SLAC-PUB-5503
May 1991
(A/D)

ACCELERATOR AND FEEDBACK CONTROL SIMULATION
USING NEURAL NETWORKS*

D. NGuYEeN,! M. LEE, R. Sass, H. SHOAEE
Stanford Linear Acceleraior Center Stanford University, Stanford CA 94305

Abstract

Unlike present constant model feedback systems, neural
-networks can adapt as the dynamics of the process changes
with time.

Using a process model, the “Accelerator” network is first
trained to simulate the dynamics of the beam for a given
beam line. This “Accelerator” network is then used to
train a second “Controller” network which performs the
control function. In simulation, the networks are used to
adjust corrector magnets to control the launch angle and
position of the beam to keep it on the desired trajectory
when the incoming beam is perturbed.

Introduction

Both fast and slow feedback control are used in the SLC
control system to stabilize the beam and optimize colli-
sions. Fast feedback control executes at or near the beam
rate in the 80386 micros, each of which controls all devices
in one geographical region[l], while slow feedback control
operates in the VAX over a period of many seconds to a
few minutes.

All of these systems use a constant model of the accel-
erator in the region to be controlled. While known noise
characteristics can be incorporated into the model, tran-
sient conditions or unknown systematic changes over time
can reduce the effectiveness of the control.

Adaptive control systems however, can change their be-
havior in response to changes in the dynamics of the pro-
cess they control. Like constant model systems, adaptive
systems contain an embedded model of the process they

-control but they also have the ability to modify this em-
bedded model and the control algorithm with time as the
process dynamics change. One way to do adaptive control
is by the use of multiple neural networks.

Neural Network Architecture

For this simulation, two neural networks were trained
with the back propagation algorithm([2]. Even though a
network with only a single hidden layer can implement any

*Work supported by the Department of Energy, contract DE-
ACO03-76SF00515

!Present address: ARGO Systems.

X = Reference

+
Controi Error
{+
A—
Resolve
~>»4 Beam Line X (k)
Emulator
X (k-1) - &
> Neur:
> Beam Line ALY Beam Error
9 (k-1) |_Contyoller Simulation
Neural Beam Line Controlier
Training Algorithm uses _
Neural Emutator \ y)Q(k) fV
Beam Line Mode} urai 3+
X (k-1) —»{ Bealkp Line +
9 (k-1) —»{ Emulator
\)
Model Error

X = BPM Readings

6 = Corrector Settings

)A(= Estimated BPM Reading

Figure 1. Block Diagram of Neural Network Architecture

491 S881A7

nonlinear function(3], multiple networks with more layers
often provide a better way to decompose a problem.

Figure 1 shows the neural network architecture used for
this simulation which consists of two feed forward net-
works. The Neural Beam Line Emulator is the machine
model, the equivalent of the plant model in control theory,
and the Neural Beam Line Controller is the equivalent of
the control algorithms used to keep the beam at the desired
setpoint.

Because the plant to be controlled is linear, that is, the
Beam Position Monitor (BPM) readings for a pulse is a
linear function of the corrector settings, both the Neural
Emulator and the Controller need only be one layer net-
works i.e., no hidden layer is required. In a beam line
containing 16 BPMs, the Neural Controller is trained to
adjust two correctors in each plane near the beginning of
the beam line to center the beam positions at two consec-
utive BPMs near the end of the line.

Training the Networks

The learning process involves two stages. The first stage
trains the Neural Emulator to act like the beam line model

Contributed to the IEEE Particle Accelerator Conference, San Francisco, CA, May 6-9, 1991

and “understand” the beam dynamics in this section of the
accelerator. It uses the RESOLVE[4] beam line modeling
program as its “teacher”. The second stage enables the
Neural Controller to learn to control the beam by using the
Neural Emulator as a model. It is assumed that the factors
which affect the trajectories are varying slowly with time
and change little from pulse to pulse, enabling the Neural
"Controller to use BPM and corrector information from the
previous pulse to control the next pulse.
Training the Neural Emulator is similar to plant identi-
fication (plant modeling) in control theory, except that the

loant 1dantificats ™m
plant identification is done automatically by a neural net-

work. The Neural Emulator has 40 inputs and 32 outputs.
The inputs are the 32 BPM readings (16 in each plane) and
the four corrector settings (two in each plane) of the pre-
vious pulse and the four corrector settings of the current
pulse. The Neural Emulator then outputs the 32 BPM
readings which are a prediction of the trajectory of the
next pulse. The current pulse is then launched, and the
BPM readings generated by RESOLVE are compared with
the Neural Emulator’s prediction. The prediction error is
used to train the neural network using the back propa-
gation algorithm so that the Neural Emulator will make
a better prediction. After training over many pulses with
the correctors set to random values for each pulse, it learns
to be a good predictor of the next pulse’s trajectory. By
this process; the Neural Emulator “gets the feel” of how
the corrector settings affect the pulse’s trajectory. This
process is roughly analogous to the steps that would be
taken by a human designer to model the beam line. In
this case, however, the modelling is done automatically by
the network.

The Neural Controller is also a one layer (no hidden
units) network with 36 inputs and four outputs. The in-
puts are the BPM readings and the corrector settings from
the previous pulse, and the outputs are the corrector set-
tings to be used in controlling the next pulse. The Neural
Controller’s outputs are connected to the RESOLVE beam
line model and the Neural Emulator.

Before launching each pulse, the BPM readings and the
corrector settings from the previous pulse are obtained and
fed to the Neural Controller. Because the adaptive weights
of the controller are initially at random, it outputs an erro-
neous set of corrector settings for the next pulse. The pulse
is then launched, and the BPM readings at the two BPMs
of interest are obtained. The error, which is the difference
between the actual beam positions and the desired beam
positions at these two BPMs, is computed, and the con-
troller is trained to minimize the magnitude square of this
error. However, to train the controller we need to know
the error in the controller’s outputs, but we have instead
the error in the BPM readings shown in Eq. 1.

~a(k) R

This is where the Neural Emulator is useful. It essen-
tially acts as an error translator, converting the errors in

€ = Treference

sé-Bazed Controller

Figure 2. Simulation Control Panel

8PM_Pasitions for Varlous Wedels i 7

E e Model-Based

fp Controlier

)

[=] -

N euroconlmller

BPM
X-Pos

BPM 7)
Y-Pos

Figure 3. Standard Beamline Environment

BPM readings to errors in corrector settings, 8. The er-
ror in the BPM readings is back propagated through the
Neural Emulator toward the Neural Controller, and then
back propagated through the Neural Controller, updating
its weights, W, according to the learning rate y at the same
time as shown in Eq. 2.

dz(k) 98(k)
HeBa(k) oW)

#%f.? 2

AW =
The Neural Controller training process is repeated for
many pulses, until the mean square error decreases to an
acceptable value. The training of the Neural Emulator
may continue at the same time as the Neural Controller,
thus enabling the whole system to continually adapt. If
unexpected changes, such as malfunctions or drifts due to
temperature fluctuations, occur in the beam line, the Neu-
ral Emulator will adapt to the changes, and then the Neu-
ral Controller will adapt to the Neural Emulator, enabling
the overall system to continue to function.

Simulation Results

Figure 2 shows the control panel for doing the simu-
lation. The learning constants for both of the networks,
noise values of beam position and angle, which of the net-
works are to be trained and comparison with the model
based controller can all be selected from this panel. In
addition, the “Quads” button allows us to alter predesig-
nated quadrupole strengths and thus invalidate the ma-
chine model.

Figure 3 shows a comparison of the trajectories of a se-
ries of consecutive pulses controlled by the neural networks
and the model based controller. Note how the pulses come
into the beam line section off center and at an angle, and
are centered by the end of the beam line section. With all
devices matching the model, both the model based con-
troller and the neural networks work about equally well.

[- R 5oLl 7 s BPM Positions for Various Medes A SG LT TR T T)_(,_‘

i Model-Based & L
JCam sComrolient e g,

Figure 4. Malfunctioning Beamline Environment

Figure 4 shows the simulation in a beamline environ-
ment which contains two quadrupoles whose field strength
values have been substantially decreased from their nom-
inal values, simulating a malfunction. Because the model
used does not match the actual beam line due to the sim-
ulated malfunction, the beam is not well controlled at all
by the model based controller. The neural network based
controller however has adapted to the change and still con-
trols the beam as well as before, after it has learned how
the real machine has changed. When the quadrupoles have
been restored to their nominal values, the neural network
based controller can again relearn the correct model and
control the beam like the model based controller.

Future Plans

Neural network based feedback can be used to compen-
sate for changes in the energy profile caused by Klystron
population changes, Klystron phase drift and diurnal ef-
fects not compensated for by existing feedback. Less likely
though still possible are hardware changes like power sup-
ply instabilities and changes in focusing properties of mag-
nets due to hysteresis. All of these dynamic changes to
some degree invalidate the static model used by current
feedback systems.

To further explore the possibilities for the use of neu-
ral networks in the real control environment we anticipate
attempting one or more of the following efforts:

1. Train one or more emulators offline using the mod-
els generated for the fast feedback system presently
running at the SLC[1]. Then run these neural net-

work models in the 80386 micros that presently run
the fast feedback system and compare the results with
the existing feedback.

2. Use a neural network to control the residual errors
of the existing feedback systems. In this mode, the
network acts to “touch up” i.e. make small, dynamic
corrections to the existing feedback system.

3. In paralle] with this work, experiment with a variety of
extensions and enhancements to the basic back prop-
agation algorithm to improve performance and study
network instability.

Conclusions

We have been able to train multiple neural networks to
be both an emulator and controller of a beam line section.
This indicates that it would be feasible to use multiple neu-
ral networks to compensate for transient or slowly varying
beam instabilities or correct for uncertainties in our knowl-
edge of the machine model.

Acknowledgements

Special thanks to Professor Bernard Widrow of Stanford
University for his early inspiration on this project.

References

[1] F.R. Rouse et al., “General, Database Driven Fast
Feedback System for the Stanford Linear Collider,”
Proceedings of the 1991 IEEE Particle Accelerator
Conference, San Francisco, CA (May 1991).

(2] G.E. Hinton, D.E. Rumelhart and R.J. Williams.
Learning internal representations by error propagation,
Vol. 1, Ch. 8. MIT Press, Cambridge, MA, (1986).

[3] B. Irie and S. Miyake. “Capabilities of three-layered
perceptrons,” Proceedings of the IEEE International
Conference on Neural Networks, pp. I-641, (1988).

[4] Cf. M. Lee for information on RESOLVE.

