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Precanonical quantization is based on a generalization of the Hamiltonian formalism to
field theory, the so-called De Donder–Weyl (DW) theory, which does not require a space-
time splitting and treats the space-time variables on an equal footing. Quantum dynam-
ics is described by a precanonical wave function on the finite dimensional space of field
coordinates and space-time coordinates, which satisfies a partial derivative precanonical
Schrödinger equation. The standard QFT in the functional Schrödinger representation
can be derived from the precanonical quantization in a limiting case. An analysis of
the constraints within the DW Hamiltonian formulation of the Einstein-Palatini vielbein
formulation of GR and quantization of the generalized Dirac brackets defined on differen-
tial forms lead to the covariant precanonical Schrödinger equation for quantum gravity.
The resulting dynamics of quantum gravity is described by the wave function or tran-
sition amplitudes on the total space of the bundle of spin connections over space-time.
Thus, precanonical quantization leads to the “spin connection foam” picture of quan-

tum geometry represented by a generally non-Gaussian random field of spin connection
coefficients, whose probability distribution is given by the precanonical wave function.
The normalizability of precanonical wave functions is argued to lead to the quantum-
gravitational avoidance of curvature singularities. Possible connections with LQG are
briefly discussed.

Keywords: Quantum gravity; precanonical quantization; De Donder-Weyl theory; viel-
bein gravity; Gerstenhaber algebra; Dirac brackets; Clifford algebra; Lévy processes.

1. Precanonical quantization of fields

Contemporary quantum field theory originates from the canonical quantization

which is based on the canonical Hamiltonian formalism. The latter dictates a picture

of fields as infinite dimensional Hamiltonian systems. It also restricts the considera-

tion to the globally hyperbolic space-times, as it implies a different role of the time

dimension, along which the evolution proceeds, and the space dimensions, which

label the continuum of degrees of freedom of fields. Many problems we encounter

in quantum gravity theories can be traced back to this very origin of QFT.

However, the canonical Hamiltonian formalism is not the only possibility to ex-

tend the Hamiltonian formalism from mechanics to field theory. The alternative

“Hamiltonizations” (i.e. writing the field equations in the first order form using

some generalization of the Legendre transform) known in the calculus of variations1

are, in fact, inherently more geometrical than the canonical formalism, and they

treat the space and time variables (i.e. the independent variables of the multiple in-

tegral variational problem) on the equal footing, i.e. essentially as multidimensional

generalizations of the one-dimensional time parameter in mechanics.
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In a sense, those Hamiltonizations of field theories are intermediate between the

Lagrangean description and the canonical Hamiltonian formalism. Besides, in the

case of mechanics, i.e. one-parameter variational problems, all those formulations

reduce to the canonical Hamiltonian formalism in mechanics. For this reason we

name those formulations “precanonical” and the resulting procedure of quantization

of fields “precanonical quantization”.

The simplest precanonical formulation is the so-called De Donder–Weyl (DW)

theory:1 for a Lagrangian density L = L(φa, φa
μ, x

ν), which is a function of the

field variables φa, their first space-time derivatives φa
μ, and the space-time variables

xμ, one defines the polymomenta pμa := ∂L
∂φa

μ
and the DW Hamiltonian function

H(φa, pμa , x
μ) := φa

μ(φ, p)p
μ
a−L. Then, if the Legendre transform φa

ν → pνa is regular,

the field equations can be cast into the DW Hamiltonian form:

∂μφ
a(x) =

∂H

∂pμa
, ∂μp

μ
a(x) = −

∂H

∂φa
. (1)

This formulation requires neither a splitting into the space and time nor infinite-

dimensional spaces of field configurations. The analogue of the extended configu-

ration space here is a finite dimensional space of field variables φa and space-time

variables xμ, and the analogue of the extended phase space is a finite dimensional

space of variables pμa , φ
a and xμ. Those spaces are bundles over space-time (see e.g.

Ref. 4, 5) whose sections are classical field configurations.

While the usual approaches to field quantization work on the infinite dimensional

spaces of sections of the above bundles (“the spaces of solutions”), our precanonical

quantization approach tries to find a formulation of quantum dynamics of fields in

terms of the objects on the finite dimensional bundles themselves, without refer-

ring to the remnants of the classical thinking about fields as “field configurations,”

similarly to the quantum mechanics, which has abandoned the notion of particles′

trajectories in favor of the probabilistic concept of their location at different points

of the configuration space or propagation amplitudes on this space.

The Poisson brackets in the DW Hamiltonian formulation of field theory in n

space-time dimensions are constructed2 using the polysymplectic (n+1)-form on

the extended polymomentum phase space as the fundamental underlying struc-

ture generalizing the symplectic 2–form of the canonical Hamiltonian formalism:

Ω := dpμa ∧ dφa ∧�μ, where �μ := ı
∂μ
�, � := dx0∧...∧dxn−1. The Poisson brack-

ets are defined on differential forms representing the local dynamical variables (or

“observables”) and they lead to a Gerstenhaber algebra structure, which generalizes

the standard Poisson algebra to the DW Hamiltonian formulation of field theory.2

Precanonical quantization of fields3 is based on quantization of the Poisson-

Gerstenhaber brackets of forms2 in the DW Hamiltonian theory according to the

Dirac quantization rule. It naturally leads to a description of quantum fields in terms

of a Clifford (Dirac) algebra-valued wave function on the space of field variables and

space-time variables, Ψ(φa, xμ), which fulfills the Dirac-like precanonical Schrö-

dinger equation3 with the DW Hamiltonian operator Ĥ replacing the mass term:

i�κγμ∂μΨ = ĤΨ, (2)
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where κ is an ultraviolet constant of the dimension of the inverse spatial volume,

which originates from the representation of the dimensionful infinitesimal volume

elements given by the differential forms �μ in terms of the dimensionless Dirac

matrices γμ: �̂μ = 1
κ
γμ, and Ĥ is a partial derivative operator with respect to

the field variables. The natural appearance of Clifford algebra-valued functions and

operators can be argued already on the level of geometric prequantization gener-

alized to the DW Hamiltonian formalism.4 Let us note that the DW Hamiltonian

equations (1) can be derived from (2) as the equations of expectation values of the

corresponding precanonical quantum operators.6 A generalization of equation (2)

in precanonical quantum gravity will be presented below (eq. 16). A validity of

the Ehrenfest theorem in this formulation of quantum gravity is to be discussed

elsewhere.7

A relation of the above description to the standard QFT in the functional

Schrödinger representation has been established in the limit of infinite κ or, more

precisely, when 1
κ
γ0→�0.

8 In this limiting case one can construct the Schrödinger

wave functional as the multidimensional Volterra’s product integral9 of precanonical

wave functions and derive the canonical functional derivative Schrödinger equation

from the precanonical Schrödinger equation (2).8 Thus the standard QFT turns

out to be a singular limiting case of the quantum theory of fields obtained via

precanonical quantization. One can view the latter as an “already regularized”

quantum field theory in which the ultraviolet scale κ is itself an inherent element

of the field quantization procedure, that introduces an analog of cutoff (or minimal

spatial resolution) scale without altering the relativistic space-time.

2. Precanonical quantization of vielbein gravity and the spin

connection foam

A central role of the Dirac operator in precanonical quantization, which generalizes

i∂t in quantum mechanics (cf. eq. (2)), implies that in this formulation gravity has

to be quantized in vielbein variables. Here we follow our earlier work10 (cf. Refs. 11

for an earlier work using the metric formulation).

The Einstein-Palatini Lagrangian density with the cosmological term

L =
1

κ
ee

[α
I e

β]
J

(
∂αωβ

IJ + ωα
IKωβK

J
)
+

1

κ
Λe, (3)

where the vielbein components eμI and the spin connection coefficients ωIJ
α are inde-

pendent field variables and e := (det ‖eμI ‖)−1, leads to a singular DW Hamiltonian

theory with the primary constraints

pα
eβI

:=
∂L

∂ ∂αe
β
I

≈ 0, pαωIJ
β

:=
∂L

∂ ∂αωIJ
β

≈ 1

κ
ee

[α
I e

β]
J . (4)

Those are second class, as it follows from the Poisson-Gerstenhaber brackets of

(n–1)-forms of constraints CeβI
:= pα

eβI
�α and CωIJ

β
:=

(
pα
ωIJ

β

− 1
κee

[α
I e

β]
J

)
�α:

{[Ce,Ce′ ]} = 0 = {[Cω,Cω′ ]}, {[CeγK
,CωIJ

β
]} = − 1

κ∂eγK

(
ee

[α
I e

β]
J

)
�α. (5)
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The DW Hamiltonian density obtained from (3) reads

H :=
∂L

∂ ∂αω
pαω +

∂L

∂ ∂αe
pαe − L = −ee[αI e

β]
J ωIK

α ωJ
βK −

1

κ
Λe. (6)

Using a generalization of the constraints analysis to the DW theory12 we obtain

an amazingly simple algebra of the fundamental Dirac brackets on the subalgebra

of (n–1)- and 0-forms:10

{[pαω�α, ω
′�α′ ]}D = {[pαω�α, ω

′�α′ ]} = δω
′

ω �α′ , (7)

{[pαe�α, e
′�α′ ]}D = 0 = {[pαe�α, pω ]}D= {[pαe�α, ω

′�α′ ]}D= {[pαω�α, e
′�α′ ]}D, (8)

{[pαω�α, ω
′ ]}D = {[pαω�α, ω

′ ]} = δω
′

ω , (9)

{[pαe�α, e
′ ]}D = 0 = {[pαe�α, pω ]}D= {[pαe�α, ω ]}D= {[pαω�α, e ]}D, (10)

{[pαω, ω′�β ]}D = {[pαω, ω′�β ]} = δαβ δ
ω
ω′ , (11)

{[pαe , e′�α′ ]}D = 0 = {[pαe , pω�α′ ]}D= {[pαe , ω�α′ ]}D= {[pαω, e′�α′ ]}D= 0. (12)

The fundamental brackets are quantized according to the generalized Dirac’s

quantization rule:

[Â, B̂] = −i� ̂e{[A,B]}D , (13)

in which the presence of the operator ê guarantees that tensor densities are quantized

as density-valued operators. Quantization of fundamental Dirac brackets (7)–(12)

and the equations of constraints (4) leads to the representation of the operators of

vielbeins:

êβI = −i�κκγ̄J ∂

∂ωIJ
β

,

and polymomenta of spin connection:

p̂αωIJ
β

= −�2κ2κ ê γ̄KL ∂

∂ωKL
[α

∂

∂ωIJ
β]

,

where γ̄J are the fiducial flat-space Dirac matrices. Those Clifford-valued oper-

ators act on Clifford-valued quantum gravitational precanonical wave functions

Ψ = Ψ(ωIJ
α , xμ) on the total space of the configuration bundle of spin connections

over the space-time.a

We can also construct the operator of DW Hamiltonian density H =: eH re-

stricted to the surface of constraints C given by (4). From (6) and (4) we obtain

(eH)|C = −pα
ωIJ

β
ωIK
α ωβK

J − 1
κΛe and, using the above representations,

Ĥ = �
2
κ
2κ γ̄IJω[α

KMωβ]M
L ∂

∂ωIJ
α

∂

∂ωKL
β

− 1

κ
Λ. (14)

aWe use the notion of the “bundle of connections” in the sense similar to Ref. 13 rather than e.g.
Ref. 14.
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Now, the covariant precanonical Schrödinger equation for quantum gravity (cf. (2))

i�κ /̂∇Ψ = ĤΨ, (15)

where /̂∇ := γ̂μ(∂μ + 1
4ωμIJ γ̄

IJ) and γ̂μ := γ̄I êμI = −i�κκγ̄IJ ∂
∂ωIJ

μ
, can be written

in an explicit form (up to an ordering of ω-s and ∂ω-s):

γ̄IJ
(
∂μ +

1

4
ωμKLγ̄

KL − ωμM
Kωβ

ML ∂

∂ωβ
KL

) ∂

∂ωμ
IJ

Ψ = −λΨ, (16)

where λ := Λ
(�κκ)2 is a dimensionless constant which combines different scales:

cosmological (Λ), Planck (�κ), and the UV scale κ introduced by precanonical

quantization.

The fact that all physical constants have been melted into a single dimensionless

constant λ, which appears as an eigenvalue of the operator in the l.h.s. of eq. (16),

suggests that the latter, and the theory of quantum gravity derived from precanon-

ical quantization, may correspond to a statement of purely mathematical nature

concerning the sections of the Clifford bundle over the bundle of spin connections

over space-time. Surprisingly, the operator acting on Ψ in eq. (16) is invariant with

respect to the scale transformation x→ ax, ω→ a−1ω, so that it knows nothing

about the Planck scale, where the effects of quantum gravity are commonly ex-

pected to take place. Probably, it is an interaction of gravity with the matter fields,

which we neglected here, that (re-)introduces the physical scales.

The scalar product of precanonical wave functions is given by

〈Φ|Ψ〉 := Tr

∫
Φ [̂dω]Ψ, [̂dω] = i

1
2n(n+1)−1ê−n(n−1)

∏
μ,I<J

dωIJ
μ , (17)

where Ψ:= γ̄0Ψ†γ̄0 is the complex conjugate and reverse of Ψ,15 and [̂dω] with ê−1=
1
n! ε

I1...Inεμ1...μn ê
μ1

I1
...êμn

In
is a Misner-like21 diffeomorphism-invariant generalized-

Hermitian (in the sense [̂dω] = [̂dω]) operator-valued measure on the fibers of the

bundle of spin connections over space-time. In general, Tr
(
ΨΨ

)
on a pseudo-

Euclidean Clifford algebra is not positive-definite. However, on the subspace of

functions Φ± :=(1± γ̄0)Ψ(1± γ̄0), it coincides with the positive definite Frobenius

inner product: Tr
(
Φ±Φ±)=Tr

(
Φ±†Φ±)=:‖Φ±‖2.

The normalizability of precanonical wave functions according to the above scalar

product (and quite independently from its details) requires ê−
1
2n(n−1)Ψ to vanish at

large ω-s. This essentially implies the quantum avoidance of curvature singularities

(large ω-s) in the sense that the probability density of observing the regions of

space-time with an extremely high curvature vanishes as a consequence of the nor-

malizability of the precanonical wave function of quantum gravity. Note, however,

that in spite of its plausibility, this resolution to the singularity problem depends on

the actual existence of the properly normalized solutions of eq. (16), which is not yet

proven. Moreover, the argument based on the normalizability of precanonical wave
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functions in its present form ignores interactions with matter, the intricalities re-

lated to the indefiniteness of Tr(ΨΨ), and the gauge fixing, i.e. the choice of the

coordinate systems/local orientations of vielbeins on average, which is important

for the extraction of the physically relevant information from the solutions of (16).

Eq. (16) can be seen as a variant of a generalized confluent hypergeometric

equation of n matrix (Clifford-valued) variables Zμ := ωIJ
μ γ̄IJ . To my knowledge,

the theory of such equations is not yet sufficiently developed in mathematics, so that

even the proof of the existence of properly normalized solutions, which is essential

for the present formulation of quantum theory of gravity to be physically viable and

mathematically well-defined, is a challenging problem. However, in the regime when

the term ωω∂ω∂ω in (16) can be neglected, we obtain a more tractable equation(
ikμ∂Zμ + 1

4Zμ∂Zμ + λ
)
Φ = 0, (18)

where Ψ(x, ω) = eikμx
μ

Φ(Zμ) and the ordering ambiguity in the Z∂Z term is

accounted for in a re-definition of λ. By separating the variables Zμ, so that

Φ(Z) = ΠμΦ(Zμ) and λ = Σμcμ, we obtain the following equation for each μ:

(ik∂Z + 1
4Z∂Z)Φ + cΦ = 0. (19)

Its solution (written in terms of the formal fractional power of the matrix in the

square brackets17) isb

Φ ∼ [4ik + Z]−4c. (20)

The corresponding probability density of spin connections given by ‖Φ‖2 behaves
as ∼‖Z‖−8c at |k|�‖Z‖, and its normalizability with the measure in (17) restricts

the admissible values of c. The above heavy-tailed power law asymptotic behavior

is characteristic of Lévy processes, with the exponent known to be related to the

fractal dimensionality of the trajectories of Lévy flights18 in the target spaces,

which are fibers of the bundle of spin connections here. A Lévy flight on each

fiber of the bundle means a random spin connection field over space-time with a

generally non-Gaussian distribution defined by the precanonical wave function. The

properties of this omnipresent random field will be reflected in the properties of test

particles propagating in space-time, their trajectories, spatio-temporal distribution

and correlations, which can be potentially observable. The fractality of the Lévy

flights in the target space of spin connections may be translated to the effective

fractality of space-time itself as one of the consequences of quantum gravity. We

hope to explore the details of that in the future.

In the opposite regime, when the term ωω∂ω∂ω in (16) dominates (and the wave

numbers kμ are not too high), eq. (16) reduces to a matrix generalization of a

simple PDE: u2Φ′′(u) − λΦ(u) = 0, whose power law solutions Φ ∼ u
1
2 (1±

√
4λ+1)

bA solution similar to (20) was obtained also in the cosmological context10c, 16, where the ωω∂ω∂ω
term in (16) vanishes identically because of the cosmological symmetries of the problem, which
leave non-vanishing only one independent component of the spin connection.
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again point to a restriction on the admissible values of the cosmological constant in

λ from the normalizability of the wave function at large ω-s, and to a heavy-tailed

Lévy-type behavior at large ω-s, albeit with a different fractal dimensionality of the

Lévy flights in this regime.

The Green functions of (16) are transition amplitudes between the values of spin

connections at different points: 〈ω, x|ω′, x′〉. They describe a quantum space-time

geometry which generalizes the classical geometry formulated in terms of smooth

spin connection fields ω(x). By noticing an analogy with the statistical hydrody-

namics approach to turbulence,19 which replaces the description in terms of the

smooth velocity fields v(x) with the statistical description in terms of the multi-

point velocity correlators, we can speak of the picture of quantum gravity derived

from precanonical quantization as a space-time turbulence or, in the mathematical

context of the present formulation, a spin connection foam. In fact, this picture is

even closer to the original Wheeler’s intuition about the “space-time foam” than

his quantum geometrodynamics based on the Wheeler–De Witt equation and the

notion of an infinite-dimensional superspace of all metrics.

Note also that the metric tensor in the present formulation is an operator:

ĝμν = −�2κ2κ2ηIJηKL ∂2

∂ωIK
μ ∂ωJL

ν

.

Hence, the intervals d̂s2 = ĝμνdx
μdxν are operator-valued. This makes the notion

of the distances between points, and hence the operational notion of a point of the

physical space-time, fuzzy due to the quantum nature of the space-time geometry.

In this way the description of quantum geometry of space-time derived from the

precanonical quantization of general relativity complements the ideas about quan-

tum space-time being discussed within the framework of LQG, string theory and

non-commutative geometry.

3. Possible connections with LQG

A first discussion of the constraints in the Ashtekar formulation using a version

of the DW (multisymplectic) Hamiltonian theory applied to the vielbein Einstein-

Palatini Lagrangian (3) can be found in the paper by Esposito e.a.20

In spite of the obvious differences of our precanonical approach from the LQG

programme, which (i) uses a (3+1)-splitting vs. our explicitly space-time symmetric

approach, (ii) heavily relies on the specifics of four-dimensional globally hyperbolic

space-times vs. our intention to develop a formalism potentially applicable in any

number of dimensions and any signature of space-time, (iii) uses functionals and

functional derivative operators vs. our use of functions and partial derivative op-

erators, etc., there are some striking similarities as well, one of them being the

emergence, after Hamiltonization, of a formulation based on the connections, with

the vielbeins, or the densitized inverse triads/dreibeins in the Ashtekar formulation,

represented as differential operators with respect to the connections.
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Whereas our approach to quantization of gravity is based on the fundamental

brackets in the Weyl subalgebra in the subspace of Hamiltonian 0- and (n–1)-forms,

our construction of the Poisson-Gerstenhaber brackets in field theory2 also offers

another, yet unexplored opportunity based on the Dirac bracket between the spin

connection 1-form ωIJ
α dxα and its conjugate (n–2)-form of polymomenta: pμ

ωKL
ν

�μν ,

where �μν := ı
∂μ
ı
∂ν
�:

{[ωIJ
α dxα, pμ

ωKL
ν

�μν ]}D = {[ωIJ
α dxα, pμ

ωKL
ν

�μν ]} ∼ n δ
[I
Kδ

J]
L . (21)

This bracket is a gravitational analogue of the bracket between the potential

1-form A = Aμdx
μ and the (n–2)-form of the dual field strength in Electrody-

namics, ∗F = ∗ 12Fμνdx
μ ∧ dxν , found in Ref. 2 (see also Refs. 22, 23). After a

(3+1)-splitting, a restriction to the initial data surfaces and integration over them

(cf. Refs. 2, 22), the bracket can be related to the fundamental Poisson bracket

underlying the Ashtekar formulation in (3+1)-dimensions, and the forms involved

in (21) can be used to construct the holonomy-flux variables underlying the LQG

approach (see e.g. Refs. 24 for a review). However, unlike the subalgebra of 0- and

(n–1)-forms in (7)–(12), the set of (n–2)- and 1-forms is not closed with respect

to the Poisson-Gerstenhaber bracket operation, hence the closure of the subalgebra

involves forms of all the degrees �(n–2).

A further understanding of possible connections of precanonical quantization

with LQG in (3+1) dimensions requires an inclusion of the Holst term25 in

the Einstein-Palatini Lagrangian (3) in order to incorporate the Barbero-Immirzi

parameter, that does not, however, appear to be necessary within our approach.

Interestingly, this property is shared with a multidimensional generalization of the

LQG-type connection formulation of pure gravity discussed by Bodendorfer e.a.26

Hence, it is likely that more connections can be found between that formulation

and the precanonical approach of the present paper.
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