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1. GIRIS

Etrafimizdaki maddeyi teskil eden temel yapi taslarinin bilinmesi, maddeyi anlamak
icin tek basina yeterli olmaz. Maddenin Ozelliklerinin anlasilabilmesi i¢in bu yapi
taglarinin nasil bir arada tutulduklari, birbirleriyle nasil etkilestikleri gibi temel sorulara
ceavap verebilmek gereklidir. Bu dogrultuda, bu tip sorulara cevap veren bir model

olarak Standart Model (SM) ortaya ¢cikmaktadir.

Standart Model bilinen tiim parcaciklar1 siniflandirabilmesi ve deneylerle yiiksek
hassasiyette tutarlilik goOstermesi nedeniyle yiizyilla damgasini vuran bir model
olmustur. Fakat biitlin bu tatmin edici yanlarina ragmen 1970’lerde yapilan yeni

kesiflerle birlikte eksikleri yavas yavas ortaya cikmustir. Ornegin,

- Higgs kiitlesinin kararsizlig1
- Hiyerarsi problemi
- Gigld, zayif ve elektromanyetik kuvvetlerin birlesmemesi

- Baryon- antibaryon asimetrisi

gibi daha bir¢ok soru cevapsiz kalmistir.

Standart Model tarafindan cevaplanamayan bu tip sorular SM’ nin daha 6tesinde yeni
bir fizigin olmas1 gerektigi fikrini ortaya koymustur. Bu fikirlerden en popiiler olanm

Stipersimetridir (SUSY) .

Stipersimetriye gore, her fermiyona bir bozon ve her bozona da bir fermiyon kars1 gelir.
Bu modelde tek bir Higgs bozonu yeterli degildir, bunun yerine 5 tane Higgs bozonu
vardir ve bunlarin her birine spini 2 olan bir Higgsino kars1 gelir. Tam siipersimetrik
durumda sparcaciklar ve pargaciklar ayn kiitleye sahip olmalilar. Fakat su ana kadar
yapilan deneylerde heniiz goézlenebilmis herhangi bir sparcaciga rastlanilmamistir.
Buradan siipereslerin bu deneylerde iiretilemeyecek kadar biiyiik kiitleye sahip oldugu

sonucuna varilir. Bu da bize siipersimetrinin gergek diinya ile iligkili ise kirilan bir



simetri olmasi gerektigini gosterir. Bu durum siipersimetri kirilma mekanizmasinin

Onemini vurgulamaktadir.

Bu tez ¢calismasinda, genel bir girig boliimiinden sonra 2. bdliimde siipersimetrinin temel
prensipleri, 3., 4. ve 5. boliimlerde sfermiyon karisim, iiretim ve bozunumu konularina
yer verilmistir. 6. boliimde ise sfemiyon kiitle belirleme yontemlerine deginilmistir. 7.

boliimde genisletilmis MSSM i¢in (MSSM4) yiiklii 4. aile slepton iiretimi incelenmistir.

Bu teze asil onem kazandiran durum bu sfermiyonlarin Lineer Carpistiricilarda
arastiritlacak  olmasidir. Bu  yiiksek enerjili  elektron-pozitron carpistiricilar
siipersimetrik pargaciklarin daha hassas Ol¢iimleri i¢in 6nemli bir etki ortaya
koymaktadir. Ayrica bu carpistiricilarda polarize demetlerin kullanilmasi1 ve bu

durumun siipersimetri aragtirmalari iizerine olan etkisi de géz oniline alinmustir.

Yapilan bu arastirmalara ek olarak 4. ailenin varh@ da disiiniilerek Minimal
Siipersimetrik Model (MSSM), MSSM4 durumuna genisletilmistir. MSSM4 durumu
icin 1-loop mertebesinde Renormalizasyon Grup Denklemleri (RGE) ve bu denklemler
kullanilarak 4. aile sfermiyonlari i¢in kiitle spektrumu elde edilmistir. Daha sonra 4. aile
yukli  sleptonlarinin  Lineer ¢arpistiricilarda  liretimi  incelenerek  calisma

tamamlanmuistir.



2. SUPERSIMETRI VE TEMEL PRENSIiPLERi

Stipersimetri, standart modelin sahip oldugu simetrilere yeni ek uzay-zaman simetrisi

olarak girer. Buna gore;

“Stipersimetri, fermiyonik ve bozonik durumlart bir Q operatérii vasitasiyla
iliskilendiren  doniisiimlere bagli uzay zaman simetrisidir. Bu doniisiimlere

stipersimetrik doniigiimler denir.” [Sohnius 1985]

Tanima goére Q operatorii slipersimetri jeneratorii olarak adlandirilir. N=1 i¢in chiral,

vektor ve gravitasyon multipletleri; N=2 i¢in hiper, vektor ve gravitasyon multipletleri;

N=8 i¢in sadece gravitasyon multipletleri gecerlidir.

P, uzay-zaman dontgiimlerinin 4’li momentum jeneratdrii olmak iizere asagidaki

komiitasyon iligkilerini saglar.

{ QaJQZz } =2O_:dpy
{0.,,0,1=0={ 0.0} } @.1)
[ 0..P" ]=0=] OL.P" ]

Noether teoriminden akimin korunumu (bu korunumlu akima siiperakim denir)

arastirilirsa yiikiin, siipersimetri iireticileri olan Q jeneratorleri oldugu goriiliir.

Standart Modeldeki spinodrlere benzer sekilde, siipersimetride de cebire gore
indirgenemez temsilini gostermek i¢in kullanilan matrislere siipermultipletler denir.
Siipermultipletler icinde siliperes pargaciklar yer alir ve bir parcacigin siiperesini ifade
etmek i¢in tilda (~) sembolii kullanilir. Fermiyonlara ait siiperesler baslarina gelen “s-”
ekiyle; bozonlara ait siiperesler ise sonlarina gelen “-ino” ekiyle isimlendirilir. Cizelge

2.1-2.2’de siipersimetrik  pargaciklar, chiral siipermultipletler i¢in ve ayar



siipermultipletler i¢cin ayr1i ayri verilmigstir. Standart Model pargaciklar1 ve onlarin

stiperesleri arasinda 2 spin farki bulunur.

Cizelge 2.1 Chiral stipermultipletler i¢in siipersimetrik parcaciklar ve kuantum sayilari

Isimler spin 0 spin 1/2 SUQB).,SU2),,U(l),
skuarklar , 0 (gL [jL) (u, d,) (3,2,1/6)
kuarklar w 7 ul (3,1,-2/3)
R
(3 aile) d - 3,1,1/3
dR d;; ( s Ly )
sleptonlar, L (v e) (v e,) (1,2,-1/2)
leptonlar e > ol (1,1, 1)
R R
(3 aile)
Higgs, H, (H; H?) (A: /) |(1L212)
higgsinolar _ ~ o~ 1,2,-1/2
=8 a, (1y 1) | (70 71;) ( )

Cizelge 2.2 Ayar stipermultipletler i¢in siipersimetrik parcaciklar ve kuantum sayilari

Isimler spin 1/2 spin 1 SUB).,SU2),,U(1),
gluino,

gluon g g (8,1,0)

winolar,

W bozonlari w: W w: w° (1,3,0)

bino B B° (1,1,0)

B bozonu




2.1 Doniisiimler ve Simetriler

Burada ilk olarak teorik agidan basit bir silipersimetrik modeli incelemeye ¢alisacagiz.

Baslangic olarak her ikisi de kiitlesiz olan spin-0 kompleks ¢ alani ile L-tipli y spindr

alanimiz olsun. Bu serbest alanlar i¢in Lagranjiyen (Lagranjiyen yogunlugu anlaminda

kullaniliyor) su sekilde verilir (Aitchison 2007),
_ T Au o=
L=0,¢"0"¢+ " ic"0, x (2.2)

Bu Lagranjiyenden yola ¢ikilarak ¢ skaler alani i¢in hareket denklemi [J¢=0 ve y
spindr alani igin hareket denklemi i6* d, y =0 olarak bulunur. Siipersimetri bu iki tip

alanin birbirine doniisiimiinii 6ngoriir. Dolayisiyla bu Lagranjiyenin ya da daha genel
olarak Eylemin, alanlarin birbirine doniisiimleri altinda degismez kalmasini istiyorsak ¢
skaler alanindaki donilisiim y spindriindeki doniisiimle, y spindriindeki doniisiim de ¢

skaler alanindaki doniisiimle orantili olmalidir. Eylemin bu alanlarin doniisiimleri
altindaki degismezligini saglamak i¢in Lagranjiyendeki degisimin toplam tiirev seklinde

gelmesi yeterlidir.

Bu alanlarin doniisiimlerini arastirmaya baglamadan once boyutlarini belirlemeliyiz.

Dort boyutlu uzay-zamanda ve 7=1=c birim sisteminde Eylem boyutsuzdur. Bu birim

sisteminde uzunluk ve zaman M~ boyutundadir. Eylemin boyutsuz olabilmesi igin
Lagranjiyen (yogunlugu) M* boyutunda olmalidir. Buna gére ¢ ve y alanlar igin

boyutlar su sekilde olur;

[¢]l=M ; [x]=M" (2.3)

Artik ¢ ve y alanlarim birbiri ile iligskilendiren SUSY doniistimlerini arastirabiliriz.
Ik olarak ¢ alanindaki degisime (5§¢) bakalim. Bu doniigiimiin formu su sekilde

verilir,



O ¢:( & parametresi )x( V4 ) (2.4)

Burada ¢&’yi uzay ve zamandan bagimsiz bir parametre olarak aliyoruz. & nin uzay ve

zamandan bagimsiz olmasi global bir simetriye kars1 gelir. (2.4) numarali denklemin sol
tarafinda spini sifir olan bir skaler alan vardir ve bu alan Lorentz doniisiimleri altinda

degismezdir. Dolayisiyla sag tarafta da y ve &’ nin Lorentz degismez bir yapisi
olusturulmalidir. Bunu yapmanin basit bir yolu & ’yi de y -tipli spindr olarak

yapmaktan gecer. Bunun i¢in su yap1 kullanilir,

5.9=¢"(~i0, )1 (2.5)

Bu ifadeyi noktali gosterim ile yazabiliriz.

O.9=S" x,=&.x (2.6)

Burada & bir spinordiir ve uzay-zamana bagl degildir. £ spindr olmasi nedeniyle iki

bilesene sahiptir ve her bir bileseni kompleksdir.

& ’nin uzay-zaman bagimliligi olmadigi sdylenmisti. Bu ayni zamanda bir alan da
degildir, fakat buna ragmen & ’nin bilesenlerinin spindr alanlarinin bilesenleriyle sira

degismedigi varsayilir, yani bunlar Grassmann sayilar1 olarak varsayilir. £ icin boyut

analizi yapilacak olursa boyutunun [ & ]: M ™" oldugu gbriiliir.

Simdi &, y 'ye kargt gelen doniisimil bulmaya ¢aligalim. Bu déniisiimiin & ve ¢ 'nin

carpimindan olusmasini bekleriz. Yani

8. yU( & parametresi )x( ¢ ) (2.7)



olmalidir. Bu ifadenin sol tarafi M** boyutundadir, sag tarafi da & ve ¢ ’nin cebirsel

carpiminin boyutu olan M"? boyutuna sahiptir. Her iki tarafin boyutlarinin tutmamasi

nedeniyle sag tarafta kiitle (M ) boyutunda bir seye daha gerek vardir. ilk basta bu
teorinin kiitlesiz oldugunu kabul etmistik dolayisiyla burada kullanabilecegimiz kiitle
(M ) boyutuna sahip tek bir olasilik vardir, 0, gradiyent operatorii. Bunu sag tarafa
eklememiz durumunda agikta g indisi kalmaktadir. Bu indisin kontrakte olmasi igin
o” E( l,o ) kullanilir. o* , 2x2 ’lik bir matrisdir ve £ spindriine etkisi sonucunda sol

taraf ile uyusum gosterir. Biitlin bunlarin sonucunda doniisiim su sekilde olur,

8. x=(ic"0,4 )& (2.8)

Bu denklemin doniisiimii icin ¢oziilmesi gereken bir problem daha vardir. Bu ifadenin

her iki tarafinda 2-bilesenli kolon vektdr olmasina ragmen sag taraf y -tipli spindr gibi
doniismez. Bu sorunu ¢dzmek igin & yerine io, & aliriz. & nin uzay-zamandan

bagimsiz oldugunu da hatirlarsak y, alani i¢in doniisiimii su sekilde yazabiliriz

(Aitchison 2007),

5. ;(H:A[ ic"(io, & )l 2,4 (2.9)

Bu ifadede A katsayis1 Lagranjiyen yogunlugunun degismezlik (invaryantlik)

kosulundan belirlenecek bir sabittir ve her iki tarafta y tipli spindr indeksi yer

almaktadir. 0, ¢ matris formunda olmadig i¢in ifadenin sonuna almabilir.

(2.5) ve (2.9) denklemleri ¢ ve y icin Onerilen SUSY doniisiimlerini verir, fakat bu

alanlarin ikisi de komplekstir ve bunlarin hermitsel esleniklerine (¢" ve ") kars1 gelen

dontigiimleri de acik bir sekilde ortaya konulmalidir. Burada ilk olarak hatirlanilmasi

gereken “¢ ve y ’nin kuantum alanlar1” oldugu ve diger yandan “ & ’nin bir alan (uzay-

zamandan bagimsiz) olmadigidir.”



Bir ¢ kuantum alani i¢in mod agilimi su sekildedir,

d’k

o

[ a(kye ™ +b' (k)" | (2.10)

Burada a(k) operatdrii 4-momentum & ’ya sahip bir “parcacigi yok eder”, b'(k) ise 4-
momentum k ’ya sahip bir “anti-parcacigi yaratir”. exp[ i—ik.x] bilinen dalga

fonksiyonudur. ¢ ise su sekilde olur,

d’k

ey e

[ a'(kye'* +b(k)e " | (2.11)

ve bu ifade (2.10)’un hermitsel esleniginin geleneksel tanimidir.

Diger bir yandan y gibi spindr alanlari i¢in bu durum biraz daha karmasiktir, ¢iinkii iki
bilesenli spindrler de denkleme girer. Dolayisiyla sembolik olarak, y kuantum alaninin

ilk (iist) bilesenin formu su sekilde olur;

yal ( mod operatorii ) X ( y —tipli serbest parcacik spinoriintinilk bilegeni ) (2.12)

Simdi (2.5) denkleminin hermitsel eslenigini diisiinelim, yani 5§¢T ’t bulmaya

calisalim,

5; ¢:§T (_iaz)l

{020

=S 061



olur ve bu ifade kullanilarak hermitsel eslenik asagidaki gibi bulunur,
55 ¢T:_l’; §1*+ZIT éz* (2.14)

& bir kuantum alani degildir ve * notasyonu onun i¢in uygundur. (2.14) ifadesini daha

kapali bir formda su sekilde yazabiliriz,
5.¢'=x"(io,) & (2.15)

burada ' asagidaki gibidir,

(2.13) ve (2.15) denklemini noktali notasyonla yazmaya ¢alisalim,
S.p=Cx=x& ;s 0.9'=87=7& (2.16)

Benzer yontem kullanilarak (2.9) denkleminin hermitsel eslenigi i¢in su sekilde bir

ifade bulunur,

5, Z*:[A{mﬂ(mz & )}6”¢T
=40,4' (&) (~io,)(~ic") 2.17)
=40,4'¢" (io,)(ic")

Artik alanlarin doniisiimleri ile ilgili bilgilere kabaca sahibiz, fakat Lagranjiyenin (2.2)
bu donilistimler altindaki degismezligini saglayacak sekilde A’nin se¢imine de

bakmaliy1z (Aitchison 2007),



5.L=0,(5.¢" )0 p+0,9 0" (5.9 )+5x (i5"0, ) x+x'(i5"0, )(J.x)

5:1=0,[ 7' (i0,)& 0" p+0,9' 0" (¢ (-io) 2)

. (2.18)
+4( 0,0 & ic,ic" )ic"0, y+Ay'i5"0,(ic"ic, )0, ¢

(2.18) denklemine bakilirsa & ve &' parametrelerini iceren iki tip terim vardir. 4&£°1

iceren terimi g6z Oniine alalm ve &* ’in uzay-zamandan baZimsiz bir parametre

oldugunu hatirlayalim. Ayrica
¢'0,0"0,=0,0" (2.19)
Ozdesligini kullanirsak (2.18) in &™ ile ilgili kismu su sekilde olur,

5L [ (0,1 )ic,& (6" ¢)-idy'8,0" 0,&¢ (2.20)

Bu ifade bize bu doniisimler altinda lagranjiyendeki degisimin sadece & ile ilgili

kismin1 gostermektedir. £ ve & birbirinden bagimsizdir ve lagranjiyendeki bu

terimlerin birbirlerinin gotiirmeleri beklenemez. Dolayisiyla burada eylemin degismez
olmas1 gerektigi hatirlanmalidir, bu durumda lagranjiyendeki degisim eger toplam tiirev
seklinde gelirse eylemin degismezligi saglanmis olur. (2.20) numarali denklemi yeniden

ifade etmeye caligalim.
S. L B (0, 1")ic, & 0" ¢— Ay'ic,E"0,0" ¢ (2.21)

Eger A=-1 alirsak bu terim su hali alir,
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S. L 0 (0, 1")ic, & 0" ¢+ 4ic,&" 0, 0" ¢

(2.22)
=0,(1ic, & 0" )

Benzer olarak A=-1 almip &' iceren terimler igin bu adimlar tekrarlandiginda

bulunacak ifade su sekilde olur (Aitchison 2007),
5L 1) o, (¢'&" (-ioy)o, x )+0,(¢' & ic, 050, 1) (2.23)

Bu ifade ise bir toplam tiirevdir. Sonug olarak alanlarin tanimlanan doniisiimleri altinda

ve A=-1 oldugu durum igin lagranjiyen toplam tiirev seklinde degisecektir; yani
5.L=0,(7"ic,& 0" ¢+ ¢ & (-ic,)0, y+4' £ io, 6570, ) (224)
olur. Bu sonuca gore alanlarin bu doniisiimleri altinda eylem degismez kalir.

Yukarida belirtildigi gibi stipersimetride alisila gelmis durumlardan farkli bir durum s6z
konusudur, yani siipersimetride doniisiimler altinda Lagranjiyen invaryant kalmaz.
Fakat burada eylemin invaryantligi s6z konusu olur. Bu durumda alan dontigiimleri artik

eylemin invaryantligini saglayacak sekilde bulunur.

Minimal stipersimetrik serbest Lagranjiyen su sekilde tanimlanir;
Lserbest :ay¢iT6ﬂ¢i +ZzT iE#ayZi +F;T i (225)

Burada ¢, skaler alani, y, fermiyon alanm1 ve F, yardimci kompleks alani
belirtmektedir. ¢, alam (kiitle) boyutunda, y, fermiyon alami (kiitle)’’* boyutunda ve

F, yardimcr alani ise (kiitle)” boyutundadir. Eylemi invaryant birakacak sekilde bu

alanlarin doniistimleri su sekilde elde edilir;
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0:9,=5 %,
S.0,=—ic"io, & 0,4 +EF, (2.26)

5. F=—-i&'5"0, 1,

Ayni sekilde bu alanlarin hermitsel esleniklerinin dontigiimlerinin ifadeleri (2.27) de

verilmektedir.

5;: ¢T :gﬂ?
5. F'=id, y'6" & (2.27)
55 ZT:l-&# ¢’r gT (_l-o_z)aﬂ_i_FT é:T

Burada & spindr tiplidir ve uzay zamandan bagimsizdir, ayn1 zamanda (kiitle)™"'*
boyutundadir. 5*=(1,-6) , o*“=(1,6) olarak tanimlanir ve & Pauli spin

matrisleridir.

Stipersimetri doniisiimleri, tanimlandig1 gibi skaler bozon alanimi fermiyon alanina

doniistiirmektedir. Bu ise uzay-zaman bagimliligi olmadigindan global bir simetridir.
2.2 Wess-Zumino Modeli

Burada etkilesme Lagranjiyenin (Wess-Zumino 1974) ifadesi asagidaki gibi verilir,

. 1 .
Le[kilesme :VV[ (¢’¢‘ )F; _EVVU (¢7¢} ) Z{'Z} +h'c (2'28)

W, ve W, nin bulunabilmesi i¢in ilk olarak W siiperpotansiyeli tanimlanmalidir. Bu

siiperpotansiyel belirlenirken renormalize edilebilirlige zarar vermemek i¢in etkilesme
Lagranjiyenin kiitle boyutunun 4 oldugu hatirlanmali. Biitiin bunlarin 1s181nda asagidaki

tanimlamalar yapilabilir,
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1 1
WZEM;',' ¢1’ ¢j +gygjk ¢i ¢j¢k (2.29)
ow 1
W, :a - W =M;’j ¢j +5yg/’k ¢j I (2.30)
o°'w 231
ii=a¢ Y = Wy=M;+yu b (2.31)
i J

Simdi serbest ve etkilesme Lagranjiyenini birlikte diisiinerek F, ve F' i¢in Euler-

Lagrange hareket denklemlerine bakabiliriz. Bu durumda

oL oL .
8, ~2Zo0 o5 Fl=—Ww (2.32)
[@( )]

olur. Ayni islem F'igin yapildiginda 7 =—W, olarak bulunur.

Sonug olarak tam Lagranjiyen asagidaki gibi yazilir,

1
Lz =Lygneanz =W [ =W, 212, +he (2.33)

Bu model ¢ercevesinde skaler pargacik i¢in 1-ilmek katkilarina bakilabilir. Buna gore

bu diyagramlar Sekil 2.1°deki gibi olur.

13



(a) (b) (c)

Sekil 2.1 Iki skaler alan (a),(b) ve bir fermiyonik alanmn (c) kendisiyle etkilesim
diyagramlari

Bu siireglerin genlik ifadeleri asagidaki gibi bulunur;

il d*k i ,r d'k 1
a) ——— j 472 2 J. 472 2
4 2r)' k" —m 2r)' k" —m
) _ﬁ d'k i ZJ- d'k 1
2 Qr)t k> —m’ Q) kK —m’

:_MZ{I d4k4 | ] d4k4 L ] d4k4 2 52—4m22 2}
(27)" k" —m (27)" (k—p) —m 2z)" (k" =m )[(p—k) —m"]

Sekil 2.1 (a), (b) ifadeleri ile (c) ifadesi toplandiginda son terim hari¢ birbirlerini

sadelestirdigini rahatlikla gorebiliriz.

Bu durumda kuadratik iraksakliktan kurtuluruz ve logaritmik iraksaklik gelir. Yani

skaler (kiitle)® ye 1-ilmek katkisindan gelen diizeltme &m’~m”In(A/m) formunda

olur.

Siipersimetri, basitce karsimiza ¢ikan renormalize edilebilir terimleri sadelestirerek A

tipli  wraksama problemini ¢ozmektedir. Bu  silipersimetrinin en  biiyilik
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motivasyonlarindan biridir. Henliz higbir siipersimetrik parcacik gézlenemediginden
bilinmeyen siipereslere ait alanlarin hesaplanmasinda tamamen bu karsilik gelme
saglanmaya c¢alisilir. Teoride boyle bir karsilik gelmeye ragmen siipereslerin
gozlenememesinin nedeni olarak siipersimetrinin  kirtlmasi  oldugu fikri de

benimsenmistir.

2.3 Etkilesme Lagranjiyenleri

Siipersimetride etkilesme terimlerini elde etmek icin skaler siiper ikili yapist ve uygun

kovaryant tiirev tanimi goz 6niine alinmalidir.

Kovaryant tiirev ve ikili yapisi skuarklar i¢in su sekilde verilir,

i’ =
é =[5] ve D,=0, +ig%-Wﬂ +ig'y B, (2.34)
L
¢, =1, ve D,=0,+ig'y,B, (2.35)
¢,=b, ve D,=0,+ig'y,B, (2.36)

Bu skaurk alanlar i¢in serbest alan kinetik teriminde kovaryant tiirev tanimlar1 yerine
konulacak olursa etkilesme terimleri elde edilecektir. Yani (Dﬂ(ﬁl. )T (D"gﬁl.) kinetik

terimi bize etkilesmeleri verecektir.

Stop iiretimi i¢in etkilesme terimlerinin ¢ikarilmasinda su adimlar takip edilir,
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-, -~ i - 1 ~
8#1‘L+1g le#tL+EgW;tL+—W#bL

V2
D, ¢ = ; : (2.37)
X : - 37 t
G#blﬂg le#bL—EgWﬂ bﬁrﬁ R
D#¢2=8ﬂt~R+ig'yzBﬂt~R (2.38)
D, ¢,=0,b,+ig'y, B,b, (2.39)

Standart Modelden de bildigimiz iizere W: ve B, alanlan su sekilde karigarak foton ve

Z alanlarimi olustururlar.

(W;Jz(COSHW SinGW}[Z#J _ W.=Z,Cos6,+A,SinG, (2.40)

B -Sin6, Cos6, )\ A, B,=-Z,8ing, +4,Cos 0,

7]

Bu ifadede 6, karisim agisin1 (Weinberg agisini) gdstermektedir. Benzer sekilde

siipersimetride sol ve sag elli skaler alanlar karigsarak iki skaler alan olustururlar. Bu

dontisiim en genel sekilde soyle tanimlanir,

(2.41)

(J;LJ_(Cosé’f SianJ[flJ . fL:/;lCosﬁf+]~‘2Sian
/

fR B =Sin6, Cos0, fR :—J;l Sl'116’f+j;2 Cos 0,
Bu ifadede f sfermiyonu, 0, ise karisim agisini gostermektedir. Biitin bu karigim

ifadeleride yerine konulacak olursa stop i¢in etkilesme terimleri (ve kose faktorleri) su

sekilde bulunur,
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:flj'Z”(Oﬂfl){i & [%SinzﬁW—%COSZH,}

Cosb, | 3

+t1Z”(8 N) i—&  Sin20

! #7211 4Cos . !
+i) 2(0, 1)) i——2— Sin* 29

: #1114 Cos - ' (2.42)
+if z# (o, fz){i Cof@ ESM@W —%sze,}}

w

+1, A”(@ tl){—iggSzné’W}

Toqu 2 ;
+t, A (G#tz){—lggSm@W}

Benzer sekilde kovaryant tiirev tanimindan ve kinetik terimden yola ¢ikilarak sbottom
icin de ayn1 adimlar takip edilecek olursa etkilesme terimleri ve kose faktorleri su

sekilde bulunur,

:ElTZ”(ﬁﬂli){—i & [%Sinzé’w—%Coszﬁb}}

(2.43)

+b] 2*(8,b,)1-i & Esmzew—%smzeb}}

Kovaryant tiirev ve ikili yapisi sleptonlar i¢in asagidaki gibi verilir,
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]; —
¢1=[LJ ve Dﬂ=6ﬂ+ig%-Wﬂ+ig'leﬂ (2.44)

@, =1, ve D,=0,+ig'y,B, (2.45)

Bu slepton alanlar i¢in serbest alan kinetik teriminde kovaryant tiirev tanimlar1 yerine

konularak etkilesme terimleri skuark durumlarinda oldugu gibi elde edilebilir.

Buna gore, biitiin bu islemler yapildiktan sonra stau ve tau-snétrinosu i¢in etkilesme

terimleri su sekilde bulunur.

7 (7 . g 1 .
=9 Z, (8’ ll){l Cosd, |:EC0S291 —SmZHW}}

+Z*Zﬂ(a”iz){—i4cfse Sz'n2¢9l}
w

N
Q

050,

i—& {lSinze,—SinZGW}
Cos0,, | 2

T Pl . g .
+12 Z# (a'ull){—l 0 SmZ@l} (246)

Snétrinolar MSSM  ¢ercevesinde yalmizca sol-elli bilesenlere sahiptirler. Ayrica
snotrinolar elektrik yiikii tasimadiklar1 i¢in sadece zayif etkilesmeye girerler.
Dolayisiyla sadece Z ayar bozonu ile etkilesmeleri s6z konusudur. Snétrinolar icin ayni

adimlar takip edildiginde etkilesme terimi su sekilde bulunur,

~F -~ . g
=V, Z/u (a‘ VL) {—lm} (247)
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Fermiyonlar ve Sfermiyonlar ile Yiikino (ve Notralino) etkilesmeleri:
Etkilesmelerin boyutlarin nedeniyle, bu etkilesmeler hafif SUSY kiran terimlerden

etkilenmezler. Bu baglasimlarin yalnizca iki kaynagi vardir. Birincisi; ylikinolarin

(chargino) ve notralinolarin ayarino (gaugino) bilesenleri(/”tA), fermiyonlarla(l//i) ve

sfermiyonlarla( S[) su terim vasitasiyla baglasirlar (Baer 2006),

_ 1=
L> 23 g,8'1,7, 27 Sy +h.e. (2.48)
i, A

Bu baglasimlar tam olarak ayar etkilesmeleri ve farkli spargacik karigim matrisleriyle
tanimlanirlar. Yiikinolarin ve nétralinolarin higgsino bilesenleri de bu baglasimlara

Yukawa etkilesme siiperpotansiyeli vasitasiyla katkida bulunurlar, yani
1_| &
L> V| ——= PL V; +h.c. (249)
7 Js=s

Bu tiir baglagimlar yalnizca {i¢iincii aile i¢in dnemlidir.

Ayarino  (gaugino)  etkilesmelerinden = kaynaklanan  ndtralino-kuark-skuark

baglasimlarini elde ederek baslayalim. Ilgili terimi bulmaya ¢alisalim,
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1= (2.51)
drl+= |z p (at a3 I RCR
tg dp| + o LR W, T8\ U, L 1 L +n.c
0 -7 l//d
3 0
i+EL ¢(A-i%)
I, 3 v,
L>—— (@ d) , PL( j
\/— T LT T g; Va
g(Ah+id,) —gh+=2 (2.52)

Burada uygunluk i¢in SU(2) tekli antikuarklar1 i¢eren terimlerin Hermitsel eslenikleri

yazildi.  Snétrinolarin  ve  ylklii  sleptonlarin  etkilesmelerini  bulmak ig¢in

ﬁL—>ﬁ,07L—>iL,3R—>iR degisimi yapilir ve sag-elli ndtrino olmadig: icin #, terimi
atilir ve ayrica d SU(2) singletinin zayif hiperyiikii olan % , antileptonun hiperytikii

olan 2 ile degistirilir. Bu degisikliklere ek olarak /7_,0 ile carpilan ve lepton ya da nétrino

hiperytiklerine kars1 gelen kuark yiikleri de degistirilir. Bu degisikliklerden sonra (2.52)

ifadesinin leptonlar i¢in yazilan hali su sekilde olur,
hoik)] m
L-gh) v (2.53)

Buradaki amacimiz kuark-skuark-nétral gaugino (ayarino) etkilesmelerini kurmak ve
Py,=Bu,Py,=Pd, Ry, =Fu,PRy, =Fd ifadelerini kullanarak

Majorona alanlarin1 denklemlerden eleyerek etkilesmeyi Dirac alanlar1 cinsinden
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yazmak. Ayrica burada notral higgsino ve ayarino alanlarinin kiitle 6zdurum alanlariyla

olan iligkisini de hatirlamamiz gerekiyor (Baer 2006),

4 0 191( 1) 191( 2) 191( 3) 191( 4) ;210
l//hfj _ l92(1) l92(2) l92(3) l92(4) ;ZS
Al |a e e e | B
PSRCI T v

(2.54)

buradan elde edilen /1322 K (i )9" 70 ve /10=z I (iys )9’ 7. ifadelerini ve

ﬂ_/ll+i/7,2
2

lagranjiyenini yeniden ifade edebiliriz.

oldugunu (2.52) denkleminde yerine koyacak olursak etkilesme

La—%{ﬁz Kggg”;?i(—if )’ +g?9§“;2(—iy5 )’ jPLuﬂ/Eg/T”PLd}

~ _ - v ro_ ) 2.55
+dz{ﬁgwu+[—g9;”;a(—w5)94%19;”;2,-(—:75)9']PLd} (2:59)

y ~ 4 i) ~ . 0, '3y 2 i)y ~ . 9;
+g u;(—gjgi)}(i(—l};) Piu+g d;(gjéﬁ);{i(—zf) PRd}+h.c.

Bu lagranjiyenin %, ile ilgili kismi1 bazi katsayr tanimlamalar1 yapilarak su sekilde

yazilabilir,

Ly, = % [i4] JiZ B f+iB} I 7B f+he] (2.56)

Sf=u,d,lyv

Bu etkilesme lagranjiyeninde tanimlanan katsayilar kuarklar i¢in asagidaki gibidir (Baer

2006),
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NG -1 ,
u 1 N, 8 qu
A;z,-:( ) {g9§)+?92)} (2.57)

(=) ), & g
A5 = [—gw9§” e } (2.58)
B =——g(i)"" 9 (2.59)

Bl =———g'(i)"" 9 (2.60)

Leptonlarin ve sleptonlarin notrinolar ile olan baglagimlar1 kuarklarinkine benzerdir ve
bu baglasimlarin katsayilar1 benzer adimlar takip edilerek su sekilde bulunabilir (Baer

2006),

4 }%[ g9 +g 9 | 2.61)
P 8% -g'9) ] (2.62)
y NG gv; —8 Yy .
B, =—(i)"'N2 g9y (2.63)
B, =0 (2.64)
Siiperpotansiyel terimlerinden kaynaklanan fermiyon-sfermiyon-nétralino

etkilesmelerine ne tip katkilar geldigine goz atalim.
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1 2 f
L 9—El/7i[ (? fA J Py, +h.c (2.65)
S$=8

ve /} asagida verilmistir (Baer 2006).
j}3yuﬁﬁg(]"+ydc;'};glA)"jtyeé};gEA"Jr... (2.66)

Yukar1 — (asagy) tip (s)fermiyonlar i¢in y, , v, 'nin biri v , (v, ) ve digeri y , ya da

¥ .. oldugu zaman katki gelir. Bu katkiy1 agik¢a gorebilmek i¢in sunu yazabiliriz;

Lo-y, (=i i 7P f-y, 8" (i) [ 7P f (2.67)

Yukari-tipli (s)fermiyonlar i¢in a=1 ve asagi tipliler i¢in a=2 dir. Bu katkiy1 (2.56)
ifadesindeki katki ile birlestirirsek,

Liri? /;LTZ(ZA; B=(i)" v, 9By )f

o (2.68)
T T (1B Po=(=i) v, 8O B, ) [ +he.

En sonunda da f, ve f, nin yerine f, ve f, sfermiyon kiitle 6zdurumlar1 cinsinden

yazildiginda bu etkilesme lagranjiyeni su hali alir,
Lori =17 [ al B+pB) P, Jf+h.c. (2.69)

Bu etkilesme terimi i¢in su tanimlamalar yapilmistir (Baer 2006),
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6,

0{2 ziA]i; CosO,+(—-i)" y, A Sin6,

,B;‘ :—iB}; Sin®, —( i)g' Vs A Cos 9,
0('};2 :iAjg Sin6, —(—i )@ Y, g Cos 0,

,Blfz = iBj; Cosﬁf—( i) Y, g Sin6,

(2.70)

Burada, eger f yukar tipli bir kuark ise a=1 ve eger f asag tipli bir kuark ya da yiikli
bir lepton ise a=2 degerini alir. Sag-elli bir nétrino siiperalanina sahip olmadigimiz igin

noétrino-snotrino-ndtralino baglagimi (2.56) ile verilemez.

Yiikinolarin (charginolarin) skuark ve kuarklarla ya da slepton ve leptonlarla olan
etkilesmeleri benzer sekilde hesaplanabilir. Yiikino-kuark-skuark etkilesmeleri igin

(2.52) bagintisindan sunu buluruz,
L>-gil AP d—gd! 2° Pu+h.c. 2.71)
Burada, A° yiikli Dirac ayarino (gaugino) A ’nin yiik eslenigidir. Yiikino kiitle

0zdurumlarini kullanarak ve A ile A° ’yi denklemden eleyerek bu ifadeyi yeniden

yazalim. Buna gore Lagranjiyenin son hali su sekilde olur,

L>idla) 7' Pd+idl.d] 7 Puthe. (2.72)

bu ifadede su tanimlamalar yapilmistir (Baer 2006),

V4

A%, =z'(—1)9i1i g Siny,

A% =i(-1)% 6 gCosy

(1) § (2.73)
A}:z'gSinQ/L

A;i =i6_gCosy,
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Bu baglasimlar aileden bagimsizdirlar; yani u ve d ( %, ve d ;) herhangi yukar1 ve

asagi-tip kuark (skuark)’ a kars1 gelir. Ayrica yiikinolarin lepton ve sleptonlar ile olan

baglasimlar1 da 6zdestir (u — v ve d — [ degisimi yapilarak bu goriilebilir ).

Notralinolar durumunda oldugu gibi yiikino etkilesmelerine de siiperpotansiyelden katki

gelir. Bu katkilar da g6z ontine alindiginda Lagranjiyen su hali alir,

L . =i ;zi[(iA”i Cos6, —B_. Sin0, )PL +B’. Cos 0, P, }d
Xi Xi Zi

id y;
’ _ (2.74)
vl 7 [ (42 Sin6,~B,. Cos6, P, +B,. Sin, P, Jd+h.c.
bu etkilesme Lagranjiyeni i¢in yapilan tanimlamalar su sekildedir (Baer 2006),
0 s
Bfli =_( _1 ) A yu CO‘S]/R
%
B.=(-1)280 y Sin
5= (=1)% 6,5, Siny, (2.75)
B);lr ==y, Cosy,
B}’221 = y,0 Siny,
Yiikino-sbottom-top etkilesmeleri i¢in lagranjiyen asagidaki gibi olur.
Ly, . =dl 7* [ ( iA;? Cos 0, _B;Z? Sin6, )PL +B. Cos 0, P, }u 276

+d! ;Z;C[(z’A;r Sin€,+B,, Cos6, |P,+ B, Sin6, P, ]u+h.c.

Son olarak (2.75) baglasim tanimlamalarinin igerildigi her yerde u > v ve d — [
degistirilmesi yapilarak yiikino-slepton-nétrino ve yiikino-snétrino-lepton etkilesmeleri

bulunabilir. Buna gore
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T

L, .= ;Zf"[(z‘A;; Cos0, - B, Sin), )PL }v

LF [ (42, sin6,+B7. Coso, )P, }vr 2.77)

7 7|4 P+B P Jrhe

olur ve burada su tanimlamalar yapilmistir (Baer 2006),

A.=4.
Zi i
AT — d
A (2.78)
B;’zi =—y Cosy,
B}'?'i =y, 0 Siny,

2.4 SUSY Kirilmasi

Stipersimetri (SUSY), bilinen pargacik spektrumunun agikca tam bir simetrisi olmadigi
icin Siipersimetri kirtlma konusu MSSM’ nin fenemenolojik uygulanabilirliginden dnce

ele alinmalidir. Simetri kirilmasinin iki yolunu biliyoruz;

a) Kendiliginden simetri kirilmasiyla (6rnegin QCD’nin chiral simetrisi durumunda
oldugu gibi ve Higgs Mekanizmasi yoluyla SM’ nin elektrozayif simetrinin kirilmasi

gibi)

b) Lagranjiyende acik simetri-kiran terimlerle, Elektrozayif durumda, kiitleli ayar
bozonlar1 ve fermiyonlar icin agikg¢a simetriyi kiran (ayar invaryant olmayan) kiitle
terimleri renormalize edilebilirligi bozabilir, bu durumda kendiliginden simetri kirtlmasi
(renormalize edilebilirligi korur) teorik olarak tercih edilir ve deneylerde (sonlu
radiative diizeltmelerin dogruluk olgiimleriyle) bunu isaret etmektedir. Kendiliginden
SUSY kirilmasi, elektrozayif teoride ayar simetrisinin ve QCD’ de chiral simetrinin
kendiliginden kirilmasinin standart ornekleriyle karsilastirildiginda daha yenilikgi

ozellikler gosterdigi icin kendiliginden SUSY kirilmasi 6nemlidir.
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Acgikga SUSY kirilmast durumunda ise Lagranjiyene ayar invaryant ve siiper-
renormalize edilebilir sinirli sekilde terimler eklenir. Bu eklenen terimler tekrar
kuadratik 1raksakliklar1 getirmemelidir aksi takdirde Standart Modelin ince-ayar

problemi ¢ézlimiinii bozarlar.
2.4.1 Kendiliginden SUSY kirilmasi

Alan teorisinde bir simetrinin kendiliginden kirilabilmesi i¢in temel kosul, “bu simetri

altinda degismez (invaryant) olmayan alanin” sifirdan farkli bir beklenen degere sahip

olmasidir. Yani alan ¢’ ile gosterilirse, <O|¢'(x)|0>¢0 olmalidir. ¢' (invaryant)

degismez olmadigi i¢in diger alanlarla birlikte bir simetri multipletine ait olmalidir ve

bu durumda ¢’ ’nii su sekilde ifade etmek olasidir.

¢' =[0.4(x)] (2.79)

Burada Q simetri grubunun hermitsel iireticisi ve ¢ , ¢' 'niin ait oldugu multipletteki

uygun bir alandir. Buna gore

(0[¢'(x)|0) =(0]i[0, ¢(x)]|0)
= (0[i(Qp(x) - $(x)0)|0) (2.80)
#0

|O> vakum durumunun genellikle Q|0>= 0 oldugu kabul edilir, ¢iinkii bu Q tarafindan
tiretilen doniisiim altinda |O> vakum durumunun degismezligini (invaryantligini)
vurgular; fakat biz Q|0>: 0 olarak alirsak (2.80) denklemini ihlal etmis oluruz. Bu

nedenle kendiliginden simetri kirilmasi i¢in Q| 0> # 0 oldugu kabul edilmelidir.

SUSY durumunda, Q,, Q] simetri iireticileri ile Hamiltoniyen arasinda ¢ok énemli bir

bagint1 vardir. SUSY cebiri agagidaki sekilde verilir
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\2.-0}=(e"),, 2,

Buna gore;

Q1Q1T+Q1TQ1 =(J#)”P,u =P()+Pz
0,0/+0!0,=(c") P, =R -P.

ve dolayisiyla

H

:%( 0,0/+0/ 0+0,0!+0! 0, )

(H: Hamiltoniyen) Buradan asagidaki sonug elde edilir;

(o]1]0)=3( (0]} @0} + (0], 0!]0) + (0]} .0} +{0] 2. 01 0))
1 2 2 N
=>{[e[0)f +[a o) +[¢:

of +|e.lo) )

(2.81)

(2.82)

(2.83)

(2.84)

Buradan bir SUSY-degismez (invaryant) teorinin vakum enerjisinin sifir olmasi

gerektigi goriliir.

Simdi Hamiltoniyen yogunlugunun kinetik enerji kisminin vakum enerjisine katkida

bulunmadigin1 kabul edelim. Diger yandan, SUSY-invaryant(degismez) potansiyel

enerji yogunlugu su sekilde verilir (Aitchison 2007).

V(g g =] + ZZZ (180T 9))

a i,j
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V' daima sifira esit yada biiyiiktiir ve V' =0 SUSY-invaryant(degismez) duruma karsi

gelir.

Dolayistyla SUSY ’nin kendiliginden kirilmasi i¢in, /" *nin SUSY-invaryant(degismez)

minimuma sahip olmamasi gerekir.

SUSY durumunda ne c¢esit bir ¢’ alami sifirdan farkli bir vakum beklenen degerine

sahip olabilir? Bu sorunun cevabi i¢in olasi biitiin komiitasyon bagintilar1 diisliniilmeli.

O ‘larin alanlarla olan komiitasyon bagimntilari ise SUSY doniigiimleriyle tanimlanir;

S.p=i[$0.4]=¢x
55;(:i[§.Q,;(]= —i 0"i0'2§*8#¢+§F (2.86)
5.F=i[£0Q,F|=-i&'c"0,x

Simdi Lorentz-degismezligi(invaryantlig1) yalnizca skaler alanlarin vakum beklenen
degeri (vev) kazanabilecegini isaret ediyor, ¢linkii yalnizca bu vakum beklenen
degerleri Lorentz doniistimleri altinda invaryanttir(degismezdir). (2.86) denklemindeki
bu ii¢ donilistimiin her birinin sag tarafindaki terimler diisiiniildiiglinde simetri-kiran

vakum beklenen degeri icin tek olasilik sudur;
(0] F|0)=0 (2.87)

Bu durum F-tipi SUSY kirilmasi olarak ifade edilir, ¢iinkii F yardimc1 alani bir vakum

beklenen degeri kazanir.
Simdi Wess-Zumino modelindeki siiperpotansiyeli kullanalim;

1 1
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f f
ow 1
E——[a—ﬁj —(Mi, B+ Vit @j (2.88)

ve V(¢)=| F, |2 dir, biitiin ¢ ’ler sifir oldugunda V' (¢) acik bir minimuma sahip olur.

Boylece W ’nun bu formuyla SUSY kendiliginden kirilamaz. Kendiliginden SUSY

kirilmasi i¢in W ifadesinde lineer bir terim olacak sekilde F; ‘ye bir sabit eklemeliyiz.

Buna gore ii¢ chiral siipermultiplet [O’Raifeartaigh 1975] kullanilarak W su formda

yazilabilir,
W=m¢ ¢, +g¢, (¢ -M?) (2.89)
Burada m ve g pozitif gergcel, M gergel olarak secilebilir. Buna gore
“Fl=mg,; ~F =g(¢-M?) ; ~F/=mé+2g4,4, (2.90)
elde edilir ve boylece potansiyel su sekilde bir ifade olarak bulunur;

SLIARE,

22 2| 42 2 |? (2.91)
V=m ¢3 +8 ‘¢3 -M ‘ +|m¢1+2g¢2¢3

|2

(2.91) denklemindeki ilk iki terimi birlikte ayn1 anda yok edemeyiz, dyle ki /' =0 veren

olasi bir alan konfigiirasyonu yoktur. Diger yandan (2.91) deki ti¢lincii terim ¢, ,¢, , ¢,

iin uygun sec¢imiyle daima yok olabilir. Boylece V' ’nin minimumunu bulmak ig¢in

(2.91)’nin ilk iki terimini sinamak yeterlidir. Ilk iki terim ¢, ’e baghdir ve bu durumda

¢, 1 gergel ve sanal kisimlartyla tanitirsak,

¢, =(A+iB)/\2 (2.92)
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2
Vfé(mz_zgzMZ)A“%(mz+2g2M2>Bz+g7<A2+BZ)2+g2M4 (2.93)

Daha detayli bir analiz (m”—2g”>M?) nin isaretine baghdir, sdyle bir durum goz

Oniine alinacak olursa,
m*>2g°M? (2.94)

(2.94) denkleminin saglandigini kabul edelim, buna goére V, su kosullar altinda bir

minimuma sahip olur,

A=B=0,yani ¢,=0 (2.95)
(2.91) denkleminden de
$ =0 (2.96)

olmas1 gerektigi goriiliir. Fakat ¢, tanimlanmadan kalir. Dolayisiyla bu ¢éziim sunu

Verir;

(0|F"|0y=(0| F"|0)=0 (2.97)

fakat yardimci alanin ikinci bileseni i¢in durum farkh olur,

(0|F|0)=gM* (2.98)

V ’nin minimum degeri g M** diir ve tam anlamiyla pozitiftir. Ayrica M parametresi

kiitle boyutuna sahiptir. Bu model cercevesinde kiitle spektrumunu arastirabiliriz.
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Bunun sonucunda alt1 gercel skaler alan ve ii¢ tane de L-tipli fermiyon ortaya ¢ikar. Bu

alanlar icin kiitle spektrumu su sekilde olur,

0,0 — ¢, kompleks alaninin gergel ve sanal kisimlari
m*, m> — ¢ kompleks alanmin gergel ve sanal kisimlar
m*=2g>M?, m*+2g>M*> — ¢, kompleks alamnin gergel ve sanal kisimlar
0 = x, (Goldstino)

m,m — y, ve y, alanlarinin lineer kombinasyonu

W’ daki biitiin terimler ayar-invaryant olmalidir, 6zellikle (2.89)’daki lineer ¢, terimi,

fakat Standart Modelde kendisi ayar invaryant olan bir alan yoktur. Bdylece MSSM’de,
W lineer bir terime sahip degildir ve SUSY kirilmasi i¢in bu modelin 6tesine bakmak

gerekir.

O’Raifeartaigh modelinde simetri kirildiktan sonra kiitle toplam kurali saglanir,

2 _ 2
Z mreel skalerler — 2 Z mchiml fermiyonlart (2 99)

burada toplamlar ayn1 elektrik yiiklii, renk yiiklii, baryon sayili ve lepton sayili sektorler
tizerindendir. (2.99) bagintisinin anlami; bu ¢esit SUSY kirilmasi fenemenolojik olarak
gecerli degildir, ¢linkii bu hafif SM fermiyonlarinin hafif skaler eslerinin varligini

gerektirir ve bu durum deneysel olarak disarlanmustir.

Bir ayar siipermultipletindeki terimler vasitasiyla olast SUSY kirilmasi da goz oOniine

alinmalidir. Bu durum i¢in doniisiimler;
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5, W =i[ g.Q,W*‘“]z—%( VARV

5. M:i[;Q,A“]:—ﬁa”&fF; +%§D“ (2.100)

« . @ i - — « at =
5. D" =i £.0.D jzﬁ(a &“(D,A)* —(D,A)" 5" &)
Yalnizca yardimci alanlar sifirdan farli bir vakum beklenen degerine sahip olmalidir.
(0] D7]0)=0 (2.101)

Bu duruma D-tipi simetri kirilmasi denir.

Bir U(1) ayar siipermultipletindeki D yardimer alani ayar invaryanttir ve bu nedenle

Lagranjiyene D ile orantili bir terim eklendiginde SUSY invaryant kalir. Lagranjiyene
M D* [Fayet-Iliopoulos 1974] terimi eklendiginde yalnizca D terimlerini iceren

Lagranjiyen asagidaki sekilde olur;
L, :M2D+%D2—ngZei ) (2.102)

Burada g,, U(1) etkilesme sabiti ve e,, @, skaler alaninin U(1) yiikleridir. D i¢in

hareket denklemi

D=—M*+ glzei ) (2.103)

olarak bulunur ve bu duruma kars1 gelen potansiyel asagidaki formu alir;

VD=%(—M2+& De ¢f¢ij (2.104)
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Basitlik olmasi i¢in eg, yiikli tek bir ¢ skaler alan1 durumunu diistinelim. Eger

eg, >0 ise SUSY’nin korundugu bir durum ortaya ¢ikar (yani V,=0 olur.). Bu
durumda <0|D|0>=O olur ve bdylece ‘<0|¢|0>‘:(M */e gl)l/2 olarak bulunur. Diger

yandan eg, <0 ise <O|D|O>=—M ® ve <0|¢|O>:O olarak bulunur, bu durum igin
potansiyelin minimumu V, =%M * olarak elde edilir. Aslinda Lagranjiyen igin su

ifadeye sahip oluruz;

L :-%M4—|egl|M2¢*¢ (2.105)

D

burada ¢ alan1 M (|e g1| )1/2 kiitlesine sahip olur. Ayarino alan1 A ve ayar alan1 A4*

kiitlesiz kalir ve A bir goldstino olarak yorumlanabilir.

Bu mekanizma abelyen olmayan durumda kullanilamaz, ¢iinkii M > D* formunda ayar

invaryant olabilecek terim yoktur.
2.4.2 Hafif siipersimetri kiran terimler
SUSY kirilmasinin gergeklestigi herhangi bir durumda, diisiik enerjilerde SUSY — kiran

terimlerin bir parametrizasyonu arastirilabilir. Burada onemli olan nokta, (efektif)

Lagranjiyende fenemenolojik SUSY-kiran terimler “hafif’ olmali, drnegin “ M > ¢*,
M @, M y.y” gibi. Ciinkii bu terimler (siipernormalize edilebilirler) yeni raksakliklar

getirmezler.

Skaler (kiitle)® ifadesine 1-ilmek diizeltmesinden gelen katk1

5 m 2~ (/,i’skaler - gj‘ermiyon )Az (2 1 06)
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burada A yiiksek enerji kesilimidir(cutoff). SUSY’ de aslinda A4

skaler

:g jz"ermiyon dlr ve A
> ya bagimlilik logaritmik olur. Bu durumda skaler (kiitle)”’ ye 1-ilmek diizeltmesinden
gelen katki om’ zm,faﬁf ln(A/ mhqﬁf) olarak bulunur. Burada m, hafif SUSY kiran

terimlerin tipik kiitle 6l¢egidir ve 1 TeV’ den ¢ok biiyiik olamaz.

Olas1 ayar invaryant hafif SUSY kiran terimlerin formlar1 hemen hemen sinirlidir ve

terimler su sekilde verilir (Aitchison 2007);

(a) Her ayar grubu i¢in Ayarino kiitleleri:

—%(M3 §8 MWW+ M, BB+ hc) (2.107)
[k terimde (gluino) a indisi 1’den 8’e kadar; ikinci terimde (wino) a 1’den 3’e kadar
degisir ve (.) carpim Lorentz invaryant spindr ¢arpimini belirtmektedir. g, we , B
alanlar1 L-tipli spindrlerdir. Basitlik i¢in M, parametrelerinin gergel oldugunu (yeni bir

CP ihlali ortaya ¢ikarmayacagini) kabul ediyoruz. Fakat M’ nin pozitif olmasi i¢in bir

gereklilik yoktur.

(b) Skuark (kiitle)® terimleri:

2 At A 2 == 2 51 5
—my. 0.0, —mZ u, u@;_mgljdu d, (2.108)

Burada i ve j aile etiketlerini gostermektedir ve ilk terim 2 ve 2 gosterimlerinde

skalerlerin bir SU(2), - invaryant nokta ¢arpimidir; drnegin

0/.0,=iil ¢ +d5, (2.109)
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olur. Biitiin i[ alanlar1 denk olarak f, T olarak da yazilabilir.
(c) Slepton (kiitle)® terimleri:

—m; L.L —mlele, (2.110)
(d) Higgs (kiitle)® terimleri:

—my, H.H,—m; H,.H,~(bH, H, +hc.) (2.111)

burada SU(2), - invaryant nokta ¢arpimlar su sekildedir,

H.H,=|H [ +|H [ (2.112)
Ayni sekilde H.H, ¢arpim da yazilabilir, fakat

H, H,=H 'H,-H’H) (2.113)
olur.
(e) Uclii skaler baglasimlar:

~a" i, 0,.H,+ald, 0, H,+a’ ¢, L,.H,+hc. 2.114)

Buradaki (kiitle)® matrisleri genel olarak komplekstir, fakat Lagranjiyenin gercel

olabilmesi i¢in hermitsel olmalidir. (2.107) — (2.114) denklemlerinin hepsi agikca

SUSYyi kirar, ¢linkii bu terimler yalnizca skalerleri ve ayarinolari igerir.
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Diger yandan burada (2.107) — (2.114) terimlerinin Standart Model ayar simetrilerine
uydugunu vurgulamak onemlidir. Ayar-invaryant kiitle terimleri biitiin bu siliperesler
icin olasidir fakat bilinen Standart Model pargaciklar1 icin bu durum olast degildir.
(2.107) denklemi g6z oniine alimirsa, gluinolar bir ayar grubunun regular (adjoint)
gosterimindedir. Omegin, SU(2)’de wino’lar t=1 (vektdr) gosterimindedir. Bu
gosterimde donilisim matrisleri gergel olarak segilebilir yani bu doniisiim matrisleri

tiniterlikten ziyade ortogonaldirler, yani 3 — boyutlu uzaydaki dénme matrisleri gibi. Bu
nedenle W.W formlu nicelikler SU(2) déniisiimleri altinda invaryanttir, ayn1 durum
gluinolar ve bino i¢in de gegerlidir. (2.108) ve (2.110) terimlerine bakilirsa, bu formdaki

skuark ve slepton kiitle terimleri izinlidir (i ve j aile indisleri) ve m; > ler aile uzayinda

hermitsel matrislerdir. Buradaki —m;, H,.H, gibi Higgs kiitle terimleri SM’de de

vardir ve Minimal Siipersimetrik (MSSM) bakis acisindan elektrozayif simetriyi
kendiliginden kirabilmek i¢in SUSY’ yi ihlal eden terimlere de ihtiyacimiz vardir.
(2.111) denklemi sadece Higgs’leri igerir ve SUSY” yi kirar. Bu terimde Higgsino’larin

kendileri i¢in kiitle terimi ayar degismezligi nedeniyle yasaklanmustir.

Bu diisiinceler sonucunda; elektrozayif simetriyi koruyan kiitle terimleri MSSM’ nin
simdiye kadar gézlenmemis biitiin pargaciklari i¢in yazilabilir. Aksine, SM’ nin bilinen
parcaciklari i¢in benzer kiitle terimleri elektrozayif simetriyi agik¢a kirar ve bu kabul
edilemez bir durumdur (renormalize edilemezlife ya da tniterlik ihlaline gotiiriir),
bilinen SM pargacilarinin kiitleleri elektrozayif simetrinin kendiliginden kirilmasiyla
ortaya ¢ikmalidir. Dolayisiyla MSSM bakis acisina gore, bilinen parcaciklarin
gozlenmesi dogaldir cilinkii bu pargaciklar elektrozayif simetrinin kirilmasiyla
iligkilendirilen Olcege gore hafiftirler. Diger yandan kesfedilmemis parcaciklarin

kiitleleri onemli derecede (bu skalaya gore) biiyiiktiirler.

(2.107) - (2.114) terimleri formda sinirlanmis olmalarina ragmen, MSSM’ deki biitiin
alanlar diigtiniildiigiinde toplamda birg¢ok olasi terim vardir ve bu fazla sayida (~ 105)
yeni parametreyi vurgular. Parametre sayisindaki bu biiylik artis tamamiyle SUSY

kirilmasindan gelir.

37



Teoride goriiniiste boyle biiylik bir keyfilik hayal kiriklig1 yaratabilir, fakat
fenemenolojik olarak parametre uzaymin genis bir bolgesi disarlanmistir. Cilinkii bu
yeni parametrelerin ¢ogunun kendine ait degerleri ¢esni degistiren ndtral akim (FCNC)

stireclerine ya da CP ihlalinin yeni kaynaklarina izin verir, fakat bu durumlar deneylerle

disarlanmistir. Ornegin (2.110) denklemindeki mé matrisi bastirilamayan kosegen disi

bir terime sahip olsun ve terim asagidaki sekilde verilsin;
(m? )e,, e i, (2.115)

Bu terim c¢esni degisimine (#~ —e ) sebep olacaktir. 4~ —e” +y siireci géz Oniine
alinirsa 1-ilmek diyagram katkisini diisiinebiliriz; ilk olarak 4, i, +bino’ ya bozunsun,
ardindan £, (2.115) terimi vasitasiyla €, > ye gecsin ve tekrar e, * da bino ile birleserek
bir elektron olustursun son olarak da bu elektron bir foton yayinlasin. g—e+y siireci
i¢in dallanma oranindaki {ist limit 1.2x107"" * dir ve sleptonlarin kiitleleri 1TeV
civarinda olsa bile ilmekten gelen katki bunun birka¢ mertebe kati kadar daha biiyiik
olacaktir. Benzer olarak, skuark (kiitle)® matrisleri b—sy bozunumu, K° -K",
D’ —-D° ve B’ - B kanisimlarmin verileriyle hem gesni karisimi hem de CP — ihlali

kompleks fazlariyla siki bir sekilde sinirlandirilir.

SM skalasinda SUSY kiran parametreler iizerine getirilen sinirlamalarm varligi sunu
ileri siirer; SUSY kirtlma mekanizmasi ne olursa olsun bu gii¢lii sinirlamalar diyagonal
dis1 olan tehlikeli terimleri dogal olarak engelleyecektir. Ozellikle bunu garanti eden bir
cerceve minimal siipergravite (mSUGRA) dir. mSUGRA’da (2.107) — (2.114)

parametreleri GUT skalasinda 6zellikle basit bir form alir.

M,=M,=M,=m,, (2.116)
mé:mlé:mg:m%:mé:mg 1 (2.117)
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burada 1 aile uzayinda birim matrisi ifade ediyor.

my =my =m; (2.118)

au :AOyu’ ad =A0yd ’ ae :Aoye (2119)

(2.117) ifadesi m, (Planck skalasi) de biitiin skuark ve sleptonlarin kiitle dejenere

olmasini vurgular ve 6zellikle ayni elektrozayif kuantum sayili skuark ve sleptonlar

serbest bir sekilde tiniter doniisiimlerle birbirine doniisebilirler.
2.5 Renormalizasyon Grup Denklemleri

SM ¢ergevesinde SU(3) x SU(2) x U(1) ayar baglagimlarinin enerji 6l¢egine bagimlilig
incelendiginde bu baglasimlarin Biiyiik Birlesme Oleceginde (BBO) tam birlesmedigini
sOylemistik ve bunu da SM’nin agiklayamadigi durumlardan biri olarak nitelemistik. Bu
ayar baglasimlarinin Olgege bagli degisimi Sekil 2.2°de verilmistir. Sekil 2.2°de
goriildiigii gibi yalmzca 1/o3 ile 1/ay i¢in BBO’de (~ 10" GeV) bir birlesim séz

konusudur.

=]
T

5 10 15

Log|QGeV)|

Sekil 2.2 SM’ de ayar baglagimlarinin 6l¢cek bagimli degisimleri
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Eger MSSM i¢in bu baglasimlarin degisimi incelenecek olursa Sekil 2.3’ten de
goriilebilecegi gibi BBO’de bir birlesme sdz konusudur ve ayrica baglasimlarin BBO’de
ki degerlerininde arttig1 kolaylikla gortilebilir. SM’nin eksikliklerini gidermek amaci ile,
BBO’de bu baglasimlarin birlesmesi durumu zaten siipersimetrinin ortaya atilma

sebeplerinden biri olarak verilmisti.
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Sekil 2.3 MSSM’ de ayar baglasimlarinin 6lgek bagimli degisimleri

MSSM’ deki ayar baglasimlarinin basarili bir sekilde birlestirilmesi durumu bizi benzer
RGE (Renormalization Group Evolution) hesaplarinin diger MSSM baglasimlarina ve
hafif parametrelere ((2.116) — (2.119)) uygulanmasi dogrultusunda tesvik etmektedir.

Basit bir 6rnek olarak, gaugino kiitle parametreleri olan A’ lere 1-ilmek mertebesinde

gelen katkilar diistinebiliriz. Ayarino kiitlelerinin degisimi su sekilde verilir (t = 1nQ );

a5y (2.120)

da, b.
Burada «, ’lere gelen 1-ilmek katkilarini (%:—2—’ a’ ) kullanirsak (2.120)
V4

bagintisini yeniden ifade edebiliriz,
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1 dM, % 1 da;

L aa 2.121
a, dt ‘a} dt ( )

Bu ifade daha basit bir formda yazilabilir,

i(M.

/e, )=0 2.122
o, 1a,) (2122)

Bu ii¢ oran I-ilmek mertebesinde RG-6lgeginden bagimsizdir. mSUGRA tipi
modellerde asagidaki ifadeyi yazabiliriz,

_ (2.123)
)

= = (2.124)

M, (m, )= 2, ) M, (m, ):g tan® 6, (m, )M, (m, )~0.5M,(m,) (2.125)

Ve

(2.126)
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(2.125) ve (2.126) denklemlerini su sekilde 6zetleyebiliriz,
M, (m, ):M,(m,):-M,(m,)=7:2:1 (2.127)

Buradan gluino’nun elektrozayif sektor ile iligkilendirilen durumlardan daha agir olmasi

beklenir.

Ikinci 6nemli &rnek skaler kiitlelerin degisimiyle ilgilidir. Bu kiitleler icin baskin olan
katki top kuark ilmeklerinden gelir, c¢linkii top kuarkin Yukawa baglasimlar

digerlerinden ¢ok biiytiktiir. Fakat diger durumlar da diisiiniildiigiinde 1-ilmek katkilar

su sekilde olur,
dm;
i :1627[2 (_ggf M?-3g2 M} +3y? X,) (2.128)
dmgy, 2 1 16
9 _
Lo Z[Lamagm-Bawaixnin) e

burada X, ve X, su sekilde verilir,

t

X, =m +m’ +mH +A°
(2.131)
X, =

+m +mH + A

m?
My,
m?
b =My,

Skaler kiitlelerin degisimlerine bakilirsa ayarino kiitle katkilarmin negatif degerli
oldugu goriiliir. Yani Q skalas1 kiiclildiikge kiitleyi artirma egiliminde olacaklardir.

Fermiyon ilmekleri ise diisiik skalalarda kiitleyi azaltma egilimindedir.

Tersine mf{d kiitlesinin degisimine bakilirsa top kuark ilmeginin bir katkis1 olmadigi

goriiliir, yani
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dmy, 2 ( 3
5

o 164 ——ng12—3g§M22+3y§Xb+2yT2XT) (2.132)

Biitiin bu tartigmalar 1g131nda RG denklemlerinin (Castano vd. 1994) 3. aile durumu i¢in

tiim bagintilar1 asagida verilmistir.

[k olarak 1-ilmek diizeyinde Yukawa’larin dlgege bagimli degisimlerini veren ifadeler
su sekilde olur (Baer 20006),

dy, _y

e (—Z ¢ g,«2+6yf+y§j
i=1-3

%=—lé‘;z (—Z ¢ g+ +6y, +ny (2.133)
i=1-3

dy

7;=16yj(—2 ¢ g+ 3y + 4yf]

i=1-3

l-ilmek diizeyinde ayarinolarin ve ii¢lincii aile sfermiyonlarinin kiitleleri ve A-

parametreleri i¢in Renormalizasyon grup denklemleri su sekildedir (Baer 2006),

%:1627[2 b g’ M, (2.134)

dd 2
e (—ZC,» g M +6y A +y, Abj

%_2[

" Ten? =2 ¢ g M +6y; A+ A+ A,] (2.135)

%:1627[2 (_Zc[" g2 M, +3y) 4, +4)" A,j

dmé3 2 (

dt 16717

g M3 M M X 1,
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dm?
amg, _ 2 (_16 sz—?ngfJJnytj

dm; 2 (4 16
b 2 ar2 2 2 2
—t= ——g M ——g; M;+2y, X
dt 167[2( 15g1 1 3g3 3 T4V bj
dm; 2 ( 3
#:W(_gglz M -3g; M +y;! X, j
2 (2.136)
m;, 2 12
2B,
dm’,
S agiu a0t X2 x|
dm;, 2 ( 3
Ry (—gngf—3g§M§+3yf X,j
Burada su tanimlamalar yapilmistir,
X[=m;3+ml~2R+mIz,UJrAt2
X, :mé +m§k +m?1d + A (2.137)

) 2 2 2
X, =m; +m; +my, +A4;

MSSM ’de ayar baglagimlarinin zayif skaladaki degerleri su sekilde olur,

(2310} o (1516 .. 3,3,oj (2.138)
15 3 15 3 5

Eger bu RG denklemler Mathematica yardimiyla (1-ilmek igin) es zamanli olarak

cozdiirtilecek olursa 3. aile sfermiyonlari, li¢ ayarino kiitlesi M, M, ve M, ile beraber
H, ve H, Higgs parcaciklarmin kiitleleri secilen bir mSUGRA parametre seti i¢in
Sekil 2.4’deki gibi bulunabilir.
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Sekil 2.4 mSUGRA’da Ay=0, my=330, m;,=240 ve tan=20 parametre seti (De Roeck,2007)
icin 3.aile Sfermiyon kiitlelerinin enerji skalasina bagli degisimleri

Sekil 2.4 de elde edilen kiitle spektrumunun tutarliligi simanmalidir. Bu dogrultuda
Fortran kodu kullanilarak 2-ilmek i¢in yazilmis olan SuSpect 2.41 (Djouadi, 2002) kiitle
hesaplayicisini kullanabiliriz. 2-ilmek i¢in yazilmis olmasi nedeniyle SuSpect 2.41 daha
hassas kiitle hesab1 yapacaktir. Bu iki durum i¢in elde edilen kiitle degerleri Cizelge 2.3
’de verilmektedir. Bu sonuglardan goriildiigi gibi sfermiyon kiitlesi arttik¢a bu iki hesap
tipi birbirinden farklilasmaktadir fakat agir kiitleler i¢in bu fark yaklasik olarak %10
mertebesini gegmemektedir. Eger Mathematica ile 2-ilmek hesaplar1 yapilacak olursa bu

sonuglar daha tutarli bir hal alacaklardir.
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Cizelge 2.3 Uciincii aile sfermiyon kiitlelerinin A¢=0, my=330, m;,=240, tanf=20,
sign(p)=1 parametre seti i¢in karsilastirilmasi

3. Aile Sfermiyonu SuSpect 2.41 Mathematica
(Djouadi vd. 2002) (Bu calisma)

m, (GeV) 329.6 330

m; (GeV) 363.0 370

m; (GeV) 580.2 620

m; (GeV) 439.8 470

ms. (GeV) 536.8 575
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3. SFERMIYON KARISIMLARI

Standart Modelde SU (2)LxU (l)y simetrisi kirildiginda ayni renk yiikiine, elektrik

yiikiine ve spin kuantum sayilarina sahip olan durumlar karisirlar. SM den bilindigi

iizere B ve W' (i=1,2,3) durumlar da kansarak y,Z° ve W* kiitle 6zdurumlarim

olustururlar. MSSM de ise bu tiir bir karisim skuarklarin, sleptonlarin ve gauginolarin
kiitlelerini etkiler. Teoride ve deneyde sfermiyon kiitle karigimlari bliyiikk 6nem
kazanmaktadir. Ciinkii bu kiitle karigimi arastirilan sparcacigin dzelliklerinin ve

SUSY ’nin nasil kirildigimin anlasilmasi ile ilgili sorulara 151k tutar.
3.1 Skuarklar ve Sleptonlar

SM fermiyonlarinin skaler esleri MSSM’de yeni pargaciklarin en biiyiik toplulugunu
olusturur. Kiitleli fermiyonlarin her bir kiral (chirality) durumu i¢in ayr1 eslerin

gerekliligi nedeniyle toplam olarak 21 yeni alan vardir (nétrinolar burada kiitlesiz

alanlar olarak alintyor): Birinci aile igin 4 skuark ¢esni ve kiralitesi #, ,u, .d B ,d » ve l¢

slepton cesni ve kiralitesi v, €, ,é, ; diger iki aile i¢in de bu durumlar tekrarlanir.

Biitiin bu alanlar (kompleks) skaler alanlardir ve “L” ile “R” kiraliteyi tanimlamazlar,
fakat SM fermiyonlarinin karsi gelen siipereslerini zayif etkilesme bakimindan

etiketlerler.

Temelde ayni elektrik yiikiine, R-pariteye ve renk kuantum sayilarina sahip skaler
alanlar digerleriyle (diger ailelerin alanlar1 ile) hafif (yumusak) SUSY-kiran

parametreler vasitastyla karisabilirler. Bu  durum u-tipli  skuark alanlar

(i, i1z ,C, ,Cy o1, Ty ), d-tipli skuark alanlari (d~L,c?R,§L,§R,b~L,I;R ) ve yiiklii sleptonlar
(8.8, Ay, fly, T, , Ty )igin 6 x 6’lik karisim problemine, sndtrinolar (ﬁeL,ﬁﬂL,ﬁTL ) icin
3 x 3’lik karisim problemine gotiirlir. Fakat fenemenolojik smirlamalar SUSY

durumlarinin aileler arasi karigiminin ¢ok kiigiik olmasini gerektirir.
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Baslangic olarak ilk iki ailenin sfermiyonlarmin hafif SUSY-kiran (kiitle)®
parametrelerini gdz 6niine alalim. Yiiksek olceklerde (kiitle)® parametrelerinin hepsi

2 _

o m =m§ :mz =m.=m, 1) . Elektrozayif skalaya inildikce RGE

dejeneredirler (m
(Renormalizasyon Grup Denklemleri) degisimi yaklasik olarak ayn1 tipdedir (ilk iki aile
icin X, denklemlere katki vermez). Dolayistyla ilk iki ailenin kiitleleri ayar

etkilesmelerinin etkileriyle degisir, bu etkilesmeler diisiik skalalara gidildik¢e kiitleleri
artirma egilimindedir. Bu degisimler su sekilde parametrize edilebilir (Aitchison, 2007),

1
2 _ 2 2 1
mgL’JL—mELjL—m0+K3+K2+9K1
16
2 2 2
m; =m; =my+K, +—K,
9 3.1
4
md% =m; =m,+K, +—K,
R R 9
2 2 2
M e =M, =M +4K,

Burada K,,K, ve K, swast ile SU(3), SU(2) ve U(l) ayarinolarinin RGE’ye
katkilaridir: biitiin kiral stipermultipletleri ‘evrensel’ ayar baglagimlariyla gauginolar ile
baglasirlar. Biitiin K degerleri pozitifdir, K, degeri 6nemli derecede K, den biiylktiir
ve K,’de K, den biiyliktiir. Biiylik K, katkis1 nedeniyle skuark (kiitle)* degerinin

sleptonlarinkinden biiyiik olmasi beklenir. (3.1) denklemleri hafif (kiitle)” parametreleri
icin ilk iki ailede 14 durum verir. Bu katkilara ek olarak, elektrozayif simetri
kirilmasinin bir sonucu olarak gelecek daha baska terimler de vardir. Ilk iki aile i¢in bu

tip katkilarm en onemlisi (skuark)® (Higgs)® ve (slepton)’ (Higgs)* formlu SUSY-

degismez (invaryant) D-terimlerinden (skaler Higgs alanlari H ve H) vev

kazandiktan sonra) gelir. D“=g Z( T ) > ye SU(2) katkisi su sekilde olur,
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D’)’:g{(ﬁz 3;)%(?}(&; éZ)%(ZeL]+(H;* H‘”)%(;J

(3.2)

Higgs alanlarinin vakum beklenen degerleri goz oniine alindiginda sadece & =3 oldugu

durumda sifirdan farkli olabilir.

a ~ T “ iz ~ ~+\ 7T ~e 1 12 2
D =g{(u; dL)7(~LJ+(ij eL)—(eLj+—(‘Hu e )5a3
t (3.3)
1 2 2
e el oo
Simetri kirildiginda ve Higgs alanlar1 vakum beklenen degeri kazandiktan sonra
a ~f T4 T (1, ~f o~ (Vo 1 . 1 .
D *g{(ul dL)g(gL]+(veL q);( éLj—;% 5t 8 00 (3.4)

Bu ifade %D“ D® Lagranjiyen teriminde yerine konulacak olursa (kiitle)” terimleri %

ve &, terimleri arasindaki gapraz terimlerden gelecektir. Bu capraz terimler z° / 2 ile

orantilidir. Bu capraz terimler zayif kiitle bazlarinda kdsegendirler. Capraz terimler goz

Oniine alinirsa

%D“D“ 0 %gz { (ﬁ}' c?g)
(3.5)

a =3 durumunda ancak (kiitle)” terimleri gelecegi igin
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%D“D“ 0 %2g2 {(u; &;)B(gj -1’ }[“L]

(3.6)
w7, @) 2(e-g)r ||
[& 2 u éL
sfermiyon (kiitle)” matrisine katkilar1 su sekilde bulunur,
lgzzl(gj—gz)# (3.7)
2 2 !

burada 7° =7’ / 2 dir. Benzer olarak D’ ye U(1) katkis1 (simetri kirilmasindan sonra) su
sekildedir,

D,)=g'{ Z_%ﬁ y,;f—%( 9 -9 )} (3.8)

Bu ifadedeki toplam, biitiin sfermiyonlar ( skuarklar ve sleptonlar ) izerindendir.

1 | | I S WAPT R Lo 2 1 g

S0, D=2 {fz‘gﬂyﬁf—g(%—% )} {;Eﬁ v [=5(9-4 )} (3.9)
lp oo lzg'2 > f ly(—lj(gz—gz) i (3.10)
270 2 > 277 2 )N '

Buna gore sfermiyon (kiitle)* terimine U(1) ‘den gelen katki su sekilde olur,

1 5 I V1 g
X 2(—?]5(%—9”) (3.11)
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Burada Q elektromanyetik yiik olmak tlizere %=Q—T 3 oldugu igin SU(2) ‘den ve U(1)

‘den sfermiyon (kiitle)” terimine gelen katkilar1 birlestirebiliriz,

Af 1(93—19“2){82#—%)/&"2}

[\

Af=(8-8)[(e7+e”)T-g0]

m, :%( g +g” )( $+9 ), g'=gtan@, , m, =m, Cos @, ,tan f= j‘ ve
d
2
m;, :g—( $+3 ) oldugunu kullamirsak bu katkimnin ifadesi
2
A f=m}, Cos2| T* -Sin’ 6, O | (3.12)

olarak bulunur. A f zayif bazlarda késegendir ve bu katkilar (3.1) denklemlerinin sag

taraflarina basit bir sekilde eklenebilir.

Simetri kirildiktan sonra, sfermiyon (kiitle)” terimlerine SUSY-degismezi F-terimleri de
katk1 verir. Yani su forma sahip Lagranjiyen terimleri de sfermiyon (kiitle)® terimlerine

(her skaler ¢ alani i¢in ) katk: verecektir,

2

|aw

Frs (3.13)

Bu terim bliylik Yukawa baglagimlarina sahip olan {igiincii aile sfermiyonlarinin
kiitlelerine 6nemli katkilar getirir. Clinkii Yukawa baglasimlar1 fermiyon kiitleleri ile
orantilidir ve {¢lincii aile fermiyon kiitleleri diger iki ailenin kiitlelerine gore cok

biiytiktiir.
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W=y, ;;(ZTL Ht?_EL H,; )_be;(EL H,-b, H, )_y‘r f;(&n H,-%, H; )

(3.14)
+u( Hy Hy ~H]Hy )
H! ’in vakum beklenen degerini kazandigini diisiiniip 6rnek olarak —‘ 37 ifadesini
tR
elde etmeye ¢alisalim,
ow |
A2 it & =i 3.15)
R

L-tipli top skuark (‘stop’), top (kiitle)* ¢ ye esit (kiitle)® terimi kazanir. R-tipli stop kuark

2

‘den gelen 0zdes bir kiitle terimi olacaktir. Benzer sekilde ZSL ve 5R

i¢inde —‘ Glf
ot,

L

icin (kiitle)” terimi m? , 7, ve 7, igin (kiitle)” terimi m? olacaktr.

W~ nun Higgs alanlarina gore tiirevleri de diisiiniilmelidir. Ornegin H° alanma gore

tiirev alip H alanmin vakum beklenen degeri kazandigini diisiiniirsek sunu buluruz,

2

o~ 2 v 2
Vitg IL_/UH;)‘ =yt~ (3.16)

| ow
OH

(3.16) ifadesi (kiitle)® terimi kosegen dist bilineer terim igerir,

— 2 o~
ytt;tL_lulgd‘ Dﬂlgdyz(t;tL‘HLTtR)

3 R
=u3j9uy,(t;rL+tJrR) (3.17)
:,LtCotﬂml(f;fL+t~ffR)
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2

| terimi su sonucu verir,

buna gore R ve L alanlar1 karigir. Benzer olarak —‘
d

pm, tan B( bl b, +b, b, ) (3.18)
vE
pm, tan B( £5 7, +7) 7, ) (3.19)

Sonug olarak skaler Higgs alanlar1 vakum beklenen degeri kazandiktan sonra bilineer
terimler hafif {glii skaler baglasimlardan direkt olarak da kaynaklanabilir.

a,=4,y,,a,=4,y,,a,=4,y, kosulunun varligin1 ve yalnizca igiincii aile katkisini

varsayacak olursak {i¢lii skaler baglagimlarla iliskili katk: agsagidaki gibi olur,
_Ao Vi ‘9u ( fR} fL ‘HNLT fR ):_Ao m, ( tNR} fL “'?LT tNR ) (3.20)
benzer ifadeler ER —Z;L ve 7,—17, karisim terimleri i¢in de yazilabilir. Biitiin bunlar géz

oniine alindiginda ilk iki ailenin skuark ve sleptonlart icin (kiitle)* degerleri ilgili A f

katsayist ile birlikte (3.1) bagintilar1 vasitasiyla verilir.

Ugtincii aile igin 7,5 ve 7 sektorleri ayri ayri ele almabilir. “top” skuark icin (kiitle)®

terimi su sekilde olur,
-(if ?;)Mf[fj (3.21)

bu ifadede M. asagidaki gibidir,
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m . +m+A, m,( A,—uCot

Miz _ [ t T f(z 0 i ) (3.22)

m,( A,—uCot ) m; +m; +A,
A, A, tammlamalari asagida verilmistir,
1 2. 2
A, = E—ESm 0, |m; Cos2p (3.23)
2 . 2 2

A, = ESZI/I 6, m, Cos2p (3.24)

[k iki ailenin tersine {igiincii aile durumunda X, katkisi etkin olacaktir. X, katkist
diisiik enerji skalasma gidildikge 7, ve 7, ‘nin degisen kiitlelerini azaltma egiliminde
olacaktir, diger yandan m, terimi kiitleleri artiracaktir. M’ matrisinin Szdegerleri

bulunarak mgz kiitlelerinin analitik ifadesi elde edilebilir. Bunun i¢in

m;ﬁL+mf+AﬁL—/1 m,( Ay —uCot ) 0 (3.25)
m, (A, —uCot ) msz+mf+AgR—l '
determinanti igin kokler bulunmalidir. Bulunacak olan bu kékler 7, ve 7, igin kiitleleri

verecektir. Burada biraz islemden sonra kiitle ifadeleri su sekilde elde edilir (Baer

2006).

1 1
2 _ L2 2\, 1 =2 2
m; —2(me +m; )+4mz Cos2p+m,

1 o . (3.26)
${|:E(mi —m; )+m2 C0s2,3(z—55i”2 Oy ﬂ +mz2(Ao—ﬂC0’ﬂ)2}

f, kiitle 6zdurumu daha hafiftir. “top” skuark karigim matrisi agagidaki gibi tanimlanur,
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i) (Cos6, —Sin0 (i,
1= o . (3.27)
Sin6, Cos0, )\ t,

2

3.27) ortogonal ddniisiimiinii kullanarak M7 matrisini kosegenlestirmeye calisalim.
g i g y

[ Cos6, Sind, \({, (3.28)
\=Sin0, Coso, )\ 7, '

olur ve M kiitle matrisi su sekilde kdsegenlestirilebilir,

2!
i

Cos6, —Sin6,\ ( CosO  Sin0,
= M ‘ (3.29)
Sind,  Cos0, -Sin6d,  Cos0,

Bu matrisi kosegen hale getirebilmek i¢in matris ¢arpimi yapilir ve kdsegen dist

terimler sifira esitlenir. Sifira esitlenen kdsegen dis1 terimlerden biri su sekilde olur,

( m?L +m[2+AﬁL —[ m?R +m,2+AﬁR ] )COSQ Sin 6 +
(3.30)
m, ( 4,—uCot B )( Cos® ,—Sin” 0, )=0

Eger bu ifade Cos’ 6, ile béliinecek olursa (3.30) denklemi su hali alir,

(mf +mi+ A, —m: —A, )tané?t+
L L R R (3.31)

m, ( AO—,uCot,B)(l—tanzﬁt ):O

Bu ifade tan @ ’nin ikinci dereceden bir denklemidir ve kokler kisa bir islemden sonra

asagidaki gibi bulunur (Baer 2006),
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m?L —m?l +m’ +m C0S2ﬂ[;‘—§Sin2 0, j

m[(AO_lLlCOtﬂ)

tan @, =

. 2
Bu ifadede m; ’nin tanimi

mfl =%( me +mée )+%m§ Cos2,8+mf+{ [%( me —msz )
1 2 ’ :
+m2 coszﬁ(z—?s*m2 0, ﬂ +mf(Ao—ﬂC0tﬂ)2}

(3.32)

(3.33)

olur ve (3.32) bagintis1 stop kuark icin karisim agisinin analitik ifadesini verir. Benzer

islemler sbottom, stau ve tau sndtrinosu i¢in de yapilabilir. Bu durumlar igin kiitle

ifadeleri ile karisim agilari su sekilde bulunur (Baer 2006),

:—( mf;L +mf;R )—%mé Cos23+m;

2
3 ot coao - | sy |

mj +m, +m, COS2ﬂ( —;Jr;Sinz GWj—mg

by
mb(AO—,utanﬂ)

tan g, =

1 1

2 2 2 2 2
m.: =—(m: +m: |——m, Cos2B+m
Ty, 2( 7 TR) 4 A T

1{{5( m; —m?R )—mé CosZﬂ(%—Sin2 HWJ} Jrrrzf(,utatn,b’—AO)2 }

12
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(3.36)



me +m’+m, Cos2ﬁ'( —;+Sin2 ij—m?

m,( Ay—utan f)

tan @, = (3.37)

Ve

v,

mz.T :mzs +%m§ Cos2p (3.38)

olur. Snétrino kiitlesindeki ilk terim {igiincii aile skaler lepton doubleti i¢in hafif (soft)
SUSY kiran kiitle terimidir, ikinci terim ise D-terim katkisindan gelir. Ayrica bu

snotrino MSSM ’de sol-elli ndtrinonun stiperesidir.
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4. SFERMIYONLARIN LEPTON CARPISTIRICILARINDA URETIMLERI

LHC calismaya baslamadan 6nce yapilan deney sonuglarina gore {igiincii aile sfermiyon

kiitleleri i¢in sinirlamalar, m,> 94Gel’ (DELPHI), m.> 81.9Gel’ (DELPHI),
m;>89GeV (ALEPH) ve m. >95.7GeV (CDF) olarak %95 giivenilirlikle

getirilmistir (Nakamura vd. 2010). LHC calismaya basladiktan sonra ise elde edilen
veriler kullanilarak yapilan analiz sonucglarindan 3. aile sfermiyon Kkiitleleri iizerine

getirilen sinirlar m, > 136 GeV' (Aad vd. 2011), m; > 294GeV ve m;>309GelV (Aad

vd. 2011) olarak verilmektedir.

Elektron-Pozitron carpistiricisinda polarize olmayan baslangic durum demetleri igin
sfermiyonlarin iiretim tesir kesitlerini veren genel ifadeler su sekilde yazilabilir(Eberl

vd. 1999);

2.3 2 2
L. ==\ TaK| (ve+ae) , v, 0;
olee ] f)zs—“{ef *iecrst G Pe—gersr G D @.1)
Bu tesir kesiti ifadelerindeki bazi tanimlamalar asagida verilmistir;
2 172
_ o2 2\ 42 2
Kij—{(s mg —my ) 4mj’, mj,/]

v,=4S8in* 0, -1 ;0 a,=-1 4.2)

I{L COS249f~ —e; Sin*@, —%IZL Sin 29f~

i 1 -
—EI{L Sin20; 1, Sin2<9f —e; Sin*6, A

i

Eger BBO’de belli bir parametre seti secilecek olursa elektrozayif lgekte 3. aile

sfermiyonlarinin kiitleleri, karisim agilar1 gibi parametreler elde edilebilir. Bunun i¢in
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2.5 kesiminde bahsi gecen RG denklemleri ¢oziiliir. Bunun i¢in yazilmis belli basl
programlar vardir. Bu programlardan biri SuSpect (Djouadi vd. 2002) olarak bilinen
kiitle spektrumu hesaplayicisidir ve segilen alfa noktasi (De Roeck vd. 2007) ig¢in

Cizelge 4.1°deki kiitle spektrumu verir,

Cizelge 4.1 Secilen alfa noktasinin parametre degerleri ve bu noktaya karsi gelen kiitle

spektrumu

Model o

my, 285

m, 210

tan S 10
sign(p) +
A, 0

m, 175.0

Sfermiyonlar Kiitleler(GeV)

7, 2322
7, 288.9
v 274.9
7 4812
7, 659.6
; 602.5
b, 637.1

Burada bulunan kiitle degerleri i¢in, gelen demetlerin polarize olmadigr durumlar igin
sfermiyonlarin liretim tesir kesitlerine bakilabilir. Buna gore {igiincii aile sfermiyonlari
icin tesir kesitinin kiitle merkezine gore degisimini veren grafikler su sekilde elde

edilebilir.
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Sekil 4.3 Gelen demetlerin polarize olmadig1 durum i¢in 7, 7,, 7, 7, ve 7, 7, Uretimleri
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Sekil 4.4 Gelen demetlerin polarize olmadigi durum igin V. v iiretimi

Bu grafikler, se¢ilen mSUGRA noktasina bagli olarak degisecektir. Ciinkii farkli

noktalarda sfermiyon kiitleleri farkli olacak ve dogal olarak karisim agilarida

degisecektir.

4.1 Demet Polarizasyon Etkisi

e" e  dogrusal carpistiricilarinda boyuna polarize edilmis demetlerin varligi sinyal

analizi i¢in ¢ok onemli katki saglar. Boyuna demet polarizasyon serbestligi su sekilde

parametrize edilebilir,

P (e )=1,-fx

bu ifadede yapilan tanimlamalar asagidaki gibidir,

n, +n,

n, 1+P,

2

%S

Bu tanimlamalardaki n, , demetteki sol(sag)-polarize elektronlarin sayisini ve f, ,

kars1 gelen kesirleri gostermektedir. Dolayistyla, % 90 oraninda sag-polarize edilmis bir
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demet i¢in P, (e )=-0.8 ’e kars1 gelir ve polarize edilmemis bir demet igin ise

P, (e )=0" akars1 gelir.

Polarize edilmis elektron ve pozitron demetleri icin SM ve SUSY dahilinde tesir
kesitleri elde edilebilir, fakat pratikte demetler daima kismi polarizedirler ve ilgili

durum i¢in tesir kesitleri su formiil kullanilarak bulunur,

o= f(e)f (e)o,+f(e)fr(e)o,
+fr(e ) fr(e)op + fr(e ) fr(e") ok

bu formillde kullanilan f, ve f, yukarida tammlandigi gibidir, o, (i, j=L,R) ise

e; e; 'nin yok olma tesir kesitini gdstermektedir.

Polarize edilmemis baslangi¢c durum demetleri icin SM parcaciklarinin cift iiretim tesir
kesitleri incelendiginde W bozonunun ¢ift liretiminin en biiyiik katkiy1 verdigi goriiliir.
W bozonunun leptonik bozunumlarindan gelen nétrinolarin tagidigi “kayip enerji” ve
“kayip momentumlu” olaylar SUSY sinyalleri i¢in énemli arkaplan olusturur. Sag-elli
elektron ile W bozonunun etkilesiminin s6z konusu olmamasi nedeniyle polarize
edilmemis baglangi¢ demetleri yerine, bu demetlerdeki sag-elli elektron sayisi
artirilabilirse W bozonlarin ¢ift iiretim tesir kesitlerinin katkis1 azaltilarak SUSY’e gelen
arkaplan katkis1 azaltilabilir. Diger SM siirecleri demet polarizasyonuna daha az
bagimlidir, fakat genel olarak bu siiregler sol-polarize demetler icin en biiyiik orana

sahiptir.

SUSY pargaciklarinin iiretim tesir kesitleri de polarizasyon bagimli olacaklardir.
Segilecek olan mSUGRA parametre degerlerine gore sfermiyonlarin, 7, ¢iftlerinin ve
bazi nétralino ¢iftlerinin iiretimleri P, (e ) ’ye giiclii sekilde bagimli olacaktir. Elektron

demetinin polarizasyonunun ayarlanmasi vasitasiyla sparcaciklar yoniinden zengin olay
orneklerinin se¢ilmesi olasidir. Polarizasyon, SM arkaplaninin azaltmasinin yani sira

aileler aras1 ayrimlarda bu sparcaciklarin detayli bir sekilde calisilmasinda 6nemli
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olabilirler. Yani elektron demet polarizasyonu SUSY parcaciklarinin 6zelliklerinin

hassas bir sekilde ¢alisilmasinda ¢ok faydali arag¢ olarak kullanilir.

Gelecek lineer carpistiricilarda kazanilacak olan demet polarizasyon serbestligi hala
belirsizken, elektron demetleri i¢in polarizasyon % 80 ya da daha tzeri olarak
diisiintilebilir. Fakat bu durum pozitronlar i¢in ¢ok belirgin degildir, bugiin pozitron

demet polarizasyonu i¢in hedef % 60 olarak goriiniiyor.

Polarizasyonun 6neminin anlagilmasindan sonra artik 3. aile sfermiyonlar1 iizerine olan
etkilerini arastirabiliriz. Eger polarizasyonun etkisi goz Oniine alinacak olursa 3. aile

sfermiyonlarinin tretim tesir kesitleri i¢in genel bir ifade (4.3)’deki gibi olur.

P.={-1,0,1} olarak tamimlanmaktadir ve -1 durumu sol-elli, +1 durumu sag-elli

durumu ve 0 polarizasyonun olmadigi durumu temsil etmektedir. Ayrica (4.2)’de

yapilan tanimlamalar asagidaki ifade i¢in de gegerlidir(Bartl vd. 2000).

_ 2.3
o(erer o7 T ==t et s, (1= p)
er 1 |

ej.Cijé‘ij

LU UTy (1-P P)-a,(P -P)]D
25..C; (=P P)=a.(P=R)]D; (4.3)
C?.

+W[(vj+aj)(1—}z P)-2v, ae(R—R)DZZ]}

Asagida 3. aile sfermiyonlarinin polarizasyonun etkisi ile iiretim tesir kesitinin kiitle
merkezi enerjisine bagl olarak nasil degistigini veren grafikler verilmektedir. Ayrica
her iki polarizasyon durumu ve polarize olmayan ilk durum demetleri i¢in tesir kesiti

durumlan grafiklere yansitilmistir.
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Sekil 4.11 Gelen demetlerin polarize olmasi durumunda 7, 7, {iretimi
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Sekil 4.13 Gelen demetlerin polarize olmast durumunda 7, 7, {iretimi
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Sekil 4.14 Gelen demetlerin polarize olmasi durumunda v, v, iiretimi
4.2 Baslangic Durum Isimasi ve Demet Isimasi Etkileri

e’ e  carpistiricilarinda tim demet enerjisi, sagilma olayr sonucunda elde edilen

pargaciklarin tretim tesir kesiti i¢in kullanilamaz. Ciinkii TeV skalasinda e’ e”

carpistiricilarinda sparcacik iiretiminin sinyal ve arkaplanlarimi diizgiin bir bi¢imde
tanimlayabilmek icin yliksek enerjili fotonlarin baslangi¢ durum isimasini (ya da
bremsstrahlung) g6z oniine almaliy1z. Bir diger zorluk demet-demet etkilesmelerinden
kaynaklanan enerji kayiplarindan gelir bu da demet 1s1masi etkisi olarak ifade edilir. Bu
durumlar ¢arpisan demetlerin kiitle merkezi enerjisini azaltir ve baslangi¢ durumu igin
bilinmeyen boyuna bir momentuma sebep olur. “Bremsstrahlung” ve “beamstrahlung”
dogrusal carpistiricilarda yapilmak istenen dogruluk ¢aligmalar1 icin kayiplar

icermektedir.

Baslangi¢ durum 1s1mast etkisi anlagilmasi zor olan bir elektron yapi fonksiyonu ile
e e tesir kesiti tarafindan igerilmelidir. Basit bir parametrizasyon “Kuraev-Fadin”

dagilimidir ve su sekilde tanimlanir (Baer 2006),

1

4ﬂ(1+x)

brem N £ 3
D™ (x,0 )zzﬂ(l—x)z (1+§ﬂJ
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2
burada S 52_0{( an——l ] dir. x elektronun momentum kesrini ve Q sa¢ilma skalasini

2
7 m;

gostermektedir.

Yiiksek enerjili lineer carpistiricilarin ihtiyag duydugu yiiksek 1sinliga ulagsmak igin
yogun elektron ve pozitron demetleri temeldir, bu durumda da beamstrahlung etkisi
mutlaka hesaba katilmalidir. Aslinda elektron ve pozitron demetleri o kadar yogundur ki
sacilmadan onceki demet etkilesmeleri nedeniyle enerji kayiplar1 olmast muhtemeldir.

Bu enerji kayiplar1 yari-klasik olarak hesaplanabilir ve bu bir beamstrahlung dagilim

fonksiyonu (D’ (x)) verir. Demet 1s1mast dagilim fonksiyonunun parametrizasyonu

olduk¢a karmasiktir, fakat demet profiline ve makine karakteristiklerine bagimlidir.

Demet 1s1mas1 parametresi Y ile beraber paketcik uzunlugu ile iliskili o, ,

beamstrahlung dagilimini tanimlamak icin yeterlidir. Baglangi¢ durum 1s1mas1 ve demet
isimasinin ikisini de hesaba katmak igin bir baginti bu iki dagilim fonksiyonunu

kullanarak su sekilde yazilabilir,

D, (x)=[ dz D" [E,QZ]DSW’%/Z

x[11’de elektronlar ya da pozitronlar en yiiksek olasilikla etkileseceklerdir. Fakat

bremsstrahlung ve beamstrahlung’un sonucu olabilecek enerji kayiplar1 6nemli bir
olasiliktir, 6yle ki yiiksek enerji sacilma siireglerinde bu enerji hatir1 6nemli derecede
kiigiiktiir. Yiksek hassasiyetli SUSY siireclerinin sinanmasi sirasinda bu o6zellik
onemlidir, ¢iinkii demet 1s1mast / baslangic durum i1simasi fotonlar1 nedeniyle
gerceklesen enerji kaybi sparcacik iiretim reaksiyonlarinin anahtarlarindan biri olan

kay1p enerji spektrumu gibi son durum dagilimlarini degistirir.

Baglangi¢c durum 1simasi1 (ISR) ve demet 1s1mas1 (BS) oldugu durum igin tesir kesiti
degerlerinin nasil degistigini hesaplamak gereklidir. Bu dogrultuda CompHEP ’de
(Boos vd. 2004) kiitle merkezi enerjisi 3 TeV olan Toplu Dogrusal Carpistiricinin
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(CLIC) parametreleri kullanilabilir(CLIC12). Bu parametreler demet boyutlar1 o,+c6,=
46 nm, paketcik uzunlugu o,= 44um ve paketcikteki parcacik sayisi 3.72x10° olarak
verilmektedir. Buna gore polarize olmayan demetler durumu i¢in sfermiyon {iretim tesir
kesitleri Cizelge 4.2‘de a (m;,=285, m¢=210, tanf=10, Ay=0, p=+1), B (m;,=360,
my=230, tanf=10, A¢=0, p=+1) ve y (m;»=240, my=330, tanf=20, Ay=0, p=+1)
noktalar1 (De Roeck vd. 2007) i¢in verilmistir.

Cizelge 4.2 Toplu Dogrusal Carpistiricida ISR ve BS etkisinin géz 6niine alindigi
durum i¢in son durum sfermiyonlarimin tesir kesiti degerleri

Son Durum a noktasi i¢in o(fb) | P noktas1 icin 6(fb) | y noktasi i¢in o(fb)
171?1 2.72 1.53 3.31
7 ?2 1.43 0.9 1.82
ZIZ 0.35 0.19 0.41
- 1.18 0.7 1.41

171
b b, 0.31 0.18 0.36
272
i b 0.23 0.12 0.32
172
£ 7 9.52 7.6 4.78
7,7, 6.86 4.92 3.76
7T, 0.21 0.11 0.27
V.V 3.30 2.28 1.88
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5. SFERMiYON BOZUNUMLARI

Bu kisimda 2.3 kesiminde elde edilen etkilesmeler kullanilarak sfermiyonlarin
bozunumlar1 incelenecektir. Skuarklarin ve sleptonlarin bozunumlar1 adi altinda iki

basliga ayrilmistir,
5.1 Skuark Bozunumlari

Skuarklar baskin olarak iki-cisim modu (son durumda iki pargacik) vasitasiyla
bozunurlar. Ugiincii aile skuarklari igin, ihmal edilemeyen Yukawa baglagimlari ile
birlikte skuark karisim etkileri ilk iki aileden daha karmasik bozunum fiiriinlerine
gotiiriir. Eger kinematik olarak izinli ise alt (bottom) skuark su kanallara bozunur (Baer

2006),

b, > bg., by i Wi, ,H i,
Ve

b, — Zb ,hb ,Hb , Ab,
Ilk iki ailenin skuarklarindan farkli olarak, hafif ve agir alt skuarklarin ikisi de sol- ve
sag-skuarklarin karisimlar1 olduklar1 i¢in bunlar genel olarak yiikinolara ve W

bozonlarina bozunurlar. Benzer olarak iist (top) skuark da su bozunum kanallarina

sahiptir (Baer 2006),

t1,2 - tg > tiio b bji-'— > W+51,2 ) H+51’2

Ve
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Eger st (top) skuarklar goreli olarak hafifse baskin olarak 7, — b 7, kanaliyla bozunur

ve f, =t 7 kanal da olasidir. Eger bu kanallarin ikisi de kinematik olarak yasakliysa,

f, su bastirilmig kanallar vasitasiyla bozunabilir (Baer 2006),

i, > ¢z’ ,bvi ,bIv, bW}’ vyada bf [}

burada f ve f', W bozonu ile etkilesen hafif Standart Model fermiyonlaridir. Bu

bozunum kanallarinin ilki ¢esni ihlal eden etkilesmeleri veren SUSY Lagranjiyenindeki

kosegen disi terimlerden gelir. Agag seviyesinde, yliksek enerji skalasinda Renormalize

Lagranjiyende c¢esni ihlal eden etkilesmeler olmasa bile zayif skalada i1simasal

(radiative) diizeltmeler bu etkilesmelere neden olabilir. Burada 7, — ¢g bozunumunun

kinematik olarak yasakli oldugu varsayiliyor.

2 2
- . m; M. m? m, = M
r(i —>t;(.°):—" AP = el | 1| =+
! ' 8 me m? Loom

4 4

burada su tanimlamalar yapilmistir,

azé{ [iA;? —(i) 19(’)}6'0549 |:ZB;Z[0 —(—i)g 19(’)}5’17149 }

b:%{[—iA;?—() 9" |Cos 6, i B, +(~1)" y 19“)}51119}
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Bu formiil F(fz—n )Z,-O) icin de benzerdir, yalmzca m; — m; , Cos6,— Sinf, ve
Sin0, — —Cos 6, degisiklikleri yapilmaldir. b~l — b7’ bozunum genisligini bulmak

i¢in F( >ty ) ifadesinde su degisiklikler yapilmalidir,

m; — m;
A, — A,
Xi Xi
B, — B,
Xi Xi
Y >V (5.4)
l91(1') N l92(1’)
0 — 0,

m, —> m,

Yiikinolara bozunum ifadeleri su sekilde verilebilir,

2
- m; m. m? 2
T(f—>bg )=—"=2"| L,—2 2 | (i 4! Cos6~B,. Sin6, ) +B Cos’
“olern mfl mi % Lo ' X '
2 (5.5)
My mf My My (4 . ,
| 122 | 4L (4! Cos6,- B Sind, |B), Cos
m; mfl m;l Xi Xi Xi
r(b - ~*)——m’i AV 1m;’ m_ ('A” Cos0,—B' i 0)2+B'2C 29
ot 7, “Ton St i4; Cos6,—B_ Sin6, > Cos™ 6,
by by
2 (5.6)
m.. g2 m_.m,
x| 1-—L -2 |42 (i 4 Cos,~B), Sinf, |B, Cost,
ml;l ’,nl;l ml;l Xi Xi Xi

Bu bozunum genisligi ifadelerinden yola ¢ikilarak 7, ve 152 ‘ya kars1 gelen bozunum

genigligi ifadeleri denklemlerde su degisiklikler yapilarak bulunabilirler,

m; —> m; Cosé’q — Sinﬁq ; Sineq - —Cosé’q
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bu degisikliklere ek olarak etkilesme terimlerinden gelen su farkli baglasimlar da

degistirilmelidir, 4] ,B} ,B; ,B) .

Uciincii aile skuarklarinm yiiklii Higgslere de gegisi s6z konusudur. Bu durumlar igin

bozunum genisligi ifadeleri su sekilde olur,

RREAE

~ T e\ y2f 2 2 2
P(f b, H )= e (22 2. ) (5.7)

Burada su tanimlamalar yapilmistir,

A,= i\l {m, m, ( Cot p+tan B )Sin®, Sin6),
+m,( p+A4 Cot 8)Sin8, Cos 0, +m, ( p+ A, tan B )Sin6, Cosd,  (5.8)
+[(m§ tan B+m; Cotﬂ)—M;, Sin2ﬂ:|COS9t Sin@b}

A,=A4,( Cos6,—Sinb,; Sin6,—>—Cos¥),) (5.9)

4,; baglasimlar L,—>H" Ej bozunum genigliginde gelir ve 4, katsayilarinda

Cos6, — Sin@, ve Sin6 — —Cos 0, yer degistirmeleri yapilarak bulunabilirler. Ayni

zamanda

—ﬂl/z(m% m’ ,m’ ) (5.10)

bozunumu da s6z konusudur.
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Uciincii aile agir kuarklarmin ¢=54 , H yada 4 bozonlarina bozunumlari asagida ifade

edildigi gibi bulunur,

2
F(t2_>t~1¢)=é‘;%‘ﬂl/z(mi m? mz)

2
r(b,—~b ¢ )=L@M(m§2 ot m |

Bu bozunum genisligi ifadelerinde su tanimlamalar yapilmistir ,

A4, =

g]LJW Sin( f-a )( l—gtan2 0, ]Sin29,

gm,

+—=—"—Co0s20,( 4, Cosa—puSina )
2M,, Sin B

A, :_%Cos( f-a )(l—gtanz 0, jSmZ@,

gn,

+——=—"—Cos26,( A Sina+uCosa )
2M,, Sin 8

L =—i20 (4 Cot p+ )
2 w
ve
Bh:gMW Sin( f-a )(—1+%tan2 6, )Sin20b

gm,

+—=2> Cos20, ( A Sina—uCosa
2M,, Cos L4, # )
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(5.14)
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B, :_%Cos( f-a )( —1+%tan2 0, jSil’l 20,

4 (5.17)

gm, .
+—22  Cos20 ( A Cosa+uSina
2M,, Cos L4, “ )

B,=—i220 (4, tan B+ 1) (5.18)

olarak verilir.
5.2 Slepton Bozunumlari

Uciincii aile skuarklarindaki gibi, iigiincii aile sleptonlarmin bozunum olasiliklar1 da
Yukawa baglasimlar1 ve karisim etkileri nedeniyle diger ailelere gore daha karmasiktir.

Bozunum olasiliklar1 (eger kinematik olarak izinli ise) sunlari igerir (Baer 2000),

o T;Zio’vrﬂzj
T, >ty v, 7 WV H Y,

7 > Z7 , hi , HF, , A7,

A r’jg; , WhT, ve H 7,

Uciincii aile sleptonlarimin ve snétrinolarmin bozunumlarinda Yukawa baglasim etkileri

onemlidir. Stau kismi bozunum genisligi asagidaki gibi hesaplanir:
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2 2
- - m; Mo m? m, M
I(7->77 )=—22"] 1,24, — |a|2 1-| —=—+—-=&
! ' 8 m?  m? m. m

, (5.19)
m_,
+|b[ 1—[ R j
m, m,
Bu ifadedeki tanimlamalar asagidaki gibidir,
_1 .z NG (i) . N ) .
a_a{[zAﬁ—(z) v, 9 | Cos0, [ i B~ (=" y, 8 }Sm@} (5.20)
1 PPN ; . . N
b=> [ =14~ ()" 5, 8 |Cos6, [ 1B+ y, 8 |sin, | (5.21)

7, >} bozunumu i¢in formiil benzerdir, ve m. —>m. , Cost — Sin0,,

Sin@. — —Cos 0. yer degistirmeleri yapilmalidir.

Stau’larin yiikinolara bozunumunu veren bozunum genisligi ifadesi asagidaki gibidir,

2 ) 2
m__
m. { 1m—g} (5.22)

7

iA”_ Cos6. —B" Sin6.
Xi i
167

F( T,V ¥ ):‘

burada B}'g, =—y, Cosy, ve B;, =y,0 Siny, olarak tanmmlanmistir (Baer 2006).

Uciincii aile sndtrino kismi bozunum genisligi asagidaki gibidir.

2 2
m. m_, 2 2 m_, 2
r(ﬁféfﬂ)mv;rﬂ{l’m}g ,Zg HUA% +B§?}£l_m§’ _Z_z}
VT Vz. VT VT (5'23)
m._.m,
~a—L g (4 )
m: Xi Xi

Ve
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Sleptonlarin ayar bozonlarina bozunumlarinin ifadeleri ise su sekilde elde edilir,

2 Q2
o ae . &SSO s
F(Tz —)VTW )=327Z-m—§]\42/1 (mfz ,m‘;z ’MW) (524)

Snétrino bozunum genisligi ifadesi

2 2
. -\ & Cos 0, .y 50 2
F(VT—)TIW )—Wﬂ, (mﬁr')mil’MW ) (525)
O g’ Sin* 6. 32( 2 2 a2
F(Vr_)TZW ):mﬂy (mﬁf,mfz ,MW ) (526)

ve stau’nun yiiksiiz akim bozunumu asagidaki gibidir.

2 2 . 2
F(fz—ﬂ'lZO )_ g Cos” 0_Sin" 0.

647Cos> 0., m M?> /13/2(m§z ,m?l ’Mé ) (5.27)
w Mz, M5

Uciincii aile sleptonlar1 énemli bir oranda Higgs bozonlarina bozunabilir.
= (m ml ) (5.28)

Bu ifadede ise su tanimlamalar yapilmistir (Baer 2006),

A(V,%fllf ):\/Ei/[ {[mf] tanﬂ—MVZVSin2ﬂ]C0St9, (5.29)
. .

+m, [ pu+A, tanﬁ]Sin&’T}

Ve
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A(&T_)sz+):\/§§/[ {[ m2 tan B—M Sin2f3 |Sin, 530
) .

—m,, [ 11+ A4, tan B | Cos 6, }

Son olarak, stau’nun Higgs bozonuna ve snotrinoya bozunumu asagidaki gibi

hesaplanir.

~ ~ -\_ |A|2 1/2 2 2 2
T(#—>v.H ) T (m2.m m ) (5.31)
A2 >V, H )=A(V,>iH") (5.32)

Stau’nun yiikstiz Higgs bozonlarina (¢:h,H ,A) bozunumlarinin ifadeleri asagida

verilmistir.

2
r( fz—>fl¢)——‘ 4|

T AP (m m2my) (5.33)
Tmy;

4, =gﬁ4w Sin( B-a )Sin20,| ~1+3tan’ 6, |

- (5.34)
+LC0S291 [-uCosa+A4, Sina |
2M, Cos
A, =‘gi” Cos( f-a )Sin26, —1+3tan’ 6, |
(5.35)

+LC0S2HT[ySina+AT Cosa |
2M,, Cos

Ve
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igm
A, =———( u+ A4 tan 5.36
A 2MW(:Ll T ﬂ) ( )

5.3 Dallanma Oranlari

Biitlin bu elde edilen bozunum genisligi formiilleri dogrultusunda mSUGRA parametre
uzaymnda birka¢ nokta secerek sfermiyonlarin dallanma oranlarini bulabiliriz. Ornek
olmasi agisindan a, B ve y noktalarinin parametreleri kullanildiginda dallanma oranlari

asagidaki gibi bulunur,
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Alfa noktasi i¢in iigiincii aile sfermiyonlarinin dallanma oranlari,

ty, %23

by %22

b7b %60 by %19

- ty) %21 _— Zt  %l4
ty) %ld t7) %89

tgy %5 1y %6.5

hi, %45

t7) %21

t7; %35 b7, %34

ty, %23 Wi %22

b7 %20 ty, %ll
by - { Wi %5 b, »> { b7 %92
b7’ %l.S5 b7l %92
by!  %0.54 b7, %7.6
by, %031 by, %74

ty %98 vz %48

F o> vy %l4 £, > 7 %28
7, %0.85 ty %24

T %48.0
: v. 7l %315
v, 7y %205

<
2
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Beta noktas1 i¢in {icilincii aile sfermiyonlarinin dallanma oranlari,

ty, %24
b7k %23
by %50 by %15
N t7 %25 3 Zi %15

L, — o 5, — o0
ty, %15 ty, %9.7
b7, %95 t7 %84
hi %53

ty, %2

t7T %39 t7, %40

t7, %17 Wi %20

b7 %25 t7 %10

by — < Wi %13 by, > < b7 %9.1

b7 %32 b7 %8

b7 %14 b7 %6.6

by, %15 by, %63

V. IT %44

£ > |tz %100 Z, oty %24
iy %32

Ty %40.3
v, > < v,z %415

v. 7y %182
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Gama noktas1 i¢in ti¢lincii aile sfermiyonlarinin dallanma oranlari,

ty, %23
b7t %24
b7w %58 by: %24
y t7 %I18 s Zi %87
- o0 , - .
t7) %13 t7) %82
gy %11 tyy  %6.8
hi %34
t7) %1.6
) Wi o %I3
tyn %43 .
o tx %2.7
b7, %35 .
N t7, %45
N Wi %3 . o
b — ) b, - { b7 %29
b7 %75 o
s b7l %l7
bz, %44 .
- bzl  %l6
b7 %73 o
b7 %26
ty %70 v. 7o %49
F o> v,y %19 £ > 7 %3l
Ty, %ll ty %20
Ty %59.6

v, > < v,y %l6l
V.7 %244
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6. SFERMiYON KUTLE BELIRLEME YONTEMLERI

Teorik olarak 6ngoriilen sparcacik kiitle spektrumunun deneysel olarak gézlenmesi pek

kolay degildir. Bu kesimde yapilacak tartigsmalar genel olarak karanlik madde parcacigi

olarak nétralinonun ( 7 ) diisiiniildiigii durum igindir, bu durumda biitin SUSY

parcaciklar1 bu pargaciga bozunur ve bu pargacigin kendisi bozunmadan kalir. Notral ve
zayif etkilesen bu parcaciklar detektorler tarafindan algilanmadan kagabilirler. Buna
ragmen, uygulanan metotlar sayesinde (Choi vd. 2007, Choudhury vd. 2005, Dreiner
vd. 2011, Feng vd. 1994, Freitas vd. 2001, Godbole vd. 2005, Martin vd. 1999,
Saavedra 2005) yalnizca sparcacik kiitleleri dl¢lilmez ayni1 zamanda karisim acgilar ve

bu kiitleleri MSSM lagranjiyen parametrelerine doniistiiren diger bilgiler de 6l¢iiliir.

Benzer metotlar diger senaryolara da uygulanabilir. Ornegin; nétralinonun gravitasyonel
etkilesmeyle bir parcaciga bozundugu bir model olsun, eger bu algilanabilir bir
parcaciksa analize eklenebilir. Bu tip modellerde en hafif siipersimetrik pargacigin
yuklii bir slepton olmasi olasidir ve bu slepton kararhidir. Bu tip senaryolar ¢cok dikkat

cekici ve karakteristik olaylar iiretebilir.

SUSY spektrumunun deneysel c¢alisilmast yiiksek enerji deneylerinden verilerin
alinmasiyla baslamistir. Fakat LHC gibi bir hadron carpistiricisinda, siiper-pargacik
tiretimlerinde kinematik bilgilerin ¢ogu kaybolur ve spektrumu 6lgmek c¢ok 06zel
yontemler gelistirmeyi gerektirir. SUSY arastirma calismalar1 e e carpistiricisinda
(6rnegin Uluslararas1 Lineer Carpistirict (ILC)) daha da ileri gotiiriilebilir. Bu nedenle
e e carpistiricisinda SUSY spektrumunun nasil dlgiilebilecegi tartisilacaktir (Freitas vd.

2005, Mizukoshi vd. 2001, Nojiri vd. 1996, Oshimo 2005).

[k olarak en basit " e” — 1" fi” siirecinden baslanarak slepton cift iiretimi tartisilacak
ve 7 ’ya genisletilecektir. e e — 1" ji” (burada i sol ya da sag-elli x ’niin siiper-esi)
siireci skaler parcacik-antiparcacik iiretimi igin basit bir formiille analiz edilebilir.

Polarize baslangic durumlu elektron ve pozitronundan SU(2) x U(1) kuantum
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sayilartyla belirlenen son durum skalerlerine cift tiretim tesir kesitini veren ifade

asagidaki gibidir,
do o’ 5o 2
=—fSin" 0 6.1
dCos@ 2s P Sa .1
burada
I’ +Sin* 6 I’ +Sin* 0
f;b=1+( e w )( i w) S (62)

.2 2 2
Sin~ 6, Cos” 0, s—m,

ve (6.2) ifadesinde a,b=L,R icin I’ :—%,O dir. Baslangi¢c durumu igin, a=L e, e,

‘vi ve a=R ise e, e} y1 gosterir. Son durum igin, b=L ile f’y1 ve b=R ile 1’y

gosterelim. Bu tesir kesiti polarizasyon durumlarina giiclii bir sekilde bagimlidir (Peskin
2008)

£=1.690  ee i@

f=042 e >R
(6.3)

+ o~

fab2=0.42 e e, — [ [i

£=198  eet ot

Bir spin-0 parcaciginin ¢ift liretim karakteristigini agisal dagilim temsil eder, bu tesir

kesitinin normalizasyonu SU(2) x U(1) kuantum sayilarinin dogru kiimesini verecektir.

Eger smiion hafifse, yalnizca kinematik olarak izinli bozunumu ji—>u 7’ olabilir.

Smiion agir bile olsa bu bozunum olasidir. Burada R-paritenin korundugu ve %’ in

stiper-parcacik spektrumunda en hafif parcacik oldugu varsayilmistir. Bu bozunumlar

sonucunda her iki taraftaki olaylar su sekilde goriiniir,
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e" e —>u u +(kayip Eve p)

Gozlenen mionlarin spektrumu ¢ok basittir. 2z 'nin spini 0 oldugundan kendi durgun

cercevesinde bozunumu izotropiktir. Lab.’da belli bir kiitle merkezi enerjisinde iiretilen

£ ’lar belli bir enerjiyle iiretilir ve dolayisiyla belli bir boost kazanirlar. Bir izotropik

dagilimim boost kazanmasi enerjide diiz bir dagilm gosterir. Oyle ki, kinematik ile

tanimlanan ug¢-noktalar arasinda miion enerji dagilimi diiz olmalidir. Sekil 6.1°de
e"e —> [ fi~ siireci igin son durum miionlarinin  sematik enerji  dagilimi

gosterilmistir(Peskin 2008).

E(w)

Sekil 6.1 e"e” — fi" ji~ siireci i¢in son durum miionlarinin sematik enerji dagilimi

Ug-nokta enerji degerleri & ve 7 m Kkiitlelerinin basit fonksiyonudur ve su ifade ile

verilir,

E+=7/(1iﬂ); (6.4)

burada y=E,, /[2m, ve 8 =( 1-4m; / E. )1/2 olarak tanimlaniyor ve E,, kiitle merkezi

enerjisini gosterir (Peskin 2008). Eger her iki u¢ nokta konumlarini belirleyebilirsek
bilinmeyen iki kiitleyi bulabiliriz. Deneylerde bu yontem kullanilarak yaklasik 100

MeV dogrulukla smiion kiitlesi bulunabilir.
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Benzer bir analiz e'e” —7" 7 ’ye de uygulanabilir, fakat bu durumda birgok zorluk

ortaya ¢ikar. Ilk olarak, 7 sistemi i¢in 7 ve 7 arasindaki karisimin etkisi énemlidir
Ozellikle tanf biiyiik olursa, dolayisiyla iiretim tesir kesiti bu karisimdan direkt olarak
etkilenir. Ornegin, polarize baslangic durumundan hafif 7 kiitle ézdurumunun gift-

tiretimi i¢in su ifade bulunur,

do ra* ;.. , 2
=—— B 8Sin" 0 6.5
dCos@ 2s p Sin ‘fm‘ (6.5)
burada
le :fRR Cos® 91 +fRL Sin® ‘91 (6-6)

ve 6, 7 'nin kdsegenlestirilmesiyle iliskili olan karisim agisidir.

fkinci olarak, 7~ ayar baglagimi vasitasiyla 7, b ’ya bozunabilirken bu zayif 6zdurum
Yukawa baglagimiyla orantili terimler vasitasiyla 7, ﬁd ’ya da bozunabilir. Burada her

iki durumda 7, -7 7 gdzlenebilir bozunumuna katki verir. Tesir kesitinden dlgiilen 7

sabit karisim acgistyla, 7 bozunumunda 7 polarizasyonu kullanilarak nétralino kiitle

matrisinin kdsegenlestirilmesindeki karigim agilart tanimlanabilir.

Bu durumlara benzer olarak e" e” —v_v_ siirecinde enerjinin u¢ noktalari, secilen alfa,

beta ve gama noktalar1 igcin PYTHIA 6.4 kullanilarak su sekilde bulunur.
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do/dE, x 1 0%(fb/GeV)
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Sekil 6.2 e'e” —>V_V_—>7 " 7 % siireci sonucunda alfa noktast i¢in ortaya ¢ikan son

durum tau leptonlarinin enerji dagilimi (Ari vd. 2011)
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Sekil 6.3 e'e” >V V_—7 1" 7 7 siireci sonucunda beta noktasi igin ortaya ¢ikan son
durum tau leptonlarinin enerji dagilimi (Ari vd. 2011)
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Sekil 6.4 e'e” V. V. -7 " 7 7 siireci sonucunda gama noktast igin ortaya ¢ikan
son durum tau leptonlarinin enerji dagilimi (Ari vd. 2011)
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7. DORDUNCU AILE SFERMIYONLARININ ARASTIRILMASI

SM’ nin biitiin deneysel verilerle ¢ok iyi bir uyum gdstermesine ragmen bazi
problemleri agiklayamadigini biliyoruz. Bu problemlere agiklik getirebilmek amaciyla
SM 6tesinde farkli birgok yaklagim gelistirilmistir. Bunlarin en 6énemlilerinden birinin
Stipersimetri (SUSY) oldugu daha onceki bdliimlerde belirtilmistir. Bu kesimde
Standart Modelde dort aile olmasi durumu igin MSSM’ yi MSSM4’e genisletecegiz.

Son zamanlarda, Standart Modelin 4 aileli (SM4) olmasi durumu iizerine yapilan
caligmalar yogunluk kazanmistir(Alok vd. 2010, Bobrowski vd. 2009, Buras vd. 2010,
Chanowitz 2009, Chanowitz 2010, Ciftci vd. 2005, Erler vd. 2010, Hou vd. 2010, Sahin
vd. 2011, Soni vd. 2010, Sultansoy 2009). Yeni ¢alismalar SM ile SM4’iin benzer bir
yapiya sahip olmasi gerektigini gostermektedir. Deneyler tarafindan 4. aile lepton

kiitleleri tizerine getirilen giincel smirlamalar m, >100Gel” ve Dirac (Majorona)
nétrinolart i¢in m, >90(80)Gel (PDG 2010) olarak verilmektedir. Fermilab’da

bulunan Carpistirict Dedektoriiniin  (CDF) SM4 kuarklar1 icin getirdigi kiitle

sinirlamalart ise  m, >335GeV ve m, >338GeV olarak % 95 giivenilirlikle

verilmektedir (CDF Collaboration 2009). LHC deneyleri bu limitleri daha yukari
cekmistir: mys > 400 GeV (Atlas,2011). Diger yandan SM4 fermiyon kiitleleri igin
kismi-dalga tiniterligi 700 GeV’ lik (Chanowitz vd. 1979) bir list limite gotiiriir.

7.1 Dordiincii Aile Sfermiyonlari icin Ayar Baglasimlar1 ve RG Denklemleri

Standart Model durumunda ayar baglasimlarinin enerji dlgegine gore degisimini veren
grafigi 2. Boliimde gormiistiik. Burada 6nemli bir soru olarak su diisiiniilebilir; eger 4.
aile varsa ayar baglasimlar1 iizerine olan etkisi nasil olacaktir? Dordiincii ailenin varlig
yani SM4 durumunda ayar baglagimlarinin enerji Ol¢egine gore degisimini veren

bagintidaki b, katsayilar1 (-163/30, 11/6, 17/3) olarak yeniden tanimlanmalidir

(Kazakov 2001). Buna gore ayar baglagimlarinin SM4 durumu i¢in degisimi Sekil

7.1°de verilmistir.
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Sekil 7.1‘den de goriildiigii tizere SM4 durumunda da ayar baglasimlarinin ii¢ii i¢in yine
tam bir kesisme noktasi yoktur. Yalnizca Biiyilk Birlesme Olgeginde (BBO) bu

baglasimlarin degerleri SM dekine gore biraz daha artmustir.

w—r—r—-"m—7————— "+

Loy

60 F
sof

40k

i

ok

ok
1/ex;

1 1 1 1 1 1 1 1 1 1 1
5 10 15
Log|(QnGeVi|

Sekil 7.1 Ayar baglagimlarinin SM4 durumu i¢in enerji 6l¢egine gore degisimleri

Eger MSSM4 durumu diisiiniilecek olursa, 4. ailenin varlig1 ayar baglasimlarinin

kesisimi tizerine nasil bir etki yapar? Bu durumu gormek i¢in Sekil 7.2’ye bakabiliriz.

L L L 1 L A i i i L L
5 10 15
Log|QiGeV|

Sekil 7.2 Ayar baglasimlarinin MSSM4 durumu i¢in enerji 6lgegine gore degisimleri

Sekil 7.2’den goriildiigi gibi 4. ailenin var olmasi durumu ayar baglasimlarinin
birlesmesine bir engel teskil etmemektedir. Ayrica BBO’ de bu baglasimlarin

degerlerinin daha biiyiik olmasini sagliyor. Buna gore MSSM ig¢in diisiiniilen durumlar
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arttk MSSM4°e genellestirilebilir. Bu dogrultuda MSSM4 durumunda 3. aile ve 4. aile
sfermiyon kiitlelerinin enerji dlgegine bagimli degisimini veren Renormalizasyon Grup

Denklemleri (Chung vd. 2005) sleptonlar ve skuarklar i¢in ayr1 ayr1 asagida verilmistir,

daM . 2
7:1672'2 bigizMi (7.1)

Yukawa baglagimlari i¢cin RG denklemleri,

%:16);?{ 6yf+y,f+3yt2"(%g3+3g§+%g§)}

%:lg;rz{ 6yf+y§v+3yf—(%g12+3g22+?g32j}

%zlébﬁ {6y5+3y;+ytz+y§ +yf.—(%gf+3g§+%g§j}
cg:,:lg,,z{6y§,+3y;+y;,+y3+yf.—(%gf+3g§+?g§)} (7.2)
%_lg—;z{ztymyé+3y§+y3‘(§g12+3g22 )}

d;; :1g;2 {4yfv+3yfv+3yf+y3'_(§g‘2+3g22 j}

Uclii dogrusal baglasimlar igin RG denklemleri asagidaki gibi olur,
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d4 1 13 16
- :y{m VEA3A, Y+ 4,7 —(Eg5M1+3g§M2+§g§M3 j}
dd, 1 13 16
dtt :@{64.)/3.4-34 Vi + A4,y —(ngM1+3g§M2+?g§M3 ]}
L6y + 43743 Ay it Ay 4 A gt M,
dt Vs 15
(7.3)
2 16 ,
+3g2M2+?g3 M,
dAv 1 2 2 2 2 2 7
dt” ZW{M" Vp + Ay, +34, v, + Ay + Ay, - 15& M,
g |
B L 4y e 402434, v 43 4, -] 2 g2 M, +3g2 M,
dt  8x° 5
dA.. 2 2 2 2 (9 2
=g 7 | HAyet Ay +34, v 434, -\ S & Mi+3g M, (7.4)
o= 12{4Awyf-+Ar-yfv+3A,vyf+3A,yf—(§ng1+3g§Mz)}
t T 5
X, =mg +m; +my + A’
X, =mp +m] +my +4;
X,=my +m; +my + A4
X, =m} +m~, +m? + A 7.5
b Q H, b
X, = f +m’ +m,2,d+Af
X, =m; +m +my +A.
X, mL +m, +mH + A4,
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Yukarida yapilan tanimlamalar kullanilarak iigiincii ve dordiincii aile sfermiyonlarinin

kiitleleri i¢in denklemler,

dm?, 1
oLt rnin-(Lem g g )|
dm’ 1
oLl iix (L anagn+ e )]
dm? 1 16 16
R _ 22 X | 2o 21 2 02 ap2
i 87[2{ Vi Ay (15& 1 T8 3] )
7.
dm;, 1 ) 6 , , 16 , 79
i :87r2 2y, X, - E M ? s M
dm; | 4 16
bR
el (gl )|
dm;, | 4 16
b'r _
e e s )}
Uciincii aile sleptonlarini kiitleleri i¢in denklemler
dmi 1 2 2 2 2 2
7:87Z2 V. X, —| —g M;+3g, M,
dm; 1 3
e x| e g )|
dm; 1 12
o -2 | a7
dm? 12
Tr — 2 2X _ -~ 2M2
dt 87[2{ yr T 5 gl 1 }
am. 1 )
Py R

Higgs kiitleleri i¢in denklemler asagidaki gibidir,
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dm;, 1 3
—TE {3%3 X, + 375 X+ y: X 40 Xr(ggf M +3g; M, j

2
dmy

dt 8’

(7.8)

3
fsexsanixnx~{ Jam g )|

Bu denklem takiminda 4. ailenin nétrinosunun kiitleli oldugu durum diisiiniilerek
getirecegi katk1 da goz oniine alimustir. Bu denklemler BBO diisiiniilerek tanimlanan
parametre uzayinda secilen 5 nokta i¢in es zamanli olarak Mathematica yardimiyla
¢Ozdiiriilebilir. Bunun sonucunda zayif oOlcekte 4. aile sfermiyonlart igin bir kiitle
spektrumu elde edilir. Iki farkli parametre seti i¢in 6rnek bir hesaplama Cizelge 7.1 de

verilmigtir.

Cizelge 7.1 Parametre uzayinda seg¢ilen iki farkli nokta i¢in 4. aile sfermiyonlarinin
kiitle spektrumu

4. Aile Sfermiyonu AOZIOO, m0=300, m1/2=200 A0:150, m0=200, m1/2=150
tanp=1.8, sign(p)=1 tanp=1.5, sign(p)=1
m;, (GeV) 100 125
m;, (GeV) 240 210
m;, (GeV) 250 220
m;. (GeV) 400 300
ms (GeV) 360 280
m; (GeV) 290 240

7.2 Dordiincii Aile Yiiklii Sleptonlarimin Uretimi

Bu kesimde stlipersimetrik 4. aile yiiklii sleptonunun (l~4) lineer carpistiricilarda ¢ift
tiretimi incelenecektir. Ayrica iretilen bu sleptonlarin 4. aile ndtrinosuna (v, ) ve

yiikinoya ( 7, ) bozundugu durum disiiniilecek. Burada R-paritenin korunumunun
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diistiniilmesi ve en hafif siipersimetrik pargacigin nétralino ( 7 ) alinmasi nedeniyle

yiikinonun nétralinoya ( 7 ) ve W~ bozonuna gegisi incelenmistir.

Burada yapilacak ilk sey 4. ailenin MSSM’ ye dahil edilmesidir. (Z~4, . ) bazlarinda

bu sleptonlarin kiitle matrisi su sekilde verilir,
mam,
M= ) (7.10)

bu kiitle matrisi i¢in su tanimlamalar yapilmistir,

m? :Mg4 +m; —m, C0s2,8(%—5in2 0, j

lay

m? :M§4+mi—m§ Cos23Sin* 6, (7.11)

lr

a, =4, —ptan f

I~4, ve l~4h kiitle 6zdurumlarinin l~4L ve IN4R ile olan iliskisini veren bagint1 su sekildedir,

I Cos®,  Sin6, \(]
~4l — 4 4 jL (7 12)
Ly, —Sin 91} Cos t91‘4 Lz

Buradan yola ¢ikildiginda kiitle 6zdegerleri ve karisim agisi icin su ifadelere ulasilir,

1 1 2
2 2 2 —_ 2 2 2 2
mi4(1,/,) :E( ml~4L +ml~4R )+5\/( mlu _ml:m ) +4al4 ml4 (713)
—-a, m
Cos 0, = b (7.14)

2 2 2 2 2
m. —ms +a m
lyy, lyp Iy "
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(7.13) denklemine bakilacak olursa m, *lin degeri ne kadar biiyiik olursa l~4, ’lin o kadar

hafif olmasi1 gerektigi goriilebilir.

Artik e*e”—1; [ siireci igin tesir kesitine bakabiliriz. Bu siire¢ iin tesir kesitinin

ifadesi asagidaki gibi olur,

2
o T\ o 2 V2 a,4,s
(7(6 e >, 1, )— 3 (s 4sml~4[) [1+8Sin2 0 Cos’ 0, Re[ D(Z) ]

7.15

aﬁ(3§+af )s2 5 (7.15)

— - |D@)|
256 Sin" 0, Cos™ 0,
burada D(Z):l/lis_mé-"lrz mz] 5 196 =—1+4Sin2t9w 5 Cle=—1 ve

a, :2( ~Cos’0, +25in0, ) olarak tanimlantyor. Eger Cos’ 6, =2Sin* @, olursa Z

bozonu ile olan etkilegsme ortadan kalkacaktir. (7.15)‘den tesir kesitinin hangi karisim
acis1 degerinde minimum verdigi bulunabilir. Buna gore tesir kesitinin minimum oldugu

duruma kars1 gelen karigim agisinin ifadesi

_ 2
STM 4% o5t } (7.16)

s F+a "

e

Cos® o, :2Sinﬁw{l—

olarak bulunur.

Tesir kesitinin belirli slepton4 kiitleleri ve kiitle merkezinin 3 TeV oldugu durum igin
karisim agisina gore degisimi Sekil 7.3°de verilmistir. Bu grafikten goriilecegi {izere
slepton kiitlesi sadece tesir kesitinin biiylikliiglinii degistiriyor fakat agiya bagimlilik

bi¢im olarak ayni kaliyor. Ayrica Cos @, yaklasik olarak 0.6 degerini aldiginda tesir

kesiti ifadesi en kiiciik degerini almaktadir.
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Sekil 7.3 l~4 iiretim tesir kesiti ifadesinin karisim agisina gore degisim grafigi

ao(fh)

(%]

m, =100 GeV
.ar R, .
m, =300 GeV ----
m, =500 GeVv ....
3l s
5'_ ’
- P
‘”“ﬁ..h -
— -
&r T e - -
S
------------ -~
~~~~~~ .-
0 0.2 0. 0.6 0.8

(kiitle merkezi enerjisi 3 TeV) (Ari vd. 2011)

Karisim agis1 Cos 0,4 =0.6 degerinde tutuldugu ve kiitle merkezi enerjisinin 1 TeV ve 3

TeV olarak alindig1 durumda tesir kesitinin kiitleye gore degisiminin grafigi Sekil 7.4 de
verilmigstir. Kesikli ¢izgi kiitle merkezi enerjisinin 1 TeV oldugu ve siirekli ¢izgi ise

kiitle merkezi enerjisinin 3 TeV oldugu durumu gostermektedir. Grafikten gorildiigii
tizere kinematik limit degerlerinde tesir kesiti degerleri sifira gitmektedir. Eger l~4

kiitlesi yaklasik 400 GeV gibi bir degere sahipse ILC de bu tiretimi 5 fb tesir kesiti ile

gorebiliriz.

o fbh)

Sekil 7.4 Tesir kesitinin kiitle merkezi enerjisinin 1 TeV ve 3 TeV oldugu durumlar
icin l~4’n1n kiitlesine gore degisimini gostermektedir. (Ari vd. 2011)

400

600 g00 1000

H$‘(GeV}

1200
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Uretilen l;’larm sekil 7.5°de verilen bozunum kanallarin1 diisiinelim. Bu sinyal i¢in

arkaplan neredeyse yoktur.

Sekil 7.5 l~4 ’larin g6z oniinen alinan bozunum kanallar1 (Dirac tipi nétrinolar i¢in)

Notrinolar Dirac  tipi  oldugunda detektor tarafindan algilanacak  sinyal

3u" +u" +4 jet+ E, olacaktir. Eger ndtrinolar Majorona tipi olursa detektdr tarafindan

algilanacak sinyal 3 u~ +6 jet+ £, olur. Bu durumlar igin l~4 kiitlelerine ve kiitle

merkezi enerjilerine gore olay sayisi1 degerleri ¢izelge 7.2°de verilmistir.

Cizelge 7.2 3™+ u* +4jet+,ET Bu + 6jet+ET) son durumu igin l~4
kiitleleri ve farkl kiitle merkezi enerjileri igin tesir kesiti (ab) (Ari vd. 2011)

Kiitle(GeV) Js =1Tev Js =3Tev
200 24.6 (38.0) 3.4(5.4)
300 16.4 (25.4) 3.4(5.2)
400 7.0 (10.6) 3.2 (5.0)
450 2.6 (4.0) 3.0 (4.8)
500 0 (0) 3.0 (4.6)
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8. TARTISMA VE SONUC

Tez kapsaminda 3. aile sfermiyonlarinin {iretimleri elektron-pozitron ¢arpistiricilarinda
gelen demetlerin polarize olmayan ve polarize olan durumlar i¢in yapilmistir. Bulunan
sonucglardan polarize durumlarin iiretim tesir kesitlerini artirict etkide bulundugu
goriilmiistlir. Ayrica sadece polarize durumlar iiretim tesir kesiti degerlerini artirmakla
kalmaz ayn1 zamanda SM arkaplanindan gelecek olan katkilar1 da azaltarak SUSY i¢in
daha temiz sinyaller verecektir. Buradan da sparcaciklarin kiitleleri, karigim agilari,

baglasimlar1 lizerine daha hassas dl¢timler yapilabilecektir.

Burada problem olarak goriinen bir durum gelecek dogrusal carpistiricilarda
kazanilacak olan demet polarizasyon serbestliginin hala belirsiz olmasidir. Yani
elektron demetleri i¢in polarizasyon % 80 ya da daha iizeri olarak disiiniilebilirken, bu
durum pozitronlar icin c¢ok belirgin degildir. Pozitronlar durumunda demet
polarizasyonunda hedef % 60 olarak goriiniiyor. Teorik olarak elde edilen polarize tesir
kesiti ifadelerinden, elektron-pozitron polarizasyonunun bu degerlerine ragmen tesir
kesiti degerleri polarize olmayan durumdan yaklasik olarak 1.4 kat daha biiyilik

olmaktadir.

LHC veri toplamas1 devam etmektedir ve alinan veriler i¢in analiz ¢aligmalar1 hizla
stirmektedir. Eger bu veri analizleri sonucunda sfermiyonlara rastlanirsa ve Kkiitleleri
Olciilebilirse o zaman dogrusal carpistiricilarin 6nemi daha da artacaktir. Ciinkii kiitleler
hakkinda verilerden elde edilen sonuglar kullanilarak polarize demetlerle dogrusal
carpistiricilarda esik taramasi yontemi kullanilarak 6zel siiregler ig¢in temel model

tizerine daha hassas sonuglara ulasilabilir.

Ayrica tez kapsamina, 4 aileli duruma genisletilmis SM4’e kars1 gelen MSSM4 de dahil
edilmistir. MSSM4 i¢in Renormalizasyon Grup Denklemleri i¢in Mathematica
kullanilarak bir kiitle spektrumu hesab1 yapilmistir. Bunun devami olarak e'e’
carpistiricisinda dordiincii aile yiiklii sleptonu ¢ift tiretimi yapilmistir. Yapilan hesaplar
sonucunda lab™ icin ILC’de dérdiincii aile yiiklii sleptonunun kiitlesini 300 GeV e

kadar 7.3 istatistiksel giivenilirlikle bulabiliriz. Istatistiksel giivenilirligin 3 oldugu
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gozlenebilir limit i¢in bu kiitle degeri 420 GeV olmaktadir. Kiitle merkezi 3 TeV olan
CLIC’de Z~4 iiretiminde 1 ab”' toplam 1sinlik igin 500 GeV kiitleye kadar

ulasilabilinecektir.

100



KAYNAKLAR

Aad, G. vd. 2011. Search for heavy long-lived charged particles with the ATLAS
detector in pp collisions at Vs=7 TeV. Phys. Lett. B, Vol. 703,pp. 428-446

Aad, G. vd. 2011. Search for stable hadronising squarks and gluinos with the ATLAS
experiment at the LHC. Phys. Lett. B, 701, 1-19

Aitchison, 1. 2007. “Supersymmetry in Particle Physics”, Cambridge University Press,
UK.

Alok, A. K., Dighe, A. and London, D. 2010. Constraints on the Four-Generation Quark
Mixing Matrix from a Fit to Flavor-Physics Data. Phys. Rev. D, 83, 073008.

Altonen, A.T. vd. 2009. CDF Collaboration. arxiv: 0912.1057 [hep-ex]

Ari, V. and Cakir, O. 2011. Pair Production Tau Sneutrinos at Linear Colliders. MPLA,
26, 24, 1-14.

Ari, V., Cakir, O., Cakir, I.T. and Sultansoy, S. 2011. Pair Production of the Fourth
Family Charged Sleptons at ¢ e Colliders. EPL, 94, 21001.

Baer, H., Tata, X. 2006. "Weak Scale Supersymmetry”, Cambridge University Press,
p-208, UK.

Bartl, A., Eberl, H., Kraml, S., Majerotto, W. And Porod, W. 2000. Phenomenology of
Stops, Sbottoms, T-Sneutrinos and Staus at an e'e” Linear Collider. Eur. Phys.
J. direct C2, 6

Bobrowski, M., Lenz,A., Riedl, J. and Rohrwild, J. 2009. How much space is left for a
new family of fermions?. Phys. Rev. D, 79, 113006.

Boos, E. vd. 2004. CompHEP Collaboration. Nucl. Instrum. Meth. A , 534, 250

Buras, A. J., Duling, B., Feldmann, T., Heidsieck, T., Promberger, C., Recksiegel, S.,
2010. Patterns of Flavour Violation in the Presence of a Fourth Generation of
Quarks and Leptons . JHEP, 1009, 106.

Castano, D.J., Piard, E.J. and Ramond, P. 1994. Renormalization group study of the
Standard Model and its extensions: The Minimal supersymmetric Standart
Model. Phys. Rev. D, 49, 4882

Chanowitz, M. S., Furman, M. A. and Hinchliffe, I. 1979. Weak interactions of ultra
heavy fermions. Phys. Lett. B, 78, 285.

101



Chanowitz, M. S. 2009. Bounding CKM mixing with a fourth family. Phys. Rev. D, 79,
113008.

Chanowitz, M. S. 2010. Higgs mass constraints on a fourth family: Upper and lower
limits on CKM mixing.Phys. Rev. D, 82, 035018.

Choi, S.Y., Hagiwara, K., Kim, Y.G., Mawatari, K., Zerwas, P.M. 2007. 1 Polarization
in SUSY Cascade Decays. Phys. Lett. B, 648, 207-212.

Choudhury, D., Rai, S. K. and Raychaudhuri, S. 2005. Tagging Sneutrino Resonances at
a Linear Collider with Associated Photons. Phys. Rev. D, 71, 095009.

Chung, D.J.H., Everett, L.L., Kane, G.L., King, S.F., Lykken, J. and Wang Lian-Tao
2005. The supersymmetry-breaking Lagrangian: theory and applications.
Physics Reports, 407, 1-203

Ciftei, A. K., Ciftci, R. and Sultansoy, S. 2005. Fourth standard model family neutrino
at future linear colliders. Phys. Rev. D, 72,053006.

De Roeck, A., Ellis, J., Gianotti, F., Moortgat, F., Olive, K.A., Pape,L. 2007.
Supersymmetric Benchmarks with Non-Universal Scalar Masses or Gravitino
Dark Matter. Eur. Phys. J. C 49, 1041-1066.

Djouadi, A., Kneur, J. L. and Moultaka, G. 2002. SuSpect: a Fortran Code for the
Supersymmetric and Higgs Particle Spectrum in the MSSM. arXiv:hep-
ph/0211331.

Dreiner, H.K., Kittel, O. and Marold, A. 2011. Normal tau polarisation as a sensitive
probe of CP violation in chargino decay. Phys.Rev.D, 82, 116005.

Eberl, H., Kraml, S. and Majerotto, W. 1999. Yukawa coupling corrections to stop,
sbottom and stau production in ¢'e” annihilation. JHEP, 05, 016.

Erler, J. and Langacker, P. 2010. Precision Constraints on Extra Fermion Generations.
Phys. Rev. Lett., 105, 031801.

Fayet, P. and Iliopoulos, J. 1974. Spontaneously Broken Supergauge Symmetries and
Goldstone Spinors. Phys. Lett. 51B, 461-4.

Feng, J. and Finnell, D. 1994. Squark Mass Determination at the Next Generation of
Linear e"e Colliders. Phys. Rev. D 49, 2369.

Freitas, A., Porod, W. and Zerwas, P. M. 2001. Determining sneutrino masses and

physical implications. Phys. Rev. D, 72, 115002.

102



Freitas, A. , von Manteuffel A. and Zerwas, P. M. 2005. Sneutrino Production at e'¢e”
Linear Colliders: Addendum to Slepton Production. Eur. Phys. J. C, 40, 435.

Godbole, R.M., Guchait, M. and Roy, D.P. 2005. Using Tau Polarization to
Discriminate between SUSY Models and Determine SUSY Parameters at
ILC. Phys. Lett. B 618, 193-200.

Hou, W. S. and Ma, C. Y. 2010. Flavor and CP violation with fourth generations
revisited. Phys. Rev. D, 82, 036002.

Kazakov, D. I. 2001. Beyond The Standard Model (In Search of Supersymmetry).
arXiv:hep-ph/0012288v2

Martin, H. U. and Blair,G.A. 1999. Determination of sparticle masses and SUSY
parameters. arXiv:hep-ph/9910416.

Mizukoshi, J. K., Baer, H., Belyaev, A.S. and Tata, X. 2001. Sneutrino mass
measurements at e e Linear Colliders. Phys. Rev. D, 64, 115017.

Nakamura, K. et al. 2010. Particle Data Group. J. Phys. G, 37, 075021

Nojiri, M.M., Fuyjii, K. and Tsukamoto, T. 1996. Confronting the minimal
supersymmetric standard model with the study of scalar leptons at future
linear e"e” colliders. Phys. Rev. D 54, 6756.

Oshimo, N. 2005. Generation-changing interaction of sneutrinos in e'e” collisions. Eur.
Phys. J. C, 39, 383.

Peskin, M. E. 2008. Supersymmetry in Elementary Particle Physics. arXiv:0801.1928.

Physics and Detectors at CLIC, CLIC CDR, Edited by L. Linssen et al., CERN-2012-
003

Saavedra, J. A. A. 2005. Sneutrino cascade decays as a probe of chargino spin
properties and CP violation. Nucl. Phys. B, 717, 119.

Sahin, M., Sultansoy, S. and Turkoz, S. 2011. Search for the fourth standard model
family. Phys. Rev. D, 83, 054022.

Sjostrand, T., Mrenna, S. and Skands, P. 2006. PYTHIA 6.4 Physics and Manual,
arXiv:hep- ph/0603175.

Sohnius, M.F. 1985. Introducing Supersymmetry. Phys. Rept., 128, 39-204

Soni, A., Alok, A.K., Giri,A. , Mohanta,R. and Nandi,S. 2010. Standard model with
four generations: Selected implications for rare B and K decays. Phys. Rev.

D, 82, 033009.

103



Sultansoy, S. 2009. The Naturalness of the Fourth SM Family. arXiv:0905.2874 [hep-

ph].
Wess, J. and Zumino, B. 1974. A Lagrangian Model Invariant Under Supergauge
Transformations. Phys. Lett. 49B, 52-4

104



OZGECMIS

Adi1 Soyadi : Volkan ARI
Dogum Yeri : Divrigi / Sivas
Dogum Tarihi :23/09/1979
Medeni Hali : Bekar
Yabanci Dili : Ingilizce

Egitim Durumu (Kurum ve Yil)

Lise : Bagkent Lisesi (1996)
Lisans : Ankara Universitesi Fen Fakiiltesi Fizik Bolimii 2004
Yiksek Lisans - Ankara Universitesi Fen Bilimleri Enstitiisii

Fizik Anabilim Dal1 (2007)

Calistig1 Kurum/Kurumlar ve Y1l :

Ankara Universitesi Fen Fakiiltesi Fizik Boliimii, Arastirma Gérevlisi (2009-)

Yayinlari

Ari, V. and Cakir, O. 2011. Pair Production Tau Sneutrinos at Linear Colliders. MPLA,
26, 24, 1-14.

Ari, V., Cakir, O., Cakir, I.T. and Sultansoy, S. 2011. Pair Production of the Fourth
Family Charged Sleptons at ¢ ¢ Colliders. EPL, 94, 21001.

105



