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Abstract
We study orbital diamagnetism at zero temperature in (2 + 1)-dimensional Dirac fermions with a
short-range interaction which exhibits a quantum phase transition to a charge density wave
(CDW) phase. We introduce orbital magnetic fields into spinless Dirac fermions on the π-flux
square lattice, and analyze them by using infinite density matrix renormalization group. It is found
that the diamagnetism remains intact in the Dirac semimetal regime, while it is monotonically
suppressed in the CDW regime. Around the quantum critical point of the CDW phase transition,
we find a scaling behavior of the diamagnetism characteristic of the chiral Ising universality class.
Besides, the scaling analysis implies that the robust orbital diamagnetism at weak magnetic fields
in a Dirac semimetal regime would hold not only in our model but also in other interacting Dirac
fermion systems as long as scaling regions are wide enough. The scaling behavior may also be
regarded as a quantum, magnetic analogue of the critical Casimir effect which has been widely
studied for classical phase transitions.

1. Introduction

Orbital diamagnetism of conduction electrons is a fundamental property of a material. Intuitively, it arises
through the Lorentz force acting on electrons’ kinetic motions and therefore it is susceptible to the band
structure of the system considered. Especially in a semimetal with linear dispersions, the Landau level
structure is qualitatively different from that in a conventional parabolic band system. This leads to
anomalous magnetic responses in Dirac semimetals, and their orbital magnetic moment M shows extremely
strong diamagnetism with non-analytic dependence on the magnetic field at zero temperature, M ∼ −

√
B

in two spatial dimensions. This is much stronger than that in conventional metals, M ∼ −B, for small
magnetic fields. Extensive theoretical studies have been done mainly for non-interacting Dirac systems
[1–15] even in a mathematically rigorous manner [16]. Various properties of diamagnetism have been
theoretically discussed such as finite temperature effects [6], roles of Berry phase [7], lattice effects, [8],
effects of an elastic life time [9], effects of a non-zero gap [10], disorder effects [11], and weak interaction
effects [13–15]. In a realistic finite size sample with surfaces, an edge current will flow along the sample
surface and generate orbital diamagnetism, where net edge currents are generally robust to surface
conditions [12, 17–20]. Experimentally, strong diamagnetism has indeed been observed in several systems
such as graphene and bismuth, and they are well understood based on free electron models as a direct
consequence of the Dirac band structures [6, 21–23]. Furthermore, the origin of diamagnetism has been
identified as orbital contributions in Sr3PbO [24] and Bi1−xSbx [25].

Recently, there have emerged a variety of strongly interacting Dirac electron compounds such as
molecular crystal α-(BEDT-TTF)2I3 [26], magnetic layered system EuMnBi2 [27], perovskite oxides
Ca(Sr)IrO3 [28], and twisted bilayer graphene [29]. Given these experimental developments, it is natural to
ask how the orbital diamagnetism behaves in a correlated Dirac system. According to the previous
theoretical study for graphene with the long-range Coulomb interaction [13], the orbital diamagnetization
M is enhanced if one takes into account the Fermi velocity (vF) renormalization since M is proportional to
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vF in the Dirac semimetal phase. However, it is known that an external magnetic field induces a Dirac mass
in presence of an electron interaction, which is known as magnetic catalysis [30–34]. The Dirac mass
generally suppresses diamagnetism and it competes with an enhancement of the Fermi velocity. A
perturbation study for graphene suggests that orbital magnetization is suppressed at zero temperature as a
result of the non-trivial competition of these two opposite effects [15].

Suppression of diamagnetism may occur also in other related systems where effects of mass generations
due to the magnetic catalysis are stronger than those of Fermi velocity renormalizations. There are several
kinds of magnetic catalysis corresponding to distinct types of field-induced orders, such as
antiferromagnetism, superconductivity, and charge density wave (CDW) order. The critical behaviors
around a quantum critical point (QCP) of the semimetal–insulator phase transition have been well
established mainly in absence of a magnetic field [35–48], and quantum criticality of magnetic catalysis can
also be understood in a similar manner [49]. The scaling analysis shows that the Fermi velocity vF remains
regular around a QCP [50], but numerical calculations demonstrate that vF decreases to some extent in
interacting Dirac fermions which exhibit antiferromagnetic quantum phase transitions [51–54] and
furthermore the reduced vF was observed in the molecular compound α-(BEDT-TTF)2I3 [55]. Therefore, it
is natural to expect suppression of diamagnetism in these systems similarly to the long-range Coulomb
interacting graphene [15]. However, it is not clear whether or not diamagnetism generally gets suppressed
also in other interacting Dirac systems. The orbital diamagnetism in interacting systems is theoretically less
explored compared with the spin magnetism partly because of its technical difficulty, and further studies are
necessary to develop a deeper understanding of diamagnetism.

In this work, we study orbital diamagnetism in a representative model of interacting Dirac fermions
exhibiting a CDW order by unbiased numerical calculations with the infinite density matrix
renormalization group (iDMRG) [56–61]. In this system, the Fermi velocity increases in presence of the
interaction [62], and therefore it is a promising candidate system to realize robust diamagnetism. Indeed,
we demonstrate that the orbital diamagnetization remains intact for weak interactions in the Dirac
semimetal regime, while it monotonically decreases as the interaction strength is increased in the insulating
regime. Furthermore, the orbital magnetization M exhibits a universal scaling behavior near the QCP. The
robust orbital magnetization at weak magnetic fields is a direct consequence of the scaling behavior and
thus similar robustness would be seen in other interacting Dirac fermion models as long as scaling regions
are wide enough. Besides, the scaling behavior of M is analogous to a seemingly unrelated phenomenon, the
critical Casimir effect which has been extensively studied for classical phase transitions.

2. Model

We consider the t–V model for spinless fermions on a π-flux square lattice (also called staggered fermions)
at half-filling under a uniform magnetic field, which is one of the simplest realizations of interacting Dirac
fermions similarly to the honeycomb lattice model [35–43, 49, 63]. The model has two Dirac cones in the
Brillouin zone corresponding to four component Dirac fermions in total. The magnetization arises only
from the electron orbital motion since there is no spin degrees of freedom, which enables us to directly
study the orbital magnetism. The Hamiltonian is given by

H = −
∑
〈i,j〉

tijc
†
i cj + V

∑
〈i,j〉

ninj, (1)

where 〈i, j〉 is a pair of the nearest neighbor sites. The hopping tij = t(0)
ij exp(iAij) contains the vector

potential in the string gauge as shown in figure 1 corresponding to an applied uniform magnetic field
[49, 64], where t(0)

j+x̂,j = t exp(iπyj) and t(0)
j+ŷ,j = t corresponding to the π-flux lattice. In the iDMRG

calculation, the system is an infinite cylinder whose size is Lx × Ly = ∞× Ly with the periodic boundary
condition for the y-direction, and we introduce superlattice unit cells with the size L′

x × Ly. The magnetic
field is assumed to be spatially uniform and is an integer multiple of the unit value allowed by the
superlattice size, B = n × δB (n = 0, 1, 2, . . . , L′

xLy) where δB = 2π/L′
xLy. We consider two different system

sizes Ly = 6, 10 to discuss finite size effects, and typically use L′
x = 20 for Ly = 6 and L′

x = 10 for Ly = 10. It
turns out that the system can be regarded as a two dimensional system when the magnetic length
lB = 1/

√
B is effectively shorter than the system size Ly [49], which enables us to study (2 + 1)-dimensional

physics by iDMRG. We also simulate a system with Ly = 14 only at zero magnetic field, which will be
touched on at section 4. The system size in the present study is rather limited, but we will demonstrate that
our results are consistent with those obtained in the previous studies for larger system sizes at B = 0
[35–43]. This consistency supports our discussions on the system in presence of the magnetic field which is
less understood. In this study, we use the open source code TeNPy [60, 61].
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Figure 1. The string gauge for a L′
x = Ly = 4 system where white circles represent lattice sites and the periodic boundary

condition has been imposed. The black (red) bond corresponds to the hopping −t (+t). Each number on the bonds corresponds
to Aij in unit of δB = 2πn/L′

xLy.

In absence of a magnetic field, the Hamiltonian has sublattice Z2 symmetry which is related to the chiral
symmetry at low energy. This symmetry is spontaneously broken for large interactions above the critical
strength, V > Vc = 1.30t, and a CDW state is realized where Dirac fermions acquire a dynamical mass
[39–41, 49]. The CDW order parameter in the ground state has been discussed previously, and it was
shown that the CDW state is stabilized for any small V > 0 in presence of the magnetic field B 	= 0 when
the system size Ly is large enough [49], which is called the magnetic catalysis [30–34]. Especially near the

QCP, V 
 Vc, the CDW order parameter behaves as MCDW ∼ l−β/ν
B ∼ Bβ/2ν with β 
 0.54, ν 
 0.80

corresponding to the N = 4 chiral Ising universality class. Note that, if present, the long-range part of the
Coulomb interaction would be less important around the QCP and would not affect the criticality at zero
magnetic field [42, 47, 51–53].

Because the system is gapped at B 	= 0 for any V > 0 due to the magnetic catalysis, the iDMRG
numerical calculations with finite bond dimensions χ are stable and extrapolation χ→∞ works well. In
the present study, we extrapolate the calculated ground state energy density at finite χ � 1600 to χ→∞ to
obtain the true ground state energy density ε for each set of V, B, and Ly. Details of the extrapolation are
discussed in appendix A. All the numerical results in the following discussion are extrapolated ones.

3. Numerical results

In this section, we discuss the numerical results obtained by iDMRG calculations. We compute the orbital
magnetization directly from the ground state energy density in section 3 1, and then discuss its scaling
behaviors in section 3 2.

3.1. Direct evaluation of diamagnetism
Firstly, we briefly explain qualitative behaviors of the ground state energy density ε in simple limiting cases
before discussing numerical results of the iDMRG calculations. In the free Dirac fermions with a linear
dispersion, single-particle energies are ε ∼ l−1

B with degeneracy ∼ l−2
B , which leads to the ground state

energy ε(B) − ε(0) ∼ l−3
B = B3/2. The B-dependence becomes weaker in the deep CDW state with Dirac

mass, ε ∼ (mass) + l−2
B and hence ε(B) − ε(0) ∼ l−4

B = B2. These qualitative behaviors should hold not
only deep inside each phase but also in general interaction strength in the phases. Besides, the low energy
Lorentz symmetry of the Dirac semimetal phase is kept up to V = Vc [35–43] and ε(B) − ε(0) ∼ l−3

B holds
also at the QCP [49]. This scaling will be confirmed later.

Now we show the ground state energy density ε(V, B) as a function of the magnetic field B calculated by
iDMRG with extrapolation χ→∞ in figure 2, where ε(V, B = 0) has been shifted for the eyes. (The results
ε(V = 0) have been simply obtained by direct diagonalization of the non-interacting Hamiltonian for
sufficiently long cylinder geometry.) We see that the results for two different system sizes Ly = 6, 10
coincide for relatively large magnetic fields B � 0.02B0 where the magnetic length lB is effectively shorter
than Ly, although there are some deviations for small magnetic fields B � 0.02B0 with longer lB. Therefore,
finite system size effects are negligible as long as the magnetic length is effectively shorter than the system
size Ly as previously mentioned. This means that our system is essentially two-dimensional with the size
∼ lB × lB. In this scheme, we focus only on the magnetic length effectively shorter than Ly = 6. It may seem
difficult to discuss (2 + 1)-dimensional physics because lB < Ly = 6 is too small, and in general, Ly = 6, 10
would not be sufficient to discuss the true two dimensionality. However, as was demonstrated in the
previous study for the magnetic catalysis [49], it is indeed possible to investigate (2 + 1)-dimensional
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Figure 2. The shifted ground state energy density ε(B) for Ly = 6 (squares) and Ly = 10 (circles) with the fitting curves εfit(B)
(solid curves). The interaction is V/t = 0, 0.5, 1.3, 2.0 from the top to the bottom.

physics with this range of magnetic fields and the resulting physical quantities are consistent with those
obtained by the previous studies for larger system sizes at B = 0 [30–43]. This consistency supports our
argument based on the small system sizes for the present model. The valid range of lB (<Ly) would be
changed and correspondingly results could be improved if we include numerical data for larger system sizes,
although it is computationally expensive. It has also been shown that a scaling analysis at zero magnetic
field with an even shorter length scale works well for a related model [43].

By numerically fitting the discrete data for B � 0.02B0 in our system, one can obtain continuum curves
which smoothly connect them. To this end, as discussed above, we first observe ε(B) − ε(0) ∼ l−3

B = B3/2 in
the Dirac semimetal phase, while ε(B) − ε(0) ∼ l−4

B = B2 in the CDW phase. Then, we introduce the
following fitting functions so that their leading functional forms are consistent with these behaviors,

εfit(B) =

{
a0 + a1l−3

B + a2l−4
B (V � Vc),

a0 + a1l−4
B + a2l−5

B (V > Vc),
(2)

where aj are fitting parameters. We have also included the higher order terms. We note that the zero-field
energy a0 is robust to the fitting even when we include further higher order terms in l−1

B .
Given the extrapolated ground state energy density ε, we can now evaluate the orbital magnetization,

M(V , B) = −∂ε(V , B)

∂B
. (3)

Although the magnetic field has to be a continuum variable in this formula, it is discrete B = n × δB in our
calculations and we find that numerical differentiation δε/δB is not so reliable as will be seen in the
following. Therefore, we mainly focus on the fitting function εfit(B) and differentiate it analytically to obtain
the magnetic moment M.

In figure 3 we show the results obtained from the fitting function εfit(B) (solid curves), and also the
direct forward differentiation of the calculated discrete data with symbols for a comparison. For weak
interactions, we clearly see that M(V = 0) and M(V = 0.50t) are very close each other, and think that the
small difference is not so physically relevant as will be revisited later. The robustness of M(V) for small V
can be understood as a result of non-trivial cancellations of two opposite effects. Firstly, at B = 0, the Fermi
velocity vF(V) is increased by V according to the recent numerical studies of the t–V model [62] and it
remains regular even at the critical point according to the scaling analysis [50], vF ∼ (Vc − V)ν(z−1) with the
dynamical critical exponent z = 1. In a simple Fermi liquid picture around the non-interacting limit, the
orbital magnetization of Dirac fermions is expected to be renormalized roughly as
M(V)/M(0) ∝ vF(V)/vF(0). At the same time, however, the magnetic catalysis generating fermion mass
∝ B at weak interactions [30–34, 49] will suppress the magnetization M. As a result of the non-trivial
cancellation between these two effects, M can remain almost unchanged for small V. Furthermore, we argue
that the near constant M(V, B) at small magnetic fields is not specific to the present model equation (1) and
similar behaviors would hold in other interacting Dirac fermion models, as will be discussed later based on
a scaling analysis. This can be compared with the previous results for long-range Coulomb interacting Dirac
fermions where the magnetic catalysis is dominant over the Fermi velocity enhancement at zero
temperature and consequently the diamagnetism is suppressed [15]. Suppression of diamagnetism is
expected to occur also in on-site interacting Hubbard models where the Fermi velocities are decreased by
the interactions [51–55]. In figure 3, as the magnetic field becomes stronger, |M(V = 0.50t)| becomes even
larger than |M(V = 0)| within the present model calculation. This behavior is related to the subleading
terms in εfit(B) and it seems to be a non-universal, model-dependent property at least in figure 3. This point
will also be revisited later.

When the interaction becomes stronger V � Vc, the B-dependence of the energy density ε gets weaker,
which means that the orbital magnetic moment M is simply suppressed by the interaction V, as seen in
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Figure 3. The orbital diamagnetic moment where the parameters are same as in figure 2. The symbols are forward
differentiation of the calculated data, while the solid curves are analytic differentiation of εfit(B).

figure 3. By increasing the interaction, the magnetization M decreases monotonically with the qualitative
change from M(V � Vc, B) ∼

√
B to M(V > Vc, B) ∼ B. We see that M ∼ B indeed holds in the direct

numerical differentiation of the discrete data and they agree well with the fitting result. As the interaction
increases further, V →∞, the Dirac mass becomes larger and finally the orbital magnetization approaches
zero, M → 0.

3.2. Scaling analysis
To elucidate universal aspects of the diamagnetism in the present Dirac system whose criticality belongs to
the chiral Ising universality class, we now introduce a scaling ansatz for the singular part of the ground state
energy density in the thermodynamic limit Ly →∞,

εsing(g, l−1
B ) = b−Dεsing(byg g, bl−1

B ), (4)

where g is the reduced interaction g = (V − Vc)/Vc [49, 65–67]. The scaling dimension of g is yg = 1/ν
with the correlation length exponent ξ ∼ |g|−ν , and the dimensionality is D = 2 + z = 3 with the
dynamical critical exponent z = 1 for the present Lorentz symmetric criticality. This scaling ansatz can
describe the critical behaviors around the QCP as a function of B, which belongs to the chiral Ising
universality class with four component Dirac fermions in the present case. The proposed scaling ansatz is
formally similar to the conventional finite size scaling ansatz for the isotropic system size L in absence of the
magnetic field, εsing(g, L−1) = b−Dεsing(byg g, bL−1). These two ansatzes are related through the energy
density at non-zero l−1

B , L−1: we have the ansatz equation (4) for lB 
 L →∞, while the conventional one is
obtained for lB →∞ � L. In the previous study on the same model equation (1) [49], we have shown that
the scaling ansatz similar to equation (4) indeed holds and obtained the critical exponents ν = 0.80(2),
β = 0.54(3), and the critical interaction strength Vc = 1.30(2)t, where β is the CDW order parameter
exponent MCDW ∼ gβ for g � 0. These values are consistent with those obtained in other studies at zero
magnetic field [36–43]. In the present study, we simply use these previous results and examine quantum
criticality of the orbital magnetization.

From the scaling ansatz equation (4) with b = lB, the total ground state energy density is regarded as a

function of the single variable gl1/νB with the trivial l−D
B factor,

ε(g, l−1
B ) = ε0(g) +

Φ(gl1/νB )

lDB
(1 + cl−ω

B ) + · · · . (5)

We have included a correction to scaling to improve the scaling description, and similar corrections with
respect to the system size L have been often used in numerical calculations [38], although physical origin of
the introduced corrections may not be so clear in general. In this study, we regard the correction to scaling
as a working ansatz to evaluate large lB behaviors in a systematic way. The scaling function Φ(x) is universal
in the sense that it is determined only by the universality class, and it should be independent of boundary
conditions of the system since equation (5) is the energy density in the thermodynamic limit. This is in
sharp contrast to the conventional finite size corrections which depends on boundary conditions. Note that
the universal function Φ(x) behaves as Φ(x 
 −1) ∼ const. corresponding to ε− ε0 ∼ l−3

B in the Dirac
semimetal phase for g < 0, while Φ(x � 1) ∼ x−ν corresponding to ε− ε0 ∼ l−4

B in the CDW phase for
g > 0. Around the QCP, Φ(x) should be analytic in x since there would be no phase transitions for any
nonzero l−1

B , and Φ(0) at g = 0 may contain some useful information about the criticality as will be
discussed later.

To show a scaling plot of ε(g, l−1
B ), we use ε0(g) = a0(g) from equation (2) which are robust to details of

the fitting. Then, the calculated ε collapse onto a single curve as shown in figure 4 with the critical exponent
ν = 0.80 and critical interaction Vc = 1.30t [49]. Here, the interaction range is relatively wide,
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Figure 4. The scaling plot of the ground state energy density ε(g, l−1
B ) for Ly = 6 (squares) and Ly = 10 (circles) with the fitting

function Φfit(gl1/ν
B ) (black solid curve). The interaction is V = 0.50t – 2.0t and the magnetic length is lB 
 3.2lB0 − 7.1lB0 .

Figure 5. The scaling plot of the orbital magnetization lBM as a function of x = gl1/ν
B . The solid curve is calculated from the

fitting function Φfit(x). The symbols are calculated directly from the numerical data for Ly = 6 (squares) and Ly = 10 (circles)
with forward differentiation.

V = 0.50t – 2.0t, and the magnetic length is lB 
 3.2lB0 − 7.1lB0 measured in unit of lB0 = 1/
√

2π. The

overall behavior of Φdata(gl1/νB ) ≡ (ε− ε0)l3B/(1 + cl−ω
B ) is consistent with the above mentioned general

expectation. Based on this observation, we introduce the following fitting function as a working ansatz,

Φfit(x) = α0 + α1 tanh[α2(x − α3)] +
α4

[(x − α5)2 + α6]ν/2
, (6)

where α0 = −α1 and α j are parameters to be determined from numerical fitting with the calculated data
(see appendix B for details). The solid curve in figure 4 is the fitting function Φfit(x) and it well agrees with
the data [variance of residuals χ2 = O(10−3)].

Once the scaling function has been obtained, we can find the universal scaling of the orbital
magnetization M = −∂ε/∂B = (1/2l3B)∂(Φl−3

B )/∂lB with suppressing the non-universal correction term
near the QCP for sufficiently large lB,

lBM =
1

2

(
gl1/νB

ν
Φ′(gl1/νB ) − DΦ(gl1/νB )

)
. (7)

This equation clearly means that the orbital magnetization in the form M(gl1/νB ) ≡ lBM(V , B) is a universal

function of gl1/νB characteristic of the associated quantum criticality, namely, the N = 4 chiral Ising
universality class in D = (2 + 1)-dimensions. We show M obtained from Φfit in figure 5. For a comparison,
we also show the results calculated with forward differentiation of the numerical data. Although the
numerical differentiation of our data is less accurate due to its discreteness, overall behaviors are in
agreement with the one obtained from the analytic differentiation of Φfit(x). As explained above, the scaling
function behaves as Φ(x 
 −1) ∼ const and therefore we have M ∼ −l−1

B ∼ −
√

B in the Dirac semimetal

phase. Similarly, Φ(x � 1) ∼ x−ν implies lBM ∼ −(gl1/νB )−ν ∝ −l−1
B , which means M ∼ −B in the CDW

phase as expected. At the QCP, the magnetization is M = −(3/2)Φ(0)
√

B, where the amplitude is expected
to be universal as will be discussed in the next section.

Now we revisit M(V, B) as a function of V and B with using the scaling function, M(V , B) =

l−1
B M(gl1/νB ). Although M(V, B) has already been shown in figure 3, there were non-universal finite lB

corrections and such corrections can be removed with use of M(x). Here, we simply assume that M(x) is

applicable for all −∞ < x < ∞, although it would be more reliable for a small x = (V/Vc − 1)l1/νB region.
Then, the following discussions can elucidate universal aspects of the orbital magnetization M which are
not so clear in figure 3. Note that the discussion is indeed valid at least for the parameter region
V = 0.50t – 2.0t, B = 0.02B0 – 0.1B0 for which the numerical calculations have been performed. We show

6
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Figure 6. (a) The orbital magnetization calculated as M(V , B) = l−1
B M(gl1/ν

B ) in the V–B plane and (b) M as a function of V
normalized by M0 = M(V = 0, B) for several values of B. The QCP is located at Vc = 1.30t. The contour curves in (a) are at
M = −0.01 to − 0.06 with the uniform interval 0.01.

M(V , B) = l−1
B M(gl1/νB ) in figure 6. Since the scaling function M has three distinct regimes, the

magnetization M in the V–B plane shows corresponding behaviors respectively for gl1/νB 
 −1 (‘Dirac

semimetal regime’), |gl1/νB | 
 1 (‘quantum critical regime’), and gl1/νB � 1 (‘CDW regime’).
In the Dirac semimetal regime corresponding to the left-bottom region in the V–B plane of figure 6(a),

the diamagnetism is highly robust to the interaction. For example at a small magnetic field, B/B0 = 0.01,
the orbital magnetization is robust up to the interaction V/t 
 1.0 and then sharply drops in the quantum
critical regime around the QCP, Vc = 1.30t, as seen in figure 6(b). Such a behavior is commonly seen for
other small values of B and M(V) as a function of V gets smeared for larger values of B. In addition, by
looking at the magnetization M closely, one can see that M is slightly enhanced by the interaction V at small
magnetic fields, and it is free from non-universal (model dependent) finite size corrections in contrast to
figure 3. On the other hand, in the CDW regime, M is strongly suppressed by the interaction. The crossover

lines separating the different regimes are roughly given by |gl1/νB | ∼ 1 or equivalently ξ 
 lB, namely,
|V − Vc|ν ∼

√
B.

We point out that the present argument is based on the scaling ansatz, and therefore the resulting robust
and slightly enhanced orbital magnetization in presence of the interaction would not be limited to the
simplest t–V model on the π-flux square lattice. Indeed, the mechanism for the robust diamagnetism in the
present t–V model is quite simple and it would be basically applicable to other Dirac systems as well; if the

scaling function M(x) is valid for all −∞ < x = gl1/νb < ∞, it automatically means that
limB→0 M(V < Vc, B)/M(0, B) = M(−∞)/M(−∞) = 1 at a small magnetic field in the Dirac semimetal
regime. Similarly, limB→0 M(V > Vc, B)/M(0, B) = M(+∞)/M(−∞) = 0 in the CDW regime. Therefore,
there are plateaus in the normalized magnetization at small magnetic fields if the scaling region is wide
enough, which may be somewhat similar to the Binder ratio in a spin model. This gives an alternative
understanding of the robust diamagnetism which was qualitatively attributed to the non-trivial competition
between the Fermi velocity renormalization and magnetic catalysis. Although the scaling region is model
dependent, we can expect that the diamagnetism is robust to the dominant interaction even if other small
interactions are added such as next nearest neighbor interactions because the scaling region would change
smoothly with the perturbations. Besides, our argument based on the scaling analysis would be applicable
also to other lattices for Dirac fermions such as the honeycomb lattice. It is an interesting future problem to
study effects of interactions other than the present V-term and Dirac fermions on the honeycomb lattice.
Extensions of the present study to other models such as spinful Hubbard models where the Fermi velocity
decreases with the on-site interaction are also a future issue [51–54].

4. Discussion and summary

We have examined the orbital diamagnetism as a finite size effect of the magnetic length. Based on this
observation, we discuss an analogy between the diamagnetism and a seemingly unrelated phenomena, the
Casimir effect in section 4 1. Finally, a summary is given in section 4 2.

4.1. Analogy to casimir effect
As mentioned before, the scaling behavior equation (5) is seemingly similar to the conventional finite
system size scaling at zero magnetic field, ε(g, L−1) = ε0(g) + Φ̃(gL1/ν)/LD + · · · . The leading finite size
correction Φ̃(0)/LD is called the Casimir energy density in field theories and contains universal information
of the criticality. In D = 1 + 1 dimensions, the Casimir amplitude is written as Φ̃(0) ∼ cv with a boundary
condition dependent coefficient, where v is the speed of light (velocity of excitations) and c is the central
charge of the underlying conformal field theory [68–70]. Generalizations to higher dimensional systems
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Figure 7. The ground state energy density at V = Vc without a magnetic field, ε(g = 0, l−1
B = 0, L−1

y ), for system sizes Ly =
6, 10, 14 with the periodic boundary condition for y-direction. The qualitative behavior is assumed to be ε− ε0 ∼ 1/L3

y , as
indicated by the solid line.

have been first discussed for a cylinderical space–time geometry [68] and also recently examined in torus
and infinite systems [62, 71, 72]. It was proposed that the Casimir amplitude in a (2 + 1)-dimensional torus
system is decomposed as Φ̃torus(0) = Ctorusv, where Ctorus contains some universal information of the
underlying field theory. For a comparison, we also calculate the Casimir energy density in our model as
shown in figure 7, where the ground state energy density is assumed to behave as ε(g = 0, l−1

B = 0, L−1
y ) =

ε0(0) + Φ̃iDMRG(0)/LD
y + · · · , as in other Lorentz symmetric critical systems [62, 71, 72]. The amplitude is

found to be negative Φ̃iDMRG(0) < 0 in contrast to Φ(0) > 0 in equation (5). Within infinite projected
entangled pair states (iPEPS) calculations, the correlation length ξD due to a finite bond dimension can be a
new length cut-off scale in a thermodynamically large system and will play a similar role to that of the
system size L, leading to ε = ε0 + CiPEPSv/ξ

3
D + · · · at g = 0 [72].

We have demonstrated in this study that, in presence of a magnetic field, the leading term Φ(0)/l3B in a
thermodynamically large system can be regarded as a magnetic analogue of the conventional Casimir energy
in a finite size system, and may be called magnetic Casimir energy. Note that similarity between conventional
Casimir energy and magnetic Casimir energy is already implied in single-particle spectra of the
non-interacting Dirac fermions; ε(L) ∝ vF/L in a finite size system without a magnetic field, and
ε(lB) ∝ vF/lB in an infinite system with a magnetic field. Structures of the single-particle spectrum are
governed by the Lorentz symmetry and the characteristic length scale is either L or lB. These properties are
also common to a correlated Dirac system around a QCP, leading to similar functional forms of the critical
Casimir energies. However, there is an essential difference between them; the conventional Casimir energy is
geometry (boundary condition) dependent, while the magnetic Casimir energy is independent of boundary
conditions since it is the energy in the thermodynamic limit. Besides, the magnetic Casimir energy can be
controlled by an external magnetic field, which is a difference from the Casimir energy in iPEPS for an
infinite system that is a purely theoretical quantity.

It is known that the Casimir energy L2Φ̃(gL1/ν)/LD leads to the critical Casimir force
fL = −∂E/∂L, E = L2ε, and related physics has been extensively studied in various systems which exhibit
finite temperature classical phase transitions [73–83]. The universal nature of the classical critical Casimir
force has been experimentally observed for example in a binary liquid mixture in thin film geometry
[74–76]. The quantum critical orbital diamagnetism discussed in this study can be regarded as a magnetic,
quantum analogue of the classical critical Casimir force. Indeed, the magnetization is rewritten as
L2M = −∂E/∂B = −fB/2l3B with fB = −∂E/∂lB, and the ‘effective force’ fB is repulsive for diamagnetism.
This is contrasting to the attractive real space Casimir force in our model (figure 7), corresponding to the
sign difference between Φ(0) and Φ̃iDMRG(0). The repulsiveness of the effective force fB could be compared
with general Casimir forces, where they are usually attractive and repulsive forces are rarely
realized [84, 85].

Interestingly, the critical orbital magnetization M or equivalently the effective force fB could be
measured in experiments by carefully controlling experimental parameters, which may be advantageous
over the formidable challenge for a direct observation of the real space Casimir force in a solid crystal. In a
bulk magnetization measurement, observing the magnetization M is just equivalent to measuring fB, and
one can understand the above analogy in a visible manner. For example, the effective force fB could be
measured by the conventional magnetization measurement with the Faraday balance, where a mechanical
force fz(z) under a macroscopically non-uniform magnetic field B(z) is observed in the typical setup shown
in figure 8(a). The effective force is related with the mechanical force simply as fz = −∂E/∂z = fB · ∂lB/∂z.
Besides, note that the direction of fB is determined by the macroscopic configuration of the magnetic field,
since the energy density ε(lB) of a diamagnetic Dirac system favors a larger lB (a smaller B). If the z-axis
magnetic field varies in the xy-plane in a macroscopic length scale as shown in figure 8(b), the effective
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Figure 8. (a) Schematic picture of the effective Casimir force fB when the z-axis magnetic field B macroscopically depends on the
position z and (b) varies in the xy-plane. If B(z) is decreasing (lB(z) is increasing) with z, the effective force is repulsive fB > 0
(or equivalently, the real force is fz = −∂E/∂z > 0). Similarly, for B(y) decreasing in the y-direction, the effective force will be
fB‖+ ŷ (or f y = −∂E/∂y > 0).

force fB will be parallel to the plane. Such an in-plane force would be more analogous to the critical Casimir
force fL which also acts within the plane, but the system may exhibit very complex behaviors in an
inhomogeneous setup.

4.2. Summary
In summary, we have discussed orbital diamagnetism in correlated Dirac fermions with use of iDMRG for
the t–V lattice model which exhibits the CDW quantum phase transition. The orbital diamagnetism is
robust to the short-range interaction V in the Dirac semimetal regime, while it is suppressed for a strong V
in the CDW regime. The robustness of the diamagnetism to the interaction can be understood as a
consequence of non-trivial competition between the enhanced Fermi velocity and mass generation by the
magnetic catalysis. Furthermore, the scaling analysis implies that the robust orbital diamagnetism would
hold not only in our model but also in other interacting Dirac systems as long as the corresponding scaling
regions are wide enough. The analogy between the quantum critical diamagnetism and critical Casimir
effect was discussed. To our best knowledge, this is a first unbiased numerical calculation of the orbital
diamagnetism in strongly interacting fermions other than one-dimensional systems [86–90], and it could
provide a basis for further theoretical developments in this field.
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Appendix A. Extrapolation of bond dimension

All the calculation results in the main text are obtained by the extrapolation to χ→∞ from the finite bond
dimensions up to χ = 1600. For example, we show in figure 9 the ground state energy density at V = 0.5t
for two different system sizes Ly = 6, 10 obtained by finite χ calculations together with polynomial fitting
curves. We find that the extrapolation works well in the present model as mentioned before, and standard
deviations of the extrapolated ε are less than 0.01% and are smaller than the symbols in figure 9, which is
sufficient for the purpose of the present study. It is confirmed that other extrapolation schemes such as the
linear fitting with respect to the truncation error give consistent results. The χ-extrapolation was used also
for the CDW order parameter in the previous study [49] and is employed in the present study as well,
which enables us to discuss two studies in a coherent manner. We have performed extrapolations as in
figure 9 for all other parameter values, and consider only the extrapolated energy density ε(χ→∞) in our
discussion.
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Figure 9. Extrapolation of the ground state energy density ε for the χ→∞ limit at V = 0.5t. The blue (red) symbols are for
Ly = 6(Ly = 10), and the curves are polynomial fittings. The corresponding magnetic fields for each curve are
B/δB = 0, 1, 2, 3, 4, 5, 6 from the bottom to the top, where δB = 2π/(6 × 20) for Ly = 6, L′

x = 20 and δB = 2π/(10 × 10) for
Ly = 10, L′

x = 10. As marked by a broken circle, at B = 2π/20 = 2π × 6/(6 × 20) = 2π × 5/(10 × 10), the extrapolated
ε(χ→∞) for two system sizes coincide within the error (which is smaller than the symbols). On the other hand, ε(χ→∞) for
Ly = 6, 10 differ at B = 0 because the corresponding magnetic length is lB = ∞ � Ly .

Figure 10. The scaling plot of the ground state energy density ε(g, l−1
B ) at large gl1/ν

B for Ly = 6 (squares) and Ly = 10 (circles).
The solid line represents the qualitative behavior ∼x−ν with ν = 0.80.

Appendix B. Details of fitting with equation (6)

The numerically obtained scaling function Φdata(·) is consistent with the limiting behaviors of the ground
state energy density at x →±∞. For example, Φdata(x � 1) ∼ x−ν can indeed be confirmed in figure 10.
We also find that Φdata(x 
 −1) is roughly Φdata(x) − Φdata(−∞) ∼ |x|−ν (not shown), which leads to a
natural behavior, ε = ε0 + const × l−3

B + const × l−4
B + · · · in the Dirac semimetal phase. These

observations enable us to evaluate the universal scaling function Φ(·) in equation (5) by using simple
known functions and to introduce the fitting function Φfit(·) in equation (6). We note that it is not trivial to

have a successful scaling plot over a wide range of x = gl1/νB where Φ(x) does not have a simple Taylor
expansion with a small order in x. However, such a non-trivial scaling has been often examined in classical
statistical models for the Casimir effect [73–83]. The successful description of scaling behaviors of the
ground state energy density consequently suggests that the scaling ansatz equation (5) is indeed correct,
which is a priori non-trivial. Together with the previous scaling argument for the CDW order parameter
[49], the present study supports the magnetic length scaling ansatz for which there are only few
studies [65–67].
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