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The effective potential for the Aharonov-Bohm phase θH in the fifth dimension in GUT-inspired
SOð5Þ × Uð1Þ × SUð3Þ gauge-Higgs unification is evaluated to show that dynamical electroweak
symmetry breaking takes place with θH ≠ 0, where the four-dimensional Higgs boson mass of
125 GeV is generated at the quantum level. The cubic and quartic self-couplings ðλ3; λ4Þ of the Higgs
boson are found to satisfy universal relations, i.e., they are determined, to high accuracy, solely by θH,
irrespective of the values of other parameters in the model. For θH ¼ 0.1 (0.15), λ3 and λ4 are smaller than
those in the standard model by 7.7% (8.1%) and 30% (32%), respectively.
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I. INTRODUCTION

The Higgs boson is responsible for the electroweak
symmetry breaking in the standard model (SM). The Higgs
potential is arranged such that the Higgs field spontane-
ously develops a nonvanishing vacuum expectation value.
Its couplings to quarks and leptons (Yukawa couplings) are
determined such that the observed quark-lepton mass
spectrum is reproduced. Although the SM seems consistent
with almost all experimental data so far obtained, it is yet to
be seen whether or not the Higgs boson is exactly what is
postulated in the SM. While the gauge sector in the SM is
regulated by the gauge principle, the Higgs sector lacks
such a principle, which leaves arbitrariness in the theory.
The Higgs boson mass acquires large quantum corrections
which must be canceled by fine-tuning of parameters in
the model.
One approach to overcome these difficulties is gauge-

Higgs unification (GHU) in which the four-dimensional
(4D) Higgs boson is identified with the 4D fluctuation
mode of an Aharonov-Bohm (AB) phase in the fifth
dimension (5D). The 4D Higgs field is contained in the
extra-dimensional component of gauge potentials. As an
AB phase the Higgs boson is massless at the tree level, but
acquires a finite mass at the quantum level, independent of

the cutoff scale and regularization method. The gauge
hierarchy problem is naturally solved [1–6].
Recently, substantial advances have been made in gauge-

Higgs unification. Realistic models have been constructed
which yield nearly the same phenomenology as the SM at
low energies and give many predictions to be explored at
the LHC and ILC. Most gauge-Higgs unification models
are constructed on orbifolds such as M4 × ðS1=Z2Þ and the
Randall-Sundrum (RS) warped space. Chiral fermions
naturally emerge on orbifolds [7]. The SUð2ÞL doublet
Higgs field must appear as a zero mode of the fifth-
dimensional component of gauge fields. This condition
leads to gauge groups such as SUð3Þ ×Uð1ÞX × SUð3ÞC or
SOð5Þ × Uð1ÞX × SUð3ÞC, among which the latter accom-
modates the custodial symmetry in the Higgs sector. Quark-
lepton multiplets are introduced such that with orbifold
conditions specified zero modes appear precisely for quarks
and leptons, but not for exotic light fermions. They must
have observed couplings to W and Z bosons, and their
masses must be reproduced. Further, the effective potential
for the AB phase θH must have a global minimum at
θH ≠ 0 so that the electroweak gauge symmetry is dynami-
cally broken to Uð1ÞEM. As a model satisfying these
conditions, SOð5Þ ×Uð1ÞX × SUð3ÞC gauge-Higgs unifi-
cation is formulated in the RS space [8–20].
In the RS space, which is an anti–de Sitter (AdS)

spacetime sandwiched by UV and IR branes, wave func-
tions of dominant components of W and Z bosons are
almost constant in the bulk region so that gauge couplings
of quarks and leptons are nearly the same as those in
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the SM. The hierarchy between the Kaluza-Klein (KK)
mass scale (∼10 TeV) and the weak scale (∼100 GeV)
naturally emerges. Two typical ways of introducing fer-
mions have been investigated. In one type of model (the A
model) quarks and leptons are introduced in the vector
representation of SOð5Þ. The model predicts large parity
violation in the Z0 couplings of quarks and leptons, which
can be checked in the early stage of the ILC experiments
with polarized electron and positron beams [14,17,21,22].
It has been noticed, however, that there arises a difficulty

in promoting the Amodel to grand unification [23–27]. The
natural extension of the SOð5Þ × Uð1ÞX × SUð3ÞC model
is SOð11Þ gauge-Higgs grand unification [24]. Up-type
quarks are contained in the spinor representation of
SOð11Þ, but not in the vector representation so that up-
type quarks in the A model do not appear from the SOð11Þ
gauge-Higgs unification. A new way of introducing fer-
mion multiplets has been found which can be embedded
into the SOð11Þ gauge-Higgs grand unification [16]. In this
grand unified theory (GUT)-inspiredmodel, or the Bmodel,
quarks and leptons are introduced in the spinor and singlet
representations of SOð5Þ. It has been shown that quarks
and leptons have almost the same gauge couplings as in the
SM. Furthermore, the flavor mixing is nicely incorporated
with gauge-invariant brane interactions in the B model. The
Cabibbo-Kobayashi-Maskawa (CKM) matrix is obtained,
and remarkably flavor-changing neutral-current (FCNC)
interactions are naturally suppressed [20].
In this paper we evaluate the effective potential VeffðθHÞ

in GUT-inspired SOð5Þ ×Uð1ÞX × SUð3ÞC gauge-Higgs
unification. It will be shown that with appropriate choices
of parameters VeffðθHÞ has a global minimum at θH ≠ 0

and the Higgs boson massmH ¼ 125 GeV is obtained. The
cubic and quartic self-couplings of the Higgs boson are
determined from VeffðθHÞ. We shall show that those cubic
and quartic self-couplings are, to high accuracy, determined
as functions of θH only. They do not depend on other
parameters of the theory. It will be explained how this
property appears in the model.
The effective potential VeffðθHÞ is important in discus-

sing phase transitions at finite temperature as well.
Recently, a possibility of having first-order phase transi-
tions in gauge-Higgs unification has been argued [28]. At
the moment the nature of phase transitions at finite temper-
ature in SOð5Þ × Uð1Þ × SUð3Þ gauge-Higgs unification
remains unclear.
The Higgs boson as an AB phase in gauge-Higgs

unification is similar to that in composite Higgs models
in which the Higgs boson appears as a pseudo-Nambu-
Goldstone boson [9,29,30]. In both scenarios the Higgs
boson field has the character of a phase, but has a quite
different mechanism for acquiring its mass. In gauge-Higgs
unification the Higgs boson mass is generated by the
gauge-invariant dynamics of the AB phase, whereas it
results from the ungauged part of global symmetry in

composite Higgs models. Further, in gauge-Higgs unifica-
tion left-handed and right-handed components of quarks and
leptons are normally localized in opposite branes: if left-
handed components are localized near the UV (IR) brane,
then right-handed components are localized near the IR
(UV) brane. In typical composite Higgs models all light
quarks and leptons are assumed to be localized near the
UV brane. This leads to big difference in phenomenology
associated with Z0 or technirho bosons. In gauge-Higgs
unification in RS space there is large parity violation in Z0
couplings of quarks and leptons [14,31], whereas such
asymmetry is absent in composite Higgs models. Gauge-
Higgs unification is strictly regulated by the gauge principle.
The paper is organized as follows. In Sec. II the model is

introduced. In Sec. III the effective potential VeffðθHÞ is
evaluated. We show that dynamical electroweak symmetry
breaking takes place. The cubic and quartic self-couplings,
λ3 and λ4, of the Higgs boson are evaluated from VeffðθHÞ.
It is observed there that λ3 and λ4 are determined to high
accuracy as functions of θH, irrespective of other param-
eters in the model. The origin of the θH universality in the
RS space is clarified in Sec. IV. In Sec. V the spectrum of
dark fermions is evaluated. Section VI is devoted to a
summary. The mass spectra of all fields in the model are
summarized in Appendix A. The functions used for the
evaluation of VeffðθHÞ are summarized in Appendix B.

II. MODEL

The GUT-inspired SOð5Þ ×Uð1ÞX × SUð3ÞC gauge-
Higgs unification was introduced in Refs. [16,20]. It is
defined in the RS warped space with metric given by [32]

ds2 ¼ gMNdxMdxN ¼ e−2σðyÞημνdxμdxν þ dy2; ð2:1Þ

where M, N ¼ 0, 1, 2, 3, 5, μ, ν ¼ 0, 1, 2, 3, y ¼ x5,
ημν ¼ diagð−1;þ1;þ1;þ1Þ, σðyÞ ¼ σðyþ 2LÞ ¼ σð−yÞ,
and σðyÞ ¼ ky for 0 ≤ y ≤ L. In terms of the conformal
coordinate z ¼ eky (1 ≤ z ≤ zL ¼ ekL) in the region
0 ≤ y ≤ L,

ds2 ¼ 1

z2

�
ημνdxμdxν þ

dz2

k2

�
: ð2:2Þ

The bulk region 0 < y < L (1 < z < zL) is AdS spacetime
with a cosmological constant Λ ¼ −6k2, which is sand-
wiched by the UV brane at y ¼ 0 (z ¼ 1) and the IR
brane at y ¼ L (z ¼ zL). The KK mass scale is mKK ¼
πk=ðzL − 1Þ ≃ πkz−1L for zL ≫ 1.

In addition to the gauge fields ASUð3ÞC
M , ASOð5Þ

M , and AUð1ÞX
M

of SUð3ÞC, SOð5Þ, and Uð1ÞX, we introduce the matter
fields listed in Table I. Fields defined in the bulk satisfy
orbifold boundary conditions. Each gauge field satisfies
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�
Aμ

Ay

�
ðx; yj − yÞ ¼ Pj

�
Aμ

−Ay

�
ðx; yj þ yÞP−1

j ; ð2:3Þ

where ðy0; y1Þ ¼ ð0; LÞ, P0 ¼ P1 ¼ I3 for ASUð3ÞC
M , and

P0 ¼ P1 ¼ 1 for AUð1ÞX
M . P0¼P1¼PSOð5Þ

5 ¼diagðI4;−1Þ
for ASOð5Þ

M in the vector representation and P0 ¼ P1 ¼
PSOð5Þ
4 ¼ diagðI2;−I2Þ in the spinor representation. Quark

and lepton multiplets satisfy

Ψα
ð3;4Þðx; yj − yÞ ¼ −PSOð5Þ

4 γ5Ψα
ð3;4Þðx; yj þ yÞ;

Ψ�α
ð3;1Þðx; yj − yÞ ¼ ∓γ5Ψ�α

ð3;1Þðx; yj þ yÞ;
Ψα

ð1;4Þðx; yj − yÞ ¼ −PSOð5Þ
4 γ5Ψα

ð1;4Þðx; yj þ yÞ; ð2:4Þ

where α ¼ 1 ∼ 3. Dark fermion multiplets satisfy

Ψβ
Fðx; yj − yÞ ¼ ð−1ÞjPSOð5Þ

4 γ5Ψβ
Fðx; yj þ yÞ;

Ψ�γ
ð1;5Þðx; yj − yÞ ¼ �PSOð5Þ

5 γ5Ψ�γ
ð1;5Þðx; yj þ yÞ; ð2:5Þ

where β ¼ 1 ∼ NF and γ ¼ 1 ∼ NV .

The bulk action of each gauge field (ASUð3ÞC
M , ASOð5Þ

M , or

AUð1ÞX
M ) is given by

Sgaugebulk ¼
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p �
−tr
�
1

4
FMNFMN

þ 1

2ξ
ðfgfÞ2 þ Lgh

��
; ð2:6Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p ¼ 1=kz5 and FMN ¼ ∂MAN − ∂NAM −
ig½AM; AN � with each 5D gauge coupling constant g. The
gauge fixing fgf and ghost terms Lgh have been specified
in Ref. [16]. Each fermion multiplet Ψðx; yÞ in the bulk has
its own bulk-mass parameter c [33]. The covariant deriva-
tive is given by

DðcÞ¼ γAeAM
�
DMþ1

8
ωMBC½γB;γC�

�
−cσ0ðyÞ;

DM¼∂M− igSA
SUð3Þ
M − igAA

SOð5Þ
M − igBQXA

Uð1Þ
M : ð2:7Þ

Here σ0 ¼ dσðyÞ=dy and σ0ðyÞ ¼ k for 0 < y < L. gS, gA,
and gB are SUð3ÞC, SOð5Þ, and Uð1ÞX gauge coupling
constants. The bulk part of the action for the fermion
multiplets, with Ψ̄ ¼ iΨ†γ0, is given by

Sfermion
bulk ¼

Z
d5x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p �X
J

Ψ̄JDðcJÞΨJ

−
X
α

�
mDα

Ψ̄þα
ð3;1ÞΨ

−α
ð3;1Þ þ H:c:

	
−
X
γ

�
mVγ

Ψ̄þγ
ð1;5ÞΨ

−γ
ð1;5Þ þ H:c:

	

; ð2:8Þ

where the sum
P

J extends over ΨJ ¼ Ψα
ð3;4Þ, Ψ

α
ð1;4Þ, Ψ

�α
ð3;1Þ,

Ψβ
F, and Ψ�γ

ð1;5Þ.
The action for the brane scalar field Φð1;4ÞðxÞ is given by

SΦbrane ¼
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p
δðyÞ

×
n
−ðDμΦð1;4ÞÞ†DμΦð1;4Þ

− λΦð1;4Þ

�
Φ†

ð1;4ÞΦð1;4Þ − jwj2
	
2
o
; ð2:9Þ

where Dμ ¼ ∂μ − igAA
SOð5Þ
μ − i 1

2
gBA

Uð1Þ
μ . The action for

the gauge-singlet brane fermion χαðxÞ is

Sχbrane ¼
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p
δðyÞ

�
1

2
χ̄αγμ∂μχ

α −
1

2
Mαβχ̄αχβ



:

ð2:10Þ

χαðxÞ satisfies the Majorana condition χc ¼ χ:

TABLE I. The SUð3ÞC × SOð5Þ × Uð1ÞX content of matter fields is shown in the GUT-inspired B model and
previous A model. In the A model only SUð3ÞC × SOð4Þ ×Uð1ÞX symmetry is preserved on the UV brane so that
the SUð2ÞL × SUð2ÞR content is shown for brane fields. The B model is analyzed in the present paper.

B model A model

Quark Ψα
ð3;4Þ∶ð3; 4Þ16, Ψ�α

ð3;1Þ∶ð3; 1Þ�−1
3

Ψα
1∶ð3; 5Þ23, Ψα

2∶ð3; 5Þ−1
3

Lepton Ψα
ð1;4Þ∶ð1; 4Þ−1

2
Ψα

3∶ð1; 5Þ−1 Ψα
4∶ð1; 5Þ0

Dark fermion Ψβ
F∶ð3; 4Þ16, Ψ

�γ
ð1;5Þ∶ð1; 5Þ�0 Ψδ

F∶ð1; 4Þ12
Brane fermion χα∶ð1; 1Þ0 χ̂q1;2;3R∶ð3; ½2; 1�Þ76;16;−5

6

χ̂l1;2;3R∶ð1; ½2; 1�Þ−3
2
;1
2
;−1

2

Brane scalar Φð1;4Þ∶ð1; 4Þ1
2

Φ̂∶ð1; ½1; 2�Þ1
2

Symmetry of brane interactions SUð3ÞC × SOð5Þ ×Uð1ÞX SUð3ÞC × SOð4Þ × Uð1ÞX
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χ ¼
�
ξ

η

�
; χc ¼

�þηc

−ξc

�
¼ eiδC

�þσ2η�

−σ2ξ�

�
: ð2:11Þ

On the UV brane there are SUð3ÞC × SOð5Þ × Uð1ÞX-
invariant brane interactions among the bulk fermion, brane
fermion, and brane scalar fields. The relevant parts of the
brane interactions are given by

Sintbrane ¼ −
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p
δðyÞ

×
n
καβΨ̄α

ð3;4ÞΦð1;4Þ ·Ψ
þβ
ð3;1Þ

þ κ̃αβχ̄βΦ̃†
ð1;4ÞΨ

α
ð1;4Þ þ H:c:

o
; ð2:12Þ

where the κ’s and κ̃’s are coupling constants and

Φð1;4Þ ¼
�Φ½2;1�
Φ½1;2�

�
; Φ̃ð1;4Þ ¼

 
iσ2Φ�

½2;1�
−iσ2Φ�

½1;2�

!
: ð2:13Þ

When hΦð1;4Þi ¼ ð0; 0; 0; wÞt, Eq. (2.12) generates addi-
tional mass terms:Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p
δðyÞ

n
2μαβd̄0αRD

þβ
L þ H:c:

o
; μαβ ¼ καβwffiffiffi

2
p

ð2:14Þ

in the down-type quark sector, and

−
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detG

p
δðyÞm

αβ
Bffiffiffi
k

p ðχ̄βν0αR þ ν̄0αR χ
βÞ; mαβ

B ¼ κ̃αβw
ffiffiffi
k

p

ð2:15Þ

in the neutrino sector. With the Majorana masses in
Eq. (2.10), the mass term (2.15) induces the inverse-seesaw
mechanism in the neutrino sector [26]. Further, hΦð1;4Þi ≠ 0

breaks SOð4Þ ×Uð1ÞX down to SUð2ÞL ×Uð1ÞY . We
assume that w ≫ mKK. The 4D SUð2ÞL gauge coupling
is given by gw ¼ gA=

ffiffiffiffi
L

p
. The 5D gauge coupling g5DY of

Uð1ÞY and the 4D bare Weinberg angle at the tree level,
θ0W , are given by

g5DY ¼ gAgBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2A þ g2B

p ;

sin θ0W ¼ sϕffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2ϕ

q ; sϕ ¼ gBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2A þ g2B

p : ð2:16Þ

The bare Weinberg angle θ0W with a given θH is determined
to fit the LEP1 data for eþe− → μþμ− at

ffiffiffi
s

p ¼ mZ

[34]. Approximately, sin2θ0W ≃ 0.1140þ 0.1186 cos θH −
0.0014 cos 2θH. The values of the gauge couplings turn out

to be very close to those in the SM, with sin2 θW ¼
0.2312 [20].
The 4D Higgs boson ΦHðxÞ is contained in the

SOð5Þ=SOð4Þ part of ASOð5Þ
y . In the z coordinate Az ¼

ðkzÞ−1Ay (1 ≤ z ≤ zL), and

Aðj5Þ
z ðx; zÞ ¼ 1ffiffiffi

k
p ϕjðxÞuHðzÞ þ � � � ;

uHðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

z2L − 1

s
z;

ΦHðxÞ ¼
1ffiffiffi
2

p
�
ϕ2 þ iϕ1

ϕ4 − iϕ3

�
: ð2:17Þ

At the quantum level ΦH develops a nonvanishing
expectation value. Without loss of generality, we assume
hϕ1i; hϕ2i; hϕ3i ¼ 0 and hϕ4i ≠ 0, which is related to the
AB phase θH in the fifth dimension. The eigenvalues of

Ŵ ¼ P exp

�
igA

Z
L

−L
dyAy



· P1P0 ð2:18Þ

are gauge invariant. For Ay ¼ ð2kÞ−1=2ϕ4ðxÞvHðyÞTð45Þ,
where vHðyÞ ¼ kekyuHðzÞ for 0 ≤ y ≤ L and vHð−yÞ ¼
vHðyÞ ¼ vHðyþ 2LÞ, one finds

Ŵ ¼ expfif−1H ϕ4ðxÞ · 2Tð45Þg;

fH ¼ 2

gA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k

z2L − 1

s
¼ 2

gw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

Lðz2L − 1Þ

s
;

θH ¼ hϕ4i
fH

: ð2:19Þ

Note that

Að45Þ
z ðx; zÞ ¼ 1ffiffiffi

k
p fθHfH þHðxÞguHðzÞ þ � � � ; ð2:20Þ

where HðxÞ is the neutral Higgs boson field. There is a
large gauge transformation which shifts θH by 2π, pre-
serving the boundary conditions. The physics is invariant
under θH → θH þ 2π. We shall evaluate the effective
potential VeffðθHÞ in the next section.

III. EFFECTIVE POTENTIAL

The effective potential VeffðθHÞ at the one-loop level is
evaluated from the mass spectra of all fields which depend
on θH. After the Wick rotation into the Euclidean signature
it is expressed as
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VeffðθHÞ¼
X

�1

2

Z
d4pE

ð2πÞ4
X
n

lnfp2
EþmnðθHÞ2g; ð3:1Þ

where the sign þ (−) corresponds to bosons (fermions).
When the KK spectrum fmnðθHÞg is determined by zeros
of a function ρðz; θHÞ, namely, by

ρðmn; θHÞ ¼ 0 ðn ¼ 1; 2; 3;…Þ; ð3:2Þ

VeffðθHÞ is given [35] by

VeffðθHÞ ¼
X

� 1

ð4πÞ2
Z

∞

0

dy y3 ln ρðiy; θHÞ: ð3:3Þ

The θH-dependent part of V
1loop
eff ðθHÞ is finite, independent

of the cutoff and regularization method employed.
The spectrum-determining functions ρðz; θHÞ for all

fields in the model were given in Ref. [16]. They are
summarized in Appendix A for convenience. Relevant
contributions come fromW and Z gauge fields, top-bottom
quark multiplets, and dark fermions in the spinor and vector
representations. Contributions from light quarks and lep-
tons are negligible. To avoid unnecessary confusion in the
following argument, we denote the effective potential as
VeffðθÞ. The physical value θH corresponds to the global
minimum of VeffðθÞ, namely, dVeff=dθjθ¼θH

¼0. One finds

VeffðθÞ ¼ 2ð3 − ξ2ÞAWðθÞ þ ð3 − ξ2ÞAZðθÞ þ 3ξ2ASðθÞ
− 12AtopðθÞ − 12AbottomðθÞ − 12nFAFðθÞ
− 8nVAVðθÞ;

ApðθÞ≡ ðkz−1L Þ4
ð4πÞ2

Z
∞

0

dq q3 ln

�
1þ

X2
n¼1

QðnÞ
p ðqÞ cosðnθÞ



;

ð3:4Þ

where nF and nV are the number ofΨF andΨ�
ð1;5Þ, and ξ is a

gauge parameter in the generalized Rξ gauge. The inte-
gration variable has been changed from y in Eq. (3.3) to
q ¼ k−1zLy. In the following we take zL ¼ ekL ¼ 1010 and
ξ ¼ 0. The contributions from W and Z towers and the
Goldstone boson tower are given by

Qð1Þ
W ðqÞ ¼ Qð1Þ

Z ðqÞ ¼ Qð1Þ
S ðqÞ ¼ 0;

Qð2Þ
W ðqÞ ¼ −

1

−4izLq−1Ĉ0ðqÞŜðqÞ þ 1
;

Qð2Þ
Z ðqÞ ¼ −

1þ s2ϕ
−4izLq−1Ĉ0ðqÞŜðqÞ þ 1þ s2ϕ

;

Qð2Þ
S ðqÞ ¼ −

1

−2izLq−1ĈðqÞŜðqÞ þ 1
: ð3:5Þ

ĈðqÞ, ŜðqÞ, etc. in the expressions above and ĈLðq; cÞ,
ŜLðq; cÞ, etc. in the expressions below are given in
Appendix B. They are expressed in terms of modified
Bessel functions.

The top- and bottom-quark contributions are given by

Qð2Þ
topðqÞ ¼ Qð2Þ

bottomðqÞ ¼ 0;

Qð1Þ
topðqÞ ¼ −

1

2ŜLðq; ctÞŜRðq; ctÞ þ 1
;

Qð1Þ
bottomðqÞ ¼ −

gSLSR
2ŜLðq; ctÞŜRðq; ctÞ gSLSR þ 2jμj2ĈRðq; ctÞŜRðq; ctÞ gCLSL þ 1

;

gSLSR ¼ ŜLðq; cDb
þ m̃Db

ÞŜRðq; cDb
− m̃Db

Þ þ ŜLðq; cDb
− m̃Db

ÞŜRðq; cDb
þ m̃Db

Þ
þ ĈLðq; cDb

þ m̃Db
ÞĈRðq; cDb

− m̃Db
Þ þ ĈLðq; cDb

− m̃Db
ÞĈRðq; cDb

þ m̃Db
Þ − 2;gCLSL ¼ ĈLðq; cDb

þ m̃Db
ÞŜLðq; cDb

− m̃Db
Þ þ ĈLðq; cDb

− m̃Db
ÞŜLðq; cDb

þ m̃Db
Þ: ð3:6Þ

In the above expressions we have assumed that the brane interaction term (2.12) is diagonal in generation space. cDα
is the

bulk mass parameter of Ψ�α
ð3;1Þ and m̃Dα

¼ mDα
=k. Numerically, the bottom-quark contribution is very small and may be

ignored. There are two kinds of dark fermions: Ψβ
F and Ψ�γ

ð1;5Þ. Their contributions are given by
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Qð1Þ
F ðqÞ ¼ 1

2ŜLðq; cFÞŜRðq; cFÞ þ 1
;

Qð2Þ
F ðqÞ ¼ 0;

Qð1Þ
V ðqÞ ¼ 0;

Qð2Þ
V ðqÞ ¼ −

2

B̂0ðq; cV; m̃VÞ
;

B̂0ðq; cV; m̃VÞ ¼ ĈLðq; cV þ m̃VÞĈRðq; cV − m̃VÞ
þ ĈLðq; cV − m̃VÞĈRðq; cV þ m̃VÞ
þ ŜLðq; cV þ m̃VÞŜRðq; cV − m̃VÞ
þ ŜLðq; cV − m̃VÞŜRðq; cV þ m̃VÞ: ð3:7Þ

For the sake of simplicity we set degenerate bulk mass
parameters cF for Ψβ

F, and degenerate masses mV ¼ km̃V

and bulk mass parameters cV for Ψ�γ
ð1;5Þ. We note that

contributions from gauge bosons andΨ�γ
ð1;5Þ fields to VeffðθÞ

are periodic in θ with a period π, whereas those from top-
and bottom-quark fields and Ψβ

F fields are periodic with a
period 2π.
The parameters of the model are determined in the

following steps. (i) We pick the value of θH. In other words,
we adjust the parameters of the model such that VeffðθÞ has
a global minimum at θ ¼ θH. (ii) We take zL ¼ 1010. Then,
k is determined so as to reproduce mZ, and the KK mass
scale mKK ¼ πkðzL − 1Þ−1 is fixed. (iii) The bulk mass
parameters of Ψα

ð3;4Þ and Ψ
α
ð1;4Þ are fixed from the masses of

up-type quarks and charged leptons. In particular, ct is
determined by mt. (iv) The bulk mass parameters cDα

of
Ψ�α

ð3;1Þ and brane interaction coefficients μαβ are determined

so as to reproduce the masses of down-type quarks and the
CKM matrix. Similarly, the Majorana mass terms Mαβ and
brane interactions κ̃αβ are determined so as to reproduce
neutrino masses and the Pontecorvo-Maki-Nakagawa-
Sakata matrix. As remarked above, these parameters are
numerically irrelevant for VeffðθÞ. (v) At this stage there
remain five parameters to be determined: ðnF; cFÞ of Ψβ

F

and ðnV; cV; m̃VÞ of Ψ�γ
ð1;5Þ. There are two conditions to be

satisfied:

ðaÞ∶ dVeff

dθ

����
θ¼θH

¼ 0;

ðbÞ∶ m2
H ¼ 1

f2H

d2Veff

dθ2

����
θ¼θH

; ð3:8Þ

where mH ¼ 125.1 GeV. The second condition for the
Higgs boson mass mH follows from the fact that the
effective potential for the 4D Higgs field HðxÞ is given
by VeffðθH þ f−1H HÞ, as inferred from Eq. (2.20). The
conditions (3.8) give two constraints to be satisfied among

the five parameters ðnF; cF; nV; cV; m̃VÞ. We first fix, for
instance, ðnF; nV; cVÞ and determine ðcF; m̃VÞ by Eq. (3.8).
One may wonder whether the arbitrary choice of the

parameters in the last step diminishes the predictive
power of the model. Quite surprisingly, many of the
physical quantities do not depend on such details of the
parameter choice, being determined solely by θH. There
appears the θH universality, which will be explained in
the next section.
Here we give some examples. The parameters fixed in

steps (i)–(iv) above are tabulated in Table II. In Fig. 1 the
effective potential for θH ¼ 0.1, nF ¼ nV ¼ 2, and cV ¼ 0
is displayed. cF ¼ 0.319 and m̃V ¼ 0.0806 are chosen to
satisfy Eq. (3.8). One observes that the electroweak
symmetry is dynamically broken. In Fig. 2 the contribu-
tions of relevant fields to the effective potential VeffðθÞ are
displayed. There is a lower bound for θH in order to
reproduce the top-quark mass. θH ≥ θc1, where θc1 ∼ 0.015
for zL ¼ 1010. Similarly, there is a constraint for the
warp factor. For θH ¼ 0.1, nF ¼ nV ¼ 2, the top-quark
mass is reproduced only if zL ≥ zL1 ∼ 108.1 and dynamical
electroweak symmetry breaking is achieved only if
zL ≤ zL2 ∼ 1015.5.
The effective potential VeffðθÞ has more information on

the Higgs self-couplings. By expanding VeffðθH þH=fHÞ,
one finds the Higgs self-couplings λnHn. The nth self-
coupling λn is given by

λn ≡ 1

n!fnH

dnVeff

dθn

����
θ¼θH

: ð3:9Þ

The couplings λ3 and λ4 are plotted in Figs. 3 and 4 as
functions of θH for cV ¼ 0.2; nF ¼ nV ¼ 2. The fitting
curves are given by

B model∶ λ3=GeV ¼ 39.6 cos θH − 5.21ð1þ cos 2θHÞ
− 0.00911 cos 3θH;

λ4 ¼ −0.0695þ 0.0852 cos θH

þ 0.00725 cos 2θH: ð3:10Þ

λ3 and λ4 in the A model are also plotted in Figs. 3 and 4,
for which the fitting curves are given by

TABLE II. Parameters determined for zL¼1010 and θH ¼0.05,
0.1, 0.15. We set μαβ ¼ μαδαβ, and take cDb

¼ 1.04. μb is
determined so as to reproduce mb.

θH k [1013 GeV] mKK [TeV] ct cDb
μb

0.05 7.68 24.1 −0.226 1.04 0.106
0.10 3.84 12.1 −0.227 1.04 0.104
0.15 2.57 8.07 −0.230 1.04 0.0990
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A model∶ λ3=GeV ¼ 32.4 cos θH − 2.26ð1þ cos 2θHÞ
− 1.1 cos 3θH;

λ4 ¼ −0.00264 − 0.0129 cos θH

þ 0.0363 cos 2θH: ð3:11Þ

Note that λ3 vanishes at θH ¼ 1
2
π as a consequence of theH

parity in GHU models [36]. For θH ≳ 0.6, λ4 becomes
negative which, however, does not imply instability.
The θ-dependent part of VeffðθÞ is finite and bounded
from below. Gauge-Higgs unification does not experience

the vacuum instability problem that afflicts most 4D field
theories. From the experimental constraints from LEP1,
LEP2, and LHC data for the nonobservation of Z0 events, it
is inferred that θH ≲ 0.11. For θH ∼ 0.1 (0.15), λ3 and λ4 are
smaller than those in the SM by 7.7% (8.1%) and 30%
(32%), respectively. As explained above, there is a lower
bound for θH in GHU, namely, θH > θc1, and there does
not exist a θH → 0 limit. It is not surprising that λ3 and λ4
deviate from the values in the SM even for small θH. The
couplings λn (n ≥ 5) are generated at the one-loop level in
both GHU and the SM, which turn out to be finite. The
Higgs couplings to quarks, leptons, and W and Z bosons
in GHU for small θH are very close to those in the SM.
There are additional contributions coming from KK modes
in GHU. It may be interesting as well to measure these
couplings λn (n ≥ 5) in future experiments to test predic-
tions from GHU and the SM.

IV. θH UNIVERSALITY

As remarked in the previous section, there remains the
arbitrariness in the choice of the parameters in the model.
Among the five parameters ðnF; cF; nV; cV; m̃VÞ there are
only two conditions in Eq. (3.8) that must be obeyed.
In the examples given in the previous section, we first
fixed ðnF; nV; cVÞ and determined ðcF; m̃VÞ by Eq. (3.8).
The Higgs cubic and quartic couplings, λ3 and λ4, are

FIG. 2. Contributions of relevant fields to the effective potential
for θH ¼ 0.1, nF ¼ 2, nV ¼ 2, and cV ¼ 0.

FIG. 3. The cubic coupling λ3 of the Higgs boson. The fitting
curves are given by λ3=GeV¼39.6cosθH−5.21ð1þcos2θHÞ−
0.00911cos3θH for the B model and λ3=GeV ¼ 32.4 cos θH −
2.26ð1þ cos 2θHÞ − 1.1 cos 3θH for the A model. The SM value
is λ3;SM ¼ 31.5 GeV.

FIG. 4. The quartic coupling λ4 of the Higgs boson. The
fitting curves are given by λ4 ¼ −0.0695þ 0.0852 cos θH þ
0.00725 cos 2θH for the B model and λ4 ¼ −0.00264 −
0.0129 cos θH þ 0.0363 cos 2θH for the A model. The SM value
is λ4;SM ¼ 0.0320.

FIG. 1. The effective potential for θH ¼ 0.1, nF ¼ 2, nV ¼ 2, and cV ¼ 0. The global minimum is located at θ ¼ θH .
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evaluated with this choice. One might wonder how λ3 and
λ4 depend on the choice of the parameters ðnF; nV; cVÞ.
In this section we show that λ3 and λ4 are determined, to

high accuracy, as functions of θH only, and do not depend
on the details of the parameter choice. It has been known in
GHU that the three-point Higgs couplings toW, Z, quarks,
and leptons also have the same property [37]. These
physical quantities are determined by θH to high accuracy.
This may be called the θH universality. The θH universality
leads to profound predictive power. Once the value of θH is
determined by one of the physical quantities, the values of
other physical quantities can be predicted.
In Table III we list the values of ðλ3; λ4Þ for θH ¼ 0.1

with various choices of ðnF; nV; cVÞ. Although the values
of cF and m̃V depend on the choice of ðnF; nV; cVÞ, the
values of λ3 and λ4 are universal to high accuracy. λ3 and λ4
are determined as functions of θH only.
There is a reason for the θH universality. We first

examine the global behavior of VeffðθÞ with a given θH.
Notice that the function ApðθÞ in Eq. (3.4) is expanded as

ApðθÞ ¼
ðkz−1L Þ4
ð4πÞ2

X∞
l¼1

X2
n¼1

αðn;lÞp coslnθ;

αðn;lÞp ≡ ð−1Þlþ1

l

Z
∞

0

dqq3ðQðnÞ
p ðqÞÞl: ð4:1Þ

As either Qð1Þ
p ðqÞ or Qð2Þ

p ðqÞ for a given p vanishes in

Eq. (3.4), αð1;lÞp or αð2;lÞp ¼ 0 for each p in Eq. (4.1).
To understand the qualitative behavior of VeffðθÞ, let us

approximate ApðθÞ in Eq. (3.4) by

ð4πÞ2
ðkz−1L Þ4 ApðθÞ

¼
(
αð2;1Þp cos 2θ for p ¼ W;Z; S; V;

αð1;1Þp cos θ þ αð1;2Þp cos2θ for p ¼ top; F:

ð4:2Þ

Note that jαðn;2Þp =αðn;1Þp j < 0.05. As the contributions from
p ¼ top; F are 1 order of magnitude larger than those from
p ¼ W;Z; S; V, the cos2 θ terms have been retained for the
top and F. VeffðθÞ in this approximation, denoted as
VappðθÞ, is given by

VappðθÞ ¼
ðkz−1L Þ4
ð4πÞ2 ð−B1 cos θ þ B2 cos 2θÞ;

B1 ¼ 12αð1;1Þtop þ 12nFα
ð1;1Þ
F ;

B2 ¼ αgauge − 8nVα
ð2;1Þ
V − 6αð1;2Þtop − 6nFα

ð1;2Þ
F ;

αgauge ¼ 2ð3 − ξ2Þαð2;1ÞW þ ð3 − ξ2Þαð2;1ÞZ þ 3ξ2αð2;1ÞS :

ð4:3Þ
The condition ðaÞ in Eq. (3.8) leads to B1 ¼ 4B2 cos θH.
Then, the condition ðbÞ in Eq. (3.8) implies that

B2 ∼
16π2

g2wðkLÞ2
�
mH

mW

�
2

; ð4:4Þ

where the relationsmKK∼πkz−1L ,mW ∼ ðk=LÞ1=2z−1L sin θH,
and fH ∼ 2mW=gw sin θH have been used. It follows that

VappðθÞ ¼ V0uðθÞ;
uðθÞ ¼ −4 cos θH cos θ þ cos 2θ;

V0 ¼
m2

Wm
2
H

g2wsin4θH
: ð4:5Þ

The cubic and quartic Higgs self-couplings are given by

λapp3 ∼
gwm2

H

4mW
cos θH;

λapp4 ∼
g2wm2

H

96m2
W
ð7cos2θH − 4Þ: ð4:6Þ

The approximate formulas (4.5) and (4.6) represent the
qualitative behavior of the effective potential VeffðθÞ, but
exhibit a slight deviation from the values in Table III and
the fitting curves (3.10) and (3.11). We first note that the
form of VappðθÞ is fixed, once one makes the ansatz that
VeffðθÞ is expressed in terms of two functions: cos θ and
cos 2θ. The quantities relevant for determining λ3 and λ4 are
B1 and B2, but not detailed values of the parameters in the
models considered. In the A or B model the same
universality relations (4.6) result in this approximation.
It is easy to confirm that the formulas (4.6) reproduce the
SM values at θH ¼ 0,

λapp3 jθH¼0 ¼ λ3;SM; λapp4 jθH¼0 ¼ λ4;SM: ð4:7Þ

We also note that uðπÞ−uð0Þ¼8cosθH and uðθHÞ−uð0Þ¼
−2ð1−cosθHÞ2. For small θH, uðπÞ − uð0Þ ∼ 8 and

TABLE III. θH universality in λ3 and λ4 for θH ¼ 0.1 and
zL ¼ 1010. With given ðnF; nV; cVÞ, cF and m̃V are determined to
satisfy the condition (3.8), and λ3 and λ4 are evaluated using
Eq. (3.9).

nF nV cV cF m̃V λ3ðGeVÞ λ4

2 2 0. 0.319 0.0806 29.03 0.02083
2 2 0.2 0.319 0.0777 29.03 0.02083
2 2 0.5 0.322 −0.0371 29.02 0.02078
4 2 0. 0.425 0.0794 29.02 0.02082
4 2 0.2 0.425 0.0765 29.02 0.02082
4 2 0.5 0.426 −0.0350 29.01 0.02076
2 4 0. 0.318 0.0964 29.03 0.02084
2 4 0.2 0.318 0.0937 29.03 0.02084
2 4 0.5 0.319 0.0615 29.03 0.02083
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uðθHÞ − uð0Þ ∼ − 1
2
θ4H, which explains the behavior of

VeffðθÞ for θH ¼ 0.1 seen in Fig. 1.
To understand the θH universality demonstrated in the

previous section we must refine our arguments. The
universality was first found in the A model of SOð5Þ ×
Uð1Þ gauge-Higgs unification [13]. The mechanism that
yields the θH universality was explained in Ref. [38]. We
generalize the argument for the current B model. The
important observation is that λ3 and λ4 are determined by
the local behavior of the effective potential VeffðθHÞ in the
vicinity of the global minimum at θ ¼ θH, and the
universality reflects the local—but not global—behavior
of VeffðθHÞ.
The effective potential VeffðθÞ [Eq. (3.4)] is decomposed

into three parts:

VeffðθÞ ¼
ðkz−1L Þ4
ð4πÞ2 fh0ðθÞ þ nFhFðθ; cF; zLÞ

þ nVhVðθ; cV; m̃V; zLÞg; ð4:8Þ

where h0ðθÞ represents the contributions from gauge
and top-quark fields. With θH, zL, and ξ specified, k is
determined from mZ and ct is subsequently determined
from mt, so that h0ðθÞ is fixed. All other parameters
associated with quarks and leptons are irrelevant for

VeffðθÞ. There remain five parameters ðnF;cF;nV;cV;m̃VÞ
to be specified in Eq. (4.8). They must be adjusted such that
the two conditions in Eq. (3.8) are satisfied. The important
feature in the RS space with zL ≫ 1 is that the θ
dependence of hFðθ; cF; zLÞ and hVðθ; cV; m̃V; zLÞ factor-
izes near θ ¼ θH,

hFðθ; cF; zLÞ ≃ αFðcF; zLÞh̃FðθÞ;
hVðθ; cV; m̃V; zLÞ ≃ αVðcV; m̃V; zLÞh̃VðθÞ; ð4:9Þ

to very high accuracy. This can be confirmed numerically
from the formula for ApðθÞ in Eq. (3.4). The relation

(4.9) implies, for instance, that the ratio hFðθ; cð1ÞF ; zLÞ=
hFðθ; cð2ÞF ; zLÞ is θ independent near θH. For θH ¼ 0.1,

zL ¼ 1010, and ðcð1ÞF ; cð2ÞF Þ ¼ ð0.3; 0.4Þ, the ratio varies
from 1.7916 to 1.7896 in the range 0.09 ≤ θ ≤ 0.11.
The variation is only 0.1%. We stress that these factoriza-
tion formulas are valid only locally, namely, near θ ¼ θH,
and h̃FðθÞ and h̃VðθÞ depend on θH. The zL dependence
of hFðθ; cF; zLÞ and hVðθ; cV; m̃V; zLÞ is also tiny in the
range 108 ≲ zL ≲ 1015.
Let us pick a set of values ðnF; nV; cVÞ and determine

ðcF; m̃VÞ by Eq. (3.8). Making use of Eq. (4.9), one finds

�
dh0
dθ

þ nFαFðcF; zLÞ
dh̃F
dθ

þ nVαVðcV; m̃V; zLÞ
dh̃V
dθ

�
θ¼θH

¼ 0;�
d2h0
dθ2

þ nFαFðcF; zLÞ
d2h̃F
dθ2

þ nVαVðcV; m̃V; zLÞ
d2h̃V
dθ2

�
θ¼θH

¼ ð4πÞ2m2
Hf

2
H

ðkz−1L Þ4 : ð4:10Þ

We perform this procedure for two sets: ðnF; nV; cVÞ ¼
ðnð1ÞF ; nð1ÞV ; cð1ÞV Þ and ðnð2ÞF ; nð2ÞV ; cð2ÞV Þ. Then, Eq. (4.10) im-
plies that

nð1ÞF αF
�
cð1ÞF ; zL

	
¼ nð2ÞF αF

�
cð2ÞF ; zL

	
≡ βF;

nð1ÞV αV
�
cð1ÞV ; m̃ð1Þ

V ; zL
	
¼ nð2ÞV αV

�
cð2ÞV ; m̃ð2Þ

V ; zL
	
≡ βV:

ð4:11Þ

Although the values of ðcF; m̃VÞ depend on the choice of
ðnF;nV;cVÞ, βF¼nFαFðcF;zLÞ and βV ¼nVαVðcV;m̃V;zLÞ
are universal, provided solutions exist. Consequently, one
obtains

VeffðθÞ ≃
ðkz−1L Þ4
ð4πÞ2 h̄ðθÞ;

h̄ðθÞ ¼ h0ðθÞ þ βFh̃FðθÞ þ βVh̃VðθÞ: ð4:12Þ

It immediately follows that

λ3ðθHÞ ¼
gwm2

H sin θH
12mW

h̄ð3ÞðθHÞ
h̄ð2ÞðθHÞ

;

λ4ðθHÞ ¼
g2wm2

Hsin
2θH

96m2
W

h̄ð4ÞðθHÞ
h̄ð2ÞðθHÞ

; ð4:13Þ

which explains the θH universality observed in the pre-
vious section. The relevant quantities for λ3 and λ4 are
βFðθHÞ and βVðθHÞ, but not ðnF; nV; cVÞ. As mentioned
above, the zL dependence of hFðθ; cF; zLÞ and hVðθ; cV;
m̃V; zLÞ is weak. The θH universality stays valid to good
approximation even for varying zL. For instance, for
θH ¼ 0.1 and ðnF; nV; cVÞ ¼ ð2; 2; 0Þ, the resultant ðλ3; λ4Þ
are ð28.93 GeV; 0.02042Þ for zL ¼ 1.237 × 108, which
should be compared with (29.03 GeV, 0.02083) for
zL ¼ 1010.
The θH universality is observed in other physical

quantities. The Higgs boson couplings gWWH and gZZH
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toW and Z, and Yukawa couplings yf to quarks and leptons
are given, to good approximation, by [20,37]

gWWH ¼ gwmW cos θH;

gZZH ¼ gwmZ

cos θ0W
cos θH;

yf ¼
8<:

mf

vSM
cos θH in the A model;

mf

vSM
cos2 1

2
θH in the B model;

ð4:14Þ

where vSM ¼ fH sin θH ¼ 2mW=gw. For small θH, the
deviations of the Higgs couplings in Eq. (4.14) are small,
whereas the deviations of λ3 and λ4 become substantial. We
remark that the relations in Eq. (4.14) have been derived in
the composite Higgs model where the parameter

ffiffiffi
ξ

p ¼ v=f
corresponds to θH in GHU [29,30].

V. DARK FERMIONS

Although the θH universality holds for various couplings
associated with the Higgs boson, the masses of dark
fermions ΨF and Ψ�

ð1;5Þ, for instance, sensitively depend

on the choice of the parameters ðnF; nV; cVÞ. They are
determined by Eq. (A12) for ΨF and Eqs. (A13) and (A14)
for charged and neutral components of Ψ�

ð1;5Þ. In Table IV

we list their masses for various θH with nF ¼ nV ¼ 2. Dark

fermions have relatively small masses compared with the
KK mass scale mKK. The lightest neutral component of the
dark fermions can be a candidate for dark matter.
In Fig. 5 the mass of ΨF is plotted as a function of θH for

several nF. The mass decreases as nF increases. Similar
behavior is obtained forΨ�

ð1;5Þ as nV is varied with cV fixed.

VI. SUMMARY

In this paper we have examined the effective potential
VeffðθHÞ in GUT-inspired SOð5Þ ×Uð1Þ × SUð3Þ gauge-
Higgs unification to confirm that electroweak symmetry
breaking is dynamically induced by the Hosotani mecha-
nism. From VeffðθHÞ the cubic and quartic self-couplings,
λ3 and λ4, of the Higgs boson have been determined. We
have shown the θH universality of these couplings, i.e., they
are determined as functions of θH to high accuracy,
irrespective of the details of other parameters in the theory.
For θH ¼ 0.1 (0.15), λ3 and λ4 are smaller than those in the
standard model by 7.7% (8.1%) and 30% (32%), respec-
tively. The θH universality in λ3 and λ4 is understood as a
result of the factorization property of each component in
the contributions to the effective potential, which is valid
to high accuracy in the Randall-Sundrum warped space
with zL ≫ 1.
The θH universality gives the model great predictive

power. Once the value of θH is determined by experimental
data, many other physical quantities such as the masses and
couplings of various particles can be predicted. It has been
known that gauge-Higgs unification models in the RS
space predict large parity violation in the couplings of
quarks and leptons to Z0 particles (KK modes of γ, Z,
and ZR). This effect can be clearly seen in electron-positron
collision experiments with polarized electron/positron
beams in which θH is the most important parameter. Z0
particles can be directly produced at the LHC, and parity-
violating couplings would manifest in the rapidity distri-
bution in tt̄ production. CKM mixing with natural FCNC
suppression is also incorporated in the GUT-inspired
gauge-Higgs unification. It would be interesting to pin
down the behavior of the model at finite temperature and
its implications for cosmology. SOð5Þ ×Uð1Þ × SUð3Þ
gauge-Higgs unification is one of the most promising
scenarios beyond the standard model. We shall come back
to these issues in the future.
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APPENDIX A: MASS SPECTRUM

In evaluating the effective potential VeffðθHÞ in Sec. III,
one needs to know the mass spectrum of each KK tower of
the fields in the model. It is sufficient to know the form of
functions whose zeros determine the mass spectrum. These
functions have been given in Ref. [16]. We summarize them
in this appendix for convenience.
We first introduce

Fα;βðu; vÞ≡ JαðuÞYβðvÞ − YαðuÞJβðvÞ; ðA1Þ

where JαðuÞ and YαðuÞ are Bessel functions of the first and
second kind. For gauge fields we define

Cðz; λÞ ¼ π

2
λzzLF1;0ðλz; λzLÞ;

Sðz; λÞ ¼ −
π

2
λzF1;1ðλz; λzLÞ;

C0ðz; λÞ ¼ π

2
λ2zzLF0;0ðλz; λzLÞ;

S0ðz; λÞ ¼ −
π

2
λ2zF1;1ðλz; λzLÞ: ðA2Þ

For fermion fields with a bulk mass parameter c, we define�
CL

SL

�
ðz; λ; cÞ ¼ � π

2
λ
ffiffiffiffiffiffiffi
zzL

p
Fcþ1

2
;c∓1

2
ðλz; λzLÞ;�

CR

SR

�
ðz; λ; cÞ ¼ ∓ π

2
λ
ffiffiffiffiffiffiffi
zzL

p
Fc−1

2
;c�1

2
ðλz; λzLÞ; ðA3Þ

and

CR1ðz; λ; c; m̃Þ ¼ CRðz; λ; cþ m̃Þ þ CRðz; λ; c − m̃Þ;
CR2ðz; λ; c; m̃Þ ¼ SRðz; λ; cþ m̃Þ − SRðz; λ; c − m̃Þ;
SL1ðz; λ; c; m̃Þ ¼ SLðz; λ; cþ m̃Þ þ SLðz; λ; c − m̃Þ;
SL2ðz; λ; c; m̃Þ ¼ CLðz; λ; cþ m̃Þ − CLðz; λ; c − m̃Þ;
CL1ðz; λ; c; m̃Þ ¼ CLðz; λ; cþ m̃Þ þ CLðz; λ; c − m̃Þ;
CL2ðz; λ; c; m̃Þ ¼ SLðz; λ; cþ m̃Þ − SLðz; λ; c − m̃Þ;
SR1ðz; λ; c; m̃Þ ¼ SRðz; λ; cþ m̃Þ þ SRðz; λ; c − m̃Þ;
SR2ðz; λ; c; m̃Þ ¼ CRðz; λ; cþ m̃Þ − CRðz; λ; c − m̃Þ:

ðA4Þ

1. Gauge bosons

The mass spectrum fmn ¼ kλng of W and WR towers is
determined by

W tower∶ 2Sð1; λÞC0ð1; λÞ þ λsin2θH ¼ 0;

WR tower∶ Cð1; λÞ ¼ 0: ðA5Þ

The spectrum of γ, Z, ZR, and Az towers is determined by

γ tower∶ C0ð1; λÞ ¼ 0;

Z tower∶ 2Sð1; λÞC0ð1; λÞ þ ð1þ s2ϕÞλsin2θH ¼ 0;

ZR tower∶ Cð1; λÞ ¼ 0;

Az tower∶ Sð1; λÞC0ð1; λÞ þ λsin2θH ¼ 0: ðA6Þ

2. Fermions

With given up-type quark massesmQ ¼ ðmu;mc;mtÞ the
bulk mass parameter cQ ¼ ðcu; cc; ctÞ of up-type quark
multiplets is fixed by

SLð1; λ; cQÞSRð1; λ; cQÞ þ sin2
θH
2

¼ 0; ðA7Þ

where λ ¼ λQ ¼ mQ=k. Then the spectrum of up-type
quark towers is determined by Eq. (A7). In the down-type
quark sector there are brane interactions which mix d0α

and Dþβ through Eq. (2.14). When brane interactions are
diagonal in the generation space, μαβ ¼ δαβμα, the spectrum
of down-type quark towers is determined by�
SQLS

Q
R þ sin2

θH
2

�
ðSD

L1S
D
R1 − SD

L2S
D
R2Þ

þ jμ1j2CQ
RS

Q
R ðSD

L1C
D
L1 − SD

L2C
D
L2Þ ¼ 0;

SQL ¼ SLð1; λ; cQÞ;SD
L1 ¼ SL1ð1; λ; cD; m̃DÞ; etc:; ðA8Þ

where μ1 ¼ ðμd; μs; μbÞ, cD ¼ ðcDd
; cDs

; cDb
Þ, and m̃D ¼

ðm̃Dd
; m̃Ds

; m̃Db
Þ. The parameters μ1; cD; m̃D are deter-

mined such that λ ¼ ðλd; λs; λbÞ ¼ k−1ðmd;ms;mbÞ solves
Eq. (A8) in each generation. For the third generation, for
instance, we take ðμb; cDb

; m̃Dd
Þ ¼ ð0.1; 1.044; 1.0Þ. Only

the top-quark multiplet among quark multiplets gives a
relevant contribution to VeffðθHÞ. By considering general
μαβ the CKM mixing is incorporated with natural FCNC
suppression [20].
With given charged lepton masses mL ¼ ðme;mμ; mτÞ

the bulk mass parameter cL ¼ ðce; cμ; cτÞ of charged lepton
multiplets is fixed by

SLð1; λ; cLÞSRð1; λ; cLÞ þ sin2
θH
2

¼ 0; ðA9Þ

where λ ¼ λL ¼ mL=k. Then the spectrum of charged
lepton towers is determined by Eq. (A9). In the neutrino
sector brane interactions mix να; ν0α; χα. When both
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Mαβ ¼ δαβMα in Eq. (2.10) and m
αβ
B ¼ δαβmα

B in Eq. (2.15)
are diagonal, the spectrum of neutrino towers is
determined by

ðkλ −MÞ
�
SLLS

L
R þ sin2

θH
2

�
þm2

B

k
SLRC

L
R ¼ 0;

SLR ¼ SRð1; λ; cLÞ; etc:; ðA10Þ

where M ¼ ðM1;M2;M3Þ and mB ¼ ðm1
B;m

2
B;m

3
BÞ. With

cL < − 1
2
the light neutrino mass is given by

mν ∼
m2

LM
ð2jcLj − 1Þm2

B
ðA11Þ

in each generation. Contributions from lepton multiplets to
VeffðθHÞ are negligible.
The spectrum of dark fermion ΨF towers is deter-

mined by

SLð1; λ; cFÞSRð1; λ; cFÞ þ cos2
θH
2

¼ 0: ðA12Þ

The spectrum of charged components of dark fermion
Ψ�

ð1;5Þ towers is determined by

SL1ð1;λ;cVÞSR1ð1;λ;cVÞ−SL2ð1;λ;cVÞSR2ð1;λ;cVÞ¼0;

ðA13Þ

whereas the spectrum of neutral component towers is
determined by

fB0ðλ; cV; m̃VÞ − 2 cos 2θHg2 ¼ 0;

B0ðλ; c; m̃Þ ¼ CLð1; λ; cþ m̃ÞCRð1; λ; c − m̃Þ þ CLð1; λ; c − m̃ÞCRð1; λ; cþ m̃Þ
þ SLð1; λ; cþ m̃ÞSRð1; λ; c − m̃Þ þ SLð1; λ; c − m̃ÞSRð1; λ; cþ m̃Þ: ðA14Þ

There are two degenerate towers.1

APPENDIX B: USEFUL FUNCTIONS

As shown in the formula (3.3), a mass-determining function ρðm; θHÞ is analytically continued to ρðiy; θHÞ. We
summarize the functions used in the evaluation of VeffðθHÞ in Sec. III. We introduce

F̂α;βðu; vÞ≡ IαðuÞKβðvÞ − e−iðα−βÞπKαðuÞIβðvÞ; ðB1Þ
where IαðuÞ and KαðuÞ are modified Bessel functions of the first and second kind. In terms of F̂α;βðu; vÞ we define

ĈðqÞ ¼ qF̂1;0ðqz−1L ; qÞ;
ŜðqÞ ¼ iqz−1L F̂1;1ðqz−1L ; qÞ;
Ĉ0ðqÞ ¼ q2z−1L F̂0;0ðqz−1L ; qÞ;
Ŝ0ðqÞ ¼ −iq2z−2L F̂1;1ðqz−1L ; qÞ ðB2Þ

for gauge fields. For fermion fields with c > 0 we define

ĈLðq; cÞ ¼ qz−1=2L F̂cþ1
2
;c−1

2
ðqz−1L ; qÞ;

ŜLðq; cÞ ¼ iqz−1=2L F̂cþ1
2
;cþ1

2
ðqz−1L ; qÞ;

ĈRðq; cÞ ¼ qz−1=2L F̂c−1
2
;cþ1

2
ðqz−1L ; qÞ;

ŜRðq; cÞ ¼ −iqz−1=2L F̂c−1
2
;c−1

2
ðqz−1L ; qÞ: ðB3Þ

For c < 0, we use the relations

ĈLðq;−cÞ ¼ ĈRðq; cÞ; ŜLðq;−cÞ ¼ −ŜRðq; cÞ: ðB4Þ

1There was a typo in Eq. (D.16) of Ref. [16]. The last term in the second line, s2Hc
2
HðCVR1CVL2 − CVR2S

V
L1Þ2, should be

s2Hc
2
HðCVR1SV

L2 − CVR2S
V
L1Þ2. With this correction, Eq. (D.16) of Ref. [16] coincides with Eq. (A14) in the current paper.
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