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Abstract

This dissertation is composed of several studies of gauge/gravity dualities aimed at

providing evidence for the dualities we investigate, and exploring possible applications.

First we discuss the universal scaling function f(g), which appears in the dimensions

of high-spin operators of the N = 4 Super Yang-Mills theory. We study numerically an

integral equation that implements a resummation of the complete planar perturbative

expansion, and find a smooth function which for large coupling constant g matches with

high accuracy the asymptotic form predicted by string theory. Furthermore, we give an

exact analytic solution of the strong coupling limit of the integral equation.

Next, we study the N = 1 supersymmetric warped deformed conifold, which has

two bosonic massless modes, a scalar and a pseudoscalar, that are dual to the modulus

and phase of the baryonic condensates in the cascading SU(k(M + 1))× SU(kM) gauge

theory. We generalize both perturbations to include non-zero 4-dimensional momentum,

and find the mass spectra of SPC = 0+− and SPC = 0−− glueballs. We argue that these

massive modes belong to 4-dimensional axial vector or vector supermultiplets.

Extending our discussion to the complete baryonic branch of the gauge theory, we

show that the action of a Euclidean D5-brane wrapping all six deformed conifold direc-

tions measures the baryon expectation values. We demonstrate that this is consistent

with its coupling to the scalar and pseudoscalar massless modes, and reproduces the

scaling dimension of baryon operators. We also derive an expression for the variation of

the baryon expectation values along the supergravity dual of the baryonic branch.

Finally we turn to 3-dimensional gauge theories with N = 3 supersymmetry, and

calculate the non-abelian R-charges of BPS monopole operators. In the UV limit they

are described by classical backgrounds, and this allows us to find their exact SU(2)R

charges in a one-loop computation, by quantizing an SU(2)/U(1) collective coordinate.

We show that monopole operators with vanishing scaling dimensions exist in the ABJM

theory, which is essential for matching its spectrum with supergravity on AdS4×S7/Zk.
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Chapter 1

A Brief Review of Select Topics in

Gauge/Gravity Dualities

While string theory is often thought of primarily as a candidate theory of everything,

aiming to unify all fundamental interactions including gravity in a single quantum theory,

it has transpired during the past twelve years that it is also a framework in which

quantum field theory and general relativity appear as complementary, dual descriptions

of the same physics. This allows us to use gravity to study strongly coupled field theories,

or conversely, employ field theory ideas to define what we mean by quantum gravity.

Let us begin by reviewing some well-known facts about gauge/gravity dualities. We

shall first discuss the prototype of such dualities, the celebrated N = 4 AdS5/CFT4

correspondence [1, 2, 3], before we move on to examples with less supersymmetry and

without conformal symmetry. Finally, we shall turn to some more recent developments

concerning AdS4/CFT3 dualities and the worldvolume theory of M2-branes.

This introductory chapter is based on material from work in collaboration with

I. R. Klebanov, T. Klose and M. Smedbäck [4, 5]. For further background on the

topics touched upon in Section 1.1 we refer the reader to the reviews [6, 7, 8, 9], while

summaries of much of the material discussed in Section 1.2 can be found in [10, 11, 12].
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1.1 A Sketch of the AdS/CFT Correspondence

Even though the elementary excitations of perturbative string theory are (as the name

suggests) 1+1 dimensional objects, whose world-sheet dynamics is governed by the

Nambu-Goto area action

SNG = − 1

2πα′

∫
d2σ
√
−det ∂aXµ∂bXµ , (1.1)

it was realized a long time ago that supersymmetric theories of closed strings also con-

tain higher dimensional objects [13]. While closed superstrings move freely in the 9+1

dimensional spacetime, open strings are bound to end on p+1 dimensional hyperplanes

known as Dirichlet p-branes, usually denoted as Dp-branes. This terminology refers to

the Dirichlet boundary conditions which open string have to satisfy at their endpoints

in the 9−p directions orthogonal to the D-brane, while Neumann boundary conditions

apply for the p+1 coordinate directions parallel to it.

This seemingly innocent observation has profound consequences, because the world-

volumes of D-branes support gauge theories. If we consider a single brane, open strings

beginning and ending on it have massless excitations identical to those of a maximally

supersymmetric U(1) gauge theory in p+1 dimensions. There are 9−p scalar Goldstone

bosons, since the brane breaks translation invariance in the transverse directions, and

a massless vector which arises from the string excitations in the p+1 directions parallel

to the brane. Together with the appropriate fermions they combine to form a vector

supermultiplet.

Extending these considerations to multiple parallel branes, one finds that their pair-

wise separations are determined by the expectation values of the transverse scalar fields

associated with strings stretching between two different branes. In particular, if all

scalar expectation values vanish, the branes are stacked on top of each other. If this

is the case, then N parallel branes support N2 massless modes (the number of distinct
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choices of beginning and endpoint for an open string), which transform in the adjoint

representation of U(N). The upshot is that there is a p+1 dimensional U(N) gauge

theory with 16 supercharges living on such a collection of branes.

The gravitational background of a stack of D3-branes. For large N a stack

of parallel Dp-branes is a heavy object and will backreact onto the spacetime around

it. The so-called black p-branes, gravitational backgrounds corresponding to such situ-

ations, were originally discovered as supersymmetric soliton solutions of the low energy

supergravity theory, which carry electric charge with respect to the p+1 form Ramond-

Ramond (RR) potential Cp+1 [14]. In type IIA string theory (and the associated super-

gravity theory) p is even, while for type IIB p is odd.

Since we will mostly consider 3+1 dimensional U(N) gauge theory we will be par-

ticularly interested in stacks of D3-branes. This case is special insofar as the dilaton

field of the type IIB theory is constant in such a background, and the RR field strength

F̃5 the brane couples to is self-dual (the supergravity equations relevant to this case are

reviewed in Appendix A.1). The metric of this classical solution is given by [14]

ds2 = h−1/2(r)

[
−f(r)(dx0)2 +

3∑
i=1

(dxi)2

]
+ h1/2(r)

[
f−1(r)dr2 + r2dΩ2

5

]
, (1.2)

where dΩ2
5 is the metric of a unit 5-dimensional sphere S5 and

h(r) = 1 +
L4

r4
, f(r) = 1− r4

0

r4
. (1.3)

We would like to consider two successive limits of this black 3-brane background.

First we take the extremal limit r0 → 0 of the solution (1.2), in which the area of the

event horizon at constant radial coordinate r = r0 vanishes. We have f(r)→ 1 and thus

ds2 = h−1/2(r)ηµνdx
µdxν + h1/2(r)

(
dr2 + r2dΩ2

5

)
. (1.4)
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In this limit the mass (per unit volume) of the 3-brane saturates a BPS-type bound and

it can be shown that the extremal solution preserves 16 of the 32 supersymmetries of

the type IIB theory, as it must if it is to describe a stack of parallel D3-branes.

When r is large compared to L it is easy to see that (1.4) simply approaches 9+1

dimensional flat space. In the opposite, near horizon limit r → 0 we find that, defining

a new variable z = L2/r, the metric (1.4) simplifies to

ds2 =
L2

z2

(
dz2 + ηµνdx

µdxν
)

+ L2dΩ2
5 . (1.5)

This metric describes the direct product of a five-sphere S5, and the Poincaré wedge of

the 5-dimensional Anti-de Sitter space, AdS5, both with radius of curvature L.

By comparing the tension of the extremal 3-brane solution, parameterized by the

length scale L, to that of a stack of N D3-branes, characterized by the string length

scale
√
α′, one finds that

L4 = g2
YMNα

′2 , (1.6)

where gYM is the coupling constant of the supersymmetric Yang-Mills theory that the

brane supports. The five-form flux piercing the S5 that is required to satisfy the super-

gravity equations of motions is then simply

∫
S5

∗F̃5 = N , (1.7)

i.e. the number of flux units equals the number of colors in the gauge theory picture.

Large N and the ‘t Hooft coupling. The combination λ ≡ g2
YMN that appears

on the right hand side of (1.6) is known as the ‘t Hooft coupling, and is familiar to field

theorists from ‘t Hooft’s generalization of SU(3) gauge theory (i.e. QCD) to SU(N) gauge

group [15]. Increasing the number of colors, while keeping λ constant, implies that each

Feynman diagram acquires a topological factor of N raised to the power of the Euler

4



characteristic of the graph. Hence in the large N limit Feynman graphs that can be

drawn on a sphere (called planar) dominate, since they carry a factor of N2, while those

that can be drawn on a torus are subleading (of order N0) and those requiring higher

genus surfaces even more suppressed. Thus making N large significantly simplifies field

theory; if in addition λ is small one can perform calculations perturbatively.

It has been argued that the sum over Feynman graphs with a given Euler character-

istic can be thought of as a sum over string world-sheets. In such an interpretation the

string coupling constant would be proportional to N−1, such that large N would lead to

a weakly coupled string theory. While this argument had never been made precise before

the arrival of the AdS/CFT correspondence, one can indeed check that in the full string

theory the string loop corrections to the classical solution considered above proceed in

powers of N−2. Thus taking N to infinity allows us to use a classical description of

string theory on AdS5× S5, and for the remainder of this subsection we will assume the

large N limit with λ held fixed.

Now from (1.6) we see that the curvature radius L of the near-horizon geometry is

equal to λ1/4 in units of the string scale. Since the supergravity approximation to type

IIB string theory is only applicable for weakly curved spaces we require L�
√
α′, which

implies λ � 1. Hence the gravitational calculation is reliable precisely in the limit in

which field theory computations are not perturbative and therefore difficult.

The AdS5/CFT4 correspondence with N = 4 supersymmetry. At this point

we have arrived at two superficially completely different descriptions of 3-branes. On

the one hand, we have a field theory picture of a stack of N D3-branes in terms of

N = 4 supersymmetric SU(N) gauge theory that is most useful for small λ. In the

low-energy limit the field theory decouples from the bulk closed string theory, and the

massless modes of the open strings living on the branes adequately describe the situation.

On the other hand, the supergravity picture of a black 3-brane is applicable for large
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λ, and here the AdS5 × S5 region (at r � L) decouples from the asymptotically flat

large r spacetime in the low-energy limit, as confirmed by investigations of so-called

greybody factors describing the cross-section for the absorption of radiation by the brane

[16, 17, 18]. This second description is purely gravitational, i.e. in terms of the massless

excitations of closed strings.

These two complementary points of view are at the core of the AdS/CFT corre-

spondence. Maldacena [1] made the seminal conjecture that type IIB string theory on

AdS5 × S5, of radius L as in (1.6), is dual to the N = 4 SU(N) SYM theory.1 This

can be understood as a duality between open and closed string descriptions of the same

phenomena. Crucially, it is also a weak-strong duality, since the two pictures apply for

different regimes of λ. This renders the AdS/CFT correspondence very hard to prove

rigorously, but at the same time exceedingly useful as a computational tool.

The original conjecture of the AdS/CFT correspondence was partially motivated by

symmetry considerations [1]. The isometry supergroup of the AdS5 × S5 background is

PSU(2, 2|4), which perfectly matches the N = 4 superconformal symmetry. The maxi-

mal bosonic subgroup of this supergroup is SO(2, 4)×SO(6). The first factor is nothing

but the conformal group in 3+1 dimensions, which coincides with the isometry group

of AdS5, since Anti-de Sitter space is the maximally symmetric space with (constant)

negative curvature. The second factor of SO(6) ∼ SU(4) appears as the R-symmetry

of the N = 4 SYM theory, while in the geometry it is realized simply as the isometry

group of the S5.

The development of a detailed dictionary that allows one to translate from conformal

field theory to string theory language was initiated in [2, 3]. Each gauge invariant

operator in the conformal field theory corresponds to a particular field in the AdS5× S5

background (or in some cases, as e.g. for the baryonic operators we will discuss below,

to an extended object such a D-brane), in such a way that its scaling dimension ∆ is

1In its strongest form the conjecture states that this holds even for finite N .
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related to the mass of the dual field. E.g. scalar operators satisfy ∆(∆− 4) = m2L2.

For the fields in AdS5 that come from the type IIB supergravity modes, including

the Kaluza-Klein excitations on the 5-sphere, the masses are of order 1/L. Hence, it is

consistent to assume that their operator dimensions are independent of L, and therefore

independent of λ. This is due to the fact that such operators commute with some of

the supercharges and are thus protected by supersymmetry. Perhaps the simplest such

operators are the chiral primaries which are traceless symmetric polynomials in the six

real scalar fields. These operators are dual to spherical harmonics on S5 which mix

the graviton and RR 4-form fluctuations. Their masses are m2
k = k(k − 4)/L2, where

k = 2, 3, . . .. These masses reproduce the operator dimensions ∆ = k which are the

same as in the free theory. The situation is completely different for operators dual to

the massive string modes: m2
n = 4n/α′. In this case the AdS/CFT correspondence

predicts that the operator dimension grows at strong coupling as 2n1/2λ1/4.

In order to compute correlation functions of operators in the conformal field theory

using its dual fields ϕ one identifies a certain gauge theory quantity W with a string

theory quantity Zstring [2, 3]

W [ϕ0(~x)] = Zstring[ϕ0(~x)] . (1.8)

Here W is the generator of the connected Euclidean Green’s function of a gauge theory

operator O,

W [ϕ0(~x)] = 〈exp

∫
d4xϕ0O〉 . (1.9)

On the other hand, Zstring is the string theory path integral calculated as a functional

of ϕ0, the boundary condition on the field ϕ related to O by the AdS/CFT duality. In

the large N limit the string theory becomes classical, which implies

Zstring ∼ e−S[ϕ0(~x)] , (1.10)

7



where S[ϕ0(~x)] is the extremum of the classical string action which is again a functional

of ϕ0. If we are further interested in correlation functions at very large ‘t Hooft coupling,

the problem of extremizing the classical string action reduces to solving the equations

of motion in type IIB supergravity.

Long operators and the cusp anomalous dimension. Operators with large

quantum numbers provide a simple setting in which the AdS/CFT correspondence can

be tested very efficiently. E.g. the single-trace operators examined in [19] carry a large

R-charge (dual to a string angular momentum J on the compact space S5) and the dual

states are almost point-like closed strings moving rapidly on the five-sphere [20]. If we

consider such a long operator with a second large quantum number the dual object may

be a macroscopic semi-classical string [21], which allows for quantitative checks of the

correspondence (and in addition strongly suggests that string theory on AdS5 × S5 and

N = 4 Super Yang-Mills theory are integrable [22, 23]).

We can also consider operators with large spin S, such as the twist-2 operator [24, 25]

Tr F+µDS−2
+ F µ

+ . (1.11)

The scaling dimension ∆ of such twist-2 operators at large values of the spin S is

characterized by the universal scaling function (or cusp anomalous dimension) f(g):

∆− S = f(g) lnS +O(S0) , (1.12)

with g =
√
g2
YMN/4π. The logarithmic dependence of the dimension on large Lorentz

spin is a generic feature that has been independently observed for both N = 4 SYM and

its string theory dual, see e.g. [26, 27, 28]. Importantly, such a scaling behavior stems

[29, 30] from the large spin limit of the Bethe equations [31, 32, 33, 34] which underlie

the integrable structures of gauge and string theories.
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Due to the universal role played by the function f(g), one would like to compute it

in the N = 4 SYM theory. In this case we can consider operators in the SL(2) sector,

of the form

Tr DSZJ + . . . , (1.13)

where Z is one of the complex scalar fields, the R-charge J is the twist, and the dots

serve as a reminder that the operator is a linear combination of such terms with the

covariant derivatives acting on the scalars in all possible ways. The object dual to such

a high-spin twist-2 operator is a folded string [20] spinning around the center of AdS5;

its generalization to large J was found in [28]. The result (1.12) is generally applicable

when J is held fixed while S is sent to infinity [29].

Though the function f(g) forN = 4 SYM is not the same as for QCD, its perturbative

expansion is in fact related by the conjectured transcendentality principle [35], which

states that each expansion coefficient has terms of definite degree of transcendentality

(namely the exponent of g minus two), and that the QCD result contains the same terms

(in addition to others which have lower degree of transcendentality).

An interesting problem is to smoothly match the explicit predictions of string theory

for large g to those of gauge theory at small g. During the past few years methods

of integrability in AdS/CFT [36, 37, 38] have led to major progress in addressing this

question. In an impressive series of papers [30, 39, 40] a linear integral equation has

been derived, which allows one to compute the universal scaling function f(g) to any

desired order in perturbation theory. We will refer to it as the BES equation.

It was obtained from the asymptotic Bethe ansatz for the SL(2) sector by considering

the limit S → ∞ with J finite, and extracting the piece proportional to lnS, which is

manifestly independent of J . Taking the spin to infinity, the discrete Bethe equations

can be rewritten as an integral equation for the density of Bethe roots in rapidity space.

In Chapter 2 we shall discuss how to extract the strong coupling behavior of f(g)

from the BES equation, and show that it agrees with the predictions from string theory.
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1.2 Generalizations to Lower Supersymmetry and

the Non-Conformal Case

1.2.1 Reducing Supersymmetry and the Conifold

To obtain an AdS/CFT duality with less than the maximal N = 4 supersymmetry, we

consider a stack of D3-branes located at the singularity of a 6-dimensional Ricci-flat

cone [41, 42, 43, 44]. The metric is then given by

ds2 = h−1/2(r)ηµνdx
µdxν + h1/2(r)

(
dr2 + r2ds2

Y

)
. (1.14)

where ds2
Y is the metric of the 5-dimensional compact space Y5, which is an Einstein

manifold (i.e. Rab = 4gab) and forms the base of the cone. The geometry dual to the

conformal field theory supported by the D3-branes at the tip of the cone emerges in

the near horizon limit. It is simply AdS5 × Y5, which still has the SO(2, 4) conformal

symmetry manifest in the geometry, even though the R-symmetry group which must be

contained in the isometries of Y5 will in general be smaller than SU(4).

In order to find gauge theories with N = 1 superconformal symmetry the Ricci-flat

cone must be a Calabi-Yau 3-fold [44, 45] whose base Y5 is called a Sasaki-Einstein space.

Among the simplest examples of these is Y5 = T 1,1. The corresponding Calabi-Yau cone

is called the conifold.

The conifold is a singular non-compact Calabi-Yau three-fold [46]. Its importance

arises from the fact that the generic singularity in a Calabi-Yau three-fold locally looks

like the conifold, described by the quadratic equation in C4:

z2
1 + z2

2 + z2
3 + z2

4 = 0 . (1.15)

This homogeneous equation defines a real cone over the 5-dimensional manifold T 1,1.
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The topology of T 1,1 can be shown to be S2 × S3 and its metric [47] is

ds2
T 1,1 =

1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)2

+
1

6
(dθ2

1 + sin2 θ1dφ
2
1) +

1

6
(dθ2

2 + sin2 θ2dφ
2
2) . (1.16)

T 1,1 is a homogeneous space, and can be described as the coset SU(2) × SU(2)/U(1).

The metric on the cone is then ds2
6 = dr2 + r2ds2

T 1,1 .

Symmetries and field theory interpretation. We can introduce different complex

coordinates on the conifold, ai and bj, as follows:

Z =

z3 + iz4 z1 − iz2

z1 + iz2 −z3 + iz4

 =

a1b1 a1b2

a2b1 a2b2



= r
3
2

−c1s2 e
i
2

(ψ+φ1−φ2) c1c2 e
i
2

(ψ+φ1+φ2)

−s1s2 e
i
2

(ψ−φ1−φ2) s1c2 e
i
2

(ψ−φ1+φ2)

 , (1.17)

where ci = cos θi
2
, si = sin θi

2
(see [46] for more details on the z and angular coordinates).

The equation defining the conifold is now detZ = 0.

The ai, bj coordinates above will be of particular interest to us because the symmetries

of the conifold are most apparent in this basis. The conifold equation has SU(2)×SU(2)×

U(1) symmetry since under these symmetry transformations,

detLZR† = det eiαZ = 0. (1.18)

This is also a symmetry of the metric presented above where each SU(2) acts on θi, φi, ψ

(thought of as Euler angles on S3) while the U(1) acts by shifting ψ. This symmetry can

be identified with U(1)R, the R-symmetry of the dual gauge theory, in the conformal

case. The action of the SU(2) × SU(2) × U(1)R symmetry on ai, bj defined in (1.17) is
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given by

SU(2)× SU(2) symmetry :

(
a1

a2

)
→ L

(
a1

a2

)
, (1.19)(

b1

b2

)
→ R

(
b1

b2

)
, (1.20)

R-symmetry : (ai, bj)→ ei
α
2 (ai, bj) , (1.21)

i.e. a and b transform as (1/2, 0) and (0, 1/2) under SU(2) × SU(2) and with R-charge

1/2 each. We can thus describe the singular conifold as the manifold parametrized by

a and b, but from (1.17), we see that there is some redundancy in the a, b coordinates.

Namely, the transformation

ai → λ ai , bj →
1

λ
bj , (λ ∈ C) , (1.22)

results in the same z coordinates in (1.17). Thus we impose the additional constraint

|a1|2 + |a2|2 − |b1|2 − |b2|2 = 0 to fix the magnitude in the above transformation. To

account for the remaining phase, we describe the singular conifold as the quotient of the

a, b space with the above constraint by the relation a ∼ eiαa, b ∼ e−iαb.

The importance of the coordinates ai, bj is that in the gauge theory on D3-branes at

the tip of the conifold they are promoted to chiral superfields. The low-energy gauge

theory on N D3-branes is an N = 1 supersymmetric SU(N) × SU(N) gauge theory

with bifundamental chiral superfields Ai, Bj (i, j = 1, 2) in the (N,N) and (N,N)

representations of the gauge groups, respectively [44, 45]. The superpotential for this

gauge theory is

W ∼ Tr detAiBj = Tr (A1B1A2B2 − A1B2A2B1) . (1.23)

The continuous global symmetries of this theory are SU(2) × SU(2) × U(1)B × U(1)R,

where the SU(2) factors act on Ai and Bj respectively, U(1)B is a baryonic symmetry
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under which the Ai and Bj have opposite charges, and U(1)R is the R-symmetry with

charges of the same sign RA = RB = 1
2
. This assignment ensures that W is marginal,

and one can also show that the gauge couplings do not run. Hence this theory is

superconformal for all values of gauge couplings and superpotential coupling [44, 45].

Resolution of the conifold. A simple way to understand the resolution of the

conifold is to deform the modulus constraint above into

|b1|2 + |b2|2 − |a1|2 − |a2|2 = u2 , (1.24)

where u is a real parameter which controls the resolution. The resolution corresponds to

a blow up of the S2 at the bottom of the conifold. In the dual gauge theory turning on u

corresponds to a particular choice of vacuum [48]. After promoting the a, b fields to the

bifundamental chiral superfields of the dual gauge theory, we can define the operator U

as

U =
1

N
Tr(B†1B1 +B†2B2 − A†1A1 − A†2A2) . (1.25)

Thus, the singular conifolds correspond to gauge theory vacua where 〈U〉 = 0, while the

warped resolved conifolds correspond to vacua where 〈U〉 6= 0. In the latter case, some

VEVs for the bifundamental fields Ai, Bj must be present. Since these fields are charged

under the U(1)B symmetry, the warped resolved conifolds correspond to vacua where this

symmetry is broken [48]. In this thesis we shall not discuss the resolved conifold further

(except in the context of the baryonic branch), but we shall be interested instead in the

deformation of the conifold singularity, which is the subject of the following subsection.

1.2.2 Deformation of the Conifold

We have seen above that the singularity of the cone over T 1,1 can be replaced by an

S2 through resolving the conifold (1.15) as in (1.24). An alternative supersymmetric
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blow-up, which replaces the singularity by an S3, is the deformed conifold [46]

z2
1 + z2

2 + z2
3 + z2

4 = ε2 . (1.26)

To achieve the deformation, one needs to turn on M units of RR 3-form flux. This

modifies the dual gauge theory to N = 1 supersymmetric SU(N) × SU(N + M) the-

ory with chiral superfields A1, A2 in the (N,N + M) representation, and B1, B2 in the

(N,N + M) representation.

The necessary 3-form field strength linking the three-cycle of the conifold can be

turned on by wrapping M D5-branes on the S2 at the tip of the cone. They are often

referred to as fractional branes. Since their number is dual to the difference in the ranks

of the two gauge groups, the deformation, unlike the resolution, cannot be achieved in

the context of the SU(N)× SU(N) gauge theory.

The KS solution. The 10-dimensional metric takes the following form [49]:

ds2
10 = h−1/2(τ) ηµνdx

µdxν + h1/2(τ) ds2
6 , (1.27)

where h(τ) is a warp factor to be discussed below, and ds2
6 is the Calabi-Yau metric of

the deformed conifold:

ds2
6 =

ε4/3

2
K(τ)

[
sinh2

(τ
2

) [
(g1)2 + (g2)2

]
(1.28)

+ cosh2
(τ

2

) [
(g3)2 + (g4)2

]
+

1

3K3(τ)

[
dτ 2 + (g5)2

] ]
,

with K(τ) ≡ (sinh τ cosh τ − τ)1/3/ sinh τ .

For τ � 1 we may introduce another radial coordinate r defined by

r2 =
3

25/3
ε4/3e2τ/3 , (1.29)
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and in terms of this coordinate we find ds2
6 → dr2 + r2ds2

T 1,1 .

The basis one-forms gi in terms of which this metric is diagonal are defined by

g1≡ e2 − ε2√
2

, g2 ≡ e1 − ε1√
2

, (1.30)

g3≡ e2 + ε2√
2

, g4 ≡ e1 + ε1√
2

, (1.31)

g5≡ ε3 + cos θ1dφ1 , (1.32)

where the ei are one-forms on S2

e1 ≡ dθ1 , e2 ≡ − sin θ1dφ1 , (1.33)

and the εi a set of one-forms on S3

ε1≡ sinψ sin θ2dφ2 + cosψdθ2 , (1.34)

ε2≡ cosψ sin θ2dφ2 − sinψdθ2 , (1.35)

ε3≡ dψ + cos θ2dφ2 . (1.36)

The NSNS two-form is given by

B2 =
gsMα′

2

τ coth τ − 1

sinh τ

[
sinh2

(τ
2

)
g1 ∧ g2 + cosh2

(τ
2

)
g3 ∧ g4

]
, (1.37)

and the RR fluxes are most compactly written as

F3 =
Mα′

2

{
g3 ∧ g4 ∧ g5 + d

[
sinh τ − τ

2 sinh τ
(g1 ∧ g3 + g2 ∧ g4)

]}
, (1.38)

F̃5 = dC4 +B2 ∧ F3 = (1 + ∗) (B2 ∧ F3) . (1.39)

Note that the complex three-form field of this BPS supergravity solution is imaginary
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self-dual:

∗6G3 = iG3 , G3 = F3 −
i

gs
H3 , (1.40)

where ∗6 denotes the Hodge dual with respect to the unwarped metric ds2
6. This guar-

antees that the dilaton is constant, and we set φ = 0.

The above expressions for the NSNS- and RR-forms follow by making a simple ansatz

consistent with the symmetries of the problem, and solving a system of differential

equations, which owing to the supersymmetry of the problem are only first order [49].

The warp factor is then found to be completely determined up to an additive constant,

which is fixed by demanding that it go to zero at large τ :

h(τ) = (gsMα′)222/3ε−8/3I(τ) , (1.41)

I(τ)≡ 21/3

∫ ∞
τ

dx
x cothx− 1

sinh2 x
(sinhx coshx− x)1/3 . (1.42)

For small τ the warp factor approaches a finite constant since I(0) ≈ 0.71805. This

implies confinement because the chromo-electric flux tube, described by a fundamental

string at τ = 0, has tension

Ts =
1

2πα′
√
h(0)

. (1.43)

The KS solution [49] is SU(2)× SU(2) symmetric and the expressions above can be

written in an explicitly SO(4) invariant way. It also possesses a Z2 symmetry I, which

exchanges (θ1, φ1) with (θ2, φ2) accompanied by the action of −I of SL(2, Z), changing

the signs of the three-form fields.

Examining the metric ds2
6 for τ = 0 we see that it degenerates into

dΩ2
3 =

1

2
ε4/3(2/3)1/3

[
(g3)2 + (g4)2 +

1

2
(g5)2

]
, (1.44)

which is the metric of a round S3, while the S2 spanned by the other two angular

coordinates, and fibered over the S3, shrinks to zero size. In the ten-dimensional metric
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(1.27) this appears multiplied by a factor of h1/2(τ), and thus the radius squared of

the three-sphere at the tip of the conifold is of order gsMα′. Hence for gsM large, the

curvature of the S3, and in fact everywhere in this manifold, is small and the supergravity

approximation reliable.

The field theory interpretation of the KS solution exhibits some unusual features.

The deformation breaks the conformal symmetry of the singular conifold and thus the

gauge couplings now run. At a certain point along the RG flow, the coupling of the

higher rank SU(N + M) group diverges and one is forced to perform a Seiberg duality

transformation [50].

Interchanging the two gauge groups, the theory becomes SU(Ñ)× SU(Ñ +M) with

the same bifundamental field content and superpotential, but with a reduced number of

colors Ñ = N −M . Since this otherwise looks exactly like field theory we started with,

the procedure can be iterated many times, gradually reducing the rank of the gauge

groups along the RG flow. For a careful field theoretic discussion of this quasi-periodic

RG flow, see [12]. In particular, if N = (k+1)M for some integer k, the so-called duality

cascade stops after k steps, resulting in an SU(M) × SU(2M) gauge theory. This IR

field theory exhibits a number of interesting effects reflected in the dual supergravity

background, which include confinement and chiral symmetry breaking.

The KT solution. Let us briefly note here some formulas describing the KT solu-

tion [51], which corresponds to the large τ limit of the more general KS solution. For

simplicity we take gs = α′ = 1, M = 2 and N = 0. In terms of the radial coordinate

r ∼ ε2/3eτ/3 the KT background is given by

ds2 =
1√
h(r)

ηµνdx
µdxν +

√
h(r)(dr2 + r2ds2

T 11) , (1.45)

H3 =
3

r
dr ∧ ω2 , B2 = 3 log

r

r∗
ω2 , F3 = ω3 , (1.46)

F̃5 = (1 + ∗)B2 ∧ F3 = 3 log
r

r∗

[
ω2 ∧ ω3 −

54

h2r5
d4x ∧ dr

]
. (1.47)
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The warp factor differs from the AdS case by an additional logarithmic term

h(r) =
81

8r4

(
1 + 4 log

r

r∗

)
, (1.48)

and the metric of the base of the conifold can be expressed concisely as

ds2
T 11 =

1

9
(g5)2 +

1

6

4∑
i=1

(gi)2 . (1.49)

The volume form is given by

vol =

√
hr5

54
d4x ∧ ω2 ∧ ω3 ∧ dr . (1.50)

In the expressions above we have introduced two harmonic forms,

ω2 =
1

2
(g1 ∧ g2 + g3 ∧ g4) =

1

2
(sin θ1dθ1 ∧ dφ1 − sin θ2dθ2 ∧ dφ2) , (1.51)

and ω3 = ω2 ∧ g5.

1.2.3 Massless Modes of the Warped Throat

As we shall see below, the U(1) baryonic symmetry of the warped deformed conifold is in

fact spontaneously broken, since baryonic operators acquire expectation values. The cor-

responding Goldstone boson is a massless pseudoscalar supergravity fluctuation which

has non-trivial monodromy around D-strings at the bottom of the warped deformed

conifold [52, 53]. Like fundamental strings they fall to the bottom of the conifold (cor-

responding to the IR of the field theory), where they have non-vanishing tension. But

while F-strings are dual to confining strings, D-strings are interpreted as global solitonic

strings in the dual cascading SU(M(k + 1))× SU(Mk) gauge theory.

Thus the warped deformed conifold naturally incorporates a supergravity description
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of the supersymmetric Goldstone mechanism. Below we review the supergravity dual of

a pseudoscalar Goldstone boson, as well as its superpartner, a massless scalar glueball

[52, 53]. In the gauge theory they correspond to fluctuations in the phase and magnitude

of the baryonic condensates, respectively.

The Goldstone mode. A D1-brane couples to the three-form field strength F3, and

therefore we expect a four-dimensional pseudoscalar p(x), defined so that ∗4dp = δF3,

to experience monodromy around the D-string.

The following ansatz for a linear perturbation of the KS solution

δF3 = ∗4dp+ f2(τ) dp ∧ dg5 + f ′2(τ) dp ∧ dτ ∧ g5 , (1.52)

δF̃5 = (1 + ∗)δF3 ∧B2 = (∗4dp−
ε4/3

6K2(τ)
h(τ) dp ∧ dτ ∧ g5) ∧B2 ,

where f ′2 = df2/dτ , falls within the general class of supergravity backgrounds discussed

by Papadopoulos and Tseytlin [54]. The metric, dilaton and B2 field remain unchanged.

This can be shown to satisfy the linearized supergravity equations [52, 53], provided

that d ∗4 dp = 0, i.e. p(x) is massless, and f2(τ) satisfies

− d

dτ
[K4 sinh2 τf ′2] +

8

9K2
f2 =

(gsMα′)2

3ε4/3
(τ coth τ − 1)

(
coth τ − τ

sinh2 τ

)
. (1.53)

The normalizable solution of this equation is given by [52, 53]

f2(τ) = − 2c

K2 sinh2 τ

∫ τ

0

dx h(x) sinh2 x , (1.54)

where c ∼ ε4/3. We find that f2 ∼ τ for small τ , and f2 ∼ τe−2τ/3 for large τ .

As we have remarked above, the U(1) baryon number symmetry acts as Ak → eiαAk,

Bj → e−iαBj. The massless gauge field in AdS5 dual to the baryon number current

originates from the RR 4-form potential δC4 ∼ ω3 ∧ Ã [44, 55].
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The zero-mass pseudoscalar glueball arises from the spontaneous breaking of the

global U(1)B symmetry [56], as seen from the form of δF̃5 in (1.52), which contains a

term ∼ ω3 ∧ dp ∧ dτ that leads us to identify Ã ∼ dp.

If N is an integer multiple of M , the last step of the cascade leads to a SU(2M) ×

SU(M) gauge theory coupled to bifundamental fields Ai, Bj (with i, j = 1, 2). If the

SU(M) gauge coupling were turned off, we would find an SU(2M) gauge theory coupled

to 2M flavors. In this Nf = Nc case, in addition to the usual mesonic branch, there exists

a baryonic branch of the quantum moduli space [57]. This is important for the gauge

theory interpretation of the KS background [49, 56]. Indeed, in addition to mesonic

operators (Nij)
α
β ∼ (AiBj)

α
β , the IR gauge theory has baryonic operators invariant under

the SU(2M)× SU(M) gauge symmetry, as well as the SU(2)× SU(2) global symmetry

rotating Ai, Bj:

A∼ εα1α2...α2M
(A1)α1

1 (A1)α2
2 . . . (A1)αMM (A2)

αM+1

1 (A2)
αM+2

2 . . . (A1)α2M
M , (1.55)

B∼ εα1α2...α2M
(B1)α1

1 (B1)α2
2 . . . (B1)αMM (B2)

αM+1

1 (B2)
αM+2

2 . . . (B1)α2M
M . (1.56)

These operators contribute an additional term to the usual mesonic superpotential:

W = λ(Nij)
α
β(Nk`)

β
αε
ikεj` +X

(
det[(Nij)

α
β ]−AB − Λ4M

2M

)
, (1.57)

where X can be understood as a Lagrange multiplier. The supersymmetry-preserving

vacua include the baryonic branch:

X = 0 ; Nij = 0 ; AB = −Λ4M
2M , (1.58)

where the SO(4) global symmetry rotating Ai, Bj is unbroken. In contrast, this global

symmetry is broken along the mesonic branch Nij 6= 0. Since the supergravity back-

ground of [49] is SO(4) symmetric, it is natural to assume that the dual of this back-
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ground lies on the baryonic branch of the cascading theory. The expectation values of the

baryonic operators spontaneously break the U(1) baryon number symmetry Ak → eiαAk,

Bj → e−iαBj. The KS background corresponds to a vacuum where |A| = |B| = Λ2M
2M ,

which is invariant under the exchange of the A’s with the B’s accompanied by charge

conjugation in both gauge groups. This gives a field theory interpretation to the I

symmetry of the warped deformed conifold background. As noted in [56], the baryonic

branch has complex dimension one, and it can be parametrized by ζ as follows

A = iζΛ2M
2M , B =

i

ζ
Λ2M

2M . (1.59)

The pseudoscalar Goldstone mode must correspond to changing ζ by a phase, since this

is precisely what a U(1)B symmetry transformation does.

Thus the non-compact warped deformed conifold exhibits a supergravity dual of the

Goldstone mechanism due to breaking of the global U(1)B symmetry [52, 53, 56]. On

the other hand, if one considered a warped deformed conifold throat embedded in a

flux compactification, U(1)B would be gauged, the Goldstone boson p(x) would combine

with the U(1) gauge field to form a massive vector, and therefore in this situation we

would find a manifestation of the supersymmetric Higgs mechanism.

The scalar zero-mode. By supersymmetry the massless pseudoscalar is part of

a massless N = 1 chiral multiplet. and therefore there must also be a massless scalar

mode and corresponding Weyl fermion, with the scalar corresponding to changing ζ by a

positive real factor. This scalar zero-mode comes from a metric perturbation that mixes

with the NSNS 2-form potential.

The warped deformed conifold preserves the Z2 interchange symmetry I. However,

the pseudoscalar mode we found breaks this symmetry: from the form of the pertur-

bations (1.52) we see that δF3 is even under the interchange of (θ1, φ1) with (θ2, φ2),

while F3 is odd; similarly δF̃5 is odd while F̃5 is even. Therefore, the scalar mode must
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also break the I symmetry because in the field theory it breaks the symmetry between

the expectation values of |A| and of |B|. The necessary translationally invariant pertur-

bation that preserves the SO(4) but breaks the I symmetry is given by the following

variation of the NSNS 2-form and the metric:

δB2 = χ(τ) dg5 , δG13 = δG24 = λ(τ) , (1.60)

where, for example δG13 = λ(τ) means adding 2λ(τ) g(1g3) to ds2
10. To see that these

components of the metric break the I symmetry, we note that

(e1)2 + (e2)2 − (ε1)2 − (ε2)2 = g1g3 + g3g1 + g2g4 + g4g2 . (1.61)

Defining λ(τ) = h1/2K sinh τ z(τ) one finds [52, 53] that all the linearized supergrav-

ity equations are satisfied provided that

(
(K sinh τ)2 z′

)′
(K sinh τ)2

=

(
2 +

8

9

1

K6
− 4

3

cosh τ

K3

)
z

sinh2 τ
, (1.62)

and

χ′ =
1

2
gsMz(τ)

sinh 2τ − 2τ

sinh2 τ
. (1.63)

The solution of (1.62) for the zero-mode profile is remarkably simple:

z(τ) = s
(τ coth τ − 1)

(sinh 2τ − 2τ)1/3
, (1.64)

where s is a constant. Like the pseudoscalar perturbation, the large τ asymptotic is

again z ∼ τe−2τ/3. We note that the metric perturbation has the very simple form

δG13 ∼ h1/2(τ coth τ − 1). The perturbed metric ds̃2
6 differs from the metric of the

deformed conifold (1.28) by terms ∼ (τ coth τ − 1)(g1g3 + g3g1 + g2g4 + g4g2), which

grow as ln r in the asymptotic radial variable r.
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The scalar zero-mode is actually an exact modulus; there is a one-parameter family

of supersymmetric solutions which break the I symmetry but preserve the SO(4) (an

ansatz with these properties was found in [54], and its linearization agrees with (1.60)).

These backgrounds, the resolved warped deformed conifolds, will be reviewed below.

We add the word resolved because both the resolution of the conifold, which is a Kähler

deformation, and these resolved warped deformed conifolds break the I symmetry. In the

dual gauge theory turning on this mode corresponds to the transformationA → (1+s)A,

B → (1+s)−1B on the baryonic branch. Therefore, s is dual to the I-breaking parameter

of the resolved warped deformed conifold.

The presence of these massless modes is a further indication that the infrared dynam-

ics of the cascading SU(M(k + 1))× SU(Mk) gauge theory, whose supergravity dual is

the warped deformed conifold, is richer than that of the pure glue N = 1 supersymmet-

ric SU(M) theory. The former incorporates a Goldstone supermultiplet, which appears

due to the U(1)B symmetry breaking, as well as solitonic strings dual to the D-strings

placed at τ = 0 in the supergravity background.

In Chapter 3 we will discuss massive modes of the warped throat, which arise from

generalizing the massless scalar and pseudoscalar modes by adding 4-dimensional mo-

mentum, as well as some massive vector excitations related to them by supersymmetry.

1.2.4 The Baryonic Branch

Since the global baryon number symmetry U(1)B is broken by expectation values of

baryonic operators, the spectrum contains the Goldstone boson found above. The

zero-momentum mode of the scalar superpartner of the Goldstone mode leads to a

Lorentz-invariant deformation of the background which describes a small motion along

the baryonic branch. In this subsection we shall extend the discussion from linearized

perturbations around the warped deformed conifold solution to finite deformations, and

describe the supergravity backgrounds dual to the complete baryonic branch. These are
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the resolved warped deformed conifolds, which preserve the SO(4) global symmetry but

break the discrete I symmetry of the warped deformed conifold.

The full set of first-order equations necessary to describe the entire moduli space of

supergravity backgrounds dual to the baryonic branch was derived and solved numer-

ically in [58] (for further discussion, see [59]). This continuous family of supergravity

solutions is parameterized by the modulus of ζ (the phase of ζ is not manifest in these

backgrounds). The corresponding metric can be written in the form of the Papadopoulos-

Tseytlin ansatz [54] in the string frame:

ds2 = h−1/2ηµνdx
µdxν + exds2

M = h−1/2dx2
1,3 +

6∑
i=1

G2
i , (1.65)

where

G1≡ e(x+g)/2 e1 , G2 ≡
cosh τ + a

sinh τ
e(x+g)/2 e2 +

eg

sinh τ
e(x−g)/2 (ε2 − ae2) , (1.66)

G3≡ e(x−g)/2 (ε1 − ae1) , G4 ≡
eg

sinh τ
e(x+g)/2 e2 −

cosh τ + a

sinh τ
e(x−g)/2 (ε2 − ae2) , (1.67)

G5≡ ex/2 v−1/2dτ , G6 ≡ ex/2 v−1/2g5 . (1.68)

These one-forms describe a basis that rotates as we move along the radial direction,

and are particularly convenient since they allow us to write down very simple expressions

for the holomorphic (3, 0) form

Ω = (G1 + iG2) ∧ (G3 + iG4) ∧ (G5 + iG6) , (1.69)

and the fundamental (1, 1) form

J =
i

2

[
(G1+iG2)∧(G1−iG2)+(G3+iG4)∧(G3−iG4)+(G5+iG6)∧(G5−iG6)

]
. (1.70)

While in the warped deformed conifold case there was a single warp factor h(τ),
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now we find several additional functions x(τ), g(τ), a(τ), v(τ). The warp factor h(τ) is

deformed away from (1.41) when |ζ| 6= 1.

The background also contains the fluxes

B2 =h1 (ε1 ∧ ε2 + e1 ∧ e2) + χ (e1 ∧ e2 − ε1 ∧ ε2) + h2 (ε1 ∧ e2 − ε2 ∧ e1) , (1.71)

F3 =−1

2
g5 ∧

[
ε1 ∧ ε2 + e1 ∧ e2 − b (ε1 ∧ e2 − ε2 ∧ e1)

]
−1

2
dτ ∧

[
b′ (ε1 ∧ e1 + ε2 ∧ e2)

]
, (1.72)

F̃5 =F5 + ∗10F5 , with F5 = −(h1 + b h2) e1 ∧ e2 ∧ ε1 ∧ ε2 ∧ ε3 , (1.73)

parameterized by functions h1(τ), h2(τ), b(τ) and χ(τ). In addition, since the 3-form flux

is not imaginary self-dual for |ζ| 6= 1 (i.e. ∗6G3 6= iG3), the dilaton φ now also depends

on the radial coordinate τ .

The functions a and v satisfy a system of coupled first order differential equations

[58] whose solutions are known in closed form only in the warped deformed conifold

and the Chamseddine-Volkov-Maldacena-Nunez (CVMN) [60, 61, 62] limits. All other

functions h, x, g, h1, h2, b, χ, φ are unambiguously determined by a(τ) and v(τ) through

the relations

h= γ U−2
(
e−2φ − 1

)
, γ = 210/3(gsMα′)2ε−8/3 , (1.74)

e2x =
(bC − 1)2

4(aC − 1)2
e2g+2φ(1− e2φ) , (1.75)

e2g =−1− a2 + 2aC , b =
τ

S
, (1.76)

h2 =
e2φ(bC − 1)

2S
, h1 = −h2C , (1.77)

χ′= a(b− C)(aC − 1) e2(φ−g) , (1.78)

φ′=
(C − b) (aC − 1)2

(bC − 1)S
e−2 g , (1.79)

where C ≡ − cosh τ, S ≡ − sinh τ , and we require φ(∞) = 0. In writing these equations

we have specialized to the baryonic branch of the cascading gauge theory by imposing
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appropriate boundary conditions at infinity [59], which guarantee that the background

asymptotes to the warped deformed conifold solution [51]. The full two-parameter fam-

ily of SU(3) structure backgrounds discussed in [58] also includes the CVMN solution

[60, 61, 62], which however is characterized by linear dilaton asymptotics that are qual-

itatively different from the backgrounds discussed here. The baryonic branch family of

supergravity solutions is labelled by one real resolution parameter U [59]. While the

leading asymptotics of all supergravity backgrounds dual to the baryonic branch are

identical to those of the warped deformed conifold, terms subleading at large τ depend

on U . As required, this family of supergravity solutions preserves the SU(2) × SU(2)

symmetry, but for U 6= 0 breaks the Z2 symmetry I.

On the baryonic branch we can consider a transformation that takes ζ into ζ−1, or

equivalently U into −U . This transformation leaves v(τ) invariant and changes a(τ) as

follows

a→ − a

1 + 2a cosh τ
. (1.80)

It is straightforward to check that a e−g is invariant while (1+a cosh τ) e−g changes sign.

This transformation also exchanges eg + a2e−g with e−g and therefore it is equivalent to

the exchange of (θ1, φ1) and (θ2, φ2) involved in the I symmetry.

The baryonic condensates can be calculated on the string theory side of the duality

by identifying the Euclidean D5-branes wrapped over the resolved warped deformed

conifold, with appropriate gauge fields turned on, as the objects dual to the baryonic

operators in the sense of gauge/string duality. The details of this identification will be

the subject of Chapter 4.
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1.3 Superconformal Chern-Simons Theories and an

AdS4/CFT3 Duality

Let us now turn to an example of the AdS/CFT correspondence involving 2+1 dimen-

sional field theory. A long-standing open problem in this area had been to find the

gauge theory dual to the near-horizon geometry of a stack of M2-branes, the AdS4 × S7

background of M-theory.

Significant progress towards this goal was made in the work of Bagger and Lambert

[63, 64, 65], and the closely related work of Gustavsson [66], who succeeded in finding a

2+1 dimensional superconformal Chern-Simons theory with the maximal N = 8 super-

symmetry and manifest SO(8) R-symmetry. These papers were inspired in part by the

ideas of [67, 68], whose original motivation was the search for a theory describing coinci-

dent M2-branes. An interesting clue emerged in [69, 70] where it was shown that, for a

specially chosen level of the Chern-Simons gauge theory, its moduli space coincides with

that of a pair of M2-branes at the R8/Z2 singularity. The Z2 acts by reflection of all 8

coordinates and therefore does not spoil the SO(8) symmetry. However, initial attempts

to match the moduli space of the Chern-Simons gauge theory for arbitrary quantized

level k with that of M2-branes led to a number of puzzles [69, 70, 71]. These puzzles were

resolved by a very interesting modification of the Bagger-Lambert-Gustavsson (BLG)

theory proposed by Aharony, Bergman, Jafferis and Maldacena (ABJM) [72] which, in

particular, allows for a generalization to an arbitrary number of M2-branes.

The original BLG theory is a particular example of a Chern-Simons gauge theory

with gauge group SO(4), but the Chern-Simons term has a somewhat unconventional

form. However, van Raamsdonk [71] rewrote the BLG theory as an SU(2)×SU(2) gauge

theory coupled to bifundamental matter. He found conventional Chern-Simons terms

for each of the SU(2) gauge fields although with opposite signs, as noted already in [73].

A more general class of gauge theories of this type was introduced by Gaiotto and Wit-
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ten (GW) [74] following [75]. In this formulation the opposite signs for the two SU(N)

Chern-Simons terms are related to the SU(N |N) supergroup structure. Although the

GW formulation generally has only N = 4 supersymmetry, it was recently shown how

to enlarge the supersymmetry by adding another hypermultiplet [72, 76]. In particular,

the maximally supersymmetric BLG theory emerges in the SU(2) × SU(2) case when

the matter consists of two bifundamental hypermultiplets. Furthermore, the brane con-

structions presented in [72, 74] indicate that the relevant gauge theories are actually

U(N)×U(N). The presence of the extra interacting U(1) compared to the original BLG

formulation is crucial for the complete M-theory interpretation [72].

Below we will present the BLG theory using N = 2 superspace formulation in 2+1

dimensions, which is quite similar to the familiar N = 1 superspace in 3+1 dimensions.

In such a formulation only the U(1)R symmetry is manifest, while the quartic superpo-

tential has an additional SU(4) global symmetry. For a specially chosen normalization

of the superpotential, the full scalar potential is manifestly SO(8) invariant. In Section

1.3.1, where we establish the superspace formulation of the BLG theory after briefly re-

viewing its components formulation, we demonstrate how this happens through a special

cancellation involving the F- and D-terms.2

In Section 1.3.2 we study its generalizations to U(N)×U(N) gauge theory found by

ABJM [72]. The quartic superpotential of this 2+1 dimensional theory has exactly the

same form as in the 3+1 dimensional theory on N D3-branes at the conifold singularity

[44]. For general N , its global symmetry is SU(2) × SU(2) but for N = 2 it becomes

enhanced to SU(4) [77] (in this case the theory becomes equivalent to the BLG theory

with an extra gauged U(1) [72]). For N > 2 ABJM showed that this theory possesses

N = 6 supersymmetry [72]. In the N = 2 superspace formulation, this means that, for

a specially chosen normalization of the superpotential, the global symmetry is enhanced

2This phenomenon is analogous to what happens when the N = 4 SYM theory in 3+1 dimensions
is written in terms of an N = 1 gauge theory coupled to three chiral superfields. While only the
U(1)R × SU(3) symmetry is manifest in such a formulation, the full SU(4) ∼ SO(6) symmetry is found
in the potential as a result of a specific cancellation between the F- and D-terms.
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to SU(4)R. We demonstrate explicitly how this symmetry enhancement happens in

terms of the component fields, once again due to a special cancellation involving F- and

D-terms.

1.3.1 BLG Theory in Component and N = 2 Superspace For-

mulation

Here we review the BLG theory in van Raamsdonk’s product gauge group formulation

[71], which rewrites it as a superconformal Chern-Simons theory with SU(2) × SU(2)

gauge group and bifundamental matter. It has a manifest global SO(8) R-symmetry

which shows that it is N = 8 supersymmetric.

We use the following notation. Indices transforming under the first SU(2) factor of

the gauge group are a, b, . . ., and for the second factor we use â, b̂, . . .. Fundamental

indices are written as superscript and anti-fundamental indices as subscript. Thus, the

gauge and matter fields are Aab, Â
â
b̂, X

a
b̂, and Ψa

b̂. The conjugate fields have indices

(X†)âb and (Ψ†)âb. Most of the time, however, we will use matrix notation and suppress

gauge indices. Lorentz indices are µ = 0, 1, 2 and the metric on the world volume is

gµν = diag(−1,+1,+1). SO(8) vector indices are I, J, . . .. The fermions a represented

by 32-component Majorana spinors of SO(1, 10) subject to a chirality condition on the

world-volume which leaves 16 real degrees of freedom. The SO(1, 10) spinor indices are

generally omitted.

The action is then given by [71]

S =

∫
d3x tr

[
−(DµXI)†DµXI + iΨ̄†ΓµDµΨ (1.81)

−2if

3
Ψ̄†ΓIJ

(
XIXJ†Ψ +XJΨ†XI + ΨXI†XJ

)
− 8f 2

3
trX [IX†JXK]X†[KXJX†I]

+
1

2f
εµνλ(Aµ∂νAλ +

2i

3
AµAνAλ)−

1

2f
εµνλ(Âµ∂νÂλ +

2i

3
ÂµÂνÂλ)

]
,
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where the covariant derivative is

DµX = ∂µX + iAµX − iXÂµ . (1.82)

The Chern-Simons level k is contained in

f =
2π

k
. (1.83)

The bifundamental scalars XI are related to the original BLG variables xIa with

SO(4) index a through

XI =
1

2
(xI41+ ixIiσ

i) , (1.84)

where σi are the Pauli matrices. It is important to note that the scalars satisfy the

reality condition

X∗ = −εXε , (1.85)

where ε = iσ2. This condition can only be imposed for the gauge group SU(2)× SU(2),

which might seem to present an obstacle for generalizing the theory to rank N > 2. This

obstacle was overcome by using complex bifundamental superfields [72], and this will be

reviewed in Section 1.3.2.

Finally we note the form of the SU(2)× SU(2) gauge transformations

Aµ → UAµU
† − iU∂µU † , X → UXÛ † , (1.86)

Âµ → ÛÂµÛ
† − iÛ∂µÛ † , X† → ÛX†U † ,

where U, Û ∈ SU(2).
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Superfield formulation. Let us now write the BLG theory (1.81) in N = 2 super-

space. Of the SO(8)R symmetry this formalism leaves only the subgroup U(1)R×SU(4)

manifest. However, we will demonstrate how the SO(8) R-symmetry is recovered when

the action is expressed in terms of component fields. Our notations and many useful

superspace identities are summarized in Appendix A.2.

The gauge fields A and Â become components of two gauge vector superfields V and

V̂ . Their component expansions in Wess-Zumino gauge are

V = 2i θθ̄ σ(x)− 2 θγmθ̄ Am(x) +
√

2i θ2 θ̄χ†σ(x)−
√

2i θ̄2 θχσ(x) + θ2 θ̄2 D(x) , (1.87)

and correspondingly for V̂ . Here σ and D are auxiliary scalars, and χσ and χ†σ are

auxiliary fermions. The matter fields X and Ψ are accommodated in chiral superfields Z

and anti-chiral superfields Z̄ which transform in the fundamental and anti-fundamental

representation of SU(4), respectively. Their SU(4) indices ZA and Z̄A will often be

suppressed. The component expansions are

Z =Z(xL) +
√

2θζ(xL) + θ2 F (xL) , (1.88)

Z̄ =Z†(xR)−
√

2θ̄ζ†(xR)− θ̄2 F †(xR) . (1.89)

The scalars Z are complex combinations of the BLG scalars

ZA = XA + iXA+4 for A = 1, . . . , 4 . (1.90)

We define two operations which conjugate the SU(2) representations and the SU(4)
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representation, respectively, as3

Z‡A := −ε(ZA)Tε = X†A + iX†A+4 , (1.91)

Z̄A := −ε(ZA)∗ε = XA − iXA+4 . (1.92)

Separating these two operations in possible only for gauge group SU(2) × SU(2), since

for gauge groups of higher rank there is no reality condition analogous to (1.85). In

these cases only the combined action, which is the hermitian conjugate Z† ≡ Z̄‡, makes

sense. The possibility to conjugate the SU(4) representation independently from the

SU(2)× SU(2) representation allows us to invert (1.90):

XA = 1
2

(
ZA + Z̄A

)
, XA+4 = 1

2i

(
ZA − Z̄A

)
. (1.93)

The superspace action S = SCS + Smat + Spot consists of a Chern-Simons part, a

matter part and a superpotential given by

SCS =−iK
∫
d3x d4θ

∫ 1

0

dt tr
[
VD̄α

(
etVDαe

−tV
)
− V̂D̄α

(
etV̂Dαe

−tV̂
)]

, (1.94)

Smat =−
∫
d3x d4θ tr Z̄Ae−VZAeV̂ , (1.95)

Spot =L

∫
d3x d2θ W(Z) + L

∫
d3x d2θ̄ W̄(Z̄) , (1.96)

with

W =
1

4!
εABCD trZAZ‡BZCZ‡D , W̄ =

1

4!
εABCD tr Z̄AZ̄‡BZ̄CZ̄

‡
D . (1.97)

In terms of SO(4) variables Za, which are related to the SU(2)× SU(2) fields according

3We should caution that the bar denoting the anti-chiral superfield Z̄ is just a label and does not
mean that the component fields are conjugated by (1.92). In fact, the components of Z̄ are the hermitian
conjugates, see (1.89).
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to (1.84), it assumes the form

W = − 1

8 · 4!
εABCDε

abcdZAa ZBb ZCc ZDd . (1.98)

This superpotential possesses only a U(1)R × SU(4) global symmetry as opposed to the

SO(8)R symmetry of the BLG theory. We will show in the following that when the

normalization constants K and L are related as K = 1
L

, then the R-symmetry of the

model is enhanced to SO(8). If we furthermore set L = 4f , we recover precisely the

action (1.81).

The gauge transformations are given by [78]

etV → eiΛetVe−iΛ̄ , etV̂ → eiΛ̂etV̂e−i
ˆ̄Λ , Z → eiΛZe−iΛ̂ , Z̄ → ei

ˆ̄ΛZ̄e−iΛ̄ , (1.99)

where the parameters Λ, Λ̂ and Λ̄, ˆ̄Λ are chiral and anti-chiral superfields, respectively.

Their t dependence is determined by consistency of the transformation law for V and V̂ .

In order to preserve the WZ gauge, these fields have to be simply

Λ = λ(xL) , Λ̄ = λ(xR) , Λ̂ = λ̂(xL) , ˆ̄Λ = λ̂(xR) . (1.100)

with λ and λ̂ real. These transformations reduce to the ones given in (1.86) when we

set U(x) ≡ eiλ(x) and Û(x) ≡ eiλ̂(x).

Expressions in components. We will now show that the above superspace action

describes the BLG theory by expanding it into component fields. The Chern-Simons

action then reads

SCS = K

∫
d3x tr

[
2εµνλ(Aµ∂νAλ +

2i

3
AµAνAλ)− 2εµνλ(Âµ∂νÂλ +

2i

3
ÂµÂνÂλ)

+ 2iχ†σχσ − 2iχ̂†σχ̂σ − 4Dσ + 4D̂σ̂
]
, (1.101)
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and the matter action becomes4

Smat =

∫
d3x tr

[
− (DµZ)†DµZ + iζ† /Dζ + F †F + Z†DZ − Z†ZD̂

+ iZ†χσζ + iζ†χ†σZ − iZ†ζχ̂σ − iζ†Zχ̂†σ

−Z†σ2Z − Z†Zσ̂2 + 2Z†σZσ̂ − iζ†σζ + iζ†ζσ̂
]
. (1.102)

The gauge covariant derivative is defined in (1.82). The superpotential contains the

following interactions of the component fields

Spot = − L
12

∫
d3x tr

[
εABCD

(
ζAζ‡BZCZ‡D − ζ‡AζBZ‡CZD + ζAZ‡BζCZ‡D

)
+ εABCD

(
ζ̄‡Aζ̄BZ̄

‡
CZ̄D − ζ̄Aζ̄

‡
BZ̄CZ̄

‡
D + ζ̄‡AZ̄B ζ̄

‡
CZ̄D

)
+ 2εABCDF

AZ‡BZCZ‡D − 2εABCDF̄ ‡AZ̄BZ̄
‡
CZ̄D

]
. (1.103)

Integrating out auxiliary fields. The fields D and D̂ are Lagrange multipliers for

the constraints

σn =
1

4K
tr tnZZ† , σ̂n =

1

4K
tr tnZ†Z , (1.104)

where tn are the generators of SU(2). The equations of motion for the χσ’s are

χnσ = − 1

2K
tr tnZζ† , (χ†σ)n = − 1

2K
tr tnζZ† , (1.105)

χ̂nσ = − 1

2K
tr tnζ†Z , (χ̂†σ)n = − 1

2K
tr tnZ†ζ , (1.106)

4Let us remind the reader that our notation suppresses indices in standard positions, e.g.

trZ†χσζ ≡ trZ†Aχ
α
σζ

A
α ≡ (Z†A)âb(χασ)bc(ζAα )câ .

The standard position of an index is defined when the field is introduced, and those for spinor indices
are explained in Appendix A.2.
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and the ones for F are

FA = −L
6
εABCDZ̄BZ̄

‡
CZ̄D , F †A = +

L

6
εABCDZ

‡BZCZ‡D . (1.107)

Using these relations one finds the following action

S =

∫
d3x

[
2K εµνλ tr

(
Aµ∂νAλ + 2i

3
AµAνAλ − Âµ∂νÂλ − 2i

3
ÂµÂνÂλ

)
− tr(DµZ)†DµZ + i tr ζ† /Dζ − Vferm − Vbos

]
. (1.108)

The quartic terms Vferm are interactions between fermions and bosons, and the sextic

terms Vbos are interactions between bosons only. Separated according to their origin we

have

V ferm
D =

i

4K
tr
[
ζAζ†AZ

BZ†B − ζ
†
Aζ

AZ†BZ
B + 2ζAZ†AZ

Bζ†B − 2Z†Aζ
Aζ†BZ

B
]
, (1.109)

V ferm
F =

L

12
εABCD tr

[
ζAζ‡BZCZ‡D − ζ‡AζBZ‡CZD + ζAZ‡BζCZ‡D

]
+
L

12
εABCD tr

[
ζ̄‡Aζ̄BZ̄

‡
CZ̄D − ζ̄Aζ̄

‡
BZ̄CZ̄

‡
D + ζ̄‡AZ̄B ζ̄

‡
CZ̄D

]
, (1.110)

and

V bos
D =

1

16K2
tr
[
ZAZ†AZ

BZ†BZ
CZ†C + Z†AZ

AZ†BZ
BZ†CZ

C − 2Z†AZ
BZ†BZ

AZ†CZ
C
]
, (1.111)

V bos
F =−L

2

36
εABCGε

DEFG trZ‡AZBZ‡CZ̄DZ̄
‡
EZ̄F . (1.112)

When substituting in (1.90) we find that for K = 1
L

all sextic interactions can be joined

together to

V bos =
L2

6
trX [IX†JXK]X†[KXJX†I] . (1.113)

Furthermore, setting L = 4f , this is precisely the scalar potential of the BLG theory

(1.81). With this choice also the other coefficients match exactly.
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1.3.2 ABJM U(N)× U(N) Gauge Theory in Superspace

As remarked above, it is not immediately obvious how to generalize van Raamsdonk’s

formulation of the BLG theory to higher rank gauge groups. This difficulty is also evident

in our superspace formulation, since the manifestly SU(4) invariant superpotential is

gauge invariant only for SU(2)× SU(2) gauge theory.

The way to circumvent this difficulty is the generalization proposed by ABJM [72].

Their key idea is to give up the manifest global SU(4) invariance by forming the following

complex combinations of the bifundamental fields:

Z1 = X1 + iX5 , W1 = X3† + iX7† , (1.114)

Z2 = X2 + iX6 , W2 = X4† + iX8† . (1.115)

Promoting these fields to chiral superfields, the superpotential of the BLG theory (1.97)

may be written as [72]

Spot = L

∫
d3x d2θ W(Z,W) + L

∫
d3x d2θ̄ W̄(Z̄, W̄) , (1.116)

with

W =
1

4
εACε

BD trZAWBZCWD , W̄ =
1

4
εACεBD tr Z̄AW̄BZ̄CW̄D . (1.117)

This form of the superpotential is exactly the same as for the theory of D3-branes on

the conifold [44] and it generalizes readily to SU(N)× SU(N) gauge group. This super-

potential has a global symmetry SU(2)× SU(2) and also a “baryonic” U(1) symmetry

ZA → eiαZA , WB → e−iαWB . (1.118)

In the 3+1 dimensional case this symmetry is originally gauged, but far in the IR
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it becomes global [44]. However, in the present 2+1 dimensional example this does not

happen, so it is natural to add it to the gauge symmetry [72]. Including also the trivial

neutral U(1), we thus find the U(N)×U(N) Chern-Simons gauge theory at level k. The

gauging of the symmetry (1.118) seems important for obtaining the correct M-theory

interpretation for arbitrary k and N . Since this symmetry corresponds to simultaneous

rotation of the 4 complex coordinates of C4 transverse to the M2-branes, this space

actually turns into an orbifold C4/Zk [72]. Because of this gauging, even for N = 2 the

ABJM theory is slightly different from the BLG theory.

Let us summarize the properties of the ABJM theory [72] and explicitly prove that

its U(1)R × SU(2) × SU(2) global symmetry becomes enhanced to SU(4)R. The fields

Z and W transform in the (2,1) and the (1, 2̄) of the global SU(2) × SU(2) and in

the (N, N̄) and the (N̄,N) of the gauge group U(N)× U(N), respectively. We use the

following conventions for SU(2)×SU(2) indices: ZA, Z̄A,WA, W̄A and for U(N)×U(N)

indices: Zaâ, Z̄ âa, W â
a, W̄a

â. The gauge superfields have indices Vab and V̂ âb̂. The

component fields for Z, Z̄ and V are as previously in (1.88), (1.89) and (1.87). The

components of W and W̄ will be denoted by

W =W (xL) +
√

2θω(xL) + θ2G(xL) , (1.119)

W̄ =W †(xR)−
√

2θ̄ω†(xR)− θ̄2G†(xR) . (1.120)

The Chern-Simons action is formally unaltered (1.94), the matter part (1.95) splits into

Smat =

∫
d3x d4θ tr

[
−Z̄Ae−VZAeV̂ − W̄Ae−V̂WAe

V
]
, (1.121)

and the superpotential is given by (1.116). The symmetry enhancement to SU(4)R

requires the normalization constants in (1.94) and (1.116) to be related as K = 1
L

.
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Expressions in components. The component form of the Chern-Simons action has

been computed in (1.101) and the matter action involving Z looks identical to (1.102)

where now Z, ζ, F have only two components. The matter action for W is analogously

given by

SWmat =

∫
d3x tr

[
− (DµW )†DµW + iω† /Dω +G†G+W †D̂W −W †WD

+ iW †χ̂σω + iω†χ̂†σW − iW †ωχσ − iω†Wχ†σ

−W †σ̂2W −W †Wσ2 + 2W †σ̂Wσ − iω†σ̂ω + iω†ωσ
]
, (1.122)

where DµW = ∂µW + iÂµW − iWAµ. The superpotential expands to

Spot =
L

4

∫
d3x tr

[
εAC ε

BD
(

2FAWBZ
CWD + 2ZAWBZ

CGD − 2ζAWBZ
CωD

−2ζAωBZ
CWD − ZAωBZ

CωD − ζAWBζ
CWD

)
− εAC εBD

(
2F †AW

†BZ†CW
†D + 2Z†AW

†BZ†CG
†D + 2ζ†AW

†BZ†Cω
†D

+2ζ†Aω
†BZ†CW

†D + Z†Aω
†BZ†Cω

†D + ζ†AW
†Bζ†CW

†D
)]

.(1.123)

Integrating out auxiliary fields. The auxiliary fields can be replaced by means of

the following equations:

σn =
1

4K
trT n

(
ZZ† −W †W

)
, σ̂n =

1

4K
trT n

(
Z†Z −WW †) , (1.124)

χnσ = − 1

2K
trT n

(
Zζ† − ω†W

)
, (χ†σ)n = − 1

2K
trT n

(
ζZ† −W †ω

)
, (1.125)

χ̂nσ = − 1

2K
trT n

(
ζ†Z −Wω†

)
, (χ̂†σ)n = − 1

2K
trT n

(
Z†ζ − ωW †) , (1.126)

FA = +
L

2
εACεBDW

†BZ†CW
†D , GA = −L

2
εACε

BDZ†BW
†CZ†D , (1.127)

F †A = −L
2
εACε

BDWBZ
CWD , G†A = +

L

2
εACεBDZ

BWCZ
D . (1.128)
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Then the complete action reads

S =

∫
d3x

[
2K εµνλ tr

(
Aµ∂νAλ + 2i

3
AµAνAλ − Âµ∂νÂλ − 2i

3
ÂµÂνÂλ

)
− tr(DµZ)†DµZ − tr(DµW )†DµW + i tr ζ† /Dζ + i trω† /Dω

− Vferm − Vbos

]
, (1.129)

with the potentials

V ferm
D = (1.130)

i

4K
tr
[(
ζAζ†A − ω

†AωA
)(
ZBZ†B −W

†BWB

)
−
(
ζ†Aζ

A − ωAω†A
)(
Z†BZ

B −WBW
†B)]+

i

2K
tr
[(
ζAZ†A −W

†AωA
)(
ZBζ†B − ω

†BWB

)
−
(
Z†Aζ

A − ωAW †A)(ζ†BZB −WBω
†B)] ,

V ferm
F = (1.131)

L

4
εACε

BD tr
[
2ζAWBZ

CωD + 2ζAωBZ
CWD + ZAωBZ

CωD + ζAWBζ
CWD

]
+

L

4
εACεBD tr

[
2ζ†AW

†BZ†Cω
†D + 2ζ†Aω

†BZ†CW
†D + Z†Aω

†BZ†Cω
†D + ζ†AW

†Bζ†CW
†D
]
,

and

V bos
D =

1

16K2
tr
[(
ZAZ†A +W †AWA

)(
ZBZ†B −W

†BWB

)(
ZCZ†C −W

†CWC

)
(1.132)

+
(
Z†AZ

A +WAW
†A)(Z†BZB −WBW

†B)(Z†CZC −WCW
†C)

−2Z†A
(
ZBZ†B −W

†BWB

)
ZA
(
Z†CZ

C −WCW
†C)

−2W †A(Z†BZB −WBW
†B)WA

(
ZCZ†C −W

†CWC

)]
,

V bos
F =−L

2

4
tr
[
W †AZ†BW

†CWAZ
BWC −W †AZ†BW

†CWCZ
BWA (1.133)

+Z†AW
†BZ†CZ

AWBZ
C − Z†AW

†BZ†CZ
CWBZ

A
]
.

Let us note that V bos
F and V bos

D are separately non-negative. Indeed, the F-term
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contribution is related to the superpotential W through

V bos
F =

∣∣∣∣ ∂W

∂ZA

∣∣∣∣2 +

∣∣∣∣ ∂W

∂WA

∣∣∣∣2 = tr
[
F †AF

A +G†AGA

]
, (1.134)

with FA and GA from (1.127) and (1.128). The D-term contribution may be written as

V bos
D = tr

[
N †AN

A +M †AMA

]
, (1.135)

where NA = σZA − ZAσ̂ and MA = σ̂WA −WAσ. Thus, the total bosonic potential

vanishes if and only if

FA = GA = NA = MA = 0 . (1.136)

SU(4) invariance. If the coefficients of the Chern-Simons action and the superpoten-

tial are related by K = 1
L

, then the R-symmetry of the theory is enhanced to SU(4).5

In order to make this symmetry manifest we combine the SU(2) fields Z and W into

fundamental and anti-fundamental representations of SU(4) as

Y A = {ZA,W †A} , Y †A = {Z†A,WA} , (1.137)

where the index A on the left hand side now runs from 1 to 4. Then the potential can

be written as [72]

V bos =− L
2

48
tr
[
Y AY †AY

BY †BY
CY †C + Y †AY

AY †BY
BY †CY

C

+ 4Y AY †BY
CY †AY

BY †C − 6Y AY †BY
BY †AY

CY †C

]
. (1.138)

The fermions have to be combined as follows

ψA = {εABζB e−iπ/4,−εABω†B eiπ/4} , ψA† = {−εABζ†B e
iπ/4, εABωB e

−iπ/4} , (1.139)

5This SU(4)R symmetry should not be confused with the global SU(4) of the BLG theory. The latter
is not manifest in the ABJM theory, but should nevertheless be present for k = 1 and k = 2 [72].
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and we can write fermionic interactions in the manifestly SU(4) invariant way

V ferm =
iL

4
tr
[
Y †AY

AψB†ψB − Y AY †AψBψ
B† + 2Y AY †BψAψ

B† − 2Y †AY
BψA†ψB

− εABCDY †AψBY
†
CψD + εABCDY

AψB†Y CψD†
]
. (1.140)

Thus, the U(1)R × SU(2) × SU(2) global symmetry is enhanced to SU(4)R symmetry,

with the U(1)R corresponding to the generator 1
2

diag(1, 1,−1,−1). This shows that the

theory in general possesses N = 6 supersymmetry.

In [72] it was proposed that this U(N) × U(N) Chern-Simons theory at level k

describes the world volume of N coincident M2-branes placed at the Zk orbifold of C4

where the action on the 4 complex coordinates6 is yA → e2πi/kyA. This action preserves

the SU(4) symmetry that rotates them, which in the gauge theory is realized as the

R-symmetry. The N = 6 supersymmetry of this orbifold can be checked as follows. The

generator of Zk acts on the spinors of SO(8) as

Ψ→ e2πi(s1+s2+s3+s4)/kΨ , (1.141)

where si = ±1/2 are the spinor weights. The chirality projection implies that the sum

of all si must be even, producing an 8-dimensional representation. The spinors that

are left invariant by the orbifold have
∑4

i=1 si = 0 (mod k). This selects 6 out of the 8

spinors; therefore, the theory on M2-branes has 12 supercharges in perfect agreement

with the Chern-Simons gauge theory with general level k. This constitutes just one of

many pieces of evidence that strongly suggest that the theory reviewed in this section is

indeed dual to M-theory on AdS4 × S7/Zk with N units of flux. For k = 1 or 2 there is

further enhancement to N = 8 supersymmetry, which is subtle in the gauge theory [72]

and requires the introduction of monopole operators, as we will discuss in Chapter 5.

6Let us note that these coordinates are not the same as the complex coordinates zA natural for the
superspace formulation of BLG theory in Section 1.3.1. They are related through y1 = z1, y2 = z2, y3 =
z̄3, y4 = z̄4.

41



Chapter 2

On the Strong Coupling Scaling

Dimension of High Spin Operators

2.1 Introduction

The dimensions of high-spin operators are important observables in gauge theories. It

is well-known that the anomalous dimension of a twist-2 operator grows logarithmically

for large spin S,

∆− S = f(g) lnS +O(S0) , with g =

√
g2
YMN

4π
. (2.1)

This was demonstrated early on at one-loop order [24, 25] and at two loops [79] where

a cancellation of ln3 S terms occurs. There are solid arguments that (2.1) holds to all

orders in perturbation theory [80, 81, 82], and that it also applies to high-spin operators

of twist greater than two [29]. The function of coupling f(g) also measures the anomalous

dimension of a cusp in a light-like Wilson loop, and is of definite physical interest in

QCD.

There has been significant interest in determining f(g) in the N = 4 SYM theory.

This is partly due to the fact that the AdS/CFT correspondence [1, 2, 3] relates the
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large g behavior of f to the energy of a folded string spinning around the center of a

weakly curved AdS5 space [20]. This gives the prediction that f(g) → 4g at strong

coupling. The same result was obtained from studying the cusp anomaly using string

theory methods [83]. Furthermore, the semi-classical expansion for the spinning string

energy predicts the following correction [28]:

f(g) = 4g − 3 ln 2

π
+O(1/g) . (2.2)

It is of obvious interest to confirm these explicit predictions of string theory using ex-

trapolation of the perturbative expansion for f(g) provided by the gauge theory.

Explicit perturbative calculations are quite formidable, and until a few years ago

were available only up to three-loop order [35, 84]:

f(g) = 8g2 − 8

3
π2g4 +

88

45
π4g6 +O(g8) . (2.3)

Kotikov, Lipatov, Onishchenko and Velizhanin [35] extracted the N = 4 answer from

the QCD calculation of [85] using their proposed transcendentality principle stating that

each expansion coefficient has terms of the same degree of transcendentality.

Since then, the methods of integrability in AdS/CFT1 [36, 37, 38], prompted in part

by [19, 20], have led to dramatic progress in studying the weak coupling expansion.

In the beautiful paper by Beisert, Eden and Staudacher [40], which followed closely

the important earlier work in [30, 39], an integral equation that determines f(g) was

proposed, yielding an expansion of f(g) to an arbitrary desired order. The expansion

coefficients obey the KLOV transcendentality principle. In an independent remarkable

paper by Bern, Czakon, Dixon, Kosower and Smirnov [89], an explicit calculation led to

1For earlier work on integrability in gauge theories, see [86, 87, 88], for reviews see [22, 23].
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a value of the four-loop term,

−16

(
73

630
π6 + 4ζ(3)2

)
g8 , (2.4)

which agrees with the idea advanced in [40, 89] that the exact expansion of f(g) is

related to that found in [30] simply by multiplying each ζ-function of an odd argument

by an i, ζ(2n + 1) → iζ(2n + 1). The integral equation of [40] generates precisely this

perturbative expansion for f(g).

A crucial property of this integral equation is that it is related through integrability

to the “dressing phase” in the magnon S-matrix, whose general form was deduced in

[32, 90]. In [40] a perturbative expansion of the phase was given, which starts at four-

loop order, and at strong coupling coincides with the earlier results from string theory

[39, 32, 91, 92, 93]. An important requirement of crossing symmetry [94] is satisfied by

this phase, and it also satisfies the KLOV transcendentality priciple. Therefore, this

phase is very likely to describe the exact magnon S-matrix at any coupling [40], which

constitutes remarkable progress in the understanding of the N = 4 SYM theory, and of

the AdS/CFT correspondence.

The papers [40, 89] thoroughly studied the perturbative expansion of f(g) which

follows from the integral equation. Although the expansion has a finite radius of conver-

gence, as is customary in certain planar theories (see, for example, [95]), it is expected

to determine the function completely. Solving the integral equation of [40] is an efficient

tool for attacking this problem. In this chapter we solve the integral equation numeri-

cally at intermediate and strong coupling, and show that f(g) is a smooth function that

approaches the asymptotic form (2.2) predicted by string theory for g > 1. The two

leading strong coupling terms match those in (2.2) with high accuracy. This constitutes

a remarkable confirmation of the AdS/CFT correspondence for this non-supersymmetric

observable.
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This chapter is based on the papers [96, 97] coauthored with L. F. Alday, G. Aru-

tyunov, S. Benvenuti, B. Eden, I. R. Klebanov and A. Scardicchio, and its structure is as

follows. The BES integral equation is reviewed and solved numerically in Section 2.2. An

interpretation of these results and their implications for the AdS/CFT correspondence

are given in Section 2.3, where we also summarize further investigations which are the

subject of the remainder of this chapter. In Section 2.4 we derive the exact fluctuation

density that solves the integral equation in the strong coupling limit, before we conclude

in Section 2.5.

2.2 Numerical Study of the Integral Equation

The cusp anomalous dimension f(g) can be written as [30, 40, 98]

f(g) = 16g2σ̂(0) , (2.5)

where σ̂(t) obeys the integral equation

σ̂(t) =
t

et − 1

(
K(2gt, 0)− 4g2

∫ ∞
0

dt′K(2gt, 2gt′)σ̂(t′)

)
, (2.6)

with the kernel given by [40]

K(t, t′) = K(m)(t, t′) + 2K(c)(t, t′) . (2.7)

The main scattering kernel K(m) of [30] is

K(m)(t, t′) =
J1(t)J0(t′)− J0(t)J1(t′)

t− t′
, (2.8)
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and the dressing kernel K(c) is defined as the convolution

K(c)(t, t′) = 4g2

∫ ∞
0

dt′′K1(t, 2gt′′)
t′′

et′′ − 1
K0(2gt′′, t′) , (2.9)

where K0 and K1 denote the parts of the kernel that are even and odd, respectively,

under change of sign of t and t′:

K0(t, t′) =
tJ1(t)J0(t′)− t′J0(t)J1(t′)

t2 − t′2
=

2

t t′

∞∑
n=1

(2n− 1)J2n−1(t)J2n−1(t′) , (2.10)

K1(t, t′) =
t′J1(t)J0(t′)− tJ0(t)J1(t′)

t2 − t′2
=

2

t t′

∞∑
n=1

(2n)J2n(t)J2n(t′) . (2.11)

We find it useful to introduce the function

s(t) =
et − 1

t
σ̂(t) , (2.12)

in terms of which the integral equation becomes

s(t) = K(2gt, 0)− 4g2

∫ ∞
0

dt′K(2gt, 2gt′)
t′

et′ − 1
s(t′) . (2.13)

Again, f(g) = 16g2s(0).

Both K(m) and K(c) can conveniently be expanded as sums of products of functions

of t and functions of t′:

K(m)(t, t′) = K0(t, t′) +K1(t, t′) =
2

t t′

∞∑
n=1

nJn(t)Jn(t′) , (2.14)

and

K(c)(t, t′) =
∞∑
n=1

∞∑
m=1

8n(2m− 1)

t t′
Z2n,2m−1J2n(t)J2m−1(t′) . (2.15)
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This suggests writing the solution in terms of linearly independent functions as

s(t) =
∑
n≥1

sn
Jn(2gt)

2gt
, (2.16)

so that the integral equation becomes a matrix equation for the coefficients sn. The

desired function f(g) is now

f(g) = 8g2s1 . (2.17)

It is convenient to define the matrix Zmn as

Zmn ≡
∫ ∞

0

dt
Jm(2gt)Jn(2gt)

t(et − 1)
. (2.18)

Using the representations (2.14) and (2.15) of the kernels and (2.16) for s(t), the integral

equation above is now of the schematic form

sn = hn −
∑
m≥1

(
K(m)
nm + 2K(c)

nm

)
sm , (2.19)

whose solution formally is

s =
1

1 +K(m) + 2K(c)
h . (2.20)

The matrices appearing in (2.19) are

K(m)
nm = 2(NZ)nm , (2.21)

K(c)
nm = 2(CZ)nm , (2.22)

Cnm = 2(PNZQN)nm , (2.23)

where Q = diag(1, 0, 1, 0, ...), P = diag(0, 1, 0, 1, ...), N = diag(1, 2, 3, ...) and the vector

h can be written as h = (1 + 2C)e, where e = (1, 0, 0, ...)T. The crucial point for the

numerics to work is that the matrix elements of Z decay sufficiently fast with increasing
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m,n (they decay like e−max(m,n)/g). For intermediate g (say g < 20) we can work with

moderate size d by d matrices, where d does not have to be much larger than g. The

integrals in Znm can be obtained numerically without much effort and so we can solve

for the sn. We find that the results are stable with respect to increasing d.

Even though at strong coupling all elements of Znm are of the same order in 1/g,

those far from the upper left corner are numerically small (the leading terms in 1/g are

suppressed by a factor [(m−n− 1)(m−n+ 1)(m+n− 1)(m+n+ 1)]−1 for m 6= n± 1).

This last fact makes the numerics surprisingly convergent even at large g and moreover

gives some hope that the analytic form of the strong coupling expansion of f(g) could

be obtained from a perturbation theory for the matrix equation.

Therefore, when formulated in terms of the Zmn, the problem becomes amenable to

numerical study at all values of the coupling. We find that the numerical procedure

converges rather rapidly, and truncate the series expansions of s(t) and of the kernel

after the first 30 orders of Bessel functions.

The function f(g) is the lowest curve plotted in Figure 1. For comparison, we also

plot fm(g) which solves the integral equation with kernel K(m) [30], and f0(g) which

solves the integral equation with kernel K(m) + K(c). Clearly, these functions differ at

strong coupling. The function f(g) is monotonic and reaches the asymptotic, linear

form quite early, for g ' 1. We can then study the asymptotic, large g form easily and

compare it with the prediction from string theory. The best fit result (using the range

2 < g < 20) is

f(g) = (4.000000±0.000001)g−(0.661907±0.000002)−0.0232± 0.0001

g
+. . . . (2.24)

The first two terms are in remarkable agreement with the string theory result (2.2),

while the third term is a numerical prediction for the 1/g term in the strong coupling

expansion.
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Figure 2.1: Plot of the solutions of the integral equations: fm(g) for the ES kernel K(m)

(upper curve, red), f0(g) for the kernel K(m) + K(c) (middle curve, green), and f(g)
for the BES kernel K(m) + 2K(c) (lower curve, blue). Notice the different asymptotic
behaviors. The inset shows the three functions in the crossover region 0 < g < 1.

2.3 Discussion of Results and Further Investigations

A very satisfying result of this investigation is that the BES integral equation yields a

smooth universal function f(g) whose strong coupling expansion is in excellent numerical

agreement with the spinning string predictions of [20, 28]. This provides a highly non-

trivial confirmation of the AdS/CFT correspondence.

The agreement of this strong coupling expansion was anticipated in [40] based on a

similar agreement of the dressing phase. However, some concerns about this argument

were raised in [89] based on the slow convergence of the numerical extrapolations. Luck-

ily, our numerical methods employed in solving the integral equation converge rapidly

and produce a smooth function that approaches the asymptotics (2.2). The cross-over
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region of f(g) where it changes from the perturbative to the linear behavior lies right

around the radius of convergence, gc = 1/4, corresponding to g2
YMN = π2.

Analytic Structure. The qualitative structure of the interpolating function f(g) is

quite similar to that involved in the circular Wilson loop, where the conjectured exact

result [99, 100] is

ln

(
I1(4πg)

2πg

)
. (2.25)

The function (2.25) is analytic on the complex plane, with a series of branch cuts along

the imaginary axis, and an essential singularity at infinity. The function f(g) is also

expected to have an infinite number of branch cuts along the imaginary axis, and an

essential singularity at infinity [40].

Let us compare this with the exact anomalous dimension of a single giant magnon

of momentum p [31, 93, 101, 102, 103]:

−1 +

√
1 + 16g2 sin2

(p
2

)
. (2.26)

This function has a single branch cut along the imaginary axis, going from g = i

4 sin( p2)

to infinity, and no essential singularity at infinity. Observables of the gauge theory are

composites of giant magnons with various momenta p ∈ (0, 2π). We thus expect the

anomalous dimension of a generic unprotected operator to have a superposition of many

cuts along the imaginary axis. This should endow a generic multi-magnon state with an

analytic structure similar to that of f(g).

We found numerically the presence of the first two branch cuts of f(g) on the imag-

inary axis, starting at g = ±ni
4

, n = 1, 2. The first of them, which also occurs for the

giant magnon with maximal momentum p = π, agrees with the summation of the per-

turbative series [40]. The full structure of f(g) is expected to contain an infinite number

of branch cuts accumulating at infinity, where an essential singularity is present.
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Fluctuation Density. It is remarkable that the integral equation of [40] allows the

universal scaling function f(g), which is not a BPS quantity, to be solved for. This

amounts to evaluating the fluctuation density σ̂(t) at the origin, t = 0, but of course

the full function σ̂(t) is of interest in its own right, and in the following section we shall

derive an exact analytic expression for it in the strong coupling limit.

If one insists on truncating the BES equation at leading order for large g the kernel

becomes degenerate and therefore a unique solution for σ̂(t) cannot be found without

additional assumptions. However, for finite values of g the solution is unique and can

be found numerically with high precision. These two statements are consistent because

expanding the BES equation in a power series in 1/g we find a second equation at

subleading order that removes any ambiguity in the strong coupling solution σ̂(t).

To gain some intuition our approach will be to first investigate the solution numeri-

cally for finite values of the coupling, which will suggest a simple additional requirement

that should be imposed on the underdetermined, truncated BES equation to single out a

unique solution in the strong coupling limit which is the convergence point of our numer-

ics. After this additional requirement is identified, we find an analytic solution for σ̂(t)

in the strong coupling limit. We then show that this solution is in fact completely de-

termined by taking into account the subleading contributions to the BES equation, thus

confirming analytically the validity of the auxiliary condition suggested by the numerics

and of our strong coupling solution σ̂(t).

Upon performing the Fourier transform to the rapidity u-plane the corresponding

density σ̂(u) reads

σ̂(u) =
1

4πg2

1− θ(|u| − 1)√
2

√√√√1 +
1√

1− 1
u2

 , (2.27)

where θ(u) is the step function. Thus, on the rapidity plane the leading density is an

algebraic function which is constant in the interval |u| < 1. We see that, in contrast to
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Figure 2.2: Plot of the analytic solution for the leading density 4πg2σ̂(u).

the weak coupling solution of the BES equation [40], the strong coupling density exhibits

a gap between [−∞,−1] and [1,∞], see Figure 2.2. Remarkably, this is reminiscent of

the behavior of the corresponding solutions describing classical spinning strings.

Below we will analyze the matrix form of the BES equation at strong coupling, first

numerically and then analytically. We compute the coefficients in the expansion of σ̂(t)

in terms of Bessel functions and based on this numerical analysis we make a guess of

how these coefficients could be (partially) related to each other at strong coupling. In

the strong coupling limit we obtain an analytic equation for the coefficients which turns

out to have a degenerate kernel. Supplementing this equation with the proposed relation

among the coefficients allows us to find an exact analytical solution for σ̂(t). We then

show that in fact no guess is necessary if one expands the BES equation to higher order

in 1/g, which leads to a second equation that singles out our solution as the correct one.

We proceed to find an analogous pair of equations for the subleading coefficients at

strong coupling. Again they appear at different orders in the inverse coupling constant,

each of them individually being a degenerate, half-rank equation. We identify some

constraints on the subleading value of σ̂(t), but as we shall see this case is more subtle

than the leading solution.
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2.4 Fluctuation Density at Strong Coupling

In this section we study the density of fluctuations σ̂(t) for large values of the coupling

constant. First we argue, by performing a numerical analysis, that σ̂(t) obeys a certain

additional requirement. Then we consider the matrix BES equation at leading order

in the large g expansion, use the previously found requirement to solve for the density

and confirm by expanding the BES equation further that this solution is in fact com-

plete determined analytically. Finally, we derive and briefly discuss constraints on the

subleading value of σ̂(t).

As discussed in Section 2.2, the key observation is that for intermediate values of

g one can approximate the infinite-dimensional matrices entering the BES equation by

matrices of finite rank d, with d not much larger than g. With matrices of finite rank it

is possible to solve numerically for the coefficients sk for different values of the coupling

constant and to find the best fit result for an expansion of the type

sk =
1

g
s`k +

1

g2
ss`k + . . . . (2.28)

As the numerical analysis indicates, the finite rank approximation is valid for computing

the coefficients sk with k � d. In the table below the values for a few leading coefficients

s`k are exhibited.

k s`2k−1 s`2k 100|(s`2k−1 − s`2k)/s`2k|

1 0.500006 0.499993 0.003

2 -0.75005 -0.74977 0.038

3 0.93727 0.93676 0.055

4 -1.09281 -1.09415 0.12

5 1.2239 1.2333 0.77

53



Here we have solved numerically equation (2.19) for numerous points in the range

2 < g < 20, using d = 50. Some comments are in order. First, we stress again that the

value for s`1 is in perfect agreement with the value predicted from string theory, s`1 = 1/2,

and confirmed numerically above (with a precision higher than the one presented here).

Second, notice that the difference between s`2k−1 and s`2k is in all the cases smaller than

1%, and gets bigger as k increases; this is related to the fact that the rank of the matrices

used is finite.

Thus, the numerical analysis suggests that in the limit of infinite rank matrices the

following relation holds for the leading coefficients in the strong coupling expansion

s`2k−1 = s`2k . (2.29)

As we will see later on, this condition will allow one to solve analytically for the coeffi-

cients s`k and the values obtained will be in perfect agreement with the ones computed

numerically.

Further evidence comes from the fact that one can approximate the matrix elements

Zmn by their analytic values at strong coupling (see next subsection). Therefore, one

can consider matrices of much higher rank, fix a sufficiently large value of g and compute

(numerically) the coefficients s`k. Below we present the results for g = 10000 and d = 250.

k s`2k−1 s`2k 100|(s`2k−1 − s`2k)/s`2k|

1 0.49993 0.49991 0.0049

2 -0.74943 -0.74938 0.0073

3 0.93585 0.93577 0.0085

4 -1.09033 -1.09023 0.0089

5 1.22455 1.22444 0.0087
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As d increases, we see that the difference between s`2k−1 and s`2k (for k = 2, 3, . . . )

decreases considerably. Also, the difference is approximately constant for small values

of k. We should stress, however, that a priory there is no reason to expect the results

obtained by keeping in the BES equation only the leading term for Z to be valid, since as

we will see the subleading terms in the matrix elements Zmn are necessary to fix uniquely

the leading order solution for sk. Surprisingly, one still obtains a good approximation

to the large g solution in this fashion. Nevertheless, we regard the present computation

as less robust.

To conclude, requiring continuity in g, the leading coefficients s`k in the strong cou-

pling expansion of the function σ̂(t) exhibit the relation (2.29), which constraints the

form of σ̂(t).

2.4.1 Analytic Solution at Strong Coupling

For finite real values of g the matrix element Zmn is given by a convergent integral.

However, it is not obvious if it is possible to express the result of integration as a power

series in 1/g. Indeed, expanding the integrand in (2.18) as

Zmn =

∫ ∞
0

dt
Jm(t)Jn(t)

t

(
2g

t
− 1

2
+

t

24g
+ . . .

)
, (2.30)

leads to a power series (with coefficients given essentially by the Bernoulli numbers)

which converges only for |t/(2g)| < 2π. We see that only the first two leading terms

in this expansion can be integrated, while already in the third term divergent integrals

appear. It is therefore natural to assume that the expansion of Z develops as

Z = gZ` + Zs` + . . . , (2.31)
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where the first two terms, Z` and Zs`, are given by the convergent integrals mentioned

above. Explicitly, they are

Z`
mn =− 8

π

cos((m− n)π/2)

(m+ n+ 1)(m+ n− 1)(m− n+ 1)(m− n− 1)
, (2.32)

Zs`
mn =− 1

π

sin((m− n)π/2)

m2 − n2
. (2.33)

Assumption (2.31) is well supported by the numerics. We have checked that numerical

values for Zmn for large g are in a very good agreement with the analytic expressions

(2.32) and (2.33). On the other hand, the status of the higher order terms in (2.31) is

not obvious. In what follows, we largely restrict our investigation of the BES equation

to the first two leading terms.

With this word of caution we proceed to investigate (2.19) in the strong coupling

limit. It is not hard to see that it implies the following equation for the leading vector s`

K(c) `s` = C`e , (2.34)

where the leading matrices K(c) ` and C` are obtained by keeping the leading contribution

Z` only. It turns out that for even values of d the kernel K(c) ` has rank d/2, hence from

the equation above it is possible to solve only for half of the components of s`. However,

imposing the condition (2.29) together with (2.34) allows one to uniquely determine the

vector s`.

In order to find the solution in the limit of infinite d it is convenient to express the

leading equation in the following way

Koso +Kese =
1

2
e , (2.35)

where so, se are vectors of length d/2 comprising the odd and even components of s` re-

spectively: so = (s`1, s
`
3, s

`
5, ...)

T, se = (s`2, s
`
4, s

`
6, ...)

T and we recall that e = (1, 0, 0, ...)T.

56



It is easy to check that equations (2.34) and (2.35) are equivalent provided that

(Ko)mn = Z`
2m−1,2n−1 + Z`

2m+1,2n−1 , (Ke)mn = Z`
2m−1,2n + Z`

2m+1,2n . (2.36)

Then the unique solution of (2.35) satisfying the relation so = se turns out to be

s`2k−1 = s`2k = (−1)k+1 Γ(k + 1
2
)

Γ(k)Γ(1
2
)
. (2.37)

This remarkably simple expression for the coefficients s`k is the main result of this section.

By using the following identities (true in the limit of infinite rank)

(Ke −1)mn =−4(−1)m+n+1mn2, for n ≤ m , (2.38)

(Ke −1)mn =−4(−1)m+n+1m3, for n > m , (2.39)

(Ke −1Ko)mn = (−1)m−n
32

π

m3

(4m2 − (1− 2n)2)(1− 2n)2
, (2.40)

one can check explicitly that the coefficients (2.37) indeed solve (2.35). Thus, we found

that restricting the coefficients sk to the leading order expressions s`k the function s(t) is

s(t) =
1

g

∞∑
k=1

(−1)k+1 Γ(k + 1
2
)

Γ(k)Γ(1
2
)

J2k(2gt) + J2k−1(2gt)

2gt
+ . . . , (2.41)

where we have omitted the subleading contributions. This expression can be considered

the leading term in the large g expansion of the density s(t, g) with g t kept finite.

As is clear from (2.6), we are only interested in values of s(t) for t ≥ 0. The series

can be summed and for this range of t the result expressed in terms of the confluent

hypergeometric function of the second kind U(a, b, x):

s(t) =− i

8πg2t
e2igt

(
Γ(3

4
)U(−1

4
, 0,−4igt) + Γ(5

4
)U(1

4
, 0,−4igt)

)
+

i

8πg2t
e−2igt

(
Γ(3

4
)U(−1

4
, 0, 4igt) + Γ(5

4
)U(1

4
, 0, 4igt)

)
. (2.42)
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The leading density (2.42) has a rather complicated profile. For g t → 0 it perfectly

reproduces the desired result s(t)→ 1/(4g). On the other hand, the asymptotics of s(t)

for g t→∞ exhibit a highly oscillatory behavior.

2.4.2 An Alternative Derivation

Let us now show that the result (2.37) can in fact be derived without resorting to

any auxiliary conditions obtained from numerical arguments. The degenerate equation

appearing at leading order, which can be used to express one half of the coefficients sn in

terms of the other, can be supplemented by another half-rank equation from subleading

terms in the BES equation. Together they determine a unique solution.

Writing out the integral equation (2.6) in the basis (2.16) with explicit matrix indices

we find

sn
Jn(2gt)

2gt
=
J1(2gt)

2gt
+ 8nZ2n,1

J2n(2gt)

2gt
− 2nZnmsm

Jn(2gt)

2gt

−16n(2m− 1)Z2n,2m−1Z2m−1,rsr
J2n(2gt)

2gt
, (2.43)

where all indices are summed over from 1 to ∞. Now we split up the integral equation

according to powers of g and into odd and even rows (indices of Bessel functions).

At O(g) the odd equation is trivial and the even one reads

2(2m− 1)Z`
2n,2m−1Z

`
2m−1,rs

`
r = Z`

2n,1 =
1

4
δn,1 . (2.44)

This is precisely equation (2.34) employed in the previous subsection. At O(1) the odd

rows lead to the condition

Z`
2m−1,rs

`
r =

1

2
δm,1 . (2.45)

Actually this equation implies the previous one. It determines one half of the coefficients
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s`n in terms of the other. Expanding further, at O(1) the even equation is given by

8nZs`
2n,1 − 4nZ`

2n,ms
`
m − 16n(2m− 1)Z`

2n,2m−1Z
`
2m−1,rs

s`
r

−16n(2m− 1)Z`
2n,2m−1Z

s`
2m−1,rs

`
r − 16n(2m− 1)Zs`

2n,2m−1Z
`
2m−1,rs

`
r = 0 . (2.46)

To determine the other half of the coefficients s`n we need to eliminate ss`n from this

equation. To do this we examine the odd equation at O(1/g)

−2(2m− 1)Z`
2m−1,rs

s`
r − 2(2m− 1)Zs`

2m−1,rs
`
r = s`2m−1 . (2.47)

Now we use (2.45) and (2.47) to simplify (2.46), which gives

Z`
2n,ms

`
m − 2Z`

2n,2m−1s
`
2m−1 = Z`

2n,m(−1)ms`m = 0 . (2.48)

This is the second equation we were looking for, which together with (2.45) completely

determines s`n. If we define a matrix Z̃nm which is identical to Znm except for a sign flip

when both n is even and m is odd, we can combine the two conditions into the full-rank

equation for the strong coupling solution

Z̃`
nms

`
m =

1

2
δn,1 . (2.49)

Note that the additional minus signs in the definition of Z̃nm arise precisely because

of the introduction of the dressing kernel, and would be absent if the kernel consisted

solely of the main scattering part. Writing out (2.49) explicitly shows that the s`n have

to satisfy

∞∑
k=1

4(−1)n+k+1s`2k−1

(2n− 2k − 1)(2n− 2k + 1)(2n+ 2k − 3)(2n+ 2k − 1)π

= − s`2n
8n(2n− 1)

−
s`2n−2

8(n− 1)(2n− 1)
+

1

4
δn,1 , (2.50)
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∞∑
k=1

4(−1)n+k+1s`2k
(2n− 2k − 1)(2n− 2k + 1)(2n+ 2k − 1)(2n+ 2k + 1)π

=
s`2n+1

8n(2n+ 1)
+

s`2n−1

8n(2n− 1)
, (2.51)

for all n ≥ 1 (where it is understood that the second term on the right hand side of

(2.50) is absent for n = 1). Indeed these equations are obeyed by

s`2n−1 = s`2n =
(−1)n−1(2n− 1)!!

2n(n− 1)!
, (2.52)

which is precisely the solution (2.37) found in the previous subsection. To show this,

note that the coefficients s`2n−1 are generated by the Taylor expansion of (1 + x)−3/2,

which makes it easy to perform the above sums as integrals over functions of the form

xm(1− x2)−3/2 for some appropriate power m chosen to generate the necessary terms in

the denominators of the left hand sides of (2.50) and (2.51).

2.4.3 Fluctuation Density in the Rapidity Plane

To get more insight into the structure of the leading solution, we find it convenient to

perform the (inverse) Fourier transform of the density σ̂(t)→ σ̂(u):

σ̂(u) =
1

2π

∫ ∞
−∞

dt ei 2gtue|t|/2σ̂(|t|) . (2.53)

We recall that u is a rapidity variable originally used to parameterize the Bethe root

distributions of gauge and string theory Bethe ansätze [31, 32], which gives another

reason for studying the density of fluctuations on the u-plane. Thus, substituting into

(2.53) the power series expansion for σ̂(t) we get

σ̂(u) =
1

2π

∞∑
n=1

sn

∫ ∞
−∞

dt ei 2gtue−|t|/2
|t|

1− e−|t|
Jn(2g|t|)

2g|t|
+ . . . . (2.54)
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For large values of g this expression can be well approximated as

σ̂(u) =
1

2π

∞∑
n=1

sn

∫ ∞
−∞

dt ei 2gtue−|t|/2
Jn(2g|t|)

2g|t|
+ . . . . (2.55)

The last integral is computed by using the following formula [30]

∫ ∞
0

dt e±2giute−t/2
Jn(2gt)

2gt
=

(2g)n−1

n

(
u±
(

1 +
√

1 + 4g2/(u±)2
))−n

, (2.56)

with u± = 1/2∓ 2igu.

In this way we obtain the following series representation for the density σ̂(u)

σ̂(u) =
1

2πg

∞∑
n=1

snfn + . . . , (2.57)

where

fn =
(2g)n

2n

[(
u+(1 +

√
1 + 4g2/(u+)2)

)−n
+
(
u−(1 +

√
1 + 4g2/(u−)2)

)−n]
. (2.58)

In what follows it is convenient to introduce the expansion parameter ε = 1/(2g).

Our considerations above suggest that the density σ̂(u) expands starting from the second

order in ε:

σ̂(u) = ε2σ̂`(u) + ε3σ̂s`(u) + . . . . (2.59)

To find the leading contribution σ̂`(u) we have to develop the large g expansion of the

functions fn. The result is not uniform, it depends on whether n is even or odd and also

on the value of u . For n even we find

f2k =


(−1)k

2k
T2k(u) +O(ε) for |u| < 1 ,

(−1)k

2k

(
u
(

1 +
√

1− 1
u2

))−2k

+O(ε) for |u| > 1 .

(2.60)
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Here T2k(u) are the Chebyshev polynomials of the first kind. For n odd we obtain

f2k−1 =


− (−1)k

2k−1

√
1− u2 U2k−2(u) +O(ε) for |u| < 1 ,

0 +O(ε) for |u| > 1 ,

(2.61)

where U2k−2(u) are the Chebyshev polynomials of the second kind. We recall that the

Chebyshev polynomials of the first and the second kind form a sequence of orthogo-

nal polynomials on the interval [−1, 1] with the weights (1 − u2)−1/2 and (1 − u2)1/2,

respectively.

To find the leading density σ̂`(u) inside the interval |u| < 1 we can use the trigonomet-

ric definition of the Chebyshev polynomials which corresponds to choosing parametriza-

tion u = cos θ with 0 ≤ θ ≤ π. Thus, taking the limit g →∞ we obtain for the leading

density the following expression

σ̂`(u) =
2

π

∞∑
k=1

(
s`2k−1f2k−1(θ) + s`2kf2k(θ)

)
, (2.62)

where

f2k(θ) = (−1)k
cos(2kθ)

2k
, f2k−1(θ) = −(−1)k

sin((2k − 1)θ)

2k − 1
. (2.63)

Given the result (2.37) for the coefficients s`k, we can now sum the series for σ̂`(u) and

obtain

σ̂`(u) =
1

π
. (2.64)

Thus, inside the interval [−1, 1] the density σ̂`(u) is constant.

Further, it is easy to sum up the series defining the leading density for |u| > 1. The
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Figure 2.3: The left figure is a plot of a numerical solution for the leading density πσ̂`(u).
The right figure shows the exact analytic solution for the same quantity.

result is

σ̂`(u) =
1

2π

2−
√

2√
1− u(u∓

√
u2 − 1)

 . (2.65)

Here the minus and plus signs in the denominator corresponds to the regions u > 1 and

u < −1, respectively. The plot of the complete analytic solution for σ̂`(u) is presented

in Figure 2.3. It should be compared to the plot of the numerical solution obtained by

using in the series representation for the density with the coefficients s`k obtained from

our numerical analysis. The numerical plot corresponds to taking g = 40 and truncating

the series at k = 20.

Finally, we mention the expression for the scaling function f(g) in terms of the

density σ̂(u)

f(g) = 32g3

∫ ∞
−∞

du σ̂(u) = 8g

∫ ∞
−∞

du σ̂`(u) + . . . = 4g + . . . , (2.66)

which confirms analytically the leading term of the numerical results of Section 2.2. This

completes our discussion of the leading order analytic solution of the BES equation in

the strong coupling limit.

63



2.4.4 Subleading Corrections

Here we will investigate the first subleading correction to the leading coefficients s`k. By

expanding the BES equation we have already obtained equation (2.47) which expresses

the subleading density ss`n in terms of the leading one:

Z`
2m−1,rs

s`
r = −Zs`

2m−1,rs
`
r −

1

2(2m− 1)
s`2m−1 . (2.67)

Again this equation is degenerate and needs to be supplemented by a second one that

appears at higher order in 1/g in the BES equation. Substituting the explicit form of

the coefficients s`n obtained above, the right hand side of (2.67) is seen to vanish (i.e.

K(c) `ss` = 0), which already implies tight restrictions on the subleading corrections ss`.

As discussed above, this equation allows us to solve for half of the components. For

instance, using (2.35) and (2.40) we can solve for the even components in terms of the

odd ones

ss`2m = −
∞∑
n=1

(−1)m−n
32

π

m3

(4m2 − (1− 2n)2)(1− 2n)2
ss`2n−1 . (2.68)

To obtain another equation constraining the subleading solution, we examine correc-

tions to the BES equation as follows. From the O(1/g) contribution to the even rows of

the BES equation (2.43) we find

s`2n = 8nZss`
2n,1 − 4nZ`

2n,ms
s`
m − 4nZs`

2n,ms
`
m (2.69)

− 16n(2m− 1)
[
Z`

2n,2m−1Z
`
2m−1,rs

ss`
r + Z`

2n,2m−1Z
s`
2m−1,rs

s`
r + Z`

2n,2m−1Z
ss`
2m−1,rs

`
r

+Zs`
2n,2m−1Z

`
2m−1,rs

s`
r + Zs`

2n,2m−1Z
s`
2m−1,rs

`
r + Zss`

2n,2m−1Z
`
2m−1,rs

`
r

]
.

To eliminate the term in sss` we turn to the odd rows of the O(1/g2) equation

−2(2m− 1)
[
Z`

2m−1,rs
ss`
r + Zs`

2m−1,rs
s`
r + Zss`

2m−1,rs
`
r

]
= ss`2m−1 . (2.70)
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Using this together with (2.45) and (2.47) to simplify (2.69) we obtain

Z`
2n,m(−1)mss`m = −Zs`

2n,m(−1)ms`m −
1

4n
s`2n . (2.71)

This can be combined with (2.67) into the full rank equation

Z̃`
nms

s`
m = −Z̃s`

nms
`
m −

1

2n
s`n , (2.72)

where again the right hand side vanishes when evaluated on the leading solution s` found

above, i.e. the subleading corrections appear to satisfy a homogeneous equation.

Thus complications arise at higher order in g which suggest that the equations for

the subleading terms in sn have to be supplemented by additional constraints. Luckily,

the equations for the leading solution derived in Subsection 2.4.2 are not affected by this

complication. This clearly cannot be the whole story, which is not surprising in view

of the divergence of the O(1/g) correction to Znm that we have ignored here by naively

expanding to third order.

Subsequently this problem was solved, and the complete asymptotic expansion of

f(g) determined in an impressive paper [104] (for further work, see [105]). This expansion

obeys its own transcendentality principle. In particular, the coefficient of the 1/g term

in (2.2) was shown to be given by

− K

4π2
≈ −0.0232 , (2.73)

where K is the Catalan constant, in agreement with the numerical result (2.24). As a

further check, this coefficient was reproduced analytically from a two-loop calculation

in string sigma-model perturbation theory [106, 107].
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2.5 Conclusions

In this chapter we have addressed the problem of extrapolating the perturbative expan-

sion controlled by the BES equation, which describes the universal scaling function of

high spin operators in N = 4 gauge theory, to large values of the coupling constant and

shown that the resulting expression is consistent with string theory predictions.

First, we devised a numerical method to solve the BES equation around the strong

coupling point and demonstrated that the numerical solution is in perfect agreement

with equation (2.2), providing a non-trivial test of the AdS/CFT correspondence. Thus,

the cusp anomaly f(g) is an example of an interpolation function for an observable not

protected by supersymmetry that smoothly connects weak and strong coupling regimes.

The final form of f(g) was arrived at using inputs from string theory, perturbative gauge

theory, and the conjectured exact integrability of planar N = 4 SYM.

Secondly, we have analytically studied the strong coupling limit of the BES equation

and demonstrated that expanding it in inverse powers of the coupling constant leads to

two equations for the large g solution, one appearing at leading, the other at subleading

order in 1/g. Together they determine a unique solution in the g →∞ limit whose exact

analytic form we present.2

As was shown in [40] (see also [109]), the coefficients of the perturbative series describ-

ing the solution of the BES equation at weak coupling admit an analytic continuation

to strong coupling, where they coincide with those predicted by string theory. The ap-

proach we adopt here can be considered as another, complementary way to analytically

continue from weak to strong coupling.

On the rapidity u-plane the leading fluctuation density σ̂`(u) appears to be constant

inside the unit interval |u| < 1. We could argue that this constant part of σ̂`(u) is an

artifact of the way the BES equation was derived: The non-vanishing constant part of

2The leading term in the strong coupling asymptotic expansion of the fluctuation density σ̂(t) was
derived analytically also in [108], independently of the present work.
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the leading density offsets the splitting of the weak-coupling density into a log-divergent

one-loop part and a regular higher loop piece carrying log S as a coefficient. Further, it is

not hard to show [97] that the subleading correction inside the unit interval is absent; in a

manner of speaking a gap opens between [−∞,−1] and [1,∞]. This can be qualitatively

compared to the results obtained from string theory. Indeed, the solution of the integral

equation describing the classical spinning strings in AdS3× S1 [110] in the limit S →∞

with angular momentum J along S1 fixed has support only outside the interval |u| < 1.

The same behavior is expected for the GKP solution which is obtained in the limit

J → 0. For finite S the solution is elliptic and it exhibits logarithmic singularities in

the limit S →∞. On the other hand, our strong coupling density (2.65) is an algebraic

function which carries logS as a normalization. Of course, this density leads to the

same energy as for the GKP string. It is desirable to understand the detailed matching

between the string density (higher conserved charges) and the density we found from

the strong coupling limit of the BES equation.

67



Chapter 3

On Normal Modes of a Warped

Throat

3.1 Introduction

Duality between the cascading SU(k(M + 1)) × SU(kM) gauge theory and type IIB

strings on the warped deformed conifold [49] provides a rich yet tractable example of

gauge/string correspondence1. This background demonstrates in a geometrical language

such features of the SU(M) supersymmetric gluodynamics as color confinement and the

breaking of the Z2M chiral R-symmetry down to Z2 via gluino condensation [49]. In

fact, it has been argued [49] that by reducing the continuous parameter gsM one can

interpolate between the cascading theory solvable in the supergravity limit and N = 1

supersymmetric SU(M) gauge theory.

The problem of finding the spectra of bound states at large gsM can be mapped

to finding normalizable fluctuations around the supergravity background. This problem

is complicated by the presence of 3-form and 5-form fluxes, but some results on the

spectra are already available in the literature [52, 53, 113, 114, 115, 116, 117, 118, 119].

1For earlier work leading up to this duality, see [44, 51, 111, 112], and for reviews [10, 11, 12]. The
most pertinent facts were summarized above in Section 1.2.
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A particularly impressive effort was made by Berg, Haack and Mück (BHM) who used

a generalized PT ansatz [54] to derive and numerically solve a system of seven coupled

scalar equations [116, 117]. Each of the resulting glueballs is even under the charge

conjugation Z2 symmetry preserved by the KS solution (this symmetry was called the

I-symmetry in [52, 53]), and therefore has SPC = 0++. The present chapter will study

three other families of glueballs, which are odd under the I-symmetry. Two of them

originate from a pair of coupled scalar equations, generalizing the zero momentum case

studied in [52, 53], and have SPC = 0+−. The third, pseudoscalar family arises from a

decoupled fluctuation of the RR two-form C2 and has SPC = 0−−.

An important aspect of the low-energy dynamics is that the baryonic U(1)B sym-

metry is broken spontaneously by the condensates of baryonic operators A and B. This

phenomenon, anticipated in the cascading gauge theory in [49, 56], was later demon-

strated on the supergravity side where the fluctuations corresponding to the pseudoscalar

Goldstone boson and its scalar superpartner [52, 53], as well as the fermionic superpart-

ner [118], were identified. Furthermore, finite deformations along the scalar direction

give rise to a continuous family of supergravity solutions [58, 59] dual to the baryonic

branch, AB = const, of the gauge theory moduli space.

The main purpose of this chapter is to obtain a deeper understanding of the GHK

scalar fluctuations [52, 53] and their radial excitations. Our motivation is two-fold. On

the one hand, we seek an improved understanding of the glueball spectra and their

supermultiplet structure. On the other, we would like to shed new light on the normal

modes of the warped deformed conifold throat embedded into a string compactification,

which has played a role in models of moduli stabilization [120] and D-brane inflation

[121, 122, 123]. In such inflation models, the reheating of the universe involves emission

of modes localized near the bottom of the throat, which are dual to glueballs in the

gauge theory [124, 125, 126, 127].

This chapter is based on the paper [128] written in collaboration with A. Dymarsky,

69



I. R. Klebanov and A. Solovyov; it is structured as follows. In Section 3.2 we construct

a generalization of the ansatz for the NSNS 2-form and metric perturbations that allows

us to study radial excitations of the GHK scalar mode. We derive a system of coupled

radial equations and determine their spectrum (by numerically solving those differential

equations). In Section 3.3 we show that a similar ansatz for the RR 2-form perturbation

decouples from the metric giving rise to a single decoupled equation for pseudoscalar

glueballs. In Section 3.4 we argue that the scalar glueballs we find belong to massive axial

vector multiplets, and the pseudoscalar glueballs belong to massive vector multiplets.

Agreement of the corresponding equations is explicitly demonstrated in the large radius

(KT) limit. In Section 3.5 we give a perturbative treatment of the coupled equations

for small mass that allows us to study the scalar mass in models where the length of the

throat is finite.

3.2 Radial Excitations of the GHK scalar

The ansatz that produced a normalizable scalar mode independent of the 4-dimensional

coordinates xµ was [52, 53]

δB2 = χ(τ) dg5 , δG13 = δG24 = ψ(τ) . (3.1)

Our first goal is to find a generalization of this ansatz that will allow us to study the radial

excitations of this massless scalar, i.e. the series of modes that exist at non-vanishing

k2
µ = −m2

4. Thus, we must include the dependence of all fields on xµ. Such an ansatz
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that decouples from other fields at linear order is

δF3 = 0 , (3.2)

δF̃5 = 0 , (3.3)

δB2 =χ(x, τ) dg5 + ∂µσ(x, τ) dxµ ∧ g5 , (3.4)

δH3 ≡ dδB2 =χ′ dτ ∧ dg5 + ∂µ(χ− σ) dxµ ∧ dg5 + ∂µσ
′ dτ ∧ dxµ ∧ g5 , (3.5)

δG13 = δG24 =ψ(x, τ) . (3.6)

The ansatz for δB2 originates from the longitudinal component of a 5-dimensional vector:

δB2 = (Aτdτ + Aµdx
µ) ∧ g5 . (3.7)

Requiring the 4-dimensional field strength to vanish, Fµν = 0, restricts Aµ to be of the

form ∂µ acting on a function. Then, choosing

Aτ = −χ′ , Aµ = ∂µ(σ − χ) , (3.8)

we recover the ansatz (3.4) up to a gauge transformation.

Yet another gauge equivalent way of writing (3.4) is

δB2 = (χ− σ) dg5 − σ′ dτ ∧ g5 . (3.9)

The new feature of our ansatz compared to the generalized PT ansatz used in [116, 117]

is the presence of the second function in δB2 which multiplies dτ ∧ g5. Terms of this

type, which are allowed by the 4-dimensional Lorentz symmetry, turn out to be crucial

for studying the modes that are odd under the I-symmetry.

Using δ(G−1) = −G−1 δGG−1, we find that δG13 = δG24 = −G11G33 ψ. The un-

perturbed metric components (see Subsection 1.2.2 for a review of the KS solution)
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are

G11 = G22 =
2

ε4/3K(τ) sinh2(τ/2)h1/2(τ)
, (3.10)

G33 = G44 =
2

ε4/3K(τ) cosh2(τ/2)h1/2(τ)
, (3.11)

G55 = Gττ =
6K(τ)2

ε4/3h1/2
, (3.12)

Gµν =h1/2 ηµν . (3.13)

In order to find the dynamic equations for the functions ψ, χ and σ in (3.4)-(3.6) we

study the linearized supergravity equations below (the type IIB SUGRA equations are

reviewed in Appendix A.1).

3.2.1 Equations of Motion for NSNS- and RR-Forms

All the Bianchi identities are automatically satisfied with the ansatz (3.2)-(3.6). Indeed,

the relation dδH3 = 0 is obvious, and consistent with vanishing dδF̃5 we find that

δH3 ∧ F3 = 0 (using (1.38) one can verify that dg5 ∧ F3 = 0 and dτ ∧ g5 ∧ F3 = 0).

The self-duality equation for F̃5 reads

δ ∗ F̃5 = 0 . (3.14)

Given that F̃5 has components along g1∧g2∧g3∧g4∧g5 and along d4x∧dτ , our adopted

deformation of the metric does not affect ∗F̃5 to first order.

Even though the variations of the forms F3 and F̃5 are zero, the deformations of their

Hodge duals δ ∗F3 and δ ∗ F̃5 will in general be non-zero because of the deformations of

metric components. In the equation for F3

dδ ∗ F3 = F̃5 ∧ δH3 , (3.15)
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the product F̃5 ∧ δH3 on the right hand side vanishes identically. From the explicit

form of F3 given in (1.38) we see that the perturbation of its Hodge dual will be a

closed form δ ∗ F3 = A(x, τ) d4x ∧ dτ ∧ (. . .). Note that the term in (1.38) proportional

to dτ ∧ (g1 ∧ g3 + g2 ∧ g4) is not affected by the deformation of the metric, and thus

dδ ∗ F3 = 0 is satisfied identically.

The remaining equations are nontrivial. In particular

dδ ∗H3 = 0 , (3.16)

turns out to be more complicated than the equation for F3. The variation

δ ∗H3 = ∗δH3 + δG ∗H3 (3.17)

consists of two parts: ∗δH3 accounting for the deformation of the form H3 itself, and

δG ∗H3 arising from the deformation of the Hodge star. Explicit calculation shows that

∗δH3 =−
√
−GG11G33G55 χ′ d4x ∧ dg5 ∧ g5 (3.18)

−
√
−GG11G33 |Gµµ| ∂µ(χ− σ) ∗4 dx

µ ∧ dτ ∧ dg5 ∧ g5

+1
2

√
−G (G55)2 |Gµµ| ∂µσ′ ∗4 dx

µ ∧ dg5 ∧ dg5 ,

δG ∗H3 =−gsMα′

2

√
−GG11G33G55

[
f ′G11 + k′G33

]
ψ d4x ∧ dg5 ∧ g5 , (3.19)

where in the last equation we have introduced the shorthands

f(τ) ≡ τ coth τ − 1

2 sinh τ
(cosh τ − 1) , k(τ) ≡ τ coth τ − 1

2 sinh τ
(cosh τ + 1) . (3.20)

The four-dimensional Hodge star ∗4 is taken with respect to the standard Minkowski

metric. Differentiating the expression for δ ∗ H3 and equating to zero the coefficients
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multiplying linearly independent forms gives three equations:

d4x ∧ dg5 ∧ dg5 : 2G11G33

[
gsMα′

2

[
f ′G11 + k′G33

]
ψ + χ′

]
= G55 h

1
2 �4σ

′ , (3.21)

d4x ∧ dτ ∧ dg5 ∧ g5 : ∂τ

{√
−GG11G33G55

[
gsMα′

2

[
f ′G11 + k′G33

]
ψ + χ′

]}
+
√
−GG11G33 h

1
2 �4(χ− σ) = 0 , (3.22)

∗4dx
µ ∧ dτ ∧ dg5 ∧ dg5 : 2

√
−GG11G33 h

1
2 ∂µ(χ− σ) + ∂τ

{√
−G (G55)2 h

1
2 ∂µσ

′
}

= 0 ,

(3.23)

where we have substituted for the warp factor |Gµµ| = h1/2 (no summation over µ is

implied). Not all of these equations are independent. Indeed, using (3.21) equation

(3.22) simplifies to

∂τ

{√
−G (G55)2 h1/2 �4σ

′
}

+ 2
√
−GG11G33 h1/2 �4(χ− σ) = 0 . (3.24)

This is exactly what we obtain by acting on (3.23) with ∂µ and contracting indices. Thus

only (3.21) and (3.23) are independent. The coefficient functions in these equations are

given by (we have dropped some inessential constant factor in
√
−G):

f ′G11 + k′G33 =
2 (sinh 2τ − 2τ)

ε4/3 h1/2K(τ) sinh3 τ
=

4K(τ)2

ε4/3 h1/2
, (3.25)

G11G33 =
16

ε8/3 hK(τ)2 sinh2 τ
, (3.26)

G55 h1/2 =
6K(τ)2

ε4/3
, (3.27)

√
−GG11G33 h1/2∼ 4

K(τ)2
, (3.28)

√
−G (G55)2 h1/2∼ 9K(τ)4 sinh2 τ . (3.29)
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Taking into account these expressions, equations (3.21) and (3.23) read

2(gsMα′)
K(τ)2

ε4/3
√
h(τ)

ψ + χ′=
3

16
ε4/3 h(τ)K(τ)4 sinh2 τ �4σ

′ ,(3.30)

∂µ(χ− σ) +
9

8
K(τ)2 ∂τ

{
K4 sinh2 τ ∂µσ

′
}

= 0 . (3.31)

3.2.2 Einstein Equations

The first order perturbation of the Ricci curvature tensor is given by

δRij =
1

2

(
−δGa

a
;ij − δGij;a

a + δGai;j
a + δGaj;i

a
)
, (3.32)

where covariant derivatives and contractions of indices are performed using the unper-

turbed metric. The first term in this expression vanishes because the metric perturbation

is traceless. The remaining three terms combine to give the only non-zero perturbations

δR13 = δR24:

δR13 =− 3

ε4/3
K3 sinh τ z

[
K ′′

K
+

1

2

h′′

h
+
z′′

z
+

(K ′)2

K2
− 1

2

(h′)2

h2
+
K ′

K

h′

h

+ 2
K ′

K

z′

z
+ coth τ

(
h′

h
+ 4

K ′

K
+ 2

z′

z

)
+ 2− 1

sinh2 τ
− 4

9

1

sinh2 τ K6

]
−1

2
h(τ)K sinh τ �4z

=− 3

ε4/3
K3 sinh τ z

[
1

2

(
(K sinh τ)2 (lnh)′

)′
(K sinh τ)2

+

(
(K sinh τ)2 z′

)′
(K sinh τ)2z

− 2

sinh2 τ
− 8

9

1

K6 sinh2 τ
+

4

3

cosh τ

K3 sinh2 τ

]
− 1

2
h(τ)K sinh τ �4z , (3.33)

where z(x, τ) is defined by

ψ(x, τ) = h1/2K sinh τ z(x, τ) = 2−1/3(sinh 2τ − 2τ)1/3h1/2 z(x, τ) . (3.34)

The source terms on the right hand side of the Einstein equation Rij = Tij, spelled
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out in (A.3), are due to the deformations of the metric and B2 form. It turns out that the

only nontrivial deformations are those with indices 13 or 24, with δT13 = δT24. E.g. for

the 13 component δT13 we have the following contributions:

1

4
δB(H1abH3

ab) =
1

4
[H1ab δH3

ab + δH1abH3
ab
]

=
1

2

[
G11H12τ δH32τ +G33 δH14τ H34τ

]
G55

=−1

4
(gsMα′)G55

[
G11 f ′ +G33 k′

]
χ′ , (3.35)

g2
s

96
δG(F̃1abcdF̃3

abcd) =
g2
s

4
(G11)2 (G33)2G55 (F̃12345)2 ψ , (3.36)

1

4
δG(H1abH3

ab) =
1

2

[
H135H315 δG

13G55 +H12τ H34τ δG
24Gττ

]
=

1

2

[
(H135)2 −H12τ H34τ

]
G11G33G55 ψ

=
1

8
(gsMα′)2

[
1

4
(k − f)2 − f ′k′

]
G11G33G55 ψ , (3.37)

g2
s

4
δG(F1abF3

ab) =
g2
s

2

[
F125 F345 δG

24G55 + F13τ F31τ δG
31Gττ

]
=
g2
s

2

[
(F13τ )

2 − F125 F345

]
G11G33G55 ψ

=
1

8
(gsMα′)2

[
F ′2 − F (1− F )

]
G11G33G55 ψ , (3.38)

with F (τ) ≡ (sinh τ − τ)/(2 sinh τ) and

− 1

48
δG
[
G13(HabcH

abc + g2
sFabcF

abc)
]

=−1

8
(H2

3 + g2
sF

2
3 )ψ

=− 1

32
(gsMα′)2G55

[
(G11)2 f ′2 + (G33)2 k′2

+1
2
G11G33 (k − f)2 + (G11)2 F 2

+(G33)2 (1− F )2 + 2G11G33 F ′2
]
ψ . (3.39)

Denoting

δT13 =
[
A1(τ) + A2(τ)

]
ψ(x, τ) +B(τ)χ′(x, τ) , (3.40)
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where A1 stands for the contribution from F̃5, we get

A1(τ) =
3(gsMα′)4

21/3ε20/3h5/2

(τ coth τ − 1)2(sinh 2τ − 2τ)4/3

sinh6 τ
,

A2(τ) =− 3 (gsMα′)2

8ε4h3/2 sinh6 τ

[
3 cosh 4τ − 8τ sinh 2τ − 8τ 2 cosh 2τ − 8 cosh 2τ + 16τ 2 + 5

]
,

B(τ) =−3 (gsMα′)
(sinh 2τ − 2τ)K(τ)

ε8/3 h sinh3 τ
. (3.41)

Then eliminating χ′ with the help of (3.21) yields

δT13 =
3

22/3

(gsMα′)4

ε20/3h2

(τ coth τ − 1)2(sinh 2τ − 2τ)5/3

sinh6 τ
z(x, τ)

+
3

8 · 21/3

(gsMα′)2

ε4h

(sinh 2τ − 2τ)1/3

sinh6 τ
×

×
[
cosh 4τ + 8(1 + τ 2) cosh 2τ − 24τ sinh 2τ + 16τ 2 − 9

]
z(x, τ)

− 9

16

gsMα′

ε4/3

sinh 2τ − 2τ

sinh τ
K5 �4σ

′(x, τ)

=− 3

ε4/3
K3 sinh τ

[
−1

2

(h′)2

h2
+

1

2

h′′

h
+
K ′

K

h′

h
+ coth τ

h′

h

]
z

− 9

16

gsMα′

ε4/3

sinh 2τ − 2τ

sinh τ
K5 �4σ

′ . (3.42)

Equating (3.33) and (3.42) we obtain the final form of the linearized Einstein equation.

3.2.3 Two Coupled Scalars

Combining the equations for the field strengths and the Einstein equations we have the

system

(gsMα′)
sinh 2τ − 2τ

ε4/3 sinh2 τ
z + χ′=

3

16
ε4/3 h(τ)K(τ)4 sinh2 τ �4σ

′ , (3.43)

∂µ(χ− σ) =−9

8
K(τ)2 ∂τ

{
K4 sinh2 τ ∂µσ

′
}
, (3.44)(

(K sinh τ)2 z′
)′

(K sinh τ)2
+
ε4/3h

6K2
�4z=

(
2

sinh2 τ
+

8

9

1

K6 sinh2 τ
− 4

3

cosh τ

K3 sinh2 τ

)
z

+
3

16
(gsMα′)

sinh 2τ − 2τ

sinh2 τ
K2 �4σ

′ . (3.45)

77



Note that χ can be eliminated between (3.43) and (3.44). Further, a change of variables

z̃= zK sinh τ , (3.46)

w̃=
ε4/3

gsMα′
K5 sinh2 τ σ′ , (3.47)

leads to a more symmetric pair of equations

z̃′′ − 2

sinh2 τ
z̃ +

ε4/3h

6K2
�4z̃=

3(gsMα′)2

16ε4/3

sinh 2τ − 2τ

K2 sinh3 τ
�4w̃ , (3.48)

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ +

ε4/3h

6K2
�4w̃=

8

9

sinh 2τ − 2τ

K2 sinh3 τ
z̃ . (3.49)

Introducing the dimensionless mass-squared m̃2 according to

m̃2 = m2
4

22/3(gsMα′)2

6 ε4/3
, (3.50)

we can rewrite the equations for z̃ and w̃ as

z̃′′ − 2

sinh2 τ
z̃ + m̃2 I(τ)

K2(τ)
z̃= m̃2 9

4 · 22/3
K(τ) w̃ , (3.51)

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ + m̃2 I(τ)

K2(τ)
w̃=

16

9
K(τ) z̃ . (3.52)

This is a system of coupled equations which defines the mass spectrum of certain scalar

glueballs with positive 4-dimensional parity. The natural charge conjugation symmetry

of the KS background is the I-symmetry, under which these modes are odd. Therefore,

we assign SPC = 0+− to this family of glueballs.2

In the massless case these equations lead to the GHK solution [52, 53]. If we assume

that �4 = −k2
µ = m2

4 = 0, then there are two solutions [52, 53], z̃1 = coth τ and

2For comparison, the glueballs found in [116, 117] are 0++. The glueballs whose spectrum comes
from the minimal scalar equation [113, 114] resulting from the analysis of graviton fluctuations are 2++.
The axial vector U(1)R fluctuations [119] give rise to 1++ glueballs whose masses are also determined
by the minimal scalar equation.
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z̃2 = τ coth τ−1. The solution for z̃ which is non-singular at the origin is z̃ = τ coth τ−1.

Substituting it into the second equation, we find

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ =

16

9
K(τ) (τ coth τ − 1) ≡ − 22/3 8

9
I ′(τ) sinh τ . (3.53)

The two solutions of the homogeneous equation are given by w̃1 = 1/ sinh τ and by

w̃2 = (sinh 2τ − 2τ)/ sinh τ ; both of them are singular either at zero or at infinity. This

means that the regular solution of the inhomogeneous equation is uniquely fixed. With

the Wronskian W (w̃1, w̃2) = w̃1w̃
′
2 − w̃′1w̃2 = 4, we can find a general solution

w̃(τ) = − 22/3 8

9

{
w̃1(τ)

[
C1 −

∫ τ

dx
w̃2(x)

W (x)
I ′(x) sinhx

]
(3.54)

+w̃2(τ)
[
C2 +

∫ τ

dx
w̃1(x)

W (x)
I ′(x) sinhx

]}
.

Integrating by parts and choosing the particular homogeneous solution to make w̃ well

behaved at both zero and infinity we get

w̃(τ) = − 22/3 8

9

1

sinh τ

∫ τ

0

dx I(x) sinh2 x . (3.55)

Let us note that the non-vanishing w̃ in the zero momentum case kµ = 0 is not in

contradiction with the GHK solution. This is because w̃ enters (3.2)-(3.6) only through

∂µσ, which is zero as long as the momentum vanishes.

3.2.4 Numerical Analysis

To determine the spectrum of glueballs in the field theory, we need to solve the eigenvalue

problem for m̃2 in the infinite throat limit. This system of equations (3.51)-(3.52) does

not seem amenable to analytical solution and we employ a numerical approach to find

the spectrum of normalizable solutions. It is convenient to use the determinant method,

which generalizes the usual shooting technique to a system of several coupled equations
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(see [117]). Let us briefly describe the details of the numerical analysis as well as the

subtleties specific to the system (3.51)-(3.52).

A standard method of finding the spectrum of a single second-order differential equa-

tion is the shooting technique. For a system of several coupled linear equations the

shooting method has to be generalized. The idea underlying the calculation scheme

(called the determinant method [117]) is to set the initial conditions at infinity corre-

sponding to the two solutions regular at infinity, (z̃1(τ), w̃1(τ))T and (z̃2(τ), w̃2(τ))T, and

extend them numerically to small τ . Then the matrix

(
z̃1(0) z̃2(0)

w̃1(0) w̃2(0)

)
(3.56)

becomes degenerate at the critical points (eigenvalues) in the spectral parameter space.

Let us find the asymptotic behavior of regular and singular solutions near both zero

and infinity. At small τ equations (3.51) and (3.52) decouple,

z̃′′ − 2

τ 2
z̃= 0 , (3.57)

w̃′′ − 2

τ 2
w̃= 0 . (3.58)

There are two regular solutions with z̃, w̃ ∼ τ 2 and also two singular solutions with

z̃, w̃ ∼ 1/τ . For large τ we have

z̃′′= m̃2 9

4 · 21/3
e−τ/3w̃ , (3.59)

w̃′′ − w̃=
16 · 21/3

9
e−τ/3z̃ . (3.60)

The asymptotic behavior of the two regular solutions is

(
z̃1

w̃1

)
=

(
1

−24/3 e−τ/3

)
,

(
z̃2

w̃2

)
=

(
81

64·21/3 m̃
2e−4τ/3

e−τ

)
, (3.61)
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and the singular solutions are

(
z̃3

w̃3

)
=

(
τ

−24/3
(
τ − 3

4

)
e−τ/3

)
,

(
z̃4

w̃4

)
=

(
81

16·21/3 m̃
2e2τ/3

eτ

)
. (3.62)

A particular subtlety of this setup is that at large τ the two singular solutions don’t

diverge equally fast: one of them grows exponentially while the other is only linear in τ .

This makes it difficult to start shooting from zero, since imposing the regularity condition

at infinity would require vanishing of both linear and exponential terms. To cancel the

linear term in the presence of the exponential one is difficult to achieve numerically.

That is why for this particular system it is convenient to start shooting from large τ ,

since both singular solutions at zero share the same behavior (∼ 1/τ).

The result is that the spectrum consists of two distinct series, each with a quadratic

growth of m̃2
n for large n. These series are interpreted as the radial excitation spectra of

two different particles. The lowest eigenvalues (m̃2 < 100) for these spectra are shown

in Table 3.1. The quadratic fit for spectrum I is

m̃2
In = 2.31 + 1.91n+ 0.294n2 . (3.63)

For spectrum II we drop the lowest eigenvalue when fitting, and find

m̃2
IIn = 0.36 + 0.14n+ 0.279n2 . (3.64)

It is interesting to compare these results with those found for the 0++ modes by Berg,

Haack and Mück (BHM) [117]. Their conventions correspond to a particular choice of

the KS parameters, and the relation between the masses is

m2
BHM = (3/2)2/3I(0) m̃2 ≈ 0.9409 m̃2 . (3.65)

81



Spectrum I:

n m̃2
n n m̃2

n n m̃2
n n m̃2

n

1 4.53 5 19.1 9 43.3 13 76.9

2 7.30 6 24.4 10 50.8 14 86.7

3 10.7 7 30.1 11 58.9 15 97.1

4 14.6 8 36.4 12 67.6
5 10 15

n

20

40

60

80

100

m2

Spectrum II:

n m̃2
n n m̃2

n n m̃2
n n m̃2

n

1 .129 6 8.06 11 30.1 16 65.1

2 .703 7 11.2 12 35.5 17 73.9

3 1.76 8 15.0 13 42.1 18 83.3

4 3.33 9 19.3 14 49.2 19 93.3

5 5.43 10 24.1 15 56.9
5 10 15

n

20

40

60

80

100
m2

Table 3.1: Non-zero eigenvalues with m̃2 < 100. There are the two distinct spectra. Both
spectra can be fitted by quadratic polynomials in the eigenvalue number n (the red line in the
plots).

Using this relation one can convert the mass eigenvalues to the BHM normalization. We

note that the lightest glueball we find, the first entry of spectrum II in Table 3.1, has

m2
BHM ≈ 0.121. For comparison, the lightest 0++ eigenvalue found in [117] has mass-

squared m2
BHM ≈ 0.185. The fact that the 0+− sector has the lightest glueballs may

be qualitatively understood as follows. Roughly speaking, glueball masses increase with

the dimensions of the operators that create them. The lowest dimension operator from

the 0++ sector is the gluino bilinear Trλλ of dimension 3, but the 0+− sector contains

an operator of dimension 2, namely Tr(A†A−B†B).
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Converting the asymptotics of the two spectra to BHM units, we find

m2
I BHM ≈ 2.17 + 1.79n+ 0.277n2 , (3.66)

m2
II BHM ≈ 0.34 + 0.13n+ 0.262n2 . (3.67)

The coefficients of the quadratic terms are close to those found in [117]. The quadratic

dependence on n, which is characteristic of Kaluza-Klein theory, is a special feature

of strongly coupled gauge theories that have weakly curved gravity duals (see [129]

for a discussion). Note that m2
4 is obtained from m̃2 through multiplying by a factor

∼ Ts/(gsM), where Ts is the confining string tension. Thus, for n �
√
gsM these

modes are much lighter than the string tension scale, and therefore much lighter than

all glueballs with spin > 2. Such anomalously light bound states appear to be typical

of gauge theories that stay very strongly coupled in the UV, such as the cascading

gauge theory; they do not appear in asymptotically free gauge theories. Therefore,

the anomalously light glueballs could perhaps be used as a ‘special signature’ of gauge

theories with gravity duals if they are realized in nature.

One may be puzzled why the spectrum in Table 3.1 does not include the GHK

massless mode. This is because in solving the coupled equations (3.51)-(3.52) we required

that both wave-functions z̃ and w̃ go to a constant as τ →∞. This excludes the GHK

zero mode which grows as z̃ ∼ τ . On the other hand, this growth is a lot slower than

the exponential growth found for generic solutions. The meaning of the GHK mode

as the baryonic branch modulus seems to be well established since even the solutions

at finite distance along this modulus are available [58, 59]. Thus, the GHK scalar

zero-mode should be normalizable with a proper definition of norm. In fact, the GHK

pseudoscalar and its fermionic superpartner are normalizable [52, 53, 118]; therefore, the

supersymmetry of the problem implies that the GHK scalar is normalizable as well and

is part of the spectrum.

83



3.3 Pseudoscalar Modes from the RR Sector

The type of ansatz used in Section 3.2 works even more simply for the RR 2-form field:

δH3 = 0 , (3.68)

δF̃5 = 0 , (3.69)

δC2 =χ(x, τ) dg5 + ∂µσ(x, τ) dxµ ∧ g5 , (3.70)

δF3 ≡ dδC2 =χ′ dτ ∧ dg5 + ∂µ(χ− σ) dxµ ∧ dg5 + ∂µσ
′ dτ ∧ dxµ ∧ g5 . (3.71)

This ansatz is similar to, but somewhat simpler than the GHK pseudoscalar ansatz

[52, 53] which involved mixing with δF̃5. Since δF3 ∧H3 = 0, now it is consistent to set

δF̃5 = 0. We also have F̃5 ∧ δF3 = 0, so it is consistent to take δH3 = 0. Finally, one

needs to study mixing with metric fluctuations. At first glance it seems that δG12 and

δG34 might need to be turned on, but a more detailed analysis shows that their sources

vanish:

δT12 =F13τδF2
3τ + δF14τF2

4τ =
Mα′

2
G33G55

[
F ′χ′ − F ′χ′

]
= 0 , (3.72)

δT34 =F31τδF4
1τ + δF32τF4

2τ = 0 . (3.73)

Thus, the perturbation (3.68)-(3.71) decouples from all other modes, and the only non-

trivial linearized equation is

d ∗ δF3 = 0 . (3.74)

The calculation we need to perform is the same as above, except we now set ψ = 0 and

find

χ′=
3

16
ε4/3 h(τ)K(τ)4 sinh2 τ �4σ

′ , (3.75)

∂µ(χ− σ) =−9

8
K(τ)2 ∂τ

{
K4 sinh2 τ ∂µσ

′
}
. (3.76)
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Eliminating χ and changing variables as before,

w̃ =
ε4/3

gsMα′
K5 sinh2 τ σ′ , (3.77)

we find

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ +

ε4/3h

6K2
�4w̃ = 0 . (3.78)

After introducing the dimensionless mass as in (3.50), we get a non-minimal scalar

equation

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ + m̃2 I(τ)

K(τ)2
w̃ = 0 . (3.79)

Since the 4-dimensional parity operation includes sign reversal of RR fields, we identify

the family of glueballs coming from this eigenvalue problem as pseudoscalars whose SPC

quantum numbers are 0−−.

If we set m̃ = 0 the solution regular at small τ is (sinh 2τ − 2τ)/ sinh τ . Since this

blows up at large τ we conclude that this equation does not contain a massless glueball.

A simple numerical analysis using the shooting method allows one to find the spectrum.

The lowest eigenvalues (m̃2 < 100) are listed in Table 3.2. The quadratic fit is

m̃2
IIIn = 0.996 + 1.15n+ 0.289n2 , (3.80)

and in the BHM normalization it is given by

m2
III BHM = 0.938 + 1.08n+ 0.272n2 . (3.81)

The spectrum can be reproduced with good accuracy using a semiclassical (WKB)

approximation. The effective potential in (3.79) is singular at τ = 0 which does not

allow us to use the conventional WKB approximation. Yet we can cast the equation

(3.79) in the form Q1Q2w̃ = m2w̃, where Qi are first-order differential operators and
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n m̃2
n n m̃2

n n m̃2
n n m̃2

n

1 2.41 5 14.0 9 34.8 13 64.7

2 4.47 6 18.0 10 41.4 14 73.7

3 7.08 7 23.2 11 48.6 15 83.2

4 10.3 8 28.7 12 56.4 16 93.3
5 10 15

n

20

40

60

80

100
m2

Table 3.2: Non-zero eigenvalues with m̃2 < 100 in the RR sector. This spectrum can also be
fitted by a quadratic polynomial (red line).

then consider an equation Q2Q1
˜̃w = m2 ˜̃w, which must give rise to the same spectrum

up to a zero mode. Namely, in our case this means that for A such that

A2 + A′ =
cosh2 τ + 1

sinh2 τ
, (3.82)

equation (3.79) shares the spectrum with an equation

˜̃w′′ − (B2 +B′) ˜̃w + m̃2 I(τ)

K(τ)2
˜̃w = 0 , (3.83)

where B = −A− 1

2

d

dτ
log

I(τ)

K(τ)2
. (3.84)

The general solution of (3.82) reads

A = − coth τ +
2 sinh2 τ

cosh τ sinh τ − τ + C
. (3.85)

For (3.83) to be non-singular at the origin C has to be non-zero. For finite C the

potential is regular everywhere but not monotonic and (3.83) admits a zero mode. The

most convenient choice is to take infinite C, which leads to A = − coth τ . In this case

the WKB approximation is applicable in its simplest form (see [113, 114]) and yields the

same results as the shooting method up to the accuracy given above.
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3.4 Organizing the Modes into Supermultiplets

The pseudoscalar Goldstone mode and the massless scalar found in [52, 53] belong to

a 4-dimensional chiral multiplet. These fields appear as the phase and the modulus of

the baryonic order parameters that vary along the baryonic branch. When a long KS

throat is embedded into a Calabi-Yau compactification with fluxes, the baryonic U(1)

symmetry becomes gauged and a supersymmetric version of the Higgs mechanism is

expected to take place. The axial vector U(1)B gauge field ‘eats’ the pseudoscalar mode

and acquires a mass degenerate with the mass of a scalar Higgs. These fields constitute

the bosonic content of a massive N = 1 axial vector supermultiplet.

Above we explicitly constructed the massive modes that are radial excitations of the

GHK scalar. It is, of course, interesting to find the supermultiplets they belong to. We

will argue that each of these scalar radial excitations is also a member of a massive

axial vector supermultiplet. Similarly, each pseudoscalar glueball found in Section 3.3

is a member of a massive vector multiplet. To prove these facts we would need to

demonstrate the existence of the SPC = 1+− glueballs degenerate with the 0+− glueballs

found in Section 3.2, as well as of 1−− glueballs degenerate with the 0−− glueballs found

in Section 3.3. Unfortunately, constructing decoupled equations for vector supergravity

fluctuations around the KS background is a difficult task. Instead, we will provide some

evidence for our claims by studying axial vector and vector fluctuation equations in the

large radius (KT) limit (setting α′ = gs = 1, N = 0 and M = 2; see Subsection 1.2.2).

First we reconsider the simple decoupled pseudoscalar equation from the RR sector

(3.78) and argue that its superpartner is given by the four-dimensional vector A1 in

δB2 = A1 ∧ g5 , (3.86)

where we have chosen the ansatz so that the corresponding radial component ∼ dr ∧ g5

vanishes. The equation for d∗H3 implies (with primes denoting derivatives with respect
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to r) [r3

6
∗4 A

′
1

]′
− 4r

3
∗4 A1 −

hr3

6
d4 ∗4 d4A1 = 0 , (3.87)

and d4 ∗4 A1 = 0, i.e. the vector is divergence-free. Since the Laplacian acting on such

a vector is �4 = − ∗4 d4 ∗4 d4 (note the Minkowski signature of the four dimensional

metric), we find [r3

6
A′1

]′
− 4r

3
A1 +

hr3

6
�4A1 = 0 . (3.88)

Defining a new variable Ã1 = rA1, it is easy to see that its equation of motion,

r

3

[r
3
Ã′1

]′
− Ã1 +

hr2

9
�4Ã1 = 0 , (3.89)

coincides with the KT limit of the equation for the decoupled pseudoscalar w̃, once

we identify r ∼ ε2/3eτ/3. In fact, if we make the same ansatz (3.86) in the full KS

background, the equation of motion for Ã1 = K2 sinh τA1 resulting from the terms

∼ d3x ∧ dτ ∧ ω2 ∧ ω2 in d ∗H3 = 0 is precisely as in (3.78):

d2

dτ 2
Ã1 −

cosh2 τ + 1

sinh2 τ
Ã1 +

ε4/3h

6K2
�4Ã1 = 0 . (3.90)

However, this ansatz is not closed in the KS case. The Bianchi identity for F̃5 is not

satisfied, so this NSNS vector must mix with RR excitations of F3 and/or F̃5 in the KS

background.

Let us now turn to the massive axial vector superpartners of the coupled scalars

(3.48), (3.49) found above. We make the following ansatz, which is similar to the one

studied in [130],

δC4 =B1 ∧ ω3 + F2 ∧ ω2 +K1 ∧ dr ∧ ω2 , (3.91)

δC2 =C1 ∧ g5 +D2 + E1 ∧ dr , (3.92)

δB2 =H2 + J1 ∧ dr ; (3.93)
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where B1, C1, E1, J1, K1 are axial vectors and D2, F2, H2 are two-forms in four dimen-

sions. We choose to split the six degrees of freedom residing in the two-form into a

vector and a dual vector, e.g. D2 = d4(. . .) + ∗4d4D1. The degrees of freedom contained

in the first (exact) part are in fact the same as those in E1, so we can simply write

D2 = ∗4d4D1 without loss of generality. Similarly, F2 = ∗4d4F1 and H2 = ∗4d4H1, and

the corresponding exact parts can be absorbed into the vectors K1 and J1, respectively.

The equations of motion then imply that B1 and C1 have to be divergence-free:

d4 ∗4 B1 = d4 ∗4 C1 = 0. If this were not the case their divergences would simply

couple to additional scalars δC4 ∼ dr ∧ ω3 and δC2 ∼ dr ∧ g5, respectively, but we

will not consider this here (i.e. as for A1 above we choose as gauge in which these radial

components vanish). In fact we will assume that all vectors in our ansatz are divergence-

free, and that the terms appearing in the RR- and NSNS-potentials are eigenstates of

the Laplacian �4 = − ∗4 d4 ∗4 d4 with eigenvalue m2.

Let us present some of the details of the derivation of the equations of motion. With

the ansatz (3.91)–(3.93), the deformations of the field strengths are

δH3 =− ∗4 �4H1 +
(
∗4d4H

′
1 + d4J1

)
∧ dr , (3.94)

∗δH3 =−h
2r5

54
�4H1 ∧ ω2 ∧ ω3 ∧ dr +

hr5

54

(
d4H

′
1 − ∗4d4J1

)
∧ ω2 ∧ ω3 ; (3.95)

δF3 = d4C1 ∧ g5 − C ′1 ∧ dr ∧ g5 − C1 ∧ dg5 +
(
∗4d4D

′
1 + d4E1

)
∧ dr + d4 ∗4 d4D1 ,(3.96)

∗δF3 =
hr3

6
∗4 d4C1 ∧ ω2 ∧ ω2 ∧ dr +

r3

6
∗4 C

′
1 ∧ ω2 ∧ ω2 +

r

3
∗4 C1 ∧ dg5 ∧ g5 ∧ dr

+
hr5

54

(
d4D

′
1 − ∗4d4E1

)
∧ ω2 ∧ ω3 −

h2r5

54
�4D1 ∧ ω2 ∧ ω3 ∧ dr ; (3.97)

δF5 = δF5 + ∗δF5 , (3.98)

δF5 =
(
d4B1 −B′1 ∧ dr

)
∧ ω3 +

(
− ∗4 �4F1 + ∗4d4F

′
1 ∧ dr

)
∧ ω2

+d4K1 ∧ dr ∧ ω2 , (3.99)

∗δF5 =
3

r
∗4 d4B1 ∧ ω2 ∧ dr +

3

hr
∗4 B

′
1 ∧ ω2 −

hr

3
�4F1 ∧ ω3 ∧ dr

+
r

3

(
d4F

′
1 − ∗4d4K1

)
∧ ω3 . (3.100)
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Substituting these expressions into the Bianchi identity for F̃5, and the form equations

(A.2) for ∗F3 and ∗H3, we find the equations of motions. Splitting them into exact and

coexact parts with respect to the 4-dimensional derivative operator d4 shows that the

vectors E1, H1 and K1 decouple3. The resulting equations for the remaining vectors

read

[ 3

hr
B′1

]′
+

3

r
�4B1 =−3

r
�4D1 , (3.101)[r

3
F ′1

]′
+
hr

3
�4F1 = J1 +

3

r
C1 , (3.102)[r3

6
C ′1

]′
− 4r

3
C1 +

hr3

6
�4C1 =

3

r
�4F1 −

9

hr2
B′1 , (3.103)[hr5

54
D′1

]′
+
h2r5

54
�4D1 =−F ′1 −

3

r
B1 − 3 log

r

r∗
J1 , (3.104)[hr5

54
J1

]′
+ 3 log

r

r∗
D′1 =F ′1 +

3

r
B1 , (3.105)

�4F1 −
3

hr
B′1 =

hr5

54
�4J1 + 3 log

r

r∗
�4D1 , (3.106)

where (3.102), (3.104) and (3.105) hold modulo terms annihilated by d4. It is easy to

see that (3.105) and (3.106) imply (3.101), so the latter is not independent. We thus

have the five coupled equations for the five vectors B1, C1, D1, F1 and J1.

In the massless case, our ansatz includes the pseudoscalar found in [52, 53]. Putting

C1 =−f2(r) d4a(x) , (3.107)

�4D1 = f1 d4a(x) , (3.108)

B′1 =−f1h r log
r

r∗
d4a(x) , (3.109)

F1 = J1 = 0 , (3.110)

for some constant f1 and a four-dimensional massless pseudoscalar a(x), all equations

3More precisely, we set hr5

54 E1 = −3 log r
r∗
H1 = r log r

r∗
K1, and find a single second order differential

equation obeyed by these fields. Thus we have found another decoupled vector, but this is not the one
we are looking for. Given this relation between them, E1, H1 and K1 do not mix with the other vectors.
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of motion are satisfied provided

[r3

6
f ′2

]′
− 4r

3
f2 = −9

r
f1 log

r

r∗
; (3.111)

in perfect agreement with the literature (see also Subsection 1.2.3).

Now we would like to consider massive excitations however, and find axial vector-

like solutions to the equations (3.101)-(3.106) which give rise to the superpartners of

the massive scalar excitations of (3.48) and (3.49). In particular, changing variables to

W1 = rC1 equation (3.103) becomes

r

3

[r
3
W ′

1

]′
−W1 +

hr2

9
�4W1 =

2

r
�4F1 −

6

hr2
B′1 . (3.112)

Thus we can identify W1 with w̃ in (3.49), which suggests setting the right hand side of

this equation proportional to the counterpart of z̃/r. Hence we define

Z1 ≡ �4F1 −
3

hr
B′1 . (3.113)

Using (3.101) and (3.102) one can deduce that this new field obeys

r

3

[r
3
Z ′1

]′
+
hr2

9
�4Z1 =

1

r
�4W1 +

r

3
�4

(
J1 +D′1

)
. (3.114)

Our reduced ansatz containing five axial vectors is still too general. In order to

match the spectrum of the scalar particles found above, we need to impose an additional

constraint to reduce the number of dynamical vectors obeying independent second order

differential equations to two. The correct constraint for our purposes is given by

�4

(
J1 +D′1

)
=

3

r2
�4W1. (3.115)

In order to show that we can consistently impose this relation we need to examine the
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remaining equations. First of all, with this constraint (3.106) reads

Z1 = −hr
5

54
�4D

′
1 +

hr3

18
�4W1 + 3 log

r

r∗
�4D1 . (3.116)

Adding (3.104) and (3.105), using the constraint and the fact thatW1 is a mass eigenstate

we find [hr3

18
W1

]′
+

9

r2
log

r

r∗
W1 +

h2r5

54
�4D1 = 0 . (3.117)

Eliminating �4D1 between the last two equations we obtain a second order differential

equation containing only W1 and Z1. A non-trivial fact is that this equation is identical

to (3.112). This relies heavily on the precise expression for the warp factor (1.48), and

shows the consistency of the constraint equation with the equations of motion.

Finally, introducing a symbol for the other combination of the vectors F1 and B1

that appears in the equations of motion

Y1 ≡ F ′1 +
3

r
B1 , (3.118)

equation (3.105) implies

�4Y1 = Z ′1 −
3

r
�4D1 . (3.119)

In summary, we have the two coupled dynamical equations

r

3

[r
3
Z ′1

]′
+
hr2

9
�4Z1 =

2

r
�4W1 , (3.120)

r

3

[r
3
W ′

1

]′
−W1 +

hr2

9
�4W1 =

2

r
Z1 , (3.121)

which determine W1 and Z1. In terms of these �4D1 is determined by (3.117), J1 by

(3.115), and �4Y1 by (3.119). Equations (3.120), (3.121) are precisely the KT limit of

the scalar equations (3.48), (3.49) up to a rescaling of the fields by a numerical factor.4

4Looking at (3.48) one might have expected the term 2z̃/ sinh2 τ to give rise to a term proportional
to Z1/r

6 in (3.120), but in fact this is not the case because it is too small to be seen in the KT limit.
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Since the KT limits of their equations of motion agree, we thus argue that the axial

vectors Z1 and W1 are the superpartners of the coupled scalars z̃ and w̃ found above,

and that their massive excitations combine into vector multiplets. Subsequently, this

was shown rigorously by explicit construction of the vector fluctuations of the full KS

solution in [131], where all I-odd SU(2)× SU(2) invariant perturbations of the warped

throat were found and categorized.

3.5 Effects of Compactification

Now we will embed the KS throat into a flux compactification, along the lines of [132],

and estimate the mass of the Higgs scalar. Generally, glueballs are dual to the normal-

izable modes localized near the bottom of the throat, and one does not expect them to

be strongly affected by the bulk of the Calabi-Yau. This is indeed the case for all the

massive radial excitations found in Sections 3.2 and 3.3. We will see, however, that the

case of the GHK scalar is more subtle and exhibits some UV sensitivity.

To model a compactification, we will introduce a UV cut-off on the radial coordinate,

τmax. We also need to include a deformation of the KS solution introduced by bulk effects.

On the field theory side this corresponds to perturbing the Lagrangian of the cascading

gauge theory by some irrelevant operators. Here we are not interested in classifying all

of them but rather model the compactification effects in the simplest way by considering

one perturbation which simulates the main features of the compactified solution. We

consider a shift of the warp factor δh = const., which corresponds to the dimension 8

operator on the field theory side [133, 134, 135]. This also has a simple geometrical

meaning: the warp factor of the compactified solution is a finite constant in the bulk of

the Calabi-Yau and therefore should not drop below a certain value along the throat.

In the KS background it arises from a subleading term in the variation of the Ricci tensor (3.33) but
such terms that are asymptotically suppressed by powers of r compared to the leading terms are not
taken into account in the KT metric. Indeed, if we write ansatz (3.2)-(3.6) in the KT background and
follow the same strategy as we did for the full KS background, the term proportional to z̃/r6 does not
appear in the Einstein equations.
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Let us introduce a small parameter δ which shifts the rescaled warp factor, I(τ) →

I(τ) + δ, and consider the system (3.51)–(3.52) in perturbation theory near m̃2 = 0:

z̃= z̃0 + m̃2z̃1 , (3.122)

w̃= w̃0 + m̃2w̃1 , (3.123)

z̃0 = τ coth τ − 1 , (3.124)

w̃0 =− 22/3 8

9

1

sinh τ

∫ τ

0

dx I(x) sinh2 x . (3.125)

At leading order in m̃2 we find

z̃1 = (τ coth τ − 1)

∫ τ

0

dx u(x) cothx− coth τ

∫ τ

0

dx u(x) (x cothx− 1) , (3.126)

w̃1 =− 1

4 sinh τ

∫ τ

0

dx v(x)
sinh 2x− 2x

sinhx
− sinh 2τ − 2τ

4 sinh τ

∫ ∞
τ

dx v(x)
1

sinhx
, (3.127)

where

u(τ) =− I(τ)

K2(τ)
z̃0 +

9

4 · 22/3
K(τ) w̃0 −

δ

K2
z̃0 , (3.128)

v(τ) =− I(τ)

K2(τ)
w̃0 +

16

9
K(τ) z̃1 −

δ

K2
w̃0 . (3.129)

Keeping in mind that for large τ we have u ' −2−2/3δ τ e2τ/3 one finds the asymptotic

behavior

z̃1(τ)'−2−2/3δ

∫ τ

0

dx (τ − x)x e2x/3 ' − 9 δ

4 22/3
τ e2τ/3 . (3.130)

This yields v ' −22/3δ τ eτ/3 and

w̃1 =− 1

4 sinh τ

∫ τ

0

dx v0(x)
sinh 2x− 2x

sinhx
− sinh 2τ − 2τ

4 sinh τ

∫ ∞
τ

dx v0(x)
1

sinhx

' 9 22/3δ

8
τ eτ/3 . (3.131)
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Figure 3.1: The dependence of log m̃ on τmax is linear with the slope equal to -1/3. The three
lines shown correspond to δ = 1, δ = 0.01 and δ = 0.0001.

Finally, up to first order in the mass-squared and δ:

z̃ ' τ
[
1− 9 δ m̃2

4 22/3
e2τ/3

]
, w̃ ' −24/3τ e−τ/3

[
1− 9 δ m̃2

8 22/3
e2τ/3

]
. (3.132)

This suggests that for generic boundary conditions the cut-off value

τmax ' − log (δ3/2m̃3) . (3.133)

This prediction can be tested numerically. In order to do so one can specify some small

m̃ and plot the determinant

det

(
z̃1(τ) z̃2(τ)

w̃1(τ) w̃2(τ)

)
, (3.134)

of the two linearly independent solutions regular at τ = 0 as a function of τ . The first zero

marks the point τmax such that there is a regular solution with z(τmax) = w(τmax) = 0.

Hence τmax is the corresponding cut-off value. As Figure 3.1 shows, the relation (3.133)

holds for τmax large enough that m̃2 is small, where

m̃2 ∼ δ−1e−2τmax/3 . (3.135)

Let us consider a simple model of compactification where the throat is embedded
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into an asymptotically conical space that terminates at some large cut-off value τmax.

To calculate the mass from (3.135) we need to know δ as well as τmax. The former is the

asymptotic value of the (rescaled) warp factor. The point where the field theory warp

factor approaches δ marks the UV cutoff of the field theory

I(τUV ) ∼ τUV e
−4τUV /3 ' δ . (3.136)

Using this in (3.135) we find m̃2 ∼ e(4τUV −2τmax)/3. This shows that the Higgs mass

becomes parametrically small only for τmax � 2τUV . This is not satisfied in general;

the geometry requires only that τmax > τUV because τUV is the length of the throat

embedded into a CY space. With the ratio between the UV and IR scales of the field

theory around 4·103 [121] we estimate that τUV ' 25 [59]. The cut-off τmax can be related

to the warped volume of the Calabi-Yau which, in a singular conifold approximation, is

V w
6 = Vol(T 1,1)

∫ rmax

0

dr h(r)

√
det g6

det gT 1,1

, (3.137)

where r ∼ ε2/3eτ/3. The integral from zero to rUV is the warped volume of the throat,

and from rUV to rmax is the bulk volume. Assuming that the latter dominates,

V w
6 '

16π3

27
ε4/3(gsMα′)2

[
r6

max − r6
UV

]
r−4
UV . (3.138)

Requiring τmax � 50 leads to an enormous V w
6 , far larger than, for example, V w

6 ' 56α′3

in [121]. Thus, while for τmax � 2τUV the Higgs scalar becomes parametrically lighter

than the other normal modes, in compactifications with realistic parameters it may

actually be heavier. This is due to the special feature of its wave function z̃ which grows

linearly with τ in the throat. The only conclusion we can draw from our simplified model

of compactification is that this mode is rather UV sensitive, so to determine its mass we

need to know the details of the compactification.
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Chapter 4

Baryonic Condensates on the

Conifold

4.1 Introduction

Consideration of a stack of N D3-branes leads to the duality of N = 4 super Yang-Mills

theory to type IIB string theory on AdS5×S5 [1, 2, 3]. A different,N = 1 supersymmetric

example of the AdS/CFT correspondence follows from placing the stack of D3-branes at

the tip of the conifold [44, 45]. This suggests a duality between a certain SU(N)×SU(N)

superconformal gauge theory and type IIB string theory on AdS5×T 1,1. Addition of M

D5-branes wrapped over the two-sphere near the tip of the conifold changes the gauge

group to SU(N + M) × SU(N) [111, 112]. This theory is non-conformal; it undergoes

a cascade of Seiberg dualities [50] SU(N + M)× SU(N)→ SU(N −M)× SU(N) as it

flows from the UV to the IR [49, 51] (for reviews, see [10, 11, 12] and Section 1.2).

The gauge theory contains two doublets of bifundamental, chiral superfields Ai, Bj

(with i, j = 1, 2). In the conformal case, M = 0, it has continuous global symmetries

SU(2)A×SU(2)B×U(1)R×U(1)B. The two SU(2) groups rotate the doublets Ai and Bj,

while one U(1) is an R-symmetry. The remaining U(1) factor corresponds to the baryon
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number symmetry which we will be most interested in. As argued in [49, 52, 53, 56, 59],

in the cascading theory where N is an integer multiple of M , N = kM , this symmetry

is spontaneously broken by condensates of baryonic operators. In this chapter we will

provide a quantitative verification of this effect.

For N = kM the last step of the cascade is an SU(2M)×SU(M) theory which admits

two baryon operators (sometimes referred to as baryon and antibaryon)

A∼ εα1α2...α2M
(A1)α1

1 (A1)α2
2 . . . (A1)αMM (A2)

αM+1

1 (A2)
αM+2

2 . . . (A1)α2M
M ,

B∼ εα1α2...α2M
(B1)α1

1 (B1)α2
2 . . . (B1)αMM (B2)

αM+1

1 (B2)
αM+2

2 . . . (B1)α2M
M . (4.1)

Baryon operators of the general SU(M(k + 1)) × SU(Mk) theory have the schematic

form (A1A2)k(k+1)M/2 and (B1B2)k(k+1)M/2, with appropriate contractions described in

[56]. Unlike the dibaryon operators of the conformal SU(N) × SU(N) theory [111], A

and B are singlets under the two global SU(2) symmetries. These operators acquire

expectation values that spontaneously break the U(1)B baryon number symmetry; this

is why the gauge theory is said to be on the baryonic branch of its moduli space [57].

Supersymmetric vacua on the one complex dimensional baryonic branch are subject to

the constraint AB = −Λ4M
2M , and thus we can parameterize it as follows

A = iζΛ2M
2M , B =

i

ζ
Λ2M

2M . (4.2)

The non-singular supergravity dual of the theory with |ζ| = 1 is the warped deformed

conifold found in [49]. In [52, 53] the linearized scalar and pseudoscalar perturbations,

corresponding to small deviations of ζ from 1, were constructed, and in the previous

chapter we have generalized this construction to fluctuations with non-zero momentum.

The full set of first-order equations necessary to describe the entire moduli space of

supergravity backgrounds dual to the baryonic branch, called the resolved warped de-

formed conifolds, was derived and solved numerically in [58] (for further discussion of
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these solutions, see [59] and Subsection 1.2.4).

The construction of this moduli space of supergravity backgrounds, which have just

the right symmetries to be identified with the baryonic branch in the cascading gauge

theory, provides an excellent check on the gauge/string duality in this intricate setting.

Yet, one question remains: how do we identify the baryonic expectation values on the

string side of this duality? Among other things, this is needed to construct a map

between the parameter U that labels the supergravity solutions, and the parameter |ζ|

in the gauge theory.

The dual string theory description of the baryon operators (4.1) was first considered

by Aharony [56]. He argued that the heavy particle dual to such an operator is described

at large r by a D5-brane wrapped over the T 1,1, with some D3-branes dissolved in it

(to account for this, the world volume gauge field needs to be turned on). To calculate

the two-point function of baryon operators inserted at x1 and x2 we may use a semi-

classical approach to the AdS/CFT correspondence. Then we need a (Euclidean) D5-

brane whose world volume has two T 1,1 boundaries at large r, located at x1 and x2. Here

we will be interested in a simpler embedding of the D5-brane: as suggested by Witten

(unpublished, 2004), the object needed to calculate the baryonic expectation values

is the Euclidean D5-brane that has the appearance of a pointlike instanton from the

four-dimensional point of view, and wraps the remaining six (generalized Calabi-Yau)

directions of the ten-dimensional spacetime. This object has a single T 1,1 boundary

at large r, corresponding to insertion of just one baryon operator. As we will find,

supersymmetry requires that the world volume gauge field is also turned on, so there are

D3-branes dissolved in the D5. This identification will be corroborated by demonstrating

that the D5-brane couples correctly to the pseudoscalar zero-mode of the theory that

changes the phase of the baryon expectation value [52, 53].

Close to the boundary, a field ϕ dual to an operator of dimension ∆ in the AdS/CFT
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correspondence behaves as

ϕ(x, r) = ϕ0(x) r∆−4 + Aϕ(x) r−∆ , (4.3)

Here Aϕ is the operator expectation value [48], and ϕ0 is the source for it. In the

cascading theory, which is near-AdS in the UV, the same formulae hold modulo powers

of ln r [136, 137]. The field corresponding to a baryon will be identified, at a semi-

classical level, with e−SD5(r), where SD5(r) is the action of a D5-brane wrapping the

Calabi-Yau coordinates up to the radial coordinate cut-off r. The different baryon

operators A,A,B,B will be distinguished by the two possible D5-brane orientations,

and the two possible κ-symmetric choices for the world volume gauge field that has to

be turned on inside the D5-brane. In the cascading gauge theory there is no source

added for baryonic operators, hence we find that ϕ0 = 0. On the other hand, the term

scaling as r−∆ is indeed revealed by our calculation of e−SD5(r) as a function of the radial

cut-off, allowing us to find the dimensions of the baryon operators, and the values of

their condensates.

This chapter relies heavily on material from the paper [138] coauthored with A. Dy-

marsky and I. R. Klebanov, and is subdivided as follows. In the remainder of Section 4.1

we discuss the Killing spinors of the warped supergravity backgrounds dual to the bary-

onic branch. We also review the κ-symmetry conditions for D-brane embeddings, and

briefly discuss a number of brane configurations that satisfy them. Section 4.2 is de-

voted to the derivation of the first-order equation for the gauge field. We first discuss a

Lorentzian D7-brane wrapping the warped deformed conifold directions, before present-

ing a parallel treatment for the more subtle case of the Euclidean D5-brane wrapping

the conifold. In Section 4.3 we investigate the physics of the D5-instanton in the KS

background. From the behavior of the D5-brane action as a function of the radial cut-off

we extract the dimension of the baryon operator, and show that it matches the expec-
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tations from the dual cascading gauge theory. We also show that the D5-brane couples

to the baryonic branch complex modulus in the way consistent with our identification

of the condensates. In particular, we demonstrate that pseudoscalar perturbations of

the backgrounds shift the phase of the baryon expectation value. We generalize to the

complete baryonic branch in Section 4.4, where we compute the baryon expectation val-

ues as a function of the supergravity modulus U . The product of the expectation values

calculated from the D5-brane action is shown to be independent of U in agreement with

(4.2). Finally, we present an integral expression for their ratio and evaluate it numeri-

cally, which provides a relation between the baryonic branch modulus |ζ| in the gauge

theory and the modulus U in the dual supergravity description, and show that they

satisfy AB = const. We conclude briefly in Section 4.5.

4.1.1 D-Branes, κ-Symmetry and Killing Spinors of the Coni-

fold

A Dirichlet p-brane (with p spatially extended dimensions) in string theory is described

by an action consisting of two terms [139, 140, 141]: the Dirac-Born-Infeld action, which

is essentially a minimal area action including non-linear electrodynamics, and the Chern-

Simons action, which describes the coupling to the RR background fields:

S = SDBI + SCS = −
∫
W

dp+1σe−φ
√
− det(G+ F) +

∫
W
eF ∧ C . (4.4)

Here W is the worldvolume of the brane and we have set the brane tension to unity.

Further, G is the induced metric on the worldvolume, F = F2+B2 is the sum of the gauge

field strength F2 = dA1 and the pullback of the NSNS two-form field, and C =
∑

iCi is

the formal sum of the RR potentials. In superstring theory all these fields should really

be understood as superfields, but we shall ignore fermionic excitations here.

Wick rotation of this action to Euclidean space such that all p+ 1 directions become
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spatially extended (which leads to a Euclidean worldvolume D-instanton) effectively

multiplies the action by a factor of i. This cancels the minus sign under the square root

in the DBI term and leaves it real since the determinant is now positive. The CS term

however is purely imaginary now. Consequently the equations of motion that follow

from the DBI and CS terms now have be satisfied independently of each other if we

insist on the gauge field being real.

The action (4.4) is invariant on shell under the so-called κ-symmetry [142, 143, 144].

This allows us to find first-order equations for supersymmetric configurations which are

easier to solve than the second order equations of motion. The κ-symmetry condition

can be written as

Γκ ε = ε , (4.5)

where ε is a doublet of Majorana-Weyl spinors, and the operator Γκ is specified below.

Satisfying this equation guarantees worldvolume supersymmetry in the probe brane

approximation, and every solution for which ε is a Killing spinor corresponds to a su-

persymmetry compatible with those preserved by the background.

The decomposition of a Weyl spinor ε into a doublet of Majorana-Weyl spinors

ε =

(
ε1

ε2

)
(4.6)

is achieved by projecting onto the eigenstates of charge conjugation1 ε1 = (ε+ε∗)/2 and

ε2 = (ε− ε∗)/2i.

In IIB superstring theory on a (9, 1) signature spacetime, the κ-symmetry operator

Γκ for a Lorentzian D-brane extended along the time direction x0 and p spatial directions

1Given any spinor ε we denote its charge conjugate by ε∗, which of course is represented by complex
conjugation and left multiplication by a charge conjugation matrix B. We do not write B explicitly
here, though its presence is understood.
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is given by

Γκ =

√
− detG√

− det(G+ F)

∞∑
n=0

(−1)n /FnΓ(p+1) ⊗ (σ3)n+ p−3
2 iσ2 , (4.7)

Γ(p+1)≡
1

(p+ 1)!
√
− detG

εµ1...µp+1Γµ1...µp+1 , (4.8)

/Fn≡ 1

2nn!
Γν1...ν2nFσ1σ2 . . .Fσ2n−1σ2nG

ν1σ1 . . . Gν2nσ2n . (4.9)

Here σi are the usual Pauli matrices. We use Greek labels for the worldvolume indices

of the D-brane and consequentially the Γµ are induced Dirac matrices. In what follows

we denote the Minkowski spacetime coordinates by x0 . . . x3 and label the tangent space

of the internal manifold M by 1, 2 . . . 6 in reference to the basis one-forms (1.66). The

expression for Γκ can be significantly simplified for an embedding covering all six direc-

tions of the deformed conifold, in which case we simply align the worldvolume tangent

space with that of M.

The Killing spinor Ψ of the supergravity backgrounds dual to the baryonic branch

is built out of a six-dimensional pure spinor η− and an arbitrary spinor ζ− of negative

four-dimensional chirality,

Ψ =α ζ− ⊗ η− + iβ ζ+ ⊗ η+ , (4.10)

(Γ1 − iΓ2)ζ− ⊗ η−= (Γ3 − iΓ4)ζ− ⊗ η− = (Γ5 − iΓ6)ζ− ⊗ η− = 0 , (4.11)

where η+ = (η−)∗ and ζ+ = (ζ−)∗. The functions α and β are real [58, 59] and given by

α =
eφ/4(1 + eφ)3/8

(1− eφ)1/8
, β =

eφ/4(1− eφ)3/8

(1 + eφ)1/8
. (4.12)

(this expression for β is for U > 0; β changes sign when U does). The corresponding
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Majorana-Weyl spinors Ψ1 and Ψ2 are

Ψ1 =
1

2

(
(α− iβ)ζ− ⊗ η− + (α + iβ)ζ+ ⊗ η+

)
, (4.13)

Ψ2 =
1

2i

(
(α + iβ)ζ− ⊗ η− − (α− iβ)ζ+ ⊗ η+

)
. (4.14)

4.1.2 Branes Wrapping the Angular Directions

In the context of the conifold, the closest analogue to the baryon vertex in AdS5 × S5

that was discussed in [145, 146, 147], would be a D5-brane wrapping the five angular

directions of the internal space, with worldvolume coordinates σµ = (x0, θ1, φ1, θ2, φ2, ψ).

The brane describing the baryon vertex in AdS5 × S5 has “BI-on” spikes correspond-

ing to fundamental strings attached to the brane and ending on the boundary of AdS,

indicating that it is not a gauge-invariant object. Here however, we are interested in

gauge-invariant, supersymmetric objects, that are candidate duals to chiral operators

in the gauge theory, so we might try to consider a smooth embedding at constant ra-

dial coordinate (the difference between a “baryon” and a “baryon vertex” was already

stressed in [145]).

To avoid having the BI-on spikes, it was proposed [56] that we should use an appro-

priate combination of D5-branes wrapping all the angular coordinates, and of D3-branes

wrapping the S3. This is equivalent to turning on a particular gauge field on the wrapped

D5-brane. Unfortunately, it is not clear how to maintain the supersymmetry of such an

object. It is not hard to see, for example from the appropriate κ-symmetry equations,

that a (Lorentzian) D5-brane wrapping the five angular direction of the conifold and

embedded at constant r cannot be a supersymmetric object. The κ-symmetry equation

seems to call for an additional constraint of the form Γx0ψε
∗ = −iε on the Killing spinors,

which would imply also Γx0rε
∗ = −ε, i.e. precisely what we would expect for strings

stretched in the radial direction. However, such a projection does not commute with

the other conditions that the Killing spinors have to satisfy and thus is not consistent.
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This was pointed out in [148] for the case of the singular conifold [44], and the argu-

ment carries over to the deformed conifold. Even with a worldvolume gauge field such

a D5-brane cannot be a BPS object.

The same conclusion also follows from the equation of motion for the radial compo-

nent of the embeddingXM(σµ). The leading term (as r →∞) in the D-brane Lagrangian

arises from the B2-field contribution to the DBI term and is proportional to r (ln r)2, so

this brane is bound to contract and move to smaller r, until eventually it reaches the

tip of the conifold, where the two-cycle collapses.

On the other hand, as suggested by Aharony [56], the D5-branes with D3-branes

dissolved within them are the particles dual to the baryon operators. As proposed by

Witten (unpublished, 2004), to find the baryonic condensates we need to consider a

Euclidean D5-brane wrapping the deformed conifold directions, with a certain gauge

field turned on. While there are no non-trivial two-cycles in this case, the worldvolume

gauge field does modify the coupling of this D-instanton to the RR potential C4. We will

show that such a configuration can be made κ-symmetric and then yields the baryonic

condensates consistent with the gauge theory expectations.

As a first example of a supersymmetric brane wrapping all the angular directions,

we shall discuss a D7-brane wrapping the warped deformed conifold, with the remaining

one space and one time directions extended in R3,1. The supersymmetry conditions for

general D-branes in N = 1 backgrounds were derived in [149, 150, 151], and our results

will be consistent with theirs. We will show that the Lorentzian D7-brane configuration

on the KS background is supersymmetric in the absence of a worldvolume gauge-field,

though the κ-symmetry analysis will also reveal supersymmetric configurations with non-

zero gauge field. The fact that switching on this field is not required for supersymmetry

might have been guessed from a naive counting argument. This embedding of the D7-

brane should be mutually supersymmetric with the D3-branes filling the R3,1, since the

number of Neumann-Dirichlet directions for strings stretched between them equals eight.
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The object we are most interested in is the Euclidean D5-brane completely wrapped

on the conifold. In contrast to the case of the D7-brane, we will find that supersymmetry

requires a non-trivial gauge field on the worldvolume. Again this is consistent with the

naive count of Neumann-Dirichlet directions with the D3-branes, which gives ten in this

case and thus indicates that these branes cannot be mutually supersymmetric if F2 = 0.

4.2 Derivation of the First-Order Equation for the

Worldvolume Gauge Bundle

In this section we derive the first-order equation of motion that the U(1) gauge field

has to satisfy to obtain a supersymmetric configuration. Because the κ-symmetry of the

Euclidean D5-brane is subtle, we will first discuss the closely related case of a Lorentzian

D7-brane wrapping the six-dimensional deformed conifold, with non-zero gauge bundle

only in these directions. This object is extended as a string in the R3,1 but in the case

of a non-compact space dual to the cascading gauge theory the tension of such a string

diverges with the cut-off as e2τ/3. Therefore, this string is not part of the gauge theory

spectrum.

4.2.1 κ-Symmetry of the Lorentzian D7-Brane

The explicit form of the κ-symmetry equation for the D7-brane with non-trivial U(1)

bundle on the six-dimensional internal space is given by

(
ε1

ε2

)
= Γκ

(
ε1

ε2

)
∼
[
−( /F + /F3)σ3 + (1 + /F2)

]
iσ2 Γx0x1123456

(
ε1

ε2

)
, (4.15)

For the case of Euclidean D-branes wrapping certain cycles in Calabi-Yau manifolds,

it was shown in [149] that the κ-symmetry condition (4.15) can be rewritten in more
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geometrical terms. This results in the conditions that F2,0 = 0, and that

1

2!
J ∧ J ∧ F − 1

3!
F ∧ F ∧ F = g

(
1

3!
J ∧ J ∧ J − 1

2!
J ∧ F ∧ F

)
. (4.16)

The constant g was found [149] to encode some information about the geometry, namely

a relative phase between coefficients of the covariantly constant spinors in the expansion

of the εi [149]. As we shall see below, the same equation holds in our case of a generalized

Calabi-Yau with fluxes, except that g becomes coordinate dependent.

With the SU(2)× SU(2) invariant ansatz for the gauge potential

A1 = ξ(τ)g5 , (4.17)

we find that the gauge-invariant two-form field strength is given by

F =
ie−x

2 sinh(τ)
× (4.18)[

e−g
[
ξ̃(cosh(τ) + 2a+ a2 cosh(τ)) + h2 sinh2(τ)(1− a2)

]
(G1 + iG2) ∧ (G1 − iG2)

+ eg
[
ξ̃ cosh(τ)− h2 sinh2(τ)

]
(G3 + iG4) ∧ (G3 − iG4)

+ ξ′v sinh(τ)(G5 + iG6) ∧ (G5 − iG6) +
[
ξ̃(1 + a cosh(τ))− h2a sinh2(τ)

]
(
(G1 + iG2) ∧ (G3 − iG4) + (G3 + iG4) ∧ (G1 − iG2)

)]
,

where ξ̃ = ξ + χ. This explicitly shows that F is a (1, 1) form, which is one of the

κ-symmetry conditions [149, 150, 151]. Now it is convenient to define

a(ξ, τ)≡ e−2x[e2x + h2
2 sinh2(τ)− (ξ + χ)2] ,

b(ξ, τ)≡ 2e−x−g sinh(τ)[a(ξ + χ)− h2(1 + a cosh(τ))] . (4.19)
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In terms of these expressions we find that

1

3!
J ∧ J ∧ J − 1

2!
J ∧ F ∧ F = (a + ve−xb ξ′) vol6 ,

1

2!
J ∧ J ∧ F − 1

3!
F ∧ F ∧ F = (−b + ve−xa ξ′) vol6 , (4.20)

where vol6 = (J ∧ J ∧ J)/3!. Thus (4.16) would lead to a differential equation of the

form

ξ′ =
ex(ga + b)

v(a− gb)
, (4.21)

for some as yet undetermined g. In order to confirm the validity of this equation and

determine the function g we return to the full κ-symmetry equation (4.15) with the

Majorana-Weyl spinors ε1 = (Ψ + Ψ∗)/2 and ε2 = (Ψ − Ψ∗)/2i constructed from the

Killing spinor. The analysis of this equation is much simplified by noting that Γ1..6η
± =

∓iη± and that the spinors η± are in fact eigenspinors2 of /Fn

/Fη±=±iη± (F12 + F34 + F56) , (4.22)

/F2η±=−η± (F12F34 + F14F23 + F12F56 + F34F56) , (4.23)

/F3η±=∓iη± (F12F34F56 + F14F23F56) , (4.24)

where the indices refer the basis one-forms (1.66). Then it follows from (4.20) that the

two terms in the κ-symmetry equation act on the spinors in a rather simple fashion:

[
1 + /F2

]
η±=

[
a + ve−xbξ′

]
η± ,[

/F + /F3
]
η±=±i

[
−b + ve−xaξ′

]
η± . (4.25)

Using these relations it is easy to see that the Killing spinor (4.10) indeed solves (4.15)

provided we impose the conditions that its four-dimensional parts ζ± obey the condition

2For simplicity we drop the four-dimensional spinors ζ± in ζ± ⊗ η±.
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Γx0x1ζ± ⊗ η± = ζ± ⊗ η±, and that the gauge field ξ(τ) satisfies (4.21) with

g(τ) = g7(τ) ≡ − 2αβ

α2 − β2
= −e−φ

√
1− e2φ . (4.26)

Thus indeed (4.16) holds and (4.21) is the correct first order differential equation given

this function g(τ).

The fact that the κ-symmetry condition (4.15) is satisfied implies worldvolume super-

symmetry in the probe brane approximation. However, we also ask for the worldvolume

supersymmetries to be compatible with those of the background. In order to check how

many supersymmetries of the background are preserved by the brane we need to enu-

merate the solutions of (4.15) for which ε1 + iε2 is not just any spinor, but a Killing

spinor. For the particular case of the D7-brane with U(1) gauge bundle determined by

the first-order equation (4.21) we saw that Killing spinors of the form (4.10) solve the

κ-symmetry equation if Γx0x1ζ± ⊗ η± = ζ± ⊗ η±, and thus half of the supersymmetries

of the background are preserved.

4.2.2 An Equivalent Derivation Starting from the Equation of

Motion

Here we present an alternative derivation of the first-order equations for the gauge field

ξ(τ), starting from the second-order equation of motion. This method has the advantage

that it applies equally well to Lorentzian D7 and Euclidean D5-branes wrapping the

conifold. The κ-symmetry argument we employed in the previous section for the D7-

brane is somewhat complicated in the case of the D5-instanton by the fact that we are

forced to Wick rotate to Euclidean spacetime signature where there are no Majorana-

Weyl spinors. However, knowing that a first-order differential equation for the gauge

field exists, as well as its general features, it is not hard to derive it directly from the

second-order equation of motion.

109



Since with Euclidean signature the DBI action is real and the CS action pure imag-

inary, two sets of equations of motion have to be satisfied simultaneously if we insist

on the gauge field being real. With the ansatz (4.17) for the gauge potential, the CS

equations are automatically satisfied, as are five of the DBI equations; only the one for

the g5 component of the gauge field (or equivalently its ψ component) is non-trivial.

In terms of the (implicitly U -dependent) functions defined in [58] the determinant

that appears in the DBI action is given by

detM(G+ F) = v−2e6x(1 + (ξ′)2v2e−2x)

[
1 + e−4x

(
(ξ + χ)2 − sinh2(τ)h2

2

)2

−2e−2x
(
(ξ + χ)2 + sinh2(τ)h2

2

) (
1− 2e−2ga2 sinh2(τ)

)
−8e−2x−2g sinh2(τ) a h2(ξ + χ)(1 + a cosh(τ))

]
, (4.27)

where we have omitted the angular dependence ∼ sin2 θ1 sin2 θ2. Here we have only taken

into account the six-dimensional internal manifold M. If the brane is also extended in

the Minkowski directions (but carries zero gauge bundle in these directions) there are

additional ξ-independent factors multiplying the DBI determinant that appears in the

action (4.4). E.g. for the Lorentzian D7-brane this factor is equal to e4A. Using the

definitions (4.19), the term in square brackets in (4.27) can be written as a sum of

squares a2 + b2.

We know from the form of the κ-symmetry equation that the first-order differential

equation we are looking for must

i) be polynomial (of at most third order) in ξ and its first derivative,

ii) contain ξ′ only at linear order (i.e. no (ξ′)2 terms),

iii) be such that the determinant factorizes.

In particular the last condition means that when we eliminate ξ′ from the action,

the ξ-dependent term must be a perfect square, else the factor of
√

detM(G+ F) in the

denominator of (4.7) cannot be cancelled by the numerator to give unit eigenvalue. This
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implies that we must have

(1 + (ξ′)2v2e−2x) =
a2 + b2

f2(ξ, τ)
, (4.28)

for some f(ξ, τ), so that

ξ′ =
ex
√

a2 + b2 − f2(ξ, τ)

v f(ξ, τ)
. (4.29)

Because we expect the equation to be polynomial in ξ one must be able to explicitly

take the square root, and thus f(ξ, τ) can be written as

f(ξ, τ) =
a− g(τ)b√

1 + g2(τ)
, (4.30)

for some function g(τ), where all the ξ-dependence is now implicit in a and b. With this

ansatz we have

ξ′ =
ex(ga + b)

v(a− gb)
, (4.31)

which is of the same form as the first order differential equation we derived for the D7-

brane in the previous section. The function g follows by varying the action with respect

to ξ and substituting for ξ′ using (4.31). It is not difficult to check that the equations

of motion that follow from the DBI action of the D7-brane
∫
e2A−φ

√
detM(G+ F) are

indeed implied by the first order equation (4.31) with

g = g7 =
ex−g(1 + a cosh(τ))

h2 sinh(τ)
= −e−φ

√
1− e2φ , (4.32)

as we found above using a κ-symmetry argument.

Using the same method, we can now find the first-order equation for the gauge field

on the Euclidean D5-brane. Having constrained the equation we are looking for to the

form (4.31) we vary the DBI action
∫
e−φ
√

detM(G+ F) using (4.27) and eliminate ξ′
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to obtain

δ

δξ

[
e−φ
√

det(G+ F +B)
]

= 0 =

2e−φe2x
√

1 + g2

v(a− gb)

[
−(ξ + χ)e−xa + e−ga sinh(τ)b

]
− d

dτ

[
e−φe2x(ga + b)√

1 + g2

]
. (4.33)

Collecting powers of ξ and equating their coefficients to zero we find differential equations

for g(τ) which are solved simultaneously by

g = g5 ≡ −
e−x+gh2 sinh(τ)

(1 + a cosh(τ))
=

eφ√
1− e2φ

. (4.34)

Substituting this into (4.31), the first-order equation we were looking for, written out in

full detail, is

ξ′ =
[
− h2 sinh(τ)e2g[e2x + h2

2 sinh2(τ)− (ξ + χ)2]

+2e2x sinh(τ)(1 + a cosh(τ))[a(ξ + χ)− h2(1 + a cosh(τ))]
]
×[

veg
[
(1 + a cosh(τ))[e2x + h2

2 sinh2(τ)− (ξ + χ)2]

+2h2 sinh2(τ)[a(ξ + χ)− h2(1 + a cosh(τ))]
]]−1

. (4.35)

In spite of its complicated appearance, this equation can be integrated and can in fact

be solved fairly explicitly. In the KS limit it reduces to a simpler equation (4.40) that

will be discussed in Section 4.3.

Let us note here the interesting fact that the Euclidean D5-brane and the Lorentzian

D7-brane are related by g5 = −1/g7. For the D7-brane we find g7 = 0 for the KS

background (since there 1 + a cosh(τ) = 0), while g7 diverges far along the baryonic

branch where h2 → 0, and correspondingly for g5 the situation is the other way around3.

The first order equation for the gauge bundle we have derived is in fact more general

3As a curious aside, note that taking g = 0 in (4.31) leads to an equation consistent with the action∫
e2A−2φ

√
detM(G+ F). This coincides with the D7 brane case for the KS solution (since here φ = 0),

but in general it is not clear what (if anything) this corresponds to.
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than we have made explicit, and when written in the form (4.35) applies to the whole

two-parameter (η, U) family of SU(3) structure backgrounds discussed in [58]. The

baryonic branch in particular corresponds to the choice of boundary condition η = 1

at τ = ∞ in the notation of [58], but the above family of solutions also includes the

CVMN background [60, 61, 62], which has the linear dilation boundary condition η = 0

at infinity.

4.2.3 κ-Symmetry of the Euclidean D5-Brane

Let us now reconsider the Euclidean D5-brane using the κ-symmetry approach. The

κ-symmetry projection operator in [142, 144] was derived using the superspace formal-

ism for Lorentzian worldvolume branes in (9,1) signature spacetimes, and thus it is not

immediately clear if it is applicable to the case of a Euclidean worldvolume instanton

which necessarily has to reside in a (10,0) signature spacetime. For now we shall never-

theless proceed by performing just a naive Wick-rotation of the κ-symmetry projector,

which simply introduces a factor −i in (4.7) such that Γ2
κ = 1 still holds.

The analog of the κ-symmetry condition (4.15) for the Euclidean D5-brane is then

given by

(
ε1

ε2

)
= Γκ

(
ε1

ε2

)
∼
[
−( /F + /F3) + (1 + /F2)σ3

]
σ2 Γ123456

(
ε1

ε2

)
. (4.36)

Re-expressing this in geometrical terms leads to an equation of the same form as (4.16),

but now we expect g(τ) to be equal to g5(τ). Using the same ansatz A1 = ξ(τ) g5 as

above it is clear that equations (4.20) and thus (4.21) still hold, and of course F is still

a (1,1) form.

However, with the gauge bundle we derived in the previous subsection (i.e. with g =

g5 = (α2 − β2)/(2αβ)) the κ-symmetry equation (4.36) does not have solutions for

ε1 + iε2 being equal to the Killing spinor (4.10). We can find solutions for other spinors
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by expanding the εi in terms of pure spinors:

εi = xi(τ) ζ− ⊗ η− + yi(τ) ζ+ ⊗ η+ , (4.37)

where i = 1, 2. We find that with this ansatz (4.36) is solved if the coefficients satisfy

x1

x2

= i
(α− iβ)2

α2 + β2
,

y1

y2

= i
(α + iβ)2

α2 + β2
. (4.38)

Thus we have obtained a family of spinors (4.38) that solves the κ-symmetry equation

with the correct gauge bundle, but this family does not seem to contain the Killing

spinor (which differs by a sign in y1/y2). This would imply that even though for the

gauge field configuration we have found there is worldvolume supersymmetry in the

probe brane approximation, these supersymmetries would not be compatible with those

of the background.

We believe that this difficulty is just an artefact of applying the κ-symmetry operator

in a Euclidean spacetime to a Euclidean worldvolume brane without properly taking into

account the subtleties of Wick-rotating the spinors and the projector itself, and that

the D5-instanton does preserve the background supersymmetries. In fact it is known

that for a Euclidean D5-brane wrapping six internal dimensions the correct κ-symmetry

equations are not the ones obtained by the naive Wick rotation we performed above, but

instead are identical to those for a Lorentzian D9-brane4. The κ-symmetry conditions

for the Lorentzian D9-brane lead to equations identical to (4.38) except for a change of

sign on the right hand side of the equation for y1/y2, so that they are now satisfied by the

Killing spinor. This shows that the worldvolume gauge field found above is consistent

with properly defined κ-symmetry.

In either case we consider the independent derivation of the first-order equation

(4.35) in the previous subsection a compelling argument that this gauge bundle is in

4We would like to thank L. Martucci for pointing this out to us.
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fact the correct one for our purposes, which will be corroborated below by the successful

extraction of the baryon operator dimension from its large τ behaviour.

4.3 Euclidean D5-Brane on the KS Background

We will now specialize the discussion of the previous section to the case of a Euclidean

D5-brane wrapping the deformed conifold in the KS background. Since this background

is known analytically, the formulae are more explicit in this case. We interpret the

Euclidean D5-brane (which has the appearance of a pointlike instanton in Minkowski

space) as the dual of the baryon in the field theory, in the sense that its action captures

information about the (scale-dependent) anomalous dimension of the baryon operator,

as well as its expectation value.

4.3.1 The Gauge Field and the Integrated Form of the Action

For the KS background (where for simplicity we set Mα′ = 2 and gs = ε = 1), we have

a = −1/ cosh(τ) and χ = 0, so the first-order differential equation (4.35) simplifies to

ξ′ =
e2x + h2

2 sinh2(τ)− ξ2

2 v ξ
, (4.39)

or more explicitly, substituting in the KS expressions for x, h2 and v:

3
sinh(τ) cosh(τ)− τ

sinh2(τ)
ξ′ξ + ξ2 =

(sinh(τ) cosh(τ)− τ)2/3h

16
+

1

4
(τ coth(τ)− 1)2 . (4.40)

Note that there is no ξ′ξ2 term. Thus we can multiply the equation by an integrating

factor to turn the left hand side into the total derivative [(sinh(τ) cosh(τ)− τ)1/3ξ2]′ and

reduce the equation to the integral

ξ2 = (sinh(τ) cosh(τ)− τ)−1/3J(τ) , (4.41)
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where5

J(τ) =

∫ τ

0

(
sinh2(x)h(x)

24
+

sinh2(x)(x coth(x)− 1)2

6 (sinh(x) cosh(x)− x)2/3

)
dx . (4.43)

We have set the integration constant to zero by requiring regularity at τ = 0.

Now consider the DBI action of the Euclidean D5-brane with this worldvolume gauge

field. Neglecting the five angular integrals for the time being, and focussing on the radial

integral, we see that the Lagrangian is in fact a total derivative, and thus the action is

given by

SDBI ∼
∫

dτ e−φ
√

detG+ F

=− 1

3(sinh(τ) cosh(τ)− τ)1/2
J3/2 (4.44)

+

[
(sinh(τ) cosh(τ)− τ)1/2h

16
+

(τ coth(τ)− 1)2

4(sinh(τ) cosh(τ)− τ)1/6

]
J1/2 .

We are particularly interested in the UV behaviour of these quantities. From (4.41)

it is easy to find the asymptotic expansion of the gauge field as τ →∞:

ξ2 → 1

4
τ 2 − 7

8
τ +

47

32
+O(e−2τ/3) . (4.45)

Note that to leading order this approximates h2
2 sinh2(τ), so for large τ the coefficients of

the F2 and B2 fields become equal and cancellations occur in the action. This is essential

for obtaining the τ 3 behaviour of the action for large cut-off τ , which as we will see gives

the correct τ 2 scaling of the baryon operator dimensions.

To extract the asymptotic behaviour of the action we will use the integrated form

5The integral looks “almost” like the explicitly computable one∫ τ

0

(
sinh2(x)h(x)

24
+

sinh2(x)(x coth(x)− 1)2

18 (sinh(x) cosh(x)− x)2/3

)
dx

=
1
48

(sinh(τ) cosh(τ)− τ)h(τ) +
1
12

(τ coth(τ)− 1)2(sinh(τ) cosh(τ)− τ)1/3 , (4.42)

but a relative factor of 3 in the second term of (4.43) prevents us from performing it in closed form.
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(4.44). The leading terms in the expansion are easily found analytically, with the result

SDBI =

∫
dτe−φ

√
det(G+ F)→ 1

6
(τ 2 + τ − 2)

(
1

4
τ 2 − 7

8
τ +

47

32

)1/2

+O(e−2τ/3)

→ 1

12
τ 3 − 1

16
τ 2 − 25

128
τ +

943

1536
+O(1/τ) . (4.46)

Below we will argue that the O(1) term in this expansion determines the expectation

value of the baryon operator. Of particular interest is the variation of this expectation

value along the baryonic branch; we will investigate it in the next section. First, however,

we will give a field theoretic interpretation to the terms that increase with τ . As we will

see, the coefficients of these divergent terms are universal for all backgrounds along the

baryonic branch.

4.3.2 Scaling Dimension of Baryon Operator

We have seen that for large cut-off r (i.e. large τ), the DBI action of the Euclidean

D5-brane will behave as S(r) ∼ (ln(r))3. Since this object corresponds to the baryon

in the field theory, we expect that exp(−S) is related to r−∆, where ∆ is the scaling

dimension of the baryon operator.

To make this statement more precise we consider the RG flow equation relating the

operator dimension ∆ to the boundary behavior of the dual field ϕ(r):

−rdϕ(r)

dr
= ∆(r)ϕ(r) . (4.47)

This equation obviously holds in the usual AdS/CFT case where all operator dimensions

have a limit as the UV cut-off is removed. The case of cascading theories is more subtle,

since there exist operators, such as the baryons, whose dimensions grow in the UV. As

we will see, in these cases (4.47) is still applicable. Identifying the field dual to a baryon
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operator as

ϕ(r) ∼ exp(−S(r)) , (4.48)

we find

∆(r) = r
dS(r)

dr
=

dS(r)

d ln(r)
. (4.49)

To calculate the scaling dimension of the baryon in the gauge theory, we simply count

the number of constituent fields required to build a baryon operator for a given gauge

group SU(kM)× SU((k + 1)M) and multiply by the dimension of the chiral superfield

A or B; the latter approaches 3/4 in the UV where the theory is quasi-conformal. This

gives

∆(r) =
3

4
Mk(k + 1) =

27g2
sM

3

16π2
(ln(r))2 +O(ln(r)) , (4.50)

where k labels the cascade steps and we have used the asymptotic expression for the

radius (energy scale) at which the kth Seiberg duality is performed:

rk = r0 exp

(
2πk

3gsM

)
. (4.51)

Here and in the remainder of this subsection we keep factors of gs,M, ε and α′ explicit.

Let us now compare this to the scaling dimension we obtain from the action of the D5-

instanton according to equation (4.49). The leading term in the action is τ 3/12, which

is multiplied by a factor (gsMα′/2)3 that we had previously set to one, a factor 64π3

from the previously neglected five angular integrals and a factor of T5 = (2π)−5α′−3g−1
s .

Therefore, using (1.29) we have

S =
τ 3

12

(
gsMα′

2

)3
64π3

(2π)5α′3gs
+O(τ 2) =

9g2
sM

3

16π2
(ln(r))3 +O((ln(r))2) . (4.52)
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From (4.49) we find that this string theoretic calculation gives

∆(r) =
27g2

sM
3

16π2
(ln(r))2 +O(ln(r)) . (4.53)

The term of leading order in ln(r) is in perfect agreement with the gauge theory re-

sult (4.50). We consider this a strong argument that the relation (4.48) between the

Euclidean D5-brane action and the field dual to the baryon is indeed correct.

4.3.3 The Pseudoscalar Mode and the Phase of the Baryonic

Condensate

Let us now turn to a discussion of the Chern-Simons terms in the D-brane action. Given

our conventions (1.39) for the gauge-invariant and self-dual five-form field strength F̃5,

there is a slight subtlety in the CS term of the action (4.4). Its standard form, given

above, is valid with the choice of conventions where F̃5 = F5 +H3∧C2 = dC4 +dB2∧C2.

In these conventions dC4 is invariant under B2 gauge transformations B2 → B2 + dλ1,

but transforms under C2 gauge transformations C2 → C2 + dΛ1 such as to leave F̃5

invariant. However, we work in different conventions where F̃5 = dC4 + B2 ∧ F3; here

dC4 changes under B2 gauge transformations. This choice also alters the form of the CS

term in the action. The new RR fields are obtained by C4 → C4+B2∧C2 combined with

C2 → −C2 everywhere else, which modifies some of the terms in the CS action that will

be relevant for us:

1

2

∫
C2∧F ∧F +

∫
C4∧F → −

1

2

∫
C2∧F ∧F +

1

2

∫
C2∧B∧B+

∫
C4∧F . (4.54)

For the KS background the CS action simply vanishes. However, it is interesting to

consider small perturbations around it. The pseudoscalar glueball discovered in [52, 53]

is the Goldstone boson of the broken U(1) baryon number symmetry; it is associated
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with the phase of the baryon expectation value. This massless mode is a deformation of

the RR fields (which is generated for example by a D1-string extended in R3,1) given by

δF3 = ∗4da+ f2(τ) da ∧ dg5 + f ′2(τ) da ∧ dτ ∧ g5 ,

δF̃5 = (1 + ∗)δF3 ∧B2 =

(
∗4da−

h(τ)

6K2(τ)
da ∧ dτ ∧ g5

)
∧B2 , (4.55)

where a(x0, x1, x2, x3) is a pseudoscalar field in four dimensions that satisfies d ∗4 da =

0 and would experience monodromy around a D-string. This deformation solves the

supergravity equations with

f2(τ) =
1

6K2(τ) sinh2 τ

∫ τ

0

dxh(x) sinh2(x) . (4.56)

If we wish to identify the exponential exp(−S) = exp(−SDBI −SCS) of the brane action

(or more precisely the constant term in its asymptotic expansion as τ → ∞) with the

baryon expectation value, then the pseudoscalar massless mode has to shift the phase

of this quantity, contained in the imaginary Chern-Simons term. The DBI action is

obviously unaffected by this deformation of the background since the NSNS fields are

unchanged. This is consistent with the magnitudes of the baryon expectation values

being unaffected by the pseudoscalar mode; these magnitudes depend only on the scalar

modulus U in supergravity, corresponding to |ζ| in the gauge theory.

The phase exp(−SCS) by itself is not gauge invariant and thus not physical. Be-

cause our brane configuration has a boundary at τ = ∞, only the difference in phase

exp(−∆SCS) = exp(−i∆φ) between two Euclidean D5-branes displaced slightly in one

of the transverse directions (i.e. between two instantons at different points in Minkowski

space) is gauge-invariant. Taking into account the anomalous Bianchi identity for F̃5

and the RR gauge transformations we see that this gauge-invariant phase difference is

120



given by

∆φ = ∆φB + ∆φF , (4.57)

where

∆φB =

∫ [
1

2
δF3 ∧B ∧B + δF5 ∧B + ∗10δF3

]
, (4.58)

∆φF =

∫ [
−1

2
δF3 ∧ F ∧ F + δF5 ∧ F

]
. (4.59)

The integrals are performed over the six internal dimensions as well as a line in Minkowski

space. Note that here F5 ≡ dC4 = F̃5−B2∧F3. For small perturbations around KS the

contribution ∆φF from the coupling to the gauge field vanishes (the first term in (4.59)

is a total derivative with vanishing boundary terms, while the second term doesn’t have

the right angular structure to give a non-zero result). Substituting the explicit form of

the RR deformations from (4.55) we find that the phase difference is

∆φB = −1

2

∫ (
h

6K2
+ f ′2

)
(τ coth(τ)− 1)2 da ∧ dτ ∧ g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 . (4.60)

We can interpret ∆φ as ∆a times a baryon number. It is satisfying to see that the

pseudoscalar Goldstone mode indeed shifts the phase of the baryon expectation value

and not its magnitude. A more stringent test of our interpretation would be to carry

out this computation for the whole baryonic branch and check whether the numerical

value of the baryon number computed this way is independent of the modulus U . This

is rather difficult, since the pseudoscalar mode at a general point along the baryonic

branch is not explicitly known at present.
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4.4 Euclidean D5-Brane on the Baryonic Branch

In this section we extend the discussion of the previous section from the KS solution

to the entire baryonic branch. In particular we are interested in the dependence of the

baryon expectation value on the modulus U of the supergravity solutions. All supergrav-

ity backgrounds dual to the baryonic branch have the same asymptotics [59] and we will

see that the leading terms (cubic, quadratic and linear in τ) in the asymptotic expansion

of the action (4.46) are universal. This implies that the leading scaling dimensions of the

baryon operators do not depend on U , consistent with field theory expectations. How-

ever, the finite term in the asymptotic expansion of the brane action does depend on U .

This provides a map from the one-parameter family of supergravity solutions labelled

by U to the family of field theory vacua with different baryon expectation values (4.2),

parameterized by ζ.

4.4.1 Solving for the Gauge Field and Integrating the Action

Having derived the differential equation that determines the gauge field in full generality

in Section 4.2, let us now turn to a more detailed investigation of the first order equation

(4.35). First of all we note that it can be rewritten as

d

dτ

[
− 1

3
ξ3 +

(
ah2 sinh2(τ)

1 + a cosh(τ)
− χ

)
ξ2 +

(
e2x − h2

2 sinh2(τ)− χ2 +
2ah2 sinh2(τ)

1 + a cosh(τ)
χ

)
ξ

]

= − h2 sinh(τ)eg

v(1 + a cosh(τ))
[e2x + h2

2 sinh2(τ)− χ2]

+
2e2x sinh(τ)

veg
[aχ− h2(1 + a cosh(τ))] . (4.61)

For notational convenience we define ξ̃ ≡ ξ + χ,

A(τ)≡ ah2 sinh2(τ)

1 + a cosh(τ)
, (4.62)

B(τ)≡ e2x − h2
2 sinh2(τ) , (4.63)
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and

ρ(τ)≡
∫ τ

0

[
h2 sinh(τ)eg

v(1 + a cosh(τ))
[e2x + h2

2 sinh2(τ)]

+
2e2xh2 sinh(τ)(1 + a cosh(τ))

veg
− [e2x − h2

2 sinh2(τ)]χ′
]
dτ , (4.64)

which allows us to write (4.61) more compactly as

d

dτ

[
− 1

3
ξ̃3 + A(τ)ξ̃2 + B(τ)ξ̃ + ρ(τ)

]
= 0 . (4.65)

Thus the solutions for the shifted field ξ̃ are given by the roots of the third order

polynomial

−1

3
ξ̃3 + A(τ)ξ̃2 + B(τ)ξ̃ + ρ(τ) = C , (4.66)

where C is the integration constant.6 To fix it, we consider the small τ expansion, which

is valid for any U

A∼ τ +O(τ 3) , (4.67)

B∼ τ 2 +O(τ 4) , (4.68)

ρ∼ τ 3 +O(τ 4) . (4.69)

Note that at τ = 0 all coefficients in (4.66) vanish, except the first one; therefore, the

integration constant C has to be zero for this cubic to admit more than one real solution.

Then we find that ξ̃ = 0 at τ = 0 for any solution on the baryonic branch.

Let us examine the cubic equation (4.66) more closely in the KS limit (U → 0) to

see how our earlier result (4.41) is recovered. In the U → 0 limit a → −1/ cosh(τ) and

6This equation is quite general; it does not assume boundary conditions η = 1 that characterize the
baryonic branch [59]. In particular this result is also valid for a brane embedded in the CVMN solution
[60, 61, 62].
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therefore (1 + a cosh(τ)) vanishes. For small U [52, 53, 58, 59]

(1 + a cosh(τ)) = 2−5/3UZ(τ) +O(U2) , (4.70)

Z(τ)≡ (τ − tanh(τ))

(sinh(τ) cosh(τ)− 1)1/3
. (4.71)

In this case A and the first term in ρ diverge as U−1. All other terms can be dropped

and we have instead of (4.65)

ξ̃2 ah2 sinh2(τ)

Z(τ)
+

∫ τ

0

dτ
h2 sinh(τ)eg

vZ(τ)
[e2x + h2

2 sinh(τ)2] = 0 . (4.72)

After substituting the KS values for a, v, h2, x we recover (4.41).

While it would be desirable to obtain a closed form expression for the integral ρ(τ)

in order to evaluate ξ explicitly, this appears to be impossible, since even in the KS case

we cannot perform the corresponding integral J(τ).

Evaluating the DBI Lagrangian on-shell using (4.31) we find

e−φ
√

det(G+ F) =
e−φe3x

√
1 + g2 (a2 + b2)

v|a− gb|
, (4.73)

where we have taken the absolute value since the sign of a− gb will turn out to depend

on which root of equation (4.66) we pick.

For the baryonic branch backgrounds we can show that the action is a total derivative.

First note that the DBI Lagrangian (4.73) can be rewritten in the form

e−φ
√

det(G+ F) =
e−φe3x

v
√

1 + g2

(ga + b)2 + (a− gb)2

|a− gb|

=

∣∣∣∣e4x(1 + a cosh(τ))

vh2 sinh(τ)eg
[ve−xξ′(ga + b) + (a− gb)]

∣∣∣∣ , (4.74)

where the right hand side is now cubic in ξ (and its derivative) much like the differential

equation (4.31). In fact, substituting for a, b and g = g5 this equation can be integrated
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in the same manner, which results in the action

S =
∣∣∣− 1

3
ξ̃3 + C(τ)ξ̃2 + D(τ)ξ̃ + σ(τ)

∣∣∣ , (4.75)

with C,D, σ defined as

C =−e
2xa (1 + a cosh(τ))

h2e2g
, (4.76)

D = [e2x + h2
2 sinh2(τ) + 2e2x(1 + a cosh(τ))2e−2g] , (4.77)

σ=−
∫ τ

0

[
e2x(1 + a cosh(τ))

vh2 sinh(τ)eg
[e2x − h2

2 sinh2(τ)] + (4.78)

[e2x + h2
2 sinh2(τ) + 2e2x(1 + a cosh(τ))2e−2g]χ′

]
dτ . (4.79)

Again the ξ-independent term is an integral, that we denoted by σ(τ). Thus we have a

fairly explicit expression for the action involving two integrals: ρ(τ), which appears in

the equation for ξ̃, and σ(τ).

To conclude this subsection we will demonstrate that the third solution of (4.65),

which is absent (formally divergent for all τ) in the KS case (4.41), produces a badly

divergent action and is therefore unacceptable for any point on the branch. Restoring

the −ξ̃3/3 term in (4.72) we see that in the GHK region U → 0 the third solution is

simply

ξ = −22/33

U
(cosh(τ) sinh(τ)− τ)1/3 +O(U) . (4.80)

The value of the Lagrangian in this case is

√
det(G+ F) =

36

U3
sinh2(τ) +O(U−2) . (4.81)

This expression can be used to extract the leading UV asymptotics of the Lagrangian
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for any U as the UV behavior is universal for all U :

√
det(G+ F)→ 9

U3
e2τ . (4.82)

Since the action for the third solution diverges exponentially at large τ it does not seem

possible to interpret this solution as the dual of an operator in the same sense as we do

for the other two solutions.

4.4.2 Baryonic Condensates

We shall now study the D5-brane action (4.75) in more detail. First we develop an

asymptotic expansion of the action (4.75) as a function of the cut-off. This expansion

is useful because the divergent terms give the scaling dimension of the baryon operator,

while the finite term encodes its expectation value.7 Then we present a perturbative

treatment of small U region followed by a numerical analysis of the whole baryonic

branch. The main result of this section will be an expression for the expectation value

as a function of U which can be evaluated numerically. This leads to an explicit relation

between the field theory modulus |ζ| and the string theory modulus U .

To calculate the baryonic condensates we need asymptotic the behavior of A,B, ρ

and C,D for large τ . Notice that since for any U the solution approaches the KS solution

at large τ , the terms divergent at U = 0 are UV divergent as well

A→ e2τ/3

U
+O(e−2τ/3) , (4.83)

B→O(τ 2) , (4.84)

ρ→−e
2τ/3

U

(
1

4
τ 2 − 7

8
τ +

47

32

)
+O(1) , (4.85)

7A systematic procedure for isolating the finite terms is holographic renormalization [152, 153], but
here we limit ourselves to a more heuristic approach.
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and similarly

C→O(e−2τ/3) , (4.86)

D→
(

1

4
τ 2 − 1

8
τ +

5

32

)
+O(e−4τ/3) . (4.87)

From the expansion for A,B, ρ we find that at large τ the gauge field ξ̃ grows linearly

with τ and approaches the KS value with exponential precision

ξ̃(τ, U)→ ±
(

1

4
τ 2 − 7

8
τ +

47

32

)1/2

+O(e−2τ/3) . (4.88)

It is crucial that the dependence on U in (4.88) is exponentially suppressed.

Since C is exponentially small and the leading term in D is U -independent we can

explicitly express the action (4.75) in terms of σ:

S±(U, τ) = Sdiv(τ)± σ(U, τ) +O(e−2τ/3) , (4.89)

where the U -independent divergent part of the action is given by

Sdiv(τ) =
1

6
(τ 2 + τ − 2)

(
1

4
τ 2 − 7

8
τ +

47

32

)1/2

, (4.90)

Note that

∣∣∣∣−1

3
ξ̃3 + D(τ)ξ̃

∣∣∣∣=Sdiv(τ) +O(e−2τ/3) . (4.91)

The two signs stand for the two well-behaved solutions ξ(τ) corresponding to the two

baryons A and B. As we argued in Section 4.1, the I-symmetry which exchanges the A

and B baryons is equivalent to changing the sign of U . Our explicit expression (4.89)
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confirms that

S+(U, τ) =S−(−U, τ) , (4.92)

S−(U, τ) =S+(−U, τ) , (4.93)

since σ(U, τ) is antisymmetric in U according to the arguments presented around (1.80).

In order to find the expectation value of the baryons we evaluate the action (4.75) on

these solutions and remove the divergence by subtracting the KS value. The expectation

values hence are given by exp[− limτ→∞ S0(ξ1,2)], where by S0 we denote the finite part

of the action. It is simplest to work with the product (normalized to the KS value) and

ratio of the expectation values. The former is given by

〈A〉〈B〉
〈A〉KS〈B〉KS

= lim
τ→∞

exp [S+(U, τ) + S−(U, τ)− 2S(0, τ)] , (4.94)

where we have used the fact that the two solutions coincide in the KS case, where σ = 0.

It follows from (4.94) that

〈A〉〈B〉 = 〈A〉KS〈B〉KS , (4.95)

which corresponds to the constraint AB = −Λ4M
2M in the gauge theory. The ratio of the

baryon condensates is given by

〈A〉
〈B〉

= lim
τ→∞

exp [S+(U, τ)− S−(U, τ)] = lim
τ→∞

e2σ , (4.96)

or

log〈A〉 ' lim
τ→∞

σ(τ) . (4.97)

Unfortunately we were not able to calculate σ analytically, since the U -dependent
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terms of order O(τn) exp(−2τ/3) in the integrand are significant. However, we can

evaluate the integral8 to first order in U for small U :

σ ' 3.3773U +O(U3) , (4.98)

and thus obtain the slope of the expectation values in the vicinity of KS. Even though

we lack analytical arguments that would fix the behavior of the expectation values for

large U , we can compute the integral σ(τ) numerically. Our results for the expectation

value as a function of the modulus are shown in Figure 4.1. Since 〈A〉 ∼ ζ this plot

provides a mapping from the supergravity modulus U to the field theory modulus ζ (as

we remarked before, careful holographic renormalization is needed to check this relation).

4.5 Conclusions

In previous work, increasingly convincing evidence has been emerging [49, 52, 53, 56, 59]

that the warped deformed conifold background of [49] is dual to the cascading gauge

theory with condensates of the baryon operatorsA and B. Furthermore, a one-parameter

family of more general warped deformed conifold backgrounds was constructed [58, 59]

and argued to be dual to the entire baryonic branch of the moduli space, AB = const.

In this chapter we have presented additional, and more direct, evidence for this iden-

tification by calculating the baryonic condensates on the string theory side of the duality.

Following [56], we have identified the Euclidean D5-branes wrapped over the deformed

conifold, with appropriate gauge fields turned on, with the fields dual to the baryonic

8The coefficient of the term linear in U is given by

2−5/3

∫ ∞
0

dτ

[
h sinh2(τ)

12(sinh(τ) cosh(τ)− τ)2/3

(
h(sinh(τ) cosh(τ)− τ)2/3

16
− (τ coth(τ)− 1)2

4

)

− (τ coth(τ)− 1)(sinh(τ) cosh(τ)− τ)2/3

sinh2(τ)

(
h(sinh(τ) cosh(τ)− τ)2/3

16
+

(τ coth(τ)− 1)2

4

)]
.
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Figure 4.1: Plot of numerical results for the O(τ 0) term in the asymptotic expansion of
the action versus U . The slope at U = 0 matches the value from (4.98). The baryon
expectation value 〈A〉 ∼ 〈B〉−1 in units of Λ2M

2M is given by the exponential of this
function.

operators in the sense of gauge/string dualities. We derived the first order equations for

the gauge fields and solved them explicitly. The solutions were subjected to a number of

tests. From the behavior of the D5-brane action at large radial cut-off r we have deduced

the r-dependence of the baryon operator dimensions and matched it with that in the

cascading gauge theory. Furthermore, we used the D5-brane action to calculate the con-

densates as functions of the modulus U that is explicit in the supergravity backgrounds.

We found that the product of the A and B condensates indeed does not depend on U .

This calculation also establishes a map between the parameterizations of the baryonic

branch on the string theory and on the gauge theory sides of the duality, which should

be useful for comparing other physical quantities along the baryonic branch.
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Chapter 5

Charges of Monopole Operators in

Chern-Simons Yang-Mills Theory

5.1 Introduction

Superconformal Chern-Simons gauge theories are excellent candidates for describing the

dynamics of coincident M2-branes [68]. Bagger and Lambert [63, 64, 65], and Gustavsson

[66] succeeded in constructing the first N = 8 supersymmetric classical actions for

Chern-Simons gauge fields coupled to matter. Requiring manifest unitarity restricts the

gauge group to SO(4) [154, 155]; this model may be reformulated as SU(2) × SU(2)

gauge theory with conventional Chern-Simons terms having opposite levels k and −k

[71, 73]. Aharony, Bergman, Jafferis, and Maldacena (ABJM) [72] proposed that a

similar U(N) × U(N) Chern-Simons gauge theory with levels k and −k arises on the

world volume of N M2-branes placed at the singularity of R8/Zk, where Zk acts by

simultaneous rotation in the four planes. Therefore, the ABJM theory was conjectured to

be dual, in the sense of AdS/CFT correspondence [1, 2, 3], to M-theory on AdS4×S7/Zk.

For k > 2 this orbifold preserves only N = 6 supersymmetry, and so does the ABJM

theory [5, 72, 156]. The conjectured duality predicts that for k = 1, 2 the supersymmetry
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of the gauge theory must be enhanced to N = 8.

The mechanism for this symmetry enhancement in the quantum theory was suggested

in [72]; it relies on the existence of certain monopole operators in 3-dimensional gauge

theories [157, 158, 159, 160, 161, 162, 163]1. Insertion of such an operator at some

point creates quantized flux in a U(1) subgroup of the gauge group through a sphere

surrounding this point. For example, in a U(1) gauge theory on R3, a monopole operator

placed at the origin creates the Dirac monopole field

A =
H

2

±1− cos θ

r
dϕ , (5.1)

where the upper sign is for the northern hemisphere and the lower sign for the southern

one. In addition, some scalar fields may need to be turned on as well; they are required

for BPS monopoles that preserve supersymmetry. The fluctuations of fermionic matter

fields can shift the dimension of such a monopole operator. These effects were studied in

some simple models, mostly with U(1) gauge group, in [160, 161, 162]. In this chapter

we will generalize these calculations to more complicated models. Our primary goal is

to calculate R-charges and dimensions of the monopole operators in ABJM theory for

any level k. Since for small values of k we cannot use perturbation theory in 1/k, we

will actually study the N = 3 supersymmetric Yang-Mills Chern-Simons theory that

provides a weakly coupled UV completion of the ABJM theory.2

In gauge theories with U(N) gauge group there exists a rich set of monopole op-

erators labeled by the generator H that specifies the embedding of U(1) into U(N)

[165] (see Appendix D of [166] for a brief discussion). The generalized Dirac quanti-

zation condition restricts, up to gauge equivalence, the background gauge field to be

proportional to the Cartan generator H = diag(q1, . . . , qN) where the integers qi satisfy

1A more appropriate name may be “instanton operators” since they create instantons of a Euclidean
3-dimensional theory whose spacetime dependence resembles the spatial profile of monopoles in 3+1
dimensions.

2We are grateful to Juan Maldacena for this suggestion. A similar trick was used in [164].
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q1 ≥ q2 . . . ≥ qN . If the action of the gauge theory includes a Chern-Simons term with

level k, then the monopole operators are expected to transform non-trivially under the

U(N) gauge group, in U(N) representations given by the Young tableaux with rows of

length kq1, kq2, . . . , kqN [165].

The monopole operators in the U(N) × U(N) ABJM theory have been a subject

of several recent investigations [164, 166, 167, 168, 169]. In general the monopoles are

described by two different generators, H and Ĥ, which specify the form of the two

gauge potentials, A and Â, subject to the constraint
∑

i qi =
∑

i q̂i [164]. However, the

monopoles are believed to be BPS and thus not suffer renormalization of their dimensions

for H = Ĥ [164]. A proposal for the U(1) R-charge of the monopole operator in gauge

theories with N = 3 supersymmetry was made in [170, 171] based on the results of

[161] and group theoretic arguments. It states that the R-charge induced by fermionic

fluctuations is

Qmon
R =

1

2

(∑
i

|hi| −
∑
j

|vi|

)
, (5.2)

where hi and vj are, respectively, the R-charges of the fermions in hyper and vector

multiplets weighted by the effective monopole charges appropriate for their gauge rep-

resentations. We establish this formula through an explicit calculation in Section 5.4,

and derive its non-abelian generalization in Section 5.5. In the ABJM theory, if we con-

sider the diagonal U(N), we find two hyper multiplets and two vector multiplets with

charges such that there is a desired cancellation of the anomalous dimension. Using the

monopole operators (M−2)âb̂ab with kq1 = kq̂1 = 2 which exist for k = 1, 2, we can form

twelve real (or six complex) conserved currents of dimension 2,

JABµ =M−2
[
Y ADµY B −DµY AY B + iψ†Aγµψ†B

]
, (5.3)

which are responsible for the symmetry enhancement from SU(4)R to SO(8)R.
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Monopoles are crucial not only for the supersymmetry enhancement at small level

k = 1, 2 but also for matching the spectrum of the dual gravity theory at any level k.

In fact, supergravity modes with momentum along the M-theory direction are dual to

gauge invariant operators involving monopoles. The spectra match if there are monopole

operators which can render a gauge theory operator gauge invariant without altering the

global charges and dimensions of the matter fields. These monopole operator themselves

have to be singlets under all global symmetries and have to have vanishing dimension.

In U(N) × U(N) gauge theories coupled to Nf bifundamental hyper multiplets, this

dimension is proportional to Nf − 2. Thus, the requisite monopole operators exist in

the ABJM theory, which has Nf = 2.

The outline of this chapter, which is based on joint work with I. R. Klebanov and

T. Klose [172], is as follows. Section 5.2 summarizes our reasoning and the results, and

ties together the subsequent more technical sections. Section 5.3 contains the details

of the theories under consideration. In Section 5.4 and Section 5.5 we present the

computation of the U(1)R and SU(2)R charges of the monopole operators, respectively.

Brief conclusions and an outlook are given in Section 5.6.

5.2 Summary

In this section we go through the logic of our arguments and present the results of our

computations while omitting the technical details.

A monopole operator is defined by specifying the singular behavior of the gauge field,

as in (5.1), and appropriate matter fields close to the insertion point. As such it cannot

be written as a polynomial in the fundamental fields appearing in the Lagrangian of

the theory. However, often the bare monopole operator has to be supplemented by a

number of fundamental fields in order to construct a gauge invariant operator.

Our aim is to find the conformal dimensions of such monopole operators in the ABJM
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model. In particular we are interested in small Chern-Simons level k, as for k = 1, 2

we expect supersymmetry enhancement in this theory. For small k, however, ABJM is

strongly coupled and thus we cannot employ perturbation theory since there is no small

parameter. The key idea to circumvent this obstacle is to add a Yang-Mills term for the

gauge fields in the action which introduces another coupling3 g as a second parameter

besides k. This also requires adding dynamical fields in the adjoint representation in

order to preserve N = 3 supersymmetry and an SU(2)R subgroup of the SU(4)R group

of ABJM (which has N = 6 supersymmetry).

The coupling g is dimensionful and not a parameter we can dial. Since the Yang-Mills

term is irrelevant in three dimensions, there is a renormalization group (RG) flow from

the UV, where the theory is free (vanishing g) to a conformal IR fixed point (divergent

g). This RG flow appears naturally in the brane construction of the ABJM model and

in fact is essential for understanding how a pure Chern-Simons theory such as ABJM

can arise from D-branes that support Yang-Mills theories.

In the IR, the Yang-Mills terms as well as the kinetic terms for the adjoint matter

fields drop out of the action and the equations of motion for the latter degenerate into

constraint equations, allowing us to integrate them out and recover the ABJM theory.

Now the idea is to perform all relevant computations in the far UV where g is

small and the theory weakly coupled, then flow to the IR. The scaling dimensions of

monopole operators are of course only well-defined at the IR fixed point where the

theory is conformal, so they cannot be determined directly in this fashion. However,

we can instead compute a quantity that is preserved along the RG flow and related by

supersymmetry to the scaling dimensions in the IR: the non-abelian R-charges of the

monopole operators. Their one-loop value is exact and preserved along the RG flow

because non-abelian representations cannot change continuously and therefore cannot

depend (non-trivially) on g.

3The reader is cautioned that this is not the same as the coupling g used in Chapter 2. There the
Yang-Mills coupling was denoted as gYM but here we drop the subscript YM for notational convenience.
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Let us describe the computation of the non-abelian R-charges. In the UV there is

a separation of scales between the BPS background that inserts a flux at a spacetime

point in accordance with (5.1) – recall that its magnitude is constrained by the Dirac

quantization condition – and the typical size of quantum fluctuations of fields. Therefore

we can treat the monopole operator as a classical background. For this background to

satisfy the BPS condition the scalar fields φi and φ̂i, which are in the same N = 3 vector

multiplets as the gauge fields Aµ and Âµ, respectively, need to be turned on. A possible

choice of scalar background in radial quantization on R× S2 is

φi = −φ̂i = −H
2
δi3 . (5.4)

These scalar fields transform in the 3 of SU(2)R and therefore a non-zero expectation

value breaks SU(2)R to U(1)R.

As a first step we will find the one-loop U(1)R charge of the monopole operator

described by this fixed background. This is done by computing the normal ordering

constant for the U(1)R charge operator. Such a calculation has been performed in a

different context in [160, 161]. We will present the argument as applicable to our case

in Section 5.4. The result will turn out to be expression (5.2) above or more concretely

(5.69) for N = 3 U(N)×U(N) gauge theory with hyper multiplets in the bifundamental.

These two formulas are related as follows. From Table 5.2, or equivalently from the

R-current (5.38), one can read off the R-charges y(ζA) = y(ωA) = −1
2

(for A = 1, . . . , Nf )

for the hyper multiplet fermions and y(χσ) = y(χ̂σ) = 1, y(χφ) = y(χ̂φ) = 0 for those

in the vector multiplets. In the expression for the U(1)R charge of the BPS monopole

(5.2), these R-charges are weighted by
∑

r,s |qr − qs| and the result is given by

Qmon
R =

1

2

(
2Nf ·

∣∣−1
2

∣∣− 2 · |+ 1|
)∑

r,s

|qr − qs| =
(
Nf

2
− 1

)∑
r,s

|qr − qs| , (5.5)

as found in (5.69). For the ABJM model we have Nf = 2 and hence Qmon
R = 0.
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These U(1)R charges might in principle be renormalized as we flow to the IR, since

abelian charges can vary continuously. To exclude this possibility, we need to find the

non-abelian SU(2)R charge of the monopole operator by taking into account the bosonic

zero modes of the background (5.4). These zero modes are described by a unit vector ~n

on the two-sphere SU(2)R/U(1)R. In other words, we will treat the SU(2)R orientation

~n of the scalar field as a collective coordinate of the BPS background and quantize its

motion. To this end we consider a more general background than (5.4), which is allowed

to depend on (Euclidean) time τ

φi = −φ̂i = −H
2
ni(τ) . (5.6)

The rotation of the background is assumed to be adiabatic such that it cannot ex-

cite finite energy quantum fluctuations around the background. In Section 5.5 we will

compute the quantum mechanical effective action for the collective coordinate ~n(τ) and

find the allowed SU(2)R representations. These representations are precisely the SU(2)R

spectrum of BPS monopole operators.

If there were no interactions between the bosonic zero modes and other fields in

the Lagrangian, the collective coordinate would simply be described by a free particle

on a sphere. Such a particle – and therefore the monopole operator – could be in any

representation of SU(2)R. The crucial point is, however, that the collective coordinate ~n

is not free, but subject to interactions with the fermions of the theory. It turns out that

the induced interaction term is a coupling of ~n to a Dirac monopole of magnetic charge

h ∈ Z on the collective coordinate moduli space (not to be confused with the spacetime

monopole background). The charge h depends on the background flux H and the field

content of the theory. In Section 5.5 we derive

h = (Nf − 2) qtot = (Nf − 2)
∑
r,s

|qr − qs| , (5.7)
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see (5.103), which is nothing but h = 2Qmon
R .

The equation of motion for the collective coordinates ~n has the structure

M ~̈n+M(~̇n)2 ~n+
h

2
~n× ~̇n = 0 , (5.8)

which allows for a simple particle interpretation. The first term is the usual kinetic

term while the second term represents a constraining force that keeps the particle on

the sphere ~n2 = 1. If we assign unit electric charge to the particle, then the third term

is the Lorentz force ~̇n× ~B due to a monopole field ~B = h
2
~n. The SU(2)R charge is given

by the conserved angular momentum

~L = M ~n× ~̇n− h

2
~n . (5.9)

The presence of the second term forces the quantized angular momentum to have an

orbital quantum number of at least l = |h|
2

, the possible representations being ~L2 = l(l+1)

with l = |h|
2
, |h|

2
+ 1, |h|

2
+ 2, . . .. Hence, a non-zero coupling h will necessarily give the

monopole a non-trivial SU(2)R charge. The ABJM theory is special (as compared to

theories with different field content) in that all contributions to the effective h cancel

each other, and thus it allows SU(2)R singlet monopoles which do not contribute to the

IR dimensions of gauge invariant operators.

5.3 N = 3 Chern-Simons Yang-Mills Theory

We will study N = 3 supersymmetric U(N)× Û(N) 3-dimensional gauge theory coupled

to bifundamental matter fields and SU(Nf )fl flavor symmetry. For Nf = 1 and Nf = 2

this model is the UV completion of the N = 4 model of GW [74] and the N = 6 model

of ABJM [72], respectively.
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Manifest
symmetry

Super
fields

Component fields

dynamical in the IR auxiliary in the IR aux.

U(1)R × SU(Nf )fl

V A σ χσ, χ†σ D

V̂ Â σ̂ χ̂σ, χ̂†σ D̂

Φ φ χφ Fφ

Φ̄ φ† χ†φ F †φ

Φ̂ φ̂ χ̂φ F̂φ
ˆ̄Φ φ̂† χ̂†φ F̂ †φ

ZA ZA ζA FA

Z̄A Z†A ζ†A F †A

WA WA ωA GA

W̄A W †A ω†A G†A

SU(2)R × SU(Nf )fl XAa X†Aa ξAa ξ†Aa φi φ̂i λab λ̂ab

Table 5.1: Field content of N = 3 Chern-Simons Yang-Mills theory. Each row (except
the last one) shows the components of one N = 2 superfield ordered into columns
according to whether they are dynamical or auxiliary. Within each of these columns
they have been arranged such that one can read off from the last row which components
join to form SU(2)R multiplets. A = 1, . . . , Nf is an SU(Nf ) flavor index, a = 1, 2 is an
SU(2)R spinor index, and i = 1, 2, 3 is an SU(2)R vector index.

5.3.1 Action and Supersymmetry Transformations

The complete field content is listed in Table 5.1. We use N = 2 superfields and our no-

tation is explained in Appendix A.2. In the gauge sector we have two vector superfields

V = (σ,Aµ, χσ,D) and V̂ = (σ̂, Âµ, χ̂σ, D̂) and two chiral superfields Φ = (φ, χφ, Fφ)

and Φ̂ = (φ̂, χ̂φ, F̂φ) in the adjoint of the two gauge groups U(N) and Û(N), respec-

tively, which together comprise two N = 3 gauge multiplets. In the matter sector we

have Nf chiral superfields ZA = (ZA, ζA, FA) and WA = (WA, ωA, GA) in the gauge

representations (N, N̄) and (N̄,N), respectively.

We write down the N = 3 action on R1,2 with signature (−,+,+). It consists of five
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parts:

S = SCS + SYM + Sadj + Smat + Spot . (5.10)

First of all there are Chern-Simons terms

SCS = −i k
8π

∫
d3x d4θ

∫ 1

0

ds tr
[
VD̄α

(
esVDαe

−sV
)
− V̂D̄α

(
esV̂Dαe

−sV̂
)]

, (5.11)

with opposite levels k and −k for the two gauge group factors. The s integral is nothing

but a convenient way of writing the non-abelian Chern-Simons action. Secondly, there

is a Yang-Mills term

SYM =
1

4g2

∫
d3x d2θ tr

[
UαUα + ÛαÛα

]
, (5.12)

which introduces a coupling g of mass dimension 1
2
. The super field strength is given by

Uα = 1
4
D̄2eVDαe

−V and similarly for Û . The last term in the gauge sector is given by

the kinetic terms for the adjoint scalar fields

Sadj =
1

g2

∫
d3x d4θ tr

[
−Φ̄e−VΦeV − ˆ̄Φe−V̂Φ̂eV̂

]
. (5.13)

In the matter sector we have the minimally coupled action for the bifundamental fields

Smat =

∫
d3x d4θ tr

[
−Z̄Ae−VZAeV̂ − W̄Ae−V̂WAe

V
]

(5.14)

and a super potential term

Spot =

∫
d3xd2θ W −

∫
d3xd2θ̄ W̄ (5.15)
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with

W = tr
(
ΦZAWA + Φ̂WAZA

)
+

k

8π
tr
(
ΦΦ− Φ̂Φ̂

)
, (5.16)

W̄ = tr
(
Φ̄W̄AZ̄A + ˆ̄ΦZ̄AW̄A

)
+

k

8π
tr
(
Φ̄Φ̄− ˆ̄Φ ˆ̄Φ

)
. (5.17)

This theory is not conformal and will flow to an IR fixed point which is strongly coupled

unless k is large. At the fixed point g diverges, which renders the gauge fields and

the adjoint scalars non-dynamical. If we integrate out Φ and Φ̂, we recover the ABJM

superpotential for Nf = 2. This theory has enhanced flavor symmetry, SU(2)fl×SU(2)fl,

under which ZA and WA transform separately.

For our computation below we need the action in terms of component fields. To this

end we perform the Grassmann integrals in the action and integrate out the auxiliary

fields D, D̂, FA, GA, Fφ and F̂φ. The remaining component fields can be arranged into

SU(2)R multiplets as follows.

The adjoint matter fields constitute two scalars (where the lower/upper index is the

row/column index)

φab = φi(σi)
a
b =

−σ φ†
φ σ

 , φ̂ab = φ̂i(σi)
a
b =

σ̂ φ̂†

φ̂−σ̂

 , (5.18)

transforming in the 3 of SU(2)R, and two fermions

λab =

χσ e−iπ/4 χ†φ e
−iπ/4

χφ e
+iπ/4−χ†σ e+iπ/4

 , λ̂ab =

 χ̂σ e
−iπ/4 −χ̂†φ e−iπ/4

−χ̂φ e+iπ/4−χ̂†σ e+iπ/4

 , (5.19)

transforming in the reducible representation 2×2 = 3+1 of SU(2)R, which in particular

implies that λab is neither symmetric nor anti-symmetric in its indices. These fields
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satisfy

(λab)∗ = −λab = −εacεbdλcd , (φab )
∗ = φba = εacε

bdφcd (5.20)

and the same for the hatted fields.

The bifundamental matter fields can be grouped into Nf doublets of the SU(2)R

symmetry group in the following way:

XAa =

 ZA

W †A

 , X†Aa =

 Z†A

WA

 , (5.21)

and

ξAa =

ω†A eiπ/4

ζA e−iπ/4

 , ξ†Aa =

ωA e−iπ/4
ζ†A e

iπ/4

 . (5.22)

The component action with manifest SU(2)R symmetry and the corresponding su-

persymmetry transformations are given in Appendix A.3. One observes that in the IR,

where g becomes large, the Yang-Mills terms disappears together with the kinetic terms

for φ, φ̂, λ and λ̂, and we can integrate out these fields. Doing this for Nf = 2 we end

up with ABJM theory. The ABJM Lagrangian with manifest SU(4)R symmetry [5] is

recovered when one defines Y A = {X11, X21, X12, X22} and ψA = {−ξ22, ξ12, ξ21,−ξ11}.

As outlined in the overview, Section 5.2, we will carry out our computations in the

far UV region of the radially quantized theory. The point of going to the far UV is

that the theory becomes perturbative in g and we can find the quantum R-charges

from a one-loop computation. This one-loop result is in fact the exact answer because

SU(2)R is preserved along the flow from small to large g and non-abelian representations

cannot change continuously. We will use radial quantization because we are interested
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in the spectrum of conformal dimensions in the IR theory, which is related to the energy

spectrum by the operator state correspondence.

The steps required for deriving the action relevant for radial quantization are as

follows. First we perform a Wick rotation from R
1,2 to R3 by defining Euclidean coordi-

nates (x1, x2, x3) = (x1, x2, ix0), then we change to polar coordinates (r, θ, ϕ) and finally

we introduce a new radial variable τ by setting r = eτ . The result is a theory on R× S2

described by the coordinates (τ, θ, ϕ), where τ ∈ R is the “Euclidean time”. The change

of the coordinates is accompanied by a Weyl rescaling of the fields according to

A = e− dim(A)τÃ , (5.23)

where A is a generic field of dimension dim(A) on R
3 and Ã is the field we use on

R × S2. After the transformation we will drop the tildes in order to avoid cluttered

notation. Since the theory is not conformal, the action will change under these rescaling.

In addition to the mass terms which are generated even in the conformal case, every

factor of the coupling g will turn into

g̃ = eτ/2 g . (5.24)

This relation makes the RG-flow explicit and relates it to the “time” on R× S2. In the

infinite past the effective Yang-Mills coupling g̃ vanishes, and it grows without bound

toward future infinity. To compute in the UV therefore means to work at τ → −∞ and

to flow to the IR means to send τ → +∞.

Now we are ready to give the complete action of N = 3 Chern-Simons Yang-Mills

theory on R × S2. In addition to the manipulations just described we have rescaled

λ → gλ and λ̂ → gλ̂ (before the Weyl rescaling) which is the appropriate scaling for

fluctuations in the UV. We do not perform a similar rescaling of the other fields in

the gauge sector, A, Â, φ, or φ̂, since these fields will later provide a large classical
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background. Introducing finally the rescaled Chern-Simons coupling κ = k
4π

, the kinetic

part of the action reads4

SEkin =

∫
dτ dΩ tr

[
+ 1

2g̃2
FmnFmn − κ iεmnk

(
Am∂nAk + 2i

3
AmAnAk

)
(5.25)

+ 1
2g̃2
F̂mnF̂mn + κ iεmnk

(
Âm∂nÂk + 2i

3
ÂmÂnÂk

)
+DmX†DmX + 1

4
X†X − iξ† /Dξ

+ 1
2g̃2
DmφabDmφba + κ2g̃2

2
φabφ

b
a + 1

2g̃2
Dmφ̂abDmφ̂ba + κ2g̃2

2
φ̂ab φ̂

b
a

+ i
2
λab /Dλab + κg̃2

2
iλabλba + i

2
λ̂ab /Dλ̂ab − κg̃2

2
iλ̂abλ̂ba

]

and the interaction terms are given by

SEint =

∫
dτ dΩ tr

[
+ κg̃2X†aφ

a
bX

b − κg̃2Xaφ̂baX
†
b + iξ†aφ

a
bξ
b + iξaφ̂baξ

†
b (5.26)

− g̃ εacλcbXaξ†b + g̃ εacλcbξ
bX†a + g̃ εacλ̂

cbξ†bX
a − g̃ εacλ̂cbX†aξb

− κ
6
φab [φ

b
c, φ

c
a]− κ

6
φ̂ab [φ̂

b
c, φ̂

c
a] + i

2
λab[φ

b
c, λ

ac]− i
2
λ̂ab[φ̂

b
c, λ̂

ac]

+ g̃2

4
(XσiX

†)(XσiX
†) + g̃2

4
(X†σiX)(X†σiX)

+ 1
2
(XX†)φabφ

b
a + 1

2
(X†X)φ̂ab φ̂

b
a +X†Aaφ

b
cX

Aaφ̂cb

− 1
8g̃2

[φab , φ
c
d][φ

b
a, φ

d
c ]− 1

8g̃2
[φ̂ab , φ̂

c
d][φ̂

b
a, φ̂

d
c ]
]
.

The covariant derivatives are given by DmX = ∇mX+iAmX−iXÂm etc. We also trans-

late the supersymmetry variations from flat Lorentzian space as given in Appendix A.3

to Euclidean R× S2. They are conveniently expressed in terms of a rescaled parameter

ε̃ab(τ) = εabe
−τ/2 . (5.27)

In the following we will use the τ dependent parameter; however, we will drop the tilde

4Suppressed indices are assumed to be in the standard positions as defined in (5.21) and (5.22).
The indices of the Pauli matrices are placed accordingly, e.g. XσiX

† ≡ XAa(σi)abX
†
Ab or X†σiX ≡

X†Aa(σi)abXAb. And by definition we have (σi)ab = σi and (σi)ab = σT
i .
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for notational simplicity. This parameter satisfies the Killing spinor equation

∇mε = −1
2
γmγ

τε , (5.28)

which is the curved spacetime generalization of the usual condition of (covariant) con-

stancy that the supersymmetry variation parameter obeys in flat space. The N = 3

supersymmetry transformations read

δAm =− ig̃
2
εabγmλ

ab , (5.29)

δλab = i
2g̃
εmnkFmnγkε

ab − i
g̃
/Dφbcεac − 2i

3g̃
φbc /∇εac + i

2g̃
[φbc, φ

c
d]ε

ad + κg̃ iφbcε
ac (5.30)

+g̃ iXaX†cε
cb − ig̃

2
(XX†)εab ,

δφab =−g̃εcbλca + g̃
2
δab εcdλ

cd , (5.31)

δÂm =− ig̃
2
εabγmλ̂

ab , (5.32)

δλ̂ab = i
2g̃
εmnkF̂mnγkε

ab + i
g̃
/Dφ̂bcεac + 2i

3g̃
φ̂bc /∇εac + i

2g̃
[φ̂bc, φ̂

c
d]ε

ad + κg̃ iφ̂bcε
ac (5.33)

−g̃ iεbcX†cXa + ig̃
2

(X†X)εab ,

δφ̂ab =−g̃εcbλ̂ca + g̃
2
δab εcdλ̂

cd , (5.34)

δXAa = −iεabξAb , δξAa = /DXAbεab + 1
3
XAb /∇εab + φabε

b
cX

Ac +XAcεbcφ̂
a
b , (5.35)

δX†Aa = −iξ†Abε
b
a , δξ†Aa = /DX†Abε

b
a + 1

3
X†Ab /∇ε

b
a + φ̂baε

c
bX
†
Ac +X†Acε

c
bφ

b
a .

SU(2)R and U(1)R charge. Fundamental and anti-fundamental SU(2)R indices a, b

transform under infinitesimal rotations as

δAa = iεabAb , δAa = −iεbaA
†
b , (5.36)
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yi −1 −1
2

0 +1
2

+1

field χ†σ, χ̂†σ ζA, ωA, χφ, χ̂φ, χ†φ, χ̂†φ ζ†A, ω†A χσ, χ̂σ

Table 5.2: U(1)R charges of the fermion fields. These numbers show what the sum
(chiral only) of R-charges vanishes precisely for two flavors, A = 1, 2.

where A represents a generic field. The Noether current is

Jµba ∼ tr
[
iX†Aa

←→
DµXAb + iφca

←→
Dµφbc + iφ̂ca

←→
Dµφ̂bc − ξ

†
Aaγ

µξAb (5.37)

+1
2
λacγ

µλbc + 1
2
λcaγ

µλcb + 1
2
λ̂acγ

µλ̂bc + 1
2
λ̂caγ

µλ̂cb
]
.

In Section 5.4 we will be dealing with the U(1)R component of this current which is

related to the transformation (5.36) with εab ∼ (σ3)ab . Hence the current is the contraction

of (5.37) with (σ3)ab . The part due to the fermions is given by

Jµ∼ tr
[
−1

2
ζ†Aγ

µζA − 1
2
ω†AγµωA + χ†σγ

µχσ + χ̂†σγ
µχ̂σ

]
, (5.38)

where we have reverted back to the U(1)R × SU(Nf )fl fields, see Table 5.1. From this

expression we read off the U(1)R charges of the fermions as given in Table 5.2.

5.3.2 Classical Monopole Solution

Since we are interested in BPS monopoles, our first task is to find a classical BPS

solution with flux emanating from a point in spacetime. Starting from the gauge field

configuration of a Dirac monopole in R3 given in (5.1) and performing the Weyl rescaling

appropriate for fields on R× S2 as described above, we find that the dependence on the

radial coordinate disappears from the gauge potential. In fact the Hodge dual of the

corresponding field strength, εmnkFmn, is constant in magnitude and purely radial (i.e.

only its τ component is non-vanishing).

In order to show that there is indeed a BPS solution with such a Dirac monopole
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potential, let us examine in detail the supersymmetry variations of λab. It contains

terms of order g̃ and ones of order g̃−1, but since we are looking for a solution that is

supersymmetric along the whole RG flow they should cancel separately. We will also

assume that all background fields (in our choice of gauge) are valued in the Cartan

subalgebras of the gauge group factors, so that all commutators vanish.

Focusing on the terms of order g̃−1 for now, we thus want the sum of the first three

terms in δλab, as given in (5.29), to vanish for an appropriate, non-trivial choice of

supersymmetry variation parameter. The fact that εmnkFmn is constant suggests that

φi should also be constant, in which case the second term vanishes by itself. Hence we

simply have to balance the first term and the third one, which simplifies upon using the

Killing spinor equation (5.28).

Recalling that εab = εi(σi)
ab is traceless Hermitian, we can take the SU(2)R trace of

δλab which implies that εiφi = 0, i.e. the non-trivial supersymmetry variation parameter

has to be orthogonal to the background scalar in the R-symmetry directions.

Given this restriction, we can now contract δλab with (σi)ab and find

i
2
εmnlFmnγl εi + εijkφjγ

τεk = 0 . (5.39)

Thus the magnitudes of the scalar background and gauge fields are related, and picking

an SU(2)R orientation we can choose e.g. 1
2
εmnτFmn = −η φ3, where η = ±1 distinguishes

BPS from anti-BPS monopoles. In this case ε3 = 0 and the remaining supersymmetry

parameters have to satisfy5 ε1 − iη ε2 = 0.

Let us now turn to the terms of order g̃. Following the same lines of reasoning, they

imply

φba = − 1
κ

(
XbX†a − 1

2
δbaXX

†) ⇔ φi = − 1
2κ
XσiX

† . (5.40)

5In Euclidean space we treat ε1 ± iε2 as two independent supersymmetry parameters.
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It is evident that if we choose Â = A and φ̂i = −φi the variations δλ̂ab (5.32) will vanish

also in the same manner, provided that

φ̂ba = 1
κ

(
X†aX

b − 1
2
δbaX

†X
)
⇔ φ̂i = 1

2κ
X†σiX . (5.41)

This leaves the supersymmetry transformations of the remaining fermions, δξAa and its

complex conjugate (5.35), to be verified. Given that φ̂i = −φi causes the last two terms

to cancel, they simply fix the functional dependence of the bifundamental scalars to be

XA1 ∼ exp (−η τ/2) and XA2 ∼ exp (η τ/2).6 Then all of the δξAa and δξ†Aa vanish

either by virtue of this particular τ -dependence, which is consistent with the equation

of motion for X

D2XAa − 1
4
XAa = 0 , (5.42)

or because of a vanishing variation parameter.

Fixing the coefficients of the X fields such that (5.40) and (5.41) are satisfied, the

above BPS conditions are of course also consistent with the remaining equations of

motion. In particular, those for the gauge fields, given that the Dirac monopole potential

satisfies Dn
(

1
g̃2
Fmn

)
= Dn

(
1
g̃2
F̂mn

)
= 0, reduce to

κ εmnkFnk = XDmX† −DmXX† , (5.43)

κ εmnkF̂nk = DmX†X −X†DmX .

In summary, a convenient choice of classical (anti-)BPS solution is given by

A = Â =
H

2
(±1− cos θ)dϕ , φi = −φ̂i = −ηH

2
δi3 , (5.44)

(where the upper sign holds on the northern and the lower one on the southern hemi-

6And similarly X†A1 ∼ exp (η τ/2) and X†A2 ∼ exp (−η τ/2). While it may appear unusual that X
and X† are not complex conjugates of each other, this is simply an artefact of the Euclidean signature
of spacetime. After a suitable Wick rotation they would evidently be conjugate in the usual sense.
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sphere), supplemented by an appropriate X expectation value chosen to satisfy (5.40),

(5.41) and (5.43), e.g. for positive semi-definite H

X11 =Z1 =
√
Hκe−τ/2 , X†11 = Z†1 =

√
Hκeτ/2 for η = 1 or (5.45)

X12 =W 1† =
√
Hκe−τ/2 , X†12 = W1 =

√
Hκeτ/2 for η = −1 ,

with all other X’s vanishing. Note that the choice of X expectation value breaks the

flavor symmetry and here we have arbitrarily used the first flavor. This background is

invariant under supersymmetry transformations with the parameter ε1 + iηε2, and can

be generalized to any preferred SU(2)R orientation.

Our classical solution is BPS along the full RG flow for any value of g̃, which is an

important prerequisite for our arguments. However, the actual calculation we wish to

carry out will be performed in the far UV, and here the role of the X expectation value

is quite different from the expectation values of the adjoint scalars and gauge fields.

If we were to do perturbation theory in g around this background, we would be led to

rescale the (quantum) fields A and φ (and their hatted analogues) by a factor of g (before

carrying out the Weyl transformation), and thus g sets the scale of quantum fluctuations.

Since the background values of A and φ are of order unity, they are parametrically larger

than these fluctuations in the UV, and thus can be treated classically.

The fluctuations of the bifundamental field X do not suffer such a rescaling however,

and both quantum excitations as well as the expectation value in our classical solution

are of the same order of magnitude. Therefore, we shall not treat the X fields as a

classical background in the UV theory. They are to be though of as quantum excitations

which dress up the monopole background, and thus we shall drop them for the purpose of

describing the bare monopole operator. We keep in mind however, that a bare monopole

operator is not gauge invariant, and will eventually have to be contracted with a number

of basic fields appearing in the Lagrangian in order to form a gauge invariant operator.
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In this context it is interesting to note that the number of X excitations corresponding

to our classical solution is of order Hk, which is related to the number of fundamental

fields we expect to contract the bare monopole operator with.

Finally, we will need to generalize the monopole background to arbitrary, possibly

τ -dependent SU(2)R orientation ni and thus, to conclude this discussion, we collect the

basic properties of the semi-classical BPS monopoles background we will make use of

below.

BPS monopole background. For the background to be BPS, we have to essentially

identify the two gauge groups U(N) and Û(N), and turn on expectation values for the

gauge fields and adjoint scalars φi and φ̂i given by

A = Â =
H

2
(±1− cos θ)dϕ , φi = −φ̂i = −H

2
ni(τ) . (5.46)

The monopole background is diagonal in the U(N) gauge indices H = diag(q1, . . . , qN)

where qr ∈ Z are the U(1)N gauge charges. They determine how the monopole trans-

forms under gauge transformations. Furthermore, the background is labeled by a unit

SU(2)R vector ni which gives the direction of the scalar fields. This vector is a collective

coordinate of the background (5.46) and spans the moduli space S2.

5.4 U(1)R Charges from Normal Ordering

In this section we compute the quantum corrections to the U(1)R charge which is pre-

served by the static background (5.46) with ni = δi3. These quantum corrections are

due to fermions fluctuations and are encoded in the normal ordering constant of the

U(1)R charge operator. Before going into the specifics of ABJM theory, we will discuss

the computation for a toy example which is then simple to generalize.
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5.4.1 Prototype

Let us consider a single fermion ψ(τ,Ω) in an abelian gauge theory subject to the equa-

tion of motion

/Dψ +
η

2
qψ = 0 , (η = ±1) (5.47)

and compute the oscillator expansion of the charge

Q = −i
∫
dΩ ψ†γτψ . (5.48)

The Dirac operator /D = /∇ + i /A in (5.47) includes a monopole background of the kind

(5.46) with magnetic charge H → q. The mass term in (5.47) whose magnitude is

proportional to q plays the role of the coupling to the background scalar. The two signs,

η = ±1, correspond to a BPS and an anti-BPS background, respectively.

The easiest way to solve (5.47) is to expand ψ in monopole spinor harmonics which

are eigenfunctions of the monopole Dirac operator on the sphere, /DS. This operator is

contained in the full operator in (5.47) simply as /D = γτ∂τ + /DS, since the monopole

potential does not have any component along τ . We note the explicit form of the

monopole spinor harmonics in Appendix A.4. Here we only need their eigenvalues and

multiplicities. For given magnetic charge q, the quantum numbers of the total angular

momentum are given by

j=
|q| − 1

2
+ p with p = 0, 1, 2, . . . , (5.49)

m=−j,−j + 1, . . . , j ,

where the state j = |q|−1
2

is absent for q = 0.
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We denote the eigenfunctions by

/DSΥ0
qm = 0 for j = |q|−1

2
(5.50)

/DSΥ±qjm = i∆±jqΥ
±
qjm for j = |q|+1

2
, |q|+3

2
, . . . (5.51)

with eigenvalues

∆±jq = ±1
2

√
(2j + 1)2 − q2 . (5.52)

This spectrum is plotted in Figure 5.1(a). The |q| zero modes which exist for non-zero

magnetic charge will be responsible for a shift of the quantized version of the charge

(5.48).

Now we are ready to write the harmonic expansion of the wave function as

ψ(τ,Ω) =
∑
m

ψm(τ)Υ0
qm(Ω) +

∑
jmε

ψεjm(τ)Υε
qjm(Ω) , (5.53)

where ε = ±1. Plugging this expansion into the equation of motion (5.47) and using

the properties (A.36),(A.38) and the orthogonality (A.39) one finds

ψ̇m = −η |q|
2
ψm ,

ψ̇+
jm

ψ̇−jm

 =

 0 −i∆− − η q
2

−i∆+ − η q
2

0


ψ+

jm

ψ−jm

 . (5.54)

The solution is

ψ =
∑
m

[
cm u

0 e−
|q|
2
τ + d†m v

0 e
|q|
2
τ
]
Υ0
m +

∑
jmε

[
cjm u

ε
j e
−Ejτ + d†jm v

ε
j e

Ejτ
]
Υε
jm , (5.55)

where the energies are given by Ej = j+ 1
2
. The wavefunctions for the BPS case (η = +1)
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are given by

u0 = 1 , v0 = 0 , u+
j = v+

j = 1 , u−j = −v−j = 1√
2

(
q

2j+1
+ i
√

1−
(

q
2j+1

)2
)
, (5.56)

and the ones for the anti-BPS case (η = −1) are obtained from this by exchanging

u0 ↔ v0 and u±j ↔ v∓j . The normalization of the wave functions are such that we have

{ψα(τ,Ω),Πβ(t,Ω′)}= δβαδ
(2)(Ω− Ω′) , (5.57)

{cjm, c†j′m′}= δjj′δmm′ , (5.58)

{djm, d†j′m′}= δjj′δmm′ , (5.59)

where Π = −iψ†γτ is the canonically conjugate momentum.

The energy spectra are plotted in Figure 5.1(b) and Figure 5.1(c). One observes

that the zero modes of the Dirac operator have turned into “unpaired states”, i.e. states

for which there are no states with the opposite energy in the spectrum. There are

2j+ 1 = |q| unpaired states with energy η |q|
2

, which is positive for the BPS and negative

for the anti-BPS case.

Now we compute the U(1)R charge using point splitting regularization as in [161]:

Q(β) = − i
2

∫
dΩ
[
ψ†
(
τ + β

2

)
γτ ψ

(
τ − β

2

)
− ψ

(
τ + β

2

)
γτ ψ†

(
τ − β

2

)]
. (5.60)

where β > 0 will be taken to zero in the end. Inserting the oscillator expansion7 and

ordering the terms, we find the normal ordered piece

Q1(β = 0) =
∑
jm

[
c†jmcjm − d

†
jmdjm

]
(5.61)

7The oscillator expansion of ψ† is the complex conjugate of that of ψ where in addition the sign of
τ is reversed.
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(a) Dirac operator
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(c) anti-BPS

Figure 5.1: Eigenvalues of the Dirac operator on the S2 and energy spectra for BPS
and anti-BPS backgrounds. The eigenvalues ∆±jq = ±1

2

√
(2j + 1)2 − q2 and E = ±Ej =

±(j+ 1
2
) are parametrized by j = |q|−1

2
+p for p = 0, 1, 2, . . .. The dashed lines correspond

to a fixed value p. The numbers next to the points denote the multiplicities of the
corresponding eigenvalues. Note in particular that there are |q| zero modes of the Dirac
operator for monopole charge q, which are lifted to non-zero unpaired modes when the
background scalar is turned on.

and a normal ordering constant

Q0(β) = −1

2

∑
jmε

[
uε†j u

ε
j − v

ε†
j v

ε
j

]
e−βEj , (5.62)

where in both sums we understand the zero modes with j = |q|−1
2

to be included. For

that value of j there is no sum over ε = ±1 and Ej = |q|
2

. The normal ordering constant

can be written in a concise form by noticing that
∑

ε u
ε†
j u

ε
j = 1 gives a contribution for

every positive energy state and
∑

ε v
ε†
j v

ε
j = 1 one for every negative energy state. Hence

we can write

Q0(β) = −1

2

∑
states

sign(E) e−β|E| , (5.63)
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where the sum extends over all states in the spectrum8 and vanishes if the spectrum

is symmetric with respect to E = 0. This is not the case due to the unpaired states.

Instead we find

Q0 = −η |q|
2
, (5.64)

where the factor |q| is the number of unpaired states (the degeneracy of the mode

j = |q|−1
2

) and η the sign of their energy. This normal ordering constant gives the U(1)R

charge of the BPS or anti-BPS monopole background, in agreement with [161]. As it

was also shown in [161], the bosonic fields do not contribute the induced charge because

their spectrum is symmetric.

5.4.2 Application to N = 3 Gauge Theory

The above discussion is readily applied to the N = 3 gauge theories with Nf hyper

multiplets. In place of the charge (5.48) we now have

Q = −i
∫
dΩ tr

[
−1

2
ζ†Aγ

τζA − 1
2
ω†AγτωA + χ†σγ

τχσ + χ̂†σγ
τ χ̂σ

]
, (5.65)

see (5.38), and the equation of motion (5.47) is replaced by

/DζA + η
2
[H, ζA] = 0 , /Dχσ + η

2
[H,χσ] = 0 , /Dχ̂σ + η

2
[H, χ̂σ] = 0 , (5.66)

/DωA + η
2
[H,ωA] = 0 , /Dχφ + η

2
[H,χφ] = 0 , /Dχ̂φ + η

2
[H, χ̂φ] = 0 ,

which hold in the static background (5.44) and in the far UV where g̃ → 0. The

only qualitative difference is that we are now dealing with a non-abelian theory. Since

the background fields have the same U(N) dependence for both gauge group factors,

8This formulae looks superficially different from that in [162] because we sum over all states including
their degeneracy, not just over different energies levels.
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namely H = diag(q1, . . . , qN), all fields effectively transform in the adjoint of the diagonal

U(N)d ⊂ U(N)×Û(N). This is apparent from the fact that we could write commutators

in (5.66), and also the gauge field inside the Dirac operator acts via a commutator. Now

the key observation is

[H,ψ]rs = qrδrt ψts − ψrt qtδts = (qr − qs)ψrs , (5.67)

where ψrs is one of the N × N matrix elements. This allows us to consider all matrix

elements separately, if we use

q → qrs ≡ qr − qs (5.68)

as the effective monopole charge. This immediately implies that the U(1)R charge of the

vacuum, i.e. the monopole background, is

Qmon
R =

∑
r,s

[
−1

2
·Nf ·

(
−η |qrs|

2

)
− 1

2
·Nf ·

(
−η |qrs|

2

)
+ 1 ·

(
−η |qrs|

2

)
+ 1 ·

(
−η |qrs|

2

)]
= η

(
Nf

2
− 1

) N∑
r,s=1

|qr − qs| . (5.69)

The sum produces an answer at least of order N unless all qr are equal. For example, for

the simplest monopole whose only non-vanishing label is q1 = 1, and therefore transforms

in the bifundamental of U(N) × U(N) for k = 1, we find that the induced R-charge is

(Nf − 2)(N − 1).

For the BPS background where η = +1, the R-charge of the monopole is positive if

Nf > 2. For Nf = 1 the monopole R-charges are negative and the theory may not flow

to a conformal limit [170, 171]. The BPS monopoles in ABJM theory have vanishing

R-charge since there are two flavors, Nf = 2. However, this does not mean that there are

gauge invariant operators with vanishing R-charge because such operators necessarily

156



involve matter fields in addition to the monopoles. In fact, in a strongly coupled theory it

is generally impossible to separate the monopole part from the matter part; nevertheless,

this is possible in the weakly coupled UV limit where the monopole part is semi-classical.

We finally remark that from a similar computation, where we normal order the flavor

charge operator instead of the R-charge operator, one can see that the monopole does

not carry any induced flavor representation. Using the mode expansion in the flavor

charge

Qn
fl ∼

∫
dΩ tr ξ†A(T n)ABγ

τξB =

∫
dΩ tr

[
ζ†A(T n)ABγ

τζB − ω†B(T n)ABγ
τωA

]
(5.70)

yields a vanishing normal ordering constant simply because the generators (T i)AB of

SU(Nf ) are traceless. Note that considering the static background (5.44) which preserves

only U(1)R ⊂ SU(2)R is general enough for this argument, because flavor and R-charge

are completely independent.

5.5 SU(2)R Charges and Collective Coordinate Quan-

tization

In this section we compute the SU(2)R charges of the BPS monopole operators by quan-

tizing the collective coordinate ~n(τ) of the corresponding class of classical monopole

backgrounds (5.46). The dynamics of the collective coordinate is governed by the inter-

action with the other fields of the theory. We take the influence of these interactions

into account by computing the effective action Γ(~n). As explained in Section 5.2 it is

sufficient to carry out this computation in the UV limit of the theory where the Yang-

Mills coupling g̃ goes to zero. In this limit precisely the interactions with the fermions
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survive. Thus the effective action is obtained by integrating out the fermions:

e−Γ(~n) =

∫
[dξ†][dξ][dλ][dλ̂] e−S , (5.71)

where the relevant part of the action is

S =

∫
dτ dΩ tr

[
− iξ†Aa /Dξ

Aa − i
2
ni ξ

†
Aa(σi)

a
b[H, ξ

Ab] (5.72)

+ i
2
λab /Dλab − i

2
ni λab(σi)

b
c[H, λ

ac] (5.73)

+ i
2
λ̂ab /Dλ̂ab − i

2
ni λ̂ab(σi)

b
c[H, λ̂

ac]
]
. (5.74)

Since the action is quadratic the path integral is “simply” a determinant, albeit a de-

terminant of a matrix operator with very many indices. We have displayed explicitly

the SU(2)fl index (A) and the SU(2)R indices (a, b, c). Besides those, there are implicit

U(N) gauge indices which we denote by ξrs, λrs, etc. below. Then there is the spatial

dependence of the fermions which we will trade for a set of mode indices by expanding

the fields into harmonics on the sphere.

The good news is that the operator is fairly diagonal and couples only very few

components together. For instance it is completely diagonal in the flavor and gauge

indices, and couples at most two modes of the harmonic expansion. Thus we can perform

the computation for a generic component and take the sum over the indices into account

later.

5.5.1 Prototype

We start the discussion with a quantum mechanical model where there is only a (Eu-

clidean) time coordinate τ . This example already exposes the essential point of the

whole argument. The dependence of the fields on the angular coordinates on the sphere

will be taken into account in the next paragraph.
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Quantum mechanics. Let us consider one fermion ψa(τ) in the fundamental repre-

sentation of SU(2)R, as indicated by the index a, with the action9

S =

∫
dτ
[
−iψ†a∂τψa − i

2
qni(τ)ψ†a(σi)

a
bψ

b
]
. (5.75)

Since we have not included any spatial dependence in this example, there is no monopole

gauge field either. The coupling of ψ to the collective coordinate has been written as q

in anticipation of it becoming the monopole charge later.

Formally we find for the effective action10

Γ(~n) = − ln det
(
i∂τ − i q2ni(τ)σi

)
. (5.76)

Due to the unspecified τ -dependence of ni, we cannot evaluate this determinant ex-

actly. However, since the collective coordinate is considered as being quasi-static, it is

legitimate to do a derivative expansion. The general form of the effective action then is

Γ(~n) =

∫
dτ
[
−Veff(~n) + i ṅiAi(~n) + 1

2
ṅiṅjBij(~n) + . . .

]
. (5.77)

Our aim is to find the function Ai(~n) by expanding (5.76). However, it is not immediately

possible to expand (5.76) in ṅi, as it does not contain ṅi explicitly. The trick due to

[174] is to write

ni(τ) = n̊i + ñi(τ) , (5.78)

where n̊i is constant with n̊2 = 1 and ñi(τ) a small “fluctuation”. Then the form of the

9A similar model with a fermion in the 3 of SU(2) was studied in [173].
10The relative sign between the two terms may superficially appear to have changed since (σi)ab in

(5.75) are transposed Pauli matrices, while in (5.76) we use non-transposed ones, (σi)ab.
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effective action to second order in fluctuations reads

Γ(~n) =

∫
dτ
[
−Veff (̊~n)− ñi∂iVeff (̊~n)− 1

2
ñiñj∂i∂jVeff (̊~n) (5.79)

+i ˙̃niAi(̊~n) + i ˙̃niñj∂jAi(̊~n) + 1
2

˙̃ni ˙̃njBij (̊~n) + . . .
]
.

The point of (5.78) is that we can now expand (5.76) in powers of ñi, some of which will

come with τ -derivatives, and compare the result with the general expression (5.79). We

cannot determine Ai from the term ˙̃niAi(̊~n) as this is a total derivative and hence will

not show up in the expansion of (5.76). Therefore we will focus on the next term, the

unique term with two powers of ñ and one τ -derivative

Γ(2,1)(~n) = i

∫
dτ ˙̃niñj∂jAi(̊~n) = − i

2

∫
dτ ˙̃niñj

(
∂iAj (̊~n)− ∂jAi(̊~n)

)
. (5.80)

Now we start from (5.76) using (5.78)

Γ(~n) = − tr ln
(
i∂τ − im̊\ − im̃\

)
= − tr ln

(
i∂τ − im̊\

)
− tr ln

(
1− 1

∂τ−m̊\
m̃\
)
, (5.81)

where we have introduced the shorthands m̊i = q
2
n̊i, m̃i = q

2
ñi, and m\ ≡ miσi. We

isolate the term with two powers of ñi ∼ m̃i by expanding the logarithm:

Γ(2)(~n) =
1

2
tr

[
∂τ + m̊\
∂2
τ − m̊2

m̃\ ∂τ + m̊\
∂2
τ − m̊2

m̃\
]
. (5.82)

Next we move all derivatives to the right using

1

∂2 − m̊2
φ =

∞∑
k=0

(−1)k [∂2, [∂2, . . . , [∂2︸ ︷︷ ︸
k

, φ] . . .]]
1

(∂2 − m̊2)k+1
, (5.83)

and perform the trace over SU(2)R indices using

trσiσj = 2δij , trσiσjσk = 2iεijk , trσiσjσkσl = 2δijδkl − 2δikδjl + 2δilδjk . (5.84)
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We find for the terms which contain exactly one derivative

Γ(2,1)(~n) =− 3 tr ˙̃mim̃i
∂τ (∂

2
τ + m̊2)

(∂2
τ − m̊2)3

− i tr εijk ˙̃mim̃jm̊k
1

(∂2
τ − m̊2)2

(5.85)

− 6 tr
(
2 ˙̃mim̃jm̊im̊j − ˙̃mjm̃jm̊im̊i

) ∂τ
(∂2
τ − m̊2)3

.

Now that the coordinate dependent part is separated from the derivatives it is easy to

evaluate the functional trace: it leads to one integral over τ and one over the energy

ω, where ∂τ → −iω. All but the second term will lead to an integral over a total τ -

derivative and therefore can be dropped. We are left with only the second term which

becomes

Γ(2,1)(~n) = −i
∫
dτ εijk ˙̃mim̃jm̊k

∫
dω

2π

1

(ω2 + m̊2)2
= − i

4
sign(q)

∫
dτ εijk ˙̃niñj

n̊k

|̊~n|3
. (5.86)

Comparing this to (5.80), we read off

∂iAj(~n)− ∂jAi(~n) =
sign(q)

2
εijk

nk
|~n|3

. (5.87)

This expression is recognized as the field strength for a magnetic monopole with charge

sign(q)
2

and hence Ai(~n) is the corresponding gauge potential. We should stress that this

monopole has nothing to do with the original monopole background of ABJM theory

which we set out to study. In fact, the action (5.75) does not contain any monopole

background for ψ. The monopole potential we are finding here lives on the space spanned

by ~n, which just happens to be the moduli space of supersymmetric monopoles in N = 3

gauge theory.

At any rate what we have found is that the effect of the fermion ψ is to induce a

Wess-Zumino term in the effective action for the collective coordinate. In other words,

the dynamics of the collective coordinate ~n is the same as that of a point particle on a

sphere with a magnetic monopole at its center. The coefficient of the Wess-Zumino term

161



is the product of the electric charge of the point particle and the magnetic charge of the

monopole. This analogy immediately implies that the allowed SU(2)R representations

for the quantized collective coordinate, and hence the ABJM monopoles, are bounded

from below by the Wess-Zumino coefficient. Thus, if we want to have monopole operators

in the singlet representation, we will have to find that the Wess-Zumino term cancels

from the effective action when all contributions are included. This is what will indeed

happen for ABJM theory, but not in general.

Spatial dependence. We reinstate the dependence of ψ on the coordinates of the

sphere and consider the case

S =

∫
dτ dΩ

[
−iψ†a /Dψa − i

2
qni(τ)ψ†a(σi)

a
bψ

b
]
, (5.88)

which contains a monopole background with magnetic charge q but is still abelian. The

easiest way to deal with the spatial dependence is to expand ψ(τ,Ω) into monopole

spinor harmonics and perform the S2-integration in the action. All relevant properties

of these harmonics have already been discussed in Subsection 5.4.1, see also Appendix

A.4.

The expansion of ψ is the same as in Section 5.4, eq. (5.53). Since ~n(τ) is constant

on the sphere, the orthogonality of the monopole harmonics (A.39) implies that different

(jm)-modes of ψ do not couple to each other. The only coupling is between the ±-modes

which is due to the property (A.36). Indeed the action for the modes becomes

S =
∑
m

∫
dτ
[
−i sign(q)ψ†m∂τψm − i

2
qni ψ

†
mσiψm

]
(5.89)

+
∑
jmε

∫
dτ
[
−iψε†jm∂τψεjm + ∆ε

jq ψ
−ε†
jm ψεjm − i

2
qni ψ

−ε†
jm σiψ

ε
jm

]
.

This decoupling means that we can compute the contribution to the effective action

for each pair (jm) individually. One such term in the zero-mode sector, j = |q|−1
2

, is
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essentially the previously considered case (5.75). The additional sign(q) in (5.89), which

originates from (A.38), removes the sign(q) from the result (5.86). The sum over m

introduces a factor of 2j + 1 = |q|. This is how the Wess-Zumino term acquires the

dependence on the monopole charge. Thus the Wess-Zumino potential is

∂iAj(~n)− ∂jAi(~n) =
|q|
2
εijk

nk
|~n|3

. (5.90)

Now we turn to the non-zero-mode sector. It will turn out that there is no contri-

bution to the effective action from this sector, and that (5.90) is the final result. In the

following we think of j and m as fixed to some values and suppress these labels. Due

to the coupling between the ±-modes, we now have a 2× 2 matrix in “mode space” on

top of the matrix structure that mixes the two components of the SU(2)R doublet:

Γ(~n) = − ln det

 i∂τ −∆− − im\

−∆+ − im\ i∂τ

 . (5.91)

The generalization of (5.82) is

Γ(2)(~n) =
1

2
tr



 −∂τ −i∆− m̊\

i∆− m̊\ −∂τ


∂2
τ −∆2 − m̊2

 0 m̃\

m̃\ 0




2

, (5.92)

where ∆ ≡ ∆+ = −∆−. Evaluating this expression analogously to the previous case

yields that the term Γ(2,1)(~n) is zero (up to surface terms), i.e. the non-zero modes do

not contribute to the Wess-Zumino term.

Recall that in the computation of the U(1)R charge of the monopole operator in

Section 5.4, we also found that the non-zero modes did not contribute. There the can-

cellation occurred between states of equal but opposite energy. In order to demonstrate
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explicitly that the same mechanism is at work here, too, we pretend that ∆+ and ∆−

are unrelated for the time being and repeat the computation. Without presenting any

of the lengthy intermediate steps, we arrive at

Γ(2,1) =

∫
dτ

∫
dω

2π

−4iεijk ˙̃mim̃jm̊k (∆+ + ∆−)(ω2 + ∆+∆−)ω[
ω4 + 2(∆+∆− − m̊2)ω2 + (∆+∆−)2 +

(
(∆+)2 + (∆−)2

)
m̊2 + m̊4

]2 .
(5.93)

Indeed we see that the vanishing is due to the pairing of eigenvalues, ∆+ = −∆−.

5.5.2 Application to N = 3 Gauge Theory

Having obtained the result (5.90) for the prototype action (5.88) it is a simple matter

to specialize to ABJM theory and its N = 3 UV completion. All that needs to be done

is to include the gauge indices and sum over the field content.

Gauge structure. The non-abelian nature of the theory is taken care of just as in

Section 5.4.2. From (5.67) it is clear that the action is diagonal in gauge indices and

therefore every matrix element contributes independently from the others to the effective

action. The effective monopole charge that the matrix element ψrs experiences is given

by

qrs ≡ qr − qs . (5.94)

Hence the non-abelian result is obtained from the abelian one by the replacement

Γq(~n)→
N∑

r,s=1

Γqrs(~n) . (5.95)

We will see that the sum over r, s will factorize, because all fermions transform effectively

in the same representation.
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Therefore, it will be convenient to define the total charge

qtot =
N∑

r,s=1

|qrs| = 2
∑
r>s

|qr − qs| . (5.96)

Hyper multiplet fermions. Upon using (5.67), the action for ξA is just Nf copies of

the prototype (5.88). Therefore we can immediately write down the total contribution

from the hyper multiplet fermions

∂iAj(~n)− ∂jAi(~n) = Nf
qtot

2
εijk

nk
|~n|3

. (5.97)

Vector multiplet fermions. The computation for λ and λ̂ reduces to (5.88) as well,

but we have to be careful not to over-count the degrees of freedom. Due to the relations

(5.20) there are only two independent (complex) components. We choose λ11 ∼ χσ and

λ12 ∼ χ†φ as the independent components and denote their complex conjugates by

λ†11 ≡ (λ11)∗ , λ†12 ≡ (λ12)∗ , (5.98)

and similarly for λ̂. When expressed in terms of these fields, the action reads

S =

∫
dτ dΩ tr

[
− iλ†1a /Dλ1a + i

2
ni λ

†
1a(σi)

a
b[H,λ

1b] (5.99)

− iλ̂†1a /Dλ̂1a + i
2
ni λ̂

†
1a(σi)

a
b[H, λ̂

1b]
]
.

This is nothing but the action for ξ with reversed sign of the interaction, cf. (5.72). Thus

the contribution from the vector multiplet fermions is

∂iAj(~n)− ∂jAi(~n) = −2× qtot

2
εijk

nk
|~n|3

, (5.100)

where the factor of 2 arises because we have λ and λ̂.
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Collective coordinate quantization. Adding all contributions together, the total

effective action for the collective coordinate is given by

Γ(~n) =

∫
dτ
[

1
2
M~̇n2 + i ~A(~n) · ~̇n+ λ(~n2 − 1)

]
, (5.101)

where the kinetic term is simply the sum of the kinetic terms for φ and φ̂. The last

term is a Lagrange multiplier term which enforces the constraint that the modulus of ~n

is fixed to one. This actions describes a particle with unit electric charge and large mass

(as g̃ → 0 in the UV)

M = M(τ) =
1

g̃2
trH2 = g−2e−2τ

∑
r

q2
r (5.102)

on a sphere surrounding a magnetic monopole with charge

h = (Nf − 2) qtot = (Nf − 2)
∑
r,s

|qr − qs| , (5.103)

and field strength ~B = ~∇× ~A = h
2
~n.

This is the Euclidean version of the system discussed in Section 5.2 with the modi-

fication that now M depends on time. Still, the conserved angular momentum is given

by

~L = M ~n× ~̇n− h

2
~n , (5.104)

and its quantized values are the SU(2)R charges of the monopole operator described by

the BPS background (5.46). Due to the second term in (5.104), the smallest possible

SU(2)R representation has spin

l =
|h|
2

=

∣∣∣∣Nf

2
− 1

∣∣∣∣∑
r,s

|qr − qs| (5.105)
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and dimension 2l + 1 = |h|+ 1.

A monopole in the singlet representation and hence of vanishing IR dimension, is

only possible if h = 0. One way of achieving this is to set all fluxes qr equal. This

corresponds to a monopole in the diagonal U(1)d ⊂ U(N) × U(N) of the gauge group

which decouples from the matter fields. Another way to have singlet monopoles is to

consider Nf = 2 hyper multiplets, which is the field content of ABJM theory. This is

true regardless of how the fluxes qr are distributed inside the total U(N)d flux H.

5.6 Conclusions and Outlook

In this chapter we have calculated the global charges and dimensions of monopole op-

erators in certain three-dimensional N = 3 supersymmetric Yang-Mills Chern-Simons

theories. This is the smallest amount of supersymmetry leading to a non-abelian R-

symmetry which was crucial for our argument, because the SU(2)R spin of a monopole

operator cannot change along an RG flow. This allowed us to find the exact charges

from a one-loop calculation in the weakly coupled UV limit of the gauge theory.

In the far UV the monopole operator was adequately described by a classical Dirac

monopole background for the gauge fields. For the description of BPS monopoles the

background needs to be supersymmetric which required us to also turn on a classical

background for the adjoint scalar fields.

In Section 5.4 we considered a static scalar background. Since such a background

breaks the R-symmetry from SU(2)R to U(1)R, we could only determine the abelian

charge of the monopole in this case. Using the methods developed in [161], we found that

fermionic fluctuations around the background induce a U(1)R charge of the monopole

proportional to the R-charges of the fermions times their magnetic coupling to the

background. Our complete formula (5.69) for the R-charge in U(N) × U(N) gauge

theory coupled to Nf hyper multiplets in the bifundamental representation is consistent
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with the proposal made in [170, 171].

However, knowing the U(1)R charges at small Yang-Mills coupling is in general not

enough as this quantity is not protected and one cannot make any reliable statement

about their IR values. In [161] the computation was performed directly in the IR limit

(of SQED) which was possible by assuming a large number of flavors. Here we could not

resort to this trick because we wanted to keep the number of flavors arbitrary. However,

we can make use of theN = 3 supersymmetry and compute non-abelian R-charges which

are protected. They follow from quantization of the SU(2)/U(1) collective coordinate of

the background. By calculating the fermionic determinants which induce a Wess-Zumino

term in the effective action of the collective coordinate, we demonstrated in Section 5.5

that the smallest allowed SU(2)R representation is given by (5.105). The largest U(1)R

charge within this representation coincides with our findings in Section 5.4.

Note that the induced R-charge of the monopole is entirely due to the fermions

of the theory. In the normal ordering computation, Section 5.4, the reason why the

bosons do not contribute is because their spectrum is symmetric with respect to zero

and therefore the states with positive energy cancel the effect of those with negative

energy. In the collective coordinate computation, Section 5.5, this follows from the fact

that the coupling between the bosons and the collective coordinate goes to zero in the

UV.

After the theory has flown to the superconformal Chern-Simons fixed point, we can

use these results to argue that the contribution of the monopole operator to gauge-

invariant operator dimensions is given by (5.69), as long as it is non-negative (when it is

negative, a conventional fixed point does not exist). For ABJM theory, where Nf = 2,

this contribution vanishes which is crucial for matching the spectrum with supergravity

on AdS4 × S7/Zk and for the supersymmetry enhancement to N = 8.

Since the gauginos make a crucial negative contribution to the R-charge, and they

are not even dynamical in the IR Chern-Simons theory, it is not clear how to carry out
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this calculation reliably without appealing to the UV theory containing the Yang-Mills

term. Luckily, there are various other theories to which the method of starting with a

weakly coupled UV theory can be applied. One obvious example is to consider quiver

theories with more than two U(N) gauge groups and bifundamental hyper multiplets.

These Yang-Mills Chern-Simons theories can flow in the IR to N = 3 superconformal

fixed points; some of them have M-theory AdS4 duals found by Jafferis and Tomasiello

[175].

Determination of monopole operator dimensions poses more of a challenge in N =

2 superconformal Chern-Simons theories, since we cannot rely on a non-abelian R-

symmetry. Nevertheless, it should again be possible to define some of these theories

via flow from weakly coupled Yang-Mills Chern-Simons theories, where monopole oper-

ator R-charge can be computed semiclassically. It is conceivable that the U(1)R charge

does not change under the RG flow, which would then determine it in the superconformal

theory.

As we have noted, in some quiver theories the induced R-charge of the monopole in

the UV is simply proportional to the sum over the R-charges of all the fermions. If a

“parent” quiver Yang-Mills gauge theory can be written down in four dimensions with

the same superpotential, then all the fermion R-charges in it are the same as in three

dimensions. In this “parent theory” the sum over all fermion R-charges determines the

U(1)R anomaly. In particular, if this quantity vanishes, then the 4-dimensional gauge

theory is superconformal. Thus, it is tempting to conjecture a relation between U(1)R

anomaly in a parent 4-dimensional gauge theory and the induced monopole operator

R-charge in a descendant 3-dimensional gauge theory. For example, in the class of

U(N)×U(N) theories we have considered in this paper, the induced monopole R-charge

is ∼ (1−Nf/2). In its parent 4-dimensional gauge theory, the U(1)R anomaly coefficient

is (1 − Nf/2)N , with the first term due to an adjoint gluino of R-charge 1, and the

second due to Nf bifundamentals of R-charge −1/2. The anomaly cancellation for
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Nf = 2 singles out the 4-dimensional superconformal gauge theory describing D3-branes

on the conifold [44].

This discussion suggests that, if a quiver gauge theory is superconformal in four

dimensions, then at least some monopole operators in its 3-dimensional descendant

(presumably the ones that correspond to turning on monopoles in all gauge groups)

have vanishing monopole operator dimensions. Clearly, the possibility of a connection

between monopole R-charges in three dimensions and anomaly coefficients in four di-

mensions requires a more detailed study.

170



Appendix: Useful Formulae,

Notations and Conventions

A.1 The Type IIB Supergravity Equations

Here we succinctly list the equations of motion of IIB supergravity. They are used

heavily in Chapter 3 to study 2-form potential and metric perturbations. For simplicity

we have set the dilaton and RR scalar to zero.

Bianchi identities:

dF3 = 0 ,

dH3 = 0 ,

dF̃5 =H3 ∧ F3 .

(A.1)

Dynamic equations:

d ∗H3 =−g2
s F̃5 ∧ F3 ,

d ∗ F3 = F̃5 ∧H3 ,

F̃5 = ∗F̃5 .

(A.2)

Einstein equation:

Rij = Tij =
g2
s

96
F̃iabcdF̃

abcd
j +

1

4
HiabH

ab
j −

1

48
GijHabcH

abc +
g2
s

4
FiabF

ab
j −

g2
s

48
GijFabcF

abc .

(A.3)
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A.2 Chern-Simons Field Theory Notations and Con-

ventions

Lorentzian ABJM model. The world-volume metric is gµν = diag(−1,+1,+1)

with index range µ = 0, 1, 2. We use Dirac matrices (γµ)α
β = (iσ2, σ1, σ3) satisfying

γµγν = gµν+εµνργρ. The fermionic coordinate of superspace is a complex two-component

spinor θ. Indices are raised, θα = εαβθβ, and lowered, θα = εαβθ
β, with ε12 = −ε12 = 1.

Note that lowering the spinor indices of the Dirac matrices makes them symmetric

γµαβ = (−1,−σ3, σ1). In products like θαθα ≡ θ2, θαθ̄α ≡ θθ̄ etc and θαγµ β
α θ̄β ≡ θγµθ̄ we

suppress the indices. We have

θαθβ = 1
2
εαβθ

2 , θαθβ = 1
2
εαβθ2 (A.4)

and likewise for θ̄ and derivatives. The Fierz identities are11

(ψ1ψ2)(ψ3ψ4) =−1
2
(ψ1ψ4)(ψ3ψ2)− 1

2
(ψ1γ

µψ4)(ψ3γµψ2) , (A.5)

(ψ1ψ2)(ψ3γ
µψ4) =−1

2
(ψ1γ

µψ4)(ψ3ψ2)− 1
2
(ψ1ψ4)(ψ3γ

µψ2)− 1
2
εµνρ(ψ1γνψ4)(ψ3γρψ2) ,

(ψ1γ
µψ2)(ψ3γ

νψ4) =−1
2
gµν(ψ1ψ4)(ψ3ψ2) + 1

2
gµν(ψ1γ

ρψ4)(ψ3γρψ2)− (ψ1γ
(µψ4)(ψ3γ

ν)ψ2)

−1
2
εµνρ

[
(ψ1γρψ4)(ψ3ψ2)− (ψ1ψ4)(ψ3γρψ2)

]
,

which imply in particular

(θθ̄)2 =−1
2
θ2θ̄2 , (A.6)

(θθ̄)(θγν θ̄) = 0 , (A.7)

(θγµθ̄)(θγν θ̄) = 1
2
gµνθ2θ̄2 . (A.8)

11Here and everywhere we use symmetrization and anti-symmetrization with weight one X[aYb] =
1
2

(
XaYb −XbYa

)
and X(aYb) = 1

2

(
XaYb +XbYa

)
.
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The supercovariant derivatives and supersymmetry generators are

Dα = ∂α + iγµαβ θ̄
β∂µ , Qα = ∂α − iγµαβ θ̄

β∂µ , (A.9)

D̄α = −∂̄α − iθβγµαβ∂µ , Q̄α = −∂̄α + iθβγµαβ∂µ , (A.10)

where the only non-trivial anti-commutators are

{Dα, D̄β} = −2iγµαβ∂µ , {Qα, Q̄β} = 2iγµαβ∂µ . (A.11)

We use the following conventions for integration

d2θ ≡ −1
4
dθαdθα , d2θ̄ ≡ −1

4
dθ̄αdθ̄α , d4θ ≡ d2θ d2θ̄ , (A.12)

such that

∫
d2θ θ2 = 1 ,

∫
d2θ̄ θ̄2 = 1 ,

∫
d4θ θ2θ̄2 = 1 . (A.13)

It is useful to note that up to a total derivative

∫
d4θ . . . =

1

16

(
D2D̄2 . . .

)
|θ=θ̄=0 . (A.14)

We use the N × N hermitian matrix generators T n (n = 0, . . . , N2 − 1) and tn

(n = 1, . . . , N2 − 1) for U(N) and SU(N) respectively. We have T n = (T 0, tn) with

T 0 = 1/
√
N .

The generators are normalized as trT nTm = δnm. Their completeness implies that

trAT n trBT n = trAB and trAT nBT n = trA trB for U(N). Similarly for SU(N) we

have trAtn trBtn = trAB − 1
N

trA trB and trAtnBtn = trA trB − 1
N

trAB.
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Euclidean Chern-Simons Yang Mills theory in radial quantization. The main

part of our computations in Chapter 5 are performed on R × S2 with the metric

ds2 = gmndx
mdxn = dτ 2 + dθ2 + sin2 θ dϕ2. As Dirac matrices in the tangent frame

we use (γa)α
β = (−σ2, σ1, σ3), which satisfy γaγb = δab + iεabcγc. As above all spinor

indices are raised and lowered from the left, ψα = εαβψβ and ψα = εαβψ
β, with

ε12 = −ε12 = 1. Again, (γa)αβ = (−i1,−σ3, σ1) are symmetric and we also have

(γa)α
β = (γa)βα. For contracting spinor indices we use the NW-SE convention, e.g

ψγmγnχ ≡ ψα(γm)α
β(γn)β

γχγ etc. The spin connection is

∇mψ = (∂m + ωm)ψ , ωm = 1
4
ωmabγ

ab , γab = 1
2
[γa, γb] (A.15)

with the only non-zero component being ωϕ21 = −ωϕ12 = cos θ. For raising and lowering

SU(2)R indices (also called a, b, . . .) we use the same conventions as for spinor indices.

The standard index position for Pauli matrices is (σi)a
b.

N = 2 superfields. The component expansion of the N = 2 superfields are as

follows. The vector superfield V(x, θ, θ̄) in Wess-Zumino gauge contains the U(N)×Û(N)

gauge field Aµ, a complex two-component fermion χσ, a real scalar σ and an auxiliary

scalar D, such that

V = 2i θθ̄ σ(x)− 2 θγmθ̄ Am(x) +
√

2i θ2 θ̄χ†σ(x)−
√

2i θ̄2 θχσ(x) + θ2 θ̄2 D(x) , (A.16)

V̂ = 2i θθ̄ σ̂(x)− 2 θγmθ̄ Âm(x) +
√

2i θ2 θ̄χ̂†σ(x)−
√

2i θ̄2 θχ̂σ(x) + θ2 θ̄2 D̂(x) , (A.17)

and similarly the chiral superfields in the adjoints of the two gauge group factors are

Φ =φ(xL) +
√

2 θχφ(xL) + θ2 Fφ(xL) , Φ̄ = φ†(xR)−
√

2 θ̄χ†φ(xR)− θ̄2 F †φ(xR) , (A.18)

Φ̂ = φ̂(xL) +
√

2 θχ̂φ(xL) + θ2 F̂φ(xL) , ˆ̄Φ = φ̂†(xR)−
√

2 θ̄χ̂†φ(xR)− θ̄2 F̂ †φ(xR) . (A.19)
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The components of the chiral and anti-chiral superfields, Z(xL, θ) and Z̄(xR, θ̄), are a

complex boson Z, a complex two-component fermion ζ as well as a complex auxiliary

scalar F , and similarly for W and W̄ . The expansions of these bifundamental matter

fields are given by

Z =Z(xL) +
√

2 θζ(xL) + θ2 F (xL) , (A.20)

Z̄ =Z†(xR)−
√

2 θ̄ζ†(xR)− θ̄2 F †(xR) , (A.21)

W =W (xL) +
√

2 θω(xL) + θ2G(xL) , (A.22)

W̄ =W †(xR)−
√

2 θ̄ω†(xR)− θ̄2G†(xR) , (A.23)

where xmL = xm − iθγmθ̄ and xmR = xm + iθγmθ̄.

A.3 N = 3 Chern-Simons Yang-Mills on R1,2

Here we present the action of the N = 3 Chern-Simons Yang-Mills theory on R1,2 with

signature (−,+,+). For further explanations we refer the reader to Section 5.3. The

kinetic and mass terms are

Skin =

∫
d3x tr

[
− 1

2g2
F µνFµν + κ εµνλ

(
Aµ∂νAλ + 2i

3
AµAνAλ

)
(A.24)

− 1
2g2
F̂ µνF̂µν − κ εµνλ

(
Âµ∂νÂλ + 2i

3
ÂµÂνÂλ

)
−DµX†DµX + iξ† /Dξ

− 1
2g2
DµφabDµφba − 1

2
κ2g2 φabφ

b
a − 1

2g2
Dµφ̂abDµφ̂ba − 1

2
κ2g2 φ̂ab φ̂

b
a

− i
2g2
λab /Dλab − κ

2
iλabλba − i

2g2
λ̂ab /Dλ̂ab + κ

2
iλ̂abλ̂ba

]
,
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and the interactions, which involve cubic and quartic scalar vertices, as well as Yukawa

terms, are given by

Sint =

∫
d3x tr

[
−κg2X†aφ

a
bX

b + κg2Xaφ̂baX
†
b − iξ

†
aφ

a
bξ
b − iξaφ̂baξ

†
b (A.25)

+ εacλ
cbXaξ†b − ε

acλcbξ
bX†a − εacλ̂cbξ

†
bX

a + εacλ̂cbX
†
aξ
b

+ κ
6
φab [φ

b
c, φ

c
a] + κ

6
φ̂ab [φ̂

b
c, φ̂

c
a]− 1

2g2
iλab[φ

b
c, λ

ac] + 1
2g2
iλ̂ab[φ̂

b
c, λ̂

ac]

− g2

4
(XσiX

†)(XσiX
†)− g2

4
(X†σiX)(X†σiX)

− 1
2
(XX†)φabφ

b
a − 1

2
(X†X)φ̂ab φ̂

b
a −X

†
Aaφ

b
cX

Aaφ̂cb

+ 1
8g2

[φab , φ
c
d][φ

b
a, φ

d
c ] + 1

8g2
[φ̂ab , φ̂

c
d][φ̂

b
a, φ̂

d
c ]
]
.

The supersymmetry variations with parameter εab = εi(σi)ab in the 3 of SU(2)R read

δAµ =− i
2
εabγµλ

ab , (A.26)

δλab = 1
2
εµνλFµνγλε

ab − i /Dφbcεac + i
2
[φbc, φ

c
d]ε

ad

+κg2 iφbcε
ac + g2 iXaX†cε

cb − ig2

2
(XX†)εab , (A.27)

δφab =−εcbλca + 1
2
δab εcdλ

cd , (A.28)

δÂµ =− i
2
εabγµλ̂

ab , (A.29)

δλ̂ab = 1
2
εµνλF̂µνγλε

ab + i /Dφ̂bcεac + i
2
[φ̂bc, φ̂

c
d]ε

ad

+κg2 iφ̂bcε
ac − g2 iεbcX†cX

a + ig2

2
(X†X)εab , (A.30)

δφ̂ab =−εcbλ̂ca + 1
2
δab εcdλ̂

cd , (A.31)

δXAa = −iεabξAb , δξAa = /DXAbεab + φabε
b
cX

Ac +XAcεbcφ̂
a
b , (A.32)

δX†Aa = −iξ†Abε
b
a , δξ†Aa = /DX†Abε

b
a + φ̂baε

c
bX
†
Ac +X†Acε

c
bφ

b
a . (A.33)
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A.4 Monopole Spinor Harmonics

We define monopole spinor harmonics as eigenspinors of the Dirac operator on the sphere

in a monopole background with magnetic charge q:

−i /DSΥ±qjm = ∆±jqΥ
±
qjm (A.34)

with eigenvalues

∆±jq = ±1
2

√
(2j + 1)2 − q2 (A.35)

for j = |q|−1
2
, |q|+1

2
, . . . and m = −j,−j + 1, . . . , j. The spectrum is drawn in Figure

5.1(a) on page 154. These spinors also satisfy

γτ Υ±qjm = Υ∓qjm , (A.36)

which couples modes with positive and negative eigenvalue. The lowest modes, j = |q|−1
2

,

which only exists for q 6= 0 are zero-modes and the corresponding Υ±-spinors are not

independent. We introduce a special notation for them

Υ0
qm ≡

1√
2

(
Υ+
qjm + sign(q) Υ−qjm

)
j=
|q|−1

2

. (A.37)

Then (A.36) implies

γτΥ0
qm = sign(q) Υ0

qm . (A.38)

Further properties are the orthogonality

∫
dΩ Υ0†

qm γ
τ Υ0

qm′ = iδmm′ ,

∫
dΩ Υε†

qjm γ
τ Υε′

qj′m′ = iδεε
′
δjj′ δmm′ , (A.39)

177



and completeness relations

∑
m

Υ0
qm(Ω)Υ0†

qm(Ω′) +
∑
jmε

Υε
qjm(Ω)Υε†

qjm(Ω′) = iγτδ2(Ω− Ω′) . (A.40)

We also note the explicit expressions. The generalization of the spinor harmonics in

[176] to non-zero monopole background is

Υ̃+
qjm =

√
1+rqj

2
Ω+
qjm + i sign(q)

√
1−rqj

2
Ω−qjm , (A.41)

Υ̃−qjm = sign(q)
√

1−rqj
2

Ω+
qjm + i

√
1+rqj

2
Ω−qjm , (A.42)

with rqj =
√

1− q2

(2j+1)2
and

Ω±qjm =
(−)j−m

(
i
2

)j+ 1
2
(
j + 1

2

)√
Γ
(
j + 3

2
− q

2

)
Γ
(
j + 3

2
+ q

2

)
√

(j −m)!

(j +m)!

e
i
“
m+

q
2

”
ϕ

√
2π

× (A.43)

×


∓
√
∓i (1− x)m−+/2 (1 + x)m+−/2

dj+m

dxj+m

(
(1− x)j+−(1 + x)j−+

)
±
√
±i (1− x)m++/2 (1 + x)m−−/2

dj+m

dxj+m

(
(1− x)j−−(1 + x)j++

)


where

jε1ε2 ≡ j + ε1
1
2

+ ε2
q
2

, mε1ε2 ≡ m+ ε1
1
2

+ ε2
q
2
. (A.44)

We rotate to our basis of Dirac matrices by defining Υ±qjm = 1√
2
(1− iσ1)Υ̃±qjm.
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