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Abstract

This dissertation is composed of several studies of gauge/gravity dualities aimed at
providing evidence for the dualities we investigate, and exploring possible applications.

First we discuss the universal scaling function f(g), which appears in the dimensions
of high-spin operators of the N’ = 4 Super Yang-Mills theory. We study numerically an
integral equation that implements a resummation of the complete planar perturbative
expansion, and find a smooth function which for large coupling constant g matches with
high accuracy the asymptotic form predicted by string theory. Furthermore, we give an
exact analytic solution of the strong coupling limit of the integral equation.

Next, we study the NV = 1 supersymmetric warped deformed conifold, which has
two bosonic massless modes, a scalar and a pseudoscalar, that are dual to the modulus
and phase of the baryonic condensates in the cascading SU(k(M + 1)) x SU(kM ) gauge
theory. We generalize both perturbations to include non-zero 4-dimensional momentum,
and find the mass spectra of S7¢ = 0%~ and S¥Y = 0~ glueballs. We argue that these
massive modes belong to 4-dimensional axial vector or vector supermultiplets.

Extending our discussion to the complete baryonic branch of the gauge theory, we
show that the action of a Euclidean D5-brane wrapping all six deformed conifold direc-
tions measures the baryon expectation values. We demonstrate that this is consistent
with its coupling to the scalar and pseudoscalar massless modes, and reproduces the
scaling dimension of baryon operators. We also derive an expression for the variation of
the baryon expectation values along the supergravity dual of the baryonic branch.

Finally we turn to 3-dimensional gauge theories with A/ = 3 supersymmetry, and
calculate the non-abelian R-charges of BPS monopole operators. In the UV limit they
are described by classical backgrounds, and this allows us to find their exact SU(2)pg
charges in a one-loop computation, by quantizing an SU(2)/U(1) collective coordinate.
We show that monopole operators with vanishing scaling dimensions exist in the ABJM

theory, which is essential for matching its spectrum with supergravity on AdS, x S7/Z.
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Chapter 1

A Brief Review of Select Topics in

Gauge/Gravity Dualities

While string theory is often thought of primarily as a candidate theory of everything,
aiming to unify all fundamental interactions including gravity in a single quantum theory,
it has transpired during the past twelve years that it is also a framework in which
quantum field theory and general relativity appear as complementary, dual descriptions
of the same physics. This allows us to use gravity to study strongly coupled field theories,
or conversely, employ field theory ideas to define what we mean by quantum gravity.

Let us begin by reviewing some well-known facts about gauge/gravity dualities. We
shall first discuss the prototype of such dualities, the celebrated N' = 4 AdS;/CFTy
correspondence [1, 2, 3], before we move on to examples with less supersymmetry and
without conformal symmetry. Finally, we shall turn to some more recent developments
concerning AdS,/CFTj3 dualities and the worldvolume theory of M2-branes.

This introductory chapter is based on material from work in collaboration with
[. R. Klebanov, T. Klose and M. Smedbéck [4, 5]. For further background on the
topics touched upon in Section 1.1 we refer the reader to the reviews [6, 7, 8, 9], while

summaries of much of the material discussed in Section 1.2 can be found in [10, 11, 12].



1.1 A Sketch of the AdS/CFT Correspondence

Even though the elementary excitations of perturbative string theory are (as the name
suggests) 1+1 dimensional objects, whose world-sheet dynamics is governed by the

Nambu-Goto area action

1
2wa!

Sng = — / d*ov/—det 0, Xr0X,, , (1.1)

it was realized a long time ago that supersymmetric theories of closed strings also con-
tain higher dimensional objects [13]. While closed superstrings move freely in the 9+1
dimensional spacetime, open strings are bound to end on p+1 dimensional hyperplanes
known as Dirichlet p-branes, usually denoted as Dp-branes. This terminology refers to
the Dirichlet boundary conditions which open string have to satisfy at their endpoints
in the 9—p directions orthogonal to the D-brane, while Neumann boundary conditions
apply for the p+1 coordinate directions parallel to it.

This seemingly innocent observation has profound consequences, because the world-
volumes of D-branes support gauge theories. If we consider a single brane, open strings
beginning and ending on it have massless excitations identical to those of a maximally
supersymmetric U(1) gauge theory in p+1 dimensions. There are 9—p scalar Goldstone
bosons, since the brane breaks translation invariance in the transverse directions, and
a massless vector which arises from the string excitations in the p+1 directions parallel
to the brane. Together with the appropriate fermions they combine to form a vector
supermultiplet.

Extending these considerations to multiple parallel branes, one finds that their pair-
wise separations are determined by the expectation values of the transverse scalar fields
associated with strings stretching between two different branes. In particular, if all
scalar expectation values vanish, the branes are stacked on top of each other. If this

is the case, then N parallel branes support N? massless modes (the number of distinct



choices of beginning and endpoint for an open string), which transform in the adjoint
representation of U(NN). The upshot is that there is a p+1 dimensional U(N) gauge

theory with 16 supercharges living on such a collection of branes.

The gravitational background of a stack of D3-branes.  For large NV a stack
of parallel Dp-branes is a heavy object and will backreact onto the spacetime around
it. The so-called black p-branes, gravitational backgrounds corresponding to such situ-
ations, were originally discovered as supersymmetric soliton solutions of the low energy
supergravity theory, which carry electric charge with respect to the p+1 form Ramond-
Ramond (RR) potential Cp4; [14]. In type IIA string theory (and the associated super-
gravity theory) p is even, while for type IIB p is odd.

Since we will mostly consider 3+1 dimensional U(N) gauge theory we will be par-
ticularly interested in stacks of D3-branes. This case is special insofar as the dilaton
field of the type IIB theory is constant in such a background, and the RR field strength
F the brane couples to is self-dual (the supergravity equations relevant to this case are

reviewed in Appendix A.1). The metric of this classical solution is given by [14]
3
ds* = K12 (r) | = f(r)(dz°)* + Z:(d:c")2 + A2 (r) [f (r)dr® +12dQ3] (1.2)
i=1

where dQ? is the metric of a unit 5-dimensional sphere S* and

h(r)zl—i—f—j , f(r)= —T—é ) (1.3)

We would like to consider two successive limits of this black 3-brane background.
First we take the extremal limit 7o — 0 of the solution (1.2), in which the area of the

event horizon at constant radial coordinate r = ro vanishes. We have f(r) — 1 and thus

ds* = W= Y2 (r)ndada” + b3 (r) (dr* 4+ r2dQ3) . (1.4)



In this limit the mass (per unit volume) of the 3-brane saturates a BPS-type bound and
it can be shown that the extremal solution preserves 16 of the 32 supersymmetries of
the type IIB theory, as it must if it is to describe a stack of parallel D3-branes.

When r is large compared to L it is easy to see that (1.4) simply approaches 9+1
dimensional flat space. In the opposite, near horizon limit » — 0 we find that, defining

a new variable z = L?/r, the metric (1.4) simplifies to
ds* = L—2 (d2® + nudatda”) + L2dQ; (1.5)
- 52 Umz 5 - :

This metric describes the direct product of a five-sphere S°, and the Poincaré wedge of
the 5-dimensional Anti-de Sitter space, AdSs, both with radius of curvature L.

By comparing the tension of the extremal 3-brane solution, parameterized by the
length scale L, to that of a stack of N D3-branes, characterized by the string length
scale v/, one finds that

L' = g3 No* | (1.6)

where gyy is the coupling constant of the supersymmetric Yang-Mills theory that the
brane supports. The five-form flux piercing the S® that is required to satisfy the super-

gravity equations of motions is then simply

/ «Fy =N, (1.7)
S5
i.e. the number of flux units equals the number of colors in the gauge theory picture.

Large N and the ‘t Hooft coupling. = The combination A = ¢3,;N that appears
on the right hand side of (1.6) is known as the ‘t Hooft coupling, and is familiar to field
theorists from ‘t Hooft’s generalization of SU(3) gauge theory (i.e. QCD) to SU(NNV) gauge
group [15]. Increasing the number of colors, while keeping A constant, implies that each

Feynman diagram acquires a topological factor of N raised to the power of the Euler



characteristic of the graph. Hence in the large N limit Feynman graphs that can be
drawn on a sphere (called planar) dominate, since they carry a factor of N2, while those
that can be drawn on a torus are subleading (of order N°) and those requiring higher
genus surfaces even more suppressed. Thus making N large significantly simplifies field
theory; if in addition A is small one can perform calculations perturbatively.

It has been argued that the sum over Feynman graphs with a given Euler character-
istic can be thought of as a sum over string world-sheets. In such an interpretation the
string coupling constant would be proportional to N~!, such that large N would lead to
a weakly coupled string theory. While this argument had never been made precise before
the arrival of the AdS/CFT correspondence, one can indeed check that in the full string
theory the string loop corrections to the classical solution considered above proceed in
powers of N=2. Thus taking N to infinity allows us to use a classical description of
string theory on AdSs x S, and for the remainder of this subsection we will assume the
large N limit with A held fixed.

Now from (1.6) we see that the curvature radius L of the near-horizon geometry is
equal to A/* in units of the string scale. Since the supergravity approximation to type
IIB string theory is only applicable for weakly curved spaces we require L > v/a/, which
implies A > 1. Hence the gravitational calculation is reliable precisely in the limit in

which field theory computations are not perturbative and therefore difficult.

The AdS;/CFT, correspondence with N' = 4 supersymmetry. At this point
we have arrived at two superficially completely different descriptions of 3-branes. On
the one hand, we have a field theory picture of a stack of N D3-branes in terms of
N = 4 supersymmetric SU(N) gauge theory that is most useful for small A\. In the
low-energy limit the field theory decouples from the bulk closed string theory, and the
massless modes of the open strings living on the branes adequately describe the situation.

On the other hand, the supergravity picture of a black 3-brane is applicable for large



A, and here the AdS; x S® region (at 7 < L) decouples from the asymptotically flat
large r spacetime in the low-energy limit, as confirmed by investigations of so-called
greybody factors describing the cross-section for the absorption of radiation by the brane
[16, 17, 18]. This second description is purely gravitational, i.e. in terms of the massless
excitations of closed strings.

These two complementary points of view are at the core of the AdS/CFT corre-
spondence. Maldacena [1] made the seminal conjecture that type IIB string theory on
AdS; x S°, of radius L as in (1.6), is dual to the N' = 4 SU(N) SYM theory.! This
can be understood as a duality between open and closed string descriptions of the same
phenomena. Crucially, it is also a weak-strong duality, since the two pictures apply for
different regimes of A. This renders the AdS/CFT correspondence very hard to prove
rigorously, but at the same time exceedingly useful as a computational tool.

The original conjecture of the AdS/CFT correspondence was partially motivated by
symmetry considerations [1]. The isometry supergroup of the AdS; x S° background is
PSU(2,2|4), which perfectly matches the A/ = 4 superconformal symmetry. The maxi-
mal bosonic subgroup of this supergroup is SO(2,4) x SO(6). The first factor is nothing
but the conformal group in 341 dimensions, which coincides with the isometry group
of AdSs, since Anti-de Sitter space is the maximally symmetric space with (constant)
negative curvature. The second factor of SO(6) ~ SU(4) appears as the R-symmetry
of the N' = 4 SYM theory, while in the geometry it is realized simply as the isometry
group of the S°.

The development of a detailed dictionary that allows one to translate from conformal
field theory to string theory language was initiated in [2, 3]. Each gauge invariant
operator in the conformal field theory corresponds to a particular field in the AdSs x S°
background (or in some cases, as e.g. for the baryonic operators we will discuss below,

to an extended object such a D-brane), in such a way that its scaling dimension A is

'In its strongest form the conjecture states that this holds even for finite V.



related to the mass of the dual field. E.g. scalar operators satisfy A(A —4) = m? 2.

For the fields in AdSs that come from the type IIB supergravity modes, including
the Kaluza-Klein excitations on the 5-sphere, the masses are of order 1/L. Hence, it is
consistent to assume that their operator dimensions are independent of L, and therefore
independent of A. This is due to the fact that such operators commute with some of
the supercharges and are thus protected by supersymmetry. Perhaps the simplest such
operators are the chiral primaries which are traceless symmetric polynomials in the six
real scalar fields. These operators are dual to spherical harmonics on S° which mix
the graviton and RR 4-form fluctuations. Their masses are m2 = k(k — 4)/L?, where
k = 2,3,.... These masses reproduce the operator dimensions A = k which are the
same as in the free theory. The situation is completely different for operators dual to
the massive string modes: m? = 4n/a’. In this case the AdS/CFT correspondence
predicts that the operator dimension grows at strong coupling as 2n'/2\1/4.

In order to compute correlation functions of operators in the conformal field theory
using its dual fields ¢ one identifies a certain gauge theory quantity W with a string

theory quantity Zstying [2, 3]

W[Q‘)O(f)] = Zstring[goo(f)] . (18)

Here W is the generator of the connected Euclidean Green’s function of a gauge theory

operator O,

Wlpo(Z)] = <exp/d4a? 0o O) . (1.9)

On the other hand, Zine is the string theory path integral calculated as a functional
of ¢g, the boundary condition on the field ¢ related to O by the AdS/CFT duality. In

the large N limit the string theory becomes classical, which implies

Zstring ~ 6_8[@0(5)] y (].].0)



where S[po(Z)] is the extremum of the classical string action which is again a functional
of . If we are further interested in correlation functions at very large ‘t Hooft coupling,
the problem of extremizing the classical string action reduces to solving the equations

of motion in type IIB supergravity.

Long operators and the cusp anomalous dimension. Operators with large
quantum numbers provide a simple setting in which the AdS/CFT correspondence can
be tested very efficiently. E.g. the single-trace operators examined in [19] carry a large
R-charge (dual to a string angular momentum J on the compact space S°) and the dual
states are almost point-like closed strings moving rapidly on the five-sphere [20]. If we
consider such a long operator with a second large quantum number the dual object may
be a macroscopic semi-classical string [21], which allows for quantitative checks of the
correspondence (and in addition strongly suggests that string theory on AdSs x S° and
N =4 Super Yang-Mills theory are integrable [22, 23]).

We can also consider operators with large spin 5, such as the twist-2 operator [24, 25]

Tr F,,Di 2R (L.11)

The scaling dimension A of such twist-2 operators at large values of the spin S is

characterized by the universal scaling function (or cusp anomalous dimension) f(g):

A—S=f(g)lnS+0O(SY), (1.12)

with g = \/m /4m. The logarithmic dependence of the dimension on large Lorentz
spin is a generic feature that has been independently observed for both A" = 4 SYM and
its string theory dual, see e.g. [26, 27, 28]. Importantly, such a scaling behavior stems
[29, 30] from the large spin limit of the Bethe equations [31, 32, 33, 34] which underlie

the integrable structures of gauge and string theories.



Due to the universal role played by the function f(g), one would like to compute it
in the N/ = 4 SYM theory. In this case we can consider operators in the SL(2) sector,
of the form

Tt D727+ ..., (1.13)

where Z is one of the complex scalar fields, the R-charge J is the twist, and the dots
serve as a reminder that the operator is a linear combination of such terms with the
covariant derivatives acting on the scalars in all possible ways. The object dual to such
a high-spin twist-2 operator is a folded string [20] spinning around the center of AdSs;
its generalization to large J was found in [28]. The result (1.12) is generally applicable
when J is held fixed while S is sent to infinity [29].

Though the function f(g) for N' = 4 SYM is not the same as for QCD, its perturbative
expansion is in fact related by the conjectured transcendentality principle [35], which
states that each expansion coefficient has terms of definite degree of transcendentality
(namely the exponent of g minus two), and that the QCD result contains the same terms
(in addition to others which have lower degree of transcendentality).

An interesting problem is to smoothly match the explicit predictions of string theory
for large g to those of gauge theory at small g. During the past few years methods
of integrability in AdS/CFT [36, 37, 38] have led to major progress in addressing this
question. In an impressive series of papers [30, 39, 40] a linear integral equation has
been derived, which allows one to compute the universal scaling function f(g) to any
desired order in perturbation theory. We will refer to it as the BES equation.

It was obtained from the asymptotic Bethe ansatz for the SL(2) sector by considering
the limit S — oo with J finite, and extracting the piece proportional to In S, which is
manifestly independent of J. Taking the spin to infinity, the discrete Bethe equations
can be rewritten as an integral equation for the density of Bethe roots in rapidity space.

In Chapter 2 we shall discuss how to extract the strong coupling behavior of f(g)

from the BES equation, and show that it agrees with the predictions from string theory.



1.2 Generalizations to Lower Supersymmetry and

the Non-Conformal Case

1.2.1 Reducing Supersymmetry and the Conifold

To obtain an AdS/CFT duality with less than the maximal A" = 4 supersymmetry, we
consider a stack of D3-branes located at the singularity of a 6-dimensional Ricci-flat

cone [41, 42, 43, 44]. The metric is then given by
ds* = h™ Y2 (r)ndatda” + b3 (r) (dr* 4+ r?dsy) . (1.14)

where ds? is the metric of the 5-dimensional compact space Y, which is an Einstein
manifold (i.e. Ry = 4¢ap) and forms the base of the cone. The geometry dual to the
conformal field theory supported by the D3-branes at the tip of the cone emerges in
the near horizon limit. It is simply AdSs x Y5, which still has the SO(2,4) conformal
symmetry manifest in the geometry, even though the R-symmetry group which must be
contained in the isometries of Y5 will in general be smaller than SU(4).

In order to find gauge theories with N' = 1 superconformal symmetry the Ricci-flat
cone must be a Calabi-Yau 3-fold [44, 45] whose base Y5 is called a Sasaki-Einstein space.
Among the simplest examples of these is Y5 = TV!. The corresponding Calabi-Yau cone
is called the conifold.

The conifold is a singular non-compact Calabi-Yau three-fold [46]. Tts importance
arises from the fact that the generic singularity in a Calabi-Yau three-fold locally looks

like the conifold, described by the quadratic equation in C*:
B4+ =0. (1.15)
This homogeneous equation defines a real cone over the 5-dimensional manifold 7.

10



The topology of T can be shown to be S? x S and its metric [47] is

1
dsii, = 9 (dip + cos O1depy + cos 92d¢2)2

1 1
+6(d9% + sin® 0,d¢?) + a(deg + sin’ Oodp?) . (1.16)

T is a homogeneous space, and can be described as the coset SU(2) x SU(2)/U(1).

The metric on the cone is then ds3 = dr? + r?ds2. .

Symmetries and field theory interpretation. = We can introduce different complex

coordinates on the conifold, a; and b;, as follows:

Z3 + iZ4 21 — iZQ a1b1 albg
Z = pu—

21+ iZQ —2z3 + iZ4 CLle a/2b2

18y e3(¥HI1=02) (o) o3 (Vb1 HE2)

[S])

, (1.17)
—S8189 Q%(wqul*@) 51C e%(¢*¢1+¢2)

where ¢; = cos %, s; = sin

0;
2

(see [46] for more details on the z and angular coordinates).
The equation defining the conifold is now det Z = 0.

The a;, b; coordinates above will be of particular interest to us because the symmetries
of the conifold are most apparent in this basis. The conifold equation has SU(2) xSU(2) x

U(1) symmetry since under these symmetry transformations,

det LZR' = dete™Z = 0. (1.18)

This is also a symmetry of the metric presented above where each SU(2) acts on 6;, ¢;, 1
(thought of as Euler angles on S*) while the U(1) acts by shifting 1. This symmetry can
be identified with U(1)g, the R-symmetry of the dual gauge theory, in the conformal
case. The action of the SU(2) x SU(2) x U(1)g symmetry on a;,b; defined in (1.17) is

11



given by

SU(2) x SU(2) symmetry : (al) — L <a1> : (1.19)
az az
by by

)= (y) (1.20)

R-symmetry: (a;, b;) — €2 (a;, b)) , (1.21)

i.e. a and b transform as (1/2,0) and (0,1/2) under SU(2) x SU(2) and with R-charge
1/2 each. We can thus describe the singular conifold as the manifold parametrized by
a and b, but from (1.17), we see that there is some redundancy in the a,b coordinates.

Namely, the transformation
1
a; — )\CLZ‘, bj—> ij, ()\E@), (122)

results in the same z coordinates in (1.17). Thus we impose the additional constraint
la1]? + |as|? — |b1]* — |b2*> = 0 to fix the magnitude in the above transformation. To
account for the remaining phase, we describe the singular conifold as the quotient of the
a, b space with the above constraint by the relation a ~ e*®a,b ~ e~*b.

The importance of the coordinates a;, b; is that in the gauge theory on D3-branes at
the tip of the conifold they are promoted to chiral superfields. The low-energy gauge
theory on N D3-branes is an N' = 1 supersymmetric SU(N) x SU(N) gauge theory
with bifundamental chiral superfields A;, B; (i,j = 1,2) in the (N,N) and (N,N)
representations of the gauge groups, respectively [44, 45]. The superpotential for this

gauge theory is
W ~ Trdet AZB] =Tr (AlBlAQBQ - AlBQAQBl) . (123)

The continuous global symmetries of this theory are SU(2) x SU(2) x U(1)g x U(1)g,

where the SU(2) factors act on A; and B, respectively, U(1)p is a baryonic symmetry
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under which the A; and B; have opposite charges, and U(1)g is the R-symmetry with
charges of the same sign Ry = Rp = % This assignment ensures that W is marginal,
and one can also show that the gauge couplings do not run. Hence this theory is

superconformal for all values of gauge couplings and superpotential coupling [44, 45].

Resolution of the conifold. A simple way to understand the resolution of the

conifold is to deform the modulus constraint above into
b1 [* + [bo]* = |aa [* — aof* = w? (1.24)

where u is a real parameter which controls the resolution. The resolution corresponds to
a blow up of the S? at the bottom of the conifold. In the dual gauge theory turning on u
corresponds to a particular choice of vacuum [48]. After promoting the a,b fields to the
bifundamental chiral superfields of the dual gauge theory, we can define the operator U

as

u:%mﬂ&+@&—ﬁm—@%y (1.25)

Thus, the singular conifolds correspond to gauge theory vacua where (/) = 0, while the
warped resolved conifolds correspond to vacua where () # 0. In the latter case, some
VEVs for the bifundamental fields A;, B; must be present. Since these fields are charged
under the U(1) g symmetry, the warped resolved conifolds correspond to vacua where this
symmetry is broken [48]. In this thesis we shall not discuss the resolved conifold further
(except in the context of the baryonic branch), but we shall be interested instead in the

deformation of the conifold singularity, which is the subject of the following subsection.

1.2.2 Deformation of the Conifold

We have seen above that the singularity of the cone over TH! can be replaced by an

S? through resolving the conifold (1.15) as in (1.24). An alternative supersymmetric
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blow-up, which replaces the singularity by an S3, is the deformed conifold [46]
Bttt =e . (1.26)

To achieve the deformation, one needs to turn on M units of RR 3-form flux. This
modifies the dual gauge theory to N = 1 supersymmetric SU(N) x SU(N + M) the-
ory with chiral superfields A;, A; in the (N, N + M) representation, and By, By in the
(N, N + M) representation.

The necessary 3-form field strength linking the three-cycle of the conifold can be
turned on by wrapping M D5-branes on the S? at the tip of the cone. They are often
referred to as fractional branes. Since their number is dual to the difference in the ranks

of the two gauge groups, the deformation, unlike the resolution, cannot be achieved in

the context of the SU(N) x SU(N) gauge theory.

The KS solution.  The 10-dimensional metric takes the following form [49]:
ds?y = h='V2 (1) pdatde” 4+ W2 (1) dst (1.27)

where h(7) is a warp factor to be discussed below, and ds? is the Calabi-Yau metric of

the deformed conifold:

a5 = < k() | sinh” @ [(g")2 + (6»)7] (1.28)

2
+ cosh? (%) (9% + (¢)?] + 3Ki(7') [d7* + (9] } ’

with K(7) = (sinh 7 cosh 7 — 7)'/3/sinh 7.

For 7 > 1 we may introduce another radial coordinate r defined by

3 T
r? = Wg“/?’e? il (1.29)
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and in terms of this coordinate we find dsf — dr? + r?ds2., ;.

The basis one-forms ¢° in terms of which this metric is diagonal are defined by

1_ €2 — €2 9 €1 — €1
= , = , 1.30
g 7 g 7 (1.30)
3_ €2+ € 4 €11 €
= , = , 1.31
9 7 9 NG (1.31)
g5 =€3 + cos Qldqﬁl y (132)
where the e; are one-forms on S?
el = d@l , €y = — sin 91d¢1 , (133)
and the ¢; a set of one-forms on S*
€1 = sin v sin Oady + cospdb, | (1.34)
€9 = cos 1 sin Oadpy — sindb, | (1.35)
€3 = d) + cos Oadeps . (1.36)
The NSNS two-form is given by
gsMo/ Tcotht—1 1. 5 /7T\ 1. o 9 [T\ 3 . 4
B = sint® (3) w(3) s nd] .
9 5 L sin 5 A g” + cos 5) 9 Ag (1.37)
and the RR fluxes are most compactly written as
Mao' sinh7 — 7
Fo— 30 4, 5 1, 3 2 0 4 1
3= {g NG Ng +d{—28mh7 (NG +3g Ng)| ¢, (1.38)
Fy=dCy+ By AN Fy= (1+%) (By A F) . (1.39)

Note that the complex three-form field of this BPS supergravity solution is imaginary
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self-dual:
*6G3 == ZG3 s Gg == F3 — ng s (140)

UE
where ¢ denotes the Hodge dual with respect to the unwarped metric ds2. This guar-
antees that the dilaton is constant, and we set ¢ = 0.

The above expressions for the NSNS- and RR-forms follow by making a simple ansatz
consistent with the symmetries of the problem, and solving a system of differential
equations, which owing to the supersymmetry of the problem are only first order [49].
The warp factor is then found to be completely determined up to an additive constant,

which is fixed by demanding that it go to zero at large 7:

h(1) = (gs Mo/ )2222 =331 (1) | (1.41)
o the —1

I(7) 521/3/ dx%(sinhxcoshx — )3 (1.42)
- sinh” x

For small 7 the warp factor approaches a finite constant since I(0) = 0.71805. This
implies confinement because the chromo-electric flux tube, described by a fundamental
string at 7 = 0, has tension

T, (1.43)

1
= m .
The KS solution [49] is SU(2) x SU(2) symmetric and the expressions above can be
written in an explicitly SO(4) invariant way. It also possesses a Zy symmetry Z, which
exchanges (01, ¢1) with (s, ¢2) accompanied by the action of —I of SL(2, Z), changing
the signs of the three-form fields.

Examining the metric ds? for 7 = 0 we see that it degenerates into

1

403 = 2= @/3)' P (6% + () + 50| (149

2
which is the metric of a round S3 while the S? spanned by the other two angular

coordinates, and fibered over the S3, shrinks to zero size. In the ten-dimensional metric
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(1.27) this appears multiplied by a factor of h'/2(7), and thus the radius squared of
the three-sphere at the tip of the conifold is of order g,M«'. Hence for g,M large, the
curvature of the S, and in fact everywhere in this manifold, is small and the supergravity
approximation reliable.

The field theory interpretation of the KS solution exhibits some unusual features.
The deformation breaks the conformal symmetry of the singular conifold and thus the
gauge couplings now run. At a certain point along the RG flow, the coupling of the
higher rank SU(N + M) group diverges and one is forced to perform a Seiberg duality
transformation [50].

Interchanging the two gauge groups, the theory becomes SU(N ) X SU(N + M) with
the same bifundamental field content and superpotential, but with a reduced number of
colors N = N — M. Since this otherwise looks exactly like field theory we started with,
the procedure can be iterated many times, gradually reducing the rank of the gauge
groups along the RG flow. For a careful field theoretic discussion of this quasi-periodic
RG flow, see [12]. In particular, if N = (k+1)M for some integer k, the so-called duality
cascade stops after k steps, resulting in an SU(M) x SU(2M) gauge theory. This IR
field theory exhibits a number of interesting effects reflected in the dual supergravity

background, which include confinement and chiral symmetry breaking.

The KT solution. Let us briefly note here some formulas describing the KT solu-
tion [51], which corresponds to the large 7 limit of the more general KS solution. For
simplicity we take g = o =1, M = 2 and N = 0. In terms of the radial coordinate

r ~ e2/3¢7/3 the KT background is given by

1

ds® = W Nudz'dz” + /h(r)(dr* + r’dsi.), (1.45)
r
3 r
H3:—d7’/\w2, BQ = 310g—w2, F3:u)3, (146)
T Ty
_ r 4
Fy=(1+%)ByAF; = 3log - [wg Awy = e di dr] . (1.47)
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The warp factor differs from the AdS case by an additional logarithmic term

81

T

and the metric of the base of the conifold can be expressed concisely as
2 L5 1 i\2
dsiun =5 (0°) + 5 > (9.

The volume form is given by

Vhr®

1 d*z A wy A ws Adr.

vol =

In the expressions above we have introduced two harmonic forms,
I VISR ST SO I o
Wy = 2(9 NG +g Ng") = 2(sm€1d91 A dpy — sinbydbs A dops)
and w3 = wy A g°.

1.2.3 Massless Modes of the Warped Throat

(1.48)

(1.49)

(1.50)

(1.51)

As we shall see below, the U(1) baryonic symmetry of the warped deformed conifold is in

fact spontaneously broken, since baryonic operators acquire expectation values. The cor-

responding Goldstone boson is a massless pseudoscalar supergravity fluctuation which

has non-trivial monodromy around D-strings at the bottom of the warped deformed

conifold [52, 53]. Like fundamental strings they fall to the bottom of the conifold (cor-

responding to the IR of the field theory), where they have non-vanishing tension. But

while F-strings are dual to confining strings, D-strings are interpreted as global solitonic

strings in the dual cascading SU(M (k + 1)) x SU(ME) gauge theory.

Thus the warped deformed conifold naturally incorporates a supergravity description
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of the supersymmetric Goldstone mechanism. Below we review the supergravity dual of
a pseudoscalar Goldstone boson, as well as its superpartner, a massless scalar glueball
[52, 53]. In the gauge theory they correspond to fluctuations in the phase and magnitude

of the baryonic condensates, respectively.

The Goldstone mode. A DI-brane couples to the three-form field strength F3, and
therefore we expect a four-dimensional pseudoscalar p(x), defined so that x4dp = 6 F3,
to experience monodromy around the D-string.

The following ansatz for a linear perturbation of the KS solution

§F3=x4dp + fo(T)dp A dg® + fo(T)dp AdT A g° | (1.52)
~ 54/3
(5F5 = (1 + *)5F3 AN BQ = (*4dp — mh(T) dp AdT N\ 95) VAN BQ y

where f} = dfy/dr, falls within the general class of supergravity backgrounds discussed
by Papadopoulos and Tseytlin [54]. The metric, dilaton and Bs field remain unchanged.
This can be shown to satisfy the linearized supergravity equations [52, 53], provided
that d x4 dp = 0, i.e. p(x) is massless, and fo(7) satisfies

8 , (g Mda')?
9K2f2_ 3c4/3

d
—E[K4 sinh? 7 f3] +

sinh

(TcothT — 1) <c0th7' — LQ) . (1.53)
T

The normalizable solution of this equation is given by [52, 53]

2c
K2sinh? 7

fa(T) = /OT dx h(x)sinh® z (1.54)

where ¢ ~ g4/3

. We find that f, ~ 7 for small 7, and f, ~ 7e~?"/3 for large 7.
As we have remarked above, the U(1) baryon number symmetry acts as Ay — €Ay,
B; — e "B;. The massless gauge field in AdS; dual to the baryon number current

originates from the RR 4-form potential 6Cy ~ w3 A A [44, 55].
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The zero-mass pseudoscalar glueball arises from the spontaneous breaking of the
global U(1)p symmetry [56], as seen from the form of §F5 in (1.52), which contains a
term ~ w3 A dp A d1 that leads us to identify A~ dp.

If N is an integer multiple of M, the last step of the cascade leads to a SU(2M) X
SU(M) gauge theory coupled to bifundamental fields A;, B; (with 4,5 = 1,2). If the
SU(M) gauge coupling were turned off, we would find an SU(2M) gauge theory coupled
to 2M flavors. In this Ny = N, case, in addition to the usual mesonic branch, there exists
a baryonic branch of the quantum moduli space [57]. This is important for the gauge
theory interpretation of the KS background [49, 56]. Indeed, in addition to mesonic
operators (N;)§ ~ (A4;B;)3, the IR gauge theory has baryonic operators invariant under
the SU(2M) x SU(M) gauge symmetry, as well as the SU(2) x SU(2) global symmetry

rotating A;, B;:

A~ €ayag.ann (AT (A1)57 - (An)57 (A2) 7 (A2) ™0 (An)j7 (1.55)

B~ €asasan (BT (B1)3* . (B1)ay (B2)y ™ (B2)y ™ . (Bu)jp" (1.56)
These operators contribute an additional term to the usual mesonic superpotential:
W = A(Nij)§(Nie)oe™ e + X (det[(N;)§] — AB — A3Y) (1.57)

where X can be understood as a Lagrange multiplier. The supersymmetry-preserving

vacua include the baryonic branch:
X=0; N;=0; AB=-A3}T, (1.58)

where the SO(4) global symmetry rotating A;, B; is unbroken. In contrast, this global
symmetry is broken along the mesonic branch V;; # 0. Since the supergravity back-

ground of [49] is SO(4) symmetric, it is natural to assume that the dual of this back-
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ground lies on the baryonic branch of the cascading theory. The expectation values of the
baryonic operators spontaneously break the U(1) baryon number symmetry A, — e™@Ay,
Bj — e ™B;. The KS background corresponds to a vacuum where |A| = |B| = A3},
which is invariant under the exchange of the A’s with the B’s accompanied by charge
conjugation in both gauge groups. This gives a field theory interpretation to the 7
symmetry of the warped deformed conifold background. As noted in [56], the baryonic

branch has complex dimension one, and it can be parametrized by ( as follows

?

A=iCA3y, B C

AT (1.59)
The pseudoscalar Goldstone mode must correspond to changing ¢ by a phase, since this
is precisely what a U(1)p symmetry transformation does.

Thus the non-compact warped deformed conifold exhibits a supergravity dual of the
Goldstone mechanism due to breaking of the global U(1)p symmetry [52, 53, 56]. On
the other hand, if one considered a warped deformed conifold throat embedded in a
flux compactification, U(1) s would be gauged, the Goldstone boson p(x) would combine
with the U(1) gauge field to form a massive vector, and therefore in this situation we

would find a manifestation of the supersymmetric Higgs mechanism.

The scalar zero-mode. By supersymmetry the massless pseudoscalar is part of
a massless A/ = 1 chiral multiplet. and therefore there must also be a massless scalar
mode and corresponding Weyl fermion, with the scalar corresponding to changing { by a
positive real factor. This scalar zero-mode comes from a metric perturbation that mixes
with the NSNS 2-form potential.

The warped deformed conifold preserves the Zs interchange symmetry Z. However,
the pseudoscalar mode we found breaks this symmetry: from the form of the pertur-
bations (1.52) we see that 0Fj3 is even under the interchange of (01, ¢1) with (6, ¢2),

while F3 is odd; similarly 5}3’5 is odd while F5 is even. Therefore, the scalar mode must
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also break the Z symmetry because in the field theory it breaks the symmetry between
the expectation values of |A| and of |B|. The necessary translationally invariant pertur-
bation that preserves the SO(4) but breaks the Z symmetry is given by the following

variation of the NSNS 2-form and the metric:

0By = x(1)dg’ ,  6Gi3 = 6Gay = A(7) , (1.60)

where, for example 6G13 = A(7) means adding 2X\(7) g ¢® to ds?,. To see that these

components of the metric break the Z symmetry, we note that

(e1)? + (e2)? — () = (&2) = ¢* > + ¢°¢" + ¢*¢* + ¢4 . (1.61)

Defining A(7) = /2K sinh 7 z(7) one finds [52, 53] that all the linearized supergrav-

ity equations are satisfied provided that

K sinh7)*2)’ 8 1 4cosh
(( SII% 7)) _ (g 8L _4coshr .22 | (1.62)
(K sinh 7)2 9K6¢ 3 K3 )sinh’r
and
1 sinh 27 — 27
"= Zg.M S 1.63
X = M) (1.63)
The solution of (1.62) for the zero-mode profile is remarkably simple:
thr —1
(1) = (rcothr — 1) (1.64)

° (sinh 27 — 27)1/3

where s is a constant. Like the pseudoscalar perturbation, the large 7 asymptotic is

again z ~ Te 27/3,

We note that the metric perturbation has the very simple form
6G13 ~ h'*(tcotht — 1). The perturbed metric d3? differs from the metric of the
deformed conifold (1.28) by terms ~ (7cothT — 1)(g'¢® + ¢3¢* + ¢%g* + ¢g*¢?), which

grow as Inr in the asymptotic radial variable 7.
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The scalar zero-mode is actually an exact modulus; there is a one-parameter family
of supersymmetric solutions which break the Z symmetry but preserve the SO(4) (an
ansatz with these properties was found in [54], and its linearization agrees with (1.60)).
These backgrounds, the resolved warped deformed conifolds, will be reviewed below.
We add the word resolved because both the resolution of the conifold, which is a Kéahler
deformation, and these resolved warped deformed conifolds break the Z symmetry. In the
dual gauge theory turning on this mode corresponds to the transformation A — (1+s).A4,
B — (1+5s)'B on the baryonic branch. Therefore, s is dual to the Z-breaking parameter
of the resolved warped deformed conifold.

The presence of these massless modes is a further indication that the infrared dynam-
ics of the cascading SU(M (k + 1)) x SU(MEk) gauge theory, whose supergravity dual is
the warped deformed conifold, is richer than that of the pure glue N’ = 1 supersymmet-
ric SU(M) theory. The former incorporates a Goldstone supermultiplet, which appears
due to the U(1)p symmetry breaking, as well as solitonic strings dual to the D-strings
placed at 7 = 0 in the supergravity background.

In Chapter 3 we will discuss massive modes of the warped throat, which arise from
generalizing the massless scalar and pseudoscalar modes by adding 4-dimensional mo-

mentum, as well as some massive vector excitations related to them by supersymmetry.

1.2.4 The Baryonic Branch

Since the global baryon number symmetry U(1)p is broken by expectation values of
baryonic operators, the spectrum contains the Goldstone boson found above. The
zero-momentum mode of the scalar superpartner of the Goldstone mode leads to a
Lorentz-invariant deformation of the background which describes a small motion along
the baryonic branch. In this subsection we shall extend the discussion from linearized
perturbations around the warped deformed conifold solution to finite deformations, and

describe the supergravity backgrounds dual to the complete baryonic branch. These are
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the resolved warped deformed conifolds, which preserve the SO(4) global symmetry but
break the discrete Z symmetry of the warped deformed conifold.

The full set of first-order equations necessary to describe the entire moduli space of
supergravity backgrounds dual to the baryonic branch was derived and solved numer-
ically in [58] (for further discussion, see [59]). This continuous family of supergravity
solutions is parameterized by the modulus of ¢ (the phase of { is not manifest in these
backgrounds). The corresponding metric can be written in the form of the Papadopoulos-

Tseytlin ansatz [54] in the string frame:

6
ds* = h™ "2y, de"da” + e*dsh, = h’l/Qd:UiS + Z G? | (1.65)

i=1

where

. cosht+a , ed
Gi=et9/2¢, Gy = T e@t9/2 o) 4 T e@9/2 (¢y — aey) , (1.66)

. ed cosht+a (,_
Gs=e@92(e; —aey) , Gy = o e@+9/2 o) —h e@=9/2 (¢y — aey) , (1.67)
Gs=e"? v V2dr | Ge = e™/? 0720 (1.68)

These one-forms describe a basis that rotates as we move along the radial direction,
and are particularly convenient since they allow us to write down very simple expressions

for the holomorphic (3,0) form
Q= (G +iGy) A (G3 +i1Gy) N (G5 +iGg) (1.69)

and the fundamental (1, 1) form

J= (G1+iG2)/\(G1—iG2)+(G3+iG4)/\(Gg—iG4)+(G5+iG6)/\(G5—iGG)]. (1.70)

DO | =

While in the warped deformed conifold case there was a single warp factor h(7),
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now we find several additional functions x(7), g(7), a(7),v(7). The warp factor h(r) is
deformed away from (1.41) when |(] # 1.

The background also contains the fluxes

B2:h1<61/\€2+61/\62)+X<61/\62—61/\62)+hQ(El/\GQ—Gg/\61>, (171)
1
F3:—§g5/\[61/\€2+61/\€2—b(el/\eg—ég/\el)]
1
—§ dr N [b/ (61 N e+ € /\62)] y (172)

Fg,:fg, —|—*10f5 y with fg, = —(hl —|—th) er Nea Nep N és /\63 s (173)

parameterized by functions hq(7), ho(7), b(7) and x (7). In addition, since the 3-form flux
is not imaginary self-dual for |(] # 1 (i.e. %¢G3 # iG3), the dilaton ¢ now also depends
on the radial coordinate 7.

The functions a and v satisfy a system of coupled first order differential equations
[58] whose solutions are known in closed form only in the warped deformed conifold
and the Chamseddine-Volkov-Maldacena-Nunez (CVMN) [60, 61, 62] limits. All other
functions h, x, g, hi, ha, b, X, ¢ are unambiguously determined by a(7) and v(7) through

the relations

h=yU? (e —1) , v =208(g,Ma')2e78/3 (1.74)
2x (bC — 1)2 2g+2¢ 2¢
4(aC —1)? ‘ (1=e), (1.75)
e =_1—a+2aC b:g, (1.76)
e2(bC —1
hy = % , Iy = —hy C | (1.77)
X' =ab—C)(aC —1) X9 (1.78)
,_(C=b)(@C -1
_ 1.79
T r mala (1.79)
where C' = — cosh 7, S = —sinh 7, and we require ¢(o0) = 0. In writing these equations

we have specialized to the baryonic branch of the cascading gauge theory by imposing
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appropriate boundary conditions at infinity [59], which guarantee that the background
asymptotes to the warped deformed conifold solution [51]. The full two-parameter fam-
ily of SU(3) structure backgrounds discussed in [58] also includes the CVMN solution
[60, 61, 62], which however is characterized by linear dilaton asymptotics that are qual-
itatively different from the backgrounds discussed here. The baryonic branch family of
supergravity solutions is labelled by one real resolution parameter U [59]. While the
leading asymptotics of all supergravity backgrounds dual to the baryonic branch are
identical to those of the warped deformed conifold, terms subleading at large 7 depend
on U. As required, this family of supergravity solutions preserves the SU(2) x SU(2)
symmetry, but for U # 0 breaks the Zy symmetry Z.

On the baryonic branch we can consider a transformation that takes ¢ into (7!, or
equivalently U into —U. This transformation leaves v(7) invariant and changes a(7) as

follows

a

- = 1.80
- 1+ 2acoshrt ( )

It is straightforward to check that a e™9 is invariant while (1+a cosh 7) e79 changes sign.
This transformation also exchanges €9 + ae~9 with e~9 and therefore it is equivalent to
the exchange of (0, ¢1) and (02, ¢o) involved in the Z symmetry.

The baryonic condensates can be calculated on the string theory side of the duality
by identifying the Euclidean D5-branes wrapped over the resolved warped deformed
conifold, with appropriate gauge fields turned on, as the objects dual to the baryonic
operators in the sense of gauge/string duality. The details of this identification will be

the subject of Chapter 4.
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1.3 Superconformal Chern-Simons Theories and an
AdS4/CFT3 Duality

Let us now turn to an example of the AdS/CFT correspondence involving 2+1 dimen-
sional field theory. A long-standing open problem in this area had been to find the
gauge theory dual to the near-horizon geometry of a stack of M2-branes, the AdS, x S7
background of M-theory.

Significant progress towards this goal was made in the work of Bagger and Lambert
(63, 64, 65], and the closely related work of Gustavsson [66], who succeeded in finding a
2+1 dimensional superconformal Chern-Simons theory with the maximal N = 8 super-
symmetry and manifest SO(8) R-symmetry. These papers were inspired in part by the
ideas of [67, 68], whose original motivation was the search for a theory describing coinci-
dent M2-branes. An interesting clue emerged in [69, 70] where it was shown that, for a
specially chosen level of the Chern-Simons gauge theory, its moduli space coincides with
that of a pair of M2-branes at the R®/Z, singularity. The Z acts by reflection of all 8
coordinates and therefore does not spoil the SO(8) symmetry. However, initial attempts
to match the moduli space of the Chern-Simons gauge theory for arbitrary quantized
level k with that of M2-branes led to a number of puzzles [69, 70, 71]. These puzzles were
resolved by a very interesting modification of the Bagger-Lambert-Gustavsson (BLG)
theory proposed by Aharony, Bergman, Jafferis and Maldacena (ABJM) [72] which, in
particular, allows for a generalization to an arbitrary number of M2-branes.

The original BLG theory is a particular example of a Chern-Simons gauge theory
with gauge group SO(4), but the Chern-Simons term has a somewhat unconventional
form. However, van Raamsdonk [71] rewrote the BLG theory as an SU(2) x SU(2) gauge
theory coupled to bifundamental matter. He found conventional Chern-Simons terms
for each of the SU(2) gauge fields although with opposite signs, as noted already in [73].

A more general class of gauge theories of this type was introduced by Gaiotto and Wit-
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ten (GW) [74] following [75]. In this formulation the opposite signs for the two SU(N)
Chern-Simons terms are related to the SU(N|N) supergroup structure. Although the
GW formulation generally has only N' = 4 supersymmetry, it was recently shown how
to enlarge the supersymmetry by adding another hypermultiplet [72, 76]. In particular,
the maximally supersymmetric BLG theory emerges in the SU(2) x SU(2) case when
the matter consists of two bifundamental hypermultiplets. Furthermore, the brane con-
structions presented in [72, 74] indicate that the relevant gauge theories are actually
U(N) x U(N). The presence of the extra interacting U(1) compared to the original BLG
formulation is crucial for the complete M-theory interpretation [72].

Below we will present the BLG theory using N’ = 2 superspace formulation in 2+1
dimensions, which is quite similar to the familiar A/ = 1 superspace in 3+1 dimensions.
In such a formulation only the U(1)g symmetry is manifest, while the quartic superpo-
tential has an additional SU(4) global symmetry. For a specially chosen normalization
of the superpotential, the full scalar potential is manifestly SO(8) invariant. In Section
1.3.1, where we establish the superspace formulation of the BLG theory after briefly re-
viewing its components formulation, we demonstrate how this happens through a special
cancellation involving the F- and D-terms.?

In Section 1.3.2 we study its generalizations to U(N) x U(V) gauge theory found by
ABJM [72]. The quartic superpotential of this 241 dimensional theory has exactly the
same form as in the 3+1 dimensional theory on N D3-branes at the conifold singularity
[44]. For general N, its global symmetry is SU(2) x SU(2) but for N = 2 it becomes
enhanced to SU(4) [77] (in this case the theory becomes equivalent to the BLG theory
with an extra gauged U(1) [72]). For N > 2 ABJM showed that this theory possesses
N = 6 supersymmetry [72]. In the N' = 2 superspace formulation, this means that, for

a specially chosen normalization of the superpotential, the global symmetry is enhanced

2This phenomenon is analogous to what happens when the A" = 4 SYM theory in 341 dimensions
is written in terms of an N' = 1 gauge theory coupled to three chiral superfields. While only the
U(1)r x SU(3) symmetry is manifest in such a formulation, the full SU(4) ~ SO(6) symmetry is found
in the potential as a result of a specific cancellation between the F- and D-terms.

28



to SU(4)g. We demonstrate explicitly how this symmetry enhancement happens in
terms of the component fields, once again due to a special cancellation involving F- and

D-terms.

1.3.1 BLG Theory in Component and N = 2 Superspace For-

mulation

Here we review the BLG theory in van Raamsdonk’s product gauge group formulation
[71], which rewrites it as a superconformal Chern-Simons theory with SU(2) x SU(2)
gauge group and bifundamental matter. It has a manifest global SO(8) R-symmetry
which shows that it is N/ = 8 supersymmetric.

We use the following notation. Indices transforming under the first SU(2) factor of
the gauge group are a,b,..., and for the second factor we use a, I;, .... Fundamental
indices are written as superscript and anti-fundamental indices as subscript. Thus, the
gauge and matter fields are A%, A&I;, X%, and ¥%. The conjugate fields have indices
(X1, and (¥1)%,. Most of the time, however, we will use matrix notation and suppress
gauge indices. Lorentz indices are u = 0,1,2 and the metric on the world volume is
g = diag(—1,+1,41). SO(8) vector indices are I, J,.... The fermions a represented
by 32-component Majorana spinors of SO(1, 10) subject to a chirality condition on the
world-volume which leaves 16 real degrees of freedom. The SO(1, 10) spinor indices are
generally omitted.

The action is then given by [71]

S= / d%tr[—(D“X[)TDMXI+z‘\TJTF“DM\D (1.81)
Qif_TIJ Iy Jt Jat vl It v J 8f2 IvyviJ vK K yJy il
— U (XX XTI X e XX )—Ttrx[xT XHI TR X Xt
3
1 2 1 Co 2
g N ADAN T S AAA) = SN (4,0, 45 + gAuAVAA)] ,
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where the covariant derivative is

~

D,X =0,X +1A,X —iXA,. (1.82)
The Chern-Simons level & is contained in
f=—. (1.83)

The bifundamental scalars X7 are related to the original BLG variables z! with

SO(4) index a through
1 .
X' = 5(:@{1 +izlot) | (1.84)

where o' are the Pauli matrices. It is important to note that the scalars satisfy the

reality condition
X" =—eXe, (1.85)

where € = ioy. This condition can only be imposed for the gauge group SU(2) x SU(2),
which might seem to present an obstacle for generalizing the theory to rank N > 2. This
obstacle was overcome by using complex bifundamental superfields [72], and this will be
reviewed in Section 1.3.2.

Finally we note the form of the SU(2) x SU(2) gauge transformations

A, - UA U —iU9,U", X - UXU', (1.86)

A, - UA,U" —iU0,U", xt - Uuxtut,

where U,U € SU(2).
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Superfield formulation. Let us now write the BLG theory (1.81) in N = 2 super-
space. Of the SO(8)g symmetry this formalism leaves only the subgroup U(1)g x SU(4)
manifest. However, we will demonstrate how the SO(8) R-symmetry is recovered when
the action is expressed in terms of component fields. Our notations and many useful
superspace identities are summarized in Appendix A.2.

The gauge fields A and A become components of two gauge vector superfields V and

A~

V. Their component expansions in Wess-Zumino gauge are

V =2i000(z) — 2070 A (x) + V2i 02 0t (2) — V2i 02 Ox,(2) + 020 D(x) , (1.87)

and correspondingly for V. Here ¢ and D are auxiliary scalars, and y, and x! are
auxiliary fermions. The matter fields X and ¥ are accommodated in chiral superfields Z
and anti-chiral superfields Z which transform in the fundamental and anti-fundamental
representation of SU(4), respectively. Their SU(4) indices Z4 and Z4 will often be

suppressed. The component expansions are

Z =27 (xp) — V20CH (g) — 0 Fl(xyp) . (1.89)

The scalars Z are complex combinations of the BLG scalars

ZA= XA 4ixM™ for A=1,...,4. (1.90)

We define two operations which conjugate the SU(2) representations and the SU(4)
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representation, respectively, as®

ZM = —e(ZM)Te = XM 44 xT4T (1.91)

Zy = —e(Z e = XA —ixA, (1.92)

Separating these two operations in possible only for gauge group SU(2) x SU(2), since
for gauge groups of higher rank there is no reality condition analogous to (1.85). In
these cases only the combined action, which is the hermitian conjugate Z' = Z*, makes
sense. The possibility to conjugate the SU(4) representation independently from the

SU(2) x SU(2) representation allows us to invert (1.90):
XA=N2Z"+2s) . X" =4(2"-Z,). (1.93)

The superspace action § = Scg + Smat + Spot consists of a Chern-Simons part, a

matter part and a superpotential given by

1 . .
Scs = —iK / Pz d*0 / dt tr [vD“ (e“’Dae‘“’) — VD~ (e“’Dae‘“’)] , (1.94)
0
Spat = — /d% d*0 tr ZAe’VZAeY) , (1.95)
Sumt [ Eaoviz) L [ ntiv) 150

with

1 - 1 L
W:EGABCDtrZAZT'BZCZiD : W:EEABCDtrZAngng (1.97)

In terms of SO(4) variables Z,, which are related to the SU(2) x SU(2) fields according

3We should caution that the bar denoting the anti-chiral superfield Z is just a label and does not
mean that the component fields are conjugated by (1.92). In fact, the components of Z are the hermitian
conjugates, see (1.89).
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to (1.84), it assumes the form

1
W=—c0p eapope?iZAZB 20 ZD (1.98)

This superpotential possesses only a U(1)g x SU(4) global symmetry as opposed to the
SO(8)g symmetry of the BLG theory. We will show in the following that when the

normalization constants K and L are related as K = %, then the R-symmetry of the
model is enhanced to SO(8). If we furthermore set L = 4f, we recover precisely the
action (1.81).

The gauge transformations are given by [78]

etV N eertve—zA 7 etV N eertVe—zA 7 AN ezAZe—zA 7 2 N 62AZ€—ZA ’ (199)

where the parameters A, A and A, A are chiral and anti-chiral superfields, respectively.
Their ¢t dependence is determined by consistency of the transformation law for V and V.

In order to preserve the WZ gauge, these fields have to be simply

— ~

A=Xzy) , A=Nap) , A=Az . A=A\ap). (1.100)

with A and A real. These transformations reduce to the ones given in (1.86) when we

set U(z) = 2@ and U(z) = @),

Expressions in components. We will now show that the above superspace action
describes the BLG theory by expanding it into component fields. The Chern-Simons

action then reads
3 UV 2 UUN( A A 20 4 4 4
Sos = K [ d' tr|  20M(4,0,45 + TAAA) = 26°N(A,0,A0 + TA,A4,4))

+2ix{ X0 — 20X X0 — 4D + 4Da—] , (1.101)
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and the matter action becomes*

Smat = | &x tr| — (D, 2)'D*Z + i\ D¢+ FIF + Z'DZ — Z1ZD
7
+iZVoC + i\ Z —iZ1¢x, — it ZY]

—2'6%7 - 71726° + 2210 Z6 —iCToC +iCT¢a| . (1.102)

The gauge covariant derivative is defined in (1.82). The superpotential contains the

following interactions of the component fields

L
Spor = — 15 [ &' tr[ eapcp (CACHBZC 71D — (IACB 71C zD 4 (A 7B (C 7iD)

| (ABCD (fﬁ;gBZéZD —CulLZo 7t + C_,{;ZBQZD)

+2eapopF 2B 207 — 26 P Zp 28 75| . (1.103)

Integrating out auxiliary fields. The fields D and D are Lagrange multipliers for

the constraints

1
o = —trt"zZ 7"

1
;5T = —_— n T
1 , 0= trt"Z'Z (1.104)

where " are the generators of SU(2). The equations of motion for the y,’s are

1 1
—— LA | [ — LA 1.105
XO' 2K r C ) (XO’) 2K r C ) ( )
1 1
"= ——trt"(Z )= —— et 2t 1.1

4Let us remind the reader that our notation suppresses indices in standard positions, e.g.
_ A _ G A
20 ¢ = wZhxaCd = (Zh)%() () -

The standard position of an index is defined when the field is introduced, and those for spinor indices
are explained in Appendix A.2.
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and the ones for F are
A L ABCD 77 71 1 L iB ZC iD
F ——€ ZBZCZD s F A _—|——€4BCDZ 2; . (1107)

Using these relations one finds the following action

~

S= / d*z [QKG’“”\ tr(A,0, A\ + ZA, A, A — A,0,4, — ZA,AA))

— (D 2) D Z + i tr (TPC — Vi — vbos} . (1.108)

The quartic terms Vi, are interactions between fermions and bosons, and the sextic

terms Vjos are interactions between bosons only. Separated according to their origin we

have
Vi = | A28 2l - (WA 2L 2P + 204 2425 - 224¢A 27 (1109)
L
V}erm — EEABCD tr [CAciBZcziD CiAchiCzD + CAziBCCziD]
L e o e
—f-EGABCD tr [CiCBZéZD - CACEZCZ% + CEZBCE’ZD} s (1110)
and
Bty [ZAZT 2875 7C 71 + 71,2723, 28 21,26 — ZZLZBZLZAZ(T)ZC] L(1.111)
L2
VR = —ggeancae DEFG ¢y 73A 7B 73C 7, 7% Z (1.112)

When substituting in (1.90) we find that for K = % all sextic interactions can be joined
together to
L2
Vbes — EmrX“XT T XK XTI x0T X (1.113)

Furthermore, setting L. = 4f, this is precisely the scalar potential of the BLG theory

(1.81). With this choice also the other coefficients match exactly.
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1.3.2 ABJM U(N) x U(N) Gauge Theory in Superspace

As remarked above, it is not immediately obvious how to generalize van Raamsdonk’s
formulation of the BLG theory to higher rank gauge groups. This difficulty is also evident
in our superspace formulation, since the manifestly SU(4) invariant superpotential is
gauge invariant only for SU(2) x SU(2) gauge theory.

The way to circumvent this difficulty is the generalization proposed by ABJM [72].
Their key idea is to give up the manifest global SU(4) invariance by forming the following

complex combinations of the bifundamental fields:

Z'=X'4iX®, Wy = X3 44X, (1.114)

7%= X*4+iX", Wy = X X581 (1.115)

Promoting these fields to chiral superfields, the superpotential of the BLG theory (1.97)

may be written as [72]
Spot = L/d% O W(Z,W) + L/d% dcOW(Z, W) , (1.116)
with
W = ieAceBD tr ZWeZ°Wp . W = ;leAceBD tr ZAWEZWP . (1.117)

This form of the superpotential is exactly the same as for the theory of D3-branes on
the conifold [44] and it generalizes readily to SU(N) x SU(N) gauge group. This super-

potential has a global symmetry SU(2) x SU(2) and also a “baryonic” U(1) symmetry
ZA S eezA | W — e Wy . (1.118)
In the 341 dimensional case this symmetry is originally gauged, but far in the IR
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it becomes global [44]. However, in the present 241 dimensional example this does not
happen, so it is natural to add it to the gauge symmetry [72]. Including also the trivial
neutral U(1), we thus find the U(N) x U(N) Chern-Simons gauge theory at level k. The
gauging of the symmetry (1.118) seems important for obtaining the correct M-theory
interpretation for arbitrary £ and N. Since this symmetry corresponds to simultaneous
rotation of the 4 complex coordinates of C* transverse to the M2-branes, this space
actually turns into an orbifold C*/Z;, [72]. Because of this gauging, even for N = 2 the
ABJM theory is slightly different from the BLG theory.

Let us summarize the properties of the ABJM theory [72] and explicitly prove that
its U(1)g x SU(2) x SU(2) global symmetry becomes enhanced to SU(4)g. The fields
Z and W transform in the (2,1) and the (1,2) of the global SU(2) x SU(2) and in
the (N,N) and the (N, N) of the gauge group U(N) x U(N), respectively. We use the
following conventions for SU(2) x SU(2) indices: Z4, Z4, Wa, W4 and for U(N) x U(N)
indices: 2%, 2%, W%, W%. The gauge superfields have indices V%, and V%. The
component fields for Z, Z and V are as previously in (1.88), (1.89) and (1.87). The

components of YW and W will be denoted by

W=W(z1) + V20w(z) + 60*G(xL) , (1.119)

W=Wt(zg) — V20w (zg) — 6> GT(zR) . (1.120)
The Chern-Simons action is formally unaltered (1.94), the matter part (1.95) splits into
Smat = /d3x d*0 tr [—Z_AB_VZAGY) - V_\/Ae_)}WAeV , (1.121)

and the superpotential is given by (1.116). The symmetry enhancement to SU(4)g

requires the normalization constants in (1.94) and (1.116) to be related as K = 1.
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Expressions in components. The component form of the Chern-Simons action has
been computed in (1.101) and the matter action involving Z looks identical to (1.102)
where now Z, (, F' have only two components. The matter action for W is analogously

given by

S = /de tr[— (D, W) DEW + iwfPw + GTG + WIDW — WIWD
+iWTXew + i XIW — iW Wy, — iw W]

—WIGW — WIWo? + 2WieWo — iw'w + iw*wa] , (1.122)
where D,W = 0,W + iA#W —iWA,,. The superpotential expands to

L

Spor = 7 / & tr[eAc ¢BD <2FAWBZCWD 22 WRZCG ) — 204 W 2w
(A ZWp — ZAwpZCuwp — Q“AWBCCWD)

— A epp (2E,WIE ZEWTP 1 22, WHE ZEGHP 4 2 W B 2Lt

+2Ch B ZEWIP 4 Zwt P 2Lt 4 WP wIP) | (1123)

Integrating out auxiliary fields. The auxiliary fields can be replaced by means of

the following equations:

1 1
n__ - n T t sno T n trr t
0" = w22 - WW) | 6" = o TN(ZIZ—wwh) (1124)

1 1
n_ ____ m Tt Ty — n t it
Xy = 5 tr’T (ZC w ), (x) 5 tr T (CZ w), (1.125)

o

= S tr (¢ Z —wwh) (X)) = S tr 7" (Z7¢ —wW') ,  (1.126)

2K 7 2K
L L

FA = —|—§GACGBDWTBZ8WTD , Ga= —EGACGBDZLWTCZE , (1.127)
L L

Fjl = _§€AC€BDWBZOWD , G = +§€AC€BDZBWCZD : (1.128)
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Then the complete action reads

S = / d*x [2}(6#” tr(A,0, Ay + ZA, A, A — A,0,A, — 2A,A,A))

— tr(D,2)'D"Z — tx(D W) D*W +itr (PC + itrw!Pw

- ‘/ferm — Vbos] y (1129)
with the potentials
V[f)erm — (1130)

Lt [ — M) (2725 — W) — (Ch¢ — waw?) (2527 — Wi 1?)| 4

St (CAZE = W) (2P¢], — wfP W) — (216" = wa W) (ch 2P — Wiput®) |

V}erm: (1131)

L
Seace™ tr [2¢AWBZ%D 20 Awp ZWp + ZAwp ZCwp + CAWBCCWD} n

L
S enptr 2B 28wt + 2w B ZE WP + Z1t B 2t + B W)

and

Vi = o (2204 W) (2224 - W) (207 - WIWe) (119
+(Zh 24 + WaWw') (2527 — WpWiP) (2829 — WewT€)
274 (2° 2}, — WPWg) 24 (2L2° — Wew'©)
—2WIN(ZL28 — WeWIBYW 4 (2°Z], - W*CWC)} :

Vbos = —LZQ tr [W*AZ;WTCWAZBWC —whHZLwiCw. 25w, (1.133)

+ZNWB ZL AW 2C — ZLWTBZgZCWBZA] .

Let us note that VE° and V5° are separately non-negative. Indeed, the F-term
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contribution is related to the superpotential W through

2

ow — w[FIFA + GG (1.134)

0z4

2
s _ ‘ ‘ oW

*low,

with F4 and G4 from (1.127) and (1.128). The D-term contribution may be written as
VEeS = tr[NIN4 + MM, (1.135)

where N4 = 024 — Z46 and My = 6W,4 — Wyo. Thus, the total bosonic potential
vanishes if and only if

FA=Gu=N"=M,=0. (1.136)

SU(4) invariance. If the coefficients of the Chern-Simons action and the superpoten-

tial are related by K = +, then the R-symmetry of the theory is enhanced to SU(4).?

1
R
In order to make this symmetry manifest we combine the SU(2) fields Z and W into

fundamental and anti-fundamental representations of SU(4) as
YA ={zA WYy | Yi={Z W4}, (1.137)

where the index A on the left hand side now runs from 1 to 4. Then the potential can
be written as [72]
L2

Vi = — S YAV PYIY oY+ Yy Yy Pyl e

FAYAYEYCYIYVEYL — 6y AY Y PYIYOY] | (1.138)
The fermions have to be combined as follows

wA — {EABCB e*iﬂ'/4’ _EABWTB eiTr/4} : wAT — {—GABCL 67,'7r/47 GABC()B e*iﬂ/ll} : (1139)

°This SU(4) g symmetry should not be confused with the global SU(4) of the BLG theory. The latter
is not manifest in the ABJM theory, but should nevertheless be present for k =1 and k = 2 [72].
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and we can write fermionic interactions in the manifestly SU(4) invariant way

il
y/ferm St VIVApEI g — YAV TPt 4+ 2V AV a0 PT — 2V Ty Bty

— eABOPY T Y by + eapepY APTY Pt (1.140)

Thus, the U(1)g x SU(2) x SU(2) global symmetry is enhanced to SU(4)z symmetry,
with the U(1)g corresponding to the generator 3 diag(1,1, —1, —1). This shows that the
theory in general possesses NV = 6 supersymmetry.

In [72] it was proposed that this U(N) x U(NN) Chern-Simons theory at level k
describes the world volume of N coincident M2-branes placed at the Z; orbifold of C*
where the action on the 4 complex coordinates® is y* — e2™/*y4. This action preserves
the SU(4) symmetry that rotates them, which in the gauge theory is realized as the
R-symmetry. The A/ = 6 supersymmetry of this orbifold can be checked as follows. The

generator of Zj, acts on the spinors of SO(8) as
U — Pmilstsatsstan)/hy (1.141)

where s; = +1/2 are the spinor weights. The chirality projection implies that the sum
of all s; must be even, producing an 8-dimensional representation. The spinors that
are left invariant by the orbifold have Z?Zl s; = 0 (mod k). This selects 6 out of the 8
spinors; therefore, the theory on M2-branes has 12 supercharges in perfect agreement
with the Chern-Simons gauge theory with general level k. This constitutes just one of
many pieces of evidence that strongly suggest that the theory reviewed in this section is
indeed dual to M-theory on AdSy x S7/7Z; with N units of flux. For k =1 or 2 there is
further enhancement to N' = 8 supersymmetry, which is subtle in the gauge theory [72]

and requires the introduction of monopole operators, as we will discuss in Chapter 5.

6Let us note that these coordinates are not the same as the complex coordinates z*4 natural for the
superspace formulation of BLG theory in Section 1.3.1. They are related through y' = 2%, y? = 22,93 =

2yt = 74,
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Chapter 2

On the Strong Coupling Scaling

Dimension of High Spin Operators

2.1 Introduction

The dimensions of high-spin operators are important observables in gauge theories. It
is well-known that the anomalous dimension of a twist-2 operator grows logarithmically

for large spin S,

912/MN

A-S=flghS +0(s°),  with g=Y=r1

(2.1)

This was demonstrated early on at one-loop order [24, 25] and at two loops [79] where
a cancellation of In® S terms occurs. There are solid arguments that (2.1) holds to all
orders in perturbation theory [80, 81, 82|, and that it also applies to high-spin operators
of twist greater than two [29]. The function of coupling f(g) also measures the anomalous
dimension of a cusp in a light-like Wilson loop, and is of definite physical interest in
QCD.

There has been significant interest in determining f(g) in the NV =4 SYM theory.

This is partly due to the fact that the AdS/CFT correspondence [1, 2, 3] relates the
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large g behavior of f to the energy of a folded string spinning around the center of a
weakly curved AdS; space [20]. This gives the prediction that f(g) — 4¢ at strong
coupling. The same result was obtained from studying the cusp anomaly using string
theory methods [83]. Furthermore, the semi-classical expansion for the spinning string

energy predicts the following correction [28]:

3In2
T

flg) =49 — +0(1/g) . (2.2)

It is of obvious interest to confirm these explicit predictions of string theory using ex-
trapolation of the perturbative expansion for f(g) provided by the gauge theory.
Explicit perturbative calculations are quite formidable, and until a few years ago

were available only up to three-loop order [35, 84]:

8 88
P— oyt + =g’ +0(g%) (2.3)

f(g) =38y 3 T

Kotikov, Lipatov, Onishchenko and Velizhanin [35] extracted the N/ = 4 answer from
the QCD calculation of [85] using their proposed transcendentality principle stating that
each expansion coefficient has terms of the same degree of transcendentality.

Since then, the methods of integrability in AdS/CFT* [36, 37, 38|, prompted in part
by [19, 20], have led to dramatic progress in studying the weak coupling expansion.
In the beautiful paper by Beisert, Eden and Staudacher [40], which followed closely
the important earlier work in [30, 39], an integral equation that determines f(g) was
proposed, yielding an expansion of f(g) to an arbitrary desired order. The expansion
coefficients obey the KLOV transcendentality principle. In an independent remarkable

paper by Bern, Czakon, Dixon, Kosower and Smirnov [89], an explicit calculation led to

IFor earlier work on integrability in gauge theories, see [86, 87, 88|, for reviews see [22, 23].
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a value of the four-loop term,
73
1 > 61 40(3)2) 2.4

which agrees with the idea advanced in [40, 89] that the exact expansion of f(g) is
related to that found in [30] simply by multiplying each (-function of an odd argument
by an 7, ((2n 4+ 1) — i((2n + 1). The integral equation of [40] generates precisely this
perturbative expansion for f(g).

A crucial property of this integral equation is that it is related through integrability
to the “dressing phase” in the magnon S-matrix, whose general form was deduced in
(32, 90]. In [40] a perturbative expansion of the phase was given, which starts at four-
loop order, and at strong coupling coincides with the earlier results from string theory
(39, 32, 91, 92, 93]. An important requirement of crossing symmetry [94] is satisfied by
this phase, and it also satisfies the KLOV transcendentality priciple. Therefore, this
phase is very likely to describe the exact magnon S-matrix at any coupling [40], which
constitutes remarkable progress in the understanding of the N'= 4 SYM theory, and of
the AdS/CFT correspondence.

The papers [40, 89] thoroughly studied the perturbative expansion of f(g) which
follows from the integral equation. Although the expansion has a finite radius of conver-
gence, as is customary in certain planar theories (see, for example, [95]), it is expected
to determine the function completely. Solving the integral equation of [40] is an efficient
tool for attacking this problem. In this chapter we solve the integral equation numeri-
cally at intermediate and strong coupling, and show that f(g) is a smooth function that
approaches the asymptotic form (2.2) predicted by string theory for g > 1. The two
leading strong coupling terms match those in (2.2) with high accuracy. This constitutes
a remarkable confirmation of the AdS/CFT correspondence for this non-supersymmetric

observable.
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This chapter is based on the papers [96, 97] coauthored with L. F. Alday, G. Aru-
tyunov, S. Benvenuti, B. Eden, I. R. Klebanov and A. Scardicchio, and its structure is as
follows. The BES integral equation is reviewed and solved numerically in Section 2.2. An
interpretation of these results and their implications for the AdS/CFT correspondence
are given in Section 2.3, where we also summarize further investigations which are the
subject of the remainder of this chapter. In Section 2.4 we derive the exact fluctuation
density that solves the integral equation in the strong coupling limit, before we conclude

in Section 2.5.

2.2 Numerical Study of the Integral Equation

The cusp anomalous dimension f(g) can be written as [30, 40, 98]

f(g) = 164%5(0) , (2.5)

where () obeys the integral equation

ot) = — 1 (K(Qgt, 0) — 4g? / T K (20t 2915')6(75’)) , (2.6)

0

with the kernel given by [40]
K(t,t) = K™t t)+ 2Kt t) . (2.7)

The main scattering kernel K™ of [30] is

KM (1) = J1(t)Jo(t’2:£/fo(t)J1(t') 7 (2.8)
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and the dressing kernel K(© is defined as the convolution

o0 "
KO(t, 1) = 4g / dt" K (t, 2gt")

—Ko(291", 1) | (2.9)
0

1"
et _

where Ky and K; denote the parts of the kernel that are even and odd, respectively,

under change of sign of ¢ and ¢

th(t)Jo(t) =t Jo(t) Iy () 2 &

Ko(t, t") = ER =77 (2n — 1) Jop_1(t) Jon_1(t") , (2.10)
n=1
Kt t) = t/Jl(t)JO(i;)__ ;;] oA ti, i(m)m( £) Jon(t') - (2.11)
n=1
We find it useful to introduce the function
st = & - Lo (2.12)

in terms of which the integral equation becomes

s(t) :K(th,O)—492/ dt' K (2gt, 29t ) ———s(t') . (2.13)
0 (&

Again, f(g) = 16g%s(0).
Both K™ and K(® can conveniently be expanded as sums of products of functions

of t and functions of ¢':

K™ (¢, 1) = Ko(t,t') + Ky (t, 1) = ZnJ (2.14)
and
8n(2m — 1
K©(t, ) Z / )Zgn,gm_ljgn(t)bm_l(t') : (2.15)
n=1 m=1 ¢t
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This suggests writing the solution in terms of linearly independent functions as

s(t) = Z SHM : (2.16)

e 2gt

so that the integral equation becomes a matrix equation for the coefficients s,. The

desired function f(g) is now

f(g) = 8g%s1 . (2.17)

It is convenient to define the matrix Z,,, as

Do = /Oo g Im 200 In291) (2.18)

t(et — 1)

Using the representations (2.14) and (2.15) of the kernels and (2.16) for s(¢), the integral

equation above is now of the schematic form

Sn=hn— Y (KW +2K0) s, (2.19)
m>1
whose solution formally is
1
s h. (2.20)

T 14+ Km £ 2K©

The matrices appearing in (2.19) are

K =2(NZ)um (2.21)
K, =2(CZ)m , (2.22)
Crom = 2(PNZON ) (2.23)

where @ = diag(1,0,1,0,...), P = diag(0,1,0,1,...), N = diag(1, 2,3, ...) and the vector
h can be written as h = (1 + 2C)e, where e = (1,0,0,...)T. The crucial point for the

numerics to work is that the matrix elements of Z decay sufficiently fast with increasing
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m,n (they decay like e™(™)/9)  For intermediate g (say g < 20) we can work with
moderate size d by d matrices, where d does not have to be much larger than g. The
integrals in Z,,, can be obtained numerically without much effort and so we can solve
for the s,. We find that the results are stable with respect to increasing d.

Even though at strong coupling all elements of Z,,, are of the same order in 1/g,
those far from the upper left corner are numerically small (the leading terms in 1/g are
suppressed by a factor [(m—n—1)(m—n+1)(m+n—1)(m+n+1)]"  form #n+1).
This last fact makes the numerics surprisingly convergent even at large g and moreover
gives some hope that the analytic form of the strong coupling expansion of f(g) could
be obtained from a perturbation theory for the matrix equation.

Therefore, when formulated in terms of the Z,,,,, the problem becomes amenable to
numerical study at all values of the coupling. We find that the numerical procedure
converges rather rapidly, and truncate the series expansions of s(t) and of the kernel
after the first 30 orders of Bessel functions.

The function f(g) is the lowest curve plotted in Figure 1. For comparison, we also
plot f,.(g) which solves the integral equation with kernel K™ [30], and fy(g) which
solves the integral equation with kernel K™ 4+ K(©)  Clearly, these functions differ at
strong coupling. The function f(g) is monotonic and reaches the asymptotic, linear
form quite early, for g ~ 1. We can then study the asymptotic, large g form easily and
compare it with the prediction from string theory. The best fit result (using the range

2<g<20)is

0.0232 + 0.0001
f(g) = (4.000000+0.000001)g— (0.66190740.000002) — oo (2.24)

9

The first two terms are in remarkable agreement with the string theory result (2.2),
while the third term is a numerical prediction for the 1/¢g term in the strong coupling

expansion.
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Figure 2.1: Plot of the solutions of the integral equations: f,,(g) for the ES kernel K™
(upper curve, red), fo(g) for the kernel K™ + K(© (middle curve, green), and f(g)
for the BES kernel K™ + 2K() (lower curve, blue). Notice the different asymptotic
behaviors. The inset shows the three functions in the crossover region 0 < g < 1.

2.3 Discussion of Results and Further Investigations

A very satisfying result of this investigation is that the BES integral equation yields a
smooth universal function f(g) whose strong coupling expansion is in excellent numerical
agreement with the spinning string predictions of [20, 28]. This provides a highly non-
trivial confirmation of the AdS/CFT correspondence.

The agreement of this strong coupling expansion was anticipated in [40] based on a
similar agreement of the dressing phase. However, some concerns about this argument
were raised in [89] based on the slow convergence of the numerical extrapolations. Luck-
ily, our numerical methods employed in solving the integral equation converge rapidly

and produce a smooth function that approaches the asymptotics (2.2). The cross-over
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region of f(g) where it changes from the perturbative to the linear behavior lies right

around the radius of convergence, g. = 1/4, corresponding to gi-,,N = 7.

Analytic Structure. The qualitative structure of the interpolating function f(g) is
quite similar to that involved in the circular Wilson loop, where the conjectured exact

result [99, 100] is
In (M) . (2.25)

2mg
The function (2.25) is analytic on the complex plane, with a series of branch cuts along
the imaginary axis, and an essential singularity at infinity. The function f(g) is also
expected to have an infinite number of branch cuts along the imaginary axis, and an
essential singularity at infinity [40].

Let us compare this with the exact anomalous dimension of a single giant magnon

of momentum p [31, 93, 101, 102, 103]:

14 \/1 + 164 sin? (g) . (2.26)

[

4sin<§)

This function has a single branch cut along the imaginary axis, going from g =
to infinity, and no essential singularity at infinity. Observables of the gauge theory are
composites of giant magnons with various momenta p € (0,27). We thus expect the
anomalous dimension of a generic unprotected operator to have a superposition of many
cuts along the imaginary axis. This should endow a generic multi-magnon state with an
analytic structure similar to that of f(g).

We found numerically the presence of the first two branch cuts of f(g) on the imag-
inary axis, starting at g = j:%i, n = 1,2. The first of them, which also occurs for the
giant magnon with maximal momentum p = 7, agrees with the summation of the per-

turbative series [40]. The full structure of f(g) is expected to contain an infinite number

of branch cuts accumulating at infinity, where an essential singularity is present.
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Fluctuation Density. It is remarkable that the integral equation of [40] allows the
universal scaling function f(g), which is not a BPS quantity, to be solved for. This
amounts to evaluating the fluctuation density &(t) at the origin, ¢ = 0, but of course
the full function (¢) is of interest in its own right, and in the following section we shall
derive an exact analytic expression for it in the strong coupling limit.

If one insists on truncating the BES equation at leading order for large g the kernel
becomes degenerate and therefore a unique solution for ¢(¢) cannot be found without
additional assumptions. However, for finite values of g the solution is unique and can
be found numerically with high precision. These two statements are consistent because
expanding the BES equation in a power series in 1/g we find a second equation at
subleading order that removes any ambiguity in the strong coupling solution &(t).

To gain some intuition our approach will be to first investigate the solution numeri-
cally for finite values of the coupling, which will suggest a simple additional requirement
that should be imposed on the underdetermined, truncated BES equation to single out a
unique solution in the strong coupling limit which is the convergence point of our numer-
ics. After this additional requirement is identified, we find an analytic solution for &(t)
in the strong coupling limit. We then show that this solution is in fact completely de-
termined by taking into account the subleading contributions to the BES equation, thus
confirming analytically the validity of the auxiliary condition suggested by the numerics
and of our strong coupling solution &(t).

Upon performing the Fourier transform to the rapidity u-plane the corresponding

density 7 (u) reads

: (2.27)

where 6(u) is the step function. Thus, on the rapidity plane the leading density is an

algebraic function which is constant in the interval |u| < 1. We see that, in contrast to
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Figure 2.2: Plot of the analytic solution for the leading density 47g?d(u).

the weak coupling solution of the BES equation [40], the strong coupling density exhibits
a gap between [—oo, —1] and [1, o], see Figure 2.2. Remarkably, this is reminiscent of
the behavior of the corresponding solutions describing classical spinning strings.

Below we will analyze the matrix form of the BES equation at strong coupling, first
numerically and then analytically. We compute the coefficients in the expansion of ()
in terms of Bessel functions and based on this numerical analysis we make a guess of
how these coefficients could be (partially) related to each other at strong coupling. In
the strong coupling limit we obtain an analytic equation for the coefficients which turns
out to have a degenerate kernel. Supplementing this equation with the proposed relation
among the coefficients allows us to find an exact analytical solution for 6(¢). We then
show that in fact no guess is necessary if one expands the BES equation to higher order
in 1/g, which leads to a second equation that singles out our solution as the correct one.

We proceed to find an analogous pair of equations for the subleading coefficients at
strong coupling. Again they appear at different orders in the inverse coupling constant,
each of them individually being a degenerate, half-rank equation. We identify some
constraints on the subleading value of &(t), but as we shall see this case is more subtle

than the leading solution.
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2.4 Fluctuation Density at Strong Coupling

In this section we study the density of fluctuations (t) for large values of the coupling
constant. First we argue, by performing a numerical analysis, that d(t) obeys a certain
additional requirement. Then we consider the matrix BES equation at leading order
in the large g expansion, use the previously found requirement to solve for the density
and confirm by expanding the BES equation further that this solution is in fact com-
plete determined analytically. Finally, we derive and briefly discuss constraints on the
subleading value of &(t).

As discussed in Section 2.2, the key observation is that for intermediate values of
g one can approximate the infinite-dimensional matrices entering the BES equation by
matrices of finite rank d, with d not much larger than g. With matrices of finite rank it
is possible to solve numerically for the coefficients s, for different values of the coupling

constant and to find the best fit result for an expansion of the type
(2.28)

As the numerical analysis indicates, the finite rank approximation is valid for computing

the coefficients s, with k < d. In the table below the values for a few leading coefficients

st are exhibited.

k Sh1 S 100] (s5—1 = S5) /5%
0.500006 | 0.499993 0.003
-0.75005 | -0.74977 0.038
0.93727 | 0.93676 0.055
-1.09281 | -1.09415 0.12

1.2239 1.2333 0.77
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Here we have solved numerically equation (2.19) for numerous points in the range
2 < g < 20, using d = 50. Some comments are in order. First, we stress again that the
value for s{ is in perfect agreement with the value predicted from string theory, s{ = 1/2,
and confirmed numerically above (with a precision higher than the one presented here).
Second, notice that the difference between s, ; and s, is in all the cases smaller than
1%, and gets bigger as k increases; this is related to the fact that the rank of the matrices
used is finite.

Thus, the numerical analysis suggests that in the limit of infinite rank matrices the

following relation holds for the leading coefficients in the strong coupling expansion

Sok—1 = 5o - (2.29)

As we will see later on, this condition will allow one to solve analytically for the coeffi-
cients s{ and the values obtained will be in perfect agreement with the ones computed
numerically.

Further evidence comes from the fact that one can approximate the matrix elements
Zmn by their analytic values at strong coupling (see next subsection). Therefore, one
can consider matrices of much higher rank, fix a sufficiently large value of g and compute

(numerically) the coefficients s;. Below we present the results for ¢ = 10000 and d = 250.

k| sh S 100] (S5y,—1 = S5)/ 55|
1] 0.49993 | 0.49991 0.0049
2 | -0.74943 | -0.74938 0.0073
31 0.93585 | 0.93577 0.0085
4 | -1.09033 | -1.09023 0.0089
5 | 1.22455 | 1.22444 0.0087
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As d increases, we see that the difference between s, | and sf, (for k = 2,3,...)
decreases considerably. Also, the difference is approximately constant for small values
of k. We should stress, however, that a priory there is no reason to expect the results
obtained by keeping in the BES equation only the leading term for Z to be valid, since as
we will see the subleading terms in the matrix elements 7,,,, are necessary to fix uniquely
the leading order solution for si. Surprisingly, one still obtains a good approximation
to the large g solution in this fashion. Nevertheless, we regard the present computation
as less robust.

To conclude, requiring continuity in g, the leading coefficients s in the strong cou-
pling expansion of the function &(¢) exhibit the relation (2.29), which constraints the

form of &(t).

2.4.1 Analytic Solution at Strong Coupling

For finite real values of g the matrix element Z,,, is given by a convergent integral.
However, it is not obvious if it is possible to express the result of integration as a power

series in 1/g. Indeed, expanding the integrand in (2.18) as
< In(t) () (2 1 t
Zm:/dhi%ixg——+—+m) (2.30)
0

leads to a power series (with coefficients given essentially by the Bernoulli numbers)
which converges only for |t/(2¢g)| < 2m. We see that only the first two leading terms
in this expansion can be integrated, while already in the third term divergent integrals

appear. It is therefore natural to assume that the expansion of Z develops as

Z=gZ' + 2+ ..., (2.31)
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where the first two terms, Z¢ and Z*‘, are given by the convergent integrals mentioned

above. Explicitly, they are

8 cos((m —n)m/2)
Zf;m__w(m+n—|—1)(m—|—n—1)(m—n—|—1)(m—n—1)’ (232)
_ Lsin((m —n)7/2)

st
Zmn_

. (2.33)

T m?2 — n?

Assumption (2.31) is well supported by the numerics. We have checked that numerical
values for Z,,, for large g are in a very good agreement with the analytic expressions
(2.32) and (2.33). On the other hand, the status of the higher order terms in (2.31) is
not obvious. In what follows, we largely restrict our investigation of the BES equation
to the first two leading terms.

With this word of caution we proceed to investigate (2.19) in the strong coupling

limit. It is not hard to see that it implies the following equation for the leading vector s*

K@t = Cle, (2.34)

where the leading matrices K (©)¢ and C* are obtained by keeping the leading contribution
Z* only. It turns out that for even values of d the kernel K(9¢ has rank d/2, hence from
the equation above it is possible to solve only for half of the components of s¢. However,
imposing the condition (2.29) together with (2.34) allows one to uniquely determine the
vector s’.

In order to find the solution in the limit of infinite d it is convenient to express the

leading equation in the following way
1
K°s°+ K°s® = 36 (2.35)

where s°, s¢ are vectors of length d/2 comprising the odd and even components of s* re-

spectively: s° = (s{,s5,s8,...)T, s¢ = (85, s, 85, ...)T and we recall that e = (1,0,0,...)".
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It is easy to check that equations (2.34) and (2.35) are equivalent provided that
(Ko)mn = Zémfl,anl + Z§m+1,2n71 ) (Ke)mn = Zémfl,2n + Z§m+1,2n . (236)

Then the unique solution of (2.35) satisfying the relation s® = s¢ turns out to be

Sgkq = 5§k = (_1>k+1

(2.37)

This remarkably simple expression for the coefficients s{, is the main result of this section.

By using the following identities (true in the limit of infinite rank)

(K¢ Dpn = —4(=1)"""mn?  forn <m, (2.38)
(Ke 71>mn — _4(_1)m+n+1m37 for n >m 7 (239)

(K¢ 'K pn = (—1) (2.40)

7w (4m? — (1 —2n)2)(1 —2n)? "’

one can check explicitly that the coefficients (2.37) indeed solve (2.35). Thus, we found

that restricting the coefficients s, to the leading order expressions s the function s(t) is

1y w1 Dk +3) Joe(29t) + Jox—1(2g1)
s(t) = 5;(—1> FT0) 3ot o (2.41)

where we have omitted the subleading contributions. This expression can be considered
the leading term in the large g expansion of the density s(¢,g) with gt kept finite.
As is clear from (2.6), we are only interested in values of s(t) for ¢ > 0. The series
can be summed and for this range of ¢ the result expressed in terms of the confluent
hypergeometric function of the second kind U(a, b, x):

1
~ 8mg?t

(Y . ,
Tl 2gt(F(%)U(—i,0,4zgt) n F(%)U(i,o,zlzgt)). (2.42)

s(t) = it (r(g) U(—1,0,—digt) + T(3)U(,0, —4@'915))
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The leading density (2.42) has a rather complicated profile. For gt — 0 it perfectly
reproduces the desired result s(t) — 1/(4g). On the other hand, the asymptotics of s(t)

for gt — oo exhibit a highly oscillatory behavior.

2.4.2 An Alternative Derivation

Let us now show that the result (2.37) can in fact be derived without resorting to
any auxiliary conditions obtained from numerical arguments. The degenerate equation
appearing at leading order, which can be used to express one half of the coefficients s,, in
terms of the other, can be supplemented by another half-rank equation from subleading
terms in the BES equation. Together they determine a unique solution.

Writing out the integral equation (2.6) in the basis (2.16) with explicit matrix indices

we find

Jn(29t) _ J1(291)
2gt 2gt

J2n<2gt)

oy, 290
2gt

2gt

+ 87122”’1

n

—16n(2m - 1)Z2n,2m—1Z2m—1,7“3r s (243)

where all indices are summed over from 1 to oo. Now we split up the integral equation
according to powers of g and into odd and even rows (indices of Bessel functions).

At O(g) the odd equation is trivial and the even one reads

1
2(2m — 1) 24y o1 Zom1.05e = Ly = ~On1 - (2.44)

2m—1,r"r 4™

This is precisely equation (2.34) employed in the previous subsection. At O(1) the odd
rows lead to the condition

Zt st =0y . (2.45)

2m—1,rr — 5 )

Actually this equation implies the previous one. It determines one half of the coefficients
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s' in terms of the other. Expanding further, at O(1) the even equation is given by

8nZsy  — AnZy

2nm m

— 16n(2m — )Zgn,Zm 1Z‘Z 5%t

2m— lrr

—16n(2m — 1) Z5, 501 Z5,

2m— 17‘7‘

—16n(2m — 1) 258 51 Zgp_105. = 0. (2.46)

2m—1,r"r

To determine the other half of the coefficients s’ we need to eliminate s from this
equation. To do this we examine the odd equation at O(1/g)

—2(2m — 1)}

2m— 1’r‘r

—202m - 125 st =sh . (2.47)

2m— 1rr

Now we use (2.45) and (2.47) to simplify (2.46), which gives

74 4 l _ 7
Zan m QZZan 182m 1 Z,

2n,m

(—1)™st, =0. (2.48)

This is the second equation we were looking for, which together with (2.45) completely
determines s’. If we define a matrix Zm which is identical to Z,., except for a sign flip
when both n is even and m is odd, we can combine the two conditions into the full-rank

equation for the strong coupling solution

1
A (2.49)

nm m 2 n,1

Note that the additional minus signs in the definition of an arise precisely because
of the introduction of the dressing kernel, and would be absent if the kernel consisted
solely of the main scattering part. Writing out (2.49) explicitly shows that the s¢ have

to satisfy

jit A(=1)™ sy
£ (2n — 2k — 1)(2n — 2k + 1)(2n + 2k — 3)(2n + 2k — L)7

14 L

52 Son—2 1
—— n___ “Ont s 2.50
8n2n—1) 8(m—Dn—1) 4™ (2.50)
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i 4(—1>n+k+15§k
p (2n—2k—1)2n—2k+1)(2n+ 2k —1)(2n+ 2k + )7

Sgn+1 Sgnfl (251)

T 8n(2n+1)  Sn(2n—1)°

for all n > 1 (where it is understood that the second term on the right hand side of

(2.50) is absent for n = 1). Indeed these equations are obeyed by

(—1)"1(2n — 1)
Sgnfl - Sgn - 2n(n . 1)[ 9 (252)

which is precisely the solution (2.37) found in the previous subsection. To show this,
note that the coefficients s%, , are generated by the Taylor expansion of (1 + z)73/2,
which makes it easy to perform the above sums as integrals over functions of the form
x™(1— 1:2)_3/ 2 for some appropriate power m chosen to generate the necessary terms in

the denominators of the left hand sides of (2.50) and (2.51).

2.4.3 Fluctuation Density in the Rapidity Plane

To get more insight into the structure of the leading solution, we find it convenient to

perform the (inverse) Fourier transform of the density &(¢) — &(u):

1

o(u) = P

/ dt 298wl 26 (Jt]) . (2.53)
We recall that u is a rapidity variable originally used to parameterize the Bethe root
distributions of gauge and string theory Bethe ansétze [31, 32], which gives another
reason for studying the density of fluctuations on the u-plane. Thus, substituting into

(2.53) the power series expansion for 6(t) we get

A _ 1 . - i2gtu —|¢t|/2 ‘t’ Jn(29’t‘)
U(u)—%;sn/mdte e = 2glt] + ... (2.54)
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For large values of g this expression can be well approximated as

_ 291t[)
" dt e ngtu [t]/2 n\=J1"1) ( o 9.
=5 Zs / o + (2.55)

The last integral is computed by using the following formula [30]

> i —t2In(2gt)  (29)"7! -
+2giut ,—t/2 _ + 2 +)2
/0 it #2ovte 22 n (u (1+ 1+ 492/ (u) )) . (2.56)

with u* = 1/2 F 2igu.

In this way we obtain the following series representation for the density (u)

1 (e @]
- nfn 2.
27Tg;sf—|— (2.57)

where

fu= O [ @+ VI A T@) " 4 (o (1 VT A D) ] (259)

2n

In what follows it is convenient to introduce the expansion parameter e = 1/(2g).
Our considerations above suggest that the density 6(u) expands starting from the second

order in €:

o(u) = 6" (u) + 6% (u) + ... . (2.59)

To find the leading contribution 6*(u) we have to develop the large g expansion of the
functions f,,. The result is not uniform, it depends on whether n is even or odd and also

on the value of u . For n even we find

EET, (w) + O(e) for |u| <1,
for = k . (2.60)
(_2? (u(l +4/1— #)) +O(e)  for |u|>1
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Here Ty (u) are the Chebyshev polynomials of the first kind. For n odd we obtain

— 5V 1 —u? Ugy—a(u) + O(e) for |u] <1,
fok—1 = o (2.61)
0+ O(e) for |u|>1,

where Us,_o(u) are the Chebyshev polynomials of the second kind. We recall that the
Chebyshev polynomials of the first and the second kind form a sequence of orthogo-
nal polynomials on the interval [—1,1] with the weights (1 — u?)~"/2 and (1 — u?)'/2,
respectively.

To find the leading density *(u) inside the interval |u| < 1 we can use the trigonomet-
ric definition of the Chebyshev polynomials which corresponds to choosing parametriza-
tion u = cosf with 0 < 6 < . Thus, taking the limit ¢ — oo we obtain for the leading

density the following expression

0= 23 (shec s un(6) + s5efon(6)) (2.62)
where
) = (-1 O gy = OO

Given the result (2.37) for the coefficients s{, we can now sum the series for 6*(u) and

obtain
6t (u) = L (2.64)
T

Thus, inside the interval [—1, 1] the density 6*(u) is constant.

Further, it is easy to sum up the series defining the leading density for |u| > 1. The
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Figure 2.3: The left figure is a plot of a numerical solution for the leading density 76*(u).
The right figure shows the exact analytic solution for the same quantity.

result is

o' (u) = L P V2 : (2.65)

2m V1 - uluF VaZ 1)

Here the minus and plus signs in the denominator corresponds to the regions v > 1 and
u < —1, respectively. The plot of the complete analytic solution for 6¢(u) is presented
in Figure 2.3. It should be compared to the plot of the numerical solution obtained by
using in the series representation for the density with the coefficients sf obtained from
our numerical analysis. The numerical plot corresponds to taking g = 40 and truncating
the series at k = 20.

Finally, we mention the expression for the scaling function f(g) in terms of the

density & (u)

o0 [e.9]

f(g):3293/ du&(u):8g/ dus’(u)+...=4g+... , (2.66)

—0o0 —00

which confirms analytically the leading term of the numerical results of Section 2.2. This
completes our discussion of the leading order analytic solution of the BES equation in

the strong coupling limit.
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2.4.4 Subleading Corrections

Here we will investigate the first subleading correction to the leading coefficients s;. By
expanding the BES equation we have already obtained equation (2.47) which expresses
the subleading density s%‘ in terms of the leading one:

5 1
Zém 105 = —szn ”sf - msgmq .

(2.67)

Again this equation is degenerate and needs to be supplemented by a second one that
appears at higher order in 1/g in the BES equation. Substituting the explicit form of
the coefficients s/ obtained above, the right hand side of (2.67) is seen to vanish (i.e.
K55t = 0), which already implies tight restrictions on the subleading corrections s*.
As discussed above, this equation allows us to solve for half of the components. For
instance, using (2.35) and (2.40) we can solve for the even components in terms of the
odd ones

00 3

32 m s
== 2T (4m? — (1 - 2n)%)(1 — 2n)? s (268)

n=1

To obtain another equation constraining the subleading solution, we examine correc-

tions to the BES equation as follows. From the O(1/g) contribution to the even rows of
the BES equation (2.43) we find

Shy =8nZ53 — AnZj — 4nZs’

2nm m 2nmm

(2.69)

l l ssé 0 st 14 sst
_16n<2m_ 1) ZQn,2m 1ZQm lr r +Z2n2m 1Z2m 17" r +Z2n2m 122m 17" r
st l st st sst 14 Z
+ZQn,2m 1ZQm 17" r + ZQn 2m— IZ2m 1r8r + Z2n,2m 1Z2m 1r r

To eliminate the term in s**¢ we turn to the odd rows of the O(1/¢?) equation

“o2m — V)| 7L | sty st + z3 f] =3 (2.70)

2m1rr 2m1rr 2m1rr
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Using this together with (2.45) and (2.47) to simplify (2.69) we obtain

1
(—1)mst — —sb . (2.71)

Zf
™ A4n

2n,m

(_1>mssf . ZSZ

m — ~ “2nm

This can be combined with (2.67) into the full rank equation

) ~ 1
VAT Y/ R (2.72)

nmem nm°m 2 n
n

where again the right hand side vanishes when evaluated on the leading solution s’ found
above, i.e. the subleading corrections appear to satisfy a homogeneous equation.

Thus complications arise at higher order in g which suggest that the equations for
the subleading terms in s, have to be supplemented by additional constraints. Luckily,
the equations for the leading solution derived in Subsection 2.4.2 are not affected by this
complication. This clearly cannot be the whole story, which is not surprising in view
of the divergence of the O(1/g) correction to Z,,, that we have ignored here by naively
expanding to third order.

Subsequently this problem was solved, and the complete asymptotic expansion of
f(g) determined in an impressive paper [104] (for further work, see [105]). This expansion
obeys its own transcendentality principle. In particular, the coefficient of the 1/¢g term

in (2.2) was shown to be given by
—— =~ —0.0232, (2.73)

where K is the Catalan constant, in agreement with the numerical result (2.24). As a
further check, this coefficient was reproduced analytically from a two-loop calculation

in string sigma-model perturbation theory [106, 107].
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2.5 Conclusions

In this chapter we have addressed the problem of extrapolating the perturbative expan-
sion controlled by the BES equation, which describes the universal scaling function of
high spin operators in AN/ = 4 gauge theory, to large values of the coupling constant and
shown that the resulting expression is consistent with string theory predictions.

First, we devised a numerical method to solve the BES equation around the strong
coupling point and demonstrated that the numerical solution is in perfect agreement
with equation (2.2), providing a non-trivial test of the AdS/CFT correspondence. Thus,
the cusp anomaly f(g) is an example of an interpolation function for an observable not
protected by supersymmetry that smoothly connects weak and strong coupling regimes.
The final form of f(g) was arrived at using inputs from string theory, perturbative gauge
theory, and the conjectured exact integrability of planar N'= 4 SYM.

Secondly, we have analytically studied the strong coupling limit of the BES equation
and demonstrated that expanding it in inverse powers of the coupling constant leads to
two equations for the large g solution, one appearing at leading, the other at subleading
order in 1/g. Together they determine a unique solution in the g — oo limit whose exact
analytic form we present.?

As was shown in [40] (see also [109]), the coefficients of the perturbative series describ-
ing the solution of the BES equation at weak coupling admit an analytic continuation
to strong coupling, where they coincide with those predicted by string theory. The ap-
proach we adopt here can be considered as another, complementary way to analytically
continue from weak to strong coupling.

On the rapidity u-plane the leading fluctuation density 6¢(u) appears to be constant
inside the unit interval |u| < 1. We could argue that this constant part of 6¢(u) is an

artifact of the way the BES equation was derived: The non-vanishing constant part of

2The leading term in the strong coupling asymptotic expansion of the fluctuation density &(t) was
derived analytically also in [108], independently of the present work.
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the leading density offsets the splitting of the weak-coupling density into a log-divergent
one-loop part and a regular higher loop piece carrying log S as a coefficient. Further, it is
not hard to show [97] that the subleading correction inside the unit interval is absent; in a
manner of speaking a gap opens between [—o0o0, —1] and [1, 0o]. This can be qualitatively
compared to the results obtained from string theory. Indeed, the solution of the integral
equation describing the classical spinning strings in AdS; x S! [110] in the limit S — oo
with angular momentum J along S! fixed has support only outside the interval |u| < 1.
The same behavior is expected for the GKP solution which is obtained in the limit
J — 0. For finite S the solution is elliptic and it exhibits logarithmic singularities in
the limit S — oo. On the other hand, our strong coupling density (2.65) is an algebraic
function which carries log .S as a normalization. Of course, this density leads to the
same energy as for the GKP string. It is desirable to understand the detailed matching
between the string density (higher conserved charges) and the density we found from

the strong coupling limit of the BES equation.
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Chapter 3

On Normal Modes of a Warped

Throat

3.1 Introduction

Duality between the cascading SU(k(M + 1)) x SU(kM) gauge theory and type 1B
strings on the warped deformed conifold [49] provides a rich yet tractable example of
gauge/string correspondence!. This background demonstrates in a geometrical language
such features of the SU(M) supersymmetric gluodynamics as color confinement and the
breaking of the Zsy, chiral R-symmetry down to Z, via gluino condensation [49]. In
fact, it has been argued [49] that by reducing the continuous parameter gsM one can
interpolate between the cascading theory solvable in the supergravity limit and N' = 1
supersymmetric SU(M) gauge theory.

The problem of finding the spectra of bound states at large g;M can be mapped
to finding normalizable fluctuations around the supergravity background. This problem

is complicated by the presence of 3-form and 5-form fluxes, but some results on the

spectra are already available in the literature [52, 53, 113, 114, 115, 116, 117, 118, 119].

IFor earlier work leading up to this duality, see [44, 51, 111, 112], and for reviews [10, 11, 12]. The
most pertinent facts were summarized above in Section 1.2.
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A particularly impressive effort was made by Berg, Haack and Miick (BHM) who used
a generalized PT ansatz [54] to derive and numerically solve a system of seven coupled
scalar equations [116, 117]. Each of the resulting glueballs is even under the charge
conjugation Zy symmetry preserved by the KS solution (this symmetry was called the
T-symmetry in [52, 53]), and therefore has ST¢ = 0**. The present chapter will study
three other families of glueballs, which are odd under the Z-symmetry. Two of them
originate from a pair of coupled scalar equations, generalizing the zero momentum case
studied in [52, 53], and have SP¢ = 0*~. The third, pseudoscalar family arises from a
decoupled fluctuation of the RR two-form C5 and has S7¢ = 07.

An important aspect of the low-energy dynamics is that the baryonic U(1)p sym-
metry is broken spontaneously by the condensates of baryonic operators A and B. This
phenomenon, anticipated in the cascading gauge theory in [49, 56], was later demon-
strated on the supergravity side where the fluctuations corresponding to the pseudoscalar
Goldstone boson and its scalar superpartner [52, 53|, as well as the fermionic superpart-
ner [118], were identified. Furthermore, finite deformations along the scalar direction
give rise to a continuous family of supergravity solutions [58, 59] dual to the baryonic
branch, AB = const, of the gauge theory moduli space.

The main purpose of this chapter is to obtain a deeper understanding of the GHK
scalar fluctuations [52, 53] and their radial excitations. Our motivation is two-fold. On
the one hand, we seek an improved understanding of the glueball spectra and their
supermultiplet structure. On the other, we would like to shed new light on the normal
modes of the warped deformed conifold throat embedded into a string compactification,
which has played a role in models of moduli stabilization [120] and D-brane inflation
[121, 122, 123]. In such inflation models, the reheating of the universe involves emission
of modes localized near the bottom of the throat, which are dual to glueballs in the
gauge theory [124, 125, 126, 127].

This chapter is based on the paper [128] written in collaboration with A. Dymarsky,
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I. R. Klebanov and A. Solovyov; it is structured as follows. In Section 3.2 we construct
a generalization of the ansatz for the NSNS 2-form and metric perturbations that allows
us to study radial excitations of the GHK scalar mode. We derive a system of coupled
radial equations and determine their spectrum (by numerically solving those differential
equations). In Section 3.3 we show that a similar ansatz for the RR 2-form perturbation
decouples from the metric giving rise to a single decoupled equation for pseudoscalar
glueballs. In Section 3.4 we argue that the scalar glueballs we find belong to massive axial
vector multiplets, and the pseudoscalar glueballs belong to massive vector multiplets.
Agreement of the corresponding equations is explicitly demonstrated in the large radius
(KT) limit. In Section 3.5 we give a perturbative treatment of the coupled equations
for small mass that allows us to study the scalar mass in models where the length of the

throat is finite.

3.2 Radial Excitations of the GHK scalar

The ansatz that produced a normalizable scalar mode independent of the 4-dimensional

coordinates z* was [52, 53]

532 = X(T) ng s 5G13 = (SG24 = ’QD(’T) . (31)

Our first goal is to find a generalization of this ansatz that will allow us to study the radial
excitations of this massless scalar, i.e. the series of modes that exist at non-vanishing

ki = —m3. Thus, we must include the dependence of all fields on z*. Such an ansatz
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that decouples from other fields at linear order is

5Fy =0, (3.2)
§Fy=0, (3.3)
6By =x(z,7)dg" + 0,0(z,7) dz" A g, (3.4)

6H3 = ddBy=x'dr Ndg® + 0,(x — o) dz" Ndg® + 0,0' dr Nda" A g°,  (3.5)

5G13 = 5G24 :¢<J], T) . (36)

The ansatz for § B, originates from the longitudinal component of a 5-dimensional vector:

6By = (Aydr + Audat) A g° . (3.7)

Requiring the 4-dimensional field strength to vanish, F),, = 0, restricts A, to be of the

form 0, acting on a function. Then, choosing

we recover the ansatz (3.4) up to a gauge transformation.

Yet another gauge equivalent way of writing (3.4) is

6By = (x —0)dg® —o'dr Ng° . (3.9)

The new feature of our ansatz compared to the generalized PT ansatz used in [116, 117]
is the presence of the second function in dBy which multiplies dr A ¢°. Terms of this
type, which are allowed by the 4-dimensional Lorentz symmetry, turn out to be crucial
for studying the modes that are odd under the Z-symmetry.

Using §(G™') = —G710G G, we find that G = 6G* = —G'" G331). The un-

perturbed metric components (see Subsection 1.2.2 for a review of the KS solution)
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are

2

GH =G®= 3.10
3K (1) Sinhz(T/Q)hl/z(T) ’ ( )
2
G3¥ =GY"= 3.11
43K (1) cosh?(1/2)h/2(1) ( )
- 6K(1)

G55 - G - W 5 (312)
GH = /2w (3.13)

In order to find the dynamic equations for the functions ¢, x and o in (3.4)-(3.6) we
study the linearized supergravity equations below (the type IIB SUGRA equations are

reviewed in Appendix A.1).

3.2.1 Equations of Motion for NSNS- and RR-Forms

All the Bianchi identities are automatically satisfied with the ansatz (3.2)-(3.6). Indeed,
the relation d6H; = 0 is obvious, and consistent with vanishing d6F5 we find that
dHs A F3 = 0 (using (1.38) one can verify that dg® A F3 =0 and dr A ¢g° A F3 = 0).

The self-duality equation for Fj reads

S« F5=0. (3.14)

Given that Fy has components along g' A g2 Ag® A g* A g® and along d*z Adr, our adopted
deformation of the metric does not affect *F5 to first order.

Even though the variations of the forms F; and Fj are zero, the deformations of their
Hodge duals ¢ % F3 and 6 % F; will in general be non-zero because of the deformations of

metric components. In the equation for Fj

dd * Fy = F5 A 6Hs, (3.15)
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the product Fy A 6Hs on the right hand side vanishes identically. From the explicit
form of Fy given in (1.38) we see that the perturbation of its Hodge dual will be a
closed form § x F3 = A(x,7)d*xz Adr A (...). Note that the term in (1.38) proportional
to dr A (g* A g® + g*> A g*) is not affected by the deformation of the metric, and thus
dé = F3 = 0 is satisfied identically.

The remaining equations are nontrivial. In particular
dd+x H3 =0, (3.16)
turns out to be more complicated than the equation for F;5. The variation
0% Hy = x0Hs + 0¢ * Hy (3.17)

consists of two parts: *dHs accounting for the deformation of the form Hj itself, and

0g * Hj arising from the deformation of the Hodge star. Explicit calculation shows that

x0Hy=—V -GG GB G ' d*z Ndg® A ¢° (3.18)
—V-GG" G®|G"|0,(x — o) *xadat NdT Ndg® A g°
+IV=G (G®)? |G"| 0,0" 4 dz" N dg® N dg”

gsMo'

(5g*H3:— 9

VGG GB GG + KG¥ o d'e Adg® Ag®,  (3.19)

where in the last equation we have introduced the shorthands

Tcotht —1 Tcotht —1

f(r) (coshT —1) , k(1)

(coshT +1) . (3.20)

2sinh 7 2sinh 7

The four-dimensional Hodge star x4 is taken with respect to the standard Minkowski

metric. Differentiating the expression for § x H3 and equating to zero the coefficients
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multiplying linearly independent forms gives three equations:

Mo/ 1
Az Adg® Adg®: 2GMGP l% (/G + Gy + X’} = G5 3 Oy, (3.21)

da Ndr Adg® A g®: B, {\/—G GUGBE [% (/G + Gy + X/} }
1
+V-GGG®h20y(x —0) =0, (3:22)
1 1
sadat Ndr N dg® Ndg®: 2V =G GG h2 0,(x — o) + 0; {\/—G (G*)? h2 aﬂa'} =0,

(3.23)

where we have substituted for the warp factor |G*| = h'/? (no summation over y is
implied). Not all of these equations are independent. Indeed, using (3.21) equation

(3.22) simplifies to
o, {\/—G (G55)2 p1/? 540—’} L 2VCG G GB RO, (x — 0) = 0. (3.24)

This is exactly what we obtain by acting on (3.23) with 0" and contracting indices. Thus
only (3.21) and (3.23) are independent. The coefficient functions in these equations are

given by (we have dropped some inessential constant factor in v/—G):

2 (sinh 27 — 27) 4 K(1)?
111 133 —
P& KGR Kyt s SR (3.25)
G GF = 162 —, (3.26)
e8/3 h K(7)" sinh® 7
6 K (7)°
55 1,1/2
G ht? = 5 (3.27)
4
V-GG GBI~ 3.28
K(T)2 ) ( )
V=G (G2 ~ 9 K(7)* sinh® 7. (3.29)
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Taking into account these expressions, equations (3.21) and (3.23) read

2(g. M) _ K@ Yv+x = BRI h(r) K(7)* sinh® 7 040’ , (3.30)
e4/3 \/h(r) 16 ’
0u(x — o) + 2 K(r)? (‘L{K“ sinh? Taua'} ~0. (3.31)

3.2.2 Einstein Equations

The first order perturbation of the Ricci curvature tensor is given by

5Rij = (—(SGaa;ij — 5Gij;aa + (SGai;ja + (SGaj;ia) , (332)

DN | —

where covariant derivatives and contractions of indices are performed using the unper-
turbed metric. The first term in this expression vanishes because the metric perturbation

is traceless. The remaining three terms combine to give the only non-zero perturbations

5R13 == 5R24Z

3
SRi3=———K?sinhT 2

7 — o+

K!/ 1 h” Z// (K/)Q 1 (h/>2 + K! h/
K 2h z K? 2 h? K h

+2K’z’+ b h’+4K’+22’ L9 1 4 1
— — +cotht | — — — — — =
K z h K z sinh?7 9 sinh®> 7 K6

—3h(T)K sinh 7 O,z

= —i,K?’ sinh T 2 1 ((KSiHh 7')2 (In h)/)/ ((K SiTlh 7‘)2 z’),
cA/3 2 (K sinhT)?2 (K sinh )2z
2 8 1 4 cosht . _
- "9 T3 — sh(r)Ksinhr Oiz,  (3.33
sinh?7 9 K6sinh®7 3 K3sinh? 7’] 2A(T) K sinh 7 Dz (3.33)

where z(x,7) is defined by

Y(x,7) = hY2K sinh 7 2(x,7) = 27Y3(sinh 27 — 27)Y3RY2 2(x, 7). (3.34)

The source terms on the right hand side of the Einstein equation R;; = T;;, spelled
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out in (A.3), are due to the deformations of the metric and By form. It turns out that the
only nontrivial deformations are those with indices 13 or 24, with 6713 = 0T5,. E.g. for

the 13 component d713 we have the following contributions:

1 1
1 05 (Hia Hs™) = 1 [H1ap 6H3" + 6 Hyp H3*|

1
=5 [GH Hiz: 6Hzor + G*° §Hyyy H34T] G»
1
=—1 (gsMa) G [G" [+ GP K] | (3.35)
9s s m gs -
i 5G(F1abch3ade> — Zs (GII)Q (G33)2 G55 (F12345)2 w , (336)
1 1
1 Sc(Hiap H3™) = B [H135 Hz156G™ G* + Hysy Hzsr 6G* GTT}
1
=3 [(Hiss)? — Hiar Hae) GM GP GP ¢
1

1
L e A K S S PCED
9; 9;
ZS S (FiapF3™) = ES [F125 F345 6G* G + Fyz; F31, 6G™ GTT}
2
= % [(Fisr)® = Fios Fau5) GM G G o
1

=3 (gsM)? [F? = F(1 - F)]G"G® Gy, (3.38)
with F(7) = (sinh7 — 7)/(2sinh 7) and

1 1
15 00 [Grs(Hac H™ + gl Fae F™)| = — 2 (H3 + g7 F3)
1
= _3_2 (gsMo/)2 G55 [(G11)2 f/2 + (G33)2 k/Z
+% Gll G33 (]{7 . f)2 + (Gll)Z F2

+H(GEPP (1 -F)?+2G" GP F?ly. (3.39)

Denoting
0Ths = |Ai(T) + Ao(7) | (. 7) + B(7) X (2, 7),, (3.40)
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where A; stands for the contribution from Fj, we get

Al(T> =

3(gsMa')* (7 cotht — 1)2(sinh 27 — 27)%/3

~ 91/3220/3))5/2
3 (gsMa')?
A =—
2(7) 8c4h3/2 sinh® 7
(sinh27 — 27) K (1)
B(t)= -3 (g, Mo’ .
) (9. Ma) 8/3 b sinh® 7

sinh® 7

Then eliminating x’ with the help of (3.21) yields

3 (gsMa')* (rcotht — 1)2(sinh 27 — 27)/3

Y

3 cosh 47 — 87sinh 27 — 872 cosh 27 — 8 cosh 27 + 1672 + 5] ,

(3.41)

0Ths = 22/3  g20/3p2 sinh® 7

2(x,T)

3 (g.Mda)? (sinh2r — 27)/3 "

8. 21/3 sinh® 7

eth

X [cosh 47 4 8(1 + 72) cosh 27 — 247 sinh 27 + 1672 — 9] 2(z,T)

9 gsMda' sinh 27 — 2
16 £4/3

sinh 7

{ 1 (W) 1h"

3
= _K3sinht |—=
sin T 2h

2473 2 12
9 gsMda' sinh27 — 2
16 £4/3

sinh 7

T K500

T Ko 040 (z,7)

+ —— +coth7—

K'W %
K I nlZ

(3.42)

Equating (3.33) and (3.42) we obtain the final form of the linearized Einstein equation.

3.2.3 Two Coupled Scalars

Combining the equations for the field strengths and the Einstein equations we have the

system
sinh 27 — 27 3 . 19
(gs M) 175 g +x' = 6 e¥3 h(r) K(7)* sinh® 7 40", (3.43)
9
Oulx —o)= 3 K(7)? 8T{K4 sinh? 7 8“0’} , (3.44)
((K sinh ) z/)/ N e43h . 2 N 8 1 4 cosht
z= = — = z
(K sinh 7)? 6K2 sinh®7 9 K6sinh®7 3 K3sinh® 7
inh 27 — 2
+3 (goMar) BERET 22T e o (3.45)
16 sinh” 7
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Note that y can be eliminated between (3.43) and (3.44). Further, a change of variables

Z=zKsinhT , (3.46)
£4/3
W= PR K3sinh*7 o', (3.47)

leads to a more symmetric pair of equations

2 e¥/3h 3(gsMa')? sinh 21 — 27
7" — Z == Oy 3.48
sinh? 7 o 6Kz 1 16643 K2ginh®r s (3.48)
2 4/3 i _
., cosh®T+1 _ &*°h _ 8sinh27 — 27 _
- w+ W=——F—""5 2. 3.49
sinh? 7 6K2 9 K2?sinh®7 (3.49)
Introducing the dimensionless mass-squared m? according to
22/3 (g MO/)Q
~2 2 s
we can rewrite the equations for Z and w as
- 2, I(r) . 9 N
" 2 =2
sinh272+mKQ(T)Z_m4~22/3K(T)w7 (3.51)
2
_, cosh*r+1 _  _, I(r) _ 16 R
— s w+m w=—K(7)2z. 3.52
sinh? 7 K2(T) 9 (7) (3.52)

This is a system of coupled equations which defines the mass spectrum of certain scalar
glueballs with positive 4-dimensional parity. The natural charge conjugation symmetry
of the KS background is the Z-symmetry, under which these modes are odd. Therefore,
we assign ST¢ = 07~ to this family of glueballs.?

In the massless case these equations lead to the GHK solution [52, 53]. If we assume

that Oy = —k2 = mj = 0, then there are two solutions [52, 53], Z; = coth7 and

2For comparison, the glueballs found in [116, 117] are 0. The glueballs whose spectrum comes
from the minimal scalar equation [113, 114] resulting from the analysis of graviton fluctuations are 2*+.
The axial vector U(1)g fluctuations [119] give rise to 17" glueballs whose masses are also determined
by the minimal scalar equation.

78



Zy = 7 coth7—1. The solution for Z which is non-singular at the origin is Z = 7 coth7—1.

Substituting it into the second equation, we find

h?r+1 16 22/38
—%"J}: — K(7)(rcotht — 1) = —
sinh” 7 9

~ 1

I'(7)sinh 7. (3.53)

The two solutions of the homogeneous equation are given by w; = 1/sinh7 and by
Wy = (sinh 27 — 27)/sinh 7; both of them are singular either at zero or at infinity. This
means that the regular solution of the inhomogeneous equation is uniquely fixed. With

the Wronskian W (101, wy) = Wi — wiwe = 4, we can find a general solution

2/3 T U~)2 T) ‘
w(T) = — 2 5 8 {@1(7) [Cy— [ dx WEx; I'(z)sinh x| (3.54)
~ i w1<x> / .
+w2(7') [CQ + dl’m[ (ill') Sll’lhl’}} .

Integrating by parts and choosing the particular homogeneous solution to make w well

behaved at both zero and infinity we get

22/3 1 T
B(r) = — 28 / do () sinh?z (3.55)
0

9 sinhr

Let us note that the non-vanishing w in the zero momentum case k, = 0 is not in
contradiction with the GHK solution. This is because w enters (3.2)-(3.6) only through

0,0, which is zero as long as the momentum vanishes.

3.2.4 Numerical Analysis

To determine the spectrum of glueballs in the field theory, we need to solve the eigenvalue
problem for m? in the infinite throat limit. This system of equations (3.51)-(3.52) does
not seem amenable to analytical solution and we employ a numerical approach to find
the spectrum of normalizable solutions. It is convenient to use the determinant method,

which generalizes the usual shooting technique to a system of several coupled equations
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(see [117]). Let us briefly describe the details of the numerical analysis as well as the
subtleties specific to the system (3.51)-(3.52).

A standard method of finding the spectrum of a single second-order differential equa-
tion is the shooting technique. For a system of several coupled linear equations the
shooting method has to be generalized. The idea underlying the calculation scheme
(called the determinant method [117]) is to set the initial conditions at infinity corre-
sponding to the two solutions regular at infinity, (Z1(7),w;(7))" and (Z3(7), w2 (7))T, and

extend them numerically to small 7. Then the matrix
21(0) Z2(0
( £1(0) 2(0) ) (3.56)

becomes degenerate at the critical points (eigenvalues) in the spectral parameter space.
Let us find the asymptotic behavior of regular and singular solutions near both zero

and infinity. At small 7 equations (3.51) and (3.52) decouple,

- 2
Z” — ﬁ ZZO, (357)
- 2

2

There are two regular solutions with Z, w ~ 77 and also two singular solutions with

Z, w ~ 1/7. For large 7 we have

a9 9 e
z" m24.21/36 P, (3.59)

16 - 21/3
= 5 e 3. (3.60)

21 _ 1 :7;2 — 64-8;11/3 m2€_47—/3 <3 6].)
7111 —24/3 677/3 ’ 1[]2 e 7 ’ ’
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and the singular solutions are

() = Lo laen) - (5)

A particular subtlety of this setup is that at large 7 the two singular solutions don’t

81 ~ T
_ (16-2—1/3m262 /3>. (3.62)
67—

diverge equally fast: one of them grows exponentially while the other is only linear in 7.
This makes it difficult to start shooting from zero, since imposing the regularity condition
at infinity would require vanishing of both linear and exponential terms. To cancel the
linear term in the presence of the exponential one is difficult to achieve numerically.
That is why for this particular system it is convenient to start shooting from large T,
since both singular solutions at zero share the same behavior (~ 1/7).

The result is that the spectrum consists of two distinct series, each with a quadratic
growth of m? for large n. These series are interpreted as the radial excitation spectra of
two different particles. The lowest eigenvalues (m?* < 100) for these spectra are shown

in Table 3.1. The quadratic fit for spectrum I is

m3, =2.31 +1.91n + 0.294n? . (3.63)
For spectrum II we drop the lowest eigenvalue when fitting, and find

M3y, =0.36 +0.14n + 0.279n* . (3.64)

It is interesting to compare these results with those found for the 0" modes by Berg,
Haack and Miick (BHM) [117]. Their conventions correspond to a particular choice of

the KS parameters, and the relation between the masses is

mZ iy = (3/2)%21(0) m?* ~ 0.9409 02 . (3.65)
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Spectrum I:

m

n|m:|n|m:|n|m2|n|m ’

1014535191 9 |433] 1379

2 (7306|244 | 10 |50.8 | 14 | 86.7

3010771301 11[589 | 15]97.11 =

4146 8] 364 | 12| 676 T . .

Spectrum II:

n|m: | n|m:|n|m|n| m wl

1129 6 | 806 11]30.1 ] 16[651 ) |

21703 7 [ 112 12355 | 17 | 73.9

31176 8 [ 150 1342118833

41333) 9 (193] 141492119933 | =

5543 | 10| 24.1 | 15| 56.9 .- . ’

Table 3.1: Non-zero eigenvalues with m? < 100. There are the two distinct spectra. Both
spectra can be fitted by quadratic polynomials in the eigenvalue number n (the red line in the
plots).

Using this relation one can convert the mass eigenvalues to the BHM normalization. We
note that the lightest glueball we find, the first entry of spectrum II in Table 3.1, has
m% g ~ 0.121. For comparison, the lightest 07" eigenvalue found in [117] has mass-
squared m%,; ~ 0.185. The fact that the 07~ sector has the lightest glueballs may
be qualitatively understood as follows. Roughly speaking, glueball masses increase with
the dimensions of the operators that create them. The lowest dimension operator from
the 07" sector is the gluino bilinear TrA\ of dimension 3, but the 07~ sector contains

an operator of dimension 2, namely Tr(ATA — B'B).
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Converting the asymptotics of the two spectra to BHM units, we find

m7 gy =217+ 1.79n + 0.277n? (3.66)

M3 g ~0.34 +0.13n + 0.262n° . (3.67)

The coefficients of the quadratic terms are close to those found in [117]. The quadratic
dependence on n, which is characteristic of Kaluza-Klein theory, is a special feature
of strongly coupled gauge theories that have weakly curved gravity duals (see [129]
for a discussion). Note that m? is obtained from m? through multiplying by a factor
~ T,/(gsM), where Ty is the confining string tension. Thus, for n < /gsM these
modes are much lighter than the string tension scale, and therefore much lighter than
all glueballs with spin > 2. Such anomalously light bound states appear to be typical
of gauge theories that stay very strongly coupled in the UV, such as the cascading
gauge theory; they do not appear in asymptotically free gauge theories. Therefore,
the anomalously light glueballs could perhaps be used as a ‘special signature’ of gauge
theories with gravity duals if they are realized in nature.

One may be puzzled why the spectrum in Table 3.1 does not include the GHK
massless mode. This is because in solving the coupled equations (3.51)-(3.52) we required
that both wave-functions Z and w go to a constant as 7 — oo. This excludes the GHK
zero mode which grows as Z ~ 7. On the other hand, this growth is a lot slower than
the exponential growth found for generic solutions. The meaning of the GHK mode
as the baryonic branch modulus seems to be well established since even the solutions
at finite distance along this modulus are available [58, 59]. Thus, the GHK scalar
zero-mode should be normalizable with a proper definition of norm. In fact, the GHK
pseudoscalar and its fermionic superpartner are normalizable [52, 53, 118]; therefore, the
supersymmetry of the problem implies that the GHK scalar is normalizable as well and

is part of the spectrum.

83



3.3 Pseudoscalar Modes from the RR Sector

The type of ansatz used in Section 3.2 works even more simply for the RR 2-form field:

SHy=0), (3.68)
6Fs=0, (3.69)
6Coy = x(x,7) dg’ + 0,0 (x, ) dx" A g° (3.70)

6F3 = d6Cy=x'dr Ndg® + 0,(x — o) da" ANdg® + 0,0’ dr Ada A g° . (3.71)

This ansatz is similar to, but somewhat simpler than the GHK pseudoscalar ansatz
[52, 53] which involved mixing with §F5. Since §F5 A H; = 0, now it is consistent to set
6Fs = 0. We also have Fx A 6F; = 0, so it is consistent to take dHs = 0. Finally, one
needs to study mixing with metric fluctuations. At first glance it seems that 6G1o and
0G34 might need to be turned on, but a more detailed analysis shows that their sources

vanish:

Mo
5T12 _ F13T5F23T + 5F14TF24T — Ta G33 G55 [F/X/ . F/X/] -0 : (3‘72)

6Ty = Fy1,0 '™ + 6 F30, F,*" = 0. (3.73)

Thus, the perturbation (3.68)-(3.71) decouples from all other modes, and the only non-

trivial linearized equation is

d+6F, =0. (3.74)

The calculation we need to perform is the same as above, except we now set ¢ = 0 and

find
/ 3 4/3 4 o h2 /
T h(7) K (1) sinh® 7 g0, (3.75)
9
du(x — 0):_§ K(7)? 8T{K4 sinhQTﬁua’}. (3.76)
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Eliminating x and changing variables as before,

_K°sinh*7 o’ (3.77)

we find
cosh?7+1 _ N e4/3h
- W
sinh? 7 6K2

~ 1

Oy = 0. (3.78)

After introducing the dimensionless mass as in (3.50), we get a non-minimal scalar

equation

2
W — —Cozil;};j Lo+ e =0 (3.79)
Since the 4-dimensional parity operation includes sign reversal of RR fields, we identify
the family of glueballs coming from this eigenvalue problem as pseudoscalars whose ST¢
quantum numbers are 07 .

If we set m = 0 the solution regular at small 7 is (sinh 27 — 27)/sinh 7. Since this
blows up at large 7 we conclude that this equation does not contain a massless glueball.

A simple numerical analysis using the shooting method allows one to find the spectrum.

The lowest eigenvalues (m? < 100) are listed in Table 3.2. The quadratic fit is
m3;;,, = 0.996 + 1.15n + 0.289 n? (3.80)
and in the BHM normalization it is given by
m3,; gy = 0.938 + 1.08n + 0.272n7 . (3.81)

The spectrum can be reproduced with good accuracy using a semiclassical (WKB)
approximation. The effective potential in (3.79) is singular at 7 = 0 which does not
allow us to use the conventional WKB approximation. Yet we can cast the equation

(3.79) in the form Q,Q.w = m?w, where Q; are first-order differential operators and

85



100 -

80 -

n|m:|n|m:|n|m|n|m ol

124151401 9 | 348 13] 647

2 (4476|180 10 41414737

3708|7232 11[486]15|832) *

41038 (287 [ 12564 | 16|933 | =" . P

Table 3.2: Non-zero eigenvalues with /m? < 100 in the RR sector. This spectrum can also be
fitted by a quadratic polynomial (red line).

2

then consider an equation (Q2Q)1w = m~w, which must give rise to the same spectrum

up to a zero mode. Namely, in our case this means that for A such that

arg = TEL (352)
equation (3.79) shares the spectrum with an equation
0" — (B2 + B+ m’ éggg Ww=0, (3.83)
where B=—A— %dii log ;ﬁgz . (3.84)
The general solution of (3.82) reads
A= —cothr + 25inb’ 7 . (3.85)

coshrtsinht — 7+ €

For (3.83) to be non-singular at the origin € has to be non-zero. For finite € the
potential is regular everywhere but not monotonic and (3.83) admits a zero mode. The
most convenient choice is to take infinite €, which leads to A = —coth 7. In this case
the WKB approximation is applicable in its simplest form (see [113, 114]) and yields the

same results as the shooting method up to the accuracy given above.
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3.4 Organizing the Modes into Supermultiplets

The pseudoscalar Goldstone mode and the massless scalar found in [52, 53] belong to
a 4-dimensional chiral multiplet. These fields appear as the phase and the modulus of
the baryonic order parameters that vary along the baryonic branch. When a long KS
throat is embedded into a Calabi-Yau compactification with fluxes, the baryonic U(1)
symmetry becomes gauged and a supersymmetric version of the Higgs mechanism is
expected to take place. The axial vector U(1)p gauge field ‘eats’ the pseudoscalar mode
and acquires a mass degenerate with the mass of a scalar Higgs. These fields constitute
the bosonic content of a massive N/ = 1 axial vector supermultiplet.

Above we explicitly constructed the massive modes that are radial excitations of the
GHK scalar. It is, of course, interesting to find the supermultiplets they belong to. We
will argue that each of these scalar radial excitations is also a member of a massive
axial vector supermultiplet. Similarly, each pseudoscalar glueball found in Section 3.3
is a member of a massive vector multiplet. To prove these facts we would need to
demonstrate the existence of the S¥¢ = 17~ glueballs degenerate with the 0*~ glueballs
found in Section 3.2, as well as of 17~ glueballs degenerate with the 0=~ glueballs found
in Section 3.3. Unfortunately, constructing decoupled equations for vector supergravity
fluctuations around the KS background is a difficult task. Instead, we will provide some
evidence for our claims by studying axial vector and vector fluctuation equations in the
large radius (KT) limit (setting o/ = g; =1, N = 0 and M = 2; see Subsection 1.2.2).

First we reconsider the simple decoupled pseudoscalar equation from the RR sector

(3.78) and argue that its superpartner is given by the four-dimensional vector A; in
6By = A N g° (3.86)

where we have chosen the ansatz so that the corresponding radial component ~ dr A g°

vanishes. The equation for d* H3 implies (with primes denoting derivatives with respect
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to r)

3 1 4y hr?
[g *y A/1:| —3 *yq Al_?dél *y d4A1 =0 s (387)

and dy ¥4 A; = 0, i.e. the vector is divergence-free. Since the Laplacian acting on such
a vector is [y = — %4 dy %4 dy (note the Minkowski signature of the four dimensional
metric), we find

3 h?”g

4
[% A’l] . % A+ = Didy = 0. (3.88)

Defining a new variable Ay = 1A, it s easy to see that its equation of motion,

rrr -, = hr? ~

o e A L 3.89

3 [3 ! 1y A= (3.89)
coincides with the KT limit of the equation for the decoupled pseudoscalar w, once
we identify r ~ £*3e7/3. In fact, if we make the same ansatz (3.86) in the full KS

background, the equation of motion for A; = KZ2sinh7A; resulting from the terms

~ d3x AN dT Awy Awy in d* Hy =0 is precisely as in (3.78):

2 2 ~ 4/3
d_A_coshT+1A+5 h

0,4, =0. .
dr2 ! sinh? 7 T Tl 0 (3:90)

However, this ansatz is not closed in the KS case. The Bianchi identity for Fj is not
satisfied, so this NSNS vector must mix with RR excitations of F3 and/or Fy in the KS
background.

Let us now turn to the massive axial vector superpartners of the coupled scalars
(3.48), (3.49) found above. We make the following ansatz, which is similar to the one
studied in [130],

56'4:B1/\w3+F2/\w2+K1/\dr/\w2, (391)
502 = Ol N g5 + D2 + E1 A d?“, (392)
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where By, (1, E4, Ji, Kq are axial vectors and D», F5, Hy are two-forms in four dimen-
sions. We choose to split the six degrees of freedom residing in the two-form into a
vector and a dual vector, e.g. Dy = dy(...) + *4ds4D1. The degrees of freedom contained
in the first (exact) part are in fact the same as those in Ej, so we can simply write
Dy = x4d, Dy without loss of generality. Similarly, Fy = *4dsF; and Hy = *x4d4H;, and
the corresponding exact parts can be absorbed into the vectors K and Jp, respectively.

The equations of motion then imply that B; and C; have to be divergence-free:
dy x4 By = dq x4 C; = 0. If this were not the case their divergences would simply
couple to additional scalars 6Cy ~ dr A ws and 6Cy ~ dr A g°, respectively, but we
will not consider this here (i.e. as for A; above we choose as gauge in which these radial
components vanish). In fact we will assume that all vectors in our ansatz are divergence-
free, and that the terms appearing in the RR- and NSNS-potentials are eigenstates of
the Laplacian [y = — %4 dy *4 dy with eigenvalue m?2.

Let us present some of the details of the derivation of the equations of motion. With

the ansatz (3.91)—(3.93), the deformations of the field strengths are

5H3 = — %y D4H1 + (*4d4H{ + d4J1) A dr s (394)
h2r® hr® .
*(5[‘[3 = — 54 D4H1 N wa A wsg A dr + a (d4H1 — *4d4J1) A wa N\ w3 ) (395)
5F3 = d4Cl A\ 95 — C{ Adr A g5 — 01 A dg5 + (*4d4D/1 + d4E1) Adr + d4 *y d4D1 ,(396)
h 3 3
»«51«},:% *4d4Cl/\w2/\w2/\dr+% *4C{Aw2/\w2+g x4y Cy Adg® A g° Ndr
hr® , h2r®
"—5—4 (d4D1 — *4d4E1) N woy N\ w3y — 54 D4D1 A wa N\ wsg N dT; (397)
5F5 = 5?5 + *5?5 y (398)

0Fs=(dsBy — By Adr) Aws + (= %4 O4Fy + 54dsF} Adr) A ws
+d4K1 Adr A wa , (399)
3 3 , hr
*0F5 = — *4d4B1/\w2/\dr+h— x4 By N\ wo — ?D4F1 A ws A dr
r r

+§ (dsF] — 54dyJ1) A ws . (3.100)
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Substituting these expressions into the Bianchi identity for £, and the form equations
(A.2) for xF3 and xHjs, we find the equations of motions. Splitting them into exact and
coexact parts with respect to the 4-dimensional derivative operator d, shows that the
vectors Ey, H, and K,; decouple®. The resulting equations for the remaining vectors

read

3 103 3
[h—r Bg] + 2 0B =—" Oy, (3.101)

T " hr 3
—F’} oFR =g 420 3.102
[3 1l + 3 41 1+ A ( )

8 14 h 3 9
Zal -3 S+ % DiCi=OhFi — - B, (3.103)
hr® 1 2 3 r

[ﬁ D’l] = OiDi=—F ~ "By —3log /1. (3.104)

h 3

3 hrd r

D4F1 — HB£:5_4D4J1 +310g T_D4D1 s (3106)

where (3.102), (3.104) and (3.105) hold modulo terms annihilated by d4. It is easy to
see that (3.105) and (3.106) imply (3.101), so the latter is not independent. We thus
have the five coupled equations for the five vectors By, Ci, Dy, F} and J;.

In the massless case, our ansatz includes the pseudoscalar found in [52, 53]. Putting

C1=—fa(r) dya(x) , (3.107)
04D = f1dsa(z) (3.108)
B = —flhrlog:—*dw(x) , (3.10)
Fi=Ji=0, (3.110)

for some constant f; and a four-dimensional massless pseudoscalar a(z), all equations

3More precisely, we set 22” E1 —3log ;- Hy = rlog -~ K1, and find a single second order differential
equation obeyed by these ﬁelds Thus we have found another decoupled vector, but this is not the one
we are looking for. Given this relation between them, Fy, H; and K7 do not mix with the other vectors.
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of motion are satisfied provided

3 14 9 T
) A, 9 T
[Sh) =S h=—2hle (3111)

*

in perfect agreement with the literature (see also Subsection 1.2.3).

Now we would like to consider massive excitations however, and find axial vector-
like solutions to the equations (3.101)-(3.106) which give rise to the superpartners of
the massive scalar excitations of (3.48) and (3.49). In particular, changing variables to
Wy = rC} equation (3.103) becomes

s 5 wi| =+ %7“2 O,W, = §D4F1 - % B . (3.112)

Thus we can identify W, with @ in (3.49), which suggests setting the right hand side of

this equation proportional to the counterpart of Z/r. Hence we define

3

Using (3.101) and (3.102) one can deduce that this new field obeys

rrr 1 hr? 1 r
: [g Z{} + = 0uZy = S OW + 2 O + D)) (3.114)

Our reduced ansatz containing five axial vectors is still too general. In order to
match the spectrum of the scalar particles found above, we need to impose an additional
constraint to reduce the number of dynamical vectors obeying independent second order

differential equations to two. The correct constraint for our purposes is given by
, 3
O4(J1 + DY) = = OyW;. (3.115)

In order to show that we can consistently impose this relation we need to examine the
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remaining equations. First of all, with this constraint (3.106) reads

hr® hr3
Z1 = —— |:|4D/1 + 1_8

r

Adding (3.104) and (3.105), using the constraint and the fact that 1 is a mass eigenstate
we find

2,.5

54

hr3 r9 r

Eliminating [1,D; between the last two equations we obtain a second order differential
equation containing only W; and Z;. A non-trivial fact is that this equation is identical
to (3.112). This relies heavily on the precise expression for the warp factor (1.48), and
shows the consistency of the constraint equation with the equations of motion.

Finally, introducing a symbol for the other combination of the vectors F; and B

that appears in the equations of motion

3

equation (3.105) implies
3
.Y = 7, — 204D, . (3.119)
T

In summary, we have the two coupled dynamical equations

rorr " hr? 2

3 [§ Z{] t5 UaZy = - W, (3.120)
rorr ' hr? 2
3 [g Wll} - Wi+ 9 LWy = ;Zl ) (3.121)

which determine W; and Z;. In terms of these [0yD; is determined by (3.117), J; by
(3.115), and [0,Y; by (3.119). Equations (3.120), (3.121) are precisely the KT limit of

the scalar equations (3.48), (3.49) up to a rescaling of the fields by a numerical factor.*

“Looking at (3.48) one might have expected the term 2%/sinh? 7 to give rise to a term proportional
to Z1/r% in (3.120), but in fact this is not the case because it is too small to be seen in the KT limit.
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Since the KT limits of their equations of motion agree, we thus argue that the axial
vectors Z; and W; are the superpartners of the coupled scalars z and w found above,
and that their massive excitations combine into vector multiplets. Subsequently, this
was shown rigorously by explicit construction of the vector fluctuations of the full KS
solution in [131], where all Z-odd SU(2) x SU(2) invariant perturbations of the warped

throat were found and categorized.

3.5 Effects of Compactification

Now we will embed the KS throat into a flux compactification, along the lines of [132],
and estimate the mass of the Higgs scalar. Generally, glueballs are dual to the normal-
izable modes localized near the bottom of the throat, and one does not expect them to
be strongly affected by the bulk of the Calabi-Yau. This is indeed the case for all the
massive radial excitations found in Sections 3.2 and 3.3. We will see, however, that the
case of the GHK scalar is more subtle and exhibits some UV sensitivity.

To model a compactification, we will introduce a UV cut-off on the radial coordinate,
Tmax- We also need to include a deformation of the KS solution introduced by bulk effects.
On the field theory side this corresponds to perturbing the Lagrangian of the cascading
gauge theory by some irrelevant operators. Here we are not interested in classifying all
of them but rather model the compactification effects in the simplest way by considering
one perturbation which simulates the main features of the compactified solution. We
consider a shift of the warp factor dh = const., which corresponds to the dimension 8
operator on the field theory side [133, 134, 135]. This also has a simple geometrical
meaning: the warp factor of the compactified solution is a finite constant in the bulk of

the Calabi-Yau and therefore should not drop below a certain value along the throat.

In the KS background it arises from a subleading term in the variation of the Ricci tensor (3.33) but
such terms that are asymptotically suppressed by powers of r compared to the leading terms are not
taken into account in the KT metric. Indeed, if we write ansatz (3.2)-(3.6) in the KT background and
follow the same strategy as we did for the full KS background, the term proportional to Z/r% does not
appear in the Einstein equations.

93



Let us introduce a small parameter ¢ which shifts the rescaled warp factor, I(7) —

I(7) + 6, and consider the system (3.51)-(3.52) in perturbation theory near m?* = 0:

=%+ m*% (3.122)

W =Dy + My (3.123)

Zy=7cothT —1, (3.124)
22/38 1 T

Wy = — 5 sinhT/O dz I(x)sinh® z . (3.125)

At leading order in m? we find

Zy=(rcotht —1) / dx u(x) cothx — cothT/ dru(x)(xcothz —1),  (3.126)
0 0

1 i sinh2x —2x  sinh27 — 27 [*
Uy =— d - d 3.127
o 4 sinhT/O zv(e) sinh x 4 sinh 7 /T zv(e) sinhz’ ( )
where
I(r) . 9 S8
u(r) = "R T T K ()0 — 575 % (3.128)
I(r) . 16 . J
v(T):_Kg—(T))w0+§K(T)z1——wo. (3.129)

K2

Keeping in mind that for large 7 we have u ~ —2-%/3§ 7 ¢%>7/3 one finds the asymptotic

behavior

94 27/3

Z1(7) ~ —2_2/35/0 dr (1 — )z e*/® ~ 1T e (3.130)
This yields v ~ —2%3§ 7 ¢7/3 and
1 T sinh2z — 2z sinh 27 — 27 [ 1
0= — d — d
b 4 sinh 7 /0 7 vo() sinh 4 sinht /T v vo() sinh
922/35
~— Te’l3, (3.131)
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Tmax

Figure 3.1: The dependence of log m on Tyax is linear with the slope equal to -1/3. The three
lines shown correspond to 6 = 1, 6 = 0.01 and é = 0.0001.

Finally, up to first order in the mass-squared and 9:

9 m? 9 948 m?
2 o~ R o 42 ~ o~ __9o4/3 —7/3 2y e 2r/3
Ze~Tl YTE ], @~ =271 S ]. (3132
This suggests that for generic boundary conditions the cut-off value
Tmax =~ — log (53/27%3) ) (3.133)

This prediction can be tested numerically. In order to do so one can specify some small

m and plot the determinant

det ( fi(r) (1) ) , (3.134)

of the two linearly independent solutions regular at 7 = 0 as a function of 7. The first zero
marks the point 7,.x such that there is a regular solution with z(Tyax) = W(Tmax) = 0.
Hence Ty is the corresponding cut-off value. As Figure 3.1 shows, the relation (3.133)

holds for 7.« large enough that m? is small, where
2~ e Fmax/3 (3.135)

Let us consider a simple model of compactification where the throat is embedded
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into an asymptotically conical space that terminates at some large cut-off value 7.
To calculate the mass from (3.135) we need to know § as well as Tyax. The former is the
asymptotic value of the (rescaled) warp factor. The point where the field theory warp

factor approaches ¢ marks the UV cutoff of the field theory
I(ryy) ~ gve v o~ § (3.136)

Using this in (3.135) we find m? ~ ewv=2mma)/3 This shows that the Higgs mass
becomes parametrically small only for 7. > 27yy. This is not satisfied in general;
the geometry requires only that ... > 7y because 7yy is the length of the throat
embedded into a CY space. With the ratio between the UV and IR scales of the field
theory around 4-10% [121] we estimate that 7y ~ 25 [59]. The cut-off 7., can be related

to the warped volume of the Calabi-Yau which, in a singular conifold approximation, is

Tmax det gg
V¥ = Vol(T™! / drh(r)y | ——— | 3.137
= VouT) | M Zet amn (3.137)

where 1 ~ €2/3¢7/3. The integral from zero to 7y is the warped volume of the throat,

and from ryy to ryax is the bulk volume. Assuming that the latter dominates,

w 167 4/3 N2 T,.6 6 —4
Vgl ~ 5 e (gsMoa') [rmax—rUV] oV - (3.138)

Requiring 7.y, > 50 leads to an enormous Vi, far larger than, for example, V¥ ~ 55q/
in [121]. Thus, while for 7. > 27y the Higgs scalar becomes parametrically lighter
than the other normal modes, in compactifications with realistic parameters it may
actually be heavier. This is due to the special feature of its wave function Z which grows
linearly with 7 in the throat. The only conclusion we can draw from our simplified model
of compactification is that this mode is rather UV sensitive, so to determine its mass we

need to know the details of the compactification.
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Chapter 4

Baryonic Condensates on the

Conifold

4.1 Introduction

Consideration of a stack of N D3-branes leads to the duality of N' = 4 super Yang-Mills
theory to type IIB string theory on AdS5xS° [1, 2, 3]. A different, A" = 1 supersymmetric
example of the AdS/CFT correspondence follows from placing the stack of D3-branes at
the tip of the conifold [44, 45]. This suggests a duality between a certain SU(N) x SU(N)
superconformal gauge theory and type IIB string theory on AdSs x Th1. Addition of M
D5-branes wrapped over the two-sphere near the tip of the conifold changes the gauge
group to SU(N + M) x SU(N) [111, 112]. This theory is non-conformal; it undergoes
a cascade of Seiberg dualities [50] SU(N + M) x SU(N) — SU(N — M) x SU(N) as it
flows from the UV to the IR [49, 51| (for reviews, see [10, 11, 12] and Section 1.2).
The gauge theory contains two doublets of bifundamental, chiral superfields A;, B;
(with 4,7 = 1,2). In the conformal case, M = 0, it has continuous global symmetries
SU(2) 4 xSU(2)g x U(1)g x U(1)g. The two SU(2) groups rotate the doublets A; and B,

while one U(1) is an R-symmetry. The remaining U(1) factor corresponds to the baryon
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number symmetry which we will be most interested in. As argued in [49, 52, 53, 56, 59],
in the cascading theory where N is an integer multiple of M, N = kM, this symmetry
is spontaneously broken by condensates of baryonic operators. In this chapter we will
provide a quantitative verification of this effect.

For N = kM the last step of the cascade is an SU(2M ) x SU(M ) theory which admits

two baryon operators (sometimes referred to as baryon and antibaryon)

A~ €ayan.ann (A)17 (A1)57 - (A)57 (A2) T (A2) ™ (A7

B~ €arasann (BT (B1)3® - (B1)§f (B2)y " (Ba)y "™ . (By)jf” (4.1)

Baryon operators of the general SU(M (k + 1)) x SU(MFE) theory have the schematic
form (A; Ag)RF+1IM/2 and (B, By)Fk+YM/2 " with appropriate contractions described in
[56]. Unlike the dibaryon operators of the conformal SU(N) x SU(N) theory [111], A
and B are singlets under the two global SU(2) symmetries. These operators acquire
expectation values that spontaneously break the U(1)p baryon number symmetry; this
is why the gauge theory is said to be on the baryonic branch of its moduli space [57].
Supersymmetric vacua on the one complex dimensional baryonic branch are subject to

the constraint AB = —A3}L, and thus we can parameterize it as follows

?

A=i(\});, B :

A2 (4.2)

The non-singular supergravity dual of the theory with |(| = 1 is the warped deformed
conifold found in [49]. In [52, 53] the linearized scalar and pseudoscalar perturbations,
corresponding to small deviations of ¢ from 1, were constructed, and in the previous
chapter we have generalized this construction to fluctuations with non-zero momentum.
The full set of first-order equations necessary to describe the entire moduli space of
supergravity backgrounds dual to the baryonic branch, called the resolved warped de-

formed conifolds, was derived and solved numerically in [58] (for further discussion of
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these solutions, see [59] and Subsection 1.2.4).

The construction of this moduli space of supergravity backgrounds, which have just
the right symmetries to be identified with the baryonic branch in the cascading gauge
theory, provides an excellent check on the gauge/string duality in this intricate setting.
Yet, one question remains: how do we identify the baryonic expectation values on the
string side of this duality? Among other things, this is needed to construct a map
between the parameter U that labels the supergravity solutions, and the parameter |(]
in the gauge theory.

The dual string theory description of the baryon operators (4.1) was first considered
by Aharony [56]. He argued that the heavy particle dual to such an operator is described
at large r by a D5-brane wrapped over the T'!', with some D3-branes dissolved in it
(to account for this, the world volume gauge field needs to be turned on). To calculate
the two-point function of baryon operators inserted at x; and x, we may use a semi-
classical approach to the AdS/CFT correspondence. Then we need a (Euclidean) D5-
brane whose world volume has two T'"! boundaries at large r, located at x; and 5. Here
we will be interested in a simpler embedding of the D5-brane: as suggested by Witten
(unpublished, 2004), the object needed to calculate the baryonic expectation values
is the Euclidean D5-brane that has the appearance of a pointlike instanton from the
four-dimensional point of view, and wraps the remaining six (generalized Calabi-Yau)
directions of the ten-dimensional spacetime. This object has a single %' boundary
at large r, corresponding to insertion of just one baryon operator. As we will find,
supersymmetry requires that the world volume gauge field is also turned on, so there are
D3-branes dissolved in the D5. This identification will be corroborated by demonstrating
that the D5-brane couples correctly to the pseudoscalar zero-mode of the theory that
changes the phase of the baryon expectation value [52, 53].

Close to the boundary, a field ¢ dual to an operator of dimension A in the AdS/CFT
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correspondence behaves as

o(z, 1) = po(x) r>~* + A, (z) rA (4.3)

Here A, is the operator expectation value [48], and ¢, is the source for it. In the
cascading theory, which is near-AdS in the UV, the same formulae hold modulo powers
of Inr [136, 137]. The field corresponding to a baryon will be identified, at a semi-
classical level, with e=575(")  where Sps(r) is the action of a D5-brane wrapping the
Calabi-Yau coordinates up to the radial coordinate cut-off r. The different baryon
operators A, A, B, B will be distinguished by the two possible D5-brane orientations,
and the two possible k-symmetric choices for the world volume gauge field that has to
be turned on inside the D5-brane. In the cascading gauge theory there is no source
added for baryonic operators, hence we find that g = 0. On the other hand, the term

A is indeed revealed by our calculation of e=55(") as a function of the radial

scaling as r~
cut-off, allowing us to find the dimensions of the baryon operators, and the values of
their condensates.

This chapter relies heavily on material from the paper [138] coauthored with A. Dy-
marsky and I. R. Klebanov, and is subdivided as follows. In the remainder of Section 4.1
we discuss the Killing spinors of the warped supergravity backgrounds dual to the bary-
onic branch. We also review the x-symmetry conditions for D-brane embeddings, and
briefly discuss a number of brane configurations that satisfy them. Section 4.2 is de-
voted to the derivation of the first-order equation for the gauge field. We first discuss a
Lorentzian D7-brane wrapping the warped deformed conifold directions, before present-
ing a parallel treatment for the more subtle case of the Euclidean D5-brane wrapping
the conifold. In Section 4.3 we investigate the physics of the D5-instanton in the KS

background. From the behavior of the D5-brane action as a function of the radial cut-off

we extract the dimension of the baryon operator, and show that it matches the expec-
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tations from the dual cascading gauge theory. We also show that the D5-brane couples
to the baryonic branch complex modulus in the way consistent with our identification
of the condensates. In particular, we demonstrate that pseudoscalar perturbations of
the backgrounds shift the phase of the baryon expectation value. We generalize to the
complete baryonic branch in Section 4.4, where we compute the baryon expectation val-
ues as a function of the supergravity modulus U. The product of the expectation values
calculated from the D5-brane action is shown to be independent of U in agreement with
(4.2). Finally, we present an integral expression for their ratio and evaluate it numeri-
cally, which provides a relation between the baryonic branch modulus |¢| in the gauge
theory and the modulus U in the dual supergravity description, and show that they

satisfy AB = const. We conclude briefly in Section 4.5.

4.1.1 D-Branes, x-Symmetry and Killing Spinors of the Coni-
fold

A Dirichlet p-brane (with p spatially extended dimensions) in string theory is described
by an action consisting of two terms [139, 140, 141]: the Dirac-Born-Infeld action, which
is essentially a minimal area action including non-linear electrodynamics, and the Chern-

Simons action, which describes the coupling to the RR background fields:

5:5D31+Scs:—/

dPtroe?\/— det(G + F) +/ " NC . (4.4)
w

w

Here W is the worldvolume of the brane and we have set the brane tension to unity.
Further, G is the induced metric on the worldvolume, F = F,+ Bs is the sum of the gauge
field strength F» = dA; and the pullback of the NSNS two-form field, and C' = ), C; is
the formal sum of the RR potentials. In superstring theory all these fields should really
be understood as superfields, but we shall ignore fermionic excitations here.

Wick rotation of this action to Euclidean space such that all p+ 1 directions become
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spatially extended (which leads to a Euclidean worldvolume D-instanton) effectively
multiplies the action by a factor of . This cancels the minus sign under the square root
in the DBI term and leaves it real since the determinant is now positive. The CS term
however is purely imaginary now. Consequently the equations of motion that follow
from the DBI and CS terms now have be satisfied independently of each other if we
insist on the gauge field being real.

The action (4.4) is invariant on shell under the so-called xk-symmetry [142, 143, 144].
This allows us to find first-order equations for supersymmetric configurations which are
easier to solve than the second order equations of motion. The k-symmetry condition

can be written as
I'we=¢, (4.5)

where ¢ is a doublet of Majorana-Weyl spinors, and the operator I', is specified below.
Satisfying this equation guarantees worldvolume supersymmetry in the probe brane
approximation, and every solution for which ¢ is a Killing spinor corresponds to a su-
persymmetry compatible with those preserved by the background.

The decomposition of a Weyl spinor € into a doublet of Majorana-Weyl spinors

e= C:) (4.6)

is achieved by projecting onto the eigenstates of charge conjugation! e, = (¢ +¢*)/2 and
g = (e — ") /2i.
In IIB superstring theory on a (9, 1) signature spacetime, the k-symmetry operator

I, for a Lorentzian D-brane extended along the time direction xy and p spatial directions

LGiven any spinor ¢ we denote its charge conjugate by £*, which of course is represented by complex
conjugation and left multiplication by a charge conjugation matrix B. We do not write B explicitly
here, though its presence is understood.
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is given by

V—detG & . =y
D (D) F T pny @ (03)" 2o (4.7)

.=
V—det(G + F) =
1

g M1 bp1 T

H1eefpt1

T =
)= TV det G

1
I =T s Foron - Foanroan GV G202 (4.9)

onpl Ve

Here o, are the usual Pauli matrices. We use Greek labels for the worldvolume indices
of the D-brane and consequentially the I', are induced Dirac matrices. In what follows
we denote the Minkowski spacetime coordinates by xg ... x3 and label the tangent space
of the internal manifold M by 1,2...6 in reference to the basis one-forms (1.66). The
expression for ', can be significantly simplified for an embedding covering all six direc-
tions of the deformed conifold, in which case we simply align the worldvolume tangent
space with that of M.

The Killing spinor ¥ of the supergravity backgrounds dual to the baryonic branch
is built out of a six-dimensional pure spinor n~ and an arbitrary spinor (~ of negative

four-dimensional chirality,

U=a( @n +if¢Tont, (4.10)

(I —il2)¢" @n =I5 =il @n = (I's —ile)(” ®@n” =0, (4.11)

where nt = (n7)* and (" = (¢(7)*. The functions « and g are real [58, 59] and given by

- 0o 6= Ty (4.12)

(this expression for [ is for U > 0; 3 changes sign when U does). The corresponding
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Majorana-Weyl spinors ¥; and W, are

V== ((@—iB)" @n +(a+if)T®@n") | (4.13)

- ((a+i8)¢"@n —(a—iB)(tent) . (4.14)

| = ol =

Wy =

[\
~

4.1.2 Branes Wrapping the Angular Directions

In the context of the conifold, the closest analogue to the baryon vertex in AdSs x S°
that was discussed in [145, 146, 147], would be a D5-brane wrapping the five angular
directions of the internal space, with worldvolume coordinates o = (2°, 61, ¢1, 03, ¢2, ).
The brane describing the baryon vertex in AdS; x S° has “Bl-on” spikes correspond-
ing to fundamental strings attached to the brane and ending on the boundary of AdS,
indicating that it is not a gauge-invariant object. Here however, we are interested in
gauge-invariant, supersymmetric objects, that are candidate duals to chiral operators
in the gauge theory, so we might try to consider a smooth embedding at constant ra-
dial coordinate (the difference between a “baryon” and a “baryon vertex” was already
stressed in [145]).

To avoid having the Bl-on spikes, it was proposed [56] that we should use an appro-
priate combination of D5-branes wrapping all the angular coordinates, and of D3-branes
wrapping the S3. This is equivalent to turning on a particular gauge field on the wrapped
D5-brane. Unfortunately, it is not clear how to maintain the supersymmetry of such an
object. It is not hard to see, for example from the appropriate k-symmetry equations,
that a (Lorentzian) D5-brane wrapping the five angular direction of the conifold and
embedded at constant r cannot be a supersymmetric object. The x-symmetry equation
seems to call for an additional constraint of the form I';0e* = —ie on the Killing spinors,
which would imply also I',0,6* = —¢, i.e. precisely what we would expect for strings
stretched in the radial direction. However, such a projection does not commute with

the other conditions that the Killing spinors have to satisfy and thus is not consistent.
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This was pointed out in [148] for the case of the singular conifold [44], and the argu-
ment carries over to the deformed conifold. Even with a worldvolume gauge field such
a D5-brane cannot be a BPS object.

The same conclusion also follows from the equation of motion for the radial compo-
nent of the embedding X* (o#). The leading term (as r — c0) in the D-brane Lagrangian
arises from the Bs-field contribution to the DBI term and is proportional to 7 (Inr)?, so
this brane is bound to contract and move to smaller r, until eventually it reaches the
tip of the conifold, where the two-cycle collapses.

On the other hand, as suggested by Aharony [56], the D5-branes with D3-branes
dissolved within them are the particles dual to the baryon operators. As proposed by
Witten (unpublished, 2004), to find the baryonic condensates we need to consider a
FEuclidean D5-brane wrapping the deformed conifold directions, with a certain gauge
field turned on. While there are no non-trivial two-cycles in this case, the worldvolume
gauge field does modify the coupling of this D-instanton to the RR potential Cy. We will
show that such a configuration can be made x-symmetric and then yields the baryonic
condensates consistent with the gauge theory expectations.

As a first example of a supersymmetric brane wrapping all the angular directions,
we shall discuss a D7-brane wrapping the warped deformed conifold, with the remaining
one space and one time directions extended in R*!. The supersymmetry conditions for
general D-branes in A/ = 1 backgrounds were derived in [149, 150, 151], and our results
will be consistent with theirs. We will show that the Lorentzian D7-brane configuration
on the KS background is supersymmetric in the absence of a worldvolume gauge-field,
though the xk-symmetry analysis will also reveal supersymmetric configurations with non-
zero gauge field. The fact that switching on this field is not required for supersymmetry
might have been guessed from a naive counting argument. This embedding of the D7-
brane should be mutually supersymmetric with the D3-branes filling the R*!, since the

number of Neumann-Dirichlet directions for strings stretched between them equals eight.
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The object we are most interested in is the Euclidean D5-brane completely wrapped
on the conifold. In contrast to the case of the D7-brane, we will find that supersymmetry
requires a non-trivial gauge field on the worldvolume. Again this is consistent with the
naive count of Neumann-Dirichlet directions with the D3-branes, which gives ten in this

case and thus indicates that these branes cannot be mutually supersymmetric if 5 = 0.

4.2 Derivation of the First-Order Equation for the
Worldvolume Gauge Bundle

In this section we derive the first-order equation of motion that the U(1) gauge field
has to satisfy to obtain a supersymmetric configuration. Because the k-symmetry of the
Euclidean D5-brane is subtle, we will first discuss the closely related case of a Lorentzian
D7-brane wrapping the six-dimensional deformed conifold, with non-zero gauge bundle
only in these directions. This object is extended as a string in the R*! but in the case
of a non-compact space dual to the cascading gauge theory the tension of such a string
diverges with the cut-off as e*/3. Therefore, this string is not part of the gauge theory

spectrum.

4.2.1 rk-Symmetry of the Lorentzian D7-Brane

The explicit form of the k-symmetry equation for the D7-brane with non-trivial U(1)

bundle on the six-dimensional internal space is given by

<€1> =T (?) ~ [(F+FP) o3+ 1+ F)] i02 Toognianass (?) , (4.15)

2 2

For the case of FEuclidean D-branes wrapping certain cycles in Calabi-Yau manifolds,

it was shown in [149] that the r-symmetry condition (4.15) can be rewritten in more
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geometrical terms. This results in the conditions that 729 = 0, and that

1
3!

1

1
EJ/\J/\]:_ a0

1
fAf-Af:g< J/\J/\J—aJ/\}"/\}"). (4.16)

The constant g was found [149] to encode some information about the geometry, namely
a relative phase between coefficients of the covariantly constant spinors in the expansion
of the g; [149]. As we shall see below, the same equation holds in our case of a generalized
Calabi-Yau with fluxes, except that g becomes coordinate dependent.

With the SU(2) x SU(2) invariant ansatz for the gauge potential

Ay =¢&(1)gs (4.17)

we find that the gauge-invariant two-form field strength is given by

e ”

7= 2sinh(7) 8 418)

[e‘g [é(cosh(T) + 2a + a® cosh(7)) + hg sinh?(7)(1 — aQ)] (G +1iGy) A (G — iGy)
+ e [écosh(T) — hs SiIth(T)} (G3 +1Gy) N (Gs — iGy)
+ 'vsinh(7)(G5 4+ iGg) A (G5 — iGg) + [5(1 + acosh (7)) — hyasinh?(7)

((G1 4 1G2) A (G3 — iGy) + (G +iGy) A (G1 — iGg))} ,

where £ = ¢ + x. This explicitly shows that F is a (1,1) form, which is one of the

r-symmetry conditions [149, 150, 151]. Now it is convenient to define

a(¢, 7)=e ¥ [e* + hysinh®(r) — (€ +x)*]

b(&,7) =2 Isinh(7)[a(€ + x) — ha(1 + acosh(7))] . (4.19)
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In terms of these expressions we find that

1
3!
1 1
EJ/\J/\.?—5.7:/\}-/\.7::(—[74—1)6_35&5/)‘/016, (4.20)

1
J/\J/\J—ﬁj/\f/\f:(aJrve*xbg’)vol(;,

where volg = (J A J A J)/3l. Thus (4.16) would lead to a differential equation of the

form

¢ = —f((fi;:)) , (4.21)
for some as yet undetermined g. In order to confirm the validity of this equation and
determine the function g we return to the full k-symmetry equation (4.15) with the
Majorana-Weyl spinors ¢; = (¥ + ¥*)/2 and ey = (¥ — U*)/2i constructed from the
Killing spinor. The analysis of this equation is much simplified by noting that I';_gn* =

Fint and that the spinors n™ are in fact eigenspinors? of F"

Fo-==xin™ (Fia + Faa + Fse) (4.22)
2 +_

Fon™ = —n* (FraFaa + FraFos + FraFse + FaaFse) (4.23)

Font =Tin™ (FraFauFse + FraFasFss) (4.24)

where the indices refer the basis one-forms (1.66). Then it follows from (4.20) that the

two terms in the k-symmetry equation act on the spinors in a rather simple fashion:

[1+ 7] n* =[a+ve "b¢] n*,

[F + PP n* =i [-b +ve “al] n* . (4.25)

Using these relations it is easy to see that the Killing spinor (4.10) indeed solves (4.15)

provided we impose the conditions that its four-dimensional parts (* obey the condition

2For simplicity we drop the four-dimensional spinors ¢* in ¢(* @ n*.
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[0,1¢(F @7t = (F @n*, and that the gauge field £(7) satisfies (4.21) with
203 —¢ 2
o9(r) = g1(7) = ——— 7= V1—e2 (4.26)

Thus indeed (4.16) holds and (4.21) is the correct first order differential equation given
this function g(7).

The fact that the k-symmetry condition (4.15) is satisfied implies worldvolume super-
symmetry in the probe brane approximation. However, we also ask for the worldvolume
supersymmetries to be compatible with those of the background. In order to check how
many supersymmetries of the background are preserved by the brane we need to enu-
merate the solutions of (4.15) for which € + iey is not just any spinor, but a Killing
spinor. For the particular case of the D7-brane with U(1) gauge bundle determined by
the first-order equation (4.21) we saw that Killing spinors of the form (4.10) solve the
k-symmetry equation if ['yo,1 (T ® n* = (¥ ® »*, and thus half of the supersymmetries

of the background are preserved.

4.2.2 An Equivalent Derivation Starting from the Equation of

Motion

Here we present an alternative derivation of the first-order equations for the gauge field
&(7), starting from the second-order equation of motion. This method has the advantage
that it applies equally well to Lorentzian D7 and Euclidean D5-branes wrapping the
conifold. The k-symmetry argument we employed in the previous section for the D7-
brane is somewhat complicated in the case of the D5-instanton by the fact that we are
forced to Wick rotate to Euclidean spacetime signature where there are no Majorana-
Weyl spinors. However, knowing that a first-order differential equation for the gauge
field exists, as well as its general features, it is not hard to derive it directly from the

second-order equation of motion.
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Since with Euclidean signature the DBI action is real and the CS action pure imag-
inary, two sets of equations of motion have to be satisfied simultaneously if we insist
on the gauge field being real. With the ansatz (4.17) for the gauge potential, the CS
equations are automatically satisfied, as are five of the DBI equations; only the one for
the g5 component of the gauge field (or equivalently its 1) component) is non-trivial.

In terms of the (implicitly U-dependent) functions defined in [58] the determinant

that appears in the DBI action is given by

detp (G + F) =v2e% (14 (&)%) [1+ e (€ +x)* — sinhQ(T)hg)2

—2e™ ((5 +x)*+ SinhQ(T)hg) (1 — 2e¥a? SinhQ(T))

—8e ?*29sinh*(T) a hy(€ + x)(1 +a cosh(r))] : (4.27)

where we have omitted the angular dependence ~ sin? ¢ sin® f,. Here we have only taken
into account the six-dimensional internal manifold M. If the brane is also extended in
the Minkowski directions (but carries zero gauge bundle in these directions) there are
additional &-independent factors multiplying the DBI determinant that appears in the
action (4.4). E.g. for the Lorentzian D7-brane this factor is equal to ¢*4. Using the
definitions (4.19), the term in square brackets in (4.27) can be written as a sum of
squares a2 + b2.

We know from the form of the k-symmetry equation that the first-order differential
equation we are looking for must

i) be polynomial (of at most third order) in £ and its first derivative,

ii) contain £ only at linear order (i.e. no (£/)? terms),

iii) be such that the determinant factorizes.

In particular the last condition means that when we eliminate & from the action,
the £-dependent term must be a perfect square, else the factor of \/m in the

denominator of (4.7) cannot be cancelled by the numerator to give unit eigenvalue. This
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implies that we must have

2 | p2
(14 (€0 ™) = S Tb) , (4.28)
for some (&, 7), so that
g SV - PET) (4.29)

v (€, 7)
Because we expect the equation to be polynomial in £ one must be able to explicitly

take the square root, and thus f(£, 7) can be written as

_ a—g(r)b
f(&,7) = NETich (4.30)

for some function g(7), where all the {-dependence is now implicit in a and b. With this

ansatz we have
¢ = e*(ga+b)
v(a — gb)

) (4.31)
which is of the same form as the first order differential equation we derived for the D7-
brane in the previous section. The function g follows by varying the action with respect
to £ and substituting for ¢’ using (4.31). It is not difficult to check that the equations
of motion that follow from the DBI action of the D7-brane [ eQA_¢\/W are
indeed implied by the first order equation (4.31) with

r79(1 h
g:g7:€ ( —k‘acos (7)) N TS (4.32)
hg sinh(7)

as we found above using a k-symmetry argument.
Using the same method, we can now find the first-order equation for the gauge field

on the Euclidean D5-brane. Having constrained the equation we are looking for to the

form (4.31) we vary the DBI action [ e™%\/det (G + F) using (4.27) and eliminate &’
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to obtain

9 [e*‘ﬁ\/det(G + F + B)] =0=

0§
2e V1 + ¢ . d [e?e*(ga+b)
v(a— gb) [—(£+ x)e "a+ e Yasinh(r)b] — e { Ve ] . (4.33)

Collecting powers of £ and equating their coefficients to zero we find differential equations

for g(7) which are solved simultaneously by

e~ "9 hy sinh(T) e?
=% (14+acosh(r)) 1 —e20 (4:34)

Substituting this into (4.31), the first-order equation we were looking for, written out in

full detail, is

¢ = [ = hysinh(1)e[e* + B3 sinh®(r) — (¢ + v)°]

+2e** sinh(7) (1 + a cosh(7))[a(& + x) — ha(1 + acosh(7))]| x

:veg [(1+ acosh(r))[e** + hj sinh?(7) — (€ 4+ %)

+2ha sinh?(r) a(€ + x) — ha(1 +acosh(r))]]] - (4.35)

In spite of its complicated appearance, this equation can be integrated and can in fact
be solved fairly explicitly. In the KS limit it reduces to a simpler equation (4.40) that
will be discussed in Section 4.3.

Let us note here the interesting fact that the Euclidean D5-brane and the Lorentzian
D7-brane are related by g5 = —1/g;. For the D7-brane we find g; = 0 for the KS
background (since there 1 + acosh(7) = 0), while g; diverges far along the baryonic
branch where hy — 0, and correspondingly for g5 the situation is the other way around?®.

The first order equation for the gauge bundle we have derived is in fact more general

3As a curious aside, note that taking g = 0 in (4.31) leads to an equation consistent with the action
[ €2472¢ /det p(G + F). This coincides with the D7 brane case for the KS solution (since here ¢ = 0),
but in general it is not clear what (if anything) this corresponds to.

112



than we have made explicit, and when written in the form (4.35) applies to the whole
two-parameter (n,U) family of SU(3) structure backgrounds discussed in [58]. The
baryonic branch in particular corresponds to the choice of boundary condition n = 1
at 7 = oo in the notation of [58], but the above family of solutions also includes the
CVMN background [60, 61, 62], which has the linear dilation boundary condition n =0

at infinity.

4.2.3 k-Symmetry of the Euclidean D5-Brane

Let us now reconsider the Euclidean D5-brane using the x-symmetry approach. The
K-symmetry projection operator in [142; 144] was derived using the superspace formal-
ism for Lorentzian worldvolume branes in (9,1) signature spacetimes, and thus it is not
immediately clear if it is applicable to the case of a Euclidean worldvolume instanton
which necessarily has to reside in a (10,0) signature spacetime. For now we shall never-
theless proceed by performing just a naive Wick-rotation of the xk-symmetry projector,
which simply introduces a factor —i in (4.7) such that I'> = 1 still holds.

The analog of the k-symmetry condition (4.15) for the Euclidean D5-brane is then

given by

(51> _ H(&) ~ [—(F + F) + (1+ F2) 03] 02 Trosass (?) o (436)

E9 2

Re-expressing this in geometrical terms leads to an equation of the same form as (4.16),
but now we expect g(7) to be equal to gs(7). Using the same ansatz A; = £(7) g5 as
above it is clear that equations (4.20) and thus (4.21) still hold, and of course F is still
a (1,1) form.

However, with the gauge bundle we derived in the previous subsection (i.e. with g =
g5 = (o — 3*)/(2af3)) the r-symmetry equation (4.36) does not have solutions for

g1 + ieq9 being equal to the Killing spinor (4.10). We can find solutions for other spinors
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by expanding the g; in terms of pure spinors:
ei=x(T)C@n +u(r) T e’ (4.37)

where ¢ = 1,2. We find that with this ansatz (4.36) is solved if the coefficients satisfy

(e —iB)’ v _(e+ip)?

= = 4.
Py B e (438)

Thus we have obtained a family of spinors (4.38) that solves the k-symmetry equation
with the correct gauge bundle, but this family does not seem to contain the Killing
spinor (which differs by a sign in y;/y,). This would imply that even though for the
gauge field configuration we have found there is worldvolume supersymmetry in the
probe brane approximation, these supersymmetries would not be compatible with those
of the background.

We believe that this difficulty is just an artefact of applying the x-symmetry operator
in a Euclidean spacetime to a Euclidean worldvolume brane without properly taking into
account the subtleties of Wick-rotating the spinors and the projector itself, and that
the Db5-instanton does preserve the background supersymmetries. In fact it is known
that for a Euclidean D5-brane wrapping six internal dimensions the correct x-symmetry
equations are not the ones obtained by the naive Wick rotation we performed above, but
instead are identical to those for a Lorentzian D9-brane?. The s-symmetry conditions
for the Lorentzian D9-brane lead to equations identical to (4.38) except for a change of
sign on the right hand side of the equation for y; /ys, so that they are now satisfied by the
Killing spinor. This shows that the worldvolume gauge field found above is consistent
with properly defined k-symmetry.

In either case we consider the independent derivation of the first-order equation

(4.35) in the previous subsection a compelling argument that this gauge bundle is in

4We would like to thank L. Martucci for pointing this out to us.
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fact the correct one for our purposes, which will be corroborated below by the successful

extraction of the baryon operator dimension from its large 7 behaviour.

4.3 FEuclidean D5-Brane on the KS Background

We will now specialize the discussion of the previous section to the case of a Euclidean
D5-brane wrapping the deformed conifold in the KS background. Since this background
is known analytically, the formulae are more explicit in this case. We interpret the
Euclidean D5-brane (which has the appearance of a pointlike instanton in Minkowski
space) as the dual of the baryon in the field theory, in the sense that its action captures
information about the (scale-dependent) anomalous dimension of the baryon operator,

as well as its expectation value.

4.3.1 The Gauge Field and the Integrated Form of the Action

For the KS background (where for simplicity we set Mo’ = 2 and gs = € = 1), we have

a = —1/cosh(7) and x = 0, so the first-order differential equation (4.35) simplifies to

e** + h3 sinhQ(T) — &2
20¢ ’

¢ = (4.39)

or more explicitly, substituting in the KS expressions for z, hy and v:

sinh(7) cosh(r) — 7 , _ (sinh(7) cosh(r) — 7)**h 1
3 Snb2(7) e+ = 16 + 1 (T coth(r) — 1)* . (4.40)

Note that there is no £¢? term. Thus we can multiply the equation by an integrating
factor to turn the left hand side into the total derivative [(sinh(7) cosh(7) —7)Y/3¢2]" and

reduce the equation to the integral

€% = (sinh(7) cosh(r) — 7)"Y3.J(7) , (4.41)
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where®

[T (sinh*(z) h(z)  sinh®(z)(z coth(z) — 1)? .
I(7) = /0 < 24 G (sinh(z) cosh(z) — x)2/3) da - (4.43)

We have set the integration constant to zero by requiring regularity at 7 = 0.

Now consider the DBI action of the Euclidean D5-brane with this worldvolume gauge
field. Neglecting the five angular integrals for the time being, and focussing on the radial
integral, we see that the Lagrangian is in fact a total derivative, and thus the action is

given by

Sppr~ / dre ®Vdet G + F

1 3/2
~ " 3(sinh(r) cosh(r) — 7)1/2 7 (444)
N [(sinh(T) cosh(7) — 7)'/2h N (7 coth(r) — 1)?

16 4(sinh(7) cosh(r) — 7)1/6

JY?

We are particularly interested in the UV behaviour of these quantities. From (4.41)

it is easy to find the asymptotic expansion of the gauge field as 7 — oc:
2 1 2 —27/3
& —-1"—-71+—=+4+0(e ) . (4.45)

Note that to leading order this approximates h2 sinh?(7), so for large 7 the coefficients of
the F, and B, fields become equal and cancellations occur in the action. This is essential
for obtaining the 72 behaviour of the action for large cut-off 7, which as we will see gives
the correct 72 scaling of the baryon operator dimensions.

To extract the asymptotic behaviour of the action we will use the integrated form

5The integral looks “almost” like the explicitly computable one

T (sinh®(z) h(z) sinh?(z)(z coth(x) — 1)2
/0 ( 24 18 (sinh(x) cosh(x) — )2/3) d

1, . 1 .
= E(smh(T) cosh(7) — 1) h(1) + Tl (7 coth(r) — 1)(sinh(7) cosh(r) — 7)'/3 |, (4.42)

but a relative factor of 3 in the second term of (4.43) prevents us from performing it in closed form.
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(4.44). The leading terms in the expansion are easily found analytically, with the result

—¢./ Lo s L, 7 AT\ —27/3
SDB]: dre det(G_Ff)Hé(T +T—2) ZT —§T+3—2 +O(€ )

1, 1., 25 943
B P A /7). (44
~ 5T " 16" 128" g T OWT) (4.46)

Below we will argue that the O(1) term in this expansion determines the expectation
value of the baryon operator. Of particular interest is the variation of this expectation
value along the baryonic branch; we will investigate it in the next section. First, however,
we will give a field theoretic interpretation to the terms that increase with 7. As we will
see, the coefficients of these divergent terms are universal for all backgrounds along the

baryonic branch.

4.3.2 Scaling Dimension of Baryon Operator

We have seen that for large cut-off r (i.e. large 7), the DBI action of the Euclidean
D5-brane will behave as S(r) ~ (In(r))3. Since this object corresponds to the baryon
in the field theory, we expect that exp(—S) is related to r=2, where A is the scaling
dimension of the baryon operator.

To make this statement more precise we consider the RG flow equation relating the

operator dimension A to the boundary behavior of the dual field ¢(r):

= A(r)e(r) . (4.47)

This equation obviously holds in the usual AdS/CFT case where all operator dimensions
have a limit as the UV cut-off is removed. The case of cascading theories is more subtle,
since there exist operators, such as the baryons, whose dimensions grow in the UV. As

we will see, in these cases (4.47) is still applicable. Identifying the field dual to a baryon
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operator as

o(r) ~ exp(=S8(r)) , (4.48)

we find
dS(r)  dS(r)

Al == = T

(4.49)

To calculate the scaling dimension of the baryon in the gauge theory, we simply count
the number of constituent fields required to build a baryon operator for a given gauge
group SU(kM) x SU((k + 1)M) and multiply by the dimension of the chiral superfield
A or B; the latter approaches 3/4 in the UV where the theory is quasi-conformal. This
gives

3 27g2M?
A(r) = ZMk(k +1) = 1672

(In(r))* + O(In(r)) , (4.50)

where k labels the cascade steps and we have used the asymptotic expression for the

radius (energy scale) at which the kth Seiberg duality is performed:

2rk
T = 7o exp (3g7TM) . (4.51)

Here and in the remainder of this subsection we keep factors of g5, M, e and o explicit.

Let us now compare this to the scaling dimension we obtain from the action of the D5-

instanton according to equation (4.49). The leading term in the action is 73/12, which

is multiplied by a factor (g;Ma’/2)? that we had previously set to one, a factor 647>
—5,/-3

from the previously neglected five angular integrals and a factor of Ts = (27) °a/ 3¢, t.

Therefore, using (1.29) we have
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From (4.49) we find that this string theoretic calculation gives

279> M3
Alr) = 1672

(In(r))* + O(In(r)) . (4.53)

The term of leading order in In(r) is in perfect agreement with the gauge theory re-
sult (4.50). We consider this a strong argument that the relation (4.48) between the

Euclidean D5-brane action and the field dual to the baryon is indeed correct.

4.3.3 The Pseudoscalar Mode and the Phase of the Baryonic

Condensate

Let us now turn to a discussion of the Chern-Simons terms in the D-brane action. Given
our conventions (1.39) for the gauge-invariant and self-dual five-form field strength Fy,
there is a slight subtlety in the CS term of the action (4.4). Its standard form, given
above, is valid with the choice of conventions where sy = Fy+ H3 ACy = dCy+ dBs A C.
In these conventions dC) is invariant under By gauge transformations By — By + d\q,
but transforms under Cjy gauge transformations Cy — C5 + dA; such as to leave F5
invariant. However, we work in different conventions where Fg, = dC4 + By A F3; here
dC'y changes under B, gauge transformations. This choice also alters the form of the CS
term in the action. The new RR fields are obtained by Cy — Cy+ By A Cy combined with
Cy — —Cs5 everywhere else, which modifies some of the terms in the CS action that will

be relevant for us:
1 1 1
5/02Af/\f+/04/\f—>—E/CQAF/\F+§/CQAB/\B+/C4/\F. (454)

For the KS background the CS action simply vanishes. However, it is interesting to
consider small perturbations around it. The pseudoscalar glueball discovered in [52, 53]

is the Goldstone boson of the broken U(1) baryon number symmetry; it is associated
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with the phase of the baryon expectation value. This massless mode is a deformation of

the RR fields (which is generated for example by a D1-string extended in R*!) given by

0Fs =x4da+ fo(r) da Adg® + fo(1)da NdT A g°

~ h
0Fs=(1+%)0F5 A\ By = (*4da — 6K(2T(>T) da A dt N\ 95) A By, (4.55)
where a(z%, 2!, 22, 2%) is a pseudoscalar field in four dimensions that satisfies d %4 da =

0 and would experience monodromy around a D-string. This deformation solves the

supergravity equations with

1
6 K2(7)sinh’ 7

() /0 " dwh(z) sinh?(x) | (4.56)

If we wish to identify the exponential exp(—S) = exp(—Sppr — Scs) of the brane action
(or more precisely the constant term in its asymptotic expansion as 7 — oo) with the
baryon expectation value, then the pseudoscalar massless mode has to shift the phase
of this quantity, contained in the imaginary Chern-Simons term. The DBI action is
obviously unaffected by this deformation of the background since the NSNS fields are
unchanged. This is consistent with the magnitudes of the baryon expectation values
being unaffected by the pseudoscalar mode; these magnitudes depend only on the scalar
modulus U in supergravity, corresponding to |(| in the gauge theory.

The phase exp(—Scs) by itself is not gauge invariant and thus not physical. Be-
cause our brane configuration has a boundary at 7 = oo, only the difference in phase
exp(—AScs) = exp(—iA¢) between two Euclidean D5-branes displaced slightly in one
of the transverse directions (i.e. between two instantons at different points in Minkowski
space) is gauge-invariant. Taking into account the anomalous Bianchi identity for F

and the RR gauge transformations we see that this gauge-invariant phase difference is
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given by

Ap = Aopp + Aop (457)
where
1
1
Adr :/ [—55}73 ANFAF +5F5A F] . (4.59)

The integrals are performed over the six internal dimensions as well as a line in Minkowski
space. Note that here F5 = dC, = F5 — By A F3. For small perturbations around KS the
contribution A¢r from the coupling to the gauge field vanishes (the first term in (4.59)
is a total derivative with vanishing boundary terms, while the second term doesn’t have
the right angular structure to give a non-zero result). Substituting the explicit form of
the RR deformations from (4.55) we find that the phase difference is

1 h
A¢pp = —5/ (@ + fé) (tcoth(r) — 1)2daAdr Ag*AGg* A Ag*Ag® . (4.60)

We can interpret A¢ as Aa times a baryon number. It is satisfying to see that the
pseudoscalar Goldstone mode indeed shifts the phase of the baryon expectation value
and not its magnitude. A more stringent test of our interpretation would be to carry
out this computation for the whole baryonic branch and check whether the numerical
value of the baryon number computed this way is independent of the modulus U. This
is rather difficult, since the pseudoscalar mode at a general point along the baryonic

branch is not explicitly known at present.
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4.4 Euclidean D5-Brane on the Baryonic Branch

In this section we extend the discussion of the previous section from the KS solution
to the entire baryonic branch. In particular we are interested in the dependence of the
baryon expectation value on the modulus U of the supergravity solutions. All supergrav-
ity backgrounds dual to the baryonic branch have the same asymptotics [59] and we will
see that the leading terms (cubic, quadratic and linear in 7) in the asymptotic expansion
of the action (4.46) are universal. This implies that the leading scaling dimensions of the
baryon operators do not depend on U, consistent with field theory expectations. How-
ever, the finite term in the asymptotic expansion of the brane action does depend on U.
This provides a map from the one-parameter family of supergravity solutions labelled
by U to the family of field theory vacua with different baryon expectation values (4.2),

parameterized by (.

4.4.1 Solving for the Gauge Field and Integrating the Action

Having derived the differential equation that determines the gauge field in full generality
in Section 4.2, let us now turn to a more detailed investigation of the first order equation

(4.35). First of all we note that it can be rewritten as

d I ahg sinh?(7) 5 5 5 . 19 ,  2ahgsinh?(7)
Bl et el VAN T _ h2ginh2(7) — S A\
dr [ 35 * (1 + a cosh(7) X )& Fe 2 SIW(T) =3 + 1+ acosh(T)X :

___hasinh(r)ef
(1 +acosh(r))
2¢* sinh(7)
+—

ved

[€*® + h2sinh?(7) — 7]

lax — h2(1 + acosh(r))] . (4.61)

For notational convenience we define é =&+,

AU(r) = % : (4.62)
B(1)=e*® — h3sinh?(7) , (4.63)
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and

[T hgsinh(7)ed o 5 . 19
p(7) :/0 lv(l + a cosh(7)) [e™ + g sinh(r)]

2¢* hy sinh(7)(1 h
420 Ry S+ acosNT)) _ (e _ g sinh2(7)]x’] dr.  (4.64)
ve
which allows us to write (4.61) more compactly as
4 [ — LB A+ B(rE+ p(T)] =0. (4.65)
dr 3

Thus the solutions for the shifted field §~ are given by the roots of the third order
polynomial

S8 AP+ B+ p(r) =C (1.66)

where C' is the integration constant.® To fix it, we consider the small 7 expansion, which

is valid for any U

A~1+O(T%) (4.67)
B~ +0(th) (4.68)
p~T 4 O(TY) . (4.69)

Note that at 7 = 0 all coefficients in (4.66) vanish, except the first one; therefore, the
integration constant C' has to be zero for this cubic to admit more than one real solution.
Then we find that é = 0 at 7 = 0 for any solution on the baryonic branch.

Let us examine the cubic equation (4.66) more closely in the KS limit (U — 0) to

see how our earlier result (4.41) is recovered. In the U — 0 limit @ — —1/ cosh(7) and

6This equation is quite general; it does not assume boundary conditions 1 = 1 that characterize the
baryonic branch [59]. In particular this result is also valid for a brane embedded in the CVMN solution
[60, 61, 62].
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therefore (1 + a cosh(7)) vanishes. For small U [52, 53, 58, 59]

(1+ acosh(r))=2"°3UZ(t) + OU?) , (4.70)
(7 — tanh(7))
2(7) = Gh () cosh(r) = D1

(4.71)

In this case 2 and the first term in p diverge as U~!. All other terms can be dropped

and we have instead of (4.65)

~ . 2 T 3 g
2 ahy sinh™(7) + / dr M[eﬁ + h3sinh(7)?] =0 . (4.72)
0

Z(T) vZ(T)

After substituting the KS values for a, v, hy, x we recover (4.41).
While it would be desirable to obtain a closed form expression for the integral p(7)
in order to evaluate £ explicitly, this appears to be impossible, since even in the KS case

we cannot perform the corresponding integral J(7).

Evaluating the DBI Lagrangian on-shell using (4.31) we find

—¢ 3z 1 2 2 2
0\ Jaot(G 4 ) = eVt et la b (4.73)

vla — gb|

where we have taken the absolute value since the sign of a — gb will turn out to depend
on which root of equation (4.66) we pick.
For the baryonic branch backgrounds we can show that the action is a total derivative.

First note that the DBI Lagrangian (4.73) can be rewritten in the form

—¢ 3z

-9 %" (ga+b)’+ (a—gb)?
CVACH R = A ol

_ e*(1 +acosh(r)), .,

" | vhysinh(r)e [ve™*¢'(ga +b) + (a —gb)]| , (4.74)

where the right hand side is now cubic in £ (and its derivative) much like the differential

equation (4.31). In fact, substituting for a, b and g = g5 this equation can be integrated
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in the same manner, which results in the action
1- - -
S = —§§3+¢(7)52+©(7)§+a(7) ) (4.75)

with €, 9, o defined as

e?*a (1 + a cosh(7))

_ 4.
¢ - , (4.76)
D = [e* + h3 sinh?(7) 4 2e**(1 4 a cosh(7))%e ] , (4.77)
" [e**(1 + acosh(T)) . ,
=— ¥ — hjsinh® 4.
? /o { vhg sinh(1)ed & 2 Sinh™(7)] + (4.78)

[€*® + h2sinh?(7) + 2" (1 + a cosh(7))%e 9]\ | dT . (4.79)

Again the ¢-independent term is an integral, that we denoted by (7). Thus we have a
fairly explicit expression for the action involving two integrals: p(7), which appears in
the equation for &, and o(7).

To conclude this subsection we will demonstrate that the third solution of (4.65),
which is absent (formally divergent for all 7) in the KS case (4.41), produces a badly
divergent action and is therefore unacceptable for any point on the branch. Restoring
the —£3/3 term in (4.72) we see that in the GHK region U — 0 the third solution is

simply

f—— 22; 3 (cosh(r) sinh(r) — 7)Y + O(U) . (4.80)

The value of the Lagrangian in this case is
36 . o —2
det(G + F) = — sinh“(17) + O(U7) . (4.81)

U3

This expression can be used to extract the leading UV asymptotics of the Lagrangian
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for any U as the UV behavior is universal for all U:

9 o
det(G + F) — mez‘ : (4.82)
Since the action for the third solution diverges exponentially at large 7 it does not seem

possible to interpret this solution as the dual of an operator in the same sense as we do

for the other two solutions.

4.4.2 Baryonic Condensates

We shall now study the D5-brane action (4.75) in more detail. First we develop an
asymptotic expansion of the action (4.75) as a function of the cut-off. This expansion
is useful because the divergent terms give the scaling dimension of the baryon operator,

7 Then we present a perturbative

while the finite term encodes its expectation value.
treatment of small U region followed by a numerical analysis of the whole baryonic
branch. The main result of this section will be an expression for the expectation value
as a function of U which can be evaluated numerically. This leads to an explicit relation
between the field theory modulus || and the string theory modulus U.

To calculate the baryonic condensates we need asymptotic the behavior of 2,8, p

and €, ® for large 7. Notice that since for any U the solution approaches the KS solution

at large 7, the terms divergent at U = 0 are UV divergent as well

627'/3

A— +O(e7 23y | (4.83)

B —O(?) (4.84)
X1, T AT

p— — i (ZT — §T+ 3—2) + O(l) , (4.85)

TA systematic procedure for isolating the finite terms is holographic renormalization [152, 153], but
here we limit ourselves to a more heuristic approach.
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and similarly

¢ — Oe /3y | (4.86)
oo (il 0, O(e*7/%) (4.87)
4" 8 T3 ' '

From the expansion for 2, B, p we find that at large 7 the gauge field € grows linearly

with 7 and approaches the KS value with exponential precision
- 1, 7 47\
E(r,U) — + (—72 — =T+ —) +O(e 73 . (4.88)

It is crucial that the dependence on U in (4.88) is exponentially suppressed.
Since € is exponentially small and the leading term in ® is U-independent we can

explicitly express the action (4.75) in terms of o:
S.(U,T) = Sai(1) £ (U, 7) + O(e72/3) | (4.89)

where the U-independent divergent part of the action is given by

1 1 7 47\'?
Saiv(T) = 6(7’2 +7—2) <Z_L7_2 - gT + 3—2> , (4.90)
Note that
1 - .
‘_553 +D(n)¢ ‘ = San(7) + 0(e77) . (4.91)

The two signs stand for the two well-behaved solutions £(7) corresponding to the two
baryons A and B. As we argued in Section 4.1, the Z-symmetry which exchanges the A

and B baryons is equivalent to changing the sign of U. Our explicit expression (4.89)
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confirms that

S (U,7)=S_(~U,7) , (4.92)

S (Ur)=8,(-U,T1), (4.93)

since o (U, 7) is antisymmetric in U according to the arguments presented around (1.80).
In order to find the expectation value of the baryons we evaluate the action (4.75) on
these solutions and remove the divergence by subtracting the KS value. The expectation
values hence are given by exp|— lim, .o, So(£1.2)], where by Sy we denote the finite part
of the action. It is simplest to work with the product (normalized to the KS value) and

ratio of the expectation values. The former is given by

D s Brea — A exp [$,(U,7) + 8- (U,7) =280, 7)] (4.94)

where we have used the fact that the two solutions coincide in the KS case, where o = 0.

It follows from (4.94) that
(A)(B) = (A)ks(B)ks , (4.95)

which corresponds to the constraint AB = —A3}} in the gauge theory. The ratio of the

baryon condensates is given by

<i> = lim exp [S+(U,7) — S_(U,7)] = lim e | (4.96)

< > T—00 T—00

or

log(A) ~ lim o(7) . (4.97)

Unfortunately we were not able to calculate o analytically, since the U-dependent
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terms of order O(7")exp(—27/3) in the integrand are significant. However, we can

evaluate the integral® to first order in U for small U:

o ~33773U +O(U?) (4.98)

and thus obtain the slope of the expectation values in the vicinity of KS. Even though
we lack analytical arguments that would fix the behavior of the expectation values for
large U, we can compute the integral o(7) numerically. Our results for the expectation
value as a function of the modulus are shown in Figure 4.1. Since (A) ~ ( this plot
provides a mapping from the supergravity modulus U to the field theory modulus ( (as

we remarked before, careful holographic renormalization is needed to check this relation).

4.5 Conclusions

In previous work, increasingly convincing evidence has been emerging [49, 52, 53, 56, 59
that the warped deformed conifold background of [49] is dual to the cascading gauge
theory with condensates of the baryon operators A and . Furthermore, a one-parameter
family of more general warped deformed conifold backgrounds was constructed [58, 59]
and argued to be dual to the entire baryonic branch of the moduli space, AB = const.
In this chapter we have presented additional, and more direct, evidence for this iden-
tification by calculating the baryonic condensates on the string theory side of the duality.
Following [56], we have identified the Euclidean D5-branes wrapped over the deformed

conifold, with appropriate gauge fields turned on, with the fields dual to the baryonic

8The coefficient of the term linear in U is given by

_ oo hsinh?(7) h(sinh(r) cosh(r) — 7)%/3  (rcoth(r) — 1)2
2 5/3/0 dTLQ(Sinh(T) cosh(r) — 7)2/3 < — >

16 4
_ (7 coth(r) — 1)(sinh(7) cosh(r) — 7)*/3 (h(sinh(r) cosh(r) — 7)%/3 N (7 coth(r) — 1)2) ] .

sinh?(7) 16 4
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Figure 4.1: Plot of numerical results for the O(7%) term in the asymptotic expansion of
the action versus U. The slope at U = 0 matches the value from (4.98). The baryon
expectation value (A) ~ (B)~! in units of A2} is given by the exponential of this
function.
operators in the sense of gauge/string dualities. We derived the first order equations for
the gauge fields and solved them explicitly. The solutions were subjected to a number of
tests. From the behavior of the D5-brane action at large radial cut-off » we have deduced
the r-dependence of the baryon operator dimensions and matched it with that in the
cascading gauge theory. Furthermore, we used the D5-brane action to calculate the con-
densates as functions of the modulus U that is explicit in the supergravity backgrounds.
We found that the product of the A and B condensates indeed does not depend on U.
This calculation also establishes a map between the parameterizations of the baryonic

branch on the string theory and on the gauge theory sides of the duality, which should

be useful for comparing other physical quantities along the baryonic branch.
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Chapter 5

Charges of Monopole Operators in

Chern-Simons Yang-Mills Theory

5.1 Introduction

Superconformal Chern-Simons gauge theories are excellent candidates for describing the
dynamics of coincident M2-branes [68]. Bagger and Lambert [63, 64, 65], and Gustavsson
[66] succeeded in constructing the first N' = 8 supersymmetric classical actions for
Chern-Simons gauge fields coupled to matter. Requiring manifest unitarity restricts the
gauge group to SO(4) [154, 155]; this model may be reformulated as SU(2) x SU(2)
gauge theory with conventional Chern-Simons terms having opposite levels k£ and —k
[71, 73].  Aharony, Bergman, Jafferis, and Maldacena (ABJM) [72] proposed that a
similar U(N) x U(N) Chern-Simons gauge theory with levels k£ and —k arises on the
world volume of N M2-branes placed at the singularity of R®/Z;,, where Z;, acts by
simultaneous rotation in the four planes. Therefore, the ABJM theory was conjectured to
be dual, in the sense of AdS/CFT correspondence [1, 2, 3], to M-theory on AdS,x S”/Zy.
For k > 2 this orbifold preserves only AN/ = 6 supersymmetry, and so does the ABJM

theory [5, 72, 156]. The conjectured duality predicts that for & = 1,2 the supersymmetry
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of the gauge theory must be enhanced to N = 8.

The mechanism for this symmetry enhancement in the quantum theory was suggested
in [72]; it relies on the existence of certain monopole operators in 3-dimensional gauge
theories [157, 158, 159, 160, 161, 162, 163]'. Insertion of such an operator at some
point creates quantized flux in a U(1) subgroup of the gauge group through a sphere
surrounding this point. For example, in a U(1) gauge theory on IR3, a monopole operator

placed at the origin creates the Dirac monopole field

A:gzl:l—cosﬁ

d 5.1
. ©, (5.1)

where the upper sign is for the northern hemisphere and the lower sign for the southern
one. In addition, some scalar fields may need to be turned on as well; they are required
for BPS monopoles that preserve supersymmetry. The fluctuations of fermionic matter
fields can shift the dimension of such a monopole operator. These effects were studied in
some simple models, mostly with U(1) gauge group, in [160, 161, 162]. In this chapter
we will generalize these calculations to more complicated models. Our primary goal is
to calculate R-charges and dimensions of the monopole operators in ABJM theory for
any level k. Since for small values of k we cannot use perturbation theory in 1/k, we
will actually study the A" = 3 supersymmetric Yang-Mills Chern-Simons theory that
provides a weakly coupled UV completion of the ABJM theory.?

In gauge theories with U(N) gauge group there exists a rich set of monopole op-
erators labeled by the generator H that specifies the embedding of U(1) into U(N)
[165] (see Appendix D of [166] for a brief discussion). The generalized Dirac quanti-
zation condition restricts, up to gauge equivalence, the background gauge field to be

proportional to the Cartan generator H = diag(qy, - .., qy) where the integers ¢; satisfy

LA more appropriate name may be “instanton operators” since they create instantons of a Euclidean
3-dimensional theory whose spacetime dependence resembles the spatial profile of monopoles in 3+1
dimensions.

2We are grateful to Juan Maldacena for this suggestion. A similar trick was used in [164].
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g1 > qo... > qn. If the action of the gauge theory includes a Chern-Simons term with
level k, then the monopole operators are expected to transform non-trivially under the
U(N) gauge group, in U(N) representations given by the Young tableaux with rows of
length kqi, kqo, ..., kqn [165].

The monopole operators in the U(N) x U(N) ABJM theory have been a subject
of several recent investigations [164, 166, 167, 168, 169]. In general the monopoles are
described by two different generators, H and H , which specify the form of the two
gauge potentials, A and A, subject to the constraint Y6 = Y_; G [164]. However, the
monopoles are believed to be BPS and thus not suffer renormalization of their dimensions
for H=H [164]. A proposal for the U(1) R-charge of the monopole operator in gauge
theories with N’ = 3 supersymmetry was made in [170, 171] based on the results of
[161] and group theoretic arguments. It states that the R-charge induced by fermionic

fluctuations is

( J

= (Z =Y |vi|> , 5.2

where h; and v; are, respectively, the R-charges of the fermions in hyper and vector
multiplets weighted by the effective monopole charges appropriate for their gauge rep-
resentations. We establish this formula through an explicit calculation in Section 5.4,
and derive its non-abelian generalization in Section 5.5. In the ABJM theory, if we con-
sider the diagonal U(NV), we find two hyper multiplets and two vector multiplets with
charges such that there is a desired cancellation of the anomalous dimension. Using the
monopole operators (M’Q)ZZ with kq; = k¢, = 2 which exist for £ = 1,2, we can form

twelve real (or six complex) conserved currents of dimension 2,
P = M2IYAD,Y P — D YAY P 4 igtiypryt?| (5.3)

which are responsible for the symmetry enhancement from SU(4)g to SO(8)g.
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Monopoles are crucial not only for the supersymmetry enhancement at small level
k = 1,2 but also for matching the spectrum of the dual gravity theory at any level k.
In fact, supergravity modes with momentum along the M-theory direction are dual to
gauge invariant operators involving monopoles. The spectra match if there are monopole
operators which can render a gauge theory operator gauge invariant without altering the
global charges and dimensions of the matter fields. These monopole operator themselves
have to be singlets under all global symmetries and have to have vanishing dimension.
In U(N) x U(N) gauge theories coupled to Ny bifundamental hyper multiplets, this
dimension is proportional to Ny — 2. Thus, the requisite monopole operators exist in
the ABJM theory, which has N; = 2.

The outline of this chapter, which is based on joint work with I. R. Klebanov and
T. Klose [172], is as follows. Section 5.2 summarizes our reasoning and the results, and
ties together the subsequent more technical sections. Section 5.3 contains the details
of the theories under consideration. In Section 5.4 and Section 5.5 we present the
computation of the U(1)z and SU(2)g charges of the monopole operators, respectively.

Brief conclusions and an outlook are given in Section 5.6.

5.2 Summary

In this section we go through the logic of our arguments and present the results of our
computations while omitting the technical details.

A monopole operator is defined by specifying the singular behavior of the gauge field,
as in (5.1), and appropriate matter fields close to the insertion point. As such it cannot
be written as a polynomial in the fundamental fields appearing in the Lagrangian of
the theory. However, often the bare monopole operator has to be supplemented by a
number of fundamental fields in order to construct a gauge invariant operator.

Our aim is to find the conformal dimensions of such monopole operators in the ABJM
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model. In particular we are interested in small Chern-Simons level k, as for k£ = 1,2
we expect supersymmetry enhancement in this theory. For small &, however, ABJM is
strongly coupled and thus we cannot employ perturbation theory since there is no small
parameter. The key idea to circumvent this obstacle is to add a Yang-Mills term for the
gauge fields in the action which introduces another coupling® ¢ as a second parameter
besides k. This also requires adding dynamical fields in the adjoint representation in
order to preserve N' = 3 supersymmetry and an SU(2)g subgroup of the SU(4)r group
of ABJM (which has N = 6 supersymmetry).

The coupling g is dimensionful and not a parameter we can dial. Since the Yang-Mills
term is irrelevant in three dimensions, there is a renormalization group (RG) flow from
the UV, where the theory is free (vanishing g) to a conformal IR fixed point (divergent
g). This RG flow appears naturally in the brane construction of the ABJM model and
in fact is essential for understanding how a pure Chern-Simons theory such as ABJM
can arise from D-branes that support Yang-Mills theories.

In the IR, the Yang-Mills terms as well as the kinetic terms for the adjoint matter
fields drop out of the action and the equations of motion for the latter degenerate into
constraint equations, allowing us to integrate them out and recover the ABJM theory.

Now the idea is to perform all relevant computations in the far UV where g is
small and the theory weakly coupled, then flow to the IR. The scaling dimensions of
monopole operators are of course only well-defined at the IR fixed point where the
theory is conformal, so they cannot be determined directly in this fashion. However,
we can instead compute a quantity that is preserved along the RG flow and related by
supersymmetry to the scaling dimensions in the IR: the non-abelian R-charges of the
monopole operators. Their one-loop value is exact and preserved along the RG flow
because non-abelian representations cannot change continuously and therefore cannot

depend (non-trivially) on g.

3The reader is cautioned that this is not the same as the coupling g used in Chapter 2. There the
Yang-Mills coupling was denoted as gyn but here we drop the subscript YM for notational convenience.
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Let us describe the computation of the non-abelian R-charges. In the UV there is
a separation of scales between the BPS background that inserts a flux at a spacetime
point in accordance with (5.1) — recall that its magnitude is constrained by the Dirac
quantization condition — and the typical size of quantum fluctuations of fields. Therefore
we can treat the monopole operator as a classical background. For this background to
satisfy the BPS condition the scalar fields ¢; and ngSi, which are in the same N = 3 vector
multiplets as the gauge fields A, and /Alu, respectively, need to be turned on. A possible

choice of scalar background in radial quantization on R x S? is

¢ = —i = —g% : (5.4)

These scalar fields transform in the 3 of SU(2)x and therefore a non-zero expectation
value breaks SU(2)g to U(1)g.

As a first step we will find the one-loop U(1)g charge of the monopole operator
described by this fixed background. This is done by computing the normal ordering
constant for the U(1)g charge operator. Such a calculation has been performed in a
different context in [160, 161]. We will present the argument as applicable to our case
in Section 5.4. The result will turn out to be expression (5.2) above or more concretely
(5.69) for N = 3 U(N) x U(N) gauge theory with hyper multiplets in the bifundamental.

These two formulas are related as follows. From Table 5.2, or equivalently from the
R-current (5.38), one can read off the R-charges y(¢*) = y(wa) = —5 (for A=1,..., Ny)
for the hyper multiplet fermions and y(x,) = y(X,) = 1, y(x,) = y(X,) = 0 for those
in the vector multiplets. In the expression for the U(1)g charge of the BPS monopole

(5.2), these R-charges are weighted by >, |g- — ¢s| and the result is given by

Bl== <2Nf ‘_2 _'_1’)2’(]1"_%‘_( )ZMT_ Qsl (5.5)

as found in (5.69). For the ABJM model we have Ny = 2 and hence Q3°" =0
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These U(1)g charges might in principle be renormalized as we flow to the IR, since
abelian charges can vary continuously. To exclude this possibility, we need to find the
non-abelian SU(2)g charge of the monopole operator by taking into account the bosonic
zero modes of the background (5.4). These zero modes are described by a unit vector 7
on the two-sphere SU(2)r/U(1)g. In other words, we will treat the SU(2)g orientation
77 of the scalar field as a collective coordinate of the BPS background and quantize its
motion. To this end we consider a more general background than (5.4), which is allowed

to depend on (Euclidean) time 7

¢i = —¢i = ——ni(7) . (5.6)

The rotation of the background is assumed to be adiabatic such that it cannot ex-
cite finite energy quantum fluctuations around the background. In Section 5.5 we will
compute the quantum mechanical effective action for the collective coordinate 7i(7) and
find the allowed SU(2) g representations. These representations are precisely the SU(2) g
spectrum of BPS monopole operators.

If there were no interactions between the bosonic zero modes and other fields in
the Lagrangian, the collective coordinate would simply be described by a free particle
on a sphere. Such a particle — and therefore the monopole operator — could be in any
representation of SU(2)z. The crucial point is, however, that the collective coordinate 7
is not free, but subject to interactions with the fermions of the theory. It turns out that
the induced interaction term is a coupling of 77 to a Dirac monopole of magnetic charge
h € Z on the collective coordinate moduli space (not to be confused with the spacetime
monopole background). The charge h depends on the background flux H and the field

content of the theory. In Section 5.5 we derive

h:(Nf_2)Qtot:(Nf_Q)Z|QT_qS| ) (57)

T8
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see (5.103), which is nothing but h = 2QE".

The equation of motion for the collective coordinates 7 has the structure

Ma+M@RA?A+=-fAxi=0, (5.8)
which allows for a simple particle interpretation. The first term is the usual kinetic
term while the second term represents a constraining force that keeps the particle on
the sphere 72 = 1. If we assign unit electric charge to the particle, then the third term
is the Lorentz force 7t x B due to a monopole field B= %ﬁ The SU(2)g charge is given

by the conserved angular momentum

(5.9)
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The presence of the second term forces the quantized angular momentum to have an

orbital quantum number of at least [ = |_’21|7 the possible representations being [? = [(I+1)

with [ = @, %‘ + 1, %‘ + 2,.... Hence, a non-zero coupling h will necessarily give the
monopole a non-trivial SU(2)z charge. The ABJM theory is special (as compared to
theories with different field content) in that all contributions to the effective h cancel
each other, and thus it allows SU(2)y singlet monopoles which do not contribute to the

IR dimensions of gauge invariant operators.

5.3 N =3 Chern-Simons Yang-Mills Theory

We will study N = 3 supersymmetric U(N) x U(N) 3-dimensional gauge theory coupled
to bifundamental matter fields and SU(N)g flavor symmetry. For Ny = 1 and Ny = 2
this model is the UV completion of the N' = 4 model of GW [74] and the N = 6 model
of ABJM [72], respectively.
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Manifest Super Component fields
symmetry fields dynamical in the IR auxiliary in the IR aux.
% A o I Xe Xb ! D
1% A 6 e, XE | D
® o Xe o Fy
i PR p
“ Lo | .
) o X F
U(1)r x SU(Ny)a N L Y Aﬁ
o ol I F¢
ZA ZA \ \ CA \ : : : FA
| | | | | |
Z4 : ZL : : Cix L : F jl
| | |
Wa : WA : : wa : : : GA
| | |
L LT N O T A R
SU(2)x x SU(N})a XAa Xt ogda gl L g A Je

Table 5.1: Field content of A/ = 3 Chern-Simons Yang-Mills theory. Each row (except
the last one) shows the components of one N' = 2 superfield ordered into columns
according to whether they are dynamical or auxiliary. Within each of these columns
they have been arranged such that one can read off from the last row which components
join to form SU(2)z multiplets. A =1,..., Ny is an SU(/Vy) flavor index, a = 1,2 is an
SU(2) g spinor index, and i = 1,2, 3 is an SU(2)g vector index.

5.3.1 Action and Supersymmetry Transformations

The complete field content is listed in Table 5.1. We use N' = 2 superfields and our no-
tation is explained in Appendix A.2. In the gauge sector we have two vector superfields
V = (0,4,,X-,D) and Y = (6,AM,)ZU,D) and two chiral superfields ® = (¢, x4, Fy)
and & = (ngS, Xo F¢) in the adjoint of the two gauge groups U(N) and U(N), respec-
tively, which together comprise two N' = 3 gauge multiplets. In the matter sector we
have Ny chiral superfields Z4 = (Z4,¢(4, F4) and Wa = (Wa,wa, G4) in the gauge
representations (N, N) and (N, N), respectively.

We write down the ' = 3 action on R»? with signature (—, +, +). It consists of five
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parts:
S = Scs + Sym + Sadj + Smat + Spot - (5.10)
First of all there are Chern-Simons terms
k 1 _ N . .
Scs = —iz- / & d4 / ds tr [VDC“ (eSVDae_SV) — VDo (esVDae—sVﬂ , (5.11)
m 0

with opposite levels £ and —Ek for the two gauge group factors. The s integral is nothing
but a convenient way of writing the non-abelian Chern-Simons action. Secondly, there

is a Yang-Mills term

_ 1 3 2 e Ty
S0 =14 dxd@tr[u U, +U ua], (5.12)

which introduces a coupling g of mass dimension % The super field strength is given by

Uy, = D% Dye™Y and similarly for U. The last term in the gauge sector is given by

the kinetic terms for the adjoint scalar fields
Sadj = %/dgx d*0 tr [—@e’queV — &De"}ﬁ)ev] . (5.13)
In the matter sector we have the minimally coupled action for the bifundamental fields
Sat = /d3:1: d*0 tr [—ZAe’VZAe‘} — WAe’VWAeV (5.14)
and a super potential term

Spot = / dPrd*d W — / d*xd*0 W (5.15)
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with

W = tr(P24Wa + OWaZH) + 8% tr(®P — &) | (5.16)
W= (@42, + SZ0Y) + (80— bd) (5.17)

This theory is not conformal and will flow to an IR fixed point which is strongly coupled
unless k is large. At the fixed point g diverges, which renders the gauge fields and
the adjoint scalars non-dynamical. If we integrate out ® and &, we recover the ABJM
superpotential for Ny = 2. This theory has enhanced flavor symmetry, SU(2)g x SU(2)g,
under which Z4 and W, transform separately.

For our computation below we need the action in terms of component fields. To this
end we perform the Grassmann integrals in the action and integrate out the auxiliary
fields D, D, FA Gy, F, and F¢. The remaining component fields can be arranged into
SU(2) g multiplets as follows.

The adjoint matter fields constitute two scalars (where the lower /upper index is the

row/column index)

—o ¢ ) A & <ZBT
oy = @iloi)y = ;o Oy = gilo)y = A : (5.18)
¢ o b—6

transforming in the 3 of SU(2)g, and two fermions

—in/4 T —im/4 o —im/d ot —im/4
Xo € Xg € . Xo € Xo €
Ao — ’ , dab = i L (5.19)
Xd) €+i7r/4 _X:rT e+i7r/4 _>A<¢) 6-l-z'7r/4 _)AC(TT 6—0—1'71'/4

transforming in the reducible representation 2 x 2 = 3+1 of SU(2) g, which in particular

implies that A% is neither symmetric nor anti-symmetric in its indices. These fields
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satisfy

(le)* = —Aap = —€ac€pa\? . (o) = qﬁg = eacebd(bé (5.20)

and the same for the hatted fields.
The bifundamental matter fields can be grouped into Ny doublets of the SU(2)g

symmetry group in the following way:

zZA zZ
XAe = ,oXh = : (5.21)
wita Wa
and
B WTA eiﬂ'/4 . wa e—iT(/4
£°% = R . (5.22)
CA e—im/4 Cix eim/4

The component action with manifest SU(2)g symmetry and the corresponding su-
persymmetry transformations are given in Appendix A.3. One observes that in the IR,
where g becomes large, the Yang-Mills terms disappears together with the kinetic terms
for ¢, ngS, A and 5\, and we can integrate out these fields. Doing this for Ny = 2 we end
up with ABJM theory. The ABJM Lagrangian with manifest SU(4)g symmetry [5] is
recovered when one defines Y4 = { X111 X2 X112 X22} and ¢4 = {—€22,¢12, 2 —¢H}

As outlined in the overview, Section 5.2, we will carry out our computations in the
far UV region of the radially quantized theory. The point of going to the far UV is
that the theory becomes perturbative in g and we can find the quantum R-charges
from a one-loop computation. This one-loop result is in fact the exact answer because
SU(2)p is preserved along the flow from small to large g and non-abelian representations

cannot change continuously. We will use radial quantization because we are interested
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in the spectrum of conformal dimensions in the IR theory, which is related to the energy
spectrum by the operator state correspondence.

The steps required for deriving the action relevant for radial quantization are as
follows. First we perform a Wick rotation from R'? to R? by defining Euclidean coordi-
nates (2!, 2%, 2%) = (2!, 2%, 2%), then we change to polar coordinates (r, 8, ¢) and finally
we introduce a new radial variable 7 by setting r = ™. The result is a theory on R x S?

described by the coordinates (7,6, ¢), where 7 € R is the “Euclidean time”. The change

of the coordinates is accompanied by a Weyl rescaling of the fields according to

A= e~ dmAT 4 (5.23)

where A is a generic field of dimension dim(A) on R? and A is the field we use on
R x S%2. After the transformation we will drop the tildes in order to avoid cluttered
notation. Since the theory is not conformal, the action will change under these rescaling.
In addition to the mass terms which are generated even in the conformal case, every

factor of the coupling g will turn into

2. (5.24)

N}l
Il
3

This relation makes the RG-flow explicit and relates it to the “time” on R x S%. In the
infinite past the effective Yang-Mills coupling ¢ vanishes, and it grows without bound
toward future infinity. To compute in the UV therefore means to work at 7 — —oo and
to flow to the IR means to send 7 — +00.

Now we are ready to give the complete action of N/ = 3 Chern-Simons Yang-Mills
theory on R x S2. In addition to the manipulations just described we have rescaled
A — g\ and A — g\ (before the Weyl rescaling) which is the appropriate scaling for
fluctuations in the UV. We do not perform a similar rescaling of the other fields in

the gauge sector, A, 121, ¢, or (5, since these fields will later provide a large classical
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background. Introducing finally the rescaled Chern-Simons coupling k = ﬁ, the kinetic

part of the action reads?

SE = / dr dS tr[—i— 55z T By — wi€™ (A0, Ag + 5 A A, Ay) (5.25)

+ D, XTD"X + 1XTX — it Pg¢

aTym 23% La TaTym ] k252 Ja}
+ 35 Dy D" ¢y + 55 b, + 55 Dy D™, + 55 04,

XA + LN N+ SN PR — 50NN
and the interaction terms are given by

Sk = / dr d2 tr[—l— kg XJop X" — kg® XOhX] +iglope’ +icohe) (5.26)
— §eacNP X + G NBEX] + §eacAEG X" — Ge Ny X ¢
— EG5100, 0] — 504100 O] + Ehanldl AT — SAaw[00, A*]
+ 2 (Xo XD (X X1 + Z(X 10, X) (X0, X)
+ 3 (XXN)dpdh + H(XTX) Pyl + X, 00X 65

— shlot ailloh, o) — skldr, GalI6h. 641 -

The covariant derivatives are given by D,, X = V,, X +1A4,, X —iX flm etc. We also trans-
late the supersymmetry variations from flat Lorentzian space as given in Appendix A.3

to Euclidean R x S2. They are conveniently expressed in terms of a rescaled parameter
gab(T) = gab6_7/2 . (527)

In the following we will use the 7 dependent parameter; however, we will drop the tilde

4Suppressed indices are assumed to be in the standard positions as defined in (5.21) and (5.22).
The indices of the Pauli matrices are placed accordingly, e.g. Xo; Xt = XA“(Ui)ain‘b or XTo, X =
Xj[la(cri)“bXAb. And by definition we have (0;),” = 0; and (0;)%, = o7.
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for notational simplicity. This parameter satisfies the Killing spinor equation
Ve = —2ymY7e , (5.28)

which is the curved spacetime generalization of the usual condition of (covariant) con-
stancy that the supersymmetry variation parameter obeys in flat space. The N = 3

supersymmetry transformations read

5Am - _%Eabf}/m)\ab s (529)

ONY = oo™ Fp e — DO = SLOIVE + 5[0, 0Gle™ + rgigpee (5.30)
+§iX X]e® — DX XT)e®

0 = —Gea ® + Lopeal (5.31)

5Am = —%é‘ab’ymj\ab 3 (532)
OA™ = ™™ Frnyie® + S + LoV e + 5[0, 6le + ngighe® (5.33)

i XX+ G(XTX)e

0 = —Gea ™ + §67ecaX (5.34)
OXAT = —igget e = PX ey + IXAVep + ppel XA+ XAhgy . (5.35)
5X:r4a = _iflbgz ’ 5€.T4a = wXLbSZ + %Xilbvgz + ézginﬁc + XIXCEIC)¢Z .

SU(2)r and U(1)g charge. Fundamental and anti-fundamental SU(2)g indices a, b

transform under infinitesimal rotations as

0AY =ief A" | 6A, = —ib Al (5.36)
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field | b, £ | ¢4 wa, | X Ko X 16 | G0 | X %,

Table 5.2: U(1)g charges of the fermion fields. These numbers show what the sum
(chiral only) of R-charges vanishes precisely for two flavors, A =1, 2.

where A represents a generic field. The Noether current is

Jib ot [i X0 DIXA g Dl + g DG — €f, AmeAb (5.37)

_i_%)\acfyﬂ)\bc + %Aca’}/u/\d) + %)\ac,y,u)\bc + %)\ca,}/#)\cb] .

In Section 5.4 we will be dealing with the U(1)z component of this current which is
related to the transformation (5.36) with € ~ (o3)¢. Hence the current is the contraction

of (5.37) with (o3)¢. The part due to the fermions is given by
Jeetr[ =3 et = Loty + by + R17R0] (5.38)

where we have reverted back to the U(1)p x SU(NVy)q fields, see Table 5.1. From this

expression we read off the U(1)g charges of the fermions as given in Table 5.2.

5.3.2 Classical Monopole Solution

Since we are interested in BPS monopoles, our first task is to find a classical BPS
solution with flux emanating from a point in spacetime. Starting from the gauge field
configuration of a Dirac monopole in R? given in (5.1) and performing the Weyl rescaling
appropriate for fields on R x S? as described above, we find that the dependence on the
radial coordinate disappears from the gauge potential. In fact the Hodge dual of the
corresponding field strength, ¢€™*F,,,., is constant in magnitude and purely radial (i.e.
only its 7 component is non-vanishing).

In order to show that there is indeed a BPS solution with such a Dirac monopole
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potential, let us examine in detail the supersymmetry variations of A\®. It contains
terms of order § and ones of order §g—!, but since we are looking for a solution that is
supersymmetric along the whole RG flow they should cancel separately. We will also
assume that all background fields (in our choice of gauge) are valued in the Cartan
subalgebras of the gauge group factors, so that all commutators vanish.

Focusing on the terms of order §=! for now, we thus want the sum of the first three
terms in A% as given in (5.29), to vanish for an appropriate, non-trivial choice of
supersymmetry variation parameter. The fact that €™ F,,, is constant suggests that
¢; should also be constant, in which case the second term vanishes by itself. Hence we
simply have to balance the first term and the third one, which simplifies upon using the
Killing spinor equation (5.28).

Recalling that % = ¢;(0;)% is traceless Hermitian, we can take the SU(2)g trace of
A% which implies that €;¢; = 0, i.e. the non-trivial supersymmetry variation parameter
has to be orthogonal to the background scalar in the R-symmetry directions.

Given this restriction, we can now contract A® with (0;)4 and find
L Epnvi € + ey er = 0. (5.39)

Thus the magnitudes of the scalar background and gauge fields are related, and picking
an SU(2) p orientation we can choose e.g. %em’”an = —n ¢3, where n = +1 distinguishes
BPS from anti-BPS monopoles. In this case e3 = 0 and the remaining supersymmetry
parameters have to satisfy® e; — iney = 0.

Let us now turn to the terms of order g. Following the same lines of reasoning, they

imply

¢ = -L(X*X! -1t X XT) & ¢ =-LXax!. (5.40)

a

5In Euclidean space we treat ¢; & ics as two independent supersymmetry parameters.
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It is evident that if we choose A = A and ¢; = —¢; the variations dA® (5.32) will vanish

also in the same manner, provided that
= HEX RXX) & b= EXToX 541

This leaves the supersymmetry transformations of the remaining fermions, 664¢ and its
complex conjugate (5.35), to be verified. Given that ¢; = —¢; causes the last two terms
to cancel, they simply fix the functional dependence of the bifundamental scalars to be
XAl ~ exp (—n7/2) and X4? ~ exp(n7/2).5 Then all of the 6¢4% and 5§La vanish
either by virtue of this particular 7-dependence, which is consistent with the equation
of motion for X

DX —1xAr =0, (5.42)

or because of a vanishing variation parameter.

Fixing the coefficients of the X fields such that (5.40) and (5.41) are satisfied, the
above BPS conditions are of course also consistent with the remaining equations of
motion. In particular, those for the gauge fields, given that the Dirac monopole potential

satisfies Dn(g%Fm") = Dn(g%ﬁm”) = 0, reduce to

KeMFE L, = XDMXT - DX XT (5.43)

ke, =DmXTX — XTDMX
In summary, a convenient choice of classical (anti-)BPS solution is given by

A:A:E A a
2

(£l —cosO)dy , ¢i=—¢;= —77351'3 5 (5.44)

(where the upper sign holds on the northern and the lower one on the southern hemi-

6And similarly XIH ~ exp (n7/2) and X:[‘Q ~ exp (—n7/2). While it may appear unusual that X
and XT are not complex conjugates of each other, this is simply an artefact of the Euclidean signature
of spacetime. After a suitable Wick rotation they would evidently be conjugate in the usual sense.
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sphere), supplemented by an appropriate X expectation value chosen to satisfy (5.40),

(5.41) and (5.43), e.g. for positive semi-definite H

XU=2'=VHre ™?, X, =2l =VHre? fornp=1or (5.45)

X2—w" =vVHre/?, XlT2 =W, =VHke? forn=—-1,

with all other X’s vanishing. Note that the choice of X expectation value breaks the
flavor symmetry and here we have arbitrarily used the first flavor. This background is
invariant under supersymmetry transformations with the parameter e; + ine,, and can
be generalized to any preferred SU(2)g orientation.

Our classical solution is BPS along the full RG flow for any value of g, which is an
important prerequisite for our arguments. However, the actual calculation we wish to
carry out will be performed in the far UV, and here the role of the X expectation value
is quite different from the expectation values of the adjoint scalars and gauge fields.
If we were to do perturbation theory in g around this background, we would be led to
rescale the (quantum) fields A and ¢ (and their hatted analogues) by a factor of g (before
carrying out the Weyl transformation), and thus g sets the scale of quantum fluctuations.
Since the background values of A and ¢ are of order unity, they are parametrically larger
than these fluctuations in the UV, and thus can be treated classically.

The fluctuations of the bifundamental field X do not suffer such a rescaling however,
and both quantum excitations as well as the expectation value in our classical solution
are of the same order of magnitude. Therefore, we shall not treat the X fields as a
classical background in the UV theory. They are to be though of as quantum excitations
which dress up the monopole background, and thus we shall drop them for the purpose of
describing the bare monopole operator. We keep in mind however, that a bare monopole
operator is not gauge invariant, and will eventually have to be contracted with a number

of basic fields appearing in the Lagrangian in order to form a gauge invariant operator.
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In this context it is interesting to note that the number of X excitations corresponding
to our classical solution is of order Hk, which is related to the number of fundamental
fields we expect to contract the bare monopole operator with.

Finally, we will need to generalize the monopole background to arbitrary, possibly
7-dependent SU(2)p orientation n; and thus, to conclude this discussion, we collect the
basic properties of the semi-classical BPS monopoles background we will make use of

below.

BPS monopole background. For the background to be BPS, we have to essentially
identify the two gauge groups U(N) and fJ(N ), and turn on expectation values for the

gauge fields and adjoint scalars ¢; and qu given by

A:A:E A a
2

(£l —cost)dy , &=—¢;=—5n1). (5.46)
The monopole background is diagonal in the U(N) gauge indices H = diag(q, ..., qn)
where ¢, € Z are the U(1)" gauge charges. They determine how the monopole trans-
forms under gauge transformations. Furthermore, the background is labeled by a unit
SU(2) g vector n; which gives the direction of the scalar fields. This vector is a collective

coordinate of the background (5.46) and spans the moduli space S?.

5.4 U(1)p Charges from Normal Ordering

In this section we compute the quantum corrections to the U(1)g charge which is pre-
served by the static background (5.46) with n; = ;3. These quantum corrections are
due to fermions fluctuations and are encoded in the normal ordering constant of the
U(1)g charge operator. Before going into the specifics of ABJM theory, we will discuss

the computation for a toy example which is then simple to generalize.
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5.4.1 Prototype

Let us consider a single fermion ¥ (7,€2) in an abelian gauge theory subject to the equa-

tion of motion

Do+ 20 =0, (n==+1) (5.47)

and compute the oscillator expansion of the charge

Q=—i / dQ iy . (5.48)

The Dirac operator P = ¥ + i in (5.47) includes a monopole background of the kind
(5.46) with magnetic charge H — ¢. The mass term in (5.47) whose magnitude is
proportional to g plays the role of the coupling to the background scalar. The two signs,
1n = =1, correspond to a BPS and an anti-BPS background, respectively.

The easiest way to solve (5.47) is to expand ¢ in monopole spinor harmonics which
are eigenfunctions of the monopole Dirac operator on the sphere, Pg. This operator is
contained in the full operator in (5.47) simply as P = 779, + Py, since the monopole
potential does not have any component along 7. We note the explicit form of the
monopole spinor harmonics in Appendix A.4. Here we only need their eigenvalues and
multiplicities. For given magnetic charge ¢, the quantum numbers of the total angular
momentum are given by

jZIQ\—l
2

m:_jv_j+17"'7j7

+p with p=0,1,2,..., (5.49)

where the state j = m% is absent for g = 0.
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We denote the eigenfunctions by

DSy, =0 for j = 12 (5.50)
DY =105 for j =l ldlt3 (5.51)

with eigenvalues
Af, = £5V/(25 + 1)~ (5.52)

This spectrum is plotted in Figure 5.1(a). The |g| zero modes which exist for non-zero

magnetic charge will be responsible for a shift of the quantized version of the charge

(5.48).

Now we are ready to write the harmonic expansion of the wave function as

= (T)Y5,(Q) + Y 5, (7)

jme

5 m (), (5.53)

where ¢ = +1. Plugging this expansion into the equation of motion (5.47) and using

the properties (A.36),(A.38) and the orthogonality (A.39) one finds

, o 0 —iAT —ni +
wm - |Q|wm ) ’ = ? ! (554)
jim —iA* 77% 0 1/};m
The solution is
= Z[cmu e 3T +d oY }TO —I—Z[c]mu e ET—i—d;m vs BT, (5.55)

jme

where the energies are given by E; = j —l—%. The wavefunctions for the BPS case (n = +1)
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are given by
0 __ 0 __ + ot - _ _ 1 . 2
u—l,v—O,uj—vj—l,uj——vj—%<#+z 1—(2].;11)), (5.56)

and the ones for the anti-BPS case (n = —1) are obtained from this by exchanging

u® — v? and u;t — U;-F. The normalization of the wave functions are such that we have

{tha(7,Q),11°(, )} = 026P (2 — Q) (5.57)
{Cim> C},m,} =8, O’ » (5.58)
{djms A} = 85O (5.59)
where II = —i9)Ty™ is the canonically conjugate momentum.

The energy spectra are plotted in Figure 5.1(b) and Figure 5.1(c). One observes
that the zero modes of the Dirac operator have turned into “unpaired states”, i.e. states

for which there are no states with the opposite energy in the spectrum. There are

2j 41 = |g| unpaired states with energy 77%, which is positive for the BPS and negative
for the anti-BPS case.

Now we compute the U(1)g charge using point splitting regularization as in [161]:

?

Q(B) = Q/dQ [w*(w%)wp(r—g)—w(7+§)77w(¢—§)}. (5.60)

where 3 > 0 will be taken to zero in the end. Inserting the oscillator expansion’ and

ordering the terms, we find the normal ordered piece

Q1B =0) = 3" [l csm = i (5.61)

im

"The oscillator expansion of T is the complex conjugate of that of ¢ where in addition the sign of
T is reversed.
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Figure 5.1: Eigenvalues of the Dirac operator on the S? and energy spectra for BPS

and anti-BPS backgrounds. The eigenvalues Ajz =+1/(2j+1)?—¢? and E = £E; =

i(j+%) are parametrized by 7 = ‘qlT_l—i—p forp=20,1,2,.... The dashed lines correspond

to a fixed value p. The numbers next to the points denote the multiplicities of the
corresponding eigenvalues. Note in particular that there are |g| zero modes of the Dirac
operator for monopole charge ¢, which are lifted to non-zero unpaired modes when the
background scalar is turned on.

and a normal ordering constant

1 € £ € £ — ;
Qo(B) = —= Z [ujTuj - vavj e Pl (5.62)

24
jme
where in both sums we understand the zero modes with j = MT_l to be included. For
that value of j there is no sum over ¢ = +1 and E; = I%I' The normal ordering constant

can be written in a concise form by noticing that ) _ ujTuj =1 gives a contribution for

every positive energy state and ) _ vavf- =

;= 1one for every negative energy state. Hence

we can write

Qo() = —5 3 sign() e ¥l (563)

states
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where the sum extends over all states in the spectrum® and vanishes if the spectrum
is symmetric with respect to £ = 0. This is not the case due to the unpaired states.

Instead we find

Qo=—n—, (5.64)

where the factor |g| is the number of unpaired states (the degeneracy of the mode

j= “”T_l) and 7 the sign of their energy. This normal ordering constant gives the U(1)g

charge of the BPS or anti-BPS monopole background, in agreement with [161]. As it
was also shown in [161], the bosonic fields do not contribute the induced charge because

their spectrum is symmetric.

5.4.2 Application to N' =3 Gauge Theory

The above discussion is readily applied to the N' = 3 gauge theories with N; hyper

multiplets. In place of the charge (5.48) we now have
= / a0 tr -1y ¢ = bty wa e + KR (5.65)
see (5.38), and the equation of motion (5.47) is replaced by

D+ UH Y =0, Dy, +3Hx,)=0, Px,+iHX]=0, (566)

ZDwA+g[H,wA]:07 ¢X¢+3[H’X¢]:O’ ZD)@"‘%[H’XA:O’

which hold in the static background (5.44) and in the far UV where § — 0. The
only qualitative difference is that we are now dealing with a non-abelian theory. Since

the background fields have the same U(N) dependence for both gauge group factors,

8This formulae looks superficially different from that in [162] because we sum over all states including
their degeneracy, not just over different energies levels.
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namely H = diag(q, ..., qn), all fields effectively transform in the adjoint of the diagonal
U(N)y € U(N)x U(N). This is apparent from the fact that we could write commutators
in (5.66), and also the gauge field inside the Dirac operator acts via a commutator. Now

the key observation is

[Ha w]Ts = qr(srt 7vbts - wrt Qtdts = (QT - qs)¢rs 5 (567)

where 1, is one of the N x N matrix elements. This allows us to consider all matrix

elements separately, if we use

q — Qrs = qr — Qs (568)

as the effective monopole charge. This immediately implies that the U(1)g charge of the

vacuum, i.e. the monopole background, is

IE‘)“:Z[—% Ny (—n@) —5 Ny (—n@) +1- (—n@) +1- (—n%ﬂ

8

N al

f

S F . — sl - 5.69
n<2 );Sllq gs| (5.69)

The sum produces an answer at least of order N unless all ¢, are equal. For example, for
the simplest monopole whose only non-vanishing label is ¢; = 1, and therefore transforms
in the bifundamental of U(N) x U(N) for k = 1, we find that the induced R-charge is
(N;—2)(N = 1).

For the BPS background where n = +1, the R-charge of the monopole is positive if
Ny > 2. For Ny = 1 the monopole R-charges are negative and the theory may not flow
to a conformal limit [170, 171]. The BPS monopoles in ABJM theory have vanishing
R-charge since there are two flavors, Ny = 2. However, this does not mean that there are

gauge invariant operators with vanishing R-charge because such operators necessarily
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involve matter fields in addition to the monopoles. In fact, in a strongly coupled theory it
is generally impossible to separate the monopole part from the matter part; nevertheless,
this is possible in the weakly coupled UV limit where the monopole part is semi-classical.

We finally remark that from a similar computation, where we normal order the flavor
charge operator instead of the R-charge operator, one can see that the monopole does
not carry any induced flavor representation. Using the mode expansion in the flavor

charge
Qi ~ / dQ tr &l (T A g8 = / dSY tr [CL(T”)ABMCB — WIB(T™) Ay wa| (5.70)

yields a vanishing normal ordering constant simply because the generators (7%)45 of
SU(Ny) are traceless. Note that considering the static background (5.44) which preserves
only U(1)g C SU(2)g is general enough for this argument, because flavor and R-charge

are completely independent.

5.5 SU(2)r Charges and Collective Coordinate Quan-
tization

In this section we compute the SU(2)g charges of the BPS monopole operators by quan-
tizing the collective coordinate 7i(7) of the corresponding class of classical monopole
backgrounds (5.46). The dynamics of the collective coordinate is governed by the inter-
action with the other fields of the theory. We take the influence of these interactions
into account by computing the effective action I'(77). As explained in Section 5.2 it is
sufficient to carry out this computation in the UV limit of the theory where the Yang-

Mills coupling g goes to zero. In this limit precisely the interactions with the fermions
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survive. Thus the effective action is obtained by integrating out the fermions:

e T — / (A€ T][d€)[dN][dA] e | (5.71)

where the relevant part of the action is

S = / dr dS) tr [ — il PE — Ln &l (00)%[H, M) (5.72)
+ XA — Ly Ay (03)" [ H, A (5.73)
F NP — Ly Ao (03) e [H A | (5.74)

Since the action is quadratic the path integral is “simply” a determinant, albeit a de-
terminant of a matrix operator with very many indices. We have displayed explicitly
the SU(2)q index (A) and the SU(2)g indices (a, b, c). Besides those, there are implicit
U(N) gauge indices which we denote by &, Avs, etc. below. Then there is the spatial
dependence of the fermions which we will trade for a set of mode indices by expanding
the fields into harmonics on the sphere.

The good news is that the operator is fairly diagonal and couples only very few
components together. For instance it is completely diagonal in the flavor and gauge
indices, and couples at most two modes of the harmonic expansion. Thus we can perform
the computation for a generic component and take the sum over the indices into account

later.

5.5.1 Prototype

We start the discussion with a quantum mechanical model where there is only a (Eu-
clidean) time coordinate 7. This example already exposes the essential point of the
whole argument. The dependence of the fields on the angular coordinates on the sphere

will be taken into account in the next paragraph.
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Quantum mechanics. Let us consider one fermion 9*(7) in the fundamental repre-

sentation of SU(2)g, as indicated by the index a, with the action®

S = / dr [—w;aTw — Laqni(T) Yl (o) 0" (5.75)

Since we have not included any spatial dependence in this example, there is no monopole
gauge field either. The coupling of 1 to the collective coordinate has been written as ¢
in anticipation of it becoming the monopole charge later.

Formally we find for the effective action'®
() = — In det (i@T - i%ni(r)m) . (5.76)

Due to the unspecified 7-dependence of n;, we cannot evaluate this determinant ex-
actly. However, since the collective coordinate is considered as being quasi-static, it is

legitimate to do a derivative expansion. The general form of the effective action then is
I(7) = / dr [ Vi) 4 i A7) + By By () + ] (5.77)

Our aim is to find the function A;(77) by expanding (5.76). However, it is not immediately
possible to expand (5.76) in 7n;, as it does not contain n; explicitly. The trick due to

[174] is to write
ni(7T) = f; + (1) (5.78)

where 7; is constant with n? = 1 and 7n;(7) a small “fluctuation”. Then the form of the

9A similar model with a fermion in the 3 of SU(2) was studied in [173].
10The relative sign between the two terms may superficially appear to have changed since (o;)% in
(5.75) are transposed Pauli matrices, while in (5.76) we use non-transposed ones, (0;),"
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effective action to second order in fluctuations reads

I'(7) = /dT [—Veff(%) — 720 Ve (1) — %ﬁiﬁjaiaj‘/eff(;_i) (5.79)

i Ay (1) + 17y 05 Ay (1) + Y By (1) + .
The point of (5.78) is that we can now expand (5.76) in powers of 7;, some of which will
come with 7-derivatives, and compare the result with the general expression (5.79). We
cannot determine A; from the term ﬁ,AZ(ﬁ) as this is a total derivative and hence will
not show up in the expansion of (5.76). Therefore we will focus on the next term, the

unique term with two powers of n and one 7-derivative

Now we start from (5.76) using (5.78)

T(7) = — tr ln(i@T — i — m%z) - —trln(i@T . m@) - trln(ﬂ - 8Ti7§@m) , (5.81)

where we have introduced the shorthands m; = in;, m; = Zn;, and % = m,o;. We

isolate the term with two powers of n; ~ m; by expanding the logarithm:

T(9)() = ! tr[ Or £ 1 M Or £k m] . (5.82)

Y 2 _ 52 2 _ 52
2 |02—m2 "9 —m

Next we move all derivatives to the right using

(5.83)

gt = Y (DR [0% 107 0%, ]..

1
2 _ 52
9 m k=0 e
and perform the trace over SU(2)g indices using

tr 0i05 = 2513 s tr 0,00 = QiEijk s tr 0i0j0r0] = 25ij5kl - 257;145]'[ + 261'[5]'14 . (584)
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We find for the terms which contain exactly one derivative

_ 0-(07 +m?) 1

oo O;
- 6tr(2mimjmimj - mjmjmimi)m :

Now that the coordinate dependent part is separated from the derivatives it is easy to
evaluate the functional trace: it leads to one integral over 7 and one over the energy
w, where 0; — —iw. All but the second term will lead to an integral over a total 7-
derivative and therefore can be dropped. We are left with only the second term which

becomes

o

R B . o dw ]_ ’l . o nk
F(Qal) (’n,) = —1 /dT ez-jkm,;mjmk/% m = _Z_l 81gn(q) /dT eijkninj% . (586)

Comparing this to (5.80), we read off

0;A;(7) — 8, A4(7) = sien(g) (5.87)

9 Gijk|ﬁ|3 .

This expression is recognized as the field strength for a magnetic monopole with charge
w and hence A;(77) is the corresponding gauge potential. We should stress that this
monopole has nothing to do with the original monopole background of ABJM theory
which we set out to study. In fact, the action (5.75) does not contain any monopole
background for ). The monopole potential we are finding here lives on the space spanned
by 71, which just happens to be the moduli space of supersymmetric monopoles in N' = 3
gauge theory.

At any rate what we have found is that the effect of the fermion ¢ is to induce a
Wess-Zumino term in the effective action for the collective coordinate. In other words,
the dynamics of the collective coordinate 7 is the same as that of a point particle on a

sphere with a magnetic monopole at its center. The coefficient of the Wess-Zumino term
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is the product of the electric charge of the point particle and the magnetic charge of the
monopole. This analogy immediately implies that the allowed SU(2)g representations
for the quantized collective coordinate, and hence the ABJM monopoles, are bounded
from below by the Wess-Zumino coefficient. Thus, if we want to have monopole operators
in the singlet representation, we will have to find that the Wess-Zumino term cancels
from the effective action when all contributions are included. This is what will indeed

happen for ABJM theory, but not in general.

Spatial dependence. We reinstate the dependence of ¥ on the coordinates of the

sphere and consider the case
§= [aran[-uipe - fanr) vl ] (5.89)

which contains a monopole background with magnetic charge g but is still abelian. The
easiest way to deal with the spatial dependence is to expand 1 (7,{2) into monopole
spinor harmonics and perform the S2-integration in the action. All relevant properties
of these harmonics have already been discussed in Subsection 5.4.1, see also Appendix
A4

The expansion of 1 is the same as in Section 5.4, eq. (5.53). Since 7i(7) is constant
on the sphere, the orthogonality of the monopole harmonics (A.39) implies that different
(ym)-modes of 1 do not couple to each other. The only coupling is between the £-modes

which is due to the property (A.36). Indeed the action for the modes becomes

+Z/d7 [_i ;jnaf im T A ¢;T;T o — % QT ¢;£Tai¢§mi| :

jme

This decoupling means that we can compute the contribution to the effective action

for each pair (jm) individually. One such term in the zero-mode sector, j = M%, is
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essentially the previously considered case (5.75). The additional sign(q) in (5.89), which
originates from (A.38), removes the sign(q) from the result (5.86). The sum over m
introduces a factor of 2j + 1 = |¢|. This is how the Wess-Zumino term acquires the

dependence on the monopole charge. Thus the Wess-Zumino potential is

_ L el
Now we turn to the non-zero-mode sector. It will turn out that there is no contri-
bution to the effective action from this sector, and that (5.90) is the final result. In the
following we think of j and m as fixed to some values and suppress these labels. Due

to the coupling between the +-modes, we now have a 2 X 2 matrix in “mode space” on

top of the matrix structure that mixes the two components of the SU(2)z doublet:

i0;  —AT —im
['(r1) = — Indet . (5.91)
At —in 0,

The generalization of (5.82) is

—8, —iA—1y
1 . : 0’
82 — A2 — 1n? 0
where A = AT = —A~. Evaluating this expression analogously to the previous case

yields that the term I'(91)(77) is zero (up to surface terms), i.e. the non-zero modes do
not contribute to the Wess-Zumino term.

Recall that in the computation of the U(1)r charge of the monopole operator in
Section 5.4, we also found that the non-zero modes did not contribute. There the can-

cellation occurred between states of equal but opposite energy. In order to demonstrate
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explicitly that the same mechanism is at work here, too, we pretend that AT and A~
are unrelated for the time being and repeat the computation. Without presenting any

of the lengthy intermediate steps, we arrive at

r / p /dw —diegmaming, (AT + A7) (w? + ATA ) w
— T _ .
(2,1) o [w4 +2(ATAT — h2)w? + (ATA)2 + ((A+)2 + (A—)Q)ﬁﬂ + ﬁlﬂQ
(5.93)
Indeed we see that the vanishing is due to the pairing of eigenvalues, At = —A~.

5.5.2 Application to N'= 3 Gauge Theory

Having obtained the result (5.90) for the prototype action (5.88) it is a simple matter
to specialize to ABJM theory and its N'= 3 UV completion. All that needs to be done

is to include the gauge indices and sum over the field content.

Gauge structure. The non-abelian nature of the theory is taken care of just as in
Section 5.4.2. From (5.67) it is clear that the action is diagonal in gauge indices and
therefore every matrix element contributes independently from the others to the effective

action. The effective monopole charge that the matrix element ,, experiences is given

by
Qrs = qr — qs - (5.94)
Hence the non-abelian result is obtained from the abelian one by the replacement
Lo(ii) — > Ty (7). (5.95)

We will see that the sum over r, s will factorize, because all fermions transform effectively

in the same representation.
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Therefore, it will be convenient to define the total charge

N
Qtot = Z |Q'rs| - 22 |QT - QS| . (596)

r,s=1 r>s

Hyper multiplet fermions. Upon using (5.67), the action for £# is just N + copies of
the prototype (5.88). Therefore we can immediately write down the total contribution

from the hyper multiplet fermions

o = o n
0iA;(7) = 0, A7) = Ny ik T - (5.97)

Vector multiplet fermions. The computation for A and X reduces to (5.88) as well,
but we have to be careful not to over-count the degrees of freedom. Due to the relations
(5.20) there are only two independent (complex) components. We choose A'! ~ y_ and

A2~ ij as the independent components and denote their complex conjugates by
A= A=), (5.98)
and similarly for \. When expressed in terms of these fields, the action reads

S = / dr dQ) tr [ — ML PA Ly N (o) [ H A (5.99)

— Z'S\J{aw;\la + % n; S\J{a<0'i)ab[H, ;\lb] .

This is nothing but the action for £ with reversed sign of the interaction, cf. (5.72). Thus

the contribution from the vector multiplet fermions is

0, A; (/) — 0;A,(7) = —2 x Lot ¢ Tk

5 z‘jkW )

(5.100)

where the factor of 2 arises because we have A and \.
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Collective coordinate quantization. Adding all contributions together, the total

effective action for the collective coordinate is given by
() = /dT [%MﬁQ i A(R) 7+ N7 — 1)] , (5.101)

where the kinetic term is simply the sum of the kinetic terms for ¢ and (/3 The last
term is a Lagrange multiplier term which enforces the constraint that the modulus of 77
is fixed to one. This actions describes a particle with unit electric charge and large mass

(as ¢ — 0 in the UV)
1
M=M(r)==trH?> =g %" ¢ 5.102
(7) 7 Z (5.102)
on a sphere surrounding a magnetic monopole with charge
h:(Nf_2)qtot:(Nf_Q)ZIQT_QS‘ ) (5103)

and field strength B=VxA= %ﬁ
This is the Euclidean version of the system discussed in Section 5.2 with the modi-

fication that now M depends on time. Still, the conserved angular momentum is given

by

N
I

3!

X

3!
|

(5.104)

St

| >

and its quantized values are the SU(2)y charges of the monopole operator described by
the BPS background (5.46). Due to the second term in (5.104), the smallest possible

SU(2) g representation has spin

Ny
2 |2

> g — gl (5.105)
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and dimension 2/ + 1 = |h| + 1.

A monopole in the singlet representation and hence of vanishing IR dimension, is
only possible if h = 0. One way of achieving this is to set all fluxes ¢, equal. This
corresponds to a monopole in the diagonal U(1); C U(N) x U(N) of the gauge group
which decouples from the matter fields. Another way to have singlet monopoles is to
consider Ny = 2 hyper multiplets, which is the field content of ABJM theory. This is

true regardless of how the fluxes ¢, are distributed inside the total U(N), flux H.

5.6 Conclusions and Outlook

In this chapter we have calculated the global charges and dimensions of monopole op-
erators in certain three-dimensional N = 3 supersymmetric Yang-Mills Chern-Simons
theories. This is the smallest amount of supersymmetry leading to a non-abelian R-
symmetry which was crucial for our argument, because the SU(2)g spin of a monopole
operator cannot change along an RG flow. This allowed us to find the exact charges
from a one-loop calculation in the weakly coupled UV limit of the gauge theory.

In the far UV the monopole operator was adequately described by a classical Dirac
monopole background for the gauge fields. For the description of BPS monopoles the
background needs to be supersymmetric which required us to also turn on a classical
background for the adjoint scalar fields.

In Section 5.4 we considered a static scalar background. Since such a background
breaks the R-symmetry from SU(2)r to U(1)gr, we could only determine the abelian
charge of the monopole in this case. Using the methods developed in [161], we found that
fermionic fluctuations around the background induce a U(1)g charge of the monopole
proportional to the R-charges of the fermions times their magnetic coupling to the
background. Our complete formula (5.69) for the R-charge in U(N) x U(N) gauge

theory coupled to Ny hyper multiplets in the bifundamental representation is consistent
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with the proposal made in [170, 171].

However, knowing the U(1)g charges at small Yang-Mills coupling is in general not
enough as this quantity is not protected and one cannot make any reliable statement
about their IR values. In [161] the computation was performed directly in the IR limit
(of SQED) which was possible by assuming a large number of flavors. Here we could not
resort to this trick because we wanted to keep the number of flavors arbitrary. However,
we can make use of the A/ = 3 supersymmetry and compute non-abelian R-charges which
are protected. They follow from quantization of the SU(2)/U(1) collective coordinate of
the background. By calculating the fermionic determinants which induce a Wess-Zumino
term in the effective action of the collective coordinate, we demonstrated in Section 5.5
that the smallest allowed SU(2)p representation is given by (5.105). The largest U(1)g
charge within this representation coincides with our findings in Section 5.4.

Note that the induced R-charge of the monopole is entirely due to the fermions
of the theory. In the normal ordering computation, Section 5.4, the reason why the
bosons do not contribute is because their spectrum is symmetric with respect to zero
and therefore the states with positive energy cancel the effect of those with negative
energy. In the collective coordinate computation, Section 5.5, this follows from the fact
that the coupling between the bosons and the collective coordinate goes to zero in the
UV.

After the theory has flown to the superconformal Chern-Simons fixed point, we can
use these results to argue that the contribution of the monopole operator to gauge-
invariant operator dimensions is given by (5.69), as long as it is non-negative (when it is
negative, a conventional fixed point does not exist). For ABJM theory, where N; = 2,
this contribution vanishes which is crucial for matching the spectrum with supergravity
on AdS; x S7/7Z, and for the supersymmetry enhancement to N = 8.

Since the gauginos make a crucial negative contribution to the R-charge, and they

are not even dynamical in the IR Chern-Simons theory, it is not clear how to carry out
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this calculation reliably without appealing to the UV theory containing the Yang-Mills
term. Luckily, there are various other theories to which the method of starting with a
weakly coupled UV theory can be applied. One obvious example is to consider quiver
theories with more than two U(V) gauge groups and bifundamental hyper multiplets.
These Yang-Mills Chern-Simons theories can flow in the IR to A/ = 3 superconformal
fixed points; some of them have M-theory AdS, duals found by Jafferis and Tomasiello
[175].

Determination of monopole operator dimensions poses more of a challenge in N' =
2 superconformal Chern-Simons theories, since we cannot rely on a non-abelian R-
symmetry. Nevertheless, it should again be possible to define some of these theories
via flow from weakly coupled Yang-Mills Chern-Simons theories, where monopole oper-
ator R-charge can be computed semiclassically. It is conceivable that the U(1)g charge
does not change under the RG flow, which would then determine it in the superconformal
theory.

As we have noted, in some quiver theories the induced R-charge of the monopole in
the UV is simply proportional to the sum over the R-charges of all the fermions. If a
“parent” quiver Yang-Mills gauge theory can be written down in four dimensions with
the same superpotential, then all the fermion R-charges in it are the same as in three
dimensions. In this “parent theory” the sum over all fermion R-charges determines the
U(1)g anomaly. In particular, if this quantity vanishes, then the 4-dimensional gauge
theory is superconformal. Thus, it is tempting to conjecture a relation between U(1)g
anomaly in a parent 4-dimensional gauge theory and the induced monopole operator
R-charge in a descendant 3-dimensional gauge theory. For example, in the class of
U(N) x U(N) theories we have considered in this paper, the induced monopole R-charge
is ~ (1—N¢/2). In its parent 4-dimensional gauge theory, the U(1)g anomaly coefficient
is (1 — Ny/2)N, with the first term due to an adjoint gluino of R-charge 1, and the

second due to Ny bifundamentals of R-charge —1/2. The anomaly cancellation for
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Ny = 2 singles out the 4-dimensional superconformal gauge theory describing D3-branes
on the conifold [44].

This discussion suggests that, if a quiver gauge theory is superconformal in four
dimensions, then at least some monopole operators in its 3-dimensional descendant
(presumably the ones that correspond to turning on monopoles in all gauge groups)
have vanishing monopole operator dimensions. Clearly, the possibility of a connection
between monopole R-charges in three dimensions and anomaly coefficients in four di-

mensions requires a more detailed study.
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Appendix: Useful Formulae,

Notations and Conventions

A.1 The Type 1IB Supergravity Equations

Here we succinctly list the equations of motion of IIB supergravity. They are used
heavily in Chapter 3 to study 2-form potential and metric perturbations. For simplicity
we have set the dilaton and RR scalar to zero.

Bianchi identities:

ngZO,
dEs=Hs N F;.

Dynamic equations:

d*HgZ—ggpg)/\Fg,
d*F3:F5/\H3, (A2>
F5:*F5.

Einstein equation:

gg n o abed 1 ab 1 abc gg ab gg abc
Rij = T‘z == %Eabcdp} + ZHiaij - @GinabcH + ZEabF}‘ - 4_8GijFach .
(A.3)
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A.2 Chern-Simons Field Theory Notations and Con-
ventions

Lorentzian ABJM model. The world-volume metric is g = diag(—1,+1,+1)
with index range g = 0,1,2. We use Dirac matrices (7*),” = (io?, o', 03) satisfying
YHy¥ = g +€'Pry,. The fermionic coordinate of superspace is a complex two-component
spinor 6. Indices are raised, 0% = ¢*f5, and lowered, 0, = €,560°, with ¢! = —¢j5 = 1.
Note that lowering the spinor indices of the Dirac matrices makes them symmetric
vhs = (=1, —=0% o). In products like 60, = 6%, 0°0,, = 00 etc and 624+ P05 = Oy"0 we

suppress the indices. We have
0as = Leapl? | 0°0° = L2 (A4)
and likewise for  and derivatives. The Fierz identities are!!

(190) (P5ta) = =3 (r10a) (3h2) — $(17"00) (Paytda) | (A.5)
(t196) (37" 00a) = =5 (V17" 0) (P3102) — 5 (10a) (V37"2) — 5P (17800) (V37,002)
(17" (57" 0a) = =59 (¥13a) (Vs2) + 59" (017" a) (Wsypf2) — (17 W) (137" 92)

— 56 [(Vrp0a) (3th) — (100a) (37,002)]

which imply in particular

(00)* = —16°67 (A.6)
(00)(6~70) =0 , (A7)
(04%6)(0770) = 14" 6°6" . (A.8)

HHere and everywhere we use symmetrization and anti-symmetrization with weight one X Yy =
%(Xayb — XbYa) and X(aYb) = %(Xayb + X{,Ya).
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The supercovariant derivatives and supersymmetry generators are

Do = 0o + 105070, , Qo = O — 15070, , (A.9)

Do = —8o — 1079550, Qo = —0a + 107450, , (A.10)

where the only non-trivial anti-commutators are
{Da, Dg} = =2i0550, , {Qa»Qs} = 207550, . (A.11)

We use the following conventions for integration
d*0 = —1d9*db,, d*0 = —}Lde_adéa . d0=d*0d*0, (A.12)

such that

/d2902:1 : /d2§§2=1 : /d4«9020_2:1. (A.13)

It is useful to note that up to a total derivative
/ 4o .. = 1_16(02[72 - ocoo - (A.14)

We use the N x N hermitian matrix generators 7" (n = 0,...,N? — 1) and t"
(n=1,...,N* = 1) for U(N) and SU(N) respectively. We have T" = (T° {") with
T7°=1/VN.

The generators are normalized as tr T"T™ = §™. Their completeness implies that
tr AT" tr BT™ = tr AB and tr AT"BT" = tr Atr B for U(N). Similarly for SU(N) we
have tr At" tr Bt" = tr AB — %trAtrB and tr At"Bt" = tr Atr B — %trAB.
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Euclidean Chern-Simons Yang Mills theory in radial quantization. The main
part of our computations in Chapter 5 are performed on R x S? with the metric
ds? = gmpdr™dz™ = dr? + d? + sin® 0 dp?. As Dirac matrices in the tangent frame
we use (1%).” = (=02, 0!, 0%), which satisfy y2* = §% + ie®*“y¢. As above all spinor
indices are raised and lowered from the left, ¥* = €15 and 1, = e,p0°, with
€2 = —e;p = 1. Again, (7%)ap = (—il,—03,0') are symmetric and we also have

(v)e” = (7*)?,. For contracting spinor indices we use the NW-SE convention, e.g

DYy = V(™) (Y") 57X, ete. The spin connection is

Vb = Om +wn)¥ W = twma?™ o 70 =3[ (A.15)

with the only non-zero component being w91 = —wy12 = cos 0. For raising and lowering
SU(2)g indices (also called a,b,...) we use the same conventions as for spinor indices.
The standard index position for Pauli matrices is (0;),°.

N = 2 superfields. The component expansion of the N' = 2 superfields are as
follows. The vector superfield V(z, 6, §) in Wess-Zumino gauge contains the U(N)x U(N)
gauge field A,, a complex two-component fermion x,, a real scalar o and an auxiliary

scalar D, such that

V=2i000(x) —207™0 A () + V2 020X (2) — V2i 2 Oxo(z) + 6*6*°D(x) , (A.16)

V=2i005(x) — 2070 A (z) + V2 0% 0% (2) — V2i 62 0%, (x) + 60°0°D(x) , (A.17)
and similarly the chiral superfields in the adjoints of the two gauge group factors are

O =g(zr) + V20x,(xL) +0° Fy(zr) , @ = ¢l (xr) — V20x!(vr) — 07 Fl(zr) , (A.18)

— i (n) — V20X, () — 02 E (vr) - (A19)

A

b= d(rs) + V208, (xr) +6° Fylar)

=
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The components of the chiral and anti-chiral superfields, Z(xy,0) and Z(xg,0), are a
complex boson Z, a complex two-component fermion ( as well as a complex auxiliary
scalar F', and similarly for YW and WW. The expansions of these bifundamental matter

fields are given by

Z=2(xp)+V20C(xy) + 0% Flxy) , (A.20)
Z=7xg) — V20Ct(xg) — 0* Fl(xR) , (A.21)
W=W(xL)+ V20w(x)+6>G(xyL) , (A.22)
W=W(zg) — V20w (zr) — 0° Gl (xz) , (A.23)

where 27" = 2™ — ify™f and 27} = 2™ + iHy™0.

A.3 N =3 Chern-Simons Yang-Mills on R'?

Here we present the action of the N' = 3 Chern-Simons Yang-Mills theory on R»? with
signature (—,+,+). For further explanations we refer the reader to Section 5.3. The

kinetic and mass terms are

Skin = /d3zv tr [ - ﬁFWFW + RN (A0, AN+ FALALA) (A.24)
— s FM Fy — ke (A,0,A, + $A,A,A))
~D,XD'X iV P¢
— 3 Dudi D6, — 31707 4%, — 52 Dudi D Sl — 3K°9° 0,

_ #Aabﬁ)\ab — %fi)\ab)\ba — ﬁj\abﬁj\ab + g Z'j\abj\ba] )
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and the interactions, which involve cubic and quartic scalar vertices, as well as Yukawa

terms, are given by

St = / d'a tr| = kg X[oUX" + kg® X°9hX] — iglone’ — ig"dlhe] (A.25)
+ €a AP X — €\ et XT — eaCXd’g;Xa + €A XTI
+ EQp[60, 0%) + £G4, 6] — seidanldl, A + shridas[dh, 1]

— C(Xo XN (X0 XT) — %(X*aixxx*oiX)
—L(X XN el — L(XTX)ggeh — X @t X5

~

T Lol a5lloh, o) + =100, 5118, 1)
The supersymmetry variations with parameter ., = €;(0;)q in the 3 of SU(2)g read

§A, =—teay A, (A.26)

SN = LA E,e® — iPele + ¢, ¢5le™

+rg2igle™ + g7 iX X ][e? — %(XXT)gab : (A.27)
5 = =A™ + 20pecaX (A.28)
5141“ = —%Eab%;\“b , (A.29)

L ab Af b, 7h b i 136 Gel.ad
O =L E e ® + Dol + Lor, ¢5le”

FrgPiglet — g is e XIX T+ L (XTX)e? (A.30)

0% = —ep A + Lope.a\? (A.31)

0XA* = —igget 064 = PX e + geb XA+ XAy (A.32)
0X ), = —i€hen 06k, = PX}yen + daei Xho + Xhosidh - (A.33)
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A.4 Monopole Spinor Harmonics

We define monopole spinor harmonics as eigenspinors of the Dirac operator on the sphere

in a monopole background with magnetic charge ¢:

—iPsT o, = AT (A.34)

with eigenvalues
AL =E3V/(2) + 1) — ¢ (A.35)
for 5 = lq‘T_l,mTH,... and m = —j,—7 + 1,...,7. The spectrum is drawn in Figure

5.1(a) on page 154. These spinors also satisfy

”}/T Ti - TF

qim qjm

(A.36)

which couples modes with positive and negative eigenvalue. The lowest modes, j = MT_I,

which only exists for ¢ # 0 are zero-modes and the corresponding Y*-spinors are not

independent. We introduce a special notation for them

1 ) _
T, = G (T;jm + sign(q) qum)j: oo (A.37)
Then (A.36) implies
Y Yo, = sign(q) Yo, - (A.38)

Further properties are the orthogonality

/ dQ Y AT Y = i / dQ Y Y =007 0 G, (AL39)

qj/m/
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and completeness relations

Wm

DA TIL(Q) + DT, (T (@) =iy 0% (Q— ) . (A.40)

jme

We also note the explicit expressions. The generalization of the spinor harmonics in

[176] to non-zero monopole background is

Y=\ 52 QL +isign(g) \/ 52 Q (A.41)

qim qjm qm >

Y= 1- TQJ + 1""“11 -
T im =sign(q)y/ Qim 1 Qim > (A.42)

with rg; = 4/1 — (QJH)Q and

@Gy Gy D
qu \/Fj—f-——% (j-f- +) (j+m) Vor

X (A.43)

~—

+m

e (!
(

FVFI (1 — 2)m=+/2 (1 4 )™+~ 2 (1—z)+-(1+x)- )

aitm

BV (1= @)/ (1 a2 e (1= )i (1 + )i )

dzitm

where
Jeren =J FE15F 828, Mo, =mA ey e (A.44)

+
We rotate to our basis of Dirac matrices by defining qum = f(l —i0 )qum
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