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1 Introduction

In recent years, the groundbreaking detection of gravitational waves [1, 2] has opened a new
frontier in astrophysics, providing new and revolutionary means to explore the universe and
unlock profound insights into the nature of spacetime itself. Future upgrades of the existing
gravitational-wave observatories of the LIGO-Virgo-KAGRA collaboration [3] and planned
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observatories such as Cosmic Explorer [4], Einstein Telescope [5] and LISA [6], operating in
lower frequency ranges will explore new types of systems including fly-bys, captures, eccentric
configurations and high spin. To fully exploit the physics potential of the observatories, it
will be important to increase the theoretical precision and scope of gravitational waveform
predictions in the near future.

The central challenge in obtaining a waveform of binary systems is the non-linearity of
the gravitational interaction coupled with the dependence on multiple physical scales. Present
theoretical predictions rely on numerical relativity [3] and the effective-one-body (EOB)
formalism [7, 8], based on input from post-Newtonian (PN) dynamics [9, 10], the gravitational
self-force formalism [11, 12], the non-relativistic general-relativity (NRGR) [13–17] or the
weak-field Post-Minkowskian (PM) approximation [18–27].

In contrast, we focus here on a first-principle waveform computation in the PM expansion,
which we derive to next-to-leading order in the Newton constant G, i.e. to order O(G3).
This perturbative approach allows us to systematically compute dynamics and observables of
binary black-hole systems and is applicable in a weak-field regime and at large eccentricities.
The PM approach has rapidly advanced in recent years starting from its initial application in
General Relativity [19–26, 28]. In particular the recent use of modern field-theory methods
has led to impressive high-order O(G3) [29] and O(G4) [30–34] predictions for classical
quantities, and has already helped to improve resummation of the effective-one-body (EOB)
Hamiltonians [35, 36]. It has further fueled the developement of the heavy-mass effective
field theory (HEFT) [37–40], worldline EFTs [32–34, 41–43] and eikonal approaches [44–47].
As far as the waveform is concerned, methods are available to directly link this observable to
scattering amplitudes (KMOC) [48–50] and to worldline quantum field theory (WQFT) [51–
53]. By now, early classical results [54, 55] have been reproduced for the scattering of
two Schwarzschild black holes at leading-order O(G2) , and were recently extended to the
next-to-leading order O(G3) [56–59]. The importance of the so-called cut contribution to this
observable for imposing classical causality was pointed out in [60]. This contribution will
likely be crucial for a comparison with the multipolar PM waveform [61]. Recently such a
comparison, including cut contributions, was reported for the limit of soft radiation [62].

A further motivation for this work is to consider spin effects in the waveform observable,
as required for describing astrophysical black holes. The foundational work on the PM
treatment of spin [63–66] has sparked many conceptional and computational developments,
and has exposed new links between field theory and GR [67, 68]. Focusing on perturbative
computations, spin corrections to two-body dynamic have by now been obtained up to
O(G4) in worldline approaches [42, 69, 70] and at O(G3) in field theory [71]. The latter
obtains spin corrections from massive field theories [72–80] via effective field theory [66] or via
scattering amplitudes using a generalization of the KMOC formalism [49, 81]. However, how
to construct the right field theory, that mirrors the properties of Kerr black holes, remains
an open question. At low spin orders minimally coupled theories correctly capture the spin
couplings of macroscopic objects [82]. This ‘spin universality’ property, was validated for the
minimally coupled vector theory up to quadratic-in-spin multipoles at O(G3) [71]. Turning
to the waveform observable, O(G2) quadratic spin effects were obtained in ref. [52] and
to higher-spin order [83–85], recently. Beyond the leading PM order, the spin-dependent
memory effect is known at O(G3) [85].
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The goal of this article is to present the spectral waveform emitted by two colliding
black holes including O(G3) corrections, and to include linear-in-spin effects. We provide
analytic results in terms of momentum-transfer variables and in frequency space. Furthermore,
we present exemplary plots of the gravitational waveform in the time and position-space
domain, and demonstrate the impact of the cut contribution in the gravitational waveform.
The waveform observable is computed from first principles in QFT following the KMOC
formalism [48, 50]. We exploit the classical limiting procedure and the detailed analytic and
physical understanding of refs. [56–59], but let QFT do its work. We provide an independent
computation of the necessary Feynman integrals and one-loop scattering data. In addition, we
provide the cut contribution, that allows us to obtain the full non-spinning waveform at O(G3).

Building on these results, we extend this study by including linear-in-spin effects, which
we extract from a one-loop computation including massive vectors and scalars. This approach
exploits the relation between minimally coupled vector-field theory and spinning point-
particles [82, 86–88]. Recently, a similar approach has been pursued in the analysis of the
O(G3) conservative dynamics quadratic in spin [71], which we build on.

We present a purely numerical approach to obtain analytic results to handle the multi-
scale computation. The KMOC formalism relates the waveform observable at O(G3) to
tree-level and one-loop scattering amplitudes and their cuts. We obtain all scattering
data with the Caravel-program [89], which implements exact numerical evaluations using
modular arithmetic. The program allows to efficiently handle the intricate gravitational
coupling structure of the massive scalar and vector fields. At tree-level, the program yields
numerical scattering amplitudes through Berends-Giele recursions [90], using interaction
vertices obtained with xAct [91, 92]. At loop-level, the program implements the numerical
unitarity method [93–97] in the variant of refs. [98–100], which provides numerical values
for the rational integral coefficients of a one-loop integral basis. We employ functional
reconstruction techniques [101, 102] to obtain analytic expressions in the classical expansion
parameter and isolate the classical terms. The full analytic expressions are obtained using the
functional-reconstruction method [99, 101] in finite-field arithmetic [102]. An important aspect
of computing spin corrections is the relation between polarization states of vector fields and
classical spin variables. We obtain this map, by introducing a form-factor decomposition [71],
which we then link to classical spin multi poles [77]. We anticipate that this setup will allow to
obtain further higher-spin corrections to the O(G3) waveform, which we leave for future work.

We make a number of interesting observations. For instance, we confirm the recent
predictions for the IR-singularities of the waveform observable [60] and link their result to
a modification of the Weinberg’s IR-theorem [103]. Furthermore, we observe an additional
contribution to the 1/ϵ-pole in the dimensional regulator in the cut contribution, which we
attribute to the UV. The UV pole is shown to integrate to zero in the Fourier transformation
to position-space in the far-field asymptotic waveform. In the light of the recent comparisons
with previous results for the gravitational waveform in the Post-Newtonian expansion [61, 62],
we provide a new input for the scalar and for the linear-in-spin waveform at O(G3).

The article is organized as follows. In section 2, we establish our notation and present our
conventions for spin operators and polarization states of gravitons and massive vector fields.
Next, in section 3, we give a brief overview how the gravitational waveform can be related
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to scattering amplitudes. In section 4, we explain in detail how the necessary scattering
amplitudes are computed. We put special emphasis on the description of our exact numerical
approach to obtain amplitudes in the classical limit. In section 5, we collect our analytical
results and discuss various analytical features we observe. Furthermore, in section 6, we
elaborate the computation of the position-space waveform and show some numerical results
for the gravitational waveform. Finally, in section 8, we give our conclusions and an outlook.

2 Notation and conventions

We study gravitational radiation in classical two-body scattering far from the source. Some
of the classical bodies are assumed to carry spin. We employ a QFT approach to describe
the classical system by coupling matter fields to Einstein-Hilbert gravity,

L = LEH + Lmatter. (2.1)

The classical information is then extracted from quantum scattering amplitudes by considering
them in a scaling limit, referred to as the classical limit. For the Einstein-Hilbert Lagrangian
we follow the conventions,

LEH = − 2
κ2

√
|g|R, (2.2)

where g = det(gµν) and R the is Ricci-scalar defined by R = Rρ
µρν g

µν . Further details on the
definition of the Riemann-tensor are given in appendix A. We work in the ‘t Hooft-Veltman
(HV) scheme of dimensional regularization using D = 4− 2ϵ and setting the dimension of
the tensor algebra Ds to the same value, i.e. Ds = 4− 2ϵ. Furthermore, we work with weak
gravitational fluctuations around a flat background ηµν . The fluctuations are described by
the graviton field hµν in the decomposition,

gµν = ηµν + κhµν . (2.3)

We work in the mostly-minus metric convention η = diag{1,−1,−1,−1} and use the grav-
itational coupling κ =

√
32πG in terms of the Newton constant G = ℏGN/c

3, where c is
the speed of light, ℏ the Planck constant and x0 = ct.

Massive point-like sources are described by minimally-coupled field theories of a massive
scalar ϕ or a vector-field Vµ with Lagrangians,

L(ϕ,m) =
1
2

√
|g|
[
gµν(∂µϕ)(∂νϕ)−m2ϕ2

]
, (2.4)

L(V,m) = −1
4

√
|g|
[
gµρgνσFµνFρσ − 2m2gµνVµVν

]
, Fµν = ∂µVν − ∂νVµ. (2.5)

The massive objects are represented as fundamental states of field theories, and we associate
the objects’ intrinsic angular momentum to the fields’ spin representations. The mass
parameter m in the Lagrangian corresponds to the physical mass.

In the following, we study two types of systems: scalar and spinning compact objects.
The scattering of spin-less point-particles is described by the matter Lagrangian,

L(i)
matter = L(ϕ1,m1) + L(ϕ2,m2). (2.6)
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Figure 1. Scattering process of two massive compact objects (solid lines), emitting gravitational
radiation (wavy line). Spin is indicated, as well as a diagrammatic representation of the exchange of
gravitons to order κ5 in perturbation theory.

To describe spinning point particles, we take advantage of the observation [82] that the
scattering amplitudes involving minimally coupled spin-s massive particles can be used to
extract classical-spin multipoles up to S2s, i.e. 2s powers of the classical spin S. Therefore,
we consider a massive vector field and a massive scalar, given by

L(ii)
matter = L(V,m1) + L(ϕ2,m2). (2.7)

Our conventions for creation and annihilation operators as well as polarization states are
collected in appendix A.

In the above theories, we study the scattering process of four massive scalar particles
and one graviton,

i : ϕ1(p1) + ϕ2(p2) → ϕ1(p′1) + ϕ2(p′2) + h(ks) , (2.8)

and the scattering of two massive vector particles and two scalar particles,

ii : V (ps1
1 ) + ϕ2(p2) → V (p′1

s′
1 ) + ϕ2(p′2) + h(ks) , (2.9)

respectively. Here the superscripts s1 and s′1 denote the spin quantum numbers of the vector
particles. The helicity of the graviton field h is labeled by the superscript s. The momenta
p1 and p2 are understood as incoming, and the final-state momenta p′1, p′2 and k are given in
the out-going convention. These kinematic conventions are summarized in figure 1.

2.1 Classical scaling limit

We are concerned with the perturbative expansion in G of the classical scattering of two
macroscopic rotating objects (large spin and mass) and the emission of a classical, long
wavelength gravitational wave. The objects are assumed structureless, such as black holes.
We start our computation in a second-quantized field theory and will take limits to retrieve
such point-particle interaction in the weak-field expansion.

The kinematic properties of the corresponding scattering process are exposed in the
barred or soft variables [104–106],

p1 = m̄1u1 +
q1
2 , p′1 = m̄1u1 −

q1
2 ,

p2 = m̄2u2 +
q2
2 , p′2 = m̄2u2 −

q2
2 , k = q1 + q2,

(2.10)
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where p21 = p′21 = m2
1, p22 = p′22 = m2

2 and k2 = 0. Here ui denote normalized (u2i = 1) four
velocities and the on-shell conditions of initial and final states imply qi · ui = 0. Similarly
k2 = (q1+q2)2 = 0 yields q1 ·q2 = −(q21+q22)/2 . The auxiliary mass parameters m̄i are related
to the physical masses through m̄2

i = m2
i − q2i /4. We will also use the impact parameter

four vectors bi which are Fourier conjugate to the momenta qi. The interpretation of the
momenta is as follows: the four-velocities ui represent classical velocities of the scattering
objects, and qi (small) momentum transfer during their interaction. Part of the exchanged
momentum k = q1 + q2 is emitted as radiation.

We use seven Lorentz invariant inner products to parameterize the kinematic space,

y = u1 · u2, ω1 = −u1 · k, ω2 = −u2 · k,
q21, q22, m̄2

1 and m̄2
2.

(2.11)

In the physical region of the phase space the invariants fulfill the constraints

y > 1, q2i < 0, ωi < 0, m̄i > 0. (2.12)

In the scattering process, the weak-field classical dynamic appears in the following regime
in field theory [29, 107]. The weak-field expansion is a perturbative expansion in

κ2mi

|⃗bj |
≪ 1 . (2.13)

To ensure gravitational interaction of the masses we impose their effective gravitational
couplings to be large,

κmi ≫ 1 . (2.14)

This is equivalent to the non-perturbative condition that the Schwarzschild radius of the masses
is much larger than their Compton wave lengths, κ2mi ≫ 1/mi. In terms of momentum
variables the above constraints imply that the gravitational interaction is long wavelength,

kµ

mi
∼
qµ

j

mi
≪ 1 , (2.15)

and weak,

κ qµ
i ∼ κ kµ ≪ 1 , (2.16)

compared to the matter-gravity interaction. Accordingly, in field-theory diagrams interactions
with comparable momentum ℓ ∼ qi, k are suppressed relative to the ones including matter lines.

Finally, the objects spin (Si) is assumed to be macroscopic and comparable in size to
the angular momentum L⃗ of the system,

|S⃗i| ∼ |L⃗i| = |p⃗i × b⃗i| . (2.17)

At the same time a perturbative expansion in spin requires the ring-radius aµ
i = Sµ

i /mi to
be much smaller than the objects’ Schwarzschild radius,

|⃗ai| = |S⃗i/mi| ≪ κ2mi . (2.18)
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To implement the classical point-particle limit, we introduce the mass ratio q,

q = m̄2
m̄1

, m̄1 = m̄, m̄2 = m̄ q. (2.19)

The classical limit is then a scaling limit in the variable m̄→ ∞ and amounts to performing
a series expansion around infinite mass m̄,

m̄→ ∞ with y , q2i , q , ωi ,
Si

m̄
,
√
m̄κ = fixed. (2.20)

An equivalent scaling limit via ℏ counting [49], is obtained by rescaling all dimensionful
quantities (including κ) simultaneous to the limit (2.20), such that the mass-parameters mi

remain fixed. For completeness we give this scaling transformation,

ℏ → 0 with m̄, y ,
q2i
ℏ2
, q ,

ωi

ℏ
, ℏSi ,

√
ℏκ = fixed. (2.21)

In our presentation we will rely on the former formulation (2.20) of the limiting procedure.
In the classical limit, L-loop five-point scattering amplitudes including four massive

particles and one graviton have a well defined scaling in m̄ and κ. For the order ns spin
multipole contribution we have

Mns ∼ κ3+2L m̄4+L (S/m̄)ns . (2.22)

The dependence on κ follows from Feynman rules. The dependence on m̄ and S produces
the same leading scaling as the Mns=0 amplitude in the large-m̄ and S/m̄ = fixed limit. The
scalar amplitude scales like a fan-diagram [29, 108, 109], including m̄2 for each matter-graviton
vertex, and 1/m̄ for massive propagators. We expect the scaling behavior,

M tree,ns ∼ κ3 m̄4 (S/m̄)ns , M1−loop,ns ∼ κ5 m̄5 (S/m̄)ns . (2.23)

We refer to terms with the expected scaling dependence m̄nc as classical scaling. Slower
growth m̄n<nc will be called quantum and faster growth m̄n>nc hyper-classical. Hyper-
classical scaling often appears in intermediate computational steps and drops out in properly
defined observables.

2.2 Spin operators

We compute scattering amplitudes which serve as building blocks of asymptotic field-theory
observables. The classical spin dependence of the observables is determined by making their
dependence on spin operators manifest. In the following, we briefly review the properties
of spin operators.

The relativistic spin operator for a state with momentum p and mass m (p2 = m2) is
the Pauli-Lubanski operator (see e.g. [110]), which is given as

Sµ = 1
2mϵµναβ p

νMαβ , (2.24)

for the Lorentz-group generators Mρσ,[
Mµν ,Mρσ] = i

(
ηνρ Mµσ − ηµρ Mνσ − ηνσ Mµρ + ηµρ Mµσ) , (2.25)

and where ϵµναβ is the Levi-Civita tensor with ϵ0123 = 1.

– 7 –
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As we are working with spin-1 vector fields we only need the Lorentz-group generators
in the corresponding vector representation. We will specialize to this case from now on
and the generators explicitly read

(Mµν)α
β = i

(
ηµαδν

β − ηναδµ
β

)
. (2.26)

The Pauli-Lubanski operators are transverse,

Sµ p
µ = 0, (2.27)

due to the anti-symmetry of ϵµνρσ. Furthermore, they are also transverse, viewed as tensors
in their representation indices,

(Sµ)α
β p

β = pα(Sµ)α
β = 0 . (2.28)

This property follows from the vector representation of the Lorentz generators (2.26) and
their contraction with pνϵµνρσ.

For completeness we collect the commutator algebra of the Pauli-Lubanski operators

[
Sµ, Sν] = −iϵµνρσSρ

pσ

m
. (2.29)

In particular, for a state at rest p = (m, 0, 0, 0), the Si form the so(3) Lie algebra of the
respective little group. For this momentum choice, S0 vanishes and the momentum p is in the
kernel of Si. The polarization states for a fixed momentum form irreducible representations
of the Pauli-Lubanski operators.

Finally, we will require the projection operator

Pα
β = δα

β − pαpβ

m2 , (2.30)

which projects into the subspace transverse to the timelike momentum p. The Pauli-Lubanski
operators Sµ, the projector Pα

β, as well as the massive polarization states εvµ(p) (with
εv(p) · p = 0) all are non-vanishing in the subspace transverse to p.

To make manifest the observables’ dependence on spin, we will use a form-factor decom-
position which expresses amplitudes in terms of a complete basis of spin operators and the
transverse projector. In fact, the vector representation operators

Pα
β , (Sµ)α

β and (S{µSν})α
β , (2.31)

form an over-complete basis of rank two, transverse tensors, which can be verified in the rest
frame p = (m, 0, 0, 0). Here we take the indices µ and ν as labels and the representation indices
(α, β) as the mentioned tensor indices. Furthermore, we defined the symmetric-traceless tensor

S{λSκ} ≡ 1
2
(
SλSκ + SκSλ

)
− 1

3(S · S)Pλκ. (2.32)

– 8 –
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2.3 Vector-boson states

An important fact is that the spin operators are non-vanishing in the transverse space.
Consequently, we set up the form-factor decomposition with respect to polarization states
which take values in the same transverse space, that is polarization states associated to
the same momentum.

To make this structure manifest, we define polarization states of all massive vector states
with respect to the common momentum p with p2 = m2. For a state with momentum
(p − q) with (p − q)2 = m2 we have

εvµ(p− q) = Λ ν
µ (p− q, p) εvν(p) , (2.33)

using the Lorentz-boost Λµ
ν ,

Λµ
ν(p− q, p) = δµ

ν + 1
q2 − 4m2

[
2 q

2

m2 (p− q)µ pν + 4qµ pν − 4
(
p− q

2

)µ

qν

]
, (2.34)

which gives (p− q)µ = Λµ
ν p

ν . Note that the little-group indices v of the polarization vector
εvµ(p) are unchanged. Outer products of vector-boson states associated to the same momen-
tum are transverse tensors and can be expressed in terms of a basis of spin operators (2.31),
likewise the physical transverse part of the amplitude. A tensor decomposition of a spin
amplitude Mv′v is then

Mv′v =Mµ
ρ Λ ν

µ (p− q, p) ε̄v′ν(p) ερ
v(p)

→ Mµ
ρ Λ ν

µ (p− q, p) = cPν
ρ + cλ(Sλ)ν

ρ + cλκ(S{λSκ})ν
ρ, (2.35)

In order to obtain this decomposition, we will first introduce an auxiliary tensor basis, which
we relate to classical spin vectors in a second step.

The basis is constructed with three transverse vectors

vi ∈ {P · q1,P · q2 ,P · u2} , (2.36)

where we project three vectors which are linear independent of p. We use the following
rank-two tensor basis,{

Tαβ
1 , . . . , Tαβ

9
}
=
{
Pαβ , v

[α
1 v

β]
2 , v

[α
1 v

β]
3 , v

[α
2 v

β]
3 ,

v
{α
1 v

β}
2 , v

{α
2 v

β}
3 , v

{α
1 v

β}
3 , v

{α
1 v

β}
1 , v

{α
2 v

β}
2

}
.

(2.37)

where we use the convention

v
[α
i v

β]
j = 1

2
[
vα

i v
β
j − vβ

i v
α
j

]
, (2.38)

v
{α
i v

β}
j = 1

2
[
vα

i v
β
j + vβ

i v
α
j

]
− 1

3(vi · vj)Pαβ . (2.39)

When contracted with explicit polarization states we obtain

T v′v
n = ε̄v′(p− q) · Tn · εv(p) = ε̄v′(p) · [Λ(p, p− q) · Tn] · εv(p) . (2.40)
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Next we relate the tensor basis to functions in classical spin. One method is to use a
Clebsch-Gordan decomposition of a product of polarization states [76],

εµ
v′(p)εν

v(p) =
1
3εv′ · P · εv

(
ηµν − pµpν

m2

)
− i

2mϵµνρσpρεv′ · Sσ · εv + εv′ · S{µSν} · εv , (2.41)

which expresses the spin states in terms of a irreducible scalar, anti-symmetric and symmetric-
traceless representation of the little group transformations. Motivated by the relation

εv · Sµ · εv

εv · εv
→ Sµ (2.42)

we obtain a simple replacement rule Tn → T cl
n which relates quantum-spin observables to

classical ones,

T cl
n (S) = −

[
Λ(p, p− q) · Tn

]
µν

[1
3

(
ηµν − pµpν

m2

)
− i

2mϵµνρσpρSσ + S{µSν}
]
, (2.43)

for the classical-spin vector Sµ with S · p = 0. Importantly we introduce an overall minus
sign in eq. (2.43), since we remove inner product ϵv · ϵv = −1.1

2.4 Graviton states

In order to make the classical limit manifest, we use a form-factor decomposition for the
graviton states. The graviton polarisation tensors are εµν , which we write as product states of
two spin-1 fields. Using a basis of plus and minus polarized vectors, the polarization tensors
of a circularly polarized gravitational wave are given by

εµν
±2(k) = εµ

±1(k)εν
±1(k). (2.44)

and hence fulfill the transversality condition εµν
±2(k) kµ = εµν

±2(k) kν = 0. The states are
normalised as

ε̄sµνε
µν
s′ = δs′s , εµν

s = ε̄µν
−s , s, s′ ∈ {−2, 2} , (2.45)

and are traceless, e.g. (εs)µ
µ = (ε̄s)µ

µ = 0. In analytic computations, contractions of the
graviton states with the linearly independent set of four vectors {u1, u2, k, q1} appear. As
we are using product states, these factorize into two scalar products of a spin-1 polarization
vector εµ

±1(k) with one of the independent momenta. Starting from 10 symmetric contractions,
we can reduce to a minimal basis of only two quadratic monomials. First, we use the traceless
condition which can be implemented by setting (εs)2 = 0 together with the Gram determinant
identity G(u1, u2, k, q1, εh) = 0 to arrive at 9 independent monomials. Taking into account
also transversality εh · k = 0, this set is reduced by 4 monomials. Next, we use the gauge
freedom εh → εh + k to set inner products εh · u1 to zero,

u1 · εh = 0 (2.46)

1This sign implies that the scalar component of the scalar-vector waveform matches the scalar-scattering
waveform.
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We arrive at the fact that amplitudes including a single graviton emission can be given as
linear combinations of the two monomials

F 2h
1 = (εh · u2) (εh · u2) , F 2h

2 = (εh · u2) (εh · q1) . (2.47)

This representation does not limit the generality of our result. If one wishes to consider
polarization vectors εh, the gauge condition can easily be imposed by sending

εh → ε̃h = εh − u1 · εh

u1 · k
k , (2.48)

and evaluating the amplitude using ε̃s. In this way, full generality can be restored.

3 Waveform observable from amplitudes

The goal of this work is to compute the waveform emitted during the scattering process of
two black holes, where one is rotating, at order O(G3) including linear-in-spin effects. For the
waveform observable, this is explained through the KMOC formalism [48–50], which relates
the waveform to matrix elements including the S-matrix. (See also the recent generalization
of such asymptotic observables in ref. [60].)

In the following, we briefly summarize the necessary results to highlight the connection
between the gravitational waveform and scattering amplitudes. For more detailed reviews
we refer the reader to refs. [50, 56, 59]. Let us start by focusing on the momentum-space
waveform observable. It is given by the matrix element Ms⃗ (and its conjugate)

iδ̂D(q1 + q2 − k)Ms⃗(pi, qi, k) = ⟨p′1
s′
1p′2|S†as(k)S |ps1

1 p2⟩ , (3.1)

which depends on the spin and helicity quantum numbers of the particles involved in the
scattering process, which we collectively denote by s⃗ = {s1, s′1, s}. Furthermore, we absorb
some explicit factors of 2π by defining

δ̂D(x) ≡ (2π)D δD(x). (3.2)

In order to make contact with the classical scattering of spinning point-like objects, we
introduce classical spin variables through a form-factor decomposition [71],

Ms⃗ =
2∑

i=1

4∑
j=1

Mij F s
i T

s′
1s1

j , (3.3)

using the operator basis (2.37).
The classical spin-dependence of the amplitude Ms⃗ is obtained by replacing the Pauli-

Lubanski spin operator Sµ by its classical counterpart Sµ. In terms of the form factor
decomposition, the operators Tn are replaced by T cl

j (S) using eq. (2.43),

Mcl,s(S) =
2∑

i=1

4∑
n=1

Mij F s
i T

cl
j (S)

∣∣∣
class

, (3.4)

where we take the classical scaling limit of the building blocks of the matrix element Ms⃗ (see
section 4). This replacement relies on an observed match between the form-factors of spin-s
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theories and point-particle theories with classical spin to order 2s, see ref. [82]. Commonly
this relation is coined the spin universality principle, which states that the form-factors of
spin operators are universal and can be matched between different finite-in spin theories and
point particles with continuous spin.2 For the case at hand, this was verified for the Proca
field theory to O(G3) and O(S2) [71]. A method for dealing with an ambiguity in identifying
quadratic-spin terms was recently demonstrated [111]. Here we are concerned with linear-spin
terms and leave a computation of the quadratic terms to future work.

We will also consider the spin-less system (2.6) for which the form-factor decomposition
only concerns the graviton state. Alternatively, we obtain a matching waveform in the spin
system: since the matrix elements are obtained as a polynomial in the spin vector we recover
the spin-less waveform for Sµ = 0.

The position-space waveform in the classical limit (2.20) is given by the Fourier transfor-
mation [48, 50]. In fact, for large distances from the scattering event, the metric field hµν(r)
admits an expansion in negative powers of |r|. The waveform is identified as the coefficient
of the leading-order contribution in this expansion, e.g.

h(S, r, pi, b)
∣∣
|r|→∞ = 1

4π|r|h
∞(t− |r|, S,n, pi, b) . (3.5)

Plugging in k = ωk̂ = ω(1,n), with n = r/|r|, for the graviton momentum and taking the
Fourier transform to time-domain and impact parameter space, we have [50]

h∞(u, S,n, pi, b) =
iκ

2

∫ ∞

0

dω

2π

∫
dDµ e−iωu+ib1·q1+ib2·q2Mcl,−2(S, pi, qi, k) + c.c. , (3.6)

where we define the retarded time u = t− |r| and introduced the shorthand notation

dDµ =
[ 2∏

i=1

dDqi

(2π)D
δ̂
(
2m̄i ui · qi

)]
δ̂D(q1 + q2 − k) . (3.7)

We split the impact-parameter vectors into symmetric and anti-symmetric contributions

b1 = b+ bs , b2 = −b+ bs, (3.8)

and omit the symmetric one (bs = 0), since it corresponds to a translation of the system,
which can be retrieved from a shift in the time variable t→ (u− bs · k̂) in the final observable.

In more conventional notation, the amplitude h∞(u, S,n) is related to plus and cross
polarizations of the waveform, which is commonly used in the data analysis of gravitational
wave detectors,

h+ = Re [h∞ + g0] , h× = Im [h∞ + g0] , (3.9)

where g0 accounts for a constant background of the metric that has to be fixed through
initial conditions.

Let us now turn the discussion towards the explicit scattering amplitudes necessary in the
computation of the waveform. As eq. (3.1) is already proportional to κ we will need amplitudes

2This property has been related to a spin-independence of the three-point amplitude for rotating black
holes (see e.g. [76]).
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+ +

Figure 2. The waveform amplitude is a combination of scattering amplitudes. Up to one loop we
require a tree amplitudes, a loop amplitude (the amplitude contribution) and a phase-space integral
over a product of tree amplitudes (the cut contribution). We suppress disconnected contributions
which do not contribute for generic momenta and frequency.

up to O(κ5). To this end we express the S-matrix in terms of the transition matrix T , i.e.
using S = 1+ iT . Plugging in this expansion, we find two contributions to the amplitude [48],

⟨p′1
s′
1p′2|S†as(k)S|ps1

1 p2⟩ = i⟨p′1
s′
1p′2|as(k)T |ps1

1 p2⟩+ ⟨p′1
s′
1p′2|T †as(k)T |ps1

1 p2⟩, (3.10)

with the first one being linear in T and second one quadratic in T . Below we refer to the first
term of eq. (3.10) as the amplitude contribution and the second we denote the cut contribution.
The amplitude contribution corresponds to the five-point scattering amplitude M s⃗,

⟨p′1
s′
1p′2|as(k)T |ps1

1 p2⟩ = δ̂D(p′1 + p′2 + k − p1 − p2)M s⃗, (3.11)

which we need at the tree and one-loop level,

M s⃗ =M tree,s⃗ +M1−loop,s⃗ +O(κ6) . (3.12)

These contributions are graphically represented by the first two terms of figure 2. The second
term, the cut contribution C s⃗ is given by

⟨p′1
s′
1p′2|T †as(k)T |ps1

1 p2⟩ = iδ̂D(p′1 + p′2 + k − p1 − p2)C s⃗, (3.13)

which is turned into a phase-space integral of a product of scattering amplitudes by inserting
a complete set of states,

⟨p′1
s′
1p′2|T †as(k)T |ps1

1 p2⟩ =
∑

n

∫
dLIPSn(ℓ⃗ ) ⟨p′1

s′
1p′2|T †|ψp⃗

n(ℓ⃗ )⟩ ⟨ψ−p⃗
n (−ℓ⃗ )|as(k)T |ps1

1 p2⟩ ,

(3.14)
where the sum runs over all n-particle scattering states and the phase-space integration
is performed over the respective multi-particle Lorentz-invariant phase space (LIPS). The
collection of phase-space momenta and particle polarization labels are denoted by ℓ⃗ =
{ℓ1, . . . , ℓn} and p⃗, respectively.

The sum over intermediate states simplifies in fixed-order computations. The phase-
space integral does not contribute at leading order (for n = 0, 1), because of particle flavor
conservation, as the two matter lines are associated to distinct particle types. At next-
to-leading order, the insertion of two-particle states contribute with two on-shell massive
propagators. This contribution corresponds to a two-particle cut and is given by the product
of a four-point and a five-point tree,

⟨p′1
s′
1p′2|T †as(k)T |ps1

1 p2⟩ =
∑
ŝ1

∫
dΦ1(ℓ1) dΦ2(ℓ2) δD(ℓ1 + ℓ2 + p′1 + p′2) (3.15)

× ⟨p′1
s′
1p′2|T †|ℓ−ŝ1

1 ℓ2⟩ ⟨(−ℓ1)ŝ1(−ℓ2)|as(k)T |ps1
1 p2⟩+O(κ6) ,
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Figure 3. A one-loop pentagon integral and its two-particle cut. Both, the Feynman integral and the
phase-space integral, appear combined in the classical waveform observable.

Here two massive lines appear, that are associated to a vector field and the scalar. This
contribution is depicted on the right of figure 2. The corresponding phase-space measures
are denoted by dΦi and are defined in eq. (A.10), while ŝ1 is the polarization label of the
intermediate vector-field. Additionally, there could be contributions coming from disconnected
diagrams including three-point trees and propagators. Since we are working with real-valued
kinematics, these pieces will only contribute at zero frequency of the emitted graviton. Such
a contribution can also be fixed through initial conditions, we do not consider it in this work.
Finally, we note that the four-point tree is written in terms of T † and is therefore evaluated
with propagators with the opposite iδ prescription

1
p2 −m2 + iδ

→ 1
p2 −m2 − iδ

, (3.16)

as compared to the five-point tree and one-loop amplitudes. We can write the cut contribution
as the Cutkosky cut of the one-loop (quantum) amplitude M1−loop,s⃗ in the (p′1 + p′2)-channel,
as depicted in figure 3,

C s⃗ ≡ Cut1′2′

[
M1−loop,s⃗

]
. (3.17)

The cut contribution plays an important role, by setting causality properties of the total
observable [60]. Technically, the cut terms also subtract hyper-classical contributions from
the observable [56–58]. With this we have linked the asymptotic observables (3.6) directly
to the following scattering data

Ms⃗ =M tree,s⃗ +M1−loop,s⃗ + C s⃗ +O(κ6) . (3.18)

In the next section, we discuss the evaluation of the amplitude functions in the classical limit.

4 Scattering amplitudes computation

We now discuss the computation of the classical scattering amplitudes (3.18). In order to
leverage the organizational principle of QFT and exploit established field-theory methods, we
perform the computation in two steps: we first compute the quantum scattering amplitudes
and then consider their classical limits (2.20).

An important aspect of our computation is that we base it on an exact numerical
approach. For the computation of quantum scattering amplitudes we use the program
Caravel [89]. At tree level, the program yields numerical results for scattering amplitudes
in exact modular arithmetic. At loop level, the program implements the numerical unitarity
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A B C D

Figure 4. Example Feynman diagrams for the scattering of massive particles interacting through
gravitational exchange. Here, wavy lines represent massless gravitons, while solid lines refer to massive
scalar or vector-fields.

method [93–97] in the variant of refs. [98–100], which provides numerical values for the
rational integral coefficients of a one-loop integral basis. We employ functional reconstruction
techniques [101, 102] to obtain analytic expressions for the classical expansions. In order to
deal with the classical limit of helicity states, we compute the amplitudes in a form-factor
decomposition.

4.1 Organization of the computation

For the computation of the waveform observable we proceed in two steps, we first compute
the one-loop amplitude, which admits the standard decomposition,

M1−loop,s⃗ =
∑
Γ∈∆

cs⃗
Γ(ϵ) IΓ , (4.1)

where ∆ is the set of all one-loop diagrams. Furthermore, IΓ are the one-loop master integrals
and cs⃗

Γ(ϵ) the corresponding ϵ dependent integral coefficients. The set of master integrals
is a subset of the set of diagrams and we take this into account by allowing vanishing for
integral coefficients.

Next we compute the cut in the (p′1 + p′2)-channel by recycling the one-loop amplitude
computation. The cut of the quantum amplitude in eq. (3.17), is given as a sum of phase-space
integrals which is related to cut master-integrals,

C s⃗ = Cut1′2′

∑
Γ∈∆

cs⃗
Γ(ϵ) IΓ

 =
∑
Γ∈∆

cs⃗
Γ(ϵ) Cut1′2′ [IΓ] , (4.2)

where we keep in mind that some of the cuts of the master integrals vanish. The coefficients
cs⃗
Γ(ϵ) are not affected by cutting and are those of eq. (4.1). Given the similarities between

the amplitude and the cut contribution we can combine both via

M1−loop,s⃗ + C s⃗ =
∑
Γ∈∆

cs⃗
Γ(ϵ) I

exp
Γ , (4.3)

with the new type of master integrals given by

Iexp
Γ ≡ IΓ +Cut1′2′ [IΓ] . (4.4)

We note that the integrals Iexp
Γ coincide with IΓ if the cut contribution in the (p′1+p′2)-channel

vanishes. In the classical limit, the integrals IΓ were computed in refs. [56–58] and their
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generalizations Iexp
Γ in ref. [60]. We have validated the Iexp

Γ integrals and collected our
independent computation in appendix B.

Finally, we remark that the cutting procedure of a fixed integral is related to its disconti-
nuity and imaginary part, however, this does not hold true for the classical limit of the full
amplitude. In the classical limit, distinct cuts may not be properly resolved which leads to
over counting, such that a cut in the (p1+ p2)-channel is indistinguishable from the one in the
(p′1+p′2)-channel, since the difference between the momenta k = p1+p2−(p′1+p′2) is considered
to be a sub-leading contribution. Working with a diagrammatic representation of the integrals
the association of quantum and classical cuts is manifest and this issue can be avoided.

In summary, we require two types of object, the integrals Iexp
Γ and the coefficients cs⃗

Γ(ϵ),
both expanded in the classical limit. In the following section 4.2, we discuss the explicit
computation of these ingredients within the framework of Numerical Unitarity.

4.2 Brief review of numerical unitarity

For the computation of the amplitudes M s⃗ we now compute the integral coefficients, cs⃗
Γ(ϵ)

applying the numerical unitarity method [93–97] in the variant of ref. [98–100]. First, we
promote the integral decomposition eq. (4.1) to an integrand decomposition,

M s⃗(ℓ) =
∑
Γ∈∆

∑
k∈MΓ∪SΓ

cs⃗
Γ,i(ϵ)

mΓ,i(ℓ)∏
j∈PΓ

ρj(ℓ)
(4.5)

where ρj denotes the propagator variable. PΓ denotes the set of propagators associated to
diagram Γ. As opposed to the integral decomposition formula in eq. (4.1), the sum in eq. (4.5)
runs over integral insertions mΓ,i associated to master integrals MΓ and surface terms SΓ of
a given diagram Γ. While surface terms are necessary to parameterize the integrand, they
will ultimately integrate to zero. We construct the surface terms from unitarity compatible
integration-by-parts identities [98, 112–114].

The coefficients cΓ,i are now obtained by exploiting the factorization property of the loop
integrand (4.5). Specifically, we consider loop-momentum values ℓΓ where the propagators
are on-shell, that is ρj(ℓΓ) = 0 iff j ∈ PΓ. The leading contribution of the integrand in
this limit behaves as

∑
s⃗i∈states

∏
i∈TΓ

M
tree,s⃗ ′

i
i (ℓΓ) =

∑
Γ′≥Γ,i∈MΓ′∪SΓ′

cs⃗
Γ′,i(ϵ)

mΓ′,i(ℓΓ)∏
j∈(PΓ′\PΓ) ρj(ℓΓ)

. (4.6)

On the left-hand side of this equation, we denote by TΓ the set of tree amplitudes associated
with the vertices in the diagram corresponding to Γ, and the sum is over the states propagating
through the internal lines of Γ. On the right-hand side, we sum over integral topologies,
denoted by Γ′, which contribute to the limit, for which PΓ ⊆ PΓ′ . The coefficients cs⃗

Γ,i(ϵ)
are obtained by solving the system of linear equations given by eq. (4.6) for a sufficient
number of values of ℓΓ. So far all step were performed numerically. In order to extract
the dimensional dependence of the state sums we use the dimension Ds for the Lorentz
algebra of the integer-spin particle representations [96]. We vary this parameter over four
values, Ds ∈ {5, 6, 7, 8} and extract the coefficients cn(ϵ) of the following parameterization
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Figure 5. An example of integrals that do not contribute in the classical limit. Anticipating the
cancellation the massless bubble contribution is dropped already before we the classical limit. The
massive bubble and tadpole integrals turn scaleless and integrates to zero in dimensional regularization
in the classical limit.

of the integral coefficients [115],

cs⃗
Γ,i(Ds, ϵ) =

c0(ϵ)
(Ds − 2)2 + c1(ϵ)

(Ds − 2) + c2(ϵ) + c3(ϵ) (Ds − 2). (4.7)

This parameterization is set up to capture the explicit Ds dependence of the graviton
propagators

i

p2 + iδ

1
2

[
ηµα ηνβ + ηµβ ηνα − 2

Ds − 2ηµν ηαβ

]
. (4.8)

Similarly, the dependence on the dimensional regulator ϵ is reconstructed from sampling
over finite numerical values of ϵ. We evaluate the tree-level scattering amplitudes through
Berends-Giele recursion [90] using an implementation of the Feynman rules obtained with
the help of xAct [91, 92]. By performing all these calculations using finite-field arithmetic
we are able to determine the coefficients exactly as rational functions in ϵ and Ds with no
loss of numerical precision. An important technical ingredient for the numerical amplitude
computation is a rational parameterization of phase space and the mass parameters. We
provide the technical details of this in appendix D.

Having determined the cs⃗
Γ,i as functions in ϵ and Ds at a single numerical phase-space

point we obtain the integrated representation (4.1) by dropping surface terms and replacing
master integrands, by master integrals. Given that every propagator structure at one loop
has at most one associated master integral we suppress the corresponding label and use
cs⃗
Γ instead of cs⃗

Γ,1.
Finally, we remark, that we simplify the computation by omitting all tadpole integrals

and the bubble integral with two massless or two massive propagators. In the unitarity
computation, we omit the respective cuts in ∆. The diagrams are displayed in figure 5.
Omitting these integrals early is permitted, since they do not contribute in the classical
limit, which we anticipate. We explicitly checked on random phase-space points that the
bubble diagram does in fact drop out in the classical limit. All massive bubbles and tadpoles
reduce to scale-less integrals in the classical limit and vanish in dimensional regularization.
It is important to keep the pentagon integrals although they only start contributing at
higher orders in ϵ.

4.3 Form-factor decomposition

We now implement a form-factor decomposition of the graviton helicity states and the
polarization states of the massive vector field. The motivation is two fold:
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1. Technically we need good control over the classical scaling limit and the analytic
reconstruction, which is achieved by working with the rational form factors instead of
polarization states. The decomposition can also impact the compactness of the result.
We use gauge-symmetry and scaling considerations in the classical limit to determine
the form factors.

2. We intend to relate scattering data of massive vector fields to a spin variable. This
step inherently relies on a form-factor decomposition in terms of the Pauli-Lubanski
operators introduced in section 2.2.

In our effective field theory, the gravitational wave corresponds to the expectation value
of an external graviton and the polarization of the observed wave is related to the polarization
tensors εµν of this graviton. For the scattering of four scalar fields and a graviton, we
decompose the amplitude in terms of

Os
i = F s

i , i = 1, 2. (4.9)

In the presence of vector bosons we instead choose the basis of spin and helicity amplitudes by

Os⃗
ij = F s

i T
s′
1s1

j , i = 1, 2 , j = 1, . . . , 9 , (4.10)

and their classical counterparts,

Ocl,s⃗
ij = F s

i T
cl
j , i = 1, 2 , j = 1, . . . , 9 , (4.11)

using the definition of the graviton monomials (2.47) and the spin decomposition (2.43). We
combine them as in eq. (4.10) and consider observables in the decomposition,

Ms⃗ =
∑

n

MnOs⃗
n , (4.12)

where we use the multi-index notation n = (ij) with i = 1, 2 and j = 1, 9.
For the rational tree amplitudes we have the helicity independent form factors M tree,n

according to

M tree,s⃗ =
∑

n

M tree,nOs⃗
n . (4.13)

By construction, the number of independent spin and helicity configurations, denoted by
N=2 (N=18), of the tree amplitude M tree,s⃗ matches the number of independent tensors Os⃗

n

of the scalar (2.8) and the scalar-vector (2.9) theory, respectively. Consequently, we extract
the scalar form factors directly from 2 (18) helicity amplitudes by solving the linear system

M tree,s⃗1

...
M tree,s⃗N

 =


Os⃗1

1 · · · Os⃗1
N

... . . . ...
Os⃗N

1 · · · Os⃗N
N



M tree,1

...
M tree,N

 . (4.14)

For the corresponding one-loop amplitudes, we obtain the form factors by decomposing
the integral coefficients

cs⃗
Γ(ϵ) =

∑
n

cn
Γ(ϵ)Os⃗

n , (4.15)
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such that the one-loop amplitude is given by,

M1−loop,n =
∑
Γ∈∆

cn
Γ(ϵ) IΓ . (4.16)

4.4 Classical limit of quantum amplitudes

To realize the classical limit in the quantum scattering amplitudes we follow the procedure
outlined below. Due to the different analytical structure of tree-level and one-loop amplitudes
we proceed with slightly different strategies.

Our first goal is the analytic reconstruction in the scaling parameter m̄, in order to
perform the classical expansion. For tree-level amplitudes the classical contributions are
given at the order m̄4 (2.23). Using eq. (4.14) allows to obtain the form factors M tree,n

for a fixed momentum configuration as

M tree,n =
1∑

k=−1
M tree,n

k (Ds − 2)k . (4.17)

The coefficients M tree,n
k are rational functions in m̄ and we parameterize them as,

M tree,n
k (m̄) = 1 +

∑en
i=1 m̄

iNn
ki∑ẽn

j=1 m̄
jDn

kj

, (4.18)

and compute the parameters Nn
ki and Dn

ki and the maximal polynomial degrees en and ẽn,
from a sufficient number of numerical evaluations of M tree,n

k using Thiele’s formula [101, 116].
We then obtain the classical tree amplitude as the leading term in the large-m̄ expansion,

M tree,n
∣∣∣
class

= m̄4
1∑

k=−1

Nn
ken

Dn
kẽn

(Ds − 2)k . (4.19)

As dictated by the limit we kept the highest-order m̄-monomials in the numerator and
denominator of the rational function M tree,n

k (m̄). At this point the ratio (Nn
ken
/Dn

kẽn
) is

a number and we will reconstruct its analytic form using the techniques discussed in the
next section.

For the computation it is helpful to understand how the overall mass scaling appears. The
graviton form factors Fi, given in eq. (2.47), are homogeneous in m̄, so that the mass scaling
is manifest in the coefficients M tree,n

k . In contrast, the vector-scalar amplitude typically has
spurious contributions with m̄n for n > 4, which cancel once the amplitude is combined
with the classical form factors containing the spin vectors Sµ. E.g. the proper scaling is
easily broken, if the boost factor (2.34) were to be omitted. We have already discussed
(see section 2.3) that the subspace transverse to the momentum p, in which the spin is
defined, plays a distinguished role in mapping polarization states to a classical spin vector.
We attribute the cancellation of unphysical mass scaling to the alignment of frames of the
polarization vectors and the spin-tensor decomposition transverse to the frame momentum
p. After the expansion of form factors as well as the tensor basis in the classical limit the
tree amplitude assumes the expected m̄4 scaling.
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Figure 6. Example pentagon diagram that reduces via partial fractioning to other integral families.

For the one-loop integral coefficients we follow analogous steps to the above and obtain a
generalized power series in m̄ with rational dependence on Ds and ϵ,

cn
Γ(ϵ,Ds, m̄) = m̄pn

Γ

1∑
k=−2

∞∑
l=0

cn
Γ,kl(ϵ)(Ds − 2)k 1

m̄l
. (4.20)

with a leading power pn
Γ in m̄ that depends on the integral topology.

We now turn to the computation of the master integrals in the classical limit. For
convenience we split the integrals in soft and hard contributions in an expansion by re-
gions [117, 118],

lim
m̄→∞

IΓ = IΓ
∣∣
eik + IΓ

∣∣
hard . (4.21)

The integrals in the hard region are polynomial in the momentum-transfer variables q2i and
do not contribute to the long-range observables; they drop out in the Fourier transformation
(see section 5.2.3). We thus focus on the eikonal integrals.

The expansion of the scalar integral basis leads to tensor integrals, which we reduce
into a basis of eikonal integrals using LiteRed [119, 120] and partial fractioning of linearly
dependent propagators. An example integral that requires partial fractioning is displayed
in figure 6. We obtain the expansion,

Iexp
Γ
∣∣
eikonal =

∑
γ∈∆eik

dΓ,γ(ϵ) Ieik
γ , dΓ,γ = m̄rΓ,γ

∞∑
l=0

1
m̄l

dl
Γ,γ(ϵ) . (4.22)

where only finitely many expansion terms in m̄ are required. Here Ieik
γ is a master-integral

basis of eikonal integrals. ∆eik denotes the diagrams associated to the integral basis of eikonal
integrals. rΓ,γ gives the leading scaling of the scalar master integral Iexp

Γ in the classical limit.
Combining integrals and coefficients in the m̄ expansion, we obtain,

[
M1−loop,n + C n⃗

] ∣∣∣
class

= m̄5
1∑

k=−2

∑
γ∈∆eik

(Ds − 2)k ceik,n
γ,k (ϵ)Ieik

γ , (4.23)

where the coefficients ceik,n
γ,k are suitable linear combinations of the expansions of the integral

coefficients (4.20) and the integral reduction (4.22). The individual terms, the one-loop
amplitude and the cut contributions have a hyper-classical scaling with m̄6, which drops
out in the combination of the terms [56–58, 60].
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Finally we substitute an expansion of the eikonal master integrals in terms of a functions
basis fi (see appendix B for the definitions) and obtain the classical limit of amplitude
and cut contributions

[
M1−loop,n + Cn

] ∣∣∣
class

=
∑

i

(
rn
div,i

ϵ
+ rn

i

)
fi +O(ϵ) , (4.24)

M tree,n
∣∣∣
class

= rn
tree +O(ϵ) . (4.25)

We have used the ’t Hooft-Veltman variant of dimensional regularization with Ds = 4− 2ϵ.
Up to now we have discussed how to obtain numerical values for the coefficients ri for a
given set of external moments. Next we will determine their analytic form from sampling
over phase-space configurations.

4.5 Analytic reconstruction

We now discuss the computation of the analytic expressions for the rational functions rn
tree,

rn
div,i and rn

i of eq. (4.24), by the functional-reconstruction method [99, 101] in finite-field
arithmetic [102].

We start by evaluating the quantum scattering amplitudes on fixed momentum config-
urations according to eq. (2.10). We generate several sets of external momenta, for every
set only a single kinematic invariant of {y, m̄1, m̄2, ω1, ω2, q

2
1, q

2
2} is varied. From these uni-

variate functions we can construct a naive ansatz for the rational multivariate functions
{rn

tree, r
n
div,i, r

n
i } by simply considering the minimal and maximal degree in each variable

for the numerator and denominator. This ansatz can be simplified as each multivariate
numerator and denominator polynomial has to be homogeneous in the mass dimension. The
mass dimensions can be obtained by reconstructing the dependence on t of an univariate
slice through all dimensionful parameters, such that

(m̄1, m̄2, ω1, ω2) = a⃗1 + a⃗2 t, (q21, q22) = a⃗3 + a⃗4 t+ a⃗5 t
2, y = a6 (4.26)

where ai are random numbers. The mass dimension is then given by the maximal degree of t
for numerators and denominators. After these steps we now have a rational parameterization
of each of the functions rn

tree, rn
div and rn

i .
We can further simplify the parameterization using the information of the t dependence.

The rational coefficients of the pure integral functions fi, as well as the tree assume the
form [121],

rn
i = N n

i∏
j w

qn
ij

j

(4.27)

where the denominator factors wi are given by the letters in the symbol alphabet of the
integral functions [56–58, 60] (see appendix B) with integer exponents qn

ij . For simplicity
we focus on the discussion on the coefficients rn

i , however, an analogous formula holds for
rn
tree and rn

div. The numerators N n
i are polynomials in the Lorentz invariants (2.11). The

letters that appear in the denominators are collected in eq. (5.20).
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Knowing the letters wi we obtain their functional form wi(t) by evaluating them for
the kinematics given in eq. (4.26). Using univariate factorization we can then determine
the denominator exponents qn

ij .
All that remains is to determine the numerator polynomials, for which we write a

polynomial parameterization. We then set up a system of linear equations for all unknown
coefficients and generate sufficient numerical samples of the classical expanded scattering
amplitude to obtain solutions. In this way we determine the numerator polynomial with
coefficients in a finite field. Finally, we observe that we need two different prime numbers
to lift the functional reconstruction of the coefficient functions from the finite-field to the
rational numbers. With this we have obtained the analytic form of all functions rn

tree, rn
div

and rn
i for the scalar-scalar and the scalar-vector spectral waveforms.

5 Results

In this section we collect the classical waveform amplitudes Ms⃗, as given by eq. (3.18), in
their leading order and next-to-leading order approximations. Furthermore, we will discuss
in depth the analytical properties of the spectral waveforms that we have observed.

5.1 Leading-order amplitudes

The tree-level five-point amplitude for four massive scalar particles and a graviton is given in
the supplementary material. The amplitude is given in terms of a form-factor decomposition

M tree,s =M1 F
s
1 +M2 F

s
2 . (5.1)

The scattering amplitude is equivalent to the one obtained in ref. [106], which reads

M tree,s = −κ
3m̄2

1m̄
2
2

4 εs,µν

[4PµP ν

q21q
2
2

+ 2y
q21q

2
2

(
QµP ν + PµQν)

+
(
y2 − 1

Ds − 2

)(
QµQν

q21q
2
2

− PµP ν

ω2
1ω

2
2

)]
,

(5.2)

with
Pµ = −ω1u

µ
2 + ω2u

µ
1 , Qµ = (q1 − q2)µ + q21

ω1
uµ
1 − q22

ω2
uµ
2 , (5.3)

where Ds is the dimensional regularization parameter associated to the spin-degrees of
freedom. Furthermore, once linear-in-spin effects are taken into account the scalar-vector
tree-level amplitude reads

M tree,s(S) =M tree,s +
2∑

i=1

4∑
j=2

M tree,ijF s
i T

cl
j (S) +O(S2) . (5.4)

We cross checked the spin tree-amplitude against an independent computation using the
worldline quantum field theory formalism matching ref. [51, 52, 122]. The explicit results
are given in supplementary material. In particular, in the Sµ → 0 limit, we recover the
tree amplitude of the scalar-scalar scattering.
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5.2 Next-to-leading order waveform

At the one-loop level we divide the waveform amplitude into its tree-level part and a part
that is infrared (IR) divergent, one that is ultraviolet (UV) divergent, a tail, and finite
contributions. Thus, the bare waveform amplitude reads

M =M tree +MIR +MUV +Mtail +Mfinite +O(ϵ) , (5.5)

where we drop terms of order ϵ. Let us comment briefly on the individual terms. The tree
contribution is identical to the one presented in section 5.1. Next, the IR divergent terms are
a phase and can be absorbed into a redefinition of the coordinate time in the position-space
waveform as shown below. The term is explicitly given by

MIR =
[
1
ϵ
− log

(
µ2IR
µ2

)]
WS M

tree. (5.6)

The soft factor of the waveform WS is discussed below in section 5.2.2. A derivation of WS

can be found in appendix C. Furthermore, the UV divergent contributions are given by

MUV =
[
1
ϵ
− log

(
µ2UV
µ2

)]
MUV

, (5.7)

where MUV is local in momentum-transfer variables q1 and q2. Consequently they yield
local contribution in impact-parameter space and drop out of the far-field waveform. The
tail and finite terms combine to give the characteristic waveform patterns of gravitational
scattering processes. The tail contribution is given by

Mtail = − log
(
ω1ω2
µ2IR

)
WS M

tree − log
(
ω1ω2
µ2UV

)
MUV

, (5.8)

while the finite remainder is defined through

Mfinite =
18∑

i=1
firi , (5.9)

with the functions fi given in eq. (B.34). We provide supplementary material containing
the waveform observable at O(G3) up to linear in spin corrections. The folder structure
is as follows:

anc/waveform.m

anc/loadWaveform.wl

The file waveform.m contains the LO (G2) and NLO (G3) waveforms with and without
spin. The spin dependence is given in terms of the form-factor decomposition in eq. (2.43).
The notebook loadWaveform.wl contains the notation and commands to load and utilize
the waveforms.
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5.2.1 Waveform for two spinning objects

We have computed the scattering of a vector boson and a scalar and focus on linear in spin
corrections for one black hole. At this order, the spin corrections for the second black hole can
be obtained from symmetrization. However, some care is required due to the gauge condition
u1 · εh = 0. A naive symmetrization would lead to expressions with two gauge conventions.
First one needs to remove this gauge condition by the replacement εh → ε̃h (2.48), after
which symmetrization can be done consistently.

5.2.2 Infrared singularities

Both contributions, the amplitude and its cut, develop IR divergences. In ref. [103] it has
been shown that the IR pole factorizes into a soft factor and the tree-level amplitude. The
divergence is related to soft gravitons being exchanged between all pairs of external particles.
The same logic applies to the cut amplitude, but now only graviton exchanges that are
consistent with the cut topology in figure 3 are taken into account. We review the soft factors
for the amplitude and the cut contributions in appendix C. This leads to a subtraction of the
super-classical contributions in the soft factor of the complete waveform amplitude M and
additionally alters the classical piece. The combined IR pole is given by [60],

M
∣∣
IR = 1

ϵ
WS M

tree, with WS = iG(m̄1ω1 + m̄2ω2)
(
1 + y(2y2 − 3)

2(y2 − 1)3/2

)
. (5.10)

Here we suppress spin and helicity labels, since the same relation holds for the scalar-scalar
as well as the vector-scalar scattering process.

The result exponentiates into a total phase and can safely be absorbed into an infinite
redefinition of the retarded time u, more precisely,

e−iωuM = e
−iω

[
u−
(

1
ϵ
−log

µ2
IR

µ2

)
WS

ω

] (
M tree +MUV +Mtail +Mfinite

)
+ O(G3) . (5.11)

In fact, this redefinition has an interpretation in classical general relativity. The term,

∆uout =
2G
ω

(m̄1ω1 + m̄2ω2) log
(
robs
rmin

)
, (5.12)

corresponds to the Shapiro delay [123], where rmin is the distance at closest approach and
robs is the distance of the observer. It is interpreted as the time delay a graviton experiences
when escaping the gravitational potential of the massive bodies, as was already pointed out
in ref. [57]. The cut contribution gives rise to an additional time-delay (or advance),

∆uin = 2G
ω

(m̄1ω1 + m̄2ω2)
y(2y2 − 3)
2(y2 − 1)3/2 log

(
rin
rmin

)
, (5.13)

where rin is the initial distance between the two black holes. This result was obtained in a
classical analysis [60] by integrating along a geodesic in Schwarzschild spacetime from infinity
to closest approach. It thus originates from the deflection of the trajectory of an incoming
particle due to general relativistic effects. We have verified that the classical derivation also
holds in a Kerr space time and that the time delay is equivalent for spinning and non-spinning
black holes, as is also predicted by Weinberg’s theorem. Geometrically, this is due to the
suppression of the angular momentum terms in the Kerr metric at large radial distance.
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p2

p1

p′2

p′1

k

ℓ

ℓ+ p1 − k

ℓ− q2

ℓ− p2

Figure 7. A box cut that is part of the cut contribution. The momenta {p1, p2} are incoming,
{p′

1, p
′
2, k} outgoing and ℓ flows clockwise in the diagram.

5.2.3 Ultraviolet singularities

Apart from the soft divergence predicted by Weinberg’s theorem there is an additional ϵ
pole MUV coming from the cut of the amplitude. For the scalar expectation value it is
proportional to,

M
∣∣
UV = −

(
κ

2

)5 i

8πϵ(m̄1ω1 + m̄2ω2)
m̄2

1m̄
2
2(ω2

1 + ω2
2 + yω1ω2)(1− 2y2)2

ω1ω3
2(y2 − 1)3/2 F 2h

1 . (5.14)

The pole does not correspond to a UV divergence of the quantum amplitude but is instead
introduced by the eikonal expansion. To discuss the origin of the additional UV divergence
in the eikonal integrals, we consider the box integral figure 7,

Ibox =
∫

dDℓ

(2π)D

1
ℓ2 [(ℓ+ p1 − k)2 −m2

1](ℓ− q2)2[(ℓ− p2)2 −m2
2]
, (5.15)

where it is understood that all propagators carry an additional +iδ. In the m̄ → ∞ limit
the integrals appearing in our calculation are split into eikonal (ℓ ∼ m̄0) and hard region
(ℓ ∼ m̄1) integrals (see eq. (4.21)). The expansion of the second massive propagator in
these regions is given by

1
(ℓ− p2)2 −m2

2 + iδ
=


1

−2m̄2u2·ℓ+iδ − ℓ·(ℓ−q2)
[−2m̄2u2·ℓ+iδ]2 + . . . (eikonal) ,

1
(ℓ−m̄2u2)2−m̄2

2+iδ
+ ℓ·q2

[(ℓ−m̄2u2)2−m̄2
2+iδ]2 + . . . (hard) .

(5.16)

Similar expressions hold for the expansion of the second massive propagator. The singular
behavior of the expanded integrals is related to the original unexpanded integral, but may
differ in an important way. While the eikonal (hard) expansion matches the IR (UV) behavior
of the unexpanded integral, additional divergences develop in the UV (IR) of the eikonal
(hard) expansion. These additional divergences have to cancel between the eikonal and the
hard region since there is no corresponding divergence in the original integral.

The appearance of UV singularities in the eikonal integral is seen from the expansion of
the massive propagators. The leading term in the eikonal expansion scales as 1/ℓ in the UV
limit (ℓ→ ∞), however, each additional expansion order increases the scaling degree by one.
It follows that even if an unexpanded integral containing massive propagators is UV finite,
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additional UV divergences will be introduced at some order of its eikonal expansion. Whether
a UV divergence does in fact appear depends on the expansion order. For the integral at
hand we require an eikonal expansion to order m̄−4, which is UV divergent.

In our computation, UV contributions appear in intermediate stages of the computation
in the classical limit. They can be seen to cancel in the one-loop amplitude, which produces
a 1/ϵ pole that matches the universal IR factorization [103]. In contrast, we do observe a
non-vanishing UV contribution from the cut contribution, defined in eq. (3.17). We have
verified this in two ways:

1. We have compared the 1/ϵ pole of the cut contribution to Weinberg’s soft theorem
and found a mismatch. To this end we adjusted Weinberg’s theorem to the waveform
computation (see appendix C).

2. We explicitly computed the UV pole of the cut. This was done by adding a regulator
mass µ2IR into the quadratic propagators before evaluating the cut of the eikonal
expansion in the UV limit. For the above example ID,box (5.15) this amounts to,

1
ℓ2 − µ2IR + iδ

,
1

(ℓ− q2)2 − µ2IR + iδ
. (5.17)

The mass regulates the IR singularities, so that the full 1/ϵ pole can be associated to the
UV. This computation produced the difference of the 1/ϵ pole of the cut contribution
compared to Weinberg’s infrared theorem [103].

Finally, we observe that the UV contribution has the expected analytic properties. In fact
the UV contribution of the eikonal region lies in the intersection of the hard and the eikonal
functions; since the two must cancel. It thus has analytic properties of the hard and the
eikonal contributions, i.e. it is polynomial in the momentum-transfer variables qi. We observe
this property in eq. (5.14) and the analogous expression for the spin waveform.

We end this section with a remark about the phase space of the two-particle cut. This
phase space is compact for the quantum amplitude, namely a two-dimensional sphere in four
dimensions determined by the zero set of the quadratic polynomials,

(ℓ+ p1 − k)2 −m2
1 = (ℓ− p2)2 −m2

2 = 0 . (5.18)

Consequently, there is no large-momentum region associated to this cut. This is in contrast
to the two-particle cut in the eikonal limit, where two eikonal propagators are forced onto
their mass shell,

u2 · ℓ = u2 · ℓ = 0 . (5.19)

These on-shell conditions are linear, such that the resulting phase-space integral is performed
over a two-dimensional plane, which is non-compact. The boundary of this phase space is
then a large momentum region attributed to the UV. This argument supports the surprising
fact that the cut contribution does yield a UV divergence.
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5.3 Analytic properties

The rational coefficients of the pure integral functions fi, as well as the tree take a particular
form (5.20), which has interesting physics implications. We observe that the following letters

{wi}i=1,15 =
{
ω1, ω2, q

2
1, q

2
2, y + 1, y − 1, ω2

2 − q21, ω
2
1 − q22,

ω2
1 + q22(y2 − 1), ω2

2 + q21(y2 − 1), ω2
1 − 2ω1ω2y + ω2

2,

4ω2
2q

2
2 + (q21 − q22)2, 4ω2

1q
2
1 + (q21 − q22)2,

ω2
1q

4
1 − 2ω1ω2 q

2
1q

2
2y + ω2

2q
4
2,

4ω2
1(ω2

2 − q21) + 4ω1ω2y(q21 + q22)− 4ω2
2q

2
2 + (y2 − 1)(q21 − q22)2

}
(5.20)

appear in the denominators, where w9, w10, w14 and w15 are absent in the scalar waveform.
Most of the 15 letters are related to Gram determinants. We note that, in addition to the
integral reduction, the form-factor decomposition introduces Gram determinants in the denom-
inator. The latter denominators cancel when transverse spin vectors and polarization states
for the graviton are introduced. To be concrete, we find that (up to overall numerical factors)

{w7, w8} ∼
{
G(q1, u2), G(q2, u1)

}
, (5.21)

as well as

{w9, . . . , w13} ∼
{
G(u1, u2, q2), G(u1, u2, q1),

G(u1, u2, q1 + q2), G(u2, q1, q2), G(u1, q1, q2)
}
,

(5.22)

and finally

w15 ∼ G(u1, u2, q1, q2). (5.23)

Note that G(u1, u2, q1, q2) is equivalent to tr25, where

tr5 = 4i ϵµναβ u
µ
1u

ν
2q

α
1 q

β
2 . (5.24)

Therefore, the appearance of w15 in the denominators corresponds directly to a double pole.
At last, we want to remark that w14 is related to the modified Cayley determinant (see e.g.
ref. [124]) of the linearized pentagon integral.

The form (4.27) has interesting physical implications: first of all, the mass parameters do
not appear in the function alphabet. Consequently they appear in polynomial form through
N n

i , as observed in ref. [125, 126]. Second, the rational form of the coefficients implies that
the waveform at fixed-order is determined by a finite set of polynomial coefficients of the
numerator and denominator functions N n

i and wi. Finally, in a further expansion, such as a
PN expansion, the expansion of the denominator letters imply repetitive patterns. In light of
that, only a finite number of terms is required to obtain the full PM expansion, provided
the integral functions and the function alphabet is known.

In order to simplify our expressions, we exploit the observation that partial fractioned
coefficients rn

i take a simple form, with reduced mass dimension of numerator and denominator.
We use the algorithm [127] (see also [128]) based on polynomial division to obtain compact
analytic forms of the waveform functions.
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Figure 8. Parameters and coordinate system for observer of radiation from two-object scattering
process.

6 Fourier transformation

In order to make contact with a signal that could be observed in a gravitational wave detector,
we must perform the Fourier transformation to time-domain and impact-parameter space
given in eq. (3.6). After absorbing the IR divergences into the redefinition of the retarded
time, we are left with the integral

h∞ = iκ

2

∫ ∞

0

dω

2π

∫
dDµ e−iωu+ib·q1

(
M−2

tree +M−2
finite +M−2

tail +M−2
UV + c.c.

)
. (6.1)

The UV divergent contribution is polynomial in qi and integrates to δ(|b|) in the Fourier
transformation, being at the same time associated to the hard region (4.21). Since such terms
do not contribute to the far-field waveform, we drop the UV contribution from now on. The
tree, the finite one-loop waveform and the tail term yield finite results.

We start by defining a reference frame and initial conditions for the external kinematics.
We choose the frame shown in figure 8 where the position of the observer is given in terms of
Euler angles. Hence, the graviton momentum and the (−2)-polarization are

kµ = ω


1

cosϕ sin θ
sinϕ sin θ

cos θ

 , εµν
−2 = εµ

−ε
ν
− with εµ

− = 1√
2


0

cosϕ cos θ + i sinϕ
cos θ sinϕ− i cosϕ

− sin θ

 . (6.2)

As suggested by ref. [61], we define the external states and their initial separation to be
with respect to u1 and u2,

uµ
1 = (γ, 0, 0, −

√
γ2 − 1) , uµ

2 = (γ, 0, 0,
√
γ2 − 1) , bµ = (0, |b|, 0, 0) . (6.3)

Since γ corresponds to the Lorentz factor it is related to the initial velocity ±v of each of
the black holes through γ = 1/

√
1− v2. We will show plots of waveforms for the observer at

position ϕ = 7π/10, θ = 7π/5 and a range of initial velocities. All plots are for an equal mass
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Figure 9. The leading-order waveform emitted during the scattering of two Schwarzschild black
holes.

black hole binary, i.e. q = 1, with m1 = m2 = M⊙. Typical LIGO-Virgo-KAGRA source
waveforms with mi ∼ 30M⊙ would only differ by an overall scale from what we present.
Note that the difference between mi and m̄i is subsubleading in the classical expansion
and we hence neglect it in the Fourier transformation. We now turn our attention to the
actual integration in eq. (6.1). First, q2 is integrated out using the delta-function enforcing
energy-momentum conservation. Next, q1 is parameterized by

qµ
1 = z1u

µ
1 + z2u

µ
2 + zb

bµ

|b|
+ zv

vµ

|v|
with vµ = ϵµνρσu1νu2ρbσ , (6.4)

which introduces an overall Jacobi-factor of 1/
√
y2 − 1. The integral over z1 and z2 can be

evaluated by solving the two constraints given in the delta functions introduced by the on-shell
conditions. The problem is hence reduced to the integration over the three variables zb, zv

and ω. For these final steps, we follow the semi-analytical approach outlined in ref. [56]. In
the following, we focus on the calculation of the different pieces in eq. (6.1). As a final point,
we note that there could be a non-dynamical background contributing to the waveform, since
we have been consistently neglecting zero frequency (ω = 0) terms. Luckily, a gravitational
wave detector only measures the changes in the curvature of space-time. We hence ‘gauge’
our signal by subtracting the value at u/|b| = −300.

The Fourier transformation of the tree can be performed fully analytical with the use of
the residue theorem. Additionally, poles at infinity are regularized using a principle value
prescription [83]. We show results for two Schwarzschild black holes in figure 9 for an observer
at ϕ = 7π/10 , θ = 7π/5.

The one-loop waveform Mfinite contains functions, such as square-roots and logarithms,
not present at tree level, which complicates the task significantly. As explained in detail
in ref. [56], the integration over ω naturally splits the waveform into two pieces, where one
can be written as derivatives of a principle value PV( 1

u/|b|+zb
) and the other as derivatives

of a delta function δ(u/|b|+ zb). This allows for an analytic integration of zb using residues.
The numerical integration over zv is stable for the scalar waveform. When discarding the
cut-contribution, we reproduce figure (11) of ref. [56]. Adding the cut amplitude changes the
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Figure 10. The next-to-leading order correction to the waveform emitted during the scattering of
two Schwarzschild black holes. The scale-dependent tail contribution is omitted.

waveform and results are displayed for a range of velocities at position ϕ = 7π/10, θ = 7π/5 in
figure 10. (Explicitly, we show the finite part of the waveform, Mfinite, with the normalization
factor cN |ϵ=0 (B.33) evaluated in four dimensions. The explicit formula for Mfinite is given
in the supplementary material.) We note, that the choice made on how to separate the tail
from the finite piece significantly influences this result.

The spin corrected waveform introduces additional challenges for the stable numer-
ical integration over zv after following the outlined steps. We hence leave this Fourier
transformation to future work.

7 Validation

Let us summarize in this section the cross checks that we have performed on our computations.

Amplitude Computation: the numerical computation of the integral coefficients cs⃗
Γ,i(ϵ)

is performed using the well-tested Caravel framework. The necessary tree-level
scattering amplitudes involved in the unitarity cut computations have been already
used at the two-loop level [71], which yields strong consistency checks of the amplitudes.
For every phase-space point we perform the so-called N = N check, i.e. we determine
the coefficients cs⃗

Γ,i(ϵ) by sampling eq. (4.6) sufficiently often. Afterwards, we generate
an additional on-shell loop-momentum configuration ℓΓ and compute both sides of
eq. (4.6) to check if the integrand parameterization spans the entire amplitude.

Master Integrals: we computed independently all necessary master integrals and their
corresponding cut. We extracted analytical expressions from high-precision evaluations
using AMFlow [129], which we validated against pySecDec [130]. Furthermore, we
found perfect agreement with ref. [60] after translating conventions.

Analytical Reconstruction: the analytically reconstructed amplitude expressions are vali-
dated by numerical means. We evaluate them at a phase-space point in a finite-field for
a cardinality that was not used in the reconstruction and compare the results with a
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direct numerical computation within Caravel using the same cardinality. Furthermore,
we checked that the classical expanded amplitude is independent of the choice of basis
for the intermediate form-factor decomposition by changing the tensors in eq. (2.37).

Spectral Waveform: for tree-level scalar-scalar scattering we reproduce the result of
ref. [106], while the scalar-vector tree-level amplitude is validated against an inde-
pendent computation using the worldline quantum field theory formalism. We also
reproduce the results of ref. [52]. The one-loop building block for the scalar-scalar
scattering has been validated against previous results of refs. [56, 57]. Furthermore,
we also find agreement with the independent computations [131, 132] for the cut
contribution including the presence of additional UV divergences and with [133] up
to qi-independent terms and an overall factor i. Finally, for both, scalar-scalar and
scalar-vector, the infrared divergences of the combined amplitude and cut contributions
agree with Weinberg’s infrared factorization formula [103]. In addition, we verified
that the scalar-vector amplitude reduces to the scalar-scalar one in the limit S → 0.
Finally, we compared the loop-level spectral waveform to an independent computation
using a worldline quantum-field-theory [52] in the in-in formalism [134], where the
metrix-fluctuation appears as classical expectation value. In this comparison we used
the integrals [60] with Feynman-iϵ prescriptions for gravitons, as opposed to retarded
ones.

Fourier Tranformation: we confirm the cancellation of all unphysical poles in the spectral
waveform. We perform this check by analyzing the vanishing locus of the denominator
factors of eq. (5.20) on the physical phase space. That is, we evaluate the spectral
waveform, see eq. (3.6), for fixed helicity and spin assignment on generic lines through
the vanishing loci and numerically confirm that the functions are smooth. Ignoring the
cut contribution we also reproduce figure (11) of ref. [56].

8 Conclusion

We computed the gravitational Bremsstrahlung to next-to-leading order, i.e at O(G3) in the
gravitational coupling expansion in the weak field regime. We also compute for the first time
linear-in-spin (Sµ) effects. To formulate the classical observable we study the time dependent
expectation value of the metric fluctuation, which is interpreted as the waveform of the
emitted gravitational wave. To organize the computation we embed the system into minimally
coupled second-quantized field theories, which we consider in a scaling limit, associated to
the classical point-particle dynamics. The results extend recent computations of the same
observable [56–58], including cut contributions [60, 131–133] and spin terms.

We consider two types of theories. Two distinct massive scalar theories, which yield the
dynamics of spin-less black-hole scattering. To describe the scattering of a spinning and a
spin-less black hole, we use the minimally coupled scalar theory, as well as minimally coupled
massive vector fields (Proca theory). In this setup one can obtain up to quadratic in spin
corrections [71, 82], and we focused here on the linear term.

The classical observable is obtained from tree-level and one-loop scattering amplitudes
and its two-particle cut in the eikonal limit. The results validate a generalization of the
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universal IR factorization formula of Weinberg and a recent prediction for the IR of the
classical waveform observable [60]. Surprisingly, we encounter as well a UV divergence
in intermediate steps. The UV divergence is associate to the overlap of the eikonal and
hard region of the Feynman integrals in their classical limit. The divergence is local in the
momentum transfer and drops out after Fourier transformation to impact parameter space
in the far field. In this context we also point out another surprising feature of the classical
limit, namely that UV singularities can be obtained in one-loop cuts.

We observe interesting analytic properties in the spectral waveform. The coefficients of
the transcendental and algebraic basis functions are rational expressions, whose denominators
are symbol letters of the functions characteristic alphabet of the basis of integral functions.
We anticipate that this property leads to repeated patterns in further expansions of the
present post-Minkowskian result, e.g. in the post-Newtonian limit.

For the computation of scattering amplitudes, we applied the numerical unitarity approach
in combination with analytic reconstruction. In order to find compact final expressions, we
used partial-fraction decomposition based on methods in algebraic geometry. Within this
setup we anticipate that higher-spin corrections are well within reach in the near future.
Finally, we are looking forward to further developments towards the computation of higher-
order gravitational corrections and the advancement of multi-loop integration techniques
and the classical waveform observable.
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A Field theory

The Einstein-Hilbert Lagrangian LEH is given by,

LEH = − 2
κ2

√
|g|R , (A.1)
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where g = det(gµν) and R the Ricci scalar contraction R = Rρ
µρν g

µν of the Riemann tensor.
We use the conventions,

Rµ
νρσ = ∂ρΓµ

νσ − ∂σΓµ
νρ + Γµ

αρΓα
νσ − Γµ

ασΓα
νρ , (A.2)

Γµ
νρ = 1

2g
µσ [∂νgσρ + ∂ρgσν − ∂σgνρ] . (A.3)

The linearized Riemann tensor is given by,

Rµνρσ = −κ2
[
∂µ∂ρhνσ − ∂µ∂σhνρ − ∂ν∂ρhµσ + ∂ν∂σhµρ

]
. (A.4)

In order to clarify our conventions, we introduce quantum fields and state spaces next.
The graviton operator can be expanded in its modes as

≂µν(r) =
∑

h=±2

∫
dΦk

[
ah(k)ε̄hµν(k)e−ik·r + ah†(k)εhµν(k)eik·r] (A.5)

where we drop the unphysical modes for simplicity. The polarization tensors for the graviton
are defined in terms of products of vector states as given by eq. (2.44). The measure factors
and commutation conventions are,

dΦk = dDk

(2π)D
θ(k0)δ̂(k2) ,

[
ah(k), ah′†(k′)

]
= (2Ek)δ̂D−1(k − k′)δhh′

. (A.6)

and vanishing other commutators and we suppress un-physical modes.
Analogously, the massive vector and scalar fields are described by

Vµ(r) =
3∑

v=1

∫
dΦp

[
bv(p)ε̄µ

v (p)e−ip·r + bv†(p)εµ
v (p)eip·r] , (A.7)

≨(r) =
∫
dΦp

[
b(p)e−ip·r + b†(p)eip·r] . (A.8)

To simplify the notation we will use the symbols bs and bs† to denote vector states and scalar
states, with the index s labeling the different modes,{

b0(p), b1(p), b2(p) , b3(p)
}
=
{
b(p), b1(p), b2(p), b3(p)

}
. (A.9)

The mass m of the associated states is encoded by the square of the momentum argument
p2 = m2. Phase space measure and creation/annihilation operators for matter the fields
≨ and Vµ are,

dΦpi =
dDpi

(2π)D
θ(p0)δ̂(p2i −m2

i ) ,
[
bs1(k), bs2†(k′)

]
= (2Ek)δ̂D−1(k − k′)δs1s2 , (A.10)

We use vector-boson polarisation states that are real and normalised,

εvµ(p)εµ
v′(p) = −δv′v , (A.11)

and

ε̄vµ(p) = εvµ(p) , ε̄vµ(p)εv′ν(p)δvv′ = pµpν

p2
− ηµν . (A.12)

To be explicit, we consider boosts of the configuration with momentum p = (m, 0, 0, 0) and
polarisation states pointing into ex, ey and ez. Given that the boost are unique only up to
little-group rotations, the basis of states is not unique either.
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p2

p1

p′2

p′1

kℓ

ℓ+ p1

ℓ− q2

ℓ+ q1

ℓ− p2

Figure 11. Topology A pentagon integral. The momenta {p1, p2} are incoming, {p′
1, p

′
2, k} outgoing

and ℓ flows clockwise in the diagram.

B Feynman integrals

In this section, we review the set of Feynman integrals required for the one-loop computation.
We follow the ideas of ref. [60]. Representative Feynman diagrams of the five-point scattering
process are shown in figure 4. We consider these diagrams in the classical limit. The pentagon
integral family of topology A in figure 4 before the classical limit is given by

IA(ν⃗) ≡ eγEϵ
∫

dDℓ

iπD/2
1

ρν1
1 ρ

ν2
2 ρ

ν3
3 ρ

ν4
4 ρ

ν5
5
, (B.1)

with

ρ1 = ℓ2 + iδ, ρ2 = (ℓ+ p1)2 −m2
1 + iδ, ρ3 = (ℓ+ q1)2 + iδ, (B.2)

ρ4 = (ℓ− q2)2 + iδ, ρ5 = (ℓ− p2)2 −m2
2 + iδ.

The vector ν⃗ = (ν1, ν2, ν3, ν4, ν5) denotes the propagator powers. We are only interested in
the classical limit of these integrals. Using the momentum parametrization in eq. (2.10) and
taking the limit m̄ → ∞ we obtain the following propagators,

ρ1 = ℓ2 + iδ, ρ2 = 2(ℓ · u1) + iδ, ρ3 = (ℓ+ q1)2 + iδ, (B.3)
ρ4 = (ℓ− q2)2 + iδ, ρ5 = −2(ℓ · u2) + iδ.

In the following, we denote the classical integral family simply by IA(ν⃗), where we understand
that all propagators are taken in their classical limit (see eq. (B.3)). For the classical integral
family we construct a pure basis of 16 master integrals. First, we define the following 6
arguments of square roots,

r1 = −q21, r2 = −q22, r3 = y2 − 1, (B.4)
r4 = ω2

1 − q22, r5 = ω2
2 − q21, ∆5 = G(u1, u2, q1, q2), (B.5)

where we have defined the Gram determinant by

G({pi}) = det({pj · pk}). (B.6)
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Our choice of the 16 pure master integrals of IA read,

MA
1 = ϵ(1− 2ϵ) IA[1, 0, 1, 0, 0], MA

2 = ϵ(1− 2ϵ) IA[1, 0, 0, 1, 0],

MA
3 = ϵ(1− 2ϵ)

ω1
IA[0, 1, 0, 1, 0], MA

4 = ϵ(1− 2ϵ)
ω2

IA[0, 0, 1, 0, 1],

MA
5 = ϵ2

√
r1 IA[1, 1, 1, 0, 0], MA

6 = ϵ2
√
r4 IA[1, 1, 0, 1, 0],

MA
7 = ϵ2

√
r5 IA[1, 0, 1, 0, 1], MA

8 = ϵ2
√
r3 IA[0, 1, 1, 0, 1], (B.7)

MA
9 = ϵ2

√
r2 IA[1, 0, 0, 1, 1], MA

10 = ϵ2
√
r3 IA[0, 1, 0, 1, 1],

MA
11 = ϵ2q21 ω1 IA[1, 1, 1, 1, 0], MA

12 = ϵ2
√
r3 q

2
1 IA[1, 1, 1, 0, 1],

MA
13 = ϵ2

√
r3 q

2
2 IA[1, 1, 0, 1, 1], MA

14 = ϵ2q22 ω2 IA[1, 0, 1, 1, 1],

MA
15 = ϵ2ω1 ω2 IA[0, 1, 1, 1, 1], MA

16 = ϵ2
√
∆5 IA[1, 1, 1, 1, 1][µ11].

Here IA[1, 1, 1, 1, 1][µ11] denotes the insertion of the loop-momentum dependent numerator,

µ11 =
G(ℓ, u1, u2, q1, q2)
G(u1, u2, q1, q2)

, (B.8)

for the pentagon integral that effectively shifts it to d = 6− 2ϵ dimensions. The remaining
classical integral families for the topologies shown in figure 4 can be conveniently obtained
through,

IB ≡ IA|u1→−u1
, IC ≡ IA|u2→−u2

, ID ≡ IA|(u1,u2)→−(u1,u2) . (B.9)

The same choice of basis (B.7) forms a pure basis also for IB, IC and ID. These four
integral families are sufficient to cover all occurring integrals in the classical limit. The
reason for the reduced set of topologies is that in the limit m̄→ ∞ propagators can become
linearly dependent and can be reduced via partial fractioning. One example for such a
case is the topology shown in figure 6, in which an external graviton emission from massive
internal lines is present.

We now turn to the integrals required in the classical waveform observable, which
combines classical integrals and classical limits of cut-integrals. Before the classical limit is
taken we add the Cutkosky-cut contribution in the KMOC observable to all integrals (4.4).
Among the integrals topologies A, B, C and D, only the family D has a non-vanishing cut
in the (p′1 + p′2)-channel, which leads, according to ref. [60], to,

ID(ν⃗) + Cut1′2′ ID(ν⃗) = ID(ν⃗)− 2iIm [ID(ν⃗)] = [ID(ν⃗)]∗ . (B.10)

After the classical limit is taken, we work with the complex conjugate integrals of family
D. Given the scaling limit of integral coefficients the integrals appear in particular linear
combinations. We define such linear combinations of master integrals and provide analytical
results that are valid in the physical region of phase space given by eq. (2.12). We follow
ref. [60] and define the linear combinations by,

Iσ1,σ2(ν⃗) ≡ IA(ν⃗) + (−1)ν2σ1 IB(ν⃗) + σ2(−1)ν5 IC(ν⃗) + σ1σ2(−1)ν2+ν5
[
ID(ν⃗)

]⋆
, (B.11)
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where σi = (−1)ji picks out the mass scaling m̄j1
1 m̄

j2
2 . The pure basis is grouped analogously,

as the algebraic prefactors are identical across all four topologies. Therefore, we refer to the
linear combinations of eq. (B.11) applied to the master integrals of eq. (B.7) by,

Mσ1,σ2
n , (B.12)

where n refers to the particular master integral. We compute the analytical expressions for
the M±±

n integrals by numerical fitting. We compute high-precision numerical values for all
master integrals MX

n , with X = A,B,C,D, for all four integral families in the physical region
using auxiliary mass flow method [135–137], as implemented in the AMFlow package [129].
We then combine the numerical values in the linear combinations of eq. (B.11) and obtain
analytical expressions by fitting on weight-1 and 2 functions via the PLSQ algorithm provided
by PolyLogTools [138]. Our results confirm the expressions of ref. [60].

For convenience, we now collect the results for the integral functions M±±
n in our

conventions. All functions M−−
n vanish, while the functions,

M++
n ̸= 0, (B.13)

drop out in the classical limit because of vanishing integral coefficients. The non-vanishing
bubble integrals are,

M−+
3 = ϵ

[
− 4iπ

]
+ ϵ2

[
4π2 + 8iπ log(−2ω1)

]
+O(ϵ3), (B.14)

M+−
4 = ϵ

[
− 4iπ

]
+ ϵ2

[
4π2 + 8iπ log(−2ω2)

]
+O(ϵ3). (B.15)

The non-vanishing triangle integrals are,

M−+
5 = ϵ2

[
− 2π2

]
+O(ϵ3), (B.16)

M−+
6 = ϵ2

[
−2π2 − 2iπ log

(√
r4 − ω1√
r4 + ω1

)]
+O(ϵ3), (B.17)

M+−
7 = ϵ2

[
−2π2 − 2iπ log

(√
r5 − ω2√
r5 + ω2

)]
+O(ϵ3), (B.18)

M−+
8 = ϵ

[
− iπ

]
+ ϵ2

[
π2 − iπ log

(
y2 − 1
ω2
2

)]
+O(ϵ3), (B.19)

M+−
8 = ϵ

[
− iπ

]
+ ϵ2

[
π2 + 2iπ log(y +

√
r3)− iπ log

(
y2 − 1
ω2
2

)]
+O(ϵ3), (B.20)

M+−
9 = ϵ2

[
− 2π2

]
+O(ϵ3), (B.21)

M−+
10 = ϵ

[
− iπ

]
+ ϵ2

[
π2 + 2iπ log(y +

√
r3)− iπ log

(
y2 − 1
ω2
1

)]
+O(ϵ3), (B.22)

M+−
10 = ϵ

[
− iπ

]
+ ϵ2

[
π2 − iπ log

(
y2 − 1
ω2
1

)]
+O(ϵ3). (B.23)
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The non-vanishing box integrals are,

M−+
11 = ϵ

[
− iπ

]
+ ϵ2

[
π2 − iπ log

(
q42

4ω2
1q

4
1

)]
+O(ϵ3), (B.24)

M−+
12 = ϵ

[
iπ
]
+ ϵ2

[
π2 − iπ log

(
q41(y2 − 1)

ω2
2

)]
+O(ϵ3), (B.25)

M+−
12 = ϵ

[
iπ
]
+ ϵ2

[
π2 + 2iπ log(y +

√
r3)− iπ log

(
q41(y2 − 1)

ω2
2

)]
+O(ϵ3), (B.26)

M−+
13 = ϵ

[
iπ
]
+ ϵ2

[
π2 + 2iπ log(y +

√
r3)− iπ log

(
q42(y2 − 1)

ω2
1

)]
+O(ϵ3), (B.27)

M+−
13 = ϵ

[
iπ
]
+ ϵ2

[
π2 − iπ log

(
q42(y2 − 1)

ω2
1

)]
+O(ϵ3), (B.28)

M+−
14 = ϵ

[
− iπ

]
+ ϵ2

[
π2 − iπ log

(
q41

4ω2
2q

4
2

)]
+O(ϵ3), (B.29)

M−+
15 = ϵ

[ iπ
2
]
+ ϵ2

[
−π

2

2 + iπ log(y +
√
r3)−

iπ

2 log
(
4ω2

2

)]
+O(ϵ3), (B.30)

M+−
15 = ϵ

[ iπ
2
]
+ ϵ2

[
−π

2

2 + iπ log(y +
√
r3)−

iπ

2 log
(
4ω2

1

)]
+O(ϵ3). (B.31)

The pentagon integrals contribute only to higher orders in ϵ,

M±∓
16 = O(ϵ3) , (B.32)

and are not required for the one-loop results.
To obtain the necessary integrals in the physical normalization, a factor of,

c̃N = i

(4π)2
(
4πµ2e−γE

)ϵ
, (B.33)

needs to be included. In the supplementary material we group another fartor of π with
this normalisation using cN = −πc̃N .

The final result for the spectral waveform is written in terms of linearly independent
special functions fi that we collect here for completeness. The functions,

f1 = iπ, f2 =
iπ√
y2 − 1

, (B.34)

f3 =
2 log

(√
ω2
1−q22−ω1√
−q22

)
− iπ√

ω2
1 − q22

, f4 =
−iπ√
−q21

, (B.35)

f5 = log
(
ω2
2
ω2
1

)
, f6 = log (4) , (B.36)

f7 = log
(
q21
q22

)
, f8 =

log
(
y +

√
y2 − 1

)
√
y2 − 1

, (B.37)

f9 = γE − log(π), f10 = 1, (B.38)
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f11 =
2 log

(√
ω2
2−q21−ω2√
−q21

)
− iπ√

ω2
2 − q21

, f12 =
−iπ√
−q22

, (B.39)

f13 =
1√
y2 − 1

, f14 =
log

(
(y2 − 1)ω2

ω1

)
√
y2 − 1

, (B.40)

f15 =
log

(
(y2 − 1)ω1

ω2

)
√
y2 − 1

, f16 =
log

( −q21
ω1ω2

)
√
y2 − 1

, (B.41)

f17 =
log

( −q22
ω1ω2

)
√
y2 − 1

, f18 = log
(
y +

√
y2 − 1

)
, (B.42)

span the basis of Mfinite, while the remaining regulator dependent functions are necessary
to express the MUV, MIR and Mtail parts of the waveform:

f19 = log
(
ω1ω2
µ2IR

)
, f20/21 =

log
(

ω1ω2
µ2
IR/UV

)
√
y2 − 1

, (B.43)

f22 = log
(
µ2

µ2IR

)
, f23/24 =

log
(

µ2

µ2
IR/UV

)
√
y2 − 1

. (B.44)

C IR divergence of waveform observable

Scattering amplitudes of matter coupled to gravity exhibit universal infrared singularities [103].
Here we collect the known results, following ref. [57]. The infrared divergence of a n-point
one-loop amplitude is proportional to tree amplitudes,

M1−loop,s⃗(pi) =
1
ϵ
WS(pi)M tree,s⃗(pi) , (C.1)

for n particles with momentum p2i = m2
i and mass mi, which may be vanishing. Total

momentum is conserved p1 + p2 = p′1 + p′2 + k. For the main text we consider the five-point
processes (2.8) and (2.9).

The soft factor WS arises from soft graviton exchanges between pairs of distinct scattering
particles. The contribution from particle i and j ̸= i is given by,

βij =

√√√√1−
m2

im
2
j

(pi · pj)2
, (C.2)

cij =

mi = 0 or mj = 0 , G
2π 4(pi · pj) ,

else , G
2π

(pi·pj)(1+β2
ij)

βij
,

(C.3)

fij =

mi = 0 or mj = 0 , log
∣∣∣∣2(pi·pj)

µ2
IR

∣∣∣∣− πiΘ[(pi · pj)] ,

else , log
[
1+βij

1−βij

]
− 2πiΘ[(pi · pj)].

(C.4)

For emission and absorption by the same external line, the imaginary parts are absent and
one has to rearrange the equations.
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For the imaginary contribution one considers all pairs of initial-state and all pairs of
final-state particles,

i Im
[
WS

]
= 1

4

n∑
i,j=1
i ̸=j

cij fij = − iπ2 (2c12 + 2c1′2′ + c1′k + c2′k) . (C.5)

For the waveform observable we need to add the cut in the (p′1 + p′2)-channel from the 1-loop
amplitude. This cut is associated to the function f1′2′ , which is the triangle function with
the external legs p′1 and p′2. Before taking the classical limit the cut can be obtained as the
branch cut of f1′2′ in the analytic continuation in s1′2′ , which evaluates to −2ic1′2′Im(f1′2′).
Adding this cut then yields the imaginary part of the waveform soft factor,

i Im
[
WS

]
= i Im

[
WS

]
+ Cut1′2′(WS) = − iπ2 (2c12 − 2c1′2′ + c1′k + c2′k) , (C.6)

effectively, flipping the sign of the c1′2′ contribution. Plugging in the kinematic expressions
and taking the classical limit we obtain,

WS =WS + Cut1′2′(WS) = iG(m̄1ω1 + m̄2ω2)
[
1 + y(2y2 − 3)

2(y2 − 1)3/2

]
. (C.7)

We observe that the hyper-classical terms cancel and that the classical contribution of the
real part of the IR divergence vanishes [57] as well.

D Momentum parameterization

As discussed in section 4.5, we employ functional reconstruction techniques to obtain analytical
expressions for the classical amplitudes. The necessary numerical values for this procedure
are generated using Caravel.

For convenience and efficiency, we work in finite-field (Fp) arithmetic, therefore we
require a Fp parameterization of the external momenta and polarization states. We obtain
the parameterization from rotations and boosts of a generic momentum configuration and
use rational representations of sin , cos , sinh and cosh functions,

sinr(x) =
2x

x2 + 1 , cosr(x) =
x2 − 1
x2 + 1 , (D.1)

sinhr(x) =
2x

x2 − 1 , coshr(x) =
x2 + 1
x2 − 1 , (D.2)

which fulfill,

sin2r(x) + cos2r(x) = 1, cosh2r(x)− sinh2r(x) = 1. (D.3)

In order to avoid complex-valued helicity states we work in an alternating metric signature,

η = diag{1,−1, 1,−1}. (D.4)

In this signature one can construct Majorana-Weyl spinors, i.e. real-valued helicity spinors.
This does not imply any loss of generality, if we extract rational expressions in momentum
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invariants sij = (p1 + pj)2. However, we will need to pay attention to the metric convention
in boosts and the phase-space parameterization.

We can construct a momentum parameterization for p1, p2, p′1, p′2 and k in the all out-
going convention, as this is the natural parameterization used in Caravel. It is enough to
obtain momenta for u1, u2, q1 and q2 to obtain a full set of external momenta by,

p1 = m̄1u1 +
q1
2 , p′1 = −m̄1u1 +

q1
2 ,

p2 = m̄2u2 +
q2
2 , p′2 = −m̄2u2 +

q2
2 , k = −(q1 + q2).

(D.5)

We define the velocities u1 and u2 by,

uµ
1 =


1
0
0
0

 , uµ
2 =


coshr(x)
sinhr(x)

0
0

 , (D.6)

while the momentum transfer vectors qi read,

qµ
1 = r1


0

sinhr(t1)
coshr(t1)

0

 , qµ
2 = r2


sinhr(t2) sinhr(x)
sinhr(t2) coshr(x)
coshr(t2) coshr(t3)
coshr(t2) sinhr(t3)

 . (D.7)

The relations between the physical invariants and these parameterizations are given by,

y = u1 · u2 = coshr(x), q21 = r21, q22 = r22,

ω1 = k · u1 = −r2 sinhr(t2) sinhr(x), ω2 = k · u2 = r1 sinhr(t1) sinhr(x).
(D.8)

At this point, the momenta are functions of the above auxiliary variables,

{r1, r2, t1, t2, t3, x}, (D.9)

and in the mass parameters m̄1 and m̄2. All of them, except for t3, are related to the
kinematical invariants. The variable t3 is defined through the on-shellness of the graviton
momenta, i.e. k2 = 0, and is given by

t3 =
√
r21 + r22 − 2r1r2 [coshr(t1) coshr(t2) + coshr(x) sinhr(t1) sinhr(t2)]
r21 + r22 + 2r1r2 [coshr(t1) coshr(t2)− coshr(x) sinhr(t1) sinhr(t2)]

. (D.10)

With this we have an algebraic parameterization of phase space because of the square root
in the function t3. However, the dependence on the kinematic invariants is rational. The
momenta are then generated as follows,

1. Generate random values for {r1, r2, t1, t2, x} ∈ Fp, such that t3 has a solution in Fp.

2. Generate random values for m̄1 and m̄2 such that√
m̄i +

q2i
4 ∈ Fp. (D.11)
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3. Construct the momenta according to eq. (D.5).

All square roots are taken in Fp, i.e. for r =
√
s one searches a number r in Fp with,

r2 mod p = s, (D.12)

This number cannot always be found, as the field is not algebraically complete. However,
squares are frequent (approx. 50% chance) in finite fields and random sampling of input
parameters until all square roots can be taken, is sufficiently efficient.

Data Availability Statement. This article has no associated data or the data will not
be deposited.

Code Availability Statement. This article has code included as electronic supplementary
material.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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