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A GROENEWOLD-VAN HOVE THEOREM FOR 52

MARK J. GOTAY, HENDRIK GRUNDLING, AND C. A. HURST

ABSTRACT. We prove that there does not exist a nontrivial quantization of
the Poisson algebra of the symplectic manifold S? which is irreducible on the
su(2) subalgebra generated by the components {S1, S2, S3} of the spin vector.
In fact there does not exist such a quantization of the Poisson subalgebra
‘P consisting of polynomials in {S1,S2,S3}. Furthermore, we show that the
maximal Poisson subalgebra of P containing {1,S1,S2,S3} that can be so
quantized is just that generated by {1, S1, S2,S3}.

1. INTRODUCTION

In a striking paper, Groenewold [Gr] showed that one cannot “consistently”
quantize all polynomials in the classical positions ¢° and momenta p; on R?”. Sub-
sequently Van Hove [VH1, VH2] refined and extended Groenewold’s result, in effect
showing that there does not exist a quantization functor which is consistent with the
Schrédinger quantization of R?". (For discussions of Groenewold’s and Van Hove’s
work and related results, see [A-M, C, F, Gol, G-S, J] and references contained
therein.) However, these theorems rely heavily on certain properties of R?", and
so it is not clear whether they can be generalized. Naturally, one ezpects similar
“no-go” theorems to hold in a wide range of situations, but we are not aware of
any previous results along these lines.

In this paper we prove a Groenewold-Van Hove theorem for the symplectic mani-
fold S2. Our proof is similar to Groenewold’s for R?", although it differs from his in
several important respects and is technically more complicated. On the other hand,
as S? is compact there are no problems with the completeness of the flows gener-
ated by the classical observables, and so Van Hove’s modification of Groenewold’s
theorem is unnecessary in this instance.

To set the stage, let (M,w) be a symplectic manifold. We are interested in
quantizing the Poisson algebra C°°(M) of smooth real-valued functions on M, or
at least some subalgebra C of it, in the following sense.

Definition 1. A prequantization of C is a linear map Q from C to an algebra of
self-adjoint operators' on a Hilbert space such that

(i) Q({f.g}) = —i[Q(f), Q(9)],

where {, } denotes the Poisson bracket and [, ] the commutator. If C contains the
constant function 1, then we also demand
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(i) (1) = I.

As is well known, it is necessary to supplement these conditions for a prequan-
tization to be physically meaningful. To this end, one often requires that a certain
subalgebra B of observables be represented irreducibly. Exactly which observables
should be taken as “basic” in this regard depends upon the particular example at
hand; one typically uses the components of a momentum map associated to a (tran-
sitive) Lie symmetry group. For R?" the relevant group is the Heisenberg group
[F, G-S] and B = span{1,¢*,p;|i = 1,... ,n}. In the case of S? the appropriate
group is U(2), whence the basic observables are span{l, S, S2,S3}, the S; being
the components of the spin angular momentum.

Alternatively, one could require the strong von Neumann rule [vN]

Q(k(£) = k(Q(f))

to hold for all polynomials k and all f € C such that k(f) € C. Usually it is
necessary to weaken this condition [F], insisting only that it hold for a certain
subclass B of observables f and certain polynomials k. We refer to this simply as a
“yon Neumann rule.” In the case of R?", the von Neumann rule as applied to the
q" and p; with k(z) = 22 is actually implied by the irreducibility of the Q(q%) and
Q(p;i) [C]. But the corresponding statement is not quite true for S, as we will see.
We refer the reader to [F] for further discussion of von Neumann rules.

In our view, imposing an irreducibility condition on the prequantization map Q
seems more compelling physically and pleasing aesthetically than requiring Q to
satisfy a von Neumann rule. With this as well as the observations above in mind,
we make

Definition 2. A quantization of the pair (C,B) is a prequantization of C which is
irreducible on B, where C C C*°(M) is a given Poisson algebra, and B C C a given
subalgebra.

The results of Groenewold and Van Hove may then be interpreted as showing
that there does not exist a quantization of the pair (C°° (R?"), span{1, ¢, p; |i =
1,... ,n}) nor, for that matter, of the subalgebra of all polynomials in the ¢* and
pi- We will prove here that there likewise does not exist a quantization of the
pair (C">"(S2)7 span{1, S, 52,3’3}) nor, for that matter, of the subalgebra of all
polynomials in the components S; of the spin vector.

2. No-GO THEOREMS

Consider a sphere S? of radius s > 0. We view this sphere as the “internal”
phase space of a massive particle with spin s and realize it as the subset of R? given

by
(2.1) S1% 4 Sy% + 837 = 2,
where S = (51, S9,.93) is the spin angular momentum. The symplectic form is?
1 3
w=5s > €ijrSidS; AdSy
3,5, k=1

2Note that w is 1/s times the area form do on S2. It is the symplectic form on S? viewed as
a coadjoint orbit of SU(2).
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with corresponding Poisson bracket

3
_ g 9f 99
(22) {f}g} - Zj;_l G’ijS’L 857 8Sk

for f,g € C°°(S?). We have the relations {S;,S;} = Zi:l €ijkSk-

The group SU(2) acts transitively on S? with momentum map S = (51, So, S3),
i.e., the pair (S%,SU(2)) is an “clementary system” in the sense of [W]. Thus
it is natural to require that quantization provide an irreducible representation of
SU(2). In terms of observables, quantization should produce a representation which
is irreducible when restricted to the subalgebra generated by {57, 52, S3}. However,
this subalgebra does not include the constants. To remedy this, we consider instead
the central extension U(2) of SU(2) by the circle group with momentum map
(1,51, 852,53), and take the subalgebra generated by these observables to be the
basic set B in the sense of the Introduction.

Let P denote the Poisson algebra of polynomials in the components Sy, Sa, S5
of the spin vector S modulo the relation (2.1). (This means we are restricting
polynomials as functions on R3 to S2.) We shall refer to an equivalence class
p € P as a “polynomial” and take its degree to be the minimum of the degrees of
its polynomial representatives. We denote by P* the subspace of polynomials of
degree at most k. In particular, P! is just the Poisson subalgebra generated by
{1, 51, 52,53}

When equipped with the L? inner product given by integration over S2, the vec-
tor space P*¥ becomes a real Hilbert space which admits the orthogonal direct sum
decomposition P*¥ = Gaf:o H;, where H; is the vector space of spherical harmonics
of degree [ (i.e., the restrictions to S? of homogeneous harmonic polynomials of
degree | on R® [A-B-R]). Note that H; is the Poisson subalgebra generated by
{S1,52,53}. The collection of spherical harmonics {Ylm, l=0,1,... ,k, m =
-, —-l+1,... ,l} forms the standard (complex) orthogonal basis for the complexi-
fication 7)@:

mi*ys ma 2
/S2 lel }/lg do =s 611126m1m2'

Thus if p € P(’C“, we have the harmonic decomposition
(2:3) P =Pk +Pe1+-+po,
where p; € (H;)c is given by

l
1 m* m
(2.0 pl—s—zm;(/szn pio ) 7"

It is well known that O(3) acts orthogonally on P, and that this action is ir-
reducible on each H; where it is the standard real (orbital) angular momentum I
representation. The corresponding infinitesimal generators on H; are L; = {S;,-}.
If we identify o(3) and H; as Lie algebras, it follows that the “adjoint” action of
H1 on H; given by S; — {S;,} is irreducible as well.

Now suppose Q is a prequantization of P, so that

3
(2.5) [Q(5:), Q(8;)] =1 €i;nQ(Sk)
k=1
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and
(2.6) Q(8?) =51

If in addition Q is a quantization of (P, P!), then P! must be irreducibly repre-
sented. Since as a Lie algebra P! is isomorphic to u(2), its irreducible representa-
tions are all finite-dimensional.® These are just the usual (spin angular momentum)

representations labeled by j = 0, %, 1,..., where*
3
(2.7) > 0(8)? =i+ DI
i=1

The Hilbert space corresponding to the quantum number j has dimension 25 + 1,
with the standard orthonormal basis {| j,m), m = —j,—j+1,...,j} consisting of
eigenvectors of Q(S3). We regard the representation defined by j = 0 as trivial, in
that it corresponds to quantum spin 0.

The following result shows that quantizability implies a weak type of von Neu-
mann rule on P!

Proposition 1. If Q is a quantization of (P, P'), then

(28) Q(Sﬂ) = CLQ(SZ)Q +cl

fori=1,2,3, where a and c are real constants with a® + c? # 0. Furthermore, for
i £,

(29) Q(8:51) = 5(Q(S)Q(S) + QS Q(S1)).

We have placed the proof, which is rather long and technical, in Appendix A so
as not to interrupt the exposition.

Observe that on summing (2.8) over i, we get s> = aj(j + 1) + 3¢, which fixes
the constant ¢ in terms of s, j and a.

From these relations the main result now follows.

Theorem 2 (No-Go Theorem). There does not exist a nontrivial quantization of

(P,Ph).

Proof. Suppose there did exist a quantization Q of (P, P'); we shall show that for
7 > 0 this leads to a contradiction.
First observe that we have the classical equality

8253 = {512 — 522, 5152} — {5253, 5351}.
Quantizing this, a calculation using (2.8), (2.9), (2.5) and (2.7) gives

i 3
#Q(s) = (3t 1) - § ) a(sa)
Thus either Q(S3) = 0, whence j = 0, or j > 0, in which case

(2.10) s =a? <j(j +1) - %)

3Every irreducible representation of u(2) = su(2) x R by (essentially) self-adjoint operators
on an invariant dense domain in a Hilbert space can be integrated to a continuous irreducible
representation of SU(2) xR [B-R, §11.10.7.3]. But it is well known that every such representation
of this group is finite-dimensional.

4In what follows we use standard quantum mechanical notation, cf. [M].
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Observe that when j = %, this implies that s = 0, which is impossible. Henceforth
take 7 > %
Next we quantize the relation

3
25%5593 = {957, {5152, 5155} } — 1{512, {517, 9255} }.
Using (2.9), (2.8), (2.5) and (2.7), the Lh.s. becomes

as®(Q(S2)Q(S3) + Q(53)Q(S2)) = as®(20(52)Q(S3) —iQ(S1))

while the r.h.s. reduces to
9
(it-+1) - §) 2o - ie(s).

Since for j > % the matrix element

(3.412€(5)0(89) ~10(50)13.4-1) =1( 5 - 1) V2

is nonzero, it follows that

as® = a3<j(j—|— 1) — %).

If a = 0 (2.10) yields s = 0, whereas if a # 0 this conflicts with (2.10). Thus we have
derived contradictions provided j > 0. Since j = 0 is the trivial representation, the
theorem is proven. O

This contradiction shows that the quantization of (P, P') goes awry on the level
of quadratic polynomials. On the other hand, there are many quantizations of
the pair (P!, P!) of all polynomials of degree at most one, viz. the irreducible
representations @ of u(2) with Q(1) = I. Thus it is of interest to determine
the largest subalgebra of P containing {1, 57, 53, S5} that can be quantized. We
will now show that this largest subalgebra is just P! itself. Unfortunately, this is
not entirely straightforward, since P! is not a maximal Poisson subalgebra of P;
indeed, if O denotes the Poisson subalgebra of odd polynomials (i.e., polynomials
all of whose terms are of odd degree), then P! is contained in O = O @ R.

To prove the result, we proceed in two stages. First we show that P! is maximal
in O, and then we prove a no-go theorem for O.

Proposition 3. P! is mazimal in 0.

Proof. Actually, the constants are unimportant, and it will suffice to prove that the
Poisson subalgebra H; generated by {S7, S, S3} is maximal in O.

Set O = O N P!, where henceforth [ is odd. For k odd it is clear from (2.2) and
(2.1) that {Hy, H;} C OF+H-L,

Let R be the Poisson algebra generated by a single polynomial r € O of degree
[ > 1 together with H;. Evidently R C O; we must show that O C R. We will
accomplish this in a series of lemmas.

Lemma 1. If in its harmonic decomposition an element of R has a nonzero com-
ponent in Hy, then Hyi C R.
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Proof. Let R’ C R be the span of all elements of the form

{hn7 e {hg, {hl,T}} e }

for h; € Hy and n € N. Then R is an o(3)-invariant subspace of O' C P. Since the
representation of o(3) on P is completely reducible, R’ must be the direct sum of
certain Hj with k£ < [. Consequently, if when harmonically decomposed an element
of R’ has a nonzero component in some Hy, then Hy C R’ C R. v

Now by assumption 7; # 0 in H; and hence H; C R. Then {H;, H;} € O?~1NR.
We will use this fact to show that ©@?~! ¢ R. The proof devolves upon an explicit
computation of the harmonic decomposition of {¥;™,Y;"}.

Lemma 2. For each j in the range 0 < j < 21, we have

l
l—j . 20—j
(v, 7Y} = Zy%—l(l — 5, 0)Y5 1
k=1
In particular, when j =1 the top coefficients yai—1(l — 1,1) are nonzero. Further-
more, provided | > 5, k > 1771 and k > 1 — %, the coefficients yorp—1(1 — j,1) are
NnonZero.

Since the proof requires an extended calculation, we defer it until Appendix B.
Lemma 3. 0?1 c R.

Proof. Decompose Y,* = R™ +il]" into real and imaginary parts, with Rj", I|" €
H;. So in Pc we observe that both R{Y™, Y} = {R",R}'} — {I;*,I]'} and
S{Y™, Y} = {R™, I} + {I]", R]'} belong to {H;, H;}. Thus if the harmonic
decomposition of {¥;™,Y;"} has a nonzero k' component, then either its real or
imaginary part must be nonzero, which allows us to conclude that {H;, H; } contains
an element with nonzero component in Hy.

If I = 3, then H3 C R. Now consider the bracket {Y?, Y3}. By Lemma 2 with
j = 11it has a nonzero 5** component, so by the preceding and Lemma 1 it follows
that Hs C R. Since by definition H; C R, we then have O° = H; ® H3 & Hs C R.

If I > 5, we consider {Yl_Q, Y]} € Re. By Lemma 2 with j = [+ 2, the preceding
and Lemma 1 we conclude that

Hi_o®H; - P Hy_1 CR.

Hence H;_o C R, so by the same argument applied to {Y;%,Yll__f} we get that
H;_4 C R. Continuing in this way we obtain H;_o, C R for all n with [ — 2n > 3.
In particular, taking n = %, we get H3 C R. But we have already remarked that

H1 C R, so the lemma is proven. \VA

Thus R must contain all odd polynomials of degree at most 2l — 1. To obtain
higher degree polynomials, we need only bracket Ho;—1 C R with itself and apply
the argument above to conclude that O*~3 ¢ R. Continuing in this manner, we
have finally that O C R, and this proves the proposition. O

Our strategy in proving the no-go theorem for O is the same as for P. To begin,
we derive a weak version of a cubic von Neumann rule.

Proposition 4. If Q is a quantization of (O, P), then
(2.11) Q(S:%) = aQ(S;)* + cQ(S))
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fori=1,2,3, where a and c are real constants. Furthermore, when i # £,

Finally,
(2.13) Q(SlSzSg):aQ(Sl)Q(Sz)Q(Ss)Jr%(Q(S1)2 — Q(5)% + Q(S5)?).

Again the proof is placed in Appendix A.
We derive some consequences of these results. Multiplying (2.1) through by S,
and quantizing gives

3
> Q(8:868i) = s*Q(Sh).
i=1

Applying (2.12) and (2.11), this in turn becomes

3
(2.14) 032 Q(8)2(502(8) = (= 5 - ) etsi)
We also find, by rearranging the factors in Zle Q(S:)Q(Se)Q(S;), that
3
(2.15) D Q(5)Q(S)Q(Si) = (j(7 + 1) — 1) Q(S).
i=1
A comparison of (2.14) and (2.15) yields
2 alitieny - L) 40
(2.16) #=a(i+n-3)+5
provided j > 0.

Theorem 5. There does not exist a nontrivial quantization of ((5,731),

Proof. Suppose Q is a quantization of (@, P1); we will show that this entails j = 0.
Consider the Poisson bracket relation

35193 = 4{51°,5553%} —4{52°, 55251} + {92251, 5, %}
— {8251%,81°} —6{S52°,51°} — 3{52552, 55251 }.
Upon quantizing, an enormous calculation using (2.11), (2.12), (2.5) and (2.15)

gives®
35s*Q(S3) = (3a2j4 +6a%j2 + 14acj? + 84?52
29¢? 7a?
+ l4acj + 5025 + Tc - 14% - %) Q(Ss)

— (10a® + 4ac)Q(Ss)?
which in view of (2.16) simplifies to

(217) |5 (2a — )(a -+ ¢) — a(7a + 4e)j(j +1)| Q(S5) +a(10a +4c)Q(Ss)*=0.

5This calculation was done using the Mathematica package NCAlgebra [H-M].
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Now suppose j = %, so that Q(S3)? = %I. Then (2.17) implies that a = —4c,

which when substituted into (2.16) yields s = 0. Similarly, when j = 1, Q(S3)% =
9Q(S3). In this case (2.17) implies that a = —¢, and again (2.16) requires s = 0.
Thus we have derived contradictions for these two values of j. Henceforth take
j>1.
Next we quantize
6525152593 = {51, 95251} 4+ {93, 95255} + {533, 91253}

Another computer calculation using (2.11), (2.12), (2.13), (2.5) and (2.15) yields
652 [1Q(51)Q(52) Q(S5) + 1 (Q(S1)? — Q(52)* + Q(85)%)|

= —3ai(c—2a+aj(j + 1)) [Q(S1)? — Q(52)* + Q(S3)* + 21Q(51)Q(52) Q(S5)].-
Since for j7 > 1 the matrix element
jid)

(3.5-2] Q(51)Q(52)Q(85) + 5 (Q51)? ~ Q(52) + Q(S5)%)

1

_ L a o nSimi
51— 7)Vi(2i—1)

is nonzero, we conclude that either a = 0 or

(2.18) s2=c—2a+aj(j+1).

If @ = 0, (2.17) implies that ¢ = 0, and then (2.16) leads to a contradiction, so
(2.18) must hold. Subtracting (2.18) from (2.16) gives ¢ = —5a/2; substituting this
into (2.17) produces

3a®(j% + j — 3)Q(53) = 0.

But then j = (—1 4 +/13)/2, neither of which is permissible.
Thus we have derived contradictions for all j > 0, and the theorem follows. [J

We remark that Theorem 5 is actually sharper than Theorem 2; we have included
the latter because it is simpler.

As Proposition 3 shows, by augmenting P! with a single odd polynomial, we
generate O. Similarly we can generate all of P from P! and a single polynomial
not in O, which implies that the only Poisson subalgebras of P strictly containing
P! are O and P itself. This can be proven in the same manner as Proposition 3,
but in the interests of economy, we make do with:

Lemma 4. Any Poisson subalgebra of P which strictly contains Pl also contains

0.

Proof. By Proposition 3 it suffices to consider the Poisson algebra 7 generated by
P! and a polynomial p not in @. Then p has a component in some Hay, for k > 0,
so by Lemma 1 it follows that Ha, C 7. Now consider the bracket {Y; 1, Y2F}.
According to Lemma 2, either its real or imaginary part has a nonzero component
in Hyi—1. Hence Hyr—1 C 7, and so by Proposition 3 we have OcT. O

Now, given any Poisson subalgebra of P strictly containing P, we only have to
apply Theorem 5 to the subalgebra O inside it to obtain a contradiction. Hence:

Theorem 6. No nontrivial quantization of P* can be extended beyond P*.
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This result stands in marked contrast to the analogous one for R?". There one
runs into difficulties with cubic polynomials in {1,¢%, p;}, so that P? (the Poisson
algebra of polynomials of degree at most two) is a maximal polynomial subalgebra
containing P* that can be quantized [G-S]. This dichotomy seems to be connected
with the fact that for R?", P2 is the Poisson normalizer of P!, whereas for 52
the normalizer of P! is itself. On the other hand, it should be noted that there
are other maximal polynomial subalgebras of C°°(R?") containing P! that can be
quantized, for instance the “coordinate” (or “position”) subalgebra

{Zhl(qla aqn)p’t +k(q15 aqn)}v
=1

where the h* and k are polynomials. Here one encounters problems when one tries
to extend to terms which are quadratic in the momenta.

Finally, a word is in order regarding the case j = 0—the one instance in which
we did not derive a contradiction. It happens that the spin 0 representation of
P! can be extended, in a unique way, to a quantization Q of all of P. Indeed,
given p € P, let py denote the constant term in the harmonic decomposition (2.3)
of p. Then Q : P — C defined by Q(p) = po is, technically, a quantization of
(P,PY). To prove this, it is only necessary to show that Q so defined is a Lie
algebra homomorphism, which in this context means {p,p'}o = 0. But from (2.4)
and (2.2), in vector notation,

4rs*{p,p'}o = / {p,p'}do = / S (Vpx Vp')do = s/ (Vp x Vp') - do,
S2 S2 S2

which vanishes by the divergence theorem.®

To show that this quantization is unique, we need
Lemma 5. Forl >0, H; = {H1, H;}.

Proof. For I > 0, {H1,H;} is a nontrivial invariant subspace of H;, and hence, by
the irreducibility of the Hj-action on Hy, {H1,H;} = H;. O

Now suppose x is a quantization of (P, P!) with j = 0 so that by the above, y is a
linear map P — C which must annihilate Poisson brackets. But then x(p) = x(po),
since by Lemma 5 each term p; € H; for [ > 0 in the harmonic decomposition of p
must be a sum of terms of the form {h;, r;} for some h; € H; and r; € H;. It follows
that x is uniquely determined by its value on the constants, and as x(1) = I = Q(1)
we must have y = Q.

Although the corresponding representation of P! is trivial in that Q(S;) = 0
for all 4, it is worth emphasizing that Q is not zero on the remainder of P. For
example, Q(S,;?) = %I for all 4, consistent with Proposition 1 and (2.6). The
existence of this trivial yet “not completely trivial” representation of P—for any
nonzero value of the classical spin s—is curious. We wonder if it is related to a
well-known “anomaly” in the geometric quantization of spin, cf. [T, §7].

6This actually is a consequence of a general fact about momentum maps on compact symplectic
manifolds, cf. [G-S, p. 187].
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3. DISCUSSION

Theorems 2 and 6 might have been “predicted” on the basis of geometric quan-
tization theory. Here one knows that one can quantize those classical observables
f € C>(M) whose flows preserve a given polarization P. In our case we take P to
be the antiholomorphic polarization on S? (thought of as CP!); then P! is exactly
the set of polarization-preserving observables. However, in geometric quantization
theory one does not expect to be able to consistently quantize observables outside
this class [W].

Further corroboration for our results is provided by Rieffel [R], who showed
that there are no strict SU(2)-invariant deformation quantizations of C°°(S?). In
fact, it seems that only the polynomial algebra P! C C°°(S?) can be rigorously
deformation quantized in an SU(2)-invariant way [K].

There are several points we would like to make concerning the von Neumann
rules for S2, especially in comparison with those for R?”. Our no-go theorems may
be interpreted as stating that the “Poisson bracket — commutator” rule is totally
incompatible with even the relatively weak von Neumann rules given in Propositions
1 and 4. On R??, on the other hand, the von Neumann rule k(z) = 2" with n = 2
does hold for z € P! C P? in the metaplectic representation [C, G-S], and with
any n > 0 for z = ¢* in the coordinate (or position) representation. Moreover it is
curious that, according to Propositions 1 and 4, requiring that the S; be irreducibly
represented does not yield strict von Neumann rules as happens for {¢%, p;} on R?",
cf. [Gr, C]. It is not clear why S? and R?" behave differently in these regards.

We remark that it is substantially easier to prove the no-go Theorems 2 and 5 if
one assumed from the start that the strict von Neumann rules Q(S,2) = Q(S;)? and
9(S;®) = 9Q(S;)? hold. We can gain some insight into this as follows. Suppose the
strong von Neumann rule applied to one of the S;, say Ss, so that Q(S3™) = Q(S5)"
for all positive integers n. Suppose furthermore that Q is injective when restricted
to the polynomial algebra R[S3] generated by S3. Provided it is appropriately
continuous, Q will then extend to an isomorphism from the real C*—algebra C*(S3)
(consisting of the closure of R[S3] in the supremum norm on S? with pointwise
operations) to the real C*—algebra generated by Q(S3). But this implies that the
classical spectrum of S3 (i.e., the set of all values it takes) is the same as the
operator spectrum of Q(Ss3). Since the classical spectrum of S5 is [—s, s] whereas
the quantum spectrum is discrete, it is clear—in retrospect—why no (strong) von
Neumann rule can apply to S3.

Since S? is in a sense the opposite extreme from R2™ insofar as symplectic man-
ifolds go, our result lends support to the contention that no-go theorems should
hold in some generality. Nonetheless, these two examples are special in that they
are symplectic homogeneous spaces (R2" for the translation group R?", and S? for
SU(2)). Thus in both cases we are quantizing finite-dimensional Lie algebras (the
Heisenberg algebra and u(2), respectively, which are certain central extensions by R
of R?" and su(Z)). Will a similar analysis work for other symplectic homogeneous
spaces, e.g., CP™ with group SU(n 4 1)? How does one proceed in the case of
symplectic manifolds which do not have such a high degree of symmetry? What
set of observables will play the role of the distinguished subalgebras generated by
{1,4¢*,p;} and {1,571, S2,S3} (which are the components of the momentum map-
pings for the Hamiltonian actions of the Heisenberg group and U(2), resp.)? For a
cotangent bundle T*Q), the obvious counterpart would be the infinite-dimensional
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abgebra of linear momentum observables Px + f, where Px is the momentum in
the direction of the vector field X on @ and f is a function on @. (These are the
components of the momentum mapping for the transitive action of Diff(Q) x C*°(Q)
on T*@.) In this regard, it is known that geometric quantization (formally) obeys
the von Neumann rules Q(Px ?) = Q(Px)? and Q(f™) = Q(f)" [Go2]. We hope
to explore some of these issues in future papers.
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APPENDIX A. VON NEUMANN RULES

Here we provide the proofs of Propositions 1 and 4.
Fix an irreducible representation of u(2) = su(2) x R labeled by the quantum
number j. The proofs depend on the following three facts:

(i) As the representation is irreducible, any endomorphism of the representation
space is an element of the enveloping algebra of the generators Q(S;) [D,
Prop. 2.6.5], and hence can be expressed as a polynomial in the Q(S;).

(ii) Under the su(2)-action, a monomial Q(S1)™ Q(S52)™Q(S3)™® of degree |n| =
n1 + no + ng3 transforms as a tensor operator of rank \n|

(iii) Under the induced action of su(2) on P, a monomial S1™ S3™2.53™3 transforms
as a symmetric tensor of rank |n|. Since the quantization Q is (infinitesimally)
equivariant, it follows that Q(571"152™253™3) also transforms as a symmetric
tensor operator of rank |n|.

When |n| > 1, the tensor operators Q(S7)" Q(S2)"2Q(S3)™ and Q(S51™ 552 55™3)
are reducible.

Equation (2.8) then follows from the observation that as Q(9;?) is a reducible
symmetric tensor operator of rank 2, its irreducible constituents must be of even
rank, and hence it must be equal to an even polynomial in the Q(S;) of degree at
most 2. Equations (2.9), (2.11), (2.12) and (2.13) follow from similar observations.
The rest of the argument is the working out of these observations.

Letting n = (n1,n2,n3) be a multi-index of length |n| = ny + ny + ng, we denote
Q(S51)" Q(S2)™2 Q(S3)™s by Q' and §;m1 §ym2 G5 by S\l Since the commutation
relations (2.5) are nonlinear, the difference between each Q‘r? " and its symmetriza-
tion Q‘(T;‘) is a linear combination of tensor operators Q,‘Q | of lower rank |m|. Thus

we may use the symmetrized tensor operators (@l(?l‘) as a basis for the enveloping
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algebra of the operators Q(.S;). Then by (i) we can expand
d

(A1) o(sly) = |Z imn] Q)
n|=0
as a polynomial of degree d, say.” We can further decompose each
In| A

(A.2) Q=3 > (n|Aw) T

A=0 p=—2X
into a sum of irreducible spherical tensor operators T:‘ of rank A (with p =
=X, ..., A),8 so that (A.1) becomes
d n| X

(A.3) Qs = 33" N [mn](n|Ap) T

[n]=0 A=0 p=—A

On the other hand, for |m| = 2 we may directly decompose
2

(A4) Q(s2) = 3 (m[20) V2 + (m[00) V),

v=—2

where the irreducible constituents V}] of Q(an) are given by

(A.5) V;o= ) (2v|m)Q(sh),
|m|=2

(A.6) Vi = > (00|m)Q(s,).
|m|=2

Here we have used the relation >, Z;}:fA(m [Av)(Av|m') = épmm. Note
that, as it is symmetric, Q(S,Qn) has no irreducible rank 1 constituent. Combining
(A.5) and (A.6) with (A.3), we obtain
d Inl X
(A7) Vio= ) ) > > 2vim)[min)(nlAp) Ty,
Im|=2 |n|=0 A=0 p=—X
d Inl X
A9 v = Y S S (olm)[mlnl (nlAm) T
Im|=2 |n|=0 A=0 p=—X
Now apply a rotation R € SU(2) to (A.7) to obtain

2
v/i==2
d Inl X

A
=Y S ST 2vfm) [mln](n]Ap) Dy (R) T

Im|=2 |n|=0 A=0 p=—X p'=—X

"It can be shown that d < 45, but we do not need this fact.

8Since they are symmetric the tensor operators Q‘(z‘) are “simply reducible,” i.e., in the de-
composition (A.2) there is at most one irreducible constituent T‘f‘ for each weight A. This follows
from a consideration of Young tableaux. Likewise, the Q(Slf:l"‘), being symmetric, are simply
reducible, and hence there is no degeneracy in either (A.4) or (A.12) below.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



A GROENEWOLD-VAN HOVE THEOREM FOR §? 1591

Multiplying both sides of this by D? o (R)* and integrating over the group manifold,
the orthogonality theorem for products of representations [B-R, §7.1] yields

d
(A.9) sz/: Z Z(2V\m)[m|n](n|2y) TPQ,.

|m|=2 |n|=0

*

Applying the same procedure to (A.8) but using DJ,(R)* instead, we similarly

obtain
d
(A.10) Ve =1> > (00[m)[m|n](n]00)|TF.
|m|=2 |n|=0
From (A.9) and (A.10), we see that sz/ is proportional to sz,, and VY to Ty; let

the corresponding constants of proportionality be a and b. Substituting (A.9) and
(A.10) into (A.4) and inverting (A.2) gives

Q(s2) = a _ (m|2v)T;+b(m|00)Ty

v=—2
2
(A.11) =a ) > (ml2v)(2v|n)QF, +b(m[00)(00]0)Qf
n|=2v=-2

= a Z Py(m,n) Q%n) + bPy(m,0)1.

In|=2

In this last expression, Py(m,n) = Zl)):f}\( m|Av)(Av]|n) is the projector which

picks off the m*™ component (with respect to Q‘("nﬁ)) of the irreducible rank A con-

stituent of Q‘(Z‘) Since m has length 2, m must be of the form 1; + 14, where 1; is

the multi-index with 1 in the i*" slot and zeros elsewhere. Similarly, when |n| = 2,
n =1, +1,. Then we have

1
(6ip62q + 6iq6€p) - _6i€6pqu

Pg(li—l-lg,lp—l-lq) = 3

(51'@.

Wl = N =

Po(1; +1,,0) =

Setting ¢ =4, (A.11) and (2.7) then yield

1 1
Q(Siz) =a <Q(S¢)2 - 53(] + l)[) + gbI.
The constants a and b must both be real (as Q(Sf) is self—adjoint)7 and both
cannot be simultaneously zero (for this would contradict (2.6)). Thus, upon setting
c=(b—aj(j+1))/3, we obtain (2.8).
Taking ¢ # i, we similarly obtain (2.9).
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The same arguments can be applied, mutatis mutandis, to Q(S;’n). Then (A.11)
is replaced by

1
(m|3v)T5+b > (m|1v)T,

-3 v=—1

NE

Q(s},) = a

N
Il

(A.12)
=a Ps;(m,n) Q?n) +5b Z Py(m,n) QL.

3 [n|=1

In|
The projectors in this instance are

Py(Li+ 15+ 151, + 1+ 1,)

1 1
= 6 Z 6ip6kq6€r - % Z 61'/4: (6pq6€7‘ + 61)7"6&1 + 6qr(5€p)7
1
Pi(1;+ 15+ 1g,1,) = E(éik(sép + 6kebip + O0ikp),

where the sums are over all permutations of {7, k, £}.
Setting i = k = £, (A.12) reduces to

0(5:%) =a (@5 - 3(iti+ 1) - 3)Q(s)) + 300(5).

Again by self-adjointness, we see that a and b must be real. Upon setting ¢ =
%(b -3[jG+1) - %]) and rearranging the above, we obtain (2.11).

Finally, taking ¢« = k # ¢ and (i, k,¢) = (1,2,3) in (A.12), we similarly obtain
(2.12) and (2.13), respectively.

Although it is not apparent from this derivation, it can be shown that (2.9) is
actually a consequence of (2.8) and, likewise, that (2.12) and (2.13) both follow
from (2.11).

APPENDIX B. ON THE HARMONIC DECOMPOSITION OF {YZZ’J,Y/}

In this appendix we prove Lemma 2, which computes the harmonic decomposi-
tion of {Yll*j, Y;'} for I > 0. Specifically, for each j, 0 < j < 2I, we have

1
VY =y a(l— 4,0 Y5, 1,
k=1
where the coefficients yor—1(I — 7,1) have the following properties:
(i) when j =1, the top coefficients yq—1 (I — 1,1) # 0, and
(ii) provided I > 5, k > l_Tl and k > 1 — %, we have yor_1(l — j,1) # 0.
The proof will be presented in several steps. We refer the reader to [M, Chapter

XIIT and Appendix C] for the relevant background and conventions on spherical
harmonics.

Step 1. It is convenient to work in spherical coordinates (6,¢) on S2. The
generators L3 and Ly = L; + 1Ly of O(3) then take the form

d (O o
Ly = 3 and Ly = iiei@(% +icot ea—¢).
They satisfy
LyYy" =imY"™,  LiY" =i, Y™ and LY/ =ifm 1Y
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where B, = /(I + m+1)(l —m).
The Poisson bracket (2.2) becomes

cscﬂ(@f dg Of 8g>

S

9600 00 0

{fvg}:

which can be rewritten in terms of the L; as

1.9} =~ ese0e ™ (La(F)L1 () — Lo (/) Eslo) ).

Step 2. As a specific instance of this formula, we compute
(B.1) (Y™, Y"}sinf ¢ = (mgl YTV g vy )

Now we have the product decomposition

l1+l12

211+1 )(20y + 1)
Yy = I l
1— 2

(B.2)

X <ll l2 mime | l mi1-+meo >Yim1+m2,

where the quantities (11 lo 1 mg | L M ) are Clebsch-Gordan coefficients. Applying
(B.2) to the r.h.s. of (B.1) gives

21

i 2041
{yy" Yl}5er‘¢— Z LY

o \V/Am(25 + 1)

X [mﬁm(llm, n+1]j, m4+n+1)

(1100]40)

(B.3)

- nﬁl,mUlm—i—l, n|j, m—+n+1 >}ij+n+1.

On the other hand, since {H;, H;} C O*~! we can expand

2k—1

{ymy" }—Z Z Y2k—1,0(m, 1) Ygp 1.

k=1r=—2k+1

Multiply this equation through by sinfe!¢. Since sinfe'® = —/87/3 Y}, we can
apply the product decomposition (B.2) to the r.h.s. of the resulting expression to
obtain

I 21
; /8
(Y™, Y"}sinfe? = — ?ﬂ (Z Z Yor—1,0(m,n) [Y2Tk—1Y11]>

k=1r=—2k+1

(B.4)
l 2k—1
1 1
= Z Z y2k71,r(m7 n)(eZkfl,erQrth - d2k71,7‘Yv2Tk+ )7
k=1r=—2k+1
where

oo ety fe-ne-r—1)
br Qt+1et+3) T\ -1
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Comparing (B.3) with (B.4), we see that r = m + n and hence

l
+n+1 +n+1
Zka—l,m+n(m7n) (€2k—1,m+nY27]:;l,;l _d2k—1,m+nY27]:;l " )
k=1
21

i 20+ 1
— IS = (100 0)

§ 5 VAT(2) +1)

X |m Bua(1lm, nt1]j, mean+ 1)
- nﬁl,m<llm+1, n\g, m-+n-+ 1>}Y'jm+n+1_

Note that the sum on the L.h.s. contains only even degree harmonics, and hence
the sum on the r.h.s. must as well. (This is reflected by the vanishing of the
Clebsch-Gordan coefficients (1100|;0) for j odd, cf. [M, eq. (C23.a)].) Thus we
may reindex j = 2k, k = 0,...,l, on the r.h.s. Upon reindexing kK — k + 1 in
the first term on the L.h.s. and equating coefficients of Yg};‘*”“ on both sides, we
obtain the recursion relation

€2k4+1,m~+n

y2k—1(m7 Tl) = yzk+1(m7 ”)

d2k71,m+n
20+ 1

i
(B5) S \/47‘(‘(4]{ + 1) d2k—1,m+n

X [mﬂlm(llmn—l—l |2k, m+n+1)

(1100|2k0)

—n B m(llm+1, n|2k, m+n+1)

where we have abbreviated yor—1,m+n(m,n) =: Yar_1(m,n).

Step 3. Now we specialize even further, setting m =1 — j and n = [ for j =
1,---,2l. Then we have

l
(B.6) VY =yl — 4, 1)V,
k=1

as in the statement of the lemma, and (B.5) reduces to

. € —j .
yor—1(l — 4, 1) = C;’H#la Yor+1(l — 4, 1)
2k—1,21—j
(B.7) e 241 B (1100 | 2k0
S \/47T(4k+ 1) dgk_LQl_j ’ J< | >

< (L11—j+1, 1] 2k, 21—j+1).

The main reason for this choice of m and n is that it simplifies the last term in
(B.5), since f3;,; = 0.

Before proceeding, we must evaluate the Clebsch-Gordan coefficients in (B.7).
Using the Racah formula [M, (C.21), (C.22) and (C.23b)], we compute

(20— 2k)!  (2K)!(1 + k)!

(1100]2k0) = (—1)*'Viak + 1 B9k + 1) (D20 — )
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and

(Ll—j+1, 1|2k, 21—j+1)

- @01 — D2k + 20— j + 1)
= Vik+l \/(21 T D2+ 2k + )2l — 2Rk — 204 j — D)1

Substituting these expressions as well as those for dog—1,21—;, €ar+1,21—5 and Byi—;
into (B.7), the recursion relation becomes

(2k —20+j+1)(2k — 21 + j)(4k — 1) _
2k +21 —j)(2k+ 20 — j+ 1)(4k + 3) Y2k+1

Yok—1

e [CRE2L—§ — 1 VAR~ T(4k + 1)+ B)I(2)
DN S s S @ )= RE

where 9951 is defined according to

i

yor—1(l — 7, 1) = _(_1)11(2l +1) [ jl@)!

Vin \@-pr e

Since [ > 0, kafl(l -7, l) =0iff Yor—1 = 0.
Finally, we rewrite this in the form

(B.8) Gok—1 = Zok—1[Jzk+1 + (—1)" Wap_1]

where

g0 [@k=20 45+ 1)(2k =2+ j)(4k — 1)
TN @k 4+ 20— ) (2k + 20 — j + 1)(4k + 3)

and

W [@E+2—j+1)! Vak + 3(4k + 1)(1 + k)!(2k)!
RN @k =204+ D) 2+ 2k + DI — kKN

Notice that for fixed j and I, yorp—1(I — 5,1) =0if 2k —1 < 2l — j — 2.
Upon setting k = [ and j = 1, (B.8) gives §o;_1 = (—1)'Zy;_1Wo_1 # 0 and
hence yo;—1(I — 1,1) # 0. This proves (i).

Step 4. Fix [ and 7, in which case the coefficients Z5;_; and Ws,_1 are nonzero
whenever 2k —1 > 2] — j — 2. We claim that

(B.9) Zog—1Wag—1 < Wap—3
provided I > 5 and k > Z_Tl Indeed, we compute

Zopg—1Wap—1 _ (Ak+1)(1 —k+1)(2k — 1)
Wor—s  (4k—3)(21+2k+ 1)k

But now one verifies that the maximum of the r.h.s. of this expression is 18/25 on
the domain in the k,[-plane determined by the above inequalities along with the
fact that k <.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1596 MARK J. GOTAY, HENDRIK GRUNDLING, AND C. A. HURST

Step 5. We can now prove statement (i) of the lemma. Fix [ > 5 and
j € {1,...,2l}. The solution of the recursion relation (B.8) with initial condi-
tion ¢g+1 =01is

Got—2n—1 = (=)' zn:(—l)kUk

k=0

where Uy, = Woy_op_1 H;:Ok Zol—on+2t—1, and n = 0,1,... ,max ”Tl, %} For
the alternating sum >, _,(—1)*Uy we have by (B.9) that Uyy1/Uy > 1, so if n is

even the sum is
Up+ Uy =Up)+ -+ Uy —Up_1) >0

since Uy and all bracketed terms are positive, and if n is odd

(Uo = U1) + Uz =Us) + -+ + (Up1 = Un) <0

likewise. So the sum is always nonzero in the given ranges of the parameters. Hence
Jok_1 # 0, as claimed.
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