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Ââåäåíèå

Ïîâåäåíèå ñå÷åíèÿ âáëèçè ïîðîãà âñåãäà çàíèìàëî öåíòðàëüíîå ìå-

ñòî â êâàíòîâîé ìåõàíèêå. Èçó÷åíèå ïðîöåññîâ âáëèçè ïîðîãà ñ ó÷àñòèåì

ëåãêèõ ÿäåð ÿâëÿåòñÿ âàæíûì, êàê ñ òî÷êè çðåíèÿ ïðîâåðêè ðàçëè÷íûõ

òåîðèé âçàèìîäåéñòâèé ÷àñòèö ñ ÿäðàìè, òàê è ñ òî÷êè çðåíèÿ ïîëó÷åíèÿ

èíôîðìàöèè îá ýëåìåíòàðíûõ ïðîöåññàõ ìåæäó ÷àñòèöàìè.

Çà ïîñëåäíèå 1-2 ãîäà ïîÿâèëîñü ìíîãî ýêñïåðèìåíòàëüíûõ äàííûõ

ïî ðåàêöèÿì âáëèçè ïîðîãà, ïðåâîñõîäÿùèõ ïî òî÷íîñòè ïðåäûäóùèå äàí-

íûå àíàëîãè÷íûõ îïûòîâ. Ñðåäè íèõ ýêñïåðèìåíòû ïî èçó÷åíèþ ðåàêöèé

ïåðåçàðÿäêè ïèîíîâ íà èçîòîïàõ ãåëèÿ (PSI (ðåàêöèè îäèíî÷íîé ïåðåçàðÿä-

êè (π+,π0) íà 3He è 4He), TRIUMF (π+ 4He→ π−pppp, π− 3He→ π+nnn),

TJNAF (γ∗ 3He→ π+nnn)), ôîòîðîæäåíèå ïèîíîâ íà äåéòîíå (MAMI (ðåàê-

öèè d(γ, π)d è d(γ, π)np)), ïðîòîí-ïðîòîííûå ñòîëêíîâåíèÿ âáëèçè ïîðîãà

(CELSIUS è COSY (ðåàêöèÿ pp → ppπ+π−)).

Àíàëèç ðåçóëüòàòîâ íåäàâíèõ îïûòîâ, îòëè÷àþùèõñÿ áîëüøîé ñòàòè-

ñòèêîé èçìåðåíèé, òðåáóåò ïî-íîâîìó ïåðåñìîòðåòü òåîðåòè÷åñêèå ìîäåëè

è ïîäõîäû, êîòîðûå èñïîëüçîâàëèñü ðàíåå äëÿ îïèñàíèÿ ðåàêöèé âáëèçè

ïîðîãà.

Ñ îäíîé ñòîðîíû, íåîáõîäèìî ó÷åñòü âñå íàêîïëåííûå òåîðåòè÷åñêèå

äîñòèæåíèÿ â ýòîé îáëàñòè. Ñ äðóãîé � ñîâìåñòíàÿ ðàáîòà ñ ýêñïåðèìåíòà-

òîðàìè, ïðîâîäèâøèìè îïûòû, òðåáóåò íàãëÿäíîé òåîðåòè÷åñêîé èíòåðïðå-

òàöèè ïîëó÷åííûõ â ýêñïåðèìåíòàõ äàííûõ. Ïîýòîìó, íàðÿäó ñî ñòðîãèì
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òåîðåòè÷åñêèì èçëîæåíèåì, âñå ðåçóëüòàòû, ïîëó÷åííûå â ýòîé äèññåðòà-

öèè, ñîïðîâîæäàþòñÿ íàãëÿäíûìè ïðèìåðàìè è ïîÿñíåíèÿìè.

Õàðàêòåðíîé îñîáåííîñòüþ, ïðèñóùåé êàê êîíêðåòíûì ðåàêöèÿì,

èçó÷åíèþ êîòîðûõ ïîñâÿùåíà äèññåðòàöèÿ, òàê è øèðîêîìó êðóãó ïðîöåñ-

ñîâ ðîæäåíèÿ ÷àñòèö íà ëåãêèõ ÿäðàõ, ÿâëÿþòñÿ NN�êîððåëÿöèè.

Ñðåäè íèõ îñîáîå ìåñòî çàíèìàåò íóêëîí-íóêëîííîå âçàèìîäåéñòâèå

â êîíå÷íîì ñîñòîÿíèè (ýôôåêò Ìèãäàëà-Âàòñîíà). Íåñìîòðà íà òî, ÷òî

ýôôåêò Ìèãäàëà-Âàòñîíà � äîñòàòî÷íî èçâåñòíîå ÿâëåíèå, îí øèðîêî îá-

ñóæäàåòñÿ è â íàñòîÿùåå âðåìÿ. Â ñóùåñòâóþùèõ â íàó÷íîé ëèòåðàòóðå

îáçîðàõ (ñì. [1,2] è ññûëêè â ýòèõ ðàáîòàõ) ýôôåêò Ìèãäàëà-Âàòñîíà ðàñ-

ñìàòðèâàåòñÿ êàê îêîí÷àòåëüíî èçó÷åííîå ÿâëåíèå.

Òåì íå ìåíåå, â ðåàêöèÿõ, èçó÷åíèþ êîòîðûõ ïîñâÿùåíà äàííàÿ äèñ-

ñåðòàöèÿ, äåòàëè ïðîÿâëåíèÿ ýôôåêòà Ìèãäàëà-Âàòñîíà ñóùåñòâåííî ðàç-

ëè÷íû è çàâèñÿò îò êîíêðåòíîãî ìåõàíèçìà ðåàêöèè. ßðêèì ïðèìåðîì ýòî-

ìó ÿâëÿþòñÿ ïðîöåññû, èíäóöèðîâàííûå ïèîíàìè è γ�êâàíòàìè íà äåéòîíå.

Â îòëè÷èå îò ðåàêöèé pp�ñòîëêíîâåíèé ïðè áîëüøèõ ïåðåäàííûõ èìïóëü-

ñàõ, ãäå âçàèìîäåéñòâèå ìåæäó ÷àñòèöàìè ïðîèñõîäèò íà ìàëûõ ðàññòîÿ-

íèÿõ (ïðè ýòîì ìîæíî ïðåòåíäîâàòü íà óíèâåðñàëüíûé âêëàä NN âçàè-

ìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè), â ðåàêöèÿõ íà äåéòîíå ïðèáëèæåíèå

òî÷å÷íîãî âçàèìîäåéñòâèÿ íåïðèìåíèìî.

Êîíêðåòíûå ðåàêöèè, íà ïðèìåðå êîòîðûõ ïðîâîäèëîñü èçó÷åíèå õà-

ðàêòåðíûõ ñâîéñòâ ïðîöåññîâ ðîæäåíèÿ è ïåðåçàðÿäêè ÷àñòèö âáëèçè ïî-

ðîãà íà ëåãêèõ ÿäðàõ, ñëåäóþùèå:

• ðåàêöèÿ îäèíî÷íîé ïåðåçàðÿäêè ïèîíà íà ãåëèè, π+ 3He → π0ppp.
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• ïðîöåññ êîãåðåíòíîãî è íåêîãåðåíòíîãî ôîòîðîæäåíèÿ π0�ìåçîíà íà

äåéòîíå, d(γ, π)d è d(γ, π)np.

• ðåàêöèÿ π+π−�ðîæäåíèÿ â ïðîòîí-ïðîòîííûõ ñîóäàðåíèÿõ, pp →

ppπ+π−.

Ýòè ðåàêöèè èçó÷àþòñÿ óæå áîëåå 50 ëåò. Îäíàêî â ðåçóëüòàòå íîâûõ ýêñ-

ïåðèìåíòîâ, îáðàáîòêà êîòîðûõ ïðîâîäèëàñü ñîâìåñòíî ñ ýêñïåðèìåíòàòî-

ðàìè, áûëè ïîëó÷åíû äàííûå, â êîòîðûõ ïðîÿâèëèñü ïðèíöèïèàëüíî íîâûå

ìîìåíòû.

Ñðåäè íèõ � îñîáåííîñòè ðåàêöèè ïåðåçàðÿäêè ïèîíà íà ãåëèè π+ 3He

→ π0ppp. Â êîíå÷íîì ñîñòîÿíèè ýòîé ðåàêöèè ïðèñóòñòâóåò òðè òîæäå-

ñòâåííûõ ïðîòîíà. Êàê ñëåäñòâèå ïðèíöèïà Ïàóëè, ñå÷åíèå ýòîé ðåàêöèè,

îñîáåííî ïðè ýíåðãèÿõ áëèçêèõ ê ïîðîãó, äîëæíî áûòü ñèëüíî ïîäàâëå-

íî. Îòñóòñòâèå ýêñïåðèìåíòàëüíûõ äàííûõ äëÿ �íåïîäàâëåííîé� ðåàêöèè

π− 3He → π0nnp â îáëàñòè íèçêèõ ýíåðãèé íå ïîçâîëÿåò íà ïðÿìóþ ïðîâå-

ðèòü ýòî óòâåðæäåíèå. Îäíàêî ìîæíî âîñïîëüçîâàòüñÿ ýêñïåðèìåíòàëüíû-

ìè äàííûìè ïî ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè íà äåéòîíå π+d → π0pp.

Ïðè ñðàâíåíèè, ñå÷åíèÿ ðåàêöèé π+ 3He→ π0ppp è π+d → π0pp îêàçûâàþò-

ñÿ îäíîãî ïîðÿäêà. Êàê ïîêàçàíî â äèññåðòàöèè, ïîäàâëåíèå ïî ïðèíöèïó

Ïàóëè ñíèìàåòñÿ NN�âçàèìîäåéñòâèåì â êîíå÷íîì ñîñòîÿíèè. Ïðèíöèï

Ïàóëè è NN âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè îáñóæäàþòñÿ ïðàê-

òè÷åñêè âî âñåõ ðàáîòàõ, ïîñâÿùåííûõ èçó÷åíèþ ðåàêöèé ïåðåçàðÿäêè íà

èçîòîïàõ ãåëèÿ [3�9]. Òåì íå ìåíåå, ïðåäñòàâëÿåòñÿ íåîáõîäèìûì ïðîâåñòè

áîëåå äåòàëüíûé àíàëèç ïîäîáíîãî ñîðòà ðåàêöèé äëÿ âûÿñíåíèÿ îñîáîé

ðîëè âçàèìîäåéñòâèÿ íóêëîíîâ â êîíå÷íîì ñîñòîÿíèè.
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Â ðåçóëüòàòå ïðîâåäåíûõ íà óñêîðèòåëå MAMI ýêñïåðèìåíòîâ [10],

[11], áûëè èçìåðåíû äèôôåðåíöèàëüíûå õàðàêòåðèñòèêè êîãåðåíòíîãî

d(γ, π)d è íåêîãåðåíòíîãî d(γ, π)np êàíàëîâ ðåàêöèè π0�ôîòîðîæäåíèÿ

íà äåéòîíå â îêîëîïîðîãîâîé îáëàñòè ýíåðãèé. Ïðîöåññ ôîòîðîæäåíèÿ

π�ìåçîíîâ ÿâëÿåòñÿ õîðîøî èçó÷åííûì ÿâëåíèåì (ñì., íàïðèìåð, ðàáî-

òû [12,13]). Òåì íå ìåíåå, íîâûå ýêñïåðèìåíòàëüíûå äàííûå ñîäåðæàò ðÿä

õàðàêòåðíûõ îñîáåííîñòåé. Òàê, ïîâåäåíèå äèôôåðåíöèàëüíûõ õàðàêòåðè-

ñòèê íåêîãåðåíòíîãî êàíàëà d(γ, π)np óêàçûâàåò íà ñèëüíîå âëèÿíèå np

âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè. Ñ äðóãîé ñòîðîíû, èíêëþçèâíîå

ñå÷åíèå ðåàêöèè π0�ôîòîðîæäåíèÿ íà äåéòîíå, êîòîðîå ÿâëÿåòñÿ ñóììîé

ñå÷åíèé êîãåðåíòíîãî è íåêîãåðåíòíîãî êàíàëîâ, õîðîøî îïèñûâàåòñÿ ïðî-

ñòî êâàçè-ñâîáîäíûì ôîòîðîæäåíèåì ïèîíà íà äåéòîíå. Ýòî îáúÿñíÿåòñÿ

òåì, ÷òî âêëàä íóêëîí-íóêëîííîãî âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè

â ñå÷åíèå íåêîãåðåíòíîãî êàíàëà ôîòîðîæäåíèÿ π0-ìåçîíà íà äåéòîíå êîì-

ïåíñèðóåòñÿ ñå÷åíèåì êîãåðåíòíîãî êàíàëà ýòîé ðåàêöèè.

Äèôôåðåíöèàëüíûå õàðàêòåðèñòèêè ðåàêöèè äâóõïèîííîãî ðîæäå-

íèÿ, ïîëó÷åííûå â ýêñïåðèìåíòå íà óñêîðèòåëå CELSIUS [14], ñîäåðæàò ðÿä

íåòðèâèàëüíûõ îñîáåííîñòåé. Íàèáîëåå èíòåðåñíîé èç íèõ ÿâëÿåòñÿ ÿðêî

âûðàæåííàÿ àñèììåòðèÿ ìåæäó ñïåêòðàìè èíâàðèàíòíûõ ìàññ ñèñòåì pπ+

è pπ−, à òàêæå ìåæäó ñïåêòðàìè ñèñòåì ppπ+ è ppπ−. Ïðè àíàëèçå ýêñïå-

ðèìåíòàëüíûõ äàííûõ ñëåäóåò ó÷èòûâàòü òîò ôàêò, ÷òî äåòåêòîð â ýêñïå-

ðèìåíòå CELSIUS ðåãèñòðèðîâàë ÷àñòèöû òîëüêî â îãðàíè÷åííîé îáëàñòè

ïîëÿðíîãî óãëà ïî îòíîøåíèþ ê íàïðàâëåíèþ ïó÷êà. Ïðåäñòàâëåííûå æå

â ðàáîòå [14] ýêñïåðèìåíòàëüíûå ðåçóëüòàòû îñíîâàííû íà ýêñòðàïîëÿöèè

ê 4π ãåîìåòðèè, êîòîðàÿ ÿâëÿåòñÿ ìîäåëüíî çàâèñèìîé. Îäíàêî àñèììåò-
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ðèÿ ñïåêòðîâ èíâàðèàíòíûõ ìàññ ñèñòåì pπ± è ppπ± çíà÷èòåëüíî ìåíåå

÷óâñòâèòåëüíà ê êîíêðåòíîé ýêñòðàïîëÿöèè. Ïîýòîìó ïðè àíàëèçå ýêñïå-

ðèìåíòàëüíûõ äàííûõ CELSIUS îñíîâíîå âíèìàíèå áûëî óäåëåíî èìåííî

ýòîé îñîáåííîñòè.

Àñèììåòðèþ ýêñïåðèìåíòàëüíûõ ñïåêòðîâ ñèñòåì pπ± è ppπ± óäàåò-

ñÿ îïèñàòü îäèíî÷íûì âîçáóæäåíèåì ∆�ðåçîíàíñà â ïðîìåæóòî÷íîì ñî-

ñòîÿíèè. Ðåçóëüòàòû ðàñ÷åòîâ ñ ïîñòðîåííîé â ðàìêàõ ïðîñòåéøèõ ãèïî-

òåç ôåíîìåíîëîãè÷åñêîé ëîðåíö-èíâàðèàíòíîé àìïëèòóäîé ðåàêöèè pp →

ppπ+π− îêàçûâàþòñÿ â õîðîøåì ñîãëàñèè ñ ýêñïåðèìåíòàëüíûìè äàííûìè

ïî îáíàðóæåííîé â îïûòå àñèììåòðèè.

Îñíîâíûå âîïðîñû, èññëåäîâàíèþ êîòîðûõ ïîñâÿùåíà äàííàÿ äèññåð-

òàöèÿ, ñëåäóþùèå:

1. Îñîáàÿ ðîëü íóêëîí-íóêëîííîãî âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿ-

íèè (ýôôåêò Ìèãäàëà-Âàòñîíà) â ðåàêöèÿõ ñ ÷èñëîì òîæäåñòâåííûõ

íóêëîíîâ â êîíå÷íîì ñîñòîÿíèè áîëåå äâóõ. Èññëåäîâàíèå ýòîãî âî-

ïðîñà ïðîâîäèòñÿ íà ïðèìåðå ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè π+ 3He

→ π0ppp. Îäíàêî ïîëó÷åííûå ðåçóëüòàòû ïðèìåíèìû äëÿ øèðîêîãî

êëàññà ðåàêöèé. Íàïðèìåð, äëÿ ðåàêöèé äâîéíîé ïåðåçàðÿäêè ïèîíîâ

íà èçîòîïàõ ãåëèÿ.

2. Îñîáåííîñòè ïðîöåññîâ êîãåðåíòíîãî è íåêîãåðåíòíîãî ôîòîðîæäå-

íèÿ íåéòðàëüíîãî ïèîíà íà äåéòîíå. Îñíîâíîå âíèìàíèå óäåëåíî

íóêëîí-íóêëîííîìó âçàèìîäåéñòâèþ â êîíå÷íîì ñîñòîÿíèè íåêîãå-

ðåíòíîãî ïðîöåññà d(γ, π)np. Öåíòðàëüíûì ìåñòîì ÿâëÿåòñÿ âçàèìî-

ñâÿçü êîãåðåíòíîãî è íåêîãåðåíòíîãî êàíàëîâ ðåàêöèè.
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3. Îñîáåííîñòè ñïåêòðîâ ðåàêöèè pp → ppπ+π−. Àíàëèç ïðîâåäåí â ðàì-

êàõ ôåíîìåíîëîãè÷åñêîãî ïîäõîäà, îñíîâàííîãî íà îäèíî÷íîì âîç-

áóæäåíèè ∆�èçîáàðû â ïðîìåæóòî÷íîì ñîñòîÿíèè. Îñíîâíîé öåëüþ

ÿâëÿåòñÿ îïèñàíèå àñèììåòðèè ìåæäó ñïåêòðàìè èíâàðèàíòíûõ ìàññ

ñèñòåì pπ± è ppπ±.

Ñîãëàñíî ýòîìó, äàëüíåéøåå èçëîæåíèå äèññåðòàöèè ðàçäåëåíî íà òðè ÷à-

ñòè.

Â ãëàâå 1 ïðîâåäåíî èññëåäîâàíèå îñîáåííîñòåé ó÷åòà ïðèíöèïà Ïàóëè

è íóêëîí-íóêëîííîãî âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè íà ïðèìåðå ðå-

àêöèè π+ 3He → π0ppp. Äëÿ ýòîãî ïîñòðîåíà ëîðåíö-èíâàðèàíòíàÿ àìïëè-

òóäà ýòîé ðåàêöèè, êîòîðàÿ èìååò ïðîñòîé âèä è àâòîìàòè÷åñêè óäîâëåòâî-

ðÿåò ïðèíöèïó Ïàóëè. Çàïèñü ýòîé àìïëèòóäû â òåðìèíàõ 2-õ êîìïîíåíò-

íûõ ñïèíîðîâ â ÿâíîì âèäå ñîäåðæèò ÷ëåíû, ïðîïîðöèîíàëüíûå ìàëûì

ñêîðîñòÿì êîíå÷íûõ íóêëîíîâ. Ýòî äîëæíî ïðèâîäèòü ê ñèëüíîìó ïîäàâ-

ëåíèþ ñå÷åíèÿ ðåàêöèè π+ 3He → π0ppp ïî ñðàâíåíèþ ñ �íåïîäàâëåííûì�

ñå÷åíèåì ðåàêöèè π− 3He → π0nnp. Îäíàêî îêàçûâàåòñÿ, ÷òî êîððåêòíûé

ó÷åò íóêëîí-íóêëîííîãî âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè ñíèìàåò ïî-

äàâëåíèå ñå÷åíèÿ èç-çà ïðèíöèïà Ïàóëè. Ïðîâåäåíî ñðàâíåíèå ðåçóëüòàòîâ

÷èñëåííûõ ðàñ÷åòîâ ñ ýêñïåðèìåíòàëüíûìè äàííûìè è äàíà íàãëÿäíàÿ èí-

òåðïðåòàöèÿ èññëåäîâàííîãî ýôôåêòà.

Â ãëàâå 2 ïðîâåäåíî èññëåäîâàíèå ðåàêöèè ôîòîðîæäåíèÿ π0�ìåçîíà

íà äåéòîíå, ïðè÷åì îñíîâíîå âíèìàíèå óäåëåíî íóêëîí-íóêëîííîìó âçàè-

ìîäåéñòâèþ â êîíå÷íîì ñîñòîÿíèè íåêîãåðåíòíîãî ïðîöåññà d(γ, π)np. Ðàñ-

ñìîòðåíû âêëàäû ðàçëè÷íûõ äèàãðàìì â ìåõàíèçì ðåàêöèè ôîòîðîæäåíèÿ

π0-ìåçîíà íà äåéòîíå. Èññëåäîâàíî âëèÿíèå íóêëîí-íóêëîííîãî âçàèìîäåé-
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ñòâèÿ â êîíå÷íîì ñîñòîÿíèè íà õàðàêòåðèñòèêè ðåàêöèè ôîòîðîæäåíèÿ π0-

ìåçîíà íà äåéòîíå. Ïðîâåäåíî ñðàâíåíèå ðåçóëüòàòîâ ÷èñëåííûõ ðàñ÷åòîâ

ñ ýêñïåðèìåòàëüíûìè äàííûìè MAMI [10].

Â ãëàâå 3 èññëåäîâàíà âîçìîæíîñòü îïèñàíèÿ îáíàðóæåííîé â îïû-

òå CELSIUS àñèììåòðèè ñïåêòðîâ ñèñòåì pπ± è ppπ± âîçáóæäåíèåì ∆�

ðåçîíàíñà â ïðîìåæóòî÷íîì ñîñòîÿíèè. Íà îñíîâàíèè ïðîñòûõ ïðåäïî-

ëîæåíèé ïîñòðîåíà ôåíîìåíîëîãè÷åñêàÿ ëîðåíö-èíâàðèàíòíàÿ àìïëèòóäà,

îïèñûâàþùàÿ ïðîöåññ äâóõïèîííîãî ðîæäåíèÿ pp → ppπ+π−. Ðåçóëüòà-

òû ÷èñëåííûõ ðàñ÷åòîâ, îñíîâàííûõ íà ïîñòðîåííîé ôåíîìåíîëîãè÷åñêîé

àìïëèòóäå, ñðàâíèâàþòñÿ ñ ýêñïåðèìåíòàëüíûìè äàííûìè. Êðîìå òîãî, èñ-

ñëåäîâàíî âëèÿíèå ïðîòîí-ïðîòîííîãî âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿ-

íèè íà äèôôåðåíöèàëüíûå õàðàêòåðèñòèêè ðåàêöèè pp → ppπ+π−. Íàè-

áîëåå ÿðêî ýôôåêò Ìèãäàëà-Âàòñîíà ïðîÿâëÿåòñÿ â ñïåêòðå èíâàðèàíòíîé

ìàññû äâóõ ïðîòîíîâ.

Ïîëîæåíèÿ, âûíîñèìûå íà çàùèòó:

• Ðåøåíèå çàäà÷è î âçàèìíîì âëèÿíèè ïðèíöèïà Ïàóëè è ýôôåêòà

Ìèãäàëà-Âàòñîíà â ðåàêöèÿõ ñ ÷èñëîì òîæäåñòâåííûõ íóêëîíîâ â

êîíå÷íîì ñîñòîÿíèè áîëåå äâóõ.

• Âûÿñíåíèå îñîáîé ðîëè NN�âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè

íà ïðèìåðå ðåàêöèè π+ 3He → π0ppp. Ñðàâíåíèå òåîðåòè÷åñêèõ ðå-

çóëüòàòîâ ñ ýêñïåðèìåíòàëüíûìè äàííûìè.

• Ðåøåíèå ïðîáëåìû âçàèìîñâÿçè êîãåðåíòíîãî è íåêîãåðåíòíîãî êàíà-

ëîâ ðåàêöèè ôîòîðîæäåíèÿ π0-ìåçîíà íà äåéòîíå.

• Ìåòîä ó÷åòà np�âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè ðåàêöèè
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d(γ, π0)np. Ñðàâíåíèå òåîðåòè÷åñêèõ ðåçóëüòàòîâ ñ ýêñïåðèìåíòàëü-

íûìè äàííûìè MAMI.

• Ïîñòðîåíèå ëîðåíö-èíâàðèàíòíîé àìïëèòóäû ðåàêöèè pp → ppπ+π−,

ó÷èòûâàþùåé NN�êîððåëÿöèè è äèíàìèêó Nπ�âçàèìîäåéñòâèÿ ïðè

íèçêèõ ýíåðãèÿõ. Êðèòè÷íàÿ îöåíêà îáðàáîòêè ýêñïåðèìåíòàëüíûõ

äàííûõ. Îïèñàíèå îáíàðóæåííîãî íà îïûòå ðàçëè÷èÿ ñïåêòðîâ èíâà-

ðèàíòíûõ ìàññ ñèñòåì pπ+ è pπ−, à òàêæå ñèñòåì ppπ+ è ppπ−.

• Èññëåäîâàíèå âëèÿíèÿ ïðîòîí-ïðîòîííîãî âçàèìîäåéñòâèÿ â êîíå÷-

íîì ñîñòîÿíèè íà äèôôåðåíöèàëüíûå õàðàêòåðèñòèêè ðåàêöèè pp →

ppπ+π−. Ñðàâíåíèå òåîðåòè÷åñêèõ ðåçóëüòàòîâ ñ ýêñïåðèìåíòàëüíû-

ìè äàííûìè ïî ñïåêòðàì èíâàðèàíòíûõ ìàññ ñèñòåì pp è pππ.
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1. Ïðèíöèï Ïàóëè è íóêëîí-íóêëîííîå

âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè

Â äàííîé ãëàâå ðàññìàòðèâàþòñÿ ðåàêöèè ñ ÷èñëîì òîæäåñòâåííûõ

ôåðìèîíîâ (íóêëîíîâ) â êîíå÷íîì ñîñòîÿíèè áîëåå äâóõ. Ñå÷åíèÿ ýòèõ ðå-

àêöèé, îñîáåííî ïðè ýíåðãèÿõ, áëèçêèõ ê ïîðîãó, äîëæíû áûòü ñèëüíî ïî-

äàâëåíû ïî ïðèíöèïó Ïàóëè (ñì. [3�9] è ññûëêè â ýòèõ ðàáîòàõ).

Â êà÷åñòâå ïðèìåðà ðàññìàòðèâàåòñÿ ðåàêöèÿ îäèíî÷íîé ïåðåçàðÿäêè

π+ 3He→ π0ppp ñ òðåìÿ òîæäåñòâåííûìè ïðîòîíàìè â êîíå÷íîì ñîñòîÿíèè.

Ýêñïåðèìåíòàëüíûå äàííûå ïî ýòîé ðåàêöèè âáëèçè ïîðîãà áûëè íåäàâíî

îïóáëèêîâàíû â ðàáîòå [15]. Â îòëè÷èè îò ðåàêöèé äâîéíîé ïåðåçàðÿäêè

íà èçîòîïàõ ãåëèÿ, îáñóæäàåìûõ â ðàáîòàõ [3�9], ðåàêöèÿ π+ 3He → π0ppp

îïèñûâàåòñÿ áîëåå ïðîñòûì ìåõàíèçìîì (ñì. ðèñ.1.2): ïðè íèçêèõ ýíåðãè-

ÿõ ðàññåÿíèå ïèîíà ïðîèñõîäèò íà îäíîì èç íóêëîíîâ, ïðè ýòîì îñòàëüíûå

íóêëîíû îñòàþòñÿ ñïåêòàòîðàìè. Ñîãëàñíî ïðèíöèïó Ïàóëè òîëüêî ïàðà

èç òðåõ ïðîòîíîâ ìîæåò íàõîäèòüñÿ â s�âîëíå. Êàê ñëåäñòâèå, íèçêîýíåð-

ãåòè÷åñêàÿ àìïëèòóäà ðåàêöèè π+ 3He → π0ppp äîëæíà èìåòü ïîâåäåíèå,

ñîîòâåòñòâóþùåå âîçáóæäåíèþ ïî êðàéíåé ìåðå îäíîé p�âîëíû â ñèñòåìå

òðåõ ïðîòîíîâ. Ïðè íèçêèõ ýíåðãèÿõ ñå÷åíèå ýòîé ðåàêöèè äîëæíî áûòü

ïðîïîðöèîíàëüíî êâàäðàòó õàðàêòåðíîé ñêîðîñòè êîíå÷íîãî íóêëîíà 〈v〉.

Äëÿ ñðàâíåíèÿ ðàññìîòðèì ðåàêöèþ π− 3He → π0nnp. Ðåàêöèè π+ 3He

→ π0ppp è π− 3He → π0nnp îïèñûâàþòñÿ îäèíàêîâûì ìåõàíèçìîì, îäíàêî
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â êîíå÷íîì ñîñòîÿíèè ïîñëåäíåé ïðèñóòñòâóåò òîëüêî äâà òîæäåñòâåííûõ

íóêëîíà. Ïîýòîìó ïðè íèçêèõ ýíåðãèÿõ ñå÷åíèå ðåàêöèè π− 3He→ π0nnp íå

ñîäåðæèò äîïîëíèòåëüíîãî ìíîæèòåëÿ 〈v〉2. Òàêèì îáðàçîì, ïðèñóòñòâèå â

ñå÷åíèè ðåàêöèè π+ 3He → π0ppp ìàëîãî ìíîæèòåëÿ 〈v〉2 äîëæíî ïðèâî-

äèòü ê ñèëüíîìó ïîäàâëåíèþ ïî ñðàâíåíèþ ñ ñå÷åíèåì ðåàêöèè π− 3He

→ π0nnp.

Îòñóòñòâèå ýêñïåðèìåíòàëüíûõ äàííûõ äëÿ ðåàêöèè π− 3He→ π0nnp

â îáëàñòè íèçêèõ ýíåðãèé íå ïîçâîëÿåò íàïðÿìóþ ïðîâåðèòü ýòî óòâåð-

æåíèå. Îäíàêî ìîæíî âîñïîëüçîâàòüñÿ äîñòóïíûìè ýêñïåðèìåíòàëüíûìè

äàííûìè ïî ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè íà äåéòîíå π+d → π0pp [15].

Ïðè íèçêèõ ýíåðãèÿõ ýòà ðåàêöèÿ îïèñûâàåòñÿ òåì æå ìåõàíèçìîì, ÷òî

è ðåàêöèÿ π+ 3He → π0ppp: ïèîí ðàññåèâàåòñÿ íà îäíîì èç íóêëîíîâ,

ïðè ýòîì äðóãîé íóêëîí îñòàåòñÿ ñïåêòàòîðîì. Ñðàâíåíèå ñå÷åíèé ðåàê-

öèé π+ 3He→ π0ppp è π+d → π0pp ÿâëÿåòñÿ îïðàâäàííûì, åñëè ïðèìåíèìî

èìïóëüñíîå ïðèáëèæåíèå [13]. Â ðàìêàõ èìïóëüñíîãî ïðèáëèæåíèÿ ñå÷åíèå

ðåàêöèè îïðåäåëÿåòñÿ ñå÷åíèåì ðàññåÿíèÿ ïèîíà íà îäíîì èç íóêëîíîâ, ò.å.

σπd ≈ σπN è σπHe ≈ σπN . Õàðàêòåðíûé ïåðåäàííûé èìïóëüñ, íà÷èíàÿ ñ êî-

òîðîãî ìîæíî âîñïîëüçîâàòüñÿ èìïóëüñíûì ïðèáëèæåíèåì, îïðåäåëÿåòñÿ

âåëè÷èíîé ïîðÿäêà îáðàòíîãî ðàäèóñà ãåëèÿ kHe ∼ 1/rHe ∼ 120 ÌýÂ, ÷òî

ñîîòâåòñòâóåò êèíåòè÷åñêîé ýíåðãèè íàëåòàþùåãî ïèîíà Tπ ∼ 50 ÌýÂ.

Â îáëàñòè ýíåðãèé íàëåòàþùåãî ïèîíà Tπ ∼ 50 ÷ 70 ÌýÂ õàðàêòåð-

íàÿ ñêîðîñòü êîíå÷íîãî íóêëîíà 〈v〉 ∼ 0.1. Ñëåäîâàòåëüíî, èç-çà ïðèíöèïà

Ïàóëè ñå÷åíèå ðåàêöèè π+ 3He → π0ppp äîëæíî áûòü ïðèìåðíî íà äâà

ïîðÿäêà ìåíüøå, ÷åì ñå÷åíèå ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè íà äåéòîíå

π+d → π0pp. Îäíàêî ýêñïåðèìåíò íå ïîäòâåðæäàåò ýòè îæèäàíèÿ. Ïðè
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îäèíàêîâûõ íà÷àëüíûõ ýíåðãèÿõ ñå÷åíèÿ ýòèõ ðåàêöèé îêàçûâàþòñÿ îä-

íîãî ïîðÿäêà [15]. Ïðîòèâîðå÷èå ìåæäó ýêñïåðèìåíòàëüíûìè äàííûìè è

�íàèâíûì� òåîðåòè÷åñêèì ðàññìîòðåíèåì óêàçûâàåò íà íåîáõîäèìîñòü ó÷å-

òà äðóãèõ �ñèëüíûõ� ýôôåêòîâ, îïðåäåëÿþùèõ õàðàêòåðèñòèêè ðåàêöèè

π+ 3He → π0ppp ïðè íèçêèõ ýíåðãèÿõ.

Ýôôåêò Ìèãäàëà-Âàòñîíà (íóêëîí-íóêëîííîå âçàèìîäåéñòâèå â êî-

íå÷íîì ñîñòîÿíèè) ÿâëÿåòñÿ õàðàêòåðíîé îñîáåííîñòüþ íèçêîýíåðãåòè÷å-

ñêèõ ðåàêöèé ñ ó÷àñòèåì íåñêîëüêèõ íóêëîíîâ. Íàèáîëåå ñèëüíûì îí ñòà-

íîâèòñÿ â ñëó÷àå, êîãäà ïàðà íóêëîíîâ íàõîäèòñÿ â îòíîñèòåëüíîé s�âîëíå

è èìååò ìàëóþ èíâàðèàíòíóþ ìàññó [16, 17]. Ñ ó÷åòîì íóêëîí-íóêëîííîãî

âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè ñå÷åíèå ðåàêöèè π+ 3He → π0ppp

äîëæíî áûòü ïðîïîðöèîíàëüíî êâàäðàòó ìîäóëÿ s�âîëíîâîé àìïëèòóäû

pp�ðàññåÿíèÿ. Îñîáåííîñòüþ àìïëèòóäû pp�ðàññåÿíèÿ ÿâëÿåòñÿ íàëè÷èå

âèðòóàëüíîãî 1S0 óðîâíÿ. Íà ðèñ.1.1 èçîáðàæåíà çàâèñèìîñòü ðåàëüíîé è

ìíèìîé ÷àñòåé s�âîëíîâîé àìïëèòóäû pp�ðàññåÿíèÿ êàê ôóíêöèè îòíîñè-

òåëüíîãî èìïóëüñà äâóõ ïðîòîíîâ. Âëèÿíèå pp�âçàèìîäåéñòâèÿ â êîíå÷íîì

ñîñòîÿíèè îêàçûâàåòñÿ òåì ñèëüíåå, ÷åì ìåíüøå èíâàðèàíòíàÿ ìàññà äâóõ

ïðîòîíîâ.

Ðåçóëüòàò ñîâìåñòíîãî äåéñòâèÿ ïðèíöèïà Ïàóëè è s�âîëíîâîãî pp�

âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè çàðàíåå òðóäíî ïðåäóãàäàòü, è äëÿ

ýòîãî òðåáóåòñÿ äåòàëüíûé ðàñ÷åò. Êàê áóäåò ïîêàçàíî â ýòîé ãëàâå, s�

âîëíîâîå íóêëîí-íóêëîííîå âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè ñíèìàåò

ïîäàâëåíèå, îáóñëîâëåííîå ïðèíöèïîì Ïàóëè.

Ïðèíöèï Ïàóëè è NN âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè îáñóæ-

äàþòñÿ ïðàêòè÷åñêè âî âñåõ ðàáîòàõ, ïîñâÿùåííûõ íèçêî-ýíåðãåòè÷åñêèì
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Ðèñ. 1.1. Ðåàëüíàÿ è ìíèìàÿ ÷àñòè s�âîëíîâîé àìïëèòóäû pp�ðàññåÿíèÿ

êàê ôóíêöèè îòíîñèòåëüíîãî èìïóëüñà äâóõ ïðîòîíîâ. Ñïëîøíîé è ïóíê-

òèðíîé ëèíèÿìè èçîáðàæåíû, ñîîòâåòñòâåííî äåéñòâèòåëüíàÿ è ìíèìàÿ ÷à-

ñòè àìïëèòóäû pp�ðàññåÿíèÿ â ïðèáëèæåíèè ýôôåêòèâíîãî ðàäèóñà. Æèð-

íûå òî÷êè è êâàäðàòû ñîîòâåòñòâóþò äàííûì äëÿ äåéñòâèòåëüíîé è ìíè-

ìîé ÷àñòè àìïëèòóäû pp�ðàññåÿíèÿ èç áàçû äàííûõ SAID [18].
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ïðîöåññàì ñ ÷èñëîì òîæäåñòâåííûõ íóêëîíîâ â êîíå÷íîì ñîñòîÿíèè áîëåå

äâóõ (â ÷àñòíîñòè, ïðè ðàññìîòðåíèè ðåàêöèé äâîéíîé ïåðåçàðÿäêè íà èçî-

òîïàõ ãåëèÿ [3�9]). Òåì íå ìåíåå, ïðåäñòàâëÿåòñÿ íåîáõîäèìûì ïðîâåñòè

áîëåå äåòàëüíûé àíàëèç ïîäîáíîãî ñîðòà ðåàêöèé äëÿ âûÿñíåíèÿ îñîáîé

ðîëè âçàèìîäåéñòâèÿ íóêëîíîâ â êîíå÷íîì ñîñòîÿíèè.

Íåîáõîäèìî îòìåòèòü, ÷òî èçìåðåíèÿ õàðàêòåðèñòèê òàêîãî ñîðòà ðå-

àêöèé, èíäóöèðîâàííûõ ïèîíàìè è γ�êâàíòàìè ïðîâîäÿòñÿ âî ìíîãèõ èñ-

ñëåäîâàòåëüñêèõ öåíòðàõ ìèðà, òàêèõ êàê TRIUMF (ðåàêöèè π+ 4He→

π−pppp, π− 3He→ π+nnn), PSI (ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè (π+,π0)

íà 3He è 4He), TJNAF (γ∗ 3He→ π+nnn) è äð. Äëÿ âñåõ ýòèõ ðåàêöèé

õàðàêòåðíî íàëè÷èå òðåõ èëè ÷åòûðåõ òîæäåñòâåííûõ íóêëîíîâ â êîíå÷-

íîì ñîñòîÿíèè. Ïîýòîìó ðàññìàòðèâàåìûé äàëåå ïðèìåð èìååò îòíîøåíèå

ê øèðîêîìó êëàññó ïðîöåññîâ.

Â äàëüíåéøåì â äàííîé ãëàâå âûÿñíåíèå îñîáåííîñòåé ó÷åòà ïðèí-

öèïà Ïàóëè è íóêëîí-íóêëîííîãî âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè

áóäåò ïðîâîäèòñÿ íà ïðèìåðå ðåàêöèè:

π+ + 3He → π0 + ppp . (1.1)

Â ðàçäåëå 1.1 èññëåäîâàíî âëèÿíèå ïðèíöèïà Ïàóëè íà õàðàêòåðèñòèêè

ðåàêöèè (1.1). Â ïóíêòå 1.1.1 ïîñòðîåíà ëîðåö-èíâàðèàíòíàÿ àìïëèòóäà ðå-

àêöèè π+ 3He → π0ppp. Àìëèòóäà èìååò ïðîñòîé âèä è àâòîìàòè÷åñêè óäî-

âëåòâîðÿåò ïðèíöèïó Ïàóëè. Çàïèñü ýòîé àìïëèòóäû â òåðìèíàõ 2-õ êîì-

ïîíåíòíûõ ñïèíîðîâ â ÿâíîì âèäå ñîäåðæèò ÷ëåíû, ïðîïîðöèîíàëüíûå ìà-

ëûì ñêîðîñòÿì êîíå÷íûõ íóêëîíîâ. Ýòî ïðèâîäèò ê ñèëüíîìó ïîäàâëåíèþ

ñå÷åíèÿ ðåàêöèè (1.1) ïî ñðàâíåíèþ ñ �íåïîäàâëåííûì� ñå÷åíèåì ðåàêöèè
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π− 3He → π0nnp. Äëÿ ïðîâåäåíèÿ ÷èñëåííûõ ðàñ÷åòîâ è ñðàâíåíèÿ ñ ýêñ-

ïåðèìåíòàëüíûìè äàííûìè òðåáóåòñÿ çíàíèå àìïëèòóä πN -ðàññåÿíèÿ. Â

ïóíêòå 1.1.2 ïðèâåäåí ðàñ÷åò ðåàëèñòè÷åñêèõ àìïëèòóä πN -ðàññåÿíèÿ, îñ-

íîâàííûé íà ïðåäëîæåííîé â ðàáîòå [19] ïàðàìåòðèçàöèè ôàçîâûõ ñäâèãîâ

ïèîí-íóêëîííîãî ðàññåÿíèÿ. Â ïóíêòå 1.1.3 âû÷èñëåíî äèôôåðåíöèàëüíîå

ñå÷åíèå ðåàêöèè (1.1) è ïðèâåäåíû ðåçóëüòàòû ÷èñëåííûõ ðàñ÷åòîâ ïîëíûõ

ñå÷åíèé ðåàêöèé π+ 3He → π0ppp è π− 3He → π0nnp.

Â ðàçäåëå 1.2 ïîêàçàíî, ÷òî ó÷åò íóêëîí-íóêëîííîãî âçàèìîäåéñòâèÿ

â êîíå÷íîì ñîñòîÿíèè ñíèìàåò ïîäàâëåíèå ñå÷åíèÿ èç-çà ïðèíöèïà Ïàóëè.

Ïðîâåäåíî ñðàâíåíèå ðåçóëüòàòîâ ÷èñëåííûõ ðàñ÷åòîâ ñ ýêñïåðèìåíòàëü-

íûìè äàííûìè è äàíà íàãëÿäíàÿ èíòåðïðåòàöèÿ îáñóæäàåìîãî ýôôåêòà.

1.1. Òîæäåñòâåííîñòü ÷àñòèö è àìïëèòóäà ðåàêöèè ïðè íèçêèõ

ýíåðãèÿõ

1.1.1. Îñîáåííîñòè ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè ïèîíà íà

èçîòîïàõ ãåëèÿ

Ðàññìîòðèì ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè π+ 3He→ π0ppp è

π− 3He→ π0nnp. Ïðè ìàëûõ ýíåðãèÿõ ýòèì ïðîöåññàì îòâå÷àåò îäèíàêîâûé

ìåõàíèçì ïåðåçàðÿäêè íà îäíîì íóêëîíå (ñì. ðèñ.1.2):

π+n → π0p , π−p → π0n . (1.2)

Ðåàêöèÿ îäèíî÷íîé ïåðåçàðÿäêè (1.1) ðàññìàòðèâàåòñÿ â îáëàñòè íèçêèõ

ýíåðãèé, ïîýòîìó âêëàä â ñå÷åíèå ðåàêöèè áóäóò äàâàòü ïàðöèàëüíûå âîë-

íû ñ ìàëûìè îðáèòàëüíûìè ìîìåíòàìè. Ñîãëàñíî ïðèíöèïó Ïàóëè, â ñè-

ñòåìå 3-õ ïðîòîíîâ òîëüêî ïàðà èç íèõ ìîæåò áûòü â s-âîëíå. Ñ äðóãîé
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Ðèñ. 1.2. Äèàãðàììà äëÿ ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè ïèîíà íà 3He.

ñòîðîíû, ýôôåêò Ìèãäàëà-Âàòñîíà (íóêëîí-íóêëîííîå âçàèìîäåéñòâèå â

êîíå÷íîì ñîñòîÿíèè) ñòàíîâèòñÿ íàèáîëåå ñèëüíûì êàê ðàç â òîì ñëó÷àå,

êîãäà ïàðà íóêëîíîâ íàõîäèòñÿ â îòíîñèòåëüíîé s�âîëíå è èìååò ìàëóþ

èíâàðèàíòíóþ ìàññó. Îäíîâðåìåííûé ó÷åò ïðèíöèïà Ïàóëè è ýôôåêòà

Ìèãäàëà-Âàòñîíà òðåáóåò ïîñòðîåíèÿ àìïëèòóäû, êîòîðàÿ, ñ îäíîé ñòî-

ðîíû, ñîäåðæèò ÷ëåíû, îïèñûâàþùèå s�âîëíó ìåæäó ïàðîé íóêëîíîâ, à ñ

äðóãîé, ÿâëÿåòñÿ àíòèñèììåòðè÷íîé ïî ïåðåñòàíîâêàì êîíå÷íûõ ïðîòîíîâ.

Äëÿ ïîñòðîåíèÿ àìïëèòóäû, îïèñûâàþùåé s�âîëíó ìåæäó ïàðîé òîæ-

äåñòâåííûõ íóêëîíîâ, ðàññìîòðèì äâà ïðèìåðà:

• Ïåðâûé ïðèìåð � ðàñïàä ñêàëÿðíîé ÷àñòèöû (JP = 0+) íà äâà òîæ-

äåñòâåííûõ ôåðìèîíà. Ýòîò ïðèìåð, ñ îäíîé ñòîðîíû, ÿâëÿåòñÿ äî-

ñòàòî÷íî íàãëÿäíûì, à ñ äðóãîé ñòîðîíû, èìååò íåïîñðåäñòâåííîå îò-

íîøåíèå ê ðàññìàòðèâàåìîìó ïðîöåññó (1.1). Èìåííî â ýòîì ñëó÷àå,

êîãäà ïàðà ïðîòîíîâ íàõîäèòñÿ â 1S0 ñîñòîÿíèè (JP = 0+), íóêëîí-

íóêëîííîå âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè îêàçûâàåòñÿ íàèáî-

ëåå ñèëüíûì.
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Ïðåäïîëàãàåòñÿ, ÷òî ðàñïàä ñêàëÿðíîé ÷àñòèöû ïðîèñõîäèò çà ñ÷åò

âçàèìîäåéñòâèÿ, ñîõðàíÿþùåãî P è C ÷åòíîñòü. Â ýòîì ñëó÷àå ñëåä-

ñòâèåì çàêîíîâ ñîõðàíåíèÿ ÿâëÿåòñÿ ñëåäóþùåå òðåáîâàíèå: ìåæäó

ïàðîé òîæäåñòâåííûõ ôåðìèîíîâ, îáðàçîâàâøèõñÿ â ðåçóëüòàòå ðàñ-

ïàäà, äîëæíà áûòü s�âîëíà. Àìïëèòóäà, îïèñûâàþùàÿ ðàñïàä ñêà-

ëÿðíîé ÷àñòèöû ñ îáðàçîâàíèåì ïàðû òîæäåñòâåííûõ ôåðìèîíîâ â

îòíîñèòåëüíîé s�âîëíå, ìîæåòü áûòü çàïèñàíà â ñëåäóþùåé ôîðìå1:

Ms = gs(ū1Cγ5ū
T
2 ) . (1.3)

Çäåñü u1,2 � áèñïèíîðû òîæäåñòâåííûõ ôåðìèîíîâ; gs � êîíñòàíòà âçà-

èìîäåéñòâèÿ; C = γ2γ0 � ìàòðèöà çàðÿäîâîãî ñîïðÿæåíèÿ. Óáåäèòüñÿ

â òîì, ÷òî àìïëèòóäà (1.3) îïèñûâàåò s�âîëíó ìåæäó äâóìÿ ôåðìèî-

íàìè ïðîùå âñåãî âû÷èñëèâ êâàäðàò àìïëèòóäû, ïðîñóììèðîâàííûé

ïî ïîëÿðèçàöèÿì ôåðìèîíîâ:

|Ms|2 =
∑

ïîëÿð

|Ms|2 = 4g2
s [(p1p2) + m2] = 2g2

s s .

Ïîëó÷åííîå âûðàæåíèå çàâèñèò òîëüêî îò èíâàðèàíòíîé ìàññû äâóõ

ôåðìèîíîâ. Â ñèñòåìå ïîêîÿ ðàñïàäàþùåéñÿ ÷àñòèöû îòíîñèòåëüíûé

èìïóëüñ ôåðìèîíîâ ñâÿçàí ñ èõ èíâàðèàíòíîé ìàññîé s ôîðìóëîé:

|~p| =
√

s/4 − m2. Òàêèì îáðàçîì, ôîðìóëà (1.3) îïèñûâàåò s-âîëíîâîé

ðàñïàä ñêàëÿðíîé ÷àñòèöû íà äâà ôåðìèîíà, à ëîðåíö-èíâàðèàíò

(ū1Cγ5ū
T
2 ) � s�âîëíó ìåæäó äâóìÿ ôåðìèîíàìè.

• Âòîðîé ïðèìåð ýòî ðàñïàä ïñåâäîñêàëÿðíîé (JP = 0−) ÷àñòèöû íà

äâà òîæäåñòâåííûõ ôåðìèîíà. Â îòëè÷èå îò ðàñïàäà ñêàëÿðíîé ÷à-
1Îáñóæäàþòñÿ ðåàêöèè â îáëàñòè íèçêèõ ýíåðãèé. Îäíàêî îêàçûâàåòñÿ óäîáíûì ðàáîòàòü â òåðìè-

íàõ ëîðåíö-èíâàðèàíòíûõ àìïëèòóä.
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ñòèöû, â ýòîì ñëó÷àå òðåáîâàíèåì çàêîíîâ ñîõðàíåíèÿ ÿâëÿåòñÿ íàëè-

÷èå p�âîëíû ìåæäó ïàðîé òîæäåñòâåííûõ ôåðìèîíîâ, îáðàçîâàâøèõ-

ñÿ â ðåçóëüòàòå ðàñïàäà. Àìïëèòóäó ðàñïàäà ïñåâäîñêàëÿðíîé ÷àñòè-

öû íà äâà òîæäåñòâåííûõ ôåðìèîíà â îòíîñèòåëüíîé p�âîëíå ìîæíî

çàïèñàòü â ñëåäóþùåì âèäå:

Mp = gp(ū1CūT
2 ) . (1.4)

Óáåäèòüñÿ â íàëè÷èè p�âîëíû ìåæäó ôåðìèîíàìè ìîæíî ïåðåïèñàâ

àìïëèòóäó (1.4) â òåðìèíàõ 2-õ êîìïîíåíòíûõ ñïèíîðîâ â ñèñòåìå

öåíòðà ðåàêöèè:

Mp = 2gp



ϕ+
2

(σp)

Ep + m
σ2ϕ

∗
1



 . (1.5)

Çäåñü ϕ1,2 � 2-õ êîìïîíåíòíûå ñïèíîðû ôåðìèîíîâ; p, Ep � ñîîòâåò-

ñòâåííî îòíîñèòåëüíûé èìïóëüñ è ýíåðãèÿ äâóõ ôåðìèîíîâ â ñèñòåìå

öåíòðà ðåàêöèè; σ � ìàòðèöû Ïàóëè. Âûðàæåíèå (1.5) äëÿ àìïëèòó-

äû ðàñïàäà ïñåâäîñêàëÿðíîé ÷àñòèöû ïðîïîðöèîíàëüíî îòíîñèòåëü-

íîìó èìïóëüñó òîæäåñòâåííûõ ôåðìèîíîâ. Òàêèì îáðàçîì, àìïëèòó-

äà (1.4) îïèñûâàåò p�âîëíîâîé ðàñïàä ïñåâäî-ñêàëÿðíîé ÷àñòèöû íà

äâà ôåðìèîíà, à ëîðåíö-èíâàðèàíò (ū1CūT
2 ) � p�âîëíó ìåæäó äâóìÿ

ôåðìèîíàìè.

Âåðíåìñÿ ê ïîñòðîåíèþ àìïëèòóäû ðåàêöèè π+ 3He→ π0ppp. Ïðîñòûå ïðè-

ìåðû ðàñïàäîâ 0+ è 0− ñîñòîÿíèé íà äâà òîæäåñòâåííûõ ôåðìèîíà ïîäñêà-

çûâàþò êàê ïîñòðîèòü àìïëèòóäó ðåàêöèè ñ òðåìÿ òîæäåñòâåííûìè ïðîòî-

íàìè â êîíå÷íîì ñîñòîÿíèè è êàê âûäåëèòü ïàðó íóêëîíîâ â îòíîñèòåëüíîé

s�âîëíå. Íèçêîýíåðãåòè÷åñêàÿ àìïëèòóäà ðåàêöèè π+ 3He→ π0ppp ìîæåò
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áûòü çàïèñàíà â ñëåäóþùåé ëîðåíö-èíâàðèàíòíîé ôîðìå:

Mijk ∼ (ūi[Ai + Biq̂]U)(ūjCγ5ū
T
k ) . (1.6)

Çäåñü q � ïåðåäàííûé èìïóëüñ, q = k1 − k2; k1,2 � èìïóëüñû íà÷àëüíîãî

è êîíå÷íîãî ïèîíîâ; èíäåêñû i, j è k íóìåðóþò íóêëîíû; ui (i = 1, 2, 3)

è U � áèñïèíîðû, îòíîñÿùèåñÿ ñîîòâåòñòâåííî ê i-ìó íóêëîíó è 3He. Â

âûðàæåíèè (1.6) äëÿ àìïëèòóäû ðåàêöèè π+ 3He→ π0ppp îïóùåíû èçîòî-

ïè÷åñêèå ìíîæèòåëè, êîòîðûå ìîãóò áûòü ëåãêî âîññòàíîâëåíû. Êîìáèíà-

öèÿ (ūi[Ai + Biq̂]U) ñîîòâåòñòâóåò ðàññåÿíèþ ïèîíà íà îäíîì èç íóêëîíîâ

(ñì. ðèñ.1.2). Òî÷íûé âèä ôóíêöèé Ai è Bi, îñíîâàííûé íà ðåàëèñòè÷åñêèõ

àìïëèòóäàõ πN�ðàññåÿíèÿ ñ ôàçîâûìè ñäâèãàìè èç ðàáîòû [19], áóäåò ðàñ-

ñìîòðåí â ñëåäóþùåì ðàçäåëå.

Àìïëèòóäà ðåàêöèè, óäîâëåòâîðÿþùàÿ ïðèíöèïó Ïàóëè, äîëæíà

áûòü àíòèñèììåòðè÷íîé ïî ïåðåñòàíîâêàì òîæäåñòâåííûõ íóêëîíîâ. Ýòî

òðåáîâàíèå ïðèâîäèò ê ñëåäóþùåìó âûðàæåíèþ äëÿ ïîëíîé àìïëèòóäû

ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè π+ 3He→ π0ppp:

MSCX =
∑

ijk

ǫijkMijk , (1.7)

ǫijk � ïîëíîñòüþ àíòèñèììåòðè÷íûé òåíçîð òðåòüåãî ðàíãà.

Ïîíÿòü îñîáåííîñòè ïîñòðîåííîé àìïëèòóäû ìîæíî, ïåðåïèñàâ åå ÷å-

ðåç äâóõêîìïîíåíòíûå ñïèíîðû ϕi è φ i-ãî íóêëîíà è 3He, ñîîòâåòñòâåííî.

Â ëàáîðàòîðíîé ñèñòåìå, ãäå 3He íàõîäèòñÿ â ïîêîå, à i-é íóêëîí èìååò

èìïóëüñ pi è ýíåðãèþ Ei, èìååì:

ui =











ϕi

( σpi)
Ei+m ϕi











, U =











φ

0











.
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Ïîäñòàâëÿÿ ýòè âûðàæåíèÿ â óðàâíåíèå (1.6), ïîëó÷àåì:

MSCX ∼
∑

ijk

ǫijk



ϕ+
j







1 − (σpj)(σpk)

(Ej + m)(Ek + m)







σ2ϕ
∗
k



×

×


ϕ+
i







Ai + q0Bi − Bi
(σpi)

Ei + m
(σq)







φ



 . (1.8)

Ïðè àíòèñèììåòðèçàöèè â êàæäîì ÷ëåíå ñóììû ïî i, j è k ëèäèðóþùèå

ñëàãàåìûå ñîêðàùàþòñÿ2. Ýòî ôàêò îáóñëîâëåí ñëåäóþùèì ðàâåíñòâîì:

∑

ijk

ǫijk

(

ϕ+
j σ2ϕ

∗
k

) (

ϕ+
i φ

)

= 0 .

Ñëàãàåìûå, ïðîïîðöèîíàëüíûå Bi(σq), èìåþò ïðîñòîé ôèçè÷åñêèé ñìûñë:

îíè ñîîòâåòñòâóþò ïåðåäà÷å íå÷åòíûõ âîëí, íà÷èíàÿ ñ p-âîëíû � ìèíèìàëü-

íîé âîëíû, ðàçðåøåííîé ïðèíöèïîì Ïàóëè. Ýòà èíòåðïðåòàöèÿ âûãëÿäèò

äîñòàòî÷íî ïðîçðà÷íîé è íå çàâèñÿùåé îò êîíêðåòíîé ôîðìû ôóíêöèé Ai

è Bi. Îäíàêî, äëÿ ÷èñëåííûõ ðàñ÷åòîâ è ñðàâíåíèÿ ðåçóëüòàòîâ ñ ýêñïåðè-

ìåíòàëüíûìè äàííûìè òðåáóåòñÿ çíàíèå êîíêðåòíîãî âèäà ôóíêöèé Ai è

Bi, âõîäÿùèõ â âûðàæåíèå äëÿ àìïëèòóäû (1.6).

1.1.2. Ðåàëèñòè÷åñêèå àìïëèòóäû πN-ðàññåÿíèÿ

Äëÿ ÷èñëåííûõ ðàñ÷åòîâ ñå÷åíèé ðåàêöèé π+ 3He→ π0ppp è π− 3He→

π0nnp è ïîñëåäóþùåãî ñðàâíåíèÿ ñ ýêñïåðèìåíòàëüíûìè äàííûìè, òðåáó-

åòñÿ çíàíèå êîíêðåòíîãî âèäà ôóíêöèé Ai è Bi, âõîäÿùèõ â âûðàæåíèå

äëÿ àìïëèòóäû ðåàêöèè (1.6).

Â ñëó÷àå ìåõàíèçìà ðåàêöèè, èçîáðàæåííîãî íà ðèñ.1.2, ñâÿçü ôóíê-

öèé Ai è Bi ñ èíâàðèàíòíûìè àìïëèòóäàìè πN�ðàññåÿíèÿ A(s, t) è B(s, t)

2Ýòî óòâåðæäåíèå ñòàíîâèòñÿ òî÷íûì â ïðåäåëå, êîãäà ôóíêöèè Ai è Bi ïîñòîÿííû. Ïîä ëèäèðóþ-
ùèìè ñëàãàåìûìè ïîäðàçóìåâàþòñÿ ñëàãàåìûå âèäà (Ai + q0Bi)

(

ϕ+
j σ2ϕ

∗

k

) (

ϕ+
i φ
)

.
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îïðåäåëÿåòñÿ ñëåäóþùèì ñîîòíîøåíèåì:

ūi(P̂i + m)[A(si, t) + B(si, t)Q̂] = ūi[Ai + Biq̂] , (1.9)

ãäå Pi = pi − q. Âîñïîëüçîâàâøèñü óðàâíåíèåì Äèðàêà ūi(p̂ − m) = 0,

ïîëó÷àåì ñëåäóþùóþ ñâÿçü ìåæäó ôóíêöèÿìè Ai, Bi è A(s, t), B(s, t):

Ai = 2[mA(si, t) + (piQ)B(si, t)] , Bi = A(si, t) . (1.10)

Òåïåðü ïåðåéäåì ê ðàññìîòðåíèþ ñòðóêòóðû àìïëèòóä ïèîí-íóêëîííîãî

ðàññåÿíèÿ íà îñíîâå ïàðàìåòðèçàöèè ôàçîâûõ ñäâèãîâ πN -ðàññåÿíèÿ, ïðåä-

ëîæåííîé â ðàáîòå [19].

Èíâàðèàíòíûå àìïëèòóäû πN-ðàññåÿíèÿ Êàê èçâåñòíî, ÷èñëî íåçà-

âèñèìûõ èíâàðèàíòíûõ àìïëèòóä ðàññåÿíèÿ ÷àñòèöû ñî ñïèíîì s = 0 íà

÷àñòèöå ñî ñïèíîì s = 1/2 ðàâíî äâóì [20]. Ïîýòîìó îáùèé âèä ëîðåíö-

èíâàðèàíòíîé àìïëèòóäû πN -ðàññåÿíèÿ äàeòñÿ ôîðìóëîé [21]:

8π
√

sΓ(s, t) = A(s, t) + B(s, t)Q̂ , (1.11)

ãäå s = (p+k1)
2 è t = (k1−k2)

2 ïåðåìåííûå Ìàíäåëüøòàìà; Q = (k1+k2)/2;

p (p′), k1 (k2) � 4-èìïóëüñû, ñîîòâåòñòâåííî, íà÷àëüíûõ (êîíå÷íûõ) ïðîòîíà

è π-ìåçîíà.

Èíâàðèàíòíûå àìïëèòóäû A(s, t) è B(s, t) ñâÿçàíû ñ ïàðöèàëüíûìè

àìïëèòóäàìè πN -ðàññåÿíèÿ Tl ñëåäóþùèìè ôîðìóëàìè:

A(s, t) = 4πmω
q3

∑

l

{

Tl+

[

(1 + ωq

ω )P ′
l + (1 − ωq

ω )P ′
l+1

]

−

−Tl−
[

(1 + ωq

ω )P ′
l + (1 − ωq

ω )P ′
l−1

]}

B(s, t) = 4πE
q3

∑

l

{

−Tl+

[

(1 + m
E )P ′

l + (1 − m
E )P ′

l+1

]

+

−Tl−
[

(1 + m
E )P ′

l + (1 − m
E )P ′

l−1

]}

. (1.12)
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Çäåñü q2 = s
4 − m2+µ2

2 + (m2−µ2)2

4s ; ω = s−m2−µ2

2m ; ωq = s−m2+µ2

2
√

s
; E = s+m2−µ2

2
√

s
;

Pl - ïîëèíîìû Ëåæàíäðà. Ñóììèðîâàíèå èäåò îò l = 0 äî ∞ äëÿ ÷ëåíîâ,

ïðîïîðöèîíàëüíûõ Tl+, è îò l = 1 äî ∞ äëÿ ÷ëåíîâ, ñîäåðæàùèõ Tl−.

Áåçðàçìåðíûå ïàðöèàëüíûå àìïëèòóäû Tl ìîæíî âûðàçèòü ÷åðåç ôàçîâûå

ñäâèãè πN -ðàññåÿíèÿ δl:

Tl± =
e2iδl± − 1

2i
. (1.13)

Èçîòîïè÷åñêàÿ ñòðóêòóðà àìïëèòóä πN-ðàññåÿíèÿ Ñëåäñòâèåì

èçîñïèíîâîé èíâàðèàíòíîñòè ÿâëÿåòñÿ òîò ôàêò, ÷òî èç 10 âîçìîæíûõ ïî

èçîñïèíó ïèîí-íóêëîííûõ àìïëèòóä íåçàâèñèìûìè ÿâëÿþòñÿ òîëüêî äâå:

Γ
1

2 (s, t) � ñ ïîëíûì èçîñïèíîì I = 1/2 è Γ
3

2 (s, t) ñ I = 3/2. Àìïëèòóäû

ïðîöåññîâ (1.2) ìîãóò áûòü âûðàæåíû ÷åðåç íåçàâèñèìûå πN�àìïëèòóäû

Γ
1

2 (s, t) è Γ
3

2 (s, t) ñîãëàñíî ôîðìóëå:

Γ(s, t) = −
√

2

3

(

Γ
1

2 (s, t) − Γ
3

2 (s, t)
)

. (1.14)

Ïàðàìåòðèçàöèÿ ôàçîâûõ ñäâèãîâ πN-ðàññåÿíèÿ Ñîãëàñíî ôîðìó-

ëàì (1.11)�(1.13), äëÿ âû÷èñëåíèÿ èíâàðèàíòíûõ àìïëèòóä A(s, t) è B(s, t)

íåîáõîäèìî çíàòü ôàçîâûå ñäâèãè πN -ðàññåÿíèÿ. Ðåàêöèÿ îäèíî÷íîé ïå-

ðåçàðÿäêè íà 3He ðàññìàòðèâàåòñÿ â îáëàñòè íèçêèõ ýíåðãèé, ïîýòîìó â

ðàçëîæåíèè ïî ïàðöèàëüíûì àìïëèòóäàì (1.12) ìîæíî îãðàíè÷èòüñÿ ðàñ-

ñìîòðåíèåì òîëüêî s è p�âîëí. Â ðàáîòå [19] ïðåäëîæåíà ïàðàìåòðèçàöèÿ

ôàçîâûõ ñäâèãîâ πN -ðàññåÿíèÿ â ñëåäóþùåé ôîðìå:

tgδL2I2J

q2L+1
= b + cq2 + dq4 +

2rω0q
−(2L+1)
0

ω2
0 − ω2

, (1.15)

ãäå L � îðáèòàëüíûé ìîìåíò; I � èçîñïèí; J � ïîëíûé óãëîâîé ìîìåíò. Çíà-

÷åíèÿ ïàðàìåòðîâ b, c, d, r, ω0 è q0 ïðèâåäåíû â òàáëèöå 1.1. Ôàçîâûå ñäâè-
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êàíàë b c d ω0 q0 r

S11 1.05E-3 -1.12E-8 5.37E-14 1535 464 23

S31 -7.71E-4 -1.47E-8 8.49E-14 1620 527 19

P11 -1.72E-8 5.38E-13 -3.06E-18 1440 482 40

P13 -7.30E-9 9.09E-14 -4.63E-19 1720 594 15

P31 -1.31E-8 1.48E-13 -7.85E-19 1910 717 38

P33 4.81E-8 -2.27E-13 -1.29E-18 1232 228 50

Òàáëèöà 1.1. Ïàðàìåòðû ôàçîâûõ ñäâèãîâ πN -ðàññåÿíèÿ

ãè, âû÷èñëåííûå ñ ïîìîùüþ ýòîé ïàðàìåòðèçàöèè, ïîêàçàíû íà ðèñ.1.3-

1.5. Òàêàÿ ïàðàìåòðèçàöèÿ õîðîøî îïèñûâàåò ñå÷åíèå è óãëîâûå ðàñïðå-

äåëåíèÿ ðåàêöèé îäèíî÷íîé ïåðåçàðÿäêè (1.2). Õîðîøåé ïðîâåðêîé ÿâëÿ-

åòñÿ âîñïðîèçâåäåíèå ìèíèìóìà â äèôôåðåíöèàëüíîì ñå÷åíèè ðåàêöèè

π−p → π0n, îáóñëîâëåííîãî äåñòðóêòèâíîé èíòåðôåðåíöèåé s è p-âîëí,

ðèñ.1.6.
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Ðèñ. 1.3. Ôàçîâûå ñäâèãè óïðóãîãî πN -ðàññåÿíèÿ äëÿ ïàðöèàëüíûõ âîëí

S11 (ñïëîøíàÿ ëèíèÿ), S31 (øòðèõîâàííàÿ ëèíèÿ), P11 (ïóíêòèðíàÿ ëè-

íèÿ) è P31 (øòðèõ-ïóíêòèðíàÿ ëèíèÿ) êàê ôóíêöèè ïåðåäàííîãî èìïóëüñà.
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Ðèñ. 1.4. Ôàçîâûå ñäâèãè óïðóãîãî πN -ðàññåÿíèÿ äëÿ ïàðöèàëüíûõ âîëí

P13 (ñïëîøíàÿ ëèíèÿ), D13 (øòðèõîâàííàÿ ëèíèÿ) è D15 (ïóíêòèðíàÿ

ëèíèÿ) êàê ôóíêöèè ïåðåäàííîãî èìïóëüñà.
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Ðèñ. 1.5. Ôàçîâûé ñäâèã óïðóãîãî πN -ðàññåÿíèÿ äëÿ ïàðöèàëüíîé âîëíû

P33 êàê ôóíêöèÿ ïåðåäàííîãî èìïóëüñà.
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Ðèñ. 1.6. Äåñòðóêòèâíàÿ èíòåðôåðåíöèÿ s- è p-âîëí. Äèôôåðåíöèàëüíîå

ñå÷åíèå dσ/dΩ ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè π−p → π0n êàê ôóíêöèÿ

èìïóëüñà íàëåòàþùåãî ïèîíà plab ïðè óãëå âûëåòà θ = 0. Íà ðèñóíêå ïðåä-

ñòàâëåíû ðåçóëüòàòû ðàñ÷åòà ñ ïàðàìåòðèçàöèåé ôàçîâûõ ñäâèãîâ (1.15)

(ñïëîøíàÿ ëèíèÿ) â ñðàâíåíèè ñ ýêñïåðèìåíòàëüíûìè äàííûìè [22].
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1.1.3. Ñå÷åíèå ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè π+ 3He→ π0ppp

Äèôôåðåíöèàëüíîå ñå÷åíèå ðàññåÿíèÿ ðåàêöèè îäèíî÷íîé ïåðåçàðÿä-

êè π+ 3He→ π0ppp îïðåäåëÿåòñÿ êâàäðàòîì àìïëèòóäû ðåàêöèè (1.7),

óñðåäíåííûì ïî ïîëÿðèçàöèÿì ãåëèÿ è ïðîñóììèðîâàííûì ïî ïîëÿðèçà-

öèÿì ïðîòîíîâ:

|MSCX|2 =
1

2

∑

ïîëÿð

|MSCX|2 = M 2
d 123+M 2

d 312+M 2
d 231+2Re{M 2

c 123+M 2
c 312+M 2

c 231} .

(1.16)

Âûðàæåíèå äëÿ �äèàãîíàëüíûõ� ñëàãàåìûõ M 2
d èìååò âèä:

M 2
d ijk ≡ ∑

ïîëÿð

MijkM
+
ijk =

=
∑

ïîëÿð

(ūi[Ai + Biq̂]U) (ūjCγ5ū
T
k )
(

Ū [A∗
i + B∗

i q̂]ui

)

(uT
k γ0(Cγ5)

+γ0uj) =

= Sp{(p̂i + m)[Ai + Biq̂](P̂ + M)[A∗
i + B∗

i q̂]}Sp{(p̂j + m)(p̂k + m)}

= 16
[

|Ai|2[(piP ) + mM ] + 2Re{AiB
∗
i }[M(piq) + m(Pq)] +

+|Bi|2(q2[mM − (piP )] + 2(piq)(Pq))
]

[(pjpk) + m2] .

(1.17)

Çäåñü P è pi (i = 1, 2, 3) 4-èìïóëüñû, ñîîòâåòñòâåííî, ãåëèÿ è êîíå÷íûõ

ïðîòîíîâ; m è M ìàññû ïðîòîíà è 3He.

Àíàëîãè÷íûå âû÷èñëåíèÿ ïðèâîäÿò ê ñëåäóþùåìó âûðàæåíèþ äëÿ

�ïåðåêðåñòíûõ� ñëàãàåìûõ M 2
c :

M 2
c ijk ≡ ∑

ïîëÿð

MijkM
+
jki =

=
∑

ïîëÿð

(ūi[Ai + Biq̂]U) (ūjCγ5ū
T
k )
(

Ū [A∗
j + B∗

j q̂]uj

)

(uT
i γ0(Cγ5)

+γ0uk) =

= −Sp{(p̂i + m)[Ai + Biq̂](P̂ + M)[A∗
j + B∗

j q̂](p̂j + m)(p̂k + m)}

= −
{

AiA
∗
j [Sijk(P̂ ) + Sijk] + AiB

∗
j [Sijk(P̂ q̂) + MSijk(q̂)]+

+BiA
∗
j [Sijk(q̂P̂ ) + MSijk(q̂)] + BiB

∗
j [−q2Sijk(P̂ ) + [2(Pq) + q2]Sijk]

}

.

(1.18)
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Çäåñü îïðåäåëåíà ôóíêöèÿ Sijk(f) ñîãëàñíî ñëåäóþùåé ôîðìóëå:

Sijk(f) =







































Sp{(p̂i + m)(p̂j + m)(p̂k + m)} f = 1

Sp{(p̂i + m)â(p̂j + m)(p̂k + m)} f = â

Sp{(p̂i + m)âb̂(p̂j + m)(p̂k + m)} f = âb̂

. (1.19)

Âû÷èñëåíèå øïóðîâ äàåò:

Sijk(f) =



































































































m[(pipj) + (pipk) + (pjpk)] f = 1

(pia)[m2 + (pjpk)] + (pja)[m2 + (pjpk)]+

+(pka)[m2 − (pipk)] f = â

(pia)(pjb) + (pib)(pja) − (pipj)(ab)+

+(pia)(pkb) + (pib)(pka) − (pipk)(ab)+

+(pka)(pjb) + (pkb)(pja) − (pkpj)(ab) + m2(ab) f = âb̂

.

(1.20)

Â èòîãå, äèàãîíàëüíûå è ïåðåêðåñòíûå ÷ëåíû, âõîäÿùèå â âûðàæåíèå äëÿ

àìïëèòóäû (1.16) ìîæíî ïðåäñòàâèòü â âèäå:

M 2
d ijk = 16

[

|A|2[(piP ) + mM ] + 2Re{AB∗}[M(piq) + m(Pq)] +

+|B|2(q2[mM − (piP )] + 2(piq)(Pq))
]

[(pjpk) + m2]

M 2
c ijk = −

{

AiA
∗
j [Sijk(P̂ ) + Sijk] + AiB

∗
j [Sijk(P̂ q̂) + MSijk(q̂)]+

+BiA
∗
j [Sijk(q̂P̂ ) + MSijk(q̂)] + BiB

∗
j [−q2Sijk(P̂ ) + [2(Pq) + q2]Sijk]

}

.

(1.21)

Èñïîëüçóÿ ïîëó÷åííûå ôîðìóëû ìîæíî ðàñ÷èòàòü âñå õàðàêòåðèñòèêè

ïðîöåññà îäèíî÷íîé ïåðåçàðÿäêè ïèîíà íà 3He: ïîëíîå ñå÷åíèå, ñïåêòðû

÷àñòèö è ò.ä. Ôîðìóëà äëÿ äèôôåðåíöèàëüíîãî ñå÷åíèÿ ïðè çàäàííîì êâàä-

ðàòå àìïëèòóäû ðåàêöèè èìååò âèä:

dσ =
(2π)4

4I
|MSCX|2dΦ4(P + k1; p1, p2, p3, k2) , (1.22)
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Çäåñü pi � 4-èìïóëüñû êîíå÷íûõ ïðîòîíîâ; k1,2 � 4-èìïóëüñû, ñîîòâåò-

ñòâåííî, íà÷àëüíîãî è êîíå÷íîãî ïèîíîâ; P � 4-èìïóëüñ ãåëèÿ; I =
√

(k1pHe)2 − µ2M 2, ãäå µ è M � ìàññû ñîîòâåòñòâåííî ïèîíà è ãåëèÿ; dΦ4 �

ýëåìåíò 4-õ ÷àñòè÷íîãî ôàçîâîãî îáúåìà (îïðåäåëåíèå ñîãëàñíî [23]).

Èíòåãðèðîâàíèå äèôôåðåíöèàëüíîãî ñå÷åíèÿ (1.22) ñ êâàäðàòîì àì-

ïëèòóäû (1.16) áûëî ïðîâåäåíî ÷èñëåííî. Âûðàæåíèå äëÿ ìàòðè÷íîãî

ýëåìåíòà ðåàêöèè π+ 3He→ π0ppp ñîäåðæèò �îñòðûå� ôóíêöèè êèíåìà-

òè÷åñêèõ ïåðåìåííûõ. Òàêîâîé, íàïðèìåð, ÿâëÿåòñÿ àìïëèòóäà íóêëîí-

íóêëîííîãî ðàññåÿíèÿ. Ïîýòîìó, äëÿ êîíòðîëÿ çà òî÷íîñòüþ âû÷èñëåíèé,

áûëà ðàçðàáîòàíà ïðîãðàììà èíòåãðèðîâàíèÿ ïî ôàçîâîìó ïðîñòðàíñòâó

ìåòîäîì Ìîíòå-Êàðëî. Äàííàÿ ïðîãðàììà ïîçâîëÿåò ïðîâîäèòü ÷èñëåííîå

èíòåãðèðîâàíèå âûðàæåíèé, çàïèñàííûõ â ëîðåíö-èíâàðèàíòíîì âèäå. Ýòî

îñîáåííî óäîáíî, òàê êàê èìåííî â ëîðåíö-èíâàðèàíòíîé ôîðìå çàïèñü äëÿ

êâàäðàòà àìïëèòóäû ðåàêöèè ÿâëÿåòñÿ äîñòàòî÷íî êîìïàêòíîé. Ñõåìà ïðî-

âåäåíèÿ ÷èñëåííûõ âû÷èñëåíèé èçëîæåíà â ïðèëîæåíèè.

Çàâèñèìîñòü ïîëíîãî ñå÷åíèÿ ðåàêöèè π+ 3He→ π0ppp îò ýíåðãèè

íà÷àëüíîãî π-ìåçîíà (áåç ó÷åòà àáñîëþòíîé íîðìèðîâêè ñå÷åíèÿ) â ñðàâ-

íåíèè ñ ðåçóëüòàòàìè ÷èñëåííûõ ðàñ÷åòîâ äëÿ ïîëíîãî ñå÷åíèÿ ðåàêöèè

π− 3He→ π0nnp ïðåäñòàâëåíà íà ðèñ.1.7. Èç ðèñóíêà âèäíî, ÷òî èç-çà ïðèí-

öèïà Ïàóëè ñå÷åíèå ðåàêöèè π+ 3He→ π0ppp ñèëüíî ïîäàâëåíî ïî ñðàâíå-

íèþ ñ ñå÷åíèåì ðåàêöèè π− 3He→ π0nnp. Êðîìå òîãî, äîïîëíèòåëüíûå

ñòåïåíè èìïóëüñîâ íóêëîíîâ â àìïëèòóäå ðåàêöèè (1.7) ïðèâîäÿò ê áîëåå

ðåçêîé çàâèñèìîñòè ñå÷åíèÿ îò íà÷àëüíîé ýíåðãèè.
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Ðèñ. 1.7. Ïîëíûå ñå÷åíèÿ ðåàêöèé îäèíî÷íîé ïåðåçàðÿäêè π+ 3He→ π0ppp

(ñïëîøíàÿ ëèíèÿ) è π− 3He→ π0nnp (øòðèõîâàííàÿ ëèíèÿ) êàê ôóíêöèè

êèíåòè÷åñêîé ýíåðãèè íàëåòàþùåãî ïèîíà. Ðàñ÷åò ñå÷åíèÿ ðåàêöèè ïðîâî-

äèëñÿ ñ àìïëèòóäîé (1.6).
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Ðèñ. 1.8. Äèàãðàììà ñ íóêëîí-íóêëîííûì ïåðåðàññåÿíèåì äëÿ ðåàêöèè îäè-

íî÷íîé ïåðåçàðÿäêè ïèîíà íà 3He.

1.2. Íóêëîí-íóêëîííûå êîððåëÿöèè

1.2.1. Ýôôåêò Ìèãäàëà-Âàòñîíà

Õîðîøî èçâåñòíî, ÷òî ýôôåêò NN âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòî-

ÿíèè íàèáîëåå âàæåí â ñëó÷àå, êîãäà ïàðà íóêëîíîâ èìååò ìàëóþ èíâàðè-

àíòíóþ ìàññó è äâà íóêëîíà íàõîäÿòñÿ â îòíîñèòåëüíîé s�âîëíå [16, 17].

Äëÿ äâóõ òîæäåñòâåííûõ íóêëîíîâ ýòî 1S0�ñîñòîÿíèå (JP = 0+). Â ñëó-

÷àå òðåõ òîæäåñòâåííûõ íóêëîíîâ òîëüêî ïàðà èç íèõ ìîæåò íàõîäèòüñÿ â

îòíîñèòåëüíîé s�âîëíå. Â ðàçäåëå 1.1.1 ïîêàçàíî, ÷òî àìïëèòóäà

Mijk ∼ (ūi[Ai + Biq̂]U) · (ūjCγ5ū
T
k )

ñîîòâåòñòâóåò ñëó÷àþ, êîãäà 0+�ñîñòîÿíèå îáðàçóåò ïàðà íóêëîíîâ ñ èí-

äåêñàìè j è k, à íóêëîí ñ èíäåêñîì i îáëàäàåò áîëåå âûñîêèì îðáèòàëüíûì

ìîìåíòîì ïî îòíîøåíèþ ê ïàðå jk. Âçàèìîäåéñòâèþ â êîíå÷íîì ñîñòîÿíèè

ñîîòâåòñòâóåò äèàãðàììà ñ ïåðåðàññåÿíèåì äâóõ íóêëîíîâ, ðèñ.1.8. Âêëàä

ýòîé äèàãðàììû ïðîïîðöèîíàëåí àìïëèòóäå ðàññåÿíèÿ fjk ïàðû íóêëîíîâ



35

â 1S0�ñîñòîÿíèè íà ìàññîâîé ïîâåðõíîñòè. Ïîýòîìó, äëÿ ó÷åòà âçàèìîäåé-

ñòâèÿ ìåæäó êîíå÷íûìè íóêëîíàìè íóæíî äîìíîæèòü â óðàâíåíèè (1.6)

êàæäîå ñëàãàåìîå, ñîäåðæàùåå ìíîæèòåëü âèäà (ūjCγ5ū
T
k ), íà (1+R−1·fjk):

(ūjCγ5ū
T
k ) → (ūjCγ5ū

T
k )(1 + R−1 · fjk) . (1.23)

Ïàðàìåòð R õàðàêòåðèçóåò âåëè÷èíó âçàèìîäåéñòâèÿ ìåæäó êîíå÷íûìè

íóêëîíàìè3 è ÿâëÿåòñÿ âåëè÷èíîé ïîðÿäêà ðàäèóñà 3He. Ïðè ìàëûõ îòíî-

ñèòåëüíûõ èìïóëüñàõ íóêëîíîâ, ïîâåäåíèå s�âîëíîâîé àìïëèòóäû ðàññåÿ-

íèÿ õîðîøî îïèñûâàåòñÿ ïðèáëèæåíèåì ýôôåêòèâíîãî ðàäèóñà [25]:

fjk ≡ f(pjk) =
1

−a−1
s + 1

2r0sp2
jk − ipjk

. (1.24)

fjk ÿâëÿåòñÿ ôóíêöèåé îòíîñèòåëüíîãî èìïóëüñà pjk ìåæäó j-ì è k-ì íóê-

ëîíàìè â èõ ñèñòåìå öåíòðà ìàññ. Ïîâåäåíèå s�âîëíîâîé àìïëèòóäû pp�

ðàññåÿíèÿ êàê ôóíêöèè îòíîñèòåëüíîãî èìïóëüñà äâóõ ïðîòîíîâ èçîáðà-

æåíî íà ðèñ.1.1. Èìïóëüñ pjk ñâÿçàí ñ èíâàðèàíòíîé ìàññîé mjk äâóõ íóê-

ëîíîâ ôîðìóîé: |pjk| =
√

m2
jk/4 − m2. Â âûðàæåíèå äëÿ àìïëèòóäû pp�

ðàññåÿíèÿ âõîäèò ñèíãëåòíàÿ äëèíà ðàññåÿíèÿ as è ýôôåêòèâíûé ðàäèóñ

r0s âçàèìîäåéñòâèÿ ñèñòåìû èç äâóõ ïðîòîíîâ: as = −17.844 fm, r0s = 2.79

fm.

Ó÷åò âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè ïî ôîðìóëå (1.23) ïðåä-

ïîëàãàåò ôàêòîðèçàöèþ àìïëèòóäû ñ NN ïåðåðàññåÿíèåì, êîòîðàÿ ñîîò-

âåòñòâóåò äèàãðàììå èçîáðàæåííîé íà ðèñ.1.8. Íà îñíîâå àíàëèçà ðåàêöèé

ðîæäåíèÿ ìåçîíîâ â íóêëîí-íóêëîííûõ ñîóäàðåíèÿõ â ðàáîòå [26] ïîêà-

çàíî, ÷òî ýòî íå âñåãäà ïðàâèëüíî. Àáñîëþòíàÿ âåëè÷èíà ñå÷åíèÿ ñèëüíî
3Ïîäðîáíîå èññëåäîâàíèå ïîâåäåíèÿ R êàê ôóíêöèè îòíîñèòåëüíîãî èìïóëüñà íóêëîíà ïðîâåäåíî

â ðàáîòå [24]. Íà îñíîâàíèè ïîëó÷åííûõ â ýòîé ðàáîòå ðåçóëüòàòîâ, ôóíêöèþ R ìîæíî ñ õîðîøåé
òî÷íîñòüþ ñ÷èòàòü ïîñòîÿííîé.
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çàâèñèò êàê îò êîíêðåòíîãî ìåõàíèçìà ðåàêöèè, òàê è îò îñîáåííîñòåé ñõî-

äà àìïëèòóäû NN�ðàññåÿíèÿ ñ ìàññîâîé ïîâåðõíîñòè. Ïðèìåðîì ìîæåò

ñëóæèòü ñðàâíåíèå ðåçóëüòàòîâ ðàñ÷åòîâ ñå÷åíèÿ ðåàêöèè äâîéíîé ïåðåçà-

ðÿäêè ïèîíà íà 4He, ïîëó÷åííûõ â ðàáîòàõ [5,6,8]. Ïðåäñêàçàíèÿ äëÿ àáñî-

ëþòíîãî çíà÷åíèÿ ñå÷åíèÿ ýòîé ðåàêöèè îòëè÷àþòñÿ íà ïîðÿäêè âåëè÷èí.

Ðàññìàòðèâàåìàÿ çäåñü àìïëèòóäà ðåàêöèè ÿâëÿåòñÿ ôåíîìåíîëîãè÷åñêîé

è íå ïðåòåíäóåò íà îïèñàíèå àáñîëþòíûõ çíà÷åíèé õàðàêòåðèñòèê ðåàê-

öèè. Ïîýòîìó, â äàííîì ñëó÷àå, ó÷åò íóêëîí-íóêëîííîãî âçàèìîäåéñòâèÿ â

êîíå÷íîì ñîñòîÿíèè ïî ôîðìóëå (1.23) ÿâëÿåòñÿ ñïðàâåäëèâûì.

Òàêèì îáðàçîì, àìïëèòóäà ðåàêöèè π+ 3He→ π0ppp ñ ó÷åòîì íóêëîí-

íóêëîííîãî âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè èìååò âèä:

MFSI ∼
∑

ijk

ǫijk(ūi(Ai + Biq̂)U)(ūjCγ5ū
T
k )
(

1 + R−1 · fjk

)

. (1.25)

Àìïëèòóäà (1.25) ÿâëÿåòñÿ àíòèñèììåòðè÷íîé ïî ïåðåñòàíîâêàì òîæäå-

ñòâåííûõ íóêëîíîâ, è, òåì ñàìûì, óäîâëåòâîðÿåò ïðèíöèïó Ïàóëè. Îäíàêî,

â ýòîì ñëó÷àå àíòèñèììåòðèçàöèÿ íå ïðèâîäèò ê 100% ñîêðàùåíèþ ëèäè-

ðóþùèõ ñëàãàåìûõ, êàê ýòî áûëî â óðàâíåíèè (1.8):

∑

ijk

ǫijk

(

ϕ+
j σ2ϕ

∗
k

) (

ϕ+
i φ

)

fjk 6= 0 .

Ïðè÷èíîé ýòîãî ÿâëÿåòñÿ ñèíãóëÿðíîñòü â àìïëèòóäå NN�ðàññåÿíèÿ ïðè

ìàëûõ îòíîñèòåëüíûõ èìïóëüñàõ íóêëîíîâ. Èìåííî â ýòîé îáëàñòè íóêëîí-

íóêëîííîå âçàèìîäåéñòâèå ÿâëÿåòñÿ íàèáîëåå ñèëüíûì.

Ñ ìàòåìàòè÷åñêîé òî÷êè çðåíèÿ îòñóòñòâèå ñîêðàùåíèÿ îáúÿñíÿåò-

ñÿ òåì, ÷òî ïðè ìàëûõ ýíåðãèÿõ àìïëèòóäà áåç ó÷åòà íóêëîí-íóêëîííîãî

âçàèìîäåéñòâèÿ ìîæåò áûòü ðàçëîæåíà â ñòåïåííîé ðÿä ïî ìàëûì ñêîðî-

ñòÿì íóêëîíîâ, â òî âðåìÿ êàê ñ ó÷åòîì âçàèìîäåéñòâèÿ íóêëîíîâ òàêîãî
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ðàçëîæåíèÿ íå ñóùåñòâóåò.

Ôèçè÷åñêè ýòî îçíà÷àåò, ÷òî âûñîêèå îðáèòàëüíûå ìîìåíòû ìåæäó

êàæäûì èç íóêëîíîâ â 1S0 ñîñòîÿíèè è �òðåòüèì� íóêëîíîì áîëåå íå ïî-

äàâëåíû.

Ïîÿñíèì ýòî íà ïðèìåðå íåðåëÿòèâèñòñêîãî ðàçëîæåíèÿ àìïëèòóäû

NN ðàññåÿíèÿ. Ïóñòü p1 è p2 îòíîñèòåëüíûå èìïóëüñû ìåæäó êàæäûì èç

íóêëîíîâ, íàõîäÿùèõñÿ â 1S0 ñîñòîÿíèè, è �òðåòüèì� íóêëîíîì. Â íåðåëÿ-

òèâèñòñêîì ñëó÷àå èìååì 2p12 ≈ p1 − p2. Îïóñòèâ äëÿ ïðîñòîòû ðàññìîò-

ðåíèÿ ÷ëåí ñ ýôôåêòèâíûì ðàäèóñîì, ïîëó÷èì ñëåäóþùåå âûðàæåíèå äëÿ

àìïëèòóäû NN ðàññåÿíèÿ:

f12 ≈ − 1

a−1 + i|p12|
. (1.26)

Â îáëàñòè ýíåðãèé |p12| > a−1, ìîæíî ïðåíåáðå÷ü äëèííîé ðàññåÿíèÿ. Ýòî

ïðèâîäèò ê ôîðìóëå:

− i

2
f12 ≈

1

|p1 − p2|
=

∑

l1=l2=l

(

p

P

)l

Pl(cos θ) , (1.27)

ãäå p = min{p1,p2}; P = max{p1,p2}, θ óãîë ìåæäó p1 è p2; l1 = l2 =

l îðáèòàëüíûé ìîìåíò êàæäîãî èç íóêëîíîâ â îòíîñèòåëüíîé s�âîëíå ïî

îòíîøåíèþ ê �òðåòüåìó� íóêëîíó.

1.2.2. Àíàëèç ðåçóëüòàòîâ ÷èñëåííûõ ðàñ÷åòîâ è ñðàâíåíèå ñ

ýêñïåðèìåíòàëüíûìè äàííûìè

Çàâèñèìîñòü ñå÷åíèÿ ðåàêöèè îò ýíåðãèè íà÷àëüíîãî π-ìåçîíà ñ

ó÷eòîì NN âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè èçîáðàæåíà íà ðèñ.1.9

ñïëîøíîé ëèíèåé. Ïóíêòèðíîé ëèíèåé èçîáðàæåíû ðåçóëüòàòû ðàñ÷åòà áåç

ó÷åòà ýôôåêòà Ìèãäàëà-Âàòñîíà. Èç ðèñóíêà âèäíî, ÷òî âçàèìîäåéñòâèå â
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êîíå÷íîì ñîñòîÿíèè ìåæäó ïàðîé ïðîòîíîâ ñíèìàåò ïîäàâëåíèå èç-çà ïðèí-

öèïà Ïàóëè.

Ïðè÷èíó îòñóòñòâèÿ ïîäàâëåíèÿ èç-çà ïðèíöèïà Ïàóëè â ñëó÷àå ñèëü-

íîãî âçàèìîäåéñòâèÿ äâóõ íóêëîíîâ ìîæíî ïîíÿòü íà îñíîâå ñëåäóþ-

ùåãî ñðàâíåíèÿ. Ðàññìîòðèì ãèïîòåòè÷åñêèé ïðîöåññ âîçáóæäåíèÿ óçêî-

ãî íóêëîí-íóêëîííîãî ðåçîíàíñà r â ïðîìåæóòî÷íîì ñîñòîÿíèè ðåàêöèè

π+ 3He→ π0ppp. Àìïëèòóäà ðåàêöèè ïðîïîðöèîíàëüíà ôóíêöèè Ãðèíà ïðî-

ìåæóòî÷íîãî ðåçîíàíñà:

M(sij) ∼
1

s2
ij − M 2

r + iMrΓ
. (1.28)

Çäåñü i, j = 1, 2, 3; s � èíâàðèàíòíàÿ ìàññà äâóõ ïðîòîíîâ i è j, îáðàçó-

þùèõñÿ â ðåçóëüòàòå âîçáóæäåíèÿ ðåçîíàíñà r; s2
ij = (pi + pj)

2; Mr è Γ �

ñîîòâåòñòâåííî ìàññà è øèðèíà ðåçîíàíñà.

Ñîãëàñíî ïðèíöèïó Ïàóëè, àìïëèòóäà ðåàêöèè äîëæíà áûòü àíòè-

ñèììåòðè÷íà ïî ïåðåñòàíîâêàì êîíå÷íûõ íóêëîíîâ:

MA =
∑

ijk

ǫijkM(sij) . (1.29)

Êâàäðàò àìïëèòóäû, îïðåäåëÿþùèé ñå÷åíèå ðåàêöèè, ñîäåðæèò äâà

âèäà ñëàãàåìûõ: äèàãîíàëüíûå, òèïà |M(sij)|2 è ïåðåêðåñòíûå, òèïà

M(sij)M
∗(sik). Â ñëó÷àå ìàëîé øèðèíû ðåçîíàíñà r, àìïëèòóäà (1.28) çà-

ìåòíî îòëè÷íà îò íóëÿ â óçêîé îáëàñòè èíâàðèàíòíîé ìàññû äâóõ ïðîòîíîâ

i è j: sij ∼ Mr. Çíà÷åíèÿ èíâàðèàíòíûõ ìàññ sij è sik ïðèíàäëåæàò ðàçíûì

îáëàñòÿì ôàçîâîãî ïðîñòðàíñòâà, ïîýòîìó âêëàä ïåðåêðåñòíûõ ñëàãàåìûõ

â ïîëíîå ñå÷åíèå ðåàêöèè áóäåò ìàë. Ýòî îçíà÷àåò, ÷òî àíòèñèììåòðèçàöèÿ

íå ïðèâîäèò ê âçàèìíîé êîìïåíñàöèè âêëàäîâ äèàãîíàëüíûõ è ïåðåêðåñò-

íûõ ñëàãàåìûõ â ñå÷åíèå ðåàêöèè, êàê ýòî áûëî áû â ñëó÷àå áåç ðåçîíàíñà.
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Òàêèì îáðàçîì ïîäàâëåíèå ñå÷åíèÿ ðåàêöèè π+ 3He→ π0ppp â ñëó÷àå âîç-

áóæäåíèÿ â ïðîìåæóòî÷íîì ñîñòîÿíèè ðåàêöèè óçêîãî ðåçîíàíñà, îòñóò-

ñòâóåò.

Ôèçè÷åñêè ýòî ñâÿçàíî ñ áîëüøèì âðåìåíåì æèçíè ðåçîíàíñà, îáðàò-

íî ïðîïîðöèîíàëüíîãî ìàëîé øèðèíå. Â ýòîì ñëó÷àå, ðàñïàä ðåçîíàíñà

ïðîèñõîäèò âäàëè îò òî÷êè ðåàêöèè è ïîäàâëåíèå èç-çà ïðèíöèïà Ïàóëè

íåò.

Äèôôåðåíöèàëüíîå ñå÷åíèå ðåàêöèè π 3He→ pr → πppp ñ âîçáóæäå-

íèåì ïðîìåæóòî÷íîãî ðåçîíàíñà r îïðåäåëÿåòñÿ ñëåäóþùåé ôîðìóëîé4:

σr ∼
∫

∣

∣

∣

∣

∣

∣

1

s2
ij − M 2

r + iMrΓ

∣

∣

∣

∣

∣

∣

2

dΦ4 ≈
∫ π

MrΓ
δ(s2

ij − M 2
r )dΦ4 , (1.30)

ãäå dΦ4 ýëåìåíò 4-õ ÷àñòè÷íîãî ôàçîâîãî îáúåìà. Ýëåìåíò 4-õ ÷àñòè÷íîãî

ôàçîâîãî îáúåìà ìîæíî âûðàçèòü ÷åðåç ïðîèçâåäåíèå ýëåìåíòîâ 2-õ è 3-õ

÷àñòè÷íûõ ôàçîâûõ îáúåìîâ (ñì., íàïðèìåð, [23], ñòð. 211):

dΦ4(P+k1; pi, pj, pk, k2) = dΦ2(P+k1; pi, pj)dΦ3(P+k1; pi+pj, pk, k2)(2π)3ds2
ij .

(1.31)

δ�ôóíêöèÿ, âõîäÿùàÿ â âûðàæåíèå (1.30) äëÿ ñå÷åíèÿ ðåàêöèè, ñíèìàåò

èíòåãðèðîâàíèå ïî èíâàðèàíòíîé ìàññå sij, òåì ñàìûì ðàçäåëÿÿ îáëàñòè

èíòåãðèðîâàíèÿ ïî 2-õ è 3-õ ÷àñòè÷íûì ôàçîâûì îáúåìàì.

Òàêèì îáðàçîì, âîçáóæäåíèå óçêîãî ðåçîíàíñà â ïðîìåæóòî÷íîì ñî-

ñòîÿíèè ñâîäèò èíòåãðàë ïî 4-õ ÷àñòè÷íîìó ôàçîâîìó ïðîñòðàíñòâó (pppπ)

ê ïðîèçâåäåíèþ èíòåãðàëîâ ïî 2-õ ÷àñòè÷íîìó ôàçîâîìó ïðîñòðàíñòâó ñè-

ñòåìû (pp) è ïî 3-õ ÷àñòè÷íîìó ôàçîâîìó ïðîñòðàíñòâó ñèñòåìû ([pp]pπ).
4Çàìåíà ôóíêöèè Ãðèíà ðåçîíàíñà r íà iπδ(s2

ij − M2
r ) ÿâëÿåòñÿ ñïðàâåäëèâîé, åñëè îáëàñòü õàðàê-

òåðíûõ çíà÷åíèé èìïóëüñîâ s2
ij , ïðè êîòîðûõ ôóíêöèÿ Ãðèíà çàìåòíî îòëè÷íà îò íóëÿ, íàõîäèòñÿ

âäàëè îò ãðàíèöû ôàçîâîãî îáúåìà. Â ïðîòèâíîì ñëó÷àå ñëåäóåò ó÷èòûâàòü âêëàä èíòåãðàëà â ñìûñëå
ãëàâíîãî çíà÷åíèÿ îò ôóíêöèè 1/(s2

ij − M2
r ).
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Çäåñü [pp] îçíà÷àåò ïàðó ïðîòîíîâ, ñêîððåëèðîâàííûõ â ðåçóëüòàòå âîçáóæ-

äåíèÿ â ïðîìåæóòî÷íîì ñîñòîÿíèè ðåçîíàíñà r.

Ïîõîæàÿ ñèòóàöèÿ âîçíèêàåò ïðè ó÷åòå ýôôåêòà Ìèãäàëà-Âàòñîíà â

ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè π+ 3He→ π0ppp: íóêëîí-íóêëîííîå âçàè-

ìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè ñíèìàåò ïîäàâëåíèå èç-çà ïðèíöèïà Ïàó-

ëè è ýôôåêòèâíî ñâîäèò 4-õ ÷àñòè÷íûé ôàçîâûé îáúåì ê ïðîèçâåäåíèþ 2-õ

è 3-õ ÷àñòè÷íûõ ôàçîâûõ îáúåìîâ. Ïîñëåäíåå ïðèâîäèò ê áîëåå ïîëîãîìó

ïîâåäåíèþ ñå÷åíèÿ ðåàêöèè (ñì. ðèñ.1.9).

Íà ðèñ.1.10 ïðèâåäåíû ðåçóëüòàòû ÷èñëåííûõ ðàñ÷åòîâ â ñðàâíåíèè ñ

ýêñïåðèìåíòàëüíûìè äàííûìè èç ðàáîòû [15]. Àáñîëþòíîå çíà÷åíèå ñå÷å-

íèÿ ðåàêöèè π+ 3He→ π0ppp íîðìèðîâàíî íà ýêñïåðèìåíòàëüíûå äàííûå

ïðè çíà÷åíèè êèíåòè÷åñêîé ýíåðãèè íàëåòàþùåãî ïèîíà 162 ÌýÂ.
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Ðèñ. 1.9. Ïîëíîå ñå÷åíèå ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè π+ 3He→ π0ppp

êàê ôóíêöèÿ íà÷àëüíîé ýíåðãèè ïèîíà. Ñïëîøíîé ëèíèåé èçîáðàæåíû ðå-

çóëüòàòû ðàñ÷åòà ñ àìïëèòóäîé (1.25), ó÷èòûâàþùåé NN âçàèìîäåéñòâèå

â êîíå÷íîì ñîñòîÿíèè. Ïóíêòèðíàÿ ëèíèÿ îïèñûâàåò ðåçóëüòàò ðàñ÷åòà ñ

àìïëèòóäîé (1.6), êîòîðàÿ íå ó÷èòûâàåò ýôôåêò Ìèãäàëà-Âàòñîíà.
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Ðèñ. 1.10. Ïîëíîå ñå÷åíèå ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè π+ 3He→ π0ppp

êàê ôóíêöèÿ íà÷àëüíîé ýíåðãèè ïèîíà. Ðåçóëüòàòû ðàñ÷åòà ñ àìïëèòó-

äîé ðåàêöèè (1.25), óäîâëåòâîðÿþùåé ïðèíöèïó Ïàóëè è ó÷èòûâàþùåé

NN âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè, (ñïëîøíàÿ ëèíèÿ) ïðèâåäåíû â

ñðàâíåíèè ñ ýêñïåðèìåíòàëüíûìè äàííûìè èç ðàáîòû [15] (æèðíûå òî÷êè).



43

2. Êîãåðåíòíîå è íåêîãåðåíòíîå ôîòîðîæäåíèå ïèîíà

íà äåéòîíå

Â äàííîé ãëàâå ðàññìàòðèâàþòñÿ ðåàêöèè ôîòîðîæäåíèÿ íåéòðàëü-

íîãî ïèîíà íà äåéòîíå. Â îòëè÷èè îò ïðîöåññà ôîòîðîæäåíèÿ çàðÿæåííîãî

ïèîíà, êîíå÷íîå ñîñòîÿíèå êîòîðîãî îäíîçíà÷íî îïðåäåëÿåòñÿ äâóìÿ ïðîòî-

íàìè è ïèîíîì, â ðåàêöèè ôîòîðîæäåíèÿ π0�ìåçîíà íà äåéòîíå âîçìîæíû

äâà êàíàëà. Ýòî êîãåðåíòíûé êàíàë d(γ, π)d, â êîòîðîì äåéòîí îñòàåòñÿ â

îñíîâíîì ñîñòîÿíèè, è íåêîãåðåíòíûé êàíàë d(γ, π)np ñ ðàçâàëîì äåéòîíà.

Èçìåðåíèÿ äèôôåðåíöèàëüíûõ õàðàêòåðèñòèê ðåàêöèè π0�

ôîòîðîæäåíèÿ íà äåéòîíå áûëè íåäàâíî ïðîâåäåíû íà óñêîðèòåëå

MAMI [10], [11]. Ñ ïîìîùüþ ýêñïåðèìåíòàëüíîé óñòàíîâêè TAPS áûëè

èçìåðåíû óãëîâûå ðàñïðåäåëåíèÿ è ýíåðãåòè÷åñêàÿ çàâèñèìîñòü ñå÷åíèÿ

ýòîé ðåàêöèè â îáëàñòè ýíåðãèé ôîòîíà Eγ = 140 − 306 ÌýÂ. Íîâûå

ýêñïåðèìåòàëüíûå äàííûå çàïîëíÿþò ïðîáåë ìåæäó ïîðîãîì ðåàêöèè è

îáëàñòüþ, â êîòîðîé äîìèíèðóåò ∆ ðåçîíàíñ. Ïðåäûäóùèå èçìåðåíèÿ

â ýòîé îáëàñòè áûëè òîëüêî äëÿ êîãåðåíòíîãî êàíàëà [27�29] è äëÿ

èíêëþçèâíîãî ïðîöåññà âáëèçè ïîðîãà ðîæäåíèÿ ïèîíà [30] (äëÿ ýíåðãèè

Eγ < 160 ÌýÂ).

Èçìåðåííûå óãëîâûå ðàñïðåäåëåíèÿ ðåàêöèè d(γ, π)d â îñíîâíîì ñìå-

ùåíû â îáëàñòü óãëîâ âïåðåä. Ýòî îáúÿñíÿåòñÿ òåì, ÷òî íóêëîíû â äåéòîíå

èìåþò ìàëûé îòíîñèòåëüíûé èìïóëüñ, è áîëüøóþ ÷àñòü ýíåðãèè óíîñèò
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ïèîí. Ïðè áîëüøèõ ïåðåäàííûõ èìïóëüñàõ ïðîèñõîäèò ðàçâàë äåéòîíà, ïî-

ýòîìó óãëîâûå ðàñïðåäåëåíèÿ äëÿ íåêîãåðåíòíîãî êàíàëà ñìåùåíû â îá-

ëàñòü óãëîâ, îáðàòíûõ íàïðàâëåíèþ ïó÷êà.

Èññëåäîâàíèå ôîòîðîæäåíèÿ π0�ìåçîíà íà äåéòîíå ÿâëÿåòñÿ âàæíûì

äëÿ èçó÷åíèÿ ýëåìåíòàðíûõ ïðîöåññîâ âçàèìîäåéñòâèÿ íóêëîíîâ ñ ôîòîíà-

ìè. Ñå÷åíèå ðåàêöèè ôîòîðîæäåíèÿ ïèîíà õîðîøî èçâåñòíî äëÿ ïðîòîíà,

îäíàêî, ïî ïîíÿòíûì ïðè÷èíàì, ýêñïåðèìåíòàëüíûõ äàííûõ ïðÿìîãî ðîæ-

äåíèÿ ïèîíà íà íåéòðîíå íåò. Åäèíñòâåííûé èñòî÷íèê èíôîðìàöèè � ýòî

ôîòîðîæäåíèå ïèîíà â ÿäðàõ, â ÷àñòíîñòè, íà äåéòîíå, ñòðóêòóðà êîòîðîãî

õîðîøî èçó÷åíà.

Ïðîöåññ ôîòîðîæäåíèÿ π�ìåçîíîâ ÿâëÿåòñÿ õîðîøî èçó÷åííûì ÿâëå-

íèåì (ñì., íàïðèìåð, ðàáîòû [12, 13]). Òåì íå ìåíåå, ïîëó÷åííûå íåäàâíî

ýêñïåðèìåíòàëüíûå äàííûå ïî ðåàêöèè π0�ôîòîðîæäåíèÿ íà äåéòîíå [10],

[11] ñîäåðæàò ðÿä õàðàêòåðíûõ îñîáåííîñòåé, òåîðåòè÷åñêîé èíòåðïðåòà-

öèè êîòîðûõ ïîñâÿùåíà ýòà ãëàâà.

Â äàííîé ãëàâå ïðîâåäåíî èññëåäîâàíèå ðåàêöèè ôîòîðîæäåíèÿ π0�

ìåçîíà íà äåéòîíå, ïðè÷åì îñíîâíîå âíèìàíèå óäåëåíî íåéòðîí-ïðîòîííîìó

âçàèìîäåéñòâèþ â êîíå÷íîì ñîñòîÿíèè íåêîãåðåíòíîãî ïðîöåññà d(γ, π)np.

Öåíòðàëüíûì ìåñòîì ÿâëÿåòñÿ âçàèìîñâÿçü êîãåðåíòíîãî è íåêîãåðåíòíî-

ãî êàíàëîâ ðåàêöèè. Ñ÷èòàåòñÿ, ÷òî â êàíàëå d(γ, π)np äîìèíèðóåò êâàçè-

ñâîáîäíîå ôîòîðîæäåíèå ïèîíà íà ñîñòàâëÿþùèõ äåéòîí íóêëîíàõ. Îäíàêî

îêàçûâàåòñÿ, ÷òî íóêëîí-íóêëîííîå âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè

ñèëüíî âëèÿåò íà ýíåðãåòè÷åñêóþ è óãëîâóþ çàâèñèìîñòü ñå÷åíèÿ íåêîãå-

ðåíòíîãî êàíàëà ñ ðàçâàëîì äåéòîíà.

Êàê áóäåò ïîêàçàíî â äàííîé ãëàâå, ñ ó÷åòîì np-âçàèìîäåéñòâèÿ â êî-
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íå÷íîì ñîñòîÿíèè èíêëþçèâíîå ñå÷åíèå ôîòîðîæäåíèÿ ïèîíà íà äåéòîíå,

îïðåäåëÿåìîå ñóììîé êîãåðåíòíîãî è íåêîãåðåíòíîãî êàíàëîâ, õîðîøî îïè-

ñûâàåòñÿ êâàçè-ñâîáîäíûì π0-ôîòîðîæäåíèåì. Ïðè èññëåäîâàíèè ýòèõ ýô-

ôåêòîâ èñïîëüçîâàëèñü èäåè, èçëîæåííûå â èçâåñòíîé ðàáîòå Â.Ì. Êîëû-

áàñîâà è Â.Ã. Êñåíçîâà [31], ãäå èçó÷àëñÿ ïðîöåññ d(π−, π−)pn.

Äàëüíåéøåå èçëîæåíèå ðàçäåëåíî íà òðè ÷àñòè. Â ðàçäåëå 2.1 ðàñ-

ñìîòðåíû âêëàäû ðàçëè÷íûõ äèàãðàìì â ìåõàíèçì ðåàêöèè ôîòîðîæäå-

íèÿ π0-ìåçîíà íà äåéòîíå. Ïîêàçàíî, ÷òî ïðè íèçêèõ ýíåðãèÿõ â ïðî-

öåññå ôîòîðîæäåíèÿ π0-ìåçîíà íà äåéòîíå äîìèíèðóåò êâàçè-ñâîáîäíîå

π0-ôîòîðîæäåíèå íà îäíîì íóêëîíå. Â ðàçäåëå 2.2 èññëåäîâàíî âëèÿíèå

íåéòðîí-ïðîòîííîãî âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè íà õàðàêòåðè-

ñòèêè ðåàêöèè ôîòîðîæäåíèÿ π0-ìåçîíà íà äåéòîíå. Â ðàçäåëå 2.3 ïðî-

âåäåíî ñðàâíåíèå ðåçóëüòàòîâ ÷èñëåííûõ ðàñ÷åòîâ ñ ýêñïåðèìåòàëüíûìè

äàííûìè MAMI [10].

2.1. Ìåõàíèçì ðåàêöèè ôîòîðîæäåíèÿ π0 ìåçîíà íà äåéòîíå.

Äèàãðàììû, êîòîðûå äàþò âêëàä â ìåõàíèçì ðåàêöèè íåêîãåðåíòíîãî

ôîòîðîæäåíèÿ ïèîíà íà äåéòîíå γd → π0np, ìîæíî ðàçäåëèòü íà ñëåäóþ-

ùèå êàòåãîðèè:

• êâàçè-ñâîáîäíîå ôîòîðîæäåíèå ïèîíà, ðèñ.2.1. Òàêàÿ äèàãðàììà

îïðåäåëÿåòñÿ àìïëèòóäîé fγπN ôîòîðîæäåíèÿ ïèîíà íà îäèíî÷íîì

íóêëîíå γN → πN .

• äèàãðàììà ñ ïåðåðàññåÿíèåì íóêëîíîâ, ðèñ.2.2. Ýòà äèàãðàììà ñîîò-

âåòñòâóåò íóêëîí-íóêëîííîìó âçàèìîäåéñòâèþ â êîíå÷íîì ñîñòîÿíèè.
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d p (n)

 Nπγf

γ 0π

n (p) 

Ðèñ. 2.1. Äèàãðàììà êâàçè-ñâîáîäíîãî ôîòîðîæäåíèÿ ïèîíà â ïðîöåññå ðàç-

âàëà äåéòîíà γd → π0np.

Ïîäðîáíîå èññëåäîâàíèå ýòîé äèàãðàììû áóäåò ïðîâåäåíî â ðàçäåëå

2.2.

• äèàãðàììû ñ ïåðåðàññåÿíèåì ïèîíîâ íà íóêëîíàõ. Ïðè íèçêèõ ýíåð-

ãèÿõ ýòè äèàãðàììû ñîäåðæàò ìàëîñòü (fπN/fNN) ïî îòíîøåíèþ ê

äèàãðàììå ñ ïåðåðàññåÿíèåì íóêëîíîâ. Çäåñü fπN è fNN � ñîîòâåò-

ñòâåííî àìïëèòóäû πN è NN�ðàññåÿíèÿ.

• äèàãðàììà, â êîòîðîé ôîòîí ïîãëîùàåòñÿ îäíèì íóêëîíîì, à ïèîí

èçëó÷àåòñÿ äðóãèì, ðèñ.2.3.

Êàê óæå áûëî îòìå÷åíî, âêëàä äèàãðàììû ñ ïåðåðàññåÿíèå ïèîíîâ

íà íóêëîíàõ ìàë. Äëÿ îöåíêè îòíîñèòåëüíîãî âêëàäà äèàãðàìì êâàçè-

ñâîáîäíîãî ôîòîðîæäåíèÿ ïèîíà è äèàãðàììû 2.3 âîñïîëüçóåìñÿ áîðíîâ-

ñêèì ïðèáëèæåíèåì äëÿ àìïëèòóäû π0�ôîòîðîæäåíèÿ íà îäíîì íóêëîíå.

Â ýòîì ñëó÷àå â àìïëèòóäó π0�ôîòîðîæäåíèÿ íà îäíîì íóêëîíå äàþò

âêëàä òîëüêî ïðÿìîé è ïåðåêðåñòíûé ÷ëåíû, ðèñ.2.4, 2.5, òàê êàê êðîëë-
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d p (n)

 Nπγf

NNf

γ 0π

n (p) 

Ðèñ. 2.2. Äèàãðàììà ñ ïåðåðàññåÿíèåì íóêëîíîâ â êîíå÷íîì ñîñòîÿíèè ðå-

àêöèè γd → π0np.

ðóäåðìàíîâñêèé è ïèîííûé ïîëþñíîé ÷ëåíû äàþò âêëàä òîëüêî â ðîæäåíèå

çàðÿæåííûõ ïèîíîâ [13].

Ïàðàìåòðèçóåì âåðøèíû âçàèìîäåéñòâèÿ â ñëåäóþùåì âèäå: Γem =

−e(ūγµu)Aµ (ýëåêòðîìàãíèòíàÿ); ΓπN = −gπ(ūγ5u) (ïèîí�íóêëîííàÿ);

Γd = −g(ūγµCūT )dµ (ðàçâàë äåéòîíà). Â ýòîì ñëó÷àå, ñîîòâåòñòâóþùèå

äèàãðàììàì ðèñ.2.3�2.5 àìïëèòóäû ìîæíî çàïèñàòü â ñëåäóþùåé ôîðìå:

Ma = eggπd
µAν

(

ū1γ5[Q̂1 + m]γν[P̂1 + m]γµCūT
2

)

(Q2
1 − m2)(P 2

1 − m2)

Mb = eggπd
µAν

(

ū1γν[Q̂2 + m]γ5[P̂1 + m]γµCūT
2

)

(Q2
2 − m2)(P 2

1 − m2)

Mc = eggπd
µAν

(

ū1γν[Q̂2 + m]γµC[P̂2 + m]γ5ū
T
2

)

(Q2
2 − m2)(P 2

2 − m2)

. (2.1)

4-èìïóëüñû ÷àñòèö îáîçíà÷åíû ñëåäóþùèì îáðàçîì (ñì. ðèñ.2.3�2.5): pd

� 4-èìïóëüñ äåéòîíà, k � ôîòîíà, q � ïèîíà è p1,2 � 4-èìïóëüñû íóêëîíîâ;

Q1 = p1+q, Q2 = p1−k, P1 = pd−p2 = Q1−k = Q2+q, P2 = p2+q = pd−Q2.
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c)

dp
d 2P

2Q

p (n)2p

µγ

5γ

γ

k

0π

q

n (p) 1p

Ðèñ. 2.3. Äèàãðàììà, îòâå÷àþùàÿ âîçáóæäåíèþ äâóõ íóêëîíîâ â ïðîöåññå

γd → π0np.

Äëÿ îöåíêè îòíîñèòåëüíûõ âêëàäîâ äèàãðàìì ðèñ.2.3�2.5, ïðîâåäåì

ñëåäóþùèå ðàçëîæåíèÿ ïî ìàëûì èìïóëüñàì ÷àñòèö:

Q2
1 − m2 = µ2 + 2(p1q) ≈ µ2 + 2µm + O(~p2)

Q2
2 − m2 = −2(p1k) = −2ωE1 = 2(md − E1 − E2 − Eπ)E1 ≈ −2µm + O(~p2)

P 2
1 − m2 = µ2

d − 2(p2pd) = µd(µd − 2E2) ∼ µdδd + O(~p2)

P 2
2 − m2 = µ2 + 2(p2q) = µ(µ + 2m) + O(~p2) .

(2.2)

Èñõîäÿ èç ýòèõ ðàçëîæåíèé, ïîëó÷àåì ñëåäóþùóþ îöåíêó äëÿ îòíîñèòåëü-

íûõ âêëàäîâ äèàãðàìì ðèñ.2.3�2.5:
∣

∣

∣

∣

∣

Mc

Ma

∣

∣

∣

∣

∣

≈ P 2
1 − m2

P 2
2 − m2

≈ µdδd

µ(µ + 2m)
<< 1

∣

∣

∣

∣

∣

Mc

Mb

∣

∣

∣

∣

∣

≈ (P 2
1 − m2)(Q2

1 − m2)

(P 2
2 − m2)(Q2

2 − m2)
≈ µdδd

µ(µ + 2m)
<< 1

∣

∣

∣

∣

∣

Ma

Mb

∣

∣

∣

∣

∣

≈ Q2
1 − m2

Q2
2 − m2

≈ 1

. (2.3)

Èç ýòèõ îöåíîê âèäíî, ÷òî ïðè íèçêèõ ýíåðãèÿõ âêëàäîì äèàãðàììû ðèñ.2.3

ìîæíî ïðåíåáðå÷ü. Ýòîò ôàêò èìååò ïðîñòóþ èíòåðïðåòàöèþ. Äèàãðàììà

ðèñ.2.3 äàåò âêëàä òîëüêî ïðè áîëüøîì ïåðåäàííîì èìïóëüñå, ïîýòîìó ïðè
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a)

dp
d

1P

1Q

p (n)2p

µγ 5γ

γ

k

0π

q

n (p) 1p

Ðèñ. 2.4. Äèàãðàììà êâàçè-ñâîáîäíîãî ôîòîðîæäåíèÿ ïèîíà íà äåéòîíå.

Ïðÿìîé áîðíîâñêèé ÷ëåí.

íèçêèõ ýíåðãèÿõ åå âêëàä ìàë.

Òàêèì îáðàçîì, ìåõàíèçì ðåàêöèè γd → π0np â îñíîâíîì îïðåäåëÿåò-

ñÿ êâàçè-ñâîáîäíûì ôîòîðîæäåíèåì ïèîíà íà îäíîì íóêëîíå. Îäíàêî, êàê

áóäåò ïîêàçàíî íèæå, ó÷åò íóêëîí-íóêëîííîãî âçàèìîäåéñòâèÿ â êîíå÷íîì

ñîñòîÿíèè ñèëüíî âëèÿåò íà õàðàêòåðèñòèêè íåêîãåðåíòíîãî êàíàëà ðåàê-

öèè ôîòîðîæäåíèÿ ïèîíà íà äåéòîíå.

2.2. Ðåàêöèÿ γd → π0np è np�âçàèìîäåéñòâèå â êîíå÷íîì ñîñòî-

ÿíèè

2.2.1. Àìïëèòóäà ðåàêöèè γd → π0np

Èçëîæåíèå â ýòîì ðàçäåëå îñíîâàíî íà èäåÿõ ðàáîòû [31].

Ðàññìîòðèì äèàãðàììû ðèñ.2.1, 2.2. Àìïëèòóäà, ñîîòâåòñòâóþùàÿ

äèàãðàììå ðèñ.2.1 îïðåäåëÿåòñÿ êâàçè-ñâîáîäíûì ôîòîðîæäåíèåì ïèîíà

íà íóêëîíå:

MQF = fγπpϕd (q − Q) + fγπnϕd (q + Q) . (2.4)
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b)

dp
d

1P 2Q

p (n)2p

5γ µγ

γ

k

0π

q

n (p) 1p

Ðèñ. 2.5. Äèàãðàììà êâàçè-ñâîáîäíîãî ôîòîðîæäåíèÿ ïèîíà íà äåéòîíå.

Ïåðåêðåñòíûé áîðíîâñêèé ÷ëåí.

Çäåñü ϕd � âîëíîâàÿ ôóíêöèÿ äåéòîíà; q � îòíîñèòåëüíûé èìïóëüñ ìåæäó

íóêëîíàìè, Q � ïåðåäàííûé èìïóëüñ.

Àìïëèòóäà, ñîîòâåòñòâóþùàÿ äèàãðàììå ðèñ.2.2 ñ ïåðåðàññåÿíèå íóê-

ëîíîâ, ìîæåò áûëü çàïèñàíà â ñëåäóþùåì âèäå:

MR =
fγπp + fγπn

π2

∫

dq′ f
NN

(q,q′) ϕd(q
′ − Q)

q′2 − q2 − i0
, (2.5)

ãäå q′ � îòíîñèòåëüíûé èìïóëüñ íóêëîíîâ â äåéòîíå; q = |q|; Q = |Q|;

q′ = |q′|. fγπN îáîçíà÷àåò àìïëèòóäó ðåàêöèè γN → πN . f
NN

� s�âîëíîâàÿ

àìïëèòóäà óïðóãîãî NN�ðàññåÿíèÿ ñ ó÷åòîì ñõîäà ñ ìàññîâîé ïîâåðíîñòè.

Èñïîëüçóÿ ôîðìóëó äëÿ àìïëèòóäû NN �ðàññåÿíèÿ, ó÷èòûâàþùóþ

ñõîä ñ ìàññîâîé ïîâåðõíîñòè (ñì., íàïðèìåð, [31]):

f (off)
NN

=
q2 + β2

q′2 + β2
f (on)

NN
, (2.6)

ñóììàðíûé âêëàä äèàãðàìì ðèñ.2.1, 2.2 ìîæíî çàïèñàòü â ñëåäóþùåì âèäå:

MFSI = MQF + MR = MQF[1 + R−1f (on)
NN

] . (2.7)
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Ôóíêöèÿ R îïðåäåëÿåòñÿ ñëåäóþùåé ôîðìóëîé:

R−1(q,Q) =
fγπp + fγπn

fγπpϕd (q − Q) + fγπnϕd (q + Q)

∫ dq′

π2

4q2 + β2

4q′2 + β2

ϕd(q
′ − Q)

q′2 − q2 − i0
.

(2.8)

Âû÷èñëåíèå äèàãðàììû ñ NN�ïåðåðàññåÿíèåì â ñëó÷àå õþëüòå-

íîâñêîé âîëíîâîé ôóíêöèè äåéòîíà Çíàÿ êîíêðåòíûé âèä âîëíî-

âîé ôóíêöèè äåéòîíà ìîæíî ïîëó÷èòü òî÷íîå âûðàæåíèå äëÿ ôóíêöèè R

(ñì. ôîðìóëó (2.8)), õàðàêòåðèçóþùåé âêëàä íóêëîí-íóêëîííîãî âçàèìî-

äåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè â ðåàêöèè γd → π0np. Â îáùåì ñëó÷àå

ñëåäóåò èñïîëüçîâàòü ðåàëèñòè÷åñêóþ âîëíîâóþ ôóíêöèþ äåéòîíà, ïîëó-

÷åííóþ, íàïðèìåð, ñ ïîìîùüþ Ïàðèæñêîãî ïîòåíöèàëà [32]. Îäíàêî äëÿ

ðàññìàòðèâàåìîãî ïðîöåññà ìàëûå ðàññòîÿíèÿ â äåéòîíå íå ñòîëü âàæíû.

Ïîýòîìó, â äàííîì ñëó÷àå, õîðîøèì ïðèáëèæåíèåì ÿâëÿåòñÿ õþëüòåíîâ-

ñêàÿ âîëíîâàÿ ôóíêöèÿ. Ïðîñòîé âèä õþëüòåíîâñêîé âîëíîâîé ôóíêöèè

ïîçâîëÿåò ïðîâåñòè àíàëèòè÷åñêîå âû÷èñëåíèå äèàãðàììû ðèñ.2.2.

Â èìïóëüñíîì ïðåäñòàâëåíèè õþëüòåíîâñêàÿ âîëíîâàÿ ôóíêöèÿ èìå-

åò âèä:

ϕd(p) = α

[

1

p2 + κ2
− 1

p2 + β2

]

, (2.9)

ãäå κ2 = mEd, Ed � ýíåðãèÿ ñâÿçè äåéòîíà; m � ìàññà íóêëîíà; β = 5.2κ;

α � íîðìèðîâî÷íàÿ êîíñòàíòà âîëíîâîé ôóíêöèè:

α = 4π





κβ(κ + β)

2π(β − κ)2





1

2

. (2.10)

Äëÿ äàííîé âîëíîâîé ôóíêöèè äåéòîíà R−1(q,Q) ïðèíèìàåò âèä:

R−1(q,Q) =
4α

Q

fγπp + fγπn

fγπpϕd (q − Q) + fγπnϕd (q + Q)
[I(κ) − I(β)] , (2.11)
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ãäå

I(x) = J(x) − J(x)|k→iβ . (2.12)

Ôóíêöèÿ J(x) îïðåäåëÿåòñÿ ñëåäóþùèì èíòåãðàëîì:

J(x) =
Q

π

1
∫

−1

d cos θ
∞
∫

0

q′2dq′

q′2 − q2 − i0

1

(q′ − Q)2 + x2
. (2.13)

Èíòåãðèðóÿ ïî cos θ, ïîëó÷àåì:

J(x) =
1

2π

∞
∫

0

q′dq′

q′2 − q2 − i0
ln

(q′ + Q)2 + x2

(q′ − Q)2 + x2
. (2.14)

Äëÿ âû÷èñëåíèÿ ýòîãî èíòåãðàëà ïðîäèôôåðåíöèðóåì åãî ïî ïàðàìåòðó:

∂J(x)

∂Q
=

1

π

∞
∫

0

q′dq′

q′2 − q2 − iη





q′ + Q

(q′ + Q)2 + x2
+

q′ − Q

(q′ − Q)2 + x2



 =

=
i

4

[

1

q + Q + ix
+

1

ix − Q + q

]

.

(2.15)

Èíòåãðèðîâàíèå ïîëó÷åííîãî âûðàæåíèÿ ïî Q äàåò:

J(x) =
i

4

Q
∫

0

dQ

[

1

q + Q + ix
+

1

ix − Q + q

]

=
i

2
ln

q + Q + ix

q − Q + ix
. (2.16)

Îêîí÷àòåëüíî äëÿ ôóíêöèè I(x), âõîäÿùåé â âûðàæåíèå (2.11), èìååì:

I(x) =
i

2

[

ln
q + Q + 2ix

q − Q + 2ix
− ln

iβ + Q + 2ix

iβ − Q + 2ix

]

. (2.17)

Ñëåäóåò îòìåòèòü, ÷òî ôóíêöèÿ R−1(q,Q) ÿâëÿåòñÿ êîìïëåêñíîé. Ýòîò ðå-

çóëüòàò áóäåò èñïîëüçîâàí â ãëàâå 3 ïðè èññëåäîâàíèè îñîáåííîñòåé NN

âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè â ðåàêöèè pp → ppπ+π−.

2.2.2. np�âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè è èíêëþçèâíîå

ñå÷åíèå ðåàêöèè ôîòîðîæäåíèÿ π0�ìåçîíà íà äåéòîíå

Êàê ïîêàçàíî â ðàáîòå [31], ìåæäó àìïëèòóäàìè êîãåðåíòíîãî è íåêî-

ãåðåíòíîãî ïðîöåññîâ íà äåéòîíå ñóùåñòâóåò ñëåäóþùåå èíòåãðàëüíîå ñî-
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îòíîøåíèå1:
∫

|MQF|2dp = |MC|2 +
∫

|MFSI|2dp . (2.18)

Çäåñü MC � àìïëèòóäà êîãåðåíòíîãî ôîòîðîæäåíèÿ ïèîíà íà äåéòîíå, p -

èìïóëüñ îäíîãî èç íóêëîíîâ â íåêîãåðåíòíîì ïðîöåññå.

Èç ôîðìóëû (2.18) ñëåäóåò, ÷òî ñå÷åíèå èíêëþçèâíîãî ôîòîðîæäåíèÿ

íà äåéòîíå ðàâíî ñå÷åíèþ êâàçè-ñâîáîäíîãî ôîòîðîæäåíèÿ ïèîíà íà îäíîì

èç íóêëîíîâ. Ñîîòíîøåíèå (2.18) ÿâëÿåòñÿ ñïðàâåäëèâûì, åñëè âûïîëíÿåò-

ñÿ óñëîâèå ïîëíîòû äëÿ âîëíîâîé ôóíêöèè äåéòîíà è âîëíîâîé ôóíêöèè

NN ðàññåÿíèÿ. Ïðè ýíåðãèÿõ ôîòîíà Eγ = 140 − 306 ÌýÂ ýòî óñëîâèå

âûïîëíÿåòñÿ, òàê êàê â ýòîì ñëó÷àå èìïóëüñû êîíå÷íûõ íóêëîíîâ îêàçû-

âàþòñÿ áîëüøå èìïóëüñà ôåðìèåâñêîãî äâèæåíèÿ íóêëîíîâ â äåéòîíå.

2.3. Ðåçóëüòàòû ÷èñëåííûõ ðàñ÷åòîâ

×èñëåííûå ðàñ÷åòû ñ àìïëèòóäàìè (2.4) è (2.7) ïðîâîäèëèñü ñ õþëü-

òåíîâñêîé âîëíîâîé ôóíêöèåé äåéòîíà. Äëÿ àìïëèòóäû fγπN ôîòîðîæäå-

íèÿ ïèîíà íà íóêëîíå èñïîëüçîâàëàñü ïàðàìåòðèçàöèÿ èç áàçû äàííûõ

SAID [18].

Ðåçóëüòàòû ÷èñëåííûõ ðàñ÷åòîâ óãëîâûõ ðàñïðåäåëåíèé êîíå÷íûõ

ïðîäóêòîâ ðåàêöèè d(γ, π)np ñ àìïëèòóäîé (2.7), ó÷èòûâàþùåé íóêëîí-

íóêëîííîå âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè, ïðåäñòàâëåíû íà ðèñ.2.6.

Â ðåçóëüòàòå ðàñ÷åòîâ îêàçàëîñü, ÷òî íóêëîí-íóêëîííîå âçàèìîäåéñòâèå

â êîíå÷íîì ñîòîÿíèè ñèëüíî âëèÿåò íà ïîâåäåíèå óãëîâûõ ðàñïðåäåëåíèé,

÷òî ïîäòâåðæäàåò ïðåäñêàçàíèÿ ðàáîòû [33]. Ðåçóëüòàòû ðàñ÷åòîâ íàõîäÿò-

ñÿ â õîðîøåì ñîãëàñèè ñ ýêñïåðèìåòàëüíûìè äàííûìè MAMI [10].
1Ýòîò ðåçóëüòàò íå çàâèñèò îò êîíêðåòíîãî âèäà âîëíîâîé ôóíêöèè äåéòîíà.
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Íà ðèñ.2.7, 2.8 ïðèâåäåíû ðåçóëüòàòû ðàñ÷åòà óãëîâûõ ðàñïðåäåëåíèé

è ïîëíîãî ñå÷åíèÿ ñ àìïëèòóäîé (2.4), îïèñûâàþùåé êâàçè-ñâîáîäíîå π0-

ôîòîðîæäåíèå íà äåéòîíå. Ýòè ðåçóëüòàòû íàõîäÿòñÿ â õîðîøåì ñîãëàñèè

ñ ýêñïåðèìåíòàëüíûìè äàííûìè MAMI [10], ÷òî ãîâîðèò î ñïðàâåäëèâîñòè

ñîîòíîøåíèÿ (2.18), ñâÿçûâàþùåãî àìïëèòóäû ïðîöåññîâ êîãåðåíòíîãî è

íåêîãåðåíòíîãî ôîòîðîæäåíèÿ ïèîíà íà äåéòîíå.
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Ðèñ. 2.6. Äèôôåðåíöèàëüíîå ñå÷åíèå íåêîãåðåíòíîãî ïðîöåññà ôîòîðîæäå-

íèÿ π0�ìåçîíà íà äåéòîíå. Æèðíûå òî÷êè � äàííûå ýêñïåðèìåíòà MAMI

[11]. Øòðèõ-ïóíêòèðíàÿ ëèíèÿ � ðåçóëüòàòû ðàñ÷åòà ñ àìïëèòóäîé (2.7),

ó÷èòûâàþùåé íóêëîí-íóêëîííîå âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè.
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Ðèñ. 2.7. Äèôôåðåíöèàëüíîå ñå÷åíèå èíêëþçèâíîãî ïðîöåññà ôîòîðîæäå-

íèÿ π0�ìåçîíà íà äåéòîíå. Æèðíûå òî÷êè � äàííûå ýêñïåðèìåíòà MAMI

[11]. Ñïëîøíàÿ ëèíèÿ � ðåçóëüòàòû ðàñ÷åòà ñ àìïëèòóäîé (2.4), ñîîòâåò-

ñòâóþùåé êâàçè-ñâîáîäíîìó ôîòîðîæäåíèþ ïèîíà íà äåéòîíå.
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Ðèñ. 2.8. Ïîëíîå ñå÷åíèå èíêëþçèâíîãî ïðîöåññà ôîòîðîæäåíèÿ π0�ìåçîíà

íà äåéòîíå. Æèðíûå òî÷êè � äàííûå ýêñïåðèìåíòà MAMI [11]. Êâàäðàòû �

ïðåäûäóùèå èçìåðåíèÿ TAPS [27]. Øòðèõ-ïóíêòèðíàÿ ëèíèÿ � ðåçóëüòàòû

ðàñ÷åòà ñ àìïëèòóäîé (2.4), ñîîòâåòñòâóþùåé êâàçè-ñâîáîäíîìó ôîòîðîæ-

äåíèþ ïèîíà íà äåéòîíå.
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3. Äâóõïèîííîå ðîæäåíèå â pp�ñòîëêíîâåíèÿõ âáëèçè

ïîðîãà

3.1. Îñîáåííîñòè ðåàêöèè pp → ppπ+π− âáëèçè ïîðîãà

Â äàííîé ãëàâå ðàññìàòðèâàåòñÿ ðåàêöèÿ äâóõïèîííîãî ðîæäåíèÿ

pp → ppπ+π− âáëèçè ïîðîãà. Êàê ïðàâèëî, ïîâåäåíèå äèôôåðåíöèàëü-

íûõ õàðàêòåðèñòèê ðåàêöèé ñ áîëüøèì ÷èñëîì ÷àñòèö â êîíå÷íîì ñîñòîÿ-

íèè õîðîøî îïèñûâàåòñÿ â ïðåäïîëîæåíèè ñëàáîé çàâèñèìîñòè àìïëèòóäû

ðåàêöèè îò êèíåìàòè÷åñêèõ ïåðåìåííûõ. Â ýòîì ñëó÷àå ïîâåäåíèå ñïåê-

òðîâ ÷àñòèö õîðîøî ñîãëàñóåòñÿ ñ ïîâåäåíèåì ôàçîâîãî îáúåìà (àìïëèòó-

äà ðåàêöèè ïîñòîÿííà). Îäíàêî ðåçóëüòàòû íåäàâíèõ îïûòîâ íà óñêîðè-

òåëå CELSIUS [14, 34, 35], çíà÷èòåëüíî ïðåâîñõîäÿùèå ïî ñâîåé òî÷íîñòè

âñå ïðåäûäóùèå èçìåðåíèÿ õàðàêòåðèñòèê äâóõïèîííîãî ðîæäåíèÿ â pp�

ñòîëêíîâåíèÿõ, íå óäàåòñÿ îïèñàòü â ñòîëü ïðîñòîì ïðåäïîëîæåíèè.

Â ýêñïåðèìåíòå íà óñêîðèòåëå CELSIUS áûëà íàáðàíà áîëüøàÿ ñòà-

òèñòèêà ïî ýêñêëþçèâíûì èçìåðåíèÿì äèôôåðåíöèàëüíûõ õàðàêòåðèñòèê

ðåàêöèè pp → ppπ+π− â îáëàñòè êèíåòè÷åñêèõ ýíåðãèé íàëåòàþùåãî ïðî-

òîíà Tp = 650 − 750 ÌýÂ [14, 34, 35]. Âñå ïðåäûäóùèå èçìåðåíèÿ ðåàêöèè

äâóõïèîííîãî ðîæäåíèÿ pp → ppπ+π− íèæå êèíåòè÷åñêîé ýíåðãèè íàëåòà-

þùåãî ïðîòîíà Tp = 900 ÌýÂ, ÿâëÿëèñü ëèáî èíêëþçèâíûìè [36, 37], ëèáî

ïðîâîäèëèñü ñ íèçêîé ñòàòèñòèêîé [38�41] (÷àñòü èç ýòèõ ýêñïåðèìåíòîâ òî-

æå áûëà èíêëþçèâíîé [40,41]). Â äàííûé ìîìåíò ðåçóëüòàòû ýêñïåðèìåíòà
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íà óñêîðèòåëå CELSIUS ÿâëÿþòñÿ ïðåäâàðèòåëüíûìè. Îáðàáîòêà äàííûõ

ýêñïåðèìåíòà, ïðîâîäÿùàÿñÿ ñîâìåñòíî ñ ôèçèêàìè èç Ãåðìàíèè, Øâåöèè

è Ïîëüøè, ïðîäîëæàåòñÿ.

Ïðåöåçèîííûå èçìåðåíèÿ ðåàêöèè pp → ppπ+π− â êîíêðåòíîì ýêñ-

ïåðèìåíòå íà óñêîðèòåëå CELSIUS áûëè èíèöèèðîâàíû ïîèñêîì ýêçîòè-

÷åñêèõ NNπ�ðåçîíàíñîâ, íå ñâÿçàííûõ ñ NN�êàíàëîì çà ñ÷åò ñèëüíûõ

âçàèìîäåéñòâèé. Ïðèìåðîì ìîæåò ñëóæèòü ãèïîòåòè÷åñêèé äèáàðèîííûé

ðåçîíàíñ d′ ñ êâàíòîâûìè ÷èñëàìè I(JP ) = 0(0−) [42] èëè ðåçîíàíñû ñ

âûñîêèì èçîñïèíîì (íàïðèìåð I = 2).

Ñàìî ïî ñåáå èññëåäîâàíèå ðåàêöèè ñ ðîæäåíèåì íåñêîëüêèõ ïèîíîâ

ÿâëÿåòñÿ âàæíûì ïî öåëîìó ðÿäó ïðè÷èí. Ïîäîáíûå èññëåäîâàíèÿ ìîãóò

ïðîÿñíèòü âîïðîñ î ïðåäåëàõ ïðèìåíèìîñòè ýôôåêòèâíûõ ëàãðàíæèàíîâ,

ñëåäóþùèõ èç êèðàëüíûõ òåîðèé [43, 44]. Êîíêðåòíîé öåëüþ ìîæåò áûòü

ïðîâåðêà ìÿãêî-ïèîííûõ òåîðåì è îöåíêà ïàðàìåòðîâ íàðóøåíèÿ êèðàëü-

íîé ñèììåòðèè. Ñ ýòîé òî÷êè çðåíèÿ îñîáåííî âàæíûì ÿâëÿåòñÿ èññëåäî-

âàíèå ïîâåäåíèÿ ïðîöåññîâ ñ ðîæäåíèåì íåñêîëüêèõ ïèîíîâ âáëèçè ïîðî-

ãà [45].

Îäíîé èç èçâåñòíûé îñîáåííîñòåé, ñâîéñòâåííûõ ðåàêöèÿì ñ ðîæ-

äåíèåì ñèñòåìû èç äâóõ ïèîíîâ ÿâëÿåòñÿ òàê íàçûâàåìûé ABC ýôôåêò

(Abashian-Booth-Crowe, [46]). ABC ýôôåêò ïðîÿâëÿåòñÿ â àíîìàëüíîì ïî-

âåäåíèè ñïåêòðà èíâàðèàíòíîé ìàññû ñèñòåìû äâóõ ïèîíîâ è åãî èçó÷åíèþ

ïîñâÿùåíî áîëüøîå ÷èñëî ðàáîò (ñì. [47�51] è ññûëêè â ýòèõ ðàáîòàõ). Äî

ñèõ ïîð ýòîò ýôôåêò ïðåäñòàâëÿåò æèâîé èíòåðåñ êàê ñ òåîðåòè÷åñêîé, òàê

è ñ ýêñïåðèìåíòàëüíîé òî÷åê çðåíèÿ (ñì., íàïðèìåð, [52]).

Íàðÿäó ñ îñîáåííîñòÿìè ðîæäåíèÿ ñèñòåìû äâóõ ïèîíîâ, ðåàêöèÿ
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äâóõïèîííîãî ðîæäåíèÿ â ïðîòîí-ïðîòîííûõ ñòîëêíîâåíèÿõ ÿâëÿåòñÿ îä-

íèì èç èñòî÷íèêîâ èíôîðìàöèè î íóêëîííûõ ðåçîíàíñàõ. Â ðàáîòàõ [45,53]

èññëåäîâàëèñü êîíêðåòíûå ìåõàíèçìû ðåàêöèè pp → ppπ+π−. Áûëî ïîêà-

çàíî, ÷òî ïðåöåçèîííûå èçìåðåíèÿ õàðàêòåðèñòèê ðåàêöèè ππ�ðîæäåíèÿ

â pp�ñòîëêíîâåíèÿõ ïîçâîëÿþò âûäåëèòü âêëàäû âîçáóæäåíèÿ áàðèîííûõ

ðåçîíàíñîâ N è ∆ òèïà â ïðîìåæóòî÷íîì ñîñòîÿíèè. Â ÷àñòíîñòè, êàê

ïîêàçàíî â ðàáîòå [53], ýòî îòíîñèòñÿ ê èçó÷åíèþ ðîïåðîâñêîãî ðåçîíàíñà

N ∗(1440). Åñëè ïðèíÿòü ãèïîòåçó î äîìèíàíòíîñòè âîçáóæäåíèÿ ðåçîíàí-

ñà N ∗(1440) â ïðîìåæóòî÷íîì ñîñòîÿíèè ðåàêöèè pp → ppπ+π−, òî ìîæíî

èçâëå÷ü ñâîéñòâà ýòîãî ðåçîíàíñà, íàïðèìåð, îòíîñèòåëüíûå âêëàäû ðàç-

ëè÷íûõ êàíàëîâ ðàñïàäà N ∗(1440) [54].

Âûñîêîå êà÷åñòâî ïîëó÷åííûõ â ýêñïåðèìåíòå íà óñêîðèòåëå

CELSIUS äèôôåðåíöèàëüíûõ õàðàêòåðèñòèê ðåàêöèè äâóõïèîííîãî ðîæ-

äåíèÿ âûÿâëÿåò ðÿä õàðàêòåðíûõ îñîáåííîñòåé [14]:

• Ýêñïåðèìåíòàëüíûå äàííûå óêàçûâàþò íà ÿðêî âûðàæåííóþ àñèì-

ìåòðèþ ìåæäó ñïåêòðàìè èíâàðèàíòíûõ ìàññ ñèñòåì pπ+ è pπ−, à

òàêæå ìåæäó ñïåêòðàìè ñèñòåì ppπ+ è ppπ−.

• Ïîâåäåíèå ýêñïåðèìåíòàëüíûõ ñïåêòðîâ èíâàðèàíòíûõ ìàññ ñèñòåì

pp è pπ+π− óêàçûâàþò íà ñèëüíîå íóêëîí-íóêëîííîå âçàèìîäåéñòâèå

â êîíå÷íîì ñîñòîÿíèè (ýôôåêò Ìèãäàëà-Âàòñîíà [16,17]).

• Ïîâåäåíèå ýêñïåðèìåíòàëüíîãî ñïåêòðà èíâàðèàíòíîé ìàññû äâóõ ïè-

îíîâ ñèëüíî îòëè÷àåòñÿ îò ïîâåäåíèÿ ôàçîâîãî îáúåìà.

Îòìå÷åííûå îñîáåííîñòè ñïåêòðîâ ðåàêöèè pp → ppπ+π− ÿâëÿþòñÿ íåòðè-

âèàëüíûìè. Ñëåäóåò îãîâîðèòüñÿ î ñïîñîáå ïðåäñòàâëåíèÿ ðåçóëüòàòîâ.
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Ïðîáëåìà ñâÿçàíà ñ íåñîâåðøåíñòâîì èñïîëüçîâàííîãî â ýêñïåðèìåíòå

CELSIUS äåòåêòîðà PROMICE/WASA, ðåãèñòðèðóþùåãî ÷àñòèöû òîëüêî

â îãðàíè÷åííîé îáëàñòè ïîëÿðíîãî óãëà ïî îòíîøåíèþ ê íàïðàâëåíèþ ïó÷-

êà. Ïðåäñòàâëåííûå æå â ðàáîòå [14] ýêñïåðèìåíòàëüíûå ðåçóëüòàòû îñíî-

âàííû íà ýêñòðàïîëÿöèè ê 4π ãåîìåòðèè. Ñïîñîá ýêñòðàïîëÿöèè ÿâëÿåòñÿ

ìîäåëüíî çàâèñèìûì. Îäíàêî îáñóæäàåìàÿ çäåñü àñèììåòðèÿ çíà÷èòåëüíî

ìåíåå ÷óâñòâèòåëüíà ê êîíêðåòíîé ýêñòðàïîëÿöèè. È èìåííî ýòîé ïðîáëåìå

â ïåðâóþ î÷åðåäü ïîñâÿùåíà äàííàÿ ãëàâà.

Íà äàííûé ìîìåíò íåò åäèíîé òåîðåòè÷åñêîé ñõåìû, â ðàìêàõ êîòî-

ðîé ìîæíî áûëî áû îïèñàòü âñå îáíàðóæåííûå íåòðèâèàëüíûå îñîáåííîñòè

ñïåêòðîâ ÷àñòèö ðåàêöèè äâóõïèîííîãî ðîæäåíèÿ â pp�ñòîëêíîâåíèÿõ. Ñ

ýòîé òî÷êè çðåíèÿ êàæåòñÿ íåîáõîäèìûì ðàçáèòü èññëåäîâàíèå ñëîæèâ-

øåéñÿ ïðîáëåìû íà ÷àñòè è èññëåäîâàòü îñîáåííîñòè äèôôåðåíöèàëüíûõ

õàðàêòåðèñòèê ðåàêöèè ππ�ðîæäåíèÿ â pp�ñîóäàðåíèÿõ. Êîíêðåòíîé öå-

ëüþ ÿâëÿåòñÿ îïèñàíèå àñèììåòðèè ìåæäó ñïåêòðàìè èíâàðèàíòíûõ ìàññ

ñèñòåì pπ± è ppπ± íà îñíîâå íàãëÿäíîãî ôåíîìåíîëîãè÷åñêîãî ïîäõîäà.

Â äàííîé ãëàâå èññëåäóåòñÿ âîçìîæíîñòü îïèñàíèÿ îáíàðóæåííîé â

îïûòå àñèììåòðèè ñïåêòðîâ ñèñòåì pπ+ è pπ−, à òàêæå ppπ+ è ppπ−, âîç-

áóæäåíèåì ∆(1232)�ðåçîíàíñà â ïðîìåæóòî÷íîì ñîñòîÿíèè. Åñòåñòâåííî

ïðåäïîëîæèòü, ÷òî ïðè íèçêèõ ýíåðãèÿõ äîìèíèðóåò âîçáóæäåíèå îäè-

íî÷íîãî ∆(1232)�ðåçîíàíñà. Êðîìå òîãî, ïðåäñòàâëÿåòñÿ ïðàâäîïîäîáíûì,

÷òî äàííàÿ àñèììåòðèÿ ñëàáî çàâèñèò îò êîíêðåòíîé äèíàìèêè ðîæäå-

íèÿ ∆(1232). Ïðèìåðû, ïîäòâåðæäàþùèå ýòó ãèïîòåçó, áóäóò ðàññìîòðå-

íû íèæå. Íàðÿäó ñ äåëüòîé ñëåäóåò ó÷èòûâàòü âêëàäû, íå ñâÿçàííûå ñ

âîçáóæäåíèåì ∆(1232)�èçîáàðû. Â ðàìêàõ ïðîñòåéøèõ ãèïîòåç óäàåòñÿ



62

ïîñòðîèòü ôåíîìåíîëîãè÷åñêóþ ëîðåíö-èíâàðèàíòíóþ àìïëèòóäó ðåàêöèè

pp → ppπ+π−. Ðåçóëüòàòû ÷èñëåííûõ ðàñ÷åòîâ õîðîøî ñîãëàñóþòñÿ ñ ýêñ-

ïåðèìåíòàëüíûìè äàííûìè ïî îáíàðóæåííîé â îïûòå àñèììåòðèè. Êðîìå

òîãî òàêîé ïîäõîä ÿâëÿåòñÿ ëîðåíö-èíâàðèàíòíûì, òåì ñàìûì ãðàíèöû åãî

ïðèìåíèìîñòè ìîãóò áûòü ðàñøèðåíû íà áîëåå âûñîêèå ýíåðãèè.

Îäèí èç âîçìîæíûõ ñöåíàðèåâ âîçáóæäåíèÿ ∆(1232)�ðåçîíàíñà ðàñ-

ñìîòðåí â ðàáîòå [53]. Àâòîðû èññëåäîâàëè ãèïîòåçó î äîìèíàíòíîñòè âîç-

áóæäåíèÿ â ïðîìåæóòî÷íîì ñîñòîÿíèè ðîïåðîâñêîãî ðåçîíàíñà N ∗(1440),

ðàñïàäàþùåãîñÿ ïî êàíàëàìN ∗ → ∆π èëè �íàïðÿìóþ� N ∗ → Nππ. Îêàçû-

âàåòñÿ, ÷òî àñèììåòðèÿ ñïåêòðîâ ñèñòåì pπ± è ppπ± íå çàâèñèò îò èçîñïèíà

ìåçîíîâ, êîòîðûì îáìåíèâàþòñÿ ïðîòîíû.

Îòäåëüíîãî ðàññìîòðåíèÿ òðåáóåò ïîâåäåíèå ñïåêòðà èíâàðèàíòíîé

ìàññû Mpp ñèñòåìû äâóõ ïðîòîíîâ, íà êîòîðîì íàèáîëåå ñèëüíî ñêàçû-

âàåòñÿ ýôôåêò íóêëîí-íóêëîííîãî âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè.

Ïîìèìî õàðàêòåðíîãî äëÿ ýôôåêòà Ìèãäàëà-Âàòñîíà ïèêîâîãî ïîâåäåíèÿ

â îáëàñòè ìàëûõ çíà÷åíèé Mpp, ýêñïåðèìåíòàëüíûå äàííûå ñîäåðæàò âè-

äèìûé ïðîâàë ÷óòü ïðàâåå ýòîãî ïèêà, ïðè Mpp ∼ 1885 ÌýÂ. Â ðàìêàõ

ðàçâèòîãî ôåíîìåíîëîãè÷åñêîãî ïîäõîäà îêàçûâàåòñÿ âîçìîæíûì äîáèòü-

ñÿ õîðîøåãî ñîãëàñèÿ ñ ýêñïåðèìåòàëüíûìè äàííûìè äëÿ ñïåêòðîâ ñèñòåì

pp è pπ+π−.

Èññëåäîâàíèÿ îñîáåííîñòåé ðåàêöèè pp → ppπ+π− ïðîäîëæàþòñÿ. Ðå-

çóëüòàòû ÷èñëåííûõ ðàñ÷åòîâ ñïåêòðà èíâàðèàíòíîé ìàññû ñèñòåìû π+π−

îêàçûâàþòñÿ î÷åíü ÷óâñòâèòåëüíûìè ê ïàðàìåòðàì ðàçâèòîé ôåíîìåíîëî-

ãè÷åñêîé ìîäåëè. Íà äàííûé ìîìåíò íåò îäíîçíà÷íîãî îòâåòà, ìîæíî ëè íà

îñíîâàíèè òàêîãî ïîäõîäà îïèñàòü îñîáåííîñòè ñïåêòðà ñèñòåìû π+π−. Ýòî
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ñâÿçàíî ñ òåì, ÷òî âàðüèðîâàíèå ñâîáîäíûõ ïàðàìåòðîâ, âõîäÿùèõ â âûðà-

æåíèå äëÿ ôåíîìåíîëîãè÷åñêîé àìïëèòóäû, ÿâëÿåòñÿ îòäåëüíîé ñëîæíîé

òåõíè÷åñêîé çàäà÷åé.

Ñîäåðæàíèå äàííîé ãëàâû ñëåäóþùåå: â ðàçäåëå 3.2 îáñóæäàåòñÿ âîç-

ìîæíîñòü îïèñàíèÿ îáíàðóæåííîé â îïûòå àñèììåòðèè ñïåêòðîâ ñèñòåì

pπ± è ppπ± âîçáóæäåíèåì ∆(1232)�ðåçîíàíñà â ïðîìåæóòî÷íîì ñîñòîÿíèè.

Íà îñíîâàíèè ïðîñòûõ ïðåäïîëîæåíèé, â ïóíêòå 3.2.1 ïîñòðîåíà ôåíîìåíî-

ëîãè÷åñêàÿ ëîðåíö-èíâàðèàíòíàÿ àìïëèòóäà, îïèñûâàþùàÿ ïðîöåññ äâóõ-

ïèîííîãî ðîæäåíèÿ pp → ppπ+π−. Â ïóíêòå 3.2.2. ïðîâîäèòñÿ ñðàâíåíèå

ðåçóëüòàòîâ ÷èñëåííûõ ðàñ÷åòîâ, îñíîâàííûõ íà ïîñòðîåííîé ôåíîìåíîëî-

ãè÷åñêîé àìïëèòóäå, ñ ýêñïåðèìåíòàëüíûìè äàííûìè [14].

Â ðàçäåëå 3.3 èññëåäîâàíî âëèÿíèå ïðîòîí-ïðîòîííîãî âçàèìîäåé-

ñòâèÿ â êîíå÷íîì ñîñòîÿíèè íà äèôôåðåíöèàëüíûå õàðàêòåðèñòèêè ðåàê-

öèè pp → ppπ+π−. Íàèáîëåå ÿðêî ýôôåêò Ìèãäàëà-Âàòñîíà ïðîÿâëÿåòñÿ

â ñïåêòðå èíâàðèàíòíîé ìàññû äâóõ ïðîòîíîâ. Ðåçóëüòàòû ÷èñëåííûõ ðàñ-

÷åòîâ ñðàâíèâàþòñÿ ñ ýêñïåðèìåíòàëüíûìè äàííûìè CELSIUS [14].

3.2. Âîçáóæäåíèå ∆(1232)�ðåçîíàíñà â ðåàêöèè pp → ppπ+π−

Ïðîâåäåííûå íåäàâíî íà íàêîïèòåëüíîì êîëüöå CELSIUS [14] èçìå-

ðåíèÿ äèôôåðåíöèàëüíûõ õàðàêòåðèñòèê ðåàêöèè äâóõïèîííîãî ðîæäåíèÿ

pp → ppπ+π− ñîäåðæàò ÿðêî âûðàæåííóþ àñèììåòðèþ ñïåêòðîâ èíâàðè-

àíòíûõ ìàññ ñèñòåì pπ± è ppπ±. Äëÿ ñèñòåìû ïðîòîí-ïèîí àñèììåòðèÿ

îïðåäåëÿåòñÿ êàê ðàçíîñòü ñïåêòðîâ èíâàðèàíòíûõ ìàññ ñèñòåì pπ+ è pπ−:




dσ

dmpπ





±
=

dσ

dmpπ+

− dσ

dmpπ−

. (3.1)



64

Àíàëîãè÷íî äëÿ ñèñòåìû äâóõ ïðîòîíîâ è ïèîíà àñèììåòðèÿ îïðåäåëÿåòñÿ

êàê ðàçíîñòü ñïåêòðîâ èíâàðèàíòíûõ ìàññ ñèñòåì ppπ+ è ppπ−:




dσ

dmppπ





±
=

dσ

dmppπ+

− dσ

dmppπ−

. (3.2)

Îêàçûâàåòñÿ, ÷òî äàííóþ àñèììåòðèþ ìîæíî îïèñàòü âîçáóæäåíèåì îäè-

íî÷íîãî ∆�ðåçîíàíñà â ïðîìåæóòî÷íîì ñîñòîÿíèè. Â ýòîì ñëó÷àå ðàçðå-

øåííûìè ÿâëÿþòñÿ äâà çàðÿäîâûõ ñîñòîÿíèÿ ∆�èçîáàðû ∆++ è ∆0:

pp → p(π+∆0) → ppπ+π− , pp → p(π−∆++) → ppπ+π− . (3.3)

Êàê ñëåäóåò èç èçîñïèíîâîé ñèììåòðèè, âêëàäû ðåçîíàíñîâ ∆++ è ∆0 â

àìïëèòóäó ðåàêöèè ðàçëè÷íû. Ðàçëè÷èå âêëàäîâ ∆++ è ∆0 â äèôôåðåíöè-

àëüíîå ñå÷åíèå ðåàêöèè ïðèâîäèò ê ðàçíèöå äèôôåðåíöèàëüíûõ ñïåêòðîâ

ñèñòåì pπ±, à òàêæå ñèñòåì ppπ±.

Ñõåìàòè÷íî ïîäîáíûé ìåõàíèçì ðåàêöèè, èçîáðàæåí íà ðèñ.3.1�3.2.

Ðèñ.3.1 îòâå÷àåò âîçáóæäåíèþ ∆(1232)�ðåçîíàíñà îäíèì èç íà÷àëüíûõ

ïðîòîíîâ, â òî âðåìÿ êàê ðèñ.3.2 ñîîòâåòñòâóåò âîçáóæäåíèþ ∆�èçîáàðû â

êîíå÷íîì ñîñòîÿíèè ðåàêöèè. Íàðÿäó ñ ∆ ìåõàíèçìîì âîçìîæíû âêëàäû

íå ñâÿçàííûå ñ ðîæäåíèåì ∆(1232)�ðåçîíàíñà. Äèàãðàììà, ñîîòâåòñòâóþ-

ùàÿ ýòèì âêëàäàì èçîáðàæåíà íà ðèñ. 3.3.

Ïðåæäå ÷åì ïåðåéòè ê ïîñòðîåíèþ ñîîòâåòñòâóþùåé äèàãðàììàì

ðèñ.3.1�3.3 àìïëèòóäå, ðàññìîòðèì ïðèìåð, â êîòîðîì êîíêðåòíûå äåòàëè

ðîæäåíèÿ ∆�èçîáàðû îêàçûâàþòñÿ íåñóùåñòâåííûìè. Â ðàáîòå [53] ïðî-

âåäåí òåîðåòè÷åñêèé àíàëèç ðåàêöèè pp → ppπ+π− â ïðåäïîëîæåíèè î

äîìèíàíòíîñòè âîçáóæäåíèÿ ðåçîíàíñà N ∗(1440) â ïðîìåæóòî÷íîì ñîñòî-

ÿíèè1. Â ðàìêàõ ýòîãî ïðåäïîëîæåíèÿ, îñíîâíîé âêëàä â ìåõàíèçì ðåàêöèè
1Ñëåäóåò îòìåòèòü, ÷òî ïðåäïîëîæåíèå î äîìèíàíòíîñòè âîçáóæäåíèÿ ðåçîíàíñà N∗(1440) ÿâëÿåòñÿ
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p

∆

ππ

p

p

Ðèñ. 3.1. Äèàãðàììà äëÿ ðåàêöèè äâóõïèîííîãî ðîæäåíèÿ pp → ppπ+π− ñ

âîçáóæäåíèåì ∆�ðåçîíàíñà îäíèì èç íóêëîíîâ â íà÷àëüíîì ñîñòîÿíèè.

äàþò äèàãðàììû ðîæäåíèÿ ðåçîíàíñà N ∗(1440) â ïðîìåæóòî÷íîì ñîñòîÿ-

íèè, ñ ïîñëåäóþùèì ðàñïàäîì, ñîîòâåòñòâåííî, ïî êàíàëó N ∗ → ∆π è

N ∗ → Nππ, ðèñ.3.4. Ïðè ýòîì ìåæäó ïðîòîíàìè âîçìîæåí êàê èçîñêàëÿð-

íûé òàê è èçîâåêòîðíûé îáìåíû.

Àìïëèòóäà, ñîîòâåòñòâóþùàÿ ýòèì äèàãðàììàì ìîæåò áûòü ñõåìà-

òè÷íî çàïèñàíà â ñëåäóþùåé ôîðìå:

AN∗ =
1

q2 − µ2

1

P 2
∗ − M 2

∗ + iM∗Γ∗
(ū4u2) (ū3[ANππ + B∆πP∆]u1) . (3.4)

Çäåñü u1,2 è u3,4 � áèñïèíîðû ñîîòâåòñòâåííî íà÷àëüíûõ è êîíå÷íûõ ïðî-

òîíîâ; q, µ � 4-èìïóëüñ è ìàññà îáìåííîãî ìåçîíà; P∗, M∗, Γ∗ � 4-èìïóëüñ,

ìàññà è øèðèíà ðåçîíàíñà N ∗(1440); ôóíêöèè ANππ è B∆π ïðîïîðöèîíàëü-

íû âåðøèíàì ðàñïàäà N ∗ ñîîòâåòñòâåííî íà äâà ïèîíà-íóêëîí è ñèñòåìó

ïèîí-∆; P∆ ñîîòâåòñòâóåò ∆ ïðîïàãàòîðó.

î÷åíü ñèëüíîé ãèïîòåçîé. Íàðÿäó ñ ðåçîíàíñîì N∗(1440) âîçìîæíî âîçáóæäåíèå äðóãèõ ðåçîíàíñîâ N
è ∆�òèïà ñ ìàññîé, áëèçêîé ê ìàññå N∗. Íàïðèìåð, N∗(1520) è ∆(1600) [23]. Òàê êàê îòíîñèòåëüíûå
âêëàäû ýòèõ ðåçîíàíñîâ ïëîõî èçó÷åíû, òî ïîñòðîåííàÿ â òàêèõ ïðåäïîëîæåíèÿõ ìîäåëü áóäåò ñî-
äåðæàòü áîëüøîå ÷èñëî íåîïðåäåëåííûõ ïàðàìåòðîâ. Äàæå åñëè îãðàíè÷èòüñÿ ðàññìîòðåíèåì òîëüêî
N∗(1440) è áëèæàéøåãî ïî ìàññå ðåçîíàíñà N∗(1520), íåëüçÿ îáîéòèñü áåç äîïîëíèòåëüíîé ãèïîòåçû
îá îòíîñèòåëüíîì çíàêå êîíñòàíò âçàèìîäåéñòâèÿ N∗(1440) è N∗(1520).
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p

∆

ππ

p

p

Ðèñ. 3.2. Äèàãðàììà äëÿ ðåàêöèè äâóõïèîííîãî ðîæäåíèÿ pp → ppπ+π− ñ

âîçáóæäåíèåì ∆�ðåçîíàíñà îäíèì èç íóêëîíîâ â êîíå÷íîì ñîñòîÿíèè.

Ïðè ìàëûõ ýíåðãèÿõ ïðîïàãàòîðû îáìåííîãî ìåçîíà è ðåçîíàíñà

N ∗(1440) ìîæíî ñ õîðîøåé òî÷íîñòüþ ñ÷èòàòü ïîñòîÿííûìè. Ýòî ïðèâîäèò

ê ìåõàíèçìó, ñõåìàòè÷åñêè èçîáðàæåííîìó íà ðèñ.3.1�3.3.

3.2.1. Àìïëèòóäà ðåàêöèè ñ âîçáóæäåíèå ∆�èçîáàðû

Ïîëó÷èòü âûðàæåíèå äëÿ àìïëèòóäû ðåàêöèè pp → ppπ+π− ëåã÷å

âñåãî èç ðàññìîòðåíèÿ àìïëèòóäû ïðîöåññà NN → NNππ. Ìàòðè÷íûé

ýëåìåíò äëÿ êîíêðåòíûõ çàðÿäîâûõ ñîñòîÿíèé pp è ppπ+π− îïðåäåëÿåò àì-

ïëèòóäó ðåàêöèè pp → ppπ+π−. Èçîñïèí-èíâàðèàíòíàÿ àìïëèòóäà ðåàêöèè

àâòîìàòè÷åñêè äàåò ðàçëè÷íûå âêëàäû ∆++ è ∆0� ðåçîíàíñîâ. Ïðåíåáðå-

ãàÿ âëèÿíèåì êîíêðåòíîé äèíàìèêè ðîæäåíèÿ ∆(1232)�èçîáàðû, àìïëèòó-

äó ðåàêöèè NN → NNππ ñ îäèíî÷íûì âîçáóæäåíèåì ∆(1232)�ðåçîíàíñà
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p

p

ππ

p

p

Ðèñ. 3.3. Äèàãðàììà äëÿ ðåàêöèè äâóõïèîííîãî ðîæäåíèÿ pp → ppπ+π−,

ñîîòâåòñòâóþùàÿ âêëàäàì, íå ñâÿçàííûì ñ ðîæäåíèåì ∆�ðåçîíàíñà.

ìîæíî çàïèñàòü â ñëåäóþùåé ôîðìå2:

A∆ =

(

N̄3πi

[

δik − 1

3
τ iτ k

]

πkk
µkνPµνN1

)

(

N̄4N2

)

. (3.5)

Çäåñü N1,2 è N3,4 ñîîòâåòñòåííî áèñïèíîðû è èçîòîïè÷åñêèå ñïèíîðû íà-

÷àëüíûõ è êîíå÷íûõ íóêëîíîâ; πi èçîòîïè÷åñêèå âîëíîâûå ôóíêöèè ïè-

îíîâ â äåêàðòîâîì áàçèñå (i = 1, 2, 3); kµ,ν � 4-èìïóëüñû ïèîíîâ. Êîìáè-

íàöèÿ δik − 1
3τ

iτ k (τ � ìàòðèöû Ïàóëè), îïèñûâàåò èçîòîïè÷åñêóþ ñòðóê-

òóðó ∆�ïðîïàãàòîðà. Pµν ñîîòâåòñòâóåò ëîðåíö-èíâàðèàíòíîé ôîðìå ∆�

ïðîïàãàòîðà (ñì., íàïðèìåð, îáçîð [55]):

P̂ + M

P 2 − M 2 + iMΓ
×

×
(

−gµν +
γµγν

3
+

γµPν − γνPµ

3M
+

2

3

PµPν

M 2
−

−2

3

P 2 − M 2

M 2

[

γµPν − γνPµ + (P̂ + M)γµγν

]



 .

(3.6)

2Òàêàÿ çàïèñü àìïëèòóäû ñîîòâåòñòâóåò ñëó÷àþ èçîñêàëÿðíîãî îáìåíà ìåæäó äâóìÿ ïðîòîíà-
ìè. Â ñëó÷àå èçîâåêòîðíîãî îáìåíà â èçîòîïè÷åñêóþ ñòðóêòóðó àìïëèòóäû äîáàâëÿåòñÿ τj�ìàòðèöà:
A∆ =

(

N̄3πiτ
j
[

δik − 1

3
τ iτk

]

πkkµkνPµνN1

) (

N̄4τjN2

)

. Êàê áóäåò ïîêàçàíî, ýòî íå ìåíÿåò îòíîñèòåëüíî-
ãî âêëàäà ∆++ è ∆0, êîòîðûì îïðåäåëÿåòñÿ àñèììåòðèÿ.
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Ðèñ. 3.4. Äèàãðàììû äëÿ ðåàêöèè äâóõïèîííîãî ðîæäåíèÿ pp → ppπ+π−

ñ ðîæäåíèåì N ∗(1440)�ðåçîíàíñà è ïîñëåäóþùèì ðàñïàäîì ïî êàíàëàì

N ∗ → ∆π è N ∗ → Nππ.

Çäåñü M è Γ ñîîòâåòñòâåííî ìàññà è øèðèíà ∆(1232)�èçîáàðû, P � åå 4-

èìïóëüñ.

Ñëåäóåò îòìåòèòü, ÷òî ðåøåíèå ðåëÿòèâèñòñêîãî óðàâíåíèÿ äëÿ ïðî-

ïàãàòîðà ÷àñòèöû ñî ñïèíîì 3/2 ÿâëÿåòñÿ íåîäíîçíà÷íûì (ñì., íàïðè-

ìåð, [56�58] è ññûëêè â ýòèõ ðàáîòàõ). Äëÿ óñòðàíåíèÿ ýòîé íåîäíîçíà÷-

íîñòè òðåáóþòñÿ äîïîëíèòåëüíûå ôèçè÷åñêèå îãðàíè÷åíèÿ. Â äàííîì ñëó-

÷àå âûáîð ∆�ïðîïàãàòîðà â ôîðìå (3.6) äèêòóåòñÿ ñëåäóþùèìè ôèçè÷å-

ñêèìè ñîîáðàæåíèÿìè: ñå÷åíèå πN�ðàññåÿíèÿ äîëæíî èìåòü õàðàêòåðíîå
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p�âîëíîâîå ïîâåäåíèå ïðè íèçêèõ ýíåðãèÿõ.

Äëÿ óäîáñòâà äàëüíåéøèõ âû÷èñëåíèé ïåðåéäåì â èçîòîïè÷åñêîì

ïðîñòðàíñòâå îò äåêàðòîâûõ ê çàðÿæåííûì ïåðåìåííûì. Äëÿ ýòîãî âîñ-

ïîëüçóåìñÿ ñîîòíîøåíèåì:

πiπk

(

δik − 1

3
τ iτ k

)

= πiπk

(

2

3
δik − i

3
ǫiklτl

)

= π†
aπb

(

2

3
δab − 1

3
ǫabcτc

)

, (3.7)

ãäå èíäåêñû i è k ïðîáåãàþò çíà÷åíèÿ 1, 2 è 3, à èíäåêñû a è b çíà÷åíèÿ +,

− è 0.

Â òåðìèíàõ çàðÿæåííûõ π�ìåçîíîâ àìïëèòóäà (3.5) èìååò âèä:

A∆ =

(

N̄3π
†
a

[

2

3
δab − 1

3
ǫabcτc

]

πbPµνk
νkµN1

)

(

N̄4N2

)

. (3.8)

Âû÷èñëåíèå ìàòðè÷íîãî ýëåìåíòà äàåò:

A∆ =

(

ū3

{[

2

3
δab − 1

3
ǫabcτc

]

kµ
akν

b Pµν

}

11
u1

)

(ū4u2) . (3.9)

Çäåñü ui áèñïèíîðû ïðîòîíîâ. Ïîëíàÿ àìïëèòóäà äîëæíà áûëü àíòèñèì-

ìåòðèçîâàííà ïî èíäåêñàì êîíå÷íûõ è íà÷àëüíûõ ïðîòîíîâ.

Êîìáèíàöèÿ, âõîäÿùàÿ â ôèãóðíûå ñêîáêè âûðàæåíèÿ (3.9), ñîäåð-

æèò âêëàäû êàê ∆++ òàê è ∆0�ðåçîíàíñîâ:

{

2

3
δab − 1

3
ǫabcτc

}

11
kµ

akν
b Pµν = (3.10)

=
2

3

(

kµ
1kν

2P
∆0

µν + kµ
2kν

1P
∆++

µν

)

− 1

3

(

kµ
1 kν

2P
∆0

µν − kµ
2kν

1P
∆++

µν

)

=

= kµ
1kν

2





1

3

Sµν(P∆++)

P 2
∆++ − M 2

∆

+
Sµν(P∆0)

P 2
∆0 − M 2

∆

+
1

3

Aµν(P∆++)

P 2
∆++ − M 2

∆

− Aµν(P∆0)

P 2
∆0 − M 2

∆



 .

(3.11)

Çäåñü k1 è k2 îáîçíà÷àþò 4-èìïóëüñû ñîîòâåòñòâåííî îòðèöàòåëüíî çà-

ðÿæåííîãî ïèîíà π− è ïîëîæèòåëüíî çàðÿæåííîãî ïèîíà π+. Sµν(P∆) è

Aµν(P∆) îáîçíà÷àþò ñîîòâåòñòâåííî ñèììåòðè÷íóþ è àíòèñèììåòðè÷íóþ
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ïî ïåðåñòàíîâêàì èíäåêñîâ µ è ν ÷àñòè ÷èñëèòåëÿ â âûðàæåíèè (3.6) äëÿ

∆ ïðîïàãàòîðà.

Âàæíî îòìåòèòü, ÷òî àìïëèòóäà ðåàêöèè pp → ppπ+π− â ñëó÷àå îá-

ìåíà èçîâåêòîðíûì ìåçîíîì áóäåò îïðåäåëÿòñÿ òîé æå ôîðìóëîé (3.9), ÷òî

è äëÿ èçîñêàëÿðíîãî îáìåíà. Ýòî ñâÿçàíî ñ òåì, ÷òî èçîòîïè÷åñêàÿ ñêîáêà
(

N̄τjN
)

â ñëó÷àå äâóõ ïðîòîíîâ îòëè÷íà îò íóëÿ òîëüêî äëÿ ìàòðèöû τ1.

Ñ äðóãîé ñòîðîíû, {τ1T}11 ≡ T11 äëÿ ëþáîé ìàòðèöû T . Òàêèì îáðàçîì

â ñëó÷àå îáìåíà èçîâåêòîðíûì ìåçîíîì îòíîñèòåëüíûé âêëàä ðîæäåíèÿ

∆++ è ∆0, êîòîðûé îïðåäåëÿåòñÿ ôîðìóëîé(3.11) íå èçìåíèòñÿ.

Èñõîäÿ èç ðåçóëüòàòîâ ÷èñëåííîãî àíàëèçà, àíòèñèììåòðè÷íûìè ÷ëå-

íàìè, ïðîïîðöèîíàëüíûìè Aµν, ìîæíî ïðåíåáðå÷ü. Ïîñëå ýòîãî ó÷åò

ëîðåíö-èíâàðèàíòîâ âèäà (ūiuk) ñâîäèòñÿ ê äîìíîæåíèþ äèôôåðåíöèàëü-

íîãî ñå÷åíèÿ ðåàêöèè íà ïëàâíóþ ôóíêöèþ êèíåìàòè÷åñêèõ ïåðåìåííûõ.

Ýòî ìîæåò ñêàçàòüñÿ òîëüêî íà àáñîëþòíîì çíà÷åíèè ñïåêòðîâ ÷àñòèö.

Äàííûé àíàëèç íå ïðåòåíäóåò íà îïèñàíèå äèôôåðåíöèàëüíûõ õàðàêòå-

ðèñòèê ðåàêöèè pp → ppπ+π− ïî àáñîëþòíîìó çíà÷åíèþ. Ïîýòîìó â äàëü-

íåéøåì â âûðàæåíèè äëÿ àìïëèòóäû ðåàêöèè ìíîæèòåëè âèäà (ūiuk) áóäóò

îïóùåíû. Òàêèì îáðàçîì, ïðåíåáðåæåíèå ÷ëåíàìè, ïðîïîðöèîíàëüíûõ àí-

òèñèììåòðè÷íîé ÷àñòè ∆ ïðîïàãàòîðà, ïðèâîäèò ê ñðàâíèòåëüíî ïðîñòîìó

âûðàæåíèþ äëÿ àìïëèòóäû ðåàêöèè pp → ppπ+π−.

Â èòîãå, ëîðåíö-èíâàðèàíòíóþ àìëèòóäó ðåàêöèè pp → ppπ+π−, ñîîò-

âåòñòâóþùóþ ìåõàíèçìó ñõåìàòè÷åñêè èçîáðàæåííîìó íà ðèñ.3.1�3.3, ìîæ-

íî çàïèñàòü â ñëåäóþùåì âèäå:

A = A + B kµ
1kν

2 [Dµν(P∆0) + 3Dµν(P∆++)] , (3.12)
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ãäå k1,2 � 4�èìïóëüñû ïèîíîâ, P∆0 è P∆++ � 4�èìïóëüñû ∆0 è ∆++, ñîîò-

âåòñòâåííî. A è B ñ÷èòàþòñÿ ïëàâíûìè ôóíêöèÿìè èìïóëüñîâ k1 è k2, à

Dµν(P ) ñîîòâåòñòâóåò ñèììåòðè÷íîé ÷àñòè ∆�ïðîïàãàòîðà:

Dµν(P ) =
gµνP

2 − PµPν

P 2 − M 2 + iMΓ
. (3.13)

Ñëàãàåìûå ïðîïîðöèîíàëüíûå D(P∆0) è D(P∆++), âõîäÿò â óðàâíåíèå

(3.12) ñ ðàçëè÷íûìè ÷èñëîâûìè êîýôôèöèåíòàìè, ñëåäóþùèìè èç èçîñïè-

íîâîé ñèììåòðèè. Èìåííî ýòî ñëåäñòâèå èçîñïèíîâîé ñèììåòðèè ïðèâîäèò

ê àñèììåòðèè (dσ/dmpπ)± è (dσ/dmppπ)± ñïåêòðîâ èíâàðèàíòíûõ ìàññ ñè-

ñòåì pπ±, à òàêæå ñèñòåì ppπ±.

3.2.2. Àíàëèç ðåçóëüòàòîâ ÷èñëåííûõ ðàñ÷åòîâ è ñðàâíåíèå ñ

ýêñïåðèìåíòàëüíûìè ñïåêòðàìè ñèñòåì pπ± è ppπ±

Èíòåãðèðîâàíèå äèôôåðåíöèàëüíîãî ñå÷åíèÿ ðåàêöèè pp → ppπ+π−

ïî ôàçîâîìó ïðîñòðàíñòâó ñ ëîðåíö-èíâàðèàíòíîé àìëèòóäîé (3.12) ïðîâî-

äèëîñü ÷èñëåííî ïî ñõåìå îïèñàííîé â ïðèëîæåíèè.

Íà ðèc.3.5, 3.6 ïðèâåäåíû ðåçóëüòàòû ÷èñëåííûõ ðàñ÷åòîâ àñèììåò-

ðèè (dσ/dmpπ)± è (dσ/dmppπ)± ñîîòâåòñòâåííî äëÿ ñèñòåì pπ± è ppπ±.

Ñïëîøíàÿ ëèíèÿ ñîîòâåòñòâóåò ðåçóëüòàòàì ÷èñëåííûõ ðàñ÷åòîâ ñ àìïëè-

òóäîé (3.12). Äëÿ ñðàâíåíèÿ æèðíûìè òî÷êàìè èçîáðàæåíû ýêñïåðèìåí-

òàëüíûå äàííûå CELSIUS [14].

Â ðåçóëüòàòå ÷èñëåííîãî àíàëèçà îêàçàëîñü, ÷òî àñèììåòðèÿ

(dσ/dmpπ)± è (dσ/dmppπ)± ñëàáî çàâèñèò îò êîíêðåòíîé ïàðàìåòðèçàöèè

ïëàâíûõ ôóíêöèé A è B, âõîäÿùèõ â âûðàæåíèå äëÿ àìïëèòóäû (3.12).

Ýòî óêàçûâàåò íà íåçàâèñèìîñòü îáíàðóæåííîé àñèììåòðèè îò êîíêðåòíî-



72

ãî ìåõàíèçìà ðîæäåíèÿ ∆�èçîáàðû. Ñ äðóãîé ñòîðîíû, êîíêðåòíûé âèä

ôóíêöèé A è B ñèëüíî âëèÿåò íà ïîâåäåíèå ñïåêòðà èíâàðèàíòíîé ìàñ-

ñû ñèñòåìû äâóõ ïèîíîâ. Êàê óæå îòìå÷àëîñü, ñåé÷àñ íåò îäíîçíà÷íîãî

îòâåòà, ñïîñîáåí ëè ôåíîìåíîëîãè÷åñêèé ïîäõîä îïèñàòü ýòîò ñïåêòð áåç

ñóùåñòâåííîãî óñëîæíåíèÿ èëè íåò.



73

1080 1090 1100 1110 1120 1130 1140

M
pπ , MeV/c

2

-15

-12

-9

-6

-3

0

3

6

9

12

dσ
/d

m
pπ

+  -
 d

σ/
dm

pπ
− , 

(n
b 

c2 )/M
eV pπ

Ðèñ. 3.5. Àñèììåòðèÿ (dσ/dmpπ)± (nb · c2/MeV) ðåàêöèè pp → ppπ+π− êàê

ôóíêöèÿ èíâàðèàíòíîé ìàññû Mpπ ñèñòåìû ïðîòîí - ïèîí. Ñïëîøíàÿ ëè-

íèÿ � ðåçóëüòàòû ÷èñëåííûõ ðàñ÷åòîâ ñ àìïëèòóäîé (3.12), æèðíûå òî÷êè

� ýêñïåðèìåíòàëüíûå äàííûå CELSIUS [14].
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Ðèñ. 3.6. Àñèììåòðèÿ (dσ/dmppπ)± (nb · c2/MeV) ðåàêöèè pp → ppπ+π− êàê

ôóíêöèÿ èíâàðèàíòíîé ìàññû Mppπ ñèñòåìû äâà ïðîòîíà - ïèîí. Ñïëîø-

íàÿ ëèíèÿ � ðåçóëüòàòû ÷èñëåííûõ ðàñ÷åòîâ ñ àìïëèòóäîé (3.12), æèðíûå

òî÷êè � ýêñïåðèìåíòàëüíûå äàííûå CELSIUS [14].
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Ðèñ. 3.7. Äèàãðàììà ñ ïåðåðàññåÿíèåì äâóõ ïðîòîíîâ â êîíå÷íîì ñîñòîÿíèè

äëÿ ðåàêöèè äâóõïèîííîãî ðîæäåíèÿ pp → ppπ+π−.

3.3. Ïðîòîí-ïðîòîííîå âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè

3.3.1. Àìïëèòóäà ðåàêöèè ñ ó÷åòîì ïðîòîí-ïðîòîííîãî âçàèìî-

äåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè

Â äàííîì ðàçäåëå èññëåäóåòñÿ âëèÿíèå íóêëîí-íóêëîííîãî âçàèìî-

äåéñòâèÿ â êîíå÷íîì ñîòîÿíèè íà ïîâåäåíèå äèôôåðåíöèàëüíûõ õàðàêòå-

ðèñòèê ðåàêöèè pp → ppπ+π−. Íàèáîëåå ñèëüíî ýòîò ýôôåêò ïðîÿâëÿåòñÿ

â ñëó÷àå ìàëîé èíâàðèàíòíîé ìàññû äâóõ ïðîòîíîâ, íàõîäÿùèõñÿ â îòíî-

ñèòåëüíîé s�âîëíå. Âçàèìîäåéñòâèþ â êîíå÷íîì ñîñòîÿíèè ñîîòâåòñòâóåò

äèàãðàììà ñ ïåðåðàññåÿíèåì äâóõ ïðîòîíîâ â êîíå÷íîì ñîñòîÿíèè ðåàêöèè

pp → ppπ+π−, ðèñ.3.7. Âêëàä ýòîé äèàãðàììû ïðîïîðöèîíàëåí s�âîëíîâîé

àìïëèòóäå ðàññåÿíèÿ fpp äâóõ ïðîòîíîâ. Àìïëèòóäà ðåàêöèè (3.12) ÿâëÿåò-

ñÿ ôåíîìåíîëîãè÷åñêîé è íå ïðåòåíäóåò íà îïèñàíèå àáñîëþòíûõ çíà÷åíèé

õàðàêòåðèñòèê ðåàêöèè. Ïîýòîìó äëÿ ó÷åòà pp âçàèìîäåéñòâèÿ â êîíå÷íîì

ñîòîÿíèè ìîæíî âîñïîëüçîâàòüñÿ ïðåäïîëîæåíèåì î ôàêòîðèçàöèè àìïëè-
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òóäû3, ñîîòâåòñòâóþùåé äèàãðàììå ðèñ.3.7:

Mpp = R · fpp A , (3.14)

ãäå fpp � s�âîëíîâàÿ àìïëèòóäà ðàññåÿíèÿ äâóõ ïðîòîíîâ íà ìàññîâîé ïî-

âåðõíîñòè; A ñîîòâåòñòâóåò àìïëèòóäå ðåàêöèè (3.12) áåç ïåðåðàññåÿíèÿ

äâóõ ïðîòîíîâ â êîíå÷íîì ñîòîÿíèè; R � ìîäåëüíî çàâèñèìûé ïàðàìåòð,

çíà÷åíèå êîòîðîãî îïðåäåëÿåòñÿ ñõîäîì ñ ìàññîâîé ïîâåðõíîñòè àìïëèòóäû

NN�ðàññåÿíèÿ.

Òàêèì îáðàçîì, àìïëèòóäà ðåàêöèè pp → ppπ+π− ñ ó÷åòîì âçàèìî-

äåéñòâèÿ äâóõ ïðîòîíîâ â êîíå÷íîì ñîñòîÿíèè ìîæåò áûòü çàïèñàíà â ñëå-

äóþùåì âèäå:

AFSI = (A + B kµ
1kν

2 [Dµν(P∆0) + 3Dµν(P∆++)]) · (1 + R · fpp) . (3.15)

Êàê óæå áûëî îòìå÷åíî â ãëàâå 1, s�âîëíîâàÿ àìïëèòóäà NN ðàññåÿíèÿ

õîðîøî îïèñûâàåòñÿ ïðèáëèæåíèåì ýôôåêòèâíîãî ðàäèóñà (ñì. ðèñ.1.1):

fpp =
1

−a−1
s + 1

2r0sp2 − ip
. (3.16)

Ó÷åò êóëîíîâñêîãî îòòàëêèâàíèÿ ìåæäó äâóìÿ ïðîòîíàìè ïðèâîäèò ê ñëå-

äóþùèì èçìåíåíèÿì â âûðàæåíèè (3.15). Âìåñòå ñ çàìåíîé �1� íà êóëîíîâ-

ñêèé ôàêòîð C(γp):

C2(γp) =
2πγp

e2πγp − 1
, γp =

1

acp
, (3.17)

àìïëèòóäà pp ðàññåÿíèÿ ïðåîáðàçóåòñÿ ê âèäó (ñì., íàïðèìåð, [25, 59]):

fpp(p) =
C2(γp)

−a−1
s + 1

2r0sp2 − 2a−1
c h(acp) − ipC2(γp)

. (3.18)

3Ïðåäïîëîæåíèå î ôàêòîðèçàöèè àìïëèòóäû ñ ïåðåðàññåÿíèåì äâóõ íóêëîíîâ óæå èñïîëüçîâàëîñü
â ðàçäåëå 1.2 ïðè ðàññìîòðåíèè ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè ïèîíà íà ãåëèè.
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Ôóíêöèÿ h(x) îïðåäåëÿåòñÿ ôîðìóëîé:

h(x) = −γ + ln(x) +
∞
∑

n=1

1

n[(nx)2 + 1]
, γ = 0.577 . (3.19)

3.3.2. Ñðàâíåíèå ñ ýêñïåðèìåíòàëüíûìè ñïåêòðàìè ñèñòåì pp è

pπ+π−

Õîðîøåå ñîãëàñèå ñ ýêñïåðèìåíòàëüíûìè ñïåêòðàìè ñèñòåì pp è

pπ+π− ìîæíî äîñòè÷ü âàðüèðîâàíèåì ñâîáîäíîãî ïàðàìåòðà R, âõîäÿùå-

ãî â âûðàæåíèå äëÿ àìïëèòóäû ðåàêöèè (3.15). Â îáùåì ñëó÷àå çíà÷åíèÿ

ïàðàìåòðà R ÿâëÿåòñÿ êîìïëåêñíûìè. Ïðèâåäåì êîíêðåòíûé ïðèìåð. Äëÿ

çàäà÷è êóëîíîâñêîãî ïîëÿ ïëþñ ñåïàðàáåëüíûé ïîòåíöèàë ßìàãó÷è ìîæ-

íî ïîëó÷èòü òî÷íîå ðåøåíèå. Â ïðåäåëå òî÷å÷íîãî ìåõàíèçìà ðåàêöèè4

ó÷åò ïðîòîí-ïðîòîííîãî ïåðåðàññåÿíèÿ â êîíå÷íîì ñîòñòîÿíèè îïðåäåëÿ-

åòñÿ çíà÷åíèåì âîëíîâîé ôóíöèè Ψ(r) ïðè r → 0. Òî÷íîå ðåøåíèå ýòîé

çàäà÷è äëÿ ôóíêöèè Éîñòà f(k), êîòîðàÿ ñâÿçàíà ñ Ψ(r = 0) ñîîòíîøåíè-

åì Ψ(r = 0) = 1/f(−k), ÿâëÿåòñÿ ñëîæíîé êîìïëåêñíîé ôóíêöèåé [61, 62].

Ñëåäîâàòåëüíî è ïàðàìåòð R â ýòîì ñëó÷àå ÿâëÿåòñÿ êîìïëåêñíûì, áîëåå

òîãî R = R(k). Îäíàêî, ìåõàíèçì ðåàêöèè pp → ppπ+π− íå ÿâëÿåòñÿ òî-

÷å÷íûì. Â ýòîì ñëó÷àå âû÷èñëèòü ÿâíîå âûðàæåíèå äëÿ R(k) íå óäàåòñÿ.

Â ÷èñëåííûõ ðàñ÷åòàõ ïàðàìåòð R ñ÷èòàëñÿ ïîñòîÿííûì è êîìïëåêñíûì.

Ðåçóëüòàòû ÷èñëåííûõ ðàñ÷åòîâ äëÿ òðåõ ðàçëè÷íûõ çíà÷åíèé ïà-

ðàìåòðà R ïðåäñòàâëåíû íà ðèñ.3.8, 3.9. Íà ðèñ.3.8 èçîáðàæåíû ñïåêòðû

ñèñòåìû äâóõ ïðîòîíîâ, à íà ðèñ.3.9 ñïåêòðû ñèñòåìû ïðîòîí è äâà ïèî-

íà. Îáîçíà÷åííûé íà ðèñóíêå óãîë α ñâÿçàí ñ ïàðàìåòðîì R ñëåäóþùèì
4Ïîäðîáíîå èññëåäîâàíèå âëèÿíèÿ ïðîòîí-ïðîòîííîãî âçàèìîäåéñòâèÿ â êîíå÷íîì ñîòñòîÿíèè íà

ïðèìåðå ðàññìîòðåíèÿ ðåàêöèè pn → ppπ− â ñëó÷àå ñåïàðàáåëüíîãî ïîòåíöèàëà ßìàãó÷è áûëî ïðîâå-
äåíî â ðàáîòå [60].



78

ñîîòíîøåíèåì: R = |R|eiα.

Â ðåçóëüòàòå ÷èñëåííûõ ðàñ÷åòîâ îêàçàëîñü, ÷òî èçìåíåíèÿ ïàðàìåò-

ðîâ âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòîÿíèè ìåæäó äâóìÿ ïðîòîíàìè íå âëè-

ÿåò íà àñèììåòðèþ ìåæäó ñïåêòðàìè ñèñòåì pπ± è ppπ±.

Îêîí÷àòåëüíûé ðåçóëüòàò âàðüèðîâàíèÿ ïàðàìåòðà R ïðèâåäåí íà

ðèñ.3.10, 3.11. Ðåçóëüòàòû ðàñ÷åòîâ (ñïëîøíàÿ ëèíèÿ) îòíîðìèðîâàíû ïî

àáñîëþòíîé âåëè÷èíå íà ýêñïåðèìåòàëüíûå äàííûå CELSIUS [14] (æèðíûå

òî÷êè). Îöåíèòü âåëè÷èíó ýôôåêòà íóêëîí-íóêëîííîãî âçàèìîäåéñòâèÿ

ìîæíî èç ñðàâíåíèÿ ñ èçîáðàæåííûì ïóíêòèðíîé ëèíèåé ïîâåäåíèåì ôà-

çîâîãî îáúåìà (àìïëèòóäà ðåàêöèè êîíñòàíòà).
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Ðèñ. 3.8. Ñïåêòð èíâàðèàíòíîé ìàññû äâóõ ïðîòîíîâ äëÿ ðåàêöèè pp →

ppπ+π−. Ðàñ÷åò ïðîâåäåí äëÿ òðåõ ðàçëè÷íûõ çíà÷åíèé óãëà α, îïðåäåëÿ-

þùåãî îòíîñèòåëüíûé âêëàä ìíèìîé è äåéñòâèòåëüíîé ÷àñòè ïàðàìåòðà R,

âõîäÿùåãî â âûðàæåíèå äëÿ àìïëèòóäû (3.15).
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Ðèñ. 3.9. Ñïåêòð èíâàðèàíòíîé ìàññû ñèñòåìû pππ äëÿ ðåàêöèè pp →

ppπ+π−. Ðàñ÷åò ïðîâåäåí äëÿ òðåõ ðàçëè÷íûõ çíà÷åíèé óãëà α, îïðåäå-

ëÿþùåãî îòíîñèòåëüíûé âêëàä ìíèìîé è äåéñòâèòåëüíîé ÷àñòè ïàðàìåòðà

R, âõîäÿùåãî â âûðàæåíèå äëÿ àìïëèòóäû (3.15).
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Ðèñ. 3.10. Ñïåêòð èíâàðèàíòíîé ìàññû äâóõ ïðîòîíîâ äëÿ ðåàêöèè pp →

ppπ+π−. Ñïëîøíîé ëèíèåé èçîáðàæåíû ðåçóëüòàòû ðàñ÷åòà ñ àìïëèòóäîé

(3.12), ó÷èòûâàþùåé NN âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè â ïðèáëè-

æåíèè ýôôåêòèâíîãî ðàäèóñà. Æèðíûå òî÷êè � ýêñïåðèìåíòàëüíûå äàí-

íûå CELSIUS [14]. Äëÿ ñðàâíåíèÿ ïóíêòèðíîé ëèíèåé èçîáðàæåí ôàçîâûé

îáúåì.
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Ðèñ. 3.11. Ñïåêòð èíâàðèàíòíîé ìàññû ñèñòåìû pππ äëÿ ðåàêöèè pp →

ppπ+π−. Ñïëîøíîé ëèíèåé èçîáðàæåíû ðåçóëüòàòû ðàñ÷åòà ñ àìïëèòóäîé

(3.12), ó÷èòûâàþùåé NN âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè â ïðèáëè-

æåíèè ýôôåêòèâíîãî ðàäèóñà. Æèðíûå òî÷êè � ýêñïåðèìåíòàëüíûå äàí-

íûå CELSIUS [14]. Äëÿ ñðàâíåíèÿ ïóíêòèðíîé ëèíèåé èçîáðàæåí ôàçîâûé

îáúåì.
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Çàêëþ÷åíèå

Äèññåðòàöèÿ ïîñâÿùåíà èçó÷åíèþ õàðàêòåðíûõ ñâîéñòâ ïðîöåññîâ

ðîæäåíèÿ è ïåðåçàðÿäêè ÷àñòèö íà ëåãêèõ ÿäðàõ. Â êà÷åñòâå êîíêðåòíûõ

ïðèìåðîâ ðàññìàòðèâàëèñü ñëåäóþùèå ðåàêöèè:

• ðåàêöèÿ îäèíî÷íîé ïåðåçàðÿäêè ïèîíà íà ãåëèè, π+ 3He → π0ppp.

• ïðîöåññ êîãåðåíòíîãî è íåêîãåðåíòíîãî ôîòîðîæäåíèÿ π0�ìåçîíà íà

äåéòîíå, d(γ, π)d è d(γ, π)np.

• ðåàêöèÿ π+π−�ðîæäåíèÿ â ïðîòîí-ïðîòîííûõ ñîóäàðåíèÿõ, pp →

ppπ+π−.

Ïðîâåäåííûå çà ïîñëåäíèå íåñêîëüêî ëåò âûñîêîòî÷íûå ýêñïåðèìåíòû ïî

èçìåðåíèþ õàðàêòåðèñòèê ýòèõ ðåàêöèé îáíàðóæèâàþò ðÿä õàðàêòåðíûõ

îñîáåííîñòåé. Íà âñåõ ýòèõ îñîáåííîñòÿõ ñêàçûâàþòñÿ íóêëîí-íóêëîííûå

êîððåëÿöèè, ïðîÿâëåíèå êîòîðûõ â êàæäîì êîíêðåòíîì ñëó÷àå îêàçûâàåò-

ñÿ ñîâåðøåííî ðàçëè÷íûì.

Íåîæèäàííûé ðåçóëüòàò ïîëó÷àåòñÿ ïðè ðàññìîòðåíèè ðåàêöèè ïåðå-

çàðÿäêè ïèîíà íà ãåëèè π+ 3He → π0ppp, ñå÷åíèå êîòîðîé äîëæíî áûòü

ñèëüíî ïîäàâëåíî ïî ïðèíöèïó Ïàóëè. Ðåçóëüòàò ñîâìåñòíîãî äåéñòâèÿ

ïðèíöèïà Ïàóëè è íóêëîí-íóêëîííîãî âçàèìîäåéñòâèÿ â êîíå÷íîì ñîñòî-

ÿíèè ñîñòîèò â òîì, ÷òî ýôôåêò Ìèãäàëà-Âàòñîíà ñíèìàåò ïîäàâëåíèå,

îáóñëîâëåííîå ïðèíöèïîì Ïàóëè.
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Àíàëèç ðåàêöèè íåêîãåðåíòíîãî ôîòîðîæäåíèÿ π0�ìåçîíà íà äåéòîíå

d(γ, π)np ïîêàçàë, ÷òî íóêëîí-íóêëîííîå âçàèìîäåéñòâèå â êîíå÷íîì ñî-

ñòîÿíèè ñèëüíî âëèÿåò íà ýíåðãåòè÷åñêóþ è óãëîâóþ çàâèñèìîñòü ñå÷åíèÿ

ýòîãî êàíàëà. Ñ äðóãîé ñòîðîíû, èíêëþçèâíîå ñå÷åíèå, êîòîðîå äàåòñÿ ñóì-

ìîé ñå÷åíèé êîãåðåíòíîãî è íåêîãåðåíòíîãî ïðîöåññîâ, õîðîøî îïèñûâàåòñÿ

êâàçè-ñâîáîäíûì π0-ôîòîðîæäåíèåì íà äåéòîíå. Îêàçûâàåòñÿ, ÷òî ñå÷åíèå

íåêîãåðåíòíîãî êàíàëà ôîòîðîæäåíèÿ π0-ìåçîíà íà äåéòîíå êîìïåíñèðóåò-

ñÿ ñå÷åíèåì êîãåðåíòíîãî êàíàëà ýòîé ðåàêöèè.

Ïîëó÷åííûå íà óñêîðèòåëå CELSIUS [14] ýêñïåðèìåíòàëüíûå äàííûå

ïî ðåàêöèè pp → ppπ+π− ñîäåðæàò ÿðêî âûðàæåííóþ àñèììåòðèþ ìåæ-

äó ñïåêòðàìè èíâàðèàíòíûõ ìàññ ñèñòåì pπ± è ppπ±. Àñèììåòðèþ ýêñ-

ïåðèìåíòàëüíûõ ñïåêòðîâ óäàåòñÿ îïèñàòü îäèíî÷íûì âîçáóæäåíèåì ∆�

ðåçîíàíñà â ïðîìåæóòî÷íîì ñîñòîÿíèè. Ðåçóëüòàòû ðàñ÷åòîâ ñ ïîñòðîåííîé

â ðàìêàõ ïðîñòåéøèõ ãèïîòåç ôåíîìåíîëîãè÷åñêîé ëîðåíö-èíâàðèàíòíîé

àìïëèòóäîé ðåàêöèè pp → ppπ+π− îêàçûâàþòñÿ â õîðîøåì ñîãëàñèè ñ ýêñ-

ïåðèìåíòàëüíûìè äàííûìè ïî îáíàðóæåííîé â îïûòå àñèììåòðèè.

Èññëåäîâàíèå ðåàêöèé, ðàññìîòðåííûõ â äèññåðòàöèè, ïðîâîäèëîñü

ñîâìåñòíî ñ ýêñïåðèìåíòàòîðàìè, ñòàâèâøèìè îïûò. Ïîäîáíîå ñîòðóäíè÷å-

ñòâî, ñ îäíîé ñòîðîíû, ïîçâîëÿåò ó÷àñòâîâàòü â îáðàáîòêå ïðåäâàðèòåëü-

íûõ äàííûõ è �íà ëåòó� ñðàâíèâàòü ïðåäñêàçàíèÿ ðàçëè÷íûõ òåîðåòè÷åñêèõ

ìîäåëåé, à ñ äðóãîé, ïðåäúÿâëÿåò áîëåå âûñîêèå òðåáîâàíèÿ ê âûïîëíÿå-

ìûì òåîðåòè÷åñêèì ðàñ÷åòàì.

Â äèññåðòàöèè ïîëó÷åíû ñëåäóþùèå îñíîâíûå ðåçóëüòàòû:

1. Äàíî ðåøåíèå çàäà÷è î âçàèìíîì âëèÿíèè ïðèíöèïà Ïàóëè è ýôôåê-

òà Ìèãäàëà-Âàòñîíà â ðåàêöèÿõ ñ ÷èñëîì òîæäåñòâåííûõ ôåðìèî-
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íîâ (íóêëîíîâ) â êîíå÷íîì ñîñòîÿíèè áîëåå äâóõ. Âïåðâûå ïîêàçàíî,

÷òî íóêëîí-íóêëîííîå âçàèìîäåéñòâèå â êîíå÷íîì ñîñòîÿíèè ñíèìàåò

ïîäàâëåíèå, îáóñëîâëåííîå ïðèíöèïîì Ïàóëè. Ðåçóëüòàò ïîëó÷åí íà

ïðèìåðå ðàññìîòðåíèÿ ðåàêöèè îäèíî÷íîé ïåðåçàðÿäêè ïîëîæèòåëü-

íîãî ïèîíà íà 3He. Ïîëó÷åííûé ðåçóëüòàò íàãëÿäíî èëëþñòðèðóåò

ðèñ.1.9.

2. Âû÷èñëåí âêëàä íåéòðîí-ïðîòîííîãî âçàèìîäåéñòâèÿ â êîíå÷íîì ñî-

ñòîÿíèè â ñå÷åíèå íåêîãåðåíòíîãî ïðîöåññà d(γ, π)np. Ïîêàçàíî, ÷òî

ñå÷åíèå èíêëþçèâíîãî ïðîöåññà ôîòîðîæäåíèÿ π0�ìåçîíà íà äåéòîíå

ðàâíÿåòñÿ ñóììå ñå÷åíèé êîãåðåíòíîãî è íåêîãåðåíòíîãî êàíàëîâ ðå-

àêöèè. Ïðîâåäåíî ñðàâíåíèå ðåçóëüòàòîâ ðàñ÷åòîâ ñ äàííûìè îïûòà

(ðèñ.2.7).

3. Ïîñòðîåíà ôåíîìåíîëîãè÷åñêàÿ ìîäåëü, â ðàìêàõ êîòîðîé äàíî îïè-

ñàíèå îáíàðóæåííîé íà îïûòå àñèììåòðèè ñïåêòðîâ ñèñòåì pπ+ è

pπ−, à òàêæå ñèñòåì ppπ+ è ppπ− â ðåàêöèè pp → ppπ+π−. Ðåçóëüòà-

òû ðàñ÷åòîâ â ñðàâíåíèè ñ äàííûìè îïûòà ñóììèðóþòñÿ íà ðèñ.3.5,

3.6. Âîñïðîèçâåäåíû îñîáåííîñòè ñïåêòðîâ èíâàðèàíòíûõ ìàññ ñèñòåì

pp è pπ+π− â ðåàêöèè pp → ppπ+π−. Ïîêàçàíî, ÷òî ýòè îñîáåííîñòè

ñâÿçàíû ñ pp âçàèìîäåéñòâèåì â êîíå÷íîì ñîñòîÿíèè. Äàíî ñðàâíåíèå

ñ ýêñïåðèìåíòàëüíûìè äàííûìè (ðèñ.3.10, 3.11).

Îñíîâíûå ðåçóëüòàòû äèññåðòàöèè äîëîæåíû íà ñëåäóþùèõ êîíôå-

ðåíöèÿõ, â òîì ÷èñëå ìåæäóíàðîäíûõ:

• Ñåêöèîííûé äîêëàä �NN êîððåëÿöèè â ñèñòåìå ìíîãèõ íóêëîíîâ�

íà êîíôåðåíöèè �Ôèçèêà ôóíäàìåíòàëüíûõ âçàèìîäåéñòâèé�, ÈÒÝÔ,
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Ìîñêâà, Ðîññèÿ, 27 íîÿáðÿ - 1 äåêàáðÿ 2000 ãîäà.

• Ñåêöèîííûé äîêëàä �NN correlations: Pauli principle and FSI� íà êîí-

ôåðåíöèè �Strangeness Production in pp and pA Interactions at ANKE�,

ÏÈßÔ, Ãàò÷èíà, Ðîññèÿ, 21 èþíÿ - 22 èþíÿ 2001 ãîäà.

• Ñåêöèîííûé äîêëàä �Pauli principle and NN �nal state interaction� íà

êîíôåðåíöèè �Mysteries, Puzzles and Paradoxes in Quantum Mechanics

- IV Edition Workshop�, Gargnano, Italy, 27 àâãóñòà - 1 ñåíòÿáðÿ 2001

ãîäà.

• Ñåêöèîííûé äîêëàä �Two pion production in Nucleon-Nucleon

Collisions� íà êîíôåðåíöèè �7th International Workshop on Meson

Production, Properties and Interaction�, Jagellonian University, Krakow,

Poland, 24 ìàÿ - 28 ìàÿ 2002 ãîäà.

• Ñåêöèîííûé äîêëàä �Two pion production in pp-collisions near

threshold� íà êîíôåðåíöèè �Quarks and Nuclear Physics 2002�,

Forschungszentrum Julich, Julich, Germany, 9 èþíÿ - 14 èþíÿ 2002 ãîäà.

• Ñåêöèîííûé äîêëàä �Decay properties of the Roper resonance from

pp → ppπ−π+� íà êîíôåðåíöèè �Quarks and Nuclear Physics 2002�,

Forschungszentrum Julich, Julich, Germany, 9 èþíÿ - 14 èþíÿ 2002 ãî-

äà.

Â çàêëþ÷åíèå ÿ õîòåë áû âûðàçèòü èñêðåííþþ áëàãîäàðíîñòü ìîåìó íà-

ó÷íîìó ðóêîâîäèòåëþ, Ì.Ã. Ùåïêèíó, çà íåóãàñàþùèé èíòåðåñ ê ðàáîòå è

ìíîãî÷èñëåííûå ïëîäîòâîðíûå îáñóæäåíèÿ, à òàêæå Õ. Êëåìåíòó è âñåì
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ôèçèêàì-ýêñïåðèìåíòàòîðàì, âìåñòå ñ êîòîðûìè ÿ ó÷àñòâîâàë â àíàëèçå

äàííûõ ñ óñêîðèòåëåé MAMI è CELSIUS.
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Ïðèëîæåíèå

Èíòåãðèðîâàíèå ñå÷åíèé ìåòîäîì Ìîíòå-Êàðëî

Çäåñü îïèñàíà ñõåìà ÷èñëåííîãî èíòåãðèðîâàíèÿ ïî ôàçîâîìó ïðî-

ñòðàíñòâó ìåòîäîì Ìîíòå-Êàðëî. Íà îñíîâàíèè äàííîé ñõåìû áûëà ðàç-

ðàáîòàíà ïðîãðàììà âû÷èñëåíèÿ ïîëíûõ è äèôôåðåíöèàëüíûõ ñå÷åíèé

ðàññìàòðèâàåìûõ â äèññåðòàöèè ðåàêöèé. Ïîòðåáíîñòü â ðàçðàáîòêå íîâîé

ïðîãðàììû âîçíèêëà â ñâÿçè ñ íåîáõîäèìîñòüþ èìåòü ìàêñèìàëüíî âîç-

ìîæíûé êîíòðîëü íàä âû÷èñëåíèÿìè. Ýòî ñâÿçàíî ñ òåì, ÷òî ìàòðè÷íûå

ýëåìåíòû èññëåäóåìûõ â äèññåðòàöèè ðåàêöèé ñîäåðæàò îñòðûå ôóíêöèè

êèíåìàòè÷åñêèõ ïåðåìåííûõ, òàêèå êàê àìïëèòóäà íóêëîí-íóêëîííîãî ðàñ-

ñåÿíèÿ, è ëþáàÿ íåòî÷íîñòü âû÷èñëåíèé ìîæåò ïðèâåñòè ê îøèáêå.

Ìåòîä Ìîíòå-Êàðëî Äëÿ ÷èñëåííîãî èíòåãðèðîâàíèÿ ìíîãîìåðíûõ

èíòåãðàëîâ íàèáîëåå ýôôåêòèâíûì ÿâëÿåòñÿ ìåòîä Ìîíòå-Êàðëî:

∫

Ω

f(x)
n
∏

i

dxi =
b1
∫

a1

dx1...

bn(x1,...xn−1)
∫

an(x1,...xn−1)

dxnf(x) ≈ 1

N

N
∑

i=1

f(xi)∆xi . (3.20)

Çäåñü ∆xi =
n
∏

j=1
(bi

j − ai
j). Òî÷êà xi = (xi

1, .., x
i
n) ïðèíàäëåæèò îáëàñòè èíòå-

ãðèðîâàíèÿ Ω è áåðåòñÿ ñëó÷àéíûì îáðàçîì, ò.å. xi
j = (bi

j − ai
j) r + ai

j, ãäå

r ∈ [0, 1] � ñëó÷àéíîå ÷èñëî ñ ðàâíîìåðíûì ðàñïðåäåëåíèåì. Ïîãðåøíîñòü

òàêîãî ïîäõîäà ñîñòàâëÿåò âåëè÷èíó ïîðÿäêà 1/
√

N .
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Âû÷èñëåíèå ïðåäåëîâ èíòåãðèðîâàíèÿ Îáëàñòü èíòåãðèðîâàíèÿ ïî

âñåìó ôàçîâîìó ïðîñòðàíñòâó öåëèêîì îïðåäåëÿåòñÿ çàêîíîì ñîõðàíåíèÿ

K =
n
∑

i=1
pi, ãäå K � 4-èìïóëüñ íà÷àëüíîé ñèñòåìû. Âñå äàëüíåéøèå ðàññóæ-

äåíèÿ áóäóò îñíîâûâàòüñÿ íà äâóõ çàêîíàõ: çàêîíå ñîõðàíåíèÿ 4-èìïóëüñà

ýíåðãèè è ëîðåíö-èíâàðèàíòíîñòè äèôôåðåíöèàëüíîãî ñå÷åíèÿ. Èíòåãðè-

ðîâàíèå ( �ðàçûãðûâàíèå� ñëó÷àéíûõ òî÷åê â ôàçîâîì ïðîñòðàíñòâå) áóäåò

îñóùåñòâëÿòüñÿ ïîñëåäîâàòåëüíûìè øàãàìè. Ñíà÷àëà âû÷èñëÿþòñÿ ïðåäå-

ëû èíòåãðèðîâàíèÿ äëÿ îäíîãî èç âåêòîðîâ (íàïðèìåð p1), çàòåì ðàçûã-

ðûâàåòñÿ çíà÷åíèå ýòîãî âåêòîðà. Ïîñëå ýòîãî âû÷èñëÿþòñÿ ïðåäåëû äëÿ

ñëåäóþùåãî âåêòîðà ïðè óæå �ðàçûãðàííîì� çíà÷åíèè p1, è ò.ä. Ðàññìîòðèì

ýòó ñõåìó áîëåå äåòàëüíî.

ïåðâûé øàã Ïåðåïèøåì çàêîí ñîõðàíåíèÿ â ñëåäóþùåé ôîðìå:K−p1 =

n
∑

i=2
pi. Âû÷èñëåíèå êâàäðàòà ýòîãî âûðàæåíèÿ â ö-ñèñòåìå (K = 0) äàeò:

K2 − 2
√

K2E1 + m2
1 = (

n
∑

i=2

pi)
2 .

Èç ýòîãî âûðàæåíèÿ ëåãêî íàõîäÿòñÿ ïðåäåëû èíòåãðèðîâàíèÿ ïî p1 â ö-

ñèñòåìå:

−pm < p1z < pm

−
√

p2
m − p1

2
z < p1y <

√

p2
m − p1

2
z

−
√

p2
m − p1

2
y − p1

2
z < p1x <

√

p2
m − p1

2
y − p1

2
z

, (3.21)

ãäå:

pm =

√

√

√

√

√

√

(K2 + m2
1 − (

n
∑

i=2
mi)2)2

4K2
− m2

1 . (3.22)

Äëÿ äàëüíåéøèõ âû÷èñëåíèé òðåáóåòñÿ çíà÷åíèå èìïóëüñà p1 â ë-ñèñòåìå.

Â îáùåì ñëó÷àå äëÿ âû÷èñëåíèÿ êîìïîíåíò âåêòîðà â ë-ñèñòåìå ïî åãî êîì-

ïîíåíòàì â ö-ñèñòåìå íåîáõîäèìî ñäåëàòü ëîðåíö-ñäâèã â íàïðàâëåíèè ñêî-
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ðîñòè ö-ñèñòåìû ñ ïîñëåäóþùèì ïðîñòðàíñòâåííûì ïîâîðîòîì. Áåç îãðà-

íè÷åíèÿ îáùíîñòè ìîæíî ñ÷èòàòü, ÷òî îñü x ö-ñèñòåìû íàïðàâëåíà ïî âåê-

òîðó K. Òàê êàê ïðè ëîðåíö-ñäâèãå ïîïåðå÷íûå êîìïîíåíòû íå ìåíÿþòñÿ,

òî ìîæíî óæå â ýòîé ñèñòåìå ðàçûãðàòü ïðîåêöèè èìïóëüñà p1y è p1z. Ïî-

ñëå ýòîãî íàõîäÿòñÿ ïðåäåëû èíòåãðèðîâàíèÿ ïî x êîìïîíåíòå â ëîðåíö-

áóñòèðîâàííîé ñèñòåìå:

p± =
±
√

p2
m − p1

2
y − p1

2
z + V Em√

1 − V 2
, (3.23)

ãäå V = K
K0
. Â ýòîé ñèñòåìå ìîæíî �ðàçûãðàòü� x êîìïîíåíòó èìïóëüñà p1.

Ïðè ýòîì îáúeì îáëàñòè ôàçîâîãî ïðîñòðàíñòâà, â êîòîðîé ðàçûãðûâàëîñü

çíà÷åíèå èìïóëüñà p1, áóäåò ðàâåí:

∆p1 = 23Pm

√

p2
m − p1

2
z

√

p2
m − p1

2
y − p1

2
z√

1 − V 2
. (3.24)

Äàëåå, åñëè Vy è Vz ðàâíû íóëþ, òî ìîæíî ñ÷èòàòü, ÷òî �ëîðåíö-

ñäâèíóòàÿ� ñèñòåìà ñîâïàäàåò ñ ë-ñèñòåìîé, â ïðîòèâíîì ñëó÷àå íóæíî

ñîâåðøèòü ïðîñòðàíñòâåííûé ïîâîðîò. Áåç îãðàíè÷åíèÿ îáùíîñòè ìîæíî

âûáðàòü áàçèñ áóñòèðîâàííîé ñèñòåìû ñëåäóþùèì îáðàçîì:






































e′x = n

e′y = g n × ex

e′z = e′x × e′y

, (3.25)

ãäå n = V
V , à g � íîðìèðîâî÷íàÿ âåëè÷èíà ðàâíàÿ: g =

√

n2
y + n2

z. Çíà÷åíèå

âåêòîðà p1 â ë-ñèñòåìå ìîæíî íàéòè ïî ôîðìóëå:

p1 =





















nx 0 −g

ny −gnz gnxny

nz gny gnxnz





















p′
1 (3.26)
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i-é øàã Ïî íàéäåííîìó âåêòîðó p1, ïîâòîðÿÿ âûøå îïèñàííûå äåéñòâèÿ,

ìîæíî �ðàçûãðàòü� âåêòîð p2 è ò.ä., âïëîòü äî âåêòîðà pn−1.

(n − 1)-é øàã Íà ýòîì øàãå ñëåäóåò ó÷åñòü çàêîí ñîõðàíåíèÿ ýíåðãèè-

èìïóëüñà. Ýòî ôèêñèðóåò 4 êîìïîíåíòû (èç 6 âîçìîæíûõ) âåêòîðîâ pn−1 è

pn. Ïóñòü îñòàâøèåñÿ äâå êîìïîíåíòû áóäóò pn−1,y è pn−1,z. Äëÿ âû÷èñëåíèÿ

ïðåäåëîâ èíòåãðèðîâàíèÿ ïî ýòèì êîìïîíåíòàì ïðåîáðàçóåì èíòåãðàë ïî

âåêòîðàì pn−1 è pn ñëåäóþùèì îáðàçîì:

I = δ(4)(P − pn−1 − pn)
d3pn−1

2En−1

d3pn

2En
= δ(p2

n − m2
n)

d3pn−1

2En−1
=

=
δ(pn−1,x − p+) + δ(pn−1,x − p−)

4
√

P 2
m − p2

n−1,y − p2
n−1,z

d3pn−1 .
(3.27)

Çäåñü p± � êîðíè óðàâíåíèÿ (P − pn−1)
2 − m2

n = 0,

Pm =

√

√

√

√

(P 2 + m2
n−1 − m2

n)
2

4P 2
− m2

n−1 . (3.28)

Ïåðåõîä îò py, pz ê ïîëÿðíûì êîîðäèíàòàì äàeò:

I = −π

2
(δ(pn−1,x − p+) + δ(pn−1,x − p−))dθd

√

P 2
m − r2dpn−1x , (3.29)

ãäå ïðåäåëû èíòåãðèðîâàíèÿ ïî θ è r èìåþò âèä: 0 < θ < 2π, 0 < r < Pm.

Ðàçûãðûâàÿ θ è r â ýòèõ ïðåäåëàõ ìîæíî íàéòè pn−1,y è pn−1,z ïî ôîðìóëàì:

pn−1,y = r cos θ

pn−1,z = r sin θ
. (3.30)

Òàêèì îáðàçîì, �ðàçûãðàíà� îäíà òî÷êà â ôàçîâîì ïðîñòðàíñòâå.

Ìíîãîêðàòíîå �ðàçûãðûâàíèå� òî÷åê ôàçîâîãî ïðîñòðàíñòâà è ñóììèðî-

âàíèå ïîëó÷åííûõ çíà÷åíèé ïî ôîðìóëå (3.20) äàeò ÷èñëåííîå çíà÷åíèå

èíòåãðàëà ïî ôàçîâîìó ïðîñòðàíñòâó.


