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Bu çalışmada, Minimal Süpersimetrik Standart Model (MSSM) çerçevesinde üçüncü 

aile sfermiyonlarının karışım, üretim ve bozunumları incelenmiştir. Bu skaler 

fermiyonların üretimleri yüksek enerjili elektron-pozitron çarpıştırıcılarında 

araştırılmıştır. Bu lineer çarpıştırıcılar bu süreçler için büyük üretim tesir kesiti verirler, 

bu sayede sfermiyon kütle ve bağlaşımlarının hassas ölçülmesine olanak sağlarlar. 

Ayrıca gelen demetlerin polarize olmaları durumunda tesir kesiti değerleri artırılabilir 

ve aynı zamanda Standart Modelden gelen arkaplan katkıları azaltılabilir. Bu 

çalışmalara ek olarak Standart Modelde 4. ailenin olması durumunda MSSM, MSSM4’e 

genişletilebilir. MSSM4 için renormalizasyon grup denklemleri ve 4. aile sfermiyonları 

için kütle spektrumu elde edilmiştir. 
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In this thesis, the mixing, production and decay of third generation sfermions were 

examined within the Minimal Supersymmetric Standard Model (MSSM).  Productions 

of these scalar fermions were investigated at high energy electron-positron colliders. 

The colliders have the potential to produce sfermions with large cross section, thus the 

conditions allow a sensitive measurement of sfermion masses and couplings. When the 

initial states are polarized, sfermion production cross sections can be increased and 

Standard Model background can be decreased. In addition to these studies, in the case of 

four SM generations, MSSM can be extended to MSSM4. Within the MSSM4, 

renormalization group equations and mass spectra of the fourth generation sfermions 

were obtained. 
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1. GİRİŞ 

 
Etrafımızdaki maddeyi teşkil eden temel yapı taşlarının bilinmesi, maddeyi anlamak 

için tek başına yeterli olmaz. Maddenin özelliklerinin anlaşılabilmesi için bu yapı 

taşlarının nasıl bir arada tutuldukları, birbirleriyle nasıl etkileştikleri gibi temel sorulara 

ceavap verebilmek gereklidir. Bu doğrultuda, bu tip sorulara cevap veren bir model 

olarak Standart Model (SM) ortaya çıkmaktadır.  

 
Standart Model bilinen tüm parçacıkları sınıflandırabilmesi ve deneylerle yüksek 

hassasiyette tutarlılık göstermesi nedeniyle yüzyıla damgasını vuran bir model 

olmuştur. Fakat bütün bu tatmin edici yanlarına rağmen 1970’lerde yapılan yeni 

keşiflerle birlikte eksikleri yavaş yavaş ortaya çıkmıştır. Örneğin,  

 
- Higgs kütlesinin kararsızlığı 

- Hiyerarşi problemi 

- Güçlü, zayıf ve elektromanyetik kuvvetlerin birleşmemesi 

- Baryon- antibaryon asimetrisi 

gibi daha birçok soru cevapsız kalmıştır. 

 
Standart Model tarafından cevaplanamayan bu tip sorular SM’ nin daha ötesinde yeni 

bir fiziğin olması gerektiği fikrini ortaya koymuştur. Bu fikirlerden en popüler olanı 

Süpersimetridir (SUSY) .  

 
Süpersimetriye göre, her fermiyona bir bozon ve her bozona da bir fermiyon karşı gelir. 

Bu modelde tek bir Higgs bozonu yeterli değildir, bunun yerine 5 tane Higgs bozonu 

vardır ve bunların her birine spini ½ olan bir Higgsino karşı gelir. Tam süpersimetrik 

durumda sparçacıklar ve parçacıklar aynı kütleye sahip olmalılar.  Fakat şu ana kadar 

yapılan deneylerde henüz gözlenebilmiş herhangi bir sparçacığa rastlanılmamıştır. 

Buradan süpereşlerin bu deneylerde üretilemeyecek kadar büyük kütleye sahip olduğu 

sonucuna varılır. Bu da bize süpersimetrinin gerçek dünya ile ilişkili ise kırılan bir 
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simetri olması gerektiğini gösterir. Bu durum süpersimetri kırılma mekanizmasının 

önemini vurgulamaktadır.  

 
Bu tez çalışmasında, genel bir giriş bölümünden sonra 2. bölümde süpersimetrinin temel 

prensipleri, 3., 4. ve 5. bölümlerde sfermiyon karışım, üretim ve bozunumu konularına 

yer verilmiştir. 6. bölümde ise sfemiyon kütle belirleme yöntemlerine değinilmiştir. 7. 

bölümde genişletilmiş MSSM için (MSSM4) yüklü 4. aile slepton üretimi incelenmiştir.  

 
Bu teze asıl önem kazandıran durum bu sfermiyonların Lineer Çarpıştırıcılarda 

araştırılacak olmasıdır. Bu yüksek enerjili elektron-pozitron çarpıştırıcıları 

süpersimetrik parçacıkların daha hassas ölçümleri için önemli bir etki ortaya 

koymaktadır. Ayrıca bu çarpıştırıcılarda polarize demetlerin kullanılması ve bu 

durumun süpersimetri araştırmaları üzerine olan etkisi de göz önüne alınmıştır.  

 
Yapılan bu araştırmalara ek olarak 4. ailenin varlığı da düşünülerek Minimal 

Süpersimetrik Model (MSSM), MSSM4 durumuna genişletilmiştir. MSSM4 durumu 

için 1-loop mertebesinde Renormalizasyon Grup Denklemleri (RGE) ve bu denklemler 

kullanılarak 4. aile sfermiyonları için kütle spektrumu elde edilmiştir. Daha sonra 4. aile 

yüklü sleptonlarının Lineer çarpıştırıcılarda üretimi incelenerek çalışma 

tamamlanmıştır. 
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2. SÜPERSİMETRİ VE TEMEL PRENSİPLERİ 

 
Süpersimetri, standart modelin sahip olduğu simetrilere yeni ek uzay-zaman simetrisi 

olarak girer. Buna göre; 

 
“Süpersimetri, fermiyonik ve bozonik durumları bir Q operatörü vasıtasıyla 

ilişkilendiren dönüşümlere bağlı uzay zaman simetrisidir. Bu dönüşümlere 

süpersimetrik dönüşümler denir.” [Sohnius 1985]  

 
Tanıma göre Q  operatörü süpersimetri jeneratörü olarak adlandırılır. N=1 için chiral, 

vektör ve gravitasyon multipletleri; N=2 için hiper, vektör ve gravitasyon multipletleri; 

N=8 için sadece gravitasyon multipletleri geçerlidir.  

 
P, uzay-zaman dönüşümlerinin 4’lü momentum jeneratörü olmak üzere aşağıdaki 

komütasyon ilişkilerini sağlar. 

 

                                         

{ }
{ } { }

†

† †

†

, 2

, 0 ,

, 0 ,

Q Q P

Q Q Q Q

Q P Q P

µ
α α αα µ

α β α β

µ µ
α α

σ=

= =

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

& &

&&

&

                    (2.1) 

 
Noether teoriminden akımın korunumu (bu korunumlu akıma süperakım denir) 

araştırılırsa yükün, süpersimetri üreticileri olan Q  jeneratörleri olduğu görülür.  

 
Standart Modeldeki spinörlere benzer şekilde, süpersimetride de cebire göre 

indirgenemez temsilini göstermek için kullanılan matrislere süpermultipletler denir. 

Süpermultipletler içinde süpereş parçacıklar yer alır ve bir parçacığın süpereşini ifade 

etmek için tilda (~) sembolü kullanılır. Fermiyonlara ait süpereşler başlarına gelen “s-” 

ekiyle; bozonlara ait süpereşler ise sonlarına gelen “-ino” ekiyle isimlendirilir. Çizelge 

2.1-2.2’de süpersimetrik parçacıklar, chiral süpermultipletler için ve ayar 
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süpermultipletler için ayrı ayrı verilmiştir. Standart Model parçacıkları ve onların 

süpereşleri arasında ½ spin farkı bulunur. 

 
Çizelge 2.1 Chiral süpermultipletler için süpersimetrik parçacıklar ve kuantum sayıları  

İsimler  spin 0 spin 1/2 YLC USUSU )1(,)2(,)3(

skuarklar , 

kuarklar 

(3 aile) 

Q  

u  

d  

( )LL du ~~  
*~
Ru  

*~
Rd  

( )LL du  
†
Ru  

†
Rd  

( 3, 2 , 1/6 ) 

( 3 , 1, -2/3 ) 

( 3 , 1, 1/3 ) 

sleptonlar, 

leptonlar 

(3 aile) 

L 

e  
( )Le~~ν  

*~
Re  

( )Leν  
†
Re  

(1, 2, -1/2 ) 

( 1,1, 1) 

Higgs, 

higgsinolar 
uH  

dH  

( )0
uu HH +  

( )−dd HH 0  

( )0~~
uu HH +  

( )−dd HH ~~ 0  

( 1, 2, 1/2 ) 

( 1, 2, -1/2 ) 

 

 
Çizelge 2.2 Ayar süpermultipletler için süpersimetrik parçacıklar ve kuantum sayıları  

İsimler spin 1/2 spin 1 YLC USUSU )1(,)2(,)3(

gluino, 

gluon 

 

 

g~  

 
g  

 

(8, 1, 0) 

winolar, 

W  bozonları 

 

 
0~~ WW ±  

 
0WW ±  

 

(1, 3, 0) 

bino 

B bozonu 

0~B  0B  (1, 1, 0) 

 

 

 

 



5 
 

2.1 Dönüşümler ve Simetriler 

 
Burada ilk olarak teorik açıdan basit bir  süpersimetrik modeli incelemeye çalışacağız. 

Başlangıç olarak her ikisi de kütlesiz olan spin-0 kompleks φ  alanı ile L-tipli χ spinör 

alanımız olsun. Bu serbest alanlar için Lagranjiyen (Lagranjiyen yoğunluğu anlamında 

kullanılıyor) şu şekilde verilir (Aitchison 2007), 

 
               † †L iµ µ

µ µφ φ χ σ χ=∂ ∂ + ∂                                                                          (2.2) 

 
Bu Lagranjiyenden yola çıkılarak φ  skaler alanı için hareket denklemi 0φ =�  ve χ

spinör alanı için hareket denklemi 0i µ
µσ χ∂ = olarak bulunur. Süpersimetri bu iki tip 

alanın birbirine dönüşümünü öngörür. Dolayısıyla bu Lagranjiyenin ya da daha genel 

olarak Eylemin, alanların birbirine dönüşümleri altında değişmez kalmasını istiyorsak φ  

skaler alanındaki dönüşüm χ  spinöründeki dönüşümle, χ  spinöründeki dönüşüm de φ  

skaler alanındaki dönüşümle orantılı olmalıdır. Eylemin bu alanların dönüşümleri 

altındaki değişmezliğini sağlamak için Lagranjiyendeki değişimin toplam türev şeklinde 

gelmesi yeterlidir. 

 
Bu alanların dönüşümlerini araştırmaya başlamadan önce boyutlarını belirlemeliyiz. 

Dört boyutlu uzay-zamanda ve 1 c= =h  birim sisteminde Eylem boyutsuzdur. Bu birim 

sisteminde uzunluk ve zaman 1M −  boyutundadır. Eylemin boyutsuz olabilmesi için 

Lagranjiyen (yoğunluğu) 4M  boyutunda olmalıdır. Buna göre φ  ve χ  alanları için 

boyutlar şu şekilde olur; 

 
           [ ] [ ] 3/2;M Mφ χ= =                                                                               (2.3) 

 

Artık  φ  ve χ  alanlarını birbiri ile ilişkilendiren SUSY dönüşümlerini araştırabiliriz. 

İlk olarak φ  alanındaki değişime ( )ξδ φ  bakalım. Bu dönüşümün formu şu şekilde  

verilir, 
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( ) ( )parametresiξδ φ ξ χ= ×                                                                                      (2.4) 

 
Burada ξ ’yi uzay ve zamandan bağımsız bir parametre olarak alıyoruz. ξ  nin uzay ve 

zamandan bağımsız olması global bir simetriye karşı gelir. (2.4) numaralı denklemin sol 

tarafında spini sıfır olan bir skaler alan vardır ve bu alan Lorentz dönüşümleri altında 

değişmezdir. Dolayısıyla sağ tarafta da χ  ve ξ ’ nin Lorentz değişmez bir yapısı 

oluşturulmalıdır. Bunu yapmanın basit bir yolu ξ ’yi de χ -tipli spinör olarak 

yapmaktan geçer. Bunun için şu yapı kullanılır, 

 
( )2

T iξδ φ ξ σ χ= −                                                                                                      (2.5) 

 
Bu ifadeyi noktalı gösterim ile yazabiliriz. 

 
.a

aξδ φ ξ χ ξ χ= =                                                                                                         (2.6)      

 
Burada ξ  bir spinordür ve uzay-zamana bağlı değildir. ξ  spinör olması nedeniyle iki 

bileşene sahiptir ve her bir bileşeni kompleksdir. 

 
ξ ’nin uzay-zaman bağımlılığı olmadığı söylenmişti. Bu aynı zamanda bir alan da 

değildir, fakat buna rağmen ξ ’nin bileşenlerinin spinör alanlarının bileşenleriyle sıra 

değişmediği varsayılır, yani bunlar Grassmann sayıları olarak varsayılır.ξ  için boyut 

analizi yapılacak olursa boyutunun [ ] 1/2Mξ −=  olduğu görülür.  

 
Şimdi ξδ χ ’ye karşı gelen dönüşümü bulmaya çalışalım. Bu dönüşümün ξ  ve φ ’nin 

çarpımından oluşmasını bekleriz. Yani 

 
( ) ( )parametresiξδ χ ξ φ×�                                                                                      (2.7) 
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olmalıdır. Bu ifadenin sol tarafı 3/2M  boyutundadır, sağ tarafı da ξ  ve φ ’nin cebirsel 

çarpımının boyutu olan 1/2M  boyutuna sahiptir. Her iki tarafın boyutlarının tutmaması 

nedeniyle sağ tarafta kütle ( )M  boyutunda bir şeye daha gerek vardır. İlk başta bu 

teorinin kütlesiz olduğunu kabul etmiştik dolayısıyla burada kullanabileceğimiz kütle 

( )M  boyutuna sahip tek bir olasılık vardır, µ∂  gradiyent operatörü. Bunu sağ tarafa 

eklememiz durumunda açıkta µ  indisi kalmaktadır. Bu indisin kontrakte olması için 

( )1,µσ σ≡
r  kullanılır. µσ  , 2 2× ’lik bir matrisdir ve ξ  spinörüne etkisi sonucunda sol 

taraf ile uyuşum gösterir. Bütün bunların sonucunda dönüşüm şu şekilde olur, 

 
( )i µ

ξ µδ χ σ φ ξ= ∂                                                                                                      (2.8) 

 
Bu denklemin dönüşümü için çözülmesi gereken bir problem daha vardır. Bu ifadenin 

her iki tarafında 2-bileşenli kolon vektör olmasına rağmen sağ taraf χ -tipli spinör gibi 

dönüşmez. Bu sorunu çözmek için ξ  yerine *
2iσ ξ  alırız. ξ ’nin uzay-zamandan 

bağımsız olduğunu da hatırlarsak aχ  alanı için dönüşümü şu şekilde yazabiliriz 

(Aitchison 2007), 

 
( )*

2a a
A i iµ

ξ µδ χ σ σ ξ φ⎡ ⎤= ∂⎣ ⎦                                                                                    (2.9) 

 
Bu ifadede A katsayısı Lagranjiyen yoğunluğunun değişmezlik (invaryantlık) 

koşulundan belirlenecek bir sabittir ve her iki tarafta χ  tipli spinör indeksi yer 

almaktadır. µ φ∂  matris formunda olmadığı için ifadenin sonuna alınabilir. 

 
(2.5) ve (2.9) denklemleri φ  ve χ  için önerilen SUSY dönüşümlerini verir, fakat bu 

alanların ikisi de komplekstir ve bunların hermitsel eşleniklerine ( †φ  ve †χ ) karşı gelen 

dönüşümleri de açık bir şekilde ortaya konulmalıdır. Burada ilk olarak hatırlanılması 

gereken “φ  ve χ ’nin kuantum alanları” olduğu ve diğer yandan “ ξ ’nin bir alan (uzay-

zamandan bağımsız) olmadığıdır.”  
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Bir φ  kuantum alanı için mod açılımı şu şekildedir, 

 

                             
( )

3
. † .

3 ( ) ( )
2 2

i k x i k xd k a k e b k eφ
π ω

−⎡ ⎤= +⎣ ⎦∫
r

                                (2.10) 

 
Burada ( )a k  operatörü 4-momentum k ’ya sahip bir “parçacığı yok eder”, † ( )b k  ise 4-

momentum k ’ya sahip bir “anti-parçacığı yaratır”. [ ]exp .ik x±  bilinen dalga 

fonksiyonudur. †φ  ise şu şekilde olur, 

 

                            
( )

3
† † . .

3 ( ) ( )
2 2

i k x i k xd k a k e b k eφ
π ω

−⎡ ⎤= +⎣ ⎦∫
r

                                (2.11) 

 
ve bu ifade (2.10)’un hermitsel eşleniğinin geleneksel tanımıdır. 

 

Diğer bir yandan χ  gibi spinör alanları için bu durum biraz daha karmaşıktır, çünkü iki 

bileşenli spinörler de denkleme girer. Dolayısıyla sembolik olarak, χ  kuantum alanının 

ilk (üst) bileşenin formu şu şekilde olur; 

 
   ( ) ( )1 mod operatörü tipli serbest parçacık spinörününilk bileşeniχ χ× −�         (2.12) 

 
Şimdi (2.5) denkleminin hermitsel eşleniğini düşünelim, yani †

ξδ φ ’ı bulmaya 

çalışalım, 

 

                                         

( )2

1 1

2 2

2 1 1 2

0 1
1 0

T

T

iξδ φ ξ σ χ

ξ χ
ξ χ
ξ χ ξ χ

= −

−⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
= −

                                                (2.13) 
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olur ve bu ifade kullanılarak hermitsel eşlenik aşağıdaki gibi bulunur, 

 
                                             † † †

2 1 1 2ξδ φ χ ξ χ ξ∗ ∗=− +                                                    (2.14) 

 
ξ  bir kuantum alanı değildir ve ∗  notasyonu onun için uygundur. (2.14) ifadesini daha 

kapalı bir formda şu şekilde yazabiliriz, 

 
                                               ( )† †

2iξδ φ χ σ ξ∗=                                                       (2.15) 

 
burada †χ  aşağıdaki gibidir, 

 

                                                   ( )
†

1† † †
1 2

2

χ
χ χ χ

χ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

 
(2.13) ve (2.15) denklemini noktalı notasyonla yazmaya çalışalım, 

 
                                      †. . ; . .ξ ξδ φ ξ χ χ ξ δ φ ξ χ χ ξ= = = =                                  (2.16) 

 
Benzer yöntem kullanılarak (2.9) denkleminin hermitsel eşleniği için şu şekilde bir 

ifade bulunur, 

 

                                         

( ){ }
( ) ( )( )

( )( )

†
†

2

††
2

†
2

T

A i i

A i i

A i i

µ
ξ µ

µ
µ

µ
µ

δ χ σ σ ξ φ

φ ξ σ σ

φ ξ σ σ

∗

∗

⎡ ⎤= ∂⎣ ⎦

= ∂ − −

= ∂

                                 (2.17) 

 
Artık alanların dönüşümleri ile ilgili bilgilere kabaca sahibiz, fakat Lagranjiyenin (2.2) 

bu dönüşümler altındaki değişmezliğini sağlayacak şekilde A’nın seçimine de 

bakmalıyız (Aitchison 2007),  
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  ( ) ( ) ( ) ( )( )† † † †L i iµ µ µ µ
ξ µ ξ µ ξ µ µ ξδ δ φ φ φ δ φ δχ σ χ χ σ δ χ=∂ ∂ + ∂ ∂ + ∂ + ∂

 

 

   

( ) ( )( )
( ) ( )

† †
2 2

† †
2 2

T

T

L i i

A i i i A i i i

µ µ
ξ µ µ

µ ν ν µ
µ ν ν µ

δ χ σ ξ φ φ ξ σ χ

φ ξ σ σ σ χ χ σ σ σ ξ φ

∗

∗

⎡ ⎤=∂ ∂ + ∂ ∂ −⎣ ⎦

+ ∂ ∂ + ∂ ∂
                (2.18) 

 

(2.18) denklemine bakılırsa ξ ∗  ve Tξ  parametrelerini içeren iki tip terim vardır. Aξ ∗ ’ı 

içeren terimi göz önüne alalım ve ξ ∗ ’ın uzay-zamandan bağımsız bir parametre 

olduğunu hatırlayalım. Ayrıca  

 
                                               ν µ µ

ν µ µσ σ∂ ∂ =∂ ∂                                                       (2.19) 

 
özdeşliğini kullanırsak (2.18)’ in ξ ∗  ile ilgili kısmı şu şekilde olur, 

 
                         ( ) ( )† †

2 2L i i Aµ µ
ξ µ µ

ξ
δ χ σ ξ φ χ σ ξ φ

∗

∗ ∗∂ ∂ − ∂ ∂�                          (2.20) 

 
Bu ifade bize bu dönüşümler altında lagranjiyendeki değişimin sadece ξ ∗  ile ilgili 

kısmını göstermektedir. ξ ∗  ve Tξ  birbirinden bağımsızdır ve lagranjiyendeki bu 

terimlerin birbirlerinin götürmeleri beklenemez. Dolayısıyla burada eylemin değişmez 

olması gerektiği hatırlanmalıdır, bu durumda lagranjiyendeki değişim eğer toplam türev 

şeklinde gelirse eylemin değişmezliği sağlanmış olur. (2.20) numaralı denklemi yeniden 

ifade etmeye çalışalım. 

 
                            ( )† †

2 2L i A iµ µ
ξ µ µ

ξ
δ χ σ ξ φ χ σ ξ φ

∗

∗ ∗∂ ∂ − ∂ ∂�                           (2.21) 

 
Eğer 1A=−  alırsak bu terim şu hali alır, 
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( )

( )

† †
2 2

†
2

L i i

i

µ µ
ξ µ µ

ξ

µ
µ

δ χ σ ξ φ χ σ ξ φ

χ σ ξ φ

∗

∗ ∗

∗

∂ ∂ + ∂ ∂

=∂ ∂

�
                         (2.22) 

 

Benzer olarak 1A=−  alınıp Tξ  içeren terimler için bu adımlar tekrarlandığında 

bulunacak ifade şu şekilde olur (Aitchison 2007), 

 
                          ( ) ( )† †

2 2( )
T

T TL i i µ ν
ξ µ µ µ ν

ξ
δ φ ξ σ χ φ ξ σ σ σ χ∂ − ∂ +∂ ∂�          (2.23) 

 
Bu ifade ise bir toplam türevdir. Sonuç olarak alanların tanımlanan dönüşümleri altında 

ve 1A=−  olduğu durum için lagranjiyen toplam türev şeklinde değişecektir; yani 

 
                ( )† † †

2 2 2( )T TL i i iµ µ ν
ξ µ µ νδ χ σ ξ φ φ ξ σ χ φ ξ σ σ σ χ∗= ∂ ∂ + − ∂ + ∂        (2.24) 

 
olur. Bu sonuca göre alanların bu dönüşümleri altında eylem değişmez kalır.  

 
Yukarıda belirtildiği gibi süpersimetride alışıla gelmiş durumlardan farklı bir durum söz 

konusudur, yani süpersimetride dönüşümler altında Lagranjiyen invaryant kalmaz. 

Fakat burada eylemin invaryantlığı söz konusu olur. Bu durumda alan dönüşümleri artık 

eylemin invaryantlığını sağlayacak şekilde bulunur.  

 
Minimal süpersimetrik serbest Lagranjiyen şu şekilde tanımlanır; 

 

         
† † †

serbest i i i i i iL i F Fµ µ
µ µφ φ χ σ χ=∂ ∂ + ∂ +                                                                (2.25) 

 
Burada iφ  skaler alanı, iχ  fermiyon alanı ve iF  yardımcı kompleks alanı 

belirtmektedir. iφ  alanı )(kütle  boyutunda, iχ  fermiyon alanı 2/3)(kütle  boyutunda ve 

iF  yardımcı alanı ise 2)(kütle  boyutundadır. Eylemi invaryant bırakacak şekilde bu 

alanların dönüşümleri şu şekilde elde edilir; 
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                             2

†

.i i

i i i

i i

i i F

F i

ξ

µ
ξ µ

µ
ξ µ

δ φ ξ χ

δ χ σ σ ξ φ ξ

δ ξ σ χ

∗

=

= − ∂ +

=− ∂
                                                     (2.26) 

 
Aynı şekilde bu alanların hermitsel eşleniklerinin dönüşümlerinin ifadeleri (2.27) de 

verilmektedir. 

 

                              

( )

†

† †

† † † †
2

.

T

F i

i i F

ξ

µ
ξ µ

µ
ξ µ

δ φ ξ χ

δ χ σ ξ

δ χ φ ξ σ σ ξ

=

= ∂

= ∂ − +

                                             (2.27)     

                                         
Burada ξ  spinör tiplidir ve uzay zamandan bağımsızdır, aynı zamanda 2/1)( −kütle  

boyutundadır. ( )σσ µ r
−≡ ,1   ,  ( )σσ µ r,1≡  olarak tanımlanır ve σr  Pauli spin 

matrisleridir.  

 
Süpersimetri dönüşümleri, tanımlandığı gibi skaler bozon alanını fermiyon alanına 

dönüştürmektedir. Bu ise uzay-zaman bağımlılığı olmadığından global bir simetridir. 

 
2.2 Wess-Zumino Modeli 

 
Burada etkileşme Lagranjiyenin (Wess-Zumino 1974) ifadesi aşağıdaki gibi verilir, 

 

          
† †1( , ) ( , ) . .

2etkilesme i i ij i jL W F W h cφ φ φ φ χ χ= − +                                               (2.28) 

 
iW  ve ijW  nin bulunabilmesi için ilk olarak W süperpotansiyeli tanımlanmalıdır. Bu 

süperpotansiyel belirlenirken renormalize edilebilirliğe zarar vermemek için etkileşme 

Lagranjiyenin kütle boyutunun 4 olduğu hatırlanmalı. Bütün bunların ışığında aşağıdaki 

tanımlamalar yapılabilir, 
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kjiijkjiij yMW φφφφφ

6
1

2
1

+=                                                                             (2.29) 

 

        i
i

WW
φ∂
∂

=    →     kjijkjiji yMW φφφ
2
1

+=                                                           (2.30) 

 

          ji
ij

WW
φφ ∂∂

∂
=

2

  →    kijkijij yMW φ+=                                                               (2.31) 

 
Şimdi serbest ve etkileşme Lagranjiyenini birlikte düşünerek iF   ve †

iF  için Euler-

Lagrange hareket denklemlerine bakabiliriz. Bu durumda  

 

         ( ) 0=
∂
∂

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

∂
ii F

L
F

L

µ
µ   →       †

i iF W=−                                                  (2.32) 

 
olur. Aynı işlem †

iF için yapıldığında †
i iF W=−  olarak bulunur. 

 
Sonuç olarak tam Lagranjiyen aşağıdaki gibi yazılır, 

 

          
{ }chWWLL jiijiWZserbestWZ ..

2
12 +−−= χχ                                                       (2.33) 

 
Bu model çerçevesinde skaler parçacık için 1-ilmek katkılarına bakılabilir. Buna göre 

bu diyagramlar Şekil 2.1’deki gibi olur. 

 



Ş

 

 

 

Şekil 2.1 İ

 
Bu süreçle

 

a) 
2

4
4

i xλ
−

b) 
2

2
2

iλ
−

c) ( )⎛− −⎜
⎝

      2λ= −
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motivasyonlarından biridir. Henüz hiçbir süpersimetrik parçacık gözlenemediğinden 

bilinmeyen süpereşlere ait alanların hesaplanmasında tamamen bu karşılık gelme 

sağlanmaya çalışılır. Teoride böyle bir karşılık gelmeye rağmen süpereşlerin 

gözlenememesinin nedeni olarak süpersimetrinin kırılması olduğu fikri de 

benimsenmiştir.  

 
2.3 Etkileşme Lagranjiyenleri 

 
Süpersimetride etkileşme terimlerini elde etmek için skaler süper ikili yapısı ve uygun 

kovaryant türev tanımı göz önüne alınmalıdır. 

 
Kovaryant türev ve ikili yapısı skuarklar için şu şekilde verilir, 

 

      
1

L

t

b
φ

⎛ ⎞
=⎜ ⎟
⎝ ⎠

%

%
      ve      12

D i g W i g y Bµ µ µ µ
τ ′=∂ + ⋅ +
r

                                              (2.34) 

 

      2 Rtφ = %            ve      2D i g y Bµ µ µ′=∂ +                                                                 (2.35) 

 

       3 Rbφ = %            ve      3D i g y Bµ µ µ′=∂ +                                                               (2.36) 

 

Bu skaurk alanları için serbest alan kinetik teriminde kovaryant türev tanımları yerine 

konulacak olursa etkileşme terimleri elde edilecektir. Yani ( ) ( )†

i iD Dµ
µφ φ  kinetik 

terimi bize etkileşmeleri verecektir. 

 
Stop üretimi için etkileşme terimlerinin çıkarılmasında şu adımlar takip edilir, 

 



16 
 

        

3
1

1
3 †

1

1'
2 2

1'
2 2

L L L L

L L L L

it i g y B t gW t W b
D

ib i g y B b gW b W t

µ µ µ µ

µ

µ µ µ µ

φ

⎛ ⎞∂ + + +⎜ ⎟
⎜ ⎟=
⎜ ⎟∂ + − +⎜ ⎟
⎝ ⎠

%% % %

% % % %
                                       (2.37) 

 

      2 2'R RD t i g y B tµ µ µφ =∂ +% %                                                                                     (2.38) 

 

      3 2'R RD b i g y B bµ µ µφ =∂ +% %                                                                                    (2.39) 

 
Standart Modelden de bildiğimiz üzere 3Wµ  ve Bµ  alanları şu şekilde karışarak foton ve 

Z alanlarını oluştururlar. 

 

      

3 3
W W W W

W W W W

ZCos SinW W Z Cos A Sin
ASin CosB B Z Sin A Cos
µµ µ µ µ

µµ µ µ µ

θ θ θ θ
θ θ θ θ

⎛ ⎞ = +⎛ ⎞⎛ ⎞
= ⇒⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ − =− +⎝ ⎠⎝ ⎠⎝ ⎠

                 (2.40) 

 
Bu ifadede Wθ  karışım açısını (Weinberg açısını) göstermektedir. Benzer şekilde 

süpersimetride sol ve sağ elli skaler alanlar karışarak iki skaler alan oluştururlar. Bu 

dönüşüm en genel şekilde şöyle tanımlanır,  

 

      

1 21

1 22

f f L f fL

f f R f fR

Cos Sin f f Cos f Sinf f
Sin Cos f f Sin f Cosf f

θ θ θ θ
θ θ θ θ

⎛ ⎞ ⎛ ⎞ = +⎛ ⎞
= ⇒⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− =− +⎝ ⎠⎝ ⎠ ⎝ ⎠

% % %% %

% % %% %
                       (2.41) 

 
Bu ifadede f%  sfermiyonu, fθ  ise karışım açısını göstermektedir. Bütün bu karışım 

ifadeleride yerine konulacak olursa stop için etkileşme terimleri (ve köşe faktörleri) şu 

şekilde bulunur, 
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( )

( )

( )
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( )

† 2 2
1 1

† 2
1 2

† 2
2 1

† 2 2
2 2

†
1 1
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2

2 1
3 2

2
4

2
4

2 1
3 2

2
3

W t
W

t
W

t
W

W t
W

W

gt Z t i Sin Cos
Cos

gt Z t i Sin
Cos

gt Z t i Sin
Cos

gt Z t i Sin Sin
Cos
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µ
µ

µ
µ

µ
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µ
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µ
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µ
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θ θ
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θ
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θ
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θ θ
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θ

⎧ ⎫⎡ ⎤⇒ ∂ −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
⎧ ⎫

+ ∂ ⎨ ⎬
⎩ ⎭
⎧ ⎫

+ ∂ ⎨ ⎬
⎩ ⎭
⎧ ⎫⎡ ⎤+ ∂ −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
⎧ ⎫+ ∂ −⎨ ⎬
⎩ ⎭

+ ∂

% %

% %

% %

% %

% %

% %( )2
2
3 Wt i g Sinθ⎧ ⎫−⎨ ⎬

⎩ ⎭

                                           (2.42)  

 
Benzer şekilde kovaryant türev tanımından ve kinetik terimden yola çıkılarak sbottom 

için de aynı adımlar takip edilecek olursa etkileşme terimleri ve köşe faktörleri şu 

şekilde bulunur, 
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1
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b
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b
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µ
µ

µ
µ

µ
µ

µ
µ

µ
µ

µ

θ θ
θ

θ
θ

θ
θ

θ θ
θ

θ

⎧ ⎫⎡ ⎤⇒ ∂ − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
⎧ ⎫

+ ∂ −⎨ ⎬
⎩ ⎭
⎧ ⎫

+ ∂ −⎨ ⎬
⎩ ⎭
⎧ ⎫⎡ ⎤+ ∂ − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
⎧ ⎫+ ∂ ⎨ ⎬
⎩ ⎭

+

% %

% %

% %

% %

% %

% ( )2
1
3 Wb i g Sinµ θ⎧ ⎫∂ ⎨ ⎬

⎩ ⎭
%

                                    (2.43) 

 
Kovaryant türev ve ikili yapısı sleptonlar için aşağıdaki gibi verilir, 
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1

L

Ll

ν
φ

⎛ ⎞
=⎜ ⎟
⎝ ⎠

%

%
      ve      12

D i g W i g y Bµ µ µ µ
τ ′=∂ + ⋅ +
r

                                            (2.44) 

 

        2 Rlφ = %            ve      2D i g y Bµ µ µ′=∂ +                                                               (2.45) 

 
Bu slepton alanları için serbest alan kinetik teriminde kovaryant türev tanımları yerine 

konularak etkileşme terimleri skuark durumlarında olduğu gibi elde edilebilir.  

 
Buna göre, bütün bu işlemler yapıldıktan sonra stau ve tau-snötrinosu için etkileşme 

terimleri şu şekilde bulunur. 
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µ
µ

µ
µ

µ
µ

µ
µ

µ
µ

µ
µ

θ θ
θ

θ
θ

θ
θ

θ θ
θ

θ

θ

⎧ ⎫⎡ ⎤⇒ ∂ −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
⎧ ⎫

+ ∂ −⎨ ⎬
⎩ ⎭
⎧ ⎫

+ ∂ −⎨ ⎬
⎩ ⎭
⎧ ⎫⎡ ⎤+ ∂ −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

+ ∂

+ ∂

% %

% %

% %

% %

% %

% %

                                            (2.46) 

 
Snötrinolar MSSM çerçevesinde yalnızca sol-elli bileşenlere sahiptirler. Ayrıca 

snötrinolar elektrik yükü taşımadıkları için sadece zayıf etkileşmeye girerler. 

Dolayısıyla sadece Z ayar bozonu ile etkileşmeleri söz konusudur. Snötrinolar için aynı 

adımlar takip edildiğinde etkileşme terimi şu şekilde bulunur, 

 

          
( )†

2L L
W

gZ i
Cos

µ
µν ν

θ
⎧ ⎫

⇒ ∂ −⎨ ⎬
⎩ ⎭

% %                                                                        (2.47) 
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Fermiyonlar ve Sfermiyonlar ile Yükino (ve Nötralino) etkileşmeleri: 

Etkileşmelerin boyutların nedeniyle, bu etkileşmeler hafif SUSY kıran terimlerden 

etkilenmezler. Bu bağlaşımların yalnızca iki kaynağı vardır. Birincisi; yükinoların 

(chargino) ve nötralinoların ayarino (gaugino) bileşenleri ( )Aλ , fermiyonlarla ( )iψ  ve 

sfermiyonlarla ( )iS  şu terim vasıtasıyla bağlaşırlar (Baer 2006), 

 

                     † 5

,

12 . .
2i A A i

i A
L g S t h cα

γλ ψ−
∋ − +∑                                                  (2.48) 

 
Bu bağlaşımlar tam olarak ayar etkileşmeleri ve farklı sparçacık karışım matrisleriyle 

tanımlanırlar. Yükinoların ve nötralinoların higgsino bileşenleri de bu bağlaşımlara 

Yukawa etkileşme süperpotansiyeli vasıtasıyla katkıda bulunurlar, yani 

 

                     
2

ˆ

1 . .ˆ ˆ2 i L j
i j S S

L P h c
S S

ψ ψ
=

⎛ ⎞∂
∋ − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

                                                   (2.49) 

 
Bu tür bağlaşımlar yalnızca üçüncü aile için önemlidir. 

 
Ayarino (gaugino) etkileşmelerinden kaynaklanan nötralino-kuark-skuark 

bağlaşımlarını elde ederek başlayalım. İlgili terimi bulmaya çalışalım, 

 

      
( )

( )

† † †
0

† † †
0 0

1 4 12
2 3 2

2 1 1 1 . .
3 2 3 2

c

c

u
L L A A L R R U

d

u
R R L L LD

d

L g u d P g u P

g d P g u d P h c

ψ
σ λ λ ψ

ψ

ψ
λ ψ λ

ψ

⎧ ⎛ ⎞⎪ ⎛ ⎞′∋ − + −⎨ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎪ ⎝ ⎠⎩

⎫⎛ ⎞ ⎪⎛ ⎞′ ′+ + + +⎬⎜ ⎟⎜ ⎟
⎝ ⎠ ⎪⎝ ⎠ ⎭

%% %

% %%

         (2.50) 
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† † †3 1 2
0
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0
† † †

0

0

1 4
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1 0
2 3 . .

13 0
3

c

c

u
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d

u
R R L L LD

d

i
L g u d P g u P

i

g d P g u d P h c
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λ ψ

ψλ λ λ

λ ψ
λ ψ

ψλ

⎧ ⎛ ⎞− ⎛ ⎞⎪ ⎛ ⎞′∋ − + −⎨ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ − ⎝ ⎠⎪ ⎝ ⎠⎝ ⎠⎩
⎛ ⎞
⎜ ⎟ ⎫⎛ ⎞ ⎪⎛ ⎞′ ′+ + + +⎜ ⎟ ⎬⎜ ⎟⎜ ⎟

⎝ ⎠ ⎪⎜ ⎟ ⎝ ⎠ ⎭⎜ ⎟
⎝ ⎠

%% %

% %%

      

(2.51) 

 

( )
( )

( )

3 0 1 2
† †

1 2 3 0

† †
0 0

1 3
2

3
4 2 . .
3 3c c

u
L L L

d

R R R RU D

gg g i
L u d P

gg i g

g u P g d P h c

λ λ λ λ ψ
ψ

λ λ λ λ

λ ψ λ ψ

′⎧ ⎛ ⎞+ −⎪ ⎜ ⎟ ⎛ ⎞⎪∋ − ⎜ ⎟⎨ ⎜ ⎟′⎜ ⎟ ⎝ ⎠⎪ + − +⎜ ⎟⎪ ⎝ ⎠⎩
⎫⎛ ⎞ ⎛ ⎞′ ′+ − + + +⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎭

%%

%%

         (2.52) 

 
Burada uygunluk için SU(2) tekli antikuarkları içeren terimlerin Hermitsel eşlenikleri 

yazıldı. Snötrinoların ve yüklü sleptonların etkileşmelerini bulmak için 

, ,L L L R Ru d l d lν→ → →% % % %%%  değişimi yapılır ve sağ-elli nötrino olmadığı için Ru%  terimi 

atılır ve ayrıca d  SU(2) singletinin zayıf hiperyükü olan 2
3

 , antileptonun hiperyükü 

olan 2 ile değiştirilir. Bu değişikliklere ek olarak 0λ  ile çarpılan ve lepton ya da nötrino 

hiperyüklerine karşı gelen kuark yükleri de değiştirilir. Bu değişikliklerden sonra (2.52) 

ifadesinin leptonlar için yazılan hali şu şekilde olur, 

 

           

( ) ( )
( )

( ) }

3 0 1 2† †

1 2 3 0

†
0

1
2

2 . .c

L L L
l

R R l

g g g i
L l P

g i g g

g l P h c

ν
λ λ λ λ ψ

ν
ψλ λ λ λ

λ ψ

⎧ ⎛ ⎞′− − ⎛ ⎞⎪ ⎜ ⎟∋ − ⎨ ⎜ ⎟⎜ ⎟′+ − − ⎝ ⎠⎪ ⎝ ⎠⎩

′+ + +

%%

%

                     (2.53) 

 
Buradaki amacımız kuark-skuark-nötral gaugino (ayarino) etkileşmelerini kurmak ve 

, , ,c cL u L L d L R R R RU D
P P u P P d P P u P P dψ ψ ψ ψ= = = =  ifadelerini kullanarak 

Majorona alanlarını denklemlerden eleyerek etkileşmeyi Dirac alanları cinsinden 
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yazmak. Ayrıca burada nötral higgsino ve ayarino alanlarının kütle özdurum alanlarıyla 

olan ilişkisini de hatırlamamız gerekiyor (Baer 2006), 

 

                               

0

0

(1) (2) (3) (4) 0
1 1 1 1 1
(1) (2) (3) (4) 0
2 2 2 2 2
(1) (2) (3) (4) 0
3 3 3 3 33
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4 4 4 4 40

u

d

h

h

ψ ϑ ϑ ϑ ϑ χ
ψ ϑ ϑ ϑ ϑ χ

ϑ ϑ ϑ ϑ χλ
ϑ ϑ ϑ ϑ χλ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

%

%

%

%

                                       (2.54) 

 
buradan elde edilen ( )( ) 0

3 3 5
ii

i
i

i θλ ϑ γ χ=∑ %  ve ( )( ) 0
0 4 5

ii
i

i

i θλ ϑ γ χ=∑ %  ifadelerini ve 

1 2

2
iλ λ

λ
+

=  olduğunu (2.52) denkleminde yerine koyacak olursak etkileşme 

lagranjiyenini yeniden ifade edebiliriz.  
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⎧ ′⎡ ⎤⎛ ⎞∋ − − + − +⎨ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩

′⎡ ⎤⎛ ⎞+ + − − + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎫⎛ ⎞ ⎛ ⎞′ ′+ − − + − +⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎭

% %%

% % %

%% %% .c
 

(2.55) 

 
Bu lagranjiyenin iχ%  ile ilgili kısmı bazı katsayı tanımlamaları yapılarak şu şekilde 

yazılabilir, 

 
† †

, , ,

. .
i ii

f f
L i L R i Rf f

f u d l

L i A f P f i B f P f h cχ χχ
ν

χ χ
=

⎡ ⎤= + +⎣ ⎦∑% % %%
% %% %                        (2.56) 

 
Bu etkileşme lagranjiyeninde tanımlanan katsayılar kuarklar için aşağıdaki gibidir (Baer 

2006), 
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( ) ( )
3 432

i

i

u i ii gA g
θ

χ ϑ ϑ
−− ′⎡ ⎤= +⎢ ⎥⎣ ⎦

%                                                    (2.57) 

 

                             
( ) 1
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i

i

d i ii gA g
θ

χ ϑ ϑ
−− ′⎡ ⎤= − +⎢ ⎥⎣ ⎦

%                                                  (2.58) 

 

                             ( ) 1 ( )
4

4
3 2

i

i

u iB g i θ
χ ϑ−=%                                                                  (2.59) 

 

                             ( ) 1 ( )
4

2
3 2

i

i

d iB g i θ
χ ϑ−′=−%                                                              (2.60) 

 
Leptonların ve sleptonların nötrinolar ile olan bağlaşımları kuarklarınkine benzerdir ve 

bu bağlaşımların katsayıları benzer adımlar takip edilerek şu şekilde bulunabilir (Baer 

2006), 

 

                              
( ) 1

( ) ( )
3 42

i

i

l i ii
A g g

θ

χ ϑ ϑ
−−

′⎡ ⎤=− +⎣ ⎦%                                                 (2.61) 

 

                              
( ) 1

( ) ( )
3 42

i

i

i ii
A g g

θ
ν
χ ϑ ϑ

−−
′⎡ ⎤=− −⎣ ⎦%                                                 (2.62) 

 
                              ( ) 1 ( )

42i

i

l iB i gθ
χ ϑ− ′= −%                                                                (2.63) 

 
                               0

i
Bν
χ =%                                                                                          (2.64) 

 
Süperpotansiyel terimlerinden kaynaklanan fermiyon-sfermiyon-nötralino 

etkileşmelerine ne tip katkılar geldiğine göz atalım. 
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2

ˆ

ˆ1 . .ˆ ˆ2 i L j
i j S S

fL P h c
S S

ψ ψ
=

⎛ ⎞∂
∋ − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

                                           (2.65) 

 
ve f̂  aşağıda verilmiştir (Baer 2006).  

 
                             0 0 0ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ...c c c

u u d d e df y u h U y d h D y e h E∋ + + +                                   (2.66) 

 
Yukarı – (aşağı) tip (s)fermiyonlar için iψ  , jψ ’nin biri 0

uh
ψ ( 0

dh
ψ ) ve diğeri fψ  ya da 

cF
ψ  olduğu zaman katkı gelir. Bu katkıyı açıkça görebilmek için şunu yazabiliriz; 

 
                       ( ) ( )( ) † ( ) †i ii i

f a R i L f a L i RL y i f P f y i f P fθ θϑ χ ϑ χ∋ − − −% %% %                      (2.67) 

 
Yukarı-tipli (s)fermiyonlar için a=1 ve aşağı tipliler için a=2 dir. Bu katkıyı (2.56) 

ifadesindeki katkı ile birleştirirsek, 
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%
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              (2.68) 

 
En sonunda da Lf%  ve Rf% ’nın yerine 1f%  ve 2f%  sfermiyon kütle özdurumları cinsinden 

yazıldığında bu etkileşme lagranjiyeni şu hali alır, 

 
                            † . .j j

i ii

f f
j i L Rf fL f P P f h cχ χχ χ α β⎡ ⎤= + +⎣ ⎦

% %

% % %%
% %                                          (2.69) 

 
Bu etkileşme terimi için şu tanımlamalar yapılmıştır (Baer 2006),  
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                                      (2.70) 

                                     
Burada, eğer f  yukarı tipli bir kuark ise a=1 ve eğer f  aşağı tipli bir kuark ya da yüklü 

bir lepton ise a=2 değerini alır. Sağ-elli bir nötrino süperalanına sahip olmadığımız için 

nötrino-snötrino-nötralino bağlaşımı (2.56) ile verilemez. 

 
Yükinoların (charginoların) skuark ve kuarklarla ya da slepton ve leptonlarla olan 

etkileşmeleri benzer şekilde hesaplanabilir. Yükino-kuark-skuark etkileşmeleri için 

(2.52) bağıntısından şunu buluruz, 

 
                                † † . .c

L L L LL g u P d g d P u h cλ λ∋ − − +%%                                          (2.71) 

 
Burada, cλ  yüklü Dirac ayarino (gaugino) λ ’nın yük eşleniğidir. Yükino kütle 

özdurumlarını kullanarak ve λ  ile cλ ’yi denklemden eleyerek bu ifadeyi yeniden 

yazalım. Buna göre Lagranjiyenin son hali şu şekilde olur, 

 
                               † † . .

i i

d u c
L i L L i LL i A u P d i A d P u h c

χ χ
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%% %%                                 (2.72) 

 
bu ifadede şu tanımlamalar yapılmıştır (Baer 2006), 
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                                                   (2.73)    
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Bu bağlaşımlar aileden bağımsızdırlar; yani u  ve d  ( Lu%  ve Ld% )  herhangi yukarı ve 

aşağı-tip kuark (skuark)’ a karşı gelir. Ayrıca yükinoların lepton ve sleptonlar ile olan 

bağlaşımları da özdeştir ( u ν→  ve d l→  değişimi yapılarak bu görülebilir ). 

 
Nötralinolar durumunda olduğu gibi yükino etkileşmelerine de süperpotansiyelden katkı 

gelir. Bu katkılar da göz önüne alındığında Lagranjiyen şu hali alır, 
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             (2.74) 

  
bu etkileşme Lagranjiyeni için yapılan tanımlamalar şu şekildedir (Baer 2006), 
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                                                 (2.75) 

 
Yükino-sbottom-top etkileşmeleri için lagranjiyen aşağıdaki gibi olur. 
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% % %

% %

% %
            (2.76)    

 
Son olarak (2.75) bağlaşım tanımlamalarının içerildiği her yerde u ν→  ve d l→  

değiştirilmesi yapılarak yükino-slepton-nötrino ve yükino-snötrino-lepton etkileşmeleri 

bulunabilir. Buna göre  
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( )
( )

†
1

†
2

† . .

i i i

i i

i i

c
i L

c
i L

i L R

L i A Cos B Sin P

i A Sin B Cos P

i A P B P h c

τ

ν
τ τ ττν χ χ χ

ν
τ τ τχ χ

τ
τ χ χ

τ χ θ θ ν

τ χ θ θ ν

ν χ τ

± ± ±

± ±

± ±

±

±

±

⎡ ⎤′′= −⎢ ⎥⎣ ⎦
⎡ ⎤′′+ +⎢ ⎥⎣ ⎦
⎡ ⎤′′+ + +⎣ ⎦

% % %%

% %

% %

%%

%%

% %

                                 (2.77)      

 
olur ve burada şu tanımlamalar yapılmıştır (Baer 2006), 

 

                                               
1

1

i i

i i

u

d

L

x L

A A

A A

B y Cos

B y Sin

ν
χ χ

τ
χ χ

τχ

τχ

γ

θ γ

± ±

± ±

±

±

=

=

′ =−

′′ =

% %

% %

%

%

                                                        (2.78) 

 
2.4 SUSY Kırılması 

 
Süpersimetri (SUSY), bilinen parçacık spektrumunun açıkça tam bir simetrisi olmadığı 

için Süpersimetri kırılma konusu MSSM’ nin fenemenolojik uygulanabilirliğinden önce 

ele alınmalıdır. Simetri kırılmasının iki yolunu biliyoruz; 

 
a) Kendiliğinden simetri kırılmasıyla (örneğin QCD’nin chiral simetrisi durumunda 

olduğu gibi ve Higgs Mekanizması yoluyla SM’ nin elektrozayıf simetrinin kırılması 

gibi) 

 
b) Lagranjiyende açık simetri-kıran terimlerle, Elektrozayıf durumda, kütleli ayar 

bozonları ve fermiyonlar için açıkça simetriyi kıran (ayar invaryant olmayan) kütle 

terimleri renormalize edilebilirliği bozabilir, bu durumda kendiliğinden simetri kırılması 

(renormalize edilebilirliği korur) teorik olarak tercih edilir ve deneylerde (sonlu 

radiative düzeltmelerin doğruluk ölçümleriyle) bunu işaret etmektedir. Kendiliğinden 

SUSY kırılması, elektrozayıf teoride ayar simetrisinin ve QCD’ de chiral simetrinin 

kendiliğinden kırılmasının standart örnekleriyle karşılaştırıldığında daha yenilikçi 

özellikler gösterdiği için kendiliğinden SUSY kırılması önemlidir.  
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Açıkça SUSY kırılması durumunda ise Lagranjiyene ayar invaryant ve süper-

renormalize edilebilir sınırlı şekilde terimler eklenir. Bu eklenen terimler tekrar 

kuadratik ıraksaklıkları getirmemelidir aksi takdirde Standart Modelin ince-ayar 

problemi çözümünü bozarlar. 

 
2.4.1 Kendiliğinden SUSY kırılması 

 
Alan teorisinde bir simetrinin kendiliğinden kırılabilmesi için temel koşul, “bu simetri 

altında değişmez (invaryant) olmayan alanın” sıfırdan farklı bir beklenen değere sahip 

olmasıdır. Yani alan φ′  ile gösterilirse, 00)(0 ≠′ xφ  olmalıdır. φ′  (invaryant) 

değişmez olmadığı için diğer alanlarla birlikte bir simetri multipletine ait olmalıdır ve 

bu durumda φ′ ’nü şu şekilde ifade etmek olasıdır. 

 

                 [ ])(, xQ φφ =′                                                                                             (2.79) 

 
Burada Q  simetri grubunun hermitsel üreticisi ve φ  , φ′ ’nün ait olduğu multipletteki 

uygun bir alandır. Buna göre  

 

               

[ ]
( )

0
0)()(0

0)(,00)(0

≠

−=

=′

QxxQi

xQix

φφ

φφ

                                                        (2.80) 

 
0  vakum durumunun genellikle 00 =Q  olduğu kabul edilir, çünkü bu Q  tarafından 

üretilen dönüşüm altında 0  vakum durumunun değişmezliğini (invaryantlığını) 

vurgular; fakat biz 00 =Q  olarak alırsak (2.80) denklemini ihlal etmiş oluruz. Bu 

nedenle kendiliğinden simetri kırılması için 00 ≠Q  olduğu kabul edilmelidir. 

 
SUSY durumunda, †,a bQ Q  simetri üreticileri ile Hamiltoniyen arasında çok önemli bir 

bağıntı vardır. SUSY cebiri aşağıdaki şekilde verilir 
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          { } ( )†,a b ab
Q Q Pµ

µσ=                                                                                         (2.81) 

 
Buna göre; 

 

         

( )
( )

† †
1 1 1 1 011

† †
2 2 2 2 022

z

z

Q Q Q Q P P P

Q Q Q Q P P P

µ
µ

µ
µ

σ

σ

+ = = +

+ = = −
                                                                  (2.82) 

 
ve dolayısıyla  

 

                                ( )† † † †
0 1 1 1 1 2 2 2 2

1
2

H P Q Q Q Q Q Q Q Q≡ = + + +                                (2.83) 

 
(H: Hamiltoniyen) Buradan aşağıdaki sonuç elde edilir; 

 

         

( )

( )

† † † †
1 1 1 1 2 2 2 2

2 22 2† †
1 1 2 2

10 0 0 0 0 0 0 0 0 0
2

1 0 0 0 0
2

H Q Q Q Q Q Q Q Q

Q Q Q Q

= + + +

= + + +
           (2.84) 

 
Buradan bir SUSY-değişmez (invaryant) teorinin vakum enerjisinin sıfır olması 

gerektiği görülür. 

 
Şimdi Hamiltoniyen yoğunluğunun kinetik enerji kısmının vakum enerjisine katkıda 

bulunmadığını kabul edelim. Diğer yandan, SUSY-invaryant(değişmez) potansiyel 

enerji yoğunluğu şu şekilde verilir (Aitchison 2007). 

 

           
( )( )2† 2 † †

,

1( , )
2i i i G i G i j G j

G i j
V W g T Tα α

α

φ φ φ φ φ φ= + ∑∑∑                                   (2.85) 
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V  daima sıfıra eşit yada büyüktür ve 0=V  SUSY-invaryant(değişmez) duruma karşı 

gelir. 

 
Dolayısıyla SUSY’nin kendiliğinden kırılması için, V ’nin SUSY-invaryant(değişmez) 

minimuma sahip olmaması gerekir.  

 

SUSY durumunda ne çeşit bir φ′  alanı sıfırdan farklı bir vakum beklenen değerine 

sahip olabilir? Bu sorunun cevabı için olası bütün komütasyon bağıntıları düşünülmeli. 

Q  ‘ların alanlarla olan komütasyon bağıntıları ise SUSY dönüşümleriyle tanımlanır; 

 

                               

[ ]
[ ]
[ ]

*
2

†

. , .

. ,

. ,

i Q

i Q i i F

F i Q F i

ξ

µ
ξ µ

µ
ξ µ

δ φ ξ φ ξ χ

δ χ ξ χ σ σ ξ φ ξ

δ ξ ξ σ χ

= =

= = − ∂ +

= = − ∂

                                       (2.86) 

 
Şimdi Lorentz-değişmezliği(invaryantlığı) yalnızca skaler alanların vakum beklenen 

değeri (vev) kazanabileceğini işaret ediyor, çünkü yalnızca bu vakum beklenen 

değerleri Lorentz dönüşümleri altında invaryanttır(değişmezdir). (2.86) denklemindeki 

bu üç dönüşümün her birinin sağ tarafındaki terimler düşünüldüğünde simetri-kıran 

vakum beklenen değeri için tek olasılık şudur; 

 

              000 ≠F                                                                                                    (2.87) 

 
Bu durum F-tipi SUSY kırılması olarak ifade edilir, çünkü F yardımcı alanı bir vakum 

beklenen değeri kazanır. 

 
Şimdi Wess-Zumino modelindeki süperpotansiyeli kullanalım; 

 

            
kjiijkjiij yMW φφφφφ

6
1

2
1

+=  
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† †1
2i ij j ijk j k

i

WF M yφ φ φ
φ

⎛ ⎞∂ ⎛ ⎞=− = +⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎝ ⎠
                                                          (2.88) 

 
ve 2)( iFV =φ  dir, bütün φ  ’ler sıfır olduğunda )(φV  açık bir minimuma sahip olur. 

Böylece W ’nun bu formuyla SUSY kendiliğinden kırılamaz. Kendiliğinden SUSY 

kırılması için W ifadesinde lineer bir terim olacak şekilde iF  ‘ye bir sabit eklemeliyiz. 

Buna göre üç chiral süpermultiplet [O’Raifeartaigh 1975] kullanılarak W  şu formda 

yazılabilir, 

 

           )( 22
3231 MgmW −+= φφφφ                                                                            (2.89) 

 
Burada m  ve g  pozitif gerçel, M  gerçel olarak seçilebilir. Buna göre  

 

        
†

1 3F mφ− =  ;  † 2 2
2 3( )F g Mφ− = −  ;  †

3 1 2 32F m gφ φ φ− = +                                 (2.90) 

 
elde edilir ve böylece potansiyel şu şekilde bir ifade olarak bulunur; 

 

        

2 2 2
1 2 3

2 22 2 2 2 2
3 3 1 2 32

V F F F

V m g M m gφ φ φ φ φ

= + +

= + − + +
                                               (2.91) 

 
(2.91) denklemindeki ilk iki terimi birlikte aynı anda yok edemeyiz, öyle ki 0=V  veren 

olası bir alan konfigürasyonu yoktur. Diğer yandan (2.91) deki üçüncü terim 321 ,, φφφ  

ün uygun seçimiyle daima yok olabilir. Böylece V ’nin minimumunu bulmak için 

(2.91)’nin ilk iki terimini sınamak yeterlidir. İlk iki terim 3φ ’e bağlıdır ve bu durumda 

3φ  ü gerçel ve sanal kısımlarıyla tanıtırsak, 

 

         2/)(3 BiA+=φ                                                                                               (2.92) 
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42222

2
22222222

3 )(
4

)2(
2
1)2(

2
1 MgBAgBMgmAMgmV +++++−=    (2.93) 

 
Daha detaylı bir analiz )2( 222 Mgm −  nin işaretine bağlıdır, şöyle bir durum göz 

önüne alınacak olursa, 

 

          
222 2 Mgm >                                                                                                   (2.94) 

 
(2.94) denkleminin sağlandığını kabul edelim, buna göre 3V  şu koşullar altında bir 

minimuma sahip olur,  

 
           0== BA  , yani 03 =φ                                                                                    (2.95) 

 
(2.91) denkleminden de  

 

             01 =φ                                      (2.96) 

 
olması gerektiği görülür. Fakat 2φ  tanımlanmadan kalır. Dolayısıyla bu çözüm şunu 

verir; 

 

            
† †

1 30 0 0 0 0F F= =                                                                (2.97) 

 
fakat yardımcı alanın ikinci bileşeni için durum farklı olur, 

 

             
† 2

20 0F g M=             (2.98) 

 
V ’nin minimum değeri 42 Mg ’ dür ve tam anlamıyla pozitiftir. Ayrıca M parametresi 

kütle boyutuna sahiptir. Bu model çerçevesinde kütle spektrumunu araştırabiliriz. 
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Bunun sonucunda altı gerçel skaler alan ve üç tane de L-tipli fermiyon ortaya çıkar. Bu 

alanlar için kütle spektrumu şu şekilde olur, 

 
           0, 0      →   2φ  kompleks alanının gerçel ve sanal kısımları 

         
2m , 2m   →   1φ  kompleks alanının gerçel ve sanal kısımları 

         
222 2 Mgm − , 222 2 Mgm + →  3φ  kompleks alanının gerçel ve sanal kısımları 

          0  →   2χ   (Goldstino) 

          m , m →  1χ  ve 3χ  alanlarının lineer kombinasyonu 

 
W’ daki bütün terimler ayar-invaryant olmalıdır, özellikle (2.89)’daki lineer 2φ  terimi, 

fakat Standart Modelde kendisi ayar invaryant olan bir alan yoktur. Böylece MSSM’de, 

W lineer bir terime sahip değildir ve SUSY kırılması için bu modelin ötesine bakmak 

gerekir.  

 
O’Raifeartaigh modelinde simetri kırıldıktan sonra kütle toplam kuralı sağlanır, 

 

                       2 22reel skalerler chiral fermiyonlarım m=∑ ∑                                        (2.99) 

 
burada toplamlar aynı elektrik yüklü, renk yüklü, baryon sayılı ve lepton sayılı sektörler 

üzerindendir. (2.99) bağıntısının anlamı; bu çeşit SUSY kırılması fenemenolojik olarak 

geçerli değildir, çünkü bu hafif SM fermiyonlarının hafif skaler eşlerinin varlığını 

gerektirir ve bu durum deneysel olarak dışarlanmıştır. 

 
Bir ayar süpermultipletindeki terimler vasıtasıyla olası SUSY kırılması da göz önüne 

alınmalıdır. Bu durum için dönüşümler; 
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† †

† †

1. ,
2

1. ,
2 2 2
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2

W i Q W

ii Q F D

iD i Q D D D

µα µα µ α α µ
ξ

α α µ ν α α
ξ µν

α α µ α α µ
ξ µ µ

δ ξ ξ σ λ λ σ ξ

δ λ ξ λ σ σ ξ ξ

δ ξ ξ σ λ λ σ ξ

⎡ ⎤= = − +⎣ ⎦

⎡ ⎤= =− +⎣ ⎦

⎡ ⎤= = −⎣ ⎦

                           (2.100)  

 
Yalnızca yardımcı alanlar sıfırdan farlı bir vakum beklenen değerine sahip olmalıdır.  

 

        000 ≠αD                                                                     (2.101) 

 
Bu duruma D-tipi simetri kırılması denir. 

 
Bir U(1) ayar süpermultipletindeki D yardımcı alanı ayar invaryanttır ve bu nedenle 

Lagranjiyene D ile orantılı bir terim eklendiğinde SUSY invaryant kalır. Lagranjiyene 
2DM  [Fayet-Iliopoulos 1974] terimi eklendiğinde yalnızca D terimlerini içeren 

Lagranjiyen aşağıdaki şekilde olur; 

 

        
2 2 †

1
1
2D i i i

i
L M D D g D e φ φ= + − ∑                                       (2.102) 

 
Burada 1g ,  U(1) etkileşme sabiti ve ie , iφ skaler alanının U(1) yükleridir. D için 

hareket denklemi  

 

        
2 †

1 i i i
i

D M g e φ φ=− + ∑           (2.103) 

 
olarak bulunur ve bu duruma karşı gelen potansiyel aşağıdaki formu alır; 

 

        

2
2 †

1
1
2D i i i

i

V M g e φ φ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑          (2.104) 
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Basitlik olması için 1ge  yüklü tek bir φ  skaler alanı durumunu düşünelim. Eğer 

01 >ge  ise SUSY’nin korunduğu bir durum ortaya çıkar (yani 0=DV  olur.). Bu 

durumda 000 =D  olur ve böylece ( ) 21
1

2 /00 geM=φ  olarak bulunur. Diğer 

yandan 01 <ge  ise 200 MD −=  ve 000 =φ olarak bulunur, bu durum için 

potansiyelin minimumu  4

2
1 MVD =  olarak elde edilir. Aslında Lagranjiyen için şu 

ifadeye sahip oluruz; 

 

      
4 2 †

1
1
2DL M e g M φ φ=− −                                                                              (2.105) 

 
burada φ  alanı ( ) 2/1

1geM  kütlesine sahip olur. Ayarino alanı λ  ve ayar alanı µA  

kütlesiz kalır ve λ  bir goldstino olarak yorumlanabilir. 

 

Bu mekanizma abelyen olmayan durumda kullanılamaz, çünkü αDM 2  formunda ayar 

invaryant olabilecek terim yoktur. 

 
2.4.2 Hafif süpersimetri kıran terimler 

 
SUSY kırılmasının gerçekleştiği herhangi bir durumda, düşük enerjilerde SUSY – kıran 

terimlerin bir parametrizasyonu araştırılabilir. Burada önemli olan nokta, (efektif) 

Lagranjiyende fenemenolojik SUSY-kıran terimler “hafif” olmalı, örneğin “ 22 φM ,
3φM , χχ .M ” gibi. Çünkü bu terimler (süpernormalize edilebilirler) yeni ıraksaklıklar 

getirmezler. 

 
 Skaler 2)(kütle  ifadesine 1-ilmek düzeltmesinden gelen katkı  

 

       ( ) 222 ~ Λ− fermiyonskaler gm λδ         (2.106) 
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burada Λ  yüksek enerji kesilimidir(cutoff). SUSY’ de aslında 2
fermiyonskaler g=λ  dir ve Λ

’ ya bağımlılık logaritmik olur. Bu durumda skaler 2)(kütle ’ ye 1-ilmek düzeltmesinden 

gelen katkı ( )2 2 lnhafif hafifm m mδ ≈ Λ  olarak bulunur. Burada hafifm  hafif SUSY kıran 

terimlerin tipik kütle ölçeğidir ve 1 TeV’ den çok büyük olamaz. 

 
Olası ayar invaryant hafif SUSY kıran terimlerin formları hemen hemen sınırlıdır ve 

terimler şu şekilde verilir (Aitchison 2007); 

 

(a) Her ayar grubu için Ayarino kütleleri: 

 

         
( )..~.~~.~~.~

2
1

123 chBBMWWMggM aaaa +++−           (2.107) 

 
İlk terimde (gluino) a indisi 1’den 8’e kadar; ikinci terimde (wino) a 1’den 3’e kadar 

değişir ve (.) çarpım Lorentz invaryant spinör çarpımını belirtmektedir. ag~ , aW~ , B~  

alanları L-tipli spinörlerdir. Basitlik için iM  parametrelerinin gerçel olduğunu (yeni bir 

CP ihlali ortaya çıkarmayacağını) kabul ediyoruz. Fakat iM ’ nin pozitif olması için bir 

gereklilik yoktur. 

 
(b) Skuark 2)(kütle  terimleri: 

 

        
2 † 2 † 2 †.i j Li Lj Li LjuijQij dij

m Q Q m u u m d d− − −% % %
% %% % % %                          (2.108) 

 
Burada i ve j aile etiketlerini göstermektedir ve ilk terim 2  ve 2 gösterimlerinde 

skalerlerin bir LSU )2( - invaryant nokta çarpımıdır; örneğin 

  

          
† † †
1 2. L L L LQ Q u c d s= + %% % % % %                             (2.109) 
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olur. Bütün Lif
~

 alanları denk olarak †
Rif%  olarak da yazılabilir. 

 
(c) Slepton 2)(kütle  terimleri:  

 

         
2 † 2 †.i j Li LjeijLijm L L m e e− −% %
% % % %                                                                                     (2.110) 

 
(d) Higgs 2)(kütle  terimleri: 

 

        ( )2 † 2 †. . . . .
u dH u u H d d u dm H H m H H b H H h c− − − +                                                 (2.111) 

 
burada LSU )2( - invaryant nokta çarpımlar şu şekildedir, 

 

        
2 2† 0.u u u uH H H H+= +                                                                                    (2.112) 

 
Aynı şekilde † .d dH H  çarpımı da yazılabilir, fakat  

 

        
00. dududu HHHHHH −= −+                                                                                (2.113) 

 
olur.  

 
(e) Üçlü skaler bağlaşımlar:  

 

       ...~~.~~
.~~ chHLeaHQdaHQua djLi

ij
edjLi

ij
dujLi

ij
u +++−                                        (2.114) 

 

Buradaki 2)(kütle  matrisleri genel olarak komplekstir, fakat Lagranjiyenin gerçel 

olabilmesi için hermitsel olmalıdır. (2.107) – (2.114) denklemlerinin hepsi açıkça 

SUSY’yi kırar, çünkü bu terimler yalnızca skalerleri ve ayarinoları içerir. 
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Diğer yandan burada (2.107) – (2.114) terimlerinin Standart Model ayar simetrilerine 

uyduğunu vurgulamak önemlidir. Ayar-invaryant kütle terimleri bütün bu süpereşler 

için olasıdır fakat bilinen Standart Model parçacıkları için bu durum olası değildir. 

(2.107) denklemi göz önüne alınırsa, gluinolar bir ayar grubunun regular (adjoint) 

gösterimindedir. Örneğin, SU(2)’de wino’lar t=1 (vektör) gösterimindedir. Bu 

gösterimde dönüşüm matrisleri gerçel olarak seçilebilir yani bu dönüşüm matrisleri 

üniterlikten ziyade ortogonaldirler, yani 3 – boyutlu uzaydaki dönme matrisleri gibi. Bu 

nedenle WW ~.~  formlu nicelikler SU(2) dönüşümleri altında invaryanttır, aynı durum 

gluinolar ve bino için de geçerlidir. (2.108) ve (2.110) terimlerine bakılırsa, bu formdaki 

skuark ve slepton kütle terimleri izinlidir (i ve j aile indisleri) ve 2
ijm ’ ler aile uzayında 

hermitsel matrislerdir. Buradaki 2 † .
uH u um H H−  gibi Higgs kütle terimleri SM’de de 

vardır ve Minimal Süpersimetrik (MSSM) bakış açısından elektrozayıf simetriyi 

kendiliğinden kırabilmek için SUSY’ yi ihlal eden terimlere de ihtiyacımız vardır. 

(2.111) denklemi sadece Higgs’leri içerir ve SUSY’ yi kırar. Bu terimde Higgsino’ların 

kendileri için kütle terimi ayar değişmezliği nedeniyle yasaklanmıştır. 

 
Bu düşünceler sonucunda; elektrozayıf simetriyi koruyan kütle terimleri MSSM’ nin 

şimdiye kadar gözlenmemiş bütün parçacıkları için yazılabilir. Aksine, SM’ nin bilinen 

parçacıkları için benzer kütle terimleri elektrozayıf simetriyi açıkça kırar ve bu kabul 

edilemez bir durumdur (renormalize edilemezliğe ya da üniterlik ihlaline götürür), 

bilinen SM parçacılarının kütleleri elektrozayıf simetrinin kendiliğinden kırılmasıyla 

ortaya çıkmalıdır. Dolayısıyla MSSM bakış açısına göre, bilinen parçacıkların 

gözlenmesi doğaldır çünkü bu parçacıklar elektrozayıf simetrinin kırılmasıyla 

ilişkilendirilen ölçeğe göre hafiftirler. Diğer yandan keşfedilmemiş parçacıkların 

kütleleri önemli derecede (bu skalaya göre) büyüktürler.  

 
(2.107) - (2.114) terimleri formda sınırlanmış olmalarına rağmen, MSSM’ deki bütün 

alanlar düşünüldüğünde toplamda birçok olası terim vardır ve bu fazla sayıda (~ 105) 

yeni parametreyi vurgular. Parametre sayısındaki bu büyük artış tamamiyle SUSY 

kırılmasından gelir.  
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Teoride görünüşte böyle büyük bir keyfilik hayal kırıklığı yaratabilir, fakat 

fenemenolojik olarak parametre uzayının geniş bir bölgesi dışarlanmıştır. Çünkü bu 

yeni parametrelerin çoğunun kendine ait değerleri çeşni değiştiren nötral akım (FCNC) 

süreçlerine ya da CP ihlalinin yeni kaynaklarına izin verir, fakat bu durumlar deneylerle 

dışarlanmıştır. Örneğin (2.110) denklemindeki 2
~Lm  matrisi bastırılamayan köşegen dışı 

bir terime sahip olsun ve terim aşağıdaki şekilde verilsin; 

 

         ( )2 †
L LL e

m e
µ

µ% % %                                                                                                    (2.115) 

 
Bu terim çeşni değişimine )( −− →eµ  sebep olacaktır. γµ +→ −− e  süreci göz önüne 

alınırsa 1-ilmek diyagram katkısını düşünebiliriz; ilk olarak µ ,  Lµ~ +bino’ ya bozunsun, 

ardından Lµ~  (2.115) terimi vasıtasıyla Le~ ’ ye geçsin ve tekrar Le~ ’ da bino ile birleşerek 

bir elektron oluştursun son olarak da bu elektron bir foton yayınlasın. γµ +→e  süreci 

için dallanma oranındaki üst limit 11102.1 −x ’ dir ve sleptonların kütleleri 1TeV 

civarında olsa bile ilmekten gelen katkı bunun birkaç mertebe katı kadar daha büyük 

olacaktır. Benzer olarak, skuark 2)(kütle  matrisleri γsb→  bozunumu, 00 KK − , 
00 DD −  ve 00 BB −  karışımlarının verileriyle hem çeşni karışımı hem de CP – ihlali 

kompleks fazlarıyla sıkı bir şekilde sınırlandırılır. 

 
SM skalasında SUSY kıran parametreler üzerine getirilen sınırlamaların varlığı şunu 

ileri sürer; SUSY kırılma mekanizması ne olursa olsun bu güçlü sınırlamalar diyagonal 

dışı olan tehlikeli terimleri doğal olarak engelleyecektir. Özellikle bunu garanti eden bir 

çerçeve minimal süpergravite (mSUGRA) dir. mSUGRA’da  (2.107) – (2.114) 

parametreleri GUT skalasında özellikle basit bir form alır. 

 

       2/1323 mMMM ===                                                                                         (2.116) 

 

       
2
0

2
~

2
~

2
~

2
~

2
~ mmmmmm eLduQ ===== 1                                                                        (2.117) 
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burada 1 aile uzayında birim matrisi ifade ediyor.  

 

       
2
0

22 mmm
du HH ==                                                                                                  (2.118) 

 

        uu yAa 0=  ,  dd yAa 0=  ,   ee yAa 0=                                                             (2.119) 

 
(2.117) ifadesi Pm (Planck skalası) de bütün skuark ve sleptonların kütle dejenere 

olmasını vurgular ve özellikle aynı elektrozayıf kuantum sayılı skuark ve sleptonlar 

serbest bir şekilde üniter dönüşümlerle birbirine dönüşebilirler.  

 
2.5 Renormalizasyon Grup Denklemleri 

 
SM çerçevesinde SU(3) x SU(2) x U(1) ayar bağlaşımlarının enerji ölçeğine bağımlılığı 

incelendiğinde bu bağlaşımların Büyük Birleşme Öleçeğinde (BBÖ) tam birleşmediğini 

söylemiştik ve bunu da SM’nin açıklayamadığı durumlardan biri olarak nitelemiştik. Bu 

ayar bağlaşımlarının ölçeğe bağlı değişimi Şekil 2.2’de verilmiştir. Şekil 2.2’de 

görüldüğü gibi yalnızca 1/α3 ile 1/α2 için BBÖ’de (~ 1017 GeV) bir birleşim söz 

konusudur. 

 

 

Şekil 2.2 SM’ de ayar bağlaşımlarının ölçek bağımlı değişimleri 
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Eğer MSSM için bu bağlaşımların değişimi incelenecek olursa Şekil 2.3’ten de 

görülebileceği gibi BBÖ’de bir birleşme söz konusudur ve ayrıca bağlaşımların BBÖ’de 

ki değerlerininde arttığı kolaylıkla görülebilir. SM’nin eksikliklerini gidermek amacı ile, 

BBÖ’de bu bağlaşımların birleşmesi durumu zaten süpersimetrinin ortaya atılma 

sebeplerinden biri olarak verilmişti.  

 

 
Şekil 2.3 MSSM’ de ayar bağlaşımlarının ölçek bağımlı değişimleri 

 
MSSM’ deki ayar bağlaşımlarının başarılı bir şekilde birleştirilmesi durumu bizi benzer 

RGE (Renormalization Group Evolution) hesaplarının diğer MSSM bağlaşımlarına ve 

hafif parametrelere ((2.116) – (2.119)) uygulanması doğrultusunda teşvik etmektedir. 

 
Basit bir örnek olarak, gaugino kütle parametreleri olan iM ’ lere 1-ilmek mertebesinde 

gelen katkıları düşünebiliriz. Ayarino kütlelerinin değişimi şu şekilde verilir ( t = lnQ ); 

 

             
ii

ii M
b

dt
dM

α
π2

−=                                                                                        (2.120) 

 

Burada iα ’lere gelen 1-ilmek katkılarını ( 2

2 i
ii b

dt
d

α
π

α
−= ) kullanırsak (2.120) 

bağıntısını yeniden ifade edebiliriz, 
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       011
2 =−

dt
d

M
dt

dM i

i
i

i

i

α
αα

                                                                                 (2.121) 

 
Bu ifade daha basit bir formda yazılabilir, 

 

          
( ) 0/ =iiM

dt
d α                                                                                                (2.122) 

 
Bu üç oran 1-ilmek mertebesinde RG-ölçeğinden bağımsızdır. mSUGRA tipi 

modellerde aşağıdaki ifadeyi yazabiliriz, 

 

        

( )
( ) ( )pii

i

m
m

Q
QM

αα
2/1=                                                                                               (2.123) 

 
Çünkü Pm ’nin altında bir değerde iα ’ler çoktan birleşir ve aşağıdaki ifadeye ulaşırız, 

 

       

( )
( )

( )
( )

( )
( )Q
QM

Q
QM

Q
QM

3

3

2

2

1

1

ααα
==                                                                                 (2.124) 

 
(2.124) denkleminde ZmQ=  durumunda ayarino kütleleri için şu bağıntılara ulaşılır, 

 

       
( ) ( )

( ) ( ) ( ) ( ) ( )ZZZWZ
Z

Z
Z mMmMmmM

m
mmM 22
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1
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                (2.125) 

 
ve  

 

       

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
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      (2.126)  

 



42 
 

(2.125) ve (2.126) denklemlerini şu şekilde özetleyebiliriz, 

 

        ( ) ( ) ( ) 1:2:7:: 123 ≈ZZZ mMmMmM                                                                   (2.127) 

 
Buradan gluino’nun elektrozayıf sektör ile ilişkilendirilen durumlardan daha ağır olması 

beklenir.  

 
İkinci önemli örnek skaler kütlelerin değişimiyle ilgilidir. Bu kütleler için baskın olan 

katkı top kuark ilmeklerinden gelir, çünkü top kuarkın Yukawa bağlaşımları 

diğerlerinden çok büyüktür. Fakat diğer durumlar da düşünüldüğünde 1-ilmek katkıları 

şu şekilde olur, 

 

              
2

2 2 2 2 2
1 1 2 22

2 3 3 3
16 5

uH
t t

dm
g M g M y X

dt π
⎛ ⎞= − − +⎜ ⎟
⎝ ⎠   

                                       (2.128) 

 

              3

2
2 2 2 2 2 2 2 2
1 1 2 2 3 32

2 1 163
16 15 3

Q
t t b b

dm
g M g M g M y X y X

dt π
⎛ ⎞= − − − + +⎜ ⎟
⎝ ⎠

            (2.129) 
    

      
 

burada tX  ve bX  şu şekilde verilir, 

 

           
      3

3

2 2 2 2

2 2 2 2

uR

dR

t Q H tt

b Q H bb

X m m m A

X m m m A

= + + +

= + + +

%

%

                                                                        (2.131) 

 
Skaler kütlelerin değişimlerine bakılırsa ayarino kütle katkılarının negatif değerli 

olduğu görülür. Yani Q skalası küçüldükçe kütleyi artırma eğiliminde olacaklardır. 

Fermiyon ilmekleri ise düşük skalalarda kütleyi azaltma eğilimindedir. 

 
Tersine 2

dHm  kütlesinin değişimine bakılırsa top kuark ilmeğinin bir katkısı olmadığı 

görülür, yani 
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2

2 2 2 2 2 2
1 1 2 22

2 3 3 3 2
16 5

dH
b b

dm
g M g M y X y X

dt τ τπ
⎛ ⎞= − − + +⎜ ⎟
⎝ ⎠

                            (2.132) 

 
Bütün bu tartışmalar ışığında RG denklemlerinin (Castano vd. 1994) 3. aile durumu için 

tüm bağıntıları aşağıda verilmiştir. 

İlk olarak 1-ilmek düzeyinde Yukawa’ların ölçeğe bağımlı değişimlerini veren ifadeler 

şu şekilde olur (Baer 2006), 

 

             

2 2 2
2

1 3

' 2 2 2 2
2

1 3

'' 2 2 2
2

1 3

6
16

6
16

3 4
16

t t
i i t b

i

b b
i i t b

i

i i b
i

dy y c g y y
dt

dy y c g y y y
dt

dy y c g y y
dt

τ

τ τ
τ

π

π

π

= −

= −

= −

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠
⎛ ⎞

= − + + +⎜ ⎟
⎝ ⎠
⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

∑

∑

∑

                                                  (2.133) 

 
1-ilmek düzeyinde ayarinoların ve üçüncü aile sfermiyonlarının kütleleri ve A-

parametreleri için Renormalizasyon grup denklemleri şu şekildedir (Baer 2006), 

 

            2
2

2
16
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dM b g M
dt π

=                                                                                     (2.134) 
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                                   (2.135)   
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Burada şu tanımlamalar yapılmıştır, 
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X m m m A
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                                                                             (2.137)      

           
MSSM ’de ayar bağlaşımlarının zayıf skaladaki değerleri şu şekilde olur, 

 

            ' ''13 16 7 16 9,3, , ,3, , ,3,0
15 3 15 3 5i i ic c c⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                                      (2.138) 

 
Eğer bu RG denklemler Mathematica yardımıyla (1-ilmek için) eş zamanlı olarak 

çözdürülecek olursa 3. aile sfermiyonları, üç ayarino kütlesi 1M , 2M  ve 3M  ile beraber 

dH  ve uH   Higgs parçacıklarının kütleleri seçilen bir mSUGRA parametre seti için 

Şekil 2.4’deki gibi bulunabilir. 
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Şekil 2.4 mSUGRA’da A0=0, m0=330, m1/2=240 ve tanβ=20 parametre seti (De Roeck,2007)                          
                için 3.aile Sfermiyon kütlelerinin enerji skalasına bağlı değişimleri 

 
Şekil 2.4 de elde edilen kütle spektrumunun tutarlılığı sınanmalıdır. Bu doğrultuda 

Fortran kodu kullanılarak 2-ilmek için yazılmış olan SuSpect 2.41 (Djouadi, 2002) kütle 

hesaplayıcısını kullanabiliriz. 2-ilmek için yazılmış olması nedeniyle SuSpect 2.41 daha 

hassas kütle hesabı yapacaktır. Bu  iki durum için elde edilen kütle değerleri Çizelge 2.3 

’de verilmektedir. Bu sonuçlardan görüldüğü gibi sfermiyon kütlesi arttıkça bu iki hesap 

tipi birbirinden farklılaşmaktadır fakat ağır kütleler için bu fark yaklaşık olarak %10 

mertebesini geçmemektedir. Eğer Mathematica ile 2-ilmek hesapları yapılacak olursa bu 

sonuçlar daha tutarlı bir hal alacaklardır. 
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Çizelge 2.3 Üçüncü aile sfermiyon kütlelerinin A0=0,  m0=330,  m1/2=240,  tanβ=20,  
                    sign(µ)=1 parametre seti için karşılaştırılması 

3. Aile Sfermiyonu SuSpect 2.41 

(Djouadi vd. 2002) 

Mathematica 

(Bu çalışma) 

R
mτ% (GeV) 329.6 330 

L
mτ% (GeV) 363.0 370 

Rbm% (GeV) 580.2 620 

Rt
m% (GeV) 439.8 470 

3LQm % (GeV) 536.8 575 
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3. SFERMİYON KARIŞIMLARI 

 
Standart Modelde ( ) ( )2 1

L Y
SU U×  simetrisi kırıldığında aynı renk yüküne, elektrik 

yüküne ve spin kuantum sayılarına sahip olan durumlar karışırlar. SM den bilindiği 

üzere B  ve iW  ( )1,2,3i =  durumları da karışarak 0, Zγ ve W ±  kütle özdurumlarını 

oluştururlar. MSSM de ise bu tür bir karışım skuarkların, sleptonların ve gauginoların 

kütlelerini etkiler. Teoride ve deneyde sfermiyon kütle karışımları büyük önem 

kazanmaktadır. Çünkü bu kütle karışımı araştırılan sparçacığın özelliklerinin ve 

SUSY’nin nasıl kırıldığının anlaşılması ile ilgili sorulara ışık tutar.  

 
3.1 Skuarklar ve Sleptonlar 

 
SM fermiyonlarının skaler eşleri MSSM’de yeni parçacıkların en büyük topluluğunu 

oluşturur. Kütleli fermiyonların her bir kiral (chirality) durumu için ayrı eşlerin 

gerekliliği nedeniyle toplam olarak 21 yeni alan vardır (nötrinolar burada kütlesiz 

alanlar olarak alınıyor): Birinci aile için 4 skuark çeşni ve kiralitesi , , ,L R L Ru u d d% %% %  ve üç 

slepton çeşni ve kiralitesi , ,eL L Re eν% % %  ; diğer iki aile için de bu durumlar tekrarlanır. 

Bütün bu alanlar (kompleks) skaler alanlardır ve “L” ile “R” kiraliteyi tanımlamazlar, 

fakat SM fermiyonlarının karşı gelen süpereşlerini zayıf etkileşme bakımından 

etiketlerler. 

 
Temelde aynı elektrik yüküne, R-pariteye ve renk kuantum sayılarına sahip skaler 

alanlar diğerleriyle (diğer ailelerin alanları ile) hafif (yumuşak) SUSY-kıran 

parametreler vasıtasıyla karışabilirler. Bu durum u-tipli skuark alanları 

( ), , , , ,L R L R L Ru u c c t t% %% % % % , d-tipli skuark alanları ( ), , , , ,L R L R L Rd d s s b b% % % %% %  ve yüklü sleptonlar 

( ), , , , ,L R L R L Re e µ µ τ τ% % % % % % için 6 x 6’lık karışım problemine, snötrinolar ( ), ,e L L Lµ τν ν ν% % %  için 

3 x 3’lük karışım problemine götürür. Fakat fenemenolojik sınırlamalar SUSY 

durumlarının aileler arası karışımının çok küçük olmasını gerektirir.  
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Başlangıç olarak ilk iki ailenin sfermiyonlarının hafif SUSY-kıran (kütle)2 

parametrelerini göz önüne alalım. Yüksek ölçeklerde (kütle)2 parametrelerinin hepsi 

dejeneredirler ( )2 2 2 2 2 2
0 1u eLQ dm m m m m m= = = = =% % %% % . Elektrozayıf skalaya inildikçe RGE 

(Renormalizasyon Grup Denklemleri) değişimi yaklaşık olarak aynı tipdedir (ilk iki aile 

için tX  denklemlere katkı vermez). Dolayısıyla ilk iki ailenin kütleleri ayar 

etkileşmelerinin etkileriyle değişir, bu etkileşmeler düşük skalalara gidildikçe kütleleri 

artırma eğilimindedir. Bu değişimler şu şekilde parametrize edilebilir (Aitchison, 2007),  

   
2 2 2

, 0 3 2 1,

2 2 2
0 3 1

2 2 2
0 3 1

2 2 2
, , 0 1

1
9

16
9
4
9
4

L LL L

R R

RR

eL L L L

c su d

u c

sd

e

m m m K K K

m m m K K

m m m K K

m m m K
µν ν µ

= = + + +

= = + +

= = + +

= = +

% % %%

% %

% %

% %% %

                                                                             (3.1) 

 
Burada 3 2,K K  ve 1K  sırası ile SU(3), SU(2) ve U(1) ayarinolarının RGE’ye 

katkılarıdır: bütün kiral süpermultipletleri ‘evrensel’ ayar bağlaşımlarıyla gauginolar ile 

bağlaşırlar. Bütün K  değerleri pozitifdir, 3K  değeri önemli derecede 2K ’ den büyüktür 

ve 2K ’de 1K  den büyüktür. Büyük 3K  katkısı nedeniyle skuark (kütle)2 değerinin 

sleptonlarınkinden büyük olması beklenir. (3.1) denklemleri hafif  (kütle)2 parametreleri 

için ilk iki ailede 14 durum verir. Bu katkılara ek olarak, elektrozayıf simetri 

kırılmasının bir sonucu olarak gelecek daha başka terimler de vardır. İlk iki aile için bu 

tip katkıların en önemlisi (skuark)2 (Higgs)2  ve (slepton)2 (Higgs)2 formlu SUSY-

değişmez (invaryant) D-terimlerinden (skaler Higgs alanları 0
uH  ve 0

dH  vev 

kazandıktan sonra) gelir. ( )†
i i

i

D g Tα αφ φ= ∑ ’ ye SU(2) katkısı şu şekilde olur, 
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⎪⎝ ⎠⎭

% %
% %% %

% %
                 (3.2) 

 
Higgs alanlarının vakum beklenen değerleri göz önüne alındığında sadece 3α =  olduğu 

durumda sıfırdan farklı olabilir. 

 

  
( ) ( ) ( )

( )

2 2† † † † 0
3

2 20
3

1
2 2 2

1
2

L eL
L L eL L u u
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d d

u
D g u d e H H

ed

H H

α α
α

α

α

ντ τν δ

δ

+

−

⎧ ⎛ ⎞ ⎛ ⎞⎪= + + −⎜ ⎟⎨ ⎜ ⎟
⎝ ⎠⎪ ⎝ ⎠⎩

⎫+ − ⎬
⎭

% %
% %% %

% %
                    (3.3) 

 
Simetri kırıldığında ve Higgs alanları vakum beklenen değeri kazandıktan sonra  

 

( ) ( )† † † † 2 2
3 3

1 1
2 2 2 2

L eL
L L eL L u d

LL

u
D g u d e

ed

α α
α

α α

ντ τν ϑ δ ϑ δ
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪→ + − +⎜ ⎟⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

% %
% %% %

% %
                       (3.4) 

 

Bu ifade 1
2

D Dα α  Lagranjiyen teriminde yerine konulacak olursa (kütle)2 terimleri 
2
τ  

ve 3αδ  terimleri arasındaki çapraz terimlerden gelecektir. Bu çapraz terimler 3 2τ  ile 

orantılıdır. Bu çapraz terimler zayıf kütle bazlarında köşegendirler. Çapraz terimler göz 

önüne alınırsa 

 

( ) ( ) ( )

( ) ( ) ( )

2 † † † † 2 2
3
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u d e
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α α
α α

α

α α

α

ντ τν ϑ ϑ δ

ντ τν ϑ ϑ δ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪+ + −⎜ ⎟⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪+ + −⎜ ⎟⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

% %
% %% %�

% %

% %
% %% %

% %

                 (3.5) 

 
3α =  durumunda ancak (kütle)2 terimleri geleceği için  
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( ) ( )

( ) ( )

2 † † 2 2 3

† † 2 2 3

1 1 12
2 2 2

1
2

L
L L d u

L

eL
eL L d u

L

u
D D g u d T

d

e T
e

α α ϑ ϑ

ν
ν ϑ ϑ

⎧ ⎛ ⎞⎪ ⎡ ⎤− ⎜ ⎟⎨ ⎢ ⎥⎣ ⎦⎪ ⎝ ⎠⎩
⎫⎛ ⎞⎪⎡ ⎤+ − ⎬⎜ ⎟⎢ ⎥⎣ ⎦ ⎪⎝ ⎠⎭

%
%%�

%

%
% %

%

                                   (3.6) 

 
sfermiyon (kütle)2 matrisine katkıları şu şekilde bulunur, 

 

                                                ( )2 2 2 31 12
2 2 d ug Tϑ ϑ−                                                     (3.7) 

 
burada 3 3 2T τ=  dir. Benzer olarak D’ ye U(1) katkısı (simetri kırılmasından sonra) şu 

şekildedir, 

 

                                ( )† 2 21 1
2 2y d uf

f

D g f y f ϑ ϑ
⎧ ⎫⎪ ⎪′= − −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ %
%

% %                                         (3.8) 

 
Bu ifadedeki toplam, bütün sfermiyonlar ( skuarklar ve sleptonlar ) üzerindendir. 

 

( ) ( )2 † 2 2 † 2 21 1 1 1 1 1
2 2 2 2 2 2y y d u d uf f

f f

D D g f y f f y fϑ ϑ ϑ ϑ
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪′= − − − −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∑ ∑% %
% %

% % % %          (3.9) 

 

( )2 † 2 21 1 1 12
2 2 2 2y y d uf

f

D D g f y fϑ ϑ
⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞′ − −⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∑ %
%

% %�                                           (3.10) 

 
Buna göre sfermiyon (kütle)2 terimine U(1) ‘den gelen katkı şu şekilde olur, 

 

                                         ( )2 2 21 1 12
2 2 2 d ug y ϑ ϑ⎛ ⎞′ − −⎜ ⎟

⎝ ⎠
                                               (3.11) 
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Burada Q  elektromanyetik yük olmak üzere 3

2
y Q T= −  olduğu için SU(2) ‘den ve U(1) 

‘den sfermiyon (kütle)2 terimine gelen katkıları birleştirebiliriz, 

 

                               
( )

( ) ( )

2 2 2 3 2

2 2 2 2 3 2

1 1
2 2
1
2

d u

d u

f g T y g

f g g T g Q

ϑ ϑ

ϑ ϑ

⎡ ⎤′∆ = − −⎢ ⎥⎣ ⎦

⎡ ⎤′ ′∆ = − + −⎣ ⎦

%

%
 

 

( )( )2 2 2 2 21 , tan , , tan
2

u
Z u d W W Z W

d

m g g g g m m Cos ϑϑ ϑ θ θ β
ϑ

′ ′= + + = = ≡ ve 

( )
2

2 2 2

2W u d
gm ϑ ϑ= +  olduğunu kullanırsak bu katkının ifadesi 

 
                                 2 3 22Z Wf m Cos T Sin Qβ θ⎡ ⎤∆ = −⎣ ⎦

%                                            (3.12) 

 

olarak bulunur. f∆ %  zayıf bazlarda köşegendir ve bu katkılar (3.1) denklemlerinin sağ 

taraflarına basit bir şekilde eklenebilir.  

Simetri kırıldıktan sonra, sfermiyon (kütle)2 terimlerine SUSY-değişmezi F-terimleri de 

katkı verir. Yani şu forma sahip Lagranjiyen terimleri de sfermiyon (kütle)2 terimlerine 

(her skaler iφ  alanı için ) katkı verecektir, 

 

                                                           
2

i

W
φ

∂
−

∂
                                                          (3.13)  

 
Bu terim büyük Yukawa bağlaşımlarına sahip olan üçüncü aile sfermiyonlarının 

kütlelerine önemli katkılar getirir. Çünkü Yukawa bağlaşımları fermiyon kütleleri ile 

orantılıdır ve üçüncü aile fermiyon kütleleri diğer iki ailenin kütlelerine göre çok 

büyüktür.  
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( ) ( ) ( )
( )

† 0 † 0 † 0

0 0

t R L u L u b R L d L d R L d L d

u d u d

W y t t H b H y b t H b H y H H

H H H H

τ ττ ν τ

µ

+ − −

+ −

≈ − − − − −

+ −

% % %% % % %% %
            (3.14) 

 

0
uH  ’ın vakum beklenen değerini kazandığını düşünüp örnek olarak 

2

†
R

W
t

∂
−

∂ %
 ifadesini 

elde etmeye çalışalım, 

 

                              
2

2 † 0 2 2 † 2 †
† t L L u t u L L t L L

R

W y t t H y t t m t t
t

ϑ∂
− =− →− =−

∂
% % % % % %

%
                   (3.15) 

 
L-tipli top skuark (‘stop’), top (kütle)2 ‘ ye eşit (kütle)2 terimi kazanır. R-tipli stop kuark 

içinde  
2

†
L

W
t

∂
−

∂ %
 ‘den gelen özdeş bir kütle terimi olacaktır. Benzer şekilde Lb%  ve Rb%  

için (kütle)2 terimi 2
bm  , Lτ%  ve Rτ%  için (kütle)2 terimi 2mτ  olacaktır. 

 
W ’ nun Higgs alanlarına göre türevleri de düşünülmelidir. Örneğin 0

uH  alanına göre 

türev alıp 0
dH  alanının vakum beklenen değeri kazandığını düşünürsek şunu buluruz, 

 

                        
2

2 2† 0 †
0 t R L d t R L d
u

W y t t H y t t
H

µ µϑ∂
− =− − →− −

∂
% % % %                         (3.16) 

 
(3.16) ifadesi (kütle)2 terimi köşegen dışı bilineer terim içerir, 
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( )

( )

2† † †

† †

† †

t R L d d t R L L R

d
u t R L L R

u

t R L L R
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µϑ µϑ

ϑµ ϑ
ϑ

µ β

− − +

= +

= +

% % % % % %�
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% % % %

                                                            (3.17) 
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buna göre R ve L alanları karışır. Benzer olarak 
2

0
d

W
H
∂

−
∂

 terimi şu sonucu verir, 

 
                                         ( )† †tanb R L L Rm b b b bµ β +% % % %                                                  (3.18) 

 
ve  

 
                                         ( )† †tan R L L Rmτµ β τ τ τ τ+% % % %                                                  (3.19) 

 
Sonuç olarak skaler Higgs alanları vakum beklenen değeri kazandıktan sonra bilineer 

terimler hafif üçlü skaler bağlaşımlardan direkt olarak da kaynaklanabilir. 

0 0 0, ,u u d d e ea A y a A y a A y= = =  koşulunun varlığını ve yalnızca üçüncü aile katkısını 

varsayacak olursak üçlü skaler bağlaşımlarla ilişkili katkı aşağıdaki gibi olur, 

 
                             ( ) ( )† † † †

0 0t u R L L R t R L L RA y t t t t A m t t t tϑ− + =− +% % % % % % % %                             (3.20) 

 
benzer ifadeler R Lb b−% %  ve R Lτ τ−% %  karışım terimleri için de yazılabilir. Bütün bunlar göz 

önüne alındığında ilk iki ailenin skuark ve sleptonları için (kütle)2 değerleri ilgili f∆ %  

katsayısı ile birlikte (3.1) bağıntıları vasıtasıyla verilir.  

 
Üçüncü aile için ,t b%%  ve τ%  sektörleri ayrı ayrı ele alınabilir. “top” skuark için (kütle)2 

terimi şu şekilde olur, 

 

                                                 ( )† † 2 L
L R t

R

t
t t M

t
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

%

%
% %

%
                                                    (3.21) 

 
bu ifadede 2

tM %  aşağıdaki gibidir, 
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                         (3.22) 

 
,

L Ru u∆ ∆% %  tanımlamaları aşağıda verilmiştir, 

 

                                         2 21 2 2
2 3Lu W ZSin m Cosθ β⎛ ⎞∆ = −⎜ ⎟

⎝ ⎠
%                                      (3.23) 

 

                                         2 22 2
3Ru W ZSin m Cosθ β∆ =%                                                (3.24) 

 
İlk iki ailenin tersine üçüncü aile durumunda tX  katkısı etkin olacaktır. tX  katkısı 

düşük enerji skalasına gidildikçe Lt%  ve Rt%  ‘nin değişen kütlelerini azaltma eğiliminde 

olacaktır, diğer yandan 2
tm  terimi kütleleri artıracaktır. 2

tM %  matrisinin özdeğerleri 

bulunarak 
1,2

2
tm%  kütlelerinin analitik ifadesi elde edilebilir. Bunun için 
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m m m A Cot

m A Cot m m

λ µ β
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                            (3.25) 

 
determinantı için kökler bulunmalıdır. Bulunacak olan bu kökler 1t%  ve 2t% için kütleleri 

verecektir. Burada biraz işlemden sonra kütle ifadeleri şu şekilde elde edilir (Baer 

2006).  
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% % %
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     (3.26) 

 
1t%  kütle özdurumu daha hafiftir. “top” skuark karışım matrisi aşağıdaki gibi tanımlanır, 
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                                        1
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(3.27) ortogonal dönüşümünü kullanarak 2

tM %  matrisini köşegenleştirmeye çalışalım. 

 

                                                 1

2

t tL
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θ θ
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olur ve 2

tM %  kütle matrisi şu şekilde köşegenleştirilebilir, 

 

                                2 2t t t t
t t
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Cos Sin Cos Sin
M M
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θ θ θ θ
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% %                        (3.29) 

 
Bu matrisi köşegen hale getirebilmek için matris çarpımı yapılır ve köşegen dışı 

terimler sıfıra eşitlenir. Sıfıra eşitlenen köşegen dışı terimlerden biri şu şekilde olur, 
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       (3.30) 

 
Eğer bu ifade 2

tCos θ  ile bölünecek olursa (3.30) denklemi şu hali alır, 

 

             
( )
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2
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1 tan 0
L RL Rt u u tt t

t t

m m m
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θ
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                (3.31) 

 
Bu ifade tan tθ ’nin ikinci dereceden bir denklemidir ve kökler kısa bir işlemden sonra 

aşağıdaki gibi bulunur (Baer 2006), 
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Bu ifadede 

1

2
tm % ’nın tanımı 
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      (3.33) 

 
olur ve (3.32) bağıntısı stop kuark için karışım açısının analitik ifadesini verir. Benzer 

işlemler sbottom, stau ve tau snötrinosu için de yapılabilir. Bu durumlar için kütle 

ifadeleri ile karışım açıları şu şekilde bulunur (Baer 2006), 
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ve  

 

                                                     
3

2 2 21 2
2L Zm m m Cos

τν
β= +%                                        (3.38) 

 
olur. Snötrino kütlesindeki ilk terim üçüncü aile skaler lepton doubleti için hafif (soft) 

SUSY kıran kütle terimidir, ikinci terim ise D-terim katkısından gelir. Ayrıca bu 

snötrino MSSM ’de sol-elli nötrinonun süpereşidir.   
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4. SFERMİYONLARIN LEPTON ÇARPIŞTIRICILARINDA ÜRETİMLERİ 

 
LHC çalışmaya başlamadan önce yapılan deney sonuçlarına göre üçüncü aile sfermiyon 

kütleleri için sınırlamalar, 94m GeVν >%  (DELPHI), 81.9m GeVτ >% (DELPHI), 

89bm GeV>%  (ALEPH) ve 95.7tm GeV>%   (CDF) olarak %95 güvenilirlikle 

getirilmiştir (Nakamura vd. 2010). LHC çalışmaya başladıktan sonra ise elde edilen 

veriler kullanılarak yapılan analiz sonuçlarından 3. aile sfermiyon kütleleri üzerine 

getirilen sınırlar 136m GeVτ >%  (Aad vd. 2011), 294bm GeV>%  ve 309tm GeV>%  (Aad 

vd. 2011) olarak verilmektedir. 

 
Elektron-Pozitron çarpıştırıcısında polarize olmayan başlangıç durum demetleri için 

sfermiyonların üretim tesir kesitlerini veren genel ifadeler şu şekilde yazılabilir(Eberl 

vd. 1999); 
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%

%
% %           (4.1)   

 
Bu tesir kesiti ifadelerindeki bazı tanımlamalar aşağıda verilmiştir; 
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                         (4.2)     

  
Eğer BBÖ’de belli bir parametre seti seçilecek olursa elektrozayıf ölçekte 3. aile 

sfermiyonlarının kütleleri, karışım açıları gibi parametreler elde edilebilir. Bunun için 
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2.5 kesiminde bahsi geçen RG denklemleri çözülür. Bunun için yazılmış belli başlı 

programlar vardır. Bu programlardan biri SuSpect (Djouadi vd. 2002) olarak bilinen 

kütle spektrumu hesaplayıcısıdır ve seçilen alfa noktası (De Roeck vd. 2007) için 

Çizelge 4.1’deki kütle spektrumu verir, 

 
Çizelge 4.1 Seçilen alfa noktasının parametre değerleri ve bu noktaya karşı gelen kütle 
                    spektrumu 
 

 

 

 

Burada bulunan kütle değerleri için, gelen demetlerin polarize olmadığı durumlar için 

sfermiyonların üretim tesir kesitlerine bakılabilir. Buna göre üçüncü aile sfermiyonları 

için tesir kesitinin kütle merkezine göre değişimini veren grafikler şu şekilde elde 

edilebilir. 

Model α 

1 2m  285 

0m  210 

tan β 10 

( )sign µ  + 

0A  0 

tm  175.0 

Sfermiyonlar Kütleler(GeV) 

1τ%  232.2 

2τ%  288.9 

τν%  274.9 

1t%  481.2 

2t%  659.6 

1b%  602.5 

2b%  637.1 
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Şekil 4.1 Gelen demetlerin polarize olmadığı durum için 1 1t t% % , 1 2t t% % ve 2 2t t% %   üretimleri 

 
 

 
Şekil 4.2 Gelen demetlerin polarize olmadığı durum için 1 1b b% % , 1 2b b% %  ve 2 2b b% %  üretimleri 

 

 
Şekil 4.3 Gelen demetlerin polarize olmadığı durum için 1 1τ τ% % , 1 2τ τ% %  ve 2 2τ τ% %  üretimleri 
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Şekil 4.4 Gelen demetlerin polarize olmadığı durum için τ τν ν% %  üretimi 

 
Bu grafikler, seçilen mSUGRA noktasına bağlı olarak değişecektir. Çünkü farklı 

noktalarda sfermiyon kütleleri farklı olacak ve doğal olarak karışım açılarıda 

değişecektir.  

 
4.1 Demet Polarizasyon Etkisi 

 
e e+ −  doğrusal çarpıştırıcılarında boyuna polarize edilmiş demetlerin varlığı sinyal 

analizi için çok önemli katkı sağlar. Boyuna demet polarizasyon serbestliği şu şekilde 

parametrize edilebilir, 

( )L L RP e f f− = −  

 
bu ifadede yapılan tanımlamalar aşağıdaki gibidir, 

 
1

2
L L

L
L R

n Pf
n n

+
= =

+
         ve        1

2
R L

R
L R

n Pf
n n

−
= =

+  

 
Bu tanımlamalardaki ,L Rn  demetteki sol(sağ)-polarize elektronların sayısını ve ,L Rf  

karşı gelen kesirleri göstermektedir. Dolayısıyla, % 90 oranında sağ-polarize edilmiş bir 
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demet için ( ) 0.8LP e− =− ’e karşı gelir ve polarize edilmemiş bir demet için ise 

( ) 0LP e− = ’ a karşı gelir. 

 
Polarize edilmiş elektron ve pozitron demetleri için SM ve SUSY dahilinde tesir 

kesitleri elde edilebilir, fakat pratikte demetler daima kısmi polarizedirler ve ilgili 

durum için tesir kesitleri şu formül kullanılarak bulunur, 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
L L LL L R LR

R L RL R R RR

f e f e f e f e

f e f e f e f e

σ σ σ

σ σ

− + − +

− + − +

= +

+ +  

 
bu formülde kullanılan Lf  ve Rf  yukarıda tanımlandığı gibidir, , ( , , )i j i j L Rσ =  ise 

i je e− + ’nın yok olma tesir kesitini göstermektedir. 

 
Polarize edilmemiş başlangıç durum demetleri için SM parçacıklarının çift üretim tesir 

kesitleri incelendiğinde W bozonunun çift üretiminin en büyük katkıyı verdiği görülür. 

W bozonunun leptonik bozunumlarından gelen nötrinoların taşıdığı “kayıp enerji” ve 

“kayıp momentumlu” olaylar SUSY sinyalleri için önemli arkaplan oluşturur. Sağ-elli 

elektron ile W bozonunun etkileşiminin söz konusu olmaması nedeniyle polarize 

edilmemiş başlangıç demetleri yerine, bu demetlerdeki sağ-elli elektron sayısı 

artırılabilirse W bozonların çift üretim tesir kesitlerinin katkısı azaltılarak SUSY’e gelen 

arkaplan katkısı azaltılabilir. Diğer SM süreçleri demet polarizasyonuna daha az 

bağımlıdır, fakat genel olarak bu süreçler sol-polarize demetler için en büyük orana 

sahiptir.   

 
SUSY parçacıklarının üretim tesir kesitleri de polarizasyon bağımlı olacaklardır. 

Seçilecek olan mSUGRA parametre değerlerine göre sfermiyonların, 1χ
±%  çiftlerinin ve 

bazı nötralino çiftlerinin üretimleri ( )LP e− ’ye güçlü şekilde bağımlı olacaktır. Elektron 

demetinin polarizasyonunun ayarlanması vasıtasıyla sparçacıklar yönünden zengin olay 

örneklerinin seçilmesi olasıdır. Polarizasyon, SM arkaplanının azaltmasının yanı sıra 

aileler arası ayrımlarda bu sparçacıkların detaylı bir şekilde çalışılmasında önemli 
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olabilirler. Yani elektron demet polarizasyonu SUSY parçacıklarının özelliklerinin 

hassas bir şekilde çalışılmasında çok faydalı araç olarak kullanılır. 

 
Gelecek lineer çarpıştırıcılarda kazanılacak olan demet polarizasyon serbestliği hala 

belirsizken, elektron demetleri için polarizasyon % 80 ya da daha üzeri olarak 

düşünülebilir. Fakat bu durum pozitronlar için çok belirgin değildir, bugün pozitron 

demet polarizasyonu için hedef  % 60 olarak görünüyor.  

 
Polarizasyonun öneminin anlaşılmasından sonra artık 3. aile sfermiyonları üzerine olan 

etkilerini araştırabiliriz. Eğer polarizasyonun etkisi göz önüne alınacak olursa 3. aile 

sfermiyonlarının üretim tesir kesitleri için genel bir ifade (4.3)’deki gibi olur. 

{ }1,0,1P± = −  olarak tanımlanmaktadır ve -1 durumu sol-elli, +1 durumu sağ-elli 

durumu ve 0 polarizasyonun olmadığı durumu temsil etmektedir. Ayrıca (4.2)’de 

yapılan tanımlamalar aşağıdaki ifade için de geçerlidir(Bartl vd. 2000). 

  

 

( ) ( ){

( ) ( )

( )( ) ( )

2 3
2

4

2 2

2
2 2

4 4

1

1
2

1 2
16

i j
P P i j i jf

i j i jf
e e Z

w w

i j
e e e e ZZ

w w

e e f f e P P
s
e C

v P P a P P D
S C

C
v a P P v a P P D

S C

γ

π α κ
σ δ

δ

+ −

+ −
− +

− + − +

− + − +

→ = −

− − − −⎡ ⎤⎣ ⎦

⎫⎪⎡ ⎤+ + − − − ⎬⎣ ⎦⎪⎭

%

%

% %

        

(4.3) 

Aşağıda 3. aile sfermiyonlarının polarizasyonun etkisi ile üretim tesir kesitinin kütle 

merkezi enerjisine bağlı olarak nasıl değiştiğini veren grafikler verilmektedir. Ayrıca 

her iki polarizasyon durumu ve polarize olmayan ilk durum demetleri için tesir kesiti 

durumları grafiklere yansıtılmıştır.   
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.  

Şekil 4.5 Gelen demetlerin polarize olması durumunda 1 1t t% %  üretimi 

 

 

Şekil 4.6 Gelen demetlerin polarize olması durumunda 1 2t t% %  üretimi 

 

 
Şekil 4.7 Gelen demetlerin polarize olması durumunda 2 2t t% %  üretimi 
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Şekil 4.8 Gelen demetlerin polarize olması durumunda 1 1b b% %  üretimi 
 

 

 

Şekil 4.9 Gelen demetlerin polarize olması durumunda 1 2b b% %  üretimi 

 

Şekil 4.10 Gelen demetlerin polarize olması durumunda 2 2b b% %  üretimi 
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Şekil 4.11 Gelen demetlerin polarize olması durumunda 1 1τ τ% %  üretimi 

 

 

Şekil 4.12 Gelen demetlerin polarize olması durumunda 1 2τ τ% %  üretimi 

 
Şekil 4.13 Gelen demetlerin polarize olması durumunda 2 2τ τ% % üretimi 



67 
 

 
Şekil 4.14 Gelen demetlerin polarize olması durumunda τ τν ν% %  üretimi 

 
4.2 Başlangıç Durum Işıması ve Demet Işıması Etkileri  

 
e e+ −  çarpıştırıcılarında tüm demet enerjisi, saçılma olayı sonucunda elde edilen 

parçacıkların üretim tesir kesiti için kullanılamaz. Çünkü TeV skalasında e e+ −  

çarpıştırıcılarında sparçacık üretiminin sinyal ve arkaplanlarını düzgün bir biçimde 

tanımlayabilmek için yüksek enerjili fotonların başlangıç durum ışımasını  (ya da 

bremsstrahlung) göz önüne almalıyız. Bir diğer zorluk demet-demet etkileşmelerinden 

kaynaklanan enerji kayıplarından gelir bu da demet ışıması etkisi olarak ifade edilir. Bu 

durumlar çarpışan demetlerin kütle merkezi enerjisini azaltır ve başlangıç durumu için 

bilinmeyen boyuna bir momentuma sebep olur. “Bremsstrahlung” ve “beamstrahlung” 

doğrusal çarpıştırıcılarda yapılmak istenen doğruluk çalışmaları için kayıpları 

içermektedir. 

 
Başlangıç durum ışıması etkisi anlaşılması zor olan bir elektron yapı fonksiyonu ile 

e e+ −  tesir kesiti tarafından içerilmelidir. Basit bir parametrizasyon “Kuraev-Fadin” 

dağılımıdır ve şu şekilde tanımlanır (Baer 2006), 

 
12 21 3 1( , ) (1 ) 1 (1 )

2 8 4
brem
eD x Q x x

β

β β β
− ⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠  
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burada 
2

2

2 ln 1
e

Q
m

αβ
π

⎛ ⎞
≡ −⎜ ⎟

⎝ ⎠
 dir. x elektronun momentum kesrini ve Q  saçılma skalasını 

göstermektedir. 

 
Yüksek enerjili lineer çarpıştırıcıların ihtiyaç duyduğu yüksek ışınlığa ulaşmak için 

yoğun elektron ve pozitron demetleri temeldir, bu durumda da beamstrahlung etkisi 

mutlaka hesaba katılmalıdır. Aslında elektron ve pozitron demetleri o kadar yoğundur ki 

saçılmadan önceki demet etkileşmeleri nedeniyle enerji kayıpları olması muhtemeldir. 

Bu enerji kayıpları yarı-klasik olarak hesaplanabilir ve bu bir beamstrahlung dağılım 

fonksiyonu ( ( )beam
eD x ) verir. Demet ışıması dağılım fonksiyonunun parametrizasyonu 

oldukça karmaşıktır, fakat demet profiline ve makine karakteristiklerine bağımlıdır. 

Demet ışıması parametresi ϒ  ile beraber paketcik uzunluğu ile ilişkili zσ , 

beamstrahlung dağılımını tanımlamak için yeterlidir. Başlangıç durum ışıması ve demet 

ışımasının ikisini de hesaba katmak için bir bağıntı bu iki dağılım fonksiyonunu 

kullanarak şu şekilde yazılabilir, 

 
1

2( ) , ( )brem beam
e e e

x

xD x dz D Q D z z
z

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫

 

 

1x � ’de elektronlar ya da pozitronlar en yüksek olasılıkla etkileşeceklerdir. Fakat 

bremsstrahlung ve beamstrahlung’un sonucu olabilecek enerji kayıpları önemli bir 

olasılıktır, öyle ki yüksek enerji saçılma süreçlerinde bu enerji hatırı önemli derecede 

küçüktür. Yüksek hassasiyetli SUSY süreçlerinin sınanması sırasında bu özellik 

önemlidir, çünkü demet ışıması  / başlangıç durum ışıması fotonları nedeniyle 

gerçekleşen enerji kaybı sparçacık üretim reaksiyonlarının anahtarlarından biri olan 

kayıp enerji spektrumu gibi son durum dağılımlarını değiştirir.   

 
Başlangıç durum ışıması (ISR) ve demet ışıması (BS) olduğu durum için tesir kesiti 

değerlerinin nasıl değiştiğini hesaplamak gereklidir. Bu doğrultuda CompHEP ’de 

(Boos vd. 2004) kütle merkezi enerjisi 3 TeV olan Toplu Doğrusal Çarpıştırıcının 
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(CLIC) parametreleri kullanılabilir(CLIC12). Bu parametreler demet boyutları σx+σy= 

46 nm, paketcik uzunluğu σz= 44µm ve paketcikteki parçacık sayısı 3.72x109 olarak 

verilmektedir. Buna göre polarize olmayan demetler durumu için sfermiyon üretim tesir 

kesitleri Çizelge 4.2‘de α (m1/2=285, m0=210, tanβ=10, A0=0, µ=+1), β (m1/2=360, 

m0=230, tanβ=10, A0=0, µ=+1) ve γ (m1/2=240, m0=330, tanβ=20, A0=0, µ=+1)  

noktaları (De Roeck vd. 2007) için verilmiştir. 

 
Çizelge 4.2 Toplu Doğrusal Çarpıştırıcıda ISR ve BS etkisinin göz önüne alındığı 
                    durum için son durum sfermiyonlarının tesir kesiti değerleri 

Son Durum α noktası için σ(fb) β noktası için σ(fb) γ noktası için σ(fb)

1 1t t% %  2.72 1.53 3.31 

2 2t t% %  1.43 0.9 1.82 

1 2t t% %  0.35 0.19 0.41 

1 1b b% %  1.18 0.7 1.41 

2 2b b% %  0.31 0.18 0.36 

1 2b b% %  0.23 0.12 0.32 

1 1τ τ% %  9.52 7.6 4.78 

2 2τ τ% %  6.86 4.92 3.76 

1 2τ τ% %  0.21 0.11 0.27 

τ τν ν% %  3.30 2.28 1.88 
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5. SFERMİYON BOZUNUMLARI 

 
Bu kısımda 2.3 kesiminde elde edilen etkileşmeler kullanılarak sfermiyonların 

bozunumları incelenecektir. Skuarkların ve sleptonların bozunumları adı altında iki 

başlığa ayrılmıştır, 

 
5.1 Skuark Bozunumları 

 
Skuarklar baskın olarak iki-cisim modu (son durumda iki parçacık) vasıtasıyla 

bozunurlar. Üçüncü aile skuarkları için, ihmal edilemeyen Yukawa bağlaşımları ile 

birlikte skuark karışım etkileri ilk iki aileden daha karmaşık bozunum ürünlerine 

götürür. Eğer kinematik olarak izinli ise alt (bottom) skuark şu kanallara bozunur (Baer 

2006), 

 
                              0

1,2 1,2 1,2, , , ,i ib b g b t W t H tχ χ − − −→% % %% %%  

ve   

                                     2 1 1 1 1, , ,b Z b hb H b Ab→% % % % %
 

 
İlk iki ailenin skuarklarından farklı olarak, hafif ve ağır alt skuarkların ikisi de sol- ve 

sağ-skuarkların karışımları oldukları için bunlar genel olarak yükinolara ve W 

bozonlarına bozunurlar. Benzer olarak üst (top) skuark da şu bozunum kanallarına 

sahiptir (Baer 2006),  

 
                                    0

1,2 1,2 1,2, , , ,i it t g t b W b H bχ χ + + +→ % %% % %%  

 
ve  

                                            2 1 1 1 1, , ,t Z t ht H t At→% % % % %  
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Eğer üst (top) skuarklar göreli olarak hafifse baskın olarak 1 1t bχ +→% %  kanalıyla bozunur 

ve 0
1 1t t χ→% %  kanalı da olasıdır. Eğer bu kanalların ikisi de kinematik olarak yasaklıysa, 

1t%  şu bastırılmış kanallar vasıtasıyla bozunabilir (Baer 2006), 

 
                           0 0

1 1 1, , ,L Lt c b l bl bWχ ν ν χ→ %% % % %    yada  0
1b f f χ′ %  

 
burada f  ve f ′ , W  bozonu ile etkileşen hafif Standart Model fermiyonlarıdır. Bu 

bozunum kanallarının ilki çeşni ihlal eden etkileşmeleri veren SUSY Lagranjiyenindeki 

köşegen dışı terimlerden gelir. Ağaç seviyesinde, yüksek enerji skalasında Renormalize 

Lagranjiyende çeşni ihlal eden etkileşmeler olmasa bile zayıf skalada ışımasal 

(radiative) düzeltmeler bu etkileşmelere neden olabilir. Burada 1t c g→% %  bozunumunun 

kinematik olarak yasaklı olduğu varsayılıyor. 

 

( ) 0 0
1

1 1 1 1

0

1 1

22 2
20 1 2

1 2 2

2
2

1, , 1
8

1

i i

i

t t t
i

t t t t

t

t t

m mm m mt t a
m m m m

mmb
m m

χ χ

χ

χ λ
π

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎢ ⎥⎜ ⎟Γ → = − +⎜ ⎟⎨ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎪ ⎝ ⎠⎝ ⎠ ⎣ ⎦⎩
⎫⎡ ⎤⎛ ⎞ ⎪⎢ ⎥+ − +⎜ ⎟ ⎬⎜ ⎟⎢ ⎥⎪⎝ ⎠⎣ ⎦⎭

% % %

% % % %

%

% %

% %

                           (5.1) 

 
burada şu tanımlamalar yapılmıştır, 

 

             ( ) ( ){ }0 0
( ) ( )

1 1
1
2

i i

i i

t i t i
t t t ta i A i y Cos i B i y Sinθ θ

χ χ
ϑ θ ϑ θ⎡ ⎤ ⎡ ⎤= − − − −⎣ ⎦ ⎣ ⎦% %

                    (5.2) 

                    
 

             ( ) ( ){ }0 0
( ) ( )

1 1
1
2

i i

i i

t i t i
t t t tb i A i y Cos i B i y Sinθ θ

χ χ
ϑ θ ϑ θ⎡ ⎤ ⎡ ⎤= − − − + −⎣ ⎦ ⎣ ⎦% %

                  (5.3)       
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Bu formül ( )0
2 it t χΓ →% %  için de benzerdir, yalnızca 

1 2t tm m→% % , t tCos Sinθ θ→   ve 

t tSin Cosθ θ→ −  değişiklikleri yapılmalıdır. 0
i ib b χ→% %  bozunum genişliğini bulmak 

için ( )0
1 it t χΓ →% %  ifadesinde şu değişiklikler yapılmalıdır, 

 

                                                     

0 0

0 0

( ) ( )
1 2

i i

i i

i i

t b

t b

t b

t b
i i

t b

t b

m m

A A

B B

y y

m m

χ χ

χ χ

ϑ ϑ
θ θ

→

→

→

→

→
→

→

% %

% %

% %

% %

% %

                                                              (5.4) 

 
Yükinolara bozunum ifadeleri şu şekilde verilebilir, 

 

( ) ( )

( )

1

1 1

1 1 1

2 2 2
1 2 2 2

1 2 2

2 2

2 2 2

1, ,
16

1 4

i

i i i

i i

i i i
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i t t t

t t

b db
t t t

t t t

mm mt b i A Cos B Sin B Cos
m m

m m mm i A Cos B Sin B Cos
m m m

χ
χ χ χ

χ χ
χ χ χ

χ λ θ θ θ
π

θ θ θ

+

+ + +

+ +

+ + +

+
⎛ ⎞ ⎧⎡ ⎤′⎜ ⎟Γ → = − +⎨⎢ ⎥⎜ ⎟ ⎣ ⎦⎩⎝ ⎠

⎛ ⎞ ⎫⎪′⎜ ⎟× − − − − ⎬⎜ ⎟ ⎪⎭⎝ ⎠
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% %

% %
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(5.5) 
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1 2 2 2
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16

1 4
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mm mb t i A Cos B Sin B Cos
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m m mm i A Cos B Sin B Cos
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π
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−

− − −
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−
⎛ ⎞ ⎧⎡ ⎤′ ′⎜ ⎟Γ → = − +⎨⎢ ⎥⎜ ⎟ ⎣ ⎦⎩⎝ ⎠

⎛ ⎞ ⎫⎪′⎜ ⎟× − − − − ⎬⎜ ⎟ ⎪⎭⎝ ⎠

% %
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% %

(5.6) 

 
Bu bozunum genişliği ifadelerinden yola çıkılarak 2t%  ve 2b%  ‘ya karşı gelen bozunum 

genişliği ifadeleri denklemlerde şu değişiklikler yapılarak bulunabilirler, 

1 2
; ;q q q q q qm m Cos Sin Sin Cosθ θ θ θ→ → → −% %                                                        
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bu değişikliklere ek olarak etkileşme terimlerinden gelen şu farklı bağlaşımlar da 

değiştirilmelidir, , , ,
i i i i

f fA B B Bχ χ χ χ′% % % %  . 

 
Üçüncü aile skuarklarının yüklü Higgslere de geçişi söz konusudur. Bu durumlar için 

bozunum genişliği ifadeleri şu şekilde olur, 

 

( ) ( )
2

1 2 2 2 2
3

1 , ,
16 i j

i

i j
i j t b H

t

A
t b H m m m

m
λ

π ±
+Γ → = % %

%

%%                                                         (5.7) 

 
Burada şu tanımlamalar yapılmıştır, 

 

( ){

( ) ( )

( ) }

11

2 2 2

tan
2

tan

tan 2

t b t b
W

t t t b b b b t

b t W t b
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( )12 11 ;b b b bA A Cos Sin Sin Cosθ θ θ θ= → →−                                                             (5.9) 

 

2 jA  bağlaşımları 2 jt H b+→ %%  bozunum genişliğinde gelir ve 1 jA  katsayılarında 

t tCos Sinθ θ→  ve t tSin Cosθ θ→ −  yer değiştirmeleri yapılarak bulunabilirler. Aynı 

zamanda  
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bozunumu da söz konusudur. 
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Üçüncü aile ağır kuarklarının ,h Hφ = ya da A  bozonlarına bozunumları aşağıda ifade 

edildiği gibi bulunur, 
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Bu bozunum genişliği ifadelerinde şu tanımlamalar yapılmıştır , 
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olarak verilir. 

 
5.2 Slepton Bozunumları 

 
Üçüncü aile skuarklarındaki gibi, üçüncü aile sleptonlarının bozunum olasılıkları da 

Yukawa bağlaşımları ve karışım etkileri nedeniyle diğer ailelere göre daha karmaşıktır. 

Bozunum olasılıkları  (eğer kinematik olarak izinli ise) şunları içerir (Baer 2006), 

 
                                 0

1 ,i jττ τ χ ν χ−→ % %%  

                                 0
2 , , ,i j W Hτ τ ττ τ χ ν χ ν ν− − −→ % % % %%  

                                 2 1 1 1 1, , ,Z h H Aτ τ τ τ τ→% % % % %  

                                 0
1,2, ,i j Wτ τν ν χ τ χ τ− + + −→% % % %  ve  1,2H τ+ −%  

 

Üçüncü aile sleptonlarının ve snötrinolarının bozunumlarında Yukawa bağlaşım etkileri 

önemlidir. Stau kısmi bozunum genişliği aşağıdaki gibi hesaplanır: 
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Bu ifadedeki tanımlamalar aşağıdaki gibidir, 
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0

2 iτ τ χ→ %%  bozunumu için formül benzerdir, ve 
1 2

,m mτ τ→% %  ,Cos Sinτ τθ θ→

Sin Cosτ τθ θ→ −  yer değiştirmeleri yapılmalıdır. 

 
Stau’ların yükinolara bozunumunu veren bozunum genişliği ifadesi aşağıdaki gibidir, 
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burada 

1
LB y Cosτχ
γ−′′ =−%

 ve 
2

x LB y Sinτχ
θ γ−′′ =%

  olarak tanımlanmıştır (Baer 2006). 

Üçüncü aile snötrino kısmi bozunum genişliği aşağıdaki gibidir. 
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Sleptonların ayar bozonlarına bozunumlarının ifadeleri ise şu şekilde elde edilir,  
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Snötrino bozunum genişliği ifadesi 
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ve stau’nun yüksüz akım bozunumu aşağıdaki gibidir. 
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Üçüncü aile sleptonları önemli bir oranda Higgs bozonlarına bozunabilir. 
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Bu ifadede ise şu tanımlamalar yapılmıştır (Baer 2006), 
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Son olarak, stau’nun Higgs bozonuna ve snötrinoya bozunumu aşağıdaki gibi 

hesaplanır. 
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Stau’nun yüksüz Higgs bozonlarına ( ), ,h H Aφ =  bozunumlarının ifadeleri aşağıda 

verilmiştir. 
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5.3 Dallanma Oranları 

 
Bütün bu elde edilen bozunum genişliği formülleri doğrultusunda mSUGRA parametre 

uzayında birkaç nokta seçerek sfermiyonların dallanma oranlarını bulabiliriz. Örnek 

olması açısından α, β ve γ noktalarının parametreleri kullanıldığında dallanma oranları 

aşağıdaki gibi bulunur,  
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Alfa noktası için üçüncü aile sfermiyonlarının dallanma oranları, 
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Beta noktası için üçüncü aile sfermiyonlarının dallanma oranları, 
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Gama noktası için üçüncü aile sfermiyonlarının dallanma oranları, 

 

                   

1
0
1

1 0
2

2

%58

%18

%13

% 11

b

t
t

t

t

χ

χ

χ

χ

+

+

⎧
⎪
⎪→ ⎨
⎪
⎪
⎩

%

%
%

%

%

                      

0
4

1

2

1
2 0

2
0
3

1
0
1

% 23

% 24

% 24
%8.7

%8.2

%6.8
%3.4

%1.6

t

b

b
Z t

t
t

t
h t

t

χ

χ

χ

χ

χ

χ

+

+

⎧
⎪
⎪
⎪
⎪
⎪⎪→ ⎨
⎪
⎪
⎪
⎪
⎪
⎪⎩

%

%

%

%
%

%

%

%

%

 

 

                   

1
0
2

1
1 0

1
0
4
0
3

% 43

%35

% 3

%7.5

% 4.4

%7.3

t

b

W t
b

b

b

b

χ

χ

χ

χ

χ

−

−

⎧
⎪
⎪
⎪
⎪→ ⎨
⎪
⎪
⎪
⎪⎩

%

%

%
%

%

%

%

                 

1

1

2
0

2 1
0
4
0
3

0
2

%13

% 2.7

% 45

% 2.9

%17

%16

% 2.6

W t

t

t

b b

b

b

b

χ

χ

χ

χ

χ

χ

−

−

−

⎧
⎪
⎪
⎪
⎪⎪→ ⎨
⎪
⎪
⎪
⎪
⎪⎩

%

%

%

% %

%

%

%

 

 

                    

0
1

1 1

0
2

%70

%19

%11
τ

τ χ

τ ν χ

τ χ

−

⎧
⎪

→ ⎨
⎪
⎩

%

%%

%

                
1

0
2 2

0
1

% 49

%31

% 20

τν χ

τ τ χ

τ χ

−⎧
⎪

→ ⎨
⎪
⎩

%

%%

%

 

 

                                                  
1

0
1

0
2

%59.6

%16.1

% 24.4
τ τ

τ

τ χ

ν ν χ

ν χ

+⎧
⎪

→ ⎨
⎪
⎩

%

% %

%

 

 



83 
 

6. SFERMİYON KÜTLE BELİRLEME YÖNTEMLERİ 

 
Teorik olarak öngörülen sparçacık kütle spektrumunun deneysel olarak gözlenmesi pek 

kolay değildir. Bu kesimde yapılacak tartışmalar genel olarak karanlık madde parçacığı 

olarak nötralinonun ( 0
1χ% ) düşünüldüğü durum içindir, bu durumda bütün SUSY 

parçacıkları bu parçacığa bozunur ve bu parçacığın kendisi bozunmadan kalır. Nötral ve 

zayıf etkileşen bu parçacıklar detektörler tarafından algılanmadan kaçabilirler. Buna 

rağmen, uygulanan metotlar sayesinde (Choi vd. 2007, Choudhury vd. 2005, Dreiner 

vd. 2011, Feng vd. 1994, Freitas vd. 2001, Godbole vd. 2005, Martin vd. 1999, 

Saavedra 2005) yalnızca sparçacık kütleleri ölçülmez aynı zamanda karışım açıları ve 

bu kütleleri MSSM lagranjiyen parametrelerine dönüştüren diğer bilgiler de ölçülür.  

 
Benzer metotlar diğer senaryolara da uygulanabilir. Örneğin; nötralinonun gravitasyonel 

etkileşmeyle bir parçacığa bozunduğu bir model olsun, eğer bu algılanabilir bir 

parçacıksa analize eklenebilir. Bu tip modellerde en hafif süpersimetrik parçacığın 

yüklü bir slepton olması olasıdır ve bu slepton kararlıdır. Bu tip senaryolar çok dikkat 

çekici ve karakteristik olaylar üretebilir.  

 
SUSY spektrumunun deneysel çalışılması yüksek enerji deneylerinden verilerin 

alınmasıyla başlamıştır. Fakat LHC gibi bir hadron çarpıştırıcısında, süper-parçacık 

üretimlerinde kinematik bilgilerin çoğu kaybolur ve spektrumu ölçmek çok özel 

yöntemler geliştirmeyi gerektirir. SUSY araştırma çalışmaları e+ e- çarpıştırıcısında 

(örneğin Uluslararası Lineer Çarpıştırıcı (ILC)) daha da ileri götürülebilir. Bu nedenle 

e+ e- çarpıştırıcısında SUSY spektrumunun nasıl ölçülebileceği tartışılacaktır (Freitas vd. 

2005, Mizukoshi vd. 2001, Nojiri vd. 1996, Oshimo 2005). 

 
İlk olarak en basit e e µ µ+ − + −→ % %  sürecinden başlanarak slepton çift üretimi tartışılacak 

ve τ% ’ya genişletilecektir. e e µ µ+ − + −→ % %  (burada µ%  sol ya da sağ-elli µ ’nün süper-eşi) 

süreci skaler parçacık-antiparçacık üretimi için basit bir formülle analiz edilebilir. 

Polarize başlangıç durumlu elektron ve pozitronundan SU(2) x U(1) kuantum 
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sayılarıyla belirlenen son durum skalerlerine çift üretim tesir kesitini veren ifade 

aşağıdaki gibidir, 

 

                                        
2 23 2

2 ab
d Sin f

d Cos s
σ π α β θ
θ
=                                               (6.1) 

 
burada  

 

                                  
( )( )3 2 3 2

2 2 21 e w w
ab

w w Z

I Sin I Sin sf
Sin Cos s m

µθ θ

θ θ

+ +
= +

−
                            (6.2) 

 

ve (6.2) ifadesinde , ,a b L R=   için 3 1 ,0
2

I =−  dır. Başlangıç durumu için, a L=  L Re e− +  

‘yı ve a R=  ise R Le e− + ’yı gösterir. Son durum için, b L=  ile µ% ’yı ve b R=  ile µ% ’yı 

gösterelim. Bu tesir kesiti polarizasyon durumlarına güçlü bir şekilde bağımlıdır (Peskin 

2008) 
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                                       (6.3) 

 
Bir spin-0 parçacığının çift üretim karakteristiğini açısal dağılım temsil eder, bu tesir 

kesitinin normalizasyonu SU(2) x U(1) kuantum sayılarının doğru kümesini verecektir. 

Eğer smüon hafifse, yalnızca kinematik olarak izinli bozunumu 0
1µ µ χ→ %%  olabilir. 

Smüon ağır bile olsa bu bozunum olasıdır. Burada R-paritenin korunduğu ve 0
1χ% ’ın 

süper-parçacık spektrumunda en hafif parçacık olduğu varsayılmıştır. Bu bozunumlar 

sonucunda her iki taraftaki olaylar şu şekilde görünür, 
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                                            ( )e e kayıp E ve pµ µ+ − + −→ +  

 
Gözlenen müonların spektrumu çok basittir. µ% ’nın spini 0 olduğundan kendi durgun 

çerçevesinde bozunumu izotropiktir. Lab.’da belli bir kütle merkezi enerjisinde üretilen 

µ% ’lar belli bir enerjiyle üretilir ve dolayısıyla belli bir boost kazanırlar. Bir izotropik 

dağılımın boost kazanması enerjide düz bir dağılım gösterir. Öyle ki, kinematik ile 

tanımlanan uç-noktalar arasında müon enerji dağılımı düz olmalıdır. Şekil 6.1’de 

e e µ µ+ − + −→ % %  süreci için son durum müonlarının şematik enerji dağılımı 

gösterilmiştir(Peskin 2008). 

 

                                                 

Şekil 6.1 e e µ µ+ − + −→ % %  süreci için son durum müonlarının şematik enerji dağılımı 

 
Uç-nokta enerji değerleri µ%  ve 0

1χ% ’ın kütlelerinin basit fonksiyonudur ve şu ifade ile 

verilir, 

 

                                               ( )
0
1

2 2

1
2

m m
E

m
µ χ

µ

γ β±

−
= ±

% %

%

                                                (6.4) 

 
burada 2kmE mµγ =  ve ( )1 22 21 4 kmm Eµβ = − %  olarak tanımlanıyor ve kmE  kütle merkezi 

enerjisini gösterir (Peskin 2008). Eğer her iki uç nokta konumlarını belirleyebilirsek 

bilinmeyen iki kütleyi bulabiliriz. Deneylerde bu yöntem kullanılarak yaklaşık 100 

MeV doğrulukla smüon kütlesi bulunabilir. 

 



86 
 

Benzer bir analiz e e τ τ+ − + −→ % % ’ye de uygulanabilir, fakat bu durumda birçok zorluk 

ortaya çıkar. İlk olarak, τ  sistemi için τ%  ve τ%  arasındaki karışımın etkisi önemlidir 

özellikle tanβ büyük olursa, dolayısıyla üretim tesir kesiti bu karışımdan direkt olarak 

etkilenir. Örneğin, polarize başlangıç durumundan hafif τ%  kütle özdurumunun çift-

üretimi için şu ifade bulunur, 

 

                                              
2 23 2

12 R
d Sin f

d Cos s
σ π α β θ
θ
=                                       (6.5) 

 
burada  

 
                                                  2 2

1R R R R Lf f Cos f Sinτ τθ θ= +                                     (6.6) 

 
ve τθ , τ% ’nın köşegenleştirilmesiyle ilişkili olan karışım açısıdır. 

 
İkinci olarak, τ −%  ayar bağlaşımı vasıtasıyla R bτ − % ’ya bozunabilirken bu zayıf özdurum 

Yukawa bağlaşımıyla orantılı terimler vasıtasıyla L dhτ − % ’ya da bozunabilir. Burada her 

iki durumda 0
1 1τ τ χ→ %%  gözlenebilir bozunumuna katkı verir. Tesir kesitinden ölçülen τ%  

sabit karışım açısıyla, τ%  bozunumunda τ  polarizasyonu kullanılarak nötralino kütle 

matrisinin köşegenleştirilmesindeki karışım açıları tanımlanabilir. 

 
Bu durumlara benzer olarak e e τ τν ν+ − → %%  sürecinde enerjinin uç noktaları, seçilen alfa, 

beta ve gama noktaları için PYTHIA 6.4 kullanılarak şu şekilde bulunur. 
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Şekil 6.2 1 1e e τ τν ν τ τ χ χ+ − − + − +→ →% % % %  süreci sonucunda alfa noktası için ortaya çıkan son  
                durum tau leptonlarının enerji dağılımı (Ari vd. 2011) 

 

 

 
Şekil 6.3 1 1e e τ τν ν τ τ χ χ+ − − + − +→ →% % % %  süreci sonucunda beta noktası için ortaya çıkan son 
                durum tau leptonlarının enerji dağılımı (Ari vd. 2011) 
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Şekil 6.4 1 1e e τ τν ν τ τ χ χ+ − − + − +→ →% % % %  süreci sonucunda gama noktası için ortaya çıkan 
                son durum tau leptonlarının enerji dağılımı (Ari vd. 2011) 
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7.  DÖRDÜNCÜ AİLE SFERMİYONLARININ ARAŞTIRILMASI 

 
SM’ nin bütün deneysel verilerle çok iyi bir uyum göstermesine rağmen bazı 

problemleri açıklayamadığını biliyoruz. Bu problemlere açıklık getirebilmek amacıyla 

SM ötesinde farklı birçok yaklaşım geliştirilmiştir. Bunların en önemlilerinden birinin 

Süpersimetri (SUSY) olduğu daha önceki bölümlerde belirtilmiştir. Bu kesimde 

Standart Modelde dört aile olması durumu için MSSM’ yi MSSM4’e genişleteceğiz.   

 
Son zamanlarda, Standart Modelin 4 aileli (SM4) olması durumu üzerine yapılan 

çalışmalar yoğunluk kazanmıştır(Alok vd. 2010, Bobrowski vd. 2009, Buras vd. 2010, 

Chanowitz 2009, Chanowitz 2010, Ciftci vd. 2005, Erler vd. 2010, Hou vd. 2010, Sahin 

vd. 2011, Soni vd. 2010, Sultansoy 2009). Yeni çalışmalar SM ile SM4’ün benzer bir 

yapıya sahip olması gerektiğini göstermektedir. Deneyler tarafından 4. aile lepton 

kütleleri üzerine getirilen güncel sınırlamalar 
4

100lm GeV>  ve Dirac (Majorona) 

nötrinoları için 
4

90 (80)m GeVν > (PDG 2010) olarak verilmektedir. Fermilab’da 

bulunan Çarpıştırıcı Dedektörünün (CDF) SM4 kuarkları için getirdiği kütle 

sınırlamaları ise 
4

335um GeV>  ve 
4

338dm GeV>  olarak % 95 güvenilirlikle 

verilmektedir (CDF Collaboration 2009). LHC deneyleri bu limitleri daha yukarı 

çekmiştir: mu4 > 400 GeV (Atlas,2011). Diğer yandan SM4 fermiyon kütleleri için 

kısmi-dalga üniterliği 700 GeV’ lik (Chanowitz vd. 1979)  bir üst limite götürür.  

 
7.1 Dördüncü Aile Sfermiyonları için Ayar Bağlaşımları ve RG Denklemleri 

 
Standart Model durumunda ayar bağlaşımlarının enerji ölçeğine göre değişimini veren 

grafiği 2. Bölümde görmüştük. Burada önemli bir soru olarak şu düşünülebilir; eğer 4. 

aile varsa ayar bağlaşımları üzerine olan etkisi nasıl olacaktır? Dördüncü ailenin varlığı 

yani SM4 durumunda ayar bağlaşımlarının enerji ölçeğine göre değişimini veren 

bağıntıdaki ib  katsayıları (-163/30, 11/6, 17/3) olarak yeniden tanımlanmalıdır 

(Kazakov 2001). Buna göre ayar bağlaşımlarının SM4 durumu için değişimi Şekil 

7.1’de verilmiştir.  
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Şekil 7.1‘den de görüldüğü üzere SM4 durumunda da ayar bağlaşımlarının üçü için yine 

tam bir kesişme noktası yoktur. Yalnızca Büyük Birleşme Ölçeğinde (BBÖ) bu 

bağlaşımların değerleri SM dekine göre biraz daha artmıştır.  

 

 
Şekil 7.1 Ayar bağlaşımlarının SM4 durumu için enerji ölçeğine göre değişimleri 

 
Eğer MSSM4 durumu düşünülecek olursa, 4. ailenin varlığı ayar bağlaşımlarının 

kesişimi üzerine nasıl bir etki yapar? Bu durumu görmek için Şekil 7.2’ye bakabiliriz. 

 

 
Şekil 7.2 Ayar bağlaşımlarının MSSM4 durumu için enerji ölçeğine göre değişimleri 

 
Şekil 7.2’den görüldüğü gibi 4. ailenin var olması durumu ayar bağlaşımlarının 

birleşmesine bir engel teşkil etmemektedir. Ayrıca BBÖ’ de bu bağlaşımların 

değerlerinin daha büyük olmasını sağlıyor. Buna göre MSSM için düşünülen durumlar 
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artık MSSM4’e genelleştirilebilir. Bu doğrultuda MSSM4 durumunda 3. aile ve 4. aile 

sfermiyon kütlelerinin enerji ölçeğine bağımlı değişimini veren Renormalizasyon Grup 

Denklemleri (Chung vd. 2005) sleptonlar ve skuarklar için ayrı ayrı aşağıda verilmiştir, 

 
2

2

2
16
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i i i

dM b g M
dt π

=                                                                                                     (7.1) 

 
Yukawa bağlaşımları için RG denklemleri, 
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Üçlü doğrusal bağlaşımlar için RG denklemleri aşağıdaki gibi olur, 
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Yukarıda yapılan tanımlamalar kullanılarak üçüncü ve dördüncü aile sfermiyonlarının 

kütleleri için denklemler, 
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Üçüncü aile sleptonlarının kütleleri için denklemler 
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Higgs kütleleri için denklemler aşağıdaki gibidir, 
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Bu denklem takımında 4. ailenin nötrinosunun kütleli olduğu durum düşünülerek 

getireceği katkı da göz önüne alınmıştır. Bu denklemler BBÖ düşünülerek tanımlanan 

parametre uzayında seçilen 5 nokta için eş zamanlı olarak Mathematica yardımıyla 

çözdürülebilir. Bunun sonucunda zayıf ölçekte 4. aile sfermiyonları için bir kütle 

spektrumu elde edilir. İki farklı parametre seti için örnek bir hesaplama Çizelge 7.1 de 

verilmiştir. 

 
Çizelge 7.1 Parametre uzayında seçilen iki farklı nokta için 4. aile sfermiyonlarının 
                    kütle spektrumu 

4. Aile Sfermiyonu A0=100, m0=300, m1/2=200 

tanβ=1.8, sign(µ)=1 

A0=150, m0=200, m1/2=150 

tanβ=1.5, sign(µ)=1 

'R
mτ% (GeV) 100 125 

'L
mτ% (GeV) 240 210 

'Rbm% (GeV) 250 220 

'Rtm% (GeV) 400 300 

4 LQm % (GeV) 360 280 

'mν%  (GeV) 290 240 

 

 
7.2 Dördüncü Aile Yüklü Sleptonlarının Üretimi 

 
Bu kesimde süpersimetrik 4. aile yüklü sleptonunun ( 4l% ) lineer çarpıştırıcılarda çift 

üretimi incelenecektir. Ayrıca üretilen bu sleptonların 4. aile nötrinosuna ( 4ν ) ve 

yükinoya ( 1χ
−% ) bozunduğu durum düşünülecek. Burada R-paritenin korunumunun 
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düşünülmesi ve en hafif süpersimetrik parçacığın nötralino ( 0
1χ% ) alınması nedeniyle 

yükinonun nötralinoya ( 0
1χ% ) ve W −  bozonuna geçişi incelenmiştir.  

 
Burada yapılacak ilk şey 4. ailenin MSSM’ ye dahil edilmesidir. ( )4 4,l Rl l% %  bazlarında 

bu sleptonların kütle matrisi şu şekilde verilir, 
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bu kütle matrisi için şu tanımlamalar yapılmıştır, 
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4ll%  ve 4hl%  kütle özdurumlarının 4Ll%  ve 4Rl%  ile olan ilişkisini veren bağıntı şu şekildedir, 
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Buradan yola çıkıldığında kütle özdeğerleri ve karışım açısı için şu ifadelere ulaşılır, 

 

                ( ) ( ) 4 44 ( , ) 4 4 4 4

2
2 2 2 2 2 2 21 1 4

2 2l h L R L R l ll l l l lm m m m m a m= + − +% % % % %m                                (7.13)  
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(7.13) denklemine bakılacak olursa 
4l

m ’ün değeri ne kadar büyük olursa 4ll% ’ün o kadar 

hafif olması gerektiği görülebilir.  

 
Artık 4 4l le e l l+ − + −→ % %  süreci için tesir kesitine bakabiliriz. Bu süreç için tesir kesitinin 

ifadesi aşağıdaki gibi olur, 
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       (7.15) 

 
burada 2( ) 1 Z Z ZD Z s m i m⎡ ⎤= − + Γ⎣ ⎦ , 21 4e WSinϑ θ=− + , 1ea = −  ve 

( )
4

22 2ll Wla Cos Sinθ θ= − +%  olarak tanımlanıyor. Eğer 
4

2 22 WlCos Sinθ θ=%  olursa Z 

bozonu ile olan etkileşme ortadan kalkacaktır. (7.15)‘den tesir kesitinin hangi karışım 

açısı değerinde minimum verdiği bulunabilir. Buna göre tesir kesitinin minimum olduğu 

duruma karşı gelen karışım açısının ifadesi  

 

                           
4

2
2 2

2 2

42 1 eZ
w wl

e e

s mCos Sin Cos
s a

ϑθ θ θ
ϑ

⎡ ⎤−
= −⎢ ⎥+⎣ ⎦

%                               (7.16) 

 
olarak bulunur.  

 
Tesir kesitinin belirli slepton4 kütleleri ve kütle merkezinin 3 TeV olduğu durum için 

karışım açısına göre değişimi Şekil 7.3’de verilmiştir. Bu grafikten görüleceği üzere 

slepton kütlesi sadece tesir kesitinin büyüklüğünü değiştiriyor fakat açıya bağımlılık 

biçim olarak aynı kalıyor. Ayrıca 
4l

Cosθ %  yaklaşık olarak 0.6 değerini aldığında tesir 

kesiti ifadesi en küçük değerini almaktadır. 
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Şekil 7.3 4l%  üretim tesir kesiti ifadesinin karışım açısına göre değişim grafiği 
                         (kütle merkezi enerjisi 3 TeV)  (Ari vd. 2011) 

 
Karışım açısı 

4
0.6lCosθ =%  değerinde tutulduğu ve kütle merkezi enerjisinin 1 TeV ve 3 

TeV olarak alındığı durumda tesir kesitinin kütleye göre değişiminin grafiği Şekil 7.4 de 

verilmiştir. Kesikli çizgi kütle merkezi enerjisinin 1 TeV olduğu ve sürekli çizgi ise 

kütle merkezi enerjisinin 3 TeV olduğu durumu göstermektedir. Grafikten görüldüğü 

üzere kinematik limit değerlerinde tesir kesiti değerleri sıfıra gitmektedir. Eğer 4l%  

kütlesi yaklaşık 400 GeV gibi bir değere sahipse ILC de bu üretimi 5 fb tesir kesiti ile 

görebiliriz. 

 

 
Şekil 7.4  Tesir kesitinin kütle merkezi enerjisinin 1 TeV ve 3 TeV olduğu durumlar 
                 için 4l% ’nın kütlesine göre değişimini göstermektedir. (Ari vd. 2011) 
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Üretilen 4l% ’ların şekil 7.5’de verilen bozunum kanallarını düşünelim. Bu sinyal için 

arkaplan neredeyse yoktur.  

 

Şekil 7.5 4l% ’ların göz önünen alınan bozunum kanalları (Dirac tipi nötrinolar için) 

 
Nötrinolar Dirac tipi olduğunda detektör tarafından algılanacak sinyal 

3 4 Tjet Eµ µ− ++ + +  olacaktır. Eğer nötrinolar Majorona tipi olursa detektör tarafından 

algılanacak sinyal 3 6 Tjet Eµ− + +  olur. Bu durumlar için 4l%  kütlelerine ve kütle 

merkezi enerjilerine göre olay sayısı değerleri çizelge 7.2’de verilmiştir. 

 
Çizelge 7.2 3 4 Tjet Eµ µ− ++ + +  ( 3 6 Tjet Eµ− + + ) son durumu için 4l%   
                    kütleleri ve farklı kütle merkezi enerjileri için tesir kesiti (ab) (Ari vd. 2011) 

Kütle(GeV) 1s TeV=  3s TeV=  

200 24.6 (38.0) 3.4 (5.4) 

300 16.4 (25.4) 3.4 (5.2) 

400 7.0 (10.6) 3.2 (5.0) 

450 2.6 (4.0) 3.0 (4.8) 

500 0 (0) 3.0 (4.6) 
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8. TARTIŞMA VE SONUÇ 

 
Tez kapsamında 3. aile sfermiyonlarının üretimleri elektron-pozitron çarpıştırıcılarında 

gelen demetlerin polarize olmayan ve polarize olan durumlar için yapılmıştır. Bulunan 

sonuçlardan polarize durumların üretim tesir kesitlerini artırıcı etkide bulunduğu 

görülmüştür. Ayrıca sadece polarize durumlar üretim tesir kesiti değerlerini artırmakla 

kalmaz aynı zamanda SM arkaplanından gelecek olan katkıları da azaltarak SUSY için 

daha temiz sinyaller verecektir. Buradan da  sparçacıkların kütleleri, karışım açıları, 

bağlaşımları üzerine daha hassas ölçümler yapılabilecektir. 

 
Burada problem olarak görünen bir durum gelecek doğrusal çarpıştırıcılarda 

kazanılacak olan demet polarizasyon serbestliğinin hala belirsiz olmasıdır. Yani 

elektron demetleri için polarizasyon % 80 ya da daha üzeri olarak düşünülebilirken, bu 

durum pozitronlar için çok belirgin değildir. Pozitronlar durumunda demet 

polarizasyonunda hedef  % 60 olarak görünüyor. Teorik olarak elde edilen polarize tesir 

kesiti ifadelerinden, elektron-pozitron polarizasyonunun bu değerlerine rağmen tesir 

kesiti değerleri polarize olmayan durumdan yaklaşık olarak 1.4 kat daha büyük 

olmaktadır.  

 
LHC veri toplaması devam etmektedir ve alınan veriler için analiz çalışmaları hızla 

sürmektedir. Eğer bu veri analizleri sonucunda sfermiyonlara rastlanırsa ve kütleleri 

ölçülebilirse o zaman doğrusal çarpıştırıcıların önemi daha da artacaktır. Çünkü kütleler 

hakkında verilerden elde edilen sonuçlar kullanılarak polarize demetlerle doğrusal 

çarpıştırıcılarda eşik taraması yöntemi kullanılarak özel süreçler için temel model 

üzerine daha hassas sonuçlara ulaşılabilir. 

 
Ayrıca tez kapsamına, 4 aileli duruma genişletilmiş SM4’e karşı gelen MSSM4 de dahil 

edilmiştir. MSSM4 için Renormalizasyon Grup Denklemleri için Mathematica 

kullanılarak bir kütle spektrumu hesabı yapılmıştır. Bunun devamı olarak e+e- 

çarpıştırıcısında dördüncü aile yüklü sleptonu çift üretimi yapılmıştır. Yapılan hesaplar 

sonucunda 1ab-1 için ILC’de dördüncü aile yüklü sleptonunun kütlesini 300 GeV ’e 

kadar 7.3 istatistiksel güvenilirlikle bulabiliriz. İstatistiksel güvenilirliğin 3 olduğu 
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gözlenebilir limit için bu kütle değeri 420 GeV olmaktadır. Kütle merkezi 3 TeV olan 

CLIC’de 4l%  üretiminde 1 ab-1 toplam ışınlık için 500 GeV kütleye kadar 

ulaşılabilinecektir. 
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