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Abstract

In this paper the subject of the BRST symmetry representation by means of superfields is resumed and 
extended to N = 1 supersymmetric gauge theories. Then a new extension to diffeomorphisms is presented. 
Finally some speculations of a possible global representation of BRST symmetric theories by means of 
non-trivial supermanifolds are outlined.
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The BRST symmetry, [1,2], has been a fundamental breakthrough in quantum field theory. 
Not only did it provide an elegant and rigorous framework for the renormalization program of 
quantum gauge theories, but it also opened the way to an amazing number of applications in 
related fields. Suffice it to mention topological field theories and sigma models, string and su-
perstring theories and string field theories. Whenever there is a gauge symmetry in a classical 
theory, at the quantum level a BRST symmetry appears that governs the quantum behavior of 
the theory. It is not exaggerated to say that its basic property is nilpotence: a twice repeated 
BRST transformation vanishes. This in turn, at least historically, has two origins: the first is the 
group theoretical nature of the BRST transform, the second the anticommuting property of the 
ghost and antighost fields, i.e. their wrong spin-statistic connection. The latter property is a con-
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sequence of the Faddeev–Popov quantization of gauge theories. If we perform two (classical) 
gauge transformations on a row and then repeat the operation in reverse order, the results of the 
two operations are related by a precise group theoretical rule. When, in the process of quantiza-
tion, the classical gauge parameters are replaced by ghost fields, this rule becomes the nilpotence 
of the BRST transform.

In this paper in memory of Raymond Stora I would like to elaborate on these basic proper-
ties. The geometrical nature of the BRST transform was immediately sensed, [3,4]. However, 
the geometry in question is not that of a classical gauge theory, that is the geometry of a prin-
cipal and associated fiber bundles, but rather that of a fiber bundle whose structure group is the 
infinite dimensional Lie group of gauge transformations. This was explained in [5]. But such a 
geometrical approach does not (or not yet) fit in the formalism of quantum field theory. A useful 
and simple synthesis of geometry and quantum field theory language seems to be provided by 
the supermanifold approach, [6,7]. One adds to spacetime additional anticommuting coordinates 
which faithfully mimic the above mentioned infinite dimensional geometry For instance, for a 
gauge field theory with Lie algebra valued potential form A, curvature F and ghost field c, one 
introduces an additional anticommuting coordinate ϑ , a superconnection A = φ + ϑψ , where 
φ and ψ are superfields, and a super-exterior derivative d̃ = d + dϑ ∂

∂ϑ
. Then the condition that 

the supercurvature F = d̃A +AA equals F , horizontality condition, completely determines the 
BRST ‘geometry’. It is enough to identify A with the lowest component of φ and c with the 
lowest component of ψ .

Such a superfield formalism has been subsequently enriched and applied to various models, 
see [8,9] and references therein. But altogether one can say that the superfield formalism for 
BRST has been regarded so far as an elegant decoration, whereas, for instance, superspace has 
been an important tool in the development of supersymmetric theories. In time supermanifolds 
have grown in importance and, especially in superstring theories, they have become an essential 
tool for the integration over the (super)moduli space, [10]. Therefore it is not beside the point 
to wonder if also for BRST supermanifolds can play an analogous role. In this paper I resume 
this subject. I would like to show that the superfield formalism is very flexible and applies also 
to symmetries for which the formalism has not been implemented so far: to this end I will de-
velop the formalism for supersymmetric gauge theories in superspace formulation and, then, for 
diffeomorphisms. Secondly I would like to discuss the prospects of BRST supermanifolds.

2. The superfield formalism in supersymmetric gauge theories. A proposal

In this section I will formulate the ‘BRST supergeometry’ of an N = 1 supersymmetric gauge 
theory formulated in the superspace. To start with let me summarize the superspace presentation 
of this theory.

2.1. The supermanifold formulation of SYM

From ch. XIII of [11], a supersymmetric gauge theory can be introduced as follows. One starts 
from a torsionful (but flat) superspace with supercoordinates zM = (zm, θμ, θμ̇) and introduces 
a supervielbein basis

eA(z) = dzM eM
A(z)



L. Bonora / Nuclear Physics B 912 (2016) 103–118 105
where A = (a, α, α̇) are flat indices. The vielbein satisfy

eA
MeM

B = δA
B, eM

AeA
N = δM

N, δM
N =

⎛
⎝δm

n 0 0
0 δμ

ν 0
0 0 δμ̇

ν̇

⎞
⎠ .

The vielbein are chosen to be

eA
M =

⎛
⎜⎝

δa
m 0 0

iσm
αα̇θ α̇ δα

μ 0
iθασm

αβ̇
εβ̇α̇ 0 δα̇

μ̇

⎞
⎟⎠ , eM

A =
⎛
⎝ δm

a 0 0
−iσ a

μμ̇θ̄ μ̇ δμ
α 0

−iθνσ a
νν̇ε

ν̇μ̇ 0 δμ̇
α̇

⎞
⎠ .

In such a type of supergeometry one has

deA = dzMdzN ∂

∂zN
eM

A(z), i.e.

dea = −2ieασ a
αα̇eα̇,

deα = 0,

deα̇ = 0. (1)

The flat indices derivatives DA = eA
M∂M correspond to

Da = em
a ∂m = ∂a, Dα = ∂

∂θα
+ iσm

αα̇θ̄ α̇∂m, Dα̇ = − ∂

∂θ̄ α̇
− iθασm

αα̇∂m,

because in flat space em
a = δa

m. Moreover

{Dα, D̄α̇} = −2iσm
αα̇∂m, {Dα,Dβ} = {D̄α̇, D̄β̇} = 0.

The superconnection is defined by

φ = eA φA, φA = iT rφr
A, φr

m

∣∣∣
θ=θ̄=0

= vr
m, (2)

where vr
m is the ordinary non-Abelian potential and T r are the Hermitean generators of the gauge 

Lie algebra.
The gauge curvature is given by the superform

F = dφ − φφ = 1

2
eAeBFBA.

On the flat basis this becomes

F = deAφA + 1

2
eAeB

(
DBφA − (−)abDAφB − φBφA + (−)abφAφB

)
, (3)

where the torsion term is the first on the RHS. We have

Fab

∣∣
θ=θ̄=0 = iT rvr

ab.

The dynamics is determined by the super-Bianchi identity, DF = dF − [φ, F ] = 0. They are 
solved by

Fαβ = Fα̇β̇ = Fαβ̇ = 0, (4)

with further restrictions coming from:

σa
αγ̇ Faβ + σa

βγ̇ Faα = 0, σ a ˙Faα̇ + σa
γ α̇F ˙ = 0. (5)
γβ aβ
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This allows us to write

Faα = −iσaαβ̇W̄ β̇ , W̄ α̇ = − i

4
σ̄ aα̇αFaα. (6)

Similarly

Faα̇ = −iWβσaβα̇, Wα = − i

4
Faα̇σ̄ aα̇α. (7)

Moreover the W ’s must satisfy

D̄W̄ −DW = D̄α̇W̄ α̇ −DαWα = 0, DαW̄α̇ = 0, D̄α̇Wα = 0. (8)

2.2. The ϑ superfield formalism

We introduce the coordinates Z̃M̃ = (xm, θμ, θμ̇, ϑμ̂) = (zM, ϑμ̂), with world indices M̃ =
(m, μ, μ̇, μ̂) together with flat ones Ã = (a, α, α̇, α̂). The new coordinates ϑμ̂ will correspond to 
new ‘ghost’ coordinates ϑ , ϑ̄ . These new coordinates commute with zM but anticommute with 
each other: ϑ2 = 0, ϑ̄2 = 0 and ϑϑ̄ + ϑ̄ϑ = 0.

For pedagogical reasons I will discard for the moment ϑ̄ and consider only ϑ and postpone to 
the next subsection the more complete treatment.

Notation. In this section the square bracket notation [ , ] denotes a graded commutator, with 
grading according to total Grassmannality ε of the two entries

[A,B] = AB − (−1)ε(A)εBBA. (9)

The total Grassmannality ε includes both the one related to supersymmetry and to the BRST 
symmetry.

I will call supersuperfield (ss-field) a supersymmetric superfield that is a function also of the 
coordinate ϑ . In terms of Z̃M̃ = (xm, θμ, θμ̇, ϑ) = (zM, ϑ) we have

f̃ (Z̃) = f̃ (z,ϑ) = f (z) + ϑ g(z),

where f (z) and g(z) are ordinary supersymmetric superfields. We introduce also d̃ = dZ̃M̃ ∂

∂Z̃M̃
=

d + dϑ ∂
∂ϑ

. Next we can introduce the super–super-connection (ss-connection)

�̃ = ẽÃ�̃
Ã
. (10)

We choose

ẽÃ(Z̃) =
(

eA(z) 0
0 dϑ

)
.

So

�̃ = φ̃ + dϑφ̃ϑ ,

where

φ̃ = eAφ̃A = eA (φA + ϑψA) , φ̃ϑ = ϕϑ + ϑψϑ. (11)
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φA, ψA, ϕϑ and ψϑ are ordinary superfields valued in the gauge Lie algebra with generators T r . 
The BRST interpretation is:

g = δBf, ψA = δBφA, ψϑ = δBϕϑ . (12)

The ss-curvature can be written

F̃ = d̃�̃ − �̃�̃

= F̃ + dϑ
(
(∂ϑ − φ̃ϑ )φ̃ − (d − φ̃)φ̃ϑ

)
+ dϑ2(∂ϑ φ̃ϑ − φ̃ϑ φ̃ϑ ), (13)

the horizontality condition is F̃ = F . Thus the terms proportional to dϑ and dϑ2 must vanish. 
From

∂ϑ φ̃ϑ − φ̃ϑ φ̃ϑ = 0,

we get

ψϑ − ϕϑϕϑ = 0, ψϑϕϑ − ϕϑψϑ = 0. (14)

The second equation is identically satisfied once we satisfy the first

ψϑ = ϕϑϕϑ . (15)

This is a definition for ψϑ . The lowest component of ϕϑ is an anticommuting scalar valued in 
the gauge Lie algebra, and is to be identified with the ghost field c = cr(x) T r .

From the term proportional to dϑ we get two conditions

ψA = DAϕϑ − [φA,ϕϑ ] ≡DAϕϑ, (16)

DAψϑ − [ψA,ϕϑ ] = 0, (17)

where DA denotes the super-gauge-covariant derivative. Inserting the first into the LHS of the 
second we get

DA (ψϑ − ϕϑϕϑ) ,

which is the covariant derivative of (15) and thus vanishes. Therefore the independent relations 
are the first of (14) and (16). They define the BRST transform of ϕϑ and φA, respectively.

The surviving term in (13) is

F̃ = F + ϑ
(
(deA)ψA − eAφA eBψB + eAψA eBφB

)
. (18)

The term deA is the superspace (super)torsion. The term linear in ϑ is the BRST transform 
of the supercurvature. But some of the components of F actually vanish, so we have to verify 
that their BRST transform also vanish. At this point we could easily write the Bianchi identity 
DF = 0 in a BRST-covariant form. Since this is a very cumbersome procedure we prefer to 
BRST-covariantize the constraints extracted from it in chapter XIII of [11].

For instance

F̃αβ = Fαβ + ϑ
(
Dαψβ −Dβψα

)
.

Since Fαβ = 0 due to (4), it must be that

Dαψβ +Dβψα = 0. (19)
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This can be verified using (16),

Dαψβ +Dβψα = −[Fαβ,ϕϑ ] = 0,

thanks again to (4).
In the α, β̇ case we must have instead

F̃αβ̇ = Fαβ̇ + ϑ
(

2iσ a

αβ̇
ψa +Dαψ̄β̇ + D̄β̇ψα

)
= 0. (20)

We notice that

Dαψ̄β̇ + D̄β̇ψα = [Fαβ̇ − 2iσ a

αβ̇
Da, ϕϑ ].

Thus

F̃αβ̇ = Fαβ̇ − ϑ[Fαβ̇, ϕϑ ]. (21)

Therefore the BRST transform is consistent with the constraint Fαβ̇ = 0. In fact one must notice 
that, for all indices,

F̃AB = FAB + ϑ[FAB,ϕϑ ]. (22)

Thanks to this equation also the constraints (5) can be written in a BRST-covariant form (that is, 
for instance, with F replaced by F̃ ).

So far the constraints (4) are consistently satisfied. Next we have to satisfy the analog of (8). 
We can introduce the BRST covariant definitions for Wα and Wα̇ :

W̃α = − i

4
F̃aα̇σ̄ aα̇α, ˜̄Wα̇ = − i

4
σ̄ aα̇αFaα.

The BRST covariant analogs of (8) can be written as follows:

D̃α
˜̄Wα̇,

˜̄Dα̇W̃α = 0, . . . , (23)

where we define

D̃A = DA + [φ̃A, ]. (24)

Using these definitions we find

˜̄Dα̇W̃α = i

4
σaαβ̇

(
D̄α̇

(
Faβ̇ + ϑ[Faβ̇, ϕϑ ]

)
+ ϑ[ψα̇,F aβ̇ ]

)

= D̄α̇Wα − ϑ[D̄α̇Wα,ϕϑ ] = 0, (25)

consistently. The other constraints can be rewritten in the same way.

2.3. The ϑ , ϑ̄ superfield formalism

Now I will switch on the second ‘ghost’ coordinate ϑ̄ and I will call supersuperfield (ss-field) 
a superfield that is a function also of the coordinate ϑ̄ . In terms of Z̃M̃ = (xm, θμ, θμ̇, ϑ, ϑ̄) =
(zM, ϑ, ϑ̄) we have

f̃ (Z̃) = f̃ (z,ϑ, ϑ̄) = f (z) + ϑ ḡ(z) + ϑ̄g(z) + ϑϑ̄h(z),
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where f (z), g(z), ḡ(z) and h(z) are ordinary supersymmetric superfields. The BRST–anti-BRST 
interpretation is

g = δBf, ḡ = δ̄Bf, h = δ̄Bg = −δBḡ. (26)

We introduce also the ss-exterior derivative d̃ = dZ̃M̃ ∂

∂Z̃M̃
= d + dϑ ∂

∂ϑ
+ dϑ̄ ∂

∂ϑ̄
.

The super–super-connection (ss-connection) is

�̃ = ẽÃ�̃
Ã
. (27)

We choose

ẽÃ(Z̃) =
⎛
⎝eA(z) 0 0

0 dϑ 0
0 0 dϑ̄

⎞
⎠ .

So

�̃ = φ̃ + dϑφ̃ϑ + dϑ̄φ̃ϑ̄ ,

where

φ̃ = eAφ̃A = eA
(
φA + ϑψ̄A + ϑ̄ψA + ϑϑ̄πA

)
,

φ̃ϑ = ϕϑ + ϑψ̄ϑ + ϑ̄ψϑ + ϑϑ̄�ϑ,

φ̃ϑ̄ = ϕϑ̄ + ϑψ̄ϑ̄ + ϑ̄ψϑ̄ + ϑϑ̄�ϑ̄ . (28)

φA, ψA, . . . , �ϑ̄ are ordinary superfields valued in the gauge Lie algebra with generators T r .
The ss-curvature can be written

F̃ = d̃�̃ − �̃�̃

= F̃ + dϑ
(
(∂ϑ − φ̃ϑ )φ̃ − (d − φ̃)φ̃ϑ

)
+ dϑ̄

(
(∂ϑ̄ − φ̃ϑ̄ )φ̃ − (d − φ̃)φ̃ϑ̄

)

+ dϑdϑ
(
∂ϑ φ̃ϑ − φϑφ̃ϑ

)
+ dϑ̄dϑ̄

(
∂ϑ̄ φ̃ϑ̄ − φϑ̄ φ̃ϑ̄

)

+ dϑdϑ̄
(
∂ϑ φ̃ϑ̄ + ∂ϑ̄ φ̃ϑ − φ̃ϑ φ̃ϑ̄ − φ̃ϑ̄ φ̃ϑ

)
, (29)

and the horizontality condition is

d̃�̃ − �̃�̃ = F. (30)

It gives rise to the following set of equations

F̃ = F, (31)

(∂ϑ − φ̃ϑ )φ̃ − (d − φ̃)φ̃ϑ = 0, (32)

(∂ϑ̄ − φ̃ϑ̄ )φ̃ − (d − φ̃)φ̃ϑ̄ = 0, (33)

∂ϑ φ̃ϑ − φϑφϑ = 0, (34)

∂ϑ̄ φ̃ϑ̄ − φϑ̄φϑ̄ = 0, (35)

∂ϑ φ̃ ¯ + ∂ ¯ φ̃ϑ − φϑφ ¯ − φ ¯ φϑ = 0. (36)
ϑ ϑ ϑ ϑ



110 L. Bonora / Nuclear Physics B 912 (2016) 103–118
Eqs. (34), (35) yield the identification

ψ̄ϑ = ϕϑϕϑ, ψϑ̄ = ϕϑ̄ϕϑ̄ , (37)

�ϑ = [ψϑ,ϕϑ ], �ϑ̄ = −[ψ̄ϑ̄ , ϕϑ̄ ]. (38)

The remaining equations

ψ̄ϑϕϑ = ϕϑψ̄ϑ , ψϑ̄ϕϑ̄ = ϕϑ̄ψϑ̄

�ϑϕϑ + ϕϑ�ϑ + ψ̄ϑψϑ − ψϑψ̄ϑ = 0, �ϑ̄ϕϑ̄ + ϕϑ̄�ϑ̄ + ψ̄ϑ̄ψϑ̄ − ψϑ̄ψ̄ϑ̄ = 0, (39)

are identically satisfied.
The lowest component of ϕϑ is an anticommuting scalar valued in the gauge Lie algebra, and 

is to be identified with the ghost field c = cr(x) T r . Its BRST transform is ψ̄ϑ . ϕϑ is the BRST 
transform parameter. The lowest component of ϕϑ̄ is to be identified with the dual ghost field 
c̄ = c̄r (x) T r . Its anti-BRST transform is ψϑ̄ .

Eq. (36) gives the relation

ψϑ + ψ̄ϑ̄ = ϕϑϕϑ̄ + ϕϑ̄ϕϑ, (40)

which is to be interpreted as the Curci–Ferrari relation, [12], and ψϑ + ψ̄ϑ̄ are the Lautrup–
Nakanishi superfields. Using (40) the remaining relations

�ϑ = [ϕϑ, ψ̄ϑ̄ ] + [ϕϑ̄ , ψ̄ϑ ],
�ϑ̄ = −[ϕϑ,ψϑ̄ ] − [ϕϑ̄ ,ψϑ ],
[ψ̄ϑ ,ψϑ̄ ] + [ψ̄ϑ̄ ,ψϑ ] + [�ϑ,ϕϑ̄ ] + [�ϑ̄,ϕϑ ] = 0, (41)

turn out to be identically verified.
Let us come next to the constraint (32). It implies the definitions

ψ̄A = DAϕϑ − [φA,ϕϑ ] =DAϕϑ, (42)

πA =DAψϑ − [ψA,ϕϑ ], (43)

and the identities

DAψ̄ϑ − [ψ̄A, , ϕϑ ] = 0

DA�ϑ − [πA,ϕϑ ] + [ψ̄A, ,ψϑ ] − [ψA, , ψ̄ϑ ] = 0, (44)

while from (33) we get the definitions

ψA = DAϕϑ̄ − [φA,ϕϑ̄ ] =DAϕϑ̄ , (45)

πA = −DAψ̄ϑ̄ + [ψ̄A,ϕϑ̄ ], (46)

and the identities

DAψϑ̄ − [ψA,ϕϑ̄ ] = 0

DA�ϑ̄ − [πA,ϕϑ̄ ] + [ψ̄A, ,ψϑ̄ ] − [ψA, , ψ̄ϑ̄ ] = 0. (47)

The superfield ψA, ψ̄A, πA are easily recognized (anti)BRST transform. The equivalence of (43)
and (46) can be proven by means of the CF condition.

Next let us come to (31). In general, using (3), one can show that

F̃AB = FAB − ϑ[FAB,ϕϑ ] − ϑ̄[FAB,ϕ ¯ ] − ϑϑ̄
([FAB,ψϑ ] − [[FAB,ϕ ¯ ], ϕϑ ]) . (48)
ϑ ϑ
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In proving this a particular attention must be paid to the (A, B) = (α, β̇) case. The definition (3)
includes in this case also a contribution from the supertorsion; but this contribution is exactly 
canceled by an analogous term coming from the first commutator (2).

From (48) it this evident that the constraints (4) can be covariantly implemented in the BRST 
formalism. Also here instead of solving the ss-Bianchi identity, we prefer to covariantize the 
constraints extracted from it in chapter XIII of [11]. In the same way as (4) also (5) can be 
covariantly implemented in the BRST formalism. Moreover, using (6), (7), we can introduce the 
ss-field expressions for W̃α

W̃α = Wα − ϑ[Wα,ϕϑ ] − ϑ̄[Wα,ϕϑ̄ ] − ϑϑ̄
([Wα,ψϑ ] − [[Wα,ϕϑ̄ ], ϕϑ ]) , (49)

and an analogous one for W̃α̇ . The next issue is now to BRST-covariantize the constraints (8).
Let us use the compact notation α to denote both α and α̇ and introduce the BRST super-

covariant derivative

D̃αW̃β = DαW̃β − [φ̃α, W̃β ], (50)

then it is lengthy but straightforward to prove that

D̃αW̃β =DαWβ − ϑ[DαWβ,ϕϑ ] − ϑ̄[DαWβ,ϕϑ̄ ]
− ϑϑ̄

(
[DαWβ,ψϑ ] − [[DαWβ,ϕϑ̄ ], ϕϑ ]

)
. (51)

This allows us to write down the constraints (8) in a BRST covariant form.
Of course this is only the beginning of the story when quantizing an N = 1 supersymmetric 

Yang–Mills theory. Then one has to fix the gauge and show that the overall action can be writ-
ten in an invariant way in the enlarged superspace. Finally one should not forget that concrete 
calculations are carried out in the Wess–Zumino gauge. But at least this section shows that the 
BRST formalism can be consistently embedded in a supermanifold that encompasses also the 
supersymmetric spinorial directions.

3. Diffeomorphisms and the superfield formalism

A first proposal of a superfield formalism for diffeomorphisms was made by [7]. Here I present 
another approach to the same problem, closer in spirit to the standard (commutative) geometrical 
approach and to the discussion in the next section.

Diffeomorphisms, or general coordinate transformations, are defined by means of a local pa-
rameter ξμ(x): xμ → xμ + ξμ(x). In a quantized theory this is promoted to an anticommuting 
field. The BRST transformation are

δξϕ = ξλ∂λ,ϕ (52)

δξAμ = ξλ∂λAμ + ∂μξλAλ, (53)

δξ gμν = ξλ∂λgμν + ∂μξλgλν + ∂νξ
λgμλ, (54)

δξ ξ
μ = ξλ∂λξ

μ, (55)

for a scalar field, a vector field, the metric and ξ . These transformations are nilpotent. We will 
introduce another anticommuting field, ξ̄ , and a δξ̄ transformation, which transforms a scalar, 
vector, the metric and ξ̄ in the same way as δξ , and, in addition,

δξ ξ̄
μ = ξν∂ν ξ̄

μ, δ ¯ξμ = ξ̄ ν∂νξ
μ. (56)
ξ
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The overall transformation δξ + δξ̄ is nilpotent:

(δξ + δξ̄ )
2 = 0.

Introducing this additional field seems to be completely unmotivated, but in fact it is needed if 
we want an invertible supermetric.

3.1. The superfield formalism

One introduces the superspace XM = (xμ, ϑ, ϑ̄), where ϑ , ϑ̄ are anticommuting. A diffeo-
morphism is represented by a superspace transformation XM = (xμ, ϑ) → X̃M = (xμ − ϑξ̄μ −
ϑ̄ξμ, ϑ, ϑ̄), where ξ , ξ̄ and ϑϑ̄ , anticommute. The horizontality condition is formulated by se-
lecting appropriate covariant expressions in ordinary spacetime and identifying them with the 
same expressions extended to the superspace. Below we work out explicitly the case of a scalar, 
a vector field and the metric.

3.1.1. The scalar
For instance, a scalar field ϕ is embedded in the superfield

�(X) = ϕ(x) + ϑb̄(x) + ϑ̄b(x) + ϑϑ̄c(x),

and gets transformed into

�(X̃) = ϕ(x) − (ϑξ̄ + ϑ̄ξ ) · ∂ϕ(x) + ϑ
(
b̄(x) − ϑ̄ξ(x) · b̄(x)

) + ϑ̄
(
b(x) − ϑb̄(x)

)
+ ϑϑ̄

(
c(x) − ξ̄ μξν∂μ∂νϕ(x)

)
= ϕ(x) + ϑ

(
b̄(x) − ξ̄ · ∂ϕ(x)

) + ϑ̄ (b(x) − ξ · ∂ϕ(x))

+ ϑϑ̄
(
c(x) − ξ · ∂b̄(x) + ξ̄ · ∂b(x)

)
. (57)

Horizontality means

�(X̃M) = ϕ(xμ), (58)

which implies

b(x) = ξ · ∂ϕ(x), b̄(x) = ξ̄ · ∂ϕ(x)

c(x) = ξ · ∂b̄(x) − ξ̄ · ∂b(x) + ξ̄ μξν∂μ∂νϕ(x). (59)

It is easy to prove that

δξ̄ ϕ(x) = b̄(x), δξϕ(x) = b(x), δξ δξ̄ ϕ = −δξ̄ δξϕ = c(x). (60)

That is the diffeomorphism transforms of ϕ are its superpartner in the superfield.

3.1.2. The vector
Let us extend this to a vector field. In order to apply the horizontality condition we have to 

identify the appropriate expression. This is a 1-superform:

AM(X)dXM = Aμ(X)dxμ + Aϑ(X)dϑ + A ¯ (X)dϑ̄, (61)
ϑ
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and

Aμ(X) = Aμ(x) + ϑ φ̄μ(x) + ϑ̄φμ(x) + ϑϑ̄Bμ(x), (62)

Aϑ(X) = χ(x) + ϑC̄(x) + ϑ̄C(x) + ϑϑ̄ψ(x), (63)

Aϑ̄ (X) = λ(x) + ϑD̄(x) + ϑ̄D(x) + ϑϑ̄ρ(x). (64)

Horizontality means that

AM(X̃)d̃X̃M = Aμ(x)dxμ, (65)

where d̃ = ∂
∂xμ dxμ + ∂

∂ϑ
dϑ + ∂

∂ϑ̄
dϑ̄ . Thus

d̃X̃M = (
dxμ − ϑ ∂λξ̄

μdxλ − ϑ̄ ∂λξ
μdxλ − ξμdϑ − ξ̄ μdϑ̄, dϑ, dϑ̄

)
.

Expanding we find

ÃM(X̃)d̃X̃M =
(

Aμ − (
ϑξ̄ + ϑ̄ξ

) · ∂Aμ + ϑϑ̄ ξ ξ̄ · ∂2Aμ + ϑ
(
φ̄μ − ϑ̄ξ · ∂φ̄μ

)

+ ϑ̄
(
φμ − ϑξ̄ · ∂φμ

) + ϑϑ̄ Bμ(x)

)(
dxμ − ϑ ∂λξ̄

μdxλ − ϑ̄ ∂λξ
μdxλ − ξ̄ μdϑ − ξμdϑ̄

)

+
(

χ(x) − (
ϑξ̄ + ϑ̄ξ

) · ∂χ(x) + ϑϑ̄ · ∂2χ(x)

+ ϑ
(
C̄(x) − ϑ̄ξ · ∂C̄(x)

) + ϑ̄
(
C(x) − ϑξ̄ · ∂C(x)

) + ϑϑ̄ψ(x)

)
dϑ

+
(

λ(x) − (
ϑξ̄ + ϑ̄ξ

) · ∂λ(x) + ϑϑ̄ · ∂2λ(x)

+ ϑ
(
D̄(x) − ϑ̄ξ · ∂D̄(x)

) + ϑ̄
(
D(x) − ϑξ̄ · ∂D(x)

) + ϑϑ̄ρ(x)

)
dϑ̄ = Aμ(x)dxμ, (66)

where ξ ξ̄ ·∂2 = ξμξ̄ ν∂μ∂ν . The commutation prescriptions are: xμ, ϑ , ϑ̄ , ξμ commute with dxμ, 
dϑ ; ξμ anticommute with ϑϑ̄ . Working out (66) we obtain the following identifications:

φμ = ξ · ∂Aμ + ∂μξλAλ, (67)

φ̄μ = ξ̄ · ∂Aμ + ∂μξ̄λAλ, (68)

Bμ = ξ · ∂φ̄μ − ξ̄ · ∂φμ − ξ ξ̄ · ∂2Aμ + ∂μξ̄λξ · ∂Aλ − ∂μξλξ̄ · ∂Aλ

+ ∂μξ̄λφλ − ∂μξλφ̄λ, (69)

χ = Aμξ̄μ, (70)

C = −ξ · ∂Aμξ̄μ + φμξ̄μ + ξ · ∂χ, (71)

C̄ = −ξ̄ · ∂Aμξ̄μ + φ̄μξ̄μ + ξ̄ · ∂χ, (72)

ψ = ξ ξ̄ · ∂2Aμξ̄μ − ξ · ∂φ̄μξ̄μ + ξ̄ · ∂φμξ̄μ + Bμξ̄μ − ξ ξ̄ · ∂2χ + ξ · ∂C̄ − ξ̄ · ∂C, (73)

and

λ = Aμξμ (74)

D = −ξ · ∂Aμξμ + φμξμ + ξ · ∂λ, (75)

D̄ = −ξ̄ · ∂Aμξμ + φ̄μξμ + ξ̄ · ∂λ, (76)

ρ = ξ ξ̄ · ∂2Aμξμ − ξ · ∂φ̄μξμ + ξ̄ · ∂φμξμ + Bμξμ − ξ ξ̄ · ∂2λ + ξ · ∂D̄ − ξ̄ · ∂D. (77)
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One can prove that

φμ = δξAμ, φ̄μ = δξ̄Aμ, Bμ = δξ̄ φμ = −δξ φ̄μ. (78)

D = δξλ, D̄ = δξ̄ λ, ρ = −δξ̄D = δξ D̄. (79)

In particular

ρ = ξ · ∂ξ̄ · ∂Aμξμ − ξ̄ · ∂ξ · ∂Aμξμ + ξ̄ · ∂ξμ ξ · ∂Aμξμ

− ξ · ∂ξ̄μ ξ · ∂Aμξμ + ξ ξ̄ · ∂2Aμξμ. (80)

Analogously

C = δξχ, C̄ = δξ̄ χ, ψ = −δξ̄C = δξ C̄. (81)

3.1.3. The metric
In the same way we can treat the metric gμν(x). We embed it in a supermetric GMN(X) and 

form the symmetric 2-superform

GMN(X)d̃XM ∨ d̃XN, (82)

where ∨ denotes the symmetric tensor product and

Gμν(X) = gμν(x) + ϑ �̄μν(x) + ϑ̄�μν(x) + ϑϑ̄Vμν(x),

Gμϑ(X) = γμ(x) + ϑ ḡμ(x) + ϑ̄gμ(x) + ϑϑ̄�μ(x) = Gϑμ(X),

Gμϑ̄ (X) = γ̄μ(x) + ϑ f̄μ(x) + ϑ̄fμ(x) + ϑϑ̄�̄μ(x) = Gϑ̄μ(X), (83)

Gϑϑ̄(X) = g(x) + ϑ γ̄ (x) + ϑ̄γ (x) + ϑϑ̄G(x) = −Gϑ̄ϑ(X), (84)

while Gϑϑ(X) = 0 = Gϑ̄ϑ̄ (X), because the symmetric tensor product becomes antisymmetric 
for anticommuting variables: dϑ ∨ dϑ = 0 = dϑ̄ ∨ dϑ̄, dϑ ∨ dϑ̄ = −dϑ̄ ∨ dϑ .

The horizontality condition is obtained by requiring

GMN(X̃)d̃X̃M ∨ d̃X̃N = gμν(x)dxμ ∨ dxν, (85)

which is explicitly rewritten as

gμν(x)dxμ ∨ dxν

= GMN(X̃)d̃X̃M ∨ d̃X̃N

=
(
gμν − (

ϑξ̄ + ϑ̄ξ
) · ∂gμν + ϑϑ̄ ξ ξ̄ · ∂2gμν

+ ϑ
(
�̄μν − ϑ̄ξ · ∂�̄μν

) + ϑ̄
(
�μν − ϑξ · ∂�μν

)
+ ϑϑ̄ Vμν(x)

)(
dxμ − ϑ ∂λξ̄

μdxλ − ϑ̄ ∂λξ
μdxλ − ξ̄ μdϑ − ξμdϑ̄

)
∨ (

dxν − ϑ ∂ρξ̄ νdxρ − ϑ̄ ∂ρξνdxρ − ξ̄ νdϑ − ξνdϑ̄
)

+ 2
(
γμ − (

ϑξ̄ + ϑ̄ξ
) · ∂γμ + ϑϑ̄ ξ ξ̄ · ∂2γμ + ϑ

(
ḡμ − ϑ̄ξ · ∂ḡμ

)

+ ϑ̄
(
gμ − ϑξ · ∂gμ

) + ϑϑ̄ �μ(x)
)

× (
dxμ − ϑ ∂λξ̄

μdxλ − ϑ̄ ∂λξ
μdxλ − ξ̄ μdϑ − ξμdϑ̄

) ∨ dϑ

+ 2
(
γ̄μ − (

ϑξ̄ + ϑ̄ξ
) · ∂γ̄μ + ϑϑ̄ ξ ξ̄ · ∂2γ̄μ + ϑ

(
f̄μ − ϑ̄ξ · ∂f̄μ

)
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+ ϑ̄
(
fμ − ϑξ · ∂fμ

) + ϑϑ̄ �̄μ(x)
)

× (
dxν − ϑ ∂λξ̄

νdxλ − ϑ̄ ∂λξ
νdxλ − ξ̄ νdϑ − ξνdϑ̄

) ∨ dϑ

+
(
g − (

ϑξ̄ + ϑ̄ξ
) · ∂g + ϑϑ̄ ξ ξ̄ · ∂2g + ϑ

(
γ̄ − ϑ̄ξ · ∂γ̄

)

+ ϑ̄ (γ − ϑξ · γ ) + ϑϑ̄G
)
dϑ ∨ dϑ̄, (86)

where all the fields in the RHS are function of x. From this it follows that

�μν = ξ · ∂gμν + ∂μξλgλν + ∂νξ
λgμλ = δξgμν, (87)

�̄μν = ξ̄ · ∂gμν + ∂μξ̄λgλν + ∂ν ξ̄
λgμλ = δξ̄ gμν, (88)

Vμν = −ξ ξ̄ · ∂2gμν + ξ · ∂�̄μν + ∂μξλ�̄λν + ∂νξ
λ�̄μλ − ξ̄ · ∂�μν − ∂μξ̄λ�λν − ∂ν ξ̄

λ�μλ

+ ∂μξ̄λξ · ∂gλν + ∂ν ξ̄
λξ · ∂gμλ − ∂μξλξ̄ · ∂gλν − ∂νξ

λξ̄ · ∂gμλ

+ ∂μξ̄λ∂νξ
ρgλρ + ∂ν ξ̄

λ∂μξρgλρ

= ∂λξ
ρ∂ν ξ̄

λgμρ + ∂νξ
λ∂λξ̄

ρgμρ

= δξ �̄μν = −δξ̄�μν. (89)

Moreover,

γμ = gμνξ̄
ν, (90)

gμ = ∂μξλgλν ξ̄
ν + ∂νξ

λgμλξ̄
ν + ξ · ∂gμνξ̄

ν + gμνξ · ∂ξ̄ ν = δξ γμ, (91)

ḡμ = ξ̄ · ∂gμνξ̄
ν + ∂μξ̄λgλν ξ̄

ν = δξ̄ γμ, (92)

�μ = −ξ ξ̄ · ∂2γμ + ξ · ∂ḡμ − ∂μξ̄λgλ − ξ̄ · ∂gμ + ∂μξλḡλ + ∂μξ̄λξ · ∂γλ − ∂μξλξ̄ · ∂γλ

+ ∂λξ
ρ∂ν ξ̄

λgμρξ̄ ν + ∂νξ
λ∂λξ̄

ρgμρξν

= −δξ̄ gμ = δξ ḡμ, (93)

and

γ̄μ = gμνξ
ν, (94)

f̄μ = ∂μξ̄λgλνξ
ν + ∂ν ξ̄

λgμλξ
ν + ξ̄ · ∂gμνξ

ν + gμνξ̄ · ∂ξν = δξ̄ γ̄μ, (95)

fμ = ξ · ∂gμνξ
ν + ∂μξλgλν ξ̄

ν = δξ γ̄μ, (96)

�̄μ = δξ f̄μ = −δξ̄ fμ. (97)

Finally

g = gμν

(
ξ̄ μξν − ξμξ̄ ν

) = 2gμνξ̄
μξν, (98)

γ = 2ξ · ∂gμνξ̄
μξν + 2gμν

(
ξ · ∂ξ̄μ − ξ̄ · ∂ξμ

)
ξν = δξg, (99)

γ̄ = 2ξ̄ · ∂gμνξ̄
μξν + 2gμν

(
ξ · ∂ξ̄μ − ξ̄ · ∂ξμ

)
ξ̄ ν = δξ̄ g, (100)

G = δξ γ̄ = −δξ̄ γ . (101)

This completes the verification that the horizontality condition leads to identifying the ϑ - and 
ϑ̄ -superpartners of the metric as BRST transforms with the rule (26). It is easy to see that if we 
switch off ϑ̄ , the supermetric cannot be inverted.
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4. Speculations

The two previous sections are meant to make evident the fact that the superfield formalism can 
encompass all the BRST symmetries which characterize various different field theories. On the 
other hand, apart from the details which are sometimes thorny, there is a priori very little doubt 
that this should be the case given the isomorphic algebraic structures of BRST symmetry and 
the geometry of the supermanifolds considered above. The two previous sections, on the other 
hand, concern the general algebraic structure of the BRST symmetry, and are independent of 
the particular gauge fixing which one may choose (and which, when inserted in the action, with 
possible appropriate auxiliary terms, must respect this symmetry). In terms of supermanifolds 
this corresponds to the fact that all our previous supergeometries were in fact local, that is limited 
to a local (super)patch. To make this point more clear it is worth summarizing a few definitions 
concerning supermanifolds, see for instance [13] and references therein.

Supermanifolds are defined, in analogy with manifolds, by atlases of local patches. For sim-
plicity let me start from a simple-minded superspace spanned by even and odd (anticommuting) 
coordinates xμ, ϑa , μ = 1, . . . , d and a = 1, 2, where ϑ1 = ϑ, ϑ2 = ϑ̄ . Then a supermanifold M
is given by local patches Uα with supercoordinates xμ

α , ϑa
α , each one being a local copy of the 

previous superspace, with transition functions in the overlap Uα ∩ Uβ

xμ
α = f

μ
αβ(x1

β, . . . |ϑ1
β,ϑ2

β), ϑa
α = ψa

αβ(x1
β, . . . |ϑ1

β,ϑ2
β), (102)

and compatibility conditions on triple overlaps. This is the generic definition of a supermanifold. 
Notice that since the transition functions ψa

αβ are odd, if we set ϑa = 0 we get ψa
αβ = 0. As a 

consequence what remains are the transition functions f μ
αβ(x1

β, . . . |0, 0) of an ordinary manifold 
Mred . To be more precise I should specify whether M is complex or real. But for my needs here 
the notion of split supermanifold is going to be enough. M is split if the even transition functions 
f

μ
αβ do not depend on the odd variable and the odd transition functions depend linearly on ϑa, 

i.e.

ψa
αβ(x1

β, . . . |ϑ1
β,ϑ2

β) = ϕa1
αβ(x1

β, . . . xd
β)ϑ1

β + ϕa2
αβ(x1

β, . . . xd
β )ϑ2

β. (103)

In this case M is a vector bundle over Mred with a fiber determined by the odd directions ϑ1 and 
ϑ2. A split supermanifold seems to be the notion of supermanifold instrumental to the BRST 
superfield formalism in the case of a gauge theory. In this case in fact one uses the condition of 
‘horizontality’, i.e. the fact that the gauge supercurvature in the supermanifold must equal the 
curvature in Mred . This idea comes from the Weil horizontality in the theory of fiber bundles, 
whereby the geometric curvature of the bundle is actually a basic form, that is it depends only 
on the points in the base space, not on the fiber. It would seem at first sensible to associate the 
notion of horizontality for the BRST formalism in gauge theories to the fact that the relevant 
supermanifold is split. But, in fact, the solution may not be so simple (see below).

In the case of gauge supersymmetry in superfield formulation the relevant coordinates are 
(xm, θμ, θμ̇, ϑ, ϑ̄), so Mred is itself a supermanifold.1 So M in this case is an odd vector bundle 
over a supersymmetric supermanifold. If diffeomorphisms are concerned the notion of hori-
zontality I have used may not be globally valid. It is a recent acquisition that, in the case of 

1 The spinorial variables θμ and ϑa , although all odd, are of different nature and should not be mixed. For instance 
we cannot sum the former with the latter ones.



L. Bonora / Nuclear Physics B 912 (2016) 103–118 117
superstring theory in the RNS formulation, the relevant supermanifold is generally not holomor-
phically split (a refinement of the previous notion of split supermanifold).

But let us return to the previous case of a (non-supersymmetric) gauge theory, and let us sup-
pose that the gauge has been fixed and a BRST invariant action is at hand. In order to compute 
a given amplitude one has further to integrate over the moduli space M, i.e. over the space of 
gauge orbits. In this case the relevant geometry is that of a family of superspaces, that is a fibered 
superspace over M where each fiber is a copy of M . The problem is well-known and not yet 
satisfactorily solved for 4d gauge theories, see for instance [14,15]. The difficulty is related to 
the nonexistence of a continuous section over the moduli space, i.e. of a continuous choice of a 
representative for each orbit. When fixing the gauge-slice locally, for instance the Landau gauge, 
the problem manifests itself with the appearances of Gribov copies at the horizon. These are 
global aspects of the problem and they certainly signal the lack of a global gauge-slice, but also 
the failure of BRST symmetry in foliating the space of gauge connections in a regular way. At 
this point it is illuminating to look at Ref. [16]. In this paper the authors analyze the observable 
of 2d topological gravity. The local correlators they compute come from integrating over the su-
permoduli space of the Riemann surfaces with punctures, and turn out not to be globally defined 
and simultaneously to violate the BRST Ward identities. It is by using these BRST anomalies 
(cocycles) and the Čeck–De Rham complex that it is possible to construct globally defined cor-
relators which locally reduce to the previous ones. Although this problem is different (in some 
sense more complicated but in general far simpler) than the gauge theory one, it teaches us an 
important lesson. The appearance of Gribov copies at the horizon can be seen as a breakdown 
of the local BRST symmetry. This symmetry should be ‘bent’ or ‘deformed’ in some way in 
order to provide a regular foliation of the connection space and avoid copies. But this means that 
the linear vector space structure of the odd fibers of M breaks down, and, as a consequence, M
cannot be anymore split. On the other hand, the example of [16] tells us that it may be possible to 
‘repair’ these fractures of the gauge theory texture by a more complicated construction, hopefully 
a nontrivial supermanifold with non-split structure. If the above conjecture makes any sense it 
would mean that the superfield formulation (of any theory) can store very significant information 
about its quantum structure.
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