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Abstract Tests have to be performed to rule out proposals
for gravity modification. We propose a new idea for con-
straining alternative theories of gravity using temperature-
dependent white dwarf (WD) mass-radius (MR) observa-
tional data. We have shown that several alternatives to gen-
eral relativity (GR), which modified GR only within mat-
ter, might be reduced to the well-known Poisson equation
similar to that of Eddington-inspired Born Infeld (EiBI) and
Minimal Exponential Measure (MEMe) gravity. Retaining
EiBI notation, we constrain the value of the coupling con-
stant, κ , using a high-precision model-independent measure-
ment of WD MR observations. We have demonstrated that
the WD model should include detailed physics to achieve
good precision. The model should include their tempera-
ture and evolutionary aspects, which may be computation-
ally expensive. To overcome this issue, we construct a semi-
analytical surrogate model based on Mestel’s model, cali-
brated with tabulated, detailed realistic models, to correct
the zero-temperature radius. We have shown that the best-fit
value of κ depends on the WD model, with the ’thick’ enve-
lope models more consistent in describing data. The tight-
est bound obtained from the most precise MR measurement,
QS Vir, with −0.19 � κ � 0.22 in 103 m5kg−1 s−2 for
2σ (∼ 95%) credibility. Overall, we assert that the recent
precise WD MR measurements, combined with our current
understanding of WD structure, are insufficient to see the
deviation from the one predicted by GR. Both more precise
observation data and detailed WD modelling are required to
rule out gravity modification.

a e-mail: m.dio@sci.ui.ac.id (corresponding author)
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1 Introduction

Even though Einstein’s general relativity (GR) has become
the standard for explaining a wide range of phenomena
related to gravity, alternative theories or extensions of GR
are still widely studied mainly due to several unresolved GR
problems [1]. From an observational perspective, GR still
cannot precisely explain the dynamics of galactic and inter-
galactic objects, namely the dark matter (DM) problem. GR
also cannot explain the universe’s acceleration, namely the
dark energy (DE) problem, and recently the tension between
some Hubble constant measurements [2]. While from a the-
oretical perspective, it is challenging to develop a quantum
description of gravity within the standard framework. Even
though it might be made compatible with quantum field the-
ory as an effective field theory in the low-energy regime.

Modification of gravity usually breaks the underlying
assumptions in GR. Some of them are usually designed to
address specific problems with GR. For example, Modified
Newtonian Dynamics (MOND) [3] was introduced to mod-
ify the behavior of gravity in low-density/curvature regions to
address the DM problem. Another example is the modifica-
tion of gravity on short distances, such as in Hořava-Lifshitz
gravity [4], which was proposed to address the quantum grav-
ity problem. There are also generalized action theories such
as the family of Horndeski theory [5]. However, even if grav-
ity is modified to cure a particular aspect of GR, discrepancies
may arise in any other aspects of it. For example, the mea-
surement of the speed of gravitational wave from GW170817
multimessenger observations tightly restricts the value of aT
in Horndeski family [6], eliminating a number of theories
with exciting features within this family. The above exam-
ple indicates that applying simultaneous observational con-
straints with high precision yields tighter bounds on theo-
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retical parameters. In consequence, many theories might be
ruled out.

Even though GR has the above issues, on the other hand,
GR is the only theory in almost all fundamental aspects that
has been tested through numerous observations and experi-
ments. GR has passed numerous tests from ground to cos-
mic scale, including recent tests such as the multimessen-
ger observation of GW170817 [7] and the imaging of accre-
tion disks in M87 [8], and Sgr A* [9]. Our understanding
of gravity has also been rigorously tested on a Solar Sys-
tem scale [10], leading to the necessity for all theories to be
reduced to Newtonian at the non-relativistic, weak gravity
field. Extensions in this scale, for example, in terms of the
parametrized post-Newtonian (PPN) formalism within GR,
have been tightly constrained exceptionally in the vacuum
from low to strong field [10–12].

Several alternative gravity theories are reduced to GR in
a vacuum, making it compatible with most tests in regions
of low curvature and low energy. One well-known example
is theories with the auxiliary field [13] such as Eddington-
inspired Born Infeld (EiBI) gravity [14], Palatini f (R) [15],
and Brans–Dicke theory with ω0 = − 3

2 . These theories
can also be interpreted as GR with the effective energy–
momentum tensor, as shown in [16]. Another example comes
from minimally modified gravity (MMG) [17–19], a class of
modified gravity that breaks 4-dimensional diffeomorphism
invariance. This class of modified gravity is divided into two
types. The first consists of the theories which exist in the
Einstein frame and can be recast to GR (type-I), while the
second consists of the theories that are not in the Einstein
frame and cannot be recast to GR plus extra degree(s) of
freedom (type-II). In the type-I theory, spacetime and mat-
ter are coupled in a non-trivial way. A more specific class
for this type, generalized coupling theories (GCTs), couples
tensor-energy momentum via a rank 4 coupling tensor in Ein-
stein’s field equation. One known example is the minimal
exponential measure (MEMe) [20,21], the simplest theory
in this class. Since these theories introduce deviations from
GR in the presence of matter, it is essential to perform tests
to constrain or validate these theories accurately.

The above theories, even though they have different funda-
mental principles and different relativistic descriptions, have
similar characteristics in their Newtonian limit. They reduce
to the standard Newtonian theory in a vacuum and conceal the
modification of gravity inside the distribution of matter via
an additional term in their Poisson equation, which depends
on the spatial gradient of matter density. The astrophysical
constraints of this Poisson equation have been well-studied
in the context of EiBI [22–26]. Similar behaviour is also
present in other theories, e.g., the Newtonian limit of beyond-
Horndeski theories via the Vainshtein mechanism [27]. The
gravitational potential in this theory’s spherically symmet-
ric Newtonian solution depends on the second derivative of

the mass distribution. As a result, it also relies on the radial
gradient of the density.

From a phenomenological perspective, measuring this
bound allows us to learn about the parameter values of these
theories and helps us understand the matter-gravity coupling
behaviour in GR. In the Newtonian limit, we can gain insights
into the extent to which gravity depends on the distribution
gradient of matter. Although these characteristics are found
in many gravity theories, the precise constraint on the matter-
gradient term, unlike parameters in PPN formalism, has yet to
be extensively explored. In fact, by imposing more stringent
constraints, we can more effectively rule out the alternative
coupling behaviour between matter and gravity. The authors
of Ref. [21] argue that this behaviour can be tested in a labo-
ratory experiment and improve the constraint to 10 orders of
magnitude tighter than from gravitational wave propagation.
However, such constraints should be tested at different scales
[28]. Therefore, searching for methods to measure stringent
constraints on this term is crucial to provide insights into the
coupling behaviour of gravity.

Most astrophysical objects, such as self-gravitating objects,
have non-uniform matter distribution so that gravity modi-
fication of the corresponding theory will be discernible on
these objects. Therefore, the astrophysical objects will be
the ideal laboratory to confront the predicted matter struc-
ture in modified gravity with observational data. WDs are
among the most popular objects to constrain the modified
gravity in a non-relativistic scale [26,29]. It has been shown
that modified gravity could control WD structure and thus
control various aspects of WD, e.g., the MR relation. The
parameter constraint of gravity theories can also be deduced
using theoretical considerations. For example, we can use
perturbative stability, causality bound, or analysis of poly-
tropic model [30]. One can also obtain the constraint by sta-
tistical astronomical data analysis, e.g., mass-radius and cat-
aclysmic variability [23]. One of the most popular methods
to confront modified gravity with observation is fitting the
parameters through WD MR observational data [24,31–37].

As modified gravity controls the MR relation of WD, both
upper and lower bounds on certain parameters in modified
gravity could be determined from the probability range of
observational data. Furthermore, studies of modified gravity
would provide insight into the phenomenology for both the
theory of gravity and the stellar structure model, respectively
[33]. This fact implies that the accuracy of these bounds on
modified gravity also depends on how accurately the model
describes the actual object. However, most studies about the
bound on the theory of gravity from WDs use the simplest
non-interacting Fermi gas equation of state (EoS). It is known
as the Chandrasekhar model [24,31]. It might be useful only
for a rough estimation of the range of the parameter. How-
ever, one should consider more detailed effects such as WD
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temperature and their evolutionary history to dive into a more
precise range of the parameter.

Several effects have to be considered while modelling
WD MR, e.g., Coulomb interaction and other electromag-
netic interactions [38], the presence of an envelope and dif-
fusion [39], and most importantly, finite temperature effects
[40]. For lower mass WDs (e.g., M � 0.8M�), the radius is
more sensitive to finite temperature and is higher than their
Chandrasekhar radius (e.g., Ref. [40]).

On the other hand, constructing a realistic WD model
requires complex calculations that include detailed calcu-
lations of the core, envelope, and atmospheric structure and
considering their evolutionary history [41]. Unfortunately,
in the context of the vast number of alternatives to stan-
dard gravity, there still needs to be publicly available code
to calculate detailed WD evolution. Besides, the computa-
tional cost might arise when these simulation codes are uti-
lized to calculate a statistical distribution with a tiny varia-
tion from precise observational data, i.e., it is necessary to
recalculate the same procedure for a range of possible val-
ues of the parameters to obtain the likelihood distribution. To
solve this, Saltas et al. [33] approach the problem by simply
correcting the zero-temperature degenerate radius with the
difference between their zero-temperature degenerate radius
in standard Newtonian gravity to the temperature-dependent
WD tabulated model. Saltas et al. studied beyond-Horndeski
gravity theory in their work. However, the degenerate core
and non-degenerate envelope are expanded differently with
temperature. For example, the analysis using Mestel’s model
[42] for the simplest WD cooling model shows that the core
and envelope radius relationship is not strictly linear. There-
fore, refining Saltas’ approach to achieve better accuracy is
crucial.

On the other hand, to select the representative MR data,
we must consider their observational method to deduce the
result. However, not every observational WD MR data is
independent of the structure model, i.e., the well-known MR
data from Refs. [43,44] still depend on the evolutionary
model calculated within the framework of standard grav-
ity. It means that we need an independent measurement for
both mass and radius to have relevant MR data indepen-
dent of the gravity model. It can usually be done by mea-
suring the radius from luminosity and parallax measurement
together with spectral information [45,46]. The more precise
measurements may combine several parameters in a single
measurement using the Bayesian framework, e.g., measur-
ing dynamical mass and radius from light-curve analysis of
an eclipsing binary system and information from stellar pho-
tometry and spectral profile [47].

We aim to propose a new approach for constraining the
modified gravity parameter using observational mass-radius
data. We investigate the bounds of alternative coupling grav-
ity concerning the observational WD MR data by considering

the realistic WD models (e.g., temperature effects) and the
compatibility between WD models.

This paper is organized as follows. The next section
will show how general relativity with a non-trivial coupling
between spacetime and matter may reduce to the EiBI-like
Poisson equation. Then, in Sect. 3, we will explain how we
model WDs within this theory and our temperature correction
approach. We will also explain the construction of a surrogate
model to correct the zero-temperature radius and how we cal-
ibrate it with the tabular models. In Sect. 4, we will compare
our model with observational data by analysing their likeli-
hood distribution. Finally, we summarize our work in Sect. 5
and conclude in Sect. 6. Note that throughout this paper, we
will retain the more familiar notation in EiBI formalism, κ .

2 General relativity with non-trivial matter coupling

This section will demonstrate how theories that modify grav-
ity inside matter may be reduced to the well-studied EiBI-
like Poisson equation in the Newtonian regime. We define the
term alternative coupling gravity as a formalism to describe
theories that deviate from GR in the presence of matter.
This deviation occurs either through a non-trivial spacetime-
matter coupling assumption or through effective interpreta-
tions of an energy–momentum tensor equivalent to such cou-
pling without introducing additional degrees of freedom.

In standard GR, the Einstein tensor Gμ
ν is directly coupled

to the energy–momentum tensor in the matter (or Jordan)
space, Tμ

ν , i.e., Gμ
ν = kTμ

ν . In alternative coupling gravity,
Gμ

ν is non-linear with respect to the Tμ
ν rather via an effec-

tive energy–momentum tensor, T μ
ν . The exact expression of

T μ
ν strongly depends on the specific theory and is often pro-

portional to Tμ
ν , controlled by a certain coupling parameter.

The Tμ
ν is physically built on the matter (or Jordan) metric

g, e.g., Tμν = 1√−g
δSM
δgμν

.
Consider a field equation with a curvature term similar to

GR

Rμ
ν(q) − 1

2
δμ

νR(q) = 4πGT μ
ν (q), (1)

with Ricci tensor Rμ
ν constructed from the connection Γ

using the metric q, Γ μ
αβ = 1

2q
μσ

(
∂βqσα + ∂αqσβ − ∂σqαβ

)
,

with R = Rα
α . The matter-side of the above field equation is

coupled via the effective tensor T μ
ν . Similar to GR, Eq. (1)

can be inverted to

Rμ
ν(q) = 4πG

(
T μ

ν − 1

2
T δμ

ν

)
, (2)

with T = T α
α . With this expression, Rμ

ν only depends on
T . The effective energy–momentum tensor, T μ

ν , is typi-
cally written solely as a function of the energy–momentum
tensor in the matter metric and an arbitrary constant K ,

123



  463 Page 4 of 16 Eur. Phys. J. C           (2023) 83:463 

T μ
ν (K , Tμ

ν , T δ
μ
ν). This effective tensor,T μ

ν , however, must
also be reduced to zero on Tμ

ν = 0 to revert to GR in vac-
uum. In some theories, e.g., EiBI and MEMe, it reduces to
Tμ

ν when K = 0. For example, in generalized coupling the-
ory [20], it is written as Tμν = χ

αβ
μν Tαβ with χ

αβ
μν being

a coupling tensor which controls the response of spacetime
and matter from Tαβ . This tensor can be manipulated, or the
parameter in that model can take a certain value so that it
yields a GR vacuum solution.

As a consequence, if we retain the characteristics above,
the metric qμν must be reduced to gμν in vacuum or when a
certain parameter reaches a specific value. We can write the
relation between these metrices via a deformation matrix,
Ωα

ν [48], i.e.,

qμν = gμαΩα
ν, (3)

where Ωα
ν has to depend on T , e.g., Ω

μ
ν(K , T α

ν, T δα
ν) and

Ωα
ν → δα

ν in vacuum. If we consider T only depends on T ,
the above equation can be approached by

Ωα
ν = δα

ν + Fα
ν(K , T α

ν, T δα
ν), (4)

with Fα
ν depending on the theory or gravity model, which

Fα
ν → 0 in vacuum. Even if Ωα

ν matrix is not separable into
Eq. (4) (e.g., in MEMe which is proportional to an exponen-
tial factor), Fα

ν can also be written as a correction of δα
ν , e.g.,

via Taylor series as long as Ωα
ν → δα

ν as T α
ν → 0. Note

that, to retain symmetric qμν , Fα
ν should be symmetric and

contractable with gμα .
To approximate gravity in low curvature and density, we

perturb both qμν ≈ ημν + fμν and gμν ≈ ημν + hμν around
the Minkowskian metric ημν . Equations (3) and (4) are then
approximated as

fμν
∼= hμν + K F (1)

μν , (5)

where F (1)
μν is the Taylor expansion of Fμν up to the first order

of Tμν . In the Newtonian limit, the pressure component of
the energy–momentum tensor is approximately insignificant
relative to the energy density ρ, Tμν ≈ ρuμuν . Then the
time component of Eq. (5) becomes

f00 ∼= h00 + K Aρ, (6)

with A being a constant that depends on the expansion of F00.
We define f00 = −2φ̃ and h00 = −2φ where φ̃ and φ are
the effective and physical Newtonian potential, respectively.
The above equation can now be written as

φ̃ = φ − Cρ (7)

with the constant C = K A. In principle, it is possible to
expand F00 up to an arbitrary order which would lead to a
polynomial form of the second term of the above equation,
e.g., Cρ + Dρ2 + Eρ3 + ..., with D and E denoting certain
constants. These constants depend on the exact form of F00

and hence the expression of T μ
ν . Note that this relation only

applies to the T which depends only on T (e.g., with no
geometrical term except the metric) and reduces to GR in
vacuum.

The R00 component can be approximately reduced to
R00 ≈ 4πGρ in low curvature and density. Defining R00 =
∇2φ, now we have the complete Poisson equation of this
class of theory

∇2φ = 4πGρ + C∇2ρ. (8)

In EiBI, C = κ
4 while in MEMe, C = 3q̄

16πG and the value
depends upon the relation between the effective energy–
momentum tensor T and the physical energy–momentum
tensor T (or between the metric q and g).

In the full relativistic description of some theories, the
coupling parameter C relates to the cosmological vacuum
energy density. In EiBI, it controls the characteristics of the
universe’s expansion, i.e., the singular behaviour in the early
universe [14]. This parameter also affects the propagation
speed of gravitational waves in the presence of matter for
both EiBI and MEMe [20,49].

Note that from the expression in Eq. (3), the tensor Ωα
ν

is analogous to the coupling function, A(φ) in scalar-tensor
theories [50] which relates the gravitational metric in the
Einstein frame and the matter metric in the Jordan frame.
Interestingly, in the Newtonian limit, we can approach the
Poisson equation in this theory to an EiBI-like term. From
Refs. [51–53], the field equation in scalar-tensor theory can
be expressed as

∇2Φ = c0ρ − 1

2
c1∇2φ̄, (9)

with the scalar field relation
(

1 − 1

m2
φ̄

∇2

)

φ̄ = c2

m2
φ̄

ρ, (10)

while c0, c1, c2 and mφ̄ are some constants or parameters.
Please refer to the original article (e.g., Ref. [53]) for the

exact form of these constants. We can treat

(
1 − 1

m2
φ̄

∇2
)

as

an operator and approximate φ̄ via Taylor expansion up to
the first order of (m−2

φ̄
)n , then we have

φ̄ ≈ c2

m2
φ̄

(

1 + 1

m2
φ̄

∇2

)

ρ. (11)

The full Poisson equation in this scalar-tensor theory then
can be calculated by inserting Eq. (11) into Eq. (9) to have

∇2Φ = c0ρ + c1c2

m2
φ̄

∇2ρ, (12)

which is similar to Eq. (8) with parametrized constants. This
shows that an EiBI-like additional Poisson term might also

123



Eur. Phys. J. C           (2023) 83:463 Page 5 of 16   463 

exist in other types of theories, regardless of its fundamen-
tal assumptions. The discussion regarding the possibility to
approach other theories will be discussed elsewhere. This
formalism might provide us (at least) with the first-order
estimation of how far the spacetime-matter coupling char-
acteristics might deviate from standard Newtonian/GR via
the C parameter.

In the next section, we will model the WD structure within
this type of Poisson equation before we compare it with
observational data. Throughout this paper, we will utilize the
EiBI notation, κ , to represent the value of C for convenience
and ease of comparison with previous measurements.

3 White Dwarf models

3.1 Hydrostatic structure in alternative coupling gravity

We model the WD as a static, spherically symmetric star. The
star is assumed to be in the hydrostatic equilibrium, which
satisfies ∇Φ = − 1

ρ
∇ p. Applying this to Eq. (8), using the

EiBI notation, the radial pressure gradient can be written as

dp

dr
= −Gmρ

r2 − κ

4
ρ
dρ

dr
. (13)

This equation is similar to the standard Newtonian hydro-
static equilibrium equation with an additional force propor-
tional to the density distribution gradient, dρ

dr . With the stan-
dard mass-continuity relation, dm(r)/dr = 4πr2ρ(r), and
the equation of state (EoS) which relates pressure p and den-
sity ρ, one can solve the structure equation to obtain the mass
M and radius of the star R. Dividing Eq. (13) with the mass-
continuity relation and some manipulations using chain rela-
tion, e.g., dρ

dr = dρ
dp

dp
dr , the pressure structure equation can

also be written in terms of the Lagrangian fluid description
(not to be confused with Lagrangian action) as

dp

dm
= −

(
Gm

4πr4

)(
1 + κ

4
ρ
dρ

dp

)−1

. (14)

Note that the structure depends on the speed of sound term,
(
dρ
dp )−1. Now, the modification of gravity only depends on

the properties of matter. The above equation can be integrated
simultaneously with the inverse mass-continuity relation i.e.,

dr

dm
= 1

4πr2ρ
, (15)

from m = 0 and p = pc in the center of the star to the sur-
face with m = M and p = 0. The EoS typically depends on
temperature T and composition Xi , p = p(ρ, T, Xi ) to cal-
culate the detailed stellar model. These equations may also
be coupled with energy and thermal structure equations for
that model. However, we approach the stellar structure for
our calculation by calculating temperature-independent con-

ditions, i.e., solving the pressure structure and mass continu-
ity equation with an appropriate barotropic EoS, p = p(ρ).
We integrate these equations to obtain the WD mass M and
degenerate radius Rc given κ and pc as the input. The Rc

is then corrected to find the stellar radius R due to finite
temperature with the approach we introduced in Sect. 3.3.
The details on the EoS we choose and how we model the
finite-temperature correction will be discussed in the follow-
ing subsection.

3.2 Zero-temperature model

The simplest yet straightforward description of the white
dwarf structure is described by the Chandrasekhar model
[54] as degenerate matter ruled by the Pauli exclusion prin-
ciple. In this model, the WD stability is supported only by
the degeneracy pressure of electron gas to counterbalance
the gravitational force. It implies that the equation of state
can be written as the electron’s degeneracy pressure relation
at zero temperature. In this degenerate matter, electrons can
be described as an ideal Fermi gas. The electron density can
be determined at zero temperature by integrating the Fermi
distribution phase space. The pressure relation can be written
as

pe = m4
ec

5

8π2�3

[
x
√

1 + x2
(

2

3
x2 − 1

)
+ ln(x +

√
1 + x2)

]
,

(16)

with x = pF
mec

, where pF and me are the Fermi momen-
tum and electron mass, respectively. The density of ions
inside the matter dominates the total energy density. The
mass density is simply given by ρ = Ax3, where the con-

stant A = mum3
ec

3μe

3π2�3 � 9.738×108μe kg/m3, and it depends
on the number of electrons per ion μe. In the Chandrasekhar
model, the EoS depends on the μe regardless of its atomic
number Z . For example, a WD with a He, C, or O core with
μ ≈ 2 would have a similar EoS. Therefore, the correspond-
ing atomic abundance yields no effect on the WD structure.
The EoS can be solved with the hydrostatic equilibrium and
mass conservation equation, as shown in Eqs. (14, 15) to
obtain the mass and radius of the WD. This solution is suffi-
cient to predict the so-called Chandrasekhar mass limit con-
cept to find the upper bound of a WD mass. This mass limit
is an important concept in both WD studies and stellar evolu-
tion in general. This principle also had important applications
in other fields, e.g., cosmology. The Chandrasekhar limiting
mass is connected to Type Ia supernovae as a standard candle
to measure the universe’s expansion [56].

Even though the Chandrasekhar EoS could approximate
several important features of a WD, e.g., the upper limit of
mass, to give a more realistic picture of a WD, one should
consider the interactions between ions and electrons inside
the WD. In this situation, Hamada and Salpeter (HS) [38]
modeled additional refinements by assuming that electrons
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Fig. 1 WD mass-radius relation curve with the HS EoS within this the-
ory with various values of κ (overlay numbers) in units of 103 m5kg−1

s−2. The scattered points are model-independent measurements from
[47]. Dark and light gray show limits from [24] for 1σ and 5σ credibility.
Note that the GR case is shown in the black line (κ = 0)

and ions have a perfect lattice configuration. The Coulomb
interaction between electrons and ions has the most signif-
icant correction to the Chandrasekhar model, followed by
the Thomas-Fermi correction, the electron exchange correc-
tion, and the electron correlation correction. These correc-
tions depend on atomic number rather than μe. These cor-
rections’ detailed and explicit expressions are discussed in,
e.g., Refs. [57,58]. Overall, the HS correction reduces the
typical critical value of a WD mass and radius to around 5%,
depending on their exact composition [59].

Even though the zero-temperature model provides a gen-
eral picture of the WD mass and structure, WDs are hot
objects. White dwarfs have been observed to span a wide
range of effective surface temperatures (Tef f ) of around
103 − 104K , which would consequently give a higher core
temperature of up to several orders of magnitude. On the
other hand, WDs are not static; for example, they have
residual energy from their previous evolutionary sequence.
Young WDs tend to have a hot temperature from the pre-WD
gravothermal process. A young WD can have a radius up to
twice its zero-temperature degenerate radius. As a WD radi-
ates energy, its radius and temperature will be reduced over
time [41].

From the observational standpoint, WD spectra usually
provide information about their Tef f and surface gravity, g.
In principle, one can calculate the mass and radius of a WD
solely from g, given a theoretical model, as done in several
works of literature, e.g., Refs. [43,44]. However, to confront
theoretical predictions related to the structure with observa-
tions, both mass and radius must be independently measured
from the theoretical model. It requires a combination of mea-
surements. For example, the measurement combination of g
with the mass from the astrodynamics of binary stars or alter-
natively, g with the radius information from luminosity. The

more precise measurement usually combines several obser-
vational parameters. This procedure has also been used to
test WD MR models in standard gravity [47,60].

Figure 1 shows the zero-temperature WD mass-radius
for various values of κ compared to the model-independent
measurement from Ref. [47,61–68] and references therein.It
shows that neglecting the finite temperature effect would
result in a higher value of κ to match the mass and radius val-
ues with the observed WDs. The 2σ zero-temperature WD
bound of κ from the literature [24] also disagrees with most
measurements, especially for lower masses. By visual inspec-
tion alone, it is clear that retaining the zero-temperature
assumption would result in far higher uncertainty in the pre-
dicted mass-radius due to dispersed best-fit values of κ than
the standard deviation of observations. This fact shows the
necessity to consider the temperature effect when calculating
the WD mass and radius to determine the universal bound of
κ .

However, the challenge here is calculating the realistic
WD within the modified gravitational potential. To be con-
sistent with recent WD mass-radius data with high accuracy,
one may need to calculate a detailed physics model of a WD
with various values of the parameter κ of the theory. However,
as reported in Ref. [33], there is currently no publicly avail-
able detailed WD structure evolution program in the context
of modified gravities. On the other hand, even with the pro-
gram in hand, the computational cost would be expensive for
multivariate fitting purposes. Hence, the following subsec-
tion will explain how we approach the problem by estimating
a realistic WD mass radius within modified gravity based on
a surrogate model calibrated to the publicly available WD
evolutionary grid.

3.3 Approach to the realistic WD model

The first step to incorporate the thermal effect into the WD
structure is to model a non-zero temperature equation of state
on the degenerate matter. The simplest examples are non-
zero temperature Fermi gas EoS done in [40] and in [69] for
Feynman-Metropolis-Teller EoS. An advanced EoS involves
further physics considerations, including quantum and rela-
tivity, phase transitions, pair production, and mixing effects.
These corrections are discussed in Ref. [70]. It is generally
accepted [40,69,71,72] that internal WD temperature may be
able to increase the degenerate core radius up to two times
its Chandrasekhar radius. The typical temperature of the WD
core is approximately three orders higher than its effective
temperature, e.g., ∼ 106 − 108K [40]. In general, He-core
WD is more expanded than CO-core WD for the same mass
due to the finite temperature [47,73]. However, to be consis-
tent with WD observation and evolution, one should consider
the existence of a non-degenerate envelope surrounding the
degenerate sphere.

123



Eur. Phys. J. C           (2023) 83:463 Page 7 of 16   463 

One of the simplest temperature-dependent WD evolution
models was introduced by Mestel [42] by reducing the prob-
lem into two aspects [41]. First, the finite temperature effects
on the degenerate core are proportional to the total energy
content of the WD. Therefore, the degenerate matter in the
core tends to be a very effective energy transporter, resulting
in an isothermal core. We must be careful here because this
assumption is not universal, i.e., it is invalid in very young
and hot WDs, where neutrino radiation plays a significant
cooling effect. The second is the thermodynamics of the non-
degenerate envelope, which seals the internal system of the
WD. The envelope seals the internal heat from the outside,
imposing a steep heat gradient. In the Mestel model, the enve-
lope is treated as an ideal gas with Kramer’s opacity to calcu-
late the radiation transport. This way, the Mestel model can
describe the fundamental characteristics of WD evolution,
such as cooling times sensitive to core composition, mass,
and luminosity.

However, several essential physics on the WD envelope
must be correctly included in the Mestel model beyond
Kramer’s opacity and the adiabatic convection effect. Effec-
tively, Kramer’s opacity only accommodates bound-bound,
bound-free, and free-free absorption in the atmosphere,
which dominates in the ∼ 104 − 106K temperature range.
Hence, it may fail to predict radiation transport for low
Tef f WDs. In addition to radiative transport, another process
known as convection can occur in the envelope. In radiative
equilibrium, an expanded gas due to higher temperature in the
lower layer rises and then shrinks and sinks back due to lower
temperature in the upper layer. However, when the tempera-
ture of the upper layer is sufficiently high, the expanded gas
will keep rising, and convection occurs. As a rule of thumb,
convection sets in when the radiative temperature gradient is
more significant than its adiabatic counterpart. Overall, the
temperature gradient would be less steep if convection was
considered.

More realistic models usually solve the structure and its
evolution with detailed physical calculations. For example, a
model from Ref. [74] computed WDs evolution and synthetic
spectra from multiple codes for different aspects (e.g., pre-
WD evolution, spectral fitting, and cooling) and had been
verified with optical spectral data from SDSS DR12. This
model utilized pre-WD profile sequences that evolved from
the zero-age main sequence as the initial boundary before it
was calculated using a more detailed cooling evolution model
to make the track consistent with general stellar evolution.

Another factor that affects the WD radius is the propor-
tion of the surface hydrogen layer to the total WD mass.
The observation of the pulsation of ZZ Ceti type WD has
given an uncertainty range between MH/MWD = 10−10

to MH/MWD = 10−4 [75,76]. However, for the case of
the radius of a binary WD-M system as measured in Ref.
[47], the “thick” atmosphere (MH/MWD � 10−4) realis-

tic models are more consistent than their “thin” atmosphere
(MH/MWD � 10−10) counterpart. We should mention that
these studies were reported using Panei’s [73] model for He-
core, Fontaine’s [77], and Benvenuto’s [78] for CO-core.
These studies were done assuming a standard Newtonian
(non-relativistic limit of GR theory).

The first discussion of modified gravity constraint with
finite temperature WD was explained in [33] by compar-
ing mass, radius, and effective temperature within Beyond-
Horndeski theories with the data from [47]. They assumed
that the radius of low-temperature WD could be approxi-
mated with the HS profile. At the same time, the temperature
effects were regarded as a correction to the HS radius with
R � RHS(Y ) + δR(M, Tef f ; Y = 0), where Y is a free
parameter of that theory. The correction, δR, is taken from
the difference between the HS radius at Y = 0 and publicly
available WD models constructed within GR/Newtonian by
default. However, Mestel’s relation shows that the relation
between the core radius and the surface radius is not linear,
i.e., the expansion of the radius between the degenerate core
and the envelope to temperature is not proportional. Hence,
the correction has to be treated separately between the core
and envelope radius, especially for hot WD. Please see the
details of the Mestel model in Appendix A.

Our approach to calculate WD radius We formulate a
novel semi-analytic approach as a surrogate of a detailed
realistic model by parametrizing Mestel’s radiative trans-
port model to find the correction of the zero-temperature
radius as a consequence of the finite temperature effect. This
method is inspired by Soares’s relation [79], which tries to
connect the zero-temperature mass-radius with the measured
WD mass-radius to obtain temperature-corrected WD, in that
case, from the SDSS WD data set [80]. Here, we treat the rela-
tion between the isothermal core and envelope radius with the
finite temperature treatment based on Mestel’s relation. We
calibrate the free parameters against the tabulated model’s
mass, radius, and effective temperature to include beyond-
Mestel effects based on several more realistic models.

We define the WD radius Ref f as the photosphere radius
where photons escape the surface with effective tempera-
ture Tef f . We set the envelope region from the surface to
the isothermal core radius Rc with temperature Tc and apply
this assumption to the Mestel model. We assume that the
expansion of the isothermal core radius Rc due to finite
temperature is proportional to its RHS . Similar to [79] we
define Rc = ξ(Tef f )RHS where ξ(Tef f ) is a temperature-
dependent variable which scales the HS radius. The corrected
radius, Ref f , is written as

Ref f =
[

4.25
kB(Tef f − Tc)

Gmuμ(Tef f )M
+ 1

ξ(Tef f )RHS

]−1

. (17)
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The detailed derivation of this approach is shown in Appendix
A. To obtain the value of Tc, we adopt Koester’s relation [81]

T 4
e f f

g
= 2.05 × 10−8s2m−1 T 2.56

c . (18)

which depends on the surface gravity g.
There are two free parameters in this approach, ξ(Tef f )

and μ(Tef f ), which encodes both core and envelope radius
correction for a given mass and radius of zero-temperature
WD. The μ(Tef f ) represents the envelope, e.g., composi-
tion, opacity departure from Kramers, and convection in the
atmosphere. In contrast, the ξ(Tef f ) represents the isother-
mal radius which depends on core composition and temper-
ature. The typical value of μ(Tef f ) should not be far from
the value of the number of electrons per ion of ionized H or
He (e.g., around 1 or 2), although it will depend on other fac-
tors mentioned above. For example, at low-temperature stars
(e.g., T < 104K ), the value of μ(Tef f ) would break down
since Kramer’s law would fail to approach a realistic opac-
ity. Meanwhile, the value of ξ(Tef f ) would be around unity,
e.g., the isothermal core radius would not be far from the
radius of zero-temperature WD. This way, we approach Ref f

from RHS given Tef f , M and the values of free parameters,
ξ(Tef f ) and μ(Tef f ), which encodes detailed micro-physics
of a realistic model.

We treat these parameters as a numerical approach and by
no means interpret the internal structure of a WD. In princi-
ple, even though these parameters are derived from and are
connected to a physical model, it requires further analyses
involving a realistic structure profile to understand the exact
physical behaviour of these parameters.

To calibrate our model, we parametrize the mass-radius
relation from the above correction relation within standard
Newtonian gravity, i.e., with κ = 0 to the mass-radius rela-
tion of a realistic WD model. In this way, we obtain the
optimum value of ξ(Tef f ) and μ(Tef f ) in a specific value of
Tef f . We use the curve_fit function within Scipy [82], a
python package for scientific computation. These optimum
points for each Tef f in the model grid will form a curve as
in Figs. 2 and 3. The ξ(Tef f ) and μ(Tef f ) curves will be a
unique representation of a specific WD model. We use these
parameters to correct the radius predicted by the HS EoS
in modified gravity to be consistent with the detailed WD
mass–radius–temperature tabular model.

These parameters were fitted into a publicly available tab-
ulated realistic WD evolutionary grid model containing stel-
lar mass, radius or surface gravity, and effective temperature
information. We use the model from [74] for CO-core WD
(M � 0.5M�) for both thick and thin atmosphere, [39] for
colder He-core WD (M � 0.5M� and Tef f � 2 × 104K )
and [73] for hotter He-core WD (M � 0.5M� and Tef f �
2 × 104K ). The model from Ref. [39] does not represent a
“thin” atmosphere model. The closest representation is only a

Fig. 2 The fitted μ and ξ for CO-core models from [74], are shown
for both thick (red) and thin (blue) atmosphere models along with their
corresponding standard deviation

Fig. 3 The fitted μ and ξ for He-core models are shown for both [73]
(red line) and [39] (blue dots) atmosphere models along with their corre-
sponding standard deviation. The blue lines are interpolated parameters
of available points in the [73] model grid

“no” atmosphere, which is irrelevant to our approach. Hence,
we only use the “thick” model for He-core WD. The fitting
results are shown in Fig. 2 for CO models and Fig. 3 for He
models.

4 Bound of alternative coupling gravity on white dwarf
mass-radius relation

To test the theoretical WD MR relation, one should consider
independent MR measurements with high precision, which
do not rely on the evolutionary or atmospheric model, as the
tightness of the κ bound strongly depends on data precision.
This can be achieved by measuring photometric, spectral, and
orbital parameters of eclipsing binary systems. Therefore, we
test our bound using twenty-six precise observational mea-
surements compiled from Ref. [47]. This paper measures
16 WD MR properties in detached WD-M eclipsing binary
systems and includes 10 previous measurements to test the
theoretical WD MR relation in standard gravity.
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We implement the procedure from the previous section to
generate values of the stellar properties, M , R, and Tef f of
a particular WD model M in a single numerical function.
The radius R = Ref f is corrected from RHS from the main
structure equations, which are solved using the fourth-order
Runge-Kutta method. This numerical function requires pc,
Tef f , and κ as the inputs, where the internal composition is
enclosed in the WD model M . We match the atomic com-
position on HS calculation with the fitted WD model, that
is, helium for He-core models and carbon for CO-core mod-
els. Here, we will show how far the predicted mass-radius
would deviate from observational data in the presence of κ .
To do this, we calculate the observables by determining the
value of κ, pc and Tef f as the inputs for each M . We inter-
polate the fitted value of ξ and μ from tabulation using linear
interpolation along Tef f .

We calculate the posterior distribution of the optimum
value of κ, ln pc and Tef f independently for each object
since every observed WD has a unique age, composition,
and evolution history. We test different models as explained
in the previous section by using the data from Table 2 of Ref.
[47]. The best-fit value is determined via Gaussian likelihood
L (θ) [83]

lnL (θ) = −1

2

n∑

j=1

⎧
⎨

⎩

[
μ j − μM , j (θ)

σ 2
j

]2

+ ln(2πσ 2
j )

⎫
⎬

⎭
,

(19)

where θ represents free parameters, [κ, ln pc, Tef f ], μ j rep-
resents observed quantities of a WD, [Mobs, Robs, Tef f ;obs],
with their corresponding standard deviation, σ j , and μM , j

represents their predicted quantity, [M, R, Tef f ], of a certain
WD model M . Please note that parameter μ j here denotes
a different quantity than the μ discussed in the previous sec-
tion.

The model is selected and assigned as follows. For low
mass and cold WDs (M � 0.5M� and Tef f � 2×104K ), we
use the He-core model from Ref. [39] with MH/M = 10−5.
For high temperature (Tef f � 2 × 104K ), we use the model
from Ref. [73]. For higher mass WDs (M � 0.5M�), we
use the model from Ref. [74] which can cover up to Tef f ∼
6 × 104K . We test the model for both types of atmospheres:
the “thin” one with MH/M = 10−10 and the “thick” one
with MH/M = 10−4. We also fit all objects to a pure HS
mass and radius as a comparison to the above results, with
carbon and helium composition for masses above and below
0.5M�, respectively.

We calculate the probability distribution for each object
by generating 24,000 samples of mass-radius structure using
emcee [84], a python package for Markov-chain Monte
Carlo analyses. We exclude the first 1200 samples in the chain
as the burn-in phase to ensure the result is not skewed into the
initial value. Here, we include Tef f in the probability distri-

Fig. 4 A corner plot showing the approximate probability distribu-
tion of marginalized parameters (ln pc and κ) with its corresponding
sampled posterior distribution (Tef f , M and R) of QS Vir. The thick
atmosphere CO model (MH /M = 10−4) is shown in blue and the thin
(MH /M = 10−10) in red. Dashed lines show the standard deviation of
the distribution. The 1σ , 2σ , and 3σ credibility distributions are shown
by the smallest to largest ring, respectively

Fig. 5 The best-fit value of κ for all objects in [47] is presented with
their 1σ credibility. The result for CO-stars (M � 0.5M�) is shown in
black for the ’thick’ envelope and red for the ’thin’ envelope of [74].
For He-stars (M � 0.5M�), the dotted marks are for a model from
[39] (Tef f � 2 × 104K ) and crossed marks are for a model from [73]
(Tef f � 2 × 104K ). Dark and light gray shades show cumulative 1σ

and 2σ bounds, respectively. The ’thin’ model is excluded from the
calculation of the cumulative bound

bution calculation to accommodate the uncertainty of mea-
sured Tef f ;obs . These generated samples are then marginal-
ized to represent local posterior distribution of parameters,
i.e., κ, ln pc, and Tef f and would be different for each object.

The typical posterior distribution of the objects is sim-
ilar to the ones shown in Fig. 4. It shows the parame-
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Fig. 6 The comparison between bounds discussed in this work with κ

in units of m5kg−1 s−2. The 1σ and 2σ bounds are shown as the inner
and outer whiskers, respectively. The most precise measurement is rep-
resented by QS Vir, while SDSS J0138-0016 represents the coldest star.
Both are calculated using the ’thick’ CO-core model. The cumulative
bound is obtained by combining He-core and ’thick’ CO-core

ters’ distribution with their predicted observations of QS Vir
(M ∼= 0.78M�) for both the ’thick’ and ’thin’ envelope mod-
els. Both models converge to specific values of pc and κ . The
’thick’ envelope model results in a higher pc and lower κ than
the ’thin’ envelope model, where the distributions of observ-
ables overlap between the two models. QS Vir represents the
most precise model-independent measurement in this cata-
logue. Other objects would generally have a similar distri-
bution but with a larger standard deviation. Then we define
the bounds on the modified gravity parameter by marginaliz-
ing the κ distribution into 1σ or 2σ credibility. Marginalized
κ parameters for all twenty-six objects are summarized in
Fig. 5 and Table 1. This distribution is similar to the ratio of
the observed and model radius.

Approximately, all values of κ in this study (including
He-core and CO-core, both ’thin’ and ’thick’ models) fall
within the range of −2 × 103 m5 kg−1 s−2 � κ � 3 × 103

m5 kg−1 s−2 (see Fig. 5). However, the exact cumulative
bound is obtained by combining samples of all objects in this
catalogue. To determine the overall bound, we use all He-core
results and select the ’thick’ model to represent the CO-core
model, which is more consistent with other measurements.
The value of this bound yields

− 0.92 � κ � 0.65 (1σ), (20)

−1.99 � κ � 1.72 (2σ), (21)

in 103 m5kg−1 s−2. The comparison among the bounds with
varied WD types is shown in Fig. 6.

5 Discussion

There are several observational and theoretical motivations
for modifying gravity. Even if general relativity is the correct
one, studying modifications of gravity will give us lessons to
understand the theory itself. Several modified gravity theories
retain GR characteristics in a vacuum and behave differently

in the presence of matter, even with fundamentally different
assumptions. These theories can be recast as Einstein field
equations with effective energy–momentum tensors. We dis-
cussed the Newtonian limit of this type of theory in Sect. 2.
Considering that this effective energy–momentum tensor is
only coupled with the matter, these theories would share
a similar Poisson equation with Eddington-inspired Born
Infeld gravity in Newtonian scale, which has been exten-
sively studied in the context of compact objects.

We investigate how far our understanding of white dwarf
structure in this class of theories will be compatible with
more recent precise observational data as we test the range
of acceptable bounds of the free parameter. We have also
shown that the temperature-independent white dwarf model
and their modified gravity bound from the previous stud-
ies are insufficient to explain the mass-radius distribution of
low-mass WD from precise measurement data from [47]. To
explain this, we assert that the temperature effect must be
addressed, especially to model a low mass WD. However,
no publicly available code can calculate WD structure and
evolution with detailed physics. Moreover, it requires recur-
ring calculations to estimate the posterior distribution of the
parameters concerning data, which requires a high computa-
tional cost. Therefore, we construct a surrogate model using
the semi-analytical approach to estimate the WD mass-radius
in modified gravity based on the Mestel model and Koester’s
relation. After that, the model is calibrated with the publicly
available tabular WD evolutionary model [74] for high mass
WD, and Panei et al. model [39,73] for low mass WD. Using
this method, we estimate the photosphere radius of a WD
given its zero-temperature degenerate mass-radius and effec-
tive temperature within the framework of modified gravity,
which is now dependent on a free parameter, i.e., κ in EiBI
representation.

Then we compare the predicted WD mass-radius obtained
using the above method with high-precision mass-radius-
temperature data from [47] using Markov-chain Monte
Carlo. In this way, we obtain the best-fit probability distribu-
tion of κ and other object-specific parameters for each WD.
The κ value should remain consistent and universal for all
objects and measurements. However, in this study, we found
that the observational value of κ will vary proportional to the
discrepancy between the predicted and measured WD radius
(e.g., in κ = 0), as in Fig. 5. Two aspects can be analysed
from the distribution of κ . First, we check the consistency
of κ for each WD evolutionary model throughout the mass
range. If κ values are dispersed and inconsistent, we expect
the model to be incompatible with WD data. It applies even
in GR, which requires κ ∼ 0. The second aspect is how far
the current most precise measurement could restrict the value
of κ .

Our result is summarized in Figs. 5 and 6. WD with mass
� 0.5M� corresponds to CO-core stars, and � 0.5M� corre-
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sponds to He-core stars. Our posterior calculation considers
the uncertainties from mass, radius, and effective tempera-
ture. For CO-core WD, the mass-radius relation from CO-
core models [74] still undergoes the uncertainty from the
thickness value of the envelope. We calculate the probability
distribution of κ for both the ’thick’ (MH/M = 10−4) and
’thin’ (MH/M = 10−10) model of CO-stars and found that
from Fig. 5, the distributions of κ for the ’thin’ CO-stars dis-
tributed dispersedly around 0 < κ < 3 × 103 m5kg−1 s−2.
This bound is far broader than the individual stars’ standard
deviation and inconsistent between measurements. On the
other hand, the ’thick’ CO-stars converge differently around
κ ∼ 0 with relative standard deviation with the majority of
data. Even with different CO-core tabular models, our result
is consistent with the one from [47] that the ’thick’ model is
more consistent and compatible with GR even in 1σ credi-
bility.

For lower mass WDs (� 0.5M�), due to the availability
of tabular models, we only use the ’thick’ representation of
the model. We use the He-core model from [39] to calculate
relatively cold WD, i.e., Tef f � 2 × 104K WDs and [73] for
hotter ones, i.e., Tef f � 2 × 104K WDs. From Fig. 5, the
overall value of κ is distributed around κ = 0 and slightly
skewed into the negative value. We found that the cumulative
κ of He-core WD is still consistent with GR in the 1σ bound.
The distribution of κ also showed a similar distribution of
Robs/Rmodel as in Fig. 10 of Ref. [47], which shows the
consistency in our approach.

In principle, it may be possible to obtain a tighter bound
by increasing the observational precision of MR data. How-
ever, from Fig. 5, it is apparent that the uncertainty from
WD atmosphere thickness significantly affects the consis-
tency of κ . Here, we adopt the ’thick’ and ’thin’ dichotomy
to represent the value of MH as there remains uncertainty
in the context of realistic WD modelling. From the astro-
seismology analysis of ZZ Ceti stars, MH/M is distributed
dispersedly. The range is 10−10 � MH/M � 10−4. It has
a different mean with a canonical value of 10−4 up to two
orders (10−6) [75,76]. In our overall result, the ’thick’ model
(MH/M = 10−4, canonical value) gives more consistent κ

for each object and is still compatible with GR.
Overall, the bound for most objects coincides with that of

GR. It yields a 2σ bound, with SDSS J1212-0123 as the only
exception. Most objects even agree with GR (Fig. 6) in the 1σ

bound. The coldest WD from the dataset (SDSS J0138-0016),
which has a small temperature correction, gives a comparable
bound (relative to past result), about −0.71 (−1.08) � κ �
0.1 (0.47) in 103 m5kg−1 s−2 with 1σ(2σ) credibility. The
discrepancy of κ calculated between HS and the ’thick’ radius
on this object is also relatively low compared to other objects
in the dataset. The most precise measurement in the dataset,
QS Vir, gives a rather tight 1σ(2σ) bound, −0.09(−0.19) �
κ � 0.17 (0.22) in 103 m5 kg−1 s−2. We found that this

bound is the tightest compared to other WD bounds in the
literature.

In the context of the accumulated value of κ , the distri-
bution of individual values is relatively dispersed, resulting
in the wide accumulated bound. Even if the individual mea-
surement is reasonably precise, the consistency of individual
κ affects the cumulative bound, which reflects how accu-
rately the model predicts WD properties. Our result shows
that even though the ’thick’ CO-core WDs give more consis-
tent values and tighter bounds of κ than their ’thin’ counter-
parts, the discrepancy between measurements is still appar-
ent. For low-mass WDs, the measurement from He-core WDs
gives a relatively loose cumulative bound concerning the
standard deviation from individual observation despite hav-
ing more observations relative to high mass. It shows that
the He-model must still be improved to describe low WD
mass system as accurately as the ’thick’ CO-model explains
higher-mass WD. In other words, the bound and accuracy
of κ depends on the observation accuracy/precision and how
correctly the model depicts the WD structure. The overall
bound is then calculated by combining the result from ’thick’
CO-core and He-core WDs, which gives 1σ (2σ) bound of
−0.92(−1.99) � κ � 0.65(1.72) in 103 m5kg−1 s−2.

The advantage of using “κ” notation to this gravity model
is that we can quickly compare this bound with previous
bounds from well-studied EiBI theory in Newtonian scale.
One of the earliest bound comes from the solar physics
[22], with |κ| < 3 × 105 m5kg−1 s−2. From the analy-
sis of contact WD binary Ref. [23] obtained the bound of
−1.62 × 105 < κ < 1.13 × 107 m5kg−1 s−2. Compared
to the previous (zero-temperature) WD MR bound from [24]
(−0.70 � κ � 1.66 in 103 m5kg−1 s−2), our overall bound
is tighter by a factor of 1.5. The obtained bound is rela-
tively wider because we included the uncertainty of Tef f in
our calculations, compared to the measurements using only
M and R. Banerjee et al. [24] also defined an upper bound
(κ < 0.35×102 m5kg−1 s−2) simply by assuming the upper
mass of super-Chandrasekhar WD (M ∼ 2.8M�) as the
upper bound for Chandrasekhar mass. Note that this bound
is obtained for non-relativistic cases. It might deviate signif-
icantly from relativistic ones. Another bound that is inter-
esting to compare from brown dwarves investigated by [25],
which gives a very tight 1σ constraint of −0.15 � κ � 0.08
in 103 m5 kg−1 s−2. This bound is even more stringent than
the one from an object with the most precise measurement
on the dataset, QS Vir.

It should be noted that our bound may deviate from the
exact calculation due to slight inaccuracies in our approach.
In GR (κ = 0), for the very high temperature (Tef f ∼ 6 ×
104K ), the ’thick’ CO-core model deviates up to 1.5% of the
radius relative to the tabular model (See Appendix B). The
limitation of this approach was explained in Sect. 3.3.
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For the exact calculation of the detailed WD model, it may
be necessary to simulate the WD cooling evolution from their
pre-WD stage within modified gravity to be accurate and
self-consistent. This procedure could begin with a simple
investigation of the WD cooling model in modified gravity
prior to building a more detailed model in the context of
modified gravity. For example, the corresponding discussion
related to the cooling model within modified gravity can be
found in Ref. [85]. On the other hand, the detailed result
from this exact structure calculation (e.g., degenerate radius
and temperature profile) in modified gravity can be utilized
further to calibrate the surrogate model with higher accuracy
to accelerate the statistical computation. It is also helpful
to test WD MR in a broader context (i.e., not only to test
modified gravity) and to quickly calculate WD profile (e.g.,
for rapid analysis of transient WD detection). This is worth
further study.

Despite their rarity, WD in eclipsing binary systems
allow us to measure stellar parameters with high precision.
Improvements in telescopes or observational methods may
enable us to detect more binary WD systems and possibly
provide more precise model-independent mass-radius mea-
surements. For example, the large-scale time-domain pho-
tometry survey from the Zwicky Transient Facility (ZTF)
has discovered more WDs in faint eclipsing binary systems
[86] and their follow-up observations have discovered several
ZZ Ceti (both confirmed and candidates) in detached eclips-
ing binary systems [87]. This might enable us to analyse the
WD envelope with their high precision mass and radius mea-
surements to rule out envelope thickness uncertainty. Future
observations such as the Legacy Survey of Space and Time
(LSST) might detect thousands of new WDs in eclipsing
binary systems [88] and together with parallax from Gaia,
they enable direct characterization of mass and temperature
with better than 5 percent uncertainty [89].

Suppose a high-precision measurement of WD mass-
radius has approached the required precision to reveal the
necessity to modify gravity. In that case, we still require
more detailed physics calculations and accurate WD sim-
ulation, particularly for the envelope thickness and structure
of low-mass WDs, which are more temperature-sensitive.
Moreover, the origin of low-mass WDs is still an open ques-
tion. It is generally thought that He-core WDs originate from
a star that undergoes strong mass-loss episodes during the
Red Giant Branch evolution phase. Thus, the accuracy of the
He-core WD model will depend on how accurate the evolu-
tionary history simulation of the star is, including the mass
transfer of the binary star.

In MEMe, to probe vacuum energy modifications at the
TeV scale, one may expect values on the order of |κ| ∼ 10−33

m5 kg−1 s−2. To this end, the controlled null test could be
the most robust and straightforward method to constrain this
gravity at the Newtonian scale. It can be performed with

the modified spherical steel ball experiment, as explained in
Refs. [21,90]. This method claims to be able to constrain the
parameter up to |κ| � 6.75 × 10−7 m5 kg−1 s−2.

6 Conclusions

Gravity theories with non-trivial matter coupling provide an
interesting and useful tool to better understand the coupling
behaviour of General Relativity. We have shown that the
modification of gravity can be represented by a matter density
gradient term in addition to the standard Poisson equation in
the Newtonian scale.

Our work indicates that to obtain a precise prediction of
the coupling parameter of modified gravity, κ , using the WD
MR relation, it is crucial to utilize a realistic, temperature-
dependent white dwarf model. This model should be used
to calculate both mass and radius with a level of accuracy
comparable to the current level of observational precision.
By approaching the realistic white dwarf radius through a
calibrated surrogate model, we found that the “thick” CO-
core model is more consistent than its “thin” counterpart and
still complies with general relativity. The discrepancies in
κ between models indicate that the theoretical white dwarf
evolutionary model still needs improvement, particularly in
the case of envelope thickness, to comply with precise white
dwarf mass and radius measurements.

In conclusion, the current most precise white dwarf mea-
surements and our detailed theoretical model are still insuf-
ficient to show deviation from general relativity inside mat-
ter. Therefore, the simultaneous improvement in both obser-
vational and theoretical aspects of white dwarfs is strongly
required to probe the modification of gravity inside matter
with high precision.
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Fig. 7 The calibrated mass and radius relation of our approach with various temperature for ’thick’ (left) and ’thin’ (right) CO-core model [74]
along with residual between this approach and the corresponding tabulated model used for the callibration (marked with cross mark)

Fig. 8 Similar to Fig. 7 for He-core models. Panei et al. 1999 model [39] for low-temperature He WD (left) and Panei et al. 2007 model [73] for
high-temperature He WD (right)

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A: Mestel model

We refer to Mestel’s model as the simple WD model intro-
duced in Ref. [42], which describes the thermally isolated
degenerate core by the existence of a gas envelope. The
derivation of the WD structure within this model can also
be found in the literature, e.g., Refs. [41,55]. In this model,
the radiative transfer is calculated by photon diffusion rela-
tion

dT

dr
= − 3

4ac

κKρ

T 3

Lr

4πr2 , (A.1)

with Kramer’s opacity κK = κ0ρT−3.5, energy luminosity
Lr , and emissivity ratio a. Because the envelope only has a
tiny portion of mass relative to the stellar mass (m ≈ M),
the modified gravity has little to no effect on the envelope
structure. We also assume that there is no energy generation
and non-radiative dissipation on the surface, so Lr = L . The

above relation can be multiplied by Eq. (15) to obtain

dP

dT
= −16πac

3κ0

GMT 6.5

ρL
. (A.2)

Assuming ideal gas law, above equation yields

ρ =
(

32πac

8.5κ0

muμ

3kB

GM

L

)0.5

T 3.25. (A.3)

This equation could be simplified together with Eq. (A.1)
to obtain

dT = − 1

4.25

GMmuμ

kB

1

r2 dr. (A.4)

By integrating the above equation from the transition zone
(between core and envelope) to the surface, we obtain a sim-
ple equation that relates the temperature and radius between
the transition zone and the surface

Ttr − Tef f = − 1

4.25

Gmuμ

kB

M

R

(
R

Rtr
− 1

)
, (A.5)

with Ttr and Rtr are the temperature and radius of the transi-
tion zone between core and envelope, while Tef f and R are
the effective temperature and radius of the envelope. We use
this expression to approach a realistic model by parameteriz-
ing μ and Rtr = ξ RHS . The explicit expression is shown in

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  463 Page 14 of 16 Eur. Phys. J. C           (2023) 83:463 

Eq. (17). However, in the canonical Mestel model, the surface
temperature usually assumed to be T → 0, so the relation is
independent with Tef f .

Appendix B: Calibrating the correction parameters

We calibrate the correction parameters, μ, and ξ , by fitting
the generated observables (M , R, and Tef f ) with publicly
available WD evolutionary models from Refs. [39,73,74]
within GR/Newtonian framework (κ = 0). Here, we calcu-
late the best-fit μ and ξ for each tabular mass-radius curve
(with various pc) using the curve_fit function of Scipy
[82]. We repeat that process for various Tef f values available
on the tabular model. We interpolate the values of μ and ξ

to calculate values between the available values of Tef f . The
residual error of radius for these models is shown in Figs. 7
and 8.

Appendix C: Optimum values of κ

The detailed data of optimum κ value along with their stan-
dard deviation σκ for the Hamada-Salpeter (HS) model, ’thin’
and ’thick’ CO models (M � 0.5M�) [74], model for He-
core WD (M � 0.5M�) with Tef f ≤ 2 × 104K [39] and
model for Tef f ≥ 2 × 104K [73] are tabulated in Table 1
of this Appendix. The measured white dwarf mass M , radius
T , and effective temperature Tef f are taken from Ref. [47].

Table 1 Measured white dwarf mass M , radius T , and effective tem-
perature Tef f from Ref. [47] and the references therein. The best-fit κ

value are shown along with their standard deviation σκ for Hamada-
Salpeter (HS) model, model from Ref. [74] for ’thin’ and ’thick’

CO models (M � 0.5M�), model from Ref. [39] for He-core WD
(M � 0.5M�, marked with 1) with Tef f ≤ 2 × 104K and from Ref.
[73] for Tef f ≥ 2 × 104K (marked with 2)

Object name M(M�) R(R�) Tef f (K) κ σκ

HS ‘thick’ ‘thin’ HS ‘thick’ ‘thin’

CSS 080502 0.4756 0.01749 17,838 7158 2161 – 754 333 –

CSS 09704 0.4164 0.02521 29,969 36948 3472 – 8804 1503 –

CSS 21357 0.6579 0.01221 15,909 854 −114 405 583 369 989

CSS 40190 0.4817 0.01578 14,901 3196 −8401 – 838 414 –

CSS 41177A 0.378 0.02224 22,497 19862 872 – 2100 892 –

CSS 41177B 0.316 0.02066 11,864 10449 −12711 – 1605 711 –

GK Vir 0.5618 0.017 50,000 9121 −72 1294 922 287 697

NN Ser 0.5354 0.0208 63,000 21,912 626 2728 897 261 661

QS Vir 0.7816 0.01068 14,220 501 15 293 122 101 232

RR Cae 0.4475 0.01568 7540 2049 −2851 – 187 161 –

SDSS J0024+1745 0.534 0.01398 8272 1648 392 1105 1252 861 2180

SDSS J0106-0014 0.4406 0.01747 13,957 6160 151 – 2362 1014 –

SDSS J0110+1326 0.4656 0.0184 24,569 9558 −282 – 1205 495 –

SDSS J0138-0016 0.529 0.0131 3570 154 −306 451 450 406 963

SDSS J0314+0206 0.5964 0.01594 46,783 6967 346 1540 595 522 1251

SDSS J0857+0342 0.514 0.0247 37,400 38170 1296 11136 4758 1272 3296

SDSS J1021+1744 0.5338 0.01401 10,644 1632 152 884 541 442 954

SDSS J1028+0931 0.4146 0.01768 12,221 5713 −2381 – 592 328 –

SDSS J1123-1155 0.605 0.01278 10,210 998 −32 543 538 386 920

SDSS J1210+3347 0.415 0.0159 6000 1463 −821 – 1068 898 –

SDSS J1212-0123 0.4393 0.0168 17,707 4297 −14641 – 737 241 –

SDSS J1307+2156 0.6098 0.01207 8500 205 −427 -72 701 508 1269

SDSS J1329+1230 0.3916 0.018 12,491 5837 −8611 – 1642 947 –

SDSS J2235+1428 0.3977 0.01975 20,837 11480 −11302 – 1989 772 –

V471 Tau 0.84 0.0107 34,500 1045 61 398 808 463 1080

WD 1333+005 0.4356 0.0157 7740 1751 −6681 – 775 471 –

1He-core, Panei et al. (1999) model [39]
2He-core, Panei et al. (2007) model [73]
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