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Résumé

Le Higgs est la seule particule du modèle standard qui résiste encore à la découverte.

Ainsi le mécanisme de la brisure spontanée de la symétrie électrofaible qui fait intervenir le

champ scalaire de Higgs pour générer les masses des bosons et des fermions, reste un mystère

de la physique des particules.

Dans cette thèse, on explore de manière approfondie ce secteur scalaire du modèle stan-

dard où réside le Higgs ainsi que les autres Goldstones. Et pour réaliser cette tâche, les

meilleures sondes sont d’une part les bosons vecteurs massifs avantagés par leurs couplages

au Higgs et par le fait que leurs modes longitudinaux représentent les Goldstones ; et d’autre

part le quark top avantagé par sa masse qui est de l’ordre de grandeur de l’échelle de la

brisure de la symétrie életrofaible, lui conférant ainsi une fort couplage de yukawa, d’où sa

trés grande sensiblité au secteur de la brisure de symétrie.

La masse du Higgs étant inconnue, on balaie alors tout le spectre. Ainsi, dans un premier

volet, on s’interesse au cas du Higgs léger et moyennement lourd. Et comme pour pouvoir

décéler, de manière univoque, un signal de nouvelle physique de celui que donnerait le modèle

standard, il faut pousser au moins à d’odre de la précision expérimentale, la précision des cal-

culs effectués via le modèle standard. On commence alors par pousser les calculs des sections

efficaces électrofaibles et QCD des processus W−W+ → tt̄ et ZZ → tt̄ jusqu’à l’ordre de la

boucle. Ceci nécessite au préalable, la renormalisation des secteurs électrofaibles scalaires et

spinoriels ainsi qu’une bonne mâıtrise des techniques de calcul sous-jacentes. Puis pour faire

la part des contributions purement électrofaibles propres aux processus d’intérêts, on établit

une formule analytique permettant de quantifier la contribution photonique universelle. En-

suite, pour voir comment peut se révéler un signal de nouvelle physique, on traite l’influence

sur les sections efficaces différentielles angulaires, d’opérateurs effectifs paramétrant le secteur

de la brisure de la symétrie. Pour enfin inclure les faisceaux de bosons vecteurs massifs dans

une approche fonction de structure pour une phénoménologie au plus puissant collisionneur

hadronique d’aujourd’hui : le LHC (Large Hadron Collider) et au collisionneur leptonique

du futur proche : l’ILC (International Linear Collider).
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Dans le deuxième volet de cette thèse, on traite du cas du Higgs lourd violant le principe

d’unitarité perturbative. On suit alors la procédure initiée par Contogouris, et on construit

un modèle dispersif pour l’amplitude du processus WLWL → WLWL. A hautes énergies, la

résolution numérique de l’équation intégrale qui découle de notre construction, nous permet

de mettre en évidence, à travers les résonances de l’amplitude dispersive, les manifestations

d’un comportement en force forte de l’interaction électrofaible. Une analyse attentive des

résultats qu’on obtient, nous permet d’une part d’estimer la valeur de la masse d’un Higgs

lourd et d’autre part d’extraire une nouvelle limite pour la validité du calcul perturbatif dans

la théorie électrofaible.
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Abstract

The mechanism of spontaneous symmetry breaking responsible for the generation of

masses for both the bosons and the fermions of the Standard Model remains a mystery,

especially that the Higgs has still not been discovered.

In this thesis I concentrate on the study of the scalar sector of the Standard Model where

the Higgs with the other Goldstone Bosons reside. This sector can best be probed through

the massive vector bosons and the top quark. The former, for their privileged coupling to the

Higgs and because their longitudinal mode represents the Goldstone Bosons, and the top,

because of its very strong Yukawa coupling, are very sensitive to the mechanism of symmetry

breaking.

I first focus on a situation where the Higgs is light and study the processes W−W+ → tt̄

and ZZ → tt̄. In order to unambiguously reveal a sign of New Physics, the Standard Model

needs to be predicted precisely. In a first step I therefore study the electroweak and QCD one-

loop corrections for these processes. This requires a renormalisation of the electroweak gauge

and top sectors and mastering some one-loop techniques. I then concentrate on extracting the

purely electroweak contributions to the above processes after setting up an analytical formula

for the universal photonic contribution. The New Physics affecting the top and W system is

parameterised with the help of effective operators describing symmetry breaking. The effect

of these operators is carefully compared to the effect of the one-loop radiative corrections

before setting a limit on the parameters of these New Physics operators. To give more realistic

results the WW and ZZ cross sections are turned into e+e− and pp cross sections by using

a structure function approach. This allows an application to the phenomenology at futur

colliders (LHC :Large Hadron Collider and ILC : International Linear Collider).

A second aspect of the work presented here concerns the situation where the Higgs is

heavy. For a heavy Higgs the electroweak interaction enters a strong interaction regime where

perturbative unitarity may be violated, so we have to resort to non-perturbative methods.

By following the pioneering work of Contogouris, I construct a dispersive model for the
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process WLWL → WLWL where WL is the longitudinal W . The numerical resolution of the

integral equation that is induced by this model enables a study of the strong effects of the

electroweak interaction at high energies. I also extract a new limit for the validity of the

perturbative calculation in the electroweak theory and a value for the Higgs mass in case

the Higgs is very heavy.
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sur les coupures cinématiques, et pour m’avoir aidé à adapter Latex aux exigences de mon
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1.3.1 Définition des constantes de renormalisation . . . . . . . . . . . . . . 44

1.3.2 Conditions de renormalisation . . . . . . . . . . . . . . . . . . . . . . 45
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(PEW) avec extraction de la contribution photonique universelle (QED)
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Introduction

Comprendre les lois qui régissent l’univers, a toujours été l’un des objectifs essentiels de

l’être humain. Et ceci dans le but, d’une part, d’apaiser sa curiosité à comprendre ce qui se

passe autour de lui, et d’autre part, pour mettre ces lois à son profit. Donc l’aisance relative

des connaissances dont on jouit aujourd’hui, n’est en fait que le fruit d’efforts intenses et

successifs de plusieurs civilisations et de plusieurs générations. Et le processus de création

du savoir et du savoir faire continue !

L’homme a donc compris, à travers son expérience, que le monde physique est en réalité

matière et interactions. Et qu’il est régi par des lois objectives et non subjectives. Il s’est

donc doté d’outils qui lui permettent de modéliser ces lois dans un langage mathématique

varié, qu’il créa en harmonie avec les problèmes traités.

Au début du vingtième siècle, on pouvait déjà recenser quatre types d’interactions fon-

damentales entre les particules (voir tableau 1). Trois de ces interactions sont de longue

portée : la gravitation, l’électromagnétisme et l’interaction «nucléaire» forte1. Par ailleurs,

l’interaction «nucléaire» faible est de courte portée.

Interaction Intensité relative Effet

Gravitation 10−39 Attire
Electromagnétisme 10−2 Attire ou repousse

Faible 10−6 Transmute
Forte 1 Attire

Tableau 1: Intensités relatives et effets des quatres interactions fondamentales

Les effets de l’interaction gravitationelle n’étant perceptibles que pour des objets ma-

1En 1935, Yukawa proposa la première théorie pour décrire l’interaction forte qui contre la répulsion
Coulombienne entre les protons et qui par suite maintient la structure du noyau atomique. Dans cette
théorie l’interaction entre nucléons (protons et neutrons) est de courte portée et est vehiculée par une particule
massive appelée «pion» et qui fut découverte plus tard. Néanmoins la théorie de Yukawa n’a pas pu survivre,
du fait de la découverte d’une multitude d’autres particules manifestant aussi cette d’interaction forte, en plus
du fait que les résultats théoriques n’étaient pas totalement satisfaisants. La choromodynamique quantique
(QCD) succéda à la théorie du Yukawa en fin des années soixante. Dans QCD la portée de l’interaction forte
entre quarks est longue et est mediée via le gluon de masse nulle. Par ailleurs, le phénomène de confinement
des quarks au sein des hadrons (particules composites blanches) fait que l’interaction nucléaire n’est que
le résidu entre nucléons (hadrons) de cette interaction forte entre quarks. La «portée effective» de cette
interaction devient alors courte.
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croscopiques trés massifs, alors à l’échelle des particules élementaires, seules les interactions

électromagnétique, faible et forte sont les plus pertinentes. L’électromagnétisme est directe-

ment relié à la charge électrique des particules et est bien décrit via les équations de Maxwell

au niveau classique puis par l’électrodynamique quantique (QED). Par ailleurs, l’interaction

nucléaire forte ne se manifeste qu’entre hadrons et fut initialement décrite par la théorie de

Yukawa qui laissa la place à la chromodynamique (QCD) décrivant cette interaction via les

charges de couleur portées par certaines particules. Quant à l’interaction nucléaire faible,

elle ne touche que les particules susceptibles de se désintégrer en constituants fondamentaux

stables. Cette dernière interaction fut d’abord décrite par Fermi à travers l’introduction dans

le Lagrangien du système, d’un terme d’interaction qui englobe toutes les particules mises en

jeu lors du processus de désintégration, y compris le neutrino prévu par Pauli pour restaurer

la conservation de l’énergie totale du système. Cette interaction faible devait être de type

vectoriel ou de type axial-vectoriel pour répondre à la condition d’invariance de Lorentz et

pour satisfaire aux résultats expérimentaux relatives à la violation de la parité et aux durées

de vie des transitions de Fermi et de Gamow-Teller. Elle devait aussi rendre compte du fait

que seuls les fermions de chiralité gauche interagissent faiblement. Mais on s’aperçut vite que

cette formulation de Fermi décrivait bien le phénomène aux basses énergies et qu’elle souffrait

d’un grave défaut à hautes énergies. À hautes énergies l’unitarité est violée et ainsi la théorie

de Fermi est non-renormalisable. Le diagnostique de ce défaut révélait que le problème prove-

nait du fait que dans la théorie de Fermi, les particules n’ interagissent entre elles que si elles

coexistent au même point de l’espace temps. Par ailleurs, l’interaction électromagnétique

ne souffre pas de cet handicap, du fait qu’elle autorise l’interaction par l’intermédiaire d’un

champ de jauge : le photon dont le propagateur est inversement proportionelle au carré de

l’impulsion transférée, permettant ainsi de réduire toute divergence quadratique en diver-

gence logarithmique, qu’il est possible d’absorber dans la renormalisation de la constante de

couplage. Il est donc important d’introduire, d’une manière invariante de jauge, la notion de

bosons vecteurs intermédiaires dans la théorie de l’interaction faible. Ces bosons messagers

doivent être massifs, vu la portée courte de l’interaction faible. De plus, ils doivent être

de spin un comme le photon, pour pouvoir se coupler aux courants vectoriels intervenants

dans les processus de désintégration. Enfin, ils doivent être au nombre de trois, pour rendre
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compte du fait que les courants faibles peuvent être électriquement, soit neutre, soit chargés

positivement ou négativement. Il est, en outre, important que les propagateurs de ces bo-

sons messagers faibles puissent développer un comportement en propagateurs de particules

massives aux basses énergies pour rejoindre la théorie de Fermi et par ailleurs ils doivent

déveloper un comportement en propagateurs de particules non-massives aux hautes énergies

pour que la théorie soit renormalisable. Ce comportement des propagateurs bosoniques va-

riant en fonction de l’intensité de l’énergie de transfert, ne peut être assuré si on introduit

les termes de masses à la main. Il faut donc que nos champs de bosons vecteurs soient non

massifs lors de leur introduction dans la théorie et qu’ils acquièrent ensuite leur masse res-

pective via un certain mécanisme qu’il faudrait inventer, tout en préservant le comportement

non-massif des propagateurs à hautes énergies. L’idée est donc de construire une théorie de

jauge électrofaible qui introduit de manière unifiée le photon et les bosons vecteurs faibles et

qui prévoit un mécanisme pour la génération des masses des bosons vecteurs faibles (et aussi

des masses des autres particules élementaires lourdes) tout en restant renormalisable. Dans

cette démarche de construction, il est facile de trouver une place pour l’interaction forte de

couleur, vu qu’elle aussi est régie par une théorie de jauge du groupe de symétrie de couleur

SU(3)c, appelée communément QCD et dont les bosons messagers de jauge sont non massifs

vu la longue portée de cette interaction, de spins un pour se coupler aux courants vectoriels

et portent des charges de couleur pour rendre compte de la liberté asymptotique à courtes

distances et du phénomène de confinement au sein des hadrons. Il devient alors possible de

juxtaposer les théories électrofaible et forte dans un seul modèle unifié.

Ainsi a vu le jour entre les années soixante et soixante-dix le modèle standard de la phy-

sique des particules (MS). Le MS traite les interactions forte, faible et électromagnétique

de manière unifiée à travers une théorie de jauge renormalisable du groupe de symétrie

SU(3)c × SU(2)L × U(1)Y . Le MS stipule que les briques fondamentales qui constituent

notre univers sont les fermions élémentaires (leptons et quarks) groupés en trois familles :
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1èrefamille →
(
νe

e

)

L

, νeR , eR ,

(
u
d

)

L

, uR , dR

2èmefamille →
(
νµ

µ

)

L

, νµR , µR ,

(
c
s

)

L

, uR , sR

3èmefamille →
(
ντ

τ

)

L

, ντR , τR ,

(
t
b

)

L

, tR , bR

Tableau 2: Les trois familles de particules élementaires

et que leurs interactions sont véhiculées à travers des particules bosoniques messagères : le

gluon (g) pour l’interaction forte, le photon (γ) pour l’interaction électromagnétique et les

bosons massifs neutre (Z) et chargés (W±) pour l’interaction faible.

Dans le MS toutes les particules élementaires (fermions et bosons) sont initialement sans

masse et elles n’acquièrent leur masse respective qu’après leur interaction, via un mécanisme

de symétrie cachée, avec un champ scalaire : le champ de Higgs. Lors de cette interaction la

symétrie électrofaible est spontannément brisée. On passe alors, du groupe SU(3)c×SU(2)L×

U(1)Y au groupe résiduelle SU(3)c × U(1)em. Il importe ici de noter que le MS ne prévoit

pas de valeurs pour les masses des particules. Ces dernières sont, par ailleurs, déterminées

expérimentalement. Dans les années quatre vingt, la confirmation au CERN de l’existence

des bosons vecteurs massifs comme prédits par le MS, fut l’un des grands triomphes de

cette théorie. Un triomphe réconforté en 1995, par la découverte au FermiLab du quark top

avec une masse de l’ordre de l’échelle de la brisure spontannée de la symétrie électrofaible.

Ainsi le MS est soumis actuellement à la phase des tests de précision. La figure 1 donne les

valeurs expérimentales de certaines observables et leur déviation par rapport au MS . Dans

la figure 2 est donnée, la section efficace totale du processus e+e− →W+W−. On y voit que

le calcul théorique rejoint bien les résultats expérimentaux. Ceci atteste que non seulement

le couplage du vertex lνlW est bien réglé dans le MS , mais que les autres couplages le sont

aussi. Donc à présent, il ne manque à l’appel que le Higgs qui a réussit à échapper à toute

détection directe.

Malgré ces succès spectaculaires, le MS est loin d’être une théorie complète de l’univers,

du moins pour la simple raison qu’il n’inclut pas la gravitation. En plus, il ne permet pas
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957

σhad [nb]σ0 41.540 ± 0.037 41.477

RlRl 20.767 ± 0.025 20.744

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21586

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.398 ± 0.025 80.374

ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091

mt [GeV]mt [GeV] 170.9 ± 1.8 171.3

αs(Q)

Q (GeV)

50 100 150 200

0.10

0.11

0.12

0.13

0.14

0.15

αs(Q) fit
at single energy

± σstat.

± σtotal

αs(Q) combined fit

Figure 1: Résumé des mesures de précision expérimentales comparées aux résultats théoriques du

MS incluant les corrections radiatives ; ces figures sont prises respectivement des sites suivants :

http ://lepewwg.web.cern.ch/ et http ://lepqcd.web.cern.ch/.

l’unification des constantes de couplages électrofaible et forte, ce que l’on aimerait bien voir se

réaliser à une échelle supérieure à l’échelle de brisure spontanée de la symétrie électrofaible

et inférieure à l’échelle de Planck où on espère pouvoir associer aussi la gravitation (voir

figure 3).

En outre, le MS n’a pas de candidat pour la matière noire nécessaire pour décrire le

mouvement des galaxies. En plus du fait que l’on ne sait pas pourquoi il y a trois familles ?

Pourquoi toute cette différence d’échelle entre les masses des particules ? Pourquoi les masses

des neutrinos sont presque nulles ? Comment quantifier la charge ? Quel rôle donner à la

gravitation ?... On s’attend alors à ce que le MS soit une théorie effective qui reste vraie

jusqu’à l’échelle de brisure spontanée de la symétrie électrofaible et qu’au delà, une nouvelle

physique (NP ) pourrait se révéler. Au delà du domaine où le MS serait prouvé toujours

valable par l’expérience, deux directions se présentent alors, selon la valeur de la masse du

Higgs.

• Pour un Higgs léger ne violant pas l’unitarité perturbative, une nouvelle théorie pertur-

bative tel que le Modèle Standard Supersymétrique Minimal (MSSM )ou bien une théorie
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Figure 2: Différentes manières de calculer la section efficace pour le processus e+e− → W+W−

comparées aux mesures expérimentales, montrent que dans le MS , les différents couplages sont

bien réglés, assurant ainsi la renormalisabilité et l’accord avec les résultats expérimentaux.(figures

prises des notes de cours sur la renormalisation de F.Boudjema [1])

de dimensions cachées succéderait au MS .

• Pour un Higgs lourd violant l’unitarité perturbative, l’interaction faible présente alors

un comportement en force forte et par suite le traitement perturbatif ne devient plus correct.

Il faut alors avoir recours aux méthodes non-perturbatives.

On est donc à la frontière d’une nouvelle physique. Et la nécessité d’avoir de nouvelles

données expériementales pour orienter les futures recherches en physique fondamentale se

fait sentir. Ainsi vient d’être lancé le 10 septembre dernier à Genève le grand collisioneur ha-

dronique (proton-proton) [2] du CERN, le LHC avec son énergie nominale de 14 TeV et sa lu-

minosité intégrée de 10−34cm−2s−1 et qui ne saurait rater le Higgs léger s’il existe réellement.

Par ailleurs, d’autres nouveaux collisionneurs (hadronique et leptonique) avec des énergies

et des luminosités jamais atteintes précédemment sont sur la liste pour réalisation. Notant

à titre d’exemple, l’ILC qui est un collisionneur linéaire électron-positron [3, 4, 5] et qui

sera mieux adapté pour les tests de précision du MS et pour l’exploration d’une éventuelle

nouvelle physique. Un nouveau domaine se présentera donc à l’exploration expérimentale

dans le futur tout proche et l’ère de la spéculation touche à sa fin.

A la lumière de cette discussion, le but de ma thèse est d’explorer d’avantage le secteur
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Figure 3: a) Le MS n’assure pas l’unification des constantes de couplage électrofaible et forte par

contre b) le MSSMpermet cette unification.

scalaire du MS . Les couplages importants de paires de bosons vecteurs au Higgs en premier

lieu et de paires de quarks top au Higgs en second lieu, font que les réactions de fusion de

paires de bosons vecteurs (V) en paires de bosons vecteurs V V → V V , ou bien en paires

de quarks top V V → tt̄, soient des outils privilégiés pour sonder ce secteur de la brisure

spontanée de la symétrie. Le déficit en terme de couplage, accusé par le processus V V → tt̄

par rapport à V V → V V est vite compensé par le fait que la masse du top est de l’ordre

de grandeur de l’échelle de brisure spontanée de la symétrie électrofaible v/
√

2 = 174GeV !.

Ceci confère au quark top un couplage de Yukawa de l’ordre de l’unité, d’où une grande

sensibilité au mécanisme de création de la masse. Ces réactions de fusion de bosons vecteurs,

s’annoncent prometteuses sur le plan pratique, vu qu’énormement de bosons vecteurs seront

produits dans la nouvelle génération de collisionneurs à energies dans le domaine du TeV.

Ainsi, l’approche adoptée dans cette thèse, est la suivante : Pour le cas d’un Higgs léger,

on utilise le processus V V → tt̄ [6] [7] à travers lequel, on montre qu’en vue de différencier

un signal comme étant celui du MS ou celui d’une nouvelle physique NP, les corrections

radiatives électrofaibles (EW) et forte (QCD) sont toutes deux du même ordre d’importance

et par suite doivent être prises conjointement dans toute confrontation des sections efficaces

calculées avec celles déduites des mesures de précisions. On se concentre ensuite, sur l’étude
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du processus WLWL → tt̄, pour chercher les manifestations de la symétrie cachée au moyen

d’un Lagrangien effectif. On s’interesse après, à l’application phénoménologique aux colli-

sionneurs à energies dans le domaine du TeV. Par ailleurs, pour le cas du Higgs lourd, on

utilise le formalisme des relations de dispersion pour construire à la Contogoris un modèle

dispersif pour l’amplitude du processus WLWL → WLWL [8]. L’amplitude dispersive qui

en résulte nous permet de mettre en évidence les manifestations du comportement en force

forte de l’interaction électrofaible. On montre aussi de manière explicite que l’unitarité est

préservée. On estime alors la masse du Higgs lourd et on determine une nouvelle limite pour

la validité du calcul perturbatif.

Enfin, le plan de ma thèse est le suivant :

• Dans le premier chapitre, on décrit la procédure de construction du modèle standard

(MS ) des interactions forte et électrofaible, en mettant l’accent sur le mécanisme de création

de la masse des particules. Puis on présente, le schéma de renormalisation du MS sur la

couche de masse, la manière avec laquelle on traite les divergences infrarouges photonique

et gluonique, et comment on assure la stabilité des résultats relativement à l’énergie de

coupure. On rappelle alors la manière de construction de la section efficace d’un processus

donné, en partant de l’expression de son amplitude de transition. Puis on discute le schéma

Gµ et sa relation avec la constante de structure fine. Pour ensuite évoquer la dépendance

de la constante de couplage QCD fort en fonction de l’échelle de renormalisation. Et on

finis par revoir le formalisme des relations de dispersion à travers les principes d’unitarité et

d’analycité de l’amplitude de transition.

• Dans le chapitre deux, pour un Higgs léger de masse n’excédant pas 300 GeV, on

s’intéresse à l’étude des processus V V → tt̄ (V étant le boson vecteur W ou Z) sensibles au

secteur de la symétrie électrofaible cachée. Pour ces processus, on montre d’abord, à travers

un calcul à l’arbre, la dominance des modes constitués de deux bosons vecteurs incidents lon-

gitudinaux. Puis dans le but de pouvoir évaluer la contribution purement électrofaible de ce

processus, on détermine, à l’ordre de la boucle, l’expression analytique de la contribution pho-

tonique universelle. Puis on définit la manière avec laquelle, on tire les contributions purement

électrofaibles pour ces processus d’intérêts. On montre alors que les corrections radiatives

EW et QCD sont toutes deux de l’ordre du pour cent et par suite importantes à être prise
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conjointement en considération dans toute confrontation avec les résultats expérimentaux.

On montre aussi que les contributions purement électrofaible prises dans le schéma Gµ restent

compétitives avec les contributions QCD.

• La nouvelle génération de collisionneurs avec leur énergie dans le domaine du TeV

étant susceptible de révéler les effets d’une nouvelle physique. Il est donc important d’étudier

les outils qui peuvent mettre en évidence de tel effets nouveaux. Dans le chapitre trois, on

s’intéresse alors à étudier l’effet sur la section efficace différentielle du processus W−
L W

+
L → tt̄,

d’opérateurs effectifs anomaux, construits par Yuan [9] en vu de paramétrer les effets de la

brisure spontanée de la symétrie électrofaible. Ceci nous permet de montrer que dans le cas

où la section efficace totale expérimentale, de création de paire tt̄ via la fusion de bosons

vecteurs massifs, coincide avec celle prévue par le MS incluant les corrections radiatives,

la section efficace différentielle peut révéler des distorsions liées à une nouvelle physique et

constituerait donc une fenêtre utile pour explorer ce secteur de nouvelle physique.

• Comme dans notre monde réel, on ne trouve pas de bosons vecteurs massifs à l’état

libre. Il est donc naturel de se demander, où trouve-t-on ces bosons ? Ces bosons sont en fait

produits dans les expériences de collisions à hautes énergies (relativement à l’énergie seuil

de leur création : ∼ 200GeV ). Et comme la nouvelle génération de collisionneurs (LHC,

ILC,· · · ) a des énergies de l’ordre du TeV, alors, une abondance de bosons vecteurs massifs

sera produite dans ces expériences. Par suite, il est important d’évaluer quantitativement, la

contribution du canal incluant la fusion des bosons vecteurs, au sein d’une phénoménologie

des processus de collisions leptoniques et hadroniques réelles. Dans le chapitre quatre, on

s’intéresse d’abord à brancher les processus V V → tt̄ au sein des collisions e+e− et pp, puis

au calcul les sections efficaces integrées. Pour ce faire, on utilise d’abord l’approximation

des bosons vecteurs effectifs (ABVE) [10, 11, 12, 13, 14, 15]. De plus, pour les collisions

hadroniques, on utilise les fonctions de structures des quarks dans le proton (les gluons ne

se couplent pas aux bosons vecteurs électrofaible). On montre alors que le canal incluant la

fusion de bosons vecteurs en paires de quarks top est prometteur pour les tests de précision

du MS dans le cadre de l’ILC. Par contre pour le LHC la production de paire de quarks top

via la fusion de gluons est très dominante et ne laisse pas de place pour pouvoir apprécier

les effets de la fusion des bosons vecteurs. A cette échelle d’énergie, les opérateurs anomaux
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induisent pour la section efficace totale un comportement différent de celui du MS et par

suite peuvent être utilisés pour sonder les effets d’une nouvelle physique.

• Dans le chapitre cinq, on s’intéresse au cas d’un Higgs très lourd. On utilise alors

le théorème d’équivalence et le formalisme des relations de dispersion pour construire, à la

manière initiée par Contogouris, un modèle dispersif pour l’amplitude du processus WLWL →

WLWL. Pour résoudre l’équation intégrale ainsi obtenue pour l’amplitude dispersive, on

utilise la méthode N/D de Chew-Mandelstam [16]. La résolution numérique de l’équation

qui en découle, nous permet de mettre en relief les effets forts de l’interaction électrofaible,

de montrer la préservation de l’unitarité à hautes énergies et de prévoir une masse pour le

Higgs lourd. On établit aussi, une nouvelle limite pour la validité du calcul perturbatif.

• Enfin, comme tout travail scientifique reste toujours incomplet, on termine avec quelques

perspectives ouvertes par ce travail.
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Chapitre 1

Modèle standard et relations de
dispersion

Le modèle standard (MS) de la physique des particules élémentaires était proposé ini-

tialement par Weinberg-Salam-Glashow [17, 18, 19], pour décrire l’interaction électrofaible

des leptons. Il était ensuite, étendu au secteur hadronique par Glashow-Iliopoulos-Maiani

[20]. C’est une théorie quantique des champs qui décrit de manière unifiée et perturbative,

les interactions fondamentales électrofaible et forte entre fermions élémentaires (quarks et

leptons). Le MS repose sur la symétrie locale de jauge, du groupe SU(3)c×SU(2)L×U(1)Y

(c, L et Y pour respectivement la couleur, l’isospin faible et l’hypercharge). Il associe, à

chaque générateur intervenant dans le groupe de symétrie, un champ de jauge et à chaque

type d’interaction une constante de couplage. La pièce mâıtresse du MS est le mécanisme

de la brisure spontanée de la symétrie électrofaible, qui tout en observant la condition de

renormalisabilité, génère les masses des particules (fermions et bosons), par le biais de leur

interaction avec le champ scalaire de Higgs.

Ce chapitre traite de la construction du MS, de sa renormalisation sur la couche de masse

et de ses paramètres physiques. Il aborde aussi l’approche non-perturbative du formalisme

des relations de dispersion, via les principes d’unitarité et d’analycité de l’amplitude de

transition.

1.1 Construction du Lagrangien classique du MS

Pour construire le Lagrangien du modèle standard, on associe d’abord un champ à toute

particule élementaire. Ainsi, on introduit pour tout fermion intervenant dans le MS, un

champ spinoriel (ψi) et pour tout bosons vecteurs de spin un, un champ vectoriel. Soit Bµ le

champs vectoriel et (g′) la constante de couplage introduite en correspondance avec le groupe

U(1)Y sous-tendu par le générateur Y . Et soit W a
µ (a = 1, 2, 3) les trois champs vectoriels
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et (g) la constante de couplage introduite en liaison avec le groupe SU(2)L sous-tendu par

les trois générateurs T a. Soit aussi Gα
µ (α = 1, 2, . . . , 8) les huit champs vectoriels et (gs)

la constante de couplage introduits en relation avec le groupe SU(3)c sous-tendu par les

huit générateurs T α
s . Les générateurs Y , T a et T α

s observent les relations de commutation

suivantes :

[Y, Y ] = 0, [T a, T b] = iǫabcTc, [T α
s , T

β
s ] = ifαβλT λ

s . (1.1)

où ǫabc est le tenseur antisymétrique de Levi-Cevita et fαβλ sont les constantes de structure

du groupe SU(3)c.

On organise les secteurs scalaire et spinoriel du MS selon les composantes d’isospin

faible. Ainsi, on représente le champ scalaire complexe de Higgs (Φ) par un doublet d’isospin

faible. Et, on forme des doublets de chiralité gauche (Ψi, l
L ) pour les leptons et (Ψi, q

L ) pour

les quarks et des singlets de chiralité droite (Ψi, l
R ) pour les leptons et (Ψi, q

R ) pour les quarks.

1.1.1 Prescription de l’invariance de jauge

En plus de la prescription de l’invariance de Lorentz qui doit être vérifiée pour toute

théorie relativiste des champs, le Lagrangien classique LSM
C du MS doit aussi observer

l’invariance sous les transformations locales de jauge suivantes :







Ψi, l
R (x) → Ψ′ i, l

R (x) = eiθ1(x)Y Ψi, l
R (x),

Ψi, q
R (x) → Ψ′ i, q

R (x) = eiθα
3 (x)T α

s eiθ1(x)Y Ψi, q
R (x)

Ψi, l
L (x) → Ψ′ i, l

L (x) = eiθa
2 (x)T a

eiθ1(x)Y Ψi, l
L (x),

Ψi, q
L (x) → Ψ′ i, q

L (x) = eiθα
3 (x)T α

s eiθa
2 (x)T a

eiθ1(x)Y Ψi, q
L (x)

Φ(x) → Φ′(x) = eiθa
2 (x)T a

eiθ1(x)Y Φ(x)

(1.2)

Ces dernières transformations sont effectuées simultanément avec les transformations sui-
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vantes des champs de jauge :







Bµ(x) → B′
µ(x) = Bµ(x) − 1

g′
∂µθ1(x)

−→
W µ(x) → −→

W ′
µ(x) =

−→
W µ(x) −

1

g
∂µ

−→
θ 2(x) −

−→
θ 2(x) ×

−→
W µ

Gα
µ(x) → G′ α

µ (x) = Gα
µ(x) − 1

gs
∂µθ

α
3 (x) + fαβλθ3, β(x)Gµ, λ(x)

(1.3)

Il devient alors possible de présenter le Lagrangien LSM
C sous la forme :

LSM
C = LG + LF + LS + LM (1.4)

Dans ce qui suit et jusqu’à la fin de cette section, on discute séparément chacune des com-

posantes LG, LF , LS et LM du Lagrangien du MS.

1.1.2 Lagrangien des champs de jauge

La dynamique des champs de jauge Bµ, W a
µ (a = 1, 2, 3) et Gα

µ (α = 1, 2, . . . , 8) est gérée

par le Lagrangien :

LG = −1

4
Gα

µνG
α µν − 1

4
W a

µνW
a µν − 1

4
BµνB

µν . (1.5)

où les intensités de champ Gα
µν ,W

a
µν et Bµν sont données respectivement par :







Gα
µν = ∂µG

α
ν − ∂νG

α
µ + gsf

αβλ Gβ
µG

λ
ν

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gǫabc W b

µW
c
ν

Bµν = ∂µBν − ∂νBµ .

(1.6)

Ces expressions permettent de voir directement que les vertex à trois et quatre bosons vec-

teurs médiateurs sont générés par les contributions non-Abeliennes.
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1.1.3 Lagrangien Fermionique

La contribution cinétique des fermions est incorporée dans le MS à travers le Lagrangien

fermionique :

LF = i

3∑

k=1

[

Ψ̄k, l
L γµDl

L, µΨ
k, l
L + Ψ̄k, l

R γµDl
R, µΨ

k, l
R + Ψ̄k, q

L γµDq
L, µΨ

k, q
L + Ψ̄k, q

R γµDq
R, µΨk, q

R

]

.

(1.7)

où la somme sur k correspond aux différentes familles de fermions et les Dy
X, µ (X = L,R ; l ≡

lepton ; q ≡ quark) représentent les dérivées covariantes :







Dl
L, µ = DΦ, µ = ∂µ − igW a

µT
a − ig′Y Bµ

Dl
R, µ = ∂µ − ig′Y Bµ

Dq
L, µ = ∂µ − igsG

α
µT

α − igW a
µT

a − ig′Y Bµ

Dq
R, µ = ∂µ − igsG

α
µT

α − ig′Y Bµ

(1.8)

Il est à noter ici que le Lagrangien LF n’introduit pas de manière explicite les masses des

fermions, car cela violerait l’invariance de jauge et par suite la théorie ne serait plus renor-

malisable. Donc pour générer les masses de ces fermions, on aura besoin de le faire via un

mécanisme qui ne touche pas à l’invariance de jauge. Dans le MS, c’est le mécanisme de

Higgs [21, 22, 23, 24, 25] qui accompli cette tâche. Ce mécanisme offre aussi la possibilité de

créer les masses des bosons vecteurs médiateurs et du Higgs.

1.1.4 Lagrangien scalaire et brisure spontanée de la symétrie électrofaible

Dans le MS , le champ scalaire de Higgs est introduit via le Lagrangien :

LS = (DΦ, µΦ)†(DΦ, µ Φ) + µ2Φ†Φ − λ(Φ†Φ)2 (1.9)

où Φ est le doublet isotopique du champs scalaire complexe, que l’on peut paramétrer sous
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la forme :

Φ(x) =
1√
2






iχ1(x) + χ2(x)

v +H(x) − iχ3(x)




 =






iχ+(x)

(v +H(x) − iχ3(x))/
√

2




 . (1.10)

Le potentiel qui apparâıt dans l’expression du Lagrengien LS développe un minimum (un

vide) dégénéré (voir figure 1.1) :

Φ0 ≡ 〈0|Φ|0〉 =






0

v/
√

2




 eiφ, avec v =

√

µ2

λ
. (1.11)

Figure 1.1: États du vide du Higgs

Dans ce qui suit, on choisit φ = 0. Ce choix particulier de la phase φ n’implique aucune limi-

tation de la théorie car on peut toujours retrouver la forme générale de Φ0 par le biais de la

transformation de phase : Φ0 → eiφ Φ0. Cette transformation n’affecte pas la physique puis-

qu’on ne s’intéresse qu’à des quantités réelles mesurables. Néanmoins,toute transformation

de phase reliant un état du vide (Φ0 pour φ donné) à un autre, malgré le fait qu’elle n’affecte
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pas le Lagrangien LS, elle brise la symétrie du vide. On parle alors de brisure spontanée de

la symétrie électrofaible (BSSE), ou en d’autres termes de symétrie cachée. 1

• Masses des bosons vecteurs :

En évaluant le terme cinétique de LS au minimum Φ0 et en prenant soin de mettre Y = 1
2

par

respect à la relation de Gell-Mann-Nishijima (qui dans notre notation s’écrit Q = T3 + Y ),

on obtient :

∣
∣
(
∂µ − igW a

µT
a − ig′ Y Bµ

)
Φ0

∣
∣
2

=
1

8

∣
∣
∣
∣
∣
∣
∣






gW 3
µ + g′Bµ g(W 1

µ − iW 2
µ)

g(W 1
µ + iW 2

µ) −gW 3
µ + g′Bµ











0

v






∣
∣
∣
∣
∣
∣
∣

2

=
1

8
v2g2

[
(W 1

µ)2 + (W 2
µ)2
]
+

1

8
v2
(
g′Bµ − gW 3

µ

) (
g′Bµ − gW 3 µ

)
(1.12)

On définissant alors de nouveaux champs vectoriels : Aµ, Zµ et W±
µ par les relations :







Aµ =
g′W 3

µ + gBµ
√

g2 + g′2
= sWW

3
µ + cWBµ

Zµ =
gW 3

µ − g′Bµ
√

g2 + g′2
= cWW

3
µ − sWBµ

W±
µ =

W 1
µ ∓ iW 2

µ√
2

, avec cW =
g

√

g2 + g′2
, sW =

g′
√

g2 + g′2
.

(1.13)

et en introduisant la constante de couplage électromagnétique e :

e =
gg′

√

g2 + g′2
, g =

e

sW
, g′ =

e

cW
, (1.14)

le terme cinétique précédent prend la forme :

1

4

e2v2

s2
W

W+
µ W

− µ +
1

8

e2v2

s2
W c2W

ZµZ
µ +

1

2
(0)AµA

µ (1.15)

1La BSSE n’a rien à voir avec la violation de la parité par l’interaction faible. Celle-ci est explicitement
introduite dans le Lagrangien.
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Ceci implique que les bosons vecteurs ont respectivement les masses :

MW =
ev

2sW

, MZ =
ev

2sW cW
, MA = 0. (1.16)

où l’indice A représente le photon.

Ainsi, après interaction avec le Higgs dans son état minimal, les bosons vecteurs faible de-

viennent massifs par contre le photon reste sans masse et la symétrie U(1)em est conservée.

Ceci est dû principalement, au fait que la composante neutre du doublet de Higgs qui

développe un minimum, reste invariante sous la transformation de phase U(1)em.

• Absorption des Goldstones et génération de la masse du Higgs :

Remarquons tout d’abord que le doublet de champ scalaire complexe Φ peut être écrit,

au premier ordre des champs scalaires χ1(x), χ2(x), χ3(x) et H(x) sous la forme :

Φ(x) =
1√
2






iχ1(x) + χ2(x)

v +H(x) − iχ3(x)




 = ei

√
2χa(x)T a/v






0

1√
2
(v +H(x))




 . (1.17)

En appliquant alors la transformation de jauge :

Φ(x) → e−i
√

2χa(x)T a/vΦ(x) =
1√
2






0

v +H(x)




 . (1.18)

On remarque qu’heureusement, les champs scalaires sans masses χ1(x), χ2(x), χ3(x) sont

totalement éliminés de la théorie. Si c’était le contraire, alors il doit exister dans la nature

des particules scalaires de masses nulles. Ceci est catégoriquement infirmé par l’expérience.

Le MS n’a donc le choix que d’être une théorie de jauge. Les champs scalaires fictifs qui

n’acquièrent pas de masse et qui sont absorbés lors d’une transformation de jauge, sont

appelés les Goldstones. Le dégré de liberté réel restant est le boson de Higgs massif.

En fait, en ne considérant dans le terme cinétique du Lagrangien LS que la partie en

relation avec le champ de Higgs, à savoir 1
2
∂µH∂

µH ; puis en lui ajoutant le potentiel de
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Higgs, on obtient :

LS → 1

2
∂µH ∂µH − µ2H2 −

√
λµH3 − λ

4
H4. (1.19)

Ceci permet de déduire la masse du boson de Higgs : MHiggs =
√

2µ (non nulle !).

• remarques :

1. Dans le lagrangien LS, le terme linéaire en fonction du champ scalaire de Higgs, appelé

communément «Tadpole»T (LS → T = v(µ2 − λ v2)H(x)), disparâıt du fait de la

relation µ2 = λ v2 qui défini l’état du vide du Higgs.2

2. Dans le construction du MS, on n’a pas introduit explicitement des termes de masses

pour les bosons vecteurs électrofaibles. Car ceci ne permettrait pas de préserver l’inva-

riance de jauge et par suite la théorie qui en découlerait serait non-renormalisable. En

fait, c’est plutôt l’interaction invariante de jauge entre le champ scalaire de Higgs et

les champs vectoriels initialement sans masse et représentants ces bosons vecteurs, qui

procure à ces derniers leur masse respective. Il est toutefois important de noter ici que

dans le MS les propagateurs des bosons vecteurs qui s’écrivent (V étant W ou Z) :

D(V )
µν =

1

k2 −M2
V

(

gµν − (1 − ξV )
kµkν

k2 − ξVM2
V

)

−−−→
k→∞

Cste

k2
(1.20)

développe à hautes énergies (k → ∞) le même comportement que le propagateur

photonique. Or cette forme de comportement à hautes énergies est bien celle qui permet

de reduire toute divergence quadratique en divergence logarithmique absorbable dans la

redéfinition (renormalisation) des constantes de couplage. Par ailleurs, les propagateurs

des bosons vecteurs faibles W et Z ont été introduit dans le MS par substitution

à l’interaction ponctuelle dans la théorie de Fermi. Et comme à basses énergies de

transfert (k → 0) la théorie de Fermi marche bien, le MS doit donc reproduire la

constante effective de Fermi à cette limite. Cette constante est reflétée par la limite

du propagateur de boson vecteur D
(V )
µν −−−→

k→∞

gµν

M2
V

sous-tendant à ses deux extrémités

deux couplages fermioniques d’intensité proportionelle à g. Ainsi Gµ ∼ Geff =
g2

M2
V

est bien finie comme il se doit.

2Cette condition du Tadpole nul, sera exigé à tous les ordres supérieurs de la théorie des perturbations
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3. Dans le système du centre de masse des bosons vecteurs massifs, on peut définir les

quadri-vecteurs de polarisations transversales et longitudinale par :

ǫµT1 = (0, 1, 0, 0), ǫµT2 = (0, 0, 1, 0), ǫµL = (0, 0, 0, 1). (1.21)

Lors d’un boost dans la direction Oz de la quadri-impulsion pµ = (E, 0, 0, |−→p |), les

polarisations transversales ne sont pas affectées, alors que la polarisation longitudinale

ǫµL = (0, 0, 0, 1) devient [26] :

ǫµL = (
|−→p |
MV

, 0, 0,
E

MV

) → pµ

MV

, pour E ≫MV . (1.22)

MV étant la masse du boson de jauge V .

À hautes énergies, le vecteur polarisation longitudinale est donc proportionnelle à la

quadri-impulsion du boson de jauge, et par suite, on s’attend à ce que les modes

longitudinaux des bosons vecteurs massifs soient dominants à hautes énergies. Ceci

constitue l’idée de base sur laquelle repose théorème d’équivalence discuté dans [12,

15, 27, 28].

1.1.5 Lagrangien de Yukawa et masses des fermions

L’interaction des champs spinoriels des fermions avec le champ scalaire de Higgs est

décrite par le Lagrangien de Yukawa suivant :

LM = −
3∑

k=1

[

λl, up
k Ψ̄k, l

L (iσ2Φ∗) Ψk, l
R, up + λl, down

k Ψ̄k, l
L Φ Ψk, l

R, down + (h.c.)
]

−
3∑

k=1

[

λq, up
k Ψ̄k, q

L (iσ2Φ∗) Ψk, q
R, up + λq, down

k Ψ̄k, q
L Φ Ψk, q

R, down + (h.c.)
]

(1.23)

Cette interaction permet de générer les masses respectives des fermions. Par exemple pour

l’électron LM contribue avec le terme :

LM → L(e)
M = − 1√

2
λe (ν̄e, ē)L






0

v +H




 eR + h.c. (1.24)
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En combinant ce terme avec la partie cinétique électronique extraite du Lagrangien fermio-

nique LF , on obtient la masse de l’électron :

me =
λev√

2
(1.25)

1.2 Quantification du Lagrangien du MS

Le Lagrangien LSM
C ne fait intervenir que des champs classiques. Le MS étant par

ailleurs une théorie quantique des champs. On doit donc quantifier notre Lagrangien en

introduisant de manière covariante, pour tout champ intervenant dans LSM
C un opérateur

champ. Cette procédure de quantification nécessite, pour préserver l’invariance de gauge

au sens quantique, l’introduction de nouveaux termes dans le Lagrangien du MS . On

explicitera cette procédure dans ce qui suit.

1.2.1 Quantification de la contribution de couleur

Considérons le Lagrangien de jauge des degrés de liberté de couleur :

LQCD
G = −1

4
Ga

µνG
a µν avec Ga

µν = ∂µG
a
ν − ∂νG

a
µ + gsf

a b c Gb
µG

c
ν . (1.26)

Le conjugué canonique Πa
µ du champ Ga

µ, s’écrit :

Πa
µ =

∂LQCD
G

∂ (∂0Ga µ)
= −Ga

0 µ (1.27)

et la relation de commutation canonique entre les opérateurs de champ Ĝa
µ et leur conjugué

Π̂a
µ prend la forme :

[

Ĝa
0(x), Π̂

a
0(y)

]

x0=y0

= iδ3(−→x −−→y ) (1.28)

Mais du fait que Ga
0 0 est nulle d’après l’équation (1.26), il s’ensuit d’après l’équation (1.27)

que Π̂a
0 est nulle, et par suite le commutateur

[

Ĝa
0(x), Π̂

a
0(y)

]

x0=y0

doit aussi, être nul. Il est

évident que ce dernier résultat est inconsistant avec la relation de commutation 1.28. Ce

problème trouve sa solution, si on se donne le droit de ne pas respecter l’invariance de jauge
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(au sens classique) !. Ainsi, on introduit dans le Lagrangien du MS un terme qui fixe la

jauge (LQCD
GF ). En ajoutant ce terme en résout le problème précédent mais, on crée d’autres.

On s’aperçoit qu’en plus de la perte de l’invariance de jauge, on perd aussi l’unitarité ! ce

qui implique la non adéquation du calcul perturbatif !

Pour remédier à cette grave situation catastrophique, Feynman a conçu en 1963 [29], une

procédure dans laquelle, il a introduit dans la théorie des opérateurs champ «bosonique»

scalaire mais qui par contre observent les règles de quantification canonique de fermions ! Et,

il a ajusté les couplages de ces champs fantômes aux opérateurs champ de jauge, de manière

à ce que la renormalisation de la théorie soit préservée.

En 1967 Faddeev et Popov [30] donnèrent, dans le cadre de la procédure de quantification

par des intégrales fonctionnelles, une justification à la procédure heuristique de Feynman.

En fait le terme du Lagrangien (LQCD
FP ) qui dépend de ces opérateurs champ fantôme

appelé «ghost», trouve son origine dans la procédure mathématique consistant à écrire un

déterminant sous forme d’une exponentielle. Les nouveaux termes de fixation de la jauge et

ceux de Faddeev-Popov s’écrivent :

LQCD
GF = − 1

2ξG
(∂.Ga)2 et LQCD

FP = i(∂µχa
1)D

a b
µ χb

2 (1.29)

où χa
1 et χb

2 sont les ghosts et D a b
µ = δ a b∂µ − gsf

a b cGc
µ la dérivée covariante. a et b

représentent les degrés de liberté de couleur.

• Remarques importantes :

1. Le Lagrangien LQCD
C extrait du Lagrangien LSM

C s’écrit : LQCD
C = LQCD

F + LQCD
G . Il

est invariant sous les transformations de jauges locales classiques (voir section 1.1.1).

Néanmoins le Lagrangien Quantique LQCD
Q = LQCD

C +LQCD
GF +LQCD

FP n’est pas invariant

sous ces transformations de jauges locales classiques. LQCD
Q est plutôt invariant sous un

autre ensemble de transformations représentant une extension de ces transformations

classiques, Cette extension inclus, en plus des transformations classiques, des transfor-

mations locales de ghost ainsi que certaines conditions supplémentaires. Ces nouvelles

transformations de jauge locales quantiques portent le nom de transformations BRS

[31].
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2. Par construction, les transformations BRS n’affectent pas le Lagrangien LSM
C . Cette

invariance de LSM
C sous BRS, permet de conserver toutes les propriétés du Lagrangien

classique, établies dans le cadre de l’invariance de jauge classique. En particulier, le

mécanisme de génération des masses des particules reste inchangé .

3. Etant donné un Lagrangien classique LC et des transformations BRS, le Lagrangien

quantique LQ correspondant s’obtient via :

LQ = LC + LGF + LFP (1.30)

tel que par construction :

δBRSLQ = 0 et δBRSLC = 0 (1.31)

où δBRS représente la variation sous l’effet des transformations BRS.

Il s’ensuit que, si on se donne un terme de fixation de la jauge alors LFP est déterminé

à partir de la relation :

δBRSLFP = −δBRSLGF (1.32)

4. Nilpotence de la transformation BRS : Cette propriété remarquable de la transforma-

tion BRS signifie que l’application répété deux fois de suite de la transformation BRS

sur tous champ (spinoriel, de jauge ou de fantôme), donne un résultat nul :

δ2
BRS = 0 (1.33)

Cette propriété est utile pour démontrer les identités de Ward-Takahashi [32, 33] qui

à leur tour servent pour montrer la renormalisabilité du MS.

1.2.2 Quantification de la contribution électrofaible

La quantification du Lagrangien électrofaible nécessite aussi l’introduction d’un terme

de fixation de la jauge et d’un terme de Faddeev-Popov. Comme dans [34], on adopte la

généralisation de la jauge linéaire de ’t Hooft au cas non-linéaire sous-tendu par cinq nou-

veaux paramètres : (α̃, β̃, δ̃, κ̃, ǫ̃). Le Lagrangien de fixation de la jauge s’écrit :
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LEW
GF = − 1

ξW

G+

︷ ︸︸ ︷

|(∂µ − ieα̃Aµ − igcW β̃Zµ)W
µ+ + ξ′W

g

2
(v + δ̃H + iκ̃χ3)χ

+ |2

− 1

2ξZ
(

GZ

︷ ︸︸ ︷

∂.Z + ξ′Z
g

2cW
(v + ε̃H)χ3)

2 − 1

2ξA
(

GA
︷︸︸︷

∂.A )2

≡ − 1

ξW
G+G− − 1

2ξZ
(GZ)2 − 1

2ξA
(GA)2 (1.34)

Et le Lagrangien de Faddev-Popov correspondant s’écrit :

LEW
FP = −

(
c̄+δBRSG

+ + c̄−δBRSG
− + c̄ZδBRSG

Z + c̄AδBRSG
A
)

(1.35)

• Le Lagrangien du MS (LSM
Q ), se présente alors sous la forme condensée :

LSM
Q = LSM

C + LEW
GF + LEW

FP + LQCD
GF + LQCD

FP (1.36)

• Règles de Feynman :

Maintenant que le Lagrangien du MS est construit d’une manière susceptible de garan-

tir sa renormalisabilité, on s’interese aux règles de Feynman du MS. Ces règles établissent

la correspondance qui permet de passer, de façon univoque, des diagrammes de Feynman

à l’expression mathématique de l’amplitude de transition pour un processus donné. Elles

définissent les champs des particules, leurs états de polarisations, l’expression des propaga-

teurs ainsi que les vertex des interactions permises. La contribution des particules intervenant

à l’intérieur des boucles y est aussi défini. Pour le MS, la liste de ces règles peut être trouvée

dans [34] pour le cas général de jauge non-linéaire, et dans [35], [36, 37], [38] pour le cadre

particulier de jauge linéaire.

• Remarque : En jauge unitaire (ξ → ∞), les Goldstones disparaissent. C’est donc la

jauge physique naturelle. Il est, par ailleurs, plus approprié de travailler en jauge générale

Rξ. De plus, le calcul devient beaucoup plus simple dans la jauge de ’t Hooft-Feynman

(ξ = 1), où les Goldstones ont une «masse» proportionnelle à MV . Mais comme le MS est

une théorie invariante de jauge par construction, toute dépendance en fonction de ξ disparâıt
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dans les quantités physiques mesurables. On choisira donc de mener nos calculs à l’aide de

la jauge qui rend le calcul plus simple et qui permet d’éviter les instabilités numériques.

1.2.3 Paramètres fondamentaux, paramètres physiques et importance du

calcul à l’ordre de la boucle

Lors de la construction du MS, on a introduit dans l’expression du Lagrangien, les

paramètres (g, g′, gs, λ, µ2, λY ukawa
f ) communément appelés paramètres fondamentaux3. Mais

comme ma thèse s’intègre dans le cadre des tests de précision du MS et de la recherche d’une

nouvelle physique, il est plus avantageux d’avoir recours à des paramètres reliés directement

à des observables physiques. Ainsi, on choisit d’utiliser dans nos calculs, l’ensemble des

paramètres physiques suivants :(e, gs,MW ,MZ ,MHiggs, mf). En outre, il est aussi d’usage,

d’utiliser l’angle de mélange faible θW introduit par Glashow et défini par la relation cW ≡

cos(θW ) = MW/MZ , qu’on imposera à tous les ordres du développement perturbatif. Les

relations définissant ces paramètres physiques via les paramètres fondamentaux du MS ont

déjà été données plus haut, parallèlement avec la construction du Lagrangien du MS.4 Il est

toutefois important de noter que ces paramètres physiques sont choisis parmi les grandeurs

physiques mesurables évaluées avec les meilleures précisions accessibles expérimentalement.

Par suite pour ne pas perdre ce degré de précision, il faut veiller à ce que le calcul qui utilise

ces paramètres ne propage pas leur incertitude, ni les amplifie.

Par ailleurs, comme l’expérience ne fait pas de différence entre ce qui est calculé à

l’arbre et ce qui est évalué à l’ordre de la boucle, et par souci de comparaison entre les

résultats théoriques et expérimentaux concernant les même observables d’intérêt. Il faut

pousser la précision des résultats théoriques au moins au même degré de précision que les

résultats expérimentaux dont la précision ne cesse d’augmenter. Cet objectif est atteint via

l’introduction dans le calcul des observables, des corrections radiatives en fonction de la

constante de structure fine α = e2/4π ainsi que de la constante de couplage fort αs = g2
s/4π,

qui à l’ordre de la boucle sont du rang du pour cent

3Contrairement aux couplages de jauge qui sont définis via la théorie du MS, les couplages de Yukawa
sont libres et ne sont soumis à aucune théorie.

4Par ailleurs, il est aussi possible de considérer v comme un paramètre fondamental indépendant. Dans
ce cas, il faut prendre le soin d’introduire le «Tadpole»T, qui dans ce cas particulier, ne sera pas nul, du fait
d’avoir choisi ici de ne pas imposer de relation entre v, λ et µ2.
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Ainsi, si malgré le fait de pousser la précision du calcul théorique mené via le MS, une

différence5 persiste entre les résultats théoriques et expérimentaux cela sera révélateur de

l’existance d’une nouvelle physique au delà du MS.

1.3 Renormalisation du modèle standard sur la couche de masse

Le MS est une théorie perturbative de champs quantiques. Ainsi, en considérant que les

quantités présentes dans le Lagrangien du MS (LSM
Q ) sont des quantités physiques (donc

finies), alors les observables qui en principe doivent être finies, le sont de manière certaine,

seulement lorsque leur évaluation théorique via le MS est menée à l’arbre. Mais dès l’intro-

duction des corrections radiatives, les diagrammes à boucles peuvent faire intervenir, dans

le secteur des hautes énergies, des divergences dans ces observables. Ces divergences sont

dites divergences ultraviolettes (UV) ; et leur résolution s’appelle renormalisation. Cette re-

normalisation consiste d’abord à glisser les divergences des observables vers les paramètres

du Lagrangien qui deviennent alors dénudés de sens physique (paramètres nus), puis à intro-

duire des contre-termes dans le Lagrangien de façon à ce que les observables calculées aux

ordres supérieurs de pertubation restent finies comme il se doit. Les paramètres ramenés à

la norme finie sont dit renormalisés.

La renormalisabilité des théories de jauge non-Abeliennes incluant la brisure spontanée

de la symétrie à l’instar du MS, a été prouvée en 1971 par ’t Hooft [39, 40].

Et comme il existe plusieurs choix possibles de contre-termes et que chaque choix définit

un schéma de renormalisation, alors plusieurs schémas de renormalisation ont été construits :

le schéma de la soustraction sur la couche de masse (OMS, On Mass Shell), le schéma de

la soustraction hors de la couche de masse (MOM), le schéma de la soustraction minimale

(MS) et le schéma de la soustraction minimale modifiée (MS).

Dans le cadre du calcul de précision que je mène dans ma thèse, on s’intéresse à l’ob-

tention de quantités physiques mesurables via des paramètres physiques dont le sens est

conservé à tout les ordres de perturbation. Le schéma de renormalisation le plus approprié

à cet objectif est celui pour lequel les particules sont sur leur couche de masse respective.

Ainsi, il est naturel qu’on adopte ici le schéma de renormalisation sur la couche de masse

5non justifiée par un calcul d’erreurs
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(OMS) à la manière décrite dans [34] et [35].

Par ailleurs, il est important de remarquer qu’à l’ordre de la boucle, qui est l’ordre auquel

on pousse la précision du calcul, les processus auxquels on s’intéresse ne font pas intervenir la

partie non-Abelienne de QCD. Ainsi dans ce qui suit, on ne traite pas la renormalisation des

contributions non-Abelienne QCD. On se concentre plutôt à l’étude de la renormalisation

des contributions électrofaibles.

Pour les contributions QCD-Abeliennes, leur renormalisation est similaire à celle de

QED, par suite tout en respectant le schéme de renormalisation sur la couche de masse

qu’on introduit initialement pour la partie électrofaible , on prendra soin de bien incorporer

les degrés de liberté de couleur et de proprement introduire la constante de couplage fort

et sa dépendence en fonction de l’échelle de renormalisation. De plus à toute contribution

Abelienne virtuelle gluonique, on ajoutera le contre terme correspondant ainsi que la contri-

bution gluonique réelle correspondante. Cette démarche permet de remédier simultanément

aux divergences ultraviolettes et infrarouges gluoniques6.

Le Lagrangien du MS incorpore dans sa construction des paramètres physiques libres

qui doivent être déterminés à travers l’expérience. Ces paramètres sont choisis de manière à

avoir un sens physique bien défini à l’arbre (masses de particules et constante de couplage

électromagnétique). Ce sens physique clair porté par ces paramètres est détruit par l’intro-

duction des corrections radiatives. Et comme l’expérience ne fait pas de différence entre un

calcul mené à l’arbre et un calcul mené à des ordres supérieurs, il est normal d’imposer

l’invariance du sens physique des paramètres physiques du MS lors du passage d’un ordre

du calcul à un autre. C’est l’idée principale du schéma de renormalisation OMS.

Pour concrétiser cette idée on utilise l’approche basée sur le concept de contre-termes.

Chacun des paramètres physiques du Lagrangien MS dit paramètre nu (X), est alors scindé

en paramètre fini dit renormalisé (X) et en partie incluant les divergences dite constante de

renormalisation (δX) tel que : X = X + δX.

L’idée est alors de faire correspondre exactement et à tous les ordres de la théorie des per-

turbations, les paramètres physiques renormalisés aux paramètres physiques expérimentaux

correspondants : X ≡ Xexpérimentale. La renormalisation de ces paramètres permet d’obtenir

6On reviendra avec plus de details sur ce point lors de la discussion des divergences infrarouges.
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des grandeurs finies pour les éléments de la matrice S, qui ne représentent en fait que les

fonctions de Green amputées de leurs pâttes externes. Par contre, si on arrête la procédure

de renormalisation à ce stade, les fonctions de Green seraient encore divergentes, du fait

que les corrections radiatives introduisent des quantités divergentes dans la normalisation

des champs. Donc pour avoir des propagateurs et des fonctions de vertex finis, il faut aussi

renormaliser les champs. Remarquons de plus que les corrections radiatives font que les ma-

trices de masses ne restent plus diagonales et par suite, après introduction des corrections

radiatives, les champs nus ne restent plus des états propres de masse. Pour restaurer aux

fonctions de Green leur caractère fini et pour re-diagonaliser les matrices de masses, on intro-

duit, à la OMS, des constantes de renormalisation pour les champs. Ces dernières constantes

sont alors choisies de façon à ce que les champs renormalisés soit, à tous les ordres de la

théorie des perturbations, les états propres de masses des particules correspondantes. Les

pâttes externes sont alors par définition sur la couche de masse et par suite ne nécessitent

pas l’introduction de constantes de renormalisation supplémentaires. Ceci est le schéma de

renormalisation sur la couche de masse : OMS, qu’on adopte.

Suite à cette procédure de renormalisation, le Lagrangien du MS (LSM
Q ) ce scinde en

deux parties. Une partie représentant le Lagrangien renormalisé (LSM
Q,R) et qui a morpho-

logiquement la même structure que le Lagrangien initial avec la seule différence que les

paramètres et les champs nus sont remplacés par leur homologue renormalisé. La partie

restante représente le Lagrangien des contre-termes (LSM
Q,CT ). Ainsi on a :

LSM
Q = LSM

Q,R + LSM
Q, CT (1.37)

Les règles de Feynman associées au Lagrangien LSM
Q, R sont alors les mêmes que celles

du Lagrangien LSM
Q à la différence que maintenant on a la précision que les paramètres

qui y interviennent sont les paramètres renormalisés conservant leur sens physique. Par

contre, le Lagrangien LSM
Q, CT introduit de nouvelles règles écrites en termes des constantes de

renormalisation. Ces dernières règles sont tabulées dans [34].

Le Lagrangien LSM
Q, CT a donc pour conséquence, l’introduction de nouveaux diagrammes

de Feynman qu’il faut prendre en considération en parallèle avec les diagrammes à boucles.
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En somme, en suivant cette démarche de renormalisation, on a par construction la garan-

tie que, notre résultat pour l’amplitude de transition du processus considéré, est fini à tous

les ordres de la théorie des perturbations et que nos paramètres intervenants dans le Lagran-

gien conservent leur sens physique respective à tous les ordres de la théorie de perturbation

.

1.3.1 Définition des constantes de renormalisation

Pour le MS électrofaible, on choisit d’utiliser comme paramètres d’entrée les masses de

toutes les particules intervenants dans nos processus, à savoir MW , MZ , MHiggs et mf
7, ainsi

que la constante de couplage électromagnétique (e) défini à la limite de Thomson. Il est aussi

important d’ajouter le «Tadpole» T. En fait, T est relié à l’état du vide du Higgs, et comme

les corrections radiatives tendent à déplacer ce minimum, alors pour le maintenir dans son

emplacement initial, on introduit la constante de renormalisation δT . Cette constante est

ajusté à tous les ordres de perturbations de manière à toujours remettre le «Tadpole» à sa

valeur à l’arbre, à savoir zéro. Les quantités renormalisées et les constantes de renormalisation

correspondant aux paramètres d’entrée sont alors données à travers les relations :

M 2
W = M2

W + δM2
W ,

M 2
Z = M2

Z + δM2
Z ,

mf = mf + δmf ,

M 2
H = M2

H + δM2
H ,

e = Y e = (1 + δY )e,

T = T + δT. (1.38)

Pour les constantes de renormalisation des champs, on les définit à travers les relations

suivantes :

7les valeurs des masses des quarks légers nécessitent une attention particulière. On discutera ce point lors
de l’introduction des valeurs numériques de ces derniers dans nos calculs
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1. Champs de jauge (W±
µ , Zµ et Aµ) :

W±
µ =

√
ZW W±

µ ,
√
ZW = 1 + δZ

1/2
W ,






Zµ

Aµ




 =






√
ZZZ

√
ZZA

√
ZAZ

√
ZAA











Zµ

Aµ




 ,

√
ZAA,ZZ = 1 + δZ

1/2
AA,ZZ ,

√
ZAZ,ZA = δZ

1/2
AZ,ZA .

2. Champs spinoriels (
(−)

f L,R) :

On suppose ici, qu’il n’y a pas de mélange entre les différentes familles de fermions

(f pour lepton ou quark ; L et R pour left et right). Par suite, on prend la matrice

CKM (Cabibbo-Kobayashi-Maskawa) [41, 42] égale à l’unité. Les constantes de renor-

malisations spinorielles sont alors réelles. Et, on peut écrire les relations de definition

suivantes :

(−)

f
L,R

=
√
ZfL,R

(−)

f L,R ,
√
ZfL,R

= 1 + δZ
1/2
fL,R

.

3. Champs scalaires (S) :

S =
√
ZS S ,

√
ZS = 1 + δZ

1/2
S , S = H,χ±, χ3 .

4. Secteur de «ghost» :

À l’ordre de la boucle, auquel on s’intéresse, la renormalisation du secteur des fantômes

n’intervient pas. On a pas donc à être spécifique pour ce domaine.

1.3.2 Conditions de renormalisation

Les constantes de renormalisation qu’on vient de définir sont fixées à travers des condi-

tions de renormalisation. Dans la procédure de renormalisation sur la couche de masse ces

conditions correspondent à la prescription du résidu égale à un. Cette prescription peut être

comprise à travers un exemple simple. Le propagateur d’un champ vectoriel massif de masse

te
l-0

03
61

42
9,

 v
er

si
on

 1
 - 

15
 F

eb
 2

00
9



46

MV s’écrit (d’après les règles de Feynman en jauge de ’t Hooft) :

gµν

k2 −M2
V,0

(1.39)

En calculant le résidu de ce propagateur sur la couche de masse k2 = M2
V,0, on trouve que

ce résidu est égale à un.

Incluant maintenant à ce propagateur, la contributions des corrections radiatives (CR).

L’action de ces dernières fait que le pôle de ce propagateur est déplacé d’une quantité diver-

gente GCR
V V . Ainsi :

gµν

k2 −M2
V,0

→ gµν

k2 −M2
V,0 +GCR

V V

(1.40)

Et comme le carré de la masse nu (M2
V,0) s’écrit en fonction du carré de la masse renormalisée

(M2
V ) et de sa constante de renormalisation (δM2

V ), sous la forme : M2
V,0 = M2

V + δM2
V ; On

obtient :

gµν

k2 −M2
V,0 +GCR

V V

=
gµν

k2 −M2
V − δM2

V +GCR
V V

(1.41)

Ainsi pour conserver dans le Lagrangien renormalisé, le même sens physique du pa-

ramètre de masse qui existait dans le Lagrangien nu, le propagateur renormalisé doit avoir

la forme :

gµν

k2 −M2
V

(1.42)

C’est à dire, sur la couche de masse : k2 = M2
V , on doit toujours observer la condition du

résidu égale a un. Cette prescription est équivalente à écrire que : δM2
V = GCR

V V . Et comme

GCR
V V peut être une quantité complexe, cette dernière condition de renormalisation prend la

forme δM2
V = ℜeGCR

V V (La partie imaginaire de GCR
V V représente alors la largeur de raie). Pour

les champs des particules, la prescription du résidu égale à l’unité, se manifeste sous forme de

l’évaluation sur la couche de masse, d’une dérivée par rapport au carré de la quadri-impulsion

de la fonction à deux points correspondante.

Ainsi les conditions à imposer aux constantes de renormalisation du MS s’écrivent en

terme des fonctions à deux points bosonique Πµν(q
2) et fermionique Σ(q2) suivantes :
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





Πµν(q
2) =

(

gµν −
qµqν
q2

)

ΠT (q2) +
qµqν
q2

ΠL(q2)

Σ(q2) = K1I +K5γ5 +Kγq/+K5γq/γ5

(1.43)

Et prennent pour forme :

1. Pour le Tadpole :

δT = −T boucle. (1.44)

2. Pour les Bosons vecteurs chargés :

δM2
W = −ℜeΠW

T (M2
W ), δZ

1/2
W =

1

2

d

dq2
ℜeΠW

T (q2)

∣
∣
∣
∣
q2=M2

W

. (1.45)

3. Pour les Bosons vecteurs neutres :

δM2
Z = −ℜeΠZZ

T (M2
Z), δZ

1/2
ZZ =

1

2
ℜe d

dq2
ΠZZ

T (q2)

∣
∣
∣
∣
q2=M2

Z

, (1.46)

δZ
1/2
AA =

1

2

d

dq2
ΠAA

T (0) , (1.47)

δZ
1/2
ZA = −ΠZA

T (0)/M2
Z , δZ

1/2
AZ = ℜeΠZA

T (M2
Z)/M2

Z . (1.48)

4. Pour le Higgs :

δM2
H = ℜeΠH(M2

H) +
3δT

v
, δZ

1/2
H = −1

2

d

dq2
ℜeΠH(q2)

∣
∣
∣
∣
q2=M2

H

. (1.49)

5. Pour les Fermions (leptons et quarks) :

δmf = ℜe
(
mfKγ(m

2
f) +K1(m

2
f)
)
,

δZ
1/2
fL = 1

2
ℜe(K5γ(m

2
f ) −Kγ(m

2
f )) −mf

d
dq2 (mfℜeKγ(q

2) + ℜeK1(q
2))
∣
∣
∣
q2=m2

f

,

δZ
1/2
fR = −1

2
ℜe(K5γ(m

2
f) +Kγ(m

2
f)) −mf

d
dq2 (mfℜeKγ(q

2) + ℜeK1(q
2))
∣
∣
∣
q2=m2

f

.

(1.50)

6. Pour la charge électromagnétique :
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La condition de renormalisation de la charge électromagnétique s’applique plutôt à la

fonction à trois points Γ du vertex e+e−A. On identifie alors la constante de couplage

électromagnétique à la charge de l’électron -e, lorsque la quadri-impulsion q du photon

est zéro et que simultanément e+ et e− sont sur leur couche de masse respective. Ainsi :

(ΓCR
e+e−A + δΓCT

e+e−A)
∣
∣
q=0,p2

±
=m2

e
= 0 . (1.51)

on en tire alors la condition :

δY = −δZ1/2
AA +

sW

cW
δZ

1/2
ZA . (1.52)

1.4 Calcul des amplitudes à l’ordre de la boucle et section efficace

de processus

Ayant déterminé les règles de Feynman et les constantes de renormalisation du MS,

on s’intéresse à la manière pratique avec laquelle on construit l’amplitude de transition à

l’ordre de la boucle pour un processus donné A(p1) +B(p2) → C(p3) +D(p4). On en déduit

ensuite l’expression de la section efficace de diffusion. Cette démarche se résume dans les

points suivants :

1. Pour un processus donné, les particules incidentes et sortantes sont bien définies. On

construit alors à l’arbre et à l’ordre de la boucle, tous les diagrammes de Feynman

autorisés par les couplages du MS.

2. On utilise les règles de Feynman pour établir l’amplitude de transition pour chaque

diagramme y compris les diagrammes des contre-termes.

3. A l’ordre de la boucle, chaque amplitude ainsi obtenue a la forme d’une intégrale sur

la quadri-impulsion interne. L’intégrant est constitué du produit d’un dénominateur

représentant les différents propagateurs intervenants, et d’un numérateur dans lequel

on trouve le produit de quadri-vecteurs, de tenseurs le Lorentz, de matrices de Dirac,

de spineurs et de quadri-vecteurs de polarisations des particules externes.

L’expression du numérateur peut être simplifiée en utilisant l’algèbre de Dirac, la condi-

tion de conservation de la quadri-impulsion aux vertex et aussi le fait que les particules
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externes sont sur leur couche de masse respective.

Les intégrales tensorielles sont ensuite réduites en intégrales scalaires de Veltman [43].

Cette étape est susceptible de donner lieu à de longues expressions, dont l’évaluation

n’est pas toujours simple à mener à la main. Dans ce cas, il devient préférable de

conduire l’évaluation des intégrales à travers un calcul numérique. Une aide précieuse

peut être trouvée dans le code trés performant développé pour ce genre de calcul

d’intégrales : «FF/LoopTools»[44, 45].

4. Comme pour chaque diagramme à boucle pris individuellement, le calcul de l’amplitude

correspondante peut s’avérer long et difficile, et vu le grand nombre de diagrammes à

traiter (de l’ordre de 400 diagrammes pour la fusion de deux bosons vecteurs). Il est plus

judicieux de penser à économiser du temps de calcul et du travail en rassemblant les

diagrammes qui ont la même structure algébrique. Ceci permet de construire ce qu’on

appelle des amplitudes génériques. Ainsi , on ne fait le calcul que pour l’amplitude

générique donné puis on en déduit toutes les autres amplitudes reliées à cette amplitude

générique par adaptation des couplages et des masses.

5. Du fait qu’elles ne font pas intervenir de calcul d’intégrales, les amplitudes à l’arbre

et celles correspondant aux contres termes sont plus facile à calculer en suivant la

procédure citée plus haut.

6. L’amplitude globale M du processus donné, s’obtient alors en sommant les amplitudes

individuelles de tous les diagrammes.

7. La section efficace différentielle angulaire, dans le centre de masse du système s’écrit

alors :

dσ =
1

32πs

|−→p3 |
|−→p1 |

|M|2dcosθ (1.53)

8. la section efficace totale s’obtient en intégrant la section efficace différentielle sur toutes

les directions de diffusion.

9. Cette procédure de calcul est implantée différemment dans les codes numériques SloopS

(développé au LAPTH-Annecy-le-Vieux) et FormCalc d’un part et Grace d’autre part.

Par ailleurs, CompHep ne permet que le calcul à l’arbre.
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10. Dans notre calcul des corrections radiatives, pour établir nos résultats, on a exploité

de manière combinée les codes cités précédement. Et quand il y a eu nécessité, on a

introduit des modifications sur les différentes facilités offertes par ces codes, en vue de

les adapter à notre manière à mener le calcul.

1.5 Divergences infrarouges et énergies de coupure

Dans ma thèse, je m’intéresse au calcul à l’ordre de la boucle, et par suite les dia-

grammes de Feynman comportant un photon ou un gluon virtuel, nécessitent une attention

particulière. Ces diagrammes manifestent des divergences dites infrarouges (IR), lorsque

les particules virtuelles sans masses qui y interviennent, tendent vers leur couche de masse

(basses énergies, q → 0). Dans le cas du photon, cette divergence peut être régulée en at-

tribuant au photon virtuel une masse fictive λγ non nulle. Cette procédure de masse fictive

peut aussi être appliquée pour le gluon, étant donné qu’à l’ordre de la boucle, les processus

auxquels on s’intéresse, ne font pas intervenir la structure non-Abelienne de QCD (vertex à

trois et quatre gluons). On affecte donc aussi au gluon virtuel une masse fictive λg non nulle.

En appliquant cette procédure de régularisation, on s’aperçoit que le carré de l’ampli-

tude virtuelle à l’ordre de la boucle MEW (QCD)
1boucle , contribue avec un terme en lnλγ (g). Alors

sans perturber notre précédent programme de renormalisation des divergences UV, on peut

remédier à ces divergences IR supplémentaires, en ajoutant la contribution des photons

(gluons) réels. Cette contribution des photons (gluons) réels est en fait de deux sortes. Une

partie provenant du carré de amplitude Mmou
γ (g) des photons (gluons) réels avec des énergies

Eγ (Eg) ≤ kc (ou kc est l’énergie de coupure qu’on choisit très petite relativement à l’énergie

mise en jeu dans le centre de masse du processus d’intérêt), et qui contribue avec un terme en

− ln
(

λγ (g)

kc

)

(voir figure 1.2). Et une autre partie qui émane du carré de amplitude Mdur
γ (g) des

photons (gluons) réels avec des énergies Eγ (Eg) ≥ kc, qui contribue avec un terme en ln(kc).

Ces différents logarithmes apparaissent avec exactement le même facteur, ce qui permet les

rassembler et par suite ils s’annihilent mutuellement. Le carré de l’amplitude de transition

électrofaible pour notre processus à l’ordre de la boucle s’écrit donc :

|M1|2,EW =

|M1|2,s+v

︷ ︸︸ ︷

2ReMBorn(MEW
1boucle + MCT )∗ + |Mmou

γ |2 +|Mdur
γ |2 (1.54)
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Cette expression est donc indemne de toute divergence UV ou IR et stable relativement à

l’énergie de coupure kc.

Pour les contributions gluoniques, une formule similaire pour |M1|2,QCD peut être établie.

Donc à l’ordre de la boucle, le carré de l’amplitude globale du processus s’écrit alors :

|M|2 = |MBorn|2 + |M1|2,EW + |M1|2,QCD (1.55)

Et par suite, les sections efficaces qui découlent de cette démarche de construction ob-

servent l’invariante de Lorentz, l’invariance de jauge quantique, la finitude UV et IR ainsi

que la stabilité relativement à l’énergie de coupure.


 

log� �log �K


Figure 1.2: Contributions des photons virtuels et réels mous

1.6 Constante de structure fine et schéma Gµ

Le calcul de la fonction de polarisation du vide du photon Πγγ(k
2) évaluée à l’échelle

d’énergie k2, permet d’établir la relation suivante entre la charge renormalisée e∗(k
2) et la

charge nue e0 :

1

e2∗(k
2)

=
1

e20

[
1 + Πγγ(k

2)
]

(1.56)

Comme la constante de structure fine α ≡ e2

4π
est déterminée expérimentalement, avec une

bonne précision, à travers l’étude de la diffusion de compton eγ → eγ à la limite de Thomson

Eγ → 0 ; il est important de faire le lien entre l’échelle de Thomson et une échelle k2 donnée

(par exemple celle de la réalisation d’un processus donné). Ainsi, on montre facilement que :

α∗(k
2) ≡ e2∗(k

2)

4π
=

α

1 − [Πγγ(0) − Πγγ(k2)]
(1.57)

où on a identifié e2∗(0)/4π avec la valeur expérimentale α de la constante de structure fine à
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la limite de Thomson.

Par ailleurs, pour des énergies
√
k2 de l’ordre de l’échelle de la brisure spontanée de la

symétrie électrofaible, on peut aussi obtenir la relation suivante :

α−1
∗ (k2) = α−1 − 1

3π

∑

k2≫m2
f

NcQ
2
f

(

ln
k2

m2
f

− 5

3

)

+
1

3π

∑

k2≪m2
f

NcQ
2
f

k2

m2
f

(1.58)

Cette dernière relation permet de voir qu’à l’échelle de la brisure de la symétrie électrofaible,

l’évolution (running) de α est dominée par les fermions légers. Et comme d’une part en

théorie électrofaible les quarks sont traités comme des particules libres alors que la présence

de l’interaction forte fait que les quarks légers interagissent fortement à l’échelle de basses

énergies qui est l’échelle de leur masse au pole, il n’est donc pas possible de définir sans

amgiguité les masses de ces quarks légers. Heureusement dans le domaine des hautes energies

s = k2 ≫ mleger
q et des processus auxquels on s’interesse la contribution des quarks légers

peux être ramenée à des quantités universelles comme la polarization hadronique du vide et

aux fonctions de structures qui peuvent être déterminé expérimentalement. Par ailleurs les

contributions non-universelles sont de l’ordre
m2

q

s
, donc leur contribution est négligeable aux

hautes énergies qu’on considère dans nos calculs. Ainsi la correction sur α dû à l’évolution

de l’échelle d’énergie avec comme point de départ l’échelle de Thomson s’écrit :

∆α =
α

3π

∑

l

Q2
l

(

ln
k2

m2
l

− 5

3

)

+ ∆α
(5)
hadrons (1.59)

où la somme sur l s’étant à tout les leptons et ∆α
(5)
hadrons représente la contribution hadronique

des cinq quarks légers (u, d, s, c, b) et s’écrit sous la forme de relation de dispersion :

∆α
(5)
hadrons(s) =

α

3π
sP

∞∫

0

ds′

s′(s′ − s)
Rγγ(s

′) (1.60)

Rγγ(s
′) =

σ(e+e− → hadrons)

σ(e+e− → γ⋆ → µ+µ−)
représente la section efficace hadronique (e+e− → hadrons

⇔ e+e− → γ⋆ → hadrons → γ⋆ → e+e−) normalisée relativement à celle du processus

(e+e− → γ⋆ → µ+µ−) et pour laquelle on déduit une expression interpolée des résultats

expérimentaux. Les valeurs effectives des masses des quarks légers qu’on utilise dans nos cal-
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culs sont celles pour lesquelles, lorsqu’on utilise la QCD perturbative, on peut reproduire la

valeur du résultat ∆α
(5)
hadrons(s = M2

Z) obtenu expérimentalement via la procédure dispersive.

En plus de ces corrections univeselles apportées aux résultats par les fermions légers,

le quark top (lourd) manifeste aussi une contribution universelle importante qui se révèle

via les corrections à boucles au propagateur du boson W. Pour voir plus explicitement

cette contribution en m2
t , il est donc plus commode de passer au schéma Gµ [46, 47] qui a

l’avantage par rapport au schéma α, de rendre compte simultanément des grandes corrections

universelles (de l’ordre du pour cent) dûes aux fermions légers et aussi celles dûes au quark

top.

Dans le schéma Gµ, la constante de Fermi Gµ est évaluée à travers le processus de

désintégration du muon.

µ−

e−

νe

νµ

µ− W−

e−

νe

νµ

Figure 1.3: Désintégration du muon dans le cadre : a) de la Théorie de Fermi, b) du Modèle

Standard

L’idée est que dans le modèle de Fermi le processus de désintégration du muon est rat-

taché à une interaction ponctuelle (voir figure 1.3) et que la constante Gµ est déterminée

expérimentalement par respect à ce modèle (en prenant en considération seulement les cor-

rections photoniques à l’ordre de la boucle [36, 37]). Or on sait que cette interaction est plutôt

portée par le boson vecteur W . Ceci nous permet d’établir, à l’arbre, la relation suivante qui

lie les schémas Gµ et α :

α =

√
2Gµ

π
s2

WM
2
W ≡ α0 (1.61)

À l’ordre de la boucle, le propagateur du W sous-tend des couplages forts et préférentiels
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W

W

W

H

W W

b

t

Figure 1.4: Quelques contributions à l’ordre de la boucle pour le propagateur de W

avec le Higgs et le top quark (voir figure 1.4)8. Cette propriété est intéressante pour le sondage

du secteur électrofaible du fait qu’elle nous permet d’extraire une contribution électrofaible

universelle finie ∆r :

∆r = ∆α− c2W
s2

W

∆ρ+ (∆r)np, avec ∆ρ = Nc
Gµm

2
t

8π2
√

2
(1.62)

(∆r)np représente toutes les autes contributions non-principales (np).

La relation entre les deux schémas Gµ et α est alors modifiée pour prendre la forme :

α =

√
2Gµ

π
s2

WM
2
W (1 − ∆r) = α0(1 − ∆r) ≃ α0(1 − ∆α)(1 +

c2W
s2

W

∆ρ) (1.63)

Ainsi, pour un processus 2 → 2 par exemple, le carré de l’amplitude à l’ordre de la boucle

dans le MS électrofaible, peut être factorisé sous la forme (δEW représente les corrections

électrofaibles à l’ordre de la boucle introduite via M1) :

|MBorn + M1|2 = |MBorn|2(1 + δEW ) = α2|A0|2(1 + δEW )

= α2
0(1 − ∆r)2|A0|2(1 + δEW ) = α2

0|A0|2(1 + δEW − 2∆r) (1.64)

Et comme la valeur numérique : Gµ = 1.16637 10−5GeV −2 est déduite à partir de la

formule du taux de désintégration du muon, en ne prenant en compte que les corrections pho-

toniques (QED). On peut alors, dans le dernier terme de l’équation 1.64 faire la substitution :

8La contribution universelle de la masse du Higgs (MH) est incorpore avec d’autres corrections dans le
terme (∆r)np qu’on néglige
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α0 → α (par respect à l’équation 1.61). On obtient alors :

|MBorn + M1|2 = α2|A0|2(1 + δEW − 2∆r) = |MBorn|2(1 + δEW − 2∆r) (1.65)

Donc en menant notre calcul, on prend d’abord α à la limite de Thomson comme pa-

ramètre d’entrée. On calcule alors les corrections électrofaible et QCD à l’ordre de la boucle.

En finale pour nos processus 2 → 2, on soustrait le terme 2∆r|MBorn|2 de notre résultat pour

le carré de l’amplitude corrigée et renormalisée. Ceci nous permet d’apprécier l’importance

des corrections purement électrofaibles liées à nos processus d’intérêt

1.7 Constante de couplage fort et échelle de renormalisation

La dépendance de la constante de couplage fort αs = g2
s

4π
en fonction de l’échelle de

renormalisation µ est gérée par la fonction β à travers l’équation :

µ
∂αs

∂µ
= 2β(αs) = − β0

2π
α2

s −
β1

4π2
α3

s −
β2

64π3
α3

s − · · · , (1.66)

avec :







β0 = 11 − 2

3
nf ,

β1 = 51 − 19

3
nf ,

β2 = 2857 − 5033

9
nf +

325

27
n2

f .

(1.67)

nf représentant le nombre de saveurs de quarks légers actifs.

Pour résoudre cette équation différentielle, on paramétrise la dépendance entre µ et αs à

travers un paramètre libre Λ que l’on fixe grâce au résultat expérimental αs(M
2
Z) = 0.1172.

On cherche alors la solution de l’équation différentielle sous forme d’un développement en

puissance inverse de ln(µ2). On obtient [48, 49] :
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αs(µ) =
4π

β0 ln(µ2/Λ2)

[

1 − 2β1

β0

ln [ln(µ2/Λ2)]

ln(µ2/Λ2)

+
4β2

1

β4
0 ln2(µ2/Λ2)

((

ln
[
ln(µ2/Λ2)

]
− 1

2

)2

+
β2β0

8β2
1

− 5

4

)] (1.68)

Cette formule permet de calculer la valeur de la constante de couplage fort pour différentes

échelles d’énergie.

1.8 Unitarité et Analycité

L’approche MS malgré son élégance, s’adapte préférentiellement aux cas des couplages

faibles, donc au domaine perturbatif. Mais pour des valeurs élevées de la masse du Higgs, le

domaine de l’interaction faible développe un comportement en force forte. Par conséquent,

ce domaine devient non perturbatif et par suite il devient important d’avoir recours à des

méthodes appropriées pour y traiter les phénomènes physiques. Une méthode adéquate pour

étudier les phémomènes de diffusion dans le cadre de ce dernier cas est le formalisme des

relations de dispersion.

Cette approche est basée sur les principes d’unitarité et d’analycité des grandeurs phy-

siques mesurables [50], telles que l’amplitude de transition d’un processus de diffusion.

• Unitarité :

L’unitarité découle de l’association de deux principes. Le premier est que l’ensemble de

tous les états physiques d’un processus donné, est complet. Le second est le principe de

superposition des états. En fait, le principe de superposition veut qu’un état physique d’un

système physique donné s’écrive comme la somme de tous les états physiques possibles du

système pondérés respectivement par leur élément correspondant de la matrice de transition

S : soit Ψf =
∑

i Sf iΨi. D’autre part le principe de fermeture de l’ensemble des états du

système veut que la probabilité totale PT de trouver le système en tous les états physiques

possibles, soit égale à l’unité.

On peut donc écrire : PT =
∑

f Ψ∗
fΨf

.
=
∑

i Ψ
∗
i Ψi ≡ 1.

Ainsi comme :
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PT =
∑

f,l,k

S∗
f kΨ

∗
kSf lΨl =

∑

f,l,k

S∗
f kSf lΨ

∗
kΨl =

∑

l,k

(
∑

f

S∗
f kSf l

)

Ψ∗
kΨl

.
=

∑

l

Ψ∗
l Ψl =

∑

l,k

δk,lΨ
∗
kΨl (1.69)

Ceci implique que :
∑

f

S∗
f kSf l = δk l ⇔ S†S = SS† = 1 (1.70)

Et comme il est de coutume d’écrire : S = 1 + iT et Tf i = (2π)4 δ(p3 + p4 − p1 − p2)Mf i

pour un processus 1 + 2 → 3 + 4, alors la condition d’unitarité prend alors la forme :







2ImTf i =
∑

n

Tf n T
†
n i,

2ImMf i =
∑

n

Mf nM
†
n i δ(pi − pn) δ(pn − pf)

(1.71)

Il est important ici de noter que la somme dans l’équation de l’unitarité, englobe tous

les états intermédiaires définis sur la couche de masse. Ces états peuvent différer les uns des

autres par le nombre de particules, la masse, le spin, la projection du spin ou d’autres nombres

quantiques, ainsi que par la direction ou la grandeur des impulsions des particules. Ceci veut

dire que le signe somme dans 1.71 signifie, qu’en plus de la somme sur les paramètres discrets,

il y a aussi une intégrale dans l’espace de phase des particules intermédiaires.

Ainsi, la condition d’unitarité 1.71 permet d’extraire des informations sur la partie ima-

ginaire des éléments de la matrice S. La condition d’analycité par ailleurs, nous informe sur

la partie réelle de ces éléments.

• Analycité :

La condition d’analycité trouve sa justification dans le fait que, dans le domaine physique

des variables qui paramétrisent un problème donné, les quantités physiques mesurables sont

finies. Et les singularités qui peuvent apparâıtre sur l’axe réel des variables physiques, sont

en fait dûes à notre manière idéale de modéliser le problème physique lors de son étude. Pour

remédier à cette imperfection qui se faufile lors du processus de modélisation, on permet à
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nos paramètres physiques de prendre des valeurs complexes tout en imposant la condition

que les fonctions mesurables (l’amplitude de transition T (s, t) dans notre cas), soient analy-

tiques dans le sens du critère de Cauchy. Par suite, on exprime, par exemple, l’analycité de

l’amplitude T (s, t) relativement à la variable de Mandelstam s par :

T (s, t) =
1

2πi

∮

C

T (s′, t)ds′

s′ − s
(1.72)

Le contour C étant n’importe quel contour fermé entourant s mais n’incluant aucune singu-

larités de T (s, t). En suite, en utilisant la relation :

lim
ǫ→0

1

s′ − s∓ iǫ
= P 1

s′ − s
± iπδ(s′ − s) (1.73)

on peut écrire la relation de dispersion précédente sous la forme :

Re T (s, t) =
P
π

+∞∫

−∞

ImT (s′, t) ds′

s′ − s
ou bien T (s, t) = lim

ǫ→0

1

π

+∞∫

−∞

ImT (s′, t) ds′

s′ − s− iǫ
(1.74)

Et si T (s, t) ne tend pas vers zéro lorsque s tend vers l’infini, une soustraction (ou

plusieurs selon le cas) permet d’obtenir la relation de dispersion à une soustraction :

T (s, t) = T (s0, t) +
s− s0

π

+∞∫

−∞

ImT (s′, t) ds′

(s′ − s− iǫ)(s′ − s0 − iǫ)
(1.75)

ou s0 et le point de soustraction, et il est sous entendu que ǫ tend vers zéro par valeurs

positives.
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Chapitre 2

Diffusion de bosons vecteurs :
calcul précis

Malgré les succès que rencontre le modèle standard des intéractions, il est tout de même

vrai que : vu que le Higgs résiste toujours à la découverte, le mécanisme de la brisure

spontanée de la symétrie électrofaible (BSSE) qui génère la masse des particules reste un

des mystères de la physique des particules [51]. Ceci nous incite donc à explorer d’avantage ce

secteur de brisure de la symétrie électrofaible. Ainsi, un calcul précis via le modèle standard

(MS ), d’observables dans les secteurs qui sont susceptibles de révéler des déviations par

rapport aux résultats du MS, est important à mener. Le processus révélateur de cette

BSSE , et qui détient ce privilège par son fort couplage au Higgs, est la fusion de bosons

vecteurs via les modes longitudinaux. Par ailleurs, il se trouve que dans la future génération

des collisionneurs avec leur énergie inégalée dans le domaine du TeV (LHC,ILC,...), ces

bosons vecteurs faibles (considérés comme des partons au sein des fermions élémentaires

[10, 11, 12, 13, 14, 15]) seront abondamment produits. Et par suite, on pourra confronter

les résultats théoriques avec l’expérience. Dans cette optique, beaucoup d’attention a été

essentiellement dirigé vers le processus W+W− → W+W− [52]. Néanmoins, la diffusion de

bosons vecteurs faibles en paire de quarks top n’a pas suscité suffisamment d’intérêt. Ce

déclassement du quark top était basé sur le fait que son couplage au Higgs est relativement

faible comparé à celui des bosons vecteurs massifs ; et ignorait le fait important que dans la

hiérarchie des masses des particules, la grande masse du top le rend trés sensible au secteur

scalaire standard et par suite lui confère une place de choix dans l’exploration de ce secteur

de brisure de la symétrie électrofaible, et le fait entrer en compétition avec les bosons vecteurs

massifs.

Ainsi, on s’intéresse plutôt à l’étude des processus W+W− → tt̄ et ZZ → tt̄ , dans les-

quels en plus de la violation à hautes énergies de l’unitarité perturbative pour de grandes
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valeurs de la masse du Higgs relativement aux masses des bosons vecteurs faibles (chose qu’on

explorera d’avantage dans le chapitre cinq), on note le rôle particulier que joue le quark top

dans l’exploration des effets non-standard. En fait, par exemple, dans l’esprit des modèles de

techni-couleurs, la brisure dynamique de la symétrie électrofaible exploite la condensation

des quarks top [53, 54, 55, 56, 57, 58, 59, 60], et en théories supersymétriques, le top fait

survivre le modèle minimal à travers les corrections radiatives au Higgs. D’autre part, en

supergravité minimale (mSUGRA), le top est le précurseur de la brisure spontanée de la

symétrie électrofaible. De plus, en théories d’extra-dimensions, la phénoménologie du top

est riche et spéciale, comme cela a été discuté récemment dans [61, 62, 63, 64, 65]. Ce rôle

crucial que joue le quark top dans l’exploration du secteur de la BSSE n’est pas étrange à

ce dernier, après tout le quark top est le seul quark dont la masse est de l’ordre de grandeur

de BSSE v/
√

2 ⋍ 174GeV [66]. Cette caractéristique lui confère, dans le cadre du MS, une

constante de couplage de Yukawa : λtop ⋍ 1. Cette dernière valeur permet d’expliquer, pour-

quoi dans les processus liés à la brisure de la symétrie, les corrections radiatives électrofaibles

peuvent être compétitives avec les corrections QCD.

Dans ce chapitre on revoit d’abord les sections efficaces à l’arbre des processus V V → tt̄

(V pour W ou Z). Ceci nous permet de montrer la dominance des modes longitudinaux

et de définir les différentes coupures cinématiques que on utilise. Puis on mène un calcul

complet et précis à l’ordre de la boucle électrofaible (EW) et de couleur (QCD) des sections

efficaces totales et différentielles des processus ci-dessus. Et après avoir établi les expressions

analytiques des contributions photoniques universelles, on extrait les contributions purement

électrofaibles relatives aux processus d’intérêt.

2.1 Contributions à l’arbre et dominance des modes longitudinaux

2.1.1 Notations et contribution de Born

Z

Z

t

tH

Z

Z

t

t

t

Z

Z

t

t
t W

W

t

tH

W

W

t

tγ , Z

W

W

t

t

b

Figure 2.1: Diagrammes de Feynman à l’arbre pour les processus d’intérêts : a) ZZ → tt̄ et b)

W−W+ → tt̄.
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À l’arbre les diagrammes de Feynman des processus suivants : Z(k1, λ1) + Z(k2, λ2) →

t(k3, ;λ3) + t̄(k4, λ4) et W−(k1, λ1) +W+(k2, λ2) → t(k3, ;λ3) + t̄(k4, λ4), sont représentés en

figure 2.1. Les variables ki et λi = ±, 0 représentent respectivement la quadri-impulsion et

l’hélicité. En appendice, on donne la liste complète des amplitudes d’hélicité pour le processus

W−W+ → tt̄. On établit les expressions de ces amplitudes, en utilisant la technique des

spineurs adaptée au calcul des amplitudes d’hélicités de particules massives [67]. À l’arbre

toujours, une étude suffisamment détaillée de ces processus d’intérêts peut être trouvée dans

[68, 69] [70]. Et pour être cohérent avec notre démarche visant les tests de précision du MS,

on se contente donc d’expliciter quelques résultats et de développer leur analyse. Ainsi, la

figure 2.2 montre que, pour des énergies élevées dans le système de centre de masse des paires

de quark top, les modes doublement longitudinaux des bosons incidents dominent les autres

combinaisons d’hélicité. Il est donc légitime de s’intéresser essentiellement à ces modes. La

figure 2.3, par ailleurs, présente les sections efficaces totales de Born et montre que pour de

basses énergies, la section efficace totale des ZLZL manifeste une plus grande sensibilité à la

variation de la masse du Higgs que celle des WLWL. En outre, l’intensité de la section efficace

des W est avantagée relativement à celle des Z, du fait que le couplage du W au Higgs est

plus fort que celui du Z. On note aussi dans cette figure que dans le domaine des valeurs

de masse du Higgs auquel on s’intéresse, la section efficace décrôıt pour de hautes énergies

après avoir atteint un maximum au voisinage du seuil de la réaction. Ceci et à retenir lors

de l’étude des effets de nouvelle physique qui pourrait augmenter la section efficace pour

des énergies croissantes et par suite pourrait changer l’allure de la courbe à l’arbre. On en

déduit qu’en procédant à la convolution des processus fils via les fonctions de structures

des bosons vecteurs (données via l’Approximation des Bosons Vecteurs Effectifs (ABVE) -

voir chapitre 4) pour reconstituer les processus pères, le fait qu’à basses énergies la section

efficace des processus fils soit importante, constituerait une source de pollution pour les effets

d’une nouvelle physique qui ne se manifesterait qu’à hautes énergies. Pour remédier à cet

inconvenient, on impose une coupure sur la masse invariante du système : mtt̄. Et d’après

la figure 2.2, il est préférable d’imposer la condition mtt̄ > 500GeV , mais pour pouvoir

comparer certains de nos résultats relatifs aux corrections QCD avec ceux présentés dans

[71], on opte plutôt à utiliser la même coupure que celle dans [71] à savoir mtt̄ > 400GeV
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qui est une limite un peu juste au dessus du seuil de réaction de fusion de bosons vecteurs

en paires de quarks top.

Figure 2.2: Taux relatifs des sections efficaces de Born pour différentes polarisations des bosons

vecteurs incidents, relativement au cas où les deux bosons incidents sont longitudinaux. Pour le cas

de la fusion WW , les hélicités λiλj correspondent à W−(λi)W
+(λj)

Cette coupure sur la masse invariante trouve aussi sa justification dans notre souci, dans
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cette étude, de traiter essentiellement les modes VLVL. Et que d’après la figure 2.2, à basses

énergies certains modes transversaux ont une contribution importante qui décrôıt à hautes

énergies. Donc pour avantager les modes VLVL, il faut imposer une coupure sur mtt̄ à basses

énergies (à savoir mtt̄ > 400GeV ). Néanmoins dans cette optique, il est important de noter

que malgré l’imposition de cette coupure, les modes VLVT ne cessent d’apporter une conta-

mination qui balaie tout le spectre de l’énergie et qui par conséquent perturbe la convolution

à travers l’approximation ABVE et ne saurait être guérie qu’à travers leur introduction effec-

tive dans le calcul ainsi qu’à travers une amélioration de l’ABVE (ceci dépasse les objectifs

de la présente étude). Par ailleurs pour réduire une partie importante de l’influence du bruit

de fond QED (et QCD) dû aux photons (et aux gluons) réels provenant essentiellement des

radiations des états initiaux et avec un degré moindre (inversement proportionnel à la masse

du top) des radiations des états finaux , on introduit la coupure sur l’impulsion transverse

pt,t̄
T > 10GeV [72, 73, 74, 75].

Figure 2.3: Section efficace totale de Born pour les processus W−
L W+

L → t̄t et ZLZL → t̄t pour

MHiggs = 120, 200, 300GeV et pt,t̄
T > 10 GeV.
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2.1.2 Distributions angulaires de Born

Les corrections radiatives dans le cadre du MS ainsi que la nouvelle physique peuvent

non seulement influencer la section efficace totale des processus mais peuvent aussi causer une

distorsion des distributions cinématiques. Alors en vue, d’une comparaison ultérieure entre

les distributions à l’arbre et celles à l’ordre de la boucle ou bien celles obtenues à travers

des opérateurs paramétrant les effets d’une nouvelle physique, il est important de connâıtre

les distributions angulaires dans le cadre du MS des sections efficaces de Born pour les

processus V V → tt̄. La figure 2.4 présente les sections efficaces différentielles de diffusion

de deux bosons vecteurs non polarisés en paire de quarks top, pour MHiggs = 120GeV .

La structure chirale du couplage du W aux fermions et la petitesse de la masse du quark

b (dans le canal t), font que pour le processus W−W+ → tt̄, on observe, pour les hautes

énergies considérées, un taux écrasant de production des quarks top dans la direction arrière

relativement au W−. Par ailleurs, la section efficace différentielle du processus ZZ → tt̄ est

symétrique tout en étant plus marquée dans les directions directes avant et arrière et en

restant beaucoup moins importante que celle des W . On déduit de toutes ces remarques

qu’en procédant à une coupure de la distribution angulaire dans les directions directes avant

et arrière équivalente à la coupure sur la quadri-impulsion pt,t̄
T > 10GeV , permet de réduire le

contamination, des résultats intégrés de la section efficace différentielle, par les fortes valeurs

de la section efficace différentielle dans les régions de faibles valeurs de pT , et qui pourrait

masquer les effets d’une nouvelle physique qui se manifesterait à fortes valeurs de pT .
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Figure 2.4: Distributions angulaires non polarisées pour la section efficace des processus a) ZZ →
tt̄ avec

√
sWW = 1TeV, b) W−W+ → tt̄

√
sWW = 400GeV et c) W−W+ → tt̄ avec

√
sWW = 1TeV.

MHiggs = 120GeV. θ est l’angle entre W− et t. La coupure pt,t̄
T > 10 GeV correspond à de petits

angles θcut qu’on ne peut présenter sur la figure.

2.2 Calcul des corrections Electrofaible et QCD

En considérant simultanément les interactions électrofaible et QCD à l’ordre de la boucle,

on recense environ 500 diagrammes pour le processus W−W+ → tt̄ et 400 diagrammes pour

le processus ZZ → tt̄. La figure 2.5 présente une sélection de ces diagrammes. Alors, pour

évaluer les différentes sections efficaces de diffusion dûes à ce grand nombre de diagrammes,

on suit la procédure décrite dans le chapitre précédent. Néanmoins, malgré que cela paraisse

en principe systématique, en pratique et devant ce grand nombre des diagrammes, les expres-

sions deviennent vite trop longues et lourdes à manipuler à la main, ce qui constituerait une

source facile d’erreurs de calcul et de découragement en plus du fait que certaines intégrales

ne peuvent être évaluées que numériquement . Ainsi, pour faire face à cette difficulté et par

conséquent pour obtenir des résultats fiables, on mène le calcul via l’utilisation des codes de

calcul qui sont construits pour subvenir à cette fin et qui sont continuellement améliorés et

mis à jour. Ces codes qui permettent une automatisation complète du calcul à l’ordre de la

boucle et qu’on utilise, sont d’abord SloopS construit au LAPTH-Annecy-le-Vieux [76, 77]

puis FormCalc [78, 79]. Contrairement à FormCalc qui se positionne dans le cas particulier

de jauge linéaire, SloopS utilise une jauge plus générale : une jauge non-linéaire avec cinq
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paramètres libres pouvant être ajustés de manière à tester les différents couplages du MSet

à permettre une puissante vérification de l’invariance de jauge. Par ailleurs, quoique SloopS

utilise plusieurs modules de FormCalc, ses fichiers du modèle et ses règles de Feynman sont

établis directement à travers le code LanHep [80, 81, 82, 83], de plus certains de ses pro-

grammes de réduction et de calcul d’intégrales ont été améliorés en comparaison avec Form-

Calc, ces caractéristiques ensembles font la force de SloopS. Notons aussi que dans SloopS,

un module intégrant proprement le modèle standard supersymétrique minimale MSSM est

en construction [84]. Il importe aussi de noter que comme GRACE-loop [34, 85, 35], les codes

SloopS et FormCalc suivent le schéma de la renormalisation sur la couche de masse.

En somme, dans notre procédure de calcul, les diagrammes de Feynman et leur amplitude

respective sont d’abord établis via le code FeynArts puis le carré de l’amplitude totale

incluant les différentes manipulations de réductions matricielles et tensorielles est calculé

en faisant appelle au système de manipulation symbolique FORM [86]. Pour l’évaluation

des intégrales scalaires de ’t Hooft-Veltman [43], on fait appel à LoopTools/FF [44, 45].

Ainsi SloopS/FormCalC permettent d’obtenir les différentes sections efficaces. Pour le calcul

à l’arbre, des sections efficaces des processus radiatifs photoniques et gluoniques 2 → 3

(W−W+ → γtt̄, . . .), on combine de façon complémentaire l’utilisation de SloopS/FormCalc

et celle du code CompHep [87] tout en faisant attention au fait que l’architecture et l’approche

de calcul sont différement implantées dans ces différents codes de calcul.
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Figure 2.5: Sélection de diagrammes de Feynman pour les processus a) ZZ → t̄t et b) W−W+ → t̄t.
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2.2.1 Procédure de calcul de la section efficace complète :

L’amplitude à une boucle est constituée de corrections virtuelles MEW+QCD
1boucle et de contri-

butions des contre-termes MCT . Et quoique que la somme MEW+QCD
1boucle + MCT est indemne

de toute divergence ultraviolette (UV), la présence de diagrammes à une boucle faisant in-

tervenir l’échange de photons ou de gluons virtuels, font que cette dernière amplitude souffre

dans le domaine des basses énergies d’un autre type de divergences : les divergences infra-

rouges (IR). On régule alors ces divergences IR, en affectant de petites masses aux photons

et aux gluons virtuels. Cette démarche qui est totalement justifiée pour le cas du pho-

ton vue la structure Abelienne de l’interaction électromagnétique, elle est aussi admissible

dans le cadre particulier des processus qu’on étudie, vu que pour les processus de diffusion

V V → tt̄ à l’ordre de la boucle, les vertex à plusieurs gluons n’interviennent pas et par

suite le structure non-Abelienne de QCD ne se manifeste pas. Par ailleurs, pour pouvoir

obtenir des résultats indépendant de l’énergie de coupure, cette contribution régulée de pho-

tons et de gluons virtuels doit s’annuler exactement avec la contribution de photons et de

gluons réels. En fait comme expliqué dans le chapitre précédent, la contribution photonique

(gluonique) est partagée en deux parties, une partie Mmou
γ,g (Eγ,g < kc) pour les photons

(gluons) mous avec des énergies Eγ,g inférieurs à une certaine énergie de coupure kc et une

partie dure Mdur
γ,g (Eγ,g > kc) pour des énergies supérieures à kc. Ainsi, pour les contributions

électrofaibles à une boucle le carré de l’amplitude globale s’écrit (voir équation 1.54) :

|M1|2,EW =

|M1|2,s+v

︷ ︸︸ ︷

2ReMBorn(MEW
1boucle + MCT )∗ + |Mmous

γ |2 +|Mdurs
γ |2

La correction électrofaible à la section efficace différentielle s’écrit alors :

dσEW
1 =

Nc

32πsV V

βt

βV
|M1|2,EWd(cosθ) (2.1)

avec βi =
√

1 − 4m2
i

sV V
. Des formules similaires s’appliquent aussi aux contributions QCD. Et

puisqu’on s’intéresse aux corrections d’ordre α (αs), il devient possible d’écrire la section

efficace globale à l’ordre de la boucle sous la forme :

dσ1 = dσBorn + dσEW
1 + dσQCD

1 ≡ dσBorn
[
1 + δEW + δQCD

]
(2.2)
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où δEW et δQCD représentent les pourcentages des corrections EW et QCD évalués à l’ordre

de la boucle.

Enfin, pour illustrer la contribution des processus radiatifs photoniques et gluoniques,

une sélection de diagrammes de Feynman pour ces processus est présentée en figure 2.6.

Z

Z

t

t

g

H

t

Z

Z

t

t

g

t

t

Z

Z

t

t

g

t

t

Z

Z

t

t

g

t

t

(a) ZZ → tt̄g

W

W

t

t

γ

γ , Z
W

W

t

t

γ

H

t

W

W

t

t

γ

W

b

W

W

t

t

γ
W

H

(b) W−W+ → tt̄γ

Figure 2.6: Sélection de diagrammes de Feynman pour les processus radiatifs : a) ZZ → tt̄g et b)

W−W+ → tt̄γ.

2.2.2 Vérifications sur le calcul :

• Tous d’abord on vérifie bien qu’à l’arbre, en ajustant sur les mêmes valeurs numériques,

tous les paramètres d’entrée des différents codes de calcul qu’on utilise, à savoir SloopS,

FormCalc, GRACE, et CompHep ; on obtient les mêmes résultats numériques pour la section

efficace totale des processus qui figurent dans [34] à savoir : e+e− → W+W−, e+e− → ZH ,

γγ → WW , γγ → tt̄, eγ →Wνe, eγ → eZ et WW →WW .

• On vérifie aussi qu’à l’ordre de la boucle, FormCalc et SloopS donnent bien, les mêmes

résultats numériques pour la section efficace totale que ceux obtenus via GRACE-loop et ceci

pour tous les processus cités dans l’alinéa précédent. Cet accord entre les différents codes de

calcul révèle bien que leur structure interne respective sont correctes et bien organisées et

par suite ceci nous met en confiance quant à leur utilisation comme outils performants pour

mener notre calcul des corrections radiatives aux sections efficaces des processus V V → tt̄

auxquels on s’intéresse.

• On commence alors par vérifier que nos formules pour l’amplitudes d’hélicité à l’arbre

du processus W−W+ → tt̄ (voir Appendice), donnent les mêmes résultats numériques pour
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la section efficace de Born que ceux obtenues à travers FormCalc et SloopS via l’utilisation

de la méthode du carré de l’amplitude globale du processus. L’accord est remarquable au

septième chiffre après la virgule.

• À l’ordre de la boucle, on vérifie l’invariance de jauge pour les processus V V → tt̄ en

faisant varier, dans SloopS, les cinq paramètres α̃, β̃, δ̃, κ̃, ε̃ du Lagrangien de fixation non-

linéaire de jauge [34, 88]. On remarque alors qu’il y a une stabilité des résultats jusqu’au

douzième chiffre après la virgule. Par ailleurs, il est important d’attirer l’attention ici, que

pour accomplir correctement ce test aucune largeur de raie ne doit être introduite dans les

propagateurs. On remarque encore une fois, mais maintenant dans le cadre des processus

V V → tt̄, que nos résultats via SloopS concorde avec ceux via FormCalc. Par suite, on se

limitera dans ce qui suit à l’utilisation de FormCalc.

• Pour vérifier l’invariance UV de nos résultats de la section efficace pour les processus

V V → tt̄, on fait varier le paramètre de régularisation dimensionnelle CUV = 1/ε−γE +ln 4π

où n = 4 − 2ε de sept ordres de grandeur et on remarque que nos résultats exprimés en

double précision restent stables. Une fois cette étape de vérification accomplie, on peut

poser CUV = 0 dans la suite du calcul.

• Quant à l’invariance IR, on l’a vérifiée en faisant varier les masses virtuelles du photon

λγ et du gluon λg de cinq ordres de grandeur et on remarque que cela n’a d’incidence sur

nos résultat de la section efficace qu’au huitiéme chiffre après la virgule. Après avoir effectué

cette vérification de l’invariance IR, on pose λγ (g) égales à l’unité. En outre, il est important

de noter que dans FormCalc ne sont implantés que les photons mous. En fait, nos résultats

présentés dans le tableau 2.1, montrent que dans le cas où on ne fait pas intervenir les gluons

virtuels à l’ordre de la boucle dans le processus W−W+ → tt̄ alors seuls les photons virtuels

entrent en jeu et en faisant varier le parametre λ2 de FormCalc, l’invariance IR photonique

est observée. Par contre en faisant intervenir les gluons virtuels, la variation de λ2 ne permet

pas d’observer la stabilité des resultats. Et pour prendre en compte dans FormCalc, les

gluons mous aussi, on a modifié, dans ce code, les formules correspondantes de manière à

introduire les charges de couleur ainsi que la correspondance suivante : Q2
tα → CFαs. Ceci

nous a permis d’assurer de plus l’invariance IR gluonique.

• Pour ce qui est de la stabilité de nos résultats de la section efficace complète (incluant
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les rayonnements photoniques et gluoniques réels durs) à l’égard de l’énergie de coupure

kc, en exécutant nos calculs, on a remarqué qu’il faut choisir de petites valeurs pour kc

relativement à l’énergie mise en jeu dans le centre de masse du processus, pour pouvoir

pousser la stabilité des résultats au troisième chiffre après la virgule.

• On note enfin que pour le calcul d’intégrales, on utilise la méthode de Gauss-Patterson

dans le cadre des processus 2 → 2, et la méthode VEGAS du Monte-Carlo adaptive [89, 90,

91]pour le cas des processus radiatifs 2 → 3. Pour ces derniers processus une comparaison

des résultats de la section efficace non-polarisée avec ceux obtenus via CompHep montre un

accord remarquable.

W−W+ → tt̄ λ2 CUV σBorn (pb) δ (%)
1 0 39.29388 2.93

Sans gluons virtuels 1010 0 39.29388 2.93
1 107 39.29388 2,93
1 0 39.29388 -40.32

Avec gluons virtuels 1010 0 39.29388 75.18
1 107 39.29388 -40.32

Tableau 2.1: Section efficace de Born et correction δ à une boucle incluant le bremsstrahlung, pour√
s = 600GeV , MHiggs = 100GeV , kc = 0.01

√
s et 10o ≤ θ ≤ 170o . Ce tableau montre que les

gluons réels mous ne sont pas implantés dans FormCalc (SMQCD.mod).

2.3 Détermination de la contribution photonique universelle

Relativement aux corrections QCD qu’on peut facilement évaluer à l’ordre de la boucle

pour les processus V V → tt̄, pour pouvoir apprécier l’importance des corrections purement

électrofaibles liées directement ces processus, il faut soustraire, des corrections EW calculées

pour ces processus, les corrections photoniques universelles réelles et virtuelles, ainsi que

toute contribution EW universelle.

Ainsi, puisqu’il s’agit de déterminer en premier lieu une contribution photonique univer-

selle indépendante du processus étudié, on tâchera de l’extraire de la manière la plus simple

possible. Donc, sans limiter la généralité de la démonstration et en vue d’être plus explicite

dans l’exécution de cette tâche, on choisit de se concentrer sur le cas spécifique et simple du

processus :
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e+(k0, λ0) + e−(k1, λ1)+ → Z(k2, λ2) +H(k3) (2.3)

De plus, on limite notre domaine d’intérêt aux diagrammes représentés dans la figure 2.7.

a

e

e

Z

HZ

b

e

e

Z

HZ
γ

e

e

c

e

e

Z

HZ

d

e

e

Z

H

γ
e

Z

e

e

e

Z

H

γ

e

Z

Figure 2.7: Diagrammes de Feynman utilisés pour la détermination de la contribution photonique

universelle à travers le processus e+e− → ZH

Ainsi, le diagramme (a) nous donne l’amplitude de Born :

MBorn =
Q2 e2MW

2sW
2cW 3(k2 −MZ

2)

[

vγµ

(

2sW
2 − 1 − γ5

2

)

uεZ
µ

]

. (2.4)

où la quadri-impulsion k est définie via : k0 + k1 + k = 0, u et v étant les spineurs de Dirac,

εZ
µ le vecteur de polarisation du boson vecteur Z. MW et MZ sont respectivement les

masses des bosons vecteurs W et Z. sW est le sinus de l’angle faible de Glashow, avec

c2W = 1 − s2
W = M2

W/M
2
Z et Qe est la charge électrique de l’électron.

Le diagramme (c) nous donne l’amplitude du contre terme :

MCT =
Q2 α

4π

[
−CUV − 4 − 2 lnλ2 + 3 lnm2

]
MBorn (2.5)

m étant ici la masse de l’électron et λ la masse fictive du photon virtuel.

Du diagramme (b) après application des règles de Feynman, on n’extrait de l’amplitude cor-

respondante Mvir que la contribution Muniv
vir proportionnelle au facteur : γµ

[
2sW

2 − 1
2
(1 − γ5)

]

qui figure aussi dans l’expression de l’amplitude de Born (MBorn).

On définit alors la correction virtuelle universelle δv par :

δv ≡ 2MBorn(Muniv
vir + MCT )∗

|MBorn|2
(2.6)

Dans cette dernière équation, on introduit chacune des expressions des différents inter-
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venants puis on met en facteur commun, au numérateur, le terme |MBorn|2 qui se simplifie

alors avec celui dans le dénominateur, pour ainsi donner lieu à l’expression suivante pour la

correction δv :

δv

(

β ,
λ√
s

)

= Q2 2α

π

[(1 + β2

2β
ln

1 + β

1 − β
− 1

)

ln
λ√
s

+
1 + β2

4β
ln

4

1 − β2
ln

1 + β

1 − β

+
1 + β2

4β

[

Sp

(
2β

β − 1

)

− Sp

(
2β

β + 1

)

+ π2

]

+
3β − 2

4
ln

1 + β

1 − β

+ ln
1 + β

2
− 1
]

avec β =

√

1 − 4m2

s
, s = (k0 + k1)

2 (2.7)

À la limite m2 ≪ s, cette dernière formule permet de retrouver le même résultat que celui

de [92] :

δv

(
s

m2
,
λ√
s

)

= Q2 2α

π

[(

ln
s

m2
− 1
)

ln
λ√
s

+
1

4

(

ln
s

m2

)2

+
1

4
ln

s

m2
+
π2

3
− 1

]

. (2.8)

Par ailleurs, les diagrammes (d) et (e) permettent d’obtenir la correction δr suivante, dû

aux photons réels mous :

δr =

∫

|~q|<kc

Q2 e2

2π3

d~q

2q0

[
2k0.k1

(k0.q)(k1.q)
− m2

(k0.q)
2 − m2

(k1.q)
2

]

(2.9)

et qui après avoir effectué les différents étapes simples de calcul intermédiaire, donne l’ex-

pression suivante :

δr

(

β ,
2kc

λ

)

= Q2 2α

π

[(1 + β2

2β
ln

1 + β

1 − β
− 1

)

ln
2kc

λ
+

1

2β
ln

1 + β

1 − β

(2.10)

+
1 + β2

4β

[

Sp

(
2β

β − 1

)

− Sp

(
2β

β + 1

)]]

.

où la fonction dilogarithme (spence) est définie par : Sp(z) = −
∫ z

0
dt ln(1−t)

t
.
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À la limite où m2 ≪ s, on a :

Sp(
2β

β − 1
) → −π

2

6
− 1

2
(ln

s

m2
)2 , Sp(

2β

β + 1
) → π2

6
,

1 + β

1 − β
→ s

m2
(2.11)

et on obtient, comme dans [92], l’expression :

δr

(
s

m2
,
2kc

λ

)

= Q2 2α

π

[(

ln
s

m2
− 1
)

ln
2kc

λ
− 1

4

(

ln
s

m2

)2

+
1

2
ln

s

m2
− π2

6

]

. (2.12)

Enfin, en sommant les deux contributions universelles virtuelle (eq.2.7) et réelle (eq.2.10),

on obtient la correction photonique universelle totale δr+v suivante :

δr+v = Q2 2α

π

[

(π/2αQ2)δ̄r+v
︷ ︸︸ ︷(

1 + β2

2β
ln

1 + β

1 − β
− 1

)

ln
2kc√
s

+
1 + β2

2β

[

Sp

(
2β

β − 1

)

− Sp

(
2β

β + 1

)

+
π2

2

]

+
1 + β2

4β
ln

4

1 − β2
ln

1 + β

1 − β
+

2 − 2β + 3β2

4β
ln

1 + β

1 − β
+ ln

1 + β

2
− 1
]

(2.13)

On remarque alors qu’au seuil de la réaction, c’est à dire pour β → 0, la correction photonique

universelle totale devient extrêmement grande :

δr+v(β → 0) = Q2πα

2β
(2.14)

L’allure de cette dernière expression, reflétant une correction Coulombienne, est un argument

supplémentaire pour plaider en faveur d’une coupure sur la masse invariante loin du seuil

de la réaction (ce qui veut dire que mtt̄ > 400GeV est une bonne coupure cinématique pour

le cas du processus de fusion de bosons vecteurs en paire de quarks top). Cette coupure

permettrait donc d’enlever les effets Coulombiens et de mieux apprécier les effets purement

électrofaibles.

Par ailleurs, à la limite m2 ≪ s, on obtient facilement la formule de l’ISR dans e+e−
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[85] :

δr+v

(
s

m2
,
2kc√
s

)

= Q2 2α

π

[(

ln
s

m2
− 1
)

ln
2kc√
s

+
3

4
ln

s

m2
+
π2

6
− 1

]

. (2.15)

Vérification numérique de la formule δr+v

Le tableau 2.2 montre numériquement que pour des valeurs faibles de masse de particules

relativement à l’énergie mise en jeu dans le centre de masse du système en interaction, notre

formule 2.13 de δr+v tend bien vers la formule 2.15 de l’ISR. Par ailleurs, notre formule 2.13

a en plus l’avantage d’être valable pour tout le spectre de masse des particules, alors que la

formule de l’ISR ne s’applique que pour le cas m2 ≪ s.

m (GeV )
√
s (GeV ) δr+v (%) δ

(m2≪s)
r+v (%)

0.000511 0.01 -8.19946 -8.21359
0.000511 1 -24.7091 -24.7091
0.000511 100 -41.2045 -41.2045
0.000511 1000 -49.4522 -49.4522
80.299 500 -3.8627 -4.11184
80.299 1000 -6.56119 -6.59465
80.299 2000 -9.06856 -9.07747
175 500 -0.68557 -1.32214
175 1000 -3.6507 -3.80421
175 2000 -6.24762 -6.28703
175 3000 -7.72119 -7.73938

Tableau 2.2: Comparaison numérique et validité des formules δr+v et δ
(m2≪s)
r+v

2.3.1 Processus W−W+ → HH et ZZ → HH et structure non-Abelienne

de l’interaction électrofaible

Cette application constitue notre première tentative de mettre en oeuvre, notre formule de

correction photonique universelle δr+v, dans l’exploration du secteur électrofaible. L’idée est

que, vu que le boson Z et le HiggsH sont des particules neutres, alors le processus ZZ → HH

ne manifeste pas d’interaction photonique, l’interaction est plutôt purement «électro»-faible.

Par ailleurs, le processus W−W+ → HH ne diffère du processus ZZ → HH (comme cela

peut être apprécié en analysant les diagrammes de Feynman à l’arbre pour chacun de ces

deux processus) que par le remplacement du boson vecteur W chargé électriquement et de

te
l-0

03
61

42
9,

 v
er

si
on

 1
 - 

15
 F

eb
 2

00
9



75

son Golstone correspondant par leur homologue neutre. Il semble alors à première vue que la

différence essentielle entre ces deux processus, réside dans la présence de charge électrique,

donc la mise en jeu de l’interaction photonique. Alors en soustrayant de la section efficace

complète à l’ordre de la boucle pour le processus W−W+ → HH, la contribution photonique

universelle totale (δr+v), on s’attend naivement à retrouver la section efficace correspondante

pour le cas du processus ZZ → HH. Mais comme on sait que dans le MS les couplages

des W et des Z aux autres particules du MS ne sont pas identiques, alors l’extraction de

la contribution photonique universelle totale ne serait pas suffisante pour mettre les deux

processus sur le même diapason. Et comme la génération des masses des particules est une

pièce fondamentale dans le secteur électrofaible, il nous semble que la contribution la plus

dominante dans la différence qui existe entre les résultats de la section efficace affichée par

ces deux processus, serait dû à la différence de masse entre les composantes du doublet de

quarks les plus lourd à savoir le quark bottom et le quark top.

Ainsi, en imposant une égalité numérique entre les valeurs des masses des quarks bot-

tom et top, en plus de la soustraction de la contribution photonique universelle, on tiendra

compte de la majeur partie de la différence qui pourrait exister entre les deux processus

W−W+ → HH et ZZ → HH. Donc via l’étude de ces deux processus, on peut sonder di-

rectement le secteur non-Abelien de l’interaction faible et par suite on peut vérifier si notre

hypothèse est bonne.

On se propose donc de sonder, si la brisure spontanée de la symétrie électrofaible, peut

être ramener essentiellement à la différence entre les valeurs des masses du quark top et du

quark bottom, ou bien, si elle est plus profonde qu’une simple différence de masse et qu’elle

est au contraire fortement liée à la structure non-Abelienne de l’interaction électrofaible ?

Dans cette perspective, on calcule alors, en utilisant le code SloopS, les corrections

électrofaibles relatives totales à l’ordre de la boucle : δZZ et δWW respectivement pour les

processus ZZ → HH et W−W+ → HH (ces corrections n’incluent pas les photons durs).

Alors, pour le processus ZZ → HH, comme on vient de l’expliquer δZZ = δZZ
W . Par contre

pour le processus W+W− → HH, pour extraire la correction purement électrofaible δWW
W ,

on calcule d’abord la correction relative photonique universelle δWW
v+r à travers la formule

2.13. Pour ensuite obtenir :
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δWW
W ≡ δWW − δWW

r+v (2.16)

Dans l’exécution du calcul numérique, on utilise les paramètres suivants :

α−1 = 137.0359895 MZ = 91.187GeV, MW = 80.299GeV
me = 0.51099906MeV mµ = 105.65839MeV mτ = 1.777GeV
mu = md = 46MeV mc = 1.50GeV ms = 150MeV
kc = 0.005

√
s MHiggs = 120GeV

Les résultats obtenus sont reportés dans les tableaux 2.3, 2.4, 2.5 et 2.6.

On y remarque tout d’abord que le comportement des corrections radiatives pure-

ment électrofaibles, pour les valeurs réellement observées des masses mt et mb, est différent

de celui qui se manifeste dans le cadre du cas fictif où mt = mb. Ceci implique que la

différence de masse au sein du doublet «bottom-top»est un paramètre important à prendre en

considération dans l’étude des corrections radiatives électrofaibles. Et pour pouvoir apprécier

l’effet des autres intervenants, on supprime l’effet de ce paramètre, en imposant l’égalite de

masse entre le top et le bottom. Ainsi, loin du seuil de la réaction et pour mt = mb, les cor-

rections radiatives purement électrofaibles sont décroissantes en fonction de l’énergie dans le

centre de masse du système pour chacun des deux processus W+W− → HH et ZZ → HH.

Elles sont en plus, dans le domaine d’énergie qu’on considère, importantes d’environ 2 %

dans le cas des W que dans le cas des Z et ceci bien que la section efficace de Born pour

le processus ZZ → HH soit plus grande du fait de la supériorité de masse des bosons Z

relativement aux W . Ce comportement révèle le fait que la structure non-Abelienne de l’in-

teraction électrofaible est bien ancrée dans le «photon». Et que la brisure spontanée de la

symétrie électrofaible ne peut être rattachée simplement à la différence de masse entre les

«quark-isotopes !» :top et bottom et par suite dans le cadre du MS , la répercussion de la

présence d’une charge électrique, va au delà de la simple contribution photonique universelle.
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√
s (GeV ) σWW

Born (pb) σZZ
Born (pb) δWW

W (%) δZZ
W (%)

250 1.88133 2.75 15.42 14.29
500 4.46256 5.97206 6.98 5.94
750 4.96851 6.51338 3.18 3.84
1000 5.18563 6.74928 1.64 2.06

Tableau 2.3: Correction purement électrofaible pour les processus ZZ → HH et W−W+ → HH

dans le cas mt = 175GeV et mb = 4.5GeV

√
s (GeV ) σWW

Born (pb) σZZ
Born (pb) δWW

W (%) δZZ
W (%)

250 1.88133 2.75 26.76 24.92
500 4.46256 5.97206 12.01 10.81
750 4.96851 6.51338 9.45 7.89
1000 5.18563 6.74928 7.94 5.39

Tableau 2.4: Correction purement électrofaible pour les processus ZZ → HH et W−W+ → HH

dans le cas mt = mb = 175GeV

√
s (GeV ) σWW

Born (pb) σZZ
Born (pb) δWW

W (%) δZZ
W (%)

250 1.88133 2.75 15.78 16.74
500 4.46256 5.97206 14.68 14.12
750 4.96851 6.51338 13.98 12.83
1000 5.18563 6.74928 13.38 11.77

Tableau 2.5: Correction purement électrofaible pour les processus ZZ → HH et W−W+ → HH

dans le cas mt = mb = 5GeV

√
s (GeV ) σWW

Born (pb) σZZ
Born (pb) δWW

W (%) δZZ
W (%)

250 1.88133 2.75 12.12 13.12
500 4.46256 5.97206 10.83 10.27
750 4.96851 6.51338 9.81 8.67
1000 5.18563 6.74928 9.02 7.42

Tableau 2.6: Correction purement électrofaible pour les processus ZZ → HH et W−W+ → HH

dans le cas mt = mb = 90GeV

2.4 Extraction de la contribution purement électrofaible pour les

processus V V → tt̄

Après cette première tentative d’application de nos formules analytiques jumelée avec

notre procédure de calcul via l’utilisation combinée de plusieurs codes de calcul, on revient

à nos processus de premier intérêt dans le cadre de l’exploration du secteur scalaire, à

te
l-0

03
61

42
9,

 v
er

si
on

 1
 - 

15
 F

eb
 2

00
9



78

savoir les processus V V → tt̄. Et on s’interesse alors à l’évaluation des corrections purement

électrofaibles à l’ordre de la boucle correspondant à chacun de ces processus.

Processus ZZ → tt̄ :

Dans le processus ZZ → tt̄ le quark top est chargé électriquement alors que le boson

vecteur Z est neutre. Il n’y a donc de radiations photoniques réelles que via l’état final de ce

processus. Cette situation peut donc bien être rapprochée de celle pour laquelle, on a établi

notre formule analytique pour la contribution photonique universelle totale (photon virtuel -

photon réel mou - photon réel dur) . Et comme, d’autre part, on ne s’interesse ici qu’à définir

la contribution purement électrofaible (PEW) propre au processus ZZ → tt̄, il n’est donc

pas nécessaire d’inclure dans notre calcul la contribution photonique réelle dure pour ensuite

la soustraire. Ainsi dans le calcul de la section efficace à l’ordre de la boucle, on utilisera

seulement le terme |M|2,s+v de l’équation 1.54 et on ne prendra pas en considération le

rayonnement des photons réels durs. En outre, pour la contribution photonique universelle,

on prendra seulement le terme δ̄r+v (voir 2.13)1

Ainsi, on définit la correction purement électrofaible (PEW) propre au processus ZZ → tt̄

par :

σPEW

ZZ = σs+v

ZZ − δ̄r+v σ
Born

ZZ = δPEWσBorn

ZZ . (2.17)

Cette expression est invariante de jauge, UV et IR invariante et aussi indépendante de

l’énergie de coupure du photon. Et on vérifie bien ces propriétes numériquement.

Processus W−W+ → tt̄

Pour le processus W−W+ → tt̄, on note que le quark top et le boson vecteur W sont

tous deux chargés électriquement. Ainsi en plus des radiations photoniques de l’état initial

et ceux de l’état final, on note aussi la présence d’interférence entre les émissions radiatives

des états initial et final. De ce fait il n’est pas possible de trouver une expression analytique

1On aurait bien pu prendre ici, le totalité du terme δr+v, mais pour être en accord avec notre définition de
la contribution purement électrofaible dans le cadre du processus W−W+ → tt̄ qui manifeste des contraintes
supplémentaires (voir paragraphe suivant), on choisit d’utiliser dés à présent le terme δ̄r+v au lieu de δr+v.
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universelle pour les radiations photoniques de ce processus et qui par ailleurs, puisse préserver

l’invariance de jauge. Ainsi, comme on ne s’intéresse effectivement qu’à la dépendance en

fonction de kc qu’on suspecte être de la forme ln(kc), on décide alors d’extraire la correction

purement électrofaible (PEW) numériquement. Pour ce faire, on prend deux valeurs kc1 et

kc2 de l’énergie de coupure et on définit la section efficace purement électrofaible par :







σPEW

WW = σs+v

WW (kc) − A(
√
s) ln(2kc/

√
s) = δPEWσBorn

WW ,

A(
√
s) =

σEW

WW (kc2) − σEW

WW (kc1)

ln(kc2/kc1)

(2.18)

On vérifie alors numériquement que cette expression est bien invariante de jauge, UV et IR

invariante et aussi stable en fonction de l’énergie de coupure kc.

• Remarque : Comme on mène le calcul des différentes sections efficaces, en utilisant

la valeur de la constante de structure fine α, telle que déterminée à la limite de Thomson. Il

n’est pas suffisant de soustraire la contribution photonique universelle de nos résultats des

contributions électrofaibles, pour pouvoir apprécier la contribution purement électrofaible

liée à notre processus d’intérêt. Il est par ailleurs, important de soustraire aussi une autre

contribution universelle mais cette fois proprement électrofaible et en m2
t , pour ne laisser

que la contribution proprement électrofaible propre aux processus d’intérêt. Cette dernière

contribution est donnée à travers ∆r (voir l’équ.1.63 et aussi l’équ. 1.65) et la correction qui

en découle pour les processus V V → tt̄ est définie par :

δpew = δPEW − 2∆r (2.19)

Traitement des radiations gluoniques

Relativement à l’interaction de couleur, les processus W−W+ → tt̄ et ZZ → tt̄ se placent

à pied d’égalité, vu que pour ces processus, seul le quark top porte la charge de couleur. Et

comme à l’ordre de la boucle, la structure non-Abelienne de QCD n’intervient pas pour

nos deux processus, du fait qu’on ne rencontre pas de vertex à plusieurs gluons, alors les

formules analytiques qu’on a établi pour les radiations Abeliennes photoniques peuvent être

adaptée pour servir à l’évaluation des radiations gluoniques. Il suffit, pour notre cas et par
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exemple dans le cadre des contributions réelles molles, de remplacer dans l’équation 2.10

le facteur Q2α par 3αs (αs est la constante de couplage fort qui évolue en fonction de

l’échelle de renormalisation) pour obtenir la formule correspondante des corrections dûes

aux radiations gluoniques réelles molles. La formule ainsi obtenue, est alors incorporée dans

le code FormCalc pour pouvoir calculer les contributions des gluons réels mous et par suite

pour remédier aux divergences infrarouges gluoniques. Par ailleurs, la contribution des gluons

réels durs est calculée directement via le processus V V → gtt̄. Pour ce faire, on peut se servir

de FormCalc et/ou de CompHep. Enfin, la correction globale à la section efficace QCD, à

l’ordre de la boucle, est évaluée en sommant la contribution corrigée à l’ordre de la boucle

et la contribution des gluons durs. Enfin, il importe de noter que nos résultats, relatifs à

la contribution de couleur, sont invariants de jauge, indemnes des divergences UV et IR et

stables relativement à l’énergie de coupure des gluons réels.

2.5 Corrections Electrofaible et QCD : résultats et discussions

2.5.1 Paramètres d’entrée

Tous nos résultats des sections efficaces des processus W−W+ → tt̄ et ZZ → tt̄, sont

obtenus via l’utilisation des paramètres d’entrée suivants :

α−1 = 137.0359895 me = 0.51099907MeV mµ = 105.658389MeV
mτ = 1.777GeV mu = md = 53.8MeV mc = 1.5GeV
ms = 150MeV mb = 4.7GeV mt = 173.7GeV
MZ = 91.1875GeV MW = 80.45GeV

• La valeur qu’on utilise pour la masse du quark top est celle fournie par la collaboration

D0 [66]. Cette valeur est trés proche de la valeur mt = 174.2 ± 3.3GeV donnée par la

collaboration PDG [49]. Par ailleurs CDF et D0 ont actualisé cette valeur, qui est maintenant

170.9 ± 1.8 [93]. Ces différences entre ces différentes valeurs de la masse du top, sont sans

incidence notables sur nos résultats, vu qu’elles se trouvent dans la marge d’erreur 2σ d’une

part, et d’autre part, du fait de la coupure qu’on impose sur la masse invariante mtt̄ (mtt̄ ≥

400GeV ), ce qui nous amène loin du seuil de la réaction de création de paires de quarks top.

• Les valeurs des masses des quarks légers sont des valeurs effectives ajustées de manière
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à reproduire perturbativement à l’ordre de la boucle, la valeur de la constante de structure

fine à l’échelle de MZ établie dispersivement (voir chapitre 2).

• Pour la constante de couplage fort αs, on utilise une constante évoluant en fonction

de l’échelle de renormalisation µ (µ =
√
sV V ). La dépendance en µ qu’on utilise est évaluée

dans le cadre du schéma de renormalisation MS, via un calcul à l’ordre de la troisième

boucle et qui prend en considération les cinq saveurs de quarks les plus légères tout en

imposant la condition de normalisation αs(MZ) = 0.1172 [49]. Ainsi par exemple αs(
√
sWW =

500GeV ) = 0.09432 et αs(
√
sWW = 1TeV ) = 0.08776.

• Dans notre calcul, on ne s’intéresee pas aux angles de mélanges entre les différents

états des particules, ainsi on prend la matrice CKM égale à l’unité.

2.5.2 Section efficace totale à une boucle

Pour MHiggs = 120GeV , la figure 2.9 montre l’effet des corrections radiatives sur la

section efficace totale pour des énergies, dans le centre de masse du système V V , variant du

voisinage du seuil jusqu’à 1TeV . Nos résultats pour MHiggs = 200, 300GeV sont présentés

dans le tableau 2.7. Notons tout d’abord la caractéristique commune à toutes les valeurs de

masse du Higgs qu’on a considérées. Les corrections photoniques (QED) qu’on a extraites

sont relativement petites et par suite il n’y a qu’une petite différence entre les corrections

EW complètes incluant les photons durs et les corrections purement électrofaibles obtenues

après soustraction de la partie photonique universelle telle que décrite précédemment. Cette

différence prend ces plus grandes valeurs (∼ 2%) au voisinage du seuil (∼ 400GeV ) dans le

cas du processus W−W+ → tt̄ . Ailleurs cette différence est inférieure à 1% conjointement

pour les deux processus ZZ → tt̄ et W−W+ → tt̄ . Donc dans la suite de l’ exposé,

en parlant des corrections EW, cela fera référence aux corrections électrofaibles complètes

incluant les photon durs. Dans le domaine d’énergie qu’on considère, les corrections EW pour

ZZ et WW , sont positives et deviennent grandes près du seuil du fait de la contribution

Coulombienne. Entre ZZ et WW les corrections, qu’elles soient EW ou QCD, ne dépassent

pas une différence de 3%. Pour les corrections QCD, on remarque une hausse près du seuil

qui devient de plus en plus importante lorsque la masse de Higgs varie de 120GeV à 300GeV.

Au delà de la région du seuil, les corrections QCD décroissent puis deviennent négatives et
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atteignent environ −10% à
√
sV V = 1TeV. Ainsi et spécialement pour les hautes énergies, les

corrections EW ont tendance à annuler une grande partie de l’effet des corrections QCD. Il

est donc important, pour le traitement des processus V V → tt̄, de considérer conjointement

les corrections EW et QCD et non pas chacune toute seule.

Enfin de cette discussion, on remarque qu’en exprimant la section efficace à l’arbre en

terme de Gµ, une contributions EW importante liée à la désintégration du muon, peut

être soustraite. Dans ce schéma Gµ, les corrections purement électrofaibles propres à nos

processus V V → tt̄ (voir équation :2.19), s’étalent alors approximativement dans l’intervalle

2− 5%. Ces dernières corrections purement électrofaibles restent toujours compétitives avec

les corrections QCD.

Cette compétitivité des corrections électrofaibles aux corrections QCD est en fait un fait

prévisible, vu que d’une part les bosons vecteurs ne se couplent pas aux gluons, ce qui agit

comme un modérateur des corrections QCD en plus du fait qu’en augmentant l’énergie, la

grandeur de la constante de couplage fort diminue, et d’autre part vu que le fort couplage

des W au Higgs et la grande valeur du couplage de yukawa du quark top qui agissent en

faveur d’un rehaussement des corrections électrofaibles.

2.5.3 Distributions angulaires à une boucle

Dans la figure 2.8, pour MHiggs = 120GeV et pour des particules non-polarisées, on

présente, respectivement pour deux cas d’énergies, l’une proche du seuil (
√
sWW = 400GeV)

et l’autre égale à 1TeV, les distributions angulaires du processus W−W+ → tt̄, ainsi que

les facteurs KSM

WW correspondants. Le facteur KSM

WW est défini comme étant le rapport de la

section efficace différentielle corrigée à une boucle sur la section efficace correspondante à

l’arbre. Pour les basses énergies, lorsque la section efficace est grande (voir figure 2.4), les

corrections EW dominent les corrections QCD dans les directions avant et arrière relative-

ment au W−. Dans la région centrale, par contre, des deux corrections EW et QCD sont

toutes deux du même ordre de grandeur. Par contre pour de hautes énergies la correction

électrofaible est très grande dans la direction avant, modeste dans la direction arrière et

presque nulle dans la région centrale. Alors en prenant en considération le fait que la section

efficace différentielle est quatre ordres de grandeur plus importante dans la direction arrière
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W−
L W

+
L MHiggs = 200 GeV MHiggs = 300 GeV

√
sWW (GeV ) σ0 (pb) δEW δPEW δpew δQCD σ0 (pb) δEW δPEW δpew δQCD

400 144.33 9.35 11.17 4.97 6.44 163.77 10.25 11.93 5.42 10.54
500 196.13 8.23 9.43 3.23 -4.99 201.23 9.41 10.52 4.00 -3.97
600 188.49 7.96 8.91 2.72 -8.33 189.66 8.93 9.82 3.30 -7.89
700 168.84 7.79 8.61 2.41 -9.87 169.04 8.67 9.43 2.92 -9.59
800 148.57 7.63 8.36 2.16 -10.61 148.52 8.43 9.12 2.60 -10.42
900 130.46 7.48 8.15 1.95 -10.96 130.36 8.22 8.84 2.33 -10.81
1000 114.95 7.33 7.95 1.75 -11.07 114.84 8.01 8.59 2.08 -10.93

ZLZL MHiggs = 200 GeV MHiggs = 300 GeV
√

sZZ (GeV ) σ0 (pb) δEW δPEW δpew δQCD σ0 (pb) δEW δPEW δpew δQCD

400 21.87 9.96 10.14 3.94 22.46 98.10 10.18 10.36 3.85 30.87
500 44.24 10.13 10.46 4.26 2.93 96.56 10.19 10.51 3.99 7.9
600 48.49 10.15 10.57 4.37 -4.06 78.83 10.21 10.62 4.10 -1.42
700 46.89 10.04 10.53 4.33 -7.83 65.39 10.72 11.20 4.68 -6.55
800 43.53 9.84 10.38 4.18 -10.17 55.45 10.78 11.32 4.80 -9.69
900 39.81 9.57 10.16 3.96 -11.77 47.85 10.61 11.20 4.68 -11.74
1000 36.23 9.27 9.91 3.71 -12.91 41.87 10.33 10.96 4.44 -13.14

Tableau 2.7: Section efficace totale de Born σ0 et corrections relatives pour les contributions

électrofaibles (δEW ), “purement” électrofaibles (δPEW ), dans le cadre du schéma Gµ (δpew) et

QCD (δQCD)

(a) KSM

WW rates for
√

sWW = 400 GeV (b) KSM

WW rates for
√

sWW = 1000 GeV

Figure 2.8: Correction relative KSM

WW dans le cadre du MS , de la section efficace non-polarisée

de W−
U W+

U → tt̄ avec MHiggs = 120GeV , (a)
√

sWW = 400GeV ,(b)
√

sWW = 1000GeV . Les

distributions angulaires de Born dans le cadre du MS sont présentées en Fig. 2.4.
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que dans la direction avant (voir figure 2.4), on peut rattacher l’importance apparente des

corrections EW dans la direction avant à une migration des photons durs de la région la plus

peuplée. Les corrections QCD sont par ailleurs négatives et modestes dans presque tout le

domaine à l’exception de la direction arrière, où elles s’accentuent. Ceci représente donc l’ori-

gine de la caractéristique négative et de l’importance en grandeur des valeurs des corrections

qu’on trouve au niveau des sections efficaces intégrées.

(a) ZLZL → tt̄ (b) W−

L W+
L → tt̄

(c) ZLZL → tt̄ (d) W−

L W+
L → tt̄

Figure 2.9: Section efficace totale de Born, et à l’ordre de la boucle pour les contributions complètes

électrofaibles (EW), QCD, purement électrofaibles (PEW) avec extraction de la contribution

photonique universelle (QED) et aussi dans le cadre du schéma Gµ (pew). a) ZLZL → tt̄ et b)

W−
L W+

L → tt̄ ; MHiggs = 120 GeV. c) et d) donnent les taux de variations relatifs des corrections à

l’ordre de la boucle
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Chapitre 3

Interaction anomale W−W+tt̄ et
recherche d’une nouvelle physique

La future génération de collisionneurs leptoniques linéaires, avec leur énergie dans le

domaine du TeV et avec leur grande luminosité integrée, permettront de fournir une abon-

dance de paires tt̄ provenant de la fusion de bosons vecteurs [74, 5]. Ainsi le couplage du

quark top avec les modes longitudinaux de ces bosons vecteurs pourra être déterminé avec

une grande précision, d’où l’intérêt pressant d’explorer d’avantage ce couplage d’une manière

indépendente du modèle qui succédera au MS à hautes énergies. Cet intérêt ferme à explo-

rer ce couplage, trouve facilement son justificatif, vu que le quark top en plus de sa masse

de l’ordre de l’échelle de la brisure de la symétrie électrofaible qui le qualifie à être une

bonne sonde pour explorer le secteur scalaire ; sa position en haut de l’échelle de masse des

particules élementaire, le prédispose à être aussi la particule la plus sensible à toute nouvelle

physique qui se manifesterait à hautes énergies et dont les effets résiduels à basses énergies

(de l’ordre de l’échelle de la brisure de symétrie électrofaible) seraient plus marqués via le

top quark qu’à travers toute autre particule plus légère. Ces effets attendus consisteraient

en des déviations “anomales” relativement au couplage prévu par le MS.

3.1 Lagrangien effectif

Ainsi, les processus V V → tt̄ auxquels on s’intéresse en plus du fait, qu’ils constituent une

bonne sonde pour explorer le secteur de la brisure spontanée de la symétrie électrofaible dans

le cadre du MS, sont par ailleurs susceptible de révéler la présence de nouvelles interactions

entre les quarks top et les modes longitudinaux des bosons vecteurs massifs. Cette situation

ouvre ainsi une fenêtre sur la nouvelle physique. Pour paramétrer Ce secteur de la nouvelle

physique peut être régit par une nouvelle théorie succédant au MS , et dans ce contexte, une

multitude de modèles théoriques a été proposée. Mais on préfère ici étudier cette interaction

te
l-0

03
61

42
9,

 v
er

si
on

 1
 - 

15
 F

eb
 2

00
9



86

d’une manière indépendante de tout modèle dynamique. Ainsi, on opte plutôt pour une

approche basée sur un Lagrangien effectif. Comme établi dans [9], ce Lagrangien est constitué

d’opérateurs effectifs invariants de Lorentz et invariant de jauge, représentant les ordres les

plus bas de cette interaction, au delà de ceux qu’on trouve dans le Lagrangien du MS. Parmi

ces opérateurs, on ne considére que ceux qui sont liés au couplage WWtt̄. Et on étudie leurs

effets sur les distributions angulaires du processus W−W+ → tt̄. On aurait pu faire la même

chose pour le processus ZZ → tt̄ mais vu la dominance de la section efficace du processus

W−W+ → tt̄ relativement à celle du processus ZZ → tt̄, la statistique est plus importante

pour le cas des W et par suite toute nouvelle physique se manifesterait plutôt via le processus

W−W+ → tt̄ auquel on concentre notre attention.

Par suite, le Lagrangien qui décrit le processus W−W+ → tt̄ prend la forme :

L = LMS + Leff (3.1)

où LMS est le Lagrangien du MS et Leff et le Lagrangien effectif auquel on s’intéresse :

Leff = L(a1)
eff + L(a2)

eff =
a1

Λ
t̄gµνtW+

µW
−

ν +
a2

Λ
t̄(iσµν)tW+

µW
−

ν (3.2)

• a1 et a2 sont des coefficients anomaux qui lorsque a1 et a2 sont nuls, permettent de

retomber sur le MS. Et par suite ils ne sont différents de zéro que si une nouvelle physique

se manifeste et qu’alors ils permettent de la cerner.

• Λ est l’échelle de coupure, au dessous de laquelle notre approche via le Lagrangien

effectif est valable. Cette échelle de coupure est imposée par l’analyse dimensionnelle lors

de la construction des opérateurs effectifs à dimension cinq, et par suite elle a la dimension

d’une énergie. En accord avec Yuan [9], on prend Λ = 4πv ∼ 3.1TeV.

3.2 Section efficace totale et anomaux

Dans le chapitre précédent et dans le cadre du MS, on a établi, entre autres, relativement

à la section efficace totale de Born, les corrections électrofaible et QCD à l’ordre de la boucle

pour les processus V V → tt̄. Si maintenant dans la future génération de collisionneurs,
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aucune nouvelle particule n’est détectée pour pouvoir affirmer le divorce avec le MS dans ce

domaine et qu’en plus un signal experimental confirmerait nos résultats pour la correction

à la section efficace totale, alors cela voudrait-il dire que le MS reste valable au delà de

l’échelle de brisure spontanée de la symétrie électrofaible ou bien existerait-il un autre moyen

permettant de vérifier l’applicabilité ou non du MS à ce domaine de hautes énergies ?

L’idée est alors d’aller regarder au niveau des distributions en espérant voir un écartement

des distributions observées relativement aux distributions angulaires du MS à l’ordre de

la boucle, pour pouvoir confirmer la naissance d’une nouvelle physique au delà du MS.

Notre stratégie est donc la suivante. Pour le processus W−W+ → tt̄, on détermine d’abord

les valeurs des coefficients anomaux a1 et a2 qui permettent à la section efficace totale

anomale d’imiter les valeurs numériques de la section efficace totale calculée à l’ordre de la

boucle dans le cadre du MS. Pour ces valeurs trouvées des coefficients anomaux a1 et a2, on

établit les distributions angulaires anomales correspondantes. On compare alors ces dernières

distributions avec les distributions angulaires établies à l’ordre de la boucle dans le cadre du

MS et qui donne aprés intégration sur toutes les directions de l’espace, la valeur de la section

efficace ayant servie à déterminer les valeurs des coefficients anomaux correspondants.

Pour exécuter ce programme, on détermine tout d’abord, pour le processus W−W+ → tt̄,

les expressions des amplitudes d’hélicités dans le cadre du MS MMS et purement anomales

N . Pour se faire, on suit les prescriptions de la technique spinorielle adaptée au cas des par-

ticules massives, tel que décrite dans [67, 94]. Les expressions des amplitudes ainsi trouvées,

sont présentées en appendice. Alors, la section efficace anomale totale est obtenue à travers

la formule suivante :

σanom =
Nc

32πs

βt

βW

1

9

∑

pol

1−cos θcut∫

−1+cos θcut

|MSM + N|2d(cos θ) (3.3)

où la somme inclue toutes les combinaisons possibles des hélicités des états initiaux et finaux.

cos θcut est, par ailleurs, fixée à travers la coupure P t,t̄
T ≥ 10GeV .

La figure.3.1 donne dans le cas du processus W−W+ → t̄t, et pour une énergie dans le

système du centre de masse
√
sWW = 500GeV , MHiggs = 120GeV et P t,t̄

T ≥ 10GeV , la

dépendance de la section efficace anomale totale non-polarisée, en fonction des coefficients
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anomaux a1 et a2. Cette dépendance est établie en mettant l’un des deux coefficients à zero

et en faisant varier l’autre de -1 à 1. Dans le cas a1 = a2 = 0, on retrouve évidemment

le résultat du MS. L’allure parabolique des courbes est dû au fait que l’on met l’un des

coefficient à zéro tout en faisant varier l’autre.

Figure 3.1: Section efficace anomale totale non-polarisée pour le processus W−W+ → t̄t en fonction

des coefficients anomaux a1 et a2, pour MHiggs = 120GeV et pt,t̄
T ≥ 10 GeV.

On s’interesse maintenant, à la determination des valeurs des coefficients libres ai. On

fixe ces coefficients de manière à ce que pour une énergie donnée, la valeur numérique de

la section efficace totale anomale non-polarisée coincide avec la valeur de la section efficace

totale complète non-polarisée du MS corrigée à une boucle et ceci en laissant l’un des

coefficient libre et en mettant l’autre à zéro. Par exemple aew
1 est la valeur de a1 qui permet

de reproduire le valeur de la correction électrofaible complète à une boucle pour la section

efficace totale lorsque a2 est mis à zéro :

σanom1ew(aew
1 )

.
= σSM

1loop(EW ) avec a2 = 0 (3.4)
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De même les aqcd
i correspondent aux corrections QCD et les aew+qcd

i aux corrections globales

EW et QCD. Comme la dépendance de la section efficace anomale est parabolique en fonction

des ai (voir figure 3.1) alors on peut obtenir deux solutions pour les ai. Mais puisqu’on

s’intéresse aux petites déviations relativement aux résultats du MS, on choisit toujours de

prendre la plus petite des deux solutions, c’est a dire celle qui est la plus proche de la valeur

qu’on obtiendrait si dans le calcul de la section efficace anomale on négligeait les termes

quadratiques en ai. Par ailleurs, notant bien que dans nos calculs, on ne néglige pas les

termes quadratiques en ai, qui correspondent ici aux termes N 2.

En se restreignant au cas MHiggs = 120GeV et aux énergies
√
sWW = 400GeV et

√
sWW = 1000GeV , on trouve respectivement :

√
sWW = 400GeV

√
sWW = 1000GeV

aew
1 = 0.318 aqcd

1 = 0.316 aew+qcd
1 = 0.518 aew

1 = 0.020 aew+qcd
1 = 0.006

aew
2 = 0.082 aqcd

2 = 0.081 aew+qcd
2 = 0.151 aew

2 = 0.021 aew+qcd
2 = 0.005

On remarque que pour
√
sWW = 1000GeV , du fait que les corrections QCD sont négatives

(voir tableau 2.7 et figure 2.9), il n’y a pas de valeurs réelles correspondantes pour les ai.

3.3 Distribution angulaire : résultats et discussion

La figure 3.2 présente nos résultats pour les distributions angulaires anomales, pour

les cas des valeurs numériques des ai précédement trouvées. Et pour mieux apprécier la

différence entre ces résultats et ceux des distributions obtenues via les corrections radiatives

du MS (voir figure : 2.8), la figure 3.3 donne les taux anomaux Ka
WW . Ces taux Ka

WW

sont définis comme étant la rapport, pour un cos θ donné, de la section efficace différentielle

anomale sur la section efficace différentielle du MS à l’arbre correspondante. On voit donc

bien que la structure des distributions anomales est différente de celles des distributions via

les corrections radiatives du MS et qu’elles tendent à affaiblir l’asymétrie avant-arrière du

MS. Cette différence de structure est intéressante dans le sens où elle permet de contraindre

tout signal de nouvelle physique en terme des coefficients ai. Donc dans l’analyse des signaux

expérimentaux, il est important de prendre en considération les corrections EW et QCD.

Mais d’autre part dans la recherche d’une nouvelle physique, il est aussi important de ne pas
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restreindre l’analyse aux sections efficaces totales, comme prescrit dans [9, 74] mais il faut

aussi analyser conjointement les distributions expérimentales et théoriques.

(a) Distributions pour
√

sWW = 400 GeV

(b) Distributions pour
√

sWW = 1 TeV

Figure 3.2: Distributions angulaires anomales pour W−W+ → tt̄ avec MHiggs = 120GeV for (a)√
sWW = 400GeV , and (b)

√
sWW = 1TeV
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(a) Ka
WW for

√
sWW = 400 GeV

(b) Ka
WW for

√
sWW = 1000 GeV

Figure 3.3: Taux anomaux Ka
WW du processus W−W+ → tt̄ pour MHiggs = 120GeV et (a)√

sWW = 400GeV and (b)
√

sWW = 1TeV
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Chapitre 4

Applications à l’ILC et au LHC

Aux collisionneurs du futur avec leur énergie dans le domaine du TeV et leurs luminosités

élevées, les bosons vecteurs seront abondament produits, et les évènements probablement

enregistrés de fusion de ces bosons vecteurs massifs en quarks top, aussi important, qu’une

étude du branchement de ces processus fils dans les différents processus pères qui ont lieu dans

ces collisionneurs se trouve bien justifiée. Dans ce chapitre, il est question de ce branchement

dans le cadre de l’ILC (International Linear Collider) et du LHC (Large Hadron Collider).

4.1 L’approximation des bosons vecteurs effectifs

Aux très hautes énergies du LHC et de l’ILC, les fermions et les antifermions élémentaires

se scindent en paires de [fermions(antifermion)+boson vecteur]. En notant l’impulsion trans-

versale du processus de scission par le symbole p⊥, on peut estimer la durée de vie de cet

état par τ ∼ Escin/(p
2
⊥ +M2

W ) ∼ 10−1GeV −1 pour Escin ≃ 1TeV . Par ailleurs, l’échelle à la-

quelle on commence à apprécier l’effet de l’interaction faible est de τW ∼M−1
W ∼ 10−2GeV −1.

On peut donc considérer les bosons vecteurs comme des partons (V-partons) à l’intérieur

des quarks ou des leptons, et par suite, il est vrai que les collisionneurs du futur avec leur

énergie dans le domaine du TeV, peuvent être considérés comme des générateurs de bosons

vecteurs massifs. D’autre part, on a montré au chapitre 2 que les modes longitudinaux sont

les modes les plus dominants à hautes énergies, par conséquent dans ce qui suit, on concentre

notre attention sur les processus VLVL → tt̄ qu’on branche dans les processus pères. Cette

opération est concrétisée via l’utilisation de l’approximation des bosons vecteurs effectifs

(ABVE) [10, 11, 12, 13, 14, 15, 95]. Dans cette approximation, les fonctions de structure

décrivant le contenu, à très hautes énergies, des leptons et des quarks en bosons vecteurs

longitudinaux VL, sont données par les équations suivantes :
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ffermion/ZL
(x) =

α

4πS2
W

[

(T
(3)
f )2 + (T

(3)
f −Qf S2

W )2
][1 − x

x

]

(4.1)

et

ffermion/WL
(x) =

α

4πS2
W

[1 − x

x

]

(4.2)

où S2
W = 1 − C2

W = 1 −M2
W/M

2
Z , Qf et T

(3)
f sont respectivement la charge et la troisième

composante de l’isospin du fermion père (lepton ou quark), et α = e2

4π
. x est la fraction de la

quadri-impulsion communiquée au boson vecteur fils par le fermion père. τ est le carré de la

fraction d’énergie disponible pour le processus fils par rapport à l’énergie totale du processus

père.

Ainsi, dans la collision de deux fermions élémentaires pères f1 et f2 de charge et d’isospin

respectifs (Qf1 , T
(3)
f1

) et (Qf2, T
(3)
f2

), la luminosité des bosons vecteurs fils est alors donnée par :

dL
dτ

∣
∣
∣
f1f2/VLVL

(τ) =

1∫

τ

dx

x
ff1/VL

(x)ff2/VL
(
τ

x
) (4.3)

En remplaçant respectivement 4.1 et 4.2 dans 4.3, on trouve les expressions suivantes

pour la luminosité des bosons vecteurs [95] :

dL
dτ

∣
∣
∣
f1f2/ZLZL

(τ) =
[ α

4πS2
W

]2[(T
(3)
f1

)2 + (T
(3)
f1

−Qf1
S2

W )2

C2
W

][(T
(3)
f2

)2 + (T
(3)
f2

−Qf2
S2

W )2

C2
W

]

1

τ

(

(1 + τ) ln
1

τ
− 2(1 − τ)

)
(4.4)

dL
dτ

∣
∣
∣
f1f2/WLWL

(τ) =
[ α

4πS2
W

]2 1

τ

(

(1 + τ) ln
1

τ
− 2(1 − τ)

)

(4.5)

4.2 Application aux collisionneurs e+e−

Pour les collisionneurs e+e− du futur dont fait partie l’ILC, les luminosités respectives

des bosons vecteurs Z et W en fonction de la fraction d’impulsion qui leur est communiquée,

sont représentées en figure 4.11. Ainsi pour une énergie
√
see dans le système du centre de

1On prendra T
(3)
e−

= −T
(3)
e+ = −1/2 et Qe− = −Qe+ = −1

te
l-0

03
61

42
9,

 v
er

si
on

 1
 - 

15
 F

eb
 2

00
9



94

masse de e+e−, la section efficace totale de diffusion e+e− → tt̄νeν̄e à travers W−
L W

+
L → tt̄

est donnée par :

σ̂
(e+e−

WLWL−→ tt̄)
(see) =

1∫

τmin

dτ
dL
dτ

∣
∣
∣
e+e−/WLWL

(τ)σ̃WLWL→tt̄(sWW = τ see), τmin =
4M2

top

see

(4.6)

Pour le cas de la diffusion e+e− → tt̄e+e− à travers ZLZL → tt̄, une formule similaire peut

être dérivée.

Pour une valeur donnée
√
see de l’énergie dans le centre de masse du système e+e−,

on évalue, à la manière décrite au chapitre 2, la section efficace totale σ̃ du processus fils

VLVL → tt̄ en tous les points de quadrature correspondant à des énergies
√
sV V variant

de mtt̄ = 400GeV jusqu’à
√
see, tout en imposant la coupure P t,t̄

T ≥ 10GeV . Ces derniers

points de quadrature sont alors pondérés avec les valeurs respectives de la luminosité avant

d’effectuer la somme pour obtenir la section efficace totale integrée à valeur
√
see donnée. À

l’ordre de la boucle, on vérifie bien que la section efficace totale intégrée σ̂ ainsi évaluée, est

bien invariante de jauge, UV et IR invariante et aussi stable relativement aux énergies de

coupure des photons et des gluons réels.

(a) ZLZL (b) WLWL

Figure 4.1: Luminosité des bosons vecteurs massifs dans un collisionneurs e+e−, en fonction du

carré de la fraction d’énergie transférée pour (a) ZLZL et (b) WLWL.
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(a) e+e− → tt̄e+e− via ZLZL → tt̄ (b) e+e− → tt̄νeν̄e via WLWL → tt̄

Figure 4.2: Section efficace totale intégrée de Born pour (a) e+e− → tt̄e+e− via ZLZL → tt̄ et (b)

e+e− → tt̄νν̄ via W−
L W+

L → tt̄

Pour les valeurs de la masse du Higgs MHiggs = 120GeV et MHiggs = 300GeV , la figure

4.2 présente nos résultats pour la dépendance en fonction de l’énergie
√
see (variant ici de

0.5 TeV à 3 TeV) de la section efficace totale intégrée de Born, des processus e+e− → tt̄e+e−

via ZLZL → tt̄ et e+e− → tt̄νeν̄e via WLWL → tt̄.

Par ailleurs, la figure 4.3 présente, pour les mêmes valeurs de la masse du Higgs, à

savoir MHiggs = 120GeV et MHiggs = 300GeV , la dépendance des corrections à l’ordre de

la boucle électrofaible(EW), QCD, EW+QCD, purement électrofaible (PEW) et purement

électrofaible exprimée dans le schéma Gµ (pew) en fonction de l’énergie
√
see (variant de

0.5 TeV à 3 TeV). Pour mieux apprécier les différentes variations relativement à la section

efficace de Born, ces dépendances sont exprimées en terme du taux relatif KV V définie par :2

KV V = (σ̂NLO
V V )/σ̂LO

V V ≡ 1 + δNLO. (4.7)

Dans la figure 4.4, on trouve pour les valeurs MHiggs = 120GeV et MHiggs = 300GeV et

pour le processus e+e− → tt̄νeν̄e via WLWL → tt̄, la dépendance en fonction de l’énergie

√
see, du taux anomal des corrections integrées KWW pour a1 = a2 = 0.03. Pour des raisons

de comparaison on y trouve aussi les taux KWW pour les corrections EW, QCD et EW+QCD

à une boucle dans le cadre du MS .

2Notant ici la
:::::::::

similitude dans la définition entre ce taux KV V et le taux anomal Ka
V V .
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(a) e+e− → tt̄e+e− via ZLZL → tt̄ (b) e+e− → tt̄νeν̄e via WLWL → tt̄

(c) e+e− → tt̄e+e− via ZLZL → tt̄ (d) e+e− → tt̄νeν̄e via WLWL → tt̄

Figure 4.3: Facteurs KV V représentant les corrections à une boucle aux processus : (a,c) e+e− →
tt̄e+e− via ZLZL → tt̄ et (b,d) e+e− → tt̄νν̄ via WLWL → tt̄. (a,b) sont pour MHiggs = 120GeV

et (c,d) pour MHiggs = 300GeV.

4.2.1 Discussion des résultats

• Dans le processus complet de diffusion e+e− → tt̄νeν̄e (e+e−) (voir appendice C pour

les diagrammes à l’arbre), en plus du canal tt̄Z (Z peut se désintégrer en νeν̄e (e+e−)) qui

constitue un sous ensemble invariant de jauge à part, interviennent dans le même autre sous

ensemble invariant de jauge les diagrammes de fusion des bosons vecteurs V V → tt̄ et les

diagrammes de bremsstrahlung [94] (voir figure 4.5). Mais comme demontré par Lafage [94]

(chose qu’on a vérifié en utilisant CompHep), les diagrammes via la fusion de bosons vecteurs

sont les plus dominants. Par suite, ce canal de fusion est susceptible de se révéler au sein de
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Figure 4.4: KWW avec les coefficients anomaux a1 = a2 = 0.03 pour e+e− → tt̄νeν̄e via WLWL → tt̄

comparé aux facteurs KWW à l’ordre de la boucle.

l’ILC.
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Figure 4.5: Diagrammes de fusion et diagrammes de bremsstrahlung pour le processus e+e− →
tt̄νeν̄e

• Après l’opération de convolution via les fonctions de structure, la section efficace de

e+e− → tt̄ à travers la fusion de bosons vecteurs se trouve réduite de manière notable relative-

ment à celle du processus fils VLVL → tt̄ (voir figure 4.2 et comparée avec 2.3). Ceci implique

que probablement, le résultat de cette section efficace integrée ne peut être exploité qu’au

niveau de la seconde génération des collisionneurs leptoniques linéaires d’énergie excédant

1 TeV .

• La petite dépendance en fonction de la masse du Higgs de la section efficace totale

du processus WLWL → tt̄ disparâıt à l’échelle de e+e−. Par contre pour le canal ZLZL cette

dépendance persiste. Néanmoins cette dernière est défavorisée d’un ordre de grandeur par
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rapport au canal WW , du fait de la petitesse du couplage du Z à l’électron relativement au

couplage du W à l’électron.

• Notant aussi que dans [73] une étude comparative de l’ABVE et du calcul exact à

l’arbre via le code CompHep [87], a montré que l’ABVE est mieux adaptée pour l’utilisation

dans le cas des hautes énergies
√
see ≥ 1.5TeV. Par ailleurs, nos calculs montrent que les

modes LT sont aussi d’une importance pas toujours négligeable (voir figure 2.2) et par suite

mériterait une considération spéciale. On adoptera tout de même (malgré une petite gêne)

pour l’utilisation de l’ABVE de manière à pouvoir comparer nos résultats sur QCD avec

ceux de [71].

• La figure 4.3 montre entre autres la dépendance des corrections QCD en fonction de

l’énergie
√
see. Pour

√
see = 500GeV, ces corrections QCD pour ZZ sont de 10% losrque

MHiggs = 120GeV et d’une importance double lorsque MHiggs = 300GeV. Elles décroissent

rapidement au fur et à mesure que l’énergie
√
see augmente, pour enfin rejoindre l’ordre

de grandeur que celles correspondant à WW . Par ailleurs, pour MHiggs = 120GeV, ces

corrections QCD virent vers des valeurs négatives de l’ordre de −5% à
√
see = 3TeV. Cette

structure de la section efficace à l’échelle de e+e− n’est pas étrange mais reflète celle qu’on

a rencontré à l’échelle V V . Enfin, il est ici aussi important de noter que notre résultat pour

MHiggs = 120GeV est en accord avec celui de [71].

• Les corrections EW, PEW et pew à l’échelle de e+e− sont par ailleurs presque constantes

lorsque l’énergie
√
see varie de 500GeV à 3TeV . Ce comportement à l’échelle de e+e− reflète

celui qu’on a trouvé à l’échelle de V V . Ces corrections “EW” à l’échelle de e+e− sont de

l’ordre de 10% et deviennent de l’ordre de 4% dans le schéma Gµ. Donc à hautes energies où

l’ABVE est bien établie, les corrections pew compensent bien les corrections QCD dans tous

les cas sauf pour le canal ZZ avec MHiggs = 300GeV où les deux corrections ont la même

grandeur et le même signe, et par suite elles se renforcent.

• Les contributions anomales présentées dans la figure 4.4 avec les valeurs particulières

a1 = a2 = 0.03 pour illustration, montrent que ces corrections sont croissantes en fonction de

l’énergie
√
see. Ce comportement est clairement différent de celui des corrections radiatives

du MSprésentées sur la même figure. Cette différence de comportement plaide en faveur

d’un moyen utilisable pour déceler la nouvelle physique via l’étude du comportement de
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la section efficace totale ; évidemment si cette nouvelle physique veut bien se révéler à une

échelle inférieure à notre énergie de coupure Λ.

• Par ailleurs, dans la figure 4.4, pour les points d’intersections des courbes anomales avec

les courbes du MS , les valeurs numériques des sections efficaces totales correspondantes

coincident. Dans ces cas, une étude des distributions s’avère nécessaire pour pouvoir décéler

l’existence d’une nouvelle physique.

• A l’issue de cette discussion, il devient évident que les corrections électrofaibles et

QCD pour les processus de fusion de bosons vecteurs en paires de quarks top, ont le même

degrée d’importance, et appartiennent au même domaine du pour cent et par suite doivent

être prises en considération, conjointement dans toute comparaison des résultats établis via

le MS avec les résulats expérimentaux correspondant qui ne cessent de s’améliorer en terme

de précision. Si une telle comparaison révèle des déviations par rapport au MS et que ces

déviations ne saurait être absorber dans un calcul d’erreur ; alors cela sera la manifestation

directe d’une nouvelle physique au delà du MS et on pourra alors cerner quantitativement

les couplages anomaux effectifs entre le quark top et les bosons vecteurs.

4.3 Application aux collisionneurs pp

On s’intéresse à présent, à l’étude des processus VLVL → tt̄ dans la cadre de la collision

proton-proton du LHC avec une énergie nominale de 14 TeV dans le centre de masse du

système des protons incidents. On a donc une convolution supplémentaire par rapport au

cas de l’ILC. Les bosons vecteurs sont d’abord convolués dans les quarks et/ou les antiquarks

3 pour ensuite être convolués dans les protons.

La probabilité de trouver un parton qi dans un proton p s’exprime en terme des fonctions

de structures fp/qi
(xqi

) où xqi
est la fraction du quadri-moment du proton transférée au

parton. Ces fonctions de structures sont déduites à partir des expériences de collisions des

hadrons puis tabulées et mises à jour régulièrement. Pour nos calculs, on utilise les fonctions

de structures tabulées par la collaboration CTEQ [96, 97, 98, 99, 100] ainsi que les subroutines

d’interpolations développées par cette même collaboration. La fonction de structure du quark

top est négligeable et par suite on l’ignore.

3Les gluons n’interviennent pas du fait qu’ils ne se couplent pas aux bosons vecteurs
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Notant spp, ŝqq et s̃V V respectivement, les carrés des énergies dans le centre de masse des

systèmes pp, qq et V V . Notant aussi σ, σ̂ et σ̃ respectivement, les sections efficaces à l’échelle

de pp, qq et V V . La section efficace σ de production de paire tt̄ à travers la fusion de bosons

vecteurs massifs VLVL s’écrit alors :

σ(pp→VLVL+...→tt̄+...)(spp) =
1

9

∑

qi,qj

∫

dxqi
dxqj

[

fp(1)/qi
(xqi

)fp(2)/qj
(xqj

)

+ [fp(2)/qi
(xqi

)fp(1)/qj
(xqj

)](1 − δqi,qj
)
]

× σ̂qiqj→VLVL + ...→ tt̄ + ...(ŝqq=τspp)

(4.8)

où le signe somme sous-entend aussi la somme sur les degrés de liberté de couleurs, qi

représente les quarks (antiquarks) u, d, s, c, b (ū, d̄, s̄, c̄, b̄). xqi
varie de xmin

qi
correspondant à

l’ouverture du canal tt̄ jusqu’à 1 (correspondant au transfert complet de toute l’énergie du

proton au parton qi)
4. spp = xqi

xqj
ŝqq ≡ τ̂ ŝqq avec τ̂ qui varie de τ̂min = xmin

qi
xmin

qj
=

4m2
t

spp

(carré de la fraction d’énergie nécessaire pour ouvrir le canal tt̄) jusqu’à 1 .

En passant des variables (xqi
, xqj

) aux variables (τ̂ , xqi
) 5, l’expression de la section

efficace hadronique totale σ devient :

σ(pp→VLVL+...→tt̄+...)(spp) =
1

9

∑

qi,qj

1∫

τ̂min

dτ̂

1∫

τ̂

dxqi

xqi

[

fp(1)/qi
(xqi

)fp(2)/qj
(
τ̂

xqi

)

+ [fp(2)/qi
(xqi

)fp(1)/qj
(
τ̂

xqi

)](1 − δqi,qj
)
]

× σ̂(qiqj→ VLVL + ...→ tt̄ + ...)(ŝqq = τ̂ spp)

(4.9)

On peut alors écrire :

dσ

dτ̂
(τ̂) =

∑

qi,qj

dLqi,qj

dτ̂
(τ̂) σ̂qiqj

(ŝqq = τ̂ spp) (4.10)

4on néglige ici la masse des quarks u,d,c,s et b
5le Jacobien s’écrit 1/xqi

.
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avec la luminosité des quarks dans le proton :

dLqi,qj

dτ̂
(τ̂ ) =

1

9

1∫

τ̂

dxqi

xqi

[

fp(1)/qi
(xqi

)fp(2)/qj
(
τ̂

xqi

)

+ [fp(1)/qi
(xqi

)fp(2)/qj
(
τ̂

xqi

)](1 − δqi,qj
)
]

(4.11)

Et on obtient ainsi une expression plus compacte de la section efficace totale hadronique

sous la forme :

σpp(spp) =
∑

qi,qj

1∫

τ̂min

dτ̂
dLqi,qj

dτ̂
(τ̂) σ̂qiqj

(ŝqiqj
= τ̂ spp) (4.12)

Et comme on s’intéresse aux processus fils W−
L W

+
L → tt̄ et ZLZL → tt̄, et que l’on a

choisi de travailler avec une matrice CKM égale à l’unité, nos paires de quarks se combinent

comme suit 6 :

un W+ provenant d’un quark qi : fusionne avec un W− provenant d’un quark qj :

u d, s, b, ū, c̄

c d, s, b,ū, c̄

d̄ d, s, b, ū, c̄

s̄ d, s, b, ū, c̄

b̄ d, s, b, ū, c̄

6On rappelle que la fonction de structure du quark top dans le proton est négligeable devant celles des
autres quarks
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un Z provenant d’un quark qi : fusionne avec un Z provenant d’un quark qj :

u u, d, s, c, b, ū, d̄, s̄, c̄, b̄

d u, d, s, c, b, ū, d̄, s̄, c̄, b̄

s u, d, s, c, b, ū, d̄, s̄, c̄, b̄

c u, d, s, c, b, ū, d̄, s̄, c̄, b̄

b u, d, s, c, b, ū, d̄, s̄, c̄, b̄

ū u, d, s, c, b, ū, d̄, s̄, c̄, b̄

d̄ u, d, s, c, b, ū, d̄, s̄, c̄, b̄

s̄ u, d, s, c, b, ū, d̄, s̄, c̄, b̄

c̄ u, d, s, c, b, ū, d̄, s̄, c̄, b̄

b̄ u, d, s, c, b, ū, d̄, s̄, c̄, b̄

4.3.1 Procédure du calcul numérique

Pour une énergie donnée
√
spp du système pp, la fraction d’énergie τ̂ transférée aux

quarks, varie de
√

4m2
t

spp
à 1. Et pour une énergie

√
sqq =

√
τ̂ spp du système qq, la fraction

d’énergie τ transférée aux bosons vecteurs varie de
√

4m2
t

sqq
à 1. Pour calculer σpp(spp), on

procède donc comme il suit :

• Pour une énergie
√
sV V du système de bosons vecteurs, on calcule d’abord la section

efficace totale complète σ̃V V (EW,QCD PEW) du processus fils VLVL → tt̄ à la manière décrite

dans le chapitre deux. Comme précédemment en utilise les coupures P t, t̄
T ≥ 10GeV et

mtt̄ ≥ 400GeV (i.e τ̂min = mtt̄,min/spp et τmin = mtt̄,min/sqq).

• Pour chaque valeur de l’énergie
√
sV V variant de

√
mtt̄ à

√
sqq, on calcule à l’aide

de l’ABVE décrite dans la section précédente, la luminosité
dLVL,VL

dτ
(τ) des bosons vecteurs

dans les quarks. Il est important ici, lors de l’application de l’ABVE aux bosons Z, de faire

attention au fait que les fonctions de structure effectives correspondantes dépendent de la

charge Qf et de la composante de l’isospin T
(3)
f . Il y a par suite trois classes (UU,UD,DD) de

combinaison des fonctions ffermion/ZL
. Pour les W la luminosité est par contre indépendante

de la charge et de la composante de l’isospin des quarks qui donnent naissance aux W.
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• La section efficace totale σ̂qq observe alors la formule :

σ̂qq(sqq) = (1 + δV,Z)

1∫

τmin

dτ
dLVL,VL

dτ
(τ) σ̃VLVL

(s̃V V = τ ŝqq) (4.13)

• On applique alors le schéma de la formule : (4.12), pour enfin obtenir σpp.

4.3.2 Résultats et discussion

Pour MHiggs = 120GeV la figure 4.6 donne la dépendance en fonction de l’énergie

√
spp, respectivement des sections efficaces intégrées de Born, et corrigées EW, QCD et PEW à

l’échelle de pp, via les sous processus ZLZL → tt̄ et W−
L W

+
L → tt̄. Les taux correspondants

des corrections radiatives sont présentés en figure 4.7.

Pour les W la structure des corrections est similaire à celle du cas e+e−, par contre pour

les Z, on remarque que la structure des corrections QCD est complètement perturbée par la

convolution à travers les quarks qui font intervenir trois classes de luminosités effectives.

Par ailleurs les valeurs trés basses des sections efficaces totales de ces processus relati-

vement à ceux pour le cas de la production de paire de quarks via la fusion de gluons qui

sont largement majoritaire dans le LHC [101] font que l’étude de ces processus ne peut être

exploitée dans le cadre du LHC [102].
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(a) ZLZL

(b) W−

L W+
L

Figure 4.6: Section efficace totale de Born et corrigées EW, QCD, EW+QCD et PEW pour la

création de paires de quarks top via les processus a) ZLZL → tt̄ et b) W−
L W+

L → tt̄ lors de la

collision de deux protons.MHiggs = 120GeV ,P t, t̄
T ≥ 10GeV , mtt̄ ≥ 400GeV .
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(a) ZLZL

(b) W−

L W+
L

Figure 4.7: Facteurs K représentant les corrections à une boucle pour les processus pp → Xtt̄ via

a) ZLZL → tt̄ b) W−
L W+

L → tt̄.MHiggs = 120GeV ,P t, t̄
T ≥ 10GeV , mtt̄ ≥ 400GeV .
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Chapitre 5

Modèle dispersif pour l’amplitude
du processus W+

LW
−
L→W+

LW
−
L

Dans les chapitres précédents, on a concentré notre attention sur l’étude de la situation

la plus favorisée par les données des expériences de précisions électrofaibles, à savoir la

situation d’un Higgs léger développant des couplages faibles et par suite s’adaptant aux

calculs perturbatifs. Toutefois il exite une autre éventualité, le Higgs peut être lourd et peut

par suite développer à l’échelle du TeV, des couplages forts avec lui même et avec les modes

longitudinaux des bosons vecteurs W et Z qui à hautes énergies se rappellent de leur identité

en tant que Goldstones fournissant ainsi l’essence au théorème d’équivalence.

En fait, pour un Higgs lourd (MHiggs ∼ TeV ) Lee-Quigg-Tacker [103] ont montré via

un calcul perturbatif que l’interaction faible du MS développe un comportement en force

forte pour des énergies supérieures à la masse du Higgs et par suite l’unitarité est violée

dans ce domaine. Par ailleurs, Veltman [104] a aussi présenté d’autres arguments basés sur

l’universalité, en faveur d’un changement du comportement de la force de l’interaction faible

du MS pour de grandes valeurs de la masse de Higgs et à des énergies élevées (MHiggs ≡

MH ,
√
s≫ MW ).

Du point de vue expérimental, la situation n’est pas encore tranchée de manière définitive,

malgré la tendance des données des tests de précisions électrofaibles à favoriser le Higgs

léger [105]. Cette indécision règne du fait que, l’identité de la nouvelle physique agissant

au niveau des corrections radiatives utilisées dans le calcul de précision, n’est pas encore

dévoilée. Donc, seule une investigation expérimentale directe et précise de la diffusion des

bosons vecteurs W et Z à l’échelle du TeV et qui vient de commencer avec le démarrage du

LHC le 10 septembre dernier, pourra déterminer l’intensité des couplages et l’échelle de masse

des quanta intervenants dans la brisure de symétrie [106, 107, 108, 72]. Et pour répondre à

la question, si l’intensité de la force d’interaction faible est faible ou forte à l’échelle du TeV,
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le LHC cherchera la signature du signal de diffusion WW . Un haut signal voudra dire que

l’interaction est forte et un bas signal tranchera pour une interaction faible.

Par ailleurs, que le Higgs s’avère au LHC, léger ou lourd ou bien toujours fuyant, le LHC

est capable de répondre à la question importante sur l’identité forte ou faible du l’interaction

électrofaible dans le domaine du TeV [109]. Notant toutefois que, même si le LHC trouve un

Higgs léger, l’interaction faible peut développer un comportement en force forte à l’échelle du

TeV du fait que le rétablissement de l’unitarité apportée par ce Higgs léger peut être partielle

et un autre Higgs lourd ou une autre dynamique d’interaction forte seront toujours recherchés

[110]. L’étude de la diffusion WW dans le domaine du TeV s’avère donc importante, tant

sur le plan expérimental que théorique.

Dans ce chapitre, on s’intéresse à voir, à travers le processs W+
L W

−
L → W+

L W
−
L , cer-

taines manifestations possibles de ce comportement en force forte de l’interaction faible. On

cherche alors si notre processus présente des résonances dans le domaine du TeV. On cherche

aussi s’il existe une résonance self-consistente (bootstrap) qui peut être assimilée au Higgs

lui même. Et comme les résonances sont des comportements non-perturbatifs définies avec

un moment angulaire défini et une parité déterminée, il est possible que leur position et leur

nature émergent facilement dans le cadre d’une étude des amplitudes des ondes partielles via

un traitement non-perturbatif. De plus, comme dans l’approche non-perturbative, les pres-

criptions de l’unitarité et de l’analycité de l’amplitude de transition formulées dans le cadre

de la représentation de Mandelstam [111, 112] fournissent un cadre approprié pour l’étude

des amplitudes des ondes partielles, on opte alors pour la formulation de l’amplitude de notre

processus en termes de relations de dispersion d’une manière s’apprétant à une résolution

via la méthode N/D de Chew-Mandelstam [16]. Néanmoins cette approche, indépendante

du modèle de l’interaction, introduit inévitablement des contraintes et des simplifications

qui peuvent compromettre l’obtention de prédictions quantitatives précises. Ainsi notre but,

dans ce chapitre, est plutôt modeste. Il consiste à contribuer à éclaicir certains des effets

que peut manifester un Higgs lourd. Et pour concrétiser notre action on procède par, la

construction d’un modèle dispersif pour l’amplitude du processus W+
L W

−
L →W+

L W
−
L [8]1, à

1Ce chapitre donne une actualisation de l’article [8] via : Premièrement, l’introduction de corrections
appropriées entre autres dans les formules de construction du modèle. Deuxièmement, l’utilisation d’une
procédure différente pour mener le calcul numérique. Troisièmement, l’exposition de nouveaux résultats
numériques. Finalement, une estimation de la masse du Higgs lourd ainsi que d’une nouvelle limite pour la
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la manière initiée par Contogouris dans [113, 114]. La résolution de l’équation intégrale de

Fredholm qui s’ensuit de l’application de la méthode N/D à notre modèle de l’amplitude,

nous permet de calculer l’amplitude dispersive partielle S et de montrer qu’elle préserve bien

l’unitarité en plus du fait qu’elle manifeste un état de résonance en accord avec un com-

portement en force forte de l’interaction faible dans le domaine du TeV. La dépendance de

cette résonance en fonction de l’énergie dans le centre de masse du système et de la masse

du Higgs nous permet de trouver une solution self-consistante qu’on interprète comme étant

le Higgs lui même. On déduit aussi une nouvelle limite pour la validité du calcul perturbatif.

5.1 Construction de modèle dispersif pour l’amplitude du processus

W+
LW

−
L →W+

LW
−
L

L’application du formalisme des relations de dispersion aux processus de diffusion est

largement simplifiée lorsqu’on a à faire avec des interactions entre particules scalaires. Hors

pour notre cas d’intérêt, on s’interesse plutôt à la diffusion de particules vectorielles :

W+
L W

−
L → W+

L W
−
L . Heureusement dans le domaine des hautes énergies, dans lequel on

se positionne, le théorème d’équivalence nous permet de faire la transition entre les modes

longitudinaux des bosons vecteurs W±
L et les Goldstones scalaires correspondants χ±.

5.1.1 Le théorème d’équivalence

En fait, d’après le théorème d’équivalence établi par Lee-Quigg-Tacker [27, 28] : Pour

des énergies de collisions (
√
s ≫ MW ,MZ) et dans la jauge de ’t Hooft-Feynman (ξ = 1),

l’amplitude de transition T (W+
L ,W

−
L , ZL, H) de diffusion des modes longitudinaux des bosons

vecteurs et du Higgs est reliée à l’amplitude correspondante T (χ+, χ−, χ3, H) de diffusion de

particles Goldstones (χ+, χ−, χ3, H) par :

T (W+
L ,W

−
L , ZL, H) = T (χ+, χ−, χ3, H) + O(

MW√
s

) (5.1)

Donc puisqu’on s’intéresse au domaine des hautes énergies et à des valeurs élevées pour la

masse du Higgs (
√
s,MH ≫ MW ), le problème de la diffusion W+

L W
−
L →W+

L W
−
L se ramène

validité du calcul perturbatif.
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à l’étude de la diffusion des Goldstones correspondants χ+(q1)χ
−(q2) → χ+(q3)χ

−(q4) ; qu’on

se propose alors d’étudier dans le cadre du formalisme non-perturbatif des relations de dis-

persion. Ainsi, pour construire l’amplitude dispersive pour ce processus, on aura besoin tout

d’abord de connaitre la structure de l’amplitude perturbative de ce même processus.

χ

χ

χ

χ
χ

χ

χ

χH

χ

χ

χ

χ
H

Figure 5.1: Quelques diagrammes de Feynman pour le processus χ+χ− → χ+χ−

Pour notre processus χ+χ− → χ+χ− (voir figure 5.1 pour les diagrammes de Feyn-

man correspondants), l’amplitude perturbative de transition invariante de Lorentz évaluée à

l’arbre, prend la forme [27] :

Apert.(s, t) = λ(− 2

M2
H

+
1

M2
H − s

+
1

M2
H − t

), avec λ =

√
2GµM

4
H

8 π
(5.2)

où s et t sont les variables de Mandelstam :

s = 4(ν +M2
W ), t = −2ν(1 − cos θ)

avec ν = |−→q |2 et −→q étant l’impulsion du Goldstone χ+. θ est l’angle de diffusion dans le

système du centre de masse.

5.1.2 Construction du modèle dispersif et méthode N/D

À basses énergies, la théorie perturbative standard (MS) décrit bien le monde phy-

sique. On s’inspire donc de l’expression de l’amplitude perturbative Apert.(s, t) du processus

χ+χ− → χ+χ−, pour construire notre amplitude dispersive correspondante dans le domaine

non-perturbatif.

Considérant alors le développement en ondes partielles de l’amplitude perturbative à

l’arbre Apert.(s, t) :

Apert.(s, t) =
∑

l

(2l + 1) apert.
l (ν)Pl(cos θ) (5.3)
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où les projections en ondes partielles s’écrivent :

apert.
l (ν) =

1

2

1∫

−1

d (cos θ)Apert.(ν, cos θ)Pl(cos θ) (5.4)

Alors en utilisant l’orthogonalité des polynômes de Legendre (
∫ 1

−1
dzPl(z)Pl′(z) =

2δll′

2l + 1
) et

la relation 2 :

1

2

1∫

−1

d (cos θ)
Pl(cos θ)

ξ − cos θ
= Ql(ξ) (5.5)

L’onde partielle apert.
l (ν) s’exprime par :







apert.
l (ν) = λ(− 2

M2
H

+
1

M2
H − s

) δl 0 +Bl(ν)

Bl(ν) =
λ

2 ν
Ql(1 +

M2
H

2 ν
)

(5.6)

On remarque alors que les fonctions de Legendre Ql(ξ) ont une coupure dans l’intervalle

réel −1 ≤ ξ ≤ 1, ce qui se ramène dans notre cas à une coupure en fonction de ν dans

l’intervalle −∞ < ν ≤ −M2
H

4
. Dans cet intervalle, la discontinuité de l’amplitude de l’onde

partielle est 3 :

∆apert.
l (ν) = apert.

l (ν + i ǫ) − apert.
l (ν − i ǫ) = 2 i Im

[
apert.

l (ν + i ǫ)
]

=
λ π

4 ν
Pl(1 +

M2
H

2 ν
) (5.7)

D’autre part pour l’intervalle physique ν ≥ 0, la condition de l’unitarité élastique (voir par

exemple [16]) permet d’écrire :

Im
[
apert.

l (ν + i ǫ)
]

= ρ(ν)|apert.
l (ν)|2, ν ≥ 0 (5.8)

avec

ρ(ν) =

√
ν

s
=

1

2

√
ν

ν +M2
W

(5.9)

2Pl et Ql sont respectivement les polynomes de Legendre de première et de seconde espèces.
3D’après la symétrie de réflection : apert.

l
(ν − i ǫ) = apert.

l
(ν + i ǫ)∗
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En n’incluant comme terme de Born que le canal t (i.e Bl(ν)), on peut maintenant construire

notre modèle de l’amplitude partielle dispersive sous la forme :

adisper.
l (ν) =

1

π

+∞∫

−∞

dν ′
Im

[

adisper.
l (ν ′)

]

ν ′ − ν − i ǫ
+Bl(ν). (5.10)

Cette amplitude doit aussi observer la condition d’unitarité 5.8. Alors en choisissant dans

le plan complexe de ν, un contour d’intégration circulaire avec un coupure gauche de −∞

à −M2
H/4 et une coupure droite de zéro à +∞ (voir figure 5.2), les conditions d’unita-

rité et d’analycité de l’amplitude partielle, en plus de l’absorption du terme de Born Bl(ν)

sous l’intégrale [112, 115], nous permettent d’exprimer notre modèle de l’amplitude partielle

dispersive sous la forme :

Im(ν)

0−M
2
H

4

Re(ν)

Figure 5.2: Contour d’intégration pour l’amplitude dispersive

adisper.
l (ν) =

λ

4

−M2
H/4
∫

−∞

dν ′
Pl(1 +

M2
H

2 ν′ )

ν ′(ν ′ − ν − i ǫ)
+

1

π

+∞∫

0

dν ′
ρ(ν ′)|adisper.

l (ν ′)|2
ν ′ − ν − i ǫ

(5.11)

Pour ramener cette équation intégrale compliquée, à une forme que l’on peut résoudre
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numériquement, on procède par la méthode N/D établit par Chew-Mandelstam [16]. L’astuce

est d’écrire l’amplitude partielle dispersive sous la forme d’un rapport de deux fonctions ;

Une fonction Nl(ν) avec un coupure sur l’axe des réels négatifs et une fonction Dl(ν) avec

un coupure sur l’axe des réels positifs :

adisp.
l (ν) =

Nl(ν)

Dl(ν)
. (5.12)

puis on impose séparément l’analycité des fonctions Nl(ν) et Dl(ν).

Mais en fait, notre amplitude dispersive s’apprête par construction, à cette démarche de

décomposition à la N sur D.

Comme pour ν ≥ 0 la fonction Nl(ν) est réelle et pour ν ≤ −M2
H

4
la fonction Dl(ν) est

aussi réelle, alors en utilisant les équations 5.12, 5.8 et 5.7, on peut facilement extraire les

parties imaginaires :







ImDl(ν) = − Nl(ν)

|adisp.
l (ν)|2

Imadisp.
l (ν) = −ρ(ν)Nl(ν), ν ≥ 0

ImNl(ν) = Dl(ν) Imadisp.
l (ν) =

λ π

4

Pl(1 +
M2

H

2 ν
)

ν
Dl(ν), ν ≤ −M

2
H

4

(5.13)

Et comme (
Pl(1+

M2
H

2 ν
)

ν
→ 0) lorsque (ν → +∞), ceci nous suggère d’utiliser une représentation

sans-soustraction pour décrire Nl(ν). Par ailleurs, pour Dl(ν) on utilise, comme de coutume,

une représentation avec une soustraction au point ν0 = 0 et avec la condition de normalisa-

tion : Dl(ν = ν0 = 0) = 1, soit :







Nl(ν) =
λ

4

−M2
H/4
∫

−∞

dν ′
Pl(1 +

M2
H

2 ν′ )Dl(ν
′)

ν ′(ν ′ − ν − i ǫ)

Dl(ν) = 1 − ν

π

+∞∫

0

dν ′
ρ(ν ′)Nl(ν

′)

ν ′(ν ′ − ν − i ǫ)

(5.14)

En introduisant alors l’expression de Dl(ν) dans celle de Nl(ν), on peut facilement ramener
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notre équation intégrale à la forme suivante :

gl(ν) = βl(ν) +

∞∫

0

dν ′gl(ν
′)Kl(ν, ν

′) (5.15)

avec :







gl(ν) =

[
ρ(ν)

ν

]1/2

Nl(ν)

βl(ν) =
λ

4

[
ρ(ν)

ν

]1/2
−M2

H/4∫

−∞

dν ′
Pl(1 +

M2
H

2 ν′ )

ν ′(ν ′ − ν − i ǫ)

Kl(ν, ν
′) = Kl(ν

′, ν) =
λ

4π

[
ρ(ν)ρ(ν ′)

ν ν ′

]1/2
−M2

H/4
∫

−∞

dν ′′
Pl(1 +

M2
H

2 ν′′ )

(ν ′′ − ν − i ǫ)(ν ′′ − ν ′ + i ǫ)

(5.16)

Le noyau Kl(ν, ν
′) ainsi obtenu a une norme fini :

||Kl(ν, ν
′)|| ≡

∞∫

0

∞∫

0

dνdν′|Kl(ν, ν
′)|2 = fini (5.17)

Donc l’équation intégrale 5.15 est une équation intégrale de Fredholm de second genre, qu’on

peut résoudre par la méthode usuelle de Neumann [116]. Mais vu que via cette méthode le

calcul numérique est lourd à mener, et que de plus, on perd de la précision, on préfère

plutôt, mener le calcul d’une manière beaucoup plus simple et qui aboutit à des résultats

avec une précision meilleure. Ainsi, on opte pour la réduction de notre équation intégrale en

un système d’équations linéaires et ceci via le procédure de Nystrom [91].

5.2 Cas de l’onde S et schéma du calcul numérique

Comme, on s’attend à ce que le Higgs se manifeste via le canal s, sous forme d’une

résonance scalaire avec une parité positive et puisque ce canal présente la symmétrie sphérique,

il est plus probable que cette résonance se révèle via l’onde partielle S. Ainsi, on confine notre

étude dans le cas de l’onde partielle S (l = 0). Pour ce cas, notre équation intégrale de Fred-
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holm de seconde espèce, prend la forme suivante 4 :

g0(ν) =

∞∫

0

dν ′

[

λ

4π

(
ρ(ν)ρ(ν ′)

νν ′

)1/2
ln(4ν +M2

H) − ln(4ν ′ +M2
H)

ν − ν ′

]

g0(ν
′)

+
λ

4 ν

[
ρ(ν)

ν

]1/2

ln
4ν +M2

H

M2
H

avec ρ(ν) =
1

2

[
ν

ν +M2
W

]1/2

(5.18)

Le terme de Born B0(ν) s’écrit 5 :

B0(ν) =
λ

2 ν
Q0(1 +

M2
H

2ν
) =

λ

4 ν
ln

(

1 +
4ν

M2
H

)

=

√
2Gµ

32 π

M4
H

ν
ln

(

1 +
4ν

M2
H

)

(5.19)

Et pour raison de comparaison ultérieure, on écrit aussi le terme globale de Born S0(ν) :

apert.
0 (ν) ≡ S0(ν) =

√
2Gµ M

2
H

8 π



−2 +
1

1 − 4( ν
M2

H

+
M2

W

M2
H

)
+
M2

H

4ν
ln

(

1 +
4ν

M2
H

)


 (5.20)

Comme on s’intéresse au domaine dans lequel on fait tendre simultanément l’énergie et

la masse du Higgs vers de grandes valeurs en comparaison avec la masse des bosons vecteurs,

on trouve qu’il est plus simple d’exprimer nos résultats en fonction du rapport ν/M2
H . Ainsi

pour une valeur donnée ν/M2
H , le domaine des valeurs élevées de la masse du Higgs MH

correspond à de grandes valeurs de l’énergie
√
s. 6

Pour ν/M2
H donnée, les termes de Born B0(MH) et S0(MH) croissent paraboliquement

en fonction de la masse du Higgs MH (voir figure 5.5-b). L’unitarité perturbative est ainsi

violée par l’onde partielle S perturbative.

Pour trouver l’amplitude de l’onde partielle S dispersive, on adopte la démarche suivante :

1. On résout d’abord l’équation 5.18 pour en tirer N0(ν).

2. On tire ImD0(ν) = −ρ(ν)N0(ν)

4P0(x) = 1.
5Q0(x) = 1

2 ln x+1
x−1

6On rappelle que : s = 4(ν + M2
W )
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3. On cherche alors ReD0(ν) via la formule :

ReD0(ν) = 1 − ν

π
P

∞∫

0

dν ′
ρ(ν ′)N0(ν

′)

ν ′(ν ′ − ν)
. (5.21)

4. On en déduit :

|D0(ν)| =
√

ReD2
0(ν) + ImD2

0(ν).

5. Pour enfin obtenir :

adisper.
l (ν) ≡ |F0(ν)| =

N0(ν)

|D0(ν)|
pour ν > 0.

6. Les valeurs numériques qu’on a utilisées pour obtenir nos résultats sont :

Gµ = 11.6639 TeV −2 et MW = 80.45 GeV .

La masse du Higgs MH est un paramètre libre.

• Résolution de l’équation inhomogène de Fredhom de seconde espèce :

Pour résoudre l’équation intégrale de Fredholm de seconde espèce, on suit de près la

procédure de Nystrom telle que décrite dans [91] :

1. Tout d’abord dans l’équation 5.18, on fait la substitution :

ν =
1 − x

1 + x
et ν′ =

1 − y

1 + y
, soit dν′ =

− 2 dy

(1 + y)2
.

Ceci nous permet de faire passer le domaine des variables de (0 → +∞) à (−1 → 1)

2. On fait alors correspondre aux fonctions g0(ν), β0(ν) et K0(ν, ν
′) les fonctions ḡ0(x),

β̄0(x) et K̄0(x, y) tel que les égalités numériques suivantes soit vérifiées :

ḡ0(x)
.
= g0(ν), β̄0(x)

.
= β0(ν) et K̄0(x, y)

.
= K0(ν, ν

′). (5.22)

3. Par la méthode de quadrature de Gauss, on transforme l’intégrale en série, selon le

schéma :
1∫

−1

f(y) dy =

N∑

j=1

wj f(yj)

où {wj} représente l’ensemble des poids aux points de quadrature {yj}.
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4. Notre équation intégrale de Fredholm de seconde espèce prend alors la forme :

ḡ0(x) = β̄0(x) + σ

N∑

j=1

wj K̃0(x, yj) ḡ(yj), avec K̃0(x, y) =
2

(1 + y)2
K̄0(x, y) (5.23)

et aux points de quadrature on a :

ḡ0(xi) = β̄0(xi) + σ

N∑

j=1

wj K̃0(xi, yj) ḡ(yj) (5.24)

5. Soit g le vecteur de dimension N et de composantes ḡ0(xi), b le vecteur de dimension

N et de composantes β̄0(xi) et K̂ la matrice carrée de dimension N ×N et d’éléments

σwj K̃0(xi, yj). L’équation 5.24 prend alors la forme matricielle :

(1 − K̂).g = b (5.25)

C’est un système linéaire de N équations avec N inconnues, que l’on peut résoudre avec

les techniques standards 7.

6. Une fois les solutions obtenues pour les points de quadrature, alors on utilise la formule

5.23 comme formule d’interpolation afin de préserver la précision des résultats ḡ0(x) et

par suite celle de N0(MH).

7. Pour une valeur fixée ν/M2
H = cste, la correspondance entre x, ν et MH est régie par :

MH =

√
ν

cste
=

1√
cste

√

1 − x

1 + x
(5.26)

8. Il faut maintenant résoudre l’équation 5.21. Pour cela on utilise les mêmes astuces

de changement de variables que précédemment ainsi que les méthodes usuelles de

quadratures, tout en faisant attention à prendre la partie principale pour ν = 0 et

ν ′ = ν. On obtient ainsi ReD0(MH)

9. L’obtention de ImD0(MH), |D0(MH)| et |F0(MH)| est alors automatique.

7Pour ν′ → ν, on utilise la limite :
ln(4ν+M2

H
)−ln(4ν′+M2

H
)

ν−ν′
→ 4

4 ν+M2
H
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5.3 Résultats et discussion

Tout d’abord vu que, pour les raisons évoquées précédement, on préfère présenter nos

résultats pour des valeurs déterminées du rapport ν/M2
H , la figure 5.3-a permet de faciliter

la lecture de la correspondance entre l’énergie dans le centre de masse du système
√
s et

la masse du Higgs MH , pour ceraines valeurs particulières de ν/M2
H (0.11 et 0.08) utilisées

pour établir les graphes présentés ci-après..

Ainsi, dans l’espace physique correspondant à ν ≥ 0 et plus particulièrement dans

le domaine des énergies (masses du Higgs) auquel on s’intéresse, les figures 5.3-b et 5.4

montrent (pour les valeurs particulières 0.11 et 0.08 de ν/M2
H à titre d’illustration) que le

numérateur N0(MH) de l’amplitude dispersive et par suite la partie imaginaire correspon-

dante ImDO(MH) présentent respectivement un extrémum au voisinage du zéro de la partie

réelle ReD0(MH) . Ces zéros de ReD0(MH) 8 correspondent à des résonances de l’amplitude

dispersive F0(MH). Chose qu’on observe facilement dans la figure 5.5-a. Ce comportement

constitue une manifestation claire de la présence d’interactions fortes, confirmant ainsi la

transformation de l’interaction faible en interaction intéragissant fortement dans ce secteur

de valeurs élevées de la masse du Higgs. Cette interprétation trouve aussi un soutien dans le

comportement de l’amplitude perturbative S0, qui est divergent à hautes énergies et qu’on

obverve bien dans la figure 5.5-b.

Il est aussi important de noter ici que quoique, pour des valeurs élevées de la masse du

Higgs, les amplitudes dispersive et perturbative ont des structures totalement différentes, ce

qui est tout à fait normale et même souhaitable ; leur comportement à basses énergies sont

similaires. Ce rapprochement à basses énergies est en fait un bon signe, qui atteste que notre

modèle comporte en son sein des élements de réalité physique.

8Par aileurs il semble important de noter que, le fait que pour de petites valeurs de la masse du Higgs
(petites énergies) ReD0(MH) tend vers l’unité, ne représente pas une particularité physique mais reflète
seulement notre condition de normalisation D0(ν = ν0 = 0) = 1.
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Figure 5.3: Dépendance en fonction de la masse du Higgs MH (pour des valeurs fixes du rapport

ν/M2
H) : a) de l’énergie

√
s dans le centre de masse du système W+

L W−
L ; b) du numérateur N0 de

l’amplitude de l’onde partielle S dispersive.

Figure 5.4: Dépendance en fonction de la masse du Higgs MH (pour des valeurs fixées du rapport

ν/M2
H) des parties (a) imaginaire et (b) réelle, du dénominateur D0 de l’amplitude de l’onde

partielle S dispersive.
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Figure 5.5: Dépendance en fonction de la masse du Higgs MH (pour des valeurs données du rapport

ν/M2
H) : a) du module |F0| de l’amplitude de l’onde partielle S dispersive, b) l’amplitude S0 de

l’onde partielle S perturbative.

Revenons au fait que l’amplitude perturbative viole l’unitarité pour des valeurs élevées

de la masse du Higgs et remarquons que le seuil de violation de l’unitarité varie en fonction

de la masse du Higgs. Et que par ailleurs, l’amplitude dispersive observe bien la condition

d’unitarité qui lui a été inculquée par construction et ceci pour toute valeur de la masse du

Higgs. On remarque aussi que, quelque soit la valeur choisie pour le rapport ν/M2
H , l’ampli-

tude dispersive ne dépasse pas la valeur maximale |F (max)
0 | = 2. Cette limite qu’on adopte

comme repère, correspond à la saturation de l’unitarité. Par suite, on défini la saturation de

l’unitarité pour l’amplitude perturbative avec S
(max)
0 = 2. Cette définition cohérente, nous

permet d’établir les résultats des deuxième et troisième colonnes du tableau 5.1, qui donnent

les seuils particuliers de violation de l’unitarité. Et en analysant ces résultats, on remarque

que pour MH = 510GeV (qui correspond à la situation
√
s ≃MH) la violation de l’unitarité

est observée dès l’energie
√
s = 530GeV . Alors que pour MH > 510GeV , l’unitarité est

violée de manière générale dans le domaine du TeV, et ceci que l’énergie soit supérieure ou

inférieure à la masse du Higgs. On déduit alors une nouvelle limite sur la masse du Higgs
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pour la validité du calcul perturbatif. Cette limite est :

Mseuil
H = 510GeV (5.27)

Notre limite est bien inférieure à la limite déduite par Lee-Quigg-Tacker [103] à savoir la

valeur M
(L.Q.T.)
H =

√

4π
√

2

Gµ

≃ 1.23TeV . Cette différence trouve son justificatif dans le fait

que la limite de Lee-Quigg-Tacker est déduite d’une manière totalement différente à notre

manière de procéder. Elle correspond en outre au cas
√
s ≫ MH alors que nous, on se

positione au voisinage de la masse du Higgs lourd
√
s ∼MH .

χ+χ− → χ+χ− seuil de violation de l’unitarité perturbative : résonance dispersive à :
ν /M2

H = MH (TeV)
√
s (TeV) MH (TeV)

√
s (TeV)

1. 1.26 2.52 2.84 5.68
0.5 1.12 1.59 3.2 4.5
0.3 0.75 0.83 1.5 1.65
0.25 0.51 0.53 1.83 1.84
0.2 0.77 0.71 2.09 1.87
0.11 2.19 1.46 2.51 1.67
0.08 2.96 1.68 2.67 1.52

Tableau 5.1: Valeurs respectives de MH et de
√

s pour lesquelles on observe la violation de l’uni-

tarité de l’amplitude perturbative et pour lesquelles on a des résonances de l’amplitude dispersive

.

Le tableau 5.1 renferme par ailleurs dans ses quatrième et cinquième colonnes les valeurs

respectives de l’énergie et de la masse du Higgs correspondant aux positions de la résonance

de l’amplitude dispersive pour différentes valeurs choisies du rapport ν/M2
H . On y remarque

tout d’abord que toutes ces résonances sont situées dans le domaine du TeV, c’est à dire le

domaine non-perturbative. De plus, relativement à la masse du Higgs, la résonance MH =

1.83TeV ≃ √
s constitue une solution self-consistante. Par suite on peut interpréter cette

dernière valeur de MH comme étant la valeur de la masse du Higgs s’il est lourd. Cette

interpretation trouve de plus son justificatif dans le fait qu’au voisinage de cette résonance

self-consistante, la contribution du canal s de l’amplitude perturbative S0 est de loin le plus

dominant relativement à la contribution du canal t représente par B0 (voir figure 5.7).

Pour être plus complet, on représente dans la figure 5.6 le module de l’amplitude dis-
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persive self-consistante ainsi que le comportement de la phase δ0(
√
s) =

N0

2ReD0

9 losrsqu’on

parcourt cette résonance self consistante. On y remarque que la phase δ0(
√
s) croit comme il

se doit continuellement (de ∼ 0 à ∼ π) en passant, à la résonance (
√
s = MH = 1.83TeV ),

par la valeur
π

2
. De plus, un calcul à la Breit-Wigner, nous permet de determiner la largeur

de raie ΓH correspondante. On trouve ΓH ≃ MH

2
≃ 0.9 TeV .

Ainsi à croire notre modèle pour l’amplitude du processus W+
L W

−
L →W+

L W
−
L dans le

domaine du TeV, on a :

M
(lourd)
H = 1.83TeV Γ

(lourd)
H = 0.9 TeV et Mseuil

H = 510GeV (5.28)

Mais, il importe de dire ici que la valeur élevée de la largeur de raie du Higgs lourd

entrave la détermination précise de sa masse. En outre, on note la compatibilité de la valeur

qu’on trouve pour la masse du Higgs lourd avec la résonance trouvée par Iddir et al dans

[117] en utilisant une méthode de techni-couleur. Néanmoins, cette dernière résonance n’est

pas scalaire alors que notre résonance l’est et par suite pouvant être interprété comme étant

le Higgs lui même.

Enfin, on a essayé à travers ce chapitre de mettre un peu de lumière sur le comportement

non-perturbatif de l’interaction faible à l’échelle du TeV. Mais, seule une investigation directe

du secteur scalaire au niveau des collisionneurs à énergies dans le domaine du TeV (le LHC

qui vient d’être mis en fonction, l’ILC,· · · ), permettra d’apporter des élements de réponse

clairs, directes et précis tant pour la masse du Higgs que pour le comportement des couplages

électrofaibes liés au secteur de brisure spontanée de la symétrie électrofaible à l’échelle du

TeV et aussi sur la manifestation de la nouvelle physique.

9Pour établir cette relation, on remarque que ρ(ν) =
1

2

√
ν

ν + M2
W

≃ 1

2
, pour ν/M2

H = 0.25 et pour

l’intervalle de masse MH qui encadre la self-résonance 1.83 TeV, c’est à dire l’intervalle de 1 TeV à 2.5 TeV
qu’on considère dans la figure 5.6-b.
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Figure 5.6: Dépendance en fonction de la masse du Higgs MH (pour
√

s ≃ MH) du a) module |F0|
et de b) la phase δ0 de l’amplitude de l’onde partielle S dispersive.

Figure 5.7: Dépendance en fonction de la masse du Higgs MH (pour
√

s ≃ MH) des rapports :

a)
B0

|F0|
et b)

S0

|F0|
, respectivement du terme de Born (B0) et de l’amplitude perturbative (S0)

relativement à l’amplitude dispersive (F0).
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Conclusion

Dans cette thèse, on a contribué à explorer le secteur qui demeure encore mystérieux dans

la physique des particules élémentaires et qui constitue le dernier maillon restant à vérifier

dans le modèle standard. Les processus les plus sensibles à ce secteur de brisure spontanée de

la symétrie électrofaible étant ceux qui font intervenir la fusion des bosons vecteurs massifs

Z et W . Ainsi, en prenant en compte le fait que la masse du Higgs résiste toujours à la

découverte, deux voies à explorer se sont ouvertes devant nous : Celle d’un Higgs léger ne

violant pas le principe d’unitarité et par suite s’adaptant bien au calcul perturbatif ; Et celle

d’un Higgs lourd nécessitant le recours aux méthodes non-perturbatives.

Dans le cas du Higgs léger, et vu que, d’une part les corrections radiatives pour les

processus ZZ → ZZ et W−W+ → W−W+ ont reçu suffisamment d’attention, et que d’autre

part, vu la grande valeur de la masse du quark top, “une valeur qui est proche de l’échelle de

brisure spontanée de la symétrie électrofaible, et aussi une valeur qui se trouve en haut de la

hiérarchie des masses des particules élementaires”, qualifiant le quark top à être une sonde

privilégiée pour l’étude du secteur scalaire et pour la recherche d’une nouvelle physique ;

on s’est particulièrement concentré sur l’étude des corrections radiatives électrofaibles et

QCD pour les processus ZZ → tt̄ et W−W+ → tt̄ ainsi que sur l’étude de la manière avec

laquelle on peut cerner les effets de la nouvelle physique sur les sections efficaces totales et

les distributions angulaires pour nos processus d’intérêt.

La lourdeur des calculs qu’on a réussi à mener à l’ordre de la boucle, incluant des cen-

taines de diagrammes de Feynman, est loin d’être négligeable et a nécessité en premier lieu,

la définition d’une stratégie pour mener intelligemment le calcul et pour pouvoir assurer

les différentes invariances requises ; en deuxième lieu, la mâıtrise des codes automatisant les

calculs à une boucle (SloopS, FormCalc et Grace) et à l’arbre (CompHep), ce qui nous a

facilité leur utilisation combinée et complémentaire en vu d’atteindre nos objectifs ; et en

troisième lieu, la capacité à introduire des modifications sur ces codes lorsque celà s’avère

nécessaire. Chose qu’on a fait sur FormCalc, lorsqu’on y a inclu les gluons réels mous et la

coupure sur l’impulsion transversale du quark top.
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En menant ces calculs pour nos processus d’intérêt, on a cherché comment analyser de

manière quantitative et séparée, les contributions purement élecrofaibles et les contributions

de couleur. On a aussi cherché, comment on pourrait mettre en évidence les effets d’une

nouvelle physique à travers la comparaison entre les corrections radiatives dans le cadre du

modèle standard et les effets d’opérateurs effectifs paramétrant le domaine de la nouvelle

physique.

Ainsi pour réaliser cet objectif, on a tout d’abord montré la dominance des modes lon-

gitudinaux des bosons vecteurs, ce qui nous a permis de concentrer l’étude essentiellement

sur ces modes ; puis on a établi une formule analytique pour les contributions QED univer-

selles ; pour ensuite définir la manière avec laquelle on extrait les contributions purement

électrofaibles propres à nos processus d’intérêt. On a alors calculé les différentes corrections

électrofaible, purement électrofaible et QCD, à l’ordre de la boucle. Et comme on a mené le

calcul en utilisant la constante de structure fine défini à la limite de Thomson, l’évolution

de cette constante pour accompagner l’échelle de réaliastion de nos réactions s’est faite d’un

coté à travers les valeurs effectives des masses des quarks légers qu’on a utlisé et qui sont

définis de manière à reproduire la valeur de la constante α à l’échelle MZ et de l’autre coté

via le passage au schéma Gµ pour pouvoir rendre compte d’une correction importante en

m2
t . Enfin on a incorporé nos processus fils via une approche fonctions de structure pour une

phénoménologie électrofaible et de couleur au sein de la nouvelle génération de collisionneurs

ayant des énergies de l’ordre du TeV, à savoir le LHC qui vient de démarrer le 10 septembre

dernier (souffrant actuellement d’un pépin, il est probable qu’il redémarrera en mars 2009)

et l’ILC prévu pour le futur proche.

En outre, il est important de noter ici que dans le LHC la création de paires de quarks

top via la fusion de bosons vecteurs est masquée par la grande abondance des gluons qui

fusionnent en paires de quarks top et par suite rendent le signal provenant de la fusion des

bosons vecteurs inexploitable. Par contre l’ILC ne souffre pas de cette pathologie, et par suite

offre un meilleur environnement pour l’épanouissement du canal de fusion de bosons vecteurs

en quarks top et par conséquent à l’exploration du secteur scalaire du modèle standard et à

la détermination précise du couplage du quark top aux bosons vecteurs, ouvrant ainsi une

fenêtre sur la nouvelle physique.
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Cette étude nous a premièrement permis de montrer qu’à l’ordre de la boucle, les cor-

rections purement électrofaibles pour les processus V V → tt̄ sont compétitives avec les cor-

rections QCD et qu’elles sont toutes deux de l’ordre du pour cent et par suite doivent être

conjointement prises en compte dans toute confrontation avec les résultats expérimentaux

dont la précision ne cesse de s’améliorer. Deuxièmement, on a mis en évidence que les effets

de la nouvelle physique peuvent se révéler via une déviation des résultats expérimentaux

relativement à la section efficace totale standard, mais aussi en cas d’égalité numérique des

sections efficaces totales théoriques à l’ordre de la boucle et des données expérimentales,

une distortion de la distribution angulaire sera trés révélatrice. Ces déviations par rapport

au modèle standard sont alors cerner de manière quantitative via les coefficients libres du

Lagrangien effectif paramétrant ce domaine d’interaction pathologique.

Par ailleurs, pour le cas du Higgs lourd, l’interaction faible manifeste un comportement

en force forte et par suite le calcul perturbatif ne devient plus justifiable. On a donc utilisé

le formalisme des relations de dispersion qui est basé sur les prescriptions d’unitarité et

d’analycité de l’amplitude de transition. On a aussi profité du théorème d’équivalence pour

construire un modèle dispersif pour l’amplitude du processus W−
L W

+
L → W−

L W
+
L . En outre

on a mené cette construction d’une manière qui prédispose notre modèle à la résolution par

la méthode N/D. La résolution numérique des équations intégrales qu’on a construit, nous

a premièrement permis de mettre en relief les effets sur l’amplitude du comportement en

force forte de l’interaction faible, deuxièmement d’estimer une valeur pour le Higgs lourd et

troisièmement d’établir une nouvelle limite pour la validité du calcul perturbatif.

Enfin, comme tout travail scientifique, malgré l’effort aussi considérable soit-il nécessaire

pour sa réalisation, reste toujours incomplet, et on s’aperçoit lors de sa réalisation qu’il admet

inévitablement des extensions, on énumère alors dans la section suivante, les différentes

perspectives qui nous semblent envisagables pour cette thèse.
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Recommandations

A l’issue de ce travail plusieurs voies se sont avérées intéressantes à explorer.

• Notant d’abord que dans notre étude, on a signalé que les modes LT ont un poids

difficilement négligeable. Il est donc important de les prendre en considération, en parallèle

avec une amélioration de l’ABVE qui souffre de la dépendance de ses modes transversaux

de la présence d’un facteur dépendant de l’échelle d’énergie Q via le terme : Log(Q2).

• Notant aussi que l’étude complète du processus de fusion de bosons vecteurs au niveau

des collisionneurs nécessite l’introduction des calculs à l’ordre de la boucle des processus

2 → 4. Une tâche ardue mais intéressante.

• Il semble aussi intéressant d’analyser à l’ordre de la boucle, la situation du MS sans

Higgs.

• L’application du formalisme des relations de dispersion au processus W−W+ → tt̄

semble aussi intéressante, dans le sens où elle peut révéler une corrélation entre la masse du

top et celle du Higgs.
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Appendice A

Amplitudes d’helicité à l’arbre
pour W−W+ → tt̄

L’amplitude MSM correspondant au processus W−W+ → tt̄ :1 s’écrit :

MSM = MSM

H + MSM

γ + MSM

Z + MSM

b (A1)

On utilise alors le formalisme spinoriel dans le cas de particules massives avec les notations

λ1 = ±1 et λ1 = 0 pour représenter respectivement les modes transversaux et le mode lon-

gitudinal pour les bosons W incidents. Ainsi que λ2 = ±1 pour représenter les polarisations

du quark top.2 On définit aussi β2
i = 1− 4m2

i /s, γ
2
i = 1/(1− β2

i ) = s/4m2
i et le propagateur

réduit πi par (πi = sΠi), où
√
s est l’énergie dans le centre de masse du système WW et les

propagateurs qui interviennent dans ce processus s’écrivent :

Πγ =
1

s
, ΠZ =

1

s−M2
Z

, ΠH =
1

s−M2
Higgs

, Πb =
−4

s(β2
t + β2

W ) + 4m2
b + 2sβtβW cosθ

(A2)

θ est l’angle entre le W− et le quark t.

Les amplitudes d’hélicité à l’arbre dans le MS sont données par MSM

λ1,λ2,λ3,λ4
pour le processus

W−(λ1)W
+(λ2) → t(λ3)t̄(λ4) :

MSM

λ1,−λ1,−λ2,λ2
= −λ1λ2

g2

8
πbβt(1 − λ2βt)(1 − λ1λ2 cos θ) sin θ (A3)

1Voir diagrammes de Feynman correspondants en figure 2.1-b.
2La troisième composante de l’isospin du quark top est I3 = 1

2 et sa charge est Q = 2
3 .
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MSM

λ1,−λ1,λ2,λ2
= λ1

g2

8
πb
βt

γt
sin2 θ (A4)

MSM

λ1,λ1,−λ2,λ2
=
g2

4
sin θ

[πb

2
(1 − λ2βt)(βW + βt cos θ) + 2πZ(I3(1 − λ2βt) − 2Q

M2
Z

s
sin2 θW )βW

]

(A5)

MSM

λ1,λ1,λ2,λ2
= −g

2

4

1

γt

[

λ1
πb

2
(βW + βt cos θ)(1 + λ1λ2 cos θ) + λ2πHβt

+2λ2πZ(I3 − 2Q
M2

Z

s
sin2 θW )βW cos θ

]

(A6)

MSM

0,λ1,−λ2,λ2
= λ1

g2

2
√

2
γW (1 + λ1λ2 cos θ)

[πb

4
(1 − λ2βt)(βWβt + λ1βt − λ2βW + λ1λ2β

2
W

−2λ2βt cos θ) − 2λ2πZ(I3(1 − λ2βt) − 2Q
M2

Z

s
sin2 θW )βW

]

(A7)

MSM

−λ1,0,−λ2,λ2
= MSM

0,λ1,−λ2,λ2
(A8)

MSM

0,λ1,λ2,λ2
= −

√
2
g2

4

γW

γt
sin θ

[πb

4
(βWβt + λ1βt + λ2βW − λ1λ2β

2
W + 2λ2βt cos θ)

+2λ2πZ(I3 − 2Q
M2

Z

s
sin2 θW )βW

]

(A9)
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MSM

−λ1,0,λ2,λ2
= MSM

0,λ1,λ2,λ2
(A10)

MSM

0,0,−λ2,λ2
=
g2

4
γ2

W sin θ
[πb

2
(1 − λ2βt)(2λ2βWβt − βW (1 − β2

W ) − 2βt cos θ)

−2πZ(I3(1 − λ2βt) − 2Q
M2

Z

s
sin2 θW )(3 − β2

W )βW

]

(A11)

MSM

0,0,λ2,λ2
= −λ2

g2

4

γ2
W

γt

[πb

2
((1 + β2

W )βt − (1 − β2
W )βW cos θ − 2βt cos2 θ)

+πH(1 + β2
W )βt − 2πZ(I3 − 2Q

M2
Z

s
sin2 θW )(3 − β2

W )βW cos θ
]

(A12)

Les amplitudes d’hélicité anomales N , faisant intervenir les opérateurs de l’équation 3.2

s’écrivent :

Nλ1,−λ1,−λ2,λ2 = Nλ1,−λ1,λ2,λ2 = Nλ1,λ1,−λ2,λ2 = 0 (A13)

Nλ1,λ1,λ2,λ2 =

√
s

Λ
βt(λ2a1 + λ1a2 cos θ) (A14)

N0,λ1,−λ2,λ2 = −λ1λ2
a2

Λ

√
s

2

γW

γt
βW (1 + λ1λ2 cos θ) (A15)

N−λ1,0,−λ2,λ2 = N0,λ1,−λ2,λ2 (A16)

N0,λ1,λ2,λ2 =
a2

Λ

√
s

2
γW (λ1βt − λ2βW ) sin θ (A17)

N−λ1,0,λ2,λ2 = N0,λ1,λ2,λ2 (A18)

N0,0,−λ2,λ2 = −2a2

√
s

Λ

γ2
W

γt
βW sin θ (A19)
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N0,0,λ2,λ2 = λ2

√
s

Λ
γ2

W (a1(1 + β2
W )βt + 2a2βW cos θ) (A20)

Ces expressions ont fait l’objet de plusieurs test à travers des comparaisons avec des

résultats numériques via FormCalc, CompHep et un code utilisant la méthode du carré de

l’amplitude globale. Par ailleurs ces expressions sont en accord complet avec ceux trouvées

par[94]. À hautes énergies la partie anomale pour les bosons vecteurs doublement longitudi-

naux s’écrit :

N0,0,−λ2,λ2 ≃ −a2
mt

Λ

s

M2
W

sin θ, N0,0,λ2,λ2 ≃ λ2

√
s

2Λ

s

M2
W

(a1 + a2 cos θ) (A21)

Ce comportement à hautes énergies est en accord avec celui donné par [9]. La dépendance

angulaire de a2 permet de classer l’opérateur correspondant comme onde-P et l’opérateur

correspondant à a1 comme onde-S [9].
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Appendice B

Diagrammes de Feynman à l’arbre
pour le processus e+e− → tt̄νeν̄e
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Appendice C

Liste des abréviations

• ABVE : Approximation des Bosons Vecteurs Effectifs

• BRS : tansformations de Becchi-Rouet-Stora

• BSSE : Brisure Spontanée de la Symétrie Electrofaible

• CKM : matrice de Cabibbo-Kobayashi-Maskawa

• EW : Electro-Weak

• IR : Infra-Rouge

• MS : Modèle Standard

• NP : Nouvelle Physique

• PEW : Purely Electro-Weak

• QCD : Quantum Chromo-Dynamic

• QED : Quantum Electro-Dynamic

• UV : Ultra-Violette
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