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Abstract: This paper presents a novel approach to predicting specific monitoring timeframes for

Permanent Pacemaker Implantation (PPMI) requirements following a Transcatheter Aortic Valve

Replacement (TAVR). The method combines Quantum Ant Colony Optimization (QACO) with the

Adaptive Neuro-Fuzzy Inference System (ANFIS) and incorporates expert knowledge. Although this

forecast is more precise, it requires a larger number of predictors to achieve this level of accuracy.

Our model deploys expert-derived insights to guarantee the clinical relevance and interpretability of

the predicted outcomes. Additionally, we employ quantum computing techniques to address this

complex and high-dimensional problem. Through extensive assessments, we show that our quantum-

enhanced model outperforms traditional methods with notable improvement in evaluation metrics,

such as accuracy, precision, recall, and F1 score. Furthermore, with the integration of eXplainable

AI (XAI) methods, our solution enhances the transparency and reliability of medical predictive

models, hence promoting improved clinical practice decision-making. The findings highlight how

quantum computing has the potential to completely transform predictive analytics in the medical

field, especially when it comes to improving patient care after TAVR.

Keywords: ant colony optimization; adaptive network-based fuzzy inference system; eXplainable AI;

quantum computing; transcatheter aortic valve replacement

MSC: 81Q93

1. Introduction

The procedure of severe aortic stenosis treatment has changed dramatically with the
introduction of TAVR, especially for patients who pose a high surgical risk. Nonetheless,
the requirement for PPMI has proven to be one of the most common post-procedural
difficulties. PPMI functionality in treating cardiac rhythm complications resulting from
TAVR makes it crucial both before and after the procedure. PPMI is occasionally required to
maintain appropriate cardiac rhythm and function following TAVR, a minimally invasive
procedure for aortic valve replacement, because it may hurt the heart’s electrical system.
PPMI must be taken into account to improve patient safety and outcomes, especially for
patients who have pre-existing diseases that raise their likelihood of experiencing problems
with their heart rhythm after TAVR. Innovative techniques that improve the accuracy of
PPMI predictions are desperately needed in light of these challenges to guarantee optimal
patient care and procedure results.

1.1. Motivation

With severe aortic stenosis, TAVR has become the accepted treatment of preference.
It is constructive for patients undergoing high-risk surgery. Post-procedural problems,
such as heart rhythm abnormalities that require PPMI, present considerable difficulties.
Inadequate clinical outcomes result from the inaccuracies in the current prediction models
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for PPMI post-TAVR, which often disregard patient-specific factors and intricate interde-
pendencies between procedural variables. Furthermore, it is difficult to predict when these
rhythm disturbances will manifest because they can occur anytime from right after surgery
to more than 48 h later. This highlights the shortcomings of current predictive models,
which frequently fail to take important procedural and patient-specific factors into account.
This discovery highlights the pressing need for a more accurate and resilient forecasting
technology that can adjust to the unique circumstances of each instance.

This work presents a complex quantum-fuzzy expert timeframe predictor with the help
of an ANFIS and QACO. This innovative integration uses fuzzy logic systems’ sophisticated
reasoning, influenced by expert clinical insights, and quantum computing’s capacity to
process large, complicated datasets efficiently. This model seeks to improve procedural
strategy optimization and patient care by increasing the specificity and accuracy of PPMI
time prediction post-TAVR.

Moreover, the utilization of XAI techniques enhances our model by guaranteeing
predictability and transparency, both of which are crucial for clinical decision-making. In
addition to meeting the urgent need for improved forecasting tools in cardiac care after
TAVR, this strategy establishes a standard for incorporating cutting-edge computational
methods into clinical practice.

1.2. Related Work

Since Machine Learning (ML) provides a more precise and comprehensive analysis of
patient data, it is an effective tool for forecasting PPMI necessity. Tsushima et al. [1] exam-
ined ML algorithms for predicting the necessity of PPMI following TAVR. The researchers
achieved a range of model accuracies for different ML techniques, with the highest AUC of
0.693 being reached by Simple Logistic Regression (SLR)- and Locally Weighted Learner
(LWL)-based models. Agasthi et al. [2] concentrated on applying Gradient Boosting Ma-
chine (GBM) models to predict the need for a PPMI after TAVR. The authors in this paper
showed that these models outperformed traditional risk score models, with superior AUC
values of 0.66 and 0.72 for predicting a 30-day and a 1-year post-TAVR PPMI, respectively.
Truong et al. [3] demonstrated that the risk of pacemaker implantation can be predicted
more accurately using the random forest model that included post-TAVR Electrocardiogram
(ECG) data than using the logistic regression model or the model without post-TAVR ECG
data. The RF model received scores of 0.76, 0.49, 0.18, and 0.81 for accuracy, F1 score, Brier
score, and AUC, respectively. Using XGBoost for analysis, Pandey et al. [4] investigated
the use of ML to predict pacemaker insertion following TAVR in patients with low Stroke
Volume Index (SVI). The authors in this paper examined 288 individuals, showing an AUC
of 0.702 for low SVI patients and 0.706 for normal SVI patients. To predict post-procedural
PPMI following TAVR, Qi et al. [5] attempted to include pre-and post-procedural pa-
rameters. Achieving an AUROC of 0.7 in derivation and 0.71 in external validation, they
identified predictors such as prior Right Bundle Branch Block (RBBB) and aortic valve area
using multivariate logistic regression and Cox proportional hazard models. However, a
wide range of parameters, such as patient clinical data, procedure details, and valve types,
can impact the rate of post-TAVR PPMI. Additionally, unbalanced problems are the primary
challenge in PPMI prediction as a dedicated issue for whole medical datasets. Imbalances
frequently occur in medical datasets because certain diseases are rare or the data are scarce.

Expert expertise becomes essential in recognizing and interpreting minority classes,
which are important but frequently underrepresented. During the preprocessing step,
experts can significantly contribute to selecting and transforming the most relevant features
for the medical context. Additionally, with their domain knowledge, experts ensure that
prediction outcomes are statistically significant and medically efficient, leading to the
development of more precise and clinically meaningful models. Several studies consider
using statistical approaches to meta-analyze PPMI risk predictors, which are summarized
in Table 1. Ref. [6] highlighted that implantation depth and Left Ventricular Outflow Tract
(LVOT) calcium volume, in particular, are procedural and anatomical parameters that affect



Mathematics 2024, 12, 2625 3 of 22

post-TAVR PPMI rates. A comprehensive investigation by [7] identified several patient
and procedural variables, including age, gender, diabetes, and valve type effects on PPMI
requirements after TAVR.

Table 1. Meta-analysis studies on feature selection for PPMI requirements following TAVR diganosis.

Author & Year Objective Sample Size Main Predictors

[8]
Post-procedural prediction models
for PPMI with pre-existing RBBB

237
Membranous septum, First degree AVB,

implantation depth

[5]
Pre- and post-procedural prediction

models for PPMI
336 Prior RBBB, pre-procedural AVA, AVA ratio

[9] Predictors for PPM after TAVR 447
Transcatheter heart valve (THV) oversizing

(30 days after TAVR)

[10]
Identify predictors for PPM

after TAVR
357

QRS > 120 ms, type II DM, supraventricular
arrhythmias

[11]
Identify predictors for PPM

after TAVR in Chinese Population
39 New-onset LBBB and lead I T wave elevation

[12]
Meta-analysis for identify

predictors for PPM after TAVR
981,168

Male gender, age≥80, FDAVB, RBBB, AF, DM,
CKD, Medtronic CoreValve, transfemoral TAVR,

increased LVOT, and aortic annulus diameter

[13]
Meta-analysis for identify

predictors for PPM after TAVR
31,261

Male gender, Mobitz Type 1 HB, Bifascicular HB,
LAFB, RBBB, Mechanically-expanding, ballon

expanding 29 mm

[7]
Meta-analysis for identify

predictors for PPM after TAVR
71,455

Age, Male gender, DM, Baseline AV,
post-procedure AV Left ventricular outflow tract
calcification (left coronary cusp and non-coronary

cusp), Valve size, balloon expanding,
Pre-procedure balloon dilatation, Post-procedure

balloon dilatation, Implantation depth

[14]
Risk predictor model for pacemaker

implantation after TAVR
1071

Self-expanding valve, RBBB, pre-existing
first-degree AVB

[15] Predictors for PPM after TAVR 182 Previous RBBB and LVOT-EI

[16]
Develop risk score for pacemaker

implantation post-TAVR
1266

Syncope history, baseline RBBB, QRS duration,
higher degree of oversizing

[17] Predictors for PPM after TAVR 311 High body mass index, bradycardia, RBBB

[18]
Predictive model for pacemaker

implantation post-TAVR
18,400

RBBB, LBBB, bradycardia, 2nd-AVB, transformal
approach

[19]
Predictive model for pacemaker

implantation post-TAVR
240 RBBB, NCC-DLZ CA, MS length

[6]
Identify predictors of PPMI

post-TAVR
229 RBBB, Deep valve implantation, LVOT calcification

[20]
Identify predictors of PPMI

post-TAVR
1973

RBBB, the prosthesis to LV outflow tract diameter
ratio and the LV end-diastolic diameter

The Emory Risk Score was created by [16] to classify patients according to their
chance of requiring a pacemaker following TAVR, considering variables such as Right
Bundle Branch Block and syncope history. A detailed meta-analysis by [13] confirmed the
importance of baseline atrioventricular conduction delays, the type of valve prosthesis,
and male sex as PPMI predictors. The current studies’ shortcomings include imbalanced
data and small event sizes, which hinder the utilization of various variables in the post-
procedural prediction model. Researchers were forced to incorporate a limited number of
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predictors because of rules such as the ten events-per-variable recommendation, keeping
the number of model predictors to no more than one-tenth of the total number of events [5].

Leveraging insights from meta-analyses of PPMI risk factors indicated in Table 1, our
research adopts a novel method by combining expert knowledge with ANFIS to address
the issues of high-dimensional and unbalanced datasets. We control scarce events and
high-dimensional data by mapping more relevant features extracted from meta-analysis
studies to our dataset. Moreover, ANFIS assists in implementing if–then roles coming
from expert insights for making accurate decisions [21]. While the standard ANFIS model
utilizes Backpropagation (BP) to optimize parameters, there is a risk of getting stuck in
local optima during the training phase. Deployment of evolutionary algorithms such
as Particle Swarm Optimization (PSO) [22], Ant Colony Optimization (ACO) [23], Black
Widow Optimization Algorithm (BWOA) [24,25], and Genetic Algorithm (GA) [26] enhance
the parameter optimization of the membership functions in ANFIS.

Additionally, the time for PPMI following TAVR can vary from immediately after opera-
tion to more than 48 h, depending on the variable onset of conduction anomaly occurrence
following TAVR [27,28]. Precisely estimating the need for a PPMI also enables improved
resource allocation and budgetary planning, resulting in more economical healthcare pro-
vision [29]. Post-TAVR patient clinical data and time estimation for the prediction of PPMI
is rarely considered in the literature. However, deploying all pre- and post-features, even
when applying expert-knowledge-based methods to control dimensionality over effective
features, will increase the dimension of ANFIS inputs and outputs, thereby increasing the
ACO complexity. However, deploying all pre- and post-features, even when applying expert
knowledge-based methods to control dimensionality over effective features, will increase
the dimension of ANFIS inputs and outputs. Therefore, the ACO framework’s modeling
procedure becomes more difficult as an ANFIS parameter estimator. Utilizing the concepts
of superposition and entanglement, quantum computing provides a way to process data
exponentially faster than traditional computing techniques. Quantum computing facilitates
the simultaneous analysis of several possible solutions in the context of ACO-ANFIS for PPMI
prediction, greatly accelerating the membership function parameter optimization in ANFIS.
This is important due to various individuals having different time windows for successful
PPMI after TAVR, and it affects real-time health monitoring and decision-making. Recently,
Quantum Machine Learning (QML) has offered essential computational advantages to over-
come high-dimensional data challenges in healthcare systems [30]. Quantum computing
provides a way to process data tenfold more quickly than traditional computing techniques by
utilizing the concepts of superposition and entanglement. Therefore, in this paper, we deploy
quantum computing over ACO to enhance the probability of the next node selection in our
high-dimensional ACO algorithm training iterations.

Furthermore, even while earlier research has shown that ML models can identify
PPMI with high predictive accuracy, it frequently fails to offer clear justifications for the
models’ success, such as the importance and interaction of contributing features. XAI is
required in the context of our work since medical decision-making procedures depend
heavily on openness and trust. Our approach aims to improve the accuracy of our model
by using the Shapley Additive exPlanation (SHAP) and Local Interpretable Model-agnostic
Explanations (LIME) libraries of XAI. These plots depict how specific features affect the
model’s predictions, allowing us to estimate the effectiveness of different features in our
knowledge transfer approach. By deploying XAI, we can bridge the gap in our understand-
ing and identify the features that are most effective in improving the model’s performance.
Therefore, the method helps stakeholders and doctors understand how the model works
and ensures that decisions are trustworthy and based on comprehensible information.
Moreover, XAI helps to check our knowledge expertise, and the QACO-ANFIS method
could make the model smarter by emphasizing important predictors and how they interact.

The main problems that make it challenging to forecast the PPMI requirement after
TAVR can be summarized as follows:
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• Timing Variability: Patients differ significantly in when they need PPMI. After TAVR,
some patients could need treatment right away, while others might experience symp-
toms that need PPMI a few days later. Because of this unpredictability, standardizing
predictions becomes more difficult because the models must be sensitive enough to
cover a large temporal range.

• Complexity of Patient Data: Every patient has a different set of factors to consider,
including underlying medical issues, body reactions to TAVR, and individual recovery
paths. Predictive mistakes result from current models’ frequent inability to completely
integrate and analyze these intricate datasets.

• Current Predictive Model Limitations: A lot of the predictive models that are now in
use are limited by the following:

- Data Simplification: A major information loss occurs when models oversimplify
multidimensional, complex patient data.

- Lack of Dynamism: In the crucial hours and days that follow TAVR, they fre-
quently fail to take into account the dynamic changes in patient status.

- Inadequate Integration of Clinical Expertise: Current models frequently fall short
of incorporating the clinical knowledge required to properly analyze patient data.

These difficulties underline the requirement for a predictive model that not only
takes these complexities into account but also adjusts to each patient’s unique demands,
guaranteeing prompt and precise forecasts to maximize post-TAVR treatment.

1.3. Contributions

The contributions of the paper are as follows:

• Providing the time-based prediction architecture for PPMI requirement diagnosis
following TAVR.

• Improving feature selection by incorporating expert knowledge to concentrate on
more relevant predictors for results that are more accurate and understandable.

• Utilizing quantum computing to enhance high-dimensional data processing in PPMI
requirement diagnosis following TAVR.

• Prompt healthcare decision-making provision by employing quantum algorithms
for the ACO-ANFIS framework to increase prediction model accuracy and real-time
performance.

• Developing model explainability using XAI, which sheds light on feature importance
and interactions and meets the requirement for transparency in AI applications in the
healthcare industry.

1.4. Paper Structure

The remainder of this paper is organized as follows. Section 2 explains the used QACO-
ANFIS approach and its algorithm. The results and discussion are presented in Section 3.
This section also addresses the difficulties and barriers of our strategy and possible future
approaches. This paper comes to a close in Section 4.

2. Proposed Method

This section describes our approach, illustrated in Figure 1. It demonstrates how the
ANFIS feature selection process is guided by expert knowledge from an extensive analysis
of the pertinent literature and insights from system design. The ANFIS’s membership and
consequence parameters are adjusted using evolutionary algorithms like ACO, GA, BWO,
and PSO. This improves our model’s capacity to plan patient monitoring precisely following
TAVR. This section also describes the integration of quantum computing techniques to
improve the performance of these algorithms, enabling faster and more efficient parameter
optimization. More specific elements and how they work together are explained in the
following subsections.
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Figure 1. An overview of the system.

2.1. ANFIS Integrated with Classical ACO

The ANFIS is an artificial neural network that utilizes the Takagi–Sugeno fuzzy in-
ference system. The approach aims to incorporate neural networks and fuzzy logic into a
single framework that can benefit from both. Because ANFIS can approximate nonlinear
functions, it is a popular tool for modeling complex systems and pattern recognition [31].
There are five layers in the ANFIS architecture. The first layer is called the fuzzification
layer. This layer determines the membership functions that belong to the input values.
In estimating membership grade, Gaussian membership functions are commonly used,
as follows:

O1
i = µAi(x) = exp

(

− (x − ci)
2

2σ2
i

)

, (1)

where the variables σi and ci, respectively, represent the width and center of the Gaus-
sian curve.

Every node in the second layer, known as the product layer, multiplies the incoming
signals to generate the product. The following is the output of a node that obtains µAi(x)
and µBi(y), where A and B are the system’s inputs:

O2
i = ωi = µAi(x) · µBi(y), (2)

where a rule’s firing strength is denoted by ωi.
In the third layer, called the normalization layer, every node determines the ratio

between the firing strength of the ith rule and the total firing strength of all the rules:

O3
i = ω̄i =

ωi

∑j ωj
. (3)

Layer 4 has the responsibility of defuzzification. The nodes in this layer have adaptive
functions represented by (4).

O4
i = ω̄i fi = ω̄i(pix + qiy + ri), (4)

where fi is a linear function of the inputs, and pi, qi, and ri are the consequence parameters
set. The last layer, the summation layer, consists of a single node that sums up all incoming
signals to determine the total output.

O5 = f = ∑
i

ω̄i fi. (5)
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The ANFIS parameters, which include the premise parameters in the fuzzification
layer and the consequent parameters in the defuzzification layer, are acquired through
a hybrid learning algorithm. This algorithm combines Least Squares Estimation (LSE)
and the gradient descent technique. The premise parameters are set during the forward
pass, but the fixed parameters are identified using the least squares estimate. The gradient
descent method updates the premise parameters throughout the backward pass while
the consequent parameters remain unchanged. However, due to potential drawbacks,
including slow convergence, the possibility of converging to local minima, and inefficiency
in handling complicated, non-linear systems, conventional techniques like the gradient
method and LSE might not be the best for ANFIS parameter adjustment. Evolutionary
algorithms are the prominent alternatives to fine-tuning fuzzy systems because of their
ability to perform global searches, manage complex optimization landscapes, and ultimately
enhance model accuracy and performance.

ACO is an evolutionary algorithm that deploys biological inspiration to address opti-
mization issues. It finds the most immediate routes between food sources and their nest by
imitating the ant’s pheromone trail-laying and trail-following behavior. The pheromone
deposit is one of the main elements of this algorithm. Ants leave behind a chemical known
as pheromone, which influences other ants’ decisions on which path to take. Based on
the quantity of pheromones and the path’s visibility, ants select their routes probabilisti-
cally. The likelihood that ant k will select node j as the subsequent node from node i is
provided by the following:

Pk
ij =

[τij]
α · [ηij]

β

∑l∈allowedk
([τil ]α · [ηil ]

β)
, (6)

where τij is the pheromone quantity on the path from i to j, ηij is the visibility, allowedk

is the set of nodes that ant k can visit next, and α and β are parameters controlling the
influence of pheromone and visibility, respectively.

The pheromone trails are updated with new information whenever every ant has
finished traveling. Such a process of actualization is of crucial importance for guiding the
subsequent choices of ants by adapting the pheromone concentration within the paths.
Therefore, to prevent the solution from settling on a local optimum and for a dynamic
exploration of the paths, the pheromone level is updated in two ways:

• Evaporation: The existing pheromone level on each path is reduced by applying a
factor of (1 − ρ), where ρ is the coefficient of evaporation of the pheromone. This
weakening, in turn, reduces the level of the pheromone, and with time, the effect of a
previously visited path weakens accordingly. This helps prevent the algorithm from
becoming prematurely locked into a potentially suboptimal state.

• Ant Pheromone Deposits: Upon evaporation, the pheromone concentration is in-
creased based on the pheromones deposited by the ants during their travels. More

pheromone ∆τ
(k)
ij is precisely added by each ant k to the path that connects node i to

node j. An ant’s experience with a trail determines the quality of this pheromone de-
posit. The overall pheromone level increase on this path sums up all the contributions
from the ants, calculated as follows:

τij = (1 − ρ) · τij +
m

∑
k=1

∆τ
(k)
ij , (7)

where m is the total number of ants, and ∆τ
(k)
ij measures the pheromone that the k-th

ant deposits on the path from i to j.

ACO has a sequential manner of finding the best solution. Therefore, as the number
of examined routes and the number of iterations needed to achieve efficient results rise,
the complexity of ACO increases significantly. Despite its usefulness, the ACO has limita-



Mathematics 2024, 12, 2625 8 of 22

tions, particularly when applied to complex optimization problems such as the parameter
optimization of ANFIS, which involves many input features.

2.2. Quantum Entanglement Enhancement for ANFIS-ACO

Classical ACO can be slow since it selects the next node based on a pseudorandom
integer and computes cumulative probabilities for each neighbor, especially when there are
a lot of nodes. Due to the number of effective predictors for patient status determination
after TAVR, this procedure creates a significant bottleneck in obtaining real-time solutions
by utilizing ACO-ANFIS.

Currently, there is a growing interest in utilizing quantum parallelization and en-
tanglement in quantum states to reduce the computational complexity of iterative-based
optimization techniques. Superposition, the underlying parallelism of quantum computing,
can greatly accelerate this procedure. By using qubits (|Ψ⟩), which, in contrast to classical
bits, may exist in states of superposition (|0⟩ and |1⟩ concurrently), quantum computing
enhances problem-solving. Qubits can encode and process several paths for solving prob-
lems simultaneously with the help of superposition. Qubits are linked by entanglement as
a phenomenon in which qubits interact, and regardless of distance, one’s state instantly
affects another. Quantum gates are used to leverage superposition and entanglement con-
cepts. They are crucial to quantum computing because they can change the states of qubits.
Quantum gates use quantum mechanics laws to work on qubits, allowing for complex
computations through entanglement and superposition, in contrast to traditional logic
gates, which carry out binary operations. These gates enable quantum algorithms to carry
out operations that are not practical for classical computers, like the CNOT gate for en-
tangling qubits or rotation gates Ry(θi) for the rotation by angle around the Y-axis [32].
With the contribution of ACO and quantum concepts, all probabilities can be processed
simultaneously in a single quantum circuit execution. In addition to speeding up the calcu-
lation, this feature allows the next node to be chosen via actual randomization rather than
pseudorandom numbers. Therefore, the quantum technique removes the bottleneck that
hinders next-node selection, leading to faster and more efficient convergence to optimal or
near-optimal solutions.

Instead of transferring all parameters directly to a quantum framework, we utilized a
quantum picker in this study to optimize ANFIS parameters, following the QACO approach
proposed by [33] and detailed in Algorithm 1 as follows.

Algorithm 1 Enhanced HQACO for ANFIS Parameter Optimization integrated with Quan-
tum Circuit Generation

INITIALIZATION

Initialize pheromone levels τi,j for all edges i, j in the ANFIS parameters graph. Set
hyperparameters α, β, and ρ. Determine quantum register size q accordingly, and initialize
classical registers C1, C2, C3.
for each ant ∈ {1, . . . , k} do

Select the start node with equal probability.
for each parameter type ∈ [MFi, MFo] do

Calculate transition probabilities.
Call: ProbabilityToAngleMapping(P).
Call: GenerateQuantumCircuit(R).
Perform quantum measurement and update next_parameter_set.
Update classical registers C1, C2, C3 with current state, decision, and probabilities.
Update ANFIS model parameters based on quantum decisions.
Evaluate ANFIS model performance and update pheromones.

end for
end for
Apply the best parameters to the ANFIS model.
Check termination conditions.

return optimized ANFIS parameters.
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Algorithm 1 Cont.

FUNCTION PROBABILITYTOANGLEMAPPING(P)
Require: Array of probabilities Pi with 2numqubits dimension.
Ensure: Array of spherical angles φ = {φ1, φ2, . . . , φn−1}.

Initialize an empty array φ for the spherical angles.
for i = 1 to numqubits − 1 do

if Pi = 0 then
Add 0 to φ.
Populate the remaining entries of φ with π.
Exit the loop.

else
φi = 2 × arcsin−1(

√
Pi).

∀Pi ∈ P, Pi/ sin(φi/2).
end if

end for
return φ.

FUNCTION GENERATEQUANTUMCIRCUIT(R)
Require: Array of spherical angles φ.
Ensure: Quantum circuit QC.

Determine the number of qubits num_qubits based on the length of φ+ 1.
Initialize a quantum circuit QC with num_qubits.
if num_qubits > 2 then

Decompose A into two parts for G1 and G2 circuits, respectively.
Generate G1 using the first (2num_qubits−1 − 1) angles from φ.
Apply a multi-controlled Ry gate using the (2num_qubits−1)th angle.
Apply (num_qubits − 1) CNOT gates, each controlled by the num_qubitsth qubit.
Generate G2 using the last (2num_qubits−1 − 1) angles from φ.

else
Apply sequence of Ry and CNOT gates based on angles in φ.

end if
Add measurement gates to all qubits.

return QC.

• Quantum Circuit Setup: The quantum circuit is configured primarily using the GEN-
ERATEQUANTUMCIRCUIT(R) function from Algorithm 1. This function takes a set
of probabilities and turns them into quantum angles that specify how the qubits are
arranged in the circuit. These probabilities, which are represented by the symbol Pij in
Equation (6), stand for the possibility of moving from node i to node j. They are called
simply Pi in the PROBABILITYTOANGLEMAPPING(P) function, assuming a serial
indexing that captures all node transitions.

• The role of classical registers

- The C1 (System State Register) contains the node status and operational flags that
direct the quantum computations, as well as the present state of the system.

- Decision variables and the probabilities connected to each decision are stored in
the C2 (Decision and Probability Register), which has a direct impact on updates
and modifications made to the ANFIS model parameters in response to results
from the quantum circuit.

- The parameter adjustment register, or C3, keeps track of the changes made to
the ANFIS parameters after quantum computation, making sure that the model’s
tuning appropriately incorporates the feedback from the quantum measurements.

• Probability to Angle Conversion: The process of converting these probabilities into
angles that quantum gates can use is handled by the function PROBABILITYTOAN-
GLEMAPPING(P). The procedure entails the following:
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- The angle is set to 0, and succeeding entries are filled with Pi, thereby nul-
lifying those pathways in the quantum computation if Pi = 0, signifying an
impractical path.

- In the case of non-zero probabilities, 2 × arcsin−1(
√

Pi) will determine the angle
φi, assigning a corresponding quantum state angle to every likelihood.

• Quantum Decision-Making: The quantum state |Ψ⟩ is initialized to reflect all possible
paths weighted by their estimated probabilities when the quantum circuit is set up.
This quantum state collapses upon measurement to a basis state |i⟩, which represents
the path selected according to quantum probability. Real-time optimization is made
possible by this selection, which is not only faster than the classical approach but also
more accurate.

• Feedback and Optimization: The quantum measurement results have a direct bearing
on the ANFIS parameter adjustments. Figure 2 illustrates this real-time feedback
loop, which continuously fine-tunes the model to guarantee ideal parameter settings,
improving the patient monitoring system’s accuracy and effectiveness.

2.3. ANFIS Arrangement for Using QACO

The ANFIS model graph must be arranged by the post-TAVR treatment prediction
model to apply QACO, and the qubit count must be ascertained [34]. As shown in Table 2,
our model configuration processes fourteen binary input features that are essential for
determining the patient’s state after TAVR. These inputs are crucial for guiding the clinical
decision-making process and are chosen after expert consultations and considering meta-
analysis studies represented in Table 1. Gaussian membership functions are linked to
every input characteristic, and QACO dynamically optimizes their parameters to precisely
capture the diagnostic ambiguities that are common in clinical situations.

Decisions such as “Early Discharge”, “24 h Inpatient Monitoring”, “48 h Inpatient
Monitoring”, and “>48 h Monitoring” determine the ANFIS model’s final results. Six
fuzzy logic rules, each methodically derived from significant features as listed in Table 2,
define these outputs. These rules cover a variety of scenarios based on several cardiac and
demographic variables, converting the processed input features into actionable clinical
decisions. These guidelines, which are separate yet connected, guarantee that patient
treatment plans are managed thoroughly after TAVR, thereby meeting all possible patient
situations. In our method, the ANFIS graph is arranged by mapping sets of input and
output parameters of the ANFIS framework as input (MFi) and output (MFo) vectors, as

delineated in Figure 3. The input vector f⃗ t is given two Gaussian membership functions, µ

and c, which help the model sense subtle variability in the data, which is closely related
to the clinical regime of TAVR presented. Furthermore, each attribute in these vectors
relates to some parameter of premises p, q that is integrated with the parameters of rules r,
discretely resulting in complex output membership functions. As shown in Figure 3, the
ANFIS architecture consists of 52 nodes with a connectivity of up to 6 (Gd). These metrics
allow us to calculate the required qubit number as follows:

numqubits = max(log2(Gn), log2(MaxGd
) = 6. (8)
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Figure 2. Flowchart of the ANFIS parameter optimization process via quantum-enhanced ACO for TAVR outcome prediction.



Mathematics 2024, 12, 2625 12 of 22

MFiA

σia , cia

MFiB

 σib , cib

MFo1
p1,q1,..,p14, 

q14,r1

MFo1
p1,q1,..,p14, 

q14,r6

MFo2
p1,q1,..,p14, 

q14,r1

MFo3
p1,q1,..,p14, 

q14,r1

MFo4
p1,q1,..,p14, 

q14,r1

MFo2
p1,q1,..,p14, 

q14,r6

MFo3
p1,q1,..,p14, 

q14,r6

MFo4
p1,q1,..,p14, 

q14,r6

EndStart

ft

Output4: > 48 hours  Monitoring
ft

ftInput features vector

Typical ant movement 
trajectory

Figure 3. Graph overview of customized ANFIS-ACO network for enhanced PPMI prediction

post-TAVR.

Table 2. Effective decision-making features for post-TAVR monitoring and management.

Input Output

No. Feature No. Decision

1
ft1: No Baseline RBBB

1 Early Discharge
ft2: Absence of New ECG Changes

2

ft3: Baseline RBBB

2 24 h Inpatient Monitoring

ft4: Baseline LBBB
ft5: New-onset RBBB
ft6: New-onset LBBB

ft7: post balloon dilatation
ft8: 130 ms < QRS < 160 ms

ft9: Prolongation of PR > 20 ms

3

ft3: Baseline RBBB

3 48 h Inpatient Monitoring

ft4: Baseline LBBB
ft5: New-onset RBBB
ft6: New-onset LBBB

ft7: post balloon dilatation
ft10: QRS>160 ms

4

ft11: Baseline Hypertension

4 >48 h monitoring
ft4: Baseline RBBB

ft12: Diabetes mellitus
ft13: Male sex

f14: Age

It guides the selection and calibration of model inputs and the formulation of decision
rules by insights from meta-analysis and the expert literature identified in Table 1. These
inputs are linked explicitly in Table 2 to specific impacts on decision outputs in a structured
and empirically supported way for our model.
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3. Results and Discussion

3.1. Experimental Setup

Our experiment was carried out on a PC running 64-bit Ubuntu 24.04 (Linux) with
an Intel(R) Core(TM) i3-7100 CPU running at 3.90 GHz and 16.00 GB of RAM. We applied
the Qiskit programming framework to the quantum probabilistic provisioning. Table 3
represents the hyperparameters of the proposed methods and benchmark algorithms.
The used dataset was provided by [35], including pre- and post-TAVR ECG, procedure,
laboratory, and clinical data of patients who had undergone TAVR.

Table 3. Summary of hyperparameters for various methods.

Method Key Hyperparameters Value

ANFIS

MFi Type Gaussian (µ&c)
No. of MFi 2

MFo Linear
No of Fuzzy rules 6

ACO

No. of Ants 1000
Weight of pheromone on decision α 0.4

Weight of heuristic data on decision β 0.6
Evaporation of pheromone per step 0.05

Max of iteration 1000

GA

population size 100
Mutation rate 0.5
Crossover rate 0.8

Selection intensity 0.5
Max of iteration 1000

BWO

population size 500
Procreation rate 0.8
Mutation rate 0.7

Cannibalism rate 0.6
Max of iteration 1000

PSO

population size 100
Cognitive parameter 1.5

Social Parameter 1.5
Min of inertia weight 0.4
Max of inertia weight 0.9

Max of iteration 1000

3.2. Experimental Experience Results and Discussions

Table 4 represents the performance metrics for various ANFIS methods based on
evaluations from both the training and test data sets. The traditional ANFIS-BP and
evolutionary-based ANFIS parameter estimation, such as ANFIS-GA, ANFIS-PSO, ANFIS-
BWOA, ANFIS-ACO, and ANFIS-QACO, are measured using the following metrics: accu-
racy, precision, recall, and F1-score.

Table 4. Benchmark algorithms performance evaluation on training and testing dataset.

Train Dataset Test Dataset

Method
Metrics

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

ANFIS-BP 0.68 0.73 0.7 0.71 0.67 0.72 0.7 0.71
ANFIS-GA 0.85 0.80 0.83 0.86 0.82 0.81 0.8 0.86
ANFIS-PSO 0.82 0.8 0.81 0.79 0.8 0.81 0.83 0.85
ANFIS-ACO 0.85 0.85 0.8 0.85 0.83 0.81 0.82 0.81

ANFIS-BWOA 0.89 0.88 0.89 0.89 0.9 0.90 0.90 0.89
ANFIS-QACO 0.99 0.97 0.96 0.97 0.97 0.96 0.97 0.96

Based on both datasets, ANFIS-QACO performs better than other approaches in every
statistic, as shown in the table. ANFIS-QACO achieves the highest accuracy (0.99), precision
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(0.97), recall (0.96), and F1-score (0.97) on the training dataset specifically. In a similar
vein, it continues to lead the test dataset with the greatest F1-score (0.96), accuracy (0.97),
precision (0.96), and recall (0.97). Additionally, the QACO-ANFIS model is more effective in
classifying true positive rates at different threshold values, according to Figure 4a. QACO-
based ANFIS executes better in terms of ROC-AUC of 0.96 and outperforms other methods,
including standard BWO (0.89), ACO (0.87), GA (0.84), PSO (0.8), and ANFIS-BP (0.71).
Figure 4b illustrates how different ANFIS models behave concerning convergence during
training, as determined by the root mean square error (RMSE) during multiple iterations.
The RMSE approaches near zero after 120 iterations for the QACO-ANFIS model, indicating
faster learning and adaptability. This illustrates how parallelism with superposition leads
to rapid and efficient convergence of the model. On the other hand, slower convergence
and larger RMSE indicate less efficient learning in other models, including ANFIS-ACO,
ANFIS-BWO, ANFIS-GA, ANFIS-PSO, and ANFIS-BP.

ANFIS - GA ( AUC = 0.84 )

ANFIS - PSO ( AUC = 0.8)

ANFIS - BP ( AUC = 0.71 )

ANFIS - ACO ( AUC = 0.87)

ANFIS - BWO ( AUC = 0.89)

ANFIS - QACO ( AUC = 0.96)
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Figure 4. Benchmark model performance AUC evaluation comparison and convergence performance.

(a) ROC curve and ROC-AUC of benchmark ML algorithms on test dataset. (b) Benchmark algorithms

training convergence based on RMSE in each iteration.
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Figure 5. Run time and SD of benchmark algorithms with different number of features.

We ran our technique 100 times with different feature counts to evaluate accuracy
deviations and runtime. Comparing QACO’s stability in improving ANFIS versus con-
ventional evolutionary algorithms, Figure 5 and its detailed information represented in
Table 5 show the effectiveness of a quantum-based solution in providing a stable solution.
Remarkably, ANFIS-QACO runs far faster than ANFIS-BP, taking only a tenth of the time.
The parallelism power of qubits minimizes the impact of added features on runtime.

Table 5. Benchmark algorithm performance with different number of features.

Method
No of Features

3 5 8 14 18 20

ANFIS + Gradient—Abs(SD) 4.2 4.5 4.8 5.5 6 12
ANFIS + ACO—Abs(SD) 1.8 1.8 1.5 1.5 2 2

ANFIS + QACO —Abs(SD) 0.0 0.0 0.0 0.0 0.0 0.0
ANFIS + Gradient—Run Time 18.3 18.5 20 25 25 30

ANFIS + ACO —Run Time 2.8 2.8 3 3 3.2 3.8
ANFIS + QACO —Run Time 1.04 1.06 1.08 1.10 1.12 1.14

We developed our model through simulation by Qiskit package deployment, which
runs in a noise-free environment. It is important to note, however, that the noise and errors
inherent in Noisy Intermediate-Scale Quantum (NISQ) systems limit the complexity and
precision of their computations. As the number of features and qubits increases, NISQ
systems can run just up to seven qubits efficiently, preserving accuracy while reducing
computational time. However, NISQ performance could deteriorate as the qubit count
and dataset dimensions increase [36]. Our method results are compatible with real-world
quantum settings and simulations using six qubits. Additionally, in contrast to conventional
sequential analysis, our suggested approach deploys quantum principles for node selection
in ACO, enabling the evaluation of all node probabilities concurrently. The effectiveness of
our model is ensured by this quantum computation method in conjunction with traditional
arithmetic processing on classical machines. Therefore, with an increasing number of
anticipated qubits, our approach still provides an accurate and stable solution. However,
we plan to implement our scenario in the NISQ environment, utilizing the IBM Quantum
Experience cloud computing environment, in the future.
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The fuzzy system, after training, provides interpretable outputs for clinicians. The
trained ANFIS model uses Gaussian membership functions for feature inputs such as “No
Baseline RBBB” and “Age”, as shown in Figure 6. Figure 6a represents the membership
functions for “Baseline RBBB”. The crossing curves for the “Yes” and “No” states, in red
and blue, respectively, model a fuzzy boundary between the classes due to possible clinical
data uncertainty leading to a Baseline RBBB diagnosis. In essence, this crossing corresponds
to a transition zone beyond which neither classification is complete and, hence, models the
inherent ambiguity in a medical diagnostic process.

Figure 6b shows the fuzzy membership functions for the input “Age”. The green curve
(“Below 80”) and the blue curve (“80 and Above”) are built around the shifting risk profile
with age. The green curve peaks around 70 years but is very broad, reflecting the gradual
increase in risk with age. The peak at 70 indicates that the risk surges at this age but remains
moderate. The blue curve, peaked at 80 years, stands for a sharper increase in risk—higher
prudent concerns for Permanent Pacemaker Implantation in these older demographics. It
provides two risk categories, enhancing nuanced decision-making and making age-based
clinical interventions tailored to predicted risk levels associated with PPI.

Baseline RBBB
No Yes

0.0

0.2

0.4

0.6

0.8

1.0

Baseline RBBB Membership Functions

No

Yes

(a)

Age
50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

Age Membership Functions

80 and Above

Below 801.0

110 120

(b)

Figure 6. Membership degree for baseline RBBB and age in the trained ANFIS Model. (a) Membership

degree for baseline RBBB. (b) Membership degree for age.
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The trained ANFIS model yields these membership functions and the resulting rules
consistent with the expert-driven insights enumerated in Table 2. The rules derived include
the following:
Rule 1: Early Discharge

If ft1: No Baseline RBBB AND ft2: Absence of New ECG Changes
Then Early Discharge

Rule 2: 24 h Inpatient Monitoring

If ft3: Baseline RBBB OR ft5: New-onset RBBB OR ft6: New-onset LBBB AND ft8: 130 ms <
QRS < 160 ms
Then 24 h Inpatient Monitoring

Rule 3: 48 h Inpatient Monitoring

If ft4: Baseline LBBB OR ft6: New-onset LBBB AND ft7: Post balloon dilatation OR ft9:
Prolongation of PR > 20 ms
Then 48 h Inpatient Monitoring

Rule 4: >48 h Monitoring

If ft11: Baseline Hypertension AND ft12: Diabetes Mellitus AND ft13: Male Sex OR ft14:
Age significant factor
Then > 48 h Monitoring

Rule 5: 24 h Inpatient Monitoring

If ft10: QRS > 160 msOR ft3: Baseline RBBB
Then 24 h Inpatient Monitoring

Rule 6: 48 h Inpatient Monitoring

If ft3: Baseline RBBB OR ft4: Baseline LBBB OR ft5: New-onset RBBB OR ft6: New-onset
LBBB AND ft9: Prolongation of PR > 20 ms OR ft14: Age > 80
Then 48 h Inpatient Monitoring

Although ANFIS offers a strong basis for interpretable models, the model’s trans-
parency and interpretability can be further improved by utilizing XAI approaches, particu-
larly the SHAP and LIME libraries. With the help of XAI technologies, decision-making may
be understood at greater depth and more clearly, enabling patients to grasp the results and
professionals. Therefore, to identify the effectiveness of our method, we used the SHAP and
LIME libraries of XAI frameworks as our primary tools for data analysis. While LIME offers
a local approximation of the model’s behavior around particular predictions of interest,
SHAP prioritizes the significance of each characteristic in the model’s decision-making
process. The SHAP-based analysis shows the average impact of each feature in Figure 7a.
Remarkably, the most significant characteristic in determining which individuals need to
be monitored for possible pacemaker implantation is the baseline RBBB. The patient may
need a PPMI within two days due to the presence of baseline Left Bundle Branch Block
(LBBB) and the recent emergence of RBBB and LBBB, which indicate a higher risk. These
results support the theoretical relationships shown in Table 2 and are reflected in the Fuzzy
rules, indicating successful model training. Figure 7b shows how, in a particular scenario,
the model predicts with an 85% chance that PPMI will be required within 24 h and with
probabilities of 9% and 2% for requirements beyond 48 h, respectively. Considering the
abnormality in the duration of QRS and the existence of new-onset LBBB, this validates the
accuracy of the model predictions. This XAI-based analysis effectively converts Machine
Learning from a black box dictating prediction into a consultation tool by improving the
model’s transparency and assisting doctors in their decision-making.



Mathematics 2024, 12, 2625 18 of 22

Ft3

Ft4

Ft5

Ft6

Ft8

Ft9

Ft10

Ft7

Ft11

Ft14

Ft13

Ft2

Ft1

Ft12

Class 1

Class 2
Class 3

Class 4

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

mean ( |SHAP Value|) (average impact on model output magnitude)

(a)

Sex: Male

Age: 80

Baseline LBBB = No

QRS =  98 msec

Baseline RBBB = No

Diabetes mellitus = No 

New onset LBBB = Yes

New onset RBBB: No

Prolongation of PR

Features
Discharge YesDischarge No

Baseline RBBB 

Baseline LBBB 

Prolongation of PR = Yes

Age

Sex

QRS

24 hours Monitoring Yes24 hours Monitoring No

Age

New onset LBBB New onset LBBB

Post Ballon Dilatation = No

Baseline Hypertension = No

0.12

0.12

0.05

0.01

0.45

New onset RBBB 

0.1

0.06

0.06

0.40

Sex

Baseline RBBB 

Baseline LBBB 

New onset RBBB 

QRS

0.00

0.2

0.06

0.06

0.06

0.05

0.05

Post Ballon Dilatation 

24 hours monitoring

48 hours monitoring

Discharge

85%

9%

< 48 hours monitoring

2%

1%

(b)

Figure 7. Visualization of important features in decision-making with the proposed model through

XAI techniques. (a) Impact of features on the proposed model output prediction based on SHAP values.

(b) Impact of features on model output prediction for an individual sample based on LIME values.

3.3. Model Limitations

Although our model is novel in that it uses quantum-enhanced approaches for PPMI
prediction post-TAVR, it has several drawbacks that may restrict its wider use and effective-
ness. First and foremost, implementing it in a noisy quantum environment presents many
difficulties. Quantum noise and decoherence can severely impact our model’s accuracy
and dependability.

Furthermore, it is not entirely established whether our approach can be applied to other
datasets. Different medical centers may have different clinical and demographic data, which
could cause differences in the model’s performance since the validation we are currently
performing depends mostly on data that is exclusive to our original experimental design.

It is noticed that our method involved projecting the knowledge insights onto the
dataset that we had obtained from [35]. Therefore, the potential for the introduction of
expert knowledge bias is another significant constraint. Predictions may be skewed by the
model’s reliance on expert inputs for feature selection and parameter tuning, especially if
the expert data are biased toward particular demographic or clinical outcomes or do not
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fairly represent larger patient populations. This might make the model less applicable in a
variety of clinical contexts and could have an impact on decision-making procedures that
depend on the model’s outputs.

3.4. Future Works

To improve our model’s performance and flexibility across a range of clinical contexts,
we plan on conducting more in-depth research on the application of transfer learning
techniques in the future, which entails the following:

• Cross-Domain Adaptation: To test and improve our model, we will use a variety
of datasets from various medical centers. These datasets may have distinct feature
relevancies and distributions. This modification will increase the model’s resilience to
various clinical data features and enable us to apply the model more broadly.

• Feature Representation Learning: We seek to discover and encode more profound,
abstract clinical data representations that apply to various tasks using sophisticated
feature representation approaches. This will improve the model’s capacity to extract
valuable information from hidden data.

• Task-Specific Tuning: Modifications to the model may be necessary for every clinical
task. To optimize our model for particular tasks—like forecasting additional cardio-
vascular events—we intend to investigate ways to use less labeled data from the target
domain while preserving the information we acquired from the source domain.

Additionally, there is more promise in quantum computing than we currently realize.
We intend to investigate the following:

• Advanced Quantum Algorithms: Investigation of algorithms for complicated health-
care dataset optimization, such as Variational Quantum Eigensolvers (VQEs) and
Quantum Annealing.

• Hybrid Quantum-Classical Models: These models have the potential to combine
the benefits of both classical and quantum computing, providing the resilience and
stability of classical computing with the speed and parallelism of quantum computing.

4. Conclusions

In this paper, we studied a novel method to enhance the prediction of PPMI after TAVR
by integrating QACO with the ANFIS. Especially for high-dimensional and unbalanced
datasets commonly found in healthcare, our methodology dramatically improves feature
selection and parameter optimization efficiency by leveraging quantum computing to solve
the computational hurdles inherent in standard methodologies.

Our results demonstrate significant gains in accuracy, precision, recall, and F1 score,
indicating that the proposed quantum-enhanced ANFIS model works significantly bet-
ter than current approaches. While the XAI techniques enhance the transparency and
interpretability of our model, enabling better clinical decision-making, expert knowledge
integration guarantees the clinical relevance of our predictions.

Despite its strength, our model could raise concerns about its stability and reliability
within the noisy quantum environment. Furthermore, one needs to carefully consider and
mitigate potential generalization issues of the model across different datasets and possible
biases introduced by expert knowledge in the model.

Therefore, our future investigations will improve our method’s generality across
a range of datasets from different clinical centers. Using transfer learning strategies is
a promising approach. These will enhance our model’s feature selection process and
better utilize expert knowledge. With this approach, we can make clinical data more
resilient and flexible by utilizing more perceptive and profound features. In light of this
development, our quantum-enhanced ANFIS model can be customized to meet the unique
requirements of various patient populations and healthcare facilities. Furthermore, we
plan to explore more sophisticated quantum algorithms in the future, such as Quantum
Annealing and VQE, which are well-suited for optimizing intricate healthcare datasets. To
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improve computational accuracy and efficiency, we will also investigate hybrid quantum-
classical models, which combine the speed and parallelism of quantum computing with
the robustness and stability of classical computing.
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Abbreviations

The following abbreviations are used in this manuscript:

TAVR Transcatheter Aortic Valve Replacement

PPMI Permanent Pacemaker Implantation

QACO Quantum Ant Colony Optimization

ANFIS Adaptive Neuro-Fuzzy Inference System

XAI eXplainable Artificial Intelligence

ML Machine Learning

SLR Simple Logistic Regression

LWL Locally Weighted Learner

GBM Gradient Boosting Machine

ECG Electrocardiogram

SVI Stroke Volume Index

RBBB Right Bundle Branch Block

THV Transcatheter Heart Valve

BP Backpropagation

PSO Particle Swarm Optimization

ACO Ant Colony Optimization

BWOA Black Widow Optimization Algorithm

GA Genetic Algorithm

LAFB Left Anterior Fascicular Block

LVOT Left Ventricular Outflow Tract

QML Quantum Machine Learning

SHAP SHapley Additive exPlanations

LIME Local Interpretable Model-Agnostic Explanations

LSE Least Squares Estimation

NISQ Noisy Intermediate-Scale Quantum

LBBB Left Bundle Branch Block

VQE Variational Quantum Eigensolvers
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