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SYNOPSIS

The AdS/CFT correspondence provides a map between a quantum field theory and
a gravitational theory. The correspondence is a powerful tool which can be used to
study strongly coupled field theories using the dual gravity description. Over the
last few years, taking motivation from various condensed matter systems the cor-
respondence has been generalized and and applied to understand non-relativistic
holography. An interesting class of non-relativistic spacetimes exhibits so-called
hyperscaling violation. The gravity duals are conformally Lifshitz and arise as
solutions to effective Einstein-Maxwell-dilaton theories. A certain subclass of hy-
perscaling violating theories can be constructed in string theory by null reduction
of AdS plane waves which are effectively large boost, low temperature limit of
boosted black branes. Some of the hyperscaling violating theories exhibit novel
scaling behaviour for entanglement entropy which is also reflected in certain string
realizations. This thesis can be broadly divided into two parts. After introducing
the important aspects of AdS/CFT in Chapter 1, we will describe the work done
in [P1] which involves the study of mutual information in the string constructions.

We briefly summarize it as follows:

Entanglement Entropy (EE) and Mutual Information (MI):

Inspired by the area scaling of black hole entropy, Ryu and Takayanagi proposed a
simple correspondence for calculating entanglement entropy in field theories with
gravity duals: the EE for a subsystem in the d-dimensional field theory is the area
in Planck units of a minimal surface bounding the subsystem, the bulk theory
living in (d + 1)-dimensions. Field theoretic techniques like “replica trick” can
only be applied to study EE of ground state of 2-D systems. This geometric pre-
scription thus gives us a calculable handle on what in field theory formalism is a
rather complicated question.

In [P1] along with my advisor Prof. K. Narayan, we analysed mutual informa-
tion (MI) for a certain class of CFT excited states: states with constant energy-
momentum flux turned on (7'y, ~ @). The corresponding gravity duals are given
by simple deformations of AdS, called AdS plane waves. Earlier works observed
that the EE for a strip-subsystem is dependent on the orientation of the strip:
for AdSs plane waves the EE grows logarithmically while for a general AdSgyq
with d # 4 the EE ~ /QI>~%? where [ is the subsystem width. When the strip
is orthogonal to the flux, we have a phase transition with the EE saturating for
1> Q11
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Mutual information is another interesting information theoretic quantity defined
as: I[[A: B] = S(A) + S(B) — S(AU B) where A and B are two disjoint sub-
systems. The Ryu-Takayanagi prescription implies a disentangling transition for
mutual information in the large N classical gravity approximation with a criti-
cal separation. In [P1] we studied MI in AdS plane waves for the two different
orientations of the strip subsysmtem. For wide strips QI? > 1 parallel to the
flux we observed a disentangling transition at a critical separation (I.) lesser than
that of the ground state with [. being independent of the characteristic energy
scale Q4. This is quite distinct from the finite temperature case where for large
enough subsystem size i.e. [T > 1 the linear extensive growth of entanglement
implies that the subsystems disentangle for any finite separation independent of
[. A phase transition for { > Q~'/¢ is observed when the strip is orthogonal to
the flux and the MI vanishes. We also study the small width regime QI¢ < 1
treating QI¢ as a perturbative parameter; we observe the disentangling transition
occurs at a lesser critical separation compared to the ground state. The interme-
diate regime i.e QI ~ 1 is analysed numerically where we can see a non-trivial
dependence of the disentangling point on ) and [. Overall, this is suggestive of
the fact that these excited states are “partially ordered”—they disentangle faster

than the ground state but slower than thermal states.

Non-relativistic holography and hydrodynamics:

In a series of work [P2, P’1, P3| done in collaboration with my advisor Prof. K.
Narayan and fellow graduate student Kedar S. Kolekar, I studied the shear dif-
fusion constant and the shear viscosity-to-entropy density ratio for hyperscaling
violating Lifshitz (hvLif) theories. In the first couple of works [P2, P'1], the anal-
ysis was performed adapting a membrane paradigm-like approach used in [JHEP
0310, 064 (2003)] by P. Kovtun, D. T. Son and A. O. Starinets.

In the current thesis however, we will be interested in looking at the simpler where
we do not perturb the background gauge field. The spatial directions {z;} enjoy
translation invariance. Thus the diffusion of shear gravitational modes hgy, h,, can
be mapped to charge diffusion in an auxilliary theory obtained by compactifying
the (d; + 2)-dimn theory along one of the spatial directions, say y. We turn

~Tt+iar where T is the typical time

on plane wave modes for the perturbations o e
scale over which the perturbation decays while ¢ is the momentum along x. The y-
compactification maps hyy, hy, to gauge fields A; and A, in the (d;+1)-dimensional
theory which in turn helps us in defining appropriate currents j# on the stretched

horizon. A set of self-consistent approximations along with the equations of motion
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eventually leads to Fick’s Law j%* = —Dd,j' for charge diffusion of the gauge field
A, in the compactified background: we then identify D as the diffusion constant.

In hvLif theories with a gauge field, which is discussed in details in [P’1], the
metric perturbations couple to the gauge field perturbations which complicates
formulating Fick’s Law. A crucial field redefinition helps us in formulating Fick’s
Law in terms of a modified current j#. Similar to the earlier case of dilaton gravity,
a self consistent set of approximations leads to the solutions of the redefined gauge
fields A; and A, which in turn can be used to evaluate the shear diffusion constant
D in terms of the metric components. However, we will not be concerned with this
case in this thesis and will be presumably appear in a later work of my colleague
Kedar S. Kolekar.

For a 4-dimensional hvLif theories with generic Lifshitz and hyperscaling-violating
exponents (z, 8), following z < 4 — 0 the diffusion constant D exhibits a power-law
behaviour with respect to the temperature 17" i.e D ~ T3 (T is the tempera-
ture of the field theory). Further, looking at various special cases motivated us
to conjecture a relation between the shear viscosity () and shear diffusion (D)
eventually leading to Z = % (where 7 is the viscosity and s is the entropy density)
thus following the universal bound proposed by Kovtun-Son-Starinets [90] for rel-
ativistic field theories. The case where z = 4 — 6 seems interesting and the shear
diffusion constant has a logarithmic scaling which appears to be a novel behaviour.
The analysis seems to break down in the regime z > 4 — @ failing to give us any
insight into the hydrodynamic behaviour of these theories.

In our subsequent work [P3] we used holographic techniques to study hvLif theo-
ries. Generalizing the approach of A.O. Starinets as given in [Phys. Lett. B 670,
442 (2009)], we studied the quasinormal modes of shear gravitational perturba-
tions for hvLif theories. Quasinormal modes are diffusive solutions to linearized
Einstein’s equations that are regular at the horizon and vanishing at the boundary.
Here again, we turn on the modes hy,, hyy, and a, of the form e~  Defin-
ing appropriate new field variables that are gauge invariant under residual gauge
symmetry enables us to identify the relevant differential equations governing these
modes. Restricting to the hydrodynamic regime allows the approximation of low
frequency and momenta relative to the temperature scale which helps in writing
a series solution for quasinormal modes. The lowest quasinormal modes for shear
perturbations follows a dispersion relation of the form w = —iDg? which can be
used to read off the shear diffusion constant D. This analysis vindicates our earlier
results [P2, P’1] obtained using the membrane paradigm. Using the asymptotic

behaviour of quasinormal modes, we further computed certain 2-point correlation



functions of the energy-momentum tensor. The poles of these retarded correlators

are identical to the lowest quasinormal frequencies. We further use Kubo’s for-
1
in
for d; +2 — 2z — 6 < 0. Interestingly, when z = d; + 2 — 0, we recover universal

mula to calculate the shear viscosity (n) vindicating our earlier result that 7 =

behaviour for viscosity i.e. /s = ;= in the strict Kubo limit i.e. (¢ = 0,w — 0)

while D scales logarithmically and can be presumably resummed.

Our work [P1], is suggestive of the fact that in the large N limit, the constant
flux (Ty+ ~ Q) disorders the system so the subsystems disentangle at a lesser
critical separation than the ground state. It will be interesting to have a better
understanding of the nature of disentangling transition for an arbitrary excited
state. The emergence of classically connected spacetime is inherently related to
entanglement of the degrees of freedom. It will be interesting to explore these
connections further.

Our work on the diffusion constant in hvLif theories hints at the fact that hydro-
dynamics for hvLif theories where z = d; + 2 — 6 is novel. As mentioned earlier,
these class of hvLif theories exhibiting z = d; + 2 — 6 can be thought of as null
reductions of low-temperature, high boost limit of boosted black branes. It would
be interesting to apply the fluid-gravity paradigm to understand the logarithmic
scaling for the shear diffusion constant and explore the hydrodynamics for a highly

boosted observer.
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Chapter 1

Introduction

The principal goal of research in theoretical physics in a broad sense is to capture
a vast variety of natural phenomena in a mathematically consistent framework.
Such endeavours often lead to interesting theoretical predictions which are sub-
sequently verified through experiments. On ocassions, inputs from theoretical
physics have led to novel results in mathematics. The past couple of centuries
have witnessed enormous strides in the field of theoretical physics with two of its

crowning achievements being:
General Relativity (GR) AND Quantum Mechanics (QM)

Both these theories work to an excellent degree of accuracy within their respec-
tive regimes of validity but curiously enough, these regimes are mutually exclu-
sive. While QM provides a good description of the physics of atoms and sub-
atomic particles, GR is a classical theory which describes physics over cosmologi-
cal /astrophysical length scales which also reproduces Newtonian Mechanics under
the non-relativistic limit (¢ — oo). Thus from a practical point of view QM and
GR explains most of the natural phenomenon we encounter in our “everyday” life—
from scattering experiments in high-energy colliders to the large scale structure of
the cosmos. This however, seems to be a strange coincidence of nature wherein
the fundamental constants A, ¢ and G conspire to give a very large Planck scale
(~ 10'® GeV) compared to the laboratory scale. However, at super-Planckian
scales quantum mechanical effects of gravity cannot be ignored. It is precisely the
question of reconciliation between GR and QM or in other words the search for a
correct theory of quantum gravity is what has driven a significant fraction of the-

oretical physics research over the last century. It is believed that such a “Theory

1



2 Chapter 1 Introduction

of Everything” will unify the four fundamental forces of electromagnetism, strong

force, weak force and gravity.

Although a complete quantum mechanical theory of gravity still remains elusive,
the search for unification has led to the Standard Model (SM) of particle physics
as we know it today. The SM is a mathematical formulation written in the lan-
guage of quantum fields that contains internal symmetries of the unitary group
SU(3) x SU(2) x U(1). It has been hugely successful in accurately predicting
the existence of various fundamental and composite particles which has been suc-
cessfully detected in collider experiments. The SM received further validation as
recently as 2012 when the Large Hadron Collider (LHC) at CERN announced
the successful experimental detection of the Higgs Boson which was theoretically
predicted back in 1964 [1, 2, 3].

In spite of enjoying such a success, the SM falls short of being a complete “Theory
of Everything” since it does not incorporate gravitational forces. A consistent
quantum theory of gravity must be able to describe physics beyond the Planck
scale (~ 10'GeV) (e.g.: physics in the early universe near Big Bang singularity or
final state of a black hole). At the same time the SM must appear as a low-energy
effective theory below the GUT scale of 10'¢ GeV .

String theory is currently considered to be the leading candidate for a consistent
theory of quantum gravity. It assumes that the fundamental building blocks of
matter are constructed out of extended objects like strings' instead of point par-
ticles. The mode excitations of these strings correspond to different fundamental
particles that we observe in nature. A consistent quantum theory of strings pre-
dicts the existence of massless spin-2 modes having the same kinematical and dy-
namical property of gravitons. Thus, “quanta’s carrying information about grav-
itational interactions are automatically encoded by construction. Over the later
part of the 80s and early 90s it became further clear that a consistent version of su-
perstring theory also admits higher dimensional objects called D-branes. D-branes
are non-perturbative objects that may be viewed from two different perspectives—
D-branes are hyperplanes where open strings end. The open strings can possibly
deform the D-branes to produce non-trivial gauge fields on it. They can also be
interpreted as dynamical, massive objects that alter the ambient geometry. They
are solutions that arise in the low-energy limit of string theory, supergravity. Using

the dual pictures describing the same object, namely D-brane, in 1997 Maldacena

'We will later encounter other higher dimensional extended objects called D-branes
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conjectured the “AdS/CFT correspondence” [4]-the first concrete realization of
the gauge/gravity duality.

Dualities have played an important role in the development of string theory and
quantum field theories in general. Dualities describe mapping between seemingly
two different theories (with different Lagrangian and degrees of freedom) but are
essentially equivalent at a deep and fundamental level. To be more precise, the
two apparently differing theories must have the same Hilbert space structure and
identical global symmetries. The AdS/CFT correspondence, proposed by Malda-
cena is a conjectured duality between a string theory living a certain background
and a quantum field theory living in one dimension lesser. To be more specific, the
so called Type IIB string theory in anti-de Sitter (AdS) space is dual to N' = 4
supersymmetric Yang-Mills theory with a certain gauge group which lives on the
boundary of the AdS space. The couplings and other parameters are related ac-
cordingly. Naively speaking, QFT on flat background does not appear to describe
quantum gravity. However, the AdS/CFT duality relates this apparently ”simple”
theory to a theory of quantum gravity which definitely makes it one of the most

interesting discoveries in modern theoretical physics in the last couple of decades.

Since the AdS/CFT correspondence was conjectured, it has been used as a power-
ful computational tool to give us a better understanding of strongly coupled field
theories. This is because the AdS/CFT correspondence is a strong-weak coupling
duality i.e. the strongly coupled regime of the field theory is described by the low-
energy limit of the dual gravitational theory which is classical and weakly curved.
Thus certain questions pertaining to the strongly coupled regime of field theories

become computationally tractable on the gravity side.

Since Maldacena’s proposal, a flurry of activities in this field has led to the devel-
opment of a holographic dictionary. The AdS/CFT correspondence has also been
generalized further to describe strongly coupled regime of non-relativistic field
theories too. A particular class of non-relativistic field theory of interest exhibit
hyperscaling violation [5, 6, 7, 8, 9, 10, 11, 12]. More precisely, the dual metric
is characterised by two parameters—the Lifshitz exponent, z and the hyperscaling

violating exponent # and can be explicitly stated in (d; + 2)-dimensions as:

20 a2 dr? L da?
ds?, ., =1 <_E+_+Z Z) (1.1)

72 L 2
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20
The above metric excluding the conformal factor of r4 is known as the Lifshitz

metric and is invariant under the scaling
t—=Nt, r—=Ar, ;= Ay (1.2)

However the hvLif metric (1.1) is not invariant under the above transformations,
instead exhibiting a scaling behaviour of ds — A\%/% ds. Intuitively, this can be
thought of as describing a strongly coupled field theory which exhibits a thermo-
dynamic behaviour of the presence of a critical exponent 2z and living in d; — 0
dimensions. A certain subsector of these theories in the (z,#) parameter space
can be obtained from concrete string constructions. They can be obtained as null
reductions of double scaling limit of highly boosted, low temperature black branes—
AdS plane waves. The AdS/CFT correspondence has provided us with a powerful
calculational handle towards understanding of hyperscaling violating Lifshitz the-
ories which is indeed observed in certain condensed matter systems. This thesis
is a study of certain aspects of mutual information in AdS plane waves and the
hydrodynamics of hyperscaling violating Lifshitz theories (hvLif) within the gen-
eral framework of gauge/gravity duality. The main computational techniques used
in this thesis has parallels with the standard framework of the AdS/CFT corre-
spondence. We will briefly review certain aspects of this duality before proceeding

towards the findings in the context of AdS plane waves and hvLif spacetimes.

1.1 AdS;/CFT, correspondence: Statement

This AdS5/CFT, correspondence proposed by Maldacena in its strongest form

conjectures:

e N = 4 Supersymmetric Yang-Mills (SYM) theory with gauge group SU(N)

and a Yang-Mills coupling constant gy .
IS DUAL TO

e Type IIB string theory on AdSsx S® with radius of curvature R and coupling

constant g,.

The free parameters in the two theories are related by

gyy = 2mgs and  R'=2g5,,0”N (1.3)
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where o/ = I, is the string length. The ' = 4 SYM theory is known as the
‘CFT side’ of the correspondence and exhibits conformal symmetry. Although
first principle proof of this correspondence does not exist, Maldacena provided
convincing evidences of such a duality. However, the fact that large N gauge

theories and string theory share a deeper connection was first noticed by 't Hooft
[13].

1.2 Large N Gauge Theories and String Theories

We briefly review the ideas of 't Hooft motivating the dual nature of string theory
and large N gauge theories. Let us consider a generic matriz model constructed
out of matrix fields ®2 where the indices {a, b} represent labels over the generators
of the gauge group SU(N). Schematically, we can propose a Lagrangian of the
form

L~ Tr(d®;d®;) + gy prc?  Tr(0;0;d4) + g3 3, d7F Tr(D; 0, D))

By rescaling the fields as ®; = gy ®;, we can rewrite the Lagrangian as

1

2
9y M

L~

where the coupling gy, appears as an overall multiplicative constant in front of

the action. For a SU(N) theory, the propagator behaves as:
(D) o 5255 — iagad
C C N C

Clearly, in the large N limit, the second term has subdominant contribution and
hence can be neglected. The Feynman diagrams can now represented in the 't
Hooft double line notation i.e. replace the propagator line with a double line hav-
ing opposite orientations corresponding to the fundamental and anti-fundamental

indices.
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b - - c
c d
(a) Propagator
a a
&, a
c\/b >\\/<:1
-9
X OgvyM x G2
/\ |
¢ b 7 C

(b) 3-point vertex (c) 4-point vertex

Figure 1.1: Propagators and vertices in the 't Hooft double-line notation

A few candidate diagrams that contribute to the vacuum to vacuum amplitude for

a cubic interaction looks as follows in the double-line notation:

Figure 1.2: (a),(b) and (c) are planar diagrams while (d) is non planar. The arrows
represent flow of color and the red dots represent interaction vertices

The first diagram (a) represents a simple gluon loop while the remaining diagrams
consists of propagators, vertices and color loops. The schematic form of (1.4)
can be used to estimate that the propagator is proportional to g%,, while the
interaction vertex is proportional to 1/¢%,,; further each integration over a color

loop gives a factor of N.

So, clearly diagram (a) oc N?. For diagram (b), a rough estimate of the am-
2
plitude can be made as (g%,,)® <921 ) N® = g2 ,,N® = (g%,,N)N? since, it
Y M
has 3 propagators, 2 vertices and 3 color loops. Amplitude for diagram (c)

6
~ (¢&.,)° (9%1M> N° = ¢%,,N° = (¢2,,N)>N?. However, the only non-planar
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diagram i.e. (d), has only a single color loop and the amplitude is proportional
to g2,,N. Far back in the '70 s, 't Hooft noticed that the factor of g ,,N apper
in each of these diagrams contributing to the vacuum — vacuum amplitude. We
consider that large N limit in a subtle way where N — oo and gy, — 0 such
that A = ¢g2,,N — const.. The newly introduced parameter )\ is known as the
't Hooft coupling which determines whether we are in the strongly or the weakly
coupled regime of the field theory. Written in terms of this new parameter, the
amplitude for diagram (b) ~ AN? while for diagram (d) ~ AN? even though both
diagrams have the same number of propagators and vertices. In the 't Hooft limit
(9vymr = 0, N — 00, A — const.) the contribution coming from diagram (d) will
be scaled down by a factor of 1/N? as compared to diagram (b). Although this is
only an illustrative example, we will now argue that non-planar diagrams indeed
will have subleading contribution as compared to their planar counterparts in the

't Hooft limit for generic diagrams.

Double line graphs and triangulation

Every Feynman diagram drawn in this 't Hooft double line notation can be thought
of as a triangulation of a 2-dimensional surface . There are two ways for the

construction of such surfaces:

1. Direct Surface: This surface can be constructed by filling in the index
loops with little plaquette like structures. By construction, this places that

graphs on the manifold that is generated.

Figure 1.3: Direct surfaces for one-gluon loop and a non-planar graph. The former
can be laid down upon S? while the latter on the torus 72.

2. Dual Surface: This construction involves drawing a vertex inside every

index loop and connecting all vertices through edges drawn across every
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propagator. The loose end of the edges are identified with the point at
infinity.

D -

Figure 1.4: Dual surface for a planar diagram. Loose ends are identified with that
point at oo

The triangualtion effectively helps us in making the following identification:

Color loop < Face
Propagators < Edges

Interactions < Vertices

Using A and N to estimate vacuum to vacuum amplitude for a generic diagram

with V' vertices, E' propagators (edges) and F' loops (faces) gives:

E v
N
amplitude ~ (%) <X) NE = NV-E+E\E-V

The quantity V — E + F' = x, known as the Fuler charateristic is a topological
invariant of a manifold. For closed oriented surfaces, x = 2 — 2¢g where ¢ is the
genus (the number of handles) of the surface. So, the perturbative expansion for

the amplitude in the field theory may be written as a double expansion of the form

f: N2 i CoiN = i N2 £ (\) (1.5)
g=0 i=0 g=0

where f, is some polynomial in A. In the large /N limit, any computation will be
dominated by surfaces with minimal genus, typically surfaces with topology of a
sphere S?, or equivalently of a plane (removing the point at infinity). Non-planar
diagrams correspond to surfaces with handles and is supressed by a factor of 1/N2.
The above arguments hold for any gauge theory coupled to adjoint matter fields,
like the N =4 SYM.
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The form of the expansion (1.5) is reminiscent of the topological expansion one
finds with closed oriented strings, identifying 1/N as the string coupling constant.
The analogy of (1.5) with perturbative string theory is one of the strongest motiva-
tions for believing that field theories and string theories are related, and it suggests
that this relation would be more visible in the large N limit where the dual string
theory may be weakly coupled. However, perturbative expansions typically do not
converge and hence the identification is formal and far from a rigorous derivation.
There are certainly instanton effects which are non-perturbative in the 1/N ex-
pansion, and an exact matching with string theory would require a matching of

such effects with non-perturbative effects in string theory.

It turns out that the 't Hooft coupling A acts like a kind of chemical potential for
edges in our triangulation. So, if A becomes large, then diagrams with lots of edges
become significant. Hence, the triangualtions becomes more and more smoother.
This is indicative of fewer quantum fluctuations on the world-sheet. We expect a
relation of the form A\~' ~ o which is consistent with the intuition that large A

limit suppresses quantum fluctuations and takes us to the supergravity limit.

To check if the theory is still non-trivial in the large N limit, we should explore
the beta function of the theory. The one-loop beta function equation for a pure
SU(N) YM theory is

dgy m 11 9%

— __°N M O 5

In the large N limit, keeping A = ¢ ,,N fixed and defining 8, = gyu A, we can

say,

Nau)\ = [~ A2

Thus, A plays the role of the running coupling in the large N exhibiting a non-
trivial RG flow.

1.3 Motivation for the AdS/CFT correspondence

As discussed earlier, besides fundamental strings, superstring theory also constains
various non-perturbative solitonic higher dimensional objects called D-branes. Al-
though these were first discovered as solutions to certain supergravity theories,
Polchinski provided their interpretation within the framework of superstring the-

ory. D-branes can be viewed from two different perspectives: the open string and
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the closed string perspective. Which perspective gives the correct description of
the physics depends on the string coupling g, which controls interaction between

open and closed strings.

1.3.1 D-branes

D-branes can be thought of as extended objects on which open strings end. We can
choose to impose Neumann or Dirichlet boundary conditions on the string mode
expansion. For an open string moving in D spacetime dimensions, we may choose
to have Neumann boundary condition along p+ 1 spacetime dimensions while the
other D — p — 1 coordinates will respect the Dirichlet boundary condition. The
end points of the string are free to move along p + 1 spatial directions satisfying
Neumann boundary condition and are fixed in the remaining directions. These
can also be realized as solutions to the low-energy effective action of type I1B
string theory. They have singularities extended in p space dimensions and are
sometimes also denoted as Dp-branes. A Dp-brane may have a charge which is
related to a p + 1-form gauge potential of the supergravity approximation. These
are generalized forms of the electric potential and in terms of the p 4+ 1 potential,

we can write Fp o = dA,+1 where F,, is the field strength.

1.3.2 Open string perspective

Since, we treat the strings as small perturbations, this description is valid only
when the coupling constant is small i.e. g, < 1. We will also be in the limit
where we can safely neglect massive excitations i.e £ < o/~%/2. In this regime, the
dynamics of open strings is described by a supersymmetric gauge theory living on
the world volume of D-branes. For N coincident D-branes, the effective coupling

is given by g;N and the open string perspective is valid when g, N < 1.

We focus of type IIB superstring theory in flat (9+1) dimensional Minkowski
background where N coincident D3-branes are also embedded. Since we are con-
sidering only massless excitations, we can neglect any strongy correction which

1—1/2

appears at energies of order « . The complete effective action for all massless

string modes can be written as:

S = Sclosed + Sopen + Sint (16)
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where S.oseq €ncodes the contribution of the closed string modes which can be

schematically written as:

S

Sclosed =
2K2

1 1
10 — —2¢ v _ = Bl o/

dz\/—g (e (R + 49" 0,00,0) — 5 ; mﬁ;) (1.7)
where ¢ is the dilaton field. F), are the Ramond-Ramond sector field strength, s
is the signature e.g. -1 for Minkowski. The fermionic fields are not written out
explicitly. Closed string modes can be thought of as fluctuations of the (9+1)
dimensional Minkowski background. Expanding the metric around Minkowski
background, g = n+rh, where h is the perturbation, we see, (1.7) can be expanded
as .

Sclosed ~ —5 /dloa:aMhaMh + O(h) (18)
Note here in the above expansion, the perturbed metric h is multiplied with & to

ensure canonical normalization in the kinetic term.

The action for the open strings and the interactions is captured by the DBI action

which for a single D3-brane looks as

1
Sppr = —( /d4x e~?\/—det(P|g] + 2/ Fpp) + fermions (1.9)

271-)3a/295

Expanding e~? and g = n + kh, we find that upto leading order in o/,

- 1 4 1 % 1 nv 7 % /
Sbrane = 974, /d X (4F’LLI/F + 277 augﬁ y¢ + O(Oé) (].].0)
Sint = / dz ¢F,, F" (1.11)

For N coincident D3-branes, the scalars and gauge fields are U(N) valued i.e.
¢ = ¢"T, and A, = ALT, (T, are the generators of the gauge group) and hence
to ensure gauge invariance we are required to trace over the gauge group. Thus,
the gauge kinetic term in (1.10) will take the form Fy F**”. The partial derivatives
also requires to be replaced by covariant derivative and we need to add a scalar
potential of the form

V:

o 2 16

to the action Spyene to lowest order in o’.

Taking the limit o/ — 0 we find that Sp,.q,. is just the bosonic part of the action
of N' = 4 SYM theory provided we make the identification 27g, = g¢i,,. All
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other terms in Sy,qne are of O(a’) or higher and hence vanishes in the limit when
o/ — 0 or in other words, the open and closed strings decouple. Similar to (1.8), in
writing (1.11), we need to rescale the dilaton field ¢ by a factor of x for canonical

normalization. Thus, S;,; is of order x and vanishes for o/ — 0.

To summarize, looking at a stack on N coincident D-branes when g,/N < 1 and
considering their behaviour in the o/ — 0 limit, one can observe that open and
closed string modes decouple from each other. The dynamics of the open string
modes in described by NV = 4 SYM theory while the closed strings are described
by supergravity in flat (9 + 1) dimensional spacetime. Thus we can schematically
decompose (1.6) as

o' —0

S — Sl -+ SQ
S1: N =4 SYM theory with a gauge group SU(N) (1.12)

Sy : 10 -dimensional supergravity in flat spacetime

If we had started with N+ 1 D3 branes in flat (9 4 1)-dimensional spacetime and
separated one of the branes from the other N coincident branes (say, along the
direction z?), the massless modes would not be described by a U(N + 1) gauge
theory. Instead it will have a gauge group given by U(N) x U(1). If the separated
brane is located at 2° = r, we may think of the system as being in a Higgs phase
with the vacuum expectation value of the Higgs scalar being (¢°) = r/2ra’. We
need to be cautious while taking the decoupling limit i.e. o/ — 0 since we should
keep all the field theory quantities fixed. Therefore, the correct decoupling limit,

also known as the Maldacena limit is given by
o' — 0 such that u= L/ is fixed (1.13)
«

where 7 is any distance.

1.3.3 Closed string perspective

In this picture, we will interchange the two limits i.e. the strong coupling and
low-energy limits. We consider a stanck of N coincident D-branes in the strongly
coupled limit when gsN — oo where the closed string perspective is relevant. The
N D3-branes can be viewed as massive charged objects which sources various fields

of Type IIB supergravity. We briefly review the solution in the following section.
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Type IIB supergravity theory

Our starting point is the action of type IIB supergravity theory. A consistent
truncation of the full action is given by the bosonic part as written in (1.7) while
omitting terms coming from the NS-NS sector of the field strength and other

fermionic fields. A conformal transformation of the form

_1
Guv — € 2¢g;w

takes the action to the Finstein frame.

_ 8 D 1 iz 1 1 and 2| . _
S——%/d w/=g |R—5g 3H¢3y¢—§;me F2| . s==41 (1.14)
The equations of motion following from the above action are:
R: = —8“¢0,,¢ + 1 en? <nF’“‘2"3““"FW2 i — O n-l F2>
Tt 'D=-2" (1.15)

%WC%%WWWMﬂ=0

The solution must have Poincaré symmetry in p + 1-dimension while enjoying
spherical symmetry in the other D—p—1 dimension. Imposing the above symmetry

considerations, for 10 dimensional SUGRA, the resulting metric is

1_5—p

2 _ J+( 2 i f-(p) 2 ™ =P 17
ds mdt +f- de dz’ + XD T dp?+ p*f_(p) Q2
(1.16)

while the dilaton field is

T—p
_p=38 T+
g ple -1 () (1.17)
r, is the horizon in the Einstein frame metric and r_ is a curvature singularity,
which exists for p < 6. When r, > r_, the singularity is covered by the horizon
and the solution can be regarded as a black hole. In the case when r, < r_, there
is a timelike naked singularity which seems unphysical. Imposing the existence of

an event horizon translates to a bound on the mass of the black brane i.e.

N

I 1.18
ol (27T>pgsl€+1 ( )
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Solutions saturating this inequality are dubbed eztremal Dp-branes which also

satisfies 7y = r_. The metric of an extremal Dp-brane is given by
2 2 . i i —3_5=p . 9 2 1_5=p . 9
ds® = \/fip) | —dt® + ) da'da’ | + fi(p) 2 Trdp + p*fi(p)? A,
i=1

Outside the horizon, we define a new set of radial and isotropic coordinates r’? =

PP — 'r’rp and r* = rf*. Finally, the extremal p-brane takes the form:

P 9—p
ds* = (—dt2 + Z dxidxi> ++/H(r) Z drtdr® (1.19)
H(r) i=1 a=1
where
g HO)T L HE) = =14 e
€ =Js r ) r)= 47— T—p
f+<p) riP (120)

5— 7 —
ri P =d,g,NIT?; d,=2""Pr e (—2 p)
As can be seen from the above solutions, these are generalization of rotating black

holes. Flux of the Ramond-Ramond charge on a (8 — p)-sphere is quantized
/ xFpo=N; NEcZ
S8-—p

Also, the tension of the brane is identified with the energy per unit volume in the

p-spacelike directions.

The metric (1.19) can be generalized to write multi-centered solutions which phys-
ically represent parallel extremal Dp-branes at k different locations r = r; by
writing H(r) as

r
_ (l)JF T-p __ g7—p
=1+ E |r — T1’7 » Ty = pgsNzls

Each brane carries N; units of charge.

So far we have discussed the black Dp-brane in the context of classical supergravity.
This description is appropriate when we can safely neglect stringy corrections or in
other words, the curvature of the p-brane geometry is small compared to the string
scale i.e. 7. > [,. The effective string coupling e? is also small. In particular,
for p = 3, the dilaton is constant and can be consistently made small everywhere
in the limit g; < 1 = Ip < l;. To summarize, for D3-branes, the supergravity

approximation is a good physical description when [p < I, < 7. Since, ry is
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related to the Ramond-Ramond charge N as Tjr_p = d,gs NI, we can rewrite the

regime of validity of solution (1.19) to

1< gN<N (1.21)

D3-branes

Focussing on the particular case of D3-brane i.e. where p = 3, (1.19) which boild

down to
ds* = H(r)™2dx,dz" + H(r)"?(dr* + r2dQ?) (1.22)
e’ = g, (1.23)
R
H(r) = 1+ﬁ (1.24)
where R* = 4mg,Na?. The world volume of the brane has a 4-dimensional

Poincare symmetry R* x SO(1,3). The dilaton and axion fields are constant

while the geometry is regular at r = 0.

Even when N is large, we can demand g; < 1, so that perturbative methods can

be applied. We can study the following geometry is two regimes:
) 4\ —1/2 R\ /2 ) Y
ds® = <1 + F) dx,dx" + (1 + ﬁ) (dr® 4 r=dQX) (1.25)

e 7> R: In this case, when studying the geometry far from the brane, we see

that the deformation vanishes and we recover flat 10-dimensional space.

e r < R: In this case, the metric near the “throat” region in the deep IR is
given by

ds® ~ ﬁdx dat + zl‘f?d—T2 + r2dQ3 (1.26)
R H r2 5 :

The geometry of the above is essentially: AdSs x S°.

Like before, as given in (1.13), we must approach the Maldacena limit in a con-
sistent way such that physical observables are kept finite. Loosely speaking, this
limit “zooms” into the near-horizon region of the brane solution. In terms of the

newly defined coordinate u = r/a/, (1.26) in the near horizon limit takes the form:

2 du2
ds? ~ o/ | ———dz,dz" + \/Arg, N s + \/drg,NdO2
Varg,N " u? >
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The fact that the spacetime AdSsx S® deformation caused by the branes decouples
from the 10-dimensional flat bulk, as o/ — 0, can be seen from the function H (u),

which we now write as:
drgs N

H(u) =1 + a’2u4

(1.27)

It should be noted that o/ — 0 is not the point particle limit. Rather in this limit,
the open strings becomes smaller thus bringing the D3-branes closer. Hence, this
limit should just be considered as the process to obtain two decoupled emergent
theories
220 5+ S,
S, : Type IIB supergravity on AdSs x S° (1.28)

S5 : 10 -dimensional supergravity in flat spacetime

1.3.4 Combining both perspectives

Over the last couple of sections i.e. 1.3.2 and 1.3.3, in both the pictures we have
found two decoupled effective theories in the low-energy limits as given in (1.12)
and (1.28). Both these perspectives must be equivalent descriptions of the same
physics while in the low-energy limit both has 10-dimensional supergravity over a
flat background. This is suggestive of the fact that the other two theories must be
equivalent. This is essentially what motivated Maldacena to conjecture that N' = 4
Super Yang-Mills theory in four dimensions in the large N limit is equivalent to
type IIB supergravity on AdSs x S°. Relaxing the low-energy limit, we can make
this statement stronger eventually arriving at the statement given in 1.1 which we

restate again:

N = 4 Supersymmetric Yang-Mills (SYM) theory with gauge group SU(N) and a
Yang-Mills coupling constant gy, is equivalent to type IIB superstring theory on
AdS5 x S° with parameters of the two sides of the duality matched appropriately
although the fundamental degrees of freedom differ significantly.

Comparing symmetries

As a basic check in support of this conjecture it is worthwhile to compare the
symmetries of the two theories. N = 4 Super Yang-Mills theory has conformal
symmetry with vanishing g-function. In four dimensions, the conformal group is
infact SO(2,4). This theory also has an R-symmetry of SO(6) which rotates 6
scalars into each other. This theory also preserves N’ = 4 SUSY with 16 Poincaré
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supercharges grouped as four spinors (Q%) and 16 superconformal supercharges
(S4). All the symmetries form the supergroup PSU(2,24).

String theory on AdSs x S® will be invariant under the isometry groups of AdSs
and S® which are given by SO(2,4) and SO(6) respectively. This matches with the
bosonic sector of the algebra of PSU(2,2]4). It can be shown that the symmetries
in the fermionic sector can also be mapped to the string theory. Thus, overall we
can state that the global symmetries of type IIB string theory on AdSs x S° is
identical to the global symmetries of N'=4 SYM theory in flat spacetime.

1.4 Bulk-Boundary Correspondence

Although the theory of quantized strings on AdS; background is still not well-
understood, we can still use the AdS/CFT correspondence as a calculational
toolbox to understand strongly coupled regime of gauge theories. Observables
evaluated in a non-perturbative regime on the field theory side can essentially be
mapped to certain quantities in a dual theory of classical gravity where computa-
tions are often tractable. However, before delving into any concrete calculation is
it essential to understand the scheme of mapping between the two theories. The
fields ¢(r, z,,), living in the AdS; bulk is associated with a single trace operator O,
that belongs to the spectrum of the 4-dimensional SYM theory. There is a relation
between the mass m of the field and the scale dimension A of the operator. We can
view the value of the bulk field on the boundary as a source for the corresponding
operator, producing its correlation functions. More precisely, we add in the field
theory Lagrangian an interaction term between the operator and the boundary
field, identified with the generating functional for connected correlation functions
of O. The precise mathematical relation stating the map of the AdS/CFT cor-
respondence goes by the name of GKPW relation [14, 15] (named after Gubser,
Klebanov, Ployakov and Witten).

e Wertld®l — (o= [ 000w pp = Z[p(w,0) = 60 (@)string  (1.29)

where 7 = 0 is the boundary of AdS5 in Poincaré patch. Since the last quantity on
the RHS is not computationally tractable, a more practical version of the GKPW
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formula emerges in the classical limit:

Werr[0©@] = —logle /47 o pr ~ Extremumg __s0 (N*Igran) + O (%) 4

(1.30)
It is evident from the above expansion that the gravity description is valid for
large N and A. 14, is some dimensionless action. Thinking of #9 as a small

perturbation, we may write the following expansion

Werr[6®] = Wepr[0]+ / P dol)Ch ()

+ % //dDQ31 dDQZQ (b(o)(lj)G(ﬂfl, $2)¢(0)<$2) + -

(1.31)
where 5WCFT[¢(O)]
Gi(r) = (O(x)) = T 000 (2) | oz (1.32)
W, FTW(O)] |
Ga(z1,72) = (O(21)O(22)) e = (5¢(0)(1§)5¢(0)(9€2) $®=0

Anticipating divergences near the boundary as r — 0, we have introduced a cut-off
in (1.30) and set bondary conditions there. Although (1.30) is written as if there
is just one bulk field, in principle there exists a ¢ for every operator O in the dual
field theory. In literature this is referred to as ‘¢ being coupled to O’. The general

n-point connected correlation function of the CFT is given by

_ 0 )
36\ (x1) 86 (x,)

(O1(21)...0,(z4)) WCFT|¢EO):O (1.33)
where the operators O; correspondes to different bulk fields ¢;. Since the sources
are set to zero after the functional differentiation, interaction terms in the action
with more than n fields will not contribute to the computation of the n-point
function. The field ¢(¥) () act as sources for the primary operators O; which specify
the spectrum of the CF'T. There are a few simple examples of this correspondence
e.g. local changes in the metric corresponds to change on the stress tensor of
the boundary theory. The boundary action has a term of the form ~,, T"” where
Y is the induced metric on the boundary while 7" is the stress tensor; gauge
fields A, in the bulk corresponds to currents J* on the boundary. The prescription
(1.33) can be used in principal to compute arbitrary correlation functions given the
classical bulk action. The reader can refer to [16] for a classic comprehensive review
of the AdS/CFT correspondence. In the next two subsections, we will illustrate

this technique in the context of free and massive scalar fields to calculate their two
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point correlation function. For a comprehensive review of correlator calculation

from the gravity side, the reader can refer to [14, 15].

1.4.1 Correlation functions: A position space analysis

We consider a simple case of a probe massless scalar field ¢(z) in AdSy,; back-

ground. The equation of motion for this field is
1
vy

where the covariant derivative is with respect to the AdS metric

Vi Vio(x) = Ou(vV=g0"d(x)) =0

ds* = %(er + dx?)
r

The propagator K (r) owing to translation invariance must be independent of the

boundary coordinates (x = x1, ..., x4) the follows the equation

d 1 d
S 2Kkm) =0
dr <7‘d_2 dr (T>>
Assuming a power-law ansatz K (r) = cr® results in the constraint a(a—d+1) =0

with two possible solutions for v i.e. &« = 0,d — 1. The constant solution is the

non-normalizable mode while the other solution
K(r) = cr?! (1.34)

vanishes at » = 0 but diverges at r = oo indicating singular behaviour. The

singularity is infact a delta function which can be shown by mapping the point at

infinity to the origin. This can be achieved through a SO(1, d+ 1) transformation:
ok

$H — ;5ﬁ;7;57 uw=r7r,X (1.35)

This modifies the expression (1.34) to

Td_l

K(x,r)= C—(r2 By

The integral over x is independent of r, since a simple scaling of x gives

/dd—lx rd—1 X! /dd—lxlrd—l rd=1 _ / di—1x’
(712 +X2)d71 (7“2 _|_T2X/2)d71 (1 +X12)d—1
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Moreover, as 7 — 0, K vanishes except at z; = 25 = ... = 24 = 0. If now, ¢ (x)
is the restriction of the bulk field ¢(z#) on the boundary, we can write the classical

solution in AdSy., as

T'd_ 1

xr)=c © .
o(x) L/@%Q+@_yywl¢<w (1.36)

The n-point connected correlation function for this theory can be written down
from the on-shell action as:
1

19 = -3

1
[ dtrioy=g0,00m = 5 [ da(0,(v=500"0)-00,(v=50"0)}
The last term vanishes by virtue of the equation of motion while the other term
can now be written as a boundary integral. To supress divergences, we evaluate
this integral at the z = € close to the boundary which can be interpreted as the
UV cutoff on the CF'T side. The on-shell action simplifies to

I[p0] = lim—% / dx 2 p(x)0,¢(x) (1.37)

T—€

Close to the boundary, from (1.36) we can write

1
: _ 1y ,d-2 d—1 (0)
lim d,6(x) = cld - )r'? [ a Yyt ) (1.38)
Using (1.36) and (1.38), we can see that the on-shell boundary action takes the
o (1) ©606(y)
d—1 - S, V(%)W (y
7lg©) - _© /dd Iy @1 1.39
60 = -4 xatty 2 L0 (1.39)
The above expression eventually leads to the two point correlation function.
) )
ooy’ :[ [gb(o)]
OEION = 550601 56061 oo
c(d—1)

- %' — y/[2@D)

This prescription thus reproduces the correct expected scaling of the 2-point cor-

relation function for a conformal operator with scaling dimension d — 1.
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1.4.2 Correlation functions: A momentum space analysis

The AdSy.1 metric written in the Poincaré patch is given by

dr? + dxtdz,

ds® = gAdeAde = R? 5
r

A=0,..,d z*=(ra" (1.40)

where R is the radius of curvature of the AdS space. We consider a massive probe

scalar field in the bulk governed by the action:

k

5 =5 [ dey=glg"0160m0 + m’e (1.41)

k is just a normalization constant. Clearly, the constant r-slices are Minkowski
like and \/—g = (R/r)**!. The equation of motion for the probe scalar is

(O—-m?*)¢p=0 (1.42)

where O is the Laplacian with respect to the metric (1.40) and is given by O¢ =
VAV 40 = \/%—gaA(\/—ggABﬁg)gb. Integrating (1.41) by parts, and using (1.42),

the on-shell boundary action takes the form

. k ,
Spay = lim —5/ de/—gg"P o0 (1.43)
DAdS

r—€
where the d-dimensional measure runs over the boundary coordinates.

Taking advantage of translational invariance along the boundary coordinates we

can decompose the bulk fields in terms of Fourier space variables as
o(r,x) = /ddk eFn fi(r)y , kuat = —wt+k-x
fr(r) is governed by a wave equation of the form
[r2k? — r?10,(r10,) + m2RY fu(r) =0; k*= —w?+k-k (1.44)

Assuming a scaling of the form f; = r®, leads to the relation (k*r? — A(A —d) +

m2R?)r® = 0 which in the near-boundary region boils down to

A(A —d) = m*R? (1.45)
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The above equation has the following two roots:

d | d?

Notice that this result is much stronger than the bound obtained from unitarity
ie. Ay > %. Demanding reality of Ay translates to the condition
d2
m?R* > vy (1.47)
This is known as the Breitenlohner-Freedman bound. Unlike flat space, in Ad.S,
massive scalar fields are stable provided it is restricted by the above bound. It is

clear from the fall-offs that near the boundary, we can write the solutions as
o(r,x) = ¢V (2)rd= + ¢ (@)rd + - (1.48)

where the dots represent subleading terms in r. By definition, A, > A_ and
hence 72~ is bigger as r — 0 representing the non-normalizable mode while the
second term captures the normalizable mode. More formally, we define the source
at the boundary CFT as

(0) (o — Tion A i Ap—d

$ (@) = lim r=2-g(r, 2) = lim 1>, ) (1.49)
The normalizable AdS mode i.e. q§(+) can be thought of as the vacuum expectation
value for a dual scalar field theory operator O of dimension A = A, while the

non-normalisable mode ¢ acts as the source.

Going back to (1.44), we can solve for fi(r) exactly. When k* is spacelike i.e.

k? > 0, or in other words, in the context of Euclidean AdS, the solution is
d
fulr) = Agr®P K, (kr) + AL (kr) s v = A= o k= Vi2 (1.50)

where K,(.) and I,(.) are modified Bessel functions. For a Lorentzian theory
with timelike k? for on-shell states with w? > k2, we get two linearly independent

solutions that have the same leading behaviour at the UV boundary:
r2 Ky (igr) ~ e g=Vw? — k2 (1.51)

In the deep IR region (r — o0) these modes exhibit oscillatory behaviour. This
is a reflection of the ambiguity that arises in defining real-time Green’s function

for the CFT. The solution consistent with causality is the one which falls into
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the black-hole horizon i.e. the infalling condition—these solutions travel towards

r — infty with time.

For (1.50), in the AdS bulk as r — oo, they behave as follows:
K(kr) — e o I(kr) — et (1.52)

To ensure regularity in the interior we must set A; = 0. Further the normalization

condition fi(r =€) =1 gives the bulk-to-boundary propagator:

ri2 K, (kr)
=_ 1.
Ji(r) 2K, (ke) (1:53)
Plugging this back in the boundary term for the action, we obtain
defl J
St6) = 25— [ dkoul n( k. 7.() (154
Now, we use our GKPW Equation and get
(O(k1)O(ke)) = — 0 0 S = (2m)%6% (ky + ko) Fo(ky) (1.55)
VT S0 (k) 6o(ks) LT |
where the quantity ., also sometimes called the flux factor is given by
2K, (kr)
(k) = 20+, [ AT 1.
Felk) ‘ ? <6d/2K,,(k:6) e (1.56)

The small value of the argument i.e. in the near boundary region, the behaviour

of the modified Bessel function K, (.) is given by
K,(u) = u " (ap + aju® + ..) + v’ Inu(by + byu® + ..) (1.57)

The second term exists only for integer v and is subleading compared to the first
term. The coefficients a; and b; depend on v and can be determined by imposing
the correct boundary conditions as r — oo. Plugging (1.57) back in (1.56) and
simplifying we get,

Fo(k) = 2 [{g — (1 + o(@K2) + ca(e k) + - - }

+ {ﬂ_bo(ek)% In(ek) (1 + da(ek)? + - - - H (1.58)

Qo

= (Analytic piece in k) + (Non-analytic piece in k)
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The first line in the above expression is a Laurent series in e containing only
positive powers of k£ and is thus analytic in k at & = 0. These are contact terms

and can be safely subtracted off. We can see this by noting
/ddk: ek (k)M = 2mOm s (z) (1.59)

for m > 0. The €2™~4 factor reinforces the notion that e, which is an IR cutoff
in AdS, is a UV cutoff for the QFT. The interesting bit of F.(k) which gives the
x1 # x9 behaviour of the correlator (1.55) is non-analytic in & and is encoded by

the second line of (1.58). The non-analytic piece can be simplified further to give

b
Non-analytic piece in k = —2v—k? log(ke)e? (1 + O(e?)) ,
Qo
bO (_1)1/—1

where a—o = W for v c 7

(1.60)

The above result can be written in position space by performing a Fourier trans-

form

WEA) 1,
TIPT(A, — d)2) 2?5+ €

/ddk ¢'**(Non-analytic piece in k) =

which is indeed the expected scaling for the 2-point correlation function of a CFT.

Looking carefully at the above expression, we can see there exists a dependence
on the cut-off € which can be taken care by defining renormalized field. It is to
be noted that a naive application of (1.55) will not yield the two point correlator
with the correct normalization and will not be consistent with the Ward identities.
There infact exists a systematic procedure [17] called holographic renormalization
where one adds counterterms to the bare action in order to get correlators that

are manifestly well defined in the UV regime.

1.5 Non-relativistic holography and hyperscal-

ing violation

Following the proposal of Maldacena, there was a flurry of activity focussing on
concrete examples of AdS gravity and its conformal field theory dual. However,
the class of metrics of interest in gauge/gravity duality has been considerably en-

larged in recent years. As a simple generalization, we can consider metrics which
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are dual to field theories which are scale invariant but not conformally invariant.
Such scaling properties are exhibited by interesting condensed matter systems
which are strongly coupled. Thus it appears natural to use gauge/gravity dual-
ity in order to study these kind of systems as the gravity side is tractable. Of
course the microscopic degrees of freedom of a condensed matter system is very
different from that of a non-Abelian gauge theory at large N and is inherently
non-relativistic in nature. Nevertheless, the idea is to make use of universality
and consider theories at renormalization group fixed points where the microscopic
details may not be important. These non-relativistic systems typically have re-
duced symmetries compared to AdS space theories. An interesting class of theories
exhibits Lifshitz scaling symmetry of the form ¢t — \*t, x; — Ax;, r — Ar, with z
known as the Lifshitz exponent and r is the radial coordinate of the gravity dual

given by the metric
dt? N dr? + da?

d52:—2 5
re* T

(1.61)

They can be realised as solutions to simple gravity theories with a negative cosmo-
logical constant coupled to appropriate matter and various constructions in string
theory [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. The
interested reader can see the reviews [36, 37] for a comprehensive discussion on
holographic aspects of Lifshitz field theories. A simple subclass [20, 21] of such
constructions involves the dimensional reduction of null deformations of AdS x X
spacetimes that arise in familiar brane constructions: for instance the AdSs x X5

null deformation is of the form

ds* = T—lz[—de+dx_ +da? + dr®] + gy (dzt)? + dQ2 (1.62)
where g, is sourced by one or more fields. The long wavelength geometry upon
a x7 dimensional reduction resembles a 2z = 2,d = 3 + 1 dimensional Lifshitz
spacetime, which are dual to a 2 + 1 dimensional field theory. There exists a
vast literature reviewing various holographic aspects of quantum field theories
exhibiting Lifshitz scaling symmetry: [38, 39, 40, 41, 42, 43, 44].

With an abelian gauge field and a scalar dilaton one can engineer a larger class
of metrics [5, 6, 7, 8, 9, 10, 11] known as hyperscaling violating Lifshitz spacetimes
(hvLif) which are given by

w A2 dr? . de?
ds3 ,, = 1 <_—+ _— x) (1.63)

r2z r2 ' r2
=1
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Comparing with (1.62), we clearly see that this is conformal to Lifshitz spacetimes.
Here d; is the boundary spatial dimension (i.e. the dimension of z;) and @ is the

hyperscaling violating exponent. These spacetime exhibit the scaling
t— N, & — Az, T — A, ds — \%ds (1.64)

Various aspects of holography and entanglement entropy for hvLif spacetimes have
been discussed in [18, 45, 46]. Further, in recent times there has been studies

towards exploring various hydrodynamic transport coefficient of hvLif theories
[47, 48, 49, 50].

A basic requirement to obtain physically sensible dual field theories to the above
metric is the null energy condition 7),,n*n” > 0 where n¥n, > 0 which along with

Einstein’s equations leads to the inequalities
(d;i —0)(di(z—1)—0)>0, (z—1)(di+2—-6)>0. (1.65)

Roughly speaking, in a theory with hyperscaling violation, the thermodynamic
behaviour is as if the theory enjoyed dynamical exponent z but lived in d; — 6
spacetime dimensions. In particular the gravitational description of the case 6 =
d; — 1 is interesting and is a promising candidate for field theories with hidden
Fermi surface. For this particular case, the entanglement entropy has a logarithmic
scaling which was also realised in certain string constructions [51]. Further details

of the gravitational description of hvLif theories has been relegated to Appendix
A.

This thesis can broadly be divided into three parts. Motivated by investigations
done in [52] we have studied mutual information (MI) in he context of AdS plane
waves which as mentioned earlier gives rise to hvLif theories under null reduction.
The third chapter of the thesis adapts the approach pioneered by Kovtun, Son
and Starinets in the context of hvLif theories. For the sake of simplicity, we have
restricted out analysis for hvLif theories which has the corresponding gravity dual
living in 3+1 spacetime dimensions. In Chapter 3, we study the shear diffusion con-
stant for this class of non-relativistic field theories. Looking at various checkpoints
for non-conforal Dp branes and gravity dual of Lifshitz field theories, a thermody-
namic relation connection the shear diffusion constant and the shear viscosity is
proposed. The fourth chapter of the thesis involves a study of the same transport
properties using quasinormal modes which encodes information of hydrodynamic
transport coefficients. Using the AdS/CFT correspondence, it was conjectured

that the QNM spectrum of a fluctuation d¢ of a higher dimensional gravitational
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background coincides with the location of the poles of the retarded correlators
of the gauge theory operator dual O dual to d¢. However, this conjecture was
validated through various examples for gravity duals of relativistic field theories.
In Chapter 4, we study the QNM of hvLif black branes and also find the two point
correlator of the dual operator in the boundary theory (2-point function of the
stress tensor). It is noteworthy that the gravitational fluctuations of these hvLif
gravity duals couple to other matter fields like perturbations of the gauge field.
Although the dual field theory is non-relativistic, we continue to see that the poles
of retarded correlator which contains information of hydrodynamic transport coef-
ficients in indeed encoded in the QNM of the gravitational fluctuations of the dual
system. Using the standard prescription for computing correlators in Lorentzian
signature, we compute the shear diffusion and shear viscosity and validate the

thermodynamic relation connecting the two transport coefficients conjectured in
[P2].






Chapter 2

Entanglement Entropy and

Mutual Information

Entanglement is one of the most fascinating concepts of quantum mechanics. Clas-
sically, we can reconstruct a complicated system by studying the behaviour of its
constituent non-interacting parts. However, such an intuition fails to carry over
in the quantum realm—even the constituent non-interacting pieces may be entan-
gled. Starting with the EPR gedanken experiments [53] which investigated this
“spooky action at a distance” a significant amount of progress has been made to
understand the nature of entanglement. Particularly with advances in the field of
quantum information [54], entanglement has become an important resource and

an interesting phenomenon for study in itself.

Entanglement can be observed in simple 2-qubit systems. Consider the Hilbert
space formed out of direct product of single qubit systems i.e. H = Hgupit1 @Hqupito-
This is spanned by a basis given by {|00),]01),|10)|11)}. Each one of the basis
states are separable in the sense that they can be written as a direct product of
two vectors each belonging to the two subsystems. However, such a decomposition
is not possible for the Bell state given by \/iﬁ(|00> + |11)). The state of the two
qubits are correlated i.e. if we have knowledge about one of the spin states, the

other spin is automatically determined. Such states are called entangled states.

Although simple systems like spin models remains a powerful compuational lab-
oratory for intuitive understanding of entanglement. it is believed that the basic
concepts and principles carry over to the continuum limit. A good example are
certain topological field theories in (2 + 1)-dimension which inspite of the absence

of dynamical degrees of freedom exhibit a rich phase structure. It was realized

29
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that entanglement entropy can be used as an order parameter to study the phase
structure of these theories [55, 56]. It can also be used to classify ground states of

various interesting interacting many-body systems.

Entanglement entropy is fascinating in its own right within the context of field
theory. However, with the advent of AdS/CFT [4], a deeper connection between
gravitational dynamics and entanglement structure has emerged in the context of
holography. Inspired by the area scaling of black hole entropy, Ryu and Takayanagi
[57, 58] identified a simple geometric prescription for entanglement entropy (EE)
in field theories with gravity duals in the large /N limit: the EE for a subsystem in
the d-dim field theory is the area in Planck units of a minimal surface bounding the
subsystem, the bulk theory living in d+1-dimensions. For non-static situations, the
prescription generalizes to the proposal of Hubeny-Rangamani-Takayanagi which
involves finding the area of an appropriate bulk extremal surface with minimal
area [59]. Inspired by all these developments, Swingle [60] and Van Raamsdonk
(61, 62] argued that the emergence of spacetime geometry is somehow related to
the entanglement structure of the quantum state on the QFT side. This was
encoded in the statement “ER=EPR” by Maldacena and Susskind [63] which re-
lates entangled states called EPR states (after Einstein, Podolsky and Rosen) at
geometrical structures that arise in general relativity called ER bridges (after Ein-
stein and Rosen). In the subsequent sections we will give a more precise definition
to the notion of entanglement entropy in field theory and the Ryu-Takayanagi

prescription.

2.1 Holographic entanglement entropy: a brief

review

Let us consider the density matrix p of a quantum mechanical system which is
in a pure state |¥) which is normalised as: (¥|¥) = 1. In this case, the density
matrix is given by p = |U)(¥|. For a system in a mixed state (e.g. thermal states

are mixed states) the density matrix takes the form
p=3 ml T (T, (2.)

where the state kets |V,) forms an orthonormal basis which satisfies Y p, =1
(this is equivalent to the statement that the sum of probabilities of the system

being found in one of the states |V,,) is 1)
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Suppose we divide our system into two parts: A and B. We will assume that
this breaks the structure of the full Hilbert space H into a direct product of two
independent Hilbert spaces i.e. H = Ha4 ® Hp. For the subsystem A, we can

define a reduced density matrix

pa = Trgp (2.2)

where p is the density matrix of the full system. Trp traces over the basis vectors of
‘Hp. Physically, the reduced density matrix represents the lack of information that
we have about the system B by “integrating” it out. The von Neumann entropy

associated with py is defined as the entanglement entropy of the subsystem A i.e.

SA = —TI"A(,OA IngA) (23)

This is a measure of entanglement. Note that even if the entire system is pure,
it is possible for the entanglement entropy of a subsystem to be non-zero. The
definition (2.3) immediately leads to certain interesting properties. If the global
ystem is pure and B is the complement of A, we have S, = Sg. This demon-
strates that entanglement entropy is not an extensive quantity. For three disjoint

subsystems A, B and C, we get the inequalities

Sarp+c + S < Sarp + Spic

(2.4)
Sa+Sc < Sars + Sptc

Choosing B to be an empty set leads us to what is dubbed as the subadditivity
relation
Sarp < Sa+Sp (2.5)

In fact for two arbitrary systems, there exists a stronger relation known as the

strong subadditivity condition
Sa+Sp > Saus + Sans (2.6)

which reduces to (2.5) when A and B are disjoint.

In a quantum field theory living in d spacetime dimensions, we consider two com-
plimentary regions A and B in space at a fixed time slice t = t5. Akin to the
earlier description, in this case too the we will essentially integrate out the degrees

of freedom in B to get the entanglement entropy of A. The result is divergent and
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can be schematically written as
S =ap(IN)T2 +a (IN)*2 4 - + [aglog(IN)] (2.7)

where [ is the typical size of subsystem A and A is the UV cutoff. The last term
written in square brackets [-] is present only when d is even. The coefficients a; are
in general dependent on the theory we are interested in. The leading piece has a
scaling of the form 19=2 which is identical to that of the boundary dA. This shows
that entanglement entropy scales as the area of the boundary similar to black hole
entropy. This motivated Ryu and Takayanagi to come up with a gravity dual
for entanglement entropy which essentially is a certain codimension-2 surface in
the bulk. The reader can find detailed accounts of the holographic viewpoint of

entanglement entropy in the classic reviews [64, 65].

In particular, for 2-dimensional CFTs, we have
c
S = 3 log(IA) (2.8)

where [ is the size of the subsystem A while ¢ is the central charge of the CFT.
To be a little more precise, for a 1-dimensional quantum many-body system at

criticality (2-D CFT), the entanglement entropy is given by

c L . (nl
Sy = 3 log (% sin (f)) (2.9)

where [ and L are the length of the subsystem A and the total subsystem A U B.
Either ends of the full system i.e. AU B has been identified perodically. a is the
lattice spacing (UV cutoff A ~ 1/a) and ¢ is the central charge. For field theories

at a finite temperature, the above expression of entanglement entropy takes the

[
Sa = glog (% sinh <%)) (2.10)

where 3 now parametrizes the temperature scale i.e. 5 =T"1.

form

2.1.1 Ryu-Takayanagi prescription

In the light of the AdS/CFT correspondence, Ryu and Takayanagi [57, 58] pro-
posed the following: the entanglement entropy S4 in a CFT on R for a subsystem

A that has an arbitrary d — 1-dimensional boundary 94 € R? is holographially
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given by
g Area of v
A= —— o
4G§g+2)

where v is the d-dimensional static minimal surface in AdS;,» whose boundary is

(2.11)

given by 0A and Gg\(fﬂ) is the (d 4 2)-dimensional Newton’s constant. Intuitively,
the minimal surface with the boundary 0A can be thought of as a holographic

screen since the observer has access to subsystem A alone.

Minimal Surface 7/
for subsystem A

Figure 2.1: Schematic diagram of the minimal surface hinged on a strip shaped
subsystem A. B denotes the environment which is traced out to write down a reduced
density matrix p4

It can be easily seen from (2.11) that S4 = Sp where B is the complement of A and
it also satisfies (2.5). The Ryu-Takayanagi prescription works for finite temperture
systems too. However, for thermal systems (7' > 0) we do not find Sy = Sp since
p i.e. the density matrix for the full system is in a mixed state where the equality
does not hold. Holographically, thermal systems are decribed by the presence
of a black hole horizon due to which the equality S, = Sp breaks down. Now,
we will use the Ryu-Takayanagi prescription as stated in (2.11) to evaluate the
entanglement entropy for thermal 2-dimensional CFTs and subsequently generalise

for higher dimensions.

2.1.2 Entanglement Entropy for AdS;/CFT;

We are interested in the entangelement entropy of a 1-dimensional spatial sub-

system at a crtical point. At a fixed time, the minimal surface is essentially the
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geodesic connecting two boundary points which defines the subsystem A which we
are interested in. The Ryu-Takayanagi prescription (2.11) interprets a complicated

quantity in a CFT as a geometric quantity in a dual gravity theory [57, 58].

= Black brane

Figure 2.2: Schematic representation of minimal surfaces in AdS3 at zero temperature
and finite temperature. S: Minimal geodesic in AdS3 at zero temperature; S1 and S2:
Minimal geodesic for small subsystems in AdS; at finite temperature; S’: Minimal
geodesic for large subsystems in AdS3 at finite temperature wraps the black brane.

The metric of AdS; written in global coordinates (t, p,6) is
ds®* = R*(— cosh® p dt* + dp® + sinh? p d6?) (2.12)

Anticipating divergences close to the boundary as p — oo, we introduce another
constant-p surface at p = py which acts as a regulator. In the dual field theory
this is equivalent to introducing a UV cut-off. In fact for CFTs, if L is the full
system size with the end-points identified and a is the lattice spacing then, we can

write a relation of the form
e” ~ — (upto numerical factors) (2.13)
a

The C'F'Ty dual now lives on the (¢,0) cylinder on the p = py surface. We define
the subsystem A at a fixed time ¢ to be the region 0 < 0 < 2%1 v4 is the static
geodesic as shown in Figure 2.2 travelling through the bulk of AdSs; spacetime
connecting the points # = 0 and § = 277” having a length L.,. The geodesic length
(minimal length curve) is given by
L l

cosh (%) = 1 4 2sinh? pg sin? % (2.14)
We can use the above expression to get a form of L., which can be plugged in
(2.11) when d = 1 to obtain the entanglement entropy. Further, the AdS/CFT
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correspondence relates the AdS radius R and the Newton’s constant Gg\?;) with the

central charge c of the dual CFT through the relation

3R

= 2.15
G (2.15)

C

Using the above along with the assumption that e” > 1 (physically this means
that the system size is much larger compared to the lattice spacing) leads us to

the expression

l
Sy~ glog <ep° sin %) (2.16)

which matches with (2.9) upto some numerical factors. This prescription suggests
that the curve denoting the Ryu-Takayanagi minimal surface v, acts like a black
hole horizon and restricts an observer from probing subsystem B although the
division between them is artificial. The grey region as given in Figure 2.2 is however
depicts a black brane inaccessible to the minimal surface which now wraps around
it)

One can carry out a similar computation in the context of thermal systems with
certain simplifications. We assume that the system we are dealing with is infinitely
long restricting us to the regime where §/L < 1. The dual gravity theory for a
CFT at finite temperature is given by the Euclidean BTZ black hole with the

metric )

ds* = (r* —r2)dr* + dr® + r*d¢* (2.17)

2 _ 2
T Ty

The Euclidean time and the angular coordinate has a periodicity given by the

following identifications

T~T+
T+ (2.18)

¢~ ¢+ 2

The parameters of the CFT and the BTZ black hole [66] can be related as % =
% < 1. Similar to the zero temperature case, here again we define the subsystem
Aas0< ¢ < ZTTFZ on the p = py surface. In order to find the geodesic length in this
case, we will use the result that an Euclidean BTZ black hole at a temperature T is

equivalent to a thermal AdSs at temperature 7. Performing the transformations
r=rycoshp; ry7=RO; ri.¢p=Rt (2.19)

In terms of the new coodinates (¢, p,0) (2.17) indeed takes the form of thermal
Euclidean AdSs. The geodesic distance in this case i.e. the analog of (2.14) is
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given by

L
cosh (%) — 1 + 2cosh? py sinh? (%l) (2.20)

Using the above along with the relation (2.15) gives us (2.10), a well known result
for thermal CFTs.

2.1.3 Higher dimensional entanglement entropy

The Ryu-Takayanagi prescription can be generalized to higher dimensions, giving
a handle on the entanglement structure of CFTs living in odd dimensions where
standard field theoretic techniques e.g. the replica trick fails. In higher dimensions,
the geodesic distances (curves with minimal lengths connecting two boundary
points) are replaced with the notion of minimal area surfaces. Unlike the earlier
subsection, we will perform our calculations in the Poincaré patch of AdSy, o where

the metric is
R? d
%QZ;E(mJ—d§+§:dﬁ> (2.21)
i=1

We will evaluate the entanglement entropy for two kinds of geometries for the

subsystem A: when A is strip shaped and when A is disk shaped.

Let us first consider A to be a strip-shaped subsystem given by
Astrip = {ill'l|l'1 € [—l/2, +l/2], .1’273 ,,,,, d € [—OO, +OO]} (222)

at the boundary r = 0. Clearly, [ is the width of the strip along x; while it is
non-compact along all other boundary spatial directions. The minimal surface
dips into the AdS bulk, where r, represents the turning point of the minimal
surface whose boundary is identical to that of Ag;,. The minimal surface follows
an equation of the form

dr \/r2d — p2d l T

- h -
ar - where o i dr

Td (d;;;)
—_— 7”* m—
g VIR

The area of the minimal surface for the strip-shaped subsystem defined as (2.22)

(2.23)

finally takes the form

d d-1  od_d/2pd [T(dtLy\ d—1
Area of Astrip — & <L) o 2072 R < ( 2d )) (£> (224>

d—1\a d—1 \ (L) l
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where L is the regqularized length of the subsystem A along the non-compact di-

rections xa3 . 4.

The same exercise can be repeated for disk-shaped geometry defined as
Agisie = {zq|r <1} (2.25)

The corresponding minimal surface generated in the bulk has an area given by

1 1— 2 %
Area of Ay = C / dy#
a/l Yy
1\ 4! 7\ 43
=n (5) +ps3 <5> +-- (2.26)
Dd—1 (é) +pg+ O (%) d : even
Pz (1) +qlog (1) +0(1) d:odd

where

B — VAT (g) r (%Z) ; (2.27)

In the context of the AdS/CFT correspondence, the above expression can be used
to write down the entanglement entropy of a subsystem of size [ for N' = 4 SU(N)
Yang-Mills theory in 4-dimensions at zero temperature which has a gravity dual

given by (2.21) with d = 3. This eventually leads us to the expressions

S = TE A (TEYNL
Sa,., = N? LZL_Q? —log (é) + 0(1)} (2.29)

which gives the entanglement entropy of a subsystem of size [.

From the expressions (2.24), (2.26), (2.28) and (2.29) it is evident that the UV

(d=1) which is reminiscent of the ‘area law’ for entan-

divergent terms scale as ~ a~
glement entropy in QFTs [67, 68]. Physically, this is expected since the correlation
between the subsystem and the environment is maximal at the boundary separat-
ing the two. Although the presence of the area divergence term is a universal

feature of entanglement entropy, the coefficient of this term depends on the UV
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cut-off. A more physically relevant quantity is one where there is no such cutoff de-
pendence e.g. the second term in (2.24), (2.28) or the coefficient of the logarithmic
term in (2.29). These terms are universal and depends only on the dimensionality

of the theory that is under consideration.

Finally we consider the entanglement entropy of N' = 4 SYM theory on R? at a

finite temperature T'. The dual geometric description has the metric

dr? :
ds* = R* - - s+ (—h(r)dt2 + def) + d2 (2.30)
(r)r =
where .
h(r)=1-— T—i ; 1o =n1; boundary: r — 00 (2.31)
r

For a strip-shaped subsystem defined as Ag.ip = {milz1 € [—1/2,1/2], x93 €

(—o00, +00)} we can compute the area of the minimal surface to be

-1
7,6

Area of Ay = 2R3L? /a dr 2.32
o v VTR0 .

*

where the turning point r, is given by

1

E:/oodr
S e (5 )

2

(2.33)

The area integral (2.32) scales as a=* which is in conformity with the expected
‘area law’ divergence. As we increase the subsystem size, the minimal surface dips
further into the bulk and gradually starts wrapping around the black hole horizon.
From the bulk perspective, this is the limit when r, ~ ry where the area integral
simplifies to give ~ ¥ R3L2T? where L denotes the regularized length along x
and x3 directions. Finally, the Ryu-Takayanagi prescription dictates the finite part

of entanglement entropy for the subsystem A to be

S(finite) —~ TN

A X Ty — X (Area of Agyip) (2.34)

We can interpret the above quantity as a part of the Bekenstein-Hawking entropy
for black 5-branes which is proportional to the area of the horizon at r = ry. In
the gravitational description, this part arises since the minimal surface wraps the
black hole horizon. If we increase the size of subsystem A to coincide with the full

system we indeed recover the Bekenstein-Hawking entropy exactly.
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2.2 AdS plane waves and Mutual Information
(MI)

We are interested in studying excited states of a certain kind, building on previous
work. AdS plane waves [26, 30, 35, 51] are deformations of AdS which are dual
to CF'T excited states with constant energy-momentum flux 7', ~ @ turned on.
Upon z"-dimensional reduction, these give rise to hyperscaling violating space-
times [51], some of which exhibit violations [69, 70, 12] of the area law [67, 68].
In [52, 71], a systematic study of entanglement entropy for strip subsystems was
carried out in AdS plane waves (with generalizations to nonconformal brane plane
waves in [72]). The EE depends on the orientation of the subsystem i.e. whether
the strip is parallel or orthogonal to the flux 7', ,. For the strip subsystem along
the flux, the EE grows logarithmically with the subsystem width [ for the AdS;
plane wave (the corresponding hyperscaling violating spacetime lies in the family
giving log-behaviour). The AdS, plane wave dual to plane wave excited states in
the M2-brane Chern-Simons CFT exhibits an even stronger v/I growth. For the
strip orthogonal to the flux, we have a phase transition with the EE saturating for
> QY1

For two disjoint subsystems, an interesting information-theoretic object is mutual

information (MI), defined as
I[A,B] = S[A] + S[B] — S[AUB], (2.35)

involving a linear combination of entanglement entropies. It measures how much
two disjoint subsystems are correlated (both classical and quantum). The EE
terms in I[A, B] automatically cancel out the cutoff-dependent divergence thus
making MI finite and positive semi-definite. A new divergence comes up when the
subsystems collide. The term S[A U B] in the above expression depends on the
separation between the subsystems A and B: in the holographic context, there are
two extremal surfaces of key interest. For large separation, the disconnected sur-
face SJAUB] = S[A]+S[B] having lower area is the relevant surface so that mutual
information I[A, B] vanishes. For nearby subsystems however, the connected sur-
face has lower area. Thus the Ryu-Takayanagi prescription automatically implies
a disentangling transition for mutual information in this large N classical gravity

approximation [73], with a critical separation z..
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In this chapter, we first discuss a phenomenological scaling picture for entangle-
ment for CFT ground and some excited states, building on some renormalization-
group like intuition described in [74] based on “entangling bits” or “partons” (sec.
3). In 2.4, we describe some generalities on holographic mutual information and
then study mutual information in AdS plane waves for two parallel disjoint strip
subsystems of width [ each (sec. 5), first discussing the wide strip regime QI¢ > 1,
exhibiting again a disentangling transition. Then we study the perturbative regime
Ql¢ < 1 and calculate the changes in the turning point and the entanglement area
functional to O(Q) treating the AdS plane wave as a perturbation to pure AdS,
for the strip subsystem both parallel and orthogonal to the energy-momentum
flux. This perturbative analysis has parallels with “entanglement thermodynam-
ics” [75, 76, 77]. Finally, we perform some numerical analysis to gain some insights
when QI? is O(1). We discuss some similarities and key differences of our inves-
tigations with the study of mutual information for thermal excited states [78],
which are somewhat different from these pure excited AdS plane wave states. In
the next subsection, we briefly review entanglement entropy in the context of AdS

plane waves.

2.2.1 Review: Entanglement Entropy for AdS plane waves

AdS plane waves [30, 35, 51| are rather simple deformations of AdS/CFT, dual
to anisotropic excited states in the CF'T with uniform constant energy-momentum
density T, turned on (with all other energy-momentum components vanishing),
R2

ds® = ﬁ(—Qd:ﬂdz_ +do? 4 dr?) + R*Qri2(dz™)? + R2dQ? | (2.36)
with d the boundary spacetime dimension and R* ~ g2,,No/* [AdSs plane wave],
R® ~ N1% [AdS, plane wave]. These are normalizable deformations of AdSg,; x S
that arise in the near horizon limits of various conformal branes in string/M-theory.
Structurally they are similar to the AdS null deformations [20, 21] that give rise
to gauge/string realizations of z = 2 Lifshitz spacetimes [18, 19], except that these
AdS plane waves are normalizable null deformations. Reducing on the sphere,
these are solutions in a d + 1-dim effective gravity theory with negative cosmologi-
cal constant and no other matter, i.e. satisfying Ry ny = —%QMN. The parameter
@ > 0 gives rise to a holographic energy-momentum density 7'y ; o« ) in the

boundary CFT. Dimensionally reducing (2.36) on the z*-dimension (and relabel-

_ap SRy
r2z r2 )

20
ing ¥~ =t) gives a hyperscaling violating metric ds?* = 7"sz'(



Chapter 2 Entanglement Entropy and Mutual Information 41

with exponents z = % +2, 0= % and d; is the boundary spatial dimension.
These are conformal to Lifshitz space times and appear in various discussions
of non-relativistic holography, arising in various effective Einstein-Maxwell-scalar
theories e.g. [5, 6, 7, 8, 9, 10, 11]: see [12] for various aspects of holography with
hyperscaling violation. It is known that these spacetimes for the special family
“9 = d; — 17 exhibit a logarithmic violation of the area law [67, 68] of entan-
glement entropy, suggesting that these are signatures of hidden Fermi surfaces
(69, 70]. For the special case of the AdS5 plane wave, we have 0 = 1,d; = 2, lying

in this “0 = d; — 1”7 family.

This spacetime (2.36) can be obtained [26, 51, 30, 35| as a “zero temperature”,
highly boosted, double-scaling limit of boosted black branes, using [79]. For in-

stance, AdSs Schwarzschild black brane spacetimes, with metric

ds? = RQ[ (1 — rirhydt® + da? —|—de +R2d—7£ (2.37)
72 of 3 — r2(1 —rgr) '
can be recast in boundary lightcone coordinates x* with ¢ = ﬁ%, X3 = ﬁ%
After boosting by A as z¥ — A*!'a*, we obtain
2 _ R + ror 1 - 2 2 dr?
ds® = — | ~2da*du +T()\dx + A da) +;d:ci +R T Y
(2.38)

Now in the double scaling limit rp — 0, A — oo, with Q) =
(2.36). For the near extremal AdS plane wave, from [79], we see that we have other

4
energy—momentum components also turned on, Ty ~ \rf ~ Q, T _ ~

32
5 , Ty_ ~rg, T;;j ~ r3d;;. Turning on a small 7 about (2.36), this means T, ; is
dominant while the other components are small. In some sense, this is like a large
left-moving chiral wave with T, . ~ @), with a small amount of right-moving stuff
turned on. Thus the near-extremal case (with small r() serves to regulate the AdS

plane wave in the deep interior.

We now review certain aspects of holographic entanglement entropy in these AdS
plane wave geometries [52]. First, it is worth recalling that the entanglement en-
tropy for ground states (@ = 0) in the d-dim CFTs arising on the various conformal

branes with strip-shaped subsystems has the form (upto numerical coefficients)

Sa ~

Rd—l V, V, R3 R2
Ga (v —cagiz) . g ~N?(dCFT), o ~N"? (34 CFT)
+1

G5 G(4
(2.39)
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where c¢; > 0 is some constant, [ the strip width, V;_» the longitudinal size and
¢ the ultraviolet cutoff. (We have used the relations Ry; ~ gsNI2, RS,y ~ NI,
and those for the Newton constants Gig ~ GsR3)3, G11 ~ G4RY,5, where g; is the
string coupling, and [, [p the string and Planck lengths.) The first term exhibiting
the leading divergence represents the area law while the second term is a finite
cutoff-independent part encoding a size-dependent measure of the entanglement
[57, 58, 80]. With @ # 0, we have an energy flux in a certain direction: these are
nonstatic spacetimes, and we therefore use the covariant formulation of holographic
entanglement entropy [59] working in the higher dimensional theory (with =™
noncompact), the strip geometry corresponding to a space-like subsystem on the
boundary. Consider the strip to be along the flux direction, i.e. with width along
some x; direction [52]. Then the leading divergent term is the same as for ground
states. The width scales as [ ~ r,, where r, is the turning point of the bulk

extremal surface, and the finite cutoff-independent piece in these excited states is

a Rd—l
+/QV,_ol*2 [+:d<4, —:d>4];
Gat
VQVAN? log(IQY*) (D3);  /QLVI N** (M2) . (2.40)

Note that the logarithmic behavior for the 4-dim CFT is of the same form as for a
Fermi surface, if the energy scale Q/* is identified with the Fermi momentum kp.
Both 4- and 3-dim CFTs in these excited states thus exhibit a finite entanglement
which grows with subsystem size [. In particular, for fixed cutoff, this finite part
is larger than the leading divergence. Recalling that the finite entanglement for
the thermal state (i.e. the AdS black hole) is extensive, of the form Vy_ T4 11, we
see that these are states with subthermal entanglement. These are pure states in

the large N gravity approximation since the entropy density vanishes.

It is worth noting that we regard the AdS plane wave spacetimes as a low tem-
perature highly boosted limit of the AdS black brane: the scale Q = \?r§ > r}
implies a large separation of scales between the flux in the AdS plane wave and
the temperature of the black brane, with ) dominating the physics in the plane
wave regime. The above estimates (2.40) for the finite part of entanglement arise
if the bulk extremal surface dips deep enough in the radial direction to experience
substantial deviation from the AdS geometry due to the plane wave, while still
away from the regulating black brane horizon in the deep interior, i.e. the length
scales satisfy Q¢ « | <« %

With the strip orthogonal to the flux direction, a phase transition was noted

[52]: for large width [, there is no connected surface corresponding to a space-like
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subsystem, only disconnected ones.

This analysis can be extended [72] to the various nonconformal Dp-brane systems
[81]. These have a ground state entanglement [58 82] (after converting to field the-
ory parameters) Sy = Neyy(e ) e cheff(l) = =2 with a scale-dependent number

of degrees of freedom N.;¢(l) = N? <9YM N) " involving the dimensionless gauge
coupling at scale [. For nonconformal Dp-brane plane waves, it turns out to be
natural to redefine the energy density as QQ — QN.s¢(l) (i.e. @ in the conformal
cases above is the energy density per nonabelian degree of freedom), and then the
Vs 1) V1@

5 190 involving a

dimensionless ratio of the energy density and the strip width/lengths and N.s¢(()

finite part of entanglement takes the form Sf”“e ~

(the leading divergence is as for the ground state). This finite part is similar in
structure to that for the conformal plane waves above, but is scale-dependent:
analysing the UV-IR Dp-brane phase diagram [81] shows the finite part to be

consistent with renormalization group flow [72].

2.3 A phenomenological scaling picture for en-

tanglement

This is a generalization of an RG-like scaling picture in [74] for ground states. We
assume a renormalization group type scaling behaviour with a notion of “entangle-
ment per scale” as an organizing principle: i.e. in a CFT of spacetime dimension
d, there are “entangling bits” or “partons” of all sizes s. Equivalently at scale
s, we think of space as lattice-like with cell size s. In the ground state, each
cell roughly contains one entangling parton. Entanglement arises from degrees
of freedom straddling the boundary between the subsystem and the environment,
in other words from partons partially within the subsystem and partly outside.
Entanglement entropy arises from the fact that we trace over the environment
and thus lose some information about the straddling partons. The scaling picture
below is admittedly quite phenomenological and is only meant as an attempt at

an intuitive picture that fits the holographic entanglement calculations.

We want to estimate the rough number of degrees of freedom contributing to
entanglement at the interface between the subsystem and the environment which

has area V;_o = L%2. At scale s, the rough number of cells of linear size s at the
(L)d 2 _ Vd

boundary is . For a CFT with nonabelian N x N matrix degrees of

freedom, there are N2 degrees of freedom per cell (we use N? with a SYM CFT in
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mind but this can be easily generalized to N3/2 for the M2-brane CFT). We then
integrate this over all scales greater than the UV cutoff ¢ with the logarithmic
measure % and also we expect the IR cutoff is set by the subsystem size [. This

gives (assuming d > 2)

S ~ —
5 sd-2 d—2

l 2
ds Vd,Q 2 N Vd,Q 1 1
N? ~ (6“ ZH) . (2.41)

€

This shows the leading area law divergence and the subleading cutoff-independent
finite part. For d = 2, we obtain S ~ fel 4 N2 ~ N?log ! which is the logarithmic
behaviour characteristic of a 2-dim CFT: this can be used as a check that the

ds

logarithmic measure €* is appropriate. This is a quantum entanglement, with

contributions from various scales s.

Vi—o
85—2

Thus we see that there is a diverging number of ultra-small partons at short
distances s — 0 which essentially gives rise to the area law divergence [?]. For
excited states, the energy-momentum density does not change the short distance
behaviour but implies an enhanced number of partons at length scales much larger
than the scale set by the energy-momentum, changing the IR behaviour of entan-

glement as we will see below.

Similar arguments can be made for the various nonconformal gauge theories arising
on the various nonconformal Dp-branes. Now the gauge coupling is dimensionful

and the number of nonabelian degrees of freedom at scale s is

p—3

Nojy(s) = N2 (Q%MN ) T (2.42)

sp—3

For the ground state, the entanglement at the boundary of the subsystem is ob-
tained as before by integrating over all scales the number N.ss(s) of entangling

bits or partons at scale s

LdsVy_ Vi Vi
SN/ — 2 Negs(s) ~ (5_P)Neff(€)€d__22 - (5_p)Neff<l)ld__227 (2.43)

in agreement with the known holographic result for the ground state entanglement
for the nonconformal brane theories, upto numerical factors. We see that the
entanglement expression above breaks down for p = 5: these are nonlocal theories

(e.g. little string theories for NS5-branes).

For the CFT, at finite temperature 7', the entanglement entropy has a finite cutoft-

independent piece which is extensive and dominant in the IR limit of large strip
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width [: this is the thermal entropy, essentially a classical observable,

V E
S~ NVT@ ! = N2 —— d p=— ~ N1 2.44
with p the energy density and we have used % = % . The energy density per
nonabelian particle is 5 = T = W , which suggests that the characteristic

size of the typical particle is % with energy T'. The CF'T physics below this length
1

T >
ground state. Above this length scale, the presence of the energy density implies

scale in particular that of entanglement, will be indistinguishable from the

a larger number of entangling bits or partons and so a correspondingly larger

entanglement. Thus the number of entangling partons N (s) for cell sizes s > %

is the number of partons of individual volume (1/7)4! in the total cell volume
Sdfl

s e N(8)|gsr-1 ~ Nzw, thus N (s) is extensive for length scales larger

than the inverse temperature. This implies a total entanglement

l 2 d—1
dsVy_o 1 NV, o [dsVa_e s
S ~ — ~ — N — —_
. s 572 (s) d—1 ed=2 i s s4=2 (1/T)411
1 N?V,_
~ med—_é? + N2Td_1V;l_Ql . (245)

The energy enhancement factor (17;% changes the IR behaviour as expected.
The finite part of entanglement entropy is dominant for sufficiently large [ and
is essentially the thermal entropy in this regime. The linear growth with [ of
the entropy which is extensive is equivalent to the number of partons N (s) being

extensive.

For the nonconformal theory in d = p+1 dim at finite temperature 7', with p =

@ <t

being the energy density, the thermal entropy S(p, V) and temperature 7 = g

are [81]

S|

G Vggj—w3)/(5—p)\/Np(Q—p)/(Q('?—p)) Cp o~ 9}2/(]1\24—3)/(5—1?)]\[(7—13)/(5—13) T2(7-p)/(5-p)
(2.46)

These can be recast as [82]

S~ Neps(UT)WVT?,  po Nepp(UT)TP, Nogp(1/T) = N*(g3, NT? )55
(2.47)
Along the lines earlier, we could obtain the total entanglement by integrating

the number of entangling partons over length scales longer than that set by the
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temperature: this gives (d =p+ 1)

Nefs(1/7) (Tiﬁ))d_l ~ Vol "N (1)T) . (2.48)

It is important to note that the thermal entropy is essentially classical, with contri-

ds Vi»

Sfinite ~
s gd-2

butions from partons of size predominantly % so that we do not integrate N.yr(s)
over all scales s: i.e. N.rr = N.ss(1/T) above. In fact integrating the number
of nonabelian degrees of freedom N.sf(s) over scales € < s < [ in the above ther-
mal context does not yield sensible results (e.g. giving logarithmic growth for the

thermal entropy for p = 1,4), in contrast with the ground state.

Now we want to interpret entanglement entropy for the pure CF'T excited states
dual to AdS plane waves within this scaling picture. The energy density T, = Q)
sets a characteristic length scale Q=% then the typical size of the partons is
Q=4 . Thus for cells of size s much smaller than Q~/¢, the parton distribution
is similar to that in the ground state while for cells of size s much larger than
Q~'/?, there is an enhancement in the number of entangling partons per cell.
The anisotropy induced by the flux which is along one of the spatial directions
implies that the entangling partons have energy-momentum in that direction but
can be regarded as essentially static in the other directions, as in the ground state.
Consider first the case when the strip is along the flux direction: then as the strip
width increases, the number of partons straddling the boundary increases since the
partons move along the boundary. On the other hand, when the strip is orthogonal
to the flux, the parton motion is orthogonal to the boundary: thus when the strip
width is much larger than the characteristic size '/ of the partons, the number
of partons straddling the boundary is essentially constant since most of the partons
enter the strip at one boundary and then shortly do not straddle the boundary but
are completely encompassed within the strip. This reflects in the entanglement

saturating for large width, with the strip orthogonal to the energy flux.

Now we consider the case of the strip along the flux in more detail. We again define
the number of entangling bits or partons N (s) at scale s, with N (s)|,cg-1/a ~ N?
for length scales much smaller than the characteristic length Q~'/%: above this
scale, we expect some nontrivial scaling of A/ (s) which will be a function of Qs?
on dimensional grounds. The precise functional form of N'(s) for these AdS plane
wave states is not straightforward to explain however: the known results for holo-
graphic entanglement entropy (2.40) suggest N(s) ~ N2y/Qs?. Although the
AdS plane wave CFT states are simply the thermal CFT state in a low tem-

perature large boost limit, this scaling of A (s) is not a simple boosted version
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of those for the thermal state (discussed below), but somewhat nontrivial. It
would be interesting to explain this scaling of the AdS plane wave CF'T states,
perhaps keeping in mind the infinite momentum frame and Matrix theory. In
this regard, we note that these AdS plane wave states preserve boost invariance,
ie. xt — M\lat, Q — M\ 2Q is a symmetry of the bulk backgrounds. For the
strip along the flux, the longitudinal size scales as V; o — AV, 5 and the num-
ber of entangling partons is some function f(Qs?). Boost invariance then fixes
Vaof(Qs?) = Vy_o \/@. Alternatively, imagine the collision of two identical
plane wave states, moving in opposite directions. Assuming the resulting state has
a number of partons N7 (s)Ng(s) oc Qs? proportional to the energy-momentum
density, we can estimate that either individual wave has N7 (s) ~ Ng(s) ~ v/ Qs%.
However this is a bit tricky since this makes Ny (s), Ng(s) reminiscent of parti-

tion functions: a number of partons might instead be expected to be additive, as

NL(s) + Ng(s).

Taking the number of entangling partons A/(s) at the boundary at scale s > Q~1/¢
2Vd 2Vd s 4/2 : —1/d : 2Va—2 :
as N =5=3/Qs? = 43 (W) , while for s < @) keeping N°-7=5 as in

the ground state, gives rise to an entanglement scaling as

l 2 d
g ~ [ Bl L NVas 2y, Q/ds V Qs ‘

. 5 5072 T od—2 el 512
1 N2Vd,2 N2 o_4d
~ d—9 ¢d-2 + 4_d\/§‘/d—2l [d%él]v
1 N2V,
~ g+ NVQ Valog(iQYY) [d=4]. (2.49)

For d = 4, the logarithmic growth in the finite part arises by integrating from scales
longer than @~/ upto the IR scale I. Thus we see that the phenomenological
scaling \/@ is consistent with the holographic results. It would be interesting to
understand this scaling better. Likewise for the nonconformal plane wave excited
states (as in the conformal case) which we think of as chiral subsectors, the number
of entangling partons at length scales s longer than that set by the energy density
() is proportional to \/@ and the total finite part of entanglement for a strip

subsystem of width [ becomes

dSV:i 2 5 de 2
Sfinite ~ ?Sd 3 \/ eff \/ QSd ‘ ld 5 \/Neff(l) vV Qld s (250)

recovering the holographic results [72].

It would be interesting to put the phenomenological discussions in this section



48 Chapter 2 Entanglement Entropy and Mutual Information

on firmer footing with a view to gaining deeper insight into entanglement in field

theory excited states.

2.4 Holographic mutual information: generali-

ties

e

Figure 2.3: Two parallel disjoint strip subsystems of width [ and separation z (and
longitudinal size Vg_2) (left), with the disconnected extremal surface (top right) and

the connected extremal surface (bottom right).

Mutual information is defined for two disjoint subsystems A and B as
I[A,B] = S[A] + S[B] — S[AUB] . (2.51)

It is a measure of the correlation (both classical and quantum) between the degrees
of freedom of two disjoint subsystems A and B. Mutual information is finite,
positive semi-definite, and proportional to entanglement entropy when B = A¢
(in that case, S(A U A°) = 0). This linear combination of entanglement entropies
ensures that the short distance area law divergence cancels between the various
individual terms rendering the mutual information finite. There is a new cutoff-
independent divergence however that arises when the two subsystems approach

each other and collide, as we will see below.

The holographic prescription of Ryu-Takayanagi implies in a simple geometric way
that mutual information vanishes when the two subsystems are widely separated:
thus as discussed in [73], mutual information undergoes a disentangling phase tran-

sition as the separation between the two striplike subsystems A and B increases.
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Recall that we choose that extremal surface which has minimal area, given the
boundary conditions defined by the subsystem in question. In the case of the
subsystem A U B defined by two disjoint strips, there are two candidate extremal
surfaces as in Figure 2.3. When the two subsystems are widely separated, the rel-
evant extremal surface with lower area is simply the union of the two disconnected
surfaces so that S[A U B] = S[A] + S[B]. However for nearby subsystems, the
connected surface has lower area. For simplicity, we consider two disjoint parallel
strip subsystems with longitudinal size V;_5, and of the same width [ each, with
separation x. For fixed width [, we can vary the separation z. Then as we vary 7
which is a dimensionless parameter, the behaviour of the extremal surface and its

area S[A U B] change: the extremal surface is

(1) disconnected surface: area S[AU B] = S(A) + S(B) = 25(() , for large % ,

(17) connected surface: area S[AU B] = S(2l + z) + S(z) , for small % . (2.52)

The Ryu-Takayanagi prescription of choosing the extremal surface of minimal area
then leads to a change in the entangling surface for the combined subsystem AU B.

Correspondingly the mutual information changes as

I[A,B] > 0, < ==
(2.53)

= 0, > — .

I8~y

The critical value % is a dimensionless number, and depends on the field theory
in question as well on the CFT state, as we discuss below. This critical value
e is thus the location of a sharp disentangling transition in the classical gravity
approximation, since the mutual information vanishes for larger separations imply-
ing the subsystems are uncorrelated, especially in light of an interesting relation
between the mutual information and correlation functions. It is known [83] that
I[A, B] sets an upper bound for 2-point correlation functions of operators, with

one insertion at a point in region A and the other in B,

({(0405) = (04){(0p))?
2|04|0p/? '

I[A, B] > (2.54)
This inequality implies that beyond the disentangling transition point all 2-point
correlation functions also vanish (with one point in A and the other in B), since
the mutual information vanishes. It is important to note that entanglement en-
tropy and mutual information via the Ryu-Takayanagi prescription are O(N?)

observables in the classical gravity approximation. However the 2-pt correlators
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are normalized as O(1). One might imagine the mutual information decays as
I[A,B] ~ > T%—ﬁ; and indeed the quantum O(1) contributions effectively give a
long distance expansion for mutual information [84] (see also [61, 70, 73, 85]).
However the coefficients ca at the classical level O(N?) vanish: this shows up in
the large N approximation as the sharp disentangling transition in mutual infor-

mation.

We now discuss this for large N conformal field theories in the ground and ex-
cited states. For the ground state, the mutual information for two strip shaped

subsystems of width [ parallel to each other and with separation x is

2 1 1
I[A, B = —cVis (ldQ - (20 + z)72 - xd2)
ey 11
o Jd—2 (2+ %)d—2 (%>d—2 :

This arises from the cutoff-independent parts of entanglement, the divergent terms

(2.55)

cancelling. We see that for small separation x, the mutual information /[A, B]

grows as I[A, B] ~ ;’g:; and exhibits a divergence as © — 0, i.e. when the

T

l
vanishes at a critical value of 7. Beyond this critical separation, the expression

subsystems collide with each other. As % increases, I[A, B] decreases and then
(2.55) for I[A, B] as it stands is negative and is meaningless: this simply reflects
the fact that the correct extremal surface for A U B is in fact the disconnected
surface, i.e. the subsystems disentangle, and mutual information actually vanishes
beyond the disentangling point. This disentangling transition can be identified as
the zero of I[A, B] above, giving % ~ 0.732 [d = 4], and 0.62 [d = 3], and so on.

Such a disentangling transition also happens at finite temperature, but the phase

diagram is more complicated and has nontrivial dependence on the length scale

1
T

small relative to the temperature scale, we only expect small corrections to the

% set by the temperature T'. For [,z < =, i.e. subsystem widths and separation
ground state behaviour above. Thus the disentangling transition point occurs at
values which are “near” those for the ground state. However for large width [,
the entanglement is well approximated by the extensive (linear) thermal entropy:
thus

IJA,B] ~ T Wy (21— (20 +2) — ST (z)) = TV (=87 (z) — 2).
(2.56)
Thus we see that as the separation x increases, —S/™(z) > 0 decreases and I[A, B]

decreases and eventually vanishes at a critical x., which turns out to be smaller
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in value than for the ground state. When the thermal entropy dominates the
entanglement or equivalently the subsystem widths and separation are both large

relative to the temperature scale, we see that
I[A, Bl ~ T W, 5 (20 — (2l + 2) — 2) = 2TV, o, (2.57)

which is negative. This is a reflection of the fact that the two subsystems in fact

are completely disentangled for any separation x larger than % In some sense,
the temperature “disorders” the system and the subsystems disentangle faster at

finite temperature than in the ground state.

In what follows, we analyse holographic mutual information for AdS plane waves.
We will see some similarities with the finite temperature case, but with nontriv-

1/d

ial phase structure depending on the scale )~ There are however some key

differences as we will see below.

2.5 Mutual information in AdS plane waves

AdS plane waves exhibit anisotropy due to the energy flux in one direction. We are
considering parallel disjoint strip subsystems that are either both along the flux or
both orthogonal to the flux. We can analyse mutual information in two extreme
regimes, where the strip widths [ are large or small compared to the length scale
set by the energy density flux ). Eventually we will carry out some numerical

analysis in intermediate regimes as well.

2.5.1 Wide strips: QY7 > 1

Consider first the strip along the energy flux direction, with width direction along
say z; (we assume d > 3). Then the spacelike strip subsystem A lying on a
constant time slice has 0 < z; < I, (z7,27) = (ay, —fy) = (y,—y), —00 <
Y, To, X3, - ,Tq_o < 00. The extremal surface 4 is specified by the function
x1 = z(r). Vg_o denotes the volume in the y and (z3,- -+ , x4 ) direction. € is the

UV cutoff. The subsystem width in terms of the turning point 7, is [52]

T ATdfl

dr
0 \/2 + Qrd — A2p2(d-1)

Az =1=2 , (2.58)



52 Chapter 2 Entanglement Entropy and Mutual Information

while the entanglement entropy in terms of the area functional is

Sa

(2.59)

_ Area 2V, o R*1 /r* dr 2+ Qr
C 4Ga1 4G4 . rit \/2 + Qrd — A2p20d-1)

The above integrals are however not exactly solvable for d > 3. There is a leading

area law divergence from the contribution near the boundary r» = ¢, with FE ~

N? ‘6/5:22 , where we have used N? ~ %:. this integral can be expanded but, it will
have contribution mostly For large energy density @), and large width [/, the turning
point equation 2+Qr?— A2r2=2 = ( can be approximated as Qré ~ A2r2 ™ > 1,
so that [ ~ r, from (2.58). The finite cutoff-independent piece of S, is then

estimated as

Shimite igd_lvm\/@ s [d # 4] (2.60)
d+1
~ N5 /Q log(1QY4) [d=4] . (2.61)

The sign in front of (2.60) is + for d < 4 and — for d > 4.

Towards estimating mutual information for AdS plane waves, we must note that
there are multiple regimes stemming from the various length scales I, z, Q<.
When the strip widths and separations are large relative to the correlation length,
ie. (QY% > 1 and QY% > 1, we can use the above estimates for the finite parts
of entanglement entropy to estimate mutual information. For the AdSs; plane
wave, when the strips are not too far apart, we can assume mutual information is
nonzero, obtaining from the finite parts above,
l2

I[A, B] = 287" (1) — 87721 + ) — §/"(2) ~ Va/Qlog (W) . (2.62)

The argument of the logarithm vanishes when
I[A, Bl a0 =  P=2Az+2% i xT —V2-1~0414. (2.63)

Thus the subsystems disentangle at a separation less than that for the AdS; ground
state, which has % = 0.732. It is also noteworthy that for any large @, the
subsystems disentangle only when they are sufficiently wide apart in comparison
with the width, i.e. x > 0.414[, independent of the characteristic energy scale
Q~'/*: in particular the disentangling point z. here could be substantially bigger
than Q~%*. This transition location agrees with the analysis for hyperscaling

violating spacetimes in [70] and [78], in accordance with the fact that the AdSs
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plane wave gives rise to the corresponding hyperscaling violating spacetime. The
strips, being parallel to the flux, are unaffected by the reduction along the z*-circle
from that perspective. In the present case, we are studying this entirely from the
higher dimensional AdS plane wave point of view. Note that this is quite distinct
from the finite temperature case [78] in the corresponding regime IT > 1, 2T > 1,
% . in that case, the linear extensive
growth of entanglement in this regime implied that the subsystems disentangled

i.e. sizes larger than the temperature scale

for any finite separation x independent of the width [ (2.57).

Strictly speaking, we are thinking of the regulated AdS plane wave as a limit of
the highly boosted low temperature AdS black brane, with a large separation of
scales Q > rj between the energy density @ = A*rg and the temperature rq, with
A being the boost parameter. Over this wide range of length scales, the physics is
dominated by the AdS plane wave description, with departures arising in the far
infrared where the black brane horizon physics enters as a regulator. From this
point of view, we are thinking of the strip subsystem widths as satisfying Q~'/* <«
< %, with the above behaviour of mutual information holding correpondingly:
in the far IR when [ > % the behaviour of mutual information resembles that in

the finite temperature case.

A similar analysis can be done for the AdS, plane wave, in the regime QY2 > 1
and zQ'/3 > 1, taking again for simplicity both strips of equal width [ with sepa-
ration z. Then the mutual information arises from the finite parts of entanglement

estimated (2.60) for large @) giving
I[A, B] ~ Vi\/Q (2\/2 —\Valtz— ﬁ) . (2.64)

This decreases as the separation x increases and finally vanishes when

I[A,B] =0 = — = (2.65)

which is the location of the disentangling transition in this regime. Again we see
that the subsystems disentangle when they are sufficiently wide apart in compar-
ison to their widths {, without specific dependence on the energy scale Q~'/3 as

for the AdS5 plane wave discussed above.

Nonconformal D-brane plane waves and entanglement entropy were studied in
[72], with the emerging picture and scalings consistent with AdS plane waves
in cases where comparison is possible. The analysis is more complicated in the

nonconformal cases since there are multiple different length scales in the phase
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diagram. The structure of mutual information is still further complicated and we
will not carry out a systematic study here. We can however make some coarse
estimates in the large flux regime. For instance the D2-M2 ground state phase
diagram [81] extends to a corresponding one for the D2-brane plane waves. The
finite part of EE for a strip along the flux in the D2-brane supergravity regime is
Sty ~ VivQVIN/Negs (1) ~ Vivavi, /(g%z\fﬁ o ['/3. Noting the D2-sugra
regime of validity, it can be seen that this finite part is greater than V;/Qv/1 vV N3/2
for the M2-brane (AdS,) plane wave arising in the far IR [72]. In the D2-regime,
we can approximate the mutual information as M Ipy ~ Vi+/Q(20Y3 — (21 +x)'/3 —
z'/%) which shows a disentangling transition at 2= ~ 0.31. Recalling that for the
M2-brane regime, we have % ~ 0.25, we see that x. decreases along the RG flow
from the D2-brane sugra to the M2-brane regime. Similarly for the ground states

also, it can be checked that in the D2-regime, we have % ~ 0.66 while in the

Ze
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structure for the “flow” of mutual information.

M2-regime, we have 2= ~ 0.62. It is unclear if these are indications of some deeper

Now we make a few comments on mutual information in the case where the strips
are orthogonal to the energy flux. In the large flux regime, we know [52] that
entanglement entropy shows a phase transition for I > Q= with no connected
extremal surface but only disconnected ones. In this regime, we expect that mu-
tual information simply vanishes since the connected surface of mutual informa-
tion (2.52) is already disconnected: thus the entanglement is saturated for each
of S[l],S[2l + x|, S[x] ~ Ssu so that M ~ 2S(l) — S[2l + x] — S[z] = 0. In
Sec. 2.5.2 and Sec. 2.5.3, we will study entanglement and mutual information in
the perturbative regime QI% < 1: however in this regime, we do not expect any
signature of the phase transition which is only visible for wide strips. It is then
reasonable to expect some interesting interplay between the phase transition and

the location of the disentangling transition for mutual information.

2.5.2 Narrow strips: [QY? < 1, strips along flux

We would now like to understand the case of narrow strips, i.e. with the dimen-
sionless quantity 1Q/¢ < 1. In this limit, we expect that the entanglement entropy
is only a small departure from the pure AdS case, since the energy density flux
@ will only make a small correction to the ground state entanglement. We will
first analyse the strip along the flux and obtain the entanglement correction to the
ground state. This has parallels with “entanglement thermodynamics” [75, 76, 77]

for these AdS plane waves, treating the g, mode as a small deformation to AdS.
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In the limit Q' < 1, we first calculate the change in the turning point r, upto
O(Q), and then expand the width integral and area integral around AdSyy1, using
(2.58), (2.59). First we note that the pure AdS case, with s the turning point of

the minimal surface, has the width integral

T/Sd ! <\/_F(2d 2))5 = s |

5_2/ — _2/ — e -
2.66

dr. We want to calculate the change in

using A = 5 and n = fo —
the ground state entanglement entropy under the AdS plane wave perturbation to
O(Q), with the strip along the flux. With the entangling surface fixed at width [,
the turning point s now changes to r, = s+ 0r.. We recast (2.58) and the turning

point equation as

A 2 g(ry) _ g
/ d’l"g(r—142 Wlth g( ) = 2+Q7" and A r2(d_1) = T2(d_1) .
2d=1 * *
(2.67)

Then we obtain

(1+<)
- /T* dr il = /7"* ar /) :
0 2(d-1) 0 ’

l
2 f(rry) d_Opd( 1 )21
M%\/g(r)—g* (—) \/1+Q ()

2f2 (7",7‘*)
with the function

(2.68)

T

2(d—1)
fryr) = \/1 — (L) , 0< f(r,ry) <1 forallr<r,. (2.69)

The above expression has been obtained by taking Qr? < 1 and expanding out
the integrand. The above width integral can be further simplified to O(Q) as

l (et Qr Qrt —Qrf (L)Z(d_l)
= e (“ 4) TG

_ Tx T(r/r*)d—l Q T‘d—T’d ~ en— (r — r
B /0 a f(r,ry) <1+4f2(7‘,r*)(* )) n = (r. — dry)n (2.70)



56 Chapter 2 Entanglement Entropy and Mutual Information

the last expression arising since the width [ is as in AdS. Using (2.66), we see that
the leading AdS piece cancels giving

B Q T (T/T*)d_l J J Qsd—i—l /1 xd_l(l—xd)
or, = ), dr Pl (r* —r ) ~ - ! dx(l ) (2.71)

As r, happens to be the turning point of the minimal surface, r < r, which
implies that dér, < 0 always. Also since dr, is O(Q), we have approximated r, ~ s

to obtain the second expression. Thus

QrdJrl
_ 477

Qs+ /7 (NF(ﬁ) - 1)F(#d2)> N, . (2.72)

I(52)
We now calculate the change in the area integral and correspondingly the en-
tanglement entropy upto O(Q). For pure AdS, i.e. the CFT ground state, we
have

Sdro 1
4G 4418y = 2V o R4 / o (2.73)

0 -l f(T’, S) 7

with f(r,s) =4/1— (2)2@_1) as in (2.69). We focus on the finite part of the above

integral and use [ = 2sn, obtaining

_ d—1
Va—2 2d-17 5" (P(ﬁ)> Va—2

d—1 2
1GanSo = #RS - T | |

—_

In our case of the AdSy,, plane wave,

T dr 2 + Qr
rd—1 \/2+Qrd — A2p2(d-1)

(2.75)

4Gg41S = 2%2Rd1/
0

Treating this as an infinitesimal g, ,-deformation and expanding around pure Ad.S,
we would like to obtain the O(Q) change in EE, or equivalently the infinitesimal

change for the plane wave excited state relative to the ground state. From the
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. . . 2 d ..
turning point equation, we have A% = ;{?fl) as before, giving
T

2+Qrd

2(d—1) 2(d—1)
(- () e -en(z)

Tx d
— 2V2V, ,R*! / - (1+Q—T)
0

Py U2

Tx d
4Gg1S = 2V oR41 / d

Ori — (O <£>2(d1)
4f(r,ry)?

= 4Gd+15’0 -+ 2\/§Rd71NEE Vd,QQTz, (276)

X | 1—

Nee = /O ! {2\/% * Ard=14/1 — g2(d-1) ((1 — x2(d—1)) 1):|
v [(@d+1DD(G)  2(d—1DT(55) (2.77)
2\ TG+ 74) [(525) '

It can be checked that the constant Ngg is positive, so that the correction to the
entanglement entropy is positive. To O(Q), we can replace 7, by s, the pure AdS

turning point. Then using [ = 2s7, we see that

Rd Y Neg V0Ol :_i_Rd*l Nee Vi

AS ~
Gd+1 4772\/_ Gar1 4n2y/2 1472

QI , (2.78)

with QI¢ < 1. There are parallels of this analysis with “entanglement thermody-
namics” [75, 76, 77] (see also [86, 87, 88]). In the present case, we have the energy
change in the strip AE ~ [§Tyd? 'z ~ QVy_ol, giving TgASp ~ AE with the
“entanglement temperature” Ty ~ % . There is also an entanglement pressure.
Although it is not crucial for our purposes here, it would be interesting to develop

this further.

The above entanglement entropy change implies that the change in mutual infor-

mation is negative (with Iy[A, B] the mutual information in pure AdS):

I[A,B] = LA, B] + AI[A,B]

— LA, B] + B Nes g (28" = (2 +2)* - 2?)
’ Gd+1 \/_
Rd 1 NEE T\ 2
= [JA,B] — 2 VioQP (14+=) . 2.79
AB] = 2 VasQE (14 7) (2:79)
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Thus we see that mutual information strictly decreases, for a small T, energy
density flux perturbation along the strip subsystem. In this perturbative regime
with the correction scaling as O(Q) and as the area of the interface V;_5, the en-

tanglement and mutual information corrections involve the dimensionless quantity

Vi_2QI2.

It is worth noting that unlike in the wide strip regime (2.62), the disentangling
transition in this perturbative regime certainly depends on the energy density @)
and the strip width through QI?. In particular, using (2.74), (2.55), we see that

the mutual information (2.79) vanishes at

0 Neg 4 T\ 2
EE((%)1 (2 +1) - 2) B 2\/5772@[ (1 * 7) =0, (2.80)

where NV}, is the constant coefficient of the finite part in (2.74). A numerical study

later (sec. 5.4) describes the location of the vanishing of mutual information and

the disentangling transition for intermediate regimes as well, where QI? ~ O(1).

2.5.3 Narrow strips: 1Q"? < 1, strips orthogonal to flux

We describe the change in entanglement entropy and mutual information for the
strips orthogonal to the flux in the perturbative regime Q¢ < 1 here. The

analysis is similar to the previous case, but involves more calculation.

We first consider a single strip and study entanglement. In this case, the width

direction of the strip A is parallel to z4_1, with & = ti\xfd L. The bulk extremal

surface v4 is specified by ™ = 2% (r), = = 27 (r), and the spacelike strip subsys-
tem has width

Azt = —Az~ = % >0, (2.81)

(spacelike implying At = 0) and longitudinal size Vy_» ~ L9~2 with L > [ in the
x; directions. € is the UV cut-off. Then the width integrals and the entanglement

entropy area functional reduce to [52]

Am / / (Qre — B) dr
v ﬁ@B; +Qri 2B NET T
2RYW, o (™ d AB
S, = d-2 / ! . (2.82)
4G 444 . ri-l VA2B2 — 2Br2(d-1) 4 (Q3d—2
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Unlike the previous case, here we have two parameters A, B and two integrals
specifying the subsystem width [ as a function of the turning point r, of the
extremal surface, given by (2.82). For pure AdS, with @ = 0, (2.82) alongwith
(2.81) fixes B = 1, with ¥ treated “symmetrically” as expected in the absence
of the energy flux. We will treat the AdS plane wave case in O(Q) perturbation
theory and expand both integrals around AdS. The turning point equation here
is

A2 A2B2 g\ 2 )
Sap tQE-2B=0 = = (%) eB-et. @8

*

This recasts the denominator of the width integrals in terms of

Frr) = \/ 1- (ri*)w_l) (2.84)

(- )*)]"
2B f2 '

and B alone,

1/2 .
AB +Qr"—2B] - (E)d fr V2B |1 -

r2(d—1) r

(2.85)
However unlike (2.67) earlier, we are still left with the parameter B here, so the
turning point equation does not suffice. The other relation for recasting both A
and B in terms of @), r, comes from the fact that we have a space-like subsystem,
i.e. (2.81). Specifically with the pure AdS case corresponding to B = 1, in this
perturbative regime with Q% < 1, we can safely assume that B = 1 + AB with
AB ~ O(Q). Since the two width integrals for Az™ and Az~ must obey the
equality Azt = —Az~ = \/Li’ we must have that the change in the turning point

dr, obtained from both is the same, which fixes AB o< Qr¢ as we will see.

To elaborate, from (2.81), (2.82), (2.85), we have

Azt 1 /T*d (r/r,)31 1 (2.86)

— r ‘
f(r,r)VB [1 Qrﬂ(l—(r/r*)BdQ):| 1/2

V22
- 2Bf2

Now, with B=1+ AB =14 O(Q), we can expand this to O(Q) obtaining

R e S ™y TS Y e 8 e (S L e

2 f(r,ry) 2 f(r,ry) * 4f3(r,ry)
(2.87)
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As in the previous subsection, we keep our entangling surface fixed so [ = 2sn,

with s the pure AdS turning point. The new turning point is r, = s + dr,, so
1/2 =r.n— or.n. Thus

ABr, 1 a1 1 d—1(] _ p3d—2
— o = — 220 +Qr d+1/ PP Uk i Ny (2.88)
2 v+ o A1 = 2232

Starting with the Az~ integral and using (2.81), (2.82), (2.85), we have analogous

o0 (2.86),
l Tx . d—1 B _ d
" VB(1 - )
As above, expanding to O(Q) gives
T . d—1 AB T . d—1
L[l 8B
2 0 f(rry) 2 Jo f(r,r)
T d-1(1 _ (r/r )3d-2) r/r
o [T ) (s [t
+ QT*/O " 4f3(r,ry) —Q flr,ry)
(2.90)
Then as above, the change in turning point is given by
AB d—1 d=1(1 _ ,3d—2
—0ryn = r ‘ + Q'r’fJrl de> (1—2")
2 . /1 — 2(d-1) 4(1 — x2(d—1))3/2
L2 (2.91)

_ydtl
Qr: dx =

For this spacelike subsystem, the above (2.91) should be identical to (2.88). Using
(2.66), this gives

1 g D) ()
AB =aQr?, with a= —/ dx = 2027 d-l :
“ nJo  V1—220-0  2(d-1TE+ H)(GS)
(2.92)
Using the above, we get
1 2 L ()2
Sr. = BOrt | with B = — (33) (2.93)

Ad—1) 8(d—13/7T(E+ 2)°
It can be checked that 8 < 0 (8 — 0~ for large d): thus dr. is negative.

We can do a similar perturbation for finding the O(Q) change in the entanglement

entropy Sy for pure AdS given by (2.73). In the present AdSy.; plane wave case
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with the strip orthogonal to the flux, the entanglement entropy is (2.82), i.e

(2.94)

™ d AB
4Gq1S = 2Vd2Rd1/ d: —
e T rd—1 \/;24((1€1) + QTd _

From the turning point equation, we know that AB = r?=1,/2B — Qrd. With
f(r,r,) as defined before, the EE can be recast as

1/2
or
g [ dr (1 _ 2B )
4Gy41S = 2V oR . (2.95)
it Qri—(r/ray¥-2)| /2
f(ﬂ T*) [1 - 2Bf? ]

Now with B = 1 + aQr?, we see that the perturbation in EE is independent of
AB to O(Q), since B appears above only as Q . Expanding S to O(Q), we obtain

"od 1
4GS = 2Vd—2Rd_1/O rdil £ ) [1 — Q4 + ff}; (1 (T/T*)3d_2):|

! 1—a3
— d—1 2
= 4Gd+150 + 2‘/(1_2R Qr* /0 dx |:4l‘d_1(1 — m?(d—l))3/2

3d—2

1
_45Ed71(1 _ x2(d1))1/2:|
= 4Gd+1SO + 2Vd,2Rd71Q7’fMEE, (296)

with

F [ T
Mew = 10755 [r(ﬂ) (d 1)r(;)] . (2.97)

2d—2 2d—2
It can be checked that Mgr > 0 for d > 1. Thus the change in entanglement

entropy is positive, as before. To O(Q), we have r, ~ [, so that as before,

AS =

R MEE V0 = R Mpp Vis

14 2.98
2Gd+1 4’[7 2Gd+1 4772 Jd—2 (Q )7 ( )

so that as in (2.79) previously, the mutual information decreases as

-1 MEE
Ga 877

I[A, B = I[A, B] — 2& Vi oQP? (1+f)2 , (2.99)

l

in this perturbative regime with QI? < 1. It should not be surprising that no
hint of the phase transition is visible in this perturbative regime. For subsystem
size well below the characteristic length scale set by the energy density, i.e. | <
QY4 we only expect small corrections to the ground state entanglement and

mutual information structure. The phase transition on the other hand corresponds
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to strips much wider than the characteristic length scale. In that regime, the
two integrals for Ax* scale rather differently so that the spacelike subsystem
requirement cannot be met: this leads to the absence of a connected surface and
is the reflection of a phase transition. The corresponding entanglement saturation
occurs since the degrees of freedom responsible for entanglement do not straddle
the boundary for long if their size ~ O(Q~'/?) is much smaller than the subsystem

width, since they enter the strip and leave.

2.5.4 A more complete phase diagram and some numerical

analysis

In the previous subsections, we have studied entanglement entropy and mutual
information for large and small QI¢, Qz?. It is interesting to study the interpola-
tion between these, including the regime where QI¢, Qz? are O(1). Towards this,
we perform a numerical study of the entanglement entropy integrals and thence
mutual information (using Mathematica). The plots in Figure 2.4 and Figure 2.5
show the finite cutoff-independent part of entanglement entropy (black, green and
blue curves) for the AdS, and AdSs plane waves, setting () = 1,3, 10 respectively,
in the case of the strip along the energy flux: the red curves are those for pure
AdS, and AdSs. In the numerics, the area integrals have been regulated using a
small UV cutoff regulator and subtracting off the area law divergence term, we

obtain the finite part. by subtracting the area of the disconnected surface and

sfinqly
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Figure 2.4: Plots of the finite parts of entanglement entropy for the AdS; ground
state (red) and the AdS, plane wave (the black, green and blue curves correspond to

the values @ = 1,3, 10 respectively).

For small [, we see that the AdS plane wave (black, green, blue) curves lie “above”

the pure AdS (red) curves, which means the finite entanglement is larger than for
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the ground state. This is of course consistent with the previous analytic studies in
the perturbative and large QI regimes but the plots show that this is also true for
all Ql¢. Furthermore, the curves for larger @ values lie “above” those for smaller
() values, which is intuitively reasonable, implying that the finite entanglement
increases with increasing energy density (). The plot regions for large [ are in
reasonable agreement with fitted curves for v/ and log! (the fits improve with

increasing accuracy, number of data points etc as expected with numerics).

Figure 2.5: Plots of the finite parts of entanglement entropy for the AdSs ground
state (red) and the AdSs plane wave (the black, green and blue curves correspond to

the values @ = 1, 3,10 respectively).

Likewise, Figure 2.6 shows the plot of mutual information vs the separation z for
the AdSs plane wave with both strip subsystems along the flux (with fixed widths
[ taken as [ = 50). The small = region shows a growth reflecting the divergence
when the subsystems approach to collide (which is similar to the divergence for
pure AdSs). The mutual information vanishes at the critical value % = 0.41. We
have also checked that the corresponding plot for pure AdSs behaves as expected,

with the critical value % ~ (.732.

Figure 2.6: Plot of the MI vs 2 with fixed width { for the AdS5 plane wave.
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Figure 2.7 shows the 7 vs Q"¢ parameter space (shaded regions) with nonzero
mutual information for the AdSs plane wave with both strip subsystems along the
flux. We vary the width [ and find the critical value z. holding () fixed: the three
curves are for Q = 1,3, 10 as before. We see that the critical value % interpolates
from about 0.732 (IQ'/? < 1, approximately AdSs behaviour) to 0.41 for the AdS;
plane wave. We see that the mutual information parameter space remains nonzero
for large IQ'/¢, unlike the finite temperature case [78] where the curve has finite
domain (with z, = 0 for large IT). We have seen previously that in the wide
strip regime QI? > 1, the mutual information disentangling transition location is

independent of the energy density @: this is reflected in Figure 2.7
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Figure 2.7: Plot of the % vs IQ'/? parameter space with nonzero mutual information
for the AdSs plane wave.

by the fact that the black, green, blue curves all flatten out for large [, signalling
that the critical value %¢ is independent of the precise curve and corresponding @
value. However we note that in the intermediate QI¢ ~ O(1) regime, the mutual
information disentangling transition location %¢ certainly depends on the @) value,
the different curves being distinct. Thus it is only in the QI? > 1 regime that
the mutual information disentangling transition becomes effectively independent

of the energy flux Q.
There are similar plots for the AdS4 plane wave, which we have not shown.

Our discussion so far and the corresponding plots have been for strips parallel to
the energy flux. For the strips orthogonal to the flux, entanglement shows a phase
transition, corroborated in the corresponding plot (shown in [52]). Plotting mutual
information appears more intricate with more technical challenges in general. For
wide strips [ > Q~'/?, the strip entanglements saturate: crude plots show the

strips disentangling at critical %¢ values varying as @) varies, with all % less than
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those for the strip along the flux (e.g. % ~ 0.11 with @ = 1, AdS, plane wave).

It would be interesting to study this more completely.

2.6 Discussion

We have studied entanglement entropy and mutual information in AdSy.; plane
waves dual to CF'T excited states with energy-momentum density 7'y , = @, build-
ing on [51, 52|, focussing on d = 3,4 for two strips of width [ and separation z,

parallel and orthogonal to the flux.

For the strips parallel to the flux, mutual information exhibits a disentangling tran-
sition at a critical separation %¢ less than that for the ground state. For wide strips

Ql¢ > 1, we see that the subsystems disentangle only when they are sufficiently

¢ is independent

of the characteristic energy scale Q~'/¢ in this regime. This is quite distinct from

wide apart in comparison with the width: the critical separation

the finite temperature case [78] where e.g. the linear extensive growth of entan-
glement in the corresponding regime [7" > 1 implies the subsystems disentangle
for any finite separation x independent of [. For the strips orthogonal to the flux,
entanglement entropy shows a phase transition for [ > Q~'/? [52]: in this case,
entanglement is saturated and so mutual information also vanishes. In the pertur-
bative regime QI¢ < 1 for the strips both parallel and orthogonal to the flux, we
have seen that the change in entanglement entropy is AS ~ +V;_»QI* with the
analysis similar to “entanglement thermodynamics”. Here the mutual information
always decreases. Thus the disentangling transition in this regime again occurs for

separations smaller than those for the ground state. In this perturbative regime,

Ze

1
shows the critical %= has nontrivial dependence on @ in intermediate regimes as

the critical separation certainly depends on () and [. The numerical study
well. As one approaches the wide strip regime QI¢ > 1, the mutual information

curves approach each other and flatten out, signalling independence with Q).

Overall this suggests that the energy density disorders the system, so that the
subsystems disentangle faster relative to the ground state. The thermal state is
disordered, since in the regime with linear (extensive) entropy, the subsystems are
disentangled or uncorrelated for any nonzero separation z. The AdS plane wave

states are in some sense “partially ordered”: the disentangling transition location

Ze

l
along the energy flux, but the critical value remains nonzero even for wide strips

occurs at critical values £¢ smaller than those for the ground state for the strip
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Ql¢ > 1. Perhaps this “semi-disordering” is also true for more general excited

¢

states that are “in-between” the ground and thermal states.

The AdS5 plane wave gives rise to a hyperscaling violating spacetime exhibiting
logarithmic violation of entanglement entropy, suggesting that perhaps these are
indications of Fermi surfaces [69, 70]. In the regime where the strip widths and
separation are large relative to the energy scale Q~/4, the logarithmic scaling of
entanglement implies a corresponding scaling of mutual information, similar to the
corresponding behaviour for Fermi surfaces. This regime is of course just one part
of the full phase diagram thinking of these as simply excited states in AdS/CFT,

as we have seen. It would be interesting to explore these further.
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Hydrodynamics in hyperscaling
violating Lifshitz theories: A

membrane paradigm approach

The principle of gauge/gravity duality has emerged as a highly successful tool-
box for the understanding of hydrodynamics of strongly coupled field theories.
Experimental realizations of such field theories have been observed in the Rel-
ativistic Heavy-Ion Collider (RHIC) at the Brookhaven National Laboratories,
USA. Heavy-ion collision experiments produces an exotic phase of matter called
the quark-gluon plasma which is better approximated as a strongly coupled fluid
rather than a weakly interacting gas. Hence, gauge/gravity duality has proved to
be successful in uncovering universal properties of various transport coefficients.
One of the most famous example is the shear viscosity to entropy density ratio
which has been conjectured to have a lower bound of ﬁ for relativistic theories
admitting an Einstein gravity dual [89, 90]. The duality has also provided deep
physical insight into relativistic and non-relativistic hydrodynamics through the

fluid /gravity correspondence [91]

The AdS/CFT correspondence tell us that the field theory at thermodynamic
equilibrium is described by a static black brane metric in the dual gravitational
model. Basic principles of thermodynamics dictates that a perturbation away from
equilibrium will result in thermalization—the system will gradually settle back into
an equilibrium configuration. In the dual theory, this corresponds to fluctuations of
the black brane background which eventually falls back into the brane. In the long

wavelength, low frequency limit both these descriptions are consistent with the

67
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hydrodynamics of a relativistic CFT. In [P2], we used the technique pioneered by
Kovtun, Son and Starinets [96] in order to evaluate the shear diffusion constant and
shear viscosity of a non-relativistic fluid whose dual theory is described by (1.1).
However, before discussing our work in further details, we will briefly review the
work done in [96] in the context of relativistic theories for a better understanding

of our generalization.

3.1 Review: Membrane paradigm approach for
evaluating response function in relativistic

theories

Kovtun, Son and Starinets formulated charge and shear diffusion for black brane
backgrounds in terms of long-wavelength limits of perturbations on an appro-
priately defined stretched horizon, the broad perspective akin to the membrane
paradigm [97]. Their analysis, which is quite general, begins with a background
metric of the form

d—1

ds® = G datdx” = Gu(r)dt® + G (r)dr?® + G (r) Z dx? | (3.1)

%
i=1

which includes the hyperscaling violating backgrounds (4.10) as a subfamily. Charge
difffusion of a gauge field perturbation A, in the background (3.1) is encoded by
the charge diffusion constant D, defined through Fick’s Law j° = —Dd;j!, where
the 4-current j* is defined on the stretched horizon r = 7, (with n the normal)
as j* = n,F"|,—,,. Then current conservation d,j* = 0 leads to the diffusion
equation ;5! = —0;5' = D?j', with D the corresponding diffusion constant.
Fick’s law in turn can be shown to apply if the stretched horizon is localized ap-
propriately with regard to the parameters I',q, 7. Translation invariance along
x € {z;} allows considering plane wave modes for the perturbations o e T+,
where I' is the typical time scale of variation and ¢ the z-momentum. In the IR
regime, the modes vary slowly: this hydrodynamic regime is a low frequency, long
wavelength regime. The diffusion of shear gravitational modes can be mapped to
charge diffusion [96]: under Kaluza-Klein compactification of one of the directions
along which there is translation invariance, tensor perturbations in the original

background map to vector perturbations on the compactified background.
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We turn on the metric fluctuations h,, and hyy, (v = 21, y = 22) around (3.1),
depending only on ¢,7,z, i.e. hy = hy(t,z,7), hyy = hyy(t,r,z). Other fluctua-
tion modes can be consistently set to zero. There is translation invariance along
the y-direction: thus after a y-compactification, the modes h,, and hy, become
components of a U(1) gauge field in the dimensionally reduced d-dim spacetime.

The components are given by

1

Guv = G,uu(Gmt)m [/fw V= 07 B 7d_1]; AO - (Gm:)_lhty ) Aa: = (Gm:)_lhmy )
(3.2)
where G, is the metric given by (3.1). A part of the gravitational action contains

the Maxwell action with an r-dependent coupling constant,

1 d-1
vV—GR — —Z—L\/—gFagFfwggMgﬁ‘s(Gm)d—? : (3.3)
The gauge field equations following from the action are
1 1% 1 %
(9M (g—2ﬂ\/ —gF ) =0 s —2ﬂ = wa y (34)

where we have read off the r-dependent g.; from the compactified action. Analysing
these Maxwell equations and the Bianchi identity assuming gauge field ansatze

A, = a,(r)e” """ and radial gauge A, = 0 as in [96] shows interesting simplifica-

tions in the near-horizon region. When ¢ = 0, these lead to 0, ( \ngg g g"o, At) =0.
eff

We impose the boundary condition that the gauge fields vanish at r = r, ~ 0. As

in [96], for ¢ nonzero but small, we assume an ansatz for A, as a series expansion
2

in# ,
0 1 1 q
A=A+ A0 4. AP = o(7) .

Ago) — (e Tttigw rdrlgtt(r/)grr(r/) 'gerf(T/>
Te V _g(/r/>
_ Cefl"tJriqx /T dr’' Gtt(r/)GM‘(T/)
re Goez(r' )/ —G(1")

(3.5)

)

using (3.2), (3.4), with C' some constant. Making a second assumption

|0cAa| < [0z A (3.6)
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as in [96], the gauge field component A,, using the A; solution, becomes

Ay = A0 AL 4

A(O) — _Ecefl‘t+iqm rdrr/gacx(rl)grr(r,) 2 ( /) _ EcethJriqx " dr' GTT(TJ)

o N & I @

again as a series expansion. As for A;, we impose the boundary condition A, — 0
as 7 — r. ~ 0. In [96], the authors show that the above series expansions are
self-consistent provided the following conditions hold on the location r, of the
stretched horizon and the parameters ¢, " and T' (equivalently ry):
el 1 ,
e ? LK 5 K1 — : real event horizon.convo (3.8)

1 2
o T To

Physically the above condition means that although the stretched horizon is in-
finitesimally close to the real event horizon, it cannot be exponentially close to the
same. This enables us to define Fick’s law on the stretched horizon, and thereby
the diffusion equation. The shear diffusion constant for the uncompactified higher

dimensional theory then becomes

_ ~o(r) el ()t ()
geH2 (Th)gxm (Th)\/_gtt (Th)grr(rh> /Tc _g<7")

_ —G(rn) /”L g —Gu(r)Gr(r)
V=Gu(ry)Grr(rs) Jr, Goz(r)/—G(7)

(3.9)

where 7. is the location of the boundary, and we are evaluating D at the stretched
horizon which is at an infinitesimal distance away from the true event horizon
located at r,. This formalism essentially maps the shear diffusion constant for a

d + 1 dimensional theory to the charge diffusion of a d-dimensional theory.

Using the thermodynamic relation ¢ + P = T's, one can find a relation connecting

the shear viscosity and shear diffusion given by

— s _G<7"h) "h - —Gtt(T)Grr(T)
Y e FoaTe oy / W /=G0 (3.10)

As an example, let us consider the metric of a stck on NV non-extremal D3 branes

in type IIB supergravity which in the near-horizon region takes the form

2 2

(—f(r)dt? 4 dz* + dy* + dz*) + rjf%(r)

r

2
dS :ﬁ

dr? + R*dQ3 . (3.11)
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where R is a constant (radius of the AdS space) and f(r) = 1 — rj/r*. The
holographic dual theory for the above gravitational background is N' = 4 SYM
theory with a gauge group SU(N) in the limit of large N and large 't Hooft
coupling living in 3+1 spacetime dimensions. The field theory is defined at the
same temperature as the Hawking temperature of the gravitational background
which is T' = ro/mR?. The entropy density is s = 7r72]\72T3. Using (3.9) and (3.10),

the shear diffusion constant and shear viscosity turns out to be

1 T
D= _—_ = _N?73 . 12
5T and 7 A (3.12)

This leads us to the relation

— (3.13)

The remarkable regularity in the ratio of shear viscosity to entropy was also ob-
tained for a stack of N M2 branes, M5 branes as well as Dp-branes. This universal
behaviour of 7/s led Kovtun, Son and Starinets to propose a lower bound on this

ratio. Restoring the canonical dimensions, one can write the proposed bound as

h

>
- 471'/{33

® |3

~6.08x 107K -5 . (3.14)

Since this lower bound does not contain the speed of light ¢, [96] suggested that this
is a lower bound for all systems, including non-relativistic ones. This motivated
us to look into gravitational backgrounds exhibiting hyperscaling violation which

has been proposed to be gravitational dual of non-relativistic systems.

3.2 Shear diffusion in the absence of gauge field:
Dilaton gravity

In this section, we will adapt the technique pioneered by Kovtun, Son and Starinets
in [96] in the context of hyperscaling violating Lifshitz theories. In order to simplify
our understanding further, we will not introduce any perturbation in the gauge
field sector and only consider shear gravitational perturbations. Although, this
program was carried out in [P2] for a generic d; + 2-dimensional gravitational
background, for the sake of simplicity we will present the results focussing on 4
bulk dimensions. In the subsequent chapter, we will analyse the same system in

arbitrary spacetime dimensions through studying the relevant quasinormal modes.
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In this section, we will be concerned with the hyperscaling violating metric given
by

— At +

ds? =
TTEUTET Time T T e

d2 d2 d2
9< f(r) e 3/)7 di=2, dyy=2-0, (3.15)

where f(r) = 1 — (ror)?>**~%. The temperature for the dual field theory (i.e. the

Hawking temperature for the black brane) is

2 _
_2r=-6 . (3.16)

T
47 0

Similar to [96] we will make a gauge choice for the perturbations by setting h,, = 0
(radial gauge) and assume that the perturbations to be of the form h,,, (¢, z,7) =
e~y (r) where  is one of the spatial directions in the boundary theory.
The shear mode h,, couples to h;, and decouples from the scalar mode ¢ giving

us a system of three coupled equations,

z+0-3
au%W*@@ﬁ$mw)—7’f Q(wr?Ohgy + qr¥hy,) =0, (3.17)
z+6-—3
O (r 0, (r* P hyy)) + 7 w(wr* hy, + qr*?hy) =0, (3.18)
q@r(r2_9hxy) + %Tzz_z&ﬂ(r%ehty) =0. (3.19)

For the sake of completion, we have listed all the other equations of motions
(including the gauge field perturbation) in Appendix A. Taking motivation from
[96], we compactify the theory along y-direction to obtain an auxilliary theory
in one lower dimension with gauge field A; and A,. These gauge fields in the 3
dimensional theory capture the dynamics of the gravitational perturbations of the

3+1-dimensional hvLif theory. In terms of the y-compactified theory variables

v = TQ_QGW v =tz A, = 7’2_9hty ., A= rz_ehxy ,
Fri=0,(r* A, Fro = 0.(r" P A,) Fio = —iTQ_G(thy + qhyy) |
(3.20)
the above linearized Einstein equations become
V—09e™ ¢ g" 0, Frn + 8r(\/—_ge4¢gwgttﬂr) = 0, (3.21)
V=9 " " 0, Fpp + 0,(\/—ge* g " Fra) = 0, (3.22)

GO T + G50, Fyr = 0, (3.23)
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where eV = g% = r20=4_ Other than these, we also have a Bianchi Identity

eff

atfrx + ax«/rtr - arf;fx =0 > (324)

which is a trivial relation in the higher dimensional theory. Equation (3.19) is

a constraint equation in the higher dimensional theory which can be mapped to

(3.23) in the y-compactified theory. Defining currents as j* = n,F*" (n, being
T2

the normal vector to the boundary r = r., with ¢""n7 = 1) we can write them in

terms of the perturbations of the higher dimensional theory,

7° = n FT =190 F 0, (r Ohy,) | (3.25)

7,4+2z—36
VT

Identifying the ratio D = — 3% we can essentially write (3.19) in the form of Fick’s

7

it = n FT = — O (r* P hyy) (3.26)

Law as
5 = —=Da,j" . (3.27)

The formulation of Fick’s Law in [P2, 96] is done entirely in terms of field variables
of the y-compactified theory. Differentiating (3.23) w.r.t ¢ we can eliminate F,,
using the Bianchi Identity (3.24) to get the following equation

8?]-"” + r2*2zf8x(—8x]:tr + &ftw) =0. (328)

In the the near horizon region approximating the thermal factor as f(r) ~ (2 +

z— 9)% and parametrizing the frequency as w = —il" for some positive I" so

that the perturbations decay in time, (3.28) can be written as

2 1 _ . 1 _
z— q T r z— Zq T r
(1+(2+z—«9)r3 Qﬁ' o1 >]—"trz—(2+z—0)r(2) Qﬁ- T 0 Fio -
To To
(3.29)
Assuming
= < — (3.30)
L ¢re?
we differentiate both sides w.r.t  and approximate (3.29) further as
q27,(2)z—2 % —r
OpFir = (2+2—10) -0, Fia - (3.31)

r? L
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The assumption (3.30) implies
axf;fr < 87“«th ) (332)
which in turn simplifies the Bianchi Identity (3.24) to

OpFra = OpFry + Op Fiw ~ OpFie (333)

Differentiating (3.22) w.r.t ¢t we get

7“Z+9_3
Op(r' 7 0, Fr) — Taffm =0. (3.34)

Using the approximate Bianchi identity (3.33), to substitute for F,, and then mul-

tiplying throughout with —% we obtain a wave equation for the field strength

02 F o — v (i _ 7“> o, ((i - r) arfm) ~0, (3.35)
To To

where v is given by

tx

v=2+z—-0)r . (3.36)

The horizon is a one-way membrane: we incorporate this by requiring that all
perturbations obey ingoing boundary conditions at the horizon. This dissipative
feature is of course at the heart of the diffusion equation that results from this
near-horizon perturbations analysis. Thus, imposing ingoing boundary conditions

on the wave equation amounts to choosing the ingoing solution, leading to

Fiz = f1 (t + 1 log (l — r>) , (3.37)
14 To

where f; is any arbitrary smooth function. If we now ensure that the perturbations

decay as t — oo we obtain

Fur b y(% 1) F =0, (3.38)
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The leading solutions for the fields A; and A, are
A}EO Ft+1q:p/ dr /gtt _z'ﬂ‘ ) 'gzﬂ(r/)
— CethJriq:E /T‘ d?”/ Gtt( )G (T‘l)

G (1 ’)\/—G(?”’) ’ (3.39)

A(O) — Ft+qu/ d /g$$ TT(T/) . QH(T’I)
zF

V=y(r")
_ _Ce*FtJrqu d / G (T>

T Neemh

where r. ~ 0 is the boundary where we impose the boundary conditions that the

R
1)

perturbations die. In writing down the above expressions, we have used (3.2),
(3.4), with C' some constant. Using the metric components from (3.15), we can

proceed to write down the leading order solutions A,EO) and Aéo).

When 4 — z — 6 > 0 the leading solution .Al(to) has a power-law behaviour

- C
A(O) t —Ft—l—zqa: 4—z—0 3.40

(tar) = e T (3.40)

It is expected that close to the boundary i.e. near r = r. the hyperscaling violating

phase breaks down and we require ror. < 1. The analogous statement for the

boundary field theory will be to assume that the temperature is sufficiently below

the UV cut-off. Thus, the condition z < 4 — 6 arises from the boundary condition

that AEO) —0asr—0.
The expression for A vields

i Oe—FH—iqx .
A = oL (). (341
0

However, the equivalent assumption to (3.6) in this case i.e.

restricts the validity of our solutions within the regime

T2/% TL - e
exp (_ e ) << o <1. (3.43)

]
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We can now evaluate the shear diffusion constant on the stretched horizon for the

hyperscaling violating theory with 4 — z — 6 > 0 from Fick’s Law and (3.38)

_ Gt frac 2—1 -th s | At 7’8_2
az]t Gzx azfrt axfrt F’r 4 — 2 — 9

tlr~ry,

+0(¢?) .
(3.44)

The solution for AEO) is evaluated at the stretched horizon r,: however 7, ~
%+O(q2) so to leading order D is evaluated at the horizon % It is interesting that
the effect of the hyperscaling violating exponent 6 cancels in the final expression
for D which is essentially the ratio of A; to a field strength F,; both of which has

non-trivial #-dependence.

Using the expression (3.16) we can express the diffusion constant in terms of the

temperature as
z—2

1 47T z z—2
D: TZ 4
4—2—9(2+z—9) (3:45)

which is identical to the one obtained in [P2] for the case without the gauge field,

for d; = 2 spatial dimensions.

For the family of hyperscaling violating solution where z = 4 — @, from (3.39) it

follows that the leading solution of A; has logarithmic behaviour

AO — geTrriar o0 T =40 (3.46)
Te

Working further, we can evaluate the diffusion constant upto leading order as

1
D =1 ?log : (3.47)

ToTe

This implies that in the low temperature limit as ry — 0, the diffusion constant
vanishes if z > 2. The new condition on the exponents z and 0, namely z < 4 — 0

appears to be a new constraint which is separate from the null energy conditions
2-0)2(z—1)—-06)>0, (z—1)2+2z-0)>0. (3.48)

The regime of validity for this analysis (equivalently, the “thickness” of the stretched

horizon) gets modified in this special case to

T 1 N 1
exp (— L) < 2 T < T log? o (3.49)
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However, since we are manifestly in the hydrodynamic regime, it means r. < %
implying log r(%r > 1. This does not over-constrain the window of the stretched
horizon: however the subleading terms contain the logarithmic piece affecting
the validity of the series expansion. The subleading contributions to A; and A,,

namely Agl) and Ag(cl) have been explicitly evaluated in Appendix.

The logarithmic scaling necessitates the presence of the UV scale r. appearing
in the diffusion constant in the hydrodynamic description which is manifestly a
description at long wavelengths (physics at IR scale). The leading order value of
the diffusion constant D is given by Ago), which is obtained by solving the ¢ = 0

and w = 0 sector of (3.17)

O (r* 0730, (r*%hyy)) =0 . (3.50)
The solution to the above equation is given by

hy (1) = er?2 4 eor? 7 (3.51)

where ¢; and ¢y are arbitrary constants. For z < 4 — 6, the 8 — 2 fall-off (non-
normalizable mode) dominates over the 2 — z fall-off (normalizable mode) near the
boundary r ~ r., while for z > 4 — 6 we see the exact opposite behaviour. When
2z = 4 — 0 there is a degeneracy in the two fall-offs and we have a new independent

solution which scales logarithmically with r,

r
hiy(r) = 17?72 + cyr?2log — . (3.52)

Te
The swapping of roles between the normalizable and non-normalizable modes
around the point z = 4 — @ gives some insight into the unusual logarithmic scaling
for the diffusion constant when z = 4—6. It is in fact reminiscent of the alternative
quantization of field modes [98] and thus holographically it is not surprising that

the relevant correlation function exhibits logarithmic behaviour.

3.2.1 Infalling condition for perturbations

As should be clear, a key ingredient that goes in the formulation of Fick’s Law is
the relation (3.38) for the field strengths F;, and F,.. In the context of the higher-
dimensional hyperscaling violating theory where the perturbations satisfy (3.17),
(3.18), (3.19), this relation can be derived exactly without any assumptions on the

parameters ¢ and w. It turns out in this context it is a consequence of imposing a
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certain physical condition on the function H(t,r,z) defined as
H(t,r,x) =r" - 0,(r* hy,) . (3.53)
This condition that we impose is given by
O+ f-r'770,) H=0. (3.54)

Defining two new coordinates u and v as

1 1
v = t+—log|——1],
14 To
1 1
u = t——log (——r) : (3.55)
14 To
For r < % expanding the log, we see that v ~ ¢ — 01 so v is the ingoing coordinate

(with r increasing towards the interior). We see that in the near horizon region

the full wave operator is

40,0, = 07 — 1V (l — 7“> 0, <(l — r) 8,,> , (3.56)
To To

while the linear differential operator acting on H in (3.54) is essentially 0; + f -
=0, ~ 0, +v (% — r> 0, = 0, . With v the ingoing coordinate, this can be thus
interpreted as the ingoing condition 0, H = 0 implying that the function has the
form H = H(v).

Likewise, choosing the solution (3.37) is equivalent to requiring that the field
strength JF;, obeys the ingoing condition

1
815.7-}1 +v <— — 7’) a?“ftx =0 y (357)
To
which can also be written as 0,F;, = 0, giving F, = Fi.(v). Using (3.20) we can
write
7,,z+179
O Fie = =17 Pw(Whay + qhyy), Fro = 0p(r* Phy,) = 7 H. (3.58)

The above equalities in conjunction with (3.18) gives

7az—l Tz+9—3
o.H = — 7 w(whyy + qhey) = T(’?t]:tx . (3.59)
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Also (3.54) naturally implies

Tz—l

0.H = — 7 O H = —r"20,F,, . (3.60)
Equating the above two expressions for d,H, we recover the relation (3.38) as
was obtained in [P2]. It should be noted that the relation between F,, and Fy,

was obtained in the y-compactified theory by making certain self-consistent ap-

proximations involving the parameters ¢ and w which is quite distinct from the
derivation demonstrated here, using (3.17), (3.18), (3.19), directly.

3.3 Comments on g

We now make a few comments towards gaining insight into ? :

(1) As a consistency check, we see that for pure AdS with § = 0, z = 1, we obtain
D = ﬁ . This corresponds to a relativistic CF'T: the shear diffusion constant is
D = ;’5 and thermodynamics gives e + P = T's, where ¢, P, s are energy, pressure
and entropy densities. This gives the relation 7 = DT and thereby I = ﬁ .

(2) Theories with metric (4.10) with 6 = 0 enjoy the Lifshitz scaling symmetry,
x; — Ay, t — N*t: Then the diffusion equation 9,5 = D9?;* shows the diffusion
constant to have scaling dimension dim[D] = 2 — z. With temperature scaling
as inverse time, we have dim[T] = z. Thus on scaling grounds, the temperature

scaling in (3.45), which here is

1 4ﬁT Z;2 z—2
D = ( ) T 361
4 —2\24 2 ( )

is expected, upto the z-dependent prefactors. For z = 2, the diffusion equation
(structurally like a Schrodinger equation) already saturates the scaling dimensions,
and D has apparently no temperature dependence. As T increases, D decreases

for z < 2: however D increases with 1" for z > 2.

Aspects of Lifshitz hydrodynamics in (d 4+ 1) spacetime dimensions have been
studied in e.g. [99], [48]. As discussed in [48], under the Lifshitz symmetry, we
have the scalings [T =z, [e] = z+d—1, [P]=z+d—1, [s]=d—1, [n]=d—1.
Indeed for Lifshitz black branes with horizon ry and temperature (3.16), the

d—1 d—1

"H _ 1 4 — . .
o = 4Gd+1( 7i.—1) = . The thermodynamic relations

give e+ P = T's. The shear viscosity [48] isn =

entropy density is s =

1 =1 .o .
16de+1T = satisfying the universal
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bound 2 = L . For this to arise from (3.61), we guess that the relation between

4
shear viscosity and the shear diffusion constant is
n (4—2) 45 (4—@(4w>tz 2—:
S A "o A 24z ( )

(3) For 6 # 0, the scaling analysis of the Lifshitz case is not applicable: however
the temperature is -independent and the relation (3.45) continues to hold for
generic #. Towards guessing the hydrodynamics from the diffusion constant in this

case, we first recall from [96] that nonconformal branes give D = 1=,
n _ 1

1 = .- continues to hold. On the other hand, [12] observed that nonconformal

Dp-branes upon reducing on the sphere S®P give rise to hyperscaling violating

and thereby

theories with 2 = 1 and 6 # 0. It would therefore seem that the near-horizon
diffusion analysis continues to exhibit this universal behaviour since the sphere
should not affect these long-wavelength diffusive properties.

ﬁ, with the #-dependent pref-

actors cancelling precisely. Thus all hyperscaling violating theories with z = 1

Happily, we see that (3.45) for z = 1 gives D =

appear to satisfy the universal viscosity bound

1
T"_pr=—. (3.63)

s 47

Putting this alongwith the Lifshitz case motivates us to guess the universal relation

U Gkl OF o S
S

z 4—z—9)< A ) 2z

1
D= = — (364
47 2+2—0 47 ( )

between 1, s, D, T, for general exponents z, §. This reduces to (3.62) for the Lifshitz
case = 0. One might wonder if the prefactors for # # 0 somehow conspire to
violate the universal bound: in this regard, it is worth noting that z,6 appear
in linear combinations in the prefactors. Alongwith the previous subcases, this

suggests consistency of (3.64).
deff

Finally we know that the entropy density is s = " ~ 2T %" in hyperscaling
violating theories, with d.;r = 2 — 6 the effective spatial dimension. Then (3.64)
gives the shear viscosity as n ~ ﬁT¥.

In the presence of a background gauge field, the analysis changes significantly.
Had we perturbed the background gauge field as A4, — A, + a, with a,(t,z,7)
denoting the perturbations, the analog of (3.19) is given by

q0r(r*"hyy,) + ?7"22_28,,(7“2_%@) - k?rz_eﬂay =0. (3.65)
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Due to the presence of the gauge field perturbation a,, we cannot map the above
equation to Fick’s Law by defining horizon currents as before. In [P’1], it was
demonstrated that a field redefinition which involves a non-trivial combination of
hiy and [ a, dr gives us an equation which is similar in structure to Fick’s Law in

the dimensionally reduced theory.

3.4 Shear diffusion: highly boosted black brane

The analysis carried out in [P2] for a d; + 2-dimensional hvLif spacetime showed
that the shear diffusion constant has a logarithmic scaling with respect to the
temperature when z = d; + 2 — 6. The parameters z and 6 are related precisely
in this way when the hyperscaling violating theory is constructed from the z*-
reduction of AdS plane waves (or highly boosted AdS; black branes), as well as

nonconformal Dp-brane plane waves, as discussed in [51].

To be more precise, compactification of AdSy, 3 plane wave along z* gives

2
i — %[—Mx*d:c+dx?+dr2]+R2Qrd1(d:c+)2+R2dQ§ —(3.66)
d; 2 2
o 2 dt* YU dai 4 dr di+4 4
ast = o (=5 + ) s= T 0= (3.67)

These can be obtained from a low-temperature, large boost limit [30, 51] of boosted
black branes [79] arising from the near horizon limits of the conformal D3-, M2-
and Mb5-branes. Similar features arise from reductions of nonconformal Dp-brane

plane waves [30, 72], with exponents

2(p - 6) g _ PO+

di=p—1, 3.68
b5 5 p (3.68)

where the Dp-brane theory after dimensional reduction on the sphere S®? and
the x*-direction has bulk spacetime dimension d + 1 = p + 1. The holographic
entanglement entropy in these theories exhibits interesting scaling behaviour [52,
72, P1, 71].

To obtain the finite temperature theory, let us for simplicity consider the AdSs
black brane

dr?

R? -
ds® = —( —(1- 7"8‘7"4)dt2 + d:L“?)’ + Z dI?) + RQW ) (3.69)

i=1

r2
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which is a solution to the action S = 1671G5 [ d®x\/—g®(R®) — 2A). Rewriting

(3.69) in lightcone coordinates and boosting as = — A*z*, we obtain

R2dr?

2(1 —rgrt)

R2

7’2

4
ds? = - ( o2datda + 0 . L et 2 1da) +Zd:c> . (3.70)

Writing in Kaluza-Klein form

R? (1 —rgrd) dr?
d 2:_ . 0 d —\2 d 2 d 2
s { —Qr4 (dx™)* +dx* + dy +—(1—r§r4)}

4,4 2 3.71
+ QR** | dat — =" )da:_ .
Qr |

2.4
To

A
where () = and compactifying along the z™ direction gives

1_44 d2 d2 d2
( TO )<d$7>2+x+y+ r

2 _ (11/2p3
ds” = (@R’ Qrs r? r2(1 — rér‘l)]’

(3.72)
This is simply the hyperscaling violating metric (4.10) with 2 =3, § = 1, d; = 2, in
[51], but now at finite temperature. It is a solution to the equations stemming from
the 4-dim Einstein-Maxwell-Dilaton action S = 16;04 [d*z/—g® (R®—2Ae=?—
39" 0,00,¢ — 1€3* F* F,,)) which arises upon dimensional reduction along the -
direction of the 5-dim Einstein action S = 5= [ d°zy/—g®(R® — 2A). The
scalar field has the profile e2¢ = R2Qr? while the gauge field is A4, = — 215 7{;, A =0
with f =1 — rdrt. The finite temperature theory is of course obtained by taking

the boost A to be large but finite, and the temperature ry to be small but nonzero,

while holding ) = )‘ng fixed. The boost simply serves to create a hierarchy of

4
scales in the energy momentum components Ty, ~ Nrg ~ Q, T-_ ~ 5§ ~

% , Ty ~rg, Ty ~ r3d;;, while keeping them nonzero.

The z, f-exponents (3.67) arising in these reductions satisfy z = d; + 2 — 6, coin-
ciding with the special case discussed earlier. This is also true for nonconformal
Dp-brane plane waves (3.68). It is worth noting that this relation between the
exponents is distinct from the window d; — 1 < 0 < d; where the holographic
entanglement entropy exhibits novel scaling behaviour: in particular the present
relation involves the Lifshitz exponent. The diffusion constant for this class of hy-
perscaling violating theories then has the logarithmic behaviour (3.47) described

earlier, provided we restrict to modes that describe the lower dimensional theory.
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In the above zt-compactification, we see that £~ above maps to the time coor-
dinate ¢ below. Thus mapping the perturbations between the higher dimensional
description and the hyperscaling violating one, we see that the metric in KK-form

(3.71) including the shear gravitational perturbations is of the form

ds* = §__(dz™)? + Guda? + Grpdr® + 2h_,da~dy + 2hy,dedy + G,y (dat + A_dz™)?

(3.73)
where A_ is the background gauge field in the lower dimensional description. In
other words, the perturbations map as fz,y — gy, ﬁxy — hgy, upto the conformal
factor arising from the z-reduction. In addition, the x*-reduction requires that
the perturbations h_,, h,, are x*-independent. This in turn translates to the

statement that the near horizon diffusive modes are of the form
huy(r)e—k,xﬂrz‘m ’ k. =0, [M = x_,x] ’ (3_74)

i.e. the nontrivial dynamics in the lower dimensional description arises entirely

from the zero mode sector k, = 0 of the full theory.

Likewise, vector perturbations dA;,dA, in the lower dimensional theory arise in
(3.73) as

o gy (dat + Adr + hy_dz + hyydy)?.

We see that these arise from gravitational perturbations hy _, hy,,.

To ensure that the massive KK-modes from the x-reduction decouple from these
perturbations, it suffices to take the x*-circle size L, to be small relative to the
scale set by the temperature T ~ ry, i.e. the temperature is small compared to
the KK-scale i : in other words, we require L, < % . The ultraviolet cutoff

near the boundary is r, ~ Q~/* <« %: the hyperscaling violating phase is valid
for r > Q14

Finally to map (3.72) to (4.10) precisely, we absorb the factors of the energy scale
Q) by redefining x~ = \’”/—5 Now the shear diffusion constant can be studied as in the
hyperscaling violating theory previously discussed, by mapping it to charge diffu-
sion in an auxiliary theory obtained from the finite temperature z*-compactified
theory by compactifying along say the y-direction. This requires mapping the
shear gravitational perturbations to the lower dimensional auxiliary gauge fields
as A; x ﬁ_y, A, x izxy, which can then be set up in a series expansion in the near

horizon region. Thus finally the shear diffusion constant follows from (3.47) giving
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D=r log(w%m). For @ fixed, as appropriate for the lower dimensional theory,
we see that the low temperature limit ro — 0 gives a vanishing shear diffusion

constant suggesting a violation of the viscosity bound. It is worth noting that the
diffusion equation here is 0z-7~ = 7583 J~ where 27 = \"}—_@ reflecting the Lifshitz

exponent z = 3.

Noting that @ ~ A?rd, the diffusion equation and constant in the upstairs theory

are

D, D
8367] ~ ﬁ@f] s D?”o ~ ﬁ?"o ~ X lOg)\ . (375)

The 9 — 0 limit of the lower dimensional theory (where T' ~ r3) implies a highly

1

boosted limit A — oo of the black brane for fixed Q): here Dry vanishes. However
this appears to be a subtle limit of hydrodynamics. From the point of view of
the upstairs theory of the unboosted black brane, shear gravitational modes are
hiy, hey. Upon boosting, it would appear that these mix with other perturbation
modes as well, suggesting some mixing between shear and bulk viscosity. From
the point of view of the boosted frame, this system has anisotropy generated by
the boost direction. Previous studies of anisotropic systems and shear viscosity
include e.g. [100, 101, 102, 103, 104, 105, 106]. (See also e.g. [107] for a review of
the viscosity bound.) In the present case, the shear viscosity tensor can be analysed
from a systematic study of the expansion of the energy-momentum tensor of the
finite temperature Yang-Mills fluid in the highly boosted regime. However the
scaling (3.75) is likely to be realized only after phrasing the boosted black brane
theory in terms of the variables appropriate for the lower dimensional hyperscaling
violating theory (which arises in the k, = 0 subsector as discussed above). It would
be interesting to understand the hydrodynamics in the lower dimensional theory
better, as a null reduction of the boosted black brane theory, perhaps similar in
spirit to nonconformal brane hydrodynamics [108, 109] as a reduction of nonlinear

hydrodynamics [91] of black branes in M-theory. We hope to explore this further.



Chapter 4

Hydrodynamics in hyperscaling
violating Lifshitz Theories: A

study of quasinormal modes

In the context of gauge/gravity duality for relativistic theories, various transport
properties are encoded in the quasinormal modes of the dual gravitational black
branes, see e.g. [110, 111, 112, 113]. Quasinormal modes are solutions to the lin-
earized equations governing the gravitational perturbations that are ingoing at the
horizon and vanishing at the boundary: these boundary conditions make the low
lying hydrodynamic modes damped and diffusive, with a dispersion relation that
encodes the hydrodynamic diffusive poles in certain 2-point correlation functions
in the dual field theory.

Motivated by these earlier studies, in this chapter, we analyse the lowest quasinor-
mal mode spectrum for shear gravitational perturbations in hyperscaling violating
Lifshitz theories with Lifshitz exponent z and hyperscaling violating exponent 6.
We turn on appropriate metric and gauge field perturbations hgy, hy, and a, of

—witier - Defining appropriate new field variables H invariant under a

the form e
residual gauge symmetry for such perturbations enables us to identify the relevant
differential equations governing these modes. The hydrodynamic regime allows
the approximation of low frequency and momentum relative to the temperature

scale. Then using 2 ~ Z < 1 and Q ~ < 1, as expansion parameters, we

9
T1/2
find series solutions for the quasinormal modes. The lowest quasinormal modes

for these shear perturbations are of the form w = —iDg¢? where D is the shear

85
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diffusion constant. Our analysis (sec. 2) of these quasinormal modes and the as-
sociated boundary conditions can be carried out provided the exponents satisfy
z < d; +2 — 0. In particular D exhibits power law scaling with temperature for
z < d; +2 — 6. The shear diffusion constant D for hvLif theories obtained thus is
in agreement with that obtained previously in [P2, P’1], where D was obtained by
adapting the “membrane paradigm” approach of [96]. To elaborate further, turn-
ing on perturbations hy,, iy, and a, and further compactifying the theory along a
spatial direction exhibiting translation invariance, we mapped near-horizon met-
ric perturbations to gauge field perturbations in an auxilliary theory in one lower
dimension. The gauge fields were used to define currents j# on a “stretched hori-
zon” | satisfying a diffusion equation 9,5' = D9?j'. The shear diffusion constant D
is obtained by solving for the perturbations using a set of self-consistent assump-
tions in a near horizon expansion. This membrane paradigm approach does not

require holography as such.

In Sec. 4.4 using the asymptotic behaviour of the quasinormal mode perturbations
in sec. 2 above, we adapt the prescription of [114, 115] to compute certain 2-point
correlation functions of the dual energy-momentum tensor operators. The poles
of these retarded correlators are identical to the lowest quasinormal frequencies
above of the dual black brane for z < d; + 2 — 6, vindicating the correspondence
between quasinormal mode frequencies, the shear diffusion constant and the poles
of the retarded correlators for nonrelativistic theories with z < d; + 2 — 6, thereby

. . "7_ 1
giving s 4 -

For z = d; + 2 — 0, the shear diffusion constant above exhibits logarithmic scaling,

the logarithm containing the ultraviolet cutoff. However the correlation functions

obtained above, in the Kubo limit, continue to reveal universal behaviour for the
1

viscosity bound with ? = ;- as we discuss in sec. 4.4.1.

From a physical point of view, the transport coefficients under consideration,
namely shear diffusion and shear viscosity measure the response of a system under
small space and time dependent fluctuations about an equilibrium configuration
at IR scales. This dovetails with the idea of linear response which precisely stud-
ies such fluctuations. The basic object in linear response theory is the retarded
Green’s function which relates linear fluctuation of sources to corressponding two-
point function of operators which couple to the sources. More precisely, this leads
to the celebrated Kubo’s formula which can be used to calculate various trans-

port coefficient from two-point correlation function. Before delving into a detailed
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analysis of shear diffusion and shear viscosity for hvLif systems, we will briefly

review linear response theory.

4.0.1 Linear response theory

Linear response theory tries to describe the response of a system to small linear
perturbations produced by controlled external forces e.g. an applied magnetic
field, applied pressure etc. Applying a shear force to a fluid produces motion. How
much the various layers of the fluid moves is determined by viscosity. Applying
a temperature gradient results in flow of heat over the system till it equilibriates.
The amount of heat flow is deterined by what is known as the thermal conductivity.
In particular, we will look at time dependent perturbations and its effect over the

system in frequency space.

Mathematically, we give a ‘kick’ to the system by adding a term of the form
Hsource@) = Qbi(t)oi(t) (4-1>

where ¢;(t) are called sources and the operators coupled to those fields i.e. O;(t)’s
are the observables of the theory. Since the sources are small perturbations to
the original system, we restrict our analysis such that the expectation value of the

operators change by an amount that is linear in the perturbing source i.e.

5(0:0) = [ dt xs(t.)0,(0) (42)

where x;;(t,t') is known as the response function. Clasically, these functions can
be thought of as simply the Green’s function for the operators O;. At this point,

we assume that our system is invariant under time translations i.e.

Xij(t, 1) = xi5(t = 1) (4.3)

1

Performing a Fourier transform"' and thus going into frequency space, we get

0(0;(w)) = xij(w) ¢ (w) (4.4)

Physically, this means a perturbation produced at frequency w, also responds at

the same frequency w. Ignoring the indices {7, j}, we can decompose the response

!We have defined the Fourier transform and its inverse as f(w) = [dt €' f(t) and f(t) =
dw —iwt
5 € f(w)
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function into its real and imaginary parts

X(w) = Re x(w) + i Im x(w) (45)
= xr(w) + x1(w)

Imposing reality on the sources and expectation value of the perturbations gives
us strong constraint on the functions xg and x;. The real part xr(w) is an even
function in frequency space i.e. xgr(—w) = xr(w) called the reactive part of the
response function while x;(w) is an odd function i.e. x;(—w) = —xs(w) known as

the dissipative part.

The sources that we turned on are perturbative in nature. Using time dependent
perturbation theory by adding the term (4.1) leads us to the expression of change

in expectation value of the operator O;:

5(OM1) = i / e 0t — )01, O (1)) 6, (1) (4.6)

—00

Comparing with (4.2) we can write the response function
Xij (t = 1) = —i6(t = ') {[0s(t), O;(¢')]) (4.7)

This is known as the Kubo formula.

In the context of hydrodynamics, viscosity is associated with the transport of
momentum. For field theories exhibiting translation invariance along temporal
and spatial directions satisfy the conservation law 0,7"" = 0 where T" is the
energy-momentum tensor or simply stress tensor in short. Viscosity essentially
tells us how momentum along x (say) affects transport along the direction z. The
relevant component of the stress tensor is 7%*. Since the viscosity is the result
of a constant force perturbation, we should take the low frequency, low momenta

limit in our final answer. Thus from (4.7), we can write
Xazaze (W, k) = —i/ dt d®z 0(t)e™" ™ ([T, (w, k), T,.(0,0)]) (4.8)

—00

The Kubo formula for viscosity (n) finally takes the form

n= lim Xa:z,:cz(wa k= 0)
w—0 )

(4.9)

We will make use of the above two expression extensively in this chapter. In

particular, we will make use of the AdS/CFT correspondence in order to evaluate
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the R.H.S of (4.8).

4.1 Perturbations in hvLif background

The backgrounds of interest here are described by (d+1)-dimensional hyperscaling

violating metrics at finite temperature given by

2 20/d; f(r) 2 dr? dx? _ _ di+2—6
ds* =r / <_TTzdt + f(?“)?”2 + ; 5 dz = d_17 f(?’) - 1—(7’07’) * .

(4.10)
r = % is the location of the horizon, and d; is the boundary spatial dimension.
These are conformally Lifshitz solutions to Einstein-Maxwell-dilaton theories (see
Appendix A for some details). Recall that the temperature of the field theory dual
to the hvLif theory (4.10) is the Hawking temperature of the black brane

_di—i‘Z—H
- 47

T e (4.11)

We are interested in studying shear gravitational modes: these are the modes h,,
and hy,, which in general couple to the gauge field perturbations a,. We turn on

perturbations of the form e~ ™!*t4*p (1), e~"witiar

a,(r), and restrict ourselves to
radial gauge (h,, = a, = 0). Then, as in [P2, P’1], shear diffusion can be studied
by mapping it to charge diffusion in a theory in one lower dimension obtained by
compactifying one of the spatial directions x; enjoying translation invariance, say

y. Motivated by this, we define the variables

20

6
th = gxmhty = TQ_%hty , sz = gxxhxy = rz_fihxy . (412)

Then the equations of motion governing the perturbations are simply

O (r= 0= Y — kal, — ey )71 Hy,) = 0, (413

r(r ty) a’y f Q(w Ty + q ty) - ) ( . )
7”Z+9_(di+1)

ar(refzfdiJrlf'H;y) + f W(Wny + thy) = 0 , (414)

w
/
w?a, — ri 0%, — kH;, = 0, (4.16)

@ EHL + (], — k@ 0,) — 0, (415)

,r,di+1+z—9

8r<rdi+37z79f&;) + f
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where k = (d; + z — 0)a and o = — % (see (A.6)). The first three equa-
tions, namely (4.13),(4.14) and (4.15) are the three relevant components of the
Einstein equations while (4.16) is the linearized Maxwell’s equation. Now, follow-
ing [110, 111], we note that there is a residual gauge invariance in these variables
representing fluctuations of the form above: the metric fluctuations transform un-
der infinitesimal diffeomorphisms as h,, — h,, — V,§ — V,§,, with the gauge
functions &, (¢, x,7) = &, (r)e" 4= The residual gauge invariance then allows us

to consider the following gauge invariant combination defined as
H =wHyy + qHyy — k:q/ shit1===0q, (s)ds . (4.17)

Note that the gauge field component a, is invariant by itself. This combination
is motivated by the investigation in [P’1] where a similar combination appears as
the field variable (mixing hy,, a, perturbations) that allows a realization of the
diffusion equation from the Einstein equations governing the near horizon shear
perturbations: this is reviewed in Appendix C. Under a compactification of the y-
direction, these metric components become gauge field components with a residual
U(1) gauge invariance. We will see the role of this variable H in what follows. The
equations of motion i.e. (4.13)-(4.16) can be finally reduced to a system of two
coupled second order equations using the field H defined above in (4.17), i.e.

(primes denote r-derivatives)

92
02 — (27TT)2/z72Q2fr272z

H//+ |:ar log,rz-‘re—(di-‘rl) + ar 10g(7“2_2zf):| 7_[/

+ (27T)? (TQHQ? - (27TT)2/Z2Q—2> H
f? f
2+1/2 r#? 2/2-2 Q* " (di+1)—2—8
+ (2nT) kQ TQ — (27T) v ds s'\% a, =0,
0

di+3—2—0 27572 2. QK
ay + [0, log frot> = a, + <(27TT) 7 Q° — (2n7) /ZT — W) ay

1/z2—2 0—z—d;—1
(@rT) = hQ.r H=0. (4.19)

Q2 — (2T)2/>—2Q2 fr2—2

Here, € and Q satisfying

w q

are combinations that are dimensionless for the z = 1 AdS case, and Lifshitz

(4.18)
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invariant for # = 0. The condition 2, Q < 1 in (4.20) is imposed to restrict
to the hydrodynamic regime where we can identify appropriate quasinormal mode
solutions and frequencies to the above equations. These are solutions to the above
differential equations governing the perturbations which are ingoing at the horizon
and vanishing at the boundary (far from the horizon): they are damped modes
reflecting diffusion in these backgrounds and describe how the perturbed system
“settles down”. In relativistic theories, quasinormal modes are known to be closely
related to hydrodynamic diffusive modes and the associated diffusive poles in the
dual field theories. In what follows, we will generalize these studies to hvLif
theories. Restricting to the hydrodynamic regime enables us to look for solutions
to (4.18) and (4.19) in a perturbative series. It turns out that the leading and
next-to-leading behaviour for the mode H can be determined independent of the

a, solution (which can then be solved for using the solution of #).

4.2 hvLif in absence of gauge field: dilaton grav-
ity, z=1, d;, =2

In this subsection, we will analyse a simple case of dilaton gravity in 4 bulk di-
mensions (d; = 2) as a warmup example. It can be easily seen from (A.1), that in
the absence of a background gauge field (A, = 0), the hvLif theory reduces to a
theory of a scalar field (dilaton) coupled to gravity with z = 1 and k& = 0 (which
follows from A.6). The gauge invariant combination #H defined in (4.17) takes a
simpler form and satisfies

Q2 Q

" Pl !/
H=wH,, +qHy, : H" — FH + (27T)? (F - 7) H=0. (4.21)

simplifying (4.18), and we have defined the function P(r) = % . Close to

the horizon (as r — %), the above equation can be approximated as

! 2T292
H//+_Hl+(7T )

H=0. (4.22)

f f?
Using an asymptotic scaling ansatz of the form H ~ f# in this equation yields
A= i%. Choosing the exponent A = —%, and restoring the explicit time-

dependence, we see that H ~ emiw(trmr e f(M)  With » = 1,d; = 2, from (4.10)
we have f(r) =1 — (ror)>~% with the boundary defined at r — 0. The blackening

factor turns off as f(r) — 1 far from the horizon only if # < 3. Focussing therefore
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on # < 3 from now on, we see that as time evolves (increasing t), these modes
carry energy towards the horizon, i.e. these are ingoing modes at the horizon.

Taking the ansatz
H(r,Q,Q) = f(r) " TF(r,0,Q) , (4.23)

and using in (4.21), we can obtain a second order equation governing F'(r, 2, Q).
Towards studying hydrodynamic modes, we analyse (4.21) in the regime Q <
1,Q < 1. To keep track of the order of the perturbative solution, we introduce a
book-keeping parameter A and rescale 2 — AQ and Q — A\Q, following [110, 111].

Rescaling then gives

! , N\ Q2 N\ iAQ P
ez ) e (5 (F) - (7) +T7?>F

+ (27T)*\? (?—j - QTQ) F=0.

(4.24)

Assuming that the solution admits a series expansion in the perturbation param-

eter A i.e.
F(r) = Fy(r) + A\Fy(r) + N F(r) + -+, (4.25)
we can write a second order equation for Fy(r) and its corresponding solution as
P’ - Q? f regularity
F(/)/—FF(; =0 ) F()(’f’) = C()+C1/ f T —_— F()(T) = CO .
(4.26)
Near the horizon, f(r) vanishes, giving a logarithmic divergence in Fy. Demanding
regularity of the solution at the horizon forces us to set C; = 0, thus giving the
solution as simply Fy = Cj in (4.26). Using this in (4.24) and collecting terms of

O()) gives an inhomogeneous differential equation for Fi(r),

" Pl f/ P/ f/
-T2 [(5) am

Integrating and multiplying throughout by P, we get

ZCO

o C,
Fl = %00 Ologf+mP = m=—g0 f(1/ro)g” e

29(3 0)ry~

(4.28)
The above value for the constant x; is required by demanding regularity of F} at

the horizon which implies F] must be finite as r — % Using this value of x1, the
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solution to (4.27) is

Fu(r) — Fy(1/rg) = Z(’;Og (1= (ror)*~") . (4.29)

We set the integration constant F3(1/rg) to zero, as in [115]. This is consistent with
the absence of any additional dependence on €2, Q in the subleading terms F;(r) in
(4.25), i.e. with fixing the normalization of the modes as simply Cye ™! f(r)~*/2

at the horizon.

Imposing the Dirichlet boundary condition H(0) = 0, i.e. the fluctuations vanish

on the boundary r = r. — 0, we obtain

1+ @ (1= (ror)*?)

50 0 (4.30)

Using (4.20), at the boundary, we thus obtain the dispersion relation

1 2 . 2
= —i——q° = —1D 4.31
W= —ig—d iDq* | (4.31)
where D = —L is the shear diffusion constant. This is consistent with D found

4nT
in [P2, P’1], using a membrane-paradigm-like near horizon analysis (generalizing

[96]), and the corresponding guess ? = DT = ﬁ for universal viscosity-to-entropy-

density.

4.3 hvLif theory: generalized analysis

In this section, we will study hvLif theories in full generality. To study hydrody-

namics, we will focus on the regime 2 < 1, Q < 1, taking the ansatze

—iQ2

HrQ,Q) =f7 F(rn2Q); Q) =/,7Gr2Q) . (432

The factor f —% reflects the “ingoing” nature of these solutions, as in the previous
z = 1 case. The null energy condition (A.2) implies d; +z — 6 > 0 for theories with
z > 1 so the factor f -3 always reflects “infalling” modes noting the form of f(r)

in (4.10). Rewriting (4.18) in terms of F' and G and further rescaling £ — A2,
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Q — AQ, we end up with

H / Q) N ! )\292 N 2 \Q F
P Ao FAR W LY (AR R T\ A
H f 2 \f 4 \f 2 fH
702,272 2 .
—/\2(27TT)2 7 (92 — (27TT)Z 2Q2f7’2 2 ) F
1 7a2zf2 s . e e | o
=0.
(4.33)
We also assume the solutions admit a series expansion in A as following
F(r,,Q) = Fy(r,Q,Q) + A (r, Q2,Q) + O(N?) + - -- o

G(T’, Q? Q) = Go(?“, Qa Q) + )\Gl(ra Q? Q) + O()\Q) +oe

Gathering terms order-by-order, we see that Fy follows a homogeneous second
order differential equation while the nature of F; depends on Fj. We have argued
in Appendix C that the last term in (4.33) becomes relevant only at O(A\?) and does
not contribute to the Fy and F} solutions. In Sec. 4.3.0.1, we demonstrate that
the Fy and F solutions are consistent with (4.19) too and solve for the function
Go(r,Q2,Q) which is determined by Fy and Fj. Further G; requires knowledge
of Fy also. Thus although the exact form of the perturbation solutions H, a,, is
governed by the coupled equations (4.18), (4.19), restricting to O(X) essentially
decouples the a, terms from the equation governing H which we will solve for

below.
Sticking (4.34) in (4.33) and gathering terms of O(\") gives

H' 02— (97T 2/2—2(0y2 £,.12—2z larit
Ff——Fy=0 with H = ( ;rw)zdig Ir regwianty

Fo=0Ch.

(4.35)
To elaborate, the solution to the equation above (analogous to (4.26)) is Fy =
Co + C1 [ Hdr and regularity of Fy requires C; = 0 giving Fy = Cy above. The

next-to-leading solution F} satisfies an equation structurally similar to (4.27),

H’ 1) AN H’ /
Ff - = Ff = CO% K?) -5 fﬂ . (4.36)
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Integrating gives

0,
2

Q2 _ (97T)2/7—2Q2 fy2—22 O |
Orlog f+rr ( ;Ta)zdﬂr? u = K2 = Z—O(dﬁz—@)rgﬁzfe .
(4.37)

The integration constant ko is fixed as in (4.28) by demanding regularity of F}

Fy

at the horizon r — 1/ry. This forces the singular part from the first term to be
cancelled by the other singular piece coming from the O(£2?) term, fixing 9 above.

The value of k2 can be used to write down the solution to Fi(r),

. ' B 9 .
Fl(T‘) _ _ZCO(dz ‘;é Q)Q (27_‘_T)§—2T6li+z—0/ T‘ldﬁ_l_z_gd?", ' (438)

70

As in (4.29) and the comments following it, we have set the integration constant
Fi(1/ro) to zero in the second line. Then the solution to (4.18) upto first order
in the hydrodynamic expansion can be written down and varies depending on the

value of (d;, z,0).

z < d;+ 2 — 0: This is the sector continuously connected to relativistic (AdS)

theories which have z = 1,0 = 0. This sector also includes hvLif theories arising

from reductions of p < 4 nonconformal Dp-branes where z =1, d; = p, 0 = p—g%z.
The solution to (4.18) upto first order is given by
H=C f(r)’§ 1+ iq” rE 2 (1 — (ror)%t2=79) (4.39)
0 (di +2—2—0)w ° 0 ’ '

where ry is related to the temperature 7" as in (4.11). Imposing Dirichlet boundary
conditions i.e. H(r — 0) = 0 at the UV cut-off boundary (r = r. — 0) using (4.20)

gives
1 ArT  \'7Y*
— i . = D 4.40

R AR g (d,»+z—0> iDg”,  (440)

as the quasinormal mode frequency. This gives the leading shear diffusion constant

z—2

T 1 47 1-2/2 .,
D — 0 _ ( ) T 441
di+2—2—9 di+2—2—9 di—i‘Z—H ’ ( )

which matches the result obtained using the membrane paradigm approach in
[P2, P'1] (reviewed in Appendix C). This led to a guess for the relation between
the shear diffusion constant D and shear viscosity 7, consistent with various special

cases,
2—z2

n di+2—z—-0 AT z 23—z 1
- = DI'= =—. 4.42
s 47 di+z-—10 47 ( )
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We will later (sec. 3) evaluate the viscosity using holographic techniques, corrob-
orating this. For z = 1, we see that 2 = DT = .- as in (4.31). It is worth noting
that these quasinormal modes are diffusive damped modes. Our analysis and re-

sults hold in the regime (4.20) so in particular < 1. The quasinormal mode

q
T1/z
q
T1/2

at finite temperature in the hydrodynamic low frequency, low momentum regime.

frequency (4.40) can then be expressed as w ~ —i(=Lz)?T, and we are working

Then the time dependence of these modes is ~ e ™! ~ e~ damped on long

timescales.

z =d; + 2 — 0: Here, the integral in (4.38) gives the solution to (4.18) to first

order as

;2
52 tq z—2 1
= C 1+ — log — 4.43
1) = Cof ()% |14 Lo g (1.43)
where (4.11) now gives T = Z-2r§. Then defining A = 2=t gives the low-lying

quasinormal frequency

1/ 20 \"* .o A
. 9 — . 2
= —iq° - — -T7= log—= = —iDq" . 4.44
This gives the shear diffusion constant D = % (122_—”1)172/ e log% scaling loga-

rithmically with temperature alongwith a power-law pre-factor. This also agrees
with the results in [P2, P’1]. The logarithmic scaling necessitating the ultravio-
let scale A perhaps suggests that this leading relation for the quasinormal mode

frequency is subject to subleading corrections and possibly appropriate resum-

mations. Nevertheless, recasting as w ~ —i( Tf’/z)leog% shows that in the hy-

drodynamic regime < 1, this leading mode is diffusive with damped time-

T
dependence: in fact fi’For T < A, the extra log-factor leads to additional damping.
The hvLif theories arising from null reductions of AdS and nonconformal brane
plane waves [51, 72] have exponents satisfying z = d; + 2 — 0: taking the quasinor-
mal modes as a measure of stability of the backgrounds, we see that the diffusive
frequencies suggest that low lying modes do not indicate any instability. The log-
arithmic behaviour of the leading shear diffusion constant then suggests a possibly
novel limit of hydrodynamics in these theories, perhaps stemming from the large

boost in the above string constructions.

z > d; + 2 — 0: The integral in (4.38) scales as 7% 7279=% thus acquiring dominant

(divergent) contribution from high energy scales near r, ~ 0. There is no univer-
sal low energy behaviour emerging from near horizon physics: it appears that

these methods fail to yield insight on quasinormal modes, as does the membrane
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paradigm approach [P2, P’1]. This sector includes e.g. reductions of D6-branes
(d; =6, z=1, 0 =9) with ill-defined asymptotics.

4.3.0.1 Solving for gauge field perturbation q,

Using the ansatze (4.32) and rescaling 2 — AQ and Q — AQ we can recast (4.19)

as

/ / 202 N 2
G = M L g iy (f) G- A% (L) G

2 f 2 \f 4 \f
. / 2z—2
AL f?& In fré 20 G (2T P (@ — (20T Q) 6
2 1/2—2 0—z—d;—1 ; /
—k—G—i— (27T k:Q_.r _ 1 F’—@LF —0.
r2f Q2 — (27T)22Q2fr22: ) 2 f

(4.45)

Plugging in the series ansatz (4.34) we can construct the perturbative solution for
a, order-by-order. The leading order equation appears at O(5) and is given by
Fj = 0 giving Fy = const: this can be seen to be consistent with (4.35). We will
subsequently see that G is determined by Fi} and Fy while GG; is determined by F5
and Gy, and so on. More generally, all subsequent equations involve more variables
so there is no inconsistency in the solutions due to potential overconstraining in

this system of equations.

Gathering all terms of O(\°), we see Gy follows the equation:

k2 (27TT)1/zf2kQ‘r9727di71 iQ f/
" di+3—z—0,v _ "V r_ " J —
(4.46)
For z < d; +2 — 6, using (4.35) and (4.38) we can write the most general solution

to the above equation in terms of a new radial variable as
A C.
Go(z) = — + Cia" o F} |2, ﬁ, 2+ 2; xm] — 2257+ (m —n)a™) , (4.47)
m m
where
x=ror, m=d;+z—60, n=2z-2, A:iCokrgi_eg, (4.48)
w

while '} and Cy are arbitrary constants which are to be fixed by demanding
regularity of a, at the horizon. Potential divergences in a,(r) and a;(r) near the

horizon can be removed by choosing C; = 0 and Cy = %. In terms of the original
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radial coordinate r, the solution is

d;—0

0 (rgr) @O £ () (4.49)

o A L
GQ(T’)— ZCUk o (dl—l—z—@)

For relativistic theories, (z = 1,k = 0) the above expression vanishes identically
implying that the shear mode sector is governed exclusively by metric perturba-
tions Hy,, and Hy,.

The subleading term in a, i.e. Gi(r) can be determined by collecting terms of
O(A) from (4.45). The inhomogeneous part of the equation governing G involves
Fy and Fy. Fj(r) can be evaluated from O(A\?) terms of (4.33). Although we
could find the general solution to G, finding the integration constants respecting
regularity at the horizon seems difficult and cumbersome by analytic means. We

discuss further details about F3 and G in Appendix C.

4.4 Dual field theory correlation functions

In this section, we will determine the energy-momentum tensor correlation func-
tions (T'T") following the prescription in [114, 115], and defining 7}, as dual to
the perturbation h,,. The action governing the perturbations using the variables

H,, H,, and a, in (4.12) is given by

er 1 P 1 —Z—d; z— T2Z_2
Spert = — e /dd”ﬂx {Ere dl“( — 72 (Hy,)? + 7 (wHyy + qHyy)®
U N
+ f(H,,)?) — kHyal, + 1rdiJr?’*Z*eJC(CL')2 + Ldisozo —Tzz_zwz —¢)d
Ty ¥y T 9 Yy 9 f q Y| -

(4.50)
The equations of motion from this action lead to (4.13)-(4.16) and we have sup-
pressed contact terms. The above expression can be recast as a bulk piece (which
vanishes by the equations of motion) and a boundary term. This boundary action

takes the form

1
Gbdy _ —/ddi—i-lx [Te_z—di+1 (_Tzz—thyHgy + meyH;y)

N (d;+2)
32rGy (4.51)

+ rdi+3_z_6aya;] + -
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again suppressing contact terms. Using the equation of motion (4.15) and the

definition of H (4.17), we can recast the relevant terms of the above action as

bd 1 di+1 froeatt /
S*Y = lim ——/di x [— H(r,x)H(r,x)| + -+ (4.52
L g (45
In the above equation, we have exhibited only those terms that contribute to the
2-point function i.e. terms that are at least second order in H. Using the Fourier
decomposition of the bulk field as H(r,t,x) = [ dw dq e”™"*H(r,w, q) we can

further recast as
Hl<r7 w, Q)H(T, —w, _q> . (453)

For z = 1,0 = 0, this agrees with the AdS case in [110]. Also, for theories with
Lifshitz symmetry, it is clear that (4.53) is Lifshitz-invariant. The (T'T) shear

correlator in the boundary theory is defined as

52 dey

YTy Y-y §hz(0)5hﬂyﬁ(0) .

(4.54)

c

We define the boundary fields through the r — r. ~ 0 limits of the bulk fields,
ie. HO(w,q) = H(r,,w,q) and R (w,q) = he9(r,,w,q). The asymptotics can
be analysed by studying (4.18) in the limit » — 0 at zero momenta and frequency

(Q=0Q=0) ie.

r
The solutions are H = Ar® with A =0, d;+2—2z—#6. Thus in the hydrodynamic
regime i.e. ,Q < 1, we can schematically write the mode as H = A(w,q) +

H' + H =0. (4.55)

B(w, q)rdit?7*=% where the functions A(w,q) and B(w,q) can be read off from
(4.39),

2 z—2 - 2 d;—0
q 7o 1q Ty
—Cy |1+ —_cL__To
Alw, q) CO[+dei+2—z—8} ’ Blw.g) = -Co -omn =29
(4.56)
We can write the normalized bulk field H in terms of its source H°
1 B(w,q) 419 . ¢ B(w,q) 41220
H(w,q) = HY w,q—[H—“* e N = 127270
(. 9) ( ¥ A(w, q) A(w, q)

(4.57)
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Note that the normalization factor N satisfies N' ~ 1 as r. — 0 for 2 < 2+d; — 6.
Using this solution in (4.53), we get

_ dw dq fre=% di+2—2—-0 B(w,q)
Sy — lim — il . " HO (w, YHO (—w, —
rig“lc 327TGS\C]ii+2) w2 — qur272z N A(w7 q) (w q) ( w q)
(4.58)
Asr — r. — 0 with z > 1, we note that lim,_,o wgf;rj;;_zz /\%i((‘:’,?) = _q%ﬁ((fz’,z)) .
From the definition of H in (4.17) and also noting H,, = hj = h¥ and H,, = h{
from (4.12), we see that 6;;%) = 6h§(0) = w M‘S(O). Thus the correlation function
(4.54) becomes
52.Gbdy 52 Gbdy
Gaywy = (T3 (k)T (—k)) = = w?
yay = (L, (k)15 (—k)) 6h$(0)(k)5h5(0)(—k) W SHO (k)sHO) (—k)
g (459)
1 iw?rg

167G\ w +iDg?

with D given in (4.41), and k = (w, ¢). The Kubo formula then gives viscosity as

. Gayay(w,g=0) rdi=?
n= ilg% , = @ (4.60)
iw 167G

d;—0

With the entropy density given in terms of the horizon area s = Z&W’ we obtain
1 N

A

This is consistent with [P2, P’1], where we conjectured the universal relation (4.42)

universal behaviour for the viscosity bound ? = -, as for relativistic theories [90].

saturating the proposed viscosity bound in [90]. Also, we can write down other

correlators as follows:

Gy = (T () = e T
tyty — t t - 167TG§$+2) W+ ’L"DQZ )
1 @'wqrdi_a (4.61)
Giyey = (T)(K)TY(—Fk)) = 0 .
oy = (DT = s
Each correlator above exhibits a pole at w = —iDg? which is the lowest lying

quasinormal mode as we have seen earlier. The viscosity (4.60) above agrees with
the result in [116]: however what is noteworthy in our analysis is that this is

obtained in the regime z < d; + 2 — 6.
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4.4.1 Dual field theory correlation functions: z =d; +2 -6

hvLif theories with z = d; + 2 — # arise from the null reductions of highly boosted
black branes in [51, 72] as mentioned previously. The asymptotic fall-offs in (4.55),
(4.56), coincide in this case: this is the interface of the standard/alternative quan-
tization in [98], and one of the solutions contains a logarithm. We see that in this

case, (4.55) reduces to
1
W+ -H =0, (4.62)
r

with the solution H = A(w, ¢)+ B(w, q) log TO%, in (4.43). We define the normalized

bulk field in terms of the source as

;2
i, 5210 L
1+ =Lrg " log e

H(r,w,q) = Ho(w, q) - : (4.63)

1+ %7«54 log 1

ToTe

the source being the boundary value H(© (w, ¢) = H(r.,w, q). Note that unlike NV in
(4.57), the logarithm does not die near the boundary and the normalization above

is less trivial. Using (4.63), the relevant part of the boundary action becomes

M — fiy —— /ddi“x L H'(r,z)H(r, z)
o G e o
= ;/dw.dq irg ! HO(w, ) H O (~w, —q) .
327rG§f,li+2) w (1 + %TS_Q log rolrc)
(4.64)
As before, we obtain the energy-momentum tensor correlation functions as
52 Gbdy 52 Sbdy
Gryzy = (T7(K)T)(—k)) = = w?
v,y < y( ) y( )> 5h§(0)(k’)(5h§(0)(—k) v (57—[(0)(/{7)(57—[(0)(—k>
‘ i (4.65)
_ 1 iw?rg
 16nGUt? w4 iDg?

using the expression for the shear diffusion constant in (4.44). Using the Kubo

formula, we again see that

Gx . g = 0 z—2 d;—0
gt S0 =0T (4.66)
em0 i 167G 167G

Note that the diffusive pole again coincides with the quasinormal mode frequency
in (4.44): note that this here arises from the nontrivial normalization factor in

d;—6
(4.63). Now using the entropy density s = &W given in terms of the horizon
N

area, we again find universal behaviour 1 = ﬁ for the viscosity bound, again

» |13
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as for relativistic theories [90]. It is worth noting that in applying the Kubo
formula, we first restrict to the zero momentum sector ¢ = 0, which kills off
the term containing the leading diffusion constant D which, strictly speaking, is

logarithmically divergent as r. — 0.

4.5 Discussion

We have studied low lying hydrodynamic quasinormal modes for shear pertur-
bations of hyperscaling violating Lifshitz black branes: these are of the form
w = —iDg? where D is the shear diffusion constant. This is consistent with
D obtained in [P2, P’1] through a membrane-paradigm analysis of near horizon
perturbations and the associated shear diffusion equation. This shear diffusion
equation 9,5t = D24t following from the second order Einstein equations in a
sense dictates the form of D above and is consistent with the low-lying quaisnor-
mal mode spectrum. The analysis here and the associated boundary conditions are
valid for theories with exponents satisfying z < d;+2—6: this is the regime that is
continuously connected to AdS theories (z = 1,0 = 0). Using the asymptotics of
these quasinormal modes, retarded correlators of dual operators can be obtained:
we have seen that the poles of the retarded (T'T) correlator at finite temperature
coincide with the lowest quasinormal frequencies of the dual gravity theory. This
analysis appears consistent with the Kubo formula for viscosity via the retarded
Green’s function at zero momentum only for theories with z < d; +2 — 6. Perhaps
this is not surprising given the asymptotic fall-offs of the quasinormal modes: for
z > d;+2—0, high energy modes appear to dominate, with no universal low energy
behaviour for the diffusion expression. It would be interesting to understand this
better.

hvLif spacetimes with z = d; + 2 — # exhibit more interesting hydrodynamic
behaviour as we have seen: the asymptotic fall-offs of the bulk modes coincide
here. While correlation functions in the Kubo limit continue to reveal univer-
sal behaviour 1 = ﬁ for the viscosity, the leading shear diffusion constant ex-
hibits logarithmic scaling (involving the ultraviolet cutoff), perhaps suggesting
that subleading contributions are important with some resummation required.
The null reductions [51, 72] of highly boosted black branes give hvLif theories with
z=d; +2— 0. It is worth noting that the boost induces anisotropy in the system

(although the lower dimensional theory after compactification enjoys translation
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invariance in the spatial directions so that the zero momentum Kubo limit stud-
ied here is unambiguous). The large boost involved in these string constructions
possibly leads to novel hydrodynamic behaviour. It would perhaps be interesting
to study this directly from the null reduction of black brane hydrodynamics and
the fluid/gravity correspondence [91].






Chapter 5

Conclusion and future directions

In this thesis, we have explored certain aspects of entanglement and hydrodynam-
ics of the so called hyperscaling violating Lifshitz theories using the dual gravi-
tational description. To reiterate again, we studied the mutual information (MI)
between two strip shaped subsystems in the AdS plane wave background which
are dual to excited states in CF'T with constant energy momentum flux. In par-
ticular for AdSs plane waves, there exists a logarithmic scaling of entanglement
entropy which is suggestive of hidden Fermi surfaces in the dual theory. These
excited states are just a part of the full phase diagram and it will be interesting

to explore this further.

The hydrodynamics of hvLif theories clearly led us to a constraint on the Lifshitz
exponent i.e. z < d;+2—0 for a field theory in d; 4 1-dimensions. Interestingly this
inequality saturates precisely for the class of hvLif theories that results from null
reductions of AdS plane waves. Towards gaining more insight into the behaviour
of hvLif theories, it will interesting to study the flow equations of various response
functions adapting the methodology in [118]. In [118], the authors showed that
at the level of linear response the low frequency limit of a strongly coupled field
theory at finite temperature is determined by the horizon geometry of its gravity
dual, i.e. by the “membrane paradigm” fluid of classical black hole mechanics.
Thus generic boundary theory transport coefficients can be expressed in terms of
geometric quantities evaluated at the horizon. Thinking of the radial direction as
an energy scale, we can think of the flow equations as an RG equation. Given
the results that has been discussed in the manuscript, it is expected that the flow

equations exhibit possible pathologies in the regime z > d; + 2 — 6.
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The correspondence between gravitational solutions and equations of fluid dynam-
ics was put on a robust footing with the advent of the fluid/gravity correspondence
91, 92, 93, 94, 95]. Assuming that the dual field theory is in the hydrodynamic
regime, we can map gravitational solutions to fluid dynamic solutions through the
AdS/CFT correspondence. The map is constructed perturbatively by solving Ein-
stein’s equation order by order around a known stationary solution. The boundary
stress tensor computed from the perturbed solution maps to equations of a viscous
relativistic fluid. Using the standard constitutive relation for the stress tensor of
a viscous fluid, one can read off the transport coefficients of the dual fluid. This
program was adapted in the context of hvLif theories in [48] to write down the
stress tensor of the dual non-relativistic fluid. It will be interesting to see how this
follows from the higher dimensional uncompactified theory which is inherently rel-
ativistic in nature. Since AdS plane waves are high boost low temperature limit
of boosted black branes, this will help us in mapping the transport coefficients of

a boosted black brane to that of a non-relativistic system in one lower dimension.

Another interesting aspect for investigation would be the introduction of higher
derivative corrections to hvLif theories. Recall that it was essentially the com-
bination of the Lifshitz and hyperscaling violating exponents i.e. z + 6 which
resulted in the logarithmic behaviour of the diffusion constant. Introduction of
higher derivative terms will correspondingly change this combination, presumably

rendering a power-law scaling to the shear diffusion constant D.



Appendix A

HvLif metric as solution to
Einstein-Maxwell-dilaton action

and linearized perturbations

The metric (4.10) is a solution to the Einstein-Maxwell-Dilaton action

e Al L _Z(9) ,
ST / A [R S0u00"6 — — L Eu P+ V()| (A1)

where Z(¢) = ¢** and V(¢) = —2Ae~%? The null energy conditions following from

(4.10) give constraints on the Lifshitz z and hyperscaling violating 6 exponents
(z—=1)(d;+2—-60)>0, (d; —0)(di(z—1)—0) >0. (A.2)

Varying with G, A, and ¢, we obtain the following equations of motion,

_ 1 V(o) | Z(9) po Z(9) -
R, = éaugbaygb — G’“’ﬁ 5 G F,,F,, — mGwFpan ., (A3)
VAZOF") =0, e, (=CC"0.0) + ) e 0.

(A4)
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A particular stationary solution to the above equations of motion is given by

¢ = V2(di—0)(z—0/d;—1) logr, (A.5)
~af(r) [ 2(z—-1) o

At = m, o = —dz—f—z—07 AZ—O (AG)

V() = (ditz—0)di+z—0—1y %  Z(¢)=rat?2 (A7)

while the line element is given by

ds? = riz1 (_ J:a(;;) dt* + féi:;r? + Z dxf) o fr) =1 — (rer)* 071 (A8)

Turning on gravitational, gauge field and scalar field perturbations h,,(z), a,(z)

and ¢(z), the linearized Einstein’s equations are given by

V

2
Z

+5 (G* Fpfvo + G fupFre — WP F,, Fpe + ApGP F,, Fp]

1 1
R/(ju) :§8u¢81/90 + 58;13081/@5 - (h,uu - G;WCSSO)

1 1 1
—Z _G#V<Fpafpg - gpahUﬂFpoFaB> + gh#vaUFw + g)‘SOGWFpUFpG )

4
(A.9)
where
1 (0% (0% (0%
R() = §[vav,,hu + VoV, he = VoV, — V,V,h] ;
fuw = Oua, — Opay, ; h=G"h, ; = 20/di )
(A.10)

Similarly, the linearized Maxwell Equations (A.4) are

1
VilZ[™) = Vu(ZWE, ") = Z(V W)Y+ S (VW) Z PP + N Z 0,0 = 0.
(A.11)

The linearized scalar field equation is:

1

1 1
- 2% _ - pv a4 2
\/ﬁa“(\/ GG d,p) \/__Gaﬂ(\/ Gh"0,0) + 5 G 0,00,h + V¢

_ )‘Z(QFWJCW — 2G" W F,, Foy + NpF,, F') =0 .

1
(A.12)
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In (A.9), (A.11), (A.12), indices are raised and lowered using (4.10).

The relevant equations of motion has already been stated explicitly in (3.17)-
(3.19). For the sake of completion, we list the other equations here. The ¢,  and

r components of the linearized Maxwell’s equation (A.11), respectively, give

3+2—0 Lk p2e—0
aT(T3+Z_08rat) — (q2at + qwax) — 5 [ar(r2_6<hxx + hyy)) + ar( f htt)}
—kXOyp =0,
(A.13)
3+2—0
GT(TE’_Z_Of@rax) + : f (qwat + Wzax) - kar<r2_9h’tl‘) =0 ’ (A14)
k 2z—0

qlr® 7 fOra,—kr* P hy]+w [r?’“*earatﬁ (r29<hmm+hyy)+%htt) —’W] =0.
(A.15)

The tt-component of the linearized Einstein’s equation (A.9) gives

2—42+60 0.f\O.h 2 2qw ,
a3htt - ( ff) Qtt - q7htt - %hm — kr! Oray
N [—2(1 +2-0)2+2-0) 222-0)0.f N (0 — 22)? N (0, f)? Dt
rf rf r? frl2
1 2
= 501" )0, (B + ) - ""7(hm +hy) + (242 —0)Br 2 =0
(A.16)
The txz-component of (A.9) gives
z—1
B, (r* 0730, (12, )) + rquhyy — kOya, =0 (A.17)
The tr-component of (A.9) gives
2z—0 w 2z—6 2z—2 - 2z—3
qar(Thmﬁg [&(T(hm—i-hyy))—i-T@T(r (haat )| B =0.
(A.18)
Adding zz-component to yy-component of (A.9) gives
z4+0-3 h h
ar(r20—z—3fgr(r2—9(hmx + hyy))) + w2r ( }Caz + yy) _ 2r9—z—1q2hyy
9 z4-0-3 2z—6h k2 z+60-5
+ 4 qwhyy — 2kr’=20,a, — (6 — 2)r29_2—4f&<r 7 tt) + Tf I
i q2 TZ+9}3htt . 2(2 +z— 6)(4ﬁ— 4z — 20 + 92)7"297275@ —0.

(A.19)
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Subtracting yy-component from zz-component of (A.9) gives

z—1 Tz_l 2 z—1
_WZ(hxx - hyy) + _q2htt +

0r(r" 7 f0,(r ™" (e — By ) + /

qwhi, =0 .
(A.20)

The zr-component of (A.9) gives

1 —0 0,
Q[TQ_G <arhtt + i i P f

htt> — 7?72 0,(r* %hy,) — kr*~ %,

o 2f (A.21)
— Bri=% o] + w[0.(r*Phy) — kr¥ "%, =0 .
The rr-component of (A.9) gives
9 32—-60) O.f YA
Or(haa + Py ) + ( o T af >a*(h” +hyy) +(6=2) <27~2 2rf> (- Py
222 —2—42+30  O.f r#=1
_ 2 222 " T
FOthutr aThtt< 57 2f2>+a(2+z 0
02z —0) (9.f)° 1 292 222
[ 2r2 f N 213 - r2 2 ((’Z —D2+2-0)+(=z—-1ro.f—r arf>]7” Py
+ 2819730, — wﬁ_‘% =0.
(A.22)
The linearized scalar field equation (A.12) gives
12)\2 P22 g2
0—z—1 _ 2\ ,.0—2-3 0—z—1 1
O (r forp) + < 5 2A0 )r fo+r ( 7 7 )(p
5’/"97'272]0 - T2270htt k,2>\,,ﬂz73htt B
+— [&(T (haw + hyy)) — aT( ; )} P B =0,

(A.23)
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Subleading terms in membrane

paradigm approach: A]gl) and AV

B.1 Subleading terms when z <4 — 6

Using the expansion over ¢? for A; and A, in the gauge field equations, it can be
checked that the leading O(¢°) terms are consistent with the ansatz for A AP
in the regime (3.43). Likewise the subleading terms can be evaluated: collecting

z2—2

terms of O(q?) consistently, we further note that D ~ 7™ ~ T= and I' ~ Dg?

which leads to g ~ 75— Using this heuristic estimate and simplifying gives

2 4
1 q 1/ro q 9 1/ro 0)
Ay TO[T% log ((1/r0) - 7“) MR log ((1/r0) - rﬂAf ' (B-1)

Using (3.43), we see that @AED < AS’), and after integrating, that A§” <K AEO),

verifying that these are indeed subleading. Likewise, we find

4

[ q* log( 1/ro >+ q 10g2 (ﬂﬂAS))«AgO)_ (B.2)

AL
T2/> 1/rg—r T4/~ 1/rg—r

T

B.2 Subleading terms when z =4 — ¢

(0) lo 1/&
For the case z = 4 — 6, we obtain jT{) ~ 2@,1)% li(gz“ig) so that imposing (3.6)
gives t ’ o
1/7o
1 12 log(h%)
m ° _2 ° Lf << 1 . (B.S)
TO q 1Og("‘()"”c)
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From the estimates obtained for D from the diffusion equation and the diffusion

integral, we obtain % ~ T%q’ -

the modified bound (I/I?B,_Th < %2/2 log?(-2-). The above estimates leads to the
0 T

T0Tc
1/7‘0 1

inequality T‘f/z log( a /TO)_Th) log --- < 1. The subleading terms now give

log(;-). Using along with D ~ T'¢>, we obtain

4

A ~ o (7 ) + ot (s o (75)] 4
(B.4)

Within the regime , it would appear that &Agl) <K AEO): however ror. < 1 implies

that log(m%c) is large so that the O(q*) term need not be small even if T%—Q/z < 1,

suggesting a breakdown of the series expansion.



Appendix C

Solution for gauge field
perturbation in QNM approach

Using (4.35) and (4.37) we can simplify the inhomogeneous terms in (4.46) signif-
icantly. In terms of the new radial coordinate z and the parameters m,n and A
as defined in (4.48), the equation (4.46) can be recast as

d2G0+(2m—n+1_ m )dGO mn A

dx? x c(1—am) ) do x2(1—xm)G0+x2(1—xm) =0
(C.1)

The solution to the above equation is given by (4.47).

Fy(r,t,x) solution: The equation governing Fy(r) follows from O(\?) terms

of (4.33). The relevant terms following from the first two lines of (4.33) are
computationally straightforward to derive. Let us concentrate on the last line of
(4.33). Concentrating on the powers of A, the integral in the last term can be

integrated by parts and rewritten as

iAQ iAQ ] Q LIAQ _iAQ 41—
NMfe [ds fm2 G N3 {f 2 /ds sHT0G,

IAQ na f'
+ZT ds [~72 n / ds’ s'di““’GO] ~ O\ + 00\ .

(C.2)
The above expression shows that the leading contribution from the last term of

(4.33) becomes relevant at O(A\*) and has no role to play in determining Fy(r).
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We can write the equation governing F5 as
H L f iQ [ ! 02 1! 2 iQ f' H'
"N - / o J [ . J - J s
F2 HF2+|: ZQfFl 9 (f) F1 4 f Co+ 9 fHFl
+(27T)? (2 — (20T 2QPfr2 %) Cy| =0 .

r2z—2

f2

(C.3)
Using (4.38) and integrating the above once, we get

iQ f

FQI(T) = 77]“_’1 — Hél
Cam2rm n+2—m 92— 2 1
- Gom (o) |y, 22 02 | s Dig f)
4 n+2—-—m m m m

(C.4)

where C} is an arbitrary integration constant. Choosing C; = %m’r’@” (’y + (%2))
where 7 is the Euler-Mascheroni constant and ¢ is the digamma function, ensures
Fj(r) is finite at the horizon. The above expression can be integrated again subject
to the boundary condition Fy(r ~ %) = ( to obtain an explicit expression for the
function Fy(r).

G1(r,t,x) solution: Collecting O()) terms from (4.45), we can write the equa-

tion governing G (r) is given by

i iQ f

G 0, log fr* 9770 G = T G = TRl o [ )

12 f/ ' 1 9 Qk

C o [ (ror)nt2=m n+2—m n+2 211 ~
(Zom%“o {Mzﬂ 1, T i (ror) }+Elogf +Cp)=0.

(C.5)

The homogeneous part of the above equation is identical to the homogeneous part

of (4.46). This helps us in writing down the solution for G; as

Gi(x) = Cy yi(x) — yl(x)/%g(/;()x) dx + yg(x)/% dx (C.6)
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where z is the radial variable defined in (4.48). Also,

n+ (m—n)z™

n n
yi() =" ) = 2" 5F 2,024 o]
n m m
(m +n)axnm!
%4
(x) T
A1 A2 A x”+2_m n+2—m n+2
h(z) = = AL, ]
() x2+x2(1—xm)+x2(1—xm) {n—i—Z—mQ ! m m
1
n og f
m
(C.7)
where the constants A, Ay and A are given by A; = —%(2 — ), Ay = A(y +

zﬁ(MT’m)), A = Cokq 7" "2, In principle we can fix the constant C; by demand-

ing regularity of the solution near horizon i.e. as x ~ 1.

The crucial thing to note about the a, solution is that even the leading order piece
Go ~ 2 vanishes in the zero momentum sector i.e. when ¢ = 0. However, Kubo’s
formula to evaluate the response functions i.e. in this case the (a,(k)a,(—k))
correlator is evaluated at zero momenta which leads to (a,(k)a,(—k)) = 0. This is
very similar to the behaviour of the correlators (T} (k)T (—k)) and (T} (k)TY(—k))
given by (4.61) which vanishes in the ¢ — 0 limit. Indeed from (4.13)-(4.16) we
can observe that when ¢ = 0 the Hy, and a, fields decouple and the shear mode
sector is governed exclusively by the dynamics of H,,. This results in a non-trivial
(TY(k)TY(—k)) correlator i.e. (4.59) which is indeed non-zero in the ¢ = 0 sector
eventually leading to (4.60).
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