time-

momentum space explicitly through

Sa,b
f (x) = ⟨ψa

f (x)ψ
b
f (0)⟩=

∫︂ d4 p
(2π)4 eip·x ˜︁Sa,b

f (p) =
∫︂ d3 #”p

(2π)3 ei #”p · #”x Sa,b
f (t; #”p ) , (C.2)

where f identifies the flavor degrees of freedom, while a,b superscripts indicate the color ones. They

will be suppressed while discussing continuum computations, and repeated indices will indicate

summation with Euclidean metric. Considering only the tree level from now on, we want to calculate

S(t, #”p ) =
∫︂

∞

−∞

dp0

2π
eip0t mh− iγµ pµ

p2 +m2
h

, (C.3)



APPENDIX C TREE LEVEL OF MOMENTS

which can be readily evaluated through standard techniques, obtaining

S(t; #”p ) = θ(t)
e−Et

2E
(mh + γ0E− i #”p · #”

γ )+θ(−t)
e+Et

2E
(mh− γ0E− i #”p · #”

γ ) , (C.4)

from which can be seen γ5S(−x)γ5 = S†(x).

By representing in Fourier space the spatial part of both S(x) and S†
h′(x),we have

Mn = m2
∫︂

∞

−∞

dt tn
∫︂

d3 #”x
d3 #”p
(2π)3

d3 #”q
(2π)3 ei #”x ·( #”p− #”q ) tr

{︁
S(t; #”p )S†(t; #”q )

}︁
. (C.5)

Using the integral over space and the exponential we obtain a Dirac-delta δ 3( #”p − #”q ), so that we can

integrate over #”q and then use the explicit form of (C.4) in order to obtain

Mn = m2
h

∫︂
∞

−∞

dt tn
∫︂ d3 #”p

(2π)3 tr
{︃

θ(t)
e−2Et

(2E)2

[︁
(mh + γ0E)2 + #”p 2]︁

+θ(−t)
e+2Et

(2E)2

[︁
(mh− γ0E)2 + #”p 2]︁}︃

= m2
h

∫︂
∞

−∞

dt tn
∫︂ d3 #”p

(2π)3 tr
{︃

θ(t)
e−2Et

(2E)2

[︁
m2

h +E2 + #”p 2]︁
+θ(−t)

e+2Et

(2E)2

[︁
m2

h +E2 + #”p 2]︁}︃ ,

(C.6)

where in the last line we have automatically dropped terms linear in γ due to the trace. This finally

leads to

Mn =
m2

h
2

∫︂
∞

−∞

dt tn
∫︂ d3 #”p

(2π)3 Nc tr14
(︁
θ(t)e−2Et +θ(−t)e+2Et)︁

= 12m2
h

∫︂
∞

0
dt tn

∫︂ d3 #”p
(2π)3 e−2Et , (C.7)

as long as n is even. This happens due to the fact that the negative and positive time pieces give

exactly the same contribution, as can be seen by mapping t→−t in the integral over (−∞,0). Setting

α = 2
√︂

m2
h +

#”p 2 we obtain

Mn = 12m2
h

4π

8π3

∫︂
∞

0
p2dp

∫︂
∞

0
dt tne−2αt =

6m2
h

π2

∫︂
∞

0
p2

α
−n−1dp

∫︂
∞

0
d(α t)(α t)ne−αt

= 3
m2

h
2nπ2

∫︂
∞

0

p2

(p2 +m2
h)

(n+1)/2 Γ(n+1)dp

= 3
n!
2n

m2
h

π2

∫︂
∞

0

(p/mh)
2

((p/mh)2 +1)(n+1)/2 m2+1−n−1
h d

(︃
p

mh

)︃ (C.8)
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where we change to the variable u = (p/mh)
2 which yields du = 2(p/mh)d(p/mh), obtaining

Mn = 3
n!
2n

m4−n
h

2π2

∫︂
∞

0

u1/2

(1+u)(n+1)/2 du . (C.9)

Remembering the following integral representation of Euler’s beta-function

β (x,y) =
∫︂

∞

0
dt tx−1(1+ t)−x−y , Re(x,y)> 0 , (C.10)

and the basic property relating this special function to Euler’s gamma-function

β (x,y) =
Γ(x)Γ(y)
Γ(x+ y)

, (C.11)

we obtain

Mn = 3
n!
2n

m4−n
h

2π2

Γ
(︁3

2

)︁
Γ
(︁n−2

2

)︁
Γ
(︁n+1

2

)︁ . (C.12)

C.2. FINITE VOLUME EFFECTS

Taking (C.5) at finite volume, one has

∫︂
d3 #”x

d3 #”p
(2π)3

d3 #”q
(2π)3 ei #”x ·( #”p− #”q ) −→

∫︂
L3,pbc

d3 #”x
1
L3 ∑

#”p

1
L3 ∑

#”q
ei #”x ·( #”p− #”q ) , (C.13)

where the periodic boundary conditions (pbc) in space imply moments are discretized (but still

countably infinite) like #”p = #”m2π/L, and likewise for #”q . Since∫︂
L3,pbc

d3 #”x ei #”x ·( #”p− #”q ) = L3
δ ( #”p − #”q ) , (C.14)

we obtain an expression analogous to (C.7)

Mn(L) = 12m2
h

∫︂
∞

0
dt tn 1

L3 ∑
#”p

e−2Et , (C.15)

where the integral in t is unaffected by the finite volume. We write

∆M L
n = 12m2

h
Γ(n+1)

2n+1

(︄
1
L3 ∑

#”p
−
∫︂ d3 #”p

(2π)3

)︄
E( #”p )−n−1 , E( #”p ) =

√︂
#”p 2 +m2

h , (C.16)
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where ∆M L
n = Mn(L)−Mn(∞). Here one can apply Poisson’s summation formulaI to the sum to

recast it as

∆M L
n = 12m2

h
Γ(n+1)

2n+1 ∑
#”
l ∈N3∖ #”

0

∫︂ d3 #”p
(2π)3

eiL #”p · #”l

E( #”p )n+1 . (C.18)

To evaluate the integral, let us use a Scwhinger parametrization

1
Cα

=
1

Γ(α)

∫︂
∞

0
duuα−1e−Cu , C = 1+ #”p 2/m2

h , α = (n+1)/2 , (C.19)

so that

∆M L
n = 12m2

h
Γ(n+1)
(2mh)n+1 ∑

#”
l ∈N3∖ #”

0

1
Γ(α)

∫︂
∞

0
duuα−1e−u

∫︂ d3 #”p
(2π)3 eiL #”p · #”l e−u #”p 2/m2

h . (C.20)

We can complete the square in the momentum integral to transform it into a Gaussian integral via

−u
#”p 2

m2
h
+ iL #”p · #”

l =−

(︄√
u

mh

#”p − i
Lmh

#”

l
2
√

u

)︄2

−
L2m2

h
#”

l 2

4u
, (C.21)

which gives

∆M L
n =12m2

h
Γ(n+1)
(2mh)n+1 ∑

#”
l ∈N3∖ #”

0

1
Γ(α)

∫︂
∞

0
duuα−1e−ue−

#”
l 2m2

hL2/4uu−3/2m3
h

∫︂ d3 #”p
(2π)3 e

#”p 2
(C.22)

=
3m4−n

h Γ(n+1)
2n+2 π3/2Γ(n+1

2 )
∑

#”
l ∈N3∖ #”

0

∫︂
∞

0
duu(n−4)/2e−u−z2/4u , z = mhL| #”l | . (C.23)

The integral is a modified Bessel function of second kind, defined as

Kν(z) =
1
2
(︁1

2
z
)︁ν

∫︂
∞

0
duexp

(︃
−u− z2

4u

)︃
u−ν−1 , (C.24)

which for large z has an asymptotic expansion

Kν(z)∼
(︃

π

2z

)︃1/2

e−z
∞

∑
k=0

ak(ν)

zk , ak(ν) =
(1/2−ν)k (1/2+ν)k

(−2)kk!
, (C.25)

IWhich with our Fourier transform conventions (see also footnote VI in Subsection 4.4.2) we can define as

∑
n∈Z

f (nL) =
1
L ∑

k∈Z

f̃
(︃

2π
k
L

)︃
, f̃ (p) =

∫︂
∞

−∞

dx f (x)eipx , (C.17)

of which the three-dimensional case is a straightforward generalization.
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with a0(ν) = 1, which is the relevant part for the leading large z behaviorII . Thus, with ν = 1−n/2

we are lead to

∆M L
n =

3m4−n
h Γ(n+1)

2n+2 π3/2Γ(n+1
2 )

∑
#”
l ∈N3∖ #”

0

2K1−n/2(mhL| #”l |)

(︄
2

mhL| #”l |

)︄1−n/2

(C.27)

mhL→∞∼
3m4−n

h Γ(n+1)
2n+2 π3/2Γ(n+1

2 )
∑

#”
l ∈N3∖ #”

0

√
π

(︄
2

mhL| #”l |

)︄ 3−n
2

e−mhL| #”l |

(︄
1+O

(︄
1

mhL| #”l |

)︄)︄
(C.28)

mhL→∞∼
3m4−n

h Γ(n+1)
2n+2 π3/2Γ(n+1

2 )

√
π

(︃
2

mhL

)︃ 3−n
2

e−mhL
(︃

1+O

(︃
1

mhL

)︃)︃
, (C.29)

from which we can easily parameterize the relative size of finite volume effects, given by

∆M L
n

Mn(∞)

mhL→∞∼ π

2
Γ(3/2)Γ

(︃
n−2

2

)︃(︃
2

mhL

)︃ 3−n
2

e−mhL
(︃

1+O

(︃
1

mhL

)︃)︃
. (C.30)

Numerical results for eq. (C.30) can be found in table C.2, where used y-values can be found in

table C.1.

m∗/mc L/a = 24 32 36 48 64 96 128 192

3.5 42.39 44.61 41.41 41.26 37.38 36.94 36.37 35.93
2.3 29.77 31.33 29.09 28.98 26.26 25.94 25.54 25.24
1.6 21.10 22.20 20.61 20.54 18.61 18.38 18.10 17.89
1.2 16.64 17.52 16.26 16.20 14.68 14.50 14.28 14.11
0.8 12.09 12.72 11.81 11.77 10.66 10.54 10.37 10.25

Table C.1: Values for y = Lm∗ used, for different masses m∗ and number of lattice points L/a. For readability
we give here an approximate value of m∗/mc rather than the exact z.

y 6 8 10 11 12 13 14 15

n = 4 0.0060 0.00093 1.4e-04 5.5e-05 2.1e-05 8.0e-06 3.1e-06 1.2e-06
n = 6 0.018 0.0037 0.0016 3.0e-04 1.3e-04 5.2e-05 2.1e-05 8.7e-06
n = 8 0.11 0.030 0.0071 0.0033 1.5e-03 6.8e-04 3.0e-04 1.3e-04

n = 10 0.97 0.36 0.11 0.054 0.027 0.013 0.0063 3.0e-03

Table C.2: Relative TL-FV effects eq. (C.30), normalized by L = ∞ value, as function of y = Lm∗. From table C.1
we see for m∗/mc ≥ 1.2 we have y > 14, i.e. tree-level finite volume effects are at most, for n = 10 only, around
half a percent. Note that for the conclusions in Chapter 6 and Chapter 7 the relevant values are the medium and
high masses so that in our quenched study FV effects can safely be neglected.

IIThe notation (a)n refers to the Pochhammer symbol defined as

(a)n =
Γ(a+n)

Γ(a)
. (C.26)
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C.3. THE LATTICE PROPAGATOR

The Wilson twisted mass action with a doublet of mass degenerate quarks is given by

SF = a4
∑
x

χ(x)

{︄
3

∑
ν=0

(︄
γν

∇ν +∇∗ν
2

− a
2

∇
∗
ν∇ν + csw a

3

∑
µ=0

i
4

σµν F̂µν

)︄
1 f +m1 f + iµtmγ5τ3

}︄
χ(x) ,

(C.31)

so that for a single flavor f± = h,h′ one has

S ±
F = a4

∑
x

f±(x)

{︄
3

∑
ν=0

(︄
γν

∇ν +∇∗ν
2

− a
2

∇
∗
ν∇ν + csw a

3

∑
µ=0

i
4

σµν F̂µν

)︄
+m± iµtmγ5

}︄
f±(x) .

(C.32)

At tree level ∇ν → ∂ν and F̂µ,ν ≡ 0, giving a free action

S ±
F =a4

∑
x,y

f±(x)Dµtm f±(y) = a4
∑
x

f±(x)(m±µtmiγ5) f±(x)

− a4

2a ∑
x,µ

f±(x)
[︃

f±(x+aµ̂)−2 f±(x)+ f±(x−aµ̂)+ γµ

(︃
f±(x+aµ̂)− f±(x−aµ̂)

)︃]︃
,

(C.33)

leading us to

Dµtm =

(︃
m±µtmiγ5 +

4
a

)︃
δx,y−

1
2a ∑

µ

{︁
(δy,x+aµ̂ +δy,x−aµ̂)+ γµ(δx+aµ̂,y−δx−aµ̂,y)

}︁
=

(︃
m±µtmiγ5 +

4
a

)︃
δx,y−

1
2a ∑

µ

{︁
δy,x+aµ̂(1− γµ)+δy,x−aµ̂(1+ γµ)

}︁
.

(C.34)

Using the following momentum-space representation (and considering one Brillouin zone) of the

Kronecker delta

δx,y = a4
∫︂

π/a

−π/a

d4 p
(2π)4 eip·(x−y) , (C.35)

we can manipulate the above expression in order to identify the Fourier transform of the Dirac operator,

namely from

Dµtm = a4
∫︂

π/a

−π/a

d4 p
(2π)4

{︄
eip·(x−y)

(︃
4
a
± iγ5µtm +m

)︃

− 1
2a ∑

µ

[︂
(1− γµ)eip·(x+aµ̂−y)+(1+ γµ)eip·(x−aµ̂−y)

]︂}︄ (C.36)
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we further rewrite

Dµtm = a4
∫︂

π/a

−π/a

d4 p
(2π)4 eip·(x−y)

{︄
4
a
± iγ5µtm +m− 1

2a ∑
µ

[︁
eipµ a(1− γµ)+ e−ipµ a(1+ γµ)

]︁}︄

= a4
∫︂

π/a

−π/a

d4 p
(2π)4 eip·(x−y)

{︄
4
a
± iγ5µtm +m− 1

a ∑
µ

[︁
cos
(︁
apµ

)︁
− iγµ sin

(︁
apµ

)︁]︁}︄

= a4
∫︂

π/a

−π/a

d4 p
(2π)4 eip·(x−y)˜︁S−1(p) .

(C.37)

Thus the inverse propagator is

˜︁S−1
± (p,a,m,µtm) = m± iγ5µtm +a−1

3

∑
µ=0

[︁
(1− cos

(︁
apµ

)︁
)+ iγµ sin

(︁
apµ

)︁]︁
= m± iγ5µtm +a−1

3

∑
µ=0

[︁
2sin2(apµ/2)+ iγµ sin

(︁
apµ

)︁]︁
,

(C.38)

leading us to define (note we use a somewhat non-standard notation here)

p̃µ

def.
= a−1 sin(apµ) , (C.39)

p̂µ

def.
=

2
a

sin
(︂apµ

2

)︂
. (C.40)

With these definitions, we can easily invert the propagator by multiplying the formal inverse by its

complex conjugate in the numerator and denominator. The latter thus results in the sum of real part

squared and imaginary part squared, i.e.

˜︁S±(p,a,m,µtm) =

[︄
m+

a
2

3

∑
µ=0

p̂2
µ + iγµ p̃µ ± γ5µtm

]︄−1

×

×

(︃
m+ a

2 ∑
3
µ=0 p̂2

µ

)︃
− i
(︃

γµ p̃µ ± γ5µtm

)︃
(︃

m+ a
2 ∑

3
µ=0 p̂2

µ

)︃
− i
(︃

γµ p̃µ ± γ5µtm

)︃ =
M(p)− i/p̃∓ iµtmγ5

M2(p)+µ2
tm + p̃2 ,

(C.41)

where in the last line we have introduced the very compact notations M(p) = m+ a
2 ∑

3
µ=0 p̂2

µ and

/p̃ = a−1
∑

3
µ=0 γµ sin(apµ), and where there spinor-space structure in the denominator is trivial as far

as the terms that turn up are proportional to one of the following

γ
2
µ = 1 , γ

2
5 = 1 , γµγν + γνγµ ≡ 0 if µ ̸= ν , γ5γµ + γµγ5 ≡ 0 . (C.42)

107



APPENDIX C TREE LEVEL OF MOMENTS

The time-momentum propagatorIII will now be

S±(t, #”p ) =
∫︂

π/a

−π/a

dp0

2π
eip0t M(p)− i/p̃∓ iµtmγ5

M2(p)+µ2
tm + p̃2

=
∫︂

π/a

−π/a

dφ

2π

eiφn
[︂
am+(1− cosφ)+ a2

2
#”
p̂ 2− iγ0 sinφ − ia #”

γ · #”
p̃ ∓ iaµtmγ5

]︂
(aµtm)2 + sin2

φ +a2 #”
p̃ 2 +(am+ a2

2
#”
p̂ 2)2 +(1− cosφ)2 +2(1− cosφ)(am+ a2

2
#”
p̂ 2)

.

(C.43)

Let us define A = A( #”p ), which only depends on spatial components of the momentum

A def.
= 1+am+

a2

2
#”
p̂ 2 , (C.44)

change variable to u = eiφ → dφ

2π
= 1

2πi
du
u , and consider the case t > 0

θ(t)S±(t, #”p ) =
∮︂
|u|=1

1
2πi

du
u

un A− (u+u−1)/2− γ0(u−u−1)/2− ia #”
γ · #”

p̃ ∓ iaµtmγ5

1+A2 +a2 #”
p̃ 2 +(aµtm)2−A(u+u−1)

. (C.45)

Looking at the denominator, it is apparent that if u = u+ is a zero, then u = u− = u−1
+ is one too. Thus,

we parametrize the zeros as u± = e±ω( #”p ), of which only u− = e−ω will be inside the unit-radius circle.

This yields den.=−A(u− e−ω)(u− eω)→−A(e−ω − eω) and u→ e−ω in the numerator, giving

θ(t)S±(t, #”p ) = e−ωn A− cosh(ω)+ γ0 sinh(ω)− ia #”
γ · #”

p̃ ∓ iaµtmγ5

2Asinh(ω)
(C.46)

yielding the full propagator, in terms of aE( #”p ) = ω( #”p )

S±(t, #”p ) = θ(t) e−Et A− cosh(aE)+ γ0 sinh(aE)− ia #”
γ · #”

p̃ ∓ iaµtmγ5

2Asinh(aE)

+θ(−t) eEt A− cosh(aE)− γ0 sinh(aE)− ia #”
γ · #”

p̃ ∓ iaµtmγ5

2Asinh(aE)
, A = 1+am+

a2

2
#”
p̂ 2 , (C.47)

where, finally, aE( #”p ) is implicitly given by the following equationIV

2cosh(aE( #”p )) = A+
1+a2 #”

p̃ 2 +(aµtm)
2

A
. (C.48)

Note it is immediate to obtain the formula for full twist by simply setting the bare Wilson quark mass

m = 0 and, likewise, to obtain the standard Wilson quark propagator without a twisted mass by simply

setting µtm = 0.

IIIWith some notational abbreviations such as #”
p̃ 2 = a−2

∑
3
i=1 sin2(api) and where we now drop the lattice spacing and

mass dependence.
IVThis is a direct consequence of the zeros of the denominator in (C.45), and since the poles in p0 (in this case, inside the

unit circle) of the propagator determine the energy of the one particle state, we immediately see that for ω satisfying the
denominator being zero we have (C.48).
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C.4. MOMENTS AT FINITE LATTICE SPACING

The formula for the TL of moments on an infinite lattice becomes then, with M2 = µ2
tm+m2 and where

for this section only we indicate with x0 = t/a (with [t] = 1)

Mn = M2
∞

∑
x0=−∞

a (x0 a)n
∞

∑
#”x =−∞

a3 tr
{︂

Sh(x)γ5Sh′(−x)γ5

}︂
, (C.49)

where it is immediate to see that Sh(x)↔ S+(x) and Sh′(x)↔ S−(x). Thus, noticing the twisted mass

term to change sign when taking the hermitean conjugate, we see that γ5S−(−x)γ5 = S†
+(x) (where we

remind ± indicates the sign of µtm), giving a formula analogous to (C.5)

Mn = M2
∞

∑
x0=−∞

a (x0a)n
∞

∑
#”x =−∞

a3
∫︂

π/a

−π/a

d3 #”p
(2π)3

d3 #”q
(2π)3 ei #”x ·( #”p− #”q ) tr

{︂
S+(x0; #”p )S†

+(x0; #”q )
}︂

= M2an+4−3
∞

∑
x0=−∞

xn
0

∫︂
π/a

−π/a

d3 #”p
(2π)3 tr

{︂
S+(x0; #”p )S†

+(x0; #”p )
}︂
,

(C.50)

where as for the continuum case we have obtained a δ 3(p−q) from the sum (series) over spaceV . .

The trace for positive time will give, just like in the case above (using the cyclic property of the trace

and the anticommutation relations of 2 γ-matrices),

tr→ Nc
e−2aEx0

4A2 sinh2(aE)
tr[1]

{︁
(A− cosh(aE))2 + sinh2(aE)+a2 #”

p̃ 2 +(aµtm)
2}︁ . (C.53)

Looking at the positive and negative time components of the time-momentum propagator, it is immedi-

ate to notice the trace yields the same result with x0→−x0, thus we can immediately write for even

n

Mn = 6M2an+1
∫︂

π/a

−π/a

d3 #”p
(2π)3

(A− cosh(aE))2 + sinh2(aE)+a2 #”
p̃ 2 +(aµtm)

2

A2 sinh2(aE)

∞

∑
x0=0

xn
0e−2aEx0 , (C.54)

VOne of the definitions of the δ function can be inferred from

f (q) = lim
n→∞

∫︂
I
dp f (p)

n

∑
x=−n

ei x(p−q)

2π
, i.e. one writes the formal representation (C.51)

δ (p−q) =
1

2π

∞

∑
x=−∞

ei x(p−q) , (C.52)

where this δ is adimensional, whereas the spacial momentum integral was not, thus leading to the extra a−3 factor.
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where it is straightforward to sumVI the x0 part via (Eden(2aE) standing for “E denominator”)

Eden(2aE) def.
=

∞

∑
x0=0

[︃
(−1)n dn

d(2aE)n e−2aEx0

]︃
= (−1)n dn

d(2aE)n

∞

∑
x0=0

(︁
e−2aE)︁x0

= (−1)n dn

d(2aE)n
1

1− e−2aE ,

(C.56)

which can effortlessly be obtained for typical cases n = 4,6,8,10.For the maximal twist case, all put

together, we hae

Mn =6 µ
2an+1

∫︂
π/a

−π/a

d3 #”p
(2π)3

(A− cosh(aE))2 + sinh2(aE)+a2 #”
p̃ 2 +(aµtm)

2

A2 sinh2(aE)
Eden(2aE) (C.57)

=6(aµ)2an−4
∫︂

π

−π

d3(a #”p )
(2π)3

(A− cosh(aE))2 + sinh2(aE)+a2 #”
p̃ 2 +(aµtm)

2

A2 sinh2(aE)
Eden(2aE) , (C.58)

where now A( #”p ) = 1+a2 #”
p̂ 2/2. For completeness, we give the deviation w.r.t. the continuum the

dispersion relation (C.48), obtained by expanding in powers of a

2
{︃

1+(aE)2/2!+(aE)4/4!+ . . .

}︃
= (C.59)

1+2
{︃

∑
i

[︁
(api/2)2− (api/2)4/3+ . . .

]︁}︃
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{︃
1+a2

µ
2
tm +∑

l
[(apl)

2− (apl)
4/3+ . . .]

}︃
× (C.60)
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−→ (aE)2 +
(aE)4
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(a #”p )2

2
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4

24
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2 +(a #”p )2 (C.62)
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−→ (aE)2 =−(aE)4
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−→ E2 = µ
2
tm + #”p 2 +

a2

3

{︃
− µ4

tm

4
− #”p 4−2µ

2
tm

#”p 2−∑
l

p4
l

}︃
+O(a4) , (C.65)

where in the last line we have substituted E4→ (µ2
tm + #”p 2)2, as far as any other corrections to the

energy are of higher order in a in that term. Also note that the only Lorentz symmetry-breaking term is

VI Note the integral is significantly different from the series, as far as we would have

(2E)−n−1
∫︂

∞

0
d(2Ex0)(2Ex0)

ne−2Ex0 =
Γ(n+1)
(2E)n+1 . (C.55)

Of course, as mentioned in the main text, this is recovered from the discrete sum in the continuum limit. The discreteness of
the timeslices (which encodes cutoff effects in some sense) changes qualitatively the behavior of this term much like the
discreteness of energy levels in Planck’s black-body treatment UV-completes the Rayleigh-Jeans theory (only that there the
UV completion is known and physical).
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∑l p4
l , which is the only dimension 4 operator that can appear at this orderVII. This however contains

the bare mass µtm, which has to substituted with E( #”p =
#”
0 )≡ µ̄ tm, the renormalized mass, after which

we obtain

E2 = µ̄
2
tm + #”p 2− a2

3

{︃
#”p 4 +2µ̄

2
tm

#”p 2 +∑
l

p4
l

}︃
+O(a4) . (C.67)

Finite Volume Effects in the Discretized Theory
In the case of a finite spatial extent L but infinite time extent T , the tree-level lattice moment (C.68)

becomes simply

Mn = 6a2
µ

2
tman−4

(︂a
L

)︂3 (N−1)2π/L

∑
#”p=0

(A− cosh(aE))2 + sinh2(aE)+a2 #”
p̃ 2 +(aµtm)

2

A2 sinh2(aE)
× (C.68)

∞

∑
x0=0

xn
0e−2aEx0 , N = L/a , A( #”p ) = 1+a2 #”

p̂ 2/2 , (C.69)

which can similarly be evaluated numerically. The similarity of the above with the infinite volume

case follows from the fact that the time-slice propagator is defined as an integral over p0, which is still

a continuous integration variable. The sum over time-slices defining the moment also does not change,

so the only possible difference lies in the Fourier representations used in (C.50). As a matter of fact,

with periodic boundary conditions, thanks to n-th partial sum of the geometric series, the expression of

the Krönecker δ perfectly resembles that of the Dirac-δ , i.e. in one dimension

δp,q =
a
L

L/a−1

∑
x=0

eix(p−q) =

⎧⎨⎩ 1−ei(p−q)L/a

1−ei(p−q) = a
L

1−1
1−ei(p−q) ≡ 0 p ̸= q

a
L ∑

L/a−1
x=0 e0 = a

L
L
a = 1 p = q

. (C.70)

VIINote that (C.65) can also be written as

E2 = µ
2
tm + #”p 2− a2

3
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+O(a4) . (C.66)
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APPENDIX D

SUPPLEMENTARY PLOTS

In this appendix we collect supplementary plots.



APPENDIX D SUPPLEMENTARY PLOTS

Figure D.1: Variation of topological charge squared Q2(tGF) for the ensemble sft4.

Figure D.2: Variation of topological charge squared Q2(tGF) for the ensemble sft7.
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Figure D.3: Decay constant in lattice units and its plateau for a coarse ensemble and medium mass. There is no
issue whatsoever in selecting a plateau in this case.

Figure D.4: Continuum limits of fηh for all z values show a smooth behavior and validate our tuning was carried
out well. Fit parameters given in table 5.8. Note, of the point by Calì et al. [33] at a = 0 only the magnitude
matters, since their Mc differs from ours. Whatever value they were to choose, the behavior of (mPS, fηc) in
fig. 5.11 would still be universal.
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APPENDIX D SUPPLEMENTARY PLOTS

Figure D.5: Bare PCAC mass as a function of Euclidean time (in physical units), for several β values, all at
fixed physical mass M/Mc ≃ 1.55. Close to x0/

√
8t0 = 0 the effect of the boundary can be seen, whereas the

results we use are in the depth of the bulk, on the opposite side of the source time-slice.

Figure D.6: Bare PCAC mass as a function of Euclidean time (in physical units), for several β values, all at
fixed physical mass M/Mc ≃ 1.16. Close to x0/

√
8t0 = 0 the effect of the boundary can be seen, whereas the

results we use are in the depth of the bulk, on the opposite side of the source time-slice.
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Figure D.7: Bare PCAC mass as a function of Euclidean time (in physical units), for several β values, all at
fixed physical mass M/Mc ≃ 3.48. Close to x0/

√
8t0 = 0 the effect of the boundary can be seen, whereas the

results we use are in the depth of the bulk, on the opposite side of the source time-slice.

Figure D.8: Improved PCAC-mass as a function of a/
√

t0. “Constr.” means the fit has been constrained to go
through zero, whereas LNP as usually inidicates Linear N-Point fit. Discretization effects scale very linearly for
small enough a.
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Figure D.9: Improved PCAC-mass as a function of a/
√

t0. “Constr.” means the fit has been constrained to go
through zero, whereas LNP as usually inidicates Linear N-Point fit. Discretization effects scale very linearly.

Figure D.10: Continuum limit of R6/R8 for mass M/Mc ≃ 0.77. Several fit Ansätze are shown. In the gray band
on the left hand side the value and error of the extrapolation for each Ansatz can be seen.
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Figure D.11: Continuum limit of R6/R8 for mass M/Mc ≃ 1.16. Several fit Ansätze are shown. In the gray band
on the left hand side the value and error of the extrapolation for each Ansatz can be seen.

Figure D.12: Continuum limit of R6/R8 for mass M/Mc ≃ 3.48. Several fit Ansätze are shown. In the gray band
on the left hand side the value and error of the extrapolation for each Ansatz can be seen.
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APPENDIX D SUPPLEMENTARY PLOTS

Figure D.13: Continuum limit of R8/R10 for mass M/Mc ≃ 0.77. Several fit Ansätze are shown. In the gray
band on the left hand side the value and error of the extrapolation for each Ansatz can be seen.

Figure D.14: Continuum limit of R8/R10 for mass M/Mc ≃ 1.16. Several fit Ansätze are shown. In the gray
band on the left hand side the value and error of the extrapolation for each Ansatz can be seen.
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Figure D.15: Continuum limit of R8/R10 for mass M/Mc ≃ 3.48. Several fit Ansätze are shown. In the gray
band on the left hand side the value and error of the extrapolation for each Ansatz can be seen.
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