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1. Introduction

There are miscellaneous applications of matrix integrals in di-
verse fields of mathematics and theoretical physics (see [1,2] for 
reviews). In particular, they frequently appear in random matrix 
theory (RMT) [3–5]. Typically, when one wants to derive a joint 
probability distribution function of eigenvalues of a random ma-
trix, one has to integrate out angular variables. This is done with 
the help of matrix integration formulae known in the literature. 
The list of most popular unitary matrix integrals includes the 
Brezin-Gross-Witten integral [6,7] (a.k.a. the Leutwyler-Smilga in-
tegral [8]), the Harish-Chandra-Itzykson-Zuber integral [9,10], and 
the Berezin-Karpelevich integral [11–13]. These integrals play deep 
roles in quantum chaos, disordered mesoscopic systems, Quantum 
Chromodynamics (QCD), quantum gravity, and lattice gauge theory.

In QCD, low-energy physics is governed by light pions owing 
to the spontaneous breaking of chiral symmetry. In the so-called 
ε-regime [14,8], exact zero modes of pions dominate the partition 
function and the path integral reduces to a finite-dimensional inte-
gral over a coset space. As is well known, there exist three classes 
of chiral symmetry breaking in QCD, depending on the representa-
tion of quarks [15]. In two-color QCD (and more generally, in QCD 
with quarks in a pseudoreal representation of the gauge group), 
the symmetry breaking pattern is SU(2N f ) → Sp(2N f ) where N f
is the number of Dirac fermions and Sp(N) is the unitary symplec-
tic group [16,17]. The relevant degrees of freedom at low energy 
are expressed through a coset variable U T IU where U ∈ U(2N f )
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and I is an antisymmetric matrix. When a quark chemical po-
tential μ is added, the low-energy effective Lagrangian attains 
additional terms [17]. In this paper, we aim to evaluate the parti-
tion function of two-color QCD in the ε-regime when the chemical 
potential of each flavor is different, i.e., (μ1, · · · , μN f ) are all dis-
tinct. This case was not considered in [17]. We will analytically 
show that the partition function has a pfaffian form. We will also 
show that our integral formula has a useful application to the sym-
metry crossover between the Gaussian Symplectic Ensemble (GSE) 
and the Gaussian Unitary Ensemble (GUE) in RMT. Moreover, since 
−IU T IU is an element of the Circular Symplectic Ensemble in RMT 
[18], our result may have an application in this direction as well. 
The present paper can be viewed as a sequel to [19].

This paper is structured as follows. In Sec. 2 we summarize the 
main analytical result. In Sec. 3 some applications are illustrated. 
In Sec. 4 we give a derivation of our main integral formula. In 
Sec. 5 we discuss localization of the integral on critical points, in 
connection with the Duistermaat-Heckman theorem [20]. Finally in 
Sec. 6 we conclude. Some technical remarks on the volume of Lie 
groups are given in Appendix A.

2. Main result

Let N be an even positive integer and define an N × N antisym-
metric matrix

I ≡ diag

((
0 1

−1 0

)
, · · · ,

(
0 1

−1 0

))
. (1)

Then, for an arbitrary Hermitian N × N matrix H with mutually 
distinct eigenvalues {ek} and an arbitrary nonzero β ∈C, we have
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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∫
U(N)

dU exp
[
β Tr(U T IU H(U T IU )† H∗)

]

=
∏N/2

k=1 �(2k − 1)

(2β)N(N−2)/4�N(e)
Pf

1≤i, j≤N

[
(ei − e j)e2βeie j

]
, (2)

where dU denotes the normalized Haar measure, Pf denotes a pfaf-
fian, and �N (e) ≡

∏
i< j

(ei − e j) is the Vandermonde determinant.

We performed an intensive numerical check of this formula for 
N ∈ {2, 4, 6, 8, 10} by estimating the left hand side of the formula 
with Monte Carlo methods. We used a Python library pfapack [21]
for an efficient computation of a pfaffian.

As a side remark we note that similar pfaffian formulae are 
known for unitary matrix integrals considered in [22,19].

3. Applications

3.1. Two-color QCD

With a slight generalization of [17], we find that the lead-
ing static part of the partition function of low-energy massless 
two-color QCD with N f flavors with nonzero chemical potential 
{μ f }N f

f =1 is given by

Z =
∫

U(2N f )

dU exp
{

V 4 F 2 Tr[U T IU B(U T IU )† B + B2]
}

, (3)

where I is defined by (1), V 4 is the Euclidean spacetime volume, 
F is the pion decay constant, and

B ≡ diag(μ1, · · · ,μN f ,−μ1, · · · ,−μN f ) (4)

is the chemical potential matrix. The same coset integral also arises 
in the large-N limit of the chiral real Ginibre ensemble [23,24]
which has exactly the same symmetry as two-color QCD. We re-
mark that two-color QCD with non-degenerate chemical potentials 
has been investigated with chiral perturbation theory in p-regime 
in [25]. They considered a massive theory, while we focus on the 
strictly massless limit.

We introduce dimensionless variables{
μ̂ f ≡ √

V 4 Fμ f
μ̂N f + f ≡ −μ̂ f

for f = 1,2, · · · , N f . (5)

Then it is quite straightforward to apply (2) to (3), which yields

Z ∝
exp

⎛⎝2

N f∑
f =1

μ̂2
f

⎞⎠ Pf
1≤ f ,g≤2N f

[
(μ̂ f − μ̂g)e2μ̂ f μ̂g

]
⎡⎣ ∏

1≤ f <g≤N f

(μ̂ f − μ̂g)
2(μ̂ f + μ̂g)

2

⎤⎦ N f∏
f =1

μ̂ f

. (6)

This expression completely fixes the chemical potential depen-
dence of the finite-volume partition function in the ε-regime.

3.2. GSE-GUE crossover

In the classical paper [26], a random matrix ensemble inter-
mediate between GSE and GUE was solved by Mehta and Pandey. 
Their original approach was to study the random matrix

H = S + αT , (7)
2

where S is a Gaussian Hermitian real quaternion matrix and T is a 
Gaussian Hermitian matrix. As α grows from zero, the level statis-
tics evolve from GSE to GUE, and the transition occurs at the scale 
α2 ∼ 1/N with N the matrix size. They derived the joint probabil-
ity distribution function of eigenvalues of H by making use of the 
celebrated Harish-Chandra-Itzykson-Zuber integral [9,10].

An alternative approach to the GSE-GUE transition would be to 
investigate the random matrix

H = S + iαA , (8)

where A is a Gaussian anti-Hermitian real quaternion matrix.1

Then we have

S T = −I S I and AT = I A I , (9)

with I defined by (1). Hence the Gaussian weights of S and A may 
be cast into the form

exp(−Tr S2 + Tr A2)

=exp

[
−1 + α2

2α2
Tr(H2) − 1 − α2

2α2
Tr(H I H T I)

]
. (10)

Upon diagonalization H = U EU † we end up with the unitary inte-
gral which exactly coincides with (2). By carrying out this integral 
we immediately arrive at the joint eigenvalue density derived by 
Mehta and Pandey [26]. Our integral thus provides a way to han-
dle the transitive random matrix ensemble without recourse to the 
Harish-Chandra-Itzykson-Zuber integral.

4. Derivation of the formula

The derivation of our integration formula (2) proceeds in three 
steps. Throughout this section we will assume that N is even.

4.1. Step 1: the heat equation

We adopt the heat equation method, which has a long history 
[10]. Let us assume t > 0 and consider a function

zN(t, H, U ) ≡ 1

tα
exp

[
−1

t
Tr(H − P † H T P )2

]
(11)

where we wrote P = U T IU for brevity. Then

∂

∂t
zN(t, H, U ) =

[
−α

t
+ 1

t2
Tr(H − P † H T P )2

]
zN(t, H, U ) . (12)

The Laplacian over Hermitian matrices is given by

�H ≡
∑

i

∂2

∂ H2
ii

+ 1

2

∑
i< j

[
∂2

∂(Re Hij)
2

+ ∂2

∂(Im Hij)
2

]
(13)

=
∑
i, j

∂

∂ Hij

∂

∂ H ji
. (14)

Then we readily obtain

�H zN(t, H, U )

= 1

tα
∂

∂ Hij

∂

∂ H ji
exp

[
−1

t
Tr(H − P † H T P )2

]
(15)

=
[
−4N(N + 1)

t
+ 16

t2
Tr(H − P † H T P )2

]
zN(t, H, U ) . (16)

1 Actually the ensemble (7) is essentially equivalent to (8), because the sum of 
two Gaussian self-dual matrices is again a Gaussian self-dual matrix with a modified 
variance.
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Comparison of (12) and (16) tells that, if we set α = N(N + 1)/4, 
then(

∂

∂t
− 1

16
�H

)
zN(t, H, U ) = 0 . (17)

It follows that

Z N(t, H) ≡
∫

U(N)

dU zN(t, H, U ) (18)

= 1

tα
exp

(
−2

t
Tr H2

) ∫
U(N)

dU exp

[
2

t
Tr(P H P † H T )

]
(19)

also satisfies the same differential equation as zN (t, H, U ). It is 
easy to confirm that Z N (t, H) depends on H only through its 
eigenvalues {e1, · · · , eN}. It is very important to note that Z N(t, H)

has translational invariance, i.e., Z N (t, H) = Z N(t, H + a1N) for an 
arbitrary a ∈R, which can be easily shown based on the definition 
(19). Therefore Z N(t, H) depends on {ek} only through the differ-
ences {ek − e�}.

Let us transform the Laplacian into the polar coordinate [27]

�H = 1

�N(e)

N∑
k=1

∂2

∂e2
k

�N(e) + �O (20)

where O denote the angular variables. Then(
∂

∂t
− 1

16

N∑
k=1

∂2

∂e2
k

)
[�N(e)Z N (t, H)] = 0 . (21)

To find out the basic building block of Z N (t, H), we wish to look 
at the N = 2 case in the next subsection.

4.2. Step 2: the N = 2 case

For N = 2, using the fact that U T IU = I for any U ∈ SU(2), we 
readily find

Z2(t, H) = t−3/2 exp

[
−2

t
(e1 − e2)

2
]

(22)

=: Z2(t, e1, e2) . (23)

From (21), we know that (23) fulfills the equation[
∂

∂t
− 1

16

(
∂2

∂e2
1

+ ∂2

∂e2
2

)]
(e1 − e2)Z2(t, e1, e2) = 0 . (24)

Then one can easily find a solution for N = 4 by treating Z2 as a 
building block: for example,[

∂

∂t
− 1

16

4∑
k=1

∂2

∂e2
k

]
(e1 − e2)Z2(t, e1, e2)(e3 − e4)Z2(t, e3, e4)

= 0 . (25)

However, the solution �N (e)Z N (t, H) that we wish to obtain must 
be antisymmetric under the exchange of any two ek ’s. Hence we 
naturally arrive at the Pfaffian

�N(e)Z N (t, H) = C̃N Pf
1≤i, j≤N

[
(ei − e j)Z2(t, ei, e j)

]
, (26)

where C̃N is a not yet determined constant. By construction, C̃2 =
1. Notice that this Pfaffian form is consistent with the translational 
invariance of Z N(t, H). To fix the normalization uniquely, one has 
to examine the boundary condition imposed at t = +0.

4

d

Z

f
l

e

T
i
t
U
p
t
H
b
r
S

M

U

d

L
T
m

q

L
T{
(

T
o

d

w

Ẽ

A
a

a

3

.3. Step 3: saddle point analysis

To determine the normalization of (26), let us perform the sad-
le point approximation of

N(t, H) = 1

tα
exp

(
−2

t
Tr H2

)
×

∫
U(N)

dU exp

[
−2

t
Tr(U T IU EU † IU∗E)

]
(27)

or t → +0, with E = diag(e1, e2, · · · , eN). For technical simplicity, 
et us assume

1 > e2 > · · · > eN . (28)

hen, apparently U = 1N is the dominant saddle point. A closer 
nspection of the exponent of (27) shows that, in fact, any U of 
he form S V with S ∈ Sp(N) and V = diag(eiθ1 12, · · · , eiθN/2 12) ∈
(1)N/2 is also a saddle point,2 where Sp(N) is the unitary sym-
lectic group. [Our convention is such that Sp(2) ∼= SU(2).] Hence 
he saddle point manifold appears to be given by U(1)N/2 × Sp(N). 
owever there is a subtlety: the 2N/2 elements diag(±12, · · ·, ±12)

elong to both U(1)N/2 and Sp(N). To avoid duplication, the cor-
ect saddle point manifold must be considered as [U(1)N/2 ×
p(N)]/{±1}N/2. Thus the manifold of massive modes is given by

= U(N)

[U(1)N/2 × Sp(N)]/{±1}N/2
. (29)

sing dim[Sp(N)] = N(N + 1)/2 we find

im(M) = N2 − N

2
− N(N + 1)

2
= N(N − 2)

2
. (30)

et X be a generator of U(N) that corresponds to a massive mode. 
hen X is Hermitian and satisfy X T I = I X . Such a matrix can be 
ost conveniently expressed through a quaternion defined as

a = (12, iσ1, iσ2, iσ3) . (31)

et us use indices with a bar (p, q, · · · ) that run from 1 to N/2. 
hen the generators for massive modes are given by

Xa
p q

}a=0,1,2,3

1≤p<q≤N/2
, where

Xa
p q)r s = 1√

2

[
δp rδq sqa + δp sδq r(q

a)†
]
. (32)

hey are normalized as Tr[Xa
p q Xb

r s] = 2δabδp rδq s . A quick counting 
f degrees of freedom shows

im(X) = N

2

(
N

2
− 1

)
1

2
× 4 = N(N − 2)

2
, (33)

hich matches (30) as it should.
For later use, we also define

≡ −I E I (34)

= diag(e2, e1, e4, e3, · · · , eN , eN−1) . (35)

n element of the massive manifold U ∈ M can be parametrized 
s

2 Note that another diagonal Abelian group diag(eiθ1σ3 , · · · , eiθN/2σ3 ) ∼= U(1)N/2 is 
 subgroup of Sp(N).
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U = exp

⎛⎝i
3∑

a=0

∑
p<q

θa
p q Xa

p q

⎞⎠ ≡ eiθ X . (36)

Then, using U T I = IU , we obtain

Tr(U T IU EU † IU∗E)

= − Tr[U 2 E(U †)2 Ẽ] (37)

= − Tr(E Ẽ) + 4
{

Tr[(θ X)2 E Ẽ] − Tr[(θ X)E(θ X )̃E]
}

+ O (θ3) .

(38)

A tedious but straightforward calculation yields

Tr[(θ X)2 E Ẽ] =
∑

a

∑
p<q

(e2p−1e2p + e2q−1e2q)(θ
a
p q)

2 (39)

and

Tr[(θ X)E(θ X )̃E] =
∑
p<q

{(
e2p−1e2q + e2pe2q−1

) [
(θ0

p q)
2 + (θ3

p q)
2
]

+ (
e2p−1e2q−1 + e2pe2q

) [
(θ1

p q)
2 + (θ2

p q)
2
]}

.

(40)

Therefore

Z N(t, H) ≈ 1

tα
1

Vol(M)
exp

⎛⎝−2

t

N/2∑
p=1

(e2p−1 − e2p)2

⎞⎠
×

∞∫
−∞

∏
a

∏
p<q

dθa
p q exp (−θ · G · θ) , (41)

where

θ · G · θ = 8

t

∑
p<q

{
(e2p−1 − e2q−1)(e2p − e2q)

[
(θ0

p q)
2 + (θ3

p q)
2
]

+ (e2p−1 − e2q)(e2p − e2q−1)
[
(θ1

p q)
2 + (θ2

p q)
2
]}

.

(42)

Note that the coefficients of θ2 are positive definite, given (28). The 
Gaussian integral in the second line of (41) then yields(

πt

8

) dim(M)
2

∏
p<q

(e2p−1 − e2q−1)(e2p − e2q)(e2p−1 − e2q)(e2p − e2q−1)

=
(

πt

8

) dim(M)
2

N/2∏
p=1

(e2p−1 − e2p)

�N(e)
. (43)

Next, we compute the volume Vol(M). Using the volume formulae 
[28–31] (see Appendix for detailed comments on these formulae)

Vol[U(N)] = 2N/2π N(N+1)/2∏N
k=1 �(k)

(44)

Vol[Sp(N)] = 2N2/4π N(N+2)/4∏N/2
k=1 �(2k)

(45)

we get

Vol

Sub
we

Z N

asy

Z N

Ma

C̃N

Fin
is e
side
com

5. E

spe
of t
bec

π∫
0

d

wh
term
cal 
tota
and
Cha

loca
pur
non

uni

U T
4

(M) = Vol[U(N)]
(2π)N/2Vol[Sp(N)] × 2−N/2

(46)

= 2−N(N−2)/4π N(N−2)/4∏N/2
k=1 �(2k − 1)

. (47)

stituting (43) and (47) into (41) and recalling α = N(N + 1)/4, 
 obtain

(t, H) ≈ 2−N(N−2)/2

⎧⎨⎩
N/2∏
k=1

�(2k − 1)

⎫⎬⎭ t−3N/4

×

N/2∏
p=1

{
(e2p−1 − e2p)exp

[
−2

t
(e2p−1 − e2p)2

]}
�N(e)

.

(48)

Next we turn to (26). Due to the ordering (28), we observe the 
mptotic behavior

(t, H) ≈ C̃Nt−3N/4

×

N/2∏
p=1

{
(e2p−1 − e2p)exp

[
−2

t
(e2p−1 − e2p)2

]}
�N(e)

.

(49)

tching (48) and (49) yields

= 2−N(N−2)/2
N/2∏
k=1

�(2k − 1) . (50)

ally, introducing β ≡ 2/t , we find that (26) together with (50)
quivalent to (2). Thus we have proved (2) for β > 0. Since both 
s of (2) are analytic in β , we conclude that (2) is valid for 
plex β , too. This completes the proof.

xactness of the saddle-point approximation

The Duistermaat-Heckman theorem [20] states that there are 
cial integrals that receive contributions only from critical points 
he integrand; in other words, the saddle-point approximation 
omes exact for such integrals. A trivial example is given by

θ sin θ ea cos θ = ea −e−a

a
, (51)

ere the first term is associated with θ = 0 and the second 
 with θ = π . The localization of the integral at these criti-

points can be understood from the fact that the integrand is a 
l derivative: dθ sin θ ea cos θ = − 1

a d(ea cos θ ). A far more nontrivial 
 beautiful example for which localization holds is the Harish-
ndra-Itzykson-Zuber integral, as pointed out by [32].
Derivation of (2) in the last section clearly illustrates that the 
lization property does hold for our unitary integral as well. The 

pose of this section is to work out explicitly, for the simplest 
trivial case of N = 4, how such localization can happen.

To begin with, let us recall the fact that a 4 ×4 skew-symmetric 
tary matrix U T IU can be expressed as [33]

IU =
6∑

i=1

ni
i , (52)
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where 
i are the basis matrices that are explicitly given in Sec. 3.1 
of [33], while �n is a six-dimensional real unit vector (�n2 = 1). Sub-
stituting (52) and H = diag(e1, e2, e3, e4) into the left hand side of 
(2) we obtain∫
S5

d�n e2β[(e1e2+e3e4)(n2
2+n2

4)+(e1e4+e2e3)(n2
3+n2

5)+(e1e3+e2e4)(n2
1+n2

6)] .

(53)

Next, we introduce three sets of polar coordinates for (n2, n4), 
(n3, n5) and (n1, n6) respectively, with radial variables

a ≡
√

n2
2 + n2

4, b ≡
√

n2
3 + n2

5, c ≡
√

n2
1 + n2

6. (54)

The angular variables can be integrated out trivially, yielding

∞∫
−∞

da

∞∫
−∞

db

∞∫
−∞

dc |abc| δ(a2 + b2 + c2 − 1) eγ1a2+γ2b2+γ3c2

(55)

with γ1 = 2β(e1e2 + e3e4), γ2 = 2β(e1e4 + e2e3), and γ3 =
2β(e1e3 + e2e4). Now the domain of integration is S2 and it helps 
to introduce standard polar coordinates on S2, which leads to

π∫
0

dθ sin θ

π∫
−π

dφ

∣∣∣sin2 θ cos θ sinφ cosφ

∣∣∣ eγ1 cos2 θ+γ2 sin2 θ cos2 φ+γ3 sin2 θ sin2 φ

= 8

π/2∫
0

dθ

π/2∫
0

dφ sin3 θ cos θ sinφ cosφ eγ1 cos2 θ+γ2 sin2 θ cos2 φ+γ3 sin2 θ sin2 φ .

(56)

A careful inspection of the integrand reveals that it is a total 
derivative:

sin3 θ cos θ sinφ cosφ eγ1 cos2 θ+γ2 sin2 θ cos2 φ+γ3 sin2 θ sin2 φ

= − 1

2

∂

∂θ

∂

∂φ

(
eγ1 cos2 θ+γ2 sin2 θ cos2 φ+γ3 sin2 θ sin2 φ

(γ2 − γ3)[−2γ1 + γ2 + γ3 + (γ2 − γ3) cos(2φ)]

)
. (57)

As a result, the integral localizes on the edges of the interval, lead-
ing to a relatively simple expression

(56) = 2

[
eγ1

(γ1 − γ2)(γ1 − γ3)
+ eγ2

(γ1 − γ2)(γ3 − γ2)

+ eγ3

(γ1 − γ3)(γ2 − γ3)

]
. (58)

The interpretation of each term is straightforward. The first term is 
associated with θ = 0, the second term with (θ, φ) = (π/2, 0), and 
the third term with (θ, φ) = (π/2, π/2). As expected, (58) is con-
sistent with (2). This elementary derivation clearly shows why our 
unitary group integral is localized on the critical points of the inte-
grand. The key to this argument is the total derivative formula (57). 
We believe that this total derivative property extends to higher N , 
although showing this explicitly is beyond the scope of this sec-
tion.

By contrast, for integrals over symmetric unitary matrices [19], 
localization does not take place, which can be confirmed explicitly 
for e.g., N = 2.

6. Conclusions and outlook

In this paper, we obtained a pfaffian formula for a unitary ma-
trix integral, and used it to evaluate the ε-regime partition func-
tion of two-color QCD. It was also shown that the classical result 
5

for the transitive ensemble between GSE and GUE can be repro-
duced with our formula.

The present work can be expanded in several directions.

� Our unitary matrix integral (2) is a special case of∫
U(N)

dU exp
[

Tr(U T AU HU † AU∗H∗)
]

(59)

where H is a Hermitian matrix and A is a real antisymmetric 
matrix. Putting A = I reproduces our integral. It is easy to see 
that this integral is a function of the eigenvalues of A and H
only. This integral (59) deserves further study.

� In Sec. 3.1 we have only studied the partition function of mass-
less two-color QCD. The extension of our formula to the mas-
sive case is an interesting open problem.

� An extension of our formula to supergroups may be possible, 
by following the methods of [34–36].

� Our formula is valid only for Hermitian H . It is tempting to 
ask whether one can relax this constraint and generalize the 
formula to an arbitrary complex matrix. We speculate that 
methods developed in [12,37] may be helpful in this regard.

� Our unitary matrix integral (2) is a special case of∫
U(N)

dU exp
[

Tr(U T IU H1(U T IU )† H2)
]

(60)

where H1 and H2 are Hermitian matrices. Extension of (2) to 
(60) is an open problem.
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Appendix A. Volumes of the unitary and symplectic groups

There are many conventions on the volume of Lie groups in the 
literature, and one has to be extremely careful about their usage. In 
this paper we performed a saddle point analysis of integrals using 
generators normalized as Tr(X A XB) = 2δAB . Thus it was mandatory 
to calculate volumes of groups in a way consistent with this nor-
malization. We argue that (44) and (45) used in the main text are 
indeed the correct formulae that conform to our normalization. In 
Appendix A.1 we test our formulae by comparing them with exact 
integration formulae over Lie groups. In Appendix A.2 the deriva-
tion of (44) and (45) is given.

A.1. Comparison with exact integration formulae

A.1.1. Unitary group
There is a famous integration formula [8]

I(U)
N (x) :=

∫
U(N)

dU exp
[ x

2
Tr(U + U †)

]
(A.1)

= det
1≤i, j≤N

[
Ii− j(x)

]
(A.2)

where In(x) is the modified Bessel function of the first kind. Using 
asymptotic expansions of In(x) at x 
 1 we find

I(U)
N (x) ≈ ξN

eNx

xN2/2
(A.3)

with
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ξ1 = 1√
2π

, ξ2 = 1

2π
, ξ3 = 1√

2π3/2
,

ξ4 = 3

π2
, ξ5 = 36

√
2

π5/2
.

(A.4)

Next, let us try the saddle-point approximation of (A.1) directly. 
Assuming the normalization Tr(X A XB) = 2δAB for the generators 
of U(N), we substitute U = eiθ X into (A.1) and get, for x 
 1,

I(U)
N (x) ≈ eNx

∫
U(N)

dU e− x
2 θ2 Tr(X2) (A.5)

≈ eNx

Vol[U(N)]
∞∫

−∞

∏
A

dθA e−xθ2
A (A.6)

=
∏N

k=1 �(k)

(2π)N/2

eNx

xN2/2
, (A.7)

where (44) was used in the last step. For N ∈ {1, 2, 3, 4, 5}, (A.7)
reproduces (A.4).

A.1.2. Unitary symplectic group
There is an integration formula over a unitary symplectic group 

[38] (for even N)

I(Sp)
N (x) :=

∫
Sp(N)

dU ex Tr U (A.8)

= det
1≤i, j≤N/2

[
Ii− j(2x) − IN+2−i− j(2x)

]
. (A.9)

Using asymptotic expansions of In(x) at x 
 1, we find

I(Sp)
N (x) ≈ ζN

eNx

xN(N+1)/4
(A.10)

with

ζ2 = 1

2
√

π
, ζ4 = 3

8π
, ζ6 = 45

32π3/2
, ζ8 = 14175

256π2
. (A.11)

Next, let us try the saddle-point approximation of (A.8) directly. 
Assuming the normalization Tr(X A XB) = 2δAB for the generators 
of Sp(N), we substitute U = eiθ X into (A.8) and get, for x 
 1,

I(Sp)
N (x) ≈ eNx

Vol[Sp(N)]
∞∫

−∞

∏
A

dθA e−xθ2
A (A.12)

= eNx

Vol[Sp(N)]

(√
π

x

)N(N+1)/2

(A.13)

=
∏N/2

k=1 �(2k)

2N2/4π N/4

eNx

xN(N+1)/4
, (A.14)

where (45) was used in the last step. For N ∈ {2, 4, 6, 8}, (A.14)
reproduces (A.11).

These explicit computations for unitary and symplectic groups 
vindicate the validity of (44) and (45) under the normalization 
condition Tr(X A XB) = 2δAB .

A.2. Derivation of the volume formulae

Let us begin with a brief review of the derivation of group 
volume formulae in Sec. V of [28]. Since the classical groups 
SO(N), U(N) and Sp(N) can all be viewed as a unitary group acting 
on the real/complex/quaternion vector space, we denote (following 
6

[28]) them as U(n; f ) where f is the number of degrees of free-
dom per matrix element. For f = 1, 2 and 4 it is SO(n), U(n) and 
Sp(2n), respectively.

An important observation is that there is a one-to-one corre-
spondence between the coset

U(n; f )

U(n − 1; f )
(A.15)

and an (nf − 1)-dimensional sphere embedded in Rnf . This can 
be seen from the fact that the coset acts on the polar vector 
(0, · · · , 0, 1) as⎛⎜⎜⎜⎜⎜⎜⎝
. . .

θ1
θ2
...

θn−1· · · θn

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
0
0
...

0
1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
θ1
θ2
...

θn−1

θn

⎞⎟⎟⎟⎟⎟⎠ (A.16)

θ ∈
⎧⎨⎩ R : SO(n)

C : U(n)

H : Sp(2n)

(A.17)

θ∗
1 θ1 + θ∗

2 θ2 + · · · + θ∗
n−1θn−1 + θ∗

n θn = 1 . (A.18)

Thus

Vol[U(n; f )] =
n∏

k=1

Vol

[
U(k; f )

U(k − 1; f )

]
(A.19)

=
n∏

k=1

Vol(Skf −1 ⊂ Rkf ) (A.20)

=
n∏

k=1

2πkf /2

�(kf /2)
(A.21)

= 2nπn(n+1) f /4∏n
k=1 �(kf /2)

. (A.22)

Unfortunately this formula cannot be immediately used for our 
saddle-point analysis because it does not conform to our normal-
ization condition Tr(X A XB) = 2δAB of generators. Let us explain 
how to amend (A.22) for f = 2 and 4, which are the cases of in-
terest.

We begin with f = 2. In real basis, the map (A.16) for n = 2
reads, in the vicinity of an identity map, as( ∗ θ1 + iθ2

∗ iθ3 + θ0

)(
0
1

)
=

(
θ1 + iθ2
iθ3 + θ0

)
(A.23)

where θk ∈ R and θ0 =
√

1 − ∑3
k=1 θ2

k . This amounts to the 
parametrization of a group element U = eiθ X with generators

X1 =
(

0 −i
i 0

)
, X2 =

(
0 1
1 0

)
, X3 =

(
0 0
0 1

)
. (A.24)

X3 does not satisfy our normalization condition. We should in-
stead use the generators {X1, X2, 

√
2X3}, or use the coordinates 

{θ̃} := {θ0, θ1, θ2, θ3/
√

2} that satisfy θ̃2
0 + θ̃2

1 + θ̃2
2 + (

√
2θ̃3)

2 = 1. 
The volume then shrinks by a factor 1/

√
2. This factor appears n

times in the product (A.19), so we must multiply (A.22) by 2−n/2. 
This way we arrive at (44).

Next we turn to f = 4. We again use the notation (31) for 
quaternions. In real basis, the map (A.16) for n = 2 reads, in the 
vicinity of an identity map, as
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( ∗ θaqa

∗ ϕaqa

)(
0
q0

)
=

(
θaqa

ϕaqa

)
(A.25)

with θ2
a + ϕ2

a = 1 and ϕ0 ≈ 1. This amounts to the parametrization 
U = eiθa Xa+iϕk Yk (a ∈ {0, 1, 2, 3} and k ∈ {1, 2, 3}) with

Xa =
(

0 −iqa

(−iqa)† 0

)
, (A.26)

Yk =
(

0 0
0 −iqk

)
. (A.27)

{Yk} satisfy the normalization Tr(YkY�) = 2δk� , so they need no 
rescaling. On the other hand, {Xa} satisfy Tr(Xa Xb) = 4δab , which 
means we should use {Xa/

√
2} as generators, or use the coordi-

nates

(θ̃ ,ϕ) := (
√

2θ0,
√

2θ1,
√

2θ2,
√

2θ3,ϕ0,ϕ1,ϕ2,ϕ3) (A.28)

that satisfy (θ̃a/
√

2)2 + ϕ2
a = 1. Thus the volume swells by a factor 

(
√

2)4. This observation easily generalizes to arbitrary n: for the 
map (A.16) with general n, the number of generators that must be 
rescaled is obviously 4(n − 1), so the volume swells by (

√
2)4(n−1) . 

This means that (A.22) for f = 4 must be multiplied by a factor

n∏
k=1

(
√

2)4(k−1) = 2n(n−1). (A.29)

This way we arrive at (45), with N = 2n.
This completes the derivation of the volume formulae consis-

tent with our normalization convention for Lie algebra.
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