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Abstract. Generative machine learning models offer a promising way to effi-
ciently amplify classical Monte Carlo generators’ statistics for event simulation
and generation in particle physics. Given the already high computational cost
of simulation and the expected increase in data in the high-precision era of the
LHC and at future colliders, such fast surrogate simulators are urgently needed.
This contribution presents a status update on simulating particle showers in
high granularity calorimeters for future colliders. Building on prior work
using Generative Adversarial Networks (GANs), Wasserstein-GANs, and the
information-theoretically motivated Bounded Information Bottleneck Autoen-
coder (BIB-AE), we further improve the fidelity of generated photon showers.
The key to this improvement is a detailed understanding and optimisation of the
latent space. The richer structure of hadronic showers compared to electromag-
netic ones makes their precise modeling an important yet challenging problem.
We present initial progress towards accurately simulating the core of hadronic
showers in a highly granular scintillator calorimeter.

1 Introduction

Simulation in high energy physics links our deep understanding of fundamental theories and
the behaviour of detectors to experimental data. While crucial to modern data analysis, the
computational cost associated with the production of these Monte Carlo-based simulations
is already a limiting factor at the Large Hadron Collider (LHC) and becomes potentially
prohibitive at planned higher luminosities and future experiments [1].

Generative machine learning models offer a possible way out. These models can be
trained on samples from slow simulators and amplify their statistics [2]. A large number of
potential network architectures such as Generative Adversarial Networks (GANs) [3], Varia-
tional Autoencoders (VAEs) [4] and models based on autoregressive flows [5] were proposed
for this task. Since the initial idea to use GANs to simulate calorimeter showers in high
energy physics [6], several extensions and improvements were suggested [7–14].
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We previously investigated the use of generative models for simulating electromagnetic
showers in a 30 × 30 × 30 cubic region of the SiW electromagnetic calorimeter proposed for
the International Large Detector (ILD) [15]. This study achieved, for the first time, a good
description of several differential distributions for high granularity calorimeters — including
the minimum ionizing particle (MIP) peak in the hit energy spectrum. There, we used three
generative approaches: a standard GAN; a GAN based on the Wasserstein distance [16]; and
the Bounded Information Bottleneck Autoencoder (BIB-AE) architecture [17] that unifies
features of GANs and VAEs.

However, there is still a long way to go before the fidelity and versatility required for
real-world application is reached. In this contribution, we report progress in two directions.
First, we show how tuning the generators based on an understanding of the latent space can
improve the performance on distributions that are difficult to model. A more detailed look
at the latent space is given in the companion contribution [18]. Second, we present initial
results on simulating hadronic showers with a precision comparable to electromagnetic ones.

We first introduce the data sets in Sec. 2 and review the key generative architectures and
improvements with respect to Ref. [15] in Sec. 3. An overview of results for both generative
tasks is presented in Sec. 4, and Sec. 5 concludes this work.

2 Datasets

This Section introduces the two data sets used for training and evaluation of the generative
models.

2.1 Photon Data

The ILD [19] detector is one of two detector concepts proposed for the ILC. It is optimized
for Particle Flow, an algorithm that aims at reconstructing every individual particle in the sub-
detector with the best energy resolution in order to optimize the overall detector resolution.
ILD combines high-precision tracking and vertexing capabilities with very good hermiticity
and highly granular electromagnetic and hadronic calorimeters.

One of the two proposed electromagnetic calorimeters for ILD, the Si-W ECal is chosen
for this data set. It consists of 30 active silicon layers in a tungsten absorber stack with
20 layers of 2.1 mm followed by 10 layers of 4.2 mm thickness respectively. The silicon
sensors have 5 × 5 mm2 cell sizes. We project the cells with energy depositions (hits) onto a
rectangular grid of 30 × 30 × 30 cells. An example of a typical photon shower in this setup
is shown in Fig. 1 (left). As the cells of the silicon wafers are not perfectly aligned from one
layer to the next due to the geometry of the octagonal barrel calorimeter, we observe some
artefacts, such as empty rows or columns in the projection. These are corrected for, such that
every cell in our regular grid corresponds to exactly one sensor.

Our total photon data set consists of 950k showers with photon energies ranging from 10-
100 GeV. Additionally, we use statistically independent data sets for evaluation, consisting of
one set with 40k showers with energies uniformly distributed in the 10-100 GeV range and
7 more sets each containing 4k showers from photons with discrete energies from 20 GeV to
90 GeV in steps of 10 GeV. This is the same dataset as used for Ref. [15] and we refer to that
publication for additional details.

2.2 Pion Data

The simulated pion data set is generated by shooting positively-charged pions (π+) directly
into the Analogue Hadron Calorimeter (AHCal) of the ILD detector. The AHCal consists of
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Figure 1. Projections
of one photon shower
(left) and three pion
showers (right),
indicating the large
diversity among pion
shower shapes. Note
also the different shape
of the 30 × 30 × 30
photon and
48 × 13 × 13 pion data.

48 layers, with scintillators as active material in a steel absorber stack. The scintillator active
layers consist of 30×30×3 mm3 polystyrene tiles. For this study, we project the sensors onto
a rectangular grid of 48×13×13 cells. While this selection does not contain the full hadronic
shower, it typically contains 98% of the energy and allows for much faster turn around times
for optimizing the network architecture and training parameters. As in the case of the photon
data set, we correct for artefacts, such that each cell in this grid corresponds to exactly one
sensor. Figure 1 (right) shows three examples of pion showers in our data structure, indicating
the large diversity of shapes among the pion showers.

To ease the networks task of learning shower structures we remove the showers from our
data set where the pions simply pass through the calorimeter without showering, so called
punch-through particles. We achieve this by keeping only showers that have more than 70
hits with an energy above 0.25 MeV.

Both, photon and pion showers in the ILD detector are simulated with Geant4 version
10.4 (with QGSP_ BERT physics list) and a detailed and realistic detector model of ILD
implemented in DD4hep [20]. The photons and pions are shot at perpendicular incident
angle into the ECal (photons) and HCal (pions) barrel with energies uniformly distributed
between 10-100 GeV. For pions, the ECal part of the detector, which typically lies in front of
the HCal, is removed in order to avoid the complexity of handling different geometries and
materials in our very first attempts for pion showers. This will be considered in future studies.

For pions, our training set is made up of 500k showers with energies uniformly sampled
between 10-100 GeV. For evaluation we once again use 40k independent showers with uni-
formly sampled energies between 10-100 GeV and data sets with discrete pion energies from
20 GeV to 90 GeV in steps of 10 GeV, each containing 8k showers.

3 Generative Models

Generative models are designed to learn a data distribution in a way that allows subsequent
sampling and thereby production of new examples. In the following, we introduce the three
generative approaches used in this study: GANs, GANs optimising a Wasserstein loss, and
BIB-AEs. All three models are built in PyTorch [21] using convolutional and transpose-
convolutional operations. Additional details of the network architectures are provided in
Ref. [15].

3.1 Generative Adversarial Network

The GAN architecture was proposed in 2014 [3] and has seen remarkable success in a num-
ber of generative tasks. It introduces generative models trained by an adversarial process,
in which a generator G competes with an adversary (or discriminator) D. The goal of this
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framework is to train G in order to generate samples x̃ = G(z) out of noise z, that are in-
distinguishable from real samples x. The adversary network D is trained to maximize the
probability of correctly classifying whether a given sample represents real data using a bi-
nary cross-entropy loss. The generator, on the other hand, is trained to fool the adversary D.
This is represented by the loss function as

min
G

max
D
Ex∼pdata(x)[ log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))]. (1)

For practical applications, the GAN needs to simulate showers of a specific energy. In
order to do that, we parametrize the generator and discriminator as functions of the photon
energy E [22]. To achieve this, we multiply the random noise the generator receives by the
energy label. This method significantly improves energy conditioning for the GAN model.

3.2 Wasserstein-GAN

One alternative to classical GAN training is to use the Wasserstein-1 distance, also known
as the earth mover’s distance, as a loss function. This distance evaluates the dissimilarity
between two multi-dimensional distributions and informally gives the cost expectation for
moving a mass of probability along optimal transportation paths [16]. Using the Kantorovich-
Rubinstein duality, the Wasserstein loss can be calculated as

L = sup f∈Lip1
{Ex∼pdata(x)[ f (x)] − Ez∼pz(z)[ f (G(z))]}. (2)

The supremum is over all 1-Lipschitz functions f , and is approximated by a discriminator
network D, termed critic, during the adversarial training. This critic estimates the Wasserstein
distance between real and generated images. In order to enforce the 1-Lipschitz constraint on
the critic [23], we add a gradient penalty term to (2).

Again, we need to ensure that the generated showers accurately resemble real showers of
the requested energy. This is achieved by parametrizing the generator and critic networks in
E and by adding a constrainer [10] network. The constrainer network is trained solely on the
Geant4 showers; its weights are fixed during the generator training.

3.3 Bounded Information Bottleneck Autoencoder

Originally introduced as an overarching generative model [17], the Bounded Information
Bottleneck Autoencoder (BIB-AE) is fundamentally an Autoencoder setup. It maps the high
dimensional input to a low dimensional latent space and then reconstructs the original in-
put form this latent representation. Most GAN and AE architectures can be understood as
subsections of the BIB-AE setup.

The core of our specific BIB-AE architecture consists of an encoder (E) and a decoder
(D) network. The remaining components help with training these two networks and fall into
two categories: Those that facilitate reconstruction and those that regularize the latent space.
The reconstruction part consists of two Wasserstein-GAN like critics: one judging whether
the reconstructed output looks like a realistic shower; and one comparing the output and input
image, ensuring that they look alike, denoted C and CD, respectively.

Our latent regularization is done using a KL-Divergence term — similar to the KLD
loss often used in Variational Autoencoders (VAEs) [4] — and aided by an additional critic
(CL) and a Maximum Mean Discrepancy (MMD) [24] term. The individual loss terms are
combined using hyperparameter weights β.
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4

LBIB-AE = − βCL · Ex∼pdata(x) [CL(E(x))]
− βC · Ex∼pdata(x) [C(D(E(x)))]
− βCD · Ex∼pdata(x) [CD(D(E(x)) − x)]
+ βKLD · KLD(E(x))
+ βMMD ·MMD(E(x),N(0, 1)). (3)

Similar to Ref. [15], our BIB-AE setup makes use of a dedicated Post-Processor network,
trained with an MMD loss term, to improve the hit-energy spectrum. However, it is not
trained alongside the main BIB-AE networks, but separately after the BIB-AE training is
finished. We also include an additional loss term that takes a sorted vector of hit energies
from the input shower and the Post-Processor output and tries to minimize their element-wise
distance. This added term improves the energy conditioning of the Post-Processor network.

3.4 Improvements

Following the first implementation of these techniques in [15], improvements on the generator
performance are observed by introducing several optimisations as discussed in this section.

BIB-AE with KDE latent space sampling

In a VAE-based architecture, the latent space is regularized towards a known distribution
(i.e. Standard Normal) for efficient sampling of newly generated data. However, an overly
regularized latent space limits the amount of encoded information during training. Tradition-
ally, hyperparameter optimization is necessary to balance an expressive latent space encoding
for accurate sample reconstruction and a well regularized latent space for high generation-
fidelity. This fine-tuning can be omitted by sampling directly from the encoded latent space
instead of the usual Standard Normal distributions. By sampling from the non-Gaussian en-
coding, the models’ generation fidelity is essentially the same as its reconstruction accuracy.

For an already trained model with a well regularized latent space, this sampling can,
for example, be implemented by learning a multi-dimensional Kernel Density Estimation
(KDE) [25] of the encoded latent space. This approach mirrors one of the sampling methods
outlined in Ref. [26]. By sampling from a KDE, all encoded correlations between shower
physics and latent space variables are preserved and consequently reconstructed by the de-
coder network. Such sampling can be applied to our already trained BIB-AE model from
Ref. [15] which improves generation performance of this model for photon samples. Here,
the model is conditioned on the incident particle energy, which is included as a latent space
variable in the KDE. A more in-depth discussion on the latent space sampling for the BIB-AE
is provided in Ref. [18].

Latent Optimization for GANs

While no encoded latent space is available for GANs, it is still possible to exploit knowledge
of D to refine the latent source z. Instead of using the randomly sampled z, Ref. [27] proposes
to use the optimized latent source z′ such that:

∆z = α
∂ f (z)
∂z

z′ = z + ∆z, (4)

where f (z) = D(G(z)). Intuitively, the gradient of f points in the direction that maximises the
discriminator D output, which can imply better sampling [28].
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As suggested by the authors of Ref. [28], we utilize the so-called natural gradient descent
(NGD [29]) for latent optimization. It employs the positive semi-definite Gauss-Newton
matrix to approximate the Hessian. Given the gradient of z, namely g = ∂ f (z)

∂z , in a simplified
closed form, the NGD update can be written as

∆z =
α

β + ‖ g ‖2 g (5)

where β is a damping factor that regularizes the step size α. The NDG adjusts the step size via
the curvature estimate c = 1

β+‖g‖2 and automatically smooths the scale of updates by down-
scaling the gradients as their norm grows.

By including this modification of the latent space into our Wasserstein-GAN implemen-
tation we achieve a smoother and more stable training for pion showers.

Minibatch

One method to potentially avoid mode collapse, increase the variety of generated showers,
and obtain a better stability in the training process, is minibatch discrimination [30]. The
concept of minibatch discrimination is quite general: a discriminator model that looks at
multiple examples at the same time is better equipped to avoid mode-collapse of the generator
than one that considers data points in isolation.

We introduce minibatch discrimination for the GAN-photon and the BIB-AE-pion setup,
while an application to the WGAN is still under investigation. In particular, our GAN setup
uses a simplified version of minibatch discrimination suggested in Ref. [31] which neither
adds trainable parameters nor new hyperparameters. First, we compute the standard deviation
of each feature in every spatial location over the minibatch and then average these estimates
over all features and spatial locations to arrive at a single value. This mean value is then
broadcast to match the size of the data and subsequently used as additional (constant) feature
map in the discriminator input.

In the BIB-AE implementation of minibatch discrimination, we calculate the sum and
standard deviation of each critic input and then calculate the difference matrix between the
sums and the difference matrix between the standard deviations in each point in a batch.
These matrices are then passed through an embedding function implemented as a series of
convolutions with a kernel size of one. We then aggregate the result by calculating the mean
and standard deviation and pass it to the critic network. This process is done both for the
normal critic inputs as well as a log-scaled version of the inputs.

4 Results

In this section, we show the performance of our generative setups by demonstrating their
ability to closely reproduce the physical distributions of Geant4 showers. We compare sev-
eral distributions, specifically the visible cell energy spectrum, the center of gravity along the
z-axis, the radial and longitudinal energy profile, and the numbers of hits and energy sums
for various particle energies.

We split our results into two parts. In Sec. 4.1 we cover photon generation and compare
a GAN with minibatch discrimination, a WGAN, and a BIB-AE with KDE sampling and
Post-Processor. Section 4.2 then presents initial results for generating pion showers. For
this, we compare a latent optimized (LO) WGAN and a BIB-AE with KDE sampling and
Post-Processor.

For all comparisons shown here, we apply an energy cutoff at 0.5 MIP, both for generative
models and Geant4 data. As the ECal and HCal have different MIP values, these cutoff values
differ between pions and photons, with 0.1 MeV for photons and 0.25 MeV for pions.
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6

4.1 Photon Generation

Figure 2. Differential distributions comparing physics quantities between Geant4 and the different
generative models for photon showers. In the top left the energy per-cell is measured in MeV for the
bottom axis and in multiples of the expected energy deposit of a minimum ionizing particle (MIP) for
the top axis. The greyed out area indicates the 0.5 MIP cutoff. The distributions labeled full spectrum
are shown for showers generated with energies in the 10-100 GeV range, the remaining ones are shown
with varying discrete energies.

In Fig. 2 we show the comparison between Geant4 and our three generative models using
six distributions. Starting at the top left, we see the visible cell energy spectrum. While
the main body of the distribution is accurately modeled by all approaches, only the BIB-AE
reproduces the bump around 0.2 MeV, thanks to the Post-Processor. In the top center, we
show the visible energy distributions for 20 GeV, 50 GeV, and 80 GeV photons. Both GANs
model the mean of this quite well but have a slightly more symmetric peak shape than Geant4.
This asymmetry is better captured by the BIB-AE. Next, we show the numbers of hits for the
same three photon energies on the top right. While the GAN and BIB-AE properly learn
this distribution, the WGAN either significantly over- or under-estimates it, depending on the
photon energy.

In the bottom row, we present three distributions describing the geometrical shower prop-
erties, starting with the center of gravity in Z on the bottom left. Here we can see that all three
models replicate this distribution almost perfectly. Notably, this is a significant improvement
compared to the BIB-AE results shown in Ref. [15] and is due to the newly introduced KDE
sampling. On the bottom center and bottom right, we show the radial and longitudinal energy
profiles, respectively. Both the GANs and BIB-AE reproduce these profiles very accurately,
and while the WGAN shows some discrepancies, these are mostly located in the outer regions
of the shower.

In Fig. 3, we compare the visible energy deposited in the calorimeter for photons with
energies ranging from 20 to 90 GeV in steps of 10 GeV. In order to easily compare this
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Figure 3. Mean (µ90, left) and
relative width (σ90/µ90, right) of
the energy deposited in the
calorimeter for various incident
photon energies. In order to avoid
edge effects, the phase space
boundary regions of 10 and 100
GeV are removed for the response
and resolution studies. In the
bottom panels, the relative offset of
these quantities with respect to the
Geant4 simulation is shown.

we calculate the µ90 and σ90 for the energy peaks shown in Fig. 2 (top center). Note that
we updated our method of calculating the µ90 and σ90 to be more in line with the common
definition in Ref. [32], meaning numeric results are not directly comparable to Ref. [15].
We see that all methods reproduce the mean (left) of the visible energy quite well, showing
deviations of, at most, 3%. The width (right) is not modeled quite as well but the generators
still approximate Geant4 reasonably well, deviating by at most 20%.

4.2 Pion Generation

Our pion generation evaluation closely mirrors the previous section on photons. In Fig. 4 we
again compare the BIB-AE and WGAN-LO results to Geant4 for the chosen six physically
relevant distributions. Starting with the visible cell energy on the top right, we see that, just
as in the photon case, only the BIB-AE with Post-Processor reproduces the complex peak
structure around 1 MIP (0.5 MeV). For the visible energy sum (top center), both the BIB-AE
and WGAN model the calorimeter response reasonably well. However, the BIB-AE seems
to capture the shape of the peak better, while the WGAN peaks are more smeared out. The
number of hits distributions (top right) are similar, and both models show some discrepancies
compared to Geant4, with the WGAN peaks being too broad and the BIB-AE peaking at the
wrong position. Conversely, the geometrical shower properties in the lower section of Fig. 4
show a high level of agreement with Geant4. For the center of gravity, both the BIB-AE and
WGAN distributions almost exactly overlap with Geant4, and we only see small differences
in the tail regions of the energy profiles.

In Fig. 5 we compare µ90 and σ90 between the generative models and Geant4. For the
mean (left) the BIB-AE matches the linearity better than the WGAN, although both diverge
for higher pion energies. The WGAN indeed overestimates the width of the energy peaks
(right), as was already visible in Fig. 4. The BIB-AE learns a width closer to the Geant4
values, although it still shows discrepancies of around 10% for large sections.

Finally, we compare how well the correlations between selected shower properties match
up for Geant4 and our generative models. The chosen properties are: The first and second
moments in the x-, y- and z-directions, labeled as m1,x through m2,z, the visible energy Evis,
the energy of the incoming pion Einc, the number of hits nhit, the ratio between the energy
deposited in layers 1-16/17-32/33-48 of the calorimeter and the total visible energy, labeled
E1/Evis, E2/Evis and E3/Evis respectively. We calculate the matrices of Pearson correlation
coefficients for Geant4 and the generative models individually and then obtain the element-
wise difference between these matrices. These difference matrices are shown in fig. 6 for the
WGAN (left) and BIB-AE (right). As a general rule, the smaller the differences, the better
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Figure 3. Mean (µ90, left) and
relative width (σ90/µ90, right) of
the energy deposited in the
calorimeter for various incident
photon energies. In order to avoid
edge effects, the phase space
boundary regions of 10 and 100
GeV are removed for the response
and resolution studies. In the
bottom panels, the relative offset of
these quantities with respect to the
Geant4 simulation is shown.

we calculate the µ90 and σ90 for the energy peaks shown in Fig. 2 (top center). Note that
we updated our method of calculating the µ90 and σ90 to be more in line with the common
definition in Ref. [32], meaning numeric results are not directly comparable to Ref. [15].
We see that all methods reproduce the mean (left) of the visible energy quite well, showing
deviations of, at most, 3%. The width (right) is not modeled quite as well but the generators
still approximate Geant4 reasonably well, deviating by at most 20%.

4.2 Pion Generation

Our pion generation evaluation closely mirrors the previous section on photons. In Fig. 4 we
again compare the BIB-AE and WGAN-LO results to Geant4 for the chosen six physically
relevant distributions. Starting with the visible cell energy on the top right, we see that, just
as in the photon case, only the BIB-AE with Post-Processor reproduces the complex peak
structure around 1 MIP (0.5 MeV). For the visible energy sum (top center), both the BIB-AE
and WGAN model the calorimeter response reasonably well. However, the BIB-AE seems
to capture the shape of the peak better, while the WGAN peaks are more smeared out. The
number of hits distributions (top right) are similar, and both models show some discrepancies
compared to Geant4, with the WGAN peaks being too broad and the BIB-AE peaking at the
wrong position. Conversely, the geometrical shower properties in the lower section of Fig. 4
show a high level of agreement with Geant4. For the center of gravity, both the BIB-AE and
WGAN distributions almost exactly overlap with Geant4, and we only see small differences
in the tail regions of the energy profiles.

In Fig. 5 we compare µ90 and σ90 between the generative models and Geant4. For the
mean (left) the BIB-AE matches the linearity better than the WGAN, although both diverge
for higher pion energies. The WGAN indeed overestimates the width of the energy peaks
(right), as was already visible in Fig. 4. The BIB-AE learns a width closer to the Geant4
values, although it still shows discrepancies of around 10% for large sections.

Finally, we compare how well the correlations between selected shower properties match
up for Geant4 and our generative models. The chosen properties are: The first and second
moments in the x-, y- and z-directions, labeled as m1,x through m2,z, the visible energy Evis,
the energy of the incoming pion Einc, the number of hits nhit, the ratio between the energy
deposited in layers 1-16/17-32/33-48 of the calorimeter and the total visible energy, labeled
E1/Evis, E2/Evis and E3/Evis respectively. We calculate the matrices of Pearson correlation
coefficients for Geant4 and the generative models individually and then obtain the element-
wise difference between these matrices. These difference matrices are shown in fig. 6 for the
WGAN (left) and BIB-AE (right). As a general rule, the smaller the differences, the better
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Figure 4. Differential distributions comparing physics quantities between Geant4 and the different
generative models for pion showers. In the top left the energy per-cell is measured in MeV for the
bottom axis and in multiples of the expected energy deposit of a minimum ionizing particle (MIP) for
the top axis. The greyed out area indicates the 0.5 MIP cutoff. The distributions labeled full spectrum
are shown for showers generated with energies in the 10-100 GeV range, the remaining ones are shown
with varying discrete energies.

Figure 5. Plot of mean (µ90, left)
and relative width (σ90/µ90, right)
of the energy deposited in the
calorimeter for various incident
particle energies. In order to avoid
edge effects, the phase space
boundary regions of 10 and 100
GeV are removed for the response
and resolution studies. In the
bottom panels, the relative offset of
these quantities with respect to the
Geant4 simulation is shown.

the agreement of the correlations between Geant4 and generated showers. We observe that
the WGAN only shows small discrepancies in the correlations, and the BIB-AE correlations
match nearly perfectly.

5 Conclusions and Outlook

Motivated by the high computational cost of shower simulation in particle physics, we pre-
sented new results on modeling electromagnetic photon showers and hadronic pion showers
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Figure 6. Difference between
Linear correlation coefficients
of various quantities described
in the text. On the left, the
difference between Geant4 and
the WGAN is shown, while the
difference between Geant4 and
the BIB-AE with
Post-Processor is depicted on
the right.

in two high granularity calorimeter prototypes. This work builds on the generative setup in-
troduced in Ref. [15] and i) improves the fidelity of electromagnetic showers and ii) presents
first steps towards simulating hadronic showers.

The two significant improvements for photon showers are minibatch discrimination in
the GAN model training and better latent space sampling via KDE-based density estimation
for the BIB-AE. Minibatch discrimination improves results of the simple GAN setup across
the board and. The main issue for the GAN remains the MIP peak, which the BIB-AE is
able to model thanks to the Post-Processor network. Unfortunately, this Post-Processor loss
function makes it significantly easier to train for an Autoencoder based architecture than for
a purely generative one, limiting its applicability to the GAN or WGAN. The most notable
improvement for the BIB-AE from sampling the latent space is the improved modeling of the
center-of-gravity along the shower direction. This strategy is limited to latent-space-based
models and discussed in more detail in the companion submission [18].

In comparison to the rather compact photon showers, pion showers exhibit a significantly
larger topological variety due to the mixture of electro-magentic and nuclear interactions
present in hadronic showers. Therefore they pose a much greater challenge to high fidelity
generation, in particular in a high granularity calorimeter that is revealing the detailed shower
sub-structure.

However, the initial agreement for WGAN and BIB-AE is encouraging, but more work
is needed to reach a fidelity similar to the one achieved for electromagnetic showers. Due to
the inaccuracies in the energy width, no GAN results are included for pions. Again, only the
BIB-AE with Post-Processor correctly describes the MIP peak. The observed correlations
are particularly promising: The differences between Pearson correlation coefficients between
the BIB-AE model and Geant4 do not exceed an absolute value of 0.11 for any combination.
This improves upon the correlations for the GAN and BIB-AE models for electromagnetic
showers by almost a factor of two and three, respectively.

While we see clear progress in teaching generative models increasingly complex physical
processes with increasing fidelity, a long and stony road lies ahead. Future problems include
simulating hadronic showers beyond the hard core, consistently handling different particle
types, extending conditioning to geometrical arguments, dealing with complex geometries 1,
and — of course — putting all this into production. Nevertheless, the consistently observed
speed-ups by several orders of magnitude relative to classical simulations, the potential to
train generative models directly on data with some control over latent space distributions [34],
the promising initial results on amplification of statistics, and finally, the large gap between
projected and needed computing resources strongly motivate further work in this direction.

1Here graph-based approaches are especially promising [33]
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in two high granularity calorimeter prototypes. This work builds on the generative setup in-
troduced in Ref. [15] and i) improves the fidelity of electromagnetic showers and ii) presents
first steps towards simulating hadronic showers.

The two significant improvements for photon showers are minibatch discrimination in
the GAN model training and better latent space sampling via KDE-based density estimation
for the BIB-AE. Minibatch discrimination improves results of the simple GAN setup across
the board and. The main issue for the GAN remains the MIP peak, which the BIB-AE is
able to model thanks to the Post-Processor network. Unfortunately, this Post-Processor loss
function makes it significantly easier to train for an Autoencoder based architecture than for
a purely generative one, limiting its applicability to the GAN or WGAN. The most notable
improvement for the BIB-AE from sampling the latent space is the improved modeling of the
center-of-gravity along the shower direction. This strategy is limited to latent-space-based
models and discussed in more detail in the companion submission [18].

In comparison to the rather compact photon showers, pion showers exhibit a significantly
larger topological variety due to the mixture of electro-magentic and nuclear interactions
present in hadronic showers. Therefore they pose a much greater challenge to high fidelity
generation, in particular in a high granularity calorimeter that is revealing the detailed shower
sub-structure.

However, the initial agreement for WGAN and BIB-AE is encouraging, but more work
is needed to reach a fidelity similar to the one achieved for electromagnetic showers. Due to
the inaccuracies in the energy width, no GAN results are included for pions. Again, only the
BIB-AE with Post-Processor correctly describes the MIP peak. The observed correlations
are particularly promising: The differences between Pearson correlation coefficients between
the BIB-AE model and Geant4 do not exceed an absolute value of 0.11 for any combination.
This improves upon the correlations for the GAN and BIB-AE models for electromagnetic
showers by almost a factor of two and three, respectively.

While we see clear progress in teaching generative models increasingly complex physical
processes with increasing fidelity, a long and stony road lies ahead. Future problems include
simulating hadronic showers beyond the hard core, consistently handling different particle
types, extending conditioning to geometrical arguments, dealing with complex geometries 1,
and — of course — putting all this into production. Nevertheless, the consistently observed
speed-ups by several orders of magnitude relative to classical simulations, the potential to
train generative models directly on data with some control over latent space distributions [34],
the promising initial results on amplification of statistics, and finally, the large gap between
projected and needed computing resources strongly motivate further work in this direction.

1Here graph-based approaches are especially promising [33]
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