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1. Introduction

There are miscellaneous applications of matrix integrals in di-
verse fields of mathematics and theoretical physics (see [1,2] for
reviews). In particular, they frequently appear in random matrix
theory (RMT) [3-5]. Typically, when one wants to derive a joint
probability distribution function of eigenvalues of a random ma-
trix, one has to integrate out angular variables. This is done with
the help of matrix integration formulae known in the literature.
The list of most popular unitary matrix integrals includes the
Brezin-Gross-Witten integral [6,7] (a.k.a. the Leutwyler-Smilga in-
tegral [8]), the Harish-Chandra-Itzykson-Zuber integral [9,10], and
the Berezin-Karpelevich integral [11-13]. These integrals play deep
roles in quantum chaos, disordered mesoscopic systems, Quantum
Chromodynamics (QCD), quantum gravity, and lattice gauge theory.

In QCD, low-energy physics is governed by light pions owing
to the spontaneous breaking of chiral symmetry. In the so-called
e-regime [14,8], exact zero modes of pions dominate the partition
function and the path integral reduces to a finite-dimensional inte-
gral over a coset space. As is well known, there exist three classes
of chiral symmetry breaking in QCD, depending on the representa-
tion of quarks [15]. In two-color QCD (and more generally, in QCD
with quarks in a pseudoreal representation of the gauge group),
the symmetry breaking pattern is SU(2Nf) — Sp(2N¢) where N¢
is the number of Dirac fermions and Sp(N) is the unitary symplec-
tic group [16,17]. The relevant degrees of freedom at low energy
are expressed through a coset variable UTIU where U € U@2Ny)
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and I is an antisymmetric matrix. When a quark chemical po-
tential © is added, the low-energy effective Lagrangian attains
additional terms [17]. In this paper, we aim to evaluate the parti-
tion function of two-color QCD in the &-regime when the chemical
potential of each flavor is different, i.e., (®1,--- , UN;) are all dis-
tinct. This case was not considered in [17]. We will analytically
show that the partition function has a pfaffian form. We will also
show that our integral formula has a useful application to the sym-
metry crossover between the Gaussian Symplectic Ensemble (GSE)
and the Gaussian Unitary Ensemble (GUE) in RMT. Moreover, since
—IUTIU is an element of the Circular Symplectic Ensemble in RMT
[18], our result may have an application in this direction as well.
The present paper can be viewed as a sequel to [19].

This paper is structured as follows. In Sec. 2 we summarize the
main analytical result. In Sec. 3 some applications are illustrated.
In Sec. 4 we give a derivation of our main integral formula. In
Sec. 5 we discuss localization of the integral on critical points, in
connection with the Duistermaat-Heckman theorem [20]. Finally in
Sec. 6 we conclude. Some technical remarks on the volume of Lie
groups are given in Appendix A.

2. Main result

Let N be an even positive integer and define an N x N antisym-
metric matrix

IEdiag<<_01 (1))(_01 é)) (1)

Then, for an arbitrary Hermitian N x N matrix H with mutually
distinct eigenvalues {ex} and an arbitrary nonzero 8 € C, we have
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/dU exp [ﬁ Tr(UTIUH(UTIU)TH*)]
U(N)

ATk -1)

= f
BYNIN=2/4A N (e) 1<i,j<N

[(ei —eje*Peici], 2)

where dU denotes the normalized Haar measure, Pf denotes a pfaf-
fian, and Ay (e) = H(ei —ej) is the Vandermonde determinant.
i<j

We performed an intensive numerical check of this formula for
N € {2,4,6,8,10} by estimating the left hand side of the formula
with Monte Carlo methods. We used a Python library pfapack [21]
for an efficient computation of a pfaffian.

As a side remark we note that similar pfaffian formulae are
known for unitary matrix integrals considered in [22,19].

3. Applications
3.1. Two-color QCD

With a slight generalization of [17], we find that the lead-
ing static part of the partition function of low-energy massless
two-color QCD with Ny flavors with nonzero chemical potential

Ny . .
{Mf}fi1 is given by

7= / dUexp{V4F2Tr[UTIUB(UTIU)TB+Bz]], 3)
U@2Ny)

where [ is defined by (1), V4 is the Euclidean spacetime volume,
F is the pion decay constant, and
B =diag(p1, - -

SHUNgy =M1, —HNy) (4)

is the chemical potential matrix. The same coset integral also arises
in the large-N limit of the chiral real Ginibre ensemble [23,24]
which has exactly the same symmetry as two-color QCD. We re-
mark that two-color QCD with non-degenerate chemical potentials
has been investigated with chiral perturbation theory in p-regime
in [25]. They considered a massive theory, while we focus on the
strictly massless limit.
We introduce dimensionless variables

{A ) i_VK“F“f for f=1,2,--- Ny (5)
/-’LNf+f =My
Then it is quite straightforward to apply (2) to (3), which yields
Ny
72 e — 10 e2lf it
exp Z;Mf 1oy Py [ — gy 77 ]

Z x N; . (6)

[T @ -me*@s+a9* | []2s

1<f<g=Ny f=1

This expression completely fixes the chemical potential depen-
dence of the finite-volume partition function in the &-regime.

3.2. GSE-GUE crossover

In the classical paper [26], a random matrix ensemble inter-
mediate between GSE and GUE was solved by Mehta and Pandey.
Their original approach was to study the random matrix

H=S+aT, (7)
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where S is a Gaussian Hermitian real quaternion matrix and T is a
Gaussian Hermitian matrix. As o grows from zero, the level statis-
tics evolve from GSE to GUE, and the transition occurs at the scale
a?~1/N with N the matrix size. They derived the joint probabil-
ity distribution function of eigenvalues of H by making use of the
celebrated Harish-Chandra-Itzykson-Zuber integral [9,10].

An alternative approach to the GSE-GUE transition would be to
investigate the random matrix

H=S+iaA, (8)

where A is a Gaussian anti-Hermitian real quaternion matrix.'
Then we have

ST =—ISI and AT =IAI, 9)

with I defined by (1). Hence the Gaussian weights of S and A may
be cast into the form

exp(—Tr S2 4+ Tr Az)
1

1 2
=exp [— 2+a Tr(HZ)—

o2 702 Tr(HIH I)i|. (10)

Upon diagonalization H = UEUT we end up with the unitary inte-
gral which exactly coincides with (2). By carrying out this integral
we immediately arrive at the joint eigenvalue density derived by
Mehta and Pandey [26]. Our integral thus provides a way to han-
dle the transitive random matrix ensemble without recourse to the
Harish-Chandra-Itzykson-Zuber integral.

4. Derivation of the formula

The derivation of our integration formula (2) proceeds in three
steps. Throughout this section we will assume that N is even.

4.1. Step 1: the heat equation

We adopt the heat equation method, which has a long history
[10]. Let us assume t > 0 and consider a function

1 1
ZN(E H,U) = o exp [—?Tr(H— PTHTP)Z] (11)
where we wrote P = UTIU for brevity. Then
d o 1
S N H, ) = [—? + 5 Tr(H — PTHTP)Z] Zn(t, H,U). (12)

The Laplacian over Hermitian matrices is given by

A=Y 92 +1Z 9 N 92 (13)
=2 " 24 [3ReH? ' 9(mH;)?
i 1 i<j
3 0
=28H~3H~' (14)
i ij Jji
Then we readily obtain
Agzn(t,H,U)
1 98 9 1
= exp| ——Tr(H — PTHT p)? (15)
t* dH;j 0H i t
AN(N+1) 16
- P% + 7 Tr(H = PTHTP)Z] Zn(t, H, U). (16)

1 Actually the ensemble (7) is essentially equivalent to (8), because the sum of
two Gaussian self-dual matrices is again a Gaussian self-dual matrix with a modified
variance.



T. Kanazawa

Comparison of (12) and (16) tells that, if we set &« = N(N + 1)/4,
then

<3 — lAH>zN(t,H,U):O. (17)
at 16
It follows that
ZN(t,H) = /dU zn(t, H, U) (18)
U(N)
_ 2 g2 f
_t—aexp<——TrH > /dUexp|: Tr(PHP'H )]
U(N)
(19)

also satisfies the same differential equation as zy(t, H,U). It is
easy to confirm that Zy(t, H) depends on H only through its
eigenvalues {eq, --- , en}. It is very important to note that Zy(t, H)
has translational invariance, i.e., Zy(t, H) = Zy(t, H + aly) for an
arbitrary a € R, which can be easily shown based on the definition
(19). Therefore Zy(t, H) depends on {ey} only through the differ-
ences {e, —e¢}.
Let us transform the Laplacian into the polar coordinate [27]

1 & 92
AN(e)Z iAN(e)‘FAO (20)

where O denote the angular variables. Then

9 ! ” A Zn(t, H)] = 21
g—ﬁ 5z | |an@2nte. i1 =0 1)

To find out the basic building block of Zy(t, H), we wish to look
at the N =2 case in the next subsection.

4.2. Step 2: the N = 2 case

For N =2, using the fact that UTIU =1 for any U € SU(2), we
readily find
—3/2 2 2
Zy(t,H)y=t"""“exp —?(61 —e2) (22)
=:Z5(t,eq,€2). (23)

From (21), we know that (23) fulfills the equation

O (2 L) e —enzatenen =0 (24)
ot 16 \pe2 " ge2 )| XATTTETT

Then one can easily find a solution for N =4 by treating Z, as a
building block: for example,

§ (e e )Z (t e1, e )(e - €4)Z (t e 84)
1—€2 2,61, €2 3 24, €3,

=0. (25)

However, the solution Ay(e)Zy(t, H) that we wish to obtain must

be antisymmetric under the exchange of any two ej’s. Hence we

naturally arrive at the Pfaffian

AN@ZN(E H)=Cn__Pf [(ei—ej)Za(t ei ep)], (26)
1<i,j<N

where Cy is a not yet determined constant. By construction, Cy =

1. Notice that this Pfaffian form is consistent with the translational

invariance of Zy(t, H). To fix the normalization uniquely, one has
to examine the boundary condition imposed at t = +0.
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4.3. Step 3: saddle point analysis

To determine the normalization of (26), let us perform the sad-
dle point approximation of

1 2
ZN(t, H) = o XP ——TrH

2
x /dU exp [—?Tr(UTIUEUTIU*E)] (27)
U(N)

for t — +0, with E = diag(eq, e, ---
let us assume

,en). For technical simplicity,

€1 >ey>--->€\N. (28)

Then, apparently U = 1 is the dominant saddle point. A closer
inspection of the exponent of (27) shows that, in fact, any U of
the form SV with S € Sp(N) and V = diag(e!® 1,,---,el21,) e
U()N/2 is also a saddle point,> where Sp(N) is the unitary sym-
plectic group. [Our convention is such that Sp(2) = SU(2).] Hence
the saddle point manifold appears to be given by U(1)N/2 x Sp(N).
However there is a subtlety: the 2V/2 elements diag(+1>, - - -, £17)
belong to both U(1)N/2 and Sp(N). To avoid duplication, the cor-
rect saddle point manifold must be considered as [U(1)N/? x
Sp(N)]/{=£1}N/2, Thus the manifold of massive modes is given by

= Uy (29)
~ [UMN/2 x Sp(N) 1 /{=£1}N/2

Using dim[Sp(N)] = N(N + 1)/2 we find

dim(M) = N? — 1;] N(N2+ ) N(N2— 2 . (30)

Let X be a generator of U(N) that corresponds to a massive mode.
Then X is Hermitian and satisfy XTI = IX. Such a matrix can be
most conveniently expressed through a quaternion defined as

q" = (12,i01,i02,i03) . (31)
Let us use indices with a bar (p,q,---) that run from 1 to N/2.
Then the generators for massive modes are given by
a=0,1,2
{X55}155<55N/2' Where
1
Kpohrs =5 [ proasa” +dpstar(@®' | (32)
They are normalized as Tr[X%aX%] = 280p8570g5. A quick counting
of degrees of freedom shows
N (N 1 N(N -2
dimX)== (= -1 —x4=¥, (33)
2\2 2 2
which matches (30) as it should.
For later use, we also define
E=—IEI (34)
=diag(ez,e1,€4,€3,--- , €N, EN_1). (35)

An element of the massive manifold U € M can be parametrized
as

2 Note that another diagonal Abelian group diag(ei®173, ..., ein203) = U(1)N/? is

a subgroup of Sp(N).
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3

U=exp iZ Zogqxga =elfX (36)
a=0p<q

Then, using UTI = IU, we obtain

Tr(UT IUEUTIU*E)
= —Tr[U2E(UT)?E] (37)
= —Tr(EE) + 4{ Tr{(0X)*EE] — Tr[(@X)E(@X)E]} +0@%.
(38)
A tedious but straightforward calculation yields
THOX)’EEl=) | ) (ex5-1€25 + exg-1029) (0)° (39)

@ p<q

and

THOXEEXE] =Y { (e2p-1623 +eaperg 1) [ 097 + 627 ]

p<q
+ (e2p—1€25-1 + €2p€2q) [(955)2 + (ng)z] } .
(40)
Therefore
1 1 N/2
N~ Sy | T 2(925—1 —exp)’
(e e] .
x /]_[r[degaexp(—e-g-e), (41)
A
where

8 0 2 342
0-G-0==>"{(ezp-1 — ezq-1)(ezp — e2q) [ 03" + 030)?
p<q
+ (e25-1 — exg)(eé2p — e25-1) [(955)2 + («9%5)2] }
(42)
Note that the coefficients of 62 are positive definite, given (28). The
Gaussian integral in the second line of (41) then yields

Tt

8
l_[(ezﬁ—1 — ex5—1)(€25 — exg)(eap—1 — €25) (€25 — €2g—1)
p<q

dim(M)
—2

N/2

dim(M) 1_[(8254 — €2p)
wt 2 p=1
=|— L — (43)
8 An(e)
Next, we compute the volume Vol(M). Using the volume formulae
[28-31] (see Appendix for detailed comments on these formulae)

IN/2 N(N+1)/2
Vol[U(N)] = —N (44)
[Tz T )
N2 /47 N(N+2) /4
Vol[Sp(N)] = ~—x 75— (45)
g L (2K)

we get
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Vol(M) = Vollu()] (46)
(271)N/2Vol[Sp(N)] x 2—N/2
9—N(N-2)/4 - N(N-2)/4
- i (47)
LTk —1)

Substituting (43) and (47) into (41) and recalling « = N(N + 1)/4,
we obtain

N/2
Z(t, Hy ~ 27 NN=22 S TPk — 1) g 73N/

k=1

=z
=

2

2 2
(e25-1 — €2p) €Xp —?(925—1 —e2p)

An(e)

S|
Il
-

(48)

Next we turn to (26). Due to the ordering (28), we observe the
asymptotic behavior

ZN(t, H) ~ Cyt—3N/4

N/2 5
l_[ {(925—1 — e2p) eXp [—?(925—1 - 625)2] }
p=1
X
An(e)
(49)
Matching (48) and (49) yields
N/2
Cy=2"NN=22TTr@k-1. (50)
k=1

Finally, introducing g = 2/t, we find that (26) together with (50)
is equivalent to (2). Thus we have proved (2) for 8 > 0. Since both
sides of (2) are analytic in 8, we conclude that (2) is valid for
complex B, too. This completes the proof.

5. Exactness of the saddle-point approximation

The Duistermaat-Heckman theorem [20] states that there are
special integrals that receive contributions only from critical points
of the integrand; in other words, the saddle-point approximation
becomes exact for such integrals. A trivial example is given by

b
e?—e @

/de sing st = — (51)

0

where the first term is associated with & = 0 and the second
term with & = m. The localization of the integral at these criti-
cal points can be understood from the fact that the integrand is a
total derivative: d sin6 e?<% = —1d(ea<s?). A far more nontrivial
and beautiful example for which localization holds is the Harish-
Chandra-Itzykson-Zuber integral, as pointed out by [32].

Derivation of (2) in the last section clearly illustrates that the
localization property does hold for our unitary integral as well. The
purpose of this section is to work out explicitly, for the simplest
nontrivial case of N =4, how such localization can happen.

To begin with, let us recall the fact that a 4 x 4 skew-symmetric
unitary matrix UTIU can be expressed as [33]

6
utiu => "n%;, (52)
i=1
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where X; are the basis matrices that are explicitly given in Sec. 3.1
of [33], while i is a six-dimensional real unit vector (7> = 1). Sub-
stituting (52) and H = diag(e1, e, e3, e4) into the left hand side of
(2) we obtain

fdﬁ eZﬁ[(El€z+€394)(n%+nﬁ)+(61€4+62€3)(ﬂ§+n§)+(€1€3+€2€4)(n¥+n§)].

S5
(53)

Next, we introduce three sets of polar coordinates for (ny,ns),
(n3,n5) and (nq, ng) respectively, with radial variables

Jn3+n3, bz\/n§+n§, cz\/n%—f—né. (54)

The angular variables can be integrated out trivially, yielding

a

o0 o0 o0
/ da [ db / dc |abe| 8(@® + b? + 2 — 1) en@*+rab*+ysc
—00  —00  —00

(55)

with y1 = 28(e1ex + ezes), Y2 = 2B(e1es4 + eze3), and y3 =
2B(e1e3 + ezes). Now the domain of integration is S2 and it helps
to introduce standard polar coordinates on S2, which leads to

T b
/ do sin® f d¢ ’Sinz 6 cos 0 sin ¢ cos ¢ er cos? 64y, sin® 0 cos? ¢+ sin® 0 sin? ¢
0 -

/2 w2
-3 / do f dé sin’ 6 cos® sing cos¢ e’ cos? 6+, sin? 0 cos? ¢p-+y3 sin? 0 sin® ¢ )
0 0

(56)
A careful inspection of the integrand reveals that it is a total
derivative:
sin3 0 cos @ sin ¢ cos ¢ eVt €05 0+72sin” 0 cos? g-y3 sin” 0 sin” ¢
19 3 V1 €052 0+, sin” 0 cos? p+y3 sin? 0'sin? ¢
296 99 ((Vz -2+ r+B+ - cos(2¢)J) - 67

As a result, the integral localizes on the edges of the interval, lead-
ing to a relatively simple expression

e eVZ
(56) = 2[ +
M —=vD)r1—y) =YD —72)
e’3 sg
* " —)/3)(7/2—)/3)} (58)

The interpretation of each term is straightforward. The first term is
associated with 6 =0, the second term with (0, ¢) = (7t /2, 0), and
the third term with (0, ¢) = (7t /2, 7w /2). As expected, (58) is con-
sistent with (2). This elementary derivation clearly shows why our
unitary group integral is localized on the critical points of the inte-
grand. The key to this argument is the total derivative formula (57).
We believe that this total derivative property extends to higher N,
although showing this explicitly is beyond the scope of this sec-
tion.

By contrast, for integrals over symmetric unitary matrices [19],
localization does not take place, which can be confirmed explicitly
for e.g, N=2.

6. Conclusions and outlook
In this paper, we obtained a pfaffian formula for a unitary ma-

trix integral, and used it to evaluate the &-regime partition func-
tion of two-color QCD. It was also shown that the classical result
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for the transitive ensemble between GSE and GUE can be repro-
duced with our formula.
The present work can be expanded in several directions.

v/ Our unitary matrix integral (2) is a special case of

/dU exp [Tr(UTAUHUTAU*H*)] (59)
U(N)

where H is a Hermitian matrix and A is a real antisymmetric
matrix. Putting A = I reproduces our integral. It is easy to see
that this integral is a function of the eigenvalues of A and H
only. This integral (59) deserves further study.

v In Sec. 3.1 we have only studied the partition function of mass-
less two-color QCD. The extension of our formula to the mas-
sive case is an interesting open problem.

v An extension of our formula to supergroups may be possible,
by following the methods of [34-36].

v" Our formula is valid only for Hermitian H. It is tempting to
ask whether one can relax this constraint and generalize the
formula to an arbitrary complex matrix. We speculate that
methods developed in [12,37] may be helpful in this regard.

v Our unitary matrix integral (2) is a special case of

/dU exp [Tr(UTIUHl(UTIU)THz)] (60)
U(N)

where Hq{ and H, are Hermitian matrices. Extension of (2) to
(60) is an open problem.

Declaration of competing interest
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Appendix A. Volumes of the unitary and symplectic groups

There are many conventions on the volume of Lie groups in the
literature, and one has to be extremely careful about their usage. In
this paper we performed a saddle point analysis of integrals using
generators normalized as Tr(XsXp) = 284p5. Thus it was mandatory
to calculate volumes of groups in a way consistent with this nor-
malization. We argue that (44) and (45) used in the main text are
indeed the correct formulae that conform to our normalization. In
Appendix A.1 we test our formulae by comparing them with exact
integration formulae over Lie groups. In Appendix A.2 the deriva-
tion of (44) and (45) is given.

A.1. Comparison with exact integration formulae

A.1.1. Unitary group
There is a famous integration formula [8]

7V (x) = / dU exp [; Tr(U + U] (A1)
U(N)
= 1531?5 N[I,-_ i®] (A.2)

where I,(x) is the modified Bessel function of the first kind. Using
asymptotic expansions of I;;(x) at x> 1 we find

eNx

xN?/2

7 (0 ~ (A3)

with
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= = B
1= —7— 2= 3= —F= S5
V2 2 V2m3/? (A4)
3 3642 '
54 = ﬁ’ 55 = W .

Next, let us try the saddle-point approximation of (A.1) directly.
Assuming the normalization Tr(XsXp) = 2545 for the generators
of U(N), we substitute U = e!?X into (A.1) and get, for x> 1,

II(\JU)(X) ~eNt [ qu e 307 TIX) (A.5)
U(N)
eNx x _x0?
™ ol / [ [doa e % (A6)
o A
N
_ [Ty D) e (A7)

Qm)NZ xN2/2°

where (44) was used in the last step. For N € {1, 2, 3,4, 5}, (A.7)
reproduces (A.4).

A.1.2. Unitary symplectic group
There is an integration formula over a unitary symplectic group
[38] (for even N)

P (%)= [ du eV (A8)
Sp(N)

= 15i,cbegt1v/2[1i7j(2x) — Ing2—i—j(20)]. (A.9)

Using asymptotic expansions of I;;(x) at x> 1, we find
Nx

VY 0O~ O v (A10)
with

1 3 45 14175
Cz_ﬁ, §4=§, §6=327(—3/2’ ;SZW' (A1)

Next, let us try the saddle-point approximation of (A.8) directly.
Assuming the normalization Tr(XsXp) = 284p for the generators
of Sp(N), we substitute U = X into (A.8) and get, for x> 1,

(5P) () A el /09 —x03
VP (%) VolSa V] ];[deA e (A12)
Nx N(N+1)/2
- _° (ﬁ) (A13)
Vol[Sp(N)] X
N/2 X
=1 120 et (A14)

T ON/aN/a xNIN+D/4°

where (45) was used in the last step. For N € {2,4,6, 8}, (A.14)
reproduces (A.11).

These explicit computations for unitary and symplectic groups
vindicate the validity of (44) and (45) under the normalization
condition Tr(XsXpg) =2845.

A.2. Derivation of the volume formulae

Let us begin with a brief review of the derivation of group
volume formulae in Sec. V of [28]. Since the classical groups
SO(N), U(N) and Sp(N) can all be viewed as a unitary group acting
on the real/complex/quaternion vector space, we denote (following

Physics Letters B 819 (2021) 136416

[28]) them as U(n; f) where f is the number of degrees of free-
dom per matrix element. For f =1,2 and 4 it is SO(n), U(n) and
Sp(2n), respectively.

An important observation is that there is a one-to-one corre-
spondence between the coset

Um; f)

Un-1.0 n (A15)

and an (nf — 1)-dimensional sphere embedded in R". This can
be seen from the fact that the coset acts on the polar vector
0,---,0,1) as

0 61
0 6o
=1 (A16)
Of |
1 Qn
(A17)
01601+ 0560 + -+ 6 10p_1 4670 =1. (A18)
Thus
L uk; f)
Vol[U(n; f)1=[ [ Vol | ——~— A19
ol[U(n; f)] E 0 [U(k_l;f)] (A19)
n
=[] vol(s¥~" crRY) (A.20)
k=1
n kf/2
2
_ T (A21)
A Tf/2)
2ann(n+1)f/4
(A.22)

T Tkf/2)

Unfortunately this formula cannot be immediately used for our
saddle-point analysis because it does not conform to our normal-
ization condition Tr(X4Xp) = 254 of generators. Let us explain
how to amend (A.22) for f =2 and 4, which are the cases of in-
terest.

We begin with f = 2. In real basis, the map (A.16) for n =2
reads, in the vicinity of an identity map, as

x 01416 0\ [(61+i6;
* 163+ 6p 1) 7 \if3+ 6y
1—3;_;62. This amounts to the
i0X

(A.23)

where 6, € R and 6y =
parametrization of a group element U =e

0 —i 01 00
o= (1 0) = 0) (6 2)

X3 does not satisfy our normalization condition. We should in-
stead use the generators {Xq, X2, /2X3}, or use the coordinates
{8} := {60, 61, 62, 03//2) that satisfy 67 + 67 + 67 + (v/263)* = 1.
The volume then shrinks by a factor 1 /ﬁ. This factor appears n
times in the product (A.19), so we must multiply (A.22) by 27/2,
This way we arrive at (44).

Next we turn to f =4. We again use the notation (31) for
quaternions. In real basis, the map (A.16) for n = 2 reads, in the
vicinity of an identity map, as

with generators

(A24)
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*  0gq" 0\ ([ 6aq°

« 9aq® J\a°) ~ \ @ag®
with 67 +¢Z =1 and @o ~ 1. This amounts to the parametrization
U = elfaXatio¥e (g €{0,1,2,3) and k € {1, 2, 3}) with

(A25)

_ 0 —ig"
0 O
Y= (0 —iQI<> . (A.27)

{Yy} satisfy the normalization Tr(YyY¢) = 28k¢, so they need no
rescaling. On the other hand, {X;} satisfy Tr(X,X}) = 484, which
means we should use {X,/~/2} as generators, or use the coordi-
nates

@, 9) == (v/260, V261, V262, V265, 0o, 91, 02, 93) (A.28)

that satisfy (65/+/2)% + 2 = 1. Thus the volume swells by a factor
(+/2)%. This observation easily generalizes to arbitrary n: for the
map (A.16) with general n, the number of generators that must be
rescaled is obviously 4(n — 1), so the volume swells by (+/2)4®~D,
This means that (A.22) for f =4 must be multiplied by a factor

n
H(ﬁ)4(k—1) — on(n=1).

k=1

(A.29)

This way we arrive at (45), with N = 2n.
This completes the derivation of the volume formulae consis-
tent with our normalization convention for Lie algebra.

References

[1] P. Rossi, M. Campostrini, E. Vicari, The large N expansion of unitary ma-
trix models, Phys. Rep. 302 (1998) 143-209, https://doi.org/10.1016/S0370-
1573(98)00003-9, arXiv:hep-1at/9609003.

[2] A. Morozov, Unitary integrals and related matrix models, Theor. Math. Phys.
162 (2010) 1-33, https://doi.org/10.1007/s11232-010-0001-y, arXiv:0906.3518.

[3] T. Guhr, A. Muller-Groeling, H.A. Weidenmuller, Random matrix theories in
quantum physics: common concepts, Phys. Rep. 299 (1998) 189-425, https://
doi.org/10.1016/S0370-1573(97)00088-4, arXiv:cond-mat/9707301.

[4] M. Mehta, Random Matrices, 3rd edition, Academic Press, 2004.

[5] G. Akemann, ]. Baik, P. Di Francesco, The Oxford Handbook of Random Matrix
Theory, Oxford Handbooks in Mathematics, Oxford University Press, 2011.

[6] E. Brezin, D.J. Gross, The external field problem in the large N limit of QCD,
Phys. Lett. B 97 (1980) 120-124, https://doi.org/10.1016/0370-2693(80)90562-
6.

[7] D. Gross, E. Witten, Possible third order phase transition in the large N lat-
tice gauge theory, Phys. Rev. D 21 (1980) 446-453, https://doi.org/10.1103/
PhysRevD.21.446.

[8] H. Leutwyler, A.V. Smilga, Spectrum of Dirac operator and role of winding
number in QCD, Phys. Rev. D 46 (1992) 5607-5632, https://doi.org/10.1103/
PhysRevD.46.5607.

[9] Harish-Chandra, Differential operators on a semisimple Lie algebra, Am. J.
Math. 79 (1) (1957) 87, https://doi.org/10.2307/2372387.

[10] C. Itzykson, ]. Zuber, The planar approximation. 2, J. Math. Phys. 21 (1980) 411,
https://doi.org/10.1063/1.524438.

[11] E Berezin, F. Karpelevich, Zonal spherical functions and Laplace operators on
some symmetric spaces, Dokl. Akad. Nauk SSSR 118 (1958) 9.

[12] T. Guhr, T. Wettig, An Itzykson-Zuber - like integral and diffusion for complex
ordinary and supermatrices, ]. Math. Phys. 37 (1996) 6395-6413, https://doi.
org/10.1063/1.531784, arXiv:hep-th/9605110.

[13] A. Jackson, M. Sener, ]. Verbaarschot, Finite volume partition functions and
Itzykson-Zuber integrals, Phys. Lett. B 387 (1996) 355-360, https://doi.org/10.
1016/0370-2693(96)00993-8, arXiv:hep-th/9605183.

Physics Letters B 819 (2021) 136416

[14] ]. Gasser, H. Leutwyler, Thermodynamics of chiral symmetry, Phys. Lett. B 188
(1987) 477-481, https://doi.org/10.1016/0370-2693(87)91652-2.

[15] M.E. Peskin, The alignment of the vacuum in theories of technicolor, Nucl. Phys.
B 175 (1980) 197-233, https://doi.org/10.1016/0550-3213(80)90051-6.

[16] A.V. Smilga, ]J. Verbaarschot, Spectral sum rules and finite volume partition
function in gauge theories with real and pseudoreal fermions, Phys. Rev.
D 51 (1995) 829-837, https://doi.org/10.1103/PhysRevD.51.829, arXiv:hep-th/
9404031.

[17] J. Kogut, M.A. Stephanov, D. Toublan, ]. Verbaarschot, A. Zhitnitsky, QCD-like
theories at finite baryon density, Nucl. Phys. B 582 (2000) 477-513, https://
doi.org/10.1016/50550-3213(00)00242-X, arXiv:hep-ph/0001171.

[18] E. Dyson, Statistical theory of the energy levels of complex systems. I, J. Math.
Phys. 3 (1962) 140-156, https://doi.org/10.1063/1.1703773.

[19] T. Kanazawa, Unitary matrix integral for QCD with real quarks and the GOE-
GUE crossover, Phys. Rev. D 102 (3) (2020) 034036, https://doi.org/10.1103/
PhysRevD.102.034036, arXiv:2006.10242.

[20] ].J. Duistermaat, G.J. Heckman, On the variation in the cohomology of the sym-
plectic form of the reduced phase space, Invent. Math. 69 (1982) 259-268,
https://doi.org/10.1007/BF01399506.

[21] M. Wimmer, Efficient numerical computation of the Pfaffian for dense and
banded skew-symmetric matrices, ACM Trans. Math. Softw. 38 (4) (2012) 1-17,
https://doi.org/10.1145/2331130.2331138, arXiv:1102.3440.

[22] T. Kanazawa, M. Kieburg, GUE-chGUE transition preserving chirality at finite
matrix size, J. Phys. A 51 (34) (2018) 345202, https://doi.org/10.1088/1751-
8121/aace3b, arXiv:1804.03985.

[23] G. Akemann, M. Phillips, H.-J. Sommers, The chiral Gaussian two-matrix en-
semble of real asymmetric matrices, J. Phys. A 43 (2010) 085211, https://
doi.org/10.1088/1751-8113/43/8/085211, arXiv:0911.1276.

[24] G. Akemann, T. Kanazawa, M. Phillips, T. Wettig, Random matrix theory of
unquenched two-colour QCD with nonzero chemical potential, J. High En-
ergy Phys. 03 (2011) 066, https://doi.org/10.1007/JHEPO3(2011)066, arXiv:
1012.4461.

[25] K. Splittorff, D. Son, M.A. Stephanov, QCD - like theories at finite baryon
and isospin density, Phys. Rev. D 64 (2001) 016003, https://doi.org/10.1103/
PhysRevD.64.016003, arXiv:hep-ph/0012274.

[26] M. Mehta, A. Pandey, On some Gaussian ensembles of Hermitian matrices, J.
Phys. A 16 (1983) 2655, https://doi.org/10.1088/0305-4470/16/12/014.

[27] P. Zinn-Justin, ]J. Zuber, On some integrals over the U(N) unitary group and
their large N limit, ]. Phys. A 36 (2003) 3173-3194, https://doi.org/10.1088/
0305-4470/36/12/318, arXiv:math-ph/0209019.

[28] R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications, Wiley,
New York, 1974.

[29] L. Boya, G. Sudarshan, TE. Tilma, Volumes of compact manifolds, Rep.
Math. Phys. 52 (2003) 401-422, https://doi.org/10.1016/S0034-4877(03)80038-
1, arXiv:math-ph/0210033.

[30] K. Zyczkowski, H.-]. Sommers, Hilbert-Schmidt volume of the set of mixed
quantum states, J. Phys. A, Math. Gen. 36 (39) (2003) 10115, https://doi.org/
10.1088/0305-4470/36/39/310, arXiv:quant-ph/0302197.

[31] L. Zhang, Volumes of orthogonal groups and unitary groups, arXiv:1509.00537,
2015.

[32] M. Stone, Supersymmetry and the quantum mechanics of spin, Nucl. Phys. B
314 (1989) 557-586, https://doi.org/10.1016/0550-3213(89)90408-2.

[33] T. Brauner, On the chiral perturbation theory for two-flavor two-color QCD at
finite chemical potential, Mod. Phys. Lett. A 21 (2006) 559-570, https://doi.org/
10.1142/50217732306019657, arXiv:hep-ph/0601010.

[34] T. Guhr, Dyson’s correlation functions and graded symmetry, J. Math. Phys.
32 (2) (1991) 336-347, https://doi.org/10.1063/1.529419.

[35] J. Alfaro, R. Medina, L.E. Urrutia, The Itzykson-Zuber integral for U(m/n), J.
Math. Phys. 36 (1995) 3085-3093, https://doi.org/10.1063/1.531014, arXiv:hep-
th/9412012.

[36] T. Guhr, Gelfand-Tzetlin coordinates for the unitary supergroup, Commun.
Math. Phys. 176 (1996) 555-576, https://doi.org/10.1007/BF02099250.

[37] A. Balantekin, Character expansions, Itzykson-Zuber integrals, and the QCD
partition function, Phys. Rev. D 62 (2000) 085017, https://doi.org/10.1103/
PhysRevD.62.085017, arXiv:hep-th/0007161.

[38] A. Balantekin, P. Cassak, Character expansions for the orthogonal and sym-
plectic groups, J. Math. Phys. 43 (2002) 604-620, https://doi.org/10.1063/1.
1418014, arXiv:hep-th/0108130.


https://doi.org/10.1016/S0370-1573(98)00003-9
https://doi.org/10.1016/S0370-1573(98)00003-9
https://doi.org/10.1007/s11232-010-0001-y
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
http://refhub.elsevier.com/S0370-2693(21)00356-7/bibB5BAF06CDAB21403877C9D62981B7A0Es1
http://refhub.elsevier.com/S0370-2693(21)00356-7/bibE21A4A48E8B65F06820272E0EC4D3DF2s1
http://refhub.elsevier.com/S0370-2693(21)00356-7/bibE21A4A48E8B65F06820272E0EC4D3DF2s1
https://doi.org/10.1016/0370-2693(80)90562-6
https://doi.org/10.1016/0370-2693(80)90562-6
https://doi.org/10.1103/PhysRevD.21.446
https://doi.org/10.1103/PhysRevD.21.446
https://doi.org/10.1103/PhysRevD.46.5607
https://doi.org/10.1103/PhysRevD.46.5607
https://doi.org/10.2307/2372387
https://doi.org/10.1063/1.524438
http://refhub.elsevier.com/S0370-2693(21)00356-7/bib441C2BF55ABB268EF7E3C692B83C7623s1
http://refhub.elsevier.com/S0370-2693(21)00356-7/bib441C2BF55ABB268EF7E3C692B83C7623s1
https://doi.org/10.1063/1.531784
https://doi.org/10.1063/1.531784
https://doi.org/10.1016/0370-2693(96)00993-8
https://doi.org/10.1016/0370-2693(96)00993-8
https://doi.org/10.1016/0370-2693(87)91652-2
https://doi.org/10.1016/0550-3213(80)90051-6
https://doi.org/10.1103/PhysRevD.51.829
https://doi.org/10.1016/S0550-3213(00)00242-X
https://doi.org/10.1016/S0550-3213(00)00242-X
https://doi.org/10.1063/1.1703773
https://doi.org/10.1103/PhysRevD.102.034036
https://doi.org/10.1103/PhysRevD.102.034036
https://doi.org/10.1007/BF01399506
https://doi.org/10.1145/2331130.2331138
https://doi.org/10.1088/1751-8121/aace3b
https://doi.org/10.1088/1751-8121/aace3b
https://doi.org/10.1088/1751-8113/43/8/085211
https://doi.org/10.1088/1751-8113/43/8/085211
https://doi.org/10.1007/JHEP03(2011)066
https://doi.org/10.1103/PhysRevD.64.016003
https://doi.org/10.1103/PhysRevD.64.016003
https://doi.org/10.1088/0305-4470/16/12/014
https://doi.org/10.1088/0305-4470/36/12/318
https://doi.org/10.1088/0305-4470/36/12/318
http://refhub.elsevier.com/S0370-2693(21)00356-7/bibD0FAB48744F2C932D27190F52AEC608As1
http://refhub.elsevier.com/S0370-2693(21)00356-7/bibD0FAB48744F2C932D27190F52AEC608As1
https://doi.org/10.1016/S0034-4877(03)80038-1
https://doi.org/10.1016/S0034-4877(03)80038-1
https://doi.org/10.1088/0305-4470/36/39/310
https://doi.org/10.1088/0305-4470/36/39/310
http://refhub.elsevier.com/S0370-2693(21)00356-7/bibC70D5D2A77EC17B7CAC3E18C809D2179s1
http://refhub.elsevier.com/S0370-2693(21)00356-7/bibC70D5D2A77EC17B7CAC3E18C809D2179s1
https://doi.org/10.1016/0550-3213(89)90408-2
https://doi.org/10.1142/S0217732306019657
https://doi.org/10.1142/S0217732306019657
https://doi.org/10.1063/1.529419
https://doi.org/10.1063/1.531014
https://doi.org/10.1007/BF02099250
https://doi.org/10.1103/PhysRevD.62.085017
https://doi.org/10.1103/PhysRevD.62.085017
https://doi.org/10.1063/1.1418014
https://doi.org/10.1063/1.1418014

	Unitary matrix integral for two-color QCD and the GSE-GUE crossover in random matrix theory
	1 Introduction
	2 Main result
	3 Applications
	3.1 Two-color QCD
	3.2 GSE-GUE crossover

	4 Derivation of the formula
	4.1 Step 1: the heat equation
	4.2 Step 2: the N=2 case
	4.3 Step 3: saddle point analysis

	5 Exactness of the saddle-point approximation
	6 Conclusions and outlook
	Declaration of competing interest
	Appendix A Volumes of the unitary and symplectic groups
	A.1 Comparison with exact integration formulae
	A.1.1 Unitary group
	A.1.2 Unitary symplectic group

	A.2 Derivation of the volume formulae

	References


