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Precanonical quantization is based on a generalization of the Hamiltonian formalism to
field theory, the so-called De Donder—Weyl (DW) theory, which does not require a space-
time splitting and treats the space-time variables on an equal footing. Quantum dynam-
ics is described by a precanonical wave function on the finite dimensional space of field
coordinates and space-time coordinates, which satisfies a partial derivative precanonical
Schrodinger equation. The standard QFT in the functional Schrédinger representation
can be derived from the precanonical quantization in a limiting case. An analysis of
the constraints within the DW Hamiltonian formulation of the Einstein-Palatini vielbein
formulation of GR and quantization of the generalized Dirac brackets defined on differen-
tial forms lead to the covariant precanonical Schrédinger equation for quantum gravity.
The resulting dynamics of quantum gravity is described by the wave function or tran-
sition amplitudes on the total space of the bundle of spin connections over space-time.
Thus, precanonical quantization leads to the “spin connection foam” picture of quan-
tum geometry represented by a generally non-Gaussian random field of spin connection
coefficients, whose probability distribution is given by the precanonical wave function.
The normalizability of precanonical wave functions is argued to lead to the quantum-
gravitational avoidance of curvature singularities. Possible connections with LQG are
briefly discussed.
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1. Precanonical quantization of fields

Contemporary quantum field theory originates from the canonical quantization
which is based on the canonical Hamiltonian formalism. The latter dictates a picture
of fields as infinite dimensional Hamiltonian systems. It also restricts the considera-
tion to the globally hyperbolic space-times, as it implies a different role of the time
dimension, along which the evolution proceeds, and the space dimensions, which
label the continuum of degrees of freedom of fields. Many problems we encounter
in quantum gravity theories can be traced back to this very origin of QFT.
However, the canonical Hamiltonian formalism is not the only possibility to ex-
tend the Hamiltonian formalism from mechanics to field theory. The alternative
“Hamiltonizations” (i.e. writing the field equations in the first order form using
some generalization of the Legendre transform) known in the calculus of variations?!
are, in fact, inherently more geometrical than the canonical formalism, and they
treat the space and time variables (i.e. the independent variables of the multiple in-
tegral variational problem) on the equal footing, i.e. essentially as multidimensional
generalizations of the one-dimensional time parameter in mechanics.
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In a sense, those Hamiltonizations of field theories are intermediate between the
Lagrangean description and the canonical Hamiltonian formalism. Besides, in the
case of mechanics, i.e. one-parameter variational problems, all those formulations
reduce to the canonical Hamiltonian formalism in mechanics. For this reason we
name those formulations “precanonical” and the resulting procedure of quantization
of fields “precanonical quantization”.

The simplest precanonical formulation is the so-called De Donder—Weyl (DW)
theory:! for a Lagrangian density L = L(¢%, Z,x”), which is a function of the
field variables ¢, their first space-time derivatives ¢}, and the space-time variables
2t one defines the polymomenta p# := aad)La and the DW Hamiltonian function
H(op®, pht,at) := o (¢, p)pt — L. Then, if the ﬁegendre transform ¢? — pv is regular,
the field equations can be cast into the DW Hamiltonian form:

OH OH
aﬂ¢a<‘r) = o fll.’ 6Mpflb<‘r) = _a a (1)
This formulation requires neither a splitting into the space and time nor infinite-

dimensional spaces of field configurations. The analogue of the extended configu-
ration space here is a finite dimensional space of field variables ¢® and space-time
variables z#, and the analogue of the extended phase space is a finite dimensional
space of variables p#, ¢® and x#. Those spaces are bundles over space-time (see e.g.
Ref. 4, 5) whose sections are classical field configurations.

While the usual approaches to field quantization work on the infinite dimensional
spaces of sections of the above bundles (“the spaces of solutions”), our precanonical
quantization approach tries to find a formulation of quantum dynamics of fields in
terms of the objects on the finite dimensional bundles themselves, without refer-
ring to the remnants of the classical thinking about fields as “field configurations,”
similarly to the quantum mechanics, which has abandoned the notion of particles’
trajectories in favor of the probabilistic concept of their location at different points
of the configuration space or propagation amplitudes on this space.

The Poisson brackets in the DW Hamiltonian formulation of field theory in n
space-time dimensions are constructed? using the polysymplectic (n+1)-form on
the extended polymomentum phase space as the fundamental underlying struc-
ture generalizing the symplectic 2—form of the canonical Hamiltonian formalism:
Q = dph Nd¢p® AN w,,, where @, := by, W, W= dzA...Adz"~'. The Poisson brack-
ets are defined on differential forms representing the local dynamical variables (or
“observables”) and they lead to a Gerstenhaber algebra structure, which generalizes
the standard Poisson algebra to the DW Hamiltonian formulation of field theory. 2

Precanonical quantization of fields® is based on quantization of the Poisson-
Gerstenhaber brackets of forms? in the DW Hamiltonian theory according to the
Dirac quantization rule. It naturally leads to a description of quantum fields in terms
of a Clifford (Dirac) algebra-valued wave function on the space of field variables and
space-time variables, W(¢®, x#), which fulfills the Dirac-like precanonical Schro-
dinger equation?® with the DW Hamiltonian operator H replacing the mass term:

ihy"0,0 = HY, (2)
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where s is an ultraviolet constant of the dimension of the inverse spatial volume,
which originates from the representation of the dimensionful infinitesimal volume
elements given by the differential forms w, in terms of the dimensionless Dirac
matrices y*: @, = iyu, and H is a partial derivative operator with respect to
the field variables. The natural appearance of Clifford algebra-valued functions and
operators can be argued already on the level of geometric prequantization gener-
alized to the DW Hamiltonian formalism.* Let us note that the DW Hamiltonian
equations (1) can be derived from (2) as the equations of expectation values of the
corresponding precanonical quantum operators.® A generalization of equation (2)
in precanonical quantum gravity will be presented below (eq. 16). A validity of
the Ehrenfest theorem in this formulation of quantum gravity is to be discussed
elsewhere.”

A relation of the above description to the standard QFT in the functional
Schrédinger representation has been established in the limit of infinite > or, more
precisely, when %’yo —w0.% In this limiting case one can construct the Schrodinger
wave functional as the multidimensional Volterra’s product integral? of precanonical
wave functions and derive the canonical functional derivative Schrodinger equation
from the precanonical Schrédinger equation (2).8 Thus the standard QFT turns
out to be a singular limiting case of the quantum theory of fields obtained via
precanonical quantization. One can view the latter as an “already regularized”
quantum field theory in which the ultraviolet scale s is itself an inherent element
of the field quantization procedure, that introduces an analog of cutoff (or minimal
spatial resolution) scale without altering the relativistic space-time.

2. Precanonical quantization of vielbein gravity and the spin
connection foam

A central role of the Dirac operator in precanonical quantization, which generalizes
10¢ in quantum mechanics (cf. eq. (2)), implies that in this formulation gravity has
to be quantized in vielbein variables. Here we follow our earlier work ¥ (cf. Refs. 11
for an earlier work using the metric formulation).

The Einstein-Palatini Lagrangian density with the cosmological term

1
£ = ee[l eg] (&lwﬁu + waIngK‘]) + EAe, (3)

where the vielbein components e/ and the spin connection coefficients wl’ are inde-
pendent field variables and ¢ := (det [|ef||) !, leads to a singular DW Hamiltonian
theory with the primary constraints

0L 0L [a B]

« Ni 4
K;eel e (4)

s i=———5~0, plr:

T Q0ae] 7 00wl

Those are second class, as it follows from the Poisson-Gerstenhaber brackets of

[a 5])

(n—1)-forms of constraints <, g = pe Bwa and €, 1= (P [ —eeI Weat

fe. e} =0={eCul, {eq.Cpl=-10, (eeleg])wa. (5)
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The DW Hamiltonian density obtained from (3) reads

oL 0L [a 8]

1
9= 88awpw + 86‘aepe £=—cefejwl wﬁK HAe. (6)

Using a generalization of the constraints analysis to the DW theory '? we obtain
an amazingly simple algebra of the fundamental Dirac brackets on the subalgebra
of (n—1)- and 0-forms: *°

{pwa,w' wa ]}D {pewa,wwae |} = 02 wa, (7)

{pewa, ewa P = 0= {p@a, pu I = {pe@a, &’ wa/]} = pS@a, dwar [P, (8)
{[pwwav /]}D {[waa, /]} (9)

{pewa, e’ =0 = {pewa, pu I° = {pf @wa, wl® :{[pzwa,el}D, (10)

o WwglP = {[pw,wa]}—é 5, (11)

{pe,e'wa P = 0= {pg, powa P = {p2, wwa [P = {pg, ¢'war P = (12)

The fundamental brackets are quantized according to the generalized Dirac’s
quantization rule:

A, B = —ihe[AB , (13)

in which the presence of the operator ¢ guarantees that tensor densities are quantized
as density-valued operators. Quantization of fundamental Dirac brackets (7)—(12)
and the equations of constraints (4) leads to the representation of the operators of
vielbeins:

é? = —ih%li’?‘law—éj y

and polymomenta of spin connection:

0 0
6‘w 8”’

ﬁgé‘] _ 7h2%21€8’_)/KL

where 57 are the fiducial flat-space Dirac matrices. Those Clifford-valued oper-
ators act on Clifford-valued quantum gravitational precanonical wave functions
U = W(w!’ 2#) on the total space of the configuration bundle of spin connections
over the space-time.?

We can also construct the operator of DW Hamiltonian density $ =: ¢H re-
stricted to the surface of constraints C' given by (4). From (6) and (4) we obtain
(eH)|c = —pgé,,wéKw/gK‘] — 1 Ae and, using the above representations,

~

1
H = W25k wiy KM 9 9

L
oM G kT % (14)

aWe use the notion of the “bundle of connections” in the sense similar to Ref. 13 rather than e.g.
Ref. 14.
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Now, the covariant precanonical Schrodinger equation for quantum gravity (cf. (2))
YU = AV, (15)

where ¥ := (9, + tw,rs7'7) and 9# = yTef = —ihmﬁ”%, can be written
"

in an explicit form (up to an ordering of w-s and J,,-s):

_ 1 _ 0 0
,YIJ(a# n ZW;LKL'YKL _ WuMKWﬁMLW) &u—u”\IJ = —\U, (16)

where \ := (MA%)2 is a dimensionless constant which combines different scales:

cosmological (A), Planck (hix), and the UV scale s introduced by precanonical
quantization.

The fact that all physical constants have been melted into a single dimensionless
constant A, which appears as an eigenvalue of the operator in the L.h.s. of eq. (16),
suggests that the latter, and the theory of quantum gravity derived from precanon-
ical quantization, may correspond to a statement of purely mathematical nature
concerning the sections of the Clifford bundle over the bundle of spin connections
over space-time. Surprisingly, the operator acting on ¥ in eq. (16) is invariant with
respect to the scale transformation x — ax, w — a~'w, so that it knows nothing
about the Planck scale, where the effects of quantum gravity are commonly ex-
pected to take place. Probably, it is an interaction of gravity with the matter fields,
which we neglected here, that (re-)introduces the physical scales.

The scalar product of precanonical wave functions is given by

(B[T) := Tr/E [do]¥,  [do] = 20+ 1ee0=D TT awl’,  (17)
pnI<J

where U : =403 is the complex conjugate and reverse of ¥,'® and [d/f;] with et =

Lelidng, o @H1 e is a Misner-like?! diffeomorphism-invariant generalized-
n! M1 fon ]y I,

Hermitian (in the sense [d/;] = [zi\w]) operator-valued measure on the fibers of the
bundle of spin connections over space-time. In general, Tr (@\I/) on a pseudo-
FEuclidean Clifford algebra is not positive-definite. However, on the subspace of
functions ®*:=(144°)¥(1 £4°), it coincides with the positive definite Frobenius
inner product: Tr (F0*) =Tr (d*+1o+) =: | o* 2.

The normalizability of precanonical wave functions according to the above scalar
product (and quite independently from its details) requires ¢—27("=DY to vanish at
large w-s. This essentially implies the quantum avoidance of curvature singularities
(large w-s) in the sense that the probability density of observing the regions of
space-time with an extremely high curvature vanishes as a consequence of the nor-
malizability of the precanonical wave function of quantum gravity. Note, however,
that in spite of its plausibility, this resolution to the singularity problem depends on
the actual existence of the properly normalized solutions of eq. (16), which is not yet
proven. Moreover, the argument based on the normalizability of precanonical wave
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functions in its present form ignores interactions with matter, the intricalities re-
lated to the indefiniteness of Tr(¥W¥), and the gauge fixing, i.e. the choice of the
coordinate systems/local orientations of vielbeins on average, which is important
for the extraction of the physically relevant information from the solutions of (16).
Eq. (16) can be seen as a variant of a generalized confluent hypergeometric
equation of n matrix (Clifford-valued) variables Z,, := w{/ r7. To my knowledge,
the theory of such equations is not yet sufficiently developed in mathematics, so that
even the proof of the existence of properly normalized solutions, which is essential
for the present formulation of quantum theory of gravity to be physically viable and
mathematically well-defined, is a challenging problem. However, in the regime when
the term wwd,,d,, in (16) can be neglected, we obtain a more tractable equation

(ikw0z, + 12,0z, + X) ® =0, (18)

where ¥ (z,w) = " ®(Z,) and the ordering ambiguity in the Z9; term is
accounted for in a re-definition of A\. By separating the variables Z,, so that
®(Z) =11,2(Z,) and A = ¥,c,, we obtain the following equation for each p:

(ikdz + 1Z0,)® + c® = 0. (19)

Its solution (written in terms of the formal fractional power of the matrix in the

square brackets!”) isP

O ~ [4ik + Z] 4. (20)

The corresponding probability density of spin connections given by ||®||? behaves
as ~||Z]|78¢ at |k|<||Z||, and its normalizability with the measure in (17) restricts
the admissible values of c¢. The above heavy-tailed power law asymptotic behavior
is characteristic of Lévy processes, with the exponent known to be related to the
fractal dimensionality of the trajectories of Lévy flights!® in the target spaces,
which are fibers of the bundle of spin connections here. A Lévy flight on each
fiber of the bundle means a random spin connection field over space-time with a
generally non-Gaussian distribution defined by the precanonical wave function. The
properties of this omnipresent random field will be reflected in the properties of test
particles propagating in space-time, their trajectories, spatio-temporal distribution
and correlations, which can be potentially observable. The fractality of the Lévy
flights in the target space of spin connections may be translated to the effective
fractality of space-time itself as one of the consequences of quantum gravity. We
hope to explore the details of that in the future.

In the opposite regime, when the term wwd,,d,, in (16) dominates (and the wave
numbers k,, are not too high), eq. (16) reduces to a matrix generalization of a
simple PDE: 42®” (u) — A®(u) = 0, whose power law solutions ® ~ yz(1EVIATD)

b A solution similar to (20) was obtained also in the cosmological context 10¢ 16 where the wwd., d.
term in (16) vanishes identically because of the cosmological symmetries of the problem, which
leave non-vanishing only one independent component of the spin connection.



The Fourteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 04/27/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

3913

again point to a restriction on the admissible values of the cosmological constant in
A from the normalizability of the wave function at large w-s, and to a heavy-tailed
Lévy-type behavior at large w-s, albeit with a different fractal dimensionality of the
Lévy flights in this regime.

The Green functions of (16) are transition amplitudes between the values of spin
connections at different points: (w,z|w’, 2’). They describe a quantum space-time
geometry which generalizes the classical geometry formulated in terms of smooth
spin connection fields w(z). By noticing an analogy with the statistical hydrody-
namics approach to turbulence,!® which replaces the description in terms of the
smooth velocity fields v(x) with the statistical description in terms of the multi-
point velocity correlators, we can speak of the picture of quantum gravity derived
from precanonical quantization as a space-time turbulence or, in the mathematical
context of the present formulation, a spin connection foam. In fact, this picture is
even closer to the original Wheeler’s intuition about the “space-time foam” than
his quantum geometrodynamics based on the Wheeler-De Witt equation and the
notion of an infinite-dimensional superspace of all metrics.

Note also that the metric tensor in the present formulation is an operator:

0?
Sy h2 2 2 1J, KL
g =R E N e
Ow, 1 Ow;)

Hence, the intervals ds? =gudxtdz” are operator-valued. This makes the notion
of the distances between points, and hence the operational notion of a point of the
physical space-time, fuzzy due to the quantum nature of the space-time geometry.
In this way the description of quantum geometry of space-time derived from the
precanonical quantization of general relativity complements the ideas about quan-
tum space-time being discussed within the framework of LQG, string theory and
non-commutative geometry.

3. Possible connections with LQG

A first discussion of the constraints in the Ashtekar formulation using a version
of the DW (multisymplectic) Hamiltonian theory applied to the vielbein Einstein-
Palatini Lagrangian (3) can be found in the paper by Esposito e.a.?"

In spite of the obvious differences of our precanonical approach from the LQG
programme, which (i) uses a (3+1)-splitting vs. our explicitly space-time symmetric
approach, (ii) heavily relies on the specifics of four-dimensional globally hyperbolic
space-times vs. our intention to develop a formalism potentially applicable in any
number of dimensions and any signature of space-time, (iii) uses functionals and
functional derivative operators vs. our use of functions and partial derivative op-
erators, etc., there are some striking similarities as well, one of them being the
emergence, after Hamiltonization, of a formulation based on the connections, with
the vielbeins, or the densitized inverse triads/dreibeins in the Ashtekar formulation,
represented as differential operators with respect to the connections.
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Whereas our approach to quantization of gravity is based on the fundamental
brackets in the Weyl subalgebra in the subspace of Hamiltonian 0- and (n—1)-forms,
our construction of the Poisson-Gerstenhaber brackets in field theory? also offers
another, yet unexplored opportunity based on the Dirac bracket between the spin
connection 1-form wl”dz® and its conjugate (n—2)-form of polymomenta: pgl{@ww,
w:

where @, =1, 1,,

{[w(lx‘]dxa,pf:ﬁ@ww, = {[wijdxa,pgﬁnww,]} ~ n5%5i]. (21)

This bracket is a gravitational analogue of the bracket between the potential
I-form A = A,dz" and the (n-2)-form of the dual field strength in Electrody-
namics, *F = «1F,, dz" A dz¥, found in Ref. 2 (see also Refs. 22, 23). After a
(341)-splitting, a restriction to the initial data surfaces and integration over them
(cf. Refs. 2, 22), the bracket can be related to the fundamental Poisson bracket
underlying the Ashtekar formulation in (3+1)-dimensions, and the forms involved
in (21) can be used to construct the holonomy-flux variables underlying the LQG
approach (see e.g. Refs. 24 for a review). However, unlike the subalgebra of 0- and
(n—1)-forms in (7)-(12), the set of (n—2)- and 1-forms is not closed with respect
to the Poisson-Gerstenhaber bracket operation, hence the closure of the subalgebra
involves forms of all the degrees < (n—2).

A further understanding of possible connections of precanonical quantization
with LQG in (3+1) dimensions requires an inclusion of the Holst term?2®
the Einstein-Palatini Lagrangian (3) in order to incorporate the Barbero-Immirzi
parameter, that does not, however, appear to be necessary within our approach.
Interestingly, this property is shared with a multidimensional generalization of the
LQG-type connection formulation of pure gravity discussed by Bodendorfer e.a.26
Hence, it is likely that more connections can be found between that formulation
and the precanonical approach of the present paper.

in
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