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ABSTRACT

Linear optics corrections in circular particle accelerators have achieved remarkable per-
formance in the last years pushing the precision and accuracy of the measurement and
correction of machine parameters further. But development of accelerator technology is
not resting either and the introduction of next generation light sources and the design and
construction of new colliders and future projects constantly demand more advanced and

precise measurement methods.

This work presents the development and enhancement of three distinct optics measure-
ment methods. The first one is a more precise, more accurate and faster measurement
method of the f function, an optics parameter that presents a direct observable for the
focusing at any given point in the machine. Constraints on the tolerances of focusing er-
rors are given for machine performance and protection reasons. This work builds on an
improvement presented in a previous work and further increases precision, accuracy and
speed. The second method is a novel local observable for linear lattice imperfections, which
can be used to detect strong error sources in the machine, guiding dedicated corrections
and being independent of the optics configuration. The last method provides a new way to

describe the impact of forced particle motion on the measurement of transverse coupling.

The developments in the domain of linear optics measurements presented in this thesis
already positively impact LHC operation and machine development and are part of the

preparation for future operation of the LHC and other accelerators.
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ZUSAMMENFASSUNG

Im Gebiet der Korrektur linearer Optik in Ringbeschleunigern wurde in den letzten Jah-
ren beachtenswerter Fortschritt gemacht. Die Genauigkeit und Richtigkeit der Messung
und Korrektur von Maschinenparametern wurde immer weiter verbessert. Die Entwick-
lung von Beschleunigertechnologie hilt jedoch nicht still und die Einfiihrung von Licht-
quellen der ndchsten Generation und Design und Bau von neuartigen Beschleunigern und

Zukunftsprojekten erfordern neue, fortschrittliche Messmethoden.

Diese Arbeit stellt die Weiterentwicklung und Verbesserung von drei unterschiedlichen
Optikmessmethoden vor. Die erste Methode ist eine genauere und schnellere Messung
der B-Funktion, einem Optikparameter, der eine direkte Messgrof3e fiir die Fukussiereigen-
schaften an einem beliebigen Punkt im Beschleuniger darstellt. Aus Griinden des Schutzes
und der Leistungsfahigkeit der Maschine sind gewisse Anforderungen an die Fokussierung
gegeben. Die hier vorgestellte Messmethode baut auf einer vorangehenden Verbesserung
der klassischen Methode zur Messung der 3-Funktion auf und liefert eine bessere Genauig-
keit und k urzere Berechnungszeiten. Die zweite Methode ist eine neue lokale Observable
fiir lineare Maschinenfehler, die dazu benutzt werden kann, starke Fehlerquellen zu erken-
nen, wodurch eine dedizierte Korrektur gezielt durchgefiihrt werden kann. Auflerdem ist
sie unabhingig von der genauen Maschinenkonfiguration, wodurch die Ntwendigkeit der
Messung jeder einzelnen Zwischenkonfiguration entf allt. Die letzte Methode bietet eine
neue Beschreibung des Effekts der getriebenen Schwingung der Teilchen auf die Messung

der linearen transversalen Kopplung.

Die Weiterentwicklungen im Bereich der linearen Strahloptikmessung, die in dieser Ar-
beit vorgestellt werden, erleichtern bereits den Betrieb des LHC und Maschinenentwick-
lungsstudien und sind Teil der Vorbereitungen fiir den zukiinftigen Betrieb des LHCs und

anderer Beschleuniger.
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— CHAPTER1

INTRODUCTION

The goal of this PhD project is the development of linear optics measurement methods
for circular accelerators. The term optics is used because the manipulation of a charged
particle beam in an accelerator shares many characteristics with the bending and focusing
of light through lenses and other optical devices and linear refers to lattice elements with

linear magnetic field.

Linear optics corrections have achieved remarkable performance in the last years [1, 2, 3,

, 5, 6, 7], pushing the precision and accuracy of machine parameters further. But devel-
opment of accelerator technology is not resting either and the introduction of next gen-
eration light sources and the design and construction of new colliders and future projects

constantly demand more advanced and precise measurement methods.

Data acquisition and processing, as well as the final analysis and correction procedures, is
performed on electronic devices and computers. Therefore the term method used in this
work to describe a measurement or correction procedure, usually encompasses also the

implementation of a dedicated computer algorithm.

For the largest machines - containing thousands of lattice elements — many classical mea-
surement and correction methods suffer from long execution times as the computational
complexity of the measurement and correction algorithms grows with the number of pa-
rameters, often exponentially. Therefore, the speed of the used techniques is also getting
more and more crucial for a smooth operation. Moreover, often the full potential of the
analysis can only be harvested offline in the days and weeks following the actual measure-

ment.



2 1.1 Objectives of this work

1.1 Objectives of this work

In this work three distinct optics measurement methods are treated. All of these methods
take as input the Fourier analysis of turn-by-turn data of the beam centroid position, picked
up at certain measurement devices called Beam Position Monitors (BPMs). In order to get
a sufficiently strong signal, the particle beam is excited. If the excitation method induces a
forced oscillation, optics functions are changed and this effect has to be compensated. The
remainder of this chapter introduces the data acquisition and its surrounding devices, as
well as CERN and its accelerator facilities.

The first method is a more precise and faster measurement of the § function, an optics
parameter that presents a direct observable for the focusing at any given point in the ma-
chine. Constraints on the tolerances of focusing errors are given for machine performance
and protection reasons. An improvement of the classical § function measurement was pre-
sented in a previous work. This thesis builds upon this improvement and enhances it in

terms of speed and precision.

The second method is a new local observable for linear lattice imperfections. In the LHC
precise optics correction methods consider a local region of the accelerator as transfer line.
Measured optics functions at the start of the segment are used as initial condition for a sim-
ulation using the best knowledge model of the accelerator. Then a fitting on the magnetic
field strengths is used to match the expected optics to the measured one. Currently this
correction method is used at certain important points in the accelerator where particularly
strict tolerances on errors are given or errors have a high impact on the optics. Local ob-
servables facilitate detecting strong local sources and permit to apply dedicated correction
steps. This work introduces for the first time a local observable for linear lattice errors.

The third topic is the revision and further development of existing methods to describe the
impact of forced particle motion on the measurement of transverse coupling. Certain lat-
tice elements interlink vertical and horizontal particle motion, an effect called transverse
coupling which has negative impact on the beam stability in the LHC. The driving device,
used to create the signal for turn-by-turn measurements influences the measurements of
certain quantities, including coupling, and this influence has to be compensated. The cur-
rent methods neglect a small local effect of this, which became apparent recently. A new
description of the modeling of the driven motion is presented in a previous work and this
thesis applies this description to the measurement of transverse coupling, showing the lo-

cal effect for the first time in theoretical considerations.
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1.2 The Large Hadron Collider

The present work has been carried out mainly at the European Organization for Nuclear
Research (CERN) during commissionning and machine development studies of the Large
Hadron Collider (LHC). Therefore, this introduction would not be complete without a brief

presentation of the used facilities.

The LHC is the world’s largest particle accelerator with a circumference of 27km. It is
situated at the french-swiss border near Geneva as part of CERN. The initial purpose of the
LHC was to discover the Higgs Boson and to study rare high energy events with a centre of

mass energy up to 14 GeV.
The number of collision events is proportional to the luminosity

_ N2 I’lbf
 47moyoy,

(1.1)

where N is the number of particles per bunch, n;, the number of bunches, f is the revolution

frequency and o, is the beam size in direction z.

Equation (1.1) assumes that the bunches collide head-on and no deteriorating effects are

present. A more realistic form of the luminosity is 3]

2
L= N l’lbf
4moy0y

F (1.2)

where F is a reduction factor, depending on the exact conditions of the beam and the inter-
action region such as crossing angle, offset of the beams w.r.t. each other or the optical axis,
hourglass effect, non-Gaussian beam profiles etc. In the LHC, F is expected to be around
0.8.

The discovery of the Higgs Boson was officially confirmed in 2012 [9, 10] and since then the
purpose of the LHC lies in providing luminosity for more precise measurements of Higgs

channels and other high energy particle events.

Particles that enter the LHC are accelerated in several pre-accelerators, forming the so
called injector chain[11] which is illustrated in Fig. 1.1. Protons start their journey as H~
ions in LINAC2 (LINAC4 in the future) where they are accelerated to 50 MeV. They are
further accelerated in the PS Booster to 1.4 GeV, in the Proton Synchroton (PS) to 25 GeV
and finally to 450 GeV in the Super Proton Synchrotron before they are injected into the
LHC. Heavy ions start in the LINAC3 and are then accelerated in the Low Energy Ion Ring
(LEIR) before they are injected into the PS from where they continue as described for pro-

tons.

The LHC consists of eight identical arcs for bending of the beams and eight straight sec-
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The CERN accelerator complex
Complexe des accélérateurs du CERN
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Figure 1.1: CERN has various accelerators and decelerators. H™ ions are pre-accelerated in
LINAC2 (LINAC4 in the future) and passed to PSBooster, PS, SPS and finally injected into the LHC.
Image credit: [12]

tions between the arcs which contain the experiments, injection and extraction region and
accelerating structures.

An arc consists of 23 so called FODO cells containing two bending sections interleaved with
a focusing and a defocusing quadrupole’. To correct for magnet imperfections, corrector
magnets are also installed in the cell. Figure 1.2 shows a schematic of an LHC FODO cell.
During long shutdown 2, from 2019 until 2021, the CERN accelerator complex undergoes

Beam 1

Beam 2

BPM BPM

Figure 1.2: Schematic of an LHC FODO cell. Two bending sections, consisting of 3 bending dipoles
each are interleaved by one focusing and one defocusing quadrupole, respectively.

'The acronym FBDB for focusing-bending-defocusing-bending would be more precise but this work will
follow the common denomination.
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an extensive upgrade process preparing it already partly for the high luminosity upgrade of
LHC. In addition, the injector chain is upgraded in a separate project called LHC Injector
Upgrade (LIU) [13, 14].

1.3 Optics measurements and corrections

There are two areas for which the continued measurement and correction of optics pa-
rameters is of importance. The first is machine protection. If the nominal LHC beam hits
the wall of the beam pipe it can deal severe damage to the elements ranging from heat-
ing up superconducting elements and inducing a magnet quench to physically destroying

machine parts by melting (or even evaporating) the material.

The second area for which optics control is highly important is the machine performance.
The delivered luminosity can be reduced by optics errors. The two main LHC experiments,
ATLAS and CMS demand a luminosity imbalance below 5%. To achieve this an optics
correction up to the percent level is needed. High quality optics also improve operational

efficiency.

1.3.1 Measurement tools and techniques

The most important technique for beam based optics measurements that is applied in the
LHC is the excitation of the particle beam. If the bunch is excited it performs a betatron
oscillation about the closed orbit with a measurable amplitude. The position of the beam
isrecorded at certain positions in the accelerator at each revolution. The obtained turn-by-

turn data is then analysed as described later.

To obtain said excitation there are two methods that will be introduced in this section: a
free kick which provokes a free oscillation of the bunch and an AC-dipole which drives a
forced oscillation of the beam.

Free Kick

If the beam experiences a kick it will perform a damped free oscillation. The particle’s po-
sition at the same location turn after turn is illustrated in Fig. 1.3. Light particles like elec-
trons suffer from a strong damping because of their high synchroton radiation but heavier
particles like the protons accelerated in the LHC are damped much slower. Nevertheless
the oscillation amplitude decreases fast and not many turns are available for high precision
measurements of the turn-by-turn signal. In order to still have as much signal as possible

the kick strength has to be as high as feasible without kicking the beam strongly enough
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to damage elements or even kick it out of the accelerator.

Furthermore the excitation by a single kick carries the risk of filamenting the phase space

and blowing up the beam emittance.

0 500 1000 1500 2000
turn

Figure 1.3: The particle’s turn-by-turn position for an excitation by a single kick.

AC-dipole

The other method to excite the beam that is used in LHC is a dipole connected to an alter-
nating current power amplifier. This creates a driven oscillation of the beam [15] which
can be measured in BPMs [16, 17]. The excitation amplitude is slowly ramped up for 2000
turns in order to stay in an adiabatic regime [ 18] held constant for 6600 turns and then again

adiabatically ramped down. The particle’s turn-by-turn position is illustrated in Fig. 1.4.

The adiabatic ramp up and down prevent a blow up of the beam emittance and since the
oscillation amplitude can be held constant, a smaller maximum amplitude is needed. Since
the driven excitation creates a forced oscillation as opposed to a free one as in the case of
a single kick, the turn-by-turn motion of the particle does not reflect the pure betatron
oscillation and this effect has to be compensated. For this compensation a good theoretical

knowledge of the driven motion is needed.

Beam Position Monitors

To record the turn-by-turn position of the beam, the LHC possesses more than 500 dual-
plane Beam Position Monitors (BPMs) [19] which are installed approximately regularly

around the ring.

As the beam passes through the monitor, it induces an electric signal which is then pro-

cessed to calculate the beam position.
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Figure 1.4: The turn-by-turn position of an AC-dipole excitation. The driving force is ramped up,
held at flat-top and ramped down again. The small plot shows a magnified view of the start of the
ramp up.

The BPM resolution in the LHC is approximately 0.1 mm [20, 21] with a pilot bunch of 101°

protons, that we use to measure the optics.

1.4 Outline of the thesis

Chapter 2 gives an introduction of the necessary theory. Starting with linear beam dy-
namics it introduces the most important terminology before passing to the more math-
ematically involved regime of normalised coordinates, adding up to the introduction of
resonance driving terms which are used to study beam optics throughout this work. This
formalism is then used to express the quantities needed in later chapters in a useful form.
Finally, the actual methods used to measure some machine parameters are described in
detail giving the reader an insight into where the newly developed methods will act. No
new discovery is presented in this chapter and it is a mere summary of the theoretical foun-
dations. Only subsection 2.6.1 bears a minor amount of original work re-deriving the final
form of the forced coordinates in the used formalism, generalising it to an arbitrary position

in the ring.

Chapter 3 presents the improved 3 function measurement. Previous methods are presented
as well as theoretical foundations of generalised least squares minimisation. Original stud-
ies are presented in the form of a derivation of the analytical error propagation as well as
simulation studies to assess the speed, accuracy and precision of the new method and ex-

perimental measurements carried out at the LHC.

In chapter 4 a new local observable is derived, use cases and limitations are worked out
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and simulations as well as experimental verification are presented. This chapter consists

in its entirety of original work.

The final topic is presented in chapter 5. The original work consists of the derivation of
forced coupling resonance driving terms and the comparing studies. For completeness,
methods currently used to model the effect of driven oscillation on the coupling terms are

reviewed. This revision does not represent original work.

Since this thesis treats very distinct topics, each chapter begins with a brief descriptive
block to guide the reader into the respective topic. A brief summary of the chapter’s struc-

ture is given as well as an outline of the original work presented in the chapter.

Finally, chapter 6 represents a conclusion of the thesis, summarising the treated topics and

highlighting their merit as well as an outlook of further development possibilities.



— CHAPTER 2

THEORETICAL FOUNDATIONS

This chapter presents the basic theoretical foundations needed to develop the methods
and algorithms presented in the main part of this thesis. Therefore we need a sound
understanding of linear beam optics, optics parameters like 8 function and phase and,
finally, linear transverse coupling. Only a brief summary of the vast field of accelerator
physics can be given in the scope of this thesis. The interested reader may consult some
of the great introductory works of the field, e.g. [22, 23, 24].

Also the normal form approach shall be introduced here as it is needed to calculate
optics parameters from Hamiltonian terms later on. Since this is a mathematically heavy
subject, the author tried to find the optimum between brevity and rigor.

No new discoveries are presented in this chapter. It is a mere summary of the necessary
theory.

2.1 Beam Optics

Very much like light beams, charged particle beams in an accelerator can be bent!, focused,
defocused and can be subject to effects like dispersion and chromaticity. Therefore the term
optics is generally used to describe the movement and behaviour of particle beams around

the accelerator.

This work focuses on single particle dynamics, effects between the particles of a beam will

be neglected.

2.1.1 Linear Beam Dynamics

Linear beam dynamics studies the effect of linear electromagnetic fields on the particles.
This includes primarily only drift spaces, bending magnets and (de)focusing magnets. Un-

der the presence of electromagnetic fields E and B, the Lorentz force acts on the particles

lthe bending of light is, of course, technically difficult to achieve
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with charge g and velocity 0.

-

F=q(E+UxB) . (2.1)

A dipole with a constant magnetic field B, bends a particle’s trajectory into an arc of radius

Jej

p
=2 (2.2)
=5

It is useful to describe the motion in a circular accelerator in a co-moving reference frame

as depicted in Fig. 2.1 where the cartesian coordinates {x’,y’,z'} are transformed into a
system {x, y, s} with the properties:

As || reference orbit

’

<>
<>

£=PxXAs (2.3)

and a longitudinal coordinate s along the reference orbit. The optical axis of the elements

> <

V() f---___ particle

bending I

radjyg ye

>

design orbit ="

Figure 2.1: The Frenet-Serret coordinate system which is moving along the design orbit of particles
in the accelerator.

is usually used as reference orbit. If there is no transverse offset of the elements, this coin-

cides with the closed orbit.

In this coordinate system the motion of a particle in a circular accelerator is described by
Hill’s differential equation:

d’z

—— +k(s)z=0 2.4

S+ k() 2.4)
where z € {x,y} is the transverse coordinate and k(s) is the linear magnet strength at

position s.

A solution that satisfies Eq. (2.4) in two dimensions is

z(s) = Az(S) cos (qoz(s) + ¢z,0) (2.5)



Chapter 2 Theoretical Foundations 11

where the s-dependent amplitude of the oscillation can be split:

AZ(S) =1/ ZJZ;BZ(S) . (2.6)

B,(s) is the s-dependent part of the amplitude, called 8 function. J, is the action invariant

of the particle’s motion. 5(s) is periodic with the circumference of the ring C.

Of special interest for a collider is the value of the § function at the interaction point, be-
cause it defines the beam size and has a high impact on the luminosity, as follows from
Eq. (1.1). At the LHC, the 8 function at the interaction point is denoted as g* = S(spp)
whereas the smallest § function is called B,

@(s) is called the betatron phase and satisfies the following property:
S1
1
o) = 9(o0) = [ 5545 27)
So

The trajectories of particles with an action J are limited by an envelope function 4/ 2J( as
illustrated in Fig. 2.2. Actual g functions are shown in Fig. 2.3.

T I
- design orbit — -
particle trajectories —

envelope = v/Be.— |

0 5 10 15 20 25 30
phase advance

Figure 2.2: The trajectories of particles with action J are shown.

Solutions of Eq. (2.4) can be expressed in matrix form

(o) =l o)),
Dz b My My )/ \Pz a

Throughout this work, the following definition of momentum is used:

_ dz
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9000 [ [ [ : [

8000 |- By —— -
7000 |- By —— -
6000 |- g
5000 |- .
4000 - .
3000 |- .
2000 |- .
1000 - .

B [m]

—400 —200 0 200 400

position relative to IP1 [m]
350

300 - Bx —— T
250 By — |

g 200

2 M

1000 1500 2000 zsoo 3ooo 3500
s [m]

Figure 2.3: TOP: The $ function around IP1. BOTTOM: The f functions in an LHC arc, the plot
ranges from IR2 to IR3, avoiding high  regions (IR1 and IR5) shown in the top plot. Both plots
show the LHC collision optics at §* = 30 cm.

The reference frame spanned by z, p, is called phase space®.

The matrix

M = (m“ m”) (2.10)

mp; My,

is called the transfer matrix. It describes the transformation of phase space when going

from one position s, in the lattice to another sp,.

At this point in an introductory text of, e.g. a thesis or a textbook on accelerator physics it
is customary to give a simple example, a basic linear lattice element like a drift space or a
quadrupole for illustration. The author chooses to present a quadrupole magnet, since the
effect of quadrupolar imperfections is dealt with in later chapters. This example is revisited
in the more complex frameworks of Hamiltonian mechanics and Lie maps to guide the

reader.

For s inside the quadrupole k(s) = k; . The solution of Hill’s equation is

z(s) = cos [\/%(s — SO)] zZo+ # sin [\/%(s - so)] Pzo - (2.11)

. . d
2Sometimes the name phase space is reserved for the reference frame spanned by (z, Tf) whereas the one

spanned by (z, %) is called trace space. This work will, however, follow the convention stated in the main
S
text.
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Figure 2.4: This schematic represents the accelerator lattice, consisting of consecutive maps
M, .. My

The transfer matrix of a focusing quadrupole reads

Mo = COS\/E %sinx/f
or —\/%sinx/f COS\/E

where K is the integrated magnet strength

(2.12)

s;+L
VK = f Vk(s) ds (2.13)

for a quadrupole at position s; with length L.

A purely linear accelerator can than be constructed by the composition of the transfer ma-
trices of all its elements. This composition yields a special example of the transfer matrix,
the one that transforms the phase space coordinates of a particle at a given position to the

same position in the next turn:
w
Mo = H M; (2.14)
w=1
where M,, is the transfer matrix of the wth element, W is the number of elements in the

accelerator and the product denotes the repeated matrix multiplication from the left. Fig-

ure 2.4 illustrates this setup. The phase advance of one turn

so+C

1 ds
QZ=E f o) (2.15)

normalised by 27, is called the betatron tune.

A general form of Eq. (2.10) is

%(COS ®Pab T Ag sin qoab) V ;Baﬁb sin Pab
a (2.16)

dg—a B+aga

b cos — b sin Ba cos — ay sin
57, COSPab — “ o SiNQab 4/ ﬁ’b( Pab — %p SIN Pgp)
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where the quantity

_ 1 dgG)
a(s) = > " ds (2.17)
is called « function. «, § function and a third quantity
1+ a?(s)
§)= ——>2 (2.18)
A 6
are called Twiss parameters.
For convenience and later usage we introduce the following short-hand notation:
Pzab = ©z(Sp) — 9z(84) + 2Q,0O(s4, Sp) (2.19)

which is the phase advance between position s, and s, taking into account the relative
position of s, to s,. If element b lies upstream from element a, the interval wraps around
the end of the lattice definition and the tune has to be added to the phase advance. For this

the following definition is used:

1 ifsg > s
O(Sg,Sp) = . (2.20)
0 else

The particles motion in phase space follows a tilted ellipse which is described by

¥($)22(s) + 2a(s)z(5) pz(s) + B(s)pz(s) = 2J; (2.21)

where J, is called the action®. The area of the ellipse is 2J,7.

The one turn map in this form can be retrieved by setting 5, = By, oty = ap and @, = 27Q:

My = (cos(ZnQZ) + o, sin(27Q,) Basin(27Q,) ) (2.22)

—ysin(27Q,) cos(2mwQ,) — o, sin(27Q,)

2.1.2 Courant-Snyder coordinates

If one plots the phase space of a particle at a certain position s, over many turns, it draws
an ellipse with area 2J,77 where J, is called action. Particle motion is easier expressed in

Courant-Snyder coordinates [25, 26]

A 1 0
Z) = (VB z 2.23
-2 2)C) @2y

30ften a quantity €5 = 2J, is defined, called the single particle emittance. It must not be confused with
the beam emittance €, = i(eﬁ“‘).

<|

¥
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which transforms the phase space ellipse into a circle with radius 4/ 2J,. The transformation

Dx j]{h;‘}: Dx

x R{hf} =2

Figure 2.5: In physical coordinates the turn-by-turn movement of the particle draws an ellipse.
Transformation to Courant-Snyder coordinates turns this ellipse into a circle.

is illustrated in Figure 2.6. In the following Courant-Snyder coordinates will frequently be

abreviated by CS coordinates.

The transformation matrix in Eq. (2.23) is called T for the rest of this chapter. Applying
T to the one turn map, one can see that the one-turn evolution of the particle is now a
rotation of 277Q,:

T Mo T™! =

(2.24)
sin(27Q,) cos(27Q,)

. (cos(ZnQZ) - sin(27rQZ))

It is often convenient to express the Courant-Snyder coordinates in their complex form:

h

N

ZFip, (2.25)
and the one turn map simplifies further to a rotation about 27Q,,

M hi = e¥27iQzp: | (2.26)

In a linear lattice, the particle motion in complex Courant-Snyder coordinates at turn N +1

and position s in the ring reads
h(s,N) = /20,eFI2NTQz+=(5)+¢z 0] (2.27)

with ¢, o being a phase offset given by initial conditions.

The formulae above assume no coupling between the transverse planes. Before we con-

tinue to dive into the depths of general normalised coordinates for non-linear optics, we
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introduce more general coordinates and maps, mixing the two planes:

X X

Pxl _ | Px (2.28)
y y

Py/, py/,

where the transfer map M now is a 4 X 4 matrix. For convenience, the vector containing
the 4D coordinates will be called Z.

2.2 Hamiltonian description and Lie maps

Some preliminaries are needed to describe the particle motion using the Hamiltonian de-
scription and Lie transformations. A thorough repetition of the topic of Lie groups and Lie

algebras can not be given in the scope of this thesis, the reader may consult [27].

The general Hamiltonian of a charged particle in a circular accelerator is [24, 28]

po S L0\ (o (py -y —
A= (1+hx)\/ <5+ - % ) (P = a:? = (py = 4y = 35 =(1+hx)a, (229

with the following definitions:

R reference momentum,

S = i—z relative longitudinal momentum deviation,

h = % local curvature with p being the local curvature radius,

Bos Yo relativistic factors,

q the particle’s charge,

[ the electric field,

a, = PiOAx, a, = PiOAy the normalised transverse components of the vector potential (A, A,)),
ag = Pio s the normalised longitudinal component of the vector potential

The Hamiltonian equations of motion [29] read

dz _ o dp,
& ey, M T

(2.30)

for canonical variables z and p,. The previous example of a quadrupole is again used

to demonstrate this approach. The Hamiltonian for a particle moving through a single
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quadrupole is obtained from putting the corresponding vector potential

ag = —%(xz -9 (2.31)
ay=a,=¢=0 (2.32)
and O curvature (h = 0):
ﬁ—i—J(5+i>2—p2—p2—L+ﬁ(x2—y2) (2.33)
Ro Ro TR 2 .
2 2 2

3 px + py ( 5 ) kl 2 2
H = + + —(x* — +0(2nd) . 2.34
7+ (355) + 302y +00nd) (2.34)

In the simple example at hand, only one on-momentum particle is considered:

.k pi + b}
H= > (x* = y*) + 5 (2.35)
Plugging this consecutively into the Hamiltonian equations of motion, yields
dx OH
&~ ap,  Px (2.36)
d>x  dp,
ds2 = ds —kax (2.37)
which coincides with Hill’s equation, Eq. (2.4).
Poisson brackets, 5f 5f 3
8 g
[f.gl = (—— - ——) : (2.38)
ze{zxj,y} 0zdp, OJp,0z
can be used to rewrite the Hamiltonian equations:
. OH . oH
[Z, H] = E and [pZ’H] = _6_z . (239)

The Poisson brackets form a Lie algebra and therefore some properties can be utilised. First,

we define a Lie operator acting on g

fig=1f.8] . (2.40)

Then we can use the exponential parameterisation of Lie groups to move away from the
origin [27] and describe the particle motion going through an element w in the lattice using
the kick Hamiltonian of this element, which is constructed by multiplying the thin lens
Hamiltonian by the length of the element, H = HL

x(sp) = e H x(sy) (2.41)
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with L being the length of the element. To illustrate this, once again the quadrupole is

used. Some helpful identities, for convenience:

1g:? =:g1o:g:
:x%: f(x, px):zxw
p? f(x, px)=—2px% : (242)

Now it is possible to show

7 1 1
x(sb) =e'H: x(sa) = x(sa) - pr(sa) - Eszlx(sa) + gL3k1px(Sa)

1
mk%px(sa) + ...

= x(sg) cos(L\/k_l) - 5(—\;;;_? sin(L\/k_l) (2.43)

1
+ ik%x(sa) -

which agrees with the propagation through a quadrupole given in Eq. (2.11), noting that
the Hamiltonian, and therefore k, is constant inside the (ideal) quadrupole described by
the Hamiltonian Eq. (2.35). Usually, non-linear terms are collected into a non-linear map
e'l* | generated by the non-linear Hamiltonian and a linear transfer map (rotation in CS-
coordinates) M:

My, =eHoM, (2.44)

where the subscript w denotes the map of element w in the lattice and the particle motion
is propagated through the element by

Z(sy + L) = e Hw' M, Z(s,,) (2.45)

for element w with length L.

2.3 The normal form approach

In order to derive optics parameters from Hamiltonian terms the normal form approach -
usually encountered in treatments of non-linear optics — is useful. It is described in its full

mathematical detail in [30, 26] and more illustrative in [31, 32, 28].
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In the formalism of complex CS-coordinates, a transfer map can be written as

h hi

hy; hy;

:‘L =M ’i (2.46)
hy hy

hy ) hy .

where
md m mi m
1000 0100 0010 0001
2 2 2 2
Mioo0 Moi00 Mooio  Mooo1
M = 3 3 3 3 (2.47)
Miooo Moi00 Mooi0 Mooo1

4 4 4 4
Mioo0 Moi00 Mooio  Mooo1

The significance of the multi-index m}klm will become clear in a moment. It shall be noted

that some symmetry relation applies:
mjklm = mzjml (248)

The map of a non-linear lattice element i cannot be described by a matrix M; only. A higher
order map is necessary. Here the multi-index comes into play. Higher order maps M are

composed of higher order polynomials:

RE) =Y Y Mg ()Y () (1 60) (B )™ - (2.49)

n=1 j+k+l+m=n

The transformation to Courant-Snyder coordinates flattens the phase space of linear optics
to a circle. For non-linear optics where the phase space motion is far more complicated the
normal form approach can be used to transform to a new set of coordinates, the normal
form coordinates (their exact form will be defined at the end of this section), in which the
the phase space motion is flattened to a circle. Figure 2.6 illustrates how particle trajectories
inside a non-linear machine evolve in phase space, CS-space and normal form space. The
irregular shape of in phase space is tilted to a more “upright” form in CS-space but only a

transformation to normal form space flattens the trajectory to a circle.

This map is generated by the non-linear Hamiltonian of the element. The Hamiltonian of

element w evaluated at position s in multipolar expansion, reads

Hy, = —Re Z(Kn—l + i1

n>2

— (2.50)

(x + 'iy)”)}

w
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Dx I[ht] I[¢x]

Figure 2.6: If non-linearities are present in the lattice, the phase space motion of the particles is
deformed and does not show the form of an ellipse any more. Transformation to Courant-Snyder
coordinates tilts the phase space but does not remove irregular deformations. Only a transformation
into normal form coordinates restores a perfect circle.

where K,,_; and J,_, are normal and skew integrated multipolar field strengths,

1 0"B
19J"B
In =15 (2.52)

i.e. a pure dipole has only K|, a pure quadrupole only K etc.

In complex Courant-Snyder coordinates, the Hamiltonian Eq. (2.50), evaluated at position

s;, can be written in the form

Hys) =Y > hyjamel00%cwrtCmeyul (ny] (0o () ()"

n>2 j+k+l+m=n

(2.53)
where the Hamiltonian term hy, jx;p, is defined as
QU+ m)Ky 1 +i[1-QU+m)]Jyn Itk bim
hw,jklm = j! KV 1 ! 2J+k+1+m l m(ﬁx,w) 2 (5y,w) 2 . (2-54)
The Hamiltonian of the whole lattice is denoted by
w
H(s) = ) Hu(s) - (2.55)
w

In Eq. (2.54) B,y is the B function of the corresponding plane at position w and

1 ifaiseven
Qa) = . (2.56)
0 ifaisodd
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The one-turn map of an accelerator now reads
w
Mor = [[ M, . (2.57)
i=0

It shall be noted that Lie maps do not, in general, commute and, in order to construct a
one-turn equivalent of the Hamiltonian, the Baker-Campbell-Hausdorff formula has to be

applied:

1 1
‘Hy+Hy+ 5 [Hy,Hy |+ 5 [Hi, [Hy, Ha )+

tHy:giHy — g , (2.58)

e

as opposed to Eq. (2.55) which is only a simple summation of Hamiltonian coefficients to

build one single Hamiltonian operator.

The transformation from complex Courant-Snyder coordinates to normal form coordinates

and back is performed using a generating function F:

GG=e"Fht (2.59)
ht =eFréE | (2.60)

The normal form coordinates {F can be expressed in terms of the normal form phase ¢ and

normal form invariant I,:
EE(s) = \2LellF9z(0+9z0] (2.61)

Since ¥ and I, are canonical variables, the Poisson bracket between any of the normal form
coordinates can be calculated easily:

(D", &)™ = —2inm(EH" O™ (2.62)

and all other combinations are zero.

2.4 Resonance driving terms

The following commutative diagram shows the transformation from the Courant-Snyder

one turn map to the normal form one turn map:

MOT=61<H>‘P: R

E(N) S (N +1)
e—:F:T F—:F: (263)
h(N) S h(N +1)

Mor
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The motion in normal form coordinates J/ o1 consists of a pure rotation about the phase
@ and the action of the phase-independent Hamiltonian (H) ” The one turn rotation ad-
vances the phases by 277Q,:

R =9 +27Q, (2.64)

and an arbitrary rotation may be defined as
Rap=9vp+a . (2.65)
The normal form coordinate of the particle at position s and turn N reads
CE(s,N) = 2L, ¥z0tNQz 43| (2.66)

Since the diagram is commutative one can propagate the complex Courant-Snyder coordi-

nates from one position in the lattice to another by using the normal form approach:
hi(s1) = e Mlore’ =T hz(so) . (2.67)

From that one can derive the relation between the Hamiltonian and the generating func-
tion F: ;
H
F=—— 2.68
TR (2.68)

where H* denotes the phase-dependent part of H:
Hif=H-— <H>qo , (2.69)

. 1 . . . . .
and the fraction = denotes, in accordance with convention and abusing notation, the

matrix inverse of 1 — R. The generating function F can be expressed in polynomial form

Fis)= 3 fram() &G € () &)™ (2.70)

Jjklm

and Eq. (2.68) has to hold for each polynomial order seperately. Thus one can relate

w
3 hy, jklmei[(j—k)qox,wz+(l—n1)<py,wi]

_w
Sam(si) = AP0 -0, (2.71)

The enumerator of fi, is referred to as resonance driving term*.

*Sometimes the whole expression fjx;, is called resonance driving term.
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2.4.1 Influence of linear lattice imperfections on betatron phases

This section revises the derivation of phase advance beating and 8 beating from quadrupo-
lar field errors by reproducing the steps of [33] and [34]. Only normal quadrupolar field
errors are considered. In this case the generating function F reads

F(s5) = fa000,j (Sg)?:sj)2 + Joz200,j <§x_,sj)2 Joozo,j (§yfs,-)2 + foooz, (Svy_,sj>2 ;

with
W .
Z 5Kw,lﬁx,wezwx’wj
(2.72)

froo0,) = 2
2000,j — 8 (1 _ e4i7TQx)

The complex Courant-Snyder coordinates can be calculated from the normal form coordi-
nates by Eq. (2.60)
1
hi =4+ F: §;+§:F:2§;+O(f3) . (2.73)

Using the Poisson bracket identity Eq. (2.62) one can calculate

Fily = [fozoo € Q] = 4ifoz00lx
F2EE = [fzooo & ’4iﬁ)200§x_] = — [4 300" &

This can be used to calculate the C-S coordinate at position s; and turn N:
hi(s,N) = 7 (s, N)
. _ 1 2
= §F (55, N) + 4if5000, ;6% (5, N) + > |4£2000,j| & (55, N) + O(f?) (2.74)

which made use of the fact that f5500 = foz00 to simplify the expression. The O(f?) term
collects all third order contributions of Re{f,000,;}» 7m{f000,;} and | f000,j]-

The phase of the real signal X; = Re {hj{ (sj)} reads, up to first order,

= Ref(1 4+ 4 ) VT ] @

The effect of the RDTS fjx;,,; on the phase of the main tune line is the argument of the
term in parenthesis in Eq. (2.75):

—4Re{ fr000,} )
1+4Im {fzooo,j + '4f2000,j|2}

~ —4Re{ fro00,i} — 16Re{ fr000,i} IM { fr000,i} - (2.76)

arg (1 + 4if2’2)00,j) = atan (

To get the 8 function under the effect of focusing errors, one can compare the amplitude
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4/ B.J, of the coordinate by considering the change in J, negligible:

V2B =V 2BRT Re {1 + 4ifyo00,i}
By = B (1 + 8Im{ fr000,}) + O(fH) . (2.77)

Since only f,00¢ appears in the phase beating the indices 2000 will be suppressed from now
on. A detuning AQ, is generated by the phase independent Hamiltonian terms hy, ;;;;. The
only quadrupolar contribution comes from the term h;,¢,. The tune in Eq. (2.75) consists
of

Qx = Q' + AQy (2.78)

where Q" is the model horizontal tune and

a<H>gD _ aZthlloo

27TAQX = — a]x a]x = —2h1100 + O(Jx) . (2.79)
The Hamiltonian of the whole accelerator reads
w
H(sq) =) Hy(s,) (2.80)
w

with Hy,(s,) being the Hamiltonian term from Eq. (2.55). The sum over w in Eq. (2.80) runs
over each element w in the accelerator. The accumulated phase shift due to the detuning

between elements i and j reads:
sgn(j—i
h1100,ij = —% Zﬁbnul,x5Kw,1 + O(6K?) . (2.81)
I

I'is the interval [min(i, j), max(i, j)] and sgn(x) denotes the sign function:

-1 ifx<0
sgn(x) =40 ifx=0 . (2.82)
1 ifx>0

The total phase advance beating is then the sum of the accumulated detuning from Hamil-

tonian terms and the phase beating from the RDTs:

Ang,ij = —2]’11100’”‘ —4Re {f; - ﬁ} +0 (fZ) . (283)

With the following identity [31, 35]:

f=sgn(j— i)% > BmSK,, €70 + £ (2.84)

wel
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we can eliminate f; from Eq. (2.83). Here and in the following we consider only the horizon-
tal plane and thus we omit the index x in the optical functions ¢,p, 3, and the quadrupole
field K, ;, for arbitrary indices a and b. For compactness we rename the first part of f; to

Ajj=sgn(j—i)< Z BUSK,, 1e”P0) (2.85)

weI

We can simplify the last term of Eq. (2.83) [33]:

Rel{f — fi} = —Re{A;;} + Re{ezw?}}ﬂm{fi} +Im {ezw?}}ﬂze{ﬁ} — Re{f}
= —Re{A;;} + (1—231n gol]):Re{fl} 2sin gff cos p}Im {f;} — Re {f}
= —Re{A;j} + Re{f} (—2sin® o) — T [ f;] 2sin ¢ cos @]} (2.86)

Equation (2.83) now reads

Ag;j = — 2hy100,i5 — 4Re{A;;} — 8sin® i Re {f;} — 8 sin @ cos gl Im {f} + O(f?)
= h;; — 8sin’ piRe{fi} — 8sin gff cos pfiIm{fi} + O(f?) . (2.87)

We simplified the equation with the definition

]/_lij = 2]’11100 Jij = 4\736 Z ﬁwaK ,1 Sll’l qouu : (2.88)

wel

Equation (2.87) will be used in chapter 3 to calculate a more precise 8 function and in

chapter 4 to construct a local observable.

2.4.2 Coupling RDTs

Linear transverse coupling is the effect that the linear optics of one plane influences the
optics parameters of the other plane. This can have undesired impact on beam size and

luminosity as well as on Landau damping®.

The generating function with only skew quadrupoles reads

F = fi010$4 S5 + fioo1$3 S + for185 Sy + ool &y - (2.89)

Following the same steps as in the previous section one gets the coupled motion:

hy(sj, N) = $E (55, N) + 2ifor01(5)85 (55, N) + 20 for10(5)85 (55, N) (2.90)

*Landau damping is a mechanism, first discovered in plasma physics[36, 37], by which larger tune spread
leads to a more stable beam.
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with

Z h wA/ 16x w;gy wei[waj,x"'(ij,y]
w

4 (1 _ e27ri(Qx+Qy)) ’

Z S wA/ Bx w;By wei[gowj’x_(pwj’y]

_w
Joro(s) = 4 (1 _ ezni(Qx—Qy))

fo101(Sj) =

(2.91)

using equations (2.54) and (2.71). The value of the coupling resonance driving terms fig19
and fioo; and their complex conjugates determines the strength of the coupling between

the planes. If both are zero there is no coupled motion.

2.5 Calculation of optics functions

2.5.1 pfunction measurement

To calculate the 8 function at a location s in the machine, two methods are routinely used
in the LHC: the first calculates the § function from the amplitude (« 4/2If) and the second
one uses the phase advance. In this work only the second one is considered and the task

of chapter 3 is the improvement of this method.

In order to get the real 8 function from phase, one can start with the transfer matrix M;;
between elements i and j in Eq. (2.16). The quotient of the first row elements reads
(mi;) 1
1= = (cotg;j+a;) . (2.92)
(m 1)12 Bi
Subtracting the quotient of the first row elements of the transfer matrix between elements

iand k, %, yields
Mik)1

m;; ;
O ) oo

If the region between the three BPMs i, j and k is free of imperfections the model transfer

matrix equals the measured one M;; = M;j; and, consequently,

1 1
o (cot @f} — cot go{?c) =z (cot;; — cot i)
_ cot;j — cot gy m

= I 2.94
cotg;; — cot g (2.94)

i

Equation (2.94) was developed in [38] and used for LEP and in run I of LHC.
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For optimal operation of the machine a precise control of the 8 function is needed. Firstly,
the particles must stay within the boundaries of the physical aperture and at the interaction
point the beam size has to be as small as possible to increase luminosity. And secondly,
a too large deviation from the optical axis inside a higher order magnet may lead to an

undesirable feed-down of the orbit offset.

The deviation of the § function from its design value is called beta beating and defined as

AR _ B—p"

pm — pm

(2.95)

The S beating is often expressed in percent. As stated in the introduction, the goal is to
limit B beating for machine protection reasons and to optimise the luminosity. The effect of
8 beating is particularly problematic in strong magnetic fields where only small deviations

from the design orbit create large perturbations the particle dynamics.

2.5.2 Coupling measurement

One possible method to calculate coupling used for LHC - which is independent of BPM
calibration errors — makes use of two nearby BPMs in order to cancel out calibration factors.
It is therefore called the two BPM method. This method is described in this section.

Repeating the calculations of section 2.4.2 for all transverse C-S coordinates yields

hi =&+ 2ifi0108y + 2ifion sy
hy =+ 2ifio108x + 2ifion Sy
hi = ¢ = 2ifio108y — 2ifion$y
hy = ¢ = 2ifio108y — 2ifionlx - (2.96)

The Fourier transform of the coordinates reads
F{hi}(w) = \21,e%=08(Q, t w) (2.97)

where 6(x) denotes the Dirac delta function. Figure 2.7 shows the spectrum of i3 and hyf
excited by an AC-dipole and with coupling. The driven fractional tunes are Q¢ = 0.270 and
Qj} = 0.322. The respective main lines are well dominating the spectrum and the secondary
lines induced by coupling are clearly visible at the position of the respective other plane’s

tune. For the following it is convenient to introduce a shorthand notation for the spectral
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hor mm
ver mmmmm

ampl [arb. units]

026 027 028 029 03 031 032 0.33
w [27]

Figure 2.7: This example plot shows the Fourier transform of horizontal and vertical particle mo-
tion from simulations with an AC-dipole and coupling sources. The vertical and horizontal frac-
tional driven tunes are Q¢ = 0.270 and Qf, = 0.322.

lines # {hz} (n,Qyx + 1n,Qy):

H*(n,, ny) = F {hx}(nQy + nyQy)
VE(ny, ny) = F{h$}(n,Q + nyQy) . (2.98)

If the BPM calibration is not perfect the measured H and V lines are not proportional w.r.t.

each other:

xmeas - e X

yres =Cyy . (2.99)

The calibration factors Cy,, cancel out if one divides the spectral line by the amplitude of

the main line:

o H*(0,n))
®My T H*(1,0)|
+ —_ V+(nX50)

= 2.100
20 = 70, 1) (2100

Important for the coupling calculation are the following normalised spectral lines:

H*(0,1) Jy :
+ ’ — i [ Yo —ip
Afy = T (1L.0)] = 2i, / 7 fibore ™"y (2.101)

V+(1,0) T .
+ ? = .4 —1¥x
Bl,O - |V+(O, l)l =2 Jyflo()le 1P (2102)
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which contain fyo; and

H*(0,-1) [5,
+ — ’ — i ) fx ip
AG_1 = T+ (1,0)] =2i folome Y (2.103)
V+*(-1,0) |, .
+ -2 N > —9j [ X Fx 1Py
BT = [V+(0, D] = 2i Jyf1010e (2.104)

which contain fg;0-

The coupling RDTs fi919 and figo; can then be calculated by combining Eqgs (2.101) with
(2.102) and Eqgs (2.103) with (2.104), respectively:

1/
|f1001| = 2 |A3,1Bf0|

1
| fiorol = 51/ |48, 1B 10| - (2.105)

[\9]

The normalised spectral lines Ao,n, and B, are the Fourier components of the complex
coordinates. But only the projections onto the real axis can be measured. The next step is
to calculate the complex coordinates from the measured ones.

Since hy = z+ip, the complex coordinate can be obtained from position and momentum.
BPMs can only measure position but using the position data from a second BPM one can
reconstruct the momentum. The propagation of complex C-S coordinates through a region
that is empty of non-linearities reads

2 2
(A ) = Rab(A ) (2.106)
bz/, Dz
a

where the transfer matrix R, is a simple rotation matrix as discussed in section 2.1.2. From

this one can reconstruct the momentum:

Pza = + Z, tan g (2.107)

COS @gp

where @, is the phase advance between the two positions s, and s;,. Therefore:

A

N . Zp A A . .
hi(s,) =2 —l( + 2, tan ):z 1—itan —i
z( a) a COS @yp a Pab a( qoab)

A

z
COS @ab

(2.108)

Since the Fourier transform is linear, this identity can be propagated to the spectral lines:

i
COS Pup

H+(nx’ ny)a = (1 —itan qoab)H(nx’ ny)a - H(nx’ ny)b (2-109)

where H(n,, ny) is the measured spectral line which is just the real projection of the com-
plex line. Under the assumption that the region between s, and s, is free from non-linea-
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rities and coupling the action J, does not change between the two positions and
|H(1,0)q| = [H(1,0)p| = v/ 2y
V(0. 1)q] = V0, )| = /2], (2110)

This allows to express the real normalised spectral lines as

H(0.ny),  H(0,n),

A(0,n,), = =
O = THE 0] = THL 0y
V(ny,0)q _ V(ny,0)q
B(n,,0), = = (2.111
(e = 70,10 = V0. Dl :
This can be plugged into the reconstruction formula Eq. (2.109)
H+(”x’ ny)a .
T’O)a = (1 —itan qoab)A(nx, ny)a - mA(nx, ny)b (2112)
Together with the identity
H(1,0) = 3 (H*(1,0) + H~(1,0)) = 3H*(1,0) (2.113)

because H™(1,0) = 0, one can express A* (0, n,) and B*(n,,0) in terms of normalised real
spectral lines
i
COS @gp

l
COS @up

2A+(nxs ny)a = (1 —itan goab)A(nx’ ny)a - A(nx’ ny)b

2B* (ny, ny)q = (1 —itan @gp)B(ny, ny)y — B(ny, ny)p (2.114)
Which can now be plugged in Eq (2.105) to calculate the amplitude of the coupling RDTs
fioo1 and fip10- To get the phase the starting point is, again, Eqs (2.101) - (2.104). The
phases of Ay 1, By g, Ag,—1, B_1,o contain the phases of the RDTs:

arg(Ao,1) = —qio01 — ¢y + % (2.115)
arg(By,0) = qioo1 — ¢x + g (2.116)
arg(Ap 1) = —qio10 + ¢y + g (2.117)
arg(B_1,0) = —Qio10 + ¢x + z (2.118)

2

where the phase % comes from the factor i and the phases of the RDTs are defined as

1001 = arg(fioo1) (2.119)
G010 = arg(fiowo) - (2.120)



Chapter 2 Theoretical Foundations 31

From Eq. (2.118) one gets two expressions for each RDT phase:

T T
qioon = —argAp1 — ¢y + P arg B o + @ — 3

- - (2.121)
qioro = —argAg_1+ @, + S == argB_ o + ¢y + Y

which can finally be used to calculate the RDTs using Eq. (2.105).

2.6 Forced motion

This section will introduce the process of optics measurements with an AC-dipole. As
stated above, the effect of the driving of the beam motion has to be compensated and the

foundation for this compensation will be explained in the following subsections.

2.6.1 Linear motion with AC dipole

In this section the C-S coordinates of the driven linear motion will be derived [17, 15].
These forced coordinates can be used to calculate the effect of the AC dipole on linear

optics parameters like betatron phase, 8 function and linear transverse coupling.

At each turn an AC dipole located at position s, inflicts a kick to the beam. This kick can

be described in Courant-Snyder coordinates as
Ah}(N) = iAgf(sy) cos(2mQIN) (2.122)

depending on the AC dipole frequency QZ, the kick strength Ay and the turn number N.

Figure 2.8 shows a schematic of the beam deflection for several turns. At a small distance

Figure 2.8: Schematic of an AC-dipole kick. The deflection Ap, = AgfB(s4) cos(2wiQ,N) changes
with turn number N.

¢ after the AC-dipole the C-S coordinates of the beam read
hf(sq+e,N=0)=h}(sq—¢)+Ahf(N =0) (2.123)

in the first turn where the AC dipole is active. This turn will be denoted with N = 0.
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Sd

Figure 2.9: Schematic showing the positions and length occuring in Eq. (2.123). The AC-dipole is
located at position s4. The beam gets a kick when passing from s; — € to 54 + €.

Under the assumption that the kick strength of the AC-dipole is ramped up slowly enough,
this is an adiabatic process and the effect of the kicks can be added repeatedly for each turn.
The coordinates can be propagated to an arbitrary position s in the ring to get the following

expressions:

h#(s <54, N) = Ry_g, [RNh} (sq) + RNARF(0) + ... + RARF (N — 1)]
h#(s > 54, N) = Ry_g, [RNh3 (5q) + RNARF(0) + ... + RARF (N — 1) + ARF(N)]

(2.124)
N
hi(s <sq,N) =R,_g, [RNh;(sd) + > RTARF(N — T)]
T=1
N
hi (s> sq,N) = Ry_g, [RNh;(sd) + Z RTARF(N-T)| (2.125)
T=0

with R being the rotation map of the linear motion. For simplicity, the following definition

has been used:

Rs_s, = R(p(s) — @(sq)) (2.126)
SRy_g,hy = hee Pas (2.127)

The cosine in Eq. (2.122) can be expressed in complex form

ARF(N) = iA@i(Sd) (ezngN + e—27rngN)

1AoB(s4)
_ 62 & (5N 4 6N) (2.128)
where J, is defined as
5, = ex2miQf (2.129)

Using the complex form of the cosine, the kick in Eq. (2.125) can be split into left and right

moving parts:

hf(s>s4,N) =

iAsB(sa) [ <~ al
R |RNRE (s) + =055 { > RTNT 4+ ) RTaf_V-TH . (2.130)
T=0 T=0
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For the next simplification it shall be noted that

n 0 n
Dixi=Nxl=Y xn (2.131)
i=0 i=n j=0

The first transformation is a simple exchange in summation limits. The second one arises
from the changei - j = N —iand, thus, j, = N — iy = 0 and j; = N —i; = 0. Using this,

the sums can be brought into the form of a geometric series

N N
S RTSY-T = 37 RN-TeT

N
—RV Y (R18,)"
T=0

1— (R_15i)N+1

= RV , (2.132)
+
and
N -15 \N
1—(R16,
> RTSN-T = RNﬁ (2.133)

T=1
The two cases of Eq. (2.125) differ only in one additional exponent of R~1§, and it can be
written compactly as
hi(s,N) = Rs_s,RN| h (sq)

| iAgf(sq) 1 = (R716, )N +OCsd)

2 1—-R-15,
.\ iAeﬁZ(Sd) 1-— (li‘_l%_)’l\:_@(s’sd) (2.134)
Furthermore, the terms RJ., can be written out:
R718, = e?mi(QexQD) = g27iQF (2.135)

and
1 —e? = —el®jsina . (2.136)
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Those identities can be used to simplify the exponentials

hz(s,N) = Rs—stN h3 (sqa)

Agf(sg) 1 — emQEIN+0(s50))

4 elnQz sin (7Q7F)
_ a—27iQz (N +0(s,54))
_ AoBlsa) 1 — e T (2.137)
4 einQz sin (7 Q7 )
The term h} in Eq. (2.137) can be put into
. AoB(Sa) , oz _ _AoBGa)  _izor
hi(sq) = hi(sq) + | 2,6l — 2 __=inQ; 2.138
Z(d) Z(d) (4sln(7TQz) A 451n(7'cQ ) ( )
Now, the driven motion is seperated off:
h3(s,N) = Rs—stN[flz(Sd)
AgB(sq) o—7iQz (2N +20(s,54)—1)
4sin (7Qz)
_ AgB(sqa) _6P\0d) _ \miQZ(2N+20(s,54)-1) ) (2.139)
4sin (7Q7F)
and the linear rotation can be integrated into the terms:
h(s.N) =h,(s.N)
AgB(Sa) _i|-27NQz -5 4s+7Qz (2N +20(s50)-1)]
4sin (7Qz)
_ A@ﬁ(sd)+ e [27TNQZ ¢Sds 7TQZ (2N+2®(S Sd) 1)] . (2140)
4sin (7Q7F)
Noting that
20(a) — 1 =sgn(a),ifa#0 , (2.141)
Eq. (2.140) can be further simplified®:
hZ (s.N) =hy(s,N)
AQB(Sd) i[_ZN”Qg_qosds"'ﬂQESgn(S_Sd)]
4sin (7Qz)
_ Aa‘g(sd) [2N7rQ‘zi—qosds—ﬂQ}sgn(s—sd)] . (2142)
4sin (n'QZ )

bstrictly speaking Eq. (2.142) is valid only for s # 54 and one should carefully exclude this case in the follow-
ing. But since a measurement at the exact position of the AC Dipole is not possible in the first place this
fine detail will be ignored in this work.
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The free motion of the beam is perturbed by two driving modes corresponding to the sum
and difference of natural tune and driven tune. In most applications the ac-dipole strength
is much greater than the free oscillation amplitude AgB(sy) > |h (s, N)|.

All derivations in this section have been made for k. It shall be noted here that the nega-

tively turning coordinate h; has the form

h; (s,N) =h; (s,N)

ApgfB(sq) i[anQ§+;osds—ﬂQESgn(S—Sd)]
4sin (7Q7)
_ _AoB(a) i[-2aN7Q¥+ps s+ QEsen(s—sq)] (2.143)
4sin (7QF)

Subtracting the closed driven closed orbit &, and with the definition

= %Qi) (2.144)
sin(rQz )
the driven motion can be rewritten in the from
ApB(Sa) | +i[-2NnQd—gpy s +7Qzsen(s-50)]
h.i ,N — + z=Psys zSg d
z(sN) 4sin (7Qz) ¢
_ Azeii[zNﬂQg_(Psds_EQ;Sgn(S_Sd)] , (2145)
which is used in other works [16, 17].

2.6.2 Compensation of linear parameters

This section briefly summarises the compensation of the driven motion for the optics pa-

rameters 8, « and ¢ ’.

In an actual measurement the phase and amplitude are calculated from the Fourier analysis

of the real signal.

1
H(1, O)free — E (H+(1, O)free + H_(l, O)free)

= /2,8 [e7#®) 4 ei#(] (2.146)
for the free motion and
Aeﬁ(sd) [ i[—cp +7Qzsgn(s s)] i[ +7QFsgn(s, s)]
H(1, — 548 z ds)| _ Psgs zSgn(Sq ] 2.14
(1,0) 4sin(7Qz) ¢ Ae ( 7)

7[16] and Ryoichi Miyamoto, private communication, Feb. 2017
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for the driven motion. For the next steps the following trigonometric reformulation is
needed:
el@+h) — 1ei(@=F) = el (elf — 2e~1F) | (2.148)

The sum of two oscillations with the same frequency forms a single oscillation, so the
B term can be rewritten as
B = |Ble®¥ (2.149)

with

B2 = (e — 2e) (e7" — 2e'f) = 1 + 2 — 24 cos 23

Im {B} tan ( 1+ ;11 tan ﬁ) . (2.150)

Y =amng g = (Io

Now Eg. (2.147) can be put in this form by defining

a = 1Q%sgn(s — sg)

ﬁ = ﬂstgn(S - Sd) — Psgs (2-151)

This allows for H(1, 0) to be rewritten

H(1,0) = AgP(5) )\/1 + 2 — 24 cos [ 25,5 — TQ,sgN(s — 5q) |

4sin(7Qz
v ei[ﬂQ‘Zisgn(S—Sd)Hﬁ] . (2.152)

Comparing to the free case, Eq. (2.146), the driven phase is defined as

ol s = Qdsgn(s — sg) + P
= Qdsgn(s — s4) + atan (% tan (@s,s — 7Q,sgn(s — sd))> (2.153)
which fullfils the symmetric property
(1 —2) tan (¢ s — 7Qdsgn(s — s4)) = (1 + A) tan (¢ ;s — 7Q,sgn(s — 54)) (2.154)

In order to get the driven Twiss parameters a?, 8¢ and y¢, the same relation between them

and the driven phase ¢ is imposed:

dpd 1
% = (2.155)
Taking the derivative of Eq. (2.154) w.r.t. s yields
_ rd ’
(1= V() _ 1+ 9'(s) | 2156

cos? [pd(s) — mQdsgn(s — sq)] €08 [p(s) — 7Q sgn(s — s4)]
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where it is assumed that all phases are w.r.t. the position of the AC-dipole sz and f'(x)
denotes the derivative of the function f with respect to x. Respectively, taking its square

yields
_ 2
a /? +21=— a+4) —21 . (2.157)
cos? [pd(s) — mQFsgn(s — s4)] cos? [p(s) — mQ,sgn(s — sq)]
Both equations can be used to cancel cos [qod(s) — mQ%sgn(s — sd)]:
1 _1+4 A2 —22cos [2¢9(s) — 2mQ,sgn(s — s4)] 1 (2.158)
@'d(s) 1-2 @'(s)
which, finally, is the formula to compute the driven  function:
1+ 22 —24cos[2¢(s) — 2wQ,sgn(s — s
The driven « function follows from the definition of the free « function:
1 dp¢
digy = —
a’(s) = 2 ds
1+ 22 — 21 cos [2¢(s) — 2mQ,sgn(s — s4)]
= a(s)
1-22
— 21sin [2¢(s) — 2mQ,sgn(s — s4)] (2.160)

Comparing the amplitude of the driven motion Eq. (2.152) with the amplitude of Eq. (2.146)

the driven action J¢ can be deduced:

204p4(s) = Azs— m\/l + 22 — 2 cos [ 25,5 — mQ,5gN(s — 5q) |
JZd = w . (2.161)

32sin?(7Qy)

The expressions for the driven optics parameters 8¢, a4, % and J¢ derived in this section
can be used to compensate for the effect of the driven motion on the measurement and
enable an easy measurement leveraging the advantages of an AC-dipole for optics mea-

surements in circular accelerators.
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— CHAPTER3

THE ANALYTICAL N-BPM METHOD

One of the most important figures of merit of optics correction is the deviation of the
real {3 function from the model values, the 3 beating. A deviation from the ideal values
has a negative effect on machine performance. Too high [ beating can even put machine
components in danger and a threshold for operation with physics filling scheme has to
be imposed for machine protection reasons.

Furthermore, large 3 beating deteriorates other linear and especially non-linear optics
measurements and correction methods. Therefore a good control of the 8 beating can be
essential for higher-order correction steps.

This chapter summarises classical § beating methods from turn-by-turn data in sec-
tion 3.1 and describes in detail a new algorithm, the analytical N-BPM method, which
improves speed and performance by calculating analytically the error propagation in
sections 3.3 through 3.4. Accuracy and precision of the new method are assessed using
simulations of current LHC optics and design optics for the High-Luminosity upgrade of
the LHC in sections 3.5 and 3.6.

With the exception of the first two sections, which set the context of the present study
and introduce the mathematical tools, this chapter represents original work.

The content of this chapter has been published in [39].

3.1 [ function measurement from turn-by-turn data

3.1.1 Three BPM method

The classical method to measure the 8 function in hadron machines is the Three BPM

Method introduced in section 2.5.1.

With this method one can use the phase advance between three BPMs i, j, k to calculate
the § function of the probed BPM i. It is a model dependent approach, the greater the
difference between the model and the real accelerator the less accurate will be the result.

A good knowledge of the actual accelerator is crucial for this approach to work.
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BPM 1 BPM 2 BPM 3

Figure 3.1: A sketch of the three BPM method. The probed BPM is shown in blue. For LHC arcs
the combination with the probed BPM in the center is the most stable against phase measurement
erTors.

Equation (2.94) has been developed for LEP and it has been used for optics measurements
in LEP and LHC during run I. But it has two shortcomings: it assumes that the actual
B beating is very low and it diverges for phase advances close to nz, n € N. The latter
makes measurements at exact nzr phase advances impossible and strongly enhances phase
measurement errors near nzr. Unfortunately, especially in the IR phase advances are very

small and precise § function measurements are not feasible.

Figure 3.1 displays a sketch of the Three BPM Method. The probed BPM is shown in blue,
BPMs j and k are shown in red. Classically the arithmetic mean of all three adjacent cases

- as shown in the figure — were used.

In LHC arcs where the phase advance between adjacent BPMs is around 45° the combina-
tion with the probed BPM in the center yields almost optimal results since the perturbation
from phase measurement errors is small for the occurring phase advances. The two other
cases shown in Fig. 3.1 on the other hand include the phase advance ¢;5 = 90° which is

less optimal.

In LHC interaction regions the phase advance between consecutive BPMs does not follow
the same constraints as in the arc and values different from 45° may appear. In the final fo-
cus quadrupoles the g function peaks are very high to deliver a strong focusing of the beams
in the interaction point!. This yields a very small phase advance in this area, rendering a
B measurement from phase impossible. At the same time a high precision of § beating is

necessary to control §* and to optimise the aperture.

3.1.2 Original N-BPM method

To avoid cases with unsuitable phase advances or to get the optimal phase advances, BPMs
can be skipped. For an LHC arc a combination as shown in Fig. 3.2 can be used for the

non-center cases of the Three BPM method in order to have the least uncertainties in all

Icf. Fig. 2.3
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BPM 1 BPM 2 BPM 3 BPM 4

P12

P14

Figure 3.2: In the LHC arcs skipping one BPM for the non-center cases of the Three BPM Method
is of advantage since the phase advance ¢, is more suitable regarding error propagation.

three combinations.

A second tool that can be applied to reduce uncertainty is averaging over more combina-
tions which improves statistics and reduces statistical uncertainties. Unfortunately, sys-
tematic errors increase as more and more BPMs are skipped because of the presence of
other elements with their imperfections in between the BPMs. In order to further improve
the precision the information about statistical and systematic uncertainties can be used to

calculate a weighted mean:

B(s) = D, Buls)g (3.1)
1

cot g;j, — cot @i,
cot go?}l —cot qo;?q

Bi(si) = Bs)™ (3.2)
with the weights g; satisfying
Dg=1, (3.3)
]

and j;, k; pairs of BPMs around the probed BPM.

Furthermore the § function values calculated from different combinations are not sta-
tistically independent and correlation has to be taken into account when calculating the
weights. The N-BPM method [40, 41] was developed to implement this feature. It was suc-
cessfully used in the LHC during run II and for the re-analysis of run I data as well as in
the storage rings of ALBA and ESRF.

The name originates in the fact that the BPMs i, j; and k; are taken in a range of N BPMs.
This generates n = (N — 2)(N — 1)/2 combinations.

3.2 Generalised least squares

To get the correct estimate for the weights g; the study of some statistics is in order. The

weights can be determined using a least-squares optimisation. The weighted mean Eq. (3.1)
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can be rewritten in vector notation:

f =87 (3.4)

. g 81 ET

6 =|:1 77= ], B=]: s (35)
B 8n BT

where each line of the equation system is just the same. The difference between measure-

ment [ and the mean value £ is denoted by ¢;:
e=f-F . (3.6)

The least square minimisation seeks a set of weights g; for which the squared errors are

-

minimal. Since the different 5, are correlated and have a covariance matrix Cov[3] #

diag(c?,...,0?) the theory of generalised least-squares estimation [42] has to be applied.

The covariance matrix of a set of random variables Q; is defined as

Cov[Q] = E[(Q — E[Q])(Q — E[Q])T]
= E[QQT] - E[QIE[Q]T (3.7)

- -

where E[Q] is the expected value of the random variables Q. And the notation is chosen
such that the expected value of a vector is a vector of expected values of each component

and similar for matrices.

Equation (3.7) can be expressed element-wise:

(Cov[ﬁ])ij = E[Q,Q] - E[Q]E[Q;] . (3.8)

3.2.1 Error Propagation

Consider a set of unperturbed phase measurements {¢;, ..., »,} and non-observable pa-
rameters {Kj 1, ... K s S15 - 5 Sy X1, .. X, } With corresponding errors Agy, AK; g, Asy, AXy.

Collecting all parameters into a vector

7] Ag

. K . |ak

QO = N AQ = - . (39)
N As
X Ax
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Using a Taylor expansion the errors in these parameters can be propagated
BID) = Bi(Qo) + 0'BQ0)AQ; +8'0IB(Q0)AQAQ +0(AQT),  (3.10)

where the Einstein summation convention is used and the derivatives are w.r.t. Q;: 9'8; =

%. The argument (50) is omitted in the following for the 8 function and its derivatives

1

at the unperturbed position f)o. For the calculation of the covariance matrix, Eq. (3.10)
is truncated to second order and for convenience and readability, the two summands of

Eq. (3.8) are derived separately.

E[B(Q)] ~ E[B, + 8,00, + 0'0IBIAAQ| = B + O'BIE[AQ;] + 8'0IBIE[AQAL,] .
(3.11)
It is assumed that there are no systematic errors in the measurement instruments and so

E[AQ;] = 0 and the middle term vanishes. One can conclude
E[B(DIEBn(D)] ~ BB + (810108 + Bnd'0I8) E[AQAQY] (3.12)

where terms proportional to the square of the variance go into the reminder O(AQ3).

To calculate the term E[f3,3,,] more steps are needed:

E[B(DBm(D)] = E[(B + 8'BAQ; + 8'0IBAQADY) By + 0'fmAQ; + 07018, A0,A0)]
~ E[BiBm + (B10'Bm + Bmd'B1) AQ; + 65107 6, AQAQ;+
(B10'07 B, + Bm0'07B;) A AL |
= BiBm + 9810/ B E[AQAQ] + (B18'0B,y, + Bm'0B)) E[AQAQY]

(3.13)
Finally, subtracting Eq. (3.12) from Eq. (3.13), yields
(CovIB D = 8'A13! BmEIAQAQ)] = 818,018,,Cov[AQ];; . (3.14)
In the last step again the assumption E(AQ;) = 0 is made, implying
Cov[AQ); j = E[AQ] E[AQ;] — E[AQ;AQ)| = E[AQAQ] . (3.15)
In matrix notation Eq. (3.14) reads
Cov [E] =T Cov[aQ] T7, (3.16)
where
T;j = B (3.17)

T
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If the parameters Q are uncorrelated, the covariance matrix of AQ simplifies to

(Cov[aQ]) =0 ifi#], (3.18)
ij
(Cov [Ab])ii =2, (3.19)
= E[AQAQ;| = E[AQ]E[AQ;]  ifi#j, (3.20)
and Eq. (3.14) reads
(CoVIBDim = 0/ BmEIAQ?] = 6810807 , (3.21)

with the variance being defined by

o =E[AQF] . (3.22)

3.2.2 The generalised least-squares estimator

After computing the covariance matrix of 8, the generalised least-squares estimator can be

calculated by solving the translated system
X1 =X"By +X"1¢ (3.23)

where the translation X is such that X'X = V = Cov[ﬁ]. The least-squares estimation

searches for a minimum of
ot (-7 = (- 7) v (5-m0) a2

Eq. (3.24) can be solved in the index notation:

T R

= 2 Vi B =2 Vi 2 B
L, 1,] m
Z *1/%- > Vim
mPm = 3.25
$2g6 Z ZZ (3.25)
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where the summation index can be renamed in the numerator to highlight a solution of
the system:
2V
g(V)=&—. (3.26)
>Vt
Jik

The uncertainty of the weighted average is then

oXX718) =g"VE =D giVig - (3.27)
Lj

3.2.3 Error matrix for N-BPM method

The error matrix V can be optained from the single variances by
V=TMT ! , (3.28)

where M = diag(aél, e aén) is a diagonal matrix consisting of the variances of the phases

and T is the Jacobian matrix

0Bi(si)

3.29
50, (3.29)

Tia(s;) =

Sp=0

d¢ = 0 meaning that the derivatives are evaluated with all phase advance errors set to zero.

The correlation of statistical errors (coming from BPM noise) is

oB(s)|  _

a(Pﬂ Sp=0
(51'/1 _ 5]/11) sin”* Piji — (51}L — 5ﬁ1) sin”* Pik,

cot go?}l — cot qoﬁ‘q

T (s) =

BU(s) (330)

A superscript ¢ is placed here intentionally to highlight that the T matrix only includes
statistical errors coming from the uncertainty of the phase measurement. 6,2,‘ denotes the

Kronecker . Including systematic errors, the total error matrix is
V=V + Vsyst > (3.31)
where Vi, = TYMT? " and the total uncertainty of the averaged £ is then given by

0'2*:

3 Usztat+agyst . (3.32)
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3.2.4 Extension of the N-BPM method

In the existing numerical N-BPM method only the statistical errors are calculated analyt-
ically while Vg and hence agyst are evaluated from Monte Carlo simulations of lattices
with errors. For that the statistics over many simulations is gathered. Even with a highly
parallelised code on a multicore machine this procedure takes about 1 hour for a “fast”
set of 1000 simulations. Since the computation time scales linearly with the number of
simulations, this can take up to 10 hours for 10* simulations which were used in the post

processing of a measurement.

In this thesis a new method is introduced that calculates also the systematic errors ana-
lytically. On the same computer the analytical N-BPM method takes only 30 seconds to
compute the 8 function for more than 500 BPMs whereas the N-BPM method takes about
one hour. It provides a fully analytical calculation of the uncertainties while the precision
of the original method depends on the number of simulations. Any source of uncertain-
ties can be taken into account if its analytical expression is known. The method does not
depend on the stability of the lattice whereas the Monte Carlo simulations fail if, for some
combinations of errors, no closed orbit can be found. This is a limiting factor when the
N-BPM method is used for pushed optics with very low §* like the HL-LHC.

3.3 Corrected 3 from phase formula

Equation (2.94) assumes that no error is present in the region between the involved BPMs.

A new formula has been developed in [34] that takes quadrupolar errors into account,

cot g, — cot 3 m 5
S1) = £ — 51) + O(6K , 3.33
B = orom oot g + s TP (1) + OCKD) (3.33)
with X
. E .5{35Kw,1 sin §0$j
= =2 . 3.34
4] sinz go{;‘ ( )

The sum runs over all elements w between BPMsiand j. 6K, ; is the integrated quadrupo-
lar field error of element w. The definition of K,, follows the MAD [43] convention. Note
that Eq. (3.34) is only defined for the case s; < s, < s3 i.e. the B function is calculated at
the position of the first BPM. Since we want to use as many BPM combinations as possible
we will derive below a form of Eq. (3.33) without this constraint.

In [34] the quality of Eq. (3.33) has been assessed for the ESRF storage ring by simulating
a lattice with errors and comparing the results of Eq. (3.33) to the beta beating of the sim-

ulated lattice. In this paper the same study is repeated for the LHC and its future upgrade



Chapter 3 The Analytical N-BPM method 47

ox/K, o Oy

element [10-4] [mm] [mm]
MQ 18 1.0

MQM 12 1.0 -
MQY 11 1.0 -
MQX 4 6.0 -
MQW 15 1.0 -
MQT 75 1.0 -
MS - - 0.3
BPM - 1.0 -

Table 3.1: Estimates for the LHC gradient and misalignment errors. MQ are focusing and defocus-
ing quadrupoles, MS are sextupoles. The values of the magnet errors are derived from magnetic
measurements of [44, 45].

[ original formula, 0.177 %, (1.527 %) [ original formula, 0.211 %, (2.035 %)
[ Eq. (3.33),0.007% (0.072 %) [ Eq. (3.33), 0.065% (0.580 %)
103 103
2 ] 2 ]
= =
o o
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100 10 : : : ool ﬂ : : :
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deviation of calculated 8 [%] deviation of calculated 8 [%]

Figure 3.3: Left: Difference between the real (simulated) horizontal S-functions and the ones cal-
culated by Eq. (2.94) in red and (3.33) in blue, respectively. Data are from MADX simulations of
a lattice with quadrupolar errors only. Right: The same quantities are evaluated for the case with
additional magnet misalignments. the numbers which figure after the legend label show the root
mean square of the deviation and the the peak-to-peak derivation in parenthesis.

the HL-LHC. Table 3.1 summarises those uncertainty estimates for the LHC elements that
are relevant for this study. In Figure 3.3 a comparison between Eqgs. (2.94) and (3.33) is
shown in the horizontal plane. The plot shows a histogram of the deviation of the two for-
mulae from the real (i.e. simulated) 8 function values. The histogram contains the values
of all the individual BPMs for one simulated lattice. The left plot shows the case with only
quadrupolar field errors whereas in the right plot also misalignment errors were included
in the lattice. The introduction of errors not taken into account in Eq. (3.34) deteriorates

the result. However Eq. (3.33) still yields a clearly better estimate.

Moreover Eq. (3.33) may be easily modified for taking into account a more realistic set of
errors — quadrupolar field errors as well as sextupole transverse misalignments, quadrupole

longitudinal misalignments and BPM longitudinal displacements.

While the magnet misalignment errors can be approximated as effective quadrupolar field

errors and integrated in Eq. (3.34) the BPM misalignments need a different approach as
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k,ds —k,ds

Figure 3.4: The top sketch shows the displaced quadrupole (solid gray) relative to the original po-
sition (dashed). In the bottom sketch one can see the quadrupole at its original position with thin
magnets on both ends.

shown in the next paragraph.

3.3.1 Effect of transverse sextupole misalignments

The magnetic field of a sextupole displaced horizontally by Ax reads
B, = 2((x + AxP —y?) (3.35)
y =5 ((x + Ax)* —y°) . .

This induces a quadrupolar field error whose strength 9K is

1 0B, B
Bypo Ox |,

0K =
! o Bopo

=y=

This term can be used in Eq. (3.34) to include sextupole offsets in h; je

3.3.2 Effect of longitudinal quadrupole misalignments

The effect of a longitudinal displacement ds of a quadrupole magnet can be approximated
by leaving the magnet at its original position and introducing two thin magnets at its edges
to mimic the displacement, as shown in Figure 3.4. The top part of the figure shows the
actual situation: The quadrupole is moved to the left such that it covers now the hatched
area in addition to the gray region. The bottom part illustrates the approximation method:
In the direction of the displacement there is an additional element with integrated field
strength 6K; = k;ds (k; being the non-integrated quadrupole strength), to simulate the
part of the quadrupole that moved into this area whereas an error —dK; is placed at the

opposite end to compensate the part of the quadrupole that moved out of this area.



Chapter 3 The Analytical N-BPM method 49

3.3.3 Effect of BPM misalignments

An error, Js;, in the longitudinal position of a BPM affects the evaluation of Eq. (3.33)
and Eq. (3.34) which rely on the model values of 8 and ¢ at the nominal position of the
BPM. Using Eq. (2.7) the phase error and the resulting 3 shift at the position s; + ds; can be

approximated as

. 1

Qi X Q; + —.5Si , (337)
1

~ 986

ﬁi ~ ﬁi + %5& = ,81' - 206i5Si , (338)

up to first order in Js;.

3.3.4 Derivation of a corrected  from phase formula

An equation similar to Eq. (3.33) has to be re-derived by taking into account the consider-

ations of the preceding sections.

First, focusing errors, Eq. (2.87), and BPM misalignments, Eq. (3.37), are incorporated in

the phase advance ¢;;:

(S m N : m : m m 1 1
@i = @ij + hij— 8 sin’ pijRe{f;} — 8sin g cos i Im{fi} + ‘@F&qj - ﬁjési
] 1

Together with the § shift of Eq. (3.38), the 8 beating Eq. (2.77) and the « beating, the quo-

tient of the first row elements of the transfer matrix, Eq. (2.92), reads

(ml-j)u 1 (

(mi;) = (B™ = 2a73s)(1 — 8Im ([} cot @ + oy(1 — 8Im{f;} — 8Re {f;})™)
4 12 L 1 1 L

(3.40)
The cotangent above can be expanded in a Taylor series around ¢;:
A ﬁ%mési + ﬁimBSj
cot " = cot ot (1 — 8Im {fi}) + ——— — 8Re{f} + ——5—— (3.41)
ij SIn- @;
and Eq. (3.40) can be simplified:
(mij)n 1
== = cot ot + i + & (3.42)
(myj),, B = 2aq70s; (cotgfy o7 +2)

1
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[ original formula, 0.211 %, (2.035 %)
1 Eq. (3.45), 0.007 % (0.096 %)
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Figure 3.5: Accuracy of the horizontal S-function evaluated via Eq. (2.94) and Eq. (3.45) with the
effect of magnets and BPM misalignments taken into account. The accuracy of Eq. (3.45) is similar
to the one of Eq. (3.33) with quadrupolar field errors only (Figure 3.3).

with

1 1 s 2
S; — os; + m&K,, 1 sin” o™,
B0 T gy O+ L PidKw sin ey,

sin” ¢}

gij = sgn(i — j) , (3.43)

To get the corrected § from phase formula one has to follow the same steps as in sec-
tion 2.5.1:

(mij)ll (mik)ll

(mij)lz B (mik)12

—l(cot .. — cot o; )_ ;
61’ qol] qolk (ﬁlm _ za;n)

X [cot ¥ + 8ij — cotpy — gik] (3.44)
and the final expression for the  function at position s; from the combination [ reads

cot goijl — cot goikl
cot g, — cot gi, + &ij, — 8k,

Bi(s;) ~ [B™(si) — 2a™(s1)ds;] - (3.45)
In order to account for sextupole misalignments and quadrupole longitudinal misalign-
ments, it suffices to add the corresponding effective 5K, to the sum in g;;, as described in
the previous sections. The set I is defined in Eq. (2.82), so that an element with index w € I
lies between elements i and j and Eqgs (3.45) and (3.43) hold for every BPM combination i,
Jj» k. By doing so, we do not need to distinguish the three cases where the probed BPM is
in the middle, left or right.

All these considerations can be put into Eq. (3.45) and used to get a more accurate § func-
tion. To verify the validity of Eq. (3.45), its horizontal S-functions are compared to the
ones simulated by MADX along with the ones inferred from Eq. (2.94), this time including
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sextupole radial offsets and BPMs longitudinal shifts.

The result is shown in Figure 3.5. The accuracy is now as good as the one of Eq. (3.33)
when only quadrupolar field errors were introduced in the lattice, which in turn is much
greater than the old formula, Eq. (2.94).

3.4 Calculation of the correlation matrix

The Jacobian T of Eq. (3.29) can be split into blocks
T=(T? TX T, (3.46)

for the uncertainties of phase T, quadrupole field TX and BPM misalignment TS. T? is
the same of Eq. (3.30). For the quadrupolar field errors we get

opi(s M(s)B™ (s sin” ¢ 2 o
TGy = S| BROIRTGD L) — g )
14 lsg—o cot @, — cot @i, \ sin’ @i, sin” gjp,
(3.47)
with
1 ifi<d<j
A =4 -1 ifj<i<i . (3.48)
0 else

The contribution from the BPM misalignment is calculated analogously:

= 800
Sgn(l—Jz) <5 (s1) <j i) Sgn(l—kz) ( B™(s1) <k i)
sin® g, \B™(s;) % sin’ off, ﬁm(skz)sl K

= —2a"(s;)} ¥ L

cot @, — cot gy
(3.49)

In Eq. (3.47) and Eq. (3.49) the minus and plus signs refer to the horizontal and vertical

case, respectively.

3.5 Removal of bad BPM combinations

Since a phase advance ¢;; ~ n7 results in an enhancement of phase measurement errors
and in the extreme case numerically unstable values, a filtering was introduced. Instead

of keeping a constant number of combinations as in [40] we set a threshold for bad phase
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Figure 3.6: Comparison of the 3-BPM method, the original N-BPM method and the analytical N-
BPM method (denoted as A.N-BPM) for the nominal LHC lattice at collision, with §* = 40cm.
BOTTOM: histogram of the difference to the real S-function in percent. TOP: the average of the
error bars and the accuracy spread (width of a standard distribution fit to the distribution in the
bottom plot) in percent. The analytical N-BPM method has the best accuracy both in the arcs and
in the IRs. Data have been cleaned of outliers.
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Figure 3.7: Same comparison of Figure 3.6 between the three methods for the HL-LHC * = 15¢cm
ATS optics. The analytical N-BPM method yields clearly better results, both in the IRs and in the
arcs. Compared to the f* = 40 cm optics shown in Figure 3.6, the 8 function reconstruction is less
accurate: This was also demonstrated for the f* = 20 cm optics in [40].
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Figure 3.8: Horizontal 8 beating of beam 1 at f* = 10cm during the ATS MD 2016. TOP: 3-
BPM method. BOTTOM: analytical N-BPM method. The 3-BPM method suffers from bad phase
advances and has many outliers. The regions of high § beating at around 8000 m and 23 000 m lie
in the telescopic arcs.
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Figure 3.9: A comparison of the error bars of the 8* = 10 cm optics of the October 2016 MD. TOP
LEFT: histogram of the error bars of beam 1. TOP RIGHT: histogram of the error bars of beam 2.
BOTTOM: mean of the size the error bars. The mean of the analytical N-BPM method is a factor 4
more accurate than the 3 BPM method. The third set of values shows the mean of the error bars of
the simulations as shown in Figure 3.7 but for the whole ring.
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advances. A phase advance Ag is considered bad if Ap € [n7r — §,nm + §] for n € N and
a given threshold §. If any of the four phase advances ¢;,, ik, ¢j,» goﬁq in Eq. Eq. (2.94) is
bad, the corresponding BPM combination is disregarded in the calculation of the weighted
mean. This allows us to still use several combinations but skipping those which are nu-
merically unstable. The current value for the threshold is § = 27 - 1072. The use of fewer

combinations results in a lower computation time.

To test the analytical N-BPM method and compare it to the original 3-BPM and the Monte
Carlo N-BPM method, a large set of LHC lattices with 8* = 40cm with randomly dis-
tributed errors is generated and a measurement is simulated by tracking a single particle
via polymorphic tracking code (PTC) [46]. The random errors are created from table 3.1
and a Gaussian noise of o,, = 0.1 mm is applied to the BPM signal. No singular value de-
composition cleaning is applied since it would clean the artificial noise too efficiently [47].
The excitation amplitude is 0.8 mm at a § function of about 120 m. The tracked particle
positions are then analyzed by the three methods (3-BPM, N-BPM and analytical N-BPM)
and the respective deviation from the real horizontal § function is shown in the bottom
plot of Figure 3.6. The analytial N-BPM method includes the filtering of phase advances.
Especially in the IR, where neighbouring BPMs have often unsuitable phase advances, the

N-BPM and analytical N-BPM method yield more accurate values.

The top diagram of Figure 3.6 shows that the error of the 3-BPM method is considerable
larger, whereas the N-BPM and analytical N-BPM method are very accurate with similar

accuracies in the IR and arcs.

3.6 HL-LHC

The ATS optics [48] is the baseline choice for the HL-LHC and our optics measurement
tools have to be prepared for the challenges imposed by such an optics. In Figure 3.7 the
three methods are compared in the same way as in Figure 3.6. The excitation amplitude
was 0.8 mm at a 8 function of 127 m. For the current HL-LHC collision optics (8* = 15 cm)
the performance of N-BPM and analytical N-BPM method is again better than the 3-BPM
method, especially in the IRs. All three methods are, however, about a factor two more
inaccurate than for the f* = 40 cm optics of LHC, in agreement with Figure 7 of [40].

In the post-processing of the data taken during the LHC Machine Development measure-
ment (MD) [49] for testing the ATS principle with a §* = 10 cm optics, the analytical
N-BPM method was used for the first time with filtering of bad phase advances. Figure 7
demonstrates that the analytical N-BPM method deals well with the ATS MD optics. Monte
Carlo simulations were not possible for this optics.

Figure 3.9 shows the precision of the final results for the 8* = 10 cm optics of both beams
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compared to the simulations of the HL-LHC lattice with * = 15cm. To ease the com-
parison the error bars are shown in the bottom plot. They are slightly larger for the real
measurement than those in simulations. We believe that the use of lower beam excitation
to ensure machine protection is behind these larger error bars. Figure 3.8 shows also that
the 3-BPM method has many outliers and error bars up to several kilometers caused by bad

phase advances. Large error bars have been excluded for the mean shown in Fig. 3.9.

The Monte Carlo simulations failed for low * optics and so we were not able to use the
original N-BPM method during ATS MDs. This is another advantage of the analytical N-
BPM method that it is able to evaluate the systematic errors independently of the success

of particle tracking.

3.7 Conclusion

A new method for the measurement of § and a functions has been developed based on the
existing N-BPM method. A fully analytical calculation of the covariance matrix provides a
faster and more accurate measurement of S and a functions. The analytical N-BPM method
also avoids the complications from failing to find closed optics that occur in the Monte
Carlo simulations needed by the existing N-BPM method. This stability with respect to
the choice of optics model makes it more suitable for low §* optics. Simulations show
that, together with a filtering of BPM combinations according to the phase advances, the
method is optimal for the HL-LHC upgrade.

In the last years, the analytical N-BPM method has been used as standard method to mea-
sure the g function in LHC beam commissionning and machine development studies where
it has been producing a high quality analysis and contributed to the remarkable perfor-
mance of the LHC in run II. The method also has been used in collaborative efforts with ac-
celerators from several external institutes like SuperKEKB (KEK) and PETRA III (DESY).
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— CHAPTER4

A LOCAL OBSERVABLE FOR LINEAR
LATTICE IMPERFECTIONS

Finding a truly local observable for perturbations of the linear beam dynamics is a
nontrivial task, contrary to the nonlinear regime, where local resonance driving terms
already exist. The phase beating between two locations depends on errors outside of this
region. However, phase advances between four nearby locations can be arranged in a
way to cancel the contributions from errors outside of this region up to first order. The
resulting local observable contains valuable information about quadrupolar lattice im-
perfections. This chapter seeks to explore this local phase beating observable and to test its
usefulness for gaining insight in the linear optics imperfections of a circular accelerator.

This chapter is entirely based on original work of the author. Section 4.1 gives a brief
introduction and motivation for the presented work. Section 4.2 presents the main part
with a rather technical derivation of the local observable. A thorough verification of the
validity and possible use cases are presented in section 4.3, using the LHC as example.
In section 4.4 actual measurement data, acquired during LHC beam commissioning,
conducted by the OMC team, is compared to the simulated results.

The content of this chapter has been published in [50].

4.1 Introduction

Special accelerator segments like the interaction regions of colliders need a precise control
of local optics which becomes a challenging task if the optics are pushed to more extreme
settings. New methods and more precise hardware are required to measure and correct
machine imperfections such as quadrupole errors. In the case of a collider the exact mea-
surement and control of the 3 function at the interaction point is important for operation

of the machine and to optimise luminosity [51].

In contrast to a global correction of the phase advance, which is only valid for a certain
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optics configuration, the identification and correction of a distinct local error source would

cancel this error source for all optics configurations.

In order to locate error sources we are interested in local observables, i.e. terms that only
depend on lattice parameters and error sources in a localised region. Such a local observ-

able does not exist for linear lattice imperfections. For the non-linear ones one has been

found so far [31, 35]:
() 21 W)
* cos (@x,lz - %) " cos (§0x,23 - %)
+ X,(N) (tan (gox,lz - %) + tan (gox,23 - %)) . (4.1)

x(N) is built with the signal of three beam position monitors at positions sy, ,, 3.

An extension of y(N) into the linear regime does not seem possible since measured ampli-

tude and phase are used in a way to remove information on the linear beam dynamics.

Certain optics parameters (e.g. the 3 function or coupling) can be calculated from the phase
advances between two or three BPMs [52, 17, 38] independently from BPM calibration
errors [53]. The phase advance measured from a Fourier Transform [54] turn-by-turn data

is independent of the amplitude of the signal and, thus, not affected by calibration errors.

The phase advance between two elements of an accelerator depends, in general, on all
the elements in the ring. Focusing errors are of particular interest with their first order
influence on the g8 function. The impact they cause on RDTs can be seen in Eq. (2.72),

explicitly for a single error source located at position s;:
Joooo,j = OKB(s)e? 1P =2 42)

The top plot of Figure 4.1 illustrates the effect of a single focusing error on the RDT. In
the case of a model phase advance of 7 or a multiple of it, the effect is identical on both
BPMs, if the error does not occur in between them. In the other case both BPMs experience

different effects on their RDTs as shown in the bottom plot.

From Eq. (2.83) one can see that the effect on the phase advance depends, up to first order,
on global terms only in the form of Re{f — f;}.

Under the assumption that coupling and higher order imperfections are negligible we study
the effect of quadrupolar field errors on the phase advance up to first order and construct
an observable for linear lattice imperfections that is local. For second order considerations
we find a formula for phase beating but global contributions cannot be eliminated.

The focus of this work lies on circular machines where phase advance can be measured

accurately by exciting an oscillation of the beam. Excitation methods include single kicks
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Figure 4.1: Sketch of the effect of a focus error AK on f5499. The error creates a phase advance
beating « %", The incontinuity at the position of the source is caused by the propagation of the
phase beating around the ring. TOP: If the error lies outside the interval from BPM1 to BPM2 and
the model phase advance between the two BPMs is exactly 7, the effect is the same and the phase
advance beating is unaffected by this error. BOTTOM: If the error lies in between the two BPMs no
cancellation is possible.

and driven oscillation by an AC-dipole [16] which generate a stable coherent motion of
the beam. Conceptually the local observable described in this work applies also to linear
machines'but accurate measurements of phase advances remain challenging in ths kind
of accelerator and the application of the proposed technique might not be practical. In-
stead model-based fitting methods [55] might be more suited to retrieve optics parameters

directly.

4.2 Local observable

The effect of linear lattice imperfections on the resonance driving terms (RDTs) and their
impact on the betatron phase is studied. We express the betatron motion in the language

of normal form and Courant-Snyder coordinates [30].

The phase beating due to quadrupolar field errors is given by Eq. (2.87) which is repeated

here for convenience:
Ag;; = hy; — 8sin? piRe{fi} — 8sin pf} cosgouﬂm{fl}+0(f2 ) (4.3)

h; j only depends on quadrupole errors inside the range [i, j] and is therefore a local term.
The RDTs f; in Eq. (2.87), on the other hand, contain global contributions.

Here, linear refers to a straight beam line as opposed to a lattice of linear magnets
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The following subsections describe the derivation of an expression for local phase beating
in two distinct cases: The first is the general case with arbitrary phase advances between
the BPMs. A combination of four BPMs is necessary to calculate a pure local term. The

second case considers only two BPMs with a phase advance of 7.

4.2.1 The general case — phase advances different from nz

Figure 4.2: The interval of BPMs with corresponding phase advances.

Equation (2.87) still carries a dependence on the global error distribution in the form of the
terms f;. We can eliminate those terms by carefully summing up phase advances between
different pairs of BPMs.

The goal of this section is to eliminate global contributions to Eq. (2.87). This can be

achieved a careful resummation of phase advances between four BPMs.

The global term Re {f;} can be eliminated by taking a third BPM k and divide by the respec-
tive factor:
Agij Agik hij s

) ) - —8(cotgf} —cotpl) Im{fy . (44)
sin’ ®ij sin @ sin® o5 sin? gt ( ij lk) fi

Proceeding similarly with the factor in front of Im {f;}:

Apij  Agi hij __hi

sin? Pij sin? Pk sin? el sin? Pk

= - 1. 4.
cotg;; —cotgy  cote;; —cotpyy 8Im{fi} (4.5)
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We can simplify the left-hand side to:

Apij  Agi
sin?@p,  sin? g} Ag;j Agyy

cotg;; — cot gy ~ sin? Pij (cot i — cot qo{}‘{) - sin? Pk (cot i — cot go{r,é)
Ag;jsin (p;‘} sin g
sin? ®i; (cos ®i; sin @jj — cos gy sin go{‘;)
Agjy sin cpg? sin @
- sin? Pir (cos qo{‘} sin g} — cos @j sin (p{‘]‘)
Ag;; (sin i COS @i + cos @; sin qoﬁ‘()
- sin ¢ sin gy
Apiy (sin Pik COS Pjjc — COS Pjj sin go;}‘c)
sin @}, sin goj‘}l(

=Ag;; (cot ¥i; + cot gojr}l{) — Agjy (cot qoj’ﬂ —cot qo{‘,é) . (4.6)

The rhs of Eq. (4.5) can be simplified analogously and we can rewrite it to

Agp;; (cot @i + cot qoﬁ‘{) — Agji (cot Pj — cot go{r,i)
=h;; (cot @i} + cot cp}};) — Ik (cot ik — cot cp?fc) - Im{f} . (4.7)

To finally eliminate IJm {f;} we take a fourth BPM, [, and subtract

Ap;j (cot i + cot goﬁl) — Ag; (cot i — cot qoﬁ‘)
from Eq. (4.7) and end up with
cot @i (Apy — Ag;;) + cot g (Apyj — Agyi) — cot APy + cot @i Agy
= cot @i} (hy — hyj) + cot g (yj — hyx) — cot o Apy, + cot githy (4.8)

Figure 4.3 illustrates the collection of four BPMs used to construct Eq. (4.8). The left hand
side of Eq. (4.8) can be further simplified to

cot @i (Agy — Ag;;) + cot g (Apyj — Agyi) — cot APy + cot i Agy
= cot @jj i Agj — cot qo}ﬁAgojk + cot i A — cot i Agy; . (4.9)

Now we can rewrite Eq. (4.8) as
ikl = d)?}i‘}el (4.10)
by defining

meas

ijkl = cotgi Ay — cot @i Agy + cot pjp Ap; — cot gy Agy (4.11)



62 4.2 Local observable

Figure 4.3: The phase advances appearing in Egs. (4.13) and (4.14). The phase advances ¢;; and
@r; do not appear in the final form of the local observable.

and
i =cot @ff (hy — hyj) — cot @i (hyj — ) + cot g hy — cotoifthy (4.12)

Those terms are truly local to the region in between the four BPMs.

The resummation yields an observable

ijkl = cot g Agy — cot g Agyk

+ cot PR A — cot @i Agy (4.13)

which only depends on measured phase advances between the four BPMs i, j, k and I. Up

to first order it is equal to an analytic expression

Tiljl.z‘ljel =cot qoﬁl (I’_lil - I/_ll-j) — cot goﬁl( (I’_lij - ]’_lik)

+ cot pRhy — cot pithy (4.14)

which depends only on local error sources. There are no global contributions left and the
two quantities defined in Egs. (4.13) and (4.14) are truly local up to first order. The mea-
surement uncertainty can be propagated to ®;77*:

o3 =cot’ gy, + cot’ glrog,

+ cot? ol +cot’ gl . (4.15)

Equation (4.15) is used to calculate the size of the error bars in local observable plots.

A consideration of degrees of freedom suggests that three BPMs should suffice to recon-
struct the local linear optics errors. However, this reconstruction would depend on the
amplitude which, in turn, may suffer from calibration errors. The local observable pre-
sented here is independent of BPM calibration errors. Figure 4.4 illustrates the impact of
a quadrupole error on the local observable. The plot shows an LHC arc with 90° FODO
cells. Two BPMs are placed in one FODO cell, directly in front of the focusing or defocus-
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Figure 4.4: The impact of a focusing error on the local observable. The plot shows an LHC arc with
a relative error of 0.1 % of the magnetic field of focusing quadrupole MQ.22R4 which is marked by
a vertical line.

ing quadrupoles, respectively. The BPMS i, j, k and [ are chosen to be consecutive ones.
A relative field error of 0.1 % was introduced at magnet MQ.22R4. Since the points corre-
sponding to a value of ;77" are placed at the position s;, only the three points that precede
the introduced error are affected, for which the introduced error lies in the interval [s;, s;].
The first of the three affected points has a very small value because of the proximity of the

quadrupole to the BPM.

4.2.2 Exact multiples of 7

If the model phase advance is gp?} = nm, the phase advance beating between two positions,
Eq. (2.87) reduces to
Ap;j = Eij ) (4.16)

which implies that Ag;; is directly a local observable when ¢;; = nz. In this case the num-
ber of BPMs is reduced to two at positions i and j. In general, phase advances that are
sufficiently close to multiples of 7z might not be present in standard operation of an accel-
erator — an exception is for example the ATS optics [48] that is now used in LHC and which
is the proposed baseline for its high luminosity upgrade -, but it would be conceivable to
prepare special optics settings for a corresponding measurement in any accelerator, given
that it allows freely changing the optics parameters. The error of the local observable in

this case,

Tng; = Tpy; (4.17)

is smaller than for the general local observable.
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4.2.3 Exploring the second order

The detuning Hamiltonian term hy,¢¢,;; as well as the RDT f; have to be extended to second

order:
1 2
M0, = Hitbo, it Wb, j (4.18)
fio Oy r@ (4.19)

The total phase advance beating is, then,

Agij = = 2hi1ho 1 — 2h{T0,; + 4Re {ﬁ'(l) - fi(l)}
+are{f® - ;@)
+ 16 (ﬂe {]5(1)} Im {];(1)} — Re {fi(l)} Im {fi(l)})
+ O0(K3) . (4.20)

The same resummation techniques as for the first order will not suffice to eliminate global
RDTs f; and f. If we reformulate the third line of Eq. (4.20) as

Re{f}Im{f} — Re{fi} Im{f} = %Jm{ﬁz}— %Jm{fiz}

= %.‘]m 142 + 24,10 + (¥ - 1) £2] (4.21)

we see that it is not possible to separate the global f; from the local term A;;. This separation

was the key to be able to eliminate the global terms in the first order approximation.

For ¢;j = nr a second order term can be derived analogously:

A (2
Ap;j =hij — 2hy100,i5
+4Re{ [P = (P + 8Im{ad; + 24,8} . (4.22)
This term also contains the global f; and f, and there are no common factors that can be

exploited to eliminate them.

Therefore in this work purely local observable cannot be extracted from the second order

phase beating.
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Element ok, /K [1074]
MQ 12
MQT 75
MQM 12
MQY 11
MQW 15
MQX 1
MB 4

Table 4.1: Error distribution for the design LHC lattice at 6.5 TeV with weak errors in the final
triplet in order to avoid higher order effects. K denotes the main field component (quadrupolar
field for quadrupoles, etc).

4.3 Simulating Errors and Noise

4.3.1 General simulation setup

In order to assess the usability of the local observable we perform a series of simulations
with different quadrupole error distributions and compare the prediction of the analytical
calculations with simulated results. We base our simulations on the nominal LHC lattice
at the end of run IT in 2018 with ATS optics and §* = 30 cm.

Figure 4.5 shows a sketch of a typical LHC arc section. BPMs are placed directly in front of
the quadrupoles of FODO cells. Additional trim quadrupoles (e.g. MQT) may be present.
Four cases will be studied: the first one is a set of expected LHC errors from magnetic

Jo—e—do———t

Figure 4.5: The probed interval I, for a typical section inside an LHC arc. BPMs are represented by
rectangles. The phase advance between to consecutive BPMs is approximately 45 °. Used BPMs are
shown in orange, unused in gray. Blue diamonds indicate quadrupoles and trim quadrupoles. Only

BPMs and quadrupoles are shown, other elements such as corrector spool pieces and the bending
dipoles are omitted.

measurements [44, 45], shown in Tab. 4.1, in the absence of phase noise. This setup will let
us verify the equality of Egs. (4.13) and (4.14). Then Gaussian noise of 0.7x 1073 x 27 rad is
added to the simulated phase advances to illustrate the behaviour in the presence of noise.
A third simulation includes an additional strong error source in one of the quadrupoles,
c.f. Tab. 4.2 to demonstrate the impact of single strong error sources and the locality of the
local observable. A last simulation setup demonstrates the visibility of quadrupolar errors
originating from feed-down of sextupoles via orbit offsets.

There are many different possible combinations of BPMs. In the following comparison
plots we will only show two of them: one that has a phase advance of 180° in one of the

phase advances appearing in Fig. 4.6 and one that avoids such a term and, additionally, the
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Element  8K;/K[107%] ok, /K[107]
MQ.22R4.B1 100 -

MQ - 12
MQT - 75
MQM - 12
MQY - 11
MQW - 15
MQX - 1
MB -

Table 4.2: In addition to the error distribution of Table 4.1 we introduced a single strong error
source in arc45.

450 ] 450 450 k 450 l
/\I/\I/—\I/—\I

Pl
Pjk
Pik

: Wil ' :

e ——,

Figure 4.6: The phase advances of the combination ¢;; = 45°, ¢;c = 90°, @)y = 45°. The phase
advance @;; = 180° causes cot qoj‘? to diverge.

2-BPM combination with ¢;; = 180°.

In a real measurement we would consider only the combinations of closest BPMs to avoid
the accumulation of systematic errors coming from other lattice elements and therefore
we limit our study to only those combinations. The phase advance over two FODO cells
in telescopic arcs of the ATS optics is tightly matched to 7z. On the one hand this provides
a continuous set of combinations with similar phase advances and thus we can more eas-
ily compare the values of @gg‘}el and @757 at different positions. On the other hand this
gives rise to model phase advances close to multiples of 7 for several combinations which
gives the possibility to explore these cases. Table 4.3 shows the closest combinations with
all occurring model phase advances. Reflected combinations are omitted. Model phase
advances close to nz cause the cotangent terms to diverge. They are therefore highlighted
in red. Since we still want to study these cases and avoid divergences and the resulting
numerical instabilities we impose a filter on the phase advances. Those which are closer

to nrr than 1076 x 27 are excluded. The case 45° — 90° — 45° is sketched in Fig. 4.6.

Model and measurement values are shown for the combinations 45° — 45° — 45° and
90° — 45° — 45° and ¢;; = 180° in Figures 4.7 to 4.9. Since we get the phase advances of
Table 4.3 only for telescopic arcs and for the sake of readability we limit the plot region to
just one telescopic arc, the one between IR4 and IR5. For simplicity we show only results

for the horizontal plane.
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sketch of combination Pjl — Pik — Pik — Pil

ikl 90° — 45° — 90° — 135°
BNEER 90° — 45° — 135° — 180°
BEER 135° — 90° — 135° — 180°
ENEENE 135° — 45° — 135° — 225°

Table 4.3: Indices i, j, k, | and phases appearing model phase advances for the closest combinations.
The actual model phase advances depend on the respective model settings and differ slightly from
the exact values above.

4.3.2 LHC with known field errors

The first case, Fig. 4.7, is free of noise with the quad error distribution of Tab. 4.1, with a
distribution of known LHC magnet errors as measured in [44, 45]. The agreement between
analytical and measurement values is excellent, showing the validity of Egs. (4.13), (4.14)
and (4.16).

To examine the behaviour of the local observable in the vicinity of nz we have to scan the
accelerator for available model phase advances. For each BPM i we are looking for a second
one - BPM j - that is placed at Ag;; = 7 + ¢ downstream. &¢ is a threshold parameter
controlling how many local observable pairs are accepted. We chose §¢ = 1 x 1073 X 27.

The telescopic arcs of the ATS optics provide the needed model phase advances.

The agreement is, as for the general case, very good in the absence of errors.

4.3.3 Phase noise

The noise to signal ratio decreases with increasing oscillation amplitude and thus with in-
creasing 8 function at the BPM. In the LHC FODO cells BPMs are installed close to the
focusing and defocusing quadrupoles and those lie at § function maxima and minima, re-
spectively. Therefore we can divide the arc BPMs in two categories, those with low § func-
tion and those with high g function. The 8 function minima are usually around 30 m and
the maxima at 180 m. The phase advance uncertainties Ty fall into three categories: both
BPMs have high 8 function, only one of them has high 8 and both have low .

For this set of simulations we introduce phase noise which corresponds to noise values of

the LHC signal that we typically achieve taking five data acquisitions and after cleaning [ 56]

and harmonic analysis. We group BPMs into the before mentionned categories and apply

a Gaussian error distribution to the phase values according to measurement statistics.

With the introduced phase noise the agreement decreases significantly (cf. Fig. 4.8). The
meas

noise is of the same order of magnitude as @5, 7° itself. Therefore the LHC arc quadrupolar

errors cannot be identified with this phase advance resolution. The combination 45° —
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Figure 4.7: This figure shows the first two combinations of Tab. 4.3 and the case ¢;; = 7 from
simulations. Top: the combination 45° —45° —45°. Center: the combination 90° — 45° —45°. The
absolute value of the local observable in the telescopic arc (right of IP4) is four orders of magnitude
higher than in the top plot. The plots only show values where the phase advances do not differ
more than 1° from the target values displayed in Tab. 4.3 in order to ensure comparability between
the values. Additionally values with a model phase advance in nz + 107 are excluded to avoid
numerical instabilities. This causes the IR to be empty of local phase advances. Note that in the
middle plot the values are four orders of magnitude higher than in the other two. This originates
from the cot ¢} terms which are high because of ¢} ~ 77.The bottom plot shows the local observable
for model phase advances of 180°. In all three plots the agreement between model and simulation
is excellent.



Chapter 4 A local observable for linear lattice imperfections 69

45°—45° shows the worst behaviour under noise because the § function alternates between
high and low values from BPM to BPM and so within the four neighbouring BPMs there
are always two with low  function. The case of exact 7 phase advances shows the smallest

errors as only one phase advance error enters in the error propagation.

4.3.4 Single strong error source

For the next simulation, we assume that there is a single strong error in one of the quadrupoles.
We assign 1% of relative error to MQ.22R4 to show the effect of a strong error source. Fig-
ure 4.9 shows that this error creates a visible peak in the local observable. The peak in the
local observable is situated immidiately in front of the location of the error source because
the plot shows the local observable at the position of BPM i but the errors of the interval

(s;, 57) enter in the calculation of the observable.

In the presence of model phase advances close to nzr the values of the local observable in
the telescopic arcs are clearly enhanced (c.f. bottom plot of Fig. 4.7 and Fig. 4.8).

The simulations above show that strong quadrupolar error sources (> 1%) can be detected
with the local observables under the studied phase resolution. For the detection of smaller
errors a higher precision of the phase measurement would be needed. More precise BPMs
like DOROS-BPMs [57] currently installed in the LHC interaction region and a higher ex-
citation amplitude as well as the acquisition of a higher number of turns can increase the

resolution of the phase measurement.

4.3.5 Feed-down from sextupoles

As final test case we introduce orbit offset into the machine around the IPs by activating
dedicated dispersion bumps. These are used in the ATS optics to compensate dispersion
created by the crossing angles at the IPs. The transverse displacement of the beam creates
quadrupolar-like errors inside sextupoles via feed-down:

AK gex = XK (4.23)

where dx denotes horizontal offset and K is the strength of the sextupole. K; ¢y can now

be used for the calculation of the local observable.

Figure 4.10 shows the local observable in this case. Regular bumps created by the feed-
down appear which are consistent in all three cases but less pronounced in the nearest
neighbors case. With the given noise level those bumps can be measured. The local ob-
servable is not affected by feed-down in the center of the arc because sextupoles at places

with high orbit offset are turned off. In comparison to the previous examples, Figs. 4.8 and
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Figure 4.8: Similar plots as in Fig. 4.7 but including a phase error of 0.7 x 1073 x 27 rad for high 8
function values and 1.8 X 1073 X 27 rad for low fs. The agreement between model and simulation
and measurement is highly deteriorated. The error bars have been calculated using Eqs. (4.15)
and (4.17). The case ¢;; = 7 is affected less by the error since only one phase advance error is
propagated.
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Figure 4.9: The local observable with the error distribution of Tab. 4.2, including a strong error
source at MQ.22R4.B1 and phase noise of 0.7 X 1073 x 27 rad. The position of the strong error
source is marked by a green line.
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4.9, the values of the local observable did not change in this region.

The bottom plot of Fig. 4.10 shows the changed orbit for reference. The peaks of the local
observable can be identified with the peaks in the orbit. Again the local observable is in

advance of the error source.

4.4 Experimental verification

We calculate the local observable from a measurement taken during the LHC beam com-

missioning in 2018.

The measurement can be seen in Fig. 4.11 for the combinations 45° —45° —45° (top plot)
and 90° — 45° — 45° (bottom plot).

We take a model lattice where dispersion bumps are turned off in order to see the impact on
the local observable. As discussed in section 4.3, the feed-down of sextupole fields due to
the orbit offset of those bumps changes the local observable. Figure 4.11 shows in blue the
measured local observable which features similar spikes as the simulation (cf. Fig. 4.10).
In red the effect of feed-down from sextupoles via the orbit offset on the local observable
is shown. The feed down has been calculated by introducing the dispersion bump knob
into the model that was turned on during the measurement and calculating 6K g from
Eq. (4.23). The pattern of the model values is also present in the measurement which con-
firms that their origin is indeed the feed-down. Since the d)?}i‘l‘el contains only the expected
feed-down from sextupoles and no other error sources (like normal quadrupole imperfec-
tions) the difference between model and measurement is then the actual local observable
created by those error sources. The center region of the arc is free of a high peak because,

as in the simulation, no sextupole is active at high orbit offsets.

4.5 Conclusion and Outlook

We showed the existence of a local observable for linear lattice imperfections in circular
accelerators. The locality of the observable holds up to first order in the quadrupole error
OK;.

Phase measurement noise is an issue with the current precision of turn-by-turn measure-
ments and a higher resolution in the measurement would be of advantage. For certain use
cases, new techniques are needed to improve the control of the machine and hardware up-
grades are a justified solution. Simulations show that strong error sources can be identified

even with current precision of LHC measurements as they generate distinguishable peaks.

The calculated local observable of an actual measurement shows a picture that is compati-
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ble with simulations. Feed-down of orbit offsets via sextupoles can be seen in measurement

data and be reproduced in simulations.

A future application of the observable to find strong local sources and to guide local error

corrections is foreseen for run III of the LHC.
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Figure 4.10: The local observable with the error distribution of Tab. 4.1 and phase noise of 0.7 X

10~3x27 rad. Additionally the orbit has been changed by dispersion bumps. The orbit offset creates
feed-down from sextupoles.
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Figure 4.11: Plot of measurement data of the LHC commissioning 2018 at 8* = 30 cm. The error
bars include statistical errors obtained from the phase measurement of the FFT. The effect of dis-
persion bumps on the local observable is clearly visible and matches well the prediction. The center
region shows only a small effect from sextupoles.
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— CHAPTERS

FORCED COUPLING RESONANCE
DRIVING TERMS

The goal of this chapter is the study of of resonance driving terms when measured from
driven motion. The driving of the particle motion by an AC-dipole changes measured
quantities like the optics functions (3, c and the phase, as discussed in section 2.6.2, and
also has an impact on resonance driving terms. Recent findings suggest that the current
models describing the forced RDTs are neglecting a local effect of the AC-dipole, creating
ajump of the amplitude of the RDTS fj1,,. The case of sextupolar RDTs has been studied.
In this work, coupling RDTs are calculated for the first time in view of the new findings.

Original work is presented in form of the derivation of the driven RDT f¢0; and the
simulation study of the new formula, including comparisons to existing descriptions.
Sections 5.1.1 and 5.1.3 review existing work.

5.1 Driven coupled motion

Resonance driving terms are calculated from the spectral lines of the turn-by-turn data as
shown in section 2.5.2 for the coupling RDTs. Since the particle’s motion is affected by the
driving of forced oscillation by the AC-dipole, the spectrum also undergoes a change and
the measured RDTs are not equal to the free ones.

In the past, two methods were used to model the effect of the driven motion, the first is a
simple rescaling of the tune dependent denominators of the RDTs, this method will there-

fore be called the rescaling method.

The second one [17] applies the findings of a detailed study of the driven particle motion
using the equations of motion of the particle in the accelerator with an AC-dipole. This
method provides reconstruction and compensation formulae for all optics parameters, in-

cluding those that enter into the coupling terms. This method will be called formula method
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in the following.

Recent findings [58] show that the AC-dipole locally affects RDTs and introduces a jump
in amplitude of the RDTs at its location. Even the detailed considerations of the formula
method lack such an effect. In view of the suggestions of [58] this work presents calcu-
lations of the terms fig9; and fig19, building upon the techniques introduced in 2.6.1. A
comparison between rescaling method, formula method and the newly calculated coupling

terms is shown.

5.1.1 AC-dipole as skew quadrupole

To consider beam motion that is driven and coupled, we illustrate the effect of an AC-dipole

as coupling source by stating the analogy between their impact on the particles motion.

Throughout this chapter the following convention is used:

f+ = foro1 and
f- = fouo - (5.1)

The RDTs in Eq. (2.91) can be reformulated:

P Jl,w\/Mei[(Pwi’xi‘ij,y]—i”[QxiQy]

w
= 2
& SISIn[7(Qy £ Q)] (52)
The coupled motion for a single coupling source now reads
hy (s, N) =¢¢ (55, N)
Jl,w 6x,w5y,w
2i v + (5. N)ellAPE +27(Qu+Q)O(s)ss0) | -i| Q+Qy
+g sin[7(Qy + Q)] (55, N)e
]1 w\/ ﬁx wﬁy w
i - ~(s. i[Apx +271(Qx—Q))O(sj,50) |- in[ Qx—Qy ]
2 gisinln@r — g1 O (5:3)
with
A = oy (5) — Px(sw) = (py(5) — py(sw)) - (54)

The ©(s;, s,,) terms come from the wrapping around of the phase advance. Noting that
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$r (s, N) = ZIyezmN Q+96) one can bring this in a form similar to Eq. (2.142)

hy (85, N) =¢¢ (55, N)

J;
Lwy Brxwbyw /2IyeszQy+;o(sj)+i[Acp;+27r(Qx+Qy)sgn(sw—sj)]
|

* 4sin[7(Qy + Q))

JwA/
Lw 5x,w5y,w /2Iye—27riNQy+cp(sj)+i[Acp;+27r(Qx—Qy)sgn(sw—sj)]
|

T IS, - Q) (5:5)

The following table summarises which quantities are analogous

AC dipole coupling

AQ Jl,w\/Iyﬁy
ng(Sd) (py(sj) - §Dy(Sw) + (Px(sw)
Q& Q

Thus, the AC dipole couples the beam’s motion to its oscillation, similar to a skew quadrupole

which couples horizontal and vertical motion.

5.1.2 Derivation of the coupled driven motion

The derivation of the coupled driven motion presented in this section follows a similar
path to the derivation of the coupled free motion, leveraging the normal form approach
as in section 2.4.2. The major difference is the presence of AC-dipole kicks, Eq. (2.122)
that appear in each turn. These kicks have to be interleaved with the particles turn-by-turn
motion in the normal form space. Figure 5.1 illustrates the procedure. The coordinates
are propagated in normal form space and transformed to physical space at s; — ¢, directly
in front of the AC-dipole. Then an AC-dipole kick Ah,(N) is performed and the physical
coordinate is transformed back to normal form space where it is rotated around the ring.

This process is repeated for each turn.

In the first turn, before the beam experiences the AC-dipole kick, the coordinates are those
from Eq. (2.90):

h;c_(sd ) 0) = e:F: g)-cl_(sd —6 O)

= {*(sq — €0) + 2ifi50185 (8¢ — €, 0) + 2ifi51085 (54 — €, 0) (5.6)
Then the particle is kicked in p direction:

hi(sg +¢€,0) = hi(sq —€,0) + AhE(0)
h(sq +€,0) = hj(sq — €,0) + Ahj(0) (5.7)
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x RI¢H]

Figure 5.1: Two AC-dipole kicks in p, at different positions in phase space can have completely
different appearence in normal form coordinates. The transformation is not restricted to the two
dimensions depictet in this figure but can happen in all four normal form coordinates ¥, ¢, ¢, & -

where the superscript + of Ahz(N) denotes which of h} or h; is experiencing the kick.
The following holds:
Ah; = (Ah}) = —Ah} . (5.8)

For the transformation back to normal form space Eq. (2.59) has to be applied:
¢ =eFh=h+[-F h]+0(h? (5.9)

with
F= fam Y () (r1) (hy)" (5.10)

when applied to h3. The normal form of the kicked particle motion now reads

¥ (84 +¢€,0) = hi(sq +€) — 2ifioo1(s0)hy (54 + €,0) — 2ifip10(s0)h; (54 + €, 0)
= hi(sq +¢,0) + Ahy(0)
= 2ifio01(5a) (A5 (sq + €,0) + AR (0))
= 2ifio10(sa) (A5 (s4 + €,0) + Ah;; (0))
= & (s +€,0) + Ah,(0) — 2i 501 (S)ARS (0) — 2ifih10(sg)ARy (0)  (5.11)

where the tilde denotes undriven coordinates. Propagation to the next turn is just a simple
application of the transformation R,, turning the coordinate &} (s, 0) into &} (s,1). The
operator in front of Ah, is written out explicitly for now to avoid confusion. Its effect will
be calculated later. At turn 1, just in front of the AC-dipole, the particle’s coordinate reads

$x(sg—€1) =Ry{{(sq +¢0)
= ~;(Sd -6 1) + RxAhx(O) - ZifiTJOl(Sd)RxAh;_(o) - 2iﬁ%1o(5d)RxAh;(0)
(5.12)
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Before applying the AC-dipole kick it is again transformed to CS space:

hi(sq—€1) = Ry (sq +¢€,0)
= & (sa = €. 1) + RyAhy(0) = 2ifio01 (5a)Rx AR5 (0) = 2ifio10(sa)R AR5 (0)
+ 2101500 (6 54 — D + SReAR5 0))
+2if0(0) (& Ga — & 1) + 3R, AR5 (0))

+0(f?) , (5.13)

where O(f?) denotes quadratic and cross terms of f;o; and fjo;0 and the factor % in front
of the kick terms comes from second order calculations of the Poisson bracket. A kick
Ah, (1) is applied and this procedure can be continued to arbitrary order N. To avoid lengthy

expressions, the driven uncoupled coordinates hg* are defined as

hgi — Ijl;_r + A.G;B(Sd)_ ii[—ZNn'Qg—cpsds+7'[Qgsgn(s—sd)]
4sin(7Qz)

A eii[ZNﬂ'Qg—CPst—T[Qgsgn(S—Sd)] } (5 14)
- .
where the sum up to turn N has already been carried out as in section 2.6.1. Note that the
transformation from CS space to normal form space is carried out directly after the kick,
thus fixing fi0o1 and fio10 acting on Ahj to this position, i.e. s;. When calculating the CS
coordinates at arbitrary position s, on the other hand, the RDTs acting on g? are evaluated

at the position s. Therefore the coordinate, at position s < s, reads

h (s < 5g,N) = h{* (s, N) + 2ifi501 (RS (s, N) + 2 fiy0(s)hS ~ (5, N)

N
. 1
- 2lflOOl(Sd)E Z Rs—stzc"Ah;_(N -T)
T=1
1 N
= 2ifio10(50)5 ), Ry-s, REARy (N =T)
T=1

(5.15)
and, after the AC-dipole,
hi(s > 54, N) = hi+(s,N) + 2ifipoh$ (s, N) + 2ifio10h% (s, N)

N
s 1
- 2lflOOl(Sd)z Z Rx,s—stZC"Ah;—(N -T)
T=0

N
o 1 _
= 2ifio10(50)5 D, Rxsms REARG (N =T) . (5.16)
T=0
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The rotation Ry 5_, is caused by the transfer of {7 to the position s, before transformation

N

into Courant-Snyder space is performed. The term ) R£Ah;§ (N —T) can be simplified as
T=0

in section 2.6.1:

3 A6B(s) [ & N
>, RIARF(N = T) = =04 { > RENT+ Rxafv\’_—T}
zf%qué¥L4R#%ﬂ yl_mf%Fq
2 1-R-16,, 1-R-15,
AgB(sa) 1 — e2IN[Qx+QS] 1 — e—2miN[Qf- Q]
4 i Qe+ Qf] gip [7(Q, + Q)] el —Qx] gin [7(Q¢ — Q)]
(5.17)
N
For the term ), R{Ah; (N — T) a similar process is performed, noting that the action of
T=0
RY now is
RNA]’[; — e—ZiHNQXAh; ) (518)

Combining the above, the expression for the coupled driven motion becomes

hi(s,N) = hd* (s, N) + 2ifi501h3F (s, N) + 2ifh10h$ (s, N)

— 2if{001(8)h3x (8, N) = 2i fio10(8)h; < (8, N) (5.19)
with the definition
A ii[—2N7TQ§;+7T(Q3—Qx)Sgn(S—Sd)_¢’§cds]
h;_:,x(S, N) = 658(Sd){e . d
sin [7(Q§ — Q)]

eii[anQg—n(Q§+Qx)Sgn(S—Sd)—qaécds]

— . 5.20
sin [7(Q¥ + Q)] } (520

In section 2.5.2 a way to measure coupling in realistic conditions is introduced. In order
to get the new driven RDT, £, one can look at the result of a theoretical measurement
without calibration errors and with perfect knowledge of the complex signal. Under these
conditions one can get fiyo; from the free motion by (cf. Eq. (2.96))
+
floor,x = % (5.21)
V*(1,0)

foor,y = 2H+(1,0) (5.22)

In the driven case, on the other hand, the coordinates change hf — hZ*, which causes also

the generating terms to change fyi, — ﬁglm and, finally, the kick cross-terms pollute the
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driven motion. The easy term to calculate in Eq. (5.21) is V*(0, 1)

V+(0,1) = F{h$ Q) = T {h§*}Q5)

A@B(Sd) i[—@yd +7'[stgn(s—sd)]
= ——"" Sa$ . 2
4sin(Qy) € (5.23)

: d
H*(0, 1), however, includes many terms proportional to e~ ITNQy.

H*(0,1) = 2ifjy0;F {hd+}(QD) + 2ifio10F {hE~} QD
— 2if501(5)F [h5} QD) = 2ifo10(s0)F {h5} (QD) (5.24)

For readability the fourier transforms are listed seperately:

A 18(5' ) i[— Y +7Q5sgn(s—s
d+ dy — 6 d @5 ;5 +7Qysgn( d)]
?{hy }(Qy) 4sin ﬂQ;e ‘

b

A 95(5) Y Fson(s—
7} = ool

ApP(sq) i[ =¥ +7(09— 0y )sgn(s—s
T @)= o [né)(fz‘yid— Qx)]e[ ot @f-Qutszsa]
V. AgP(sa) i| ¥ s+m(QY+Qy)sen(s—s
Fih dy — 6P (g o35+ 7(Qf+Qu)senGs—sa)] 5
(@) = 551 (@S + Q] ‘ (5.25)

From this it is easy to calculate the driven coupling term, as obtained from a measurement

of the horizontal signal

sinzQ,’
2sin [7(Q¥ — Q)]

2i| @Y +7Q
A fino€ P ] 4 g )

i[qoé‘ds—gog)ds +7T(Qy—Qx)sgn(s—sd)]

d _
1001, = Jioo1 + fioo1(sa)
sinzQ,’

2sin [7(QF + Q)]

i[§0§ds+¢’¥ds+7T(Qy+Qx)sgn(s—sd)]

(5.26)

From Eq. (5.26) it is apparent that the AC-dipole adds two effects to the difference RDT
fioo1 the first one,

sinzQ,

2sin [7(Qf — Q)]

ei[(chds_(ngds"'”(Qy—Qx)Sgn(S_Sd)] (527)

Ji001(8a)

is creating an additional source at the position of the AC-dipole, proportional to figo; at

this position and the second one,

sin Q)

2sin [7(Q¢ + Q)]

/1yff51082i[¢§dS+ﬂQy] + fffno(sd) i[¢§‘ds+g0§}ds+7r(Qy+Qx)sgn(s—sd)] (5.28)

mixes the difference term with the sum term f;, (as well as a second contribution pro-
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portional to fi0;). The mixing-in of those terms is suppressed by the factors 1,, and the

denominator sin [7(QY + Q,)], respectively.

5.1.3 Rescaling and Formula methods

For the sake of completeness, rescaling and formula methods will be stated here. The de-

tailed derivation can be looked up in the respective publications [59, 16].

The rescaling method simply rescales the coupling terms fjgo; and fg10 by their expected

denominators:
e SINQ £ Q)
¥ = Gnef e Qy)fi

+,y = .
sin(Qx £ Q)
The index x/y refers to the plane in which the f term is measured. For the formula method,
a complete expression for the driven RDTs can be derived:

1 sin[7(Qc 7 Q)]

i dax_ X . d,x_ x
fi,x = {el(%ds (deS)f-T- + Axlcel(q"sds gDSdS)f;

V11— 2Zsin[7(Qf 7 Q)]

.oodx x
+ 2isin(7(Qx))e P~ Pas) £, (535, 54)

— .o d,x
+ 217! sin(n(o;))e““’sw*“’?‘dﬂfﬂs;s,sd)} . (5.30)

for the f terms as measured from the signal in the horizontal plane, and

1 sin[7(Qy F Q)]

[1 =2 sin[7(Qc ¥ Q)]

fi,y =

.o dyx x .o d,x X
{el(qasds_(Pst)f_'__ + Axlcel(("sds_@sds)fi*

.o dyx x
+ 2i sin((Q; ) Pas™%as) £, (515, 54)

_ .o dx X
+21131sin(n(Q;))e‘(“’SdS*“”Sd“fi(s;s,sd)} , (5.31)

from measurements in the vertical plane. In order to simplify the expression, some extra
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definitions were introduced:

_ sin [7(Qx - Q)]
sin [7(Qy + Q))]
Y hy el P )

wWeI(sq,5p)

(550, 50) = BT (532)

b

where the interval I(s,, ;) contains all elements between s, and s,
I(sg,8p) ={w : 54 < 8y < Sp}, (5.33)

and for h,, ; the same convention applies as for f;.. Measurements can only be performed
on the real signal. The complex signal needed for the calculation of RDTs has to be recon-
structed. This reconstruction mixes the RDTs f, and f_, given by the following equation.
Under the assumption that adjacent BPMs are used for the reconstruction, the combined

f terms read

1

fi,x,y = \/1—_7/1%)

It is important to take into account this fact when finally reconstructing the driven f terms

o dx by _ Y
{erz[qosds P fi,x} . (5.34)

from the measured ones.

5.2 Comparison of the methods for typical LHC machine

configurations

In this section the effect of the driven motion on the measured RDTs is studied using an
LHC optics with no other perturbations than the additional coupling sources and no higher
order multipoles active, in order to avoid feed down polluting the results. From Eq. (5.26)
one can see that the effect of the AC-dipole jump is proportional to the strength of the
RDTs at the position of the AC-dipole. This means, given a weak initial coupling around
the AC-dipole or a sufficient correction of the local coupling, the effect is expected to be

low and further coupling measurements are not impacted by it.

Given that the effect is only a minor one in the first place, repeated measurement and
correction of coupling will iteratively improve the precision of the coupling measurement.
In Figure 5.2 the case of a coupling bump in the lattice is shown. The AC-dipole is located

at s = 9846 m in a region with low coupling.

The right plot shows no effect of the AC-dipole. The formula method and the new method
show a good agreement with the measured values. The rescaling method underestimates



86 5.2 Comparison of the methods for typical LHC machine configurations

AC
9 1 .
, meas ——
' rescaling
! formula —---
Td _ 05 ! new formula —.—.
_ ; B :
7 j g |
S 54 | S '
— - AR 0 [
= l = T —-——-——r--- -]
: , -
2 i = -
=g i = :
| —0.5 - ;
| meas '
| rescaling '
14 | formula ---- '
l' new formula —-—. '
T T T T -1 T * T T
0 750 1500 2250 3000 9500 9750 10000 10250 10500
s [m] s [m]

Figure 5.2: Comparison of the three methods with a coupling bump in the lattice. The absolute
value of coupling term fjqo; is shown. The formula method and new method (called new formula)
manage to reproduce well the fi9;. The naive rescaling method underestimates the f term in the
bump. The offset between meas and the reconstructed values is due to the reconstruction of the
complex signal. The right plot shows the region in which the AC-dipole is located. There is no
jump at the location of the AC-dipole.

the f term inside the bump but outside its accuracy is also excellent. All three methods
correctly predict zero coupling outside of the closed bump. The measured values show
an offset which is due to the reconstruction of the complex signal from the momentum

Eq. (2.114) which picks up coupling sources from in between s, and sj,.

0.009 AC

0.008 - \

0007 4 fy— T
2 0.006
= 0.005 Hneas

rescaling
0.004 analytical
0.003 new analytical

0 500 1000 1500 2000 2500 3000 3500
s [m]

Figure 5.3: Comparison of the three methods with the AC-dipole surrounded by a coupling bump.
The AC-dipole is creating a jump in the coupling term fiq0; at its location. Only the new formula
is able to reproduce this jump. The position of the AC-dipole is marked by a vertical line.

Figure 5.3 now shows the picture when the AC-dipole is placed inside the bump and, thus,
being in a region with strong coupling. In this case a visible bump is expected and the

agreement with the conventional methods should decrease because they do not consider
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Figure 5.4: These plots show the same comparison as Fig. 5.3 but for the HL-LHC lattice at
B* = 15cm with varying strengths of the skew quadrupoles which form the coupling bump. A
degradation of the performance of the new formula is observed.

the additional source. Indeed, the new formula yields overall a better accuracy, especially
inside of the coupling bump. The jump at the position of the AC-dipole is well reproduced,
as expected from Eq. (5.26).

5.2.1 HL-LHC and stronger coupling

The HL-LHC has more challenging optics and a similar coupling source as for the LHC
simulations in the previous section creates considerably larger coupling.

Figure 5.4 shows slightly stronger coupling in the HL-LHC lattice at * = 15 cm. Two cou-
pling strengths are tested. For reference, the initial setting for the first magnet in the bump
is printed in the top right corner of each plot'. The left plot shows the same initial strength
as for the LHC simulations in the previous section. The matching of the closed coupling

branch failed which resulted in non-zero coupling outside of the designated region.

Althoug still better than the conventional methods, the new formula does not achieve the

same performance as before and starts to lose its performance w.r.t. the other methods.

5.3 Conclusion

Current methods to calculated the coupling terms fig9; and fig1o in the LHC have been
revised and brought into context of recent findings. The AC-dipole creates a jump in the
RDTs at its location and this jump can be demonstrated for the coupling RDTs in simu-
lations. A study of sextupolar RDTs is presented in [58]. The calculation of a corrected
coupling RDT has been performed and its accuracy in the case of small coupling has been

demonstrated in simulations.

!The final value depends on the matching but is still of the same order of magnitude.
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CONCLUSION AND OUTLOOK

The development and enhancement of three distinct optics measurement methods have
been presented in this work. These developments improve the precision and accuracy of

optics measurements and extend our understanding of the imperfections in an accelerator.

The first method, called the Analytical N-BPM method is a more precise and faster mea-
surement of the 8 function. It is based on the method previously developed and used for
LHC measurements during run 1, called the N-BPM method, that combines measurements
from a set of N neighbouring BPMs to remove statistical uncertainties. Systematic uncer-
tainties were taken into account through computationally expensive Monte-Carlo simula-
tions. The N-BPM method required a careful preparation for each individual optics setting
before the actual measurement. The analytical N-BPM method performs error propagation
purely from analytic calculations and can therefore be applied during the measurement
without the need of precomputing the covariance matrix. It also avoids the complications
from failing simulations, which can happen for extreme optics settings, like low 8* optics
for example. A filtering of BPM combinations with unsuitable phase advances was also
introduced in this method, which makes it even more independent from the exact optics.
The analytical N-BPM method is now routinely used in various optics measurement and
machine development studies of various of CERN’s main accelerators, including the LHC.
It has also been used in collaborative efforts in accelerators from several external institutes
like SuperKEKB and PETRA III.

The second method is a new local observable for linear lattice imperfections. Although
such observables already exist for non-linear imperfections, in the linear case there was
none. This work presents a local observable for the linear imperfections for the first time.
This locality holds up to first order in the quadrupole error §K;. The phase advance beating,
which depends on all errors in the lattice, can be rearranged in a way that eliminates global
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contributions, yielding two kinds of local observables: if the unperturbed phase advance is
a multiple of 7, the phase advance beating is directly a local observable, in the general case
a combination of four nearby phase measurements has to be used to construct a local term.
The existence of this observable has been shown in this work. Strong error sources can be
detected using the local observable, which can be used to guide local error corrections.

Such a usage is planned for the upcoming run 3 of the LHC.

The last method describes the impact of forced particle motion on the measurement of
transverse coupling. The AC-dipole, which is used to create the forced motion for measure-
ments, creates ajump in the amplitude of the coupling RDTs. This jump does not appear in
any of the current methods to calculate forced coupling and correct for the forced motion.
In this work, forced coupling RDTs are calculated using a new framework that has recently
been developed and which accounts for this jump. The agreement for small coupling is ex-
cellent. A future usage to compensate for the driven motion using an iterative approach is

conceivable.

The introduction of next generation light sources and the design and construction of new
colliders and future projects create the demand for more advanced or novel measurement
and correction methods. More challenging optics designs require more precise measure-
ments and large lattices call for efficient algorithms and according implementation. This
work presents developments in the domain of linear optics measurements for circular ac-
celerators, improving existing methods and introducing new ones in order to prepare for

future operation of the LHC and other accelerators.
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