
.- 

SLAC-PUB-5503 
1lay 1991 
(A/I) 

ACCELERATOR AND FEEDBACK CONTROL SIMULATION 
USING NEURAL NETWORKS* 

D. NGUYEN,+ M. LEE, R. SASS, H. SHOAEE 
Stanford Lznear Accelerator Center Stanford University, Stanford CA 94305 

Abstract 
Unlike present constant model feedback systems, neural 

networks can adapt as the dynamics of the process changes 
with time. 

Using a process model, the “Accelerator” network is first 
trained to simulate the dynamics of the beam for a given 
beam line. This “Accelerator” network is then used to 
train a second “Controller” network which performs the 
control function. In simulation, the networks are used to 
adjust corrector magnets to control the launch angle and 
position of the beam to keep it on the desired trajectory 
when the incoming beam is perturbed. 

Introduction 
Both fast and slow feedback control are used in the SLC 

control system to stabilize the beam and optimize colli- 
sions. Fast feedback control executes at or near the beam 
rate in the 80386 micros, each of which controls all devices 
in one geographical region[l], while slow feedback control 
operates in the VAX over a period of many seconds to a 
few minutes. 

All of these systems use a constant model of the accel- 
erator in the region to be controlled. While known noise 
characteristics can be incorporated into the model, tran- 
sient conditions or unknown systematic changes over time 
can reduce the effectiveness of the control. 

Adaptive control systems however, can change their be- 
havior in response to changes in the dynamics of the pro- 
cess they control. Like constant model systems, adaptive 
systems contain an embedded model of the process they 
control but they also have the ability to,modify this em- 
bedded model and the control algorithm with time as the 
process dynamics change. One way to do adaptive control 
is by the use of multiple neural networks. 

Neural Network Architecture 
For this simulation, two neural networks were trained 

with the back propagation algorithm[2]. Even though a 
network with-only a single hidden layer can implement any 

‘Work supported by the Department of Energy, contract DE 
AC03-76SFOO515 

‘Present address: ARGO Systems. 

t 
Neural Beam Line Controller I .I 
Training Algorithm uses 
Neural Emulator 
Seam Line Modal 

X = BPM Readings 
0 = Corrector Settings 

Model Error 

4-w i = Estimated BPM Reading 6Ml A7 
Figure 1. Block Diagram of Neural Network Architecture 

nonlinear function[3], multiple networks with more layers 
often provide a better way to decompose a problem. 

Figure 1 shows the neural network architecture used for 
this simulation which consists of two feed forward net- 
works. The Neural Beam Line Emulator is the machine 
model, the equivalent of the plant model in control theory, 
and the Neural Beam Line Controller is the equivalent of 
the control algorithms used to keep the beam at the desired 
setpoint. 

Because the plant to be controlled is linear, that is, the 
Beam Position Monitor (BPM) readings for a pulse is a 
linear function of the corrector settings, both the Neural 
Emulator and the Controller need only be one layer net- 
works i.e., no hidden layer is required. In a beam line 
containing 16 BPMs, the Neural Controller is trained to 
adjust two correctors in each plane near the beginning of 
the beam line to center the beam positions at two consec- 
utive BPMs near the end of the line. 

Training the Networks 
The learning process involves two stages. The first stage 

trains the Neural Emulator to act like the beam line model 

Contributed to the IEEE Particle Accelerator Conference, San F’rancisco, CA, May 6-9, 1991 



.- 
and “understand” the beam dynamics in this section of the 
accelerator. It uses the RESOLVE[4] beam line modeling 
program as its “teacher”. The second stage enables the 
Neural Controller to learn to control the beam by using the 
Neural Emulator as a model. It is assumed that the factors 
which affect the trajectories are varying slowly with time 
and change little from pulse to pulse, enabling the Neural 
Controller to use BPM and corrector information from the 
previous pulse to control the next pulse. 

Training the Neural Emulator is similar to plant identi- 
fication (plant modeling) in control theory, except that the 
plant identification is done automatically by a neural net- 
work. The Neural Emulator has 40 inputs and 32 outputs. 
The inputs are the 32 BPM readings (16 in each plane) and 
the four corrector settings (two in each plane) of the pre- 
vious pulse and the four corrector settings of the current 
pulse. The Neural Emulator then outputs the 32 BPM 
readings which are a prediction of the trajectory of the 
next pulse. The current pulse is then launched, and the 
BPM readings generated by RESOLVE are compared with 
the Neural Emulator’s prediction. The prediction error is 
used to train the neural network using the back propa- 
gation algorithm so that the Neural Emulator will make 
a better prediction. After training over many pulses with 
the correctors set to random values for each pulse, it learns 
to be a good predictor of the next pulse’s trajectory. By 
this processi the Neural Emulator “gets the feel” of how 
the corrector settings affect the pulse’s trajectory. This 
process is roughly analogous to the steps that would be 
taken by a human designer to model the beam line. In 
this case, however, the modelling is done automatically by 
the network. 

The Neural Controller is also a one layer (no hidden 
units) network with 36 inputs and four outputs. The in- 
puts are the BPM readings and the corrector settings from 
the previous pulse, and the outputs are the corrector set- 
tings to be used in controlling the next pulse. The Neural 
Controller’s outputs are connected to the RESOLVE beam 
line model and the Neural Emulator. 

Before launching each pulse, the BPM readings and the 
corrector settings from the previous pulse are obtained and 
fed to the Neural Controller. Because the adaptive weights 
of the controller are initially at random, it outputs an erro- 
neous set of corrector settings for the next pulse. The pulse 
is then launched, and the BPM readings at, the two BPMs 
of interest are obtained. The error, which is the difference 
between the actual beam positions and the desired beam 
positions at these two BPMs, is computed, and the con- 
troller is trained to minimize the magnitude square of this 
error. However, to train the controller we need to know 
the error in the controller’s outputs, but we have instead 
the error in the BPM readings shown in Eq. 1. 

c = Xreference - x(k) (1) 

This is where the Neural Emulator is useful. It essen- 
tially acts as an error translator, converting the errors in 

Figure 2. Simulation Control Panel 

BPM readings to errors in corrector settings, 0. The er- 
ror in the BPM readings is back propagated through the 
Neural Emulator toward the Neural Controller, and then 
back propagated through the Neural Controller, updating 
its weights, W, according to the learning rate p at the same 
time as shown in Eq. 2. 

ax(k) c%‘(k) 
AW= -&.+ = @e------- 

S’(k) c?W (2) 

The Neural Controller training process is repeated for 
many pulses, until the mean square error decreases to an 
acceptable value. The training of the Neural Emulator 
may continue at the same time as the Neural Controller, 
thus enabling the whole system to continually adapt. If 
unexpected changes, such as malfunctions or drifts due to 
temperature fluctuations, occur in the beam line, the Neu- 
ral Emulator will adapt to the changes, and then the Neu- 
ral Controller will adapt to the Neural Emulator, enabling 
the overall system to continue to function. 

Simulation Results 
Figure 2 shows the control panel for doing the simu- 

lation. The learning constants for both of the networks, 
noise values of beam position and angle, which of the net- 
works are to be trained and comparison with the model 
based controller can all be selected from this panel. In 
addition, the “Quads” button allows us to alter predesig- 
nated quadrupole strengths and thus invalidate the ma- 
chine model. 

Figure 3 shows a comparison of the trajectories of a se- 
ries of consecutive pulses controlled by the neural networks 
and the model based controller. Note how the pulses come 
into the beam line section off center and at an angle, and 
are centered by the end of the beam line section. With all 
devices matching the model, both the model based con- 
troller and the neural networks work about equally well. 

2 



~___- I 
Figure 4. Malfunctioning Beamline Environment 3. 

Figure 4 shows the simulation in a beamline environ- 
ment which contains two quadrupoles whose field strength 
values have been substantially decreased from their nom- 
inal values, simulating a malfunction. Because the model 
used does not match the actual beam line due to the sim- 
ulated malfunction, the beam is not well controlled at all 
by the model based controller. The neural network based 
controller however has adapted to the change and still con- 
trols the beam as well as before, after it has learned how 
the real machine has changed. When the quadrupoles have 
been restored to their nominal values, the neural network 
based controller can again relearn the correct model and 
control the beam like the model based controller. 

Future Plans 
Neural network based feedback can be used to compen- 

sate for changes in the energy profile caused by Klystron 
population changes, Klystron phase drift and diurnal ef- 
fects not compensated for by existing feedback. Less likely 
though still possible are hardware changes like power sup- 
ply instabilities and changes in focusing properties of mag- 
nets due to hysteresis. All of these dynamic changes to 
some degree invalidate the static model used by current 
feedback systems. 

References 

To further explore the possibilities for the use of neu- 
ral networks in the real control environment we anticipate 
attempting one or more of the following efforts: 

1. Train one or more emulators offline using the mod- 
els generated for the fast feedback system presently 
running at the SLC[l]. Then run these neural net- 

[l] F.R. Rouse et al., “General, Database Driven Fast 
Feedback System for the Stanford Linear Collider,” 
Proceedings of the 1991 IEEE Particle Accelerator 
Conference, San Francisco, CA (May 1991). 

[2] G.E. Hinton, D.E. Rumelhart and R.J. Williams. 
Learning internal representations by error propagation, 
Vol. 1, Ch. 8. MIT Press, Cambridge, MA, (1986). 

[3] B. Irie and S. Miyake. “Capabilities of three-layered 
perceptrons,” Proceedings of the IEEE International 
Conference on Neural Networks, pp. I-641, (1988). 

[4] Cf. M. Lee for information on RESOLVE. 

work models in the 80386 micros that presently run 
the fast feedback system and compare the results with 
the existing feedback. 

Use a neural network to control the residual errors 
of the existing feedback systems. In this mode, the 
network acts to “touch up” i.e. make small, dynamic 
corrections to the existing feedback system. 

In parallel with this work, experiment with a variety of 
extensions and enhancements to the basic back prop- 
agation algorithm to improve performance and study 
network instability. 

Conclusions 
We have been able to train multiple neural networks to 

be both an emulator and controller of a beam line section. 
This indicates that it would be feasible to use multiple neu- 
ral networks to compensate for transient or slowly varying 
beam instabilities or correct for uncertainties in our knowl- 
edge of the machine model. 

Acknowledgements 
Special thanks to Professor Bernard Widrow of Stanford 

University for his early inspiration on this project. 

3 


