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Abstract

We exploit the parquet formalism to derive exact flow equations for the two-particle-reducible four-point
vertices, the self-energy, and typical response functions, circumventing the reliance on higher-point
vertices. This includes a concise, algebraic derivation of the multiloop flow equations, which have
previously been obtained by diagrammatic considerations. Integrating the multiloop flow for a given input
of the totally irreducible vertex is equivalent to solving the parquet equations with that input. Hence, one
can tune systems from solvable limits to complicated situations by variation of one-particle parameters,
staying at the fully self-consistent solution of the parquet equations throughout the flow. Furthermore, we
use the resulting differential form of the Schwinger—Dyson equation for the self-energy to demonstrate
one-particle conservation of the parquet approximation and to construct a conserving two-particle vertex
via functional differentiation of the parquet self-energy. Our analysis gives a unified picture of the various
many-body relations and exact renormalization group equations.

1. Introduction

The many-body problem of nonrelativistic quantum-field theory is equipped with a well-known set of exact
equations for its correlation functions [1, 2]. If these self-consistent many-body relations are expressed in their
energy-momentum representation, they interrelate the different correlation functions between all energy scales,
often involving integrations over all energy-momenta. However, a typical feature of interacting quantum many-
body systems is that their relevant energy scales span several orders of magnitude. Conventional perturbative
approaches or approaches that directly work with the self-consistent many-body relations treat all energy scales
at once—they are therefore prone to inaccuracies and often plagued by infrared divergences. A very successful
approach to such systems is instead given by the renormalization group (RG) technique which treats energy
scales successively, starting from high ones and progressing towards lower ones [3].

The simplest realization of such a RG scheme considers the renormalization of effective couplings in analogy to
Anderson’s poor man’s scaling [4]. There, the successive treatment of high-energy degrees of freedom is encoded in
the evolution of running coupling constants. Since then, quantum-field-theoretical RG techniques have seen great
development. A widely used, modern formulation is given by the functional RG (fRG), which allows one to study
the flow of all coupling ‘constants’ in their full functional dependence [5, 6]. The respective couplings are nothing
but the (field-theoretical) vertex functions; hence, the fRG can be directly applied to microscopic models.

The fRG flow is based on an exact functional flow equation for the generating functional of the (one-particle-
irreducible) vertex functions [7]. If this flow equation is expanded in terms of the vertices, one obtains an infinite
hierarchy of flow equations, where, in order to compute the flow of an n-point vertex, knowledge about the
other vertices up to the n + 2-point vertex is required. The obvious way of truncating the hierarchy by
disregarding higher-point vertices has led to a variety of successful applications of the fRG. However, one often
wants to extend the usage of fRG beyond the validity of this approximation, and, in cutting-edge algorithmic
development, this form of truncation may indeed be an exceedingly severe approximation.
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In fact, considering a system of, say, interacting electrons, possibly subject to external fields, one may ask why
itis necessary to include six- and higher-point vertices, i.e. effective interactions between three and more
particles, if one is ultimately interested in one- and two-particle properties of the system. Although the fRG
hierarchy of flow equations and also the hierarchy of Schwinger—Dyson equations (SDEs, or equations of
motion) [8] interrelate all n-point vertices, the fundamental interaction is only of the (one- and) two-particle
type; thus, it should suffice to work on the one- and two-particle level. Fortunately, a many-body framework that
provides a complete description on the one- and two-particle level is available; it is the parquet formalism [2, 9].

The main idea of the approach presented in this paper is to apply the RG point of view neither to the
generating functional of vertices [7] nor to the hierarchy of SDEs [8] but to the self-consistent many-body
relations of the parquet formalism. Exploiting the organizational structure of the parquet formalism allows us to
circumvent the inclusion of higher-point vertices and to freely navigate between different two-particle channels.
Inspired by the fRG framework, we induce an internal scale dependence by using a scale-dependent propagator
G" that suppresses low-energy degrees of freedom and recovers the original theory at a final value Az Ttshould be
noted that this differs in technical aspects from more traditional RG schemes [3, 10], which, instead of solely
using a scale-dependent propagator, restrict all involved energy-momenta to decreasing energy-momentum
shells (often referred to as ‘mode elimination’). Here, we simply substitute G — G” in the well known many-
body relations and study the behavior of the solution to these equations upon varying A.

As aresult, we derive exact flow equations for the two-particle-reducible four-point vertices, the self-energy,
and response functions. This provides a concise, algebraic derivation of the multiloop fRG (mfRG) flow
equations, which have previously been obtained using diagrammatic arguments [ 11-13]. Our analysis also
reveals how one can perform such multiloop flows beyond the parquet approximation (PA), thus including
higher-order expressions for the totally irreducible vertex. Moreover, we establish an intimate connection
between the functional derivative of the self-energy and the fRG flow equation for the self-energy: the latter
constitutes an integration of the former along a specific path in the space of theories.

On aslightly different note, we use our approach to address fundamental questions of (traditional) parquet
theory (i.e. without an explicit RG treatment): on the one hand, we demonstrate that the parquet self-energy can
be obtained from the SDE using either of two possible orderings of the bare and full vertex. According to Baym
and Kadanoff[14], it then follows that the PA fulfills one-particle conservation laws. On the other hand, we give
an explicit construction to obtain a new, conserving vertex from the parquet self-energy, equivalent to taking the
functional derivative. This construction not only allows one to quantify the degree to which the PA violates two-
particle conservation laws. It can also be used to modify the PA, which fulfills the SDE but violates two-particle
conservation, to obtain a fully conserving solution, albeit violating the SDE. As we show in the appendix, a
fulfillment of both the SDE and the functional-derivative relation necessarily amounts to the exact solution of
the many-body problem, in agreement with a result by Smith [15].

The paper is structured as follows. In section 2, we first focus (as is typical for RG approaches) on the effective
interactions: we derive flow equations for the two-particle-reducible four-point vertices based on the parquet
formalism, assuming the one-particle propagator to be given. Then, in section 3, we complement the flow of the
four-point vertex by the flow of the self-energy, considering the various relations at hand. In section 4, we use
our approach to discuss conservation properties of the PA. Finally, in section 5, we derive (dependent) flow
equations for response functions, i.e. three-point vertices and suceptibilities, used to study collective excitations.
In section 6, we summarize our results.

2. Derivation of the vertex flow

2.1. Preliminaries
We consider a general theory of interacting fermions, defined by the action

_ _ 1 _
S = —Z Cx'[(Go) MNyrxex — 7 ZFO;x’,y’;xyCX’C/C)’Cx’ @

’ ! !
x'\x X5HXY5)

with a bare propagator G, and a bare four-point vertex I', which is antisymmetric in its first and last two
arguments. The index x denotes all quantum numbers of the Grassmann field c,. Correlation functions of fields,
corresponding to time-ordered expectation values of operators, are given by the functional integral

(Cyy ++ Cx) = %fD[E]'D[c] Cxy *o Ex”e_s, Q)

where Z ensures normalization, such that (1) = 1. Two-point correlation functions are represented by the full
propagator G, v = — (¢, C,'); four-point correlation functions can be expressed via the full (one-particle-
irreducible) four-point vertex I':
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Figure 1. The Bethe—Salpeter equations for the channels r = g, p, tare solved in an RG approach by introducing a scale (A)
dependence to the propagators connecting the vertices. Consequently, +,, I', and I, inherit a scale dependence while the totally
irreducible vertex, R, remains as given input. (See appendix A for details on the diagrammatic notation.) As prime example for the
scale dependence, one can multiply the frequency-dependent propagator by a step function, G*w) = O(Jw| — A)G(w), such that
the many-body relations are trivially solved at A; = oc and reproduce the desired solution at Ay = 0.

(€ €iCuiCsl) = Guxix! Gty = Guixi Gl + Guly Gy Uyt iyt 1 Gyl Gyl ©)
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The notation given so far is identical to the one in [12]; all formulae further needed in this paper are defined
in appendix A. In the following derivation of flow equations, we use a compact notation of contractions and
need not write quantum numbers (such as x, x/, etc) explicitly.

2.2. Parquet equations for the four-point vertex

The fRG flow equation for the four-point vertex, I'™® = T, contains the six-point vertex, '®, which poses great
difficulty for a numerical treatment. Similarly, the SDE (equation of motion) for I" contains I'® and therefore is
likewise impractical. To circumvent the calculation of I'®, we revert to the parquet formalism [2, 9], which
provides self-consistent equations for the two-particle-reducible contributions to the four-point vertex I" but
assumes as input a given, totally irreducible four-point vertex R. In a diagrammatic expansion, R is given by the
bare vertex, Iy, with corrections starting at fourth order. The famous parquet approximation [16—18] (see

section 4) consists of using R = I'y and allows one to sum up all leading logarithmic contributions in
logarithmically divergent perturbation theories [9, 19]. Importantly, however, the parquet equations can be used
more generally as an exact classification of all diagrams of the four-point vertex.

In the parquet formalism, one decomposes the full four-point vertex, I, into the totally irreducible vertex, R,
and the three two-particle-reducible vertices v,, € {a, p, t}* . Diagrams belonging to +, are reducible in channel
r,1.e. they can be separated into two parts by cutting two antiparallel, parallel, or fransverse antiparallel lines,
respectively. Diagrams that cannot be separated in this way belong to R. (For exemplary diagrams, see figure A1
in appendix A.) While the v, are subject to further equations, this set of coupled equations closes only for a fixed
choice of R.

Let us assume a given expression for the totally irreducible vertex, R. Furthermore, we will for now assume
the one-particle propagator, G, to be given; computation of G via the self-energy will be discussed later. The
parquet equations, involving the two-particle-reducible vertices, 7,, and two-particle-irreducible vertices, I, read

P:R+27r: Ir:FffYr:R+’YF: (40)

v =1Ioll, oTl. (4b)

For given R, these equations must be solved self-consistently to obtain the appropriate reducible vertices, +,, that
complement the full vertex, I'. In equation (4a), we use the notation 7 for the complementary channel of a given
channel r, such that v. = >, ... The Bethe-Salpeter equation (BSE) (4b) describes two vertices, I, and I', connected
by abubble, I1,, of two dressed propagators in channel r (see also figure 1). This bubble of vertices can be expressed as
amatrix multiplication (given a suitable parametrization depending on the channel r, see appendix A), as indicated by
the symbol o attached to I1,. Note that IT, and II, implicitly contain a factor of 1 /2 and (—1), respectively.

In the following, we list relations that can be easily deduced from the parquet equations (4) and will be used
repeatedly in the derivations of flow equations. The combination of equations (4a) and (4b) directly yields
I’ = I, + I, 01I, o I' (for all channels r). Exploiting the multiplicative structure, we can isolate I" on the lhs to
obtain the inverted BSE,

T=L+Loll,ol & TI=(-1ILoll)y'olI. (5)

A further straightforward manipulation yields an extended BSE,

* Our nomenclature follows the seminal application of the parquet equations to the x-ray-edge singularity by Roulet et al [9]. While we use I,
R, 7, and I, for the full, totally irreducible, two-particle-reducible, and -irreducible vertices, respectively, another common choice [20-22] is
givenby F, A, ®,, T, respectively. Similarly, a common notation [20-22] for the channels a, p, tis ph, pp, ph, referring to the (longitudinal)
particle-hole, the particle-particle, and the transverse (or vertical) particle-hole channel, respectively. One also finds the labels x, p, d in the
literature [23], referring to the so-called exchange, pairing, and direct channel, respectively.
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Figure 2. (a) Exact mfRG flow equation for the reducible vertex -, involving the differentiated propagator, G, (line with two vertical
dashes) and the differentiated irreducible vertex given by I, = Yy = - (as R = 0in our construction). (b) Exact fRG flow
equation for v, involving the single-scale propagator, S = O\Gjs;__,,» (line with one vertical dash) and the six-point vertex, whose
contribution is (for conceptual purposes) reduced to the part reducible in the a channel via the projector 7,.

1+Toll, =1+ —-Loll)'o,oll, =1+ 1)=(1—1IoIl) L (6)

Using the inverted BSE (5), one directly sees (by isolating y,) that the order of the vertices in the BSE (4b) is
irrelevant:

’Vr:IrOHrOP:IrOHrO(Ir+7r) = ’Yr:(l_IrOHr)iloerHrOIr:POHrOIr- (7)

2.3. Flow of the four-point vertex
The central aspect of our RG treatment is incorporated by attaching a scale (A) dependence to the propagator,
G — G", appearing in the self-consistent many-body relations. The physical picture is that A separates high-
and low-energy degrees of freedom, and by using G* we allow for successive renormalization of the low-energy
(<A) theory by high-energy (>A) degrees of freedom as A is decreased. However, one can also simply consider
A as some additional dependence in the propagators connecting the vertices in the BSEs: G — G*, I, — IT%
(cffigure 1). Hence, the reducible vertices 'yf—and consequently I'* and I*— will inherit a scale (A) dependence,
obtained from the requirement that the parquet relations be fulfilled for each value of A, while R remains as given
input.

The scale dependence is auxiliary in the sense that we are ultimately interested in the fully renormalized
theory: we are interested in 'yi\f = ~, where (at the final scale) G = G. Suppose we know the vertices at the

initial scale, i.e. we can solve the BSEs using G:. Then, we can obtain 'yff by solving a differential equation

specified by the initial condition together with the flow awf = 7/‘ , which is induced by the scale dependence of
G" in the BSEs. We remark that it is natural to exclude the totally irreducible vertex R from the renormalization
flow, as it constitutes precisely the part of the vertex that cannot be constructed iteratively and therefore does not
have a flow equation that allows for an efficient (i.e. iterative one-loop) calculation.

2.3.1. Flow equation
To find the scale dependence of the two-particle-reducible vertices, +,, we start by differentiating the BSEs wrt A
(suppressing the A dependence to lighten the notation) according to the product rule and decomposing the full
vertex via the parquet equation (4a):
Ap=Loll,ol' + LoIll,ol + ,oIl,oT
:IrOHr°F+jr°Hr°F+Ir°Hr°(I.r+;Yr)- (8

Similar to the manipulations in equation (7), we bring %, to the Ihs and subsequently multiply by (1 — I, o II,)"!
from the left. According to the inverted BSE (5), we get

Wr:FOHrOP'i_(l_Irol_—[r)71OerHr°P+F°Hr°jr’ )]
and, resolving the remaining inverse by the extended BSE (6), we find

f'yr:I‘oH,ol_‘+f,oHroF+FOHrofroH,oF+FoHrof,. (10)

L) (@) (©) L R)
Y, v, v, v,

r r r r

The algebraic derivation of this exact flow equation, as the differential form of the BSE (4b), is our first main
result. Itis depicted diagrammatically in figure 2(a) (exemplified by the a channel) and contrasted with the
corresponding standard fRG flow equation (figure 2(b)). It describes the flow of the reducible vertices, 7,; the
totally irreducible vertex, R, does not have an efficient flow equation and remains as input. Since R = 0, we have
I, = ¥,/ = ¥,,and equation (10) constitutes a closed, coupled set of differential equations for all reducible
vertices 7,. The natural way to solve these equations is to start by computing the independent, one-loop part, "yr(l),
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for each channel, and then iteratively insert the results into the left, right, and center parts (W,(L)» V'T(R), 'r(c),
respectively) of the various channels. If this is organized by the number of loops (connecting full vertices), we
precisely recover the mfRG vertex flow which has been derived diagrammatically in [11, 12] (see figure 5 of [12]).
It is worth mentioning that the numerical effort of this iterative mfRG flow grows only linearly with the

number of loops that are kept (on average) as compared to the standard (truncated) fRG flow [11-13]. First
implementations [11, 13] of this iterative scheme for moderate interaction strengths have found convergence for
anumber of loops <8. In general, we expect that with increasing interacting strength the convergence with loop
order will become slower—and possibly not occur at all for sufficiently strong interactions—in a way that will
depend on the model at hand.

From the above derivation, it is clear that, if the scale dependence of G is chosen such that we are initially able
to solve the BSEs (using G*) and finally revert to the original theory (G*/ = G), then solving the mfRG vertex
flow (10) is equivalent to solving the BSEs (4b). An initial solution is always available by using G* = 0, but can
also be chosen differently, if desired (see below). In the same way that any solution of the BSEs depends on a
certain choice of R, so do results of mfRG. However, the multiloop flow equation requires only the initial
condition of the full vertex TN = R + ¥, yﬁ\" and not of the individual two-particle-reducible or -irreducible
vertices; the decomposition into +, is only performed on the differential level. Nevertheless, the degree of
approximation in our approach is encoded in the underlying expression for R, which can range from the
simplest approximation, R = Iy, to the exact object, R°.

2.3.2. Examples

Let us give some examples for possible flows which are specified by the input R and the choice of G* initializing
the progression towards G = G.Recall that, in this section, we focus on the two-particle level, i.e. we study the
influence of varying the full propagator, GA, on the vertex, . In practice, the variation of G will be realized by
tuning the bare propagator, G¢*, and complementing the vertex flow with a self-energy flow to compute G* (see
section 3).

(i) The BSEs at the initial scale are trivially solved if G* = 0: Due to II* = 0, the corresponding initial
condition for the reducible vertices is ’yfl = 0. Aswe introduce the scale dependence only for the
propagators connecting the vertices in the BSEs but leave the totally irreducible vertex R—the input to the
parquet equations—unchanged, the initial condition for the full vertex is given by ' = R °. Hence, the
mfRG flow generates all two-particle-reducible diagrams given the irreducible building block R; the special
case of R = I yields all diagrams of the PA[11, 12].

(if) The mfRG flow (10) is an exact flow equation for the two-particle-reducible vertices and thus gives us full
control over the vertices corresponding to given propagators G. Immediate consequences are that (a) for
given boundary conditions GY, G, we are completely free to choose any specific A dependence in G*—the
results of the flow do not depend on this choice; and (b) that we can perform loops in theory space, going
from G to G = G%i without any loss of information. Conceptually, this underlines the power of the
mfRG flow; practically, it can also be used as a consistency check for a numerical implementation (which
might employ approximate parametrizations of the vertex functions, etc). We emphasize that, while both
properties directly follow from the given derivation based on the BSEs, they are violated in the widely used
one-loop form (§, ~ 7’:1)) of the truncated fRG flow.

Aloop in theory space could for instance be realized via G* = f (A)G" with f(A;) = f (Ap) = LIfwe
already have the result of the PA (R = T') in the form of G* = G"* and I'i = TPA, the vertex flow
naturally gives the corresponding parquet vertex for all values of A (as R = Iy throughout) and finally
returns to the original result. If we assume (from a conceptual point of view) we had the exact solution of the
many-body problem in the form of G* = G, I'i = I'*%, then such a vertex flow would return to the
exact result, too. However, as the totally irreducible vertex remains fixed, the results at intermediate A do
not correspond to the exact solution for that GM. Instead, at each value of A, the reducible vertices yrA solve

the BSEs with propagators G* and Re* = RA, At Ay the BSEs with G = G*and R* reproduce 7. and
thus T = R + 37 7.

(iii) As a highly correlated and, yet, numerically tractable initial condition [24], one can choose the solution of
dynamical mean-field theory (DMFT) [25] and use the mfRG flow to generate nonlocal correlations
[20, 26], thus extending the DMF’RG idea [26] to multiloop DMF*RG [11, 12] (or DOIMF)*RG [27]). A
related approach that gives diagrammatic, nonlocal corrections to DMFT is given by the dynamical vertex

> Whereas the initial condition T = R at G is natural in the parquet approximation R = I'y, it might seem counter-intuitive for other
cases, when thinking of the totally irreducible vertex, R, being itself composed of diagrams containing propagators. In this way of thinking,
we have to treat propagators in R differently from those propagators that connect the building block R in the two-particle-reducible diagrams
of the y,. This special treatment is necessary as R does not have an efficient flow equation.
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approximation (DI'A) [28—-30]. This approach directly employs the parquet equations, using as input
RPMET the totally irreducible vertex from the local DMFT solution [21]. If we used the same initial
propagator G = 0 as in example (i) above, we would start the vertex flow from I'Ai = RPMFT in perfect
analogy to the DI"A algorithm. However, at this point we can leverage the flexibility of the RG framework
and perform a continuous deformation starting directly from the full DMFT vertex: indeed, if we use

GN = GPMFT (as opposed to G = 0), the vertex flow is not initiated by RP°MFT, but from the actual, full
vertex 'PMFT [26]. (Recall that the decomposition into two-particle channels in equation (10) occurs only
for differentiated vertices 5, which are ultimately combined to give I" = 3, 4.) Although the results are
(in principle) independent of the specific A dependence, the choice G = GPMFT with ['Ai = ['PMFT hag
the decisive numerical advantage that it avoids any explicit appearance of RPMFT, The corresponding
multiloop flow is hence not affected by the (likely) unphysical divergences of the totally irreducible vertex,
which have been observed in strongly correlated systems [31-35], and can thus be used to analyze such
systems in wider regimes of the phase diagram. The combination of vertex and self-energy flow in multiloop
DMF’RG, as used in practice, is further discussed in section 3.1.2 (iv).

So far, we have assumed the dressed propagator, G, to be known. However, as this is in general not the case,
we now combine equation (10) with a self-energy flow, >4 to generate G" during the flow. Via the Dyson
equation, we then have (G*)~! = (G(f\)*1 — Y inaflow controlled by the scale-dependent bare
propagator, G(f\.

3. Derivation of the self-energy flow

First, let us mention that the straightforward derivation of the vertex flow was based on the parquet equations
(for given input R). These merely represent a classification of diagrams, reducing the need for an explicit input
expression to the most fundamental building block. We did not use equations which provide a construction of
the four-point vertex from higher-point vertices, such as the SDE involving I'®), or a functional derivative
connecting four- and six-point vertices.

By contrast, we next want to construct the self-energy, 3, from the four-point vertex, I'. For this purpose,
three equations are available: (i) the SDE relating & to I, typically used in the parquet formalism [2], (ii) a
functional derivative between self-energy and two-particle-irreducible vertex, known from Hedin’s equations
[1]and ®-derivable approaches [36, 37], and (iii) the fRG flow equation for X [5]. While all these equations are
exact, their outcomes might differ when inserting an approximate vertex. In section 3.2, we show that the fRG
flow for ¥ can be easily derived from the functional derivative (as a necessary condition). However, as we show in
appendix B, the SDE and the functional derivative are complementary in the sense that any solution that fulfills
both equations must be the exact solution. It is therefore not surprising that it is complicated to relate a self-
energy flow to the SDE for 3. Nevertheless, we will use the SDE to derive a self-energy flow (different from the
standard fRG flow), which is well-suited for the PA and allows us to gain insight into its conservation properties
(see section 4). While this multiloop flow deduced from the SDE indeed proves beneficial in the PA [12], the
general advantages and disadvantages of the different starting points (i) and (ii) are not entirely clear (see also
section 3.1.2).

3.1. Self-energy flow from the SDE

Deriving a flow equation from the SDE of the self-energy is a difficult task since (as already mentioned) SDEs and
differential equations are of fundamentally different nature—for instance, SDEs always contain the bare
interaction whereas differential equations are typically phrased with renormalized objects only. In [8], the SDE
was used to derive the fRG self-energy flow up to terms O[(I")*]; here, we demonstrate agreement up to O [(T')*].
In fact, we derive the mfRG self-energy flow from [12], which includes important terms that would be neglected
if one simply inserts the approximate parquet vertex into the standard fRG self-energy flow equation [12]. The
calculation with the main results given in equations (26) and (30) (see also figure 3) is presented in detail in the
following section 3.1.1 and interpreted in section 3.1.2.

3.1.1. Flow equation
The starting point of our calculation is the Schwinger—Dyson equation for the self-energy (see figure 3(a)):

% = Bsp(p, I, G) = (I + Tyo I, o) - G = —(Ip + 1o I, o I) - G. (11)

Here, we have used bubbles in either the a or the p channel, as well as the contraction of two vertex legs with a
propagator (denoted by I' - G, see appendix A, equation (A5)). As we can freely choose the specific propagator

6
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Figure 3. (a) Schwinger—Dyson equation (SDE) for the self-energy, where the second term contains two equivalent lines connected to
antisymmetric vertices and hence requires a factor of 1/2. One notes that the three propagators in the second summand can be both
viewed as contracting a parallel and antiparallel bubble of the vertices I'y and I'. (b) Multiloop fRG self-energy flow [12], derived from

the SDE in the parquet approximation. The first term, 4, constitutes the standard fRG self-energy flow.

for the final contraction, we can write the SDE with a bubble in either the p or the a channel—the factor of 1/2 is
implicitly contained in II,, and must be explicitly written when using I1,.

The presence of two equivalent lines (i.e. parallel lines connected to (anti)symmetric vertices) in the second
summand of the SDE opens the possibility for further manipulations. For this, let us explicitly denote the
propagators contained in a bubble by I1,,;, ¢,; the standard bubble is then simply given by I, = II,. ;. In the
SDE, we cannot only freely choose the propagator used in the final contraction (equation (12a)), we can also
switch the equivalent lines by crossing two external legs of both vertices, I} — I, I — I (see equation (A3)).
The relations deduced from this contracted crossing operation (see figure 4(a)) are

(3T 0 Mag,c, 0 1) - Gs = (T 0 Ty, 0 1) - G (12a)
= (%f‘l oIls6,6, © 1Aﬂz) -G = (hio 6,6, © 0 - G (12b)

We will use the contracted crossing relations extensively on the relevant vertices, which obey the crossing
symmetries

f =-I, f\0 = Iy, R\ = —R, ’?p = —p "}\/a = /}\/t = —Ya- (13)

Note that the vertices in the particle-hole channels g, t are mapped onto each other upon crossing two external
legs. For this reason, we will often combine contributions from the a and t channel in the following calculations.

The SDE yields a scale-dependent self-energy if we attach a A dependence to every propagator connecting
the vertices in equation (11) and account for the A dependence of the four-point vertex, I, as discussed in
section 2. Inlight of the functional derivative 63 /6G = —I, (see section 3.2 below), we aim at generating the
irreducible vertex I, for which we need the totally irreducible vertex, R, instead of the bare vertex, I'y. Hence, we
define R’ = R — I, and, since equation (11) is linear in T'y, we obtain

Y =YpR, T, G) — Esp(R, T, G). (14)
We now consider the flow of ¥sp(R, I', G) and organize our computation according to (see figures 4(b) and (c))
Y= WhIp(R, I, G) — [-(Roll,o) -Gl + [-(RoIl,0 ) - G] — Tsp(R, T, G). (15)

PN ¥, oA

Here, we have subtracted and added a term such that the first bracket, 3, contains only those terms of the
differentiated SDE in which the derivative is explicitly applied to propagators. The second part, 3J,, accounts for
the differentiated vertex for which we will insert the vertex flow (10). Finally, 335 contains all remaining
contributions proportional to R’. In the PA, onehas R = Iy < R’ = 0; thus, 23 will only be relevant in
calculations that go beyond the PA. In fact, from equation (14), we see that the role of 5 is to cancel the extra
terms that have been added to ¥, + 33, by using Ysp(R, T', G) instead of Xsp (I}, I', G). We begin our
calculations with ;.

Generate I, - G— As already mentioned, we want to single out the two-particle-irreducible vertex I, (since it
constitutes the functional derivative of the self-energy). The first summand in equation (11) (using R instead of
[y with R = 0) is easily differentiated as —R - G.In the remaining part of 3J;, we have three propagators to
differentiate. Two of the resulting terms can be combined to factor out G if we use the contracted crossing
symmetry (12)on RandI™:

=% —R-G=Roys6+ Hpge)ol) -G+ Rollygeol) - G=(Roll,0l) - G+ (Roll,o) - G.
(16)
Next, we collect the termsfor I, = R + v; = R + I, oI, o I' + I, o II,, o I" (see equation (4)) and find
—5 = [R+(RoTl,0T) + (RoTlo)-G=1-G—[(y+ 1ol ol + (r+ 7)o, oI - G.
(17)
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Figure 4. Illustrations for the derivation of the self-energy flow. (a) As stated in equation (12), a bubble of vertices closed with an
additional loop can be viewed as a contracted a or p bubble and can be rewritten by exchanging two of the externallegs (I' — I') of
the vertices (contracted crossing symmetry). Note that equation (12a) is fully encoded in the diagram on the lhs and equation (12b)
in the one on the ;hs. Thus, the individual equations (12a) and (12b) merely represent a redundancy in the algebraic description.

(b) Rewriting of ¥, the part of OyXsp where the derivative is applied to the propagators appearing explicitly in the SDE. The double

dash crossing multiple lines denotes the derivative of the product of propagators, i.e. a sum of terms where each line is differentiated
once. (c) Rewriting of ¥, the part of Oy Xsp containing I".

9

Use differentiated bubbles— The extra terms accompanying I, - G in equation (17) will later be combined
with contributions from >3,. Since >, contains the differentiated vertex, which itself is built from differentiated
bubbles 1I,, we rewrite these contributions in terms of II,. Using the contracted crossing symmetry (12), we find

(Ypolugeol) G=(pollhgeol) G+ (p0lls60) - G=(y,01l,0T) -G, (18a)
(nollggeol) G=(ollygeol) -G, (18b)
[+ 0 Ty o T - G = 2o T oT) - G = (a0 Mg o 1) - G. (180)

This leads to the final expression for ¥, (illustrated in figure 4(b)):
S1=-L -G+ (uoll,oT +9,0l,0T) - G. (19)

Organize vertex derivative— The second contribution to equation (15), ¥,, contains the differentiated
vertex. Inserting the decomposition I' = ", 4, we can combine the contributions from both particle-hole
channels, a and ¢, by applying the contracted crossing symmetry (12) on Rand ;:

—Y, =@RoIl,ol)-G=(Roll,07) -G+ (Roll,07,) - G. (20)

Once we insert the flow equation (10) for 4, and 4, in equation (20), R will be connected to further bubbles of
vertices. These connections can be simplified if we have I, instead of R. Hence, we rewrite equation (20), using
I, =R+ v,as

_zzz(luonuo"ya)'G_[(’Yp""Yt)oHao"Yu]'G+(Ip°Hp°'7p)'G_[('Yu""Yt)oHpo"Yp]'G-

21
The next step consists of repeated use of the contracted crossing symmetry (12):
(pollsoda) - G=(pollo%) G+ (ypoll,od) -G, (22a)
(rollaod) - G=(puollaod) -G, (22b)
[((a+y)ollodpl- G=(ollaod) - G. (220)
After using I, = 4., we then obtain
> Lol 04 —yo0ll,0l)-G. (23)

r=a,p
Insert vertex flow— Whereas the previous manipulations were possible due to the contracted crossing
symmetry, the following insertion of the vertex flow for 4, given by equation (10), can be simplified already on
the vertex level. In fact, using the parquet equations (4) with 5, = I, o Il, o "and I = I, + ~,, we get
Loll,oy,=IL oll,oLoIll,ol + I,oll,ol + T oll,of,0ll,oT + oIl o1)
:A/rOHrOF+F°Hr°jr°Hr°F+’Vr°Hr°jr- (24)

The first term also occurs (with opposite sign) in equation (19), the second term reproduces *'yr(c), and the third
term gets canceled in equation (23). Hence, 3, can be simplified (as summarized in figure 4(c)) to

8
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Y ==Y (394 oIl oD) - G. (25)

r=a,p
With the definition "yf(c) = %(C) + ﬁ;c),the full derivative of the self-energy is given by

This result for > = 0y Xsp in skeleton form (i.e. phrased with dressed propagators G, G only) will be considered
more closely in section 4. Here, we move on by noting that equation (26) still contains % on both the Ihs and the
rhs (via G).

Isolate ¥:— At this point in our derivation, we specify how the A dependence is supposed to enter G: it shall
be incorporated in the bare propagator G, such that the Dyson equation, G = Gy + Gy - X - G, entails
G =S+ G- ¥ - G with the single-scale propagator S = \G),_.. = —G - (OhGy ") - G.Once we insert this
expression for G into equation (26), we will face the contraction of a vertex with a compositeline G - 3 - G.In
such a case, one can equivalently attribute the two propagators to either the self-energy or the vertex, such that
we have the following equality for a composite contraction (recall the minus sign in I1; see equation (A6) for
details):

L-(G-X-G)=—Loll - X. (27)
We insert equation (27) into equation (26) to isolate 3.:
Y=L - (S+G - 2-G -4 G-S=-L -S+Loll,oX —49.G- 3,
& Y=-0—-Loll) ' 'oL-S— 1 —Loll) " (9 G+ %). (28)
Next, we use the inverted BSE (5) as well as the extended BSE (6) to express this through"'and 1 + I" o I1,,
respectively:
Y=-T -S—A+Toll) (5 G+ ). (29)

For convenience, we finally write the contraction of (I" o II;) with both summands as composite contractions
(using equation (27) for a general vertex and self-energy) and obtain

S=[-T-SI+[-% Gl +[-T - (G-%-G)] — %5 — [-T-(G- 35 -G (30)

Estd Z[ Zt

This is our final result for the mfRG self-energy flow deduced from the SDE. It constitutes the bare
(‘nonskeleton’) form of equation (26) as it involves G and S instead of G and G. The first term in equation (30),
Zstd, is the standard fRG self-energy flow. The next two terms, Y;and 3, constitute the multiloop corrections to
the self-energy flow (see figure 3(b)), which have been derived diagrammatically in [12]. These contributions are
needed to ensure that the self-energy flow generates all contributions to the self-energy arising within the PA.
Finally, the two terms involving Y3 remain in our final result and—in calculations beyond the PA—are required
to cancel doubly counted terms coming from the replacement 3sp(Iy, I', G) — Xsp(R, I', G) inequation (14).
We remark that 5 constitutes precisely the part that cannot be simplified further with our parquet tools, as it
originates from the appearance of a bare instead of renormalized vertex in the SDE.

3.1.2. Interpretation
Let us interpret the flow equation (30) step by step:

(1) Since WE(C) and R’ [and hence 33 = O\ Xsp(R/, T', G)]are of order O [(I")*], we have explicitly shown how to
derive the standard fRG self-energy flow, Y4, from the SDE up to and including terms of fourth order in
the (effective) interaction. If we were in the standard fRG setting where every line is A-dependent, further
terms coming from R = 0 would arise in our derivation. However, as these terms are similarly of order

O[(I")*], the result ) Xsp = Ygq + O[(I")*]would remain unchanged.

(i) In the PA, the totally irreducible vertex is reduced to its simplest approximation, such that
R =TIy & R’ = 0andthus 5 = 0. In this case, equation (30) reproduces the mfRG self-energy flow from
[12]including the corrections >; and 3, (see figure 3(b)), necessary to provide a total derivative of the SDE
using the approximate parquet vertex.

(iii) Let us come back to the idea of a loop in theory space, which—including the self-energy flow—
is now driven by the bare propagator G*. A possible realization is given by G* = f (A) G, with
f(\) = f(Ap) = 1.Ifwestart the flow from the solution in the PA (R = I;)) with X4 = ¥P* and
'Y = I'PA, the combination of the mfRG vertex flow (10) and self-energy flow (30) (using >3 = 0) gives
the corresponding result in the PA for all A (as R = I'; throughout) and returns to the original solution
at A However, starting the flow from a solution with R’ = 0, we would have to include ¥ in the
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self-energy flow (30) in order to precisely return to the original self-energy, 3, and vertex, I' (dressed

by ¥),at Agwith R = 0, setting ;3 = 0 introduces an approximation in the full derivative of the SDE.
Conversely, one can compare results of the flow at A;and Asto (numerically) gauge the importance of
the individual terms in equation (30).

To better understand the effect of 3.3, we recall that ; and 33, were originally derived diagrammatically
to compensate for missing diagrams of 3** when using the parquet vertex in Sq [12]. With this
perspective on ¥; + ¥, in mind, it is intuitively clear that higher-order contributions to R (i.e. R’ = 0)
generate doubly counted terms between g and ¥; + ;. Yet, as equation (30) is exact, these
overcounted terms are precisely canceled by the parts involving 3.

For illustration, consider the (parquet) self-energy at fourth order in the interaction, which contains no
approximation and whose flow is fully described by Yqq + %7 + 3, using vertices in the PA. Now,
fourth-order diagrams of R’ = 0 generate fourth-order terms in Y4 but notin >; and ¥, (due to their
structure involving further vertices that raise the interaction order). The additional fourth-order
contributions of Y4 are precisely canceled by R’ - G (containing only one A-dependent line) as part of
¥s. Generally, we believe that, for situations where R' = 0, the overcounting of differentiated diagrams
in Ygq + X + X, has rather small weight and that, even if using >3 ~ 0, the multiloop additions

¥; + 3, provide an improvement of the standard self-energy flow, 4.

(iv) An interesting application with R’ = 0 is the previously mentioned multiloop DMF?RG approach. In its
full form, combining the flow equations of the vertex (10) and self-energy (30), the mfRG flow is controlled
by the bare propagator G*, which interpolates between the local theory of DMFT and the actual lattice
problem. The simplest realization [26] of a flow from A; = 1to Ay = 0, formulated in terms of Matsubara
frequencies iw and momentum k, is given by (GOA)*1 =iw+ p — AA@{w) — (1 — A) . Here, A(iw) is
the self-consistently determined hybridization function of the auxiliary Anderson impurity model [25] and
e the lattice dispersion. With G(fx‘ = GPMIT = 1 / [iw + p — A(iw)], the flow is conveniently started from
YA = YIPMET g d A = TPMFT While the vertex flow (10) exactly solves the BSEs (for given G*), the
differential form of the SDE contains ¥ and therefore prevents complete equivalence to the DI'A approach.
In this regard, it remains to be seen whether the standard fRG self-energy flow, Y4, with or without the
multiloop corrections 7 + ¥, or other realizations, incorporating parts of ¥5 in equation (30), lead to
optimal results.

3.2. Self-energy flow from the functional derivative

We now show how the standard fRG self-energy flow, Y4, can be directly derived from the equality between the
functional derivative of the self-energy and the (particle-hole) two-particle-irreducible vertex. To be in perfect
accordance with the standard fRG setup, we have to require that every G line be A-dependent—even those in the
totally irreducible vertex, R = R%.Incorporating the A dependence in the bare propagator Go, we again relate
the differentiated propagator, G, to the single-scale propagator, S,viaG = S + G - ¥ - G.

The functional derivative between self-energy and vertex, §X/6G = —I, (see equation (A8)), holds for any
variation of G. If this variation is realized by having a scale-dependent propagator G* and varying the scale
parameter A, this equation implies > = —I, - G. Starting from this, we can perform the same steps as above: to
obtain the standard fRG flow equation for the self-energy, it remains to insert G=S+G-%-G, express the
composite contraction I, - (G - 3 - G)as —I, o II, - ¥ (see equation (27)), and use the inverted BSE (5):

N=-1-G=-L-S+G-X-G =—-L-S+Loll,-%
o Y=—1-Loll)loL-S=-T-8. (31)

Solving for ¥ in a specific fRG flow via equation (31) amounts to integrating 6 = —I, - 6G alonga specific path
in the space of theories defined by the bare propagator Gy = G;* (and the bare i 1nteract10n Ty, see equation (1)).
Only if this integration is independent of the path, i.e. if ¥ contains a total derivative of diagrams, the standard
self-energy flow (31) yields results consistent with the functional derivative. In the scenarios considered so far,
this is not the case: the truncated fRG flow (without I'® and more than one channel) employs equation (31) but
does not generate a total derivative of diagrams [11, 12]; the mfRG flow of figure 3 with R = I does provide a
total derivative of diagrams but deviates from equation (31) by the additions 7 and ;. (In fact, the latter
reproduces precisely the self-energy diagrams generated by the SDE using the vertex in the PA. However, as
shown in appendix B, the requirement of fulfilling both the functional derivative and the SDE necessitates the
exact solution.)

Asadirect application of the above calculations, we can derive a fRG flow which is equivalent to self-
consistent Hartree—Fock (HF), in agreement with a result by Katanin [38]. This conserving fRG flow provides a
simple example for which the integration of 3 = —1, - 4G is indeed independent of the path. In HF theory, the
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Figure 5. lllustrations for *’yy(c). (a) The six-point vertex ‘}fo is obtained from ﬂ'yy(c) by removing its differentiated line; hence, f'yr(c) is
recovered by contracting 4“ with G. (b) A contraction of 4 denoted as 4@ - G, such that 5“ - G is reproduced by
(:/Y(C) - G) - G.(c) Asan example for the construction of ’yr(c), we consider the six-point vertex "3/;1) obtained by removing the

differentiated line in the one-loop part of the vertex flow in p channel, leaving two further amputated legs (marked in light red).

(d) Inserting the vertex from (c) into the center part of the flow in the a channel, we generate a contribution to the six-point vertex "’ya(c)
(being part of &;C)). (e) By contracting two upper legs of the vertex from (d) according to ﬁ;c) - G, we geta contribution to the new,
two-particle-irreducible vertex I,. The lowest-order realization of this, obtained by inserting a bare vertex for I', constitutes an
envelope diagram, which is not contained in the initial I, in the PA.

functional derivative of the self-energy is given by the bare vertex, 6> /6G = —Tj,. By replacing I, — 'y in
equation (31), we immediately find

S = . G=—-0—-Tyoll) ol -§=—Tk .5, (32a)
M=)+ ol o TR & TR = (1 — T o II,) loIy, (32b)
Fiad =TyoIl 0 Piad +Tyoll o I"iad & I“iad =(1 —-TyolIl) elyoll o0 I‘}ad = Pf‘d oIl, 0 Fiad. (32¢)

Equation (32¢) describes the vertex flow in the truncated Katanin form®, restricted to the ¢ channel. If the same
vertex is used for the standard self-energy flow (equation (32a)), the fRG flow yields the HF self-energy together
with a particle-hole ladder vertex (note f‘lad = —Td)_ Asthis vertex consists of ladder diagrams in only one
channel, it clearly violates crossing symmetry.

4. Conservation laws in the PA

In this section, we take a slightly different perspective and are not concerned with RG flows. Instead, we use our
insight into the structure of the many-body relations gained from the above derivations to address conceptual
questions of many-body (parquet) theory. First, we derive two technical results: (i) we show how one can
construct a two-particle-irreducible vertex which equals the functional derivative of the parquet self-energy.
Evidently, the operation ¢ /6 G can be performed in an analytical study of Feynman diagrams [39]. However, in
anumerical treatment, one never has access to the self-energy as a functional of the full propagator. Instead, one
only has its value for the specific, given propagator, and the general construction for such a vertex remains
unknown [15]. Here, we provide its construction for the case of the parquet self-energy. (ii) We demonstrate that
the parquet self-energy can be obtained from the SDE using either of two possible orderings of the bare and full
vertex. While it is believed that most approximations for ¥ obtained from the SDE obey this property [14], it has
(to our knowledge) not been shown for the PA. These results can then be interpreted in the context of
conservation laws in the PA using arguments from Baym and Kadanoff[14].

4.1. Functional derivative of the parquet self-energy
We start from the flow equation for the self-energy in skeleton form: in the PA, we have R = I'y, and thus
R’ = 0and 35 = 0, such that equation (26) reads

SPA - G- 509G (33)

As Ris here given by the bare vertex, our construction of a scale-dependent I (section 2) and X (section 3)
actually makes every propagator scale-dependent. Furthermore, this scale dependence is completely arbitrary,
and we can view the scale derivative of the self-energy as coming from the chain rule, Y = (62/6G) - G.
Regarding equation (33), we want to similarly factorize G from the term 5© - G. For this, let &f(c) be the six-

t
point vertex obtained from "yf(c) be removing the differentiated line, such that %(C) is recovered by a contraction

with G, and 'VE(C) -G = (ﬁlf@ - G) - G (seefigures 5 (a) and (b)). It then follows from equation (33) that

The substitution S — G in the truncated fRG vertex flow is often called Katanin substitution [38].
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62PA 3
o = h-AY- 6= (34)

Here, Y4 is the self-energy obtained from the SDE in the PA (using the vertex I' = I, + I, o IT, o I'),and I, is
the (new) two-particle-irreducible vertex that results from a functional derivative of the parquet self-energy.
(The corresponding full vertex I can be obtained by solving IV = I/ + I/ o II, o I'".) The crucial point is that
—instead of taking the functional derivative—we can construct this vertex I/ by taking the (initial) vertex I,in the
PA and adding the term f"yt_(c) - G; the six-point vertex f"yf(c) needed for this can be constructed iteratively.

To elaborate this point, recall that the four-point vertex %(C)

constitutes a certain part of the vertex flow (10),

2, (©)

which can be computed in a iterative one-loop fashion. To generate the six-point vertex ;~’, one simply has to

remove the differentiated line, G, in this construction: one starts from a six-point vertex obtained by removing

the differentiated line in the one-loop part of equation (10). Let us call the resulting object from the p channel '?151).

Then, "yl()l) can be inserted into the center part of equation (10) to generate a first contribution for "’ycfc). These
steps are illustrated in figures 5(c)—(e). Further contributions of '?r(c) (for a certain channel r) are obtained as, e.g.
'(’yr(l) is inserted into the left, right, or center parts (see equation (10)) of channels v’ = r before inserting the
resulting objects into %fc). We remark that this scheme is directly accessible numerically by computing one-loop
integral equations with six-point vertices. Though this will be computationally costly, it is conceptually not more
complicated than computing the four-point mfRG flow. In fact, it is not surprising that one has to deal with six-
point objects to go beyond the initial parquet vertex, since the PA exhausts (by construction) all diagrams that
can be obtained in an iterative one-loop computation involving only four-point objects.

4.2. SDE with reversed order
Next, we show that the self-energy in the PA can equivalently be obtained from the SDE with either ordering of
the involved vertices, i.e.

EPA = ESD(FO) F) G) = ZSD(F: FO) G) (35)

In section 3.1, we have used the expression Xsp(Iy, I', G) to derive the self-energy flow (26), which finally
yielded equation (34) for the functional derivative in the PA. If we use the SDE in the ‘reversed’ order, we can
actually follow these steps in close analogy to find the same relation for the functional derivative. First, starting
from ¥ = ¥5p(I', I}, G), we find areplication of equation (19) with reversed order:

EI:fIt'G+(F01L[0fya+F0Hp0fyp)‘G. (36)
Concerning the simplifications of 3,, we start from (I" o IL, o R) - G to get (instead of equation (23))
==Y ()oll,ol,—Loll,o):-G. (37)
r=a,p

Then, we use the BSE with ‘reversed’ order, v, = I o II, o I, (see equation (7)), to find the appropriate version
of equation (25)

Sy= =Y (394 Tolloy) -G (39)

r=a,p
The final manipulations can be made in complete analogy to obtain

ZPA = 21 + Zz = —It . G - W;(C) -G = 6(?GPA = _It - ﬁ/f(C) . G, (39)
i.e. the identical differential equation (34). Since, for the specific propagator G = 0, one has
Ysp(To, I', 0) = 0 = Xsp (T, Ty, 0), it follows that the self-energy in the PA can indeed be obtained from any of
the two versions of the SDE.

The strategy of generating, first, a self-energy via the SDE and, then, obtaining a vertex by functional
differentiation has been famously put forward by Baym and Kadanoff [ 14]. They showed that, if the self-energy
can equivalently be constructed via the SDE with either order of the vertices, then, the one-particle propagator is
conserving. Thus, using this argument together with equation (35), one finds that the PA fulfills one-particle
conservation laws. Baym and Kadanoff further showed that, if the vertices are subsequently constructed from
Il = —6%/6Gand " = I/ + I/ o TI, o T, two-particle conservation laws are fulfilled as well. As is well
known, the PA does not fulfill two-particle conservation laws. In fact, equation (34) shows how the parquet
vertex I; needs to be modified to be conserving; in other words, the correction term f"yf(c) - G allows one to
quantify to what degree the vertex I, in the PA violates conservation laws.

Furthermore, equation (34) provides a construction how to generate a fully conserving solution originating
from the parquet self-energy. After both the vertex I, and the self-energy XA in the PA have been obtained, one

computes 5@ . G and adds this to I, to get a conserving vertex I.. Note that the original parquet self-ener
P Y g g t ginal parq gy

need not be modified. Similarly as one computes I'” = I/ + I, o II; o I'" with the original IT, (containing >"*),
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Figure 6. [llustration for the relation between (skeleton) diagrams of the vertex and the self-energy at fourth order in the interaction:
inserting the first (parquet) vertex diagram into the SDE, we generate the second diagram as part of A, Upon taking the functional
derivative wrt to the full propagator, this self-energy diagram relates to multiple diagrams of the two-particle-irreducible vertex I,.
Among those, the third diagram, obtained by cutting the (light) red line, is an envelope diagram and not part of I, in the PA. However,
the fourth diagram, obtained by cutting the blue line, belongs to it. Note that we ignore signs and prefactors in these diagrams.

physical quantities (such as susceptibilities, conductivities, etc) are computed using I, (or I'") together with ¥PA,
The resulting solution fulfills one- and two-particle conservation laws, but, clearly, it does not fulfill the SDE
anymore. This is not surprising since, as shown in appendix B, a solution that fulfills both the SDE and the
functional derivative must be the exact solution. The preferential choice between I and I will surely depend on
the physical application.

We remark that there have also been suggestions of how to keep the vertex I, in the PA but modify the self-
energy, "4, to obtain a thermodynamically consistent description [40]. While these ideas might be useful in
practical situations, it is, however, not possible to construct a combination of the skeleton two-particle-
irreducible vertex I,[G] in the PA together with any skeleton self-energy $[G], such that the functional derivative
I, = —6%/6G is fulfilled. The reason is that the functional derivative generates from any diagram of > a
multitude of diagrams for I,—the same self-energy diagram related to missing diagrams of I, in the PA also
relates to diagrams that are contained in I, (see figure 6). Therefore, the functional derivative cannot be fulfilled
by starting from the PA and simply removing diagrams from the self-energy.

5. Response functions

Finally, we use our results from section 2 to derive dependent, mfRG flow equations for response functions. In
fact, the (fermionic) four-point vertex, I, and the self-energy, ¥, give us full control over correlation functions
up to the four-point level, and thus they suffice to compute response functions such as three-point vertices, I'®),
and susceptibilities, . If ' and X are obtained by an RG flow, the response functions can be deduced from the
scale-dependent I'A, ¥ at any stage during the flow. Alternatively, the response functions I®»* and y* are
often deduced from their own RG flows [5]. In this case, the flow equations provided by the standard fRG
hierarchy again require knowledge about unknown, higher-point vertices (namely a five-point vertex for the
flow of ' and a boson-fermion four-point vertex for x) [6]. In particular, the inevitable truncation in the fRG
hierarchy leads to ambiguities in the computation of the response function [13, 41]. These ambiguities have been
recently resolved by a diagrammatic derivation of the mfRG flow equations for the response functions [13].
Here, we provide algebraic derivations of these flow equations. We find that one can circumvent the influence of
unknown, higher-point vertices by using exact flow equations for the response functions, which follow from the
standard relations between the response functions and the (known) fermionic four-point vertex and self-energy.

5.1. Three-point vertex
The SDE relating the (full) three-point vertex to the bare three-point vertex (often taken to be unity) and the
four-point vertex [6] is given by (see figure 7)

'Y =18 + I oll,ol. (40)
Employing the scale dependence described in the previous sections, we can differentiate equation (40) to get
I =T oI, ol + T80T, 0ol =T oIl 0T + I'%)oTl, o (I + 4). (41)

We insert the mfRG vertex flow (10), combine several terms according to equation (40), and obtain

la(f):F(i%oH,oF+F%OH,OI',JFF%OH,O(FOH,OF+FoH,oi,+f,oH,oF+FoH,oLoH,oF)
:F(f)of[,ol_‘—l—F@oH,o(f,—&—f,oH,oF).
(42)

The first term occurs similarly in the fRG flow equation (with the typical replacement G « S). However, the
remaining part of our flow equation successfully replaces the contributions from the unknown five-point vertex
in the fRG flow.
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Figure 7. Illustration of three exact equations for the three-point vertex in the a channel: (a) Schwinger—Dyson equation between
three- and four-point vertex; the white dot denotes the bare three-point vertex; (b) mfRG flow equation containing differentiated
vertices from the complementary channel, I, = 4; and (c) standard fRG flow equation containing an unknown five-point vertex.
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Figure 8. Illustration of three exact equations for the susceptibility in the a channel: (a) Schwinger—Dyson equation relating the
susceptibility to the full and bare three-point vertex; (b) mfRG flow equation containing differentiated vertices from the
complementary channel, [, = 4,; and (c) standard fRG flow equation containing an unknown fermion-boson four-point vertex I".
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5.2. Susceptibility
The susceptibility is fully determined by the three-point vertex or (via equation (40)) the four-point vertex [6],
according to (see figure 8)

= F(3) oll, o F(S)T F(3) oll, o F(S)T + F?& oll, oT"oIl, o F%T. (43)

We can differentiate either relation; choosing the first one, we insert the mfRG flow (42) of I'® to find the mfRG
flow of the susceptibility:

X, = I'®o1l, o0 FSST + f‘f) oll, o ny
=TP oIl oIS + TP ol 0l 0 + T¥oll, 0l + TP o1l 0l oI, 0 T)oll, o %)’
=T®oIL oI + T® o1l 01, o I, 0o TP, (44)

Again, the first term occurs similarly in the fRG flow equation (with G < S), and the remaining terms in our
flow equation replace the contributions from the unknown boson-fermion four-point vertex in the fRG flow.

Let us briefly summarize: the response functions e, X can be deduced from the four-point vertex, I', and
the self-energy, ¥, at any point of the RG fow. As I and ¥ evolve with A, so do I'®and x. With the above
derivation, we have cast this evolution into exact, mfRG flow equations for the response function, each
containing the vertex flow from the complementary channel (I, = 4,). The two-particle-reducible vertices still
obey the mfRG flow (10); approximations come from the chosen expression for the totally irreducible vertex, R,
which affects the initial conditions but is itself not part of the flow.

6. Conclusion

We have used the well-known self-consistent relations of the parquet formalism to derive exact flow equations
for various vertex and correlation functions. Compared to the standard fRG framework, these mfRG flow
equations can be advantageous as they circumvent the reliance on higher-point vertices. In fact, our calculations
include concise, algebraic derivations of the mfRG flow equations that have previously been derived
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diagrammatically [11-13] and have already been used [11, 13] to improve the approximations of the truncated
fRG flow (for results of two-loop fRG, see [22, 42, 43]).

The analysis presented in this paper puts the mfRG approach on a general basis. The algebraic derivations
open the route to RG flows beyond the diagrams of the PA. Since the totally irreducible vertex, R, is precisely the
part of the vertex that cannot be efficiently included in the flow, the focus can now shift to systematic ways of
computing R. If one chooses a scale dependence in the propagators that starts from Gé\" = 0, all reducible
contributions built on R will be fully included by the mfRG flow. Other starting points for the flow are a possible
aswell. In particular, if one uses as initial, bare propagator the (self-consistently determined) one from DMFT,
G(f\" = GPMFT | the nonlocal correlations not contained in DMFT will be added by a flow that starts from the self-
energy YPMFT and the full vertex TPMFT [26], thus circumventing potential divergences of RPMFT, Similarly, if
the system in question is related to another, solvable reference system [22] by variation of one-particle
parameters, mfRG can be used to tune between these systems via G¢', with the guarantee that the self-consistent
parquet equations are fulfilled throughout the flow. As examples, let us mention Fermi polarons [44, 45], where
one can tune the chemical potential of the majority species, and nonequilibrium transport (see below), where
one can gradually increase the bias voltage. Our computations also provide a basis for setting up mfRG flows for
more complicated theories, including, for instance, further bosonic degrees of freedom. Generally, we believe
that the insights presented in this paper will be useful for further development of quantum-field-theoretical RG
techniques.

Additionally, we have demonstrated an intimate relation between the functional derivative of the self-energy
(inducing a conserving solution) and the (standard) fRG self-energy flow: the flow equation directly follows
from the functional derivative for the case that the propagator is varied through a scale parameter. However, a
solution of the fRG flow is consistent with the functional derivative only if the flow is independent of the specific
scale dependence, i.e. onlyif I' - S constitutes a total derivative of diagrams. A simple example for which this is
indeed the case is given by a truncated fRG flow with a (particle-hole) ladder vertex that reproduces self-
consistent HF. Building on this, it would be worthwhile to devise other approximate flows that comply with the
functional derivative but go beyond HF, thereby including an interplay between different two-particle channels.

Lastly, we have used our approach to address important general questions of (traditional) parquet theory.
Using an argument of Baym and Kadanoff [14], we have demonstrated that the PA fulfills one-particle
conservation laws. Furthermore, we have shown how to construct a two-particle-irreducible vertex equivalent to
taking the functional derivative of the parquet self-energy. With this, one can quantify to what extent the PA
violates two-particle conservation laws, and one can modify the PA to obtain a fully conserving approximation.
It would be interesting to apply this modified parquet approach in situations where conservation properties are
crucial, such as studies of transport phenomena.

The generality of our formalism opens up a vast field of applications. mfRG flows have already yielded
impressive results for the prototypical 2D Hubbard model [13] (see [42] for results using two-loop fRG) and
promise a better understanding of strongly correlated electron systems [5, 12, 20]. In the study of quantum
magnetism, the pseudo-fermion fRG approach [46] has become a competing method, and first calculations with
two-loop corrections [43] suggest that a full multiloop treatment would yield further improvements. Moreover,
mfRG can be directly applied to a variety of interesting physical problems where the most relevant properties are
expected to emerge within the PA, such as various forms of mobile impurity problems [45, 47] or one-
dimensional fermion systems [48] beyond the Luttinger liquid paradigm [49]. In the field of transport
phenomena in disordered systems, our mfRG approach could provide unprecedented insight into many-body
localization in large systems [50, 51] or interaction effects on the Anderson localization transition [52]. Finally,
we remark that mfRG flows can also be naturally set up within the Keldysh formalism [23, 53] to provide real-
frequency information, both in and out of equilibrium.
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Appendix A. Matrix notation of bubbles and loops

In this section, we define our notation for the contraction of various vertex functions. It is common to view the
contraction of one-particle quantities as matrix multiplications, such that e.g. the Dyson equation between
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Figure Al. (a) Dyson’s equation relating the full propagator G, . (black, thick line) to the bare propagator G, (gray, thin line) and

the self-energy X (circle). (b) First-order diagram for the self-energy using the (antisymmetrized) bare vertex Iy (solid dot).

(c) Diagrammatic expansion of the four-point vertex I" (square) up to second order in the interaction. The positions of the external
(amputated) legs refer to the arguments of I'y/ 4./ x5- Diagrams from left to right belong to R, 74, 7,» and +;, respectively; diagrams for
I, follow from therelation I, = T — ~,.

propagator, G, v = —(c,&y'), and the self-energy, 2./ ., (see figures A1(a) and (b)) reads

G=Gy+Gy-T-G, (A-Blw =5 A,B,.. (A1)
y

For the contraction of two four-point vertices, we have three inequivalent possibilities corresponding to
the three two-particle channels r = a, p, t (standing for antiparallel, parallel, transverse, respectively; see also
figure A1(c)). In[12], the different combinations have been labeled as ‘bubble functions’ B, (I", ). Here, we
repeat the corresponding equations and show that they can be conveniently written as matrix multiplications.
For this, we will use auxiliary objects that depend on channel-dependent tuples of quantum numbers (e.g.

Dl i x] = fa;(x{,xz’),(xz’,x{)) and define a contraction o that always comes together with a two-particle
propagator I, of a certain channel (consisting of two one-particle propagators G):
Ba(L, I') gty = Z Dttt 1 Gyl Gty F/y{,xz’;x{,yz’

Il

¥ sy

~ ~ ~7

. —_ !

= > Lo Laomnomn Taoiyheh = € 0 a0 Ty pt ity (A2a)
o

Ho¥ sy

; 1 /
By, Ty xhixfiey = , Z /Fx(,x;;yl,yzfcylr,y{Gyzr,yz/ryl/,yzl;x{,xé
VDADLD2)
- ~ ~/
_ — ’
-, /Z/ /Fp;(x{,xz'),(yf,}’z’)n ;(}’1’))'2'),(}’1’,)'2')Fp;(yl’,yz’),(x{,xz’) =(To Hp ol )x{,xz’;x{,xz” (A2b)
yl’yl‘yz’yz

! _ !

Be(l', Dttt = = Z ,F%"Xz’v{’xéGyz'%’G%”yz’rx{,yz’;x{,yé

’ ’

VDLDLD2)

~ - ~
— —_ !
= Z / Ft;(Xz’,xZ'),(yl’,y]')Ht;(y]',yl’),(yz’,yz’)Ft;(yz’,yz’),(x{,x{) = (I o I o T)s/ xlif e (A20)
Gy

Note that a factor of 1/2 has been absorbed into I, and a minus sign into II,. From equations (1) and (3), itis
clear that 'y and I are antisymmetric in their indices. Using the bubble functions (A2) together with the parquet
equations (4), one finds the further crossing symmetries stated in equation (13), which use the symbol

A

Px{,xz/;x{,xz/ = Fx{,le;xz/,xll = sz/,xll;x{,le- (A3)

If we combine two fermionic indices into one bosonic index, the above equations directly translate to three-
point vertices. For instance, one could combine the two external legs of the first vertex in the a bubble according
to some function fand interpret

T®

! ’
A32,X2, X1

3
= > fowtt Dttt = T 0T o)y = > f, 0 @ ollao M)yt (A4)
! ! ! !

X1,X2 X1,X2

Furthermore, one can contract a four-point vertex with a one-particle propagator to obtain another one-
particle object. We define the symbol - between vertex and propagator to be such a contraction applied to the
‘upper’ external legs of the vertex (i.e. legs 2 and 2’ in figure A1(c)). In [12], this has been dubbed a ‘self-energy
loop’, L, defined as

_L(F> G)x’,x’ - Z 1:c’,y’;x,yGy,y’ - E IZ“t;(x’,x),(y’,y)G(}/’,y) = (F : G)x’,x’- (AS)
yhy ($25%)

If the contracting line is a composite object of the type G - 2 - G, we can view the Glines as a t bubble attached to
the vertex, according to
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T -G-x- G))x’,x = Z Fx’,y’;x,yGy,z’Zz’,sz,y’

! I
yyz'z

= Z 1:‘t;(X’,X),(y’,y)ﬁt;(y’,y),(Z’,Z) z~:(Z’,Z) = - oll - X)yx. (A6)
')(z',2)

The SDE for the self-energy contains a contraction of three propagators. Using the bubble functions defined
above, this can equivalently be written with I1, and IL;:

1 0
iy = Z Losaryriny Gyt 4 2 Z Fx’,z’;y,wGN/’Gz,z’Gw,w’Fy’,w’;x,z

vy vy pzhzww
:((r0+roonpor)-c) :((F0+lroonaor)-c) . (A7)
x',x 2 x',x
The functional derivative between self-energy and two-particle-irreducible vertex (in the t or a channel) is given by
[ I
—_— = *It;x’,y’;x,y = Ia;x’,y’;y,x- (AS)
0G,,,

Note that in order to obtain the two-particle-irreducible vertex in the p channel from functional
differentiation, Iy ;v = 62Xy, /6G,,, one has to allow for variations around the physical solution which
break charge conservation.

Appendix B. SDE and functional derivative

We consider the SDE for the self-energy as well as the functional derivative between self-energy and vertex (see
equation (A8)),

Y=-I1)-G-Iyeoll,ol) G, (Bla)
I

L=———, TI'=L+Loll,ol, B1b

t 5G t t t ( )

and show that a solution for ¥ and I' that fulfills both equations (B1a) and (B1b) must necessarily be the exact
solution. In essence, this proof has already been given by Smith [15]. However, we find it useful to present it here
in our notation, which exclusively consists of properly symmetrized objects. In fact, this proof puts on solid
ground what has long been known to the community [2]: in any approximate solution to the many-body
problem, one has to decide whether to comply with either conservation laws or crossing symmetry; achieving
both amounts to finding the exact solution.

To be able to apply the functional derivative, we consider the self-energy as a functional of the full
propagator, X[G]. This is perfectly compatible with the SDE (B1a), which is formulated using full propagators
only. Furthermore, all vertex functions depend on the given theory’s bare vertex I'y (which we herelabel 'y = U
for ease of notation); in particular, this holds for X[G, U] and I'[G, U]. Since U'is the bare vertex, we have
T'[G, U] = U + O(G? U?); byuse of either the SDE (B1a) or the functional derivative (B1b), it is clear
that X[G, U] = U - G + O(G>, U?).

Assume that we know the exact vertex up to terms of order n > 2 inboth Gand U, ie., I" = '™ + O(G", U").If
we apply the SDE (B14a), we obtain (inserting into the second term) 3 = 3% 4+ O(G"*3, U"*1). Now, we apply the
functional derivative (Blb)and get I, = I + O(G"*2, U"*!). Finally, using the BSE (B1b) yields ' = T'*% +
O(G"*2, Um+1), Le. the exact vertex one order higher in G? and U than we started with. Since we do know the exact
vertex up to terms of second order, I'[G, U] = U + O(G?, U?),itfollows by induction that a solution which fulfills
both equation (B1a) and (B1b) consists of the exact functionals >*[G, U], I'**[G, U].

We remark that this proof applies equivalently to finite-order approximations of ¥ and I as well as to
approximations of infinite order in U. As soon as an expression for I" contains the bare vertex U [15], the combination
of equation (Bla) and (B1b) requires all expansion coefficients of & and I" to be the ones of the exact solution.

ORCID iDs

Fabian B Kugler © https://orcid.org/0000-0002-3108-6607
Jan von Delft ® https: /orcid.org/0000-0002-8655-0999

References

[1] Hedin L 1965 Phys. Rev. 139 A796
[2] Bickers N 2004 Theoretical Methods for Strongly Correlated Electrons (CRM Series in Mathematical) ed D Sénéchal, A-M Tremblay and
CBourbonnais (New York: Springer) pp 237-96

17


https://orcid.org/0000-0002-3108-6607
https://orcid.org/0000-0002-3108-6607
https://orcid.org/0000-0002-3108-6607
https://orcid.org/0000-0002-3108-6607
https://orcid.org/0000-0002-8655-0999
https://orcid.org/0000-0002-8655-0999
https://orcid.org/0000-0002-8655-0999
https://orcid.org/0000-0002-8655-0999
https://doi.org/10.1103/PhysRev.139.A796

I0OP Publishing New J. Phys. 20 (2018) 123029 F B Kugler and J v Delft

[3] Wilson K G 1975 Rev. Mod. Phys. 47 773-840
[4] AndersonP W 1970 J. Phys. C3 2436
[5] Metzner W, Salmhofer M, Honerkamp C, Meden V and Schénhammer K 2012 Rev. Mod. Phys. 84299
[6] Kopietz P, Bartosch L and Schiitz F 2010 Introduction to the Functional Renormalization Group (Lecture Notes in Physics) (Berlin:
Springer)
[7] Wetterich C 1993 Phys. Lett. B 301 90
[8] Veschgini K and Salmhofer M 2013 Phys. Rev. B88 155131
[9] Roulet B, Gavoret ] and Nozieres P 1969 Phys. Rev. 178 1072
[10] Shankar R 1994 Rev. Mod. Phys. 66 129
[11] Kugler F B and von Delft] 2018 Phys. Rev. Lett. 120 057403
[12] Kugler F B and von Delft] 2018 Phys. Rev. B97 035162
[13] Tagliavini A, Hille C, Kugler F B, Andergassen S, Toschi A and Honerkamp C 2018 arXiv:1807.02697
[14] Baym G and Kadanoff L P 1961 Phys. Rev. 124 287
[15] Smith RA 1992 Phys. Rev. A 46 4586
[16] YangSX, Fotso H, Liu J, Maier T A, Tomko K, D’Azevedo EF, Scalettar R T, Pruschke T and Jarrell M 2009 Phys. Rev. E 80 046706
[17] Tam K-M, Fotso H, Yang S-X, Lee T-W, Moreno J, Ramanujam J and Jarrell M 2013 Phys. Rev. E87 013311
[18] LiG, Wentzell N, Pudleiner P, Thunstrom P and Held K 2016 Phys. Rev. B93 165103
[19] Abrikosov A A 1965 Physics2 5
[20] Rohringer G, Hafermann H, Toschi A, Katanin A A, Antipov A E, Katsnelson M I, Lichtenstein A I, Rubtsov A N and Held K2018 Rev.
Mod. Phys. 90 025003
[21] Rohringer G, Valli A and Toschi A 2012 Phys. Rev. B86 125114
[22] Wentzell N, Li G, Tagliavini A, Taranto C, Rohringer G, Held K, Toschi A and Andergassen S 2016 arXiv:1610.06520
[23] Jakobs S G, Pletyukhov M and Schoeller H 2010 Phys. Rev. B 81 195109
[24] Wentzell N, Taranto C, Katanin A, Toschi A and Andergassen S 2015 Phys. Rev. B91 045120
[25] Georges A, Kotliar G, Krauth W and Rozenberg M ] 1996 Rev. Mod. Phys. 68 13
[26] Taranto C, Andergassen S, Bauer J, Held K, Katanin A, Metzner W, Rohringer G and Toschi A 2014 Phys. Rev. Lett. 112 196402
[27] Tagliavini A 2018 PhD Thesis Universitit Tiibingen
[28] Toschi A, Katanin A A and Held K 2007 Phys. Rev. B 75 045118
[29] Held K, Katanin A A and Toschi A 2008 Prog. Theor. Phys. Supp. 176 117
[30] Valli A, Schifer T, Thunstrém P, Rohringer G, Andergassen S, Sangiovanni G, Held K and Toschi A 2015 Phys. Rev. B91 115115
[31] Schifer T, Rohringer G, Gunnarsson O, Ciuchi S, Sangiovanni G and Toschi A 2013 Phys. Rev. Lett. 110 246405
[32] Schifer T, Ciuchi S, Wallerberger M, Thunstrém P, Gunnarsson O, Sangiovanni G, Rohringer G and Toschi A 2016 Phys. Rev. B 94
235108
[33] Gunnarsson O, Rohringer G, Schifer T, Sangiovanni G and Toschi A 2017 Phys. Rev. Lett. 119 056402
[34] Chalupa P, Gunacker P, Schiifer T, Held K and Toschi A 2018 Phys. Rev. B 97 245136
[35] Thunstrém P, Gunnarsson O, Ciuchi S and Rohringer G 2018 Phys. Rev. B 98235107
[36] Luttinger ] M and Ward ] C 1960 Phys. Rev. 118 1417
[37] Baym G 1962 Phys. Rev. 127 1391
[38] Katanin A A 2004 Phys. Rev. B70 115109
[39] Kugler FB 2018 Phys. Rev. E98 023303
[40] Jani$ V, Kauch A and Pokorny V 2017 Phys. Rev. B 95 045108
[41] Kugler F B and von Delft] 2018 J. Phys.: Condens. Matter 30 195501
[42] Eberlein A 2014 Phys. Rev.B90 115125
[43] Riick M and Reuther ] 2018 Phys. Rev. B 97 144404
[44] Mitra T, Chatterjee A and Mukhopadhyay S 1987 Phys. Rep. 153 91
[45] SchmidtR, Knap M, IvanovD A, You J-S, Cetina M and Demler E 2018 Rep. Prog. Phys. 81 024401
[46] Reuther Jand Wolfle P 2010 Phys. Rev. B 81 144410
[47] SchmidtRand Enss T 2011 Phys. Rev. A 83 063620
[48] Meden V, Andergassen S, Enss T, Schoeller H and Schénhammer K 2008 New J. Phys. 10 045012
[49] Imambekov A, Schmidt T L and Glazman L12012 Rev. Mod. Phys. 84 1253
[50] Abanin D A and Papi¢ Z 2017 Ann. Phys. 529 1700169
[51] Pietracaprina F, Macé N, Luitz D ] and Alet F 2018 SciPost Phys. 5 045
[52] AminiM, KravtsovV E and Miiller M 2014 New J. Phys. 16 015022
[53] Jakobs S G, Pletyukhov M and Schoeller H2010 J. Phys. A 43 103001

18


https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1088/0022-3719/3/12/008
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1103/PhysRevB.88.155131
https://doi.org/10.1103/PhysRev.178.1072
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1103/PhysRevLett.120.057403
https://doi.org/10.1103/PhysRevB.97.035162
http://arxiv.org/abs/1807.02697
https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRevA.46.4586
https://doi.org/10.1103/PhysRevE.80.046706
https://doi.org/10.1103/PhysRevE.87.013311
https://doi.org/10.1103/PhysRevB.93.165103
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.5
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/10.1103/PhysRevB.86.125114
http://arxiv.org/abs/1610.06520
https://doi.org/10.1103/PhysRevB.81.195109
https://doi.org/10.1103/PhysRevB.91.045120
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevLett.112.196402
https://doi.org/10.1103/PhysRevB.75.045118
https://doi.org/10.1143/PTPS.176.117
https://doi.org/10.1103/PhysRevB.91.115115
https://doi.org/10.1103/PhysRevLett.110.246405
https://doi.org/10.1103/PhysRevB.94.235108
https://doi.org/10.1103/PhysRevB.94.235108
https://doi.org/10.1103/PhysRevLett.119.056402
https://doi.org/10.1103/PhysRevB.97.245136
https://doi.org/10.1103/PhysRevB.98.235107
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRev.127.1391
https://doi.org/10.1103/PhysRevB.70.115109
https://doi.org/10.1103/PhysRevE.98.023303
https://doi.org/10.1103/PhysRevB.95.045108
https://doi.org/10.1088/1361-648X/aaba2e
https://doi.org/10.1103/PhysRevB.90.115125
https://doi.org/10.1103/PhysRevB.97.144404
https://doi.org/10.1016/0370-1573(87)90087-1
https://doi.org/10.1088/1361-6633/aa9593
https://doi.org/10.1103/PhysRevB.81.144410
https://doi.org/10.1103/PhysRevA.83.063620
https://doi.org/10.1088/1367-2630/10/4/045012
https://doi.org/10.1103/RevModPhys.84.1253
https://doi.org/10.1002/andp.201700169
https://doi.org/10.21468/SciPostPhys.5.5.045
https://doi.org/10.1088/1367-2630/16/1/015022
https://doi.org/10.1088/1751-8113/43/10/103001

	1. Introduction
	2. Derivation of the vertex flow
	2.1. Preliminaries
	2.2. Parquet equations for the four-point vertex
	2.3. Flow of the four-point vertex
	2.3.1. Flow equation
	2.3.2. Examples


	3. Derivation of the self-energy flow
	3.1. Self-energy flow from the SDE
	3.1.1. Flow equation
	3.1.2. Interpretation

	3.2. Self-energy flow from the functional derivative

	4. Conservation laws in the PA
	4.1. Functional derivative of the parquet self-energy
	4.2. SDE with reversed order

	5. Response functions
	5.1. Three-point vertex
	5.2. Susceptibility

	6. Conclusion
	Acknowledgments
	Appendix A.
	Appendix B.
	References



