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SYNOPSIS

The AdS/CFT correspondence provides a map between a quantum field theory and

a gravitational theory. The correspondence is a powerful tool which can be used to

study strongly coupled field theories using the dual gravity description. Over the

last few years, taking motivation from various condensed matter systems the cor-

respondence has been generalized and and applied to understand non-relativistic

holography. An interesting class of non-relativistic spacetimes exhibits so-called

hyperscaling violation. The gravity duals are conformally Lifshitz and arise as

solutions to effective Einstein-Maxwell-dilaton theories. A certain subclass of hy-

perscaling violating theories can be constructed in string theory by null reduction

of AdS plane waves which are effectively large boost, low temperature limit of

boosted black branes. Some of the hyperscaling violating theories exhibit novel

scaling behaviour for entanglement entropy which is also reflected in certain string

realizations. This thesis can be broadly divided into two parts. After introducing

the important aspects of AdS/CFT in Chapter 1, we will describe the work done

in [P1] which involves the study of mutual information in the string constructions.

We briefly summarize it as follows:

Entanglement Entropy (EE) and Mutual Information (MI):

Inspired by the area scaling of black hole entropy, Ryu and Takayanagi proposed a

simple correspondence for calculating entanglement entropy in field theories with

gravity duals: the EE for a subsystem in the d-dimensional field theory is the area

in Planck units of a minimal surface bounding the subsystem, the bulk theory

living in (d + 1)-dimensions. Field theoretic techniques like “replica trick” can

only be applied to study EE of ground state of 2-D systems. This geometric pre-

scription thus gives us a calculable handle on what in field theory formalism is a

rather complicated question.

In [P1] along with my advisor Prof. K. Narayan, we analysed mutual informa-

tion (MI) for a certain class of CFT excited states: states with constant energy-

momentum flux turned on (T++ ∼ Q). The corresponding gravity duals are given

by simple deformations of AdS, called AdS plane waves. Earlier works observed

that the EE for a strip-subsystem is dependent on the orientation of the strip:

for AdS5 plane waves the EE grows logarithmically while for a general AdSd+1

with d 6= 4 the EE ∼
√
Ql2−d/2 where l is the subsystem width. When the strip

is orthogonal to the flux, we have a phase transition with the EE saturating for

l� Q−1/d.
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Mutual information is another interesting information theoretic quantity defined

as: I[A : B] = S(A) + S(B) − S(A ∪ B) where A and B are two disjoint sub-

systems. The Ryu-Takayanagi prescription implies a disentangling transition for

mutual information in the large N classical gravity approximation with a criti-

cal separation. In [P1] we studied MI in AdS plane waves for the two different

orientations of the strip subsysmtem. For wide strips Qld � 1 parallel to the

flux we observed a disentangling transition at a critical separation (lc) lesser than

that of the ground state with lc being independent of the characteristic energy

scale Q−1/d. This is quite distinct from the finite temperature case where for large

enough subsystem size i.e. lT � 1 the linear extensive growth of entanglement

implies that the subsystems disentangle for any finite separation independent of

l. A phase transition for l � Q−1/d is observed when the strip is orthogonal to

the flux and the MI vanishes. We also study the small width regime Qld � 1

treating Qld as a perturbative parameter; we observe the disentangling transition

occurs at a lesser critical separation compared to the ground state. The interme-

diate regime i.e Qld ∼ 1 is analysed numerically where we can see a non-trivial

dependence of the disentangling point on Q and l. Overall, this is suggestive of

the fact that these excited states are “partially ordered”–they disentangle faster

than the ground state but slower than thermal states.

Non-relativistic holography and hydrodynamics:

In a series of work [P2, P’1, P3] done in collaboration with my advisor Prof. K.

Narayan and fellow graduate student Kedar S. Kolekar, I studied the shear dif-

fusion constant and the shear viscosity-to-entropy density ratio for hyperscaling

violating Lifshitz (hvLif) theories. In the first couple of works [P2, P’1], the anal-

ysis was performed adapting a membrane paradigm-like approach used in [JHEP

0310, 064 (2003)] by P. Kovtun, D. T. Son and A. O. Starinets.

In the current thesis however, we will be interested in looking at the simpler where

we do not perturb the background gauge field. The spatial directions {xi} enjoy

translation invariance. Thus the diffusion of shear gravitational modes hxy, hty, can

be mapped to charge diffusion in an auxilliary theory obtained by compactifying

the (di + 2)-dimn theory along one of the spatial directions, say y. We turn

on plane wave modes for the perturbations ∝ e−Γt+iqx where Γ is the typical time

scale over which the perturbation decays while q is the momentum along x. The y-

compactification maps hxy, hty to gauge fieldsAt andAx in the (di+1)-dimensional

theory which in turn helps us in defining appropriate currents jµ on the stretched

horizon. A set of self-consistent approximations along with the equations of motion
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eventually leads to Fick’s Law jx = −D∂xjt for charge diffusion of the gauge field

Aµ in the compactified background: we then identify D as the diffusion constant.

In hvLif theories with a gauge field, which is discussed in details in [P’1], the

metric perturbations couple to the gauge field perturbations which complicates

formulating Fick’s Law. A crucial field redefinition helps us in formulating Fick’s

Law in terms of a modified current j̃µ. Similar to the earlier case of dilaton gravity,

a self consistent set of approximations leads to the solutions of the redefined gauge

fields Ãt and Ãx which in turn can be used to evaluate the shear diffusion constant

D in terms of the metric components. However, we will not be concerned with this

case in this thesis and will be presumably appear in a later work of my colleague

Kedar S. Kolekar.

For a 4-dimensional hvLif theories with generic Lifshitz and hyperscaling-violating

exponents (z, θ), following z < 4− θ the diffusion constant D exhibits a power-law

behaviour with respect to the temperature T i.e D ∼ T
z−2

2 (T is the tempera-

ture of the field theory). Further, looking at various special cases motivated us

to conjecture a relation between the shear viscosity (η) and shear diffusion (D)

eventually leading to η
s

= 1
4π

(where η is the viscosity and s is the entropy density)

thus following the universal bound proposed by Kovtun-Son-Starinets [90] for rel-

ativistic field theories. The case where z = 4− θ seems interesting and the shear

diffusion constant has a logarithmic scaling which appears to be a novel behaviour.

The analysis seems to break down in the regime z > 4 − θ failing to give us any

insight into the hydrodynamic behaviour of these theories.

In our subsequent work [P3] we used holographic techniques to study hvLif theo-

ries. Generalizing the approach of A.O. Starinets as given in [Phys. Lett. B 670,

442 (2009)], we studied the quasinormal modes of shear gravitational perturba-

tions for hvLif theories. Quasinormal modes are diffusive solutions to linearized

Einstein’s equations that are regular at the horizon and vanishing at the boundary.

Here again, we turn on the modes hty, hxy and ay of the form e−iωt+iqx. Defin-

ing appropriate new field variables that are gauge invariant under residual gauge

symmetry enables us to identify the relevant differential equations governing these

modes. Restricting to the hydrodynamic regime allows the approximation of low

frequency and momenta relative to the temperature scale which helps in writing

a series solution for quasinormal modes. The lowest quasinormal modes for shear

perturbations follows a dispersion relation of the form ω = −iDq2 which can be

used to read off the shear diffusion constant D. This analysis vindicates our earlier

results [P2, P’1] obtained using the membrane paradigm. Using the asymptotic

behaviour of quasinormal modes, we further computed certain 2-point correlation



functions of the energy-momentum tensor. The poles of these retarded correlators

are identical to the lowest quasinormal frequencies. We further use Kubo’s for-

mula to calculate the shear viscosity (η) vindicating our earlier result that η
s

= 1
4π

for di + 2 − z − θ < 0. Interestingly, when z = di + 2 − θ, we recover universal

behaviour for viscosity i.e. η/s = 1
4π

in the strict Kubo limit i.e. (q = 0, ω → 0)

while D scales logarithmically and can be presumably resummed.

Our work [P1], is suggestive of the fact that in the large N limit, the constant

flux (T++ ∼ Q) disorders the system so the subsystems disentangle at a lesser

critical separation than the ground state. It will be interesting to have a better

understanding of the nature of disentangling transition for an arbitrary excited

state. The emergence of classically connected spacetime is inherently related to

entanglement of the degrees of freedom. It will be interesting to explore these

connections further.

Our work on the diffusion constant in hvLif theories hints at the fact that hydro-

dynamics for hvLif theories where z = di + 2 − θ is novel. As mentioned earlier,

these class of hvLif theories exhibiting z = di + 2 − θ can be thought of as null

reductions of low-temperature, high boost limit of boosted black branes. It would

be interesting to apply the fluid-gravity paradigm to understand the logarithmic

scaling for the shear diffusion constant and explore the hydrodynamics for a highly

boosted observer.

i
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Chapter 1

Introduction

The principal goal of research in theoretical physics in a broad sense is to capture

a vast variety of natural phenomena in a mathematically consistent framework.

Such endeavours often lead to interesting theoretical predictions which are sub-

sequently verified through experiments. On ocassions, inputs from theoretical

physics have led to novel results in mathematics. The past couple of centuries

have witnessed enormous strides in the field of theoretical physics with two of its

crowning achievements being:

General Relativity (GR) AND Quantum Mechanics (QM)

Both these theories work to an excellent degree of accuracy within their respec-

tive regimes of validity but curiously enough, these regimes are mutually exclu-

sive. While QM provides a good description of the physics of atoms and sub-

atomic particles, GR is a classical theory which describes physics over cosmologi-

cal/astrophysical length scales which also reproduces Newtonian Mechanics under

the non-relativistic limit (c → ∞). Thus from a practical point of view QM and

GR explains most of the natural phenomenon we encounter in our “everyday” life–

from scattering experiments in high-energy colliders to the large scale structure of

the cosmos. This however, seems to be a strange coincidence of nature wherein

the fundamental constants ~, c and GN conspire to give a very large Planck scale

(∼ 1018 GeV ) compared to the laboratory scale. However, at super-Planckian

scales quantum mechanical effects of gravity cannot be ignored. It is precisely the

question of reconciliation between GR and QM or in other words the search for a

correct theory of quantum gravity is what has driven a significant fraction of the-

oretical physics research over the last century. It is believed that such a “Theory

1



2 Chapter 1 Introduction

of Everything” will unify the four fundamental forces of electromagnetism, strong

force, weak force and gravity.

Although a complete quantum mechanical theory of gravity still remains elusive,

the search for unification has led to the Standard Model (SM) of particle physics

as we know it today. The SM is a mathematical formulation written in the lan-

guage of quantum fields that contains internal symmetries of the unitary group

SU(3) × SU(2) × U(1). It has been hugely successful in accurately predicting

the existence of various fundamental and composite particles which has been suc-

cessfully detected in collider experiments. The SM received further validation as

recently as 2012 when the Large Hadron Collider (LHC) at CERN announced

the successful experimental detection of the Higgs Boson which was theoretically

predicted back in 1964 [1, 2, 3].

In spite of enjoying such a success, the SM falls short of being a complete “Theory

of Everything” since it does not incorporate gravitational forces. A consistent

quantum theory of gravity must be able to describe physics beyond the Planck

scale (∼ 1018GeV ) (e.g.: physics in the early universe near Big Bang singularity or

final state of a black hole). At the same time the SM must appear as a low-energy

effective theory below the GUT scale of 1016 GeV .

String theory is currently considered to be the leading candidate for a consistent

theory of quantum gravity. It assumes that the fundamental building blocks of

matter are constructed out of extended objects like strings1 instead of point par-

ticles. The mode excitations of these strings correspond to different fundamental

particles that we observe in nature. A consistent quantum theory of strings pre-

dicts the existence of massless spin-2 modes having the same kinematical and dy-

namical property of gravitons. Thus, “quanta”s carrying information about grav-

itational interactions are automatically encoded by construction. Over the later

part of the 80s and early 90s it became further clear that a consistent version of su-

perstring theory also admits higher dimensional objects called D-branes. D-branes

are non-perturbative objects that may be viewed from two different perspectives–

D-branes are hyperplanes where open strings end. The open strings can possibly

deform the D-branes to produce non-trivial gauge fields on it. They can also be

interpreted as dynamical, massive objects that alter the ambient geometry. They

are solutions that arise in the low-energy limit of string theory, supergravity. Using

the dual pictures describing the same object, namely D-brane, in 1997 Maldacena

1We will later encounter other higher dimensional extended objects called D-branes
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conjectured the “AdS/CFT correspondence”[4]–the first concrete realization of

the gauge/gravity duality.

Dualities have played an important role in the development of string theory and

quantum field theories in general. Dualities describe mapping between seemingly

two different theories (with different Lagrangian and degrees of freedom) but are

essentially equivalent at a deep and fundamental level. To be more precise, the

two apparently differing theories must have the same Hilbert space structure and

identical global symmetries. The AdS/CFT correspondence, proposed by Malda-

cena is a conjectured duality between a string theory living a certain background

and a quantum field theory living in one dimension lesser. To be more specific, the

so called Type IIB string theory in anti-de Sitter (AdS) space is dual to N = 4

supersymmetric Yang-Mills theory with a certain gauge group which lives on the

boundary of the AdS space. The couplings and other parameters are related ac-

cordingly. Naively speaking, QFT on flat background does not appear to describe

quantum gravity. However, the AdS/CFT duality relates this apparently ”simple”

theory to a theory of quantum gravity which definitely makes it one of the most

interesting discoveries in modern theoretical physics in the last couple of decades.

Since the AdS/CFT correspondence was conjectured, it has been used as a power-

ful computational tool to give us a better understanding of strongly coupled field

theories. This is because the AdS/CFT correspondence is a strong-weak coupling

duality i.e. the strongly coupled regime of the field theory is described by the low-

energy limit of the dual gravitational theory which is classical and weakly curved.

Thus certain questions pertaining to the strongly coupled regime of field theories

become computationally tractable on the gravity side.

Since Maldacena’s proposal, a flurry of activities in this field has led to the devel-

opment of a holographic dictionary. The AdS/CFT correspondence has also been

generalized further to describe strongly coupled regime of non-relativistic field

theories too. A particular class of non-relativistic field theory of interest exhibit

hyperscaling violation [5, 6, 7, 8, 9, 10, 11, 12]. More precisely, the dual metric

is characterised by two parameters–the Lifshitz exponent, z and the hyperscaling

violating exponent θ and can be explicitly stated in (di + 2)-dimensions as:

ds2
di+2 = r

2θ
di

(
−dt

2

r2z
+
dr2

r2
+

di∑
i=1

dx2
i

r2

)
(1.1)
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The above metric excluding the conformal factor of r
2θ
di is known as the Lifshitz

metric and is invariant under the scaling

t→ λzt, r → λr, xi → λxi (1.2)

However the hvLif metric (1.1) is not invariant under the above transformations,

instead exhibiting a scaling behaviour of ds → λθ/di ds. Intuitively, this can be

thought of as describing a strongly coupled field theory which exhibits a thermo-

dynamic behaviour of the presence of a critical exponent z and living in di − θ

dimensions. A certain subsector of these theories in the (z, θ) parameter space

can be obtained from concrete string constructions. They can be obtained as null

reductions of double scaling limit of highly boosted, low temperature black branes–

AdS plane waves. The AdS/CFT correspondence has provided us with a powerful

calculational handle towards understanding of hyperscaling violating Lifshitz the-

ories which is indeed observed in certain condensed matter systems. This thesis

is a study of certain aspects of mutual information in AdS plane waves and the

hydrodynamics of hyperscaling violating Lifshitz theories (hvLif) within the gen-

eral framework of gauge/gravity duality. The main computational techniques used

in this thesis has parallels with the standard framework of the AdS/CFT corre-

spondence. We will briefly review certain aspects of this duality before proceeding

towards the findings in the context of AdS plane waves and hvLif spacetimes.

1.1 AdS5/CFT4 correspondence: Statement

This AdS5/CFT4 correspondence proposed by Maldacena in its strongest form

conjectures:

• N = 4 Supersymmetric Yang-Mills (SYM) theory with gauge group SU(N)

and a Yang-Mills coupling constant gYM .

IS DUAL TO

• Type IIB string theory on AdS5×S5 with radius of curvature R and coupling

constant gs.

The free parameters in the two theories are related by

g2
YM = 2πgs and R4 = 2g2

YMα
′2N (1.3)
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where
√
α′ = ls is the string length. The N = 4 SYM theory is known as the

‘CFT side’ of the correspondence and exhibits conformal symmetry. Although

first principle proof of this correspondence does not exist, Maldacena provided

convincing evidences of such a duality. However, the fact that large N gauge

theories and string theory share a deeper connection was first noticed by ’t Hooft

[13].

1.2 Large N Gauge Theories and String Theories

We briefly review the ideas of ’t Hooft motivating the dual nature of string theory

and large N gauge theories. Let us consider a generic matrix model constructed

out of matrix fields Φb
a where the indices {a, b} represent labels over the generators

of the gauge group SU(N). Schematically, we can propose a Lagrangian of the

form

L ∼ Tr(dΦidΦi) + gYMc
ijkTr(ΦiΦjΦk) + g2

YMd
ijkTr(ΦiΦjΦkΦl)

By rescaling the fields as Φ̃i ≡ gYMΦi, we can rewrite the Lagrangian as

L ∼ 1

g2
YM

[
Tr(dΦ̃idΦ̃i) + cijkTr(Φ̃iΦ̃jΦ̃k) + dijklTr(Φ̃iΦ̃jΦ̃kΦ̃l)

]
(1.4)

where the coupling gYM appears as an overall multiplicative constant in front of

the action. For a SU(N) theory, the propagator behaves as:

〈Φ̃a
b Φ̃

d
c〉 ∝ δac δ

d
b −

1

N
δab δ

d
c

Clearly, in the large N limit, the second term has subdominant contribution and

hence can be neglected. The Feynman diagrams can now represented in the ’t

Hooft double line notation i.e. replace the propagator line with a double line hav-

ing opposite orientations corresponding to the fundamental and anti-fundamental

indices.
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Figure 1.1: Propagators and vertices in the ’t Hooft double-line notation

A few candidate diagrams that contribute to the vacuum to vacuum amplitude for

a cubic interaction looks as follows in the double-line notation:

Figure 1.2: (a),(b) and (c) are planar diagrams while (d) is non planar. The arrows
represent flow of color and the red dots represent interaction vertices

The first diagram (a) represents a simple gluon loop while the remaining diagrams

consists of propagators, vertices and color loops. The schematic form of (1.4)

can be used to estimate that the propagator is proportional to g2
YM while the

interaction vertex is proportional to 1/g2
YM ; further each integration over a color

loop gives a factor of N .

So, clearly diagram (a) ∝ N2. For diagram (b), a rough estimate of the am-

plitude can be made as (g2
YM)3

(
1

g2
YM

)2

N3 = g2
YMN

3 = (g2
YMN)N2 since, it

has 3 propagators, 2 vertices and 3 color loops. Amplitude for diagram (c)

∼ (g2
YM)9

(
1

g2
YM

)6

N5 = g6
YMN

5 = (g2
YMN)3N2. However, the only non-planar
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diagram i.e. (d), has only a single color loop and the amplitude is proportional

to g2
YMN . Far back in the ’70 s, ’t Hooft noticed that the factor of g2

YMN apper

in each of these diagrams contributing to the vacuum → vacuum amplitude. We

consider that large N limit in a subtle way where N → ∞ and gYM → 0 such

that λ = g2
YMN → const.. The newly introduced parameter λ is known as the

’t Hooft coupling which determines whether we are in the strongly or the weakly

coupled regime of the field theory. Written in terms of this new parameter, the

amplitude for diagram (b) ∼ λN2 while for diagram (d) ∼ λN0 even though both

diagrams have the same number of propagators and vertices. In the ’t Hooft limit

(gYM → 0, N → ∞, λ → const.) the contribution coming from diagram (d) will

be scaled down by a factor of 1/N2 as compared to diagram (b). Although this is

only an illustrative example, we will now argue that non-planar diagrams indeed

will have subleading contribution as compared to their planar counterparts in the

’t Hooft limit for generic diagrams.

Double line graphs and triangulation

Every Feynman diagram drawn in this ’t Hooft double line notation can be thought

of as a triangulation of a 2-dimensional surface Σ. There are two ways for the

construction of such surfaces:

1. Direct Surface: This surface can be constructed by filling in the index

loops with little plaquette like structures. By construction, this places that

graphs on the manifold that is generated.

Figure 1.3: Direct surfaces for one-gluon loop and a non-planar graph. The former
can be laid down upon S2 while the latter on the torus T 2.

2. Dual Surface: This construction involves drawing a vertex inside every

index loop and connecting all vertices through edges drawn across every
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propagator. The loose end of the edges are identified with the point at

infinity.

Figure 1.4: Dual surface for a planar diagram. Loose ends are identified with that
point at ∞

The triangualtion effectively helps us in making the following identification:

Color loop ⇔ Face

Propagators ⇔ Edges

Interactions ⇔ Vertices

Using λ and N to estimate vacuum to vacuum amplitude for a generic diagram

with V vertices, E propagators (edges) and F loops (faces) gives:

amplitude ∼
(
λ

N

)E (
N

λ

)V
NF = NV−E+FλE−V

The quantity V − E + F = χ, known as the Euler charateristic is a topological

invariant of a manifold. For closed oriented surfaces, χ = 2 − 2g where g is the

genus (the number of handles) of the surface. So, the perturbative expansion for

the amplitude in the field theory may be written as a double expansion of the form

∞∑
g=0

N2−2g

∞∑
i=0

cgiλ
i =

∞∑
g=0

N2−2gfg(λ) (1.5)

where fg is some polynomial in λ. In the large N limit, any computation will be

dominated by surfaces with minimal genus, typically surfaces with topology of a

sphere S2, or equivalently of a plane (removing the point at infinity). Non-planar

diagrams correspond to surfaces with handles and is supressed by a factor of 1/N2.

The above arguments hold for any gauge theory coupled to adjoint matter fields,

like the N = 4 SYM.
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The form of the expansion (1.5) is reminiscent of the topological expansion one

finds with closed oriented strings, identifying 1/N as the string coupling constant.

The analogy of (1.5) with perturbative string theory is one of the strongest motiva-

tions for believing that field theories and string theories are related, and it suggests

that this relation would be more visible in the large N limit where the dual string

theory may be weakly coupled. However, perturbative expansions typically do not

converge and hence the identification is formal and far from a rigorous derivation.

There are certainly instanton effects which are non-perturbative in the 1/N ex-

pansion, and an exact matching with string theory would require a matching of

such effects with non-perturbative effects in string theory.

It turns out that the ’t Hooft coupling λ acts like a kind of chemical potential for

edges in our triangulation. So, if λ becomes large, then diagrams with lots of edges

become significant. Hence, the triangualtions becomes more and more smoother.

This is indicative of fewer quantum fluctuations on the world-sheet. We expect a

relation of the form λ−1 ∼ α′ which is consistent with the intuition that large λ

limit suppresses quantum fluctuations and takes us to the supergravity limit.

To check if the theory is still non-trivial in the large N limit, we should explore

the beta function of the theory. The one-loop beta function equation for a pure

SU(N) YM theory is

µ
dgYM
dµ

= −11

3
N
g3
YM

16π2
+O(g5

YM)

In the large N limit, keeping λ = g2
YMN fixed and defining βg = gYMλ, we can

say,

µ∂µλ = βλ ∼ λ2

Thus, λ plays the role of the running coupling in the large N exhibiting a non-

trivial RG flow.

1.3 Motivation for the AdS/CFT correspondence

As discussed earlier, besides fundamental strings, superstring theory also constains

various non-perturbative solitonic higher dimensional objects called D-branes. Al-

though these were first discovered as solutions to certain supergravity theories,

Polchinski provided their interpretation within the framework of superstring the-

ory. D-branes can be viewed from two different perspectives: the open string and
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the closed string perspective. Which perspective gives the correct description of

the physics depends on the string coupling gs, which controls interaction between

open and closed strings.

1.3.1 D-branes

D-branes can be thought of as extended objects on which open strings end. We can

choose to impose Neumann or Dirichlet boundary conditions on the string mode

expansion. For an open string moving in D spacetime dimensions, we may choose

to have Neumann boundary condition along p+ 1 spacetime dimensions while the

other D − p − 1 coordinates will respect the Dirichlet boundary condition. The

end points of the string are free to move along p + 1 spatial directions satisfying

Neumann boundary condition and are fixed in the remaining directions. These

can also be realized as solutions to the low-energy effective action of type IIB

string theory. They have singularities extended in p space dimensions and are

sometimes also denoted as Dp-branes. A Dp-brane may have a charge which is

related to a p+ 1-form gauge potential of the supergravity approximation. These

are generalized forms of the electric potential and in terms of the p+ 1 potential,

we can write Fp+2 = dAp+1 where Fp+2 is the field strength.

1.3.2 Open string perspective

Since, we treat the strings as small perturbations, this description is valid only

when the coupling constant is small i.e. gs � 1. We will also be in the limit

where we can safely neglect massive excitations i.e E � α′−1/2. In this regime, the

dynamics of open strings is described by a supersymmetric gauge theory living on

the world volume of D-branes. For N coincident D-branes, the effective coupling

is given by gsN and the open string perspective is valid when gsN � 1.

We focus of type IIB superstring theory in flat (9+1) dimensional Minkowski

background where N coincident D3-branes are also embedded. Since we are con-

sidering only massless excitations, we can neglect any strongy correction which

appears at energies of order α′−1/2. The complete effective action for all massless

string modes can be written as:

S = Sclosed + Sopen + Sint (1.6)



Chapter 1 Introduction 11

where Sclosed encodes the contribution of the closed string modes which can be

schematically written as:

Sclosed =
s

2κ2

∫
d10x
√
−g

(
e−2φ(R + 4gµν∂µφ∂νφ)− 1

2

∑
n

1

n!
F 2
n

)
(1.7)

where φ is the dilaton field. Fn are the Ramond-Ramond sector field strength, s

is the signature e.g. -1 for Minkowski. The fermionic fields are not written out

explicitly. Closed string modes can be thought of as fluctuations of the (9+1)

dimensional Minkowski background. Expanding the metric around Minkowski

background, g = η+κh, where h is the perturbation, we see, (1.7) can be expanded

as

Sclosed ∼ −
1

2

∫
d10x∂Mh∂

Mh+O(h) (1.8)

Note here in the above expansion, the perturbed metric h is multiplied with κ to

ensure canonical normalization in the kinetic term.

The action for the open strings and the interactions is captured by the DBI action

which for a single D3-brane looks as

SDBI = − 1

(2π)3α′2gs

∫
d4x e−φ

√
− det(P [g] + 2πα′Fab) + fermions (1.9)

Expanding e−φ and g = η + κh, we find that upto leading order in α′,

Sbrane = − 1

2πgs

∫
d4x

(
1

4
FµνF

µν +
1

2
ηµν∂µφ

i∂νφ
i +O(α′)

)
(1.10)

Sint = − 1

8πgs

∫
d4x φFµνF

µν (1.11)

For N coincident D3-branes, the scalars and gauge fields are U(N) valued i.e.

φi = φiaTa and Aµ = AaµTa (Ta are the generators of the gauge group) and hence

to ensure gauge invariance we are required to trace over the gauge group. Thus,

the gauge kinetic term in (1.10) will take the form F a
µνF

aµν . The partial derivatives

also requires to be replaced by covariant derivative and we need to add a scalar

potential of the form

V =
1

2πgs

∑
i,j

Tr[φi, φj]2

to the action Sbrane to lowest order in α′.

Taking the limit α′ → 0 we find that Sbrane is just the bosonic part of the action

of N = 4 SYM theory provided we make the identification 2πgs = g2
YM . All
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other terms in Sbrane are of O(α′) or higher and hence vanishes in the limit when

α′ → 0 or in other words, the open and closed strings decouple. Similar to (1.8), in

writing (1.11), we need to rescale the dilaton field φ by a factor of κ for canonical

normalization. Thus, Sint is of order κ and vanishes for α′ → 0.

To summarize, looking at a stack on N coincident D-branes when gsN � 1 and

considering their behaviour in the α′ → 0 limit, one can observe that open and

closed string modes decouple from each other. The dynamics of the open string

modes in described by N = 4 SYM theory while the closed strings are described

by supergravity in flat (9 + 1) dimensional spacetime. Thus we can schematically

decompose (1.6) as

S
α′→0−−−→ S1 + S2

S1 : N = 4 SYM theory with a gauge group SU(N)

S2 : 10 -dimensional supergravity in flat spacetime

(1.12)

If we had started with N + 1 D3 branes in flat (9 + 1)-dimensional spacetime and

separated one of the branes from the other N coincident branes (say, along the

direction x9), the massless modes would not be described by a U(N + 1) gauge

theory. Instead it will have a gauge group given by U(N)×U(1). If the separated

brane is located at x9 = r, we may think of the system as being in a Higgs phase

with the vacuum expectation value of the Higgs scalar being 〈φ9〉 = r/2πα′. We

need to be cautious while taking the decoupling limit i.e. α′ → 0 since we should

keep all the field theory quantities fixed. Therefore, the correct decoupling limit,

also known as the Maldacena limit is given by

α′ → 0 such that u ≡ r

α′
is fixed (1.13)

where r is any distance.

1.3.3 Closed string perspective

In this picture, we will interchange the two limits i.e. the strong coupling and

low-energy limits. We consider a stanck of N coincident D-branes in the strongly

coupled limit when gsN →∞ where the closed string perspective is relevant. The

N D3-branes can be viewed as massive charged objects which sources various fields

of Type IIB supergravity. We briefly review the solution in the following section.
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Type IIB supergravity theory

Our starting point is the action of type IIB supergravity theory. A consistent

truncation of the full action is given by the bosonic part as written in (1.7) while

omitting terms coming from the NS-NS sector of the field strength and other

fermionic fields. A conformal transformation of the form

gµν → e−
1
2
φgµν

takes the action to the Einstein frame.

S = − s

2κ2
D

∫
dDx
√
−g

[
R− 1

2
gµν∂µφ∂νφ−

1

2

∑
n

1

n!
eanφF 2

n

]
; s = ±1 (1.14)

The equations of motion following from the above action are:

Rµ
ν =

1

2
∂µφ∂νφ+

1

2n!
eanφ

(
nF µµ2µ3..µnFνµ2..µn − δµν

n− 1

D − 2
F 2
n

)
∂µ(
√
−geanφF µν1ν2..νn) = 0

(1.15)

The solution must have Poincaré symmetry in p + 1-dimension while enjoying

spherical symmetry in the otherD−p−1 dimension. Imposing the above symmetry

considerations, for 10 dimensional SUGRA, the resulting metric is

ds2 = − f+(ρ)√
f−(ρ)

dt2 +
√
f−(ρ)

p∑
i=1

dxidxi +
f−(ρ)−

1
2
− 5−p

7−p

f+(ρ)
dρ2 + ρ2f−(ρ)

1
2
− 5−p

7−pdΩ2
8−p

(1.16)

while the dilaton field is

e−2φ = g−2
s f−(ρ)−

p−3
2 ; f±(ρ) = 1−

(
r±
ρ

)7−p

(1.17)

r+ is the horizon in the Einstein frame metric and r− is a curvature singularity,

which exists for p ≤ 6. When r+ > r−, the singularity is covered by the horizon

and the solution can be regarded as a black hole. In the case when r+ < r−, there

is a timelike naked singularity which seems unphysical. Imposing the existence of

an event horizon translates to a bound on the mass of the black brane i.e.

M ≥ N

(2π)pgsl
p+1
s

(1.18)
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Solutions saturating this inequality are dubbed extremal Dp-branes which also

satisfies r+ = r−. The metric of an extremal Dp-brane is given by

ds2 =
√
f+(ρ)

(
−dt2 +

p∑
i=1

dxidxi

)
+ f+(ρ)−

3
2
− 5−p

7−pdρ2 + ρ2f+(ρ)
1
2
− 5−p

7−pdΩ2
8−p

Outside the horizon, we define a new set of radial and isotropic coordinates r7−p ≡
ρ7−p − r7−p

+ and ra = rθa. Finally, the extremal p-brane takes the form:

ds2 =
1√
H(r)

(
−dt2 +

p∑
i=1

dxidxi

)
+
√
H(r)

9−p∑
a=1

dradra (1.19)

where

eφ = gsH(r)
3−p

4 ; H(r) =
1

f+(ρ)
= 1 +

r7−p
+

r7−p ,

r7−p
+ = dpgsNl

7−p
s ; dp = 25−pπ

5−p
2 Γ

(
7− p

2

) (1.20)

As can be seen from the above solutions, these are generalization of rotating black

holes. Flux of the Ramond-Ramond charge on a (8− p)-sphere is quantized∫
S8−p
∗Fp+2 = N ; N ∈ Z

Also, the tension of the brane is identified with the energy per unit volume in the

p-spacelike directions.

The metric (1.19) can be generalized to write multi-centered solutions which phys-

ically represent parallel extremal Dp-branes at k different locations r = ri by

writing H(r) as

H(r) = 1 +
k∑
i=1

r7−p
(i)+

|r − ri|7−p
r7−p

(i)+ = dpgsNil
7−p
s

Each brane carries Ni units of charge.

So far we have discussed the blackDp-brane in the context of classical supergravity.

This description is appropriate when we can safely neglect stringy corrections or in

other words, the curvature of the p-brane geometry is small compared to the string

scale i.e. r+ � ls. The effective string coupling eφ is also small. In particular,

for p = 3, the dilaton is constant and can be consistently made small everywhere

in the limit gs < 1 ⇒ lP < ls. To summarize, for D3-branes, the supergravity

approximation is a good physical description when lP < ls � r+. Since, r+ is
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related to the Ramond-Ramond charge N as r7−p
+ = dpgsNl

7−p
s , we can rewrite the

regime of validity of solution (1.19) to

1� gsN < N (1.21)

D3-branes

Focussing on the particular case of D3-brane i.e. where p = 3, (1.19) which boild

down to

ds2 = H(r)−1/2dxµdx
µ +H(r)1/2(dr2 + r2dΩ2) (1.22)

eφ = gs (1.23)

H(r) = 1 +
R4

r4
(1.24)

where R4 = 4πgsNα
′2. The world volume of the brane has a 4-dimensional

Poincare symmetry R4 × SO(1, 3). The dilaton and axion fields are constant

while the geometry is regular at r = 0.

Even when N is large, we can demand gs � 1, so that perturbative methods can

be applied. We can study the following geometry is two regimes:

ds2 =

(
1 +

R4

r4

)−1/2

dxµdx
µ +

(
1 +

R4

r4

)1/2

(dr2 + r2dΩ2
5) (1.25)

• r � R: In this case, when studying the geometry far from the brane, we see

that the deformation vanishes and we recover flat 10-dimensional space.

• r � R: In this case, the metric near the “throat” region in the deep IR is

given by

ds2 ' r2

R2
dxµdx

µ +R2dr
2

r2
+ r2dΩ2

5 (1.26)

The geometry of the above is essentially: AdS5 × S5.

Like before, as given in (1.13), we must approach the Maldacena limit in a con-

sistent way such that physical observables are kept finite. Loosely speaking, this

limit “zooms” into the near-horizon region of the brane solution. In terms of the

newly defined coordinate u ≡ r/α′, (1.26) in the near horizon limit takes the form:

ds2 ' α′
[

u2

√
4πgsN

dxµdx
µ +

√
4πgsN

du2

u2
+
√

4πgsNdΩ2
5

]
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The fact that the spacetime AdS5×S5 deformation caused by the branes decouples

from the 10-dimensional flat bulk, as α′ → 0, can be seen from the function H(u),

which we now write as:

H(u) = 1 +
4πgsN

α′2u4
(1.27)

It should be noted that α′ → 0 is not the point particle limit. Rather in this limit,

the open strings becomes smaller thus bringing the D3-branes closer. Hence, this

limit should just be considered as the process to obtain two decoupled emergent

theories

S
α′→0−−−→ S1 + S2

S1 : Type IIB supergravity on AdS5 × S5

S2 : 10 -dimensional supergravity in flat spacetime

(1.28)

1.3.4 Combining both perspectives

Over the last couple of sections i.e. 1.3.2 and 1.3.3, in both the pictures we have

found two decoupled effective theories in the low-energy limits as given in (1.12)

and (1.28). Both these perspectives must be equivalent descriptions of the same

physics while in the low-energy limit both has 10-dimensional supergravity over a

flat background. This is suggestive of the fact that the other two theories must be

equivalent. This is essentially what motivated Maldacena to conjecture thatN = 4

Super Yang-Mills theory in four dimensions in the large N limit is equivalent to

type IIB supergravity on AdS5 × S5. Relaxing the low-energy limit, we can make

this statement stronger eventually arriving at the statement given in 1.1 which we

restate again:

N = 4 Supersymmetric Yang-Mills (SYM) theory with gauge group SU(N) and a

Yang-Mills coupling constant gYM is equivalent to type IIB superstring theory on

AdS5 × S5 with parameters of the two sides of the duality matched appropriately

although the fundamental degrees of freedom differ significantly.

Comparing symmetries

As a basic check in support of this conjecture it is worthwhile to compare the

symmetries of the two theories. N = 4 Super Yang-Mills theory has conformal

symmetry with vanishing β-function. In four dimensions, the conformal group is

infact SO(2, 4). This theory also has an R-symmetry of SO(6) which rotates 6

scalars into each other. This theory also preserves N = 4 SUSY with 16 Poincaré
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supercharges grouped as four spinors (Qa
α) and 16 superconformal supercharges

(Saα). All the symmetries form the supergroup PSU(2, 2|4).

String theory on AdS5 × S5 will be invariant under the isometry groups of AdS5

and S5 which are given by SO(2, 4) and SO(6) respectively. This matches with the

bosonic sector of the algebra of PSU(2, 2|4). It can be shown that the symmetries

in the fermionic sector can also be mapped to the string theory. Thus, overall we

can state that the global symmetries of type IIB string theory on AdS5 × S5 is

identical to the global symmetries of N = 4 SYM theory in flat spacetime.

1.4 Bulk-Boundary Correspondence

Although the theory of quantized strings on AdS5 background is still not well-

understood, we can still use the AdS/CFT correspondence as a calculational

toolbox to understand strongly coupled regime of gauge theories. Observables

evaluated in a non-perturbative regime on the field theory side can essentially be

mapped to certain quantities in a dual theory of classical gravity where computa-

tions are often tractable. However, before delving into any concrete calculation is

it essential to understand the scheme of mapping between the two theories. The

fields φ(r, xµ), living in the AdS5 bulk is associated with a single trace operator O,

that belongs to the spectrum of the 4-dimensional SYM theory. There is a relation

between the mass m of the field and the scale dimension ∆ of the operator. We can

view the value of the bulk field on the boundary as a source for the corresponding

operator, producing its correlation functions. More precisely, we add in the field

theory Lagrangian an interaction term between the operator and the boundary

field, identified with the generating functional for connected correlation functions

of O. The precise mathematical relation stating the map of the AdS/CFT cor-

respondence goes by the name of GKPW relation [14, 15] (named after Gubser,

Klebanov, Ployakov and Witten).

e−WCFT [φ(0)] = 〈e−
∫
d4xφ(0)(x)O(x)〉CFT = Z[φ(x, 0) = φ(0)(x)]String (1.29)

where r = 0 is the boundary of AdS5 in Poincaré patch. Since the last quantity on

the RHS is not computationally tractable, a more practical version of the GKPW
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formula emerges in the classical limit:

WCFT [φ(0)] = − log〈e−
∫
φ(0)O〉CFT ≈ Extremumφ|r=ε∼φ(0)(N2Igrav) +O

(
1

N2

)
+ · · ·

(1.30)

It is evident from the above expansion that the gravity description is valid for

large N and λ. Igrav is some dimensionless action. Thinking of φ(0) as a small

perturbation, we may write the following expansion

WCFT [φ(0)] = WCFT [0]+

∫
dDx φ0(x)G1(x)

+
1

2

∫ ∫
dDx1 d

Dx2 φ
(0)(x1)G(x1, x2)φ(0)(x2) + · · ·

(1.31)

where

G1(x) = 〈O(x)〉 =
δWCFT [φ(0)]

δφ(0)(x)

∣∣∣∣
φ(0)=0

G2(x1, x2) = 〈O(x1)O(x2)〉c =
δ2WCFT [φ(0)]

δφ(0)(x1)δφ(0)(x2)

∣∣∣∣
φ(0)=0

(1.32)

Anticipating divergences near the boundary as r → 0, we have introduced a cut-off

in (1.30) and set bondary conditions there. Although (1.30) is written as if there

is just one bulk field, in principle there exists a φ for every operator O in the dual

field theory. In literature this is referred to as ‘φ being coupled to O’. The general

n-point connected correlation function of the CFT is given by

〈O1(x1)...On(xn)〉 =
δ

δφ
(0)
1 (x1)

...
δ

δφ
(0)
n (xn)

WCFT |φ(0)
i =0

(1.33)

where the operators Oi correspondes to different bulk fields φi. Since the sources

are set to zero after the functional differentiation, interaction terms in the action

with more than n fields will not contribute to the computation of the n-point

function. The field φ(0)(x) act as sources for the primary operatorsOi which specify

the spectrum of the CFT. There are a few simple examples of this correspondence

e.g. local changes in the metric corresponds to change on the stress tensor of

the boundary theory. The boundary action has a term of the form γµνT
µν where

γµν is the induced metric on the boundary while T µν is the stress tensor; gauge

fields Aµ in the bulk corresponds to currents Jµ on the boundary. The prescription

(1.33) can be used in principal to compute arbitrary correlation functions given the

classical bulk action. The reader can refer to [16] for a classic comprehensive review

of the AdS/CFT correspondence. In the next two subsections, we will illustrate

this technique in the context of free and massive scalar fields to calculate their two
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point correlation function. For a comprehensive review of correlator calculation

from the gravity side, the reader can refer to [14, 15].

1.4.1 Correlation functions: A position space analysis

We consider a simple case of a probe massless scalar field φ(x) in AdSd+1 back-

ground. The equation of motion for this field is

∇µ∇µφ(x) =
1√
−g

∂µ(
√
−g∂µφ(x)) = 0

where the covariant derivative is with respect to the AdS metric

ds2 =
1

r2
(dr2 + dx2)

The propagator K(r) owing to translation invariance must be independent of the

boundary coordinates (x ≡ x1, ..., xd) the follows the equation

d

dr

(
1

rd−2

d

dr
K(r)

)
= 0

Assuming a power-law ansatz K(r) = crα results in the constraint α(α−d+1) = 0

with two possible solutions for α i.e. α = 0, d − 1. The constant solution is the

non-normalizable mode while the other solution

K(r) = crd−1 (1.34)

vanishes at r = 0 but diverges at r = ∞ indicating singular behaviour. The

singularity is infact a delta function which can be shown by mapping the point at

infinity to the origin. This can be achieved through a SO(1, d+1) transformation:

xµ → xµ

r2 + x2
, µ = r,x (1.35)

This modifies the expression (1.34) to

K(x, r) = c
rd−1

(r2 + x2)d−1

The integral over x is independent of r, since a simple scaling of x gives∫
dd−1x

rd−1

(r2 + x2)d−1

x→rx′−−−−→
∫
dd−1x′rd−1 rd−1

(r2 + r2x′2)d−1
=

∫
dd−1x′

(1 + x′2)d−1
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Moreover, as r → 0, K vanishes except at x1 = x2 = ... = xd = 0. If now, φ(0)(x)

is the restriction of the bulk field φ(xµ) on the boundary, we can write the classical

solution in AdSd+1 as

φ(x) = c

∫
dy

rd−1

(r2 + (x− y)2)d−1
φ(0)(y) (1.36)

The n-point connected correlation function for this theory can be written down

from the on-shell action as:

I[φ(0)] = −1

2

∫
dd+1x

√
−g∂µφ∂µφ = −1

2

∫
dd+1x{∂µ(

√
−gφ∂µφ)−φ∂µ(

√
−g∂µφ)}

The last term vanishes by virtue of the equation of motion while the other term

can now be written as a boundary integral. To supress divergences, we evaluate

this integral at the z = ε close to the boundary which can be interpreted as the

UV cutoff on the CFT side. The on-shell action simplifies to

I[φ(0)] = lim
r→ε
−1

2

∫
dx r−d+2φ(x)∂rφ(x) (1.37)

Close to the boundary, from (1.36) we can write

lim
r→ε

∂rφ(x) = c(d− 1)rd−2

∫
dd−1y

1

|x− y|2d−2
φ(0)(y) (1.38)

Using (1.36) and (1.38), we can see that the on-shell boundary action takes the

form

I[φ(0)] = −c(d− 1)

2

∫
dd−1x dd−1y

φ(0)(x)φ(0)(y)

|x− y|2d−2
(1.39)

The above expression eventually leads to the two point correlation function.

〈O(x′)O(y′)〉 =

[
δ

δφ(0)(x′)

δ

δφ(0)(y′)
I[φ(0)]

]∣∣∣∣
φ(0)=0

=
c(d− 1)

|x′ − y′|2(d−1)

This prescription thus reproduces the correct expected scaling of the 2-point cor-

relation function for a conformal operator with scaling dimension d− 1.
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1.4.2 Correlation functions: A momentum space analysis

The AdSd+1 metric written in the Poincaré patch is given by

ds2 = gABdx
AdxB = R2dr

2 + dxµdxµ
r2

A = 0, .., d xA = (r, xµ) (1.40)

where R is the radius of curvature of the AdS space. We consider a massive probe

scalar field in the bulk governed by the action:

S = −k
2

∫
dd+1x

√
−g[gAB∂Aφ∂Bφ+m2φ2] (1.41)

k is just a normalization constant. Clearly, the constant r-slices are Minkowski

like and
√
−g = (R/r)d+1. The equation of motion for the probe scalar is

(�−m2)φ = 0 (1.42)

where � is the Laplacian with respect to the metric (1.40) and is given by �φ =

∇A∇Aφ = 1√
−g∂A(

√
−ggAB∂B)φ. Integrating (1.41) by parts, and using (1.42),

the on-shell boundary action takes the form

Sbdy = lim
r→ε
−k

2

∫
∂AdS

ddx
√
−ggrBφ∂Bφ (1.43)

where the d-dimensional measure runs over the boundary coordinates.

Taking advantage of translational invariance along the boundary coordinates we

can decompose the bulk fields in terms of Fourier space variables as

φ(r, x) =

∫
ddk eikµx

µ

fk(r) , kµx
µ ≡ −ωt+ k · x

fk(r) is governed by a wave equation of the form

[r2k2 − rd+1∂r(r
−d+1∂r) +m2R2]fk(r) = 0 ; k2 = −ω2 + k · k (1.44)

Assuming a scaling of the form fk = r∆, leads to the relation (k2r2 −∆(∆− d) +

m2R2)r∆ = 0 which in the near-boundary region boils down to

∆(∆− d) = m2R2 (1.45)
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The above equation has the following two roots:

∆± =
d

2
±
√
d2

4
+m2R2 ; ∆+ + ∆− = d (1.46)

Notice that this result is much stronger than the bound obtained from unitarity

i.e. ∆± ≥ d−2
2

. Demanding reality of ∆± translates to the condition

m2R2 ≥ −d
2

4
(1.47)

This is known as the Breitenlohner-Freedman bound. Unlike flat space, in AdS,

massive scalar fields are stable provided it is restricted by the above bound. It is

clear from the fall-offs that near the boundary, we can write the solutions as

φ(r, x) = φ(0)(x)r∆− + φ(+)(x)r∆+ + · · · (1.48)

where the dots represent subleading terms in r. By definition, ∆+ ≥ ∆− and

hence r∆− is bigger as r → 0 representing the non-normalizable mode while the

second term captures the normalizable mode. More formally, we define the source

at the boundary CFT as

φ(0)(x) ≡ lim
r→0

r−∆−φ(r, x) = lim
r→0

r∆+−dφ(r, x) (1.49)

The normalizable AdS mode i.e. φ(+) can be thought of as the vacuum expectation

value for a dual scalar field theory operator O of dimension ∆ ≡ ∆+ while the

non-normalisable mode φ(0) acts as the source.

Going back to (1.44), we can solve for fk(r) exactly. When kµ is spacelike i.e.

k2 > 0, or in other words, in the context of Euclidean AdS, the solution is

fk(r) = AKr
d/2Kν(kr) + AIr

d/2Iν(kr) ; ν = ∆− d

2
; k =

√
k2 (1.50)

where Kν(.) and Iν(.) are modified Bessel functions. For a Lorentzian theory

with timelike k2 for on-shell states with ω2 > k2, we get two linearly independent

solutions that have the same leading behaviour at the UV boundary:

rd/2K±ν(iqr) ∼ e±iqr ; q ≡
√
ω2 − k2 (1.51)

In the deep IR region (r → ∞) these modes exhibit oscillatory behaviour. This

is a reflection of the ambiguity that arises in defining real-time Green’s function

for the CFT. The solution consistent with causality is the one which falls into
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the black-hole horizon i.e. the infalling condition–these solutions travel towards

r → infty with time.

For (1.50), in the AdS bulk as r →∞, they behave as follows:

K(kr)→ e−kr ; I(kr)→ ekr (1.52)

To ensure regularity in the interior we must set AI = 0. Further the normalization

condition fk(r = ε) = 1 gives the bulk-to-boundary propagator:

fk(r) =
rd/2Kν(kr)

εd/2Kν(kε)
(1.53)

Plugging this back in the boundary term for the action, we obtain

S[φ] = −kR
d−1

2

∫
ddkφ0(k, ε)φ0(−k, ε)Fε(k) (1.54)

Now, we use our GKPW Equation and get

〈O(k1)O(k2)〉 = − δ

δφ0(k1)

δ

δφ0(k2)
S = (2π)dδd(k1 + k2)Fε(k1) (1.55)

where the quantity Fε, also sometimes called the flux factor is given by

Fε(k) = 2ε−d+1∂r

(
rd/2Kν(kr)

εd/2Kν(kε)

)∣∣∣∣
r=ε

(1.56)

The small value of the argument i.e. in the near boundary region, the behaviour

of the modified Bessel function Kν(.) is given by

Kν(u) = u−ν(a0 + a1u
2 + ..) + uν lnu(b0 + b1u

2 + ..) (1.57)

The second term exists only for integer ν and is subleading compared to the first

term. The coefficients ai and bi depend on ν and can be determined by imposing

the correct boundary conditions as r → ∞. Plugging (1.57) back in (1.56) and

simplifying we get,

Fε(k) = 2ε−d
[{

d

2
− ν(1 + c2(ε2k2) + c4(ε4k4) + · · ·

}
+

{
ν

2b0

a0

(εk)2ν ln(εk)(1 + d2(εk)2 + · · ·
}]

= (Analytic piece in k) + (Non-analytic piece in k)

(1.58)
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The first line in the above expression is a Laurent series in ε containing only

positive powers of k and is thus analytic in k at k = 0. These are contact terms

and can be safely subtracted off. We can see this by noting∫
ddk e−ikx(εk)2mε−d = ε2m−d�mx δ

d(x) (1.59)

for m > 0. The ε2m−d factor reinforces the notion that ε, which is an IR cutoff

in AdS, is a UV cutoff for the QFT. The interesting bit of Fε(k) which gives the

x1 6= x2 behaviour of the correlator (1.55) is non-analytic in k and is encoded by

the second line of (1.58). The non-analytic piece can be simplified further to give

Non-analytic piece in k = −2ν
b0

a0

k2ν log(kε)ε2ν−d(1 +O(ε2)) ,

where
b0

a0

=
(−1)ν−1

22ννΓ(ν)2
for ν ∈ Z

(1.60)

The above result can be written in position space by performing a Fourier trans-

form ∫
ddk eikx(Non-analytic piece in k) =

2νΓ(∆+)

πd/2Γ(∆+ − d/2)

1

x2∆+
ε2ν−d

which is indeed the expected scaling for the 2-point correlation function of a CFT.

Looking carefully at the above expression, we can see there exists a dependence

on the cut-off ε which can be taken care by defining renormalized field. It is to

be noted that a naive application of (1.55) will not yield the two point correlator

with the correct normalization and will not be consistent with the Ward identities.

There infact exists a systematic procedure [17] called holographic renormalization

where one adds counterterms to the bare action in order to get correlators that

are manifestly well defined in the UV regime.

1.5 Non-relativistic holography and hyperscal-

ing violation

Following the proposal of Maldacena, there was a flurry of activity focussing on

concrete examples of AdS gravity and its conformal field theory dual. However,

the class of metrics of interest in gauge/gravity duality has been considerably en-

larged in recent years. As a simple generalization, we can consider metrics which
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are dual to field theories which are scale invariant but not conformally invariant.

Such scaling properties are exhibited by interesting condensed matter systems

which are strongly coupled. Thus it appears natural to use gauge/gravity dual-

ity in order to study these kind of systems as the gravity side is tractable. Of

course the microscopic degrees of freedom of a condensed matter system is very

different from that of a non-Abelian gauge theory at large N and is inherently

non-relativistic in nature. Nevertheless, the idea is to make use of universality

and consider theories at renormalization group fixed points where the microscopic

details may not be important. These non-relativistic systems typically have re-

duced symmetries compared to AdS space theories. An interesting class of theories

exhibits Lifshitz scaling symmetry of the form t→ λzt, xi → λxi, r → λr, with z

known as the Lifshitz exponent and r is the radial coordinate of the gravity dual

given by the metric

ds2 = −dt
2

r2z
+
dr2 + dx2

i

r2
(1.61)

They can be realised as solutions to simple gravity theories with a negative cosmo-

logical constant coupled to appropriate matter and various constructions in string

theory [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. The

interested reader can see the reviews [36, 37] for a comprehensive discussion on

holographic aspects of Lifshitz field theories. A simple subclass [20, 21] of such

constructions involves the dimensional reduction of null deformations of AdS×X
spacetimes that arise in familiar brane constructions: for instance the AdS5 ×X5

null deformation is of the form

ds2 =
1

r2
[−2dx+dx− + dx2

i + dr2] + g++(dx+)2 + dΩ2
5 (1.62)

where g++ is sourced by one or more fields. The long wavelength geometry upon

a x+ dimensional reduction resembles a z = 2, d = 3 + 1 dimensional Lifshitz

spacetime, which are dual to a 2 + 1 dimensional field theory. There exists a

vast literature reviewing various holographic aspects of quantum field theories

exhibiting Lifshitz scaling symmetry: [38, 39, 40, 41, 42, 43, 44].

With an abelian gauge field and a scalar dilaton one can engineer a larger class

of metrics [5, 6, 7, 8, 9, 10, 11] known as hyperscaling violating Lifshitz spacetimes

(hvLif) which are given by

ds2
di+2 = r

2θ
di

(
−dt

2

r2z
+
dr2

r2
+

di∑
i=1

dx2
i

r2

)
(1.63)
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Comparing with (1.62), we clearly see that this is conformal to Lifshitz spacetimes.

Here di is the boundary spatial dimension (i.e. the dimension of xi) and θ is the

hyperscaling violating exponent. These spacetime exhibit the scaling

t→ λzt, xi → λxi, r → λr, ds→ λθ/dids (1.64)

Various aspects of holography and entanglement entropy for hvLif spacetimes have

been discussed in [18, 45, 46]. Further, in recent times there has been studies

towards exploring various hydrodynamic transport coefficient of hvLif theories

[47, 48, 49, 50].

A basic requirement to obtain physically sensible dual field theories to the above

metric is the null energy condition Tµνn
µnν ≥ 0 where nµnµ ≥ 0 which along with

Einstein’s equations leads to the inequalities

(di − θ)(di(z − 1)− θ) ≥ 0 , (z − 1)(di + z − θ) ≥ 0 . (1.65)

Roughly speaking, in a theory with hyperscaling violation, the thermodynamic

behaviour is as if the theory enjoyed dynamical exponent z but lived in di − θ

spacetime dimensions. In particular the gravitational description of the case θ =

di − 1 is interesting and is a promising candidate for field theories with hidden

Fermi surface. For this particular case, the entanglement entropy has a logarithmic

scaling which was also realised in certain string constructions [51]. Further details

of the gravitational description of hvLif theories has been relegated to Appendix

A.

This thesis can broadly be divided into three parts. Motivated by investigations

done in [52] we have studied mutual information (MI) in he context of AdS plane

waves which as mentioned earlier gives rise to hvLif theories under null reduction.

The third chapter of the thesis adapts the approach pioneered by Kovtun, Son

and Starinets in the context of hvLif theories. For the sake of simplicity, we have

restricted out analysis for hvLif theories which has the corresponding gravity dual

living in 3+1 spacetime dimensions. In Chapter 3, we study the shear diffusion con-

stant for this class of non-relativistic field theories. Looking at various checkpoints

for non-conforal Dp branes and gravity dual of Lifshitz field theories, a thermody-

namic relation connection the shear diffusion constant and the shear viscosity is

proposed. The fourth chapter of the thesis involves a study of the same transport

properties using quasinormal modes which encodes information of hydrodynamic

transport coefficients. Using the AdS/CFT correspondence, it was conjectured

that the QNM spectrum of a fluctuation δφ of a higher dimensional gravitational



Chapter 1 Introduction 27

background coincides with the location of the poles of the retarded correlators

of the gauge theory operator dual O dual to δφ. However, this conjecture was

validated through various examples for gravity duals of relativistic field theories.

In Chapter 4, we study the QNM of hvLif black branes and also find the two point

correlator of the dual operator in the boundary theory (2-point function of the

stress tensor). It is noteworthy that the gravitational fluctuations of these hvLif

gravity duals couple to other matter fields like perturbations of the gauge field.

Although the dual field theory is non-relativistic, we continue to see that the poles

of retarded correlator which contains information of hydrodynamic transport coef-

ficients in indeed encoded in the QNM of the gravitational fluctuations of the dual

system. Using the standard prescription for computing correlators in Lorentzian

signature, we compute the shear diffusion and shear viscosity and validate the

thermodynamic relation connecting the two transport coefficients conjectured in

[P2].





Chapter 2

Entanglement Entropy and

Mutual Information

Entanglement is one of the most fascinating concepts of quantum mechanics. Clas-

sically, we can reconstruct a complicated system by studying the behaviour of its

constituent non-interacting parts. However, such an intuition fails to carry over

in the quantum realm–even the constituent non-interacting pieces may be entan-

gled. Starting with the EPR gedanken experiments [53] which investigated this

“spooky action at a distance” a significant amount of progress has been made to

understand the nature of entanglement. Particularly with advances in the field of

quantum information [54], entanglement has become an important resource and

an interesting phenomenon for study in itself.

Entanglement can be observed in simple 2-qubit systems. Consider the Hilbert

space formed out of direct product of single qubit systems i.e. H = Hqubit1⊗Hqubit2.

This is spanned by a basis given by {|00〉, |01〉, |10〉|11〉}. Each one of the basis

states are separable in the sense that they can be written as a direct product of

two vectors each belonging to the two subsystems. However, such a decomposition

is not possible for the Bell state given by 1√
2
(|00〉 + |11〉). The state of the two

qubits are correlated i.e. if we have knowledge about one of the spin states, the

other spin is automatically determined. Such states are called entangled states.

Although simple systems like spin models remains a powerful compuational lab-

oratory for intuitive understanding of entanglement. it is believed that the basic

concepts and principles carry over to the continuum limit. A good example are

certain topological field theories in (2 + 1)-dimension which inspite of the absence

of dynamical degrees of freedom exhibit a rich phase structure. It was realized

29
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that entanglement entropy can be used as an order parameter to study the phase

structure of these theories [55, 56]. It can also be used to classify ground states of

various interesting interacting many-body systems.

Entanglement entropy is fascinating in its own right within the context of field

theory. However, with the advent of AdS/CFT [4], a deeper connection between

gravitational dynamics and entanglement structure has emerged in the context of

holography. Inspired by the area scaling of black hole entropy, Ryu and Takayanagi

[57, 58] identified a simple geometric prescription for entanglement entropy (EE)

in field theories with gravity duals in the large N limit: the EE for a subsystem in

the d-dim field theory is the area in Planck units of a minimal surface bounding the

subsystem, the bulk theory living in d+1-dimensions. For non-static situations, the

prescription generalizes to the proposal of Hubeny-Rangamani-Takayanagi which

involves finding the area of an appropriate bulk extremal surface with minimal

area [59]. Inspired by all these developments, Swingle [60] and Van Raamsdonk

[61, 62] argued that the emergence of spacetime geometry is somehow related to

the entanglement structure of the quantum state on the QFT side. This was

encoded in the statement “ER=EPR” by Maldacena and Susskind [63] which re-

lates entangled states called EPR states (after Einstein, Podolsky and Rosen) at

geometrical structures that arise in general relativity called ER bridges (after Ein-

stein and Rosen). In the subsequent sections we will give a more precise definition

to the notion of entanglement entropy in field theory and the Ryu-Takayanagi

prescription.

2.1 Holographic entanglement entropy: a brief

review

Let us consider the density matrix ρ of a quantum mechanical system which is

in a pure state |Ψ〉 which is normalised as: 〈Ψ|Ψ〉 = 1. In this case, the density

matrix is given by ρ = |Ψ〉〈Ψ|. For a system in a mixed state (e.g. thermal states

are mixed states) the density matrix takes the form

ρ =
∑
n

pn|Ψn〉〈Ψn| (2.1)

where the state kets |Ψn〉 forms an orthonormal basis which satisfies
∑

n pn = 1

(this is equivalent to the statement that the sum of probabilities of the system

being found in one of the states |Ψn〉 is 1)
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Suppose we divide our system into two parts: A and B. We will assume that

this breaks the structure of the full Hilbert space H into a direct product of two

independent Hilbert spaces i.e. H = HA ⊗ HB. For the subsystem A, we can

define a reduced density matrix

ρA = TrBρ (2.2)

where ρ is the density matrix of the full system. TrB traces over the basis vectors of

HB. Physically, the reduced density matrix represents the lack of information that

we have about the system B by “integrating” it out. The von Neumann entropy

associated with ρA is defined as the entanglement entropy of the subsystem A i.e.

SA = −TrA(ρA log ρA) (2.3)

This is a measure of entanglement. Note that even if the entire system is pure,

it is possible for the entanglement entropy of a subsystem to be non-zero. The

definition (2.3) immediately leads to certain interesting properties. If the global

ystem is pure and B is the complement of A, we have SA = SB. This demon-

strates that entanglement entropy is not an extensive quantity. For three disjoint

subsystems A, B and C, we get the inequalities

SA+B+C + SB ≤ SA+B + SB+C

SA + SC ≤ SA+B + SB+C

(2.4)

Choosing B to be an empty set leads us to what is dubbed as the subadditivity

relation

SA+B ≤ SA + SB (2.5)

In fact for two arbitrary systems, there exists a stronger relation known as the

strong subadditivity condition

SA + SB ≥ SA∪B + SA∩B (2.6)

which reduces to (2.5) when A and B are disjoint.

In a quantum field theory living in d spacetime dimensions, we consider two com-

plimentary regions A and B in space at a fixed time slice t = t0. Akin to the

earlier description, in this case too the we will essentially integrate out the degrees

of freedom in B to get the entanglement entropy of A. The result is divergent and
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can be schematically written as

SA = a0(lΛ)d−2 + a1(lΛ)d−3 + · · ·+ [ad log(lΛ)] (2.7)

where l is the typical size of subsystem A and Λ is the UV cutoff. The last term

written in square brackets [·] is present only when d is even. The coefficients ai are

in general dependent on the theory we are interested in. The leading piece has a

scaling of the form ld−2 which is identical to that of the boundary ∂A. This shows

that entanglement entropy scales as the area of the boundary similar to black hole

entropy. This motivated Ryu and Takayanagi to come up with a gravity dual

for entanglement entropy which essentially is a certain codimension-2 surface in

the bulk. The reader can find detailed accounts of the holographic viewpoint of

entanglement entropy in the classic reviews [64, 65].

In particular, for 2-dimensional CFTs, we have

S =
c

3
log(lΛ) (2.8)

where l is the size of the subsystem A while c is the central charge of the CFT.

To be a little more precise, for a 1-dimensional quantum many-body system at

criticality (2-D CFT), the entanglement entropy is given by

SA =
c

3
log

(
L

πa
sin

(
πl

L

))
(2.9)

where l and L are the length of the subsystem A and the total subsystem A ∪B.

Either ends of the full system i.e. A ∪ B has been identified perodically. a is the

lattice spacing (UV cutoff Λ ∼ 1/a) and c is the central charge. For field theories

at a finite temperature, the above expression of entanglement entropy takes the

form

SA =
c

3
log

(
β

πa
sinh

(
πl

β

))
(2.10)

where β now parametrizes the temperature scale i.e. β = T−1.

2.1.1 Ryu-Takayanagi prescription

In the light of the AdS/CFT correspondence, Ryu and Takayanagi [57, 58] pro-

posed the following: the entanglement entropy SA in a CFT on R1,d for a subsystem

A that has an arbitrary d − 1-dimensional boundary ∂A ∈ Rd is holographially
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given by

SA =
Area of γ

4G
(d+2)
N

(2.11)

where γ is the d-dimensional static minimal surface in AdSd+2 whose boundary is

given by ∂A and G
(d+2)
N is the (d+ 2)-dimensional Newton’s constant. Intuitively,

the minimal surface with the boundary ∂A can be thought of as a holographic

screen since the observer has access to subsystem A alone.

Figure 2.1: Schematic diagram of the minimal surface hinged on a strip shaped
subsystem A. B denotes the environment which is traced out to write down a reduced
density matrix ρA

It can be easily seen from (2.11) that SA = SB where B is the complement of A and

it also satisfies (2.5). The Ryu-Takayanagi prescription works for finite temperture

systems too. However, for thermal systems (T > 0) we do not find SA = SB since

ρ i.e. the density matrix for the full system is in a mixed state where the equality

does not hold. Holographically, thermal systems are decribed by the presence

of a black hole horizon due to which the equality SA = SB breaks down. Now,

we will use the Ryu-Takayanagi prescription as stated in (2.11) to evaluate the

entanglement entropy for thermal 2-dimensional CFTs and subsequently generalise

for higher dimensions.

2.1.2 Entanglement Entropy for AdS3/CFT2

We are interested in the entangelement entropy of a 1-dimensional spatial sub-

system at a crtical point. At a fixed time, the minimal surface is essentially the
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geodesic connecting two boundary points which defines the subsystem A which we

are interested in. The Ryu-Takayanagi prescription (2.11) interprets a complicated

quantity in a CFT as a geometric quantity in a dual gravity theory [57, 58].

Figure 2.2: Schematic representation of minimal surfaces in AdS3 at zero temperature
and finite temperature. S: Minimal geodesic in AdS3 at zero temperature; S1 and S2:
Minimal geodesic for small subsystems in AdS3 at finite temperature; S’: Minimal
geodesic for large subsystems in AdS3 at finite temperature wraps the black brane.

The metric of AdS3 written in global coordinates (t, ρ, θ) is

ds2 = R2(− cosh2 ρ dt2 + dρ2 + sinh2 ρ dθ2) (2.12)

Anticipating divergences close to the boundary as ρ → ∞, we introduce another

constant-ρ surface at ρ = ρ0 which acts as a regulator. In the dual field theory

this is equivalent to introducing a UV cut-off. In fact for CFTs, if L is the full

system size with the end-points identified and a is the lattice spacing then, we can

write a relation of the form

eρ0 ∼ L

a
(upto numerical factors) (2.13)

The CFT2 dual now lives on the (t, θ) cylinder on the ρ = ρ0 surface. We define

the subsystem A at a fixed time t to be the region 0 ≤ θ ≤ 2πl
L

. γA is the static

geodesic as shown in Figure 2.2 travelling through the bulk of AdS3 spacetime

connecting the points θ = 0 and θ = 2πl
L

having a length LγA . The geodesic length

(minimal length curve) is given by

cosh

(
LγA
R

)
= 1 + 2 sinh2 ρ0 sin2 πl

L
(2.14)

We can use the above expression to get a form of LγA which can be plugged in

(2.11) when d = 1 to obtain the entanglement entropy. Further, the AdS/CFT
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correspondence relates the AdS radius R and the Newton’s constant G
(3)
N with the

central charge c of the dual CFT through the relation

c =
3R

2G
(3)
N

(2.15)

Using the above along with the assumption that eρ0 � 1 (physically this means

that the system size is much larger compared to the lattice spacing) leads us to

the expression

SA ≈
c

3
log

(
eρ0 sin

πl

L

)
(2.16)

which matches with (2.9) upto some numerical factors. This prescription suggests

that the curve denoting the Ryu-Takayanagi minimal surface γA acts like a black

hole horizon and restricts an observer from probing subsystem B although the

division between them is artificial. The grey region as given in Figure 2.2 is however

depicts a black brane inaccessible to the minimal surface which now wraps around

it)

One can carry out a similar computation in the context of thermal systems with

certain simplifications. We assume that the system we are dealing with is infinitely

long restricting us to the regime where β/L � 1. The dual gravity theory for a

CFT at finite temperature is given by the Euclidean BTZ black hole with the

metric

ds2 = (r2 − r2
+)dτ 2 +

R2

r2 − r2
+

dr2 + r2dφ2 (2.17)

The Euclidean time and the angular coordinate has a periodicity given by the

following identifications

τ ∼ τ +
2πR

r+

φ ∼ φ+ 2π

(2.18)

The parameters of the CFT and the BTZ black hole [66] can be related as β
L

=
R
r+
� 1. Similar to the zero temperature case, here again we define the subsystem

A as 0 ≤ φ ≤ 2πl
L

on the ρ = ρ0 surface. In order to find the geodesic length in this

case, we will use the result that an Euclidean BTZ black hole at a temperature T is

equivalent to a thermal AdS3 at temperature T−1. Performing the transformations

r = r+ cosh ρ ; r+τ = Rθ ; r+φ = Rt (2.19)

In terms of the new coodinates (t, ρ, θ) (2.17) indeed takes the form of thermal

Euclidean AdS3. The geodesic distance in this case i.e. the analog of (2.14) is



36 Chapter 2 Entanglement Entropy and Mutual Information

given by

cosh

(
LγA
R

)
= 1 + 2 cosh2 ρ0 sinh2

(
πl

β

)
(2.20)

Using the above along with the relation (2.15) gives us (2.10), a well known result

for thermal CFTs.

2.1.3 Higher dimensional entanglement entropy

The Ryu-Takayanagi prescription can be generalized to higher dimensions, giving

a handle on the entanglement structure of CFTs living in odd dimensions where

standard field theoretic techniques e.g. the replica trick fails. In higher dimensions,

the geodesic distances (curves with minimal lengths connecting two boundary

points) are replaced with the notion of minimal area surfaces. Unlike the earlier

subsection, we will perform our calculations in the Poincaré patch of AdSd+2 where

the metric is

ds2 =
R2

r2

(
dr2 − dt2 +

d∑
i=1

dx2
i

)
(2.21)

We will evaluate the entanglement entropy for two kinds of geometries for the

subsystem A: when A is strip shaped and when A is disk shaped.

Let us first consider A to be a strip-shaped subsystem given by

Astrip = {xi|x1 ∈ [−l/2,+l/2], x2,3,...,d ∈ [−∞,+∞]} (2.22)

at the boundary r = 0. Clearly, l is the width of the strip along x1 while it is

non-compact along all other boundary spatial directions. The minimal surface

dips into the AdS bulk, where r∗ represents the turning point of the minimal

surface whose boundary is identical to that of Astrip. The minimal surface follows

an equation of the form

dr

dx1

=

√
r2d
∗ − r2d

rd
where

l

2
=

∫ r∗

0

dr
rd√

r2d
∗ − r2d

= r∗
√
π

Γ(d+1
2d

)

Γ( 1
2d

)
(2.23)

The area of the minimal surface for the strip-shaped subsystem defined as (2.22)

finally takes the form

Area of Astrip =
2Rd

d− 1

(
L

a

)d−1

− 2dπd/2Rd

d− 1

(
Γ(d+1

2d
)

Γ( 1
2d

)

)d(
L

l

)d−1

(2.24)
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where L is the regularized length of the subsystem A along the non-compact di-

rections x2,3,...,d.

The same exercise can be repeated for disk-shaped geometry defined as

Adisk = {xi|r ≤ l} (2.25)

The corresponding minimal surface generated in the bulk has an area given by

Area of Adisk = C

∫ 1

a/l

dy
(1− y2)

d−2
2

yd

= p1

(
l

a

)d−1

+ p3

(
l

a

)d−3

+ · · ·

· · ·+

pd−1

(
l
a

)
+ pd +O

(
a
l

)
d : even

pd−2

(
l
a

)2
+ q log

(
l
a

)
+O(1) d : odd

(2.26)

where

C =
2πd/2Rd

Γ(d
2
)

;
p1

C
=

1

d− 1
;

pd
C

= (2
√
π)−1Γ

(
d

2

)
Γ

(
1− d

2

)
;

q

C
= (−1)

d−1
2

(d− 2)!!

(d− 1)!!

(2.27)

In the context of the AdS/CFT correspondence, the above expression can be used

to write down the entanglement entropy of a subsystem of size l for N = 4 SU(N)

Yang-Mills theory in 4-dimensions at zero temperature which has a gravity dual

given by (2.21) with d = 3. This eventually leads us to the expressions

SAstrip =
N2L2

2πa2
− 2
√
π

(
Γ(2/3)

Γ(1/6)

)3
N2L2

l2
(2.28)

SAdisk = N2

[
l2

a2
− log

(
l

a

)
+O(1)

]
(2.29)

which gives the entanglement entropy of a subsystem of size l.

From the expressions (2.24), (2.26), (2.28) and (2.29) it is evident that the UV

divergent terms scale as ∼ a−(d−1) which is reminiscent of the ‘area law’ for entan-

glement entropy in QFTs [67, 68]. Physically, this is expected since the correlation

between the subsystem and the environment is maximal at the boundary separat-

ing the two. Although the presence of the area divergence term is a universal

feature of entanglement entropy, the coefficient of this term depends on the UV
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cut-off. A more physically relevant quantity is one where there is no such cutoff de-

pendence e.g. the second term in (2.24), (2.28) or the coefficient of the logarithmic

term in (2.29). These terms are universal and depends only on the dimensionality

of the theory that is under consideration.

Finally we consider the entanglement entropy of N = 4 SYM theory on R3 at a

finite temperature T . The dual geometric description has the metric

ds2 = R2

[
dr2

h(r)r2
+ r2

(
−h(r)dt2 +

3∑
i=1

dx2
i

)
+ dΩ2

5

]
(2.30)

where

h(r) = 1− r4
0

r4
; r0 = πT ; boundary: r →∞ (2.31)

For a strip-shaped subsystem defined as Astrip = {xi|x1 ∈ [−l/2, l/2], x2,3 ∈
(−∞,+∞)} we can compute the area of the minimal surface to be

Area of Astrip = 2R3L2

∫ a−1

r∗

dr
r6√

(r4 − r4
0)(r6 − r6

∗)
(2.32)

where the turning point r∗ is given by

l

2
=

∫ ∞
r∗

dr
1√

(r4 − r4
0)
(
r6

r6
∗
− 1
) (2.33)

The area integral (2.32) scales as a−2 which is in conformity with the expected

‘area law’ divergence. As we increase the subsystem size, the minimal surface dips

further into the bulk and gradually starts wrapping around the black hole horizon.

From the bulk perspective, this is the limit when r∗ ∼ r0 where the area integral

simplifies to give ∼ π3R3L2lT 3 where L denotes the regularized length along x2

and x3 directions. Finally, the Ryu-Takayanagi prescription dictates the finite part

of entanglement entropy for the subsystem A to be

S
(finite)
Astrip

≈ π2N2T 3

2
L2l =

π2N2T 3

2
× (Area of Astrip) (2.34)

We can interpret the above quantity as a part of the Bekenstein-Hawking entropy

for black 5-branes which is proportional to the area of the horizon at r = r0. In

the gravitational description, this part arises since the minimal surface wraps the

black hole horizon. If we increase the size of subsystem A to coincide with the full

system we indeed recover the Bekenstein-Hawking entropy exactly.
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2.2 AdS plane waves and Mutual Information

(MI)

We are interested in studying excited states of a certain kind, building on previous

work. AdS plane waves [26, 30, 35, 51] are deformations of AdS which are dual

to CFT excited states with constant energy-momentum flux T++ ∼ Q turned on.

Upon x+-dimensional reduction, these give rise to hyperscaling violating space-

times [51], some of which exhibit violations [69, 70, 12] of the area law [67, 68].

In [52, 71], a systematic study of entanglement entropy for strip subsystems was

carried out in AdS plane waves (with generalizations to nonconformal brane plane

waves in [72]). The EE depends on the orientation of the subsystem i.e. whether

the strip is parallel or orthogonal to the flux T++. For the strip subsystem along

the flux, the EE grows logarithmically with the subsystem width l for the AdS5

plane wave (the corresponding hyperscaling violating spacetime lies in the family

giving log-behaviour). The AdS4 plane wave dual to plane wave excited states in

the M2-brane Chern-Simons CFT exhibits an even stronger
√
l growth. For the

strip orthogonal to the flux, we have a phase transition with the EE saturating for

l� Q−1/d.

For two disjoint subsystems, an interesting information-theoretic object is mutual

information (MI), defined as

I[A,B] = S[A] + S[B]− S[A ∪B] , (2.35)

involving a linear combination of entanglement entropies. It measures how much

two disjoint subsystems are correlated (both classical and quantum). The EE

terms in I[A,B] automatically cancel out the cutoff-dependent divergence thus

making MI finite and positive semi-definite. A new divergence comes up when the

subsystems collide. The term S[A ∪ B] in the above expression depends on the

separation between the subsystems A and B: in the holographic context, there are

two extremal surfaces of key interest. For large separation, the disconnected sur-

face S[A∪B] = S[A]+S[B] having lower area is the relevant surface so that mutual

information I[A,B] vanishes. For nearby subsystems however, the connected sur-

face has lower area. Thus the Ryu-Takayanagi prescription automatically implies

a disentangling transition for mutual information in this large N classical gravity

approximation [73], with a critical separation xc.
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In this chapter, we first discuss a phenomenological scaling picture for entangle-

ment for CFT ground and some excited states, building on some renormalization-

group like intuition described in [74] based on “entangling bits” or “partons” (sec.

3). In 2.4, we describe some generalities on holographic mutual information and

then study mutual information in AdS plane waves for two parallel disjoint strip

subsystems of width l each (sec. 5), first discussing the wide strip regime Qld � 1,

exhibiting again a disentangling transition. Then we study the perturbative regime

Qld � 1 and calculate the changes in the turning point and the entanglement area

functional to O(Q) treating the AdS plane wave as a perturbation to pure AdS,

for the strip subsystem both parallel and orthogonal to the energy-momentum

flux. This perturbative analysis has parallels with “entanglement thermodynam-

ics” [75, 76, 77]. Finally, we perform some numerical analysis to gain some insights

when Qld is O(1). We discuss some similarities and key differences of our inves-

tigations with the study of mutual information for thermal excited states [78],

which are somewhat different from these pure excited AdS plane wave states. In

the next subsection, we briefly review entanglement entropy in the context of AdS

plane waves.

2.2.1 Review: Entanglement Entropy for AdS plane waves

AdS plane waves [30, 35, 51] are rather simple deformations of AdS/CFT , dual

to anisotropic excited states in the CFT with uniform constant energy-momentum

density T++ turned on (with all other energy-momentum components vanishing),

ds2 =
R2

r2
(−2dx+dx− + dx2

i + dr2) +R2Qrd−2(dx+)2 +R2dΩ2 , (2.36)

with d the boundary spacetime dimension and R4 ∼ g2
YMNα

′2 [AdS5 plane wave],

R6 ∼ Nl6P [AdS4 plane wave]. These are normalizable deformations of AdSd+1×S
that arise in the near horizon limits of various conformal branes in string/M-theory.

Structurally they are similar to the AdS null deformations [20, 21] that give rise

to gauge/string realizations of z = 2 Lifshitz spacetimes [18, 19], except that these

AdS plane waves are normalizable null deformations. Reducing on the sphere,

these are solutions in a d+ 1-dim effective gravity theory with negative cosmologi-

cal constant and no other matter, i.e. satisfying RMN = − d
R2 gMN . The parameter

Q > 0 gives rise to a holographic energy-momentum density T++ ∝ Q in the

boundary CFT. Dimensionally reducing (2.36) on the x+-dimension (and relabel-

ing x− ≡ t) gives a hyperscaling violating metric ds2 = r
2θ
di

(
− dt2

r2z +
∑2
i=1 dx

2
i+dr

2

r2

)
,
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with exponents z = d−2
2

+ 2, θ = d−2
2

and di is the boundary spatial dimension.

These are conformal to Lifshitz space times and appear in various discussions

of non-relativistic holography, arising in various effective Einstein-Maxwell-scalar

theories e.g. [5, 6, 7, 8, 9, 10, 11]: see [12] for various aspects of holography with

hyperscaling violation. It is known that these spacetimes for the special family

“θ = di − 1” exhibit a logarithmic violation of the area law [67, 68] of entan-

glement entropy, suggesting that these are signatures of hidden Fermi surfaces

[69, 70]. For the special case of the AdS5 plane wave, we have θ = 1, di = 2, lying

in this “θ = di − 1” family.

This spacetime (2.36) can be obtained [26, 51, 30, 35] as a “zero temperature”,

highly boosted, double-scaling limit of boosted black branes, using [79]. For in-

stance, AdS5 Schwarzschild black brane spacetimes, with metric

ds2 =
R2

r2
[−(1− r4

0r
4)dt2 + dx2

3 +
2∑
i=1

dx2
i ] +R2 dr2

r2(1− r4
0r

4)
(2.37)

can be recast in boundary lightcone coordinates x± with t = x++x−√
2
, x3 = x+−x−√

2
.

After boosting by λ as x± → λ±1x±, we obtain

ds2 =
R2

r2

[
−2dx+dx− +

r4
0r

4

2
(λdx+ + λ−1dx−)2 +

2∑
i=1

dx2
i

]
+R2 dr2

r2(1− r4
0r

4)

(2.38)

Now in the double scaling limit r0 → 0, λ→∞, with Q =
r4
0λ

2

2
fixed, this becomes

(2.36). For the near extremal AdS plane wave, from [79], we see that we have other

energy-momentum components also turned on, T++ ∼ λ2r4
0 ∼ Q, T−− ∼ r4

0

λ2 ∼
r8
0

Q
, T+− ∼ r4

0, Tij ∼ r4
0δij. Turning on a small r0 about (2.36), this means T++ is

dominant while the other components are small. In some sense, this is like a large

left-moving chiral wave with T++ ∼ Q, with a small amount of right-moving stuff

turned on. Thus the near-extremal case (with small r0) serves to regulate the AdS

plane wave in the deep interior.

We now review certain aspects of holographic entanglement entropy in these AdS

plane wave geometries [52]. First, it is worth recalling that the entanglement en-

tropy for ground states (Q = 0) in the d-dim CFTs arising on the various conformal

branes with strip-shaped subsystems has the form (upto numerical coefficients)

SA ∼
Rd−1

Gd+1

(Vd−2

εd−2
− cd

Vd−2

ld−2

)
,

R3

G5

∼ N2 (4d CFT ),
R2

G4

∼ N3/2 (3d CFT ) ,

(2.39)



42 Chapter 2 Entanglement Entropy and Mutual Information

where cd > 0 is some constant, l the strip width, Vd−2 the longitudinal size and

ε the ultraviolet cutoff. (We have used the relations R4
D3 ∼ gsNl

4
s , R

6
M2 ∼ Nl6P ,

and those for the Newton constants G10 ∼ G5R
5
D3, G11 ∼ G4R

7
M2, where gs is the

string coupling, and ls, lP the string and Planck lengths.) The first term exhibiting

the leading divergence represents the area law while the second term is a finite

cutoff-independent part encoding a size-dependent measure of the entanglement

[57, 58, 80]. With Q 6= 0, we have an energy flux in a certain direction: these are

nonstatic spacetimes, and we therefore use the covariant formulation of holographic

entanglement entropy [59] working in the higher dimensional theory (with x+

noncompact), the strip geometry corresponding to a space-like subsystem on the

boundary. Consider the strip to be along the flux direction, i.e. with width along

some xi direction [52]. Then the leading divergent term is the same as for ground

states. The width scales as l ∼ r∗, where r∗ is the turning point of the bulk

extremal surface, and the finite cutoff-independent piece in these excited states is

±
√
QVd−2l

2− d
2
Rd−1

Gd+1

[+ : d < 4, − : d > 4] ;√
QV2N

2 log(lQ1/4) (D3) ;
√
QL
√
l N3/2 (M2) . (2.40)

Note that the logarithmic behavior for the 4-dim CFT is of the same form as for a

Fermi surface, if the energy scale Q1/4 is identified with the Fermi momentum kF .

Both 4- and 3-dim CFTs in these excited states thus exhibit a finite entanglement

which grows with subsystem size l. In particular, for fixed cutoff, this finite part

is larger than the leading divergence. Recalling that the finite entanglement for

the thermal state (i.e. the AdS black hole) is extensive, of the form Vd−2T
d−1l, we

see that these are states with subthermal entanglement. These are pure states in

the large N gravity approximation since the entropy density vanishes.

It is worth noting that we regard the AdS plane wave spacetimes as a low tem-

perature highly boosted limit of the AdS black brane: the scale Q = λ2r4
0 � r4

0

implies a large separation of scales between the flux in the AdS plane wave and

the temperature of the black brane, with Q dominating the physics in the plane

wave regime. The above estimates (2.40) for the finite part of entanglement arise

if the bulk extremal surface dips deep enough in the radial direction to experience

substantial deviation from the AdS geometry due to the plane wave, while still

away from the regulating black brane horizon in the deep interior, i.e. the length

scales satisfy Q−1/d � l� 1
r0

.

With the strip orthogonal to the flux direction, a phase transition was noted

[52]: for large width l, there is no connected surface corresponding to a space-like
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subsystem, only disconnected ones.

This analysis can be extended [72] to the various nonconformal Dp-brane systems

[81]. These have a ground state entanglement [58, 82] (after converting to field the-

ory parameters) SA = Neff (ε)
Vd−2

εd−2 −cdNeff (l)
Vd−2

ld−2 , with a scale-dependent number

of degrees of freedom Neff (l) = N2
(
g2
YMN

lp−3

) p−3
5−p

involving the dimensionless gauge

coupling at scale l. For nonconformal Dp-brane plane waves, it turns out to be

natural to redefine the energy density as Q → QNeff (l) (i.e. Q in the conformal

cases above is the energy density per nonabelian degree of freedom), and then the

finite part of entanglement takes the form SfiniteA ∼
√
Neff (l)

3−p
Vp−1

√
Q

l(p−3)/2 involving a

dimensionless ratio of the energy density and the strip width/lengths and Neff (l)

(the leading divergence is as for the ground state). This finite part is similar in

structure to that for the conformal plane waves above, but is scale-dependent:

analysing the UV-IR Dp-brane phase diagram [81] shows the finite part to be

consistent with renormalization group flow [72].

2.3 A phenomenological scaling picture for en-

tanglement

This is a generalization of an RG-like scaling picture in [74] for ground states. We

assume a renormalization group type scaling behaviour with a notion of “entangle-

ment per scale” as an organizing principle: i.e. in a CFT of spacetime dimension

d, there are “entangling bits” or “partons” of all sizes s. Equivalently at scale

s, we think of space as lattice-like with cell size s. In the ground state, each

cell roughly contains one entangling parton. Entanglement arises from degrees

of freedom straddling the boundary between the subsystem and the environment,

in other words from partons partially within the subsystem and partly outside.

Entanglement entropy arises from the fact that we trace over the environment

and thus lose some information about the straddling partons. The scaling picture

below is admittedly quite phenomenological and is only meant as an attempt at

an intuitive picture that fits the holographic entanglement calculations.

We want to estimate the rough number of degrees of freedom contributing to

entanglement at the interface between the subsystem and the environment which

has area Vd−2 ≡ Ld−2. At scale s, the rough number of cells of linear size s at the

boundary is (L
s
)d−2 = Vd−2

sd−2 . For a CFT with nonabelian N ×N matrix degrees of

freedom, there are N2 degrees of freedom per cell (we use N2 with a SYM CFT in
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mind but this can be easily generalized to N3/2 for the M2-brane CFT). We then

integrate this over all scales greater than the UV cutoff ε with the logarithmic

measure ds
s

and also we expect the IR cutoff is set by the subsystem size l. This

gives (assuming d > 2)

S ∼
∫ l

ε

ds

s

Vd−2

sd−2
N2 ∼ N2Vd−2

d− 2

(
1

εd−2
− 1

ld−2

)
. (2.41)

This shows the leading area law divergence and the subleading cutoff-independent

finite part. For d = 2, we obtain S ∼
∫ l
ε
ds
s
N2 ∼ N2 log l

ε
which is the logarithmic

behaviour characteristic of a 2-dim CFT: this can be used as a check that the

logarithmic measure ds
s

is appropriate. This is a quantum entanglement, with

contributions from various scales s.

Thus we see that there is a diverging number Vd−2

ss−2 of ultra-small partons at short

distances s → 0 which essentially gives rise to the area law divergence [?]. For

excited states, the energy-momentum density does not change the short distance

behaviour but implies an enhanced number of partons at length scales much larger

than the scale set by the energy-momentum, changing the IR behaviour of entan-

glement as we will see below.

Similar arguments can be made for the various nonconformal gauge theories arising

on the various nonconformal Dp-branes. Now the gauge coupling is dimensionful

and the number of nonabelian degrees of freedom at scale s is

Neff (s) = N2

(
g2
YMN

sp−3

) p−3
5−p

. (2.42)

For the ground state, the entanglement at the boundary of the subsystem is ob-

tained as before by integrating over all scales the number Neff (s) of entangling

bits or partons at scale s

S ∼
∫ l

ε

ds

s

Vd−2

sd−2
Neff (s) ∼ (5− p)Neff (ε)

Vd−2

εd−2
− (5− p)Neff (l)

Vd−2

ld−2
, (2.43)

in agreement with the known holographic result for the ground state entanglement

for the nonconformal brane theories, upto numerical factors. We see that the

entanglement expression above breaks down for p = 5: these are nonlocal theories

(e.g. little string theories for NS5-branes).

For the CFTd at finite temperature T , the entanglement entropy has a finite cutoff-

independent piece which is extensive and dominant in the IR limit of large strip
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width l: this is the thermal entropy, essentially a classical observable,

S ∼ N2V T d−1 = N2 V

(1/T )d−1
, and ρ ≡ E

V
∼ N2T d , (2.44)

with ρ the energy density and we have used 1
T

= ∂S
∂E

. The energy density per

nonabelian particle is ρ
N2 = T d = T

(1/T )d−1 , which suggests that the characteristic

size of the typical particle is 1
T

with energy T . The CFT physics below this length

scale 1
T

, in particular that of entanglement, will be indistinguishable from the

ground state. Above this length scale, the presence of the energy density implies

a larger number of entangling bits or partons and so a correspondingly larger

entanglement. Thus the number of entangling partons N (s) for cell sizes s � 1
T

is the number of partons of individual volume (1/T )d−1 in the total cell volume

sd−1, i.e. N (s)|s�T−1 ∼ N2 sd−1

(1/T )d−1 , thus N (s) is extensive for length scales larger

than the inverse temperature. This implies a total entanglement

S ∼
∫ l

ε

ds

s

Vd−2

sd−2
N (s) ∼ 1

d− 1

N2Vd−2

εd−2
+ N2

∫
ds

s

Vd−2

sd−2

sd−1

(1/T )d−1

∣∣∣
l

∼ 1

d− 2

N2Vd−2

εd−2
+ N2T d−1Vd−2l . (2.45)

The energy enhancement factor sd−1

(1/T )d−1 changes the IR behaviour as expected.

The finite part of entanglement entropy is dominant for sufficiently large l and

is essentially the thermal entropy in this regime. The linear growth with l of

the entropy which is extensive is equivalent to the number of partons N (s) being

extensive.

For the nonconformal theory in d = p+1 dim at finite temperature T , with ρ = E
V

being the energy density, the thermal entropy S(ρ, V ) and temperature 1
T

= ∂S
∂E

are [81]

S ∼ V g
(p−3)/(5−p)
YM

√
Nρ(9−p)/(2(7−p)) , ρ ∼ g

2(p−3)/(5−p)
YM N (7−p)/(5−p) T 2(7−p)/(5−p) .

(2.46)

These can be recast as [82]

S ∼ Neff (1/T )V T p, ρ ∼ Neff (1/T )T p+1, Neff (1/T ) = N2(g2
YMNT

p−3)
p−3
5−p .

(2.47)

Along the lines earlier, we could obtain the total entanglement by integrating

the number of entangling partons over length scales longer than that set by the
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temperature: this gives (d = p+ 1)

Sfinite ∼
∫
ds

s

Vd−2

sd−2
Neff (1/T )

( s

(1/T )

)d−1

∼ Vd−2lT
d−1Neff (1/T ) . (2.48)

It is important to note that the thermal entropy is essentially classical, with contri-

butions from partons of size predominantly 1
T

so that we do not integrate Neff (s)

over all scales s: i.e. Neff = Neff (1/T ) above. In fact integrating the number

of nonabelian degrees of freedom Neff (s) over scales ε < s < l in the above ther-

mal context does not yield sensible results (e.g. giving logarithmic growth for the

thermal entropy for p = 1, 4), in contrast with the ground state.

Now we want to interpret entanglement entropy for the pure CFT excited states

dual to AdS plane waves within this scaling picture. The energy density T++ = Q

sets a characteristic length scale Q−1/d: then the typical size of the partons is

Q−1/d . Thus for cells of size s much smaller than Q−1/d, the parton distribution

is similar to that in the ground state while for cells of size s much larger than

Q−1/d, there is an enhancement in the number of entangling partons per cell.

The anisotropy induced by the flux which is along one of the spatial directions

implies that the entangling partons have energy-momentum in that direction but

can be regarded as essentially static in the other directions, as in the ground state.

Consider first the case when the strip is along the flux direction: then as the strip

width increases, the number of partons straddling the boundary increases since the

partons move along the boundary. On the other hand, when the strip is orthogonal

to the flux, the parton motion is orthogonal to the boundary: thus when the strip

width is much larger than the characteristic size Q−1/d of the partons, the number

of partons straddling the boundary is essentially constant since most of the partons

enter the strip at one boundary and then shortly do not straddle the boundary but

are completely encompassed within the strip. This reflects in the entanglement

saturating for large width, with the strip orthogonal to the energy flux.

Now we consider the case of the strip along the flux in more detail. We again define

the number of entangling bits or partons N (s) at scale s, with N (s)|s�Q−1/d ∼ N2

for length scales much smaller than the characteristic length Q−1/d: above this

scale, we expect some nontrivial scaling of N (s) which will be a function of Qsd

on dimensional grounds. The precise functional form of N (s) for these AdS plane

wave states is not straightforward to explain however: the known results for holo-

graphic entanglement entropy (2.40) suggest N (s) ∼ N2
√
Qsd. Although the

AdS plane wave CFT states are simply the thermal CFT state in a low tem-

perature large boost limit, this scaling of N (s) is not a simple boosted version
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of those for the thermal state (discussed below), but somewhat nontrivial. It

would be interesting to explain this scaling of the AdS plane wave CFT states,

perhaps keeping in mind the infinite momentum frame and Matrix theory. In

this regard, we note that these AdS plane wave states preserve boost invariance,

i.e. x± → λ±1x±, Q → λ−2Q is a symmetry of the bulk backgrounds. For the

strip along the flux, the longitudinal size scales as Vd−2 → λVd−2 and the num-

ber of entangling partons is some function f(Qsd). Boost invariance then fixes

Vd−2f(Qsd) = Vd−2

√
Qsd. Alternatively, imagine the collision of two identical

plane wave states, moving in opposite directions. Assuming the resulting state has

a number of partons NL(s)NR(s) ∝ Qsd proportional to the energy-momentum

density, we can estimate that either individual wave has NL(s) ∼ NR(s) ∼
√
Qsd.

However this is a bit tricky since this makes NL(s),NR(s) reminiscent of parti-

tion functions: a number of partons might instead be expected to be additive, as

NL(s) +NR(s).

Taking the number of entangling partons N (s) at the boundary at scale s� Q−1/d

as N2 Vd−2

sd−2

√
Qsd = N2 Vd−2

sd−2

(
s

Q−1/d

)d/2
, while for s � Q−1/d keeping N2 Vd−2

sd−2 as in

the ground state, gives rise to an entanglement scaling as

S ∼
∫ l

ε

ds

s

Vd−2

sd−2
N (s) ∼ 1

d− 2

N2Vd−2

εd−2
+ N2Vd−2

∫
ds

s

√
Qsd

sd−2

∣∣∣
l

∼ 1

d− 2

N2Vd−2

εd−2
+

N2

4− d
√
Q Vd−2l

2− d
2 [d 6= 4] ,

∼ 1

d− 2

N2Vd−2

εd−2
+ N2

√
Q V2 log(lQ1/4) [d = 4] . (2.49)

For d = 4, the logarithmic growth in the finite part arises by integrating from scales

longer than Q−1/4 upto the IR scale l. Thus we see that the phenomenological

scaling
√
Qsd is consistent with the holographic results. It would be interesting to

understand this scaling better. Likewise for the nonconformal plane wave excited

states (as in the conformal case) which we think of as chiral subsectors, the number

of entangling partons at length scales s longer than that set by the energy density

Q is proportional to
√
Qsd and the total finite part of entanglement for a strip

subsystem of width l becomes

Sfinite ∼
∫
ds

s

Vd−2

sd−2

√
Neff (s)

√
Qsd

∣∣∣
l
∼ 5− p

3− p
Vd−2

ld−2

√
Neff (l)

√
Qld , (2.50)

recovering the holographic results [72].

It would be interesting to put the phenomenological discussions in this section
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on firmer footing with a view to gaining deeper insight into entanglement in field

theory excited states.

2.4 Holographic mutual information: generali-

ties

B

  

l l

x

l lx

A B

x

l l

A B

A

Figure 2.3: Two parallel disjoint strip subsystems of width l and separation x (and

longitudinal size Vd−2) (left), with the disconnected extremal surface (top right) and

the connected extremal surface (bottom right).

Mutual information is defined for two disjoint subsystems A and B as

I[A,B] = S[A] + S[B]− S[A ∪B] . (2.51)

It is a measure of the correlation (both classical and quantum) between the degrees

of freedom of two disjoint subsystems A and B. Mutual information is finite,

positive semi-definite, and proportional to entanglement entropy when B ≡ Ac

(in that case, S(A ∪ Ac) = 0). This linear combination of entanglement entropies

ensures that the short distance area law divergence cancels between the various

individual terms rendering the mutual information finite. There is a new cutoff-

independent divergence however that arises when the two subsystems approach

each other and collide, as we will see below.

The holographic prescription of Ryu-Takayanagi implies in a simple geometric way

that mutual information vanishes when the two subsystems are widely separated:

thus as discussed in [73], mutual information undergoes a disentangling phase tran-

sition as the separation between the two striplike subsystems A and B increases.
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Recall that we choose that extremal surface which has minimal area, given the

boundary conditions defined by the subsystem in question. In the case of the

subsystem A ∪B defined by two disjoint strips, there are two candidate extremal

surfaces as in Figure 2.3. When the two subsystems are widely separated, the rel-

evant extremal surface with lower area is simply the union of the two disconnected

surfaces so that S[A ∪ B] = S[A] + S[B]. However for nearby subsystems, the

connected surface has lower area. For simplicity, we consider two disjoint parallel

strip subsystems with longitudinal size Vd−2, and of the same width l each, with

separation x. For fixed width l, we can vary the separation x. Then as we vary x
l

which is a dimensionless parameter, the behaviour of the extremal surface and its

area S[A ∪B] change: the extremal surface is

(i) disconnected surface: area S[A ∪B] = S(A) + S(B) = 2S(l) , for large
x

l
,

(ii) connected surface: area S[A ∪B] = S(2l + x) + S(x) , for small
x

l
. (2.52)

The Ryu-Takayanagi prescription of choosing the extremal surface of minimal area

then leads to a change in the entangling surface for the combined subsystem A∪B.

Correspondingly the mutual information changes as

I[A,B] > 0,
x

l
<

xc
l
,

= 0,
x

l
>

xc
l
.

(2.53)

The critical value xc
l

is a dimensionless number, and depends on the field theory

in question as well on the CFT state, as we discuss below. This critical value
xc
l

is thus the location of a sharp disentangling transition in the classical gravity

approximation, since the mutual information vanishes for larger separations imply-

ing the subsystems are uncorrelated, especially in light of an interesting relation

between the mutual information and correlation functions. It is known [83] that

I[A,B] sets an upper bound for 2-point correlation functions of operators, with

one insertion at a point in region A and the other in B,

I[A,B] ≥ (〈OAOB〉 − 〈OA〉〈OB〉)2

2|OA|2|OB|2
. (2.54)

This inequality implies that beyond the disentangling transition point all 2-point

correlation functions also vanish (with one point in A and the other in B), since

the mutual information vanishes. It is important to note that entanglement en-

tropy and mutual information via the Ryu-Takayanagi prescription are O(N2)

observables in the classical gravity approximation. However the 2-pt correlators
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are normalized as O(1). One might imagine the mutual information decays as

I[A,B] ∼
∑ c∆

r4∆
A,B

and indeed the quantum O(1) contributions effectively give a

long distance expansion for mutual information [84] (see also [61, 70, 73, 85]).

However the coefficients c∆ at the classical level O(N2) vanish: this shows up in

the large N approximation as the sharp disentangling transition in mutual infor-

mation.

We now discuss this for large N conformal field theories in the ground and ex-

cited states. For the ground state, the mutual information for two strip shaped

subsystems of width l parallel to each other and with separation x is

I[A,B] = −cVd−2

(
2

ld−2
− 1

(2l + x)d−2
− 1

xd−2

)
= −cVd−2

ld−2

(
2− 1

(2 + x
l
)d−2

− 1

(x
l
)d−2

)
.

(2.55)

This arises from the cutoff-independent parts of entanglement, the divergent terms

cancelling. We see that for small separation x, the mutual information I[A,B]

grows as I[A,B] ∼ Vd−2

xd−2 and exhibits a divergence as x → 0, i.e. when the

subsystems collide with each other. As x
l

increases, I[A,B] decreases and then

vanishes at a critical value of x
l
. Beyond this critical separation, the expression

(2.55) for I[A,B] as it stands is negative and is meaningless: this simply reflects

the fact that the correct extremal surface for A ∪ B is in fact the disconnected

surface, i.e. the subsystems disentangle, and mutual information actually vanishes

beyond the disentangling point. This disentangling transition can be identified as

the zero of I[A,B] above, giving xc
l
' 0.732 [d = 4], and 0.62 [d = 3], and so on.

Such a disentangling transition also happens at finite temperature, but the phase

diagram is more complicated and has nontrivial dependence on the length scale
1
T

set by the temperature T . For l, x � 1
T

, i.e. subsystem widths and separation

small relative to the temperature scale, we only expect small corrections to the

ground state behaviour above. Thus the disentangling transition point occurs at

values which are “near” those for the ground state. However for large width l,

the entanglement is well approximated by the extensive (linear) thermal entropy:

thus

I[A,B] ∼ T d−1Vd−2

(
2l − (2l + x)− Sfin(x)

)
= T d−1Vd−2

(
−Sfin(x) − x

)
.

(2.56)

Thus we see that as the separation x increases, −Sfin(x) > 0 decreases and I[A,B]

decreases and eventually vanishes at a critical xc, which turns out to be smaller
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in value than for the ground state. When the thermal entropy dominates the

entanglement or equivalently the subsystem widths and separation are both large

relative to the temperature scale, we see that

I[A,B] ∼ T d−1Vd−2 (2l − (2l + x)− x) = −2T d−1Vd−2x , (2.57)

which is negative. This is a reflection of the fact that the two subsystems in fact

are completely disentangled for any separation x larger than 1
T

. In some sense,

the temperature “disorders” the system and the subsystems disentangle faster at

finite temperature than in the ground state.

In what follows, we analyse holographic mutual information for AdS plane waves.

We will see some similarities with the finite temperature case, but with nontriv-

ial phase structure depending on the scale Q−1/d. There are however some key

differences as we will see below.

2.5 Mutual information in AdS plane waves

AdS plane waves exhibit anisotropy due to the energy flux in one direction. We are

considering parallel disjoint strip subsystems that are either both along the flux or

both orthogonal to the flux. We can analyse mutual information in two extreme

regimes, where the strip widths l are large or small compared to the length scale

set by the energy density flux Q. Eventually we will carry out some numerical

analysis in intermediate regimes as well.

2.5.1 Wide strips: lQ1/d � 1

Consider first the strip along the energy flux direction, with width direction along

say x1 (we assume d ≥ 3). Then the spacelike strip subsystem A lying on a

constant time slice has 0 ≤ x1 ≤ l, (x+, x−) = (αy,−βy) = (y,−y), −∞ <

y, x2, x3, · · · , xd−2 < ∞. The extremal surface γA is specified by the function

x1 = x(r). Vd−2 denotes the volume in the y and (x2, · · · , xd−2) direction. ε is the

UV cutoff. The subsystem width in terms of the turning point r∗ is [52]

∆x1 = l = 2

∫ r∗

0

dr
Ard−1√

2 +Qrd − A2r2(d−1)
, (2.58)
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while the entanglement entropy in terms of the area functional is

SA =
Area

4Gd+1

=
2Vd−2R

d−1

4Gd+1

∫ r∗

ε

dr

rd−1

2 +Qrd√
2 +Qrd − A2r2(d−1)

. (2.59)

The above integrals are however not exactly solvable for d ≥ 3. There is a leading

area law divergence from the contribution near the boundary r = ε, with EE ∼
N2 Vd−2

εd−2 , where we have used N2 ∼ Rd−1

Gd+1
. this integral can be expanded but, it will

have contribution mostly For large energy density Q, and large width l, the turning

point equation 2+Qrd∗−A2r2d−2
∗ = 0 can be approximated as Qrd∗ ' A2r

2(d−1)
∗ � 1,

so that l ∼ r∗ from (2.58). The finite cutoff-independent piece of SA is then

estimated as

SfiniteA ∼ ±R
d−1

Gd+1

Vd−2

√
Q l2−

d
2 [d 6= 4] (2.60)

∼ N2V2

√
Q log(lQ1/4) [d = 4] . (2.61)

The sign in front of (2.60) is + for d < 4 and − for d > 4.

Towards estimating mutual information for AdS plane waves, we must note that

there are multiple regimes stemming from the various length scales l, x, Q−1/d.

When the strip widths and separations are large relative to the correlation length,

i.e. lQ1/d � 1 and xQ1/d � 1, we can use the above estimates for the finite parts

of entanglement entropy to estimate mutual information. For the AdS5 plane

wave, when the strips are not too far apart, we can assume mutual information is

nonzero, obtaining from the finite parts above,

I[A,B] = 2Sfin(l)− Sfin(2l + x)− Sfin(x) ∼ V2

√
Q log

(
l2

x(2l + x)

)
. (2.62)

The argument of the logarithm vanishes when

I[A,B]→ a0 ⇒ l2 = 2lx+ x2, i.e.
xc
l

=
√

2− 1 ' 0.414 . (2.63)

Thus the subsystems disentangle at a separation less than that for the AdS5 ground

state, which has xc
l

= 0.732. It is also noteworthy that for any large Q, the

subsystems disentangle only when they are sufficiently wide apart in comparison

with the width, i.e. x ≥ 0.414l, independent of the characteristic energy scale

Q−1/4: in particular the disentangling point xc here could be substantially bigger

than Q−1/4. This transition location agrees with the analysis for hyperscaling

violating spacetimes in [70] and [78], in accordance with the fact that the AdS5



Chapter 2 Entanglement Entropy and Mutual Information 53

plane wave gives rise to the corresponding hyperscaling violating spacetime. The

strips, being parallel to the flux, are unaffected by the reduction along the x+-circle

from that perspective. In the present case, we are studying this entirely from the

higher dimensional AdS plane wave point of view. Note that this is quite distinct

from the finite temperature case [78] in the corresponding regime lT � 1, xT � 1,

i.e. sizes larger than the temperature scale 1
T

: in that case, the linear extensive

growth of entanglement in this regime implied that the subsystems disentangled

for any finite separation x independent of the width l (2.57).

Strictly speaking, we are thinking of the regulated AdS plane wave as a limit of

the highly boosted low temperature AdS black brane, with a large separation of

scales Q� r4
0 between the energy density Q = λ2r4

0 and the temperature r0, with

λ being the boost parameter. Over this wide range of length scales, the physics is

dominated by the AdS plane wave description, with departures arising in the far

infrared where the black brane horizon physics enters as a regulator. From this

point of view, we are thinking of the strip subsystem widths as satisfying Q−1/4 �
l � 1

r0
, with the above behaviour of mutual information holding correpondingly:

in the far IR when l � 1
r0

the behaviour of mutual information resembles that in

the finite temperature case.

A similar analysis can be done for the AdS4 plane wave, in the regime lQ1/3 � 1

and xQ1/3 � 1, taking again for simplicity both strips of equal width l with sepa-

ration x. Then the mutual information arises from the finite parts of entanglement

estimated (2.60) for large Q giving

I[A,B] ∼ V1

√
Q
(

2
√
l −
√

2l + x−
√
x
)
. (2.64)

This decreases as the separation x increases and finally vanishes when

I[A,B]→ 0 ⇒ xc
l

=
1

4
, (2.65)

which is the location of the disentangling transition in this regime. Again we see

that the subsystems disentangle when they are sufficiently wide apart in compar-

ison to their widths l, without specific dependence on the energy scale Q−1/3 as

for the AdS5 plane wave discussed above.

Nonconformal D-brane plane waves and entanglement entropy were studied in

[72], with the emerging picture and scalings consistent with AdS plane waves

in cases where comparison is possible. The analysis is more complicated in the

nonconformal cases since there are multiple different length scales in the phase
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diagram. The structure of mutual information is still further complicated and we

will not carry out a systematic study here. We can however make some coarse

estimates in the large flux regime. For instance the D2-M2 ground state phase

diagram [81] extends to a corresponding one for the D2-brane plane waves. The

finite part of EE for a strip along the flux in the D2-brane supergravity regime is

SfinD2 ∼ V1

√
Q
√
l
√
Neff (l) ∼ V1

√
Q
√
l
√

N2

(g2
YMNl)

1/3 ∝ l1/3. Noting the D2-sugra

regime of validity, it can be seen that this finite part is greater than V1

√
Q
√
l
√
N3/2

for the M2-brane (AdS4) plane wave arising in the far IR [72]. In the D2-regime,

we can approximate the mutual information as MID2 ∼ V1

√
Q(2l1/3−(2l+x)1/3−

x1/3) which shows a disentangling transition at xc
l
∼ 0.31. Recalling that for the

M2-brane regime, we have xc
l
∼ 0.25, we see that xc decreases along the RG flow

from the D2-brane sugra to the M2-brane regime. Similarly for the ground states

also, it can be checked that in the D2-regime, we have xc
l
∼ 0.66 while in the

M2-regime, we have xc
l
∼ 0.62. It is unclear if these are indications of some deeper

structure for the “flow” of mutual information.

Now we make a few comments on mutual information in the case where the strips

are orthogonal to the energy flux. In the large flux regime, we know [52] that

entanglement entropy shows a phase transition for l � Q−1/d with no connected

extremal surface but only disconnected ones. In this regime, we expect that mu-

tual information simply vanishes since the connected surface of mutual informa-

tion (2.52) is already disconnected: thus the entanglement is saturated for each

of S[l], S[2l + x], S[x] ∼ Ssat so that MI ∼ 2S(l) − S[2l + x] − S[x] = 0. In

Sec. 2.5.2 and Sec. 2.5.3, we will study entanglement and mutual information in

the perturbative regime Qld � 1: however in this regime, we do not expect any

signature of the phase transition which is only visible for wide strips. It is then

reasonable to expect some interesting interplay between the phase transition and

the location of the disentangling transition for mutual information.

2.5.2 Narrow strips: lQ1/d � 1, strips along flux

We would now like to understand the case of narrow strips, i.e. with the dimen-

sionless quantity lQ1/d � 1. In this limit, we expect that the entanglement entropy

is only a small departure from the pure AdS case, since the energy density flux

Q will only make a small correction to the ground state entanglement. We will

first analyse the strip along the flux and obtain the entanglement correction to the

ground state. This has parallels with “entanglement thermodynamics” [75, 76, 77]

for these AdS plane waves, treating the g++ mode as a small deformation to AdS.
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In the limit Q1/dl � 1, we first calculate the change in the turning point r∗ upto

O(Q), and then expand the width integral and area integral around AdSd+1, using

(2.58), (2.59). First we note that the pure AdS case, with s the turning point of

the minimal surface, has the width integral

l = 2

∫ s

0

A√
2

r2(d−1) − A2
= 2

∫ s

0

dr
(r/s)d−1√

1−
(
r
s

)2(d−1)
= 2

(√
πΓ
(

d
2d−2

)
Γ
(

1
2d−2

) )
s ≡ 2ηs ,

(2.66)

using A2 = 2
sd−1 and η =

∫ 1

0
xd−1√

1−x2(d−1)
dx. We want to calculate the change in

the ground state entanglement entropy under the AdS plane wave perturbation to

O(Q), with the strip along the flux. With the entangling surface fixed at width l,

the turning point s now changes to r∗ = s+ δr∗. We recast (2.58) and the turning

point equation as

l

2
=

∫ r∗

0

dr
A√

g(r)

r2(d−1) − A2

with g(r) = 2+Qrd , and A2 =
g(r∗)

r
2(d−1)
∗

≡ g∗

r
2(d−1)
∗

.

(2.67)

Then we obtain

l

2
=

∫ r∗

0

dr

√
g∗

rd−1
∗

1
rd−1

√
g(r)− g∗

(
r
r∗

)2(d−1)
=

∫ r∗

0

dr
(r/r∗)

d−1

f(r, r∗)

(
1 + Qrd∗

4

)
√

1 +
Qrd−Qrd∗( r

r∗ )
2(d−1)

2f2(r,r∗)

,

(2.68)

with the function

f(r, r∗) =

√
1−

(
r

r∗

)2(d−1)

, 0 < f(r, r∗) < 1 for all r < r∗ . (2.69)

The above expression has been obtained by taking Qrd∗ � 1 and expanding out

the integrand. The above width integral can be further simplified to O(Q) as

l

2
=

∫ r∗

0

dr
(r/r∗)

d−1

f(r, r∗)

(
1 +

Qrd∗
4

)1−
Qrd −Qrd∗

(
r
r∗

)2(d−1)

4f 2(r, r∗)


=

∫ r∗

0

dr
(r/r∗)

d−1

f(r, r∗)

(
1 +

Q

4f 2(r, r∗)
(rd∗ − rd)

)
= sη = (r∗ − δr∗)η ,(2.70)
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the last expression arising since the width l is as in AdS. Using (2.66), we see that

the leading AdS piece cancels giving

δr∗ = −Q
4η

∫ r∗

0

dr
(r/r∗)

d−1

f 3(r, r∗)

(
rd∗ − rd

)
∼ −Qs

d+1

4η

∫ 1

0

dx
xd−1(1− xd)

(1− x2(d−1))3/2
. (2.71)

As r∗ happens to be the turning point of the minimal surface, r < r∗ which

implies that δr∗ < 0 always. Also since δr∗ is O(Q), we have approximated r∗ ∼ s

to obtain the second expression. Thus

δr∗ ∼ −
Qsd+1

4η

√
π

(d− 1)2

(
Γ( 1

d−1
)

Γ(1
2

+ 1
d−1

)
− (d− 1)

Γ( d
2d−2

)

Γ( 1
2d−2

)

)
≡ −Qr

d+1
∗

4η
Nr∗ . (2.72)

We now calculate the change in the area integral and correspondingly the en-

tanglement entropy upto O(Q). For pure AdS, i.e. the CFT ground state, we

have

4Gd+1S0 = 2Vd−2R
d−1

∫ s

0

dr

rd−1

1

f(r, s)
, (2.73)

with f(r, s) =

√
1−

(
r
s

)2(d−1)
as in (2.69). We focus on the finite part of the above

integral and use l = 2sη, obtaining

4Gd+1S0 = #Rd−1Vd−2

εd−2
− 2d−1π

d−1
2

(d− 2)

(
Γ( d

2d−2
)

Γ( 1
2d−2

)

)d−1
Vd−2

ld−2
Rd−1 . (2.74)

In our case of the AdSd+1 plane wave,

4Gd+1S = 2Vd−2R
d−1

∫ r∗

0

dr

rd−1

2 +Qrd√
2 +Qrd − A2r2(d−1)

(2.75)

Treating this as an infinitesimal g++-deformation and expanding around pure AdS,

we would like to obtain the O(Q) change in EE, or equivalently the infinitesimal

change for the plane wave excited state relative to the ground state. From the
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turning point equation, we have A2 = 2+Qrd∗
r
2(d−1)
∗

as before, giving

4Gd+1S = 2Vd−2R
d−1

∫ r∗

0

dr

rd−1

2 +Qrd√
2
(

1−
(
r
r∗

)2(d−1))
+Qrd −Qrd∗

(
r
r∗

)2(d−1)

= 2
√

2Vd−2R
d−1

∫ r∗

0

dr

rd−1

1

f(r, r∗)

(
1 +

Qrd

2

)

×

1−
Qrd −Qrd∗

(
r
r∗

)2(d−1)

4f(r, r∗)2


= 4Gd+1S0 + 2

√
2Rd−1NEE Vd−2Qr

2
∗ , (2.76)

where

NEE =

∫ 1

0

dx

[
x

2
√

1− x2(d−1)
+

1

4xd−1
√

1− x2(d−1)

(
(1− xd)

(1− x2(d−1))
− 1

)]
=

√
π

8(d− 1)2

(
(d+ 1)Γ( 1

d−1
)

Γ(1
2

+ 1
d−1

)
−

2(d− 1)Γ( d
2d−2

)

Γ( 1
2d−2

)

)
.

(2.77)

It can be checked that the constant NEE is positive, so that the correction to the

entanglement entropy is positive. To O(Q), we can replace r∗ by s, the pure AdS

turning point. Then using l = 2sη, we see that

∆S ∼ +
Rd−1

Gd+1

NEE
4η2
√

2
Vd−2Ql

2 = +
Rd−1

Gd+1

NEE
4η2
√

2

Vd−2

ld−2
(Qld) , (2.78)

with Qld � 1. There are parallels of this analysis with “entanglement thermody-

namics” [75, 76, 77] (see also [86, 87, 88]). In the present case, we have the energy

change in the strip ∆E ∼
∫
δTttd

d−1x ∼ QVd−2l, giving TE∆SE ∼ ∆E with the

“entanglement temperature” TE ∼ 1
l

. There is also an entanglement pressure.

Although it is not crucial for our purposes here, it would be interesting to develop

this further.

The above entanglement entropy change implies that the change in mutual infor-

mation is negative (with I0[A,B] the mutual information in pure AdS):

I[A,B] = I0[A,B] + ∆I[A,B]

= I0[A,B] +
Rd−1

Gd+1

NEE√
2
Vd−2Q

(
2l2 − (2l + x)2 − x2

)
= I0[A,B] − 2

Rd−1

Gd+1

NEE
4η2
√

2
Vd−2Ql

2
(

1 +
x

l

)2

. (2.79)
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Thus we see that mutual information strictly decreases, for a small T++ energy

density flux perturbation along the strip subsystem. In this perturbative regime

with the correction scaling as O(Q) and as the area of the interface Vd−2, the en-

tanglement and mutual information corrections involve the dimensionless quantity

Vd−2Ql
2.

It is worth noting that unlike in the wide strip regime (2.62), the disentangling

transition in this perturbative regime certainly depends on the energy density Q

and the strip width through Qld. In particular, using (2.74), (2.55), we see that

the mutual information (2.79) vanishes at

N 0
EE

( 1

(x
l
)d−2

+
1

(2 + x
l
)d−2

− 2
)
− NEE

2
√

2η2
Qld
(

1 +
x

l

)2

= 0 , (2.80)

whereN 0
EE is the constant coefficient of the finite part in (2.74). A numerical study

later (sec. 5.4) describes the location of the vanishing of mutual information and

the disentangling transition for intermediate regimes as well, where Qld ∼ O(1).

2.5.3 Narrow strips: lQ1/d � 1, strips orthogonal to flux

We describe the change in entanglement entropy and mutual information for the

strips orthogonal to the flux in the perturbative regime lQ1/d � 1 here. The

analysis is similar to the previous case, but involves more calculation.

We first consider a single strip and study entanglement. In this case, the width

direction of the strip A is parallel to xd−1, with x± = t±xd−1√
2

. The bulk extremal

surface γA is specified by x+ = x+(r), x− = x−(r), and the spacelike strip subsys-

tem has width

∆x+ = −∆x− =
l√
2
> 0 , (2.81)

(spacelike implying ∆t = 0) and longitudinal size Vd−2 ∼ Ld−2 with L � l in the

xi directions. ε is the UV cut-off. Then the width integrals and the entanglement

entropy area functional reduce to [52]

∆x+

2
=

∫ r∗

0

dr√
A2B2

r2(d−1) +Qrd − 2B
,

∆x−

2
=

∫ r∗

0

(Qrd −B) dr√
A2B2

r2(d−1) +Qrd − 2B
,

SA =
2Rd−1Vd−2

4Gd+1

∫ r∗

ε

dr

rd−1

AB√
A2B2 − 2Br2(d−1) +Qr3d−2

. (2.82)
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Unlike the previous case, here we have two parameters A,B and two integrals

specifying the subsystem width l as a function of the turning point r∗ of the

extremal surface, given by (2.82). For pure AdS, with Q = 0, (2.82) alongwith

(2.81) fixes B = 1, with x± treated “symmetrically” as expected in the absence

of the energy flux. We will treat the AdS plane wave case in O(Q) perturbation

theory and expand both integrals around AdS. The turning point equation here

is

A2B2

r
2(d−1)
∗

+Qrd∗ − 2B = 0 ⇒ A2B2

r2(d−1)
=
(r∗
r

)2(d−1)

(2B −Qrd∗) . (2.83)

This recasts the denominator of the width integrals in terms of

f(r, r∗) =

√
1−

(
r

r∗

)2(d−1)

(2.84)

and B alone,

[
A2B2

r2(d−1)
+Qrd − 2B

]1/2

=
(r∗
r

)d−1

f(r, r∗)
√

2B

1−
Qrd∗

(
1−

(
r
r∗

)3d−2
)

2Bf 2

1/2

.

(2.85)

However unlike (2.67) earlier, we are still left with the parameter B here, so the

turning point equation does not suffice. The other relation for recasting both A

and B in terms of Q, r∗ comes from the fact that we have a space-like subsystem,

i.e. (2.81). Specifically with the pure AdS case corresponding to B = 1, in this

perturbative regime with Qld � 1, we can safely assume that B = 1 + ∆B with

∆B ∼ O(Q). Since the two width integrals for ∆x+ and ∆x− must obey the

equality ∆x+ = −∆x− = l√
2
, we must have that the change in the turning point

δr∗ obtained from both is the same, which fixes ∆B ∝ Qrd∗ as we will see.

To elaborate, from (2.81), (2.82), (2.85), we have

∆x+

√
2

=
l

2
=

∫ r∗

0

dr
(r/r∗)

d−1

f(r, r∗)
√
B

1[
1− Qrd∗(1−(r/r∗)3d−2)

2Bf2

]1/2
. (2.86)

Now, with B = 1 + ∆B = 1 +O(Q), we can expand this to O(Q) obtaining

l

2
=

∫ r∗

0

dr
(r/r∗)

d−1

f(r, r∗)
−∆B

2

∫ r∗

0

dr
(r/r∗)

d−1

f(r, r∗)
+Qrd∗

∫ r∗

0

dr
(r/r∗)

d−1(1− (r/r∗)
3d−2)

4f 3(r, r∗)
.

(2.87)
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As in the previous subsection, we keep our entangling surface fixed so l = 2sη,

with s the pure AdS turning point. The new turning point is r∗ = s + δr∗, so

l/2 = r∗η − δr∗η. Thus

− δr∗η = −∆Br∗
2

∫ 1

0

dx
xd−1

√
1− x2(d−1)

+Qrd+1
∗

∫ 1

0

dx
xd−1(1− x3d−2)

4(1− x2(d−1))3/2
. (2.88)

Starting with the ∆x− integral and using (2.81), (2.82), (2.85), we have analogous

to (2.86),
l

2
=

∫ r∗

0

dr
(r/r∗)

d−1

f(r, r∗)

B −Qrd
√
B
(

1− Qrd∗(1−(r/r∗)3d−2)
2Bf2

)1/2
. (2.89)

As above, expanding to O(Q) gives

l

2
=

∫ r∗

0

dr
(r/r∗)

d−1

f(r, r∗)
+

∆B

2

∫ r∗

0

dr
(r/r∗)

d−1

f(r, r∗)

+Qrd∗

∫ r∗

0

dr
(r/r∗)

d−1(1− (r/r∗)
3d−2)

4f 3(r, r∗)
−Q

∫ r∗

0

dr
rd(r/r∗)

d−1

f(r, r∗)
.

(2.90)

Then as above, the change in turning point is given by

−δr∗η =
r∗∆B

2

∫ 1

0

dx
xd−1

√
1− x2(d−1)

+Qrd+1
∗

∫ 1

0

dx
xd−1(1− x3d−2)

4(1− x2(d−1))3/2

−Qrd+1
∗

∫ 1

0

dx
x2d−1

√
1− x2(d−1)

.

(2.91)

For this spacelike subsystem, the above (2.91) should be identical to (2.88). Using

(2.66), this gives

∆B = αQrd∗ , with α =
1

η

∫ 1

0

dx
x2d−1

√
1− x2(d−1)

=
Γ( 1

2d−2
)Γ( 1

d−1
)

2(d− 1)2Γ(3
2

+ 1
d−1

)Γ( d
2d−2

)
.

(2.92)

Using the above, we get

δr∗ = βQrd+1
∗ , with β =

1

4(d− 1)
− 2

1
d−1

8(d− 1)3
√
π

Γ( 1
2d−2

)2

Γ(3
2

+ 1
d−1

)
. (2.93)

It can be checked that β < 0 (β → 0− for large d): thus δr∗ is negative.

We can do a similar perturbation for finding the O(Q) change in the entanglement

entropy S0 for pure AdS given by (2.73). In the present AdSd+1 plane wave case
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with the strip orthogonal to the flux, the entanglement entropy is (2.82), i.e.

4Gd+1S = 2Vd−2R
d−1

∫ r∗

ε

dr

rd−1

AB

rd−1

√
A2B2

r2(d−1) +Qrd − 2B
. (2.94)

From the turning point equation, we know that AB = rd−1
∗
√

2B −Qrd∗. With

f(r, r∗) as defined before, the EE can be recast as

4Gd+1S = 2Vd−2R
d−1

∫ r∗

ε

dr

rd−1

(
1− Qrd∗

2B

)1/2

f(r, r∗)
[
1− Qrd∗(1−(r/r∗)3d−2)

2Bf2

]1/2
. (2.95)

Now with B = 1 + αQrd∗, we see that the perturbation in EE is independent of

∆B to O(Q), since B appears above only as Q
B

. Expanding S to O(Q), we obtain

4Gd+1S = 2Vd−2R
d−1

∫ r∗

0

dr

rd−1

1

f(r, r∗)

[
1− Qrd∗

4
+
Qrd∗
4f 2

(
1− (r/r∗)

3d−2
)]

= 4Gd+1S0 + 2Vd−2R
d−1Qr2

∗

∫ 1

0

dx

[
1− x3d−2

4xd−1(1− x2(d−1))3/2

− 1

4xd−1(1− x2(d−1))1/2

]
= 4Gd+1S0 + 2Vd−2R

d−1Qr2
∗MEE , (2.96)

with

MEE =

√
π

4(d− 1)2

[
Γ( 1

d−1
)

Γ( d+1
2d−2

)
− (d− 1)

Γ( d
2d−2

)

Γ( 1
2d−2

)

]
. (2.97)

It can be checked that MEE > 0 for d > 1. Thus the change in entanglement

entropy is positive, as before. To O(Q), we have r∗ ∼ l, so that as before,

∆S =
Rd−1

2Gd+1

MEE

4η2
Vd−2Ql

2 =
Rd−1

2Gd+1

MEE

4η2

Vd−2

ld−2
(Qld) , (2.98)

so that as in (2.79) previously, the mutual information decreases as

I[A,B] = I0[A,B] − 2
Rd−1

Gd+1

MEE

8η2
Vd−2Ql

2
(

1 +
x

l

)2

, (2.99)

in this perturbative regime with Qld � 1. It should not be surprising that no

hint of the phase transition is visible in this perturbative regime. For subsystem

size well below the characteristic length scale set by the energy density, i.e. l �
Q−1/d, we only expect small corrections to the ground state entanglement and

mutual information structure. The phase transition on the other hand corresponds
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to strips much wider than the characteristic length scale. In that regime, the

two integrals for ∆x± scale rather differently so that the spacelike subsystem

requirement cannot be met: this leads to the absence of a connected surface and

is the reflection of a phase transition. The corresponding entanglement saturation

occurs since the degrees of freedom responsible for entanglement do not straddle

the boundary for long if their size ∼ O(Q−1/d) is much smaller than the subsystem

width, since they enter the strip and leave.

2.5.4 A more complete phase diagram and some numerical

analysis

In the previous subsections, we have studied entanglement entropy and mutual

information for large and small Qld, Qxd. It is interesting to study the interpola-

tion between these, including the regime where Qld, Qxd are O(1). Towards this,

we perform a numerical study of the entanglement entropy integrals and thence

mutual information (using Mathematica). The plots in Figure 2.4 and Figure 2.5

show the finite cutoff-independent part of entanglement entropy (black, green and

blue curves) for the AdS4 and AdS5 plane waves, setting Q = 1, 3, 10 respectively,

in the case of the strip along the energy flux: the red curves are those for pure

AdS4 and AdS5. In the numerics, the area integrals have been regulated using a

small UV cutoff regulator and subtracting off the area law divergence term, we

obtain the finite part. by subtracting the area of the disconnected surface and

2 4 6 8 10 12

l

-10

10

20

S
finHlL

Figure 2.4: Plots of the finite parts of entanglement entropy for the AdS4 ground

state (red) and the AdS4 plane wave (the black, green and blue curves correspond to

the values Q = 1, 3, 10 respectively).

For small l, we see that the AdS plane wave (black, green, blue) curves lie “above”

the pure AdS (red) curves, which means the finite entanglement is larger than for
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the ground state. This is of course consistent with the previous analytic studies in

the perturbative and large Qld regimes but the plots show that this is also true for

all Qld. Furthermore, the curves for larger Q values lie “above” those for smaller

Q values, which is intuitively reasonable, implying that the finite entanglement

increases with increasing energy density Q. The plot regions for large l are in

reasonable agreement with fitted curves for
√
l and log l (the fits improve with

increasing accuracy, number of data points etc as expected with numerics).
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Figure 2.5: Plots of the finite parts of entanglement entropy for the AdS5 ground

state (red) and the AdS5 plane wave (the black, green and blue curves correspond to

the values Q = 1, 3, 10 respectively).

Likewise, Figure 2.6 shows the plot of mutual information vs the separation x for

the AdS5 plane wave with both strip subsystems along the flux (with fixed widths

l taken as l = 50). The small x region shows a growth reflecting the divergence

when the subsystems approach to collide (which is similar to the divergence for

pure AdS5). The mutual information vanishes at the critical value xc
l

= 0.41. We

have also checked that the corresponding plot for pure AdS5 behaves as expected,

with the critical value xc
l
' 0.732.

0.1 0.2 0.3 0.4 0.5

x

l
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40

I@A,BD

Figure 2.6: Plot of the MI vs x
l with fixed width l for the AdS5 plane wave.
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Figure 2.7 shows the x
l

vs lQ1/d parameter space (shaded regions) with nonzero

mutual information for the AdS5 plane wave with both strip subsystems along the

flux. We vary the width l and find the critical value xc holding Q fixed: the three

curves are for Q = 1, 3, 10 as before. We see that the critical value xc
l

interpolates

from about 0.732 (lQ1/d � 1, approximately AdS5 behaviour) to 0.41 for the AdS5

plane wave. We see that the mutual information parameter space remains nonzero

for large lQ1/d, unlike the finite temperature case [78] where the curve has finite

domain (with xc = 0 for large lT ). We have seen previously that in the wide

strip regime Qld � 1, the mutual information disentangling transition location is

independent of the energy density Q: this is reflected in Figure 2.7

1 2 3 4 5 6
lQ1�4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

l

Figure 2.7: Plot of the x
l vs lQ1/d parameter space with nonzero mutual information

for the AdS5 plane wave.

by the fact that the black, green, blue curves all flatten out for large l, signalling

that the critical value xc
l

is independent of the precise curve and corresponding Q

value. However we note that in the intermediate Qld ∼ O(1) regime, the mutual

information disentangling transition location xc
l

certainly depends on the Q value,

the different curves being distinct. Thus it is only in the Qld � 1 regime that

the mutual information disentangling transition becomes effectively independent

of the energy flux Q.

There are similar plots for the AdS4 plane wave, which we have not shown.

Our discussion so far and the corresponding plots have been for strips parallel to

the energy flux. For the strips orthogonal to the flux, entanglement shows a phase

transition, corroborated in the corresponding plot (shown in [52]). Plotting mutual

information appears more intricate with more technical challenges in general. For

wide strips l & Q−1/d, the strip entanglements saturate: crude plots show the

strips disentangling at critical xc
l

values varying as Q varies, with all xc
l

less than
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those for the strip along the flux (e.g. xc
l
∼ 0.11 with Q = 1, AdS4 plane wave).

It would be interesting to study this more completely.

2.6 Discussion

We have studied entanglement entropy and mutual information in AdSd+1 plane

waves dual to CFT excited states with energy-momentum density T++ = Q, build-

ing on [51, 52], focussing on d = 3, 4 for two strips of width l and separation x,

parallel and orthogonal to the flux.

For the strips parallel to the flux, mutual information exhibits a disentangling tran-

sition at a critical separation xc
l

less than that for the ground state. For wide strips

Qld � 1, we see that the subsystems disentangle only when they are sufficiently

wide apart in comparison with the width: the critical separation xc
l

is independent

of the characteristic energy scale Q−1/d in this regime. This is quite distinct from

the finite temperature case [78] where e.g. the linear extensive growth of entan-

glement in the corresponding regime lT � 1 implies the subsystems disentangle

for any finite separation x independent of l. For the strips orthogonal to the flux,

entanglement entropy shows a phase transition for l � Q−1/d [52]: in this case,

entanglement is saturated and so mutual information also vanishes. In the pertur-

bative regime Qld � 1 for the strips both parallel and orthogonal to the flux, we

have seen that the change in entanglement entropy is ∆S ∼ +Vd−2Ql
2 with the

analysis similar to “entanglement thermodynamics”. Here the mutual information

always decreases. Thus the disentangling transition in this regime again occurs for

separations smaller than those for the ground state. In this perturbative regime,

the critical separation xc
l

certainly depends on Q and l. The numerical study

shows the critical xc
l

has nontrivial dependence on Q in intermediate regimes as

well. As one approaches the wide strip regime Qld � 1, the mutual information

curves approach each other and flatten out, signalling independence with Q.

Overall this suggests that the energy density disorders the system, so that the

subsystems disentangle faster relative to the ground state. The thermal state is

disordered, since in the regime with linear (extensive) entropy, the subsystems are

disentangled or uncorrelated for any nonzero separation x. The AdS plane wave

states are in some sense “partially ordered”: the disentangling transition location

occurs at critical values xc
l

smaller than those for the ground state for the strip

along the energy flux, but the critical value remains nonzero even for wide strips
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Qld � 1. Perhaps this “semi-disordering” is also true for more general excited

states that are “in-between” the ground and thermal states.

The AdS5 plane wave gives rise to a hyperscaling violating spacetime exhibiting

logarithmic violation of entanglement entropy, suggesting that perhaps these are

indications of Fermi surfaces [69, 70]. In the regime where the strip widths and

separation are large relative to the energy scale Q−1/4, the logarithmic scaling of

entanglement implies a corresponding scaling of mutual information, similar to the

corresponding behaviour for Fermi surfaces. This regime is of course just one part

of the full phase diagram thinking of these as simply excited states in AdS/CFT ,

as we have seen. It would be interesting to explore these further.



Chapter 3

Hydrodynamics in hyperscaling

violating Lifshitz theories: A

membrane paradigm approach

The principle of gauge/gravity duality has emerged as a highly successful tool-

box for the understanding of hydrodynamics of strongly coupled field theories.

Experimental realizations of such field theories have been observed in the Rel-

ativistic Heavy-Ion Collider (RHIC) at the Brookhaven National Laboratories,

USA. Heavy-ion collision experiments produces an exotic phase of matter called

the quark-gluon plasma which is better approximated as a strongly coupled fluid

rather than a weakly interacting gas. Hence, gauge/gravity duality has proved to

be successful in uncovering universal properties of various transport coefficients.

One of the most famous example is the shear viscosity to entropy density ratio

which has been conjectured to have a lower bound of 1
4π

for relativistic theories

admitting an Einstein gravity dual [89, 90]. The duality has also provided deep

physical insight into relativistic and non-relativistic hydrodynamics through the

fluid/gravity correspondence [91]

The AdS/CFT correspondence tell us that the field theory at thermodynamic

equilibrium is described by a static black brane metric in the dual gravitational

model. Basic principles of thermodynamics dictates that a perturbation away from

equilibrium will result in thermalization–the system will gradually settle back into

an equilibrium configuration. In the dual theory, this corresponds to fluctuations of

the black brane background which eventually falls back into the brane. In the long

wavelength, low frequency limit both these descriptions are consistent with the

67
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hydrodynamics of a relativistic CFT. In [P2], we used the technique pioneered by

Kovtun, Son and Starinets [96] in order to evaluate the shear diffusion constant and

shear viscosity of a non-relativistic fluid whose dual theory is described by (1.1).

However, before discussing our work in further details, we will briefly review the

work done in [96] in the context of relativistic theories for a better understanding

of our generalization.

3.1 Review: Membrane paradigm approach for

evaluating response function in relativistic

theories

Kovtun, Son and Starinets formulated charge and shear diffusion for black brane

backgrounds in terms of long-wavelength limits of perturbations on an appro-

priately defined stretched horizon, the broad perspective akin to the membrane

paradigm [97]. Their analysis, which is quite general, begins with a background

metric of the form

ds2 = Gµνdx
µdxν = Gtt(r)dt

2 +Grr(r)dr
2 +Gxx(r)

d−1∑
i=1

dx2
i , (3.1)

which includes the hyperscaling violating backgrounds (4.10) as a subfamily. Charge

difffusion of a gauge field perturbation Aµ in the background (3.1) is encoded by

the charge diffusion constant D, defined through Fick’s Law ji = −D∂ijt, where

the 4-current jµ is defined on the stretched horizon r = rh (with n the normal)

as jµ = nνF
µν |r=rh . Then current conservation ∂µj

µ = 0 leads to the diffusion

equation ∂tj
t = −∂iji = D∂2

i j
t, with D the corresponding diffusion constant.

Fick’s law in turn can be shown to apply if the stretched horizon is localized ap-

propriately with regard to the parameters Γ, q, T . Translation invariance along

x ∈ {xi} allows considering plane wave modes for the perturbations ∝ e−Γt+iqx,

where Γ is the typical time scale of variation and q the x-momentum. In the IR

regime, the modes vary slowly: this hydrodynamic regime is a low frequency, long

wavelength regime. The diffusion of shear gravitational modes can be mapped to

charge diffusion [96]: under Kaluza-Klein compactification of one of the directions

along which there is translation invariance, tensor perturbations in the original

background map to vector perturbations on the compactified background.
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We turn on the metric fluctuations hxy and hty (x ≡ x1, y ≡ x2) around (3.1),

depending only on t, r, x, i.e. hty = hty(t, x, r), hxy = hxy(t, r, x). Other fluctua-

tion modes can be consistently set to zero. There is translation invariance along

the y-direction: thus after a y-compactification, the modes hxy and hty become

components of a U(1) gauge field in the dimensionally reduced d-dim spacetime.

The components are given by

gµν = Gµν(Gxx)
1
d−2 [µ, ν = 0, . . . , d−1]; A0 = (Gxx)

−1hty , Ax = (Gxx)
−1hxy ,

(3.2)

where Gµν is the metric given by (3.1). A part of the gravitational action contains

the Maxwell action with an r-dependent coupling constant,

√
−GR→ −1

4

√
−gFαβFγδgαγgβδ(Gxx)

d−1
d−2 . (3.3)

The gauge field equations following from the action are

∂µ

( 1

g2
eff

√
−gF µν

)
= 0 ,

1

g2
eff

= G
d−1
d−2
xx , (3.4)

where we have read off the r-dependent geff from the compactified action. Analysing

these Maxwell equations and the Bianchi identity assuming gauge field ansatze

Aµ = aµ(r)e−Γt+iqx and radial gauge Ar = 0 as in [96] shows interesting simplifica-

tions in the near-horizon region. When q = 0, these lead to ∂r
(√−g
g2
eff
grrgtt∂rAt

)
= 0.

We impose the boundary condition that the gauge fields vanish at r = rc ∼ 0. As

in [96], for q nonzero but small, we assume an ansatz for At as a series expansion

in q2

T 2/z

At = A
(0)
t + A

(1)
t + . . . , A

(1)
t = O

( q2

T 2/z

)
,

A
(0)
t = Ce−Γt+iqx

∫ r

rc

dr′
gtt(r

′)grr(r
′)√

−g(r′)
· g2

eff(r′)

= Ce−Γt+iqx

∫ r

rc

dr′
Gtt(r

′)Grr(r
′)

Gxx(r′)
√
−G(r′)

,

(3.5)

using (3.2), (3.4), with C some constant. Making a second assumption

|∂tAx| � |∂xAt| (3.6)
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as in [96], the gauge field component Ax, using the At solution, becomes

Ax = A(0)
x + A(1)

x + . . . ,

A(0)
x = −iΓ

q
Ce−Γt+iqx

∫ r

rc

dr′
gxx(r

′)grr(r
′)√

−g(r′)
· g2

eff(r′) = −iΓ
q
Ce−Γt+iqx

∫ r

rc

dr′
Grr(r

′)√
−G(r′)

,

(3.7)

again as a series expansion. As for At, we impose the boundary condition Ax → 0

as r → rc ∼ 0. In [96], the authors show that the above series expansions are

self-consistent provided the following conditions hold on the location rh of the

stretched horizon and the parameters q,Γ and T (equivalently r0):

e
−T

2

q2 �
1
r0
− rh
1
r0

� q2

T 2
� 1

1

r0

: real event horizon.convo (3.8)

Physically the above condition means that although the stretched horizon is in-

finitesimally close to the real event horizon, it cannot be exponentially close to the

same. This enables us to define Fick’s law on the stretched horizon, and thereby

the diffusion equation. The shear diffusion constant for the uncompactified higher

dimensional theory then becomes

D =

√
−g(rh)

geff
2(rh)gxx(rh)

√
−gtt(rh)grr(rh)

∫ rh

rc

dr
−gtt(r)grr(r)geff

2(r)√
−g(r)

=

√
−G(rh)√

−Gtt(rh)Grr(rh)

∫ rh

rc

dr
−Gtt(r)Grr(r)

Gxx(r)
√
−G(r)

.

(3.9)

where rc is the location of the boundary, and we are evaluating D at the stretched

horizon which is at an infinitesimal distance away from the true event horizon

located at rh. This formalism essentially maps the shear diffusion constant for a

d+ 1 dimensional theory to the charge diffusion of a d-dimensional theory.

Using the thermodynamic relation ε+P = Ts, one can find a relation connecting

the shear viscosity and shear diffusion given by

η = sT

√
−G(rh)√

−Gtt(rh)Grr(rh)

∫ rh

rc

dr
−Gtt(r)Grr(r)

Gxx(r)
√
−G(r)

. (3.10)

As an example, let us consider the metric of a stck on N non-extremal D3 branes

in type IIB supergravity which in the near-horizon region takes the form

ds2 =
r2

R2
(−f(r)dt2 + dx2 + dy2 + dz2) +

R2

r2f(r)
dr2 +R2dΩ2

5 . (3.11)
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where R is a constant (radius of the AdS space) and f(r) = 1 − r4
0/r

4. The

holographic dual theory for the above gravitational background is N = 4 SYM

theory with a gauge group SU(N) in the limit of large N and large ’t Hooft

coupling living in 3+1 spacetime dimensions. The field theory is defined at the

same temperature as the Hawking temperature of the gravitational background

which is T = r0/πR
2. The entropy density is s = π2

2
N2T 3. Using (3.9) and (3.10),

the shear diffusion constant and shear viscosity turns out to be

D =
1

2πT
and η =

π

8
N2T 3 . (3.12)

This leads us to the relation
η

s
=

1

4π
. (3.13)

The remarkable regularity in the ratio of shear viscosity to entropy was also ob-

tained for a stack of N M2 branes, M5 branes as well as Dp-branes. This universal

behaviour of η/s led Kovtun, Son and Starinets to propose a lower bound on this

ratio. Restoring the canonical dimensions, one can write the proposed bound as

η

s
≥ ~

4πkB
≈ 6.08× 10−13K · s . (3.14)

Since this lower bound does not contain the speed of light c, [96] suggested that this

is a lower bound for all systems, including non-relativistic ones. This motivated

us to look into gravitational backgrounds exhibiting hyperscaling violation which

has been proposed to be gravitational dual of non-relativistic systems.

3.2 Shear diffusion in the absence of gauge field:

Dilaton gravity

In this section, we will adapt the technique pioneered by Kovtun, Son and Starinets

in [96] in the context of hyperscaling violating Lifshitz theories. In order to simplify

our understanding further, we will not introduce any perturbation in the gauge

field sector and only consider shear gravitational perturbations. Although, this

program was carried out in [P2] for a generic di + 2-dimensional gravitational

background, for the sake of simplicity we will present the results focussing on 4

bulk dimensions. In the subsequent chapter, we will analyse the same system in

arbitrary spacetime dimensions through studying the relevant quasinormal modes.
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In this section, we will be concerned with the hyperscaling violating metric given

by

ds2 = rθ
(
−f(r)

r2z
dt2 +

dr2

f(r)r2
+
dx2 + dy2

r2

)
, di = 2 , deff = 2− θ , (3.15)

where f(r) = 1 − (r0r)
2+z−θ. The temperature for the dual field theory (i.e. the

Hawking temperature for the black brane) is

T =
2 + z − θ

4π
rz0 . (3.16)

Similar to [96] we will make a gauge choice for the perturbations by setting hµr = 0

(radial gauge) and assume that the perturbations to be of the form hµν(t, x, r) =

e−iωt+iq·xhµν(r) where x is one of the spatial directions in the boundary theory.

The shear mode hxy couples to hty and decouples from the scalar mode ϕ giving

us a system of three coupled equations,

∂r(r
z+θ−3∂r(r

2−θhty))−
rz+θ−3

f
q(ωr2−θhxy + qr2−θhty) = 0 , (3.17)

∂r(r
−1−z+θf∂r(r

2−θhxy)) +
rz+θ−3

f
ω(ωr2−θhxy + qr2−θhty) = 0 , (3.18)

q∂r(r
2−θhxy) +

ω

f
r2z−2∂r(r

2−θhty) = 0 . (3.19)

For the sake of completion, we have listed all the other equations of motions

(including the gauge field perturbation) in Appendix A. Taking motivation from

[96], we compactify the theory along y-direction to obtain an auxilliary theory

in one lower dimension with gauge field At and Ax. These gauge fields in the 3

dimensional theory capture the dynamics of the gravitational perturbations of the

3+1-dimensional hvLif theory. In terms of the y-compactified theory variables

gµν = rθ−2Gµν [µ, ν = t, x, r]; At = r2−θhty , Ax = r2−θhxy ,

Frt = ∂r(r
2−θAt) , Frx = ∂r(r

2−θAx) , Ftx = −ir2−θ(ωhxy + qhty) ,

(3.20)

the above linearized Einstein equations become

√
−ge4ψgttgxx∂xFtx + ∂r(

√
−ge4ψgrrgttFtr) = 0, (3.21)

√
−ge4ψgttgxx∂tFtx + ∂r(

√
−ge4ψgrrgxxFrx) = 0 , (3.22)

gtt∂tFtr + gxx∂xFxr = 0 , (3.23)
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where e4ψ = 1
g2
eff

= r2θ−4. Other than these, we also have a Bianchi Identity

∂tFrx + ∂xFtr − ∂rFtx = 0 , (3.24)

which is a trivial relation in the higher dimensional theory. Equation (3.19) is

a constraint equation in the higher dimensional theory which can be mapped to

(3.23) in the y-compactified theory. Defining currents as jν = nµFµν (nµ being

the normal vector to the boundary r = rc, with grrn2
r = 1) we can write them in

terms of the perturbations of the higher dimensional theory,

jx = nrFxr = r6−3θ
√
f ∂r(r

2−θhxy) , (3.25)

jt = nrF tr = −r
4+2z−3θ

√
f

∂r(r
2−θhty) . (3.26)

Identifying the ratio D ≡ − ω
iq2 we can essentially write (3.19) in the form of Fick’s

Law as

jx = −D∂xjt . (3.27)

The formulation of Fick’s Law in [P2, 96] is done entirely in terms of field variables

of the y-compactified theory. Differentiating (3.23) w.r.t t we can eliminate Frx
using the Bianchi Identity (3.24) to get the following equation

∂2
tFtr + r2−2zf∂x(−∂xFtr + ∂rFtx) = 0 . (3.28)

In the the near horizon region approximating the thermal factor as f(r) ≈ (2 +

z − θ) (1/r0)−r
1/r0

and parametrizing the frequency as ω = −iΓ for some positive Γ so

that the perturbations decay in time, (3.28) can be written as(
1 + (2 + z − θ)r2z−2

0

q2

Γ2
·

1
r0
− r
1
r0

)
Ftr ≈ −(2 + z − θ)r2z−2

0

iq

Γ2
·

1
r0
− r
1
r0

∂rFtx .

(3.29)

Assuming
1
r0
− r
1
r0

� Γ2

q2r2z−2
0

, (3.30)

we differentiate both sides w.r.t x and approximate (3.29) further as

∂xFtr ≈ (2 + z − θ)q
2r2z−2

0

Γ2
·

1
r0
− r
1
r0

∂rFtx . (3.31)
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The assumption (3.30) implies

∂xFtr � ∂rFtx , (3.32)

which in turn simplifies the Bianchi Identity (3.24) to

∂tFrx = ∂xFrt + ∂rFtx ∼ ∂rFtx . (3.33)

Differentiating (3.22) w.r.t t we get

∂r(r
θ−z−1f∂tFrx)−

rz+θ−3

f
∂2
tFtx = 0 . (3.34)

Using the approximate Bianchi identity (3.33), to substitute for Frx and then mul-

tiplying throughout with − f
rz+θ−3 we obtain a wave equation for the field strength

Ftx
∂2
tFtx − ν2

(
1

r0

− r
)
∂r

((
1

r0

− r
)
∂rFtx

)
≈ 0 , (3.35)

where ν is given by

ν = (2 + z − θ)rz0 . (3.36)

The horizon is a one-way membrane: we incorporate this by requiring that all

perturbations obey ingoing boundary conditions at the horizon. This dissipative

feature is of course at the heart of the diffusion equation that results from this

near-horizon perturbations analysis. Thus, imposing ingoing boundary conditions

on the wave equation amounts to choosing the ingoing solution, leading to

Ftx = f1

(
t+

1

ν
log

(
1

r0

− r
))

, (3.37)

where f1 is any arbitrary smooth function. If we now ensure that the perturbations

decay as t→∞ we obtain

Ftx + ν
( 1

r0

− r
)
Frx = 0 . (3.38)
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The leading solutions for the fields At and Ax are

A(0)
t = Ce−Γt+iqx

∫ r

rc

dr′
gtt(r

′)grr(r
′)√

−g(r′)
· g2

eff(r′)

= Ce−Γt+iqx

∫ r

rc

dr′
Gtt(r

′)Grr(r
′)

Gxx(r′)
√
−G(r′)

,

A(0)
x = −iΓ

q
Ce−Γt+iqx

∫ r

rc

dr′
gxx(r

′)grr(r
′)√

−g(r′)
· g2

eff(r′)

= −iΓ
q
Ce−Γt+iqx

∫ r

rc

dr′
Grr(r

′)√
−G(r′)

,

(3.39)

where rc ∼ 0 is the boundary where we impose the boundary conditions that the

perturbations die. In writing down the above expressions, we have used (3.2),

(3.4), with C some constant. Using the metric components from (3.15), we can

proceed to write down the leading order solutions A(0)
t and A(0)

x .

When 4− z − θ > 0 the leading solution A(0)
t has a power-law behaviour

A(0)
t (t, x, r) = e−Γt+iqx C

(4− z − θ)
r4−z−θ (3.40)

It is expected that close to the boundary i.e. near r ≈ rc the hyperscaling violating

phase breaks down and we require r0rc � 1. The analogous statement for the

boundary field theory will be to assume that the temperature is sufficiently below

the UV cut-off. Thus, the condition z < 4− θ arises from the boundary condition

that A(0)
t → 0 as r → 0.

The expression for A(0)
x yields

A(0)
x =

iΓ

q

Ce−Γt+iqx

(2 + z − θ)r2+z−θ
0

log(1− (r0r)
2+z−θ) . (3.41)

However, the equivalent assumption to (3.6) in this case i.e.

|∂tAx| � |∂xAt| (3.42)

restricts the validity of our solutions within the regime

exp

(
−T

2/z

q2

)
�

1
r0
− rh
1
r0

� q2

T 2/z
� 1 . (3.43)
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We can now evaluate the shear diffusion constant on the stretched horizon for the

hyperscaling violating theory with 4− z − θ > 0 from Fick’s Law and (3.38)

D ≡ − jx

∂xjt
= − gtt

gxx

Frx
∂xFrt

≈ −rz−1
0

Ftx
∂xFrt

= rz−1
0

At
Frt

∣∣∣∣
r∼rh
≈ rz−2

0

4− z − θ
+O(q2) .

(3.44)

The solution for A(0)
t is evaluated at the stretched horizon rh: however rh ∼

1
r0

+O(q2) so to leading order D is evaluated at the horizon 1
r0

. It is interesting that

the effect of the hyperscaling violating exponent θ cancels in the final expression

for D which is essentially the ratio of At to a field strength Frt both of which has

non-trivial θ-dependence.

Using the expression (3.16) we can express the diffusion constant in terms of the

temperature as

D =
1

4− z − θ

(
4π

2 + z − θ

) z−2
z

T
z−2
z (3.45)

which is identical to the one obtained in [P2] for the case without the gauge field,

for di = 2 spatial dimensions.

For the family of hyperscaling violating solution where z = 4 − θ, from (3.39) it

follows that the leading solution of At has logarithmic behaviour

A(0)
t = Ce−Γt+iqx log

r

rc
, z = 4− θ . (3.46)

Working further, we can evaluate the diffusion constant upto leading order as

D = rz−2
0 log

1

r0rc
. (3.47)

This implies that in the low temperature limit as r0 → 0, the diffusion constant

vanishes if z > 2. The new condition on the exponents z and θ, namely z < 4− θ
appears to be a new constraint which is separate from the null energy conditions

(2− θ)(2(z − 1)− θ) ≥ 0 , (z − 1)(2 + z − θ) ≥ 0 . (3.48)

The regime of validity for this analysis (equivalently, the “thickness” of the stretched

horizon) gets modified in this special case to

exp

(
−T

2/z

q2

1

log 1
r0rc

)
�

1
r0
− rh
1
r0

� q2

T 2/z
log2 1

r0rc
. (3.49)



Chapter 3 Hydrodynamics in hyperscaling violating Lifshitz theories: A
membrane paradigm approach 77

However, since we are manifestly in the hydrodynamic regime, it means rc � 1
r0

implying log 1
r0rc
� 1. This does not over-constrain the window of the stretched

horizon: however the subleading terms contain the logarithmic piece affecting

the validity of the series expansion. The subleading contributions to At and Ax,
namely A(1)

t and A(1)
x have been explicitly evaluated in Appendix.

The logarithmic scaling necessitates the presence of the UV scale rc appearing

in the diffusion constant in the hydrodynamic description which is manifestly a

description at long wavelengths (physics at IR scale). The leading order value of

the diffusion constant D is given by A(0)
t , which is obtained by solving the q = 0

and ω = 0 sector of (3.17)

∂r(r
z+θ−3∂r(r

2−θhty)) = 0 . (3.50)

The solution to the above equation is given by

hty(r) = c1r
θ−2 + c2r

2−z , (3.51)

where c1 and c2 are arbitrary constants. For z < 4 − θ, the θ − 2 fall-off (non-

normalizable mode) dominates over the 2−z fall-off (normalizable mode) near the

boundary r ∼ rc, while for z > 4− θ we see the exact opposite behaviour. When

z = 4− θ there is a degeneracy in the two fall-offs and we have a new independent

solution which scales logarithmically with r,

hty(r) = c1r
θ−2 + c2r

θ−2 log
r

rc
. (3.52)

The swapping of roles between the normalizable and non-normalizable modes

around the point z = 4− θ gives some insight into the unusual logarithmic scaling

for the diffusion constant when z = 4−θ. It is in fact reminiscent of the alternative

quantization of field modes [98] and thus holographically it is not surprising that

the relevant correlation function exhibits logarithmic behaviour.

3.2.1 Infalling condition for perturbations

As should be clear, a key ingredient that goes in the formulation of Fick’s Law is

the relation (3.38) for the field strengths Ftx and Frx. In the context of the higher-

dimensional hyperscaling violating theory where the perturbations satisfy (3.17),

(3.18), (3.19), this relation can be derived exactly without any assumptions on the

parameters q and ω. It turns out in this context it is a consequence of imposing a
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certain physical condition on the function H(t, r, x) defined as

H(t, r, x) ≡ rθ−z−1f · ∂r(r2−θhxy) . (3.53)

This condition that we impose is given by

(∂t + f · r1−z∂r) H = 0 . (3.54)

Defining two new coordinates u and v as

v = t+
1

ν
log

(
1

r0

− r
)
,

u = t− 1

ν
log

(
1

r0

− r
)
. (3.55)

For r � 1
r0

expanding the log, we see that v ∼ t− r0
ν
r so v is the ingoing coordinate

(with r increasing towards the interior). We see that in the near horizon region

the full wave operator is

4∂u∂v ≡ ∂2
t − ν2

(
1

r0

− r
)
∂r

((
1

r0

− r
)
∂r

)
, (3.56)

while the linear differential operator acting on H in (3.54) is essentially ∂t + f ·
r1−z∂r ≈ ∂t +ν

(
1
r0
− r
)
∂r = ∂u . With v the ingoing coordinate, this can be thus

interpreted as the ingoing condition ∂uH = 0 implying that the function has the

form H = H(v).

Likewise, choosing the solution (3.37) is equivalent to requiring that the field

strength Ftx obeys the ingoing condition

∂tFtx + ν

(
1

r0

− r
)
∂rFtx = 0 , (3.57)

which can also be written as ∂uFtx = 0, giving Ftx = Ftx(v). Using (3.20) we can

write

∂tFtx = −r2−θω(ωhxy + qhty), Frx = ∂r(r
2−θhxy) =

rz+1−θ

f
H . (3.58)

The above equalities in conjunction with (3.18) gives

∂rH = −r
z−1

f
ω(ωhxy + qhty) =

rz+θ−3

f
∂tFtx . (3.59)
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Also (3.54) naturally implies

∂rH = −r
z−1

f
∂tH = −rθ−2∂tFrx . (3.60)

Equating the above two expressions for ∂rH, we recover the relation (3.38) as

was obtained in [P2]. It should be noted that the relation between Frx and Ftx
was obtained in the y-compactified theory by making certain self-consistent ap-

proximations involving the parameters q and ω which is quite distinct from the

derivation demonstrated here, using (3.17), (3.18), (3.19), directly.

3.3 Comments on η
s

We now make a few comments towards gaining insight into η
s

:

(1) As a consistency check, we see that for pure AdS with θ = 0, z = 1, we obtain

D = 1
4πT

. This corresponds to a relativistic CFT: the shear diffusion constant is

D = η
ε+P

and thermodynamics gives ε+P = Ts, where ε, P, s are energy, pressure

and entropy densities. This gives the relation η
s

= DT and thereby η
s

= 1
4π

.

(2) Theories with metric (4.10) with θ = 0 enjoy the Lifshitz scaling symmetry,

xi → λxi, t → λzt: Then the diffusion equation ∂tj
t = D∂2

i j
t shows the diffusion

constant to have scaling dimension dim[D] = 2 − z. With temperature scaling

as inverse time, we have dim[T ] = z. Thus on scaling grounds, the temperature

scaling in (3.45), which here is

D =
1

4− z

( 4π

2 + z

) z−2
z
T
z−2
z , (3.61)

is expected, upto the z-dependent prefactors. For z = 2, the diffusion equation

(structurally like a Schrodinger equation) already saturates the scaling dimensions,

and D has apparently no temperature dependence. As T increases, D decreases

for z < 2: however D increases with T for z > 2.

Aspects of Lifshitz hydrodynamics in (d + 1) spacetime dimensions have been

studied in e.g. [99], [48]. As discussed in [48], under the Lifshitz symmetry, we

have the scalings [T ] = z, [ε] = z+d− 1, [P ] = z+d− 1, [s] = d− 1, [η] = d− 1.

Indeed for Lifshitz black branes with horizon rH and temperature (3.16), the

entropy density is s =
rd−1
H

4Gd+1
= 1

4Gd+1
( 4π
d+z−1

T )
d−1
z . The thermodynamic relations

give ε+P = Ts. The shear viscosity [48] is η = 1
16πGd+1

T
d−1
z satisfying the universal
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bound η
s

= 1
4π

. For this to arise from (3.61), we guess that the relation between

shear viscosity and the shear diffusion constant is

η

s
=

(4− z)

4π
Dr2−z

0 =
(4− z)

4π

( 4π

2 + z

) 2−z
z DT

2−z
z . (3.62)

(3) For θ 6= 0, the scaling analysis of the Lifshitz case is not applicable: however

the temperature is θ-independent and the relation (3.45) continues to hold for

generic θ. Towards guessing the hydrodynamics from the diffusion constant in this

case, we first recall from [96] that nonconformal branes give D = 1
4πT

, and thereby
η
s

= 1
4π

continues to hold. On the other hand, [12] observed that nonconformal

Dp-branes upon reducing on the sphere S8−p give rise to hyperscaling violating

theories with z = 1 and θ 6= 0. It would therefore seem that the near-horizon

diffusion analysis continues to exhibit this universal behaviour since the sphere

should not affect these long-wavelength diffusive properties.

Happily, we see that (3.45) for z = 1 gives D = 1
4πT

, with the θ-dependent pref-

actors cancelling precisely. Thus all hyperscaling violating theories with z = 1

appear to satisfy the universal viscosity bound

η

s
= DT =

1

4π
. (3.63)

Putting this alongwith the Lifshitz case motivates us to guess the universal relation

η

s
=

(4− z − θ)
4π

Dr2−z
0 =

(4− z − θ)
4π

( 4π

2 + z − θ

) 2−z
z DT

2−z
z =

1

4π
(3.64)

between η, s,D, T , for general exponents z, θ. This reduces to (3.62) for the Lifshitz

case θ = 0. One might wonder if the prefactors for θ 6= 0 somehow conspire to

violate the universal bound: in this regard, it is worth noting that z, θ appear

in linear combinations in the prefactors. Alongwith the previous subcases, this

suggests consistency of (3.64).

Finally we know that the entropy density is s =
r
deff
H

4G4
∼ 1

4G4
T

2−θ
z in hyperscaling

violating theories, with deff = 2 − θ the effective spatial dimension. Then (3.64)

gives the shear viscosity as η ∼ 1
16πG4

T
2−θ
z .

In the presence of a background gauge field, the analysis changes significantly.

Had we perturbed the background gauge field as Aµ → Aµ + aµ with aµ(t, x, r)

denoting the perturbations, the analog of (3.19) is given by

q∂r(r
2−θhxy) +

ω

f
r2z−2∂r(r

2−θhty)− k
ω

f
rz−θ+1ay = 0 . (3.65)
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Due to the presence of the gauge field perturbation ay, we cannot map the above

equation to Fick’s Law by defining horizon currents as before. In [P’1], it was

demonstrated that a field redefinition which involves a non-trivial combination of

hty and
∫
ay dr gives us an equation which is similar in structure to Fick’s Law in

the dimensionally reduced theory.

3.4 Shear diffusion: highly boosted black brane

The analysis carried out in [P2] for a di + 2-dimensional hvLif spacetime showed

that the shear diffusion constant has a logarithmic scaling with respect to the

temperature when z = di + 2 − θ. The parameters z and θ are related precisely

in this way when the hyperscaling violating theory is constructed from the x+-

reduction of AdS plane waves (or highly boosted AdS5 black branes), as well as

nonconformal Dp-brane plane waves, as discussed in [51].

To be more precise, compactification of AdSdi+3 plane wave along x+ gives

ds2 =
R2

r2
[−2dx+dx− + dx2

i + dr2] +R2Qrd−1(dx+)2 +R2dΩ2
S −→(3.66)

ds2 = r
2θ
di

(
− dt2

r2z
+

∑di
i=1 dx

2
i + dr2

r2

)
, z =

di + 4

2
, θ =

di
2

(3.67)

These can be obtained from a low-temperature, large boost limit [30, 51] of boosted

black branes [79] arising from the near horizon limits of the conformal D3-, M2-

and M5-branes. Similar features arise from reductions of nonconformal Dp-brane

plane waves [30, 72], with exponents

z =
2(p− 6)

p− 5
, θ =

p2 − 6p+ 7

p− 5
, di = p− 1 , (3.68)

where the Dp-brane theory after dimensional reduction on the sphere S8−p and

the x+-direction has bulk spacetime dimension d + 1 ≡ p + 1. The holographic

entanglement entropy in these theories exhibits interesting scaling behaviour [52,

72, P1, 71].

To obtain the finite temperature theory, let us for simplicity consider the AdS5

black brane

ds2 =
R2

r2

(
− (1− r4

0r
4)dt2 + dx2

3 +
2∑
i=1

dx2
i

)
+R2 dr2

r2(1− r4
0r

4)
, (3.69)
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which is a solution to the action S = 1
16πG5

∫
d5x
√
−g(5)(R(5) − 2Λ). Rewriting

(3.69) in lightcone coordinates and boosting as x± → λ±x±, we obtain

ds2 =
R2

r2

(
−2dx+dx−+

r4
0r

4

2
(λdx+ +λ−1dx−)2 +

2∑
i=1

dx2
i

)
+

R2dr2

r2(1− r4
0r

4)
. (3.70)

Writing in Kaluza-Klein form

ds2 =
R2

r2

[
−(1− r4

0r
4)

Qr4
(dx−)2 + dx2 + dy2 +

dr2

(1− r4
0r

4)

]

+QR2r2

(
dx+ −

(1− r4
0r

4

2
)

Qr4
dx−

)2

,

(3.71)

where Q =
λ2r4

0

2
and compactifying along the x+ direction gives

ds2 = (Q1/2R3)r
[
− (1− r4

0r
4)

Qr6
(dx−)2 +

dx2 + dy2

r2
+

dr2

r2(1− r4
0r

4)

]
. (3.72)

This is simply the hyperscaling violating metric (4.10) with z = 3, θ = 1, di = 2, in

[51], but now at finite temperature. It is a solution to the equations stemming from

the 4-dim Einstein-Maxwell-Dilaton action S = 1
16πG4

∫
d4x
√
−g(4) (R(4)−2Λe−φ−

3
2
gµν∂µφ∂νφ− 1

4
e3φF µνFµν) which arises upon dimensional reduction along the x+-

direction of the 5-dim Einstein action S = 1
16πG5

∫
d5x
√
−g(5)(R(5) − 2Λ). The

scalar field has the profile e2φ = R2Qr2 while the gauge field is At = − 1+f
2Qr4 , Ai = 0

with f = 1− r4
0r

4. The finite temperature theory is of course obtained by taking

the boost λ to be large but finite, and the temperature r0 to be small but nonzero,

while holding Q =
λ2r4

0

2
fixed. The boost simply serves to create a hierarchy of

scales in the energy momentum components T++ ∼ λ2r4
0 ∼ Q, T−− ∼ r4

0

λ2 ∼
r8
0

Q
, T+− ∼ r4

0, Tij ∼ r4
0δij, while keeping them nonzero.

The z, θ-exponents (3.67) arising in these reductions satisfy z = di + 2 − θ, coin-

ciding with the special case discussed earlier. This is also true for nonconformal

Dp-brane plane waves (3.68). It is worth noting that this relation between the

exponents is distinct from the window di − 1 ≤ θ ≤ di where the holographic

entanglement entropy exhibits novel scaling behaviour: in particular the present

relation involves the Lifshitz exponent. The diffusion constant for this class of hy-

perscaling violating theories then has the logarithmic behaviour (3.47) described

earlier, provided we restrict to modes that describe the lower dimensional theory.
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In the above x+-compactification, we see that x− above maps to the time coor-

dinate t below. Thus mapping the perturbations between the higher dimensional

description and the hyperscaling violating one, we see that the metric in KK-form

(3.71) including the shear gravitational perturbations is of the form

ds2 = g̃−−(dx−)2 + g̃iidx
2
i + g̃rrdr

2 +2h̃−ydx
−dy+2h̃xydxdy+ g̃++(dx+ +A−dx

−)2 ,

(3.73)

where A− is the background gauge field in the lower dimensional description. In

other words, the perturbations map as h̃−y → hty, h̃xy → hxy, upto the conformal

factor arising from the x+-reduction. In addition, the x+-reduction requires that

the perturbations h−y, hxy are x+-independent. This in turn translates to the

statement that the near horizon diffusive modes are of the form

hµy(r)e
−k−x−+ikxx , k+ = 0 , [µ = x−, x] , (3.74)

i.e. the nontrivial dynamics in the lower dimensional description arises entirely

from the zero mode sector k+ = 0 of the full theory.

Likewise, vector perturbations δAt, δAy in the lower dimensional theory arise in

(3.73) as

. . .+ g++(dx+ + A−dx
− + h̃+−dx

− + h̃+ydy)2.

We see that these arise from gravitational perturbations h+−, h+y.

To ensure that the massive KK-modes from the x+-reduction decouple from these

perturbations, it suffices to take the x+-circle size L+ to be small relative to the

scale set by the temperature T ∼ r0, i.e. the temperature is small compared to

the KK-scale 1
L+

: in other words, we require L+ � 1
r0

. The ultraviolet cutoff

near the boundary is rc ∼ Q−1/4 � 1
r0

: the hyperscaling violating phase is valid

for r & Q−1/4.

Finally to map (3.72) to (4.10) precisely, we absorb the factors of the energy scale

Q by redefining x̃− = x−√
Q

. Now the shear diffusion constant can be studied as in the

hyperscaling violating theory previously discussed, by mapping it to charge diffu-

sion in an auxiliary theory obtained from the finite temperature x+-compactified

theory by compactifying along say the y-direction. This requires mapping the

shear gravitational perturbations to the lower dimensional auxiliary gauge fields

as At ∝ h̃−y, Ay ∝ h̃xy, which can then be set up in a series expansion in the near

horizon region. Thus finally the shear diffusion constant follows from (3.47) giving



84
Chapter 3 Hydrodynamics in hyperscaling violating Lifshitz theories: A

membrane paradigm approach

D = r0 log( 1
r0Q−1/4 ). For Q fixed, as appropriate for the lower dimensional theory,

we see that the low temperature limit r0 → 0 gives a vanishing shear diffusion

constant suggesting a violation of the viscosity bound. It is worth noting that the

diffusion equation here is ∂x̃−j
− = D̃∂2

i j
− where x̃− = x−√

Q
reflecting the Lifshitz

exponent z = 3.

Noting that Q ∼ λ2r4
0, the diffusion equation and constant in the upstairs theory

are

∂x−j
− ∼ D̃√

Q
∂2
i j
− , Dr0 ∼

D̃√
Q
r0 ∼

1

λ
log λ . (3.75)

The r0 → 0 limit of the lower dimensional theory (where T ∼ r3
0) implies a highly

boosted limit λ→∞ of the black brane for fixed Q: here Dr0 vanishes. However

this appears to be a subtle limit of hydrodynamics. From the point of view of

the upstairs theory of the unboosted black brane, shear gravitational modes are

hty, hxy. Upon boosting, it would appear that these mix with other perturbation

modes as well, suggesting some mixing between shear and bulk viscosity. From

the point of view of the boosted frame, this system has anisotropy generated by

the boost direction. Previous studies of anisotropic systems and shear viscosity

include e.g. [100, 101, 102, 103, 104, 105, 106]. (See also e.g. [107] for a review of

the viscosity bound.) In the present case, the shear viscosity tensor can be analysed

from a systematic study of the expansion of the energy-momentum tensor of the

finite temperature Yang-Mills fluid in the highly boosted regime. However the

scaling (3.75) is likely to be realized only after phrasing the boosted black brane

theory in terms of the variables appropriate for the lower dimensional hyperscaling

violating theory (which arises in the k+ = 0 subsector as discussed above). It would

be interesting to understand the hydrodynamics in the lower dimensional theory

better, as a null reduction of the boosted black brane theory, perhaps similar in

spirit to nonconformal brane hydrodynamics [108, 109] as a reduction of nonlinear

hydrodynamics [91] of black branes in M-theory. We hope to explore this further.



Chapter 4

Hydrodynamics in hyperscaling

violating Lifshitz Theories: A

study of quasinormal modes

In the context of gauge/gravity duality for relativistic theories, various transport

properties are encoded in the quasinormal modes of the dual gravitational black

branes, see e.g. [110, 111, 112, 113]. Quasinormal modes are solutions to the lin-

earized equations governing the gravitational perturbations that are ingoing at the

horizon and vanishing at the boundary: these boundary conditions make the low

lying hydrodynamic modes damped and diffusive, with a dispersion relation that

encodes the hydrodynamic diffusive poles in certain 2-point correlation functions

in the dual field theory.

Motivated by these earlier studies, in this chapter, we analyse the lowest quasinor-

mal mode spectrum for shear gravitational perturbations in hyperscaling violating

Lifshitz theories with Lifshitz exponent z and hyperscaling violating exponent θ.

We turn on appropriate metric and gauge field perturbations hxy, hty and ay of

the form e−iωt+iqx. Defining appropriate new field variables H invariant under a

residual gauge symmetry for such perturbations enables us to identify the relevant

differential equations governing these modes. The hydrodynamic regime allows

the approximation of low frequency and momentum relative to the temperature

scale. Then using Ω ∼ ω
T
� 1 and Q ∼ q

T 1/z � 1, as expansion parameters, we

find series solutions for the quasinormal modes. The lowest quasinormal modes

for these shear perturbations are of the form ω = −iDq2 where D is the shear

85
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diffusion constant. Our analysis (sec. 2) of these quasinormal modes and the as-

sociated boundary conditions can be carried out provided the exponents satisfy

z ≤ di + 2 − θ. In particular D exhibits power law scaling with temperature for

z < di + 2− θ. The shear diffusion constant D for hvLif theories obtained thus is

in agreement with that obtained previously in [P2, P’1], where D was obtained by

adapting the “membrane paradigm” approach of [96]. To elaborate further, turn-

ing on perturbations hxy, hty and ay and further compactifying the theory along a

spatial direction exhibiting translation invariance, we mapped near-horizon met-

ric perturbations to gauge field perturbations in an auxilliary theory in one lower

dimension. The gauge fields were used to define currents jµ on a “stretched hori-

zon”, satisfying a diffusion equation ∂tj
t = D∂2

xj
t. The shear diffusion constant D

is obtained by solving for the perturbations using a set of self-consistent assump-

tions in a near horizon expansion. This membrane paradigm approach does not

require holography as such.

In Sec. 4.4 using the asymptotic behaviour of the quasinormal mode perturbations

in sec. 2 above, we adapt the prescription of [114, 115] to compute certain 2-point

correlation functions of the dual energy-momentum tensor operators. The poles

of these retarded correlators are identical to the lowest quasinormal frequencies

above of the dual black brane for z < di + 2 − θ, vindicating the correspondence

between quasinormal mode frequencies, the shear diffusion constant and the poles

of the retarded correlators for nonrelativistic theories with z < di + 2− θ, thereby

giving η
s

= 1
4π

.

For z = di + 2− θ, the shear diffusion constant above exhibits logarithmic scaling,

the logarithm containing the ultraviolet cutoff. However the correlation functions

obtained above, in the Kubo limit, continue to reveal universal behaviour for the

viscosity bound with η
s

= 1
4π

as we discuss in sec. 4.4.1.

From a physical point of view, the transport coefficients under consideration,

namely shear diffusion and shear viscosity measure the response of a system under

small space and time dependent fluctuations about an equilibrium configuration

at IR scales. This dovetails with the idea of linear response which precisely stud-

ies such fluctuations. The basic object in linear response theory is the retarded

Green’s function which relates linear fluctuation of sources to corressponding two-

point function of operators which couple to the sources. More precisely, this leads

to the celebrated Kubo’s formula which can be used to calculate various trans-

port coefficient from two-point correlation function. Before delving into a detailed
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analysis of shear diffusion and shear viscosity for hvLif systems, we will briefly

review linear response theory.

4.0.1 Linear response theory

Linear response theory tries to describe the response of a system to small linear

perturbations produced by controlled external forces e.g. an applied magnetic

field, applied pressure etc. Applying a shear force to a fluid produces motion. How

much the various layers of the fluid moves is determined by viscosity. Applying

a temperature gradient results in flow of heat over the system till it equilibriates.

The amount of heat flow is deterined by what is known as the thermal conductivity.

In particular, we will look at time dependent perturbations and its effect over the

system in frequency space.

Mathematically, we give a ‘kick’ to the system by adding a term of the form

Hsource(t) = φi(t)Oi(t) (4.1)

where φi(t) are called sources and the operators coupled to those fields i.e. Oi(t)’s
are the observables of the theory. Since the sources are small perturbations to

the original system, we restrict our analysis such that the expectation value of the

operators change by an amount that is linear in the perturbing source i.e.

δ〈Oi(t)〉 =

∫
dt′ χij(t, t

′)φj(t
′) (4.2)

where χij(t, t
′) is known as the response function. Clasically, these functions can

be thought of as simply the Green’s function for the operators Oi. At this point,

we assume that our system is invariant under time translations i.e.

χij(t, t
′) = χij(t− t′) (4.3)

Performing a Fourier transform1 and thus going into frequency space, we get

δ〈Oi(ω)〉 = χij(ω)φj(ω) (4.4)

Physically, this means a perturbation produced at frequency ω, also responds at

the same frequency ω. Ignoring the indices {i, j}, we can decompose the response

1We have defined the Fourier transform and its inverse as f(ω) =
∫
dt eiωtf(t) and f(t) =∫

dω
2π e−iωtf(ω)
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function into its real and imaginary parts

χ(ω) = Re χ(ω) + i Im χ(ω)

= χR(ω) + χI(ω)
(4.5)

Imposing reality on the sources and expectation value of the perturbations gives

us strong constraint on the functions χR and χI . The real part χR(ω) is an even

function in frequency space i.e. χR(−ω) = χR(ω) called the reactive part of the

response function while χI(ω) is an odd function i.e. χI(−ω) = −χI(ω) known as

the dissipative part.

The sources that we turned on are perturbative in nature. Using time dependent

perturbation theory by adding the term (4.1) leads us to the expression of change

in expectation value of the operator Oi:

δ〈Oi(t)〉 = i

∫ +∞

−∞
dt′ θ(t− t′)〈[Oj(t′),Oi(t)]〉φj(t′) (4.6)

Comparing with (4.2) we can write the response function

χij(t− t′) = −iθ(t− t′)〈[Oi(t),Oj(t′)]〉 (4.7)

This is known as the Kubo formula.

In the context of hydrodynamics, viscosity is associated with the transport of

momentum. For field theories exhibiting translation invariance along temporal

and spatial directions satisfy the conservation law ∂µT
µν = 0 where T µν is the

energy-momentum tensor or simply stress tensor in short. Viscosity essentially

tells us how momentum along x (say) affects transport along the direction z. The

relevant component of the stress tensor is T xz. Since the viscosity is the result

of a constant force perturbation, we should take the low frequency, low momenta

limit in our final answer. Thus from (4.7), we can write

χxz,xz(ω,k) = −i
∫ +∞

−∞
dt d3x θ(t)eiωt−ikx〈[Txz(ω,k), Txz(0, 0)]〉 (4.8)

The Kubo formula for viscosity (η) finally takes the form

η = lim
ω→0

χxz,xz(ω,k = 0)

iω
(4.9)

We will make use of the above two expression extensively in this chapter. In

particular, we will make use of the AdS/CFT correspondence in order to evaluate
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the R.H.S of (4.8).

4.1 Perturbations in hvLif background

The backgrounds of interest here are described by (d+1)-dimensional hyperscaling

violating metrics at finite temperature given by

ds2 = r2θ/di

(
−f(r)

r2z
dt2 +

dr2

f(r)r2
+
∑
di

dx2
i

r2

)
, di = d−1, f(r) = 1−(r0r)

di+z−θ.

(4.10)

r = 1
r0

is the location of the horizon, and di is the boundary spatial dimension.

These are conformally Lifshitz solutions to Einstein-Maxwell-dilaton theories (see

Appendix A for some details). Recall that the temperature of the field theory dual

to the hvLif theory (4.10) is the Hawking temperature of the black brane

T =
di + z − θ

4π
rz0 . (4.11)

We are interested in studying shear gravitational modes: these are the modes hxy

and hty, which in general couple to the gauge field perturbations ay. We turn on

perturbations of the form e−iωt+iqxhµν(r), e
−iωt+iqxaµ(r), and restrict ourselves to

radial gauge (hµr = ar = 0). Then, as in [P2, P’1], shear diffusion can be studied

by mapping it to charge diffusion in a theory in one lower dimension obtained by

compactifying one of the spatial directions xi enjoying translation invariance, say

y. Motivated by this, we define the variables

Hty = gxxhty = r
2− 2θ

di hty , Hxy = gxxhxy = r
2− 2θ

di hxy . (4.12)

Then the equations of motion governing the perturbations are simply

∂r(r
z+θ−(di+1)H ′ty)− ka′y −

rz+θ−(di+1)

f
q(ωHxy + qHty) = 0 , (4.13)

∂r(r
θ−z−di+1fH ′xy) +

rz+θ−(di+1)

f
ω(ωHxy + qHty) = 0 , (4.14)

qr2−2zH ′xy +
ω

f
(H ′ty − kr(di+1)−z−θay) = 0 , (4.15)

∂r(r
di+3−z−θfa′y) +

rdi+1+z−θ

f
ω2ay − rdi+3−z−θq2ay − kH ′ty = 0 , (4.16)
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where k = (di + z − θ)α and α = −
√

2(z−1)
di+z−θ (see (A.6)). The first three equa-

tions, namely (4.13),(4.14) and (4.15) are the three relevant components of the

Einstein equations while (4.16) is the linearized Maxwell’s equation. Now, follow-

ing [110, 111], we note that there is a residual gauge invariance in these variables

representing fluctuations of the form above: the metric fluctuations transform un-

der infinitesimal diffeomorphisms as hµν → hµν − ∇µξν − ∇νξµ, with the gauge

functions ξµ(t, x, r) ≡ ξµ(r)e−iωt+iqx. The residual gauge invariance then allows us

to consider the following gauge invariant combination defined as

H = ωHxy + qHty − kq
∫ r

rc

sdi+1−z−θay(s)ds . (4.17)

Note that the gauge field component ay is invariant by itself. This combination

is motivated by the investigation in [P’1] where a similar combination appears as

the field variable (mixing hty, ay perturbations) that allows a realization of the

diffusion equation from the Einstein equations governing the near horizon shear

perturbations: this is reviewed in Appendix C. Under a compactification of the y-

direction, these metric components become gauge field components with a residual

U(1) gauge invariance. We will see the role of this variable H in what follows. The

equations of motion i.e. (4.13)-(4.16) can be finally reduced to a system of two

coupled second order equations using the field H defined above in (4.17), i.e.

(primes denote r-derivatives)

H′′ +
[
∂r log rz+θ−(di+1) +

Ω2

Ω2 − (2πT )2/z−2Q2fr2−2z
∂r log(r2−2zf)

]
H′

+ (2πT )2

(
r2z−2

f 2
Ω2 − (2πT )2/z−2 Q2

f

)
H (4.18)

+ (2πT )2+1/zkQ

(
r2z−2

f 2
Ω2 − (2πT )2/z−2 Q2

f

)∫ r

0

ds s(di+1)−z−θay = 0 ,

a′′y + [∂r log frdi+3−z−θ]a′y +

(
(2πT )2 r

2z−2

f 2
Ω2 − (2πT )2/zQ

2

f
− k2

r2f

)
ay

+
(2πT )1/z−2kQ.rθ−z−di−1

Ω2 − (2πT )2/z−2Q2fr2−2z
H′ = 0 . (4.19)

Here, Ω and Q satisfying

Ω =
ω

2πT
, Q =

q

(2πT )1/z
, Ω, Q � 1 , (4.20)

are combinations that are dimensionless for the z = 1 AdS case, and Lifshitz
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invariant for θ = 0. The condition Ω, Q � 1 in (4.20) is imposed to restrict

to the hydrodynamic regime where we can identify appropriate quasinormal mode

solutions and frequencies to the above equations. These are solutions to the above

differential equations governing the perturbations which are ingoing at the horizon

and vanishing at the boundary (far from the horizon): they are damped modes

reflecting diffusion in these backgrounds and describe how the perturbed system

“settles down”. In relativistic theories, quasinormal modes are known to be closely

related to hydrodynamic diffusive modes and the associated diffusive poles in the

dual field theories. In what follows, we will generalize these studies to hvLif

theories. Restricting to the hydrodynamic regime enables us to look for solutions

to (4.18) and (4.19) in a perturbative series. It turns out that the leading and

next-to-leading behaviour for the mode H can be determined independent of the

ay solution (which can then be solved for using the solution of H).

4.2 hvLif in absence of gauge field: dilaton grav-

ity, z = 1, di = 2

In this subsection, we will analyse a simple case of dilaton gravity in 4 bulk di-

mensions (di = 2) as a warmup example. It can be easily seen from (A.1), that in

the absence of a background gauge field (Aµ = 0), the hvLif theory reduces to a

theory of a scalar field (dilaton) coupled to gravity with z = 1 and k = 0 (which

follows from A.6). The gauge invariant combination H defined in (4.17) takes a

simpler form and satisfies

H = ωHxy + qHty : H′′ − P ′

P
H′ + (2πT )2

(
Ω2

f 2
− Q2

f

)
H = 0 . (4.21)

simplifying (4.18), and we have defined the function P (r) ≡ Ω2−Q2f(r)
f(r)rθ−2 . Close to

the horizon (as r → 1
r0

), the above equation can be approximated as

H′′ + f ′

f
H′ + (2πT )2Ω2

f 2
H = 0 . (4.22)

Using an asymptotic scaling ansatz of the form H ∼ fA in this equation yields

A = ± iΩ
2

. Choosing the exponent A = − iΩ
2

, and restoring the explicit time-

dependence, we see that H ∼ e−iω(t+ 1
4πT

log f(r)). With z = 1, di = 2, from (4.10)

we have f(r) = 1− (r0r)
3−θ with the boundary defined at r → 0. The blackening

factor turns off as f(r)→ 1 far from the horizon only if θ < 3. Focussing therefore
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on θ < 3 from now on, we see that as time evolves (increasing t), these modes

carry energy towards the horizon, i.e. these are ingoing modes at the horizon.

Taking the ansatz

H(r,Ω,Q) = f(r)−
iΩ
2 F (r,Ω,Q) , (4.23)

and using in (4.21), we can obtain a second order equation governing F (r,Ω,Q).

Towards studying hydrodynamic modes, we analyse (4.21) in the regime Ω �
1,Q� 1. To keep track of the order of the perturbative solution, we introduce a

book-keeping parameter λ and rescale Ω→ λΩ and Q→ λQ, following [110, 111].

Rescaling then gives

F ′′ −
(
iλΩ

f ′

f
+
P ′

P

)
F ′ +

(
−iλΩ

2

(
f ′

f

)′
− λ2Ω2

4

(
f ′

f

)2

+
iλΩ

2

f ′

f

P ′

P

)
F

+ (2πT )2λ2

(
Ω2

f 2
− Q2

f

)
F = 0 .

(4.24)

Assuming that the solution admits a series expansion in the perturbation param-

eter λ i.e.

F (r) = F0(r) + λF1(r) + λ2F2(r) + · · · , (4.25)

we can write a second order equation for F0(r) and its corresponding solution as

F ′′0−
P ′

P
F ′0 = 0 ; F0(r) = C0+C1

∫ r Ω2 −Q2f

fr′θ−2
·dr′ regularity−−−−−−−→ F0(r) = C0 .

(4.26)

Near the horizon, f(r) vanishes, giving a logarithmic divergence in F0. Demanding

regularity of the solution at the horizon forces us to set C1 = 0, thus giving the

solution as simply F0 = C0 in (4.26). Using this in (4.24) and collecting terms of

O(λ) gives an inhomogeneous differential equation for F1(r),

F ′′1 −
P ′

P
F ′1 = C0

iΩ

2

[(
f ′

f

)′
− P ′

P
· f
′

f

]
. (4.27)

Integrating and multiplying throughout by P , we get

F ′1 =
iΩ

2
C0 ∂r log f + κ1P ⇒ κ1 = −iC0

2Ω
f ′(1/r0)r2−θ

0 =
iC0

2Ω
(3− θ)r3−θ

0 .

(4.28)

The above value for the constant κ1 is required by demanding regularity of F1 at

the horizon which implies F ′1 must be finite as r → 1
r0

. Using this value of κ1, the
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solution to (4.27) is

F1(r)− F1(1/r0) =
iC0Q

2

2Ω
(1− (r0r)

3−θ) . (4.29)

We set the integration constant F1(1/r0) to zero, as in [115]. This is consistent with

the absence of any additional dependence on Ω,Q in the subleading terms Fi(r) in

(4.25), i.e. with fixing the normalization of the modes as simply C0e
−iωtf(r)−iΩ/2

at the horizon.

Imposing the Dirichlet boundary condition H(0) = 0, i.e. the fluctuations vanish

on the boundary r = rc → 0, we obtain

1 +
iQ2

2Ω

(
1− (r0r)

3−θ) ∣∣∣
r∼0

= 0 . (4.30)

Using (4.20), at the boundary, we thus obtain the dispersion relation

ω = −i 1

4πT
q2 ≡ −iDq2 , (4.31)

where D = 1
4πT

is the shear diffusion constant. This is consistent with D found

in [P2, P’1], using a membrane-paradigm-like near horizon analysis (generalizing

[96]), and the corresponding guess η
s

= DT = 1
4π

for universal viscosity-to-entropy-

density.

4.3 hvLif theory: generalized analysis

In this section, we will study hvLif theories in full generality. To study hydrody-

namics, we will focus on the regime Ω� 1, Q� 1, taking the ansatze

H(r,Ω,Q) = f
−iΩ

2 F (r,Ω,Q) ; ay(r,Ω,Q) = f
−iΩ

2 G(r,Ω,Q) . (4.32)

The factor f−
iΩ
2 reflects the “ingoing” nature of these solutions, as in the previous

z = 1 case. The null energy condition (A.2) implies di+z−θ > 0 for theories with

z > 1 so the factor f−
iΩ
2 always reflects “infalling” modes noting the form of f(r)

in (4.10). Rewriting (4.18) in terms of F and G and further rescaling Ω → λΩ,
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Q→ λQ, we end up with

F ′′ −
(
H ′

H
+ iλΩ

f ′

f

)
F ′ −

[
iλΩ

2

(
f ′

f

)′
+
λ2Ω2

4

(
f ′

f

)2

− iλΩ

2

f ′H ′

fH

−λ2(2πT )2 r
2z−2

f 2
(Ω2 − (2πT )

2
z
−2Q2fr2−2z)

]
F

+ λ3(2πT )2+ 1
z kQ

r2z−2

f 2
(Ω2 − (2πT )

2
z
−2Q2fr2−2z)f

iλΩ
2

∫
ds · f−

iλΩ
2 sdi+1−z−θG

= 0 .

(4.33)

We also assume the solutions admit a series expansion in λ as following

F (r,Ω,Q) = F0(r,Ω,Q) + λF1(r,Ω,Q) +O(λ2) + · · ·

G(r,Ω,Q) = G0(r,Ω,Q) + λG1(r,Ω,Q) +O(λ2) + · · ·
(4.34)

Gathering terms order-by-order, we see that F0 follows a homogeneous second

order differential equation while the nature of F1 depends on F0. We have argued

in Appendix C that the last term in (4.33) becomes relevant only at O(λ3) and does

not contribute to the F0 and F1 solutions. In Sec. 4.3.0.1, we demonstrate that

the F0 and F1 solutions are consistent with (4.19) too and solve for the function

G0(r,Ω,Q) which is determined by F0 and F1. Further G1 requires knowledge

of F2 also. Thus although the exact form of the perturbation solutions H, ay, is

governed by the coupled equations (4.18), (4.19), restricting to O(λ) essentially

decouples the ay terms from the equation governing H which we will solve for

below.

Sticking (4.34) in (4.33) and gathering terms of O(λ0) gives

F ′′0−
H ′

H
F ′0 = 0 with H =

Ω2 − (2πT )2/z−2Q2fr′2−2z

fr′θ−z−di+1

regularity−−−−−−−−→ F0 = C0 .

(4.35)

To elaborate, the solution to the equation above (analogous to (4.26)) is F0 =

C0 + C1

∫
Hdr and regularity of F0 requires C1 = 0 giving F0 = C0 above. The

next-to-leading solution F1 satisfies an equation structurally similar to (4.27),

F ′′1 −
H ′

H
F ′1 = C0

iΩ

2

[(
f ′

f

)′
− H ′

H
· f
′

f

]
. (4.36)
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Integrating gives

F ′1 =
iΩC0

2
∂r log f+κ2·

Ω2 − (2πT )2/z−2Q2fr2−2z

frθ−z−di+1
⇒ κ2 =

iC0

2Ω
(di+z−θ)rdi+z−θ0 .

(4.37)

The integration constant κ2 is fixed as in (4.28) by demanding regularity of F1

at the horizon r → 1/r0. This forces the singular part from the first term to be

cancelled by the other singular piece coming from the O(Ω2) term, fixing κ2 above.

The value of κ2 can be used to write down the solution to F1(r),

F1(r) = −iC0(di + z − θ)Q2

2Ω
(2πT )

2
z
−2rdi+z−θ0

∫ r

1
r0

r′di+1−z−θdr′ . (4.38)

As in (4.29) and the comments following it, we have set the integration constant

F1(1/r0) to zero in the second line. Then the solution to (4.18) upto first order

in the hydrodynamic expansion can be written down and varies depending on the

value of (di, z, θ).

z < di + 2 − θ: This is the sector continuously connected to relativistic (AdS)

theories which have z = 1, θ = 0. This sector also includes hvLif theories arising

from reductions of p ≤ 4 nonconformalDp-branes where z = 1, di = p, θ = p−9−p
5−p .

The solution to (4.18) upto first order is given by

H = C0f(r)−
iΩ
2

[
1 +

iq2

(di + 2− z − θ)ω
rz−2

0 · (1− (r0r)
di+2−z−θ)

]
, (4.39)

where r0 is related to the temperature T as in (4.11). Imposing Dirichlet boundary

conditions i.e. H(r → 0) = 0 at the UV cut-off boundary (r = rc → 0) using (4.20)

gives

ω = −iq2 · 1

di + 2− z − θ
·
(

4πT

di + z − θ

)1−2/z

≡ −iDq2 , (4.40)

as the quasinormal mode frequency. This gives the leading shear diffusion constant

D =
rz−2

0

di + 2− z − θ
=

1

di + 2− z − θ
·
( 4π

di + z − θ

)1−2/z

T
z−2
z , (4.41)

which matches the result obtained using the membrane paradigm approach in

[P2, P’1] (reviewed in Appendix C). This led to a guess for the relation between

the shear diffusion constant D and shear viscosity η, consistent with various special

cases,

η

s
=
di + 2− z − θ

4π

(
4π

di + z − θ

) 2−z
z

DT
2−z
z =

1

4π
. (4.42)
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We will later (sec. 3) evaluate the viscosity using holographic techniques, corrob-

orating this. For z = 1, we see that η
s

= DT = 1
4π

as in (4.31). It is worth noting

that these quasinormal modes are diffusive damped modes. Our analysis and re-

sults hold in the regime (4.20) so in particular q
T 1/z � 1. The quasinormal mode

frequency (4.40) can then be expressed as ω ∼ −i( q
T 1/z )2T , and we are working

at finite temperature in the hydrodynamic low frequency, low momentum regime.

Then the time dependence of these modes is ∼ e−iωt ∼ e−Γt, damped on long

timescales.

z = di + 2 − θ: Here, the integral in (4.38) gives the solution to (4.18) to first

order as

H(r) = C0f(r)−
iΩ
2

[
1 +

iq2

ω
rz−2

0 log
1

r0r

]
, (4.43)

where (4.11) now gives T = z−1
2π
rz0. Then defining Λ = z−1

2π
1
rzc

gives the low-lying

quasinormal frequency

ω = −iq2 · 1

z

(
2π

z − 1

)1−2/z

· T
z−2
z log

Λ

T
≡ −iDq2 . (4.44)

This gives the shear diffusion constant D = 1
z

(
2π
z−1

)1−2/z · T z−2
z log Λ

T
scaling loga-

rithmically with temperature alongwith a power-law pre-factor. This also agrees

with the results in [P2, P’1]. The logarithmic scaling necessitating the ultravio-

let scale Λ perhaps suggests that this leading relation for the quasinormal mode

frequency is subject to subleading corrections and possibly appropriate resum-

mations. Nevertheless, recasting as ω ∼ −i( q
T 1/z )2T log Λ

T
shows that in the hy-

drodynamic regime q
T 1/z � 1, this leading mode is diffusive with damped time-

dependence: in fact for T � Λ, the extra log-factor leads to additional damping.

The hvLif theories arising from null reductions of AdS and nonconformal brane

plane waves [51, 72] have exponents satisfying z = di + 2− θ: taking the quasinor-

mal modes as a measure of stability of the backgrounds, we see that the diffusive

frequencies suggest that low lying modes do not indicate any instability. The log-

arithmic behaviour of the leading shear diffusion constant then suggests a possibly

novel limit of hydrodynamics in these theories, perhaps stemming from the large

boost in the above string constructions.

z > di + 2 − θ: The integral in (4.38) scales as rdi+2−θ−z
c thus acquiring dominant

(divergent) contribution from high energy scales near rc ∼ 0. There is no univer-

sal low energy behaviour emerging from near horizon physics: it appears that

these methods fail to yield insight on quasinormal modes, as does the membrane
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paradigm approach [P2, P’1]. This sector includes e.g. reductions of D6-branes

(di = 6, z = 1, θ = 9) with ill-defined asymptotics.

4.3.0.1 Solving for gauge field perturbation ay

Using the ansatze (4.32) and rescaling Ω→ λΩ and Q→ λQ we can recast (4.19)

as

G′′ − iλΩ

2
· f
′

f
G′ + ∂r ln frdi+3−z−θG′ − iλΩ

2

(
f ′

f

)′
G− λ2Ω2

4

(
f ′

f

)2

G

− iλΩ

2

f ′

f
∂r ln frdi+3−z−θ G+ λ2(2πT )2 r

2z−2

f 2
(Ω2 − (2πT )2/z−2Q2fr2−2z) G

− k2

r2f
G+

(2πT )1/z−2kQ.rθ−z−di−1

Ω2 − (2πT )2/z−2Q2fr2−2z
· 1

λ

(
F ′ − iλΩ

2

f ′

f
F

)
= 0 .

(4.45)

Plugging in the series ansatz (4.34) we can construct the perturbative solution for

ay order-by-order. The leading order equation appears at O( 1
λ
) and is given by

F ′0 = 0 giving F0 = const: this can be seen to be consistent with (4.35). We will

subsequently see that G0 is determined by F1 and F0 while G1 is determined by F2

and G0, and so on. More generally, all subsequent equations involve more variables

so there is no inconsistency in the solutions due to potential overconstraining in

this system of equations.

Gathering all terms of O(λ0), we see G0 follows the equation:

G′′0+∂r log frdi+3−z−θG′0−
k2

r2f
G0+

(2πT )1/z−2kQ.rθ−z−di−1

Ω2 − (2πT )2/z−2Q2fr2−2z

(
F ′1 −

iΩ

2

f ′

f
F0

)
= 0 .

(4.46)

For z < di + 2− θ, using (4.35) and (4.38) we can write the most general solution

to the above equation in terms of a new radial variable as

G0(x) =
A

mn
+ C1x

n
2F1

[
2,
n

m
, 2 +

n

m
;xm

]
− C2

n
x−m(n+ (m− n)xm) , (4.47)

where

x = r0r , m = di + z − θ , n = 2z − 2 , A = iC0kr
di−θ
0

q

ω
, (4.48)

while C1 and C2 are arbitrary constants which are to be fixed by demanding

regularity of ay at the horizon. Potential divergences in ay(r) and a′y(r) near the

horizon can be removed by choosing C1 = 0 and C2 = A
m2 . In terms of the original
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radial coordinate r, the solution is

G0(r) = −iC0k
q

ω
· rdi−θ0

(di + z − θ)2
· (r0r)

−(di+z−θ)f(r) . (4.49)

For relativistic theories, (z = 1, k = 0) the above expression vanishes identically

implying that the shear mode sector is governed exclusively by metric perturba-

tions Hxy and Hty.

The subleading term in ay i.e. G1(r) can be determined by collecting terms of

O(λ) from (4.45). The inhomogeneous part of the equation governing G1 involves

F ′2 and F1. F ′2(r) can be evaluated from O(λ2) terms of (4.33). Although we

could find the general solution to G1, finding the integration constants respecting

regularity at the horizon seems difficult and cumbersome by analytic means. We

discuss further details about F2 and G1 in Appendix C.

4.4 Dual field theory correlation functions

In this section, we will determine the energy-momentum tensor correlation func-

tions 〈TT 〉 following the prescription in [114, 115], and defining Tµν as dual to

the perturbation hµν . The action governing the perturbations using the variables

Hty, Hxy and ay in (4.12) is given by

Spert =− 1

16πG
(di+2)
N

∫
ddi+2x

[
1

2
rθ−z−di+1

(
− r2z−2(H ′ty)

2 +
r2z−2

f
(ωHxy + qHty)

2

+ f(H ′xy)
2
)
− kHtya

′
y +

1

2
rdi+3−z−θf(a′y)

2 +
1

2
rdi+3−z−θ

(
r2z−2

f
ω2 − q2

)
a2
y

]
.

(4.50)

The equations of motion from this action lead to (4.13)-(4.16) and we have sup-

pressed contact terms. The above expression can be recast as a bulk piece (which

vanishes by the equations of motion) and a boundary term. This boundary action

takes the form

Sbdy = − 1

32πG
(di+2)
N

∫
ddi+1x

[
rθ−z−di+1

(
−r2z−2HtyH

′
ty + fHxyH

′
xy

)
+ rdi+3−z−θaya

′
y

]
+ · · ·

(4.51)
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again suppressing contact terms. Using the equation of motion (4.15) and the

definition of H (4.17), we can recast the relevant terms of the above action as

Sbdy = lim
r→rc
− 1

32πG
(di+2)
N

∫
ddi+1x

[
frθ−z−di+1

ω2 − q2fr2−2z
H′(r, x)H(r, x)

]
+ · · · (4.52)

In the above equation, we have exhibited only those terms that contribute to the

2-point function i.e. terms that are at least second order in H. Using the Fourier

decomposition of the bulk field as H(r, t, x) =
∫
dω dq e−iωt+iqxH(r, ω, q) we can

further recast as

Sbdy = lim
r→rc

− 1

32πG
(di+2)
N

∫
dω dq

frθ−z−di+1

ω2 − q2fr2−2z
H′(r, ω, q)H(r,−ω,−q) . (4.53)

For z = 1, θ = 0, this agrees with the AdS case in [110]. Also, for theories with

Lifshitz symmetry, it is clear that (4.53) is Lifshitz-invariant. The 〈TT 〉 shear

correlator in the boundary theory is defined as

Gxy,xy = 〈TxyTxy〉 =
δ2Sbdy

δh
x(0)
y δh

x(0)
y

∣∣∣∣∣
r≈rc

. (4.54)

We define the boundary fields through the r → rc ∼ 0 limits of the bulk fields,

i.e. H(0)(ω, q) = H(rc, ω, q) and h
x(0)
y (ω, q) = h

x(0)
y (rc, ω, q). The asymptotics can

be analysed by studying (4.18) in the limit r → 0 at zero momenta and frequency

(Q = Ω = 0) i.e.

H′′ + z + θ − di − 1

r
H′ = 0 . (4.55)

The solutions are H = Ar∆ with ∆ = 0, di+2−z−θ. Thus in the hydrodynamic

regime i.e. Ω,Q � 1, we can schematically write the mode as H = A(ω, q) +

B(ω, q)rdi+2−z−θ where the functions A(ω, q) and B(ω, q) can be read off from

(4.39),

A(ω, q) = C0

[
1 + i

q2

ω

rz−2
0

di + 2− z − θ

]
, B(ω, q) = −C0

iq2

ω

rdi−θ0

di + 2− z − θ
.

(4.56)

We can write the normalized bulk field H in terms of its source H0

H(ω, q) = H(0)(ω, q)
1

N

[
1 +
B(ω, q)

A(ω, q)
rdi+2−z−θ

]
, N = 1+

B(ω, q)

A(ω, q)
rdi+2−z−θ
c .

(4.57)
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Note that the normalization factor N satisfies N ∼ 1 as rc → 0 for z < 2 + di− θ.
Using this solution in (4.53), we get

Sbdy = lim
r→rc
−
∫

dω dq

32πG
(di+2)
N

fr2−2z

ω2 − q2fr2−2z
·di + 2− z − θ

N
·B(ω, q)

A(ω, q)
·H(0)(ω, q)H(0)(−ω,−q)

(4.58)

As r → rc → 0 with z > 1, we note that limr→0
fr2−2z

ω2−q2fr2−2z
1
N 2

B(ω,q)
A(ω,q)

= − 1
q2

B(ω,q)
A(ω,q)

.

From the definition of H in (4.17) and also noting Hxy ≡ hxy = hyx and Hty ≡ hyt

from (4.12), we see that δ

δH
(0)
xy

= δ

δh
x(0)
y

= ω δ
δH(0) . Thus the correlation function

(4.54) becomes

Gxy,xy = 〈T xy (k)T xy (−k)〉 =
δ2Sbdy

δh
x(0)
y (k)δh

x(0)
y (−k)

= ω2 δ2Sbdy

δH(0)(k)δH(0)(−k)

=
1

16πG
(di+2)
N

iω2rdi−θ0

ω + iDq2
,

(4.59)

with D given in (4.41), and k = (ω, q). The Kubo formula then gives viscosity as

η = lim
ω→0

Gxy,xy(ω, q = 0)

iω
=

rdi−θ0

16πG
(di+2)
N

. (4.60)

With the entropy density given in terms of the horizon area s =
r
di−θ
0

4G
(di+2)
N

, we obtain

universal behaviour for the viscosity bound η
s

= 1
4π

, as for relativistic theories [90].

This is consistent with [P2, P’1], where we conjectured the universal relation (4.42)

saturating the proposed viscosity bound in [90]. Also, we can write down other

correlators as follows:

Gty,ty = 〈T yt (k)T yt (−k)〉 =
1

16πG
(di+2)
N

iq2rdi−θ0

ω + iDq2
,

Gty,xy = 〈T yt (k)T yx (−k)〉 =
1

16πG
(di+2)
N

iωqrdi−θ0

ω + iDq2
.

(4.61)

Each correlator above exhibits a pole at ω = −iDq2 which is the lowest lying

quasinormal mode as we have seen earlier. The viscosity (4.60) above agrees with

the result in [116]: however what is noteworthy in our analysis is that this is

obtained in the regime z < di + 2− θ.
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4.4.1 Dual field theory correlation functions: z = di + 2− θ

hvLif theories with z = di + 2− θ arise from the null reductions of highly boosted

black branes in [51, 72] as mentioned previously. The asymptotic fall-offs in (4.55),

(4.56), coincide in this case: this is the interface of the standard/alternative quan-

tization in [98], and one of the solutions contains a logarithm. We see that in this

case, (4.55) reduces to

H′′ + 1

r
H′ = 0 , (4.62)

with the solution H = A(ω, q)+B(ω, q) log 1
r0r

in (4.43). We define the normalized

bulk field in terms of the source as

H(r, ω, q) = H0(ω, q) ·
1 + iq2

ω
rz−2

0 log 1
r0r

1 + iq2

ω
rz−2

0 log 1
r0rc

, (4.63)

the source being the boundary valueH(0)(ω, q) = H(rc, ω, q). Note that unlikeN in

(4.57), the logarithm does not die near the boundary and the normalization above

is less trivial. Using (4.63), the relevant part of the boundary action becomes

Sbdy = lim
r→rc
− 1

32πG
(di+2)
N

∫
ddi+1x

[
fr3−2z

ω2 − q2fr2−2z
H′(r, x)H(r, x)

]
=

1

32πG
(di+2)
N

∫
dω.dq

irz−2
0

ω

1(
1 + iq2

ω
rz−2

0 log 1
r0rc

)H(0)(ω, q)H(0)(−ω,−q) .

(4.64)

As before, we obtain the energy-momentum tensor correlation functions as

Gxy,xy = 〈T xy (k)T xy (−k)〉 =
δ2Sbdy

δh
x(0)
y (k)δh

x(0)
y (−k)

= ω2 δ2Sbdy

δH(0)(k)δH(0)(−k)

=
1

16πGdi+2
N

iω2rz−2
0

ω + iDq2
,

(4.65)

using the expression for the shear diffusion constant in (4.44). Using the Kubo

formula, we again see that

η = lim
ω→0

Gxy,xy(ω, q = 0)

iω
=

rz−2
0

16πG
(di+2)
N

=
rdi−θ0

16πG
(di+2)
N

. (4.66)

Note that the diffusive pole again coincides with the quasinormal mode frequency

in (4.44): note that this here arises from the nontrivial normalization factor in

(4.63). Now using the entropy density s =
r
di−θ
0

4G
(di+2)
N

given in terms of the horizon

area, we again find universal behaviour η
s

= 1
4π

for the viscosity bound, again
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as for relativistic theories [90]. It is worth noting that in applying the Kubo

formula, we first restrict to the zero momentum sector q = 0, which kills off

the term containing the leading diffusion constant D which, strictly speaking, is

logarithmically divergent as rc → 0.

4.5 Discussion

We have studied low lying hydrodynamic quasinormal modes for shear pertur-

bations of hyperscaling violating Lifshitz black branes: these are of the form

ω = −iDq2 where D is the shear diffusion constant. This is consistent with

D obtained in [P2, P’1] through a membrane-paradigm analysis of near horizon

perturbations and the associated shear diffusion equation. This shear diffusion

equation ∂tj
t = D∂2

xj
t following from the second order Einstein equations in a

sense dictates the form of D above and is consistent with the low-lying quaisnor-

mal mode spectrum. The analysis here and the associated boundary conditions are

valid for theories with exponents satisfying z ≤ di+2−θ: this is the regime that is

continuously connected to AdS theories (z = 1, θ = 0). Using the asymptotics of

these quasinormal modes, retarded correlators of dual operators can be obtained:

we have seen that the poles of the retarded 〈TT 〉 correlator at finite temperature

coincide with the lowest quasinormal frequencies of the dual gravity theory. This

analysis appears consistent with the Kubo formula for viscosity via the retarded

Green’s function at zero momentum only for theories with z ≤ di + 2− θ. Perhaps

this is not surprising given the asymptotic fall-offs of the quasinormal modes: for

z > di+2−θ, high energy modes appear to dominate, with no universal low energy

behaviour for the diffusion expression. It would be interesting to understand this

better.

hvLif spacetimes with z = di + 2 − θ exhibit more interesting hydrodynamic

behaviour as we have seen: the asymptotic fall-offs of the bulk modes coincide

here. While correlation functions in the Kubo limit continue to reveal univer-

sal behaviour η
s

= 1
4π

for the viscosity, the leading shear diffusion constant ex-

hibits logarithmic scaling (involving the ultraviolet cutoff), perhaps suggesting

that subleading contributions are important with some resummation required.

The null reductions [51, 72] of highly boosted black branes give hvLif theories with

z = di + 2− θ. It is worth noting that the boost induces anisotropy in the system

(although the lower dimensional theory after compactification enjoys translation
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invariance in the spatial directions so that the zero momentum Kubo limit stud-

ied here is unambiguous). The large boost involved in these string constructions

possibly leads to novel hydrodynamic behaviour. It would perhaps be interesting

to study this directly from the null reduction of black brane hydrodynamics and

the fluid/gravity correspondence [91].





Chapter 5

Conclusion and future directions

In this thesis, we have explored certain aspects of entanglement and hydrodynam-

ics of the so called hyperscaling violating Lifshitz theories using the dual gravi-

tational description. To reiterate again, we studied the mutual information (MI)

between two strip shaped subsystems in the AdS plane wave background which

are dual to excited states in CFT with constant energy momentum flux. In par-

ticular for AdS5 plane waves, there exists a logarithmic scaling of entanglement

entropy which is suggestive of hidden Fermi surfaces in the dual theory. These

excited states are just a part of the full phase diagram and it will be interesting

to explore this further.

The hydrodynamics of hvLif theories clearly led us to a constraint on the Lifshitz

exponent i.e. z ≤ di+2−θ for a field theory in di+1-dimensions. Interestingly this

inequality saturates precisely for the class of hvLif theories that results from null

reductions of AdS plane waves. Towards gaining more insight into the behaviour

of hvLif theories, it will interesting to study the flow equations of various response

functions adapting the methodology in [118]. In [118], the authors showed that

at the level of linear response the low frequency limit of a strongly coupled field

theory at finite temperature is determined by the horizon geometry of its gravity

dual, i.e. by the “membrane paradigm” fluid of classical black hole mechanics.

Thus generic boundary theory transport coefficients can be expressed in terms of

geometric quantities evaluated at the horizon. Thinking of the radial direction as

an energy scale, we can think of the flow equations as an RG equation. Given

the results that has been discussed in the manuscript, it is expected that the flow

equations exhibit possible pathologies in the regime z > di + 2− θ.
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The correspondence between gravitational solutions and equations of fluid dynam-

ics was put on a robust footing with the advent of the fluid/gravity correspondence

[91, 92, 93, 94, 95]. Assuming that the dual field theory is in the hydrodynamic

regime, we can map gravitational solutions to fluid dynamic solutions through the

AdS/CFT correspondence. The map is constructed perturbatively by solving Ein-

stein’s equation order by order around a known stationary solution. The boundary

stress tensor computed from the perturbed solution maps to equations of a viscous

relativistic fluid. Using the standard constitutive relation for the stress tensor of

a viscous fluid, one can read off the transport coefficients of the dual fluid. This

program was adapted in the context of hvLif theories in [48] to write down the

stress tensor of the dual non-relativistic fluid. It will be interesting to see how this

follows from the higher dimensional uncompactified theory which is inherently rel-

ativistic in nature. Since AdS plane waves are high boost low temperature limit

of boosted black branes, this will help us in mapping the transport coefficients of

a boosted black brane to that of a non-relativistic system in one lower dimension.

Another interesting aspect for investigation would be the introduction of higher

derivative corrections to hvLif theories. Recall that it was essentially the com-

bination of the Lifshitz and hyperscaling violating exponents i.e. z + θ which

resulted in the logarithmic behaviour of the diffusion constant. Introduction of

higher derivative terms will correspondingly change this combination, presumably

rendering a power-law scaling to the shear diffusion constant D.



Appendix A

HvLif metric as solution to

Einstein-Maxwell-dilaton action

and linearized perturbations

The metric (4.10) is a solution to the Einstein-Maxwell-Dilaton action

S = − 1

16πG
(d+1)
N

∫
dd+1x

√
−G

[
R− 1

2
∂µφ∂

µφ− Z(φ)

4
FµνF

µν + V (φ)

]
, (A.1)

where Z(φ) = eλφ and V (φ) = −2Λe−δφ The null energy conditions following from

(4.10) give constraints on the Lifshitz z and hyperscaling violating θ exponents

(z − 1)(di + z − θ) ≥ 0 , (di − θ)(di(z − 1)− θ) ≥ 0 . (A.2)

Varying with Gµν , Aµ and φ, we obtain the following equations of motion,

Rµν =
1

2
∂µφ∂νφ−Gµν

V (φ)

d− 1
+
Z(φ)

2
GρσFρµFσν −

Z(φ)

4(d− 1)
GµνFρσF

ρσ , (A.3)

∇µ(Z(φ)F µν) = 0 ,
1√
−G

∂µ(
√
−GGµν∂νφ) +

∂V (φ)

∂φ
− 1

4

∂Z(φ)

∂φ
FρσF

ρσ = 0 .

(A.4)
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A particular stationary solution to the above equations of motion is given by

φ =
√

2(di − θ)(z − θ/di − 1) log r , (A.5)

At =
αf(r)

rdi+z−θ
, α = −

√
2(z − 1)

di + z − θ
, Ai = 0 . (A.6)

V (φ) = (di + z − θ)(di + z − θ − 1)r
− 2θ
di ; Z(φ) = r

2θ
di

+2di−2θ
. (A.7)

while the line element is given by

ds2 = r
2θ
d−1

(
−f(r)

r2z
dt2 +

dr2

f(r)r2
+
∑
di

dx2
i

r2

)
, f(r) = 1− (r0r)

d+z−θ−1. (A.8)

Turning on gravitational, gauge field and scalar field perturbations hµν(x), aµ(x)

and ϕ(x), the linearized Einstein’s equations are given by

R(1)
µν =

1

2
∂µφ∂νϕ+

1

2
∂µϕ∂νφ−

V

2
(hµν −Gµνδϕ)

+
Z

2
[GρσFµρfνσ +GρσfµρFνσ − hρσFµρFνσ + λϕGρσFµρFνσ]

−Z
[

1

4
Gµν(Fρσf

ρσ − gραhσβFρσFαβ) +
1

8
hµνFρσF

ρσ +
1

8
λϕGµνFρσF

ρσ

]
,

(A.9)

where

R(1)
µν =

1

2
[∇α∇νh

α
µ +∇α∇µh

α
ν −∇α∇αhµν −∇ν∇µh] ;

fµν = ∂µaν − ∂νaµ ; h = Gµνhµν ; δ =
2θ/di√

2(di − θ)(z − θ/di − 1)
.

(A.10)

Similarly, the linearized Maxwell Equations (A.4) are

∇µ(Z fµν)−∇µ(Z hµρF ν
ρ )− Z(∇µh

νσ)F µ
σ +

1

2
(∇µh)Z F µν + λZ F µν∂µϕ = 0 .

(A.11)

The linearized scalar field equation is:

1√
−G

∂µ(
√
−GGµν∂νϕ)− 1√

−G
∂µ(
√
−Ghµν∂νφ) +

1

2
Gµν∂νφ∂µh+ V δ2ϕ

− λZ

4
(2Fµνf

µν − 2GµρhνσFµνFρσ + λϕFµνF
µν) = 0 .

(A.12)
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In (A.9), (A.11), (A.12), indices are raised and lowered using (4.10).

The relevant equations of motion has already been stated explicitly in (3.17)-

(3.19). For the sake of completion, we list the other equations here. The t, x and

r components of the linearized Maxwell’s equation (A.11), respectively, give

∂r(r
3+z−θ∂rat)−

r3+z−θ

f
(q2at + qωax)−

k

2

[
∂r(r

2−θ(hxx + hyy)) + ∂r

(r2z−θ

f
htt

)]
− kλ∂rϕ = 0 ,

(A.13)

∂r(r
5−z−θf∂rax) +

r3+z−θ

f
(qωat + ω2ax)− k∂r(r2−θhtx) = 0 , (A.14)

q[r5−z−θf∂rax−kr2−θhtx]+ω
[
r3+z−θ∂rat−

k

2

(
r2−θ(hxx+hyy)+

r2z−θ

f
htt

)
−kλϕ

]
= 0 .

(A.15)

The tt-component of the linearized Einstein’s equation (A.9) gives

∂2
rhtt −

(2− 4z + θ

r
+
∂rf

f

)∂rhtt
2
− q2

f
htt −

2qω

f
htx − kr1−z∂rat

+
[−2(1 + z − θ)(2 + z − θ)

r2f
− 2(2z − θ)∂rf

rf
+

(θ − 2z)2

r2
+

(∂rf)2

f 2

]htt
2

− 1

2
∂r(r

θ−2zf)∂r(r
2−θ(hxx + hyy))−

ω2

f
(hxx + hyy) + (2 + z − θ)βr−2−2z+θϕ = 0 .

(A.16)

The tx-component of (A.9) gives

∂r(r
z+θ−3∂r(r

2−θhtx)) +
rz−1

f
qωhyy − k∂rax = 0 . (A.17)

The tr-component of (A.9) gives

q∂r

(r2z−θ

f
htx

)
+
ω

2

[
∂r

(r2z−θ

f
(hxx+hyy)

)
+
r2z−2

f
∂r(r

2−θ(hxx+hyy))
]
+ω

r2z−3

f
βϕ = 0 .

(A.18)

Adding xx-component to yy-component of (A.9) gives

∂r(r
2θ−z−3f∂r(r

2−θ(hxx + hyy))) + ω2 r
z+θ−3(hxx + hyy)

f
− 2rθ−z−1q2hyy

+
2rz+θ−3

f
qωhtx − 2krθ−2∂rat − (θ − 2)r2θ−z−4f∂r

(r2z−θhtt
f

)
+
k2rz+θ−5

f
htt

+ q2 r
z+θ−3htt
f

− 2(2 + z − θ)(4− 4z − 2θ + θ2)

β
r2θ−z−5ϕ = 0 .

(A.19)
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Subtracting yy-component from xx-component of (A.9) gives

∂r(r
θ−z−1f∂r(r

2−θ(hxx−hyy))) +
rz−1

f
ω2(hxx−hyy) +

rz−1

f
q2htt+

2rz−1

f
qωhtx = 0 .

(A.20)

The xr-component of (A.9) gives

q[r2−θ
(
∂rhtt +

1 + z − θ
r

htt −
∂rf

2f
htt

)
− r2−2zf∂r(r

2−θhyy)− kr3−z−θat

− βr1−2zfϕ] + ω[∂r(r
2−θhtx)− kr3−z−θax] = 0 .

(A.21)

The rr-component of (A.9) gives

∂2
r (hxx + hyy) +

(3(2− θ)
2r

+
∂rf

2f

)
∂r(hxx + hyy) + (θ − 2)

( θ

2r2
− ∂rf

2rf

)
(hxx + hyy)

− r2z−2

f
∂2
rhtt + r2z−2∂rhtt

(−2− 4z + 3θ

2rf
+
∂rf

2f 2

)
+ α(2 + z − θ)r

z−1

f
∂rat

+
[θ(2z − θ)

2r2f
− (∂rf)2

2f 3
− 1

r2f 2

(
(z − 1)(2 + z − θ) + (z − 1)r∂rf − r2∂2

rf
)]
r2z−2htt

+ 2βrθ−3∂rϕ−
(2 + z − θ)β

f
rθ−4ϕ = 0 .

(A.22)

The linearized scalar field equation (A.12) gives

∂r(r
θ−z−1f∂rϕ) +

(k2λ2

2
− 2Λδ2

)
rθ−z−3fϕ+ rθ−z−1

(r2z−2ω2

f 2
− q2

f

)
ϕ

+
βrθ−z−2f

2

[
∂r(r

2−θ(hxx + hyy))− ∂r
(r2z−θhtt

f

)]
+
k2λrz−3htt

2f
− kλ∂rat = 0 .

(A.23)
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Subleading terms in membrane

paradigm approach: A(1)
t and A(1)

x

B.1 Subleading terms when z < 4− θ

Using the expansion over q2 for At and Ax in the gauge field equations, it can be

checked that the leading O(q0) terms are consistent with the ansatz for A(0)
t ,A(0)

x

in the regime (3.43). Likewise the subleading terms can be evaluated: collecting

terms of O(q2) consistently, we further note that D ∼ rz−2
0 ∼ T

z−2
z and Γ ∼ Dq2

which leads to Γ
q
∼ q

T 2/z−1 . Using this heuristic estimate and simplifying gives

∂rA(1)
t ∼ r0

[ q2

T 2/z
log
( 1/r0

(1/r0)− r

)
+

q4

T 4/z
log2

( 1/r0

(1/r0)− r

)]
A(0)
t . (B.1)

Using (3.43), we see that ∂rA(1)
t � A

(0)
t , and after integrating, that A(1)

t � A
(0)
t ,

verifying that these are indeed subleading. Likewise, we find

A(1)
x ∼

[ q2

T 2/z
log
( 1/r0

1/r0 − r

)
+

q4

T 4/z
log2

( 1/r0

1/r0 − r

)]
A(0)
x � A(0)

x . (B.2)

B.2 Subleading terms when z = 4− θ

For the case z = 4 − θ, we obtain A(0)
x

A(0)
t

∼ 1

r
2(z−1)
0

Γ
q

log(
1/r0

1/r0−r
)

log( 1
r0rc

)
so that imposing (3.6)

gives

1

r
2(z−1)
0

· Γ2

q2
·

log( 1/r0
1/r0−r )

log( 1
r0rc

)
� 1 . (B.3)
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x

From the estimates obtained for D from the diffusion equation and the diffusion

integral, we obtain Γ
q
∼ q

T
2
z−1

log( 1
r0rc

). Using along with D ∼ Γq2, we obtain

the modified bound (1/r0)−rh
1/r0

� q2

T 2/z log2( 1
r0rc

). The above estimates leads to the

inequality q2

T 2/z log( 1/r0
(1/r0)−rh

) log 1
r0rc
� 1. The subleading terms now give

∂rA(1)
t ∼ r0

[ q2

T 2/z
log
( 1/r0

(1/r0)− r

)
+

q4

T 4/z
log2

( 1/r0

(1/r0)− r

)
log
( 1

r0rc

)]
A(0)
t .

(B.4)

Within the regime , it would appear that ∂rA(1)
t � A

(0)
t : however r0rc � 1 implies

that log( 1
r0rc

) is large so that the O(q4) term need not be small even if q2

T 2/z � 1,

suggesting a breakdown of the series expansion.



Appendix C

Solution for gauge field

perturbation in QNM approach

Using (4.35) and (4.37) we can simplify the inhomogeneous terms in (4.46) signif-

icantly. In terms of the new radial coordinate x and the parameters m,n and A

as defined in (4.48), the equation (4.46) can be recast as

d2G0

dx2
+

(
2m− n+ 1

x
− m

x(1− xm)

)
dG0

dx
− mn

x2(1− xm)
G0 +

A

x2(1− xm)
= 0 .

(C.1)

The solution to the above equation is given by (4.47).

F2(r, t, x) solution: The equation governing F2(r) follows from O(λ2) terms

of (4.33). The relevant terms following from the first two lines of (4.33) are

computationally straightforward to derive. Let us concentrate on the last line of

(4.33). Concentrating on the powers of λ, the integral in the last term can be

integrated by parts and rewritten as

λ3f
iλΩ

2

∫
ds f−

iλΩ
2 sdi+1−z−θG ≈ λ3f

iλΩ
2

[
f−

iλΩ
2

∫
ds sdi+1−z−θG0

+
iλΩ

2

∫
ds f−

iλΩ
2
f ′

f

∫
ds′ s′di+1−z−θG0

]
∼ O(λ3) +O(λ4) .

(C.2)

The above expression shows that the leading contribution from the last term of

(4.33) becomes relevant at O(λ3) and has no role to play in determining F2(r).
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We can write the equation governing F2 as

F ′′2 −
H ′

H
F ′2 +

[
−iΩf ′

f
F ′1−

iΩ

2

(
f ′

f

)′
F1 −

Ω2

4

(
f ′

f

)2

C0 +
iΩ

2

f ′

f

H ′

H
F1

+(2πT )2 r
2z−2

f 2
· (Ω2 − (2πT )2/z−2Q2fr2−2z)C0

]
= 0 .

(C.3)

Using (4.38) and integrating the above once, we get

F ′2(r) =
iΩ

2

f ′

f
F1 −HC̃1

− C0m
2rm0

4

(
(r0r)

n+2−m

n+ 2−m 2F1

[
1,
n+ 2−m

m
,
n+ 2

m
, (r0r)

m

]
+

1

m
log f

)
·H

(C.4)

where C̄1 is an arbitrary integration constant. Choosing C̃1 = C0

4
mrm0

(
γ + ψ

(
n+2
m

))
where γ is the Euler-Mascheroni constant and ψ is the digamma function, ensures

F ′2(r) is finite at the horizon. The above expression can be integrated again subject

to the boundary condition F2(r ∼ 1
r0

) = 0 to obtain an explicit expression for the

function F2(r).

G1(r, t, x) solution: Collecting O(λ) terms from (4.45), we can write the equa-

tion governing G1(r) is given by

G′′1 + ∂r log frdi+3−z−θ G′1 −
k2

r2f
G1 =

iΩ

2

f ′

f
(G′0 + ∂r log frdi+3−z−θ G0)

+
iΩ

2

(
f ′

f

)′
G0 + (2πT )

1
z
−2 Qk

r2f
×(

C0

4
m2rm0

[
(r0r)

n+2−m

n+ 2−m 2F1

[
1,
n+ 2−m

m
,
n+ 2

m
; (r0r)

m
]

+
1

m
log f

]
+ C̃1

)
= 0 .

(C.5)

The homogeneous part of the above equation is identical to the homogeneous part

of (4.46). This helps us in writing down the solution for G1 as

G1(x) = C̄1 y1(x)− y1(x)

∫
h(x)y2(x)

W (x)
dx+ y2(x)

∫
h(x)y1(x)

W (x)
dx (C.6)
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where x is the radial variable defined in (4.48). Also,

y1(x) = x−m
n+ (m− n)xm

n
, y2(x) = xn 2F1

[
2,
n

m
, 2 +

n

m
;xm

]
W (x) =

(m+ n)xn−m−1

1− xm

h(x) =
Λ1

x2
+

Λ2

x2(1− xm)
+

Λ

x2(1− xm)

[
xn+2−m

n+ 2−m 2F1

[
1,
n+ 2−m

m
,
n+ 2

m
;xm

]
+

log f

m

]
(C.7)

where the constants Λ1, Λ2 and Λ are given by Λ1 = − Λ
m

(2 − n
m

), Λ2 = Λ(γ +

ψ(2+n−m
m

)), Λ = C0kq r
m−n−2
0 . In principle we can fix the constant C̄1 by demand-

ing regularity of the solution near horizon i.e. as x ∼ 1.

The crucial thing to note about the ay solution is that even the leading order piece

G0 ∼ q
ω

vanishes in the zero momentum sector i.e. when q = 0. However, Kubo’s

formula to evaluate the response functions i.e. in this case the 〈ay(k)ay(−k)〉
correlator is evaluated at zero momenta which leads to 〈ay(k)ay(−k)〉 = 0. This is

very similar to the behaviour of the correlators 〈T yt (k)T yt (−k)〉 and 〈T yt (k)T yx (−k)〉
given by (4.61) which vanishes in the q → 0 limit. Indeed from (4.13)-(4.16) we

can observe that when q = 0 the Hty and ay fields decouple and the shear mode

sector is governed exclusively by the dynamics of Hxy. This results in a non-trivial

〈T yx (k)T yx (−k)〉 correlator i.e. (4.59) which is indeed non-zero in the q = 0 sector

eventually leading to (4.60).
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[29] B. S. Kim, “Schródinger Holography with and without Hyperscaling

Violation,” JHEP 1206, 116 (2012) [arXiv:1202.6062 [hep-th]];

[30] H. Singh, “Lifshitz/Schrödinger Dp-branes and dynamical exponents,”

JHEP 1207 (2012) 082 [arXiv:1202.6533 [hep-th]];

[31] P. Dey and S. Roy, “Lifshitz-like space-time from intersecting branes in

string/M theory,” arXiv:1203.5381 [hep-th];

[32] E. Perlmutter, “Hyperscaling violation from supergravity,” JHEP 1206,

165 (2012) [arXiv:1205.0242 [hep-th]];

[33] M. Ammon, M. Kaminski and A. Karch, “Hyperscaling-Violation on Probe

D-Branes,” arXiv:1207.1726 [hep-th];

[34] M. Kulaxizi, A. Parnachev and K. Schalm, “On Holographic Entanglement

Entropy of Charged Matter,” JHEP 1210, 098 (2012) [arXiv:1208.2937

[hep-th]].

[35] K. Narayan, “AdS null deformations with inhomogeneities,” Phys. Rev. D

86, 126004 (2012) [arXiv:1209.4348 [hep-th]].



120 Bibliography

[36] D. T. Son, “Applied holography,” Nucl. Phys. Proc. Suppl. 195, 217

(2009).

[37] M. Taylor, “Lifshitz holography,” Class. Quant. Grav. 33, no. 3, 033001

(2016) [arXiv:1512.03554 [hep-th]].

[38] J. Bhattacharya, S. Cremonini and A. Sinkovics, “On the IR completion of

geometries with hyperscaling violation,” JHEP 1302, 147 (2013)

[arXiv:1208.1752 [hep-th]].

[39] S. F. Ross, “Holography for asymptotically locally Lifshitz spacetimes,”

Class. Quant. Grav. 28, 215019 (2011) [arXiv:1107.4451 [hep-th]].

[40] M. H. Christensen, J. Hartong, N. A. Obers and B. Rollier, “Boundary

Stress-Energy Tensor and Newton-Cartan Geometry in Lifshitz

Holography,” JHEP 1401, 057 (2014) [arXiv:1311.6471 [hep-th]].

[41] W. Chemissany and I. Papadimitriou, “Lifshitz holography: The whole

shebang,” JHEP 1501, 052 (2015) [arXiv:1408.0795 [hep-th]].

[42] J. Hartong, E. Kiritsis and N. A. Obers, “Field Theory on Newton-Cartan

Backgrounds and Symmetries of the Lifshitz Vacuum,” JHEP 1508, 006

(2015) [arXiv:1502.00228 [hep-th]].

[43] D. W. Pang, “Conductivity and Diffusion Constant in Lifshitz

Backgrounds,” JHEP 1001, 120 (2010) [arXiv:0912.2403 [hep-th]].

[44] S. Cremonini and P. Szepietowski, “Generating Temperature Flow for

eta/s with Higher Derivatives: From Lifshitz to AdS,” JHEP 1202, 038

(2012) [arXiv:1111.5623 [hep-th]].

[45] M. Alishahiha and H. Yavartanoo, “On Holography with Hyperscaling

Violation,” JHEP 1211, 034 (2012) [arXiv:1208.6197 [hep-th]].

[46] S. A. Hartnoll, A. Lucas and S. Sachdev, “Holographic quantum matter,”

arXiv:1612.07324 [hep-th].

[47] J. Sadeghi and A. Asadi, “Hydrodynamics in a black brane with

hyperscaling violation metric background,” Can. J. Phys. 92, no. 12, 1570

(2014) [arXiv:1404.5282 [hep-th]].

[48] E. Kiritsis and Y. Matsuo, “Charge-hyperscaling violating Lifshitz

hydrodynamics from black-holes,” JHEP 1512, 076 (2015)

[arXiv:1508.02494 [hep-th]]; E. Kiritsis and Y. Matsuo,



121 Bibliography

“Hyperscaling-Violating Lifshitz hydrodynamics from black-holes: Part II,”

arXiv:1611.04773 [hep-th].

[49] M. Blake, “Universal Charge Diffusion and the Butterfly Effect,”

arXiv:1603.08510 [hep-th].

[50] A. A. Patel, A. Eberlein and S. Sachdev, “Shear viscosity at the

Ising-nematic quantum critical point in two dimensional metals,”

arXiv:1607.03894 [cond-mat.str-el].

[51] K. Narayan, “On Lifshitz scaling and hyperscaling violation in string

theory,” Phys. Rev. D 85, 106006 (2012) [arXiv:1202.5935 [hep-th]].

[52] K. Narayan, T. Takayanagi and S. P. Trivedi, “AdS plane waves and

entanglement entropy,” JHEP 1304, 051 (2013) [arXiv:1212.4328 [hep-th]];

[53] A. Einstein, B. Podolsky, N. Rosen, “Can quantum mechanical description

of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935)

[54] M.A. Nielsen, I.L. Chuang, “Quantum Computation and Quantum

Information” (Cambridge University Press, New York, 2010)

[55] A. Kitaev and J. Preskill, “Topological entanglement entropy,” Phys. Rev.

Lett. 96, 110404 (2006) doi:10.1103/PhysRevLett.96.110404

[hep-th/0510092].

[56] M. Levin and X. G. Wen, “Detecting Topological Order in a Ground State

Wave Function,” Phys. Rev. Lett. 96, 110405 (2006)

doi:10.1103/PhysRevLett.96.110405 [cond-mat/0510613 [cond-mat.str-el]].

[57] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement

entropy from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006)

[hep-th/0603001].

[58] S. Ryu and T. Takayanagi, “Aspects of Holographic Entanglement

Entropy,” JHEP 0608, 045 (2006) [hep-th/0605073].

[59] V. E. Hubeny, M. Rangamani and T. Takayanagi, “A Covariant

holographic entanglement entropy proposal,” JHEP 0707 (2007) 062

[arXiv:0705.0016 [hep-th]].

[60] B. Swingle, “Entanglement Renormalization and Holography,” Phys. Rev.

D 86, 065007 (2012) doi:10.1103/PhysRevD.86.065007 [arXiv:0905.1317

[cond-mat.str-el]].



122 Bibliography

[61] M. Van Raamsdonk, “Comments on quantum gravity and entanglement,”

arXiv:0907.2939 [hep-th].

[62] M. Van Raamsdonk, “Building up spacetime with quantum entanglement,”

Gen. Rel. Grav. 42, 2323 (2010) [Int. J. Mod. Phys. D 19, 2429 (2010)]

[arXiv:1005.3035 [hep-th]].

[63] J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,”

Fortsch. Phys. 61, 781 (2013) [arXiv:1306.0533 [hep-th]].

[64] T. Nishioka, S. Ryu and T. Takayanagi, “Holographic Entanglement

Entropy: An Overview,” J. Phys. A 42 (2009) 504008;

[65] T. Takayanagi, “Entanglement Entropy from a Holographic Viewpoint,”

Class. Quant. Grav. 29, 153001 (2012) [arXiv:1204.2450 [gr-qc]].

[66] M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in

three-dimensional space-time,” Phys. Rev. Lett. 69, 1849 (1992)

[hep-th/9204099].

[67] L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, “A Quantum Source of

Entropy for Black Holes,” Phys. Rev. D 34 (1986) 373;

[68] M. Srednicki, “Entropy and area,” Phys. Rev. Lett. 71 (1993) 666

[hep-th/9303048].

[69] N. Ogawa, T. Takayanagi and T. Ugajin, “Holographic Fermi Surfaces and

Entanglement Entropy,” JHEP 1201, 125 (2012) [arXiv:1111.1023

[hep-th]].

[70] L. Huijse, S. Sachdev and B. Swingle, “Hidden Fermi surfaces in

compressible states of gauge-gravity duality,” Phys. Rev. B 85, 035121

(2012) [arXiv:1112.0573 [cond-mat.str-el]].

[71] K. Narayan, “On a lightlike limit of entanglement,” Phys. Rev. D 91, no.

8, 086010 (2015) [arXiv:1408.7021 [hep-th]].

[72] K. Narayan, “Non-conformal brane plane waves and entanglement

entropy,” Phys. Lett. B 726, 370 (2013)

[73] M. Headrick, “Entanglement Renyi entropies in holographic theories,”

Phys. Rev. D 82, 126010 (2010) [arXiv:1006.0047 [hep-th]].



123 Bibliography

[74] B. Swingle, “Mutual information and the structure of entanglement in

quantum field theory,” arXiv:1010.4038 [quant-ph].

[75] J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin,

“Thermodynamical Property of Entanglement Entropy for Excited States,”

Phys. Rev. Lett. 110, no. 9, 091602 (2013) [arXiv:1212.1164].

[76] D. Allahbakhshi, M. Alishahiha and A. Naseh, “Entanglement

Thermodynamics,” JHEP 1308, 102 (2013) [arXiv:1305.2728 [hep-th]].

[77] G. Wong, I. Klich, L. A. Pando Zayas and D. Vaman, “Entanglement

Temperature and Entanglement Entropy of Excited States,” JHEP 1312,

020 (2013) [arXiv:1305.3291 [hep-th]].

[78] W. Fischler, A. Kundu and S. Kundu, “Holographic Mutual Information at

Finite Temperature,” Phys. Rev. D 87, no. 12, 126012 (2013)

[arXiv:1212.4764 [hep-th]].

[79] J. Maldacena, D. Martelli and Y. Tachikawa, “Comments on string theory

backgrounds with non-relativistic conformal symmetry,” JHEP 0810, 072

(2008) [arXiv:0807.1100 [hep-th]].

[80] H. Casini and M. Huerta, “Entanglement and alpha entropies for a massive

scalar field in two dimensions,” J. Stat. Mech. 0512:P12012,2005,

[cond-mat/0511014].

[81] N. Itzhaki, J. M. Maldacena, J. Sonnenschein and S. Yankielowicz,

“Supergravity and the large N limit of theories with sixteen supercharges,”

Phys. Rev. D 58, 046004 (1998) [hep-th/9802042].

[82] J. L. F. Barbon and C. A. Fuertes, “Holographic entanglement entropy

probes (non)locality,” JHEP 0804, 096 (2008) [arXiv:0803.1928 [hep-th]].

[83] M.M. Wolf, F. Verstraete, M.B. Hastings, J.I. Cirac, “Area laws in

quantum systems: mutual information and correlations”, Phys.Rev.Lett.,

100, 070502 (2008), [arXiv:0704.3906].

[84] T. Faulkner, A. Lewkowycz and J. Maldacena, “Quantum corrections to

holographic entanglement entropy,” JHEP 1311, 074 (2013)

[arXiv:1307.2892].

[85] H. Casini and M. Huerta, “Remarks on the entanglement entropy for

disconnected regions,” JHEP 0903, 048 (2009)

doi:10.1088/1126-6708/2009/03/048 [arXiv:0812.1773 [hep-th]].



124 Bibliography

[86] D. D. Blanco, H. Casini, L. Y. Hung and R. C. Myers, “Relative Entropy

and Holography,” JHEP 1308, 060 (2013) doi:10.1007/JHEP08(2013)060

[arXiv:1305.3182 [hep-th]].

[87] N. Lashkari, M. B. McDermott and M. Van Raamsdonk, “Gravitational

dynamics from entanglement ’thermodynamics’,” JHEP 1404, 195 (2014)

doi:10.1007/JHEP04(2014)195 [arXiv:1308.3716 [hep-th]].

[88] T. Faulkner, M. Guica, T. Hartman, R. C. Myers and M. Van Raamsdonk,

“Gravitation from Entanglement in Holographic CFTs,” JHEP 1403, 051

(2014) doi:10.1007/JHEP03(2014)051 [arXiv:1312.7856 [hep-th]].

[89] G. Policastro, D. T. Son and A. O. Starinets, “The Shear viscosity of

strongly coupled N=4 supersymmetric Yang-Mills plasma,” Phys. Rev.

Lett. 87, 081601 (2001) [hep-th/0104066].

[90] P. Kovtun, D. T. Son and A. O. Starinets, “Viscosity in strongly

interacting quantum field theories from black hole physics,” Phys. Rev.

Lett. 94, 111601 (2005) [hep-th/0405231].

[91] S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani,

“Nonlinear Fluid Dynamics from Gravity,” JHEP 0802, 045 (2008)

[arXiv:0712.2456 [hep-th]].

[92] S. Bhattacharyya, R. Loganayagam, S. Minwalla, S. Nampuri, S. P. Trivedi

and S. R. Wadia, “Forced Fluid Dynamics from Gravity,” JHEP 0902, 018

(2009) [arXiv:0806.0006 [hep-th]].

[93] S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and

A. Sharma, “Conformal Nonlinear Fluid Dynamics from Gravity in

Arbitrary Dimensions,” JHEP 0812, 116 (2008) [arXiv:0809.4272 [hep-th]].

[94] J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, “Fluid dynamics of

R-charged black holes,” JHEP 0901, 055 (2009) [arXiv:0809.2488 [hep-th]].

[95] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta,

R. Loganayagam and P. Surowka, “Hydrodynamics from charged black

branes,” JHEP 1101, 094 (2011) [arXiv:0809.2596 [hep-th]].

[96] P. Kovtun, D. T. Son and A. O. Starinets, “Holography and

hydrodynamics: Diffusion on stretched horizons,” JHEP 0310, 064 (2003)

[hep-th/0309213].



125 Bibliography

[97] K. S. Thorne, R. H. Price and D. A. Macdonald, “Black Holes: The

Membrane Paradigm,” NEW HAVEN, USA: YALE UNIV. PR. (1986)

367p

[98] I. R. Klebanov and E. Witten, “AdS / CFT correspondence and symmetry

breaking,” Nucl. Phys. B 556, 89 (1999)

doi:10.1016/S0550-3213(99)00387-9 [hep-th/9905104].

[99] C. Hoyos, B. S. Kim and Y. Oz, “Lifshitz Field Theories at Non-Zero

Temperature, Hydrodynamics and Gravity,” JHEP 1403, 029 (2014)

[arXiv:1309.6794 [hep-th], arXiv:1309.6794].

[100] D. Mateos and D. Trancanelli, “Thermodynamics and Instabilities of a

Strongly Coupled Anisotropic Plasma,” JHEP 1107, 054 (2011)

[arXiv:1106.1637 [hep-th]].

[101] J. Erdmenger, P. Kerner and H. Zeller, “Transport in Anisotropic

Superfluids: A Holographic Description,” JHEP 1201, 059 (2012)

[arXiv:1110.0007 [hep-th]].

[102] A. Rebhan and D. Steineder, “Violation of the Holographic Viscosity

Bound in a Strongly Coupled Anisotropic Plasma,” Phys. Rev. Lett. 108,

021601 (2012) [arXiv:1110.6825 [hep-th]].

[103] J. Polchinski and E. Silverstein, “Large-density field theory, viscosity, and

’2kF ’ singularities from string duals,” Class. Quant. Grav. 29, 194008

(2012) [arXiv:1203.1015 [hep-th]].

[104] K. A. Mamo, “Holographic RG flow of the shear viscosity to entropy

density ratio in strongly coupled anisotropic plasma,” JHEP 1210, 070

(2012) [arXiv:1205.1797 [hep-th]].

[105] S. Jain, N. Kundu, K. Sen, A. Sinha and S. P. Trivedi, “A Strongly

Coupled Anisotropic Fluid From Dilaton Driven Holography,” JHEP 1501,

005 (2015) [arXiv:1406.4874 [hep-th]].

[106] S. Jain, R. Samanta and S. P. Trivedi, “The Shear Viscosity in Anisotropic

Phases,” JHEP 1510, 028 (2015) [arXiv:1506.01899 [hep-th]].

[107] S. Cremonini, “The Shear Viscosity to Entropy Ratio: A Status Report,”

Mod. Phys. Lett. B 25, 1867 (2011) [arXiv:1108.0677 [hep-th]].

[108] I. Kanitscheider, K. Skenderis and M. Taylor, “Precision holography for

non-conformal branes,” JHEP 0809, 094 (2008) [arXiv:0807.3324 [hep-th]].



Bibliography 126

[109] I. Kanitscheider and K. Skenderis, “Universal hydrodynamics of

non-conformal branes,” JHEP 0904, 062 (2009) [arXiv:0901.1487 [hep-th]].

[110] P. K. Kovtun and A. O. Starinets, “Quasinormal modes and holography,”

Phys. Rev. D 72, 086009 (2005) doi:10.1103/PhysRevD.72.086009

[hep-th/0506184].

[111] A. O. Starinets, “Quasinormal spectrum and the black hole membrane

paradigm,” Phys. Lett. B 670, 442 (2009) [arXiv:0806.3797 [hep-th]].

[112] A. Nunez and A. O. Starinets, “AdS / CFT correspondence, quasinormal

modes, and thermal correlators in N=4 SYM,” Phys. Rev. D 67, 124013

(2003) [hep-th/0302026].

[113] E. Berti, V. Cardoso and A. O. Starinets, Class. Quant. Grav. 26, 163001

(2009) doi:10.1088/0264-9381/26/16/163001 [arXiv:0905.2975 [gr-qc]].

[114] D. T. Son and A. O. Starinets, “Minkowski space correlators in AdS /

CFT correspondence: Recipe and applications,” JHEP 0209, 042 (2002)

[hep-th/0205051];

[115] G. Policastro, D. T. Son and A. O. Starinets, “From AdS / CFT

correspondence to hydrodynamics,” JHEP 0209, 043 (2002)

[hep-th/0205052].

[116] X. M. Kuang and J. P. Wu, “Transport coefficients from hyperscaling

violating black brane: shear viscosity and conductivity,” arXiv:1511.03008

[hep-th].

[117] D. Roychowdhury, “Holographic charge diffusion in non relativistic

branes,” Phys. Lett. B 744, 109 (2015) [arXiv:1412.0911 [hep-th]];

“Hydrodynamics from scalar black branes,” JHEP 1504, 162 (2015)

[arXiv:1502.04345 [hep-th]].

[118] N. Iqbal and H. Liu, “Universality of the hydrodynamic limit in AdS/CFT

and the membrane paradigm,” Phys. Rev. D 79, 025023 (2009)

[arXiv:0809.3808 [hep-th]].


	1 Introduction
	1.1 AdS5/CFT4 correspondence: Statement
	1.2 Large N Gauge Theories and String Theories
	1.3 Motivation for the AdS/CFT correspondence
	1.4 Bulk-Boundary Correspondence
	1.5 Non-relativistic holography and hyperscaling violation

	2 Entanglement Entropy and Mutual Information
	2.1 Holographic entanglement entropy: a brief review
	2.2 AdS plane waves and Mutual Information (MI)
	2.3 A phenomenological scaling picture for entanglement
	2.4 Holographic mutual information: generalities
	2.5 Mutual information in AdS plane waves
	2.6 Discussion

	3 Hydrodynamics in hyperscaling violating Lifshitz theories: A membrane paradigm approach
	3.1 Review: Membrane paradigm approach for evaluating response function in relativistic theories
	3.2 Shear diffusion in the absence of gauge field: Dilaton gravity
	3.3 Comments on s
	3.4 Shear diffusion: highly boosted black brane

	4 Hydrodynamics in hyperscaling violating Lifshitz Theories: A study of quasinormal modes
	4.1 Perturbations in hvLif background
	4.2 hvLif in absence of gauge field: dilaton gravity, z=1, di=2
	4.3 hvLif theory: generalized analysis
	4.4 Dual field theory correlation functions
	4.5 Discussion

	5 Conclusion and future directions
	A HvLif metric as solution to Einstein-Maxwell-dilaton action and linearized perturbations
	B Subleading terms in membrane paradigm approach: At(1) and Ax(1)
	B.1 Subleading terms when z<4-
	B.2 Subleading terms when z=4-

	C Solution for gauge field perturbation in QNM approach
	Bibliography

